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We present a review of the Sachdev-Ye-Kitaev (SYK) model of compressible quantum
many-body systems without quasiparticle excitations, and its connections to various
theoretical studies of non-Fermi liquids in condensed matter physics. The review is
placed in the context of numerous experimental observations on correlated electron ma-
terials. Strong correlations in metals are often associated with their proximity to a
Mott transition to an insulator created by the local Coulomb repulsion between the
electrons. We explore the phase diagrams of a number of models of such local electronic
correlation, employing a dynamical mean field theory in the presence of random spin ex-
change interactions. Numerical analyses and analytical solutions, using renormalization
group methods and expansions in large spin degeneracy, lead to critical regions which
display SYK physics. The models studied include the single-band Hubbard model, the
t-J model and the two-band Kondo-Heisenberg model in the presence of random spin
exchange interactions. We also examine non-Fermi liquids obtained by considering each
SYK model with random four-fermion interactions to be a multi-orbital atom, with the
SYK-atoms arranged in an infinite lattice. We connect to theories of sharp Fermi sur-
faces without any low-energy quasiparticles in the absence of spatial disorder, obtained
by coupling a Fermi liquid to a gapless boson; a systematic large N theory of such a crit-
ical Fermi surface, with SYK characteristics, is obtained by averaging over an ensemble
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of theories with random boson-fermion couplings. Finally, we present an overview of the
links between the SYK model and quantum gravity and end with an outlook on open
questions.
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I. INTRODUCTION

The discovery of high temperature superconductivity
in the cuprate compounds in 1986 posed numerous chal-
lenges to quantum theories of electronic matter. The
biggest mystery, as became evident early on, was the un-
usual metallic state of these materials, above the super-
conducting critical temperature. This ‘strange metal’ as
it has since come to be called, displayed unusual tem-
perature and frequency dependencies in its properties,
which indicated that the strange metal was an entangled
many-body quantum state without ‘quasiparticles’. Al-
most all of quantum condensed matter physics is built
on the idea of quasiparticles: it allows us to account for

mailto:debanjanchowdhury@cornell.edu
mailto:ageorges@flatironinstitute.org
mailto:oparcollet@flatironinstitute.org
mailto:sachdev@g.harvard.edu


3

the Coulomb interactions between electrons, by assum-
ing their main effect is to renormalize each electron with
a cloud of electron-hole pairs, after which we can treat
each electron as a nearly independent quasiparticle. This
decomposition of the excitations of a many-body system
into a composite of simple quasiparticle excitations is an
assumption so deeply engrained in the theoretical frame-
work that it is usually left unstated.

The aim of this review is to present some recent ad-
vances in describing quantum phases of matter that do
not host any quasiparticle excitations. Much has been
understood theoretically in recent years about the prop-
erties of a solvable model of a many-body quantum
system without quasiparticle excitations in the regime
of strong interactions: the Sachdev-Ye-Kitaev (SYK)
model. We will review some of these advances in this arti-
cle, along with a discussion of the application of these ad-
vances to more realistic models of quantum matter with-
out quasiparticles.

The idea of employing a quasiparticle description of
a macroscopic many-particle system can be traced back
to Boltzmann (Boltzmann, 1872). Boltzmann was think-
ing of a dilute classical gas of molecules, as found in the
atmosphere. In 1872, he introduced an equation which
described the time evolution of the observable properties
of a dilute gas in response to external forces. He ap-
plied Newton’s laws of motion to individual molecules,
and obtained an equation for fp, the density of parti-
cles with momentum p. In a spatially uniform situation,
Boltzmann’s equation takes the form

∂fp
∂t

+ F · ∇pfp = C[f ] , (1.1)

where t is time, and F is the external force. The left-
hand-side of Eq. (1.1) is just a restatement of Newton’s
laws for individual molecules. Boltzmann’s innovation
was the right-hand-side, which describes collisions be-
tween the molecules. Boltzmann introduced the concept
of ‘molecular chaos’, which asserted that in a sufficiently
dilute gas successive collisions were statistically indepen-
dent. With this assumption, Boltzmann showed that

C[f ] ∝ −
∫
p1,2,3

· · · [fpfp1
− fp2

fp3
] (1.2)

for molecules with momenta p, p1 colliding to momenta
p2, p3. The statistical independence of collisions is re-
flected in the products of the densities in Eq. (1.2), and
the second term represents the time-reversed collision.

The remarkable fact is that Boltzmann’s equation also
applies, with relatively minor modifications, to the dense
quantum gas of electrons found in ordinary metals, as was
argued in Landau’s Fermi liquid theory (Landau, 1957).
Individual electrons move in Bloch waves (Bloch, 1929)
characterized by a crystal momentum p. Now collisions
become rare because of Pauli’s exclusion principle, and

the statistical independence of collisions is assumed to
continue to apply. The main modification is that the
collision term in Eq. (1.2) is replaced by

C[f ] ∝ −
∫
p1,2,3

· · · [fpfp1(1− fp2)(1− fp3)

−fp2
fp3

(1− fp)(1− fp1
)] , (1.3)

where the additional (1− f) factors ensure that the final
states of collisions are not occupied. Now the fp measure
the distribution of electronic quasiparticles, and a cloud
of particle-hole pairs around each electron only renor-
malizes the microscopic scattering cross-section. Such a
quantum Boltzmann equation is the foundation of the
quasiparticle theory of the electron gas in metals, super-
conductors, semiconductors, and insulators, and indeed
almost all of condensed matter physics before the 1980’s.

Our interest here is in quantum materials in which the
description in terms of a quasiparticle distribution func-
tion fp obeying a quantum Boltzmann equation breaks
down. The time between collisions becomes so short that
the quantum interference between successive collisions
cannot be ignored, and the collisions cannot be treated
as statistically independent. Landau’s Fermi liquid the-
ory has the feature that the quasiparticles are essentially
dressed electrons, but there are situations in which the
quasiparticles are emergent excitations of the many-body
system with no simple relation to the bare electrons; such
systems can be treated by extensions of Landau’s ap-
proach, and these will also not be of interest to us.

Given a quantum many-body system, how do we as-
certain the absence of low-energy quasiparticles in any
basis and the associated universal diagnostics, if any?
The simplest diagnostic we might consider for detecting
the presence of electronic quasiparticles is via poles in
the single-particle Green’s function (sharp peaks in the
spectral function). However, the existence of a broad
electron spectral function is, by itself, not sufficient to
conclude that there are no quasiparticle excitations. Af-
ter all, interacting electrons in one dimension have broad
electron spectral functions (Giamarchi, 2003). This is
understood in Luttinger liquid theory, using a descrip-
tion in terms of a different set of quasiparticles: lin-
early dispersing bosons associated with collective exci-
tations. The electron operator is an exponential of the
boson operator, and this leads to the broad spectral func-
tions. The bosonic quasiparticles describe all the many-
body eigenstates, but the electron operator has a quite
complicated form in this representation. Similarly, while
the electron spectral function in certain fractional quan-
tum Hall phases and paramagnetic Mott insulators (Bro-
holm et al., 2020) can be complicated, at low-energies
they might host emergent quasiparticle excitations that
are well defined but impossible to diagnose using a two-
point spectral function, as the latter quantity is not even
a gauge-invariant observable. These examples illustrate
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that the electron spectral function is not a universal di-
agnostic for detecting quasiparticles; it is useful when
the overlap between the wavefunction of the low-energy
quasiparticle and the physical electron is non-zero (e.g.,
as in a Landau Fermi liquid (Abrikosov et al., 1963)).
On the other hand, when the two are orthogonal, as in
the examples highlighted above, the diagnostic fails and
the spectral function is ill equipped to analyze the fate of
quasiparticles. A further weakness in the spectral func-
tion diagnostic is apparent when we consider disordered
systems (e.g., even a disordered Fermi liquid). Electronic
quasiparticles are well defined in such systems (Abra-
hams et al., 1981), but they are not apparent in electronic
spectral functions unless the spatial form of the quasipar-
ticle wavefunction is already known: they are not plane
waves, as in Fermi liquids in clean crystals.

These considerations make it clear that a system with
quasiparticle excitations is best characterized by an ex-
tension of the original Landau perspective (Landau,
1957): the low energy states of a many body system
can be decomposed into composites of single quasipar-
ticle states, and the energies of these states are function-
als of the densities of individual quasiparticle states. In
other words, quasiparticles are additive excitations of a
many-body system. Analyzing the spectrum of low-lying
eigenstates of a many-body quantum systems for a large
but finite volume therefore provides a useful diagnostic of
the validity of a quasiparticle description or of its failure.
We will use this ‘spectral fingerprint’ in several places in
this review, see e.g. Sec. IV.B.

With this perspective, in a many-body quantum sys-
tem without quasiparticle excitations, it is not possible to
decompose the low-lying states into any basis of quasi-
particle excitations. This is however a practical defini-
tion only when the full low-lying spectrum is available.
Furthermore, it may be possible to exclude a candidate
quasiparticle basis but it is often difficult to exclude them
all. For a more positive and practical definition, we con-
sider the approach of a quantum many-body system to
local thermal equilibrium at a temperature T after the
action of a local perturbation. In a system with quasi-
particle excitations, such as a Fermi liquid, solution of
the quantum Boltzmann equation shows that this will
happen in a time that is at least as long as ∼ 1/T 2 as
T → 0. This long time is required for individual quasi-
particles to collide with each other. In a system without
quasiparticles, we expect the time to be much shorter.
But how short can the local equilibration time get as
T → 0 ? Studies of numerous model systems without
quasiparticle excitations, some of which are described in
the present review, show that the time is never shorter
than a time of order the ‘Planckian time’, ~/(kBT ), i.e.
the minimum time associated with an energy of order
kBT according to the Heisenberg uncertainty principle.
On the other hand, it is clear from a study of systems
with quasiparticles, that such systems can never equili-

brate as quickly as the Planckian time, as long as quasi-
particles are well-defined. So we reach the proposal that
many-body quantum systems without quasiparticles are
those that locally equilibrate in a time of order ~/(kBT ),
and no system can equilibrate any faster (Hartnoll et al.,
2016; Sachdev, 1999).

Our focus in this article will primarily be on metallic
quantum many-body systems without quasiparticle exci-
tations i.e. non-Fermi liquids. Section II presents a gen-
eral perspective on non-Fermi liquids, with a summary
of some of their experimental signatures and an overview
of some theoretical ideas and their relationship to the
SYK models presented in this review. A detailed outline
of the perspective of this paper appears in Section II.C.
Readers wishing to focus on the SYK viewpoint can skip
ahead directly to Section II.C and then to Section IV. In
Sec. III, we discuss qualitatively the properties of ‘bad
metals’ and ‘Planckian metals’, two forms of unconven-
tional transport often encountered in non-Fermi liquids.
In Section IV, as a warmup, we first review the random
matrix model for non-interacting fermions that realizes
a Fermi liquid with quasiparticles. The SYK model sys-
tem is introduced and reviewed in Section V. The insights
gained from this study are then applied to several exten-
sions thereof in Sections VI, VII, VIII, X, and XI, with an
eye towards capturing certain universal phenomenologi-
cal aspects of quantum materials with strong electronic
correlations. There are also remarkable connections be-
tween the SYK model and quantum theories of Einstein
gravity in black holes, and these will be reviewed in Sec-
tion XII. In recent years, precise diagnostics of a class of
non-quasiparticle systems have appeared by introducing
ideas from quantum chaos and quantum gravity which
will be discussed briefly in Section XII.E.

II. TYPOLOGY OF NON-FERMI LIQUIDS

Numerous strongly correlated systems, e.g. materials
with partially filled d- or f -shell orbitals and more re-
cently in moiré systems, display a phenomenology which,
while metallic, can drastically deviate from the predic-
tions of the standard Fermi liquid (FL) theory of metals.
These Non Fermi liquids (nFL) raise a series of central
challenges in condensed matter physics, both experimen-
tally and theoretically. As they are defined by what they
are not, they constitute a rich and very diverse family of
systems. Conceptually, they are not characterized by a
few universal experimental traits, unlike Fermi liquids. In
practice, they can not always be clearly identified using
simple response functions, unlike other familiar phases
of quantum matter with or without spontaneously bro-
ken symmetries (e.g. superconductor, antiferromagnet,
quantum Hall insulator).

The family of SYK models discussed in this review
constitute a solvable theoretical route to study a class
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of nFL behaviour, as they have some of the major char-
acteristics of nFL metals. In particular, we will discuss
their relation with Planckian metals, characterized by a
linear dependence of resistivity with temperature and a
characteristic scattering rate ∼ kBT/~. In order to set
the stage for this review, we therefore start in this sec-
tion by discussing a selection of the most important nFL
behavior encountered experimentally (Section IIA). We
then introduce the main theoretical routes which have
been proposed to characterise and explain them (Sec-
tion IIB), along with their connections to the aspects
of SYK physics discussed in later sections. Finally, in
Section II.C, we present the general perspective of this
review article and provide a detailed outline. Readers
wishing to go directly to the theoretical models of this
paper can skip ahead to Section II.C.

A. Experimental signatures of non-Fermi liquids

We start by discussing a few experimental signatures
of nFL, based on a variety of spectroscopic and transport
measurements. Since d.c. transport can be difficult to
interpret, it is important not to rely only on it exclusively
to characterize nFL behaviour. The various signatures
include:

• “Short” single particle lifetimes for excitations near
the Fermi surface, as deduced e.g. from spec-
troscopic measurements such as angle resolved
photoemission spectroscopy (ARPES) (Damascelli
et al., 2003). In FL metals, the inverse quasipar-
ticle lifetime (i.e. the scattering rate) scales as,

Γsp ≡ g2W (kBT/E
∗
F )

2
, where g is a dimension-

less electron-electron interaction strength, W is a
bare electronic energy scale (bandwidth or hop-
ping) and E∗F is a characteristic energy scale below
which coherent long-lived quasiparticle excitations
emerge. E∗F can be viewed as a degeneracy scale
for the Fermi gas of quasiparticles. In contrast, a
strong departure from the above form that persists
over a large range of energy scales is an indica-
tion of breakdown of FL behavior. In a number
of experimental systems that display nFL behav-
ior, Γsp(ω, T ) ∼ max(ω, kBT/~) (Valla et al., 1999;
Wang et al., 2004).

• A power-law temperature dependence of the dc re-
sistivity deviating from the expected FL form ∼ T 2

(due to umklapp scattering) over a broad range
of temperatures, without any signs of crossovers
or saturation. One of the most commonly re-
ported behaviors is ρ = ρ0 +AT , over an extended
range Tcoh < T < Tuv (Hartnoll and MacKenzie,
2021); see Sec. III.B. However, other power-laws
∆ρ (≡ ρ − ρ0) ∼ Tα, have also been observed

(Allen et al., 1996; Lee et al., 2002). Identify-
ing a material as a nFL on the basis of observa-
tion of T−linear resistivity above Tcoh requires spe-
cial care, since electron-phonon scattering in con-
ventional metals leads to a trivial example of the
same (Ziman, 1960). However, T−linear resistiv-
ity presents a clear indication of behavior at odds
with Boltzmann theory of FL transport in examples
where Tcoh is significantly low compared to the De-
bye (or Bloch-Grüneissen) scale, the linearity per-
sists without any crossovers across multiple phonon
energy scales, and there are no obvious collective-
modes to which a similar phonon-type argument
can be applied directly. We return to a discussion
of the physical significance of Tcoh, in subsequent
sections. It is also worth noting that in some ma-
terials, such as optimally doped cuprates (Giraldo-
Gallo et al., 2018), certain heavy-fermion materi-
als (Stewart, 2001) and twisted bilayer graphene
(Jaoui et al., 2022), this behavior persists down to
a low Tcoh → 0.

• Bad metallic behavior (Emery and Kivelson, 1995;
Gunnarsson et al., 2003; Hussey et al., 2004) with
a resistivity that is an increasing function of tem-
perature with ρ & ρQ (ρQ = h/e2[a]d−2, where a
is a microscopic length scale and h/e2 ' 25.8kΩ
the quantum of resistance) is also indicative of
nFL behavior. A majority of the systems of in-
terest to us are quasi two-dimensional (with ap-
preciable transport anisotropy in the ab−plane vs.
along the c−axis) and it is thus useful to quote the
results for the sheet-resistivities in units of h/e2.
While bad-metals can arise at very high temper-
atures for rather simple reasons, the key puzzle
is often related to their smooth evolution into a
low-temperature regime without any characteristic
crossovers that defies Fermi liquid behavior. In the
literature, the expressions bad, or, strange are often
used to refer to certain nFL metals. In this re-
view, we reserve the term bad metals to designate
systems in which the resistivity is larger than the
Mott-Ioffe-Regel value and strange metals to mate-
rials with a resistivity smaller than this value but
displaying a set of behavior incompatible with the
quasiparticle-based framework of Fermi liquid the-
ory. We discuss bad metallic transport in the high-
temperature regime in more detail in Sec. III.A be-
low.

• An anomalous power-law dependence of the optical
conductivity, σ(ω) ∼ 1/ωγ , over an extended range
of frequencies, differing from conventional Drude
behavior. This is observed in cuprates (Bara-
duc et al., 1996; El Azrak et al., 1994; Hwang
et al., 2007; van der Marel et al., 2003; Schlesinger
et al., 1990) and has also been reported in other
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materials (Dodge et al., 2000; Kostic et al., 1998;
Limelette et al., 2013; Mena et al., 2003; Phanin-
dra et al., 2018; Schwartz et al., 1998). This is also
often accompanied by (ω/T )−scaling as a function
of temperature, i.e. σ(ω, T ) ∼ 1/ωγF (ω/T ) (Lee
et al., 2002; Limelette et al., 2013; van der Marel
et al., 2003; van der Marel et al., 2006). At higher
energy or temperature, a transfer of spectral weight
over energy scales larger (sometimes much larger)
than kBT are also typically observed as temper-
ature is varied (Basov et al., 2011; Georges et al.,
1996; Rozenberg et al., 1996). A simultaneous anal-
ysis of both dc transport and optical conductivity
(or other frequency-dependent response functions)
is often crucial in reaching an understanding of the
nFL phenomenology in a specific material.

• An unconventional charge-density response, exem-
plified by a featureless continuum extending over a
broad range of energy scales, as measured in Ra-
man scattering experiments (Bozovic et al., 1987;
Slakey et al., 1991). Recent measurements us-
ing momentum-resolved electron energy loss spec-
troscopy have further revealed a featureless two-
particle continuum and an overdamped plasmon
excitation (Husain et al., 2020; Husain et al., 2019;
Mitrano et al., 2018), that is strikingly at odds with
the expectations in a Fermi liquid metal.

B. Theoretical models of non-Fermi liquids

Classifying insulating gapped phases of matter in terms
of their symmetry and topological properties, using the
lens of many-body entanglement, has been a remarkably
successful venture (Wen, 2017). On the other hand, clas-
sifying gapless phases of matter, and non-Fermi liquids in
particular, remains an outstanding challenge. We shall
not attempt to embark on such an endeavor here. This
review will focus on a few distinct classes of nFL without
quasiparticles, that can be described using various gen-
eralizations of the solvable SYK model. We find it useful
nevertheless to first provide a broader overview of some
of the theoretical frameworks and routes that lead to ex-
amples of non-Fermi liquids in clean crystalline systems
without disorder.

• A class of models involves the quantum-critical fluc-
tuations of a bosonic degree of freedom coupled
to an electronic Fermi surface (Löhneysen et al.,
2007). These fluctuations are associated with the
order-parameter corresponding to the spontaneous
breaking of a point-group (‘nematic’), translational
(spin/charge density-wave) or spin-rotation (fer-
romagnetism) symmetry. In the absence of any
other instability, e.g. to pairing, the resulting

(a)

FL
FL

+ ⟨φ⟩ ≠ 0

(b)

FLMott  
Insulator

kx

ky
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FL with  

‘large’ FS 
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kx

ky

kx

ky

kx

ky
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nFL with  
critical FS 
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critical FS 
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FIG. 1 (a) A nFL obtained by coupling a critical boson (e.g.
nematic order with Q = 0) to an electronic Fermi surface.
(b) A bandwidth-tuned metal to paramagnetic Mott insulator
transition. The Mott insulator hosts a neutral Fermi surface
(dashed circle) of fractionalized degrees of freedom coupled to
an emergent gauge field. (c) A Fermi volume changing transi-
tion between two distinct metals across a ‘Kondo-breakdown’
quantum critical point. The quantum critical point hosts a
critical Fermi surface of electrons in all the examples. The
Mott insulator and the FL* phases host a critical Fermi sur-
face of ‘spinons’ in (b) and (c), respectively.

ground state is a nFL that controls the proper-
ties of the system in a range of temperatures above
the critical point. The nature of the low-energy
excitations near the Fermi surface are clearly dif-
ferent depending on whether the order parame-
ter carries zero, or a finite center-of-mass mo-
mentum, Q. This framework of an electronic
Fermi surface coupled to the low-energy fluctua-
tions of a Landau order-parameter often goes under
the name of Hertz-Millis-Moriya criticality (Millis,
1993; Moriya, 1985; Sachdev, 1999). A critical bo-
son with Q = 0 (e.g. nematic order) can destroy
electronic quasiparticles around the entire Fermi
surface (Fig. 1a). At the critical point, the resulting
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state realizes a classic example of a critical Fermi
surface (Metlitski and Sachdev, 2010; Mross et al.,
2010) and provides an ideal setting for studying
the interplay of nFL physics and superconductiv-
ity (Berg et al., 2019; Metlitski et al., 2015; Wang
et al., 2016). The low-energy field theory for such
metallic criticality in (2 + 1)−dimensions presents
a significant theoretical challenge (Lee, 2009). The
insights provided by the solvable SYK model into
such systems are reviewed in Section XI. A criti-
cal boson with Q 6= 0 (e.g. density-wave order)
destroys electronic quasiparticles near only certain
special points on the Fermi surface (‘hot-spots’)
as it gets reconstructed into pockets, while much
of the Fermi surface continues to host long-lived
quasiparticles. See (Berg et al., 2019; Lee, 2018)
for some recent complementary theoretical progress
into both classes of such order-parameter based
metallic criticality.

• A different form of quantum criticality leading to
nFL behavior is associated with the disappear-
ance of entire electronic Fermi surfaces (Coleman
et al., 2001). Prominent examples of such crit-
icality include continuous metal-insulator transi-
tions between a FL metal and a paramagnetic
Mott insulator at fixed density (Fig. 1b) (Flo-
rens and Georges, 2004; Senthil, 2008a,b); see also
(Kotliar, 1995), and a Kondo breakdown transi-
tion in a heavy Fermi liquid to a fractionalized
FL (Fig. 1c) (Burdin et al., 2002; Coleman et al.,
2001; Paul et al., 2007, 2008, 2013; Schröder et al.,
2000; Senthil et al., 2003, 2004; Si et al., 2001,
2003). The critical point across both of these tran-
sitions also hosts an electronic critical Fermi surface
without low-energy Landau quasiparticles (Senthil,
2008a; Senthil et al., 2004). All currently known
low-energy theories for describing such continuous
transitions involve fractionalized degrees of freedom
coupled to emergent dynamical gauge fields. Most
theoretical descriptions of these continuous tran-
sitions have a remnant Fermi surface of the frac-
tionalized degrees of freedom (and not of electrons)
coupled to dynamical gauge fields on one side of
the critical point; we will continue to refer to these
as critical Fermi surfaces in this article. Contin-
uous metal-insulator transitions without any rem-
nant Fermi surface of even fractionalized degrees
of freedom provide examples of a new form of ‘de-
confined’ metallic quantum criticality; see (Zhang
and Sachdev, 2020; Zou and Chowdhury, 2020) for
some recent progress in describing such transitions.
In particular, all of these transitions fall beyond the
order-parameter based Hertz-Millis-Moriya frame-
work described above. The insights of SY model
with random exchange interactions in the presence

of a uniform Kondo exchange for two-orbital mod-
els will be applied to study a special case of such
abrupt Fermi-volume changing transitions in Sec-
tion VIII.

• In contrast to the examples above that arise at cer-
tain T = 0 quantum critical points, a nFL can
arise as a stable phase at zero temperature. One
of the most well-known examples of such nFL be-
havior is found in a two-dimensional electron gas
at high magnetic fields at a filling factor, ν = 1/2.
The metallic nFL state is compressible and other-
wise known as the composite Fermi liquid (CFL); it
hosts a sharp Fermi surface but the low-energy ex-
citations are not electrons, but composite fermions
(CF) (Jain, 2007). The low-energy theory for the
CFL is described in terms of a CF Fermi-sea cou-
pled to a dynamical gauge-field (Halperin et al.,
1993; Son, 2015). Other examples of nFL phases at
T = 0 have also been observed in numerical studies
of lattice models (Jiang et al., 2012).

We note that there are insulating (and incompress-
ible) phases of matter that are expected to arise in a
class of paramagnetic Mott insulators, where frac-
tionalized degrees of freedom (e.g. spinons) form
a Fermi surface and are coupled minimally to an
emergent gauge-field (Altshuler et al., 1994; Lee,
1989). The low-energy field theory for such phases
shares similarities with the theory for the CFL, but
there are important conceptual differences. A theo-
retical description of the low-energy field theory for
the Fermi surface of spinons coupled to a dynamical
gauge field suffers from the same problem that was
noted earlier (Lee, 2009); the solvable SYK model
of Section XI offers a controlled complementary un-
derstanding of this problem.

• For sufficiently strong interactions and over a range
of intermediate temperatures, it is possible that
nFL behavior emerges generically and is not con-
trolled by the proximity to a quantum critical point
(or phase). Moreover, the nFL regime appears only
as a crossover regime at intermediate temperatures
while the ground state is a conventional phase (such
as a FL, superconductor etc.). These nFL regimes
can be described as “infra-red (IR) incomplete”,
unlike the examples described earlier which are, in
principle, controlled by T = 0 fixed-points. Some
prominent and well understood examples of such
IR incomplete behavior include the classic electron-
phonon system above the Debye temperature (Zi-
man, 1960), spin-incoherent Luttinger liquids (Fi-
ete, 2007), generic lattice models with a finite band-
width at high temperatures (Mukerjee et al., 2006)
(see also (Lindner and Auerbach, 2010)), and cer-
tain holographic non-Fermi liquids (Faulkner et al.,
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2011b; Liu et al., 2011). Interestingly, a number of
theoretical examples of such IR-incomplete behav-
ior are accompanied by an extensive residual en-
tropy, obtained from an extrapolation to the limit
of T → 0; the excess entropy is then relieved below
the crossover to the conventional phase. Our treat-
ment of such systems will appear in the discussion
on lattice models of one and two-band models of
SYK atoms in Section X.

C. Perspective of this review

An important idea in our approach is that it is pos-
sible to make progress on many intractable problems in
the theory of non-Fermi liquids by considering models
with random interactions. At first sight, this appears
counter-intuitive, because spatial randomness introduces
new phenomena associated with localization which are
not of interest to us here. However, most of the models
considered below live on fully connected lattices on which
disorder-induced localization cannot take place. Indeed,
the local electronic properties are strongly self-averaging,
and the observable properties of a single sample with dis-
order are indistinguishable from the average of an ensem-
ble of samples in the infinite-volume limit. Furthermore,
one can argue that the strong incoherence associated with
the absence of quasiparticles also removes localization ef-
fects which require quantum coherence and interference
processes (Lee and Ramakrishnan, 1985). A non-Fermi
liquid system without disorder thermalizes in the shortest
possible time, and this implies chaotic behavior in which
the memory of the initial conditions is rapidly lost. Con-
sequently, it is possible to view averaging over disorder
as a technical tool which allows access to the collective
properties of a system with strong many-body quantum
chaos.

We can also restrict the disorder exclusively to a flavor
space, and so study non-Fermi liquids with full transla-
tional symmetry, as we shall do in Sections X and XI.
Here, the idea is that, after some renormalization group
flow, a large set of theories flow to the same universal low
energy behavior. And we find that it is easier to access
the universal theory by averaging over a suitable set of
microscopic couplings.

Indeed, the idea of using an average over random sys-
tems to understand quantum chaos has long been present
in the theory of single-particle quantum chaos. We will
discuss this in Section IV, where we will review the ran-
dom matrix theory of non-interacting fermions: this has
been a successful model of the quantum theory of parti-
cles whose classical dynamics is chaotic.

Section V introduces the SYK model of fermions with
random two-body interactions with N single particle
states. We will present the exact solution of the many-
body system without quasiparticle excitations obtained

in the N →∞ limit. Much is also understood about the
finite N fluctuations, including some results with a re-
markable accuracy of exp(−N). This fluctuation theory
relies on a mapping to a low energy effective theory of
time reparameterization fluctuations (which is also the
theory of a ‘boundary graviton’ in the quantum theory
of certain black holes of Einstein-Maxwell theory of grav-
ity and electromagnetism, as will be discussed in Sec-
tion XII).

Section VI turns to a quantum generalization of the
thoroughly studied Sherrington-Kirkpatrick model of a
classical spin glass with Ising spins σi = ±1 (i =
1 . . . N →∞) with random and all-to-all interactions Jij
with zero mean. The quantum model replaces σi with
quantum S = 1/2 SU(2) spins Si, which have random
Heisenberg interactions Jij . We will review a variety of
studies of this model, involving numerical exact diagonal-
ization, renormalization group, and large M expansions
of models with SU(M) spin symmetry. These results
show that the S = 1/2 SU(2) model has spin glass order
similar to that of the classical Sherrington-Kirkpatrick
model. However, the spin glass order parameter is quite
small, and for a wide range of intermediate frequencies,
the dynamical spectrum of the SU(2) model matches that
of the SYK model (obtained here in the large M limit).

Sections VII and VIII discuss the familiar and in-
tensively studied single-band Hubbard and two-band
Kondo-Heisenberg models, respectively, of strong elec-
tronic correlations. We will consider models with an ad-
ditional random exchange interaction Jij , which can be
used to justify an extended dynamic mean field theory
with self-consistency conditions on both the single elec-
tron and spin correlators. Such theories apply also to
models with non-random single-particle dispersion, but
it is useful to focus on a simplified limit with random and
all-to-all single electron hopping tij . We will use methods
similar to those in Section VI to show that these models
exhibit quantum phase transitions between two metals:
a metallic spin glass and a Fermi liquid. In the quantum
critical region, we find a non-Fermi liquid with SYK-like
correlations. Section IX will present an overview of re-
cent advances in the numerical methods employed for the
analyses in Sections VII and VIII.

Section X presents a different approach towards gen-
eralizing SYK models to lattice systems. We consider
a lattice of ‘SYK-atoms’, where each lattice site has N
orbitals, and the intra-atomic electronic interactions are
assumed to have the random SYK form. We will consider
the case where all SYK atoms are identical (so that there
is lattice translational symmetry) vs. the case where the
interactions are different random instances on each site,
and comment on their similarities and differences. These
models can be used to realize non-Fermi liquids with
a SYK character and no singular spatial correlations,
but with a bad metallic resistivity. Generalizations of
these models to include additional orbitals, in the spirit
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of two-band models of heavy-fermion materials, lead to
strange metals with T−linear resistivity, critical Fermi
surfaces and a marginal Fermi liquid behavior (Varma
et al., 1989).

Section XI returns to models of Fermi surfaces cou-
pled to critical bosons, which we introduced earlier in
Section II.B. We describe how a systematic large N the-
ory of a class of non-Fermi liquids can be obtained by
applying SYK-like approaches to these well-studied mod-
els. We generalize the models to ∼ N flavors of fermions
and bosons, with a random Yukawa coupling between
the fermions and bosons. The randomness can be inde-
pendent of space, so that the models have translational
symmetry.

Section XII explores the remarkable connections be-
tween the SYK model and the quantum theory of black
holes. We will highlight some recent developments, par-
ticularly those we think are of interest to condensed mat-
ter physicists.

We end with a brief outlook on open questions in Sec-
tion XIII.

III. BAD METALS AND PLANCKIAN METALS

As emphasized above, a prime signature of nFL
behaviour is unconventional transport. In this sec-
tion, we provide a qualitative discussion contrasting
high-temperature ‘bad metallic’ behaviour to ‘Planckian
transport’ persisting down to low-T . This review focuses
mostly on solvable models aiming at providing insight
into the latter.

A. Bad Metals: Mott-Ioffe-Regel criterion and a
high-temperature perspective

In considering transport in semiconductors, Ioffe and
Regel (Ioffe and Regel, 1960) and Mott (Mott, 1974) ar-
gued that metallic transport in the conventional sense re-
quires that the mean-free path, `, of quasiparticles should
be longer than the typical lattice spacing, a. For a quasi
two-dimensional conductor with a single parabolic band
and a simple cylindrical Fermi surface of radius kF , the
Drude expression for conductivity σ = ne2τ/m can be
rewritten as:

σ =
e2

h

1

c
kF `, (3.1)

in which c is the interlayer distance. Hence, when the
sheet conductance becomes smaller than the conductance
quantum e2/h, the Mott-Ioffe-Regel (MIR) criterion is
violated and this suggests that a Drude-Boltzmann de-
scription of transport is no longer valid. The criterion
itself is not a quantitatively precise one, depending on
whether ` is compared to a, or to the Fermi wavelength
λF = 2π/kF .

‘Good’ metals typically have resistivities that are much
smaller than ρQ and correspondingly `� a. In the con-
text of unconventional metallic transport, the physical
significance of the MIR criterion has been a confusing
issue for quite a while, as reviewed e.g. in (Gunnarsson
et al., 2003; Hussey et al., 2004). Some materials, such as
the A15 compounds (Fisk and Webb, 1976), display a re-
sistivity saturation as the MIR value is approached, lead-
ing to the speculation that resistivity saturation should
perhaps be a general fact. It is worth noting that there is
no fundamental theoretical understanding for resistivity
saturation in metals. 1 Moreover, a wealth of experi-
mental data collected on materials with strong electronic
correlations, most notably transition-metal oxides, came
in to contradict the very notion of resistivity saturation.
Indeed, resistivity in many such materials can increase
significantly above the MIR value without any trend to-
wards saturation or even any characteristic feature sig-
nalling this crossover in the temperature dependence of
ρ. The term ‘bad’ metal was coined to highlight this
behavior (Emery and Kivelson, 1995). A material dis-
playing bad metallic behavior at a high temperature can
become a good Fermi liquid at a low temperature with
long-lived coherent quasiparticles, an outstanding exam-
ple being Sr2RuO4 (Tyler et al., 1998). Low-carrier den-
sity materials such as doped SrTiO3 also have bad metal-
lic behavior at high-T (Collignon et al., 2020) while dis-
playing quantum oscillations and coherent transport at
low-T (Collignon et al., 2019).

Recent studies (Deng et al., 2013, 2014) have con-
siderably clarified the physical significance of the MIR
criterion. It is now understood that the temperature
TMIR at which the resistivity becomes of the order of
the MIR value corresponds to the complete disappear-
ance of quasiparticles. Typically, in systems which be-
come FL at low-T , the scale T ∗F below which long-lived
coherent (Landau) quasiparticles with Γsp ∼ T 2 are ob-
served is significantly smaller than TMIR. In Sr2RuO4

for example, T ∗F ' 30 K, while TMIR is several hundreds
degrees Kelvin. Studies of the doped Hubbard model
in the dynamical mean-field theory (DMFT) framework
have documented this interpretation in a precise man-
ner. There, TMIR was found to be of the order of the
Brinkman-Rice scale ∼ p.t (with p the doping level and t
the typical hopping or bare Fermi energy), while a much
lower scale is associated with T ∗F — for a renormaliza-
tion group interpretation of that scale, see (Held et al.,
2013). It was shown that ‘resilient quasiparticles’ exist
in the intermediate regime T ∗F < T < TMIR: the spectral
function displays a broadened but well-defined peak and
transport can still be described in terms of these excita-

1 Recent work has analyzed resistivity saturation, and lack thereof,
in solvable models of electrons coupled to a large number of
phonon modes (Werman and Berg, 2016; Werman et al., 2017).
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tions, reminiscent of the notions introduced (Prange and
Kadanoff, 1964) for electron-phonon scattering. It was
also shown (Deng et al., 2014) that the quasiparticle life-
time follows a 1/T 2 law up to a higher temperature than
the transport lifetime itself, and hence than the temper-
ature at which the resistivity deviates from T 2.

