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The spin degree of freedom of an electron or a nucleus is one of the most basic prop-
erties of nature and functions as an excellent qubit, as it provides a natural two-level
system that is insensitive to electric fields, leading to long quantum coherence times.
This coherence survives when the spin is isolated and controlled within nanometer-scale,
lithographically fabricated semiconductor devices, enabling the existing microelectronics
industry to help advance spin qubits into a scalable technology. Driven by the burgeoning
field of quantum information science, worldwide efforts have developed semiconductor
spin qubits to the point where quantum state preparation, multiqubit coherent control,
and single-shot quantum measurement are now routine. The small size, high density,
long coherence times, and available industrial infrastructure of these qubits provide a
highly competitive candidate for scalable solid-state quantum information processing.
We review the physics of semiconductor spin qubits, focusing not only on the early
achievements of spin initialization, control, and readout in GaAs quantum dots, but
also on recent advances in Si and Ge spin qubits, including improved charge control and
readout, coupling to other quantum degrees of freedom, and scaling to larger system
sizes. We begin by introducing the four major types of spin qubits: single spin qubits,
donor spin qubits, singlet-triplet spin qubits, and exchange-only spin qubits. We then
review the mesoscopic physics of quantum dots, including single-electron charging, val-
leys, and spin-orbit coupling. We next give a comprehensive overview of the physics of
exchange interactions, a crucial resource for single- and two-qubit control in spin qubits.
The bulk of this review is centered on the presentation of results from each major spin
qubit type, the present limits of fidelity, and a brief overview of alternative spin qubit
platforms. We then give a physical description of the impact of noise on semiconduc-
tor spin qubits, aided in large part by an introduction to the filter function formalism.
Lastly, we review recent efforts to hybridize spin qubits with superconducting systems,
including charge-photon coupling, spin-photon coupling, and long-range cavity-mediated
spin-spin interactions. Cavity-based readout approaches are also discussed. This review
is intended to give an appreciation for the future prospects of semiconductor spin qubits,
while highlighting the key advances in mesoscopic physics over the past two decades that
underlie the operation of modern quantum-dot and donor-spin qubits.
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I. INTRODUCTION

Quantum computers are fundamentally capable of
vastly outperforming all classical computers for a grow-
ing list of problems (Childs and van Dam, 2010; DiVin-
cenzo, 1995; Ekert and Jozsa, 1996; Feynman, 1982; Jor-
dan, 2021; Montanaro, 2016; Nielsen and Chuang, 2000;
Shor, 1997). In order to perform a quantum computa-
tion, the information to be processed must be represented
in a suitable physical form (Landauer, 1991). Semicon-
ductor spin qubits are one platform that has fulfilled the
main criteria for the implementation of quantum compu-
tation.

The requirements for quantum computation can be
stated as follows (DiVincenzo, 1998; DiVincenzo, 2000):
1) The elementary units of information need to be stored
in a scalable quantum register. In analogy to binary logic
where bits take on the value of 0 or 1, quantum infor-
mation is typically stored in the form of quantum bits
(qubits). A qubit is a quantum two-level system with
orthogonal, i.e. distinguishable, basis states |0〉 and |1〉.
Systems with spin-1/2 are perhaps the simplest example
of this encoding, although other spin-based possibilities
exist, as we will discuss. 2) A further requirement is
that the qubits can be prepared in a fiducial state, e.g.
|00 . . . 0〉. 3) The quantum system must remain coherent
for times much longer than the duration of elementary
logic gates, since decoherence causes computational er-
rors. 4) Along with maintaining coherence, a high-fidelity
gate set (single qubit and two qubit gates) must be at-
tainable. 5) Finally, it is required that a sufficiently large
part of the quantum register can be read out at the end
of a computation.

The spin degree of freedom quite naturally defines a
qubit, as spin-up or spin-down in the case of one elec-
tron (Loss and DiVincenzo, 1998), or as two distinct nu-
clear spin states (Kane, 1998). As we will show, spin
qubits have satisfied the DiVincenzo criteria. Electron
spins can be electrically initialized and read out with
high fidelity using energy dependent tunneling or the
Pauli exclusion principle (Elzerman et al., 2004; Petta
et al., 2005). While coupling of the charge to electric
fields allows for electrical control of spin states, the small
magnetic moment of the electron spin is weakly coupled
to the environment leading to long spin coherence times.
Semiconductors may be ideal hosts for solid state qubits,
as materials such as Si can be chemically and isotopi-
cally purified to extremely high levels. As Kane persua-
sively points out (Kane, 1998), “Because of the advanced
state of Si materials technology and the tremendous effort
currently underway in Si nanofabrication, Si is the obvi-
ous choice for the semiconductor host.” Experiments on
large spin ensembles demonstrating seconds-long electron
spin coherence times and hours-long nuclear spin coher-
ence times in isotopically enriched silicon give credence
to Kane’s statement (Saeedi et al., 2013; Tyryshkin et al.,
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FIG. 1 The four major qubit types covered in this review, with images depicting the original proposals, early devices, and
modern devices. a) Loss-Divincenzo (LD) single spin qubits (Loss and DiVincenzo, 1998),(Elzerman et al., 2004),(Mills et al.,
2022b). (b) Donor spin qubits (Kane, 1998),(Morello et al., 2010),(He et al., 2019). (c) Singlet-triplet (ST) spin qubits (Levy,
2002),(Petta et al., 2005),(Fedele et al., 2021). (d) Exchange-only (EO) spin qubits (DiVincenzo et al., 2000),(Medford et al.,
2013a),(Ha et al., 2021).

2012).

Single spins have been controlled with electron spin
resonance (Koppens et al., 2006) and two-electron spin
states with exchange coupling (Petta et al., 2005). Sil-
icon quantum devices have achieved high fidelity single
qubit (Yoneda et al., 2018) and two-qubit gates (Veld-
horst et al., 2015b; Watson et al., 2018; Zajac et al.,
2018), and recent advances have pushed the fidelity be-
yond the thresholds required to enter a regime for fault-
tolerant operation (Mills et al., 2022b; Noiri et al., 2022;
Xue et al., 2022).

Another motivation for harnessing the spin degree of
freedom is scale. Given that a fully-error corrected quan-
tum computer is likely to require at least one million
physical qubits (Fowler et al., 2012), the small ∼ 100 nm
intrinsic scale of quantum dots (QDs) lends itself to the
creation of a dense quantum computing architecture that
could be mass-produced by the semiconductor microelec-
tronics industry (Vandersypen et al., 2017). At the same
time, the small size scale of a spin qubit can lead to engi-
neering challenges associated with addressing each qubit
and achieving sufficient connectivity for quantum error
correction. Indeed, many recent exciting physics results
from the QD community have shown that spins can be
coherently coupled to microwave photons (Landig et al.,
2018; Mi et al., 2018a; Samkharadze et al., 2018), provid-
ing tantalizing opportunities for long-range coupling of
spin qubits and readout (Borjans et al., 2020, 2021a; Mi

et al., 2018a; Petersson et al., 2012; Zheng et al., 2019).

The scope of this review is limited to semiconduc-
tor spin qubits in shallow donors and gate-defined QDs.
Electronic and nuclear spins of point defects in wide-
bandgap semiconductors such as diamond or SiC are out-
side the scope of this review, and we refer the interested
reader to Awschalom et al., 2018; Childress and Hanson,
2013; and Doherty et al., 2013. Optically addressable
and self-assembled QDs have provided seminal studies
toward semiconductor spin qubits, including early mea-
sures of semiconductor spin decoherence rates, but are
more relevant for photonic implementations of quantum
information systems that are not the focus of this review
(Bracker et al., 2005; De Greve et al., 2011; Imamoglu
et al., 1999; Kroutvar et al., 2004; Warburton, 2013).
Topological quantum computation, both with anyons in
quantum Hall systems (Das Sarma et al., 2006) and with
Majorana fermions in superconductor-semiconductor hy-
brid systems (Das Sarma et al., 2015; Mourik et al., 2012)
will not be covered.

The following Sec. II will introduce the four major
types of spin qubits, namely the single-spin qubit, donor
spin qubit, singlet-triplet spin qubit, and exchange-only
spin qubit. Figure 1 gives an overview of the four qubit
types, with images illustrating the theoretical proposals,
early devices, and modern devices. Readers familiar with
the basic spin qubit types can skip ahead to Sec. III,
which covers the mesoscopic physics underpinning the
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operation of semiconductor spin qubits. The initiated
reader may want to directly delve into the subsequent
sections for selected topics. Details regarding the control
of spin-spin interactions, in particular exchange, can be
found in IV. The implementation of quantum gates and
circuits for the various spin qubit flavors is discussed in
Sec. V. Dephasing and decoherence of spin qubits due to
uncontrolled interactions with their environment is cov-
ered in Sec. VI. Hybrid systems consisting of semiconduc-
tor spin qubits embedded into superconducting circuits
can be found in Sec. VII. We conclude by commenting
on future directions for the field (Sec. VIII).

II. BASICS OF SPIN QUBITS

In this Section, we introduce the various kinds of spin
qubits. At the most basic level, we can classify spin qubit
types based on the number of spins used to encode the
qubit. Figure 2 shows the Bloch spheres and control axes
for single spin qubits, two-spin singlet-triplet qubits, and
three-spin exchange only qubits. For example, the single
spin Loss-DiVincenzo qubit encodes quantum informa-
tion in the spin state of a single electron. A static mag-
netic field lifts the degeneracy between the spin-up and
spin-down states of the electron, while a transverse ac
magnetic field drives coherent rotations between spin-up
and spin-down (Loss and DiVincenzo, 1998).

At a more detailed level (see Fig. 3), the different
types of spin qubits are distinguished by how they encode
spins into qubits; by the number and species of particle
that carries the spin (atomic nucleus, electron, hole); by
their placement in a single-site or multi-site arrangement,
where a site can be a QD or a donor atom; and by their
initialization, measurement, and control methods, all of
which we elaborate on in this section.

Common to all semiconductor spin qubits is the con-
finement of spin to isolated sites. In semiconductors, in
contrast to metals, the density of conduction electrons
can be depleted to be arbitrarily low. The density may
in fact be engineered, starting from zero in an intrinsic
semiconductor at low temperature. This allows for the
restriction of electron motion to two dimensions (2D) in
quantum wells (QWs) or at interfaces between two ma-
terials (Ando et al., 1982), and further to one or even
zero dimensions (1D or 0D) with electrostatic tailoring
of the potential landscape (Kouwenhoven et al., 2001;
van der Wiel et al., 2002). Confinement in all spatial di-
mensions is achieved in QDs which localize electrons and
act as artificial atoms (Kastner, 1992). A collection of
electrons, each of which is confined to one such QD, pro-
vides a nearly ideal arena for the realization of spin-based
quantum information processing (Loss and DiVincenzo,
1998).

Another commonality to all flavors of semiconductor
spin qubits is some use of the exchange interaction. The

physics of exchange will be discussed in detail in Secs.
III.B and IV, but essentially this interaction arises from
the requirement that two-electron states be antisymmet-
ric, allowing for spin configurations that are either sin-
glets (spin-antisymmetric) or triplets (spin-symmetric).
When the electrons overlap spatially, the energy of the
spin-singlet state is lowered relative to the three spin
triplet states by an amount called the exchange coupling
J . This effect (sometimes referred to as pseudo-exchange
or kinetic exchange) occurs due to the ability of electrons
in the singlet state to move to and from the same loca-
tion (while maintaining a totally antisymmetric wave-
function), whilst such motion is forbidden for the spin-
symmetric (and hence spatially anti-symmetric) triplets.
This effect for spins i and j is captured by the Heisenberg
exchange Hamiltonian H = JijSi · Sj , where Si denotes
the quantum operator for the spin of the electron residing
in the i-th site. From a quantum control perspective, an
appeal of spin qubits is that Jij can typically be tuned
over many orders of magnitude by adjusting gate volt-
ages (Petta et al., 2005). Depending on the type of spin
qubit, the exchange interaction may be used for both sin-
gle (Eng et al., 2015; Levy, 2002; Petta et al., 2005) and
two-qubit gates (Nowack et al., 2011; Veldhorst et al.,
2015b; Watson et al., 2018; Zajac et al., 2018).

A. Loss-DiVincenzo (LD) spin qubit

The spin-1/2 of an electron represents a natural re-
alization of a qubit. The encoding for a single elec-
tron spin ‘Loss-DiVincenzo’ qubit is a direct mapping
Si = σi/2 between spin operators and encoded Pauli
operators. In the limit of tight electronic confinement,
with one electron per dot, the electron spin dynamics are
governed by the Heisenberg exchange Hamiltonian (as
discussed above) and the single-electron Zeeman Hamil-
tonian, leading to a total Hamiltonian of the form:

H(t) =
1

4

∑
〈i,j〉

Jij(t)σi · σj +
1

2

∑
i

giµBBi · σi, (1)

where Bi and gi are the (effective) magnetic field and
g-factor at site i.

The Loss-DiVincenzo qubit requires a method of ini-
tialization and measurement of single electron spin states.
The original proposal (Loss and DiVincenzo, 1998) sug-
gested spin-selective ferromagnetic elements in the de-
vice, however actual practice has employed spin-selective
tunneling to a Fermionic bath of electrons (Elzerman
et al., 2004), in which a large static magnetic field
B � kBTe/gµB enables tunneling of the higher energy
QD spin-state to the Fermi sea, while tunneling from the
lower energy spin state is energetically forbidden. Here
kB is Boltzmann’s constant and Te is the electron temper-
ature. The presence or absence of a tunneling event, as
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FIG. 2 a) Spin configurations, b) Bloch spheres, and c) energy level diagrams associated with Loss-DiVincenzo (LD) single
spin qubits, two-spin singlet-triplet (ST0) qubits, and three-spin exchange-only (EO) spin qubits. Donor spin qubits also rely
on single-spins, similar to the LD case. We conventionally identify the north pole of the Bloch sphere with the qubit |0〉 state
and the south pole with |1〉, irrespective of which state is lower in energy. For the LD qubit, a static magnetic field Bz

eff defines
the quantization axis of the single spin, while a transverse (and smaller) ac magnetic field Bx

eff(t) drives coherent spin rotations
between spin-up and spin-down. We identify |0〉 = |↓〉 and |1〉 = |↑〉 and note that the level ordering in c) holds for g > 0, e.g.
for Si. For the ST0 qubit, exchange coupling J and a longitudinal magnetic field gradient ∆Bz provide two orthogonal control
axes. For the EO spin qubit, nearest-neighbor exchange couplings J12 and J23 provide two control axes that are separated by
120◦ on the Bloch sphere.

measured using sensitive charge detectors (see Sec. III.C),
is then used to infer the orientation of the electron spin.
This spin readout protocol is commonly refered to as
“Elzerman readout” and it requires relatively large mag-
netic fields, which in turn sets the Larmor frequency for
spins in the tens of GHz range.

For this qubit type, the single-spin B-dependent
(Zeeman) terms provide single-qubit control. Time-
dependent control of Bi or gi is required for the imple-
mentation of single-qubit gates; this has been realized
using a combination of static and oscillatory magnetic
fields within the framework of electron spin resonance
(ESR) (Koppens et al., 2006; Pla et al., 2012; Veldhorst
et al., 2015b), or using oscillatory electric fields in com-
bination of spin-orbit coupling (Nadj-Perge et al., 2010;
Nowack et al., 2007) or magnetic field gradients (Brun-
ner et al., 2011; Pioro-Ladriere et al., 2008; Yoneda et al.,
2018; Zajac et al., 2018) by applying electric dipole spin
resonance (EDSR).

The exchange coupling, which can be adjusted with
gate voltages (Petta et al., 2005), allows for time-

dependent two-qubit control and hence the realization
of entangling two-qubit gates between nearest-neighbor
spins (Nowack et al., 2011; Veldhorst et al., 2015b).
Recent implementations of Loss-DiVincenzo qubits use
static field gradients for B, pulsed or ac-driven exchange
for Jij(t), and oscillatory electric fields (Watson et al.,
2018; Zajac et al., 2018) to achieve full control of a two-
qubit system.

B. Donor spin qubits and Kane’s proposal

Shortly after the publication of the Loss-DiVincenzo
proposal on quantum computation with QDs, Bruce
Kane published a proposal to use the nuclear spins of 31P
donor atoms in silicon to construct a quantum computer
(Kane, 1998). Nuclear spins are highly coherent since
the nuclear gyromagnetic ratio, γn/2π = 17.2 MHz/T
for 31P, is nearly 2,000 times smaller than the electron
gyromagnetic ratio γe/2π ≈ 28 GHz/T, and their lack of
mobility in a solid-state host inhibits charge-hybridizing
or spin-orbit-related decoherence mechanisms (which are
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FIG. 3 Spin qubit configurations grouped by the number of spin-1/2 particles per qubit and number of sites—usually QDs.
Spins are indicated by the small grey dots (electrons/holes) or small white dots (nuclei), numbered to adhere to the basis
description of Figure 4. Sites are indicated by the large (pink) circles; their overlap indicates “always-on exchange,” meaning
that the spins contained are somewhat delocalized across the site even for the idle qubit.
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discussed in detail in section VI).

Kane proposed using the I = 1/2 nuclear spin of a 31P
donor in Si as a quantum bit. 31P is a shallow donor in
Si with a 45 meV ionization energy (Feher, 1959; Wilson
and Feher, 1961). The donor electron has a hydrogenic s-
like ground state with an effective Bohr radius of 1.8 nm
(Smith et al., 2017). To maintain a high degree of nuclear
spin coherence, the donor nuclear spins would ideally be
embedded in a host material composed of I = 0 isotopes
as background nuclear spins can lead to decoherence. De-
spite their small effective mass and widespread use in
mesoscopic physics, common III-V semiconductors such
as GaAs and InAs only have stable isotopes with I 6= 0.
In contrast, Si is primarily composed of I = 0 nuclear spin
isotopes 28Si and 30Si. The remaining 5% of I = 1/2 29Si
can be removed through isotopic enrichment.

Gate voltage control of the donor-bound electronic
wavefunction is a crucially important aspect of the Kane
quantum computer. Kane proposed using an array of 31P
donor atoms placed ≈ 200 Å beneath the Si surface as
the register of qubits. By adjusting the voltage Vg on an
A-gate placed above each donor, the donor electron can
be pulled away from the donor towards the Si/SiO2 inter-
face to reduce the hyperfine interaction A(Vg) and con-
trol the nuclear spin resonance frequency. Nuclear spin
exchange is mediated by electrons achieved using gates
called J-gates, which are located between adjacent donor
sites. The J-gate voltage influences the overlap between
adjacent donor electron wavefunctions, and through the
hyperfine interaction, the nuclear spin exchange coupling.
Measurements of the nuclear spin state are performed by

again leveraging the tunability of the electronic wave-
function using gates. Nuclear spin initialization can be
achieved using the same steps for nuclear spin state read-
out, with an additional radio-frequency driven rotation
to the desired starting spin state if required.

Since Kane’s proposal, many elements of this qubit
type have been demonstrated, and in so doing many crit-
ical variations on the donor-qubit concept have emerged.
31P nuclei have been placed in natural abundance
(Morello et al., 2010) and isotopically enhanced silicon
substrates (Muhonen et al., 2014) using a masked ion-
implantation method. Scanning tunneling microscope
lithography has been used to incorporate 31P nuclei into
natural abundance silicon (Fuechsle et al., 2012). Con-
trol of the exchange interaction between 31P donor-bound
electrons has been demonstrated using both fabrication
methods (He et al., 2019; Madzik et al., 2021). The
initialization and readout of a single 31P nuclear spin
has been performed with over 99% fidelity (Pla et al.,
2013), the A-gate-modulated hyperfine interaction has
been used as envisioned by Kane to tune electron and nu-
clear Larmor resonances (Laucht et al., 2015), and multi-
qubit electron and nuclear processes have been character-
ized with gate-set-tomography for total single and two-
qubit gate fidelities exceeding 99% (Madzik et al., 2022;
Nielsen et al., 2021). A key challenge of the Kane pro-
posal is that the required exchange interaction is highly
sensitive to the 31P donor placement (Koiller et al., 2001),
requiring either impeccable fabrication tolerance or more
tolerant forms of two-qubit gates, several of which have
been proposed (Broome et al., 2018; Tosi et al., 2017).
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FIG. 4 Spin qubit encodings: The first column N is the number of spin-1/2 particles per qubit, followed by a named “Type”
of qubit discussed in this review. The two qubit states |0〉 and |1〉 are then specified in terms of both conserved and qubit-
dependent “q-number” describing the total angular momentum; here m always refers to the total spin projection, whereas Sjk···
refers to the combined total spin angular momentum of spins j, k, . . .. Clebsch-Gordan coefficients translate these spin angular
momentum combinations into “States.” For the three-spin case, m may take either value ±1/2 in the encoded subspace. The
final column shows the encoded Pauli operators σ of the qubit in terms of the spin operators Sj of each spin-1/2 particle j. The
qubit states are the ±1 eigenstates of σz; degeneracies in these eigenstates indicate gauge freedom, and the null space of these
operators are leakage states. For the LD qubit, the constant relating the logical qubit to the spin changes with the g-factor;
the minus value shown here is consistent with the Si g > 0 choice used in Fig. 2.

N Type q-numbers States Encoded Qubit Pauli Operators

1
Loss-

DiVincenzo

|0〉
|1〉

m = −1/2

m = +1/2

|↓〉
|↑〉

σ = −2S1

Singlet-
Triplet
(ST0)

|0〉
|1〉

S12 = m = 0

S12 = 1,m = 0

|S〉 = (|↑↓〉−|↓↑〉)/
√

2

|T0〉 = (|↑↓〉+|↓↑〉)/
√

2

σx = Sz1 − Sz2
σy = 2ẑ · S2 × S1

σz = 2(Sz1S
z
2 − S1 · S2)

2 Flip-Flop
|0〉
|1〉

m = 0
|↑↓〉
|↓↑〉

σx = 2(S1 · S2 − Sz1Sz2 )

σy = 2ẑ · S2 × S1

σz = Sz1 − Sz2
Singlet-
Triplet
(ST+)

|0〉
|1〉

S12 = m = 0

S12 = m = 1

|S〉
|T+〉 = |↑↑〉

σx = (Sx2 − Sx1 )/
√

2 +
√

2(Sz1S
x
2 − Sx1Sz2 )

σy = (Sy1 − S
y
2 )/
√

2 +
√

2(Sy1S
z
2 − Sz1S

y
2 )

σz = −(Sz1 + Sz2 )/2− S1 · S2 − Sz1Sz2

3

Exchange-
Only (DF

Subsystem),
RX, AEON,

Hybrid

|0〉
|1〉

S123= 1/2

S12 = 0

S12 = 1

|S〉|m〉

(
√

2 |T2m〉|−m〉

− |T0〉|m〉)/
√

3

σx = 2(S2 − S1) · S3/
√

3

σy = 4(S1 × S2 · S3)/
√

3

σz = 2[(S1 + S2) · S3 − 2S1 · S2]/3

4

Exchange-
Only (DF
Subspace),

QUEX,
Singlet-
Singlet

|0〉
|1〉

S1234 = m= 0

S12 = S34 = 0

S12 = S34 = 1

|S〉|S〉
(|T+〉|T−〉+ |T−〉|T+〉

− |T0〉|T0〉)/
√

3

σx=2[S1 × S2 · S3 × S4 + (S2 − S1) · (S3 − S4)/4]/
√

3

σy=[S1 × S2 · (S3 − S4) + S3 × S4 · (S1 − S2)]/
√

3

σz=2(S1 × S4 · S2 × S3 + S1 × S3 · S2 × S4)/3

+ [(S1 − S4) · (S3 − S2) + (S1 − S3) · (S4 − S2)]/6

C. Singlet-triplet (ST0 and ST±) qubits

Both the Loss-DiVincenzo (Loss and DiVincenzo,
1998) and Kane (Kane, 1998) proposals for quantum
computing involve single-spin qubits manipulated with
a combination of static and oscillating electric and mag-
netic fields. The oscillating fields can be difficult to lo-
calize in nanoscale devices, and the power dissipated by
those fields can be problematic at cryogenic tempera-
tures. In addition, the primary source of dephasing for
single-spin qubits is the magnetic noise associated with
the semiconductor environment, which can be large in
materials such as GaAs, which have spinful nuclei (see
Sec. VI). In part to overcome these control and dephas-
ing challenges, spin qubits can be realized through dif-

ferent sets of multi-spin states associated with groups of
electrons (Fig. 3).

Conceptually, the simplest extension of the single-spin
qubit is a qubit formed from two electrons in a dou-
ble quantum dot (DQD), utilizing the controlled singlet-
triplet splitting offered by the exchange interaction
(Sec. IV) to define the singlet-triplet (ST0) qubit (Levy,
2002; Petta et al., 2005). The |S〉 and |T0〉 basis states
are defined in Fig. 4. The ST0 qubit Hamiltonian in the
presence of exchange and magnetic field gradients is

HST0 = J12
σz

2
+ µB∆(gBz)

σx

2
. (2)

Here, the encoded Pauli operators σz and σx are in the
singlet-triplet basis, the exchange coupling J12 can be
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experimentally controlled by adjusting QD gate voltages
(Petta et al., 2005), and ∆(gBz) is the effective difference
in magnetic field between the two dots along an applied
global field direction (z-direction).

Figure 4 provides a useful framework for understand-
ing the ST0 qubit and others discussed below. We note
that the basis states and the encoded qubit Pauli oper-
ators σx, σy and σz are defined such that the ±1 eigen-
states of σz are the encoded (basis) states and the 0-
eigenstates are leakage states (polarized triplet states T±
in this case). Additionally, all of the encoded Pauli-
operators have the correct commutation relations. To
understand how physical interactions map to encoded
qubit operations, any spin operator X can be decom-
posed into encoded Pauli operators as X =

∑
j c
jσj with

cj = Tr
{
Xσj

}
/2.

As a result of the tunable exchange coupling J12, ST0

qubits feature full electrical control with baseband volt-
age pulses (Petta et al., 2005). The ST0 qubit also ex-
ists in a decoherence-free subspace (DFS) with respect
to global magnetic fields that couple to the spin of the
electron since m=0 for both |S〉 and |T0〉 (Lidar et al.,
1998). However, the ST0 qubit remains sensitive to lo-
cal magnetic-field fluctuations as a result of the ∆(gBz)
term in the Hamiltonian. This σx term may result from
quasi-static hyperfine fields (Petta et al., 2008; Taylor
et al., 2007), g-factor variations (Jock et al., 2018; Liu
et al., 2021), or micromagnet field gradients.

Pauli spin blockade, a manifestation of exchange cou-
pling (Sec. IV.E), enables straightforward, rapid, and
high-fidelity measurement of joint spin states. A spin
blockade measurement converts singlets and triplets to
different spatial configurations of the two electrons in the
DQD, which can easily be distinguished with a nearby
charge sensor (Barthel et al., 2010; Borjans et al., 2021a;
Petta et al., 2005).

Since the initial demonstration (Petta et al., 2005),
ST0 qubits and variants thereof, including “resonantly-
driven ST0” or “flip-flop” qubits, have been the focus of
intense research. Single-qubit gates have been studied in
GaAs QDs (Bluhm et al., 2010b; Shulman et al., 2014)
and in Si QDs (Fogarty et al., 2018; Jock et al., 2018;
Maune et al., 2012; Wu et al., 2014). Capacitive coupling
of ST0 qubits can yield an entangling operation (Nichol
et al., 2017; Shulman et al., 2012; Taylor et al., 2007).
Early results on ST0 qubits coupled via a superconduct-
ing resonator or exchange coupling are also encouraging
(Bøttcher et al., 2021).

In the presence of a global magnetic field, the Zee-
man energy can compensate for exchange, and the po-
larized triplet (|T+〉 in GaAs or |T−〉 in Si) can become
degenerate with the singlet state. This degeneracy can
be lifted via transverse magnetic field gradients (Tay-
lor et al., 2007), spin-orbit coupling (Nichol et al., 2015;
Stepanenko et al., 2012), or spin-valley coupling (Cai
et al., 2021), and an effective ST+ qubit can be formed in

GaAs (or ST− qubit in Si; we will loosely refer to both
types as ST± qubits, with the understanding that the
relevant triplet state is dependent on the sign of the g-
factor). In the {|S〉 , |T+〉} basis the encoded Hamiltonian
is HST+

= EST+
σz/2 + ∆STσ

x/2, where the electrically-
tunable qubit splitting EST+ = EZ − J , for average
Zeeman energy EZ . Universal control of ST± qubits
can be achieved through baseband voltage pulses (Cai
et al., 2021) and Landau-Zener-Stückelberg interferome-
try (Gaudreau et al., 2012; Petta et al., 2010). To date,
ac-driven ST± Rabi oscillations have not been observed.
Two-qubit gates based on capacitive coupling have been
proposed (Ribeiro et al., 2010).

D. Exchange-only (EO) and resonant-exchange (RX) qubits

The spin-qubit encodings discussed so far use both
magnetic splittings and kinetic exchange to complete sin-
gle and two qubit gate sets. However, Bacon et al., 2000,
DiVincenzo et al., 2000 and Kempe et al., 2001 showed
that universal quantum computation is possible using
only the exchange interaction.

To understand how this is possible, we may ask how
multiple spins can encode a single qubit beyond the
singlet-triplet example already presented. The key prin-
ciple results from the addition of angular momentum: in
particular the total angular momentum of N spin-1/2
electrons add, via angular momentum rules, into sub-
systems with total angular momentum numbers varying
from 1/2 (for odd N) or 0 (for even N) to N/2, with
readily calculable degeneracies. For two electrons, the
singlet/triplet states correspond to the S12 = 0 singlet
and the S12 = 1 triplet, with no additional degeneracies;
the m = 0 subsystem of these two spaces is the singlet-
triplet qubit. For three electrons, there are two ways to
combine into S123 = 1/2, and these two states, at con-
stant m = ±1/2, may be considered to form a qubit.
For four electrons, there are again two ways to combine
into S1234 = 0, which is the original exchange-only qubit
presented by Bacon et al., 2000. The pairwise exchange
interactions amongst a set ofN spins conserves their total
angular momentum as well as total m quantum numbers,
but gives full control within the copies of total angular
momentum subspaces.

The smallest encoding to allow exchange-only control
is therefore three spins in their S123 = 1/2 manifold.
Here there are two copies corresponding to total spin
projection m = ±1/2. Any exchange operation within
a single, three-spin qubit behaves the same regardless
of m. Exchange interactions occuring between pairs
of encoded qubits, however, do depend on m, and as
such two-qubit operation requires either that m is polar-
ized (typically at high magnetic field), in which case the
exchange-only two-qubit gates presented by DiVincenzo
et al., 2000 may be employed and the system is gener-
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ally called a “decoherence-free subspace” (DFS), or m
may be left unpolarized, in which case them-independent
two-qubit gates presented by Fong and Wandzura, 2011
may be employed and the system is generally called a
”decoherence-free subsystem” (also DFS). As the four-
spin S1234 = 0 encoding has only m = 0, this is also con-
sidered a decoherence free subspace. The nomenclature
“decoherence-free” refers to the original motivation for
these encodings before exchange-only control was discov-
ered (Zanardi and Rasetti, 1997), which was to eliminate
the particular source of decoherence which arises from
fluctuations in the global magnetic field.

The states and Pauli operators of the 3-spin S123 = 1/2
and 4-spin S1234 = 0 DFS qubits are shown in Fig. 4. We
note in this table that for DFS qubits, unlike the single-
spin or two-spin cases, the decomposition of encoded
Pauli-operators into spin operators feature no notion of
direction; the qubit is controlled via the controlled frac-
tional permutations of spins via exchange, rather than
physical rotations about any preferred axis, reflective of
their designed insensitivity to global applied field.

From Fig. 4, we see that for three spins in the S123 =
1/2 subsystem, exchange coupling between spins 1 and
2, as for singlet-triplet qubits, appear as a σz. Exchange
coupling between spins 2 and 3 has weight both as σx and
σz, combining to the n̂ axis shown in Fig. 2. Composite
gates enabling arbitrary single-qubit operations may be
composed of alternating combinations of these exchange
operations.

Both one- and two-qubit quantum gates for the EO
qubit proceeds by sequentially pulsing on and off the ex-
change coupling Jij(t) for pairs of spins i and j; this
is done via dc voltages on gates. In the idle state, when
quantum gates are not being executed, the exchange cou-
pling is set to zero everywhere (Jij(t) = 0), in which case,
even in magnetic field, all qubit states are degenerate,
and ideally there is no phase evolution between super-
posed states in the laboratory frame. This contrasts the
LD qubit, which has a rotating frame at the electron
Larmor frequency which must be tracked by a local os-
cillator. The EO qubit requires no such oscillator.

An alternative mode of operation for EO qubits is
termed the resonant-exchange (RX) qubit. The RX qubit
differs from the dc-mode EO qubit in that the nearest-
neighbor exchange couplings are constantly set to the
same non-zero value J = J12 = J23, opening an energy
gap between the qubit states |0〉 and |1〉. There is now
a rotating frame at frequency J , and single-qubit gates
can correspondingly be executed with ac exchange pulses
∆J(t) = J12 − J23 ∝ cos(ωt) where h̄ω = J (Medford
et al., 2013a,b; Taylor et al., 2013). Two-qubit gates can
be obtained using dc pulses for the exchange coupling
between pairs of spins belonging to different qubits (Do-
herty and Wardrop, 2013), or via capacitive couplings, as
demonstrated for the case of the ST0 qubit (Feng et al.,
2021; Shulman et al., 2012).

