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The spontaneous breaking of time translation symmetry has led to the discovery of a
new phase of matter – the discrete time crystal. Discrete time crystals exhibit rigid
subharmonic oscillations, which result from a combination of many-body interactions,
collective synchronization, and ergodicity breaking. This Colloquium reviews recent
theoretical and experimental advances in the study of quantum and classical discrete
time crystals. We focus on the breaking of ergodicity as the key to discrete time crystals
and the delaying of ergodicity as the source of numerous phenomena that share many
of the properties of discrete time crystals, including the AC Josephson effect, coupled
map lattices, and Faraday waves. Theoretically, there exists a diverse array of strate-
gies to stabilize time crystalline order in both closed and open systems, ranging from
localization and prethermalization to dissipation and error correction. Experimentally,
many-body quantum simulators provide a natural platform for investigating signatures
of time crystalline order; recent work utilizing trapped ions, solid-state spin systems,
and superconducting qubits will be reviewed. Finally, this Colloquium concludes by
describing outstanding challenges in the field and a vision for new directions on both
the experimental and theoretical fronts.



2

CONTENTS

I. Introduction: Spontaneous Breaking of Time Translation
Symmetry 2

II. What defines a time-crystalline phase of matter? 4
A. Illustrative examples 5

III. Floquet Hamiltonian systems 7
A. Faraday waves 7
B. Floquet Hamiltonians and emergent symmetries 7

1. The rotating frame: constructing the Floquet
Hamiltonian 8

2. Time translation symmetry breaking as internal
symmetry breaking of the Floquet Hamiltonian 9

3. The spectral perspective 9
4. Application to many-body parametric resonance 10

C. Ergodicity, destroyer of time-crystals 11

IV. Closed, periodically-driven quantum systems 11
A. Introduction to quantum Floquet phases 11
B. Many-body localized discrete time crystal 13
C. Experimental signatures of disordered time crystals 13

1. Trapped ion spin chains 13
2. Spins in condensed matter 14
3. Superconducting transmon qubits 14

D. Prethermal discrete time crystal 15
1. Floquet prethermalization 15
2. Prethermal discrete time crystal in a 1D trapped

ion chain 16
E. Periodically driven Bose-Einstein Condensates 17

V. Open, periodically-driven systems and stochastic
dynamics 19
A. “Activated” time-crystals 20
B. Experimental realizations of activated time-crystals:

pendula, AC-driven charge density waves, and
fractional Shapiro steps 21

C. Ergodicity in open systems 23
D. Probabilistic cellular automata 24
E. An absolutely stable open time-crystal: the π-Toom

model 25
F. Open Hamiltonian and quantum dynamics 26

VI. Outlook and future directions 26
A. New venues for time crystals 26

1. Quantum many-body scars 26
2. Stark time crystals 27

B. Prethermalization beyond Floquet quantum systems 27
1. Classical prethermal discrete time crystals 27
2. Higher-M discrete time crystals 27
3. Prethermal time quasi-crystals 28

C. Applications: from metrology to quantum information
benchmarking 28

D. Concluding Remarks 29

References 30

I. INTRODUCTION: SPONTANEOUS BREAKING OF
TIME TRANSLATION SYMMETRY

Spontaneous symmetry breaking is a remarkable col-
lective phenomenon: an assembly of constituents, each
interacting with only its nearby neighbors, manages to
align its behavior across large spatial and temporal sepa-
rations. The concept has wide-ranging applications, from

crystalline and magnetic ordering to superfluidity, su-
perconductivity, and the generation of particle masses.
Recently there has been a burst of activity surround-
ing the spontaneous breaking of symmetries that involve
time translation (Else et al., 2016; Khemani et al., 2016;
Sacha, 2015; Shapere and Wilczek, 2012b; Wilczek, 2012;
Yao et al., 2017). These explorations have exposed new
phenomena and new opportunities, but also important
subtleties. In this Colloquium, we will discuss both the
resulting sharpening of theoretical concepts and the dis-
covery of previously unsuspected new phases of matter.
We will also discuss open questions and potential appli-
cations.

Landau-Ginzburg theory is the starting point for many
theoretical treatments of spontaneous symmetry break-
ing. In a simple but representative example of this frame-
work, one considers the theory of a complex scalar field
φ(x, t) whose equations are invariant under a phase trans-
formation φ → eiλφ. Physically, φ might represent the
field associated with the creation and annihilation of
bosonic particles (e.g., 4He atoms), s-wave spin singlet
Cooper pairs, or the distribution of a planar spin den-
sity. Within the Landau-Ginzburg paradigm, a key role is
played by the energy (or more generally the free energy)
of a field configuration. The simplest energy functional
consistent with symmetries is given by:

V (φ) = b4|∇φ|4 + b2|∇φ|2 + a2|φ|2 + a4|φ|4 = H = −L,
(1)

where {a2, a4, b2, b4} are real-valued parameters while
H,L denote the Hamiltonian and Lagrangian densities,
respectively. Taking a4, b4 > 0 insures stability against
rapid spatial variations and large fields.

If a2 < 0, states with 〈φ〉 6= 0 are energetically fa-
vorable, spontaneously breaking the phase rotation sym-
metry. If b2 < 0, states with 〈∇φ〉 6= 0 are favorable,
spontaneously breaking the spatial translation symme-
try and indicating the emergence of spatial patterns. By
reducing the symmetry, the system gains a non-zero en-
ergy per unit volume. In the limit of infinite volume, the
symmetry of all physically realizable states is less than
the symmetry of the original equations. This is the mech-
anism of spontaneous symmetry breaking in equilibrium.

Physicists are accustomed, in many contexts, to treat-
ing time and space on an equal footing. Thus, one could
imagine generalizing Eq. (1) to include time derivatives.
In a Lagrangian framework, it is natural to consider
adding the leading order kinetic terms,

Lkin. = c4|∂tφ|4 + c2|∂tφ|2, (2)

which corresponds to the energy density Hkin. =
3c4|∂tφ|4 + c2|∂tφ|2. For c2 < 0, c4 > 0, it is energetically
favorable to have 〈∂tφ〉 6= 0, implying the spontaneous
breaking of time translation symmetry.
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This line of reasoning suggests that spontaneous time-
translation symmetry-breaking (SτB) is straightforward
to achieve. But subtleties abound (Shapere and Wilczek,
2012b; Wilczek, 2012). Quantum mechanics requires
Hamiltonians, and for non-singular Hamiltonians, Hamil-
ton’s equations, ∂tφ = ∂pH, ∂tp = −∂φH, imply that
a system is stationary at any energy minima. Thus a
ground state cannot exhibit periodic oscillations. The
behavior of Eq. (2) is able to evade this this conclusion
because ∂tφ is not a single-valued function of the canon-
ical momentum [i.e., p(∂tφ) = δLkin.

δ∂tφ
does not have a

unique inverse ∂tφ(p)], and consequently, neither is the
Hamiltonian.(Shapere and Wilczek, 2012b) This is not
necessarily an insurmountable problem. Indeed for such
singular Hamiltonians it is often possible to construct
consistent (in particular, unitary) quantum theories that
realize the corresponding classical dynamics in the limit
of large quantum numbers (Chi and He, 2014; Choudhury
and Guha, 2019; Shapere and Wilczek, 2012a,b; Zhao
et al., 2013). Moreover, singular Hamiltonians that sup-
port time-dependent minima can arise as limiting cases
of non-singular Hamiltonians as appropriate parameters
are taken large. A limiting theory can be valuable, be-
cause it is often more tractable than the full theory, while
being accurate within a large range of parameter space
(Alekseev et al., 2020; Dai et al., 2020, 2019; Shapere
and Wilczek, 2019). However, away from this limit sev-
eral authors (Bruno, 2013; Nozières, 2013; Watanabe and
Oshikawa, 2015) have argued that persistent oscillations
cannot arise in a quantum system that is in equilibrium
with respect to a local Hamiltonian.

These subtleties suggest that the application of the
Landau paradigm to SτB may not be as easy as Eq. (2)
would lead us to believe. An additional necessary ingredi-
ent for SτB is a robust mechanism for ergodicity breaking
which enables the dynamics of the system to “remember”
the initial condition (e.g. the complex phase of φ) out to
infinite times. Spontaneous symmetry breaking is a spe-
cial case of ergodicity breaking. Focusing on this aspect
of spontaneous symmetry breaking leads to the following
formulations of SτB: it is a form of ergodicity breaking
in which a generic ensemble of initial conditions exhibits
persistent oscillations with a temporal phase shift that
remembers the initial condition (cf. (3)).

In recent years, a non-equilibrium route to SτB has
been discovered in the context of Hamiltonians peri-
odically driven at frequency ωD. Such “Floquet” sys-
tems (Floquet, 1883) feature a reduced, discrete time-
translation symmetry H(t + 2π/ωD) = H(t), where
T0 = 2π/ωD is the driving period. When a simple har-
monic oscillator is driven at frequency ωD, it responds at
frequency ωD, regardless of its natural frequency. This is
even true of many non-linear systems that are far more
complex: when driven at frequency ωD, their observable
properties respond at integer harmonics of ωD, regardless
of their detailed structure. In this case, the observable

behavior evolves with the same discrete time-translation
symmetry as the underlying equations of motion. In con-
trast, a system is said to exhibit a subharmonic response
if there are properties which oscillate at frequency ωD/m
for some integer m > 1. Such a subharmonic response
spontaneously breaks the discrete time-translation sym-
metry down to the smaller subgroup t → t + 2πn/ωD
with n ∈ mZ. If this SτB is stable to perturbations, the
system is a “discrete time crystal” (Else et al., 2020b;
Guo and Liang, 2020; Khemani et al., 2019; Sacha, 2020;
Sacha and Zakrzewski, 2017).

Owing to the periodic drive, it is not obvious how to
stabilize such behavior. Within the Landau paradigm,
spontaneous symmetry-breaking phases retain their or-
der in the face of fluctuations (both thermal and quan-
tum) by virtue of the energy penalty associated with mis-
aligned regions. But this is not possible for a discrete
time crystal, since energy is not conserved in a driven
system. The oscillations in distant parts of the system
must remain in lockstep even though the energy penalty
for failing to do so can easily be over-ridden by the energy
supplied by the drive.

The aim of this Colloquium is to give a unifying per-
spective on various non-equilibrium mechanisms for dis-
crete SτB in closed (Fig. 1) and open (Fig. 2) systems.
By centering our discussion in the language of dynami-
cal systems, we hope to highlight the connections — and
contrasts — between the rich literature on subharmonic
responses in dynamical systems and more recent devel-
opments in the context of closed quantum systems. Until
recently, many-body systems exhibiting SτB, such as pe-
riod doubling in coupled map lattices, were only found
in open systems that relied fundamentally on dissipation.
They could be viewed as a type of engine: the energy
supplied by the frequency-ωD drive is converted to fre-
quency ωD/m motion while releasing heat to a cold bath.
With the discovery of many-body localized (MBL) dis-
crete time crystals, a qualitatively different form of SτB
was discovered: one that does not generate any entropy
at all.

In an MBL time crystal, the time scale of SτB oscil-
lations diverges exponentially as the system size alone is
increased. However, for practical purposes it is also of
interest to know if there are other physical parameters
whose limiting behavior can drive such an exponential
increase, for example, the drive frequency ωD →∞; the
temperature T → 0; or the particle density n → ∞.
This will lead us to the notion of prethermal, activated,
and driven-BEC time crystals, respectively. A key tool
which is common to both of these “exponentially good”
time-crystals and to their MBL counterpart is the emer-
gence of an effective time-independent Floquet Hamilto-
nian, Heff, which governs the dynamics out to exponen-
tially long time scales. Crucially, Heff can exhibit emer-
gent symmetries that are protected by the underlying
time-translation symmetry of the drive. In a pleasing re-
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Floquet Prethermalization
Large driving frequency à energy absorption

from the drive is exponentially suppressed

During the intermediate prethermal regime,
time-crystalline order can persist for               

Many-body Localization
Disorder à breaking of ergodicity and 

prevention of energy absorption from drive

Few-body Systems
KAM Theorem à stability of subharmonic 

response / time translation symmetry breaking

E.g. parametric resonance of a single non-linear
oscillator, Arnold tongues, etc. 

Closed / Deterministic Systems

Classical  Systems
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Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in
periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting
discrete time crystal is quantized to an integer multiple of the drive period, arising from a combination of
collective synchronization and many body localization. Here, we consider a simple model for a one-
dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive
is varied. We numerically map out its phase diagram and compute the properties of the dynamical phase
transition where the time crystal melts into a trivial Floquet insulator. Moreover, we demonstrate that
the model can be realized with current experimental technologies and propose a blueprint based upon a one
dimensional chain of trapped ions. Using experimental parameters (featuring long-range interactions), we
identify the phase boundaries of the ion-time-crystal and propose a measurable signature of the symmetry
breaking phase transition.

DOI: 10.1103/PhysRevLett.118.030401

Spontaneous symmetry breaking—where a quantum state
breaks an underlying symmetry of its parent Hamiltonian—
represents a unifying concept in modern physics [1,2].
Its ubiquity spans from condensed matter and atomic
physics to high energy particle physics; indeed, examples
of the phenomenon abound in nature: superconductors,
Bose-Einstein condensates, (anti)ferromagnets, any crystal,
and Higgs mass generation for fundamental particles. This
diversity seems to suggest that almost any symmetry can be
broken.
Spurred by this notion, and the analogy to spatial crystals,

Wilczek proposed the intriguing concept of a “time crystal”—
a state which spontaneously breaks continuous time trans-
lation symmetry [3–5]. Subsequent work developed more
precisedefinitionsof such timetranslationsymmetrybreaking
(TTSB) [6–8] and ultimately, led to a proof of the “absence of
(equilibrium) quantum time crystals” [9]. However, this proof
leaves the door open to TTSB in an intrinsically out-of-
equilibriumsetting, andrecentwork [10,11]hasdemonstrated
that quantum systems subject to periodic driving can indeed
exhibit discrete TTSB [10–13]; such systems develop per-
sistent macroscopic oscillations at an integer multiple of the
driving period, manifesting in a subharmonic response for
physical observables.
An important constraint on symmetry breaking in many-

body Floquet systems is the need for disorder and localiza-
tion [10–17]. In the translation-invariant setting, Floquet
eigenstates are short-range correlated and resemble infinite
temperature states which cannot exhibit symmetry breaking
[15,18,19]. Under certain conditions, however, prethermal
time-crystal-like dynamics can persist for long times [20,21]
even in the absence of localization before ultimately being
destroyed by thermalization [17,22].

In this Letter, we present three main results. First, by
exploring the interplay between entanglement, many body
localization and TTSB, we produce a phase diagram for a
discrete time crystal (DTC) [24]. The DTC, like other

FIG. 1. (a) Phase diagramof the discrete time crystal as a function
of interaction strength Jz and pulse imperfections ϵ. (b) Depicts the
location of the subharmonic Fourier peak as a function of ϵ. In
the noninteracting case (Jz ¼ 0), the peak tracks ϵ, while in the
interacting case (Jz ¼ 0.15), the peak remains rigidly locked
at ω=2. The pink region indicates the FWHM of the base of the
ω=2 peak. Data are obtained atL ¼ 14with 102 disorder averages.
(c)–(d) Representative realizations of the subharmonic Fourier
response corresponding to ϵ in (b). All Fourier transforms are
computed using 10 < n < 150 Floquet periods.
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exhibits robust period-doubling behavior up
until the frequency-controlled heating time
scale, t* (Fig. 3B). In comparison, for the lat-
ter, all signatures of period doubling disappear
by the frequency-independent time scale tpre
(Fig. 3A). By investigating the lifetime of the
time-crystalline order as a function of the
energy density of the initial state, we identify
the phase boundary for the PDTC.
Our system consists of a one-dimensional

chain of 25 171Yb+ ions. Each ion encodes an ef-
fective spin-1/2 degree of freedom in its hyper-
fine levels F ¼ 0;mF ¼ 0j i and F ¼ 1;mF ¼j
0i (Fig. 1A). Long-range Ising interactions
are generated through a pair of Raman laser
beams (33, 34). Arbitrary effective magnetic
fields can be applied either locally or globally
and single-site readout can be performed

simultaneously across the full chain (35),
enabling the direct measurement of the
Floquet dynamics of both the magnetiza-
tion and the energy density.
The Floquet drive alternates between two

types of Hamiltonian dynamics (Fig. 1B): (i)
a global p-pulse around the ŷ axis and (ii) an
evolution for time T under a disorder-free,
long-range, mixed-field Ising model. This is
described by the two evolution operators

U1 ¼ exp "i
p
2

XN

i

syi

" #

U2 ¼ exp "iT
XN

i<j

Jijsxi s
x
j þ By

XN

i¼1

syi þ Bz

XN

i¼1

szi

 !" #

ð1Þ

wheresvi is the v-th component of the spin-1/2
Pauli operator for the i-th ion, and we adopt
the convention ℏ ¼ 1. Here, Jij > 0 is the long-
range coupling with average nearest-neighbor
interaction strength J0 = 2p · 0.33 kHz, whereas
By= 2p · 0.5 kHz andBz= 2p · 0.2 kHz are global
effective magnetic fields. The Floquet unitary
UF = U2U1 implements the dynamics over a
period of the drive and has frequency w = 2p/T.
Within the prethermalwindow in time tpre <

t < t*, the stroboscopic dynamics of the sys-
tem (every other period) arewell approximated
by an effective prethermal Hamiltonian, which
to lowest order in 1/w is given by (30)

Heff ¼
XN

i<j

Jijsxi s
x
j þ By

XN

i¼1

syi ð2Þ

Kyprianidis et al., Science 372, 1192–1196 (2021) 11 June 2021 2 of 5

Fig. 1. Experimental setup and protocol. (A) Schematic of the 25-ion chain
(35). Single-site addressing (top), global Raman beams (middle), and state-
dependent fluorescence (bottom) enable the preparation, evolution, and
detection of the quantum dynamics. (B) For intermediate times (tpre < t < t*),
the system approaches an equilibrium state of the prethermal Hamiltonian Heff.
In the trivial Floquet phase, the magnetization after tpre decays to zero. In the
PDTC phase, the magnetization changes sign every period, which leads to a
robust subharmonic response. At times t≫ t&, Floquet heating brings the many-

body system to a featureless infinite temperature ensemble. (C) (Top) Phase
diagram of Heff. Owing to the antiferromagnetic nature of the Ising interactions
Jij > 0, the ferromagnetic phase occurs at the top of the many-body spectrum.
(Bottom) Schematic of the stroboscopic magnetization dynamics in the trivial
(red) and PDTC (blue) phase (full and dashed curves represent even and odd
driving periods, respectively). When the energy density of the initial state is
above the critical value ec, the system is in the PDTC phase, and its lifetime
follows the frequency-dependent heating time t*.
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FIG. 1 Schematic depicting strategies for stabilizing time crystalline order in periodically-driven, closed systems evolving via
deterministic dynamics. In few-body classical systems, such as a parametrically driven non-linear oscillator, stable subharmonic
responses are ubiquitous. This stability can be understood as a time-dependent extension of the Kolmogorov-Arnold-Moser
(KAM) theorem (Givental et al., 2009; Kolmogorov, 1954; Möser, 1962), which proves that quasiperiodic orbits of dynamical
systems remain robust to small perturbations (Sec. III.B.4). There is no quantum analog to this classical few-body strategy.
For many-body systems, both classical and quantum dynamics can exhibit Floquet prethermalization in the limit of large
driving frequencies (Sec. IV.D). During an intermediate prethermal window of time (i.e. before Floquet heating occurs), the
system can exhibit discrete time crystalline order. The lifetime of this order scales exponentially with the frequency of the
drive, τ ∼ eωD/J . In strongly disordered, quantum many-body systems, a phenomenon known as many-body localization
can occur. This prevents Floquet heating (see Sec. III.C) and also provides a mechanism for the many-body system to avoid
becoming ergodic. By breaking ergodicity, time crystalline order can persist to infinite times in the thermodynamic limit. Since
many-body localization relies upon the discreteness of quantum mechanical levels, there is no classical analog to this strategy.
Left panel inset figure adapted from (Heltberg et al., 2016), middle panel inset figure adapted from (Kyprianidis et al., 2021),
right panel inset figure adapted from (Yao et al., 2017).

turn to form, SτB can then be understood in terms of the
breaking of these emergent symmetries and as an appli-
cation of the Landau paradigm not to H(t), but rather
to Heff.

In the setting of Floquet dynamics, the environment
couples to the system only via a coherent drive. But
in any physical experiment, the environment itself is a
many-body system, and thus, coupling to it inevitably
comes along with dissipation and noise. Indeed, all ex-
periments on discrete time crystals to date show their
fingerprints. The possibility of perfect SτB in the pres-
ence of a drive, dissipation, and noise remains an open
question.

The outlines of a possible answer to this question are
provided by deep results from theoretical computer sci-
ence and non-equilibrium statistical physics. As empha-
sized, SτB is fundamentally a form of ergodicity break-
ing, and there is a history of rigorous results from these
communities which show that ergodicity breaking can be

generically stable to noise (Gács, 2001; Toom, 1980). In
that context, the motivation was to understand whether
“reliable systems can emerge from unreliable compo-
nents” (Von Neumann, 1952). The answer to this ques-
tion is inextricably linked to the physical possibility of the
most radical form of ergodicity breaking of all: classical
and quantum error correction. From this perspective, if
purely dissipative time crystals are a form of engine, and
MBL time crystals a type of idealized perpetual motion,
then SτB in open systems is an embryonic example of an
error-corrected computer program: repeatedly applying
the same “NOT” operation to all registers, the computer
settles into the period-2 output ...0101010101....

II. WHAT DEFINES A TIME-CRYSTALLINE PHASE OF
MATTER?

Discrete SτB leads to regular and long-lived oscilla-
tions with a period which is a multiple of the drive’s.
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Oscillations in general, however, are ubiquitous through-
out nature, so in this section we will formalize when
such behavior signals the emergence of a genuine phase
of matter. Our starting point is any dynamical system
(Birkhoff, 1927; Katok and Hasselblatt, 1997; Strogatz,
2018) whose state x evolves under a discrete-time update
rule Φ : x→ Φ(x). The state of the system at time-step
t is thus x(t) = Φ(t)(x(0)), where the superscript denotes
iteration. The time-independence of Φ implies there is
a discrete time-translation symmetry. While the nota-
tion highlights a discrete time-step, Φ may arise from
viewing a continuous-time system “stroboscopically.” In
the context of classical and quantum dynamics defined
by time-periodic Hamiltonian H(t+ T ) = H(t), x is the
classical or quantum state, and Φ corresponds to integra-
tion of Hamilton’s equations or the Schrodinger equation
over one period of the drive.

The dynamics exhibit m-fold time-translation symme-
try breaking if there exists a local observable O which
exhibits periodic oscillations out to infinite times for a
measurable volume of initial conditions x:

lim
τ→∞

1

τ

τ∑

n=1

O(Φ(mn)(x)) 6= lim
τ→∞

1

τ

τ∑

n=1

O(Φ(mn+p)(x))

(3)

where 0 < p < m corresponds to the m-phases of the or-
bit, with equality restored for p = m. A time-crystal thus
“remembers” which of m initial conditions it is in. This
implies that SτB is a particular form of ergodicity break-
ing (Cornfeld et al., 2012; Sinai, 1959; Walters, 2000): the
time-averaged behavior of the m-fold iterated map Φ(m)

depends on the initial condition. This behavior has been
called “asymptotic periodicity” in the literature on clas-
sical many-body dynamical systems (Lasota et al., 1984;
Lasota and Mackey, 2013; Losson and Mackey, 1996).
While Eq.(3) implies infinitely long-lived oscillations, we
may also consider a relaxed condition in which the time
scale τ remains finite but diverges exponentially with a
control parameter such as the drive frequency or temper-
ature. This will be the case for “prethermal” (Sec. IV.D)
and “activated” (Sec. V.A) time-crystals, respectively.

We emphasize that SτB does not require that each
state x itself undergoes perfectly periodic motion, only
that there is an observable O which oscillates on average.
For example, in the context of a single variable x, the ob-
servable O(x) = sign(x) might exhibit regular oscillations
even while the motion of x itself is quite chaotic. This
accounts for the fact that we rarely have direct access to
the microstate of the system, only coarse-grained mea-
surements. This limitation also motivates the require-
ment that oscillations be observable for a finite volume
of initial conditions, over which we rarely have exact con-
trol. Taken together, an equivalent formulation of Eq.(3)
takes a statistical point of view by considering the evolu-
tion of distributions over microstates ρ(x); we return to

this formulation in our discussion of stochastic systems
in Sec. V.

Even a single degree of freedom can trivially exhibit
SτB: take for example the map Φ(x) = −x. The prob-
lem gains its richness when we demand stability : SτB is a
property of a dynamical phase of matter if it is robust to
any small locality-preserving perturbation of either the
initial condition x or the dynamics Φ. Under the pertur-
bation Φ(x) → −x(1 − ε), for example, oscillations are
damped at times beyond τ ∼ ε−1, and SτB is destroyed.

When discussing stability, we need to be clear which
class of perturbations we demand stability against. Cor-
respondingly this defines different possible classes of
SτB phases — Hamiltonian, unitary, Langevin, quan-
tum Lindladian, etc. — which would exhibit SτB robust
to arbitrary small perturbations within that dynamical
class. Depending on how broadly or narrowly we define
stability, we will have more or fewer examples, but weaker
or stronger implications.

A. Illustrative examples

The requirements surrounding Eq. (3) contain several
subtleties, so it will prove helpful to walk through several
illustrative examples of “is X a time-crystal” with these
in mind. We first focus on examples which do exhibit
oscillations (and are interesting in their own right), but
which do not satisfy the strict requirements of Eq.(3).

Consider first the dynamics of an undriven oscillator

H = p2

2m +
ω2

0

2mq
2 + ε

4q
4. Obviously any initial condi-

tion x = (q, p) will oscillate forever - do such oscil-
lations constitute a discrete time-crystal? Since H is
time-independent, for the purposes of testing Eq. (3) we
may choose to stroboscopically observe the dynamics at
whichever period T we suspect harbors the oscillations
(say T = 2π/ω0). However, stability requires us to ac-
count for the non-linearity ε, which causes the oscillation
frequency to depend on the amplitude of the initial con-
dition. As a result, there is no fixed period T for which
Eq. (3) is satisfied for a finite volume of initial conditions:
a generic ensemble of states will instead dephase, with no
SτB after some characteristic time τ .

The time scale τ for such dephasing may be large, in
which case the dynamics may appear to exhibit SτB in
practice even while they do not satisfy Eq. (3) in princi-
ple. Consider for example the AC-Josephson effect,

H = −EJ cosφ+ 2eV n+
n2

2C
(4)

Here φ is the superconducting phase difference across a
Josephson junction, which is conjugate to the Cooper
pair number n; EJ is the Josephson energy for the tunnel-
ing of a pair across the junction, C is the junction capaci-
tance, and V is the voltage difference across the junction.
For a large junction the capacitance approaches C =∞,
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FIG. 2 Schematic depicting strategies for stabilizing time crystalline order in periodically-driven, open systems evolving via
stochastic dynamics. Dissipative non-linear dynamical systems have long been known to exhibit stable, many-body time
translation symmetry breaking. Indeed, coupled map lattices can satisfy all of the stated requirements for being a discrete time
crystal. The key ingredient for the stability of SτB in this setting is a generalized version of dissipation—effectively, one can
think of the microscopic dynamics in such systems as being coupled to a zero temperature bath (alternatively, one can say that
the microscopic dynamics are not information- or measure-preserving). This ensures that a finite volume of initial conditions
contracts towards, for example, a period-doubled fixed point (Sec. II.A). The stability of time crystalline order in many-body
systems coupled to a finite temperature bath are significantly more subtle. For example, in classical Langevin dynamics or
quantum Linbladian dynamics, at any T > 0, dissipation always comes with noise. In such systems (e.g. finite temperature,
parametrically-driven, coupled non-linear pendula), at low temperatures, time crystalline order can survive for an “activated”

time-scale ∼ e∆/kBT (Sec. V.A). Somewhat remarkably, by considering more generic stochastic dynamics (i.e. probabilistic
cellular automata), it is possible to realize finite-temperature, time crystalline order with an infinite lifetime (Sec. V.E). Left
panel inset figure adapted from (Kaneko, 1984), middle panel inset figure adapted from (Hundley and Zettl, 1989), right panel
inset figure adapted from (Vasmer, 2020).

and the equations of motion then give φ(t) = φ0 + 2eV t,
implying the supercurrent Is = ṅ = EJ sin(φ) oscillates
indefinitely in response to a DC voltage. However, for
the generic case in which C is finite, a shift of variables
from n→ n−2eV C brings H to the form of a pendulum
whose behavior is similar to the non-linear oscillator dis-
cussed above. The time scale for the resulting dephasing
τ =

√
C/EJ may be large - though it is worth pointing

out that this dependence is not an exponential. In ex-
periments, Josephson junctions are generally resistively
shunted, and related interesting phenomena arise in this
open context as will be discussed in Sec. V.

