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The Weak Gravity Conjecture holds that in a theory of quantum gravity, any gauge
force must mediate interactions stronger than gravity for some particles. This statement
has surprisingly deep and extensive connections to many different areas of physics and
mathematics. Several variations on the basic conjecture have been proposed, including
statements that are much stronger but are nonetheless satisfied by all known consistent
quantum gravity theories. We review these related conjectures and the evidence for
their validity in the string theory landscape. We also review a variety of arguments
for these conjectures, which tend to fall into two categories: qualitative arguments
which claim the conjecture is plausible based on general principles, and quantitative
arguments for various special cases or analogues of the conjecture. We also outline the
implications of these conjectures for particle physics, cosmology, general relativity, and
mathematics. Finally, we highlight important directions for future research.
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I. INTRODUCTION

The Weak Gravity Conjecture is a remarkably simple
statement about theories of quantum gravity. In essence,
it says that any gauge force must be stronger than grav-
ity. More precisely, in its mildest form, the Weak Gravity
Conjecture holds that any U(1) gauge theory must have
at least one object satisfying

|q|
m
≥ |Q|

M

∣∣∣∣
ext

, (1)

where |Q|
M

∣∣∣
ext

is the charge-to-mass ratio of a large ex-

tremal black hole. This simple statement has profound
consequences, which touch virtually every aspect of mod-
ern fundamental physics, including string theory, cos-
mology, particle physics, algebraic geometry, black holes,
quantum information, holography, scattering amplitudes,
and more.

The original paper on the Weak Gravity Conjecture
(WGC) from Arkani-Hamed, Motl, Nicolis, and Vafa
(AMNV, henceforth) (Arkani-Hamed et al., 2007b) is, by
now, more than 15 years old. It sparked a flurry of re-
search shortly after it was released, which slowly tapered
off over the course of the next several years. The middle
of the 2010’s, however, saw a resurgence of interest in the
conjecture, which has continued to the present day.

This resurgence of interest was driven in part by the
hope that quantum gravity may have something to say
about testable low-energy physics, despite the fact that
quantum gravitational effects are naively suppressed by
powers of energy divided by the Planck mass. Originally
it was hoped that this problem could be circumvented
by using string theory to predict low-energy parameters
such as Yukawa couplings or the scale of supersymmetry
breaking, but the gradual acceptance that string theory
has a vast Landscape of four-dimensional vacua has posed
a major challenge to this idea: the more possibilities one
has, the harder it is to make a unique prediction.

Nonetheless, there may be some simple rules which
conclusively exclude particular low-energy actions. The
WGC is one such rule, and as we will see below it poten-
tially constrains certain models of particle physics and
cosmology and thus offers hope that quantum gravity
may yet make decisive predictions for IR physics in the
near future.1

The WGC has many interesting theoretical implica-
tions. In the context of AdS/CFT, it implies nontrivial
statements for conformal field theories. In the context of
string compactifications, it implies nontrivial statements
about Calabi-Yau geometry. In the context of black hole
physics, it is intimately related to the preservation of cos-
mic censorship. These connections, and others that we
will review below, suggest that the WGC is pointing us
towards deep, fundamental principles of quantum grav-
ity.

However, despite the recent progress, we are still far
from a concrete understanding of such principles, and
some of the most basic questions about the WGC remain
unanswered.

First and foremost, we emphasize that the WGC is not
really a single, universally-agreed-upon conjecture, but
rather a family of distinct but related “weak gravity con-
jectures,” each of which attempts to formalize the idea
that “any gauge force must be stronger than gravity” in
a different way. These various conjectures have different
consequences for particle physics, cosmology, and much
more. Some versions of the WGC have been discarded
as counterexamples have been identified, while other ver-
sions have seen a growing body of evidence in their favor.
Some of the most promising versions of the conjecture are
known as the “tower Weak Gravity Conjecture” and the

1 The set of low-energy actions which cannot be realized in quan-
tum gravity has been called the “Swampland” (Vafa, 2005), and
many more rules for ruling out such actions have been proposed.
Some of these proposals are closely related to the WGC, while
others are not. In this review we focus on the WGC specifically,
so our discussion of other parts of the Swampland program will
be subjective and incomplete. Readers interested in a broader
discussion might consult, e.g., (van Beest et al., 2021; Brennan
et al., 2017; Graña and Herráez, 2021; Palti, 2019).
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“sublattice Weak Gravity Conjecture,” and we will elab-
orate on them shortly.

Moreover, so far no nontrivial version of the conjec-
ture has actually been proven in the sense of being de-
rived from some accepted general principle. A number
of promising routes towards a proof of some version of
the WGC have been proposed in recent years, but these
routes all suffer from at least one of two drawbacks: ei-
ther they establish some statement which is qualitatively
like the WGC, but without the correct O(1) factors in-
cluded (i.e., “no gauge force can be much weaker than
gravity”), or they argue for a precise version of the WGC,
but rely on additional, unproven assumptions. In partic-
ular in the original paper, AMNV motivated the WGC
using black hole physics: the requirement that any non-
supersymmetric black hole should be able to decay neces-
sitates some version of the WGC. It is not clear however
why any non-supersymmetric black hole must be able to
decay, and it is also not clear that black hole decay is
the fundamental principle underlying the WGC as op-
posed to an accidental consequence of it. In particular,
there is strong evidence for some versions of the conjec-
ture (e.g., the sublattice WGC) with sharp consequences
going beyond the minimal requirements of black hole in-
stability. A proof of some form of the WGC—even a
mild one—would represent a significant development in
our understanding of the conjecture.

Without a proof of the conjecture, or a deeper under-
standing of why the conjecture must be true, it is difficult
to be sure which version(s) of the conjecture are correct,
so it is difficult to determine how strong are the con-
straints imposed by the WGC on particle physics, cos-
mology, geometry, and more. This means that despite
the immense progress in our understanding of the WGC
in recent years, the most important discoveries may yet
lie ahead.

The remainder of this review is structured as follows.
In Section II, we review arguments for the absence of
global symmetries in quantum gravity, which may be
viewed as a sort of precursor to the WGC. In Section
III, we introduce the Weak Gravity Conjecture in its
mild and stronger variants. In Section IV, we outline the
evidence for different versions of the WGC, focusing on
concrete examples in string theory and Kaluza-Klein the-
ory. In Section V, we present qualitative arguments for
approximate versions of the WGC, i.e., without precise
O(1) factors included. In Section VI, we review the at-
tempted derivations of the WGC, briefly explaining why
(in our opinion) each of them falls short of a “proof”
of the WGC. In Section VII, we discuss broader impli-
cations of the WGC for phenomenology, mathematics,
and other areas of theoretical physics. In Section VIII,
we end with conclusions and outlook. In appendix A
we describe a general procedure for determing the black
hole extremality bound (needed to correctly normalize
the WGC bound) in theories with moduli.

M

? ? ?
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FIG. 1 Gravitational collapse of global-charged objects cre-
ates black holes of arbitrarily large global charge. If sub-
sequently left alone, effective field theory dictates that the
resulting black holes decay to objects of size r ∼ rsc and
corresponding mass M ∼ Msc via Hawking radiation with-
out appreciably changing the expected value of their global
charge. This implies an infinite number of microstates for
black holes of any fixed mass M � Msc, in violation of the
Bekenstein-Hawking entropy formula. (Whether this process
eventually results in stable remnants is immaterial.)

II. NO GLOBAL SYMMETRIES

The WGC has its origins in an older conjecture, which
says that theories of quantum gravity admit no global
symmetries of any kind. One motivation for this conjec-
ture is the following. An evaporating black hole emits
all particles in a theory, without regard to their global
charges (Hawking, 1975). This differs from gauge charge,
where (at least for continuous gauge group) the electric
field outside of a charged black hole provides a chemical
potential that favors discharge during evaporation. This
insensitivity of black hole evaporation to global charges
suggests that black holes can violate global symmetries
and destroy global charge (Zeldovich, 1976, 1977).

A more precise argument (Banks and Seiberg, 2011)
is that a continuous global symmetry would violate the
Bekenstein-Hawking formula for black hole entropy. For
example, suppose we had a quantum gravity theory with
a U(1) global symmetry. By colliding objects which are
charged under this symmetry, one could produce large
black holes of arbitrarily large global chargeQ. The semi-
classical calculation of Hawking evaporation implies that
these black holes will decay, at least until they reach a
radius rsc � `Pl below which the effective field theory de-
scription is invalid. A black hole of initial charge Q will
have a final charge Q′ ∼ Q: the Hawking evaporation
process may emit charged particles, but it does not pref-
erentially discharge the black hole. Thus we can prepare
black holes of size rsc but arbitrarily large charge. The
information which is stored in this charge is arbitrarily
large, and in particular exceeds the Bekenstein-Hawking



4

+ -

FIG. 2 Global symmetry violation by a Euclidean wormhole:
a pair of charged particles is created from the vacuum, with
the positive charge staying in the asymptotically-flat region
but the negative charge ending up in a baby universe. For
someone living in the asymptotic region, this apparently vio-
lates the symmetry. Such a process can’t happen for a gauge
symmetry, since the baby universe is closed and compact so
its gauge charge must be zero.

entropy
πr2

sc

G . This argument—illustrated in Figure 1—
extends directly to any continuous global symmetry, and
implies a bound on the size of a finite global symmetry
group, albeit one that is exponentially weak in rsc/`Pl,
which can be a large number in a weakly coupled the-
ory (Banks and Seiberg, 2011).

Another, somewhat more vague, argument for global
symmetry violation in quantum gravity is that if cer-
tain “Euclidean wormholes” are included in the gravita-
tional path integral then apparent global symmetry vio-
lation is a consequence (Abbott and Wise, 1989; Coleman
and Lee, 1990; Giddings and Strominger, 1988; Kallosh
et al., 1995) (see also (Hawking, 1996) for an alternative
view). The basic idea is that if there is a finite amplitude
for adding a closed connected spatial component to the
universe, usually called a “baby universe,” then global
charge can end up in such a baby universe and therefore
charge conservation can appear to be violated in the part
of the universe we can actually access (see figure 2). This
statement does not apply to gauge charge, as the gauge
charge of a closed universe must be zero.2

Such general arguments about black hole physics or
Euclidean gravity have been supplemented by observa-
tions about concrete theories of quantum gravity. In

2 This argument for the violation of global symmetries is quite
similar to the semiclassical argument that black holes destroy
quantum information, so it may seem surprising that the mod-
ern consensus is that global symmetries are indeed violated but
information is not lost. The difference is that the global charge
of Hawking radiation is a “simple” observable, which is the kind
the low-energy effective field theory needs to get right, while any
extraction of information about the initial state of a black hole
requires “complex” observables with the capability to invalidate
the semiclassical picture. See (Harlow and Shaghoulian, 2021)
for more on why global symmetries are not allowed in theories
where black hole evaporation is unitary.

FIG. 3 An AdS/CFT contradiction between global symme-
try and entanglement wedge reconstruction: the symmetry
operators are products of operators supported in the regions
R1, R2, . . ., but no such operator can implement the symme-
try on a charged operator in the center of the space.

perturbative string theory, given a putative continuous
global symmetry, one can create a vertex operator on
the worldsheet that creates a gauge field in spacetime
coupling to the symmetry current, demonstrating that
the would-be global symmetry is, in fact, gauged (Banks
and Dixon, 1988). Similarly, in AdS/CFT, a conserved
current for a continuous global symmetry of the CFT im-
plies the existence of a corresponding gauge symmetry in
the bulk quantum gravity theory (Witten, 1998).

In the context of AdS/CFT, a holographic argu-
ment against global symmetries—both continuous and
discrete—was presented in (Harlow and Ooguri, 2019,
2021). Here, a symmetry generator Ug associated with a
group element G acting on the boundary R is split into
a product,

Ug(R) =
∏
i

Ug(Ri)Uedge , (2)

where R = ∪iRi, each Ug(Ri) acts only in the region Ri,
and Uedge acts at the boundaries of the Ri. A charged
operator localized in the center of the bulk should trans-
form under Ug(R), but since the entanglement wedge of
each Ri will not contain the center of the bulk for Ri
sufficiently small, the charged operator cannot transform
under the right-hand side of (2): a contradiction (see
figure 3). We conclude that such a global symmetry can-
not exist under the assumption that entanglement wedge
reconstruction holds valid. This argument applies also
to the higher-form global symmetries of (Gaiotto et al.,
2015), under which the charged objects are strings or
branes instead of particles.

The use of AdS/CFT in (Harlow and Ooguri, 2019,
2021) is obviously rather restrictive, but more recently it
was observed in (Harlow and Shaghoulian, 2021) that es-
sentially the same argument can be used to exclude global
symmetries in any theory of quantum gravity where en-
tanglement wedge reconstruction can be applied to an
auxiliary reservoir coupled to an evaporating black hole.
This assumption is the essential feature of recent cal-
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culations of the “Page curve” for an evaporating black
hole, and thus is closely related to the unitarity of black
hole evaporation (Almheiri et al., 2019; Penington, 2020).
Moreover it was observed, following (Lewkowycz and
Maldacena, 2013), that semiclassically this calculation
can be interpreted as arising from the appearance of cer-
tain Euclidean wormholes in the gravitational path inte-
gral (Almheiri et al., 2020; Penington et al., 2022). Fi-
nally in (Chen and Lin, 2021; Hsin et al., 2021) it was
shown that these Euclidean wormholes can indeed lead
to concrete violations of global symmetry, thereby quan-
tifying global symmetry violation in evaporating black
hole backgrounds.

Finally, let us remark that the absence of global sym-
metries in quantum gravity is closely related to an-
other Swampland conjecture, the Completeness Hypothe-
sis (Polchinski, 2004). This hypothesis holds that in any
gauge theory coupled to gravity, there must exist charged
matter in every representation of the gauge group. The
existence of such states is supported by black hole argu-
ments (Banks and Seiberg, 2011) and holographic argu-
ments in the context of AdS/CFT (Harlow, 2016; Harlow
and Ooguri, 2019). In G gauge theory, if G is compact
and connected, or finite and abelian, then the presence
of charged matter in every representation is equivalent to
the absence of a 1-form symmetry under which Wilson
lines are charged. If G is compact but disconnected, or
finite and nonabelian, then the presence of charged mat-
ter in every representation is equivalent to the absence
of “non-invertible” global symmetries, which are associ-
ated with certain codimension-2 topological operators in
the gauge theory (Heidenreich et al., 2021b; Rudelius and
Shao, 2020). This close connection between the absence
of global symmetries and the Completeness Hypothesis
means that arguments for one conjecture serve as (indi-
rect) evidence for the other. An interesting quantitative
approach to completeness based on algebraic ideas has
been developed in (Casini et al., 2020, 2021; Casini and
Magan, 2021), where relative entropy and conditional ex-
pectation are used to diagnose to what extent field theo-
ries obey the completeness hypothesis.

The strongest arguments against the existence of
global symmetries in quantum gravity are arguments
against exact global symmetries. For applications, it is
important to refine these arguments to ask to what ex-
tent approximate global symmetries are allowed. Recent
general arguments along these lines include (Daus et al.,
2020; Fichet and Saraswat, 2020; Nomura, 2020). As we
will see, the Weak Gravity Conjecture is one attempt to
address this question: the weak coupling limit of a gauge
theory has a global symmetry, and should be forbidden in
quantum gravity. As we will discuss in §V.B below, the
Weak Gravity Conjecture is also related to the breaking
of approximate 1-form global symmetries associated with
the absence of charged particles.

III. WEAK GRAVITY CONJECTURES

We now consider quantum gravity theories coupled to
a U(1) gauge field, in D > 3 spacetime dimensions, with
low-energy actions of the form

S =

∫
dDx
√−g

(
R

2κ2
− 1

4e2(φ)
FµνF

µν + . . .

)
. (3)

Here e2(φ) is some function of the scalar fields φi in the
theory and the omitted terms include kinetic terms for
these scalars, as well as other possible terms involving
additional matter fields and/or higher-derivative terms
for the gauge field and the metric.3 The compactness of
the gauge group requires charge to be quantized, and we
normalize the gauge field so that the covariant derivative
on a field of unit charge is ∂µ − iAµ. We then define
electric charge by

Q =

∫
SD−2
∞

1

e2(φ)
? F, (4)

where SD−2
∞ is a sphere at spatial infinity, in which case

charge is quantized in integer units (i.e., the canonically-
normalized electrostatic potential is proportional to eQ).

The mildest version of the weak gravity conjecture then
says the following:

Mild Weak Gravity Conjecture. Given any U(1)
gauge field coupled to gravity as in (3), there must ex-
ist an object of charge q and mass m satisfying

|q|
m
≥ |Q|

M

∣∣∣∣
ext

. (5)

Here |Q|M
∣∣
ext

indicates the charge to mass ratio of an ex-
tremal black hole of arbitrarily large size (in general there
are finite-size corrections to this ratio which are not in-
cluded in (5)). We will refer to any object obeying (5)
as superextremal. It is convenient to parameterize the
extremal charge-to-mass ratio as

e|Q|
M

∣∣∣∣
ext

≡ γ 1
2κ, (6)

where κ > 0 is the gravitational coupling constant ap-
pearing in the action (3), related to the Planck mass MPl

and the Newton constant G by

κ2 = 8πG =
1

MD−2
Pl

, (7)

3 In D = 4 if massless charged particles exist then several aspects
of this discussion need to be modified, due to the logarithmic
running which eventually drives the renormalized gauge coupling
e to vanish in the deep infrared. The mild WGC still holds in
such theories, since after all there are massless charged particles,
but to simplify our exposition we will assume that in D = 4 all
charged particles are massive.
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and e2 = e2(〈φ〉) denotes the gauge coupling in the vac-
uum when written without an argument. γ is a dimen-
sionless parameter which in general depends on the func-
tion e2(φ) and on the metric on moduli space (see Ap-
pendix A). If e2(φ) is independent of the moduli, then
we simply have

γ =
D − 3

D − 2
. (8)

Above, as throughout this review, we have of course set
~ = c = 1, but we emphasize that even if we restore
them there are no factors of ~ in (6) since the extremality
bound is a classical notion.

The original motivation for the conjecture is that it
provides a kinematic condition that would allow an ex-
tremal black hole to shed its charge, which can happen
even at zero Hawking temperature via Schwinger pair
production (Gibbons, 1975; Johnson, 2020). However,
there is no obvious pathology in a theory that admits
infinitely many stable extremal black holes; due to the
extremality bound, this would not lead to infinite en-
tropy at finite mass as in the global-charge case in Fig. 1.
Hence, this motivation falls far short of a proof or even
a strong argument

Although the mild Weak Gravity Conjecture has an
appealing simplicity, in practice it is too weak to imply
anything interesting. The object which obeys (5) could
be very heavy, in which case it would have no substantive
consequences for particle physics or cosmology. More-
over it would not even be sufficient to allow “medium-
sized” near-extremal black holes to decay, and thus would
not address the original motivation for the conjecture.
The mild Weak Gravity Conjecture is nonetheless use-
ful to consider, as it is a consequence of all of the various
stronger versions of the WGC which have been proposed,
which do have other more interesting implications, and
so an argument which shows that the mild WGC holds
would hopefully also lead to an argument for one or more
of the stronger versions. We now turn to discussing these
possible generalizations.

A. WGC for P-form gauge fields

The mild WGC can be generalized in an obvious way
from particles charged under an ordinary 1-form gauge
field to (P − 1)-branes charged under a P -form gauge
field, with the restrictions 1 ≤ P ≤ D − 3. Instead of
bounding the charge-to-mass ratio |q|/m of such a parti-
cle, the WGC instead bounds the charge-to-tension ratio
of the (P − 1)-brane:

Mild WGC for P -form gauge fields. Given a P -form
gauge field coupled to gravity, there must exist a (P − 1)-

brane of charge Q and tension TP , satisfying

|Q|
TP
≥ |Q|

TP

∣∣∣∣
ext

. (9)

Here |Q|TP

∣∣∣
ext

is the charge to tension of an extremal black

brane. It is useful to consider a concrete low-energy the-
ory, with action

S =

∫
dDx
√−g

(
R

2κ2
− 1

4κ2
(∇φ)2 − 1

2e2
P

e−αPφF 2
P+1

)
.

(10)

Here FP+1 = dAP is the field strength for a P -form gauge
field Aµ1...µP , with

F 2
q :=

1

q!
Fµ1...µqF

µ1...µq , (11)

and by convention we shift φ to set 〈φ〉 = 0, so that eP is
indeed the gauge coupling in the vacuum. In this theory
we can write the extremal charge-to-tension ratio as

eP |Q|
TP

∣∣∣∣
ext

= γ
1
2

P κ, (12)

with

γP =
α2
P

2
+
P (D − P − 2)

D − 2
. (13)

If we replace e2
P eαPφ by some more general function

e2
P (φ) then γP is modified as appropriate (see Ap-

pendix A). For future reference we write in one place
the superextremality bound:

e2
PQ

2 ≥ γPκ2T 2
P . (14)

B. Magnetic WGC

The magnetic version of the mild WGC is nothing but
the ordinary mild WGC, applied to the electromagnetic
dual gauge field. For the case of a P -form gauge field,
this implies the existence of a superextremal magnetically
charged (D−P −3)-brane, with magnetic charge |Q̃| and
tension TD−P−2, satisfying

|Q̃|
TD−P−2

≥ |Q̃|
TD−P−2

∣∣∣∣∣
ext

. (15)

In four dimensions, for p = 1, this becomes a statement
about the charge-to-mass ratio of a magnetic monopole.
The monopole mass can be estimated in terms of the
energy stored in its magnetic field. This energy is UV-
divergent, but if we cut it off at the semiclassical radius
rsc ∼ 1/ΛNP associated to the “new physics” scale ΛNP at
which the low-energy EFT breaks down, then we obtain

mmon &
ΛNP

e2
, (16)
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in the absence of a finely-tuned cancellation between the
field energy and the bare mass, where e is the electric
gauge coupling.4 By Dirac quantization, the magnetic
gauge coupling is given by ẽ = 2π/e, so the magnetic
WGC bound (15) becomes

ΛNP . eMPl . (17)

In other words, the magnetic WGC places a cutoff on the
new physics scale of the abelian gauge theory, which van-
ishes (in Planck units) in the limit e→ 0. The magnetic
WGC thus quantifies the extent to which effective field
theory breaks down in the limit of weak gauge coupling.
Without imposing the WGC itself, the conclusion (17)
can also be obtained by requiring that the magnetic
monopole is not a black hole, i.e., that its Schwarzschild
radius is smaller than rsc (Arkani-Hamed et al., 2007a;
de la Fuente et al., 2015).

We emphasize that the new physics scale ΛNP ∼ 1/rsc

is not a cutoff on effective field theory altogether. The
abelian gauge theory may be embedded into another ef-
fective field theory with a higher cutoff, such as a Kaluza-
Klein theory, a nonabelian gauge theory, etc.. In Section
III.D, we will introduce several strong forms of the WGC,
and in Section V we will see that some of these strong
forms provide a bound not only on ΛNP ∼ 1/rsc but
also on the energy scale ΛQG at which gravity becomes
strongly coupled. This latter energy scale represents a
cutoff on low energy effective field theory in any form,
above which quantum gravity effects cannot be neglected.

Finally, let us note that a similar argument can be ap-
plied to (D − P − 3)-branes magnetically charged under
a P -form gauge field in D dimensions (Hebecker et al.,
2017b). The tension of such an object can be approxi-
mated as

TD−P−3 ∼
ΛP

e2
P

, (18)

where rsc = Λ−1 is again the semiclassical radius of the
brane, and eP is the electric coupling constant. On the
other hand, the tension of a black brane is given by

TBB ∼MD−2
Pl RPS , (19)

where RS is the Schwarzschild radius of the black brane.
If we then demand that the magnetic brane is not itself
a black hole, so that Λ−1 = rsc & RS , we then have

Λ . (e2
PM

D−2
Pl )

1
2P . (20)

This reduces to (17) in the familiar case D = 4, P = 1.

4 This logic is not valid for electrically charged particles, because
the self-energy should be cut off at the Compton radius, which is
much larger than Λ−1

NP. Stated another way, the classical radius of
an electric charge is less than its Compton wavelength, whereas
the reverse is usually true for a magnetic charge, unless it is
exceptionally light due to a finely-tuned cancellation between
bare mass and field energy.

C. The convex hull condition

So far, we have focused on theories with a single gauge
field. In general, however, a quantum gravity theory will
have more than one gauge field, so the statement of the
WGC must be generalized to this case. For simplicity,
we focus on the case of particles charged under 1-form
gauge fields, though analogous statements hold for branes
charged under higher-form gauge fields.

In a theory of N abelian gauge fields, the charge of
a given particle may be represented by an N -vector ~Q,
where Qi is the charge under the ith gauge field. The set
of all possible charges ~Q consistent with charge quantiza-
tion forms a lattice Γ ' ZN ⊂ RN . We define a “charge
direction” Q̂ as a unit vector in RN , and we say that such
a charge direction is “rational” if λQ̂ ∈ Γ for some λ ∈ R.

Finally, we define a “multiparticle state” as consisting
of one or more actual particles in the theory with “mass”
m and “charge” ~q equal to the sums of the masses and
charges of the constituent particles. This corresponds to
a limit where the particles in question are taken infinitely
far from each other, so that they do not interact. A
multiparticle state is superextremal if ~z := ~q/m has a
length which is greater than or equal to the charge-to-
mass ratio of an extremal black hole in the Q̂ charge
direction. The length of this vector is measured with
the inverse of the kinetic matrix of the U(1) gauge fields,
i.e., given a Lagrangian − 1

4KijF
i
µνF

jµν , the length of ~z

is
(
Kijzizj

)1/2
, where KijKjk = δik.

With this, we may define a mild WGC in such a theory
as follows:

Mild WGC for multiple gauge fields. For every ra-
tional direction Q̂ in charge space, there is a superex-
tremal multiparticle state with ~z ∝ Q̂.

When there are a finite number of stable particles in the
theory, this statement admits an equivalent, geometric
formulation known as the convex hull condition (CHC)
(Cheung and Remmen, 2014b). The CHC considers the
set of all charge-to-mass vectors ~zi := ~qi/mi for the par-
ticles in the theory, and it holds that the convex hull of
this set should contain the region in ~Z-space where black
holes live. This condition is depicted graphically in Fig-
ure 4. Note that in the absence of massless scalar fields,
the black hole region is simply the interior of an ellipsoid,
Kijzizj ≤ γκ2. If massless scalar fields are added to the
theory, the black hole region will generically grow in size,
and it may change its shape as well. Thus, the CHC
gives stronger bounds in theories with massless scalar
fields than those without.
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Z1

Z2

BH region

FIG. 4 The Convex Hull Condition. In theories with multiple
U(1)s, the WGC is equivalent to the statement that the con-
vex hull of the charge-to-mass vectors of the various particle
species must contain the black hole region.

D. Strong forms of the WGC

So far all versions of the WGC which we have discussed
are still “mild” in the sense of not having particularly
interesting implications. From the very first paper on
the WGC, however, there has been interest in stronger
versions of the WGC. This interest is not just wishful
thinking: as we will see in Section IV, all known examples
in string theory seem to satisfy stronger statements than
the mild WGC. Moreover the heuristic arguments we will
review in Section V also give support to the idea that
something stronger than the mild WGC is true.

A first strong form to mention, which is at times im-
plicit in AMNV, is the statement that the WGC should
be satisfied by superextremal particles which are not
themselves black holes. Higher-dimension operators in
the action can modify the extremality bound of finite-
sized black holes, as we will discuss further in Section
VI. If the charge-to-mass ratio of these finite-sized ex-
tremal black holes decreases as their mass is taken to
infinity, the mild form of the WGC can be satisfied by
stable, finite-sized black hole states. This scenario sat-
isfies the letter of the WGC law, but not the spirit of
it, which holds that all black holes should be able to
decay by emitting charged particles. This points to a
first strong form of the WGC: the particles satisfying the
WGC bound should not be black holes.

AMNV suggested two additional possible strong forms
of the WGC: The first held that the lightest charged par-
ticle should be superextremal. The second held that the
particle of smallest charge should be superextremal. Nei-
ther of these statements hold in general, however: they
are violated, for instance, in certain Tn orbifold compact-
ifications of type II and heterotic string theory (Heiden-

reich et al., 2017).
However, a growing body of evidence points to another

pair of strong forms (Andriolo et al., 2018; Heidenreich
et al., 2017, 2019; Montero et al., 2016):

Tower Weak Gravity Conjecture. For every site in
the charge lattice, ~q ∈ Γ, there exists a positive integer n
such that there is a superextremal particle of charge n~q.

Sublattice Weak Gravity Conjecture. There exists
a positive integer n such that for any site in the charge
lattice, ~q ∈ Γ, there is a superextremal particle of charge
n~q.

A few remarks about these conjectures are in order.
First, note that the tower WGC implies that in any
charge direction q̂, there must exist an infinite tower of
superextremal particles. Indeed, the tower WGC is often
defined by this latter statement. In the following section,
however, we will see that consistency under dimensional
reduction requires the formal definition we have given
here.

Second, note that the sublattice WGC is strictly
stronger than the tower WGC: the sublattice WGC im-
plies that the integer n appearing in the definition of the
tower WGC can be chosen independently of ~q. The sub-
lattice WGC is equivalent to the statement that there is
a (full-dimensional) sublattice of the charge lattice such
that there is a superextremal particle at each site in the
sublattice. The integer n is sometimes referred to as the
“coarseness” of the sublattice. If n = 1, we say the the-
ory satisfies the lattice WGC. However, the lattice WGC
is false in general; we will exhibit a counterexample in
Section IV.C.3.

Third, note that the tower WGC and the sublattice
WGC require an infinite set of superextremal particles
in each rational charge direction, whereas the ordinary
WGC may be satisfied in a given charge direction by
multiparticle states. We will see in the following sec-
tion that the existence of superextremal particles, rather
than merely multiparticle states, is required for consis-
tency under dimensional reduction. For small charges,
the necessary particles are ordinary, quantum-mechanical
particles, represented by fields in the effective field the-
ory. Very far out on the charge lattice, the “particles”
are actually black holes. The tower and sublattice WGCs
thus interpolate between the effective quantum field the-
ory regime and the gravitational regime of the quantum
gravity theory in question. This is schematically illus-
trated in Figure 5.

Fourth, note that it is possible (and, in fact, quite
common in string theory examples) for the particles sat-
isfying the tower/sublattice WGCs to be unstable reso-
nances rather than stable states of the theory. Unstable
resonances are not as easy to define as stable, single-
particle states, since they do not correspond to states in
the Hilbert space of the theory, but rather to localized



9

M

Q

MPl

Black holes

Light particles

FIG. 5 Schematic illustration of WGC-satisfying particles
(red dots) if the tower/sublattice WGCs hold. The black
hole extremality bound is the dashed diagonal line. At small
Q, the WGC is satisfied by light particles described by EFT.
At large Q, black holes with small corrections obey the WGC;
these asymptotically approach the extremality bound at large
Q.

peaks in the S-matrix of some scattering process. If the
theory is weakly coupled, such a peak will be localized
at a particular energy scale—the mass of the unstable
particle—and the lifetime of this particle will be long. If
the theory is strongly coupled, however, such a peak will
be spread out across a range of energy scales, and it is
not so easy to define the mass of the resonance. Corre-
spondingly, the tower WGC and sublattice WGC are not
so easy to define in this case.