While allowing for narrow-band ac operation, always-
on exchange coupling also—to some extent—exposes the
qubit to electric noise. The discussion of possible ways to
protect RX qubits from electric noise at suitable operat-
ing points where the qubit is insensitive to noise (sweet
spots) has led to the asymmetric resonant-exchange
(ARX) qubit (Russ and Burkard, 2015a) and always-on
exchange-only (AEON) (Shim and Tahan, 2016) qubit
concepts. The AEON qubit allows for one-qubit and
two-qubit operations while always remaining at a charge-
insensitive region of potential bias space.

Magnetic field gradients are also a source of unwanted
noise for exchange-only qubits. For any of these three-
spin encodings, matrix elements due to local gradients
will, in general, cause leakage from the total S subspace
in which the qubit is encoded into another S subspace.
Such “spin leakage” is a key error type to manage, unlike
in the LD qubit case.

E. Spin qubits with additional charge degrees of freedom

The spin qubits discussed above operate in the regime
of half-filling, with one particle per site, as represented
by the diagonal entries in Fig. 3, with spin being the re-
maining degree of freedom, while particle hopping only
occurs virtually. In this section, we describe qubit vari-
ants that deviate from single-charge filling and thus allow
for correlations between charge and spin, to exploit spin-
charge hybridization for qubit initialization and readout,
electric-field control, and electric-dipole coupling to other
qubits or cavity electric fields.

An instructive example is the flopping-mode qubit,
which consists of a single electron that can occupy either
the left or right site of a DQD (Benito et al., 2019a; Croot
et al., 2020; Mutter and Burkard, 2021). The charge
can be coupled to the spin by spin-orbit coupling or an
external magnetic field gradient, and delocalization of
the charge across the DQD near zero-level detuning en-
hances the electric dipole moment compared to a single
QD (Cottet and Kontos, 2010; Hu et al., 2012). Judi-
cious control of the energy level detuning and tunneling
strength between the two sites permits a tunability of the
electric dipole. Therefore strong coupling to the electric
field or other qubits can be obtained when needed, while
there is a small susceptibility to charge noise at small
coupling or sweet spots when the qubit is idle. Increas-
ing the number of sites available to a single particle to
three allows for the formation of a charge quadrupole
qubit (Friesen et al., 2017; Koski et al., 2020).

Rather than extending the number of sites for a sin-
gle particle, one can also decrease the number of sites
for the three-particle EO qubit. Reduction from three
to two sites leads to the QD hybrid qubit (Kim et al.,
2014; Koh et al., 2012; Shi et al., 2012, 2014). While
this design essentially fixes the intra-site exchange cou-
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pling to a non-zero value, it still allows for fast electrical
control of a qubit via the energy detuning and tunnel
coupling. Although charge noise is a concern for the hy-
brid qubit, its impact is reduced due to the similarity
of the orbital wavefunctions of the intra-site singlet and
triplet states. Reducing the number of sites further to a
single site, one obtains the spin-charge qubit (Kyriakidis
and Burkard, 2007), see Fig. 3. Four electrons in four
dots can define a pulsed EO qubit with total spin S = 0
which is initialized via two spin singlets (Bacon et al.,
2000). RX-like operation is possible using at least three
always-on exchange interactions between four dots (Sala
and Danon, 2017). Alternatively, a hybrid quadrupo-
lar exchange-only (QUEX) mode of operation is possible
with four electrons in three dots, using a valley or or-
bital splitting in the central dot as an effective always-on
exchange coupling (Russ et al., 2018a).

III. MESOSCOPIC PHYSICS OF DOTS AND DONORS

In this section, we review the basic principles behind
the operation of QDs and donors, which form the ba-
sis for semiconductor spin qubits. In subsection III.A
we discuss how electrons, which exist in bulk semicon-
ductors as delocalized Bloch states, can be confined in
QDs by the heterostructure and externally applied po-
tentials. The essential role of Coulomb interactions in
defining QD states and the exchange interaction is cov-
ered in subsection III.B. Subsection III.C summarizes the
development of QD device designs and charge sensing
technology. We conclude by covering interactions with
other microscopic degrees of freedom in semiconductor
QDs, such as spin-orbit coupling (SOC) and its relation
to the Zeeman Hamiltonian (III.D), valley states in sil-
icon (III.E) and lattice nuclei (III.F). Several of these
topics have also been reviewed elsewhere, e.g., Hanson
et al., 2007; van der Wiel et al., 2002; and Zwanenburg
et al., 2013, and we will emphasize recent developments
where applicable.

A. Quantum confinement

Semiconductor spin qubits rely on the full three-
dimensional (3D) confinement of electrons. Figure 5 illus-
trates some of the most commonly employed spin qubit
designs and the resulting electronic confinement poten-
tials. In donor-based devices, donors can be placed in
the semiconductor using “bottom-up” STM lithography
or “top-down” ion implantation. 3D confinement of the
donor electron is then generated by the Coulomb poten-
tial of the dopant atom in the semiconductor. Figure 5(a)
depicts a device in which donor sites and gates are both
fabricated using STM lithography(He et al., 2019). Al-
ternatively, P ions can be implanted into SiMOS devices

that incorporate microwave striplines and single electron
transistor charge detectors (Morello et al., 2010).

In most planar QD systems, a layered semiconductor
heterostructure generates confinement in the z-direction
(generally the growth direction), while electrostatic gates
confine electrons in the xy-plane [see Figs. 5 (b–e)]. Many
early experiments were performed using depletion-mode
GaAs devices, as illustrated in Fig. 5(b). In these de-
vices an AlGaAs spacer layer is doped with Si to provide
the free-electrons that populate the 2DEG formed at the
AlGaAs/GaAs interface. The 2DEG is depleted by ap-
plying negative voltages to top gates. In this example the
top gates are designed to form a DQD (Elzerman et al.,
2003).

Many modern devices utilize undoped semiconductors
to reduce charge noise and gate leakage. In undoped de-
vices, electrons are accumulated at the Si/SiO2 interface
[Fig. 5(c)] or Si quantum well [Fig. 5(d)] by applying pos-
itive voltages to overlapping accumulation gates (Angus
et al., 2007; Borselli et al., 2011a). In both of these de-
signs, the barrier gates (cyan) set the height of tunnel
barriers and the darker (orange) gates define the loca-
tions of the QDs. The gate layers are separated by a
thin dielectric, often Al2O3. In inactive regions of the
device, the gates are elevated off of the substrate using a
layer of screening gates or a spacer layer.

A recent development is the fabrication of QDs using a
single-layer etch-defined gate electrode (SLEDGE) pro-
cess, see Fig. 5(d). In these devices the electronically ac-
tive region of the device is patterned in a single step (Ha
et al., 2021). Subsequent fabrication steps make electri-
cal contact to the gate electrodes from the top using vias.
SLEDGE designs may be more amenable to the develop-
ment of large 2D QD arrays, as the electrical connections
to the gates can be fanned out in multiple layers.

Lastly, FinFET and silicon-on-insulator (SOI)
nanowire approaches [Fig. 5(f)] use a combination of
etching and electrostatic gating to define QDs (Voisin
et al., 2016; Zwerver et al., 2022). The etching process
defines a quasi-1D channel (or pair of parallel channels).
“Wrap-around” electrostatic gates generate the electric
confinement potential along the length of the channel.
The FinFET approach is currently being investigated
by a number of industrial labs due to the similarity
to conventional CMOS transistors. Additionally, the
wrap-around gate design strongly couples to the QD
electrons, giving rise to a robust charge sensing signal
(see Sec. III.C) (Ciriano-Tejel et al., 2021). We begin
our discussion of confinement by considering the bulk
bandstructure of the most common materials used to
fabricate spin qubits, namely GaAs and Si.
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FIG. 5 Device designs commonly used to confine electron spins. Vertical confinement is illustrated in the plots of E(z) and
lateral confinement is illustrated in the xy-plane. (a) Donor electrons are confined by the positive potential of the donor atom
and manipulated with gates defined through conventional or STM lithography. (b) Depletion mode device design commonly
used in early GaAs experiments. (c,d) Modern SiMOS and Si/SiGe devices utilize overlapping gate architectures to achieve
tight control of QD electrons. In SiMOS, electrons are localized at the SiO2/Si interface (c). In Si/SiGe (d), the electrons
reside in a buried quantum well. (e) SLEDGE (single layer etch-defined gate electrodes) devices utilize a single layer of gates
patterned on the top surface of a Si/SiGe heterostructure. The gates are contacted from above using vias, which allows gate
wiring to fan out away from the active area of the device in multiple planes. (f) FinFETs use a combination of dry etching and
electrostatic gating to confine QD electrons. In panels (c–f), quantum dot electrons are accumulated beneath the dark (orange)
plunger gates, while the tunnel barrier gates are indicated with lighter shading (cyan). Gates are electrically isolated from
one another using a thin dielectric. In panels (c,d), the plunger and barrier gate layers are isolated from the semiconductor in
inactive regions of the device using screening gates.

1. Bulk bandstructure

Figure 6 shows the first Brillouin zone and electronic
bandstructure of GaAs and Si (Yu and Cardona, 2010),
which arise due to the crystalline potential of each ma-
terial. While the full bandstructure is quite complex,
much of its practical impact on the properties of QDs is
captured by the effective mass approximation (EMA) de-
scribing the conduction band minima and valence band
maxima. In this approach, the crystal potential effects
are encapsulated by a renormalized kinetic energy op-
erator in the Schrödinger equation, yielding the single-
particle Hamiltonian (Yu and Cardona, 2010)

HEMA =
∑

i=x,y,z

−h̄2

2mi

∂2

∂(ri)2
+ U(r) + µBS · ĝ ·B, (3)

with effective masses mi and the position vector r =
(rx, ry, rz) = (x, y, z). In this equation we have also in-

cluded the slowly varying potential U(r) which includes,
e.g., the electrostatic potential generated by the gate elec-
trodes, as well as the Zeeman term with the effective g-
tensor ĝ which is discussed further in Sec. III.D.

The effective mass may be isotropic or anisotropic de-
pending on the material; in the former case, we can de-
fine a single effective mass m∗ = mx,y,z. For instance,
free electrons in GaAs [Fig. 6(a)], occupy the isotropic
Γ (k = 0) point conduction band minimum and are de-
scribed by m∗ = 0.067m, where m is the bare electron
mass. Bulk silicon [Fig. 6(b)], by contrast, has a six-fold
degenerate conduction band minimum along the 〈100〉
(∆) directions in k-space; each valley has an anisotropic
effective mass of 0.92m and 0.19m in its longitudinal and
transverse directions, respectively. The six-fold valley de-
generacy is broken in Si devices by heterostructure and
electrostatic confinement which induces a valley splitting,
which is discussed in more detail in III.E.

The effective mass approximation is sufficient for un-
derstanding many QD properties. However, microscopic
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FIG. 6 Bulk Brillouin zone (upper panels) and bandstruc-
ture (lower panels) as a function of k along the 〈100〉 and
〈111〉 directions for (a) GaAs and (b) Si. The nondegener-
ate conduction band minimum in GaAs is centered at the Γ
point (k = 0), while Si has six equivalent conduction band
minima along the high-symmetry 〈100〉 (∆) directions and an
anisotropic effective mass. The heavy-hole (HH) and light-
hole (LH) valence bands for both materials are separated in
energy from the split-off (SO) band by the spin-orbit split-
ting.

details of important phenomena such as spin-orbit and
valley splitting are sensitive to band mixing and atomistic
effects beyond the effective mass approximation. Micro-
scopic descriptions of such effects can be obtained from
more complicated bandstructure models, for instance us-
ing k ·p or tight-binding Hamiltonians (Yu and Cardona,
2010). Such models are also useful in particular to de-
scribe valence band holes, where multiple bands are rele-
vant due to Γ point degeneracies and SOC. As pictured in
Fig. 6, this leads to heavy hole (HH) and light hole (LH)
bands which are degenerate at Γ, as well as a split-off
(SO) band which is lowered in energy by the bulk spin-
orbit splitting. The structure of the valence band near
the Γ point originates from the p-type atomic orbitals
(rather than s type as in the conduction band) related
to the orbital angular momentum l = 1. Combined with
the spin s = 1/2, this allows for total angular momen-
tum j = 3/2 (LH and HH) or j = 1/2 (SO), the two
being split by the SOC. The HH and LH bands are dis-
tinguished by jz = ±1/2 (LH) and jz = ±3/2 (HH) (Yu
and Cardona, 2010).

2. Bandstructure engineering

To trap single spins, quantum confinement is necessary
and is typically provided by a combination of material-
and electrostatically-defined spatial barriers. For donors
in bulk silicon, 3D confinement is provided by the impu-
rity potential itself as depicted in Fig. 5(a). This poten-

tial decays as 1/r away from the impurity, but has local-
ized corrections in the immediate vicinity of the donor
site; the latter short-range effects are called “central-
cell” corrections (Pantelides, 1978). In epitaxial Si/SiGe,
Ge/SiGe, and GaAs/AlGaAs heterostructures, by con-
trast, charge carriers (i.e. electrons or holes) are confined
in the out-of-plane (growth) direction by the conduc-
tion band offsets occurring at semiconductor interfaces
(Abram and Jaros, 1989; Ando et al., 1982; Bastard,
1991).

For instance, many seminal results in mesoscopic
physics were obtained with two-dimensional electron
gas (2DEG) devices fabricated on Schottky-gated
GaAs/AlGaAs heterostructures [Fig. 5(b)]. Sandwich-
ing a thin GaAs layer between two AlxGa1−xAs layers
creates a 2DEG in the GaAs layer due to its lower con-
duction band edge. A 2DEG can also be formed at a
single heterointerface, e.g., GaAs/AlGaAs, which con-
fines electrons inside GaAs in a nearly triangular con-
finement potential. In most cases, the electrons are pro-
vided by doping the adjacent AlxGa1−xAs layer with Si
atoms (Manfra, 2014). Undoped enhancement-mode de-
vices, where electrons are electrostatically forced into the
quantum well with a top gate, are also being investigated
(Mak et al., 2013; Tracy et al., 2014).

In Si metal-oxide-semiconductor (MOS) devices, the
2DEG is formed at the Si-oxide interface. The large band
gaps of most oxides allow for very large band offsets, in
turn enabling very high out-of-plane electric fields to be
applied by metal gates without inducing leakage. As a
result, MOS electrons are confined in an approximately
triangular potential formed by the Si-oxide conduction
band offset on one side and the gate-induced electric field
on the other, illustrated by the potential cut in Fig. 5(c).

2DEGs can be similarly formed in Si/SiGe heterostruc-
tures, where strain is appreciable due to the 4% larger lat-
tice constant of Ge compared to Si (Schäffler, 1997). For
spin qubit applications, a thin tensile-strained Si layer
is typically sandwiched between lattice-relaxed SixGe1−x
alloy layers, which induces a conduction band offset that
traps electrons in the Si QW. Undoped heterostructures
are now the norm for Si/SiGe QWs, as electron accu-
mulation can be totally gate-modulated (Deelman et al.,
2016). The induced out-of-plane electric fields in these
structures are therefore comparatively modest, as shown
in Figs. 5(d,e). Finally, FinFETs extend MOS architec-
tures utilizing etching and electrostatic gating to confine
QD electrons [Fig. 5(f)].

3. Electrostatic gating

Once a QW has been formed in a planar heterostruc-
ture, confinement in the in-plane dimensions can fur-
ther reduce the effective dimensionality of the electronic
states. In-plane confinement is achieved through the elec-



13

a) QPC b) Single dot c) Double dot

FIG. 7 Electrostatic confinement. (a) 1D states can be
formed in a QPC due to the potential constriction from a
split gate. (b) Electrostatic confinement in both in-plane di-
rections of a QW lead to 0D QD states. (c) Two QDs placed
in series form a DQD. Depletion-mode gates are pictured here.

trostatic potential U(r) in Eq. (3), which is typically in-
duced by metal gate electrodes above the heterostruc-
ture. A confining potential along a single direction cre-
ates a quasi-1D channel, which can form a quantum point
contact (QPC) [Fig. 7(a)]. Finer-grained electrostatic
confinement along both in-plane directions can form ef-
fectively 0D QDs. The potential minima define QD lo-
cations where electrons can be trapped [Fig. 7(b)].

Gate voltage changes alter both the QD electrochemi-
cal potential as well as the shape of the confining poten-
tial. QDs can be connected in series to make larger struc-
tures, such as the DQD depicted in Fig. 7(c). In a DQD,
the interdot barrier height can be voltage-controlled to
modulate the interdot tunnel coupling tc [Fig. 8(c)].
Typical devices use separate plunger and barrier gates
to control the dot electrochemical potentials and inter-
dot barriers, respectively. In practice, geometrical cross-
capacitances influence the potential under neighboring
gates (van der Wiel et al., 2002), and voltage compensa-
tion of multiple gates is required to independently control
each dot potential, a procedure sometimes referred to as
defining “virtual gates” (van Diepen et al., 2018; Hens-
gens et al., 2017; Keller et al., 1996; Mills et al., 2019b).

B. Electron-electron interactions in QDs

Bandstructure and electrostatic confinement allow the
formation of 0D QD states and trapping of individual
electrons (and hence spins). As more electrons are added
to a QD, the electron-electron Coulomb interaction be-
comes critical to the properties of the whole system.
Trapped electrons in a QD electrostatically repulse any
other electron attempting to join that dot. This classical
effect defines the charging energy EC = e2/C, where C
is the total dot capacitance. Coulomb repulsion is dras-
tically illustrated by the phenomenon of Coulomb block-
ade in electron transport through QDs. Biasing a QD
in Coulomb blockade fixes its electron occupation, a pre-
requisite for defining any spin qubit (Hanson et al., 2007;
Kouwenhoven et al., 2001).

While Coulomb blockade can be understood concep-
tually by classical considerations, quantum effects fur-

FIG. 8 (a) DQD confinement potential. (b) DQD charge
stability diagram from Zajac et al., 2018. (c) DQD energy
levels near the (1,0)-(0,1) interdot charge transition. (d) DQD
energy levels in the two-electron regime, showing the cross-
over from the (2,0) → (1,1) → (0,2) charge state.

ther modify and enrich the physics. The full energy
penalty for changing electron occupation is called the
addition energy Eadd, which can be qualitatively under-
stood with a simple constant interaction model in which
Eadd = EC + Eorb. Here Eorb is the change in single-
particle energy that appears when an extra electron must
occupy a new orbital level to enter the QD, due to the
Pauli exclusion principle prohibiting more than two elec-
trons from occupying a single energy level.

Transport through multiple QDs connected in series
proceeds when the electrochemical potentials of the indi-
vidual QDs lie within the source-drain bias window and
tunneling from one dot to the next is downhill in en-
ergy (van der Wiel et al., 2002). We consider the level
structure of a DQD in detail [Fig. 8(a)], as it illustrates
several key QD control principles. Figure 8(b) shows a
DQD charge stability diagram, with charge states de-
noted (N1, N2), where Ni is the number of electrons in
dot i. For a single-electron DQD (N1 + N2 = 1), there
are two relevant charge states, (1,0) and (0,1), and we
can approximate the DQD in that basis as a two-level
system with Hamiltonian

Hc =

(
ε/2 tc
tc −ε/2

)
, (4)

where the detuning ε = µ1 − µ2 is the difference in elec-
trochemical potentials of the two dots. Hopping between
different charge states is described by the tunnel coupling
tc, which is generally an exponential function of the inter-
dot barrier height. As illustrated in Fig. 8(c), the ground
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FIG. 9 Low-energy orbital spectrum of a one- and two-
electron QD in the limit of infinitesimal magnetic field. (a)
A one-electron QD with a parabolic potential has excited or-
bital states equally spaced by Eorb (only excitations along one
dimension are shown for simplicity, and a small Zeeman split-
ting illustrates the spin degeneracy). (b) For two electrons,
the total energy is increased by Eadd and the lowest spin-
singlet and spin-triplet eigenstates are shown with the combi-
nations of the orbital wavefunctions |g, e〉 that dominate each
state. Note that antisymmetric spin singlets have spatially
symmetric orbital wave functions and vice versa to satisfy
the Pauli exclusion principle. The singlet-triplet splitting J
is due to the triplet occupation of the excited orbital, though
the energy of the latter is lowered from the one-electron or-
bital splitting by direct exchange 2J .

state charge occupancy changes from (1,0) to (0,1) as ε
changes sign, while around zero detuning the eigenstates
are hybridized by tc into antibonding and bonding com-
binations of the charge states.

For a two-electron DQD (where N1 + N2 = 2), the
(2,0), (1,1), and (0,2) charge states are possible. How-
ever, the DQD detuning must be highly biased for the
doubly occupied (2,0) or (0,2) charge state to become the
ground state due to Coulomb repulsion. As a result, the
DQD ground state changes from (2,0) to (1,1) to (0,2)
as ε increases, as illustrated in Fig. 8(d). In practice,
voltage modulation of detuning and tunnel coupling is
critical for nearly all spin qubit control modalities.

Spin-spin Heisenberg exchange interactions are a key
resource for spin qubits. Microscopically these interac-
tions arise from the interplay of the Pauli exclusion prin-
ciple, the external potential, and Coulomb interactions;
given its complexity and importance, we refer the reader
to Sec. IV for a detailed discussion of this topic. Here we
illustrate these principles by discussing the energy spec-
trum of two electrons in a single QD, which is also practi-
cally important for spin manipulation and measurement.

As illustrated in Fig. 9, the one-electron states of a
single QD include an orbital ground and first excited
state, separated in energy by Eorb. When a second elec-
tron is added to the dot, the spatial wavefunctions must
be either symmetric or antisymmetric under particle ex-

change, corresponding to spin singlet and triplet states,
respectively. Singlets can have both electrons occupy the
same or different (spin-degenerate) orbitals, while spatial
antisymmetry requires that triplets must have electrons
in separate orbitals. Restricting ourselves to the two low-
est orbital states for simplicity, the ground state spin sin-
glet comes from double occupation of the ground orbital,
while the triplet states are higher in energy as they must
place one electron each in the ground and first excited
orbitals, as shown in Fig. 9. In the absence of a magnetic
field these triplet states are degenerate with energy ET ,
and the singlet-triplet splitting J = ET −ES is positive.
This example illustrates the general principle that any
two-electron system (even spanning multiple QDs) has
a singlet ground state in the absence of magnetic fields
(Lieb and Mattis, 1962).

Note that in general for a two-electron QD, J < Eorb,
the single-particle orbital splitting, because the triplet
state is lowered in energy by the direct Coulomb exchange
interaction 2J 1. In practice, contributions from other
orbitals are also quantitatively important, but they do
not substantially change the qualitative physical picture.
These arguments can also be extended to include excited
valley states, which are often the lowest energy excita-
tions in Si QDs; in such cases, the lowest excited triplet
may occupy the excited valley rather than orbital state,
giving rise to a even richer two-electron spectrum (Ercan
et al., 2021; Hada and Eto, 2003).

C. Isolating and detecting single charges

In this section we more closely examine spin qubit de-
signs and the various approaches for detecting the num-
ber of charges trapped in a QD. Figure 10 gives an
overview of the various single electron QD designs that
have been utilized by the spin qubit community. Com-
mon “stadium-style” depletion-mode GaAs gate elec-
trode designs are shown in Figs. 10(a-e). The use of un-
doped Si/SiGe wafers, and overlapping gate stacks that
gate the dots from the top, has been a paradigm shift
for the community; one that has arguably propelled the
field of Si spin qubits forward in recent years. Top gates
allow for tighter confinement, yield larger capacitive cou-
pling to QD electrons, and can be fabricated in multiple
layers. Figures 10(f,g) show examples of SiMOS single
QD and DQD designs (Angus et al., 2007; Lai et al.,
2011). A device fabricated using STM-based hydrogen

1 Literature on atomic and chemical systems may refer to the
Coulomb exchange integral J as the “exchange energy,” which is
the interaction between singlets and triplets occupying the same
set of orbitals. In spin qubits, we define J as the singlet-triplet
splitting of the lowest two states, regardless of orbital content, as
that is what gives an effective Heisenberg exchange interaction
within the qubit Hilbert space.



15

FIG. 10 (a–c) Few electron single, double, and triple QDs (Ciorga et al., 2000), (Elzerman et al., 2003), (Schröer et al., 2007).
(d) 8-site 1D QD array (Volk et al., 2019). (e) 3 × 3 QD array (Mortemousque et al., 2021). (f,g) SiMOS single and DQD
devices (Angus et al., 2007),(Lai et al., 2011). (h) Donor device fabricated using STM lithography (He et al., 2019). (i) Single-
layer etch defined 1 × 6 QD array in Si/SiGe (Ha et al., 2021). (j) 1 × 9 QD array fabricated using overlapping Al gates on
Si/SiGe (Zajac et al., 2016). (k) Enhancement mode Ge/GeSi structure (Hendrickx et al., 2021). Holes are confined in (k),
while the remaining devices isolate electrons. Images are sized to share common dimensional scales.

passivation lithography is shown in Fig. 10(h) (He et al.,
2019). Figures 10(i,j) illustrate dual-rail designs, where
linear QD arrays are partnered with a parallel channel
of charge detectors. The device in Fig. 10(i) is a 1 ×
6 Si/SiGe QD array with opposing charge sensors (Ha
et al., 2021). A linear 9 dot array with 3 charge sensors
is shown in Fig. 10(j) (Zajac et al., 2016). These over-
lapping gate designs have been successfully extended to
small 2D arrays in other material systems, as illustrated
by the 2 × 2 Ge QD array in Fig. 10(k) (Hendrickx
et al., 2021). QD fabrication methods are rapidly transi-
tioning from academic-scale liftoff processes to industry-
compatible subtractive processes that are more amenable
to the development of multilayer devices (Geyer et al.,
2021; Ha et al., 2021). SiMOS CMOS nanowire devices
fabricated in industrial-grade research foundries are sim-
ilar to FinFETS, show single-electron, single-qubit oper-
ation, and have highlighted the promise of pathways to
qubits which may scale in a manner comparable to con-
ventional silicon transistor technologies (Ansaloni et al.,
2020; Zwerver et al., 2022).

Charge sensing techniques can be adapted for highly
sensitive single-shot spin readout by utilizing Pauli spin
blockade, as will be presented in detail for different types
of spin qubits in the following sections (Barthel et al.,
2009; Elzerman et al., 2004; Pakkiam et al., 2018; West
et al., 2019). We now describe how the QPC charge sen-
sors in the devices shown in Figs. 10(b,c,e)] and QD
charge sensors shown in Figs. 10(d,h-j)] are used to mea-
sure changes in the charge occupation of QD devices (Di-
Carlo et al., 2004; Field et al., 1993).

The absolute number of electrons confined in a QD can
be determined through charge detection using a QPC or
a QD as a charge detector (Field et al., 1993). The mea-

FIG. 11 (a) QPC charge detector to probe the charge occupa-
tion of a single QD (Field et al., 1993). (b) RF-QPC for fast
sensing of a DQD (Reilly et al., 2007). (c) Fast charge sens-
ing of a DQD using a RF-QD charge sensor (Barthel et al.,
2010). (d) Donor device fabricated using STM lithography
and probed using RF-reflectometry (Keith et al., 2019b). (e)
cQED device for detecting charge and spin states in a cavity-
coupled InAs nanowire DQD (Petersson et al., 2012). (f)
Dispersive gate sensing of charge states in a fin-FET device
(Gonzalez-Zalba et al., 2015).
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surement bandwidth can be greatly increased using radio
frequency (RF)-reflectometry (Schoelkopf et al., 1998), as
later demonstrated with RF-QPCs [Fig.11(b)] and RF
sensor dots [Fig.11(c)] (Barthel et al., 2010; Reilly et al.,
2007). A recent development is dispersive gate sensing,
where microwave reflection off of a QD gate is used to
infer the QD charge occupation (Colless et al., 2013; Ur-
dampilleta et al., 2019; West et al., 2019; Zheng et al.,
2019). Dispersive sensing has the potential to scale to
larger system sizes, as additional QD or QPC sensors
are not needed. Finally, as will be discussed in detail
in Sec. VII, dispersive charge and spin state readout
can be achieved in the circuit quantum electrodynam-
ics (cQED) architecture [Fig. 11(e)]. Baseband and mi-
crowave charge detection approaches have greatly bene-
fited from the development of cryogenic amplifiers (Mack-
lin et al., 2015; Vink et al., 2007).

D. Zeeman interactions and spin-orbit coupling

Direct magnetic manipulation of the electron spin S in
solids is generally described by the Zeeman Hamiltonian

H(t) = µBS · ĝ(t) ·Beff(t), (5)

where µB is the Bohr magneton (= 58 µeV/T). In con-
trast to free electrons where the coupling is described by
a scalar g-factor g ≈ 2, the crystal field in solids can lead
to an anisotropic magnetic response captured by an ef-
fective g-tensor ĝ (Slichter, 2010). The effective magnetic
field Beff can include externally applied fields as well
as internal fields due to hyperfine or spin-orbit effects.
Time-dependent modulation of this Hamiltonian enables
coherent single-spin rotations, as detailed in Sec. V.A.2.
As SOC is a crucial ingredient to both ĝ and Beff , we dis-
cuss it further here along with the ways it can be utilized
to manipulate individual spins.

SOC arises from the relativistic coupling of spin to elec-
tric fields and is described by the Hamiltonian HSO =
[gµB/(h̄mc

2)](∇V × p) · S, where V is the electric po-
tential and p is the electron momentum (Zutic et al.,
2004). In essence, an electron spin moving in a potential
experiences an effective momentum-dependent magnetic
field Beff,SO. For spherically symmetric potentials, such
as the hydrogen atom, this coupling takes the commonly
cited isotropic form L ·S. In semiconductor heterostruc-
tures, the ∇V term arises from internal crystal fields and
potential discontinuities at material interfaces (Hanson
et al., 2007; Zutic et al., 2004).

The spin-orbit interaction in bulk solids increases with
atomic number; thus, the spin-orbit splitting (equal to
the valence band splitting in Fig. 6) is 44 meV in Si but
about 300 and 340 meV in Ge and GaAs, respectively.
In bulk semiconductors, the p-like valence bands are par-
ticularly strongly coupled by SOC, while the effects on
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FIG. 12 (a) Spin-orbit interactions in QDs arise microscopi-
cally from the inversion asymmetries due to the bulk crystal
structure (BIA), structural effects (SIA) like external fields,
and interfaces (IIA). Under an applied magnetic field into the
page, the local momentum of the electron wave function ro-
tates (as depicted by arrows), causing local couplings to the
atomic-scale gradients induced by these asymmetries which
sum to the effective couplings in Eq. (7). (b) Effective spin-
orbit field direction for Dresselhaus- and Rashba-type interac-
tions as a function of in-plane momentum at the Fermi surface
momentum kF [see Eq. (8)].

s-like conduction band electrons, such as in GaAs, are
weaker but significant for spin qubit control, for example
by altering the g-factor, as described by the Roth formula
(Roth, 1960; Zwanenburg et al., 2013),

g ≈ 2− m

m∗
2∆SO

3Eg + 2∆SO
, (6)

where ∆SO and Eg denote the SO splitting in the va-
lence band between the LH/HH and SO bands and the
band gap. In bulk silicon, the electron g-factor remains
close to 2 and is only weakly anisotropic (Roth, 1960),
while electrons in bulk GaAs have an isotropic g-factor of
−0.44, which can be further (and anisotropically) modi-
fied in QWs (van Beveren et al., 2005; Kogan et al., 2004;
Yugova et al., 2007).

Additional SOC effects arise in 2D QWs due to con-
finement and lowered symmetries, which for electrons are
largely described by the effective Hamiltonian2

HSO = 2γR(pySx − pxSy) + 2γD(pxSx − pySy). (7)

where γR and γD are the so-called Rashba and Dres-
selhaus SOC coefficients. These interactions fundamen-
tally arise from inversion symmetry breaking at differ-
ent scales. Structural inversion asymmetries (SIA) due
to confining electric fields lead to Rashba couplings,
while Dresselhaus interactions relate to the bulk inversion

2 The factor of 2 in this equation is due to our explicit use of spin
rather than Pauli operators
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asymmetry (BIA) of the zincblende lattice in GaAs and
to heterostructure interface inversion asymmetry (IIA)
in Si QWs (Golub and Ivchenko, 2004; Nestoklon et al.,
2008; Prada et al., 2011). Figure 12(a) illustrates these
different sources of microscopic asymmetries and their
connection to spin-orbit coupling. Intuitively, a QD elec-
tron undergoes cyclotron motion due to an applied mag-
netic field, leading to SOC effects as its local momentum
samples these asymmetries (Jock et al., 2018). Addi-
tional spin-orbit couplings beyond the linear terms in
Eq. (7), such as terms cubic in momentum p, can also
be relevant, for instance for quantum-confined holes.

The Hamiltonian of Eq. (7) introduces additional g-
tensor modulations by coupling the vector potential A
of an external magnetic field to spin via the momentum,
p→ p− eA. For example, choosing the Coulomb gauge
for an in-plane magnetic field B = Bxx̂ one obtains B-
dependent terms eBxz(γRS

x − γDS
y) in HSO. If the

SO couplings γR,D contain interfacial contributions, this
introduces spin-dependent level shifts which contribute
both diagonal and off-diagonal g-tensor terms gxx and
gxy. Further g-tensor corrections arise from the admix-
ture of excited orbital states (de Sousa and Das Sarma,
2003; Stano and Fabian, 2005) or valley states in Si
QDs (Harvey-Collard et al., 2019; Nestoklon et al., 2008;
Prada et al., 2011; Ruskov et al., 2018; Veldhorst et al.,
2015a). These couplings can be sensitive to local device
disorder, causing interdot g-factor gradients in Si/SiGe
(Ferdous et al., 2018) and in MOS dots for electrons and
holes (Jock et al., 2018; Tanttu et al., 2019; Voisin et al.,
2016). The effects of SOC on electronic g-factors have
also been investigated in metallic nanoparticles (Petta
and Ralph, 2001, 2002), InAs (Schroer et al., 2011) and
InSb nanowire DQDs (Nadj-Perge et al., 2012), and self-
assembled QDs (Nakaoka et al., 2007), among other sys-
tems.