Considerable insight in interpreting transport re-
sults can be gained by simultaneously considering spec-
troscopy experiments, most notably optical conductiv-
ity, and the corresponding transfers of spectral weight
upon changing temperature. In studies of the doped
Hubbard model (Deng et al., 2013), it was shown that
these transfers are limited to the low-energy region be-
tween the Drude peak and the mid-infrared range for
T ∗F < T < TMIR, while the MIR crossover is signalled
by spectral weight transfers over a much larger energy
range, leading to a broad featureless optical conductivity
for T > TMIR.

At temperatures exceeding the (finite) bandwidth for
lattice fermions, it is natural to find bad metallic trans-
port with a resistivity scaling linearly with temperature.
We briefly review here the physical nature of this high-T
regime which is by now well understood. One approach
to this regime is to start from the Kubo formula for the
optical conductivity:

σ(ω, T ) = π
1− e−β~ω

ωZ

∑
n,m

e−βEn |Jnm|2 δ(En − Em − ~ω)

(3.2)

where n,m label the eigenstates of the generic many-
body Hamiltonian with energies En, Em, respectively.
The matrix elements of the total current operator be-
tween the two states are denoted Jnm and Z =

∑
n e
−βEn

is the partition function. When T is the largest energy
scale in the problem, this expression reduces to

σ(ω, T ) =
π

kBT

1

Z

∑
n,m

|Jnm|2 δ(En − Em − ~ω).(3.3)

For generic lattice models, and more generally any sys-
tem for which the sum is finite in the thermodynamic
limit, Eq. (3.3) implies that T -linear resistivity is ex-
pected in the high-T regime; importantly for generic non-
integrable models the matrix-elements Jnm are expected
to have a ‘random-matrix’ form even in the absence of
any randomness (Mukerjee et al., 2006). This analysis
has recently been extended to study several interacting
models over a wider range of temperatures (Patel and
Changlani, 2022). The expression for the conductivity in
Eq. (3.2) looks deceptively simple but usually presents
a significant computational challenge when evaluated for
the entire many-body spectrum.

The origin of T -linear resistivity (and deviations
thereof at lower T ) can also be approached from a system-
atic high-T expansion of the optical conductivity (Lind-
ner and Auerbach, 2010; Perepelitsky et al., 2016). Com-
putational investigations of transport in two-dimensional

Hubbard models in the high-T regime have appeared re-
cently, using quantum Monte Carlo (Huang et al., 2019)
and the finite-temperature Lanczos method (Vranić
et al., 2020; Vučičević et al., 2019).

Complementary and model-independent insights into
this high-T regime can be obtained by considering the
Einstein-Sutherland relation relating the dc conductivity
σdc, charge diffusion coefficient Dc, and charge compress-
ibility χc (Gunnarsson et al., 2003); see also (Hartnoll,
2014; Perepelitsky et al., 2016).

When thermoelectric effects can be neglected, this re-
lation reads:

σdc = χcDc , χc =
∂n

∂µ
, (3.4)

with n the average density and µ the chemical potential.
In the high-temperature limit, where the gas of Fermi
particles is non-degenerate, the origin of σc ∼ 1/T is tied
simply to the thermodynamic property χc ∼ 1/T rather
than to the T−dependence of Dc (or equivalently, of the
scattering rate). Hence, in that regime, bad metallic
transport does correspond to a saturation phenomenon,
although not of the resistivity itself but rather of the dif-
fusion constant or scattering rate. Indeed, in a lattice
model, it is natural that the minimum possible value of
the diffusion constant should be of order Dc ∼ a2/τ0
with a the lattice spacing and the microscopic time-scale
τ0 ∼ ~/t with t the bare hopping.

In the solid-state context, probing experimentally the
regime where T is comparable to the hopping ampli-
tude is challenging, except possibly in flat-band mate-
rials, but is usually complicated by the intervening role
of phonons and other remote dispersive bands. From
that perspective, cold atomic gases in optical lattices of-
fer an ideal platform for studying transport in ‘hot’ or
intermediate temperature regimes, as documented by re-
cent experimental investigations (Anderson et al., 2019;
Brown et al., 2019; Xu et al., 2019). Fig. 2(a)-(b) displays
the measured diffusion constant and compressibility, and
the ‘resistivity’ calculated using the Einstein-Sutherland
relation for two-component fermions in an optical lat-
tice realizing a two-dimensional Hubbard model, mea-
sured as a function of temperature in the range T/t =
0.3 − 8 (Brown et al., 2019). It is seen that the regime
dominated by thermodynamics χc ∼ 1/T, Dc ∼ const.
is indeed observed at the highest temperatures, crossing
over into a regime at lower T in which both the diffu-
sion constant and compressibility exhibit T -dependent
crossovers. Correspondingly, the resistivity as given by
Eq. (3.4) becomes smaller than the MIR value at the
lowest temperature while exhibiting a T−linear behavior
without any noticeable feature or change of slope across
the crossover.

The high-T mechanism for T -linear bad-metallic
transport should be contrasted with the ‘Planckian
regime’ (Zaanen, 2004), discussed in more details below,
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in which the diffusion constant (or, scattering time) is
temperature dependent, Dc ∼ a2 ~/kBT , while the com-
pressibility is temperature independent (Hartnoll, 2014).
In most of the low-temperature nFL exhibiting T−linear
resistivity, it is widely believed that it is the scattering
rate that is temperature dependent and not the com-
pressibility. However, establishing this is, in general,
difficult in the solid-state setting. Recent experimental
progress has allowed for direct measurements of the elec-
tronic compressibility in two-dimensional gate-tunable
materials (Zondiner et al., 2020), indeed demonstrat-
ing that the Planckian regime of low-temperature trans-
port in magic-angle twisted bilayer graphene (Cao et al.,
2020; Jaoui et al., 2022; Polshyn et al., 2019) corresponds
to Dc ∼ 1/T (Park et al., 2021). It should be noted
that Planckian behavior and bad metallic behavior are
not mutually exclusive: indeed we shall discuss in Sec-
tions VII.D.1 and X models in which Dc ∼ 1/T while the
resistivity is larger than the MIR value.

In the remainder of this review, we continue to refer to
‘bad’ metals as systems with a resistivity larger than the
MIR value. We reserve the term ‘strange’ metal to sys-
tems or regimes with a resistivity smaller than the MIR
value but having an unconventional power-law behavior
at odds with expectations in a Fermi liquid. This article
devotes special interest to the latter, only occasionally
discussing bad metals when relevant.

B. Planckian relaxation: unity in diversity?

Carrier numbers and effective masses may be very dif-
ferent from one material to another, and thus it is often
not a meaningful exercise to compare the actual values
of the resistivity across different materials. Instead, com-
paring the relaxation timescales associated with trans-
port can shed interesting light on the universal mecha-
nisms that govern nFL properties. Unfortunately, ob-
taining a transport lifetime from measurements of a dc
resistivity is not a straightforward exercise.

We focus here on instances in which a resistivity de-
pending linearly on temperature ρ = ρ0 + AT is ob-
served — see Fig. 3 for some examples and (Hartnoll
and MacKenzie, 2021; Hussey, 2008; Proust and Taille-
fer, 2019; Varma, 2020) for reviews. A particular pro-
cedure that has been adopted to extract a temperature
dependent transport scattering rate, Γdc in such materi-
als (Bruin et al., 2013) relies on a “Drude” fit,2 where one
expresses ρ = m∗Γdc/nce

2. Assuming that the effective
mass, m∗, and carrier concentration, nc, are temperature

2 The dc transport need not have a Drude-like form in generic nFL
metals.

independent, one writes

Γdc ≡ α
kBT

~
, α =

~
kB

e2nc
m∗

A. (3.5)

In the experimental analysis, m∗ and nc are typically ex-
tracted from low-temperature measurements (i.e. nc ≡
nc(T → 0), m∗ ≡ m∗(T → 0)), which does not always
coincide with the regime in which the clearest signature of
an extended T−linear resistivity is observed. The above
analysis becomes especially difficult in multi-orbital sys-
tems and the effective masses are often extracted from
quantum oscillations, or, specific heat; it is far from being
clear why this is a relevant quantity that should deter-
mine the momentum relaxation rate even within Drude
theory.

Nevertheless, it is quite remarkable that for a number
of metals exhibiting a broad regime of T−linear resis-
tivity including the cuprates, pnictides, ruthenates, or-
ganics and rare-earth element materials, the above “op-
erational” definition of a scattering rate leads to α ≈ 1
(Bruin et al., 2013). A similar analysis in magic-angle
twisted bilayer graphene near half-filling of the elec-
tron and hole-like flat-bands (Cao et al., 2020; Jaoui
et al., 2022), in twisted transition metal dichalcogenides
(Ghiotto et al., 2021), several cuprates over an extended
range of doping levels (Legros et al., 2019) and a non-
superconducting iron-pnictide (Nakajima et al., 2020)
have also found indication of a Planckian scattering rate
with α ≈ 1. Recent measurements of angle-dependent
magnetoresistance (ADMR) near the pseudogap critical
point in Nd-LSCO also reveal a Fermi surface with an
isotropic Planckian scattering set by α ≈ 1 (Grisson-
nanche et al., 2021). Note that this conclusion holds in
the latter case provided a T -independent effective mass
associated with intermediate energy scales (and consis-
tent with ARPES and ADMR) is used, rather than the
thermodynamic effective mass associated with specific
heat which displays a logarithmic T -dependence.

It is important to note that a T−linear resistivity with
a Planckian scattering rate (Eqn. 3.5) is observed in con-
ventional metals like copper, gold etc. This is not a sur-
prise and as noted earlier, the behavior is associated with
electron-phonon scattering where the phonons are in a
classical equipartition regime. There have been discus-
sions (Sadovskii, 2020, 2021) of a possible rationale for
α ' 1 in regimes where electron-phonon and electron-
electron interactions contribute to T -linearity on a simi-
lar footing. However, Planckian scattering that persists
down to extremely low temperatures (Cao et al., 2020;
Giraldo-Gallo et al., 2018; Jaoui et al., 2022) in nFL
that are not low-density materials, and where the behav-
ior persists across multiple phonon frequencies without
any crossovers presents a challenge to theory. A more
in-depth discussion of Planckian timescales across solid-
state materials has appeared in a recent review (Hartnoll
and MacKenzie, 2021).
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(a) (b)

FIG. 2 Measurement of the diffusion constant (a) and compressibility ((a)-inset) for a gas of ultra-cold 6Li atoms in an optical
lattice, realizing a two-dimensional Fermi-Hubbard model with U/t ' 7.5 at a density n ' 0.825. (b) Reconstructed ‘resistivity’
using Einstein-Sutherland relation. Grey horizontal dashed line represents the estimated MIR value. Theoretical calculations
using DMFT (in green) and the finite-T Lanczos method (in blue) are shown; the band representation indicates estimated error
bars. Adapted from (Brown et al., 2019).

ν

A = dρ
dT

A(μ
Ω

cm
/K

)

(a) (b)

FIG. 3 Examples of T−linear resistivity extending over a wide range of temperature scales in (a) hole-doped La2−xSrxCuO4

(LSCO) near optimal doping (adapted from (Giraldo-Gallo et al., 2018)), and (b) magic-angle twisted bilayer graphene
(MATBG) near ν ≈ −2, relative to charge neutrality, ν = 0 (adapted from (Jaoui et al., 2022)). In LSCO, Tcoh can be
inferred to be much lower than any characteristic energy scales by turning on a magnetic field and accounting for the finite
magnetoresistance ((a)-top inset); the variation of the slope (A) on hole-doping is shown in (a)-bottom inset. In MATBG, the
linearity for a range of dopings near ν ≈ −2 ((b)-inset) persists down to ∼ 40 mK. Both family of materials also display a
Planckian form of Γdc (Eq. 3.5).

We end this section by noting that there does not exist a universal definition of a “transport scattering
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rate”, making it difficult to formulate a precise theo-
retical Planckian bound. Even experimentally, as seen
above, the procedure used most often to extract a scat-
tering rate relies on a number of approximations. In that
sense, the use of Einstein-Sutherland relation to extract
a diffusion constant, combined with the recent progress
in measuring electronic compressibility discussed above,
may be a safer route to follow whenever possible.

Optical spectroscopy measurements of the complex
conductivity are often parametrized in terms of a fre-
quency and temperature-dependent optical time scale
and effective mass enhancements as (Basov et al., 2011):

4πσ(ω)/ω2
p =

[
1/τopt(ω)− iωm∗opt(ω)/m)

]−1
, which

can be directly determined from experimental data as
1/τopt = ω2

p/4πRe[1/σ], m∗opt/m = ω2
p/4π Im[1/σ] once

a normalisation of the spectral weight ω2
p/4π has been

chosen.
In a subset of the nFL metals highlighted above, in-

cluding optimally doped cuprates (van der Marel et al.,
2003), the low-frequency limit of 1/τopt was also shown
to have a Planckian form and ω/T scaling was observed.

In later sections of this review, we will discuss a number
of recent studies that have demonstrated the existence of
a Planckian timescale for transport in solvable models of
correlated electrons.

IV. RANDOM MATRIX MODEL: FREE FERMIONS

In the study of charge transport in mesoscopic struc-
tures, much experimental effort has focused on electrons
moving through ‘quantum dots’ (Alhassid, 2000). We can
idealize a quantum dot as a ‘billiard’, a cavity with ir-
regular walls. The electrons scatter off the walls, before
eventually escaping through the leads. If we treat the
electron motion classically, we can follow a chaotic tra-
jectory of particles bouncing off the walls of the billiard.
Much mathematical effort has been devoted to the semi-
classical quantization of such non-interacting particles:
the ‘quantum billiard’ problem. The Bohigas-Giannoni-
Schmidt conjecture (Bohigas et al., 1984) states that
many statistical properties of this quantum billiard can
be described by a model in which the electrons hop on
a random matrix; there has been recent progress (Anan-
tharaman and Macia, 2011; Müller et al., 2009) towards
establishing this conjecture. It is this random matrix
problem that we will describe in this section.

Many properties of the random-matrix model are simi-
lar to a model of a disordered metal in which the electrons
occupy plane wave eigenstates which scatter off randomly
placed impurities with a short-range potential. However,
unlike the random impurity case, there is no regime in
which the eigenstates of a random matrix can be local-
ized. As every site is coupled to every other site, there
is no sense of space or distance along which the eigen-
state can decay exponentially. The absence of localiza-

tion also extends to non-fully connected lattices with in-
finite connectivity, such as a regular hybercubic lattice in
d-dimensions in the d→∞ limit. Indeed, it can be shown
that in this limit the local density of states self-averages
(see below), which implies the absence of Anderson lo-
calisation (Dobrosavljević and Kotliar, 1997).

A. Green’s function

We consider electrons ci (assumed spinless, for simplic-
ity) hopping between sites labeled i = 1, . . . , N , with a
hopping matrix element tij/

√
N :

H2 =
1

(N)1/2

N∑
i,j=1

tijc
†
i cj − µ

∑
i

c†i ci (4.1a)

cicj + cjci = 0 , cic
†
j + c†jci = δij (4.1b)

1

N
〈
∑
i

c†i ci〉 = Q. (4.1c)

The tij are chosen to be independent random complex

numbers with tij = t∗ji, tij = 0 and |tij |2 = t2. The

1/
√
N scaling of the hopping has been chosen so that

the bandwidth of the single electron eigenstates will be of
order unity in the N →∞ limit, and therefore (as there
are N eigenstates) the spacing between the successive
eigenvalues will be of order 1/N . We have also included a
chemical potential so that the average density of electrons
on each site is Q. The subscript (‘2’) in the Hamiltonian,
H2, denotes that it only includes two electron operators.

For a given set of tij , one can numerically diagonalize
the N ×N matrix tij to solve this problem. We denote
by {|λ〉, ελ} the spectrum of eigenstates of the matrix tij
for a given realisation.

However, in the limit of large N , it turns out that
certain quantities are self-averaging. This means that, for
a given sample tij , their value converges with probability
one in the N →∞ limit to their averaged value over all
samples. We will only be interested in such observables
here.

We define as usual the single-particle Green’s function
as:

Gij(τ) = −
〈
Tτ ci(τ)c†j(0)

〉
, (4.2)

with τ the imaginary time and Gij(τ + β) = −Gij(τ).
For a given sample, we can expand this function in terms
of the one-particle eigenstates as:

Gij(z) =
1

N

∑
λ

〈i|λ〉 1

z + µ− ελ
〈λ|j〉 , (4.3)

where z denotes a complex frequency, for example the
Matsubara frequencies ωn = (2n+ 1)π/β.
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i j i

FIG. 4 The graph for the electron self-energy, ∆(τ), in Eq.
(4.6b). Solid lines denote fully dressed electron Green’s func-
tions. The dashed line represents the disorder averaging as-
sociated with |tij |2.

In the limit of large N , for a given site i, the local
Green’s function self-averages:

Gii(τ) → G(τ) (4.4)

with G = 1/N
∑
iGii, also identical to the average over

all samples Gii. In contrast, Gi6=j is of order 1/
√
N for a

given pair of sites i, j and depends on the specific sample.
The simplest way to establish this result consists in

evaluating averages of Gij order-by-order in a perturba-
tion theory in tij . At zeroth-order, the Green’s function
is simply

G0
ij(iωn) =

δij
iωn + µ

. (4.5)

The Feynman graph expansion consists of a single parti-
cle line, with an infinite set of possible products of G0

ij

and tij . We then average each graph over the distribu-
tion of tij . In the N → ∞ limit, only a simple set of
graphs survive (Fig. 4) and the average Green’s function
is a solution of the following set of equations

G(iωn) =
1

iωn + µ−∆(iωn)
(4.6a)

∆(τ) = t2G(τ) (4.6b)

G(τ = 0−) = Q. (4.6c)

The solution of Eq. (4.6b) reduces to solving a
quadratic equation for G(z), and so we obtain for a com-
plex frequency z

G(z) =
1

2t2

[
z + µ±

√
(z + µ)2 − 4t2

]
. (4.7)

The sign in front of the square root (= sign[Im(z + µ)])
is to be chosen such that G(z) has the correct analytic
properties:

• G(|z| → ∞) = 1/z,

• ImG(ω + i0+) < 0 for real ω,

• ImG(ω + i0−) > 0 for real ω.

All of these constraints can be obtained from the spec-
tral representation of the Green’s function. We can also
define the density of single-particle states as

ρ(ω) = − 1

π
ImG(ω − µ+ i0+) =

1

2πt2

√
4t2 − ω2 (4.8)

for ω ∈ [−2t, 2t], and ρ(ω) = 0 otherwise. This is the fa-
mous Wigner semi-circle density of states for the random
matrix (Mehta, 2004).

The chemical potential is fixed by requiring that Eq.
(4.6c) is satisfied, which can be written as∫ 2t

−2t

dω ρ(ω)f(ω − µ) = Q , (4.9)

where f(ε) = 1/(eε/T + 1) is the Fermi function. Per-
forming a Sommerfeld expansion of the left-hand side for
T � t, we obtain∫ µ

−2t

dω ρ(ω) +
π2T 2

6
ρ′(µ) = Q . (4.10)

where ρ′(ω) = dρ/dω. In order to satisfy this equation
for all T in the low-T regime, µ or alternatively Q must
depend on T (depending upon the particular ensemble).
In particular, if we keep Q fixed and vary T , then

µ(T ) = µ0 −
ρ′(µ0)

ρ(µ0)

π2T 2

6
(4.11)

where µ0 = µ(T = 0).
An alternative way to prove the self-averaging prop-

erties is to use the ‘cavity’ construction, which is also
a useful method to establish the local effective action
associated with interacting models considered later in
this article. In a nutshell (see e.g. (Georges et al.,
1996) for details), this consists of integrating over all
sites i = 2, · · · , N except site i = 1, and noting that
the term

∑
i>1 c

†
i (ti1c1) can be viewed as a source term

coupling to c†i . Performing the integration over sites is a
Gaussian problem in this non-interacting case and leads
to the following effective action for site 1:∫

dτ

∫
dτ ′c†1(τ) [δ(τ − τ ′)(∂τ − µ) + ∆1(τ − τ ′)] c1(τ ′),

(4.12)
with

∆1(z) =
1

N

∑
i 6=1

t21iG
[1]
ii (z) +

1

N

∑
i 6=j,i,j>1

t1it1jG
[1]
ij (z).

(4.13)

In the above expression, G
[1]
ij (z) denotes the Green’s func-

tion of the lattice with one less site (site 1 removed, N−1
sites), also removing all connections to that site. We
see that the sum over i in the first term amounts to
a statistical average as N → ∞ and we note, impor-

tantly, that G
[1]
ii (z) does not depend on t1i. Hence the

two terms under the sum can be averaged independently,
yielding t2G. A similar reasoning shows that the sec-
ond term vanishes since the average of the tij ’s are zero.
This proves the self-averaging of the local Green’s func-
tion, G11. Inverting the quadratic kernel leads to Eq.
(4.6b), G−1(z) = z + µ − t2G(z). This also proves that
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the local one-particle density of states for a given sam-
ple 1

N

∑
λ | 〈i|λ〉 |2δ(ε − ελ) converges with probability 1

to the Wigner semi-circular law in the thermodynamic
limit N →∞. For a given single-particle energy ε within
this distribution, one can consider the energy-resolved
Green’s function:

G(ε, iωn) =
1

iωn + µ− ε (4.14)

which allows to locate the position ε = µ of the Fermi
energy of this random but self-averaging model, and cor-
responding energy distribution of particles θ(µ − ε) at
T = 0.

B. Many-body density of states

A quantity that will play an important role in our sub-
sequent discussion of the SYK model is the many-body
density of states, N (E). Unlike the single particle den-
sity of states, ρ(ω), this is not an intensive quantity, but is
typically exponentially large in N , because there is an ex-
ponentially large number of ways of making states within
a small window of an energy E ∼ N . In the grand canon-
ical ensemble, we can relate the grand potential Ω(T ) to
N (E) via an expression for the grand partition function

Z = exp

(
−Ω(T )

T

)
=

∫ ∞
−∞

dE N (E)e−E/T . (4.15)

Note that we have absorbed a contribution −µNQ into
the definition of the (grand) energy E, as is frequently
done in Fermi liquid theory. So we can obtain N (E) by
an inverse Laplace transform of Ω(T ).

First, let us evaluate Ω(T ). By the standard Sommer-
feld expansion for free fermions, we have

Ω(T ) = −NT
∫ 2t

−2t

dωρ(ω) ln
(

1 + e−(ω−µ)/T
)

= N

∫ µ

−2t

dω(ω − µ)ρ(ω)− Nπ2T 2

6
ρ(µ)

≡ E0 −
Nπ2T 2

6
ρ(µ). (4.16)

We now have to insert Eq. (4.16) into Eq. (4.15) and de-
termine N (E). Rather than perform the inverse Laplace
transform, we make a guess of the form of N (E). First,
it is not difficult to see that N (E < E0) = 0. Next,
we expect N (E) to be exponentially large in N when
E − E0 ∼ N . So we make a guess

N (E) ∼ exp
(
aN [(E − E0)/N ]b

)
, E > E0 (4.17)

for some constants a and b. Then we insert Eq. (4.17)
into Eq. (4.15), and perform the integral over E by steep-
est descent method in the large N limit. Matching the

FIG. 5 65536 many-body eigenvalues of a N = 32 Majo-
rana matrix model with random q = 2 fermion terms. N (E)
is plotted in (a) and (b) in 200 and 100 bins, (b) and (c)
zoom into the bottom of the band. Individual energy lev-
els are shown in (c), and these are expected to have spacing
1/(Nρ(µ)) at the bottom of the band as N →∞.

FIG. 6 65536 many-body eigenvalues of a N = 32 Majorana
SYK Hamiltonian with random q = 4 fermion terms. N (E)
is plotted in (a) and (b) in 200 and 100 bins, (b) and (c)
zoom into the bottom of the band. Individual energy levels
are shown in (c), and these are expected to have spacing e−NS

at the bottom of the band as N →∞. Compare to Fig. 5 for
the random matrix model, which has a much sparser spacing
∼ 1/N at the bottom of the band.

result to the left hand side of Eq. (4.15), we obtain the
main result of this section

N (E) ∼ exp (S(E)) (4.18)

S(E) =

{
π
√

2Nρ(µ)(E − E0)/3 , E > E0

0 , E < E0
,

where S(E) is the entropy as a function of the energy.
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Consideration of the derivation shows that this result is
valid for

1� ρ(µ)(E − E0)� N , (4.19)

in the limit of large N . Note that the entropy vanishes
as E ↘ E0 in Eq. (4.18). We show numerical results
for N (E) for a closely related random Majorana fermion
model in Fig. 5. When E−E0 ∼ N , the entropy S(E) is
extensive, the energy level spacing is exponentially small
∼ e−aN with a > 0, and N (E) ∼ eaN is exponentially
large. However, when E − E0 ∼ 1/N , we expect the
energy levels to be few particle excitations with energies
∼ 1/(Nρ(µ)), and so N (E) ∼ N . This rapid decrease of
N (E) near the bottom of the band is clearly evident in
Fig. 5a from the ‘tails’ in the density of states. A more
complete analysis of the finite N corrections is needed to
understand the behavior of theN (E) at low energy, along
the lines of recent analyses (Liao and Galitski, 2021; Liao
et al., 2020).

We also show in Fig. 6 the corresponding results for the
Majorana SYK model. These results will be discussed
further in Section V.F.2, but for now the reader should
note the striking absence of the tails in N (E) in Fig. 6a
in comparison to Fig. 5a.

There is an interesting interpretation of Eq. (4.18)
which gives us some insight into the structure of the
random matrix eigenenergies, and also highlights a key
characteristic of many body systems with quasiparticle
excitations. It is known that the eigenvalues of a ran-
dom matrix undergo level repulsion and their spacings
obey Wigner-Dyson statistics (Mehta, 2004). For a ze-
roth order picture, let us assume that the random matrix
eigenvalues are rigidly equally spaced, with energy level
spacing (near the chemical potential) of 1/(Nρ(µ)). Now
we ask for the number of ways to create a many body
excitation with energy E −E0. With the simplifying as-
sumption that we made on the one-particle spectrum,
each many-body eigenstate can be described by a unique
set of particle-hole excitations, each one of them hav-
ing an excitation energy which is an integer ni times the
level spacing 1/(Nρ(µ)). This mapping is the essence of
bosonization in one dimension, see e.g. (Giamarchi, 2003;
Sachdev, 1999). Hence the excitation energy reads:

Nρ(µ)(E − E0) = n1 + n2 + n3 + n4 + . . . (4.20)

where the ni are the excitation numbers of the particle-
hole excitations. So we estimate that the number of
such excitations is equal to the number of partitions of
the integer Nρ(µ)(E − E0). Now we use the Hardy-
Ramanujan result that the number of partitions of an
integer n is p(n) ∼ exp(π

√
2n/3) at large n. This im-

mediately yields Eq. (4.18). Note that the special case
with exactly equally spaced quasiparticle levels (which is
the case for the linearly-dispersing free Fermi gas in one
dimensions) has many body levels with a spacing ∼ 1/N

but an exponentially large degeneracy; in contrast, the
generic random matrix case has no degeneracy but an
exponentially small many-body level spacing.

This argument highlights a key feature of the many-
body spectrum: it is just the sum of single particle ex-
citation energies. We expect that if we add four fermion
interactions to the random matrix model, we will obtain
quasiparticle excitations in a Fermi liquid state whose
energies add to give many-particle excitations. This can
be checked for weak interactions by a perturbative calcu-
lation, in SYK models with random hopping (Parcollet
and Georges, 1999; Song et al., 2017), and also holds non-
perturbatively as shown by dynamical mean-field the-
ory (Georges et al., 1996), which is exact for the random
matrix Hubbard model with a local interaction. There-
fore, we expect the general form of Eq. (4.18) to con-
tinue to hold even with interactions. However, we will
see at the end of Section V.F.2 that such a decomposi-
tion into quasiparticle excitations does not hold for the
SYK model.

We can also estimate the lifetime of the quasiparticles
at weak coupling by a perturbative computation based on
Fermi’s Golden Rule: we obtain 1/τ ∼ U2T 2/t3 at low
T with U the strength of the local interaction. As this is
parametrically smaller than a thermal excitation energy
∼ T , quasiparticles remain well-defined excitations. The
existence of such quasiparticles can be diagnosed from
the poles of the energy-resolved Green’s function to be
presented in Eq. (7.8), supplemented by the self-energy
as defined in Sec. VII.A to account for interactions, while
the energy integrated (local) Green’s function Eq. (4.7)
yields the disorder-averaged total density of states.

V. THE SYK MODEL

As in the random matrix model, we consider electrons
(assumed spinless for simplicity) which occupy sites la-
beled i = 1, 2 . . . N . However, instead of a random one-
particle hopping tij , we now have only a random two-
particle interaction Uij;k`:

H4 =
1

(2N)3/2

N∑
ijk`=1

Uij;k` c
†
i c
†
jckc` − µ

∑
i

c†i ci (5.1a)

cicj + cjci = 0 , cic
†
j + c†jci = δij (5.1b)

Q =
1

N

∑
i

〈c†i ci〉. (5.1c)

We choose the couplings Uij;k` to be independent ran-
dom variables with zero mean Uij;k` = 0, while satisfy-
ing Uij;k` = −Uji;k` = −Uij;`k = U∗k`;ij . All the random

variables have the same variance |Uij;k`|2 = U2.

A model similar to H4 appeared in nuclear physics,
where it was called the two-body random ensemble
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(Brody et al., 1981), and studied numerically. The exis-
tence and structure of the large N limit was understood
(Georges et al., 2000, 2001; Parcollet and Georges, 1999;
Sachdev and Ye, 1993) in the context of a closely related
model that we will examine in Section VI. More recently,
a Majorana version was introduced (Kitaev, 2015), and
the large N limit of H4 was obtained (Sachdev, 2015).

The useful self-averaging properties of the random ma-
trix model as N →∞ also apply to the SYK model Eq.
(5.1a). Indeed, the self-averaging properties are much
stronger, as the average takes place over the many-body
Hilbert space of size eαN , rather than the single-particle
Hilbert space of size N . Proceeding just as in the random
matrix model, we perform a Feynman graph expansion
in Uij;k`, and then average graph-by-graph. In the large
N limit, only the so-called ‘melon graphs’ survive (Fig.
7), and the determination of the on-site Green’s function
reduces to the solution of the following equations

G(iωn) =
1

iωn + µ− Σ(iωn)
(5.2a)

Σ(τ) = −U2G2(τ)G(−τ) (5.2b)

G(τ = 0−) = Q. (5.2c)

Unlike the random matrix equations, these equations
cannot be solved analytically as a result of their non-
linearity, and a full solution can only be obtained numer-
ically. However, it is possible to make significant analytic
progress at frequencies and temperatures much smaller
than U , as we shall describe in the following subsections.

i

j

k

ℓ

i

FIG. 7 The ‘melon graph’ for the electron self-energy, Σ(τ),
in Eq. (5.2b). Solid lines denote fully dressed electron Green’s
functions. The dashed line represents the disorder averaging
associated with the interaction vertices (denoted as solid cir-

cles), |Uij;k`|2.

Before embarking on a general low energy solution of
Eq. (5.2a-5.2c), let us note a remarkable feature that
can be deduced on general grounds (Sachdev and Ye,
1993): any non-trivial solution (i.e. with Q 6= 0, 1) must
be gapless. Let us suppose otherwise, and assume there
is a gapped solution with ImG(ω) = 0 for |ω| < EG.
Then, by an examination of the spectral decomposition
of the equation for the self energy in Eq. (5.2b), we can
establish that Im Σ(ω) = 0 for |ω| < 3EG. Inserting this

back into Dyson’s equation Eq. (5.2a), we obtain the
contradictory result that ImG(ω) = 0 for |ω| < 3EG. So
the only possible value is EG = 0.

A. Low energy solution at T = 0

Knowing that the solution must be gapless, let us as-
sume that we have a power-law singularity at zero fre-
quency. So we assume (Sachdev and Ye, 1993)

G(z) = C
e−i(π∆+θ)

z1−2∆
, Im(z) > 0, |z| � U . (5.3)

We have a prefactor C > 0, a power-law singularity deter-
mined by the exponent ∆ > 0, and a spectral asymmetry
angle θ which yields distinct density of states for particle
and hole excitations. We now have to insert the ansatz
Eq. (5.3) into Eqs. (5.2a,5.2b) and find the values of C,
∆ and θ for which there is a self-consistent solution. Of
course, the solution also has to satisfy the constraint aris-
ing from the spectral representation, ImG(ω+ i0+) < 0;
for Eq. (5.3) this translates to

− π∆ < θ < π∆ . (5.4)

We now wish to obtain the Green’s function as a func-
tion of imaginary time τ . For this purpose, we write
the spectral representation using the density of states
ρ(Ω) = −(1/π)ImG(ω + i0+) > 0, so that

G(z) =

∫ ∞
−∞

dΩ
ρ(Ω)

z − Ω
. (5.5)

We can take a Fourier transform and obtain

G(τ) =


−
∫ ∞

0

dΩ ρ(Ω)e−Ωτ , for τ > 0∫ ∞
0

dΩ ρ(−Ω)eΩτ , for τ < 0

. (5.6)

Using Eq. (5.6) we obtain in τ space

G(τ) =


−CΓ(2∆) sin(π∆ + θ)

π|τ |2∆
, for τ � 1/U

CΓ(2∆) sin(π∆− θ)
π|τ |2∆

, for τ � −1/U

.(5.7)

corresponding to the low-frequency behaviour of the
spectral function:

ρ(Ω) =


sin(π∆ + θ)

C

π|Ω|1−2∆
, for 0 < Ω� U

sin(π∆− θ) C

π|Ω|1−2∆
, for −U � Ω < 0

.(5.8)

This expression makes it clear that θ determines the
particle-hole asymmetry, associated with the fermion
propagation forward and backward in time (posi-
tive/negative frequencies). For our later purpose, it is
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also useful to parametrize the asymmetry in terms of a
real number −∞ < E <∞ so that

G(τ) ∼


− eπE

|τ |2∆
, for τ � 1/U

e−πE

|τ |2∆
, for τ � −1/U

, (5.9)

and then we have

e2πE =
sin(π∆ + θ)

sin(π∆− θ) , (5.10)

and E = θ = 0 is the particle-hole symmetric case. This
spectral asymmetry plays a key role in the physics of the
complex SYK model, as well as in the large-M solution
of multichannel Kondo models (Parcollet et al., 1998),
where the notation α = 2πE was used.