Another interesting limit of Eq.(4) is EJ = 0, in which
case H has an internal U(1) phase symmetry which guar-
antees that φ̇ = 2eV + n/C remains constant. In this
case T = 2π/φ̇ This is an example of SτB which “piggy-
backs” on the spontaneous symmetry breaking of an un-
related internal symmetry. Equivalent examples are su-
perfluids at non-zero chemical potential or an XY mag-

net in a perpendicular field. Such systems have a U(1)
order parameter that precesses in time for generic initial
conditions. The precession is unobservable (for example
Is = 0) unless the U(1) symmetry, which makes all an-
gles equivalent, is broken. But in the absence of U(1)
symmetry, there is no barrier to energy dissipating from
the macroscopic precession of the order parameter into
the internal motion of its many-body constituents. At
long times the system then relaxes to a state (e.g., van-
ishing particle number in the superfluid or spin aligned
with the field in the magnet) wherein macroscopic mo-
tion ceases. To navigate this dichotomy, one must shield
the system from explicit symmetry breaking apart from
brief, intermittent measurement events, as in the exper-
iment of Urbina et al., 1982. In this case, SτB is stable
only to perturbations which preserve the internal symme-
try. In contrast, we will find that a stronger form of SτB
is possible which depends only on the time-translation
symmetry itself.
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A many-body example which does satisfy all the re-
quirements surrounding Eq. (3) is period doubling in de-
terministic dissipative systems. An iterated map x →
f(x), such as the logistic map,(Strogatz, 2018) provides
an idealized model of the unit-time evolution of such a
system. Taking for example f(x) = −x(1 + a − x2),
there is a basin of attraction of initial states that set-
tle into a limiting oscillation between x = ±√a when
a > 0. This simple one-body example can be promoted
to a many-body model (a “coupled map lattice”) by
considering an array of variables xi which evolve under
Φ : xi → f(xi) + v(xi−1, xi, xi+1) with some generic lo-
cal interaction v. The behavior of coupled map lattices is
very rich, since they include cellular automata (Gutowitz,
1991) as a special case (Bunimovich and Sinai, 1988;
Kaneko, 1984, 1992; Kaneko and Konishi, 1987; Kapral,
1985). Coupled map lattices can support collective sub-
harmonic responses (Gielis and MacKay, 2000; Losson
and Mackey, 1996; Losson et al., 1995) which are stable
to smooth perturbations of f or v.

III. FLOQUET HAMILTONIAN SYSTEMS

As noted above, if we consider systems with dissipa-
tion but no noise, as for example a coupled map lattice, it
is relatively straightforward to obtain stable, many-body
SτB. This is the classical zero-temperature limit of the
general open system problem that we discuss at length
in Section V. These systems illustrate that the existence
and stability of time crystals depends strongly on the
class of dynamical system considered (open, closed; clas-
sical, quantum). The presence of dissipation leads to
a fixed-point orbit about which the linearized dynamics
have eigenvalues |λ| < 1, so that a finite volume of initial
conditions contracts towards the fixed point. In contrast,
for the canonical transformation which arises from inte-
grating Hamilton’s equations over one Floquet period,
the eigenvalues always come in conjugate pairs λ1λ2 = 1
in order to ensure that the phase-space volume dq ∧ dp
is preserved in accord with Liouville’s theorem. In the
section, we discuss why stable SτB, i.e. an infinitely-
long-lived time crystal, is not expected to occur in such
a situation.

A. Faraday waves

To illustrate why Hamiltonian structure makes the
possibility of SτB considerably more challenging, it is
helpful to consider the concrete example of Faraday-wave
instabilities in shaken surface waves. Faraday observed
that when a container of water with a liquid-air inter-
face is shaken vertically at frequency ωD, surface-waves
develop which oscillate at frequencies ω = n

mωD, which
are rational subharmonics of the drive (Faraday, 1831;

Rayleigh, 1883a). The sub-harmonics can be understood
as standing-wave modes that are forced via parametric
resonance (Rayleigh, 1883b). A precise mathematical
understanding of the instability is obtained by lineariz-
ing the incompressible Euler equations for surface waves
(Benjamin and Ursell, 1954) in the presence of periodic
acceleration. This reduces the problem to a set of “Math-
ieu equations” for each Fourier component of the surface
height q,

q̈k = −[ω2
k + δk cos(ωDt)]qk (5)

where qk is the amplitude of the surface-wave at wave-
vector k, ωk is the natural frequency of the surface
wave, and δk is proportional to the driving amplitude.
The Mathieu equation features an exponentially-growing
solution (which precisely looks like a subharmonic re-
sponse) of the approximate form ∼ etΓ cos(tωD/2 + θ)
when a mode satisfies ωD ∼ 2ωk (McLachlan, 1947).
As we will discuss, the non-linearity then regulates the
blow-up and stabilizes SτB. Since the Euler equations are
Hamiltonian (Olver, 1982), it might seem that Faraday-
wave instabilities then provide a Hamiltonian example of
SτB.

However, while this analysis implies a linear subhar-
monic instability, it does not resolve whether the mo-
tion at long times is an example of SτB in the strong
sense. While the non-linearities which are generically
present have the favorable property of regulating the ex-
ponential blow-up, they also couple different k-modes.
A generic initial condition will contain some energy in
these high-k modes, which will then act as an effectively
noisy force on the motion of the k mode in which one is
hoping to observe stable SτB. The key question can then
be summarized as follows: Does SτB survive when treat-
ing the Faraday wave problem as a genuine non-linear
many-body system, and if not, what governs the auto-
correlation time of the long-lived subharmonic response
manifestly seen in experiments?

B. Floquet Hamiltonians and emergent symmetries

In order to answer this question, it will prove help-
ful to walk through a specific example and to develop
some intuition along the way. To this end, we will work
through the example of a shaken non-linear pendulum
(i.e. a parametrically driven non-linear oscillator); for a
single pendulum (and even in the few-body case), we
will see that one naturally gets stable SτB as a conse-
quence of the Kolmogorov-Arnold-Moser (KAM) theo-
rem. (Givental et al., 2009; Kolmogorov, 1954; Möser,
1962) In a truly many-body system, however, SτB be-
comes unstable. We will argue that there is an intuitive,
general, mechanism underlying this obstruction: ergod-
icity. Along the way, we will introduce and develop a
particularly important construct — namely, the Floquet
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apart the subtle features of a discrete time crystal and to draw
sharp distinctions with a host of superficially similar-looking
but quite distinct nonequilibrium phenomena,10 some of which
date back a century or more (see the article by Ray Goldstein
on page 32). 

What is a discrete time crystal—and what isn’t
Discrete time-translation symmetry breaking manifests itself in
three key ways:
‣ Broken symmetry: A#er a possible initial transient period,
the system exhibits late-time oscillations with a period longer
than that of the drive.
‣ Crypto-equilibrium: No entropy is generated by the late-
time oscillations.
‣ Rigid long-range order: The oscillations remain in phase
over arbitrarily long distances and times.

Making those notions more precise is a bit subtle. When
talking about states of ma$er, one typically starts with a pre-
ferred state, the ground state, but not in discrete time crystals:
Periodically driven systems do not have a ground state. Again,
a comparison to spatial crystals helps. Consider a Floquet
 system that’s driven at period T, so that for any time t the
Hamiltonian H(t) satisfies H(t+ T) = H(t). The discrete spatial-
translation symmetry of a one-dimensional spatial crystal
leads to electron states having a quasi-momentum that is only
defined modulo 2π/a, where a is the period of the crystal la$ice.
Analogously, the discrete time-translation symmetry of a peri-
odically driven system leads to eigenstates having a quasi-
energy that is only defined modulo Ω≡2π/T, and there is no
preferred state with a minimum value of the quasi-energy.
Thus any definition of TTSB in periodically driven, nonequi-
librium systems cannot be cast in terms of ground-state or 
low-energy properties.

But if we don’t restrict ourselves to ground-state properties,
then oscillations with a frequency ω≠Ω—a requirement for
TTSB—can be realized fairly easily. Even for a simple harmonic

oscillator, if our initial state is a superposition of two eigen-
states then the system will naturally exhibit oscillations at a fre-
quency given by the difference between the eigenstate ener-
gies. But in most systems, a generic initial state will not lead to
late-time oscillations with ω≠Ω. So any good definition of
TTSB in Floquet systems must generalize the ground-state or
equilibrium notion of spontaneous symmetry breaking in such
a way that the oscillatory behavior does not depend on the
choice of initial state.

That requirement—and thus a precise definition of TTSB in
periodically driven systems—can be stated in a remarkably
compact form: A discrete time crystal is a state of ma$er in
which the Floquet eigenstates are necessarily “cat states,” that
is, entangled superpositions of macroscopically distinct states.
One immediate corollary is that because any initial physical
state we can prepare must be a superposition of such Floquet
cat states, all preparable initial states will exhibit oscillations. 

Let us further unpack that definition. Since the Floquet
eigenstates of a discrete time crystal aren’t preparable, we can
readily distinguish the discrete time crystal from, for example,
a simple harmonic oscillator. As mentioned above, whether the
harmonic oscillator displays time-periodic behavior depends
strongly on the choice of initial state one prepares, and most
importantly, nothing prohibits us from preparing a harmonic
oscillator in its ground state. By stark contrast, in a discrete
time crystal every physically preparable initial state will ex-
hibit oscillations at late times.

The key features of discrete time crystals explicitly distin-
guish them from a multitude of other systems (see the table on
page 46) that exhibit oscillations with unexpected periods.10
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FIGURE 1. A PERIODICALLY DRIVEN SYSTEM. In this schematic
of a chain of spins, we depict how two of the spins (black and green)
respond when driven by an oscillating external source (dashed blue
line). After some initial transient behavior, the spins fall into lockstep
at a frequency that is 1⁄4 of the drive frequency. Such a subharmonic
response is characteristic of a discrete time crystal: Its periodicity
breaks the discrete time-translation symmetry of the drive.
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FIGURE 2. CRYPTO-EQUILIBRIUM IN A DISCRETE TIME CRYSTAL.
In a 2T-periodic time crystal, the spin system’s overall orientation
flips during each driving period, so it takes two periods for the spins
to return to something resembling their initial state. But to someone
viewing the system at fixed intervals (that is, stroboscopically) from
a frame of reference that flips with the spins, the system appears to
be in equilibrium, and it exhibits many features of an equilibrium
system; no entropy is generated and oscillations need no other
 inputs to sustain them. We therefore say the system is in crypto-
equilibrium. 
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Fig. 4. Level curves of the resonant Kamiltonian, K
!
, as seen in the !}> plane. The resonance band is bounded by action values,

>+1.4 and >+2.8.

Fig. 5. Numerically generated PoincareH map induced by solutions of the non-linear Mathieu equation: ""0.25, #"0.05, $"2.0, and
%"1. The solution is strobed at times t

!
"n2!/$, n"1, 2, 3,2 .

Using the resonance Kamiltonian, K
!
, we obtain analytic expressions for the location of equilibrium points

and the width of the resonance band. We do not examine the dynamics in the stochastic layers arising from
the intersection of the invariant manifolds of saddle points, since the integrable nature of the unperturbed
system is preserved under the perturbation method.

6.1. Location of equilibrium points

Consider the resonance band associated with periodic orbits in 2m : 1 resonance with the parametric
forcing. The band emerges from a resonant torus* an invariant closed curve of the unperturbed PoincareH
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FIG. 3 (a) Schematic depiction of a time-dependent rotat-
ing frame, which transforms the original time-dependent H(t)
into the time-independent Floquet Hamiltonian, HF . Time-
translation symmetry breaking (here with period m = 2)
can be understood as spontaneous symmetry breaking of an
internal Zm-symmetry of the Floquet Hamiltonian. Fig-
ure adapted from (Yao and Nayak, 2018). (b) Contours
of equal “quasi-energy” HF (Q,P ) for a non-linear paramet-
ric oscillator near a 2:1 resonance. The original coordi-
nates of the oscillator q, p are related to the coordinates Q,P
through a time-dependent canonical transformation given ap-
proximately by Eq. (7). The two minima of HF , at which
(Q,P ) are time-independent, map back to the two exactly-
period doubled orbits, q∗(t) = −q∗(t + T0). As predicted by
Eq.(11), time-translation symmetry manifests as a Z2 symme-
try HF (Q+ π, P ) = HF (Q,P ). Panel (a) is reproduced from
(Yao and Nayak, 2018), with the permission of AIP Publish-
ing. Panel (b) adapted from Fig. 4 of (Zounes and Rand,
2002).

Hamiltonian — which will provide a unifying framework
for understanding many versions of SτB in closed Hamil-
tonian systems (both quantum and classical).

Consider the Hamiltonian for a shaken non-linear pen-
dulum:

H(q, p, t) =
p2

2
+
ω2

0

2
(1 + δ cos(ωDt))q

2 +
ε

4
q4. (6)

To connect to the Faraday wave discussion above, the
reader may think of this pendulum as a specific k-mode,
where we are now explicitly accounting for the non-
linearity but neglecting the inter-mode coupling. The
linearized equations of motion give rise to the Mathieu
equation [c.f. Eq. (5)] and the goal, with respect to time
crystalline order, would be to prove that the non-linearity
stabilizes SτB.

1. The rotating frame: constructing the Floquet Hamiltonian

Near a period doubled solution of Eq. 6, one expects on
physical grounds that trajectories should approximately
take the form

q(t)− ip(t) =
√

2P (t)ei(ωDt/2+Q(t)) (7)

where Q(t), P (t) are slowly varying in comparison to ωD.
The transformation that takes (q, p)→ (Q,P ) is a time-
dependent canonical transformation, which we denote by

K0(t); this transformation can be thought of as taking
the system to a particular “rotating frame” (Fig. 3a).
Note that the period of the rotation is sub-harmonic,
K0(mT ) = K0(0) (in the period-doubled case, m = 2).
In the rotating frame, the Hamiltonian, H(Q,P, t) is
still time-dependent, but the natural frequencies of the
system (i.e. those which govern the slowly-varying mo-
tion of Q(t), P (t)) are now off-resonant with ωD. Thus,
one can attempt to follow up with a second transforma-
tion in order to generate a completely time-independent
“Floquet Hamiltonian”: HF (Buchleitner et al., 2002;
Else et al., 2017, 2020a; Holthaus, 1995). This second
transformation takes the form of a so-called Magnus ex-
pansion and the composite transformation is given by
K(t) = Kmagnus(t) ◦ K0(t), again with K(mT ) = K(0).
In summary, the strategy is to find a canonical transfor-
mation K(t) : (q, p) → (Q,P ) such that the transformed
Hamiltonian HF (Q,P ) is time-independent. This idea
that H(q, p, t) might actually be equivalent to an equi-
librium system (i.e. governed by HF ) in an appropriate
time-dependent rotating frame is referred to as “crypto-
equilibrium” in (Else et al., 2020b; Yao and Nayak, 2018).

We emphasize that a-priori, the Magnus expansion
may not converge, in which case the pair of objects
{K(t), HF } need not exist — this will be the precise ob-
struction to stable SτB in the many-body Faraday-wave
case. Note that in the quantum setting (which we will
return to in just a few paragraphs), one can, in princi-
ple, always define a Floquet Hamiltonian by taking the
logarithm of the Floquet unitary; thus, in this case, one
should replace the “need not exist” from the previous
sentence with the fact that HF will be highly non-local.

As a preview, we note that the distinction between a
true discrete time crystal (Sec. IV.B) and the prethermal
discrete time crystal (Sec. IV.D) can precisely be under-
stood as whether the Magnus expansion converges. In
the former case, it does and one has a well defined Flo-
quet Hamiltonian, HF , while in the latter case, it almost
does, leading to:

H(Q,P, t) = Heff(Q,P ) + V (t). (8)

Here, Heff is an effective Hamiltonian that captures the
system’s stroboscopic dynamics for exponentially long
time-scales and V (t) is the (exponentially small) resid-
ual time-dependence which cannot be “rotated” away by
the Magnus expansion.

The concept of a “rotating frame” transformation in
the quantum case is completely analogous. In particular,
within the quantum setting, the dynamics are captured
by a unitary time evolution operator:

U(t1, t0) = T exp

(
−i
∫ t1

t0

H(t)dt

)
, (9)

where T represents time-ordering. In this case, K(t)
is a unitary transformation chosen such that the time-
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evolution operator U(t1, t0) decomposes as

U(t1, t0) = K−1(t1)e−i(t1−t0)HFK(t0) (10)

with K(mT ) = K(0) and HF suitably local. K(t) is re-
ferred to as the “micromotion,” since it contains the com-
ponents of the dynamics at harmonics of ωD/m, while
the “slow” part of the motion resides in HF (Buchleitner
et al., 2002; Bukov et al., 2015; Eckardt and Anisimovas,
2015; Rahav et al., 2003; Shirley, 1965; Zel’Dovich, 1973).
When restricting to the stroboscopic dynamics, the “Flo-
quet unitary” which implements a single discrete time
step is given by UF = U(T, 0) = K−1(T )e−iTHFK(0). To
ensure that the connection to the notation in Eq. 3 is
clear, we note that Floquet unitary, UF, then furnishes
the dynamical map Φ which acts on the quantum state
x = |ψ〉.

2. Time translation symmetry breaking as internal symmetry
breaking of the Floquet Hamiltonian

If the micromotion is periodic, K(T ) = K(0), there
can be no SτB, since the stroboscopic dynamics be-
come canonically equivalent to the un-driven dynamics
of HF , and SτB is forbidden in equilibrium (Bruno,
2013; Watanabe and Oshikawa, 2015). But in a time-
crystal, the frame rotates subharmonically (Fig. 3a),
i.e. K(mT ) = K(0), and the transformation X =
K(0)K−1(T ) is non-trivial. The transformation X then
plays a crucial role since it permutes through the m cy-
cles of the sub-harmonic response. In the specific case of
the shaken non-linear pendulum [c.f. Eq. (7)], for exam-
ple, X : (Q,P )→ (Q+ π, P ). We will expand upon this
discussion in the next subsection (Sec. III.B.4).

Under rather general conditions, the Magnus ex-
pansion can be constructed to ensure that X =
K(nT )K−1(nT+T ) is independent of n (Else et al., 2017,
2020a; Machado et al., 2020), which then ensures that
Xm = I. Substituting Eq. (10) into the time-translation
symmetry U(T, 0) = U(2T, T ), one finds that

X−1e−iTHFX = e−iTHF . (11)

In other words, X is an internal Zm symmetry of the Flo-
quet Hamiltonian (Buchleitner et al., 2002; Else et al.,
2017; Holthaus, 1995; von Keyserlingk et al., 2016).
While the emergence of an internal symmetry may seem
mysterious, it is really just a re-expression of the origi-
nal discrete time-translation symmetry in a frame which
is rotated by X at each step (Fig. 3a). In (Else et al.,
2020a), this intertwining is referred to as “twisted time-
translation”. However, the emergence of such a symme-
try was pointed out well before the recent interest in SτB;
see for example the extensive literature on non-spreading
wavepackets in periodically driven systems. (Buchleitner
et al., 2002; Holthaus, 1995; Holthaus and Flatté, 1994).

The existence of a Floquet Hamiltonian HF and an
emergent symmetry X immediately leads to the possi-
bility of SτB. In particular, suppose that the dynam-
ics of HF spontaneously break the X symmetry. Intu-
itively, this means that the state space breaks up into
m “superselection” sectors which are permuted by the
action of X but which are not connected by evolution
under HF . In the rotating frame, a trajectory thus
gets stuck within a sector, and mapping back to the lab
frame using K−1(t), one finds that the average behav-
ior will oscillate with period m. More rigorously, sym-
metry breaking implies that there are m different ini-
tial conditions yj = (Qj , Pj) which are related by the
symmetry, yj+1 = Xyj . The time-averaged behaviors of
these different initial conditions are distinct (in the ro-
tating frame), e.g., there are local observables O with
Ō(yj) ≡ 1

τ

∑τ
n=0O(yj(nT )) 6= Ō(yj+1). Transforming

back to the lab frame, xj(t) = K−1(t)yj(t) and substi-
tuting in the definitions, one immediately finds that the
definition of time-crystalline order [c.f. Eq. (3)] is satis-
fied.

One thus arrives at a correspondence between m-fold
SτB and the more familiar notion of Zm-spontaneous
symmetry breaking with respect to HF (in the rotat-
ing frame). This illustrates a general principle of all
closed Hamiltonian many-body time-crystals discovered
thus far (Fig. 1): In a Hamiltonian time-crystal, the dis-
crete time-translation symmetry of H(t) manifests as a
spontaneously broken internal Zm-symmetry of the Flo-
quet Hamiltonian HF (Else et al., 2017, 2020a; von Key-
serlingk et al., 2016). In a sense this bring us back full
circle to our starting inspiration, the Landau paradigm
(Sec. I), with the crucial replacement H → HF .

3. The spectral perspective

While the above formalism applies equally well in the
classical and quantum settings, in the quantum case an
equivalent definition can be given in terms of the spectral
properties of the Floquet operator UF alone (Buchleit-
ner et al., 2002; Holthaus, 1995; Sacha, 2015): a discrete
time crystal is a phase of matter in which the eigenstates
of UF are necessarily “cat states,” i.e. superpositions of
macroscopically-distinct states (Else et al., 2016). This is
a direct generalization of the statement that when a con-
ventional symmetry is spontaneously broken in an equi-
librium system, the low-energy eigenstates that trans-
form simply under the symmetry (e.g. eigenstates of the
center or Cartan sub-algebra (Fulton and Harris, 2013)
of the symmetry group) are necessarily cat states.

To unpack this definition we investigate the impli-
cations of Sec. III.B.2 for the “Floquet eigenstates”
UF |εF 〉 = e−iTεF |εF 〉. Here the “quasienergies” εF are
defined modulo the driving frequency εF ≡ εF + ωD. As
discussed, UF exhibits SτB when there is a decomposi-
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tion UF = Xe−iTHF for which HF spontaneously breaks
the symmetry [X,HF ] = 0. In the thermodynamic limit,
spontaneous symmetry breaking implies that the eigen-
states of HF come in degenerate pairs permuted by the
symmetry, X |↑〉 = |↓〉 (we focus on X2 = 1 for simplic-
ity) 1. However, in a finite system, the eigenstates of HF

must simultaneously diagonalize X, so they come in pairs
|±〉 = 1√

2
(|↑〉 ± |↓〉 with eigenvalues ε± = ε ± ∆ which

are split by an amount ∆ ∼ e−L/ξ which is exponentially
small in the system size L if the system is to exhbit true
SτB. The eigenstates of HF are thus “cat states,” since
the constituent |↑ / ↓〉 are macroscopically distinct. The
quasienergies of UF are then obtained by including their
eigenvalue under X: ε+F = ε+∆, and ε−F = ε−∆+ωD/2.
The spectrum of UF thus consists of pairs of cat states
with eigenvalues that differ by ωD/2 up to exponential
accuracy in L.

To relate this spectral property back to Eq. (3), note
that an initial state |x〉 will generically have amplitude
on both the |+〉 and |−〉 states of each pair. Due to
the eigenvalue pairing, the system will thus coherently
oscillate at frequency ωD/2, up to a dephasing time τ ∼
∆−1 which diverges exponentially in L.

4. Application to many-body parametric resonance

Let us now see how the formalism from
Secs. III.B.1, III.B.2 plays out for a single para-
metrically driven non-linear pendulum [c.f. Eq. 6].
Chirikov, 1979 and Zounes and Rand, 2002 showed
that HF (Q,P ) indeed exists within a finite volume of
phase space (calling it the “resonance Kamiltonian”),
and that courtesy of the KAM theorem, its existence
is stable to small perturbations. The contours of equal
“quasi-energy” HF (Q,P ) are shown in Fig. 3b. As
aforementioned, we see that HF exhibits a Z2-symmetry,
X : Q → Q + π, which exchanges two local minima
enclosed by a separatrix. The detailed construction of
K(t) is quite involved, but the approximate intuition is
as follows: One starts with the canonical transformation
in Eq. (7), and removes the residual time dependence
order-by-order through a sequence of transformations
whose convergence is guaranteed by the KAM theorem.
The two minima of HF , Q,P = (±π2 , P∗), are fixed
points of HF ; mapping back to the lab frame, one
obtains two precisely period doubled orbits related by

1 In conventional symmetry breaking, only eigenstates with energy
densities below the symmetry-breaking temperature Tc have this
structure. However, if many-body localization is able to exist in
Floquet Hamiltonians (Ponte et al., 2015; Sels and Polkovnikov,
2021; Šuntajs et al., 2020), it is believed that symmetry breaking
must manifest at all energy densities (De Roeck et al., 2016;
Moudgalya et al., 2020; Sahay et al., 2021).

time translation, K−1(t) : (±π2 , P∗)→ q∗(t± T/2), p∗(t).
Small deviations from the minima circulate around
quasi-energy contours, corresponding to slow oscillations
about the period doubled motion. Similar behavior
is seen in other periodically driven problems, such as
the kicked rotor model, whose stroboscopic motion Φ
reduces to Chirikov’s standard map,(Chirikov, 1979) or
a particle bouncing off an oscillating mirror(Holthaus,
1995; Holthaus and Flatté, 1994). In this 0D case, the
SτB arises because KAM stability allows the quasi-
energy to “split up” the {Q,P}-space into disconnected
basins (Fig. 3b), rather than because of a collective
phenomena. Furthermore in 0D there is long-range
order in time, but not in space, and as such the reader
may prefer not consider this case a time crystal. This
analysis also illustrates why the quantum version of
a parametrically-driven non-linear oscillator will not
feature infinitely long-lived SτB: while a quantum
Floquet Hamiltonian with a Z2 symmetry may exist, for
any finite barrier height there will be quantum tunneling
between the two minima at a rate ∼ 1/τ . This leads to a
unique Z2-symmetric steady state, and the subharmonic
response will have a correlation time of τ . (Buchleitner
et al., 2002; Holthaus, 1995; Holthaus and Flatté, 1994;
Sacha, 2015) analyze several examples of such quantum
subharmonic responses and provide estimates of the
tunneling rate, including a particle bouncing off an
oscillating mirror, a topic we will return to in Sec. IV.E.

The fly in the ointment comes when we attempt to
construct HF in the many-body setting. In particular,
let us consider an array of coupled pendula by adding a
nearest-neighbor interaction to Eq. 6,

H(q, p, t) =
∑

i

[
p2
i

2
+
ω2

0

2
(1 + δ cos(ωDt))q

2
i +

ε

4
q4
i

]

− g
∑

〈i,j〉
(qi − qj)2. (12)

Physically, the reader can think of this as treating
the pendulum as a macroscopic object composed of
atoms (i.e. the Frenkel-Kontorova model (Kontorova and
Frenkel, 1938)). It differs from the Faraday problem in
the details of the dispersion and non-linearity, but is oth-
erwise conceptually similar.