The Hamiltonian in Eq. (7) can also be interpreted as
the action of a momentum-dependent spin-orbit field

Beff,SO = (γD+γR) sin θê[110] +(γD−γR) cos θê[11̄0] (8)

where θ denotes the angle between p and the [110] direc-
tion (Kavokin, 2001). Figure 12(b) shows the different
orientation dependencies of Rashba and Dresselhaus SOC
fields. This effective field imparts a directional depen-
dence to matrix elements involving momentum, includ-
ing interdot tunneling and intradot orbital spin-flip tran-
sitions (Hofmann et al., 2017; Stepanenko et al., 2012).
This also enables controlling electron spins with orbital
motion, or electric dipole spin resonance (EDSR), as
first described in Rashba and Efros, 2003. For exam-
ple, if we apply a static magnetic field B0 = B0ẑ and
take ĝ(t) = g1, the orbital motion of the electron with
py(t) = p0 cos(ωt) yields HR = 2γRp0 cos(ωt)Sx, which
can be used to drive Rabi oscillations in a rotating frame.

Golovach et al., 2006 developed the theory for EDSR in

2DEG-based QD systems, while Flindt et al., 2006 con-
sidered EDSR in nanowire devices with strong SOC. Fol-
lowing the argument in Golovach et al., 2006, a harmonic
QD subject to an oscillating electric field can be described
by an effective Hamiltonian Heff = 1

h̄ (gµBB ·S+h(t) ·S),
with h(t) = 2gµBB × Ω(t), where Ω(t) is a dimension-
less driving field. The coupling strength (and hence effec-
tive Rabi frequency) scales linearly with the amplitude
of the oscillating electric field, and the drive is maximal
when Ω(t) and B are orthogonal. The driving strength
is Ω(t) ∼ r0(t)/λSO, where λSO ∼ λ± = h̄/m∗(γD ± γR)
is the spin-orbit length and r0(t) = −eE(t)/(m∗ω2

0) de-
notes the shift of the QD due to the electric field where
E(t) and h̄ω0 are the electric field and confinement en-
ergy of the QD.

As an alternative to the ac-driven displacement of the
entire electronic wave function in a spin-orbit field, driv-
ing ac electric fields can also distort the confining po-
tential and hence the wave function, which manifests as
an effective time-modulation of the anisotropic g-tensor
which can also cause spin rotations (Vrijen et al., 2000).
In general, ĝ = ĝ(V (t)), where V (t) is a time-dependent
gate voltage on the device (Venitucci et al., 2018). The
first demonstration of spin control using g-tensor reso-
nance was in a 2D GaAs/AlGaAs heterostructure, where
the Al concentration was purposely graded to achieve
a spatially varying ĝ (Kato et al., 2003). Driving the
system with an electric field yielded spin rotations that
were optically detected using time-resolved Kerr rota-
tions. Recent progress utilizing g-tensor modulation has
occurred in hole spin qubits, taking advantage of the
natural anisotropies of the valence band, as discussed in
Sec. V.E.3.

“Synthetic” spin-orbit fields can also be induced by
translating a spin along an extrinsic magnetic field gra-
dient, typically generated in QDs by a nearby micromag-
net. As proposed by Tokura et al., 2006, this enables
“slanting Zeeman field” spin resonance or EDSR in a
magnetic field gradient, as external driving electric fields
Eac displace the electron within the QD, allowing it to ex-
perience the spatially varying transverse magnetic field.
The effective ac magnetic field strength can be calculated
from perturbation theory as

Bac =
eEac`

2
orb

Eorb
|bSL|, (9)

where Eorb is the QD orbital splitting, `orb is the or-
bital length scale, and bSL = ∂Bz/∂x is the transverse
magnetic field gradient. The resulting Rabi frequency
fRabi = gµBBac/(2h) is linearly proportional to Eac and
bSL (Pioro-Ladriere et al., 2008).

Finally, while typical EDSR operation displaces the
spin within a single QD, which limits the interaction
strength in tightly-confined QDs (Hu et al., 2012), low
power electrical spin control can be achieved by increas-
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ing the displacement of the electron through the use of
DQDs [Fig. 19(d)]. Benito et al., 2019a considered this
“flopping-mode” spin qubit consisting of a single elec-
tron confined in a semiconductor DQD in the presence
of both a homogeneous external magnetic field Bẑ and
a transverse field gradient created with a micromagnet
∆Bx ≈ bSL∆z/2, where 2∆Bx is the difference in the x-
component of the magnetic field from the left to right side
of the DQD separated by ∆z (Benito et al., 2017). When
∆Bx is appreciable, ac driving of the electron across the
DQD can lead to low-power single spin rotations (Croot
et al., 2020).

E. Valleys

A modification of the simple picture of electron con-
finement presented in Sec. III.A occurs in Si, where the
conduction band features six equivalent minima, referred
to as “valleys,” as shown in Fig. 6(b). The valley de-
gree of freedom can complicate the level structure of
quantum-confined states (Gyure et al., 2021; Schäffler,
1997; Zwanenburg et al., 2013). For donors in bulk sil-
icon, each valley contributes a degenerate state in the
EMA. This degeneracy is lifted by valley-orbit coupling
with the tetrahedral donor central-cell potential, lead-
ing to a nondegenerate ground state composed of a sym-
metric linear combination of the six valleys, as shown
in Fig. 13(a). By contrast, the four in-plane (x, y) val-
leys are raised in energy by strain in Si/SiGe quantum
wells (Schäffler, 1997) and higher subband quantization
energy in MOS devices (Ando et al., 1982). This leaves
two longitudinal kz valleys whose degeneracy is lifted by
the heterointerfaces, giving rise to the valley splitting,
as illustrated in Fig. 13(b). Controlling and maximizing
this splitting is critical for Si-based spin qubits, as it is
typically the lowest energy excitation in a single-electron
QD.

Valley splitting arises from atomic-scale interactions
of the electron with the heterostructure potential, where
the EMA is most questionable (Friesen and Coppersmith,
2010; Saraiva et al., 2009) and numerical full-band calcu-
lations using tight-binding or pseudopotentials can offer
atomistic insight (Boykin et al., 2004; Zhang et al., 2013).
Nonetheless, many key features can be described within
an augmented effective mass framework, where the full
wave function is expanded in terms of envelope and Bloch
functions for each relevant valley as

ψ(r) =

Nv=(2,6)∑
j=1

Fj(r)eikj ·ruj(r). (10)

Here kj and uj(r) are the wave vector and periodic part
of the Bloch function, respectively, for the jth valley, and
Fj is the envelope function for that valley. For donors in
bulk silicon, the Nv sum runs over all 6 valleys, whereas

FIG. 13 (a) The valley splitting of donors in bulk Si from the
admixture of the six-fold degenerate valleys (depicted in the
Brillouin zone) leads to three sets of states. (b) In Si QDs, the
electric fields in MOS and strain in Si/SiGe raises the energy
of the four in-plane valleys and the relevant valley splitting
is between the two out-of-plane valleys. (c) The admixture
of valley states leads to rapidly varying modulations in the
donor ground state, pictured from an effective mass calcula-
tion presented in Gamble et al., 2015. (d) The full ground
and excited state wave functions in Si QDs oscillate rapidly
due to the intervalley phase. Interference of the valley Bloch
functions minimizes the interface overlap for the ground state.

only the two k±z valleys matter for QDs. Each valley
envelope function is the solution of

(Ti + U(r))Fi(r) +
∑
j 6=i

V VO
ij (r)Fj(r) = EFi(r), (11)

where Ti is the effective mass kinetic operator for the
ith valley, U(r) is the external potential, and V VO

ij is the
valley-orbit coupling matrix element, which can be fit
to data or estimated from a model potential (Gamble
et al., 2015). For donors, the magnitude of the valley-
orbit splitting is mostly set by the central cell correction,
though it is sensitive to local strain. However, the super-
position of valley states introduces a complicated interfer-
ence pattern in the full donor wave function ψ(r) [see in
Fig. 13(c)]. As a result, the inter-donor tunnel coupling
and exchange coupling are very sensitive to placement
of donors in the Si crystal lattice (Gamble et al., 2015;
Koiller et al., 2002; Salfi et al., 2018).

If we consider a QW with a sharp heterointerface at
z = zi, we can estimate the interfacial intervalley cou-
pling as V VO

+z,−z = v0δ(z−zi) (Friesen et al., 2007; Saraiva
et al., 2009). Taking the valley-free envelope function
F (z) as the solution of the intravalley part of Eq. (11),
we can evaluate the intervalley matrix element of V VO

+z,−z
to obtain the valley mixing ∆VO = v0|F (zi)|2e2ikzzi . As
this is a complex-valued matrix element, the valley split-
ting is equal to twice its norm (VS = 2|∆VO|). This
simple example illustrates that the valley splitting is de-
pendent on the electron overlap with the interface, which
can be increased by using vertical electric fields or reduc-
ing the QW width.
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Experiments show that the tunable out-of-plane elec-
tric fields in MOS structures allow for a wide range of
valley splittings 50–500 µeV (Gamble et al., 2016; Pe-
tit et al., 2018; Yang et al., 2013). Electric field tuning
is weaker in Si/SiGe QWs due to the smaller conduction
band offset and the valley splitting is most strongly influ-
enced by interface quality and QW width, with values up
to 200–300 µeV reported in high-quality interfaces and
narrow wells (Borselli et al., 2011b; Chen et al., 2021;
Hollmann et al., 2020). Beyond improving the epitaxial
quality, other methods have been proposed for achiev-
ing uniformly high valley splitting by modulating the Ge
content of the barrier or QW regions (McJunkin et al.,
2021; Zhang et al., 2013).

The valley mixing phase φV = arg(∆VO) is also sig-
nificant as it characterizes the superposition of valleys in
the ground state. In general this phase minimizes the
ground state overlap with the interface, lowering its en-
ergy, as shown in Fig. 13(d). Changes in this phase due
to disorder modify the valley character of the ground and
excited states of different QDs, enabling intervalley tun-
neling (Borjans et al., 2021b; Burkard and Petta, 2016;
Culcer et al., 2010; Mi et al., 2017c).

F. Hyperfine interactions

Nuclear spins in semiconductors act as both a nuisance
and potential resource for spin qubits. For example, fluc-
tuating hyperfine fields limit T ∗2 ∼ 10 ns (Petta et al.,
2005) in GaAs spin qubits, leading to strongly damped
Rabi oscillations (Koppens et al., 2006). On the other
hand, electric field control of the hyperfine coupling con-
stant A features prominently in Kane’s proposal (Kane,
1998). As discussed in Sec. II.B, Kane suggested using
a gate voltage to adjust the overlap between the donor
electron wavefunction and the 31P nuclear spin, thereby
tuning A. The hyperfine interaction between one electron
(carrying spin operator S and orbital angular momentum
operator L) with many nuclei at positions Rk carrying
spin Ik is described by the Hamiltonian (Abragam, 1961):

Hhf =
µ0

4π
g0µBh̄γn

∫
d3r

Ψ∗(r)
∑
k

[
L− S

|r−Rk|3
+ 3

[(r−Rk) · S](r−Rk)

|r−Rk|5

+
8π

3
δ(r−Rk)S

]
· IkΨ(r). (12)

Here, g0 is the bare electron g-factor, γn is the nuclear
gyromagnetic ratio, and Ψ(r) is the full electron wave
function (not the effective mass envelope function Fj(r)).
The last term with δ(r) is the Fermi contact term and is
dominant for conduction electrons in both GaAs and Si;
it is isotropic and as such its effects are immune to the

relative orientation of applied magnetic field with crys-
talline axes. The magnetic dipole-dipole terms are usu-
ally smaller, but they can contribute to the dephasing of
electron spin resonance of donors and QDs in Si at low-
magnetic field (Witzel et al., 2007; Zhao et al., 2019).

For the Fermi contact hyperfine interaction, we obtain

Hhf,contact =
∑
k

h̄AkS · Ik, (13)

where

Ak =
µ0

4π
gµBγnη|ψ(Rk)|2. (14)

Here ψ(Rk) is the effective mass envelope wavefunc-
tion at each nucleus location and η is the bunching fac-
tor, which captures the microscopic overlap of the Bloch
wavefunction with the nucleus. The envelope wavefunc-
tion is normalized,

∑
k|ψ(Rk)|2= 1, where the sum is

over all nuclear sites in the crystal. For 31P in Si, as
well as 29Si in Si and all Ga and Al nuclei in GaAs, η
has been both measured (Feher, 1959; Paget et al., 1977)
and calculated (Assali et al., 2011; Philippopoulos et al.,
2020); however for some species such as 73Ge in SiGe,
only estimates are available, typically from spin-qubit ex-
periments (Kerckhoff et al., 2021).

The dynamics of the nuclei themselves, in particular
the magnetic nuclear dipole-dipole interactions, is also of
critical importance in determining how the nuclear spin
bath evolves. In the frequent case that one QD electron
overlaps with many nuclear spins, the hyperfine interac-
tion behaves as an effective “Overhauser” magnetic field
that the electron spin experiences, which fluctuates in
time due to nuclear dynamics (Taylor et al., 2007). These
effects are central to spin qubit dephasing and decoher-
ence, and are discussed extensively in Section VI.

IV. SPIN-SPIN INTERACTIONS

The most important physical mechanism leading to
interactions between spin qubits is the exchange inter-
action. Exchange results from a combination of Fermi
statistics, electron tunneling, and Coulomb repulsion;
some common notation is required to combine these
aspects. We must first define a many-particle basis,
which is generally done in terms of single-particle ba-
sis functions φm(r)χσ, for spatial orbitals enumerated
by m, spin σ =↑, ↓, and position r. The spinor obeys
χ†σχσ′ = δσσ′ . Exchange depends on the Pauli exclusion
principle, which means that the multiparticle wavefunc-
tion Ψm1σ1m2σ2...(r1, r2, . . .) must be fully antisymmetric
for arbitrarily labeled electrons 1,2,. . . . This may be for-
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mally assured via the use of a Slater determinant, i.e.

Ψm1σ1,m2σ2,...mNσN
(r1, r2, . . . , rN ) =

1√
N !

∣∣∣∣∣∣∣∣∣
φm1

(r1)χσ1
φm2

(r1)χm2
. . . φmN

(r1)χσN

φm1
(r2)χσ1

φm2
(r2)χm2

. . . φmN
(r2)χσN

...
...

. . .
...

φm1
(rN )χσ1

φm2
(rN )χσ2

. . . φmN
(rN )χσN

∣∣∣∣∣∣∣∣∣ .
(15)

Equivalently, this wavefunction may be described by
anticommuting annihilation operators cmσ. The operator
c†mσ creates a conduction electron in orbital state φm(r)
and spin state σ and we write

|Ψm1σ1,m2σ2,...mNσN
〉 = c†m1σ1

c†m2σ2
. . . c†mNσN

|vac〉 ,
(16)

where |vac〉 is the vacuum containing no electrons. Using
this notation, the general many-body Hamiltonian within
the EMA approximation [Eq. (3)] reduces to

H =∑
σ

∑
mn

Tmnc
†
mσcnσ+

1

2

∑
σ1σ2

∑
mn`p

Vmn`pc
†
mσ1

c†nσ2
c`σ2

cpσ1
,

(17)

with single-particle kinetic and potential energy integral

Tmn =

∫
d3r φ∗m(r)

[
− h̄

2

2
∇ · (β∇) + U(r)

]
φn(r). (18)

The diagonal matrix β = diag(m−1
x ,m−1

y ,m−1
z ) gives the

inverse effective masses and U(r) is the externally-applied
potential due to gate biasing and built-in electric fields.
The general Coulomb integral is

Vmn`p =∫
d3r1d

3r2φ
∗
m(r1)φ∗n(r2)

e2

4πεrε0|r1 − r2|
φ`(r2)φp(r1),

(19)

where εr is the semiconductor relative permittivity
(which may in general depend on position); any image
effects due to metal gates are ignored for simplicity. Note
that both of these integrals are independent of spin.

This notation allows us to distinguish two flavors of the
exchange interaction, direct and kinetic. Direct exchange
is simply illustrated for two orbitals, perhaps labeled 1
and 2, with high spatial overlap, such as orbital states
in a common dot or donor. If we ask how the Coulomb
interaction impacts the energy of a doubly-occupied or-
bital state, the dominant terms of the Coulomb integral
in our single-particle basis can then be broken up into
the direct Coulomb term K, corresponding to the case
m 6= n, m = p, and n = `, such as V1221; and the direct

exchange term J , corresponding to m = n and ` = p,
such as V1122. These two terms separate a pair of two-
electron energy levels by the energy K − J /2 for triplet
spin states (spatially antisymmetric, spin symmetric),
and by K + 3J /2 for singlet spin states (spatially sym-
metric, spin antisymmetric). Hence, the combination of
Coulomb repulsion and Pauli exclusion raises the energy
of the singlet relative to the triplet state by the amount
2J . Although this direct exchange term is important,
leading in particular to Hund’s rule when filling orbitals,
spin-qubit control mostly leverages the distinct and more
highly-controllable kinetic exchange interaction, which is
due to the effect of the Pauli exclusion principle on the
(spin-independent) Tmn and K terms. We address this
interaction in the next section.

A. Kinetic exchange in the Fermi-Hubbard hopping model

Kinetic exchange is most easily introduced using the
simplified Fermi-Hubbard hopping model where we pre-
sume that electrons are rather tightly bound into their
single-electron orbitals φj(r). Here, φj(r) describe
ground-state occupation in dot j, with negligible dot-to-
dot Coulomb interactions (K) and dot-to-dot direct ex-
change interactions (Jjk), as discussed above. In this ap-
proximation, the only relevant Coulomb interaction is the
on-site Coulomb interaction with magnitude U = Vjjjj
and the kinetic energy transition matrix Tjk is described
in terms of a constant tunnel coupling tc = T12 between
sites 1 and 2, and voltage-controlled chemical poten-
tials µj for the diagonal elements Tjj . Constraining the
discussion to two electrically charged spin-1/2 particles
(such as electrons) filling two sites, and neglecting any
magnetic field at first for simplicity, the Fermi-Hubbard
Hamiltonian is

HFH =
∑
σ=↑,↓

[∑
j=1,2

µjc
†
jσcjσ + tc(c

†
1σc2σ + c†2σc1σ)

]
+
∑
j=1,2

Uc†j↑cj↑c
†
j↓cj↓. (20)

The possible (linearly independent) quantum states de-
scribed by Eq. (20) can be characterized by their charge
and spin configurations. For two charges in two sites,
the possible charge configurations are (2, 0), (1, 1), and
(0, 2) where (ni, nj) indicates the numbers of particles
on sites 1 and 2. The exclusion principle allows but one
spin configuration for (2, 0) and (0, 2) with one spin up
and one spin down particle, and hence total spin zero
(spin singlet). For (1, 1) there are four possibilities, one
spin singlet state and three spin triplet states. We may
choose our energy-zero such that µ1 + µ2 = 0 and define
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the detuning µ1 − µ2 = ε. We therefore arrive at

H = (U − ε) |S(0, 2)〉〈S(0, 2)|+ (U + ε) |S(2, 0)〉〈S(2, 0)|

+
√

2tc (|S(2, 0)〉〈S(1, 1)|+|S(0, 2)〉〈S(1, 1)|+h.c.) ,
(21)

where S indicates that all three states occurring in this
Hamiltonian are spin singlets, while the three spin triplet
states are at zero energy. Diagonalizing this Hamiltonian
for |tc|� U ± ε and |ε|< U , one finds a low-energy hy-
bridized singlet state

|S〉 ' |S(1, 1)〉 −
√

2tc
U − ε

|S(0, 2)〉 −
√

2tc
U + ε

|S(2, 0)〉, (22)

up to terms of order t2c/(U ± ε)2, with energy −J where

J =
4Ut2c
U2 − ε2

+O

(
t3c

(U ± ε)3

)
(23)

represents the exchange coupling. Virtual hopping be-
tween the two sites lowers the energy of the lowest spin
singlet by J relative to the spin triplet energy [Fig. 14];
this is the kinetic exchange interaction.

The other singlet states are at higher energies, sepa-
rated by roughly U ± ε. Excited (2,0) and (0,2) triplets
(discussed in Sec. III.B) are at similarly high energies.
Neglecting those higher states one finds as the effective
Hamiltonian for the (1, 1) charge configuration

H = −J |S〉〈S|= J

2

(
S2 − 2

)
= JSi · Sj + const., (24)

where S = Si + Sj denotes the total spin of sites i and j,
and the constant can be omitted to yield Eq. (1).

B. Heitler-London and Hund-Mulliken models

To gain a more microscopic understanding of the ex-
change J in Eq. (1) as well as the parameters of the
Fermi-Hubbard model (20), the localization of electrons
to a single site realized by a QD in a 2D electron system
can be modelled with high accuracy with a harmonic po-
tential V (r) = mω2

0(x2 + y2)/2. Here, h̄ω0 is the orbital
level spacing of the QD and r = (x, y). The exchange
coupling between spins of electrons residing in two adja-
cent QDs i and j can then be modelled using a quartic
potential V (r) which is locally harmonic in its two min-
ima, with d the inter-dot spacing. The exchange energy
can be obtained as the energy difference of spin singlet
and triplet states for the two-electron orbital Hamilto-

S  〉 S  〉T  〉

S  〉

S  〉

S  〉T  〉

T  〉
S  〉
T  〉

S  〉

T  〉
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T  〉
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er
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2√2tc
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FIG. 14 Energy levels, exchange coupling J , and wavefunc-
tions in a DQD with two particles. (a) Two-particle energy
levels as a function of level detuning ε. Tunnel coupling tc
leads to level repulsion between the singlet states (blue) where
the on-site Coulomb energy U equals ±ε. J is the energy
difference between the low-energy spin singlet and the spin
triplets (red). Wavefunctions for (b) the symmetric (i.e. ε =
0) and (c) detuned DQD.

nian including the Coulomb interaction,

H =
∑
i=1,2

(
1

2m
(pi − eA (ri))

2
+ eri ·E + V (ri)

)

+
e2

4πεrε0|r1 − r2|
, (25)

where E, B, and A denote the electric and magnetic
fields, and the vector potential.

The Heitler-London (HL) method evaluates the ener-
gies of the spin singlet (triplet) trial wavefunctions with
antisymmetric (symmetric) spin state |S〉 (|Tα〉) and cor-
responding symmetric (antisymmetric) orbital wavefunc-
tions in the (1, 1) charge configuration,

|Ψ±〉 =
1√

2(1± Σ2)
(|ij〉 ± |ji〉) , (26)

in order to guarantee an overall antisymmetric wavefunc-
tion under particle exchange as required for Fermions.
Here Σ = 〈i|j〉 denotes the overlap between the single-
particle ground-state wavefunctions of the electron local-
ized on adjacent sites i and j 6= i. The exchange energy
J = 〈Ψ−|H|Ψ−〉−〈Ψ+|H|Ψ+〉 decays exponentially with
increasing interdot spacing d and magnetic field B for
large B. The sign of J can correspond to antiferromag-
netic (J > 0) or ferromagnetic (J < 0) coupling. While
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J > 0 is obligatory for B = 0 for a two-electron system, J
can display a sign change from positive to negative at fi-
nite B > 0 (Burkard et al., 1999a; Zumbühl et al., 2004),
or in multi-electron QDs (Deng et al., 2018; Malinowski
et al., 2019; Martins et al., 2017).

The main shortcomings of the HL method are that
it does not take into account doubly occupied sites
and that, while it provides the exchange energy for the
Heisenberg Hamiltonian (1), it cannot deliver the param-
eters of the Hubbard model (20).

The Hund-Mulliken (HM) or molecular-orbital model
extends the HL model to include doubly occupied sites by
expanding the Hilbert space with two spin singlet states
with orbital wavefunctions |ii〉 and |jj〉 corresponding to
the (2, 0) and (0, 2) charge states (Burkard et al., 1999a).
The single-particle states |i〉 and |j〉 are first orthonor-
malized to form a convenient basis. The exchange energy
is found as

J =
1

2

(√
U2 + 16t2c − U

)
− 2J ≈ 4t2c

U
− 2J , (27)

where Ui = Uj = U > 0 and tij = tc correspond to the
effective on-site Coulomb and tunneling matrix elements
in Eq. (20), and J is the direct exchange contribution
due to the long-range Coulomb interaction. The approx-
imation holds in the Hubbard limit tc � U . If direct
exchange effects can be neglected we recover the result
Eq. (23) for ε = 0.

Extensions of the HL approach include the effect of
an inhomogeneous field (de Sousa et al., 2001), s-p hy-
bridization of single-dot orbitals (Burkard et al., 1999a),
and a symmetry-breaking variational approach (Yan-
nouleas and Landman, 2002). The HM model has been
extended to include on-site triplet states (White and
Ramon, 2018). Spin-orbit coupling, in the presence
of a magnetic field, can render the exchange coupling
anisotropic by contributing a Dzyaloshinskii-Moriya in-
teraction D · (Si×Sj) to the Hamiltonian (Baruffa et al.,
2010a,b; Chutia et al., 2006; Kavokin, 2001, 2004; Liu
et al., 2018).

C. FCI calculations of exchange

The approximate analytic models described above give
important insights into the exchange interaction, but do
not completely capture the impact of band structure and
electrostatic confinement. These can be fully accounted
for by solving the complete Hamiltonian of Eq. (17),
which in general must be done numerically (Reimann
and Manninen, 2002). The full configuration interac-
tion (FCI) method is an efficient and systematic way to
solve multi-electron Hamiltonians and is thus an invalu-
able tool for understanding exchange interactions in re-
alistic spin qubit devices.

In the FCI approach, first developed for quantum

chemistry (Szabo and Ostlund, 1996), a set of 2K single-
particle spin orbital basis states {φm(r)χσ} is chosen
which are product states of real-space basis functions and
spinors; the former may be convenient analytic functions
or eigenstates of the single-particle operator T in Eq. (17)
(Anderson et al., 2022; Joecker et al., 2021; Rontani,
2006). Often, K ≈ 20− 40 orbitals are needed to obtain
fully converged dot or donor states. From this single-
particle basis, the set of all possible N -particle Slater
determinants is constructed, which is used as the multi-
electron basis in which Eq. (17) is diagonalized. All ma-
trix elements of the Hamiltonian in this basis can be ex-
pressed solely with single-electron terms and two-electron
Coulomb integrals in Eq. (19), which can be computed
using the single-particle states φm. This ensures that all
exchange and correlation effects are included, provided a
large enough single-particle basis is used.

The resulting N -electron eigenstates are linear combi-
nations of Slater determinants and (in the absence of
spin-orbit or magnetic gradients) can be classified by
their spin properties, including total spin S2 and spin
projection Sz. For instance, exchange J can be computed
from the energy splitting between the lowest two-electron
singlet and triplet eigenstates. As the total number of
Slater determinants scales as

(
2K
N

)
, FCI calculations be-

come intractable for large N ; however, realistic two- and
three-electron systems are well within the capabilities of
modern computers.

D. Discussion of theoretical approaches for calculating
exchange

The most basic model for describing controlled ex-
change is the Fermi-Hubbard hopping model, Eq. (20),
with constant U , detuning ε taken as a linear function of
gate voltage, and tunnel coupling tc taken as an exponen-
tial function of gate voltage. The model makes predic-
tions for exchange as a function of voltage that are not
well replicated by experiments, with the largest devia-
tions at high values of exchange (Reed et al., 2016). This
is unsurprising, given the change in character of tunnel-
ing barriers as dots combine shown in Fig. 15. Nonethe-
less, this model is of high value for providing qualitative
understanding in exchange-based experiment design.

The HL model is surely more quantitative, but has
some limitations on its validity (Calderón et al., 2006;
Saraiva et al., 2007); in the weak interdot coupling limit
the HL results agree qualitatively with exact diagonaliza-
tion results with some quantitative modifications (Mel-
nikov and Leburton, 2006). Experimental results in later-
ally coupled vertical DQD show that the Heitler–London
model forms a good approximation of the two-electron
wavefunction (van der Wiel et al., 2006).

Since the HM method takes into account double oc-
cupation of sites, its range of validity in charge config-
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FIG. 15 (a)-(d) Simulation of the change in the gray DQD po-
tential (light shading) and pink electron density (dark shad-
ing) as the interdot barrier is lowered to increase exchange
from approximately 10 kHz to 1 GHz. The potential is gen-
erated by solving the Poisson equation for a representative
Si/SiGe DQD, which is then used in an FCI calculation to
obtain the wave functions and J (K = 30 single-particle
eigenstates are used to construct the basis). At practically
useful multi-MHz levels of exchange, the electrostatic barrier
vanishes and the electrons shift closer together, separated pri-
marily by their Coulomb repulsion.

uration space is greater than that of the HL approach.
The HM predictions have been experimentally verified in
Hatano et al., 2008. The validity of the single-particle de-
scription even for multi-electron QDs has been discussed
in Bakker et al., 2015 and Hu and Das Sarma, 2001. A
comparison of the Hartree-Fock, HM, Heisenberg, and
Hubbard models using a double-well potential consisting
of a linear combination of Gaussians can be found in Hu
and Das Sarma, 2000.

The determination of J with high accuracy and pre-
dictive power is possible with FCI (Hu and Das Sarma,
2001). Since the magnitude and sensitivity of J depend
on both material properties (such as the effective mass
and permittivity) and device electrostatics, the accuracy
depends in turn on accurate modeling of the device struc-
ture. The sensitivity of FCI to material parameters re-
veals phenomena which may not be obvious from site-
based methods, e.g., the specific charge configurations
for “sweet spots” where a qubit is resilient against charge
noise (Vion et al., 2002).

As an example, in Fig. 15 we compare the numeri-
cally computed electrostatic potential and electron den-
sity in a typical Si DQD as J increases. Qualitatively
we expect to modulate exchange by lowering the tun-
nel barrier between well-separated electrons; however, in
practice the reduced confinement displaces the electrons
significantly towards each other as exchange is activated.
Indeed, at large J no external potential barrier between
the electrons exists at all, and the Coulomb repulsion it-

self acts as the effective barrier; hence, the notion of a
separable dot basis does not hold as the electron states
transition smoothly between a double- and single-dot
limit. Such effects are particularly important when con-
sidering simultaneous exchange between multiple pairs
of electrons (van Diepen et al., 2021; Pan et al., 2020;
Qiao et al., 2020), which requires coordinated spatial
displacements; describing such effects accurately within
site-based approaches like the Fermi-Hubbard, Heitler-
London and Hund-Milliken models discussed above re-
quires major modifications.

More generally, numerical FCI calculations are impor-
tant for describing the effects of electron-electron inter-
actions on QD level structure, such as Wigner molecule
behavior (Ercan et al., 2021). Similarly, such calculations
can capture the impact on J of locally-sensitive parame-
ters such as valley splitting and spin-orbit coupling. FCI
calculations have revealed the complex dependency of ex-
change couplings in donors (Gamble et al., 2015; Joecker
et al., 2021; Tankasala et al., 2018) and QDs (Gyure
et al., 2021; Hu and Das Sarma, 2001; Nielsen et al.,
2012), and has been used to study charge noise sensi-
tivity (Shim and Tahan, 2018) and mediated exchange
in multi-electron dots (Deng and Barnes, 2020; Nielsen
et al., 2013).

E. Pauli spin blockade

An important manifestation of exchange, well un-
derstood from the Fermi-Hubbard model discussed in
Sec. IV.A, is Pauli spin blockade (PSB). As illustrated in
Fig. 16, the ground state of a two-electron DQD can be
either the (1, 1) or (2, 0) charge configuration3 depending
on the DQD level detuning ε = µ1 − µ2. As discussed in
Sec. III.B, the (2, 0) ground state is a spin singlet. Thus,
when the detuning ε satisfies −U − Jmax < ε < −U , sin-
glets occupy the (2, 0) charge state, but the triplet spin
states remain in the (1,1) configuration (Fig. 14). The
maximum value of the exchange coupling, Jmax, depends
on the energy separation between the ground and first ex-
cited states in the left QD. In GaAs QDs, this spacing
typically depends on the orbital energy spacing, which
can be of order meV. In Si QDs, this energy spacing can
depend on the valley splitting, which can be tens to hun-
dreds of µeV, or the orbital energy spacing, depending
on the number of electrons. This phenomenon, wherein
spin states map onto distinct charge configurations, con-
stitutes PSB.

The experimental realization and confirmation of
PSB first occurred in vertical GaAs DQDs, which

3 We choose the (1,1)-(2,0) charge boundary for specificity, though
the following applies also to dynamics at the (1,1)-(0,2) transi-
tion.
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FIG. 16 PSB in a DQD. (a) Starting from a (1,0) charge
state, (2,0) singlet initialization occurs by biasing the left QD
such that µS(2,0)

< EF < µT(2,0)
. Qubit operations and read-

out are then performed by changing bias positions along the
(2,0)-(1,1) detuning axis. Readout is implemented by detun-
ing such that the singlet ground state is (2,0). Interdot tun-
neling is prohibited by PSB for the spin triplet state (lower
right panel), keeping it in the (1,1) charge state and allow-
ing spin-to-charge conversion. (b) Charge stability diagram
in the vicinity of the (2,0)-(1,1) anticrossing.

are fabricated by etching semiconductor heterostruc-
tures (Kouwenhoven and Marcus, 1998). Electrical trans-
port measurements in the first experiments provided evi-
dence of current rectification via PSB (Ono et al., 2002).
Even at this early stage, these experiments were moti-
vated by the possibility of using electron spins as quan-
tum bits. Following the initial demonstration of PSB,
pulsed-gate measurements showed that the triplet-singlet
relaxation time was much longer than charge relaxation
times, confirming the suitability of singlet and triplet
states for quantum information purposes (Fujisawa et al.,
2002). PSB was later observed in planar GaAs DQDs
with higher electron occupations (Johnson et al., 2005a)
and used in pulsed-gate experiments to measure triplet-
singlet relaxation as a function of magnetic field (Johnson
et al., 2005b).