We also use the spectral representation for the self en-
ergy

Σ(z) =

∫ ∞
−∞

dΩ
σ(Ω)

z − Ω
. (5.11)

Using Eqs. (5.2b) and (5.7) to obtain Σ(τ), and perform-
ing the inverse Laplace transform as for G(τ), we obtain

σ(Ω) =


Υ(∆) [sin(π∆ + θ)]

2
[sin(π∆− θ)] |Ω|6∆−1

for Ω > 0

Υ(∆) [sin(π∆ + θ)] [sin(π∆− θ)]2 |Ω|6∆−1

for Ω < 0

(5.12)

where Υ(∆) = [U2/Γ(6∆)][CΓ(2∆)/π]3. Finally we have
to insert the Σ(iωn) obtained from Eqs. (5.11) and (5.12)
back into Eq. (5.2a). To understand the structure of the
solution, let us first assume that 0 < 6∆ − 1 < 1; we
will find soon that this is indeed the case, and no other
solution is possible. Then as |ωn| → 0, the frequency
dependence in Σ(iωn) is much larger than that from the
iωn term in Eq. (5.2a). Also, we have 1 − 2∆ > 0, and
so G(z) in Eq. (5.3) diverges as |z| → 0. So we find
that a solution of Eq. (5.2a) is only possible under two
conditions:

µ− Σ(0) = 0 , and

1− 2∆ = 6∆− 1 ⇒ ∆ =
1

4
. (5.13)

Matching the divergence in the coefficient of G(z) as z →
0, we also obtain the value of C:

C =

(
π

U2 cos(2θ)

)1/4

. (5.14)

The value of asymmetry angle, θ, remains undeter-
mined by the solution Eqs. (5.2a) and (5.2b). As we will
see in Section V.B, the value of θ is fixed by a generalized
Luttinger’s theorem, which relates it to the value of the

fermion density Q (Georges et al., 2001). But without
further computation we can conclude that at the particle-
hole symmetric point with Q = 1/2, we have E = θ = 0.

The main result of this section is therefore summa-
rized in Eq. (5.9). The fermion has ‘dimension’ ∆ = 1/4
and its two-point correlator decays as 1/

√
τ ; there is a

particle-hole asymmetry determined by E (which is un-
known at this stage, but determined in the next section).
This should be contrasted with the corresponding fea-
tures of the random matrix model with a Fermi liquid
ground state: the two-point fermion correlator decays as
1/τ , and the leading decay is particle-hole symmetric.

B. Luttinger’s theorem

In Fermi liquid theory, Luttinger’s theorem relates an
equal time property — the total electron density— to a
low energy property, the Fermi wavevector which is the
location of zero energy excitations. There turns out to
be a similar low/high energy mapping that can be made
in a ‘generalized’ Luttinger theorem for the SYK model,
relating the angle θ characterizing the particle-hole asym-
metry at long times in Eq. (5.3), to the fermion density
Q (Georges et al., 2001). As in the conventional Lut-
tinger analysis, we start by manipulating the expression
for Q into 2 terms

Q− 1 =

∫ ∞
−∞

dω

2π
G(iω)e−iω0+

= I1 + I2,

I1 = i

∫ ∞
−∞

dω

2π

d

dω
ln [G(iω)] e−iω0+

I2 = −i
∫ ∞
−∞

dω

2π
G(iω)

d

dω
Σ(iω)e−iω0+

. (5.15)

In Fermi liquid theory, I2 vanishes because of the exis-
tence of the Luttinger-Ward functional (Abrikosov et al.,
1963; Luttinger and Ward, 1960), while I1 is easily eval-
uated because it is a total derivative, and this yields the
Luttinger theorem. The situation is more complicated for
the SYK model because of the singular nature of G(ω) as
|ω| → 0. Indeed, both I1 and I2 are logarithmically di-
vergent at small |ω|, although, naturally, their sum is well
defined. Nevertheless the separation of Q into I1 and I2
is useful, because it allows us to use the special properties
of the Luttinger-Ward functional to account for the un-
known high frequency behavior of the Green’s function.
We shall define I1,2 by a regularization procedure, and it
is then important that the same regularization be used
for both I1 and I2. We employ the symmetric principal
value, with∫ ∞

−∞
dω ⇒ lim

η→0

[∫ −η
−∞

dω +

∫ ∞
η

dω

]
. (5.16)

Now we evaluate I1 using the usual procedure: we dis-
tort the contour of integration to the real frequency axis
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and have to evaluate:

i lim
η→0

∫ ∞
0

dω

2π

d

dω
ln

[
G(ω + iη)

G(ω − iη)

]
= − 1

π
lim
η→0

[argG(∞+ iη)− argG(iη)] . (5.17)

In a Fermi liquid, this is the only contribution to I1,
which evaluates to unity outside the Fermi surface, and
vanishes inside the Fermi surface. In the present case
however, the imaginary frequency integral (5.16) differs
from the real frequency integral (5.17) because of the
singularity at ω = 0, for which a small contour encircling
the origin must be introduced, finally leading via Eq.
(5.3) to:

I1 = −1

2
− θ

π
. (5.18)

Note that this yields a contribution 1/2−θ/π to Q which
does obey Q → 1 − Q under θ → −θ as dictated by
particle-hole symmetry, but does not have the expected
limits Q → 0, 1 as θ → ±π/4. This is already a hint that
I2 must yield a non-zero contribution.

In the evaluation of I2 we must substitute the expres-
sion Eq. (5.2b) for Σ into I2, because then we ensure
cancellations at high frequencies arising from the exis-
tence of the Luttinger-Ward functional:

ΦLW [G] = −U
2

4

∫
dτ G2(τ)G2(−τ) . (5.19)

Using Σ = δΦLW /δG, and ignoring the singularity at
ω = 0, we obtain, as in Fermi liquid theory, I2 =
−i
∫∞
−∞ dω(d/dω)ΦLW = 0. So the entire contribution

to I2 arises from the regularization of singularity near
ω = 0. We can therefore evaluate I2 by using Eq. (5.2b)
for Σ, the regularization in Eq. (5.16), and the low fre-
quency spectral density in Eq. (5.12), and ignore the
high frequency contribution to I2. The explicit eval-
uation of the integral is somewhat involved (Georges
et al., 2001; Gu et al., 2020). The result can be
guessed however from a heuristic argument (Georges
et al., 2001), which can also be generalized to the
SYK model with q-fermion interactions (Davison et al.,
2017). The low-energy contribution to I2 involves a prod-
uct of G and Σ and must be a homogeneous polyno-
mial of degree 4 in the two coefficients that enter the
low-energy behaviour of G, Eq. (5.8). Using particle-
hole symmetry, and imposing the absence of singular-
ity as θ → ±π/4, it is seen that only the combination
C4
[
sin3(π4 + θ) sin(π4 − θ)− sin3(π4 − θ) sin(π4 + θ)

]
∝

sin 2θ is allowed. The proportionality coefficient is fixed
by imposing that Q = +1 for θ = −π/4 in Eq. (5.15).
Indeed, the explicit evaluation yields:

I2 = − sin(2θ)

4
. (5.20)

Combining Eqs. (5.15,5.18,5.20), we obtain our gener-
alized Luttinger theorem (Davison et al., 2017; Georges
et al., 2001; Gu et al., 2020),

Q =
1

2
− θ

π
− sin(2θ)

4
. (5.21)

This expression evaluates to the limiting values Q = 1, 0
for the limiting values of θ = −π/4, π/4 in Eq. (5.4),
and decreases monotonically in between; Q is also a
monotonically decreasing function between these limits
of −∞ < E <∞, via Eq. (5.10).

All our results have so far been obtained by an ana-
lytic analysis of the low energy behavior. A numerical
analysis is needed to ensure that such low energy so-
lutions have high energy continuations which also obey
Eqs. (5.2a,5.2b). Such analyses show that complete so-
lutions only exist for a range of values around Q = 1/2
(Azeyanagi et al., 2018); for values of Q close to 0,1 there
is phase separation into the trivial Q = 0, 1 state, and
densities closer to half-filling. However, this conclusion
is only for the specific microscopic Hamiltonian in Eq.
(5.1a): other Hamiltonians, with additional q-fermion
terms (see Appendix E), with q > 4, could have solu-
tions with the same low energy behavior described so far
for a wider range of Q, because these higher q terms are
irrelevant at low energy.

C. Non-zero temperatures

It turns out to be possible to extend the solutions for
T = 0 Green’s functions obtained so far to non-zero T �
U by employing a subtle argument involving conformal
invariance. However, let us first take a simple minded
approach to look for a solution directly from Eq. (5.2a)
and Eq. (5.2b), and show that we can guess a solution.

We initially limit consideration to the particle-hole
symmetric case with Q = 1/2 and θ = 0. We use the sim-
ilarity to multichannel Kondo problems (Parcollet et al.,
1998), to generalize the τ dependence of the Green’s func-
tion in Eq. (5.7) to (Parcollet and Georges, 1999)

G(τ) = B sgn(τ)

∣∣∣∣ πT

sin(πTτ)

∣∣∣∣1/2 , T, |τ |−1 � U ,

(5.22)
where B is some T -independent constant. Making con-
tact with the notations of Sec. V.A, we have −B =
CΓ(1/2) sin(π/4)/π = C/

√
2π, with C4 = π/U2 for this

case with θ = 0. Note that Eq. (5.22) reduces to Eq.
(5.7) for 1/U � |τ | � 1/T . Then the self-energy is

Σ(τ) = U2B3sgn(τ)

∣∣∣∣ πT

sin(πTτ)

∣∣∣∣3/2 , T, |τ |−1 � U .

Taking Fourier transforms, we have as a function of the
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Matsubara frequency ωn

G(iωn) = [iB]

T−1/2 Γ

(
1

4
+

ωn
2πT

)
Γ

(
3

4
+

ωn
2πT

) , (5.23a)

Σsing(iωn) =
[
i4πU2B3

] T 1/2 Γ

(
3

4
+

ωn
2πT

)
Γ

(
1

4
+

ωn
2πT

) , (5.23b)

where we have subtracted Σ(ω = 0, T = 0) in Σsing(iωn).
Now the singular part of Dyson’s equation is

G(iωn)Σsing(iωn) = −1. (5.24)

Remarkably, the Γ functions in Eqs. (5.23a) and (5.23b)
appear with just the right arguments, so that they can
obey Eq. (5.24) for all ωn, and the amplitude indeed
obeys 4πU2B4 = 1.

A deeper understanding of the origin of Eq. (5.22), and
its generalization to the particle-hole asymmetric case,
can be obtained by analyzing the low energy limit of the
original saddle point equations Eqs. (5.2a) and (5.2b).
These equations are characterized by a remarkably large
set of emergent symmetries, which we describe in Ap-
pendix A. The final result for the Green’s function in
imaginary time away from the particle-hole symmetric
point is

G(τ) = −C e−2πETτ
√

1 + e−4πE

(
T

sin(πTτ)

)1/2

. (5.25)

for 0 < τ < 1
T . This can be extended to all real τ us-

ing the KMS condition Eq. (A5). Performing a Fourier
transform, and analytically continuing to real frequen-
cies leads to the Green’s function (Parcollet and Georges,
1999; Sachdev, 2015)

G(ω + i0+) =
−iCe−iθ
(2πT )1/2

Γ

(
1

4
+ iE − iω

2πT

)
Γ

(
3

4
+ iE − iω

2πT

) . (5.26)

We show a plot of the imaginary part of the Green’s
function in Fig. 8.

For later comparison with other models, let us note
that these results imply that the singular part of the elec-
tron self energy in Eq. (5.23b) obeys the scaling form

Σ(ω, T ) = U1/2T 1/2Φ

(
~ω
kBT

)
(5.27)

where Φ is a universal scaling function with a known
dependence on the particle-hole asymmetry parameter
E .

The universal dependence of the self energy on the
Planckian ratio, ~ω/(kBT ), implies the absence of elec-
tronic quasiparticles (Sachdev, 1999): the characteristic
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FIG. 8 Plot of the electron spectral density in the SYK model,
obtained from imaginary part of Eq. (5.26).

lifetime of the excitations ∼ ~/(kBT ) is of the same or-
der as their energy ∼ ~ω, and so quasiparticles are not
well defined. This behaviour is very different from the
random matrix model studied in Section IV.B where the
self-energy was negligible at low T .

A Planckian lifetime has also been obtained by non-
equilibrium studies of SYK models, which display a re-
covery of thermal Green’s functions in a time that is
independent of U , and proportional to the inverse final
temperature (Almheiri et al., 2019; Bhattacharya et al.,
2019; Dhar et al., 2019; Eberlein et al., 2017a; Kourk-
oulou and Maldacena, 2017; Lensky and Qi, 2021; Rossini
et al., 2020; Samui and Sorokhaibam, 2021; Zhang, 2019);
for closely related and complementary insights, see also
(Bandyopadhyay et al., 2021; Cheipesh et al., 2021; Hal-
dar et al., 2020; Haque and McClarty, 2019; Kuhlenkamp
and Knap, 2020; Larzul and Schiró, 2021; Sonner and
Vielma, 2017).

D. Computation of the T → 0 entropy

We have now presented detailed information on the na-
ture of the Green’s function of the SYK model at low T .
We will proceed next to use this information to compute
some key features of the low T thermodynamics.

First, we establish some properties of the behavior of
the chemical potential, µ, as T → 0 at fixed Q. Recall
that for the random matrix model, and more generally
for any Fermi liquid, there was a ∼ T 2 correction to
the chemical potential, which depended upon the deriva-
tive of the density of single particle states. For the SYK
model, the leading correction is much stronger; the cor-
rection ∼ T , which is universally related to parameters
in the Green’s function (Georges et al., 2001).

A simple way to determine the linear T dependence
of µ is to examine the particle-hole asymmetry of the
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Green’s function at T > 0. From Eqs. (5.9), (5.25) this
is given by the ratio

lim
T→0

G(τ)

G(1/T − τ)
= e2πE , (5.28)

where the limit is taken at a fixed τ � 1/U . We now use
a crude picture of the low energy physics, and imagine
that all the low-energy degrees of freedom are essentially
at zero energy, compared to U . So we compare Eq. (5.28)
with the corresponding ratio for a zero energy fermion
whose chemical potential has been shifted by δµ

G0(τ)

G0(1/T − τ)
= e−(δµ)(1/T−2τ) . (5.29)

From this comparison, we conclude that there is a linear-
in-T dependence of the chemical potential that keeps the
particle-hole asymmetry fixed as T → 0:

µ− µ0 = δµ = −2πET
+ terms vanishing as T p with p > 1 , (5.30)

with µ0 a non-universal constant. Note that the density
of the zero energy fermion = 1/(e−δµ/T +1) remains fixed
as T → 0, and so Eq. (5.30) applies at fixed Q.

A more formal analysis (Georges et al., 2001; Parcollet
et al., 1998; Sachdev, 2015), leading to the same result for
the T dependence of µ, relates the long-time conformal
Green’s function (valid for τ � 1/U) to its short-time
behavior. In particular at |ωn| � U we have

G(iωn) =
1

iωn
− µ

(iωn)2
+ . . . (5.31)

which implies for the spectral density of the Green’s func-
tion, ρ(Ω)

µ = −
∫ ∞
−∞

dΩ Ωρ(Ω), (5.32)

which makes it evident that µ depends only upon the
particle-hole asymmetric part of the spectral density.
Next, using the spectral relations we can relate the Ω
integrals to the derivative of the imaginary time correla-
tor

µ = −∂τG(τ = 0+)− ∂τG(τ = (1/T )−). (5.33)

We pull out an explicitly particle-hole asymmetric part
of G(τ) by defining

G(τ) ≡ e−2πETτGc(τ) , 0 < τ <
1

T
. (5.34)

where Gc will be given by a particle-hole symmetric con-
formal form at low T and low ω. Then we obtain

µ = 2πET
[
G(τ = 0+) +G(τ = (1/T )−)

]
+ terms dependent on Gc

= −2πET + terms dependent on Gc
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FIG. 9 T = 0 entropy density S vs. Q (Georges et al., 2001).

It can be shown that all the terms dependent upon Gc
have a T dependence that is weaker than linear in T
provided Q is held fixed. Hence, we obtain Eq. (5.30).

Now we can deduce the T dependence of the entropy
by the Maxwell relation(

∂µ

∂T

)
Q

= − 1

N

(
∂S

∂Q

)
T

, (5.35)

where the 1/N is needed because we define S to be the
total extensive entropy, and so we must use the total
number NQ in the Maxwell relation. Applying this to
Eq. (5.30) we obtain

1

N

(
∂S

∂Q

)
T

= 2πE 6= 0 as T → 0. (5.36)

In Section V.B, we obtained an ‘extended’ Luttinger re-
lationship between the density Q and the particle-hole
asymmetry parameter E . Assuming that S = 0 at Q = 0,
we can now integrate Eq. (5.36) to obtain for the entropy
S (Georges et al., 2001)

S(T → 0) = NS , S = 2π

∫ Q
0

dQ̃E(Q̃). (5.37)

which can be rewritten, using Eqs. (5.10) and (5.21) in
the following parametric form:

S(Θ) =

∫ Θ

−π/4
dθ ln

sin(π/4 + θ)

sin(π/4− θ)
∂Q
∂θ

(5.38)

Q(Θ) =
1

2
− Θ

π
− sin 2Θ

4
(5.39)

Fig. 9 displays the entropy density vs. Q obtained from
this expression.

The remarkable feature of this result is that the en-
tropy S is extensive, i.e. proportional to N , as T → 0.
Specifically, we have

lim
T→0

lim
N→∞

S

N
6= 0 . (5.40)
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The order of limits is crucial here; the above order of
limits defines the zero temperature entropy density, in
which the thermodynamic limit is taken before the zero
temperature limit. If we had taken the other order of
limits, we would obtain the ground state entropy density,
which does indeed vanish.

E. Corrections to scaling

All of our low energy results for the SYK model have
so far been obtained in a scaling limit in which the iωn
term in the Green’s function in Eq. (5.2a) was neglected,
as discussed above Eq. (5.13). This subsection will con-
sider the structure of the corrections that arise when this
iωn term is included. We emphasize that all of the com-
putations here are in the N =∞ limit, and we are com-
puting corrections to the low energy approximation to
the saddle point equations. A significant result of our
computations will be T -dependent corrections to the en-
tropy in Eq. (5.37); these will continue to be proportional
to N . We will consider finite N corrections to such saddle
point results in Section V.F.

To understand the structure of the possible corrections,
we postulate that the low energy corrections can be com-
puted from an effective action of the following form:

I = I∗ +
∑
h

gh

∫ β

0

dτ Oh(τ) (5.41)

where Oh are a set of scaling operators with scaling di-
mension h. One of our tasks for the subsection is to de-
termine the possible values of h, and we will accomplish
this shortly. The term I∗ is the leading critical theory
which leads to the results described so far; in particu-
lar to the Green’s function in Eqs. (5.3) and (5.26), and
the entropy in Eq. (5.37). We normalize the perturbing
operators by the two-point correlator

〈Oh(τ)Oh(0)〉 =
1

|τ |2h , (5.42)

then the co-efficient gh is fully specified. In general, the
gh are a set of non-universal numbers of order U1−h,
whose precise values depend upon the details of the un-
derlying theory e.g. on possible higher-order fermion in-
teraction terms we can add to the SYK Hamiltonian.

Given Eq. (5.41), we can easily estimate the form of
the corrections to the grand potential Ω(T ). We expect
that

〈Oh〉T∗ = ΩhT
h, (5.43)

where the expectation value is evaluated at a temperature
T in I∗, and the T -dependence follows from the scaling
dimension of Oh. Taking the expectation value of the
action, we obtain

Ω(T ) = E0 −NST +
∑
h

ghΩhT
h (5.44)
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FIG. 10 Large N equation satisfied by the three point corre-
lator in Eq. (5.46). The red circle represents the operator Oh.

where E0 is the ground state energy, S is the entropy in
Eq. (5.37), and the set of co-efficients Ωh were specified in
Eq. (5.43). Similarly, we can write the corrections to the
Green’s function in Eq. (5.7) from the Oh perturbations:

G(τ) = G∗(τ)

(
1 +

∑
h

ghαh
|τ |h−1

)
, (5.45)

where we now use G∗ to denote the leading order result
in Eq. (5.22), and we have used dim[gh] = 1 − h from
Eq. (5.41). Here, and below, we will limit ourselves to the
particle-hole symmetric case with θ = 0, µ = 0, E = 0,
and refer to Ref. (Tikhanovskaya et al., 2021a) for the
general case. The co-efficients Ωh and αh are universal
dimensionless numbers.

Our remaining task here is to determine the allowed
values of h. We only consider (Gross and Rosenhaus,
2017; Klebanov et al., 2018; Klebanov and Tarnopol-
sky, 2017) the ‘antisymmetric’ operators Oh which are

represented at short times by Ohn = c†i∂
2n+1
τ ci with

n = 0, 1, 2, . . . . The needed information is contained in
the three point functions

vh(τ1, τ2, τ0) = 〈c(τ1)c†(τ2)Oh(τ0)〉 . (5.46)

In the large N limit, this three point function obeys the
integral equation shown in Fig. 10. In the long time
scaling limit, we can drop the bare first time on the right
hand side, and then Fig. 10 reduces to the eigenvalue
equation (Gross and Rosenhaus, 2017)

k(h)v(τ1, τ2, τ0) =

∫
dτ3dτ4K(τ1, τ2; τ3, τ4)vh(τ3, τ4, τ0) ,

(5.47)
where the kernel K is

K(τ1, τ2; τ3, τ4) = −3U2G∗(τ13)G∗(τ24)G∗(τ34)2 ,
(5.48)

with τij ≡ τi − τj , and we have introduced an eigenvalue
k(h) by hand which must obey

k(h) = 1 . (5.49)

For our purposes, it is sufficient to solve Eq. (5.47) in the
limit τ0 → ∞. Then, we can use the operator product
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expansion to write

c(τ1)c†(τ2) ∼ sgn(τ12)
∑
h

ch
|τ12|1/2−h

Oh(τ1) + . . . (5.50)

for some constants ch, where the sum over h now includes
the identity operator with h = 0. Inserting this into
Eq. (5.46), we conclude that v ∼ sgn(τ12)/|τ12|1/2−h as
τ0 →∞. Then Eq. (5.47) yields the eigenvalue

k(h) = −3 tan(πh/2− π/4)

2h− 1
. (5.51)

The solution of Eqs. (5.49) and (5.51) finally yields the
needed values of h. There are an infinite number of so-
lutions, and the lowest values are

h = 2, 3.77354 . . . , 5.567946 . . . , 7.63197 . . . . (5.52)

Only the lowest value h = 2 is an integer, and all higher
values are irrational numbers.

We will have a particular interest here in the h = 2
operator. This plays a special role in the finite N fluctu-
ations, and leads eventually to a violation of scaling, as
will be discussed in Section V.F. At N = ∞, it is also
the lowest dimension operator, and so yields the most
important corrections to Eqs. (5.44) and (5.45). For the
entropy at fixed Q, we can take a derivative of Eq. (5.44),
and write the correction to Eq. (5.37) as (Gu et al., 2020;
Kitaev and Suh, 2018; Maldacena and Stanford, 2016)

S(T → 0,Q) = N [S + γT ] , (5.53)

where γ ∼ 1/U is the non-universal co-efficient of the
linear-in-T specific heat at fixed Q, a quantity familiar
from Fermi liquid theory. The SYK non-Fermi liquid
has a similar specific heat; but note the presence of the
residual entropy S which vanishes in a Fermi liquid. We
will see in Section V.F that γ also appears as the co-
efficient of the Schwarzian effective action for finite N
fluctuations.

F. Finite N Fluctuations

This section will turn to a theory of the fluctuations
about the large N saddle point examined so far. We will
focus on the corrections to the result for the entropy in
Eqs. (5.37,5.53). The dominant finite N corrections arise
from a universal, exactly soluble theory for the low en-
ergy fluctuations about the large N saddle point. Along
the way, we will also obtain an example of the corrections
discussed in Section V.E associated with irrelevant oper-
ators in the N = ∞ saddle point theory. This will lead
to the T -dependent correction in Eq. (5.53), and allow
us to identify γ with a coupling in the effective action.

We begin with a path integral representation of the
underlying SYK Hamiltonian Eq. (5.1a). To treat the

random couplings, we need to perform a quenched av-
erage using the replica method. However, the strongly
self-averaging properties we shall compute below do not
depend upon the replica structure, and so we will sim-
ply ignore these technicalities, and work directly with the
averaged theory. So after averaging over the Uijk`, the
path integral becomes

Z =

∫
Dci(τ) exp

[
−
∑
i

∫ β

0

dτ c†i

(
∂

∂τ
− µ

)
ci

+
U2

4N3

∫ β

0

dτdτ ′
∣∣∣∣∣∑
i

c†i (τ)ci(τ
′)

∣∣∣∣∣
4
 , (5.54)

where β = 1/T . We now introduce the following ‘trivial’
identity in the path integral,

1 =

∫
DG(τ1, τ2)DΣ(τ1, τ2)

× exp

[
−N

∫ β

0

dτ1dτ2Σ(τ1, τ2)

(
G(τ2, τ1)

+
1

N

∑
i

ci(τ2)c†i (τ1)

)]
. (5.55)

and interchange orders of integration. Then the partition
function can be written as a ‘G−Σ’ theory, a path inte-
gral with an action I[G,Σ] for the Green’s function and
the self energy analogous to a Luttinger-Ward functional
(Georges et al., 2001; Kitaev and Suh, 2018; Maldacena
and Stanford, 2016).

Z =

∫
DG(τ1, τ2)DΣ(τ1, τ2) exp(−NI[G,Σ])

I[G,Σ] = − ln det [(∂τ1 − µ)δ(τ1 − τ2) + Σ(τ1, τ2)]

− Tr (Σ ·G)− U2

4
Tr
(
G2 ·G2

)
. (5.56)

We have integrated over the fermions to obtain the ln det
term. This is an exact representation of the averaged
partition function. Notice that it involves G and Σ as
bilocal fields that depend upon two times, and we have
introduced a compact notation for such fields:

Tr (f · g) ≡
∫
dτ1dτ2 f(τ2, τ1)g(τ1, τ2) . (5.57)

See Appendix A for a discussion of the symmetries of the
bilocal fields, where we also show that after ignoring the
explicit time derivative in Eq. (5.56), the action is invari-
ant under time reparametrization and gauge symmetries
(Eq. (A2c)).

The path integral in Eq. (5.56) is complicated to be
evaluated, in general. We now make a low energy ap-
proximation by integrating only along directions in the
vast (G, Σ) space where the variation S[G,Σ] is small
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at low energies (Kitaev and Suh, 2018; Maldacena and
Stanford, 2016). Given the unimportance of the ∂τ in
Eq. (5.56), and the resulting symmetries of the action,
a powerful conclusion is that we need only perform the
path integral along trajectories where the Green’s func-
tion obeys Eq. (B2) (and similarly for the self energy).
In this manner, we formally convert the G-Σ path inte-
gral into a path integral over the time reparameterization
f(τ) and the gauge transformation φ(τ) (Davison et al.,
2017; Gu et al., 2020; Kitaev and Suh, 2018; Maldacena
and Stanford, 2016).

Z ≈ e−E0/T+NS
∫
Df(τ)Dφ(τ) exp (−Ieff [f, φ]) ,

(5.58)
where E0 ∝ N is the ground state energy (including the
−µQN contribution). We will shortly deduce the form of
Ieff [f, φ] from symmetry arguments. But before we turn
to that, let us note that the combination of Eqs. (B2)
and (5.58) also yield the most important contributions
to the fluctuation corrections to the Green’s function

G(τ1 − τ2) =
e−E0/T+NS

Z

∫
Df(τ)Dφ(τ)

× exp (−Ieff [f, φ]) [f ′(τ1)f ′(τ2)]1/4

×Gc(f(τ1)− f(τ2))eiφ(τ1)−iφ(τ2) , (5.59)

where the conformal saddle-point Green’s function Gc(τ)
is given by Eq. (5.25).

Now our task is to determine the action Ieff [f, φ], and
then evaluate the path integrals in Eqs. (5.58) and (5.59).
It turns out the partition function for the free energy in
Eq. (5.58) can be evaluated exactly. The consequences of
the path integral in Eq. (5.59) for the long-time behav-
ior of G(τ) have also been investigated (Altland et al.,
2019b; Bagrets et al., 2016, 2017; Kitaev, 2015; Kitaev
and Suh, 2018; Kobrin et al., 2021; Kruchkov et al., 2020;
Maldacena and Stanford, 2016): they lead to a violation
of scaling at times of order N/U , but we will not describe
this further here.

The form of Ieff [f, φ] is strongly constrained by the
requirement that I vanish for the case where f(τ) and
φ(τ) are given by Eq. (B3). This follows immediately
from the fact that Eq. (B3) leads to no changes in the
from of the saddle point Green’s function when inserted
into Eq. (B2). As the action was originally a functional of
the Green’s function, it can also not change. The action
Ieff [f, φ] with the smallest number of derivatives that sat-
isfies this requirement is (Davison et al., 2017; Gu et al.,
2020; Kitaev and Suh, 2018; Maldacena and Stanford,
2016)

Ieff [f, φ] =
NK

2

∫ β

0

dτ

(
∂φ

∂τ
+ i(2πET )

∂f

∂τ

)2

−Nγ
4π2

∫ β

0

dτ {tan(πTf(τ)), τ} . (5.60)

The curly brackets in Eq. (5.60) represent a Schwarzian
derivative:

{g, τ} ≡ g′′′

g′
− 3

2

(
g′′

g′

)2

. (5.61)

This has the defining property that

{aτ + b

cτ + d
, τ} = 0 , (5.62)

which ensures that Ieff [f, φ] vanishes for Eq. (B3). (We
note that there are coupled SYK models which are not
described by a Schwarzian effective action (Maldacena
et al., 2016b; Milekhin, 2021).)

For the origin of f(τ) and φ(τ) as time reparameteriza-
tion and gauge transformations of the Green’s function,
we must also place some constraints on the nature of
the path integral over them. The function f(τ) must be
monotonic, and obey

f(τ + β) = f(τ) + β . (5.63)

Moreover, we should sum over all possible phase windings
with

φ(τ + β) = φ(τ) + 2πn (5.64)

where n is an integer.
The action in Eq. (5.60) has 2 dimensionful coupling

constants, K and γ. By dimensional analysis, we can
see that K ∼ γ ∼ 1/U , the only energy scale at T = 0.
Determining the precise values of K and γ is not simple,
and requires a numerical study of the higher energy prop-
erties of the SYK model. We will now relate the values
of K and γ to thermodynamic observables of the N =∞
theory, and numerical computation of these observables
is usually the simplest way to determine K and γ.

At T = 0, the action for φ represents the path integral
of a particle of mass NK moving on a ring of circum-
ference 2π. So the energy levels are `2/(2NK), where
the integer ` measures the total fermion number. With a
chemical potential shift δµ, the energy levels will shift as
`2/(2NK) − δµ`. From the optimum value of this func-
tion for different `, we conclude that K is the just the
compressibility

K =
dQ
dµ

, T = 0 . (5.65)

Turning to the value of γ, note that the action Ieff [f, φ]
does not vanish at the N = ∞ saddle point f(τ) = τ .
Evaluating Eq. (5.60) for this value of f(τ), and setting
φ = 0, we obtain the grand potential at N =∞ for small
T > 0:

Ω(T ) = E0 −NST −
1

2
N(γ + 4π2E2K)T 2. (5.66)
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Taking the T derivative, we obtain the leading low tem-
perature correction to the entropy in Eq. (5.37)

S(T → 0, µ) = N
[
S +

(
γ + 4π2E2K

)
T
]
. (5.67)

As denoted above, this the entropy at a fixed chemi-
cal potential. We can use standard thermodynamic re-
lations to compute the entropy at fixed Q, using the
thermodynamic relations Eqs. (5.36) and (5.65), and ob-
tain Eq. (5.53); indeed the co-efficient of the Schwarzian
was chosen so that the entropy would obey the form in
Eq. (5.53). The T -dependent corrections in Eq. (5.67)
and Eq. (5.53) are proportional to N , and so constitute
corrections from irrelevant operators which were studied
in Section V.E, and identify the Schwarzian as represent-
ing the corrections arising from the h = 2 operator.

In the remainder of our discussion of the SYK model,
we will evaluate the path integral in Eq. (5.58), and so
obtain the finite N corrections to the free energy and
entropy in Eqs. (5.66) and (5.67). These results will also
allow us to compute the many-particle density of states
D(E).

A key observation in the evaluation of Eq. (5.58) is
that the path integrals factorize. To establish this, we
use the boundary conditions in Eqs. (5.63) and (5.64) to
parameterize

f(τ) = τ + ε(τ)

φ(τ) = 2πnTτ + φ̄(τ) , (5.68)

where the ‘winding number’ n is an integer, and ε and
φ̄ are then periodic functions of τ with period β. In the
first term in the action Eq. (5.60), we can absorb ε by a
shift in φ̄; then the remaining dependence on ε is only in
the Schwarzian. In this manner, we can write Eq. (5.58)
as (Gu et al., 2020)

Z = e−E0/T ZQZSch (5.69)

and we will evaluate ZQ and ZSch in the following sub-
sections.

1. Rotor path integral

The partition function ZQ represents fluctuations in
the total charge on the SYK dot. It is expressed as a
path integral over the co-ordinates of a particle moving
on a unit circle (a ‘rotor’)

ZQ =

( ∞∑
n=−∞

exp
[
−2π2NKT (n+ iE)2

])

×
∫ Dφ̄
U(1)

exp

[
−NK

2

∫ β

0

dτ
(
φ̄′(τ)

)2]
.(5.70)

The second term is just the imaginary time amplitude
for a ‘free particle’ of mass NK to return to its starting

point in a time β, divided by the volume (= 2π) of the
U(1) group (because a τ independent φ does not make
any changes to the Green’s function in Eq. (B2)). So we
obtain an expression for ZQ which is useful at tempera-
tures T � 1/(NK).

ZQ =

( ∞∑
n=−∞

exp
[
−2π2NKT (n+ iE)2

])√NKT

2π
.

(5.71)
For lower temperatures, T � 1/(NK), we can apply the
Poisson summation formula to Eq. (5.71) and obtain

ZQ =
1

2π

∞∑
p=−∞

exp

[
− p2

2NKT
− 2πEp

]
. (5.72)

We note, however, that both expressions Eqs. (5.71) and
(5.72) are convergent and exact at all T (Gu et al., 2020).

The physical interpretation of Eq. (5.72) is especially
transparent. It describes a ‘quantum dot’ with equi-
librium charge NQ, which has fluctuations to states
with charge NQ + p. The energy of a charge p fluc-
tuation is determined by a ‘capacitance’ NK, and a
temperature-dependent chemical potential −2πET . Note
that the chemical potential shift is exactly that appear-
ing in Eq. (5.30), and indeed the present analysis can
be viewed as another derivation of Eq. (5.30). Recall
that the key relation for the entropy in Eq. (5.59) fol-
lowed after applying a Maxwell thermodynamic relation
to Eq. (5.30).

The above physical interpretation also indicates that in
a fixed Q ensemble, we should take ZQ = 1. That turns
out to be not quite correct, and a more careful analysis
of finite N corrections shows that ZQ ∼ 1/N2.

2. Schwarzian path integral

The other component of Eq. (5.69) is the Schwarzian
path integral

ZSch = eNS
∫ Df(τ)

SL(2,R)
exp

[
Nγ

4π2

∫ β

0

dτ {tan(πTf(τ)), τ}
]

(5.73)
We have normalized the path integral by the (infinite)
volume of the non-compact group SL(2,R) because, as
we argued earlier, the action must vanish under SL(2,R)
transformations. This quotient will be crucial in obtain-
ing a well-defined answer.