If the initial condition is uniform, qi, pi = q, p, the
problem exactly reduces to Eq. (6) which we now know
exhibits stable period doubling. But stability for a
finite-volume of initial conditions requires one to con-
sider initial conditions of the form, qi = q∗ + δqi, in
which the δqi are small but independent. Using the lan-
guage we introduced near Eq. 5, there is now weight
in the higher-k modes, qk, which are all-to-all coupled
through the

∑
i q

4
i non-linearity, so the center-of-mass

mode (i.e. k = 0) cannot be examined in isolation. While
one can attempt to employ the same time-dependent
canonical transformation K(t) site-by-site, for generic ini-
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tial conditions the coupling g(qi−qj)2 will not be exactly
time-independent after this transformation; thus, since
the transformed Hamiltonian H(Qi, Pi, t) remains time-
dependent we cannot appeal to the conservation of HF

to ensure stability. One can attempt to remedy this by
adjusting the canonical transformation via a perturba-
tive expansion in g, but there is a rather general reason
to expect this expansion will fail to converge in the ther-
modynamic limit: the ubiquity of ergodicity.

C. Ergodicity, destroyer of time-crystals

As we have discussed, Hamiltonian systems are distin-
guished from more general dynamical systems like cou-
pled map lattices by the existence of a phase-space vol-
ume element, dµ = dq ∧ dp, which is invariant under the
dynamics, i.e., the dynamics are “measure preserving.”
An invertible measure preserving system is said to be er-
godic if the only finite-volume subset A which is invariant
under the discrete-time update rule Φ (i.e. Φ(A) = A) is
the entire phase space. An equivalent statement is that
the orbit of any volume

⋃
m Φ(m)(A) eventually fills all

of phase space (Cornfeld et al., 2012). Full ergodicity
is incompatible with the existence of a time-independent
HF (Q,P ) because the conservation of the quasi-energy
HF partitions phase space into Φ-invariant quasi-energy
contours (though the dynamics may be ergodic within
each contour). A time-dependent many-body system
with a bounded state space is generically expected to
be ergodic in the thermodynamic limit. 2

Or, in the unbounded case: the generic fate of a driven,
many-body Hamiltonian system is to heat up. In an
ergodic system, Birkhoff’s Ergodic Theorem (Birkhoff,
1931; Cornfeld et al., 2012) equates a temporal average
of the sort defined in Eq. (3) with averages over the entire
phase-space. Thus SτB necessarily requires Φ(m) to be
non-ergodic: a time-crystal “remembers” its initial con-
dition for an infinitely long time because it is encoded in
the phase of the period-m oscillations. SτB is thereby
deeply connected with another profound phenomena: er-
godicity breaking.

When the interactions are weak, or the driving is
strong, the time-scale required to explore all of phase
space can be very large, so in practice, SτB may persist
out to very long times τ . This behavior is sometimes

2 The ideas emanating from Boltzmann’s “ergodic hypothesis”
postulate that time-independent many-body systems are gener-
ically ergodic within each conserved energy shell.(Von Plato,
1991) This hypothesis relates to the Floquet setting by con-
verting the time-dependent Hamiltonian H(t) into a time-
independent H = H(t) + πt, where (t, πt) are an additional
canonical pair living on the cylinder t ∼ t + T . If H is ergodic
on an energy shell, then the stroboscopic dynamics of H(t) are
fully ergodic.

referred to as slow Floquet heating. While energy is not
conserved, in systems described by an effective Floquet
Hamiltonian [Eq. (8)], the quasienergy 〈Heff〉 will change
slowly due to the residual drive V (t), eventually allowing
the system to explore its full phase space. We will return
to such anomalously long time scales when we discuss
“prethermal” time-crystals in Sec. IV.D.

The existence of such a long time scale is certainly one
ingredient in Faraday’s observation of period-doubling in
a system which is Hamiltonian. An additional role is
played by viscosity, which converts the high-k oscillations
of the surface into heat which is eventually dissipated
into the environment. When viscosity alone is added to
the equations of motion, the system is no longer measure
preserving and becomes analogous to the coupled map
lattices where true SτB is possible. However, this might
seem to be a contradiction, because viscosity is after all
a phenomenological treatment of microscopic degrees of
freedom which are themselves Hamiltonian! The key is
that at any finite temperature (energy density), a mi-
croscopic bath invariably generates noise in addition to
viscosity, as required by the fluctuation-dissipation the-
orem. Understanding the fate of SτB in the presence of
dissipation and noise is a particularly rich direction; we
will return to the possibility of such “open” time-crystals
in Sec. V.

To summarize, in dissipative dynamical systems like
the coupled map lattices, stable, many-body SτB is pos-
sible, and time-crystals in this context have a long his-
tory. But their realization in measure-preserving systems
which describe the universe at the microscopic level is far
more subtle. While stable SτB is possible in few-body
classical systems such as a parametric resonator (i.e. the
shaken pendulum example in Sec. III.B.4), their existence
in many-body systems requires, at minimum, a generic
mechanism for breaking ergodicity. In closed classical
systems, this is not thought to be possible except when
the system is fine tuned. This is where the magic of quan-
tum mechanics comes in, through the remarkable physics
of many-body localization (MBL). MBL allows for sta-
ble ergodicity breaking in the thermodynamic limit, and
where there is ergodicity breaking, there will be time-
crystals.

IV. CLOSED, PERIODICALLY-DRIVEN QUANTUM
SYSTEMS

A. Introduction to quantum Floquet phases

As noted above, ergodicity-breaking is necessary for
the stability of a time crystal. In fact, with the insights
of the previous section in hand, one can utilize almost any
generic, robust form of ergodicity-breaking to stabilize a
time crystal. However, this wasn’t immediately appar-
ent when many-body localization (Abanin et al., 2019;
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track the perturbation ε. This results in coherent beats and a splitting 
in the Fourier spectrum by 2ε (Fig. 2a). When we add disorder −e iH t3 3 
to the Floquet period, the single spins precess at different Larmor rates 
(Fig. 2e) and dephase with respect to each other (Fig. 2b). Only on 
adding Ising interactions −e iH t2 2, and hence many-body correlations, 
the spin synchronization is restored (Fig. 2c, f).

The key result is that with all of these elements, the temporal 
response is locked to twice the Floquet period, even in the face of 
perturbations to the drive in H1. This can be seen clearly as the split 
Fourier peaks from Fig. 2b merge into a single peak in Fig. 2c. This 
represents the ‘rigidity’ of the DTC10, which persists under moderate 
perturbation strengths. However, for large ε, the DTC phase disappears, 
as evinced by the decay of the subharmonic temporal correlations and 
the  suppression of the central peak heights, as shown in Fig. 2d. In the 
thermodynamic limit, these perturbations induce a phase transition 
from a DTC to a symmetry unbroken MBL phase7–10, which is rounded 
into a crossover in finite size systems.

The phase boundary is defined by the competition between the 
drive perturbation ε and strength of the interactions J0. We probe this 
boundary by measuring the variance of the subharmonic spectral peak 
height, computed over the 10 sites and averaged over 10 instances of 
disorder. Figure 3a shows the variances as a function of the perturba-
tion ε, for four different interaction strengths. As we increase ε, the 
variance growth distinctively captures the onset of the transition, with 
increased fluctuations signalling the crossing of the phase boundary. 
When the perturbations are too large, the crystal ‘melts’. The highest 
variances correspond to the crossover points. Figure 3b shows the fitted 
maxima of the variance curve, on top of numerically computed phase 
boundaries with experimental parameters (see Methods for the fitting 

procedure). The measurements are in agreement with the expected 
DTC to time crystal ‘melting’ boundary, which displays approximately 
linear dependence on the perturbation strength in the limit of small 
interactions10.

Figure 4 illustrates the amplitude of the subharmonic peak as a 
 function of ε, for the four different applied interaction strengths. In the 
presence of spin–spin interactions, the peak height falls off slowly with 
increasing ε. This slope is steeper as we turn down the interaction 
strength, in agreement with the trend of numerical simulations (Fig. 4 
inset). This is characteristic of the higher susceptibility to perturbations. 
This subharmonic peak height observable is expected to scale in a 
 similar way as the mutual information10, and can serve as an order 
parameter. This connection also provides insight into the Floquet 
many-body quantum dynamics, in particular the correlations or entan-
glement underlying the DTC phase. Indeed, the eigenstates of the entire 
Floquet unitary are expected to resemble GHZ (Greenberger–Horne–
Zeilinger) or spin-‘Schrödinger Cat’ states8. The initial product state in 
the experiment can be written as a superposition of two cat states: 

φ φ↓↓…↓〉 = 〉+ 〉+ −( )x
1
2

, where φ 〉= ↓↓…↓〉 ± ↑↑…↑〉± ( )x x
1
2

. 
These two states evolve at different rates corresponding to their respec-
tive quasi-energies, giving rise to the subharmonic periodic oscillations 
of physical observables. Such oscillations are expected to persist at 
increasingly long times as the system size increases7,8,10.

In summary, we present the experimental observation of discrete 
time translational symmetry breaking into a DTC. We measure 
 persistent oscillations and synchronizations of interacting spins in 
a chain and show that the discrete time crystal is rigid, or robust to 
perturbations in the drive. Our Floquet-MBL system with long-range 
interactions provides an ideal testbed for out-of-equilibrium quantum 
dynamics and the study of novel phases of matter that exist only in a 
Floquet setting7–10,25–28. Such phases can also exhibit topological order 
and can be used for various quantum information tasks, such as imple-
menting a robust quantum memory26,29,30.
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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of the DTC transition. a, Variances of the central peak height, computed 
over the 10 sites and averaged over 10 instances of disorder, for four 
different strengths of the long-range interaction term J0. The crossover 
from a symmetry unbroken state to a DTC is observed as a peak in 
the measured variance of the subharmonic system response. Dashed 
lines, numerical results, scaled vertically to fit the experimental data 
(see Methods for detailed analysis procedures and possible sources of 
decoherence). Experimental error bars, s.e.m.; a.u., arbitrary units.  
b, Crossover determined by a fit to the variance peak location (filled 
circles). Dashed line, numerically determined phase boundary with 
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indicates 90% confidence level of the DTC to symmetry unbroken phase 
boundary. Interaction strengths are normalized to be unitless, referencing 
to the fixed disorder accumulated phase π  (ref. 10).
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As shown in Fig. 2c, for θ =  1.034π , this lifetime increases with the 
interaction time (τ1) and eventually approaches the independently 
measured spin depolarization time ≈ µρT 60 s1  . This demonstrates that, 
for sufficiently long interaction times, the observed periodic order is 
limited by only coupling to the environment28. We associate this with 
DTC order9–12. Within the DTC phase, the lifetime is essentially  
independent of θ, indicating exceptional robustness (Fig. 2d).

We examined whether the observed periodic order could arise from 
an accidental XY sequence14 or from inhomogeneous dephasing  
resulting from the effective single-particle disorder in the dressed state 
basis. To avoid the former, τ1 is always chosen as an integer multiple of 
2π /Ωx. For the latter, although it has been shown that disorder  
alone is insufficient for stabilizing a DTC phase in the absence of 
 interactions9–12, we verified this experimentally; implementing a rotary 
echo sequence that reduces such dephasing, we find no change in the 
lifetime of the DTC order and an enhancement in the subharmonic 
response at late times (see Methods and Extended Data Fig. 1). In 
 principle, fast Markovian dephasing could also lead to apparent 
 periodic order at extremely small values of θ −  π  by eliminating 
 coherences along both ŷ and ẑ, leaving only x̂ polarization dynamics. 
In such a case, the decay rate of periodic order should increase 
 quadratically with θ −  π . However, this explanation is inconsistent with 
the observed robustness of the lifetime of DTC order for a range of 
θ −  π  values (Fig. 2d) and the independently measured dephasing rate  
(see Methods).

To experimentally determine the DTC phase boundary, we focus on 
the long-time behaviour of the polarization time traces (50 <  n ≤  100) 
and compute the ‘crystalline fraction’, which is defined as the  
ratio of the ν =  1/2 peak intensity to the total spectral power, 

ν ν= = / /∑νf S S( 1 2) ( )2 2  (see Methods). Figure 3a shows f as a 
 function of θ for two different interaction times. For weak interactions 
(τ1 =  92 ns), f has a maximum at θ =  π  and rapidly decreases as θ 
 deviates by approximately 0.02π . However, for stronger interactions 
(τ1 =  275 ns), we observe a robust DTC phase, which manifests as a 
large crystalline fraction over a wide range 0.86π  <  θ <  1.13π . We 
 associate a phenomenological phase boundary with f =  10% and 
observe that the boundary enlarges with τ1, eventually saturating at 
τ1 ≈  400 ns (Fig. 3b). The phase boundary can also be visualized as the 
vanishing of the ν =  1/2 peak and the simultaneous emergence of two 
incommensurate peaks (Fig. 3c).

The rigidity of the ν =  1/2 peak can be qualitatively understood by 
constructing effective eigenstates of 2T Floquet cycles, including spin–
spin interaction. We approximate the unitary time evolution over a 
single period as = θ τ−U R eT y

iHeff 1 and solve for a self-consistent evolution 
using product states as a variational ansatz. To this end, we consider 
the situation in which a typical spin returns to its initial state after 2T, 
ψ ψ ψ〉∝ 〉= 〉θ φ θ φ− − −T(0) (2 ) e e e e (0)i S i S i S i Sy

i
x y

i
x , and self-consistently 

determine the interaction-induced rotation angle φ τ≡∑ /J r Si j ij ij j
x3

1  
τ ψ ψ≈J S(0) (0)i

x
1 , where ψ 〉(0)  is the initial spin state and 
=∑ /J J ri j ij ij

3  (see Methods). We expect φi to change sign after each 
Floquet cycle, because the average polarization ψ ψ〈 〉S(0) (0)x  should 
be flipped. Intuitively, the self-consistent solution can be visualized as 
a closed path on the Bloch sphere (Fig. 3d), where each of the four arcs 
corresponds to one portion of the 2T-periodic evolution. When θ =  π, 
such a solution always exists. More surprisingly, even for θ ≠  π  a closed 
path can still be found for sufficiently strong interactions, 
τ θ> −πJ 2i i1 ; in such cases, the deviation in θ away from π  is com-

pensated by the dipolar interactions (Fig. 3d). We obtain a theoretical 
phase boundary by numerically averaging the self-consistent solution 
over both disordered spin positions and local fields. The resultant 
phase boundary is in reasonable agreement with the experimental 
observations for short to moderate interaction times τ1, but overesti-
mates the boundary at large τ1 (dashed line, Fig. 3b; see Methods).

Finally, Fig. 4 demonstrates that the discrete time-translation 
 symmetry can be further broken down to Z3 (refs 10–12, 29), resulting 

in DTC order at ν =  1/3. Here, we utilize all three spin states of the 
nitrogen–vacancy centre. We begin with all of the spins polarized in 
the = 〉m 0s  state and evolve under the bare dipolar Hamiltonian for a 
duration τ1 (see Methods). Next, we apply two resonant microwave 
pulses, each of duration τ2, first on the transition = 〉→ =− 〉m m0 1s s  
and then on the transition = 〉→ =+ 〉m m0 1s s . In combination, this 
sequence of operations defines a single Floquet cycle with period 
T =  τ1 +  2τ2. As before, we measure the polarization P(nT), which is 
defined as the population difference between the = 〉m 0s  and  
=− 〉m 1s  states (Fig. 4a). When each of the applied microwaves cor-

responds to an ideal π  pulse, this sequence realizes a cyclic transition 
with Z3 symmetry (Fig. 4b), which is explicitly broken by any change 
in the pulse duration. The Fourier spectra of P(nT) for various pulse 
durations and for two different values of τ1 are shown in Fig. 4c. With 
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Figure 3 | Phase diagram and transition. a, b, Crystalline fraction f (a) 
and its associated phase diagram (b) as a function of θ and τ1 obtained 
from a Fourier transform at late times (50 <  n ≤  100). The red diamonds 
mark the phenomenological phase boundary, identified as a 10% 
crystalline fraction; horizontal error bars denote the statistical error (s.d.) 
from a super-Gaussian fit. In a, vertical error bars of data points (circles) 
are limited by the noise floor (see Methods) and horizontal error bars 
indicate the pulse uncertainty of 1%. Grey lines denote the fit to extract the 
phase boundary (see Methods). In b, the colours of the data points (circles) 
represent the extracted crystalline fraction at the associated parameter set. 
The dashed line corresponds to a disorder-averaged theoretical prediction 
for the phase boundary. Asymmetry in the boundary arises from an 
asymmetric distribution of rotation angles (see Methods). c, Evolution of 
the Fourier spectra as a function of θ for two different interaction times: 
τ1 =  385 ns (top) and τ1 =  92 ns (bottom). d, Bloch sphere indicating a 
single spin trajectory of the 2T-periodic evolution under the long-range 
dipolar Hamiltonian (red) and global rotation (blue).
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FIG. 4 (a) Signatures of time crystalline order were observed in a one dimensional chain of Ytterbium ions. In this system,
the effective spin degree of freedom is encoded in two hyperfine “clock” states of a 171Yb+ ion. (b) By varying the interaction
strength (x-axis), which is effectively parameterized by an interaction time-scale, and the strength of the perturbation on the
π-pulse (y-axis), (Zhang et al., 2017) were able to observe the system’s behavior change from a discrete time crystal phase to
a time-translation symmetry unbroken phase. Figure adapted from Fig. 3(b) of (Zhang et al., 2017). (c) (Choi et al., 2017a)
utilized a diamond sample containing a high density of Nitrogen-Vacancy color centers (∼ 15 ppm) (Choi et al., 2020). In this
system, the spin consists of two ms-sublevels and NV centers interact with one another via magnetic dipole-dipole interactions.
The interplay between the long-ranged dipolar interaction and the three dimensional nature of the sample is conjectured to
lead to critically slow thermalization (Ho et al., 2017; Kucsko et al., 2018), during which discrete time crystalline order can be
observed. (d) Experimentally measured phase boundary (red dashed line through diamond data points added as a guide) of
the critical discrete time crystal as a function of the effective interaction strength and the π-pulse imperfection. Figure adapted
from Fig. 3(b) of (Choi et al., 2017a).

Nandkishore and Huse, 2015) was originally discovered.

Many-body localization occurs in 1D and, possibly, 2D
systems with strong quenched disorder and short-ranged
interactions (Choi et al., 2016; Smith et al., 2016). It rep-
resents a failure of the eigenstate thermalization hypoth-
esis (Deutsch, 1991; Srednicki, 1994) that occurs when
disorder prevents equilibration by localizing the degrees
of freedom of a system. Locally-injected energy can-
not spread throughout the system (Abanin et al., 2019;
Abanin and Papić, 2017; Nandkishore and Huse, 2015).
MBL was originally formulated as a property of highly-
disordered time-independent Hamiltonians Ĥ in which
local observables fail to relax to their thermal average

with respect to e−βĤ and, instead, the long-time behav-
ior depends on the details of the initial state, a clear
example of ergodicity breaking. It was subsequently re-
alized that MBL can also occur in 1D periodically-driven
systems with strong disorder for appropriate driving pa-
rameters (Abanin et al., 2016; Lazarides et al., 2015;
Ponte et al., 2015). In such Floquet-MBL systems, en-
ergy absorbed during one part of the drive cycle must
be returned before its completion (Bordia et al., 2017;
D’Alessio and Polkovnikov, 2013; Ponte et al., 2015).
Consequently, the energy spreading and thermalization
necessary for drive-induced Floquet heating cannot oc-
cur (Sec. III.C).

In the meantime, interest in Floquet systems had been
re-energized by seminal work demonstrating that pe-

riodic driving can induce topological properties in an
otherwise nominally trivial system (Inoue and Tanaka,
2010; Jiang et al., 2011; von Keyserlingk and Sondhi,
2016a,b; Lindner et al., 2011; Potirniche et al., 2017;
Potter et al., 2016; Roy and Harper, 2016, 2017;
Thakurathi et al., 2013; Wang et al., 2013). In par-
ticular, (Jiang et al., 2011) and (Thakurathi et al.,
2013) considered periodically-driven versions of a Ma-
jorana chain in which the time-dependent Hamilto-
nian toggles between topological superconducting and
trivial insulating states. These free fermion mod-
els avoid Floquet heating by virtue of their inte-
grability, which does not survive generic perturba-
tions involving interactions. For such drives, the Flo-
quet operator takes on a particularly simple form,

UF = exp
[
ic
∑
j iγ

A
j γ

B
j

]
exp
[
iJ
∑
j iγ

B
j γ

B
j+1

]
(Prosen,

1998; Thakurathi et al., 2013). For c near π/2, there
are “Floquet Majorana fermions” at quasienergy π. In
other words, there are locally-indistinguishable states of
even/odd fermion parity, associated with edge modes. In
an undriven system, Majorana edge modes would be de-
generate (i.e. they would be zero modes), but the peri-
odic driving splits their Floquet eigenvalues by π.

This property of the spectrum does not imply subhar-
monic response of the system for generic initial conditions
(and, moreover, it is not stable to interactions). However,
a Jordan-Wigner transformation of the driven Majorana
chain yields a driven Ising model that exhibits subhar-



13

monic oscillations of the Ising order parameter; moreover,
by adding strong disorder leading to MBL, the system
could be stabilized against interactions (Khemani et al.,
2016). Initially it was not believed that the subharmonic
response of the resulting “π spin glass” could survive in
the absence of the Ising symmetry, implying that, in anal-
ogy to the discussions of the XY magnet in Sec. II.A, a
time crystal stable against generic perturbations did not
exist (Khemani et al., 2016).

This sentiment was overturned in (Else et al., 2016),
which showed that discrete time crystals are a stable
phase of matter in Floquet-MBL systems with only time
translation symmetry. In particular, a discrete time crys-
tal in a closed system must satisfy Eq. 3 in the absence
of a bath and in a manner that is stable against arbitrary
weak perturbations respecting time translation symme-
try. Other symmetries may or may not be present, but
Eq. 3 should hold even when those symmetries are vio-
lated. These developments led rapidly to the first phase
diagram for a time crystal and to proposals describing
how to create and measure discrete time crystals in exper-
iments (Yao et al., 2017), culminating in the first obser-
vations of time-crystalline behavior (Fig. 4) (Choi et al.,
2017a; Zhang et al., 2017).

Thus far, the above discussions have focused on many-
body localization as a possible strategy for stabilizing
discrete time crystals. One of the caveats of using MBL
is that the approach depends on the robustness of many-
body localization itself. While MBL has purportedly
been proven to exist in certain undriven, one-dimensional
spin chain models with random local interactions (Imbrie,
2016), its stability in d > 1 and in long-range interacting
systems remains an open question (De Roeck and Hu-
veneers, 2017; Khemani et al., 2021; Luitz et al., 2017;
Thiery et al., 2018; Yao et al., 2014, 2021); to date, there
is no mathematical proof for the stability of many-body
localized SτB in a Floquet system in any dimension. An
alternate strategy for stabilizing DTC order, termed Flo-
quet prethermalization, can occur in any dimension and
in the presence of long-range interactions, so long as the
driving frequency, ωD, is sufficiently high. To this end,
in the remainder of this section focused on closed sys-
tems (Fig. 1), we will focus in subsection IV.B on MBL
discrete time crystals in 1D and in subsection IV.D on
prethermal discrete time crystals in arbitrary dimension
and with power-law interactions.

B. Many-body localized discrete time crystal

Our focus in this subsection will be on highlighting
the key features of time crystalline order in Floquet MBL
systems, by describing recent observations from three dis-
tinct experimental platforms: trapped atomic ions (Yao
et al., 2017; Zhang et al., 2017), spins in solid state
materials (Abobeih et al., 2019; Randall et al., 2021),

and superconducting qubits (Arute et al., 2019; Frey and
Rachel, 2022; Mi et al., 2021).

Before describing the experiments, we begin by intro-
ducing a standard model for a period-doubled discrete
time crystal in a spin-1/2 chain, and discuss several lim-
its of this model. While the experiments will not im-
plement this specific Floquet unitary, the spirit of their
Floquet dynamics will be captured by this example. In
particular, consider Floquet time evolution (with a pe-
riod, T0 = t1 + t2) governed by alternating between two
time-independent Hamiltonians:

H(t) =

{
H1 , for time t1

H2 , for time t2.
(13)

Let us take H1, H2 as given by:

H1 = −
∑

〈i,j〉
Jijσ

z
i σ

z
j −

∑

i

(hzi σ
z
i + hyi σ

y
i + hxi σ

x
i )

H2 = g
∑

i

σxi . (14)

with ~σ being Pauli spin operators and Jij , h
x
i , h

y
i , h

z
i

sufficiently disordered to ensure that the spin chain is
many-body localized. The simplest way to see the (triv-
ial) emergence of a period-doubled (i.e. ν = 1/2 sub-
harmonic) response is to consider the decoupled limit
(Jij = 0) with only a longitudinal field, hz, along ẑ. For
any individual spin initially along the ẑ-axis, the spin will
Larmor precess around the x̂-field during the second por-
tion, H2, of the Floquet evolution. When timed appro-
priately, t2 = π/g, this evolution implements a so-called
π-pulse, which flips the spin, and causes a period-doubled
response. However, much like our discussion of the map
Φ(x) = −x in Section II, this period doubling is not
rigid to perturbations and not indicative of a many-body
phase. In particular, any imperfections in the timing of
the π-pulse will immediately lead to the breakdown of the
period-doubled response (Yao et al., 2017). However, by
turning on the Ising interactions between the spins, in
conjunction with the disorder which leads to MBL, the
system becomes robust to small imperfections and the
subharmonic response is rigid to arbitrary, weak pertur-
bations of both the initial state and the Hamiltonian (so
long as these perturbations respect the period of the Flo-
quet evolution). We note that this last parenthetical dis-
tinguishes time crystalline order in closed systems from
time crystalline order in open systems, where perturba-
tions that explicitly break the discrete time translation
symmetry of the dynamics can still be allowed (see Sec-
tion V.E).

C. Experimental signatures of disordered time crystals

1. Trapped ion spin chains

Zhang et al., 2017 observed and characterized time
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crystalline behavior in a spin chain (Fig. 4a) composed
of trapped atomic ions. In the experiment, each ion
acts as an effective spin, and interactions are controlled
through external, optical spin-dependent forces (Monroe
et al., 2021). The system is periodically driven by suc-
cessively applying three time-independent Hamiltonians,
corresponding to a global drive, interactions, and disor-
der (Smith et al., 2016). The disorder is programmed by
individually addressing each spin with a tunable laser
beam. The ion chain was composed of a relatively
small number of effective spins (between L = 10 − 14)
and the time crystalline response exhibited some sen-
sitivity to the initial conditions (Khemani et al., 2019;
Zhang et al., 2017), suggesting that long-range interac-
tions could be leading to a time crystalline response stabi-
lized by prethermalization (Sec. IV.D) rather than local-
ization. The experiment was able to observe a cross-over
between the DTC regime and the symmetry unbroken
phase (Fig. 4b). To do so, Zhang et al., 2017 measured
the Fourier spectrum of each individual spin and stud-
ied the variance of the amplitude of the ν = 1/2 subhar-
monic response as a function of the π-pulse imperfection,
ε. By increasing the strength of the interactions between
the ion spins, they demonstrated that the location of the
variance peak shifted toward larger values of ε, consis-
tent with the expectation that many-body interactions
are essential for stabilizing time crystalline order.

