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A quantum internet is the holy grail of quantum information processing, enabling the
deployment of a broad range of quantum technologies and protocols on a global scale.
However, numerous challenges exist before the quantum internet can become a reality.
Perhaps the most crucial of these is the realization of a quantum repeater, an essential
component in the long-distance transmission of quantum information. As the analog
of a classical repeater, extender, or booster, the quantum repeater works to overcome
loss and noise in the quantum channels comprising a quantum network. Here, we re-
view the conceptual frameworks and architectures for quantum repeaters, as well as the
experimental progress towards their realization. We also discuss the various near-term
proposals to overcome the limits to the communication rates set by point-to-point quan-
tum communication. Finally, we overview how quantum repeaters fit within the broader
challenge of designing and implementing a quantum internet.
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I. INTRODUCTION

Following its rapid growth this century, the Internet
has become an invaluable socioeconomic fixture, inextri-
cable from almost all facets of day-to-day life. Access to a
high-speed internet—the ability to send and receive dig-
ital information across the globe at almost the speed of
light—has transformed from a luxury to a utility. How-
ever, the current Internet is not sustainable and scalable
without future innovation (Leon-Garcia and Steenstrup,
2021). It has been estimated in 2022 there are currently
7 billion connected IoT (Internet of Things) devices on-
line. This number is projected to increase to 25.4 bil-
lion by 2030 (Howarth, 2021). As the number of devices
increases exponentially over time, the energy consump-
tion in optical communication also grows exponentially,
thereby contributing to climate change. The amount of
local computing power needed to monitor and control
network traffic also grows exponentially. The task of ser-
vice and network management is thus becoming more and
more complex. To move things forward, new concepts
such as distributed intelligence and distributed trust (e.g.
blockchain) are probably needed. On the other hand, on
the longer term, it is widely recognized that a quantum
internet and distributed quantum computing will com-
plement the classical internet. The quantum internet will
be provably secure and could provide exponentially more
computational power and sensing capability to specific
tasks.

Indeed, analogously to this Internet, a new system is
steadily emerging in theoretical literature and early ex-
periment: the quantum internet (Kimble, 2008), a means
of transmitting quantum information globally. While
serving a different purpose from the classical Internet,
this new paradigm may prove disruptive in its own way.
We dedicate this review to the progress that has been
made in designing and building the quantum internet,
focusing largely on its main building block, quantum re-
peaters. In addition to the basic theoretical concepts
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required to understand the components of the quantum
internet, we survey its more technical architectural re-
quirements as well as the experimental advances towards
its implementation.

While classical information is often encoded digitally—
as sequences of 0s and 1s, usually represented in elec-
tronic signals—it can also be housed in quantum mechan-
ical states, which abide by different rules. The quan-
tum states encoding the bits 0 and 1, mathematically
represented by vectors and denoted by |0⟩ and |1⟩ (the
computational-basis states), can correspond to a variety
of physical systems. Among the most popular and use-
ful quantum information carriers is light—the state of
the electromagnetic field associated with one or multiple
photons.

Unlike the analogous classical states, quantum states
can be superposed like waves. For instance, equal com-
binations of |0⟩ and |1⟩ include |+⟩ ≡ 1√

2
(|0⟩ + |1⟩) and

|−⟩ ≡ 1√
2
(|0⟩ − |1⟩), the conjugate-basis states. Mea-

suring a conjugate-basis state in the computational ba-
sis collapses the superposition, resulting in |0⟩ or |1⟩ at
random with equal probability, a manifestation of a more
general postulate of quantum mechanics known as Born’s
rule. The fact that the outcome of this measurement
is probabilistic rather than deterministic is predicted by
Heisenberg’s uncertainty principle.

In addition to quantum superposition, Born’s rule,
and Heisenberg’s uncertainty principle, the formal-
ism of quantum mechanics allows for subtle quantum
correlations—dubbed entanglement—to exist between
remote physical systems. For instance, two distant pho-
tons that are entangled may be in a so-called singlet state
1√
2
(|01⟩−|10⟩), which can exhibit stronger-than-classical

correlations upon measurement. Not only is it impossi-
ble to describe independently the state of each photon in
the singlet, but when measured along any common axis,
the two photons always show opposite results. According
to Schrödinger, entanglement is the essence of quantum
theory, but it is far from a theoretical curiosity. The exis-
tence of non-classical correlations associated with entan-
gled states has been proven in several experiments via
Bell tests (Brunner et al., 2014; Miller, 2016), which has
led three experimental physicists—Alain Aspect, John
Clauser, and Anton Zeilinger—to be awarded the Nobel
Prize in Physics in 2022. Furthermore, in the last few
decades, researchers have shown that entanglement is a
powerful resource in quantum information processing, en-
abling many unusual applications that are impossible or
impractical with only classical resources.

The quantum technologies enabled by our continuously
evolving ability to understand, generate, manipulate, and
entangle delicate quantum systems are the premise be-
hind what is commonly referred to the Second Quantum
Revolution (Berry, 1998; Dowling and Milburn, 2003).
In the First Quantum Revolution, which occurred in the

last century, lasers and transistors—devices built upon
the underlying principles of quantum mechanics—played
a crucial part in global economic growth. Now, we are al-
ready able to demonstrate primitives or complete proto-
cols for the quintessential applications of quantum infor-
mation: quantum cryptography—unconditionally secure
communication between parties—and quantum compu-
tation—a method for exceeding the best-known scaling
of certain classes of classical algorithms.

These and other quantum information tasks can be ac-
cessed remotely if embedded within a quantum internet—
a global network of quantum information processors,
namely sources of quantum states, executors of quan-
tum gates, and devices for quantum measurements (van
Dam, 2020; Wehner et al., 2018). Such a network can
also provide secure access and enhance the performance
of these applications of quantum information.

The security underlying the classical Internet is based
on computational conjectures, which makes it vulner-
able to hacking and eavesdropping. A quantum com-
puter poses a threat to the contemporary cryptosystem
because Shor’s factoring algorithm (Shor, 1997) offers a
way to break standard public-key encryption schemes,
including RSA, Diffie-Hellman, and elliptic curve crypto-
systems within short timescales. Owing to the exten-
sive experimental progress in quantum computing in the
last few decades, its threat is now widely acknowledged
by many governments and organizations (NIST, 2021).
While certain classical solutions have been proposed to
counter the threat, such as post-quantum cryptographic
systems, these are still only conjectured to be secure
against quantum attacks. Indeed, three candidate post-
quantum crypto-systems in the NIST competition have
already been cracked easily by a PC (Townsend, 2022).
In reality, quantum key distribution (QKD) is the only
known way to allow the unconditionally secure trans-
mission of information—that is, a security founded in
tested laws of physics and mathematical proofs (Bennett
and Brassard, 2014; Curty et al., 2021; Ekert, 1991; Xu
et al., 2020). However, commercialized fiber-based point-
to-point QKD is limited to a distance of less than 400 km,
whereas satellite-to-ground QKD, intended to extend the
communication distances, requires expensive components
such as satellites and large telescopes. The quantum
internet promises to significantly extend the range of
QKD and other cryptographic protocols, thereby secur-
ing global communication and transactions.

In particular, a quantum internet will permit secure
access to cloud-based quantum computing. Major IT
firms such as Google, IBM, Intel, Microsoft, Amazon,
and Alibaba are actively constructing their own quan-
tum processors on the way to universal, scalable, and
fault-tolerant quantum computers. These companies are
working towards this goal alongside dedicated quantum-
computing startup companies, which belong to a newly-
forming ecosystem of quantum startups. Companies such
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as IBM1 have already put small-scale quantum proces-
sors online for external access (Castelvecchi, 2017). The
history of conventional computers suggests that the first
few years in quantum computing epoch will see only a few
large-scale quantum computers in the world. This means
that users will have to engage with the devices through
classical or quantum networks. With the help of innova-
tive protocols for blind quantum computing (Broadbent
et al., 2009), a future quantum internet will allow users
to submit their jobs anywhere in the world privately and
securely.

Quantum networking is also a crucial ingredient in
distributed quantum computing, which allows separate
quantum computers to cooperate on an algorithm. At
their early stages, quantum processors will be limited
in size and complexity; to achieve greater computing
power, they will likely need to be networked through
quantum channels, with quantum information flowing
between them. In this way, quantum networking is im-
portant even for short-distance communication between
quantum computers. Other protocols enabled or im-
proved by the quantum internet include quantum tele-
portation (Bennett et al., 1993), quantum fingerprint-
ing (Buhrman et al., 2001), quantum sensing, clock syn-
chronization (Jozsa et al., 2000; Komar et al., 2014), and
the linking of distant optical telescopes for sharper im-
ages (Gottesman et al., 2012).

Conceptually, it is known that sending quantum in-
formation (i.e., qubits) can lower the amount of re-
quired communication in distributed information pro-
cessing tasks, in comparison to sending classical informa-
tion (bits). The study of the amount of required quantum
communication is called quantum communication com-
plexity (Brassard, 2003). Incidentally, the classical com-
munication cost required in quantum information pro-
cessing is also an important subject (Lo, 2000).

Building a quantum internet requires harnessing quan-
tum states of light. Even in the far future, the photon—
or a state of multiple photons—will likely be the infor-
mation carrier of choice in quantum communication, as
it can function as a “flying” qubit (as opposed to matter-
based qubits, which are fixed in space) while minimally
interacting with its environment. By encoding informa-
tion in photonic degrees of freedom, quantum informa-
tion can be transmitted through optical fibers or in free
space over long distances with little decoherence.

Despite the advantages of light, there is enough absorp-
tion and scattering of photons in the media where they
propagate—processes that lead to optical attenuation—
that make loss the key physical hurdle in the construction

1 This was followed by other companies—including ionQ, Quantin-
uum, Quandela, and Xanadu—proposing cloud accessible plat-
forms based on either ion traps or photonics, potentially more
promising platforms for remote access using quantum channels.

of a quantum internet. In a standard single-mode opti-
cal fiber, close to the standard telecommunication wave-
length of 1550 nm, the attenuation is 0.2 dB/km (The
Fibre Optic Association, 2019). This means 1 of every
100 photons survives a journey of 100 km on average. Re-
cently, ultra-low-loss (ULL) optical fibers have been com-
mercialized with a loss as low as 0.15 dB/km (Corning®,
2021). These sorts of losses in optical channels yield fun-
damental limits to the rate at which two parties can es-
tablish a secret key with a point-to-point QKD protocol,
given by TGW bound (Takeoka et al., 2014a) and PLOB
bound (Pirandola et al., 2017), and discussed in more
detail in Secs. IV and VI.

Nevertheless, quantum networks based on such point-
to-point QKD links have already been built all over the
world. Examples of ground-based fiber networks include
the Tokyo QKD network in Japan (Sasaki et al., 2011),
the SECOQC network in Europe (Peev et al., 2009), the
2000 km Shanghai-Beijing network in China (Chen et al.,
2021b), and the Euro QCI network by the 27 EU mem-
ber states (Eur, 2022). Additionally, ground-to-satellite
quantum transmission has been performed over thou-
sands of kilometers of free space. This line of research
has demonstrated that long-distance quantum commu-
nication in a global length scale is feasible with cur-
rent satellite technology (see (Chen et al., 2021b)). Sev-
eral theoretical papers envisioned a satellite-based quan-
tum repeater network (Boone et al., 2015; Gündoğan
et al., 2021; Khatri et al., 2021). However, because their
foundation is point-to-point QKD, existing quantum net-
works rely on trusted relay nodes to achieve information-
theoretically secure communication. In these nodes, op-
tical signals are measured to yield a classical output, and
then new optical signals are generated and sent out. This
classical output is vulnerable to hacking and eavesdrop-
ping, meaning security is only achieved if the nodes can
be trusted.

The architectural challenge of a long-distance quantum
network is therefore to overcome the fundamental limit of
point-to-point quantum communication, achieving high-
rate secure communication without using trusted relay
nodes. Unfortunately, conventional signal boosters, re-
peaters, extenders or amplifiers do not work for quan-
tum signals because of the famous quantum no-cloning
theorem (Dieks, 1982; Wootters and Zurek, 1982), which
states that an unknown quantum state cannot be copied
reliably. However, it is still possible to combat loss and
noise without cloning quantum states; this is achieved
with the help of quantum repeaters.

In quantum repeater protocols, instead of sending
quantum signals (photons) directly from one user to
another, a sequence of intermediate nodes are set up.
There, certain strategies can be used to combat errors
induced by losses and other forms of noise, including
entanglement distillation and purification, and quantum
error detection and correction. While practical quan-
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Reference Topic

(Sangouard et al., 2011) Quantum repeaters based on atomic ensembles and linear optics

(Reiserer and Rempe, 2015) Cavity-based quantum networks with single atoms and optical photons

(Heshami et al., 2016) Quantum memories and applications

(Atatüre et al., 2018) Material platforms for spin-based photonic quantum technologies

(Awschalom et al., 2018) Quantum technologies with optically interfaced solid-state spins

(Ruf et al., 2021) Quantum networks based on color centers in diamond

(Munro et al., 2015) Primitives of quantum repeaters

(Muralidharan et al., 2016) Generations of quantum repeaters

(Kimble, 2008) Introductory work to the quantum internet

(Wehner et al., 2018) Developmental stages of the quantum internet

(Xu et al., 2015) Measurement-device-independent quantum cryptography

(Xu et al., 2020) Realistic QKD

(Broadbent and Schaffner, 2016) Quantum cryptography beyond QKD

(Fitzsimons, 2017) Blind quantum computing

(Pirandola et al., 2020) Advances in quantum cryptography

(Azuma et al., 2021) Tools for quantum network design

TABLE I Related review articles.

tum repeaters are not possible with existing technology,
research towards this goal is active and involves many
different fields of inquiry. Several matter-based systems
exist to facilitate their implementation, including atomic
ensembles, which can function as quantum memories;
quantum dots, which can be used as on-demand sources
of a host of photonic states; and cavity QED, which can
be used to enhance light-matter interactions. Since pho-
tons are often used as flying qubits and quantum memo-
ries often involve matter, the quantum interface between
light and matter is regarded as a key ingredient in quan-
tum repeaters.

In addition to the many subfields of physics involved
in the effort to build quantum repeaters, the pursuit of a
quantum internet more generally is an interdisciplinary
theoretical and experimental endeavor involving math-
ematicians, computer scientists, and engineers. Classi-
cal tools from network topology, protocol design, infor-
mation theory, and error correction, in addition to top-
ics within quantum information, e.g., state preparation,
quantum channels and measurements, and quantum er-
ror correction, are all needed for investigations into the
quantum internet.

Several of the topics discussed in this work have been
the focus of—or at least have gotten a mention in—
previous reviews. We build on this body of work while
discussing newer theoretical and experimental develop-
ments to keep pace with the dynamic field of quan-
tum communication. For instance, the review (San-
gouard et al., 2011) chiefly covers quantum repeaters
whose memories are implemented with atomic ensembles,
while Ref. (Munro et al., 2015) focuses on the primitives

used in quantum repeaters. Reference (Muralidharan
et al., 2016) (and Ref. (Munro et al., 2015) also) cat-
egorizes quantum repeater protocols into relevant gen-
erations which differ in performance and technological
requirements. In our review, we revisit this categoriza-
tion, sorting repeaters based on the associated mecha-
nisms for suppressing losses and errors. This gives us
a more natural structure to understand newly emerging
classes of repeaters, notably memoryless, error-corrected,
and all-photonic repeaters, which have not been exten-
sively featured in reviews. In addition to our discussion
of full-fledged repeaters, we dedicate a portion of our re-
view to simpler protocols believed to be sufficient to beat
repeaterless bounds, an important milestone for long-
distance quantum communication. Reference (Xu et al.,
2020) already tackles some of these ideas with an ap-
proach centered around their security in realistic imple-
mentations; in our work, we focus on performance, chiefly
in terms of key distribution metrics. References (Kim-
ble, 2008; Wehner et al., 2018) review the progress to-
wards the realization of the quantum internet. Notably,
Reference (Wehner et al., 2018) introduces stages of de-
velopment for the quantum internet, aligning with ap-
plications that grow in technological complexity. Here,
we continue this discussion but additionally introduce an
information-theoretic framework to derive fundamental
limits of quantum communication over a quantum net-
work, with views different from Refs. (Pirandola et al.,
2020) and (Azuma et al., 2021). In Table I, we provide
a list of the reviews just mentioned together with other
works on applications of quantum communication that
are not covered here.



6

The rest of this review is organized as follows. In
Secs. II and III.A, we present the preliminaries required
to understand quantum repeaters and the physics be-
hind the quantum internet. In Sec. III.B, we overview
the conceptual frameworks of quantum repeaters and use
them to organize the existing proposals. In Sec. III.C
we discuss an important class of memoryless repeaters
that intersect with the latest generations of theoreti-
cal proposals. In Sec. IV, we review various near-term
protocols, such as an adaptive version of measurement-
device-independent QKD (Lo et al., 2012) and twin-
field QKD (Lucamarini et al., 2018), which are regarded
as milestones in the path to outperforming the PLOB
bound en route to quantum repeaters. In Sec. V, we de-
scribe experimental advances towards optical-fiber-based
quantum communication schemes featuring quantum re-
peaters. Section VI is dedicated to a discussion on the
quantum internet, including the quantum/private capac-
ities of quantum internet protocols and upper bounds on
the capacities. Some concluding remarks are provided in
Sec. VII.

For clarity, we present the list (Table II) of abbrevia-
tions that are used throughout the review.

II. PRELIMINARIES

In this section, we summarize relevant background con-
cepts, including qubits, entanglement, and possible pho-
tonic encodings. Repeater primitives—including telepor-
tation and entanglement swapping—are left to Sec. III.A.
Standard references, including (Nielsen and Chuang,
2010), can be used to supplement this part of the review.

A. Qubits

A qubit—the quantum mechanical analog of the
classical bit and the fundamental unit of quantum
information—is another name for a two-dimensional
complex Hilbert space. A pure state |ψ⟩ of any qubit
can be written in the computational basis through

|ψ⟩ = a |0⟩+ b |1⟩ , (1)

where a, b ∈ C and |a|2 + |b|2 = 1. Setting a = 1√
2

and
b = ± 1√

2
gives states in the conjugate basis:

|±⟩ ≡ 1√
2
|0⟩ ± |1⟩ . (2)

In quantum mechanics, the global phase of a state is irrel-
evant; thus, one can parametrize any pure qubit through
two parameters, a = cos θ

2 and b = eiϕ sin θ
2 , revealing its

Bloch sphere representation, illustrated in Fig. 1, where
θ and ϕ are the polar and azimuthal angles, respectively.
A qubit is realized experimentally by associating it with a

Abbreviation Meaning

BBSM Boosted Bell State Measurement
BDCZ Briegel-Dür-Cirac-Zoller
BM/BSM Bell (State) Measurement
CPTP Completely Positive and Trace-Preserving
CSS Calderbank-Shor-Steane
CTSL Childress-Taylor-Sørensen-Lukin
CV Continuous Variable
DLCZ Duan-Lukin-Cirac-Zoller
DV Discrete Variable
EG Entanglement Generation
ES Entanglement Swapping
GBS Gaussian Boson Sampling
GHZ Greenberger-Horne-Zeilinger
GKP Gottesman-Kitaev-Preskill
HEGP Heralded Entanglement Generation Protocol
LHC Large Hadron Collider
LIGO Laser Interferometer Gravitational-Wave

Observatory
LOCC Local Operations and Classical

Communication
MBQC Measurement-Based Quantum Computing
MDI Measurement Device Independent
MIT Massachussets Institute of Technology
NISQ Noisy Intermediate Scale Quantum
NIST National Institute for Standards in

Technology
NV Nitrogen Vacancy
PBS Polarizing Beamsplitter
PLOB Pirandola-Laurenza-Ottaviani-Banchi
PNR Photon-Number-Resolving Detector
PRCS Phase-Randomized Coherent State
EuroQCI European Quantum Communication

Infrastructure
QD Quantum Dot
QED Quantum Electrodynamics
QKD Quantum Key Distribution
QM Quantum Memory
QND Quantum Non-Demolition
QR Quantum Repeater
RGS Repeater Graph State
RSA Rivest-Shamir-Adleman
SECOQC Secure Communication based on Quantum

Cryptography
SNSPD Superconducting Nanowire Single Photon

Detector
SPD Single Photon Detector
SPDC Spontaneous Parametric Downconversion
SW (Optical) Switches
TF-QKD Twin-Field Quantum Key Distribution
TGW Takeoka-Guha-Wilde
ULL Ultra Low Loss

TABLE II Abbreviations used in this review.

two-dimensional space or subspace of a physical system.
Although we will encounter matter (chiefly spin) qubits
in this review, we are particularly interested in encodings
into photonic systems, which we survey in Sec. II.E.

Interactions with the environment or preparation er-
rors can diminish the purity of a qubit—that is, introduce
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FIG. 1 The Bloch sphere representation of a qubit. The
(x, y, z)-components of a Bloch vector (displayed as an ar-
row) give the expectation values of the Pauli observable X,
Y , and Z. For instance, points (0, 0, 1), (1, 0, 0), and (0, 1, 0)
correspond to eigenstates |0⟩, |+⟩ = (|0⟩ + |1⟩)/

√
2, and

|+i⟩ = (|0⟩ + i |1⟩)/
√
2 of Pauli operators Z, X, and Y with

the eigenvalue of +1, respectively.

classical uncertainty. In this case, we must turn to a rep-
resentation of the qubit as a statistical mixture of pure
quantum states. The general description of a state, which
include mixed states, is as a positive operator ρ with unit
trace, called a density operator. The density operator of
a pure state |ψ⟩ is ρ = |ψ⟩ ⟨ψ| with Tr[ρ2] = 1, while
a density operator ρ with Tr[ρ2] < 1 describes a mixed
state. In the case of a qubit, it can be written as

ρ = ρ00 |0⟩ ⟨0|+ ρ01 |0⟩ ⟨1|+ ρ10 |1⟩ ⟨0|+ ρ11 |1⟩ ⟨1| , (3)

where the populations, ρ00 and ρ11, are real and add to
unity (ρ00 + ρ11 = 1), the coherences, ρ01, and ρ10, are
complex conjugates (ρ01 = ρ∗10), and det[ρ] = ρ00ρ11 −
ρ01ρ10 ≥ 0.

Unitary transformations—operators U with U†U =
UU† = 1—describe reversible, probability-preserving op-
erations on qubits, i.e., quantum gates. The Pauli gates
are defined through

X = |0⟩ ⟨1|+ |1⟩ ⟨0| , (4)
Y = −i |0⟩ ⟨1|+ i |1⟩ ⟨0| , (5)
Z = |0⟩ ⟨0| − |1⟩ ⟨1| . (6)

X, Z, and Y effect a phase flip, a bit flip, and a combi-
nation of the two on the qubit, respectively. A unitary
U is Clifford if it maps any Pauli gate P to a Pauli gate
under conjugation, that is, UPU† is also a Pauli gate.
An example of a non-Pauli Clifford gate is the Hadamard
gate, defined by

H =
1√
2
(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0| − |1⟩ ⟨1|). (7)

An example of a non-Clifford gate is the π
8 or T gate,

given through

T = |0⟩ ⟨0|+ eiπ/4 |1⟩ ⟨1| . (8)

The above discussion is generalizable to systems of mul-
tiple qubits by taking tensor products; see Sec. II.C.

A measurement process on a quantum system in a
state ρ is, in general, described by a set of Kraus (lin-
ear) operators {Mi}i satisfying M†

iMi = 1. Perform-
ing the associated measurement results in an outcome i
with probability pi = Tr[M†

iMiρ] and leaves the state
in MiρM

†
i /pi. This is a formalization and generalization

of Born’s rule. For the particular case of a (destruc-
tive) Pauli measurement on a qubit, we may associate
M0 = ⟨v0| and M1 = ⟨v1| with the eigenstates |v0⟩ and
|v1⟩ of the corresponding operator; Z-basis measurements
(corresponding to the Pauli Z) are specified by the Kraus
operators {⟨0| , ⟨1|}, while X-basis measurements (corre-
sponding to the Pauli X) are specified by the Kraus op-
erators {⟨+| , ⟨−|}.

We also consider a quantum channel, N , which deter-
ministically converts a given state ρ into a state σ. This
kind of transformation is useful to describe the actions
of noise and transmission channels on quantum systems.
Any quantum channel has an operator-sum representa-
tion, σ = N (ρ) =

∑
iMiρM

†
i , specified by a set of Kraus

operators {Mi}i. Another representation is

σA′ = NA→A′(ρA) = TrE′ [UAE(ρA ⊗ |0⟩ ⟨0|E)U
†
AE ], (9)

where UAE is a unitary operator acting on system HA ⊗
HE and |0⟩E is a state of an auxiliary system (environ-
ment) E. The map N must be completely positive and
trace-preserving (CPTP).

Three examples of common qubit errors described by
channels are phase-flip, bit-flip, and depolarizing noise,
respectively written as

N (ρ) =(1− p)ρ+ pZρZ, (10)
N (ρ) =(1− p)ρ+ pXρX, (11)

N (ρ) =(1− p)ρ+
p

3
(XρX + Y ρY + ZρZ), (12)

where 0 ≤ p ≤ 1 corresponds to an error probability or
channel strength. A pure-loss bosonic channel is written
by defining the action of UAE in Eq. (9) as

UAEaAU
†
AE =

√
ηaA′ +

√
1− ηaE′ (13)

in the Heisenberg representation. Here aX is the annihi-
lation operator on bosonic system X, 0 ≤ η ≤ 1 is the
transmittance of the channel, and |0⟩E of Eq. (9) is the
vacuum state of the bosonic system E. The pure-loss
bosonic channel is used as a model for an optical fiber:
in this case, the transmittance η is related to the length
L of the fiber through η = e−L/Latt , with a constant Latt

denoting the attenuation distance.
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B. Quantum no-cloning theorem

The quantum no-cloning theorem (Dieks, 1982; Woot-
ters and Zurek, 1982) entails that it is impossible to cre-
ate a copy of unknown quantum states. More precisely,
given an unknown state |ψ⟩A, the theorem states that
there exists no deterministic quantum operation that can
copy |ψ⟩A onto system B to obtain |ψ⟩A ⊗ |ψ⟩B . Orig-
inally demonstrated for pure states, the no-cloning the-
orem has later been extended to mixed states through
the no-broadcasting theorem (Barnum et al., 1996). This
no-go theorem has profound implications—helpful and
unhelpful—for quantum information technologies. While
it is at the core of the security of quantum key distri-
bution (Bennett et al., 1992; Koashi and Imoto, 1998,
2002), it also precludes building quantum repeaters anal-
ogously to classical signal extenders and furthermore cre-
ates challenges in the design and performance of quan-
tum error-correcting codes. For example, the no-cloning
theorem makes it impossible to use a classical-like repeti-
tion code to correct for errors acting on quantum states,
and implies an upper bound of 50% on the loss that
any quantum error-correcting code can tolerate. This di-
rectly impacts the performance of quantum repeater pro-
tocols based on quantum error correction, as addressed
in Sec. III.A.4.

C. Entanglement

Here we present the formal definition of entangle-
ment and introduce several important classes of entan-
gled states.

1. Definition and properties

Entanglement—per Schrödinger, a defining feature
of quantum theory (Schrödinger, 1935)—refers to the
impossibility of describing certain composite quantum
states through independent specifications of their con-
stituents. The existence of entanglement, as guaranteed
by the formalism and postulates of quantum theory and
confirmed by many experiments, has profound physical
and metaphysical repercussions, as exemplified famously
by Einstein, Podolsky and Rosen (EPR) (Einstein et al.,
1935) and by Bell (Bell, 1964), and since then by nu-
merous physicists investigating its repercussions on in-
creasingly rigorous footing. There are several equiva-
lent formulations of entanglement—see, e.g., (Horodecki
et al., 2009). A useful one for our purpose is the view
of entanglement as a resource for quantum information
tasks. Entanglement plays a central role in virtually ev-
ery primitive and application of quantum information;
for us, its most relevant uses are for the protocols we
describe in Sec. III.A: quantum teleportation and en-

tanglement swapping, entanglement purification and dis-
tillation, and quantum error correction, all of which
underlie quantum repeaters. As a non-trivial resource
with respect to local operations and classical communica-
tion (LOCC), entanglement cannot be increased by per-
forming local operations (including local quantum gates
and measurements), classical communication (including
adaptive schemes based on classical outputs from other
parties), or the combination of both. One may estab-
lish quantum entanglement by interacting systems via
coupling Hamiltonians, physically distributing entangled
states between parties (such as by sending photons over
fiber channels), or performing collective measurements
of observables from different parties. The entanglement
generation process depends on the details of the physical
system, as discussed in Sec. V.

2. Entanglement in bipartite states

The Hilbert space H of a bipartite system is the ten-
sor product of the subsystem spaces H = HA ⊗ HB . A
separable bipartite pure state is a tensor product of pure
states in HA and HB ,

|Ψ⟩AB = |φ⟩A ⊗ |ϕ⟩B (14)
=: |φ⟩A |ϕ⟩B =: |φ, ϕ⟩AB =: |φϕ⟩AB

with reduced density operators ΨA := TrB [|Ψ⟩ ⟨Ψ|AB ] =
|φ⟩ ⟨φ|A on subsystem A and ΨB := TrA[|Ψ⟩ ⟨Ψ|AB ] =
|ϕ⟩ ⟨ϕ|B on subsystem B, obtained by tracing out the
non-subscripted system. By contrast, an entangled bi-
partite pure state cannot be described as a product of
states from the individual subsystems; that is, it cannot
be written in the form (14).

Generally, we may write any bipartite pure state as

|Ψ⟩AB =
∑
i,j

cij |i⟩A ⊗ |j⟩B , (15)

where cij are complex numbers with
∑

i,j |cij |2 = 1,
{|i⟩A} and {|j⟩B} are orthonormal bases of the two sub-
systems. With the Schmidt decomposition, we may find
convenient orthogonal bases {|vi⟩A} and {|wj⟩B} for the
two subsystems, such that the bipartite pure state can
be expressed in a standard form with a single index:

|Ψ⟩AB =

r∑
j=1

√
pj |vj⟩A ⊗ |wj⟩B , (16)

where pj > 0 for j = 1, . . . , r and
∑r

j=1 pj = 1.
The integer r is called the Schmidt rank. The re-
duced density operators for the two subsystems are
ΨA = TrB [|Ψ⟩ ⟨Ψ|AB ] =

∑r
j=1 pj |vj⟩ ⟨vj |A and ΨB =

TrA[|Ψ⟩ ⟨Ψ|AB ] =
∑r

j=1 pj |wj⟩ ⟨wj |B . For r = 1, the ex-
pression reduces to a separable bipartite pure state. For
r ≥ 2, the state |Ψ⟩AB is entangled.
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In the setting of mixed states, the definition of sepa-
rability must be changed to include classical mixtures of
tensor product states:

ρAB =
∑
j

pjσ
(j)
A ⊗ τ

(j)
B , (17)

where {pj} is a probability distribution and σ(j)
A and τ (j)B

are density operators. Since ρAB can freely be generated
by Alice and Bob with LOCC, the state must only include
classical correlations and no entanglement. This defi-
nition includes pure-state separability as a special case;
therefore one can say that any state which cannot be
written in the form (17) (that is, as a convex combina-
tion of product states) is entangled.

Quantifying the degree of entanglement in a mixed
quantum state—finding an entanglement measure or
monotone that does not confuse entanglement for clas-
sical correlations and does not increase over arbitrary
LOCC operations—is a difficult problem. For this pur-
pose one has at one’s disposal the Schmidt rank, con-
currence, negativity, or various entropic funtions of the
reduced density operators, such as the von Neumann
entropy (Bennett et al., 1996b). For mixed states of
two qubits, one can umambiguously compute the en-
tanglement using one of the above tools, the concur-
rence (Wootters, 1998). However, characterizing entan-
glement for general mixed states of higher dimensions
is still an important and active area of research; see
Ref. (Horodecki et al., 2009; Plenio and Virmani, 2005)
for detailed discussions of the difficulties of quantifying
entanglement and of existing entanglement measures.

The simplest example of useful entanglement for quan-
tum networks is that between two qubits associated with
two parties, with HA = span {|0⟩A , |1⟩A} and HB =
span {|0⟩B , |1⟩B}. Then, the space H is spanned by the
four orthogonal Bell states or EPR pairs:

|Φ±⟩AB =
1√
2
(|0⟩A |0⟩B ± |1⟩A |1⟩B),

|Ψ±⟩AB =
1√
2
(|0⟩A |1⟩B ± |1⟩A |0⟩B).

(18)

These four Bell states are equivalent up to Pauli gates:
|Φ+⟩AB = ZB |Φ−⟩AB = iYB |Ψ−⟩AB = XB |Ψ+⟩AB .
Tracing out one of the qubits from any Bell state leaves
the remaining qubit in a maximally mixed state, which
implies that the Bell states are maximally entangled. We
often use the Bell state to calibrate the amount of en-
tanglement shared between two parties; each Bell state
counts as one entangled bit or ebit of entanglement,
which can be used to teleport one qubit of quantum in-
formation (Bennett et al., 1993) (see Sec. III.A for a de-
scription of quantum teleportation).

D. Entanglement in multipartite states

We can generalize the definitions of entanglement in
the previous subsection to systems with more than two
parties. In this setting, there are several notions of sep-
arability. For example, a fully separable state defined
over multiple subsystems (A,B,C, . . .) can be written as
a convex combination of product states

ρABC··· =
∑
j

pjσ
(j)
A ⊗ τ

(j)
B ⊗ γ

(j)
C ⊗ · · · . (19)

Similarly to the bipartite case, a multipartite state is
entangled when the state cannot be written in the form
(19).

