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Nanomechanics has brought mesoscopic physics into the world of vibrations. Because
nanomechanical systems are small, fluctuations are significant, the vibrations become
nonlinear already for comparatively small amplitudes, and new mechanisms of dissipa-
tion come into play. At the same time, the exquisite control of these systems makes
them a platform for studying many problems of classical and quantum physics far from
thermal equilibrium in a well-characterized setting. This review describes, at a concep-
tual level, basic theoretical ideas and explicative experiments pertaining to mesoscopic
physics of nanomechanical systems. Major applications of nanomechanics in science
and technology are also outlined. A broad range of phenomena related to the conserva-
tive as well as dissipative nonlinearity and fluctuations are discussed within a unifying
framework. They include the linear response of single and coupled vibrational modes
as well as nonlinear effects of periodic driving. Such driving breaks the continuous
time-translation symmetry and the detailed balance, with conspicuous consequences for
fluctuations, particularly in the presence of the driving-induced bi- and multistability.
Mathematical techniques are described in the appendices to streamline the reading, but
also to provide an introduction to the theory. The goal of the review is to show the
richness of the physics at work. The continuous experimental and theoretical advances
make nanomechanical systems a vibrant area of research, with many new phenomena to
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TABLE I List of Symbols
Symbols Description
q Mode coordinate; it is proportional to the displacement at the antinode of the mode
P Momentum conjugate to the coordinate ¢
M Effective mass of the mode
u Complex vibration amplitude
S(w) Spectral density of fluctuations of ¢ at frequency w
X (w) Susceptibility of the coordinate at frequency w
wo = 27 fo Eigenfrequency of the mode
¥ Parameter of the Duffing, or Kerr, nonlinearity
r Linear friction coefficient, decay rate of the vibration amplitude in the linear regime
Q = wp/2T° Quality factor from energy decay measurements
Aw Spectral bandwidth of mechanical resonance, half width at half maximum of the resonant peak in S(w)
Qu = wo/2Aw Quality factor from spectral measurements
wr Angular frequency of a resonant driving force

I. INTRODUCTION

Studying vibrational motion has been one of the major
areas of physics at least since Galileo. The advent of
nanomechanical vibrational systems (NVSs) has opened
a new direction in these studies. NVSs are resonators

(

for mechanical vibrations. To picture an example, one
can think of a string of a musical instrument downscaled
to a diameter < 100 nm and a submicron length. The
vibration frequencies range from kilohertz to gigahertz
and can be tuned not only through the dimensions and
the shape of a device, but also in situ by electrostatic




and optical means. In addition, the lifetime of vibrations
has now been increased to hundreds of seconds and above
thanks to progress in nanofabrication.

By their nature NVSs are mesoscopic. Because they
are small, they display many features of microscopic sys-
tems. At the same time, they are sufficiently large to
enable studying an individual vibrational system rather
than resorting to ensemble measurements, as in conven-
tional molecular or solid-state vibrational spectroscopy.

NVSs were developed in the 1990's (Cleland and
Roukes, 1996, 1998) and quickly attracted interest. Their
vibrational eigenmodes display rich dynamics that in-
volves a broad range of many-body effects stemming from
the coupling to electrons, propagating phonons, photons,
and two-level fluctuators. They are also of significant
interest for various applications, which range from ul-
trasensitive mass, charge, and force detection to clocks.
For example, the adsorption of mass onto an NVS can
be detected with a resolution approaching 1 yg, while
a force can be resolved with a sensitivity approaching
1 zN/Hz'/2. Over the years different aspects of the stud-
ies of NVSs along with their applications have been re-
viewed in a number of papers and books (Aspelmeyer
et al., 2014b; Cleland, 2003; Ekinci and Roukes, 2005;
Lifshitz and Cross, 2008; Poot and van der Zant, 2012;
Schmid et al., 2016; Steeneken et al., 2021).

In this review, we focus on the mesoscopic physics of
NVSs, including dissipation, fluctuations, and nonlinear
and far from thermal equilibrium phenomena in these
systems. While these basic physical phenomena have
been intensely investigated during the last few years, they
have not yet been reviewed from a general perspective.
Our aim is to provide a coherent and unifying descrip-
tion of the underlying concepts along with the experimen-
tal and theoretical results and to put them into a broad
physics context. Details of the mathematical techniques
are provided in Appendices.

We describe dissipation and thermal fluctuations of
nanomechanical vibrations as resulting from the coupling
to a thermal reservoir of a general form. Such description
applies to both flexural and localized compression/shear-
type modes. It allows us to analyze various specific dis-
sipation mechanisms. They include the Landau-Rumer,
Akhiezer, and thermoelastic relaxation due to scattering
by propagating phonons and the phonon-induced clamp-
ing losses, as well as relaxation associated with the elec-
trons in the nanoresonators and the leads and with the
two-level systems.

A consequence of the small size of NVSs expected from
the general arguments of statistical physics is the oc-
currence of comparatively strong quantum and classical
fluctuations. These fluctuations play a significant role
in the vibration dynamics. Another important aspect
of the dynamics is the vibration nonlinearity. Because
of the small system size, vibrations with even compara-
tively small amplitudes become nonlinear. Not only the

restoring force displays nonlinearity, but also the rate of
dissipative losses becomes amplitude dependent, which is
associated with nonlinear friction.

The exquisite control of the NVSs and their versatility
make them invaluable as a tool for studying the interplay
of nonlinearity and fluctuations. This interplay leads to
a broad range of phenomena that manifest themselves in
different settings, in both the classical and quantum do-
mains. Revealing and understanding them is an ongoing
effort. We describe several of these phenomena studied
with the NVSs, including the nondissipative broadening
of the vibration spectra, nonlinear inter-mode energy ex-
change, and self- and cross-modulation of the vibration
frequencies.

We also describe how the nonlinearity makes NVSs vi-
brations a testing ground for exploring nonequilibrium
phenomena. Several general types of such phenomena
emerge where the vibrations are driven by a resonant
field. Because the decay rates of the vibrations are
usually small, even a weak field can lead to a signifi-
cantly nonequilibrium behavior, such as the occurrence
of bi- and multistability or chaos. Of particular interest,
which goes beyond NVSs as such, are fluctuation effects
away from thermal equilibrium. They range from noise-
induced switching between coexisting metastable vibra-
tional states to fluctuation squeezing. Since, on the one
hand, driven nonlinear vibrations lack detailed balance
while, on the other hand, the vibrations of NVSs are well-
characterized, these vibrations provide a unique oppor-
tunity for addressing many generic problems of quantum
and classical statistical physics far from thermal equilib-
rium.

Il. NANORESONATORS AT A GLANCE

A. Phenomenological description of the dynamics of a
linear nanoresonator

We will describe the dynamics of an NVS mode in
terms of the coordinate ¢ and momentum p of an oscil-
lator. The mechanical displacement in the mode u(r,t)
as a function of the coordinate r has a spatial profile
@(r), whereas ¢(t) describes how the displacement varies
in time,

u(r,t) = q(t)e(r),

where V' is the volume of the resonator. The momen-
tum of the oscillator is p = M ¢, where M is the oscilla-
tor mass, M = [ p(r)p?*(r)dr [p(r) is the mass density].
Functions ¢(r) for different modes are orthogonal. We
note that in the analysis of the experimental data there
is sometimes used a different normalization, i.e., it is set
that max |o(r)| = 1. With this normalization, the maxi-
mal value of ¢(t) is the displacement amplitude.



The simplest theoretical model employed in the study
of nanomechanical modes is a classical harmonic oscilla-
tor that performs Brownian motion (Risken, 1996), with
a friction force proportional to the velocity and with fluc-
tuations due to thermal noise. The noise is assumed to
be Gaussian and d-correlated in time. If the oscillator co-
ordinate is ¢ and the mass is M, the motion is described
by the Langevin equation

M§+2MTq+ Mwiq = fr(t),
(fr(t)fr(t')) =4AMTkpTo(t —t'). (2)

Here wqg is the mode eigenfrequency and T' is the fric-
tion coefficient, which determines the decay rate of the
vibrations in the absence of noise.

Without noise, the model of a damped oscillator has
been long used in physics; for example, it was used by
Lorentz in 1878 to describe the polarizability of matter.
Later it was realized that, along with the friction, there
comes noise; both of them result from the coupling of
the oscillator to a thermal reservoir (thermal bath), see
Fig. 1. The microscopic analysis was started by Einstein
and Hopf (1910). A detailed classical study was per-
formed by Bogolyubov (1945), whereas the studies of the
quantum dynamics were started in the late 50s - early
60s, see Toda (1958), Senitzky (1961), Schwinger (1961),
Krivoglaz (1961), Louisell (1990), Ford et al. (1965), and
Ullersma (1966); more references can be found in the pa-
per by Ford et al. (1988). Many of these papers used
a model in which the thermal bath was described by a
set of harmonic oscillators and the coupling to the con-
sidered oscillator was linear in q. Over the years, such
model of the bath, often called “bosonic bath”, has been
one of the most frequently used in the study of quantum
relaxation, cf. Feynman and Vernon Jr. (1963), Caldeira
and Leggett (1981), and Grabert et al. (1988).

NVSs are one of the best examples of systems where
dissipation described by the linear in ¢ coupling to a
bosonic bath can play an important role. In this case,
the bath is often formed by phonons in the resonator
and in its support. Different mechanisms of the phonon-
induced dissipation, such as clamping losses, thermoe-
lastic, Landau-Rumer, and Akhiezer dissipation are dis-
cussed in Sec.V.A. Nonlinear in ¢ coupling to a bosonic
bath can also play a major role in the NVSs dynamics.

The most common way of characterizing the dynamics
of NVSs is based on measuring either the spectral density
of fluctuations of the displacement
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or the susceptibility x(w), which characterizes the re-
sponse to an external force at frequency w. It is defined
by the relation between the force-induced displacement
dq(t) and the force F exp(—iwt) added to the right-hand
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FIG. 1 (a) Mechanical oscillator coupled to a thermal bath.
The coupling is quantified by the rate I for an oscillator quan-
tum to be transferred into the bath. The parameter I" enters
both the friction force and the noise intensity in Eq. (2). (b,c)
Time evolution of the displacement and the momentum of
the oscillator performing Brownian motion. The characteris-
tic correlation time of the amplitude fluctuations is given by
1/T". One can measure I" using the spectral density of the dis-
placement fluctuations; I' is the half width at half maximum
of the spectral peak, see Eq. (5).

side of Eq. (2) as

(0g(t)) = x(w)F exp(—iwt). (4)

The absolute value and the argument of (dq(t)) define
the amplitude and the phase of the response.

The susceptibility and the spectral density of fluctua-
tions are related by the fluctuation-dissipation theorem,
see Sec. IV, with Im y(w) = (w/kpT)S(w) in the clas-
sical limit. In addition, the real and imaginary parts
of the susceptibility, Re x(w) and Im x(w), are related
by the Kramers-Kronig relation (Landau and Lifshitz,
1980); Re x(w) and Im x(w) determine, respectively,
the in-phase and out-of-phase components of the force-
induced displacement, whereas | x(w)| determines the dis-
placement amplitude.

Of particular interest for NVSs is the situation where
the oscillator decay rate I' is small compared to the eigen-
frequency wp. In this case both S(w) and Im x(w) have
sharp resonant peaks at frequency wy. From Eq. (2) we
find that near wg both functions have a Lorentzian peak,

 kgT r
S(W) - ng F2+(OJ—OJ0)2’
{ . _
x(w) L —i(w—wo)] ™", |w—wo| <wp. (5)
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Measuring the position and the halfwidth of the peak of
S(w) and/or Im x(w) is commonly used to determine wy
and I". It thus enables finding the quality factor @}, which



characterizes the energy relaxation and is conventionally
defined as the ratio of the stored vibrational energy to
the energy dissipated per cycle multiplied by 27,

stored energy wo

Q=2 (6)

7Tdissipated energy per cycle oI
This factor is independent of the vibration amplitude, for
a linear mode.

A central role in the dynamics of NVS modes is played
by the fluctuations of the mode eigenfrequencies. Such
fluctuations can arise, for example, from the fluctuations
of the resonator mass due to attachment or detachment
of molecules, fluctuations of the spring constant due to
charge and voltage fluctuations in the system, as well as
from the interplay of the thermal fluctuations of the am-
plitude and the vibration nonlinearities. These frequency
fluctuations increase the halfwidth of the spectral peak of
S(w) and Im x(w) and, generally, can change the shape
of the spectrum. Therefore it is convenient to introduce
an effective quality factor

Qw = wo/QAw. (7)

The parameter Aw takes into account frequency fluctu-
ations and replaces the decay rate I' in the standard ex-
pression (6). We employ two different symbols, @ and
Q.,, to emphasize this difference. Factor (), does not
describe energy relaxation but refers to the results of
spectroscopic measurements. To draw the parallel to the
description of the spin or qubit relaxation, we note that
2T corresponds 1/T), whereas Aw is an analog of 1/7T5
in those systems. The physics behind frequency fluctu-
ations in nanomechanics is fairly different and will be
discussed at length in the review. However, to set the
scene, in this section we will not separate the spectral
broadening mechanisms and will set Q = Q. In Tables
II-IV we provide the reported values of the quality factor
in several types of nanomechanical systems.

B. Most common types of nanomechanical resonators

The first practical nanomechanical system was based
on a silicon nanobeam (Cleland and Roukes, 1996, 1998).
Since then a variety of nanomechanical resonators has
been explored. Tables II and III summarize the charac-
teristics of resonators based on low-dimensional materi-
als, such as carbon nanotubes, semiconductor nanowires,
graphene, semiconductor layered membranes, and levi-
tating particles. Table IV summarizes those of resonators
nanofabricated from bulk material using the top-down
approach. In many of these examples the vibrational
modes correspond to bending (flexural) modes of the
resonator, a microscopic analog of the vibrations of a
string or a membrane. Carbon nanotubes are the nar-
rowest resonators; their diameters range typically from

1 to 3 nm. Graphene and semiconductor monolayers
are the thinnest membranes as they are atomically thin.
Other types of vibrational modes are investigated, such
as torsional modes in mechanically based torque res-
onators (Hauer et al, 2013), the bulk (Lamé) modes
in micromechanical resonators (Chandorkar et al., 2008)
and layered nanomaterial resonators (Zalalutdinov et al.,
2021), and the localized modes in optomechanical crys-
tals, see Eichenfield et al. (2009), MacCabe et al. (2020)
and references therein.

Advances in fabrication have led to a steady improve-
ment of the quality factor of the NVSs. Optimizing the
surface of resonators turned out to be central. The micro-
scopic nature of the dissipation due to surface defects is
not clear, but it might be related to additional relaxation
channels that open due to the surface contamination and
the degradation of crystallinity near the surface. In par-
ticular, the quality factor of mechanical resonators based
on nanotube and graphene becomes extremely large at
cryogenic temperature (Hiittel et al., 2009), reaching the
range between one and ten million (Giittinger et al., 2017;
Moser et al., 2014; Urgell et al., 2020). The demon-
stration of such large quality factors came as a surprise.
For many years, researchers observed that quality factors
would decrease with the volume of the resonator, and be-
cause of this trend it was unthinkable that nanotubes and
graphene resonators could exhibit such giant quality fac-
tors. The large Q-factors reflect the high crystallinity of
these nanoscale systems and show that surface contami-
nation is reduced to a minimal amount.

Levitating particles feature large quality factors, up
to 100 million, even at room temperature (Ricci et al.,
2017). In many experiments, the particles are trapped by
a laser beam; the resonant frequency is given by the opti-
cal gradient force. Damping, which arises from collisions
with the gas molecules in the sample chamber, becomes
very low in high vacuum. Recently, particles have been
levitated using new schemes, including ferromagnetic
particles in Meissner traps made from superconducting
materials (Gieseler et al., 2020; Vinante et al., 2020), dia-
magnetic particles in magnetic traps (Hsu et al., 2016;
O’Brien et al., 2019), and charged particles in Paul
traps (Alda et al., 2016; Delord et al., 2020).

High-stress silicon nitride is the material used by many
groups to produce top-down resonators endowed with
high quality factors (Bothner et al., 2020; Kozinsky et al.,
2006; Maillet et al., 2017; Unterreithmeier et al., 2010,
2009; Verbridge et al., 2006; Wilson-Rae et al., 2011; Yu
et al., 2012; Zhou et al., 2019). Dissipation in the bulk of
this high-stress material is remarkably low. The quality
factor can be further enhanced by structuring high-stress
silicon nitride films into trampoline geometries (Norte
et al., 2016; Reinhardt et al., 2016) and nonuniform
phononic crystal pattern (Ghadimi et al., 2018; Tsatu-
ryan et al., 2017). Engineering the shape of mechanical
eigenmodes enables reducing losses near their supports.



Quality factors as high as 800 million can be achieved at
room temperature (Ghadimi et al., 2018) and 1.5 billion
at 30 mK (Seis et al., 2021).

An important role in studying nonlinear phenomena
and the effects of mode coupling has been played by
single- and coupled nanoresonators based on narrow
nanowires grown by electrodeposition (Kozinsky et al.,
2007), thin nanofabricated structures (Defoort et al.,
2015), and suspended GaAs and AIN heterostructures
that exploit piezoelectric effect to actuate and control the
vibrations (Karabalin et al., 2009a, 2011, 2009b; Mah-
boob and Yamaguchi, 2008b; Masmanidis et al., 2007;
Yamaguchi, 2017).

C. Driving resonators

The most straightforward way to excite nanomechani-
cal resonators is by driving them with a directly applied
force at an angular frequency wp close to the eigenfre-
quency wg. Due to nonlinearity of the system, such a
direct drive can also efficiently excite vibrations when
wp >~ wp - N or wp =~ we/N with an integer N > 1,
but their amplitude is usually smaller for the same drive
amplitude (Nayfeh and Mook, 2004). Another method
that is often employed consists in modulating the spring
constant (Rugar and Griitter, 1991; Turner et al., 1998).
Such parametric driving is equivalent to the modulation
of the resonant frequency. It is most efficient when the
drive frequency is close to 2wg. The vibration amplitude
is very nonlinear in the amplitude of the parametric drive;
the amplitude remains small until the driving amplitude
reaches a threshold value, after which the resonator vi-
brates at half the drive frequency. Still, even before the
threshold is reached, a resonator can amplify a probe
drive at a frequency close to half the drive frequency, and
also exactly at half the drive frequency (Eichler et al.,
2011a; Rugar and Griitter, 1991). A resonant probe field
can be amplified by a nanoresonator also if the drive fre-
quency is wp &~ wp (Dykman and Krivoglaz, 1979; Ochs
et al., 2021b).

The actuation of a nanoscale resonator was achieved
for the first time with the magnetomotive drive (Fig. 2a)
(Cleland and Roukes, 1996, 1998). In this method, flex-
ural vibrations of a conducting nanobeam are excited by
the Lorentz force, which emerges when an alternating
current is applied through the nanowire placed in a per-
pendicular magnetic field. The vibrations are detected
by measuring the electromotive force generated along the
length of the nanobeam using a network analyzer.

A widely used drive is the capacitive force, see
Fig. 2b (Rugar and Griitter, 1991). It is implemented
by applying a static voltage VgDC and an oscillating volt-
age with a comparatively low amplitude (WéAC between

FIG. 2 Excitation of flexural vibrations. (a) Magnetomo-
tive force, which is generated by a static magnetic field and
an alternating current along the mechanical beam (shown in
green). (b) Capacitive force, which is created by applying
an oscillating voltage between the bottom gate electrode and
the mechanical beam (green) that is conducting. (c) Dielec-
tric force, which is acting on a mechanical beam (green) made
from a dielectric material using a time-modulated electric field
gradient. The figure is a cross section of the device (see the
coordinate frame). (d) Piezo-electric force, where the me-
chanical beam (green) is actuated with a piezo-electric film
(grey) sandwiched between two metal electrodes. (e) Optical
force, which is obtained by modulating the intensity of the
laser beam (red) focused on the mechanical beam (green). (f)
Magnetic force, where either the magnetic moment of the me-
chanical beam (green) or the magnetic field gradient is mod-
ulated (or both).

the resonator and a nearby gate electrode. The force is

AC DC AC
FAC = Ly Pos v 8)

where C’é = 0C,/0q is the derivative of the gate-
resonator capacitance with respect to the mode displace-
ment ¢g. As a rough estimate, Cy is given by the ratio
of the capacitance to the characteristic distance between
the resonator and the gate. For simplicity, we omit the
work function difference between the resonator and the
gate electrode in Eq. (8), which leads to an offset in VgDC.
This driving force is effective when the resonator is an
electrical conductor or is covered with a metal plate. A
resonator made of a dielectric material can be driven by
applying an electric field gradient between two electrodes
structured near the resonator (Fig. 2¢) (Unterreithmeier
et al., 2009). A dielectric material in vacuum moves to-
wards the region with highest electric field. This dielec-
tric force has the same origin as the capacitive force, since
they are both related to the displacement-induced elec-
trostatic energy gain of a capacitor. When the resonator



Carbon nanotube
M (kg) k (N/m) wo/2m (Hz) |Q or Qu Description Reference
2.4-10° 1.7-10% at 300 K single-clamped multi-wall  |(Poncharal et al., 1999)
8.5-108 40 at 4 K double-clamped single-wall|(Reulet et al., 2000)
bundle
3107 - 107 D at ouble-clamped single-wa azonova et al.,
3.3-107% 4.107* 5.5-107 80 at 300 K double-clamped single-wall |(S 1., 2004)
4.8-107%2 1-1073 2.3-10% 2-10% at 6 K double-clamped single-wall |(Chiu et al., 2008)
5.3-107% 2.7-1072 3.6- 108 1.2-10° at 20 mK  |double-clamped single-wall |(Hiittel et al., 2009)
1.1-10% 4.2-10% at 4 K double-clamped single-wall |(Chaste et al., 2011)
3.9-10% 3.3-10% at 0.1 K double-clamped single-wall, | (Laird et al., 2012)
device produced once
5-1071° 5.1-1076 5.1-10° 250 at 300 K double-clamped single-wall|(Stapfner et al., 2013)
bundle
4.4.1072 5.2-107* 5.5-107 4.8-10% at 30 mK  |double-clamped single-wall |(Moser et al., 2014)
7.9-1071° 4.5-1078 3.8-10% 2.2-10% at 300 K |single-clamped single-wall |(Tavernarakis et al., 2018)
2.7-107% 8.9-107% 9.1-107 6.8-10°% at 70 mK  |double-clamped single-wall |(Urgell et al., 2020)
Semiconductor nanowire
M (kg) k (N/m) wo/2m (Hz) |Q or Qu Description Reference
2.3.107Y7 6.0 8.0-107 1.3-10% at 300 K double-clamped Si wire (Feng et al., 2007)
1.6-10717 4.6-1072 8.5-10° 1.0-10% at 300 K single-clamped GaN wire (Henry et al., 2007)
9.8-1071° 7.2-107% 4.3-10* 1.6 - 10° at 300 K single-clamped SiC wire (Perisanu et al., 2007)
1.6-10717 2.8-107° 2.1-10° 1-10* at 300 K single-clamped Si wire (Nichol et al., 2008)
5.5-1071¢ 0.1 2.2-10° 2-10% at 300 K single-clamped Si wire (Gil-Santos et al., 2010)
1.5-107%7 1 4.1-107 5-10% at 300 K double-clamped Si wire (Sansa et al., 2012)
3.5-1071¢ 1.5-1074 1.1-10° 2.9-10% at 300 K |single-clamped SiC wire (Gloppe et al., 2014)
3.5-1071° 8.6-107 7.9-10° 5.8-10% at 4.2 K single-clamped (Montinaro et al., 2014)
GaAs/AlGaAs wire
1-10716 14 5.9-107 2.8-10% at 16 K double-clamped InAs wire |(Mathew et al., 2015)
5.9-10"Y 6.8-107° 1.7-10° 59-10* at 4 K single-clamped Si wire (Sahafi et al., 2020)

TABLE II Figures of merit of mechanical resonators based on nanoscale systems

is made of a piezo-electric material, a piezo-electric force
is created by applying an electric field between two elec-
trodes, which are usually patterned on the resonator itself
(Fig. 2d) (Mahboob and Yamaguchi, 2008b; Masmanidis
et al., 2007).

Optical drive is also frequently used (Fig. 2e).
Photothermal forces are straightforward to apply to
nanoscale resonators. One needs simply to modu-
late the intensity of the laser focused on the res-
onator. Absorption-induced heating displaces the res-
onator through thermal expansion (Bunch et al., 2007).
Care has to be taken if one wants to keep the resonator
temperature low. This requires weak absorption. When
the absorption is sufficiently suppressed, the force from
the heating is overcome by the force traditionally asso-
ciated with radiation pressure that comes from the re-
flection of photons by the resonator. This force is often
small, but it has the advantage of not causing heating.
It is used in quantum optomechanics experiments where
losses are detrimental to the manipulation of quantum

states (Aspelmeyer et al., 2014b). Various optical excita-
tion protocols developed by now enable driving different
types of NVS vibrations, including the vibrations local-
ized at defects in phononic optomechanical crystals, see
MacCabe et al. (2020) and references therein.

Magnetic forces are usually used in magnetic reso-
nance force microscopy experiments to detect electron
and nuclear spins (Poggio and Degen, 2010). In some of
these experiments, the spins located on the mechanical
resonators are periodically flipped using magnetic res-
onance techniques; the associated time-modulated mag-
netic moment together with the magnetic field gradient of
a nearby magnet results in an oscillating force (Fig. 2f).
Alternatively, the magnet is placed on the mechanical
resonator and the spins on the surface of a chip.



Graphene
M (kg) k (N/m) wo/2m (Hz) |Q or Qu Description Reference
1.4-10718 0.3 7.0-107 78 at 300 K double-clamped monolayer |(Bunch et al., 2007)
7.8-10717 10 5.7-107 3-10% at 300 K multilayer graphene oxide|(Robinson et al., 2008)
drum
2.2-107'8 14 1.3-10% 1.4-10* at 5 K double-clamped monolayer |(Chen et al., 2009)
7.5-107 9-10% at 10 K double-clamped monolayer |(Zande et al., 2010)
1.9.-107'7 3 6.4-107 2.5-10% at 300 K double-clamped monolayer |(Singh et al., 2010)
3.9-1071° 0.35 1.5-108 1.0-10° at 90 mK  |double-clamped monolayer |(Eichler et al., 2011b)
2.2-10717 2.8 5.7-107 1.4-10% at 42 K double-clamped monolayer |(Song et al., 2012)
2.7-10716 14 3.6-107 2.2-10° at 14 mK  |multilayer drum (Singh et al., 2014)
7.9-10716 6.5-1072 1.4-10° 8.2-10% at 300 K |monolayer drum (Cole et al., 2015)
9.6-107'8 0.8 4.6-107 1.0-10° at 15 mK  |multilayer drum (Giittinger et al., 2017)
Semiconductor layer
M (kg) k (N/m) wo/27 (Hz) |Q or Q. Description Reference
2.6-107 1.1-10% at 300 K monolayer MoSs drum (Castellanos-Gomez et al.,
2013)
2.0-107 7.1-10% at 300 K multilayer MoS2 drum (Lee et al., 2013a)
2.2-107 41 at 300 K monolayer MoSz drum (van Leeuwen et al., 2014)
4.1-107 6.9 -10% at 300 K double-clamped MoS; bi-|(Samanta et al., 2015)
layer
2.3-10717 2.9 5.7-107 4.7-10* at 3.5 K monolayer WSes drum (Morell et al., 2016)
1.8-107 48 at 300 K multilayer MoS; drum (Davidovikj et al., 2017)
8.4-10° 2.1-10% at 300 K multilayer black phosphorus|(Islam et al., 2018)
drum
4.3-107Y 2.2 3.6-107 3.7-10* at 3 K monolayer MoSez drum (Morell et al., 2019)
Other layered crystals
M (kg) k (N/m) wo/2m (Hz) |Q or Qu Description Reference
1.8-10715 41 2.4-107 2.1-10% at 10 K double-clamped NbSez mul-|(Sengupta et al., 2010)
tilayer
3.7-10717 4.0 5.2-107 2.4-10% at 15 mK NbSez-graphene-NbSes (Will et al., 2017)
drum
1.5-107 690 at 300 K graphene-MoSez drum (Kim et al., 2018)
1.3-107%° 12 1.5- 107 9.3-10* at 20 mK  |Bi»Sr2CaCu20s,5 drum  |(Sahu et al., 2022)
Levitating particles
M (kg) k (N/m) wo/27 (Hz) |Q or Q. Description Reference
3.1-107" 1.1-107* 9.7-10% 2.1-10* at 300 K SiO» particle in optical trap|(Li et al., 2011)
3.1-107'8 1.7-1077 3.7-10% 1-107 at 300 K SiOs particle in optical trap|(Gieseler et al., 2012)
83.107Y 1.1-107° 1.8-10* 1.8 -10* at 300 K SiO» particle in optical trap|(Millen et al., 2015)
~1-10718 ~2.10710 2.1-10° 1.1-10% at 300 K charged particle in Paul trap|(Conangla et al., 2018)
~1-107%  |~7-1077 4.1-10? 9.2-10" at 542 K |diamagnetic particle in mag-|(O’Brien et al., 2019)
netic trap
~6-1071 ~7-107° 5.6-10" 2.1-10°% at 4.2 K ferromagnetic particle in|(Vinante et al., 2020)
Meissner trap

TABLE IIT Figures of merit of mechanical resonators based on nanoscale systems

D. Frequency control

The eigenfrequency wg of a flexural mode of an NVS
can be tuned by direct forces in two different ways. The

frequency depends on the static gradient of the force. In
the case of the capacitive force, the shift of the spring




Top-down nanofabricated resonators
M (kg) k (N/m) wo/2m (Hz) |Q or Qu Description Reference
5.6-107 6.5-107° 1.7-10° 6.7-10% at 4.8 K single-clamped Si beam (Stowe et al., 1997)
3.4-107Y 1.3-10° 1.0-10° 5-10% at 4.2 K double-clamped SiC beam |(Huang et al., 2003)
1.9-107%° 1.5 4.5-10° 2.1-10° at 300 K |double-clamped Si3N4 beam |(Verbridge et al., 2006)
1.4-10710 1-10° 1.4-10° 1.1-10° at 2.5 K double-clamped (Mahboob and Yamaguchi,
GaAs/AlGaAs resonator ~ [2008b)
3.3-1071¢ 6.3-10* 2.2-10° 2.7-10% at 300 K |optomechanical Si crystal |(Eichenfield et al., 2009)
7.7-107%° 1.2-108 2.10% ~1-10% at 300 K |GaAs/AlAs microcavity (Fainstein et al., 2013)
1.6-10712 6.7-1072 3.2.10* 1.5-10% at 3 K single-clamped diamond |(Tao et al., 2014)
beam
4-10712 3-1071 4.1-10* 4.5-107 at 300 K |SizN4 trampoline (Reinhardt et al., 2016)
1.4-10° 1-108% at 300 K SigNy tethered membrane |(Norte et al., 2016)
1.4-107 4.3-10* at 25 mK  |torque Si resonator (Kim et al., 2016)
1.6-10711 3.7- 102 7.7-10° 2.1-108% at 300 K Si3N4 membrane with engi-|(Tsaturyan et al., 2017)
neered mode
4.1-10715 1.1-1074 2.5-10% 1.6-10° at 0.14 K |single-clamped diamond | (Heritier et al., 2018)
ladder
~5-107% |~ ~2.5-10° ~1-10® at 300 K |Si3N4 nanobeam with engi-|(Ghadimi et al., 2018)
neered mode
1.0 - 107 2.6-10% at 300 K |Lamé-mode Si resonator (Rodriguez et al., 2019)
1.3-10716 1.5-10° 5.3-10° 4.9-10' at 7mK  |optomechanical Si crystal |(MacCabe et al., 2020)
~1-107%° |~ 3 3-10° 1.2-10% at 20 mK  |double-clamped Si beam  |(Zhang et al., 2020b)

TABLE IV Figures of merit of mechanical resonators fabricated from bulk material with the top-down approach.

constant is given by

oF

1 1!
= _icg (VgDC)z' (9)

Usually Cf = 02Cy/0¢* > 0 and a dc gate voltage di-
rectly leads to an electrostatic softening of a resonator
(Eichler et al., 2011b; Kozinsky et al., 2006; Solanki et al.,
2010; Stiller et al., 2013; Wu and Zhong, 2011).

In addition, the eigenfrequency can be tuned by the
dc force via the change of the equilibrium position and
the associated elongation of the resonator. Through non-
linear elasticity, such a change modifies the mechanical
tension in the resonator. This effect leads to an increase
of the frequency. The mechanism is broadly used with the
capacitive force for frequency control in soft resonators,
such as carbon nanotubes (Purcell et al., 2002; Rechnitz
et al., 2021; Sazonova et al., 2004). Overall, the effect
of the gate voltage on the mode eigenfrequency depends
on the geometry and the mode polarization (Kozinsky
et al., 2006). Piezo-actuators can also be used to tune
wp by enhancing the separation between the supports of
a doubly clamped resonator; using this technique, the
eigenfrequency of a carbon nanotube could be increased
more than 20 times (Ning et al., 2014).

Time-dependent frequency control is important for
various applications, such as parametric drive. In the
case of frequency control with the capacitive force, the

eigenfrequency can be modulated in time using a com-
bination of dc and ac gate voltages (Rugar and Griitter,
1991). An alternative and highly efficient approach is
based on time-dependent piezo-electric actuation (Yam-
aguchi, 2017).

E. Detection of displacement

The detection of motion becomes increasingly diffi-
cult when resonators get smaller. A variety of meth-
ods has been developed to address the problem. The
most broadly used methods are based on magnetomo-
tive, capacitive, and optical or microwave measurements.
Other methods include piezo-electric (Mahboob and Ya-
maguchi, 2008b; Masmanidis et al., 2007), piezo-resistive
(He et al., 2008; Lee et al., 2013b), scanning probe mi-
croscopy (Garcia-Sanchez et al., 2007), scanning and
transmission electron microscopy (Buks and Roukes,
2001; Nigues et al., 2015; Tsioutsios et al., 2017), and
field-emission (Purcell et al., 2002) measurements.

The capacitive method relies on the motion-induced
modulation of the capacitance §Cy between a conducting
resonator and a nearby gate. Modulation of the capaci-
tance in the presence of a gate voltage VgDC leads to the
charge modulation 6Q) = 0C, - VgDC. Where the vibrating
resonator acts as a field-effect transistor, its conductance



oscillates as 6G = g—géQ. This causes a change of the cur-

rent through the resonator 61 = §G - §Viq in response to
a voltage dVyq applied across it. When §Vq is oscillating
at frequency wsq close to wy, the current can be conve-
niently measured at a low-frequency ~| wsg — wg |. This
method was first applied to a GaAs resonator supporting
a single-electron transistor made of aluminium (Knobel
and Cleland, 2003) and to nanotube resonators (Gout-
tenoire et al., 2010; Sazonova et al., 2004). Yet another
way to measure the oscillating capacitance is based on
embedding a conducting nanoresonator into a supercon-
ducting cavity and measuring its radio-frequency reflec-
tion and transmission (Blien et al., 2020; Rocheleau et al.,
2010; Singh et al., 2014; Song et al., 2014; Teufel et al.,
2008; Weber et al., 2014; Zhou et al., 2021). A similar
method can be used with a dielectric resonator by in-
tegrating it with a nearby electric cavity (Faust et al.,
2012a).

In the optical frequency range, high-precision vibra-
tion detection is often based on interferometry. Vibra-
tions of a nanoresonator embedded in an optical cavity
can be detected from the modulation of the resonant fre-
quency of the cavity measured by its transmission or re-
flection (Aspelmeyer et al., 2014b). Another method is
based on focusing a laser beam onto the resonator and
detecting the modulation of the reflected or scattered
light (Carr and Craighead, 1997; Gloppe et al., 2014;
Yeo et al., 2013). Here we describe in more details op-
tical detection of the vibrations of graphene-based res-
onators, a method used by many groups to detect vibra-
tions of monolayer- and few-layer systems (Barton et al.,
2012; Castellanos-Gomez et al., 2013; Lee et al., 2013a;
Reserbat-Plantey et al., 2012). The laser beam illumi-
nates a graphene membrane suspended over a metal gate.
When the graphene monolayer is covered by an adsorbed
contamination layer, an optical cavity is created between
the monolayer and the gate, and the vibrations modu-
late this cavity. In contrast, in the case of a clean mono-
layer, a standing wave is formed by the interfering inci-
dent and reflected laser beams with the reflection from
the metal gate. A clean graphene monolayer does not
affect the standing wave much, since its reflection coef-
ficient is small. In contrast, the absorption coefficient
of graphene is about 0.02 for visible light, which is a re-
markably large value considering that the material is only
one atom thick. The displacement of the graphene layer
changes the absorbed intensity. Therefore, the motion
of the graphene resonator can be measured by recording
the reflected light intensity.

Optical detection of micro-mechanical systems has at-
tracted much interest in the context of improving the
sensitivity of LIGO detectors of gravitational waves, as
these detectors are also based on vibrational systems.
One of the important challenges is reducing the photon
counting noise and the photon radiation pressure noise.
It can be addressed using squeezed states of light, and
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the experimental results on measuring a micromechan-
ical membrane with squeezed light have been recently
reported (Kleybolte et al., 2020).

1. Quantum regime

Significant progress has been made on detecting small
displacements that occur where a nano- or micro-scale
vibrational system is in the quantum regime, in which
case the vibration amplitude is o A'/2. Detecting vi-
brations and characterizing their energy distribution in
this regime is one of the central problems of quantum
optomechanics. An important approach is based on illu-
minating an optical or a microwave cavity that contains a
nanoresonator and measuring the spectrum of the emit-
ted radiation. This spectrum contains lines shifted from
the incident light frequency by the frequency of the vibra-
tional mode. The ratio of the intensities of the lower- and
higher-frequency lines, i.e., of the Stokes and anti-Stokes
components, is determined by the effective temperature
of the mode (Aspelmeyer et al., 2014b; Clark et al., 2017;
Deli¢ et al., 2020; Kippenberg and Vahala, 2008; Pfeifer
et al., 2016; Reed et al., 2017; Riedinger et al., 2016;
Tebbenjohanns et al., 2020; Teufel et al., 2011). A de-
tailed information about the vibrational quantum state of
mechanical modes can be obtained by connecting these
modes to a qubit (Arrangoiz-Arriola et al., 2019; Chu
et al., 2018; O’Connell et al., 2010; Satzinger et al., 2018).

Mechanical resonators in the quantum regime open
new directions of research, including quantum squeez-
ing of the mechanical motion (Lecocq et al., 2015;
Pirkkalainen et al., 2015b; Wollman et al., 2015),
measurement-based quantum control of mechanical mo-
tion (Rossi et al., 2018; Wilson et al., 2015), quantum
backaction evading measurements (Moller et al., 2017;
Ockeloen-Korppi et al., 2016; Suh et al., 2014), entan-
glement between mechanical resonators (Kotler et al.,
2021; de Lépinay Mercier et al., 2021; Ockeloen-Korppi
et al., 2018; Riedinger et al., 2018; Wollack et al., 2022),
and fundamental measurements with levitating particles
cooled to the ground state (Delié¢ et al., 2020; Magrini
et al., 2021; Tebbenjohanns et al., 2021).

F. Measurement of the spectral response

The measurement of the spectral response is the most
common method to study mechanical resonators. This
response provides the important characteristics of a res-
onator. They include the resonant frequencies of the
eigenmodes, their spectral bandwidth Aw, and the qual-
ity factor @, introduced in Eq. (7). There are two ma-
jor approaches to measuring the spectral response. One
of them is based on applying an oscillating force to the
resonator, sweeping the frequency of the force, and mea-
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FIG. 3 Power spectrum S(w) of a single-clamped resonator
based on a SiC nanowire measured optically at 300 K. The
spectrum formed by the three lowest-frequency eigenmode
“families” are shown. Each mode family is composed of two
peaks (see inset), which correspond to the two eigenmodes
that vibrate in perpendicular directions. The peaks allow de-
termining the mode eigenfrequencies and the @Q,, factors. The
noise floor of the spectrum quantifies the displacement sensi-
tivity of the detection. Adapted from Gloppe et al. (2014).

suring the displacement of the resonator with a lock-in
amplifier. This gives the mechanical susceptibility, x (w),
as discussed in Sec. IT.A.

The other approach is to measure the power spectrum
S(w), i.e., to measure the spectrum of the displacement
that results from thermal and quantum fluctuations with
no regular external force applied. The power spectrum
is measured by simply feeding the output signal of the
resonator detector into a spectrum analyser. In practice,
the power spectrum is often more difficult to measure
than the spectrum of response to a periodic drive, es-
pecially when no care is taken to reduce the noise in
the measurement circuit. Figure 3 shows the measured
power spectrum of a cantilever based on a SiC nanowire
featuring different eigenmodes.

I1l. SENSING AND CLOCKS

Nanomechanical resonators have attracted consider-
able interest due to remarkable sensing capabilities. Be-
cause of their small mass, such resonators are exquisite
sensors of external forces and mass deposition. We de-
scribe here the basics of sensing. Nanomechanical res-
onators are also used as clocks in commercial products.

A. Force sensing

Force sensing consists in converting a weak force into
a displacement that is then measured by electrical or
optical means. The linear response of the displace-
ment ¢(t) to an external force F coswt is given by
the mechanical susceptibility x(w). If the noise is dis-
regarded, the force-induced displacement increment is
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dq(t) = Relx(w)F exp(—iwt)]. The detection of an os-
cillating force is optimized by matching its frequency to
the mechanical eigenfrequency, where |x(w)| is maximal.