2. Spins in condensed matter

Signatures of time crystalline order in solid-state sys-
tems have been observed in both disordered Nitrogen-
Vacancy (NV) ensembles (Choi et al., 2017a; Ho et al.,
2017) and NMR systems (Luitz et al., 2020; Pal et al.,
2018; Rovny et al., 2018a,b). In the context of NV cen-
ters (Fig. 4c,d), despite the presence of strong disorder,
it is known that dipolar interactions in three-dimensions
cannot lead to localization; however, the resulting time-
crystalline order can exhibit an anomalously long life-
time owing to critically slow thermalization (Ho et al.,
2017). One of the puzzles arising from NMR experiments
on phosphorus nuclear spins in ammonium dihydrogen
phosphate was the observation of period doubling de-
spite the lack of disorder and a high temperature initial
state; these observations were ultimately understood as
consequences of an approximate long-lived U(1) conser-
vation law (Luitz et al., 2020), which leads to effective
prethermal time crystalline order (see Sec. IV.D).

Recent work in the solid-state has focused on pushing
toward a realization of time crystalline order in a regime
compatible with many-body localization (Randall et al.,
2021). As depicted in Fig. 5(a), Randall et al., 2021 uti-
lize a platform consisting of a precisely characterized ar-
ray of 27 nuclear spins surrounding a single NV center in
diamond (Abobeih et al., 2019). Owing to differences in

the hyperfine interaction strengths, each nuclear spin is
individually addressable (for both initialization and read
out [Fig. 5(b)]). In order to work with an effective one-
dimensional geometry (thus avoiding issues regarding the
stability of MBL in d > 1), (Randall et al., 2021) select a
specific 9-spin subset of the 27 nuclear spins. By prepar-
ing a variety of product initial states, (Randall et al.,
2021) demonstrates that dipolar interactions between the
nuclear spins lead to robust period doubling for nearly
∼ 103 Floquet cycles (note that each Floquet cycle lasts
10 ms), independent of the initial state [Fig. 5(c)]. More-
over, they show that local thermalization occurs within
∼ 10 Floquet cycles, demonstrating that the observed
time crystalline order is not a result of slow thermaliza-
tion.

3. Superconducting transmon qubits

Signatures of time crystalline order have also re-
cently been observed in three experiments utilizing su-
perconducting transmon qubits (Frey and Rachel, 2022;
Mi et al., 2021; Xu et al., 2021). Working with
Google’s ‘Sycamore’ processor, (Mi et al., 2021) employ a
quantum-circuit-based approach to demonstrating MBL
time crystalline order (Ippoliti et al., 2020). In par-
ticular, in order to work with a one dimensional sys-
tem, (Mi et al., 2021) isolate a nearest-neighbor cou-
pled chain of L = 20 qubits from the two-dimensional
array (Fig. 5d); an analogous strategy is taken by (Frey
and Rachel, 2022), who isolate an L = 57 qubit chain
on IBM’s quantum processors: ibmq manhattan and
ibmq brooklyn. Both (Mi et al., 2021) and (Frey and
Rachel, 2022) utilize one and two-qubit gates in order
to implement a digital Floquet sequence. For the exper-
iment performed on the Sycamore processor, the specific
Floquet sequence was given by (Fig. 5e),

UF = e−
i
2

∑
i hiσ

z
i e−

i
4

∑
i Jiσ

z
i σ
z
i+1e−

i
2πg

∑
i σ

x
i , (15)

consisting of random longitudinal fields, disordered
nearest-neighbor Ising interactions, and approximate π-
pulses. Deviations from the ideal π-pulse limit (i.e. g = 1
in Eq. 15) are used to control the transition between
the discrete time crystal phase (i.e. g = 0.97 in Fig. 5f)
and the trivial thermal phase (i.e. g = 0.6 in Fig. 5f).
To demonstrate that the observed subharmonic response
is not affected by the choice of initial states, both (Mi
et al., 2021) and (Frey and Rachel, 2022) probe the Flo-
quet dynamics starting from random initial bit-strings.
In addition, (Mi et al., 2021) also experimentally imple-
ment a finite-size-scaling analysis by varying the length of
their one dimensional chain between contiguous subsets
of 8, 12, and 16 transmon qubits; this reveals a tran-
sition between the MBL discrete time crystal and the
thermal phase at a critical value of the π-pulse imperfec-
tions, 0.83 & gc . 0.88. Finally, in order to characterize
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Figure 1: Programmable spin-based quantum simulator. (A) We program an effective 1D
chain of 9 spins in an interacting cluster of 27 13C nuclear spins (orange) close to a single NV
center. Connections indicate nuclear-nuclear couplings |Jjk| > 1.5 Hz, and blue (red) lines
represent negative (positive) nearest-neighbor couplings within the chain (24). Magnetic field:
Bz ⇠ 403 G. (B) Experimental sequence: The spins are initialized by applying the PulsePol
sequence (29), followed by rotations of the form R(#,') = exp

⇥
�i#

2
(sin(')�x + cos(')�y)

⇤
.

After evolution under the Floquet sequence UF = [Uint(⌧) · Ux(✓) · Uint(⌧)]N , the spins are
sequentially read out through the NV electronic spin using electron-nuclear and nuclear-nuclear
two-qubit gates (see text). Colored boxes with ‘I’ denote re-initialization into the given state.
(C) Coupling matrix for the 9-spin chain. (D) Average coupling magnitude as a function of site
distance across the chain. Orange line: least-squares fit to a power-law function J0/|j � k|↵,
giving J0 = 6.7(1) Hz and ↵ = 2.5(1). (E) Measured expectation values h�z

j i after initializing
the state |"""""""""i. The data is corrected for measurement errors (25).
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Figure 4: Observation of the DTC response for generic initial states. (A) Individual spin ex-
pectation values h�z

j i as a function of N after initializing the spins in the Néel state |"#"#"#"#"i
and applying UF for ✓ = 0.95⇡ and ⌧ = 5 ms. (B) Averaged two-point correlation function �,
corresponding to the data in (A). The DTC response persists to similar high N as for the po-
larized state (Fig. 3B). (C) Fourier transform of the data in (B), showing the period-doubled
response. (D) Average correlation for even (upper curve) and odd (lower curve) N for 9 ran-
domly chosen initial states, plus the polarized state and the Néel state (indicated in (E)) with
✓ = 0.95⇡ and ⌧ = 5 ms. Each data point is the average over even/odd integers in the range
N to N + 10. Three of the states are measured up to N = 800, the others to N = 300. The
dashed black line is a fit of |�|, averaged over the three states measured to N = 800, using a
phenomenological function f(N) = Ae�N/N1/e , giving A = 0.76(1) and N1/e = 472(17). (E)
Calculated energy density E for all possible states of the form

NL
j |mji, mj 2 {", #} (black

lines). The initial states measured in (D) are indicated by the corresponding colors.
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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FIG. 2. Observing a many-body localized discrete time-crystal. a, Schematic of the experimental circuit composed
of t identical cycles of the unitary ÛF. The local polarization of each qubit, hẐ(t)i, is measured at the end. In the following
panels, we investigate a number of disorder instances each with a di↵erent random bit-string initial state. b, Experimental
values of hẐ(t)i measured at qubit 11. Data are shown for five representative circuit instances deep in the thermal (g = 0.60)

and MBL-DTC (g = 0.97) phases. c, Autocorrelator A = hẐ(0)Ẑ(t)i at qubit 11, obtained from averaging the results of 36
circuit instances. For the same circuit instances, the average autocorrelator at the output of ÛECHO = (Û†

F)
t
Û

t
F is also measured

and its square root, A0, is shown alongside A for comparison. d, Top panels: The ratio A/A0 obtained from panel c. Bottom
panels: A/A0 as a function of t and qubit location.

are varied in order to demonstrate stability of the phase
in an extended parameter region and across disorder real-
izations; The limitations of (ii) finite size and (iii) finite
coherence time are addressed, respectively, by varying
the number of qubits in the system and by separating
e↵ects of extrinsic decoherence from intrinsic thermaliza-
tion; (iv) The existence of eigenstate order across the en-
tire spectrum is established. The flexibility of our quan-
tum processor, combined with the scalable experimental
protocols devised in the following, allows us to fulfill these
criteria and observe time-crystalline eigenstate order.
The experiment is conducted on an open-ended, linear

chain of L = 20 superconducting transmon qubits (Q1

through Q20) that are isolated from a two-dimensional
grid. We drive the qubits via a time-periodic (Floquet)
circuit Û t
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where X̂i and Ẑi are Pauli operators. Each �i (hi) is
sampled randomly from [�1.5⇡,�0.5⇡] ([�⇡,⇡]) for ev-
ery realization of the circuit. Overall, ÛF implements an
interacting Ising model that is periodically “kicked” by a
transverse pulse that rotates all qubits by ⇡g about the x
axis. In this work, g is tuned within the range [0.5, 1.0] to

explore the DTC phase and its transition into a thermal
phase. At g = 1, the model implements a ⇡ pulse which
exactly flips all qubits (in the z basis) and returns them
to the initial state over two periods. A key signature of
the DTC is the presence of robust period doubling, i.e.
extending over a finite extent in parameter space, even
as g is tuned away from 1. Strong Ising interactions,
which produce long-range spatial order, are essential for
this robustness7,10. This is in contrast to a system of
decoupled qubits (� = 0) which rotate by a continuously
varying angle ⇡g every period instead of being locked
at period doubling. Prior theoretical work32 has shown
that model (1) is expected to be in an MBL DTC phase
in the range g > gc, and transition to a thermal phase at
a critical value gc ⇡ 0.84.

Achieving MBL in this model for g ⇠ 1 requires disor-
der in the two-qubit interaction, �i, which is even under
Ising symmetry12,32,

Q
i
X̂i, a condition that was not met

by some past DTC experiments26,27. Ising-odd terms,
i.e. hi, are approximately dynamically decoupled by the
x pulses over two periods, thereby lowering their e↵ective
disorder strength and hindering localization (in the ab-
sence of independent disorder in the �i). Utilizing newly
developed CPHASE gates (see SM for details) with con-
tinuously tunable conditional phases allows us to engi-
neer strong disorder in �i to fulfill this key requirement.
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FIG. 2. Observing a many-body localized discrete time-crystal. a, Schematic of the experimental circuit composed
of t identical cycles of the unitary ÛF. The local polarization of each qubit, hẐ(t)i, is measured at the end. In the following
panels, we investigate a number of disorder instances each with a di↵erent random bit-string initial state. b, Experimental
values of hẐ(t)i measured at qubit 11. Data are shown for five representative circuit instances deep in the thermal (g = 0.60)

and MBL-DTC (g = 0.97) phases. c, Autocorrelator A = hẐ(0)Ẑ(t)i at qubit 11, obtained from averaging the results of 36
circuit instances. For the same circuit instances, the average autocorrelator at the output of ÛECHO = (Û†

F)
t
Û

t
F is also measured

and its square root, A0, is shown alongside A for comparison. d, Top panels: The ratio A/A0 obtained from panel c. Bottom
panels: A/A0 as a function of t and qubit location.
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protocols devised in the following, allows us to fulfill these
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FIG. 5 (a) Schematic image depicting the 9 spin subset of the 27 pre-characterized nuclear spins surrounding the single NV
center. (b) Each nuclear spin can be individually initialized and read-out via coupling to the NV center. The Floquet sequence
consists of Uint, which includes a disordered long-ranged Ising interaction and a disordered longitudinal field followed by an
approximate π-pulse, Rx(θ). The disorder is naturally inherited from the random positioning of the nuclear spins within the
diamond lattice. (c) In the MBL discrete time crystal phase, the system exhibits robust subharmonic oscillations lasting ∼ 103

Floquet cycles. The different colors are associated with different initial states, which are characterized by their quasienergy
in the right panel. Crucially, the time crystalline behavior is independent of the initial state, as expected for an MBL time
crystal. (d) Schematic depicting the 53 transmon qubit Sycamore chip. (Mi et al., 2021) isolate one dimensional chains of
L = 8, 12, 16, 20 qubits from this two-dimensional grid. (e) A digital Floquet sequence consisting of random longitudinal fields,
disordered nearest-neighbor Ising interactions, and approximate π-pulses are applied to random “bit-string” initial states. (f)
In the thermal phase (left panel), the disorder averaged autocorrelation function quickly decays to zero. In the MBL time
crystal phase, the same correlation function exhibits subharmonic oscillations lasting ∼ 102 Floquet cycles. (Mi et al., 2021)
also implement a benchmarking “echo” sequence, Uecho, which demonstrates that the time crystal’s lifetime is consistent with
being limited by experimental imperfections and decoherence. Figures a-c are adapted from (Randall et al., 2021), while figures
d-f are adapted from (Arute et al., 2019) and (Mi et al., 2021).

the intrinsic gate errors and decoherence of their sys-
tem (with T1, T2 ∼ 100µs (Arute et al., 2019; Kjaergaard
et al., 2020)), (Mi et al., 2021) implement a benchmark-
ing “echo” Floquet sequence, which reverses the digital
time evolution after a set number of Floquet cycles. Di-
viding by this benchmarking sequence leads to signatures
of time crystalline order that exhibit minimal effective
decay.

D. Prethermal discrete time crystal

1. Floquet prethermalization

While many-body localization provides a quantum ap-
proach to realizing a time crystal with an infinite lifetime
in the thermodynamic limit, τ ∼ eL →∞, in this section,
we focus on an alternate, disorder-free strategy, dubbed
Floquet prethermalization (Fig. 1). Here, the lifetime of
the time crystalline order does not scale with the system
size, but can be exponentially long in a particular control
parameter, namely, the ratio of the driving frequency to
local energy scales, J , within the system: τ ∼ eωD/J .

In static systems, the concept of prethermalization is

a powerful framework for understanding the thermaliza-
tion of systems with disparate energy scales—the dy-
namics (and thus thermalization) of “fast moving” de-
grees of freedom are governed by an effective Hamilto-
nian where the slow degrees of freedom remain basically
frozen (Berges et al., 2004; Gring et al., 2012; Kagan and
Klinger, 1974). In driven Floquet systems, the presence
of two distinct energy scales is particularly natural, since
the frequency of the drive and the interaction energy-
scales within the Hamiltonian are independent. Indeed,
it has recently been established that Floquet prether-
malization is a generic feature of driven systems in the
high-frequency regime (Abanin et al., 2017a,b, 2015; Else
et al., 2017; Kuwahara et al., 2016; Mori et al., 2016; Wei-
dinger and Knap, 2017). From the perspective of heating,
as discussed in Sec. IV.A, one of the central consequences
of Floquet prethermalization is that the frequency of the
drive exponentially controls the heating time scale, t∗
(Abanin et al., 2015; Machado et al., 2019; Mori et al.,
2016). The physical intuition for this exponential scal-
ing is as follow: at large frequencies, ωD � J (where J
is the local energy scale of the many-body system), the
system must undergo ∼ ωD/J local rearrangements in
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symmetry generated by X. This Ising symmetry corre-
sponds to an approximate emergent symmetry UXU† of Uf
(the term emergent is used for the reason stated above, and
approximate because it is an exact symmetry of ~Uf , not Uf ,
and therefore is approximately conserved for times t ≪ t!).
Suppose that D spontaneously breaks the symmetry X
below some finite critical temperature τc. For example,
working in two dimensions or higher, we could have
D ¼ −J

P
hi;jiσ

z
iσ

z
j plus additional smaller terms of strength

which break integrability. We are interested in the regime
where the heating time t! ≫ tpre−thermal, where tpre−thermal is
the thermalization time of D.
Now, consider the time evolution jψðtÞi, starting from a

given short-range correlated state jψð0Þi. We also define
the rotated states j ~ψðtÞi ¼ UjψðtÞi. At stroboscopic times
t ¼ nT, we find that j ~ψðnTÞi ¼ ðXe−iDTÞnj ~ψð0Þi. Since
ðXe−iDTÞ2 ¼ e−2iDT , we see that at even multiples of
the period, t ¼ 2nT, the time evolution of j ~ψðtÞi is
described by the time-independent Hamiltonian D. Thus,
we expect that, after the time tpre−thermal, the system appears
to be in a thermal state of D at temperature τ. Thus,
j ~ψð2nTÞih ~ψð2nTÞj ≈ ~ρ, where ~ρ is a thermal density matrix
for D at some temperature τ, and the approximate equality
means that the expectation values of local observables are
approximately the same. Note that for τ < τc, the Ising
symmetry of D is spontaneously broken and ~ρ must either
select a nonzero value for the order parameterM2n ¼ hσzi i~ρ
or have long-range correlations. The latter case is impos-
sible given our initial state, as long-range correlations
cannot be generated in finite time. Then, at odd times
t ¼ ð2nþ 1ÞT, we have

j ~ψ(ð2nþ 1ÞT)ih ~ψ(ð2nþ 1ÞT)j ≈ ðXe−iDTÞ~ρðeiDTXÞ
ð18Þ

¼ X ~ρX ð19Þ

(since ~ρ commutes with D). Therefore, at odd times, the
order parameter

M2nþ1 ¼ hσzi iX ~ρX ¼ −M2n: ð20Þ

Thus, the state of the system at odd times is different from
the state at even times, and time translation by T is
spontaneously broken to time translation by 2T.
The above analysis took place in the frame rotated

by U. However, we can also consider the expectation
values of operators in the original frame, for example,
hψðtÞjσzi jψðtÞi ¼ h ~ψðtÞjU†σziUj ~ψðtÞi. The rotation U is
close to the identity in the regime where the heating time
is large, so σzi has large overlap with U†σziU and therefore
will display fractional frequency oscillations. [Specifically,
it follows from the construction of U that U ¼ 1þOðλTÞ,
and λT ≪ 1 is the regime where the heating time is large.]
We recall that the conditions for fractional frequency
oscillations in the prethermalized regime are that (a) D
must spontaneously break the Ising symmetry X up to a
finite critical temperature τc, and (b) the energy density
with respect to D of Ujψð0Þi must correspond to a
temperature τ < τc. In Fig. 1, we show the expected
behavior at low temperatures τ and contrast it with the
expected behavior in a system which is not a time crystal in
the prethermal regime.

B. Example: Periodically driven Ising spins

Let us now consider a concrete model that realizes the
behavior described above. We consider an Ising ferromag-
net, with a longitudinal field applied to break the Ising
symmetry explicitly, and driven at high frequency by a very
strong transverse field. Thus, we take

HðtÞ ¼ H0ðtÞ þ V; ð21Þ
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(a) Time crystal
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Prethermal Long
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FIG. 1. The expected time dependence of hσzi i at stroboscopic times, starting from a low-temperature state with respect to UDU† (for
example, for a state with all spins polarized in the z direction.). Panel (a) shows the prethermal time-crystal phase, and panel (b) shows
the non-time-crystal prethermal phase.
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Time crystal orderNon time crystal

FIG. 6 Schematic depicting prethermal time crystalline order
identified via the stroboscopic behavior of the magnetization
as a function of time. (a) In the non-time-crystal prethermal
phase, the magnetization during even and odd Floquet cycles
becomes identical after a short time (corresponding to local
thermalization). During the intermediate prethermal regime,
this magnetization may remain small, but non-zero, until it
decays to zero at the Floquet heating time-scale (long time).
(b) In the prethermal discrete time crystal phase, the mag-
netization oscillates throughout the prethermal regime, lead-
ing to stroboscopic curves that exhibit plateau behavior. The
prethermal time crystal ultimately melts at exponentially late
times, controlled by the frequency of the driving field. Figure
adapted from (Else et al., 2017).

order to absorb a single unit of energy from the drive.
This intuition holds for both quantum and classical sys-
tems, although in the remainder of this subsection, we
will focus on the quantum setting; we will return to the
classical case in the outlook (Sec. VI.B.1).

Crucially, (Kuwahara et al., 2016) and (Abanin et al.,
2017a) proved that up until the timescale, t∗ ∼ eωD/J ,
the system does not absorb energy from the drive and
the stroboscopic Floquet dynamics are (up to exponen-
tially small corrections) captured by an effective static
Hamiltonian, Heff . Unlike MBL, these features of Flo-
quet prethermalization are largely independent of disor-
der, dimension and the range of interactions (Fan et al.,
2020; Machado et al., 2020, 2019; Peng et al., 2021; Pizzi
et al., 2021a; Rubio-Abadal et al., 2020).

While the ability to exponentially delay the onset of
Floquet heating is crucial for realizing and stabilizing a
discrete time crystal, one additional key insight is still
needed, namely, the observation that Heff can exhibit
an emergent symmetry (which need not be present in
the original Floquet evolution) protected by the discrete
time-translation symmetry of the drive (Else et al., 2017;
Machado et al., 2020). The presence of such an emergent
symmetry in Heff allows one to sharply define phases of
matter (i.e. via symmetry-breaking) in the prethermal
regime (Fig. 6). A mathematical description of prether-
mal discrete time crystals in the quantum setting closely
follows the discussion of sections III.B.1 and III.B.2.

This lays the foundation for the connection to time
crystalline order—if a many-body system prethermalizes
to a state that spontaneously breaks the emergent sym-

metry of Heff , it will also exhibit time-crystalline order,
corresponding to a subharmonic oscillation between the
different symmetry sectors (Else et al., 2017; Machado
et al., 2020).

To recap, within the framework of Floquet prether-
malization, realizing a time crystal requires a few ingre-
dients: first, the Floquet drive must induce an emergent
symmetry in the prethermal effective Hamiltonian Heff .
Second, Heff must be able to host a symmetry-broken
phase with respect to the emergent symmetry. Note that
owing to Landau-Peierls-type arguments, this naturally
places constraints on the interaction range and dimen-
sionality for realizing a prethermal discrete time crystal
(PDTC) (Kyprianidis et al., 2021; Machado et al., 2020;
Pizzi et al., 2021a). Finally, the initial state of the many-
body system must have a sufficiently low energy density
(measured with respect to Heff), such that it equilibrates
to the spontaneously symmetry broken phase during the
prethermal regime (Fig. 6).

2. Prethermal discrete time crystal in a 1D trapped ion chain

To highlight the dynamical signatures of a prethermal
discrete time crystal, as well as the distinctions from an
MBL time crystal (Sec. IV.C.2 and Sec. IV.C.3), we turn
to a recent experiment performed on a trapped ion quan-
tum simulator (Kyprianidis et al., 2021). As discussed in
Sec. IV.C.1, some of the first experimental observations
of time crystalline behavior (Fig. 4a,b) were originally
observed in small-scale trapped ion experiments (Zhang
et al., 2017), and one of the central advances in recent
work is the ability to experimentally distinguish between
local thermalization (e.g. “short time” in Fig. 6) and late-
time dynamics in the prethermal regime.

The experiment consists of a one dimensional chain of
N = 25 Ytterbium ions and the Floquet evolution alter-
nates between two types of dynamics. First, a global π-
pulse is applied and then second, the system evolves un-
der a disorder-less, long-range, mixed-field Ising model.
At leading order in the Floquet-Magnus expansion, the
stroboscopic dynamics of the ions are captured by the
effective Hamiltonian,

Heff =
∑

i,j

Jijσ
x
i σ

x
j +By

∑

i

σyi , (16)

which exhibits an emergent Ising symmetry. To begin,
(Kyprianidis et al., 2021) demonstrate that independent
of the initial state of the ion chain, the system exhibits
slow, frequency-dependent heating to infinite tempera-
ture. As aforementioned, in order for the system to ex-
hibit time crystalline order, the initial state of the ion
chain must reach a pseudo-equilibrium state (within the
prethermal regime) in which it breaks the emergent Ising
symmetry (Fig. 7). For a one dimensional system at
finite temperature, this is only possible for sufficiently
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long-ranged interactions (Fisher et al., 1972; Kosterlitz,
1976; Thouless, 1969). The trapped ion system gener-
ates such long-range interactions by using a pair of Ra-
man laser beams to couple the internal spin states to
motional modes of the ion chain (Sørensen and Mølmer,
1999).

Initializing the system with a Néel state (top, Fig. 7a),
(Kyprianidis et al., 2021) observe that the magnetiza-

tion, M(t) = 1/N
∑N
i=1〈σxi (t)〉〈σxi (0)〉 quickly decays to

zero, in agreement with the expectation that the sys-
tem equilibrates to a symmetry- unbroken paramagnetic
state. On the other hand, starting from a polarized initial
state, M(t) exhibits period doubling (bottom, Fig. 7a),
whose lifetime is directly controlled by the frequency of
the drive. Moreover, in this latter case, the lifetime of the
time-crystalline order matches with t∗, consistent with
the intuition that Floquet heating ultimately melts the
PDTC at late times.

An intriguing open question is whether this melting
can be delayed or fully arrested by coupling the system
to a cold bath (Else et al., 2017). More broadly, the
stability and rigidity of many-body time crystalline order
in dissipative, open quantum systems [Fig. 8(c)] remains
an active area of exploration (Booker et al., 2020; Buča
and Jaksch, 2019; Buča et al., 2019; Chinzei and Ikeda,
2020; Dogra et al., 2019; Gambetta et al., 2019b; Gong
et al., 2018; Iemini et al., 2018; Keßler et al., 2020, 2019;
Keßler et al., 2021; Kongkhambut et al., 2022; Lazarides
et al., 2020; Lledó et al., 2019; Lledó and Szymańska,
2020; Seibold et al., 2020; Tucker et al., 2018; Zhu et al.,
2019). We return to it in Section V.

E. Periodically driven Bose-Einstein Condensates

Long-lived subharmonic responses have been explored
extensively in driven Bose Einstein condensates (BEC)
without disorder (Autti et al., 2018, 2021; Giergiel et al.,
2020; Hannaford, 2022; Kongkhambut et al., 2022; Liao
et al., 2019; Sacha, 2015, 2020; Smits et al., 2020, 2021,
2018; Wang et al., 2021b). A paradigmatic example is
provided by a BEC bouncing off an oscillating mirror
(Flatté and Holthaus, 1996; Sacha, 2015). Let us try
to understand this scenario by considering a particle un-
der the influence of gravity which bounces off an oscil-
lating mirror [Fig. 8(a)]. In the reference frame of the
mirror (in which the mirror is held constant at z = 0),
the particle’s gravitational potential energy is given by
U(z) = m(g + a cos(ωDt))z, with the position of the
particle at z > 0. Classically, a single particle in this
potential exhibits a 2:1 subharmonic response which is
conceptually equivalent to that of the driven non-linear
pendulum discussed in Sec. III.B (Flatté and Holthaus,
1996). In the quantum case, this leads to two “non-
spreading wavepackets” localized to the double-minima
of the effective Floquet Hamiltonian, corresponding to

it is present in Heff (Eq. 2). When such emer-
gent symmetry is present, the exact Flo-
quet dynamics are approximately generated
by evolving under Heff for time T, followed by
the action of G. This latter part suggests that
the time-crystalline order is naturally captured
by the system’s magnetization dynamics; the
action of G changes the sign of the order
parameter sxi

! "
every period. As a result,

there are two possibilities for the prethermal
dynamics, depending on the system’s energy
density (Fig. 1B). If the prethermal state cor-
responds to the symmetry-respecting para-
magnet, the magnetization is zero and remains
unchanged across a period. Conversely, if the
prethermal state corresponds to the symmetry-
breaking ferromagnet, the magnetization is
nonzero and alternates every period. The re-
sulting 2T-periodic, subharmonic dynamics
is the hallmark of a time crystal.
We investigate these two regimes by mea-

suring the autocorrelation of themagnetization

M tð Þ ¼ 1
N

XN

i¼1

sxi tð Þ
! "

sxi 0ð Þ
! "

ð3Þ

Starting with a low–energy density Néel state
(Fig. 3A), we observe thatM(t) quickly decays to
zero at tpre, in agreement with the expectation
that the system equilibrates to the symmetry-
unbroken, paramagnetic phase. This behavior
is frequency-independent, in direct contrast to

the Floquet dynamics of the energy density
(Fig. 2A). This contrast highlights an essential
point: Although t* can be extended by increasing
the driving frequency, no order survives beyond
tprewhenthesystemis in the trivialFloquetphase.
The Floquet dynamics starting from the

polarized state are markedly distinct (Fig. 3B).
First, M(t) exhibits period doubling, with M >
0 for even periods andM < 0 for odd periods.
Second, the decay of this period-doubling
behavior is directly controlled by the frequency
of the drive. Third, the lifetime of the time-
crystalline order mirrors the dynamics of the
energy density shown in Fig. 2B, demonstrat-
ing that Floquet heating ultimately melts the
PDTC at late times.
By considering two additional initial states,

we explore the stability of the PDTC phase as a
function of energy density. Figure 3C depicts
both the heating time and the lifetime of the
time-crystalline order. Near the bottom of
the spectrum, where no symmetry-breaking
phase exists, the decay of the magnetization is
frequency-independent and substantially faster
than the heating time scale. By contrast, near
the top of the spectrum, where a symmetry-
breaking ferromagnetic phase exists, the two
time scales are consistentwith one another and
thus Floquet heating limits the PDTC lifetime.
Our results are consistent with a phase bound-
ary occurring at energydensity Heffh i= NJ0ð Þ ≈ 2,
in agreement with independent numerical
calculations from quantum Monte Carlo (34).