Two well-known families of entangled states of M >
2 parties are the Greenberger–Horne–Zeilinger (GHZ)
state

|GHZM ⟩ = 1√
2
(|

M︷ ︸︸ ︷
00 . . . 0⟩+ |

M︷ ︸︸ ︷
11 . . . 1⟩)

=
1√
2
(|0⟩⊗M

+ |1⟩⊗M
), (20)

and the W state

|WM ⟩ = 1√
M

(|100 . . . 0⟩+ |010 . . . 0⟩+ · · ·+ |000 . . . 1⟩) .
(21)

The GHZ and W states cannot be transformed into each
other through LOCC, thereby representing two differ-
ent kinds of entanglement for three or more parties (Dür
et al., 2000) (see, e.g., Ref. (Horodecki et al., 2009))

A broad and useful class of multipartite entangled
states are the cluster states or, more generally, the graph
states, which we now describe.

1. Graph states

A graph state |G⟩ is a multipartite entangled state
associated with an undirected graph G = (V,E), with
V a set of vertices and E collection of undirected edges
{ij} = {ji}, for i, j ∈ V . |G⟩ is then defined through

|G⟩ ≡
∏
e∈E

CZ
e

(⊗
v∈V

|+⟩v

)
, (22)

where the controlled-Z (CZ or controlled-phase) gate is
a Clifford gate defined on qubits i and j through

CZ
ij = |0⟩ ⟨0|i ⊗ 1j + |1⟩ ⟨1|i ⊗ Zj . (23)

CZ
ij is symmetric over i↔ j, i.e., CZ

ij = CZ
ji = CZ

{ij}, and
CZ

ij and CZ
i′j′ commute for any i, j, i′ and j′.

A cluster state is a special kind of graph state whose
underlying graph G forms a lattice. Performing single-
qubit adaptive measurements on a cluster state al-
low for the execution of a measurement-based quantum
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FIG. 2 Graphical rules for operations on graph states. The
effects of Pauli operations on the connections in the graph
states are shown.

computation (MBQC) (Raussendorf and Briegel, 2001).
Whereas one-dimensional (linear) cluster states allow for
universal operations on a single qubit, a cluster state of a
minimum of two dimensions is necessary to implement a
universal set of multi-qubit gates, and additional dimen-
sions are normally needed for error correction and fault
tolerance (Raussendorf et al., 2006, 2007; Raussendorf
and Harrington, 2007) (see, e.g., Ref. (Terhal, 2015)).

An alternative specification of the graph state is given
by the stabilizer formalism: |G⟩ is the unique simultane-
ous eigenstate of all the (stabilizer generator) operators
in S = {Xa⊗ZNa

|a ∈ V } of commuting operators, where
ZNa :=

⊗
v∈Na

Zv and Na is the set of all the vertices
adjacent to vertex a ∈ V in the graph G. We say |G⟩
is stabilized by S, making it a stabilizer state analyzable
within the stabilizer formalism (Gottesman, 1997).

A thorough and important review of discrete-variable
qubit graph states is given in (Hein et al., 2004, 2006).
Let us distill their basic properties, illustrated in Fig. 2:

• Application of local Clifford gates to a graph state
is equivalent to that of a sequence of local comple-
mentations on the underlying graph (where a local
complement of a graph G at a node a ∈ V is ob-
tained by inverting the subgraph of G induced by
the neighborhood Na).

• Pauli Z measurement on a node decouples the node
and breaks off its incident edges.

• Pauli Y measurement on a node takes the local
complementation at the node and decouples the
node.

• Pauli X measurement on two neighboring qubits in
a linear cluster state decouples them but connects
their other neighbors with an edge.

• The entanglement in a connected graph state is lo-
calizable, meaning that it is possible to project any

two qubits in the graph into a Bell pair by per-
forming single-qubit (in particular, Pauli Z or X)
measurement on the other qubits.

The concept of the graph state can be generalized to
continuous-variable (CV) bosonic systems, describable in
the phase space formalism of the quantum harmonic os-
cillator with position operator q and momentum opera-
tor p such that [q, p] = i (ℏ = 1). In this case, there is a
wealth of possible encodings to choose from. For exam-
ple, for a Gaussian graph state (Menicucci et al., 2006),
the plus state becomes the 0-momentum eigenstate of the
momentum operator p,

|+⟩ → |p = 0⟩ , (24)

while for the Gottesman-Kitaev-Preskill (GKP) encoding
(Gottesman et al., 2000), discussed in Sec. II.E, the plus
state becomes

|+⟩ → |+GKP⟩ =
∞∑

n=−∞

∣∣p = 2n
√
π
〉
, (25)

where |p = 2n
√
π⟩ is the eigenstate corresponding to the

eigenvalue 2n
√
π of the momentum operator p. For both

of these CV encodings, the CZ gate can be written as

CZ
ij → ei(qi⊗qj) (26)

with the position operator qi for bosonic system i. Clif-
ford operations on these encodings correspond to certain
Gaussian operations in phase space, which are composed
of squeezing, displacements, and rotations. In either case,
one uses finitely-squeezed approximations to these states
in practice. We give more details on these states in our
discussion of photonic encodings in Sec. II.E and as well
as in Sec. III.C.2.c on bosonic repeaters.

E. Photonic encodings

There are several degrees of freedom that one can
exploit when encoding quantum information into light.
Each one has own advantages and challenges. In this
section we review some well-known photonic encodings,
summarizing some of this information in Table III.

A few ways exist for categorizing photonic encodings.
One is through the cardinality of the Hilbert space.
The state space of discrete-variable (DV) encodings is
spanned by a finite number of orthogonal (more gener-
ally, linearly independent) states, whereas continuous-
variable (CV) or bosonic encodings are spanned by in-
finitely (possibly countably) orthogonal (more generally,
linearly independent) states. However, the line between
the two kinds of encodings may not always be clear: DV
systems can be viewed as finite subspaces of CV spaces,
and our interest in CV systems may chiefly be to iden-
tify two-dimensional (qubit) subspaces. Furthermore, in
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Single-rail encodings Dual-rail encodings

Fock state Coherent /
cat

GKP Time-bin Path Polarization

Cardinality DV CV CV DV DV DV

Physical basis Vacuum,
single photon

Coherent
states: |±α⟩

GKP-0 and 1:
(Eq. (27))

Orthogonal
temporal modes

Orthogonal
spatial modes

Orthogonal
polarizations

Entanglement
w/ LO

Deterministic Deterministic Deterministic Probabilistic Probabilistic Probabilistic

Single-mode
Clifford gates

w/ LO

Probabilistic Probabilistic Deterministic
(w/ squeezing)

Deterministic Deterministic Deterministic

Single-mode
non-Clifford
gates w/ LO

Probabilistic Probabilistic Probabilistic Deterministic Deterministic Deterministic

TABLE III Descriptions of selected photonic encodings, including associated gate implementations.

practice, various imperfections and interactions with the
environment increase the effective dimensionality of DV
systems.

Another characterization of photonic encodings is in
the number of “rails.” In the more restrictive defini-
tion, a single-rail qubit is associated with the pres-
ence or absence of a single photon in an optical (spa-
tial or temporal) mode. More broadly, however, one can
view single-rail encodings as those where each state—
including states of multiple photons—occupies a single
optical mode. Conversely, a dual-rail qubit is associated
with the presence of a single photon in one of two orthog-
onal modes. For a single-rail encoding, it is possible to
generate entanglement deterministically with linear opti-
cal resources, while linear-optical entangling operations
are necessarily probabilistic in dual-rail encodings. Con-
versely, single-qubit rotations for certain single-rail en-
coded qubits may necessitate nonlinearlity (because the
encoding can be based on a superposition of different pho-
ton number states, i.e., energy eigenstates), while there
exist dual-rail encodings where arbitrary single-qubit ro-
tations are possible only with linear optical elements.
See, e.g., (Kok et al., 2007).

The following photonic encodings have been frequently
considered within quantum information protocols:

• Time-bin: a photon takes one of two paths of an
interferometer of different lengths. Then, |0⟩ is as-
sociated with one path, and |1⟩ with the other.
This encoding is suited for fiber-based communi-
cation as it is unaffected by birefringence in opti-
cal fibers; however, it is difficult to interact two
time-bin qubits, making the encoding preferred for
quantum communication over computation.

• Polarization: a kind-of dual rail encoding where
a qubit is encoded into the polarization states

BS
BS

PBS

a) b)

DcH

DcV

DdH

DdV

Dc Dd

FIG. 3 Examples of implementation of Bell measurement. a)
Bell measurement for polarization-encoded qubits, spanned
by horizontally and vertically polarized single-photon states
|H⟩ and |V ⟩. This is implemented by the application of
a 50:50 beamsplitter (BS) on optical modes, followed by
a polarization beamsplitter (PBS) on each of the two out-
put modes and then by photon counting at all the output
modes. Clicks in detectors DcH and DcV, or in DdH and
DdV, project the received pair of the qubits into Bell state
|Ψ+⟩ = (|H⟩ |V ⟩+ |V ⟩ |H⟩)/

√
2, while clicks in detectors DcH

and DdV, or in DcV and DdH, project the received pair of
the qubits into Bell state |Ψ−⟩ = (|H⟩ |V ⟩ − |V ⟩ |H⟩)/

√
2.

Notice that this Bell measurement can succeed only when
the input two optical pulses have 2 (or more) photons in to-
tal. b) Bell measurement for Fock-encoded qubits, spanned
by the vacuum state |0⟩ and the single-photon state |1⟩.
This is implemented by the application of a 50:50 beam-
splitter (BS) on optical modes, followed by photon count-
ing at the output modes. A click in the detector Dc (or
Dd) at the constructive-interference (destructive-interference)
mode projects the received pair of the qubits into Bell state
|Ψ+⟩ = (|0⟩ |1⟩ + |1⟩ |0⟩)/

√
2 (|Ψ−⟩ = (|0⟩ |1⟩ − |1⟩ |0⟩)/

√
2).

Both implementations can distinguish |Ψ±⟩ from the other
states only, and the success probabilities are thus 1/2 even in
the ideal cases.

of a single photon. Conventionally, |0⟩ is asso-
ciated with a horizontally polarized photon, and
|1⟩ with a vertically polarized photon. All single-
qubit gates can be performed deterministically with
waveplates and phase shifters, while linear-optical
entangling gates are probabilistic, requiring beam-
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splitters, waveplates, measurements, and postselec-
tion. As an example of the two-qubit operations,
an implementation of the Bell measurement is given
in Fig. 3 (a). This encoding prefers free-space over
fiber-based communication, as it is vulnerable to
birefringence within optical fibers.

• Path: computational basis states are associated
with orthogonal spatial modes. All single-qubit
gates can be performed deterministically with
beamsplitters and phase shifters; as with the polar-
ization encoding, entangling gates with linear opti-
cal resources are probabilistic, requiring beamsplit-
ters, phase shifters, measurements and postselec-
tion. As with the time-bin encoding, path-encoded
photons prefer fiber-based over free-space commu-
nication.

• Fock : a qubit is encoded into the Hilbert subspace
of a single mode spanned by the vacuum state |0⟩
and the single-photon state |1⟩, corresponding to
a single-rail qubit. With a phase shifter, we can
rotate its Bloch vector along the Z-axis freely, but
we cannot do so along the X-axis since |0⟩ and |1⟩
have different energy. On the other hand, a Bell
state (such as |Ψ±⟩ = (|01⟩ ± |10⟩)/

√
2) can de-

terministically be obtained with single photon in-
cident on a 50:50 beamsplitter. However, we can
discriminate only Bell states |Ψ±⟩ from the others,
with a 50:50 beamsplitter followed by two photon
detectors (see Fig. 3 (b)). This encoding is sensi-
tive to phase drifts in a transmission channel, and
thus, it is preferred in free-space over fiber-based
communication.

• Coherent/Cat : a qubit is encoded into the Hilbert
subspace of a single mode spanned by coherent
states |α⟩ and |−α⟩ with α > 0, corresponding to
a single-rail qubit. The qubit basis states |±⟩ are
associated with cat states |α⟩±|−α⟩)/(2√p±) with
p± := (1±⟨−α|α⟩)/2. The states |±⟩ are flipped by
a π-phase shifter, and they are distinguished by a
photon-number-resolving detector. This encoding
is also sensitive to phase drifts in a transmission
channel, and thus, it prefers free-space over fiber-
based communication.

• GKP : the computational basis states are coherent
superpositions of infinitely many regularly-spaced
position eigenfuntions (i.e., infinitely squeezed
states):

|0GKP⟩ =
∞∑

n=−∞

∣∣q = 2n
√
π
〉
, (27)

|1GKP⟩ =
∞∑

n=−∞

∣∣q = (2n+ 1)
√
π
〉
, (28)

where |q = n
√
π⟩ is the eigenstate corresponding

to the eigenvalue n
√
π of the position operator

q. In realistic implementations, these unphys-
ical infinite-energy states are replaced by their
normalizable, finitely-squeezed counterparts. All
single-qubit (many-qubit) Clifford gates—including
entangling gates—are implementable deterministi-
cally through single-mode (multi-mode) Gaussian
operations. Non-Clifford gates can be implemented
with help of ancillary states and gate teleportation,
i.e., they are only deterministic conditioned on the
availability of the ancillae.

The above encoding schemes are “digital,” because they
encode a discrete-variable (DV) quantum system with a
finite dimensional Hilbert subspace of photonic modes.
In contrast, we may also use the photonic modes for “ana-
log” encoding, to store a continuous-variable (CV) “ana-
log” quantum system with an infinite dimensional Hilbert
space. For example, we can encode continuous-variable
quantum information using squeezed states, which can be
measured via homodyne and heterodyne detectors with
a continuous-variable output. For quantum communica-
tion, the continuous-variable output can be used to gen-
erate secure secret keys (Grosshans and Cerf, 2004).

One major challenge of using CV encodings for quan-
tum repeaters is the suppression of loss errors. Because
of the theorem that Gaussian operations are of no use
for protecting Gaussian states against Gaussian errors
(including loss errors) (Niset et al., 2009), we have to
introduce non-Gaussian operations (e.g., “quantum scis-
sors” to truncate the number-state expansion (Pegg et al.,
1998)) or non-Gaussian ancillary resources (e.g., GKP
stabilizer codes to encode an oscillator into many oscilla-
tors assisted by GKP ancilla (Noh et al., 2020)) to over-
come loss errors.

III. QUANTUM REPEATERS

This section begins with a review of primitives for
quantum repeaters. This is followed with an explana-
tion of quantum repeater protocols through a conceptual
classification based on methods to suppress loss and oper-
ation errors. We also review all-optical implementations
of quantum repeaters.

A. Repeater primitives

Here we review quantum teleportation and entangle-
ment swapping as primitives for quantum repeaters. We
also summarize various tools for error suppression, which
are necessary for quantum repeaters.
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1. Quantum teleportation

Quantum teleportation is a procedure for transferring
quantum information from a sender to a distant receiver
without transferring the physical system in which it is
encoded (Bennett et al., 1993). To accomplish this, the
two parties must have established a classical communi-
cation link and pre-shared a maximally entangled state.
Then, the teleportation consists of two steps. First, the
sender locally performs a joint measurement between the
state that she wants to transfer and her portion of the
pre-shared entangled state. Then, she communicates the
measurement outcome to the receiver via the classical
channel, who must apply a local unitary operation to his
quantum state to recover the original state. There ex-
ist quantum teleportation protocols for qudits2 (Werner,
2001) and CV systems (Braunstein and Kimble, 1998);
here we focus on qubits to illustrate the concept.

Suppose that Alice has a qubit in an arbitrary state
|ψ⟩A1

that she wants to send to Bob. Suppose also that
she has already shared a Bell state with Bob, |Φ+⟩A2B

,
from Eq. (18). By performing a Bell-state measurement
on her two qubits A1 and A2—that is, a projection onto
one of Bell states of Eq. (18)—she will project Bob’s qubit
onto some state. This state of Bob’s qubit B is equal to
the initial state |ψ⟩, up to local rotations that are deter-
mined by the (random) outcome of Alice’s measurement:

|Φ+⟩A1A2
→ |ψ⟩B ,

|Φ−⟩A1A2
→ ZB |ψ⟩B ,

|Ψ+⟩A1A2
→ XB |ψ⟩B ,

|Ψ−⟩A1A2
→ ZBXB |ψ⟩B .

(29)

To conclude the teleportation, Alice must transfer the
outcome of her measurement to Bob through a classical
channel so that Bob can undo the Pauli byproduct and
recover the original state |ψ⟩. Even though Bob has a
state locally equivalent to Alice’s immediately after the
Bell measurement, his ignorance at that point of the pre-
cise Pauli gate he has to apply means that Alice can-
not transfer quantum information instantly to Bob. The
quantum teleportation protocol therefore crucially needs
classical communication, making it limited by the speed
of light. This impossibility of faster-than-light commu-
nication assisted by quantum entanglement is known as
the no-signaling principle (Eberhard and Ross, 1989).

Quantum teleportation allows a sender to send arbi-
trary quantum information encoded into a qubit by con-
suming an ebit (pre-shared with the receiver) and by
sending two bits of classical information to the receiver.

2 Recently, such high-dimensional teleportation is refocused in the
context of quantum networks (Bacco et al., 2021) thanks to ex-
perimental progress (Hu et al., 2020b; Luo et al., 2019).

This implies that distributing ebits efficiently or quickly
by using a quantum communication network is a funda-
mental question.

2. Entanglement swapping

Entanglement swapping (Zukowski et al., 1993) can
be thought of as an extension of quantum teleportation
where Alice and Bob each share a two-qubit maximally
entangled state with Charlie, C: |Φ+⟩AC1

and |Φ+⟩C2B
.

After Charlie performs a Bell measurement on his sys-
tems C1 and C2, Alice’s and Bob’s qubits end up in one
of the four Bell states, depending on the measurement
outcome:

|Φ+⟩C1C2
→ |Φ+⟩AB ,

|Φ−⟩C1C2
→ |Φ−⟩AB = ZB |Φ+⟩AB ,

|Ψ+⟩C1C2
→ |Ψ+⟩AB = XB |Φ+⟩AB ,

|Ψ−⟩C1C2
→ |Ψ−⟩AB = ZBXB |Φ+⟩AB .

(30)

Although their qubits have not directly interacted,
Alice and Bob have established a maximally entangled
state. This is particularly useful in the context of quan-
tum communication, as it means that entanglement can
be propagated through a quantum network even between
stationary nodes. Indeed, entanglement swapping is the
crux of quantum repeater schemes based on heralded en-
tanglement generation3; see Sec. III.A.3, Sec. III.B.1, and
Sec. III.B.2.

3. Idealized quantum repeaters

As shown in the quantum teleportation protocol of
Sec. III.A.1, once Alice and Bob share a Bell pair (an
ebit), Alice can send an unknown state of a qubit to Bob
by LOCC, i.e., they can achieve quantum communica-
tion. Thus, the challenge of quantum communication re-
duces mainly to how to distribute a Bell pair between
Alice and Bob in practice. Flying qubits—photons—
appear to be the medium of choice for this. However,
the transmittance η of an optical fiber (and hence the ra-
tio of photons sent to photons received) decreases expo-
nentially with its length L, according to η = e−L/Latt of
Eq. (13). In fact, the transmittance decreases as though
it is multiplied by 0.1 every 50 km in the case of typical
optical fibers with attenuation length Latt = 22 km (and
even the quantum and private capacity of the pure-loss
bosonic channel (13) is now known to be described by
− log2(1 − η) (≈ η for η ≪ 1) (Pirandola et al., 2017)

3 The entanglement swapping operation can also be achieved using
quantum Zeno effect, requiring no controlled gates (Bayrakci and
Ozaydin, 2022).
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(see Sec. VI)). Hence, simply linking Alice and Bob di-
rectly with an optical fiber is not enough to achieve effi-
cient quantum communication, especially if they are far
apart4.

Here we introduce a simple example to show how a
quantum repeater protocol overcomes such an exponen-
tial increase of photon loss with the length of an optical
fiber. The example is based on heralded entanglement
generation and entanglement swapping; it is a simpli-
fied protocol designed to capture the main concept of
the first-generation quantum repeater protocols (Briegel
et al., 1998; Duan et al., 2001; Sangouard et al., 2011),
which will appear in Sec. III.B.1. The protocol is based
on a concatenation allowed by the entanglement swap-
ping of Sec. III.A.2, dubbed a DLCZ -like protocol after
the authors Duan, Lukin, Cirac and Zoller (Duan et al.,
2001). For simplicity, we assume that the fiber attenua-
tion is the only error and all other operations are perfect.

Suppose that we have a quantum memory
X which can establish a Bell state |Φ+⟩Xx :=

(|0⟩X |H⟩x + |1⟩X |V ⟩x)/
√
2 with an optical pulse

x, where {|0⟩X , |1⟩X} is the computational basis of the
quantum memory while |H⟩x and |V ⟩x are horizontally
polarized and vertically polarized single-photon states
of the pulse x, respectively. We also assume that an
arbitrary state a |0⟩ + b |1⟩ of the quantum memory can
be converted into the state a |H⟩+ b |V ⟩ of a polarization
qubit, if needed. This kind of memory is an idealized
version of a quantum memory, which can be realized
by using two atomic ensembles (Sangouard et al., 2011)
(for example, we ignore any multi-photon excitations
that arise in practice). We also use a linear-optical
Bell measurement for polarization-encoded qubits in
Fig. 3 (a). This implementation works as a probabilistic
Bell measurement.

We can generate a Bell state between stations X and
Y , separated by distance l, by combining such a quan-
tum memory, the Bell measurement and optical fibers.
To achieve this, the party X (and the party Y ) first es-
tablishes a Bell state |Φ+⟩Xx (|Φ+⟩Y y) between her (his)
own quantum memory X (Y ) and an optical pulse x (y)
locally, and then sends the single photon x (y) to a mea-
suring station in the middle of the parties over an optical
fiber (modeled by Eq. (13)) (see a schematic for entangle-
ment generation (EG) in Fig. 4). On receiving the pulses
from the separated parties, the measuring station per-
forms the linear-optical Bell measurement of Fig. 3 (a) on

4 Notice that the transmittance η of the typical fiber with the
length of 400 km is about 10−8. Therefore, even if the system is
designed to achieve the private capacity − log2(1 − η) with the
clock rate of 1 GHz, the possible key rate is on the order of 10 bits
per second, which seems to be slow for practical applications.
Hence, about 400 km is sometimes said to be a practical distance
limit of a fiber-based point-to-point quantum communication.

Quantum
memory

photon

𝐿𝐿0

Bell measurement

Repeat until success

Bell measurement
Repeat until success

Bell measurement
Repeat until success
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FIG. 4 Idealized quantum repeater protocol. In this figure,
three quantum repeater nodes (corresponding to the case of
NQR = 3) are located at regular intervals between Alice and
Bob, who are separated by distance L, with L0 = L/4. The
protocol starts by entanglement generation (EG) between
adjacent repeater nodes with success probability pg(L0) =

e−L0/Latt/2, followed by entanglement swapping (ES) with
success probability ps. The EG protocol establishes a Bell
pair between adjacent repeater nodes after the number of
trials on the order of ⟨Tg(L0)⟩ = p−1

g (L0). Given halves
of a pair of Bell states, the ES protocol succeeds in swap-
ping the entanglement after the number of trials on the or-
der of ⟨Ts⟩ = p−1

s . If a trial of ES fails, we need to start
again from EG to go back to the trial. Therefore, in the set-
ting of this figure, the average of the total number of trials
T

(3)
tot needed to establish a Bell pair between Alice and Bob is

⟨T (3)
tot ⟩ ∼ ⟨Tg(L0)⟩⟨Ts⟩2 = p−2

s p−1
g (L0) = 2p−2

s eL/(4Latt). This
is of the order of the square root of ⟨T (1)

tot ⟩, which is further of
the order of the square root of ⟨T (0)

tot ⟩.

those pulses. This Bell measurement succeeds when both
single photons x and y from the separated parties arrive
at the measuring station without having been lost (dur-
ing their travel over the lossy optical fiber), and the sur-
viving photons are projected into a Bell state |Ψ+⟩xy or
|Ψ−⟩xy, which occurs with probability pg(l) = e−l/Latt/2.
This success event entangles the quantum memories XY
of the separated parties into |Ψ+⟩XY or |Ψ−⟩XY , accord-
ing to Eq. (30). This is called an (heralded) entanglement
generation protocol.

If Alice and Bob, separated by distance L, run this
entanglement generation protocol between them without
any quantum repeater, the average of the number T (0)

tot of
trials needed to obtain a Bell pair will be

⟨T (0)
tot ⟩ := ⟨Tg(L)⟩ = p−1

g (L) = 2e
L

Latt , (31)

which grows exponentially with the distance L.
Now, let us introduce an entanglement swapping proto-

col. Suppose that a single quantum repeater node C is lo-
cated at the midpoint between Alice and Bob for simplic-
ity, and it runs the above entanglement generation pro-
tocols in parallel with Alice and with Bob. Then, each of
these entanglement generation protocols gives a Bell pair
after trials on the order of ⟨Tg(L/2)⟩ = 2eL/(2Latt). Once
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it succeeds, the obtained Bell pair can be kept in quan-
tum memories until both of the parallel protocols suc-
ceed. Thus, they can obtain Bell pairs not only between
Alice and the node C, but also between the node C and
Bob, after trials on the order of ⟨Tg(L/2)⟩ = 2eL/(2Latt),
thanks to the parallelization. Then, after receiving a clas-
sical signal to herald this successful sharing of Bell pairs,
the node C converts states of local quantum memories
into polarization qubits, and then implements the linear-
optical Bell measurement of Fig. 3 (a) (corresponding to
a schematic for entanglement swapping (ES) in Fig. 4).
This works as entanglement swapping to provide a Bell
state between Alice and Bob with success probability
ps = 1/2 of the Bell measurement (in the ideal case).
Hence, the average of the number Ts of trials needed for
the entanglement swapping to succeed (after the success
of the entanglement generation protocols) is ⟨Ts⟩ = p−1

s .
On the other hand, if the Bell measurement fails, Alice
and Bob start from scratch, i.e., from the parallel entan-
glement generation protocols. Thus, the average of the
total number T (1)

tot of trials needed to establish a Bell pair
between Alice and Bob is

⟨T (1)
tot ⟩ ∼ ⟨Tg(L/2)⟩⟨Ts⟩ = p−1

s p−1
g (L/2) = 2p−1

s e
L

2Latt ,
(32)

(see, e.g., Refs. (Azuma et al., 2021; Sangouard et al.,
2011) about the validity of this approximation). There-
fore, by comparing this equation with Eq. (31), we can
conclude that, for a large distance L, the existence of a
single quantum repeater node C can provide the square-
root improvement over the direct entanglement gener-
ation between Alice and Bob in the number of trials
needed.

The process for achieving this square-root improve-
ment with entanglement swapping can be concatenated.
If Alice and Bob use three equally-spaced quantum re-
peater nodes, they can achieve further square-root im-
provement (see Fig. 4); if they use seven, they can have
further square-root improvement, and so forth. In par-
ticular, if Alice and Bob have NQR = 2n − 1 quantum
repeater nodes equally spaced between them, the average
of the total number T (NQR)

tot of trials needed to have a Bell
pair between Alice and Bob will be

⟨T (NQR)
tot ⟩ ∼p−n

s p−1
g (L/2n) = p−n

s e
L

2nLatt

=2p− log2(NQR+1)
s e

L
(NQR+1)Latt . (33)

(again, see, e.g., Refs. (Azuma et al., 2021; Sangouard
et al., 2011) about this approximation). This shows the
ultimate advantage of utilizing quantum repeaters: the
exponential improvement in the number of trials needed
to establish entanglement with the number NQR of quan-
tum repeater nodes. Since ps is independent of distance
L, this exponential improvement enables Alice and Bob
to perform quantum communication efficiently over long
distances.

This simple model does not include realistic imper-
fections such as memory errors and imperfect entangle-
ment generation and swapping operations. In practice,
these errors will accumulate and become non-negligible
over longer distances. However, thanks to the existence
of error suppression mechanisms explained in the next
Sec. III.A.4, we can devise several kinds of quantum re-
peaters which work not only in the presence of loss but
also other such imperfections.

4. Tools for error suppression

As shown in Sec. III.A.3 above, there exists a quan-
tum repeater protocol which enables Alice and Bob to
achieve efficient long-distance quantum communication,
even with the use of optical fibers impacted by photon
loss. However, this protocol was idealized; we assumed
that the optical attenuation in fiber is the only source of
error and that all other operations are perfect. In prac-
tice, there are many physical imperfections that compro-
mise the quality of the resulting entanglement. There-
fore, quantum repeater protocols need to be equipped
with error suppression mechanisms, which we discuss in
this section.

It is helpful to classify error suppression techniques
into two categories: those employing deterministic error
suppression (including quantum error correction (Lidar
and Todd A. Brun, 2013) and one-way entanglement dis-
tillation (Bennett et al., 1996c)); and those leveraging
probabilistic error suppression (including quantum error
detection (Lidar and Todd A. Brun, 2013) and two-way
entanglement purification (Bennett et al., 1996a; Briegel
et al., 1998; Deutsch et al., 1996)). The former class
of techniques succeed deterministically, meaning they do
not require users to share a heralding signal alerting each
other of the success or failure of the error suppression;
on the other hand, the probabilistic nature of the lat-
ter class necessitates users to alert each other of success
or failure via classical communication and discard the
failed instances. For networks with large spatial sep-
aration between the nodes, the time delay associated
with this classical heralding signaling is highly relevant to
the performance of the network—for reference, a photon
takes roughly 0.5 ms to travel 100 km in an optical fiber.
While deterministic error suppression has an advantage
in this regard, probabilistic error suppression works even
for states which are too noisy to be recovered through
deterministic techniques. That is, the probabilistic tech-
niques tend to have higher thresholds on tolerable error
or loss probabilities (Bennett et al., 1996c). Let us now
briefly summarize both of these types of approaches for
suppressing errors.

a. Deterministic error suppression
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1. Quantum error correction The essence of
quantum error correction (QEC) is to use the redundancy
in the entanglement of many physical qubits to encode a
logical state and correct for errors. In particular, a qubit
is encoded into a two-dimensional subspace of a large
Hilbert space composed of many physical qubits rather
than directly into a single physical system. Quantum
error correction is a deterministic process; it is not im-
pacted by the delays associated with classical heralding
signals. For large-scale quantum networks, having this
determinism favourably affects communication rates; on
the other hand, physical implementations of QEC codes
are demanding due their complexity, and exhibit lower
thresholds (to work) on the errors affecting the physical
qubits. These thresholds become more stringent as the
variety and magnitude of errors increase.

2. One-way entanglement distillation The pur-
pose of one-way entanglement distillation (1-EDP) is to
obtain an almost maximally entangled Bell pair from a
set of noisier entangled pairs by applying (direct) one-way
LOCC. Here “one-way” means that only one party has
to communicate the results during the distillation pro-
cess via classical communication; there is no backward
classical communication. 1-EDP is closely connected to
quantum error correction (Horodecki et al., 2009); since
there is a direct mapping from a one-way hashing proto-
col (Bennett et al., 1996c) (or one-way breeding protocol
(Bennett et al., 1996a)) to a quantum error-correcting
code, we will treat them as equivalent at the protocol
level. In practice, there may be subtle differences in the
error accumulation and resource counts between one-way
hashing protocols and quantum error correction.

b. Probabilistic error suppression

1. Quantum error detection QEC codes can also
be used just to detect errors—that is, to herald the pres-
ence of error and discard the state without correcting the
error. Quantum error detection is a probabilistic process;
as a result, it takes time to inform the relevant parties,
through a classical signal, about the outcome of the error
detection, causing additional delay.

2. Heralded entanglement generation protocol
(HEGP) A widely used error detection scheme is
the heralded entanglement generation protocol (HEGP),
which can generate entanglement on success and detect
loss errors on failure. Since entanglement cannot be gen-
erated under LOCC, a party needs to generate an entan-
gled state between a local qubit and a flying qubit locally
and then to send the flying qubit over a quantum chan-
nel. A typical choice of flying qubit is a bosonic system,
such as a photonic state; its quantum channel—a bosonic

channel—has loss as the dominant noise process. The
goal of HEGP, then, is to generate high-quality entangle-
ment between separated parties in a heralded manner,
notwithstanding losses in the channel.

Depending on how the quantum information is encoded
in the optical modes, or how the local stationary qubits
are entangled with the optical modes, one ought to choose
appropriate schemes to detect loss errors. For dual-
rail (single-rail) discrete-variable encodings, one gener-
ates entanglement using two-photon (single-photon) in-
terference of incoming optical modes from neighboring
stations, while detecting loss errors according to click
patterns of the photon detection (Azuma and Kato, 2012;
Azuma et al., 2012; Barrett and Kok, 2005; Childress
et al., 2006b; Duan et al., 2001; Sangouard et al., 2011)
after the interference. For continuous-variable (e.g., GKP
(Gottesman et al., 2000)) encoding, one may generate en-
tanglement by combining the two incoming optical modes
from neighboring stations followed by homodyne mea-
surements at the output ports. The outcomes from the
homodyne measurements provide information about the
likelihood of loss errors, which may be used to determine
whether the entanglement generation is successful or not
(Fukui et al., 2021).