The measured displacement is a superposition of the
displacement induced by the force and thermal vibra-
tions, i.e., a superposition of the signal and noise, respec-
tively (Fig. 4a). The fundamental limit of force sensing
is set by the condition that the signal exceeds the ther-
mal noise. Quantitatively, this limit can be characterized
by noting that, by its meaning, the power spectrum of
the mode S(w) is the mean-square thermal displacement
at frequency w per unit frequency. At the same time,
it follows from the definition of the susceptibility y(w),
Eq. (4), that the squared displacement induced by a reg-
ular force F coswt and averaged over the force period is
(69)2 = |x(w)|?F?/2. The ratio of these displacements
Sp(w) = 28(w)/|x(w)|? shows how strong should the
force be so that it be can be detected with a signal-to-
noise ratio equal to 1.

The ratio Sp(w) takes a particularly simple form in
the important case where the power spectrum of the vi-
brations has a Lorentzian peak at the vibration eigen-
frequency wy with halfwidth Aw < wq, see Sec. IX.B.
For such a spectrum, to the leading order in Aw/wg the
resonant susceptibility is

1

_ T 1
_2Mwo[Aw i(w—wo)] ™7,

Aw, |w — wp| <K wo,

(10)

x(w)

cf. Eq. (5). Then in the same range |w — wo| <K wy

4/€BTMWO
Qu

The function Sg(w) is independent of frequency over
the whole range of the peak in the spectrum of the
resonator, that is, beyond the region |w — wp| < Aw.
Such broad-band force sensing is somewhat non-intuitive,
given that the force response of the displacement is
strongly frequency-dependent. We emphasize that force
sensing can be comparatively broadband even for high-Q)
resonators. Forces with frequencies far away from other
resonances can be detected provided that thermal noise
and imprecision noise in the displacement detection are
low enough.

Equation (11) suggests a strategy for detecting tiny
forces. The best force sensitivity has been achieved with
carbon nanotubes, which are the operating resonators
with the smallest mass, v/Sr = (4.342.9) x 107 2'N/v/Hz
(de Bonis et al., 2018). Resonators based on silicon car-
bide nanowires can reach /Sp = 4.0 x 1072°N/v/Hz
(Fogliano et al., 2021). Resonators microfabricated from
bulk material are often more handy to use as sen-
sors; their sensitivity has reached /Sr = (1.9 £ 0.6) x
10~'"N/+/Hz (Heritier et al., 2018). Fluctuations of the
nanoresonator frequency worsen the force sensitivity in

Sr(w) = 8kgTMAw = (11)



Eq. 11, as they widen the mechanical linewidth and de-
crease the associated quality factor Q. (Moser et al.,
2013).

The transduction of the mechanical vibrations into a
measurable electrical or optical output signal is challeng-
ing with small resonators. The transduction can deterio-
rate the force sensitivity by adding noise. This so-called
imprecision noise is quantified by the noise floor in the
spectral measurement of a resonator (Fig. 4a).

Figure 4b shows a force sensing experiment of nu-
clear spins (Poggio et al., 2007). The nuclear spins of
9F atoms in a CaFy crystal are detected by attaching
the crystal to a microcantilever. The nuclear spins are
flipped back and forth at the mechanical resonant fre-
quency. The associated time-modulated magnetic mo-
ment together with an applied magnetic field gradient
creates a force that drives the microcantilever. The mea-
sured power spectrum of the vibrations in Fig. 4b shows
a narrow peak associated with the spins on top of the
broad resonance of the thermal vibrations of the micro-
cantilever. The goal of such experiments is to achieve
magnetic resonance imaging with atomic resolution (De-
gen et al., 2009; Nichol et al., 2013).

Force sensing has been used with great success in
recent advances in various fields. These include the
Casimir force (Chan et al., 2001, 2008a; Gong et al.,
2021; Klimchitskaya et al., 2009; Liu et al., 2021a), nano-
magnetism (Forstner et al., 2012; Losby et al., 2015;
Rossi et al., 2019), scanning probe microscopy imag-
ing of vectorial forces (de Lépinay et al., 2016; Li
et al., 2007; Rossi et al., 2016), light-matter interac-
tion (Gloppe et al., 2014), persistent currents in normal
metal rings (Bleszynski-Jayich et al., 2009), and detect-
ing a phonon flux in superfluid *He (Guénault et al.,
2020).

B. Mass sensing

Mass sensing relies on monitoring how the eigenfre-
quency of a nanomechanical resonator changes when an
additional mass is adsorbed onto its surface. Most ex-
periments are done with flexural modes (Ekinci et al.,
2004; Yang et al., 2006a). If one assumes that this mass
Madq 1s uniformly distributed over the resonator, the res-
onator itself is uniform, and m,qq is small compared to
the resonator mass Myvsg, then the relative change of the
resonator eigenfrequency is

dwo/wWo = —Madd/2Mnvs. (12)

As an example, Fig. 5a shows a series of downward shifts
in wg consistent with single adsorption events of naph-
thalene molecules onto a nanotube resonator.

There are different methods of monitoring the eigenfre-
quency. The simplest one relies on driving the resonator
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FIG. 4 (a) Sensing of a coherent external force using spec-
tral measurements. The power spectrum has contributions
from driving-induced displacement, thermal vibrations, and
the imprecision in the vibration detection. The signal to be
detected is the narrow peak at the frequency of the external
force. The integration time 7 required to resolve this peak
can be obtained by setting the resolution bandwidth A frew
of the spectrum analyzer so that the signal-to-noise ratio is
one, 7 = 1/Afrew. The peak height of the coherent external
force in the spectrum gets larger as Afrew is reduced. The
effect of frequency noise is disregarded. (b) Power spectrum
of the vibrations of a microcantilever in the force sensing of
nuclear spin experiments. The signal induced by the periodi-
cally driven spins is the narrow peak. The imprecision in the
vibration detection is negligible in this experiment. Figure
adapted from Poggio et al. (2007).

slightly off resonance while recording the vibration am-
plitude with a lock-in amplifier. A change in the eigenfre-
quency results in a change of the displacement amplitude
A (Fig. 5b). The resonator settles to new amplitude and
phase over the decay time. The frequency shift can be
quantified from the measured change of A using the slope
of the mechanical susceptibility at the drive frequency.
Implied in the analysis is that the adsorbed mass does
not change over the duration of the measurement, which
itself exceeds the decay time; however, the analysis can
be also extended to the case where adsorbates attach
and detach with a rate comparable to the relaxation rate
(Dykman et al., 2010).

Phase-locked loop measurements are also often used
to track the resonant frequency in mass sensing experi-
ments. The method was first developed for high-@Q can-
tilevers in atomic force microscopy (Albrecht et al., 1991).
It was used for faster detection of the frequency shift com-
pared to the method discussed in the previous paragraph.
However, a phase-locked loop is efficient when the impre-
cision noise in the detection of the displacement is small
compared to the driven vibration amplitude; this is often
hard to achieve for small resonators, such as nanotube
resonators measured capacitively.



Mass spectrometry of molecules and nanoparticles re-
quires overcoming the assumption of the uniform distri-
bution of the adsorbed mass over the resonator. This
can be achieved by tracking the resonant frequency of
several flexural eigenmodes (Hanay et al., 2012, 2015).
The method utilizes the fact that the resonant frequency
shift induced by an adsorbed molecule depends both on
its mass and its position on the resonator. The frequency
shift of an nth eigenmode due to a particle attached to a
point R on the surface of a nanoresonator is

6wn(R)/wn = —maddcpi (R)/2Mst. (13)

Here, ¢,,(R) is the dimensionless displacement of the res-
onator at the point R due to the nth eigenmode, see Eq.1.

The frequency shift is the largest when the molecule
is located at the antinode of the eigenmode, where its
vibration amplitude is maximal, while it is equal to zero
when the molecule sits at a node. The more modes can
be measured, the better is the resolution of the mass of
the absorbed molecule and of its location.

Figure 5c shows how the measured eigenfrequencies
of a microcantilever get reduced due to adsorption of
100 nm diameter gold nanoparticles (Malvar et al., 2016).
Quasi-instantaneous jumps are simultaneously observed
in the frequencies of the first three flexural modes when
a single nanoparticle is adsorbed. The frequency shift
is different for the three modes, since it depends on the
nanoparticle location. The data analysis gives an average
nanoparticle mass of 11.6 &+ 3.8 fg.

The exceptional sensing capabilities of mechanical res-
onators enabled advances in many directions. These
include characterizing analytes using mass spectrom-
etry (Hanay et al., 2015; Malvar et al., 2016; Sage
et al., 2018), the detection of large-mass biologi-
cal particles that cannot be probed with commercial
mass spectrometers based on mass-to-charge ratio mea-
surements (Dominguez-Medina et al., 2018), weighing
biomolecules and single cells in fluid using microchan-
nels integrated in resonators (Burg et al., 2007), gas
chromatography (Li et al., 2010; Venkatasubramanian
et al., 2016), probing density and viscosity of liquids (Gil-
Santos et al., 2015), the diffusion of adsorbed atoms on
the surface of a resonator (Yang et al., 2011), the for-
mation and transitions between solid- and liquid-phase
monolayers of adsorbed atoms (Tavernarakis et al., 2014;
Wang et al., 2010), properties of helium superfluid thin
films (Guénault et al., 2019; Noury et al., 2019; Sachkou
et al., 2019), and in-situ nanofabrication (Gruber et al.,
2019).

The mass resolution of a resonator is limited by fre-
quency fluctuations. As we will see in Sec. IX, there is
a fundamental limit on how small frequency fluctuations
and the mass resolution can be. This fundamental limit
in the linear regime is related to the thermal displacement
noise. It was found that, for some resonators, to improve
mass sensing in a linear regime one may want to decrease
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FIG. 5 (a) Sensing of the adsorption of naphthalene molecules
onto a nanotube resonator by monitoring the resonant fre-
quency as a function of time at 4.3 K. Each shift in the reso-
nant frequency is associated with adsorption of one molecule.
The suspended nanotube is ~ 150 nm long and its fundamen-
tal mode vibrates at 1.8 GHz. The figure is adapted from
(Chaste et al., 2012). (b) Mass sensing associated with one
adsorption event. The resonator is driven at the frequency
wr. The change in the resonant frequency due to the ad-
sorption event results in the increase of the driven vibration
amplitude. (c) Real-time record of the eigenfrequencies of the
first three flexural modes of the microcantilever exposed to a
flux of gold nanoparticles. Adapted from Malvar et al. (2016).
Similar measurements were carried out with protein macro-
molecules (Hanay et al., 2012) and E. coli bacteria (Malvar
et al., 2016).

the @ factor (Roy Swapan et al., 2018). It was proposed
to further increase mass sensitivity by driving a nanores-
onator into a nonlinear regime and using the squeezing of
thermomechanical fluctuations (Buks and Yurke, 2006).
Mass sensing measurements in the nonlinear regime has
recently been performed by Yuksel et al. (2019).

On the practical side, of particular importance are
comparatively slow frequency fluctuations, with the cor-
relation time comparable or exceeding the decay time.
Identifying the origin of such fluctuations is usually dif-
ficult. For instance, they can arise from the diffusion of
atoms over the resonator surface (Atalaya et al., 2011a,b;
Yang et al., 2011), the electrostatic interaction between
the resonator and trapped charges in the substrate (Siria
et al., 2012), and temperature drifts that modify the res-
onator stress. Slow frequency fluctuations are usually
quantified using the Allan deviation. Their mechanisms
and the Allan deviation are discussed in Sec. IX. These
frequency fluctuations can be reduced, which has enabled
reaching mass resolution (1.740.5) x 10727 kg with a 2 s



integration time; it has been achieved with a nanotube
thanks to its extremely small mass (Chaste et al., 2012).
This mass resolution is comparable to the mass of one
proton.

C. Photothermal-based sensing

Nanoresonators can be used for several kinds of sens-
ing based on light absorption. The experiments are done
using resonators with tensile stress. The underlying idea
is that photon absorption causes heating; the associated
thermal expansion reduces the stress, changing the me-
chanical frequency of the resonator. Because the fre-
quency can be detected with high accuracy, these ex-
periments are exquisitely sensitive, with the sensitivity
limited by frequency fluctuations, as in the case of mass
sensing. Such photothermal sensing enables optical ab-
sorption spectroscopy of single particles and molecules
located on the resonator (Larsen et al., 2013), high-
precision single-molecule imaging (Chien et al., 2018),
high-speed detection of electromagnetic radiation with
graphene nanomechanical bolometers (Blaikie et al.,
2019), and thermal transport measurements of phonons
in MoSe,; monolayer drums through the detection of the
thermal gradient over these suspended devices (Morell
et al., 2019).

D. Clocks and clock-based systems

Mechanical resonators are used with great success as
ultrastable timing references. Although these resonators
are mostly produced at the micro-scale, we would like
to mention them as they have an important technolog-
ical impact on our society. The current generation of
these devices utilizes silicon technology with a wafer-
encapsulation process to keep the self-sustaining oscil-
lators in vacuum (Kim et al., 2007). They can be now
found in nearly all mobile phones, for example. One of
the leading manufacturers, SiTime, report clocks for mo-
bile and other battery powered devices with +3 ppm fre-
quency stability over the industrial temperature range
between —40 °C and +85 °C, while the power consump-
tion is kept low, below 5 uW (Zaliasl et al., 2015). Tele-
com applications require still better clocks, and there
has been achieved frequency stability < +0.1 ppm and
the Allan deviation about 8 x 10~!! at 1 s integration
time in the temperature range between —45 °C and
+105 °C (Roshan et al., 2016).

Nanoscale electromechanical resonators have also been
used as self-sustained oscillators. The challenge is to
integrate the device in an electrical circuit, so that it
produces a continuous high-frequency signals when pow-
ered by a DC input in the feedback loop. The vibrations
are transduced into an electrical signal that is amplified
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with an adjustable gain and phase before being fed back
to the resonator. The difficulty is to obtain a sizeable
electrical signal with minimum imprecision noise added
by the transduction of the vibrations. A frequency sta-
bility of £2 ppm was demonstrated in a single-crystal
SiC electromechanical resonator, albeit over a short test
time, less than 1000 s (Feng et al., 2008). Interesting
approaches to suppressing the noise which are based on
using a resonator in the nonlinear regime near bifurca-
tion points of the response to an external drive have been
proposed by Greywall et al. (1994), Yurke et al. (1995),
Kenig et al. (2012), and Kenig et al. (2013), and the
possibility to go beyond the limit imposed by the ther-
momechanical noise was demonstrated (Villanueva et al.,
2013).

IV. FLUCTUATION-DISSIPATION THEOREM AND THE
REACTION FORCE FROM THE THERMAL BATH

A simple general model that leads to the Brownian dy-
namics (2) is based on the assumption that the nanores-
onator is an oscillator coupled to a thermal bath and
that the coupling is linear in the oscillator coordinate. In
this section we describe the connection between the phe-
nomenological theory (2) and a microscopic theory. We
specify the conditions of applicability of the phenomeno-
logical description, where the friction force is determined
by the instantaneous value of the velocity and where the
noise can be described as d-correlated in time (the Marko-
vian approximation). We then show that, for resonators
with a high @ factor, a significantly less restrictive for-
mulation can be developed, if one is interested in the
dynamics of the vibration amplitude and the slow part
of its phase. Such dynamics is Markovian on times that
largely exceed the vibration period even where the model
(2) is inapplicable. The analysis provides an expression
for the decay rate I' in terms of the parameters of the
thermal reservoir, and also shows that the frequency of
the mode is changed as a result of the coupling and can
become temperature-dependent. The formulation imme-
diately extends to the case where the mode dynamics is
quantum.

A. Coupling of the oscillator to a thermal bath

The description of dissipation of the oscillator is based
on the picture in which the oscillator is coupled to a
system with many degrees of freedom. In particular,
a nanomechanical mode is coupled to phonons in the
nanoresonator and in the substrate that supports the
nanoresonator, to the electronic degrees of freedom, to
an extended set of two-level fluctuators, and so on. The
many-degrees-of-freedom system coupled to the oscillator
can be usually thought of as a thermal bath. The lead-



ing term in the expansion of the coupling energy in the
oscillator coordinate ¢ is linear in ¢ and can be written
as

Hi = qhba (14)

where h}, depends on the dynamical variables of the bath
only. It gives the force F;, = —hy, that the bath exerts
on the oscillator. Because of the large number of the
dynamical variables, the excitation spectrum of the bath
is (quasi)continuous. The form of the function hi, de-
pends on the particular type of the bath. For example,
if the bath is formed by phonons in the resonator or the
substrate, typically hy is a series in the phonon coordi-
nates. The nonlinear terms in this series are behind such
familiar mechanisms of dissipation of a nanomechanical
mode as the thermoelastic, Landau-Rumer, and Akhiezer
relaxation, see Sec. V. A.

To formally describe the dynamics of the mode and the
bath we assume that for ¢ -+ —oo they are uncoupled and
the bath is in thermal equilibrium. Because the bath is
“big”, it is only weakly perturbed by the coupling once
the latter is turned on. The response of the bath can
be then described by the linear response theory (Landau
and Lifshitz, 1980),

hio(£) = B () + SR (£). (15)

Here, hl(jo) (t) is the function hy, in the absence of the cou-

pling. The force —h](oo) (t) describes the effect of thermal
fluctuations of the unperturbed bath on the oscillator.
It is a random force, and it can be chosen to have zero
mean, <h£0) (t)) =0.

The term 0hy(t) is the perturbation caused by the cou-
pling. When averaged over the fluctuations of the bath,
it can be written as

o0
wumz—/ WX )gt—t).  (16)
0

Function X, (t) is the generalized susceptibility of the
bath with respect to the oscillator coordinate q. Equa-
tion (16) is just an expression of the causality principle:
the response of the bath at time ¢ depends on the values
of ¢ at earlier times.

Because the bath is in thermal equilibrium, its suscep-
tibility and fluctuations are related by the fluctuation-
dissipation theorem (FDT). This relation has the form

Sp(w) = 2h[A(w) + 1] Im xp(w), (17)
where x1,(w) is the Fourier transforms of the susceptibil-

ity Ay (t) [see Eq. (AT)], Sp(w) is the power spectrum of
the bath fluctuations,

Sue) = [ a0, (0 = POV O, (1)
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and n(w) = [exp(hw/kpT) — 1]71 is the thermal occupa-
tion number of vibrations at frequency w. The real and
imaginary parts of xp(w) are related by the Kramers-
Kronig relation. Therefore Eq. (17) fully defines the bath
susceptibility in terms of the power spectrum Sp(w).

To the leading order in the coupling, one is tempted to
replace 0hy(t) in Eq. (15) with (6hy,(¢)). Then the force
from the bath on the mode takes the form

Fy(t) = BV (6) = b (1), RV () = —(0h(t).  (19)

The term Fér) (t) is the reaction force from the bath. It re-
sults, as seen from Eq. (16), from the perturbation of the
bath by the oscillator and depends on the oscillator coor-
dinate. The reaction force is often called the backaction
(Clerk and Bennett, 2005; Clerk et al., 2010; Kippenberg
and Vahala, 2008). It is reminiscent of the backaction
in the theory of quantum measurements, which describes
the effect of the measuring apparatus on the measured
quantum system and comes from the interaction between
the apparatus and the system, cf. the Heisenberg micro-
scope (Heisenberg, 1927). We note that the force Fb(.r) (t)
emerges not only in the quantum, but also in the classical
description of the dynamics.

From Eq. (16), the force Fér)(t) is retarded: it depends

on ¢(t') with ¢’ < t. One should keep in mind that Fér) (t)
is an approximation of the reaction force. It relies on the
perturbation theory, and one should make sure that the
perturbation theory holds for long times on the order of
the lifetime of the considered vibrational mode.

In the classical theory, the above approximation for
the reaction force applies in the important case where
the power spectrum Sy (w) of the thermal noise is almost
constant for frequencies ranging from much smaller to
much larger than wy. When the power spectrum is flat,
the noise correlation function fh](ao) (t) is approximately

a o-function, hl(ao) (t) o< §(t). This means that the noise
part of the force from the bath Fj, is a white noise. One
can show that the backaction part of Fj,(t) has then a
term o —dq(t)/dt, see Appendix A.3. This maps the dy-
namics of the mode onto the phenomenological equation
of Brownian motion (2). In the quantum theory, the case
was studied by Caldeira and Leggett (1981) for the bath
being a set of harmonic oscillators and Ay, being linear in
the coordinates of these oscillators. It was called Ohmic
dissipation.

B. Brownian motion of the complex vibration amplitude

For an NVS mode, the analysis of the effect of cou-
pling to a thermal bath can be extended to a significantly
broader situation using that the mode decay rate I' is
small compared to the eigenfrequency wqg or, equivalently,
the Q-factor is large. The approach we will describe al-
lows one also to study nonlinear effects. In addition, it



allows avoiding the assumptions of the Ohmic dissipa-
tion model. The underlying physics is that a mode with
a large @ factor is a “filter”. It is sensitive primarily
to perturbations in a narrow frequency range around the
eigenfrequency wg. In particular, it is sensitive to the
bath fluctuations in this frequency range. Of primary in-
terest therefore is the amplitude and phase of the mode.

A natural approach to the analysis of the dynamics is
offered by the Krylov-Bogoliubov method of averaging
(Bogoliubov and Mitropolsky, New York, 1961; Kryloff
and Bogoliuboff, Princeton, 1947). Here, the first step
is to switch from the fast-oscillating coordinate ¢(t) and
momentum p(t) of the mode to two new variables, the
complex amplitude u = u(t) and its conjugate,

q(t) = u(t) exp(iwot) + u*(t) exp(—iwot),
p(t) = iMwo[u(t) exp(iwgt) — u* (t) exp(—iwpt)]. (20)

The real and imaginary parts of u(t) have a simple
physical meaning. They are just the quadratures of
the vibrations: if we write the mode displacement as
q(t) = A(t) coslwot + ¢(t)], then Re u(t) = $A(t) cos ¢(t)
and Im u(t) = 1 A(t) sin ¢(¢).

In the absence of coupling to a thermal bath, the mode
oscillates at frequency wg with constant amplitude and
phase, and then u(t) = const. Because of the coupling,
u(t) will vary in time, but for weak coupling the change
over the vibration period 27 /wy will be small. This can
be used to show that, in “slow” time compared to 27 /wq,
one can disregard retardation of the reaction force. This
means that the value of Fér) (t) at time ¢ is determined by
the value of u(¢) at the same time ¢, see Eq. (A8). Then
taking into account the explicit expressions for the reac-
tion force (A8) and the thermal noise h}()o)
see Appendix A.2

(t), we obtain,

i = —(T — iPyu + £(1). (21)

Here the term £(t) = (i/ZMwo)h}(jo)(t) exp(—iwpt) de-
scribes the noise that comes from the fluctuations in the
thermal bath. The meaning of the parameters I' and P is
seen from the solution of Eq. (21) for the regular part of
the complex amplitude, (u(t)) = (u(0)) exp[—(T" — i P)t].
When combined with Eq. (20), it shows that T' is the
decay rate of the vibrations, whereas P is the change
of their frequency due to the coupling to the bath,
wo — wo + P, i.e., P is an analog of the polaronic effect
for a vibrational system. Both I' and P are expressed
in terms of the bath susceptibility x1(w) at the mode
eigenfrequency (Appendix A.2),

Im xp (wo) Re xb(wo)
r=——— P=—-——"- 22
2MWO ’ QMCLJO ( )
With the account taken of Eq. (17), the decay rate T’
is also simply expressed in terms of the power spectrum
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Sh(wp) of the random force exerted by the bath. In the
classical limit kT > hwy we have

[ = (4MkgT) ™Sy (wo) (23)

We will use this expression below in the analysis of the
decay of nanomechanical modes due to their coupling to
phonons, two-level fluctuators, and electrons.

As seen from Eq. (22), both the decay rate I' and the
frequency shift P depend on temperature. The tempera-
ture dependence of P is a simple microscopic mechanism
of the temperature dependence of the measured eigenfre-
quency of NVSs, and this dependence can be determined
from the experimentally measured power spectrum or the
response curves. For a carbon nanotube, such measure-
ments were reported by Tepsic et al. (2021). In what
follows, we incorporate P into the definition of wy, i.e.,
replace wg — wo + P.

The noise £(t) in Eq. (21) is Gaussian and zero-mean.
It is d-correlated in the “slow” time compared to the
vibration period 27/wy and the time over which bath
correlations decay,

(€ (&) = (CkpT/Mwy)d(t — 1), (24)

whereas the correlator (£(¢)£(t')) and its complex conju-
gate can be disregarded (Appendix A.2). It is seen from
the simple relations (21) - (24) between the decay rate
of the mode and the noise from the thermal bath that
the stationary distribution of the mode is the Boltzmann
distribution, and (|u|?) = kpT/2Mw3.

The time evolution of the complex oscillator amplitude
described by Eq. (21) is Markovian. There is no delay,
the response of the bath is instantaneous in slow time.
The corrections disregarded in Egs. (21) and (24) are
small if the bath susceptibility xp(w) weakly varies with
w in a comparatively narrow band centered at wg. The
width of this band is determined by the time dependence
of u(t) and is ~ T, | P|. It is small compared to wy and to
the reciprocal correlation time of fluctuations in the bath
at frequency ~ wp. This is in contrast with the model of
the Brownian motion described by Eq. (2), which requires
near constancy of yp(w) in the frequency band broader
than wy.

We reiterate that the Markovian equation of motion
(21) is an approximation. Its applicability has to be
checked and the expressions for the decay rate and the
polaronic frequency shift have to be derived using a mi-
croscopic model of the bath and the coupling.

C. Quantum description of the mode dynamics
The above analysis can be immediately extended to the

quantum regime. In quantum terms, functions u(t), u*(t)
become operators, with «* understood as u'. They are



just the operators % [q(t)Fip(t)/Muwo] exp[Fiwot] of a har-
monic oscillator in the Heisenberg representation and are
simply related to the ladder operators a' and a, with

u(t) = (h/2Mwo) ' ?at (t)e ™0t
[u(t), u' (t)] = —h/2Muwy. (25)

The equation of motion for u(t) (21) is linear. It ap-
plies not only in the classical case, but also in the case
where u(t) is an operator, becoming a quantum Langevin
equation. Importantly, the noise £(t) in this formulation
is an operator, too, and the operators £(t) and £7(t) do
not commute (¢7 replaces ¢*). In particular, with the
account taken of Eq. (17) we have instead of Eq. (24)

(T @)E)) ~ e FeTig()e!(t'))
~ [h(f + )T /Mwold(t — ) (26)

where 1 = 7(wp) is the thermal occupation number of
the mode.

The non-commutativity of &(¢) and ¢7(¢) is important.
Indeed, the mean values (u(t)) and (uf(t)) decay in time.
However, the commutation relation between wu(t) and
u'(t) should be independent of time. Using Eq. (26) for
the noise correlators, one immediately finds from Eq. (21)
and the conjugate equation for uf that ([u(t),u'(t)]) re-
mains constant.

On the formal side, the approximations made in de-
riving the equations of motion (21) - (26) and the equiv-
alent master equation (see Appendix B) correspond to
the familiar ladder approximation in the diagrammatic
technique (Abrikosov et al., New York, 1975). We note
that a non-Markovian quantum Langevin equation has
been also discussed in the literature; it has been consis-
tently derived microscopically for the case of the coupling
to a bath of harmonic oscillators, with the coupling be-
ing effectively bilinear in the dynamical variables of the
mode and the bath oscillators, see Ford et al. (1988) and
references therein.

The decay rate I' in the quantum theory is simply re-
lated to the rate of transitions between the oscillator en-
ergy levels due to the coupling to the bath. As shown in
Appendix B, T" is a half of the rate W;_,¢ of transitions
from the first excited to the ground state of the mode
due to the coupling to the bath for 7' = 0.

1. The power spectrum and the susceptibility of a weakly
damped mode

The picture of the dynamics of the oscillator as vibra-
tions at frequency wg with slowly varying amplitude and
phase provides a physical insight into why the oscillator
power spectrum S(w) = [ dt{q(t)q(0)) exp(iwt) has a
peak at frequency w close to wg. Expressing the coor-
dinate ¢(t) in terms the complex amplitude u(t) and its

complex conjugate in the classical limit or the operators
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u(t),u’(t), to extend to the quantum description, we find
from Eq. (20) that, for |w — wy| < wo,

S(w) ~ 2Re /0 bl (£)u(0)) e (27)

From Egs. (21) and (26), for the considered linear oscil-
lator

S (n+1) a
 Muwy 2+ (w—wp)?

S(w) (28)
This expression extends to the quantum domain the re-
sult (5). Importantly, the frequency wy here incorporates
the polaronic shift P, and therefore the position of the
maximum of S(w) is temperature-dependent. We note
that the peak of the power spectrum of the radiation
emitted by a quantum oscillator is described by Eq. (28)
in which the factor n + 1 is replaced by the thermal oc-
cupation number 7.

The general expression for the oscillator susceptibility
X (w) in response to a weak drive at frequency w near
resonance, |w — wp| < wp, reads

x(w) = ﬁ /000 dt(u' (t)u(0))e™". (29)

n+1
For a linear oscillator the susceptibility is given by
Eq. (5).

It should be emphasized that the general expressions
(27) and (29) for the power spectrum and the susceptibil-
ity are not limited to the case of a linear oscillator. They
describe the power spectrum of a vibrational mode even
where the vibrations are nonlinear as long as the spec-
trum has a narrow peak with width much smaller than
wo and the reciprocal correlation time of the reservoir.

The quantum description becomes relevant for the ex-
periments where the mechanical mode is close to the
quantum ground sate. This regime was first achieved
in nanomechanics by O’Connell et al. (2010). In this
experiment a mechanical breathing mode vibrating at
6 GHz was cryogenically cooled using a dilution fridge
at 25 mK, and a non-classical state of motion was cre-
ated. Recently cryogenic cooling down to the quantum
regime was accomplished for a nanomembrane flexural
mode with wy = 27 x 15.1 MHz by lowering its tempera-
ture to 500 pK (Cattiaux et al., 2021). Mechanical modes
endowed with long lifetimes have been cooled down into
the quantum regime by coupling them to photon cavities
and using parametric drive (Chan et al., 2011; Teufel
et al., 2011; Verhagen et al., 2012). Such cooling is dis-
cussed in the review by Aspelmeyer et al. (2014b).

V. RELAXATION MECHANISMS OF
NANOMECHANICAL RESONATORS

The general expression for the decay rate allows us to
consider various microscopic mechanisms of energy dissi-
pation of low-frequency modes in NVSs. The major types



of the relevant thermal reservoirs are (i) phonons in the
substrate, (ii) thermal phonons in the nanoresonator, (iii)
electrons in the nanoresonator and in the leads, and (iv)
two-level systems. We use the term “phonon” somewhat
loosely, as the systems we are discussing do not neces-
sarily have translational symmetry or even spatial uni-
formity. However, the relevant eigenmodes, even though
not plane waves, are spatially extended and have a quasi-
continuous frequency spectrum, resembling phonons. In
thin nanobeams and membranes the spectrum consists of
bands of modes extended along the nanobeams or mem-
branes and having different transverse spatial structures.
Generally, in disordered systems there are also localized
vibrational excitations, which we will not discuss here.

A. Scattering by phonons

The problem of linear damping of low-frequency
eigenmodes in nanoresonators due to phonon scattering
overlaps with the problem of sound absorption in di-
electrics, which has been intensely studied since 1930s
(Akhiezer, 1938; Landau and Rumer, 1937), see Woodruff
and Ehrenreich (1961), Maris (1966), Gurevich (1988),
Garanin and Lutovinov (1992), Collins et al. (2013), Lin-
denfeld and Lifshitz (2013), Feng et al. (2015), and refer-
ences therein. It is also closely related to the problem of
decay of low-frequency resonant modes and gap modes in
crystals with defects (Brout and Visscher, 1962; Kagan
and Joselevskii, 1962; Krivoglaz, 1961, 1964).

1. Clamping losses

The simplest decay mechanism of nanomechanical vi-
brations is radiation of vibrational excitations (phonons)
into the supporting structure. This mechanism is an im-
portant contributor to the so-called clamping losses. Vi-
brations of the NVS create time-dependent strain and
stress in the area where the resonator is clamped. They
serve as phonon-radiating antennas. The supporting
structure is much larger than the resonator, and its
phonons are a thermal bath for the resonator. This pic-
ture of decay via phonon emission is common for nano-
and micro-mechanical systems. In micromechanical sys-
tems the corresponding losses are often called anchor
losses.

The simplest model of the coupling to the bath of
phonons in the support is where the coupling is linear
both in the coordinate ¢ of the NVS mode and in the
phonon coordinates g,. It is described by the Hamilto-
nian H; = ghy, Eq. (14), with

By = 3 Vilbw + ). (30)

Here, b, and b] are the annihilation and creation oper-
ators of the xth phonon, w, is the phonon frequency;
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index s includes the wave vector and the branch of the
phonon. The full Hamiltonian of the coupled NVS mode
and the phononic bath is

H = Hy + H; + Hy, Hy = hwpa'a,
Hy =" hwiblbe (31)
k

[we remind that the mode
(h/2Mwo)?(a + at)).

The analysis of Sec. IV.B shows that, for the model
(30), the decay rate I" and the shift of the eigenfrequency
P of the NVS mode have the form (Bogolyubov, 1945)

coordinate is ¢ =

gcl(w) (32)

m 1

P e P gy f i
where ga(w) = (2w/h) >, |Vi|?6(w — wy) is the phonon
density of states weighted with the interaction. The de-
cay rate (32) is independent of temperature, it cannot
be eliminated by cooling down the nanoresonator. How-
ever, it is small for low-frequency NVS modes, because
the density of phonons at frequency wy in a 3D support
is o¢ (wo/wp)? < 1 (wp is the Debye frequency). From
Eq. (32), the decay rate can be reduced by either decreas-
ing the density of states of phonons in the support or the
coupling to these phonons.

The phonon-radiation decay of nano- or microres-
onators has been attracting much attention both on the
theory side, see Angelescu et al. (1998), Cross and Lif-
shitz (2001), Park and Park (2004), Photiadis and Judge
(2004), Bindel and Govindjee (2005), and Wilson-Rae
(2008), and on the experimental side, see Yasumura et al.
(2000), Judge et al. (2007), Anetsberger et al. (2008),
Eichenfield et al. (2009), Pandey et al. (2009), Unterre-
ithmeier et al. (2010), Schmid et al. (2011), Cole et al.
(2011), Wilson-Rae et al. (2011), Rieger et al. (2014),
Villanueva and Schmid (2014), Chakram et al. (2014),
Meenehan et al. (2014), Ghaffari and Kenny (2015),
Pfeifer et al. (2016), Norte et al. (2016), Tsaturyan et al.
(2017), and Ghadimi et al. (2018), and references therein.
Approximate expressions for the decay in cantilevers and
membranes are summarized by Schmid et al. (2016).

Separating radiation decay from other decay mecha-
nisms is not necessarily simple in the experiment, cf.
(Ghaffari and Kenny, 2015; Unterreithmeier et al., 2010;
Yu et al., 2012). On the theory side, to find the coupling
parameters V,; one has to find the force that the resonator
mode exerts on the phonons. For atomic displacements in
the contact area, a separation of the contributions from
vibrational modes of the resonator and of the support is
nontrivial. Formally, the resonator and the support are
a single system with a single set of eigenmodes. The con-
sidered resonator “mode” is a superposition of the exact
eigenmodes, which have frequencies lying within a band
centered at wg, with a width ~ T", and have comparatively
large amplitudes inside the resonator. Such a picture is

2 _ 2
w? —w;



reminiscent of the theory of tunneling decay in quantum
mechanics, with the NVS mode being an analog of the
state localized in a potential well and decaying into ex-
tended states outside the well. The extended states are
the analogs of the phonons of the support. Both for-
mulations have a counterpart in the analysis of resonant
vibrations in solids that are mostly localized on defects
(Brout and Visscher, 1962; Kagan and Toselevskii, 1962);
see Barker and Sievers (1975).

One of the approaches to the problem of clamping
losses is based on calculating the transmission 7T of elastic
waves through the contact (the clamping area). (Cross
and Lifshitz, 2001) performed detailed calculations of the
transmission for the support and the resonator being of
the same thickness. They used a scalar model of elas-
tic waves and the stress-free boundary conditions at the
edges. The displacement field in the contact area was
expanded into a superposition of incident and reflected
waves on the resonator side and a propagating wave in
the support, while keeping the field continuous on both
sides of the contact. Once T has been calculated, it is
easy to find the decay rate. For example, for an eigen-
mode of a cantilever, which is a standing wave formed
as a superposition of the two waves propagating in the
opposite directions, I' ~ v,7 /L, where v, is the group
velocity of the wave and L is the length of the cantilever.

Extensive calculations of the decay rate were done for
several types of modes in nanoresonators by conditionally
separating the displacement at the edge into that from
the NVS mode and the phonons in the support (Wilson-
Rae, 2008). This separation allowed finding the stress
from the resonator mode in the contact area and then the
force this mode exerts on the support modes, which gives
the parameters V;. The model was compared to measure-
ments on high-stress SisN4 membranes with circular and
square geometries (Wilson-Rae et al., 2011) and AlGaAs
suspended-plate resonators (Cole et al., 2011).

Significant progress in reducing clamping losses in mi-
cromechanical resonators has been made by creating gaps
in the phonon density of states in the contact area. If
phonons with frequencies close to wg are decoupled from
the resonator mode, the decay (32) is eliminated (in
practice, suppressed). Different means of creating spec-
tral gaps have been developed for micromechanical res-
onators, cf. (Bahr et al, 2014; Ghaffari et al., 2013;
Gokhale and Gorman, 2017; MacCabe et al., 2020; Mo-
hammadi et al., 2009; Pandey et al., 2009; Yu et al.,
2014). One of the most commonly used methods is based
on using phononic crystals. It allows one to create a mode
localized mostly within an interior of a membrane or a
nanobeam near a “defect” of the phononic crystal, with
the frequency in the gap of the crystal excitation spec-
trum, see Figs. 6a,b. This significantly reduces the cou-
pling to the support phonons. Such localized modes are
counterparts of the modes localized at defects in solids
(Lifshitz, 1942a,b,c), which have frequencies that lie out-
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side the phonon bands. Most of the studies of localized
modes in crystals with defects have been done using en-
semble measurements (Barker and Sievers, 1975), in con-
trast to NVSs, where the modes are accessed individually.

-
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FIG. 6 (a) Engineering the shape and the support structure
of the mechanical eigenmode. The measured shape of the
localized flexural mode is indicated by the intensity of the
yellow (light) color in the right panel. The silicon nitride
membrane under tension is patterned with holes (shown in
black) to (i) decrease clamping losses thanks to the quasi-
bandgap created by the phononic crystal in the membrane,
and (4) reduce dissipation with “soft clamping” by avoiding
areas with large curvature. The membrane, which is about
100 nm thick, is supported by a silicon frame (left panel). (b)
Energy decay measurements of two different modes at room
temperature. Figure adapted from Tsaturyan et al. (2017).

The importance of clamping (anchor) losses has led
to a development of various numerical algorithms, some
of which have been incorporated into the standard soft-
ware (COMSOL). An example is the method of a per-
fectly matched layer (PML), which was first applied to
the problem of anchor losses by Bindel and Govindjee
(2005). In this numerical method, to avoid reflection of
the irradiated phonons back into the resonator there is in-
troduced a layer adjacent to the boundary that truncates
the unbounded support. The elasticity equations are ar-
tificially modified, so that inside the layer the solution
decays exponentially, which is technically accomplished
using a complex-valued coordinate change in combination
with a finite element implementation. At the same time,
the solution in the region that includes the resonator is
not changed (perfect matching).



2. Anelastic relaxation and dissipation dilution for flexural
modes

At a phenomenological level, decay of vibrational
modes in micro- and nano-resonators is often described
by anelastic relaxation. The term was introduced by
Zener (1948). Anelastic relaxation comes from thermal
relaxation, motion of interstitial atoms, interstate tran-
sitions in two-level systems, grain boundary relaxation,
and other processes (Nowick and Berry, 1972; Zener,
1937, 1958). In many cases the losses are described by as-
suming that the Young modulus has an imaginary part.
One can think of this imaginary part as a result of the
delay of the elastic response, hence the term “anelastic-
ity”. Generally, the losses depend on the mode frequency
and often display a characteristic peak as a function of
frequency (Zener, 1948). In this approach, a complex
Young modulus is a property of a material, cf. (Saulson,
1990). However, for the low-frequency modes studied in
nanomechanical resonators the frequency dispersion of
the complex Young modulus is often disregarded, with
an exception of thermoelastic relaxation, see below. The
decay rate and the quality factor ), which is defined by
Eq. (6), are then expressed in terms of the imaginary part
of the Young modulus.

To extend applications of nano- and micromechanical
systems it is important to increase the quality factor. It
was shown, in the context of interferometric detectors of
gravitational waves (Gonzdlez and Saulson, 1994) that,
for flexural modes of a suspended loaded wire, the quality
factor may become higher than the intrinsic @@ of the
material. This effect has become known as dissipation
dilution. The physics of dissipation dilution is based on
the fact that the elastic energy of a flexural mode in a
stretched wire or, more generally, any stressed nano- or
microresonator comes not only from the internal stress
associated with the strain, but also from the externally
applied tension, whereas the losses are often due to the
intrinsic properties of the material.

Detailed understanding of dissipation dilution requires
a careful analysis of the interplay between the tension and
the losses. It was first shown numerically by Unterreith-
meier et al. (2010) that, in a multimode resonator, the
effect can be accounted for by taking into account the
actual shape of the flexural modes while assuming the
complex Young modulus to be frequency-independent.
The results were successfully compared with their exper-
imental data on up to 9 modes in SiN nanostrings. In
this approximation, the losses can be analyzed (Schmid
et al., 2011; Unterreithmeier et al., 2010; Yu et al., 2012)
by writing the energy loss per vibrational cycle in the
same form as the stress-related elastic energy and re-
placing the real Young modulus with its imaginary part
E5. For example, in a plate of thickness h with a trans-
verse displacement ((z,y) in the z direction, the density
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of losses per unit area is

wh?