In this work, we report the experimental
observation of robust prethermal time-crystalline
behavior that persists beyond any early-time
transient dynamics. Our results highlight the
potential of periodic driving, in general, and
prethermalization, in particular, as a framework
for realizing and studying out-of-equilibrium
phenomena. Even in the presence of noise, we
find that the prethermal dynamics remain
stable, which suggests that an external bath
at sufficiently low temperature can stabilize the
prethermal dynamics for infinitely long times
(29). This stands in contrast to localization-
based approaches for stabilizing Floquet phases,
in which the presence of an external bath tends
to destabilize the dynamics. Our work points
to a number of future directions: (i) exploring
generalizations of Floquet prethermalization
to a quasi-periodic drive (36), (ii) stabilizing
Floquet topological phases (37, 38), and (iii)
leveraging nonequilibrium many-body dyna-
mics for enhanced metrology (39).
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Fig. 3. Characterizing the PDTC phase. (A and B) (Top) Magnetization
dynamics, M(t), for the Néel state (A) and the polarized state (B). For the Néel
state, M(t) quickly decays to zero at time tpre (dashed vertical line), independent
of the drive frequency. For the polarized state, the subharmonic response (2T-
periodicity) persists well beyond tpre, and its lifetime is extended upon increasing
the drive frequency. The lifetime of the prethermal time-crystalline order tPDTC is
obtained by fitting the magnetization dynamics to an exponential decay (34).
Statistical error bars are of similar size as the point markers. (Bottom)
x̂$magnetization dynamics across the entire ion chain at w/J0 = 38. (C) Heating

(t*) and magnetization decay (tPDTC) times for four different initial states at
varying energy densities (34). At low energy densities, tPDTC (orange) are
substantially shorter than t* (magenta) and independent of frequency,
highlighting the trivial Floquet phase. At high energies, tPDTC is similar to t*,
highlighting the long-lived, frequency-controlled nature of the PDTC behavior. The
location of the observed crossover in energy density is in agreement with an
independent quantum Monte Carlo calculation (red and blue shaded regions)
(34). Error bars for the decay time correspond to fit errors, whereas error bars
for the energy density correspond to statistical errors.
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it is present in Heff (Eq. 2). When such emer-
gent symmetry is present, the exact Flo-
quet dynamics are approximately generated
by evolving under Heff for time T, followed by
the action of G. This latter part suggests that
the time-crystalline order is naturally captured
by the system’s magnetization dynamics; the
action of G changes the sign of the order
parameter sxi
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every period. As a result,

there are two possibilities for the prethermal
dynamics, depending on the system’s energy
density (Fig. 1B). If the prethermal state cor-
responds to the symmetry-respecting para-
magnet, the magnetization is zero and remains
unchanged across a period. Conversely, if the
prethermal state corresponds to the symmetry-
breaking ferromagnet, the magnetization is
nonzero and alternates every period. The re-
sulting 2T-periodic, subharmonic dynamics
is the hallmark of a time crystal.
We investigate these two regimes by mea-

suring the autocorrelation of themagnetization
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Starting with a low–energy density Néel state
(Fig. 3A), we observe thatM(t) quickly decays to
zero at tpre, in agreement with the expectation
that the system equilibrates to the symmetry-
unbroken, paramagnetic phase. This behavior
is frequency-independent, in direct contrast to

the Floquet dynamics of the energy density
(Fig. 2A). This contrast highlights an essential
point: Although t* can be extended by increasing
the driving frequency, no order survives beyond
tprewhenthesystemis in the trivialFloquetphase.
The Floquet dynamics starting from the

polarized state are markedly distinct (Fig. 3B).
First, M(t) exhibits period doubling, with M >
0 for even periods andM < 0 for odd periods.
Second, the decay of this period-doubling
behavior is directly controlled by the frequency
of the drive. Third, the lifetime of the time-
crystalline order mirrors the dynamics of the
energy density shown in Fig. 2B, demonstrat-
ing that Floquet heating ultimately melts the
PDTC at late times.
By considering two additional initial states,

we explore the stability of the PDTC phase as a
function of energy density. Figure 3C depicts
both the heating time and the lifetime of the
time-crystalline order. Near the bottom of
the spectrum, where no symmetry-breaking
phase exists, the decay of the magnetization is
frequency-independent and substantially faster
than the heating time scale. By contrast, near
the top of the spectrum, where a symmetry-
breaking ferromagnetic phase exists, the two
time scales are consistentwith one another and
thus Floquet heating limits the PDTC lifetime.
Our results are consistent with a phase bound-
ary occurring at energydensity Heffh i= NJ0ð Þ ≈ 2,
in agreement with independent numerical
calculations from quantum Monte Carlo (34).

In this work, we report the experimental
observation of robust prethermal time-crystalline
behavior that persists beyond any early-time
transient dynamics. Our results highlight the
potential of periodic driving, in general, and
prethermalization, in particular, as a framework
for realizing and studying out-of-equilibrium
phenomena. Even in the presence of noise, we
find that the prethermal dynamics remain
stable, which suggests that an external bath
at sufficiently low temperature can stabilize the
prethermal dynamics for infinitely long times
(29). This stands in contrast to localization-
based approaches for stabilizing Floquet phases,
in which the presence of an external bath tends
to destabilize the dynamics. Our work points
to a number of future directions: (i) exploring
generalizations of Floquet prethermalization
to a quasi-periodic drive (36), (ii) stabilizing
Floquet topological phases (37, 38), and (iii)
leveraging nonequilibrium many-body dyna-
mics for enhanced metrology (39).
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Fig. 3. Characterizing the PDTC phase. (A and B) (Top) Magnetization
dynamics, M(t), for the Néel state (A) and the polarized state (B). For the Néel
state, M(t) quickly decays to zero at time tpre (dashed vertical line), independent
of the drive frequency. For the polarized state, the subharmonic response (2T-
periodicity) persists well beyond tpre, and its lifetime is extended upon increasing
the drive frequency. The lifetime of the prethermal time-crystalline order tPDTC is
obtained by fitting the magnetization dynamics to an exponential decay (34).
Statistical error bars are of similar size as the point markers. (Bottom)
x̂$magnetization dynamics across the entire ion chain at w/J0 = 38. (C) Heating

(t*) and magnetization decay (tPDTC) times for four different initial states at
varying energy densities (34). At low energy densities, tPDTC (orange) are
substantially shorter than t* (magenta) and independent of frequency,
highlighting the trivial Floquet phase. At high energies, tPDTC is similar to t*,
highlighting the long-lived, frequency-controlled nature of the PDTC behavior. The
location of the observed crossover in energy density is in agreement with an
independent quantum Monte Carlo calculation (red and blue shaded regions)
(34). Error bars for the decay time correspond to fit errors, whereas error bars
for the energy density correspond to statistical errors.
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it is present in Heff (Eq. 2). When such emer-
gent symmetry is present, the exact Flo-
quet dynamics are approximately generated
by evolving under Heff for time T, followed by
the action of G. This latter part suggests that
the time-crystalline order is naturally captured
by the system’s magnetization dynamics; the
action of G changes the sign of the order
parameter sxi
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every period. As a result,

there are two possibilities for the prethermal
dynamics, depending on the system’s energy
density (Fig. 1B). If the prethermal state cor-
responds to the symmetry-respecting para-
magnet, the magnetization is zero and remains
unchanged across a period. Conversely, if the
prethermal state corresponds to the symmetry-
breaking ferromagnet, the magnetization is
nonzero and alternates every period. The re-
sulting 2T-periodic, subharmonic dynamics
is the hallmark of a time crystal.
We investigate these two regimes by mea-

suring the autocorrelation of themagnetization
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Starting with a low–energy density Néel state
(Fig. 3A), we observe thatM(t) quickly decays to
zero at tpre, in agreement with the expectation
that the system equilibrates to the symmetry-
unbroken, paramagnetic phase. This behavior
is frequency-independent, in direct contrast to

the Floquet dynamics of the energy density
(Fig. 2A). This contrast highlights an essential
point: Although t* can be extended by increasing
the driving frequency, no order survives beyond
tprewhenthesystemis in the trivialFloquetphase.
The Floquet dynamics starting from the

polarized state are markedly distinct (Fig. 3B).
First, M(t) exhibits period doubling, with M >
0 for even periods andM < 0 for odd periods.
Second, the decay of this period-doubling
behavior is directly controlled by the frequency
of the drive. Third, the lifetime of the time-
crystalline order mirrors the dynamics of the
energy density shown in Fig. 2B, demonstrat-
ing that Floquet heating ultimately melts the
PDTC at late times.
By considering two additional initial states,

we explore the stability of the PDTC phase as a
function of energy density. Figure 3C depicts
both the heating time and the lifetime of the
time-crystalline order. Near the bottom of
the spectrum, where no symmetry-breaking
phase exists, the decay of the magnetization is
frequency-independent and substantially faster
than the heating time scale. By contrast, near
the top of the spectrum, where a symmetry-
breaking ferromagnetic phase exists, the two
time scales are consistentwith one another and
thus Floquet heating limits the PDTC lifetime.
Our results are consistent with a phase bound-
ary occurring at energydensity Heffh i= NJ0ð Þ ≈ 2,
in agreement with independent numerical
calculations from quantum Monte Carlo (34).

In this work, we report the experimental
observation of robust prethermal time-crystalline
behavior that persists beyond any early-time
transient dynamics. Our results highlight the
potential of periodic driving, in general, and
prethermalization, in particular, as a framework
for realizing and studying out-of-equilibrium
phenomena. Even in the presence of noise, we
find that the prethermal dynamics remain
stable, which suggests that an external bath
at sufficiently low temperature can stabilize the
prethermal dynamics for infinitely long times
(29). This stands in contrast to localization-
based approaches for stabilizing Floquet phases,
in which the presence of an external bath tends
to destabilize the dynamics. Our work points
to a number of future directions: (i) exploring
generalizations of Floquet prethermalization
to a quasi-periodic drive (36), (ii) stabilizing
Floquet topological phases (37, 38), and (iii)
leveraging nonequilibrium many-body dyna-
mics for enhanced metrology (39).

REFERENCES AND NOTES

1. L. D. Landau, E. M. Lifshitz, Mechanics, Third Edition: Course
of Theoretical Physics, Volume 1 (Butterworth-Heinemann,
ed. 3, 1976).

2. P. Mansfield, J. Phys. C Solid State Phys. 4, 1444–1452
(1971).

3. L. M. K. Vandersypen, I. L. Chuang, Rev. Mod. Phys. 76,
1037–1069 (2005).

4. H. Zhou et al., Phys. Rev. X 10, 031003 (2020).
5. T. Oka, S. Kitamura, Annu. Rev. Condens. Matter Phys. 10,

387–408 (2019).
6. A. C. Potter, T. Morimoto, A. Vishwanath, Phys. Rev. X 6,

041001 (2016).

Kyprianidis et al., Science 372, 1192–1196 (2021) 11 June 2021 4 of 5

Fig. 3. Characterizing the PDTC phase. (A and B) (Top) Magnetization
dynamics, M(t), for the Néel state (A) and the polarized state (B). For the Néel
state, M(t) quickly decays to zero at time tpre (dashed vertical line), independent
of the drive frequency. For the polarized state, the subharmonic response (2T-
periodicity) persists well beyond tpre, and its lifetime is extended upon increasing
the drive frequency. The lifetime of the prethermal time-crystalline order tPDTC is
obtained by fitting the magnetization dynamics to an exponential decay (34).
Statistical error bars are of similar size as the point markers. (Bottom)
x̂$magnetization dynamics across the entire ion chain at w/J0 = 38. (C) Heating

(t*) and magnetization decay (tPDTC) times for four different initial states at
varying energy densities (34). At low energy densities, tPDTC (orange) are
substantially shorter than t* (magenta) and independent of frequency,
highlighting the trivial Floquet phase. At high energies, tPDTC is similar to t*,
highlighting the long-lived, frequency-controlled nature of the PDTC behavior. The
location of the observed crossover in energy density is in agreement with an
independent quantum Monte Carlo calculation (red and blue shaded regions)
(34). Error bars for the decay time correspond to fit errors, whereas error bars
for the energy density correspond to statistical errors.
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there are two possibilities for the prethermal
dynamics, depending on the system’s energy
density (Fig. 1B). If the prethermal state cor-
responds to the symmetry-respecting para-
magnet, the magnetization is zero and remains
unchanged across a period. Conversely, if the
prethermal state corresponds to the symmetry-
breaking ferromagnet, the magnetization is
nonzero and alternates every period. The re-
sulting 2T-periodic, subharmonic dynamics
is the hallmark of a time crystal.
We investigate these two regimes by mea-

suring the autocorrelation of themagnetization

M tð Þ ¼ 1
N

XN

i¼1

sxi tð Þ
! "

sxi 0ð Þ
! "

ð3Þ

Starting with a low–energy density Néel state
(Fig. 3A), we observe thatM(t) quickly decays to
zero at tpre, in agreement with the expectation
that the system equilibrates to the symmetry-
unbroken, paramagnetic phase. This behavior
is frequency-independent, in direct contrast to

the Floquet dynamics of the energy density
(Fig. 2A). This contrast highlights an essential
point: Although t* can be extended by increasing
the driving frequency, no order survives beyond
tprewhenthesystemis in the trivialFloquetphase.
The Floquet dynamics starting from the

polarized state are markedly distinct (Fig. 3B).
First, M(t) exhibits period doubling, with M >
0 for even periods andM < 0 for odd periods.
Second, the decay of this period-doubling
behavior is directly controlled by the frequency
of the drive. Third, the lifetime of the time-
crystalline order mirrors the dynamics of the
energy density shown in Fig. 2B, demonstrat-
ing that Floquet heating ultimately melts the
PDTC at late times.
By considering two additional initial states,

we explore the stability of the PDTC phase as a
function of energy density. Figure 3C depicts
both the heating time and the lifetime of the
time-crystalline order. Near the bottom of
the spectrum, where no symmetry-breaking
phase exists, the decay of the magnetization is
frequency-independent and substantially faster
than the heating time scale. By contrast, near
the top of the spectrum, where a symmetry-
breaking ferromagnetic phase exists, the two
time scales are consistentwith one another and
thus Floquet heating limits the PDTC lifetime.
Our results are consistent with a phase bound-
ary occurring at energydensity Heffh i= NJ0ð Þ ≈ 2,
in agreement with independent numerical
calculations from quantum Monte Carlo (34).

In this work, we report the experimental
observation of robust prethermal time-crystalline
behavior that persists beyond any early-time
transient dynamics. Our results highlight the
potential of periodic driving, in general, and
prethermalization, in particular, as a framework
for realizing and studying out-of-equilibrium
phenomena. Even in the presence of noise, we
find that the prethermal dynamics remain
stable, which suggests that an external bath
at sufficiently low temperature can stabilize the
prethermal dynamics for infinitely long times
(29). This stands in contrast to localization-
based approaches for stabilizing Floquet phases,
in which the presence of an external bath tends
to destabilize the dynamics. Our work points
to a number of future directions: (i) exploring
generalizations of Floquet prethermalization
to a quasi-periodic drive (36), (ii) stabilizing
Floquet topological phases (37, 38), and (iii)
leveraging nonequilibrium many-body dyna-
mics for enhanced metrology (39).

REFERENCES AND NOTES

1. L. D. Landau, E. M. Lifshitz, Mechanics, Third Edition: Course
of Theoretical Physics, Volume 1 (Butterworth-Heinemann,
ed. 3, 1976).

2. P. Mansfield, J. Phys. C Solid State Phys. 4, 1444–1452
(1971).

3. L. M. K. Vandersypen, I. L. Chuang, Rev. Mod. Phys. 76,
1037–1069 (2005).

4. H. Zhou et al., Phys. Rev. X 10, 031003 (2020).
5. T. Oka, S. Kitamura, Annu. Rev. Condens. Matter Phys. 10,

387–408 (2019).
6. A. C. Potter, T. Morimoto, A. Vishwanath, Phys. Rev. X 6,

041001 (2016).

Kyprianidis et al., Science 372, 1192–1196 (2021) 11 June 2021 4 of 5

Fig. 3. Characterizing the PDTC phase. (A and B) (Top) Magnetization
dynamics, M(t), for the Néel state (A) and the polarized state (B). For the Néel
state, M(t) quickly decays to zero at time tpre (dashed vertical line), independent
of the drive frequency. For the polarized state, the subharmonic response (2T-
periodicity) persists well beyond tpre, and its lifetime is extended upon increasing
the drive frequency. The lifetime of the prethermal time-crystalline order tPDTC is
obtained by fitting the magnetization dynamics to an exponential decay (34).
Statistical error bars are of similar size as the point markers. (Bottom)
x̂$magnetization dynamics across the entire ion chain at w/J0 = 38. (C) Heating

(t*) and magnetization decay (tPDTC) times for four different initial states at
varying energy densities (34). At low energy densities, tPDTC (orange) are
substantially shorter than t* (magenta) and independent of frequency,
highlighting the trivial Floquet phase. At high energies, tPDTC is similar to t*,
highlighting the long-lived, frequency-controlled nature of the PDTC behavior. The
location of the observed crossover in energy density is in agreement with an
independent quantum Monte Carlo calculation (red and blue shaded regions)
(34). Error bars for the decay time correspond to fit errors, whereas error bars
for the energy density correspond to statistical errors.
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FIG. 7 Prethermal discrete time crystal in a disorder-free
chain of L = 25 171Yb+ ions. (a) For initial states whose en-
ergy density (measured with respect to Heff) lies in the trivial
phase of the effective Hamiltonian (top panel), the dynam-
ics of the magnetization is largely independent of the drive
frequency and quickly equilibrates to zero. Despite the rapid
decay of the magnetization, the energy density exhibits slow
Floquet heating. For initial states whose energy density lies
in the symmetry-broken phase of Heff (bottom panel), the
stroboscopic dynamics of the magnetization exhibit subhar-
monic oscillations (solid curves correspond to even periods
while dashed curves correspond to odd periods), whose life-
time extends with increasing frequency. The lifetime of this
prethermal time crystalline order is consistent with being cut-
off by the slow Floquet heating time-scale. (b) Experimentally
measured phase diagram of a prethermal discrete time crystal
as a function of the energy density of the initial state. States
near the edge of the spectrum (i.e. which order with respect
to Heff) exhibit PDTC order while states in the trivial phase
of Heff do not exhibit prethermal time crystalline order. Fig-
ures adapted from (Kyprianidis et al., 2021).
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the two period-doubled orbits (Bialynicki-Birula et al.,
1994; Buchleitner and Delande, 1995; Buchleitner et al.,
2002; Flatté and Holthaus, 1996). However, in con-
trast to the classical case, quantum tunneling between
the two minima results in a finite lifetime, τ , for the
subharmonic oscillations. From the spectral perspec-
tive [Sec. III.B.3], this manifests as two Floquet eigen-
states, |ψ1〉 and |ψ2〉, whose relative Floquet eigenval-
ues are perturbed away from π → π + 1/τ . Intuitively,
these two Floquet eigenstates correspond to the “bond-
ing” and “anti-bonding” configurations of the effective
double-well potential. When τ → ∞, the configurations
|ψ±〉 = 1√

2
(|ψ1〉±|ψ2〉) are exchanged under each period,

and a system prepared with a majority amplitude in one
or the other will thus exhibit SτB. But with tunneling,
these configurations slowly precess into each other over
the tunneling time τ , restoring the symmetry (Buchleit-
ner et al., 2002; Flatté and Holthaus, 1996; Holthaus,
1995; Holthaus and Flatté, 1994; Sacha, 2015).

However, τ can be radically extended by replacing
a single particle with an N -particle Bose-Einstein con-
densate with an attractive contact interaction Hint =
− g04 |Ψ(z)|4 (Sacha, 2015). In appropriate units, the

Hamiltonian for the field operator Ψ̂ is given by

Ĥ =

∫ ∞

0

dz

[
Ψ̂†(z)

(
−1

2
∂2
z + (1 +

a

g
cos(ωDt))|z|

)
Ψ̂(z)

−g0

4
|Ψ̂(z)|4

]
. (17)

Two approximations can be used to analyze the resulting
dynamics (Sacha, 2015): (i) taking N →∞ while holding
g0N fixed, the dynamics reduce to a periodically driven
Gross-Pitaevskii equation (GPE). The GPE is a classical
Hamiltonian field theory over a complex field ψ(t, z), and
can therefore be efficiently simulated; (ii) one can project
the interacting dynamics onto the two nearly-degenerate
ground states (i.e. the aforementioned double-minima)
of the single particle Floquet Hamiltonian, effectively re-
ducing the problem to two bosonic modes.

These approximations can be combined into three
cases. When both approximations are made (i.e. taking
N → ∞ and also projecting to the two-mode picture),
the dynamics exhibit a bifurcation transition that pro-
duces period-doubling (Sacha, 2015). Intuitively, due to
the attractive interaction, the Floquet energy is mini-
mized when all particles inhabit the same well; tunnel-
ing between the wells is thereby suppressed because all
N →∞ bosons must tunnel sequentially.

If one only considers the second approximation (i.e. fi-
nite N within the two mode picture), quantum fluctua-
tions in the mode occupation remain, and it was shown
that the tunneling time increases exponentially with N ,
τ ∝ eαN (Sacha, 2015; Wang et al., 2021b). Thus, TTSB
is achieved not in the limit of large system size, but
rather in the limit of large particle number. However,
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interacting via δ-contact potential one has to consider the fol-
lowing many-body Floquet Hamiltonian

HF =

∫ 2T

0
dt

∫ ∞

0
dz ψ̂

[
H(t) +

g0

2
ψ̂†ψ̂ − i∂t

]
ψ̂,

≈ −J
2

(
ĉ†

1 ĉ1 − ĉ†
2 ĉ2

)
+

1
4
(U − 2U12)

×
[
(ĉ†

1)
2ĉ2

2 + (ĉ†
2)

2ĉ2
1 + 2ĉ†

1 ĉ1ĉ†
2 ĉ2

]
+ const.,

 
(22)

where U and U12  are equal to integrals over time and space 
of products of the probability densities of two evolving local-
ized wave-packets multiplied by g0. In equation  (22) we 
restricted to the Hilbert subspace spanned by the previously 
described Fock states |n1, n2〉 and the bosonic "eld operator 
ψ̂(z, t) ≈ u1ĉ1 + e−iωt/2u2ĉ2 where ĉ1 and ĉ2 are standard 
annihilation operators. Such a restriction is valid provided the 
interaction energy is very small and couplings to the comple-
mentary Hilbert subspace can be neglected. It will be the case 
because the interaction energy per particle will be of the order 
of the tunneling splitting J that is extremely small as com-
pared to any other energy scale of the system. Eigenstates of 
the Hamiltonian (22) correspond to many-body Floquet states 
that are also eigenstates of the time translation operator TT 
what is apparent when one realizes that there are two classes 
of the eigenstates of (22). Eigenstates from the "rst class are 
spanned by Fock states with only even occupations of the 
e−iωt/2u2(z, t) mode while eigenstates from the other class by 
Fock states with the odd occupations only (Sacha 2015b).

Assuming attractive (g0 < 0) interactions that are very 
weak, i.e. N|U − 2U12| < J , the ground state |ψ0〉 of (22) 

matches the non-interacting result, |ψ0〉 ≈ |N, 0〉. However, 
when

N|U − 2U12| > J, (23)

it is energetically favorable to collect all bosons in a single 
localized wave-packet and consequently the ground state of 
the Hamiltonian (22) is a Schrödinger cat-like state which 
is clear if one writes such a many-body Floquet eigenstate 
in another Fock basis |ñ1, ñ2〉 where ñ1 and ñ2 = N − ñ1 
are occupations of the "rst localized wave-packet, 
φ1 = (u1 + e−iωt/2u2)/

√
2, and the other localized wave-

packet, φ2 = (u1 − e−iωt/2u2)/
√

2, respectively. Then, the 
many-body ground state reads

|ψ0〉 ≈ |N, 0〉 + |0, N〉√
2

. (24)

The corresponding single particle probability density,

ρ1(z, t) = 〈ψ0|ψ̂†(z, t)ψ̂(z, t)|ψ0〉

≈ N
2

(
|φ1(z, t)|2 + |φ2(z, t)|2

)
,

 
(25)

is plotted in "gure 3 at different time moments. The discrete 
time translation symmetry is preserved in time evo lution 
of the many-body Floquet eigenstate |ψ0〉 but this state is 
extremely vulnerable to any perturbation. After a measure-
ment of a position x1 of a single particle, the symmetry is 
gone because the quantum state of the remaining particles 

Figure 3. Left panel: schematic plot of a system of N atoms 
bouncing on an oscillating mirror and prepared in a many-body 
Floquet state (24). Each of two atomic clouds moves with a period 
2T but they exchange their positions after time T so that the entire 
Floquet state is periodic with a period T. Right panel shows time 
evolution of the corresponding single particle probability density 
(25) for N = 104, g0N = −0.5, ω = 1.1 and λ = 0.06. Reprinted 
"gure with permission from Sacha (2015b), Copyright (2015) by 
the American Physical Society.

Figure 4. Left panel: schematic plot of a system of N atoms bouncing 
on an oscillating mirror as in "gure 3 but after the measurement of 
the position of a single atom—atomic cloud visible in the plot moves 
with a period 2T. Right panel shows the results of the measurements 
of positions of 100 atoms, i.e. at t = 0 one measures positions of 
100 atoms, let the remaining atoms evolve and after T/2 one again 
measures positions of 100 atoms and so on. The histograms presented 
in the right panel indicate that time periodic evolution of the system, 
after the spontaneous time translation symmetry breaking, can be 
observed in a single experimental realization. The initial number of 
atoms N = 104 and the other parameters as in "gure 3. Reprinted 
"gure with permission from Sacha (2015b), Copyright (2015) by the 
American Physical Society.
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interacting via δ-contact potential one has to consider the fol-
lowing many-body Floquet Hamiltonian

HF =
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∫ ∞
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where U and U12  are equal to integrals over time and space 
of products of the probability densities of two evolving local-
ized wave-packets multiplied by g0. In equation  (22) we 
restricted to the Hilbert subspace spanned by the previously 
described Fock states |n1, n2〉 and the bosonic "eld operator 
ψ̂(z, t) ≈ u1ĉ1 + e−iωt/2u2ĉ2 where ĉ1 and ĉ2 are standard 
annihilation operators. Such a restriction is valid provided the 
interaction energy is very small and couplings to the comple-
mentary Hilbert subspace can be neglected. It will be the case 
because the interaction energy per particle will be of the order 
of the tunneling splitting J that is extremely small as com-
pared to any other energy scale of the system. Eigenstates of 
the Hamiltonian (22) correspond to many-body Floquet states 
that are also eigenstates of the time translation operator TT 
what is apparent when one realizes that there are two classes 
of the eigenstates of (22). Eigenstates from the "rst class are 
spanned by Fock states with only even occupations of the 
e−iωt/2u2(z, t) mode while eigenstates from the other class by 
Fock states with the odd occupations only (Sacha 2015b).