If loss errors are detected, the heralded entanglement
generation procedure is simply repeated until the two
adjacent stations receive the confirmation of certain suc-
cessful detection patterns via two-way classical signaling.
Instead of using this time multiplexing, we could also use
spatial or frequency multiplexing to run the heralded en-
tanglement generation protocol in parallel so that one
of the multiplexed trials succeed with a high probability
within a constant time (Sinclair et al., 2014).

3. Two-way entanglement distillation protocol
(2-EDP) The purpose of two-way entanglement distil-
lation (2-EDP) is to produce an almost maximally en-
tangled pair from noisier entangled pairs by applying
two-way LOCC. 2-EDP allows both parties to commu-
nicate with each other using a classical channel, which
enables them to compare measurement results or adap-
tively perform operations conditioned on the outcomes
from the other party. For example, if the Bell states
suffer from bit-flip errors, ρAB = (1− ϵ) |Φ+⟩ ⟨Φ+|AB +
ϵ |Ψ+⟩ ⟨Ψ+|AB , separated parties may use two copies of
the states to obtain one pair with a suppressed error of
O
(
ϵ2
)

by comparing measurement outcomes of a parity-
check measurement on their own halves (Bennett et al.,
1996c; Briegel et al., 1998; Deutsch et al., 1996). We may
also extend the result to suppress dephasing errors. For
general depolarization errors, we may use twirling (Ben-
nett et al., 1996a) or switching between phase and bit
errors (Deutsch et al., 1996) to further suppress errors.

For ideal operations, we can quickly converge to per-
fect Bell pairs. In principle, we can extract entanglement
with a rate limited by the two-way distillable entangle-
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Deterministic error
suppression

Probabilistic error
suppression

Schemes

Quantum error
correction

Quantum error
detection

One-way entanglement
distillation

Two-way entanglement
purification

Signaling No delay Delay

Threshold
to work

η > 1/2 for loss of
qubits or bosons

η > 0 for loss of qubits
or bosons

p < 1/4 at least for
depolarization of qubits

p < 1/2 for
depolarization of qubits

TABLE IV Comparison between deterministic and proba-
bilistic error suppression protocols.

ment (Bennett et al., 1996c). In practice, however, oper-
ation errors limit the ultimate fidelity of the distilled Bell
pairs. Various protocols have been proposed to distill en-
tanglement (Bennett et al., 1996a; Deutsch et al., 1996;
Fujii and Yamamoto, 2009; Jiang et al., 2007b; Kras-
tanov et al., 2019; Nickerson et al., 2013; Riera-Sàbat
et al., 2021). For example, one can use multiple copies of
imperfect Bell pairs to purify a Bell pair (Fujii and Ya-
mamoto, 2009; Nickerson et al., 2013). One can also use a
genetic algorithm to find the optimal 2-EDP (Krastanov
et al., 2019). Existing entanglement can also enhance the
performance of 2-EDP (Riera-Sàbat et al., 2021). Since
there is a direct mapping from 2-EDP to quantum error
detection (Dür and Briegel, 2007), we may treat them
as equivalent at the protocol level. In practice—just as
in the relationship between QEC and 1-EDP—there may
be subtle differences in error accumulation and resource
counts between quantum error detection and 2-EDP.

For CV encoding, due to the Gaussian entanglement
distillation no-go theorem (Eisert et al., 2002; Fiurášek,
2002; Giedke and Cirac, 2002), the CV repeaters use
non-Gaussian operations at the entanglement distilla-
tion protocols (Fiurášek, 2010; Ralph and Lund, 2009)
to suppress loss errors. Instead, we may distill entan-
glement using nondeterministic noiseless linear amplifi-
cation (NLA) with quantum scissors (Pegg et al., 1998;
Ralph and Lund, 2009) or other non-Gaussian filtering
with single-photon addition and subtraction operations
(Fiurášek, 2010).

c. Comparison of deterministic and probabilistic quantum er-
ror suppression Deterministic error suppression has no
corresponding classical signaling delay. However, it im-
poses a threshold of 50% on the loss of qubits or bosonic
systems (associated with the transmittance η as η > 1/2
if they are sent over a pure-loss channel, as in (13))
(Bennett et al., 1997, 1996c; Giovannetti et al., 2003a,b).
Furthermore, this category of protocols will not work at

all for qubits sent over a depolarizing channel (12) with
strength p > 1/4 (Bennett et al., 1997, 1996c; Knill and
Laflamme, 1997), although they work for p <∼ 0.18929
with the hashing protocol (Bennett et al., 1996c) and
even for p <∼ 0.19130 with a concatenated coding scheme
(Fern and Whaley, 2008)). Probabilistic error suppres-
sion has an associated classical signaling delay, but it
can tolerate larger errors. In principle, it works if the
transmission probability of qubits or bosonic systems
is nonzero (Bennett et al., 1997; Pirandola, 2019) or if
qubits are sent over a depolarizing channel with p < 1/2
(Bennett et al., 1996c; Deutsch et al., 1996). We sum-
marize and compare the properties of deterministic and
probabilistic error suppression protocols in Table IV.

B. Generations of quantum repeaters

There are two major challenges for fiber-based quan-
tum communication over long distances. First, as
pointed out in Sec. III.A.3, fiber attenuation during
transmission leads to an exponential decrease in the
entangled-pair generation rate. Second, several opera-
tional errors such as channel errors, gate errors, mea-
surement errors, and quantum memory errors, severely
degrade the quality of the obtained entanglement. Dif-
ferent from classical information, quantum information
is encoded as quantum states that cannot be amplified
or duplicated deterministically due to the quantum no-
cloning theorem (see Sec. II.B).

To overcome these challenges, quantum repeaters
(QRs) have been proposed for the faithful realization
of long-distance quantum communication (Briegel et al.,
1998). As exemplified in Sec. III.A.3, the essence of
QRs is to divide the total distance of communication
into shorter intermediate segments connected by QR sta-
tions, in which loss errors from fiber attenuation can be
corrected. Active error suppression schemes are also em-
ployed at every repeater station to correct operation er-
rors, i.e., imperfections induced by the channel, measure-
ments, and gate operations. In the following, we will clas-
sify quantum repeaters according to how one suppresses
loss and operation errors—using probabilistic error sup-
pression (Sec. III.A.4.b) or deterministic error suppres-
sion (Sec. III.A.4.a)—which will lead to a different scaling
of quantum communication rates.

For probabilistic error suppression protocols, we need
two-way classical signaling to inform relevant repeater
nodes whether to proceed to the next step (if error sup-
pression succeeds) or to make another attempt (if error
suppression fails). A widely used error detection scheme
to suppress loss errors is the heralded entanglement gen-
eration protocol (HEGP), as exemplified dual-rail pho-
tonic encoding in Sec. III.A.3. For single-rail or CV en-
coding, photon click patterns may not immediately iden-
tify loss events, but we may use other non-Gaussian op-
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Errors
Error

suppression 1G 2G 3G

Loss
error

Probabilistic ✓ ✓

Deterministic ✓

Operation
error

Probabilistic ✓

Deterministic ✓ ✓

Time scale max
(
L
c
, t0

)
max

(
L0
c
, t0

)
t0

Cost coefficient poly (L) polylog (L) polylog (L)

TABLE V Three generations of quantum repeaters classified
according to probabilistic or deterministic suppression of loss
and operation errors. The time scale (key generation rate)
and cost coefficient scale differently with the total distance L,
repeater spacing L0, and gate time t0.

erations (e.g., non-deterministic noiseless linear amplifi-
cation (NLA) with quantum scissors (Pegg et al., 1998;
Ralph and Lund, 2009) to suppress loss errors. If loss
errors are detected, one simply repeats the heralded en-
tanglement generation procedure until the two adjacent
stations receive the confirmation of certain successful de-
tection patterns via two-way classical signaling. Sim-
ilarly, to achieve probabilistic suppression of operation
errors, a popular error detection scheme is the two-way
entanglement distillation protocol (2-EDP), which con-
sumes several low-fidelity Bell pairs to probabilistically
generate a smaller number of higher-fidelity Bell pairs
(Deutsch et al., 1996; Dür et al., 1999). Like HEGP,
to confirm the success of purification, two-way classical
signaling between repeater stations for exchanging mea-
surement results is required. The time delays from the
two-way classical signaling may decrease the communi-
cation rates.

To achieve deterministic error suppression of loss er-
rors or operation errors, we may use quantum error cor-
rection (Azuma et al., 2015a; Fowler et al., 2010; Jiang
et al., 2009; Li et al., 2013; Munro et al., 2010; Muralid-
haran et al., 2014b) or one-way entanglement distillation
(Bennett et al., 1996c; Zwerger et al., 2018). The key
idea is to encode a logical qubit into a block of physi-
cal qubits that are sent through the lossy channel, and
then to use quantum error correction to restore the log-
ical qubit. One may also include one-way classical sig-
naling to assist the deterministic one-way entanglement
distillation protocols (Bennett et al., 1996a,c), but the
additional one-way (forward) classical signaling from the
sender does not affect the quantum channel capacity.
Hence, all the deterministic error suppression (even when
assisted by one-way signaling) can correct no more than
50% loss, which is consistent with the no-cloning theorem
(Muralidharan et al., 2014b; Stace et al., 2009), and not
more than 25% depolarizing errors (see Table IV). The
existence of these finite thresholds itself implies the need

of quantum repeater nodes in the case of the use of deter-
ministic error suppression, as such errors tend to depend
on the communication distance (Briegel et al., 1998).

Based on the methods adopted to suppress loss and
operation errors, we can classify various QRs into three
categories, as shown schematically in Table V. We re-
fer to these as first, second, and third generations of
QRs (Munro et al., 2015; Muralidharan et al., 2014b,
2016), to imply the increasing difficulty in technology
with improved performance5. Note that the combination
of deterministic suppression of loss errors and probabilis-
tic suppression for operation errors, which only does not
appear in Table V, is sub-optimal compared to the other
three combinations.

Each generation of QRs performs best for a spe-
cific regime of operational parameters such as local gate
speed, gate fidelity, and coupling efficiency. We consider
both the temporal and physical resources consumed by
the three generations of QRs and identify the most effi-
cient architecture for different parameter regimes. The
results can guide the design of efficient long-distance
quantum communication links that act as elementary
building blocks for future quantum networks.

1. First-generation repeaters

The first generation of QRs uses probabilistic error sup-
pression to overcome practical imperfections—for exam-
ple, HEGP can herald the successful entanglement gen-
eration while overcoming loss errors and 2-EDP can use
two-way classical signaling to recognize successful entan-
glement distillation to suppress operation errors (Azuma
et al., 2012; Briegel et al., 1998; Childress et al., 2006b;
Kok et al., 2003; van Loock et al., 2006; Munro et al.,
2008; Sangouard et al., 2011; Zwerger et al., 2012). Since
we have explained the principle of QRs by exemplifying
a simplified first-generation QR protocol in Sec. III.A.3,
here we start by briefly summarizing how QRs from this
generation can be used to correct losses with a simple
example in which we assume there are no operation er-
rors. Alice and Bob, separated by a distance Ltot, want
to share a maximally-entangled qubit pair that they can
use, e.g., to teleport a quantum state or to distill a pri-
vate key. They are connected by a lossy medium such
as a telecom fiber, having the typical loss of 0.2 dB/km
(that is, an attenuation length Latt ≈ 22 km). Supposing
that Ltot ≫ Latt, the direct transmission of a photon be-
tween Alice and Bob succeeds with a vanishingly small
probability on the order of e−Ltot/Latt ≪ 1.

5 We may also classify QRs using other criteria, such as the phys-
ical platform, different operations, and so on. For instance, see
Ref. (Razavi, 2018). We will discuss various physical platform
and implementation in Sec. V.
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FIG. 5 The first generation repeater protocol (BDCZ scheme
(Briegel et al., 1998)). (a) In a realization based on the pump-
ing protocol with N + 1 = 9 nodes, the number of qubits per
node is bounded by 2 log2 2N = 8. Each (orange) oval sur-
rounding two vertices (or two qubits) describes application of
Bell measurement to the two qubits for entanglement swap-
ping. (b–d) Two entangled pairs with distance 1 are connected
through entanglement swapping [(orange) oval)] at node 1 to
produce an entangled state with distance 2, which is stored
in the qubits [as described by (purple) arrows] at higher level.
(e–g) Another entangled state with distance 2 is produced to
purify the entangled state [as described by (purple) arrows]
stored in qubits at higher level. Similarly, entangled states
with distance 2n can be connected to produce entangled state
with distance 2n+1, which may be further purified, as indi-
cated in (a). Figure from Ref. (Jiang et al., 2007a). Copyright
(2007) National Academy of Sciences.

The solution provided by first-generation QRs is to di-
vide the total distance L between Alice and Bob into
smaller lengths with the help of NQR = Ltot/L0 − 1
quantum repeater nodes. Here we assume that the nodes
are evenly separated by an internodal distance L0 and
L0 = Ltot/2

n for simplicity. The role of each QR node
is to share entanglement with its adjacent nodes: we
use an HEGP strategy to create high-quality entangle-
ment between a quantum memory and its counterpart to
the immediate left, and between another memory and its
counterpart in the adjacent QR node to the right. Each
HEGP trial also takes a time Ttrial = top + tc, which de-
pends on the total time top of operations and on the time
tc = L0/c for photons to arrive at the central measuring
station and the classical signaling back to the QR node.

A typical HEGP procedure has success probability Pent

depending on the photon collection efficiency, fiber trans-
mission efficiency, and photon detection efficiency. For
the dual-rail encoding, without ancillary photons, the
success probability Pent ≤ 1/2 even in the lossless limit,

limited by linear optics and by the photon loss probability
(Calsamiglia and Lütkenhaus, 2001). However, we may
use more advanced encoding to achieve a higher success
probability Pent > 1/2 (Azuma et al., 2009, 2012; Mar-
tin and Whaley, 2019). In any case, if it succeeds, the
HEGP tends to present high-quality entanglement be-
tween nearest neighbor nodes even under the existence
of photon loss. Due to the probabilistic nature of HEGP,
for the first-generation QR protocol to proceed, it is nec-
essary to inform the adjacent nodes whether the HEGP
has succeeded or not. In the case of a failure, the process
is repeated until it succeeds. The entanglement gener-
ation procedure therefore succeeds in an average time
⟨Tent⟩ = P−1

entTtrial = P−1
ent (L0/c + top). In the case of a

success, the entanglement can be stored in the quantum
memories.

At each QR node, we can store entangled qubit pairs
shared with an adjacent node, say the node on the im-
mediate left, during the time required to produce an en-
tangled pair with the adjacent QR node on the right.
Thanks to this functionality of quantum memories, we
see that not all the entanglement needs to be gener-
ated at the same time throughout the network; this is
the reason that this strategy can outperform direct pho-
ton transmission and a quantum relay protocol (Jacobs
et al., 2002; de Riedmatten et al., 2004; Waks et al., 2002)
(which uses repeater nodes but only distributes photonic
Bell pairs from sending repeater nodes to their adjacent
receiver nodes, in which Bell measurement is performed
soon after receiving halves of the Bell pairs). When a QR
node finally shares an entangled pair of qubits with each
of its adjacent nodes, it performs entanglement swapping
between its two quantum memories, such that if it suc-
ceeds, a maximally entangled pair is now shared between
its two adjacent nodes. After repeating these entangle-
ment swapping steps at each QR node, Alice and Bob
end up with a maximally-entangled pair at a rate much
higher than what is achievable with direct fiber transmis-
sion (see Sec. III.A.3 for detail).

So far, we have only considered loss errors and have
thus assumed that information can be manipulated,
transferred and stored faithfully. In practice, this is not
the case; we ought to also handle operation errors, which
eventually reduce the fidelity of the two qubits shared by
Alice and Bob. This is achieved through an entanglement
distillation scheme, which can be incorporated in first-
generation QRs, for example, using a nested purification
QR scheme, as introduced in the following paragraph.

As illustrated in Fig. 5, we start with distilled high-
fidelity entangled pairs with separation L0 = Ltot/2

n,
created and stored in adjacent stations. At the k-th nest-
ing level, two entangled pairs of distance Lk−1 = 2k−1L0

are connected by entanglement swapping to extend en-
tanglement to a distance Lk = 2kL0 (Zukowski et al.,
1993). As practical gate operations and entanglement
swapping (Fig. 5 (b-d)) inevitably cause the fidelity of
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entangled pairs to drop, 2-EDP may be incorporated
at each level of entanglement extension (Fig. 5 (e-g))
(Deutsch et al., 1996; Dür et al., 1999). With n nest-
ing levels of connection and distillation, a high-fidelity
entangled pair over distance Ln = Ltot can be obtained.
Suppose Tk−1 is the average time needed to prepare a
distilled entangled pair over distance Lk−1, average time
to prepare a distilled entangled pair over distance Lk is

Tk = αkTk−1 + βkLk/c = αkTk−1 + βk2
ktc, (34)

where tc = L0/c is the communication time between
neighboring repeater stations, αk and βk are dimension-
less numbers capturing the time overhead associated with
the entanglement swapping, distillation, and multiple
rounds of classical communication. For simplicity, we
assume each nesting level has similar overheads αk ≈ α
and βk ≈ β for k ≥ 1. The average time to generate
distilled entangled pairs between neighboring repeaters
is T0 = β0tc, with the time overhead β0 associated with
photon efficiency, entanglement generation and purifica-
tion between neighboring repeater stations. From the
recursive relation, we can obtain the average time to gen-
erate a distilled entangled pair over distance Ln = Ltot

is

Ttot = Tn ∼ (Ltot/L0)
log2[max(α,2)]

max (β, β0) tc, (35)

which increases polynomially with Ltot depending on the
value of α.

For the simple mode of loss-only channel, α ≈ 3
2

1
Pswap

,
with prefactor 3

2 for the time overhead associated with
the requirement that two entangled pairs on both sides
should be ready for entanglement swapping (Azuma
et al., 2021; Jiang et al., 2007a; Sangouard et al., 2011),
and Pswap for the success probability of entanglement
swapping. For example, Pswap ≤ 1/2 for the Duan-Lukin-
Cirac-Zoller quantum repeater protocol based on atomic
ensembles and linear optics (Duan et al., 2001). To over-
come operation errors, we need entanglement distillation
from at least two copies of entangled pairs, and hence
α ≥ 2 for all entanglement distillation schemes (e.g., the
Briegel-Dür-Cirac-Zoller (BDCZ) protocol (Briegel et al.,
1998) and the Childress-Taylor-Sørensen-Lukin (CTSL)
protocol (Childress et al., 2006b)), unless we use multi-
plexing in generating entangled pairs (Dür et al., 1999).

The first generation of QRs reduces the exponential
overhead in direct state transfer to only polynomial over-
head, which is limited by the two-way classical signaling
required by HEGP between non-adjacent repeater sta-
tions. The communication rate still decreases polynomi-
ally with distance and thus becomes very slow for long-
distance quantum communication. The communication
rate of first-generation QRs can be boosted using tem-
poral, spatial, and/or frequency multiplexing associated
with the internal degrees of freedom for the quantum
memory (Bonarota et al., 2011; Sangouard et al., 2011).

The first generation of QRs can also be very efficient in
entanglement resources. As shown in Fig. 5, the BDCZ
protocol (Briegel et al., 1998; Dür et al., 1999) has a self-
similar structure with n = log2

Ltot

L0
nesting levels. We

start with the elementary entangled pairs with initial fi-
delity6 F and distance L0 between neighboring repeater
nodes. In the j-th nesting level (with j = 1, 2, · · · , n), a
repeater node performs entanglement swapping to con-
vert two initial entangled pairs with fidelity F and the
length 2j−1L0 into an entangled pair with fidelity F ′(≤ F
in general) and length of 2jL0. The extended entangled
pairs with fidelity F ′ are collected, and M pairs of them
are used to distill a purified entangled pair with the ini-
tial fidelity F and the length of 2jL0 through an entan-
glement distillation protocol. These imply that each pu-
rified entangled pair with fidelity F and with the length
of 2jL0 can be regarded as having been made from 2M
entangled pairs with fidelity F and with the length of
2j−1L0. Therefore, an entangled pair with fidelity F and
with the length of Ltot = 2nL0 can be made up from
(2M)n = (Ltot/L0)

1+log2 M elementary entangled pairs.
In addition, the first generation of QRs can be highly

efficient even in terms of quantum memory resources,
if the purification of an unpurified entangled pair with
the length of 2jL0 (j = n, n − 1, · · · , 0) can be done by
a sequential application of the pumping protocol which
“pumps” entanglement to the entangled pair out of a
fixed unpurified auxiliary entangled pair with the same
length of 2jL0 (see Fig. 5) (Briegel et al., 1998; Dür et al.,
1999). Here, how much entanglement is purified depends
on both the initial fidelity and the shape of the fixed
auxiliary pair. During the purification, we just need two
pairs of memories, one for storing the entangled pair to
be pumped and the other for storing the auxiliary en-
tangled pair for each round, and the purification is re-
garded as having started from two unpurified pairs with
the length of 2jL0. One of these two unpurified pairs,
as the auxiliary entangled pair, should be prepared re-
peatedly during the pumping purification, and it can be
regarded as having been obtained by connecting two pu-
rified entangled pairs with the length of 2j−1L0 through
entanglement swapping. As a result, a purified entan-
gled pair with the length of 2jL0 can be regarded as hav-
ing been made from an unpurified entangled pair (to be
pumped at the j-th nesting level) with the length of 2jL0

and from two purified pairs with the length of 2j−1L0.
By considering this recursively from j = n to j = 1, a
purified entangled pair with the length of 2nL0(= Ltot) is
regarded as having been made from 1 unpurified entan-

6 A general definition of the fidelity between states ρ and σ is given
by F (ρ, σ) := ∥√ρ

√
σ∥2, where ∥X∥ := Tr

√
X†X is the trace

norm (Jozsa, 1994). The “initial fidelity” here means the fidelity
of an initial state ρ to a Bell state |Φ+⟩, i.e., F = F (ρ, |Φ+⟩) =
⟨Φ+| ρ |Φ+⟩.



21

gled pair (to be pumped at the n-th nesting level) with
the length of 2nL0, 2 unpurified pairs (to be pumped at
the n − 1-th nesting level) with the length of 2n−1L0,
· · · , 2n−1 unpurified pairs (to be be pumped at the 2nd
nesting level) with the length of 2L0, and 2n purified
pairs with the length of L0. Since each of these entan-
gled pairs needs two quantum memories, the maximum
number Ntot of memories required during the protocol is
Ntot = 2

∑n
j=0 2

j = 2(2n+1 − 1) = 2(2Ltot/L0 − 1) =
4Ltot/L0 − 2. For example, we have n = 3 in Fig. 5 (a),
where 30 quantum memories are written, corresponding
to Ntot memories.

There are different variations of the BDCZ proto-
col. Its measurement-based implementation using graph
states is given in Ref. (Zwerger et al., 2012). The
DLCZ protocol simplifies it with the use of atomic en-
sembles and linear optics (Duan et al., 2001). Room-
temperature quantum repeaters have also been proposed
using nitrogen-vacancy defect centers in diamond (Chil-
dress et al., 2006b; Ji et al., 2022). Reference (Sangouard
et al., 2011) provides a detailed review on various first-
generation quantum repeaters based on atomic ensembles
and linear optics, where HEGPs are based on Fock-state
encoding, polarization encoding, and time-bin encoding.
The concept of the nested purification in the BDCZ pro-
tocol, as well as the concatenation of quantum error-
correcting codes (Knill and Laflamme, 1997), is gener-
alized to distribute entangled pairs with fixed error to
clients in a quantum network with arbitrary topology,
regardless of their distance (Azuma, 2023).

We can further generalize the BDCZ protocol by intro-
ducing CV encoding. For example, we can take a hybrid
CV-DV approach by interfering optical coherent-state
signals to generate DV entanglement between repeater
stations (Azuma et al., 2012; Childress et al., 2006b; van
Loock et al., 2006; Munro et al., 2008). Moreover, we can
design CV quantum repeaters to efficiently distribute CV
entangled states with high fidelity over long distances
(Dias and Ralph, 2017; Furrer and Munro, 2018; Se-
shadreesan et al., 2020). Due to the Gaussian entangle-
ment distillation no-go theorem (Eisert et al., 2002; Fi-
urášek, 2002; Giedke and Cirac, 2002), the CV repeaters
use non-Gaussian operations at the entanglement distil-
lation protocols (Fiurášek, 2010; Ralph and Lund, 2009)
to suppress loss errors.

2. Second-generation repeaters

The second generation of QRs uses probabilistic error
suppression (see Sec. III.A.4.b) for loss errors and deter-
ministic error suppression (see Sec. III.A.4.a) for opera-
tion errors (Jiang et al., 2009; Li et al., 2013; Mazurek
et al., 2014; Munro et al., 2010). For example, we may
first prepare the encoded states |0⟩L and |+⟩L using the
Calderbank-Shor-Steane (CSS) codes and store them at

two adjacent stations. CSS codes are considered be-
cause of their fault-tolerant implementation of prepa-
ration, measurement, and encoded CNOT gates (Jiang
et al., 2009; Nielsen and Chuang, 2010). Then, an en-
coded Bell pair |Φ+⟩L = 1√

2
(|0, 0⟩L + |1, 1⟩L) between

adjacent stations can be created via teleportation-based
non-local CNOT gates (Gottesman and Chuang, 1999;
Jiang et al., 2009) applied to each physical qubit in
the encoded block using the entangled pairs generated
through HEGP process. Finally, QEC is carried out when
entanglement swapping at the encoded level is performed
to extend the range of entanglement. Second-generation
QRs use QEC to replace 2-EDP and therefore avoid the
time-consuming two-way classical signaling between non-
adjacent stations. The communication rate is then lim-
ited by the time delay associated with two-way classical
signaling between adjacent stations and local gate oper-
ations. If the probability of accumulated operation er-
rors over all repeater stations is sufficiently small, we can
simply use the second generation of QRs without encod-
ing. For instance, proposals based on single ion qubits,
to which we can apply deterministic Bell measurement,
fall into this category (Asadi et al., 2020; Kimiaee Asadi
et al., 2018; Sangouard et al., 2009).

We can generate entangled pairs through the HEGP
process adapted for different photonic encoding schemes
(see Sec. II.E). For dual-rail photonic encoding (time-
bin, polarization, or path), we may use linear optics and
photon detectors to herald the successful Bell measure-
ment and also detect photon loss errors (e.g., Fig. 3 (a)).
The potential limitation is that the success probability
of the Bell measurement will be upper-bounded by 50%
for dual-rail encoding. Alternatively, we may use bosonic
encodings, such as GKP states, for HEGP (Fukui et al.,
2021). Different from the dual-rail encoding schemes, the
GKP encoding can achieve deterministic Bell measure-
ment with linear optics and homodyne detection (Gottes-
man et al., 2000). In the presence of loss errors, there will
be vacuum noise added to the system, which can be de-
tected by the homodyne measurement. The GKP encod-
ing can correct small added vacuum noise up to certain
level, above which it is better to report the presence of
large noise and restart the process.

Similar to the first-generation repeaters, we can also
give bounds on the achievable communication rate for
the second generation repeaters, which is limited by the
HEGP and 2-EDP between neighboring repeater sta-
tions. For example, we have R ≤ ⟨Tent⟩−1 ≤ [2(L0/c +
top)]

−1. By reducing the distance L0 to zero, and neglect-
ing top, we see that this bound can, in principle, go to
infinity. Yet, assuming L0 → 0 would require infinitely
many QR nodes, NQR → ∞, and thus an infinite amount
of resources (quantum memories).

The physical resources required for the second gener-
ation of QRs depend on the size of the CSS code, ncode.
At each repeater station, we need at least 2ncode qubits
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for storing the encoded states |0⟩L and |+⟩L, and we also
need additional memory qubits to store and purify en-
tanglement between neighboring repeater stations (Jiang
et al., 2009). Hence, the total number of quantum mem-
ory qubits is Ntot ∼ ncode

Ltot

L0
.

The size of the encoding block, ncode, only needs to in-
crease poly-logarithmically with the total distance Ltot.
Asymptotically, there are CSS codes with ncode ≤ 19t,
which can correct up to t (bit-flip and dephasing) er-
rors [obtained from the Gilbert-Varsharov bound, see Eq.
(30) in (Calderbank and Shor, 1996)]. This implies that
we only need ncode ∝ t ∼ ln Ltot

L0
that increases loga-

rithmically with Ltot (Jiang et al., 2009). In practice,
however, it is might be challenging to initialize large CSS
encoding block fault tolerantly with imperfect local oper-
ations. To avoid complicated initialization, we may con-
struct larger CSS codes by concatenating smaller codes
with r nesting levels, and the code size scales polyno-
mially with the code distance, ncode ∝ tr ∼ (ln Ltot

L0
)r.

Alternatively, we may consider the Bacon-Shor code (Ba-
con, 2006); the encoding block scales quadratically with
the code distance ncode = (2t + 1)2 ∼ (ln Ltot

L0
)2, and

the initialization can be reduced to the preparation of
(2t+1)-qubit Greenberger-Horne-Zeilinger (GHZ) states.
For finite total distance Ltot, a more useful performance
metric for comparing the QR protocols should quantify
both the amount of physical resources, as well as the
communication rate (see Sec. III.B.4).

3. Third-generation repeaters

The third generation of QRs relies on deterministic
error suppression, such as QEC and one-way hashing
(see Sec. III.A.4.a), to correct both loss and operation
errors (Fowler et al., 2010; Munro et al., 2012; Muralid-
haran et al., 2014b). The quantum information can be
directly encoded in a block of physical qubits that are
sent through the lossy channel. If the loss and operation
errors are sufficiently small, the received physical qubits
can be used to restore the whole encoding block, which
is re-transmitted to the next repeater station. The third
generation of QRs only needs one-way signaling and thus
can achieve very high communication rates, just like clas-
sical repeaters only limited by local operation delays.

Various choices of quantum error-correcting codes can
be used for the third generation of QRs (Knill and
Laflamme, 1996). For qubit-based quantum error cor-
rection, we may use quantum parity codes (Ralph et al.,
2005) with moderate coding blocks (∼ 200 qubits) to ef-
ficiently overcome both loss and operation errors (Munro
et al., 2012; Muralidharan et al., 2014b). The surface
code (Raussendorf et al., 2007; Raussendorf and Harring-
ton, 2007) or the tree-cluster code (Varnava et al., 2006)
can suppress more loss errors—up to 50%—with larger
encoding blocks. For quantum codes based on d-level

quantum systems (e.g., based on time-bin encoding), we
can implement quantum polynomial (Cleve et al., 1999)
codes to approach loss tolerances up to 50% (Muralid-
haran et al., 2017) and quantum Reed-Solomon codes
(Li et al., 2008) to further improve the key generate rate
(Muralidharan et al., 2018). If we treat each optical mode
as a continuous variable system, we may use bosonic
quantum error-correcting codes (e.g., cat codes (Legh-
tas et al., 2013; Mirrahimi et al., 2014), binomial codes
(Michael et al., 2016), and GKP codes (Albert et al.,
2018; Gottesman et al., 2000; Noh et al., 2019)) to cor-
rect loss errors. The advantage of bosonic codes is that
they can efficiently use the large Hilbert space of bosonic
systems and reduce the number of bosonic modes, which
might be advantageous to maximize the usage of our op-
tical quantum channel bandwidth (Li et al., 2017). To
further suppress the residual errors from the first-level
bosonic codes, we may concatenate it with a second-level
DV encoding, which leads to a concatenated CV-DV en-
coding scheme. To reduce the resource cost with respect
to an architecture for which all repeaters are the same, we
may introduce two different types of repeaters, correct-
ing errors at two different levels, respectively (Rozpędek
et al., 2021).

Note that the second and third generations of QRs can
achieve communication rates much faster than the first
generation over long distances, but they are technologi-
cally more demanding. For example, they require high-
fidelity quantum gates, as QEC only works well when
operation errors are below the fault-tolerance threshold.
The repeater spacing for the third generation of QRs is
smaller compared to the first two generations of QRs be-
cause error correction can only correct a finite amount
of loss errors deterministically (only up to 50% loss error
rates deterministically (Muralidharan et al., 2014b; Stace
et al., 2009)).

Similar to the second generation of QRs, the physical
resources required for the third generation of QRs de-
pend on the size of the quantum error-correcting code.
We may use ncode to characterize the size of the encod-
ing blocks based on qubits or bosonic modes. At each
repeater station, we need O(ncode) quantum memories
to perform error correction suppressing not only opera-
tion errors, but loss errors as well. The total number of
quantum memories (in terms of qubits or bosonic modes)
needed is Ntot ∼ ncode

Ltot

L0
. In principle, we may use

QEC over optical modes to fully replace the need of the
traditional atomic or solid-state quantum memory, which
inspires the design of all-photonic quantum repeaters as
discussed in. Sec III.C.

For the specific application of quantum key distribu-
tion, we may use QRs to generate random secret clas-
sical bits shared by remote parties. Since the ultimate
goal is to generate secret keys, rather than the entangled
states, we might slightly relax the requirement of quan-
tum memories. In particular, in this case, even for first
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and second generation repeaters, there is no need of long-
lived quantum memories to store the entangled states at
the end stations, because they can be measured simul-
taneously with all intermediate repeater stations (Jiang
et al., 2009) (see Sec. VI.A.2). However, notice that the
first and second generation QRs still need quantum mem-
ories at repeater nodes, whose required memory time is
longer than that of third generation QRs.