PSB is an essential tool for the initialization and read-
out of many types of spin qubits. Pairs of electrons in
the same QD can easily be initialized as spin singlets
by enabling electron tunneling between that dot and a
nearby electron reservoir (Botzem et al., 2018; Maune
et al., 2012; Petta et al., 2005). After initialization, spin
singlets can be separated via interdot tunneling into sepa-
rate dots. If the two electrons are separated adiabatically
in the presence of a magnetic gradient, the singlet tran-
sitions to a spin-zero product state, thus enabling the
straightforward creation of product states (Foletti et al.,
2009; Petta et al., 2005).

Following evolution of the spin states, these steps can
be reversed to project a pair of electrons onto the singlet-
triplet basis. A simple readout method involves rapidly
pulsing the detuning to −U − Jmax < ε < −U after ma-
nipulation. In this state, the singlet-triplet energy split-
ting is extremely sensitive to environmental charge noise.
The joint spin state dephases rapidly, and an external
charge detector, such as a QPC (Petta et al., 2005) or
QD (Barthel et al., 2009), can extract information about
the charge state of the DQD using one of the techniques
discussed in Sec. III.C, thus projecting its spin state. If
the detuning is pulsed adiabatically with respect to any
magnetic gradients, one spin-zero product state maps to
the singlet, and all other spin states map to triplet. Gen-
erally, PSB readout is straightforward to implement, and
can enable rapid (µs-scale or shorter) and high-fidelity
(> 98%) readout fidelity of different qubit types (Barthel
et al., 2010, 2009; Borjans et al., 2021a; Connors et al.,
2020; Noiri et al., 2020; Reilly et al., 2007). The exten-
sion to triple QDs leads to bipolar PSB and state transfer
across the system (Busl et al., 2013).

F. Long-range couplers

Despite its simplicity and speed, Heisenberg exchange
only directly couples nearest-neighbor spins, as it re-
lies on wavefunction overlap. The requirement for close
proximity of the spins [see Fig. 15] poses challenges
for the design, fabrication, and operation of large-scale
spin-based quantum information processors. This sec-
tion reviews the various approaches for creating an effec-
tive long-range coupling between distant spins. Many of
these approaches are in the early stages of development.
As such, the experimental characterization of quantum
state transfer fidelities using protocols such as random-
ized benchmarking and gate set tomography is one im-
portant future avenue of research in this area.

1. Spin transport, spin SWAPs, and spin-CTAP

Perhaps one of the most conceptually straightforward
ways to achieve long-range connectivity is to physically
transport qubits across a device. The two main ap-
proaches that have been investigated include using a sur-
face acoustic wave (SAW) as a conveyor belt for elec-
trons and “bucket brigade” style single electron shut-
tling. SAWs are travelling acoustic waves that are typi-
cally generated in piezoelectric materials, such as GaAs,
using interdigitated transducers (Datta, 1986). Early
experiments in GaAs/AlGaAs heterostructures demon-
strated single charge (McNeil et al., 2011) and spin
(Bertrand et al., 2016) transport between two QDs [Fig.
17(a)]. Spin state transport using SAWs has recently
been demonstrated with high fidelity (Jadot et al., 2021).
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FIG. 17 Various approaches for achieving long-range spin coupling: a) Surface acoustic waves (Bertrand et al., 2016), b) Charge
transport (Fujita et al., 2017), c) Superexchange (Baart et al., 2017), d) Spin-SWAPs (Kandel et al., 2019), e) Spin-CTAP
(Gullans and Petta, 2020), f) Capacitive coupling (Shulman et al., 2012), and g) Coupling through a spin chain (Bose, 2003).

SAW implementations of spin state transport may have
long term limitations due to power dissipation, SAW di-
rectionality, and the relatively large size requirements of
SAW transducers. Some of these scaling challenges may
be alleviated using charge and spin shuttling.

Charge shuttling involves moving an electron through
an array of QDs by periodically modulating the confine-
ment potential. Early experimental implementations of
charge shuttling in superconducting devices were moti-
vated by the metrological desire to have a high-speed cur-
rent standard (Keller et al., 1999). A theoretical proposal
by Taylor et al., 2005 suggested using a bucket brigade
charge shuttle to transfer quantum information between
semiconductor spin qubits. To achieve charge transfer,
the detuning between adjacent QDs is ramped across the
interdot charge transition. Early experiments in GaAs
demonstrated spin shuttling [Fig. 17(b)] (Baart et al.,
2016; Fujita et al., 2017). In Si, charge shuttling has
been achieved in a linear array of 9 QDs (Mills et al.,
2019b), and spin shuttling has been quantitatively char-
acterized in a SiMOS DQD (Yoneda et al., 2021). Such
combined spin-charge transport in silicon is affected by
magnetic field gradients, valley physics, and spin-orbit
coupling (Ginzel et al., 2020). Conveyor-mode charge
shuttling through a 400 nm long open channel defined by
a series of electrodes has been demonstrated in Seidler
et al., 2021.

Another approach for achieving spin state transfer
without the physical transfer of charges is to use a se-
quence of pairwise spin SWAPs to couple spatially sep-
arated spin qubits [Fig. 17(d)]. Spin SWAPs can be
achieved using exchange pulses, as proposed in the origi-
nal Loss-DiVincenzo proposal (Kandel et al., 2021; Loss
and DiVincenzo, 1998; Petta et al., 2005). Spin SWAPs
can also be implemented in systems with a magnetic field
gradient by periodically modulating the exchange cou-
pling (Nichol et al., 2017). First demonstrations were
achieved in GaAs, with more recent high fidelity demon-

strations having been achieved in Si/SiGe QDs (Nichol
et al., 2017; Sigillito et al., 2019b; Weinstein et al., 2022).

Greentree et al., 2004 proposed using coherent trans-
port via adiabatic passage (CTAP), in analogy to stim-
ulated Raman adiabatic passage (STIRAP), commonly
used in atomic physics (Vitanov et al., 2017), to achieve
charge transfer in QD arrays (Ban et al., 2018; Cole
et al., 2008). Theoretically, the idea has been extended
to spin in a number of ways and is closely related to
adiabatic quantum teleportation (Bacon and Flammia,
2009). In exchange-coupled spin chains, adiabatic mod-
ulation of the interdot exchange couplings transfer spin
states between distant dots without motion of the elec-
trons themselves (Chancellor and Haas, 2012; Oh et al.,
2013; Petrosyan et al., 2010). These ideas have been ap-
plied to multi-spin states (Ban et al., 2019; Farooq et al.,
2015; Srinivasa et al., 2007) and single-spin states in the
presence of magnetic gradients (Gullans and Petta, 2020;
Picó-Cortés et al., 2019) [Fig. 17(e)]. Experimental re-
sults by Kandel et al., 2021 in GaAs QD arrays give a
proof of concept that such adiabatic protocols are viable.

2. Superexchange

To create an effective long-range exchange coupling be-
tween distant spins, sometimes referred to as superex-
change, an additional QD-based mediator (typically a
single QD or a chain of occupied QDs) is physically in-
terposed between the two spins of interest. Through a
process involving a virtual occupation or excitation of
the mediator, the spins coupled to the mediator expe-
rience an effective, indirect exchange interaction (Bose,
2003; Friesen et al., 2007).

When two electrons are coupled to a single QD medi-
ator [Fig. 17(c)], they can experience an effective tunnel
coupling, which depends on the electrochemical potential
of the mediator levels, through a virtual tunneling pro-
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cess (Loss and DiVincenzo, 1998). This virtual tunneling
process for electrons also creates a virtual exchange in-
teraction for spin states. Although the occupation of the
inner QD never physically changes, this scenario creates
an indirect coupling between the outer QDs, which pre-
serves the coherence of both charge (Braakman et al.,
2013; Busl et al., 2013) and spin (Baart et al., 2017;
Chan et al., 2021; Malinowski et al., 2019; Sánchez et al.,
2014a,b) states. Direct, coherent spin exchange with me-
diator electrons is also possible in a multiply-occupied
QD mediator (Malinowski et al., 2019).

Superexchange can also occur with a multi-QD medi-
ator (Qiao et al., 2021b). One of most commonly stud-
ied systems, which is predicted to exhibit superexchange,
is an extended, strongly-coupled spin chain (Cam-
pos Venuti et al., 2006; Oh et al., 2010; Wójcik et al.,
2005), to which two end spins are weakly coupled. The
use of a spin chain as a long range coupler of spins, also
referred to as the “spin bus”, has been examined by Bose,
2003, Bose, 2007, and extensively by Friesen et al., 2007;
these works show that a series chain of N QDs with near-
est neighbor exchange coupling J may provide an effec-
tive end-to-end exchange coupling of J/

√
N [Fig. 17(g)].

Spin chains have also been considered in the context of
donor systems (Mohiyaddin et al., 2016).

3. Capacitive and electric dipole-dipole couplings

Spin-qubit encodings with a charge-qubit character of-
fer a natural coupling scheme with more reach than ex-
change: the electric field created by charge displacement
in one qubit can be used to control the state by displac-
ing the charge of another qubit [Fig. 17(f)]. At short
range, this is effectively a quantum cross-capacitance ef-
fect; at larger distances, it has the character of an electri-
cally mediated effective dipole-dipole coupling. It trans-
lates to a spin coupling due to exchange, field gradients
or spin-orbit (Cayao et al., 2020; Shulman et al., 2012;
Stepanenko and Burkard, 2007; Taylor et al., 2005), or
due to the hyperfine splitting between electrons and nu-
clei. The latter effect may benefit the scaling of donor
systems, since the electric dipole of a donor impurity may
be “stretched” by the action of a gate above the device,
enabling electric control of a long-distance dipole-dipole
coupling. Since this long-range coupling has a weak spa-
tial dependence in comparison to exchange, it may al-
low donor devices to be fabricated through a controlled
ion implantation process, with the inevitable placement
straggle compensated for by gate calibration (Tosi et al.,
2017). Coupling a donor to a dot may offer similar advan-
tages (Harvey-Collard et al., 2017a). Such spin-relevant
capacitive interactions are most effective when coupling
to microwave excitations in a resonator, which we address
in the next subsection and in Sec. VII.

4. Cavity QED

Three sets of experiments in 2004 demonstrated coher-
ent coupling of solid-state qubits to photons, opening the
door to long-range qubit coupling approaches employing
photons in the microwave (Wallraff et al., 2004) and opti-
cal regimes (Reithmaier et al., 2004; Yoshie et al., 2004).
Long-range coupling of two superconducting qubits us-
ing a microwave cavity was achieved shortly thereafter
(Majer et al., 2007; Sillanpaa et al., 2007). The con-
cept of a cavity-bus for coupling superconducting qubits
is now widespread (Blais et al., 2021). Concepts for cou-
pling spin qubits to cavities date as far back at 1999
(Imamoglu et al., 1999), with a resurgence of theoretical
activity taking place again in 2004–2007 (Burkard and
Imamoglu, 2006; Childress et al., 2004; Jin et al., 2012;
Trif et al., 2008). Given the explosive growth of this area
of quantum information science, we devote Sec. VII to
a review of progress in QD cQED and its potential for
providing long-range spin-spin couplings for qubits. We
also note for completeness various proposals and experi-
ments demonstrating coupling of superconducting qubits
to phonons, an area of which is ripe for exploration using
QDs (Gustafsson et al., 2014).

V. QUANTUM GATES AND QUANTUM CIRCUITS

Over the last two decades, there has been immense
progress developing spin qubit technologies using the in-
teractions and building blocks discussed in the previous
sections. In this section, we delve into the theoretical
and experimental status of the qubit types introduced in
Sec. II. For each qubit type, we discuss how initialization
and readout have been physically implemented, strate-
gies followed for performing single- and two-qubit gate
operations, and the current status of gate fidelities.

For comparative fidelity in this review, we put partic-
ular emphasis on randomized benchmarking (RB). The
RB experiment consists of random sequences of quantum
gates CRCN . . . C2C1 applied to an initial state, where
the (N + 1)th “recovery” gate CR is chosen so that each
sequence would, in the absence of error, have the logi-
cal action of identity (Magesan et al., 2011). The Cjs
are drawn from the Clifford group, the group of gates
which transform any multi-qubit Pauli-operator P (as

C†jPCj) into another Pauli operator (i.e. the Clifford
group is the normalizer of the n-qubit Pauli group.) Be-
sides forming a discrete group for computational ease of
composing to identity, this choice of operations “twirls”
generic errors on the gates Cj into a uniform, incoherent,
depolarization-like error, enabling a potentially complex
error structure to collapse into a single-exponential de-
cay when averaging over the results of measuring the ini-
tial state probability after many random sequences. The
exponential decay constant resulting from simple least-
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squares fitting of repeated measurements over random
circuits provides the single benchmark number, inter-
preted as an average gate infidelity. The infidelity of
a particular Clifford gate, such as the CZ or CNOT en-
tangling gate, can be extracted by measuring the decay
whilst interleaving this gate amongst all the Cliffords,
and subtracting off the measured decay rate without in-
terleaving. For a review of RB and its variants, see Helsen
et al., 2020.

Example randomized benchmarking data from a num-
ber of semiconductor spin qubits are shown in Fig. 26;
these results will be discussed in more detail in following
sections. One-qubit RB (1Q RB) and two-qubit RB (2Q
RB) are important accomplishments, in part because the
ability to perform RB, which requires the application of
many (preferably 1000s) of programmed, calibrated op-
erations on a qubit, shows that the whole system, in-
cluding cryogenics, control hardware, wiring, and qubits,
are co-performing in a way necessary for operation as
a future quantum computer. Quantum state, process,
and gate-set tomography (GST) (Mohseni et al., 2008)
use repeated state estimation to identify specific errors,
and may give complementary information to a qubit’s
computational utility, and hence these methods provide
additional fidelity metrics in the sections that follow.

A. Loss-DiVincenzo single spin qubits

The control of a single LD qubit follows the same
principles as the coherent control of large spin ensem-
bles, a subject with a long history in electron spin res-
onance (ESR) and nuclear magnetic resonance (NMR)
(Abragam, 1961; Slichter, 2010). However, single-spin
control faces additional challenges that are absent in en-
semble experiments. In bulk ESR/NMR, initialization is
typically performed by waiting for the ensemble to ther-
malize; at typical magnetic fields and temperatures, the
resulting polarization is quite small, but this is compen-
sated for in the measurement signal-to-noise ratio by the
large size of the spin ensemble. For single-spin qubits, an
initialization routine giving nearly 100% polarization is
required, and waiting for thermalization is prohibitively
time-consuming. Hence coherent single-spin control re-
quires fast, high-fidelity initialization and measurement
procedures, and this is where the review of LD qubits
begins.

1. Initialization and readout

The first experimental demonstration of single spin
readout was achieved by Elzerman et al., 2004 in a GaAs
QD. In the same issue of Nature, electrical detection of
single spin resonance in a Si transistor was also reported
(Xiao et al., 2004). Elzerman et al., 2004, and many
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FIG. 18 Energy-dependent tunneling for single spin initial-
ization and readout of LD qubits. Note that the ground state
in GaAs is |↑〉 due to its negative electron g-factor. (a) |↑〉
can be initialized by emptying the dot (top panel) and then
applying a positive voltage pulse, such that E↓ > EF > E↑
(bottom panel). With E↓ > EF > E↑ an electron can only
tunnel into the spin ground state. After spin manipulations,
(b) spin readout is performed by pulsing back to the initializa-
tion bias condition. In this example, the presence (absence)
of a tunneling event during the measurement period indicates
|↓〉 (or |↑〉).

similar works since then, use energy-dependent tunnel-
ing, providing a high-enough magnetic field for the Zee-
man splitting EZ = gµBB to greatly exceed the thermal
energy kBTe for electron temperature Te

4. Initialization
and readout are then achieved through single-electron
tunneling between the QD and an electron reservoir (see
Fig. 18). Tunneling is controlled by adjusting the QD en-
ergy level relative to the Fermi level of the reservoir EF
using time-dependent gate voltage pulses Vg(t). These
gate voltage pulses can be very short ∼ 100 ps, as had
been previously demonstrated in charge qubits (Fujisawa
et al., 2002; Hayashi et al., 2003; Petersson et al., 2010;
Petta et al., 2004).

The modest g-factor in GaAs required Elzerman et al.,
2004 to operate with B = 10 T. The gate voltage pulse
sequence for readout, illustrated in Fig. 18, first emptied
the QD and then pulled the energy of both spin states
below EF to randomly load the QD in |↓〉 or |↑〉. Af-
ter waiting for a time twait, the QD was biased to set
E↓ > EF > E↑. Through the process of spin-to-charge
conversion, an increase in the QPC current corresponds
to a |↓〉-spin measurement outcome, while no change in
current is detected for an |↑〉-spin. Similarly, initializa-
tion is achieved by pulling only the spin ground state
beneath EF . Single spin control is then generally imple-
mented deep in Coulomb blockade (see Sec. III.B) to pre-
vent loss of the electron to the reservoir when microwave
fields are applied to drive the spin.

4 For context, if g = 2 (as in Si) and B = 1 T, Ez = 116 µeV,
corresponding to frequency f = EZ/h ≈ 27.6 GHz, while Te
(kBTe) is typically 50–300 mK (4-26 µeV).
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Elzerman spin-dependent tunneling imposes several
experimental constraints and must be carefully optimized
to achieve high fidelity readout. First, by necessity, Elz-
erman readout is implemented on QDs that are adjacent
to charge reservoirs. In contrast, readout of central dots
in a large array would require transport of the spin to an
end site of the array (see Sec. IV.F). Second, there is a
competition in time-scales. Since spin readout is achieved
using charge detection, the electron must have sufficient
time to tunnel off the QD during the readout pulse. If
the tunnel rate is too fast compared with the measure-
ment bandwidth, the charge signal can be missed, while
if the rate is too slow, the spin can relax before measure-
ment. Third, Ez � kBTe is required to initialize into the
ground state, which implies operation at high field and
low temperature. In practice, the spin relaxation rate
Γ1 = 1/T1 ∝ B5 in GaAs, which limits the practical field
range (in addition to technical challenges associated with
microwave control above 20 GHz). Finally, spin readout
is destructive since the |↓〉-spin is lost to the Fermi sea
during tunneling. An overview of the conditions required
to achieve a readout fidelity F > 99% has been given by
Keith et al., 2019a. Mills et al., 2022a recently achieved
F > 99% in Si/SiGe quantum devices.

Another route to achieving high measurement fidelity
involves quantum non-demolition (QND) measurements,
in which the measurement does not alter the qubit state
after its initial projection. In contrast, spin-dependent
tunneling always resets the qubit to the ground state and
is thus not a QND measurement. QND measurements of
a single-spin qubit may be performed by conditionally
rotating an ancilla, and then measuring the ancilla with
spin-dependent tunneling. This process may be repeated
many times, because resetting the ancilla and performing
the conditional rotation do not disturb the qubit state,
provided the rotation has a high enough fidelity. Xue
et al., 2019 and Yoneda et al., 2020 demonstrated QND
measurements of a single spin, boosting the measurement
fidelity from around 80% after a single measurement to
around 95% after repeated QND measurements. The cir-
cuit quantum electrodynamics device architecture may
provide another avenue for QND measurements of single
spins (Mi et al., 2018a), see Sec. VII.

2. Single-qubit gates

Coherent single spin control was first demonstrated by
Koppens et al., 2006 using ESR in a GaAs DQD. By ap-
plying a source-drain bias VSD across the DQD, a (1,1)
polarized spin triplet state (T+ or T−) was initialized via
transport in the PSB regime. Spin detection in this case
occurred by measuring the DQD leakage current Idot as
a function of B0 and the frequency fac = ω/2π of an ap-
plied microwave magnetic field Bac generated by driving
an ac current through a stripline fabricated adjacent to

the DQD. On resonance, when B0 = ±hfac/gµB for one
of the spins, single spin ESR drives transitions from the
triplet to singlet, lifting PSB and increasing Idot. Mea-
surements revealed a peak in Idot around B = 0 due to
hyperfine mixing of the spin states (Johnson et al., 2005b;
Jouravlev and Nazarov, 2006; Koppens et al., 2006), as
well as two satellite peaks following the resonance condi-
tion B = ±hfac/gµB [Fig. 19(a)].

The physics of how applied transverse ac magnetic
fields drive coherent spin rotations follows conventional
ESR. The transverse ac field may be assumed to point
along x̂, i.e. B1(t)x̂ = Bac cos(ωt+ φ)x̂, where φ is a
phase relative to a local oscillator. The effective Hamil-
tonian in the rotating frame [see App. A] is then H̃ =
(gµBB0−h̄ω)Sz+gµB(Bac/2)Sx. The first term vanishes
when the electron spin is driven on resonance (with h̄ω =
gµBB0) and the electron spin coherently rotates between
|↑〉 and |↓〉 at the Rabi frequency fRabi = gµBBac/(2h).
In the Bloch sphere representation of the LD qubit [see
Fig. 2], the static B0 field points along the z-axis and
leads to Larmor precession of the spin, while the trans-
verse field B1(t) points along the x-axis for φ = 0 and
yields a σx rotation.

For Koppens et al., 2006, 2008, Rabi oscillations at fre-
quencies up to ∼10 MHz were achieved, but were highly
damped in this first experiment due to hyperfine interac-
tions [lower image in Fig. 19(a)] which move the spin out
of resonance and lead to imperfect rotations on the Bloch
sphere. Hyperfine coupling is discussed in greater detail
in Sec. VI. Later silicon-based ESR devices devices (Pla
et al., 2012; Veldhorst et al., 2014) achieved compara-
ble Rabi frequencies in a system with reduced hyperfine
coupling.

Single-spin control based on ESR raises questions on
how to selectively control one qubit in an array. In
some LD-based architectures, only global single-spin con-
trol is possible (Jones et al., 2016), but these require
high dot-to-dot uniformity. Tunable and selective single-
qubit rotations require a unique Larmor resonance for
each qubit, for example by engineering magnetic field
gradients across the device (Pioro-Ladriere et al., 2008)
or through voltage-tunable g-factors (Veldhorst et al.,
2014). A key concern of any ESR approach is power
dissipation, as device heating often limits the maximum
Rabi frequency that can be obtained, motivating new de-
signs for resonators and approaches for local control with
global fields (Vahapoglu et al., 2021).

One year after ESR control of a single spin in a GaAs
QD was shown, Nowack et al., 2007 achieved electrically
driven single spin rotations using EDSR with the intrin-
sic SOC of GaAs. An ac voltage excitation applied to
a gate electrode shifted the orbital wave function, and
coherent Rabi oscillations were again detected by mea-
suring Idot in the PSB regime [Fig. 19(b)]. The high-
est Rabi frequency achieved was 4.7 MHz; nevertheless,
this important demonstration spurred the investigation
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FIG. 19 Single spin rotations driven with: (a) an ac magnetic field generated by a coplanar waveguide (Koppens et al., 2006),
(b) an ac electric field in the presence of intrinsic SOC (Nowack et al., 2007), and (c) an ac electric field in the presence of
synthetic SOC (a magnetic field gradient) (Pioro-Ladriere et al., 2008; Tokura et al., 2006). (d) Low power EDSR in a field
gradient can be achieved in the flopping-mode regime of a DQD (Benito et al., 2019a; Croot et al., 2020).

of electrical control in strong spin-orbit systems (see Sec.
V.E.2) and added weight to the development of EDSR
in the “artificial SOC” created by magnetic field gradi-
ents (Tokura et al., 2006). The transition from ESR to
gradient-enabled EDSR not only affords more speed, but
it also provides a clear mechanism for selectivity, since
the ac driving field can be applied directly to a QD gate
electrode.

Pioro-Ladriere et al., 2008 demonstrated the feasibil-
ity of electrically driving spin rotations using a mag-
netic field gradient resulting from a fabricated Co micro-
magnet. A time-dependent gate voltage Vac periodically
moved the electron in the inhomogeneous field of the mi-
cromagnet and spin rotations were detected in the PSB
leakage current [Fig. 19(c)]. The longitudinal magnetic
field gradient from the magnet allowed the EDSR tran-
sitions of both spins to be spectrally resolved. Yoneda
et al., 2014 built upon these results by demonstrating
>100 MHz Rabi frequencies, measuring Rabi chevrons
in the time-domain, and achieving Z-gates in the field
gradient.

A larger displacement of the electron spin in the mag-
netic field gradient can be achieved in a DQD at ε =
0, which is known as the “flopping-mode” (Croot et al.,
2020). As illustrated by the measurements in Fig. 19(d),
the power required to achieve an EDSR Rabi frequency
fRabi = 6 MHz is reduced by a factor of ∼250 at ε = 0
compared to the far-detuned single dot regime. Flopping-
mode operation may greatly reduce power requirements
in larger QD device architectures.

3. Two-qubit gates

LD qubits use voltage-controlled exchange for two-
qubit gates (see Sec. IV), which was first shown to co-
herently couple two single-spins by Petta et al., 2005
(Fig. 20a). In this experiment fast ∼ 200 ps exchange

oscillations were observed in a GaAs DQD. Time-domain
control of J(t) was also used to measure the inhomoge-
neous spin dephasing time T ∗2 ∼ 10 ns and the spin-echo
decay time T2 ∼ 1 µs. Many aspects of Petta et al.,
2005 were later repeated in Si/SiGe by Maune et al.,
2012, Fig. 20b, with longer coherence times and im-
proved exchange coherence; the limiters of coherence for
exchange oscillations will be discussed in Sec. VI. These
early results only featured singlet-triplet readout by PSB;
Nowack et al., 2011 extended these results to a GaAs
DQD that allowed for independent single-shot readout of
each spin with a fidelity of 86%.

True LD operation requires the ability to do both
single-spin rotations for single-qubit gates and exchange
operations for two-qubit gates, completing a universal
control set. The exchange Hamiltonian of Eq. (1) couples
|↑↓〉 to |↓↑〉; an exchange π pulse (activating exchange
for a time τ = πh̄/J) realizes a SWAP gate, while an
exchange π/2 pulse generates the entangling square-root
of swap gate

√
SWAP. The effect of exchange can be

seen by writing Eq. (1) as the projection operator on
the spin-singlet state, H = −J |S〉〈S|, with the resulting
unitary U(φ) = exp(−iφ|S〉〈S|) = 11 + (eiφ − 1)|S〉〈S|. For
φ = Jτ/h̄π we find U(π) = 1− 2|S〉〈S|= SWAP while for
φ = π/2 we have U(π/2) = (1+i)11/2+(1−i)SWAP/2 =√

SWAP. Using this interaction and single-qubit rota-
tions separately, the CNOT gate (up to a global phase)
could then be obtained using the sequence CNOT =
e−iπS

y
2 /2eiπS

z
1/2e−iπS

z
2/2
√

SWAPeiπS
z
1

√
SWAPeiπS

y
2 /2

(Loss and DiVincenzo, 1998).

In practice, however, exchange coupling and local mag-
netic fields typically act on a register of spin qubits simul-
taneously, e.g. in devices with magnetic field gradients
or g-factor variations (Brunner et al., 2011). Consider-
ing two exchange-coupled spins, we can investigate this
situation with the Heisenberg Hamiltonian Eq. (1) where
i, j = 1, 2 such that H = JS1 ·S2 +gµB(B1 ·S1 +B2 ·S2),



30

FIG. 20 Coherent exchange oscillations as first observed in
a DQD using PSB readout for (a) GaAs (Petta et al., 2005)
and (b) SiGe (Maune et al., 2012).

where for simplicity we have assumed that the g-factor
is the same for both sites, although similar principles
may be applied with dot-varying g-factors (Jock et al.,
2018; Tanttu et al., 2019). Taking the magnetic field
direction to be the same on both sites (i.e. ẑ), H =
JS1 · S2 + B(Sz1 + Sz2 ) + ∆B(Sz1 − Sz2 )/2, with B =
gµB(B1 + B2)/2 = gµBB

z and ∆B = gµB(B1 − B2) =
gµB∆Bz. As this Hamiltonian includes two, poten-
tially indepedently controllable non-commuting terms, a
variety of adiabatic and diabatic control options exist
for achieving entangling two-qubit gates. For example,
the direct time evolution of this Hamiltonian with all
terms held constant generates the CZ (or CPHASE) gate,
UCZ = diag(1, 1, 1,−1) = i exp(−iτH/h̄), for a gate time
τ = 2πk/Ω where h̄Ω =

√
J2 + ∆B2 with k = 1, 2, . . .

and J = (k−n−2m−1/2)h̄Ω/k with n,m integers, and
B = (n + 1/2)h̄Ω/2k (Burkard et al., 1999b). A simple
case is k = 1 and n = m = 0 where CZ can be realized for
arbitrary ∆B 6= 0, with B = ∆B/2

√
3, J = 2∆B/

√
3,

and τ = πh̄/J . When combined with single-qubit rota-
tions, this gate lends itself to the implementation of the
CNOT gate. An equivalent version of a CZ gate can also
be derived from a two-site hopping model (Meunier et al.,
2011).

Watson et al., 2018 utilized a dc exchange pulse to
implement a CZ gate in the large magnetic field gradi-
ent regime. Veldhorst et al., 2015b demonstrated full
two-qubit control in SiMOS, achieving selective spin con-
trol by voltage-shifting the g-factors and therefore the
ESR resonance frequencies of the two qubits. Fast CZ
gates were implemented by pulsing on exchange (Petit
et al., 2020). Zajac et al., 2018 demonstrated a reso-
nantly driven CNOT gate by lowering the energy of an-
tiparallel spin states (|↑↓〉, |↓↑〉) relative to the parallel
spin states (|↑↑〉, |↓↓〉) with exchange while applying a
single microwave pulse (Russ et al., 2018b). As each of
these experiments also included site-selective single-spin
initialization, control, and read-out, full-gate sets for LD
qubits were demonstrated in all cases.

4. Limits of fidelity - randomized benchmarking

The transition to Si/SiGe spin qubits from GaAs has
resulted in higher overall operation fidelities for LD qubit
control. Kawakami et al., 2014 demonstrated spin con-
trol in a Si/SiGe DQD with a Co micromagnet, observing
fRabi ∼5 MHz and measuring T2 and T ∗2 using spin-echo
and Ramsey pulse sequences, and later single-qubit ran-
domized benchmarking with 98.1% fidelity (Kawakami
et al., 2016). Using ESR for RB, Veldhorst et al., 2014
showed a single-qubit control fidelity of 99.6% in a 28Si-
MOS device, included in Fig. 26. Similarly, Takeda et al.,
2016 reported fidelities of 99.6% using EDSR in a field
gradient in natural-Si/SiGe devices. Veldhorst et al.,
2015b extended these results to a SiMOS DQD, where
selective ESR control of two spins was achieved. Zajac
et al., 2018 used RB to demonstrate single-qubit fideli-
ties of 99.3% and 99.7% in a two-qubit Si/SiGe device.
Isotopic enrichment has led to continued increases in the
single-qubit gate fidelity, as discussed in Sec. V.A.4. Us-
ing isotopically enriched Si/SiGe, Yoneda et al., 2018
achieved single-qubit fidelities exceeding 99.9%. Char-
acterization of the electrical noise in this device indicates
coherence is limited by charge motion in the presence
of the micromagnet field gradient. Yang et al., 2019
achieved single-qubit Clifford fidelities of 99.96% in a
SiMOS device using improved pulse engineering. Re-
cently, Xue et al., 2021 reported single-gate fidelities of
99.69% in a Si/SiGe QD notable for being operated by a
cryogenic control chip.

Early attempts to characterize two-qubit gate fidelities
employed quantum state tomography. Zajac et al., 2018
used the resonant CNOT gate to generate a Bell state
with fidelity F = 78%. Watson et al., 2018 achieved Bell
state fidelities up to 90% using decoupled CZ gates and
demonstrated a resonant CNOT gate. Both of these ex-
periments had to correct the tomography for significant
SPAM errors. Huang et al., 2019 more rigorously char-
acterized two-qubit gate fidelities using RB in a SiMOS
DQD, with an average Clifford (CROT) gate fidelity of
94.7% (98%) achieved in a regime with always-on ex-
change. Xue et al., 2019 implemented a variation on RB
called character RB, enabling the interleaving of a two-
qubit gate amongst single-qubit Cliffords, and obtained
two-qubit gate fidelity estimates of 92%. Xue et al., 2022
recently achieved a two-qubit gate fidelity of 99.65% us-
ing pulsed exchange. In the regime of always-on ex-
change, Noiri et al., 2022 have also achieved RB with
>99% two-qubit gates. High fidelity overall operation
of two qubits in a six QD device has been obtained by
Mills et al., 2022b, with sequential single spin rotation F
>99.9%, simultaneous single spin rotation F >99%, and
a two-qubit CZ F >99.8%. SPAM errors in this demon-
stration were < 3%. Fidelities are expected to further
increase with reduced charge noise and higher levels of
isotopic enrichment.
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Efforts to control hole spins in Ge/GeSi heterostruc-
tures have advanced significantly in a short period of
time. Due to strong SOC, hole spins can be manipulated
electrically without the need for a separate ESR drive line
or micromagnet. The smaller effective mass of holes in
Ge also relaxes nanofabrication requirements, as the QDs
are larger than in Si. Hendrickx et al., 2020a achieved
short ∼20 ns single hole-spin rotations with F >99.3%
and a two qubit exchange gate. Multi-qubit operations
have been implemented in a 2 × 2 Ge QD array, cul-
minating in the generation of a four-qubit Greenberger-
Horne-Zeilinger state (Hendrickx et al., 2021).