Fifth and finally, note that the tower/sublattice WGCs
are modified in the presence of a few very light charged
particles in 4d due to the logarithmic running of the
gauge coupling. Such charged particles appear near spe-
cial loci in the moduli space where they become mass-
less (e.g., where the Coulomb and Higgs branches of an
N = 2 theory intersect). In D ≥ 5, this has a mild
effect—generating finite threshold corrections—but in 4d
the log running reduces the infrared gauge coupling grad-
ually to zero as the massless locus is approached. A naive
reading of the tower/sublattice WGCs would then sug-
gest that an infinite tower of charged particles becomes
light near the massless locus, but this does not always
occur, in particular when the massless locus lies at finite
distance in the moduli space.5 While this seems to be
a counterexample to the 4d tower/sublattice WGCs as
originally stated, replacing the infrared gauge coupling
in the WGC bound with its renormalized value resolves
the problem (Heidenreich et al., 2018b), suggesting that
the conjectures are subtly modified rather than being in-
validated in 4d. By contrast, this problem is absent in
D ≥ 5 and no modification seems to be needed there (see,
e.g., (Alim et al., 2021)).6

5 The absence of an infinite tower of light charged particles in such
cases agrees with the Emergence Proposal (Grimm et al., 2018;
Heidenreich et al., 2018a,b).

6 The difference between the 4d and higher-dimensional cases can

In closing, let us mention one other proposed “strong
form” of the WGC: a superextremal state can saturate
the WGC bound (i.e., be extremal) only if the theory
is supersymmetric and the state in question is a BPS
state (Ooguri and Vafa, 2017). This conjecture is a very
mild extension of the ordinary WGC, since there is no
good reason why the mass of a superextremal particle
should be tuned precisely to extremality unless the state
is a BPS state in a supersymmetric theory. Nonetheless,
this extension is interesting, as it suggests that extremal
black holes can be (marginally) stable only if they are
BPS. When applied to the WGC for p-form gauge fields,
the analogous statement further implies that any non-
supersymmetric anti-de Sitter (AdS) vacuum supported
by fluxes must be unstable.

E. WGC for nonabelian gauge fields

Thus far, our definition of the WGC has dealt exclu-
sively with particles charged under continuous, abelian
gauge groups. We now want to discuss its extension to
continuous, nonabelian gauge groups. For D = 4 this dis-
cussion is complicated by the fact that nonabelian gauge
fields are often confined, in which case the notion of a
charged particle is not well-defined, so this topic is of
most interest for D > 4.

The mild form of the WGC extends in a rather triv-
ial way: one simply decomposes the irreducible repre-
sentations of the gauge group G into charges under the
U(1)rk(G) Cartan and demands that the ordinary WGC
should be satisfied with respect to this Cartan subgroup.
This requirement is automatically satisfied by the mass-
less gluon fields of the theory. The sublattice WGC, on
the other hand, is somewhat more subtle to define in
the nonabelian context. We will use the following defini-
tion (Heidenreich et al., 2018b):

Sublattice WGC for nonabelian gauge fields.
Given G gauge theory (with G a connected Lie group)
coupled to quantum gravity, there is a finite-index Weyl-
invariant sublattice Γ0 of the weight lattice ΓG such that
for every dominant weight ~QR ∈ Γ0, there is a superex-
tremal resonance transforming in the G irrep R with
highest weight ~QR.

This statement is stronger than simply requiring that the
abelian sublattice WGC should be satisfied with respect
to the Cartan of G, as the latter can be satisfied by par-
ticles transforming under a sparse set of representations

also be explained by noting that the tower/sublattice WGCs are
related to the mild WGC in one lower dimension (see §IV.A),
whereas the mild WGC requires modification in 3d—if it con-
tinues to exist at all—due to the absence of asymptotically flat
black holes.
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provided they are sufficiently light. One argument for
this stronger statement is that it is satisfied in perturba-
tive string theory; this follows from the modular invari-
ance argument discussed in Section IV.D below. This
conjecture has also been shown to hold in certain 6d F-
theory compactifications (Cota et al., 2021).

A natural question, now that we have defined the
sublattice WGC for continuous abelian and nonabelian
gauge groups, is whether there are further extensions for
finite groups (or disconnected groups, more generally).
Thought experiments involving the evaporation of black
holes carrying charge under finite gauge groups suggest
bounds on UV cutoffs that are similar in spirit to WGC
bounds (Craig et al., 2019a; Dvali, 2010; Dvali and Redi,
2008; Dvali et al., 2008). WGC bounds can also be ap-
plied separately to the A and B fields associated with
a massive gauge field in BF-theory (Reece, 2019), which
can lead to conclusions consistent with black hole thought
experiments in ZN gauge theory (Craig et al., 2019a).
These considerations may hint at the existence of a for-
mulation of the WGC encompassing all gauge groups.

F. WGC in asymptotically AdS spacetimes

Thus far, we have focused on the WGC in flat
(Minkowski) spacetimes. It is also worthwhile to define
the conjecture in spacetimes with nontrivial curvature.
Here, with an eye towards AdS/CFT, we restrict our-
selves to possible definitions of the WGC in AdS space-
times.

The flat space definition (5) depends on the mass m
of the particle, but in AdSD with AdS radius R a more
natural quantity is its rest energy ∆

R (in AdS/CFT ∆
is the scaling dimension of the CFT operator which is
dual to the field which creates the particle). The rela-
tion between m and ∆ depends on the dimensionality of
spacetime and the spin of the particle; for a scalar field
in AdSD the relationship is

∆ =
D − 1

2
+

√
(D − 1)2

4
+R2m2 . (21)

A minimal requirement of any WGC bound in AdSd+1

is that it reduces to the flat space bound in the limit
where R → ∞. One obvious proposal which does this
was noted by (Nakayama and Nomura, 2015);

e2q2 ≥ γκ2 ∆2

R2
. (22)

As in (5), γ = D−3
D−2 in the absence of massless scalar

fields. Using the AdS/CFT correspondence, this bound
can be recast in terms of data of the CFTD−1 as a bound
on the charge q and dimension ∆ of the operator O
dual to the charged field. In D = 5, the CFT bound

is (Nakayama and Nomura, 2015):

q2

b
≥ ∆2

12c
, (23)

where c ∼ 〈TT 〉 is the central charge of the CFT and
b ∼ 〈JJ〉 is the beta function coefficient of the conserved
current associated to the gauge field in the bulk. On
the other hand there is no particular reason why (22)
is more likely than some other expression which has the
same flat space limit, so the proper formulation of the
WGC in AdS remains an open problem.

The Weak Gravity Conjecture in AdS/CFT is closely
related to the recently formulated “Abelian Convex
Charge Conjecture” (Aharony and Palti, 2021). Given
a CFT with a U(1) global symmetry, if we define ∆(n)
to be the dimension of the lowest dimension operator of
charge n, then this conjecture holds that

∆(n1q0 + n2q0) ≥ ∆(n1q0) + ∆(n2q0) , (24)

for q0 ≥ 1 an order-one integer. A similar statement is
conjectured to hold for nonabelian gauge groups. Semi-
classical tests of this statement were carried out in (An-
tipin et al., 2021). If true, this conjecture implies that
there must exist a particle in the AdS bulk theory with
non-negative self-binding energy, which is very similar to
the Repulsive Force Conjecture discussed below. Strong
forms in which q0 is 1 or is the charge of the lowest di-
mension charged operator were also briefly considered
in (Aharony and Palti, 2021), but such statements (as
currently formulated) are in tension with a flat-space ex-
ample, as we will discuss in IV.C.3.

In comparing the Convex Charge Conjecture and vari-
ous strong forms of the WGC, it is important to remem-
ber that not every CFT operator corresponds to a single-
particle state in AdS. A convex spectrum of charged
single-trace operators would have important implications
for moduli stabilization. Consider a theory in which the
gauge coupling e(φ) is a function of a stabilized mod-
ulus φ with mass mφ, and which has a separation of
length scales L � m−1

φ � rsc, where L is the curva-
ture radius of an AdS (or dS) vacuum and rsc is the
size of the smallest black hole we can treat as semiclas-
sical. In this case, there are black hole solutions that
can be approximated as flat-space black holes with a
massless modulus φ when the black hole radius r obeys
m−1
φ � r � rsc and as flat-space black holes with no

modulus when L � r � m−1
φ . Consequently, the black

hole spectrum includes a range of extremal black holes
that effectively have a modulus-dependent constant γφ
in the extremality bound (6), and another range with
the modulus-independent value γ0 (8). The modulus-
dependent constant γφ is larger, as in (13), so that the
WGC becomes weaker in the infrared than in the UV. As
a result, the minimum mass as a function of charge for
any black hole spectrum that interpolates between these
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κmd−3
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Unstabilized
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FIG. 6 Modulus stabilization and a non-convex spectrum of
charged black holes. In a theory where a modulus φ is sta-
bilized with mass mφ, the extremal black hole spectrum (red
curve) should interpolate between small black holes that fol-
low the “unstabilized” extremality bound (lower dashed black

line) with slope γ
−1/2
φ and large black holes that follow the

“stabilized” extremality bound (upper dashed black line) with

larger slope γ
−1/2
0 . The red curve indicates the smallest pos-

sible mass for a given charge. The detailed shape depends
on the potential and couplings of φ, but any spectrum that
interpolates between the two linear regimes must fail to be
convex for some intermediate values of |Q|.

limits must fail to be convex, as illustrated in Fig. 6. On
the other hand, at large |Q|, one could consider states
consisting of multiple small black holes instead of a sin-
gle large black hole, which could then have a lower mass
following the “unstabilized” line. From the CFT view-
point, these would correspond to multi-trace, rather than
single-trace, operators. A better understanding of the
Convex Charge Conjecture in CFTs and its relationship
to large-N expansions, then, could potentially have im-
portant implications for the existence of vacua with sta-
bilized moduli and scale separation.

G. WGC for axions and axion strings

In Section III.A, we extended the WGC to the case
of a P -form gauge field. An especially interesting case
to consider is P = 0, in which the gauge field A0 is a
periodic scalar field (A0 ∼ A0 + 2π), also known as an
axion.

This case is somewhat degenerate however, since the
objects charged under this gauge field must be (−1)-
branes, also known as instantons, with tension given by
the instanton action T0 ≡ Sinst.

7 The instanton charge,

7 A potential source of confusion here is that in general these in-
stantons have nothing to do with the topologically-nontrivial
gauge field configurations introduced in (Belavin et al., 1975),
but they happen to coincide for the particular case of the QCD

also called the instanton number, is given (in Euclidean
signature) by

n = i

∫
Sd−1

f2 ? dA0, (25)

where f ≡ 1
e0

is sometimes called the axion decay con-

stant and Sd−1 is a small sphere surrounding the instan-
ton. In attempting to formulate an axion version of the
WGC, however, we run into the problem that there is
no immediately obvious notion of extremality. Indeed,
naively plugging in P = 0 to (13) (assuming the absence
of massless scalar moduli), we see that γ0 is zero, so the
naive WGC bound (9) is trivial. Most likely, this does not
indicate the absence of any sort of axion WGC bound,
but rather that the O(1) coefficient γ0 must be fixed by
some other means. In the absence of a clear notion of
extremality, the axion WGC bound is typically written
simply as follows:

Axion WGC. Given an axion (i.e., a periodic scalar)
with axion decay constant f coupled to quantum gravity,
there must exist an instanton of instanton number n sat-
isfying

n

f
& Sinstκ . (26)

Note, in particular, that the sharp bound in the P -form
WGC (9) has been replaced by a &, to account for the
unknown O(1) coefficient γ0.

There have, however, been proposals for what this
O(1) coefficient should be. In the case of a 1-form, the
WGC bound is the opposite of the black hole extremality
bound, which sets the maximal charge-to-mass ratio of
a macroscopic object in the low-energy theory (namely,
a black hole). When it comes to instantons charged un-
der an axion gauge field, there is once again a family of
macroscopic solutions in the low-energy theory, known as
gravitational instantons, which ostensibly can be used to
fix γ0 and define the extremality bound.

How exactly this should be done is not quite clear,
however, and there are (at least) two proposals on the
table. The confusion deals with the question of which
class of gravitational instanton should be used to define
the extremality bound, as there are three such classes:

1) Solutions with a singular core, also known as “cored”
solutions.

axion in four dimensions. More broadly however there can be ax-
ions without gauge fields and gauge fields without axions, and for
D 6= 4 these two meanings of “instanton” do not even correspond
to objects with the same dimensionality. The instantons we dis-
cuss here are always zero-dimensional dynamical objects in the
Euclidean path integral with the property that their instanton
number as defined by equation (25) is nonzero.
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2) Solutions with a flat metric (which we will refer to as
“extremal” solutions).

3) Wormhole solutions, with two different asymptotic re-
gions connected by a smooth throat.

The metric for these solutions takes the form

ds2 =

(
1 +

C

r2D−4

)−1

dr2 + r2dΩ2
D−1 , (27)

where dΩ2
D−1 is the metric on the unit (D−1)-sphere, and

C is positive, vanishing, and negative for cored, extremal,
and wormhole solutions, respectively.

These solutions can all be obtained when we consider
theories with a massless, dilatonic modulus. Starting
from the action (10) for P = 0, the action of the ex-
tremal instanton solution is given by

Sext =

√
2|n|
αfκ

, (28)

where n is the instanton number. Meanwhile, the lower
bound on the action of a cored solution is given by
(Bergshoeff et al., 2004, 2005):

Smin =

√
2|n|
fκ

×
{

1
α α ≥ α̃
1
α̃

√
2α̃
α − 1 α < α̃

, (29)

where

α̃ :=

√
2(D − 2)

D − 1
. (30)

Finally, the instanton action for half of a wormhole solu-
tion is given by (Gutperle and Sabra, 2002):

S 1
2 wh =

√
2|n|
αfκ

× sin
(π

2

α

α̃

)
, (31)

where α̃ is as above.
With this brief review, we are now in a position to ask:

what is the O(1) coefficient for the axion WGC bound
in this theory? It is very natural to suppose that the
extremal instanton should set the axion WGC bound,
just as the extremal black hole sets the ordinary WGC
bound. From the instanton action (28), this gives the
bound:

|n|
fS
≥ |n|
fSext

=
ακ√

2
, α > α̃ . (32)

This bound is a very plausible candidate for the axion
WGC when α ≥ α̃. By (28), cored instantons have a
larger action than the extremal instanton of the same
instanton number, just as subextremal black holes have
a larger mass than an extremal black hole of the same
charge.

For α < α̃, however, things become more complicated.
Cored instantons now have a smaller action than the ex-
tremal solution. Thus, the axion WGC bound should
perhaps be given by the cored instanton of smallest ac-
tion, which means

|n|
fS
≥ |n|
fSmin

=
α̃κ√

2

1√
2α̃
α − 1

, α < α̃ . (33)

However, the half-wormhole solution has an even
smaller action than the cored and extremal instanton so-
lutions. If the WGC bound is to be set by the macro-
scopic object of smallest action, then perhaps the axion
WGC bound should be set by the half-wormhole solution,
so that

|n|
fS
≥ |n|
fSmin

=
ακ√

2

1

sin
(
π
2
α
α̃

) . (34)

Note that the right-hand side of this bound remains finite
in the α→ 0 limit.

It is not clear which of these bounds should be viewed
as the “correct” version of the axion WGC. Reference
(Heidenreich et al., 2016) proposed the bounds (32) and
(33), whereas (Hebecker et al., 2017c, 2018) suggested
the bound (34). One difference in viewpoint is that
the former paper assumed that only true instanton solu-
tions, not wormholes, can contribute to an axion poten-
tial, because a wormhole is effectively an instanton/anti-
instanton pair with no net charge. The latter argues
that, because the instanton and anti-instanton ends of
the wormhole can be very distant from each other in Eu-
clidean time, they do in fact generate an axion potential.
The latter perspective has a close affinity with the heuris-
tic argument that wormholes violate global symmetries
discussed in Section II.

Just as the precise statement of the axion WGC is
somewhat difficult to define, so too is its magnetic ver-
sion. Naively, we would like to say that there must exist
a (D − 3)-brane whose charge-to-tension ratio is greater
than or equal to that of a large, extremal black (D− 3)-
brane (e.g., a string in D = 4). Such objects do not exist
in asymptotically flat spacetime, as we will discuss fur-
ther shortly. Hence, rather than assuming an inequality
with an exact coefficient determined by an extremality
bound, it is natural to suppose that the WGC should
imply the existence of some charged (D − 3)-brane (i.e.,
a vortex) of charge Q̃ and tension TD−2, satisfying

eD−2|Q̃|
TD−2

& κ , (35)

where eD−2 = 2πf is the magnetic coupling. Again,
the inequality has a &, and there is an O(1) coefficient
that remains to be fixed. Specializing to D = 4 for con-
venience, an argument for this has been given in terms
of axionic black holes, i.e., those with a nonvanishing
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integral
∫

Σ
B of the axion’s dual B-field over the hori-

zon (Bowick et al., 1988). It has been argued that ax-
ionic strings obeying (35) are needed to allow this ax-
ionic charge to change and avoid a remnant problem in
black hole evaporation (Hebecker and Soler, 2017; Mon-
tero et al., 2017).

Because the magnetically charged object in this case
has codimension two (e.g., a string in D = 4 or a 7-brane
in D = 10), the classical tension stored in the winding
axion field is logarithmically divergent in both the IR and
the UV, whereas our discussion of the magnetic WGC in
§III.B incorporated only a UV divergence. Consequently,
(20) is not valid in the case P = 0. Revisiting the logic by
estimating the classical self-energy with UV and IR cut-
offs and requiring it to satisfy the magnetic axion WGC
bound (35), we have

T ∼ f2 log
ΛUV

ΛIR
.
f

κ
, (36)

or in other words

ΛUV

ΛIR
. exp

O(1)

κf
. (37)

This is compatible with the idea that instantons will gen-
erate an IR scale ΛIR ∼ e−SΛUV, together with the elec-
tric axion WGC (26), which implies S . 1

κf . Indeed,
once an axion potential is generated through instantons,
the axion vortex becomes the boundary of a domain wall,
such that the winding of the axion field is localized in-
side the wall and there is no significant energy density
outside the wall. When an axion vortex is attached to a
semi-infinite domain wall, we would view the energy out-
side the axion vortex core as reflecting the finite domain
wall tension rather than an infinite correction to the ax-
ion vortex tension. In this way, domain walls naturally
provide an IR cutoff to the estimate of the axion vortex
tension, and there is a relationship between the magnetic
and electric WGC that has the same spirit, although
more complicated details, as in the cases 1 ≤ P ≤ D− 3.

The above estimate neglects gravitational backreac-
tion, which is significant for objects of low codimension.
In particular, static vortices in gravitational theories pro-
duce a deficit angle. Implications of gravitational backre-
action on axion strings (in D = 4) for the magnetic axion
WGC were considered in (Dolan et al., 2017; Hebecker
et al., 2017b). The static axion string solution in general
relativity (in the case with zero axion potential, so that
the strings are not confined by domain walls) was first
found in (Cohen and Kaplan, 1988). The IR and UV
divergences of the string without gravity are reflected in
singularities of this solution. When f <

√
2MPl, the IR

singularity lies exponentially far away in Planck units
from the core of the string, and the deficit angle is posi-
tive. Hence one could consider, for example, large loops
of closed string, which would be well-behaved in the IR
and potentially completed by UV physics in the string

core. When f >
√

2MPl, the deficit angle becomes neg-
ative, the singularity is inside the core of the string, and
there is no longer a sensible interpretation of stringlike
objects in approximately asymptotically flat spacetime
with sensible UV completions in the string core. This
suggests f <

√
2MPl as a possible consistency condition

on 2-form gauge theory in four dimensions.
Although the physics of static axion strings is relatively

straightforward, one could consider whether the magnetic
axion WGC could be satisfied by time-dependent, rather
than static, objects (Dolan et al., 2017; Hebecker et al.,
2017b). Non-singular, time-dependent string solutions
were written down for a complex scalar Φ with a U(1)
global symmetry in (Gregory, 1996), which features a
Lagrangian of the form

L = −1

2
|∂Φ|2 − λ

4
(|Φ|2 − f2)2 , (38)

such that the phase of Φ is an axion with decay constant
f in the low-energy theory. For f smaller than some
critical fcrit, there exist non-singular axion string space-
times which inflate along the string direction but which
have a static field configuration along slices orthogonal
to the string. For f > fcrit, the field Φ itself becomes
time-dependent, and the theory undergoes “topological
inflation.” This occurs when the core region of a topo-
logical defect, of size Rcore, has a potential energy den-
sity Vcore sufficiently large to sustain a Hubble expansion
rate H ∼ √Vcore/MPl with HRcore & 1 (Linde, 1994;
Vilenkin, 1994). The numerical analysis of (Cho, 1998)
found fcrit = 1.63MPl as the critical value for the onset of
topological inflation. It was pointed out in (Dolan et al.,
2017) that the computation with f & MPl is not neces-
sarily under control, but a scenario with axion strings of
winding number n � 1 such that f � MPl � nf pro-
vides a controlled setting with similar conclusions. Nu-
merical studies in (Dolan et al., 2017) confirmed exponen-
tial expansion in this scenario. They also demonstrated
power-law expansion in a different model, in which the
axion is the holonomy of a higher-dimensional gauge field.
In this case, the radial mode associated with the axion is
the radion modulus R of an extra dimension. The string
core sees a decompactification limit, R → ∞, which lies
at infinite distance in field space where V (R)→ 0 (hence
no exponential expansion). In both the |Φ|4 case and
the radion case, there is no obvious pathology associated
with the time-dependent infinite, straight string config-
urations. However, (Dolan et al., 2017) argued that the
topological inflation of a closed loop of an axion string
with nf &MPl would violate the “topological censorship
theorem” of (Friedman et al., 1993), suggesting that it
would always collapse into a black hole. It would then
be impossible for an observer to traverse a loop linking
with a closed axion string to measure the field excursion.
The impossibility of such a scenario is one candidate for
a magnetic axion WGC.



14

H. Repulsive Force Conjecture

The WGC was motivated by the idea that gravity
should be weaker than any gauge force. The definition
we have given above, however, deals not with the relative
strength of gravity against other forces, but rather with
the notion of superextremal particles. These two notions
agree if the only forces are gravity and electromagnetism:
a particle is superextremal if and only if the long-range
electromagnetic repulsion between a pair of such particles
is stronger than their gravitational attraction. In theories
with massless scalar fields, however, this correspondence
breaks down, and the question of whether a particle is su-
perextremal is distinct from the question of whether or
not a pair of such particles will repel each other at long
distances. With this in mind, we thus define a particle
to be self-repulsive if a pair of such particles repel one
another at long distances, and we define the Repulsive
Force Conjecture (RFC) as follows:

Repulsive Force Conjecture (RFC). In any theory
of a single abelian gauge field coupled to gravity, there is
a self-repulsive charged particle. (Palti, 2017)

After being emphasized by (Palti, 2017), this conjecture
was further studied by (Lee et al., 2019a; Lüst and Palti,
2018). This statement can be easily generalized from par-
ticles charged under 1-form gauge fields to (P−1)-branes
charged under P -form gauge fields. The generalization to
theories with more than one gauge field is somewhat sub-
tle; see (Heidenreich et al., 2019) for further explanation.

While the RFC and the WGC are distinct conjectures
in the presence of massless scalar fields, close connections
remain, e.g., at the two-derivative level extremal black
holes have vanishing long-range self-force (Heidenreich,
2020), and the same towers of charged particles typically
satisfy the tower/sublattice versions of both conjectures
(Heidenreich and Lotito, 2022; Heidenreich et al., 2019).

The idea of gravity as the weakest force has also moti-
vated several variations on a scalar weak gravity conjec-
ture, proposing that light scalars should always mediate
forces stronger than gravity for some particles (Gonzalo
and Ibáñez, 2019; Li et al., 2007; Lüst and Palti, 2018;
Palti, 2017). Such conjectures can lead to interesting
consequences, including for phenomenology and cosmol-
ogy. However, because they do not involve gauge fields
and have no connection to black hole extremality, we will
not discuss them further. Similarly, we will not discuss
weak gravity statements related to higher-spin particles,
for which there are sharp bounds from causality (Kaplan
and Kundu, 2021).

In this review, we will primarily focus on the WGC and
the notion of superextremality, but much of our analysis
applies equally well to the RFC and the notion of self-
repulsiveness. We stress once again that these conjec-
tures are equivalent—and the notions of superextremal-

ity and self-repulsiveness are equivalent—in the absence
of scalar fields.

IV. EVIDENCE FOR THE WGC

The WGC was originally motivated by the idea that
non-supersymmetric extremal black holes should be able
to decay. As we have discussed, this motivation is not
very compelling, since there is no obvious reason why
stable extremal black holes present a problem for a the-
ory. Nonetheless, this motivation seems to have gotten
people to start digging in the right place, since by now
there are a number of lines of evidence that support the
WGC and its variants. In this section, we will focus on
four such lines: an argument from dimensional reduc-
tion, examples in string theory, a general argument from
modular invariance in perturbative string theory, and the
relation between the WGC and the Swampland Distance
Conjecture (Ooguri and Vafa, 2007).

A. Dimensional reduction

One approach to assessing the validity of the WGC
is to examine its internal consistency under dimensional
reduction (Heidenreich et al., 2016); similar checks under
T -duality were carried out in (Brown et al., 2015). Our
starting point is the Einstein-Maxwell-dilaton action (10)
for a P -form gauge field Aµ1...µP in D = d+1 dimensions.
We could in principle include additional terms in the low-
energy action, such as Chern-Simons terms, but for our
purposes the above action will suffice.

1. Preservation of the p-form WGC bound

We consider a dimensional reduction ansatz of the
form,

ds2 = e
λ(x)
d−2 dŝ2(x) + e−λ(x)dy2, (39)

where y ∼ y+2πR. For now, we do not include a Kaluza-
Klein photon in our dimensional reduction ansatz, but
we will do so later in this subsection. The coefficients
of λ(x) in the exponentials have been carefully chosen
so that the dimensionally reduced action is in Einstein
frame, i.e., there is no kinetic mixing between λ and the
d-dimensional metric:

1

2κ2
D

∫
dDx
√−gRD

→ 1

2κ2
d

∫
ddx

√
−ĝRd −

1

2

∫
ddx

√
−ĝ Gλλ(∇λ)2 , (40)
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where

1

κ2
d

= Md−2
d = (2πR)MD−2

D , (41)

G
(d)
λλ =

(d− 1)

4κ2
d(d− 2)

= Md−2
d

d− 1

4(d− 2)
. (42)

Upon dimensional reduction, the P -form gauge field in
D dimensions gives rise to both a P -form gauge field and
a p = (P − 1)-form gauge field in d dimensions, obtained
respectively by taking all of the legs of the gauge field
to lie in noncompact directions, or by taking one leg to
wrap the compact S1 direction. The gauge couplings of
the two gauge fields are given respectively by

e2
P ;d =

1

2πR
e2
P ;D , e2

p;d = (2πR)e2
P ;D . (43)

Similarly, a charged (P − 1)-brane in D dimensions re-
duces to both a (P − 1)-brane and a (p − 1)-brane, ob-
tained respectively by taking the brane to lie exclusively
in noncompact dimensions, or by taking the brane to
wrap the compact direction. The tensions of these branes
are given respectively by

T
(d)
P = T

(D)
P , T (d)

p = (2πR)T
(D)
P . (44)

Recall from (14) and (13) that the WGC bound is mod-
ified by the exponential coupling of the radion to the
Maxwell term. The Maxwell term of the P -form gauge
field couples to a linear combination of both φ and the
radion λ, and it is useful to rewrite these scalar fields
in terms of two canonically normalized fields σ and ρ,
the former of which decouples from the Maxwell term,
the latter of which couples to it as e−αP ;dρF 2

P+1. The
coefficient αP ;d is then given by

α2
P ;d = α2

P ;D +
2P 2

(d− 1)(d− 2)
. (45)

This can be rewritten as

α2
P ;d

2
+
P (d− P − 2)

d− 2
=
α2
P ;D

2
+
P (D − P − 2)

D − 2
, (46)

which by (13) implies

γP ;d(αP ;d) = γP ;D(αP ;D) , (47)

from which we conclude that the (P − 1)-brane satisfies
the P -form WGC bound (14) in D dimensions if and only
if it satisfies the P -form WGC bound in d dimensions: in
other words, the WGC is exactly preserved under dimen-
sional reduction.

A similar story applies to the case of the wrapped
brane: a particular linear combination of φ and λ couples
to F 2

p+1, which ultimately leads to the coefficient

α2
p;d = α2

P ;D +
2(d− p− 2)2

(d− 1)(d− 2)
. (48)

This can be rewritten as

α2
p;d

2
+
p(d− p− 2)

d− 2
=
α2
P ;D

2
+
P (D − P − 2)

D − 2
, (49)

which by (13) implies

γp;d(αp;d) = γP ;D(αP ;D) , (50)

so again, the WGC bound is exactly preserved: the
(P − 1)-brane satisfies the P -form WGC bound in D di-
mensions if and only if it satisfies the p-form WGC bound
in d dimensions after wrapping on S1.

2. Kaluza-Klein modes and a violation of the CHC

Let us now add a Kaluza-Klein photon to our dimen-
sional reduction ansatz:

ds2 = e
λ(x)
d−2 dŝ2(x) + e−λ(x)(dy +RB1)2 , (51)

where y ∼= y+ 2πR and B1 is normalized so that the KK
modes carry integral charges. The dimensionally reduced
action is then given by

S =

∫
ddx

√−ĝ
2κ2

d

[
R̂d −

d− 1

4(d− 2)
(∇λ)2 − R2

2
e−

d−1
d−2λH2

2

]
,

(52)
where H2 = dB1. From this action, we may read off the
KK photon gauge coupling and the radion–KK photon
coupling:

1

e2
KK

=
1

2
R2Md−2

d , αKK =

√
2(d− 1)

d− 2
. (53)

Here, αKK is defined by the coupling to the normalized

radion λ̂ =
√

d−1
2(d−2)λ.

The WGC bound for a particle with n units of KK
charge is then given by (14):[

α2
KK

2
+
d− 3

d− 2

]
m2 ≤ e2

KKn
2Md−2

d . (54)

This means that γKK = 2, and the WGC bound is simply

m2 ≤ n2

R2
. (55)

This may be compared to the spectrum of KK modes for
a particle of mass m0 in the parent theory:

m2 = m2
0 +

n2

R2
, n ∈ Z , (56)

where the KK charge n specifies the momentum n/R of
the particle along the compact circle. We see therefore
that KK modes of massless particles saturate the WGC
bound, whereas KK modes of uncharged massive parti-
cles violate the WGC bound. The D-dimensional parent
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theory necessarily has at least one massless particle—
namely, the graviton—so the dimensionally reduced the-
ory necessarily has superextremal particles charged solely
under the KK photon. Indeed, each of the KK modes of
the graviton is superextremal, so there is actually an in-
finite tower of superextremal KK modes, as required by
the tower/sublattice WGC.

What happens, however, if we include a U(1) in
the parent theory in D dimensions? The resulting d-
dimensional theory will now have two U(1) gauge fields,
and the WGC is equivalent to the convex hull condition
(CHC) introduced in Section III.C.