4. Comparison of three generation of QRs

To present a systematic comparison of different QRs in
terms of efficiency, we need to consider both temporal and
physical resources. The temporal resource depends on
the rate, which is limited by the time delay from the two-
way classical signaling (in first- and second-generation re-
peaters) and the local gate operation (in the second and
third generations) (Jiang et al., 2007a). The physical re-
sources depend on the total number of qubits needed for
HEGP (first and second generations) and QEC (second
and third generations) (Bratzik et al., 2014; Muralidha-
ran et al., 2014b). One may quantitatively compare the
three generations of QRs using a cost function (Muralid-
haran et al., 2014b) related to the required number of
qubit memories to achieve a given transmission rate. If
a total of Ntot qubits are needed to generate secure keys
at R bits/second, a cost function is defined as

C(Ltot) =
Ntot

R
=
Ns

R
× Ltot

L0
, (36)

whereNs is the number of qubits needed per repeater sta-
tion, Ltot is the total communication distance, and L0 is
the spacing between neighboring stations. Since the cost
function scales at least linearly with Ltot, to demonstrate
the additional overhead associated with Ltot, a cost co-
efficient can be introduced as

C ′(Ltot) =
C(Ltot)

Ltot
, (37)

which can be interpreted as the resource overhead (qubits
× time) for the creation of one secret bit over 1 km (with
target distance Ltot). Besides the fiber attenuation (with
Latt = 20 km for telecom wavelengths), the cost coeffi-
cient also depends on other experimental parameters, in
particular the coupling efficiency ηc, the gate error prob-
ability ϵG, and the gate time t0.

We may summarize the analysis of QRs based on the
cost coefficient (Muralidharan et al., 2016) using bub-
ble and region plots in the three-dimensional parameter
space, as shown in Fig. 6, which compares representative
protocols from three generations of quantum repeaters
(Briegel et al., 1998; Jiang et al., 2009; Muralidharan
et al., 2017). 7 The bubble color indicates the associated

7 The communication rate of the first generation of QRs can be

(a) (c)

(d)(b)
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FIG. 6 The bubble plot comparing various QR protocols in
the three-dimensional parameter space spanned by coupling
efficiency ηc, gate error probability ϵG, and gate time t0, for
a) Ltot = 1000 km and b) Ltot = 10, 000 km. The bubble
color indicates the associated optimized QR protocol, and the
bubble diameter is proportional to the cost coefficient. The
region plots (c) and (d) showing the distribution of different
optimized QR protocol in the three dimensional parameter
space for Ltot = 1000 km and Ltot = 10, 000 km respectively.
The region plot (c) contains a yellow region of second gener-
ation with encoding, which can be verified in a bubble plot
with a finer discretization of ϵG. Figure from (Muralidharan
et al., 2016).

optimized QR protocol, and the bubble diameter is pro-
portional to the cost coefficient. The parameter space
can be divided into the following regions: (I) For high
gate error probability (ϵG >∼ 1%), the first generation
dominates; (II.A) For intermediate gate error probabil-
ity, but poor coupling efficiency or slow local operation
[0.1Latt

Ltot
> ϵG > 1% and (ηc > 90% or t0 ? 1µs)], the

second generation with encoding is more favorable; (II.B)
For low gate error probability, but low coupling efficiency
or slow local operation [ϵG > 0.1Latt

Ltot
and (ηc > 90% or

t0 ? 1µs)], the second generation without encoding is
more favorable; (III) For high coupling efficiency, fast lo-
cal operation, and low gate error probability (ηc ? 90%,
t0 > 1µs, ϵG > 1%), the third generation becomes the
most favorable scheme in terms of the cost coefficient

boosted using temporal, spatial, and/or frequency multiplexing
associated with the internal degrees of freedom for the quantum
memory (Afzelius et al., 2009; Sangouard et al., 2011).
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C. All-optical repeaters

While the traditional repeater protocol necessitates
physical memories—stationary quantum systems—to
store quantum information during the long waits as-
sociated with long-distance entanglement generation, it
is fairly nontrivial whether the protocol can be imple-
mented all-optically just by replacing the memories with
all-optical memories like ones in (Leung and Ralph,
2006). On the other hand, repeaters featuring QEC
codes could preclude the necessity of such memories, as
QEC codes can instead deterministically suppress the
noise and loss affecting qubits. Indeed, error-corrected
repeaters, which intersect with the second and third gen-
erations discussed above, are shown to be implementable
all-optically; in this case, the significant differences in
analysis and implementation compared to matter-based
repeaters warrant special attention, which we provide in
this subsection.

To better understand all-optical or all-photonic re-
peaters, we first review the operating principle of another
quantum information protocol, measurement-based quan-
tum computation (MBQC) (sometimes referred to as one-
way computation8), especially relevant for optical im-
plementations. In a measurement-based quantum com-
puter (Raussendorf and Briegel, 2001), to be contrasted
with a gate-based computer, an entangled resource state,
namely a cluster (or graph) state (Sec. II.D.1), is pre-
pared initially and the computation proceeds by way of
adaptive single-qubit measurements on this state. For
physical platforms suffering from probabilistic entangling
gates, among them discrete-variable dual-rail photonics
(see Sec. II.E), this type of computer has the advan-
tage that such probabilistic gates are involved only in
the preparation of the initial resource states and are not
necessary during the computation. This circumvents the
exponential decay of the computational success with the
number of entangling operations and dramatically re-
duces the resource costs (Browne and Rudolph, 2005;
Kok et al., 2007; Nielsen, 2004) compared to the gate-
based scheme (Knill et al., 2001a). Furthermore, the
measurement-based approach allows for fixed-depth cir-
cuits where a physical qubit only undergoes a finite (and
generally small) amount of gate operations before being
consumed by a single-qubit measurement. This approach
therefore accords well with flying qubits; it helps over-
come the weakness of probabilistic entangling gates for
certain photonic encodings, and drastically cuts down on
the amount of loss each photon experiences.

In measurement-based computation, universality—the
ability to approximate any unitary on any number of data

8 “One-way” has a special meaning in quantum communication, so
we forego this terminology.

qubits arbitrarily well—is achieved through an appro-
priate choice of cluster state (Briegel and Raussendorf,
2001), as well as access to non-Clifford operations. Fault-
tolerance—the exponential suppression of state prepara-
tion, gate and measurement errors—is obtained through
an error-correcting code (Sec. III.A.4.a.1), which trans-
lates to a cluster state with a special shape and structure
(the encoding); a prescription for implementing logical
operations through adaptive single-qubit measurements;
and a means of detecting and correcting the error, includ-
ing an algorithm for extracting the outcomes of logical
measurements (the decoding and recovery).

A common feature of recent architectures of all-
optical repeaters is that they are realizable through
measurement-based implementations of QEC codes. A
measurement-based quantum repeater operates in much
the same way as a measurement-based computer; how-
ever, there are a handful of salient distinctions, em-
blematic of the differences between computation and
communication. First, gate-set universality is not nec-
essary for communication, meaning Clifford operations
suffice. Second, the dominant source of errors for the
photonic states comprising optical repeaters—loss—is an
even larger threat. Third, in contrast to computation,
which can be done locally, the goal of communication
is inherently nonlocal—to entangle spatially distant ob-
jects. Since noise for physical qubits generally increases
with time, it is important to take the classical communi-
cation time into account.

With these general notions out of the way, in the next
subsections we overview the workings of several protocols
for all-optical repeaters and describe promising schemes
for the preparation of repeater graph states. We begin
with a summary of the first all-photonic repeater pro-
posal (Azuma et al., 2015a), as an instructive example.

1. Original all-photonic repeaters

Our review of the all-photonic repeaters introduced
in (Azuma et al., 2015a) begins with a description of
the repeater graph state (RGS). The ideal RGS that the
authors propose has two layers.

The inner or core layer is a complete graph or clique
(Fig. 7), which is locally equivalent to a GHZ state of
n qubits from Eq. (20). The qubits in the inner layer
are tailored to play the same role as quantum memo-
ries in a second-generation quantum repeater protocol.
Recall the assumption of the second-generation QR pro-
tocol about quantum memories which allow us to apply
deterministic Bell measurements only on quantum mem-
ories which have successfully shared entanglement with
adjacent repeater nodes (see III.B.2). To make photonic
qubits play this role, the core qubits in the RGS of Fig. 8
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FIG. 7 A clique (left) and biclique (right). In the former,
each vertex is connected with every other. In the latter, each
vertex from the left set is connected with a vertex on the
right, but the sets are internally disconnected. These graphs
can underlie repeater graph states. See Sec. II.D.1 for more
on graph states.

Root

Level 1

Level 0

Level 2

𝑏0 = 2

𝑏1 = 2

FIG. 8 Encoded repeater graph state (RGS) proposed
in (Azuma et al., 2015a). The RGS has two layers (left): the
inner layer is composed of core qubits [big (red) vertices, closer
to the center]; the outer layer is composed of outer qubits (or
called leaves) [small (blue) vertices, further from the center].
Each vertex in the clique (left) is a logical qubit, which can be
encoded in, e.g., the Varnava tree code (Varnava et al., 2006)
(right) to protect itself from loss (as well as general errors un-
der the restriction of Pauli measurements). Displayed are the
levels and branching parameters {b0, b1, · · · , bd−1} of the tree
(d = 2 in this figure). Note the root and 0th-level qubits [two
upper (red) qubits] in the tree will be measured out in the X
basis, connecting the qubits in the first level with all of the
neighbours of the root qubit. The inner logical qubits, con-
duits for the entanglement swapping, are connected to outer
unencoded physical leaf qubits, which help effect the entan-
glement generation.

are prepared in a complete-graph state9 as in Fig. 7 (to
overcome the probabilistic nature of the linear optical
Bell measurements). In particular, if we apply X-basis
measurements to two of them and Z-basis measurements

9 However, it was shown in (Russo et al., 2018; Tzitrin, 2018; Tz-
itrin et al., 2020) that some of the connections in the clique
comprising the RGS are unnecessary, so that some variant, such
as the biclique in Fig. 7, is sufficient as core qubits.

to the other qubits, it works as the Bell measurement
on the two qubits and decouples the others (although we
only use single-qubit measurements). To achieve these
X-basis or Z-basis measurement deterministically even
under photon loss, the qubits in the inner layer are en-
coded into a larger graph state with sufficient redun-
dancy. In (Azuma et al., 2015a), a tree-graph QEC code
proposed by Varnava et al. (Varnava et al., 2006) is con-
sidered for this purpose, as demonstrated schematically
on the right panel of Fig. 8. This code places a qubit to
be encoded at the root of a tree graph state composed
of physical qubits. Then, it allows one to execute an ar-
bitrary logical single-qubit measurement on the encoded
qubit deterministically, even under loss, via single-qubit
measurements on the physical qubits. Increasing the size
of the tree graph state with increasing losses will ensure
the correction succeeds, as long as the loss probability
per physical qubit is less than 50%, a threshold consis-
tent with the no-cloning theorem.

The other layer of the RGS consists of outer qubits or
leaves appended to the vertices of the core graph; these
are analogous to photons entangled with quantum mem-
ories for the purpose of HEGP in the second-generation
QR protocol. In fact, a pair of outer qubits, each of
which belongs to different RGSs, will be subject to a
linear-optical Bell measurement in order to entangle their
neighboring core qubits. Combining these layers of the
RGS, the final state proposed by (Azuma et al., 2015a)
is shown in Fig. 8.

With an understanding of the RGS, we can now
overview the precise operations required for Alice and
Bob to establish an entangled pair in a given clock cycle
of the all-photonic repeater protocol. The scheme is il-
lustrated in Fig. 9. We use the notation from before: L
is the total channel length; N is the number of repeater
stations (sources or major nodes), not including Alice
and Bob; m the number of parallel pulses. This means
that there are N + 1 measurement stations (receivers or
minor nodes), and M = 2m is the size of the RGS, if it
is symmetric.

Let us assume that an RGS is available at each source
node (leaving the various preparation mechanisms for
Sec. III.C.3). Then, each of the two nodes neighboring
the source node receives half of photons in the RGS pre-
pared and sent by the source. On arrival of the pho-
tons, every receiver first conducts simultaneous BSMs
(Fig. 3 (a)) on m pairs of leaf photons of RGSs from
different source nodes; this connects their adjacent in-
ner qubits. Although each such BSM can only succeed
with a probability of at most 1/2 (and it is less than 1/2
in practice, because of the the losses experienced by the
leaves), with m large enough, at least one BSM per sta-
tion would be guaranteed to have succeeded. Then, de-
pending on the outcomes of the BSMs, every receiver
node applies X-basis measurements on a pair of the in-
ner qubits whose adjacent leaves have been subject to a
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FIG. 9 Summary of original all-photonic repeater scheme (Azuma et al., 2015a). Alice (A) and Bob (B) would like to establish
one entangled pair; each prepares m Bell pairs (m = 3 in this figure) and sends them to a nearby receiver. Repeater graph
states are created at Cs

1 and Cs
2 and their qubits are sent to adjacent receivers Cr

1 and Cr
2, respectively. The receivers perform

m simultaneous Bell state measurements on the outer qubits. In every receiver node, X-basis measurements is performed on a
pair of inner qubits adjacent to outer qubits to which the Bell measurement is successfully applied, while Z-basis measurements
are conducted on the other inner qubits. Figure from (Azuma et al., 2015a).

successful BSM, and Z-basis measurements on the other
inner qubits. Since inner qubits are encoded into the tree-
graph code, these single-qubit measurements succeed al-
most deterministically (as long as the loss is below the
threshold of 50%). As a result, the Z-basis measure-
ments transform the total state into a linear cluster state
between Alice and Bob, which is then converted into a
Bell pair between them by the X-basis measurements,
according to the effects detailed in Sec. II.D.1.

Importantly, the choice of the measurement on an in-
ner encoded qubit, and accordingly on the physical qubits
composing the tree cluster, depends on the measurement
outcomes from the outer qubits. This means it is neces-
sary to convey classical information from the outer qubits
to the inner qubits. However, this can be done locally at
each receiver node—that is, just by using a local active
feedforward technique—as the inner qubits are transmit-
ted together with their adjacent outer qubits. There-
fore, the amount of necessary signalling is designed to be
minimal, reducing time-dependent loss and errors for the
photons.

Although loss is the dominant source of noise, one
cannot dismiss other sources of error. Aided by a ma-
jority vote protocol, the tree-graph code of Varnava et
al. is robust against general errors under the restric-
tion of X-basis or Z-basis measurements on the encoded
qubit, in contrast to other single-qubit measurements.
In Sec. III.C.2, we overview an optical repeater proto-
col that instead makes use of parity codes (Ewert et al.,
2016). The existence of a better code specifically suited
to an all-photonic repeater—in terms of error tolerance
and overheads—is an important open question.

The all-optical protocol needs no quantum memories,
including qubits held by Alice and Bob, for the appli-
cations in which entanglement for Alice and Bob, once
generated, is consumed immediately to generate classi-
cal output strings, such as QKD (Bennett et al., 1992;
Koashi, 2009; Lo and Chau, 1999; Mayers, 2001; Port-
mann and Renner, 2022; Renner, 2008; Shor and Preskill,
2000), non-local measurements (Clerk et al., 2010; Vaid-

man, 2003), and cheating strategies in position-based
quantum cryptography (Buhrman et al., 2011; Kent
et al., 2011; Lau and Lo, 2011). However, for applica-
tions that demand strictly a quantum output state to
Alice and Bob, such as quantum teleportation and dis-
tributed quantum computation (Collins et al., 2001; Eis-
ert et al., 2000; Gottesman, 1999), the applications them-
selves require Alice and Bob to have quantum memories
with memory time on the order of classical communica-
tion time between Alice and Bob, because of the neces-
sity of classical signaling. See Sec. VI.A.2 or Ref. (Azuma
et al., 2015a) for detail.

2. Other optical repeaters

a. Modified all-photonic repeaters. Although Ref. (Pant
et al., 2017) aims to analyze the performance of the all-
photonic repeaters of Ref. (Azuma et al., 2015a), the au-
thors make several modifications that warrant discussion.

First, so-called boosted Bell state measurements (BB-
SMs) are employed in (Pant et al., 2017). The previously
cited maximal linear-optical Bell measurement success
rate of 1/2 can be increased with additional resources,
such as ancillary photons in separable (Ewert and van
Loock, 2014) or entangled (Grice, 2011) states, weak
nonlinearities (Barrett et al., 2005), and pre-detection
squeezing (Kilmer and Guha, 2019; Zaidi et al., 2015).
However, BBSMs are no panacea: they increase exper-
imental complexity and overhead, and infinite resources
are still needed for unit probability, in line with a no-
go theorem (Lütkenhaus et al., 1999). The specific BB-
SMs(Ewert and van Loock, 2014) employed in (Pant
et al., 2017) succeed 3/4 of the time. The analysis shows
that they result in a net improvement to the overheads.

A more crucial design change is in the treatment of the
inner qubits. In the original proposal, photons forming
the clique of the RGS—the encoded inner qubits—are
sent to neighbouring receiver nodes, together with their
adjacent leaves, while Pant et al. assume they are stored
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locally at the source nodes in fiber spools. In the original
proposal, signalling from the leaves to the inner qubits
can be done via local active feedforward; however, all the
physical qubits in the encoding must be sent, necessitat-
ing a large number of fiber connections. While resulting
in fewer fiber connections, the approach of Pant et al.
comes at the expense of an increased loss, which stems
from the necessity of signalling from the leaves to the
inner qubits over the associated distance.

Finally, there is also a modification of the original
scheme in Pant et al. with regards to the multiplexing
strategy in state generation, which is discussed briefly in
Sec. III.C.3.

b. Repeaters based on encoded Bell measurements. In (Ew-
ert et al., 2016; Lee et al., 2019b), all-optical repeater pro-
tocols are presented based on parity codes (Ralph et al.,
2005). Specifically, the authors in (Ewert et al., 2016)
make use of Bell states with parity encoding. The graph
states locally equivalent to the encoded Bell states look
remarkably like the RGS from the original protocol: they
are bicliques (complete bipartite graphs) with multiple
leaves per node (Ewert and van Loock, 2017). However,
the protocol of Ewert et al. itself is conceptually dif-
ferent from the all-photonic repeaters of (Azuma et al.,
2015a) (Zwerger et al., 2016); it sends an encoded qubit
from a sender to a receiver, directly, which makes it closer
to the third-generation schemes of (Knill and Laflamme,
1996; Munro et al., 2015; Muralidharan et al., 2014a; Var-
nava et al., 2007; Zwerger et al., 2014) based on quan-
tum error correction than the protocol of (Azuma et al.,
2015a), which can be regarded as a time-reversed ver-
sion of a second-generation quantum repeater protocol.
In their protocol (Ewert et al., 2016), Bell measurement
efficiency and loss tolerance improves as the size of the
parity code increases. Furthermore, their scheme does
not require active feedforward techniques, lowering local
operation times, reducing losses, and facilitating on-chip
integration. The concatenated Bell measurement scheme
in (Lee et al., 2019b) reaches the fundamental limits for
Bell measurement efficiency and loss tolerance under the
constraints of linear optics and the no-cloning theorem.
Regarding loss-tolerance, this scheme also saturates the
fundamental loss tolerance limits for logical Bell mea-
surements based on adaptive linear-optical physical Bell
measurements (Hilaire et al., 2023). However, recent Bell
measurement schemes (Bell et al., 2022; Hilaire et al.,
2021b), based on an adaptive combination of physical
two-photon Bell measurements and single-qubit measure-
ments, exhibit an even stronger loss tolerance (saturating
the no-cloning limit). So far, the performances of these
new logical Bell measurement schemes remain to be eval-
uated in a quantum repeater scheme.

c. Bosonic repeaters. Certain repeaters based on
continuous-variable states have been proposed (Fukui
et al., 2021; Rozpędek et al., 2021). They leverage the
inherent error-correction properties of bosonic encodings
along with higher-level qubit codes to create what can be
viewed as concatenated CV-DV error-correcting codes.
Recall from Sec. II.E that there are several advantages
to the GKP encoding in particular. First, it can tolerate
small displacement errors; since any continuous error can
be decomposed into displacements, it can natively treat
loss errors as well. In fact, it was discovered that GKP
states far better against loss errors in certain settings
than codes tailored to handle losses (Albert et al., 2018).
Furthermore, for GKP states, entangling gates and Bell
measurements are deterministic contingent on the avail-
ability of Gaussian resources, with the only probabilistic
component being state generation. Finally, additional
(analog) information obtained from the GKP-level error
correction can be used to improve the logical error rates
at the qubit code level (Fukui et al., 2017; Noh and
Chamberland, 2020).

The repeater architecture in (Rozpędek et al., 2021)
leverages the above advantages of GKP encodings and
uses two types of repeaters: those consisting purely of
GKP states, which can correct small displacement errors,
and those comprised of GKP states concatenated with
small qubit-level codes. In a related work, the authors
in (Fukui et al., 2021) compare using GKP encoding by
itself, in a one- and two-way scheme, as well as with
higher-level encodings.

3. Repeater graph state generation

Producing a large, high-quality optical graph state for
measurement-based quantum information protocols is a
tall order. In all-optical approaches, the stochasticity of
entangling operations in some encodings (e.g., dual-rail)
and of state preparation in others (e.g., GKP states) can
result in large overheads; in matter-based approaches, ef-
fects like decoherence and inhomogeneity between emit-
ters can result in significant decay of entanglement with
the size of the target state. Nevertheless, there has
been steady theoretical and experimental progress to-
wards high-probability, high-fidelity cluster state gener-
ation. Let us discuss some promising ways of preparing
optical graph states here.

a. General framework. Optical graph state generation
can be understood in a general framework that involves
the “stitching” of smaller resource states into iteratively
larger states. Measurement-based entangling operations,
such as those used for dual-rail encodings, are more for-
mally referred to as fusion gates (Browne and Rudolph,
2005), introduced in (Pittman et al., 2001). Fusion
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gates on two optical modes, each of which may have
a single photon, come in two varieties: Type-I fusions,
which consume a single photon to create larger one-
dimensional cluster states, and type-II fusions (essen-
tially rotated Bell measurements) which consume two
photons to grow cluster states in higher dimensions. As
with BSMs, fusion probabilities may also be boosted
with additional resources, a fact that has been exploited
for RGS generation in (Pant et al., 2017); as before,
this introduces tradeoffs with experimental complexity
and overheads (Gimeno-Segovia, 2016). For complete-
ness, we also mention fusion-based quantum computation
(FBQC) (Bartolucci et al., 2023), a proposed alternative
framework to MBQC where the fusion operations serve
both to create entanglement and perform logical opera-
tions.

The schema for generating optical graph states is as
follows:

1. Unit resource production. First, an optical circuit
produces the smallest unit states. These can be
single-qubit states or small entangled states, such
as Bell pairs, n-partite GHZ states for n ≥ 3, or
few-qubit linear cluster states.

2. Growth into meta-units. As an optional intermedi-
ary step, the unit resources can be combined into
larger meta-units. The utility of this extra step is
to leave open the possibility, for example, of gener-
ating dual-rail n-partite GHZ states directly from
single photons, or instead from photonic Bell pairs
(see, for example, (Gimeno-Segovia, 2016)).

3. Stitching. Units or meta-units are entangled itera-
tively until the desired graph state is created. For
dual-rail encodings, this can be achieved with type-
II fusions; for GKP states, this can be done with
continuous-variable CZ gates.

A few notes are in order. First, the framework accom-
modates matter-based optical graph state generation; in
this case, the entanglement in the growth or stitching
stages can be achieved either directly at the optical level,
or assisted by the interaction between emitters. Second,
each step carries an associated probability and fidelity
that depends on the choice of encoding, the scheme for
generating and entangling the resources, and the par-
ticular hardware implementation. Other considerations
that will affect the architectural design include how much
of the state can be made spatially (i.e., with the state
sources arranged space) or temporally (i.e., with entan-
glement between states generated at different time steps).
This is related to the question of how much of the graph
state (e.g., how many layers in a regular cluster state)
must exist at one time.

b. Dual-rail graph states. We review two different ap-
proaches to produce a graph state of dual-rail encoded
qubits: one all-optical but probabilistic, the other rely-
ing on matter qubits but deterministic.

1. Probabilistic (optical) generation The origi-
nal all-photonic repeater proposal (Azuma et al., 2015a)
relies on the approach taken in (Varnava et al., 2007,
2008) for generating a tree graph state specified by a
branching parameter {b0, b1, · · · , bd−1} (Fig. 8), where
the root qubit of the tree graph state is connected to
a 0th-level qubit, the 0th-level qubit is connected to
b0 1st-level qubits by edges and every ith-level qubit
is connected to bi (i + 1)th-level qubits by edges (i =
0, 1, · · · , d − 1). As the encoding, the root and the 0th-
level qubits are measured offline in the X basis. The
tree graph state can be transformed into an RGS. The
protocol of Varnava et al. proceeds as follows.

First, six single photons are prepared with single-
photon sources. The photons are then sent to an op-
tical circuit composed of beamsplitters, a type-I fusion
gate and a type-II fusion gate, which produces a 3-partite
GHZ state with probability 1/32. Thanks to the design
of this circuit, even if single-photon sources and detec-
tors do not have unit efficiency, the generated 3-partite
GHZ state is affected only by individual (uncorrelated)
loss (Varnava et al., 2008). This GHZ state then becomes
the unit resource to produce the RGS. In particular, two
3-partite GHZ states are converted to a 4-partite GHZ
state by a type-II fusion gate, and this 4-partite GHZ
state corresponds to a three-qubit tree, i.e., {2}-tree, with
a redundant root qubit composed of two qubits. Then,
from these elementary {2}-trees, one can efficiently gen-
erate an arbitary {b0, b1, · · · , bd−1}-tree from the bottom
(d-th level) to the top (0-th level), with the help of type-II
fusion gates.

Several generalizations or modifications are possible for
this procedure. In (Pant et al., 2017), the authors choose
the more efficient generation scheme of (Li et al., 2015),
consider boosted fusion gates, improve the multiplexing
strategy, and reorder the local measurements uncondi-
tioned on BSM outcomes. Furthermore, it is possible
to create n-partite GHZ resource states with probability
1/22n−1, and this number can theoretically be increased
with Bell-state inputs rather than single-photon inputs,
as well as boosted BSMs (Gimeno-Segovia, 2016; Joo
et al., 2007; Varnava et al., 2008; Zhang et al., 2008). For
optical repeaters based on other error-correcting codes—
which correspond to other graph states, these resource
states can be stitched according to the different, tailored
procedures.

2. Deterministic (matter-based) generation
Unlike fusion-based approaches, which are fundamen-
tally probabilistic, the protocol of Buterakos et al.
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(Buterakos et al., 2017), which uses emitter and ancilla
qubits to generate the RGS, is—at least in principle—
deterministic. The generation of linear cluster states
from a single emitter was proposed by Schön et al. for
atomic systems (Schön et al., 2005) and by Lindner
and Rudolph for quantum dots (QDs) (Lindner and
Rudolph, 2009). More complex graph states, including
a 2D square lattice cluster state, can be created by a
linear chain of emitters with nearest-neighbor coupling
(Economou et al., 2010; Gimeno-Segovia et al., 2019).
Indeed, any graph state can be created with these ingre-
dients (Russo et al., 2019). In (Buterakos et al., 2017),
the key mechanism for generating the RGS is to entangle
the emitter with an ancilla and pump it to produce
one arm of the RGS, which emerges entangled to both
the emitter and ancilla. The emitter is then measured
and thus removed from the graph and the process is
repeated until all the photonic arms are connected to the
ancilla, which is assumed to have longer coherence time
compared to the emitter. Measurement of the ancilla in
the Y basis disentangles it from the graph and connects
all the inner photons to each other, completing the RGS.

An attractive feature of the protocol of Ref. (Buter-
akos et al., 2017) is that it is quite economical in terms
of resources, which are quantified by the number of re-
quired matter qubits: To generate the unencoded version
of the RGS, only one emitter and one ancilla are needed,
irrespective of the size of the graph. In addition to the un-
encoded version, Buterakos et al. provide a recipe for the
deterministic creation of arbitrarily large encoded RGSs
in which the inner qubits are encoded using trees of depth
2 or 3. These protocols only require three matter qubits,
including two emitters and one ancilla. Hilaire et al. (Hi-
laire et al., 2021a) give a more general recipe for generat-
ing RGSs with arbitrarily deep tree encodings of the core
photons in which the requisite number of matter qubits
scales linearly with the tree depth d (d−1 emitters and 2
ancilla qubits). In this case, the number of required CZ
gates is 2m

(
2 +

∑d−2
k=0

∏k
j=0 bj

)
, where bj denotes the

branching vector component of the tree at level j and
2m is the number of arms in the RGS. These ideas for
the deterministic generation of entangled photonic states
were generalized in (Li et al., 2021a), where a recipe for
the generation of an arbitrary graph, using the minimal
number of emitters, was provided.

Buterakos et al. also introduced a recipe for producing
tree graphs of arbitrary depth d with k arms at each
vertex using d− 1 emitters and one ancilla. The number
of CZ gates required in this case is bd+(−1)d+1

k+1 − 1. This
approach for creating tree-encoded photonic qubits is a
powerful capability in its own right and can be applied
to quantum repeaters of any generation. For example,
Borregaard et al. (Borregaard et al., 2020) employ this
tree generation procedure in their proposed scheme to
implement third-generation repeaters using SiV defects

in diamond as memory qubits.
The deterministic RGS protocol can be applied to any

type of dual-rail encoding. Many of the proposals for
graph state generation, especially with quantum dots,
consider photon polarization encoding, but time-bin has
also been proposed with these systems (Lee et al., 2019a).
In the case of time-bin, an alternative deterministic way
of generating graph states is to use a single emitter
and time-delayed feedback, as proposed by Pichler et al.
(Pichler et al., 2017), and adapted for RGS generation
in (Zhan and Sun, 2020). In order to implement a maxi-
mally entangling gate, however, these approaches require
the experimentally challenging capability of strong cou-
pling between the emitter and the photonic waveguide
where the photons propagate.

For the physical implementation of deterministic
RGS generation schemes, modest-sized registers of well-
controlled emitters and ancilla qubits are needed. The
emitters need to be of high quality, especially in terms
of brightness, so that the photon is emitted in the de-
sired mode and successfully collected. This is critical for
the protocol to be classified as deterministic. The regis-
ter should also feature ancilla qubits with long coherence
times, albeit not as long as what is required for quan-
tum memories in first- and second-generation repeaters,
along with the ability to perform high-fidelity gates be-
tween emitters and ancillae.

Self-assembled QDs are leading contenders for RGS
generation. Indeed, the first experimental demonstra-
tion of an emitter-based cluster state generation protocol
(Schwartz et al., 2016) employed exciton-biexciton tran-
sitions in these systems. QDs are excellent photon emit-
ters. They have a very efficient optical (excitonic) tran-
sition with a timescale of 1 ns (100 ps) without (with)
coupling to a cavity. The QD community has made
rapid progress over the last several years to improve the
brightness, indistinguishability, and purity of QD photon
sources (Senellart et al., 2017). On the other hand, QDs
have relatively low coherence times compared to point
defects and atomic qubits and lack a long-lived quantum
memory to act as the ancilla. Nevertheless, promising
recent work (Gangloff et al., 2019; Jackson et al., 2021)
suggests that the dense nuclear spin environment (more
than 104 spinful nuclei) could potentially be cooled and
controlled enough to play this role.

Other candidates for deterministic RGS generation are
optically active point defects in wide bandgap materials,
such as the nitrogen-vacancy or silicon-vacancy centers
in diamond and the silicon-carbon divacancy or silicon
vacancy in silicon carbide. These systems have longer
coherence times than quantum dots and feature a small
number of nuclear spins (natural abundance ∼ 1% in C
and ∼ 4% in Si), which can be isolated and controlled
well and are thus already being explored as memory reg-
isters for quantum repeater nodes (Bourassa et al., 2020;
Nguyen et al., 2019a; Taminiau et al., 2012). On the
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other hand, defects are not as efficient and bright as QDs,
and they tend to emit into unwanted modes a large frac-
tion of the time. Atomic systems, such as trapped ions
and atoms in optical lattices or cavities, have long co-
herence times and can be controlled with high fidelity.
While their photon emission is not as fast, their other
attractive properties could possibly compensate for the
lower rates (Thomas et al., 2022). Interestingly, hybrid
strategies combining deterministic generation based on
quantum emitters and linear-optical fusion are particu-
larly appealing when quantum emitters cannot interact
with each others (Herrera-Martí et al., 2010; Hilaire et al.,
2022). In that setting, we can use quantum emitters to
generate one dimensional clusters and GHZ states deter-
ministically and fuse them probabilistically using linear-
optical boosted fusion gates to generate graph states of
arbitrarily complex topologies.

c. GKP-encoded graph states. While entangling gates for
GKP encodings are deterministic and readily accessi-
ble experimentally, state preparation is a bigger chal-
lenge. There are several existing proposals to this end,
with a recent focus on modified Gaussian Boson Sam-
pling (GBS) devices, which use Gaussian optics combined
with photon-number-resolving (PNR) detection (Que-
sada et al., 2019; Sabapathy et al., 2019; Su et al., 2019;
Tzitrin et al., 2020). Once the GKP states are produced,
they may be stitched together deterministically with pas-
sive and static optical resources, namely beamsplitters,
phase shifters, and delay lines (Tzitrin et al., 2021).

d. Performance and overheads. The overheads of the var-
ious optical repeater protocols are highly sensitive to the
chosen state generation scheme. In this section we re-
view the resource requirements and performances of the
repeaters discussed in this section.