It was shown (Stanford and Witten, 2017) that the
path integral in Eq. (5.73) can be evaluated exactly. The
key to their result is the remarkable fact that a Gaus-
sian approximation to the path integral is in fact exact.
We will exploit this by just evaluating Eq. (5.73) in the
Gaussian approximation.
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To this end, we expand the Schwarzian action in di-
mensional Fourier coefficients of ε(τ) in Eq. (5.68)

ε(τ) =
1

T

∞∑
n=−∞

εne
−2πinTτ , (5.74)

and obtain

Ieff [ε] = −NγT
2

+ 2π2NγT
∑
n

n2(n2 − 1)|εn|2 . (5.75)

Now notice that Ieff [ε] vanishes for the smallest 3 Mat-
subara frequencies ωn = 0,±2πT . Indeed, the action was
designed to vanish for any time reparameterization which
belongs to SL(2,R), a three-dimensional non-compact
space. And here we have discovered three Fourier compo-
nents which cause no variation in the action to second or-
der: clearly, we can identify the frequency components at
n = 0,±1 as the infinitesimal limit of the SL(2,R) trans-
formations. At Gaussian order, the path integral over
these action-free normal modes therefore cancels against
the volume of SL(2,R) in Eq. (5.73). Actually, this can-
cellation happens also for large SL(2,R) transformations,
but that we do not prove here.

Performing the Gaussian integral over the remaining
modes, we obtain for the logarithm of the partition func-
tion

lnZSch = NS+
NγT

2
−1

2

∑
n6=0,±1

ln
[
2π2NγTn2(n2 − 1)

]
.

(5.76)
The sum over the Matsubara frequency ωn is clearly di-
vergent, and should be cutoff at a frequency |ωn| ∼ U ,
above which our low energy Schwarzian theory does not
apply. We describe the regulation of the divergence in
Appendix D: there is a contribution ∼ U/T , but this can
be absorbed into a redefinition of E0 in Eq. (5.69). The
needed subleading term is ∼ ln(U/T ), and an important
result is that the co-efficient of the ln(T ) term is univer-
sal; we find for T � U (Kitaev and Suh, 2018; Maldacena
and Stanford, 2016; Stanford and Witten, 2017)

lnZSch = NS +
NγT

2
− 3

2
ln

(
U

T

)
. (5.77)

Apart from the finite N corrections in the rotor compo-
nents (which had a simple physical interpretation), we
have now obtained our first non-trivial finite N correc-
tion to the SYK model: the −(3/2) ln(1/T ) correction to
the logarithm of the partition function. Note that the
logarithm in Eq. (5.77) becomes as large as the leading
term only at an exponentially low T ∼ Ue−N , below
which the large N theory does not apply.

It is also useful to compare Eq. (5.77) to our earlier
large N result for −T lnZ in the random matrix model
in Eq. (4.16). That had a leading NγT/2 term, but there
was no T -independent term proportional to N , as the

random matrix model does not have an extensive entropy
in the zero temperature limit.

The −(3/2) ln(1/T ) correction to Eq. (5.77) has impor-
tant consequences for the many-body density of states,
NSch(E). We define this by

ZSch(T ) =

∫ ∞
0

dENSch(E)e−E/T . (5.78)

As we have absorbed the ∼ 1/T term in Eq. (5.77) into
a redefinition of E0 in Eq. (5.69), we can assume in
Eq. (5.78) that NSch(E) vanishes for E < 0. It turns
out to be possible to determine NSch(E) by performing
the inverse Laplace transform exactly using the value in
Eq. (5.77). This yields (Bagrets et al., 2017; Cotler et al.,
2017; Garćıa-Garćıa and Verbaarschot, 2017; Kitaev and
Suh, 2018; Stanford and Witten, 2017)

NSch(E) ∝ eNS sinh
(√

2NγE
)
. (5.79)

It is easier to insert the result Eq. (5.79) into Eq. (5.78),
perform the E integral, and verify that we obtain
Eq. (5.77).

The result Eq. (5.79) is accurate for E � NU , and
even down to E ∼ U/N . Near the lower bound it predicts
a many-body density of states ∼ eNS , in sharp contrast
to the random matrix model of Section IV which did not
have an exponentially large density of states at such low
energies. We showed numerical plots of the many-body
density of states (Cotler et al., 2017; Fu and Sachdev,
2016; Gharibyan et al., 2018) for a closely related Ma-
jorana fermion model in Fig. 6. Notice the much larger
density of states, and much smaller level spacing near the
bottom of the band, in comparison to the free fermion
random matrix model in Fig. 5 of the same size. This is
also evident from a comparison of the Schwarzian result
in Eq. (5.79), with the free fermion result in Eq. (4.18):
the most important difference is the presence of the pref-
actor of eNS in Eq. (5.79).

We now recall our discussion at the end of Section IV.B
where we argued that the low-lying many-body eigen-
states at excitation energies of order 1/N could be inter-
preted as the sums of quasiparticle energies. In the SYK
model we have order ∼ eNS energy levels even within
energy ∼ 1/N above the many-body ground states. It
is impossible to construct these many-body eigenstates
from order ∼ N quasiparticle states. This is therefore
strong evidence that there is no quasiparticle decompo-
sition of the many-body eigenstates of the SYK model.
Note that the presence of an extensive entropy as T → 0
(the non-zero value of S) is a sufficient , but not a nec-
essary , condition for the absence of quasiparticles: the
models we shall study in Section XI do not have quasi-
particles, but do not have an extensive entropy as T → 0
as described in more detail in Section XI.A.3.

Finally, we combine the results for the rotor and
Schwarzian partition functions, and obtain correspond-
ing results for the SYK model (Gu et al., 2020). Using
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the n = 0 term in Eqs. (5.71) and (5.77) in Eq. (5.69),
we obtain for U/N � T � U

Ω = E0−NST −
N(γ + 4π2E2K)T 2

2
+2T ln

(
U

T

)
+ . . . .

(5.80)
This contains the 1/N correction to the result Eq. (5.66)
for the grand partition function: the 2T ln(1/T ) term. As
for the random matrix model, we can invert Eq. (5.80)
to obtain the many body density of states in the grand
canonical ensemble for grand energies U/N � E � NU

N (E) ∼ exp (S(E))

S(E) = NS +
√

2N(γ + 4π2E2K)(E − E0) (5.81)

for E > E0, and S(E) = 0 for E < E0. Comparing
this to the random matrix model, we find that S(E) has
a similar functional form of E, but without the leading
NS term.

VI. RANDOM EXCHANGE QUANTUM MAGNETS

The SYK model discussed so far provides valuable in-
sight into quantum systems without quasiparticle ex-
citations. However, the microscopic Hamiltonian in
Eq. (5.1a) has a short-coming, namely that strong lo-
cal (i.e. on-site) interactions are absent. As a result,
there are no Mott insulating phases at any commensurate
density in the large N limit. Such local correlations are
clearly important for understanding the interplay of elec-
tron itinerancy and the tendency for interaction-induced
localization in numerous correlated electron materials.

We now turn to a number of random and fully con-
nected models which restore “Mottness”. We refer to
Mottness here as a generic term to indicate qualitatively
the tendency of electrons to localize due to strong re-
pulsive interactions in the vicinity of a Mott transition.
In the present section we discuss the original SY model
(Sachdev and Ye, 1993), a pure spin model in which
explicit on-site charge fluctuations are absent. In Sec-
tion VII, we will introduce charge fluctuations and con-
sider itinerant electron models, with a strong, on-site,
repulsive interaction U . Notably, we will find substan-
tial evidence that near critical points and/or over signif-
icant intermediate energy scales, these correlated models
exhibit singular behavior which connects to the critical
properties of the SYK model. Section VIII will extend
the present random quantum magnet in a different man-
ner, by adding a second band of free electrons (similar to
that in Section IV), and so describe a random exchange
Kondo-Heisenberg model.

Unlike the SYK model, the models mentioned above
are not solvable analytically in the limit of a large number
of sites N . We will follow two routes towards understand-
ing their phase diagram. First, analytical results can be
obtained by extending the spin symmetry from SU(2) to

SU(M) and taking the large-M limit or, in the SU(2) case
by using renormalization group methods in the vicinity
of specific fixed points. Secondly, modern computational
algorithms now provide a controlled numerical solution
of such models in the SU(2) case directly, even close to
quantum critical points. Some algorithms are briefly re-
viewed in Sec. IX.

This section applies the above approaches to random
exchange quantum magnets. We consider insulating
quantum magnets with a Hamiltonian of the form

HJ =
1√
N

∑
1≤i<j≤N

JijSi · Sj , (6.1)

where Si are quantum spin operators on site i, and Jij are
independent random variables with vanishing mean and
variance J . In the most important case, the spins belong
to the SU(2) algebra, and we have S = 1/2 states on each
site. As noted above, we will also consider generalizations
to SU(M) spins.

Models like Eq. (6.1) with classical spins have served
as the foundations of spin glass theory, and more gener-
ally of optimization problems and also of neural networks
(Mezard et al., 1987). Here, we will see that such mod-
els are also a valuable starting point for understanding
correlated electron systems without quasiparticle excita-
tions.

A. SU(M) symmetry with M large

As stated above, Eq. (6.1) is not analytically solvable
for the SU(2) case, even in the limit of N → ∞. We
will return to the SU(2) case in Section VI.C, but here
we consider the extension to SU(M) spin symmetry, with
M large, that was originally examined by Sachdev and
Ye (Sachdev and Ye, 1993). We will see that the limit
N →∞ followed by the limit M →∞ leads to the same
saddle point equations and G-Σ action as the SYK model
of Section V.

For the SU(M) case, we employ the representation of
spin using fermionic spinons fi,α, α = 1 . . .M . These
fermions obey the constraint

M∑
α=1

f†iαfiα = κM (6.2)

on each site i, where 0 < κ < 1. The SU(2) case corre-
sponds to M = 2 and κ = 1/2. Then, we can write the

spin operators as Si,αβ = f†iαfiβ , and generalize Eq. (6.1)
to

HJ =
1√
NM

M∑
α,β=1

∑
1≤i<j≤N

Jijf
†
iαfiβf

†
jβfjα. (6.3)

This fermionic spinon representation has fractionalized
the spin operator, where the U(1) gauge transformation



28

fiα → eiφifiα leaves the spin operator invariant. Below
we will see that, in the large M limit, the fα form a SYK
state: in the context of the random quantum magnet, this
state is a critical, gapless, spin liquid . In the present large
N,M expansion, the Lagrange multiplier λi, introduced
below, plays the role of an emergent gauge field in this
spin liquid.

We proceed (Sachdev and Ye, 1993) with an analysis
of Eq. (6.3) similar to that presented for Eq. (5.1a). We
average over Jij , and obtain the averaged partition func-
tion analogous to Eq. (5.54):

Z =

∫
Dfiα(τ)Dλi(τ)e−SB−SJ (6.4)

SB =
∑
i

∫ β

0

dτ

{
f†iα

(
∂

∂τ
+ iλ

)
fiα − iλκM

}

SJ = − J2

4NM

∫ β

0

dτdτ ′
∣∣∣∣∣∑
i

f†iα(τ)fiβ(τ)f†iγ(τ ′)fiδ(τ
′)

∣∣∣∣∣
2

.

In the large N limit, we assume self-averaging among the
sites, and in the large M limit, we can replace the quartic
operator of fermions by the product of Green’s functions
of the f fermions:

f†α(τ)fβ(τ)f†γ(τ ′)fδ(τ
′) = δαδδβγG(τ, τ ′)G(τ ′, τ) . (6.5)

Then, the analysis proceeds just as for the SYK model,
and we obtain an expression for the G-Σ action nearly
identical to that in Eq. (5.56) but with a prefactor of N
replaced by NM :

I[G,Σ, λ] = − ln det [(∂τ1 + iλ(τ1))δ(τ1 − τ2) + Σ(τ1, τ2)]

− Tr (Σ ·G)− J2

4
Tr
(
G2 ·G2

)
− iκ

∫ β

0

dτ λ(τ) . (6.6)

Consequently the subsequent results for the fermion
Green’s function and the large NM thermodynamics are
identical to those in Section V after the replacement
U → J and Q → κ.

The local spin-spin correlation can also be obtained as

Q(τ) =
1

M2

〈
f†α(τ)fβ(τ)f†β(τ ′)fα(τ ′)

〉
=

C2e−2πE

(1 + e−4πE)
T

sin(πTτ)
, 0 < τ <

1

T
, (6.7)

which has been obtained from Eq. (5.25). We can obtain
the spin spectral density, ρQ, by a Fourier transform,
which yields (Parcollet and Georges, 1999)

ρQ(ω) ∼ tanh
( ω

2T

)
. (6.8)

At T = 0, this corresponds to a spin density of states
∼ sgn(ω), which is a starting assumption in the original
theory of the marginal Fermi liquid (Varma et al., 1989).

Recent work (Tikhanovskaya et al., 2021a) has ob-
tained corrections to the correlators of the quantum mag-
net HJ from perturbations of the critical theory by lead-
ing irrelevant operators described in Section V.E. The
most important corrections arise from the operator with
scaling dimension h = 2, and similar to Eq. (5.44) and
Eq. (5.45), we obtain

ρQ(ω) ∼ tanh
( ω

2T

) [
1− Cγ ω tanh

( ω
2T

)]
, (6.9)

where γ ∼ 1/J is the co-efficient of the Schwarzian in
Eq. (5.60), and also the linear-in-T coefficient of the spe-
cific heat in Eq. (5.53). The dimensionless number C is
universal,

C =
24

π [2 cos(2θ) + 3π cos2(2θ)]
. (6.10)

Here θ is the spectral asymmetry angle which appeared
in Eq. (5.3), and which is related by the Luttinger the-
orem in Eq. (5.21) to κ in Eq. (6.2). We will compare
Eq. (6.9) with numerical studies of the SU(2) magnet in
Section VI.B.

B. SU(2) model

We now return to the original model in Eq. (6.1), and
examine it for the physically important case with SU(2)
symmetry. We proceed as in the analyses of classical spin
glass problems by introducing replicas and then averag-
ing over the replicated partition function. This yields
a self-consistent problem of a single quantum spin with
replica indices (Bray and Moore, 1980). The replica
structure is important for the spin-glass phase (Biroli and
Parcollet, 2002; Georges et al., 2000, 2001) but in this
article we will mostly focus on the disordered paramag-
netic phase above the spin-glass ordering temperature or
on quantum critical points corresponding to the destruc-
tion of spin-glass order at T = 0 (Secs. VII.B and VII.C)
In these cases, it is permissible at large N to ignore the
replica indices and consider the following path integral
for a single quantum spin S = 1/2

ZJ =

∫
DS(τ)δ(S2 − 1)e−SB−SJ (6.11)

SB =
i

2

∫ 1

0

du

∫
dτ S ·

(
∂S

∂τ
× ∂S

∂u

)
SJ = −J

2

2

∫
dτdτ ′Q(τ − τ ′)S(τ) · S(τ ′) .

This is a coherent state path integral, and SB is the geo-
metric Berry phase, closely connected to the spin commu-
tation relations. The spin has a temporal self-interaction
with itself, represented by the function Q(τ). The value
of Q(τ) is to be determined self-consistently by comput-
ing the correlator,

Q(τ − τ ′) ≡ 1

3
〈S(τ) · S(τ ′)〉ZJ , (6.12)
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and then imposing the self-consistency condition,

Q(τ) = Q(τ). (6.13)

A major difference with the SU(M) model in the
fermionic large-M limit is that the SU(2) model has a
spin-glass phase at low temperature. A semi-classical
picture of this phase is that of local moments pointing
randomly in all directions so that the global magnetisa-
tion vanishes but the variance of the distribution of local
magnetisations 1

N

∑
im

2
i = qEA is non-zero. The latter is

the Edwards-Anderson order parameter of the spin-glass
phase (Mezard et al., 1987). A hallmark of the spin-glass
phase is also that local quantities (starting with the local
magnetisation itself) are no-longer self-averaging.

The existence of a spin-glass phase in the SU(2) case
can be can be established in two ways. First, the replica
diagonal effective action Eq. (6.11) for the disordered
averaged Green functions can be solved numerically ex-
actly using Quantum Monte Carlo methods in the para-
magnetic phase (Grempel and Rozenberg, 1998). At
low temperature, the spin-glass susceptiblity diverges at
T = TSG ≈ 0.14J at the boundary of the spin glass
phase.

Second, exact diagonalization of finite size systems
have been performed directly in the spin glass phase for
many realizations (103 to 105) of the quenched disorder
(Arrachea and Rozenberg, 2002; Shackleton et al., 2021).
The local dynamical spin susceptibility χ′′loc(ω) was com-
puted from both full diagonalization of small systems at
finite T , and Lanczos method at T = 0. From a finite
size scaling analysis, the T = 0 disordered averaged sus-
ceptibility in the thermodynamic limit is of the form

χ′′loc(ω) = qEAπβωδ(ω) + χ′′reg(ω), (6.14)

where qEA ≈ 0.02 is the Edwards-Anderson parameter
(Shackleton et al., 2021) and χ′′reg is the regular part.
Fig. 11, presents numerical results for χ′′loc(ω) for the t-
J model for various dopings p; the present discussion is
for p = 0, and the doped cases will be discussed in Sec-
tion VI.B. Apart from the delta function spin glass contri-
bution at very low frequencies, the structure of χ′′reg(ω) is
notable. Specifically, the theory of the gapless spin fluid
phase studied in Section VI.A predicts quite generally
that

χ′′reg(ω) = C1sgn(ω) [1− C2|ω|+ . . .] , T = 0. (6.15)

Formally, this result follows from taking the T → 0 limit
of the large M result in Eq. (6.9). However, the struc-
ture of Eq. (6.15) is much more general: the sgn(ω) is
linked to the exact SU(2) exponent we will obtain below
in Eq. (6.23). And the |ω| correction term is similarly
robust, and is related to the Schwarzian operator with
h = 2, as in Eq. (5.45) (in Section XII.B, we will relate
this h = 2 mode to the boundary graviton in the holo-
graphic dual.) As shown in Fig. 11, the form in Eq. (6.15)
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FIG. 11 (Shackleton et al., 2021) Local spin response func-
tion for the spin-1/2 doped random exchange t-J model, as
obtained by exact diagonalization of an N = 18 site clus-
ter, averaged over 100 disorder realizations, for t = J = 1.
n = 1− p is the particle density.

provides a good fit to the numerical susceptibility of the
p = 0 SU(2) model, apart from the low frequency peak
associated with spin glass order. We can therefore con-
clude that the spin glass order q ≈ 0.02 is weak, and
there is clear evidence of the SY spin liquid behavior at
intermediate energy scales in the SU(2) random exchange
quantum magnet.

A theory for the quantum spin glass state can be ob-
tained using bosonic spinons, and the spin glass order ap-
pears when the bosonic spinons condense (Georges et al.,
2000, 2001). Such a theory is applicable when qEA is
large, and yields χ′′reg(ω) ∼ ω in Eq. (6.14) at small |ω|
after an assumption of marginal stability in the replica
symmetry breaking structure. More recently, the on-
set of spin glass order has been studied (Christos et al.,
2022a) using the fermionic spinon large M theory of Sec-
tion VI.A. Such a theory yields an estimate of the critical
temperature to spin glass order

Tsg ∼ J exp
(
−
√
Mπ

)
, (6.16)

and also has χ′′reg(ω) ∼ ω for |ω| < ω∗. The fermionic
spinon theory describes the crossover above the frequency
ω∗ = JqEA to the spin liquid spectrum in Eqs. (6.15) or
(6.9). The exponential factor in Eq. (6.16) is small even

for M = 2, e−
√

2π = 0.0815 . . ., and this could be the
justification for the applicability of the large M theory
to the SU(2) case.
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C. RG analysis of the SU(2) model

We now turn to an analytic study of the SU(2) model,
as this will help us understand the structure of non-zero
frequency spin susceptibility observed in the numerics, as
described by Eq. (6.15).

We present here a systematic RG procedure to analyze
the problem defined by Eqs. (6.11) - (6.13). We begin
by assuming that there is a critical solution in which
Q(τ) has a power-law decay in time. Notice that this is
similar to the assumption made for the SYK model in
Eq. (5.3): in that case we were able to solve the self-
consistency problem exactly at low energies. That will
not be possible here, and we will have to introduce an
ε-expansion defined below. We assume the power-law
decay

Q(τ) ∼ γ2

|τ |α , (6.17)

and postpone consideration of the self-consistency con-
dition. Then, we have to solve the well-defined problem
of computing Q(τ) from Eq. (6.12), given the Q(τ) in
Eq. (6.17).

This problem can be reduced to the solution of a
quantum impurity problem, sometimes called the Bose-
Kondo problem (Beccaria et al., 2022; Cuomo et al.,
2022; Nahum, 2022; Sengupta, 2000; Weber and Vojta,
2022). We begin by decoupling the S(τ) · S(0) interac-
tion in Eq. (6.11) with a bosonic field φa, a = 1 . . . 3.
We assume that there is a bosonic ‘bath’ field that lives
in d spatial dimensions, φa(x, τ), and the decoupling
field is φa(x = 0, τ). Then the path integral for ZJ in
Eq. (6.11) reduces to the solution of the following Bose-
Kondo Hamiltonian of a S = 1/2 spin Sa coupled to a
bosonic scalar field φa(x, τ):

Himp = γSa φa(0) +
1

2

∫
ddx

[
π2
a + (∂xφa)2

]
.(6.18)

Here πa is canonically conjugate to the field φa, and
φa(0) ≡ φa(x = 0). We identify Q(τ) with temporal cor-
relator of φa(0), and then from Eq. (6.17) we conclude
that we need α = d− 1.

We now wish to determine the properties of the theory
Himp in a renormalized perturbation expansion in the
coupling γ. A simple determination of scaling dimensions
at tree level shows that γ has scaling dimension (3−d)/2,
and so an expansion in powers of γ is equivalent to an
RG expansion in

ε = 3− d = 2− α . (6.19)

Such a computation can be performed (Beccaria et al.,
2022; Cuomo et al., 2022; Nahum, 2022; Sachdev, 2001;
Sachdev et al., 1999; Sengupta, 2000; Smith and Si, 1999;
Vojta et al., 2000; Weber and Vojta, 2022) while imposing

the fermion constraint in Eq. (6.2) for SU(2) exactly, and
yields the two-loop β function,

β(γ) = − ε
2
γ + γ3 − γ5 + . . . (6.20)

This has a stable fixed point at γ∗2 = ε/2 + ε2/4 + . . .
which provides the needed critical theory of ZJ with the
interaction in Eq. (6.17).

To solve the self-consistent theory, we need to com-
pute Q(τ) in Eq. (6.12) at this fixed point. The scal-
ing dimension of the spin operator dim[S] can be com-
puted by standard RG methods order-by-order in ε, but
we encounter an unexpected simplification. Because of
the quantized Berry phase (Wess-Zumino-Witten) term,
the renormalization of the coupling γ is given only by the
wavefunction renormalization, and this fixes the scaling
dimension of the spin-operator at the non-trivial fixed
point of the β function: we find (Sachdev, 2001; Vojta
et al., 2000)

dim[S] = ε/2, (6.21)

exact to all orders in ε. This implies the correlator

Q(τ) =
1

3
〈S(τ) · S(0)〉 ∼ 1

|τ |2−α . (6.22)

Finally, we impose the self-consistency condition in
Eq. (6.13) at least at the level of the exponent. Com-
paring Eqs. (6.17) and (6.22), we conclude that the self-
consistent value is α = 1. Note that this value is well
outside the domain of applicability of the ε expansion,
given Eq. (6.19). Nevertheless, given that Eq. (6.21) has
been obtained to all orders in ε, the only requirement for
the validity of Eq. (6.22) is the continued existence of
the non-trivial fixed point of the β function at ε of order
unity. The self-consistent spin correlator is therefore

〈S(τ) · S(0)〉 ∼ 1

|τ | . (6.23)

Comparing with the large M result in Eq. (6.7), we find
perfect agreement between the large M and RG expo-
nents.

As discussed in Section VI.B, the ground state of
Eq. (6.1) is actually a spin glass for SU(2) spins. The
above analysis obtaining the result in Eq. (6.22) is cer-
tainly correct for SU(2), and applies exactly to the Bose-
Kondo impurity model defined by Eq. (6.18) for small ε.
Recent studies have shown (Beccaria et al., 2022; Cuomo
et al., 2022; Nahum, 2022; Weber and Vojta, 2022) that
the fixed point is not present at large ε, and this is con-
sistent with appearance of spin glass order.

Despite the direct inapplicability of the RG to the
SU(2) model in Eq. (6.1), the analysis presented here
turns out to be very useful. A closely related RG applies
to the SU(M) generalization considered in Section VI.A
(Joshi et al., 2020), and from this we can conclude that
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there are no corrections to the exponent in Eq. (6.21)
(which is related to the exponent in Eq. (6.7)) at all
orders in 1/M . Moreover extensions of the RG of the
Bose-Kondo model obtained here will apply to the cor-
related electrons models to be considered in the follow-
ing sections: to the superspin Bose-Fermi-Kondo model
in Section VII.D.3, and the Bose-Fermi-Kondo model in
Section VIII.D.

VII. RANDOM EXCHANGE t-U-J HUBBARD MODELS

In the following, we will consider models of itinerant
electrons on a fully connected lattice with a strong local
interaction and random exchange constants. One such
example is the ‘t-U -J ’ model in which random Jij ’s are
added to the Hubbard model with random hoppings:

HtUJ = − 1√
N

N∑
i,j=1

M∑
α=1

tij c
†
iαcjα − µ

∑
iα

c†iαciα (7.1)

+
U

2

∑
i

(∑
α

c†iαciα −M/2

)2

+
1√
N

∑
1≤i<j≤N

Jij Si · Sj .

In this expression, we have introduced M ‘colors’ of
fermions, so that the model has U(M) = U(1)× SU(M)
symmetry, corresponding to an extension of the spin sym-
metry to SU(M). The usual SU(2), S = 1/2 Hubbard
model corresponds to M = 2 (α =↑, ↓). The electron
spin operators, Si =

∑
αβ c

†
α(σαβ/2)cβ , with σ/2 the

M2 − 1 generators of SU(M) (σ are the Pauli matri-
ces for M = 2). As before, the tij ’s and Jij ’s are drawn

from distributions with zero mean and variances t2ij = t2,

J2
ij = J2; however, as we will note below, closely re-

lated results also apply to the case where the tij are non-
random, and determine an electronic dispersion εk. Note
a change in notation from the SYK model above: U des-
ignates here the on-site repulsion while the variance J
of the random bonds is more directly analogous to the
variance of the random SYK interactions. Also note that
the chemical potential µ is defined with reference to the
half-filled case (M/2 electrons per site).

We can also consider the t-J limit of this model (Par-
collet and Georges, 1999), which reads:

HtJ = − 1√
N

N∑
i,j=1

∑
α

tij Pc†iαcjαP − µ
∑
iα

c†iαciα

+
1√
N

∑
1≤i<j≤N

Jij Si · Sj (7.2)

in which the operator P enforces a Gutzwiller-type pro-
jection such that the total number of fermions on each
site is at most M/2:∑

α

c†iαciα ≤
M

2
, ∀ i. (7.3)

At half-filling (µ = 0) this reduces to the random-bond
Heisenberg (SY) model of the previous section.

A. Effective local action

In the thermodynamic limit N → ∞, the calcu-
lation of the single-particle Green’s function and self-
energy of this model, as well as that of the local spin-
spin correlator, reduces to a local effective action sub-
ject to a self-consistency condition. This corresponds
to the (extended) dynamical mean-field theory construc-
tion (EDMFT) (Chitra and Kotliar, 2000; Georges et al.,
1996; Sengupta and Georges, 1995; Si and Smith, 1996;
Smith and Si, 2000), which is exact for these random
fully-connected models. The term ‘extended’ is com-
monly used to indicate that the mapping involves a
self-consistency over both single-particle and two-particle
correlation functions. When considering the system out-
side the spin-glass phase, all local correlators are self-
averaging and this mapping is most easily derived fol-
lowing the cavity construction, similar to Sec. IV. We
skip the details here, since the reasoning is completely
analogous to the one in that section. One obtains the
single-site effective action:

StUJ =

∫
dτ
∑
α

c†α(τ)

(
∂

∂τ
− µ

)
cα(τ)

+
U

2

∫
dτ
(∑

α

c†αcα −M/2
)2

+

∫
dτdτ ′∆(τ − τ ′)

∑
α

c†α(τ)cα(τ ′)

− 1

2

∫
dτdτ ′J (τ − τ ′)S(τ) · S(τ ′). (7.4)

From this action we have to determine the Green’s func-
tion and spin correlator:

G(τ − τ ′) ≡ − 1

M

∑
α

〈
cα(τ)c†α(τ ′)

〉
StUJ

χ(τ − τ ′) ≡ 1

M2 − 1
〈S(τ) · S(τ ′)〉StUJ , (7.5)

and impose the self-consistency condition that results
from the cavity construction:

∆(τ) = t2G(τ) , J (τ) = J2 χ(τ). (7.6)

The electronic self-energy can be defined by reference to
the non-interacting system U = J = 0 (the random ma-
trix model of Sec. IV) as G−1

ij (iωn) = iωn +µ− tij −Σij ,
for a given sample {tij}. In the infinite-volume limit
N → ∞, the self-energy becomes local Σij = Σiiδij and
self-averaging, when not in the spin-glass phase. The
local Green’s function Gii is also self-averaging and is
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related to Σ by:

Gii(iωn) =
∑
λ

|〈i|λ〉|2G(iωn, ελ)

→
∫
ρ0(ε)G(iωn, ε) = G(iωn), (7.7)

with ρ0 the semi-circular density of states defined in
Sec. IV and

G(iωn, ε) =
1

iωn + µ− ε− Σ(iωn)
(7.8)

is the Green’s function in the basis of the single-particle
states of the free system at an energy ε. The self-energy
Σ coincides with that of the effective action Eq. (7.4) and
hence reads:

Σ(iωn) = iωn + µ− t2∆(iωn)−G−1(iωn). (7.9)

Substituting this expression into Eq. (7.8) and perform-
ing the Hilbert transform of ρ0, one recovers the self-
consistency condition ∆ = t2G (Georges et al., 1996).

When a spin-glass phase exists, self-averaging of the lo-
cal observables does not hold inside the ordered phase. A
mapping onto a local effective action still applies however
after introducing n replicas and performing the average
of (Zn−1)/n over the tij and Jij random variables, after
which the n → 0 limit must be taken also allowing for
the possibility of replica symmetry breaking. We do not
write these equations in detail here, and refer the reader
to Refs. (Georges et al., 2000, 2001).

In order to make contact with the (E)DMFT literature,
we have used in this section notations that are rather
standard in this field. In particular ∆(τ) is the dynamical
mean-field (quantum generalization of the Weiss field),
describing the hybridisation between a local site and its
self-consistent bath. In the following, we will often use
somewhat different notations which are more commonly
used in the SY/SYK literature, such as ∆ → t2R, G →
R, J → J2Q and χ→ Q.

We also note that the single-site effective action per-
mits a spin glass phase after we include replica off-
diagonal components of the correlators (Georges et al.,
2000, 2001). In the replica diagonal components J (τ →
∞) 6= 0 at zero temperature. Naively, such a non-zero
limit signals a problem in the replica diagonal action in
Eq. (7.4), as the expectation value of the last term in
the action diverges as ∼ β2 as β →∞, implying a diver-
gent ground state energy. However, this problem is cured
upon including the replica off-diagonal components and
taking the replica n → 0 limit (Read et al., 1995). This
issue highlights the difficulty in interpreting the EDMFT
framework in the magnetically ordered phase for non-
random systems (Kirchner et al., 2020; Pankov et al.,
2002; Si et al., 2001, 2003).
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FIG. 12 Phase diagram of the spin-1/2 half-filled random
exchange t-J-U model. At low temperature, a quantum crit-
ical point separates the spin glass phase (SG) from a Fermi
liquid phase (FL). The background color corresponds to the
fitted power-law exponent of the local spin correlation func-
tion χ(τ) ∼ 1/τ2∆, with 2∆ ' 1 in the quantum critical metal
(QCM) (red), and ∆ = 1 in the Fermi liquid (blue). At high
temperature and U , one obtains a Mott insulator. Repro-
duced from (Cha et al., 2020b).

B. The SU(2) Hubbard model at half-filling

The SU(2) t-U -J model in Eq. (7.1) was studied at
half-filling in the EDMFT framework (Cha et al., 2020b)
— for a previous study in the large-M limit, see (Florens
et al., 2013). The phase diagram is reproduced in Fig. 12
as a function of t/U and temperature, as obtained by a
quantum Monte Carlo solution of the EDMFT equations
(cf Section IX). A quantum critical point (QCP) at U =
Uc separates a Fermi liquid phase at small U from an
insulator at large U , which orders into a spin glass phase
at low temperature. At the quantum critical point, the
spin correlations decays as χ(τ) ∼ 1/τ , as in the large-M
limit of the SY model, while it is the expected χ(τ) ∼
1/τ2 in the Fermi liquid phase.

The electronic self-energy Σ is strongly affected by the
QCP. While it takes its regular form in the Fermi liquid,
the coherence temperature vanishes at the QCP, where
a linear temperature behaviour Im Σ(ω = 0, T ) ∝ T is
found numerically. As detailed below in Sec. VII.E, this
behaviour leads at the QCP to a T -linear dependence of
the resistivity, which is smaller than the MIR value. Fur-
thermore, in the accessible range of temperatures, the fre-
quency dependence of the self-energy is compatible with
a Marginal Fermi liquid form. Finally, we note a the-
oretical study (Tarnopolsky et al., 2020) analyzing the
metal-insulator transition at half-filling, related to the fi-
nite doping theoretical models that are described in Sec-
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tion VII.D.

C. The SU(2) Hubbard model away from half-filling

Section VII.B has shown that the Hubbard model ex-
hibits a novel phase transition at half-filling: between a
Fermi liquid at small U/t, and a metallic spin glass at
large U/t. Next we turn to the case with hole-doping
p away from half-filling. Here, we assume throughout
that U/t is large, so that at p = 0 we obtain the insulat-
ing spin glass phase which was described in Section VI.B.
We will present numerical studies here (Dumitrescu et al.,
2022; Otsuki and Vollhardt, 2013; Shackleton et al., 2021)
showing that the spin glass order survives in a metallic
state up to a critical doping p = pc, and that there is a
Fermi liquid for p > pc. (We note an exactly diagonaliza-
tion study (Kumar et al., 2021) which presents evidence
for the spin glass transition from quasiparticle spectra.)
The critical point at p = pc displays a SYK-like critical-
ity, with some similarities to the U = Uc critical point
at p = 0 described in Section VII.B. Analytic analyses of
the p > 0 Hubbard model appear next in Section VII.D.

A recent study (Shackleton et al., 2021) approached
the large U and p ≥ 0 Hubbard model in the t-J model
framework by performing exact diagonalizations of fully
connected clusters of N sites, up to N = 18, for a fixed
sample of random hopping amplitudes and exchange con-
stants, then taking averages or histograms over samples.
This study confirms the existence of a spin-glass phase at
low doping, which survives up to pc ' 0.3 (in agreement
with earlier analytic arguments (Joshi et al., 2020) to be
presented in Sections VII.D.2 and VII.D.3). Their result
for the local spin response function χ′′(ω) was displayed
in Fig. 11. The spin-glass phase is signalled by a sharp
low frequency peak in χ′′(ω), which is absent for p > pc,
and the spin-fluctuation spectrum close to the critical
point is seen to be well approximated by the large-M
SYK theory of Section VI.A. These authors also com-
puted thermodynamic properties (entropy, specific heat
and entanglement entropy) as a function of temperature
and found that the specific heat coefficient γ = C/T dis-
plays a maximum as a function of doping for p ' pc.