B. Donor spin qubits

When Kane, 1998 was published, it was different from
contemporary proposals based on QDs since basic GaAs
QD devices had already been fabricated (Kouwenhoven
and Marcus, 1998). While doped Si is common, the
isolation of single donors in close proximity to gated
nanostructures for single-electron control and measure-
ment presented novel fabrication challenges. A num-
ber of groups have faced this challenge using bottom-
up scanning-tunneling-microscopy (STM) lithography on
hydrogen passivated silicon surfaces, enabling the place-
ment of atoms nearly one-at-a-time into designated loca-
tions as both qubits and gates (Bussmann et al., 2015;
Lyding et al., 1994; Schofield et al., 2003). Alternatively,
(Morello et al., 2010) has shown that the approach of de-
tected ion-implantation of P into MOS-style devices al-
lows single-donor-spin measurement and subsequent con-
trol. Electrostatically gated dot-donor devices are also
being explored (Harvey-Collard et al., 2017a), and may
provide unique opportunities for nuclear spin readout and
coupling to microwave photons (Mielke et al., 2021). The
ion implantation and STM lithography approaches have
both shown steady progress in controlling single electron
spin states, the nuclear spin of the donor, and the ex-
change coupling between donors, as we discuss in this
section, concluding with a discussion of gate fidelities.

1. Donor electron spin initialization and readout

Morello et al., 2010 used the Elzerman energy-
dependent tunneling approach to spin initialization and
readout discussed in Sec. V.A.1, borrowing heavily from
developments in QDs [Fig. 21(a)]. A single electron tran-
sistor (SET) was fabricated next to a 90 × 90 nm region
that was implanted with P donors, and voltage control of
a nearby plunger gate was used to control the electronic
state of the donor. Single shot measurements allowed
mapping of the electron spin lifetime as a function of
magnetic field, with T1 = 6 s obtained at B = 1.5 T, and
the spin readout visibility was estimated to be around

92%. The use of cryogenic amplifiers in close proximity
to donor qubits has enabled high-fidelity electron spin
readout for these systems (Tracy et al., 2016).

Spin readout has also been achieved in donor devices
fabricated with STM lithography. Broome et al., 2017
placed a small cluster of donor atoms next to a SET and
demonstrated F = 98.4% single-shot readout of a donor
singlet-triplet qubit. Koch et al., 2019 later achieved an
average measurement fidelity of F = 97.9% for single
spin Elzerman readout using a SET, and Keith et al.,
2019b showed F = 97% measurement fidelity with a 1.5
µs SET measurement time. Dispersive gate-based sens-
ing has also been explored, but as with QD systems, dis-
persive sensing yields lower fidelities and measurement
bandwidths. Pakkiam et al., 2018 dispersively probed a
donor singlet-triplet qubit with a moderate fidelity F =
82.9% and 3 kHz bandwidth.

2. Donor electron spin single-qubit gates

Coherent control of the donor electron spin was
achieved by Pla et al. using a natural-Si substrate (Pla
et al., 2012). The electron spin Rabi oscillations [see
Fig. 21(b)] were highly damped due to hyperfine interac-
tions, reminiscent of the first GaAs QD single-spin Rabi
oscillations (Koppens et al., 2006). Isotopically enriched
samples were next investigated using devices where 31P
ions were implanted into an isotopically enriched layer
of 28Si with 800 parts-per-million residual concentration
of 29Si (Muhonen et al., 2014). The use of a Hahn
echo pulse sequence extended the coherence time out to
∼1 ms. More complex dynamical decoupling pulse se-
quences were shown to extend the coherence time out to
nearly a second (Muhonen et al., 2014). Later experi-
ments demonstrated a factor of ∼ 10 enhancement of the
coherence time for dressed electronic spin states (Laucht
et al., 2017).

Tettamanzi et al., 2017 took a first step towards donor
quantum control by demonstrating pulse spectroscopy of
a single P atom at frequencies up to 13 GHz. These
experiments demonstrated that microwave signals could
be transmitted down heavily doped P leads in silicon.
Hile et al., 2018 later probed ESR spectra of a single
P donor and 2P molecule, and Koch et al., 2019 then
extended these results to single shot measurements of a
single P donor qubit using a SET.

Fricke et al., 2021 used STM lithography to pattern a
P donor molecule in natural abundance silicon. Coherent
electron spin control was achieved with Rabi frequencies
of order 1 MHz. The Ramsey T ∗2 ∼ 300 ns was extended
out to T2 ∼ 300 µs using a Hahn echo pulse sequence.
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FIG. 21 a) Single shot readout of a donor-bound electron spin
(Morello et al., 2010). b) Rabi oscillations of a donor-bound
electron spin (Pla et al., 2012). c) Exchange oscillations from
a 2-donor device. (He et al., 2019). d) Coherence of 3-qubit
GHZ states (Madzik et al., 2022).

3. Donor nuclear spin control and readout

In Kane, 1998, the qubit is the 31P nuclear spin, not
the electron; the electron is used for read-out and control
leveraging the 31P hyperfine coupling of A ≈ 114 MHz
(Sec. III.F). Pla et al., 2013 accessed the nuclear spin
by using an ESR measurement time much less than the
nuclear spin flip time. This device was able to resolve
ESR transition frequencies that jumped between f⇑ =
gµBB/h + A/2 and f⇓ = gµBB/h − A/2. These jumps
were interpreted as being due to flips of the nuclear spin
state (denoted by ⇑ and ⇓). A broadband antenna on
the device allowed for direct driving of the donor atom
nuclear spin, with dephasing times 104 times longer than
for the donor electron spin. Since the readout of the
donor nuclear spin is QND, nuclear spin readout fidelities
>99.8% have been achieved (Pla et al., 2013).

In a follow-up experiment in 28Si, nuclear spin con-
trol with a fidelity exceeding 99.99% was demonstrated.
Muhonen et al., 2014 showed Carr-Purcell-Meiboom-Gill
(CPMG) dynamic decoupling pulse sequences extended
the nuclear spin coherence time beyond 30 sec. Wolfow-

icz et al., 2014 and Laucht et al., 2015 showed that the
Larmor resonances of each donor site could be selectively
controlled by pushing the electron closer to its 31P using
a gate, as proposed by Kane, enabling a global ESR field
to selectively control one site at a time.

The 31P donor is a nuclear spin I = 1/2 system, but
nuclei with spin I > 1/2 such as I = 7/2 123Sb allow for
richer and more complicated control possibilities. The
uniform Zeeman splitting between adjacent states of dif-
ferent m is shifted by the electric quadrupole interaction
due to local strain, allowing individual addressability of
all 2I + 1 = 8 nuclear spin transitions (Franke et al.,
2016). Modulation of these quadrupole splittings by an
ac electric field drives Rabi oscillations between transi-
tions. Sigillito et al., 2017 reported evidence for electric
quadrupole transitions in 75As nuclei. Recently, Asaad
et al., 2020 demonstrated coherent control of the 123Sb
donor and a dephasing time T ∗2 ≈ 92 ms. Wolfowicz
et al., 2013 have also demonstrated the use of clock tran-
sitions in high-spin nuclei, achieving second-scale coher-
ence times. Another exciting area of research involves
the development of acceptor-based devices, which may
benefit from enhanced SOC (Salfi et al., 2016).

4. Two-qubit gates

Kane, 1998 proposed coupling between donor nuclear
spin qubits could be mediated via exchange between the
electron spins on each donor, but it was soon noted that
atomic-scale oscillations in exchange due to multi-valley
interference would render this interaction highly sensi-
tive to atomic placement (Gamble et al., 2015; Joecker
et al., 2021; Koiller et al., 2001; Wellard et al., 2003), re-
quiring either an architecture tolerant of such variation,
extremely careful donor placement, or the use of asym-
metric donor clusters with more than one phosphorous
atom (Wang et al., 2016). A variety of demonstrations
of exchange on various donor devices have helped show
a range of possibilities beyond Kane’s original proposal.
Weber et al., 2014 used donor devices fabricated with
STM-based lithography to show exchange and PSB of
two electrons on the same donor site, Gorman et al., 2016
demonstrated methods to calibrate tunnel couplings, and
Broome et al., 2017 performed high-fidelity singlet-triplet
(PSB) readout. With sufficient control over the donor po-
sitions and of tunnel couplings, Broome et al., 2018 was
able to observe two-electron correlations and (He et al.,
2019) showed fast coherent exchange oscillations between
donor clusters [Fig. 21(c)]. As with the first exchange
oscillations in GaAs and Si/SiGe DQDs, the oscillations
were heavily damped due to charge noise (Maune et al.,
2012; Petta et al., 2005).

Experiments on implanted donor devices have also
demonstrated two-qubit operations. Madzik et al., 2021
demonstrated conditional operation of exchange-coupled
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donor qubits building on the theoretical proposal by
Kalra et al., 2014. Madzik et al., 2022 exploited the hy-
perfine coupling between two donor nuclear spins coupled
to the same electron to implement a two-qubit gate be-
tween nuclear spins based on geometric phases with a
fidelity above 99% [see Fig. 21(d)].

Tosi et al., 2017 proposed using electric dipole coupling
to couple electron spin-nuclear spin flip-flop qubits, an
approach that could be extended to enable coupling via
superconducting cavities (see Sec. VII). Basic operation
of the flip-flop qubit has been demonstrated by Savytskyy
et al., 2022.

An alternative coupling relevant to donors is the mag-
netic dipole-dipole coupling between electrons, as its
long-range, magnetic nature avoids the atomic precision
fabrication requirement for exchange. Proposals to ex-
ploit this interaction through isotopic engineering and
implanted donors employ a variety of methods to man-
age the interaction, including selective ionization and
mechanical motion (Hill et al., 2015; Ladd et al., 2002;
O’Gorman et al., 2016; de Sousa et al., 2004), however
execution of any such proposal will require devices with
exquisite coherence.

5. Limits of fidelity - randomized benchmarking

The demanding nanoscale fabrication requirements of
donor devices have impeded their progress relative to
gate-defined QDs. Quantum characterization verifica-
tion & validation (QCVV) results are so far limited to
ion-implanted devices, which are capable of supporting
impressive quantum control fidelities. Muhonen et al.,
2015 performed comprehensive measurements of the elec-
tron and nuclear spin qubit gate fidelities using 1Q RB,
included in Fig. 26. Average electron spin gate fideli-
ties exceeded 99.95%, while the nuclear spin fidelity was
99.99%. The dependence of the fidelity on pulse power
and shape in these early experiments suggests the overall
fidelities are limited by quantum control hardware con-
straints, not the intrinsic performance of the qubit.

Recent characterization of two P ion-implanted donors
coupled by a single electron using gate set tomogra-
phy (GST) have demonstrated single-qubit fidelities of
up to 99.93% and two-qubit fidelities of 99.2% (Madzik
et al., 2022). GST allows for the distinction of coherent
(stochastic) errors that transfer amplitude (probability)
to erroneous states, as well as relational errors, where
the errors incurred are dependent on the history of prior
gate operations. Madzik et al., 2022 found evidence for
coherent ZZ errors that were attributed to off-resonant
leakage of microwave power near ESR frequencies. While
an exchange gate has been demonstrated with an STM
fabricated device (He et al., 2019), the quantitative char-
acterization of the exchange gate through RB remains an
important goal for the donor spin qubit platform. Quan-

titative characterization of the exchange gate through RB
remains an important goal for the donor spin qubit plat-
form.

C. Singlet-triplet qubits

The early demonstration of coherent exchange in a
GaAs DQD (Petta et al., 2005) showed not only the
potential for two-qubit operations of LD qubits, but
also basic single-axis control of the ST0 qubit. The
data in Fig. 20 show that the DQD level detuning ε
enables control over the exchange coupling J , which
is the energy separation between the S and T0 qubit
states, as discussed in Sec. IV. In these early demon-
strations, the longitudinal magnetic field gradient expe-
rienced by the two spins, ∆Bz, which lifts the degen-
eracy between the flip-flop states |↑↓〉 = 1√

2
(|S〉+ |T0〉)

and |↓↑〉 = 1√
2

(|T0〉 − |S〉), was provided by the random

hyperfine fields of nuclear spins in the device.
Figure 22 also shows that at a particular value of ε,

the |S〉 and |T+〉 states become degenerate, where J
compensates the Zeeman splitting between triplet-states,
EZ . Near this detuning, the ST+ qubit is formed. Here
again we have the controllable qubit energy splitting
EST+

= Ez − J and the transverse coupling ∆ST can be
introduced by various mechanisms such as microscopic
hyperfine or spin-orbit interactions (Nichol et al., 2015;
Petta et al., 2010; Stepanenko et al., 2012; Taylor et al.,
2007). For the ST+ qubit we are assuming a device made
with a negative g-factor material, such as GaAs, where
|T+〉 is lower in energy than |T−〉; for a positive g-factor
material (e.g. Si), the natural choice is a ST− qubit.

1. Initialization and readout

ST0 and ST+ qubit demonstrations (Botzem et al.,
2018; Foletti et al., 2009; Maune et al., 2012; Petta et al.,
2005) use PSB for initialization and readout (Sec. IV.E).
The high-fidelity of PSB initialization and readout in
DQDs is enabled by the large exchange coupling in the
(2,0) charge configuration. The energy splitting from the
singlet ground state to the excited (2, 0) triplet states was
shown to be meV or higher in energy in GaAs and tens
to hundreds of µeV higher in energy in Si QDs, as dis-
cussed in Sec. IV.A. These energy scales are larger than
kBTe at typical electron temperatures. Following initial-
ization, the electrons are usually separated via tunneling
to the (1,1) charge state.

Experiments have leveraged adiabatic and nonadia-
batic separation to complete qubit control [see the energy
level diagram in Fig. 22(a)]. When electron separation
occurs rapidly with respect to any magnetic gradients,
tunneling preserves the spin state, so an initialized sin-
glet remains a singlet (Botzem et al., 2018; Foletti et al.,
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FIG. 22 a) Energy-level diagram for two electrons in a DQD.
ε is the energy level detuning, and (1, 1) and (2, 0) indi-
cate the DQD charge configurations. The Zeeman and ex-
change splittings are gµBB and J(ε) where B denotes the
magnetic field. The spin states are |S〉 = 1√

2
(|↑↓〉 − |↓↑〉),

|T0〉 = 1√
2

(|↑↓〉+ |↓↑〉), |T+〉 = |↑↑〉, and |T−〉 = |↓↓〉.
Singlet-triplet oscillations driven by: b) g-factor differences
between dots (Liu et al., 2021), c) micromagnets (Wu et al.,
2014), and d) dynamic nuclear polarization (Foletti et al.,
2009).

2009; Maune et al., 2012; Petta et al., 2005). If the sepa-
ration occurs slowly with respect to magnetic gradients,
the singlet state transitions to the lower-energy spin-zero
product state (Foletti et al., 2009; Petta et al., 2005).
Hence two orthogonal S-T0-qubit basis initializations are
available, and pulsing detuning ε or tunnel coupling tc
enables characterization of the exchange coupling. The
spin-to-charge conversion offered by PSB reduces spin
readout to dot-selective charge readout. A significant
number of optimizations have been explored to increase
readout speed and fidelity (Barthel et al., 2010, 2009;
Borjans et al., 2021a; Connors et al., 2020; Noiri et al.,
2020; Reilly et al., 2007). A key trade-off is that while
larger gradient B-fields can drive faster single qubit op-
erations, these persistent gradients reduce the fidelity of
PSB readout due to enhanced spin relaxation (Barthel
et al., 2012). Latched readout protocols first demon-
strated with charge qubits (Petersson et al., 2010) have
been extended to singlet-triplet qubits and can overcome
this limitation (Harvey-Collard et al., 2018; Orona et al.,
2018; Studenikin et al., 2012).

2. Single-qubit gates

As described in Sec. II.C, the Hamiltonian (Eq. 2)
governing the control of ST0 qubits includes an exchange-

driven σz term and a σx term that is set by an effec-
tive magnetic field gradient. Full two-axis control of the
ST0 qubit Bloch vector therefore requires control of ex-
change, which can be achieved by adjusting interdot bar-
rier heights or DQD level detunings, and magnetic field
gradients. Approaches to generate the required mag-
netic field gradients are varied and include dynamic nu-
clear polarization (DNP) (Bluhm et al., 2010a; Foletti
et al., 2009), the use of permanent micromagnets (Fog-
arty et al., 2018; Wu et al., 2014), g-factor differences
(Harvey-Collard et al., 2017b; Jock et al., 2018; Liu et al.,
2021), or spin-valley coupling (Jock et al., 2022). Data
acquired using some of these approaches are shown in
Figs. 22(b–d). We elaborate on these approaches below.

For gate-defined spin qubits, typical exchange cou-
plings are in the MHz to GHz range. Coherent ex-
change rotations are achieved by applying fast gate volt-
age pulses (<1 ns to 10’s of ns). Voltage pulses of the op-
posite sign applied to the DQD plunger gates can rapidly
change the detuning to configurations with large J , as
first demonstrated by Petta et al., 2005. Such control at
fixed tunnel coupling is capable of generating arbitrary
single qubit gates (Hanson and Burkard, 2007). However,
detuning-controlled exchange oscillations are vulnerable
to charge noise, and the number of coherent oscillations
is typically around 10 (Dial et al., 2013; Fogarty et al.,
2018; He et al., 2019; Maune et al., 2012; Petta et al.,
2005). Exchange oscillations can also be observed with
larger numbers of electrons in the QDs, in configurations
where the inner electrons form a “frozen core” (Barnes
et al., 2011; Higginbotham et al., 2014a).

Bertrand et al., 2015 and Martins et al., 2016, working
in GaAs DQDs, and Reed et al., 2016, working in iso-
topically enhanced Si TQDs, showed that improved qubit
control results when the barrier height between electrons
is pulsed to smaller values, as simulated in Fig. 15. The
improvement occurs because the Coulomb-dominated ex-
change coupling is first-order insensitive to potential fluc-
tuations in this “symmetric” mode. As a result, the qual-
ity factor of exchange oscillations is higher than that for
detuning-controlled oscillations, although the magnitude
of the required voltage pulses is also significantly higher.
Both of these methods of creating exchange coupling suf-
fice to generate σz rotations on the ST0 Bloch sphere.
In principle, both methods can also be used to control
ST+ qubits, though detuning sweeps have been more fre-
quently used in these systems (Petta et al., 2010; Ribeiro
et al., 2010).

Full control of the ST0 qubit Bloch vector also requires
an effective magnetic field gradient for σx rotations. The
use of hyperfine field is particularly convenient for GaAs
QDs, due to the many spinful nuclei. A challenge with
using hyperfine as a basis of control is that, as discussed
in detail in Sec. VI.B, the nuclear hyperfine field fluctu-
ates randomly because the nuclear Zeeman energy is so
small, typically less than 1 mK for fields of order 1 T,
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and magnetic dipole-dipole interactions lead to nuclear
spin diffusion. However, various mechanisms can be em-
ployed to enhance and stabilize the nuclear polarization
via the electron spins (Bluhm et al., 2010a; Foletti et al.,
2009; Nichol et al., 2017; Petta et al., 2008; Shulman
et al., 2012). These processes are collectively called dy-
namic nuclear polarization (DNP) (Abragam and Gold-
man, 1978).

In singlet-triplet qubits, DNP usually involves the de-
generacy point between the |S〉 and |T+〉 states. This de-
generacy is lifted by a transverse gradient (Nichol et al.,
2015; Petta et al., 2010; Stepanenko et al., 2012; Taylor
et al., 2007), which is typically generated via the hyper-
fine interaction between the electron and nuclear spins
[Fig. 22(a)]. As the DQD is adiabatically detuned across
the ST+ avoided crossing, the electrons transition from
|S〉 to |T+〉 via the transverse Overhauser field and a nu-
clear spin must change its state to conserve angular mo-
mentum in the electron-nuclear subsystem (Brataas and
Rashba, 2011; Neder et al., 2014; Ribeiro and Burkard,
2009). If repeated rapidly enough, this process can flip a
large number of nuclear spins and can be used to “pump”
both the average 1

2 (Bz1 + Bz2) (Petta et al., 2008) and
difference (Bz2 − Bz1) longitudinal magnetic fields of the
DQD (Bluhm et al., 2010a; Foletti et al., 2009; Nichol
et al., 2015, 2017; Shulman et al., 2012). It is not sur-
prising that the average field should be affected, if one
assumes that this process flips nuclear spins in both
dots with approximately the same probability. However,
the underlying mechanism that builds up the difference
field remains remains an active area of theoretical re-
search (Gullans et al., 2010, 2013).

In addition to dynamic nuclear polarization, micro-
magnets can also be used to generate σx rotations (Fog-
arty et al., 2018; Wu et al., 2014). Although additional
fabrication is required, micromagnets eliminate the re-
quirement for DNP, which adds experimental overhead.
In Si ST qubits, g-factor differences between dots can
naturally lead to the existence of a σx term, even in the
presence of a uniform magnetic field (Kerckhoff et al.,
2021; Liu et al., 2021). Finally, when the Zeeman en-
ergy equals a valley splitting, the resonance that occurs
between different valley states, together with spin-valley
coupling, can also enable rapid σx rotations in Si ST
qubits (Jock et al., 2022).

Dynamical decoupling experiments illustrate the po-
tential for using fluctuating hyperfine fields for full ST0

control. Bluhm et al., 2010b and Malinowski et al., 2017a
have used exchange pulses to decouple ST0 qubits from
magnetic noise, resulting in nearly a 5 order of magni-
tude improvement in coherence. These experiments, in
addition to later studies in SiGe (Kerckhoff et al., 2021),
also uncover the spectrum of the Overhauser field, re-
vealing the significance of the Larmor precession of the
individual nuclei (Neder et al., 2011). Stabilized mag-
netic gradients also enable decoupling ST0 qubits from

charge noise (Dial et al., 2013; Shulman et al., 2014) as
well as charge noise spectroscopy (Connors et al., 2022;
Dial et al., 2013; Jock et al., 2022).

For ST+ qubits, the σx interaction can arise from
transverse magnetic gradients (Nichol et al., 2015; Petta
et al., 2010; Stepanenko et al., 2012; Taylor et al., 2007)
which can be created via hyperfine fields or micromag-
nets. However, unlike longitudinal gradients, transverse
gradients are not amenable to DNP and are thus diffi-
cult to stabilize. Transverse gradients also contain spec-
tral components at the Larmor precession frequencies of
the individual nuclei (Nichol et al., 2015); as a result, the
naturally occurring hyperfine polarization is typically not
stable enough to generate usable x-rotations. Spin-orbit
coupling can also induce a ST+ splitting (Nichol et al.,
2015; Stepanenko et al., 2012), but detuning charge noise
in this case can create substantial decoherence. In sili-
con, spin-valley coupling can induce a sizeable ST− split-
ting (Cai et al., 2021), which enables universal quantum
control. As an alternative to conventional qubit ma-
nipulation, repeated Landau-Zener sweeps through the
avoided crossing have been proposed as a mechanism
to achieve universal control of ST+ qubits (Petta et al.,
2010; Ribeiro et al., 2010). The axis of rotation on the
Bloch sphere in this mode is controlled by the timing of
two consecutive Landau-Zener sweeps.

In part to avoid issues associated with charge noise,
a variant of the ST0 qubit, the “resonantly-driven ST0

qubit,” which is related to the “flip-flop qubit,” (Tosi
et al., 2017) has been developed (Klauser et al., 2006;
Nichol et al., 2017; Shulman et al., 2014; Takeda et al.,
2020). This qubit’s basis states |↑↓〉 and |↓↑〉 are equal
superpositions of the original singlet and triplet states.
In such a resonantly-driven ST0 qubit, a large magnetic
gradient, either from a micromagnet or hyperfine fields,
generates the primary qubit energy splitting. An oscil-
lating voltage applied to a plunger or barrier gate creates
an oscillating exchange splitting. If driven at a frequency
corresponding to the magnetic gradient, this oscillating
exchange coupling can drive transitions. Because the
qubit energy splitting does not depend on electric fields,
decoherence due to charge noise can be suppressed.

3. Two-qubit gates

van Weperen et al., 2011 measured the shift in the
exchange oscillation frequency of one ST0 qubit due to
changes in the charge configuration of another nearby
ST0 qubit, providing the capacitive interaction for a two
qubit gate (Taylor et al., 2005). The electrostatic inter-
action translates to spin, as with spin initialization and
readout, via PSB. Consider two ST0 qubits in close prox-
imity. The first qubit will, depending on its state (singlet
or triplet), have a slightly different charge configuration
[(0,2) or (1,1)]. As a result, the second qubit experiences
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FIG. 23 Two-qubit operations in ST0 qubits. a) Bell-state
fidelity during a capacitive entangling operation between two
ST0 qubits, from (Shulman et al., 2012). b) Concurrence
during a two-qubit operation between capacitively-coupled
resonantly-driven ST0 qubits, from (Nichol et al., 2017).

a different electrostatic potential and thus energy split-
ting J depending on the state of the first qubit. This
leads to an effective Ising interaction between the two
ST0 qubits of the form Hint ∝ (dJ1/dµ1)(dJ2/dµ2)(σz −
I) ⊗ (σz − I) (Shulman et al., 2012; Stepanenko and
Burkard, 2007; Taylor et al., 2005), which can be used
to implement, for instance, a CZ gate [see Fig. 23].

Charge noise adversely impacts the performance of this
capacitive coupling mechanism. Low-frequency charge
noise may be refocused by applying spin-echo-like pulses
to both qubits, using stabilized magnetic gradients (Dial
et al., 2013; Shulman et al., 2012). If refocusing pulses
are applied to both qubits simultaneously, single-qubit
dephasing is substantially reduced, while the two-qubit
interaction is preserved. Nichol et al., 2017 partially
overcame charge-noise limitations this way using the
resonantly-driven ST0 qubit, where ∆Bz � J . Although
the qubit in this regime is sensitive to fluctuating nu-
clear fields, nuclear spin noise can be refocused much
more effectively than charge noise (Bluhm et al., 2010b).
One complication with this approach, not present in the
static ST0 qubit case, is that the form and magnitude
of the coupling depends on the frequencies of the two
qubits (Calderon-Vargas and Kestner, 2018). By exploit-
ing DNP, Nichol et al., 2017 tuned the qubit energies
to resonance, and performed a rotary echo to suppress
low-frequency noise. Neighboring ST0 qubits can also be
coupled via the exchange interaction (Cerfontaine et al.,
2020b; Klinovaja et al., 2012; Levy, 2002; Li et al., 2012;
Wardrop and Doherty, 2014) and experimental investiga-
tions of this approach have recently been initiated (Qiao
et al., 2021a).

4. Limits of fidelity - randomized benchmarking

Single-qubit gate fidelities for conventional ST0 qubits
exceed 99.5% in GaAs qubits, as measured via RB us-
ing stabilized hyperfine gradients (Cerfontaine et al.,
2020a). Based on simulations, the gate infidelities were
attributed to charge noise. For resonantly-driven ST0

qubits in GaAs, single-qubit gate fidelities are ∼99% as
measured via RB, likely limited by both hyperfine and

charge noise (Nichol et al., 2017).

Two-qubit operations for GaAs ST0 qubits have so far
only been assessed through state and process tomogra-
phy. For conventional ST0 qubits, the maximum Bell-
state fidelity is about 70% (Shulman et al., 2012), limited
by charge noise. For resonantly-driven ST0 qubits, the
maximum entangling gate fidelity is about 90% (Nichol
et al., 2017), as measured via process tomography, with a
corresponding Bell-state fidelity above 90%. A limitation
associated with single- and two-qubit state tomography
in ST0 qubits is that the required tomographic rotations
can be difficult to tune precisely (Nichol et al., 2017; Shul-
man et al., 2012; Takahashi et al., 2013).

D. Exchange-only qubits

A necessary first step in developing TQDs, identified
early as the minimum system size for EO control (Bacon
et al., 2000; DiVincenzo et al., 2000; Kempe et al., 2001),
was the determination of the voltage bias conditions for
populating each dot with a single spin, and the identifi-
cation of charge regimes enabling initialization, readout,
and control (Gaudreau et al., 2009, 2006; Granger et al.,
2010; Pan et al., 2012; Schröer et al., 2007). The fa-
miliar two-dimensional charge stability “honeycomb” of
the DQD becomes a three dimensional cell structure in
gate voltage space. For pairs of TQDs, six-dot arrays re-
quire calibration, necessitating even more complex, mul-
tidimensional bias tuning procedures to populate each
QD with a single charge. Recently, automation and ma-
chine learning have been brought to bear on this prob-
lem (Botzem et al., 2018; van Diepen et al., 2018; Hsiao
et al., 2020; Mills et al., 2019a; Zwolak et al., 2020).

1. Initialization and readout

For initialization and readout of TQD EO qubits, two
of the QDs are used and subject to the same PSB proce-
dure employed for ST0 qubits (DiVincenzo et al., 2000;
Jones et al., 2019; Maune et al., 2012; Petta et al., 2005).
In both cases, the initialization procedure creates a sin-
glet state |S〉 as described in Sec. V.C.1; for the ST0

qubit, this is exactly one of the qubit states, |0〉. For a
TQD, a third spin is present in a third dot, but this third
spin need not be initialized. As detailed in Sec. II.D,
the encoded |1〉 state in the TQD case is a superpo-
sition of two of the triplet states; since Pauli blockade
is based on spin parity, it distinguishes between singlet
and triplet (but not triplet projections), which suffices
for TQD qubit readout via PSB. Importantly, however,
a TQD qubit has a third leaked state, with total angular
momentum S = 3/2, which is also composed of a su-
perposition of triplet states of the two dots undergoing
Pauli blockade. Therefore, a leaked state has the same
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PSB readout signature as the encoded |1〉 state.
TQDs present a convenient way to assess exchange for

a single pair of QDs, even when full qubit control is not
available. By initializing a singlet on one pair of dots (1
and 2), and then pulsing exchange on a second overlap-
ping pair (2 and 3), a “triple-dot Rabi” experiment en-
ables the measurement of coherent exchange oscillations
without using magnetic field gradients. Laird et al., 2010
demonstrated such oscillations for early pulsed EO qubit
experiments in GaAs, and Reed et al., 2016 used it for
the development of exchange sweet-spots in isotopically
enhanced Si TQDs. Unlike single-spin or singlet-triplet
coherent oscillations, exchange oscillations decay due to a
combination of charge noise and hyperfine dephasing, due
to the ability of the encoded qubit to dephase into degen-
erate leakage states during exchange (Ladd, 2012). Re-
cent measurements of initalization and readout fidelity in
a Si/SiGe TQD system achieved a fidelity of 99.75% (Blu-
moff et al., 2022).

2. Exchange-only single-qubit gates

Early coherent measurements of TQD states employed
Landau-Zener transitions (Gaudreau et al., 2012; Poulin-
Lamarre et al., 2015), as utilized for ST+ qubits (Sec.
V.C). Such experiments validate energy level structure
using tools familiar from DQD qubits, but they do not
exploit true EO operation; indeed they explicitly rely on
mechanisms other than exchange to traverse anticross-
ings.

The EO modality takes its power from the ability to
operate by idling qubits in a degenerate, non-evolving
decoherence free subsystem or subspace, and then lifting
selective singlet-triplet degeneracies with pulsed pairwise
exchange (Andrews et al., 2019; Bacon et al., 2000; Di-
Vincenzo et al., 2000). In contrast to LD and resonant
ST0 qubits that use oscillating fields for quantum control,
EO systems rely on the control of energy splittings which
are dynamically increased and decreased by changing the
trapping potential of electrons.

The TQD EO qubit is defined only by whether the first
two spins are in a singlet state |S〉 or any triplet state
|T〉. Time-domain control of the exchange interaction
J12(t) lowers the energy of the singlet state relative to
any of the triplets, and therefore when pulsed on for a
duration T provides a phase such that α |0〉 + β |1〉 →
α |0〉+ exp

(
− i
h̄

∫ T
0
J(t)dt

)
β |1〉. This interaction may be

taken as a rotation of the encoded qubit about ẑ.
Complete control of the EO qubit is accomplished

by pulsing another overlapping pair, say dots 2 and
3. To assess the geometric effect of exchange be-
tween these two dots, one may use angular momen-
tum recoupling coefficients [Racah or Wigner 6j coeffi-
cients (Varshalovich et al., 1988)], i.e. the matrix ele-
ments 〈S12, S3, S123|S1, S23, S123〉, where Sjk··· refers to

the total angular momentum of spins j, k, . . . For Sj =
1/2 and Sjk being either 0 or 1 for singlet or triplet, these
coefficients amount to a rotation of angle 2π/3 about the
y-axis from the singlet-triplet basis along the z-axis to an
axis defined by unit vector n̂ = cos(2π/3)ẑ− sin(2π/3)x̂.
The encoded qubit under exchange J23 between spins 2
and 3 therefore rotates about this n̂ axis, as shown in
Fig. 2. At most 4 pulses are needed to perform an arbi-
trary Bloch sphere rotation under these geometric con-
straints (Lowenthal, 1972), generalized Euler angles for
such constructions are known (Chatzisavvas et al., 2009),
and a table of solutions for the 24 single-qubit Cliffords
using 17 distinct angles and an average exchange-pulse
count of 2.7 may be found in Andrews et al., 2019.