In the original all-photonic repeater protocol (Azuma
et al., 2015a), the total number of photons consumed to
produce an entangled pair between Alice and Bob scales
polynomially with the total distance. The average rate
to produce an entangled pair with a single-repeater sys-
tem is on the order of the repetition rate of the slowest
device among single-photon sources, photon detectors,
and active-feedforward techniques. The resource costs
for the repeaters in (Ewert et al., 2016) and (Ewert and
van Loock, 2017) scale linearly or less-than-quadratically
per the number of photons per encoded qubit.

Hilaire et al. (Hilaire et al., 2021a) analyze the per-
formance of repeaters based on the deterministic RGS
generation of (Buterakos et al., 2017) by calculating a
bound on the secret key rate per matter qubit and com-
paring it to direct transmission and to “memory-based”
(i.e., first- and second-generation) repeaters. To compare
to the latter, the figure of merit is defined as the rate of

a Bell state generation between the end nodes (Alice and
Bob) divided by the number of matter qubits per node.
In the case of memory-based repeaters, there is an up-
per bound on this quantity that originates from the need
for classical heralding between nodes and which is given
by c/(4L). This bound is used throughout Ref. (Hilaire
et al., 2021a) for memory-based repeaters; further reduc-
tions in the rate, originating from swap gates between
the emitter and memory qubits, are ignored.

The deterministic RGS generation based on matter
qubits in (Buterakos et al., 2017) relies on entangling CZ
gates between emitter and ancilla qubits, which enable
us to create complicated photonic graph states. For re-
alistic systems, the longest timescale in the deterministic
RGS generation is the duration of these gates, TCZ, com-
pared to which the photon generation and single-qubit
gate times are negligible. It is therefore TCZ that sets the
bound for the secret key rate for repeaters based on deter-
ministic RGS generation. In Ref. (Hilaire et al., 2021a),
the authors fix the tree encoding depth to 2 for the inner
RGS photons and optimize over the RGS size (number of
arms), the branching vector b0, b1 of the tree encoding,
and the number of nodes to maximize the key rate for a
total distance of 103 km. For these distances, it is found
that for TCZ ≤ 60 ns the RGS approach always outper-
forms memory-based repeaters. In this case, the distance
between adjacent nodes is approximately 3.5 km. These
are most likely conservative estimates, since memory-
based repeaters also require entangling gates between
matter qubits, which will further lower their rates. More
research into quantifying the performance of determin-
istic RGS protocols is needed. For example, Hilaire et
al. kept the tree encoding depth fixed throughout their
treatment (d = 2). While deeper trees offer higher pro-
tection against photon loss, contributing to an increase
of the rate, they also require a larger number of emitter-
ancilla CZ gates, thus decreasing the rate. An analysis
of optimal encoding depths is an open problem with de-
terministic RGS generation.

Sometimes, one is not limited by the number of pho-
tons, but rather by the number of optical modes available
for communicating between neighboring repeater stations
(i.e., by the optical channel bandwidth, as in classical
communication). Then, it is important to choose good
mode-efficient encoding schemes. In the low-loss regime,
we may use continuous variable codes to encode multiple
qubits per bosonic mode; for example, the GKP encod-
ing can almost approach the quantum channel capacity
of the one-way pure loss channel (Noh et al., 2020). In
addition, other CV codes, like cat codes, can also boost
the secure communication rate per mode when compared
to DV encodings (Li et al., 2017). Moreover, for CV-
DV concatenated encoding, we may further reduce the
resource overhead by optimizing the distribution of two
different types of repeaters associated with CV and DV
error correction, respectively (Rozpędek et al., 2021).
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IV. MILESTONES: OUTPERFORMING POINT-TO-POINT
OPTICAL COMMUNICATION

Point-to-point communication schemes allow for quan-
tum communication over intracity distances even with
the use of a standard optical fiber and they are ready for
practical use (see, e.g., (Lo et al., 2014; Xu et al., 2020)).
However, those schemes have a fundamental limitation
on their achievable distances [which are about 400 km in
practice, i.e., in the case of the use of a standard opti-
cal fiber (Boaron et al., 2018) (see Sec. III.A.3)]. This
limitation is now explicitly given as the form of upper
bounds (Pirandola et al., 2017; Takeoka et al., 2014a)
on the two-way private capacity of a lossy bosonic chan-
nel, which are proportional to the transmittance η of the
channel for small η. The two-way private capacity rep-
resents how many private bits can be obtained per use
of a given channel, in an asymptotically faithful man-
ner, with the free use of LOCC. In the case of the lossy
bosonic channel of Eq. (13), this quantity is given by the
PLOB bound (Pirandola et al., 2017), − log2(1− η) (see
Sec. VI).

On the other hand, as one can see from Sec. III, a
quantum repeater scheme has no fundamental limitation
on their achievable distances. Indeed, it enables us to
perform quantum communication efficiently even over in-
tercontinental distances, but its realization is still chal-
lenging. Therefore, there is a technological gap between
quantum repeater schemes for intercontinental distances
and point-to-point communication schemes for intracity
distances.

To bridge the gap, intermediate quantum communica-
tion schemes, especially for the application to QKD, for
intercity distances have been proposed (Abruzzo et al.,
2014; Azuma et al., 2015b; Lucamarini et al., 2018; Luong
et al., 2016; Panayi et al., 2014; Rozpędek et al., 2019;
Xie et al., 2022; Zeng et al., 2022). In particular, the
schemes use only a single node C which is located at the
center between a sender, Alice, and a receiver, Bob, and
is connected to them with optical fibers. The goal of the
schemes is basically to double the achievable distances of
point-to-point QKD schemes, by making the secret key
rate proportional to √

η, outperforming the two-way pri-
vate/quantum capacities proportional to η (for small η),
where η is the transmittance of a pure-loss channel be-
tween Alice and Bob (see also Ref. (Curty et al., 2021)
which contextualizes this approach from the viewpoint
of security for QKD). This expected secret key rate has
the same scaling of the private capacity of single-repeater
communication schemes with the use of pure-loss chan-
nels (Azuma and Kato, 2017; Azuma et al., 2016; Piran-
dola, 2019; Rigovacca et al., 2018) (see Sec. VI for detail).
The schemes are divided into three categories: one is
based on two-photon interference with dual-rail encoded
qubits (Secs. IV.A and IV.D) at the central node C, an-
other is based on single-photon interference with single-

rail encoded qubits (Sec. IV.B), while the third one is a
time-reversed version of these (Sec. IV.C) to work with-
out optical Bell measurements. In this section, we review
these schemes, whose realizations are regarded as good
and natural milestones towards quantum repeaters.

A. Adaptive measurement-device-independent QKD

To double the communication distance by utilizing
a central node C between communicators, an adaptive
measurement-device-independent (MDI) QKD scheme
has been proposed with matter quantum memories
(Abruzzo et al., 2014; Panayi et al., 2014) or with all-
optical quantum non-demolition (QND) measurements
(Azuma et al., 2015b), based on a dual-rail encoding.
Although these schemes have originally been proposed to
perform QKD, its use as an entanglement generation pro-
tocol (or, a coherent version) can be summarized as fol-
lows (Figs. 10 and 12): (i) Each of Alice and Bob sends m
optical polarization qubits (by using 2m bosonic modes),
each of which is maximally entangled with a local qubit,
to the central node C. (ii) On receiving the pulses, the
node C essentially performs QND measurements to the
pulses to confirm the arrival of single photons over lossy
channels. (iii) Then, qubits of single photons that have
successfully arrived from Alice are paired with ones from
Bob at the node C. (iv) The node C then performs a
linear-optical Bell measurement of Fig. 3 (a) relying on
two-photon interference on each of these pairs. (v) Node
C then announces the pairings and the measurement out-
comes of the Bell measurements. (vi) Finally, Alice and
Bob keep their local qubits which are supposed to be en-
tangled with each other from the announcement of step
(v). The essence of this protocol is to perform the Bell
measurement only on pairs of pulses which still have sin-
gle photons even after the travel over the lossy optical
channels.

If the protocol is used for QKD like the original pro-
posals (Abruzzo et al., 2014; Azuma et al., 2015b; Panayi
et al., 2014), Alice and Bob perform at random Z-basis or
X-basis measurement on each of their local qubits just
after step (i), and their measurement outcomes are re-
garded as their choice of random bits in QKD. Then,
the step (i) is replaced by the random preparation of
BB84 signals {|0⟩ , |1⟩ , |+⟩ , |−⟩} (Bennett and Brassard,
1984). This would also imply that Alice and Bob could
use phase-randomized weak coherent states emitted by
lasers, instead of single-photon sources, by using the
decoy-state method (Hwang, 2003; Lo et al., 2005; Wang,
2005). The security simply follows from that for the orig-
inal MDI QKD (Curty et al., 2014; Lo et al., 2012), be-
cause it relies only on the trust for Alice and Bob.

The communication efficiency of the above protocol
scales with √

η, rather than η, where η is the transmit-
tance of a direct lossy bosonic channel between Alice and
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FIG. 10 The concept of memory-assisted MDI QKD. In this
protocol, once the node C confirms the arrival of an optical
polarization qubit either from Alice’s side or from Bob’s side
with QND measurement [which is described by a (red) flag on
a box labeled “QND” in the figure], it keeps it in a quantum
memory (QM) until an optical polarization qubit arrives at
the node C from the other side, followed by its release to be
subjected to Bell measurement (BM).

Bob. This can be understood as follows. First notice
that the success probability of the QND measurement
in step (ii) is proportional to √

η, because the polariza-
tion qubit emitted by Alice (or Bob) just travels over
a lossy bosonic channel connecting between the central
node C and Alice (between the central node C and Bob),
rather than between Alice and Bob. This means that
if the number m of multiplexing, defined in step (i), is
on the order of (√η)−1, the probability with which the
QND measurement in step (ii) finds the arrival of non-
zero single photons from Alice and from Bob is pretty
high. Then, the node C can have nonzero pairs in step
(iii), to which the Bell measurements are applied in step
(iv). Thus, as long as the inherent success probabilities
of the QND measurement and the Bell measurement are
constant (or, precisely, independent of the transmittance√
η of the channels), Alice and Bob would have an en-

tangled pair with a finite probability, through steps (v)
and (vi). Therefore, m ∼ (

√
η)−1 is enough to present

an entangled pair to Alice and Bob, implying that the
communication efficiency, that is, the secret key rate per
pulse10, of the protocol scales with √

η.

1. Memory-assisted implementation

The memory-assisted MDI QKD protocol (Abruzzo
et al., 2014; Panayi et al., 2014) corresponds to an im-
plementation of the above protocol (in Sec. IV.A) by
utilizing the functionality of matter quantum memories
(Fig. 10). In particular, the protocol assumes that the

10 Notice that an optical pulse here is regarded as being composed
of two bosonic modes, i.e., a mode for horizontally polarized
photons and a mode for vertically polarized photons. Hence, for
this optical pulse, the PLOB (upper) bound on achievable secret
key rates of point-to-point QKD between Alice and Bob per pulse
(composed of the two bosonic modes) is −2 log2(1− η), which is
approximated to 2η/ ln 2 ≈ 2.89η for very small η.

central node C uses matter quantum memories to achieve
steps (ii)-(iv), and m optical polarization qubits in step
(i) are sent by Alice and Bob in a time-multiplexing man-
ner. If we can use a matter quantum memory that her-
alds the successful storing of a received optical polariza-
tion qubit, this heralding signal is regarded as the signal
of the success of the QND measurement in step (ii). To
achieve step (iii), the node C just uses one memory for
Alice and one memory for Bob. Each of these memo-
ries receives optical pulses from Alice or from Bob until
it successfully stores a single photon. Once this storage
succeeds, each memory keeps the qubit information until
the other memory heralds the successful storage. If both
memories herald the successful storage of a single pho-
ton, they load the stored photons to perform the linear-
optics-based Bell measurement of Fig. 3 (a) on them as
step (iv). The secret key rate of this protocol is exempli-
fied in Fig. 11, which shows √η-scaling when the required
memory time in the protocol is shorter than the coher-
ence time of quantum memories.

Although we have assumed that the matter quantum
memories have a function of heralding the storage, this
method works even with a matter quantum memory
which can just compose a Bell state with an optical polar-
ization qubit. In particular, in this case, as step (ii), the
node C just needs to perform the linear-optical Bell mea-
surement of Fig. 3 (a) on this polarization qubit emitted
by a quantum memory and a received pulse from Alice
(or Bob). Since this Bell measurement provides the sig-
nal of the success only when it receives two (or more)
photons, the signal of the success of this Bell measure-
ment implies that the qubit information held by the pulse
from Alice (or Bob) is successfully teleported into the
other half of the Bell state, i.e., into the matter quantum
memory. That is, this is essentially the success of the
QND measurement required in step (ii). Hence, a mat-
ter quantum memory which can compose a Bell state
with an optical polarization qubit allows the node C to
implement the QND measurement in an indirect manner,
which is also enough to implement the memory-assisted
MDI QKD protocol.

This memory-assisted implementation uses time mul-
tiplexing by utilizing matter quantum memories. The
dominant noise of matter quantum memories is de-
phasing and/or amplitude damping (which is sometimes
treated as a depolarizing channel to simplify theoreti-
cal treatment), any of which increases exponentially with
time. Therefore, the noise would significantly limit the
allowed number m of time multiplexing in the memory-
assisted MDI QKD protocols.

In fact, the secret key rate of a memory-assisted MDI
QKD protocol using matter quantum memories with de-
phasing is limited by the allowed number m of multi-
plexing, that is, by T2/T in Fig. 11 which corresponds
to how many attempts, each of which needs time T , are
possible for the matter quantum memory to successfully
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store a single photon within its coherence time T2. In
the graph, as η decreases, the secret key rate scales lin-
early with √

η as long as T2/T ≥ (
√
η)−1, but it then

converges to η. This implies that the required coherence
time T2 is on the order of (

√
η)−1T = eL/(2Latt)T with

η = e−L/Latt (Latt = 22 km), and thus, it scales expo-
nentially with L/2. However, as long as the period T
of Alice’s and Bob’s pulse generation can be taken to
be small, the required coherence time could be smaller
(Panayi et al., 2014) than even the minimum coherence
time L/c required by multiplexed first generation quan-
tum repeaters (Razavi et al., 2008).

2. All-optical implementation

The all-photonic adaptive MDI QKD protocol could be
understood as an all-optical implementation of the above
protocol in Sec. IV.A (Azuma et al., 2015b) (Fig. 12).
In the protocol, the QND measurement in step (ii) is
assumed to be performed by using a quantum teleporta-
tion, similar to the memory-assisted MDI QKD protocol,
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FIG. 11 Secret key rate (per pulse) of an adaptive MDI QKD
protocol based on matter quantum memories with heralding
storage and on Alice’s and Bob’s use of ideal single-photon
sources. The secret key rate of the ideal BB84, which scales
linearly with η = e−L/Latt (Latt = 22 km), is also shown as a
reference. T2 is the dephasing time for the matter quantum
memories, 1/T is the pulse generation rate of Alice and Bob,
and e11;X is the phase error rate for Alice’s and Bob’s raw
key. T2/T corresponds to how many attempts, each of which
needs time T , are possible for the matter quantum memory
to successfully store a single photon within its coherence time
T2, that is, the allowed number m of time multiplexing in the
protocol. The secret key rate scales linearly with √

η as long
as T2/T ≥ (

√
η)−1, but it then converges to η as η decreases.

This is because the increase of phase error e11;X for the case
of T2/T ≤ (

√
η)−1 nullifies the benefit of time multiplexing

from the use of matter quantum memories, as shown in the
panel. Figure adapted from (Panayi et al., 2014).
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FIG. 12 The concept of all-photonic adaptive MDI QKD. In
this protocol, the node C first performs QND measurements
to confirm the successful arrival of single photons [which is
described by a (red) flag on a box labeled “QND” in the fig-
ure], followed by optical switches (SW) to send the surviving
photons to Bell measurement (BM) modules. Figure adapted
from (Azuma et al., 2015b).

but it is implemented by using only optical devices11. In
particular, to achieve the QND measurement in step (ii),
the node C first prepares optical polarization qubits in a
Bell state locally, and applies the linear-optical Bell mea-
surement of Fig. 3 (a) on the half of this Bell pair and
the optical pulse sent by Alice or Bob. The success of
this Bell measurement teleports the qubit information of
the surviving single photon into the other half of the Bell
pair, corresponding to the success of the QND measure-
ment. Since this protocol does not assume to use mat-
ter quantum memories, m optical polarization qubits in
step (i) of this protocol are assumed to be sent by Alice
and Bob simultaneously in a spatial-multiplexing man-
ner. Thus, the above all-optical QND measurements in
step (ii) are performed at the same time on all the pulses
sent by Alice and Bob, and then the pairing in step (iii)
is made by using an optical switch. The performance
of this protocol is exemplified in Fig. 13, which shows√
η-scaling of the secret key rate.
This all-optical implementation uses spatial multiplex-

ing by utilizing optical switches. The dominant noise of
optical switches is the photon loss. However, in contrast
to memory-assisted implementation, this loss increases
only logarithmically with the number m of spatial multi-
plexing (Azuma et al., 2015b). Note that the all-optical
protocol can achieve the √

η-scaling even if it uses only
an m× 1 optical switch and a Bell measurement module
at the middle node C. Thus, if we implement an m × 1
optical switch by concatenating 2 × 1 optical switches
with transmittance ηsw in a knockout tournament man-
ner with depth ⌈log2m⌉, the transmittance of the m× 1

optical switch decreases as η⌈log2 m⌉
sw , and it thus scales

only logarithmically with the number m. This is a merit
to use the spatial multiplexing, rather than time multi-

11 An idea similar to this, called a qubit amplifier, is also used
in the context of the device-independent QKD in order to close
the detection loophole problem (Curty and Moroder, 2011; Gisin
et al., 2010).
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plexing. Such combination of an m×1 optical switch and
a Bell measurement module is also implementable with-
out using such a large-scale optical switch, that is, by us-
ing only single-mode on/off switches, a passive Hadamard
linear optical circuit and single-photon detectors (Azuma
et al., 2015b). The performance in this case is also de-
scribed in Fig. 13.

3. Challenges

The question of whether a two-mode squeezed state,
which can be produced with practical systems, can
directly be used as the Bell state to implement the
teleportation-based QND measurement in step (ii) has
been answered to be negative, so far. For instance, if we
use atomic-ensemble quantum memories for the memory-
assisted MDI QKD protocol, the memory can naturally
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FIG. 13 Secret key rate (per pulse) G of an all-photonic adap-
tive MDI QKD protocol. η is rephrased by the distance L
between Alice and Bob, with η = e−L/Latt (Latt = 22 km),
and c = 2.0 × 108 m/s. Lines (I)–(IV) represent the perfor-
mance of the protocol with active optical switches, that of
the protocol with a passive Hadamard linear optical circuit,
that of the original MDI QKD protocol (Lo et al., 2012), and
the TGW bound (Takeoka et al., 2014a), respectively. This
graph is described under the following assumptions (Azuma
et al., 2015b): a single active feedforward can be completed
within time τa, during which photons run in optical fibers, be-
ing subject to the corresponding photon loss; heralded single-
photon sources emit pulses with duration τs, with efficiency
ηs, and they are multiplexed (Bonneau et al., 2015; Christ
and Silberhorn, 2012; Collins et al., 2013; Ma et al., 2011;
Migdall et al., 2002) to produce high-fidelity telecom single
photons with the repetition rate of the slowest optical device
at the expense of the use of (at least) one active feedforward;
single-photon detectors have quantum efficiency ηd and dark
count rate νd; Bell pairs for the all-photonic QND measure-
ments can be generated in constant time τa with single-photon
sources rather than a Bell-pair photon source, by paralleling
a probabilistic procedure (Browne and Rudolph, 2005) with
the active feedforward technique. In particular, they are as-
sumed to be ηs = 0.90 (Christensen et al., 2013; Giustina
et al., 2013; Migdall et al., 2002), τs = 100 ps (Shibata et al.,
2014), ηd = 0.93 (Marsili et al., 2013), νd = 1 s−1 (Marsili
et al., 2013; Shibata et al., 2010), and τa = 67ns (Ma et al.,
2011). Figure from (Azuma et al., 2015b).

compose a two-mode squeezed state with an optical pulse
(Duan et al., 2001; Sangouard et al., 2011). However, this
entanglement cannot directly be used as a resource to im-
plement the teleportation-based QND measurement in
step (ii) (Piparo et al., 2014), because the multi-photon
component of the two-mode squeezed state makes the
success probability of the QND measurement depend on
the transmittance √η of the channels. This result is made
stronger by assuming that the node C is allowed to use
photon number-resolving detectors (Trényi et al., 2019),
rather than threshold detectors assumed in (Piparo et al.,
2014). In particular, the paper shows that the polariza-
tion entanglement produced by a spontaneous parametric
down-conversion (SPDC) process cannot directly be used
to implement the QND measurement in step (ii) of the
all-photonic adaptive MDI QKD protocol, by deriving
necessary conditions on photon-number statistics of the
entanglement photon sources.

As a result, a single matter qubit, such as a single ion, a
quantum dot or a nitrogen-vacancy center in a diamond,
inside a cavity is proposed as a candidate for the mem-
ory to realize the memory-assisted MDI QKD protocol
(Piparo et al., 2017a,b), while a source emitting an en-
tangled photon pair with a low multi-photon component,
such as one assumed in the original paper (Azuma et al.,
2015b) (see the caption of Fig. 13) or an entanglement
photon source (Eisaman et al., 2011), is needed to im-
plement the all-photonic adaptive MDI QKD protocol.
In the case where multi-photon emission is highly sup-
pressed, threshold detectors without having the function
of photon-number resolving are sufficient for implement-
ing the teleportation-based QND measurement.

As for the all-photonic adaptive MDI QKD protocol,
since it needs only QND measurements on the photon
number, it could adopt different types of QND mea-
surements, such as one in (Imoto et al., 1985) based on
an optical Kerr effect and one in (Brune et al., 1990)
based on a dispersive atom-field coupling (see textbooks
(Scully and Zubairy, 1997; Walls and Milburn, 2007)).
It is thus an important open question whether the all-
photonic adaptive MDI QKD keeps their merit on com-
munication efficiency even if we replace the teleportation-
based QND measurement with an alternative one. As for
the memory-assisted MDI QKD, a proof-of-principle ex-
periment of the key element has been performed with a
single solid-state spin memory integrated in a nanopho-
tonic diamond resonator (Bhaskar et al., 2020), based on
an encoding on the phase difference between sequential
two pulses (like one used in a differential phase shift QKD
(Inoue et al., 2002)) (see also Sec. V.H.2).

B. Twin-field QKD

To double the communication distance by utilizing a
central node C between communicators, another idea is
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also focused on especially in the field of QKD, thanks to
the proposal of a twin-field (TF) QKD protocol based on
a single-rail encoding (Lucamarini et al., 2018). The scal-
ing improvement of the TF QKD protocol is essentially
brought by the following point: like entanglement gen-
eration processes in quantum repeater protocols (Azuma
et al., 2012; Childress et al., 2006b; Duan et al., 2001),
the protocol makes the node C use a simple linear-optical
Bell measurement of Fig. 3 (b) based on single-photon
interference, rather than two-photon interference used in
the original MDI QKD (Lo et al., 2012), and Alice and
Bob encode their qubit information into a single opti-
cal mode (i.e., a single-rail encoding), rather than two
modes (i.e., a dual-rail encoding, such as polarizations
and time bins). This aims to utilize the feature that
this Bell measurement—to project a given state into a
Bell state (|0⟩ |1⟩± |1⟩ |0⟩)/

√
2 with the vacuum state |0⟩

and the single-photon state |1⟩ as shown in Fig. 3 (b)—
succeeds if a single photon reaches node C either from
Alice or from Bob. For instance, in the case of the DLCZ
protocol (Duan et al., 2001), states of each local memory
of Alice and Bob are entangled with the number states
(i.e., the Fock states) of a single optical mode, while in
the case of hybrid quantum repeater protocols (Azuma
et al., 2012; Childress et al., 2006b), the computational
basis states of each of Alice and Bob’s local qubits are en-
tangled with two coherent states of a single optical mode
(corresponding to a cat-state encoding). As a result, the
efficiency of this type of entanglement generation schemes
(Azuma et al., 2012; Childress et al., 2006b; Duan et al.,
2001) scales with √

η, rather than η, without requiring
any challenging devices at the node C, thanks to the use
of single-photon interference. This scaling improvement
in the entanglement generation might be reasonable be-
cause it relies on the following technical challenges:

(a) those entanglement generation schemes need in-
tense phase stabilization regarding the channels be-
tween Alice and the node C and between Bob and
the node C, in contrast to ones based on two-
photon interference at the node C;

(b) those schemes require Alice and Bob to use mat-
ter quantum memories which could be used to pre-
pare nontrivial optical states, such as number states
(Duan et al., 2001) and cat states (Azuma et al.,
2012; Childress et al., 2006b).

A bold claim was given in the original proposal of the
TF QKD protocol (Lucamarini et al., 2018): it had ar-
gued that if we borrow the idea of the decoy-state method
(Hwang, 2003; Lo et al., 2005; Wang, 2005), coherent
states are enough to achieve QKD with √

η scaling, with-
out the necessity of any device which has a potential to
prepare nontrivial optical states (in contrast to the entan-
glement generation schemes with requirement (b) above).
The idea was stemmed (Lucamarini et al., 2018) from

making a decoy-state phase-encoding BB84 protocol be
in the form of an MDI QKD setup, namely, attaching
the decoy-state method to a phase-encoding MDI QKD
protocol (Tamaki et al., 2012). However, despite the ex-
tremely appealing claim, a rigorous security proof against
the most general type of eavesdropping strategies was
missing in the original proposal (Lucamarini et al., 2018):
only security over restricted eavesdropping was proven.
This triggered a lot of interest to develop variants of the
TF QKD protocol, as well as their security proofs over
arbitrary eavesdropping attacks in asymptotic scenarios
(Cui et al., 2019; Curty et al., 2019; Lin and Lütkenhaus,
2018; Ma et al., 2018; Tamaki et al., 2018; Wang et al.,
2018) and in finite-size scenarios (Currás-Lorenzo et al.,
2021; Jiang et al., 2019; Maeda et al., 2019; Xu et al.,
2020; Yu et al., 2019). Here we focus on a variant (Curty
et al., 2019) of the TF QKD protocol, as it is explicitly
related with entanglement generation protocols in quan-
tum repeaters, to see why coherent states are enough to
achieve QKD.

Before introducing the variant protocol, let us intro-
duce its coherent version, which is essentially equivalent
to an entanglement generation protocol (Azuma et al.,
2012). The coherent version is described as follows. (i)
Each of Alice and Bob prepares an optical pulse en-
tangled with a local qubit, whose state is described as
(|0⟩ |α⟩+ |1⟩ |−α⟩)/

√
2, where |0⟩ and |1⟩ are orthogonal

states of the local qubit and |±α⟩ are coherent states of
the optical pulse with an amplitude α > 0. (ii) Each
of them sends the prepared optical pulse to the node
C over a lossy bosonic channel (13) with the transmit-
tance √

η. (iii) On receiving the pulse a in coherent state
|± 4

√
ηα⟩

a
from Alice and the pulse b in coherent state

|± 4
√
ηα⟩

b
from Bob, the node C performs a linear-optical

Bell measurement of Fig. 3 (b) relying on single-photon
interference on them. (iv) The node C then announces
the measurement outcome of the Bell measurement. (v)
Finally, Alice and Bob keep their local qubits if they know
that one of two detectors for the Bell measurement an-
nounces arrival of photons, through the announcement
in step (iv).

Notice that the 50:50 beamsplitter of the Bell
measurement in step (iii) (Fig. 3 (b)) converts re-
ceived states |± 4

√
ηα⟩

a
|± 4

√
ηα⟩

b
into coherent states

|±
√
2 4
√
ηα⟩

c
|0⟩d and |± 4

√
ηα⟩

a
|∓ 4

√
ηα⟩

b
into coherent

states |0⟩c |±
√
2 4
√
ηα⟩

d
, respectively, where c and d are

the outputs having received constructive interference and
destructive interference, respectively. Since the detection
of photons in the number basis erases the phase informa-
tion ± of the coherent states |±

√
2 4
√
ηα⟩, the successful

detection of photons defined in step (v) works as nonde-
structive parity measurement, i.e., projection measure-
ment |00⟩ ⟨00| + |11⟩ ⟨11| or |01⟩ ⟨01| + |10⟩ ⟨10| on Alice
and Bob’s local qubits (Azuma et al., 2012), which en-
tangles their local qubits in the protocol.
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To see the scaling, suppose that the Bell measurement
is performed by using ideal threshold detectors, for sim-
plicity. Then, the success probability of the Bell measure-
ment is r = 1− e−2

√
ηα2

, while the Bell pair obtained at
step (iv) includes only the phase error with probability
eZ = (1 − e−2α2(2−√

η))/2 (Azuma et al., 2012). This
performance as entanglement generation is shown to be
optimal in various scenarios (Azuma et al., 2022; Azuma
and Kato, 2012; Azuma et al., 2010, 2009). If we max-
imize an asymptotic key rate formula G = r(1 − h(eZ))
with the binary entropy function h over α, we can eas-
ily confirm that G scales with √

η. However, this merely
means that the key rate G could scale √

η when Alice
and Bob use matter quantum memories to realize their
local qubits, as considered in Ref. (Azuma et al., 2012).

To make the protocol composed of steps (i)-(iv) a
prepare-and-measure scheme, Alice and Bob are sup-
posed to perform Z-basis or X-basis measurement ran-
domly on each of their local qubits just after step (i)
and before step (ii). Here, the Z-basis measurement pre-
pares the optical pulse in coherent state |α⟩ or |−α⟩ at
random, while the X-basis measurement prepares it in
cat state |C+⟩ := (|α⟩ + |−α⟩)/(2√p+) with probabil-
ity p+ or |C−⟩ := (|α⟩ − |−α⟩)/(2√p−) with probabil-
ity p−, where p± = (1 ± ⟨−α|α⟩)/2. The preparation
of coherent states |±α⟩ regarding the Z-basis measure-
ment can be done easily. In contrast, the preparation
of cat states |C±⟩ regarding the X-basis measurement is
problematic, because it requires a challenging device in
practice. However, this preparation is not necessary, if
Alice and Bob will distill a key only from the outcomes
of the Z-basis measurements. In particular, in the case
of this QKD, the X-basis measurements are used only to

X
Z

X
Z

C

FIG. 14 Schematic of TF-type QKD protocol (Curty et al.,
2019). Each of Alice and Bob chooses Z basis or X basis,
randomly. If Z basis is selected, Alice and Bob prepare co-
herent state |α⟩ or |−α⟩ at random, and send it to the cen-
tral node C. If X basis is selected, Alice and Bob prepare a
phase-randomized coherent state (PRCS) whose intensity is
chosen randomly from a predefined set (so as to be able to use
the decoy-state method (Hwang, 2003; Lo et al., 2005; Wang,
2005)), and send it to the central node C. On receiving pulses
from Alice and Bob, the central node C performs the Bell
measurement based on single-photon interference (Fig. 3 (b)).
The secret key is distilled only from instances where both of
Alice and Bob choose Z basis and the Bell measurement at
the node C succeeds. Figure adapted from (Currás-Lorenzo
et al., 2021).
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FIG. 15 Secret key rates (per pulse) of a TF-type QKD pro-
tocol for different dark count rates, pd, in logarithmic scale
as a function of the overall loss between Alice and Bob. The
PLOB bound is the private capacity of a lossy bosonic channel
(Pirandola et al., 2017). This figure is described by assuming
a misalignment of 2% in each channel Alice-C and Bob-C,
and the inefficiency function for the error correction process
f = 1.16. Figure adapted from (Curty et al., 2019).

estimate the actual phase error rate eZ for privacy am-
plification, and estimation of its upper bound by Alice
and Bob through a protocol is enough to prove the se-
curity (Bennett et al., 1992; Koashi, 2009; Lo and Chau,
1999; Mayers, 2001; Portmann and Renner, 2022; Ren-
ner, 2008; Shor and Preskill, 2000). In fact, it turns out
that the estimation of an upper bound on the phase er-
ror eZ can be done just by sending phase-randomized
coherent states in the case of the choice of X basis and
by invoking a decoy-state method, without preparing the
cat states |C±⟩ (Curty et al., 2019). As a result, the
protocol is described as in Fig. 14, and the conjecture in
the original proposal that the coherent states (and their
phase-randomized ones) are enough to achieve QKD with√
η-scaling is concluded to be true, as shown by the per-

formance in Fig. 15.
The TF QKD protocol and its secure variants omit

technical challenge (b) as unnecessary for QKD, but they
still include technical challenge (a). Nonetheless, various
experiments (Chen et al., 2021a, 2020; Clivati et al., 2022;
Minder et al., 2019; Pittaluga et al., 2021; Wang et al.,
2019b, 2022; Zhong et al., 2019, 2022, 2021) to overcome
this have already been performed, towards the full im-
plementation of the TF-type QKD protocols in practi-
cal scenarios. These trials are important even for quan-
tum repeaters, because they represent a good milestone
towards the realization of a quantum repeater protocol
based on single-photon interference, which involves the
same technical challenge (a) (like Refs. (Azuma et al.,
2012; Childress et al., 2006b; Duan et al., 2001)).