In the parent theory, a particle of charge q and mass
m is superextremal when the dimensionless charge-to-

mass ratio ZD := q
meDγ

−1/2
D M

(D−2)/2
D has magnitude

|ZD| ≥ 1. Likewise, in the dimensionally reduced theory
a particle of charge (q, qKK) and mass m is superextremal
when the dimensionless charge-to-mass ratio vector

~Zd :=

(
q

m
edγ
−1/2
d M

(d−2)/2
d ,

qKK − qθ
2π

mR

)
, (57)

has length |~Zd| ≥ 1, where θ =
∮
A is the vev of the axion

descending from the gauge field and γd = γD accounting
for the radion coupling as above.

The nth KK mode of a particle of charge q and mass
m0 in the parent theory has mass m2 = m2

0+ 1
R2 (n− qθ

2π )2,
and hence the charge-to-mass vector

~Z
(n)
d =

(µZD, xn)√
µ2 + x2

n

, µ = m0R , xn = n− qθ

2π
. (58)

The charge-to-mass vectors of the KK modes, along with
the convex hull they generate, are plotted in figure 7
(left). The vectors lie on the ellipsoid Z2

d1/Z
2
D +Z2

d2 = 1,
which lies outside the unit disk provided that |ZD| ≥ 1,
so each KK mode of a particle that was superextremal in
the parent theory is superextremal.

However, the fact that each individual KK mode is
superextremal does not ensure that the convex hull con-
dition is satisfied. As shown in figure 7 (right), as we
take the limit R → 0, the KK modes of the particle are
pushed closer and closer towards the point (0, 1). Be-
low some critical value of R, the convex hull condition
is violated. In fact, if ZD = 1, saturating the WGC
bound, then the convex hull condition will be violated
for any value of R. Starting from a theory that satisfies
the WGC in D dimensions, we have arrived at a theory
that violates the WGC in d dimensions.

It is important to realize that this does not represent
a counterexample to the WGC, because there is no good
reason to think that the D-dimensional theory we started
with is in the Landscape as opposed to the Swampland.
Rather, we showed that the WGC in D dimensions alone
is not sufficient to ensure that the WGC holds in d di-
mensions. If we want the WGC to hold in d dimensions,

Z

ZKK

Z5d

BH	region

ZKK

Z5d

BH	region

Z

FIG. 7 (Top) The Kaluza-Klein modes of a superextremal
particle with charge qF in d+1 dimensions are superextremal
after reduction on S1, as their charge-to-mass vectors ~Z lie
outside the elliptical black hole region. (Bottom) If the S1 is
sufficiently small, the convex hull condition is violated, and
the Kaluza-Klein modes of the superextremal particle in ques-
tion do not satisfy the WGC.

we need to impose a stronger constraint than the WGC
in D dimensions.

To identify such a constraint, it is worth noting that
a violation of the convex hull condition for sufficiently
small R will arise whenever the number of superextremal
particles in D dimensions is finite. To satisfy the WGC
in d dimensions for all R, therefore, requires an infinite
number of superextremal particles in D dimensions. In-
deed, it is not hard to see that the tower WGC, as defined
in Section III.D, is a sufficient condition for ensuring that
the WGC is satisfied in the dimensionally reduced theory.
Indeed, this observation is what originally motivated the
tower/sublattice WGC. There are at present no known
counterexamples to either of these conjectures in string
theory.

One can further check that the tower WGC is satisfied
in d dimensions provided that it is satisfied in D dimen-
sions (and likewise for the sublattice WGC), so the tower
WGC and sublattice WGC are automatically preserved
under dimensional reduction, unlike the mild WGC.

The general idea that a proposed consistency criterion
in quantum gravity should apply not just to a single vac-
uum but to all of its compactifications, whose applica-
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tion to the WGC discussed here originated in (Heiden-
reich et al., 2016), was later dubbed the “Total Land-
scaping Principle” in (Aalsma et al., 2021), and has been
fruitfully applied in several contexts, e.g., (Aalsma et al.,
2021; Cremonini et al., 2021; Heidenreich et al., 2019;
Montero et al., 2017; Rudelius, 2021).

B. Higgsing

We have just seen that the mild WGC is not automat-
ically preserved under compactification: starting with a
theory that satisfies the WGC, we can produce a theory
that violates the WGC by Kaluza-Klein reduction on a
circle. This points towards some stronger version of the
WGC, such as the tower/sublattice WGCs, which are
automatically preserved.

In this subsection, we will see that a similar issue arises
from the process of Higgsing. Starting with a theory
that satisfies certain forms of the WGC, we can produce
a theory that violates these forms of the conjecture by
Higgsing. However, other versions of the WGC will be
preserved. In particular, we show, following (Saraswat,
2017), that the mild WGC, tower WGC, and sublattice
WGC are preserved (barring a very special fine-tuning
that we do not expect to occur). In contrast, the state-
ments that the lightest charged particle should be su-
perextremal or that a particle of smallest charge should
be superextremal are not preserved under Higgsing.

Consider a theory with two U(1) gauge fields, A and B.
For simplicity, we assume that their gauge couplings are
identical, gA = gB = g and that we are working in four
dimensions. Suppose that there are two superextremal
particles with masses with m1 < m2 and charges q1 =
(1, 0) and q2 = (0, 1), respectively, and let these be the
lightest charged particles in the theory.

Next, suppose that there is a scalar field of charge (n, 1)
which acquires a vev v. Under this process, the gauge
boson H = nA + B acquires a mass mH = gv

√
n2 + 1,

and the gauge boson L = (A − nB)/(n2 + 1) remains
massless, with gauge coupling geff = g/

√
n2 + 1. After

Higgsing, the particle of charge q1 = (1, 0) has quantized
charge 1 under the massless gauge field L. It still has
mass m1, so for n sufficiently large, we find that this
particle is no longer superextremal after Higgsing, since
geff ' g/n� m1/MPl.

On the other hand, the particle of charge q2 = (0, 1)
has quantized charge −n, so it remains superextremal
after Higgsing. Thus, the mild version of the WGC re-
mains satisfied in this theory. However, since we assumed
m1 < m2, the lightest charged particle is no longer su-
perextremal, and there is no longer a superextremal par-
ticle of charge 1. We see that the strong forms of the
WGC that demand that either the lightest charged par-
ticle or the particle of smallest charge should be superex-
tremal are not automatically preserved under Higgsing:

they are violated here in the Higgsed theory even though
they were satisfied in the unHiggsed theory.

As with the reasoning that led to the tower/sublattice
WGCs above, one might be tempted to search for
stronger conjectures that ensure the lightest charge par-
ticle and/or particle of smallest charge automatically re-
main superextremal even after Higgsing. However, in
the following subsection, will we see an explicit exam-
ple in string theory in which these latter versions of the
WGC are violated, so these conjectures should simply
be discarded rather than fixed up with an even stronger
consistency condition.

In the Higgsing example we considered here, the mild
form of the WGC is preserved by the Higgsing process.
Similarly, if we assume that the tower/sublattice WGCs
are satisfied before Higgsing, we will find that they are
still satisfied after Higgsing by the tower of particles with
charge proportional to (n, 1). However, this is no longer
automatically true when we generalize our theory. If
we assume that there is mixing in the charge lattice be-
tween the two U(1)s, such that the canonically normal-
ized charge vectors take the form (gA, 0) and (g1

B , g
2
B)

with g1
B/gA irrational, and if we assume that the sublat-

tice WGC is exactly saturated before Higgsing, so there
are no particles in the theory charged under B strictly
below the WGC bound, then by giving a vev to a scalar
field with charge 0 under B, we will find that there are
no superextremal particles in the Higgsed theory. In this
very special case, the tower, sublattice, and mild form of
the WGC are all violated after Higgsing.

However, this special scenario is not very likely in prac-
tice. It is true that the WGC bound may be exactly
saturated in much or all of the charge lattice–this hap-
pens, for instance, in theories with extended supersym-
metry, where BPS bounds may forbid strictly superex-
tremal particles in certain directions in the charge lattice.
However, the very same BPS bound ensures that any
Higgs field with the required charges is massive, hence
the problematic Higgsing scenario discussed above does
not arise.

We conclude that the tower/sublattice WGC and mild
form of the WGC are unlikely to be violated by Higgsing
in any UV complete theory of quantum gravity. How-
ever, even in the example considered previously in this
subsection, the sublattice of superextremal particles after
Higgsing may be much sparser than the sublattice of su-
perextremal particles before Higgsing, with indices that
differ by a factor of n. Relatedly, the superextremal par-
ticle of charge q2 = (0, 1) may have a mass m2 which is
well above the magnetic WGC scale of the the IR theory,
Λ ∼ geffMPl ∼ gMPl/n (Saraswat, 2017) (see also (Furu-
uchi, 2018)). To ensure that the lightest superextremal
particles do not have parametrically large charge, one
must argue for an O(1) upper bound on the charge n of
the Higgs field in this theory. Very little work has gone
into arguing for such an upper bound (outside of spe-
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cific string theory contexts (Ibáñez and Montero, 2018)),
though it could be a very worthwhile direction for future
research.

C. String theory examples

1. Heterotic string theory

As a first example, let us consider SO(32) heterotic
string theory in ten dimensions. The low-energy effective
action in Einstein frame is given by (Polchinski, 2007)

1

2g2
sκ

2
10

∫
d10x
√−g

(
R− 1

2
∂µΦ∂µΦ

)
− 1

2g2
sg

2
10

∫
d10x
√−g e−φ/2TrV

(
|F2|2

)
, (59)

where TrV is the trace in the fundamental representation,
normalized so that TrV (T aT b) = 2δab for the basis of
generators T a.

We may then define

8πGN = M−8
10 = g2

sκ
2
10 =

1

2
g2
s(2π)7α′4, (60)

e2 =
1

2
g2
sg

2
10 = g2

s(2π)7α′3, (61)

where e2 is the coupling constant associated with any
single U(1) in the maximal torus. Notice that our dilaton
coupling parameter is α = 1/2, which by (13) gives γ = 1.

The charge lattice of the SO(32) heterotic string con-
sists of all charge vectors of the form:

~q = (q1, q2, . . . q16) , or ~q =

(
q1 +

1

2
, . . . , q16 +

1

2

)
with qi ∈ Z,

∑
i

qi ∈ 2Z. (62)

This lattice is even, i.e., |q|2 ∈ 2Z for any ~q in the lattice.
States must satisfy the level-matching condition

α′

4
m2 = NL +

1

2
|~q|2 − 1 = NR −

1

2
, (63)

where NL,R are the occupation number of the left and
right-moving oscillators, with NL a non-negative integer
and NR a positive half-integer. Given any choice of NL ≥
0 and ~q 6= 0, we may always choose NR to satisfy the
level-matching condition. Thus, the lightest state with a
given ~q 6= 0 has

m2 =
2

α′

(
|~q|2 − 2

)
. (64)

The charge-to-mass vector of this state then obeys∣∣∣~Z∣∣∣2 =
2

α′

∣∣∣∣ ~qm
∣∣∣∣2 =

|~q|2

|~q|2 − 2
> 1 , (65)

which shows that the state is superextremal. This means
that there is a superextremal particle in every represen-
tation of the SO(32) gauge group, so the theory satisfies

the nonabelian sublattice WGC (in fact, it even satisfies
the lattice WGC). Compactifying this theory on Tn and
turning on Wilson lines, the gauge group is generically
broken to its Cartan subgroup, and the resulting theory
will satisfy the lattice WGC for abelian gauge groups.
The same is true for E8 × E8 heterotic string theory.

2. F-theory

Consider F-theory compactified to six dimensions on
an elliptically-fibered Calabi-Yau threefold Y3, with base
B2. A gauge symmetry G arises from a stack of 7-branes
wrapping a holomorphic curve C in the base, and the
gauge coupling and 6d Planck scale are related to the
volume of B2 and C via

M4
6 ∼ vol(B2) ,

1

g2
YM

∼ vol(C) . (66)

In (Lee et al., 2018), the authors showed that the limit
gYM → 0 with M6 finite can be achieved only if the base
B2 contains a rational curve C0 whose volume goes to
zero as vol(C)→∞. A D3-brane wrapping C0 gives rise
to a string with string states charged under the gauge
group, and in the tensionless limit vol(C0) → 0, this
string is identified with a heterotic string in a dual de-
scription.

In some cases, such as when the baseB2 is a Hirzebruch
surface, the dual heterotic string is weakly coupled. In
this case, the sublattice WGC follows from modular in-
variance, as we will show in Section IV.D below. If the
heterotic string is strongly coupled, however, then it is
not so simple to compute the spectrum of string states,
and the best one can do is to compute an index of charged
BPS string states using the elliptic genus. Using proper-
ties of the elliptic genus, (Lee et al., 2018) argued that
the sublattice WGC is necessarily satisfied with respect
to the gauge group G. This was strengthened by (Cota
et al., 2021) to an argument that 6d F-theory compacti-
fications on Calabi-Yau threefolds in fact satisfy the non-
abelian sublattice WGC of §III.E.



19

Subsequent work (Klaewer et al., 2021; Lee et al.,
2019b) analyzed the elliptic genera of tensionless strings
coming from wrapped D3-branes in 4d theories coming
from F-theory compactified on elliptically fibered Calabi-
Yau 4-folds. For generic fluxes, properties of the ellip-
tic genus suffice to prove the sublattice WGC. For non-
generic fluxes, there are still superextremal string states,
but (unlike in six dimensions) these superextremal par-
ticles do not necessarily furnish a sublattice. Indeed, the
authors of (Lee et al., 2019b) identified an example of
an F-theory compactification for which the elliptic genus
detects no superextremal string states of charge 4~q for
any ~q in the charge lattice. This does not necessarily im-
ply a counterexample to the sublattice WGC, however,
as there are other sectors of charged states not visible to
the elliptic genus, and it is conceivable that these sec-
tors may contain the requisite superextremal particles to
satisfy the sublattice WGC.

3. A counterexample to the lattice WGC

We have seen a number of examples which satisfy the
WGC, as well as its stronger variants. We will now
present an example which violates a number of proposed
strong forms of the WGC. Nonetheless, it still satisfies
the WGC, tower WGC, and sublattice WGC.

The example in question comes from compactifying
type II string theory on the T 6/(Z2 × Z′2) orbifold with
orbifold action defined by the two generators:

θ : θ4 7→ θ4 + π, θ5 7→ θ5 + π,

ω : θ6 7→ θ6 + π, θi 7→ −θi, i = 1, ..., 4.
(67)

Here, the T 6 in question is parametrized by the angles
θi ∼= θi + 2π, i = 1, . . . , 6, and for simplicity we take the
metric to be diagonal in the θi basis. Note that the ω
generator acts as a “roto-translation”: a rotation com-
bined with a translation in a different direction. This
roto-translation acts freely, and thus the orbifold geom-
etry is smooth. As a result, the compactification can be
understood within supergravity, as well as on the string
worldsheet.

For our purposes, it will suffice to concentrate on the
θ4, θ5, θ6 dimensions of the T 6. Each of these dimensions
has a gauge field associated with Kaluza-Klein momen-
tum around the S1; we will denote them respectively by
A4
µ, A5

µ, and A6
µ. The action of ω projects the first of

these fields out of the spectrum, leaving A5
µ and A6

µ as
the only Kaluza-Klein gauge bosons in the theory.

Next, consider a field φ on the T 3 parametrized by θ4,
θ5, θ6. Its field decomposition is given by

φ(xµ, θ4, θ5, θ6) =
∑

φn4,n5,n6(x
µ) ein4θ4+in5θ5+in6θ6 .

(68)

n5 \ n6 even odd

odd 7 7

even 3 3

TABLE I Superextremal particles in type II compactified on
the T 6/(Z2 × Z′2) orbifold exist for n5 even but not for n5

odd. As a result, the lattice WGC is violated, whereas the
sublattice WGC is satisfied with coarseness 2.

The orbifold action imposes the identifications

θ : φn4,n5,n6(x) = (−1)
n4+n5 φn4,n5,n6(x),

ω : φn4,n5,n6(x) = (−1)
n6 σ(φ)φ−n4,n5,n6(x).

(69)

Here σ(φ) denotes an additional sign that may arise de-
pending on the nature of the field φ–for instance, the
graviton, A5

µ, and A6
µ have σ = 1, whereas Wµ has

σ = −1 due to the action of ω (and is therefore projected
out of the spectrum).

Now, we look at the sublattice of the charge lattice con-
sisting of the charges (n5, n6) under the surviving Kaluza-
Klein fields A5

µ, A6
µ. For n5, n6 both even, Kaluza-Klein

modes of the graviton with n4 = 0 are projected in and
saturate the extremality bound, so there are indeed su-
perextremal particles of these charges. For n6 odd, n5

even, a mode will be projected out unless it has σ = −1,
but KK modes of the gauge field A4

µ satisfy this condition
and similarly saturate the extremality bound. For odd
n5, however, the action of θ imposes the constraint that
n4 must be odd, which leads to an additional contribu-
tion of (n4/R)2 to the mass squared of such a mode:

m2 =

(
n5

R5

)2

+

(
n4

R4

)2

, n5 odd, n4 odd. (70)

This additional contribution renders such modes subex-
tremal: there are no superextremal particles of charge
(n5, n6) for n5 odd. This result is summarized in Table
I.

This theory represents a counterexample to the lattice
WGC: there exist charges in the charge lattice without
superextremal particles, namely, any charge (n5, n6) with
n5 odd. By moving in the moduli space of the theory,
the sizes of the Ri of the cycles of the torus can be ad-
justed freely, and for certain values of the moduli ad-
ditional proposed “strong forms” of the WGC may also
be violated. For example, taking R4 � R5 > R6 and
RI �

√
α′, the winding modes become heavy and the

lightest charged particle in the spectrum is subextremal
with (n5, n6) = (1, 0). This particle is also the state of
smallest charge in its direction in the lattice. Thus, this
theory represents a counterexample to both of the strong
forms of the WGC considered in AMNV (Arkani-Hamed
et al., 2007b): neither the lightest charged particle nor
the particle of smallest charge in the n5 direction in the
lattice are superextremal. Furthermore, the masses of
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the particles of odd A5 charge n violate the convexity
condition:

2mn ≥ mn+1 +mn−1 , (71)

where mn is the mass of the lightest particle of charge n.
If there exists an AdS analog of this example, it would
violate the strong forms of the “Abelian Convex Charge
Conjecture” of (Aharony and Palti, 2021) introduced in
§III.F.

On the other hand, the tower WGC and the sublattice
WGC are satisfied in this example: given any charge ~q,
there exists a superextremal particle of charge 2~q. The
sublattice of superextremal particles therefore has coarse-
ness 2.

Finally, let us remark on a puzzling feature of this ex-
ample: at tree level in string perturbation theory, the
lightest particles with odd n5 are in fact stable (Heiden-
reich et al., 2017). This suggests that black holes of odd
n5 charge cannot decay, in violation of the original mo-
tivation of the WGC. It is possible that loop corrections
could modify the spectrum so that this conclusion could
be avoided; more work is needed to see if this possibility
is actually realized.

A number of other counterexamples to the lattice
WGC were identified in (Heidenreich et al., 2017). These
counterexamples all involve orbifold compactifications of
string theory, and all of them satisfy the sublattice WGC
with a superextremal sublattice of coarseness no larger
than 3. Furthermore, in all such examples, the ma-
jority of sites in the charge lattice have superextremal
particles—even sites outside the superextremal sublat-
tice. This means that when it comes to the existence of
superextremal particles, quantum gravity seems to im-
pose even stronger constraints than the tower/sublattice
WGC; such constraints are seldom discussed, simply be-
cause it is not so easy to formulate them as precise math-
ematical statements.

4. Axions in string theory

Recall that the WGC for axions (26) implies an upper
bound on the axion decay decay constant f in terms of
the instanton action S,

f .
MPl

S
. (72)

Within string theory, the condition S & 1 is typically
required for perturbative control. For instance, the in-
stanton action may represent the size of some compacti-
fication cycle in string units, so the α′ expansion breaks
down when this cycle is smaller than the string scale.
The WGC for axions thus amounts to the condition that
f .MPl within the perturbative regime of string theory.

In fact, this condition was famously pointed out by
Banks, Dine, Fox, and Gorbatov (Banks et al., 2003) even

before the original AMNV paper on the WGC. In partic-
ular, (Banks et al., 2003) considered axions in heterotic,
type I, type IIA, type IIB, and M-theory compactified
to four dimensions. In all cases, these axions arise ei-
ther as the periods of a p-form Cp over a p-cycle Σp of
the compactification manifold,

∮
Σp
Cp, or as the dual of

a 2-form gauge field Bµν in four dimensions. In all cases,
their decay constants were found to be bounded above as
f .MPl.

8

More recently, a number of works have taken ad-
vantage of an improved understanding of Calabi-Yau
compactifications to investigate the prospects for super-
Planckian decay constants in type IIA/IIB string theory
with greater precision (Bachlechner et al., 2016; Brown
et al., 2016; Conlon and Krippendorf, 2016; Hebecker
et al., 2017a; Junghans, 2016; Long et al., 2017; Mon-
tero et al., 2015; Palti, 2015; Rudelius, 2015a,b). In all
cases, the axion decay constants appear to be bounded
above by f . MPl. This remains true even in theories
with multiple axions (see Section VII.A.5).

The size of decay constants allowed in string theory
is important because models of so-called “natural infla-
tion” require f > MPl. From the perspective of infla-
tion, however, we are interested not only in the kine-
matic question of how large an axion decay constant can
be, but also in the dynamical question of how an ax-
ion rolls in its potential. Obtaining the potential of an
axion in a type IIB compactification is not simple, as
it requires information about the sheaf cohomology of
curves/divisors of the Calabi-Yau compactification man-
ifold, which is not known in general. Some progress in
understanding the relevant sheaf cohomology has been
made in (Braun et al., 2020). Finally, note that bounds
on axion decacy constants do not directly constrain axion
monodromy models (McAllister et al., 2010; Silverstein
and Westphal, 2008).

The axion WGC can also be studied outside of the
context of specific string constructions. In general, the
breakdown of the instanton expansion that arises when
S . 1 is always due to the presence of new, light states.
This has been argued to follow from the general Lee–Yang
theory of phase transitions (Stout, 2022). If the potential
V (θ) is a smooth function of the axion value θ, then its
harmonics asymptotically decay as exp(−nS) where S
is determined by the location of the nearest singularity
ζ∗ to the unit circle for the complexified coordinate ζ =
exp(iθ). This asymptotic notion of S has been suggested
to define the correct formulation of the axion WGC in the
limit when instantons are not well-defined semiclassical
objects (Stout, 2022).

8 (Banks et al., 2003) incorrectly claims the model-independent
heterotic axion, i.e., the 4d dual of Bµν , has f = MPl. In fact,
it has f ∼M2

s /MPl; see, e.g., (Svrcek and Witten, 2006).
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D. Modular invariance

So far, we have seen that the WGC and its tower ver-
sions hold true in a large class of examples in string/M-
theory. In this subsection, we present a very general ar-
gument for the sublattice WGC in 2d CFTs on the basis
of modular invariance. This result can be viewed as ei-
ther (a) a proof of the sublattice WGC in perturbative
string theory, viewing the 2d CFT as the worldsheet the-
ory (Heidenreich et al., 2017), or (b) a proof of the sublat-
tice WGC in AdS3, viewing the 2d CFT as the boundary
dual of an AdS3 theory (Montero et al., 2016).

A 2d CFT has a partition function of the form:9

Z(µ, µ̃; τ, τ̄) ≡ Tr(q∆q̄∆̃yQỹQ̃) , (73)

where ∆ = L0− c
24 , ∆̃ = L̃0− c̃

24 , Q and Q̃ are the charges
carried by left/right movers under a conserved current,
q = e2πiτ , y = e2πiµ, and ỹ = e2πiµ̃. The partition
function satisfies

Z(µ+ ρ) = Z(µ) , ∀ρ ∈ Γ∗Q , (74)

where Γ∗Q = {(ρ, ρ̃)|ρQ − ρ̃Q̃ ∈ Z} is the dual lattice to
the charge lattice.

Modular transformations form a group SL(2,Z), gen-
erated by the T-transformation τ → τ + 1 and the S-
transformation τ → −1/τ . Following e.g. (Benjamin
et al., 2016), modular transformations act on the par-
tition function as

Z(µ; τ + 1) = Z(µ; τ) ,

Z(µ/τ ;−1/τ) = eπik
µ2

τ −πik̃
µ̃2

τ̄ Z(µ; τ) . (75)

Here k, k̃ are related to the leading term in the current-
current OPE:

JL(z)JL(0) ∼ k

z2
+ . . . , JR(z̄)JR(0) ∼ k̃

z̄2
+ . . . .

(76)
Unitarity implies that k, k̃ are non-negative, and positive
for non-trivial currents. For the case of multiple currents,
this becomes

JaL(z)JbL(0) ∼ kab

z2
+ . . . , J ãR(z̄)J b̃R(0) ∼ k̃ãb̃

z̄2
+ . . . .

(77)
kab and k̃ab can be thought of as metrics, which raise and
lower indices and define inner products. Thus we may

write µ ·ρ ≡ µakabρb, µ ·Q ≡ µaQa, and Q̃2 ≡ Q̃ãk̃−1

ãb̃
Q̃b̃.

Next, we combine the the periodicity condition (74)
with the S-duality transformation (75), which implies

Z(µ+ τρ; τ) = exp

[
−2πi(µ · ρ)− πiτρ2 + 2πi(µ̃ · ρ̃) + πiτ ρ̃2

]
Z(µ; τ) . (78)

The partition function encodes the spectrum of the
theory, which means that the quasi-period µ → µ + τρ
must map the spectrum to itself. This occurs thanks
to a rearrangement of simultaneous changes in charge
and conformal weight, a phenomenon known as “spectral
flow” (Schwimmer and Seiberg, 1987). To describe this,
we define:

T ≡ ∆− 1

2
Q2 , T̃ ≡ ∆̃− 1

2
Q̃2 , (79)

which allows us to rewrite (78) as:

Z = Tr
(
qT+ 1

2Q
2

q̄T̃+ 1
2 Q̃

2

yQỹQ̃
)

= Tr
(
qT+ 1

2 (Q+ρ)2

q̄T̃+ 1
2 (Q̃+ρ̃)2

yQ+ρỹQ̃+ρ̃
)
, (80)

9 Here and below, we use µ̃ rather than the oft-used µ̄, as a re-
minder that µ and µ̃ are independent variables. Indeed, in many
cases, such as the worldsheet CFT of heterotic string theory, the
number of left-moving and right-moving currents is different, so
there is no way to identify the chemical potentials in complex
conjugate pairs.

where we have introduced the shorthand notation,

yQ ≡ exp[2πiµaQ
a] , ỹQ ≡ exp[−2πiµ̃aQ̃

a] . (81)

By expanding the traces in (80) in powers of Q and
matching the first and second lines of the equation, we
find that the spectrum must be invariant under

Q→ Q+ ρ , Q̃→ Q̃+ ρ̃ , (82)

with T and T̃ held fixed. This implies

Γ∗Q ⊆ ΓQ , (83)

i.e., the dual lattice Γ∗Q is a sublattice of the charge lat-
tice ΓQ. From here, beginning from the graviton, which

has ∆ = ∆̃ = 0, Q = Q̃ = 0, we use invariance of the
spectrum under the transformation (82) to deduce the
existence of a state with

∆ = ∆̃ =
α′

4
m2 ≤ max

(
1

2
Q2,

1

2
Q̃2

)
, (84)
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for all Q ∈ Γ∗Q. One can show that these states are su-
perextremal (Heidenreich and Lotito, 2022), which means
that the sublattice Γ∗Q is entirely populated by superex-
tremal particles, and the sublattice WGC is satisfied.

E. Relation to the Swampland Distance Conjecture

(Ooguri and Vafa, 2007) introduced a number of
Swampland conjectures regarding the moduli space M
of a consistent theory of quantum gravity. First, they
conjectured that such a moduli space is parametrized by
vacuum expectation values of massless scalar fields. Sec-
ond, they conjectured that such a moduli space has an
infinite diameter–there exist points at arbitrarily large
geodesic distance. Third, they introduced what is now
known as the Swampland Distance Conjecture (SDC)
(also see (Klaewer and Palti, 2017)):

The Swampland Distance Conjecture (SDC).
Compared to the theory at some point p0 ∈M, the theory
at a point p ∈M has an infinite tower of particles, each
with mass scaling as

m ∼ exp(−λd(p, p0)) , (85)

where d(p, p0) is the geodesic distance in M between p
and p0, and λ is some order-one number in Planck units.

Consequently, in the infinite distance limit d(p, p0)→∞,
an infinite tower of states becomes light.

The appearance of an infinite tower of light particles is
reminiscent of the tower WGC, as well as the tower RFC,
both of which require that an infinite tower of particles
become light in the limit of vanishing gauge coupling.
Indeed, in many contexts, these conjectures will be sat-
isfied simultaneously by the same tower of particles. In
4d theories with N = 2 supersymmetry, for instance,
(Gendler and Valenzuela, 2021) proved that in any infi-
nite distance limit with a vanishing gauge coupling, there
exists an infinite tower of charged particles satisfying( q

m

)2

≥
( q
m

)2 ∣∣∣
ext

=
1

2

1

M2
4

+ gijµiµj , (86)

where µi is the scalar “charge” of the particle with re-
spect to the ith massless scalar field, and gij is the inverse
metric on moduli space. The equality on the right-hand
side implies an equivalence between the WGC bound and
the RFC bound for these particles: they are superex-
tremal precisely when they are self-repulsive. This in
turn implies gijµiµj = α2m2 for some O(1) constant α.
If the moduli space is one-dimensional, this implies that
these states must also satisfy the SDC, with λ = α. If
the moduli space has dimension greater than one, the
relationship between λ and α is more complicated, as it
depends on the path taken. However, in a number of ex-
amples considered in (Gendler and Valenzuela, 2021), the

tower satisfying the tower WGC also satisfies the SDC for
some O(1) constant λ.

It is natural to expect that the towers of particles stipu-
lated by the tower WGC and the SDC should agree when-
ever a point in moduli space of vanishing gauge coupling
is also at infinite distance. It has been shown that all
infinite distance limits in Kähler moduli space in 4d/5d
supergravity theories descending from type II/M-theory
on a Calabi-Yau threefold are associated with vanish-
ing gauge coupling (Corvilain et al., 2019; Heidenreich
and Rudelius, 2021). More generally, it has been conjec-
tured that every infinite distance limit in moduli space
should correspond to the vanishing of some p-form gauge
coupling (Gendler and Valenzuela, 2021), and more con-
cretely, it has been conjectured that every infinite dis-
tance limit should correspond either to a decompactifi-
cation limit (at which point a tower of KK modes be-
comes light) or to a tensionless string limit (Lee et al.,
2022b). This latter conjecture goes by the name of the
“Emergent String Proposal,” and if true, it suggests that
either a 1-form gauge field or 2-form gauge field (or both)
must become weakly coupled at any infinite distance limit
in moduli space. Further evidence for this conjecture
in the context of 4d N = 1 string compactifications
was provided in (Lanza et al., 2021a,b). The authors
of that work postulated the closely related “Distant Ax-
ionic String Conjecture,” that any infinite distance limit
of a 4d N = 1 quantum gravity theory corresponds to
the tensionless limit of a string which is charged under
some 2-form gauge field.