Medford et al., 2013a demonstrated complete EO qubit
control in GaAs TQD. Here J12(t) and J23(t) were con-
trolled, sweeping the integrated phase during the ex-
change pulses. Singlet-triplet read-out via PSB was
performed, and a self-consistent tomography technique
showed the basic operation was consistent with theory.
Unfortunately, the decoherence free subsystem predicat-
ing EO control depends on homogeneous magnetic fields
which maintain the total angular momentum of the spins,
S123, as a conserved quantum number. Inhomogeneous
magnetic fields, which are strong in GaAs due to hy-
perfine interactions (see Sec. VI.B) prevent more than a
few operations before leakage of the encoded qubit. A
promising route to mitigate hyperfine effects is to imple-
ment EO systems in isotopically purified Si. Eng et al.,
2015, Fig. 24, first demonstrated the longest composite
single-qubit sequence (the 4-pulse π rotation about the
ŷ axis) in a Si/SiGe QW structure with 29Si content re-
duced to 800 ppm. Calibrated operation of all compos-
ite gates for the 24 Clifford operations was later shown
by Andrews et al., 2019 and will be further discussed in
Sec. V.D.5.

3. Resonant-exchange single-qubit gates

EO control in GaAs is more practical when multiple
exchange interactions are constantly active, such as in
the RX mode of operation (see Medford et al., 2013b
and Taylor et al., 2013 and Sec. II.D). Such a qubit re-
sults from tuning a TQD to a regime where J12(t) and
J23(t) are simultaneously active [see Fig. 24]. RX appli-
cation is directly analogous to the rotating-frame Hamil-
tonian for single-spins (Appendix A), enabling the use of
familiar rotating-frame RF sequences for decoupling and
dynamic compensation. As such, multipulse dynamical
decoupling is a viable technique to mitigate hyperfine ef-
fects (Malinowski et al., 2017b).

In Si/SiGe, the valley degree of freedom has enabled
a hybrid between RX and EO only qubits. As discussed
in Sec. II.E, when two of the three electrons occupy a
common dot whose valley splitting is within reach of mi-
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FIG. 24 Gradient-free exchange oscillations from an isotopi-
cally enhanced Si/SiGe TQD (Eng et al., 2015). At very
negative detunings, dots 2 and 3 are exchange-coupled and
exchange oscillations are geometrically interpreted as a qubit
rotation about n̂ (see Fig. 2c); at less negative detunings,
dots 1 and 2 are coupled, geometrically interpreted as rotation
about ẑ. Exchange increases exponentially with detuning. At
ε = −7 mV, both exchange couplings are active as would be
required for operation in the RX reigime.

crowave control, the resulting qubit has the same spin-
encoding as an EO qubit, but the singlet and triplet
states of the doubly-occupied QDs are perpetually split in
energy by the valley splitting, analogous to the always-on
exchange of the RX qubit. A combination of microwave
control, as in the RX qubit, and pulsed exchange, as in
the EO qubit, similarly allow biasing to low charge-noise
regions and complete qubit control, with demonstrations
in isotopically natural Si showing fidelities in the mid-
90% range (Kim et al., 2014; Koh et al., 2012; Shi et al.,
2012, 2014).

4. Two-qubit gates

There are three strategies for EO two-qubit gates. One
is to exploit the singlet-triplet character of the EO en-
coding and use capacitive charge-coupling in the high-
detuning regime, as discussed in Sec. V.A.3. This would
be possible both for EO and RX qubits, admit a wide
variety of two-qubit gating modalities (Pal et al., 2014,
2015), and be able to exploit long-distance transmis-
sion line couplers (Srinivasa et al., 2016). Doherty and
Wardrop, 2013 proposed a second strategy for the RX
qubit modality, in which large exchange values are main-
tained within each TQD qubit, and a smaller exchange is
activated to couple the two EO qubits. The lowest order
perturbative effect of the small inter-qubit exchange gen-
erates an entangling gate, with leakage effects occurring
at higher order in the ratio of the inter- to intra-qubit
exchange. Both of these coupling mechanisms are sus-
ceptible to charge noise.

The third method is to use true EO sequences between
spins, in which charge-noise sensitivity during the two-
qubit gate is no worse than that between spins during

single-qubit operations. Schemes using a combination
of single-pair and multi-pair exchange for the four-spin
qubit were shown by Bacon et al., 2000, and pairwise
entangling exchange sequences for the three-spin qubit
were proposed by DiVincenzo et al., 2000 in the same
year, although this latter sequence presents another sub-
tle difficulty. The decoherence-free subsystem of a TQD
is insensitive at the single-qubit level to its total spin pro-
jection m = m1 +m2 +m3, which may take values ±1/2
in the S123 = 1/2 encoded subspace. This total spin pro-
jection is referred to as the “gauge spin” and may be left
unpolarized in single-qubit experiments. However, when
two such qubits are combined, the two gauge spins may
combine into a singlet or triplet states, and the action
of intra-qubit exchange will behave differently in these
two distinct subsystems. The sequential gate from Di-
Vincenzo et al., 2000 requires the gauge-spins to be in a
triplet state, which would most likely be achieved via spin
polarization. Such polarization is generally not available
in an EO system.

Fortunately, Fong and Wandzura, 2011 derived a se-
quential gauge-independent CNOT sequence. It has the
same entangling action on the two-qubit encoded sub-
system regardless of whether gauge spins are in singlet or
triplet subspaces. Such gauge invariance also means they
function equivalently on four-spin EO qubits as three-
spin EO qubits. This sequence has a core gauge-invariant
structure consisting of 12 π/2-pulses pairwise connecting
five of the six spins spins (i.e. spin

√
SWAP gates), some

number of π-pulses to SWAP spins into place to achieve
a particular connectivity of spins (Setiawan et al., 2014),
and some number of single-qubit pulses to convert to a
desired operation. The CNOT gate implemented in a lin-
ear device architecture then summed to 22 pulses (Fong
and Wandzura, 2011). It was shown by Zeuch and Bon-
esteel, 2016 that the core entangling part of this gate may
be decomposed into three uses of a primitive 5-spin se-
quence which swaps two spins depending on the encoded
state of a single EO qubit; this decomposition and other
constructions may lead to other two-qubit gate construc-
tions beyond the Fong-Wandzura sequence family (Zeuch
and Bonesteel, 2020). Other constructions based on
decoupling concepts have also been proposed (van Me-
ter and Knill, 2019). The Fong-Wandzura sequence, as
well as all two-qubit Clifford gates, variations of Fong-
Wandzura related to leakage management, and logical
swaps between encoded qubits were all demonstrated
in a six-dot SLEDGE device via tomography and full
two-qubit randomized benchmarking by Weinstein et al.,
2022.

5. Limits of fidelity - randomized benchmarking

Andrews et al., 2019 performed RB using a TQD in an
isotopically enhanced Si/SiGe QW device using overlap-
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ping aluminum gates. The RB procedure was modified
by randomly choosing whether a sequence of Cliffords
composed to identity or σx. Recalling that a measure-
ment of a triplet state may correspond either to encoded
|1〉, which responds to exchange, or to a S123 = 3/2 leak-
age state, which does not, the presence of leakage could
be deduced on average over many random sequences. An
error-rate per Clifford of 0.35% was observed, with half
of the error resulting from leakage. Ha et al., 2021 per-
formed the same experiment using the SLEDGE architec-
ture for similar Si/SiGe QW, and observed an error-rate
per Clifford of 0.12%; this was extended to six dots and
two qubits by Weinstein et al., 2022, where an average
two-qubit Clifford had an error rate of 2.9%.

The fidelity in these experiments depended on the de-
tails of the quantum control sequence. With substantial
“idle time” added between calibrated exchange pulses, er-
ror was limited by hyperfine dephasing which occurs due
to leakage between degenerate S123 = 1/2, 3/2 states. If
pulses are applied more quickly, the leakage per Clifford
improves by simply outracing the leakage process, but an-
other error limit is then reached due to the dynamic mis-
calibration of exchange pulses. The limitations of such an
error is a key outcome of RB, as it may be hard to observe
in state or process tomography experiments, and it is
“contextual” (i.e. it depends on the control sequence em-
ployed). Improved pulse delivery to the qubit as well as
increased isotopic enhancement should further improve
EO qubit operation fidelities. The results however are
very promising for exchange-based gates in silicon QDs
in isotopically enhanced materials, as the noncontextual,
non-hyperfine error from exchange pulses themselves (e.g.
due to charge noise, see Sec. VI), which occur an aver-
age of 2.7 times per Clifford gate in the single-qubit case
and 41.1 times per Clifford gate in the two-qubit case, is
substantially less than 10−3 in these experiments.

E. Alternative material platforms

Spin qubits have been realized predominantly using
electrons in GaAs and Si, with recent encouraging re-
sults from holes in Ge and Si as well. In this subsection
we review results from several other materials systems,
shown in Fig. 25, that have been investigated as suitable
platforms for spin-based quantum information process-
ing.

1. Carbon nanotubes

Carbon (C) is another group IV element that naturally
occurs mostly in the form of a I = 0 isotope (the natural
abundance of 12C is 99%). One can therefore expect
long electron spin decoherence times since the deleterious
effects of the hyperfine coupling will be weak. The fact
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FIG. 25 a) Nanowire spin-orbit qubit, from (Nadj-Perge
et al., 2010). b) Spin-orbit qubit in SiMOS DQD, from (Jock
et al., 2018). c) Carbon nanotube qubit, from (Cubaynes
et al., 2019). d) Four-qubit quantum processor based on holes
in Ge/SiGe (Hendrickx et al., 2021).

that the valence electrons of C are in the atomic p-shell
further reduces the hyperfine coupling (see Sec. VI).

Carbon nanotubes (CNTs) are a one-dimensional form
of carbon with an electronic bandstructure that can be
either metallic or semiconducting (Laird et al., 2015).
The presence of a band gap in semiconducting CNTs al-
lows for the formation of QDs using electrostatic gating
(Sapmaz et al., 2006). Kuemmeth et al., 2008 measured
the spin and valley degeneracies of single electrons in a
QD formed in a clean CNT, as well as their coupling via
spin-orbit interaction due to the CNT curvature. PSB in
the transport through a CNT DQD (Pályi and Burkard,
2010) enables measurement of the spin relaxation and
dephasing times in 13C-enriched (Churchill et al., 2009)
and natural (Pei et al., 2012) CNTs. Pei et al., 2012
and Laird et al., 2013 realized mixed spin-valley qubits
in bent single-walled CNT devices, and Cubaynes et al.,
2019 observed the coupling of an electron spin localized
in a CNT QD to a microwave cavity.

2. Spin-orbit qubits

As described in Sec. III.D and Sec. V.A.2, electrical
control of single spins can be achieved using the intrin-
sic SOC of a material and electrical driving. The the-
ory for EDSR in a spin-orbit field predicts an effective
ac magnetic field strength that is inversely proportional
to λSO, with a Rabi frequency that is proportional to
the electronic g-factor (Golovach et al., 2006). While
λSO ∼ 8 µm in GaAs, heavier III/V compound semi-
conductors have a much shorter λSO. For example λSO

= 100 nm for InSb and 400 nm for InAs. In addition,
the bulk electronic g-factor is 15 in InAs and 50 in InSb.
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These factors, combined with the small effective mass,
resulted in the development of spin-orbit qubits beyond
early demonstrations in GaAs (Nowack et al., 2007).

Nadj-Perge et al., 2010 implemented EDSR in a
bottom-gated InAs nanowire DQD. Due to the strong
spin-orbit coupling present in InAs, the g-factors for the
left and right dots were different, allowing for selective
control of each spin. Fast Rabi frequencies were achieved
fR = 58 MHz, but as in GaAs, the Rabi oscillations were
strongly damped due to hyperfine coupling. Ramsey de-
cay times T ∗2 = 8 ns and spin-echo coherence times T2

= 50 ns were extracted. Possible reasons for the short
T2 relative to that observed in GaAs include the large,
quadrupolar-split nuclear spin I = 9/2 of indium and
charge noise.

These experiments have been extended to different op-
erating regimes and materials platforms. Schroer et al.,
2011 used EDSR to spectroscopically probe the strong
anisotropy of the electronic g-factor in a InAs nanowire
DQD. In a related experiment, Nadj-Perge et al., 2012
performed spectroscopy of InSb spin qubits in the two-
electron regime with highly anisotropic g-factors. Spec-
troscopy of the energy levels as a function of magnetic
field allowed for a direct measurement of the spin-orbit
gap ∆SO, which was largest when the external magnetic
field was parallel to the nanowire axis. Subsequently,
it was shown that the EDSR driving mechanism strongly
depends on the DQD energy level detuning (Stehlik et al.,
2014). While early experiments performed EDSR at high
level detuning in effectively a single QD regime, EDSR
when driven around ε = 0 exhibited a standard single
photon resonance condition hf = gµBB as well as mul-
tiple harmonics nhf = gµBB, with n as high as 8. An
even-odd dependence in the strength of the PSB leak-
age current was also observed. These observations were
attributed to Landau-Zener physics, where near ε = 0
the DQD is repeatedly driven through avoided crossings
in the energy level diagram (Nadj-Perge et al., 2010; Pe-
tersson et al., 2012; Schroer et al., 2012, 2011). Sim-
ilarly, Jock et al., 2018, 2022 observed large spin-orbit
and spin-valley couplings in SiMOS devices, leading to
demonstrations of DQD spin-orbit singlet-triplet qubits.
The stronger spin-orbit interaction of valence band states
has also led to further experiments in Si and Ge hole
qubits, described below.

3. Holes in Si and Ge/GeSi

Hole spin qubits have shown rapid progress in recent
years, particularly in Si and Ge (Hu et al., 2007; Katsaros
et al., 2010; Li et al., 2015; Scappucci et al., 2021). It had
been known previously that holes in III-IV semiconduc-
tor QDs can have long spin relaxation times (Heiss et al.,
2007; Trif et al., 2009). Holes have several attractive fea-
tures: stronger SOI (and hence faster EDSR) as well as

weaker nuclear hyperfine coupling, low in-plane effective
mass, and the absence of degenerate valleys (Bulaev and
Loss, 2005, 2007). However, the degenerate p-like states
and SOI lead to strong band mixing. Strain and con-
finement further complicate the band mixing; the HH
versus LH nature of the ground state differs for planar
and nanowire devices, and strong structure- and tuneup-
dependence of key parameters is expected.

Si holes can be confined in MOS QDs due to the large
valence band offset (Ando et al., 1982) and it is even pos-
sible to make ambipolar devices capable of confining elec-
trons or holes (Betz et al., 2014). Early demonstrations
of PSB in planar (Li et al., 2015) and SOI nanowire (Bo-
huslavskyi et al., 2016) hole devices, followed by a qubit
demonstration in the latter platform (Maurand et al.,
2016), have occurred in the few-hole regime. The re-
ported values of T ∗2 ∼ 2 µs are consistent with nuclear
spin dephasing. On the other hand, T2 is limited by
charge noise, which is found to depend on the magnetic
field orientation, with a maximum T2 = 88 µs at the
optimized field direction (Piot et al., 2022).

Gate-reflectometry dispersive readout and coherent
control in the few-hole regime in silicon has been achieved
in Crippa et al., 2019. Recent work showing shell filling
(Liles et al., 2018) and single-hole g-tensor measurements
in a planar MOS dot (Liles et al., 2021) are promising for
single-hole coherent operation. In general, the observa-
tion of highly voltage-sensitive anisotropic g-tensors in
MOS QDs (Crippa et al., 2018; Liles et al., 2021) and
Ge nanowires (Brauns et al., 2016) demonstrate the mi-
croscopic complexity of these devices. For few-hole Si
nanowire MOSFET devices, it is predicted that g-tensor
resonance can yield Rabi frequencies exceeding 600 MHz
(Voisin et al., 2016). 400 MHz Rabi frequencies have
been achieved with hole spin qubits in Ge/Si core/shell
nanowires, with wide tunability of the SOC strength,
Rabi frequency, and electronic g-factor (Froning et al.,
2021). Si FinFET devices offer a high degree of tunabil-
ity (Bosco et al., 2021b) and Rabi frequencies of 150 MHz
at 4 Kelvin (Camenzind et al., 2022).

Holes in Ge have demonstrated promise on several
fronts. Higginbotham et al., 2014b showed extrinsic
noise-dominated measurements of T ∗2 = 180 ns in a Ge/Si
core/shell nanowire and Watzinger et al., 2018 demon-
strated single-qubit control in the few-hole regime of Ge
hut nanowire DQDs on Si. Recently, more emphasis has
fallen on planar Ge/GeSi QWs; the compressive strain
in such wells enforces a HH ground subband, with a HH-
LH splitting of 10–50 meV and the in-plane effective mass
is predicted to be about 0.06m0 (Schäffler, 1997; Terra-
zos et al., 2021). The low disorder of this system and
its ability to leverage design concepts and infrastructure
from GaAs and Si/SiGe devices has enabled rapid experi-
mental progress in the last few years. Theory predictions
indicate that suitable choices of the growth direction and
QD shape in combination with the Rashba SOC in planar
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Ge allow for fine tuning of the qubit properties (Bosco
et al., 2021a; Xiong et al., 2021).

Hendrickx et al., 2020a demonstrated single- and two-
qubit operation in the multi-hole regime with a single-
qubit fidelity of 99.3%. These results were quickly fol-
lowed by reports of a single-hole qubit (Hendrickx et al.,
2020b), singlet-triplet qubit (Jirovec et al., 2021), and
hole manipulation in a 2×2 array (Hendrickx et al., 2021;
Lawrie et al., 2020; van Riggelen et al., 2021). Dephasing
times out to 1 µs and T1 > 32 ms have been reported.
Theoretical studies have investigated the hyperfine inter-
actions and their effect on hole spin qubits in GaAs and
Si (Bosco and Loss, 2021; Fischer et al., 2008; Philip-
popoulos et al., 2020; Testelin et al., 2009). It remains to
be seen whether nuclear spins or charge noise provide the
dominant dephasing mechanism in experimental settings.

F. Discussion

Figure 26 plots single- and two-qubit RB data drawn
from many, but not all, recent publications on a com-
mon axis. Return probability P (that is, probability
of returning to the n-qubit initialized state) is shown;
some works report the difference y between a mea-
sured return and a measured spin flip, which is con-
verted here to return probability with the unbiased model
P ≈ 1/2n + (1 − 1/2n)y. The x-axis counts the number
of Clifford gates prior to a single (uncounted) recovery
Clifford. The fidelities indicated are per-Clifford-gate,
which may include multiple primitive gates depending
on the control modality. As can be seen, there is signifi-
cant variance in the state preparation and measurement
(SPAM) fidelity, approximately indicated by the inter-
cept at 0 Cliffords, but recent spin-qubit fidelities, indi-
cated by the decay rates of the exponential curves, are
rather similar. As randomized benchmarking requires a
substantial amount of elements of a qubit apparatus to
behave correctly, a key conclusion here is that all spin
qubit technologies we have discussed have passed a crit-
ical test of showing the practical reality of performing
quantum gates. Fidelities still have room for improve-
ment, but values greater than 99% for basic gates are
now firmly established across the semiconductor qubit
community, and continue to advance.

VI. DEPHASING AND DECOHERENCE

In the previous section, we assessed the operation and
performance of each major qubit type. For semiconduc-
tor qubits, the fidelity is limited by some dephasing or
decoherence process. Consider the first exchange oscil-
lations observed in GaAs and Si/SiGe (reproduced in
Fig. 20). The first oscillation in each trace corresponds to
a π-pulse, which may be considered a SWAP gate for an

LD qubit, or a Z-gate for a ST0 or EO qubit. Critically,
the visibility of this fringe is imperfect, and its reduction
is a rough measure of the infidelity of the associated gate.
The loss of visibility is evident both as a function of time
and as exchange is reduced. Why does the fringe visibil-
ity decay at the rate it decays? What noise process is
responsible for making these qubits imperfect, and if we
identify that noise process, how may it be eliminated to
improve fidelity? In this section we review the decoher-
ence processes that are most relevant to semiconductor
spin qubits.

The processes leading to decoherence may be classified
into a few important categories. In a relaxation process,
nondegenerate spin sublevels exchange magnetic energy
with the environment (via phonons, photons, etc.). In
pure dephasing, random energy-conserving elastic pro-
cesses dynamically alter the phase of the qubit. For in-
homogeneous dephasing, a single qubit’s phase remains
steady for long periods of time but is poorly synchronized
with either a clock, another qubit, or with itself a signifi-
cant period of time later. In the context of the Bloch
equations, which describe NMR, the timescales corre-
sponding to these effects are T1 (relaxation), T2 (deco-
herence), and T ∗2 (inhomogeneous dephasing) (Abragam,
1961; Slichter, 2010; Vandersypen and Chuang, 2005).
“Rotating frame” analogs of these timescales, which
are relevant during coherent driving, include T2,R (the
timescale for the decay of Rabi oscillations) and T1ρ (the
timescale for decay when driving spins along a parallel
rotating-frame axis).

While the Bloch equations successfully describe the dy-
namics observed in many ensemble NMR and ESR exper-
iments, the phenomenological exponential decay they de-
scribe is seldom observed for semiconductor spin qubits
(e.g. the time decay in Fig. 20 is Gaussian). An improved
language for describing dephasing and decoherence phe-
nomena in terms of the power spectral density (PSD) of
the responsible environmental noise mechanism and the
filter on that noise provided by the experiment which
probes that decoherence mechanism, is the filter function
formalism (Ithier et al., 2005). We briefly review this for-
malism in VI.A, and then proceed to describe some of the
most prominent physical noise sources that cause dephas-
ing and decoherence in spin qubits (see Fig. 27). Many,
more thorough reviews of the formalism are available; for
example, see Chirolli and Burkard, 2008.

A. Filter function formalism

1. T1 via noise correlation function

A basic model for noise impacting spin qubits is cap-
tured by a spin’s coupling to a noisy magnetic field, via
Hamiltonian Hnoise = −h̄b(t) ·S, where b is a vector an-
gular frequency describing a stationary, zero-mean noise
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Si/SiGe LD Zajac et al., 2018 99.7%
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Si/SiGe EO Andrews et al., 2019 99.7%
Si/SiGe EO Ha et al., 2021 99.9%

Si/SiGe LD Noiri et al., 2021 98.7%
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FIG. 26 Fidelity of single-qubit (a) and two-qubit (b) gates in Si as evaluated by randomized benchmarking (RB). In each
experiment, an initial qubit state is prepared, random sequences of N random Clifford gates Cj are applied, a single Clifford
recovery CR is applied to each random sequence which would, in absence of error, return the qubit or qubits to their initial
state, and readout is performed. The initial-state probability is plotted as a function of N . Experimental data shown use
different initialization, readout, and Clifford implementations, but in all cases a least-squares fit to an exponential decay with
N provides a fidelity benchmark. A measure of state preparation and measurement (SPAM) fidelity is indicated by where
each decay starts and saturates. Ideally each nQ RB curve would saturate to return probability 1/2n as N →∞, but leakage
and SPAM errors generally lead to other saturation values. Note that two-qubit Clifford operations generally involve multiple
two-qubit entangling, SWAP, and/or single-qubit gates.

process. For example, if the noise is a literal fluctuating
magnetic field δB(t), b(t) = gµBδB(t)/h̄ and if b is par-
allel to a large applied magnetic field, b(t) = |b(t)| is the
fluctuation of the spin’s Larmor frequency.

Starting from this Hamiltonian, if we presume an ap-
plied magnetic field along the z axis providing spin Zee-
man splitting h̄ω0, and define b±(t) = bx(t)± iby(t), then
Bloch-Redfield-Wangsness (BRW) theory approximates
that T1 at temperatures T � h̄ωL/kB (corresponding to
a spin only losing a quantum of energy h̄ωL and relaxing
to its ground-state) is given by

1

T1
=

1

4

∫ ∞
−∞

(
〈b−(0)b+(t)〉+ 〈b+(0)b−(t)〉

)
e−iωLtdt

=
1

2
S⊥b (ωL). (28)

Exponential relaxation at rate 1/T1 is due to the den-
sity of noise in transverse fluctuating magnetic fields at
the Larmor frequency ωL, an intuitive result given that
noise at ωL is required to overcome the Zeeman split-
ting EZ = h̄ωL between opposite spin states. At fi-
nite temperature, T1 processes also include upward rates
proportional to S⊥b (−ωL), which will lead to thermal
equilibrium for the detailed balance condition S⊥b (ωL) =
eh̄ωL/kBTS⊥b (−ωL). For details of handling equilibration
and the assumptions inherent in finite-temperature BRW
theory, see Abragam, 1961, Goldman, 2001, and Clerk
et al., 2010.

In the context of BRW theory, energy-conserving de-
phasing processes are described as exponential decay
with rate 1/T2:

1

T2
=

1

2T1
+

∫ ∞
−∞
〈bz(0)bz(t)〉dt. (29)

Here, the dephasing rate depends on the spectral den-
sity of longitudinal noise at zero frequency Szzb (0). This
expression suggests that only true dc noise contributes
to dephasing. As discussed in the next section, however,
noise at low frequencies also contributes to dephasing.
The filter-function formalism provides a prescription for
understanding how such noise contributes to dephasing.

2. Filter function derivation

The concept of a filter function has been formalized
in a quantum information theory context for qubits by
Ithier et al., 2005, Uhrig, 2007, Cywinski et al., 2008, and
Green et al., 2012. Notable extensions and higher-order
corrections, especially for the slow noise processes typical
of spin qubits, are detailed in Barnes et al., 2016. The
filter function derivation utilizes an interaction picture,
in which S acquires time dependence due to the action
of the control of some experiment,

S̃(t) = U†control(t)SUcontrol(t). (30)
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FIG. 27 Decoherence and relaxation mechanisms for spin qubits in semiconductor QDs or donors. Energy levels are shown
as horizontal dashed lines. (a)–(c) Decoherence and relaxation mechanisms for a LD qubit, (d)–(f) for singlet-triplet qubits
in DQDs. (a) Spin relaxation through emission (absorption) of energy quanta (e.g. phonons) to or from the environment.
(b) Charge noise, as represented by the squiggly lines (cyan) leading to a fluctuating confinement potential and electronic
wavefunction. When SOI or a magnetic field gradient (vertical arrows, in green) is present, charge noise leads to spin dephasing.
(c) Electron spin dephasing due to the hyperfine coupling to nuclear spins. (d) Singlet-triplet spin relaxation. (e) Charge noise
affecting detuning ε. (f) Charge noise affecting interdot tunneling tc.

As a result of H̃noise(t) = b(t) · S̃z(t), a spin or qubit
evolves according to a quantum process during a total
time T as ρ(T ) = Λ[ρ(0)]. If Λ is decomposed into a Choi
matrix Λ[ρ] =

∑
jk λ

jkσjρσk, for Pauli matrices σj and

including the σ0 as the identity matrix, then the infidelity
of this noise process is taken as 1−λ00 which is cast into
a decay function exp[−χ(T )]. Using cumulant expansion
considerations, χ(T ) is expanded to second order in the
noise field b(t) and filter functions Fαβ(ωT ) depend on
Ucontrol (Cywinski et al., 2008), defined to satisfy

χ(T ) =

∫ ∞
0

dω

2πω2

∑
α,β=x,y,z

Fαβ(ωT )Sαβb (ω), (31)

where the single-sided noise spectral density corresponds
to the noise-correlation function via

Sαβb (ω) = 2

∫ ∞
−∞
〈bα(0)bβ(t)〉 cos(ωt)dt, ω > 0. (32)

In the most commonly encountered situation where
ω0 � |b|, one appeals to a rotating reference frame
in which the perpendicular terms b±(t) oscillate at fre-
quency ω0, and therefore integrate to noise contributions
of order |b/ω0|2, which we neglect. For dominant noise
terms, which we discuss later in this section, this sec-
ular approximation is valid for applied magnetic fields
above a few mT, and in some cases remains valid even
in fields as low as the Earth’s magnetic field. However,

transverse noise terms should not be forgotten, as they
do play roles in multi-pulse experiments in regimes in
which pulses occur at rates comparable to ω0, e.g., in
fast-pulsing and low-magnetic field cases. It is often as-
sumed that the control pulses described in Ucontrol are
instantaneous π-pulses about an axis orthogonal to the
z-axis, from which it follows that S̃z(t) may be written
as S̃z(t) = r(t)Sz, where r(t) takes only the values ±1,
switching between the two for each π pulse. Under these
simplifications, only z components of b and only Szzb are
important, and we may therefore drop component super-
scripts. Moreover, it may easily be derived that the filter
function F (ω) = F zz(ω) is simply

F (ωT ) =

∣∣∣∣ω2
∫ T

0

r(t)eiωtdt

∣∣∣∣2. (33)

3. Dephasing time T ∗2

With the filter function derived, we are now in a posi-
tion to calculate dephasing (decoherence) rates T ∗2 (T2).
T ∗2 is the rate of decay during a “free evolution” exper-
iment, analogous to a free-induction decay experiment
in magnetic resonance. For single-spin qubits, in which
measurements of Sz are performed (see Sec. II.A), the
relevant experiment is a time-ensemble of Ramsey experi-
ments, in which the spin is prepared along an axis orthog-
onal to a large applied field using a single RF pulse, pre-
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cession happens for a swept time duration T , and the spin
then undergoes a second RF pulse of known phase, map-
ping the xy-plane precession onto the ensemble-measured
observable 〈Sz〉. In either case, r(t) is constant for the
duration T , and F (ω) is proportional to sin2(ωT/2). For
very slow noise phenomena (i.e., when Sb(ω) is strongly
peaked near ω = 0, as it is for hyperfine noise to be
discussed in Sec. VI.B), the shape of the decay curve
exp[−χ(t)] then predicts decay of oscillations going as
exp
[
−(t/T ∗2 )2

]
, which defines T ∗2 . More generally, the

structure of the low-frequency noise may lead to a power
law decay, exp[−(t/T ∗2 )α], including α = 1 for white
noise; either way, T ∗2 is defined via χ(T ∗2 ) = 1.

The interpretation of T ∗2 defined above requires some
care, as spin qubit systems often violate the assumption
of ergodicity (i.e. that a series of Ramsey measurements
made sequentially in time accurately reflects an ensemble
average.) For example, for Sb(f) ∝ 1/fα, and without a
low-frequency cutoff, χ(T ) diverges. The usual resolution
of this divergence is to introduce a low-frequency cut-off
determined by the total amount of time used to average
an experiment. Formal treatments of such low-frequency
cut-offs can be found in Burkard, 2009, Barnes et al.,
2016, and Madzik et al., 2020. Eng et al., 2015 and Jock
et al., 2018 in particular presented measured T ∗2 as a func-
tion of averaging time in Si/SiGe and SiMOS dots, and
in both the logarithmic dependence on averaging time
expected for 1/fα noise is observed. For a spin qubit in
GaAs, the dephasing time was measured to be dependent
on the acquisition time (Delbecq et al., 2016). In short,
a measurement of T ∗2 for a qubit does not by itself indi-
cate an intrinsic property of the qubit, as it depends on
experimental averaging details.

The relationship between T ∗2 and the overall perfor-
mance of a qubit depends critically on control. Since T ∗2
results from very slow drifts in the qubit frequency, it is
well known that it can be compensated for via dynamical
decoupling or noise compensation sequences. For GaAs
spin qubits, T ∗2 ∼10 ns (see Sec. VI.B), meaning that
noise compensation is critical for scaling into useful pro-
cessors. For silicon, T ∗2 is generally much longer.

4. Decoherence time T2 and rotating frame timescales

If compensation is employed, its efficacy will depend on
how quickly Sb(ω) reduces with ω relative to the available
speed of control. This efficacy is somewhat captured by
the parameter T2, often taken as the 1/e point (χ(T2) =
1) for decay in the Hahn spin-echo experiment, in which
the Ramsey experiment described above is interrupted
halfway by a single π-pulse applied orthogonal to the
z-axis. Then r(t) has one switch from +1 to −1, and
F (ω) = 4 sin4(ωT/4). Since F (ω) ∝ ω4 as ω → 0, the
Hahn echo cancels noise at ω = 0 and passes noise at
higher frequency. Once again, T2 is defined relative to the

experiment used to measure it (Cywinski et al., 2008).

Coherent driving of a spin will also extend pulse se-
quence times, as Rabi flopping at frequency fRabi acts
as continuous dynamical decoupling. Two types of noise
may be relevant. First, there may be noise on the control
field itself, e.g. fRabi = fRabi(t) due to charge noise in
EDSR, and second, noise from spurious magnetic fields
such as Overhauser fields. If the phase of the microwave
signal causes rotations about an axis on the Bloch sphere
equator and if the spin is initialized along ẑ, the decay
time of Rabi oscillation is T2,R, which is different in gen-
eral from the T ∗2 of a freely evolving spin. If the spin
is initialized along an axis on the Bloch sphere equator
and then driven along that same axis, the associated de-
cay timescale is T1ρ. If fRabi(t) �

∫
Sb(ω)dω, the decay

exponent χ(T ) for either experiment is likely to be lim-
ited by noise on fRabi(t), with a filter function compara-
ble to that for T1 above and relating to fRabi(t)’s phase
stability. If fRabi is highly stable and only a transverse
magnetic noise b(t) is present, this experiment will cor-
respond to shifting the filter function for noise on b by
−fRabi, which leads to drastically slower decay for the
same amount of noise Sb(ω).