2 2 \2
Woanelast = 120 ( V%) E, {(axg + ayC)

+2(1 = vp) [(0:0,0)* = 92¢ 95¢]}  (33)

where vp is the Poisson ratio. (Yu et al., 2012) extended
this expression to spatially nonuniform systems, Fo —
Es(x,y). An explicit calculation for a nanobeam was
done by Schmid et al. (2011).

As seen from Eq. (33), a major contribution to losses
comes from the areas of the largest curvature. For
clamped membranes and nanobeams under tension, these
areas are close to the clamps. Therefore one may
expect that localizing flexural modes to the central
part of nanobeams or membranes, i.e., away from the
clamps, may reduce the losses. Such “soft clamping” has
been successfully implemented using phononic crystals
in multi-mode nano-membranes (Figs. 6a,b) (Tsaturyan
et al., 2017) as well as in multimode nanobeams (Ghadimi
et al., 2018). An alternative strategy consists in clamp-
ing a vibrating structure at the anti-node of a perimeter
mode (Bereyhi et al., 2022). Record-high @ factors have
been obtained along with very high @ x f factors, which
in long nanobeams were as large as 1.1 x 10'® Hz for
f =133 MHz (Ghadimi et al., 2018) at room tempera-
ture. Thus isolating the modes inside suspended struc-
tures can be advantageous not only for reducing phonon
emission into the substrate, but also for reducing intrinsic
material losses.

3. Landau-Rumer relaxation

At the microscopic level, a major intrinsic contribu-
tion to decay of low-frequency micro- and nanomechan-
ical modes comes from their nonlinear coupling to other
vibrational modes. The usually studied NVS modes have
frequencies small compared to the Debye frequency wp.
Therefore the density of states of higher-frequency modes
is usually much larger than the density of states at wy,
and it is the coupling to such modes that leads to decay of
the low-frequency modes. This decay is somewhat remi-
niscent of sound absorption in dielectrics, which has been
intensely studied since the 1930s (Akhiezer, 1938; Landau
and Rumer, 1937), see Maris (1966), Gurevich (1988),
Garanin and Lutovinov (1992), Collins et al. (2013), Lin-
denfeld and Lifshitz (2013), and Feng et al. (2015), and
references therein. The relevant lowest order nonlinearity
is cubic. It leads to processes in which three vibrational
modes are involved.

For cubic nonlinearity, the coupling (14) is described
by the Hamiltonian H; = qhy, with

_ h(3) Z Vm/b by + Z m,bzbll +H.c.) (34)



(the prime over the sum indicates that x # «’). In this
expression b, and b are the annihilation and creation
operators, with K now enumerating the modes localized
mostly inside the resonator. Coupling to such modes is
often stronger than to the modes in the support, and
they serve as a thermal bath for the considered low-
frequency mode. To simplify the language and to distin-
guish them from the considered mode, we will call these
high-frequency modes “phonons”.

Generally, because of the possible ripples and other in-
homogeneites of the nanoresonator, the modes of the qua-
sicontinuous frequency spectrum are not standard plane
waves. This is why we use k rather than the wave vec-
tor to enumerate them. The nanomechanical modes we
are interested in are also not plane waves, whether these
are flexural modes or modes localized near defects of
a phononic crystal. Therefore, in distinction from the
sound absorption problem, in the scattering described
by the coupling gh, the momentum is not conserved.
This makes the problem similar to that of dissipation
of modes localized on defects in disordered solids. Such
problem for the coupling Hamiltonian (34) was consid-
ered by Krivoglaz (1961) and Krivoglaz (1964).

The coupling parameters V., have to be calculated
with the account taken of the actual structure of the in-
volved modes, cf. (Atalaya et al., 2016; Iyer and Candler,
2016; MacCabe et al., 2020). We note that the nonlin-
ear coupling of the considered NVS modes to the modes
in the support and the corresponding nonlinear clamp-
ing losses may be also important because of the same
density of states argument. This coupling is described
by the Hamiltonian (34) with  referring to the modes
primarily localized in the support. To the best of our
knowledge, such coupling has not yet been studied for
nanoresonators either theoretically or in the experiment.

The term o« V!, in Eq. (34) describes a decay pro-
cess where one quantum of the NVS mode disappears
and there emerge two quanta of the thermal bath (two
phonons) with total energy fiwo, see Fig. 7(a). The rate
of such scattering is very small for low-frequency NVS
modes because of the low density of states of the relevant
phonons. For Awy < kpT of a much higher probability
is the process where a phonon is inelastically scattered
off the considered NVS mode into another phonon; for
example, a phonon « is scattered into a phonon ' and
the energy difference hw, — hw, is equal to hwy. This
Raman-type scattering is sketched in Fig. 7(b). The
coupling leading to such a process is given by V. in
Eq. (34). The scattering probability is comparatively
large when the thermal occupation numbers of the modes
k, k' are large and their density of states is large, too.
This means kT > hwg, a condition met in most ex-
periments, with a few exceptions, see O’Connell et al.
(2010), Chu et al. (2017), Satzinger et al. (2018), Chu
et al. (2018), Arrangoiz-Arriola et al. (2019), MacCabe
et al. (2020), Cattiaux et al. (2021), and Wollack et al.
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FIG. 7 Scattering of a considered NVS mode due to its non-
linear coupling to phonons; wp is the NVS mode frequency,
and wy,w, are the frequencies of the phonons with quantum
numbers «, x'. (a) Decay into two phonons. (b) The Landau-
Rumer mechanism: anti-Stokes scattering of a phonon x into
a phonon £’ by the NVS mode. (c) Scattering of two quanta
of the NVS mode into a phonon, a process leading to nonlin-
ear friction. (d) Analog of the Landau-Rumer scattering that
leads to nonlinear friction.

(2022), and references therein.

The phonons «, k' involved in the scattering shown in
Fig. 7(b) are themselves experiencing decay. The rate
of the decay of the considered low-frequency mode T’
strongly depends on the interrelation between the phonon
relaxation time 7, and the vibration period of the consid-
ered mode 27 /wg. If woT,;, > 1, we can disregard decay of
high-frequency phonons. Then from Eqs. (23) and (34)
we find

F:FLR:L rm/2_ k) — Wy
i 22 Vo () (o)
X 8(wy + wo — W ). (35)

This expression has the same form as the expression for
the decay rate of a mode localized on a defect (Krivoglaz,
1961, 1964) and is similar to the expression by Landau
and Rumer (1937) for the sound absorption coefficient
in solids. An analysis of this expression in the case of a
breathing mode in a nanobeam phononic crystal (Mac-
Cabe et al., 2020) showed that the corresponding de-
cay rate is much smaller than the observed value (which
itself was extremely small, with the @Q-factor reaching
5 x 101%.) It should be noted that the density of states
arguments and the symmetry arguments may lead to a
four-quantum decay process having a higher rate than
the three-quantum one (De Martino et al., 2009; Landau
and Khalatnikov, 1949a,b).

4. Thermoelastic and Akhiezer relaxation

Of primary interest for nano- and micromechanical res-
onators is the situation where the decay rate of high-



frequency phonons exceeds the frequencies of the consid-
ered modes. Phonon decay significantly complicates the
calculation of the power spectrum of h](as), which gives
the decay rate I', see Eq. (23). In such a calculation
the interaction between the phonons should be explicitly
taken into account. This interaction comes from the non-
linearity of the crystalline lattice, which is described by
nonlinear terms in the phonon Hamiltonian, i.e., the bath
Hamiltonian. To the lowest order, in the bath nonlinear-
ity, one has to replace the bath Hamiltonian H; given by
Eq. (31) with H, + H®,

1
3
H® = 5 Z Vi nans bl 05 bey +Heeo  (36)
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The Hamiltonian (36) describes processes where one
phonon decays into two other phonons or, vice versa,
two phonons annihilate and one phonon emerges, so that
the overall phonon energy is conserved, w., + wu., =
Wyy- Other cubic in b,, bl terms have been dropped in
Eq. (36), as they do not describe phonon decay, to the
leading order.

In Appendix G we outline a way to calculate the de-
cay rate of the low-frequency NVS mode using the gen-
eral formulation of Sec. IV, with the account taken of the
nonlinear mode couplings (34) and (36). The calculation
is somewhat involved. Here we give a qualitative phe-
nomenological picture for two important limiting cases.
We note, however, that both cases follow from the same
general analysis.

The thermoelastic relazation (TER) case is where the
eigenfrequency wyp is so small that, because of the cou-
pling (36), the high-frequency vibrations have time to
come to thermal equilibrium locally in different parts of
the vibrating nanoresonator. One can then introduce
a local position-dependent temperature T'(r) inside the
nanoresonator. For flexural modes, this implies that the
mean free path of thermal phonons l7, which is deter-
mined by the coupling (36), is small compared to all di-
mensions, including the transverse dimension of the res-
onator.

The TER mechanism was proposed by Zener (1938).
A detailed analysis of the TER for flexural modes is
given by Lifshitz and Roukes (2000). The underlying
physics can be understood (Landau and Lifshitz, 1986)
if one thinks of thermal expansion and of generating
heat by bending a beam or a membrane. For a small
temperature change 07, thermal expansion is propor-
tional to §T', that is, the relative change of the volume
is 0V/V = 3ay 0T, where ar is the linear thermal ex-
pansion coefficient [it is determined by the coupling pa-
rameters (34), see the discussion below Eq. (39)]. On
the other hand, it follows from the thermodynamics that
there is an inverse process. Changing the volume leads
to heating or cooling. The heat produced by a small
volume increment 6V is TOrFy_1, where Fy_T is the
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free energy density associated with thermal expansion,
FV—T == —EozTéT(SV/(l - QVP)V.

In flexural vibrations one part of the nanoresonator
is periodically squeezed (§V < 0) whereas the other is
stretched in the counterphase. Therefore there emerges
a temperature gradient across the resonator. It dissipates
via thermal conductivity, which leads to vibration decay.

If the thickness of the nanoresonator in the bending di-
rection is [ , the characteristic time of thermal diffusion
across it is

7z = Cpld /n*kr, (37)

where C' is the specific heat per unit mass and xp is the
thermal conductivity (Zener, 1938). If this time is small
compared to the vibration period, the nanoresonator is
essentially isothermal and TER is not efficient. In the op-
posite limit wg7z > 1 TER is not efficient either, since
the heat does not have time to propagate across the res-
onator over the vibration period and is locally averaged
out over the compression-extension cycle. An intuitive
approximation for the decay rate is provided by the Zener
expression (Zener, 1938)

FTER _ EQ%TOJO woTz
2Cp 14 (wotz)?’

(38)

In agreement with the above qualitative arguments, the
decay rate becomes small both in the case where wgTz is
large and where it is small.

A quantitative analysis of the dynamics of a flexural
mode in a nanobeam can be done by writing the equation
of motion for the displacement in the bending direction
which, along with the elastic force, takes into account the
force from the thermal expansion. This equation and the
thermal diffusion equation form a system of two coupled
linear equations. The complex eigenvalues of these equa-
tions describe the decay rate and the frequency shift of
the flexural mode due to the thermoelastic effect (Lifshitz
and Roukes, 2000).

On the experimental side, the TER has been seen in
both micro- and nanomechanical resonators at room tem-
perature, see Roszhart (1990), Yasumura et al. (2000),
Verbridge et al. (2006), Chandorkar et al. (2009), and
Ghaffari and Kenny (2015). As the temperature is de-
creased, the decay rate (38) also decreases and other de-
cay mechanisms come into play. In addition, the mean
free path of thermal phonons in nanoresonators can be-
come larger than the resonator thickness, so that the sys-
tem is no longer in the TER regime.

Akhiezer damping. The expression for the decay rate
changes if wy largely exceeds the rate of heat diffusion
across the resonator, wo > 7, 1 even though it can still
be small or comparable to the relaxation rate of ther-
mal phonons. Then the phonons do not have time to
equilibrate locally to different temperatures in different
parts of the resonator. The decay mechanism in this




case was discussed by Akhiezer (1938) in the context
of ultrasound absorption in solids. The corresponding
mechanism of ultrasound absorption is called Akhiezer
damping. It has been attracting much attention and has
been studied for various models of the phonon-phonon
coupling, cf. (Garanin and Lutovinov, 1992; Gurevich
and Shklovskii, 1968; Maris, 1966, 1968; Woodruff and
Ehrenreich, 1961) and references therein.

The idea of the Akhiezer damping directly extends to
the decay of low-frequency vibrational modes in nano-
and micromechanical systems. In this context it was an-
alyzed in several papers (Atalaya et al., 2016; Hamoumi
et al., 2018; Iyer and Candler, 2016; Kiselev and Iafrate,
2008; Kunal and Aluru, 2014); a detailed experimental
study of the temperature dependence of Akhiezer damp-
ing in Si micromechanical resonator is described by Ro-
driguez et al. (2019), see also (Ghaffari et al., 2013) for
a review of the earlier work.

To give an idea of the mechanism we consider the cou-
pling of a low-frequency mode to high-frequency phonons
in the deformation potential approximation (Gurevich,
1988). This approximation corresponds to the choice
of the coupling parameters Vi,  in Eq. (34) based on
the picture (Akhiezer, 1938) in which a low-frequency
mode, with a spatially smooth displacement field u(r),
weakly locally distorts the crystal. The distortion leads
to coordinate-dependent changes dw, of the frequencies
wy of high-frequency modes,

dwy = —we PV,  ulr) =gp(r) (39

(we remind that ¢(r) is the dimensionless local displace-
ment due to the considered low-frequency mode).

The parameter %(qu)

determines the coupling constants
Vierns in Eq. (34). The average of ’y,(iG) over the phonons
with the weight given by the phonon heat capacities gives
the Griineisen parameter v(%). This parameter is imme-
diately related to the thermal expansion coefficient ar,
i.e., v{9) = Eap/Cp(1—2vp). The approximation (39) is
often generalized by replacing Vu with the strain tensor
associated with g(r), in which case W,EG)
a tensor.

Finding the Akhiezer damping rate in nanomechan-
ics requires, as a first step, solving the full quantum ki-
netic equation for the two-phonon correlation function of
thermal phonons, see Appendix G. This equation goes
beyond the conventional kinetic equation for the occupa-
tion numbers of phonons (Atalaya et al., 2016). How-
ever, to see the Akhiezer effect qualitatively, one can
start with Eq. (35) that describes phonon scattering off
the low-frequency mode. Since high-frequency phonons
have finite lifetimes, their energies are uncertain, and in
Eq. (35) the o-function of the energy conservation law,
0(wx — wy +wp), can be replaced by a Lorentzian with a
halfwidth given by a phonon decay rate 1/7pn. This rate
is the characteristic value of the decay rate 7' of ther-

also becomes
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mal phonons, which is quadratic in the parameters of the
phonon-phonon coupling Vi, x,ks. Then from Egs. (35)
and (39)

WoTph
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(40)

The lifting of the energy conservation constraint de-
scribed by Eq. (40) leads to an increase of the decay rates
of low-frequency NVS modes compared to the Landau-
Rumer theory (35). It also leads to a specific temperature
dependence of the decay rate. If the mean free path of
thermal phonons is small compared to the size of the res-
onator, this dependence is similar to the temperature de-
pendence of ultrasound absorption. The parameter a**"
in the latter case was found by Woodruff and Ehrenre-
ich (1961) for a simple model of the coupling to acoustic
phonons and for the ultrasound frequency wy < TI;ll, in

which case a®¥" = wT/3pv?, where v is the average
speed of sound. In this regime I'*K? weakly depends on
temperature provided T exceeds the Debye temperature.
This is because the phonon scattering rate is proportional
to the phonon occupation number, i.e., TP_hl x T (Gure-
vich, 1988), whereas C is independent of T. For tem-
peratures low compared to the Debye temperature, on
the other hand, I'*" o T~! in clean systems, where
Toh < T75.

The decay rate (40) displays a pronounced dependence
on the mode eigenfrequency wg. It is small both for
woTph < 1 and in the opposite limit worpn > 1, where
the decay is described by the Landau-Rumer-type theory.

The low-temperature behavior of I'*k" changes in
thin nanoresonators. When the wavelength of thermal
phonons becomes comparable to one of the dimensions
of a resonator, the phonon spectrum is quantized and
the density of states of phonons is changed. This leads
to a change of both the specific heat and the phonon de-
cay rate. Moreover, nanoresonators can be, and often
are inhomogeneous on the scale of the phonon mean-free
path, because of bending, twisting, ripples, etc., which
requires a modification of the theory (Atalaya et al.,
2016). On the experimental side, in contrast to microme-
chanical resonators (Rodriguez et al., 2019), the study
of Akhiezer damping and the accompanying frequency
shift in nanoresonators is at an early stage (Tepsic et al.,
2021).

To relate to the previous discussion, we note that the
decay of thermal phonons, that underlies the Akhiezer
relaxation, is one of the microscopic mechanisms of the
anelastic relaxation described by a complex Young mod-
ulus, see Sec. V.A.2.

B. Losses due to surface effects and two-level systems

Nanomechanical resonators are characterized by a
large surface-to-volume ratio. Therefore surface scatter-



ing and the defects associated with surfaces may be an
important source of mode relaxation, cf. (Ekinci and
Roukes, 2005; Faust et al., 2014; Hamoumi et al., 2018;
Unterreithmeier et al., 2010; Villanueva and Schmid,
2014; Yasumura et al., 2000; Yu et al., 2012) and ref-
erences therein. In particular, (Villanueva and Schmid,
2014) performed detailed measurements of surface losses
in SiN membranes at room temperature as a function
of the thickness and also compared different data in the
literature; they concluded that the @Q-factor linearly in-
creases with the increasing thickness. This is expected
for surface losses if one thinks of the @ factor as the
ratio of the energy stored, which is proportional to the
volume, to the energy losses, which linearly increase with
the surface area.

Generally, one can think of the surface losses as re-
sulting from “static” and “dynamical” effects. A simple
static effect comes from the static disorder, which leads to
scattering of thermal phonons. The effect is particularly
strong where the phonon mean free path becomes com-
parable to the thickness. The disorder-induced scatter-
ing relaxes the momentum conservation law in phonon-
phonon scattering and thus decreases the lifetime of ther-
mal phonons. This leads to the decrease of the relaxation
rate of the low-frequency NVS modes in the Akhiezer
regime for wompn < 1, as seen from Eq. (40) (De et al.,
2016). However, as mentioned above, one can also think
of thermal “phonons” somewhat differently, by associat-
ing them with the exact vibrational excitations of the
disordered system in the harmonic approximation. The
coupling of such thermal excitations to the low-frequency
NVS modes is different compared to a system with no dis-
order, cf. (Atalaya et al., 2016). This can increase the
Landau-Rumer and Akhiezer relaxation rates compared
to those calculated in the absence of disorder.

The dynamical effects of surface disorder come from
the defects with internal degrees of freedom, which can
absorb energy from the low-frequency NVS modes. The
best-known type of such defects are two-level systems
(TLSs), which were introduced by Anderson et al. (1972)
and Phillips (1972) to explain the anomalous heat capac-
ity and thermal conductivity of glasses at low tempera-
tures. TLSs exist not only on surfaces, but also in the
bulk. Their density of states may be higher than the den-
sity of states of thermal phonons for low temperatures.
For higher temperatures, where the density of states of
thermal phonons is higher, the TLSs can “mediate” en-
ergy transfer from the low-frequency NVS modes to ther-
mal phonons.

It is believed that of utmost importance for relax-
ation of low-frequency modes in nanoresonators are TLSs
with level spacing that significantly exceeds hwy. The
relaxation is due not to resonant interlevel transitions
of the TLSs, but to nonresonant processes. It has
been discussed for a broad range of nanoresonators,
such as gold (Venkatesan et al., 2010), polycrystalline
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aluminum (Hoehne et al., 2010), silica (Riviere et al.,
2011), aluminum covered silicon (Lulla et al., 2013), SiN
(Faust et al., 2014) and GaAs (Hamoumi et al., 2018)
nanobeams, as well as graphene-based heterostructure
membranes (Will et al., 2017), half-ring crystalline Si res-
onator (Hauer et al., 2018), and phononic crystals (Mac-
Cabe et al., 2020); see also (Imboden and Mohanty, 2014)
for a review of the early work.

The dominant mechanism of nonresonant coupling to
a TLS is the modulation of the level spacing by the strain
from the vibrational mode. Such coupling is often called
dispersive. It is easy to visualize if one thinks of the TLS
states as intrawell states of a particle in a double-well
potential, which are hybridized by interwell tunneling.
The strain modulates the wells differently, which leads to
the change of their relative depths and thus to the change
of the level spacing. The Hamiltonian of the coupling
reads

Hrrs = Crisg(ne — 1), (41)

where 7; is the operator of the occupation of the ith state
of the TLS (i = 1,2), ¢ is the NVS mode coordinate, and
Crys is the coupling constant.

Relaxation of the mode results from the finite lifetime
of the TLS states. By periodically modulating the TLS
level spacing, the mode modulates the state populations
with a delay determined by the interrelation between wy
and the interstate switching rate T{ﬁs. It is this delay
that leads to the absorption of the mode energy, i.e., to
the mode relaxation. If wy < 7y, the TLS adiabat-
ically follows the mode-induced strain, with essentially
no absorption. In the opposite limit, wy > T{ﬁs the TLS
averages out the mode-induced strain, again, with very
little absorption. Overall, the absorption coefficient I''1S
as a function of the mode eigenfrequency wy is described
by the so-called Debye peak, which was found by Debye
(1929) in the analysis of the dielectric response due to
reorientation of polar molecules in crystals,

WoTTLS
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(42)
This expression can be immediately derived from the gen-
eral formulation (17).

The TLS relaxation rate T{Lls is determined by the cou-
pling to phonons (or electrons). Generally, this rate de-
pends on the geometry of the nanoresonator and the as-
sociated change of the phonon spectrum (Behunin et al.,
2016). At low temperatures, it is dominated by inter-
state tunneling and single-phonon processes, with 7'1?]}5 x
coth(E/2kpgT), where E is the level spacing. At higher
temperatures phonon scattering off TLSs comes into play.
To extend the results to still higher temperatures, TLSs
are often thought of as particles in a double-well poten-
tial, with T{Lls being determined by the rate of activated
interwell switching, TT}}S x exp(—AU/kpT), where AU
is the barrier height, see Enss and Hunklinger (2005).



The overall temperature dependence of the decay rate
of the low-frequency NVS modes is obtained by sum-
ming the contributions I'™™S for different TLSs. For low
temperatures, T' < 1 — 3 K, it is often described by a
power law (Lulla et al., 2013; Venkatesan et al., 2010),
as expected for some models of the TLSs (Seodnez et al.,
2008). For higher temperatures, because of the exponen-
tial falloff of 7py,g with the increasing temperature, [TLS
may display a peak as a function of temperature where
wotTLs = 1 (Faust et al., 2014). The overall behavior
of the decay rate with temperature depends on whether
there are various types of TLSs or, as in the case of cer-
tain surface defects, the distribution of the TLS param-
eters is narrow, cf. (Faust et al., 2014; Hamoumi et al.,
2018).

Generally, resonant absorption by low-energy TLSs
with the level spacing Awg can also contribute to the
mode decay (Remus et al., 2009). It would be charac-
terized by absorption saturation and the associated de-
crease of the decay rate with the increasing mode am-
plitude, similar to ultrasound absorption (Golding et al.,
1973) and the absorption of microwave radiation in su-
perconducting cavities (Gao et al., 2007). However, this
behavior is most clearly manifested for fwy 2 kT, a
demanding condition in nanomechanics.

C. Electronic relaxation

The thermal bath can be the electrons flowing through
the resonator. It can also be the conducting electrons in
a device capacitively coupled to the resonator. Both lay-
outs are similar. Electron transport is used in many res-
onators to transduce mechanical vibrations into a mea-
surable signal and to drive the motion via the capaci-
tive force, i.e., by modulating the potential V, between
the gate electrode and the nanoresonator, as discussed
in Sec. II. Conversely, the coupling to the electron sys-
tem leads to the relaxation of mechanical vibrations via
electrical dissipation.

(a) S D (b) Rcy 6V9 Rco
&
J._VDC h| IvDC

l 9 L1 l g 1

FIG. 8 (a) Schematic and (b) equivalent circuit of a sus-
pended wire capacitively coupled to the gate electrode G and
electrically contacted to the electrodes S and D. The resis-
tances at the interface between the wire and the electrodes
are Rc1 and Rea.

The simplest relaxation mechanism is Ohmic losses in
the electronic circuit. To illustrate this mechanism, we
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consider a mechanical resonator based on a suspended
wire coupled to the gate electrode which, along with the
elements of the electronic circuit, serve as the thermal
reservoir, see Fig. 8a. The coupling to the electronic
degrees of freedom comes from the potential V; in Fig. 8b
that fluctuates due to the noise in the electron system.
The coupling is described by the Hamiltonian

HZ' = qhb, hb = —CéVchVg (43)
We assume here that the fluctuations of the potential
8V, are small compared to its mean value V, = VgDC, cf.
Eq. (8). From the general expression (22), the contribu-
tion T, of the coupling (43) to the decay rate I' of the
resonator in the classical case kT > hwg is

I, = (AMksT) " (CLVPC)? / "t 5V (6)3V; (0)).
h (44)

The power spectrum of the voltage fluctuations has a
simple form for the Ohmic resistance in the device shown
in Fig. 8a, where we disregard the Coulomb interaction
between the electrons and phase-coherent effects. For
simplicity, we assume that the impedance of the circuit at
the frequency wy is given by large resistances R.; and Rco
at the interface between the wire and the electrical leads.
The corresponding resistors are connected in parallel to
the ground, see Fig. 8b, so that the total resistance is
Reg = RciRca/(Rc1 + Re2). Then the correlator of §V is
determined just by the Johnson—Nyquist noise, resulting
in

e = (CLV,,Y) R /2M. (45)

We note that this expression for the decay rate can be
obtained directly from Eq. (43) by noting that the force
on the resonator is C’évg(SVg. The motion of the res-
onator modulates the charge on it, leading to a current
~ C’éVgDCq. As a result, the potential JV, is modulated.
If the vibration frequency wy is small compared to the re-
laxation rate of the circuit (RegCg) ', then 8V, follows
(t) adiabatically, so that the corresponding part of §V;
has the form [§V,], = —ReaCLV, %¢. By substituting
this expression into the force on the resonator, we ob-
tain the friction force —2MT .q. An alternative derivation
based on calculating the energy loss due to the resistance
of the nanoresonator is given by Song et al. (2012).

The electronic relaxation has been measured in
resonators based on two-dimensional systems, such
as graphene, WSe; monolayers, and van der Waals
stacks (Morell et al., 2016; Song et al, 2012; Will
et al., 2017). The measured mechanical dissipation rate
increases quadratically with VgDC, in agreement with
Eq. (45). The electrical resistance obtained from the me-
chanical dissipation is in a reasonable agreement with the
resistance of the device. A quantitative comparison is of-
ten challenging, especially when the spatial flow of the



vibrations-induced current is not known precisely due to
the geometry of the device.

The electron-electron interaction can strongly mod-
ify the relaxation rate of a nanoresonator. The effect
has been studied in several theoretical papers for low-
resistive nanoresonators capacitively coupled to station-
ary normal and superconducting single-electron transis-
tors (SETs) and in the layout where the nanoresonator
itself is an SET that is capacitively coupled to an im-
mobile gate electrode (Armour et al., 2004; Bennett and
Clerk, 2006; Blencowe et al., 2005; Clerk and Bennett,
2005; Micchi et al., 2015; Mozyrsky et al., 2004; Pistolesi
and Labarthe, 2007; Usmani et al., 2007). The underly-
ing physics is related to the dependence of the potential
of the SET island, and thus the tunneling rate, on the
position of the nanoresonator. Experiments were car-
ried out on SETs (Ares et al., 2016; Bennett et al., 2010;
Benyamini et al., 2014; Blien et al., 2020; Deng et al.,
2016; Ganzhorn and Wernsdorfer, 2012; Knobel and Cle-
land, 2003; Lassagne et al., 2009; Meerwaldt et al., 2012a;
Okazaki et al., 2016; Steele et al., 2009; Stomp et al.,
2005; Urgell et al., 2020; Vigneau et al., 2021; Wen
et al., 2020; Willick et al., 2017; Woodside and McEuen,
2002; Zhu et al., 2005), superconducting SETs (LaHaye
et al., 2004, 2009; Naik et al., 2006; Pirkkalainen et al.,
2015a), and double-quantum dots (Benyamini et al.,
2014; Khivrich et al., 2019).

The theory takes advantage of the fact that the re-
sponse of a SET to the position is usually fast on the
time scale of the vibration period, i.e., wg is small com-
pared to the tunneling rate. The analysis can be for-
mulated in terms of the linear response of the SET to
the vibrations, cf. Sec. IV. Measurements have shown
that the coupling can dramatically increase the mechan-
ical dissipation (Lassagne et al., 2009; Naik et al., 2006;
Steele et al., 2009). When the voltage applied between
the source and the drain electrodes of the SET is larger
than kgT/e, the electronic bath is no longer in equilib-
rium, and it can cool the thermal vibrations (Clerk and
Bennett, 2005). In addition, such an out-of-equilibium
electronic bath in an SET can suppress the total dissi-
pation rate of the mechanical resonator to zero, leading
to self-oscillation (Usmani et al., 2007; Wen et al., 2020).
Cooling and self-oscillations can also be produced by an
electrothermal reaction force associated with the electri-
cal power dissipated in SETs (Urgell et al., 2020).

The so-called electron shuttles (Erbe et al., 2001; Fe-
dorets et al., 2004; Gorelik et al., 1998; Koenig and Weig,
2012) can be operated in the self-oscillation regime, too.
These are devices where the metal island of the SET
placed on a nano- or microcantilever is oscillating be-
tween the source and drain leads — in each oscillation pe-
riod, the island mechanically transfers a quantized num-
ber of electrons from one lead to the other.

There has been also investigated the interplay of the
NVS dynamics with other many-electron effects and the

26

effects of the topology and coherence of the electron
system. Those include the Kondo (Gétz et al., 2018)
and the quantum Hall effects (Chen et al., 2016a; Singh
et al., 2012), the electronic Fabry-Pérot interference in
a nanoresonator (Moser et al., 2014), and the effect of
Aharonov-Bohm oscillations in a topologically nontrivial
nanowire (Kim et al., 2019). Yet other manifestations of
the coupling of the NVS modes and the electron subsys-
tems were studied in ballistic p—n junctions (Jung et al.,
2019), field-effect transistors (Sazonova et al., 2004), and
quantum-point contact devices (Poggio et al., 2008).

VI. CONSERVATIVE AND DISSIPATIVE
NONLINEARITY

Vibration nonlinearity is one of the most important
and interesting features of the NVS modes. As men-
tioned before, since nanomechanical resonators are small,
it comes into play already for small vibration amplitudes.
Sometimes even thermal fluctuations can be sufficiently
large to take the vibrations to a nonlinear regime. This
regime is also reached with a modest resonant driving if
the quality factor is high; in fact, for high-Q modes care
must be taken of staying in the linear regime.

Usually nonlinear effects are separated into conserva-
tive and dissipative. Conservative nonlinearity corre-
sponds to the restoring force being a nonlinear function
of the mode coordinate ¢ or, equivalently, to the potential
energy of the mode U(q) being different from Mw3q?/2.
If U(q) has inversion symmetry, U(q) = U(—q), as for
bending modes in a straight nanotube or a flat mem-
brane, the leading nonparabolic term in U(q) is quartic
in ¢q. The potential energy of the mode then has the form

Ulq) = 5Mude? + Mg (46)
Such nonlinearity is often called the Duffing nonlinearity
or, in terms of nonlinear optics, the Kerr nonlinearity. It
has been seen in the majority of NVSs, cf. Aldridge and
Cleland (2005); Castellanos-Gomez et al. (2013); Feng
et al. (2007); Kozinsky et al. (2006); and Yang et al.
(2019).

Conventionally, in nonlinear dynamics the nonlinearity
is considered to be strong where the nonparabolic part of
the potential becomes of the same order of magnitude as
the parabolic part (Arnold, 1989). However, in nanome-
chanics, in most studies the conservative nonlinearity of
NVSs is weak in this sense,

{e*) < wi{a®)- (47)

However, even where the condition (47) holds, the effect
of the nonlinearity on the dynamics can be strong, pro-
vided the decay rate of the mode is small, i.e., Q > 1.
This is clear from the following argument. The nonlinear



part of the restoring force —M~q® shows that the effec-
tive “spring constant” gets effectively either stronger or
softer with the increasing vibration amplitude, depend-
ing on whether v > 0 or v < 0, respectively. Therefore
the resonant frequency becomes dependent on the vibra-
tion amplitude A. For weak nonlinearity, the shift in wq
is quadratic in A, see Appendix A.1,

3 e

5&]0 = 8w0A . (48)
The Duffing nonlinearity becomes important once this
frequency shift becomes comparable to the frequency un-
certainty associated with the decay rate I'. In quantum
terms, the energy levels of the mode become nonequidis-
tant, and the nonlinearity becomes important once this
nonequidistance becomes comparable to the level width
o hAI', see Appendix E.

Dissipative nonlinearity corresponds, in the phe-
nomenological description, to the friction force being a
nonlinear function of the velocity and coordinate. This
function changes sign upon time reversal, analogous to
the linear friction force —2MT'¢. In its simplest form,
the nonlinear friction force is o ¢?¢ [(van der Pol, 1926)]
or x ¢* [(Rayleigh, 1894)]. Similar to the conservative
nonlinearity, for weakly damped modes the nonlinear dis-
sipative force is important where it is comparable with
the linear friction force —2MT'¢, which is much weaker
than the restoring harmonic force —Mw2q. In this sec-
tion we discuss the mechanisms of nonlinearity and some
of the key manifestations of nonlinearities in mechanical
resonators. Nonlinear resonant phenomena are discussed
in more detail in Sec. VII.

A. Mechanisms of conservative nonlinearity

There are several mechanisms of nonlinearity of the
restoring force in nanomechanics. The simplest of them
is the nonlinear dependence of the stress (tension) on
the displacement field of the mode. A familiar exam-
ple is provided by a doubly-clamped pre-stressed thin
beam (Landau and Lifshitz, 1986). The change AL of
the length L of the beam due to the transverse displace-
ment X(z,t¢) in a flexural vibrational mode is AL =
fOL dz(0X/0z)? /2 for small |[dX/dz| (z is the coordinate
along the beam). The elongation leads to the tension
ESAL/L, where S is the area of the beam cross-section.
This tension adds to the tension T inside the beam, so
that the overall restoring force due to the tension is

Fr(z) = [T+(ES/2L) / dz(aX/é)z)ﬂ 0?°X/022. (49)

One can now substitute X(z,t) = q(t)p(z), where
p(z) is the spatial profile of the mode (which is
sinusoidal for strong tension). Then the cubic
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in X(z,t) term leads to the force —yMgq® in the
equation of motion for ¢(¢t) [Eq. (2)], with v =
—(E/2Lp) [[ dz (dp/d=)?]” [[ dz $(2)2] " (Lifshitz and
Cross, 2008).

Nonlinear terms in the restoring force can come also
from other sources. In particular, they can come from
the nonlinear dependence of the resonator-to-gate capac-
itance Cy on the displacement of the resonator. As dis-
cussed in Sec. IL.D, for a given mode, the second deriva-
tive of Cy over the displacement associated with the
mode leads to the change of the mode frequency. The
higher-order derivatives of C, lead to a force which is
quadratic or cubic in the displacement, i.e., has the form
—MBq* — M~q3, cf. (Chan et al., 2008b; Eichler et al.,
2011b, 2013; Kozinsky et al., 2006; Meerwaldt et al.,
2012b). The parameters 8 and «y, which are proportional
to the third and fourth derivatives of Cy, respectively,
are quadratic in the gate voltage, cf. Eq. (9). They scale
approximately as the cube and the fourth power of the
ratio of the displacement amplitude to the distance be-
tween the resonator and the relevant electrodes.

The nonlinearity can also result from electron-
vibrational coupling (Lassagne et al., 2009; Meerwaldt
et al., 2012a; Moskovtsev and Dykman, 2017; Steele
et al., 2009; Yang et al., 2016). Measurements on nano-
and micromechanical systems showed that the depen-
dence of the vibration frequency on the amplitude, the
so-called backbone curve, can be more complicated than
Eq. (48) (Huang et al., 2019; Kacem and Hentz, 2009;
Ochs et al., 2021a; Polunin et al., 2016; Samanta et al.,
2018). This indicates that, in some cases, the restoring
force can be proportional to higher powers of the dis-
placement. The backbone curve can become nonmono-
tonic. At the extrema the vibration frequency is inde-
pendent of the amplitude, leading to the so called zero-
dispersion phenomena (Soskin et al., 2003).

The backbone curve of weakly damped modes, i.e., the
relation between the frequency of the mode and the vi-
bration amplitude, can be measured directly in the ring-
down measurement. It is based on exciting vibrations
to a comparatively large amplitude and measuring their
frequency and amplitude as functions of time as the am-
plitude decays, see Figs. 9(a-c) (Giittinger et al., 2017;
Londono et al., 2015; Polunin et al., 2016). This method
applies where the nonlinearity is comparatively strong,
so that the overall frequency change is much larger than
the decay rate.

Usually nanomechanical resonators have several well-
resolved low-frequency eigenmodes at a time. These can
be flexural or torsional modes, or standing acoustic waves
(Barnard et al., 2012; Castellanos-Gomez et al., 2012;
Eichler et al., 2012; Hanay et al., 2015; Mahboob et al.,
2013; Matheny et al., 2013; Mathew et al., 2016; Miao
et al., 2014; Westra et al., 2010; Yamaguchi and Mah-
boob, 2013). They are nonlinearly coupled. The non-
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FIG. 9 Duffing backbone curve measured in a multi-layer
graphene drum. (a) Ring-down measurement. At time ¢ = 0,
the mechanical driving force is switched off and the vibra-
tional amplitude starts to decay. (b) Time dependence of the
short-time Fourier transform of the vibrations during the ring-
down measurement. (c¢) Frequency shift as a function of vibra-
tional amplitude. The red solid line is the quadratic depen-
dence expected from Eq. 48. Figure adapted from Giittinger
et al. (2017).

linearity of the elasticity and of the capacitance are the
leading sources of this coupling. For flexural modes this is
seen already from Eq. (49) if one takes into account that
X (z) is a sum of the displacements of different modes.
In the case of nanobeams one should also take into ac-
count that nonlinear tension comes from modes that in-
volve displacements in different directions. This is done
by adding (9Y/92)? to (0X/0z)? in Eq. (49) (Landau
and Lifshitz, 1986). Similarly, the capacitance of the cir-
cuit that incorporates a resonator depends on different
contributions to the displacement, which come from dif-
ferent modes, leading to the mode coupling. A broad
range of experiments have been done also on the modes
in coupled nanoresonators (Buks and Roukes, 2002; Deng
et al., 2016; Dong et al., 2018; Karabalin et al., 2009a,
2011; Mahboob et al., 2014a; Mahboob and Yamaguchi,
2008a; Okamoto et al., 2009; Sun et al., 2016).

The nonlinear part of the energy of the multimode
nanoresonator is

1
Unl(qlaq27 ) - gMZBnlngng.qnl(InQQng.

1
+ EM Z’Ynlngngn4Qn1 anqnsqn4 +.. ’ (50)

where the subscripts n1,2 34 enumerate the modes and
summation over these subscripts is implied. The mass M
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here is chosen as an effective mass of one of the modes,
cf. the discussion below Eq. (1).

For comparatively weak nonlinearity, the major effects
of the nonlinear mode coupling can be conditionally sep-
arated into resonant and dispersive. Nonlinear resonant
effects occur where a linear combination of the frequen-
cies of several modes or their overtones is equal or close
to the frequency of another mode or its overtone (Anto-
nio et al., 2012; Czaplewski et al., 2018; De Alba et al.,
2016; Eichler et al., 2012; Giittinger et al., 2017; Houri
et al., 2019; Samanta et al., 2015). The manifestations
of the resonant couplings are discussed in Sec. VIII.

The dispersive coupling is important, on the other
hand, where the mode frequencies are different and res-
onant conditions do not hold. The primary consequence
of such coupling is the dependence of the vibration fre-
quency of one mode on the amplitudes of other modes
or, in quantum terms, the dependence of the spacing be-
tween the energy levels of one mode on the occupation
numbers of the other modes (Ar et al., 2018; Dykman
and Krivoglaz, 1971, 1973; Ivanov et al., 1965; Maillet
et al., 2017; Matheny et al., 2013; Miao et al., 2014; San-
tamore et al., 2004a; Sun et al., 2016; Venstra et al., 2012;
Vinante, 2014; Westra et al., 2010). Similar to Eq. (48),
if the amplitudes of the modes are A,,, the change dw,
of the frequency of the mode n due to the dispersive cou-
pling described by the quartic in ¢,, terms in Eq. (50)
is

owy, =

3 /
> Vnnmm AL, (51)

4w,

where the prime indicates that m # n in the sum over
m.

Figure 10 shows measurements on two coupled NVS
modes featuring the characteristic quadratic dependence
of the shift of the eigenfrequency of one mode on the
amplitude of the other mode. Dispersive coupling can
also be measured between modes of different nature, such
as the flexural mode of a graphene drum and its optical
phonon modes (Zhang et al., 2020a).

We note that the parameters ¥,,mm here have correc-
tions oc 82, due to the cubic in g,, terms in Eq. (50)
and also due to nonlinear coupling to phonons (Dykman
and Krivoglaz, 1971, 1973). These are the renormalized
parameters Vnnmm that are accessible to the experiment,
akin to the electron g factor renormalized due to the cou-
pling to the electromagnetic field.