Conversely, in compactifications of M-theory to 5d, it
has been shown that every point of vanishing gauge cou-
pling is at infinite distance in moduli space (Heidenreich
and Rudelius, 2021). An analogous statement holds in
the context of AdS/CFT: in any SCFT in d > 2 dimen-
sions, every point on the conformal manifold at which
some sector of the theory becomes free is at infinite dis-
tance in the Zamolodchikov metric (Perlmutter et al.,
2021). This translates to the statement that the vanish-
ing of a gauge coupling must occur at infinite distance
in the moduli space of the bulk AdS dual theory. Addi-
tional progress toward classifying infinite distance limits
in string compactifications can be found in e.g. (Álvarez-
Garćıa et al., 2022; Baume and Calderón Infante, 2021;
Grimm et al., 2019, 2020, 2018; Grimm and Van De Heis-
teeg, 2020; Lee et al., 2022a,c; Marchesano and Wiesner,
2019).

In the case of infinite distance, weak coupling limits,
therefore, the WGC and SDC can be essentially unified.
More general, qualitative arguments can be given in sup-
port of some sort of unification between these two con-
jectures: we will elaborate on these arguments in the
following section.
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FIG. 8 A Wilson line threading an AdS wormhole. In order
for such an operator to respect factorization, we need to be
able to split it into a product of “left” and “right” pieces,
each consisting of a partial Wilson line ending on a charged
operator.

V. QUALITATIVE ARGUMENTS FOR THE WGC

Having introduced various versions of the WGC and
given some “empirical” evidence for them, we now turn
to the question of why any of them might be true. In
our view the most compelling arguments of this type are
those which are more qualitative, not attempting to re-
produce some version of the WGC in detail but instead
giving some intuition for why a statement of this type
should hold. In this section we will review several such
arguments, and then in the following section we will re-
view attempts at a more precise derivation.

A. Emergence

It has long been suspected that spacetime itself must
be emergent in any theory of quantum gravity which is
nontrivial enough to have some kind of black hole ther-
modynamics. One simple argument in this direction is
that the Bekenstein-Hawking formula

S =
Area

4G

tells us that the maximal entropy in a region of space-
time scales only like the surface area of the region, which
is different from the volume scaling we have in quan-
tum field theory (Bousso, 2002; ’t Hooft, 1993; Susskind,
1995). This idea is concretely realized in the AdS/CFT
correspondence, which formulates quantum gravity in
asymptotically-AdS spacetime as the quantum mechan-
ics of a dual CFT living on the asymptotic boundary
(Maldacena, 1998). In (Harlow, 2016) it was observed
that this emergence can be used to motivate a qualita-
tive version of the WGC. The basic idea is that if space-
time itself is emergent, then surely any bulk gauge fields
must also be emergent. It is impossible however to have
an emergent gauge field without the presence of charged
particles, and moreover these charged particles cannot be
too heavy.

More concretely, we can consider the maximally ex-
tended AdS-Schwarzschild geometry, which in AdS/CFT
is dual to the thermofield double state

|TFD〉 ≡ 1√
Z(β)

∑
i

e−βEi/2|i∗〉L|i〉R (87)

that lives in the tensor product Hilbert space

H = HL ⊗HR (88)

of two copies of the CFT on a spatial sphere (Maldacena,
2003a). In the gravity picture this geometry describes
a spatial wormhole connecting two AdS boundaries. If
there is a U(1) gauge field in the gravity description, we
therefore can have Wilson line operators

WLR = e
i
∫
cLR

A

which are integrated on a curve cLR which connects
the two boundaries through the wormhole (see figure 8).
These Wilson lines however are somewhat puzzling from
the point of view of the tensor product Hilbert space (88):
in a tensor product Hilbert space every operator can be
written as a sum of product operators, but WLR does
not seem to have such a decomposition. Indeed if we try
to view it as a product of two “half-Wilson lines,” these
parts are not gauge-invariant and thus should not act on
the physical Hilbert space (88). The way out of this puz-
zle is that if charged objects exist, then we can indeed
split the Wilson line into two gauge-invariant operators,
each of which consists of a Wilson line connecting an
asymptotic boundary to a charged operator (see figure
8).

So far this is only an argument for some version of the
completeness hypothesis, but we have not yet really used
the emergence of the gauge field. The idea of (Harlow,
2016) is as follows: since the gauge field is emergent, there
must be some scale ΛU(1) ≤ ΛQG at which the coefficient
of the Maxwell term in the Wilson action flows to zero.
Here ΛQG is the scale at which gravity becomes strongly
coupled, which in general can be much less than MPl if
there are many degrees of freedom. If the infrared value
of the Maxwell coupling e is small, then it must undergo
a substantial RG flow between the scale ΛU(1) where it
is large and the mass scale m of the lightest charge par-
ticles, since below the scale m the gauge coupling can
no longer flow. Therefore there can be a small infrared
gauge coupling if and only if there are light charged par-
ticles, which is the essence of the stronger versions of the
WGC. Quantifying this argument in general is difficult,
but it can be illustrated in concrete models of an emer-
gent U(1) gauge field. For example the CPN−1 σ-model
is a theory of N complex scalar fields za(x) obeying the
constraint

∑
a z
∗
aza = 1 and interacting with Lagrangian

L = −N
g2

(Dµz)
†
Dµz, (89)
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where the “gauge field” Aµ appearing in the covariant
derivative Dµ = ∂µ − iAµ is given by

Aµ ≡
1

2i

(
z†∂µz − ∂µz†z

)
. (90)

This theory is renormalizable for D = 2, while for general
D it can be understood as a lattice model with cutoff
energy ΛU(1). Either way, there is a critical value of g
near which (for large N) its infrared description is as
N charged scalars of mass m interacting via Maxwell
interactions of strength (Harlow, 2016)

1

e2
=


N

6πm2 D = 2
N

12πm D = 3
N

12π2 log
(

ΛU(1)

m

)
D = 4

NΛD−4
U(1) D > 4

(91)

If we now couple the model to gravity, in order for it to
work we need ΛU(1) ≤ ΛQG, where ΛQG is the scale where
gravity becomes strongly coupled. In a large N theory
this is related to the infrared Newton contant G by (see
e.g. (Arkani-Hamed et al., 2005; Dimopoulos et al., 2008;
Distler and Varadarajan, 2005; Dvali, 2010; Dvali and
Redi, 2008; Kaplan and Kundu, 2019; Veneziano, 2002))

1

G
∼ 1

Gbare
+NΛD−2

QG . (92)

In order for the massive scalars to be qualitatively su-
perextremal in the sense of (5) we need to have

1

e2
.

1

m2G
, (93)

which indeed follows from (91), (92) together with
ΛU(1) ≤ ΛQG and Gbare > 0.

There are a few things to note about this argument.
First of all, it is not sufficient just to have one very heavy
super-extremal particle. In order to break the Wilson
line in the unit charge representation as in figure 8, we
need to have objects of unit charge. This thus gives some
qualitative support to the stronger versions of the WGC
such as the tower and sublattice WGCs. Secondly one
might worry that this verification of the WGC is acci-
dental, since only a few parameters were involved. In
fact it is quite robust. In particular one can consider M
copies of the CPN−1 model, each with different values of
N and m, and a similar argument shows that the convex
hull version of the multiple-U(1) WGC we discussed in
Section III.C holds throughout a large parameter space
of theories (Harlow and Ooguri, 2021). Moreover one
can also show that the “Grassmannian” generalization of
the model, which flows to an SU(N) gauge theory in the
infrared, has objects in the fundamental representation
that obey the non-Abelian WGC discussed in Section
III.E.

We can develop this idea further to make it less de-
pendent on the details of the CPN−1 model. Specializing
for convenience to D = 4, at one loop order the gauge
coupling eUV at an energy scale ΛUV is related to the
low-energy gauge coupling e according to:

1

e2
UV

=
1

e2
−
∑
i

bi
8π2

q2
i log

ΛUV

mi
. (94)

Here, mi and qi are the mass and charge of the particles
in the tower and bi a beta function coefficient. For ΛUV

sufficiently large, the right-hand side of this equation
vanishes, and correspondingly eUV diverges: this is the
well-known Landau pole of U(1) gauge theory coupled
to charged matter. The energy scale ΛU(1) of the Lan-
dau pole thus represents a UV cutoff on the U(1) gauge
theory. Gravity has a similar UV cutoff ΛQG, which can
be thought of as a result of divergent 1-loop corrections
to the Einstein-Hilbert term. This is described by (92),
which for D = 4 implies that

M2
Pl & Nd.o.f.Λ

2
QG. (95)

The energy scale ΛQG is the energy scale at which quan-
tum effects significantly modify gravity. It is also some-
times referred to as the “species bound” scale, as it scales
inversely with the number of light particle species Nd.o.f.

in the theory.
Now suppose our theory has a superextremal particle

of each integer charge, so that it satisfies the sublattice
WGC (and in fact, the lattice WGC). Then, the number
of particles below a mass scale Λ is given by N(Λ) ≥
Λ/(eMPl), so the species bound satisfies

M2
Pl & N(ΛQG)Λ2

QG ≥
ΛQG

eMPl
Λ2

QG , (96)

or equivalently,

ΛQG . e1/3MPl. (97)

We see that in the weak coupling limit e→ 0, the species
bound scale tends to zero and effective field theory breaks
down due to the tower of superextremal particles.

This tower of charged particles also affects the Landau
pole of the gauge theory, ΛU(1). Treating the logarithms
and numerical prefactors as parametrically order one, the
gauge coupling eUV in (94) diverges when

1

e2
∼

Q∑
q=1

q2 ∼ Q3, (98)

where Q ∼ ΛU(1)/(eMPl) is the largest charge in the
tower. Again, this leads to the conclusion

ΛU(1) ∼ e1/3MPl. (99)

Thus we see that the tower of superextremal particles
leads to UV cutoffs on both gauge theory and gravity.
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Moreover, for the simple spectrum of charged particles
we have considered here, the UV cutoffs for gauge theory
and gravity are at parametrically the same energy scale,
namely ΛQG ∼ e1/3MPl.

10 In a sense, gauge theory and
gravity are “unified” at this energy scale, as both of them
emerge in the infrared from a strongly coupled theory
at the energy scale ΛQG by integrating out a tower of
charged states.

Conversely, let us now assume that the gauge theory
becomes strongly coupled at or below the energy scale
ΛQG:

1

e2
∼

∑
i|mi<Λgauge

q2
i , for Λgauge . ΛQG, (100)

where again we are ignoring O(1) factors. We may
rewrite this in terms of the average charge-squared 〈q2〉Λ
of the particles with mass below Λ as

1

e2
∼ N(Λgauge) 〈q2〉Λgauge

.
1

Λ2
gauge

M2
Pl〈q2〉Λgauge

,

(101)

where we have used the definition of the species bound
(95). Finally, we may rearrange this result in a form
reminiscent of the WGC bound:

Λ2
gauge . e2〈q2〉Λgauge

M2
Pl. (102)

Since all of the particles contributing to 〈q2〉Λgauge
have a

mass below Λgauge, we see that, in a sense, the “average”
charged particle in the theory is superextremal. This
is not quite the same as the condition that the theory
satisfies the Tower WGC, but it points in that direction.

We have considered here only one very simple case:
U(1) gauge theory in four dimensions with a single su-
perextremal particle of each integer charge. However, as
shown in (Heidenreich et al., 2018b), this phenomenon of
gauge-gravity unification generalizes to theories in d ≥ 4
spacetime dimensions, multiple U(1)’s, nonabelian gauge
groups satisfying the sublattice WGC for nonabelian
WGC (see Section III.E), theories that satisfy the tower
and sublattice WGCs but not the lattice WGC (pro-
vided the tower of superextremal states is not too sparse),
and theories with a more general density of states (pro-
vided the density of states is sufficiently well-behaved).
In this wide array of theories, gauge theory and grav-
ity become strongly coupled at parametrically the same
energy scale ΛQG. Conversely, demanding that gauge
theory and gravity become strongly coupled at paramet-
rically the same energy scale implies that, in the same

10 Intriguingly, the same parametric cutoff has appeared in a quite
different EFT context involving photons with a Stueckelberg
mass (Craig et al., 2020). It would be very interesting to un-
derstand whether this is a coincidence or something deeper.

sense as (102), the “average” particle should satisfy the
WGC bound.

Finally, let us remark that a similar emergence picture
applies to scalar field theories that satisfy the Swampland
Distance Conjecture (SDC): just as loop effects from a
tower of superextremal particles lead to a strongly cou-
pled gauge theory at the scale ΛQG, loop effects from a
tower of particles satisfying the SDC lead to a strongly
coupled scalar field theory at the scale ΛQG (Grimm
et al., 2018; Heidenreich et al., 2018a). This concept of
emergence thereby unifies the SDC and the sublattice
WGC: indeed, in many cases, the tower of particles that
satisfies the sublattice WGC also satisfies the SDC, and
integrating out this tower of particles produces both a
weakly coupled gauge theory and a weakly coupled scalar
field theory in the IR.

B. No approximate global symmetries

As is familiar from a first-year course on electromag-
netism, Gauss’s law holds that the total electric flux
through a closed two-dimensional surface S is equal to
the charge enclosed. In particular, the size and shape
of the surface is irrelevant: the surface may be continu-
ously deformed, and the total electric flux will not change
provided the charge enclosed remains constant.

The modern notion of a higher-form global symmetry
offers another perspective on this scenario. The fact that
such deformations of the surface S do not affect the total
electric flux through it signals the existence of a family
of topological surface operators in the theory, which are
labeled by an angle α ∈ [0, 2π) and given by the expo-
nentiated electric flux integral,

Uα(S) = exp

(
i
α

e2

∮
S

?F

)
, α ∈ [0, 2π) (103)

Such a surface operator signals the existence of a 1-form
global symmetry, which is associated with a conserved
charge: namely, the electric flux through S counts the
charge of any probe particles contained in such a surface.
The conserved Noether current associated with this sym-
metry is given by the electric flux density J = 1

e2 ? F .
This symmetry is broken in the presence of dynami-

cal charged particles, which screen the charge of a probe
particle. At long distances, however, the charge is ap-
proximately conserved: the divergence of the Noether
current ∂µF

µν is small, and the flux through a closed
surface enclosing a probe particle has only weak depen-
dence on the size of the surface. This is encoded by the
effective electromagnetic potential in QED at distances
large compared to the mass of the electron, also known
as the Uehling potential: (Uehling, 1935)

V (r) =
−e2

4πr

(
1 +

e2

16π3/2

e−2mr

(mr)3/2
+ ...

)
, rm� 1.

(104)
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Here, e is the renormalized coupling constant in the IR.
We see that corrections to the leading order Coulomb
potential are exponentially suppressed at long distances,
and the charge

∮
S2(r)

?F ∝
∮
S2(r)

V ′(r) is approximately

conserved.

At distances r ∼ 1/m, on the other hand, one starts to
penetrate the polarization cloud and see the bare charge.
The gauge coupling runs logarithmically, and the correc-
tions to the effective Coulomb potential from the electron
are O(e2).

More generally, corrections to the Coulomb potential
at a distance scale r = 1/Λ from a tower of charged
particles are given roughly by

Π(Λ2) =
∑

i|mi<Λ

e2q2
i . (105)

This is the same expression we saw above in our discus-
sion of emergence, so the corrections become O(1) pre-
cisely when the gauge theory becomes strongly coupled.
We showed there that a U(1) gauge theory satisfying the
tower/sublattice WGCs will become strongly coupled at
the scale ΛQG at which gravity becomes strongly cou-
pled, so by the same token the approximate 1-form sym-
metry of such a gauge theory will be badly broken at
ΛQG. This gives us a new intuitive understanding of the
tower/sublattice WGCs: these conjectures are intimately
tied to the absence of global symmetries in quantum
gravity—including higher-form and approximate global
symmetries.

Other versions of the WGC, including the magnetic
version and the 0-form version, can be similarly related
to the absence of approximate global symmetries in quan-
tum gravity (Cordova et al., 2022).

C. Axion strings

As a final qualitative check, we review an argument for
the WGC in the presence of Chern-Simons terms (Hei-
denreich et al., 2021c). This argument is somewhat cir-
cular from the point of view of establishing the WGC,
as it assumes the WGC for axions and charged strings
in order to prove the ordinary WGC for charged par-
ticles. Nonetheless, it demonstrates an important phe-
nomenon: in the presence of Chern-Simons terms in-
volving multiple gauge fields, the WGC bounds for these
different gauge fields are “mixed up” with one another.
This offers a bottom-up criterion for determining when
the tower of superextremal particles demanded by the
tower/sublattice WGCs are modes of some fundamental
string, which aligns with recent work (reviewed previ-
ously in in §IV.E) examining emergent strings in infinite
distance limits (Lanza et al., 2021b; Lee et al., 2022b).

The argument relies on five simple assumptions. First,
we assume a 4d theory of axion electrodynamics, in which

an axion couples to the gauge field via a θF ∧ F Chern-
Simons coupling:

S =

∫ [
− 1

2g2
F∧?F− 1

2
f2
θ dθ∧?dθ+

1

8π2
θF∧F

]
. (106)

Next, we assume the axion WGC:

fθS .MPl, (107)

where S is the instanton action. Third, we assume the
WGC for a string of tension T charged magnetically un-
der the axion, also known as an axion string:

T . 2πfθMPl. (108)

Fourth, we assume that the instanton action takes the
form

S =
8π2

g2
. (109)

This form of the instanton action is most familiar from
Yang-Mills theory, but abelian gauge theories also fea-
ture instantons with actions of this type, in the form of
monopole loops with dyonic winding (Fan et al., 2021),
as a consequence of the Witten effect (Witten, 1979).
Finally, we assume that the axion θ is a fundamental
axion, meaning that the core of the axion string probes
physics in the deep ultraviolet. (For more on the dis-
tinction of fundamental vs. non-fundamental strings, see
(Reece, 2019) and also (Dolan et al., 2017).)

From here, we may combine (107)-(109) to get a bound
on the string scale of the axion string:

Mstr :=
√

2πT . gMPl, (110)

which is precisely the WGC scale associated with the
gauge field A. Next, our assumption of the Chern-Simons
coupling θF ∧F ensures that the higher-spin string exci-
tations of the axion string carry charge under the gauge
field A, which follows from anomaly inflow on the string
worldsheet (Callan and Harvey, 1985). From (110), we
learn that the excitations of the axion string satisfy the
WGC (up to O(1) factors).

Finally, invoking our assumption that the axion is a
fundamental axion, we further conclude that there is a
whole tower of string excitations. This establishes (up
to O(1) factors) not only the WGC, but also the Tower
WGC for the gauge field A. Additionally, local quan-
tum field theory breaks down at the axion string scale
Mstr ∼ gMPl, which for g small is parametrically below
the emergence energy scale g1/3MPl discussed in §V.A.
This can have important consequences for phenomenol-
ogy, in that it leads to a tension between effective field
theories that require a very high energy scale and those
which require a very small gauge coupling.

As noted above, this argument represents more of a
consistency check on the WGC than an argument for it,
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as it assumes the WGC for axions and axion strings. Fur-
thermore, note that it relies heavily on the presence of the
Chern-Simons term: without this term, there is no reason
for the form of the instanton action in (109) to hold, and
there is no guarantee that the excitations of the axion
string will carry electric charge. Indeed, the circle com-
pactification of a 5d gravity theory yields a Kaluza-Klein
photon which does not couple to the axion via a θF ∧ F
coupling, and consequently the Kaluza-Klein modes are
not excitations of the axion string, and effective field the-

ory breaks down at the larger scale e
1/3
KKM4 = M5. For

more details, see (Heidenreich et al., 2021c).

The bottom-up argument of this section coheres nicely
with studies of infinite distance limits in string theory,
discussed above in §IV.E. In particular, the Emergent
String Conjecture (Lee et al., 2022b) implies that ev-
ery weak coupling limit should correspond to either an
emergent string limit or a decompactification limit: we
see here that these two cases are distinguished at low en-
ergies by the presence/absence of a Chern-Simons cou-
pling. Relatedly, (Lanza et al., 2021b) found that in a
large class of 4d N = 1 string compactifications, any
infinite distance limit yields a fundamental axion string
whose tension scales with the mass of a tower of light
particles as Tw ∼ m2, where w = 1, 2, or 3. Here, we
see that the case w = 1 corresponds to the case where
the light particles are charged and a θF ∧ F coupling is
present. The large-radius limit of a Kaluza-Klein com-
pactification of minimal 5d supergravity, where there is
no such Chern-Simons coupling involving the KK pho-
ton but there is one involving the 4d descendant of the
5d graviphoton, corresponds to the w = 3 case.

So far, the argument we have sketched in this subsec-
tion is unique to four dimensions, as the relation (109)
does not have a well-known higher-dimensional parallel.
However, supergravity constraints in higher dimensions
impose similar relations, so that the argument of this sub-
section does admit higher-dimensional analogs within the
supergravity context. For further details, see (Heidenre-
ich et al., 2021c) for the 5d case and (Kaya and Rudelius,
2022) for even higher-dimensional cases.

VI. ATTEMPTED DERIVATIONS OF THE WGC

A. The WGC from holography

The weak gravity conjecture is a proposed restriction
on non-perturbative quantum gravity, and thus it is nat-
ural to ask if we can show that it holds in the theories
of non-perturbative quantum gravity we currently pos-
sess. In particular we can ask if the WGC holds within
AdS/CFT, which is our best-understood set of quantum
gravity theories. So far this has not been established, but
a holographic argument for something closely related to
the WGC was given by Montero in (Montero, 2019). In

this subsection we will sketch this argument, as well as
make a few related observations.

One of the main motivations for the WGC is the idea
that near-extremal black holes in flat space should be un-
stable. In AdS/CFT that would be a statement about
“small” black holes, whose size is small compared to the
AdS radius, but unfortunately small black holes are not
understood so well in AdS/CFT. Montero instead argues
that large near-extremal black holes in AdS must be un-
stable, as otherwise the thermofield double state of the
dual CFT at large chemical potential and small tempera-
ture would have rather surprising (and likely impossible)
entropic properties. Unfortunately this argument does
not amount to a proof of the WGC, as we will see that
there are other ways these black holes could decay besides
emitting charged particles obeying (5), but the argument
is still quite suggestive, and we are optimistic that more
could be learned from it.

Charged AdS black holes which are very large com-
pared to the AdS scale asymptotically become charged
black branes, which in D bulk Euclidean dimensions have
gauge field

Aτ =
iρ

(D − 3)

(
1

rD−3
− 1

rD−3
+

)
(111)

and metric

ds2 = f(r)dτ2 +
dr2

f(r)
+ r2d~x2

D−2, (112)

with

f(r) ≡ r2 − 2κ2ε

(D − 2)rD−3
+

κ2ρ2

(D − 2)(D − 3)r2D−6
.

(113)
Here ε and ρ are the boundary energy and charge densi-
ties respectively, r+ is the largest positive zero of f(r),
and we have set the AdS radius to one. If we work at fixed
inverse temperature β and chemical potential µ, then we
have

r+ =
2π

(D − 1)β

(
1 +

√
1 +

(D − 1)(D − 3)2κ2β2µ2

4π2(D − 2)

)
ρ = (D − 3)rD−3

+ µ

ε =
(D − 2)rD−3

+

2κ2

(
r2
+ +

(D − 3)κ2µ2

D − 2

)
. (114)

This black brane approaches extremality when κβµ� 1,
with the extremal radius being given by

r+|β=∞ ≡ re =
(D − 3)κ|µ|√

(D − 1)(D − 2)
. (115)

At extremality the function f(r) has a double zero at
r = re, so the radial geodesic distance from re to any
large but finite radius rc is logarithmically divergent.
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FIG. 9 Exponential decay of spatial correlators for the ex-
tremal black hole back brane.

The main point of (Montero, 2019) is that if we study
the Hartle-Hawking state of two such extremal black
branes obtained by slicing the Euclidean path integral,
there is a tension between two facts which apparently fol-
low from the bulk picture together with the holographic
correspondence:11

• Exponential correlators: the fixed-time corre-
lators of boundary operators decay exponentially
with distance.

• Volume-law entanglement: the union of a
boundary subregion AR in the right CFT and the
same subregion AL in the left CFT has a von Neu-
mann entropy which grows like the volume of the
subregion.

There are various ways to understand why the bulk pic-
ture implies these results. One nice way is based on the
idea that black hole horizons are extremal surface barriers
(Engelhardt and Wall, 2014). What this means is that
an extremal surface of any co-dimension greater than or
equal to two cannot be smoothly deformed from a surface
which does not cross a horizon to a surface which does.
The reason is simple: if such a deformation were possible,
then at some point the surface would have to be tangent
to the horizon, but then the extremality equations would
imply that the surface would be entirely contained in the
horizon. In particular for Euclidean states such as the
Hartle-Hawking state, we can approximate the two-point
function of as massive field as

〈O(x)O(y)〉 ∼ e−m|x−y|, (116)

11 It has gradually been understood that the semiclassical picture
of the bulk needs to be used with some care at very low tempera-
tures, as quantum effects eventually become important (Almheiri
and Kang, 2016; Heydeman et al., 2022; Iliesiu and Turiaci, 2021;
Maldacena et al., 1999; Page, 2000; Preskill et al., 1991). It
would be worthwhile to revisit this argument from the point of
view of the modern understanding of these quantum effects via
a dimensional reduction to Jackiw-Teitelboim gravity, as they
could potentially change the conclusions, but we won’t attempt
it here.

FIG. 10 Competing minimal surfaces to compute the von
Neumann entropy of AL∪AR in the thermofield double state.
At nonzero temperature the red “area-law” surface on the
right always wins for large enough volume, but at zero tem-
perature its area is infinite so the blue “volume-law” surface
on the left wins for any region size.

where |x − y| is the geodesic distance between x and y.
As shown in figure 9, the geodesic which is relevant for
computing the correlator of two boundary fields necessar-
ily has a length which grows like the boundary distance
between the fields: the horizon at r = re is an extremal
surface barrier, so the geodesic has no choice but to in-
volve a large extensive component which lies just out-
side the horizon. Moreover any geodesics which cross the
horizon must have infinite length, and therefore there is
no correlation between boundary operators on opposite
sides.

The volume law entanglement can be understood along
similar lines: we can compute the von Neumann entropy
of the dual CFT on AL ∪ AR using the Ryu-Takayanagi
formula, which tells us that it is given by the area of the
minimal-area surface which is homologous to AL ∪ AR.
There are two possible candidates for the RT surface (see
figure 10), only one of which gives a volume law, and at
finite temperature the “area-law surface” eventually wins
for big enough regions. At zero temperature however the
“area-law surface” always has infinite area due to the
infinite distance to the horizon, and so the “volume-law
surface” always wins.

The reason that exponential decay of correlators and
volume-law entanglement are in tension is that the for-
mer suggests only short-range entanglement is present,
while the latter requires long-range entanglement. If the
entropy of AR∪AL is growing like the volume, then since
the total state is pure all this entanglement must be pu-
rified by something in the complementary region. Such
a purification is unlikely, given the exponential decay of
correlation with distance. This intuition has been formal-
ized in 1+1 dimensions into a precise theorem (Hastings,
2007), and it quite plausibly holds in general.

If the tension just described indeed constitutes a con-
tradiction, then the only way out is for the thermody-
namic description of the extremal black brane to break
down. There are two ways this can happen. The first
way is that there could be an exactly BPS particle, which
turns out to lead to power-law correlators and thus re-
moves the tension. This is the situation which is real-
ized for BPS branes in supersymmetric theories. The
second possibility, which has so far been manifested for
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all non-supersymmetric extremal branes, is that there
is some kind of matter present which causes the brane
to be unstable. Had we been discussing small black
holes, such an instability would have immediately re-
quired the existence of superextremal charged particle
and thus given a derivation of some version of the WGC.
For large black holes however there are more possibilities
for the instability. Indeed this topic has a long history in
the literature on applications of AdS/CFT to condensed
matter physics, where the various possibilities go under
the names “holographic superconductor” (Gubser, 2008;
Hartnoll et al., 2008a,b) or “holographic Fermi surface”
(Faulkner et al., 2011; Hartnoll et al., 2010; Liu et al.,
2011) depending on whether the particle causing the in-
stability is a boson or a fermion. The rough idea for the
bosonic case is as follows: in the near-horizon region the
gauge kinetic term

− (∇µφ− inAµφ)†(∇µφ− inAµφ)−m2φ†φ (117)

for a boson of charge n leads to an effective mass

m2
eff = m2 − n2e2

κ2
(118)

in the near-horizon AdS2 region. This leads to an insta-
bility if m2

eff violates the AdS2 Breitenlohner-Freedman

bound m2 > − (D−1)(D−2)
4 , so in other words there is an

instability for masses in the range

− (D − 1)2

4
< m2 ≤ n2e2

κ2
− (D − 1)(D − 2)

4
. (119)

The first inequality here is the D-dimensional
Breitenlohner-Freedman bound, which is necessary
for the vacuum to be stable. When n 6= 0 the first
term on the right-hand side of (119) gives something
like the WGC inequality, as first noticed in (Denef
and Hartnoll, 2009), but it is missing the factor of γ.
And moreover due to the second term it is possible to
have an instability even if n = 0, so the brane can be
unstable even if there are no charged particles at all!12

Thus any argument which requires an instability only
of large extremal black holes in AdS is not sufficient to
imply the validity of the WGC, although it is certainly
suggestive. Various other types of instability for this
system have been discussed in the AdS/CMT literature,
and the connection to the WGC was also discussed in
(Henriksson et al., 2020).

12 In the absence of charged particles it is not so clear what the
endpoint of this instability might be. It would need to be in-
homogeneous, since the homogeneous brane solution is unstable.
Likely the final endpoint would be theory-dependent.

B. The WGC from thermodynamics

1. The WGC and quasinormal mode frequencies

An interesting argument linking the WGC to a bound
on the imaginary part of the frequencies of black hole
quasinormal modes has been given in (Hod, 2017). The
argument relies on a “Universal Relaxation Bound,”
previously proposed in (Hod, 2007b). To derive this
bound, Hod begins with Bekenstein’s bound on infor-
mation transfer (Bekenstein, 1981) (which itself derives
from Bekenstein’s entropy bound (Bekenstein, 1981)) and
places an upper bound on the rate at which an observer
can receive information:

İ ≤ πE

log 2
. (120)

Here I is the information and E is the energy of the
package containing the information. Using the relations

S = I log 2 , Ṡ =
∆S

∆τ
, T =

∆E

∆S
(121)

one may rewrite the bound as

∆τ ≥ 1

πT
, (122)

which Hod interprets as a bound on the time ∆τ over
which a system can relax to equilibrium, deemed the
“Universal Relaxation Bound.” Finally, he applies this
bound to the quasinormal modes of a black hole by set-
ting T to be the temperature of the black hole and ∆τ to
be the inverse of the smallest imaginary part of a quasi-
normal mode frequency, ∆τ = [Min(Im(ω))]−1, arriving
at the bound

Min[Im(ω)] ≤ πT . (123)

In response, it should be noted that while the deriva-
tion of Hod’s bound (122) follows rather straightfor-
wardly from Bekenstein’s bound (120), its interpretation
as a universal bound on relaxation times is more suspect.
Bekenstein derived his bound by imagining a scenario in
which one observer sends a package full of information
to another. It is not entirely clear how this scenario
can be translated into the case of interest at hand, in
which a black hole is perturbed and relaxes to equilib-
rium. A sharper derivation of the proposed Universal
Relaxation Bound, particularly in the context of quasi-
normal mode frequencies, is clearly desirable. However,
it should be noted that Hod and others have given both
numerical and analytical evidence in favor of the bound
(123) (Gruzinov, 2007; Hod, 2007a,b), and bounds sim-
ilar to (122) but without the precise O(1) factors have
been argued for in other contexts (see e.g. (Lucas, 2019)
and references therein).