In TF QKD, to achieve the phase stability required for
single-photon detection based entanglement swapping,
there are two general strategies. The first strategy is to
use only one laser and employ auto-compensation with a
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Sagnac loop where optical signals go through the same
path either clockwise or counter-clockwise (Zhong et al.,
2019, 2022, 2021). The second strategy allows two inde-
pendent lasers to be used, but may require a combination
of techniques including, for example, frequency locking,
using a reference pulse for compensation and ensuring
that the optical path lengths of the two optical fibers do
not differ too drastically (Chen et al., 2021a, 2020; Clivati
et al., 2022; Li et al., 2023; Minder et al., 2019; Pittaluga
et al., 2021; Wang et al., 2019b, 2022).

C. The single sequential quantum repeater

A third alternative is to invert the previous schemes
and place a quantum device with a quantum memory in
the central node and two detectors in the end nodes. This
scheme was proposed by (Luong et al., 2016).

In this scheme, the central node sends a photon entan-
gled with a memory qubit to one of the end nodes until
the end node confirms successful detection of the photon.
Then, the central node repeats the same process with the
other end node and thus emits a photon entangled with
a memory qubit until success. Once the second end node
confirms the successful detection of a photon, the cen-
tral node performs a Bell measurement and heralds the
measurement outcome to the two end nodes.

The advantage of this scheme is the simplicity of the
setup, requiring a single node holding two memory qubits
and no optical Bell measurement. On the other hand,
this setup is not measurement-device independent and
it requires qualitatively long coherence times when com-
pared with memory-based adaptive MDI QKD. In par-
ticular, the coherence time should be large when com-
pared with the sum of the travel time of a photon from
the center node to an end node plus the corresponding
heralding signal, multiplied by the average number of
times required for a successful event.

The feasibility of this setup for outperforming the
point-to-point limits was analyzed for different hardware
parameters in (Luong et al., 2016), (Rozpędek et al.,
2018) and (Rozpędek et al., 2019). An experimental
demonstration of the setup was recently reported in (Lan-
genfeld et al., 2021) with Rubidium atoms in an opti-
cal cavity. While below the fundamental limit for direct
transmission, the scaling of the key rate in the experi-
ment was shown to be proportional to the square root of
the transmittance of an optical fiber connecting two end
parties.

D. Post-pairing measurement-device-independent QKD

Recently, Xie et al. and Zeng et al. have proposed
a variant of MDI QKD protocol (Xie et al., 2022; Zeng
et al., 2022) which may be conceptually intermediate be-

tween adaptive MDI QKD and TF QKD and whose se-
cret key rate can scale with √

η, rather than η, where
η is the transmittance of a pure-loss channel between
Alice and Bob. In this protocol (Fig. 16), the mid-
dle node C still uses linear-optical Bell measurement of
Fig. 3 (b) based on single-photon interference like TF
QKD, while Alice and Bob send N optical pulses in co-
herent states to the middle node sequentially, that is,
in a time-multiplexing manner, like adaptive MDI QKD.
The main aim here is to make a protocol rely on the
application of a Bell measurement to project into Bell
states (|01⟩aiaj

|10⟩bibj ± |10⟩aiaj
|01⟩bibj )/

√
2, based on

two-photon interference between ith and jth time bins
(i, j = 1, 2, · · · , N and i ̸= j) at the middle node C,
where ai and bi are ith time bins sent by Alice and Bob,
respectively. This is implemented by postselecting time
slots i and j to which the Bell measurements based on
single-photon interference at the node C are successfully
applied, under the assumption that the phase correlation
between such possibly long time separated ith and jth
time bins is kept in the implementation. This keeping of
the phase correlation is a technological challenging part if
the number N of multiplexing is large. Nonetheless, since
this protocol can be regarded as relying on two-photon
interference at the middle node C, rather than single-
photon interference, like adaptive MDI QKD, an intense
phase stabilization regarding the channels between Alice
and the node C and between Bob and the node C could
be unnecessary in contrast to the TF QKD. In the proto-
col, Alice and Bob send Charlie optical pulses in coherent
states whose phases are chosen randomly from [0, 2π) and
whose intensities are chosen randomly from a predefined
set. This is designed so that time bins aiaj and bibj ,
postselected by the middle node C, can be regarded as a
BB84 signal and a decoy state, that is, a signal used in
the normal MDI QKD with time-bin encoding (Ma and
Razavi, 2012). This postselection includes the matching
between Alice’s and Bob’s random choices of phases in
some cases (although, in contrast, it was shown to be
unnecessary in the case of TF QKD (Cui et al., 2019;
Currás-Lorenzo et al., 2021; Curty et al., 2019; Lin and
Lütkenhaus, 2018; Maeda et al., 2019)).

For a large number N of the multiplexing, n =
O(N

√
η) Bell measurements based on single-photon in-

terference would succeed, where √
η represents the trans-

mittance of pure-loss channels between Alice and the
middle node C and between the middle node C and Bob.
Hence, there would be O(n/2) = O(N

√
η/2) instances

to which the target Bell measurements based on two-
photon interference are successfully applied. Since the
success of the target Bell measurement could produce an
entangled state between Alice’s virtual qubit and Bob’s
virtual qubit, the secret key rate of the protocol could
scale with √

η.
According to the proposals, called mode-pairing QKD

(Zeng et al., 2022) and asynchronous MDI-QKD (Xie
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FIG. 16 Post-encoding measurement-device-independent
QKD. In this protocol, Alice and Bob send N pulses to the
middle node C, Charlie, to perform the linear-optical Bell
measurement of Fig. 3 (b) based on single-photon interference
(SPI), and a two-photon Bell state is obtained by postmatch-
ing two successful SPI events. Here n represents the number of
successes of the Bell measurement based on SPI and √

η rep-
resents the transmittance of pure-loss channels between Alice
and Charlie and between Charlie and Bob. Figure adapted
from (Xie et al., 2022).

et al., 2022), experimental demonstrations have been per-
formed in Refs. (Zhu et al., 2023) and (Zhou et al., 2023),
respectively.

V. EXPERIMENTAL PROGRESS TOWARDS REPEATERS

Long-distance quantum communication is enabled by
low-loss media for photon transfer. Free-space commu-
nication (Ursin et al., 2007) and satellite-based commu-
nication (Liao et al., 2017; Yin et al., 2017) have unique
experimental challenges; in this section, we chiefly de-
scribe the practical advances towards optical-fiber-based
quantum communication schemes featuring quantum re-
peaters. We organize our discussion roughly according
to the requirements of each generation of repeaters from
Sec. III.B and of memoryless repeaters from Sec. III.C.

Almost all quantum repeater architectures require the
implementation of efficient interfaces between quantum
memories and photons. In first-generation repeaters, a
quantum memory must be capable of storing quantum
information for a long time (Sec. V.A) and emitting pho-
tons that are entangled with the memory degrees of free-
dom (Sec. V.B). These photons are then coupled into op-
tical fibers that connect distant repeater nodes. The in-
termediate entanglement between distant quantum mem-
ories (Sec. V.C) is finally used to create end-to-end entan-
glement links between Alice and Bob with a rate ideally
much higher than direct transmission over fibers.

In first-generation repeaters, unavoidable memory er-
rors are dealt with through entanglement distillation
(Sec. V.D). In the second generation of quantum re-
peaters, memory errors are corrected through quantum
error correction. Therefore, quantum registers of many
quantum memories are required at each repeater node

to encode logical memory qubits (Sec. V.E). In the third
generation of repeaters, loss errors are also dealt with
through QEC. Since any QEC code can only tolerate
a probability of erasure (a common model for loss) of
50% (see Sec. II.B and V.E), advanced engineering is
required to obtain high transmissivities as well as col-
lection, coupling, and detection efficiencies for the pho-
tons (Sec. V.F). In addition to the experimental progress
aligning with the three generations, we review the head-
way that has been made towards memoryless repeaters
(Sec. V.G), whose all-photonic implementations require
the efficient generation of highly-entangled states of many
photons. Finally, we overview the experimental demon-
strations of trusted QKD networks and small quantum
networks (Sec. V.H) that exist as important milestones
on the way to a quantum internet.

A. Long-lived quantum memories

The success of most quantum repeater schemes criti-
cally relies on the performance of their quantum mem-
ories. The coherence time, T2, of the memory (some-
times called the memory time) is the relevant figure-of-
merit: it characterizes the time during which quantum
information can be stored in the memory before being
degraded by the environment. For example, when gen-
erating entanglement between two quantum memories at
nodes separated by a distance L0 in a heralded manner
(Sec. III.A.4.b.2), high entanglement fidelities can only
be achieved if L0 ≪ cT2, with c the speed of light in
fiber. A quantum memory needs also to have characteris-
tics beyond the coherence time, namely fast, efficient and
high-fidelity initialization, gate application, and photon
retrieval and read-out. For brevity, we restrict our discus-
sion to the coherence time, and refer interested readers to
Refs. (Heshami et al., 2016; Lvovsky et al., 2009; Simon
et al., 2010) for the other important features of quantum
memories.

Several candidate quantum memories are under de-
velopment, among them atomic ensembles (T2 = 0.2-
16 s (Dudin et al., 2013; Yang et al., 2016)) includ-
ing Bose-Einstein condensates (Riedl et al., 2012), and
single natural or artificial atomic systems such as cold
atoms, trapped ions (T2 = 4ms for 128Ba+ (Inlek et al.,
2017)), colour centres in diamond (T2 = 1 s (Abobeih
et al., 2018; Bar-Gill et al., 2013)), and quantum dots
(T2 = 3µs (Greilich et al., 2007)). All of these platforms
are also quantum emitters, making them suitable can-
didates for atom-photon interfaces; other systems may
have superior coherence times but cannot emit photons.
To benefit from these extremely long-lived memories, hy-
brid strategies can be chosen in which the quantum mem-
ory is indirectly interfaced with photons through its cou-
pling to an efficient quantum emitter. This occurs nat-
urally in NV centers, for example, where the electron
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Quantum emitter Quantum memory Quantum register Emitting properties Refs.
T2 T ∗

2 F (gate) N T2 T1 ηeff ι ηDW F (atom-phot.) λQE (nm)
Atomic ensemble 87Rb 16 s 87% ≥ 93.3% 780 a

Single atoms / 87Rb 2.6ms 400µs ≥ 97.5% 300 ns 60% 89% 780 b

trapped ions 171Yb+ > 1 h 369 c

128Ba+ 4ms ≥ 4 (171Yb+) > 1 h ≥ 86% 493 d

Quantum dot 3µs 39 ns 95% 1 1µs 0.6-0.8 ns 57% 99.5% 90% ≥ 80% 900-1565 e

Defects NV 0.6 s 5-36µs > 99% 9 75 s 13 ns 37% 98.6% 4% 96% 637 f

(diamond) SiV 10ms 115 ns 1 100ms 1.6 ns 85% 72% 75% 94% 737 g

GeV 5.5 ns 0.72% 60% 602 h

SnV 540 ns 4.5 ns 57% 620 i

Defects VSi 0.8-20ms 37 ns 69% 6− 9% 862-917 j

(in SiC) VSiVC 64ms 375µs 99.98% ≥ 1 91 ns 7% 1078-1132
V4+ 45 ns 50% 1278-1388
NV 1µs 13ns 1180-1468

Defects G 34 ns 15% 1269 k

(in Si) T 802 ns 23% 1326 l

Rare-earth Eu3+ 8.1ms ≥ 1 6 h 0.8-1.2ms 579 m

ions Er3+ ≥ 1 1.2 s 1.5-8.7ms 1532 n

Pr3+ 880µs ≥ 1 140µs 606 o

Nd3+ ≥ 1 80%* 883 p

a (Dudin et al., 2013; Hosseini et al., 2011; Park et al., 2019; Xu et al., 2013)
b (Daiss et al., 2021; Ebert et al., 2015; Langenfeld et al., 2020; van Leent et al., 2020; Levine et al., 2019)
c (Wang et al., 2021)
d (Inlek et al., 2017)
e (Bechtold et al., 2015; De Greve et al., 2011; Éthier-Majcher et al., 2017; Gangloff et al., 2019; Jackson et al., 2021; Matthiesen et al.,

2013; Olbrich et al., 2017; Somaschi et al., 2016; Tomm et al., 2021)
f (Aharonovich et al., 2011; Arroyo-Camejo et al., 2014; Bar-Gill et al., 2013; Bauch et al., 2018; Bradley et al., 2019; Hensen et al.,
2015; Pompili et al., 2021; Ruf et al., 2021)

g (Becker et al., 2018; Bhaskar et al., 2020; Neu et al., 2011a,b; Nguyen et al., 2019a; Pingault et al., 2017; Ruf et al., 2021; Sipahigil
et al., 2014; Sukachev et al., 2017)

h (Iwasaki et al., 2015; Palyanov et al., 2015; Ruf et al., 2021; Wan et al., 2020)
i (Görlitz et al., 2020; Ruf et al., 2021; Trusheim et al., 2020)
j (Lukin et al., 2020) and references therein
k (Durand et al., 2021)
l (Bergeron et al., 2020; Kurkjian et al., 2021)

m (Zhong et al., 2015a; Zhong and Goldner, 2019)
n (Rančić et al., 2018; Zhong and Goldner, 2019)
o (Lago-Rivera et al., 2021; Zhong and Goldner, 2019)
p (Liu et al., 2021; Zhong et al., 2015b)

TABLE VI Properties of selected memory qubits for quantum repeater applications. Results for most systems were generally
obtained in separate experiments. We distinguish the properties of the qubit emitters with those of the potential N -qubit
registers they are coupled to. Also included are the properties of the systems as single-photon emitters, including the emission
time T1, the end-to-end collection efficiency ηeff , the photon indistinguishability ι, the Debye-Waller factor ηDW, the fidelity F
of the atom-photon entanglement, and the emission wavelength λQE. * Heralded entanglement generation fidelity between two
quantum memories.

spin is coupled via hyperfine interaction with nearby 13C
nuclear spins (T2 = 75 s) (Bradley et al., 2019). The
same strategy is also taken with trapped ions, where ionic
species with good emission properties, such as 128Ba+,
are interfaced at the same quantum node with 171Yb+,
the latter of which have much longer coherence times
(T2 > 1 h (Wang et al., 2021, 2017)). Using these ions,
(Hucul et al., 2015) showed two-ion entanglement which
persists over more than 1 s. Recent results also show
that a typically short-lived quantum dot spin can be ef-
ficiently coupled to a single magnon excitation of its nu-
clear environment, which consists of 104 − 105 nuclear
spins that behave as a long-lived memory (T ∗

2 ≈ µs (Gan-
gloff et al., 2019; Jackson et al., 2021), compared to the
T ∗
2 = 39ns for the electron spin (Éthier-Majcher et al.,

2017)). Rare-earth Eu3+ ions in Y2SiO5 crystals have
the longest coherence time experimentally observed with
T2 = 6h (Zhong et al., 2015a). This platform has an opti-
cal memory which can store a time-bin encoded photonic
qubit for 1 h (Ma et al., 2021).

Another important criterion for these platforms is the
temperature at which they operate. It implies poten-
tially the use of different cooling strategies that can be
technologically demanding, from dilution refrigerator or
liquid helium temperature cryostats to laser cooling. In-
terestingly, several studies propose to soften this require-
ment through the use of “room temperature” quantum re-
peaters based on either hybrid optomechanical systems
with NV centers (Ji et al., 2022) or warm atomic va-
pors (Borregaard et al., 2016; Dideriksen et al., 2021;
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FIG. 17 Level structure and heralded entanglement genera-
tion. In (a), a Lambda level structure with states |e⟩ (excited),
|0⟩ (connected to |e⟩ by horizontally polarized light, |H⟩) and
|1⟩ (connected to |e⟩ by vertically polarized light, |V ⟩). In
(b), a level structure for time-bin entanglement. |e⟩ only con-
nected to |0⟩; control of the qubit states is required. In (c), a
setup for spin-spin heralded entanglement generation. Figure
from Ref. (Stockill et al., 2017).

Katz and Firstenberg, 2018; Li et al., 2021b; Pang et al.,
2020; Shaham et al., 2021).

In Table VI, we summarize the experimental perfor-
mance of long-lived quantum memories together with
their emission properties. In addition to the coherence
time, several other figures of merit are also important for
quantum repeater applications. These include the quan-
tum emitter control gate fidelity (F ) and dephasing and
relaxation times (T ∗

2 , T1), and the availability of an addi-
tional quantum register and its properties. The photonic
properties of the quantum emitters are also important,
namely the photon collection efficiency (ηeff), the Debye-
Waller factor in the case of solid-state defect qubits (i.e.,
probability of emitting photon into the zero-phonon line)
ηDW, the indistinguishability ι and the quality of the
spin-photon entanglement (F (atom-phot.)). The photon
wavelength also plays a crucial role in quantum commu-
nication since the best transmission rates are achieved for
telecom wavelengths. We include well-established quan-
tum emitters alongside more recent but promising sys-
tems, such as rare-earth ions and new defects in diamond
and silicon.

B. Emission of photons entangled with the quantum memory

Quantum memories should have—or should be coupled
to quantum emitters which have—optical transitions that
allow the emission of photons entangled with the memory
qubits. The emitted photonic qubits are to be encoded in
one of the degrees of freedom discussed in Sec. II.E. The
emission of spin-entangled qubits encoded into photonic
frequency, polarization, emission time bin, and spatial
modes has already been experimentally demonstrated
with the help of trapped ions, NV centers, and quantum
dots. Many schemes exist for the production of photons
entangled with the memory’s degrees of freedom, vary-
ing in details depending on the photonic encoding and

the energy level structure of the emitter. For concrete-
ness, we will review two of the most common examples
of such schemes.

Polarization-entangled photons can be produced in
a system with a Λ-shaped level structure (that is, a
Λ system), where the qubit ground states |0⟩ and |1⟩
are both optically coupled to a single excited state |e⟩
by orthogonally-polarized transitions (say, horizontally-
polarized and vertically-polarized photons, respectively).
This type of level structure is present in most quantum
emitters, including some species of trapped ions (Blinov
et al., 2004) and atoms (Volz et al., 2006), in atomic en-
sembles (Chen et al., 2007), NV centers (Togan et al.,
2010), and in quantum dots when a transverse mag-
netic field is applied (De Greve et al., 2012; Gao et al.,
2012; Schaibley et al., 2013). A quantum memory pre-
pared in the excited state will spontaneously emit a sin-
gle photon with either horizontal or vertical polarization
(|H⟩ or |V ⟩), as shown in Fig. 17 (a). After this emis-
sion, the total memory–photon system is in the entan-
gled state |0, H⟩+ |1, V ⟩. For this scheme to successfully
produce such a maximally entangled state, the coupling
strength of the two optical transitions ought to be the
same. If the transitions differ in energy (EH ̸= EV ),
as in quantum dots, the final state might instead be
|0, (H,EH)⟩+ |1, (V,EV )⟩, where |(A,EA)⟩ for A = H,V
denotes the redundant encoding of the photonic qubit
on its polarization and frequency degrees of freedom.
The demonstration of bipartite entanglement is therefore
challenging in this case, since it requires that this redun-
dancy be erased, but such a quantum erasure of the pho-
ton frequency has been for example demonstrated in (Yu
et al., 2015).

Despite its relative simplicity, the previous scheme may
not be available for all quantum memories, as it requires
a Lambda-level structure. There is an alternative ap-
proach (Hensen et al., 2015; Lee et al., 2019a; Tcheb-
otareva et al., 2019; Vasconcelos et al., 2020), which re-
quires only one strong optical transition, that results in
a photon whose emission time bin is entangled with the
memory qubit. The minimal level structure required for
this scheme is illustrated in Fig. 17 (b); it corresponds
to a three-level system (|0⟩, |1⟩, |e⟩), where only one
state of the qubit states, e.g., |0⟩, is optically coupled
to the excited state |e⟩. The memory is initialized in a
superposition state |0⟩ + |1⟩, and then the optical tran-
sition 0 ↔ e is excited by a π-pulse such that the sys-
tem ends up in |e⟩ + |1⟩. If in the excited state, the
memory emits a photon in the early time bin |t1⟩; oth-
erwise, it emits no photons, resulting in the state |vac⟩:
|0, t1⟩+ |1, vac⟩. The memory qubit is then flipped in its
qubit subspace (yielding |1, t1⟩+ |0, vac⟩) and the 0 ↔ e
transition is excited again, leading to the emission of a
photon in the time bin t0 if the excited state was pop-
ulated: |1, t1⟩ + |0, t0⟩. We see that a single photon is
always emitted, and that its emission time bin is indeed
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entangled with the quantum memory. This strategy re-
quires the preparation of the memory in a superposition
state and more control pulses; however, it has the advan-
tage of operating with only a single optical transition,
making it particularly convenient in the case of, e.g., NV
centers (Bernien et al., 2013), when one specific optical
transition has better properties than the others. This
approach has also been demonstrated in quantum dots,
when a certain transition is made more favorable through
cavity (Purcell) enhancement (Lee et al., 2018).

C. Distant entanglement generation

It is possible to generate heralded entanglement be-
tween distant qubits mediated by the detection of pho-
tons. The implementation of these schemes is usually
based on interference of photons within a linear-optical
setup. To optimally interfere and hence create maxi-
mal entanglement, the photons emitted by two distant
quantum memories should be perfectly indistinguish-
able (Aharonovich et al., 2016; Senellart et al., 2017).

The scheme of Cabrillo et al. (Cabrillo et al., 1999)
based on single-photon interference (see also (Bose
et al., 1999) for a similar proposal) for distant entan-
glement generation has been demonstrated with trapped
ions (Slodička et al., 2013), quantum dots (Delteil et al.,
2015; Stockill et al., 2017), NV centers in diamond
(Humphreys et al., 2018) and atomic ensembles (Chou
et al., 2007). The experiment in (Stockill et al., 2017),
based on two quantum dot spins separated by a few me-
ters, resulted in a postselected entanglement generation
rate of 7.3 kHz (Stockill et al., 2017).

Let us illustrate how the scheme works experimentally.
Two quantum dots, A and B, situated at two separated
nodes are prepared in a Voigt configuration (in-plane
magnetic field) to exhibit a Λ-level structure with sim-
ilar optical transition energies. The two quantum dots
are prepared initially in the state |0A, 0B⟩ = |↓A, ↓B⟩
and are excited by the same weak phase-stabilized laser
so that a photon may be produced by each quantum dot
through Raman scattering with a probability p≪ 1 (see
Fig. 17 (c)). The photonic modes are then mixed on a
50:50 beamsplitter at a central node to erase the which-
path information—that is, to make it impossible to tell
which quantum dot emitted the photon (essentially to
perform the Bell measurement of Fig. 3 (b)). The state
before the photon detection is:

|Ψ⟩ = (1− p) |↓A, ↓B⟩ |01, 02⟩
+
√
p(1− p)/2

(
eiΦa |↑A, ↓B⟩+ eiΦB |↓A, ↑B⟩

)
|11, 02⟩

+
√
p(1− p)/2

(
eiΦa |↑A, ↓B⟩ − eiΦB |↓A, ↑B⟩

)
|01, 12⟩

+ p/
√
2ei(ΦA+ΦB) |↑A, ↑B⟩ (|01, 22⟩ − |21, 02⟩) ,

(38)
where |i1, j2⟩ (with i, j integers) corresponds to the num-

ber of photons in the first and second output modes of
the beamsplitter, and ΦA and ΦB are the optical phases
along the different optical paths corresponding to qubit
A and B. If a single photon is detected, the quantum
dot system is projected with probability ≈ p into the
maximally entangled state eiΦa |↑A, ↓B⟩ ± eiΦB |↓A, ↑B⟩,
with the sign depending on the output mode of the beam-
splitter in which the photon was detected. In practice,
p cannot be as high as desired because the quantum dot
spins undergo two spin flip processes with probability
p2, resulting in the emission of two photons. In that
case, if only one of the two photons is detected—either
due to imperfect collection and detection efficiencies or
transmission losses—the heralding single-photon process
leads to a state with fidelity that decreases with higher
p. Refs. (Lago-Rivera et al., 2021; Pompili et al., 2021;
Stockill et al., 2017; Yu et al., 2020) used this meth-
ods to demonstrate heralded entanglement generation.
Ref. (Stockill et al., 2017) demonstrated the highest rate
for distant spin-spin entanglement with postselection and
Ref. (Yu et al., 2020) demonstrated the longest fiber dis-
tance between two remotely entangled quantum mem-
ories using atomic ensembles. However, while the two
memories were separated by 50 kilometers of fiber, this
was achieved using a spooled fiber of that length, the
actual distance between the systems was a meter.

Other methods for generating distant heralded entan-
glement exist, namely the Barrett and Kok scheme (Bar-
rett et al., 2005) based on two-photon detection. This
scheme has been demonstrated with NV centers (Bernien
et al., 2013) and trapped ions (Moehring et al., 2007).
The longest-distance entanglement between separated
systems reached using this approach, 1.3 km, was
achieved also with NV centers, in a loophole-free Bell
test experiment (Hensen et al., 2015). In Ref. (Yu
et al., 2020), the authors have also demonstrated a field-
deployed heralded entanglement generation between two
atomic ensembles separated by 11 kilometer (22 km of
fibers) using two-photon interference. The latter was
achieved by increasing the collection and detection ef-
ficiencies of the photons as well as converting the opti-
cal photons to the telecommunication frequency, which
enjoys the highest transmissivity in optical fibers (see
Sec. V.F for more details).

Cabrillo et al.’s scheme is required to operate in the
low photon emission probability regime to obtain high
fidelity heralded entanglement. In comparison, Barrett
and Kok’s scheme can operate in the high fidelity regime
even with high emission probability. Therefore, it should
be better suited for efficient quantum emitters and short
distance between the nodes. However, for longer dis-
tances, the fiber losses becomes dominant and having a
single-photon heralding like the Cabrillo et al. proto-
col leads to a better scaling with distance compared to
the two-photon heralding of the Barrett and Kok scheme
[similar to the relation between the TF QKD and the
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original MDI QKD (see Sec. IV.B)].

D. Entanglement distillation

During the generation of entanglement between remote
nodes, operation errors or the decoherence of quantum
memories can lead to a reduced fidelity of Bell states
shared between distant nodes. For first-generation quan-
tum repeaters, the fidelity of Bell pairs can be increased
through entanglement distillation (Sec. III.B.1). Start-
ing with two imperfect copies of a Bell pair, it is possi-
ble to produce a single Bell pair with improved fidelity
with a success probability of at best 50%. Entangle-
ment distillation has been demonstrated with photonic
Bell pairs (Pan et al., 2003, 2001; Yamamoto et al., 2001,
2003), atoms (Reichle et al., 2006), and NV centers (Kalb
et al., 2017).

Photonic realizations differ in success rate because it is
impossible to perform a deterministic CNOT gate with
linear optics. Instead, the entanglement distillation pro-
tocols are performed using solely linear optics with a suc-
cess rate limited to 25% at best (Pan et al., 2001; Ya-
mamoto et al., 2001). Ref. (Reichle et al., 2006) demon-
strated the first experimental entanglement distillation
with quantum memories. They distilled two Bell pairs
of 9Be+ ions, confined in the same Paul trap, with an
overall success probability above 35 %. Yet, because
the pairs of entangled atoms were not spatially sepa-
rated, this scheme is not particularly useful to enable
long-distance quantum communication applications. Us-
ing two NV centers with two 13C nuclear spins, Kalb et
al. demonstrated entanglement distillation of a 65± 3%-
fidelity Bell state in NV centers that were spatially sepa-
rated by 2 meters. The highest reported heralded entan-
glement rate was 182Hz (Stephenson et al., 2020) with
trapped ions separated by 2 meters using a two-photon
interference scheme. In this work, the authors expect a
distilled Bell pair fidelity of 99 % is within experimental
reach.

E. Multi-qubit quantum registers and error correction

Multiple memory qubits will be required per repeater
node, either for increasing the communication rate via
multiplexing (Collins et al., 2007), or for enabling error
correction in repeaters beyond the first generation. A
quantum register extends the architecture from Sec. V.A
to a quantum emitter with good optical properties cou-
pled to a large number of long-lived quantum memory
qubits. This arrangement naturally occurs in colour cen-
tres in diamond, where the defect is coupled by hyperfine
interaction to tens of 13C nuclear spins (Bradley et al.,
2019), forming the register of qubits. There have been
several advances in this line of research, e.g., in experi-

ments where the nuclear spins are individually controlled
using the electron spin (Balasubramanian et al., 2009;
Bradley et al., 2019; Childress et al., 2006a; Fuchs et al.,
2011; Gurudev Dutt et al., 2006; Taminiau et al., 2012).
Similarly, in the trapped ion setting, a quantum regis-
ter of many qubits has been realized using one quan-
tum emitter coupled to many memory qubits in the same
optical trap. For example, dual species quantum nodes
based on pairs of different ionic species such as 128Ba+-
171Yb+ (Inlek et al., 2017) or 25Mg+-9Be+ (Tan et al.,
2015) are being investigated. In a quantum dot, however,
the spin is only coupled to one (potentially two) different
magnon species (Jackson et al., 2021), imposing limits
on the size of the register. An alternative strategy for
obtaining more qubits at each repeater node could be to
vertically stack quantum dots (Stinaff et al., 2006).

For repeaters from the second and third generation, a
quantum register at each node can be seen as a quantum
processor used to logically encode the quantum infor-
mation transferred between nodes and to correct errors.
A QEC code has recently been implemented in trapped
ions (Egan et al., 2020). Here, 9 physical 171Yb+ qubits
(with 4 additional qubits for stabilizer measurements)
are associated with one logical qubit of the Bacon-Shor
code in a fault-tolerant design. A recent experiment us-
ing superconducting qubits (Google, 2023) demonstrated
experimentally a logical error rate reduction through in-
creasing the size of the QEC code being used. There is
also an effort to pursue error-corrected repeater nodes
with solid-state spins (Cramer et al., 2016; Waldherr
et al., 2014). In particular, with defects in diamond
(Abobeih et al., 2022), it has recently been shown the ex-
perimental fault-tolerant operation of a logical qubit us-
ing the 5-qubit code together with a flag protocol (Cham-
berland and Beverland, 2018; Chao and Reichardt, 2018)
requiring a total of seven qubits. Yet, this proof-of-
principle demonstration remains still above the break-
even point for which logical qubit operations have higher
fidelities than physical qubit operations.

Importantly, the logical qubits in error-corrected re-
peaters must be interfaced optically. For several plat-
forms investigated for the realization of multi-qubit pro-
cessors, such as superconducting circuits, a major chal-
lenge for quantum communication applications revolves
around the emission of optical photons, which requires
quantum transduction from microwave to optical ener-
gies (Ang et al., 2022; Lauk et al., 2020; Mirhosseini et al.,
2020).

The realization of logical photonic qubits is also being
pursued; they are required in the third generation of re-
peaters and in all-photonic quantum repeaters in order to
correct for loss errors. Error detection has been demon-
strated on a photonic platform (Bell et al., 2014), and
recently a proof-of-concept photonic 9-qubit Shor code
has been experimentally implemented together with an
all-photonic quantum repeater proposal (Zhang et al.,
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FIG. 18 State-of-the-art cavity-QED devices. In (a), a
quantum dot coupled deterministically to an open Fabry-
Pérot cavity. In (b), a silicon vacancy center in diamond
in a photonic crystal cavity evanescently coupled to a fiber.
Figure (a) from Ref. (Tomm et al., 2021) and figure (b) from
Ref. (Bhaskar et al., 2020).

2022a).

F. Loss mitigation, quantum frequency conversion, and
photonic source efficiency

A stringent requirement on correcting photonic errors
is imposed by the no-cloning theorem (Sec. II.B), which
implies that it is impossible to correct physical qubit
losses of more than 50% with QEC. In light of this, reduc-
ing the photon losses throughout a quantum network is
critical for the implementation of those repeaters where
the loss is handled via QEC. Loss occurs at every op-
tical component, with the main sources being propaga-
tion and coupling losses due to the intrinsic properties
of fibers and photonic chips. Loss also occurs at the de-
tectors and during the collection of photons produced by
quantum emitters.

Losses in fibers are chiefly caused by infrared absorp-
tion and Rayleigh scattering, as well as imperfections in-
troduced in manufacturing. Minimal loss is obtained at
the telecom wavelength (1550 nm), where the loss coef-
ficient is 0.2 dB per km, with few prospects of improve-
ment. Even though there exist ultra-low-loss fibers with
losses of 0.16 dB per km (Boaron et al., 2018), they
are not widely available, and would require complete
modification of the existing infrastructure. It is there-
fore crucial to use quantum emitters that emit at the
telecom wavelength, such as some engineered quantum
dots (Benyoucef et al., 2013) or rare-earth ions (Zhong
et al., 2019) and color centers in silicon (Bergeron et al.,
2020; Redjem et al., 2020).

An alternative strategy consists of using a quantum
frequency converter. The objective is to change the
frequency of the photonic qubits while preserving the
quantum information they encode (and the single-photon
statistics if required for the scheme) (Ikuta et al., 2011;
McGuinness et al., 2010; Tanzilli et al., 2005). Frequency
converters are generally based on a non-linear χ(2) crystal
(or possibly χ(3)) pumped by a laser pulse with frequency

ωl chosen such that the frequency ωi of an input photon
is modified into ωf = ωi−ωl. This strategy has been used
to convert the frequency to a telecom wavelength of pho-
tons emitted by NV centers (Tchebotareva et al., 2019),
quantum dots (De Greve et al., 2012; Zaske et al., 2012),
single atoms (van Leent et al., 2022, 2020), ions (Bock
et al., 2018; Krutyanskiy et al., 2019, 2022), rare-earth-
doped crystals (Maring et al., 2017), and atomic ensem-
bles (Dudin et al., 2010; Ikuta et al., 2018; Yu et al.,
2020).