A different and complementary approach (Otsuki and
Vollhardt, 2013) was used recently (Dumitrescu et al.,
2022). The EDMFT equations of Section VII.D were
solved using the Quantum Monte Carlo algorithms re-
viewed in Section IX, corresponding to a direct solution
in the thermodynamic limitN =∞ for disorder-averaged
observables. The model considered (Dumitrescu et al.,
2022) is actually a finite-U random exchange model, with
U/t large enough so that the physics of a doped Mott in-
sulating spin-glass is being captured. The phase diagram
obtained in this study is displayed on Fig. 13. The spin-
glass phase itself (requiring replica off-diagonal terms)
was not studied in this work, but the location of the crit-

ical boundary in the T -U plane was identified from the
criterion Jχloc = 1. The T = 0 critical doping was found
to be at pc ' 0.17 for the finite value of U/t studied,
in contrast to the higher value pc ' 0.3 for the U = ∞
model. Consistently with the exact diagonalization study
(Shackleton et al., 2021), the local spin dynamics at the
critical point is of SYK type with χ(τ) ∝ 1/τ . The self-
energy obeys interesting scaling properties near the crit-
ical point: the imaginary-time data for different temper-
atures can be collapsed onto:

Σ(τ)

Σ(β/2)
=
e2πE(τ/β−1/2)

(sinπτ/β)ν
(7.10)

corresponding to the conformally invariant scaling form
for the real-frequency scattering rate:

− 1
π ImΣ(ω + i0+) = λT νΦν,E

(
ω
T

)
, (7.11)

Φν,E (x) = cosh x
2

∣∣∣Γ [ 1+ν
2 + i x2π + iE

]∣∣∣2.
The exponent ν at criticality was estimated to be in the
range ν ' 0.6 − 0.8. Note that a value of ν smaller
than unity implies that the lifetime of single-electron ex-
citations (inverse width of the spectral function) satisfies
Planckian T -linear behaviour:

1

τ∗
≡ −Z ImΣ(i0+) = c

~
kBT

(7.12)

since, as detailed below in Sec. VII.E, Z =(
1− ∂ReΣ(ω)/∂ω)

∣∣
ω=0

)−1
vanishes as Z ∝ λT 1−ν at

low-T . The overall coupling constant λ cancels in the
expression of τ∗ to dominant order, hence the prefactor
c is generically of order unity. This quantity is displayed
on Fig. 14. The spectral asymmetry E was found to be
non-zero but temperature-dependent over some extended
range of T . Whether there is an intrinsic particle-hole
asymmetry of the scaling function at criticality down to
T = 0 is an open question.

The metallic state is a Fermi liquid for p > pc, satisfy-
ing Luttinger theorem with a large Fermi energy associ-
ated with a fermion density of 1−p, see Section VIII.C for
a discussion of the Luttinger theorem in disordered sys-
tems; for the present system, it is expressed by the rela-
tion µ−ReΣ(0) = εF at T = 0, with εF the Fermi energy
of the non-interacting system (random matrix model) for
a density n = 1−p. When solving the EDMFT equations
without allowing for spin-glass ordering, a sudden break-
down of this relation is found for p < pc (Dumitrescu
et al., 2022; Otsuki and Vollhardt, 2013), signalling a
breakdown of the Luttinger theorem. These solutions
correspond to a metastable state with unquenched lo-
cal magnetic moments. These local moments order into
a spin-glass which is the actual stable phase. The fi-
nite size exact diagonalisation results (Shackleton et al.,
2021) suggest that the Fermi energy may collapse to a
small one of volume p in this metallic spin-glass phase.
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FIG. 13 Phase diagram (Dumitrescu et al., 2022) of the spin-
1/2 doped random exchange t-U -J model, as obtained by a
quantum Monte Carlo solution of the EDMFT equations. FL
indicates Fermi liquid, while SG is a metallic spin glass for
p 6= 0. The background color corresponds to the fitted power-
law exponent of the local spin correlation function χ(τ) ∼
1/τ2∆ (color scale on the right). Along the dashed grey line,
SYK behaviour 2∆ ' 1 is found. A linear-in-T resistivity
is obtained in the quantum-critical region with a resistivity
which becomes lower than the MIR resistivity. (Inset) Zoom
close to the quantum critical point.
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FIG. 14 Inverse single electron excitations lifetime 1/τ∗ as a
function of temperature T in the spin-1/2 doped random ex-
change t-U -J model, for different doping p. A Planckian be-
haviour (7.12) is observed close to the quantum critical point.

This fascinating possibility awaits confirmation from an
infinite-volume solution of the EDMFT equations inside
the spin-glass phase.

D. Doped t-J model: analytical insights

We now extend the analytic considerations of Sec-
tions VI.A and VI.C from the undoped quantum magnet
at p = 0 to the non-zero doping t-J model with p 6= 0.
This will provide insight to the numerical results pre-

sented in Section VII.C for the doped Hubbard model.
This analysis will be carried out in the U → ∞ limit,
employing the t-J model in Eq. (7.2).

In the SU(2) (M = 2) case, the Hilbert space of the tJ
model on each site consists of 3 states

|0〉 , c†↑ |0〉 , c†↓ |0〉 . (7.13)

We will treat these 3 states in close analogy to the 2
spin states of the random magnet in Eq. (6.1) (Fritz and
Vojta, 2004; Vojta and Fritz, 2004). Apart from the in-
crease in the number of states, a crucial difference is the
Fermi statistics of the electron operator, which requires
that the 3 states are components of a ‘superspin’. How-
ever, there remains a choice on whether the spinful or
spinless component of the superspin is fermionic. In an
exact treatment of the problem, either choice is permitted
and should lead to equivalent results; but in approximate
treatments, one or the other choice may be superior, and
it is often useful to exploit this freedom. For now, we will
present our discussion by representing the superspin by
a spinless boson b (the holon) and a spinful fermion fα
(the spinon):

|0〉 ⇒ b† |v〉 , c†α |0〉 ⇒ f†α |v〉 . (7.14)

The physical states are obtained when the constraint

f†αfα + b†b = 1 (7.15)

is obeyed. Hence, the physical states are invariant under
the U(1) gauge transformation which generalizes that in
Section VI.A fα → fαe

iφ, b → beiφ, while individual
spinon and holon excitations carry U(1) gauge charges.
At the moment, the fractionalized representation, and as-
sociated emergent gauge symmetry, is just a convenient
exact description of the Hilbert space. But we will see
later in Sections VII.D.2 and VII.D.3 that the fraction-
alized operators yield a simple way to understand the
exponents at a non-Fermi liquid critical point as a real-
ization of a critical doped spin liquid.

The physical electron (cα) and spin (S) operators can
be viewed as rotation operators of the superspin:

cα = b†fα, S =
1

2
f†ασαβfβ . (7.16)

If we combine these operators with an operator V which
measures the electron density

V = b†b +
1

2
f†αfα

= 1− 1

2
c†αcα , (7.17)

we obtain all the generators of the supergroup SU(1|2).
The notation indicates that this group acts on a super-
spin with 1 bosonic component, b† |v〉, and 2 fermionic
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components, f†α |v〉. These generators realize the super-
algebra SU(1|2), which is

[Sa, Sb] = iεabcS
c (7.18a)

{cα, cβ} = 0 (7.18b)

{cα, c†β} = δαβV + σaαβS
a (7.18c)

[Sa, cα] = −1

2
σaαβcβ (7.18d)

[Sa, V ] = 0 (7.18e)

[V, cα] =
1

2
cα (7.18f)

If we had made the opposite choice of using spinful
bosonic spinons and spinless fermionic holons, we would
have obtained the superalgebra SU(2|1), which is isomor-
phic to SU(1|2).

The effective local action associated with this model
along the lines of Sec. VII.A can be viewed as that of
a single SU(1|2) superspin, in complete analogy with
Eqs. (6.11)-(6.13) for the self-consistent dynamics of a
single SU(2) spin. The local effective action can be writ-
ten in terms of the spinon and holon fields as:

ZtJ =

∫
Dfα(τ)Db(τ)Dλ(τ)e−SB−StJ (7.19)

SB =

∫
dτ

[
f†α(τ)

(
∂

∂τ
+ iλ

)
fα(τ)

+b†(τ)

(
∂

∂τ
+ iλ

)
b(τ)− iλ

]
StJ = s0

∫
dτf†αfα −

J2

2

∫
dτdτ ′Q(τ − τ ′)S(τ) · S(τ ′)

−t2
∫
dτdτ ′R(τ − τ ′)f†α(τ)b(τ)b†(τ ′)fα(τ ′) + H.c.

The action SB is the Berry phase of a SU(1|2) super-
spin, which we have expressed as the path integral over
canonical bosonic and fermionic fields while imposing the
constraint Eq. (7.15) with the field λ(τ). The chemical
potential µ of the t-J Hamiltonian is now represented by
the coupling s0. From this action we have to determine
the correlators

R(τ − τ ′) = −1

2

〈
cα(τ)c†α(τ ′)

〉
ZtJ

Q(τ − τ ′) =
1

3
〈S(τ) · S(τ ′)〉ZtJ , (7.20)

analogous to Eq. (6.12). And then we impose the self-
consistency conditions in Eqs. (7.5) and (7.6), which take
the form

R(τ) = R(τ), Q(τ) = Q(τ) , (7.21)

analogous to Eq. (6.13).
It is not possible to solve the self-consistent single-site

quantum problem defined by Eqs. (7.19)-(7.21) exactly.

The following subsections will describe various theoreti-
cal expansions and numerical results, analogous to those
discussed in Section VI for the random quantum magnet.

1. SU(M) symmetry: Fermi liquid large-M limit

A first approach (Parcollet and Georges, 1999) is to
extend the SU(M) large M model of Section VI.A by
using fermionic spinons fα with an index α = 1 . . .M ,
while the bosonic holons b have no index. In this case,
the constraints Eqs. (6.2) and (7.15) become

M∑
α=1

f†iαfiα + b†i bi =
M

2
(7.22)

on each site i; we are restricting to the case with self-
conjugate representations of SU(M) at half-filling, with
κ = 1/2. We also fix the doping density p by

1

N

∑
i

b†i bi =
Mp

2
. (7.23)

This particular large M limit is similar to that em-
ployed for non-random t-J models (Kotliar, 1995; Lee
et al., 2006), and has the crucial feature that the bosonic
holons are strongly condensed at T = 0. Indeed, in the
large M limit, we may replace the boson by a number
bi =

√
Mp obtained from the constraint in Eq. (7.23).

Then the fermions fα have the same quantum numbers
as an electron, with spin S = 1/2 and charge −1. The
effective theory of these electrons is a sum of the ran-
dom matrix Hamiltonian H2 in Eq. (4.1a), and the SYK
Hamiltonian H4 in Eq. (5.1a). We will discuss very sim-
ilar Hamiltonians in a different context in Section X and
defer a complete discussion until then.

For now, we note a few important features of this large
M limit. The phase diagram (Parcollet and Georges,
1999) is displayed on Fig. 15. At p = 0, we have the
SYK spin liquid state described in Section VI. At any
non-zero p, because of the condensation of the holons b,
we obtain a disordered Fermi liquid ground state, with
quasiparticles moving with an effective hopping tp. These
quasiparticles are present at a large Fermi energy be-
low which there are states of (1 − p)/2 electrons per
spin. There is a characteristic doping p∗ ∼ J/t which
separates two different regimes with a distinct doping-
dependence of the effective mass enhancement and spec-
tral weight Z of these quasiparticles. For p > p∗, the
usual Brinkman-Rice (Brinkman and Rice, 1970) be-
haviour m∗/m = 1/Z ∝ 1/p is recovered, as in the
absence of random exchange couplings. In contrast for
p < p∗, much heavier quasiparticles are found with
m∗/m = 1/Z ∝ (p∗/p)2. Correspondingly, the Fermi
liquid coherence scale is Tcoh ∼ (pt)2/J in this regime.
Hence, the random exchanges strongly modify the usual
Brinkman-Rice behaviour of the doped Mott insulator at
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SY spin liquid
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metal)

FIG. 15 Phase diagram (Parcollet and Georges, 1999) of
the doped t-J model in the large-M limit with a condensed
bosonic holon b. The SY spin liquid (incoherent metal) dis-
plays linear-in-T resistivity with a large ‘bad metal’ resistivity.

low doping. For p < p∗, there is an interesting crossover
at T & Tcoh, above which non-Fermi liquid behaviour
with spin-liquid local correlations of the SYK type are
recovered (Fig. 15). This regime corresponds to a ‘bad
metal’ with a resistivity larger than the MIR limit and,
interestingly, depending linearly on temperature; see Sec-
tion VII.E for a discussion of related models for which
we define a proper notion of transport. The mecha-
nism for this T -linear dependence is unusual. Indeed,
in this regime the single particle scattering rate has the
ImΣ ∝ √ω,

√
T dependence of the spinon self-energy

characteristic of the SYK regime. Despite this, the resis-
tivity is found to be linear in T , because the dispersion of
the quasiparticles is negligible as compared to this large
scattering rate, so that the conductivity as obtained from
the Kubo formula is proportional to 1/(ImΣ)2 ∝ 1/T .

These conclusions can be drawn by examining the
large-M equation for the spinon Green’s function Gf ,
which read (Parcollet and Georges, 1999):

G−1
f = iωn + µ− λ− (pt)2Gf − Σf (iωn) (7.24)

where iλ = λ at the saddle point, and Σf (τ) =
−J2G2

f (τ)Gf (τ) as in the large-M SY model. It is easy

to see that the doping-induced term (pt)2Gf is a singular
perturbation that cuts-off the SYK behaviour. Indeed,
substituting Σf ∝

√
Jω in the equation above, corre-

sponding to Gf ∝ 1/
√
Jω, we see that a stable solution

of this type can only exist for (pt)2/
√
Jω .

√
Jω which

yields ω & (pt)2/J ∼ Tcoh, corresponding to the crossover
regime described above. For T, ω . Tcoh, the consistent
solution of (7.24) is a Fermi liquid.

2. SU(M) symmetry: non-Fermi liquid large-M limit

We know from the numerical studies of the random
quantum magnet discussed in Section VI.B that the ac-
tual ground state of the undoped model, p = 0, is a spin
glass, in contrast to the spin liquid appearing in Sec-
tion VII.D.1. It is reasonable to expect that this spin
glass state survives for a range of non-zero p, and this
has been confirmed by numerical studies discussed in Sec-
tion VII.C. In the large M method of Section VII.D.1 the
boson b condenses at any non-zero doping, and so the cor-
related spin liquid (or its associated spin glass state) is
absent at T = 0 away from the insulator. In this section,
we will discuss an alternative large M approach in which
the boson need not condense at non-zero doping, and can
instead form a SYK-like critical state.

We consider a large M theory of a SU(M ′|M) su-
perspin, in which large M and M ′ limit is taken with
k = M ′/M fixed (Joshi et al., 2020; Tikhanovskaya et al.,
2021b). This requires a theory of fermionic spinons fα,
α = 1 . . .M , just as in Section VII.D.1. However, the
bosonic holons b` now have an additional ‘orbital’ index
` = 1 . . .M ′. The electrons c`α also have an additional
orbital index `, and are related to the spinons fα and
holons b` by

c`α = fαb
†
`

M∑
α=1

f†αfα +

M ′∑
`=1

b†`b` =
M

2
. (7.25)

The doping density p is given by

1

N

∑
i`

b†i`bi` = M ′p (7.26)

The physical case corresponds to M = 2, M ′ = 1, and
k = 1/2.

We can now take the large M limit in a manner which
closely parallels Section VI. Then we obtain SYK-like
equations for the boson and fermion Green’s functions,
now describing a critical doped spin liquid:

Gb(iωn) =
1

iωn + µb − Σb(iωn)

Σb(τ) = −t2Gf (τ)Gf (−τ)Gb(τ)

Gf (iωn) =
1

iωn + µf − Σf (iωn)
(7.27)

Σf (τ) = −J2G2
f (τ)Gf (−τ) + k t2Gf (τ)Gb(τ)Gb(−τ).

These equations share some similarities with the ones
introduced in a study (Haule et al., 2002) of the non-
random t−J model using the non-crossing approximation
in the EDMFT framework. They can be obtained from a
G-Σ action which generalizes those in Eqs. (5.56), (6.6),
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and (8.8)

I[G,Σ] =− ln det [(∂τ − µf )δ(τ1 − τ2) + Σf (τ1, τ2)]

+ k ln det [(∂τ − µb)δ(τ1 − τ2) + Σb(τ1, τ2)]

+ kTr (Σb ·Gb) +
kt2

2
Tr ([GfGb] · [GfGb])

− Tr (Σf ·Gf )− J2

4
Tr
(
G2
f ·G2

f

)
. (7.28)

Here µf and µb are chemical potentials chosen to satisfy〈
f†f

〉
=

1

2
− kp ,

〈
b†b
〉

= p . (7.29)

As for the SYK model, we search for solutions of Eq.
(7.27) with the following low energy critical behavior

Gf (z) = Cf
e−i(π∆f+θf )

z1−2∆f
, Im(z) > 0

Gb(z) = Cb
e−i(π∆b+θb)

z1−2∆b
, Im(z) > 0 (7.30)

θf
π

+

(
1

2
−∆f

)
sin(2θf )

sin(2π∆f )
= kp

θb
π

+

(
1

2
−∆b

)
sin(2θb)

sin(2π∆b)
=

1

2
+ p .

The last two equations follow from Luttinger theo-
rems, similar to those discussed in Section V.B (Georges
et al., 2001; Gu et al., 2020). Inserting this ansatz into
Eq. (7.27), we find that self consistency of the terms in-
volving the hopping t leads to the following constraint
on the scaling dimensions of the fermion (∆f ) and boson
(∆b)

∆f + ∆b =
1

2
. (7.31)

Inserting the ansatzes for Gb and Gf into the correla-
tion functions for the electron and spin operators (as in
Eq. (6.7)), we obtain for the gauge-invariant observables

〈
cα(τ)c†α(0)

〉
∼


A+

|τ | , τ > 0

−A−|τ | , τ < 0

〈S(τ) · S(0)〉 ∼ 1

|τ |4∆f
. (7.32)

The electron Green’s function is similar to that of a
Fermi liquid, with the difference that the present large
M limit allows solutions with a particle-hole asymme-
try with A+ 6= A−, whereas a Fermi liquid always has
A+ = A−. We note that this is a rather unusual situa-
tion in which the T = 0 spectral function is discontinuous
at ω = 0; the electron Green’s function obtained from the
RG analysis below in Section VII.D.3 does not share this
feature. A Fermi liquid would also have a spin correlation

FIG. 16 Schematic phase diagram of the t-J model in the
non-Fermi liquid M limit of Section VII.D.2 (Christos et al.,
2022b). In the critical metal phase, the exponents obey 0 <
∆b < 1/4, ∆f = 1/2 − ∆b, and ∆b decreases monotonically
towards 0 (the Fermi liquid value) with increasing p.

function with a 1/τ2 decay, which is potentially different
from the 1/|τ |4∆f decay above.

Our discussion so far has been rather general, but the
nature of the state obtained depends crucially on the
values of the exponents ∆f and ∆b. Determining their
values requires further analysis of Eq. (7.27), and we now
describe the 3 distinct possibilities.

a. ∆b = ∆f = 1/4: doped SY spin liquid. In such a solu-
tion, the J terms in Eq. (7.27) also contribute to deter-
mining the parameters in the scaling ansatz in Eq. (7.30).
The scaling dimension of the spinons and the spin op-
erator are the same as those in the insulating SY spin
liquid described in Section VI.A. Numerical analyses of
Eq. (7.27) at all energies (Tikhanovskaya et al., 2021b)
show that such solutions do indeed exist, but only at very
small values of the doping p.

b. ∆b = 0, ∆f = 1/2: disordered Fermi liquid. This state
is the same as that obtained in the large M limit of Sec-
tion VII.D.1, but it turns out not to be a valid solution
of the saddle point equations in Eq. (7.27) of the present
large M limit (Christos et al., 2022b). If ∆b = 0, we have
b condensate with 〈b(τ →∞)b†(0)〉 6= 0 at T = 0. Insert-
ing this condensate in the equation for Σb in Eq. (7.27),
we find a contribution Σb(ω) ∼ |ω| from the fermion
polarizability, which leads to a ln(1/τ) contribution to
Gb(τ), inconsistent with presence of a b condensate.

c. 0 < ∆b < 1/4, ∆f = 1/2−∆b: critical metal. Numerical
analyses (Christos et al., 2022b) of Eq. (7.27) shows that
this is indeed a valid solution for a wide range of doping
p. The J terms in Eq. (7.27) are subdominant to the
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critical ansatz at low energies, but they do contribute at
higher energies. The exponents in this critical metal vary
continuously as a function of the doping and J/t, and can
be determined by demanding numerically that Eq. (7.27)
apply at all energies. For finite M , the critical metal can
be stable to spin glass order at T = 0 for ∆f < 1/4,
unlike the finite T instability in (6.16) for the SY spin
liquid. There can be an instability to a metallic spin
glass below a critical doping pc (Christos et al., 2022b),
and that is indicated in the schematic phase diagram in
Fig. 16. This spin glass phase can be described (Christos
et al., 2022b) using a theory of bosonic spinons bα similar
to that used for the insulating spin glass (Georges et al.,
2000, 2001) in a related large M limit of a SU(M |M ′)
superspin (Tikhanovskaya et al., 2021b), as indicated in
Fig. 16.

3. RG analysis for SU(2) symmetry

This section returns to the original t-J model with
SU(2) spin symmetry, as defined by Eqs. (7.19)-(7.21).
We will describe a RG treatment similar to that for the
insulating quantum magnet presented in Section VI.C.
The RG finds a critical point with one relevant direc-
tion, which is naturally identified with the deviation of
the doping density p from the critical density pc. More-
over, the theory of this critical point turns out to be
very similar to the large M theory just described in Sec-
tion VII.D.2.

We proceed (Joshi et al., 2020) in a manner that par-
allels Section VI.C. First, we assume power-law decays
for the correlators in the action in Eq. (7.19),

Q(τ) ∼ 1

|τ |d−1
, R(τ) ∼ sgn(τ)

|τ |r+1
, (7.33)

and ignore the self-consistency condition Eq. (7.21) to be-
gin with. We decouple the J2 and t2 terms in the action
by introducing bosonic (φa, a = 1 . . . 3) and fermionic
(ψα) baths. Then the problem reduces to solving the
impurity Hamiltonian

Himp= (s0 + λ)f†αfα + λ b†b+ g0

(
f†αb ψα(0) + H.c.

)
+ γ0f

†
α

σaαβ
2
fβ φa(0) (7.34)

+

∫
|k|rdk k ψ†kαψkα +

1

2

∫
ddx

[
π2
a + (∂xφa)2

]
where the constraint in Eq. (7.15) is imposed exactly by
taking λ → ∞ (Fritz and Vojta, 2004), a = (x, y, z),
σa are Pauli matrices, πa is canonically conjugate to the
field φa, and φa(0) ≡ φa(x = 0), ψα(0) ≡

∫
|k|rdk ψkα.

We identify Q(τ) with temporal correlator of φa(0), and
R(τ) with the temporal correlator of ψα(0), and it can
be verified that these correlators decay as in Eq. (7.33).

FIG. 17 Schematic phase diagram of the RG analysis of the
random, fully-connected t-J model (Joshi et al., 2020). The
spinon and holon states are nearly degenerate in the critical
spin liquid theory, while the holon (spinon) states have lower
energy for p > pc (p < pc).

So we have reduced the problem to an impurity Hamil-
tonian of a SU(1|2) superspin interacting with sepa-
rate bosonic and fermionic baths. By analogy with the
Bose-Kondo model in Eq. (6.18), we can identify it as
a superspin Bose-Fermi-Kondo model, where both the
fermionic and bosonic baths have to be determined self-
consistently. Such a model can be analyzed by a RG com-
putation which performs the exact path integral over the
superspin space i.e. imposes the constraint in Eq. (7.15)
exactly. The methods are similar to those used for the in-
sulating spin problem that were used to obtain Eq. (6.20),
which ultimately only depended upon the spin commuta-
tion relations. In a similar manner, the RG results follow
in a similar manner from the SU(1|2) commutation re-
lations in Eq. (7.18a). We also note that the same RG
equations would have been obtained from the commuta-
tion relations of the isomorphic SU(2|1) algebra i.e. we
get the same results from the formulation in terms of
either the bosonic spinons or the fermionic spinons.

The impurity has 3 coupling constants, and we rep-
resent their renormalized values by γ, g, and s. The
coupling γ measures the coupling to the bosonic bath,
just as in Eq. (6.18). Similarly, g is the coupling to the
fermionic bath. We will see shortly that g and γ can
be chosen to be nearly marginal, by appropriate choices
of the exponents in Eq. (7.33). The coupling s tunes
the relative energies of the spin and holon states, as is
clear from Eq. (7.34). This is the relevant perturbation
mentioned at the start of this subsection, and its flow
leads to the phase diagram in Fig. 17. For s → +∞,
the energy of the holon is much lower, and we expect the
holon b to condense, leading to a disordered Fermi liq-
uid. Conversely for s → −∞, the spinons will condense
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FIG. 18 RG flow (Joshi et al., 2020) of Eq. (7.35) in the
γ-g plane plotted for ε = 1 and r̄ = 0.5. The red point is
the stable fixed point in this plane, which is unstable only to
flows predominantly in the s direction out of the plane; this
fixed point describes the p = pc critical state in Fig. 17, and
p− pc tunes the co-efficient of the relevant perturbation (not
shown), which presumably drives the system into the p > pc
and p < pc phases shown in Fig. 17.

(in the SU(2|1) formulation, as in Fig. 17), leading to a
spin glass. And in between, at some s = sc we will have
the fixed point which describes the critical theory we are
interested in. To zeroth order in g, γ the critical point is
at sc = 0: this corresponds a 3-fold degeneracy in the 3
states of the superspin (see Fig 17), and a doping density
pc = 1/3. So we have the interesting prediction that the
critical doping density of the fully-connected random t-J
model is close to p = 1/3, a result that is indeed sup-
ported by the numerical results (Shackleton et al., 2021)
reviewed in Section VII.C.

The one loop RG equations are (Joshi et al., 2020)

β(g) = −r̄g +
3

2
g3 +

3

8
gγ2

β(γ) = − ε
2
γ + γ3 + g2γ

β(s) = −s+ 3g2s− g2 +
3

4
γ2 . (7.35)

We have introduced the variables

ε = 3− d , r̄ = (1− r)/2 (7.36)

and it is clear from Eq. (7.35) that the fixed points at
small ε and r̄ are under perturbative control in powers
of ε and r̄. The RG flows in the g, γ plane are shown in
Fig. 18: there is an attractive fixed point in this plane at
g∗s, γ∗2 of order ε, r̄. The relevant perturbation s induces
flows away from this fixed point in a direction which is
predominantly transverse to the g, γ plane. There are

also fixed points in Fig. 18 along the g = 0 line, corre-
sponding to the fixed point of the insulating magnet in
Eq. (6.20); and along the γ = 0 line, corresponding to
the fixed point of the asymmetric pseudogap Anderson
impurity (Fritz and Vojta, 2004; Vojta and Fritz, 2004),
and has properties similar to the large M critical metal
solution of Section VII.D.2 in Fig. 16.

Finally, we can compute the scaling dimensions of the
electron and spin operators at the red fixed point of
Fig. 18. As in Section VI.C, these scaling dimensions
are protected by the Berry phase term in Eq. (7.19) that
imposes the SU(1|2) commutation relations at any fixed
at non-zero g∗ and γ∗. So we are able to compute the
exponents in Eq. (7.20) to all loop order; we find

〈
cα(τ)c†α(0)

〉
∼ sgn(τ)

|τ |1−r

〈S(τ) · S(0)〉 ∼ 1

|τ |3−d . (7.37)

We now restore the self-consistency condition in
Eq. (7.21), and find the self-consistent values r = 0 and
d = 2. These self-consistent exponents are the same as
those obtained for the doped SY spin liquid case in the
large M computation of Eq. (7.32). There is however
an interesting difference that will benefit from further
study: the electron correlator in Eq. (7.32) is allowed to
have particle-hole asymmetry with A+ 6= A−, but that
is not the case for the present RG analysis.

E. Transport in random exchange t-U-J models

Discussing conductivity requires a slightly different
setup than a fully-connected lattice in order to properly
define transport and the current operator. One possi-
bility is to consider the model on the Bethe lattice with
non-random hopping amplitudes tij = t/

√
z, with z the

connectivity of the lattice. In the limit z →∞, the self-
energy and local Green’s function obey the same equa-
tions as the model with random tij (Georges et al., 1996).
Another possibility is to consider a translationally invari-
ant lattice of fully connected dots, as in Section X.

The conductivity is given by the Kubo formula:

σdc =
2πe2

~

∫
dω

β

4 cosh2(βω/2)

∫
dε φ(ε)A(ε, ω)2.

(7.38)
In this expression, ε is the energy of a bare single-particle
state within the band and A(ε, ω) = −(1/π)ImGR(ε, ω)
is the energy (momentum-) resolved spectral function.
The transport function φ(ε) is defined on a Bravais lattice
by:

φ(ε) =

∫
ddk

(2π)d
v2
kxδ(ε− εk) , (7.39)



40

in which vkx = (∇kεk)x/~ is the velocity in the consid-
ered direction. On the infinite-connectivity Bethe lattice
φ(ε) = φ(0)[1 − (ε/2t)

2
]3/2 (Georges et al., 1996). Here,

we have assumed that the self-energy as well as the 2-
particle vertex function only depends on frequency. As
a result, because the current vertex is odd in momen-
tum, vertex corrections to the conductivity vanish and
the full Kubo formula reduces to the fermionic bubble
in Eq. (7.38) (Khurana, 1990). Note that this is not the
case for other correlation functions which are even-parity
(such as charge or spin) (Georges et al., 1996).

Let us discuss the behaviour of the resistivity follow-
ing from Eq. (7.38) in two different situations. First,
we consider a case in which ImΣ is much larger than
the dispersion of the band itself (i.e the range over
which ε varies in the integral). Then the disper-
sion can be entirely neglected and we obtain: σdc ∝∫
dω
[
β/(4 cosh2(βω/2))

]
(Im1/Σ)

2
. This applies for ex-

ample to the large-M limit of the random exchange t-J
model discussed in Sec.VII.D.1 in the SYK regime where
T > Tcoh. In that case, ImΣ ∝

√
JTf(ω/T ), where f(...)

is a scaling function. Inserting this into the expression
above leads to ρ(T )/ρQ ∝ T/Tcoh, i.e. a resistivity which
is T -linear but larger than the MIR value (introduced in
Section III). This bad metallic behaviour does correspond
however to a Planckian regime with a diffusion constant
∝ 1/T since the compressibility is temperature indepen-
dent. Interestingly, the conductivity is proportional to
the square of the transport scattering rate in this regime;
the latter is T -linear while the inverse single-particle scat-
tering rate is ∝

√
JT . This mechanism for a Planckian

bad metal with T -linear resistivity was first discussed in
(Parcollet and Georges, 1999).

In the second case ImΣ is, in contrast, smaller than the
band dispersion. This applies, for example, in the low-
T limit of most of the models discussed in this review.
The integral in Eq. (7.38) can then be approximated as:∫
dε φ(ε)A(ε, ω)2 ∼ φ[ω + µ − ReΣ(ω)]/(2π|ImΣ(ω)|).

Due to the derivative of the Fermi function, one can set
ω = 0 in the numerator. Defining the renormalized Fermi
level as εF = µ−ReΣ(0, 0) (which coincides with the bare
Fermi energy when Luttinger’s theorem is satisfied), one
obtains:

σdc '
e2φ(εF )

~

∫
dω

β

4 cosh2(βω/2)

1

|ImΣ(ω, T )| .
(7.40)

This expression is similar to Drude-Boltzmann theory,
but we emphasize that it is valid even when the scat-
tering rate has a non-Fermi liquid form. For example
when ImΣ = T νf(ω/T ), we obtain ρ ∝ T ν ; ν = 1
corresponds to a Planckian metal. Evidence for such
nFL behavior of the scattering rate was discussed above
in the quantum critical regime of the random bond t-
J and Hubbard models (Cha et al., 2020b; Dumitrescu
et al., 2022). We also emphasize, as is well known

from transport theory, that the wave function normal-
isation Z(T ) ∝ (1 − ∂ReΣ(ω, T )/∂ω|ω=0)−1 does not
enter the expression of the conductivity, in contrast to
the width of the one-electron spectral function which
is ∝ Z|ImΣ| (and can be interpreted as the inverse of
the quasiparticle lifetime in a Fermi liquid). It is in-
teresting to note that, for a nFL with ImΣ ∝ T ν and
ν < 1, the latter always displays Planckian behavior
∝ T , independently of the value of the exponent ν since
Z(T, ω = 0) vanishes as Z(T ) ∝ T 1−ν . Indeed, the
real part of the self-energy is related to the imaginary

part by ReΣ(ω) = −
∫
dω′ ImΣ(ω′)/π

ω−ω′ , from which it fol-

lows for ν < 1 that ReΣ(ω) = T ν f̃(ω/T ) and hence
1/Z = 1− ∂ωReΣ = 1− T ν−1f̃ ′(ω/T ); see (Georges and
Mravlje, 2021) for details.

We note that Eq. (7.38) also applies to non-random
models in the (DMFT) limit of infinite connectivity. An
interesting connection was recently noted (Cha et al.,
2020a) between the T -linear behavior of the resistivity
in such models in the high-T bad metal regime (Pálsson
and Kotliar, 1998; Perepelitsky et al., 2016) discussed
in Sec. III.A and the SYK equations for the self-energy.
Whether such a connection also exists in the lower tem-
perature regime is an interesting open question - for a
recent study of T -linear resistivity in the non-random
Hubbard model using cluster extensions of DMFT, see
(Wu et al., 2021). Possible connections between the SYK
model and nFL regimes of non-random multi-orbital
models have also been pointed out (Tsuji and Werner,
2019; Werner et al., 2018). Relevance of SYK criticality
to possible instabilities of ‘Luttinger surfaces’ has also
been discussed (Setty, 2020, 2021).

Thermoelectric transport has also been analyzed in
random-exchange and SYK models. It was pointed
out (Davison et al., 2017; Kruchkov et al., 2020) that the
thermopower of a lattice of SYK islands is directly related
to the spectral asymmetry parameter E introduced in
Eq. (5.25), and hence offers a possible probe of the resid-
ual T = 0 entropy. That relation may be more involved
in general however (Kruchkov et al., 2020; Pavlov and
Kiselev, 2021). Recently, (Georges and Mravlje, 2021)
emphasized that the intrinsic particle-hole asymmetry
of the ω/T scaling function in Eq. (7.11), characteris-
tic of ‘skewed’ Planckian (or sub-Planckian) metals, has
remarkable consequences for the sign and T -dependence
of the thermopower down to low-T , even in the presence
of additional elastic scattering. Possible relevance to See-
beck measurements on cuprate superconductors was ex-
plored (Gourgout et al., 2021).