Assuming (123), Hod argued for the WGC as follows.
None of the quasinormal modes arising from gravitational
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and electromagnetic perturbations of a nearly-extremal
Reissner-Nordström black hole obey the bound. How-
ever, if we assume that the bound merely requires that
some mode in the black hole background obeys (123),
then the bound could be satisfied by a quasinormal mode
of a matter field. In particular, Hod showed analyti-
cally that, to leading order in T in the extremal limit, a
charged scalar field has a quasinormal mode which obeys
the bound (123) precisely when the scalar satisfies the
WGC (Hod, 2017). A similar conclusion was also ob-
tained analytically in the asymptotically AdS2×S2 near-
extremal, near-horizon limit (Urbano, 2018). These are
intriguing results, which call for further study. Black
holes that are far from extremality have modes that
comfortably satisfy the bound. Near extremality, black
hole quasinormal modes split into two families: damped
modes, which have Im(ω) of order the inverse black hole
radius, and zero-damped modes (ZDMs), which have
Im(ω) → 0 as T → 0 (Yang et al., 2013). Clearly, the
bound (123) can only be obeyed by a ZDM. Much of
the literature on numerical computation of quasinormal
modes focuses on the damped modes, whereas the ZDMs
are less well-studied (Detweiler, 1980; Konoplya and Zhi-
denko, 2013; Richartz and Giugno, 2014; Yang et al.,
2013). ZDMs for a Reissner-Nordström black hole have
been found in the pure Einstein-Maxwell theory (Zim-
merman and Mark, 2016), so the precise numerical co-
efficient in (123) is important for the link to the WGC.
Future work could check whether (123) is equivalent to
the WGC away from the T → 0 limit. It would also
be of interest to explore this correspondence for more
general black holes (e.g., dilatonic black holes). Strong
numerical evidence for a WGC/quasinormal mode con-
nection would provide a motivation for further study of
the quasinormal mode relaxation bound itself.

The inequalities (122) and (123) bear a superficial
resemblance to the well-studied chaos bound (Malda-
cena et al., 2016), which requires a Lyapunov exponent
λ ≤ 2πT . However, the relaxation rate and the rate of
growth of chaos are not, in general, the same. For ex-
ample, the Sachdev-Ye-Kitaev model saturates the chaos
bound, but its thermal 2-point function falls exponen-
tially with timescale τ = q/(2πT ) (Maldacena and Stan-
ford, 2016), where q is a positive even integer. This is
consistent with (122), but does not saturate the bound,
except when q = 2.13

2. The WGC and entropy

As discussed in Section II, one argument against con-
tinuous global symmetries is based on the existence of

13 BH thanks Zachary Fisher and Ziqi Yan for discussions on this
point.

finite-mass black hole states of arbitrarily large global
charge, leading to infinite entropy in a finite-size re-
gion, in violation of entropy bounds in quantum gravity.
This has motivated studies relating the WGC to entropy
bounds. For small but nonzero gauge coupling, a WGC-
violating theory can have a very large (but finite) num-
ber of stable extremal black holes in a finite mass range.
For example, it was suggested in (Banks et al., 2006)
that the uncertainty in a measurement of the charge of a
black hole is of order 1/e, leading to an entropy scaling
as log(1/e) and eventually violating entropy bounds for
sufficiently small e. However, it is unclear why one would
not be able to measure charge more precisely than 1/e
(e.g., by measuring the motion of charged particles in the
long-range electric field outside the black hole), or why
the Bekenstein-Hawking entropy should be the relevant
bound for an ensemble with such a large range of possible
charges. Furthermore, examples in which exactly stable
BPS charged black holes exist (with moduli spaces such
that e can be made arbitrarily small) illustrate that the
existence of many (marginally) stable species is not, in
itself, in contradiction with quantum gravity.

Subsequent studies have examined logarithmic correc-
tions to black hole entropy in the presence of WGC-
violating matter (Fisher and Mogni, 2017; Shiu et al.,
2017, 2019). These corrections have interesting proper-
ties, but their computation has not led to an undisputed
proof of the WGC. In particular, (Andriolo et al., 2018)
claims that the argument of (Fisher and Mogni, 2017) re-
lies on applying a formula outside its regime of validity.

C. The WGC from corrections to large black holes

The extremality bound for black holes is derived from
the two-derivative effective action. From the begin-
ning, it was understood that the WGC could potentially
be satisfied by large black holes when higher-derivative
corrections to the effective action are taken into ac-
count (Arkani-Hamed et al., 2007b). Schematically, these
modify the extremality bound to take the form |Q|/M ≥
(|Q|/M)|ext(1 + c/Q2), where c is a linear combination
of Wilson coefficients of four-derivative operators and
(|Q|/M)|ext is the charge-to-mass ratio of asymptotically
large extremal black holes, which is computed with the
two-derivative action. We continue to define a superex-
tremal state as one for which |Q|/M ≥ (|Q|/M)|ext, so
that finite-size black holes are superextremal when c ≥ 0.
The corrections to the extremality bound from general
four-derivative operators added to Einstein-Maxwell the-
ory were calculated in detail shortly afterward (Kats
et al., 2007), and it was found that certain black holes
in heterotic string compactifications do, in fact, become
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superextremal.14

Before discussing the technical details, it is useful
to describe two quite different interpretations that one
might attach to the observation that small corrections
to large black holes can allow them to become superex-
tremal. The first is that this trivializes the Weak Gravity
Conjecture. The WGC in its most mild form merely re-
quires that some state in the theory be superextremal. If
this state is a large black hole, then the WGC is simply a
statement about the signs of some higher-dimension op-
erators in the effective action, and does not imply the
existence of any light charged particles below the Planck
scale. If a general positivity proof can be constructed for
the linear combination of operator coefficients appearing
in the corrected extremality bound, the WGC will fol-
low, and as such will be reduced to a statement about
gravitational effective field theory. The second view-
point is that the evidence that we have for the WGC,
as discussed in earlier sections of this review, favors the
much stronger tower/sublattice WGCs, involving an in-
finite tower of charged particles of increasing charge and
mass, all of which are superextremal. For very large val-
ues of |Q|, the charged “single-particle states” simply are
black holes, and so the tower/sublattice WGCs require
that they be superextremal (as depicted in Figure 5).
From this perspective, an EFT argument could explain
superextremality far out in the charge lattice, but the
tower/sublattice WGCs will also imply the existence of
superextremal states at smaller Q, where the states are
no longer well-described as black holes in EFT. Argu-
ments in favor of superextremality from higher-derivative
corrections cannot decisively favor the former perspective
(that EFT is everything) over the latter (that Swamp-
land constraints go beyond EFT). However, if we find
consistent theories of quantum gravity (not just EFTs)
in which large black holes are subextremal, this would
immediately falsify the tower/sublattice WGCs.

1. The corrected extremality bound

There are several possible four-derivative operators
that may be added to the Lagrangian of Einstein-
Maxwell theory, built out of Rµνρσ and Fµν . For this
discussion, we work in the normalization 1

2κ2R− 1
4FµνF

µν

for the two-derivative Lagrangian. If we limit our atten-
tion to CP-conserving terms, there are four independent
physical four-derivative terms. Their contribution to the

14 However, it should be noted that the results of (Giddings et al.,
1993; Natsuume, 1994), upon which (Kats et al., 2007) relies,
are obtained at string tree level. Because the string coupling
diverges at the horizon of the black holes in question, the string
loop expansion may not be under control; see also (Cvetic and
Tseytlin, 1996).

effective action can be parametrized as

S4∂ =

∫
dDx
√−g

(
cGBOGB + cRFRµνρσF

µνF ρσ

+ cTTµνT
µν + cF (FµνF

µν)2
)
,

(124)

where Tµν is the two-derivative Maxwell stress tensor
FµρF

ρ
ν − 1

4gµνFρσF
ρσ, and OGB = R2 − 4RµνR

µν +
RµνρσRµνρσ is the Gauss-Bonnet term (in D = 4, this
is a topological term that does not affect the extremal-
ity bound). This is the basis favored by the discussion
in (Arkani-Hamed et al., 2022). All other four-derivative
operators can be related to these four terms (up to terms
that are of higher order in the derivative expansion) via
equations of motion (or, equivalently, field redefinitions).
For example, terms involving the Maxwell stress tensor
Tµν can be traded for terms involving Rµν using the
Einstein equations, while terms involving ∇µFρσ can be
transposed via integration by parts into terms that vanish
in pure Einstein-Maxwell theory as well as terms involv-
ing a commutator of two covariant derivatives, which can
be eliminated in favor of the Riemann tensor.

The condition for extremal Reissner-Nordström black
holes to become (strictly) superextremal due to four-
derivative terms is (Kats et al., 2007)

(D − 3)
[
(D − 2)(DcT + 16cF ) + 8(D − 3)cRFκ

2
]

−4(D − 4)(3D − 7)cGBκ
4 > 0.

(125)

For D = 4 this simplifies to cT + 4cF + cRFκ
2 > 0.15

As discussed in (Charles, 2019), another convenient
basis related to familiar anomalies is

S̃4∂ =

∫
dDx
√−g

(
c̃WWµνρσW

µνρσ + c̃RFRµνρσF
µνF ρσ

+ c̃GBOGB + c̃F (FµνF
µν)2

)
. (126)

Here Wµνρσ is the Weyl tensor. The relationship between
the bases (126) and (124) is

c̃F = cF + cT
(D − 4)2

16(D − 1)
, c̃W =

cT
κ4

D − 2

4(D − 3)
,

c̃GB = cGB −
cT
κ4

D − 2

4(D − 3)
, c̃RF = cRF . (127)

A more detailed discussion of the field redefinitions that
can convert between operator bases may be found in Ap-
pendix B of (Cheung et al., 2018).

15 In the 4d case, stronger constraints can be obtained by consid-
ering dyonic black holes; see, e.g., (Etheredge and Heidenreich,
2022).
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Early work on this subject derived the condition (125)
by directly solving the modified equations of motion
in the presence of higher-derivative operators and ex-
tracting the corrected extremality bound from the per-
turbed black hole solution. Recently, calculations have
been greatly streamlined by the discovery of elegant for-
mulas relating the change in the extremality bound to
integrals evaluated on the uncorrected black hole solu-
tion. Specifically, the shift in the charge-to-mass ratio
ζ = |Q|/√γκM of an extremal black hole away from 1 is
given by

∆ζ =
1

M
lim
ζ→1

∫
dD−1xN

√
h∆L

∣∣∣∣
two-deriv

, (128)

where ∆L consists of the higher-derivative corrections to
the leading order Lagrangian, N and h are the lapse func-
tion and spatial metric associated to a fixed-time slice
(extending from the horizon to infinity), and |two-deriv

signals that the expression is to be evaluated on the two-
derivative solution.

Expressions of this form have been derived in multi-
ple ways. One approach (used mainly for 4d Reissner-
Nordström black holes) begins with the Wald entropy of
the black hole (Wald, 1993), which is related, through
standard thermodynamic arguments, to the Euclidean
action evaluated on the solution. This receives correc-
tions only from the corrections to the action evaluated
on the uncorrected solution, since the evaluation of the
uncorrected action on corrections to the solution vanishes
at first order due to the extremality of the uncorrected
action at an uncorrected solution (Cheung et al., 2018;
Reall and Santos, 2019).

The correction to the extremal charge-to-mass ratio is
then shown to be related to the change in the black hole
entropy (Cheung et al., 2018). This has been general-
ized to rotating and dyonic black holes (Cheung et al.,
2019), dilatonic black holes (Loges et al., 2020b), AdS
black holes (Cremonini et al., 2020), and dyonic Kaluza-
Klein black holes (Cremonini et al., 2021); see further
discussion in (Arkani-Hamed et al., 2022). In fact, the ex-
tremality/entropy relationship has been proven by (Goon
and Penco, 2020) using very general thermodynamic con-
siderations, which imply that when there is a minimal
mass for a given charge, M > Mext( ~Q), sensitive to a pa-
rameter ε (like the coefficient of a 4-derivative operator),

∂Mext( ~Q, ε)

∂ε
= lim
M→Mext

−T (∂S(M, ~Q, ε)

∂ε

)∣∣∣∣∣
M,~Q

 ,
(129)

even outside the black hole context. Recently, similar
results have been derived using the Iyer-Wald covariant
phase space formalism (Aalsma, 2022) (also see (Aalsma
et al., 2021)).

Note that it is crucial that the partial derivative on the
right-hand side of (129) is evaluated at fixed mass, rather

than at fixed temperature (Etheredge and Heidenreich,
2022; McPeak, 2022). Thus, the mass correction at fixed
(zero) temperature, i.e., at extremality, is related to the
entropy correction at fixed mass, which takes the black
hole away from extremality (since the extremal mass is
corrected). A more natural quantity is the extremal en-
tropy correction, evaluated at fixed (zero) temperature.
However, this is not related to the extremal mass cor-
rection, as has been noted for various explicit stringy
black holes (both asymptotically flat and asymptotically
AdS) (Bobev et al., 2021; Cano et al., 2020a,b; Charles
and Larsen, 2016). For example, in four dimensions the
Gauss-Bonnet term is topological, and contributes to the
black hole entropy but does not affect the extremality
bound. This is consistent with (129), since nonzero con-
tributions to ∂S/∂ε that are independent of temperature
in the extremal limit make no contribution to the right-
hand-size of (129) due to the explicit T prefactor.

Recently, (128) has been obtained without reference to
the Wald entropy, via a direct attack on the equations of
motion combined with some general reasoning about the
Lorentz invariance of the Lagrangian. In this context,
the formula was shown to hold for extremal black holes
coupled to arbitrary moduli in any dimension (Etheredge
and Heidenreich, 2022).

Similar techniques have been adapted to study not only
extremality but long-range forces, to assess whether the
Repulsive Force Conjecture is satisfied by corrected black
holes (Cremonini et al., 2022) (see also (Etheredge and
Heidenreich, 2022)). The results suggest that the RFC
may not be automatically satisfied by four-derivative cor-
rections. However, they are obtained in EFT examples,
rather than explicit string theory compactifications, so
further work should investigate whether these examples
can be realized in a full quantum gravity setting (and
hence provide a counterexample to the RFC for corrected
black holes). A study of the effects of higher derivative
corrections on the force between dyonic strings appeared
in (Ma et al., 2022).

2. Overview of arguments

The thermodynamic arguments sketched above have
provided an efficient tool for computing the correction to
the extremal charge-to-mass ratio in a given EFT, as a
function of the Wilson coefficients of higher-dimension
operators. Such calculations lead to superextremal-
ity conditions that take the form of positivity bounds
like (125). A variety of attempts have been made to
prove such bounds from general principles.

In many cases, the general structure of a theory im-
plies that the cT and cF terms in (124), which involve
only photons and not gravitons, give the dominant cor-
rections to the extremality bound. When these coeffi-
cients are explicitly calculable, they are often positive.
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FIG. 11 Example of a loop diagram leading to logarithmic
running of a four-derivative operator in 4d. Photons scatter
via a loop of gravitons; due to two couplings each scaling as
1/M2

Pl, this gives rise to a contribution schematically behaving
as 1

M4
Pl
F 4
µν log(E).

Indeed, in quantum field theory (without gravity), one
can prove rigorous positivity bounds on the coefficients
of four-derivative operators involving Fµν (Adams et al.,
2006; Cheung and Remmen, 2014a). In a regime where
the dominant contributions to cT and cF arise from low-
energy QFT effects which would persist in the MPl →∞
limit, this is sufficient to prove (125), as already noted
in (Arkani-Hamed et al., 2007b).

Of course, we are interested in gravitational theories,
where completely general, rigorous positivity arguments
are more elusive. In four dimensions, loop effects in-
volving gravitons can provide dominant contributions to
four-derivative operators in the IR, so that taking the
MPl → ∞ limit obscures important physics. In general,
when the WGC is not satisfied by light charged particles,
but is parametrically saturated (or even violated) by all
light particles, EFT proofs of (125) are more difficult to
obtain. Below, we will summarize three broad categories
of arguments for positivity: those that explicitly com-
pute the coefficients in (124) within a given EFT; those
that rely on analyticity, unitarity, and/or causality; and
those based on entropy.

3. Explicit computations within low-energy EFTs

In four dimensions, the Wilson coefficients in (124) ex-
hibit logarithmic renormalization group evolution. This
follows from dimensional analysis; for example, [cT ] =
[cF ] = −D and [κ4] = 4 − 2D, which agree precisely
when D = 4. An explicit example of a loop diagram
contributing to such running is shown in Figure 11. For
exponentially large black holes, we expect the Wilson
coefficients (evaluated at a renormalization scale corre-
sponding to the black hole’s size) to be dominated by RG
running. As a result, the sign of the correction should
be determined by such RG effects, independent of de-
tails of the UV completion and the operator coefficients
at the cutoff scale. The consequences were first explored
in (Charles, 2019), and more recently in (Arkani-Hamed
et al., 2022). The case of multiple U(1)s has also been

considered (Jones and McPeak, 2020).

In the basis (126) there are logarithmic corrections
to c̃W and c̃GB , determined by the well-known Weyl
anomaly coefficients c and a, respectively (Charles, 2019).
The coefficients c̃RF and c̃F do not run. In the ba-
sis (126), cT and cGB run (Arkani-Hamed et al., 2022);
in either basis, the running of OGB is irrelevant for the
extremality bound. In Einstein-Maxwell theory plus any
minimally coupled matter of spin < 3/2, c > 0, ensuring
the validity of (125). Spin-3/2 fields contribute negatively
to c, but a single spin-3/2 field is insufficient to drive
the running negative. However, nonminimal couplings,
such as dipole moments for fermions, also contribute
negatively to c for a small range of Planck-suppressed
couplings. In cases with N ≥ 2 supersymmetry where
extremal black holes are BPS, these negative contribu-
tions precisely cancel positive ones so that the black
hole extremality bound remains uncorrected. However,
there are low-energy (non-supersymmetric) effective La-
grangians with no obvious pathologies in which multiple
fields with finely-tuned nonminimal couplings could lead
to a negative running for c, and hence to large black holes
that cannot satisfy the WGC.

If the tower or sublattice WGC is true, then the cor-
rections to large black holes must allow them to become
superextremal. Thus, there must be a bound on the num-
ber of fermionic fields with dipole couplings in the limited
range where the running of c is negative; such theories
would lie in the Swampland. In pure QFT, negative coef-
ficients of the F 4 operators would violate causality; how-
ever, precisely because the negative contributions arise
from gravitational-strength interactions, there is no vio-
lation of causality in the gravitational context (Arkani-
Hamed et al., 2022).

Moving beyond log running in the deep IR, we can also
consider the threshold corrections induced by integrating
out specific massive particles. Neutral bosons coupling
to FµνF

µν or Fµν F̃
µν , exchanged at tree level, generate

positive four-derivative operator coefficients consistent
with (125) (Hamada et al., 2019). Loops of charged par-
ticles with sufficiently large charge-to-mass ratio (obey-
ing the WGC themselves, by a safe enough margin) also
satisfy (125) (Cheung and Remmen, 2014a). The chal-
lenging case, then, is when there are no light neutral
bosons and all of the charged particles have m & eMPl;
then, gravitational-strength ultraviolet contributions can
be competitive, and the sign is not obviously determined.

4. Arguments from analyticity, unitarity, and/or causality

In EFTs embedded within UV-complete quantum field
theories, positivity bounds on certain combinations of op-
erator coefficients (or, more invariantly, on derivatives of
low-energy scattering amplitudes) may be proven using
analyticity, unitarity, and causality (Adams et al., 2006;
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γ

FIG. 12 The contour integral for a dispersive proof of positiv-
ity of four-derivative operators. Here, we illustrate the case
of 2 → 2 scattering of a particle of mass m. The amplitude
A(s, t = 0) has poles at s = m2, 3m2 and branch cuts at
s ≤ 0, s ≥ 4m2. The dashed contour around the singularity
inserted at s0 = 2m2 can be deformed to the solid contour γ
surrounding subtractable pole contributions, positive branch
cut contributions, and a negligible contour at infinity.

Arkani-Hamed et al., 2021; Pham and Truong, 1985;
de Rham et al., 2017, 2018; Zhang and Zhou, 2020). A
prototypical example is the positivity of the (∂φ)4 op-
erator coefficient in the theory of a massive scalar field,
derived from a forward dispersion relation. This term
contributes an s2 + t2 +u2 term in the low-energy ampli-
tude A(s, t) for φφ → φφ scattering. The coefficient of
this term can be read off from a second derivative, and
in turn related to a contour integral in the complexified
s plane by Cauchy’s theorem:

1

2
A′′(s0, t = 0) =

1

2πi

∮
γ

A(s, 0)

(s− s0)3

=
1

π

∫
cuts

ds
sσtot(s)

(s− s0)3
> 0. (130)

In the last step, the contour γ around s0 has been de-
formed to enclose the s- and u-channel branch cuts and
two large arcs at large s, as illustrated in Figure 12.
The integrals along the branch cuts, in the t → 0 limit,
are related to positive total cross sections by the op-
tical theorem. The contour at infinity does not con-
tribute, because the Froissart bound (in conjunction with
a Phragmén-Lindelöf theorem) constrains the large-s am-
plitude to obey A(s, t = 0) < s2 log s. This argument,
given in (Adams et al., 2006), can be extended to pos-
itive t (below the branch cut) (de Rham et al., 2017,
2018). A version of the argument can also be derived
in AdS using CFT crossing relations (Hartman et al.,
2016). Causality constraints, arising from superluminal
propagation in nontrivial field backgrounds, lead to sim-
ilar conclusions (Adams et al., 2006). Notice that the

positivity bound on the (∂φ)4 coefficient is a strict in-
equality, provided that φ is not free.

Corrected black holes satisfy the WGC if the inequal-
ity (125) holds. This inequality involves four-derivative
operators that contribute to scattering amplitudes of
photons and gravitons, so it is natural to seek a general
argument, similar to that for (∂φ)4, that implies positiv-
ity independent of the details of the UV completion. For
example, in a theory of only photons, the bounds derived
from unitarity of forward scattering of linearly polarized
photons (of all possible polarizations) imply

cT ≥ 0 and DcT + 16cF ≥ 0, (131)

in the notation of (124). However, the arguments imme-
diately become more difficult in a gravitational context.
The relationship between superluminality and causality
is more subtle because lightcones are not rigid; cf. dis-
cussions in (Bellazzini et al., 2022; Cheung and Remmen,
2014a; Goon and Hinterbichler, 2017; de Rham and Tol-
ley, 2020). Unitarity arguments based on forward disper-
sion relations face the difficulty that graviton exchange
contributes a term ∝ −GNs2/t to scattering amplitudes,
rendering the t→ 0 limit ill-defined. Furthermore, high-
energy scattering in gravitational theories can produce
large black holes, so QFT bounds on the asymptotic UV
behavior of amplitudes do not necessarily hold. The fact
that the 1/t graviton-exchange pole scales as s2 poses
a particular problem for bounding four-derivative opera-
tors. For example, as shown in (Bellazzini et al., 2016),
if one carries out a contour integral to read off O(s4)
coefficients and then sends t → 0, one obtains candi-
date positivity constraints on operators involving four
Riemann tensors that are compatible with known string
theory examples. On the other hand, one cannot iso-
late the O(s2) contributions from local operators from
those of graviton exchange in this way. Furthermore, if
one simply discards the −GNs2/t term and follows the
logic of the unitarity bound, one would conclude that (in
D > 4, where it affects 2→ 2 graviton scattering) the co-
efficient of the Gauss-Bonnet term must be both ≥ 0 and
≤ 0 (Bellazzini et al., 2016). Theories are known in which
this coefficient is nonzero, so it is clear that discarding
the t-channel pole is not a strictly correct procedure. A
plausible interpretation of this result is that the coeffi-
cient of the Gauss-Bonnet term cannot be too large with
either sign, as further argued in (Camanho et al., 2016)
on causality grounds.

In QFT, we can deform a theory by adding relevant
operators, without changing the UV behavior. This
provides a method for addressing problematic IR diver-
gences. In quantum gravity, we do not have this luxury.
Quantum gravity theories are rigid: we cannot simply
add terms to the Lagrangian without modifying the en-
tire theory. On the other hand, we can study a consistent
theory on different backgrounds. This motivated a novel
argument aiming to eliminate the problematic s2/t pole
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by compactifying to three spacetime dimensions, where
there is no propagating graviton mode (Bellazzini et al.,
2019). A subtlety is that, in resolving the IR problem of
gravity, a new UV problem arises: 3d flat-space gravity
does not admit localized states of arbitrarily high mass,
because a massive particle has a deficit angle that eventu-
ally eats up the entire space. In other words, the physics
of the 3d theory resembles that of the 4d theory over
a range of high energies, but strongly deviates at truly
asymptotic energies. Thus, the meaning of A(s, t) be-
comes obscure in high-energy regions, where it seems to
be not even well-defined, much less analytic. This was
suggested by (Alberte et al., 2020, 2021) as a possible
culprit behind their observation that the t-channel sub-
tracted positivity bounds derived from compactification
appear to be overly strong. They require new physics to
appear at prematurely small energies, in contradiction
with known consistent theories. These works, reinforc-
ing similar arguments made earlier in (Hamada et al.,
2019) (see also (Tokuda et al., 2020)), suggest that pos-

itivity arguments can forbid terms of the form −c2 s2

M4

with c ∼ O(1) and M held fixed in the limit MPl → ∞,

but not terms of the form −c2 s2

M2M2
Pl

, which tend to zero

when gravity is decoupled.

Given the subtleties associated with making com-
pletely general and rigorous arguments in gravitational
theories, much of the work on this subject has focused
attention on identifying a sufficient set of conditions to
prove (125). As discussed above, explicit computations
show that tree-level exchange of light bosons interact-
ing with photons and loops of light charged particles
both produce corrections to cT and cF that satisfy (125).
In these cases, effects from cRF and cGB are subdomi-
nant. This is often the case, as large contributions to
cRF or cGB induce causality violation, in the absence of
a tower of high-spin states (Camanho et al., 2016) (see
also (Afkhami-Jeddi et al., 2018; Li et al., 2017) for holo-
graphic, CFT-based arguments). The most difficult case
to assess is when all contributions to the four-derivative
operators arise from an ultraviolet scale, like the string
scale. In this case, additional assumptions have been in-
voked. If Regge states associated with the photon have
effects dominating over those associated with the gravi-
ton, (125) can again be derived (Hamada et al., 2019).
Similar arguments have been explored for dilatonic black
holes in (Loges et al., 2020b). Constraints from duality
have also been shown to imply positivity conditions (An-
driolo et al., 2020; Loges et al., 2020a).

Recently, new positivity bounds have been de-
rived (Caron-Huot et al., 2021) that, following (Camanho
et al., 2016), avoid the t-channel pole problem by study-
ing scattering at fixed impact parameter, rather than
fixed t. It remains to be seen whether such an approach
can offer a new perspective on the WGC. A crucial test of
any completely general future proof of a positivity bound

is that it must be compatible with exactly zero correction
in the case of BPS black holes.

5. Arguments from entropy

As discussed in Sec. VI.C.1, recent work has shown
that the higher-derivative correction to the black hole
extremality bound is related, in a very general way, to
the shift in the Wald entropy of the black hole due
to higher-derivative terms. This raises the intriguing
prospect of proving (125) by proving that such correc-
tions to the entropy must be positive (Cheung et al.,
2018). In particular, an argument based on the Euclidean
path integral for black holes with positive specific heat
(including Reissner-Nordström black holes of sufficiently
large charge) establishes that the correction to the Wald
entropy ∆S4∂ from four-derivative operators is positive
whenever the correction ∆F4∂ to the free energy of the
black hole at fixed temperature is negative. The restric-
tion to positive specific heat allows one to conclude that
the classical solution minimizes (not just extremizes) the
Euclidean action. Under these conditions, one can show
that any four-derivative operators generated at tree level
lead to ∆S4∂ > 0, which in turn implies that corrected
black holes satisfy the WGC. Extending these consider-
ations to rotating dyonic black holes leads to a range of
inequalities generalizing (125) (Cheung et al., 2019).

The assumptions in this argument are not universally
valid, even for tree-level exchange (Hamada et al., 2019).
For example, a massive spin-2 field hµν with a coupling
hλλFµνF

µν generates a negative shift in the entropy. It
evades the assumptions because the Euclidean action is
not a local minimum with respect to hλλ. Although this
example evades the entropy argument, it violates uni-
tarity, and so cannot be embedded in a consistent quan-
tum gravity theory to provide a counterexample to (125).
This connection between unitarity and positive contri-
butions to the Wald entropy may hold more generally,
and hint at an argument that could extend beyond tree
level (Cheung et al., 2018). Modular invariance is an-
other supplementary assumption that has been invoked
to extend the range of validity of entropy arguments for
positivity (Aalsma et al., 2019).

VII. IMPLICATIONS AND CONNECTIONS

A. Implications for phenomenology and cosmology

1. Direct application of the WGC

Neither the WGC nor the tower/sublattice WGCs have
immediate novel implications for the Standard Model of
particle physics. The electromagnetic coupling constant
at low energies is e =

√
4πα ≈ 0.30, so the electron satisi-

fies the WGC by more than 20 orders of magnitude. Fur-
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thermore, because e is an order-one number, the tower
of charged particles predicted by the tower/sublattice
WGCs could all have mass near or above the Planck
scale. If one applies the WGC to the nonabelian gauge
groups of the Standard Model (above the QCD scale
or the electroweak scale, so that the gauge bosons ap-
pear massive), then the gauge bosons themselves obey
the WGC, and again a WGC tower could consistently lie
around the Planck scale because the coupling constants
are order one. Perhaps a more interesting statement is
that the WGC implies that a magnetic monopole should
exist with a mass near the Planck scale or below (assum-
ing that the bound is not obeyed only by monopoles of
very large magnetic charge), but this is not a statement
that is readily falsifiable by any conceivable experiment
at this time.

Interesting direct applications of the WGC, then,
should be sought in new gauge interactions beyond the
Standard Model. These could be previously undetected
forces through which known particles interact, or hid-
den sector interactions among particles that are so far
unknown (or perhaps detected only indirectly through
their gravitational effects, in the form of dark matter).

Given the minimal Standard Model matter content
(without right-handed neutrinos), the theory can be ex-
tended with a single additional U(1) gauge interaction,
coupling to the one of the differences of lepton numbers
for different generations: Le−Lµ, Lµ−Lτ , or Le−Lτ . At
most one of these symmetries can be consistently gauged,
due to mixed ’t Hooft anomalies (Foot, 1991; He et al.,
1991). The case of Lµ − Lτ is of particular interest,
as it can explain the nearly maximal mixing of muon
and tau neutrinos (Ma et al., 2002). Any of these gauge
symmetries must be spontaneously broken. The regime
of greatest phenomenological interest involves relatively
large gauge couplings, where the WGC has little power
even assuming it applies in the higgs phase.