Assuming attractive (g0 < 0) interactions that are very 
weak, i.e. N|U − 2U12| < J , the ground state |ψ0〉 of (22) 

matches the non-interacting result, |ψ0〉 ≈ |N, 0〉. However, 
when

N|U − 2U12| > J, (23)

it is energetically favorable to collect all bosons in a single 
localized wave-packet and consequently the ground state of 
the Hamiltonian (22) is a Schrödinger cat-like state which 
is clear if one writes such a many-body Floquet eigenstate 
in another Fock basis |ñ1, ñ2〉 where ñ1 and ñ2 = N − ñ1 
are occupations of the "rst localized wave-packet, 
φ1 = (u1 + e−iωt/2u2)/

√
2, and the other localized wave-

packet, φ2 = (u1 − e−iωt/2u2)/
√

2, respectively. Then, the 
many-body ground state reads

|ψ0〉 ≈ |N, 0〉 + |0, N〉√
2

. (24)

The corresponding single particle probability density,

ρ1(z, t) = 〈ψ0|ψ̂†(z, t)ψ̂(z, t)|ψ0〉

≈ N
2

(
|φ1(z, t)|2 + |φ2(z, t)|2

)
,

 
(25)

is plotted in "gure 3 at different time moments. The discrete 
time translation symmetry is preserved in time evo lution 
of the many-body Floquet eigenstate |ψ0〉 but this state is 
extremely vulnerable to any perturbation. After a measure-
ment of a position x1 of a single particle, the symmetry is 
gone because the quantum state of the remaining particles 

Figure 3. Left panel: schematic plot of a system of N atoms 
bouncing on an oscillating mirror and prepared in a many-body 
Floquet state (24). Each of two atomic clouds moves with a period 
2T but they exchange their positions after time T so that the entire 
Floquet state is periodic with a period T. Right panel shows time 
evolution of the corresponding single particle probability density 
(25) for N = 104, g0N = −0.5, ω = 1.1 and λ = 0.06. Reprinted 
"gure with permission from Sacha (2015b), Copyright (2015) by 
the American Physical Society.

Figure 4. Left panel: schematic plot of a system of N atoms bouncing 
on an oscillating mirror as in "gure 3 but after the measurement of 
the position of a single atom—atomic cloud visible in the plot moves 
with a period 2T. Right panel shows the results of the measurements 
of positions of 100 atoms, i.e. at t = 0 one measures positions of 
100 atoms, let the remaining atoms evolve and after T/2 one again 
measures positions of 100 atoms and so on. The histograms presented 
in the right panel indicate that time periodic evolution of the system, 
after the spontaneous time translation symmetry breaking, can be 
observed in a single experimental realization. The initial number of 
atoms N = 104 and the other parameters as in "gure 3. Reprinted 
"gure with permission from Sacha (2015b), Copyright (2015) by the 
American Physical Society.
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where U and U12  are equal to integrals over time and space 
of products of the probability densities of two evolving local-
ized wave-packets multiplied by g0. In equation  (22) we 
restricted to the Hilbert subspace spanned by the previously 
described Fock states |n1, n2〉 and the bosonic "eld operator 
ψ̂(z, t) ≈ u1ĉ1 + e−iωt/2u2ĉ2 where ĉ1 and ĉ2 are standard 
annihilation operators. Such a restriction is valid provided the 
interaction energy is very small and couplings to the comple-
mentary Hilbert subspace can be neglected. It will be the case 
because the interaction energy per particle will be of the order 
of the tunneling splitting J that is extremely small as com-
pared to any other energy scale of the system. Eigenstates of 
the Hamiltonian (22) correspond to many-body Floquet states 
that are also eigenstates of the time translation operator TT 
what is apparent when one realizes that there are two classes 
of the eigenstates of (22). Eigenstates from the "rst class are 
spanned by Fock states with only even occupations of the 
e−iωt/2u2(z, t) mode while eigenstates from the other class by 
Fock states with the odd occupations only (Sacha 2015b).

Assuming attractive (g0 < 0) interactions that are very 
weak, i.e. N|U − 2U12| < J , the ground state |ψ0〉 of (22) 

matches the non-interacting result, |ψ0〉 ≈ |N, 0〉. However, 
when

N|U − 2U12| > J, (23)

it is energetically favorable to collect all bosons in a single 
localized wave-packet and consequently the ground state of 
the Hamiltonian (22) is a Schrödinger cat-like state which 
is clear if one writes such a many-body Floquet eigenstate 
in another Fock basis |ñ1, ñ2〉 where ñ1 and ñ2 = N − ñ1 
are occupations of the "rst localized wave-packet, 
φ1 = (u1 + e−iωt/2u2)/

√
2, and the other localized wave-

packet, φ2 = (u1 − e−iωt/2u2)/
√

2, respectively. Then, the 
many-body ground state reads

|ψ0〉 ≈ |N, 0〉 + |0, N〉√
2

. (24)

The corresponding single particle probability density,

ρ1(z, t) = 〈ψ0|ψ̂†(z, t)ψ̂(z, t)|ψ0〉

≈ N
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|φ1(z, t)|2 + |φ2(z, t)|2

)
,
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is plotted in "gure 3 at different time moments. The discrete 
time translation symmetry is preserved in time evo lution 
of the many-body Floquet eigenstate |ψ0〉 but this state is 
extremely vulnerable to any perturbation. After a measure-
ment of a position x1 of a single particle, the symmetry is 
gone because the quantum state of the remaining particles 

Figure 3. Left panel: schematic plot of a system of N atoms 
bouncing on an oscillating mirror and prepared in a many-body 
Floquet state (24). Each of two atomic clouds moves with a period 
2T but they exchange their positions after time T so that the entire 
Floquet state is periodic with a period T. Right panel shows time 
evolution of the corresponding single particle probability density 
(25) for N = 104, g0N = −0.5, ω = 1.1 and λ = 0.06. Reprinted 
"gure with permission from Sacha (2015b), Copyright (2015) by 
the American Physical Society.

Figure 4. Left panel: schematic plot of a system of N atoms bouncing 
on an oscillating mirror as in "gure 3 but after the measurement of 
the position of a single atom—atomic cloud visible in the plot moves 
with a period 2T. Right panel shows the results of the measurements 
of positions of 100 atoms, i.e. at t = 0 one measures positions of 
100 atoms, let the remaining atoms evolve and after T/2 one again 
measures positions of 100 atoms and so on. The histograms presented 
in the right panel indicate that time periodic evolution of the system, 
after the spontaneous time translation symmetry breaking, can be 
observed in a single experimental realization. The initial number of 
atoms N = 104 and the other parameters as in "gure 3. Reprinted 
"gure with permission from Sacha (2015b), Copyright (2015) by the 
American Physical Society.
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FIG. 8 (a) Schematic depicting N atoms bouncing off an
oscillating mirror (Sacha, 2015). (b) Numerical simulations
of the scenario in (a) shows that the time evolution of the
atomic density exhibits SτB. At each time shown, the posi-
tions of 102 atoms (out of 104) are measured and a histogram
of those positions is depicted. (c) A Bose-Einstein condensate
in a transversely pumped high-finesse optical cavity can real-
ize signatures of SτB in an open system. In particular, the
atom-cavity system can exhibit a period-doubled oscillation
between distinct density wave patterns (Keßler et al., 2021).
Figures adapted from (Keßler et al., 2021; Sacha, 2015; Sacha
and Zakrzewski, 2017).

the two-mode approximation automatically prevents Flo-
quet heating — which is generally presumed to occur in
a driven many-body system — from occurring (D’Alessio
and Rigol, 2014; Else et al., 2020b; Khemani et al., 2019).

Finally, if one only considers the first approxima-
tion (i.e. N → ∞ but without taking the two-mode
limit), SτB effectively requires that the periodically
driven Gross-Pitaevskii equation is non-ergodic [see e.g.
Sec. III.C]. This is in contrast to the expectation that
classical non-linear field theories are generically ergodic
(the integrability of the isotropic, undriven GPE being
a fine-tuned exception). However, this expectation may
not apply to the present situation. Due to the gravita-
tional confining potential, the dynamics are effectively
confined to a zero-dimensional region near the minima
of the double-well. This is in contrast to the Gross-
Pitaevskii equation in an isotropic potential or an array
of coupled pendula, which each have an extensive density
of states.

So, while the number of degrees of freedom is formally
infinite, it may be that the KAM theorem still applies be-
cause there are effectively only a few degrees of freedom
that are resonant with the periodic drive. Thus, KAM
might protect SτB in this scenario as it does for a single
particle in a double-well Floquet potential (Sec. III.B.4).
Interestingly, in the absence of periodic driving, this is
indeed the case; specifically, it has been proven that the
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undriven GPE in a double-well potential breaks ergodic-
ity. Below a critical energy, a condensate becomes “self-
trapped” in one of the minima (Albiez et al., 2005; Jack-
son and Weinstein, 2004). It is perhaps then plausible
that the driven GPE can exhibit the same phenomena,
but in the rotating frame of the 2:1 resonance [Fig. 8(b)].
Numerical simulations of the driven GPE support this
interpretation (Kuroś et al., 2020; Sacha, 2015).

Finally, there is of course the question of what occurs
when one makes neither of the two aforementioned ap-
proximations. Exact answers are difficult to obtain in
this regime, as it is a full quantum many-body prob-
lem, but numerical results have been obtained within
time-dependent Bogoliubov theory (Kuroś et al., 2020)
and the truncated Wigner approximation (Wang et al.,
2021a). Both conclude that out to thousands of driving
periods, the boson population remains almost entirely
within the two modes, with no evidence for heating.

These findings support the conclusion of the two-mode
approximation (with finite N), where τ ∝ eαN . Of course
such numerical simulations cannot definitively rule out
exponentially slow depopulation and heating (Sec. IV.D),
as might occur in a prethermal time-crystal (Else et al.,
2017; Machado et al., 2019; Sacha, 2020). However, if
one accepts the conclusion that as N →∞, the GPE can
generically break ergodicity in this setting (as it does in
a static double well potential), the possibility that Flo-
quet heating is absent out to infinite times even for the
driven GPE, seems like a possibility (albeit, still quite
surprising) .

Finally we comment on the contention that time-
crystals in driven BECs are “effectively few-body” (Khe-
mani et al., 2019). This is partly a matter of nomen-
clature. On the one hand, these systems are clearly not
few-body as the interaction, g0, and the limit N → ∞
are necessary for SτB. Furthermore, while not rigorously
proven (much like Floquet MBL is also not rigorously
proven), the authors of this Colloquium find it plausi-
ble that SτB could be stable up to times, τ ∝ eαN , even
when the physics is treated as a full many-body problem.
Again, much like the situation with MBL, this “plausi-
bility” is bolstered by the fact that the undriven GPE in
a double-well potential does, in fact, break ergodicity.

On the other hand, it seems that SτB is only stable
because of the reduced dimensionality induced by the
gravitational confinement, which effectively ensures the
accuracy of the two-mode approximation; no such picture
would be obtainable for the MBL setting (Sec. IV.B).
We venture that a more useful distinction is the nature
of the thermodynamic limit being taken. In the case
of MBL time-crystals (or the driven, open time-crystals
of Sec. V), true SτB is achieved in the thermodynamic
limit L → ∞, with τ ∼ eL/ξ, keeping intensive quan-
tities fixed. In the case of the driven BEC, due to the
confining gravitational potential, the system size L is not
relevant (in this sense the problem is zero dimensional)

and the problem reduces to being effectively few-mode,
even though the physics is realized in a full, many-body
system. In this setting, SτB is recovered in the limit
N →∞, keeping g0N fixed, with τ ∼ eαN .

An intriguing probe of this distinction would be to con-
sider a 2D generalization of the driven BEC: bosons are
gravitationally confined in the z direction, but propagate
freely along x. In this case, the density of states is ex-
tensive in x, and domain walls between the two period-
doubled orbits can form. It is natural to suppose that
SτB is prethermal in this case, as could be evaluated in
the N →∞ limit using the 2D GPE.

V. OPEN, PERIODICALLY-DRIVEN SYSTEMS AND
STOCHASTIC DYNAMICS

Our discussion thus far has focused on closed systems
in which the dynamics are deterministic, x → Φ(x).
However, when a system is coupled to an environment,
it is often fruitful to model the effect of the environ-
ment’s chaotic motion as noise (most-conveniently taken
to be Markovian), so that the dynamics become effec-
tively stochastic. Rather than focusing on a particu-
lar microstate, one instead considers a probability dis-
tribution over microstates ρ(x, t) which evolves under a
“master equation,” for example the Fokker-Planck equa-
tion. Integrating the master equation over one Floquet
cycle then produces a discrete update of the distribu-
tion, ρ(x, t+ T ) = Φ[ρ(x, t)]. In classical mechanics this
results in a probability distribution over canonical coor-
dinates ρ(x = {p, q}, t) which evolves under a Markov
process, ρ(x′, t+ T ) =

∫
Φ(x′|x)ρ(x, t)dx, where Φ(x′|x)

are the Markov transition probabilities. In the quantum
case, we have a density matrix ρ̂(t) which evolves under a
“quantum channel” ρ̂ → Φ[ρ̂]. One can also in principle
consider non-Markovian baths, a point to which we will
return.

The definition of SτB given in Eq. (3) generalizes to
the open case by measuring the local observable, O, in ex-
pectation, and stability can be defined by requiring SτB
be robust to perturbations of the stochastic dynamics
subject to locality and any other dynamical constraints
one is interested in [Fig. 8(c)]. The environment is both
good and bad for SτB. On the one hand, coupling to
an environment introduces friction: the energy and en-
tropy produced by the periodic drive can now be ab-
sorbed by the bath, which can prevent the long-time
Floquet heating which would otherwise destroy SτB in
the absence of MBL. This tends to help stabilize sponta-
neous time translation symmetry breaking. On the other
hand, if the environment is at finite temperature, the in-
evitable noise which results may occasionally conspire to
cause phase slips in the period-doubled motion. Roughly
speaking, if noise nucleates phase slips at rate 1/τ , the
SτB has a finite auto-correlation time τ and there is no
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FIG. 9 Arnold tongues of the damped Matthieu equation.
The x-axis is the drive frequency expressed via the dimen-
sionless ratio a = (2ω0)2/ω2

D, while the y-axis is the drive
amplitude δ. Contours indicate the critical drive amplitude
required for resonance when the coefficient of friction takes a
given value c. When c > 0, the period-double solution onsets
only at finite δ. Figure adapted from Pedersen, 1980.

true long-range order. The interplay of a periodic drive,
interactions, dissipation, and noise results in a truly non-
equilibrium situation which is exceptionally rich – just
like the world around us (Booker et al., 2020; Buča and
Jaksch, 2019; Buča et al., 2019; Chinzei and Ikeda, 2020;
Dogra et al., 2019; Gambetta et al., 2019b; Gong et al.,
2018; Iemini et al., 2018; Keßler et al., 2020, 2019; Keßler
et al., 2021; Kongkhambut et al., 2022; Lazarides et al.,
2020; Lledó et al., 2019; Lledó and Szymańska, 2020; Re-
ichhardt et al., 2022; Seibold et al., 2020; Tucker et al.,
2018; Zhu et al., 2019).

A. “Activated” time-crystals

A classical realization of this interplay is given by
Langevin dynamics. Due to the coupling with the en-
vironment, each degree of freedom (q, p) experiences an
additional Langevin force FL(t) = −ηq̇ + f(t). Here η is
the friction coefficient and f(t) is a white-noise stochas-
tic force with auto-correlation function 〈f(t)f(t′)〉 =
2ηTδ(t − t′), where T is the temperature of the bath.
The total force is obtained by adding FL to the time-
dependent Hamilton’s equations, ṗ = −∂qH(t) + FL(t).
This leads to a master equation – the Fokker-Planck
equation – of the general form ∂tρ({p, q}, t) = L[ρ], where
L is the Fokker-Planck operator. Integrating the Fokker-
Planck equation over one Floquet cycle of the the drive
then gives the discrete-time update ρ(t+ T ) = Φ[ρ(t)].

Note that we are assuming the environment remains
in equilibrium at temperature T , and so instantaneously
satisfies the fluctuation-dissipation theorem which relates
the magnitude of the friction η and the noise 2ηT . If H(t)
were time-independent, this would ensure (via detailed-
balance) that the system relaxes to the canonical ensem-
ble at long-times where SτB is forbidden (Bruno, 2013;
Nozières, 2013; Watanabe and Oshikawa, 2015). But
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On the other hand, if the bath is in equilibrium at finite temperature T,  
the fluctuation-dissipation theorem implies that friction must come 
with noise49. In classical systems, this noise can be captured as a 
Langevin force, η ξ= − ̇+F t q t( ) ( )B , on each coordinate q, where 
η is the strength of the friction and ξ(t) is a stochastic force with 
variance, ξ ξ η δ= −′ ′t t T t t( ) ( ) 2 ( ). Taking η > 0, T = 0 reduces to 
the damped case where period-doubling is easily stabilized, while 
a combination of finite T and driving results in a truly non-equilib-
rium situation. The question concerning the existence of ‘classical 
discrete time crystals’ (CDTC) can then be posed as follows: in what 
dimensions can a classical many-body system, coupled to an equi-
librium bath, exhibit rigid subharmonic entrainment for either the 
closed case (η = 0), the zero-temperature case (η > 0, T = 0) or the 
finite temperature case (η, T > 0)?

Because the T = 0 (no noise) case is already known to feature 
rigid subharmonic entrainment, in this work we focus on T > 0. 
Furthermore, if a CDTC exists in d* dimensions, it will presumably 
exist for all d ≥ d*, so we focus on the most delicate case: T > 0 in 
one dimension (1D). Although an equilibrium phase transition is 
impossible in 1D, might there nevertheless be a non-equilibrium 
dynamical phase transition between a period-doubled CDTC and 
a symmetric phase?

In this work, we first argue, based on remarkable results due 
to Gács50–52 and Toom53–55, that in principle true CDTCs, with an 
infinite autocorrelation time, are possible in all dimensions d > 0  
(ref. 56). However, in 1D the construction is so baroque that we 
cannot yet explicitly prove this conjecture theoretically or numer-
ically. To this end, we instead investigate in detail a more physi-
cal Hamiltonian, the parametrically driven Frenkel–Kontorova 
(FK) model. The basic idea is simple: each nonlinear oscillator in 
the chain undergoes a 2:1 parametric resonance, and we couple 
the oscillators together to try and stabilize the CDTC phase at 
finite temperature. We find that this model exhibits an intriguing 
line of first-order dynamical phase transitions, between an ‘acti-
vated’ period-doubled CDTC and a symmetry-unbroken phase, 
that terminates at a critical point (Figs. 1 and 2). The activated 
CDTC is not a true time crystal; rather, it has has an autocor-
relation time that diverges exponentially as T → 0. Because of this 
exponentially diverging timescale, it would be extremely difficult 
in experiments to distinguish between an activated CDTC and a 
true, long-range-ordered CDTC; indeed, to detect this difference 
we must conduct careful numerical experiments over many mil-
lions of Floquet cycles.

Before diving into the details, let us emphasize the key charac-
teristic of a true long-range-ordered CDTC, namely, the existence 
of period-doubling with an infinitely long autocorrelation time τ, 
which is stable to small perturbations of the dynamics. More pre-
cisely, if one considers a model of periodically driven oscillators 
with position coordinates qi, the autocorrelation time τ of period-
doubling can be quantified as ⟨ ⟩ ∝ − τ− ∕q nt q( ) (0) ( 1) ei i

n nt
D

D , where 
tD is the period of the drive and 〈 〉 indicates averaging over noise 
realizations. For low but finite temperatures, the period-doubling 
we observe in the driven FK model exhibits only an activated auto-
correlation time, τ ≈ Δ ∕T( ) e Teff , where Δeff is an effective activation 
barrier. Thus, in 1D, the CDTC order of the FK model we study 
survives only to exponentially long, but not infinite times. Despite 
the activated behaviour of the period-doubling, we nevertheless 
find a first-order dynamical phase transition where τ(T) drops dis-
continuously and period-doubling is completely destroyed (Fig. 2).  
In 1D, such a first-order phase transition would be impossible in 
equilibrium57.

This leaves the question of CDTCs at a peculiar point: although 
we believe a true CDTC is in principle possible in 1D, the obvious 
candidate model is only exponentially close to one. It may be that 

the full complexity of Gács’ construction, which we now explain, is 
in fact required.

Conjecture on the existence of classical time crystals. Although 
our ultimate interest is to understand the possibility of time crys-
tals in open Hamiltonian systems, it is first worth considering a 
more general class of dynamical systems, ‘probabilistic cellular 
automata’ (PCA). Recall that a deterministic cellular automata 
(CA) is a set of spins {σi}, where σi ∈ {1, 2, ..., N}, with a discrete 
update rule σi → T[σi − 1, σi, σi + 1]58. In a PCA, the system is instead 
described by a probability distribution P σ[{ }]i  over spin configu-
rations, which is updated by a local Markov process; that is, each 
σi is updated with a probability distribution that depends only on 
itself and its neighbours. One way to obtain a PCA is to start with 
a deterministic CA and perturb it by stochastic errors; for example, 
with probability E ≪ 1, a spin can violate the transition rule and flip 
into a random state (the precise statement of such an error model 
can be found in ref. 51).

Given that the PCA update rule is discrete time-translation-
invariant, one can then ask if the long-time probability distribu-
tion can ever oscillate with period two, thereby realizing a time 
crystal. For a deterministic CA, a time crystal is trivially obtained 
by letting binary spins transform under the rule 0 ↔ 1 (this is anal-
ogous to our previous discussion of fine-tuning, or introducing 
friction but no noise). However, any infinitesimal rate of errors 
will desynchronize the spins and the autocorrelations will decay 
over a timescale τ ~ 1/E.

T
im

e

j

Fig. 1 | Period-doubled dynamics ‘boil’ out of a uniform initial state. In the 
main panel we present a stroboscopic view qj(2ntD), with time n running 
down vertically (0!<!n!<!1,200) and space j running horizontally over the 
nosc!=!100 oscillators. The colour scale shows qj!<!0 as red, qj!>!0 as blue 
and qj!≈!0 as white. Note that we strobe every two driving periods, which 
is the frequency of the subharmonic response. Hence, the displayed phase 
of the oscillators varies slowly. A detail of a smaller region strobed at 
the driving frequency, qj(ntD), is shown in the inset. The period-doubled 
oscillations qj(ntD)!∝!(−1)n are now manifest. Strikingly, the correlations 
are antiferromagnetic both in time and space, even though the oscillators 
are coupled together ferromagnetically (ωD!=!1.958, g!=!0.065, δ!=!0.067, 
η!=!0.003, T!=!0.004). In the final state, there is a finite density of π-domain 
walls between the two different period-doubled solutions.
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FIG. 10 Domain walls between different period-doubled so-
lutions of the parametrically driven 1D Frenkel-Kontorova
model (Eq.(12)) in contact with a finite-temperature
Langevin bath. Colors indicate the amplitude of the j-th
oscillator observed at even stroboscopic times qj(t = 2nT ),
with time running vertically. Inset, the oscillations at strobo-
scopic times qj(nT ), which reveal the period doubling. Figure
adapted from (Yao et al., 2020).

when H(t) is periodically driven, this need not be the
case: a non-equilibrium steady state can develop in which
energy and entropy flows from the drive to the bath via
the system.

We can now return to the question of period-doubling
in open classical many-body systems such as the Faraday-
wave instability and coupled pendula (see e.g. earlier
discussions surrounding Eq. (12) and Sec. III.A). For
small oscillations and weak damping, the friction re-
sults in a damped Mathieu equation of the general form
q̈k = −

[
ω2
k + δk cos(ωDt)

]
qk − γkq̇k. The sub-harmonic

responses of this model have been studied extensively
(Hayashi, 1953; Pedersen, 1980, 1935; Taylor and Naren-
dra, 1969). As shown in Fig. 9, for γk > 0 the sub-
harmonic response acquires a finite threshold value for
the drive amplitude δk, and modes outside the resonance
tongues are damped. Absent noise, SτB is then real-
ized as a sharp many-body bifurcation transition as some
combination of driving frequency, amplitude or damping
strength is tuned into the 2:1 parametric resonance of a k-
mode. For strongly viscous Faraday waves, the equations
of motion are somewhat more complex, but the conclu-
sion are similar (Edwards and Fauve, 1994; Kumar and
Tuckerman, 1994).

However, noise (i.e. finite temperatures, T > 0) in-
duces fluctuations between the different cycles of the
SτB, leading to a finite auto-correlation time. Recall
from our discussion of prethermal systems (Sec. III.B.1
and Sec. IV.D) that we may transform to a rotating
frame K(t): H(q, p, t) → H(P,Q, t) = Heff(Q,P ) + V (t)
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in which the driving V (t) is weak. For a single pendulum
(Eq. 6), Heff takes the form of a double-well potential.
The noise will then lead to activated hopping between
the minima at rate 1/τ = e−∆/kBT , where ∆ is the quasi-
energy barrier between the two minima. Thus, at finite
temperature, a single pendulum is no longer a true time-
crystal, but rather an “activated” time-crystal in which
the autocorrelation time of the SτB diverges exponen-
tially with temperature.

The problem is richer when coupling the pendula into
an array, where Heff approximately takes the form of an
Ising model (recall Sec. III.B.4 for e.g. the definition of
P∗),

Heff ≈
∑

i

[
(Pi − P∗)2

2
+ a cos(2Qi)

]
+
g̃

2

∑

〈i,j〉
(Qi −Qj)2,

(18)

where the parameters a depends on {δ, ε, ωD/ω0} (from
Eq. 12) and g̃ is the transformed coupling strength.

The low quasi-energy configurations are then local-
ized domain walls between the different period-m orbits.
These domain walls are easily observed when numerically
simulating a 1D coupled array of pendula [Eq. (18)] in
the presence of the Langevin noise, as shown in Fig. 10.
Indeed, one observes a gas of domain walls undergoing
Brownian motion due to the noise, occasionally nucle-
ating or annihilating in pairs. (Yao et al., 2020) studied
the motion of these domain walls in detail and found that
it leads to a decay in the SτB autocorrelation function,
〈qi(t = nT )qi(t = 0)〉 ∼ (−1)ne−t/τ . The decay rate τ is
proportional to the density of domain walls, which is in
turn related to the temperature of the bath through an
Arrhenius law, τ ∼ e∆/kBT , where ∆ is now the quasi-
energy activation barrier required to nucleate a domain
wall.

(Yao et al., 2020) found numerically that in 1D, col-
lective effects can cause the barrier ∆ to drop discontin-
uously as the parameters (e.g. δ or ωD) are varied, indi-
cating a non-equilibrium phase transition at which SτB
is completely destroyed. Without careful examination
of the temperature dependence at low T , this transition
might easily be mistaken as evidence for the existence of
a “true” SτB phase ensconced within a non-equilibrium
phase transition, while in reality the low temperature be-
havior is always activated.

Naively, the existence of a finite critical temperature,
Tc, for equilibrium Ising symmetry breaking in dimen-
sions two and greater suggests that the SτB domain walls
cannot proliferate for T < Tc, which would thereby sta-
bilize time crystalline order to infinite times. However,
in the damped system this is not correct. To see why,
(Yao et al., 2020) evaluated the effect of the Langevin
force in the rotating frame and found two contributions.
First, the {Q,P} experience a Langevin force at the same
temperature T , which locally equilibriates Heff, explain-

ing the activated processes discussed above. Second, the
effective Hamiltonian acquires a new contribution from
the friction η, of the form

∑
i ηP∗Qi. Its physical origin

is that in the rotating frame, P encodes the amplitude
of the oscillation (cf. Eq. (7)), and because the friction
prefers to damp the amplitude, this equates to a net force
on Q. The net potential, V ≈ a cos(2Q)+ηP∗Q, then bi-
ases Q to “roll downhill”, which following Eq. (7), would
unlock the response from ωD/2. The bias leads to a net
force on the domain walls which causes nucleated islands
to grow (Yao et al., 2020), even though both sides of the
domain wall are related by the Z2 time-translation sym-
metry. This net force destroys the possibility of phase
coexistence. Thus, even in 2D and greater, the time-
crystalline response in this and similar models still ex-
hibits an activated auto-correlation time. Intriguingly,
a closely related effect has been studied in the context
of probabilistic cellular automata, (Bennett et al., 1990)
which are introduced in Sec. V.D.