B. Mechanisms of nonlinear friction

A basic microscopic mechanism of nonlinear friction
in mesoscopic vibrational systems is a decay process in
which two quanta of the considered mode scatter into ex-
citations of a thermal reservoir (Dykman and Krivoglaz,
1975). The corresponding process is sketched in Fig. 7(c),
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FIG. 10 Quadratic dependence of the shift of the mode fre-
quency on the amplitude of another mode. The quadratic
dependence indicates the dispersive mode coupling expected
in Eq. 51. The resonator made of polycrystalline silicon con-
sists of a plate supported on its opposite sides by two beams.
Mode 1 involves the translational motion of the plate with
both beams bending in the same direction, whereas only one
of the beams vibrates in mode 2. The insets to panels (a) and
(b) show the spectra of the linear response of the modes 1 and
2 upon increasing A3 and A? (from left to right), respectively.
Note the strong difference in the mode eigenfrequencies and
decay rates. Figure adapted from Sun et al. (2016).

(d), see also Fig. 32(b). An important contribution
to nonlinear friction of low-frequency nanomechanical
modes can come from the processes described by the
quartic nonlinearity. In such processes, a thermal phonon
with frequency wy > 2wyq is scattered off the considered
nanomechanical mode with frequency wy into another
high-frequency phonon, see Fig. 7(d). Since the den-
sity of states of thermal phonons is often much higher
than of the phonons with frequencies ~ wg, these pro-
cesses may be the leading cause of nonlinear friction.
The frequency difference 2wy between the involved ther-
mal phonons can be smaller than their decay rate. This
complicates the analysis and makes it similar, to some
extent, to the analysis of the thermoelastic or Akhiezer
relaxation for linear friction (Atalaya et al., 2016). An-
other contribution to nonlinear friction was discussed for
nonlinear leakage of the flexural modes into bulk acoustic
modes (Croy et al., 2012), the nonlinear-friction analog
of the standard clamping losses.

A general formulation of the theory of nonlinear fric-
tion is similar to that of the linear friction in Sec. IV
(Dykman and Krivoglaz, 1975). The relevant Hamilto-
nian of the coupling of the mode to a thermal bath is
quadratic in the mode coordinate to allow for the pro-
cesses where two vibrational quanta of the mode are cre-
ated or annihilated,

H™ = 2p™. (52)

Here h,(anl) depends on the dynamical variables of the
bath. Similar to the analysis of linear friction, one can
express the coefficient of nonlinear friction '™ in terms
of the susceptibility of the bath with respect to the mode
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0 (w),

1) = 1gd Im ™ (2wo), g0 = (h/2Mw)"/2. (53)

The susceptibility Xénl) (w) is related by the fluctuation-
dissipation relation (17) to the power spectrum Sf)nl)(w)

of the coupling hgll) calculated disregarding the effect of
the mode on the bath,

S0 = [ e On ).

— 00

If the fluctuation spectrum Sl()nl) (w) is flat over a broad
frequency range that significantly exceeds 2wy, the clas-
sical dynamics of the mode is the Brownian motion de-
scribed by Eq. (2) with an additional term of the van der
Pol friction force

fvap = —4MT® (q/q0)?. (54)

In the classical temperature range kg1 > hwg, from
Eq. (53), T o ¢d/h o« h, and therefore i drops out
of the nonlinear friction coefficient F(nl)/ q3. Important
for a phenomenological description of nonlinear friction is
that the thermal noise that comes along with the friction
force fyap in Eq. (2) depends on the mode coordinate.
In the case of weakly damped modes, which is of inter-
est for nanomechanics, the dynamics can be understood
without requiring that S]gnl) (w) be flat over the range

from w = 0 to w > 2wy. It suffices that St()nl)(w) is
smooth in the range centered at 2wy with a width that
largely exceeds I',T™) . The classical motion can be
conveniently described using the slowly varying complex
amplitude u(t), Eq. (20); again, here we assume that
the polaronic frequency shift has been incorporated into
wo. Instead of Eq. (21), the equation for u(t) now reads
(Dykman and Krivoglaz, 1984)

or (D
ﬁFu( 237>u|u2

% 2wo
+E() +ure™(D) (55)
where €D (t) is  white Gaussian  noise,

(€D OEDE)7) = @A kT/hwg)d(t — ) [we
use the Stratonovich convention (Risken, 1996) for
the multiplicative noise u*(£)€™)(¢)]. The nonlinear
friction term in Eq. (55) has the same form both for the
van der Pol and Rayleigh phenomenological nonlinear
friction forces. We emphasize that, if the nonlinear
friction comes from the coupling to a thermal reservoir,
the associated noise term necessarily depends on the
dynamical variables of the mode, as seen from the last
term in Eq. (55).

Along with the nonlinear friction, we have included
into Eq. (55) the Duffing nonlinearity, cf. Appendix A.1.
The coupling to the bath of the form (52) leads to a



renormalization of the Duffing parameter v (Dykman and
Krivoglaz, 1975), which we assume to have been done.

Nonlinear friction in nanomechanical resonators was
first measured in driven spectra by exciting the system
to a comparatively large vibration amplitude (Eichler
et al., 2011b; Zaitsev et al., 2012). Such friction re-
sults notably in the mechanical linewidth that changes as
the vibration amplitude is increased. It can be also ob-
served in ring-down measurements (Polunin et al., 2016),
where the decay rate varies as the vibration amplitude
gets lower. The systems featuring nonlinear friction in-
clude carbon nanotubes as well as single- and multi-layer
graphene resonators (Dolleman et al., 2018; Eichler et al.,
2011b; Giittinger et al., 2017; Keskekler et al., 2021; Miao
et al., 2014; Singh et al., 2016), PdAu nanobeams (Zait-
sev et al., 2012), silicon MEMS (Nabholz et al., 2018),
and SigN,; membranes with engineered modes (Catal-
ini et al, 2021). A strong nonlinear friction was ob-
served in a micromechanical resonator submerged into
liquid helium at ultralow temperatures; it was related
to the amplitude-dependent attachment of vortices and
provided a probe of quantized vorticity (Barquist et al.,
2020). Nonlinear friction plays an important role in the
dynamics of coupled resonators when they are driven into
the regime of self-sustained vibrations (Mahboob et al.,
2016a, 2015). It also strongly affects parametric reso-
nance (Lin et al., 2015), and the related features can be
used to develop new types of phase-locked loops (Miller
et al., 2019). Another application demonstrated by Chen
et al. (2016b) is self-sustained micromechanical vibra-
tions in a system with linear feedback.

As seen from Eq. (53), the nonlinear friction is compar-
atively large if the power spectrum of the thermal bath,
and thus the susceptibility Im Xl()nl) (w) Sl()nl) (w) are
large for w ~ 2wg. This happens if the considered mode
is coupled to a mode with frequency close to 2wy and a
relaxation rate much higher than I, ™). The nonlinear
friction in this case corresponds to the process where two
quanta of the considered mode scatter into a quantum of
the second mode.

Figure 11 shows an experiment demonstrating the ef-
fect (Kegkekler et al., 2021). The effective nonlinear
friction of the parametrically driven lowest mode of a
graphene nanodrum is seen to strongly increase with the
drive amplitude, and thus with the vibration amplitude,
where the drive frequency w, ~ 2wy was close to the
eigenfrequency of the next lowest drum modes. In this
system the inequality between the relaxation rates was
not sufficiently strong and to describe the observations it
was necessary to go beyond the approximation of lin-
ear response of the higher-frequency mode underlying
Eq. (53). This explains the behavior of the effective non-
linear damping in Fig. 11.

Nonlinear friction can be engineered by parametrically
driving coupled mechanical modes at proper combina-
tion frequencies. The friction coefficient can be made not
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FIG. 11 The effective nonlinear damping coefficient of a para-
metrically driven mode when its vibration frequency is close
to half the eigenfrequency of a second mode, i.e., near the
2 : 1 internal resonance (IR). Adapted from Keskekler et al.
(2021).

only positive, but also negative depending on the drive
frequency (Dong et al., 2018). In microwave electromag-
netic cavities, a positive nonlinear friction was engineered
in order to create long-lived coherent quantum states, in-
cluding cat states that can encode qubit states (Leghtas
et al., 2015; Touzard et al., 2018).

C. Effect of the nonlinearity on the spectra

As indicated above, for underdamped vibrational sys-
tems, the effects of the vibration nonlinearity become
pronounced where the nonlinear part of the restoring or
dissipative force is comparable to the linear friction force,
while all these forces are much smaller than the linear
restoring force —Mw3q. Respectively, the vibrations re-
main close to sinusoidal. However, the change of the
dynamics can be dramatic. It is determined by the non-
trivial interplay of the nonlinearity and linear damping.

1. Spectral effects of the Duffing nonlinearity

For not too large vibration amplitudes, the primary ef-
fect of the conservative nonlinearity is the dependence of
the vibration frequency on the mode amplitude, Eq. (48),
or mode amplitudes, for coupled modes, Eq. (51). Due
to this dependence, the amplitude fluctuations of the
mode (or, in quantum terms, fluctuations of the state
populations) are converted into eigenfrequency fluctua-
tions. This leads to spectral broadening and the over-
all change of the shape of the spectra, making the spec-
tra profoundly non-Lorentzian. The theory of the spec-
tra was first considered in several limiting cases in the
quantum regime by Ivanov et al. (1966). Later a full
classical and quantum theory was developed by Dykman
and Krivoglaz (1971) and Dykman and Krivoglaz (1973).



Experimentally, the Duffing nonlinearity-induced evolu-
tion of the spectra with the varying fluctuation intensity
was explored in different types of systems, such as sil-
icon nitride nanobeams (Maillet et al., 2017), levitated
silica nanoparticles (Amarouchene et al., 2019; Gieseler
et al., 2013), and a micromechanical trampoline res-
onator (Huang et al., 2019). Maillet et al. (2017) studied
not only the evolution of the power spectrum of NEMS
with the varying noise intensity, but also the in-phase
and quadrature components of forced vibrations, which
give the imaginary and real parts of the susceptibility of
a mode with Duffing nonlinearity.

The classical physics of the effect can be readily under-
stood (Dykman and Krivoglaz, 1971) by noting that, in
thermal equilibrium, the vibration amplitude fluctuates.
In the harmonic approximation, the energy of the mode is
Mw2A? /2, where A is the vibration amplitude. Respec-
tively, the mean square amplitude is (4%) = 2kpT/Mw3.
The amplitude fluctuations lead to the spread of the vi-
bration frequency. From Eq. (48), this spread, i.e., the
characteristic magnitude of the frequency fluctuations is
Swo = 3|y[(A2%) /8wp. A critically important parameter is
the relation between dwy and the decay rate T, i.e, the
parameter

o = 0w /2T = 3vkpT /SMwiT . (56)

It can be called the motional narrowing parameter, to
draw the similarity (although somewhat indirect) with
the motional narrowing effect in nuclear magnetic reso-
nance (Anderson, 1954; Kubo, 1954).

Indeed, the parameter I'"! is the correlation time of
the amplitude fluctuations in the absence of nonlinear
friction, cf. Egs. (21) and (55), and thus the correlation
time of the frequency fluctuations due to the Duffing non-
linearity. For |ag| < 1 the correlation time is small com-
pared to the time (dwp)~!. Then the frequency fluctua-
tions are averaged out and dwy gives just a characteristic
shift of the mode frequency while the width of the spec-
trum is determined primarily by the decay rate I'. This is
similar to the fast averaging of fluctuations that underlies
nuclear magnetic resonance in liquids.

On the other hand, for |ag| > 1, the spectrum of the
oscillator can be thought of as a superposition of “par-
tial spectra” centered at the frequencies wgy + dwy that
depend on the instantaneous value of the amplitude A.
The multitude of the frequencies is an analog of the inho-
mogeneous broadening in solid state spectroscopy. The
contribution of a partial spectrum at frequency wqg + dwq
to the whole spectrum is determined by the probability
density of having a given dwp, which is determined by
the Boltzmann distribution over dwy x A2. The overall
width of the spectrum is ~ dwy > T, i.e., the spectral
width is determined by the nonlinearity, not the decay,
and the spectrum is strongly non-Lorentzian and asym-
metric. The quantum picture is discussed in Appendix E.
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The intermediate range |ag| ~ 1 is most interesting
theoretically, as it shows how the partial spectra of the
limit || > 1 shrink and deform with the decreasing
nonlinearity or fluctuation intensity. Somewhat surpris-
ingly, the spectrum is nevertheless described by a sim-
ple explicit expression in both the classical and quantum
domains (Dykman and Krivoglaz, 1971, 1973), see Ap-
pendix E. Figure 35 shows the evolution of the spectrum
with the varying «p.

Dispersive nonlinear coupling between the modes af-
fects the spectrum in a similar way (Dykman and
Krivoglaz, 1971, 1973). As seen from Eq. (51), the typ-
ical spread of the frequency of mode n = 0 due to fluc-
tuations of the amplitude of mode m > 0 is dwy =
31v00mm |(A2,) /4w, The correlation time of the relevant
fluctuations is the reciprocal decay rate I';;! of the mode
m. Therefore for dwy > I',, the spectrum is broadened
and becomes non-Lorentzian, see Appendix E. The cor-
responding spectral broadening has been suggested as a
major broadening mechanism for flexural modes in car-
bon nanotubes (Barnard et al., 2012), graphene sheets
(Miao et al., 2014), doubly clamped beams (Matheny
et al., 2013; Venstra et al., 2012) as well as microcan-
tilevers(Vinante, 2014).

Figure 12 presents experimental results, which show
how the power spectrum and the real and imaginary parts
of the susceptibility are changed with the varying noise
intensity. Panel (a) refers to the case where the disper-
sive coupling to other modes is small. The spectrum
is determined by the internal mode nonlinearity and its
shape evolves from a Lorentzian to a strongly asymmet-
ric peak with the increasing ag. Panel (b), on the other
hand, illustrates the effect of nonlinear dispersive mode
coupling. The internal Duffing nonlinearity could be dis-
regarded. The shape of the spectrum depends on the
scaled coupling parameter a; = 3’)’0011/€BT/4M0J(]W%F1.

An interesting behavior occurs where the number of
the modes dispersively coupled to the considered mode is
large, even though the coupling to each mode taken sepa-
rately is small. In this case the power spectrum S(w) may
become Gaussian in its central part (Zhang and Dykman,
2015), as first found numerically by Barnard et al. (2012),
see Appendix E.4.

Dispersive coupling could be used for quantum non-
demolition measurements of phonons (Santamore et al.,
2004b). In such a measurement, the number of phonons
of one mode would be continuously measured by record-
ing the resonant frequency of the second mode. A realiza-
tion of such an experiment in nanomechanics is challeng-
ing, since it requires strong dispersive coupling compared
to the decay rates of the modes.
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FIG. 12 (a) The evolution of the spectrum of a micromechan-
ical trampoline resonator with the Duffing nonlinearity (46)
upon increasing the effective temperature that is determined
by the applied broad-band noise. When the noise intensity
is small, the spectrum is Lorentzian. At large noise intensity,
the spectrum becomes highly asymmetric due to the interplay
between the noise and the Duffing nonlinearity. At still larger
noise intensities it was necessary to take into account higher-
order nonlinearity. The solid lines correspond to the spectra
expected without any free parameters. Adapted from Huang
et al. (2019). (b) The in-phase and quadrature component of
a weakly driven nanomechanical mode dispersively coupled to
a fluctuating mode m = 2 for different values of the mean-
square displacement Age. The displacement fluctuations of
the m = 2-mode are driven by electric noise. When these
fluctuations are small, the response of the measured mode
(gray data points) is symmetric with respect to the resonant
frequency (vertical dashed line). For large fluctuations, the
response becomes asymmetric. Adapted from Maillet et al.
(2017). The solid lines in (a) and (b) are calculations with no
free parameters.

2. Dispersive coupling of a nanomechanical mode to a qubit

A promising direction of nanomechanics is the study
of the effects of coupling of nanomechanical vibrations
to controllable two-level systems, qubits. The involved
physics is closely related to the physics of the electronic
states of defects coupled to phonons in solids (Stoneham,
2001), NV centers being one of the defects of utmost cur-
rent interest. Coupling nanomechanical modes to qubits
opens a path toward studying the electron-phonon ef-
fects with an unprecedented control. It also provides new
means to manipulate and measure the quantum states of
mechanical resonators operating in the GHz range (Bien-
fait et al., 2019; Chu et al., 2018; Gustafsson et al., 2014;
O’Connell et al., 2010; Satzinger et al., 2018). Com-
pared to superconducting resonators, GHz mechanical
resonators can have longer lifetimes (MacCabe et al.,
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2020) and are usually much more compact (Safavi-Naeini
et al., 2019). These systems hold promise for scalable
qubit architectures where quantum information is stored
in bosonic systems (Hann et al., 2019; Lescanne et al.,
2020; Ofek et al., 2016).

In the systems studied so far, the qubit-mode coupling
energy was smaller than the mode level spacing Awg. In
this case, if the level spacing of the qubit Awqy is sig-
nificantly different from fwg, of primary interest is the
study of the dispersive coupling. Such coupling has at-
tracted much attention in solid-state physics (Sild and
Haller, 1988). If the qubit is described as a spin-1/2 sys-
tem with the Hamiltonian Hqpy = Awqgnto-/2, where o is
the Pauli matrix, the dispersive coupling to the nanome-
chanical mode has the form

1
Hiqbt = §qubt02q2, (57)

where yqnt determines the coupling energy.

The ensuing physics is very similar to the physics of
dispersively coupled vibrational modes. If one thinks
of the mode vibrations classically, one can see that
the coupling-induced change of the qubit transition fre-
quency is determined by the vibration amplitude A,

dwgbt = %'YqbtAQ-

In the classical limit, kT > hwg, the shape of the qubit
spectrum is determined by the ratio of the characteristic
value of the frequency shift Eqbt = Yaut kT /M w% to the
reciprocal correlation time of the frequency fluctuations
T', going from the “motional narrowing” regime where
this ratio is small to the “inhomogeneous broadening”
regime where it is large.

In the quantum regime, dwqpt takes on discrete values
that correspond to different occupation numbers ng of
the vibrational mode,

Sesqb (n0) = (Wyque/Mwo)(ng +1/2).  (58)

If (Brygpe/Mwo) > T'(27+1), the lines at wqpt +dwgne (120)
with different ng weakly overlap. This leads to a fine
structure of the qubit spectrum and enables identifying
the population of the mode Fock states |ng). The shape
of the lines of the fine structure is close to Lorentzian,
with halfwidth T'qp¢ +2I'[2(210 + 1) + no] that linearly in-
creases with ng, similar to the case of dispersively coupled
modes, cf. Egs. (E4) - (ET); here I'yp is the halfwidth of
the qubit spectral line in the absence of coupling to the
mode. Such a regime is an analog of the inhomogeneous
broadening.

If (Aygoe/Mwo) ST(27+1), the lines with different ng
overlap. In this case quantum mechanics does not allow
one to identify individual Fock states from the spectrum.
As explained in Appendix E, the amplitudes of the tran-
sitions with different ng are coupled. The overall qubit



spectrum shrinks down with the decreasing hAygnt /Mwol.
Where this parameter is small the contribution of the
dispersive coupling to the halfwidth of the qubit spec-
trum is (Rygpt/Mwol)?Ta(n + 1)/2 (Krivoglaz, 1965).
For systems in thermal equilibrium, the spectrum for
an arbitrary Aygnt/Mwol was described by Dykman and
Krivoglaz (1987). Using a qubit to study the vibration-
number statistics in the case of a driven mode was con-
sidered by Clerk and Utami (2007).

In Fig. 13 we present the results of the measurements
of the spectrum of Josephson junction qubits coupled
to a membrane resonator (Viennot et al., 2018) and
to a high-frequency phononic crystal defect (Arrangoiz-
Arriola et al., 2019). In the first system there was studied
the regime where a large number of vibrational states was
occupied, whereas in the second system it was possible to
reach small occupation numbers and to resolve the fine
structure of the spectrum.

It should be noted that the experiments by Arrangoiz-
Arriola et al. (2019) and a part of the experiments by
Viennot et al. (2018) were performed where the vibra-
tional system was away from thermal equilibrium. The
full analysis of the spectrum in this case requires taking
into account the coupling of the complex amplitudes of
transitions between the states of the mode in the tran-
sient regime (Dykman, 1975; Zhang and Dykman, 2017).

3. Broadening of the power spectrum due to nonlinear friction

Similar to the conservative nonlinearity, nonlinear fric-
tion also leads to a broadening and a change of the shape
of the oscillator power spectrum (Dykman and Krivoglaz,
1975). The effect depends on temperature even where
the nonlinear friction coefficient T'™) defined by Eq. (53)
is temperature-independent. In the classical limit, this
is clear already from Eq. (55). Indeed, the nonlinear
friction force is increasing with the increasing vibration
amplitude. Therefore, as the mean squared amplitude
is increasing with the increasing temperature, so is the
nonlinear friction force.

It is seen from Eq. (55) that, since in thermal equi-
librium (Ju|?) = kpT/2Mw?, the characteristic pa-
rameter of nonlinear friction in the classical theory is
2F(n1)kBT/hw0. The evolution of the spectrum with the
varying ratio vV = 20D k5T /fiwel is shown in Fig. 36.
If the vibration frequency does not depend on the ampli-
tude, the spectrum remains symmetric, but it becomes
profoundly non-Lorentzian. Its width increases with the
increasing nonlinear friction, and thus with the increas-
ing temperature.

Generally, both nonlinear friction and conservative
nonlinearity are present in NEMS and MEMS. Their in-
terplay leads to characteristic features in the spectrum
which should allow one to identify the presence of both
mechanisms (Dykman and Krivoglaz, 1975). An impor-
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FIG. 13 (a) Spectroscopy of the qubit coupled to the mi-
cromechanical oscillator (at thermal equilibrium) in a dilution
fridge. Measured is the qubit excited state probability as a
function of frequency of a weak microwave drive. The asym-
metry of the peak indicates an oscillator occupation number
that is low but significantly larger than one. The oscillator
vibrates at 25 MHz, whereas the qubit frequency is 3.82 GHz.
The coupling parameter yqb¢ is positive. Inset: Phonon pop-
ulations extracted from the spectrum with a fit assuming a
thermal distribution (dashed line) or with a Bayesian-based
deconvolution algorithm (full line). Adapted from Viennot
et al. (2018). (b) Pump-probe measurement consisting of a
short phonon excitation pulse followed by a longer qubit spec-
troscopy pulse. The detuning on the horizontal axis is relative
to the qubit frequency wqny = 2.317 GHz in the absence of
a phonon excitation pulse; the mechanical oscillator vibrates
at 2.405 GHz. The coupling parameter yqbt is negative. The
initial phonon populations prepared by the pulse decay over
the course of the measurement but are nevertheless visible as
individual peaks separated by fiygpt/Mwo. The blue points
are data and the solid lines are a fit using numerical master-
equation simulations. Adapted from Arrangoiz-Arriola et al.
(2019).

tant indicator of the effect of the conservative nonlinear-
ity, which has been seen in experiments, is an asymmetry
of the spectrum. We are not aware of experiments where
a change of the spectrum due to nonlinear friction would
have been established. This is to be contrasted with the
observation of nonlinear friction in strongly driven sys-



tems described in Sec. VI.B.

VIl. NONLINEAR RESONANT PHENOMENA: A
LABORATORY FOR STUDYING PHYSICS FAR FROM
THERMAL EQUILIBRIUM

Nonlinear resonant response of vibrational modes to
an external drive leads to several groups of phenomena,
which are of interest for nanomechanics but also makes
nanomechanics a testing ground for such diverse areas as
statistical physics far from thermal equilibrium, nonlin-
ear dynamics, and quantum cavity /circuit electrodynam-
ics. This is because, for the characteristic small damp-
ing, the response becomes nonlinear already for compar-
atively weak resonant driving. This allows one to study
nonlinear effects in a well-controlled fashion over a broad
parameter range.

A. Bistability of resonantly excited vibrations

One of the simplest and yet very rich nonlinear effects
studied in nanomechanics is hysteresis of the vibrations
excited by applying a close to resonant driving force. The
hysteresis emerges when the frequency wp or the ampli-
tude F' of a moderately strong drive is swept across a
certain range. The onset of the hysteresis is a conse-
quence of coexistence of two stable vibrational states of
the nonlinear mode, i.e., of the mode bistability (Lan-
dau and Lifshitz, 2004). Such hysteresis was observed in
nanomechanical systems early on (Husain et al., 2003).
In most cases it is well described already by the simplest
model of the vibration nonlinearity, the Duffing model in-
troduced in Sec. VI. In this section we will concentrate on
the nonlinear resonant response described by this model.

A phenomenological equation of motion (2) extended
to include the close to resonance driving F coswpt and
the Duffing nonlinearity reads

MG+ 2MT§ + Mwiq+ M~yg®
= Fcoswrt+ fr(t), |wr—wo| Kwy.  (59)

Qualitatively, the occurrence of two stable vibrational
states in the absence of noise can be inferred in the fol-
lowing way, cf. Fig. 14. Suppose the drive frequency
wr is close to the eigenfrequency wg, but the detuning
|wr — wp| considerably exceeds the decay rate. Then one
may expect that the amplitude of the forced vibrations
is comparatively small. It is given by the value A; in
Fig. 14. However, the nonlinearity leads to a change of
the mode frequency dwy with the mode amplitude, as
described by Eq. (48). If the vibration amplitude is suf-
ficiently large and takes on the value A, in Fig. 14, the
shifted frequency wg + dwy can become very close to wp,
so that there is strong resonance. Such resonance will
make vibrations with the corresponding large amplitude
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FIG. 14 A sketch of the dependence of the vibration fre-
quency on the vibration amplitude A for a comparatively
small nonlinearity. From Eq. (48), the frequency linearly
depends on A% and for the Duffing model w(A?) — w(0) ~
3vA? /8w(0) (note that w(0) = wp). When the mode is driven
by a field at frequency wp, it can have stable vibrational states
with comparatively small and comparatively large amplitudes
Aj and As, for which w(Az) is further away or closer to wp.

self-consistent. This leads to two stable states: Forced vi-
brations can either have large amplitude and be at good
resonance or have small amplitude and be detuned from
the resonance.

Semi-quantitatively, the onset of bistability can be un-
derstood already using the susceptibility of the oscillator
X (w). By the definition of the susceptibility, the squared
amplitude of forced vibrations is A? = |y (wr)|?F?. If we
now use for y(w) the familiar expression (5) for the sus-
ceptibility of a harmonic oscillator, but replace the eigen-
frequency woy — wp + dwp with dwy given by Eq. (48), the
resulting equation for the squared amplitude reads
F? -

A=
(QMLUQ)Q

3 4° ) i (60)

8(4}0

F2+<wpw0

This equation describes the above qualitative arguments
of “tuning” the mode in and out of good resonance, i.e.,
varying the detuning wr — wy — 3vA? /8wy by changing
A. Formally, Eq. (60) is a cubic equation for A2, and it
can have three solutions. The solutions with the smallest
and the largest A? can be shown to be stable (Landau
and Lifshitz, 2004). The characteristic dependence of the
amplitude A on the drive frequency detuning wpr —wy for
a nanowire measured by Kozinsky et al. (2007) is shown
in Fig. 15(a).

The dynamics of a resonantly driven mode is conven-
tionally described in terms of the in-phase and quadra-
ture components Q and P, respectively. They correspond
to the coordinate and momentum of the mode in the ro-
tating frame,

q(t) = Qcoswpt + Psinwpt,
p(t) = Mwp(—Qsinwpt + P coswpt). (61)

The dynamical variables () and P are advantageous from
the point of view of the experiment, as they can be di-
rectly measured with a lock-in amplifier by setting its
frequency to wp. We note that (Q — iP)/2 has the
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FIG. 15 (a) Vibration amplitude A of a resonantly driven
platinum nanowire versus frequency, for various driving
powers showing the onset of bistability (Kozinsky et al.,
2007). The curves refer to the drive amplitudes F/F. =
0.249,0.443,0.788,1.401,2.492. The amplitudes A and F
are normalized by their values A. and F. at the criti-
cal point in (b). (b) The bifurcation diagram of a res-
onantly driven Duffing oscillator; the scaled amplitude of
the drive is F = (3v/32w3T%)Y/2F. The bistability oc-
curs in the interior of the region limited by the bifurcation
curves Fpi2(wr) given by Eq. (D5). At the critical point
F‘B1 = FBQ = Fc the three stationary vibrational states
(two stable and one unstable) merge, F. = (8/v/27)"2. (c)
Basins of attraction of the platinum nanowire resonator at
(wp — wo)/T" = 4.26 for increasing drive values, F/F. =
(1)1.867, (2)2.049, (3)2.237, (4)2.434, (5)2.640, (6)2.741. The
variables X and Y are the scaled in-phase and quadrature
components of the vibrations @ and P, Eq. (61). Blue and
yellow colors indicate the initial states in which the system
is prepared by driving it at frequency wr with a certain am-
plitude F'. The amplitude is then switched to a value above
F/F, and the drive phase is adjusted. After that the system
goes to the final high- or low-amplitude stable state depend-
ing on where it was prepared. The theoretical positions of the
stable states and the saddle point, and the separatrix curve
are indicated by the black points, the black cross, and the
dashed black curve, respectively (Kozinsky et al., 2007).

same form as the complex amplitude u(t) introduced in
Eq. (20) except that the frequency wg in Eq. (20) is re-
placed by wg. In terms of () and P, the vibration am-
plitude is (Q2 + P?)'/? and the phase is — arctan(P/Q).
In quantum description, Q and P are operators, with
[Q, P] = ihMwp.

The transient dynamics of the mode can be pictured
in terms of the motion on the (Q, P)-plane, which is the
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phase plane in the rotating frame, see Appendix D.1. The
time evolution of @ and P is slow compared to the fast
oscillations at frequency wp. The stationary values of @
and P describe the stationary states of vibrations at fre-
quency wp in the laboratory frame, as seen from Eq. (61).
These values correspond to points on the (@, P)-plane.
If the mode has one stable vibrational state, there is one
such point. In the range of bistability, there are three
stationary states on the (@, P)-plane. Two of them cor-
respond to the stable vibrational states with different am-
plitudes and phases, and the third one corresponds to an
unstable state (a saddle point). The whole (Q, P)-plane
is divided into two regions: if prepared initially in one re-
gion, the mode evolves toward one stable state, whereas
from the other region it evolves to the other stable state.

(Kozinsky et al., 2007) managed to directly map the
(Q, P)-plane of a driven nonlinear mode and identify the
basins of attraction to different stable states using the vi-
brations of a doubly clamped platinum nanowire, which
were actuated and detected magnetomotively. The re-
sults are shown in Fig. 15 (a) and (c).

The number of stable vibrational states changes at
the bifurcation parameter values, i.e., at the bifurcation
points. These points lie on the lines in the space of the
parameters of the driving force (F,wp), as illustrated in
Fig. 15(b). On the upper (black) line the small-amplitude
state merges with the unstable state. The experimen-
tal results (Kozinsky et al., 2007) in Fig. 15 (¢) show
how, with the increasing driving amplitude, the small-
amplitude state (state 1) approaches the unstable state
(panels 1 - 5). Ultimately both of these states disappear
(panel 6) and the mode has only one stable vibrational
state.

A resonantly driven mode can display bistability if, in
addition to conservative nonlinearity, the friction force
is also nonlinear. In the presence of nonlinear friction
the decay rate is amplitude-dependent. This can be de-
scribed by replacing T' — T 4 I'®™) A2 /2¢2 in Eq. (60).
The dynamics of the mode in this case was studied by
Buks and Yurke (2006).

B. Parametric excitation

Vibrations of nanomechanical systems can be also res-
onantly excited using parametric pumping. The corre-
sponding pumping can be described as the modulation of
the vibration eigenfrequency wy at a frequency w,, close
to 2wg. If the modulation is weak, it does not excite
vibrations, the equilibrium state ¢ = p = 0 is stable.
However, a sufficiently strong modulation can make this
state unstable. It leads to an onset of two stable vi-
brational states. In each of these states the system vi-
brates at frequency w,/2. The phases of the vibrations
are fixed by the modulation parameters and differ by 7
in the different states. In the optics terms, the system



is sometimes called a degenerate parametric oscillator to
emphasize that the vibration frequencies are the same in
both states. Arguably, such parametrically excited vibra-
tions provide the simplest example of the onset of period
doubling in a nonlinear system, since their period is twice
the period of the driving.

The condition for the onset of period-2 vibrations and
their amplitude can be obtained using the same naive ar-
guments that led to Eq. (60). Indeed, the simplest phe-
nomenological equation of motion that describes para-
metric resonance reads

M§+2MT§ + Mwiq+ M~g®
= gF, coswpt + fr(t), |wp— 2wo| K wo. (62)

One can again relate the vibration amplitude to the force
using the resonant susceptibility x(wp/2). However, the
resonant force has now to be written with the account
taken of the fact that we are seeking vibrations of the
form ¢(t) = A cos[(wpt/2)+¢], and therefore the resonant
part of the force ¢F, coswyt is (AF,/2) cos[(wpt/2) — ¢]
(the phase ¢ has to be found separately). Substituting
this expression for the force into the equation for the
amplitude gives A? = |x(w,/2)[?(AF,/2)?. Using for the
susceptibility the same expression as in Eq. (60) we ob-
tain that either A = 0, i.e., there are no vibrations, or

F,? 9 3yA2\?
e 2y (6w, - 2 —1
@Mwo2 | ( “P T R ’
Swp = (wp/2) — wo. (63)

Equation (63) shows in particular that vibrations at fre-
quency wy/2 are excited provided the modulation is suffi-
ciently strong to overcome the dissipation, |Fp|/4Mwy >
I". As in the case of the resonant driving discussed in
Sec. VII.A above, in the presence of nonlinear friction
one should replace in Eq. (63) T' — T' + (D A2 /242.

Equation (63) is a quadratic equation for A2. It shows
that, besides the zero-amplitude state where A = 0, the
modulated mode can have either one or two pairs of
period-2 states, depending on whether Eq. (63) has one
or two positive roots A2 > 0. The stability of these states
and the overall dynamics of a parametrically modulated
mode can be conveniently described by changing from
q(t),p(t) to the quadratures Q(t), P(t). The correspond-
ing transformation is similar to Eq. (61),

g+ ip/(Muwy/2) = (Q + iP) exp(—iwyt/2).

The equations for the quadratures @), P are given in Ap-
pendix D.2. The stable period-2 states correspond to the
symmetrically located fixed points on the phase plane
Q. P).

The parameter ranges where a parametrically modu-
lated mode has different numbers of coexisting states are
separated by the bifurcation lines shown in Fig. 16 (a,b).
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FIG. 16 The bifurcation diagrams of a parametrically modu-
lated mode without (a) and with (b) nonlinear friction. The
scaled modulation parameters are u, = (dw,/T)sgny, fp =
F,/2MTw,. (a) With no nonlinear friction, the period-2
states are stable for f, > 1 and for p, > pp1 = —(fZ —1)"/2.
For p, > 2 = —pp1 the zero-amplitude state also becomes
stable, leading to three stable states in the region delimited
by the magenta and green dashed lines. (b) In the presence
of nonlinear friction the three stable states coexist in the re-
gion bound by the line pup2(fp) and the green (upper) dashed
line, cf. Lin et al. (2015). (c) Hysteresis of the response of a
modulated nanoresonator for two values of the amplitude of
the parametric drive (Karabalin et al., 2010). The vibration
frequency is wp/2. “Upwards” and “downwards” refer to the
frequency being increased and decreased, respectively, with
the resonator being initially in the zero-amplitude state. The
switching from the upward branch, which refers to the driv-
ing amplitude 690 mV, occurs outside the shown frequency
range.

An example of the hysteretic behavior of parametrically
modulated nanoresonators is shown in Fig. 16 (c). The
experimental data by Karabalin et al. (2010) shown in
this figure were obtained using doubly clamped piezoelec-
trically controlled nanobeams. In the simplest case, the
occurrence of the hysteresis is a consequence of nonlinear
friction. As seen from Fig. 16 (b), if one increases the
frequency (the parameter ,up) starting from the negative
value, there are excited period-2 vibrations once the solid
blue line ppy is crossed. These vibrational states disap-
pear once the higher dashed line (green)is crossed. On
the other hand, if one starts from above the green dashed
line and decreases the frequency, the zero-amplitude state
remains stable until the lower dashed line (magenta) 1 po
is crossed. It is possible to break the symmetry between
the two parametrically driven states that differ by 7 in
the phase by applying a force at wy/2 (Ryvkine and Dyk-
man, 2006), as measured by Mahboob et al. (2010b) and
Leuch et al. (2016).



C. Fluctuations of driven modes

An important aspect of researching resonantly driven
or parametrically modulated nanomechanical systems is
the possibility to use them for studying fluctuation phe-
nomena far from thermal equilibrium. Because nanome-
chanical systems are well-characterized, they are well
suited for such studies. We will discuss several features
of fluctuations in driven NVSs.

1. Fluctuation squeezing

An important generic feature of fluctuations of a peri-
odically driven mode follows from the very fact that the
driving breaks the continuous time-translation symme-
try of the mode dynamics. An immediate consequence
of the symmetry breaking is the possibility of fluctua-
tion squeezing. In squeezing, fluctuations of one of the
vibrational components (quadratures) are reduced below
their level in the absence of driving, whereas fluctuations
of the other component are increased. In the absence of
driving, the quadratures are the vibration components
that oscillate as coswpt and sinwgt. If the system has a
continuous symmetry, the origin of time can be shifted.
A shift in time by 7/2wp results in the interchange of the
quadratures. This shows that the variances of their fluc-
tuations should be equal. A periodically driven system,
in contrast, has a discrete time-translation symmetry. It
is symmetric only with respect to changing time by the
period of the drive. Therefore the quadratures may no
longer be interchanged and their variances are generally
different.

Historically, squeezing was first detected in quantum
optics (Slusher et al., 1985). It attracted significant at-
tention, since it can reduce fluctuations of a quadrature
below their level in the quantum ground state of the mode
and thus enable high-precision measurements (Caves,
1981). The technique has been implemented in laser
interferometers for gravitational wave detection (Acer-
nese, 2019; Tse and others, 2019). In nano- and micro-
mechanical systems, squeezing in the quantum regime
was demonstrated using the techniques of cavity optome-
chanics, (Lecocq et al., 2015; Pirkkalainen et al., 2015a;
Wollman et al., 2015).

However, the concept of squeezing of fluctuations in vi-
brational systems equally applies to the classical regime.
Squeezing of thermal fluctuations of nanomechanical sys-
tems has been achieved in several experiments using
parametric pumping (Mahboob et al., 2010a; Rugar and
Griitter, 1991; Suh et al., 2010). The squeezing is ob-
tained with a comparatively weak pumping, below the
threshold for exciting period-2 vibrations. For weak
noise, it can be described disregarding the mode non-
linearity, see Appendix D.2.

Figure 17a shows the measurements of the thermal vi-
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FIG. 17 (a) Thermal vibration noise plotted in the (Q,P)
phase plane and measured with the pump turned off (thermal
equilibrium, pump power Vp = 0 mV) and the pump turned
on (nonzero Vp). (b) Variance of the @ and P quadratures
for increasing pump power normalized by the variance at zero
pump power. The dashed line indicates the 3 dB limit for
parametric squeezing (Poot et al., 2015).

bration noise represented in the (Q, P)-phase plane (Poot
et al., 2015). The quadratures are measured with a lock-
in amplifier by setting its frequency to wg. Without
pump, the variances of both quadratures are the same,
as expected for the continuous time symmetry of the
problem. When the resonator is parametrically driven
at 2wq, the variances are no longer equal, pointing to
time-translation symmetry breaking. The variance of the
Q-quadrature is squeezed by the parametric drive. The
strongest squeezing corresponds to 3 dB variance sup-
pression, which is reached when the P quadrature di-
verges (Fig. 17b).

With feedback control (Poot et al., 2014; Sonar et al.,
2018; Szorkovszky et al., 2013; Vinante and Falferi, 2013)
it was possible to achieve squeezing by 15.1dB (Poot
et al., 2015), well above the conventional 3 dB limit for
parametric pumping of a linear mode, cf. Eq. (D14).
Classical two-mode squeezing in mechanical resonators
by non-degenerate parametric amplification has been also
reported (Mahboob et al., 2014a; Patil et al., 2015; Pon-
tin et al., 2016) as well as the possibility to obtain squeez-
ing in a two-mode system using post-selection (Asano
et al., 2019). Classical squeezing was proposed as a way
to reduce heating in computers (Klaers, 2019); it also
represents an important asset for high-precision sensing
(DiFilippo et al., 1992; Mahboob et al., 2010a; Natarajan
et al., 1995; Szorkovszky et al., 2013) and thus may lead
to a new generation of nanomechanical detectors.

Much less attention has been paid to squeezing of mode
fluctuations due to a resonant coordinate-independent
force, cf. Eq. (59). The general argument regarding the



broken time-translation symmetry applies in this case,
too. However, for a driven linear mode, forced vibrations
are just linearly superimposed on thermal vibrations, and
therefore there is no squeezing. The situation changes in
the nonlinear regime. Here the fluctuations are affected
by the driving and the effect can be resonantly strong.

For weak noise, a resonantly driven mode primarily
fluctuates about its state of forced vibrations. These
are the fluctuations of the deviations of the quadratures
6Q, 6P from their values in the stable state that become
squeezed in the nonlinear regime. The occurrence of the
squeezing could be inferred from the strongly asymmetric
phase trajectories in the rotating frame in the neglect of
dissipation in Fig. 33 (b), which were discussed already in
the early work on a resonantly driven Duffing oscillator
(Dmitriev and Dyakonov, 1986; Dykman and Krivoglaz,
1979), cf. also (Siddiqi et al., 2004). A theory of squeez-
ing was developed by Buks and Yurke (2006). A strong
suppression of a spectral component of a quadrature was
observed in a nanomechanical Duffing resonator by Al-
mog et al. (2007a) in a narrow parameter range near the
critical point in Fig. 15 (b) using conventional homodyne
detection.