A more compelling example is the Standard Model
with Dirac neutrino masses, which admits a differ-
ent U(1) extension, gauging the difference B − L of
baryon and lepton number (Chanowitz et al., 1977; Desh-
pande and Iskandar, 1980). In this case, the associated
gauge field could be exactly massless without contra-
dicting experimental results, provided that it is extraor-
dinarily weakly coupled: eB−L . 10−24 (Heeck, 2014;
Wagner et al., 2012). The combination of the Planck
constraint on the sum of neutrino masses,

∑
mν <

0.12 eV (Aghanim et al., 2020) with the values of the
neutrino mass-squared differences inferred from neutrino
oscillations, ∆m2

21 � |∆m2
31| ≈ 2.4 × 10−3 eV2 (Zyla

et al., 2020), implies that the lightest neutrino has mass
. 0.03 eV. Thus, the lightest neutrino will obey the
WGC for B − L provided that eB−L & 9 × 10−30. This
provides about five orders of magnitude in allowed B−L
coupling in which the mild form of the WGC would be
satisfied. The tower/sublattice WGCs, however, provide

a significant constraint: an infinite tower of (B − L)-
charged particles should exist, beginning at masses of
order eB−LMPl . keV and extending up indefinitely.
This implies that, if B − L is an unbroken gauge sym-
metry in our universe, then billions of undetected par-
ticles that interact (albeit very weakly) with ordinary
matter exist below the TeV scale. Although this would
be surprising, it is not obviously ruled out by data; it
would have phenomenology akin to the large extra dimen-
sions scenario (Arkani-Hamed et al., 1998). A minimal
WGC tower of B − L charged particles would suggest
a breakdown of local quantum field theory at energies

. e
1/3
B−LMPl . 1010 GeV, a scaling analogous to that of

Kaluza-Klein theory. (However, because Standard Model
fermions carry B−L charge and are not accompanied by
low-mass excitations of higher B − L charge, we would
not expect the B − L gauge group to literally arise as a
Kaluza-Klein gauge field from a circle compactification.)
The tower/sublattice WGCs put the existence of a mass-
less B−L gauge field in tension with conventional models
of GUTs or of high-scale inflation, which postulate local
new physics at energy scales above 1010 GeV, but is not
ruled out by experimental data.

The WGC might also be applied to possible gauge
forces in hidden sectors, possibly related to the dark mat-
ter in our universe. One might expect that forces weak
enough to have significant WGC constraints would also
be too weak to have observable consequences. Some-
what surprisingly, it turns out that very weak forces be-
tween dark matter particles can sometimes have observ-
able consequences in astrophysics or cosmology. Dark
matter charged under a massless abelian gauge field (or
“dark photon”) has been considered as a simple QFT
with rich phenomenology (Ackerman et al., 2009; Feng
et al., 2009, 2008). Constraints on the strength of such a
coupling arise from evidence that dark matter is approx-
imately collisionless. However, even for very small cou-
plings, there can be collective dark plasma effects (Acker-
man et al., 2009; Heikinheimo et al., 2015). These lead to
density fluctuations in the plasma on a time scale of order
the inverse plasma frequency, ω−1

p ∼ md
ed
ρ−1/2, where md

is the mass of an individual dark matter particle, ed is the
dark photon coupling, and ρ is the mass density of dark
matter (which is directly inferred from observations). If
we suppose that the dark matter particles themselves
obey the WGC for the dark U(1), this can lead to inter-
esting consequences, as discussed in (Craig et al., 2019b).
In this case, the dark WGC implies that md

ed
. MPl.

Quantitative estimates show that dark plasma fluctua-
tions can then lead to shock waves developing on the
timescale of a merger of colliding galaxy clusters. Thus, it
is conceivable that observations of cluster mergers could
reveal dynamical evidence of very weak gauge forces be-
tween dark matter particles that approximately saturate
the WGC. If the dark matter particles are sufficiently
light, then the tower/sublattice WGCs could, in turn,
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imply important constraints on the UV cutoff of physics
in our universe. Dedicated work, including numerical
simulations, would be necessary to make more precise
statements about observable dark plasma effects.

The tower/sublattice WGCs can also have interesting
implications for nonabelian gauge groups in the dark sec-
tor. For example, dark matter charged under such a
gauge group can have distinctive cosmological signatures
even for quite weak couplings, because the dark gluons
constitute a form of interacting dark radiation (Buen-
Abad et al., 2015). The tower/sublattice WGC cutoff
on such theories is at most g1/2MPl (Heidenreich et al.,
2018b). Thus, there can potentially be a tension between
cosmological observables associated with interacting dark
radiation, and theories of high-scale inflation.

Another topic of substantial recent phenomenological
interest has been kinetic mixing between a dark U(1)
and ordinary electromagnetism (Holdom, 1986). Such a
mixing can be generated by loops of particles that carry
both kinds of U(1) charge. The tower/sublattice WGCs
imply the existence of such particles, and hence suggests
a minimum kinetic mixing, at least in the absence of
gauged charge conjugation symmetries that enforce an
exact cancellation. The size of kinetic mixing motivated
by such an argument has recently been explored, and
compared to concrete string theory examples, in (Benakli
et al., 2020; Obied and Parikh, 2021).

Finally, a direct application of the (magnetic) WGC
that is only indirectly relevant for phenomenology was
pointed out in (Cribiori et al., 2021; Dall’Agata et al.,
2021), which argued that de Sitter critical points in cer-
tain gauged supergravity models are incompatible with
the magnetic WGC, since by (17) their associated Hub-
ble scale is larger than the scale of new physics, ΛNP .
eMPl . H.

2. Bounding the electroweak hierarchy

A longstanding problem in particle physics is the elec-
troweak hierarchy problem: why is the electroweak en-
ergy scale (v ≈ 246 GeV) so many orders of magnitude
below the Planck scale (MPl ≈ 2.4 × 1018 GeV)? An
enormous hierarchy between the Planck scale and the
masses of the electron, proton, and neutron is necessary
in order to have stable, large objects like stars and plan-
ets. However, in the Standard Model, the electroweak
hierarchy is large only in a tiny subset of the UV pa-
rameter space, unlike the hierarchy between the Planck
and QCD scales, which is naturally exponentially large
due to asymptotic freedom. This has motivated a num-
ber of suggested extensions of the Standard Model in
which the electroweak hierarchy can naturally become
large, ranging from scenarios where electroweak break-
ing is triggered by dynamical supersymmetry breaking
to those where the Higgs boson is a composite particle of

a strongly-interacting sector. Traditionally, these mod-
els all share the feature that they relate the electroweak
hierarchy to a scale generated by dimensional transmu-
tation, and they predict new particles with masses near
the electroweak scale. LHC measurements have informed
us that the Higgs boson appears to be approximately el-
ementary (i.e., it has Standard Model-like interactions
with other fields), and additional electroweak-scale par-
ticles have not yet been discovered. This has motivated
theorists to pursue novel explanations of the electroweak
hierarchy problem.

Because the WGC gives rise to an upper bound on
particle masses, it is tantalizing to wonder if it could
produce an upper bound on the Higgs scale v, thereby
explaining why v is so dramatically small compared to
MPl. This idea was first discussed by (Cheung and Rem-
men, 2014b), and further explored by (Craig et al., 2019b;
Lüst and Palti, 2018). The simplest, original version of
the idea is to suppose that B−L is gauged and that neu-
trinos, which acquire mass only from electroweak sym-
metry breaking, are the particles responsible for satis-
fying the WGC. The (Dirac) neutrino mass must then
obey mν = yνv/

√
2 <

√
2eB−LMPl. If we fix yν to

its Standard Model value (∼ 10−12), and if we postu-
late a B − L gauge coupling eB−L ∼ 10−28 (consistent
with the experimental limits), this inequality tells us that
v . 10−16MPl, and thus requires an electroweak hierar-
chy of the order that we observe in nature.

While this offers an interesting perspective on how
quantum gravity might affect low-energy particle physics
in surprising ways, several elements of this argument are
unsatisfactory. One is that it seeks to explain the ori-
gin of a mysterious factor of order 10−16 in terms of an-
other small number of order 10−28, which is unexplained.
This is viewed as progress because the electroweak hi-
erarchy is not robust against quantum corrections (the

Higgs mass acquires additive corrections of order h2

16π2M
2

when coupled to heavy fields of mass M via interactions
of size h, which must be “tuned away” through cancel-
lations against other contributions), whereas the small-
ness of the gauge coupling eB−L is “technically natu-
ral” (its corrections are all proportional to eB−L itself).
Nonetheless, if our goal is to understand the origin of
small numbers in our theory of nature, this at best shifts
the problem to explaining the origin of the small num-
ber eB−L. One might hope that such a problem has a
solution, for instance, in terms of a dynamical mecha-
nism of moduli stabilization. Nonetheless, this shift of
the hierarchy problem toward a problem of explaining an
exponentially tiny eB−L is in some tension with the spirit
of the WGC itself. A very small value of eB−L restores
a global symmetry of the theory, and so quantum grav-
ity should resist attempts to generate exponentially tiny
gauge couplings. This suggests that perspectives rooted
in a very literal interpretation of technical naturalness
may encounter obstacles in a quantum gravity setting.
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A sharper version of this concern is that the magnetic
WGC tells us that eB−LMPl serves as an ultraviolet cut-
off on our EFT. This is particularly problematic from
the viewpoint of the tower/sublattice WGCs, which pos-
tulate a tower of (B − L)-charged particles appearing at
this mass scale. If infinitely many particles in such a
tower obey the WGC, then it was unnecessary to require
that the neutrinos obey the WGC, destroying the link
between a small eB−L and the Higgs scale v.

One refinement of the argument (Craig et al., 2019b;
Lüst and Palti, 2018) draws on the Repulsive Force Con-
jecture in the presence of scalar fields (Palti, 2017), ar-
guing that the bound assumes the schematic form m ≤√
g2 − µ2MPl where g is a gauge coupling and µ is a cou-

pling to scalars. In cases where g2 ≈ µ2, this can be a
much stronger bound than simply m ≤ gMPl. This offers
the opportunity to push the magnetic WGC scale gMPl

up to higher energies, where it has less effect on the ar-
gument. On the other hand, it introduces yet another
small number, the ratio

√
g2 − µ2/g, which requires ex-

planation. One must postulate a specific form of the
scalar couplings of the light, WGC-obeying matter fields
in order to make this argument. It should be different
from the scalar couplings of black holes; otherwise, the
tower/sublattice WGC tower would begin at the same

scale,
√
g2 − µ2MPl, rather than gMPl. This application

of the RFC requires that the scalar providing the addi-
tional force remain light, which itself requires explanation
and can lead to additional naturalness constraints on the
EFT (Craig et al., 2019b).

The most recent variations on the argument (Craig
et al., 2019b) explore new forces under which no Stan-
dard Model particle is charged. One could, for exam-
ple, consider a scalar field Φ charged under a new U(1)X
gauge interaction, which we suppose should satisfy the
WGC for U(1)X . If we further posit that Φ couples to
the Higgs boson through a quartic coupling κ|Φ|2|h|2,
then the additive shift of the Φ mass-squared by 1

2κv
2

could cause Φ to fail to obey the WGC if v is too large.
Similar models can be constructed with fermionic fields.
These models make distinctive phenomenological predic-
tions, relative to the original B − L model, and could
have implications for dark matter dynamics.

These attempts to bound the electroweak scale v using
Weak Gravity arguments all invoke a similar set of as-
sumptions. We must assume the existence of very small
(but technically natural) couplings. We must also as-
sume that specific particles in the theory, which happen
to interact with the Higgs boson, are the ones that sat-
isfy the WGC. If the WGC were satisfied by an inde-
pendent set of particles, not interacting with the Higgs,
then the link to the electroweak hierarchy would be sev-
ered. Finally, we must suppose that this restricted set of
theories is relevant for the world that we live in. If the
landscape of quantum gravity contains many universes
resembling our own that do not contain the postulated

U(1)B−L or U(1)X force and the specific connections as-
sumed between these forces and the electroweak scale,
then there is no reason why we would expect our universe
to obey the assumptions. The argument that the WGC
constrains the electroweak scale would only be plausi-
ble if such vacua are overwhelmingly more common than
others, or overwhelmingly more likely to be populated
by cosmology. In recent years, there has been a prolif-
eration of models that link cosmology to particle physics
by postulating the existence of a landscape that takes a
very specific form, where for instance certain couplings
are assumed to exist and take on fixed values in all vacua,
and only a limited set of parameters “scan” from one vac-
uum to another. These have been referred to as “artificial
landscapes” (Strassler, 2014, 2016), and in the absence of
evidence that they resemble the true landscape of quan-
tum gravity, it is unclear what lessons one can draw from
them.

Finally, it may be worth emphasizing that the exam-
ples in which we have checks of the WGC are cases where
we compute the mass at leading order in a perturbative
expansion, or where the mass is protected by supersym-
metry. As a result, we have no explicit examples in which
the WGC is satisfied by a state whose mass is fine-tuned
to be light due to a cancellation. Indeed, such examples
would be extremely difficult to generate. If one could find
such examples in the string theory landscape, they would
at least serve as an interesting proof of principle that the
WGC could require a fine-tuning that would appear ac-
cidental from the viewpoint of low-energy effective field
theory.

3. Other applications to the hierarchy problem

In (Graham et al., 2015), a dynamical mechanism
known as “cosmological relaxation” was proposed as a
solution to the hierarchy problem. In this scenario, the
Higgs field h is coupled to a real scalar field φ through a
potential of the form

V = (−M2+gφ)|h|2+
(
gM2φ+ g2φ2 + · · ·

)
+Λ4 cos(φ/f) ,

(132)
where M is the cutoff of the effective field theory and
Λ depends on the vev of h. Initially, the dynamics of φ
are dominated by the polynomial terms, and the cosine
term is negligible. When φ ∼ M2/g, however, the Higgs
field acquires a vev, and the scale Λ for the cosine terms
grows, creating a barrier which stabilizes the axion and
leaves the Higgs with a mass well below the EFT cutoff
M . In order for this mechanism to work, however, the
cosine terms must eventually be able to compete with the
gM2φ term. In typical relaxation scenarios, this requires
g to be roughly of order 10−34. Furthermore, inflation
must last long enough for φ to scan the entire range of
the Higgs mass. This places an additional bound on the
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cutoff given by M . (ΛMPl)
1/2, which yields M . 109

GeV for Λ = ΛQCD.
The tiny coupling g ∼ 10−34 is “technically natural,”

but this does not necessarily mean that the model can be
UV-completed. In particular as we take g → 0 the theory
(132) has an exact global symmetry φ′ = φ + 2πf , and
if the arguments against exact global symmetries have
any robustness then they should also rule out sufficiently
small values of g. One possible approach to avoiding this
problem is to view φ′ = φ + 2πf as a gauge symmetry,
or in other words to turn φ into an axion. This however
forbids most of the terms in (132) (a small explicit viola-
tion of a gauge symmetry is just as bad as a large one),
and thus kills the feasibility of the model.

So far the most promising proposal for obtaining a
large scalar field excursion that is consistent with all ver-
sions of the WGC is the “axion monodromy” proposal
of (McAllister et al., 2010; Silverstein and Westphal,
2008).16 The most basic version of this proposal (Kaloper
and Sorbo, 2009) uses an axion coupled to a 3-form gauge
field A3 via the Lagrangian (which we here write as a 4-
form)

L = −1

2
dφ ∧ ?dφ− 1

2e2
3

F4 ∧ ?F4 +
g

e3
φF4 . (133)

with F4 = dA3. Naively one might think that the cou-
pling g should be zero to respect the axion periodicity
φ ∼ φ + 2πf , but as is usual for Chern-Simons type
interactions the fact that the integral of F4 obeys the
quantization ∫

F4 = 2πm, m ∈ Z (134)

means that it is enough that we have

g =
ke3

2πf
, k ∈ Z. (135)

We have normalized g here so that it matches the g in
(132), so we now have two ways to get a small g: either
we can take f large in Planck units or we can take e3

small. To avoid trouble with the axion WGC (26) we do
not want to take f large in Planck units (we’ll discuss
this more in Section VII.A.5), so our task is to under-
stand how constrained we are by the WGC for the three-
form gauge field A3. Before discussing that however it is
perhaps worth explaining in more detail how the theory
(133) allows for a super-Planckian field excursion. The
equations of motion following from (133) are

?d ? dφ+
g

e3
? F4 = 0 , d(ge3φ− ?F4) = 0, (136)

16 This was originally proposed as a model of inflation, as we will
discuss later in this section, but it can also be used as a mecha-
nism to implement cosmological relaxation as we discuss here.

so the quantity

F̃0 ≡ ?F4 − ge3φ (137)

is constant. In fact it is quantized: the integral of A3

over space is a periodic variable, and F̃0 is proportional
to its canonical conjugate. Working this out gives the
quantization

1

e2
3

F̃0 = n, (138)

with n ∈ Z. Substituting this back into the first equation
of motion we find

? d ? dφ+ g(e3n+ gφ) = 0, (139)

which is the equation of motion for a scalar field with
a potential that is a second order polynomial just as
in (132). This equation may appear not to be gauge-
invariant, but it actually is since n is a dynamical variable
and the relevant gauge transformation is

φ′ = φ+ 2πf , n′ = n− k. (140)

Here k is the integer defined by (135). One way to think
about the apparent non-periodicity of the potential is to
observe that although φ is periodic, ?F4, which is not
periodic, is also rolling in order to ensure that F̃0 is con-
stant. Indeed one can say that ?F4 is really the gauge-
invariant scalar which is rolling in axion monodromy.

There is an interesting subtlety in this model which
is worth mentioning explicitly: although the gauge in-
variance of the action prevents us from adding arbitrary
powers of φ to the action, ?F4 is perfectly gauge-invariant
and thus there is nothing which prevents us from intro-
ducing a potential V (?F4). Such a potential presumably
is generated by quantum gravity effects, so why does it
not ruin the model? To the extent that axion monodromy
can be realized in string theory (which seems unlikely for
the relaxion scenario but plausible for inflation), such a
potential does exist but is typically of the form

V (?F4) =
1

e2
3`

8
s

v(`4s ? F4). (141)

Here `s is the string scale and v(·) is a dimensionless func-
tion of a dimensionless variable, expected to be O(1). (In
models, the form of this function is known, e.g., from the
DBI action (McAllister et al., 2010).) The correction to
the equations of motion (136) arising from this potential
does not become important until ?F4 ∼ `−4

s . An axion
excursion ∆φ gives rise to a change in ?F4 which is of
order

∆?F4 ∼ ge3∆φ ∼ ke2
3

∆φ

f
, (142)

so we can have an axion excursion which is large com-
pared to f without feeling the potential V provided that

ke2
3`

4
s � 1. (143)
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In string theory, the dimensionless number e2
3`

4
s is often

small: it can be proportional to positive powers of gs,
inverse powers of volumes, or warp factors; whatever the
reason, as long as it is small we can achieve ∆φ � f
without being sensitive to V (?F4). The robustness of
axion monodromy thus relies on high-energy information
from string theory: it cannot be established purely using
low-energy power counting and symmetries.

We now turn to applying the WGC for 3-form gauge
fields to axion monodromy (Ibáñez et al., 2016). The
objects to which it applies are domain walls of tension
T3, across which 1

e23
F̃0 changes by an integer Q, and the

WGC says there should be such domain walls with

T3 ≤
4πfgMPlQ

k
. (144)

The danger here is that an upper bound on the domain
wall tension also likely gives some sort of lower bound
on the rate for bubbles bounded by the domain wall to
nucleate, and if this happens too often it destroys the re-
laxation mechanism. The domain walls separate regions
whose potential energy differs by

∆V ∼ ge3φ ∼ fg2φ/k . (145)

The bounce action computed by (Ibáñez et al., 2016) is
not accurately described by the thin-wall approximation,
but involves important gravitational backreaction (Cole-
man and De Luccia, 1980). The result is a bubble nucle-
ation probability

P ∼ exp(−B) , B ≈ w(b)
2π2T3

H3
, (146)

where H is the Hubble scale during inflation. The pa-
rameter b is defined as

b =
∆V

HT3
, (147)

and it turns out that in the parameter range of interest,
w(b) ∼ O(1) and b . 1. Using b, we can rewrite the
bounce action estimate as:

B ∼ 2π2 T 4
3 b

3

(∆V )3
. (148)

The WGC provides a constraint, following (Ibáñez et al.,
2016), because we require B � 1 for an exponen-
tially suppressed tunneling probability, but the WGC
implies that B < Bmax where Bmax is obtained when
T3 saturates (144). These can only be consistent when
Bmax � 1. Together with the estimates φ ∼ M2/g
and gM2 ∼ Λ4/f required for consistent relaxion phe-
nomenology, this inequality translates into a bound on
the EFT scale:

M .
(
4π2b3

)1/8√
ΛMPl . (149)

For Λ = ΛQCD, this bound becomes

M . b3/8 × 2.5× 109 GeV, (150)

which for b ∼ 1 rivals the bound for consistency of the
relaxion model discussed previously.

Thus, the three-form WGC provides an interesting
constraint on cosmological relaxation implemented via
axion monodromy. On the other hand a similar con-
straint may also be derived independently of the WGC,
and in the original paper it was shown that this constraint
could be satisfied without spoiling the model. Therefore
neither the axion WGC nor the three-form WGC seem
to pose a fatal challenge to the axion monodromy version
of the cosmological relaxation model. It is worth men-
tioning, however, that embedding the model into string
theory nonetheless seems to be very challenging, if not
impossible. In particular, (McAllister et al., 2018) argued
that within a string compactification, the huge winding
number of the relaxion corresponds to a huge charge car-
ried by branes or fluxes (this is already apparent in the
model (133) since ?F4 is rolling). This charge backreacts
on the compactification geometry and eventually spoils
the relaxation mechanism. The relaxion scenario may lie
in the Swampland, but if so then the most stringent top-
down constraints do not come from the WGC. Even if
axion monodromy does not give a viable realization of
the relaxion model in string theory however, it is a quite
plausible candidate for realizing inflation: we return to
this in section VII.A.5.

4. Mass of the photon or dark photons

Conventionally, we assume that the photon is a mass-
less gauge field. However, theories of massive, abelian
spin-1 particles are perfectly consistent, either with a
simple mass term and no gauge invariance at all (Proca,
1936) or with a real scalar field added to provide the
longitudinal mode, together with a gauge invariance to
eliminate the redundant degree of freedom (Stueckelberg,
1938). If the photon has a very small mass, the longitu-
dinal mode is extremely weakly coupled, so it is difficult
to experimentally distinguish from a massless photon de-
spite the change from two to three independent propa-
gating polarization states (Bass and Schrödinger, 1955).
Of course, the photon in our universe must be extremely
light. There is a large literature on experimental con-
straints on the mass, to which a few interesting entry
points are (Adelberger et al., 2007; Goldhaber and Ni-
eto, 2010; Wu et al., 2016).

In four dimensions a massive photon in the Stueckel-
berg regime can be described by BF theory: we have a
1-form gauge field A with field strength F = dA and a
2-form gauge field B with field strength H = dB, inter-
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acting via the Lagrangian

S =

∫ (
− 1

2f2
H ∧ ?H − 1

2e2
F ∧ ?F +

k

2π
B ∧ F

)
,

(151)
where k ∈ Z just as in the axion monodromy discussion
of the previous subsection. The gauge coupling f of the
2-form field has mass dimension 1. This theory describes
a massive gauge field with mass

m =
k

2π
ef. (152)

For k 6= 0, taking the gauge field mass to zero requires
either e → 0 or f → 0. In either case, we are taking a
gauge coupling to zero, and so the WGC imposes some
constraint. In particular, if we send e→ 0, the magnetic
WGC tells us that there is a UV cutoff on the theory at
the scale eMPl, and the tower/sublattice WGCs suggest
that there effective field theory breaks down irrevocably
at some scale, possibly a higher one like e1/3MPl (as in
Kaluza-Klein theory). If we send f → 0, the mild WGC
for the 2-form gauge field B implies that strings charged
under B should exist with tension T . fMPl.

In the case where the photon mass arises from the
Higgs mechanism, there is no fundamental obstruction to
sending f → 0: this corresponds to turning off the Higgs
vev, which can be accomplished just by giving the Higgs
a positive mass term around the origin. In this case, the
B-field may be thought of as an emergent gauge field in
the IR below the scale of the Higgs vev, and the charged
strings predicted by the 2-form WGC are simply ANO
strings (Abrikosov, 1957; Nielsen and Olesen, 1973). In
the core of an ANO string, the Higgs vev is zero; in the
limit that the Higgs vev is taken to zero, an ANO string
simply becomes more and more diffuse and fades away.
The WGC, then, is compatible with small masses arising
from the Higgs mechanism.

By contrast, there are massive gauge theories which
are fundamentally of Stueckelberg type. In this case, the
strings charged under the B field are fundamental (e.g.,
the F-strings or D-strings of string theory). The core
of the string is not well-described by effective field the-
ory, and there is no finite-distance point in field space at
which the gauge boson mass can be sent to zero. In this
case, the limit f → 0 corresponds to a theory of funda-
mental, tensionless strings, signaling a complete break-
down of local effective field theory. In such a case, the
fundamental quantum gravity cutoff energy is bounded,
ΛQG .

√
2πfMPl.

The WGC, then, imposes an ultraviolet cutoff on the-
ories of a massive gauge boson with mass arising from
a fundamental Stueckelberg term (Reece, 2019). This
can also be understood as a consequence of the Swamp-
land Distance Conjecture: for mass terms of fundamental
Stueckelberg type, the m→ 0 limit is an infinite distance
limit, and so an infinite tower of light states appears when
one approaches this limit.

This constraint on massive, abelian gauge bosons
has potentially important implications for the Standard
Model photon and for potential dark photons (Reece,
2019). First, consider the Standard Model photon. A
conservative bound, obtained from the arrival time of
different frequencies from Fast Radio Bursts, is that
mγ . 10−14 eV (Wu et al., 2016). Stronger bounds ex-
ist, but involve more assumptions, so we will work with
this very simple kinematic bound; our conclusions can
be readily adapted to other constraints. If we assume
that electromagnetic charge is quantized in the usual
way, the only way to obtain a small Standard Model
photon mass of fundamental Stueckelberg type is by tak-
ing f to be very small: ef/(2π) . 10−14 eV requires
f . 10−22 GeV. But then the Weak Gravity Con-
jecture would require fundamental strings with tension
T . fMPl . (20 MeV)2. However, we know that gravity
does not become strongly coupled near the MeV scale,
so we cannot have a fundamental string with its associ-
ated tower of high-spin modes at such a low scale. This
strongly suggests that the only way for the Standard
Model photon to be massive is if it is Higgsed.

Could the Standard Model photon be Higgsed? The
short answer is “probably not,” and it becomes “no” pro-
vided that we assume that the ratios among charges of
light particles in the theory are at most O(1) (such an
assumption is common in discussions of phenomenologi-
cal implications of the WGC). With this assumption, if
the Standard Model photon were Higgsed then we would
already have discovered the corresponding Higgs boson.
The only way to avoid this is for the Standard Model pho-
ton to obtain a mass from a Higgs field with a charge that
is a tiny fraction of the electron’s charge, in which case
the associated Higgs boson could remain hidden from ex-
periments. For example, suppose that the fundamen-
tal unit of electric charge is not e but some e0 = e/N
where N is a very large integer. Then our calculation
becomes quite different: we have mγ = e0f/(2π) and,
rather than small f , we are free to take very small e0.
Furthermore, if f is a Higgs vev, rather than a Stueck-
elberg scale, then there are no associated fundamental
strings providing a UV cutoff. As an example, the choice
f ∼ eV and e0 ∼ 10−14 could be consistent with exper-
imental bounds on millicharged particles. It implies a
WGC tower of states with tiny electric charge beginning
at the scale e0MPl ∼ 10 TeV, which is allowed by data.
Apart from a new hierarchy puzzle associated with the
small mass of the new Higgs field, the cost of considering
such a theory is the introduction of the enormous integer
N ∼ 1014. The Standard Model fermions would carry
electric charge on this order, in units of the fundamen-
tal charge. There are no known consistent theories of
quantum gravity that can produce such large ratios of
charges among light particles. On the other hand, there
are phenomenological models in which such a large inte-
ger could be obtained as a product of smaller integers, as
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in the clockwork scenario (Choi and Im, 2016; Choi et al.,
2014; Kaplan and Rattazzi, 2016), adapted to this con-
text by (Craig and Garcia Garcia, 2018). It remains to
be seen if such scenarios can be found in the Landscape.

The WGC can constrain not only the possibility that
the Standard Model photon is massive, but also the pos-
sibility that a dark photon A′ has a fundamental Stueck-
elberg mass. One application is to dark photon dark
matter, which is now the target of many dedicated ex-
periments. Dark photon dark matter can arise from the
primordial fluctuations of a massive vector field A′ during
inflation, which can account for the observed dark matter
relic abundance if mA′ & 10−5 eV (Graham et al., 2016).
However, for such a light dark photon, if the mass is of
fundamental Stueckelberg type then the WGC implies a
cutoff lower than the inflationary Hubble scale assumed
in the calculation of the dark matter relic abundance.
This constraint excludes a substantial part of the param-
eter space of such models (Reece, 2019).

5. Axion inflation

The spectra of temperature and polarization fluctu-
ations in the Cosmic Microwave Background radiation
(CMB) strongly suggest that the universe experienced
an early period of accelerated expansion known as infla-
tion (Akrami et al., 2020; Peiris et al., 2003). This idea
(Guth, 1981; Starobinsky, 1980) is most easily realized
by a scalar field rolling slowly down a potential (Linde,
1982). The action describing this scenario is

S =

∫
d4x
√−g

[
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
,

(153)
where the scalar φ is called the inflaton. At leading order
the metric gµν is taken to be the FRW metric,

ds2 = −dt2 + a2(t)d~x2 , (154)

and the scalar field φ is taken to be homogenous in space,
φ(t, ~x) = φ(t). The equations of motion are

φ̈+ 3Hφ̇+ V ′(φ) = 0,
1

3M2
Pl

(
1

2
φ̇2 + V (φ)

)
=

(
ȧ

a

)2

,

(155)

and inflation happens when H ≡ ȧ
a is approximately con-

stant. Requiring |Ḣ| � H2 implies that φ̇2 � V , and it
is usually also assumed that the acceleration of φ is small,
|φ̈| � φ̇H (see, e.g., (Weinberg, 2008)). Together these
requirements are equivalent to the “slow roll conditions”

|V ′|
V

MPl � 1
|V ′′|
V

M2
Pl � 1. (156)

Inflation ends when these conditions are violated, after
which the field is usually expected to oscillate about its

current minimum and in some manner (called reheating)
decay into the dense gas of hot particles we usually call
the big bang.

CMB observables give us data about the inflaton po-
tential V . Especially noteworthy for our purposes are the
primordial scalar and tensor power spectra

k3Ps(k) =
H4

2φ̇2
≈ V 3

6M6
PlV

′2 , k3Pt(k) =
4H2

M2
Pl

≈ 4V

3M4
Pl

,

(157)

where quantities on the right are evaluated at the value of
φ corresponding to the time when modes of wave number
k were exiting the inflationary horizon (see, e.g., (Malda-
cena, 2003b)). The scalar power spectrum has been well-
measured by the temperature anisotropy of the CMB,
so it is the tensor spectrum, which causes anisotropy in
the B-mode polarization of the CMB, which is of most
interest in learning more about the physics of inflation.
In particular from (157) we see that a measurement of
tensor modes would give us direct information about the
overall scale of the inflationary potential. The tensor am-
plitude is usually expressed via the tensor-to-scalar ratio

r ≡ Pt(k∗)
Ps(k∗)

=
8φ̇2

H2M2
Pl

≈ 8M2
PlV

′2

V 2
, (158)

where k∗ is a typical wave number of large scale structure,
say .05 Mpc−1. For high-scale inflation such as might
lead to observable tensor modes, this corresponds to the
value of the inflaton about 60 e-foldings before the end of
inflation (i.e., at the time t∗ when log (a(tend)/a(t∗)) ≈
60).