As η → 0, the magnitude of the aforementioned force
goes to zero and the density of domain walls can then
undergo a transition analogous to the equilibrium Ising
transition. However, once η → 0, one needs to again
worry about heating from the residual time-dependent
part of the drive (this is precisely related to the prether-
mal situation discussed in Sec. IV.D).

In summary, the existence of Heff provides a unify-
ing framework for three regimes of time-crystalline be-
havior: in the closed cased (η = T = 0), one has the
prethermal scenario where heating destroys SτB after
an exponentially long time τ ∼ eωD/J ; in the open case
(η > 0, T > 0), the environment nucleates domain walls
which destroy the SτB on an exponentially activated
time-scale τ ∼ e∆/kBT , where ∆ is a quasi-energy barrier;
and finally for the purely dissipative case η > 0, T = 0,
there is true SτB conceptually analogous to that of the
coupled map lattice (Sec. II.A).

B. Experimental realizations of activated time-crystals:
pendula, AC-driven charge density waves, and fractional
Shapiro steps

Several experiments on open many-body systems have
observed subharmonic responses which may be inter-
preted within the framework of activated SτB. One ob-
vious example is a shaken pendulum treated as a macro-
scopic object of ∼ 1023 particles. The coupled oscillator
array of Eq. (12), for example, can be understood as a
macroscopic pendulum composed of atoms, qi, when ac-
counting only for its 1D width. The effect of noise on such
systems is of practical interest; for example parametric
resonance of a mesoscopic mechanical oscillator such as
an AFM tip (Rugar and Grütter, 1991) is a standard tool
for mass and force sensing. In perfect isolation, driv-
ing will generate stresses on the oscillator, causing the
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phonon modes (qk 6=0) to absorb a portion of the driving
power, heating up the system and (at long times) melt-
ing the oscillator. This is the prethermal scenario, though
some work remains to rigorously prove there is a regime
in which the time-scale increases exponentially (Mori,
2018; Ye et al., 2021). Contact with a bath (e.g., air at
T = 293K) prevents the oscillator from melting, and it is
helpful to estimate the resulting activation time. In par-
ticular, the nucleation of a “domain wall” corresponds to
ripping the oscillator in half, an energy scale so many or-
ders of magnitude above T = 293K, that the time-scale is
inconceivable. However, collisions with an unlikely con-
spiracy of air molecules can also cause the entire oscillator
to collectively hop between the two quasi-energy minima;
using Eq. (12), one can estimate the quasi-energy barrier
for such a fluctuation as ∆ ∼ 2δ(2− ωD/ω0).

At scales of kilograms, meters, and room-temperature,
∆/kBT again results in an inconceivably long time-scale.
However, for mesoscopic resonators it can be highly rel-
evant. An application of this effect is found in nanoscale
mass sensing based on parametric oscillation of an AFM
tip. In order to weigh an object attached to the tip, one
detects the sharp jump in the amplitude of oscillations as
the detuning 2 − ωD/ω0 is driven near parametric reso-
nance; the precise location of the jump is highly sensitive
to the total mass. However, finite-T noise rounds out
the transition into a non-linear crossover, an effect which
is experimentally observable and limits the practical res-
olution of parametric-resonance-based sensing (Prakash
et al., 2012; Zhang and Turner, 2004).

Two more intrinsically mesoscopic examples, which
can be recast in the language of activated time-crystalline
order, are AC-driven charge density waves (CDW) and
fractional Shapiro steps in Josephson junction arrays.
Both have received tremendous experimental attention;
since the two systems are conceptually equivalent (Bohr
et al., 1984; MacDonald and Plischke, 1983), we will
largely focus on the former. In a charge density wave ma-
terial such as NbSe3 (Grüner, 1988), the electron density
spontaneously develops a charge density modulation at
twice the Fermi wavevector, n(x) ∼ n0 cos(2kFx+ θ(x)),
where θ is the slowly varying phase of the CDW. Treating
θ as a single macroscopic degree of freedom, one obtains
a phenomenological equation of motion given by (Grüner
et al., 1981):

θ̈ + (ω0τ)−1θ̇ + sin θ = E(t)/ET (19)

where sin θ accounts for the potential that pins the CDW,
ω0τ is a relaxation time (note that time is rescaled by
the natural oscillation frequency ω0) due to dissipation
from the material, E(t) is the applied bias, and ET is
the threshold bias for transport. This is the equation of
motion for a damped and driven pendulum. When E(t)
is larger than the threshold ET , the system enters into a
sliding state with 〈∂tθ〉 6= 0, generating a finite current.
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FIG. 1. Differential resistance vs dc sample voltage (a) with and (b) without applied rf voltage at 25 MHz. The peaks
in (a) correspond to steps in the direct I-V curve. A few peaks are identified by p/q (see text).

sured with and without externally applied rf voltage
at co,„t/2n = 25 MHz. For the rather low rf voltage
used here, ET is not reduced from the value in the
absence of rf, but there appears a whole family of
peaks at impressed dc current such that

p~ext = q int~ (3)
where p and q are integers. The ratio cu;„$2rrIcDw
was found to be 30 MHz cm2/A in agreement with
earlier studies. ' A few of the peaks are identified
by p/q in the figure. The identifications were con-
firmed for several p/q by plotting Icnw vs co,„, and
checking that the slopes were indeed p/q times that
for the fundamental. The features with small p and
q are more conspicuous, being both taller and wid-
er. Figure 1 is a typical trace. By varying V,f and
~e„,, either more or fewer steps can be observed.
While the dependence on these parameters is not
strong, substantially increasing or decreasing either
V,f or co,„,significantly reduces the number of steps
which can be observed.
The steps with q =1, p ~ 1 have been studied

previously "and are well known to arise from fre-

quency locking between the internal CDW (or
Josephson) frequency rv;„, and all harmonics pt0, „,
of the applied rf field. The harmonics of m,„, are
induced by the inherent nonlinearity of the system.
Direct spectral analysis of the current oscillations'
in the absence of applied rf reveals rich harmonic
current, with intensity of the harmonics qco;„, de-
caying slowly with q. Hence it is natural to interpret
the peaks as regions in which any harmonic of the
internal frequency locks to any harmonic of the
external field. ' To the extent that mode locking
within such regions is complete, the CDW is unable
to respond to changes in the applied dc voltage, and
the resistance rises to that of the normal electrons
alone. In the present experiment, the steps have
lower resistance than the normal electrons, indicat-
ing that the locking is not complete. The tendency
to lock is weaker for larger p and q.
It is largely agreed that complete mode locking

occurs for Eq. (2) only because of the inertial
term. ~' ' In NbSe3 the inertial term is negligible
up to several hundred megahertz. ' The argument,
based on the frequency-dependent conductivity
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FIG. 11 Differential resistance measurements, dV/dI, in the
charge density wave system NbSe3. A bias voltage V (t) =
Vdc + Vrf cos(ωDt) is applied, and the DC component of the
resistance dVdc/dIdc is measured, holding Vrf and ωD fixed.
Sharp peaks in the resistance correspond to plateaus in the
I-V curve. The location of these peaks can be attributed to a
motion of the CDW in which it shifts by p/q wavevectors per
driving period, resulting in a subharmonic response between
the AC components of the voltage and current. In the absence
of the AC drive (panel b), the subharmonic response is absent.
Figure adapted from (Brown et al., 1984).

In the experiments of interest, a bias is applied with
both DC and AC components, E(t) = Edc+Eac cos(ωDt).
In the sliding state, the motion of the CDW over the pe-
riodic pinning potential defines a frequency scale ωdc ≡
〈θ̇〉 ≈ ω0τ

Edc

ET
. When ωdc = p

qωD, commensuration ef-
fects allow the AC-oscillations to assist the motion of
θ over the potential. Since the current Idc is propor-
tional to ωdc, commensuration can lead to a plateau in
Idc whenever ωdc ≈ p

qωD. This leads to the emergence

of a “devil’s staircase” of plateaus (Brown et al., 1984;
Hundley and Zettl, 1989; Thorne et al., 1987b; Zettl and
Grüner, 1983) in the I-V curve as Edc is swept at fixed
Eac (see Fig. 11 which depicts dV/dI versus the voltage
V ).

Most notably, for q 6= 1 (see for example the prominent
peak in Fig. 11 for p/q = 1/2), the response is subhar-
monic: the CDW shifts by 1/q of a wavelength with each
period of the AC-drive.

While Eq. (19) treats θ as single macroscopic variable,
in the experiment there are spatial fluctuations which
can be accounted for by considering a 2D or 3D array
of θ(r) coupled through an elastic stiffness. (Middleton
et al., 1992) showed theoretically that the subharmonic
response remains robust in this many-body setting. In
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fact, in the overdamped regime with a purely sinusoidal
pinning potential, subharmonic responses are only found
when treating the problem as many-body one.

The phenomenological equation of motion [Eq. (19)],
which predicts perfect SτB, also neglects the effect of
thermal fluctuations that are of course present in exper-
iments such as Fig. (11). As discussed in (Thorne et al.,
1987a,b), a careful examination of the experimental I-V
curves reveals that some (but not all) of the subharmonic
plateaus are rounded-out in a sample dependent fashion.
Complementary to this, the spectral distribution I(ω) (or
V (ω) in current biased mode) shows peaks at ω = p

qωD
with finite width, rather than perfect Bragg peaks. This
broadening is attributed to a distribution of velocities
∂tθ throughout the sample, which, in the language of
time-crystalline order, implies the absence of perfect SτB.
Indeed, numerical simulations of driven 1D CDWs con-
firm that finite temperature broadens the plateaus (Mali
et al., 2012). Unfortunately, owing to thermal gradients
generated due to Ohmic heating, AC-driven CDWs do
not appear to be particularly well suited for quantita-
tively investigating the temperature dependence of the
broadening at low T (see e.g. discussions in Sec. V.A).

Mathematically equivalent physics is found in the AC
Josephson effect (recall related discussions in Sec. I). In
the McCumber model (McCumber, 1968) for a resistively
and capacitively shunted Josephson junction (RCSJ), the
superconducting phase difference φ across a Josephson
junction obeys the equation of motion

ω−2
p φ̈+ ω−1

c φ̇+ sinφ = I(t)/Ic (20)

where ωp ≡
√

2Ic/C, ωc ≡ 2IcRN , and V/RN = φ̇/2RN
is the normal current across the junction; here, C is the
capacitance, I is the current across the Josephson junc-
tion, Ic is the current, and RN is the normal resistance.
The situation considered in Sec. I occurs in experiments
in which the junction is under-damped. The DC current
is carried entirely by normal quasiparticles, IDC = In,
satisfying IDC/Ic = ω−1

c φ̇ or, simply, IDC = V/RN . An
AC supercurrent flows in response to the voltage drop
across the junction, IAC(t)/Ic = sin(2IDCRN t). How-
ever, in this under-damped regime, the I − V curve is
hysteretic, and there is a branch in which the voltage
drop across the junction is zero so long as the DC cur-
rent is less than the critical current: IDC = Ic sinφ. This
vertical step in the IV curve is followed by a plateau at
I = Ic from V = 0 to V = IcRN where it rejoins the
other branch.

Returning to the general case of Eq. (20), we note
that this equation of motion is formally equivalent to the
CDW [Eq. (19)], and by analogy one also expects steps
in the I-V curve when the AC component of the current,
I(t) = Idc + Iac cos(ωDt), is commensurate with rational
harmonics of the DC voltage, ωJ = 〈φ̇〉 = 2eVdc. (The
vertical step in the superconducting branch of the hys-
teretic I − V curve in the underdamped case is a trivial

version of such a step.) These “Shapiro steps” were first
observed at integer harmonics in single Josephson junc-
tions (Shapiro, 1963). Later experiments (Benz et al.,
1990; Lee et al., 1991) on arrays of Josephson junctions
revealed subharmonic Shapiro steps.

C. Ergodicity in open systems

At time scales t > e∆/kBT , an activated time crystal
loses memory of the initial condition which distinguishes
between the m-cycles of the SτB oscillation: its dynam-
ics are ultimately ergodic. Earlier in this Colloquium,
ergodicity was introduced as a property of a measure-
preserving deterministic system. The precise definition
works differently in the stochastic case, but intuitively,
still captures whether a system inevitably “forgets” its
initial condition. We direct the interested reader to
(Gielis and MacKay, 2000; Gray, 2001) for a discussion
of the technical aspects required to make the definitions
precise in the thermodynamic limit.

In the stochastic setting, a probability distribution ρs
is an “invariant measure” of the dynamics if it is a fixed
point of the stochastic update, Φ[ρs] = ρs, i.e. it is a
steady-state distribution. A stochastic system is said
to be ergodic if two properties hold: (1) the dynamics
have a unique steady state ρs and (2) the long-time be-
havior of any initial state relaxes to this steady state,
limt→∞ ρ(t) = ρs. As in the closed, deterministic case,
SτB in the sense of Eq. (3) requires that Φ is non-ergodic.
Otherwise, at long times, the m-possible orbits become
indistinguishable and any oscillations will decay.

Instead, a SτB phase will exhibit so-called “asymptotic
periodicity”(Lasota et al., 1984; Losson and Mackey,
1996). At long times the distribution relaxes to a convex
combination of m locally-distinguishable distributions
ρp, ρ(t) → ∑m

p=1 αp ρp+t which are cyclically permuted
under the evolution Φ[ρp] = ρp+1 (with ρp+m = ρp).
While ρs = 1

m

∑
p ρp is a unique steady state, in the

generic case where the αp are unequal ρ(t) will continue
to oscillate so that the limit limt→∞ ρ(t) = ρs fails to
exist 3.

The existence of true SτB in open dynamical systems
thus hinges on a far more fundamental question: can
a locally interacting stochastic system generically break

3 In a deterministic system, “ergodicity” governs the invariance
of Cesáro sums, limτ→∞

1
τ

∑τ
t=1 O(Φ(t)(x)). In this case, SτB

implies that the m-fold iterated map Φ(m) is not ergodic, but
the map Φ itself generally is ergodic (though it is not mixing).
In the stochastic case, however, ergodicity is usually defined to
imply the stronger form of convergence limτ→∞ = ρs, rather
than limτ→∞

1
τ

∑τ
t=1 Φ(t)[ρ0] = ρs. By this definition, Φ it-

self is non-ergodic. While the steady state ρs = 1
m

∑m
p=1 ρp

is unique, and one has limτ→∞
1
τ

∑τ
t=1 Φ(t)[ρ0] = ρs, the limit

limτ→∞ ρ(t) does not exist.
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ergodicity? This line of questioning has a deep history in
the fields of non-linear dynamics, mathematical physics,
and computer science. The answer is intimately related
to the stability of phase coexistence and phase transitions
in stochastic systems ().

We can illustrate the ideas at play by stripping away
the complexity of Hamiltonian dynamics and instead con-
sidering a classical spin system. For specificity we start in
equilibrium with a classical Ising model HI[{σ}]. While
HI itself does not define any dynamics, we may define
a “kinetic Ising model,” such as Glauber or Hasting-
Metropolis rules, which update the spin configuration
σ → σ′ according to a local conditional probability
Φ(σ′|σ) which obeys detailed balance with respect to
HI. Detailed balance ensures that the distribution ρs =
e−βH/Z is a steady state. On a finite system at T > 0,
standard results guarantee that ρs is the unique steady
state with a finite relaxation time, so the process is er-
godic (Feller, 1957). However, the thermodynamic limit
leads to richer possibilities. When h = 0 and T is be-
low the critical Ising temperature (e.g., when tuned to
a first-order phase transition), the phase coexistence of
the two magnetized phases implies the existence of two
steady states, ρ(σ)+ = ρ(−σ)−, and the dynamics are
not ergodic. However, for any finite h phase coexistence
is lost and the steady state is unique. This illustrates
a general principle in equilibrium: ergodicity-breaking
requires tuning one or more parameters to a first-order
phase transition, and in this sense is fine-tuned (or re-
quires a symmetry beyond time-translation invariance).

We note that one route around this equilibrium no-
go is to consider a spin Hamiltonian with multi-body
interactions (Kozin and Kyriienko, 2019) or power-law
interaction of sufficiently slow fall-off, so that the energy
penalty for domain walls can be made to grow faster than
the extensive energy of the symmetry-breaking external
field (Liggett, 2012). Or, taking this to the extreme, by
considering models with all-to-all couplings in the spirit
of a mean-field Hamiltonian, so that locality is lost en-
tirely (Lyu et al., 2020; Morita and Kaneko, 2006; Pizzi
et al., 2021b; Russomanno et al., 2017; Yang and Cai,
2021). However, such models are not local in the usual
sense: their thermodynamic properties are not extensive
in system size, among other anomalies. So, while such
models can be used as the basis for stabilizing even con-
tinuous SτB, the starting point is rather different than
the usual notion of locality implied in the classification
of phases.

D. Probabilistic cellular automata

Moving beyond equilibrium, one can consider more
general local Markov updates Φ(σ′|σ) of a discrete spin
system without reference to any particular H. Such
models are a type of probabilistic cellular automata

(PCA)(Dobrušin et al., 1990); the continuous-time gen-
eralization of PCAs are dubbed “interacting particle sys-
tems” (Liggett, 2012). One particularly convenient way
to obtain a PCA is to start with a deterministic cellular
automata (CA) (Gutowitz, 1991) defined by a local up-
date rule σ → ΦCA(σ), and then follow each CA update
with random spin flips at an “error rate” ε. For Marko-
vian errors we then obtain a Markov process which is a
perturbation of the deterministic CA, Φ = Φε ◦ΦCA (we
note that mathematical results on PCA are even more
general, allowing for non-Markovian errors). Such mod-
els have been of interest to the theoretical computer sci-
ence community because CA are Turing complete, so the
study of the possible generic behaviors of a PCA have
implications for the generic behaviors obtainable by a
classical computer perturbed by errors: e.g. Can reliable
systems emerge from unreliable components (Von Neu-
mann, 1952)? For a review of these connections between
theoretical computer science and more familiar notions
in non-equilibrium statistical physics, we refer the inter-
ested reader to (Gray, 2001).

From the perspective of time crystals, the relevant
question becomes the following: Do there exist CA which
remain non-ergodic for generic small perturbations Φε?
And if so, might such a CA be the basis for sponta-
neous time translation symmetry breaking? These ques-
tions were answered in the affirmative in (Toom, 1980)
and (Bennett et al., 1990) Before diving into the first
question, we can sketch Bennett’s answer to the sec-
ond. Suppose there does exist a local, non-ergodic CA
ΦCA with m-distinct steady states. For the simplicity of
discussion, we further assume that these states are ex-
changed by a Zm symmetry, but (unlike a kinetic Ising
or Potts model) we assume the non-ergodicity is stable
to generic (possibly Zm breaking!) errors. We can then
define a rotating version of the CA by composing ΦCA

with the action of Zm, Φ 2π
m CA ≡ G2π/mΦCA. By con-

struction, ΦmCA = Φm2π
m CA

; thus, if ΦCA is proven to be

stably non-ergodic, Φ 2π
m CA inherits this property and by

construction exhibits the “asymptotic periodicity” of a
time-crystal, cycling through the m-fixed steady states
of ΦCA.

A particularly important point to emphasize is that
(while convenient) it is not necessary to assume that ΦCA

exhibits a Zm symmetry for stability. Indeed, if the non-
ergodicity of ΦCA is stable to Zm-breaking perturbations,
one could just as well have started out with a perturbed
version of ΦCA which breaks the Zm symmetry. The con-
struction thus satisfies the important conceptual require-
ment that SτBdoes not depend on any further internal
symmetries.

Returning to the first question, the possibility of
a local and generically non-ergodic PCA was a long-
standing question for several decades (Dobrušin et al.,
1990; Lebowitz et al., 1990; Toom, 1995) finally answered
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FIG. 1. Phase diagram of the NEC system, for noise

parameters p and q, with amplitude = p + q and bias= (p —q)/(p+ q).

phase region is a narrow metastable zone (demarcated 1 I I

on the right by dashed lines), in which large islands of
V)

the favored phase grow but small islands shrink. A lg

critical exponent of 3.0 + 0.4 was found for the vertical lQ two
width of the two-phase region as a function of noise phase
amplitude (p+ q) below the critical point. Other runs region
on one-phase systems with unbiased noise p = q yield-
ed the value P = 0.122 +0.01 for the exponent describ-
ing magnetization as a function of noise amplitude
below the critical point.
Besides being irreversible, the NEC model differs

from conventional kinetic Ising models in having syn-
chronous updating. However, preliminary runs in
which only a fraction (—, to —„)of the spins are updat-
ed at each time step indicate that even a fully asyn-
chronous NEC model would have a qualitatively similar phase diagram. We also explored an analytically solvable
mean-field approximation to the NEC rule, based on the recurrence relation

R (m) = —1+ [p(1—m) +3p(1—m)2(1+m)+3(1 —q)(1—m)(1+ m) + (1—q)(1+m) ]/4,
where R(m) is the magnetization at time t+1 as a function of that at time t. Here, too, the phase diagram was
similar, except that there was no metastable zone, and the critical exponents were —, (for the two-phase region
width) and —,

' (for P).
The equivalent (d+1) dimensi-onal Hamiltonian, and its free energy. We now—review the construction of an

equivalent (d+ 1)-dimensional Hamiltonian model for an arbitrary (in general irreversible) d-dimensional CA, '2
and show why the former can have multiple stable phases over a set of finite measure in the parameter space of the
latter. The possible time histories X(0),X(1), . . . , X(t) of a d-dimensional CA can be viewed as configurations
of a (d+1)-dimensional lattice with one boundary fixed at X(0), the initial state of the CA. The probability
P (X(0),X(1), . . . , X(t) ) of such a history may be expressed as the product
P (X(1)/X(0) )P (X(2)/X(1) ) . P(X( t)/X(t 1)), —

where P(X(l+ I)/X(l) ) denotes the conditional probability for the CA to be in state X(l+ I) at time t+ I given
that it was in state X(i) at time i.
By defining
H(X( t + 1),X( i) ) = —ln [P(X(i+ 1)/X(i) ) ],

we cast the history probability in the familiar form of a Boltzmann factor (taking kT = 1):

P (X(0),X(1), . . . , X ( t) ) = exp —XH(X (i + 1),X(i)),i=0
with H playing the role of an effective Hamiltonian
coupling adjacent d-dimensional time slices. All prop-
erties of the CA can thus be expressed as canonical-
ensemble averages of the (d+1)-dimensional system
defined by Hamiltonian H. The (d+1)-dimensional
model has the remarkable feature8 that its free energy
is identically zero regardless of the CA s initial condi-
tion or transition probabilities. This follows from the
normalization of these probabilities [for each X(i), the
sum over X(i+1) of P(X(i+1)/X(i)) must be 1),
which in turn implies that the (d+1)-dimensional
partition function is 1. In the thermodynamic limit
any stable phase of the d-dimensional system is a
stable phase of the (d+1)-dimensional system; there-
fore, if a d-dimensional CA has multiple stable phases,
its corresponding (d + 1)-dimensional Hamiltonian
model will also, all with zero free energy.
The preceding argument holds whether X(0),

! X(1), etc. , represent time steps of a synchronous
model, or discrete-time snapshots of an asynchronous
(master equation) model evolving in continuous time.
However, in the synchronous case, because transitions
at all sites in the same time slice are independent, the
equivalent Hamiltonian is of a generalized Ising form,
being a sum of local terms H(y, x) = —inP(y/x),
where P(y/x) is the conditional probability that a site
will be in state y at time t+ 1, given that its neighbor-
hood was in state x at time t. The normalization con-
straint, viz. , that for each x, the sum over y of P(y/x)
be 1, restricts the GIM to a lower-dimensional surface
in the parameter space of its coupling constants, on
which the free energy is zero.
In the case of metastable phases the (d + 1)-

dimensional free energy per space-time site is not 0
but —ln(1 —I ) =I, where I is the nucleation rate

659

FIG. 12 Phase diagram of the Toom model, adapted from
(Bennett and Grinstein, 1985). After each CA update, spins
randomly flip up or down with rate εp, εq respectively, with
“bias” (εp − εq)/(εp + εq) and “amplitude” εp + εq. Within
the two-phase region, there are two distinct steady-state dis-
tributions and the dynamics are not ergodic. Unlike the Ising
model, the system can thus “remember” one bit of informa-
tion even in the presence of biased noise.

in the affirmative in the groundbreaking work of (Toom,
1980).

E. An absolutely stable open time-crystal: the π-Toom
model

The Toom CA is a 2D binary spin model with a re-
markably simple “north-east corner” (NEC) majority
rule, defined as follows (Toom, 1980, 1974). At each
step, each spin follows a majority vote amongst itself
and its two north and east neighbors: σx,y(t + 1) =
maj(σx,y, σx+1,y, σx,y+1). This is a seemingly innocuous
modification of the T = 0 nearest-neighbor kinetic Ising
rule, in which each spin would follow a vote amongst its
four {north, east, south, west} neighbors. Note, however,
that due to the spatial asymmetry, the Toom rule cannot
be understood as minimizing the energy of any Hamil-
tonian, and does not obey detailed balance (Grinstein
et al., 1985). This asymmetry ensures that if an island of
the minority spin nucleates, the NEC-rule will cause the
island to shrink linearly in time from the NE-direction
inward. This is far faster than the Ising model, where
the thermodynamic force on a domain wall depends on
its local curvature, and hence decays with the size of the
island (Bennett and Grinstein, 1985).

The Toom PCA is then obtained by perturbing with
biased errors in which, for example, spins flip up with
error rate εp, and down with error rate εq. The bias
b = (εp − εq)/(εp + εq) breaks the Ising symmetry. Re-
markably, there is nevertheless a finite volume in {εp, εq}-
space in which two magnetized steady states persist de-
spite the bias that prefers one over the other (Fig. 12).
Rigorous results prove that the ergodicity breaking is
robust to essentially any sufficiently small perturbation
— even a spatio-temporally correlated one, or a noise
distribution which is not itself time-translation invari-
ant (Berman and Simon, 1988; Gacs, 2021; Toom, 1980).

We note that this last point distinguishes the “absolute
stability” of the open system π-Toom time crystal (to
be defined in the next sentence) from its closed system
counterparts (i.e. Sec. IV), where noise that breaks the
underlying discrete time translation symmetry would im-
mediately destroy the time crystal.

With Toom having done the difficult part, the π-Toom
model is then defined as the anti -majority NEC rule
σx,y(t+ 1) = anti-maj(σx,y, σx+1,y, σx,y+1). The π-Toom
model is a time-crystal, which is stable to arbitrary per-
turbations. Interestingly, the SτB of the π-Toom, model
was already pointed out over two decades ago in (Ben-
nett et al., 1990), and later in Gielis and MacKay, 2000,
where it was referred to as an example of a “type-G phase
transition.”

While the original Toom model exhibits m = 2 steady
states, and hence is the basis for period m = 2 SτB, it
generalizes to any m > 2 (Bennett et al., 1990). Further-
more Toom-like models exist in all dimensions D > 1,
simply by stacking the 2D version. In fact, an extension
in D = 3 provides the basis for error-corrected classical
computing (Gács and Reif, 1988). The existence of stable
ergodicity breaking in 1D PCAs was only shown more re-
cently by Gács, Gács, 2001. Taken together, PCAs sup-
port absolutely stable SτB of any period m ≥ 2 in all
dimensions D ≥ 1.

