Itinerant ferromagnetism in the repulsive Hubbard chain with spin-anisotropic odd-wave attraction

M. Singh, S. Pilati, and G. Orso
Phys. Rev. A 102, 053301 – Published 3 November 2020

Abstract

The ground-state properties of the Hubbard chain with on-site repulsion and anisotropic nearest-neighbor attraction are investigated by means of density matrix renormalization group calculations. The nonlocal attraction acts between fermions of one spin component only, mimicking the effect of p-wave Feshbach resonances in cold-atom systems. We analyze the onset of itinerant ferromagnetism, pinpointing the critical attraction strength where partially and fully ferromagnetic states occur. In the cold-atom setup, where the two (pseudo)spin populations are separately conserved, ferromagnetism occurs with the nucleation of a fully imbalanced band-insulating domain hosting the attractive component only. The size of this domain grows with the attraction strength, therefore increasing the (opposite) imbalance of the other domain, until the two spin components are fully separated. In the presence of a harmonic trap, the ferromagnetic state hosts a partially imbalanced domain in the center with an excess of the attractive component and filling lower than one. This central region is surrounded by fully imbalanced domains, located in the trap tails, hosting only fermions belonging to the other component.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 10 August 2020
  • Accepted 19 October 2020

DOI:https://doi.org/10.1103/PhysRevA.102.053301

©2020 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

M. Singh1, S. Pilati2, and G. Orso1,*

  • 1Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013, Paris, France
  • 2School of Science and Technology, Physics Division, Università di Camerino, 62032 Camerino (MC), Italy

  • *giuliano.orso@univ-paris-diderot.fr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 5 — November 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×