From (158), we see that the tensor-to-scalar ratio mea-
sures how quickly the inflaton is rolling. We also know
how long inflation lasts (60 e-folds for high-scale infla-
tion). Putting these together, and integrating φ̇ over
time, we obtain a rough estimate on the distance trav-
eled by the field φ during the course of inflation, which
is known as the Lyth bound (Lyth, 1997):

∆φ ≈ O(1)
( r

0.01

)1/2

MPl . (159)

The Lyth bound tells us that if tensor modes can be
detected in the CMB in the near future (which would
require r & 0.001−0.01), then the inflaton must traverse
a distance of order 1 in Planck units.

This “super-Planckian” field range is important be-
cause such large field excursions can run into trouble with
effective field theory: quantum gravity sets an EFT cut-
off no larger than the Planck scale, so a perturbative
expansion of V (φ) in powers of φ suppressed by MPl will
run into trouble when ∆φ is O(MPl) or larger. If tensor
modes are observed in the CMB, therefore, we will need
a model of large-field inflation that is not destroyed by
large corrections arising from quantum gravity.
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FIG. 13 In N-flation, a large numberN of axions with individ-
ually sub-Planckian decay constants give rise to an effective
decay constant feff that can be arbitrarily large, realized by
traveling along the space diagonal of the N -dimensional hy-
percube.

Historically, axions have been considered the most
promising route for circumventing this issue. An ax-
ion has a discrete gauge symmetry, φ → φ + 2π. This
shift symmetry protects the axion potential from Planck-
suppressed operators φn/Mn−4

Pl . The dynamics are in-
stead controlled by a periodic potential, which is often
assumed to be dominated by instanton effects, leading to
an action of the form

S =

∫
d4x

[
−1

2
f2(∂µφ)2 − V (φ)

]
, (160)

where

V (φ) = Λ4
UVe−Sinst (1− cos (φ)) +O(e−2Sinst) . (161)

Here f is the “axion decay constant,” Sinst is the in-
stanton action, and higher harmonics of the potential
are suppressed by additional powers of e−Sinst . The re-
sulting model of inflation is called “natural inflation”
(Freese et al., 1990), and it yields phenomenologically vi-
able models of large-field inflation with detectable tensor
modes (r > 0.01) for f & 10MPl.

Although natural inflation is an appealing model, it
has proven difficult to implement in string theory when
f & MPl and Sinst � 1, with the basic problem being
that such large excursions in scalar field space often lead
to additional light degrees of freedom appearing which
spoil inflation (Banks et al., 2003). Indeed this difficulty
is part of what led AMNV to propose the WGC in 2007:
the axion WGC (26) gives an upper bound on f , which in
D = 4 and assuming the instantons satisfying the WGC
have small instanton number tells us that

fSinst .MPl. (162)

Thus any natural inflation model with observable tensor
modes and a computable potential (meaning f & 10MPl

and Sinst � 1) is in strong tension with the axion WGC.
Already by the time the WGC was introduced, var-

ious works had considered possible ways to get around
the above difficulties and realize a model of large-field

FIG. 14 In decay constant alignment, two axions with indi-
vidually sub-Planckian decay constants are aligned so that
their diagonal can be arbitrarily large.

natural inflation consistent with quantum gravity. One
such proposal is N-flation (Dimopoulos et al., 2008; Lid-
dle et al., 1998). As its name suggested, N-flation invokes
not just 1, but N axion fields. If each field has a decay
constant f , then by traveling along the diagonal in field
space, one sees an effective decay constant of feff =

√
Nf

(using the simple fact that an N -dimensional hypercube
of side length f has a diagonal of length

√
Nf ; see figure

13). A related idea is decay constant alignment (Kim
et al., 2005): here, only two axions are needed, but their
decay constants are “aligned” so that the fundamental
axion domain is not a square, but rather an elongated
parallelogram, as shown in figure 14. Even though each
individual axion may have a sub-Planckian decay con-
stant, the diagonal direction in field space may be much
larger than MPl, thereby generating a model of natural
inflation with a super-Planckian effective decay constant
feff �MPl.

However, in their simplest incarnations, neither N-
flation nor decay constant alignment evade the axion
WGC. The individual instantons involved may be su-
perextremal, but together they do not satisfy the convex
hull condition, as shown in figure 15. Said differently,
there are no superextremal instantons associated with
the diagonal directions of field space.

We can make a more general argument. Suppose our
theory features n instantons, with action

S =

∫
d4x

[
−1

2
∂µ~φ ·K · ∂µ~φ− V (~φ)

]
, (163)

where K is the kinetic matrix for the axions. We further
suppose that instantons generate a leading-order poten-
tial of the form

V (~φ) =
∑
k

Λ4
UVe−Sk

(
1− cos

(
~Qk · ~φ

))
, (164)

Next, suppose we want to inflate in the ~e direction of field
space, so that the inflaton starts at the point ~φ = φ0ê
and rolls to the minimum at the origin in approximately
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FIG. 15 In their simplest incarnations, both N-flation and
decay constant alignment violate the axion WGC: the charge-
to-action vectors ~zk = ~Qk/Sk of the instantons are superex-
tremal, but their convex hull does not contain the unit ball.

a straight line in field space. We assume that the largest
value of φ0 allowed satisfies

φ0

(
~Qk · ê

)
≤ π for all k , (165)

since otherwise the inflaton sits in a cosine well of the
kth potential term which does not contain the origin,
which will presumably lead the inflaton to roll into a
neighboring vacuum rather than the vacuum at ~φ = 0.

Next, we assume the axion WGC, which implies that
for the given direction ê, there exists a superextremal
instanton satisfying

~Qk · ê
fSk

&
1

MPl
, (166)

where f :=
√
ê ·K · ê is the axion decay constant for the

direction ê. Finally, we assume Sk > 1 for perturbative
control of the instanton expansion. Together with (165),
this gives a bound on the physical displacement of the
field,

||~φ|| :=
√
~φ ·K · ~φ = fφ0 . πMPl . (167)

Thus, the axion WGC constrains the maximum axion
field range to be O(πMPl): too small to generate a suc-
cessful model of natural inflation with observable tensor
modes (Brown et al., 2015, 2016; Montero et al., 2015;
Rudelius, 2015a,b). The generality of this observation re-
invigorated hopes that the consistency of quantum grav-
ity might lead to testable predictions for cosmology, and
generated renewed interest in the WGC and the Swamp-
land program more generally.

There are several caveats to the above argument, how-
ever, which need to be discussed. First of all, it as-
sumes the axion WGC, which as we have seen is on some-
what shakier footing than the higher-form versions of the
WGC. In particular, it is not immediately related to black
hole evaporation. Relatedly the O(1) coefficient in the
axion WGC is so far not decisively fixed, hence our argu-
ment produced only a “squiggly” . statement rather a
sharper ≤ statement. Various possibilities for the precise

O(1) coefficient in the axion WGC bound have been sug-
gested in (Andriolo et al., 2020; Heidenreich et al., 2016).
Moreover, the bound (162) relies on assuming that the
instantons obeying the axion WGC have instanton num-
ber which is O(1): this is natural from the point of view
of the tower/sublattice WGCs, and also from the point
of view of the idea that there should be objects obeying
the WGC which are not black holes (or in the axion case
which do not have large gravitational backreaction), but
it only follows from tower/sublattice WGCs if we assume
the relevant tower/sublattice is not too sparse.

Another related issue is that the bound (165) as-
sumes that every instanton whose charge-to-action vector
~Qk/Sk contributes to the convex hull also contributes sig-
nificantly to the axion potential. However, it is conceiv-
able that the dominant contributions to the axion poten-
tial could come from instantons which violate the axion
WGC, whereas the instantons that satisfy the WGC give
only subleading, unimportant contributions to the poten-
tial. In this case, the inflationary dynamics are uncon-
strained by the axion WGC. This “extra instanton loop-
hole” has driven a lot of interest in strong forms of the
WGC (Bachlechner et al., 2016; Hebecker et al., 2015).
However, even the lattice WGC is not quite sufficient
to close this loophole (Heidenreich et al., 2020). On the
other hand, threading the extra instanton loophole seems
to require a fair bit of tuning (Heidenreich et al., 2020),
and so far super-Planckian axion decay constants have
yet to be realized in string theory (Long et al., 2017).

It is also possible to try to relax the assumption that
Sk � 1, which we suggested is required for perturbative
control of the instanton expansion. In string compact-
ifications, Sk is typically the size of some cycle of the
Calabi-Yau in string units, so the α′ expansion of string
theory is not valid unless Sk � 1. However, in “extranat-
ural inflation” (Arkani-Hamed et al., 2003), instantons in
4d come from the particles in 5d wrapping the compacti-
fication S1. The instanton action for a particle of mass m
wrapping a circle of radius R is given by Sinst = 2πmR,
and the contribution to the axion potential is given by:

V (φ) =
3(−)S

4π2

1

(2πR)4

∑
n∈Z

cne−2πnRm5einφ ,

cn =
(2πRm5)2

3n3
+

2πRm5

n4
+

1

n5
. (168)

In this context, there is no problem with taking Sinst � 1:
this simply corresponds to a light particle with m �
1/R. Likewise, there is no problem with perturbative
control of the potential: the 1/n5 term in cn suppresses
higher harmonics even for Sinst � 1 (de la Fuente et al.,
2015). This significantly weakens the WGC bound (162)
on the axion decay constant. By imposing the convex hull
condition on both the U(1) of the parent 5d theory and
the Kaluza-Klein U(1), one can strengthen the bound to

f . MPl/S
1/2
inst, but this is still insufficient to close this
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“small action loophole” in the context of extranatural
inflation (Heidenreich et al., 2015).

Finally, and perhaps most importantly, the above ar-
guments only apply to theories where the only fields rel-
evant during inflation are axions and the metric. In-
cluding non-periodic scalars would only re-introduce the
UV-sensitivity we avoided with axions, but we saw above
in our discussion of the axion monodromy model (133)
that the inclusion of a three-form gauge field A3 cou-
pled to an axion by a Chern-Simons term offers a simple
mechanism whereby an axion with f .MPl can nonethe-
less lead to a scalar ?F4 which rolls down a potential for
many Planck distances. Moreover we saw that the three-
form WGC applied to A3 and stringy corrections of the
form V (?F4) lead to only weak constraints on the range
of this rolling. We presented this model in the context
of cosmological relaxation, but its most compelling ap-
plication is really inflation, which indeed is what it was
originally proposed for (McAllister et al., 2010; Silver-
stein and Westphal, 2008). Moreover proposals have been
given for embedding this model into a consistent string
compactification, although there are still certainly details
remaining to be worked out and so far no detailed model
has been given where a large field range is realized (Bau-
mann and McAllister, 2015; Kim and McAllister, 2020;
McAllister et al., 2018).

It is sometimes suggested that string theory does not
allow for models with observable tensor modes, and the
axion WGC was proposed in part to give an explana-
tion for this claim, but axion monodromy casts serious
doubt on it. Natural inflation with observable tensor
modes may well be in the Swampland, but the right
lesson from this may just be that we should see what
kind of predictions follow from the more general axion
models which do seem to work. In particular, given the
ever-improving observational upper bounds on r, it is
natural to ask whether axion monodromy models exist
which aren’t excluded but nonetheless predict observable
tensor modes. The simplest potential, a quadratic one
(see equation (139)), as well as simple extensions with
other powers (McAllister et al., 2014), are now already
excluded by the Planck satellite and ground-based exper-
iments including BICEP/Keck (Ade et al., 2021; Kallosh
and Linde, 2021), but variations on the model are pos-
sible (e.g., (D’Amico et al., 2021, 2022)). Perhaps the
detailed issues remaining to be resolved in realizing ax-
ion monodromy in a genuine string compactification may
yet lead to distinctive predictions. If so, then the vari-
ous forms of the WGC will likely be important tools in
guiding us towards models that work. Either way, it
is remarkable that ongoing observations are teaching us
concrete things about physics near the Planck scale.

B. Implications for mathematics

The WGC is a statement about the charges and masses
of particles in effective field theory. In string/M-theory,
supersymmetric effective field theories arise from com-
pactifying on Calabi-Yau manifolds. Charged particles
arise from p-branes wrapping p-cycles of the Calabi-Yau
manifold. The charge of such a particle is determined
by the homology class Σ wrapped by the brane, and the
mass of the particle is determined by the volume of the
wrapped cycle. Thus, the WGC translates into geomet-
ric statements about the volumes of representatives of
various cycles in a Calabi-Yau manifold.

For concreteness, let us consider the case of M-theory
on a Calabi-Yau threefold X. This produces a 5d su-
pergravity theory, and charged particles arise from M2-
branes wrapping 2-cycles of X. The charge lattice of the
theory is identified with the homology lattice H2(X,Z).

The resulting supergravity theory has a BPS bound:
the mass of a particle of charge qI is constrained to satisfy

m ≥
(

(2π)2

2κ5

)1/3

|ζq| , (169)

where ζq is the “central charge,” a quantity that depends
linearly on qI . It is sometimes remarked that the BPS
bound is a sort of converse to the WGC bound, and there
is a precise sense in which this is true: if there exist BPS
black holes in a given direction q̂ in the charge lattice,
then the BPS bounds and extremality bounds coincide
in this direction in the lattice. The only way a particle
of charge qI ∝ q̂ can satisfy both the WGC bound and
the BPS bound is if it saturates both bounds. A particle
that saturates the BPS bound is called a BPS particle:
therefore, the tower/sublattice WGCs require an infinite
tower of BPS particles of increasing mass/charge in every
direction in the charge lattice for which the BPS bound
coincides with the extremality bound.

Geometrically, BPS particles arise from M2-branes
wrapping “holomorphic” curves of X. Here, a curve Σ is
“holomorphic” if its volume is given by integrating the
Kähler form J over it, VΣ =

∫
Σ
J . Equivalently, we say

that the curve is “calibrated” by the Kähler form.
The upshot of this is that the tower/sublattice WGCs

imply the existence of an infinite tower of holomorphic
curves in any direction q̂ of the homology latticeH2(X,Z)
for which the BPS bound coincides with the extremality
bound. In fact, the condition that the BPS bound and
extremality bounds coincide in the direction q̂ can also be
given a geometric interpretation: these bounds necessar-
ily coincide for any q̂ that resides in the so-called “cone
of moving curves” K∨ ⊂ H2(X,R), which is equal to the
cone dual of the “cone of effective divisors” (Alim et al.,
2021).17 Thus, the tower/sublattice WGCs translate to

17 If the theory in question allows certain U(1) gauge fields to be
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the nontrivial geometric statement that there must exist
an infinite tower of holomorphic curves for any rational
direction q̂ within the cone of moving curves K∨.

This statement is powerful in that (a) it is a purely
geometric statement, with no reference to physics, and
(b) it can actually be verified in examples. Gopakumar-
Vafa (GV) invariants (Gopakumar and Vafa, 1998a,b,
1999) count the number of BPS particles (i.e., holomor-
phic curves) of a given charge qI in the lattice,18 and
these can be computed for many Calabi-Yau hypersur-
faces (Hosono et al., 1995a) and complete intersection
Calabi-Yau manifolds (CICYs) (Hosono et al., 1995b).
At the same time, the cone of moving curves K∨ can
often be computed (with some input from the 5d super-
gravity theory) using the methods of (Alim et al., 2021).
Together with the automated computation of GV invari-
ants introduced in (Demirtas et al., 2022), this has en-
abled thorough checks of this geometric version of the
tower/sublattice WGCs in over 1400 Calabi-Yau mani-
folds (Gendler et al., 2022).

So far, we have focused our attention on BPS parti-
cles, which are required by the tower/sublattice WGCs
in certain directions in the charge lattice, where the BPS
bound and extremality bound coincide. In a theory with
8 supercharges, however, there will generically be some
directions for which the BPS bound and the extremality
bound do not coincide. The tower/sublattice WGCs still
require the existence of superextremal particles, which
means they still impose constraints on the volumes of
cycles of the Calabi-Yau manifold. To be more precise,
the charge-to-mass vector of a particle associated with a
p-cycle Σ of a Calabi-Yau manifold is given by (Hebecker
et al., 2016),

~z =
V

1/2
X ~qΣ

VΣ
, (170)

where VX is the volume of the Calabi-Yau X, VΣ is the
volume of Σ, and ~qΣ labels the charge vector associated
with the homology class. The norm ||~qΣ|| is the norm of
the harmonic form related to Σ using the metric on X.

The particle is superextremal when ||~z|| ≥ γ
1/2
4 . In

general, γ4 depends on the direction q̂ as well as the mass-
less scalar fields in the theory, but it necessarily satisfies

enhanced to a larger nonabelian group, the effective cone of di-
visors may change under a phase transformation representing a
Weyl reflection of the nonabelian gauge group. In this case, the
BPS and extremality bounds coincide in an even larger cone in
the charge lattice, which is geometrically the cone dual to the
intersection of the effective cone of divisors over all phases of the
theory. (Gendler et al., 2022)

18 More accurately, GV invariants compute an index of BPS par-
ticles of a given charge, meaning that a nonzero GV invariant
implies a nonzero number of BPS particles, whereas a vanishing
GV invariant could result from an equal number of BPS hyper-
multiplets and BPS vector multiplets of a given charge.

γ4 ≥ 1
2 , which means that a superextremal particle has

V
1/2
X ||~qΣ||
VΣ

≥ 1√
2
. (171)

The tower WGC therefore implies that for a given cycle
[Σ], there exists an integer n and a representative of n[Σ]
satisfying (171). The sublattice WGC further implies
that there exists a universal n, which is independent of
[Σ].

In some cases, this bound leads to surprising, nontriv-
ial mathematical results. In particular, any 4-cycle [Σ]
in a Calabi-Yau threefold X with h2,0(X) = 0, can be
represented as a union of holomorphic and antiholomor-
phic representatives; upon wrapping D4-branes on these
representatives, these correspond to BPS and anti-BPS
particles, respectively. The minimal volume representa-
tive of [Σ] therefore has a volume no larger than the sum
of the volumes of these holomorphic and antiholomor-
phic representatives, which we denote V (Σ∪). But sat-
isfying (171) may require this union of holomorphic and
antiholomorphic representatives to recombine into a new
representative Σmin whose volume is significantly smaller
than V (Σ∪). More precisely, the “recombination frac-
tion”

τΣ :=
V (Σ∪)− V (Σmin)

V (Σmin)
(172)

may be much larger than 1 (Demirtas et al., 2020). Physi-
cally, this recombination corresponds to D4-branes wrap-
ping these representatives recombining and fusing, and
particles in 4d binding to form bound states of signifi-
cantly smaller energy. Mathematically, the existence of
representatives Σmin with large recombination fraction
τΣ � 1 is a nontrivial consequence of the WGC, which
has been verified in some examples (Long et al., 2021).

Finally, let us remark that within the context of 5d
M-theory compactifications, there are interesting connec-
tions between the tower WGC, the WGC for strings, and
the Swampland Distance Conjecture and various math-
ematical conjectures about Calabi-Yau manifolds known
as “cone conjectures” (Morrison, 1993, 1994). More
on these connections can be found in (Heidenreich and
Rudelius, 2022).

C. Implications for general relativity

The (weak) cosmic censorship hypothesis holds that
for generic initial data, the maximal Cauchy development
possesses a complete future null infinity (Penrose, 1969).
Colloquially, there can be no naked singularities visible at
future null infinity: any such singularity must be hidden
behind a horizon.

There is strong numerical evidence that cosmic cen-
sorship is violated in more than four spacetime dimen-
sions (Lehner and Pretorius, 2012), as black strings may
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pinch off and develop singularities due to the Gregory-
Laflamme instability (Gregory and Laflamme, 1993). In
four dimensions, however, such instabilities do not exist,
and violation of cosmic censorship is much less certain.19

A promising class of counterexamples to cosmic cen-
sorship in four dimensions were proposed in (Horowitz
et al., 2016), and strong numerical evidence for these
counterexamples was subsequently provided in (Crisford
and Santos, 2017). These examples involve a U(1) gauge
field coupled to gravity in asymptotically AdS space, with
action (as usual we set the AdS radius to one)

S =
1

2κ2

∫
d4x
√−g (R+ 6− FµνFµν) , (173)

with F = dA. The boundary metric is chosen to be flat,

ds2
∂ = −dt2 + dr2 + r2dϕ2 , (174)

and the only nonzero component of the potential at the
boundary is the time component:

A∂ = +
a(t)dt

(1 + r2)n/2
(175)

where n is an integer controlling the fall-off of the field
at large r.

Apparent violations of cosmic censorship arise when
a(t) is chosen to vanish at t = 0 but increases to a con-
stant value larger than some critical value amax. In this
case, there is no smooth static endpoint of the evolution,
so one expects the curvature F 2 will grow indefinitely at

late times. Numerical simulations confirm this expecta-
tion for n = 1 (Crisford and Santos, 2017). Note that the
curvature does not diverge in finite time, so this exam-
ple does not quite violate the letter of cosmic censorship,
though it does violate the spirit of it.

This class of counterexamples disappears, however, in
the presence of a superextremal scalar field (Crisford
et al., 2018; Horowitz et al., 2016). In particular, sup-
pose we add a charged scalar Φ to the action:

SΦ = − 1

4πG

∫
d4x
√−g

[
(DµΦ)(DµΦ)† +m2ΦΦ†

]
,

(176)

with Dµ = ∇µ − iq̃Aµ (here q̃ =
√

2e
κ q, where q is the in-

tegral charge we’ve been using throughout).20 The pro-
posed WGC bound in AdS (22) then becomes

q̃ ≥ ∆ =
3

2
+

√
9

4
+m2 . (177)

When this bound is satisfied, for all choices of n pertur-
bations of Φ become unstable before a grows to the criti-
cal value amax, and cosmic censorship is restored. When
this bound is violated, the solution with the scalar field is
still singular, and it is once again likely that cosmic cen-
sorship is violated (Horowitz et al., 2016). Thus, there is
evidently a one-to-one correspondence between satisfying
the WGC and obeying cosmic censorship in this setup.

Already, this result is quite suggestive. But the connec-
tion between the WGC and cosmic censorship becomes
even more impressive when including dilatonic couplings
and multiple scalar fields, as was done in (Horowitz and
Santos, 2019). In the dilatonic case, one begins with the
action

S =
1

2κ2

∫
d4x
√−g

(
R+ 6− e−2αφFµνFµν − 2∇µφ∇µφ

)
, (178)

19 Even in higher dimensions, known violations of cosmic censorship
have zero mass and occur in Planck-sized regions where quantum
gravitational effects become important. It has been argued that
such quantum effects restore some notion of cosmic censorship,
so that these counterexamples to cosmic censorship are relatively
benign (Emparan, 2020).

20 We observed below equation (8) that the WGC bound (6) does
not involve any powers of ~, and thus potentially has classical
consequences, but those remarks applied for the case of a classical
particle. A similar statement applies for a charged classical field
such as Φ, but we need to be a bit more careful since if we
restore c and ~ then (in Heaviside-Lorentz units) the “mass” m
and “charge” q̃ appearing in (176) both have units of inverse
length. The true charge and mass of a particle appearing after
this field is quantized are related to these by powers of ~ and c,
but in writing the WGC inequality the powers of ~ and c drop
out since m and q̃ have the same units and κ has already been
absorbed into q̃.

in place of (173). Here, φ is a massless, uncharged scalar
field which we will refer to as the dilaton, not to be con-
fused with the massive, charged scalar field Φ. In the
presence of this dilatonic coupling, the WGC bound for
Φ is modified to

q̃ ≥ q̃W ≡ ∆(1 + α2)1/2 , (179)

where ∆ is given by (177). Notably, the minimal charge-
to-mass ratio q̃/∆ varies continuously with the parameter
α.

(Horowitz and Santos, 2019) constructed numerical so-
lutions to the equations of motion in the presence of the
dilaton, with a boundary vector potential given by

A∂ =
adt

(1 + r2)n
, (180)



48

●●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

� �� �� �� �� �� ��
���

���

���

���

���

���

���

���

FIG. 16 For fixed n = 4, ∆ = 2, and dilatonic coupling α =
0.9, the condition to preserve cosmic censorship is precisely
the WGC bound (179). Here, blue dots indicate the onset of
solutions with Φ 6= 0, and red dots indicate the approximate
location of singular solutions. Figure from (Horowitz and
Santos, 2019) under a Creative Commons License.

focusing in particular on the case n = 4. They found that
for α < 1, cosmic censorship is again preserved precisely
when the WGC bound (179) is satisfied, as shown in fig-
ure 16. This is remarkable, in that it establishes a WGC-
cosmic censorship connection over a one-parameter fam-
ily of theories, indexed by α. For α > 1, numerical so-
lutions suggest that it may be possible to preserve cos-
mic censorship even when q̃/q̃W (or equivalently q/qW )
is slightly smaller than 1, as shown in figure 17. It is
possible that this conclusion could be modified at large
values of a, and the one-to-one correspondence between
the WGC and cosmic censorship could be restored.

Finally, (Horowitz and Santos, 2019) also considered
the relationship between cosmic censorship and the WGC
in theories with two gauge fields. In their analysis, the
asymptotic profile of the gauge fields is taken to be

AI ∂ =
aI

(1 + r2)n
dt , (181)

focusing again on the case of n = 4, with a1 = λa2. There
are now two massive scalar fields, Φ1 and Φ2; the former
has charge q̃1 under the first gauge field and is uncharged
under the second gauge field, whereas the latter carries
charge q̃2 under the second gauge field and is uncharged
under the first gauge field. Since there are multiple gauge
fields, the WGC bound is equivalent to the convex hull
condition (see Section III.C), which is given by

1

z2
1

+
1

z2
2

≤ 1 , (182)

with zI = q̃I/∆I . By constructing numerical solutions
to the equations of motion for various choices of λ, q̃I ,
and ∆I , (Horowitz and Santos, 2019) provided strong ev-
idence that cosmic censorship is preserved precisely when
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FIG. 17 For fixed n = 4, ∆ = 2, and dilatonic coupling
α =

√
3, tcondition to preserve cosmic censorship does not

quite seem to match with the WGC bound (179), though it
is possible that modifications at large a could restore the cor-
respondence. Here, blue dots indicate the onset of solutions
with Φ 6= 0, and red dots indicate the approximate location of
singular solutions. Figure from (Horowitz and Santos, 2019)
under a Creative Commons License.
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FIG. 18 For fixed n = 4, a1 = 3a2, q2 = 4, ∆1 = ∆2 = 2, the
condition to preserve cosmic censorship is precisely the convex
hull condition (182). Here, blue dots indicate the onset of
solutions with Φ1 6= 0, and red dots indicate the approximate
location of singular solutions. Figure from (Horowitz and
Santos, 2019) under a Creative Commons License.

the convex hull condition is satisfied. Figure 18 depicts
this correspondence for one particular choice of λ, q̃2, ∆1

∆2, varying q̃1.

The work of (Crisford and Santos, 2017; Horowitz
and Santos, 2019; Horowitz et al., 2016) thus reveals a
remarkable and surprising correspondence between the
WGC and the weak cosmic censorship conjecture. A
couple of aspects of this correspondence are worth fur-
ther attention. First of all, note that the mildest form
of the WGC, which simply requires the existence of a
superextremal state, is not sufficient to preserve cosmic

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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censorship. The mild WGC could be satisfied in principle
by a finite-sized black hole state due to subleading correc-
tions that slightly increase Q/M relative to Q/M for an
infinitely large, extremal black hole. In the present sce-
nario, however, preserving cosmic censorship requires a
superextremal, field Φ (and thus quantum mechanically a
superextremal particle) and not merely a superextremal
black hole.

Second, we observe that in all examples so far the
superextremal field which saves cosmic censorship is a
scalar. The usual formulations of the WGC do not put
any restrictions on the spins of the superextremal parti-
cles which are required, but it is interesting to consider if
there might be some such restriction. One natural ques-
tion for future study is whether or not superextremal
bosonic fields of nonzero spin similarly prevent violations
of cosmic censorship. More generally one can also con-
sider the question of whether or not fermions can do the
same once quantum effects are included. So far all string
compactifications we are aware of in fact do have a su-
perextremal scalar, but this may be an accident of su-
persymmetry so there is no strong evidence so far for an
interplay between the WGC and spin.

Finally, let us mention an interesting connection be-
tween the WGC and a different kind of gravitational
censorship, namely of super-Planckian spatial field vari-
ations. Simple dimensional analysis suggests such a field
configuration could collapse into a black hole. Indeed,
this is often true (Nicolis, 2008). However, one case in
which a classically stable field configuration with an arbi-
trarily large scalar field variation, not screened by a hori-
zon, can be constructed is a charged Kaluza-Klein bubble
stabilized by flux (Horowitz, 2005). The scalar field is the
radion, which traverses an infinite distance in field space
to the bubble wall where R → 0. Thus, arbitrarily large
field values are not classically censored. In the quantum
theory, the solution becomes unstable if charged matter
satisfying the WGC exists, due to Schwinger pair pro-
duction, which dynamically censors the large field excur-
sion (Draper and Farkas, 2019).

The general picture painted by these examples is that
the WGC can play an important role in ensuring the
validity of effective field theory. It prevents a low-energy
observer from accessing arbitrarily high energy scales (in
the case of cosmic censorship) or field values (in the case
of super-Planckian censorship).

VIII. OUTLOOK

In this review, we have seen that the Weak Gravity
Conjecture potentially offers a deep organizing principle
for unlocking the puzzle of quantum gravity. In particu-
lar the Landscape of string vacua is very large, yet as far
as we can tell, the WGC is obeyed in all of them. Suitably
strong forms of the WGC place meaningful constraints

on particle physics and cosmology, and have further con-
sequences for black holes, pure mathematics, conformal
field theories, and more. Thus, whereas most Swamp-
land conjectures fall either into the “rigorous but unin-
teresting” category or the “interesting but not rigorous”
category, the WGC has a claim at both rigor and impor-
tance.

Nonetheless, despite all that we have learned about
it, the WGC remains shrouded in mystery. We saw in
Section V of this review that several arguments point
qualitatively to the validity of the WGC: it is quite plau-
sible that the WGC is satisfied up to O(1) coefficients.
However, examples in string theory suggest something
stronger: in all such examples, the WGC is satisfied with
the precise O(1) coefficient determined by the black hole
extremality bound. This suggests that the WGC may be
required for consistency of black hole physics, but it is
not yet clear what goes wrong if the WGC is violated.

The evidence for the WGC coming from string the-
ory is strong, but there is still a chance that the WGC
suffers from a lamppost effect: the known string exam-
ples necessarily involve either (a) weak gauge coupling or
(b) BPS particles—the only particles we currently know
how to track into a strongly coupled regime. An exam-
ple in which the WGC is satisfied by non-supersymmetric
states in a regime of strong coupling is highly desirable,
though perhaps unfeasible. Without this, a more com-
pelling black hole argument is likely required to rule out
the possibility of a lamppost effect.