The efficient collection of light produced by quantum
emitters is another important technological challenge.
Since spontaneous emission is non-directional, photon
collection efficiencies tend to be quite low. To obtain a
high efficiency source of single photons, the electromag-
netic environment of the quantum emitter ought be en-
gineered to force its emission into one specific mode that
can then be coupled into a fiber. This can be achieved
using waveguides, which inhibit the emission outside of
the waveguide mode (Arcari et al., 2014), or with micro-
cavities, which enhance the coupling between the quan-
tum emitter and the electromagnetic mode confined in
the cavity. In these two cases, the emission of a sin-
gle photon is much more probable inside a particular
mode (of the cavity or the waveguide) than in all the
others. This photonic mode can then be efficiently cou-
pled to the transmission fiber. Cavity enhancement also
has the important advantage of increasing the probability
of emission of indistinguishable coherent photons (Riedel
et al., 2017) as compared to incoherent phonon-assisted
emission. Two examples of state-of-the-art cavity-QED
devices are reviewed in Fig. 18. The single-photon col-
lection efficiency has drastically improved over the years
for all quantum emitters, through technological and ma-
terial improvement of cavity-QED devices (Barros et al.,
2009; Bhaskar et al., 2020; Maiwald et al., 2012; Somaschi
et al., 2016; Tomm et al., 2021; Uppu et al., 2020; Wang
et al., 2019a); in quantum dots, trapped ions and defects
in diamond, it has now risen above the 50% threshold.

While not making use of quantum emitters, it is also
worth mentioning that spontaneous parametric downcon-
version sources have seen their effective collection effi-
ciency increase to 67% through large-scale multiplexing
and active switching (Kaneda and Kwiat, 2019). While
it is not possible to use these sources to realize an effi-
cient light-matter interface in quantum repeater proto-
col based on matter qubits, they nevertheless show great
potential for all-photonic approaches, as detailed in the
following section.

The single-photon detection efficiency (Hadfield, 2009)
has also been significantly increased through the devel-
opment of superconducting nanowire single-photon de-
tectors (SNSPDs). Devices with detection efficiencies as
high as 95% are now commercially available and super-
conducting nanowire detectors with efficiencies as high
as 99 % have been demonstrated at telecom frequen-
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FIG. 19 A proof-of-principle experiment for an all-photonic
quantum repeater. PCM stands for “passive choice measure-
ment,” which automatically performs an entangling Bell mea-
surement (in case of a coincidence detection) or a disentan-
gling local X measurement (in case of a single-photon detec-
tion). Figures from (Li et al., 2019).

cies (Chang et al., 2021; Hu et al., 2020a). Transition
edge sensors also enjoy high detection efficiencies, with
the bonus that they can resolve photon numbers (Lita
et al., 2008), which can be useful for some heralded en-
tanglement schemes.

G. Progress towards memoryless quantum repeaters

In all-photonic quantum repeaters, error-correction
and loss-tolerance are achieved through photonic codes,
so that these protocols do not require quantum memo-
ries. The technological requirements of such repeaters
are therefore considerably different from the other ap-
proaches. The primary challenge revolves around the cre-
ation of large, highly entangled photonic states, namely
graph states.

Several different approaches have been suggested for
photonic graph state generation. Until very recently, the
largest entangled states of photons have been produced
experimentally using spontaneous parametric downcon-
version sources and fusion gates (Browne and Rudolph,
2005). The probabilistic nature of the fusion gates is the
main limitation to the number of photons in the graph
state that can produced with this approach, the current
maximum being 12 (Zhong et al., 2018).

Proof-of-principle experiments of all-photonic quan-
tum repeaters have already been realized (Hasegawa
et al., 2019; Li et al., 2019). In both cases, the original
protocol in (Azuma et al., 2015a) was replaced by a vari-
ant in order to facilitate its experimental realization. In
this new all-photonic communication scheme, introduced
in Ref. (Hasegawa et al., 2019), Alice and Bob prepare n
photonic Bell pairs each, sending one half of every one of

them through a lossy fiber to a central node (Charlie).
Prior to the arrival of the photons, Charlie prepares a 2n-
qubit GHZ state (equivalent to the complete graph state
from Sec. III.C.1) and performs photonic Bell state mea-
surements between the incoming photons and the corre-
sponding photons in the GHZ state. The first key con-
cept behind this scheme is a time-reversed adaptive Bell
measurement, which Li et al. refer to as a passive choice
measurement. If the photon ai (i = 1, 2, · · · , n) emerg-
ing from Alice arrives at Charlie’s node, and the joint
measurement with photon ci from Charlie’s GHZ state is
successful, then Charlie achieves a Bell state projection.
However, if the photon ai does not make it to Charlie’s
node, or if the measurement is unsuccessful, the Bell state
analyzer passively adapts to an X-basis measurement on
ci, which disconnects photon ci from the GHZ state. This
leads to the second important idea in (Hasegawa et al.,
2019): the outer qubits from the original repeater graph
state in (Azuma et al., 2015a) can be removed, leaving a
bare GHZ state in its place.

In their work, Li et al. demonstrated the above scheme
with a four-qubit GHZ state and n = 2 multiplexed
communication channels. We illustrate the experiment
in Fig. 19. Alice, Bob, and Charlie each prepare two
Bell pairs using spontaneous parametric down-conversion
sources. Alice and Bob send one qubit from each Bell
pair—each corresponding to a communication channel—
to Charlie’s node. Charlie mixes his two Bell pairs to
produce a four-qubit GHZ state and the protocol pro-
ceeds as explained previously with n = 2. Although the
experiment did not surpass the PLOB bound (Pirandola
et al., 2017), Li et al. demonstrated an enhancement in
communication rates between Alice and Bob compared to
the case where Charlie uses a Bell pair for each communi-
cation channel (that is, does not multiplex the channels).
These results attested to the interest and experimental
feasibility of all-photonic solutions for quantum commu-
nication.

In principle, the above modifications simplify the orig-
inal all-photonic repeater, making it attainable with cur-
rent technology. However, the protocol only works if
a single QR node is used, consequently leading to a
η1/2 scaling, at best, and limiting the communication
distances to, at most, about 800 km in practice12 (in
the sense explained in the footnote in Sec. III.A.3).
Going beyond this limit would require cascading mul-
tiple QR nodes and using photonic states with much
more photons, such as the RGS in original protocol

12 For instance, with a twin-field-type QKD protocol which utilizes
a single node between communicators, Wang et al. have success-
fully generated a secret key with 4.572 × 10−1 secret bits per
second over 786.67 km of fiber and with 1.399× 10−2 secret bits
per second over 833.80 km of fiber (Wang et al., 2022), experi-
mentally.
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(Sec. III.C.1). Furthermore, the protocol is particularly
sensitive to local losses at Charlie’s node, as demon-
strated in Ref. (Hasegawa et al., 2019). Delaying the
preparation of the GHZ state only goes part of the way to
mitigate this issue, with a more complete scheme requir-
ing loss-tolerant error correction. Recently, Ref. (Zhang
et al., 2022a) demonstrated a 9-qubit Shor code, with a
new all-photonic quantum repeater approach which could
be cascaded. They have also shown its tolerance to single-
photon losses. Among the remaining steps to be fully op-
erable, this Shor code should be generated in a heralded
fashion rather than being postselected.

To move to higher photon numbers, the all-optical
strategy requires probabilistic fusion gates combined with
high-speed feedforward (Sec. III.C.3) to grow bigger and
bigger graphs based on small graph resources. Having
efficient feedforward techniques is thus crucial (Zanin
et al., 2021). This is achievable only with ultrafast opti-
cal switches and electronics.

The technological challenges of bosonic repeaters
(Sec. III.C.2.c) are somewhat different than the discrete-
variable repeater that we have focused on. For the par-
ticular case of encoding qubits into momentum-squeezed
or GKP states, one can deterministically combine modes
into large graph states with Gaussian operations (linear
optics and squeezing). However, the production of pho-
tonic GKP states is challenging, and is not yet to be
implemented on photonic platforms. On the other hand,
Gaussian states of light are now a well-mastered technol-
ogy (Asavanant et al., 2019).

An alternative strategy for producing photonic graph
states is to use light-matter interfaces in generation pro-
cedures such as (Buterakos et al., 2017) or (Pichler et al.,
2017; Zhan et al., 2023; Zhan and Sun, 2020), based on
the initial work of Refs. (Economou et al., 2010; Lindner
and Rudolph, 2009; Schön et al., 2005). This strategy
is more demanding experimentally but has the advan-
tage of being (in principle) deterministic. Indeed, with
unity collection efficiency of the photons and perfect con-
trol of the quantum emitters, the generation procedure
does become completely deterministic: the entanglement
between photons is produced through the control of the
quantum emitter rather than through probabilistic fusion
gates. A proof-of-concept experiment has been realized
by Schwartz et al. (Schwartz et al., 2016) where a lin-
ear cluster state is produced by manipulating and opti-
cally pumping the spin of a quantum dot. The authors
produced a three-qubit linear cluster state and showed
that entanglement persists for up to five photons. More
recently, this group showed that entanglement persists
over 10 photons, with indistinguishability above 90 %,
using also the deterministic generation from a hole spin
quantum dot emitter (Cogan et al., 2021). Quantum
dot-based sources of entangled photons have also been
inserted inside microcavities to generate linear-cluster
states at much higher rates (Coste et al., 2022). A similar

generation scheme using a single atom trapped in a cav-
ity was used to demonstrate a 12-photon linear cluster
state and a 14-photon GHZ state (Thomas et al., 2022),
which to date constitutes the record largest entangled
photonic state demonstrated experimentally. In these ex-
periments, the emitters produce polarization-entangled
photons, but strategies involving time-bin entanglement
have also been explored (Appel et al., 2022; Lee et al.,
2018; Vasconcelos et al., 2020; Vezvaee et al., 2022).

To go beyond linear cluster state generation, one
can either use multiple solid-state qubits or the strong
non-linear interaction induced by atoms for light to ef-
fect entangling gates. For the generation procedures of
Refs. (Pichler et al., 2017; Zhan and Sun, 2020), one
needs to implement spin-photon CZ gates, where a phase
shift is induced onto a photon depending on the spin
state. Cavity-QED devices increase the spin-photon in-
teraction such that such spin-photon gates are within
reach with many cavity-QED platforms (Androvitsaneas
et al., 2019; Arnold et al., 2014; Bhaskar et al., 2020;
Javadi et al., 2018; Reiserer et al., 2014; Sun et al., 2016;
Wells et al., 2019).

H. Experimental realization of quantum networks

In this section, we review experiments that go beyond
two-node quantum communication to inch closer to the
quantum internet. We first start by presenting the exper-
imental realizations of trusted large-scale repeater net-
works for QKD applications based on trusted relays. We
then discuss experimental progress towards the realiza-
tion of quantum repeaters to actualize long-distance un-
trusted nodes. Finally, we discuss the experimental real-
ization of untrusted quantum networks.

1. Trusted large-scale repeater networks

Several intercity QKD networks have already been
realized, such as the SECOQC network (Peev et al.,
2009) in Austria, the Tokyo QKD network (Sasaki et al.,
2011) in Japan, the SwissQuantum network (Stucki et al.,
2011) in Switzerland, the Illinois Express Quantum net-
work (Chung et al., 2021) in the USA, and the Shanghai-
Beijing QKD network (Chen et al., 2021b) in China. In
all of these networks, cryptographic keys are distributed
between nodes separated by long distances using relay
nodes. Assuming that the relay nodes are trusted, a se-
cure key can be established at rates much higher than
what is possible through direct fiber transmission (Pi-
randola et al., 2017), thereby enabling efficient QKD over
very long distances.

In Fig. 20 (a), we illustrate the Shanghai-Beijing QKD
network, the largest QKD network to date. This net-
work links four metropolitan areas—Shanghai, Hefei, Ji-
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FIG. 20 Quantum networks. (a) Shanghai-Beijing QKD network. (b) Experimental quantum network composed of NV centers
acting as quantum memories. Figure (a) from Ref. (Chen et al., 2021b) and figure (b) from Ref. (Pompili et al., 2021).

nan, and Beijing—using a backbone of 32 trusted relays
in a linear topology. If any one of the 32 relay nodes is
compromised, the generated key may be insecure. The
trusted relays allow for efficient long-distance quantum
communication between these metropolitan areas. Each
of these cities is comprised of small QKD networks with
different topologies, where end users with reduced capa-
bilities (only requiring a QKD source) can connect to
the network. This network incorporates both fiber- and
satellite-based communication: the nodes at a Nanshan
and Xinglong are separated by 2600 km, communicating
through free-space via a satellite node that also acts as
a trusted relay. A similar strategy has also been used to
distribute a secret key over intercontinental distances—
between Graz in Austria, and Nanshan and Xinglong
in China, covering a total distance of 7600 km (Liao
et al., 2018). Thanks to this combination of fiber- and
satellite-based quantum communication, the Shanghai-
Beijing QKD network covers a total distance of 4600 km
and provides a typical secret rate between each node of
50 kilobits per second (kbps) and a minimum inter-node
secret key rate of 28 kbps in the entire network. Such
large key rates achieved at such distances are completely
out-of-reach for direct transmission over a fiber. Given
its covered distance, complex topology, and the different
quantum channels used, this QKD network can be con-
sidered as a genuine prototype of the quantum internet
for QKD applications, albeit at the cost of having to trust
the network provider.

2. Proof-of-concept of a quantum repeater

Improving on a trusted repeater network requires
device-independent QKD, which can be realized through
the distribution of Bell pairs to the end nodes. Re-
cent experimental demonstrations of fibered device-
independent QKD based on quantum memories (respec-
tively single 87Rb atoms (Zhang et al., 2022b) and 88Sr+

ions (Nadlinger et al., 2022)) constitute significant im-
provements as they close the detection loophole in the
violation of Bell’s inequality. In an experiment using
an untrusted satellite node to share private keys with
the help of the Ekert 91 protocol (Ekert, 1991), Yin et
al. (Yin et al., 2017) set the record distance of 1200 km
for distribution of entangled photons. Realizing a long-
distance device-independent multi-node network would
also crucially require the practical implementation of ef-
ficient quantum repeaters in real networks. However,
this major milestone is the subject of active research
and remains to be demonstrated. Note, however, device-
independent QKD still suffers13 from attacks such as
memory attacks (Barrett et al., 2013) and covert chan-
nels (Curty and Lo, 2019).

Bhaskar et al. (Bhaskar et al., 2020) have demonstrated
that the use of a single repeater node in an experiment
increases the communication rate of measurement-device-
independent (MDI)-QKD compared to repeaterless com-
munication. Similar to Li et al. (Li et al., 2019), they
used a repeater scheme with a single repeater node; how-
ever, they were able to demonstrate an improvement over
the PLOB bound in terms of a key rate in bits per chan-
nel use versus an effective channel transmission—a four-
fold secret key rate increase over the original MDI QKD
(Lo et al., 2012). The repeater node consists of a single
silicon-vacancy center embedded in a diamond photonic
crystal cavity. The cavity mode of this device is efficiently
evanescently coupled to a fiber to minimize the photonic

13 This is because once a key has been generated, it is classical,
and as such is subject to copying. Therefore, if a QKD system is
reused in future QKD sessions, then the key generated in a pre-
vious session might be stored in some memories and be leaked.
Moreover, not only the QKD devices, but also the conventional
computers used in the classical post-processing (e.g. error cor-
rection and privacy amplification) may leak key information via
covert channels.
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losses. A significant improvement toward the photon col-
lection efficiency was also demonstrated, reaching 85%.
The silicon-vacancy system is positioned in a dilution
refrigerator to achieve a coherence time T2 = 0.2ms.
In their experiment, the quantum memory at Charlie’s
node does not emit photons, but receives weak coher-
ent time-bin-encoded pulses from Alice and Bob. Using
electromagnetically-induced transparency of their cavity-
QED device, these weak pulses are reflected or not de-
pending on the electronic spin state. The reflected pho-
tonic pulses are then detected by superconducting single-
photon detectors. If a photonic pulse coming from Bob
is detected shortly after a pulse from Alice, a key bit
can be distributed between Alice and Bob when Charlie
communicates the two-photon and spin measurement re-
sults. With these experiments it is possible to achieve a√
η scaling because the two coherent pulses do not need to

arrive simultaneously at the repeater node, thanks to the
quantum memory (see Sec. IV for detail). The role of the
memory is to store the information of the first pulse dur-
ing the time it remains coherent while waiting for the sec-
ond pulse to be detected. While operating with only one
quantum memory per node for the moment, these results
foresee a promising route toward long-distance quantum
communication. Indeed, a silicon-vacancy color center
can, in principle, make use of their 13C neighbors to ef-
fect a quantum register of long-lived memories (Nguyen
et al., 2019b). This may increase the protocol’s perfor-
mance by enabling longer storage time as well as the con-
catenation of multiple repeater nodes, in principle paving
the way to obtain a polynomial scaling of the rate with
the communication distance.

In a more recent experiment, (Langenfeld et al., 2021)
demonstrated a memory-enhanced quantum repeater
node based on two 87Rb atoms in an atomic cavity. This
node can in principle be cascaded can be at the core of
a quantum repeater scheme that overcome the previous√
η limits of repeater nodes with a single memory such as

(Bhaskar et al., 2020). Moreover, the single-qubit error
rate was below 11% ensuring that a secure key can indeed
be transferred using this repeater node. Such a memory-
enhanced repeater has also been demonstrated by per-
forming entanglement swapping with two 87Rb atomic
ensemble memories (Pu et al., 2021).

3. Untrusted quantum networks

Since a quantum internet for applications beyond QKD
may look like a multi-node network where quantum in-
formation is stored and processed by quantum mem-
ories, a complementary route toward the development
of long-distance multi-node networks is to create multi-
qubit quantum networks at a small distance and to pro-
gressively increase their size when the quantum repeater
technology becomes more mature. Pompili et al. (Pom-

pili et al., 2021) is the first realization of such a small
quantum network, where each node includes a quantum
memory to process quantum information locally. This
network is based on three nodes, with an inter-node dis-
tance of a maximum of seven meters (see Fig. 20 (b)).
Each node includes one or two quantum memories based
on a nitrogen-vacancy (NV) center electron spin, and po-
tentially another proximal 13C nuclear spin.

Pompili et al. used their network to perform non-
trivial multi-node operations such as the generation of
a 3-qubit GHZ state with a memory qubit at each node,
and the generation of a Bell pair between quantum mem-
ories situated at nodes that were not directly connected.
After the generation of heralded entanglement between
an NV electron spin at Alice’s node and the electron
spin at Charlie’s node, the information encoded in Char-
lie’s electron spin qubit was swapped to a 13C nuclear
spin so that the electron spin could be used again to
generate entanglement with Bob’s NV center. This en-
tanglement generation step could be realized with the
strategies introduced in Sec. V.C. Then, the entangle-
ment was swapped by performing a Bell measurement
between the electron and the nuclear spins at Charlie’s
node. This was the first demonstration of entanglement
swapping between distant nodes that were not originally
connected. The work required the cooperation of a mul-
titude of experimental components. In this work, they
have used the single-photon detection scheme proposed
by Cabrillo et al. to herald entanglement generation be-
tween distant spins with 80% fidelity and at rates of 7
and 9 Hz, using phase-stabilized links between the three
nodes. The quantum information initially stored in Char-
lie’s electron spin qubit needed to be swapped into one
of its proximal nuclear spins, thereby requiring a nuclear
spin register and a high level of control. In addition,
since the entanglement ought to be stored for the time
the three nodes were connected, dynamical decoupling se-
quences were used to further isolate the spins from their
environment. Finally, an electron-nuclear spin Bell state
was used to swap the entanglement at the central node
and produce a Bell state between Alice’s and Bob’s spin
qubits at a rate of 25mHz. This protocol had an overall
fidelity of 55%, which could potentially be improved by
using better photonic interfaces, spin control, and read-
out techniques, as well as reducing the infidelities and
increasing the rate of the distant spin-spin entanglement
generation. Such a network has also been used to tele-
port quantum information between two nodes that are
not immediate neighbors (Hermans et al., 2022).

The interest of these results is also to provide a testbed
for real life applications and to prepare the other techno-
logical aspects of the implementation of a quantum net-
work, such as the communication protocols. There is also
a considerable development of quantum network simula-
tor software (Coopmans et al., 2021; Matsuo et al., 2019;
Wallnöfer et al., 2022) to assist in this goal, for example,



48

to envision a city-scale network (Yehia et al., 2022).

VI. QUANTUM INTERNET

The goal of this section is to look beyond linear net-
works, i.e., chains of quantum repeaters, and discuss how
they blend into the vision of a future quantum internet.
We first present a set of communication tasks that can be
implemented over a quantum network and we link these
sample communication tasks with experimental require-
ments and associate the tasks with a taxonomy of stages
of the quantum internet which summarizes the discus-
sion in (Wehner et al., 2018). Second, we introduce the
elements of a quantum networks and place repeaters in
the larger context of a quantum network architecture.
Finally, we investigate how to evaluate the usefulness of
quantum networks for these different tasks. For this, we
introduce a simplified model of a network in terms of a
graph. The evaluation is phrased in the form of network
capacities, quantities that can be achieved in an ideal-
ized situation. We observe that in spite of the apparent
additional difficulty of dealing with a network, in this ab-
stract setting many of the tools from point-to-point links
carry to the network setting (see (Azuma et al., 2021)
for a review on tools for predicting quantum network per-
formance).

A. Applications of the quantum internet

1. A set of representative communication tasks

Before we discuss how to quantify the usefulness of a
quantum network, it is relevant to discuss the potential
applications of quantum networks and more generally of
the quantum internet. In the following we discuss a rep-
resentative set of the applications that we know today
divided by area. However, similar to the early days of
the Internet, we should expect many new applications to
be found as the number of users increases.

First of all, a quantum internet can be used for trans-
mitting information. The nodes in the network might
want to transmit classical information or quantum in-
formation. The latter is obviously not possible without
a quantum network, but also for the former the quan-
tum internet can offer an advantage with respect to a
classical network. In particular, both entangled chan-
nel inputs (Hastings, 2009) and joint quantum measure-
ments (Guha, 2011; Sasaki et al., 1998) can enhance the
transmission rate of classical communication. A quantum
internet can also be used to transmit classical informa-
tion between two parties that is secret to any third party
(Devetak, 2005). In turn, this enables secret key distri-
bution, a task that is possible with classical means only if
the parties are willing to make assumptions on the com-
munication channel, e.g., wireless physical layer security

relies on a model of the conditional probability distribu-
tion associated with the wireless channel (Bloch et al.,
2008), or on the capabilities of a potential eavesdropper,
e.g., the security of the RSA cryptosystem (Rivest et al.,
1978) relies on the difficulty of the factoring problem.

Second, a quantum network can be used to implement
several cryptographic tasks beyond private communica-
tion, with qualitative advantages with respect to classical
networks. The best known one is QKD. Some other tasks
are byzantine agreement (Ben-Or and Hassidim, 2005),
certified deletion (Broadbent and Islam, 2020), confer-
ence key agreement (Augusiak and Horodecki, 2009;
Chen and Lo, 2007; Murta et al., 2020), distribution
of money (Wiesner, 1983), leader election (Tani et al.,
2005), and secret sharing (Cleve et al., 1999; Hillery et al.,
1999). Then there are some important cryptographic
tasks which cannot be implemented neither with clas-
sical nor with quantum resources, such as information-
theoretically secure quantum bit commitment and two-
party secure computation (Lo, 1997; Lo and Chau, 1997,
1998; Mayers, 1997). But, if one is willing to make an
assumption on the amount of storage (Damgård et al.,
2008) or on the quality (Konig et al., 2012) of the stor-
age of a potential attacker, then implementing these tasks
with quantum resources is advantageous. In this category
fall quantum protocols for bit commitment (Kent, 2011;
Konig et al., 2012), oblivious transfer (Schaffner, 2010;
Wehner et al., 2010) and secure identification (Damgård
et al., 2007; Dupuis et al., 2014). Strikingly, quantum
offers the possibility of implementing most of these cryp-
tographic tasks without making any assumptions on the
behavior of the devices held by the legitimate parties
(Mayers and Yao, 1998). In consequence, these so-called
device-independent implementations close by construc-
tion one of the most important sources of side channel
attacks.

Third, as noted in the introduction (Sec. I), the study
of quantum communication complexity tells us that by
sending quantum information (qubits), we can dramati-
cally lower the amount of communication required com-
pared to sending classical information (bits). Quantum
fingerprinting (Buhrman et al., 2001) is an example of
the quantum advantage in communication.

A fourth important application of quantum networks
is computation. In its more direct sense, an alternative
paradigm to the monolithic construction of a quantum
computer is the so called modular or distributed quantum
computer (Nickerson et al., 2014). In this paradigm high
quality small quantum computers are linked via entan-
glement to build a larger quantum computer. A quantum
network can also be used to perform quantum computa-
tion on a remote quantum computer without revealing in-
formation about the computation or the underlying data
(Aharonov et al., 2017; Broadbent et al., 2009; Childs,
2001), to perform multipartite computation (Cleve and
Buhrman, 1997), or to obtain a computational advantage
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in distributed computation tasks (Le Gall et al., 2019).
Finally, the entanglement distributed by a quantum

network can boost the performance of sensing applica-
tions (Degen et al., 2017). Notable examples in this do-
main are in clock synchronization (Komar et al., 2014)
and in interferometry where entanglement can be used
to extend the baseline of telescopes (Gottesman et al.,
2012; Khabiboulline et al., 2019).

2. Stages of the quantum internet

The path to building the quantum internet will be long
and difficult. The current standard viewpoint is that
the quantum internet will probably develop in stages.
There are different ways to divide it into stages. The
classification proposed in (Wehner et al., 2018) is based
on the network functionality available to the end nodes.

Interestingly, quantum networks where nodes have
very limited functionality are already useful for applica-
tions and new tasks can be implemented as the function-
ality of the end nodes increases. This means, that even
at the early stages of development, we expect quantum
networks to be useful. We will briefly recap the discus-
sion in (Wehner et al., 2018), linking the communication
tasks introduced in VI.A.1 to development stages.

In the first stage trusted repeater networks are built. In
this stage, the nodes can prepare and transmit quantum
states to adjacent nodes in the network. This function-
ality allows to implement prepare-and-measure quantum
key distribution protocols between adjacent nodes. In
this way, it is possible, for instance, to construct a net-
work of individual quantum key distribution links, but it
is not a fully quantum network in the sense that quan-
tum information cannot be transmitted to non-adjacent
nodes. This very limited functionality is nonetheless use-
ful: in such a network, if two end nodes trust the behav-
ior of the nodes in a path connecting them, then they
can exchange keys that are secure under this assumption
(Salvail et al., 2010). Existing quantum networks such
as the Tokyo QKD network (Sasaki et al., 2011), the
SECOQC network (Peev et al., 2009) and the Shanghai-
Beijing network (Chen et al., 2021b) are in this stage (see
Sec. V.H.1).

In the second stage, end-to-end prepare-and-measure
networks are built. In this stage, the nodes can prepare
single qubits and transmit them to any other node in the
network without any trust assumption and on the receiv-
ing side, nodes can measure incoming qubits. A poten-
tial price to pay is the post-selection of the transmitted
signals. Nonetheless, prepare-and-measure networks can
still be useful for various additional applications includ-
ing secure identification in two-party cryptography with
noisy quantum memories and key distribution. This in-
cludes protocols where entanglement is used to guarantee
security but the nodes do not share an entangled state at

any moment. Instead, it is sufficient that the nodes can
confirm whether entanglement could have been shared if
the end nodes had run a coherent version of a prepare
and measure protocol. For instance, communicators in a
time-reversed entanglement distribution protocol (Biham
et al., 1996), measurement-device-independent quantum
key distribution (MDI QKD) (Lo et al., 2012), and twin-
field quantum key distribution (TF QKD) (Lucamarini
et al., 2018) fall into this category, which remove assump-
tions about the measurement devices and highly limit the
feasibility of side channel attacks (see, e.g., (Curty et al.,
2021)).

In the third stage, entanglement distribution networks
are achieved where two users can obtain end-to-end quan-
tum entanglement in either a deterministic or a heralded
fashion. In this stage, the end nodes require no quan-
tum memories. This added functionality enables, for ex-
ample, device-independent QKD, when the loss is suffi-
ciently low.

In the following we discuss the final three stages. These
stages differ in the quality of the quantum computational
capabilities of the nodes.

In the fourth stage, quantum memory networks are
built. In this stage, the end users can store quantum in-
formation in their memories and teleport quantum infor-
mation to each other. The minimum storage time is de-
termined by the transit time between the two end nodes.
Note that in this stage, the operations are done directly
on the physical qubits. There is no fault tolerance. This
functionality enables some blind quantum computation
schemes, provided that there exists a remote quantum
computer (Aharonov et al., 2017; Broadbent et al., 2009).
It also enables protocols for extending the baseline of
telescopes (Gottesman et al., 2012; Khabiboulline et al.,
2019), protocols for cryptographic tasks such as anony-
mous quantum communication (Christandl and Wehner,
2005), secret sharing (Cleve et al., 1999; Hillery et al.,
1999), simple leader election (Ambainis et al., 2004), and
some protocols for clock synchronization (Komar et al.,
2014).

In the fifth stage, few-qubit fault-tolerant networks are
built. Here, the end nodes can perform local quantum
operations fault-tolerantly on a few logical qubits. This
ability allows more complex protocols to be executed.
More concretely, an end node can perform fault-tolerant
execution of a universal gate set on q logical qubits such
as the number q ≥ 1 is small enough that the local quan-
tum processors can still be simulated efficiently by a con-
ventional computer. Since conventional computing power
tends to increase exponentially with time, what value of
q remains simulatable is a function of time and technol-
ogy. This functionality enables the implementation of a
distributed quantum computer by linking the end nodes.

In the sixth and final stage, quantum computing net-
works are built and large-scale fault-tolerant quantum
computation can be performed. The end node can per-
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form large-scale quantum computation that cannot be
simulated efficiently by any conventional computer. This
will be the ultimate quantum internet. With this func-
tionality it is possible to implement protocols for leader
election (Tani et al., 2005), fast byzantine agreement
(Ben-Or and Hassidim, 2005), quantum money (Gavin-
sky, 2012) and weak coin flipping with arbitrarily small
bias (Chailloux and Kerenidis, 2009; Mochon, 2007).

We end the recap of the stages by noting that the place-
ment of the tasks in a stage in (Wehner et al., 2018)
corresponds to the current theoretical state of the art.
Future protocol proposals might allow to reduce the re-
quirements to implement a given task. For a more thor-
ough description of existing protocols and their relation
to the development stages we point the reader to the
quantum protocol zoo (qua, 2019).

B. Quantum networks

1. Elements of a quantum network

The Internet connects user devices that we call end-
systems or hosts. These devices are linked by communi-
cation channels to other nodes in the network. However,
the hosts are not directly linked. Instead, they are con-
nected via intermediate devices that are called routers.
Routers in the internet receive packets of information
on incoming links and depending on the content of the
packet forward it through one outgoing link. Devices sit-
uated in a communication link that passively amplify the
signal and do not take routing decisions are called relays.

Similarly, a quantum network (Van Meter, 2014) con-
nects end-systems linked by quantum channels. Interme-
diate nodes in quantum networks, in addition to taking
routing decisions, participate in the generation of long-
distance entanglement. The responsibilities associated
with entanglement generation depend on the technology
(see Sec. III.B). They might include generating entangle-
ment with adjacent nodes, implementing a purification
protocol, swapping entanglement or processing encoded
quantum information. Moreover, quantum networks will
also require classical nodes and links for their operation.

In this review, we have used the term quantum re-
peaters to denote all intermediate nodes in a quantum
network. However, it is possible to make a finer classifi-
cation. In analogy with classical networks, Munro et al.
(Munro et al., 2022) differentiate between quantum re-
lays and quantum repeaters depending on whether they
process quantum information passively or actively. An-
other distinction can be made depending on whether the
intermediate nodes participate in network management
and decide how to swap entanglement or not. The for-
mer are called quantum routers and the latter automated
quantum nodes (Dahlberg et al., 2019; Kozlowski et al.,
2020b).

2. Network architecture

The Internet provides an information-transmission ser-
vice to the end-systems. To implement this service, most
communication networks rely on a layered approach.
Each layer of the so-called network stack uses the service
from the layer below without requiring any knowledge
about how it is implemented or what hardware compo-
nents it relies upon and provides a more complex service
to the layer above.

A priori, the main service of the quantum internet will
be the delivery of remote bipartite entanglement, which
can then be used as a resource for applications (Van Me-
ter, 2014). Other proposals posit that the delivery of
graph states will be the fundamental primitive of the
quantum internet (Pirker and Dür, 2019). Independently
of the main service, for the quantum internet we can ex-
pect a similar layered architecture (Cacciapuoti et al.,
2019; Dahlberg et al., 2019; Kozlowski et al., 2020a,b;
Pirker and Dür, 2019; Van Meter et al., 2008; Van Me-
ter and Touch, 2013) to the Internet, see (Illiano et al.,
2022) for a survey on protocol stack proposals. Recently,
Pompili et al. (Pompili et al., 2022) demonstrated exper-
imentally entanglement delivery using a network stack.

The quantum internet architecture will not be inde-
pendent of the Internet since it is clear that the quantum
internet will rely on classical communication for its func-
tionality. However, the quantum internet could also sup-
port the functionality of the classical internet creating a
complex interplay (Cacciapuoti et al., 2022).