Homodyne measurements are strongly impeded by fre-
quency fluctuations, which play an important role in
nanomechanical systems, see Sec. IX. The limitations
are particularly pronounced in systems with small damp-
ing, where the noise in the in-phase component increases
with the increasing drive strength (Fong et al., 2012),
see Fig. 30. However, it appears that, for underdamped
vibrational modes, squeezing can be found by measur-
ing the spectrum of their response to an additional weak
probe field (Ochs et al., 2021b) or, for classical fluctua-
tions, by measuring the power spectrum (Huber et al.,
2020).

The spectral measurements of squeezing exploits the
nature of the dynamics of a driven strongly underdamped
mode. When viewed in the rotating frame, this dynamics
involves weakly damped oscillations about a stable state
of forced vibrations, as described in Appendix D.2.b. The
frequency of these oscillations wyet is much smaller than
the strong-drive frequency wr. When viewed in the lab-
oratory frame, they lead to peaks in the power spectrum
at frequencies wr + wyot.

Figure 18 shows the power spectrum of fluctuations
of a resonantly driven NVS mode with clearly resolved
peaks at wp + wyoy (Huber et al., 2020). The peaks have
profoundly different intensities, a direct consequence of
squeezing.

The peaks at wp 4 wyot emerge also in the spectrum
of the response to an additional weak probe field. The
ratio of the areas A* of these spectral peaks gives the
squeezing parameter ¢ (Dykman, 2012; Dykman et al.,
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FIG. 18 (a) Power spectrum of a resonantly driven nanome-
chanical mode as a function of frequency f for wr =27 fr =
wo. The line at f — fr = 0 is plotted with reduced brightness
to improve the visibility of the satellites, which are due to
fluctuations about the stable state of forced vibrations. (b)
Variance of the scaled in-phase and quadrature fluctuations
(6Q?) and (6P?) as a function of the detuning (wr — wo)/27.
The horizontal (black) line indicates thermomechanical fluc-
tuations at 293 K, and the upper and lower red lines indicate
the theory. Adapted from Huber et al. (2020).

2011; Ochs et al., 2021a),

6
T

+
coth® ¢ = % (64)

This expression holds for thermal and quantum fluctu-
ations about the larger-amplitude vibrational state in
the range of bistability, cf. Fig. 15 (b); for the smaller-
amplitude state one should replace coth ¢ — tanh ¢.

One of the peaks of the response spectrum corresponds
to amplification of the probe field by the strong driving
field (Dykman and Krivoglaz, 1979; Ochs et al., 2021a).
A distinctly double-peak structure of the response spec-
trum in a suspended nanomembrane was seen by Antoni
et al. (2012).

D. Rare large fluctuations far from thermal equilibrium

Classical and quantum fluctuations in driven nanome-
chanical systems are not described by the statistical
physics of systems in thermal equilibrium, and their prob-
abilities are not determined by the thermodynamic po-
tentials. Revealing general features of such fluctuations is
both challenging and important. To a large extent, these
features are related to the absence of detailed balance.
Detailed balance requires that, in the stationary regime,
the probabilities of transitions between the states of a
system be balanced pairwise. This means that the prob-
ability of a transition A — B between arbitrary states
A and B is equal to the probability of the transition
B — A. Here the overline indicates that, in the corre-
sponding states, the signs of odd in time variables have
been reversed (Lifshitz and Pitaevskii, 1981); we assume



that there is no magnetic field. For a classical vibrational
mode, one can associate the mode states with small ar-
eas in phase space; for states A and B these areas are
centered at points qa,pa and gg, pr, whereas A and B
are centered at q4,—pa and gp, —pp, respectively.

Detailed balance is a requisite of thermal equilibrium.
It differs from the stationarity condition that the prob-
ability to go from A to B, C, etc is equal to the to-
tal probability to come to A from B, C, etc. Driven
nonlinear modes do not have detailed balance, as a rule,
cf. (Roberts et al., 2021). They have proved to be in-
valuable as a means to study statistical physics with no
detailed balance because, on the one hand, they are com-
paratively simple while, on the other hand, they display
a nontrivial behavior.

1. Dynamics of nonequilibrium systems in rare large
fluctuations

Of special interest in terms of their generic features are
nonequilibrium phenomena related to comparatively rare
large fluctuations away from a stable state and switch-
ing between coexisting stable states. These phenomena
encompass chemical and biological reactions as well as
switching in lasers, driven nano-magnets, and other sys-
tems of current interest. Even though much work has
been done on the theory of switching in systems lacking
detailed balance, to the best of our knowledge, vibra-
tional systems have been the only ones where the theory
could be quantitatively tested in the experiment. More-
over, with these systems the qualitative features of large
rare fluctuations, including the involved scaling behavior,
have been studied.

For weak on average fluctuations, most of the time the
system performs small-amplitude fluctuations about its
stable state (or one of its dynamically stable states). Still
occasionally there occur large fluctuations, in which the
system moves far away from this state in phase space.
They may result in switching to another stable state.

A key idea behind the understanding of large rare fluc-
tuations was put forward by Onsager and Machlup (1953)
and Machlup and Onsager (1953) in the analysis of lin-
ear thermal equilibrium systems. They showed that, very
counter-intuitively, in a large fluctuation to a given point
in phase space, even though the motion is random, a sys-
tem most likely moves along a certain trajectory. More-
over, for an overdamped system this trajectory is the
time-reversed trajectory of moving back to the stable
state from this point in the absence of fluctuations.

The concept of the corresponding most probable tra-
jectory of a rare fluctuation extends to nonlinear sys-
tems and to nonequilibrium systems. However, in sys-
tems lacking detailed balance finding such a trajectory is
a far from trivial problem, and the topology of such tra-
jectories is also far from trivial (Dykman et al., 1994b).
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This problem is fundamental in the theory of nonequilib-
rium systems, from physics to biology. It attracted much
attention over the years (Kamenev, 2011).

A direct experimental observation of the most probable
trajectory in a system lacking detailed balance was done
with a micromechanical system (Chan et al., 2008b,c),
see Fig. 19(a). The system was parametrically driven
into the range where it had two stable vibrational states
Ay and Aj, see Sec. D.2. A comparatively weak noise
caused mostly small-amplitude fluctuations about the
states, but occasionally also led to interstate switching.
In the experiment, the system was prepared in the state
A; and its trajectory was recorded. After it was found in
the vicinity of the state As, a portion of the trajectory
in the region between the blue lines in Fig. 19 (b) was
saved and the experiment was repeated. The distribu-
tion p1o of the paths followed in switching was obtained
by superposing the saved portions of the trajectories.

The sharp peak of the distribution in Fig. 19 (a) shows
that indeed, in switching the system is most likely to
move along a certain path, the most probable switching
path (MPSP). Except for the vicinity of the saddle point
@ = P = 0, the distribution of the trajectories about
the MPSP was Gaussian and was in full agreement with
the theory, which extended the previously developed ap-
proach (Dykman et al., 1992; Luchinsky and McClintock,
1997) to the problem of switching. For switching from the
zero-amplitude state of a parametrically excited micro-
cantilever, observation of switching paths was reported
by Requa and Turner (2007).

Figure 19 (c) compares the uphill portion of the MPSP
(red line) with the noise-free trajectory (magenta line)
along which the system would move from the saddle point
to state A;. It clearly shows that these trajectories do
not have time-reversal symmetry, which would be the
symmetry (@, P) — (Q,—P). This is an unambiguous
indication of the lack of detailed balance.

The form of the MPSP depends not only on the dy-
namics of the system in the absence of fluctuations, but
also on the source of the fluctuations, that is, on the prop-
erties of the noise, including its spectrum and statistics.
The results in Fig. 19 refer to the case where the noise
is thermal, cf. Eq. (62), and therefore is Gaussian and
white in slow time, see Sec. IV.

2. Scaling behavior of the rates of switching between stable
vibrational states

Quite generally, for a Gaussian and not necessarily
white noise the rate of switching between coexisting sta-
ble states scales with the noise intensity D as (Dykman,
1990)

Waw = Cswexp(—R/D). (65)
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FIG. 19 (a) Probability distribution of the switching paths of
a torsional microelectromechanical resonator parametrically
driven into bistability. The distribution p12(Q, P) is measured
for switching out of stable state A; into state Az in the rotat-
ing frame; Q and P are the quadratures, which are measured
in the units of the rotation angle of the resonator. (b) The
peak locations of the distribution are plotted as black circles
and the theoretical most probable switching path is indicated
by the thin red line. All trajectories originate from within
the thick green circle in the vicinity of A; and later arrive
at the thick green circle around A,. The radii of the green
circles give the typical fluctuation amplitude. The portion
of the distribution outside the straight blue lines is omitted.
(¢) Comparison of the most probable switching path (MPSP)
and the noise-free trajectory; @’ and P’ are the rescaled di-
mensionless quadratures @ and P. The noise-free trajectories
from the saddle point S to the stable states are shown by thin
solid lines (magenta). The thick red line shows the first por-
tion of the MPSP from A; to S, where the system is driven
by noise. The MPSP as a whole is comprised by this trajec-
tory and the noise-free trajectory from S to Az. The green
dashed line shows the separatrix. Adapted from Chan et al.
(2008b,c¢).

This expression is similar to the expression by Kramers
(1940) for the escape rate of a Brownian particle from
a potential well. For the Brownian particle the noise
intensity is kT and R = AU, where AU is the height
of the potential barrier to be overcome in escape. In
analogy with the Arrhenius law, R is often called the
effective activation energy. To the best of our knowledge,
a vibrational mode resonantly driven into bistability was
the first physical system with no detail balance where R
was calculated (Dykman and Krivoglaz, 1979). Both R
and the prefactor Csy, in Eq. (65) are independent of the
noise intensity.
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The activation dependence of the switching rate on
the noise intensity was demonstrated for a parametri-
cally excited vibrational mode of a single electron in a
Penning trap (Lapidus et al., 1999). It has been ob-
served in various types of nano- and micromechanical
resonators driven into bistability by either resonant driv-
ing force or parametric driving close to twice the mode
eigenfrequency, see Aldridge and Cleland (2005), Stam-
baugh and Chan (2006a), Chan and Stambaugh (2007),
Venstra et al. (2013), Defoort et al. (2015), and Dolle-
man et al. (2019), and references therein. An example is
shown in Fig. 20 (a).

Another feature of switching in nonequilibrium sys-
tems is the scaling behavior of the switching rates, where
the activation energy R o |InWyy| scales as a power
law of the parameters. For equilibrium systems, where R
corresponds to the barrier height AU, such scaling was
predicted for Josephson junctions (Kurkijarvi, 1972) for
the regime where a junction is not driven by an ac field
and is in a quasiequilibrium state. This scaling has been
broadly used to determine the junction parameters (Ful-
ton and Dunkelberger, 1974).

Generally, the scaling emerges close to bifurcation
points where there disappears the stable state from which
the system is switching (Dykman and Krivoglaz, 1979,
1980; Dykman et al., 1998; Graham and Tél, 1987;
Knobloch and Wiesenfeld, 1983). For resonantly and
parametrically driven nonlinear modes these bifurcation
points lie on the lines shown in Figs. 15(b) and 16(a),
(b). The scaling of W, near bifurcation points was
seen in a number of experiments, both for resonantly
driven (Defoort et al., 2015; Dolleman et al., 2019; Stam-
baugh and Chan, 2006a) and parametrically modulated
(Chan and Stambaugh, 2007) micro- and nanomechani-
cal modes, parametrically modulated atomic vibrations
in a magneto-optical trap (Kim et al., 2005), and reso-
nantly driven vibrations of Josephson junctions (Siddiqi
et al., 2006; Vijay et al., 2009). The scaling exponents are
different in the cases of resonant and parametric driving.
Remarkably, not only the effective activation energy R
scales as the power law of the distance to the bifurcation
point (see Appendix D.1.a), but so does also the prefac-
tor Cqw in Eq. (65), with a different exponent (Dykman
and Krivoglaz, 1980).

The high degree of control of nanomechanical systems
has enabled measuring the scaling exponents not only
of R but also of Csy. Figure 20(b) shows the scaling
behavior of R for a resonantly driven nanomechanical
system (Defoort et al., 2015). The data are obtained for
different points on the bifurcation line Fp; in Fig. 15(b).
It was demonstrated that

R |wr — (wr)gl*?,  Cuw o |wr — (wr)p|*?
where (wp)p is the bifurcational value of the drive fre-
quency wr. Interestingly, in agreement with the numeri-
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FIG. 20 (a) The activation dependence of the switching rate
of a resonantly driven nanomechanical mode Wy, on the noise
intensity D for different detuning of the drive frequency from
its bifurcational value. (b) The effective activation energy
R of the switching rate as a function of the distance from
the bifurcational value of the drive frequency; Q = |wp —
wol/T, and Qp is the value of Q at the bifurcation point.
The full circles indicate the experimental points, the open
(blue) triangles the prediction of the full numerical simulation,
the (red) full lines the linear fit to the data, and the dashed
(blue) lines the prediction of the asymptotic theory (Dykman
and Krivoglaz, 1980). Inset: Scaling with the parameter Qp.
Adapted from Defoort et al. (2015).

cal analysis, (Defoort et al., 2015; Kogan, 2008) the scal-
ing holds in a comparatively broad range.

The overall change of the effective activation energies
of interstate switching with the varying frequency and
amplitude of the driving resonant force for a nonlinear
nanomechanical beam is shown in Fig. 21 (a). Besides the
bifurcation points discussed above, the switching rates
display a universal dependence on the parameters near
the critical point F, in Fig. 15 (b) where the two stable vi-
brational states merge. One can tune the drive amplitude
and the frequency in such a way that the rates of switch-
ing between the states are equal, see Appendix D.1.a. In
this case the activation energy R is expected to depend
on the distance to the critical frequency as [wr — (Wr).)?
(Dykman and Krivoglaz, 1979, 1980). This scaling be-
havior of log Wy, was clearly demonstrated in the exper-
iment, with R varying over more than two decades, see
Fig. 21 (b).
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FIG. 21 Measured activation energies of switching between
the coexisting large- and small-amplitude states of a reso-
nantly driven nanoresonator. The switching is induced by
an externally applied noise that mimics thermal noise. (a)
The activation energies as functions of the drive frequency
v = wr /27 for different values of the resonant force ampli-
tude F'. The activation energy for switching from the large-
amplitude state monotonically decreases with the increasing
drive frequency, whereas that from the small-amplitude state
monotonically increases. (b) Log-log plot showing R as a
function of the difference between v and its critical value v..
The amplitude of the force F' is close to the critical amplitude
and is adjusted so as to keep the rates of switching between
the stable states equal. Adapted from Aldridge and Cleland
(2005).

3. A kinetic phase transition

Bistable vibrational systems allow one to study an-
other fairly general group of nonequilibrium phenomena.
They occur in the parameter range where the rates Wiyo
and Ws; of switching between the stable states 1 — 2 and
2 — 1 are close to each other; for concreteness, we use 1
and 2 to label the states of a resonantly driven mode with
larger and smaller vibration amplitude, respectively. For
weak noise, this happens where the effective activation
energies Ry and Ry for switching 1 — 2 and 2 — 1 are
equal or almost equal [we use that W;; o exp(—R;/D)].
In this range the stationary populations w; o of the states
are also close to each other, as seen from the balance
equation wy/we = Wa1 /Wiy As the system parameters
move away from this range, R; and Ry becomes differ-
ent, and the populations quickly become exponentially
different. It is this range that was studied by Aldridge
and Cleland (2005) close to the critical point.

The range where R ~ R is similar to a smeared first
order phase transition in an equilibrium system. Indeed,
at such phase transition the free energies of the phases are
equal, according to the Ehernfest classification, and the
phases (for example, liquid and vapor) have comparable
volumes (populations). One can conditionally associate
the large- and small-amplitude vibrational states with
different phases of matter. In this context, the analogs of
pressure and temperature in the liquid-vapor transition,
i.e., the control parameters, are the amplitude F' and
frequency wg of the driving field. For a certain relation
between F' and wr we have Ry = Rs, which can be called
a kinetic phase transition. The data in Fig. 21(b) are



obtained by moving along the corresponding line on the
(F,wr) plane. The critical point [F, (wr).] (see Figs. 15
and 21) is a counterpart of the critical point on the phase
transition line.

The kinetic phase transition in a driven mode is ac-
companied by the onset of extremely narrow peaks in
the power spectrum and the spectrum of the response
to a probe field (Dykman and Krivoglaz, 1979; Dykman
et al., 1994a). The peaks are located at the driving fre-
quency. They result from the change of the state popula-
tions wy and wo induced by fluctuations or by the probe
field. Such a change leads to the change of the vibration
amplitude and phase between their values in the large-
and small-amplitude states. The rates at which the pop-
ulations change, and thus the widths of the peaks, are
~ Wio &= Way. They are exponentially smaller then the
mode decay rate. Therefore the spectra are extremely
sensitive to the parameters of the system, similar to the
parameter sensitivity at the phase transition in an ex-
tended system.

A number of effects related to the kinetic phase tran-
sition, including the extremely narrow spectral peaks,
have been observed in different types of resonantly driven
micro- and nanomechanical systems (Almog et al., 2007b;
Chan and Stambaugh, 2006; Chowdhury et al., 2017;
Dolleman et al., 2019; Huber et al., 2020; Stambaugh
and Chan, 2006b; Venstra et al., 2013). Early on it was
shown (Cleland, 2005) that these effects enable a 100-
fold improvement in frequency resolution compared to a
conventional resonant-response based measurement.

We now discuss the fluctuation-induced response to the
probe field and its relation to stochastic resonance. If the
probe-field frequency wy, is very close to the strong-drive
frequency wp, the probe field can be thought of as a mod-
ulation of the strong field amplitude and, hence, of the
activation energies R; o, at frequency |le,r —wp|. As seen
from Eq. (65), modulation of R; results in an exponen-
tially enhanced modulation of W;;, for weak noise. How-
ever, if it is too fast, the populations of the states wj o
cannot “adjust” to the probe field. Therefore if the noise
intensity D is very small, so that W;; < |wpr — wr|, the
response is weak. It exponentially strongly increases with
the increasing D as the rates W;; approach ~ |wpr —wp|.
For large D, on the other hand the sensitivity to the
modulation of Ry o falls off. Thus the response displays
a peak as a function of D. This is reminiscent of stochas-
tic resonance in systems fluctuating in a static double-
well potential. Such high-frequency stochastic resonance
was observed in micro- and nanomechanical systems, as
Fig. 22 illustrates, and several applications of this effect
for sensing have been discussed by Chan and Stambaugh
(2006), Almog et al. (2007b), Venstra et al. (2013), and
Chowdhury et al. (2017).

In the case of resonant parametric excitation at fre-
quency wp ~ 2wp, a mode is “automatically tuned” into
the kinetic phase transition. Indeed, the period-2 vibra-
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FIG. 22 Noise-enhanced measurement with a nanomechan-
ical cantilever. The cantilever with geometric and inertial
nonlinearity is driven into bistability of forced vibrations by
a comparatively strong resonant drive. In addition, there is
applied a broad-band noise that emulates thermal noise. The
drive is tuned to the kinetic phase transition. The amplitude
of the drive is then slowly modulated, mimicking a signal at
frequencies equal to the sum and difference of the modula-
tion and drive frequencies. Main figure: the signal-to-noise
ratio (SNR) as a function of the effective noise temperature.
Inset: top row shows the excitation signal in time (left) and
frequency (right) domains. The cantilever response at increas-
ing noise intensity is shown in panels (A-D). Adapted from
Venstra et al. (2013).

tional states have the same amplitude and differ just by
phase. Noise-induced interstate transitions are phase-
flip transitions, and the stationary populations of the
states are equal by symmetry. However, an additional
resonant additive drive at frequency w,/2 lifts this sym-
metry. As a result, the stationary populations become
different. They depend on the phase of the extra drive
with respect to the phase of the strong parametric mod-
ulation (Ryvkine and Dykman, 2006). This happens al-
ready for a weak extra drive, where both states are stable.
Such symmetry lifting was observed by Mahboob et al.
(2010b) in a GaAs/AlGaAs based micromechanical res-
onator. The corresponding symmetry-breaking detector
can resolve frequency shifts dwp/wg ~ 1077 in a single-
shot measurement.

The fluctuation-mediated symmetry lifting has impor-
tant consequences for coupled parametrically modulated
modes. If a mode vibrates at frequency w,/2 and is in
a state with a given phase, it exerts a symmetry-lifting
force on the mode (or modes) it is coupled to. As a
result, depending on the coupling, this second mode is
biased toward the state with the same or the opposite
phase as the primary mode. Of course, the modes are
on equal footing, they affect each other so as to have the
same or opposite phases, and the effect comes through
the fluctuations.

The effect of phase ordering in coupled parametrically



excited modes was demonstrated by Karabalin et al.
(2011). In the experiment two almost identical gated
nanobeams were driven across the parametric instability.
Depending on the sign of the coupling, the mode that
experienced the instability later had predominantly the
same or the opposite phase as the one that went through
the instability first. The coupling could be controlled by
the gate voltage, which provided a highly sensitive way
of detecting this voltage.

The phase correlations between coupled parametric os-
cillators mediated by noise was used by Mahboob et al.
(2016b) to mimic the Ising dynamics of coupled spins
with two modes. The two different phases of a paramet-
rically pumped micromechanical mode were associated
with two spin projections. An implementation of quan-
tum computation (Goto, 2016, 2019) and Boltzmann
sampling (Goto et al., 2018) with coupled nonlinear para-
metrically excited modes has been also discussed. Of
significant importance in this respect is that switching
between the period-2 states of a parametrically excited
mode can be induced not only by classical, but also by
quantum fluctuations even for T = 0 (Marthaler and
Dykman, 2006). For modulated coupled nanomechani-
cal modes this opens a way of studying quantum phase
transitions far from thermal equilibrium, in particular a
transition to a Floquet time-crystalline state (Dykman
et al., 2018), in a well-characterized environment.

VIlIl. RESONANT MODE COUPLING

A mechanical resonator has a large number of mechan-
ical eigenmodes. These eigenmodes can couple with each
other. This leads to a rich variety of different phenom-
ena. We discussed in Sec. VI some of these phenomena, in
particular, those related to the dispersive coupling. Such
coupling is important where the modes are far from res-
onance, but the frequency of a mode depends on the vi-
bration amplitudes of other modes. Here, we will discuss
phenomena originating from resonant linear and nonlin-
ear coupling as well as some resonant multi-mode effects
of an external drive.

A. Linear resonant coupling

A hallmark of nanoscale mechanical resonators is the
wide tunability of their resonance frequencies by electro-
static means. This allows one to bring nanomechanical
vibrational modes in and out of linear resonance. Strictly
speaking, eigenmodes are defined by diagonalizing the
part of the system Hamiltonian, which is quadratic in
the displacements and momenta. Where the resonator
modes have very different eigenfrequencies, one can speak
of approximate modes and disregard the bilinear in the
displacements part of the potential energy that couples

43

them. However, when the eigenfrequencies are tuned
close to resonance, this part become substantial.

In the harmonic approximation, the potential energy
of two modes can then be written as

Uia(q1,q2) = %le%(t)fﬁ + %Mzwﬁ(t)qﬁ + MA12q12,

(66)
where ¢; is the displacement of the mode i (i = 1,2), M;
is its effective mass, w; is its eigenfrequency, and M Ao
characterizes the coupling strength. If the mode frequen-
cies w;(t) vary in time in such a way that they go through
resonance, there occurs anticrossing shown in Fig. 23(a).
It can be observed while measuring the resonant frequen-
cies of the resonator as functions of the gate voltage that
tunes the frequencies (Deng et al., 2016; Faust et al.,
2012b). This anticrossing is similar to the anticrossing of
energy levels of a quantum system driven through reso-
nance, even though the considered system is purely clas-
sical.

(Faust et al., 2012b) also reported observations of
a classical analogue of the Landau-Zener transition
(Fig. 23 b). The two-mode system is first prepared by
detuning the mode eigenfrequencies by a large amount
compared to the coupling. Energy is injected in mode
1, point I in Fig. 23(a). The system is then swept with
the gate voltage to the final state where the modes are
again practically independent from each other, points A
and D. As the modes go through resonance, the energy
initially injected in mode 1 gets distributed between the
two modes. The distribution depends on the ramp time
of the gate voltage (Fig. 23 (b)).

An important problem in the Landau-Zener tunneling
is the effect of dissipation and noise on the transition,
cf. (Ao and Rammer, 1989; Malla et al., 2017; Quintana
et al., 2013) and references therein. The results by Faust
et al. (2012b) suggest that nanomechanical modes can be
used to study these effect in a well-controlled experimen-
tal setting.

In other experiments with nanomechanical modes, the
response of coupled modes to pulses of resonant drive
was studied (Faust et al., 2013; Okamoto et al., 2013;
Zhang et al., 2020c). The results allowed emulating Rabi
oscillations in a classical system.

The reason for the similarity of the classical dynamics
of nanomechanical modes and the quantum dynamics of
a two-level system is that the interference of linear modes
has much in common with the interference of wave func-
tions. We emphasize, however, that nanoresonators and
quantum two-state systems, for example, qubits, are en-
tirely different by nature as seen from the dimensions of
their Hilbert spaces, in particular. Coupled classical lin-
ear modes may not be used as qubits, since it is the strong
nonlinearity of qubits that underlies their application in
quantum computing.
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FIG. 23 Resonant mode coupling. (a) Resonant frequencies of
two nanomechanical modes as functions of the gate voltage.
The two modes hybridize at the anticrossing. (b) Classical
analogue of the Landau-Zener transition. The high-frequency
mode is initially excited (point I in panel (a)), and then the
modes are swept through resonance over time 7, which leads
to energy exchange. The data (triangles and dots) show the
signal power at points A and D in panel (a), respectively, as
a function of 7. The dashed line represents the decay proba-
bility of the total energy (Faust et al., 2012b).

Nanomechanical resonators with a symmetric cross-
section, like cylindrical wires, have degenerate flexu-
ral eigenmodes, which are orthogonal. Such modes are
highly sensitive to perturbations that cause symmetry
lifting. Consider a resonator with degenerate modes po-
larized in perpendicular directions #; and f3. We now
place the resonator in an inhomogeneous force field with
components F; (i = 1,2). The partial derivatives of the
force components 0F;/Or; shift the resonance frequen-
cies of the eigenmodes. In contrast, the cross-derivatives
OF;/0r; with i # j couple the eigenmodes. As a re-
sult, the new eigenmodes have different frequencies and
are polarized in different directions. Such eigenmode ro-
tation has been directly measured (Gloppe et al., 2014;
de Lépinay et al., 2016; Rossi et al., 2016).

The force that drives a nanowire can be non-potential,
OF,/0rq # 0F»/0r1. Such a force can come if a laser-
driven nanowire is placed away from the waist of a fo-
cused laser beam. Then the eigenmodes are no longer
pointing in orthogonal directions. It has been experimen-
tally shown that the angle between them can be reduced
down to zero (de Lépinay et al., 2018). The power spectra
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of the modes were found to deviate from the conventional
Lorentzian form.

Examples of other effects of resonant coupling of a
few NVS modes include generation of circularly polarized
mechanical oscillations using modes polarized in perpen-
dicular directions (Conley et al., 2008; Perisanu et al.,
2010) and resonant coupling of an optomechanical res-
onator and a single bacterium (Gil-Santos et al., 2020).
A significant and important group of resonant-coupling
effects concerns one- and two-dimensional arrays of res-
onators; in such arrays many modes are brought in res-
onance at a time. Arrays of NVSs can display various
types of topological effects (Cha et al., 2018; Lin et al.,
2021; Peano et al., 2015; Ren et al., 2020; Yamaguchi and
Houri, 2021) as well as dynamical phase transitions and
symmetry breaking effects (Dykman et al., 2018; Heugel
et al., 2019; Matheny et al., 2019), among others, and
can be used as tunable phononic waveguides (Hatanaka
et al., 2019; Kirchhof et al., 2021; Zhang et al., 2021).

B. Nonlinear resonant coupling

The study of nonlinear resonance has been attracting
much attention and has a long history in quantum and
classical mechanics, which goes back at least to Laplace
and Poincaré on the classical side and to the Fermi reso-
nance on the quantum side (Arnold, 1989; Fermi, 1931).
For two modes, nonlinear resonant mode coupling oc-
curs where the ratio of their eigenfrequencies ws/wy is
close to a rational number n/m. In nonlinear resonance,
modes can exchange energy with each other, similar to
linear resonance. The coupling that leads to this ex-
change comes from the modes nonlinearity and therefore
is unavoidable. Generally it falls off with the increasing
order of the resonance, i.e., for two modes, with the in-
creasing n and m in the ratio n/m. Classically, multiple
nonlinear resonances pave the road to chaos in conserva-
tive systems, a profound understanding that emerged in
the 20th century.

A system of coupled nanomechanical modes provides a
playground for studying nonlinear resonant effects. One
can study them in a well-controlled setting in the regimes
of strong to weak dissipation and explore a broad range
of phenomena, from the aforementioned resonant energy
exchange to various types of dynamical bifurcations, dif-
ferent scenarios of the onset of dynamical chaos, and res-
onant nonlinear friction to mention but a few.

For a two-mode system with the resonant condition
nwi &~ mws, the simplest term in the potential energy
that directly accounts for the resonant energy exchange
in nonlinear resonance has the form

1 = MAG™ gy (67)

where Aggm) is the coupling parameter. The importance

of the coupling U{® is clear from the following argument.



If ¢1 and ¢o oscillate at frequencies w; and wsy, respec-
tively, U}® contains a non-oscillating part. This is the
“normal form” term (Guckenheimer and Holmes, 1997):
it is of the lowest order in nonlinearity that has a non-
oscillating part, drawing the similarity with the harmonic
part of the Hamiltonian, which is independent of time.

The effect of the coupling (67) on the energy exchange
between the modes is easy to understand in quantum
terms. We write the displacement operator of an ith
mode (i = 1,2) in Eq. (67) as ¢; = (h/2Mw;)"/%(a; +a)),
where a} and a; are the raising and lowering operators.
Therefore ULf® contains terms (al)"ag + (a})™a?. They
describe processes in which mode 1 goes up by n energy
levels while mode 2 goes down by m levels, or vice versa,
mode 1 goes down by n energy levels while mode 2 goes
up by m levels. For exact nonlinear resonance, in such
processes the modes exchange energy hnw; = iimws, but
the total energy of the modes is not changed. This is
illustrated in Fig. 24 for n = 3 and m = 1. If one of
the modes is excited, the energy exchange happens peri-
odically in time, as in the case of linear resonance. The
energy exchange frequency is o \A(lgm)\ and depends on
the mode amplitudes [in fact, one has to take into account
that, because of the mode nonlinearity, the frequencies w;
depend on the mode amplitudes A;, and a more accurate
form of the resonance condition is nwy (A1) = mwa(Asz)].
In quantum terms, the resonating energy levels are split,
with the splitting Adw, that depends on the level num-
bers.

The onset of resonant nonlinear effects does not require
an exact resonance. It suffices for the frequency detuning
|nwy —mws| to be smaller or on the order of the sum of the
decay rates of the modes or the properly scaled maximal
energy-exchange frequency. We note also that the sym-
metry of the modes may impose restrictions on the cou-
pling: for example, in a uniform straight nanobeam the
fundamental flexural mode is not coupled to odd powers
of the first excited flexural mode. Selection rules apply
also to other types of modes, and therefore in a number
of cases special design was implemented to observe par-
ticular types of nonlinear resonance (Asadi et al., 2021).

An important asset for studying various aspects of non-
linear resonant effects with the NVSs is their tunabil-
ity. The modes can be tuned in and out of resonance
by sweeping their eigenfrequencies with the voltage ap-
plied to the gate electrode (Eichler et al., 2012) or by
dynamically shifting the frequency of one of the modes
by driving it into the nonlinear Duffing regime, where
the vibration frequency depends on the vibration ampli-
tude, cf. Eq. (48), see Antonio et al. (2012), Samanta
et al. (2015), Mangussi and Zanette (2016), Chen et al.
(2017), Hajjaj et al. (2018), Asadi et al. (2018), Luo et al.
(2021), Arora and Naik (2022), Houri et al. (2019), Asadi
et al. (2021), and Shoshani and Shaw (2021), and refer-
ences therein. The latter dependence also leads to the
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FIG. 24 Nonlinear resonant coupling. (a) Spatial profile of
two eigenmodes with resonance frequencies wi,2. (b) Energy
diagram showing an energy exchange process between two
harmonic oscillators with ws/wi >~ 3. The process simultane-
ously annihilates n = 3 quanta in mode 1 and creates m =1
quantum in mode 2.

possibility of going through resonance during decay of
the mode amplitude after the mode was initially excited.

In nanomechanical systems the nonlinear mode cou-
pling is comparatively weak. It becomes stronger with
the increasing mode amplitude, as seen from Eq. (67).
Therefore almost all observations in the classical domain
refer to the case where one of the resonating vibrational
modes is sufficiently strongly driven or is allowed to decay
after being sufficiently strongly excited.

The amplitude dependence of both the mode frequen-
cies and the effective coupling strength makes the non-
linear resonance dynamics much richer than in the case of
linear resonance. Several types of ensuing behaviors have
been seen in micro- and nanomechanical systems. Most
observations refer to the cases where a low-frequency
mode was driven close to resonance with a high-frequency
mode with the frequency ratio 2:1 or 3: 1.

For a micromechanical system that displays a 3 : 1 res-
onance, it was found (Antonio et al., 2012) that, for the
low-frequency mode, the Duffing response curve shown in
Fig. 15 (a) changes due to the nonlinear resonance. As
seen in Fig. 25 (a), starting with a sufficiently strong driv-
ing amplitude, the frequency at which the mode switches
from the large- to the small-amplitude branch becomes
independent of the drive amplitude. This frequency is
determined by the coupling to a mode with a three-times
higher frequency. Such coupling opens a new channel of
energy relaxation, limiting the increase of the amplitude.
On a similar device it was found (Czaplewski et al., 2018)
that, in the comparatively strong drive regime the sys-
tem may display very slow and strongly nonsinusoidal
vibrations, producing a frequency comb with the spec-
tral line spacing smaller than the mode eigenfrequency
by a factor approaching 10° and spanning a bandwidth
larger then the mode decay rate by a factor ~ 102, see
Fig. 25 (e). This effect was related to a special type of
the saddle-node bifurcation (cf. Appendix D.1.a), which
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FIG. 25 Experiments and theoretical predictions showing the effects of nonlinear resonant coupling for 1 : 3 resonance. (a)
Nonlinear response of a resonantly driven lower-frequency micromechanical mode as a function of the drive frequency. The
mode switches from the large- to the small-amplitude branch at the frequencies that depend on the value of the drive amplitude
indicated next to the vertical lines. Adapted from Antonio et al. (2012). (b) Nonlinear response of a multi-layer graphene
nanoresonator where the nonlinear resonance with a higher-frequency mode results in a plateau. Adapted from Giittinger et al.
(2017). (c) Non-exponential energy decay in the same system as in (b) and in a similar system, device B. The drive is switched
off at t = 0. The resonators were measured at different gate voltages V; to tune the resonance frequencies of the modes. The
two upper traces refer to device B, the two lower traces refer to device A. (d) Decay of the scaled squared amplitude of the
lower frequency mode. Calculations show that, as the mode goes through the nonlinear resonance, the decay is accompanied by
oscillations for the coupling larger than the decay rates. Inset shows the data on a linear scale; 7 is the scaled time. Adapted
from Shoshani et al. (2017). (e) Temporal amplitude of the lower-frequency (blue, upper trace) and higher-frequency (red,
lower trace) responses of the micromechanical resonator showing the bursting behavior as the system is driven close to the

saddle-node bifurcation on the invariant cycle. Adapted from Czaplewski et al. (2018).

in this case occurs on an invariant circle (Shoshani and
Shaw, 2021). When the system is near such a bifurcation
point, its trajectory in the rotating frame is burst-type.

In a nanomechanical resonator studied by Giittinger
et al. (2017) it was possible to tune the modes into a
3 : 1 resonance not only by varying the parameters of the
drive, but also by changing the eigenfrequencies by a gate
voltage. It was observed that, when the low-frequency
mode was driven sufficiently strongly, the dependence of
its amplitude on the drive frequency displayed a plateau-
like region, see Fig. 25 (b). Numerical simulations sug-
gest that in this region the dynamics in the rotating frame
becomes chaotic. The simulations took into account the
nonlinear resonant coupling of the form (67) and success-
fully described switching between different vibrational
branches of the coupled driven nonlinear modes. Limit
cycles and period doubling for 3 : 1 resonance in a MEMS
resonator were observed by Houri et al. (2019).

The results (Chen et al., 2017; Giittinger et al., 2017)
also revealed a strongly nonexponential decay of the res-

onating modes after the low-frequency mode was excited
to a large amplitude and the driving was switched off.
This can be understood since, during decay, the modes
exchange energy not only with the thermal reservoir, but
also with each other. Such exchange is efficient while
the modes are in resonance and the effective coupling
strength is larger than the decay rates. This leads to a
peculiar form of the time dependence of the amplitude
shown in Fig. 25 (¢), which was in good agreement with
the simulations (Gittinger et al., 2017).

Analytically, the time dependence of the mode ampli-
tude has been described in two limiting cases. In the first
case, the high-frequency mode has a large decay rate com-
pared to the decay rate of the low-frequency mode and
the appropriately scaled coupling, whereas in the second
case the decay rates of both modes are small on the cou-
pling scale (Shoshani et al., 2017). In the first case, the
high-frequency mode serves as a thermal reservoir that is
switched on and off as the amplitude of the low-frequency
mode changes, a direct analog of the nonlinear friction



discussed in Sec. VI.B, cf. Fig. 11. In the second case,
on the other hand, the mode decay is accompanied by
strong amplitude oscillations. Interestingly, such oscilla-
tions are followed by a steep drop when the system goes
through a saddle point of the conservative motion and
comes out of resonance, as seen in Fig. 25 (d). In both
limiting cases, for small amplitudes, where the modes are
away from the resonance, the decay becomes exponential.
Besides nonlinear resonance of two modes, nano- and
micromechanical systems allow studying multiple-mode
resonance (Luo et al., 2021; Mahboob et al., 2013). (Mah-
boob et al., 2013) observed in a nanomechanical system
a resonance of 3 modes, in which w; + ws = w3 and
w1 ¥ wa 3. The relevant resonant nonlinear coupling in
this case has the form UL = MA123¢1¢2q3. The reso-
nance was achieved by tuning mode 1 with a piezoelec-
tric transducer. It was shown that resonant driving of
the high-frequency mode leads to excitation of coherent
self-sustained vibrations of the modes 1 and 2, the ef-
fect called phonon lasing. A multiple-mode resonance
was also studied in a cascade of beams with the frequen-
cies of the successive beams decreasing by a factor of two
(Qalandar et al., 2014). In this system there was demon-
strated the energy transfer to a mode with frequency
smaller by a factor of 4 than the excitation frequency.

C. Parametrically-induced resonant coupling

It is a remarkable feature of mechanical resonators
that it is possible to resonantly couple two vibrational
modes using a parametric drive without any restriction
on the ratio of their resonance frequencies wo /wy. A sim-
ple way to achieve such coupling is based on driving a
resonator at the frequency w, equal to either the sum
or the difference of the mode eigenfrequencies, wy + wo
or |w; — wal, so that the drive resonantly modulates the
coupling strength AV;™P(¢) in the potential energy

Ul ™" = MAY™ (1) q1g2- (68)

The parametric drive is often implemented by modulat-
ing the stress in the resonator by an electrostatic or a
piezoelectric force. The coupling (68) may result also
from driving one of the modes at the combination fre-
quency |w; £ ws| in the presence of nonlinear mode-mode
coupling (Dykman, 1978; Sun et al., 2016). The effect of
the coupling (68) is similar to what happens in optome-
chanical systems (Aspelmeyer et al., 2014b) where the
parametric coupling is used to cool and heat mechan-
ical vibrations, realize optomechanically-induced trans-
parency in photon cavities, and hybridize mechanical vi-
brations with the optical field.

If the drive frequency is w, = |w1 — ws|, the driving
leads to energy exchange between the modes. A simple
way to understand this is suggested by Fig. 26(a) if one
thinks of the driving as an electromagnetic field. In these
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terms, the interaction (68) describes a process in which
a photon with energy Aw, and a quantum of the lower-
frequency mode [mode 1 in Fig. 26(a)] are annihilated
and a quantum of the higher-frequency mode is created,
or vice versa, a quantum of a higher-frequency mode de-
cays into a photon and a quantum of the lower-frequency
mode. For w; < wy the energy conservation condition is
hwp + hwy = hws.

Alternatively, if one notices that the modes coordinates
q1 and ¢o oscillate at frequencies wy and ws, respectively,

whereas AVy"P(t) oscillates at frequency w, = |w; — wal,
in UP,™P there is a term that is independent of time. In

the rotating wave approximation it has the same form as
the static linear resonant mode-mode coupling discussed
in Sec. VIIL.A. In terms of the modes ladder operators the
coupling energy is o aJ{ag + a;al. Therefore the energy
exchange is similar to what was considered in Sec. VIII.A.

An important feature of the drive at |w; — wol is
that it makes it possible to cool down the low-frequency
mode [mode 1 in Fig. 26(a)] given that its relaxation
rate is smaller than the relaxation rate of the high-
frequency mode (Dykman, 1978). The driving “extracts”
the energy from the low-frequency mode and “dumps” it
into the high-frequency mode which then quickly further
dumps it into the thermal reservoir coupled to this mode.
Thus the high-frequency mode in this case serves as an
effective thermal reservoir for the low-frequency mode.

If the relaxation rate of the low-frequency mode is dom-
inated by the energy exchange with the high-frequency
mode, in the stationary state the populations of the ex-
cited states of the modes should be equal. The occupa-
tion of the first excited energy level of the high-frequency
mode (mode 2) is «x exp(—hws/kpT). The above argu-
ment suggests that the occupation of the first excited
state of the low-frequency mode (mode 1) should be
ox exp(—fuw1 /kpTe) with Tog = Twy/we. This means
that the effective temperature of mode 1 is significantly
lower than T'. Surprisingly, the whole distribution over
the excited states of mode 1 is of the Boltzmann form
with temperature Tog in the absence of nonlinear friction
(Dykman, 1978). In the opposite case where the relax-
ation rate of mode 1 is much higher than that of mode
2, the effective temperature of mode 2 becomes Twa /w1,
i.e., there occurs mode heating, see Appendix C.