5. Filters for multi-spin qubits

Natural generalizations of the filter function formal-
ism may be made for qubits composed of several spins
(ST0, EO, etc.). In this case generalized spin-operators
and magnetic fields are defined (see Figure 4), which may
be related back to physical spin operators usually with
suitable sums over QDs (Kerckhoff et al., 2021). A key
difference relative to LD qubits, however, arises from the
fact that both ST0 and EO qubits are degenerate when
idle. This means the T ∗2 and T2 experiments track de-
phasing for two degenerate levels (a two-spin singlet state
is prepared, allowed to mix with triplet due to noise, and
compared again to a singlet). As observed experimen-
tally by Johnson et al., 2005b and Koppens et al., 2005,
rapid hyperfine mixing can occur at very low magnetic
fields, where any direction of b is important in each dot,
leading to more complex filter functions (Kerckhoff et al.,
2021). In these qubits, the analog of a Rabi experiment
involves preparing two spins in a coherent superposition
of degenerate singlet and triplet states, and then driv-
ing oscillations between them with a DC voltage bias
that induces exchange. Oscillations occur at frequency
J , and dephasing occurs due to noise on J(t), with decay
envelope given by the filter function equations above, re-
placing Sb(ω) with SJ(ω). A constant pulse still has filter
function proportional to sin2(ωT/T ), and modifications
employing π-pulses or rotating-frame-type experiments
are also possible (Dial et al., 2013; Eng et al., 2015), en-
abling characterization of the charge noise SJ(ω).
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6. Non-Markovian and contextual noise

The filter function formalism presented assumes an in-
dependent, stationary noise source. However, dephas-
ing, decoherence, and relaxation timescales have been
observed to depend on the very control sequences used to
measure them, due to such phenomena as RF heating or
related pulse-induced frequency shifts (Freer et al., 2017;
Zwerver et al., 2022), DNP (Sec. V.C), and pulse-driven
nuclear spin dynamics (Kerckhoff et al., 2021; Madzik
et al., 2020); such measurement-induced back-action is
not easily accounted for in filter function theory. Just
as important, dephasing of qubits is made relative to a
clock or a timed control sequence. If that clock or con-
trol sequence dephases, it is equivalent to the qubit de-
phasing from a quantum control standpoint (Ball et al.,
2016). Unfortunately, measurements of long dephasing
and decoherence times under some pulse sequences are
a necessary but not sufficient criterion for high fidelity
qubit control. Actual performance is better evaluated
through qubit characterization tools such as random-
ized benchmarking (RB) or gate set tomography (GST)
(see Sec. V), but these likewise are challenged by non-
Markovian and contextual noise. For example, RB decay
is expected to be exponential for Markovian noise, but
decay may be non-exponential due to 1/f noise (Fogarty
et al., 2015) or even non-monotonic due to leakage (An-
drews et al., 2019). Development of filter function gen-
eralizations or characterization processes robust to non-
Markovian effects remains a critical and open area in the
development of spin qubits.

B. Spin dephasing due to hyperfine interactions

Burkard et al., 1999a and Coish and Loss, 2004 and
Coish and Loss, 2005 predicted that dephasing due to
the hyperfine interaction between an electron spin and
the spins of many lattice nuclei in the host crystal would
be a significant challenge to spin qubits. Indeed, early
experiments in GaAs DQDs extracted T ∗2 ∼ 10 ns and
T2 ∼ 1 µs (Petta et al., 2005). Fortunately, hyperfine
induced spin dephasing can be mitigated by a variety
of methods, including isotopic purification, nuclear po-
larization, and dynamic decoupling. In this section, we
overview the physics of the hyperfine interaction in QDs
and donors, including nuclear dynamics, followed by a
summary of nuclear-limited measurements of T ∗2 and T2.
Despite significant research in understanding hyperfine
dynamics (Chekhovich et al., 2013), questions remain
about the ultimate limits of hyperfine coherence and the
fundamental timescales for nuclear spin dynamics.

The dominant effect of nuclear spins is static dephasing
mediated by the hyperfine interaction [Eq. (13)], impact-
ing T ∗2 . In this case, T ∗2,∞ depends on σ2

b , the variance
of the magnetic field experienced by electron spins due

to full randomization of the nuclear magnetization. The
variance of the effective angular-frequency magnetic field
b = AkIk for an ensemble of independent nuclei, all with
spin I, is summed:

σ2
b =

I(I + 1)

3

∑
k

A2
k. (34)

The factor of 3 in the denominator is relevant at high
field, where the I+

k S
− flip-flop terms average away at a

timescale negligibly short relative to dephasing experi-
ments. At zero field, in the case of electron spins, all
three nuclear spin directions are of relevance and σ2

b is
three times higher. For holes there is a preferred direction
for the hyperfine coupling that can result in extended T2

depending on the direction of the applied magnetic field
(Bosco and Loss, 2021; Prechtel et al., 2016).

Nuclear fluctuations are very slow in both GaAs and Si
(of order 1 ms) relative to the µs timescales of qubit co-
herence measurements (Ladd et al., 2005; Madzik et al.,
2020; Reilly et al., 2010). As such, Sb(ω) is strongly
peaked at ω = 0 and the Ramsey decay is Gaussian. For
a LD qubit, the envelope decay for an experiment last-
ing time T , following Eq. (31), goes as exp

{
−σ2

bT
2/2
}

,

and T ∗2,∞ =
√

2/σb. For a ST0 qubit, the assumed inde-
pendent, identical distributions of static noisy fields from
two dots have adding variances, and ST0 FID (in which a
singlet is prepared, allowed to evolve for time T , and then
measured) decays as exp

{
−σ2

bT
2
}

, with T ∗2,∞ = 1/σb.

All Ga and As isotopes have nuclear spin I = 3/2,
leading to T ∗2,∞ ∼ 10 ns (Petta et al., 2005). In Si, how-
ever, only 4.7% of naturally occurring Si isotopes feature
non-zero nuclear spin (29Si, I=1/2), and in Ge only 7.8%
of naturally occurring isotopes (73Ge, I=9/2) have non-
zero spin. The reduced number of spin carrying nuclei
in natural Si (no enrichment) leads to a significant im-
provement in T ∗2,∞. Further increases are feasible using
isotopic enrichment, which was demonstrated as far back
as 1958, when a 31P-doped sample with under 1200 ppm
29Si was observed to have longer T ∗2 than a natural sam-
ple using ensemble ESR (Feher et al., 1958; Gordon and
Bowers, 1958).

In addition to isotopic content, the overall size of
the electronic wavefunction also impacts σ2

b . With the
envelope wavefunction overlapping many nuclear sites,
Eq. (34) leads to

T ∗2,∞ ∝ σ−1
b ∝

√
N

pI
, (35)

whereN is the total number of nuclei for which |ψ(rk)|2 is
larger than some threshold and pI is the probability that
a given lattice nucleus has spin. Therefore, in the many-
nuclei limit, electronic wavefunctions enveloping a larger
number of spin-carrying nuclei have a longer dephasing
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time, due to averaging over more nuclear spins. This
occurs because the individual Ak diminish as the elec-
tron wavefunction spreads out over more nuclear spins.
However, this scaling cannot extend to very small wave-
functions, since T ∗2 cannot go to zero. In fact, for small
dots with low pI , the value of T ∗2,∞ varies widely from de-
vice to device [the standard deviation of 1/(T ∗2,∞)2 scales
as pI(1 − pI)/N

3]. Whether dephasing occurs quickly
or slowly will depend randomly on how often spinful nu-
clei are located in regions of the electron wavefunction in
which |ψ(rk)|2 is high. In a device such as a 31P donor,
it is plausible to have only one spinful nucleus, the 31P
nucleus itself, which may be coherently controlled and
rarely undergoes randomization. Under these circum-
stances our approximations for the ergodic T ∗2,∞ do not
apply (Madzik et al., 2020).

In order to observe a pure dephasing effect on a single
qubit due to nuclear spins, the nuclear spins cannot be
frozen; they must fluctuate on the timescale of the mea-
surement. Moreover, if nuclear hyperfine effects limit T2,
and if we wish to compensate for nuclear dephasing, some
notion of how quickly nuclei change their polarization
state is required. In a dense, homogeneous crystal of nu-
clear spins, flip-flops driven by the dipole-dipole interac-
tion happen frequently, causing Brownian spin diffusion
with a noise spectrum Sb(f) scaling as 1/f2 (Abragam,
1961). In sparse spin systems and in the presence of
field gradients and highly localized dot or donor elec-
trons, the strength of this coupling varies drastically be-
tween nuclear spin-pairs, as it depends on the inverse
cube of the distance between randomly placed nuclei and
any changes in their local magnetic field due to field gra-
dients or the hyperfine field of electron spins. Hence pairs
will have varying flip-flop rates, and the noise spectrum
Sb(f) might be expected to be closer to 1/f , as antici-
pated from a broad range of two-level fluctuators. Such a
spectrum is observed in silicon systems (Eng et al., 2015;
Madzik et al., 2020). Solving with more rigor the prob-
lem of how coupled nuclear spins impact the coherence
of a central electron spin, the “central spin problem,”
depends on the rich and efficacious use of many-body-
physics approximations. Theoretical headway on this
problem occurred in the spin-qubit context employing
coupled-cluster expansion techniques, which were able to
theoretically predict Hahn T2 values in silicon donor and
other systems (Witzel et al., 2010), but still do not cap-
ture all relevant effects, especially the very slow dynamics
governing T ∗2 .

Experimental measurements of spin coherence have
been performed in a variety of systems. In GaAs QDs, T2

∼ 1 µs for the ST0 qubit (Petta et al., 2005). Koppens
et al., 2008 measured T2 = 500 ns in GaAs using ESR.
Various theoretical studies of dephasing of spin qubits in
GaAs QDs have taken into account the three nuclear iso-
topes present in GaAs (Cywinski et al., 2009a,b; Neder
et al., 2011). In silicon with <50 ppm 29Si content,

ensemble ESR measurements of electrons bound to 31P
donors yielded T2 ≈ 2 s (Tyryshkin et al., 2012). Again,
in isotopically enriched Si, Saeedi et al., 2013 demon-
strated an ensemble nuclear spin coherence time of over
39 minutes. Hahn echo measurements of T2 in electron
spin qubits in isotopically purified silicon at fields greater
than 100 mT gave comparable results, showing coher-
ence times on the order of 1 ms in the small donor sys-
tem (with larger hyperfine gradients) (Muhonen et al.,
2014), of order 1.2 ms in the somewhat larger SiMOS
dot systems (Veldhorst et al., 2014), and of order 30 µs
to 1 ms in the larger Si/SiGe QD systems (Kawakami
et al., 2014; Kerckhoff et al., 2021; Sigillito et al., 2019a).
Stano and Loss, 2021 have compiled a thorough list of
coherence times measured in semiconductor spin qubits
to-date. Some of these studies involve samples with mi-
cromagnets for EDSR, where the T2 and T ∗2 values are not
limited by nuclear spins at all, but rather by charge noise
transduced to magnetic noise due the the micromagnet
field gradient. We address such effects in Sec. VI.D.

C. Phonon-mediated spin relaxation

As discussed in Sec. VI.A.1, spin relaxation requires
energy exchange with the environment. For typical
QD spin splittings, this often occurs via the emission
of acoustic phonons coupled with a spin-mixing pertur-
bation such as spin-orbit, hyperfine, or external mag-
netic gradient (Hanson et al., 2007; Zwanenburg et al.,
2013). In polar semiconductors such as GaAs, the dom-
inant phonon interaction is piezoelectric (Khaetskii and
Nazarov, 2001). In nonpolar materials like Si, the de-
formation potential plays a key role (Tahan and Joynt,
2014). For single-phonon-mediated decay, the spin relax-
ation rate Eq. 28 can be expressed in Fermi golden rule
form as

1

T1
=

2π

h̄
|〈↑̃|Hp|↓̃〉 |2ρ(∆E), (36)

where ρ(∆E) is the density of modes (photon or phonon)
at the level splitting ∆E, equal to the Zeeman splitting
for single-spin relaxation, and the electron-phonon in-
teraction Hp couples the spin states |↑̃〉, |↓̃〉, which are
renormalized by the spin-mixing mechanism.

Evaluation of these rates for spin-orbit-mediated de-
cay under the dipole approximation (valid for small en-
ergies) leads to characteristic scaling laws 1/T1 ∝ B5

and B7, respectively, for piezoelectric-limited and defor-
mation potential-limited one-phonon relaxation, in good
agreement with single-spin T1 measurements in GaAs
(Fujisawa et al., 2002; Hanson et al., 2003) and Si (Xiao
et al., 2010). The same microscopic interactions con-
tribute to singlet-triplet decay in single QDs and DQDs;
however, since the relevant spin splitting in those cases is
usually exchange- rather than Zeeman-limited, and the
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excited state structure is strongly dependent on Coulomb
interactions and confinement potential, the scaling and
bias dependencies can change drastically (Danon, 2013;
Golovach et al., 2008; Meunier et al., 2007).

One recent development is the observation of spin re-
laxation “hot spots” when the spin splitting is resonant
with another excited level (Stano and Fabian, 2006). Hot
spots are especially relevant in Si QDs where typical val-
ley splittings of order 100 µeV can equal Zeeman ener-
gies at Tesla-scale magnetic fields. Similar to spin-orbit
coupling, spin-valley coupling admixes the excited spin
states with valley states of opposite spin, which then de-
cay to the ground state via phonon or photon emission
(Huang and Hu, 2014b). Valley relaxation is generally
dominated by valley-orbit mixing due to interfacial disor-
der and is typically much faster than pure spin relaxation
(Penthorn et al., 2020; Tahan and Joynt, 2014). This
leads to large enhancements in the single-spin relaxation
rate when the spin and valley splittings are brought into
resonance by tuning the magnetic field; relaxation sup-
pression or “cold spots” due to the interplay of disorder
are also possible (Hosseinkhani and Burkard, 2021; Yang
et al., 2013; Zhang et al., 2020). The Zeeman energy of
relaxation hot spots can be used to directly measure val-
ley splittings in Si QDs (Petit et al., 2018; Yang et al.,
2013). Spin-valley effects also play an important role in
donor spin relaxation, as thoroughly discussed in Tahan
and Joynt, 2014 and Zwanenburg et al., 2013; the weak
interactions in these systems allow observations of spin
lifetimes of up to 30 s in donor states (Watson et al.,
2017). Electric field-induced spin-orbit coupling can also
significantly enhance the donor spin relaxation rate (We-
ber et al., 2018).

In general, spin lifetimes are shortened when spin-
charge hybridization is enhanced. The spin-valley
hotspots described above are one such example of this;
another is the enhancement of interdot spin relaxation
observed in GaAs DQDs at particular detunings where
the excited spin state of one dot is resonant with an or-
bital energy in the other (Srinivasa et al., 2013). The di-
rectional dependence of SOC also leads to an anisotropic
dependence of spin T1 on the in-plane magnetic field ori-
entation (Scarlino et al., 2014). Furthermore, external
magnetic gradients can provide a “synthetic” spin-orbit
field that contributes to spin relaxation. In the dipole ap-
proximation limit, 1/T1 ∝ B5 for deformation potential
interactions due to a fixed external gradient. Experimen-
tally, spin relaxation rates at high fields in micromagnet
devices tend to increase more slowly (Borjans et al., 2019;
Hollmann et al., 2020), possibly due to phonon bottleneck
effects at these energies.

Hyperfine interactions provide yet another pathway
for spin relaxation. Coupling of an electron with lo-
cal nuclear spins admixes spin states of different orbitals
(Erlingsson and Nazarov, 2002), enabling relaxation via
phonon or photon emission. The resulting single-spin

relaxation rate scales as B3 or B5 for piezoelectric and
deformation potential phonons, respectively. Hyperfine-
induced relaxation in Si QDs is typically expected to be
negligible due to the paucity of spinful nuclei (Tahan and
Joynt, 2014). Camenzind et al., 2018 observe long spin
T1 of around 57±15 s in a GaAs QD at B = 0.6−0.7 T,
increasing as B3 at low fields and insensitive to field
orientation, strongly suggesting hyperfine-limited relax-
ation. Hyperfine-induced relaxation can also lift Pauli
spin blockade at low magnetic fields, as observed exper-
imentally for (1,1) triplet decay in a GaAs DQD as a
function of detuning (Johnson et al., 2005b).

Single-phonon relaxation processes typically dominate
at low temperatures, but two-phonon processes can be-
come relevant at high temperatures. This leads to dis-
tinct temperature scalings which are observed in spin
lifetime measurements above 200 mK in SiMOS (Petit
et al., 2018) and Si/SiGe QDs (Borjans et al., 2019). At
small spin splittings, e.g., low magnetic fields for sin-
gle spins or modest exchange splittings in singlet-triplet
states, phonon-assisted decay is suppressed by the re-
duced density of states and (in Si) suppression of defor-
mation potential coupling at long wavelengths. In such
cases the dominant relaxation process may instead be
mediated by charge noise, as described below.

Overall, the long spin lifetimes in semiconductors mean
that current spin qubit gate fidelities are rarely limited
by T1. In contrast, spin relaxation can lead to errors
in spin readout when the readout time becomes compa-
rable to T1. The rich physics of spin relaxation rewards
close study as it offers many insights into the microscopic
physics of spin qubits.

D. Charge noise

Charge noise can significantly limit the performance of
spin qubits. In principle, a spin does not interact with
fluctuating electric fields, but for all qubits we have dis-
cussed in this article, there is some form of spin-to-charge
coupling, allowing charge noise to dephase, decohere, or
otherwise reduce the operational fidelity of spin qubits.
Charge noise generally refers to random electric fields
which occur at the spin location, which may be caused
by fluctuating defect states in the device gate stack, by
crystal deformations from phonons (Hu, 2011), by spuri-
ous voltage noise transmitted through control gates, or by
random charge motion from anywhere else in the device,
such as the measurement channel. Semiconductor charge
noise processes typically have a 1/f noise spectral den-
sity (Dutta and Horn, 1981), but white noise (e.g. ther-
mal Johnson-Nyquist noise) may also be present, usually
at lower levels than 1/f noise. A specific type of thermal
noise is the evanescent-wave Johnson noise from nearby
metallic structures (Langsjoen et al., 2012; Tenberg et al.,
2019). Noise sources can to some extent be distinguished
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by how their spectral character translates to relaxation
(via the filter function formalism discussed in Sec. VI.A)
and their temperature dependence (Beaudoin and Coish,
2015).

Although 1/f noise varies significantly from device
to device, measurements in GaAs dots, SiMOS dots,
Si donors near MOS gates, and Si/SiGe dots all see
charge-noise induced energy fluctuations in the range of
Aµ = 0.1− 10 µeV/

√
Hz at 1 Hz, meaning the chemical

potential of the charge carrying the spin has noise spec-
tral density Sµ(f) = A2

µ(1 Hz/f) (Connors et al., 2022;
Freeman et al., 2016; Mi et al., 2018b; Petersson et al.,
2010).

Charge noise can affect spin qubits via the large mag-
netic field gradients that enable EDSR for LD qubits
(III.D). The stray electric fields of charge noise trans-
late directly to a fluctuating magnetic field, and in turn
to fluctuations in both Zeeman splitting and in the trans-
verse driving field, and therefore impacting all relaxation
parameters T1, T

∗
2 , T2, T1ρ and T2,R. For instance, Bor-

jans et al., 2019 and Hollmann et al., 2020 show the
T1 dependence of a Si/SiGe spin qubit in a large gra-
dient is weakly field-dependent at low magnetic fields,
strongly suggesting 1/f or Johnson-noise-limited relax-
ation at these low energies.

Charge noise as translated to spin by gradients or
by spin-orbit effects (Huang and Hu, 2014a) may also
be observed in multipulse-sequence noise spectroscopy
(Sec. VI.A). Nakajima et al., 2020 examined a GaAs
device, Kawakami et al., 2016 an isotopically natural
Si/SiGe dot; Yoneda et al., 2018 a 800 ppm 29Si/SiGe
dot, and Struck et al., 2020 a 60 ppm 29Si/SiGe dot.
In all of these cases, the large micromagnet-induced gra-
dient results in both T ∗2 and T2 being limited by 1/f
charge noise. In contrast, noise spectroscopy performed
on natural and 800 ppm Si/SiGe dots with no micro-
magnet (Kerckhoff et al., 2021) show T ∗2 and T2 limited
by hyperfine effects, although in Si these still have 1/f
character as discussed in Sec. VI.B. Chan et al., 2018 use
noise spectroscopy in a SiMOS quantum device and find
a predominantly 1/f -charge-noise limited spectrum; in
this case charge noise couples to the spin due to intrinsic
spin-orbit or spin-valley effects. Petit et al., 2018 observe
Johnson noise-limited spin T1 at Zeeman energies below
the valley splitting in a SiMOS device without a micro-
magnet. Hole qubits also feature large spin-orbit fields
and therefore have T ∗2 and T2 times limited by charge
noise (Hendrickx et al., 2020b; Maurand et al., 2016).

EO qubits in Si/SiGe may not suffer from SOI or field
gradient effects, but are still susceptible to charge noise,
since they utilize an exchange coupling J that is a sen-
sitive function of the wavefunction overlap between two
spins. Although fluctuations in the confinement poten-
tial may come from multiple sources, we may refer to
it as though it arises from fluctuations in gate voltages
Vk. The exchange noise may therefore be written as

δJ =
∑
k(∂J/∂Vk)δVk, and hence for 1/f charge noise

has a noise spectrum from the noisy voltages,

SJ(f) =
∑
k

∣∣∣∣ ∂J∂Vk
∣∣∣∣2 SVk

(f). (37)

The partial derivatives ∂J/∂Vk quantify the sensitivity
to charge noise (Hu and Das Sarma, 2006) and may
be estimated through the Fermi-Hubbard ansatz (Culcer
and Zimmerman, 2013), Heitler-London/Hund-Mulliken
estimates (Culcer et al., 2009), or FCI calculations
(Sec. IV.C). They may also be measured to make a map
of sensitivity to charge noise in bias space (Dial et al.,
2013; Martins et al., 2016; Reed et al., 2016), enabling
an empirical search for operating regions of low charge-
noise sensitivity (called “sweet spots”).

Approximately, the simplest Fermi-Hubbard model
ansatz asserts that gates directly above the QDs impact
the chemical potential µj of dot j via a constant factor
known as the lever arm αV , hence ∂µj/∂Vk = eαV δjk.
The dependence of tunnel couplings on gate voltages is
more complex, but is typically assumed to be an exponen-
tial function of some linear sum of voltages, in which case
∂tc/∂Vk ∝ tc. Under this model, one finds that in a DQD
in the weak exchange limit, sensitivity to charge noise is
maximized at high detuning and minimized at ε = 0; the
latter condition means that the chemical potential of two
dots are held equal, leaving only weaker tunnel-coupling
noise (Bertrand et al., 2015; Martins et al., 2016; Reed
et al., 2016; Taylor et al., 2007). We caution however that
at high exchange and for simultaneous exchange across
more than two dots, simple Fermi-Hubbard models are
inaccurate at estimating charge noise sensitivity, as dot
electrons merge into a regime in which exchange may be
dominated by multi-dot orbital energies not parameter-
ized by these models (Pan et al., 2020); see Sec. IV.C.

Recently, charge noise spectral densities in Si ST0

qubits have confirmed a nearly 1/f spectrum over nearly
12 decades in frequency in both Si/SiGe (Connors et al.,
2022) and SiMOS (Jock et al., 2018). Moreover, tem-
perature and fabrication dependencies of the 1/f noise
amplitude point to fluctuations in materials or interfaces
in the gate-stack, as opposed to noise emanating from
the bulk of the semiconductor or instrumentation.

In aggregate, the last 20 years of spin qubit research
have indicated that, while material choices and judi-
cious engineering of charge noise sensitivity may im-
prove charge-noise-induced decoherence, the underlying
sources of 1/f charge noise are unlikely to be completely
removed from semiconductor devices (unlike hyperfine
noise, which may be eliminated with sufficient isotopic
enrichment). The ease of control which comes from
micromagnet-induced EDSR or RX qubits comes at the
cost of persistent sensitivity to ever-present charge noise.
When only SOC is at play, as in hole qubits and high-
field SiMOS systems, relaxation and decoherence due to
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charge noise may be lower, and it may be lowest in the
nearly gradient-free and low spin-orbit environment of
low-field ST0 or EO qubits, but it is still activated dur-
ing exchange pulsing and therefore provides some limit
to control fidelity. The balance of the speed and conve-
nience of qubit control against sensitivity to charge noise
remains a key design space for semiconductor spin qubits
across multiple materials and modalities.

VII. HYBRID SYSTEMS

The short-ranged nature of exchange coupling (see
Sec. IV.A) is most efficiently applied to implement
two-qubit gates between nearest neighbor spin qubits.
However, it has been shown experimentally that fully-
connected quantum information processors can operate
with higher fidelities as compared with systems which
only provide nearest-neighbor coupling (Linke et al.,
2017). Beyond the advantage of high-connectivity for
quantum computing, the coupling of stationary qubits
to mobile photonic qubits could form the basis of
widespread quantum networks (Kimble, 2008). Some ap-
proaches for achieving long-range coupling of spin qubits
are briefly outlined in Sec. IV.F. This section is focused
on one particularly promising approach, namely the de-
velopment of hybrid devices consisting of semiconductor
QDs embedded in a microwave cavity, to achieve long-
range coupling of spin qubits and high-fidelity readout.

A. Overview of superconducting circuit QED

Hybrid quantum systems consisting of QDs embedded
in microwave cavities are an outgrowth of the field of cir-
cuit quantum electrodynamics (cQED). The main phys-
ical concepts associated with cQED were first explored
by atomic physicists in the field of cavity quantum elec-
trodynamics (cavity QED) (Haroche and Raimond, 2006;
Mabuchi and Doherty, 2002; Miller et al., 2005; Walther
et al., 2006). In cavity QED, a two-level atom with tran-
sition frequency ωa is coupled to an optical cavity with
a resonance frequency ωc. The photonic mode and atom
interact through the electric dipole interaction Hint =
−eE · d, where E is the cavity electric field at the posi-
tion of the atom and d is the dipole moment associated
with the atomic transition.

The Jaynes-Cummings Hamiltonian HJC = h̄ωca
†a +

h̄ωaσ
z/2 + h̄g(aσ+ +a†σ−) describes the system dynam-

ics in cases where the rotating wave approximation is
appropriate (Jaynes and Cummings, 1963). Here a†(a)
are the photon creation(annihilation) operators, σz de-
scribes the state of the atom, and σ+(σ−) are atomic
raising(lowering) operators. When ωa = ωc, the atom
and cavity can exchange an excitation at a rate set by
the vacuum Rabi frequency g. In the energy domain, the

light-atom coupling manifests itself as the vacuum Rabi
splitting between energy eigenstates formed as coherent
superpositions that are part atom and part photon. It
is directly observable in the cavity transmission in the
strong coupling regime, where g exceeds the cavity decay
rate κ and the atomic dephasing rate γ.

In the early 2000s, significant efforts were made to
demonstrate cavity-QED physics in solid state systems.
Strong-coupling physics was observed in systems con-
sisting of self-assembled QDs embedded in a distributed
Bragg reflector cavity (Yoshie et al., 2004), self-assembled
QDs embedded in a photonic crystal cavity (Reithmaier
et al., 2004), and a superconducting Cooper pair box
(Wallraff et al., 2004) or flux (Chiorescu et al., 2004)
qubit embedded in a microwave cavity. These seminal
experiments demonstrated that a superconducting arti-
ficial atom could be coherently coupled to a microwave
frequency photon in the strong-coupling regime with an
interaction precisely described by the Jaynes-Cummings
Hamiltonian (Blais et al., 2007, 2004). For a review of
cQED physics with superconducting qubits, see (Blais
et al., 2020, 2021).

The energy scales associated with gate-defined QDs
(charge transitions in a DQD and the Zeeman energy of
a single spin in a moderate field B = 0.25 T) are nicely
matched with the energy of microwave frequency pho-
tons f = 5 – 15 GHz. Rapid developments in the cQED
architecture led to growing interest in QD cQED and a
number of theoretical proposals for physical implemen-
tations (Benito et al., 2017, 2019b, 2016; Burkard and
Imamoglu, 2006; Childress et al., 2004; Hu et al., 2012;
Jin et al., 2012; Kerman, 2013; Russ and Burkard, 2015b;
Russ et al., 2016; Tosi et al., 2014). Beyond coupling to
charge through the electric dipole interaction, semicon-
ductor QDs allow for cavity coupling to electron spins,
long-range spin-spin interactions, and possibly even nu-
clear spin state readout. The main modes of interaction
are described in the next section.

B. Coherent interactions in quantum dot circuit QED

In this section we review the theory of charge-photon
coupling, spin-photon coupling, and cavity-mediated
spin-spin interactions in hybrid quantum systems con-
sisting of semiconductor DQDs embedded in microwave
cavities. The experimental signatures of coherent inter-
actions in each of these cases are also presented.

1. Charge-photon coupling

The physics of a single electron confined in a semicon-
ductor DQD is described by a charge qubit Hamiltonian
H0 = (ε/2)τz + tcτ

x, where ε is the DQD level detuning,
tc is the interdot tunnel coupling, and the matrices τx
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and τz are Pauli matrices (see Appendix A) operating
on the charge state of the qubit, i.e. τz|L〉 = τz|(1, 0)〉 =
|(1, 0)〉 and τz|R〉 = τz|(0, 1)〉 = −|0, 1)〉. The cavity elec-
tric field Ecav = E0(a+ a†) couples to the charge dipole
moment of an electron confined in a DQD through the in-
teraction term Hint = h̄gc(a+ a†)τz. The charge-photon
interaction strength gc = eE0d, where d is the interdot
spacing, and E0 is the amplitude of the vacuum elec-
tric field fluctuations in the cavity, which characterizes
the strength of the charge-photon interaction (Burkard
et al., 2020). Diagonalizing H0, transforming Hint into
the eigenbasis of H0, moving into a frame rotating at
probe frequency fp, and making the rotating-wave ap-
proximation yields the transverse coupling Hamiltonian
H = 1

2Ωτz+g̃c(aτ
++a†τ−)+∆a†a. Here, Ω =

√
ε2 + 4t2c

is the charge qubit transition energy, g̃c = g0tc/Ω is the
coupling strength, and ∆ = 2π(fc − fp) is the detuning
between the cavity resonance frequency fc = ωc/2π and
the probe frequency. Note that from a practical perspec-
tive, Ω is first-order insensitive to charge noise at ε =
0. Conveniently, the coupling strength g̃c is maximal at
the interdot charge transition (ε = 0) as well. Input-
output theory (Benito et al., 2017; Burkard et al., 2020;
Collett and Gardiner, 1984) is used to calculate the cav-
ity response. In the steady-state limit ȧ = τ̇− = 0, the
transmission amplitude through the cavity is

A =
−i√κ1κ2

∆− iκ
2 + g̃cχ

= |A|eiδφ, (38)

with the electric susceptibility χ = g̃c/(−Ω+2πfp+iγ/2)
and the photon loss rates κ1,2 at the cavity ports 1 and
2, where κ = κ1 + κ2 + κi and κi denotes the intrinsic
photon loss rate. In terms of the resonator frequency and
quality factor Qc, κ/(2π) = fc/Qc.

Strong coupling between the qubit and cavity will oc-
cur when g̃2

c > (γ2
c + (κ/2)2)/2, where γc/(2π) is the

charge qubit decoherence rate. When γ is dominated by
inhomogeneous dephasing of the qubit, γ/(2π) = 1/T ∗2 .
In the strong coupling regime, the cavity resonance splits
into two separate vacuum Rabi peaks separated by 2g̃c,
as shown in Fig. 28. It is challenging to reach the strong
coupling regime because in semiconductor systems the
qubit decoherence rate γ can be sizeable, e.g., several tens
of MHz for GaAs. This can be overcome by increasing
g̃c or by suppressing γ. Both strategies have successfully
been implemented to reach the strong coupling regime:
an enhancement of g̃c ∝ E0 ∝

√
Z to a GaAs DQD was

achieved by increasing the impedance Z =
√
L/C of the

resonator (Stockklauser et al., 2017), while a reduction
of γ was possible using a Si DQD (Mi et al., 2017a).
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FIG. 28 Cavity transmission for a charge qubit coupled to a
superconducting microwave resonator, from (Mi et al., 2017a).
(a) As the double-dot detuning is swept across the tunneling
transition, the charge qubit frequency comes into resonance
with the cavity frequency. As a result of the strong coupling
between the cavity and charge qubit, the system hybridizes,
and two distinct transmission peaks separated by the vacuum
Rabi splitting are observed. The eigenenergies of the uncou-
pled system are shown in dashed lines, and the eigenergies of
the coupled system are shown in solid lines. (b) Cavity trans-
mission at two different values of detuning, with theoretical
predictions overlaid.

2. Spin-photon coupling

For spin qubits, one is ultimately interested in coupling
the spin to the cavity mode. While for optical cavities,
SOC in the valence band of III-V semiconductors can
enable spin-photon coupling (Imamoglu et al., 1999), the
coupling to microwave photons requires mechanisms act-
ing entirely in the conduction (valence) band for electrons
(holes). Spin-charge hybridization using SOC or mag-
netic field gradients allows for a sizeable coupling between
the electron spin and the cavity electric field (Burkard
et al., 2020). In particular, the coupling of a flopping-
mode spin qubit via spin-charge hybridization using a
magnetic field gradient ∆Bx = Bx1 − Bx2 in a Si DQD
can be described by the additional term (∆Bx/2)σxτz in
the single-electron Hamiltonian H0 (Benito et al., 2017).
The direction of this gradient field is perpendicular to the
homogeneous magnetic field Bz = (Bz1 +Bz2)/2 described
by the Zeeman term (Bz/2)σz. In the case of holes in the
valence band of Si or Ge the intrinsic SOC could be used
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instead of a gradient field (Kloeffel et al., 2013; Mutter
and Burkard, 2021).