F. General mechanism for T -linear resistivity as T → 0
from time reparameterization

The quantum-critical T -linear resistivity computed nu-
merically in Section VII.C (and also in Section VII.B) is
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somewhat mysterious when compared with the analytical
results. Recall that we found a leading Fermi liquid-like
behavior in the electron Green’s function at the quan-
tum critical point in the non-Fermi liquid large M limit
in Eq. (7.32), and also in the RG analysis for M = 2 in
Eq. (7.37). The RG analysis also makes clear that this
Fermi liquid exponent for the electron operator is likely
exact to all orders in 1/M . Inserting such an electron
spectral density in Eq. (7.38), we obtain temperature in-
dependent residual resistivity as T → 0, ρ(0). We note
that this large residual resistivity, present even for a large
dimension lattice without hopping disorder, appears to
be an artifact of the non-Fermi liquid large M limit of
Section VII.D.2 (Guo et al., 2020). The Fermi liquid large
M limit of Section VII.D.1 has vanishing residual resis-
tivity (Parcollet and Georges, 1999), and this also ap-
pears to be the case in the numerical study in the SU(2)
limit (Dumitrescu et al., 2022). It is possible that the
non-Fermi liquid large M limit of Section VII.D.2 has a
crossover in the residual resistivity at a frequency which
vanishes as M becomes large.

We obtain a T -dependence to the resistivity as T → 0
by considering corrections to scaling for the electron oper-
ator in the N =∞ theory. The structure of these correc-
tions can be easily deduced from the theory described in
Section V.E, which generalizes directly to the t-J model
(Tikhanovskaya et al., 2021b). As for the entropy in
Eq. (5.53), and the spin spectral density in Eq. (6.9),
we consider the corrections due to h = 2 operator. The
scaling dimension of this operator is also ‘protected’ at
h = 2, given its connection to the Schwarzian theory
in Section V.F i.e. it is the ‘time reparameterization’
operator, and the ‘boundary graviton’ in the holographic
theory to be discussed in Section XII.B. Therefore, we ex-
pect that the h = 2 scaling dimensions does not acquire
any 1/M corrections. By the same arguments leading
to Eq. (6.9) for the spin spectral density, we now obtain
for the temperature dependence for the resistivity (Guo
et al., 2020)

ρ(T ) = ρ(0) [1 + Cργ T + . . .] . (7.41)

The linear T dependence is the power Th−1, which is
related to that in Eq. (5.45), for the time reparameteri-
zation mode with h = 2. The parameter γ is the same as
that in the entropy in Eq. (5.53), and Cρ is a dimension-
less universal number similar to C in Eq. (6.9). The value
of Cρ can be computed in the large M limit of the t-J
model (Guo et al., 2020). While the co-efficient of lin-
ear T resistivity is controlled by the residual resistivity
in this large M computation, that is not the case for the
numerical SU(2) computation in Fig. 14, with the cor-
responding phase diagram in Fig. 13 (Dumitrescu et al.,
2022). We also note that the large M theory of the doped
t-J model has operators with h < 2; but the scaling di-
mension of these operators is not protected, and their
contribution to the resistivity is numerically small in the

large M theory (Tikhanovskaya et al., 2021b).

G. Experimental relevance

The models described in this section are, of course, not
meant to be microscopically realistic models of materials
displaying nFL behaviour, such as the cuprate strange
metal. Nonetheless, as we now discuss, the physics of
the doped Hubbard and t-J models with random ex-
change couplings exposed above present rather striking
similarities with some of the salient phenomenology of
the cuprates and can serve as a building block for cap-
turing certain universal aspects of nFL behavior in gen-
eral. We recall two of the most fundamentally intriguing
phenomena observed in these materials:

• The appearance of a pseudogap regime below a crit-
ical doping (p < p∗). At low T and high fields,
quantum oscillations have revealed the existence
of pocket Fermi surfaces (Doiron-Leyraud et al.,
2007; Proust and Taillefer, 2019). These oscilla-
tions appear in a regime with long-range charge
density wave order, but it is clear that a simple
model of reconstruction of the large Fermi surface
by the charge density wave order cannot explain the
details of the quantum oscillations. At higher T , or
at dopings pCDW < p < p∗ (where pCDW is the
doping below which there is charge density wave
order), there is no known long-range order, and
there is clear experimental evidence that the elec-
tronic spectrum cannot be described by the large
Fermi surface. The observations include angle-
dependent magnetoresistance (Fang et al., 2022)
and the ‘Fermi arcs’ in angular resolved photoe-
mission spectroscopy (ARPES) (Damascelli et al.,
2003).

• Near p∗, several properties are evocative of quan-
tum criticality, most notably: (i) T -linear resis-
tivity with a transport scattering time obeying
Planckian behaviour τ ' α~/kBT down to low tem-
peratures (Bruin et al., 2013; Grissonnanche et al.,
2021; Homes et al., 2004; Hussey, 2008; Legros
et al., 2019; Varma, 2020; Zaanen, 2004) (ii) ω/T
scaling observed in several spectroscopies, such as
optical conductivity (van der Marel et al., 2003)
and ARPES (Reber et al., 2019). (iii) A diverg-
ing specific-heat coefficient near p∗, with logarith-
mic dependence of C/T upon T at p = p∗ (Michon
et al., 2019).

Seen in this perspective, the doped random exchange
models discussed above offer a simple platform in which
to study some of these phenomena. We have reviewed
that they display a critical point upon doping at which
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quantum critical scaling is observed, and that the Lut-
tinger theorem breaks down at this critical doping. We
find clear evidence of the Luttinger breakdown in the
value of the chemical potential at temperatures above
the spin glass transition for p < pc in the Monte Carlo
study (Dumitrescu et al., 2022), and at zero temperature
within the metallic spin glass in the exact diagonaliza-
tion study (Shackleton et al., 2021). The precise nature
of the Fermi surface reconstruction, and possible volume
collapse, is still to be investigated in the low T metallic
spin-glass phase for p < pc, and is one of the fascinating
open questions in the field.

Most notably, these doped random exchange and SYK
models are among the few theoretical models in which
Planckian behaviour of transport (Zaanen, 2004) in the
absence of coherent quasiparticles can be studied in a
controlled manner (we note investigations of this issue
(Varma et al., 1989; Varma, 2016, 2020) in the marginal
Fermi liquid context). The randomness of the exchange
constants helps introduce ‘frustration’ and is, at the the-
oretical level, a simple way to account for the fact that
the physics of short-range spin correlations is important
in the pseudogap phase, but without true long-range or-
der. One can also argue, as emphasized early on (Par-
collet and Georges, 1999), that randomness of the ex-
change constants can be motivated at a more micro-
scopic level. In this respect, recent nuclear magnetic res-
onance and ultrasound measurements have revealed that,
remarkably, the spin-glass phase extends up to p = p∗ for
La2−xSrxCuO4 subject to a high magnetic field (Frachet
et al., 2020). The critical theory of the random exchange
models is not particle-hole symmetric, and the possi-
ble relevance of the intrinsic particle-hole asymmetry of
the ω/T scaling function associated with the scattering
rate has been recently emphasized for the interpretation
of Seebeck measurements on the cuprates (Georges and
Mravlje, 2021; Gourgout et al., 2021).

Another indication of Planckian behavior is the
anomalous continuum observed in dynamic charge re-
sponse measurements (Husain et al., 2019; Mitrano et al.,
2018) on optimally doped Bi2.1Sr1.9Ca1.0Cu2.0O8+x (Bi-
2212) using momentum-resolved electron energy-loss
spectroscopy (M-EELS). This has been studied in a
model with additional random density-density interac-
tions (Joshi and Sachdev, 2020).

VIII. RANDOM EXCHANGE KONDO-HEISENBERG
MODEL

This section will combine the random matrix model of
mobile electrons of Section IV with the random quantum
magnet of Section VI, and couple them together with
a non-random, antiferromagnetic, Kondo exchange cou-

pling JK . So we have the Kondo-Heisenberg Hamiltonian

HKH =
1

(N)1/2

N∑
i,j=1

tijc
†
iαcjα − µ

∑
i

c†iαciα (8.1)

+
1√
N

∑
1≤i<j≤N

JijSi · Sj +
JK
2

∑
i

Si ·
(
c†iασαβciβ

)
,

which has been used extensively as a theory of numerous
rare-earth intermetallics (usually, in the absence of ran-
dom exchange), the so-called heavy fermion compounds.
This model exhibits a ‘heavy Fermi liquid’ (HFL) ground
state, which is a Fermi liquid with electron-like quasi-
particle excitations with a large effective mass for mod-
els with non-random tij . Moreover, the Fermi energy
is ‘large’, because the occupied states count both the
conduction electrons ciα, and the spins Si. The fully
connected random model also has such a heavy Fermi
liquid phase which obeys a Luttinger theorem with this
large Fermi energy (Burdin et al., 2002; Nikolaenko et al.,
2021), as we discuss further in Section VIII.C.

Our interest here is in other possible phases of the
Kondo-Heisenberg lattice model, and on the quantum
critical points to these phases starting from the HFL.
A possibility of particular interest is the ‘fractionalized
Fermi liquid’ (FL*) (Burdin et al., 2002; Paramekanti and
Vishwanath, 2004; Senthil et al., 2003, 2004) in which the
Fermi surface is ‘small’ and includes only the volume of
the conduction electrons. The spins Si form a spin liquid
state with fractionalized excitations, and the fractional-
ized excitations are required to exist to allow deviation
of the Fermi surface volume from the Luttinger value
(Bonderson et al., 2016; Else et al., 2021; Paramekanti
and Vishwanath, 2004; Senthil et al., 2004); we also note
other discussions of FL* and related states (Andrei and
Coleman, 1989; Chowdhury et al., 2018; Coleman et al.,
2005a; Paschen and Si, 2021; Paul et al., 2007, 2008, 2013;
Pixley et al., 2014; Si, 2010). In the random fully con-
nected model, the Si spins form the SYK spin liquid of
Section VI in the large M limit, as we will describe in
Section VIII.B. A number of recent experiments have re-
ported the existence of a paramagnetic metallic phase
with a Fermi surface volume that does not appear to in-
clude the local moment electrons in YbRh2(Si0:95Ge0:05)2

(Custers et al., 2010; Custers et al., 2003), CePdAl (Zhao
et al., 2019), and CeCoIn5 (Maksimovic et al., 2022),
which shares resemblance with some aspects of the FL*
phase.

A third possible phase of the Kondo-Heisenberg lattice
model has broken spin rotation symmetry, and associated
magnetic order. For the random fully connected model in
Eq. (8.1) with SU(2) spin symmetry, this is likely realized
as a spin glass phase. We will discuss a RG analysis of
the SU(2) model in Section VIII.D, and this has a fixed
point which is expected to describe the transition from
the spin glass to the HFL. There have been a number of
experimental studies of such a transition (Aronson et al.,
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1995; Gannon et al., 2018; Schröder et al., 1998; Seaman
et al., 1991; Shimizu et al., 2012; Soldevilla et al., 2000;
Theumann and Coqblin, 2004; Vollmer et al., 2000; Zapf
et al., 2001) in the heavy-fermion compounds.

We refer the reader to other reviews (Kirchner et al.,
2020; Stewart, 2001) for further discussion of the connec-
tions between the Kondo-Heisenberg model and experi-
ments on the heavy-fermion compounds.

A. Effective local action

We begin our analysis, as in Section VII.A, by averag-
ing over disorder, and formulating the problem in terms
of self-consistent single site problem. We average over the
tij and Jij in Eq. (8.1), and in the large N limit we obtain
the following single site averaged partition function

ZKH =

∫
Dcα(τ)DS(τ)δ(S2 − 1)e−SB−SKH

SB =
i

2

∫ 1

0

du

∫
dτS ·

(
∂S

∂τ
× ∂S

∂u

)
+

∫
dτ

[
c†α
∂cα
∂τ

]
SKH =

∫
dτ

[
−µ c†αcα +

JK
2
S ·
(
c†ασαβcβ

)]
− J2

2

∫
dτdτ ′Q(τ − τ ′)S(τ) · S(τ ′)

−t2
∫
dτdτ ′R(τ − τ ′)c†α(τ)cα(τ ′) + H.c. . (8.2)

From this action we determined the correlators

R(τ − τ ′) = −1

2

〈
cα(τ)c†α(τ ′)

〉
ZKH

Q(τ − τ ′) =
1

3
〈S(τ) · S(τ ′)〉ZKH (8.3)

and finally impose the self-consistency conditions

R(τ) = R(τ) , Q(τ) = Q(τ). (8.4)

As was the case for the t-J model in Section VII.D,
closely related equations can also be obtained for the case
of non-random tij , involving an electron dispersion εk.

It is interesting to note the difference between the
single-site self-consistency problem for the t-J model of
Section VII.D, and the present Kondo-Heisenberg model.
The Berry phase term SB reflects the different quantum
degrees of freedom on the site: (i) for the t-J model
we have the 3 states of the SU(1|2) superspin described
above; (ii) for the Kondo-Heisenberg model we have the
2 state of the SU(2) spin 1/2 S, and the 4 states of the
electron cα, for a total of 8 states. Both models have
very similar bosonic and fermionic baths, but do differ in
the on-site Hamiltonian: the present model has a Kondo
coupling JK .

The self-consistent single-site quantum problem de-
fined by Eqs. (8.2,8.3,8.4) cannot be solved exactly, and
we will address it in the following subsections by the same
methods used earlier for the random quantum magnet
problem defined by Eqs. (6.11,6.12,6.13), and the Hub-
bard model problem defined by Eqs. (7.4,7.5,7.6).

B. SU(M) symmetry with M large

The large M analysis of the fully connected Kondo-
Heisenberg model (Burdin et al., 2002) proceeds by gen-
eralizing the model in Eqs. (8.2)-(8.4) to SU(M) sym-
metry just as in Section VI.A for the random quantum
magnet. We introduce fermionic spinons fα, α = 1 . . .M ,
treat the random Jij exchange as in Section VI.A, and
decouple by JK exchange by a bosonic field P (τ) ∼
c†α(τ)fα(τ). Note that because the JK exchange is non-
random, this decoupling variable is not bilocal in time.

In this manner, Eqs. (8.2)-(8.4) reduce to the following
equations for the fermion Green’s functions, self energies,
and time-independent saddle-point values iλ(τ) = λ and
P (τ) = P . The Green’s function acquires ‘band’ indices
associated with the f and c fermions, and so Dyson’s
equation has a matrix form(

Gf (iωn) Gfc(iωn)
Gcf (iωn) Gc(iωn)

)−1

= (8.5)(
iωn − λ− Σf (iωn) −P

−P iωn + µ−∆(iωn)

)
.

The f fermion self energy Σf is the same as that for
the random magnet in Section VI.A, and the dynamical
mean-field ∆ is the same as that of the random matrix
model in Eq. (4.6b):

Σf (τ) = −J2G2
f (τ)Gf (−τ)

∆(τ) = t2Gc(τ) . (8.6)

Finally, the hybridization parameter, P , is determined
by the self-consistency equation

P = JKGfc(τ = 0−) . (8.7)

The equations can be obtained from a G-Σ action anal-
ogous to Eqs. (5.56) and (6.6)

I[G,Σ,∆, λ, P ] =

∫ β

0

dτ

[ |P (τ)|2
JK

− iλ(τ)

2

]
− ln det

[
(∂τ1 + iλ(τ1))δ(τ1 − τ2) + Σf (τ1, τ2)

−P ∗(τ1)δ(τ1 − τ2)

−P (τ1)δ(τ1 − τ2)
(∂τ1 − µ)δ(τ1 − τ2) + ∆(τ1, τ2)

]
− Tr (∆ ·Gc) +

t2

2
Tr (Gf ·Gf )

− Tr (Σf ·Gf )− J2

4
Tr
(
G2
f ·G2

f

)
. (8.8)
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P 6= 0

FIG. 19 Phase diagram of the large M Kondo lattice (Burdin
et al., 2002) with random exchange. The dashed lines are
crossovers, but the T = 0 filled circle marks a quantum phase
transition. The FL* phase and the quantum critical point
exhibit linear-in-T resistivity with the small carrier density of
the conduction electrons. The HFL exhibits Fermi-liquid T 2

resistivity with a large carrier density of both the conduction
electrons and the local moments. The critical theory of the
HFL-FL* transition at T = 0 has also been discussed for
models with full translational symmetry (Senthil et al., 2003,
2004).

A complete solution of Eqs. (8.5-8.7) requires a nu-
merical analysis, but much can be understood from a
low frequency analysis similar to those in the preceding
subsections (Burdin et al., 2002). The phase diagram as
a function of T and J is shown in Fig. 19. A key deter-
minant of the phase structure is the value of P . We have
P 6= 0 below the line labeled TK in Fig. 19: this line ap-
proaches the single site Kondo temperature in the limit
J → 0. In this regime we have the HFL phase, in which
both the spins and the electrons are part of the Fermi vol-
ume, as described in more detail in Section VIII.C. The
transition across the line where P vanishes is expected
to turn into a smooth crossover once 1/M corrections
have been included, as there is no underlying order in
the HFL phase at T > 0. However, the situation is dif-
ferent at T = 0: P vanishes at the red circle in Fig. 19,
which denotes a quantum critical point between the HFL
and FL* phases: this point is expected to survive 1/M
corrections because of the discontinuous change in the
Fermi volume to be described in Section VIII.C. More-
over, the critical theory has P = 0, and so the critical
point has a ‘small’ Fermi energy, in contrast to that for
the t-J model, as we will discuss further at the end of
Section VIII.D.

Despite the absence of a sharp phase transition be-
tween them, there is a qualitative difference between
the observable properties of the HFL and FL* phases
at T > 0. In the HFL phase, the non-zero P quenches
the singular SYK behavior of the spins at low frequency,

just as in Section VII.D.1; consequently, we expect Fermi
liquid-like behavior of the quasiparticles at non-zero T
around a large Fermi energy. In particular, the resistiv-
ity ∼ T 2, and the associated carrier density will include
both the conduction electrons and the spins. In contrast,
while the FL* is also a metal, the carrier density is small,
and includes only the conduction electrons. Moreover, in
the present fully connected model, the singular SYK be-
havior of the spins survives. In the large M limit, the
spins are decoupled from the conduction electrons when
P = 0, but there will be a coupling at higher orders in
1/M . So although Σc = 0 at M = ∞, the leading cor-
rection to the imaginary part of the self energy (Burdin
et al., 2002)

ImΣc(ω = 0) ∼
(
JK
M

)2 ∫ ∞
0

dΩ

sinh(βΩ)

ρQ(Ω)

t
, (8.9)

where ρQ(Ω) is the SYK spin spectral density obtained in
Eq. (6.8). This leads to marginal Fermi liquid behavior
(Varma et al., 1989) for the small density of conduction
electrons, with ImΣc(ω = 0) ∼ T , and a linear-in-T re-
sistivity, using transport computations as defined in Sec-
tion VII.E.

This mechanism for the linear-in-T resistivity in the
Kondo lattice model is distinct from that for the t-J
model in Section VII.F. Here the carrier density at the
critical point is small , i.e. it does not involve the spins
due to the breakdown of the Kondo effect. In contrast,
the carrier density in Section VII.F was large, involving
all the electrons. Moreover, here the linear-in-T resis-
tivity arises already in the leading scaling results for the
SYK model, while those in Section VII.F required cor-
rections to scaling.

C. Luttinger theorem

The Luttinger theorem is normally applied to metallic
phases of electrons, and we obtained an instance of this
in Section VII.D.1 for the Fermi liquid phase of the t-J
model. But we also saw a modified Luttinger theorem in
Section VI.A for spins in an insulating Kondo magnet.
The Kondo Hamiltonian Eq. (8.1) has both spins and
mobile electrons, and there now are distinct realizations
of the Luttinger theorem in the HFL and FL* phases
(Senthil et al., 2003, 2004).

It is convenient to present the discussion in the large
M formulation of the theory in Section VIII.B, although
all statements in the present subsection hold to all
orders in 1/M . When expressed in terms of the spinons
fα, the theory in Eq. (8.2) has a U(1) gauge symmetry,
along with global U(1) symmetries associated with
the total charge of the cα electrons, (M/2)p, and the
total spin Sz. In principle, all 3 U(1) symmetries will
lead to their own and distinct Luttinger constraints,
unless there are condensates of bosons carrying U(1)
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charges (Coleman et al., 2005b; Powell et al., 2005) (we
review this connection between U(1) symmetries and
the Luttinger constraints at the end of Section XI.A.2).
In our discussion, the relevant boson is the hybridization
P ∼ c†αfα, and this is a Higgs boson because it carries a
U(1) gauge charge.

(A) FL* phase
In the FL* phase, there is no Higgs condensate 〈P 〉 =

0, so all 3 Luttinger constraints apply. An important
property of this phase is that the off-diagonal Green’s
function vanishes at all frequencies Gfc = 0. Conse-
quently, the constraints arising from the gauge U(1) and
Sz symmetries are essentially identical to those consid-
ered for insulating quantum magnets in Section VI.A,
which are in turn related to the discussion in Section V.B.
So we need only consider the constraint associated with
cα fermion charge, which is

Gc(τ = 0−) =
p

2
. (8.10)

We can write Gc in the FL* phase in the general form

Gc(iωn) =
1

iωn + µ− t2Gc(iωn)− Σc(iωn)
(8.11)

We have now included a self-energy Σc(iωn) which arises
from 1/M corrections. This obeys ImΣc(i0

+) = 0 at T =
0, and that is not the case for ∆(ω) in Eq. (8.6). Another
important point is that 1/M contributions to Σc(iωn) can
be obtained from a Luttinger-Ward functional, and the
Luttinger constraint will then follow straightforwardly.
First, we solve Eq. (8.11) to write

Gc(iωn) =

∫ ∞
−∞

dΩ
ρ(Ω)

iωn + µ− Σc(iωn)− Ω
(8.12)

where ρ(Ω) is the single particle density of states of the
random matrix model in Eq. (4.8). We now proceed
with the analysis of the Luttinger constraint as in Sec-
tion V.B: we expect that the contribution from the fre-
quency derivative of the self energy vanishes, I2 = 0, and
then such an analysis shows that Eq. (8.10) implies∫ EF

−2t

dΩ ρ(Ω) =
p

2
, (8.13)

where the Fermi energy is

EF = µ− Σc(0) . (8.14)

We note that the analog of the analysis above applies also
to the disordered Fermi liquid phase of Section VII.D.1
(Parcollet and Georges, 1999).

(B) HFL phase
In the HFL phase of the Kondo-Heisenberg lattice, we

do have a Higgs condensate 〈P 〉 6= 0, and so there is no

separate Luttinger constraint from the U(1) gauge sym-
metry. The analysis of the Luttinger constraint (Burdin
et al., 2000) with the conservation of the electron charge
will now lead to a ‘large’ Fermi energy of size (1 + p)/2
per spin (for the particle-hole symmetric value κ = 1/2
in Eq. (6.2) for the SU(M) spins) .

We begin by writing Dyson’s equation in Eq. (8.5) in a
general form valid beyond the large M limit. We define
an auxiliary matrix Green’s function by

[G(iωn,Ω)]
−1

=

(
iωn − λ 0

0 iωn + µ− Ω

)
− Σ(iωn)

(8.15)
where Σ(iωn) is the matrix self energy which obeys
ImΣ(i0+) = 0 at T = 0. As in Eq. (8.12), we have
replaced the t2Gc(iωn) in Eqs. (8.5) and (8.6) by Ω. The
presence of the Higgs condensate in the HFL phase re-
quires that the off-diagonal matrix elements of Σ(iωn) are
non-zero, and this is crucial for the Luttinger constraint
here.

We now state a useful identity, which can be veri-
fied by explicit computation, for the trace of the matrix
Green’s function G(iω) (which counts both the fα and
cα fermions)

TrG(iω) =

∫ ∞
−∞

dΩρ(Ω)

[
i
d

dω
ln det[G(iω,Ω)]

− iTr

(
G(iω,Ω)

d

dω
Σ(iω)

)]
. (8.16)

Notice the similarity of Eq. (8.16) to the identity used for
the SYK model in Eq. (5.15). The subsequent analysis
proceeds as there. In the present situation, the I2 con-
tribution of the second term in Eq. (8.16) vanishes from
the usual Luttinger-Ward functional argument because
we are in a Fermi liquid phase and there is no anomaly
at ω = 0. For p < 1, the first term in Eq. (8.16) yields
the Luttinger constraint (Burdin et al., 2000; Nikolaenko
et al., 2021) ∫ EF

−2t

dΩ ρ(Ω) =
1 + p

2
, (8.17)

which, unlike Eq. (8.13), counts both the cα electrons
and the spins. The expression for the Fermi energy in
Eq. (8.14) is now replaced by

det [G(0, EF )]
−1

= 0 . (8.18)

D. RG analysis for SU(2) symmetry

We will now analyze ZKH in Eq. (8.2) by combining
the RG analysis of Section VI.C with the ‘poor-man’s
scaling’ RG of the Kondo problem.

This analysis will be carried out perturbatively in JK ,
as in the ‘poor-man’s scaling’ (Hewson, 1997). Then at
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leading order, with JK = 0 but the mean-square hopping
t arbitrary, the equations for the cα Green’s function re-
duce precisely to those solved earlier in Section IV for the
random matrix problem. These yield a fermion Green’s
function with a constant density of states at the Fermi
level ∼ 1/t, as in Eq. (4.8). Note that this is a Fermi level
only of the c electrons, and so is a ‘small’ Fermi ‘surface’:
so the present RG analysis is an expansion about the
small Fermi surface. After a Fourier transform, the con-
stant density of states implies G(τ) ∼ 1/(tτ) at large |τ |.
We therefore replace the fermion cα with a ‘bath’ fermion
ψα, which is the analog of the bosonic field φa that we in-
troduced in Section VI.C for the random quantum mag-
net. Similarly, we endow ψα with a momentum and a
dispersion, with the dispersion chosen so that ψα(x = 0)
has the same temporal correlator as that of cα. In this
manner, we can express the problem in terms of an im-
purity Hamiltonian of a single S = 1/2 spin coupled to
fermionic and bosonic baths (Sengupta, 2000)

Himp = γS · φ(0) +
JK
2
S ·
(
ψ†α(0)σαβψβ(0)

)
+

∫
dk k ψ†kαψkα +

1

2

∫
ddx

[
π2
a + (∂xφa)2

]
.(8.19)

The bath correlators are

Q(τ) ∼ 1

|τ |d−1
, R(τ) ∼ sgn(τ)

|τ | . (8.20)

and the value of d is to be determined by solving the self-
consistency condition for Q in Eq. (8.4). We have argued
above that the self-consistency condition for R is satisfied
by a Fermi liquid constant density of states (of the small
Fermi surface) at the Fermi level, and that dictated the
R(τ) in Eq. (8.20).

The impurity Hamiltonian in Eq. (8.19) has two cou-
plings, JK and γ and their RG flow equations can be
computed by combining the analyses of the usual Kondo
model (Hewson, 1997) and those for the random quan-
tum magnet in Eq. (6.20). This analysis is perturbative
in JK and ε = 3− d, and the one loop RG equations are
(Sengupta, 2000; Smith and Si, 1999; Zhu and Si, 2002)

β(γ) = − ε
2
γ + γ3

β(JK) = γ2JK − J2
K . (8.21)

The resulting RG flow is plotted in Fig. 20. The random
quantum magnet fixed point of Section VI.C is stable
to turning on a small JK , implying the stability of a
small Fermi surface phase. For SU(2), this small Fermi
surface phase has spin glass order; but more generally
in models which are not fully connected, it could be a
spin liquid, leading to a FL* state as in Section VIII.B.
For larger JK , there is an unstable fixed point beyond
which the flow is towards JK →∞, presumably to a large
Fermi surface HFL. We have labeled this fixed point as
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FIG. 20 RG flow (Sengupta, 2000) of Eq. (8.21) for ε = 1.
The γ = 0 axis corresponds to the usual Kondo RG flow
(Hewson, 1997). The ‘Kondo breakdown’ fixed point has one
relevant direction, and describes a phase transition between
a small Fermi surface phase (likely with magnetic order for
SU(2)) associated with the random quantum magnet fixed
point of Section VI.C, and a large Fermi surface HFL at large
JK . Compare to Fig. 18 for the random t-J model.

‘Kondo breakdown’ (Burdin et al., 2002; Sengupta, 2000;
Senthil et al., 2003, 2004; Si et al., 2001, 2003) because
it separates the HFL phase with Kondo screening, from
the small Fermi surface without Kondo screening.

It remains to solve the self-consistency equation in
Eq. (8.4) to determine the value of ε. As in Sections VI.C
and VII.D.3, the scaling dimension of the spin operator
can be determined (Zhu and Si, 2002) to all orders at
fixed point γ∗ 6= 0, and we find the same result as in
Eq. (7.37). The self-consistent value is again ε = 1, d = 2,
as for the t-J model.

It is interesting to compare the RG flow diagram for
the Kondo-Heisenberg model in Fig. 20 with that for the
t-J model in Fig. 18. In both cases, we have a criti-
cal fixed point with one relevant direction, and similar
critical correlators for the electron and spin operators: a
Fermi liquid-like critical electron correlator, and a SYK-
like critical spin correlator, as in Eq. (7.37) for d = 2 and
r = 0. However the density of electrons participating in
the electron correlator in Eq. (7.37) is different in the two
cases: at the Kondo breakdown fixed point the density
of electrons is small , and does not count the spins (as is
clear from Section VIII.C for P = 0, and from the large
M analysis in Section VIII.B), while at the t-J model
fixed point the density of electrons is large and counts all
electrons.
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E. Numerical analysis

A complete numerical analysis of the single-site, self-
consistent quantum problem defined by Eqs. (8.2,8.3,8.4)
with SU(2) symmetry has not yet been carried out. How-
ever, there have been a number of studies of related
models, motivated by an uncontrolled EDMFT analysis
of low dimensional models with non-random exchange
(Kirchner et al., 2020; Si et al., 2001, 2003), and a self-
consistency condition of the spin correlator which differs
from that in Eq. (8.4). The self-consistency on spin cor-
relators has only been systematically justified in models
with random exchange, like those considered above, as we
noted at the end of Section VII.A. The numerical anal-
yses were carried out for Ising spin symmetry (Glossop
and Ingersent, 2007; Grempel and Si, 2003; Zhu et al.,
2003, 2007), although recent works have also examined
SU(2) spin symmetry (Cai et al., 2020; Hu et al., 2020).
Aspects of these studies are similar to the RG results de-
scribed in Section VIII.D, with a SYK-like spin spectral
density (i.e. spin correlations similar to Eq. (6.23)) at a
critical point between a Fermi liquid phase and another
phase which is presumed to break spin symmetry.

IX. OVERVIEW OF NUMERICAL ALGORITHMS FOR
FULLY CONNECTED SU(2) MODELS

In the large-M limit, the action in Eq. (7.4) is solved
using a saddle point technique, which reduces to non lin-
ear integral equations for the Green function G as in
Eq. (5.2) and a simple expression of higher correlators
in terms of G using Wick’s theorem. The SU(2) case
is more complex. The action in Eq. (7.4) is still a (lo-
cal) quantum many body problem (at J = 0, it is the
Anderson quantum impurity model) and more advanced
algorithms are required to solve it.

In this section, we provide a brief introduction for non-
experts to the algorithms used to solve the SU(2) models
discussed above and discuss their strengths and limita-
tions. The goal is to solve the local action in Eq. (7.4), for
fixed bath ∆ and retarded spin-spin interaction J . The
self-consistency condition on ∆ and J is then solved with
an iterative technique (Georges et al., 1996). Note how-
ever that the self-consistency can generate a non trivial
frequency dependence for the bath ∆ and the interaction
J , respectively, which complicates the solution. For ex-
ample, any technique based on a flat bath spectral func-
tion with a large high energy cut-off, e.g. integrability, is
inoperable in this context.

A lot of progress has been made in the last two decades
on numerical algorithms to solve such quantum impurity
models with complex baths and interactions, in the con-
text of DMFT and its extensions (Gull et al., 2011). Sev-
eral classes of algorithms are available, in particular ac-
tion based Quantum Monte Carlo (QMC) or Hamiltonian

based methods (exact diagonalization, NRG, DMRG,
tensor network methods). The QMC are the methods
of choice here, due to the retarded spin-spin interaction
term in Eq. (7.4).

The SU(2) insulating case was studied first in the para-
magnetic phase using an auxiliary field QMC (Grempel
and Rozenberg, 1998), with a sampling method of the
auxiliary field in the Matsubara frequency space. Local
moments solutions were obtained at low temperatures,
as discussed in Section VI.B (Dumitrescu et al., 2022;
Grempel and Rozenberg, 1998).

Recent works however have used the “Continuous
Time” QMC (CTQMC) family of algorithms for quan-
tum impurity models. The central idea is to perform an
expansion of the partition function Z either in powers of
the interaction U and J around the non-interacting limit
(CT-INT (Rubtsov et al., 2005) or CT-AUX(Gull et al.,
2008) algorithms), or in powers of the bath hybridisation
∆ around the atomic limit (CT-HYB algorithm (Werner
et al., 2006)).

Let us consider first the CT-INT algorithm, used in
Sections VII.B and VII.C (Cha et al., 2020b; Dumitrescu
et al., 2022). The partition function Z

Z ≡
∫
Dc†σ(τ)Dcσ(τ)e−StUJ (c†σ(τ),cσ(τ)) (9.1)

is expanded in both U and J to any order as

Z =
∑
n≥0

∑
p≥0

(−U)nJ p
n! p!

∫ β

0

n∏
i=1

dτi

p∏
j=1

dτ ′jdτ
′′
j

∑
aj=x,y,z

×
〈
Tτ

n∏
i=1

n↑(τi)n↓(τi)
p∏
j=1

Saj (τ ′j)S
aj (τ ′′j )

〉
0

. (9.2)

The average is taken in the non-interacting model U =
J = 0 and, via Wick’s theorem, can be expressed as
a determinant in terms of the non-interacting impurity
Greens function.

The principle of the CTQMC is to sample Z stochas-
tically with a Metropolis Monte Carlo algorithm, com-
puting integrals of various dimensions simultaneously. A
Monte Carlo is defined by its configuration space and the
elementary steps constituting the Markov chain in this
space. Discretizing the integrals with a Riemann sum on
a regular grid of step δτ , the configurations C are sim-
ply given by the orders n and p and the set of τi, τ

′
i , τ
′′
j .

Formally, Z can then be written as

Z =
∑
n≥0

∑
p≥0

∑
Cnp

(δτ)n+2pfCnp(τi, τ
′
i , τ
′′
j ) (9.3)

where fCnp is given by the time-ordered correlator in
Eq. (9.2). The weight of a configuration Cnp is wCnp =
(δτ)n+2p|fCnp |. The MC Markov chain consists of ele-
mentary steps in adding or removing one (or two) ver-
tices at some randomly chosen times, sampling all the
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integrals simultaneously. The various correlation func-
tions are then computed from this Markov chain, as their
expansions are very similar (Gull et al., 2011). The typi-
cal order of the expansion explored by the algorithm can
be shown to be proportional to β, and in practice can
go up up to several hundreds. In this model, CT-INT
can develop a sign problem at low temperature in some
parameter regimes due to the J term. In practice how-
ever it can often be strongly reduced by using Gaussian
counter-terms added to both the bare action and the U
interaction term (Dumitrescu et al., 2022; Rubtsov et al.,
2005).