Mode cooling in coupled mechanical modes has been
experimentally demonstrated by Mahboob et al. (2012)
and De Alba et al. (2016). The cooling is modest com-
pared to what is achieved with optomechanical devices
(Chan et al., 2011; Teufel et al., 2011; Verhagen et al.,
2012), where the ratio of the mode frequencies can be
much larger.

A profound effect of the driving-induced resonant cou-
pling is seen in the response to a weak probe drive. This
response displays Fano resonance. For a not too strong
driving-induced coupling and for the driving frequency
wp & |we — w1 |, the amplitude of the response of a faster-
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FIG. 26 Resonant mode coupling by a parametric drive. (a,b)
Energy levels when the parametric drive frequency wy, is set
at wp — w1 in (a) and w1 + w2 in (b). (¢) Driven response of
the displacement of mode 2 to a weak probe field for different
parametric drive powers with w, = ws — wi. The splitting
of the peak at high parametric drive power indicates that
modes 1 and 2 are significantly hybridized. (d) Correlations
between modes 1 and 2 in the (Q1, P2) and (Q2, P1) phase
spaces for wp, = ws + w; for several parametric drive ampli-
tudes. Panels (c) and (d) adapted from Mahboob et al. (2012)
and Mahboob et al. (2014b).

decaying mode [mode 2 in Fig. 26(c)] to a probe field
displays a narrow dip at frequency ~ wy,+ws. The dip re-
sults from the interference of the direct resonant response
of mode 2 and of the response of mode 1 “uplifted” by
the drive (68) to the frequency w, + w1 =~ wo. This is
an analog of the optomechanically-induced transparency
in photon cavities (Qu and Agarwal, 2013; Safavi-Naeini
et al., 2011; Weis et al., 2010).

For a stronger driving A75™P(¢), Eq. (68), where the
rate of the driving-induced energy exchange between the
modes becomes larger than their relaxation rates, the
behavior of the modes is reminiscent of that at the mode
anticrossing discussed in Sec. VIII.A. The resonance now
is between wp and w; + wp. As mentioned above, the
coupling Hamiltonians have the same form in the rotating
wave approximation. The modes are strongly hybridized
in this regime.

Experimentally, the Fano resonance and the mode hy-
bridization in micro/nanomechanics were first demon-
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strated in GaAs-based semiconductor resonators (Mah-
boob et al., 2012; Okamoto et al., 2013). In the response
of the mode to a weak probe field shown in Fig. 26(c),
the dip associated with the Fano resonance becomes more
prominent with the increasing drive AL3™P(¢). The re-
sponse for the largest drive is nearly split into two peaks,
the analog of anticrossing in Fig. 23(a), indicating a sig-
nificant mode hybridization. It is comparatively simpler
to reach this hybridization regime — also called the strong
coupling regime — in resonators based on nanoscale mate-
rials, such as graphene and nanotubes, because the stress
can be modulated by a larger amount (De Alba et al.,
2016; Liu et al., 2015; Luo et al., 2018; Mathew et al.,
2016; Prasad et al., 2019; Zhu et al., 2017).

Parametric drive at frequency w, ~ wi + wy leads
to heating of the Brownian motion of both modes 1
and 2. In the rotating wave approximation, in terms
of the modes ladder operators the coupling energy is
x aiag + aias. The effect of the parametric drive can
be thought of as a decay of a drive photon with creation
of a quantum of mode 1 and a quantum of mode 2, cf.
Fig. 26 (b). Such excitation corresponds to “negative
damping” and is associated with a decrease of the dissi-
pation rates of the modes. If in the absence of the driving
one mode is decaying much faster than the other, the ef-
fect is described by the decrease of the linear friction coef-
ficient and the increase of the effective temperature of the
slower-decaying mode. When the dissipation rate is pos-
itive, this mode (mode 1, for concreteness) can amplify
an externally applied weak drive at frequency w, — w;.
When its dissipation rate goes through zero, the mode
switches to the regime of self-sustained vibrations (Dyk-
man, 1978).

Amplification of a weak radiation by a nanomechani-
cal mode coupled to an optical cavity mode was observed
by Massel et al. (2011). For coupled micromechanical
modes, both the resonant parametric heating and the on-
set of oscillations have been observed by Mahboob et al.
(2014b). In the parametric heating regime, a correlation
in the displacement noise of the two modes was measured
and a two-mode squeezing was found, see Fig. 26(d).

An interesting regime arises where both modes are
pumped into the regime of self-sustained vibrations (Sun
et al., 2016). The measurements show that the phase
fluctuations of the two modes feature near-perfect anti-
correlation, so that the sum of the phases ¢1(t) + ¢2(t)
remains nearly constant. Such anti-correlation is a con-
sequence of the discrete time-translation symmetry im-
posed by the periodic drive. This regime has not been ac-
cessed with the optomechanical systems fabricated thus
far, since the dissipation rate of the optical cavity could
not be driven to zero.

Parametric drive of the mode coupling can be also used
to generate nonlinear friction in a controlled way. Pump-
ing at ws — 2wy leads to positive nonlinear friction of
mode 1, if the damping rate of mode 2 is large enough



so that any additional energy arriving from mode 1 is
rapidly transferred to the environment. This results in a
relaxation process where two quanta of mode 1 are simul-
taneously extracted and transferred to mode 2 along with
a drive photon, in contrast to the discussed earlier linear
friction that involves a transfer of one quantum of mode
1. Energy decay measurements of this nonlinear friction
show that the vibrational amplitude decreases fastest at
high amplitude (red data in Fig. 27) (Dong et al., 2018).
Pumping at ws 4+ 2w; generates negative nonlinear fric-
tion, where the measured decay is slowest at high am-
plitude (blue data in Fig. 27). Ultimately, such negative
nonlinear friction leads to the possibility of self-sustained
vibrations in the system of coupled modes.
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FIG. 27 Tailoring nonlinear friction with parametrically-
modulated mode coupling. The vibration amplitude of
mode 1 is shown as a function of time in a ring-down measure-
ment. The middle (black) curve corresponds to linear friction.
The lowest (red) and highest (blue) curves correspond to posi-
tive and negative nonlinear fiction when the device is pumped
at w2 F 2w, respectively. Adapted from Dong et al. (2018).

IX. FREQUENCY FLUCTUATIONS

Frequency fluctuations are one of the least understood
chapters of the dynamics of nanomechanical systems. In
a way, even the word “frequency” has been used some-
what ambivalently. Strictly speaking, the angular fre-
quency is equal to 27 divided by the vibration period. It
is thus associated with a discrete time interval. However,
in classical vibrational systems there is also considered
an “instantaneous” frequency that continuously depends
on time and is given by the derivative of the vibration
phase ¢(t) over time. For perfect sinusoidal vibrations
the two definitions of the frequency coincide, but in the
presence of fluctuations they generally differ. Frequency
fluctuations in NVSs have attracted much attention, as
they often impose a limit on mass sensitivity (Chaste
et al., 2012; Cleland, 2005; Ekinci and Roukes, 2005; Naik
et al., 2009; Yang et al., 2006b) and other applications
in sensing, like force and force gradient measurements
(Braakman and Poggio, 2019; Weber et al., 2016); they
are also a major limiting factor in the application of mi-
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cromechanical systems as clocks, gyroscopes, and other
devices (Miller et al., 2018; Ng et al., 2013; Zaliasl et al.,
2015).

For an isolated linear mode, the displacement can be
written as

q(t) = Acosp(t), o(t) = wot + ¢.

Here wy is the mode eigenfrequency, i.e., a parameter of
the system, whereas ¢ as well as the amplitude A are de-
termined by the initial conditions. Coupling of the mode
to the environment causes fluctuations of both ¢ and wy,
as well as amplitude fluctuations, making all these pa-
rameters time-dependent. The fluctuations of ¢ and wy,
which are of primary interest for this section, come from
physically different sources and are called, respectively,
phase and eigenfrequency fluctuations. Both of them
contribute to fluctuations of the full vibrational phase,
which can be now written as

o(t) = / wolt))dt! + (). (69)

The time-dependent phase ¢(t) is also often called the
phase in the rotating frame. In high-Q systems, of rele-
vance are fluctuations of ¢ and wy that are slow on the
time scale wg 1

Fluctuations of ¢(t) have been studied very broadly,
initially in various systems of self-sustained vibrations.
These studies can be traced back to 1930-1950s (Berstein,
1938; Rytov, 1956a,b); they were later carried out for
lasers, see Lax (1967) and Lax and Yuen (1968), and ref-
erences therein, and for time metrology Allan (1966) and
Allan et al. (1988). A major feature of self-sustained vi-
brations is that the phase ¢ is arbitrary unless the vibra-
tions are synchronized by an external source. Therefore
phase fluctuations can accumulate in time. Generally,
this leads to phase diffusion on a long time scale inde-
pendent of the nature of the vibrational system.

In micro- and nanomechanical systems, an unavoidable
source of phase fluctuations is the thermal (thermome-
chanical) noise. It comes along with friction from the
coupling to a thermal reservoir and is described by the
force fr(t) in Eq. (2) (Cleland and Roukes, 2002; Schmid
et al., 2016). It sets the so-called noise floor and thus im-
poses a fundamental limit on the precision with which
the full phase ¢(t) and thus the frequency $(t) can be
determined, cf. Fig. 28.

A different source of fluctuations of the overall phase
(t) is fluctuations of the vibration eigenfrequency. A
simple mechanism of such fluctuations is random at-
tachment and detachment of molecules and the associ-
ated change of the mass and thus the eigenfrequency
of a nanoresonator (Cleland and Roukes, 2002; Dykman
et al., 2010; Ekinci et al., 2004; Yang et al., 2011; Yong
and Vig, 1989).

Understanding frequency fluctuations requires separat-
ing the fluctuations of the eigenfrequency and of the slow
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FIG. 28 The effect of thermal phase noise. The noise is
sketched as smearing of the values of the quadratures @, P of
the mode. The uncertainty in the phase d¢ depends on the
vibration amplitude. For a small amplitude its value d¢p; is
larger than the value dp2 for a larger amplitude.

part ¢ of the phase and characterizing both the spec-
tra and the statistics of these fluctuations. In turn, such
characterization provides a means for identifying the fluc-
tuation sources. We will concentrate primarily on “open-
loop” measurements done to this end. Such measure-
ments are performed with no feedback loop. They are
therefore free from the effect of the noise that comes from
the feedback. In studying nano- and micromechanical
systems, there are also often employed feedback-based
methods, including those utilizing self-sustained vibra-
tions (Feng et al., 2008) as well as the phase-locked loop
method (Albrecht et al., 1991; Hanay et al., 2012; Naik
et al., 2009; Olcum et al., 2015), see Schmid et al. (2016)
and Demir (2021), and references therein.

We note that, in quantum terms, frequency fluctua-
tions are usually associated with decoherence. A famil-
iar source of decoherence in quantum systems is fluctua-
tions of the level spacing, i.e., of the transition frequency,
which corresponds to the eigenfrequency in the above pic-
ture. The thermomechanical noise described by Eq. (2)
does not lead to fluctuations of the level spacing of a
quantum oscillator in the absence of nonlinearity. In this
sense, there is a significant difference between the quan-
tum and classical pictures of frequency fluctuations. The
pictures can be reconciled, though, by realizing that, be-
cause of dissipation, for a nonzero temperature a quan-
tum oscillator makes transitions between its energy lev-
els. The transitions happen at random, and this is a
quantum analog of the effect of thermal noise. The power
spectra of quantum and classical linear oscillators have
the same shape, see Sec. IV.C.

A. Allan variance

The most broadly used method of characterizing fre-
quency fluctuations is based on measuring the Allan vari-
ance. To find it, following the original approach (Allan,
1966), one has to measure the average frequency f(7)

a0

over time 7 and to compare the values of this frequency
obtained as the system evolves. Specifically, an mth value
of the average frequency f,, = f,,,(7) is determined by the
increment of the overall vibration phase ¢ over the time
from t,, to t,,+7, and then f,, = [@(tm+7)—p(tm)]/27T.
If fo = wo/27 is the mean value of fom, the Allan variance
found from N measurements is defined as

1 N-1 B
oa(r) = m Z (fmt1 = fm)?. (70)
m=1

The Allan variance can be expressed in terms of the
power spectrum of the full phase ¢. This gives o3 (7) in
a simple explicit form for several types of noise and for a
different relation between 7 and the mode relaxation time
I'! in the closed-loop and open-loop measurements, see
Appendix H. The Allan variance as defined by Eq. (70)
does not distinguish between fluctuations of the eigenfre-
quency and the rotating-frame phase ¢. Also, it does not
provide information about the statistics of the fluctua-
tions.

Figure 29 shows the measurements of the Allan devi-
ation oa in a single-crystal Si nanoresonator based on
the described approach (Sansa et al., 2016). The stud-
ied nanoresonators had @ in the range (5 —7) x 103 and
the experiments were done at room temperature. It is
seen that the experimentally observed noise can be sev-
eral orders of magnitude higher than the one expected
from thermal fluctuations of the phase ¢ and described
by equation

0% (1) = (2TkpT/wiA?)r71, (71)

cf. Eq. (H3). A significantly larger Allan deviation than
what would be expected from thermal noise has been
reported essentially for all nanomechanical systems stud-
ied thus far. These observations suggest that a major
contribution to oap comes from other noise sources. Of
particular importance in this respect are fluctuations of
the mode eigenfrequency.

B. Eigenfrequency fluctuations

Several mechanisms of eigenfrequency fluctuations of
nanoresonators have been discussed in the literature. Be-
sides the fluctuations due to the mode nonlinearity and
nonlinear mode coupling discussed in Sec. VI.C.1 they
include the aforementioned noise due to random attach-
ment and detachment of molecules, molecule diffusion
along the resonator (Atalaya et al., 2011b; Schwender
et al., 2018; Yang et al., 2011), tension fluctuations due
to temperature fluctuations, defect motion, transitions
between the states of two-level systems within a mate-
rial or on the surface (Fong et al., 2012; Hamoumi et al.,
2018; MacCabe et al., 2020), and local charge fluctua-
tions (Dash et al., 2021; Miao et al., 2014; Siria et al.,
2012; Yazdanian et al., 2009).



—
2
N

Signal increases = 870
| g

—

3
ot
1

Allan deviation oa
—
o
&

~. T D
— =~ R 7 INE ~
107717 Frequency stability limit. “tal agge - h
0 R/
1\399111\\/\\7:\\\1/2 \\\\ ‘~\Of1ts
1078 = =T — T — =
10=* 1072 107! 10° 10! 10?

Integration time 7 [s]

FIG. 29 Allan deviation as a function of integration time,
from 1 ms to 100 s for different amplitudes of the resonant
drive Vgyive. The curves are numbered from top to down in the
order of decreasing Varive. Dashed lines indicate the expected
stability from the output signal at each drive voltage and
the total additive noise in the system, including the thermal
and the measurement-related noises. The lowest solid line
is a visual guide, highlighting the experimentally measured
lower bound for frequency stability. Adapted from Sansa et al.
(2016).

Different fluctuation mechanisms lead to eigenfre-
quency fluctuations with different time scales, i.e., with
different correlation times t.. The fluctuation statistics
is also different. Often several fluctuation mechanisms
with different ¢, and different statistics jointly affect the
mode dynamics.

The presence of eigenfrequency fluctuations can be re-
vealed by comparing the power spectrum of a mode or
the spectrum of its response to a resonant drive with the
results of a ringdown measurement where there is studied
the decay of initially excited vibrations. In the absence
of nonlinear friction the decay is exponential in time with
the decrement given by the friction coefficient I", as seen
from Eq. (21). If there are no eigenfrequency fluctua-
tions, I is also the halfwidth of the power spectrum S(w),
cf. Eq. (5). However, often the shape of the spectrum
deviates from the Lorentzian and the halfwidth Aw ex-
ceeds T" even where the vibrations are linear (Giittinger
et al., 2017; MacCabe et al., 2020; Schneider et al., 2014).
This is a consequence of eigenfrequency fluctuations.

An advantageous approach to separating and charac-
terizing eigenfrequency fluctuations is based on studying
the mode dynamics in the presence of a close to res-
onance drive (Fong et al., 2012; Gavartin et al., 2013;
Kalaee et al., 2019; Maizelis et al., 2011; Sun et al., 2015;
Zhang et al., 2014; Zhang and Dykman, 2015). The
drive breaks the time translation symmetry of the sys-
tem, cf. Sec. VII.C. As a result, fluctuations of the in-
phase and quadrature vibration components become dif-
ferent, which leads to several observable consequences.

o1

One of these consequences is pronounced in the cor-
relators (u(t1)...u(t,)) of the complex amplitude of the
driven mode

u(t) = 2Mwp)  [Mwrq(t) —ip(t)] exp(—iwpt),

where wp is the drive frequency, cf. Eq. (H4). These
correlators are nonzero only because of the broken time-
translation symmetry, and it follows from the time-
symmetry arguments that, for a linear mode, they do
not depend on thermal noise and the corresponding phase
fluctuations. However, they explicitly depend on fluctu-
ations dwp(t) of the eigenfrequency. Studying these cor-
relators provides a direct way to characterize the spec-
trum and statistics of the eigenfrequency fluctuations
and enables measuring the correlators (dwo(t1)...0wo(t,))
(Maizelis et al., 2011). The ratio (u?)/(u)? was used by
Gavartin et al. (2013) to characterize eigenfrequency fluc-
tuations in a nanomechnical beam; it was also shown in
this paper that the fluctuations can be suppressed with a
feedback using a second mechanical mode as a frequency
noise detector. The experiment on a micromechanical
resonator in which the eigenfrequency was modulated by
a telegraph noise (Sun et al., 2015) demonstrated the
possibility to reveal the noise statistics by measuring the
moments (u'").
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FIG. 30 Fluctuations of the in-phase and quadrature compo-
nents of a resonantly driven SiN nanoresonator. The black
circles show the driven response when the driving frequency
wr is swept across the resonance. Panels (a) and (b) show the
increase of the fluctuations with increasing temperature and
the dependence on the driving amplitude, respectively. With
no driving the mode fluctuates about zero (the data points at
the top). Adapted from Fong et al. (2012).

The role of eigenfrequency fluctuations is clearly seen
from Fig. 30, which shows fluctuations of the quadrature
and in-phase components of a driven high-Q nanome-
chanical resonator (Fong et al., 2012). Whereas the fluc-
tuational spread of the quadrature component is essen-
tially independent of the amplitude of forced vibrations
A, the spread of the in-phase component increases with
the increasing amplitude. The observed spread of the
vibration phase counted off from wgt (wp is the drive
frequency), ¢(t) — wrt, is practically independent of A



for low temperatures. For the thermomechanical noise,
on the other hand, it would fall off with the increasing A,
0% o< A72, cf. Eq. (71) and Appendix H. The observed
phase spread is a direct consequence of the fluctuations
of wg, with the phase deviation

So(t) ~ [ dt’ exp|—T(t — ')|6wo(t')

for a weak eigenfrequency noise. The data allowed (Fong
et al., 2012) to study the low-frequency part of the spec-
trum of the fluctuations dwp(t). It was found to be of the
1/f type and was related to reorienting two-state elastic
dipoles.

The power spectrum of the eigenfrequency fluctuations
in a broad frequency range can be extracted directly from
the power spectrum of a driven mode S(w) (Zhang et al.,
2014; Zhang and Dykman, 2015). For a linear mode this
can be qualitatively explained as follows. With no noise,
a resonant force F coswpt leads to the mode displace-
ment

__F Re iexp(—iwpt)
2MUJF

q(t) (72)

I — i(wp — UJ()) ’
cf. Sec. VIL.A. If in this expression wq is fluctuating,
that is, if wp is formally replaced by wg + dwp(t), the
displacement ¢(t) is also fluctuating. This should lead to
an extra peak in the power spectrum of the mode. The
form of this peak strongly depends on the interrelation
between the correlation time ¢, of the fluctuations dwq(t)
and the relaxation time of the mode I'"!. Since the power
spectrum is quadratic in ¢(t), it is clear from Eq. (72)
that the peak is proportional to F2, which allows one to
identify it and separate it from other spectral features.

The replacement of wy with wy + dwp(t) in Eq. (72) is
applicable if the correlation time of the eigenfrequency
fluctuations t. is large compared to the mode relaxation
time T'™!, so that the mode adiabatically follows these
fluctuations. The fluctuation-induced slow time varia-
tion of the amplitude and phase of the forced vibrations
at frequency wp lead to a narrow spectral peak, which
is centered at wp. The width of this peak is ~ ¢;1.
For small |dwp(t)| the peak is proportional to the power
spectral density Sy, (w — wr) of dwy(t). Therefore the
shape of the peak allows reading off this spectral density
directly. In the experiment on a carbon nanotube res-
onator (Zhang et al., 2014) carried out at T = 1.2 K it
was found that the spectral density of the eigenfrequency
fluctuations is Sj, (W) x w™* for small w, with a =~ 0.5.
A similar measurement was done for a silicon nanobeam,
where such 1/f-type scaling was also observed, with the
exponent a = 0.7 (Sun et al., 2016).

Slow eigenfrequency fluctuations determine the long-
term stability of devices based on nano- and microres-
onators, including clocks. However, they do not lead to
a broadening of the spectral response in the absence of
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FIG. 31 Power spectra of driven modes with fluctuating
eigenfrequencies. Panels (a) and (b) refer to a flexural mode of
a carbon nanotube with the eigenfrequency wo /27 = 6.3 MHz
(Zhang et al., 2014) and a breathing mode of a nanobeam
phononic crystal with the eigenfrequency wo/2m ~ 425 MHz
(Kalaee et al., 2019). The lowest (blue) curves show the ther-
mal power spectra without drive [multiplied by 40 in (b)].
The regions marked as Ay, and Ay, indicate the driving in-
duced parts of the power spectrum, which are due to the fast
(broad-band) and slow (narrow-band) eigenfrequency fluctua-
tions. The narrow peaks are centered at the drive frequencies.

the drive if the response is measured over time small com-
pared to t.. The position of the spectral peak shifts from
measurement to measurement in this case. If the du-
ration of a measurement is > t. and (dw3) > T2 the
spectrum is broadened. This is an analog of the inho-
mogeneous spectral broadening. The effect was observed
for a nanotube resonator (Moser et al., 2014) and for a
breathing mode in a phononic crystal (MacCabe et al.,
2020).

The opposite limit of comparatively fast eigenfre-
quency fluctuations, t, <« I'"1, is not directly described
by Eq. (72). A qualitative picture is somewhat more in-
volved (Zhang et al., 2014), but roughly, one can think
that the major spectral effect of the drive in this case
comes from the effective heating of the mode, with 6T
P2

Fast fluctuations dwg(t) lead to broadening of the
power spectrum of a mode S(w) in the absence of driv-
ing. The power spectrum and the mode susceptibility
have a Lorentzian shape with a halfwidth Aw, which is a
sum of I and the characteristic intensity of the eigenfre-
quency fluctuations. This feature holds independent of
the statistics of the fluctuations provided Aw < wqg. It
has been often used to describe experiments, cf. Eq. (10).

Studying the spectrum in the presence of driving al-
lows one to separate the contribution of fast frequency



fluctuations. The corresponding driving-induced part of

the spectrum Sp(w) can be written as
(Aw-T)/T S(w)

(Aw? + (wp — wp)? kT’

Sr(w) ~ CrpF? (73)
Here, strictly speaking, wgy is also renormalized by the
frequency fluctuations if they are non-Gaussian; [the ex-
plicit form of Cr depends on the statistics of the fluc-
tuations dwo(t) (Zhang et al,, 2014)]. The spectrum
Sr(w) has the same shape S(w) as in the absence of
driving, but is proportional to the squared driving am-
plitude. It is also proportional to the difference between
the fluctuation- and decay-induced broadening Aw — T
In Fig. 31 we show the results of two experiments
(Kalaee et al., 2019; Zhang et al., 2014), which demon-
strate how the interplay of the driving and the eigenfre-
quency fluctuations affects the power spectrum. FEven
though the studied systems were very different, the ob-
servations clearly show the occurrence of a very narrow
peak centered at the drive frequency and a broad spec-
trum with the shape similar to that in the absence of the
driving. Comparing the areas of the peaks with and with-
out driving allowed estimating the contribution of the
fast eigenfrequency fluctuations to the observed spectral
broadening Aw. In both experiments it was = 50%.

X. OUTLOOK AND CHALLENGES

The goal of writing this review was to demonstrate
the nontrivial physics of nanomechanical systems and the
possibility to use them as a platform for studying a broad
range of nonlinear and nonequilibrium phenomena in a
controlled setting, and also to indicate their numerous
applications. These intertwined aspects of nanomechan-
ics make it a fairly unique interdisciplinary area of re-
search and underlie the growing interest in the NVSs.
The interest is further stimulated by the rapid progress
in nanotechnology, which allows improving the existing
types of the NVSs and making qualitatively new NVSs.
In closing the review, we present some of the nascent di-
rections of the research in the field. Unavoidably, such
a list is incomplete, particularly given the high rate at
which new results are obtained.

An important aspect of the mesoscopic dynamics of the
NVSs are coherent effects. Among them, of much current
interest are the effects of coupling nanomechanical modes
to qubits (Arrangoiz-Arriola et al., 2019; Lee et al., 2017),
see also Sec. VI.C.2, as well as using qubits to entangle
different mesoscopic modes (Wollack et al., 2022). Re-
lated is a significant effort on developing nanomechan-
ical resonators with high-@) microwave-frequency modes
(MacCabe et al., 2020; Wollack et al., 2022). Such modes
can be brought to the ground quantum state already
for temperatures < 0.1 K without sideband or active
feedback cooling (that reduces the @-factor) and can be
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in resonance with superconducting qubits (Mirhosseini
et al., 2020). An important type of these modes are vi-
brations localized around engineered defects in phononic
crystals with frequencies in the gap of the spectrum of
propagating modes.

A promising direction in the context of quantum infor-
mation and coherent effects in nanomechanics is devel-
oping qubits based on the NVSs. This requires vibration
nonlinearity that remains large compared to the decay
rate down to the quantum regime. Then resonant driv-
ing at the frequency of the transition from the ground to
the first excited vibrational state does not lead to transi-
tions to higher-energy states, similar to superconducting
qubits. The corresponding nonlinearity can be achieved
by coupling mechanical vibrations to the charge states
of a double quantum dot. For a qubit based on a car-
bon nanotube resonator, the coherence time is predicted
to be remarkably long (Pistolesi et al., 2021). A very
strong nonlinearity can be achieved also near a bifurca-
tion point where a nanotube or a nanomembrane is close
to collapse due to the strong gate voltage and can tunnel
into the collapsed state (Sillanpéé et al., 2011).

Topological effects form another group of coherent phe-
nomena that attract current attention. A possibility to
observe such effects in phononic crystals in an optome-
chanical setting was indicated by Peano et al. (2015), and
thermal phonons traveling along a topological edge chan-
nel with weak backscattering have been observed in an ar-
ray of over 800 submicron silicon membranes, the largest
optomechanical array so far (Ren et al., 2020). A two-
dimensional metamaterial made out of submicron SiN
membranes, which has time-reversal symmetry, has been
demonstrated to have pseudospin-type edge states, which
are robust to waveguide distortion (Cha et al., 2018).
The possibility to control the phononic band structure
electrostatically makes nanoresonator-based metamateri-
als interesting even where they are topologically trivial.
Such control can be used for dynamical tuning of acous-
tic transparency and waveform engineering in phononic
waveguides (Cha and Daraio, 2018; Hatanaka et al., 2019;
Kurosu et al., 2018).

Yet another group of coherent effects is related to
the dynamics of NVSs in a driving field with frequency
wr close to an overtone of the mode eigenfrequency,
wrg & nwg. Such drive can resonantly excite vibrational
states at frequency wg/n with n > 1. The case n = 2
corresponds to the parametric excitation discussed for a
single mode in Sec. VII.B. For coupled NVSs, the inter-
action between driven modes may lead to formation of
time crystals where the discrete time-translation symme-
try imposed by the periodic drive is broken, i.e., phase-
matched vibrations occur at frequency wr/n ~ wy (Dyk-
man et al., 2018). The properties of such dissipation-free
Floquet time crystals are strongly affected by the non-
trivial geometric phase (Lorch et al., 2019) that emerges
for n > 3 (Guo et al., 2013; Zhang et al., 2017). The



resonant-driving induced time crystals are expected to
have an exponentially long time before they are heated
up and ultimately melted by the drive.

The “incoherent” side of the dynamics of coupled
NVSs, i.e., the dynamics in the presence of relaxation and
thermal fluctuations, is closely connected to the “coher-
ent” side. Arrays of dissipative resonantly driven NVSs
can display time-crystalline behavior (Dykman et al.,
2018; Heugel et al., 2019), which in this case can have
features related to breaking of the detailed balance. Such
arrays should enable, in particular, studying the effects of
disorder in the eigenfrequencies and the coupling on the
quantum and classical time-symmetry breaking transi-
tions. Coupled NVSs can also display topological solitons
(Lin et al., 2021; Yamaguchi and Houri, 2021). Topo-
logically nontrivial dissipative networks with interesting
dynamics can be created also by driving coupled res-
onators by radiation modulated at the difference of their
frequencies (del Pino et al., 2021). Challenging observa-
tions of broken-symmetry states with complex dynamics
have been reported for networks of NVSs that display
self-sustained vibrations (Matheny et al., 2019). Overall,
the dynamics of coupled NVSs, which has been attract-
ing attention for a long time (Buks and Roukes, 2002;
Cross and Greenside, 2009; Karabalin et al., 2009a; Lif-
shitz and Cross, 2003, 2008), is significantly enriched by
the topological and Floquet aspects.

NVSs are playing an increasingly important role in
studying condensed-matter systems. One of the pursued
directions is establishing microscopic mechanisms of en-
ergy relaxation of vibrational modes. A significant effort
has been put recently into identifying the Landau-Rumer
and Akhiezer relaxation, with the experiments covering
the range from ultra-low to room temperature (MacCabe
et al., 2020; Rodriguez et al., 2019; Tepsic et al., 2021).
Understanding nonlinear damping and its dependence
on the material, geometry, and temperature is on the
agenda (Atalaya et al., 2016; Steeneken et al., 2021), as
is also the origin of the low quality factor of graphene,
carbon nanotubes, and MoS, resonators at room tem-
perature (Bunch et al., 2007; Castellanos-Gomez et al.,
2013; Sazonova et al., 2004). Another direction is ther-
mal effects in nanostructures. Heat transfer has been
measured in graphene and MoSes monolayers down to
cryogenic temperatures, and slow equilibration between
different vibrational branches of graphene has been es-
tablished using photothermal response (Dolleman et al.,
2020; Morell et al., 2019); see also (Sullivan et al., 2017).
The mechanical detection and control of magnetic states
and magnetic phase transitions in two-dimensional lay-
ered antiferromagnetic Crlz and FePS3; materials have
been demonstrated down to two layers (Jiang et al., 2020;
Sigkins et al., 2020). Charge density wave transition has
also been measured in 2H-TaS; and 2H-TaSe, layered
materials (Lee et al., 2021). On the side of the electron-
vibrational coupling, it has been shown using carbon nan-
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otubes that, where the coupling is sufficiently strong, it
results in controlled vibration cooling or excitation of self-
sustained vibrations in response to source-drain voltage
(Urgell et al., 2020; Wen et al., 2020).

Much work is being done on characterizing two-level
fluctuators with the NVSs. A promising direction is
opened by passively cooling NVSs down to very low tem-
peratures (Gisler et al., 2021; Kamppinen et al., 2022;
MacCabe et al., 2020; Maillet et al., 2020), including sub-
millikelvin temperatures, where even MHz-range modes
are close to the quantum ground state (Cattiaux et al.,
2021). The characteristic temperature dependencies of
the decay rate and the frequency shift of the NVS modes
found by the ring-down measurements and by the mea-
surements of the response and fluctuation spectra provide
an insight into the relaxation mechanisms of two-level
systems in nanostructures.

NVSs have demonstrated superior sensitivity and spa-
tial resolution in studying superfluid *He and *He. They
have been used to detect Cooper pair breaking in He
(Defoort et al., 2016), as well as measure helium viscos-
ity, detect modulated “phonon wind” (Guénault et al.,
2019, 2020), trap a single vortex (Guthrie et al., 2021),
and study new effects of quantum turbulence at ultra-
low temperatures (Barquist et al., 2020, 2021) in *He. A
series of first-order layering transitions of liquid helium
on a carbon nanotube observed by Noury et al. (2019)
suggests the possibility of new types of phase transitions
on smooth defect-free cylindrical surfaces.

Nanomechanics has essentially opened the field of ex-
perimental studies of nonlinear dynamics of fluctuating
vibrational systems. The field is vibrant. Fluctuations
can now be measured in real time. For a carbon nan-
otube, such measurements have revealed a weakly chaotic
regime in which, at room temperature, the energy con-
centrates in low-frequency modes, disperses into higher-
frequency modes, and then returns (Barnard et al., 2019),
reminiscent of the Fermi-Pasta-Ulam-Tsingou behavior.
The interplay of fluctuations and nonlinearity leads to
rich dynamics in systems with a few or even one vibra-
tional mode away from thermal equilibrium, which is re-
lated to breaking of the detailed balance (Roberts et al.,
2021), see Sec. VII.C. This includes scaling behavior of
fluctuations near various types of bifurcation points (Jes-
sop et al., 2020; Tadokoro et al., 2020), the onset of chaos
in the rotating frame (Giittinger et al., 2017; Houri et al.,
2020b), and new types of fluctuation squeezing in driven
systems in the nonlinear regime (Huber et al., 2020; Yang
et al., 2021). Noise squeezing in a nonlinear regime may
improve the measurement sensitivity, in particular for the
phase-based measurements [see Sec. IX], by reducing the
detrimental effect of thermal noise. Reducing measure-
ment noise is also on the agenda, and to this end new
detection methods are explored, such as focused electron
beams (Pairis et al., 2019).

Among various nonlinear resonant phenomena that



can be accessed with the NVSs, of increasing interest are
nanomechanical frequency combs. Such combs have been
generated in coupled modes that display nonlinear reso-
nance or in a single mode using feedback control (Houri
et al., 2019, 2020a, 2021; Singh et al., 2020). A large num-
ber of spectral lines has been observed in nanomechani-
cal systems with coupled modes displaying a SNIC bifur-
cation (Czaplewski et al., 2018), see Sec. VIIL.B, or by
parametrically inducing resonant mode coupling (Chiout
et al., 2021). However, one may expect that driven non-
linear NVSs would display a multiple-line comb even
where there is just a single mode involved, but the dissi-
pation is nonlinear (Dykman et al., 2019). An observa-
tion of such a comb has been recently reported by Ochs
et al. (2022).

The high sensitivity of the NVSs provides a means
for addressing fundamental physics problems. A part of
them is related to the Casimir force at small distances
and its dependence on the material properties and the
geometry, as well as thermal and nonequilibrium effects
(Gong et al., 2021; Liu et al., 2021a; Tang et al., 2017;
Wang et al., 2021). The possibility of studying the inter-
play of quantum mechanics and gravity (Liu et al., 2021b;
Schmdole et al., 2016) is being explored. A study of non-
Newtonian gravity and even the physics beyond the stan-
dard model, particularly with levitated particles, which
can be now cooled down to their ground quantum state,
is also being discussed (Gonzalez-Ballestero et al., 2021;
Moore and Geraci, 2021). Very slowly decaying vibra-
tions (with decay rate < 100 pHz) of levitated nanopar-
ticles are being considered in a somewhat exotic context
of the wave-function collapse (Pontin et al., 2020).

Much attention is attracted to various coherent quan-
tum effects in the coupled NVSs (Kotler et al., 2021;
de Lépinay et al., 2021; Ockeloen-Korppi et al., 2018).
These and a number of other quantum effects, such as
cooling the vibrations to their ground state by coupling
them to an electromagnetic cavity (see Sec. VIIL.C), us-
ing NVSs to convert microwave-frequency excitation of
a superconducting qubit into an optical photon (Mirhos-
seini et al., 2020), or optically reading out a transmon
qubit (Delaney et al., 2022), are often studied in the con-
text of optomechanics, a burgeoning area born out of
nanomechanics (Aspelmeyer et al., 2014b). Recent im-
provements of nanofabricated NVSs (Beccari et al., 2022;
MacCabe et al., 2020; Seis et al., 2021) will lead to fur-
ther advances in optomechanics.

One of the most important applications of NVSs is
the emerging technology of single-molecule mass spec-
trometry with potentially high throughput. It will take
advantage of the NVSs based inertial imaging (Hanay
et al., 2015; Sage et al., 2018). Nanowires and nanotubes
hold promise as cantilevers for the next-generation scan-
ning probe microscopes. By utilizing the fundamental
modes polarized in perpendicular directions, such can-
tilevers enable direct imaging of the components of the
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force fields and establishing whether the field is potential
(de Lépinay et al., 2016; Rossi et al., 2016). Cantilevers
functionalized with a magnetic material at their free
end (Rossi et al., 2019) hold promise for imaging a large
range of physical phenomena, such as skyrmions, super-
conducting vortices, and current-carrying edge states in
two-dimensional systems (Braakman and Poggio, 2019).
Magnetic resonance force microscopy with single nu-
clear spin sensitivity is another direction of great inter-
est (Grob et al., 2019; Rose et al., 2018).
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Appendix A: Method of averaging: weak nonlinearity and
weak damping

1. Nonlinear vibrations with no damping

The Bogoliubov-Krylov method of averaging used to
derive the equation of motion for the complex amplitude
of the mode is similar to the rotating wave approximation
(RWA) in quantum mechanics. One thinks of the mode
dynamics as vibrations at the mode frequency wy with
the amplitude A(t) and phase ¢(t) that slowly vary on
the time scale of the vibration period 27/wg, that is,
the mode coordinate is q(t) = A(t) cos|wot + ¢(t)]. We
note that ¢(t) here is the “reduced” phase, it does not
contain the term wpt. The complex slow variable wu(t)
(the complex amplitude) defined by Eq. (20) is simply
related to A and ¢,

ult) = 1 (q — MI’WO) e = LA explia(t)].

(A1)
For a harmonic mode that is not coupled to a bath, A
and ¢ are independent of time and u(t) = const. A more
general form of the averaging method is discussed in Ap-
pendix F.

In this section we show how the dynamics is modified
by the weak nonlinearity of the mode. To simplify the
reading we repeat some equations from the main text.



We illustrate the Bogoliubov-Krylov method by apply-
ing it to the Duffing oscillator. The goal is to describe
the dynamics on times that largely exceed the vibration
period 27 /wg. A direct perturbation theory in the non-
linearity does not apply, as it leads to a secular (o t)
correction to the oscillator displacement. Instead one
should use the asymptotic perturbation theory.
The Hamiltonian of a nonlinear mode is

1 2
= —p2+U(q).
Vi (q)

For the Duffing model the potential energy is

H, (A2)

1 1
Ulq) = 5 Mwiq® + 7 Mg,
see Eq. (46).
With the account taken of the relation p = Mg, we
obtain from the definition of u(t), Eq. (A1), @ exp(iwot)+
" exp(—iwgt) = 0. Therefore

twot __

4+ wiq = 2iwotie = —qwou e wot

(A3)
and the Hamiltonian equation of motion for u(t) reads

5 e ; — 3 _;
u=1i (ue“"”tJru*e zwgt) e zwot'

S (A4)

The time scale on which wu(t) varies because of the non-
linearity is seen from Eq. (A4) to be ~ wo/|y| > wy™.
The right-hand side of Eq. (A4) contains the smooth term
o< u|u|?, which is a constant for a time §t < wo/|7| (since
practically u(t) does not change over this time), and the
terms that oscillate as exp(£2iwgt), exp(—4iwpt). All
these terms are of the same order of magnitude. However,
if we now integrate them over time &t >> w; ', the contri-
bution of the smooth term will be o< §t, whereas the con-
tribution of the fast-oscillating terms will be oc wy ' < dt.
Therefore to describe the dynamics of the oscillator on
times > wy ! the fast-oscillating terms can be disre-
garded and the equation of motion becomes

0~ 3iyulu|? /2w, u(t) = u(O)e?’”‘ul%/zwo.

(A5)

In this approximation |u(t)| does not change in time,
i.e., the vibration amplitude A ~ (4|u|?)*/? does not
change. However, the vibration phase acquires an extra
term 3y|u|?t/2wy. Comparing Eq. (A5) with the expres-
sion ¢(t) = u(t) exp(iwpt) + c.c. [cf. Eq. (Al)], one can
see that it corresponds to the change of the oscillator
frequency (48),

wo — wo + 3y|ul?/2wo = wo + 3vA? /8wy.

2. Effect of the coupling to a bath

We now extend the Bogoliubov-Krylov method to de-
scribe the dynamics of the mode where it is weakly cou-
pled to a thermal reservoir. There are two parts to this
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description, which are closely intertwined. One part is
the evaluation of the average reaction force from the bath
in slow time compared to wy'. The second part refers
to the random part of the force from the bath, the noise
in the equations of motion for w(t), and its properties
in slow time. In the ensuing approximation, the mode
dynamics in slow time is Markovian.

For the coupling to the bath of the form H; = ghy,
the part of the force from the bath that describes the
reaction of the bath to the mode (the backaction) is

F(t) = —8hy(t) ~ —(0hs (L))

~ / X () [u(t — t')e™o1) 4 ¢c)) (A6)
0

cf. Eq. (16). Here A} (t) is the time-dependent bath sus-
ceptibility. We remind that this expression is an approxi-
mation, as we have replaced the full reaction force dhy (t)
with its ensemble-averaged value (6hy(t)) and kept in the
latter only the lowest-order term, which describes the lin-
ear response of the bath to the bath-mode coupling.