Transforming Hint into the eigenbasis of H0, one
obtains a coupling of the form Hint = gc(a +

a†)
∑3
n,m=0 dnm|n〉〈m|, where the sum represents the

electric dipole operator in the spin-charge-hybridized
DQD eigenbasis |n〉. For microwave transmission through
the cavity one finds again Eq. (38) with the susceptibility

χ =
∑3
n=0

∑3−n
j=1 dn,n+jχn,n+j and χij follows from the

stationary limit of the quantum master equation. The
relevant low-energy eigenstates of H0 are |0〉 ≈ |−, ↓〉 and
|1〉 ≈ cos(Φ/2)|−, ↑〉+ sin(Φ/2)|+, ↓〉 with the spin-orbit
mixing angle Φ = arctan(∆Bx/(2tc −Bz)) (in the sym-
metric case where ε = 0) and hybridized orbital states
|±〉 = (|(1, 0)〉 ± |(0, 1)〉)/

√
2. The dipole transition ma-

trix element for the predominantly spin-like transition
between these two states is d01 ≈ − sin(Φ/2), whereas
charge-like transitions to the next higher state are less
important but can lead to an asymmetry in the vacuum
Rabi peaks. The resulting spin-photon coupling in this
simplest two-level description and within the rotating-
wave approximation can be described with a Jaynes-
Cummings model

H = h̄Ωsσ
z + h̄ωca

†a+ gsσ
x(a+ a†), (39)

where Ωs is the spin qubit transition frequency, and
the spin-photon coupling gs ≈ gc|d01|≈ gc|sin(Φ/2)|. A
strength of this architecture is the electrical tunability of
the spin-charge admixture via the inter-dot tunnel cou-
pling tc.

Strong spin-photon coupling will occur when gs >
γs, κ, where γs is the spin deocherence rate. Remarkably,
this condition is not identical with the strong coupling
condition for charge, and in fact, the spin-photon system
can be in the strong coupling regime while the charge-
photon system is not. A key signature of strong coupling,
split vacuum Rabi peaks, has been observed in microwave
transmission through a superconducting Nb cavity with
an embedded Si DQD (Mi et al., 2017b). A similar ex-
periment with NbTiN superconducting circuitry has also
reached the strong coupling regime (Samkharadze et al.,
2018) [see Fig. 29]. The coupling of RX qubits to an elec-
tromagnetic cavity (Russ et al., 2016) has been realized
using a TQD in GaAs coupled to a NbTiN superconduct-
ing cavity (Landig et al., 2018).

3. Cavity-mediated spin-spin interactions

The coherent coupling Eq. (39) of individual sub-
micron scale spin qubits to a single cavity mode extend-
ing over 100 µm or more lends itself to the pairwise cou-
pling of spin qubits over distances much longer than their
typical nearest-neighbor separation. The exchange of vir-
tual cavity photons in the dispersive limit and within

FIG. 29 Cavity transmission for a single-spin qubit coupled to
a superconducting microwave resonator, from (Samkharadze
et al., 2018). As the magnetic field is swept, the spin qubit
comes into resonance with the cavity at about 6.03 GHz, and
the qubit-cavity coupling splits the cavity resonance into two
hybrid spin-photon modes. The characteristic vacuum Rabi
splitting indicates the strong coupling regime.

the rotating-wave approximation gives rise to an effec-
tive coupling between spin qubits of the form

HXY = 2J
(
σ+

1 σ
−
2 + σ−1 σ

+
2

)
= J (σx1σ

x
2 + σy1σ

y
2 ) , (40)

with the coupling J = g2
s/2∆ and detuning ∆ = Ωs −ωc

(Benito et al., 2019b; Warren et al., 2019). The trans-
verse (XY) coupling, Eq. (40), is known to generate the
universal

√
iSWAP (Imamoglu et al., 1999) and iSWAP

gates, as shown in Schuch and Siewert, 2003 and in
App. A.

Cavity photon loss and qubit decoherence imply op-
posing requirements for the degree of spin-charge mix-
ing, the optimum being defined by the ratio κ/γc (Benito
et al., 2019a). Fast and high-fidelity two-qubit gates in
the presence of realistic charge noise have been supported
by numerical calculations (Warren et al., 2019).

One challenge with experiments demonstrating cavity-
mediated coupling between single spins involves bringing
multiple spin qubits into resonance with each other and
a cavity. For example, differences in qubit-micromagnet
positioning of around ten nanometers, which are within
typical fabrication tolerances, can easily detune two
single-spin qubits from each other, even at the same
value of the external magnetic field. To surmount this
challenge, the micromagnets on different qubits can be
fabricated at an angle with respect to each other (Ast-
ner et al., 2017; Borjans et al., 2020; Harvey-Collard
et al., 2022). By adjusting the angle and magnitude
of the external magnetic field, the two spins can be
brought into resonance with each other and the cav-
ity. When two qubits, instead of just one, are tuned
into resonance with the same cavity, an enhancement of
the spin-photon coupling rate gs is observed (Fig. 30),
as reported for single electrons in Si DQDs coupled to
both Nb (Borjans et al., 2020) and NbTiN superconduct-
ing resonators (Harvey-Collard et al., 2022). Moreover,
when both spins are detuned from the cavity but in reso-
nance with each other, an avoided crossing between spins
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FIG. 30 Resonant cavity-mediated spin-spin interactions,
from (Borjans et al., 2020). Measured cavity transmission
A/A0 as a function of in-plane field angle φ, showing an
avoided crossing between both qubits and the resonator at
the expected angle.

due to the cavity-mediated dispersive coupling can be ob-
served (Harvey-Collard et al., 2022). Microwave-photon-
mediated coupling between charge qubits has also been
demonstrated (van Woerkom et al., 2018).

C. Applications for readout

Cavity coupled QDs can be readily probed be measur-
ing the transmission through, or reflection from, the mi-
crowave cavity. Measurements are generally performed
in the dispersive regime, where the detuning between
the QD transition frequency and cavity photon is greater
than the cavity linewidth, |ωa − ωc|� κ, where ωa is the
(charge or spin) qubit frequency. In this dispersive (i.e.
off-resonant) regime, the Jaynes-Cummings Hamiltonian
simplifies to the form H ≈ h̄ (ωc + χdσ

z) (a†a + 1/2) +
h̄ωaσ

z/2 with the dispersive shift χd = g2/(ωa−ωc). The
first term in the Hamiltonian gives insight into the na-
ture of the measurement. The bare cavity photon energy
(energy in the absence of a qubit) h̄ωc is shifted by an
amount χd that depends on the state of the qubit.

Detection of charge states using microwave photons
has been demonstrated in GaAs, InAs, carbon nanotube
and Si/SiGe DQDs (Frey et al., 2012; Mi et al., 2017a; Pe-
tersson et al., 2012; Viennot et al., 2016). The dispersive
shift can be detected by probing the cavity transmission
amplitude |A| or phase shift δφ. Measurements of δφ as
a function of the DQD gate voltages can be used to map
out DQD charge stability diagrams and quantitatively
extract the interdot tunnel coupling tc and the charge-
qubit coupling rate gc. High speed and high sensitivity
real-time charge detection have benefited from the adop-
tion of nearly quantum limited superconducting paramet-
ric amplifiers. Stehlik et al., 2015 demonstrated “video
mode” acquisition of DQD charge stability diagrams in
20 ms. It is also possible to use the cavity response at a
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FIG. 31 Cavity-mediated single-spin readout from (Mi et al.,
2018a). (a) Cavity response as a function of magnetic field,
showing the single-spin resonance frequency. (b) Electron-
spin-resonance line. (c) Pulse sequence to detect single-spin
Rabi oscillations via the cavity transmission. (d) Rabi oscil-
lations measured through the cavity dispersive shift.

single dot-to-lead charge transition for charge state read-
out with a very large signal-to-noise ratio of >450 and
an integration time around 1 µs (Borjans et al., 2021a).

Cavity readout of spin states can be achieved using
at least two different approaches. In the first approach,
the Pauli exclusion principle is used to distinguish spin
singlet and spin triplet states in a two-electron DQD.
Pauli blocking is evident in the magnetic field depen-
dence of the cavity response. With B = 0, the spin sin-
glet state is the ground state and tunneling from S(1,1)
to S(2,0) leads to a large cavity response. In contrast,
when gµBB > tc, the polarized spin triplet state T+ (or
T−, depending on the sign of the g-factor) becomes the
ground state near the charge transition. Due to Pauli
blockade, charge tunneling from T+(1,1) to S(2,0) is for-
bidden, and there is no cavity response. The magnetic
field dependence of the interdot charge transition signal
can thereby be used to determine the charge parity of
a DQD interdot charge transition (Schroer et al., 2012).
Control of two-electron spin states at a large DQD de-
tuning, followed by cavity readout at zero detuning, has
been used to distinguish singlet and triplet spin states
in an InAs DQD (Petersson et al., 2012) and later in
a cavity-coupled Si/SiGe DQD (Zheng et al., 2019). Us-
ing an ancilla dot capacitively coupled to a singlet-triplet
qubit has led to singlet-triplet spin state readout with a
fidelity of 99.2% (Borjans et al., 2021a).

A second approach for spin state readout in the one-
electron regime of a DQD utilizes spin-photon coupling
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FIG. 32 Cavity-mediated coupling between a triplet-dot res-
onant exchange qubit and a transmon superconducting qubit,
from (Landig et al., 2019). Here, a superconducting cavity is
driven near its resonance frequency of about 5.6 GHz. The y
axis indicates the drive frequency of the resonant exchange
qubit, and the x axis corresponds to changes in the elec-
trochemical potential of the middle dot, which changes the
overall energy of the spin qubit. The color scale indicates
the transmission through the cavity. The small dashed lines
(black) indicate the eigenenergies of the system in the ab-
sence of coupling, and the large dashed lines (red) indicate
the eigenenergies of the system including the coupling.

and the dispersive interaction. For a spin interacting with
a cavity photon, the dispersive shift is χdσ

z. Dispersive
readout of a single electron spin state using cQED was
first demonstrated using a cavity-coupled Si/SiGe DQD
(Mi et al., 2018a). Figure 31 shows the cavity phase
response as a function of magnetic field and microwave
probe frequency. The spin-photon detuning dependence
is clearly evident in the data, with the phase shift chang-
ing sign as the spin is taken through resonance with
the cavity. The magnitude of the dispersive shift also
decreases with detuning, as expected from the 1/∆ de-
pendence in the dispersive form of the Jaynes-Cummings
Hamiltonian. Rabi oscillations of a single spin have been
measured by probing the cavity with a microwave tone
after the spin was driven with a microwave field. The
signal-to-noise ratio of the dispersive readout of a single
spin in a DQD coupled to a microwave cavity has been
analyzed and optimized by D’Anjou and Burkard, 2019.

D. New avenues of research in cQED

Cavity-coupled QDs have enormous potential for ap-
plications in quantum information science. In the span
of just several years, coherent charge-photon and spin-
photon interactions have been demonstrated, as well as
evidence for long-range cavity mediated spin-spin inter-
actions. Future research is likely to extend these re-

sults to spin-spin coupling in the dispersive limit, a time-
domain demonstration of a cavity mediated two-qubit
gate, and extensions to larger quantum networks. There
is also the potential for cQED to probe the nuclear spin
degree of freedom in dot-donor systems (Mielke et al.,
2021).

Within the field of quantum information processing,
hybrid systems employing cQED approaches may en-
able new forms of quantum information processors which
could benefit from the advantages of different platforms.
For example, recent work illustrates the feasibility of cou-
pling spin qubits to superconducting qubits through mi-
crowave resonators, see Fig. 32 (Landig et al., 2019; Scar-
lino et al., 2019). A challenge for future hybrid systems
such as these will be to ensure strong enough coupling
rates to simultaneously capitalize on the benefits of the
separate platforms while not introducing excess decoher-
ence.

Hybrid quantum systems have had a major impact
on the field of mesoscopic physics as well. For exam-
ple, voltage biased DQDs have been shown to emit mi-
crowave photons (Bruhat et al., 2016; Liu et al., 2014;
Stockklauser et al., 2015), and even enable the creation
of a maser (Liu et al., 2015). Given the sensitivity with
which charge state physics can be probed, signatures of
electron-phonon coupling in suspended nanowire DQDs
have been observed (Hartke et al., 2018). Kondo physics
has been explored (Desjardins et al., 2017) and there is
potential to probe Majorana modes as well (Dartiailh
et al., 2017). In Si/SiGe DQDs, cQED has proven to be
very useful as a quantitative probe of valley splitting and
intervalley coupling (Borjans et al., 2021b; Burkard and
Petta, 2016; Mi et al., 2017c). Looking ahead to the fu-
ture, microwave spectroscopy may provide insight into a
broader class of materials systems (Gramse et al., 2017;
Lee et al., 2021; Shim et al., 2019) and qubit function-
alities (de Lange et al., 2015; Larsen et al., 2015; van
Woerkom et al., 2017).

VIII. OUTLOOK

Semiconductor spin qubits are uniquely positioned to
benefit from the technologies that are available for classi-
cal semiconductor-based information processing devices.
The most important observation is that no single road-
block stands in the way of reaching the types of yields
now driving the industry of Si CMOS for classical in-
formation processing. Fidelities for both single-qubit
and multi-qubit gates appear to be limited by processes
with clear routes for reduction, such as judicious bias
regimes for reducing sensitivity to charge noise and iso-
topic enhancement for reducing magnetic noise (Mills
et al., 2022b; Noiri et al., 2022; Weinstein et al., 2022;
Xue et al., 2022). Readout visibilities and speeds have
also improved substantially in the past few years (Blu-
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moff et al., 2022; Borjans et al., 2021a; Madzik et al.,
2022; Mills et al., 2022b).

A clear advantage of semiconductor spin qubits is
therefore the potential for their massive scaling and
miniaturization. Due to their small size, semiconductor
spin qubits have the distinction of having the most strin-
gent demands on fabrication in comparison to supercon-
ducting qubits, trapped ion qubits, and photonic qubits.
As a result, the route to large arrays of spin qubits has
been slower, as numerous problems have had to be over-
come to more reliably yield qubit arrays (Ha et al., 2021;
Zajac et al., 2016). In the past decade the progress not
just for the most heroic of devices but also for the yield-
ing of routine device arrays from many groups in many
countries and using many different control strategies have
indicated a clear positive trend. The number of demon-
strations of coherent operation published worldwide has
grown accordingly.

It seems too early to say which type of spin qubit (LD,
ST0, EO, etc.), spin qubit carrier (electron, hole, or nu-
cleus), and material (Si, Ge, etc.), or which combination
thereof, will end up being optimal for realizing a function-
ing large-scale quantum processor. While LD qubits offer
efficient use of the available resources and high robust-
ness against charge noise, ST0 and EO qubits allow for
baseband electrical control, in the case of EO qubits with-
out the need for SOC or on-chip micromagnets. While
electrons in Si offer extremely high coherence, holes in Si
or Ge allow for spin-orbit engineering of electrically con-
trolled qubit operations. The extremely long coherence
time of nuclear spins can be contrasted with the readily
available fast exchange coupling between electronic spins.

Even if fault-tolerant quantum computers are many
years away, qubits serve as our most sensitive solid-state
electrometers and magnetometers, and in the case of
semiconductor spin qubits, they serve this role within
the workhorse materials underpinning the most perva-
sive information processing technology in modern soci-
ety. Advances in the understanding of semiconductor
device physics are at least one guaranteed outcome in
the pursuit of future scalable quantum computers based
on semiconductor spin qubits.

Until fault-tolerant quantum computation can be
realized, computational demonstrations using noisy
intermediate-scale quantum (NISQ) devices provide valu-
able proofs of principle (Preskill, 2018). Examples that
can be tackled with noisy devices are simulations of con-
densed matter and quantum chemistry as well as opti-
mization problems. Analog quantum simulations of con-
densed matter systems with three to four spin qubits have
been demonstrated (Dehollain et al., 2020; van Diepen
et al., 2021; Hensgens et al., 2017). On the level of two
qubits, the variational quantum eigensolver method (Xue
et al., 2022) as well as small quantum algorithms (Noiri
et al., 2022; Watson et al., 2018) have been implemented.

Ultimately, the utility of spin qubits, and in fact all

other quantum computing platforms, lies in their ability
to reach quantum fault-tolerance, since practical appli-
cations depend on a scale demanding lower-error oper-
ation than will be possible without quantum error cor-
rection. It is not clear when we can declare any qubit
is good enough for fault-tolerance, since many estimates
of fault-tolerant thresholds, for example for the popular
surface code (Fowler et al., 2012), make geometric layout
and error-correlation assumptions which are certainly not
consistent with semiconductor spin qubits as presently
operated. Nearer-term approaches to error corrected log-
ical qubits may nonetheless be pursued, even in strictly
one-dimensional qubit arrays using the methodologies
and geometries presently under study (Jones et al., 2016),
from which we may anticipate significant discovery, not
only about the pathways to scalable quantum computers,
but also to serendipitous advances in the understanding
of the physics of solid-state devices.

Appendix A: Spin Rotation Gates

In this article we have discussed multiple encodings
of spin-qubits in terms of spin-operators S, which are
typically represented as Pauli operators. However, we
reserve the notation of Pauli operators represented as
Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

for the two encoded states of qubits |0〉 and |1〉. Canon-
ical quantum computing is accomplished by application
of unitary qubit rotations generated by Pauli operators,
i.e. single-qubit operations

Rn(θ) = e−in·σθ/2 (A1)

and two-qubit operations such as the controlled-Z oper-
ation

UCZ = e−i(π/4)(1−σz
1 )(1−σz

2 ). (A2)

Two-qubit gates for semiconductor spin qubits are drawn
from three families. First are the controlled-rotations
such as controlled-not and controlled-Z, which result
from the product of single-qubit rotations and the two-
qubit unitary exp(−iθσz1σz2), with θ = π/4 for a fully en-
tangling gate. Second are fractional swaps, which result
from the group of two-qubit unitaries exp(−iθσ1 · σ2),
with a full swap at θ = π/4 and a fully entangling√
swap at θ = π/8. Finally, the product of (commut-

ing) controlled-Z, swap, and single-qubit Rz rotations
is the iswap, which, unlike swap, is entangling. Since
[σz1σ

z
2 ,σ1 · σ2] = 0, it may readily be seen that

eiθσ
z
1σ

z
2 e−iθσ1·σ2 = e−iθ(σ

x
1σ

x
2 +σy

1σ
y
2 ); (A3)
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hence the XY coupling, σx1σ
x
2 + σy1σ

y
2 , of importance to

cavity-coupled dots as discussed in Sec. VII.B.3, gener-
ates fractional iswap, with a full iswap at θ = π/4.

A π-pulse with unitary Rn(π) applies −in · σ, so if n
is along x, y, or z this is a Pauli operator with an overall
phase. A Pauli-operator or π-pulse applies ±1 to the two
eigenstates of a qubit in the associated basis. In the two-
spin singlet-triplet basis, a π pulse of the exchange op-
erator, U = exp(−iπS1 · S2) applies a spin-swap, which
from the antisymmetry of the spin-pair for the singlet
and symmetry for the triplet states, applies a −1 phase
to singlet and so is analogous to the Pauli operations for
singlet-triplet and exchange-only systems. Exchange oc-
curring for arbitrary duration generates a superposition
of swapping and not swapping spins, so that

exp(−iθS1 · S2) ∼ exp(−iσzθ/2) = Rz(θ). (A4)

Single qubits driven by RF signals (e.g. single-spin
qubits controlled by ESR or EDSR, RX qubits, etc.) use
a rotating frame for single-qubit control. This means that
the laboratory-frame Hamiltonian for qubit j is

Hj(t) =
h̄ωj

2
σz + h̄Ω cos(ωt+ φ)σx, (A5)

where ω is the driving frequency, φ is the drive phase
relative to a local oscillator, and Ω is proportional to
the amplitude of the driving RF or microwave field. In
a rotating-frame analysis, we presume the driving fre-
quency ω is close to the qubit resonant frequency ωj and
both of these are always much larger than the Rabi fre-
qunecy Ω. Under these assumptions we transform Hj

and other operators to a frame rotating at the drive fre-
quency ω and local oscillator phase for each qubit,

H̃j(t) = eiωtσ
z/2

[
Hj(t)−

h̄ω

2
σz
]
e−iωtσ

z/2

=
h̄

2

[
(ωj − ω)σz + Ω{[1 + cos(2ωt)][σx cosφ+ σy sinφ]

− sin(2ωt)[σx sinφ+ σy cosφ]}
]

(A6)

The terms oscillating at frequency 2ω with amplitude Ω,
when Ω � ω, are generally negligible; the lowest-order
effect of these terms is the Bloch-Siegert shift (Abragam,
1961) which amounts to a slight detuning of the reso-
nance of order (Ω/ω)2. As such, these terms are generally
dropped, resulting in the nominally time-independent
rotating-frame Hamiltonian

H̃j =
h̄

2
[Ω(σx cosφ+ σy sinφ) + ∆ωjσ

z] (A7)

for which U = exp
(
−iH̃jt/h̄

)
enables any single qubit

rotation Rn(θ) via control of the amplitude Ω, phase φ,

and detuning ∆ω of the drive frequency. Since phase φ is
relative to a local oscillator, a z-axis rotation is generally
accomplished by a frame-shift, in which the phase of the
local oscillator is updated without touching the qubit.
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A. Forchel, and Y. Yamamoto (2011), Nat. Phys. 7, 872.

Deelman, P. W., L. F. Edge, and C. A. Jackson (2016), MRS
Bull. 41, 224.

Dehollain, J. P., U. Mukhopadhyay, V. P. Michal, Y. Wang,
B. Wunsch, C. Reichl, W. Wegscheider, M. S. Rudner,
E. Demler, and L. M. K. Vandersypen (2020), Nature 579,
528.

Delbecq, M. R., T. Nakajima, P. Stano, T. Otsuka, S. Amaha,
J. Yoneda, K. Takeda, G. Allison, A. Ludwig, A. D. Wieck,
and S. Tarucha (2016), Phys. Rev. Lett. 116, 046802.

Deng, K., and E. Barnes (2020), Phys. Rev. B 102, 035427.
Deng, K., F. A. Calderon-Vargas, N. J. Mayhall, and

E. Barnes (2018), Phys. Rev. B 97, 245301.
Desjardins, M. M., J. J. Viennot, M. C. Dartiailh, L. E.

Bruhat, M. R. Delbecq, M. Lee, M.-S. Choi, A. Cottet,
and T. Kontos (2017), Nature 545, 71.

Dial, O. E., M. D. Shulman, S. P. Harvey, H. Bluhm,
V. Umansky, and A. Yacoby (2013), Phys. Rev. Lett. 110,
146804.

DiCarlo, L., H. J. Lynch, A. C. Johnson, L. I. Childress,
K. Crockett, C. M. Marcus, M. P. Hanson, and A. C. Gos-
sard (2004), Phys. Rev. Lett. 92, 226801.

van Diepen, C. J., P. T. Eendebak, B. T. Buijtendorp,
U. Mukhopadhyay, T. Fujita, C. Reichl, W. Wegscheider,
and L. M. K. Vandersypen (2018), Appl. Phys. Lett. 113,
033101.

van Diepen, C. J., T.-K. Hsiao, U. Mukhopadhyay, C. Reichl,
W. Wegscheider, and L. M. K. Vandersypen (2021), Phys.
Rev. X 11, 041025.

DiVincenzo, D. P. (1995), Science 270, 255.
DiVincenzo, D. P. (1998), Proc. R. Soc. Lond., A Math. Phys.

Sci. 454, 261.
DiVincenzo, D. P. (2000), Fortschr. Phys. 48, 771.

DiVincenzo, D. P., D. Bacon, J. Kempe, G. Burkard, and
K. B. Whaley (2000), Nature 408, 339.

Doherty, A. C., and M. P. Wardrop (2013), Phys. Rev. Lett.
111, 050503.

Doherty, M. W., N. B. Manson, P. Delaney, F. Jelezko,
J. Wrachtrup, and L. C. L. Hollenberg (2013), Phys. Rep.
528, 1.

Dutta, P., and P. M. Horn (1981), Rev. Mod. Phys. 53, 497.
Ekert, A., and R. Jozsa (1996), Rev. Mod. Phys. 68, 733.
Elzerman, J. M., R. Hanson, J. S. Greidanus, L. H.

Willems van Beveren, S. De Franceschi, L. M. K. Vander-
sypen, S. Tarucha, and L. P. Kouwenhoven (2003), Phys.
Rev. B 67, 161308.

Elzerman, J. M., R. Hanson, L. H. Willems van Beveren,
B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwen-
hoven (2004), Nature 430, 431.

Eng, K., T. D. Ladd, A. Smith, M. G. Borselli, A. A. Kiselev,
B. H. Fong, K. S. Holabird, T. M. Hazard, B. Huang, P. W.
Deelman, I. Milosavljevic, A. E. Schmitz, R. S. Ross, M. F.
Gyure, and A. T. Hunter (2015), Sci. Adv. 1, 1500214.

Ercan, H. E., S. Coppersmith, and M. Friesen (2021), Phys.
Rev. B 104 (23), 235302.

Erlingsson, S. I., and Y. V. Nazarov (2002), Phys. Rev. B 66,
155327.

Farooq, U., A. Bayat, S. Mancini, and S. Bose (2015), Phys.
Rev. B 91, 134303.

Fedele, F., A. Chatterjee, S. Fallahi, G. C. Gardner, M. J.
Manfra, and F. Kuemmeth (2021), PRX Quantum 2,
040306.

Feher, G. (1959), Phys. Rev. 114, 1219.
Feher, G., J. P. Gordon, E. Buehler, E. A. Gere, and C. D.

Thurmond (1958), Phys. Rev. 109, 221.
Feng, M., L. H. Zaw, and T. S. Koh (2021), npj Quantum

Information 7 (1), 1.
Ferdous, R., E. Kawakami, P. Scarlino, M. P. Nowak, D. R.

Ward, D. E. Savage, M. G. Lagally, S. N. Coppersmith,
M. Friesen, M. A. Eriksson, L. M. K. Vandersypen, and
R. Rahman (2018), npj Quantum Inf. 4, 26.

Feynman, R. P. (1982), Int. J. Theor. Phys. 21, 467.
Field, M., C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F.

Frost, G. A. C. Jones, and D. G. Hasko (1993), Phys. Rev.
Lett. 70, 1311.

Fischer, J., W. A. Coish, D. V. Bulaev, and D. Loss (2008),
Phys. Rev. B 78, 155329.

Flindt, C., A. S. Sørensen, and K. Flensberg (2006), Phys.
Rev. Lett. 97, 240501.

Fogarty, M. A., K. W. Chan, B. Hensen, W. Huang,
T. Tanttu, C. H. Yang, A. Laucht, M. Veldhorst, F. E.
Hudson, K. M. Itoh, D. Culcer, T. D. Ladd, A. Morello,
and A. S. Dzurak (2018), Nat. Commun. 9, 4370.

Fogarty, M. A., M. Veldhorst, R. Harper, C. H. Yang, S. D.
Bartlett, S. T. Flammia, and A. S. Dzurak (2015), Physical
Review A 92, 022326.

Foletti, S., H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby
(2009), Nature Phys. 5, 903.

Fong, B. H., and S. M. Wandzura (2011), Quantum Info.
Comput. 11, 1003.

Fowler, A. G., M. Mariantoni, J. M. Martinis, and A. N.
Cleland (2012), Phys. Rev. A 86, 032324.
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Picó-Cortés, J., F. Gallego-Marcos, and G. Platero (2019),
Physical Review B 99 (15), 155421.

Pioro-Ladriere, M., T. Obata, Y. Tokura, Y. S. Shin, T. Kubo,
K. Yoshida, T. Taniyama, and S. Tarucha (2008), Nat.
Phys. 4, 776.

Piot, N., B. Brun, V. Schmitt, S. Zihlmann, V. P. Michal,
A. Apra, J. C. Abadillo-Uriel, X. Jehl, B. Bertrand,
H. Niebojewski, L. Hutin, M. Vinet, M. Urdampil-
leta, T. Meunier, Y.-M. Niquet, R. Maurand, and
S. De Franceschi (2022), arXiv:2201.08637.

Pla, J. J., K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L.
Morton, D. N. Jamieson, A. S. Dzurak, and A. Morello
(2012), Nature 489, 541.

https://doi.org/10.1038/nnano.2014.211
http://stacks.iop.org/0953-8984/27/i=15/a=154205
https://doi.org/10.1103/PhysRevResearch.3.013194
https://doi.org/10.1103/PhysRevResearch.3.013194
http://dx.doi.org/10.1038/nature09682
https://doi.org/10.1103/PhysRevLett.108.166801
https://doi.org/10.1103/PhysRevX.10.011060
https://doi.org/0.1103/PhysRevB.76.041301
https://doi.org/0.1103/PhysRevB.76.041301
https://doi.org/10.1103/PhysRevB.84.035441
https://doi.org/10.1103/PhysRevB.89.085403
https://doi.org/10.1103/PhysRevB.89.085403
https://doi.org/10.1103/PhysRevB.77.155328
https://doi.org/10.1038/ncomms8682
https://doi.org/10.1038/s41534-016-0003-1
https://doi.org/10.1038/s41534-016-0003-1
https://doi.org/10.1103/PhysRevB.88.195131
https://doi.org/10.22331/q-2021-10-05-557
https://doi.org/10.1063/1.4759256
https://doi.org/10.1063/1.4759256
https://doi.org/10.1038/s41586-021-04182-y
https://doi.org/10.1038/s41586-021-04182-y
https://doi.org/10.1021/acs.nanolett.9b03847
https://doi.org/10.1126/science.1148092
https://doi.org/10.1126/science.1209524
https://doi.org/10.1103/PhysRevB.82.140403
https://doi.org/10.1103/PhysRevB.82.140403
https://doi.org/10.1103/PhysRevA.87.022332
https://doi.org/10.1126/science.1070958
https://doi.org/10.1103/PhysRevB.98.125404
https://doi.org/10.1038/npjqi.2015.19
https://doi.org/10.1038/npjqi.2015.19
https://doi.org/10.1103/PhysRevB.15.5780
https://doi.org/10.1103/PhysRevX.8.041032
https://doi.org/10.1103/PhysRevX.8.041032
https://doi.org/10.1103/PhysRevX.4.011012
https://doi.org/10.1103/PhysRevX.4.011012
https://doi.org/10.1103/PhysRevB.92.125409
https://doi.org/10.1103/PhysRevB.92.125409
https://doi.org/10.1103/PhysRevB.82.155424
https://doi.org/10.1088/2058-9565/ab86c9
https://doi.org/10.1063/1.4731275
https://doi.org/10.1063/1.4731275
https://doi.org/10.1103/RevModPhys.50.797
https://doi.org/10.1038/nnano.2012.160
https://doi.org/10.1103/PhysRevApplied.14.054015
https://doi.org/10.1103/PhysRevLett.105.246804
https://doi.org/10.1103/PhysRevLett.105.246804
https://doi.org/10.1038/nature11559
https://doi.org/10.1038/nature11559
https://doi.org/10.1103/PhysRevLett.121.076801
https://doi.org/10.1103/PhysRevLett.121.076801
https://doi.org/10.1103/PhysRevA.81.042307
https://doi.org/10.1103/PhysRevLett.93.186802
https://doi.org/10.1126/science.1116955
https://doi.org/10.1126/science.1183628
https://doi.org/10.1126/science.1183628
https://doi.org/10.1103/PhysRevLett.87.266801
https://doi.org/10.1103/PhysRevLett.87.266801
https://doi.org/10.1103/PhysRevLett.89.156802
https://doi.org/10.1103/PhysRevLett.89.156802
https://doi.org/10.1103/PhysRevLett.100.067601
https://doi.org/10.1103/PhysRevB.101.115302
https://doi.org/10.1103/PhysRevB.101.115302
http://dx.doi.org/10.1038/nphys1053
http://dx.doi.org/10.1038/nphys1053
https://arxiv.org/abs/arXiv:2201.08637
http://dx.doi.org/10.1038/nature11449


64

Pla, J. J., K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L.
Morton, F. A. Zwanenburg, D. N. Jamieson, A. S. Dzurak,
and A. Morello (2013), Nature 496, 334.

Poulin-Lamarre, G., J. Thorgrimson, S. A. Studenikin, G. C.
Aers, A. Kam, P. Zawadzki, Z. R. Wasilewski, and A. S.
Sachrajda (2015), Phys. Rev. B 91, 125417.

Prada, M., G. Klimeck, and R. Joynt (2011), New J. Phys.
13, 013009.

Prechtel, J. H., A. V. Kuhlmann, J. Houel, A. Ludwig, S. R.
Valentin, A. D. Wieck, and R. J. Warburton (2016), Nature
Materials 15 (9), 981.

Preskill, J. (2018), Quantum 2, 79.
Qiao, H., Y. P. Kandel, K. Deng, S. Fallahi, G. C. Gardner,

M. J. Manfra, E. Barnes, and J. M. Nichol (2020), Phys.
Rev. X 10, 031006.

Qiao, H., Y. P. Kandel, J. S. V. Dyke, S. Fallahi, G. C. Gard-
ner, M. J. Manfra, E. Barnes, and J. M. Nichol (2021a),
Nat. Commun. 12, 2142.

Qiao, H., Y. P. Kandel, S. Fallahi, G. C. Gardner, M. J.
Manfra, X. Hu, and J. M. Nichol (2021b), Phys. Rev. Lett.
126, 017701.

Rashba, E. I., and A. L. Efros (2003), Phys. Rev. Lett. 91,
126405.

Reed, M. D., B. M. Maune, R. W. Andrews, M. G. Borselli,
K. Eng, M. P. Jura, A. A. Kiselev, T. D. Ladd, S. T. Merkel,
I. Milosavljevic, E. J. Pritchett, M. T. Rakher, R. S. Ross,
A. E. Schmitz, A. Smith, J. A. Wright, M. F. Gyure, and
A. T. Hunter (2016), Phys. Rev. Lett. 116, 110402.

Reilly, D. J., C. M. Marcus, M. P. Hanson, and A. C. Gossard
(2007), Appl. Phys. Lett. 91, 162101.

Reilly, D. J., J. M. Taylor, J. R. Petta, C. M. Marcus, M. P.
Hanson, and A. C. Gossard (2010), Phys. Rev. Lett. 104,
236802.

Reimann, S. M., and M. Manninen (2002), Rev. Mod. Phys.
74, 1283.
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