Is the full error-correcting capability of the Toom and
Gács models really necessary for stable SτB? For exam-
ple, in the construction Φ 2π

m CA ≡ G2π/mΦCA we may
instead take ΦCA to be the kinetic Ising model or its
generalization to Zm. The ferromagnetic interactions of
the Ising model are a mild form of error correction in that
they cause minority islands to shrink due surface tension.
However, (Bennett et al., 1990) argued that this equilib-
rium form of error correction is insufficient for stabilizing
m > 2 SτB.

The reason is that for m > 2, the chirality of the
periodic evolution between steady states n → n + 1
mod m implies that there is no symmetry which forbids
a stochastic force per unit length from acting on a do-
main wall between regions of n and n + 1 - type steady
states (e.g. favoring n to grow at the expense of n + 1
mod m). Such a force is thus generic, and will drive mi-
nority droplets to nucleate and grow. This force is coun-
teracted by the surface tension of the ferromagnetism,
which, however, decays with the local curvature. Thus
the former force will always win out for sufficiently large
droplets, causing minority droplets to proliferate and de-
stroy SτB at long times. The Toom model escapes this
reasoning because its error-correction effectively exerts a
force on domain walls which is independent of their cur-
vature, and can thus shrink minority droplets of any size.
(Bennett and Grinstein, 1985)

However, the m = 2 case is an exception because there
is no handedness to the periodic evolution. Even if there
is a force which favors (say) type n = 0 over n = 1, be-
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cause the domains effectively switch type at each step,
the net force on a domain wall averages to zero over one
period, and islands can thus be shrunk via ferromagnetic
surface tension (Bennett et al., 1990). This implies the
binary-spin π-Ising model can support SτB below the
Ising critical temperature, as was recently studied in de-
tail (Gambetta et al., 2019a).

It is interesting to contrast this discussion with the
classical activated time crystal of Sec.V.A, which was not
stable against the proliferation of minority islands even
though m = 2. To see why, recall that the emergent
Ising degree of freedom was effectively embedded into a
larger continuous state space, e.g. σ = sgn(sin(Q)). A
domain wall between σ = 1,−1 could thus be of two types
depending on whether Q wound clockwise or counter-
clockwise. Because this handedness is preserved under
the oscillation Q → Q + π, there is no symmetry which
forbids a domain wall from experiencing a net force which
does not average to zero over m = 2 periods, even while
the identities of the domains themselves are exchanged.

Does this imply that if the binary-spin π-Ising model is
embedded into a model with additional degrees of free-
dom, the SτB may not be generically stable? Or in-
stead, may there be a parameter regime of models like the
Langevin-driven parametric oscillator arrays (12) which
exhibit true, rather than activated SτB? Only time will
tell.

F. Open Hamiltonian and quantum dynamics

While we have discussed the existence of stable time-
crystals in the stripped-down setting of a PCA (Sec. V.D
and Sec. V.E), our original microscopic starting point
(Sec. V) was the periodically driven Langevin equation,
or its quantum analog, the Lindblad equation. An in-
triguing open question is the following: Do the rigor-
ous results on SτB in probabilistic cellular automata
translate to these settings? Since PCA are motivated
as a coarse-grained description of the Hamiltonian world
around us, it certainly tempting to speculate that they
do. Two recent studies have shown how the π-Toom
model can be embedded into classical Langevin (Zhuang
et al., 2021) or quantum Lindblad (McGinley et al., 2021)
dynamics, and in both cases there is strong numerical
evidence for true SτB. However, there is not yet a fully
rigorous proof as in Toom and Gács work. While Toom-
like stability for a continuous-time version of a PCA was
proved in (Gács, 2001), the state space in that model is
discrete.

As we will discuss in the outlook, the answer to this
question is a special case of a deeper one: Is error-
corrected computing physically realizable in this uni-
verse?

VI. OUTLOOK AND FUTURE DIRECTIONS

A. New venues for time crystals

In Sec. III.C of this Colloquium, we introduced the
mantra: Where there is ergodicity breaking, there will be
time-crystals. This naturally suggests that new develop-
ments in the ergodicity breaking of many-body systems
— ranging from Hilbert space fragmentation (Sala et al.,
2020; Yang et al., 2020) and shattering (Khemani et al.,
2020) to quantum scars (Serbyn et al., 2021; Turner et al.,
2018a) and Stark localization (Doggen et al., 2021; van
Nieuwenburg et al., 2019; Schulz et al., 2019) — repre-
sents fertile ground for exploring novel formulations of
time-crystalline order.

1. Quantum many-body scars

Interacting quantum systems can exhibit a weak break-
down of thermalization, where certain initial conditions
exhibit persistent many-body revivals in time (Bernien
et al., 2017; Turner et al., 2018b). This phenomenon,
dubbed quantum many-body scars, is associated with
the presence of anomalous, non-thermal eigenstates; we
direct the interested reader to a recent review on the
topic (Serbyn et al., 2021). From the perspective of time
crystalline order, the presence of scar states can cause
the system to undergo periodic entanglement and disen-
tanglement cycles following a quench (Ho et al., 2019;
Michailidis et al., 2020; Serbyn et al., 2021). In practice,
however, quantum many-body scar states are quite frag-
ile since they rely upon the existence of a dynamically
disconnected subspace of non-thermalizing eigenstates;
indeed, the presence of generic interactions is expected
to eventually lead to thermalization (Lin et al., 2020).

The connection between quantum many-body scars
and time-crystalline behavior has recently been explored
in a Rydberg-based quantum simulation platform (Blu-
vstein et al., 2021; Maskara et al., 2021). In particular,
the experiments observed that the coherent revivals as-
sociated with quantum many-body scars could be stabi-
lized by additional periodic driving. This periodic driv-
ing leads to both an increase in the lifetime of the scarred
oscillations as well as the emergence of a period-doubled,
subharmonic response. While reminiscent of prethermal
time crystalline order (Sec. IV.D), we note two impor-
tant differences. First, the experiments are performed in
a regime where the driving frequency is of similar order as
the local energy scales of the many-body system. Second,
the subharmonic response exists only for Néel-like ini-
tial states (associated with the quantum scars) (Maskara
et al., 2021). Looking forward, a number of doors are
opened by the possibility that periodic driving can en-
hance the stability of non-ergodic dynamics. In addition
to novel settings for observing time crystalline order, the
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ability to parametrically control the lifetime of such order
could also lead to potential applications in areas such as
quantum metrology and quantum information science.

2. Stark time crystals

In the presence of an electric field, the wavefunction
of electrons in a material are localized to a region whose
size decreases as the field increases. In the absence of
interactions, this phenomenon, which arises without dis-
order, is known as Wannier-Stark localization (Wannier,
1959). Recent theoretical and experimental investiga-
tions have explored whether such localization can per-
sist in the presence of many-body interactions, leading
to Stark MBL (Guo et al., 2020; Morong et al., 2021;
Scherg et al., 2021; Schulz et al., 2019).

(Kshetrimayum et al., 2020) discuss the possibility of
discrete time crystals protected from Floquet heating by
Stark many-body localization. They probe the existence
of a Stark time crystal using numerical simulations of a
one-dimensional spin chain; focusing on two specific ini-
tial states (i.e. the ferromagnetic and anti-ferromagnetic
states), (Kshetrimayum et al., 2020) observe that for
a sufficiently strong linear potential, the states exhibit
time crystalline order, which seems to be robust to π-
pulse imperfections (recall discussions from Sec. IV.B).
However, when differences in the linear potential coin-
cide with integer multiples of the drive frequency, they
observe the coherent self-destruction of time-crystalline
behavior. An advantage of the clean, disorder-free set-
ting, is that one can imagine the possibility of order that
spontaneously breaks both spatial and time translation
symmetries. This theme has been studied in a number of
contexts (Smits et al., 2018; Träger et al., 2021; Žlabys
et al., 2021) and remains an active area of exploration.

B. Prethermalization beyond Floquet quantum systems

1. Classical prethermal discrete time crystals

In Sec. IV.D, we focused our attention on prethermal
time crystals in closed (i.e. unitarily evolving) quantum
systems. However, as previously discussed, one of the
central features of Floquet prethermalization—i.e. expo-
nentially slow heating—is also expected to occur in clas-
sical many-body systems (Hodson and Jarzynski, 2021;
Howell et al., 2019; Mori, 2018). This immediately begs
the question: Can such systems also host prethermal time
crystals (Hodson and Jarzynski, 2021; Howell et al., 2019;
Mori, 2018; Pizzi et al., 2021c; Ye et al., 2021)?

Recent work by Ye et al., 2021 and Pizzi et al., 2021c
answer this question in the affirmative. A practical ad-
vantage of the generalization to classical systems, is that
it immediately enables the study of PDTCs in dimen-
sions, d > 1. For example, Ye et al., 2021 study a near-

τ̃zi ≔ Pð0ÞτziPð0Þ†, which is localized near site i. Under
“reverse evolution” defined as

τ̃zi ðtÞR ¼ UðtÞτ̃ziUðtÞ†; ð8Þ

we obtain, using Eq. (6) and ½τzi ; D% ¼ 0, that

τ̃zi ðtÞR ≈ PðtÞe−itDτzi eitDPðtÞ† ¼ PðtÞτziPðtÞ†: ð9Þ

This means that the motion of the τ̃zi ðtÞR is time quasi-
periodic, which in turn implies that there is an infinite
sequence in time whereby the operator returns arbitrarily
close (but never exactly) to the initial operator τ̃zi . Why
should the reverse evolution of the dressed l-bit τ̃zi be a
useful concept? Consider the forward Heisenberg time
evolution of an operatorOi localized near site i viaOiðtÞ ≔
UðtÞ†OiUðtÞ and ask how this operator spreads over time in
space. In an ergodic system, we expect that any local
operator spreads generically ballistically, or diffusively at
the slowest. In our present case, computing the overlap of
OiðtÞ with the localized dressed l-bit τ̃zi ,

TrðOiðtÞτ̃zi Þ ¼ TrðOiτ̃
z
i ðtÞRÞ; ð10Þ

reveals that this overlap varies quasiperiodically in time
rather than decaying to zero. We can interpret this as the

statement that some fraction of the operator OiðtÞ remains
localized near its origin rather than being transported away.
What we have described is thus a new kind of dynamical

localization that can be dubbed “quasiperiodically driven
MBL,” although we have only shown that it is stable until
the timescale t& bounded by Eq. (3). Proving whether the
quasiperiodically driven MBL is stable beyond this time,
perhaps even forever, remains an interesting direction for
future work.
In this paper, we consider quasiperiodically driven

phases of matter realizable in one of the scenarios described
above: prethermalization or (stretched-exponentially long-
lived) quasiperiodically driven MBL.

III. EMERGENT SYMMETRIES PROTECTED
BY MULTIPLE TIME-TRANSLATION

SYMMETRIES

Having motivated quasiperiodically driven systems and
outlined their dynamics in suitable regimes, we now
analyze what kinds of new phases of matter can arise in
these systems. As a first step, let us consider the scenario
where a direct high-frequency drive is applied to a system.
This procedure is often referred to as “high-frequency
Floquet engineering,” as the drive is used to modify and
control interactions of an underlying Hamiltonian. Indeed,
the ground states of the effective static Hamiltonian D that
is generated in a high-frequency expansion can be different
from those of the original undriven Hamiltonian [5,78–82].
However, from a phases-of-matter point of view, a direct

high-frequency drive will not yield fundamentally new
long-time collective behavior that is not already reproduc-
ible in some—possibly complicated—static system at
equilibrium. In this regime, a quantum state’s evolution
is effectively governed entirely by D and never has any
significant nontrivial micromotion during its time evolu-
tion. Precisely, this result stems from the fact that the
unitary frame transformation PðtÞ in the description of the
time-evolution operator, Eq. (6), is perturbatively close to
the identity. To uncover novel phases, especially those that
are inherently out of equilibrium, we need to go beyond this
regime.
In order to do this, we generalize the idea of a frame-

twisted high-frequency limit, introduced in Ref. [12] for
Floquet systems and reviewed in Sec. III A, to the quasi-
periodically driven scenario. This generalized limit will be
the context in which fundamentally new, long-lived phases
of matter can emerge. In order to analyze the manifestation
of TTSs in this regime, we introduce the notion of twisted
time-translation symmetries (Sec. III B). This concept
allows us to analyze the quasiperiodic case but also gives
a simpler perspective on the results in the Floquet case
compared to the original constructions of Ref. [12]. Finally,
in Sec. III C, we explain how to realize these twisted time-
translation symmetries in a frame-twisted high-frequency
limit in quasiperiodically driven systems.

FIG. 2. Prethermalization in quasiperiodically driven systems at
high frequencies. Shown is a cartoon of the dynamics of a generic
traceless local observable hOðtÞi under time evolution by Eq. (6).
There are three regimes. First, a brief transient regime, where the
local observable relaxes on a short timescale tr ∼ 1=J, where J is
the local energy scale of the system. Second, a prethermalization
regime, where the system has locally equilibrated to a thermal
ensemble of an effective static Hamiltonian D, when viewed in
the rotating frame defined by PðtÞ. The evolution hOðtÞi in the
laboratory frame shows a plateau around the prethermal value
(black dashed line), with small time-quasiperiodic oscillations of
amplitude of ∼J=ω (red dashed lines); here, ω ¼ jωj is the norm
of driving frequencies. This regime lasts up to the long heating
time t& ∼ exp½Cðω=JÞ1=ðmþϵÞ%. Third, a final featureless infinite-
temperature state, reached after the system has fully heated. The
inset shows a zoom-in on the orange-shaded region in the
prethermal plateau.
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FIG. 13 Schematic depiction of a prethermal time quasi-
crystal emerging from a quasiperiodically driven quantum sys-
tem. During the prethermal regime, local observables exhibit
discrete time quasicrystalline order, which ultimately melts at
late times as the system Floquet heats to a featureless infinite-
temperature state. Figure adapted from (Else et al., 2020a).

neighbor-interacting classical Floquet spin model on the
square lattice. Although the original Floquet evolution
does not exhibit any symmetries, Heff exhibits an emer-
gent Z2 Ising symmetry. Unlike in the one dimensional
case discussed in Sec. IV.D.2, in two dimensions, this
Ising symmetry can be broken at finite temperatures.

2. Higher-M discrete time crystals

In both the quantum and classical settings, the emer-
gent symmetry in Heff is not restricted to just a Z2 sym-
metry and different subharmonic PDTCs (i.e. beyond pe-
riod doubling) can be realized (Giergiel et al., 2018, 2020;
Pizzi et al., 2021a; Surace et al., 2019). The simplest
approach to doing this is to utilize a Floquet evolution
where the “π-pulse” (see e.g. the discussion following
Eq. 14) is adjusted to be close to a π

M -pulse. In cer-
tain scenarios, this choice naturally leads to an effective
Hamiltonian, Heff, which exhibits a ZM symmetry (Pizzi
et al., 2021c). When this ZM symmetry is spontaneously
broken, the system will oscillate at a subharmonic fre-
quency ∼ ωD/M throughout the prethermal regime. Us-
ing this strategy, Pizzi et al., 2021c construct a “phase
diagram” for an ωD/4 PDTC in a three dimensional clas-
sical spin system.

When one utilizes a fractional M in the strategy above,
the dynamics can be even richer than the integer case.
Indeed, (Pizzi et al., 2021a) explored this scenario in the
presence of long-range interactions (Huang et al., 2018;
Kozin and Kyriienko, 2019; Russomanno et al., 2017),
observing signatures of PDTC order at a variety of frac-
tional frequencies.
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3. Prethermal time quasi-crystals

Building upon generalizations to higher-M PDTCs
and fractional PDTCs (Matus and Sacha, 2019; Pizzi
et al., 2021a,c; Ye et al., 2021), a natural question to
ask is whether there can be non-trivial phases of mat-
ter in isolated many-body systems that are driven in
a way that is not periodic in time. The focus of this
outlook subsection is on the closed system, prethermal
setting (Fig. 1) where a periodic drive is replaced by
a quasiperiodic drive (Crowley et al., 2019; Gommers
et al., 2006; Ringot et al., 2000). Recent work has shown
that such systems can host prethermal quasiperiodically-
driven phases of matter, and in particular can give rise
to discrete time quasi-crystals (Dumitrescu et al., 2018;
Else et al., 2020a).

Before jumping in however, we note that related phe-
nomena have been explored in non-linear dissipative dy-
namical systems (see e.g. the coupled map lattice discus-
sions in Sec. II.A) driven at two incommensurate frequen-
cies (Ding et al., 1989; Flicker, 2018; Held and Jeffries,
1986; Romeiras and Ott, 1987; Sethna and Siggia, 1984).

The spectral content of a periodic drive contains peaks
only at a single drive frequency, ωD, and its harmonics
nωD, for integer n. By contrast, the spectral content of a
quasiperiodic drive has peaks at integer linear combina-
tions: n1ω1 + n2ω2 + · · ·+ nmωm, for some m > 1 num-
ber of incommensurate frequencies, {ω1, · · · , ωm}. As in
Sec. IV.D, in order to discuss prethermal phases, it is
necessary for the system to exhibit slow-heating (i.e. en-
ergy absorption) from the drive. For quasiperiodic driv-
ing, this is strictly more challenging than the original
Floquet setting, since the drive is (technically) able to
supply energy in arbitrary units. Nevertheless, an anal-
ogous slow-heating result was rigorously proven by Else
et al., 2020a. Before heating occurs (Fig. 13), the dy-
namics of the quasiperiodically driven system are well-
approximated (in a rotating frame) by an effective static
Hamiltonian (in direct analogy to Sec. IV.D and Eqn. 16).

In order to discuss the possibility of prethermal time
quasicrystals (which are stable during the prethermal
time-scale, t < t∗), Else et al., 2020a begin by defin-
ing what an “order parameter” for such a phase would
look like. The subtlety is that a quasiperiodically driven
system does not, strictly speaking, have any remaining
time-translation symmetry to break. However, such a
system can still exhibit a well-defined notion of a frac-
tional or subharmonic frequency response (Fig. 13). In
particular, an observable can respond in a quasiperiodic
manner with base frequencies: {ω̃1, · · · , ω̃n}. When the
ω̃j are not harmonics of the original driving frequencies,
then the system is said to exhibit a fractional frequency
response and discrete time quasicrystalline order (Else
et al., 2020a). Connecting to our previous discussions
about emergent symmetries in Heff, one can think of the
discrete time quasicrystal as emerging from the sponta-

neous breaking of a different finite Abelian group sym-
metry (i.e. which replaces the ZM symmetry discussed in
Secs. III.B.2, VI.B.1).

Finally, let us end this outlook subsection by pointing
the reader to a number of related directions that fall out-
side the prethermal context. Many of these connect to
the idea of quasiperiodic pattern formation in parametri-
cally driven systems. For example, in the context of two-
frequency forcing, even when the frequencies are com-
mensurate (implying that they do not exhibit a quasiperi-
odic response in time), in certain scenarios, one can re-
alize stable Faraday-wave patterns that are analogous to
a two-dimensional quasicrystal (Besson et al., 1996; Ed-
wards and Fauve, 1993; Silber et al., 2000). Various in-
carnations of a quasiperiodic response in time have also
been explored in both theoretical proposals and experi-
ments on cold atomic systems (Autti et al., 2018; Chinzei
and Ikeda, 2020; Giergiel et al., 2018, 2019; Pizzi et al.,
2019). As an example, (Giergiel et al., 2019) explore the
dynamics of an ultra-cold atomic ensemble bouncing be-
tween two orthogonal harmonically oscillating mirrors.
By tuning the bare frequencies of the unperturbed parti-
cle motion, the system can reproduce fragments of the Fi-
bonacci sequence encoded via the bounces of the atomic
ensemble off of the two mirrors.

C. Applications: from metrology to quantum information
benchmarking

The periodic control underlying the discrete time crys-
tal is, more generally, an indispensable tool in the con-
text of nuclear magnetic resonance spectroscopy (Bloem-
bergen et al., 1948, 1947; Waugh et al., 1968), quan-
tum information science (Biercuk et al., 2009; Khod-
jasteh and Lidar, 2005), and AMO-based quantum simu-
lation (Bloch et al., 2012; Goldman et al., 2014). Build-
ing upon this connection, Choi et al., 2017b explored
the possibility of engineering a Floquet system, where
quasienergy gaps can protect entangled states from static
perturbations, while still ensuring their sensitivity to an
oscillating signal. In some sense, this idea can be un-
derstood as a generalization of spin echo spectroscopy,
which utilizes many-body states; it is also related to the
conventional concept of using phases of matter with spon-
taneously broken symmetries for sensing (Bennett et al.,
2020; Frérot and Roscilde, 2018).

Choi et al., 2017b investigated the use of a time-
crystalline Floquet sequence to stabilize Schrodinger-cat
states that are typically extremely fragile against local
perturbations; they analyze a technique that allows for
the enhancement of metrological bandwidth, while main-
taining the sensitivity and discuss an example in the con-
text of the precision measurement of AC magnetic fields.
More recently, these ideas have also inspired new many-
body driving protocols aimed at circumventing the so-



29

called interaction limit for quantum sensing (Zhou et al.,
2020).

Beyond metrology, the fact that signatures of time
crystalline order have been observed in a diverse array of
physical platforms (see e.g. Secs. IV.C.1, IV.C.2, IV.C.3),
suggests the possibility of cross platform benchmark-
ing for the performance of near term quantum de-
vices (Preskill, 2018). This idea builds on the more
general thread that exploring non-equilibrium dynamical
phenomena may represent a particularly natural strat-
egy for verifying and validating noisy intermediate-scale
quantum technology. Finally, suggestions for utilizing
time crystalline order as a frequency standard or for
beyond-SQL (standard quantum limit) quantum sensing
have also been discussed (Lyu et al., 2020), although ex-
plorations along this direction remain relatively nascent.

D. Concluding Remarks

As we have seen in this Colloquium, recent evidence
points to (at least) two venues where infinitely-long-
lived time crystals can exist: (i) SτB which is stable
to time-translation invariant perturbations can occur in
periodically-driven closed 1D quantum systems in the
presence of strong disorder (Sec. IV.B) and (ii) SτB
which is stable to arbitrary perturbations can occur in
periodically-driven D ≥ 1 open systems, such as the
π-Toom model, whose dynamics effectively implement a
form of error correction (Sec. V.E). These two flavors of
time crystals evade ergodicity by vastly different means,
either by strongly localizing the degrees of freedom or by
actively shrinking potentially ergodicity-generating fluc-
tuations. Between these two extremes lie two regimes
of time-crystalline behavior that are exponentially long-
lived: prethermal time crystals in closed systems (both
classical and quantum) and activated time crystals in
open systems. Although ergodicity is deferred in both
cases, it is inevitable in the long run (Palmer, 1982; Pe-
tersen, 1989; Walters, 2000).

The possibility of SτB in driven open systems can be
understood as one consequence of a more radical form of
ergodicity breaking: fault-tolerant computation. There
is a long history of understanding computation as a fun-
damentally physical process, and the subsequent con-
straints which arise from thermodynamics: “Computers
may be thought of as engines for transforming free energy
into waste heat and mathematical work” (Bennett, 1982;
Landauer, 1961; Wolpert, 2019). In this point of view,
a time-crystal can be understood as a physical realiza-
tion of a simple computer program: “while true, apply
a global NOT-gate.” If the program can execute per-
fectly despite faulty (noisy) gates, and with a physical
implementation that relies only on local interactions, the
execution of such a program can be understood as a non-
equilibrium “phase of matter,” and the error threshold

for fault-tolerance as a non-equilibrium phase transition
into a time-crystalline phase.

The work of (Gács, 2001; Gács and Reif, 1988) has
shown that fault-tolerant classical computation can in-
deed be realized as a locally-interacting autonomous pro-
cess in the thermodynamic limit, and this work was later
used to prove that fault-tolerant quantum computing can
be as well (Dauphinais and Poulin, 2017; Harrington,
2004). One could thus realize a time-crystalline phase by
repeatedly running the program “NOT” on such an error-
corrected computer, either quantum or classical. In this
sense, the existence of time-crystals in open systems is
an elementary application of deeper results regarding the
physical realizability of error-correction in autonomous,
locally interacting systems.

One open question is to understand how the transition
from exponentially to infinitely long-lived time crystals
precisely occurs. Indeed, as disorder is increased in closed
1D quantum systems, one expects a sharp phase transi-
tion to occur from the prethermal discrete time crystal
(Sec. IV.D) to the Floquet-MBL discrete time crystal
(Sec. IV.B); one expects a similar transition from the
activated DTC to the Toom-type time crystal, as one
tunes a uniform anti-majority-vote rule toward the anti-
majority NEC rule.

One possibility is that the exponentially long-lived
time crystals’ lifetimes — e.g. scaling as ∼ AeωD/J in
the prethermal case (Sec. IV.D) or as ∼ Ae∆/T in the
activated case (recall that ∆ is the quasi-energy barrier
defined in Sec. V.A) — exhibit a diverging prefactor. For
example, as the transition is approached, A could diverge
as A ∼ |g − gc|−y, where g is the tuning parameter. An
alternate possibility is that the effective energy scale 1/J
or ∆ might diverge at the transition.

A second set of open questions is whether a direct tran-
sition is possible from a Floquet-MBL discrete time crys-
tal to a π-Toom or Gács-type time crystal (or something
continuously connected to it). To the authors of this
Colloquium, this possibility seems a bit unlikely since
such a transition would have to occur precisely when the
coupling to a bath is zero, where the system goes from
closed to open. On the other hand, a Floquet-MBL dis-
crete time crystal is what we would create with a per-
fect quantum computer executing precisely the same set
of gates at each time step. Meanwhile, a π-Toom time
crystal is what we might create with a noisy but fault-
tolerant quantum computer in which error correction was
governed by a probabilistic cellular automaton. But since
the former could be simulated by the latter, one might
also logically expect them to be separated by no more
than a second-order phase transition at which the rate of
entropy production rises from zero with a discontinuous
derivative.
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(1994), “Lagrange equilibrium points in celestial mechanics
and nonspreading wave packets for strongly driven rydberg
electrons,” Physical review letters 73 (13), 1777.

Biercuk, Michael J, Hermann Uys, Aaron P VanDevender,
Nobuyasu Shiga, Wayne M Itano, and John J Bollinger
(2009), “Optimized dynamical decoupling in a model quan-
tum memory,” Nature 458 (7241), 996–1000.

Birkhoff, George D (1931), “Proof of the ergodic theorem,”
Proceedings of the National Academy of Sciences 17 (12),
656–660.

Birkhoff, George David (1927), Dynamical systems, Vol. 9
(American Mathematical Soc.).

Bloch, Immanuel, Jean Dalibard, and Sylvain Nascimbene
(2012), “Quantum simulations with ultracold quantum
gases,” Nature Physics 8 (4), 267–276.

Bloembergen, Nicolaas, Edward Mills Purcell, and Robert V
Pound (1948), “Relaxation effects in nuclear magnetic res-
onance absorption,” Physical review 73 (7), 679.

Bloembergen, Nicolaas, EM Purcell, and RV Pound (1947),
“Nuclear magnetic relaxation,” Nature 160 (4066), 475–
476.

Bluvstein, Dolev, Ahmed Omran, Harry Levine, Alexan-
der Keesling, Giulia Semeghini, Sepehr Ebadi, Tout T
Wang, Alexios A Michailidis, Nishad Maskara, Wen Wei
Ho, et al. (2021), “Controlling quantum many-body dy-
namics in driven rydberg atom arrays,” Science 371 (6536),
1355–1359.

Bohr, Tomas, Per Bak, and Mogens Hφgh Jensen (1984),
“Transition to chaos by interaction of resonances in dissipa-
tive systems. ii. josephson junctions, charge-density waves,
and standard maps,” Physical review A 30 (4), 1970.

Booker, Cameron, Berislav Buča, and Dieter Jaksch (2020),
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Gács, Peter (2001), “Reliable cellular automata with self-
organization,” Journal of Statistical Physics 103 (1), 45–
267.

Gacs, Peter (2021), “A new version of toom’s proof,” arXiv
preprint arXiv:2105.05968.
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