We now expand u(t — t') = u(t) — t'u(t) + ... and
keep only the first term in this expansion (Dykman and
Krivoglaz, 1971), relying on the smoothness of u(t) (see
also below). Then, using the definition of the Fourier
transform of the bath susceptibility

ww) = [ deexpliwn B (A7)
0
and taking into account that xp(w) = xj(—w) (Landau
and Lifshitz, 1980), we obtain for the reaction force

F (1) ~ xi (wo)u(t)e™ot + c.c. (A8)

This force is determined by the instantaneous value of
u(t) rather than the evolution of u(t') for ¢’ < t.

Substituting the force (A8) into the full equation of
motion for the mode coordinate ¢(¢) and using Eq. (A3),
we obtain the equation of motion (21) for u(t), which we
reproduce here for completeness:

t=—T—iP)u+£&(), T =Imyp(wo)/2Mwy,
P = —Re xp(wo)/2Mwo (A9)

[the term £(t) describes the noise; it does not come from

Fér) and is discussed below]. In Eq. (A9) we assumed
that I' < wy and, in the spirit of the averaging method,
disregarded the fast-oscillating term oc I'u* exp(—2iwot)
compared with T'u.

In deriving Egs. (A8) and (A9) we further assumed
that the bath susceptibility xp(w) weakly varies with w
in a band of width ~ T',|P| < wq centered at wp. It is
this assumption that justifies disregarding the term ¢'u(t)
and higher-order derivatives of w(t) in the expansion of
u(t —t') in Eq. (A6). In particular, the term t'u gives a
correction

~ ()]~ Tl o)



which is assumed small compared with the term ~
Ixb(wo)u| kept in Eq. (A9). The assumption holds for
|dlog xp/dw| < 1. Tt is assumed that the higher deriva-
tives of x1, are small near wg as well. The typical fre-
quency on which 1, (w) changes provides the other recip-
rocal “fast” time of the mode+bath system, in addition
to wy '. Tt is sometimes called the correlation time of the
thermal reservoir teor; note, however, that xp(w) char-
acterizes not just the reservoir, but also the coupling of
the oscillator to the reservoir.

The approximation (A9) is a Markovian approximation
in slow time. It holds if the response of the bath to
the oscillator remains essentially unchanged where the
oscillator frequency is changed not only by I', but also
by the polaronic frequency shift P. In the analysis of
the nonlinear oscillator we will further assume that the
response of the bath does not change due to the change
of the oscillator frequency caused by the dependence of
this frequency on the vibration amplitude.

The Bogoliubov-Krylov method of averaging can be
applied also to the analysis of the effect of the thermal
noise on the slow variables. The noise in Eq. (A9) is

£(t) = (—i/2Mwo)h” (t) exp(—iwot),

where hl()o)(t) is the force on the oscillator from the bath
calculated by disregarding the reaction of the bath to
the oscillator. The noise correlator is simply expressed
in terms of the bath power spectrum

S = [ aea@wn o). (a10)

Clearly, (£*(t)&(t')) o [ dwSh(w) exp|—i(w — wo)(t —t')].
We note that Sp(w) also defines the bath susceptibil-
ity, and thus the mode decay rate, via the fluctuation-
dissipation theorem (cf. Sec. IV),

Imxp, (w) = Sp(w)/2k[A(w) + 1].

If we replace Sp(w) — Sp(wp) and use the relation (A9)
between I" and x1,(wp), we obtain

(€ (E(t)) = (PkpT/Mwy)d(t —t').

As indicated in Sec. IV.B, the §-function here is not a true
d-function but, effectively, a -function on the time scale
> wo_l,tcon. By expanding S, (w) in a series about wy,
we find that (£*(¢)€(t')) has a peak at ¢t = ¢’ with width
[t —t'| <|Sy 'd%Sy,/dw?|Y? = teor, where the derivative
of Sy, is calculated for w = wy (the above expression may
be considered a definition of tcorr). The width teop iS
much smaller then I'™! for Sy,(w) smooth near wy. The
argument here coincides with the argument used in dis-
regarding delay in Eq. (A8).

The correlator (£*(¢)€*(¢t')) has an extra factor
expliwg(t + t')] compared to the correlator (£*(¢)&(t')).
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This fast-oscillating factor averages out to zero on the
time scale large compared to w 1 Therefore in the anal-
ysis of the evolution of the slow variables u(t), u*(¢) one
can set (£*(¢)€*(t')) = 0. The analysis of the higher-
order correlators shows that the noise £(t) is approxi-
mately Gaussian on the time scale large compared to
wo l,tcorr. For a bath modeled by a set of harmonic
oscillators, with the coupling h}, nonlinear in the coor-
dinates of these oscillators, this was shown by Dykman
and Krivoglaz (1971) and Dykman and Krivoglaz (1973).
The analysis applies to both classical and quantum cases.
We note that a similar analysis has to be carried out to
justify the expression for the reaction force in terms of
the linear response of the bath to the mode.

3. Ohmic dissipation

Here for completeness we describe the effect of coupling
to the bath in a more restrictive but important case where
the power spectrum Sy, (w) is flat in a broad range from
w K wy to w > wgy. The scale of the flatness is now
wo, not T')|P|. For a flat Sp(w), in the classical limit
we can approximate the correlation function sp(t) by a
d-function,

sp(t) = (W ()R (0)) = AMTkpT6(t). (Al1)
Equation (A11) is essentially the definition of the param-
eter I" in terms of the correlator sy(t), temperature, and
the mode mass M for the case considered in this section.

Taking into account that, for a classical bath, X, (t) =
—(kpT)~'dsy,/dt, one obtains from Eqgs. (A6) the reac-
tion force in the form

o(t) da(t — 1)
kgT dt '

) = 200 - [~ ar (A12)
kgT 0

For the §-correlated noise (All), the last term in
Eq. (A12) gives the friction force —2MTq in the equa-
tion of motion (2). Thus the reaction of the bath leads
to viscous friction, with the friction force proportional to
the mode velocity. With the account taken of Eq. (A11),
the overall dynamics of the mode is mapped on Brownian
motion.

The first term in the right-hand side of Eq. (A12)
renormalizes the mode frequency, wf — wi —
sp(0)/MkpT. This is a classical polaronic effect. In cal-
culating sp,(0) one should keep in mind that the power
spectrum Sy, (w) falls off for high frequencies, which makes
sp(0) finite.

To the best of our knowledge, for a classical oscillator
the frequency shift was first found by Bogolyubov (1945)
for the model where the bath is a set of harmonic os-
cillators and hy, is linear in the coordinates g, of these
oscillators. The corresponding Hamiltonian of the bath



Hy, reads

1

Hy = 5 Zk:(pi + wiar)

(A13)
whereas the coupling Hamiltonian is ghy, = ), €xqqs-
The coupling was weak and the dynamics was Markovian
only in the rotating frame.

In the quantum theory, the constraint on the cou-
pling parameters in the model (A13) that leads to a vis-
cous friction force in the laboratory frame was found by
Caldeira and Leggett (1981). The expression for the fric-
tion coefficient I' comes out if one assumes that the den-
sity of states of the bath weighted with the interaction
has the form

> (€ fwr)d(w — wy) = (4/m)MTw.

k

Appendix B: Oscillator decay rate in the Born
approximation and the quantum kinetic equation

Equation (A9) for the oscillator decay rate I' can be
easily obtained also from a slightly different point of
view. We first recall that the coordinate and momen-
tum of the oscillator are expressed in terms of the lad-
der operators a and a' as ¢ = (h/2Mwy)'/?(a + af)
and p = —i(AMwg/2)'/?(a — aT). In the analysis of the
quantum dynamics it is convenient to use the eigenfunc-
tions |k) of the occupation number operator ala; the en-
ergy of the isolated harmonic oscillator in a state |k) is
hwo (k +1/2).

The coupling ghy, of the quantum oscillator to a ther-
mal bath leads to transitions between the nearest oscil-
lator energy levels in Fig. 32(a). The matrix elements
of the coordinate q are (k|g|lk — n) = [hk/2Mwo]'/26, 1
for n > 0. Therefore, to the leading order, the linear in
q coupling to the bath leads to transitions only between
the neighboring levels. From the Fermi golden rule, the
rate Wyy1, of the transition |k + 1) — |k) averaged
over the states of the thermal bath is

Wk+1*>k = (27T/h) [h(/ﬂ + 1)/2MWO]
< (O v hol ) *6(E, — En, + o)),

v

(B1)

where p1, and v, enumerate the bath states, £, and E,,
are the energies of these states, and (-),, indicates ther-
mal averaging over the states uy,, i.e., summation with
the weight « exp(—E,,, /ksT).

We now relate Eq. (B1) to the power spectrum Sp(w)
of the operator hy, which determines the coupling of the
bath to the oscillator,

Sp(w) = / h dte™" (hy,(t)hy,(0)) = 27hZ;

—0o0

XY | Wolhw ) P6(Buy — By, + hw)e™ Fm/ksT (B2)

Vp
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|k +2)

|k) k)

FIG. 32 Transitions between the oscillator energy levels with
emission of excitations into a thermal bath. (a) Transitions
between nearest levels lead, in the classical description, to a
linear friction force proportional to the oscillator velocity. (b)
Transitions between next-nearest levels lead, in the classical
description, to a nonlinear friction force proportional to the
oscillator velocity multiplied by the squared coordinate (in
the van der Pol model) or by the squared velocity (in the
Rayleigh model).

where Zj, is the bath partition function; in Eq. (A10)

and in the main text we used héo) instead of Ay, in the
definition of S, (w) to emphasize that we are calculating
the power spectrum in the absence of coupling to the
oscillator.

Combining Eqs. (A9) and (B2), we obtain

Witk =20(k +1)(n + 1),
' = Sp(wo)/4hMwo (i + 1) (B3)
[we recall that i = 7i(wp)]. This shows that I" determines
the rate of the transitions between the states of a quan-
tum oscillator due to its coupling to a thermal bath. In
particular, I' = [W;_,0/2]a=0. The transition rates (B1)
linearly increase with the level number.

1. Master equation

In slow time compared to wy ! teorr, quantum dy-
namics of the oscillator coupled to a bath can be de-
scribed by a master equation for the oscillator density
matrix in the rotating frame p = U (£)poUp(t), where
po is the density matrix in the laboratory frame and
Uo(t) = exp(—iatawgt). For a linear oscillator with the
coupling to the bath of the form of H; = ghy,, this equa-
tion was derived from the microscopic theory and care-
fully discussed by Schwinger (1961); see also Senitzky
(1961). An extension to weakly nonlinear oscillators was
done by Dykman and Krivoglaz (1973). Where there
hold the conditions of the Markovian approximation dis-
cussed in Sec. A.2, the master equation is Markovian in
slow time and can be written in the form of a Lindblad
equation,

p = 2T [(7 + 1)Dla]p + nDla']p]

—iPla'a, p] — ik~ [Hy, p] (B4)



where

D[L)p = LpLt — (L'Lp+ pL'L)/2 (B5)
and H,; describes nonlinear terms of the oscillator Hamil-
tonian; for example for the Duffing nonlinearity of the
oscillator potential energy, which in the coordinate rep-
resentation is described by M~vyq*/4 [cf. Eq. (46)], we
have

H,) = 3h2’yaTa(aTa + 1)/8Mw§.

The term o P describes the polaronic effect of the shift of
the oscillator frequency due to the coupling to a thermal
bath.

Equation (B4) corresponds to a linear friction force
—2MT¢ in the phenomenological theory, as discussed in
Sec. A, and in the microscopic theory comes from the
bath-induced transitions between neighboring energy lev-
els of the oscillator. In contrast, the phenomenological
nonlinear friction force

fuap = —4AMT™ (q/q0)%4, qo = (h/2Mwp)'/?,
corresponds, in the microscopic theory, to the bath-
induced transitions over two energy levels of the oscil-
lator, see Fig. 32(b). It comes from the interaction with
the bath with energy qghénl)7 see Eq. (52), and specifically
from the terms a2, a'? in ¢?. In the master equation the

nonlinear friction is described by the term (Dykman and
Krivoglaz, 1975)

(3 =20 {[n(2w0) + 1]D[a]p

+7(2w0)Dla2]p} . (B6)

The nonlinear friction coefficient T'™) is [cf. Eq. (53)]

4
F(nl) _ d0 (nl) 9
) 1] 0 (20):

S0 = [ e o o). ®)

In the classical limit kT > fiwy Eq. (B4) goes into
the Fokker-Planck equation for the probability distri-
bution of a nonlinear oscillator, which corresponds to
the stochastic classical equation of motion (55). Among
other things, Eqgs. (B4) and (B6) allow one to calculate
the power spectrum of a nonlinear oscillator. The re-
sults on the spectra are discussed in the main text and
in Appendix E.

The master equation is easily extended to describe res-
onant and parametric driving. It allows studying the
stationary probability distribution of a driven nonlinear
oscillator as well as various transient quantum phenom-
ena.
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Appendix C: Driving-induced cooling and heating for
coupled modes

The possibility to cool a mechanical mode by a driv-
ing that resonantly couples it to a high-frequency optical
mode in a cavity plays a fundamental role in optomechan-
ics (Aspelmeyer et al., 2014b). However, a mechanical
mode can also be cooled down or heated up by coupling
it to another mechanical mode or a mode of a different
physical nature or just a thermal reservoir. An interest-
ing and not a priori obvious part of the effect is that the
stationary distribution of the driven mode is of the Boltz-
mann form with an effective temperature. This happens
if there is no nonlinear friction and the relaxation rate of
the considered mode is much smaller than the relaxation
rate of the mode it is coupled to (Dykman, 1978).

Formally, we consider two modes with eigenfrequencies
w1 and we and the pumping (modulation) of the form of
Eq. (68), with energy

UR™P = Mq1gaAq2 coswpyt

[this corresponds to setting in Eq. (68) AV™P(t) =
A5 cos wpt]. For brevity we set the effective masses of
the modes to be equal to the same value M. The modu-
lation frequency wy, is either close to |wy —ws| or wy + wa.
In what follows we assume for concreteness that wy < ws.
We introduce €, = £1 such that w,, is close to wy — €,w1,
i.e., either to wy — w1 or to wy + wi.

In writing down the master equation for the modes
we will assume that each mode is coupled to its ther-
mal reservoir and, in the absence of the driving, their
decay rates are I'y and I';. We will further assume
that the decay rates do not change if the mode eigen-
frequencies are slightly changed. For example, if wo is
changed to wp + €,ws; for the considered resonant pump-
ing |wp + w1 — wa| K wio. We will write the master
equation using the ladder operators a1, aJ{ and as, a; for
the modes 1 and 2, similar to how it was done in Sec-
tion B for a single mode. We will also switch to the
rotating frame and use the rotating wave approximation.
A unitary transformation to the rotating frame is

Ut) = exp[—iwlta];al —i(wp + epwl)tagg@]_

In the rotating wave approximation, the master equa-
tion for the density matrix p of the coupled modes reads

p= ijp +i5wp[a£a2,p] —i[h1a, pl,
J

Djp =2 | + 1)Dlaslp + 1, Dla]lp
(c1)

dwp = wp + €pwi — wWa

where 1, = n(wy) (k = 1,2). The Lindblad superopera-
tors D[L] are defined in Eq. (B5). Compared to Eq. (B4),
in Eq. (C1) we have disregarded the nonlinearity of the



modes and their eigenfrequency shifts due to the coupling
to the thermal reservoirs.

The operator illg describes the resonantly induced
mode coupling,

|- T T ~
his = Alg(alag + a2a1), Wp Wy — Wy

il12 = Alg(alag + a{ag), Wp W + Wi (02)
where A1y = Ajp/4,/wiwy. This parameter is of central
importance, as it characterizes the coupling strength.
The physical picture of the mode dynamics is simplified
in the case where the relaxation rates I'; and I'y are very

different. For concreteness, we will assume that
I's>T4.

In this case mode 2 adiabatically follows mode 1. If the
coupling is sufficiently weak, |Aj3] < 'y, one can think
of the linear response of mode 2 to the state of mode 1.
This response is formed over time ~ 1/T'y whereas the
state of mode 1 varies over a significantly longer time.

In the adiabatic approximation the dynamics of mode
1 can be described by tracing out mode 2. We intro-
duce the density matrix of mode 1, p; = Trap, where Try
denotes the trace over the states of mode 2. Similarly,
(az)s = Try(agp) and (al)s = Tra(alp); we emphasize
that these averages over the states of mode 2 are opera-
tors with respect to mode 1.

By taking trace over mode 2 in Eq. (C1) we obtain

pr =T1p1 — iz ([al, (a2)a] + a1, (ab)a]).  (C3)
The equation for (as)s has the form
d A .
7 (a2)2 = P'i{az)z — (I'2 — i0wyp)(az)2
— iTry(az[ha2, p))- (C4)

In the considered regime of fast relaxation rate I's we
can look for the quasistationary solution of this equation.
Respectively, we will disregard d(as)s/dt. We will also
disregard the term  I'y compared to the term o« I's. To
describe the linear response of mode 2 to the coupling,
we will calculate the last term in Eq. (C4) to the lowest
order in the coupling, i.e., we will set (a;a2>2 & Top1,
whereas the term (a3)s will be disregarded. This gives

Aqp

—i—12  [(Ay+1 -7 .
T, = i, (72 + 1)a1p1 — nizpraq]

(a2>2 ~

Substituting this expression and the similar expression
for (al), into Eq. (C3), we obtain
p1 = —Tas | (s + 1Dlar)o + e Dlal ]y

_iPeff[aIahplL (C5)
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where
A2
T =T P — .
ft L+ 2F§+5wg’
A2 €, — 1
Ao = It [Ty + Tgm—2—  fig — 2 C6
Teff off [11701 + 2F§+5wg ng 5 (C6)

and Peg = 0wy, A%,/ (T3 + 0w?).

Remarkably, Eq. (C5) maps the dynamics of the driven
slowly decaying mode (mode 1) onto the dynamics of
an undriven mode with an effective decay rate I'eg and
an effective mean occupation number 7i.g (Dykman,
1978). As seen from Eq. (C5), Teg exceeds I'y for
wp & wp + wi and is smaller than I'y for wy + w1 = wy.
At the same time, the effective occupation number 7ieg
is smaller or larger than 7n;. Respectively, in the sta-
tionary regime the effective temperature of the mode
kpTet = hwi/In[(Teg + 1)/Tieg] is lower or higher than
the temperature of the thermal reservoir. This describes
the sideband cooling for wy ~ wp, + wi by “superpos-
ing” onto a low-frequency mode the distribution over the
states of a higher-frequency mode. On the other hand, a
sufficiently strong drive with w, ~ wy + w; leads to I'eg
becoming equal to zero, which manifests an instability of
the system.

Appendix D: Forced vibrations
1. Resonant driving

A classical Duffing oscillator driven by a resonant force
F coswpt experiences the same friction force and the
same noise from the thermal bath as in the absence of
driving, provided the detuning of the drive frequency
from the eigenfrequency |wr — wp| is small compared to
the reciprocal correlation time of the bath t_} . We as-
sume that the driving is not extremely strong so that the
amplitudes of the vibration overtones remain small com-
pared to the amplitude of the main tone. It is then con-
venient to describe the dynamics by switching to the ro-
tating frame and using the real variables @, P, which are
related to the coordinate and momentum of the driven
oscillator by the expression
Q+iP = [q+i(p/Mwr)] exp(iwrt) (D1)
[cf. Eq. (61)]. These variables are similar to (twice) the
real and imaginary parts of the complex amplitude in
the absence of driving u*(t), Eq. (A1), except that for a
driven oscillator it is more convenient to change to the
frame oscillating at frequency wp rather than wy.
The equations for @), P are derived similarly to the
equation for u(t). Disregarding small corrections to @, P
that oscillate at frequency wp and its overtones, we ob-



tain
Q = 0pgr(Q, P) —TQ + &o(t)
P = ~00g,(Q,P) = TP +¢p(t), (D2)
where
3 2 212 _1 2 2\ F
9r = 32wF(Q + P77 - S0w(Q7 + P) 2MWQ,
Sw = wr — wy, |dw| < wr (D3)

(the subscript 7 here stands for “resonant”). The major
difference from Eq. (A9) is that Eq. (D2) is written in
real variables and includes the Duffing nonlinearity o
and the driving force o< F'; the bath-induced frequency
shift has been incorporated into wy.

The variables () and P and the time can be rescaled,
so that the equations of motion contain only two param-
eters, in the absence of noise (Dykman, 2012). The noise
components &g (t) and {p(t) are independent d-correlated
Gaussian noises with the same intensity as in the absence
of the driving

(€a()€q(0)) = (Ep(t)Ep(0)) = (2PkpT/Mwg)i(t)-
(D4)

If the decay and the noise are disregarded, Eqs. (D2)
become Hamiltonian equations for the coordinate @ and
momentum P of the oscillator in the rotating frame (the
in-phase and quadrature components). The function
9-(Q, P) is the Floquet Hamiltonian. In the parameter
range where the oscillator is bistable (in the presence of
weak dissipation) it has the form of a tilted Mexican hat,
see Fig. 33(a). The cross-sections of the surface g,(Q, P)
in Fig. 33(b) show the oscillator trajectories (D2) in the
rotating frame in the limit of zero dissipation. Note the
strong asymmetry (a horseshoe-like shape) of the trajec-
tories that go around the minimum of ¢,.(Q, P).

In the absence of noise, Eq. (D2) has 3 stationary so-
lutions in the region inside the “curvilinear triangle” on
the (F,wp)-plane in Fig. 15(b). The solutions with the
largest and smallest values of @2 4+ P2 are stable, and
the solution with the intermediate Q% + P? is the sad-
dle point. In the limit I' — 0 these states correspond,
respectively, to the local minimum and maximum of the
function g,.(Q, P) and to its saddle point, see Fig. 33(a).
Near the saddle point g,(Q, P) has the shape of a hy-
perboloid. Through this point there goes the separatrix
that separates the basins of attraction of the stable states
for a finite damping. The phase portrait of the system
in the range of bistability is shown in Fig. 33(c), which
complements Fig. 15(c).

The boundaries of the range of the bistability, i.e., the
sides of the “curvilinear triangle” in Fig. 15(b), are the
bifurcation lines. On the line with smaller F' the stable
state with the larger amplitude merges with the saddle
point, whereas on the line with larger F' it is the smaller-
amplitude state that merges with the saddle point. The
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bifurcational values Fg1 2 = Fp1,2(f) of the drive am-
plitude as a function of the drive frequency are given by
the expression

~ 2
Fio= 27 0+ 90, F (27 - 3)3/2} ’

F = (3v/32w3THY2E, Q. = (wp —wp)/T. (D5)
Equation (D5) is written for the Duffing nonlinearity pa-
rameter v > 0; for v < 0 one should replace v — || in
the expression for Fip; 2 and dw = wp —wp — —déw in the

expression for the scaled frequency detuning 2,.

a. Universality of fluctuations near a bifurcation point

The dynamics and fluctuations display universal fea-
tures near bifurcation points. These features are charac-
teristic, in particular, for merging of a stable state with
a saddle point [called the saddle-node bifurcation (Guck-
enheimer and Holmes, 1997)]. The equations of motion
(D2) are simplified where the states are close to each
other in phase space. The rates at which the dynamical
variables () and P approach their stable values become
very different. The relaxation rate of the in-phase com-
ponent ) is ~ 2I', whereas the relaxation rate of the
quadrature component P goes to zero at the bifurcation
parameter value, so that P is a slow variable near the bi-
furcation point. This variable is an analog of a soft mode
in the phase transition theory. Its fluctuations can be
analyzed in the adiabatic approximation, assuming that
the component Q(t) adiabatically follows P(t). As a re-
sult, the equation for the time evolution of P(t) takes the
form

P = —0pUp(P) +£p(t), (D6)
UB(P) = —OéBl[F — FB(QT)](P— PB) +OéBQ(P — PB)3.

The explicit form of the parameters ap; » and the value
Pp of the quadrature at the bifurcation point depend on
Q, (Dykman and Krivoglaz, 1980).

For apiaps(F — Fg) > 0 the potential Ug has a mini-
mum and a maximum, with the minimum corresponding
to the stable state of the mode and the maximum corre-
sponding to the saddle point. The relaxation rate near
the stable state scales with the distance to the bifurcation
point F — Fp(Q,) as [12apiaps(F — Fp(Q,)]'/2.

The “softening” of the potential Up(P) near the bi-
furcation point leads to an increase in fluctuations. Of
particular interest is the effect of the fluctuation-induced
switching from the dynamically stable vibrational state
to the coexisting state with a strongly different ampli-
tude. Equation (D6) reduces the problem of the switch-
ing rate to the problem of escape from a potential well
for a static cubic-parabola potential Ug(P) in a system
with no inertia. The rate of escape for this problem is



FIG. 33 The left and right columns refer to the resonantly
driven and parametrically driven modes in the range of their
bistability. The variables @@ and P for the resonantly driven
mode are, respectively, the in-phase and the quadrature com-
ponents @ and P multiplied by [Swr(wr — wo)/37]'/2. For
the parametrically driven mode, Q, P are the quadratures @
and P scaled by the factor |2F,/3v|'2. Panels (a) and (b)
show the effective Hamiltonian in the rotating frame for the
resonantly driven mode gr, Eq. (D3), and its cross-sections
(the phase trajectories in the absence of decay) for the scaled
driving field intensity 8 = 3vF?/32M*w} (6w)® = 0.01. Panel
(c) shows the phase portrait in the presence of dissipation for
B = 1/27 and the scaled decay rate I'/|dw| = 0.15. The phase
plane is separated into two parts by the separatrix, which
goes through the saddle points S. The trajectories on the
opposite sides of the separatrices approach the stable states
a1 and az. As the decay rate goes to zero, the stable states
as and a; move toward the minimum and the maximum of
gr, respectively. Panels (d) and (e) show, respectively, the ef-
fective Hamiltonian in the rotating frame g,, Eq. (D11), and
its cross-sections (phase trajectories in the absence of dissipa-
tion) for the scaled frequency detuning p, = —0.1 defined in
Eq. (D12). Panel (f) shows the phase portrait in the presence
of dissipation for u, = 0.2,2Mw,I'/F, = 0.3. As the decay
rate goes to zero, the stable states a1 and a2 move toward the
minima of g,.

well-known (Kramers, 1940),

Wew exp(wagAUB/QFkBT),

where AU is the height of the potential barrier around
the stable state,

AUB = 4|0(B2| [CtBl(F - FB)/3QBQ]3/2. (D7)
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This barrier height scales as the distance to the bifurca-
tion point to the power 3/2. Such scaling has been seen
in micro- and nanomechanical vibrational systems as well
as in Josephson junction based systems (Chan and Stam-
baugh, 2007; Defoort et al., 2015; Siddiqi et al., 2006;
Vijay et al., 2009). We note that, since Fg = Fp(f,),
the bifurcation point can be approached by varying the
drive amplitude or the drive frequency or both.

The values of the driving amplitude and frequency
where Fg1 = Fpo give the critical point in Fig. 15. Near
this point the variables @) and P also separate into com-
paratively fast and slow, with the equation for the slow
variable P having the form (D6), except that the effective
potential Ug(P) has to be replaced with the potential
U.(P), with

Ue(P) = a1 (P — P.)* — aclwr — (wp)] (P — P.)?
+ {alc?)[wF — (wr)] + ag3(F — F)}(P—F.) (D8)

where P., (wg)., and F, are the values of P, wg, and F
at the critical point. These values as well as the param-
eters 1,c2,c3 are easy to find from Egs. (D2) and (D3)
(Dykman and Krivoglaz, 1980).

The critical point on the (F,wp)-plane is reminiscent
of the critical point on the line of the first-order phase
transition. Fluctuations become strong and their correla-
tion time diverges as the oscillator approaches this point.
In the range of bistability, as determined by the interrela-
tion between F — F, and wr — (wF )., the potential U.(P)
has two minima. It becomes symmetric on the line on the
(F,wr) plane where the coefficient at the linear in P — P,
term is zero. On this line the switching rates between the
two minima are equal to each other and the barrier height
between the minima is o2 [wr — (wr)c]?/4ae;. This bar-
rier height as determined from the switching rate allows
finding the eigenfrequency and the nonlinearity parame-
ter of a nanomechanical mode with extremely high pre-
cision (Aldridge and Cleland, 2005).

2. Parametrically excited vibrations

Parametric modulation of an oscillator can be de-
scribed by incorporating into its Hamiltonian the term
—(F,q*/2) coswyt. The phenomenological equation of
motion then takes the form (62). For the modulation
at frequency w, close to 2wy, it is convenient to analyze
the dynamics by switching to the quadratures @ and P
that remain almost constant on the time scale 1/w,. The
transformation is similar to that for the resonant drive,
Eq. (D1),

Q+iP = (q i fp /2> expliwyt/2) (DY)

[as in Eq. (D1), @ and P are real]. In the rotating wave
approximation the equations for (Q and P have the same



form as Eq. (D2), but now the function g, has to be
replaced with the function gy,

Q = 9pgp(Q, P) = TQ + &o(t),

P =-0qg,(Q,P) —TP+¢p(t), (D10)
where
gp = il (Q* + P?)? — st (Q* + P?)
P 16w, 9P ’
Fy 2 2 Wp
—r (p?2_ =2 _ . D11
+ 4wa( @), dwp = —wo (D11)

This equation applies provided |dw,| < w,.

If the decay and the noise are disregarded, Egs. (D10)
become Hamiltonian equations for the coordinate @ and
momentum P in the rotating frame. The function
9p(Q, P) is the Hamiltonian (we note that this is not
a Floquet Hamiltonian; this is the Hamiltonian in the
frame oscillating at frequency w,/2). In the parameter
range where the oscillator has two stable states (in the
presence of weak dissipation) it has the form of a symmet-
ric double-well surface, see Fig. 33(d). The cross-sections
of these surface shown in Fig. 33(e) illustrate the phase
trajectories in the rotating frame in the limit of zero dis-
sipation.

The symmetry is a feature of the parametric resonance.
Indeed, incrementing the time by half of the modulation
period 27/w, does not change the equation of motion
in the laboratory frame, Eq. (62). Yet, as seen from
Eq. (D9), it leads to the change Q — —Q, P — —P.

The phase portrait in the presence of dissipation is
shown in Fig. 33(f). This figure refers to the parameter
range where only two vibrational states are stable. As
expected from the above arguments, the phase portrait
has inversion symmetry. Similar to a resonantly driven
mode, the regions of attraction to the stable states a1, as
are separated by the separatrix that goes through the
saddle point S.

The variables @, P and the time can be rescaled, so
that, in the absence of noise, the dynamics is described
by two dimensionless parameters, p, and fp,

tp = (w,/T)sgnry, fp=Fp/2MTw,. (D12)

Figure 16(a) shows the regions of the (fp, 11p)-plane where
there exist different numbers of vibrational and steady
states in the absence of nonlinear friction. The bifurca-
tion lines pp1 2 (the bifurcational values of p, as func-
tions of f,) are given by the equation

1B12 = :F(fg —1)Y2

For weak modulation or large —pu, the mode is not ex-
cited, the vibration amplitude is zero. At pu, = ppi
the zero-amplitude state becomes unstable, and in the
range iz > [p > pp1 the system has two stable vibra-
tional states (these are period-2 states with the opposite

(D13)
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phases). For p, > pups and f, > 1 the zero-amplitude
state is also stable, the mode has 3 stable states and also
2 unstable period-2 states. On the line f, = 1, u, > 0 the
stable period-2 states merge with the unstable period-2
states and disappear. At the critical point p, =0, f, =1
all five stationary states merge.

Near the bifurcation lines (D13) the dynamics and fluc-
tuations of the nascent states are controlled by a “slow”
dynamical variable, similar to the case of a resonantly
driven mode. This variable is a linear combination of Q
and P. A theory of fluctuations and the scaling of the
rates of interstate switching in this parameter range was
discussed by Dykman et al. (1998) and Lin et al. (2015).

The nonlinear friction significantly modifies the bifur-
cation diagram, as seen from Fig. 16 (b). The line on
which the stable and unstable period-2 states merge is
tilted and the critical point shifts. A profound conse-
quence of this change is the hysteresis with the varying
modulation frequency, as described in Sec. VII.B.

a. Fluctuation squeezing in the linear regime

Parametric modulation is often used as a way to
squeeze fluctuations of one of the quadratures. The
squeezing does not require exciting period-2 vibrations,
it occurs already for a weak modulation. This can be
seen from Egs. (D10) and (D11) if one sets v = 0.
In the absence of modulation, F;, = 0, one has from
these equations (Q?) = (P?) = kgT/Mw? in the case
where the noise {g(t),£p(t) is thermal. The stationary
probability distribution p(Q, P) is Gaussian, p(Q, P) =
Z~Yexp[-Mwd(Q? + P?)/2kpT]; it is a Boltzmann dis-
tribution of a harmonic oscillator, Z = Mw?/27kpT.

In the presence of the modulation but below the ex-
citation threshold, fg <1+ ,u]%, the stationary proba-
bility distribution in the rotating frame p(Q, P) is still
Gaussian, if one disregards the nonlinearity, p(Q, P) =
Z Yexp(= > Ajjwiz;/2). Here i,j = 1,2 and we use
r1 = Q,r5 = P; the normalization factor is Z =
or/(det A)Y/2.  The matrix A can be easily found
from the Fokker-Planck equation that corresponds to
Eq. (D10) [in terms of the theory of stochastic processes,
the latter is the Langevin equation for the fluctuating
variables Q(t), P(t), see Risken (1996)]. We can make a
unitary transformation from @, P to @', P’ so as to di-
agonalize the matrix A. The variances (Q'2) and (P'2)
are given, respectively, by A;l and A”!, where A;l and
A~ are the largest and the smallest eigenvalues of 151*1,

L kT 14y £ [ fl(L+ 1)
Muwg L=

A (D14)

One can easily see that A~! < kpT/Mw? for <
1 + p2, which shows that the variance (P'?) = A7l is



smaller than the variance of the quadratures in the ab-
sence of driving. This demonstrates squeezing of classical
fluctuations. The squeezing becomes more pronounced
as the scaled modulation amplitude |f,| approaches the
critical value (1+ ,uf,)l/ 2 where period-two vibrations are
excited. Close to the critical |f,|, the eigenvalue A~" is
1/2 of its value in the absence of the modulation. This is
known as the 3 dB limit of squeezing. While A_ de-
creases, fluctuations of the other quadrature increase,
(Q?) = AT' > kpT/Mwi. The difference between the
variances was clearly demonstrated already in the first
experiment on squeezing in nanomechanical systems (Ru-
gar and Griitter, 1991).

b. Squeezing of fluctuations about the state of resonantly or
parametrically excited vibrations

Here we expand the discussion in Sec. VII.C to describe
what underlies the power spectrum-based detection of
fluctuation squeezing in driven underdamped nonlinear
modes. The detection exploits the fact that the spectrum
of fluctuations about a stable state of forced vibrations
of a nonlinear mode is double-peaked. The peaks are
resolved for sufficiently weak damping. Their occurrence
can be understood from the equations of motion for the
quadratures of a driven mode (D2) and (D10).

In the limit of zero damping and in the absence of
noise, the stationary states of the mode in the rotating
frame lie at Opg = dgg = 0 where g = g, and g = g,
for the resonant and parametric modulation, respectively.
The functions g,, g, are effective Hamiltonians in the ro-
tating frame, and their extrema play the same role in
the dynamics as the minima of the Hamiltonian function
(P?/2M)+U(Q) of a classical particle with coordinate Q
and momentum P in a potential U(Q), except that g,, g,
do not have the form of a sum of the kinetic and poten-
tial energies. An important characteristic of the motion
near an extremum of g,, g, is the frequency

Wrot = (812398229)1/2 (D15)

For a particle with the Hamiltonian (P?/2M)+U(Q) this
expression goes into the familiar expression for the vibra-
tion frequency near a potential minimum ((’%U JM)Y/2,
In the presence of weak damping and weak noise, after
a transient the periodically driven mode approaches one
of the stable states, depending on where it was initially
prepared (the stable states are slightly shifted from the
extrema of g, g, for weak damping). This is again similar
to a particle in a potential well, including the case of a
double-well potential. The mode then fluctuates about
this state for a long time compared to the relaxation time
~ 1/T (see Section VII.D). These fluctuations correspond
to random vibrations of Q(t) and P(t) at frequency wyot,
as seen by linearizing Egs. (D2) and (D10) about a stable
state. Again, the random vibrations of Q(t), P(t) are
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similar to thermal vibrations of a particle in a potential
well. However, they occur in the rotating frame.

As seen from Egs. (D1) and (D9), vibrations of @, P
modulate the forced vibrations of the coordinate and
momentum of the driven mode in the laboratory frame
q(t),p(t). Therefore the power spectrum of fluctua-
tions of the mode measured in the laboratory frame has
peaks at frequencies wp £ wyor Or (wp/2) £ wWyoy for res-
onant and parametric modulation, respectively (Drum-
mond and Walls, 1980; Dykman et al., 1994a, 2011).

On the experimental side, the double-peak spectrum
of fluctuations about a stable vibrational state of a res-
onantly driven MEMS was observed by Stambaugh and
Chan (2006b), but in this experiment the spectral peaks
significantly overlapped. In the experiment (Huber et al.,
2020) the damping was small and the peaks were well-
resolved.

As seen from Fig. 33(b) and (e), the orbits of motion on
the (Q, P)-plane with a given g are strongly non-circular
both for resonant and parametric driving. Therefore the
variances of the quadratures Q and P are different, which
means squeezing. If we disregard dissipation,

kT kT
2\ B B
(0Q)7) = 2Mw} 2Mw}

exp(2¢.) = |039|"/?/|0bg"/2.

Here 6QQ = Q — Qo, where Qg is the value of ) at the
considered extremum of g, and the second derivatives of g
are calculated at the extremum, with g being g, or g, for
the resonant and parametric modulation, respectively.

Along with the squeezing comes the difference in the
areas of the spectral peaks at the frequencies wg + wyot
and wp — wye for a resonantly driven mode, as well as the
peaks at %wp + wrot and %wp — wrot for a parametrically
modulated mode. The difference in the areas is directly
related to the squeezing parameter (Dykman, 2012; Hu-
ber et al., 2020). The ratio Rpeaks Of the areas of the
peaks is

(L+e7*), (P%) = (1+e*),

(D16)

Rpeak = tanh? Ds-

Depending on the parameters and on whether the mode
is in the larger- or smaller-amplitude state, for resonant
driving, the larger-area peak is on the higher or lower-
frequency side of wp or w,/2.

The expression for Rpeax applies also to the ratio of
the areas of the peaks in the imaginary parts of the sus-
ceptibility of a strongly driven, strongly underdamped
mode (Ochs et al., 2021b). Such susceptibility describes
the response to a weak probe force at frequency wy,, close
to resonance. The peak that corresponds to resonant
amplification of the force always has a smaller area than
the one that corresponds to the absorption (Dykman and
Krivoglaz, 1979). We note that the expression for the ra-
tio of the areas of the susceptibility peaks applies also in
the quantum regime.



Appendix E: Spectra of nonlinear underdamped vibrational
modes: quantum and classical

The spectra of nonlinear modes (oscillators) are deter-
mined by two processes. One is decay of the vibration
amplitude. Such decay makes the vibrations nonsinu-
soidal and thus leads to a frequency “uncertainty” and
to a spectral broadening. The other is frequency fluctu-
ations. Here we will consider the frequency fluctuations
that come from the interplay of the dependence of the
vibration frequency on the amplitude and the amplitude
fluctuations due to thermal noise or a broad-band noise
from other sources. The two mechanisms of the spectral
broadening are not simply superposed, but compete, in
some sense, because the decay rate of the amplitude I is
also the reciprocal correlation time of the frequency fluc-
tuations, as explained in Sec. VI.C. Therefore the shape
of the spectrum is determined by the ratio of the fluctu-
ational frequency spread dwq to T.

The broadening of the spectrum of an oscillator due to
the nonlinearity was first discussed for a quantum oscil-
lator (Ivanov et al., 1965). The analysis was done for the
limiting cases dwy < I' and T' — 0. A complete solution
of the problem that showed the evolution of the spec-
trum with the varying dwg/T" was obtained first in the
classical theory (Dykman and Krivoglaz, 1971) and then
in the quantum theory (Dykman and Krivoglaz, 1973).
It described the interplay of the nonlinearity and decay
and offered an insight into the paradox of the harmonic
oscillator (see below).

In the quantum analysis, it is necessary to take into
consideration that the energy levels of a nonlinear oscil-
lator are nonequidistant. In the Duffing model (46), the
energy of a kth level is

E), = hk[wo + Vo(k +1)/2], Vo = 3hy/4AMw?,

for |Vp|k < wp. The transition frequencies (Ey —Ej_1)/h
are shown in Fig. 34. They depend on the level number
k, that is, on the energy Ej. This is the quantum ana-
log of the energy dependence of the oscillator vibration
frequency in the classical limit. The parameter V is pro-
portional to the Duffing nonlinearity parameter . It
is the discreteness of the transition frequencies that de-
termines the quantum effects of the nonlinearity on the
susceptibility and the power spectrum.

So far, in nanomechanical systems studied in the quan-
tum regime (Arrangoiz-Arriola et al., 2019; Cattiaux
et al., 2021; Chu et al., 2018; MacCabe et al., 2020;
O’Connell et al., 2010; Satzinger et al., 2018; Wang et al.,
2019; Wollack et al., 2022), including the systems studied
in quantum optomechanics (Aspelmeyer et al., 2014a,b;
Kotler et al., 2021; de Lépinay et al., 2021), the Duffing
nonlinearity |Vp| was small compared to the decay rate I
This impeded an observation of quantum effects of this
nonlinearity in the spectra. However, quantum effects
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FIG. 34 (a) Sketch of the transitions between the energy
levels of the Duffing oscillator. The difference between the
neighboring transition frequencies is Vo = 3hy/4Mw3. (b)
Fine structure of the imaginary part of the oscillator suscep-
tibility [the power spectrum is S(w) « (72 + 1)Im x(w)]. The
plot refers to the ratio of the nonlinearity parameter V; to
the decay rate Vo /I' = 30. The curves from top to bottom at
the first maximum, w — wo & Vp, correspond to . = 1/3,2/3
and 1. For n — 0 the spectrum becomes a Lorentzian curve,
2Mwolm x(w) = T/[T? + (w — wo)?].

can be pronounced for electromagnetic modes in nonlin-
ear microwave cavities and for Josephson junction based
systems, cf. (Bertet et al., 2012; Schuster et al., 2007).
They underlie the operation of the transmon qubit (Koch
et al., 2007), which is the basic element of the nowadays
superconducting quantum computers.