The CT-HYB algorithm is similar to CT-INT but is
based on a double expansion around the atomic limit, i.e.
in powers of ∆(τ), and J⊥ where the retarded spin-spin
interaction is rewritten JS(τ) ·S(τ ′) = J‖Sz(τ)Sz(τ ′)+
J⊥
∑
a=± S

a(τ)S−a(τ ′). Expanding Eq. (9.1) in ∆ and
J⊥, and using the antisymmetric property of time-
ordered fermionic correlators, the partition function Z
reads

Z =
∑
n≥0

∑
p≥0

J p⊥
p!n!2

∫ β

0

n∏
i=1

dτidτ
′
i

p∏
j=1

dτ̄jdτ̄
′
j×∑

σi=↑,↓

∑
aj=±

det
1≤i,j≤n

[
∆σi(τi − τ ′j)

]
×

〈
Tτ

n∏
i=1

c†σi(τi)cσi(τ
′
i)

p∏
j=1

Saj (τ̄j)S
−aj (τ̄ ′j)

〉
atomic

(9.4)

where the atomic correlators are taken in the isolated
atom, i.e. ∆ = 0 and J⊥ = 0. The CT-HYB algorithm
was introduced in the DMFT case J = 0 (Werner et al.,
2006), and later extended to the EDMFT case J 6= 0
(Otsuki, 2013; Otsuki and Vollhardt, 2013). The J‖ com-
ponent of the retarded spin-spin interaction can be taken
into account exactly in the atomic correlator. The second
expansion in J⊥ is however necessary, since no efficient
algorithm is known to compute the atomic correlators in
the presence of a retarded non abelian spin-spin interac-
tion term.

The CTQMC algorithms provide an exact solution in
Matsubara time. The main advantage over the previous
generation of QMC impurity solvers (Hirsch and Fye,
1986) is the ability to treat general atomic interactions,
including retarded interactions, and the absence of time
discretization as the algorithm can be performed directly
in the continuous time limit δτ → 0 (hence their name).
This last point can be illustrated easily, e.g. on a CT-
INT. Let us consider a Monte Carlo step from a config-
uration C of order (n, p) to a configuration C′ of order
(n+ 1, p). Their weights wC and wC′ are proportional to
(δτ)n+2p and (δτ)n+1+2p respectively as seen in Eq. (9.3).
However, the Markov chain steps can be chosen so that
the Metropolis ratio

RC→C′ =
TC′→CwC′

TC→C′wC
(9.5)

(where TC→C′ is the proposition probability of the step),
is finite for δτ → 0. Indeed, TC→C′ = δτ/β (the probabil-
ity to randomly pick up one new time on the imaginary
axis), and TC′→C = 1/(n + 1) (the probability to ran-
domly select one time to remove from the configuration
C′). As R controls the Metropolis algorithm, its finite
limit ensures the continuous time limit of the algorithm,
even though the weights themselves vanishes at δτ → 0.
The absence of time grid extrapolation is a great advan-
tage in practice at low temperatures (Gull et al., 2011).

The main limitations of the CTQMC includes some
sign problem (depending on the exact algorithm and the
parameter regime), a poor scaling with temperature (like
β3), and most importantly their restriction to imaginary
time. Some delicate analytical continuation are required
to access real frequency correlations. Note that a third
generation of QMC for impurity problems has recently
appeared that work directly in real time (Cohen et al.,
2015; Profumo et al., 2015; Maček et al., 2020). They are
based on diagrammatic computations of physical quan-
tities rather than the partition function. It is an open
question whether these new approaches, when properly
generalized to handle the retarded spin spin interaction,
will allow to solve some of the remaining challenge in
these systems, including e.g. the low temperature be-
havior.

X. LATTICE MODELS OF SYK-ATOMS

This section returns to the SYK model of Section V,
and follows a different strategy towards connecting it to
the physics of quantum matter. In Sections VI, VII,
and VIII we imposed ‘Mottness’ on the SYK model by
adding an on-site repulsion on each site i; this approach
then connected naturally to dynamical mean field theo-
ries of correlated materials. The present section will ex-
amine an alternative approach in which the SYK model
is viewed as a multi-orbital atom, and i labels the orbitals
on such an atom. Then we will examine a lattice of such
‘SYK-atoms’, and find that such models can also exhibit
regimes of non-Fermi liquid behavior with linear-in-T re-
sistivity. For models with a single band of SYK-atoms,
these non-Fermi liquids are invariably ‘bad metals’ at
temperatures higher than the renormalized bandwidth,
in that the resistivity exceeds the MIR resistivity, where
the quantum of resistance is redefined as h/Ne2 for the
N−orbital atom. This is in contrast to the non-Fermi
liquids obtained using a two-band generalization of these
models in Sec. X.B, or, those introduced earlier in Sec-
tion VII, which display resistivities smaller than the MIR
resistivity.

The models described in this section are interested in
describing the anomalous transport properties of non-
Fermi liquid metals with short-ranged interactions in
crystalline settings. We seek to address the fate of the
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electronic Fermi surface in the regime of strong interac-
tions when there are no long-lived low energy quasipar-
ticles. Therefore it is natural to address the extent to
which the models introduced thus far can serve as ele-
mentary building blocks for addressing these fundamen-
tal questions in a controlled setting. In the next few sub-
sections, we discuss properties of a number of different
variants of the SYK models.

A. Breakdown of a heavy Fermi liquid

We begin by writing a model for electrons with orbital
labels i = 1, 2, .., N and hopping on the sites, r, of a
d−dimensional hyper-cubic lattice (Fig. 21). The Hamil-
tonian, Hc = Hkin +Hint, is given by

Hkin = −
∑
r,r′

trr′c
†
ricr′i − µ

∑
i

c†ricri (10.1a)

Hint =
1

(2N)3/2

∑
r

N∑
ijk`=1

Uij;k` c
†
ric
†
rjcrkcr`. (10.1b)

The above Hamiltonian is thus a generalization of a com-
pletely (0+1)-dimensional model, H2 +H4, as introduced
in Eqs. (4.1a) and (5.1a), respectively. The simplest
choice for the hopping and interaction parameters is to
make them both random variables (Song et al., 2017). Al-
ternatively, the hopping parameters can be made transla-
tionally invariant such that they depend only on the spa-
tial separation, |r−r′| (Haldar et al., 2018; Zhang, 2017).
Of special interest is the situation where additionally the
interaction terms, Uij;k`, are also assumed to be indepen-
dent of the site label r (Chowdhury et al., 2018). Then,
Hint is constructed as a repeated array of the H4 term
in Eq. (5.1a) for every site r and the Uij;k` are identical
at every site, thereby preserving an exact (instead of sta-
tistical) translational invariance. The couplings are still
chosen from a Gaussian random distribution with zero
mean Uij;k` = 0 and variance |Uij;k`|2 = U2. Appeal-
ing to the self-averaging properties of the SYK model in
the large−N limit, we can compute correlation functions
of a typical translationally invariant realization (where
crystalline momentum is a good quantum number) by
averaging over the disorder realizations. The chemical
potential, µ, allows us to tune the electron density Q.
Variants of the one-band lattice model without any hop-
ping terms (i.e. trr′ = 0) and with only four-fermion
interactions that couple together different sites have also
been studied (Davison et al., 2017; Gu et al., 2017b),
with properties that are vastly different from what we
discuss below. A different family of lattice SYK models
defined in terms of Majorana fermions have been used
to study insulating transitions out of a diffusive metal
(Jian et al., 2017; Jian and Yao, 2017) and effects of
longer ranged correlated couplings on diffusive transport
(Khveshchenko, 2018b).
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FIG. 21 A basic building block for studying translationally
invariant lattice models constructed out of SYK-atoms with
N−orbitals per site. The different sites are coupled together
by single-electron hopping terms.

In the large−N limit, once again only the ‘melon
graphs’ survive (Fig. 7), but the Green’s function now in-
cludes an additional contribution due to Hkin and takes
a more non-trivial form compared to Eqs. (5.2a) and
(5.2b):

G(iωn,k) =
1

iωn − εk − Σ(iωn,k)
(10.2a)

Σ(iωn,k) = −U2T
∑
iΩn

∫
k1

G(iΩn,k1) Π(iωn + iΩn,k + k1)

(10.2b)

Π(iΩn, q) = T
∑
iω′n

∫
k′
G(iω′n,k

′) G(iω′n + iΩn,k
′ + q),

where
∫
k
≡
∫
ddk/(2π)d and εk is the electron dis-

persion. These equations are reminiscent of the usual
DMFT equations, but where the electron self-energy is
allowed to be momentum dependent. As we discuss be-
low, in the strong coupling limit, the momentum depen-
dence becomes parametrically weaker compared to the
frequency dependent renormalization, stemming from the
local SYK physics (Chowdhury et al., 2018).

The above equations are difficult to solve analytically
in general as a function of frequency and momenta; the
full solution can be obtained numerically across the en-
tire Brillouin zone. However, significant insights can be
gained analytically by starting with a low energy guess
for a self-consistent solution. Recall that in the limit
where the sites are all decoupled, at energies ω � U for
H4 in Eq. (5.1a), the electron scaling dimension ∆ = 1/4.
By simple power counting arguments, Hkin is a relevant
perturbation; as a result the power-law solution for the
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Green’s function obtained earlier can not survive down
to the lowest energies and there will be a crossover to
a regime dominated by Hkin that can nevertheless be
strongly renormalized due to interactions (Parcollet and
Georges, 1999; Song et al., 2017).

At the lowest energies, we assume the self-energy to
take a Fermi liquid form,

Σ(iωn,k) = −i(Z−1 − 1)ωn + ∆εk . (10.3)

where Z is the quasiparticle residue and ∆εk is the
renormalization associated with the dispersion, to be de-
termined self-consistently. As a further simplification,
zooming in on the near vicinity of the Fermi surface, we
can parametrize ∆εk = (∆vF )k where ∆vF is the Fermi
velocity renormalization and k is measured relative to
the Fermi surface. The self-consistency condition then
reduces to,

Z−1 − 1 = ν2
0U

2Z (10.4a)

∆vF
vF
∼ ν2

0U
2Z2, (10.4b)

where ν0 is the bare density of states at the Fermi en-
ergy. In the strong-coupling limit U � W , where W
is the unrenormalized single-particle bandwidth, we im-
mediately obtain Z ∼ 1/(ν0U) and (∆vF )/vF ∼ O(1).
Thus the dominant self-energy renormalization in Eq.
(10.3) is frequency dependent, with a much weaker mo-
mentum dependence. As a result, we also immediately
infer the effective mass renormalization, (m∗/m) = 1/Z.
The ground state is thus a heavy Fermi liquid with a
sharp Fermi surface at any strength of interaction.

The above picture of a Fermi liquid breaks down as a
function of increasing energies. Naively, one would ex-
pect this to occur for energies comparable to W ; this
is incorrect and the crossover instead occurs at a much
reduced scale of W ∗ ∼ W 2/U which also serves as the
renormalized bandwidth of the heavy Fermi liquid. Con-
sider the coherent part of the Green’s function,

G(iω,k) =
Z

iω − Zεk + iαν2
0U |ω|2 ln

(
W∗

|ω|

)
sgn(ω)

,

(10.5)

where εk = εk + ∆εk and α ∼ O(1) constant; the
ln(...) is specific to d = 2. After analytically contin-
uing to real frequencies, the imaginary part of the self-
energy in Eq. (10.5) becomes Σ′′(ω) ∼ ω2/W ∗, such that
Σ′′(W ∗) ∼ W ∗. Thus, at energies approaching W ∗, the
scattering rate of the quasiparticles becomes comparable
to the renormalized bandwidth. This is a sign that the
quasiparticle picture and the sharp Fermi surface associ-
ated with the low energy Fermi liquid is breaking down.

We can instead approach the problem from higher en-
ergy scales. For ω �W ∗, it is appropriate to start from
the solutions to Eqs. (10.2a) and (10.2b) in the decoupled

limit and treat the hopping perturbatively (i.e. in powers
of εk). In this limit, we reproduce the completely local
form of the electron Green’s function obtained earlier in
Eq. (5.3). The leading momentum dependence can be
obtained in the strong-coupling regime by expanding in
powers of εk,

G(iω,k) =
isgn(ω)√
U |ω|

−B(ω)
εk
U |ω| , (W ∗ � |ω| � U)

(10.6)

where B(ω) is a frequency independent constant whose
value depends on the sign of ω and descends from the
spectral asymmetry discussed earlier in Sec. (V). This
is an incoherent regime where the electronic quasipar-
ticles are not well defined. Note that the momentum-
dependent correction becomes comparable to the local
term at ω ∼W ∗.

The above description leads to a simple picture for the
properties of the model in Eq. (10.1a) and (10.1b). At
the lowest energy scales, the system is a heavy Fermi
liquid with a sharp Fermi surface satisfying Luttinger’s
theorem. All interaction induced corrections are predom-
inantly frequency dependent, with a weak residual mo-
mentum dependence. The DMFT-like behavior is linked
to the properties of the single SYK cluster. As a func-
tion of increasing energies, the quasiparticle scattering
rate increases until they are no longer well defined; at
scales approaching the renormalized bandwidth, W ∗, the
Fermi surface and the quasiparticles are completely de-
stroyed. Starting from higher energies, W ∗ also marks
the crossover where the completely local picture of the de-
coupled SYK dots with perturbative spatial corrections
breaks down and is accompanied by the incipient for-
mation of a Fermi surface. Going beyond the large−N
results discussed here, the fate of the low-temperature
phase can be vastly different (Altland et al., 2019a).

We note that if the model in Eq. (10.1a) and (10.1b)
is defined with a random trr′ and uncorrelated Uij;k` at
different sites (Song et al., 2017), the properties of the in-
coherent regime discussed above remain unchanged since
the spatial correlations are completely local. The low
energy disordered FL regime is similar in many aspects
to the FL discussed above, but is notably different in
the presence of the sharp Fermi surface. We return to
some of the consequences of this subtle difference when
we discuss transport in Sec. (X.C) below.

Finally, we note a model (Patel and Sachdev, 2019) in
which the random interactions are restricted to be ‘res-
onant’: this has W ∗ → 0, and the Planckian behavior
holds down to zero temperature. The rationale for such
a model is that the non-resonant interactions have al-
ready been absorbed in effective trr′ for the quasipar-
ticles. The resonance condition can be interpreted in
terms of a scalar field needed to impose the constraints,
and this indicates that Planckian behavior should appear
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more readily and naturally in ‘Yukawa-SYK’ models of
fermions and bosons with random Yukawa couplings: we
will consider such models in Section XI.

B. Marginal Fermi liquid and critical Fermi surface from
incoherent ‘flavor’ fluctuations

Our theoretical discussion of the metallic non-Fermi
liquids discussed in this review thus far have lacked any
interesting spatial structure. Even for the lattice model
considered in the previous section, the incoherent regime
had no singular momentum-dependent features. How-
ever, it is possible to add additional electronic degrees of
freedom to the model introduced in Eq. (10.1a), (10.1b)
and engineer a critical Fermi surface — a sharp elec-
tronic Fermi surface without any low-energy electronic
quasiparticles — over a wide range of energy scales. In-
terestingly, these additional electronic degrees of freedom
realize a ‘marginal’ Fermi liquid, where the single parti-
cle lifetime, Γsp ∼ max(ω, T ) (Chowdhury et al., 2018;
Patel et al., 2018b).

Consider an additional band of electrons, dri, defined
on the sites of the same hyper-cubic lattice with orbital
labels i = 1, .., N , with a separately conserved density,
Qd. We are interested in Hamiltonians of the form,

H = Hc +Hd, (10.7a)

Hd =
∑
k,i

εkd
†
kidki +

1

N3/2

∑
r

N∑
ijk`=1

Vij;k`c
†
rid
†
rjdrkcr`,

(10.7b)

where εk is the dispersion for d−electrons (including the
respective chemical potential) and Hc continues to be
defined by Eq. (10.1a) and (10.1b). The Vij;k` are
assumed to be identical at every site, thereby preserv-
ing translational symmetry, and chosen from a Gaus-
sian random distribution with Vij;k` = 0 and variance

|Vij;k`|2 = V 2. We are particularly interested in the
regime where the bandwidth for d−electrons, Wd, far ex-
ceeds the c−electron bandwidth, W . The setup here is
reminiscent of the periodic Anderson model for an itin-
erant ‘conduction’ electron band coupled to a strongly
interacting, narrow band (Hewson, 1997), except that
the interaction terms now are chosen to have a purely
SYK form. A different variant of the two-band model in-
volving an inter-band hybridization that conserves only
the total density has also been analyzed (Ben-Zion and
McGreevy, 2018).

In the large−N limit, only a set of coupled melon
graphs survive for the Green’s function corresponding to
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FIG. 22 The melon graphs for the model in Eq. (10.7a) for
the electron self-energies for (a) c, and (b) d electrons, re-
spectively. Solid black (red) lines denote fully dressed c (d)
Green’s functions. The dashed (dotted) line represents the
disorder averaging associated with the interaction vertices,
|Uij;k`|2 (|Vij;k`|2), respectively.

both c and d electrons (Fig. 22),

G(iωn,k) =
1

iωn − εk − Σ(iωn,k)− Σ′d(iωn,k)

(10.8a)

Gd(iωn,k) =
1

iωn − εk − Σd(iωn,k)
, (10.8b)

Σ′d(iωn,k) (10.8c)

= −V 2T
∑
iΩn

∫
k1

G(iΩn,k1) Πd(iωn + iΩn,k + k1)

Σd(iωn,k) (10.8d)

= −V 2T
∑
iΩn

∫
k1

Gd(iΩn,k1) Π(iωn + iΩn,k + k1)

Πd(iΩn, q) (10.8e)

= T
∑
iω′n

∫
k′
Gd(iω

′
n,k

′) Gd(iω
′
n + iΩn,k

′ + q),

where Σ(iωn,k) and Π(iΩn, q) are as defined earlier in
Eq. (10.2b).

Over an energy window W ∗ � ω (or T ) �
min(Wd, U), when the d−electrons scatter off the inco-
herent fluctuations associated with the c−electrons, their
self-energy is given by,

Σd(iω) ∼ −iω log

(
U

|ω|

)
, (10.9)

which has the celebrated marginal Fermi liquid (MFL)
form. It is worth emphasizing here that the MFL regime
in the present setup is generated self-consistently—even
after including its feedback on the c−electrons— without
having to postulate the existence of a featureless ‘bath’
(Varma et al., 1989).
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In the translationally invariant setting discussed here,
the d−electrons have a sharp Fermi surface. To make
this precise, we can take the limit of W ∗ → 0 at T = 0
and identify the location of the Fermi surface from the
solution to G−1

d (0,k) = 0. The critical Fermi surface
satisfies Luttinger’s theorem, where its size is now deter-
mined solely by Qd, i.e. the density of c−electrons is not
included in the size as anticipated, and can therefore be
characterized as ‘small’. The proof of Luttinger’s the-
orem for the critical Fermi surface follows the standard
treatment in Fermi liquids (Abrikosov et al., 1963) and
is based on the Luttinger-Ward functional. Interestingly,
the two-particle correlators (e.g. in the density response)
near the “2kF ” wavevector have a singular dependence
as a function of energy. Note that the singular form of
the self-energy in Eq. (10.9) is momentum independent
and not tied to the near vicinity of the Fermi surface.

The above construction leads to a concrete realization
of a ‘small’ critical Fermi surface with marginally defined
excitations. However, the critical Fermi surface obtained
here is necessarily accompanied by a finite extensive en-
tropy extrapolated to T → 0, which originates from the
usual entropy associated with the incoherent regime of
the local SYK islands of c−electrons. In Sec. XI below,
we will discuss a different class of models where the crit-
ical Fermi surface is ‘large’ (i.e. the size is determined
by the total electronic density) and can arise without an
extensive entropy in the T → 0 limit.

C. Thermodynamics and Transport

For the single-band model in Eq. (10.1a) - (10.1b),
the Fermi liquid at T � W ∗ has an entropy density,
s ∼ γFLT , where γFL ∝ m∗ ∼ 1/W ∗. In the incoher-
ent regime for T � W ∗, the entropy density is given
by that of a single SYK dot (Eq. 5.53) with weak per-
turbative corrections of order (W/U)2; the extrapolated
entropy in the limit of T → 0 from this regime is finite
(Georges et al., 2001), but the excess entropy is relieved
at T ∼ W ∗ across the crossover into the Fermi liquid
(Song et al., 2017). At T � W ∗, electrical transport
occurs as a result of the (perturbative) electron hops be-
tween SYK dots. Starting from Kubo formula for the
conductivity and given the completely local form of the
single-electron Green’s functions, the current-current cor-
relation function reduces simply to a convolution of two
spectral functions, much like standard computations of
transport within DMFT. This leads to

σ(ω, T ) =
Ne2

h

W ∗

T
F

(
ω

T

)
, (10.10)

where F (...) is a universal scaling function of ω/T . This
immediately leads to a bad metal T−linear resistivity
(and scattering rate) with values that can far exceed
ρQ = h/Ne2 over a range of temperatures, W ∗ � T �

U . In the Fermi liquid regime at T �W ∗, the resistivity
crosses over into a conventional regime with ρ = BT 2 as
long as the Fermi surface is large enough and electron-
electron umklapp scattering is allowed. Interestingly, the
coefficient (B) of the T 2 term satisfies the ‘Kadowaki-
Woods’ scaling (Kadowaki and Woods, 1986), as can be
verified simply by demanding that there is a smooth
crossover at T ∼ W ∗ between the two different metal-
lic regimes. We note that the ‘resonant’ model (Patel
and Sachdev, 2019) has W ∗ = 0, and it exhibits strange
metal linear T resistivity with values well below ρQ.

In the MFL regime of the two-band model introduced
in Eq. (10.7a), the critical Fermi surface associated with
the d−electrons gives rise to a singular specific heat,
C ∼ T ln(1/T ), at low temperatures, in addition to the
usual contribution from the SYK dot associated with the
c−electrons. Once again, given the local form of the
single-particle self-energy in the MFL regime, transport
simplifies considerably leading to a T−linear resistivity
associated with the d−electrons,

ρd(T ) ∼ h

Ne2

(
V 2

W 2
dU

)
T. (10.11)

In the translationally invariant setting of Eq. (10.7a), the
finite resistivity arises as a result of momentum relax-
ation to the ‘bath’ formed by the local c electrons at
every site (Chowdhury et al., 2018).

We end this section by noting that the extrapolated
zero-temperature entropy from the strange metal regime
of the cuprates vanishes (Loram et al., 1994), unlike the
residual extensive entropy in the limit of T → 0 associ-
ated with the models considered here displaying SYK-like
critical correlations at large N . There are a number of
other materials displaying nFL behavior over intermedi-
ate energy scales where the extrapolated entropy is also
known to be extensive and finite but relieved below a cer-
tain low-temperature coherence scale (Allen et al., 1996;
Brühwiler et al., 2006).

D. Superconductivity

Conventional Fermi-liquid metals, even with purely
repulsive interactions (i.e. in the absence of phonon-
mediated attraction), are unstable to superconductivity
at extremely low temperatures. This ‘Kohn-Luttinger’
mechanism (Kohn and Luttinger, 1965) relies on an effec-
tive attraction that is generated in a non-s-wave angular
momentum channel at higher orders in the interaction
strength. An analogous general statement can not be
made about the non-Fermi liquid metals introduced in
this article and their pairing instabilities, if any, have to
be analyzed on an individual basis.

The models introduced in this section so far do not
have any pairing instabilities. By extending these models
to include spinful fermions, a number of routes have been
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used to generate attraction via pair-hopping interactions
(Patel et al., 2018a; Wu et al., 2018), a random Yukawa
interaction to a bosonic field (e.g., phonon) (Classen and
Chubukov, 2021; Esterlis and Schmalian, 2019; Wang,
2020a) and introducing additional correlations between
the interaction matrix-elements, Uij;k` (Chowdhury and
Berg, 2020). At large−N , all of these models have
a mean-field like transition to superconductivity where
Eliashberg theory becomes asymptotically exact. How-
ever, the instability is not tied to the usual ‘Cooper-
logarithm’ (Abrikosov et al., 1963) associated with an
underlying Fermi surface and the ratio of gap-magnitude
to transition temperature is enhanced above the standard
mean-field value. When supplemented by an on-site at-
tractive Hubbard interaction, the above models display a
fluctuation regime resembling a ‘pseudogap’ (Wang et al.,
2020) before the superconducting transition. Certain
tensor models (Kim et al., 2019) and generalized SYK-
type models (Bi et al., 2017; Luo et al., 2019) defined in
terms of real fermions have also been studied and found
to exhibit spontaneous symmetry breaking analogous to
pairing.

Intrinsic superconducting instabilities of the non-
Fermi liquids introduced above and their analogy with
the Kohn-Luttinger mechanism can be seen by introduc-
ing a spin-label, σ =↑, ↓, modifying Eq. 10.1b to

Hint →
1

4N3/2

∑
r

∑
σ=↑,↓

N∑
ijk`=1

Uij;k` c
†
riσc

†
rjσ′crkσ′cr`σ,

(10.12)

and including additional correlations between the in-
teraction matrix elements as: Uij;k` = ±Uik;j`. The
physics is qualitatively different depending on the ± sign
here, as can be seen most directly by writing down the
Bethe-Salpeter equation (Fig. 23) for the intra-orbital,
spin-singlet vertex in the pairing channel: Φ`(r − r′) ≡
εσσ′cr`σcr′`σ′ .

Φ = Φ

i, σ

ℓ, σ

i, − σ

ℓ, − σ

j, σ′ k, σ′ 

ℓ, σ

ℓ, − σ

Uij;kℓ

Uik;jℓ

FIG. 23 The Bethe-Salpeter equation for the intra-orbital
pairing vertex, Φ, in the large−N limit .

At zero external center-of-mass momentum, the lin-
earized equation for Φ` becomes,

Φ`(ω,k) = (10.13)

∓U2T
∑
Ω

∫
q

Φi(Ω, q)G(iω, q)G(−iω,−q)Π(iω − iΩ,k − q),

where G(iω, q) and Π(iω, q) are as introduced earlier in
Eqs. 10.2a, 10.2b. Importantly, introducing the addi-
tional spin label and the matrix correlations, Uij;k` =
±Uik;j`, does not change the asymptotic nature of the
single-electron Green’s functions, but can lead to preemp-
tive instabilities to superconductivity depending on ‘±’
sign (Chowdhury and Berg, 2020). For the model with
Uij;k` = Uik;j`, the eigenvalue problem in Eq. 10.13 has a
non-trivial solution with a superconducting Tc ∼ U . Im-
portantly, superconductivity preempts the crossover into
the heavy Fermi liquid and arises at the level of a single
site due to effectively attractive interactions that are gen-
erated at O(U2); the superfluid stiffness is nevertheless
finite and given by NW ∗ � Tc. On the other hand, for
the model with Uij;k` = −Uik;j`, there is no instability
at the level of a single-site and while the pairing suscep-
tibility is enhanced approaching T ∼ W ∗ from above,
the non-Fermi liquid is stable against pairing. However,
across the crossover into the heavy Fermi liquid regime,
the momentum dependence in Π(q) can drive a pairing
transition, much like the Kohn-Luttinger mechanism, but
where Tc is now set by the only relevant scale in the prob-
lem, W ∗. Similar generalizations can also be constructed
for the two-band models in Sec. X.B, to analyze the
intrinsic pairing instabilities of the marginal Fermi liq-
uid with a critical Fermi surface (Chowdhury and Berg,
2020). We end by noting that for a variety of non-Fermi
liquids involving quantum critical degrees of freedom, the
Eliashberg equations share a similar structure (Abanov
and Chubukov, 2020; Wu et al., 2020).

XI. FERMI SURFACES COUPLED TO GAPLESS
BOSONS

This section will turn to a different, and extensively
studied, approach to non-Fermi liquids in clean metals.
We begin with a Fermi liquid with a well-defined Fermi
surface and long-lived quasiparticles, and examine the
breakdown of quasiparticles due to scattering from a gap-
less boson: this gapless boson can either be associated
with an order parameter near a symmetry-breaking tran-
sition, or an emergent excitation associated with fraction-
alization. Note, however, that the Fermi surface remains
sharp in momentum space, even though the quasiparti-
cles are not well defined and the spectra are broad in
energy space: this realizes a ‘critical Fermi surface’, as
discussed in Section II.B.

As we will describe below, there are difficulties (Lee,
2009) in applying conventional large N methods to the
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critical Fermi surface problem. However, progress has
recently become possible (Esterlis et al., 2021) by incor-
porating insights from a class of ‘Yukawa-SYK’ models
describing fermions and bosons with a 3-body Yukawa
coupling (Aldape et al., 2020; Esterlis et al., 2021; Es-
terlis and Schmalian, 2019; Fu et al., 2017; Kim et al.,
2021; Marcus and Vandoren, 2019; Murugan et al., 2017;
Patel and Sachdev, 2018; Wang et al., 2021; Wang, 2020b;
Wang and Chubukov, 2020). These methods provide a
systematic treatment of such critical Fermi surfaces, and
also exposes similarities to SYK non-Fermi liquids. The
new approach shows that required large N limit can be
obtained provided we allow random coupling constants,
as in the Yukawa-SYK models. In the present situation,
the couplings can be spatially uniform, so that trans-
lational invariance is maintained (Aldape et al., 2020;
Esterlis et al., 2021). Despite the presence of random
couplings, many properties self-average in the large N
limit, just as in the Yukawa-SYK models. The central
idea is that in a given finite N system, with a fixed set
of coupling constants, there is an RG flow to a common
universal low energy theory. Assuming the existence of
such a theory, we attempt to access the universal low en-
ergy physics simply by averaging over couplings. Upon
carrying out this procedure, we find that only certain
averages over the couplings matter, and the values of
these averages cancel out in the low energy theory, thus
supporting the existence of a universal theory. We note
that the idea of simplification realized by an average over
similar strongly-coupled theories is also playing an impor-
tant role in recent investigations in quantum gravity, and
averages over random matrices or conformal field theo-
ries yield systematic large N holographic realizations of
the path integral of simple theories of gravity (Afkhami-
Jeddi et al., 2020; Chen et al., 2021; Cotler and Jensen,
2021; Datta et al., 2022; Engelhardt et al., 2021; Maloney
and Witten, 2020; Pérez and Troncoso, 2020; Saad et al.,
2019; Stanford and Witten, 2019).

We will consider a specific model of a critical Fermi sur-
face — fermions coupled to an emergent U(1) gauge field.
As outlined in Sec. II.B, such a theory arises in a number
of different physical contexts, including spin liquid Mott
insulators with a gapless Fermi surface of spinons (Alt-
shuler et al., 1994; Lee, 1989; Polchinski, 1994) and the
compressible quantum Hall state in the half-filled Landau
level with a gapless Fermi surface of composite fermions
(Halperin et al., 1993). The formalism is also easily ex-
tended to a number of other examples involving the on-
set of broken symmetries, identified by order parameters
with vanishing lattice momentum, in a metal (e.g. Ising-
nematic order in a Fermi liquid (Metlitski and Sachdev,
2010)).
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FIG. 24 We focus on an extended patch of the Fermi surface,
and expand in momenta about the point k0 on the Fermi
surface. This yields a theory of 2-dimensional fermions ψ in
(11.3).

A. Fermi surface coupled to a dynamical U(1) gauge field

Consider a non-zero density of fermions coupled to an
emergent U(1) gauge field, Aµ. In the presence of a Fermi
surface, the longitudinal components of Aµ are screened
just as in an ordinary metal with Coulomb interactions.
However, there is no screening in the transverse sector,
and so we shall focus only on the transverse spatial com-
ponents Ax,y. We can schematically write the theory by
generalizing the action for the Fermi liquid to

ScA =

∫
dτ

[∫
ddk

(2π)d
c†ka

(
∂

∂τ
+ ε(−i∇−A)

)
cka

+
NK

2

∫
d2x (∇×A)2

]
. (11.1)

We have not included an explicit time derivative term
for A because it will turn to be subdominant to the fre-
quency dependence induced by the Fermi surface. The
co-efficient of the Maxwell term (∇× A)2 is determined
by short distance physics, and we have included a pref-
actor of N for future convenience; the gauge-coupling is
denoted K−1. We have restricted our considerations to
spatial dimension d = 2, where the frequency dependence
for the self-energy will be most singular, and is also the
dimension of most physical applications.

Let us now proceed with a perturbative, but self-
consistent, analysis of ScA in a ‘patch’ theory: we focus
on the vicinity of the point k0 on the Fermi surface, as in
Fig. 24. For the gauge field A, it turns out we need only
include components of their momenta which are tangent
to the Fermi surface, closely connected to the 1/|qy| de-
pendence of the fermion polarizibility that is obtained as
in Fermi liquid theory

Π(q, iωn) = − |ωn|
4πvFκ|qy|

. (11.2)

Recalling that we are focusing only on transverse gauge
field fluctuations, we may replace the gauge field by a
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single scalar field φ = Ax. In this manner, the patch
theory limit of Eq. (11.1) is

Sψφ =

∫
dτdxdy

[
ψ†a

(
∂

∂τ
− ivF

∂

∂x
− κ

2

∂2

∂y2

)
ψa

+
NK

2

(
∂φ

∂y

)2

− vFφψ†aψa
]
, (11.3)

where, for now, we are considering the case with a =
1 . . . N fermion flavors. This patch theory also applies
to the other cases with order parameters, identified just
before Section XI.A.

The fermion polarizability will now appear as a self en-
ergy for the φ field, and so we can write the φ propagator,
D(q, iΩn) as

D(q, iΩn) =
1

N
(
Kq2

y − v2
FΠ(q, iΩn)

) , (11.4)

where Π is given by (11.2). The fermion Green’s function
is expressed in the usual way,

G(k, iωn) =
1

iωn − εk − Σ(k, iω)
, (11.5)

where now

εk = vF kx + κ
k2
y

2
. (11.6)

The self energy, as a result of scattering off the fluctua-
tions of φ, can be evaluated as

Σ(k, iωn) = v2
F

∫
d2q

(2π)2
T
∑

Ωn 6=0

D(q, iΩn)

×G(k + q, iΩn + iωn)

= −i v
2
F

2N

∫
dqy
2π

T
∑

Ωn 6=0

sgn(ωn + Ωn)

Kq2
y +

|Ωn|
4πvFκ|qy|

(11.7)

= −i v2
F

3
√

3NK2/3
(4πvFκK)1/3T

∑
Ωn 6=0

sgn(ωn + Ωn)

|Ωn|1/3
.

We have dropped the gauge fluctuations at Ωn = 0 be-
cause they require a special treatment: this is likely an
artifact of the fermion not being gauge invariant. The
singularity at Ωn = 0 in Eq. (11.7) will likely drop out of
gauge-invariant observables. In any case, there are no is-
sues at T = 0, in which case we find the non-Fermi liquid
self energy Σ(ω) ∼ ω2/3. At T > 0, the result Eq. (11.7)
obeys a scaling form similar to that for the SYK model
in Eq. (5.27) (Lee, 1989)

Σ(k, ω, T ) ∝ T 2/3Φ

(
~ω
kBT

)
. (11.8)

This is much larger than the bare ω term in the inverse
Green’s function, and leads to the absence of a quasipar-
ticle pole at the Fermi surface, where the latter is defined
as the location where G−1(kF , ω = 0, T = 0) = 0.

1. Large N limit

As we have emphasized earlier, our apparent perturba-
tive computations of the fermion Green’s function are ac-
tually fully self-consistent in the self energies of both the
gauge field and the fermion. In this sense, the equations
have a structure very similar to that of the SYK mod-
els. So as in the Yukawa-SYK models, we ask if there
is a systemic large N approach in which these results
can be obtained as the saddle point of an action? This
will ensure that the solutions are locally stable against
all perturbations, determine conditions under which su-
perconducting or other instabilities could exist, and also
allow a systematic treatment of corrections.

