Preparation of many-body ground states by time evolution with variational microscopic magnetic fields and incomplete interactions

Ying Lu, Yue-Min Li, Peng-Fei Zhou, and Shi-Ju Ran
Phys. Rev. A 104, 052413 – Published 11 November 2021
PDFHTMLExport Citation

Abstract

State preparation is of fundamental importance in quantum physics, which can be realized by constructing the quantum circuit as a unitary that transforms the initial state to the target, or implementing a quantum control protocol to evolve to the target state with a designed Hamiltonian. In this article, we study the latter on quantum many-body systems by time evolution with fixed couplings and variational magnetic fields. Specifically, we consider preparing the ground states of the Hamiltonians containing certain interactions that are missing in the Hamiltonians for the time evolution. An optimization method is proposed to optimize the magnetic fields by “fine graining” the discretization of time, in order to gain high precision and stability. The automatic differentiation technique is utilized to obtain the gradients of the fields against the logarithmic fidelity. Our method is tested on preparing the ground state of the Heisenberg chain with the time evolution by the XY and Ising interactions, and its performance surpasses two baseline methods that use local and global optimization strategies, respectively. Our work can be applied and generalized to other quantum models such as those defined on higher-dimensional lattices. It enlightens to reduce the complexity of the required interactions for implementing quantum control or other tasks in quantum information and computation by means of optimizing the magnetic fields.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 7 June 2021
  • Revised 29 September 2021
  • Accepted 28 October 2021

DOI:https://doi.org/10.1103/PhysRevA.104.052413

©2021 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & TechnologyCondensed Matter, Materials & Applied Physics

Authors & Affiliations

Ying Lu, Yue-Min Li, Peng-Fei Zhou, and Shi-Ju Ran*

  • Department of Physics, Capital Normal University, Beijing 100048, China

  • *Corresponding author. sjran@cnu.edu.cn

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 5 — November 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×