A quantum picture of the nonlinearity-induced spectral
change is in some sense more intuitive than the classical,
and the classical results follow from the quantum results
as a limiting case. Therefore we present this picture first.

1. “Paradox” of the quantum harmonic oscillator

The oscillator susceptibility x (w) near resonance, w ~
wp, is formed by the transitions between neighboring lev-
els. A naive way to describe it is to think of the oscillator
as a set of two-level systems formed by the pairs of neigh-
boring states |k —1),|k) with & = 1,2,.... Each such
system makes a partial contribution to the resonant sus-
ceptibility, which is described by a function ¢ (k,w). The
overall susceptibility of the oscillator can be then sought
in the form of a sum of such partial susceptibilities,

(@) = 2Mewg) S bk w). (E1)
k=1

One might further assume that a partial susceptibility
¢ (k,w) is given by the familiar expression for the sus-
ceptibility of a two-level system (Weisskopf and Wigner,
1930a)

k Pk—
bk w) = ] p e
T (k) = T[2k(20 + 1) — 1]. (E2)

Here wo+ Vok is the transition frequency of the |k — 1) —
|k) transition, as seen from Fig. 34(a). The parame-
ter I'y (k) is given by the half-sum of the reciprocal



lifetimes of the states |k — 1) and |k). In calculating
it we used that the reciprocal lifetime of a state |k) is
Wi—k+1 + Wik—k—1, where the transition rates Wy, 511
are given by Eq. (B1), and we also took into account
that Wi g+1/Wit1—k = 1/(7+1) [the Einstein relation
(Landau and Lifshitz, 1980)], with i = [exp(hwo/kpT) —
1]7!. Further along the lines of the Weisskopf-Wigner
theory, in Eq. (E2) the coefficient px_; is the popula-
tion of the state £ — 1 from which the system makes a
transition, py, = exp(—hkwo/kpT)/(7+1). The function
Im ¢w(k,w) has the familiar form of a Lorentzian cen-
tered at the transition frequency wy + Vpk and having
halfwidth T'w (k).

An obvious flaw of this picture, which was noticed al-
ready by Weisskopf and Wigner (1930b), is that it does
not describe the susceptibility of a harmonic oscillator in
the limit Vj = 0. In this limit the functions Im ¢w (k,w)
are Lorentzians centered at the same frequency, but their
half-widths Ty (k) are different, so that the whole spec-
trum is not Lorentzian. This has become known as the
paradox of the harmonic oscillator (Belavin et al., 1969;
Zeldovich et al., 1969). (Weisskopf and Wigner, 1930b)
studied the effect for a three-state system with equal
transition frequencies and showed that, indeed, such a
system is not described by a set of two independent two-
level systems.

The breakdown of the approximation (E2) with de-
creasing |Vo|/T is a characteristic quantum effect. The
transition frequencies wg + Vpk with different k are close
to each other, and to distinguish the partial spectra
dw (k,w) one has to wait for a time ¢t > |Vy|~!. However,
because of the coupling to a thermal bath, the oscillator
stays in a state k for a time ~ Ty, (k). If this time is less
than |Vp| =1, the partial spectra may not be distinguished.

The time I'y,! (k) can be thought of as the time it takes
to “switch” from one two-level system to another. The
switching couples the partial spectra with different k& to
each other. This coupling is described by a system of
linear equations (Dykman and Krivoglaz, 1984), which
can be obtained from the quantum master equation for
the oscillator density matrix p (B4).

Following the standard Kubo formula we relate the sus-

J

= dte™ X(t X(t) = ——
O A
VO2 1/2

Vo o
N = {1+2F(2n+1) ~ e

It is seen from the explicit expression (E4) that the sus-
ceptibility of a quantum Duffing oscillator is determined
by two dimensionless parameters: the ratio V;/I" of the

e*iwotel—‘twO—OZ (t) ,

(Re Nog > 0),
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ceptibility of the oscillator to the Fourier transform of the
correlator (a(t)a'(0)) = Tr[aexp(—iHt)a' pga exp(iHt)]
where pg,1 is the density matrix of the system and the
bath. Tracing out the bath and switching to the rotat-
ing frame, we reduce the trace to that over the states of
the oscillator, with the density matrix satisfying Eq. (B4)
with the initial condition

p(0) = a' exp(—hwoa'a/kpT) /(7 +1).

The Fourier transform of the trace over the oscillator
states |k) is a sum over k of the Fourier transforms of the
corresponding matrix elements

bk, w) = /OO dt explis — wo) kY2 (k| p(t) [k —1).

Q
From Eq. (B4) we obtained a system of equations for
d(k,w). Tt reads

[Cw (k) —i(w — wo — Vok)] ¢ (k,w)
— k[ (k — 1,w) + (A + D)o (k + 1,w)]

=kpp—1/(n+1). (E3)

It is seen from this equation that, for |Vp| > Tw(k),
the partial spectra ¢ (k,w) near their maxima are indeed
given by Eq. (E2). However, one can easily check that,
for a harmonic oscillator, V5 = 0, the solution is

¢(k,w) = (Vo =0).

In other words, all “partial spectra” have the same spec-
tral shape, a profound quantum effect. With the account
taken of Eq. (E1), this expression gives the familiar ex-
pression (5) for the susceptibility of a harmonic oscillator.

2. The susceptibility in the explicit form
Equation (E3) can be solved and the expression for the
susceptibility x (w) can be obtained in the form of an in-

tegral of an elementary function (Dykman and Krivoglaz,
1973),

oo (t) = cosh(NeI't) + Ag sinh(RoI't),

Ao =Ryt 1+z‘E(2ﬁ+ . (E4)
2r
[
difference of the transition frequencies (cf. Fig. 34a)

to the decay rate and the oscillator thermal occupation
number 7. The power spectrum S(w) o Im x(w) has



a peak near w = wg, which is not only non-Lorentzian,
but is actually asymmetric, in contrast to the case of a
harmonic oscillator. For |Vp| > I'(2ii+1) the power spec-
trum can have a fine structure, with the spectral peaks
centered at frequencies ~ wy + kVp, cf. Eq. (E2). This
fine structure is illustrated in Fig. 34(b). It exists in a
temperature range limited from above and below. On the
one hand, the temperature should be sufficiently high so
that the excited states of the oscillator are populated.
On the other hand, the fine structure smears out with
the increasing temperature, as the linewidths 2I'y (k) in-
crease and the condition |Vp| > T'w (k) ceases to hold for
smaller and smaller k.

3. Dispersively coupled vibrational modes

A similar effect on the susceptibility of the considered
mode n = 0 comes from its dispersive coupling to other
modes. The energy of the dispersive coupling is

3
Udisp = ZM Z 7n1n1n2n2q"2qu$L2

ni#na

where the subscripts n; » enumerate the modes. This is
a part of the total energy of the nonlinear mode coupling
described by Eq. (50).

Because of the dispersive coupling, the frequency wqg of
the mode n = 0 becomes dependent on the states |k, ) of
other modes,

wo — Wo{kn} =wo + Z Vi [kn + (1/2)} )
n>0

3h nn
Vv, = 700 .
2M,, wowy,

(E5)

Here we assume that the coupling parameters vy, n,nsn,
have been renormalized to allow for the cubic in the mode
coordinates terms in the potential energy of the modes,
cf. Eq. (50); M, is the effective mass of mode n > 0
(Mo = M). Equation (E5) is the quantum analog of
Eq. (51) for the frequency shift in terms of the mode
amplitudes.

The frequencies wo{k, } form a ladder for each n, sim-
ilar to the frequency ladder in Fig. 34. As in the case of
the internal mode nonlinearity, the susceptibility of the
mode n = 0 is affected by the coupling of the transition
amplitudes for different k,,. The overall expression for
the susceptibility of the mode n = 0 can be written in
the same form as Eq. (E4) provided one replaces (Dyk-
man and Krivoglaz, 1973)

e Mhog (1) — oo (8) [ € o (1),

Yon(t) = cosh(R,, I t) + Ay, sinh(R, T t). (E6)
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Here, the parameters XN,, and A, are again given by
Eq. (E4) with the replacement

7= fin = [exp(hw, /kpT) — 1],
(E7)

Vo= V,, T =T,

In the above expressions, I',, is the decay rate of mode
n and 7, is its thermal occupation number; we also use
I'o =T and g = 7.

Where the difference in the frequencies of transitions
with different k,, is large compared to the decay rates of
the involved modes, |V,| > TI', (27, + 1), the suscepti-
bility given by Eqgs. (E4)- (E7) becomes a sum of partial
susceptibilities for the transitions where modes n are in
different Fock states |k, ), similar to Eq. (E2). On the
other hand, the modes with |V,,|(27n,, + 1) < T, i.e., the
modes that are weakly dispersively coupled to the con-
sidered mode n = 0 compared to their decay rates, only
slightly perturb x (w).

4. Classical limit

The expressions for the susceptibility simplify in the
classical limit. In this limit, the thermal occupation num-
bers of the modes are fi,, =~ kpT/hw,. At the same time,
the nonlinearity parameters V,,, which are explicitly re-
lated to the discreteness of the modes energy spectra,
are < h. Therefore they can enter only in combination
with n,,. Respectively, in the classical limit we have in
Egs. (E4) — (ET)

N, = (14 4ia,)Y?, Ay — RN+ 2iay,),
an = 3%0nn kBT (2 — 60.0)/8Mpwow2ly. (E8)

In the classical limit, the susceptibility does not have
fine structure. However, it is very different from the sim-
ple Lorentzian limit (10). The power spectrum S(w) o
Im x(w) becomes asymmetric with the increasing |asy,|,
both because of the internal nonlinearity and of the
dispersive coupling to fluctuating modes (Dykman and
Krivoglaz, 1971).

1
= ap =10
é 0.75 g = 0.5
~ ag =1
S 0.5
= 0.25 §§ oy =
(o]

0

FIG. 35 Imaginary part of the susceptibility of the classical
Duffing oscillator Im x(w) < S(w). The shape of the spectrum
is determined by the single parameter oo, Eq. (E8). The
curves from top to bottom at the maximum refer to ap = 0
(a Lorentzian spectrum with halfwidth I'), ap = 0.5,1, 1.5, 2.
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FIG. 36 Imaginary part of the susceptibility of an oscillator
with nonlinear friction in the absence of the dependence of
the vibration frequency on the amplitude. The dynamics is
described by Egs. (B4) — (B7) in the classical limit [cf. also
Eq. (55) of the main text] with the Duffing nonlinearity pa-
rameter v = 0. The spectra from top to bottom at the max-
imum correspond to the scaled nonlinear friction coefficient
A = 2@V kT /hwel = 0,0.5,1, and 1.5. The nonlinear
friction parameter I is defined in Eq. (BT).

The evolution of the spectrum of a single mode n = 0
with the varying single parameter of the internal nonlin-
earity g is shown in Fig. 35. The width of the spec-
trum increases with the increasing ag; we note that
ag o« T if the decay rate is independent of tempera-
ture. For ap = 0 the spectrum is Lorentzian, whereas for
|ag| > 1 the spectrum near the maximum has the form
S(w) o |w—wp| exp[—(w —wp) /20T for ap(w —wp) > 0.
The expression for the power spectrum of a classical os-
cillator that coincides with the presented result was given
by Renz (1985).

For a comparison, we show in Fig. 36 the effect of non-
linear friction on the susceptibility spectrum in the ab-
sence of conservative nonlinearity. The spectrum remains
symmetric in this case, but is strongly non-Lorentzian.
The deviation from the Lorentzian form is a signature
of the vibration nonlinearity, while the symmetry of the
spectrum enables distinguishing the effects of conserva-
tive and dissipative nonlinearity.

An interesting behavior occurs where the number of
the modes N dispersively coupled to the considered
mode is large even though the coupling to each mode
is small. One would expect some kind of the cen-
tral limit theorem to apply in this case, leading to a
Gaussian power spectrum S(w) (Barnard et al., 2012).
This is indeed the case (Zhang and Dykman, 2015). A
Gaussian spectrum emerges if |a,| < 1 for all n, but
Y, a2 > 1and >, 22 > TI'2 (Ym). In this case
S(w) o exp[—(w — @g)?/20?] with @p = wo + 2>, a, 'y
and 02 =43 a?l2.

In conclusion of this section, we note that the coupling
of interstate transitions and the related distortion of the
spectral lines is a generic property of systems with close
transition frequencies. Such coupling occurs in different
types of systems. Besides various vibrational systems,
like Josephson junctions, microwave cavities, and NVSs,
examples range from the cyclotron resonance in semi-
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conductors to electron spin resonance in strong magnetic
fields in systems with S > 1/2. The coupling of transi-
tions is important also for classical vibrational systems
with fluctuating frequency. An example is provided by
nano- and micromechanical resonators with a fluctuating
number and/or positions of attached molecules (Vig and
Kim, 1999; Yang et al., 2011). The spectra of such sys-
tems can also be asymmetric and display a fine structure
(Dykman et al., 2010). On the formal side, for different
physical mechanisms the full spectra can be often de-
scribed by linear equations for coupled partial spectra.
These equations are convenient for a numerical analysis.

Appendix F: The action-angle variables

The Duffing model has been very successful in describ-
ing many observations of nanomechanical systems, and
in the majority of cases the analysis was based on the
Bogoliubov-Krylov method of averaging outlined in Ap-
pendix A.1. As indicated above, this method is similar to
the rotating wave approximation (RWA), and it is used
throughout the present paper. However, we have to in-
dicate that it may become inapplicable even where the
nonlinearity is still comparatively weak, that is, the non-
parabolic in ¢ terms in the potential energy of a vibra-
tional mode U(q) are still small compared to Mw3q?/2.
A simple example is provided by a mode with a broken
inversion symmetry. In this case, in the nonlinear part
of the potential one has to keep the cubic in ¢ term,

U@)=%Mw&2+éMﬂf+iwﬁf

[cf. also Eq. (50)]. Such modes have been extensively
studied in the literature, see Kozinsky et al. (2006), Chan
et al. (2008b), Eichler et al. (2011b), Meerwaldt et al.
(2012a), Eichler et al. (2013), Huang et al. (2019), and
Ochs et al. (2021a). In fact the lack of inversion symme-
try is fairly generic for flexural nanomechanical modes, as
it comes, for example, whenever a gate voltage is applied
and a nanoresonator is bent or just from the capacitive
part of the potential energy oc (83Cy/0¢%)(VL )2, cf.
Eq. (9).

Cubic nonlinearity leads to several effects, including
vibrations at the second overtone of the eigenfrequency,
i.e., at the frequency = 2wy, and the change of the depen-
dence of the vibrations frequency on the amplitude. In
the RWA, the latter is described by the renormalization
of the Duffing parameter (Landau and Lifshitz, 2004)

1052

9w
(see Eichler et al. (2013) and Huang et al. (2019) for some
other effects).

It is immediately seen from Eq. (F1) that the term
o (B2 can significantly change the character of the ampli-
tude dependence of the mode frequency (48). Indeed, if

T Yot = (F1)



v > 0, but 7. < 0, even the sign of the slope dw/dA?
of the frequency dependence on the amplitude changes.
However, it is clear that for large amplitudes the term
o« ¢* in U(q) becomes more important than the term
o ¢>. Simple dimensional arguments show that for the
amplitudes A% > w2ver /72, the conventional RWA ap-
proximation (F1) becomes inapplicable. For small Yo/
this happens where the nonlinear part of the energy
~ M~yA* is still small compared to the harmonic part
~ Mw2A2?. Therefore it is necessary to find an alterna-
tive approach that would not rely on the conventional
RWA.

The appropriate analysis of the mode dynamics is sim-
plified in the case of weak damping, where the decay
rate I' < wy. Here it is convenient to use the method
of averaging in the form developed in the dynamics of
Hamiltonian systems (Arnold, 1989). In this method one
changes from the coordinate and momentum of the mode
to its action-angle variables. This is a canonical trans-
formation of variables. The coordinate and momentum
are functions of the action I and the phase (angle) ¢ and
are periodic in ¢,

q([,(p+27‘f‘):q(],g0), p(I,cp+27r)=p(I,<p)-

The action and phase variables of the Hamiltonian sys-
tem are defined as

0
I=02r)""Ppd == [ pd
(2m) yqu, @ aj/pq
(Landau and Lifshitz, 2004). The vibration frequency of
the mode is a function of I or, equivalently, of the mode
energy F,

w(I) = (9I/0E)™",

and w(1)0,q = p/M, whereas w(I)0,p = —0,U(q).

To describe the mode dynamics in the presence of a
friction force —2I'p and a driving force F' cos wpt, one can
change from the variables (¢q,p) to (I,¢). The resulting
equations for I and ¢ read

I=Ro,q, ¢=w(I)—Roq,
R = —-2T'p+ Fcoswpt. (F2)

The key observation that underlies the averaging prin-
ciple is that the action varies in time only because of
the friction and the driving, which are assumed small.
In contrast, the phase accumulates at frequency w([),
which is assumed large. Therefore the time evolution of
q and p is fast oscillations with a slowly varying in time
action I. The contribution of fast oscillations to I does
not accumulate in time. Therefore on the time scale large
compared to wp', w1 (I) the motion can be described by
averaging over the fast oscillations for a given action.
The effect of the driving is most pronounced (see Ap-
pendix D.1) where the driving is resonant. This means
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that the vibrations occur at frequencies w(I) close to wp,
that is, |w(I) — wr| < wp (the analysis of parametric
driving can be done similarly). Tt is then convenient to
write
¢ =wrpt+¢o(t), ¢o=w()—wr—RIq.  (F3)

The phase ¢q is also a slow variable. For a given g the
functions q(I,¢),p(I, ) are periodic in wgt.

It follows from the above arguments that the equations
for I,y can be obtained by averaging the full equations
(F2) over fast oscillations,

I= RO,q, $o =w(l) —wp — ROIq. (F4)

Here

27

L(I,¢) = (2n)7 ! dOL(I,0 + o)

0

where L is an arbitrary function of I, ¢, which is periodic
in ¢ (in R we replace F'coswpt with F'cos#; in fact the
averaging is done over the period 27 /wp for fixed I, pp).

Stationary states of forced vibrations are given by
Eq. (F4) in which one sets [ = ¢ = 0. One can see
that, to the leading order in the Duffing nonlinearity, one
obtains the same result for the vibration amplitude and
phase as Egs. (D2) and (D3) or, equivalently, Eq. (60).

One can go beyond the conventional analysis of the res-
onant nonlinear response described in Appendix D while
still staying in the region of comparatively weak nonlin-
earity. This is particularly important for small g /7 or
for veg < 0 and v > 0, in which case one may have to
keep a quadratic in I term in the expansion of w(I), i.e.,
one can write

w(l) = wo 4+ o I + asl?

(Ochs et al., 2022). Here ay o vYexr. The parameters aq o
include all relevant renormalizations and the terms in the
mode potential up to the sixth order in the coordinate
g. Parameters a; 2 are essentially the only parameters
accessible to the experiment on resonant weakly damped
dynamics. They can describe a nonmonotonic backbone
curve. Moreover, in the analysis of the mode dynamics
one can approximate g ~ (21 /Muwg)'/? cos ¢ in Eq. (F4),
which significantly simplifies the analysis.

However, the action-angle formulation allows one to
go beyond the weak-nonlinearity range (Dykman et al.,
1990; Huang et al., 2019; Miller et al., 2021; Ochs et al.,
2021a; Shoshani et al., 2017; Soskin et al., 2003). We
note that, if the involved characteristic frequencies w(T)
become significantly different from wg, the approxima-
tion of the frequency-independent coefficients of linear
and nonlinear friction may become inapplicable. A more
general approach to describing dissipation may be neces-
sary in this case.



Appendix G: Thermoelastic and Akhiezer relaxation

In this section we consider the mechanisms of Akhiezer
and thermoelastic relaxation of NVS modes. These
mechanisms have common origin and can be described
within the same general framework, as indicated in
Sec. IV. In both mechanisms, relaxation comes from
inelastic scattering of thermal phonons off the low-
frequency NVS mode. The process is sketched in Fig. 37.
The mechanisms are particularly important if the mode
eigenfrequency wq is small compared to the temperature
in frequency units, hwy < kgT. To find the mode de-
cay rate I' in this case it is usually necessary to take into
consideration that thermal phonons are scattered off each
other, and their scattering rate can be comparable to wy.

FIG. 37 Feynman diagram showing scattering of phonon & off
the NVS mode into phonon x’. The phonons &, k" themselves
are scattered off other phonons, and the diagram provides
an example of such scattering. The resulting lifetime of the
involved phonons can be smaller than the eigenfrequency wo
of the NVS mode.

The coupling Hamiltonian that describes the scattering
of thermal phonons off the low-frequency NVS mode has
the form

/
H; = qhit™", Wi = " Vewblby,

K,k

(G1)

where b, and bl are annihilation and creation opera-
tors of the vibrational modes coupled to the NVS, cf.
Eq. (34). These modes provide a thermal reservoir. We
call them phonons and assume that their frequencies w,,
have a (quasi) continuous spectrum.

It follows from the results of Sec. IV, see also Egs. (A9),
(A10), that, to the leading order in H;, the decay rate of
the considered low-frequency mode can be expressed in
terms of the power spectrum of the operator hj**. It is
convenient to write this expression as

h <
- _ */ twot—et ,
]‘—‘ 2MkBT Im I§ VN Ii/o dte ¢NK/ (t)7
—1
Dt (1) = 5= D Vicyno (0L (D)0 (D], ()b (0))  (G2)
K0,k

(¢ = 40.) Function ¢, (t) is a two-phonon correlation
function.
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Equation (G2) immediately gives the Landau-Rumer-
Krivoglaz type result (35), if one disregards the interac-
tion between the high-frequency phonons, in which case
D (1) = (=i /R) Vi gi(wi) [(wy ) + 1] expli(wy, — wier )]

The interaction between the phonons can be taken into
account by deriving a quantum kinetic equation for @,.
The modes « can be well-defined and the calculation can
be done in a fairly general case where the resonator is
spatially nonuniform, but the nonuniformity is smooth
on the wavelength of thermal phonons Ay (Atalaya et al.,
2016). This means, for example, that the size of the rip-
ples on a nanomembrane or the scale of nanotube bending
or twisting largely exceed Ap.

Here we will outline the analysis of the phonon-phonon
scattering for a simple case where the resonator is spa-
tially uniform. In a uniform system, thermal phonons
are characterized by their wave vector k and the branch
a, i.e., the phonon label « is k = (k,«); for thin res-
onators, « includes the number of the quantized state
of motion in the direction of the confinement. The
strain of the considered low-frequency mode varies on
the length L that largely exceeds the thermal wavelength
of phonons Ar; for a flexural mode, L is the length of
the resonator. Therefore the modes x and ' coupled
to it have close wave vector, |k — k'| < |k| ~ 1/Ar.
For thermal modes to resonantly scatter off the low-
frequency mode, their frequencies should be also close,
lwe — wer| ~ 721, wo < wy, where 7, is the relaxation
time of mode k. The conditions on the wave vectors
and the mode frequencies are usually met in a suffi-
ciently broad range of k, if the modes &, &’ belong to the
same branch « [the situation may be more complicated
in anisotropic systems (Herring, 1954)]; we will consider
coupling to the modes of the same branch.

Given the difference in the spatial scales L and Ar, it is
convenient to switch from ¢,/ to its Wigner transform.
For a spatially uniform system [k = (k,a), s’ = (K'«a)] it
has the form

A% 1 ke
@a(r,k, t) Zid/dkl dkll ez(kl ki) ¢(k1a)(k’1a)(t)

(2)

!
o (K ),

where d is the dimensionality of thermal phonons and V is
the volume, area, or length of the resonator, depending
on the dimensionality. Function ®,(r,k,t) is the two-
phonon correlation function for the branch «.

One can also introduce the coefficient V,(r,k), which
is given by the same expression as ®,, except that
P(k1a) (k) a)(t) is replaced by Vi) a)- Then the de-
cay rate (G2) can be written as

h dr dk
=" Im [ 2Ny k
OMkpT m/(%)d? o (r,k)

></ dt @, (r, k,t) exp(iwgt — €t).
0

(G3)

(G4)



This equation presents the decay rate as an integral of
the local (for given r) decay rate “density”.

The parameters V,(r,k) take a simple form for the
deformation potential coupling of the considered mode
to phonons (Gurevich, 1988). The deformation poten-
tial model assumes that the phonon wavelengths are
much smaller than the length over which there varies the
mode-induced displacement field ge(r). In the model
the change of the phonon frequency dw, is proportional
to the divergence of the displacement field,

dwy, = —o.),{%({G)quo(r), (G5)

cf. Eq. (39). From Eq. (G5) and from Eq. (G3) written
for V,(r,k) we can directly express the coupling param-

eters in terms of the Griineisen parameters 'yl(ci),

Val(r, k) = —hwkavl((i)Vgo(r). (G6)

Equations (G4) and (G6) reduce the problem of finding
the decay rate of a low-frequency mode to calculating the
correlation function @, of thermal phonons in the Wigner
representation. We note that it is not assumed that the
mode is described by a plane wave, as in the Akhiezer
theory of ultrasound absorption (Akhiezer, 1938). The
general analysis below does not use the model (G5).

1. Kinetic equation

Time evolution of the function ®,(r, k, ¢) is determined
by phonon-phonon scattering. If the phonon-phonon cou-
pling and the disorder are weak, one can sum the pertur-
bation series for the functions ¢, (Atalaya et al., 2016)
and obtain a Markov kinetic equation for @, (strictly
speaking, with a renormalized phonon spectrum),

0P + ViaOr®Po = St[®y], ®o = Du(r,k,t). (GT)

Here vy, is the group velocity of the phonon of the
branch a with the wave vector k and St is the collision
integral. The initial condition follows from Eq. (G2),

o (r,k,0) = —ih 'V, (r, k) fka (ke + 1), (G8)

where figq = N(wka) is the phonon thermal occupation
number.

The typical momentum exchange in a phonon-phonon
collision or a collision with a short-range scatterer is ~
h/Ar. Therefore the collision rate is independent of r
and the collision integral is local,

\ o
St[®, (r, k, 1] = L § :/dkOL‘;g °®,, (r, ko, ).
(G9)

For phonon-phonon scattering, the coefficients Llﬁ&ao are
quadratic in the parameters of the cubic anharmonicity
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Visyrars introduced in Eq. (36); they are real and are
given by the expression for AE&O‘O in (Atalaya et al., 2016).
The locality of the collision integral holds also in the
presence of a smooth disorder, where thermal phonons
are no longer plane waves.

The analysis of the dynamics of thermal phonons and
ultimately of the decay of the low-frequency mode can
be conveniently done in terms of the right and left eigen-
modes of the collision integral ¢, (k, &) and ¥, (k, &),

St[%(k O‘)} = _sud)u(kv Oé),
/20 Y [ kv k0, (ka) = b (G0

Since the coefficients Li”aao are real, the functions ¢, ¥,
and the eigenvalues ¢, are real or form complex-conjugate
pairs, with Re €, > 0. The real parts of the eigenvalues
determine the decay rates of the two-phonon correlation
functions. The zeroth eigenvalue, v = 0, is g = 0. It
corresponds to the stationary value of the two-phonon
correlator,

hwka
Wo(k,a) = ——o8

= n n 1 — 7 g9 N
’(ﬁo(k, Ot) hwgaNka (nka + )a ]{IBT2CPV

The eigenfunctions and eigenvalues with » > 0 can be
found using the explicit form of the collision operator.

Except for special fine-tuned cases, the eigenfunctions
1, form a complete set. One can then seek the solution
of the kinetic equation in the form

Oo(r k t) = T,(r, )b (k). (G11)

Functions T}, describe the spatial structure of the corre-
lator @, (r,k,t). The equation for these functions reads

T, (r,t) + > Vi 0T (r,t) = =&, T, (x, 1),

v

Vo = (;X)dz / dk¥, (k, ) Vet (k, o). (G12)

We will outline the solution of this equation in the lim-
iting cases of the thermoelastic and Akhiezer relaxation.

a. Thermoelastic relaxation

The decay rate I' of the low-frequency mode is deter-
mined by the evolution of ®,(r,k,¢) on the time scale
< wy!, as seen from Eq. (G4). We will start with the
case where wy’ ! is large compared to the relaxation time
of thermal phonons 7,, = max[Re £,1,]. As seen from
Eq. (G12), 7pn determines the long-time decay of the
functions T,~g. The decay of Ty can be still slower, and
this is the case we now consider.



The slow evolution of Ty(r,t) can be described in the
adiabatic approximation in which the functions T,,~¢ adi-
abatically follow Typ. Then T, (r,t) ~ —&, 'v,00:Tp(r, 1)
for v > 0 and ¢ > 7,;. Equation (G12) for T then takes
the form

8tTO ZD1]6T18TJTO( )
ij

D;j = Z(VOD)i(VvO))j/Ev-

v>0

(G13)

Using the explicit form of ®,(r,k,¢) and ¥y(k,a) one
can show that iTy(r,t) can be interpreted as the scaled
coordinate-dependent increment of the temperature of
high-frequency phonons compared to the ambient tem-
perature. Respectively, Eq. (G13) has the form of the
standard equation of thermal diffusion. Using the com-
pleteness of the set of the eigenfunctions 1),,, one can fur-
ther show that the expression for D;; coincides with the
standard expression (Lifshitz and Pitaevskii, 1981) for
thermal diffusivity. In an isotropic medium D;; = Dd;j;
in terms of the thermal conductivity and the specific
heat, D = kp/Cp.

The boundary conditions for the function Ty(r,t) fol-
low from its proportionality to the temperature incre-
ment. At a free side of a nanoresonator there is no
heat flux in the direction n normal to the side, and then
(0n0:Tp) = 0. Such boundary condition on the tempera-
ture increment was used in the analysis of thermoelastic
relaxation by Lifshitz and Roukes (2000). On the other
hand, at the surfaces where the resonator is clamped the
temperature may be equal to the ambient temperature,
and then Ty = 0 (but the clamping area can also have a
thermal contact resistance).

A convenient strategy is to find the eigenvalues u,, and
eigenfunctions Ty, (r) of the diffusion equation (G13), ex-
press Tp(r,t) as a sum of Ty, exp(—punt), and then find
the decay rate of the low frequency mode from Eq. (G4)
and Eq. (G11) in which we keep only the term with
v = 0 (Atalaya et al., 2016). We illustrate this strat-
egy for an important type of NVSs (Landau and Lif-
shitz, 1986; Lifshitz and Roukes, 2000; Zener, 1938), a
long and thin rectangular nanobeam. We assume that
the beam is clamped at z = 0 and = L, has width
W in the y-direction and thickness [; in the z-direction,
with the length L > W[, and with W[, > [p. The
beam bends in the z-direction. Therefore the tempera-
ture is nonuniform in the z-direction, but it can be uni-
form in the y-direction. Since [} < L, the low-lying
eigenvalues of the diffusion equation (G13) correspond
to the eigenmode o sin(wz/l;). If we choose Ty = 0
at £ = 0 and x = L, the eigenmodes of Eq. (G13) are
Ton(r) = (2/V/V)sin(nz/l, ) sin(nmz/L), and the corre-
sponding eigenvalues are p, = 7T2D(112 +n2L~2%). For
small n, where the term oc L2 in p,, can be disregarded,
pn = 7,7 = D(m/l1)?. This expression coincides with
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the Zener relaxation rate 7, ! used in the equation for
the thermoelastic decay rate (38).

The phenomenological analysis of the thermoelas-
tic relaxation corresponds to the assumption that the
Griineisen parameter is the same for all phonons, 71(@) =
Y& = Bar/Cp(1—2vp), where ar is the linear thermal
expansion coefficient and vp is the Poisson ratio. Then
from Egs. (G6), (G8), and (G11), with the account taken

of the explicit form of ¥y (k, ), we have
To(r,0) = ih 4 D V.

To find Ty(r,t) one should expand Ty(r,0) in the eigen-
modes Ty, (r). Then integration over time in Eq. (G4)
gives the decay rate I' of the NVS mode in the form

2

drV Ty, (r)

2MC’p (1 —21/p )2 Z 14 ( wo/,u
(G14)

The eigenfunctions of the thermal diffusion equation were
also used by Zener (1938) in the analysis of the Q-factor
of the beam vibrations based on the coupled equations of
motion of a slow mode and temperature. These equations
were derived from thermodynamic arguments and only
diffusion transverse to the beam was considered.

For a flexural mode we have

Ve = —(1 - 20p) L2202 ( / )12,

where ((z) is the displacement of the central plane
in the z-direction (Landau and Lifshitz, 1986). Us-
ing the explicit form of {(x) for the lowest flexural
mode and the expression for the mode eigenfrequency
wo ~ 6.5(1 /L) (E/p)'/?, and setting p, ~ po, from
Eq. (G14) we obtain

Ea%Two woTZ
2Cp 1+ (OJOTz)2,

I =TTER %~ 0.98 (G15)

which essentially coincides with Eq. (38).

We note that it is necessary to keep several terms in
the sum over the eigenmodes Ty, in Eq. (G14) [Eq. (G15)
includes the whole sum]. If the aspect ratio L/l) is not
very large, one should take into account the dependence
of the relaxation times of the thermal modes y ' on the
mode number. The described method applies to any ge-
ometry. It also allows taking into account the difference
between the values of the Griineisen parameter for differ-
ent phonons, and moreover, going beyond the deforma-
tion potential approximation (G5) all together.

b. Akhiezer relaxation

When the mode eigenfrequency significantly exceeds
the rate of thermal diffusion, wg > 7, ! one should take



into account a finite time it takes for the phonons to
locally equilibrate. The corresponding mechanism is the
extension to a resonator mode of the Akhiezer mechanism
of decay of ultrasound (Akhiezer, 1938).

In terms of the formalism described here, the Akhiezer
damping is determined by the evolution of the func-
tion T, (r,t) over the phonon relaxation time 7, < 7z.
On this time scale one can disregard the drift term in
Eq. (G12). Indeed, this term comes from the spatial
nonuniformity of the phonon distribution. The charac-
teristic scale of the nonuniformity is the size of the sys-
tem, which largely exceeds the phonon mean free path
~ UpnTph (Uph is the characteristic phonon velocity), so
that |vpndrT,| < |T,|/Tpn. Then the functions T, (r,t)
exponentially decay in time as exp(—¢,t) for v > 0.

From Eqgs. (G4) and (G11), the Akhiezer decay rate of
the considered low-frequency mode I' = T'AKD jg

1 A\
rakh— __ — R, / drdkdk’ V*(r, k
IMkpT (2m)2d eazal r o (r k)

X Z wu(k;a)\lly (kla O/)

V_iWO

Vo (I‘, k/)’ka/a/ (ﬁk’a’ + 1)
v>0

(G16)

The term v = 0, which describes thermal diffusion, does
not contribute to the Akhiezer relaxation.

In deriving Eq. (G16) no assumptions have been made
about the structure of the considered low-frequency mode
and the symmetry of the medium. It is important,
though, that if we describe the coupling to phonons by
the deformation potential (G6) and assume that the cou-
pling parameters 71(3) are the same for all phonons, it
follows from Eq. (G10) that TAk" = 0. This means that
to describe the Akhiezer relaxation it is necessary to al-
low for the dependence of 'yl({i)
numbers K, a.

In the analysis of the Akhiezer relaxation the phonon
decay rates Re ¢, are often replaced by a characteris-
tic parameter Tp_hl, see Maris (1968) and Iyer and Can-
dler (2016), and references therein. In this approxi-
mation we can simplify Eq. (G16) using the complete-
ness of the eigenfunctions ¢, Y, (¥ (k,a)¥,(kK',a') =
[(27)?/V]6(k — k)0par — Yo (k, a) ¥ (K, o). If we denote
the averaging over phonons by an overline,

. K2
Ba(r,k) _W;/dkBa(r,k)

X Waaﬁka(ﬁka + 1)

on the phonon quantum

(G17)

[here B, (r,k) is an arbitrary function of r,k, o], we can
rewrite Eq. (G16) as

WoTph
2.2
L+ wymsy,

< [ ar [Tl - frate |

Ak — %CpT

(G18)
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where v, (r, k) = V,(r,k)/fwke and go = (h/2Mwg)*/?.
Equation (G18) explicitly shows that, to describe the
Akhiezer relaxation, one has to take into account the
dependence of the parameters 71(3) on k,a. From this
point of view, it may be more appropriate to interpret
the parameter (7(%))? in Eq. (40) as the variance rather
than the squared mean value of 'y](ci).

An advantageous feature of the presented technique
is that it allows one to consider an intermediate pa-
rameter range between the limits of the thermoelastic
and Akhiezer relaxation. Also, it immediately applies to
micro- and nanoresonators of an arbitrary geometry and

various boundary conditions.

Appendix H: Allan variance in the limiting cases

As indicated in Sec. IX, a most common way to char-
acterize frequency fluctuations is based on the Allan vari-
ance 03 (7). It is defined in terms of the frequencies
fm measured from the increments of the full vibrational
phase ¢ over the time intervals (t,,,t,, + 7) as

N-1 ~ ~
Z (fm-&-l - fm)Qa

m=1

9 B 1
O -7

(H1)
where fy is the mean value of f,,, cf. Eq. (70). We
recall that ¢(t) determines the displacement in the labo-
ratory frame, which is o cos[p(t)]; it should not be con-
fused with the phase ¢(t) in the rotating frame, which is
counted off from 27 fyt.

If the dead-time between the successive measurements
is zero, t,,4+1 — t;, = T, the Allan variance can be simply
expressed in terms of the power spectrum S, (w) of the
fluctuations of the full vibrational phase,

8

— N wsin (wr w).
o [ desnl(r/2S,0). (1)

oA(r) =
Allan variance is used particularly broadly to charac-
terize noise of self-sustained vibrations in systems with
feedback. In such systems the vibration amplitude A is
kept almost constant by the feedback loop, but the phase
is not fixed (unless the vibrations are synchronized by an
external source). Noise causes phase fluctuations, which
accumulate in time. If the noise is thermal (thermome-
chanical), as in the equation of Brownian motion (2) or in
Eq. (A9), the phase is diffusing (Berstein, 1938). Then,
from the above equations and Eq. (H2), 0% () displays
a characteristic dependence on 7 and A,

o3 (1) = (2TkpT/MwiA%)r L. (H3)

In the range where 7 is small compared to the de-
cay time of the oscillator '™, this expression applies
also to a mode driven by a sufficiently strong resonant
force F cos wpt with no feedback loop. For a strong drive



the amplitude of forced vibrations largely exceeds the
thermal displacement (kpT/Mw?)'/?, and thus ampli-
tude fluctuations are relatively small. Fluctuations in
this case can be analyzed using the equation of motion
for the complex amplitude u(t) of a driven linear mode

= —[[+ilwp —wo)u(t) — 14]\wa +£&(1),
u(t) = gy [Mawrat) - ip(0) expl—iwrt), (1)

where £(t) is thermal noise with the correlator (24), cf.
Sec. D.1.

In the absence of noise and in the stationary
regime, the vibration amplitude is Ay =~ 2Jug| =
(F/2Mwp)[(wp — wo)? + T?]7Y/2. The vibration phase
¢st as counted off from the drive phase is

1

Gst = —57 arctan[(wp — wo)/T). (H5)
For weak thermal noise the vibration phase ¢(t) = p(t)—
wrt fluctuates about ¢g. This behavior is very differ-
ent from the phase diffusion for self-sustained vibrations.
Interestingly, it follows from Eq. (H4) that the depen-
dence 03 o< 7! has the same form in both cases provided
I'r <« 1. It is this characteristic dependence that gives
the so-called noise floor for thermal-noise dominated fluc-
tuations in nanomechanical systems, cf. (Cleland and
Roukes, 2002; Ekinci et al., 2004; Sadeghi et al., 2020;
Sansa et al., 2016) and references therein.

For a resonantly driven mode subject to thermal noise
and in the absence of a feedback loop, Eq. (H4) allows
one also to find a simple expression for the Allan variance
in the opposite limit of a long time 7, where I't > 1,

oa (1) = (3kpT/MwiA*) T2 (H6)

Of significant importance is a different regime where
the Allan variance is dominated not by thermal fluctua-
tions of the slow part of the phase, but rather by eigenfre-
quency fluctuations. These fluctuations often have 1/ f-
type component (the flicker noise). In this case it follows
from Eq. (69) that S, (v) oc v~ for small v. Then from
Eq. (H2) 0% oc 7%, As mentioned in Sec. IX, the Allan
variance does not distinguish between the eigenfrequency
fluctuations and the fluctuations of the rotating-frame
phase ¢.

A convenient approach to an open-loop measurement
of the Allan variance is based on measuring the ratio of
the quadrature and in-phase components of the vibra-
tions of a driven mode. This ratio gives tan¢(t). In
the measurement, the drive frequency wg is often chosen
maximally close to the measured mode eigenfrequency
w§® = 21 fo. The relation between the phase fluctua-
tion A¢(t) and the fluctuation Aw{®®® in this case can
be obtained from Eq. (H5). To do this one should replace

wp in this equation with w{**®* and the stationary phase
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¢st with the time-dependent phase ¢. One then finds
Awy*® = I'A¢. The relation applies in the adiabatic
limit, where the change A¢(t) is slow compared to the
oscillator relaxation time I'"!.
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