C. The fundamental limits of communications over network

In the following we discuss the usefulness of quantum
networks from an information theoretic point of view.
First, we introduce a model of a network in terms of a
graph and the relevant notation. Then, we define the
quantities that characterize the fundamental limits for
communicating over quantum networks, i.e., the quan-
tum network capacities. In the network setting, there
is a richer set of quantities when compared with direct
transmission depending, for instance, on how the commu-
nication rates are defined or whether several sets of users
concurrently want to perform a communications task.

Second, we show how to bound the network capacities
both from above and from below. These bounds take a
particularly simple form in some relevant cases: e.g., for
general linear networks (Pirandola, 2019) or for bounding
the performance of DLCZ-like protocols (like the one in
Sec. III.A.3) in the presence of noisy memories (Azuma
et al., 2016).

We end by discussing the computability of these
bounds, and show that given bounds on the individual
channel capacities, the bounds on the network capacities
can be derived efficiently.
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FIG. 21 Quantum network and a Bell-pair network. a) A
quantum network as a graph. A quantum network can be
abstracted by a directed graph, G = (V,E) with V and E
the sets of vertices and edges. However, if two-way classical
communication is considered a free resource, edge directions
play no role as quantum teleportation can be used to revert
the direction of the channel. We associate with each vertex
v ∈ V a node in the quantum network and with each edge
e ∈ E a quantum channel Ne. In this example, Alice’s node
A and Bob’s node B are part of network with seven nodes
also including intermediary nodes C1, C2, C3, C4 and C5. b)
A network of maximally entangled states. One approach to
entanglement distribution between distant parties in a quan-
tum network is the aggregated repeater protocol (Azuma and
Kato, 2017). In this protocol, adjacent nodes prepare maxi-
mally entangled states that then can be transformed into end-
to-end entanglement between two distant parties by swapping
the entanglement. In the figure, the graph from panel a) has
been used to generate entanglement between adjacent nodes.
Each edge is annotated with a fraction x/y, where the de-
nominator y denotes the number of entangled pairs, while the
numerator x denotes the number of entangled states used to
establish entanglement between the end parties A and B. In
this example, a total of eight Bell pairs could be distributed
between A and B. Figure adapted from (Azuma and Kato,
2017).

1. An abstract depiction of networks

Similar to classical networks, quantum networks will
consist of many different components: end nodes, com-
munication channels, routers, switches, multiplexers, etc.
However for analysis purposes it is more convenient to re-
strict networks to two different components: nodes and
communication channels.

FIG. 22 Linear network and general protocol. a) A repeater
chain or linear quantum network is associated with a linear
graph, i.e., a graph that can be described by a sequence of
edges connecting distinct nodes. The linear network in the
panel may be a subnetwork of the network in panel a) from
Fig. 21. b) The general adaptive protocol (Azuma et al.,
2016) illustrated over the linear network from panel a). The
goal of the protocol is to distribute Bell pairs between A and
B. The protocol begins with the network joint state rep-
resented by a separable state and proceeds iteratively until
meeting a termination condition. On each round a node trans-
mits a local subsystem through a quantum channel. Then all
nodes perform an LOCC operation. The LOCC operation,
the choice of a channel, and transmitted subsystem can de-
pend on the history of the measurement outcomes of the pro-
tocol. The nodes of the linear network can be divided into
two disjoint virtual nodes, VA [nodes on the left (pink) box]
including A and VB [nodes on the right (green) box] including
B. The intuition behind the capacity upper bounds in (47)
and (49) is that distributing entanglement between these two
virtual nodes is an easier task than distributing entanglement
between A and B over the network. Figure adapted from
(Azuma et al., 2016).

We can represent this abstract network by G = (G, g),
whereG = (V,E) is a directed graph (see Fig. 21 (a)) and
g a map from edges in the graph to quantum channels,
i.e., completely positive and trace-preserving maps.

We denote by V the set of nodes in the graph and by
E the set of edges. Letting e ∈ E be a directed edge from
node u to node v, we say that the tail and head of the
directed edge e are u and v, respectively. We will denote
the edge by uv whenever it is useful to specify the tail
and head of a node.

We associate with each node v ∈ V a quantum in-
formation processing device. The capabilities of the
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quantum information processing devices sitting at net-
work nodes can range from a source that can prepare a
predefined set of quantum states to a fully-fledged uni-
versal quantum computer. For the rest of the section,
we assume that nodes can perform noiselessly arbitrary
local operations (LO). Since classical communication is
qualitatively cheaper than quantum communication, it is
common to assume free classical communication between
nodes connected by a quantum channel, and sometimes
between any two nodes in the network. With this ad-
ditional assumption, the nodes in the network can im-
plement local operations and classical communication
(LOCC) without cost.

Finally, we associate with each edge uv a quantum
channel that receives a quantum system as the input from
node u and outputs a quantum system to node v, via
the map: g(uv) = Nu→v. To simplify notation, when
possible we denote the channel at edge e by Ne.

This abstract depiction of a network as a graph al-
lows us to leverage tools from graph and network theory.
One concept that will be useful for the following is a
cut. Given a bipartition of the vertex set V , i.e., two
sets V ′ ⊂ V and V ′′ = V \ V ′, the associated cut-set or
cut ∆(V ′) is the set of edges connecting V ′ with V ′′. In
particular, the cut associated with V ′ is given by

∆(V ′) := ∆+(V ′) ∪∆−(V ′) (39)

with the outcut ∆+(V ′) associated with V ′,

∆+(V ′) := {uv ∈ E : u ∈ V ′, v ∈ V \ V ′}, (40)

and with the incut ∆−(V ′) associated with V ′,

∆−(V ′) := {uv ∈ E : u ∈ V \ V ′, v ∈ V ′}. (41)

Given two different vertices A,B ∈ V , we denote by
VA;B the set of all bipartitions of V separating A and B,
i.e., the set of all the subsets of V that include node A
but do not node B.

2. Quantum network capacities

While the applications of the quantum internet are
very different, most of them can be implemented if the
relevant nodes in the network share an appropriate en-
tangled state. For instance, in order to transmit a d-
dimensional quantum state it is sufficient to distribute a
d-dimensional bipartite maximally entangled state,

|Φd⟩ ≡
1√
d

d∑
i=1

|ii⟩ , (42)

called an edit (called an ebit when d = 2), which
then can be consumed to teleport the desired state (see
Sec. III.A.1).

Similarly, to transmit secretly a message from a set of d
possible messages, it suffices to distribute a d-dimensional
bipartite private state (Horodecki et al., 2005) or pdit
(called pbit when d = 2). The family of private states
consists of the states that can be used to generate a d-
dimensional secret key, i.e., a uniform probability distri-
bution over d values shared between two honest parties
Alice and Bob and secret to any other user. The class of
private states includes the class of maximally entangled
states but is strictly larger. In fact, there exist states
that cannot be distilled into a maximally entangled state
but, nonetheless, can be used to distill a pdit (Horodecki
et al., 2005).

Formally, a pdit is a state shared between Alice who
holds the systems a1a2 and Bob who holds b1b2 in the
following form:

γd ≡ Utwist
(
|Φd⟩ ⟨Φd|a1b1

⊗ σa2b2

)
U†

twist, (43)

where σa2b2 is an arbitrary bipartite state and Utwist =∑d
i=1 |ij⟩ ⟨ij|a1b1

⊗U (ij)
a2b2

is a so-called twisting controlled
unitary: the systems a1b1 control the application of
U

(ij)
a2b2

, arbitrary unitary operators on the systems a2b2.
GHZ states and multipartite private states (Augusiak

and Horodecki, 2009) play a similar role as a resource
for multiuser tasks such as secret sharing and conference
key agreement. Hence, in order to study the usefulness
of a quantum network for a given application, it suffices
to study the rate at which the network can produce a
desired resource state. In fact, for many tasks of interest
both problems are equivalent.

For the sake of simplicity, we restrict the following dis-
cussion to bipartite target states, which we denote by
θ
(d)
AB . Typically the target state is a maximally entangled

state or a private state: θ(d)AB = |Φd⟩ ⟨Φd|AB or θ(d)AB = γd.
As mentioned earlier, we assume that the nodes can

apply noiselessly any LOCC operation. Let us now dis-
cuss a general protocol for distributing entanglement in a
quantum network between nodes A and B (see Fig. 22).
Before the protocol, there is no entanglement between
different nodes in the network. Therefore, the joint state
is represented by a separable state as in Eq. (19). Itera-
tively, first a node transmits a local subsystem through a
quantum channel and then all nodes perform an LOCC
operation. The LOCC operation, the choice of a channel,
and transmitted subsystem can depend on the history of
the protocol, e.g., on measurement outcomes obtained
through LOCC in previous rounds.

We denote the reduced state between A and B at the
end of the protocol by σAB . It will be at trace distance
ϵ(≥ 0) from a target state θ(d)AB , i.e., ∥σAB − θ

(d)
AB∥1 = ϵ,

where ∥X∥1 = Tr(
√
X†X). We say that a protocol is

a P{ne}e∈E ,ϵ adaptive protocol if the average number of
uses of channel N e is upper bounded by ne for all edges
and the protocol produces a state at most at a distance
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ϵ from a target state θ(d)AB , where d(≥ 1) can depend on
the outcome of the protocol.

The figure of merit of P{ne}e∈E ,ϵ protocols is the aver-
age amount of the target entanglement produced, which
is quantified by log2 d for the states mentioned. From
an operational point of view, a d-dimensional maximally
entangled state or private state enables respectively the
transmission of log2 d qubits or the private communi-
cation of log2 d bits. We denote the average entangle-
ment produced—it might vary from round to round—by
⟨log2 d⟩.

We obtain the rate at which the protocol produces the
entanglement, by dividing the average entanglement by
the appropriate quantity of resources used. In contrast
with the single channel case, one can consider several
metrics: the number of channels used, the number of full
uses of the network or the number of times a path of
channels connecting A with B was used. These metrics
could be related to time which is for engineering purposes
a more convenient figure of merit (see (Azuma and Kato,
2017), (Bäuml et al., 2020), or (Azuma et al., 2021) for
detail).

The capacity of the quantum network is the optimal
asymptotic rate for producing a target entangled state θ
at which the error parameter ϵ can be made arbitrarily
small. Following our previous discussion on the rate, each
choice of rates gives rise to a different type of network
capacity.

Let us denote by n =
∑

e ne an upper bound on the
total number of channel uses and by pe = ne/n the fre-
quency that the protocol uses channel Ne. Given a fixed
set of frequencies, we define the capacity per channel use
(Azuma et al., 2016) as:

Cθ
c (G, {pe}e∈E) = lim

ϵ→0
lim

n→∞
1

n
sup

P{ne}e∈E,ϵ

⟨log2 d⟩. (44)

Depending on the network scenario, the usage frequen-
cies of the channels in the network can be free parame-
ters. In this case, Eq. (44) can be maximized over the set
{pe}e∈E of frequencies to give a unique network capacity
per channel use (Bäuml et al., 2020):

Cθ
c (G) = max

pe≥0,
∑

e pe=1
Cθ

c (G, {pe}e∈E). (45)

To capture the capacity per network use, which we
denote by Cθ

n(G), we let all upper bounds on the aver-
age number of channel uses be equal ne = ne′ e, e

′ ∈ E
and let n denote the number of network uses, i.e., we let
n = ne, which then implies pe = 1,∀e ∈ E. This quantity
corresponds to the notion introduced by Pirandola in (Pi-
randola, 2019) to capture the limits of so-called flooding
protocols. A third important scenario is the single-path
per network use capacity (Pirandola, 2019), where the
goal is to maximize the rate per use of a single path,
though it is unclear if it can be expressed in a form sim-
ilar to Eq. (44).

If the target state θ is a maximally entangled state (see
Eq. (42)), then these expressions represent a quantum
capacity of the quantum network G. If θ is a private
state (see Eq. (43)) it represents a private capacity.

The distribution of entanglement between a single set
of users is but one of many possible measures of use-
fulness of a quantum network. Networks typically serve
many users and one might be interested in understanding
the capacity of the network for distributing entanglement
to multiple sets of users. Equation (44) can be adapted
to capture multiuser setups by modifying appropriately
the figure of merit of the protocol ⟨log2 d⟩ and the def-
inition of P{ne}e∈E ,ϵ protocol (Bäuml et al., 2020). For
instance, given m sets of users and let ⟨log2 d(i)⟩ be the
average amount of entanglement that a P{ne}e∈E ,ϵ proto-
col produces for set i of users, then the maximization of
minmi=1⟨log2 d(i)⟩ leads to the maximum rate that can be
guaranteed to all sets of users, called the worst-case net-
work capacity, while the maximization of

∑m
i=1⟨log2 d(i)⟩

leads to the maximum total rate, called the total network
capacity.

3. Entanglement based upper bounds

While there is no known procedure for computing these
capacities in general, there are several tools for bound-
ing them both from above and from below leveraging the
relation between the communication task and the distil-
lation of the appropriate entangled state.

In the following, we present a formulation by (Rigo-
vacca et al., 2018) for abstract entanglement measures.
This formulation generalizes earlier work by Pirandola
(Pirandola, 2019) for quantum networks composed of a
specific type of channels (called teleportation simulable
channels, explained later) with the relative entropy of en-
tanglement and by Azuma et al. (Azuma et al., 2016) for
arbitrary quantum networks with the squashed entangle-
ment. In particular, these two results build respectively
on the PLOB (Pirandola et al., 2017) and TGW (Takeoka
et al., 2014a) bounds on the private capacity of an indi-
vidual channel (see Sec. I and Sec. III.A.3).

In particular, let E be a measure of bipartite entangle-
ment. That is, E is a function from the set of bipartite
states into the positive real numbers that satisfy several
requirements (Horodecki et al., 2009). In particular, it
is not increasing on average under LOCC. We define the
entanglement of channel NA→B as

E(NA→B) ≡ sup
ρAA′

E(NA→B(ρAA′)) , (46)

where ρAA′ is a bipartite state with A′ isomorphic to A.
Now, let E be a bipartite entanglement measure that

satisfies the following two inequalities:

P1 (Continuity) If a bipartite state ρAB is at epsilon
distance from the target state θ

(d)
AB , i.e., ∥ρAB −
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θ
(d)
AB∥1 ≤ ϵ, then E(ρAB) ≥ g(ϵ) log d − f(ϵ) with
f and g two real valued continuous functions that
verify limϵ→0 f(ϵ) = 0 and limϵ→0 g(ϵ) = 1.

P2 (Subadditivity) Given a bipartite state ρA1A2B1
,

the entanglement in the AB-cut after sending
the system A2 through channel NA→B is not
larger than the original entanglement in the
AB-cut plus the entanglement of the channel:
E(σA1B2B1

) ≤ E(ρA1A2B1
) + E(NA→B), where

σA1B2B1
= NA2→B2

(ρA1A2B1
).

Then, the capacity of the network for distributing some
target state θ between two nodes A and B can be
bounded from above by the following optimization for-
mulae (Rigovacca et al., 2018):

Cθ
c (G, {pe}e∈E) ≤ min

V∈VA;B

∑
e∈∆(V)

peE(Ne), (47)

Cθ
c (G) ≤ max

pe≥0,∑
e pe=1

min
V∈VA;B

∑
e∈∆(V)

peE(Ne), (48)

Cθ
n(G) ≤ min

V∈VA;B

∑
e∈∆(V)

E(Ne). (49)

Note that Eqs. (47)-(49) do not depend on any func-
tional of more than one channel: equations (47) and (48)
depend only on the entanglement of each of the chan-
nels individually and the channel usage frequencies, while
Eq. (49) depends only on the entanglement of the chan-
nels. The minimization is performed over VA;B , the set of
all cuts between A and B. The intuition for this formula
is that we could join all the nodes of the network into two
virtual nodes, one including A and one including B (see
Fig. 22 (b)). Distributing entanglement between these
two virtual nodes is an easier task and can be done at a
rate no larger than the entanglement of all the channels
connecting the two virtual nodes. Since this argument
provides a valid upper bound for any bipartition, the
minimum provides the best upper bound of this form.

Fortunately, there are several entanglement measures
that verify P1 and P2 for private states (and in conse-
quence also for maximally entangled states). In particu-
lar the squashed entanglement (Takeoka et al., 2014a,b)
and the max-relative entropy of entanglement (Chris-
tandl and Müller-Hermes, 2017) satisfy both properties
for arbitrary channels, while the relative entropy of en-
tanglement is only known to satisfy both properties for
a family of channels known as teleportation simulable,
Choi simulable or stretchable channels (Bennett et al.,
1996c; Gottesman and Chuang, 1999; Horodecki et al.,
1999; Pirandola et al., 2017; Wolf et al., 2007).

Leveraging an inequality from (Christandl and Müller-
Hermes, 2017), Rigovacca et al. (Rigovacca et al., 2018)
proved a hybrid relative entropy upper bound, where the
entanglement measure in the upper bounds in Eqs. (47),

(48) and (49) is the relative entropy of entanglement for
teleportation simulable channels and the max-relative en-
tropy of entanglement for the other channels. Therefore,
the currently best option to give upper bounds in the
form (47), (48) or (49) to a given arbitrary quantum net-
work is to use this hybrid relative-entropy bound or the
squashed-entanglement bound. Many relevant channels
such as the amplitude damping channel are not telepor-
tation simulable. However, several channels of particular
interest are teleportation simulable; this includes the de-
polarizing and dephasing channels, more generally mixed
Pauli channels, the erasure channel and lossy bosonic
channels. Remarkably for the lossy bosonic channels,
which model optical fibers, the relative entropy of en-
tanglement based upper bound is tight (Pirandola et al.,
2017). In the following we define Choi-simulable channels
and particularize the bounds for this case.

A channel NA→B is teleportation simulable if given
a state ρA that one wants to transmit through chan-
nel NA→B and the Choi state of the channel ΓA′B =
NA→B (|Φd⟩ ⟨Φd|A′A), there exists an LOCC protocol Λ
that simulates the action of the channel on any input
state ρA:

NA→B(ρA) = Λ(ΓA′B ⊗ ρA′′) . (50)

To gain intuition on this equation one can think of the
identity channel from A to B. Then simulation can be
obtained by teleportation, i.e., Λ consists of a joint gener-
alized Bell measurement on systems A′A′′ and applying
the appropriate correction to system B. More generally,
this strategy works for any channel whose action com-
mutes with the receiver’s corrections of quantum telepor-
tation (Bennett et al., 1993), because, in this case, the
correction to system B can be regarded as correction for
system A before entering the channel NA→B and thus,
this is merely a local teleportation to send a quantum
state ρA′′ to system A.

4. Application of the upper bounds to linear networks

In the following we focus on a particular use case: lin-
ear networks (see Fig. 22). This use case of the upper
bounds is of particular relevance to quantum repeater
protocols. In this case, the cut-sets are the individ-
ual channels, highly simplifying the upper bounds. The
bounds on the capacities per channel (47), (48) and per
network (49) use take the form:

Cθ
c (G, {pe}e∈E) ≤ min

e∈E
peE(Ne), (51)

Cθ
c (G) ≤

1∑
e∈E [E(Ne)]

−1 , (52)

Cθ
n(G) ≤ min

e∈E
E(Ne). (53)

The upper bound on the network capacity per channel
use (52) was derived in (Azuma et al., 2016).
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As a first example, let us consider a linear network
connected by lossy bosonic channels. For these channels,
the choice of the relative entropy of entanglement (i.e.,
E = ER) gives tight bounds. In particular, it was shown
in (Pirandola et al., 2017) that ER(Ne) = − log2(1 −
ηe), where ηe is the transmittance of the lossy bosonic
channel Ne of Eq. (13). Then, if we insert this relation
into Eqs. (51), (52) and (53), we obtain the following
expressions for the capacities of the network, including
one derived in (Pirandola, 2019):

Cθ
c (G, {pe}e∈E) = min

e∈E
−pe log2(1− ηe), (54)

Cθ
c (G) =

1∑
e∈E(− log2(1− ηe))−1

, (55)

Cθ
n(G) = min

e∈E
− log2(1− ηe). (56)

As a second example, we consider the performance of
a DLCZ-type quantum repeater protocol (Duan et al.,
2001) (like one in Sec. III.A.3) where the memory in the
nodes is subject to decoherence and taking into account
the time required to exchange classical communication
between distant nodes. Razavi et al. (Razavi et al., 2009)
noticed that in contrast with the polynomial scaling with
the total distance L predicted by the DLCZ protocol,
the performance with finite coherence times of quantum
memories degrades exponentially with

√
L. Azuma et al.

(Azuma et al., 2016) strengthened the results and showed
that polynomial scalings for a large class of DLCZ-type
protocols could be only possible above a threshold coher-
ence time. In particular, see Fig. 23, the performance
of any DLCZ-type repeater scheme with a memory co-
herence time below 1.0× 10−4 s is upper-bounded by an
exponential on the square root of the total distance, and
this kind of performance is achievable as described in
Sec. IV. The key idea to apply upper bound (52) is that
the memory noise can be modeled by a noisy quantum
channel between the memory at the time when it stores a
state and the memory at the moment that it releases the
state. In consequence, the performance of any protocol
using the noisy memory is bounded by the performance
of an induced linear network (i.e., by using Eq. (52)).

5. Capacity lower bounds via the aggregated repeater protocol

Now let us look at a general lower bound on the ca-
pacity of quantum networks (Azuma and Kato, 2017).
This lower bound, based on aggregated quantum repeater
protocol, matches the general upper bounds given in
Eqs. (47) and (49) up to a prefactor. Moreover, the ag-
gregation of even existing protocols (Duan et al., 2001;
Jiang et al., 2009; Li et al., 2013; Mazurek et al., 2014;
Sangouard et al., 2011) matches the lower bound on the
capacity up to another prefactor for the case of opti-
cal quantum networks composed of lossy bosonic chan-
nels. This implies that the upper bounds have no scaling
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FIG. 23 Upper bound on the secret key rate achievable with a
noisy linear network. In particular, the upper bound applies
to a wide range of protocols including DLCZ (Duan et al.,
2001) and others (Azuma et al., 2012; Kok et al., 2003; San-
gouard et al., 2011) when implemented with matter quantum
memories in the presence of dephasing noise. The linear net-
work consists of a chain of repeaters equally separated and
connected by an optical fiber with attenuation length 22 km
and spanning a total distance of L km. The curves labeled
by (i-vi) correspond respectively with the following coherence
times: 1.0 × 10−2 s, 5.0 × 10−3 s, 2.5 × 10−3 s, 1.0 × 10−3 s,
5.0×10−4 s, 1.0×10−4 s. The upper bound in (vi) scales better
than direct transmission, roughly proportional to the square
root of the PLOB bound, but equivalent to the intercity QKD
protocols in Sec. IV. In consequence, with a coherence time
of 1.0 × 10−4 s there can be no advantage for a DLCZ-type
repeater scheme compared with the simpler intercity QKD
protocols. Figure from (Azuma et al., 2016).

gap and yield good measures of the usefulness of a net-
work. We note that, while we have exemplified the upper
bounds with a linear network of repeaters in Sec. VI.C.4,
they can be applied to any quantum network with arbi-
trary topology, including distributed quantum computa-
tion setups.

In the following, we discuss the lower bound which
corresponds with the achievable rate of the aggregated
quantum repeater protocol introduced by Azuma et
al. (Azuma and Kato, 2017), see Fig. 21 (b). The goal of
this protocol is to distribute entanglement between tar-
geted nodes in the network which is later consumed to
perform the appropriate communications task.

For each of the quantum channels in a given quantum
network, let us consider a protocol that produces entan-
gled states that are ϵ-close to a maximally entangled state
at a rate Re which can be different for each channel. This
is possible for all channels provided that Re < Q(Ne),
i.e., provided that the rate is below the maximal rate of
the channel for distributing maximally entangled states
for a large enough number of channel uses (called the
quantum capacity of the channel Ne). Then, if each of
the channels is used ne times, the whole network will be
in a tensor product of entangled states and the whole net-
work can be regarded as a multi-graph with neRe edges
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per edge in the original graph, where each edge in the
multi-graph corresponds to a qubit maximally entangled
state |Φ2⟩.

We can use the resulting state to create maximally en-
tangled states between Alice at node A and Bob at node
B. For each state it is necessary to perform entanglement
swapping over a path of maximally entangled states con-
necting Alice with Bob. The number of maximally en-
tangled states that can be distributed between Alice and
Bob is then equivalent to the maximum number of edge
disjoint paths connecting Alice with Bob in the multi-
graph. This maximum number of paths is by Menger’s
theorem (Jungnickel, 2005) equivalent to the value of the
minimum cut of the graph:

M = min
V∈VA;B

∑
e∈∆(V)

neRe. (57)

This minimization can be solved in time proportional to
a polynomial in the number of edges. However, since
the number of edges grows with the number of uses,
the full optimization is a priori intractable. Now, if
we consider the achievable rate per channel use with
the aggregated repeater protocol, Eq. (57) becomes
minV∈VA;B

∑
e∈∆(V)(ne/n)Re. Moreover, for a number

of uses n large enough, any rate below the capacity of
each channel is achievable. Consequently, the right-hand
side of the following expression is achievable:

Cθ
c (G, {pe}e∈E) ≥ min

V∈VA;B

∑
e∈∆(V)

peQ(Ne), (58)

Cθ
c (G) ≥ max

pe≥0,∑
e pe=1

min
V∈VA;B

∑
e∈∆(V)

peQ(Ne), (59)

Cθ
n(G) ≥ min

V∈VA;B

∑
e∈∆(V)

Q(Ne), (60)

where pe = ne/n. We note that the lower bounds
are of the same form of the respective upper bounds
in Eqs. (47)-(49) where the entanglement of the chan-
nel is replaced by the quantum capacity. Therefore, if
E(Ne) = Q(Ne) holds for any e, these lower bounds (58),
(59) and (60) coincide with upper bounds (47), (48), and
(49). For example, this is indeed the case for quantum
networks composed only of lossy bosonic channels.

The aggregation of quantum repeaters is also possible
with minimizing cost (Azuma, 2023). The cost here is
a general notion like a price to pay for presenting ebits
between two targeted nodes in a quantum network.

6. Computability of the network capacities

Let us now discuss how to compute both the lower and
the upper bounds in Eqs. (47), (49), (58), and (60). This
is indeed important in practice, for instance, to determine
how a network provider should distribute entanglement

to clients according to their requests. All four equations
depend only on the values of the entanglement of the indi-
vidual channels. The four quantities are expressed as the
solution of the minimum cut over an undirected graph.
These optimization problems can be solved by a linear
program in time polynomial in the number of nodes in
the graph (Jungnickel, 2005). Similar arguments allow
one to find efficiently lower and upper bounds not only
on the capacities for two-party communication described
above, but also on the worst-case and total quantum net-
work capacities (see VI.C.2) and for distributing GHZ
states (Bäuml et al., 2020).

VII. CONCLUDING REMARKS

The quantum internet will have important applica-
tions in sensor networks, upscaling quantum computing
and secure quantum communication (van Dam, 2020).
To build the quantum internet, quantum repeaters have
been proposed and studied extensively. This review has
focused on the various generations of quantum repeaters
as well as all-photonic quantum repeaters; we have seen
that quantum repeaters are essential to realize an effi-
cient quantum internet. Nonetheless, our discussion has
been largely limited to a fiber-optical setting connecting
two end nodes, Alice and Bob.

In this concluding section, we take a step back to think
some more about how to build a quantum internet. We
will discuss a few alternative designs and important is-
sues facing the quantum internet—not only its efficiency,
but also its cost and the uncertainty in the technology it
would leverage.

Cost can be a critical issue in realizing any technology.
Although the conventional Internet is believed to con-
tribute trillions of US dollars each year to the US econ-
omy, just upgrading the existing fiber optical network
in the US to cover, say, 90 percent of households there
would take an additional investment of over 100 billion
US dollars (see, e.g., (Cartesian, 2021)). This figure is for
a single country and for an upgrade to the existing, ex-
tensively developed, Internet. Therefore, it is not unrea-
sonable to predict that the construction and operation of
a global quantum internet would ultimately take decades
and require investments of trillions of US dollars. This
is an astonishing number. Such an enormous investment
would almost certainly come not only from governments,
but also from for-profit commercial corporations. For
a comparison, the LIGO and LHC projects—endeavours
admittedly more localized in scope—required only 1.1 bil-
lion and 4.75 billion dollars, respectively (Horgan, 2016;
Roche, 2022). We have not even begun to estimate the
cost of building various generations of quantum repeater
structures on a global scale. Some detailed calculations,
aided by a quantum network simulator, would be needed
to address the cost issue more seriously.
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On the other hand, as mentioned in the introductory
section I, the Internet consumes a lot of energy through
the transmission of optical signals. Furthermore, the
sensing, monitoring and routing of the Internet require
massive amounts of local computational power. As the
Internet grows, scalability becomes a challenge. A quan-
tum internet could operate at single-photon level. It may
well be interesting to explore whether a quantum inter-
net could lead to huge savings in energy consumption.
Similarly, it may be worthwhile to investigate whether
quantum computing and quantum information process-
ing could contribute to the management of the internet.

Next, let us imagine a world—sometime in the distant
future—where quantum memories with long-term stabil-
ity become widely available at low cost. In this case,
to distribute entanglement, one could simply ship those
stable quantum memories all over the world, physically,
in the same way that we currently dispatch hard drives
and mail (see, e.g., (Devitt et al., 2016)). The appar-
ent drawback would be latency, which means the delay
before a transfer of data begins following an instruction
for its transfer; however, this shipment could be done
off-line, and entanglement swapping could be used to
connect users via intermediate nodes instantaneously in
the same way that a telephone network can connect the
users. In this way, the latency issue could be alleviated.
With the physical shipment of quantum memory devices,
the requirements of quantum repeaters could be reduced.
This is just one way in which our design of the quantum
internet is highly dependent on the available technology,
in addition to cost.

Currently, quantum memories often operate at cryo-
genic temperatures and their lifetimes are often lim-
ited. If this is the case, quantum repeater nodes will
need refrigerators. Notice that all-photonic quantum
repeaters may also require refrigerators (either in pho-
tonic graph state generation devices or measurement de-
vices).Suppose we wanted to connect someone in New
York with another person in Tokyo—10,845 km away—
through undersea optical fibers. Then, optimistically, we
would need to place a quantum repeater node every a few
hundred kilometers under the sea. In this case, hundreds
of repeater nodes would be needed. Placing cryogenic
repeater nodes in undersea optical fibers, maintaining
them, and providing the energy to operate them reliably
are no easy feats, and would likely prove very costly.

As an alternative solution, ground-to-satellite quan-
tum communication is a serious candidate. By preparing
an entangled source of photons in a satellite, Charlie,
and sending it to two ground stations, Alice and Bob,
Charlie can act as an untrusted relay to connect two dis-
tant locations on the globe. Currently, line of sight is a
serious restriction in ground-to-satellite communication.
However, we can envision a future wherein space-grade
long-lifetime quantum memories are available. By first
sending one half of an entangled pair to Alice, storing the

second half in the quantum memory on a rapidly moving
quantum satellite, and later sending it to Bob, Charles
can connect any two ground stations that have a line of
sight to any point on the satellite’s orbit. Besides this,
a constellation of orbiting satellites could provide a con-
tinuous, on-demand entanglement distribution service to
ground stations (Khatri et al., 2021). In principle, one
could put quantum repeaters even on satellites to run a
quantum repeater protocol (Liorni et al., 2021). How-
ever, this may also be challenging if the repeaters need
cryogenic environment.

As mentioned earlier (see Sec. III), the probabilistic
nature of a Bell state measurement in linear optics (for
certain photonic encodings) is a key limiting factor in the
design of both matter-based and all-photonic quantum
repeaters. Indeed, without using additional ancillae or
a different encoding, the success probability of a linear-
optical Bell measurement is upper-bounded by 1/2. A
game changer for the efficiency of quantum repeaters
would therefore be a near-deterministic, high-fidelity en-
tangling gate on photons. This could be based on, for ex-
ample, an enhancement by quantum memories (Bhaskar
et al., 2020; Borregaard et al., 2020; Munro et al., 2012).

For all-photonic repeaters in particular, a game-
changer would be the deterministic generation of pho-
tonic graph states based on coupled quantum emitters
such as quantum dots (see, e.g., (Li et al., 2021a)). Alter-
natively, a hybrid approach with a single quantum emit-
ter and subsequent fusions would also dramatically lower
the resource requirements (Hilaire et al., 2022). There
exists another possibility of the development purely on
all photonics: beginning with all-photonic intercity QKD
(Sec. IV), proceeding to all-photonic quantum repeaters
(Sec. III.C), and ending with linking fault-tolerant pho-
tonic quantum computers (e.g., (Knill et al., 2001b)).

Another important area of research is the quantum
interconnect (see, e.g., (Awschalom et al., 2021)). In-
deed, the ability to convert and transfer quantum infor-
mation across different platforms will enhance the inter-
operability of the future quantum internet.

In this review, we have focused on the distribution of
bipartite entanglement. However, for many applications,
including quantum sensing, it is often advantageous to
use multipartite entangled states. Conceptually, we may
build up multipartite states through successive telepor-
tations. However, were we to do it with linear optics,
the probabilistic nature of a Bell measurement would
make the success probability of constructing an n-partite
entangled state exponentially small. Therefore, there is
value in further exploring the preparation and distribu-
tion of multipartite entanglement.

To conclude, we stress that a truly global quantum in-
ternet requires seamless operation across continents. As
different countries are currently pursuing different ap-
proaches and strategies for the quantum internet, there
will be a need for cooperation and standardization in the
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design, construction and operation of this major technol-
ogy.
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