Another interesting direction for future research in-
volves the classification of weak coupling limits, as ini-
tiated in e.g. (Corvilain et al., 2019; Grimm et al., 2018;
Klaewer et al., 2021; Lanza et al., 2021a,b; Lee et al.,
2022b; Perlmutter et al., 2021). The Emergent String
Conjecture of (Lee et al., 2022b), in particular, suggests
that any infinite distance/weak coupling limit must be
either a decompactification limit or an emergent string
limit, in which a fundamental string becomes tension-
less. In the former case, a tower of light, superextremal
Kaluza-Klein modes emerge.21 In the latter case, the
modular invariance argument of Section IV.D ensures
that the particles are superextremal. Thus, at weak
coupling, the tower/sublattice WGCs follows from the
Emergent String Conjecture (which could have stronger
phenomenological implications).

In Section IV, we encountered examples in which the
sublattice WGC is satisfied by a sublattice of superex-
tremal particles of coarseness n > 1 (and index greater
than 1). This raises the question of how large the coarse-
ness may become, or equivalently, how sparse the sublat-

21 In the supersymmetric case, these KK modes are BPS and sat-
urate the WGC bound. In the non-supersymmetric case, these
KK modes satisfy the WGC bound with room to spare after the
radion is stabilized. See Section IV.A above for more details.
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tice is allowed to be. This question is important, because
the consequences of the sublattice WGC for low-energy
physics can be arbitrarily weak if the coarseness is al-
lowed to be arbitrarily large. Fortunately, the maximum
coarseness we encountered was n = 3: the sublattice of
superextremal particles is not very sparse, and it is plau-
sible that the sublattice WGC will always be satisfied
with a coarseness of O(1).

Before we may attempt to place any sort of universal
upper bound on the coarseness/index of the sublattice,
however, we must first understand how this sublattice
shows up in the low-energy data of the theory. All of the
examples with coarseness n > 1 constructed so far are
orbifold models, and n divides the order of the orbifold
group. However, we do not yet have a clear understand-
ing of how this UV relationship manifests in the IR. One
possibility is that the coarseness is related to the global
structure of the low-energy gauge group, but more work
is needed to clarify this picture.

As a final direction for future research, let us remark
that the statement of the WGC in the presence of Chern-
Simons terms is, at present, not well understood. The
recent work (Heidenreich et al., 2021c) presented an ex-
ample of WGC mixing, in which the WGC for differ-
ent p-form gauge fields are mixed up in the presence
of Chern-Simons terms (see also (Brennan and Cordova,
2022; Heidenreich et al., 2021a; Kaya and Rudelius, 2022;
Montero et al., 2017)). These Chern-Simons terms imply
that the gauge symmetry acquires a higher-group struc-
ture (Córdova et al., 2019; Sharpe, 2015), and it seems
likely that the full statement of the WGC is modified in
the presence of such higher-group symmetries, reminis-
cent of how the WGC is modified to the Convex Hull
Condition in theories with multiple U(1)s. Understand-
ing this better might have interesting implications for
axion monodromy.

The Weak Gravity Conjecture has produced no short-
age of surprises over the course of its fifteen-year exis-
tence, providing us with new insights into quantum grav-
ity and unexpected connections between disparate areas
of theoretical physics. Yet many of the most important
questions remain open: is the Weak Gravity Conjecture
true? If so, why? And which version(s) of the conjecture
are the right ones? The answers to these questions may
well lead us to even greater surprises than the ones we
have already met.
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Appendix A: The Black Hole Extremality Bound

In a gravitational theory with no naked singularities,
a black hole of non-zero charge Q cannot be arbitrarily
light:

MBH >Mext(Q) > 0 , (A1)

where the extremal mass Mext(Q) is defined as the infini-
mum of the set of possible masses for black holes of charge
Q. This bound arises because the energy stored in the
electromagnetic field is a positive-energy source for the
gravitational field, and in a theory with matter obeying
reasonable energy conditions this gravitational flux can-
not be cancelled without introducing a naked singularity
as a negative-energy source. A black hole saturating this
bound is extremal, whereas all others are subextremal.

To determine the extremal mass Mext(Q) and thereby
the extremality bound (A1) it would obviously suffice to
find an extremal black hole solution of charge Q and read
off its mass. However, an extremal black hole solution of
a given charge does not always exist because taking the
extremal limit sometimes generates a singularity at the
event horizon. Furthermore, identifying whether a given
solution is extremal is not straightforward. Experience
with Reissner-Nordström black holes suggests that van-
ishing surface gravity is closely connected to extremality,
but as we’ll see in §A.4, not every black hole solution
with vanishing surface gravity is extremal!

To solve the first problem, we expand our field of in-
terest to include charged solutions that are merely limits
of black holes, not necessarily black holes themselves. In
a convenient abuse of terminology, we call such limiting
cases “singular black holes.” Familiar examples of sin-
gular black holes include, e.g., the background generated
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by N � 1 D0 branes in type IIA string theory. Under-
standing what happens near a singular black hole usually
requires UV information which goes beyond effective field
theory, for example near a stack of D0 branes the string
coupling gets large and there is a dual M-theory descrip-
tion.

To solve the second problem, note that Hawking radi-
ation must shut off in the extremal limit to satisfy cos-
mic censorship, so either the surface gravity gh (Hawking
temperature) or horizon area Ah (Bekenstein-Hawking
entropy) must go to zero in this limit. We refer to black
holes with either of these two properties as quasiextremal,
where those with Ah → 0 are singular. Cosmic censor-
ship requires extremal black holes to be quasiextremal,
but as noted above quasiextremal black holes are not al-
ways extremal; see §A.4 for examples. We call black holes
that are neither extremal nor quasiextremal nonextremal.

In this appendix, we review general techniques for de-
termining the extremality bound in the large Q limit
(where derivative corrections can be ignored) for theo-
ries with multiple U(1) gauge fields AA, massless scalars
φi, and vanishing cosmological constant. For simplic-
ity, we assume that the lightest black holes of a given
charge Q are spherically symmetric.22 Temporarily ig-
noring the possibility of magnetic charge, the relevant
terms in the low-energy Einstein-frame effective action
at two-derivative order are

S0 =

∫
ddx
√−g

[
1

2κ2
R− 1

2
tAB(φ)FA2 · FB2

− 1

2
Gij(φ)∇φi · ∇φj

]
, (A2)

where FA2 = dAA1 . The types of two-derivative terms
omitted above do not affect spherically symmetric black
holes with purely electric charge (Heidenreich, 2020).

1. Black hole solutions

In a convenient gauge, a spherically symmetric metric
ansatz takes the form:

ds2 = −e2ψ(r)f(r)dt2 +e−
2ψ(r)
d−3

[
dr2

f(r)
+ r2dΩ2

d−2

]
(A3)

for functions ψ(r), f(r) to be determined, where dΩ2
d−2

is the round metric of unit radius on Sd−2. The electric
charge of the solution is

QA =

∮
Sd−2

tAB(φ) ? FB2 , (A4)

22 Without this assumption, the problem is unsolved in general,
except in special cases where a BPS-like bound can be derived
using spinor methods as in, e.g., (Gibbons et al., 1983).

where the integral is taken over a sphere enclosing the
horizon. Spherical symmetry fixes the electric field to be

FA2 = − t
AB(φ)QB
Vd−2

e2ψdt ∧ dr

rd−2
, (A5)

where tAB(φ) is the inverse of tAB(φ) and Vd−2 =

2π
d−1

2 /Γ
(
d−1

2

)
is the volume of Sd−2.

One component of Einstein’s equations is now

f ′′(r) +
3d− 8

r
f ′(r) + 2

(d− 3)2

r2
(f(r)− 1) = 0 , (A6)

with the solution f(r) = 1 + A/rd−3 + B/r2(d−3).
To interpret A and B, we switch to ingoing Edding-
ton–Finkelstein coordinates:

ds2 = − F (ρ) dv2

R2(d−3)(ρ)
+

2 dv dρ

(d− 3)Rd−4(ρ)
+R2(ρ)dΩ2

d−2,

(A7)

where ρ = rd−3, R(ρ) = re−
ψ
d−3 and F (ρ) = r2(d−3)f(r).

A smooth event horizon occurs when F → 0 withR finite.
If one exists, F (ρ) = ρ2 +Aρ+B can be factored

F (ρ) = (ρ− ρ+)(ρ− ρ−), ρ+ ≥ ρ−, (A8)

leading to an outer (inner) horizon at ρ = ρ+ (ρ = ρ−).
We set ρ− = 0 using the residual gauge symmetry ρ →
ρ+ constant with F (ρ) and R(ρ) held fixed, so that

F (ρ) = ρ(ρ− ρh) ⇔ f(r) = 1− rd−3
h

rd−3
(A9)

with ρh = rd−3
h .

In terms of z := 1
(d−3)Vd−2rd−3 ,23 f(z) = 1− z/zh and

the remaining equations of motion are:

d

dz
[fφ̇j ] + fΓijkφ̇

j φ̇k =
1

2
GijQ2

,j(φ)e2ψ, (A10)

k−1
N

d

dz
[fψ̇] = e2ψQ2(φ), (A11)

k−1
N ψ̇(fψ̇ + ḟ) + fGij(φ)φ̇iφ̇j = e2ψQ2(φ), (A12)

where ˙ = d
dz , Gij(φ) is the inverse of Gij(φ), Γijk =

1
2G

il(Glj,k +Glk,j −Gjk,l) are the associated Christoffel
symbols,

Q2(φ) := tAB(φ)QAQB , (A13)

and

kN :=
d− 3

d− 2
κ2 (A14)

is the rationalized Newton force constant (such that

Fgrav = − kN
Vd−2

mm′

rd−2 ).

23 In comparison with (Heidenreich, 2020), z(here) = z(there)/Vd−2.
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Note that (A10–A12) are z-translation invariant,24 so
for any solution passing through a point φi0 = φi(z0)

there is corresponding solution φi
′
(z) = φi(z + z0) with

φi∞
′

= φi0. Moreover, (A12) is a consistent constraint in
that the derivative of f times (A12) is a linear combina-
tion of (A10, A11).

When rh > 0 (zh is finite), a smooth horizon requires
ψ̇(zh) = −kNzhe2ψhQ2(φh) ≤ 0 by evaluating (A11) at
z = zh where ψh = ψ(zh). Likewise, when rh = 0
(zh = ∞), a smooth horizon requires zeψ ∝ R−(d−3)

to approach a non-zero constant as z → ∞, hence
ψ → − log z + constant, implying that ψ̇ → − 1

z < 0.
Combining (A11, A12),

ψ̈ = ψ̇2 + kNGij(φ)φ̇iφ̇j , (A15)

hence ψ̈ ≥ 0 and we conclude that

ψ̇ ≤ 0 for all z ≤ zh (A16)

is required for a smooth horizon. Conversely, (A16) to-
gether with ψ̈ ≥ 0 and ψ∞ = ψ(z = 0) = 0 gives
zψ̇∞ ≤ ψ(z) ≤ 0 for 0 ≤ z ≤ zh, so when rh > 0 (zh
is finite), ψh is finite and the horizon is smooth.

Because a condition of the form (A16) is preserved un-
der limits, singular black holes must also satisfy (A16).
Likewise, because any rh > 0 solution satisfying (A16)
is smooth, rh = 0 solutions satisfying (A16) are limits
of smooth solutions, and so solutions to (A10)–(A12) are
(possibly singular) black holes if and only if (A16) holds.

Such black hole solutions have ADM mass

M = k−1
N

[
−ψ̇∞ +

1

2zh

]
(A17)

(positive by (A16)) and surface gravity and horizon area

gh =
d− 3

2rh
e
d−2
d−3ψh , Ah = Vd−2r

d−2
h e−

d−2
d−3ψh

=⇒ ghAh = (d− 3)Vd−2r
d−3
h =

1

2zh
. (A18)

Therefore rh = 0 (zh = ∞) is the quasiextremal case,
with coincident (possibly singular) inner and outer hori-
zons, and rh > 0 (zh finite) is the nonextremal (invariably
smooth) case.

a. Magnetic charge

In 4d, spherical symmetry allows black holes to carry
both electric and magnetic charge. The theta term—
which had no effect on purely electrically charged black
holes—then becomes important

S = S0 −
1

8π2

∫
θAB(φ)FA2 ∧ FB2 . (A19)

24 To preserve the boundary condition ψ∞ = ψ(z = 0) = 0 we then
shift ψ and rescale z to compensate.

The electric and magnetic charges are defined by

QA =

∮ [
tAB ? F

B +
θAB
4π2

FB
]
, Q̃A =

1

2π

∮
FA.

(A20)

The black hole equations (A10–A12) take the same form
as before (see, e.g., (Heidenreich, 2020)) but with

Q2(φ) = tAB(φ)

[
QA−

θAC(φ)

2π
Q̃C
][
QB−

θBD(φ)

2π
Q̃D
]

+ 4π2tAB(φ)Q̃AQ̃B . (A21)

b. Black branes

Generalizing to homogenous, isotropic, and spherically
symmetric black (p− 1)-branes, the relevant effective ac-
tion is

S =

∫
ddx
√−g

[
1

2κ2
R− 1

2
tAB(φ)FAp+1 · FBp+1

− 1

2
Gij(φ)∇φi · ∇φj

]
. (A22)

With the appropriate ansatz (see (Heidenreich, 2020)
with z(here) = z(there)/Vd−p−1) the black hole equations
again take the form (A10–A12) with kN replaced by the
rationalized gravitational force constant for (p−1)-branes

k(p) = p(d−p−2)
d−2 κ2. Magnetic charge can be added con-

sistent with spherical symmetry when d = 2p + 2; see
(Heidenreich, 2020) for details.

2. Quasiextremal black holes

The quasiextremal case, in which f(r) = 1, has sev-
eral interesting properties that play an important role in
determining the extremality bound.

a. Vanishing self-force

Evaluating (A12) at z = 0 (r =∞), we obtain

kNM
2 +Gij∞µiµj = tAB∞ QAQB (A23)

where µi is the scalar charge appearing in, e.g., φi(z) =
φi∞ − Gij∞µjz + O(z2). Thus, the long-range self-force
between an identical pair of quasiextremal black holes
vanishes (Heidenreich, 2020). As a corollary, M =√

1
kN

(tAB∞ QAQB −Gij∞µiµj) 6
√

1
kN
tAB∞ QAQB , hence

quasiextremal black holes coupled to moduli are no heav-
ier than an extremal Reissner-Nordström black hole of
the same charge that would result if the moduli were ar-
tificially frozen in place at their asymptotic values.
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At this point it is interesting to note that even the
short-range forces between identical quasiextremal black
holes vanishes if we restrict our attention to the classical,
two-derivative effective action. This can be shown by
explicitly constructing the static, multicenter solutions
corresponding to several such black holes at rest near
each other. While numerous examples of such solutions
date back many years (Breitenlohner et al., 1988; Majum-
dar, 1947; Papaetrou, 1947), a nice summary was recently
given in (Van Riet, 2021). Of course, generic quantum
and derivative corrections not only alter the short-range
forces, but also change the extremal black hole solutions
and thereby the long-range forces, see §VI.C.

b. The attractor mechanism

A smooth horizon requires R(ρ) to remain finite as
ρ→ 0. Defining χ := ψ + log z, e−χ = (d− 3)Vd−2R

d−3,
so χ(z) must remain finite a z →∞. Written in terms of
χ and τ = − log z, the equations of motion become:

d2φi

dτ2
+ Γijk

dφj

dτ

dφk

dτ
= −dφi

dτ
+

1

2
GijQ2

,je
2χ, (A24)

d2χ

dτ2
= −dχ

dτ
+ kNe2χQ2 − 1, (A25)[

dχ

dτ

]2

+ kNGij
dφi

dτ

dφi

dτ
= −2

dχ

dτ
+ kNe2χQ2 − 1. (A26)

(A24) and (A25) describe (generalized) Newtonian mo-
tion in the potential V (χ, φi) = k−1

N χ− 1
2e2χQ2(φi) with

metric GIJ = diag(k−1
N , Gij) and a linear drag force. A

smooth horizon requires χ(τ) and φi(τ) to approach fi-
nite values χh and φih respectively as τ → −∞, which
can only occur at a critical point of V (χ, φi), i.e.,

kNe2χhQ2(φh) = 1, Q2
,i(φh) = 0, (A27)

from which the constraint (A26) automatically follows.
Thus, φh is a critical point of Q2(φ) and Q2(φh) deter-
mines the horizon area:

Ah = Vd−2R
d−2
h = Vd−2

[ √
kNQ(φh)

(d− 3)Vd−2

] d−2
d−3

. (A28)

This is the attractor mechanism (Cvetic and Tseytlin,
1996; Ferrara and Kallosh, 1996a,b; Ferrara et al., 1995;
Strominger, 1996). The trivial solution φi(z) = φih
is Reissner-Nordström, with mass M0 = k

−1/2
N Q(φh).

All other solutions are strictly heavier since W(z) =
k−1
N

d
dz (e−ψ) evaluates to MBH = k−1

N (−ψ̇∞) and M0 =

k−1
N e−χh at z = 0 and z = ∞ respectively, and Ẇ =

−e−ψGij(φ)φ̇iφ̇j 6 0 per (A15).25

25 Thus, k
−1/2
N Q(φh) ≤M ≤ k−1/2

N Q(φ∞).

If φih is a local minimum of Q2(φ) (the attractor point
is “stable”) then (χh, φ

i
h) is a local maximum of V (χ, φi)

and we can roll off the hill in any direction, hence there
are attractor solutions for any nearby choice of φi∞. This
is not necessarily the case farther from the attractor
point, where the family of solutions to (A24–A25) begin-
ning at φh may encounter turning points and/or caustics.

Unstable critical points of Q2(φ) also admit attractor
solutions but by the same reasoning these do not exist
for generic values of φi∞, and so play little role in the
determing the extremality bound.

c. Fake superpotentials and a Bogomol’nyi bound

Combining the preceeding observations, we see that
there are families of quasiextremal solutions correspond-
ing to each stable attractor point φih, with mass M deter-
mined by the choice of vacuum φi∞. The resulting mass
functionM = W (φ∞) is also known as the “fake superpo-
tential” (Andrianopoli et al., 2010a,b, 2007; Ceresole and
Dall’Agata, 2007; Trigiante et al., 2012) associated to the
attractor point in question. Because each member of the
family has the same charge and horizon-area (entropy),
we can identify ∂W

∂φi as the scalar charge µi via the first

law δM = µiδφ
i
∞ + ΦAh δQA + 1

κ2 ghδAh (Gibbons et al.,
1996). Therefore, due to the no-force condition (A23),
the fake superpotential satisfies

kNW
2(φ) +Gij(φ)∂iW (φ)∂jW (φ) = Q2(φ), (A29)

where W (φ) has a global minimum at φih. Solutions to
the non-linear first-order differential equation (A29) are
in general highly non-unique. However, the condition
that W (φ) has a minimum at φ = φh is enough to fix
this ambiguity, at least locally.

This can be shown using a Bogomol’nyi bound, as fol-
lows. Consider any black hole solution ψ(r), φi(r), f(r)
(not necessarily quasiextremal). The functional

I[ψ, φ, f ] :=

∫ zh

0

[
1

2kN
(fψ̇ + ḟ)2 +

1

2
f2Gij(φ)φ̇iφ̇j

+
1

2
e2ψQ2(φ)

]
dz, (A30)

evaluates to the black hole mass upon imposing the equa-
tions of motion:

I[ψ, φ, f ] = k−1
N

[∫ zh

0

d

dz

(
1 + f

2
fψ̇

)
dz +

1

2zh

]
= k−1

N

[
−ψ̇∞ +

1

2zh

]
= MBH, (A31)

where the horizon boundary term vanishes in the quasiex-
tremal (f = 1) case because ψ̈ ≥ ψ̇2 and ψ̇ ≤ 0 from
(A15), (A16) imply ψ̇ → 0 as z →∞.
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Given any function W (φ) satisfying kNW (φ)2 + GijW,iW,j 6 Q2(φ) along the entire trajectory φi(r), I
can be factored as follows:

I[ψ, φ, f ] =

∫ zh

0

(
kN
2

[fψ̇ + ḟ

kN
+ eψW (φ)

]2
+

1

2
Gij [fφ̇

i + eψGikW,k][fφ̇j + eψGjlW,l]

)
dz

+
1

2

∫ zh

0

e2ψ[Q2(φ)− kNW (φ)2 −GijW,iW,j ]dz +W (φ∞), (A32)

where we use
∫ zh

0
d
dz [feψW (φ)]dz = −W (φ∞) with the

horizon boundary term vanishing in the quasiextremal

(f = 1) case because eψW (φ) ≤ k
−1/2
N eψ|Q(φ)| =

k−1
N

√
ψ̈ and ψ̈ ≥ ψ̇2 and ψ̇ ≤ 0 likewise imply ψ̈ → 0

as z →∞. Every term in (A32) but the last is positive-
definite, so we conclude that

MBH >W (φ∞). (A33)

Saturating the bound requires (A29) along the trajec-
tory together with f = 1 (quasiextremality)26 and the
Bogomol’nyi equations

ψ̇ = −eψkNW (φ), φ̇i = −eψGijW,j . (A34)

These equations, implying (A10–A12), have a unique so-
lution for each choice of φi∞ provided that the W (φ) gra-
dient flow remains entirely within the region R0 where
(A29) is satisfied, and the solution has a smooth horizon
provided that the gradient flow ends at a critical point of
W (φ) with W (φcrit) > 0 (ensuring eψ ∝ 1

z as z → ∞).
Thus, given W (φ) and φi∞, the black hole solution satu-
rating (A33) is unique if it exists.

If both W1(φ) and W2(φ) satisfy (A29) in a region
R0 encompassing coincident local minima at φ = φh,27

W1 gradient flows ending at φh produce quasiextremal
solutions of mass MBH = W1(φ∞), which must satisfy
MBH = W1(φ∞) > W2(φ∞) per (A33). By the same
token W2(φ∞) > W1(φ∞) hence W1(φ∞) = W2(φ∞) for
all φ∞ in R0 flowing to φh.

Thus, the fake superpotential W (φ) associated to a
given stable attractor point φih is uniquely fixed near the
attractor point by (A29) and the condition thatW (φ) has
a minimum at φih, and the corresponding attractor solu-
tions can be obtained from W (φ) by solving the gradient

26 The Bogomol’nyi equations fψ̇ + ḟ = −eψkNW , fφ̇i =
−eψGijW,j and (A29) imply d

dz
[feψW ] = −e2ψQ2(φ), whereas

d
dz

[eψW ] = −k−1
N

d
dz

[fψ̇ + ḟ ] = −e2ψQ2 using (A11). Thus
d
dz

[(1 − f)eψW ] = 0, implying (1 − f)eψW = 0 by integrating

from z = 0. Since eψW > 0, f = 1 follows.
27 This implies that Q2(φ) also has a local minimum at φh.

flow equations (A34). (The family of attractor solutions
beginning at φih may have turning points and/or caustics
farther away from the attractor point, so W (φ) does not
necessarily extend uniquely throughout moduli space.)

d. Asymptotic attractors

A special case of the attractor mechanism occurs when
φih lies at infinite distance in the moduli space, usually
in a direction where Q2(φ)→ 0.28 Such “asymptotic at-
tractors” technically do not lead to smooth black hole so-
lutions (e.g., Q2(φh) = 0 implies vanishing horizon area),
but can be understood as the limit of a family of smooth
nonextremal solutions, and therefore play a role in deter-
mining the extremality bound.

Asymptotic attractors are typically also characterized
by a fake superpotential. Heuristically, because modify-
ing Q2(φ) very far out in the moduli space can turn the
asymptotic attractor into a standard attractor at finite
distance with an associated unique fake superpotential,
taking a limit where the new attractor point is sent off to
infinity while restoring Q2(φ) to its original form should
yield a fake superpotential for the original asymptotic at-
tractor. This argument could fail in several ways when
the asymptotic behavior of Q2(φ) is sufficiently strange,
but within the realm of actual quantum gravities, we
know of no issue with it.

3. The extremality bound

Cosmic censorship requires extremal black holes to be
quasiextremal, and therefore for a given choice of QA
and φi∞ the lightest quasiextremal black hole should be
extremal. Combined with the discussion of fake super-
potentials in the previous section, this suggests that the

28 In principle, φih could lie at an infinite distance point where
Q2(φh) > 0, but this does not occur anywhere in the landscape
to our knowledge.
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extremality bound is given by

MBH >W (φ) := min
{a}

Wa(φ), (A35)

where Wa(φ) are the fake superpotentials associated to
the various stable or asymptotic attractors and the min-
imum is taken amongst all the fake superpotentials de-
fined at the point in question.

To verify (A35), we assume that the “global fake su-
perpotential” W (φ) specified in (A35) is defined and con-
tinuous everywhere in moduli space. Thus, the moduli
space is partitioned into different “attractor basins” as-
sociated to the various stable or asymptotic attractors,
with W (φ) equal to the corresponding fake superpoten-
tial Wa(φ) within each basin. Since each constituent fake
superpotential Wa(φ) satisfies (A29), W (φ) also satis-
fies (A29) except possibly at the boundaries between at-
tractor basins. However, as these boundaries are sets
of measure zero and the continuity of W (φ) precludes
delta-function contributions to ∇iW , the argument lead-
ing to the Bogomol’nyi bound (A33) is unaffected, hence
MBH > W (φ). As this bound can be saturated by con-
struction, it is indeed the extremality bound.

Naviely, to construct W (φ) we must first classify all
quasiextremal solutions. Fortunately, this is not the case:
given any (possibly incomplete) collection of local fake
superpotentials Wa(φ) such that Ŵ (φ) := min{a}Wa(φ)
is everywhere defined and continuous, the same reasoning
as above implies that MBH > Ŵ (φ) is the extremality
bound, hence Ŵ (φ) = W (φ).

4. Examples

A simple example that has played an outsized role
in the development of the WGC is Einstein-Maxwell-
Dilaton theory, with the effective action:

S =

∫
ddx
√−g

[
1

2κ2

(
R− 1

2
(∇φ)2

)
− 1

2ê2
e−αφ|F2|2

]
.

(A36)
Then (A29) becomes:

ξκ2[W (φ)]2 + 2κ2[W ′(φ)]2 = eαφ(êQ)2, ξ :=
d− 3

d− 2
.

(A37)
There is an asymptotic attractor at φh = −∞. Guessing
a solution of the form W (φ) = M̂eαφ/2, we obtain[

ξ +
α2

2

]
(κM̂)2 = (êQ)2

⇒ κM̂ = γ−
1
2 ê|Q|, γ = ξ +

α2

2
. (A38)

Since W (φ) is globally defined, positive, and satisfies
(A29) everywhere, it defines a global fake superpotential,
and the extremality bound is

κMBH > κW (φ∞) = γ−
1
2 e|Q|, (A39)

where e = ê eαφ∞/2 is the vacuum gauge coupling. The
same result applies to the corresponding (p − 1)-brane

theory with ξ → ξ(p) = p(d−p−2)
d−2 , as in (12), (13).

As a somewhat less trivial example, consider two gauge
fields with different dilaton couplings:

S =

∫
ddx
√−g

[
1

2κ2

(
R− 1

2
(∇φ)2

)
− 1

2ê2
1

e−α1φ|F2|2

− 1

2ê2
2

eα2φ|H2|2
]
. (A40)

Then (A29) becomes

ξκ2[W (φ)]2+2κ2[W ′(φ)]2 = eα1φ(ê1Q1)2+e−α2φ(ê2Q2)2.
(A41)

Provided that α1α2 > 0 and Q1,2 6= 0, there is a stable

attractor point at φh = 1
α1+α2

log
[
α2(ê2Q2)2

α1(ê1Q1)2

]
.

Guessing a solution of the form W (φ) = M̂1eα1φ/2 +
M̂2e−α2φ/2, the left-hand-side of (A41) has cross terms
proportional to e(α1−α2)φ whose cancellation requires
α1α2 = 2ξ. With this condition, we obtain

κM̂1,2 = γ
− 1

2
1,2 ê1,2|Q1,2|, γ1,2 = ξ +

α2
1,2

2
, (A42)

so the extremality bound in this case is

κMBH > γ
− 1

2
1 e1|Q1|+ γ

− 1
2

2 e2|Q2|, (A43)

where e1 = ê1eα1φ∞/2 and e2 = ê2e−α2φ∞/2 are the gauge
couplings in the vacuum in question. When α1α2 6= 2ξ,
the fake superpotential solving (A41) is not known in
closed form (apart from some special cases) but it is easily
found by numerical integration.

So far, we have considered examples with a single at-
tractor basin. A simple (if contrived) example that ex-
hibits multiple attractor basins is

Q2(φ) = kNM
2
0

(
1 +

[
(φ/φ0)2 − λ

]2)
, Gφφ = k−1

N

⇒ W (φ)2 +W ′(φ)2 = M2
0

(
1 +

[
(φ/φ0)2 − λ

]2)
,

(A44)

with attractor points at φ = ±
√
λφ0. The associated fake

superpotentials can be found by numerical integration,
see figures 19 and 20. Note that for some values of φ0, λ
there are quasi-extremal solutions that are not extremal
due to finite overlap between the domains of the local
fake superpotentials W±(φ) associated to the attractor
points φ = ±

√
λφ0.

Some examples where numerical integration was used
to determine the extremality bound in an actual theory
of quantum gravity are discussed in (Alim et al., 2021).
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FIG. 19 The fake superpotentials for the two stable attractor
points of (A44) with λ = 4/3 and φ0 =

√
3/4. Because

W±(φ) cross over each other at φ = 0, W−(φ) gradient flow
solutions with φ∞ > 0 are quasiextremal but not extremal,
as are W+(φ) gradient flow solutions with φ∞ < 0.
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FIG. 20 The fake superpotentials for the two stable attractor
points of (A44) with λ = 4/3 and φ0 = 2. In this case, all
quasiextremal solutions are extremal.

5. Closing comments

To derive the extremality bound (A35) we assumed
that W (φ) := min{a}Wa(φ) was everywhere defined and
continuous. This is easily proved for a one-dimensional
moduli space, since (1) the domain Da of the fake super-
potential Wa(φ) associated to a minimum φ(a) of Q2(φ)
is at least as large as the interval between the two adja-
cent maxima of Q2(φ) and (2) Wa(φ) = |Q(φ)|/

√
kN at

the boundary of this domain (see, e.g., figure 19), sat-
urating the upper bound Wb(φ) ≤ |Q(φ)|/

√
kN on all

fake superpotentials, where these two properties ensure
(1) the existence and (2) the continuity of W (φ) at each
point. While we do not know a general proof for a higher-
dimensional moduli spaces, the existence and continuity
of W (φ) can be checked on a case-by-case basis.

Phase transitions in the moduli space can create addi-
tional subtleties. Firstly, while tAB(φ) and Gij(φ) need

not be analytic at a phase transition, in itself this has
little effect on the foregoing analysis. More importantly,
different branches of moduli space can meet at a phase
transition, opening up the possibility of black hole so-
lutions that cross from one branch to another. This is
a rather complicated question that has not been worked
out in the literature to our knowledge, but it seems prob-
able that some version of fake superpotentials will still be
applicable. Yet more drastically, the moduli space could
have finite-distance boundaries where a strongly-coupled
CFT appears, as in some examples from (Alim et al.,
2021). Black hole solutions that reach this CFT bound-
ary outside their event horizon lie outside the regime of
validity of the weakly-coupled EFT that our analysis is
based on, and require a separate analysis.
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