Abrupt transitions in variational quantum circuit training

Ernesto Campos, Aly Nasrallah, and Jacob Biamonte
Phys. Rev. A 103, 032607 – Published 15 March 2021

Abstract

Variational quantum algorithms dominate gate-based applications of modern quantum processors. The so-called layerwise trainability conjecture appears in various works throughout the variational quantum computing literature. The conjecture asserts that a quantum circuit can be trained piecewise, e.g., that a few layers can be trained in sequence to minimize an objective function. Here, we prove this conjecture false. Counterexamples are found by considering objective functions that are exponentially close (in the number of qubits) to the identity matrix. In the finite setting, we found abrupt transitions in the ability of quantum circuits to be trained to minimize these objective functions. Specifically, we found that below a critical (target-gate-dependent) threshold, circuit training terminates close to the identity and remains near to the identity for subsequently added blocks trained piecewise. A critical layer depth will abruptly train arbitrarily close to the target, thereby minimizing the objective function. These findings shed light on the divide-and-conquer trainability of variational quantum circuits and apply to a wide collection of contemporary literature.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 19 October 2020
  • Revised 5 January 2021
  • Accepted 6 January 2021

DOI:https://doi.org/10.1103/PhysRevA.103.032607

©2021 American Physical Society

Physics Subject Headings (PhySH)

General PhysicsQuantum Information, Science & TechnologyAtomic, Molecular & Optical

Authors & Affiliations

Ernesto Campos*, Aly Nasrallah, and Jacob Biamonte

  • Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 143026, Russian Federation

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 3 — March 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×