Despite numerous attempts, a systematic and satisfac-
tory treatment that relies only on a naive large-N expan-
sion has been lacking in the literature. The difficult is ap-
parent from an examination of Eqs. (11.5) and (11.7). In
a model with N fermion flavors, the singular self energy
in Eq. (11.7) has a prefactor of 1/N , and so is formally
smaller than the bare dispersion, vF kx+κk2

y/2. However,
the self energy has to be matched with the bare dispersion
to obtain the physical excitations, and so a power of N
is unavoidable in the dispersion of the renormalized exci-
tations. This implies that higher order Feynman graphs
can be enhanced by powers of N not associated with
the symmetry factors of the graphs, leading to a break-
down of the 1/N expansion; this is indeed what happens
(Lee, 2009). Various workarounds have been attempted
(Damia et al., 2019; Fitzpatrick et al., 2013, 2014), but
none have been entirely successful because they include
N -dependent energy scales.

As we noted earlier, recent studies (Aldape et al., 2020;
Esterlis et al., 2021) have shown that a systematic large-
N theory of the critical Fermi surface can be obtained in
a theory with couplings which are random in flavor space,
but are translationally invariant. We now show how such
a theory leads to a G-Σ formulation for the critical Fermi
surface. We start with the theory Eq. (11.3), promoting
the scalar φ to now acquire N indices, φa, and introduce
a set of couplings gabc which are random in flavor space,
but spatially uniform; we also set vF = 1, κ = 2. Then
the required theory is (Esterlis et al., 2021)

Sψφ =

∫
dτdxdy

[
ψ†a

(
∂

∂τ
− i ∂

∂x
− ∂2

∂y2

)
ψa

+
K

2

(
∂φa
∂y

)2

− gabc
N

φa ψ
†
bψc

]
. (11.9)

The key new feature is the set of space-independent ran-
dom complex Yukawa couplings, gabc, which have zero
mean and variance g2.

We can now proceed just as in the Yukawa-SYK mod-
els: we obtain a theory for Green’s functions which are
bilocal in both space and time. Using the spacetime co-
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ordinate X ≡ (τ, x, y), we can write the averaged parti-
tion function

Zψφ =

∫
DG(X1, X2)DΣ(X1, X2)DD(X1, X2)

×DΠ(X1, X2) exp [−NI(G,Σ, D,Π)] .(11.10)

The G-Σ-D-Π action is now

I(G,Σ, D,Π) =
g2

2
Tr (G · [GD])

− Tr(G · Σ) +
1

2
Tr(D ·Π) (11.11)

− ln det
[(
∂τ1 − i∂x1 − ∂2

y1

)
δ(X1 −X2) + Σ(X1, X2)

]
+

1

2
ln det

[(
−K∂2

y1

)
δ(X1 −X2)−Π(X1, X2)

]
.

where we have introduced notation analogous to
Eq. (5.57),

Tr (f · g) ≡
∫
dX1dX2 f(X2, X1)g(X1, X2) . (11.12)

Note the crucial pre-factor of N before I in the path-
integral.

The large N saddle point equations of this action are
precisely the self-consistent equations we have already
solved above, apart from differences in factors of N . As-
suming all saddle point Green’s functions depend only
upon spacetime differences, we can write them as

G(k, iωn) =
1

iωn − kx − k2
y − Σ(k, iωn)

D(q, iΩn) =
1

Kq2
y −Π(q,Ωn)

Σ(X) = g2D(X)G(X)

Π(X) = −g2G(X)G(−X) . (11.13)

From the previous analysis, we can write down the solu-
tion to these equations as

Π(q, iΩn) = − g
2

8π

|Ωn|
|qy|

(11.14)

Σ(k, iωn) = −2i
g4/3π1/3

K1/3

T

3
√

3

∑
Ωn 6=0

sgn(ωn + Ωn)

|Ωn|1/3
.

Crucially, note that N does not appear in these sad-
dle point equations, unlike that in the self energy in
Eq. (11.7).

2. Luttinger’s theorem

Despite the absence of a quasiparticle pole, Luttinger’s
theorem still applies to the critical Fermi surface with
essentially no modifications. On general grounds we can
expect that at T = 0, ImG−1(k, iη) = 0 at all k, where
η is a positive infinitesimal, and this is certainly obeyed

by Eq. (11.7). Then, as in Fermi liquid theory, the Fermi
surface is defined by ReG−1(kF , iη) = 0, with particle-
like excitations for ReG−1(kF , iη) < 0, and hole-like ex-
citations for ReG−1(kF , iη) > 0. Then, we proceed as
in Section V.B, and decompose the expression for the
charge density per flavor index Q into 2 terms:

Q =

∫
k

∫ ∞
−∞

dω

2π
G(k, iω)e−iω0− = I1 + I2

I1 = i

∫
k

∫ ∞
−∞

dω

2π

d

dω
ln [G(k, iω)] e−iω0− (11.15)

I2 = −i
∫
k

∫ ∞
−∞

dω

2π
G(k, iω)

d

dω
Σ(k, iω)e−iω0− ,

where
∫
k
≡
∫
ddk/(2π)d. We evaluate I1 as in Eq. (5.17),

and obtain

I1 = i lim
η→0

∫
k

∫ 0

−∞

dω

2π

d

dω
ln

[
G−1(k, ω + iη)

G−1(k, ω − iη)

]
(11.16)

= − 1

π
lim
η→0

∫
k

[
argG−1(k, iη)− argG−1(k,−∞+ iη)

]
.

The momentum integrand evaluates to −π for
ReG−1(kF , iη) > 0, and 0 otherwise, and hence I1
evaluates the momentum space volume enclosed by the
Fermi surface, divided by (2π)d.

It now remains to establish that I2 = 0 for the criti-
cal Fermi surface case, unlike the SYK model results in
Section V.B. The self energy of the critical Fermi sur-
face in Eq. (11.8) is singular at ω = 0, just like the self
energy of the SYK model in Eq. (5.27). So we might
worry that there is an anomalous contribution to I2 from
the singularity at ω = 0, as there was in Section V.B.
However, that is not the case here because the singular-
ity of the Green’s function is much weaker as a result of
its momentum dependence; now the low-energy Green’s
function is

G−1(k, ω) = −vF kx −
κ

2
k2
y − Σ(ω) , (11.17)

and this diverges at ω = 0 only on the Fermi surface
vF kx + κk2

y/2 = 0. Indeed, with this form, the local
density of states is a constant at the Fermi level. Conse-
quently, there is no anomaly at T = 0, and I2 = 0 from
the Luttinger-Ward functional analysis. Incidentally, we
note that the Luttinger-Ward functional in the large N
limit is just the first term in the action I in Eq. (11.11),
similar to the SYK model.

To complete this discussion, we add a few remarks on
the structure of the Luttinger-Ward functional, and its
connection to global U(1) symmetries (Coleman et al.,
2005b; Powell et al., 2005). Consider the general case
where were are multiple Green’s functions (of bosons or
fermions) Gα(kα, ωα). Let the α’th particle have a charge
qα under a global U(1) symmetry. Then for each such
U(1) symmetry, the Luttinger-Ward functional will obey
the identity

ΦLW [Gα(kα, ωα)] = ΦLW [Gα(kα, ωα + qαΩ)] .(11.18)
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Here, we are regarding ΦLW as functional of two distinct
sets of functions f1,2α(ωα), with f1α(ωα) ≡ Gα(kα, ωα +
qαΩ) and f2α(ω) ≡ Gα(kα, ωα), and ΦLW evaluates to
the same value for these two sets of functions. Expanding
Eq. (11.18) to first order in Ω, and integrating by parts,
we establish the corresponding I2 = 0.

3. Thermodynamics

The grand potential can be computed by evaluating
Eq. (11.10) for the saddle point in Eq. (11.14). Such a
computation (Halperin et al., 1993) shows that the en-
tropy density

s ∼ T 2/3 . (11.19)

It is useful to give a scaling interpretation of
Eq. (11.19) (Eberlein et al., 2016). In a critical theory
with dynamic critical exponent z in spatial dimension
d, we expect s ∼ T d/z. In our case, we have fermionic

excitation which disperse as ω ∼ k
3/2
x , and so we iden-

tify z = 3/2. In this case, Eq. (11.19) matches with the
scaling expectations in d = 1 dimension. Evidently, the
free energy is similar to that of chiral fermions dispersing
normal to the Fermi surface, and the integral along ky
only determines the prefactor in Eq. (11.19) which is re-
lated to the area of the Fermi surface. In scaling terms,
it is conventional to denote such a dimensional transmu-
tation in terms of a violation of hyperscaling exponent θ,
so that the entropy density scales as s ∼ T (d−θ)/z. Then
Eq. (11.19) corresponds to d = 2, θ = 1, z = 3/2.

Let us now extend these scaling argument to a finite
system volume V , and compare the behavior to that
of the random matrix model in Section IV.B, and of
the SYK model in Section V.F.2. Following these ear-
lier treatments, we deal with extensive quantities, such
as the total entropy S = sV . We expect the scaling
V ∼ T−d/z, and so S ∼ T−θ/z. Similarly we, have for
the energy density e ∼ Ts ∼ T (d+z−θ)/z, and the to-
tal energy E = eV ∼ T (z−θ)/z. Collecting these scaling
forms, we express the total entropy S as a function of the
total energy E, and the volume V , as in Sections IV.B
and V.F.2

S(E) = V θ/dΦS

(
EV (z−θ)/d

)
, (11.20)

where ΦS(y) is a scaling function. As V → ∞, we ex-
pect the relationship to only involve intensive quantities,
and so S/V should only be a function of E/V . This is
achieved if

ΦS(y →∞) ∼ y(d−θ)/(d−θ+z) . (11.21)

The scaling results Eqs. (11.20) and (11.21) are easily
seen to be obeyed by both the random matrix and SYK
models. For these models, we identify the system size N

with the volume V , but we cannot accord much meaning
to the values of the exponents because there is no true
sense of space. For the random matrix model, the result
Eq. (4.18) is of the form Eq. (11.21) with the scaling
function ΦS(y) ∼ √y and θ = d−z. For the SYK model,
the result Eq. (5.81) corresponds to ΦS(y) = c1 + c2

√
y,

for some constants c1,2, and the exponents θ = d, z = 0.

For the critical Fermi surface, the important open
question is the behavior of ΦS(y → 0). A reasonable
conjecture is that ΦS(y → 0) is a non-zero constant. In
this case, the total entropy in the T → 0 or E → 0 limit is
S ∼ V θ/d =

√
V . Note that this is different from the be-

havior of the entropy for the critical Fermi surface state
obtained earlier in Sec. X.B. In other words, the entropy
of the critical Fermi surface here is sub-extensive at low
energies, a behavior intermediate between the random
matrix (which has S(E → 0) ∼ V 0) and SYK (which
has S(E → 0) ∼ V ) models. The many-body density
of states would then behave as N (E → 0) ∼ exp(

√
V ),

although as in all systems N (E) ∼ exp(V ) when E is
extensive.

4. Transport

We now couple the fermions on the critical Fermi sur-
face to an external U(1) gauge field (distinct from A
in Eq. (11.1)), and discuss the structure of the asso-
ciated conductivity. The highly singular self energy in
Eq. (11.8) suggests that there will be strong scattering
of charge carriers, and hence a low T resistivity which
is larger than the ∼ T 2 resistivity of a Fermi liquid. In-
deed, it was argued in an early work (Lee, 1989) that
the resistivity ∼ T 4/3; this is weaker than Σ ∼ T 2/3, be-
cause of the (1−cos(θ)) factor in the transport scattering
time, for scattering by an angle θ, and the dominance of
forward scattering.

However, this argument ignores the strong constraints
placed by momentum conservation (Eberlein et al., 2016;
Hartnoll et al., 2007, 2016, 2014; Maslov et al., 2011) in
a theory of critical fluctuations which is described by a
translationally invariant continuum field theory, such as
Eq. (11.3). If we set up an initial state at t = 0 with a
non-zero current, such a state necessarily has a non-zero
momentum, which will remain the same for t > 0. The
current will decay to a non-zero value which maximizes
the entropy subject to the constraint of a non-zero mo-
mentum. This non-zero current as t → ∞ implies that
the d.c. conductivity is actually infinite. These consider-
ations are similar to those of ‘phonon drag’ (Peierls, 1930,
1932) leading to the absence of resistivity from electron-
phonon scattering. In practice, phonon drag is observed
only in very clean samples (Hicks et al., 2012), because
otherwise the phonons rapidly lose their momentum to
impurities. But the electron-phonon coupling is weak, al-
lowing for phonon-impurity interactions before there are
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multiple electron-phonon interactions. In contrast, for
the critical Fermi surface, the fermion-boson coupling is
essentially infinite because it leads to the breakdown of
electronic quasiparticles. So the critical Fermi surface
must be studied in the limit of strong drag, with vanish-
ing d.c. resistivity in the critical theory.

Mechanisms extrinsic to the theory in Eq. (11.3) are
required to relax the current and obtain a finite d.c. con-
ductivity. In a system with strong interactions, such
processes are most conveniently addressed by a ‘mem-
ory matrix’ approach that has been reviewed elsewhere
(Hartnoll et al., 2016); this approach also has close con-
nections to holographic approaches (Lucas, 2015; Lucas
and Sachdev, 2015). Various mechanisms have been con-
sidered (Else and Senthil, 2021; Hartnoll et al., 2014; Lee,
2021; Maslov et al., 2011; Patel and Sachdev, 2014; Wang
and Berg, 2019) involving spatial disorder or umklapp
processes, and these do lead to a singular resistivity at
low T .

The behavior of the conductivity, σ at non-zero fre-
quency ω has been argued to be more universal, where
the effects of total momentum conservation are not as
singular. In a quantum-critical system, the naive scaling
dimension is d − 2, and so we expect σ(ω) ∼ ω(d−2)/z,
which is frequency independent in d = 2. However, we
have noted violation of hyperscaling in the free energy
in Section XI.A.3, and a first guess would be that there
is a similar violation of hyperscaling in the conductivity,
with σ(ω) ∼ ω(d−2−θ)/z. Using the values of θ and z, we
can write the scaling form (Eberlein et al., 2016)

Reσ(ω 6= 0, T ) = ω−2/3Φσ

(ω
T

)
(11.22)

This scaling form is consistent with explicit computa-
tions of the frequency dependent conductivity (Chubukov
and Maslov, 2017; Eberlein et al., 2016; Kim et al., 1994;
Kim et al., 1995), but has been questioned in recent work
working directly with a Fermi surface in d = 2 (Darius
Shi et al., 2022; Patel et al., 2022).

In a system with momentum conservation, we can sen-
sibly define the shear viscosity, η, in the continuum field
theory. This has been computed (Eberlein et al., 2017b),
and its hyperscaling violation however turns out to be
different from that of the entropy and the conductivity.
The ratio η/s, where s is the entropy density, diverges
as T−2/z, a result that is consistent with the minimum
viscosity conjecture (Kovtun et al., 2005).

5. Pairing instability

As written in Eq. (11.1), the gauge field mediates a
repulsive interaction between antipodal points on the
Fermi surface, and so does not lead to a Cooper pair-
ing instability. However, we can consider closely related
problems, either with critical order parameters or with

fermions with multiple gauge charges, where the inter-
actions between antipodal fermions is attractive (Metl-
itski et al., 2015). In the context of the large N limit
of Section XI.A.1, the equations determining the pair-
ing instability, remarkably, reduce (Esterlis et al., 2021)
to precisely those associated with pairing instabilities of
the SYK model (Kim et al., 2019; Klebanov et al., 2020).
The pairing vertex Φ(iΩ) obeys the integral equation (Es-
terlis et al., 2021)

EΦ(iΩ) =
K
3

∫
dω

2π

2πΦ(iω)

|ω|2/3|ω − Ω|1/3 , (11.23)

where ω,Ω are imaginary frequencies, and K is a dimen-
sionless number that can be determined from the struc-
ture of the critical Fermi surface problem being consid-
ered. Given the scale-invariant structure of Eq. (11.23),
we are search for solutions with

Φ(iΩ) =
1

|Ω|α , (11.24)

and the physical solutions are those values of α for which
the eigenvalue E = 1. The pairing problem so defined ap-
peared in the context of SYK models (Kim et al., 2019;
Klebanov et al., 2020), but also in earlier studies of quan-
tum critical pairing of Fermi surfaces (Chubukov and
Abanov, 2021; Moon and Chubukov, 2010). A solution
with a real 0 < α < 1/3 implies that the critical Fermi
surface state is stable, and the value of α determines
the exponent of critical correlations of the pairing opera-
tor (Esterlis et al., 2021). Otherwise, there are solutions
with complex α, and these imply a pairing instability.
The critical temperature towards pairing is determined
by solving a generalization Eq. (11.23) at non-zero T ,
and examining the T at which the complex solution first
appears.

B. Adding spatial disorder

Given the rather singular transport properties of the
critical Fermi surface described in Section XI.A.4, it is
valuable to have the corresponding large N analysis of
a model which includes the self-consistent influence of
weak disorder on the critical Fermi surface, beyond the
perturbative analysis provided by the memory function
approach (Hartnoll et al., 2016). The simplest spatial
disorder we can add to Eq. (11.9) is potential disorder,
similar in spirit to that in Section IV: this is a term
vab(x)ψ†a(x)ψb(x)/

√
N , in which vab is random matrix

uncorrelated at different points in space, so that

vab(x)v∗cd(x
′) = v2δacδbdδ

d(x− x′) . (11.25)

This potential leads to an additional term in the large
N action in Eq. (11.11). The solution of the saddle
point equations in the theory with both g and v non-zero
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shows (Patel et al., 2022) that the boson polarizibility in
Eq. (11.14) is replaced by

Π(q, iΩn) ∼ −g
2

v2
|Ωn|, (11.26)

which leads to z = 2 behavior in the boson propagator.
The corresponding fermion self energy has a familiar elas-
tic impurity scattering contribution Σv, along with an
inelastic term Σg (Patel et al., 2022) with the ‘marginal
Fermi liquid’ form (Varma et al., 1989)

Σv(iωn) ∼ −iv2sgn(ωn), Σg(iωn) ∼ −g
2

v2
ωn ln(1/|ωn|) .

(11.27)
Despite the promising singularity in Σg, Eq. (11.27) does
not translate (Patel et al., 2022) into interesting behavior
in the transport: the scattering is mostly forward, and
the resistivity is Fermi liquid-like with ρ(T ) = ρ(0)+AT 2.

While the effect of potential scattering of fermions is
weak, a related estimation of the effects of a spatially
random φ2 term (i.e. a random ‘scalar mass’ allowed
when φ represents a symmetry breaking order parameter)
turns out to be strong (Patel and Sachdev, 2014). It has
been argued (Patel et al., 2022) that such disorder should
should be absorbed by transforming to eigenmodes of
the quadratic φ action, at the price of introducing spa-
tial randomness in the Yukawa coupling g. Remarkably,
a theory with spatial randomness in the boson-fermion
Yukawa coupling included at the outset leads to physical
effects that are ‘just right’ in the large N limit. We add
to the spatially independent Yukawa couplings gabc in
Eq. (11.9) a second coupling g′abc(x) which has both spa-
tial and flavor randomness with vanishing first moment,
and second moment

g′abc(x)g′∗a′b′c′(x′) = g′2δd(x− x′)δaa′δbb′δcc′ (11.28)

Then, along with (11.26),11.27), we obtain additional
contributions to the boson and fermion self energies (Pa-
tel et al., 2022)

Πg′(q, iΩn) ∼ −g′2|Ωn| , Σg′(iωn) ∼ −ig′2ωn ln(1/|ωn|) .
(11.29)

Now the marginal Fermi liquid self energy does con-
tribute significantly to transport (Patel et al., 2022), with
a linear-T resistivity ∼ g′2T , while the residual resistivity
is determined primarily by v. It is notable that it is the
disorder in the interactions which determines the slope of
the linear-T resistivity, while it is the potential scattering
disorder which determines the residual resistivity.

It is also interesting to examine this theory for Planck-
ian dissipation (Cao et al., 2020; Grissonnanche et al.,
2021; Jaoui et al., 2022; Legros et al., 2019; Nakajima
et al., 2020; Taupin and Paschen, 2022). This requires
writing the conductivity in the form

σ =
ne2τ∗tr
m∗

(11.30)

where the effective mass m∗ is computed from the
fermion self energy in a Fermi liquid state proximate to
the critical theory. For g′ � g, the transport scattering
time is found to be (Aldape et al., 2020; Esterlis et al.,
2021)

1

τ∗tr
≈ π

2

kBT

~
(11.31)

along with factors which are slow logarithmic functions of
temperature. However, for smaller values of g′/g, there
is a significant decrease from the value in (11.31) (Patel
et al., 2022; Taupin and Paschen, 2022).

XII. CONNECTIONS TO QUANTUM GRAVITY

We saw in Section V.F that the finite N fluctuations
of the SYK model were described by a path integral over
time reparameterizations. This suggests a connections to
a theory of quantum gravity. By the holographic princi-
ple (’t Hooft, 2001), we expect the gravity theory to ac-
quire an emergent spatial direction. As the SYK path in-
tegral is over 0+1 dimensions, we anticipate a connection
to quantum gravity in 1+1 dimensions. However, Ein-
stein gravity in 1+1 dimensions has no dynamical modes,
and so cannot serve as a holographic partner to the SYK
model. As we will see below in Section XII.B, the ap-
propriate theory is a class of 1+1 dimensional theories
known as Jackiw-Teitelboim (JT) gravity, which has an
additional scalar field Φ. This gravity theory is most nat-
urally obtained by dimensional reduction, from a charged
black hole of Einstein gravity in d+ 2 spacetime dimen-
sions (d ≥ 2). Such a black hole has a AdS2 × Sd near-
horizon geometry; the JT gravity theory resides on AdS2,
and fluctuations of Φ represent the quantum fluctuations
in the radius of Sd. The connection between the SYK
model and charged black holes was first noted (Sachdev,
2010) by matching characteristics of the N = ∞ SYK
theory and the classical gravity solution of charged black
holes in Einstein gravity. It was pointed out later (Ki-
taev, 2015) that the connection was stronger, and also
held for a low energy sector of the fluctuations.

The AdS2 near-horizon sector of charged black holes
leads to a non-vanishing entropy as T → 0, a key char-
acteristic such black holes share with the SYK model
(Sachdev, 2010). Neutral black holes, such as the com-
mon Schwarzschild solution of Einstein gravity, do not
have AdS2 horizons, and have vanishing entropy as T →
0. Such black holes display a Hawking-Page transition at
a non-zero T , and have a distinct low T behavior which
we will not discuss further here (Schlenker and Witten,
2022).

We proceed by reviewing the quantum theory of
charged black holes in d + 2 spacetime dimensions. We
will then discuss its low temperature limit, and show, by
the dimensional reduction outlined above, that this yields
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a version of JT gravity, which is in turn equivalent to the
Schwarzian theory of the SYK model in Section V.F.

There is another, and closely related, connection be-
tween SYK models and black holes that we briefly men-
tion now. Our discussion above (and below) focuses on
the equilibrium thermodynamic properties. In dynamic
properties, SYK models are characterized by Planck-
ian time dynamics (Sachdev, 1999), as we discussed in
Section V.C; other metallic systems also have a sim-
ilar dynamics, in theory and experiment, as noted in
Sections XI.B and III.B. Remarkably, Einstein gravity
also displays Planckian time dynamics for black holes re-
sponding to external perturbations. This is evident in
computations of the damping rate of black hole quasi-
normal modes (Hod, 2007; Vishveshwara, 1970): this
purely classical gravity rate is ∼ ~/(kBTH) where TH
is the Hawking temperature of the black hole (the ~ in
the Planckian time formula cancels with the ~ in TH).
A recent analysis of LIGO data (Carullo et al., 2021)
has confirmed this remarkable universality in black hole
quasi-normal modes.

The quantum fluctuations of gravity and electromag-
netism are formally defined by a path integral

ZEM =

∫
DgDA exp(−IEM ) (12.1)

where IEM is the Einstein-Maxwell action (that we will
write down below), and the path integral is over the
metric g of spacetime, and the electromagnetic vector
potential A. It is almost certainly true that the expres-
sion Eq. (12.1) does not make sense as it stands, be-
cause of numerous ultraviolet divergencies and gauge-
fixing issues. Nevertheless, it turns out to be possible
to make sense of Eq. (12.1) in certain limits. For black
hole saddle-point solutions of IEM , it was shown (Gib-
bons and Hawking, 1977) that the evaluation of IEM at
the saddle point in a Euclidean geometry, with a ther-
mal circle of circumference ~/(kBT ) along the tempo-
ral direction, gave a consistent description of the quan-
tum thermodynamics of black holes. It is only via the
~ dependence of this circumference that Planck’s con-
stant appears in such computations: there is no ~ in
IEM , the classical Einstein-Maxwell action. We will set
~ = kB = 1 in the remainder of our discussion.

We will review the Gibbons-Hawking description of
a charged black hole (Chamblin et al., 1999) in Sec-
tion XII.A. Remarkably, there turn out to be precise
quantitative connections to the thermodynamics of the
SYK model (Sachdev, 2010, 2015).

Fluctuation corrections to the Gibbons-Hawking ther-
modynamics were computed only recently in the low T
limit for charged holes. In principle, these corrections
could have been computed decades ago, but the com-
putations were undertaken only after the connection to
the SYK model showed the route that was needed. These
computations are reviewed in Section XII.B, which shows

that the low energy theory of charged black holes reduces
to an effective theory which is identical to the theory in
Eqs. (5.58) and (5.60) obtained for the SYK model of
complex fermions.

Section XII.C briefly surveys rapid recent develop-
ments on coupled SYK models in and out of equilibrium,
which are holographically realized by solitons/instantons
known as ‘wormholes’.

Section XII.D discusses approaches to the theory of
strange metals using the AdS/CFT correspondence of su-
persymmetric Yang-Mills theory (Hartnoll et al., 2016),
and connects these to the SYK model by placing the
Yang-Mills theory on a finite sphere.

A. Charged black holes: Einstein-Maxwell theory

We consider the case of spherical black holes in d + 2
spacetime dimensions; we assume d ≥ 2 in all of the
following discussions of quantum gravity. The Einstein-
Maxwell theory has the Euclidean action

IEM =

∫
dd+2x

√
g

[
− 1

2κ2

(
Rd+2 +

d(d+ 1)

L2

)

+
1

4g2
F

F 2

]
, (12.2)

where κ2 = 8πGN is the gravitational constant, Rd+2 is
the Ricci scalar, F = dA is the electromagnetic flux, and
gF is a U(1) gauge coupling constant. We have also in-
cluded a negative cosmological constant term so that the
spacetime at asymptotic infinity is AdSd+2 with radius
L; the limit of large L can be taken at the end to obtain
Minkowski spacetime at infinity.

We now describe the spherical charged black hole
saddle-point of IEM . There is a 2 parameter family of
such solutions, which we will specify by the temperature
T , and the chemical potential µ. All other properties
of the black hole saddle point are determined by T , µ,
and the constants of nature in IEM : this includes the
spacetime metric, the U(1) gauge field, the radius of the
horizon, r0, the total charge in the black hole Q, and the
black hole entropy S.

The classical Einstein-Maxwell equations yield the fol-
lowing expression for the metric expressed in terms of
imaginary time τ , radial co-ordinate r, and dΩ2

d the met-
ric of the d-sphere: (Chamblin et al., 1999)

ds2 = V (r)dτ2 + r2dΩ2
d +

dr2

V (r)
(12.3)

where

V (r) = 1 +
r2

L2
+

Θ2

r2d−2
− M

rd−1
. (12.4)

As r → ∞, the metric in Eq. (12.3) is AdSd+2. The
radius of the horizon is determined by V (r0) = 0, which
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we write as

M = rd−1
0

(
1 +

r2
0

L2
+

Θ2

r2d−2
0

)
. (12.5)

The gauge field solution has the form

A = iµ

(
1− rd−1

0

rd−1

)
dτ. (12.6)

The value of the gauge field at the AdS boundary defines
the chemical potential µ, provided r0 is the horizon. The
Einstein-Maxwell equations applied to Eqs. (12.3) and
(12.6) also yield the condition

Θ =

√
(d− 1)

d

κrd−1
0

gF
µ . (12.7)

So far, our analysis has been entirely classical. As
stated above, quantum mechanics enters the picture only
by the condition that the solution in Eq. (12.3) yield a
spacetime which is periodic as a function of τ with pe-
riod 1/T . We can impose periodicity as a function of τ
by fiat, but have to ensure that there is no singularity at
the horizon r0 where V (r0) = 0. Let us change radial co-
ordinates to y, where r = r0 +y2. Then near the horizon,
the (r, τ) components of Eq. (12.3) become

ds2 =
4

V ′(r0)

[
(V ′(r0))2

4
y2dτ2 + dy2

]
. (12.8)

Now notice that the expression in the square brack-
ets is precisely the metric of the flat plane in polar
co-ordinates, with radial co-ordinate y and angular co-
ordinate θ = V ′(r0)τ/2. For there to be no real singular-
ity at the origin of polar co-ordinates, only a co-ordinate
singularity, we must have periodicity in θ with period 2π.
Matching this with the period 1/T in τ , we determine the
Hawking temperature of the black hole

4πT = V ′(r0) . (12.9)

The Eqs. (12.5,12.7,12.9) determine all the parameters,
Θ, M , r0 in terms of µ and T . So we have specified a
black hole solution in terms of the independent thermo-
dynamic parameters µ and T .

We now quote the free energy and entropy of this
black hole, obtained by the evaluation of IEM at the
saddle-point above. The action has to be supplemented
by a Gibbons-Hawking boundary term which is required
to obtain the classical Einstein-Maxwell equations as
saddle-point equations of IEM . Such an evaluation of
IEM yields the grand potential (Chamblin et al., 1999)

Ω(T, µ) =
sd[r0(T, µ)]d−1

2κ2

(
1− [r0(T, µ)]2

L2

)
− sd(d− 1)µ2[r0(T, µ)]d−1

2dg2
F

, (12.10)

where sd ≡ 2π(d+1)/2/Γ((d+ 1)/2) is the area of Sd with
unit radius. We can evaluate the the total charge by
taking the µ derivative of Ω

Q(T, µ) =
sd(d− 1)µ [r0(T, µ)]d−1

g2
F

, (12.11)

and this expression can also be obtained from Gauss’s law
evaluated as r →∞. Similarly, the entropy by taking the
temperature derivative of Ω to obtain

S(T, µ) =
2πsd
κ2

[r0(T, µ)]d, (12.12)

which is precisely the expression expected from Hawk-
ing’s celebrated result A/(4GN ): A = sdr

d
0 is the area of

the horizon. The universality of the Hawking area result
can be understood from the fact that the only explicit
dependence of the action on T arises from the identifi-
cation in Eq. (12.9) leading to a circumference 1/T on
the time circle; then the T derivative of Ω can be shown
to arise only from the vicinity of the horizon at r = r0,
where the integral over the angular co-ordinates yields
the area (Ross, 2005).

We will now take the T → 0 limit of all the results
above, while keeping the charge Q fixed. Then the hori-
zon radius r0 → Rh, where

Q =
sdR

d−1
h

√
d [(d+ 1)R2

h + (d− 1)L2]

LκgF
. (12.13)

We are interested in the structure of the metric near the
horizon at T = 0. For this purpose, we transform to near-
horizon co-ordinates, by changing the radial co-ordinate
from r to the co-ordinate ζ, where

r = Rh +
R2

2

ζ
; (12.14)

in these-co-ordinates, the T = 0 horizon is at ζ =∞; see
Fig. 25. We chose the length scale R2 to be

R2 =
LRh√

d(d+ 1)R2
h + (d− 1)2L2

. (12.15)

Then, as T → 0, the metric Eq. (12.3) for ζ � Rh (region
(A) in Fig. 25) becomes

ds2 =
R2

2

ζ2

[
dτ2 + dζ2

]
+R2

hdΩ2
d . (12.16)

The metric on the (τ, ζ) spacetime is AdS2, and the com-
plete metric is AdS2 × Sd. In the same co-ordinate sys-
tem, the U(1) gauge field becomes

A = i
E
ζ
dτ , (12.17)

where the dimensionless prefactor

E =
gFRhL

√
d [(d+ 1)R2

h + (d− 1)L2]

κ [d(d+ 1)R2
h + (d− 1)2L2]

. (12.18)
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FIG. 25 Spatial crossover boundaries outside a black hole
of charge Q. The value of Rh is determined from Q via
Eq. (12.13), and we describe T � 1/Rh at fixed Q, and
R2 ∼ Rh. We indicate contributions to the entropy ∆S from
regions (A) and (B).

is a measure of the electric field on the horizon of the
black hole. We have chosen the same symbol E for this
prefactor as that appearing in characterizing the particle-
hole asymmetry of the SYK model in Eqs. (5.9) and
(5.26). This is not arbitrary (Sachdev, 2010, 2015): com-
putations (Faulkner et al., 2011b) of the Green’s func-
tion of a fermion moving in the background specified by
Eqs. (12.16) and (12.17) remarkably yields precisely the
result in Eq. (5.26) .

Let us now turn to a computation of the entropy, where
we find remarkable connections to the SYK model. We
write S(T → 0) = S, and then from Eq. (12.12)

S =
2πsd
κ2

Rdh (12.19)

So we obtain a non-vanishing entropy in the zero temper-
ature limit, similar to the SYK model (Sachdev, 2010).
Furthermore, by eliminating Rh between Eqs. (12.13)
and (12.19), and using Eq. (12.18), we find(

∂S
∂Q

)
T→0

= 2πE (12.20)

which is exactly the relation Eq. (5.36) obtained for the
SYK model (Sachdev, 2015). We can also compute the
low T dependence of µ, and verify that the Maxwell rela-
tion Eq. (5.35) is satisfied. Furthermore, T dependence
of entropy computed from Eq. (12.19) is linear in T at
low T and fixed Q

S(T → 0,Q) = S + γT , (12.21)

where

γ =
4π2dsdR

2
2R

d−1
h

κ2
. (12.22)

This is as in the SYK model in Eq. (5.53), where the
value of γ was related to the co-efficient of a Schwarzian

action, and we will do the same for the charged black
hole in Section XII.B.

The appearance of the fundamental relation
Eq. (12.20) of the SYK model in the theory of a
charged black hole may appear like a co-incidence here,
but it is not. In fact, Eq. (12.20) is a general property
of black holes with AdS2 horizons, and follows from
careful consideration of their symmetries (Sen, 2005,
2008). These symmetries are similar to those described
in Appendix B for the SYK model, which were exploited
in Section V.D to obtain Eq. (5.36) (Davison et al.,
2017; Gu et al., 2020; Sachdev, 2015).

1. Charged black branes

This section briefly notes the limit of the above spher-
ical solution when the black hole becomes an infinite,
flat , charged ‘black brane’, with a near-horizon geom-
etry of AdS2 × Rd, in contrast to the near-horizon
AdS2 × Sd considered so far. These results will be help-
ful in Section XII.D where we discuss the connection to
the AdS/CFT correspondence. This limit is obtained by
taking Rh � L in our results so far. We introduce the
charge and entropy densities:

Q ≡ Q
sdLd

, S ≡ S

sdLd
. (12.23)

Then we have from Eq. (12.13)

Q =

√
d(d+ 1)

LκgF

(
Rh
L

)d
. (12.24)

Similarly, the T → 0 entropy in Eq. (12.21) becomes the
Hawking entropy density

S (T → 0,Q) =
2π

κ2

(
Rh
L

)d [
1 +

2πL2T

(d+ 1)Rh

]
. (12.25)

These results for the densities correspond exactly to those
obtained earlier (Faulkner et al., 2011b) from direct so-
lution of the flat black-brane geometry.

B. Charged black holes: quantum fluctuations

This section will examine quantum fluctuations about
the saddle-point solution of Einstein-Maxwell theory de-
scribed in Section XII.A. Remarkably, in the ‘extremal’
limit T � 1/Rh, the theory of these fluctuations co-
incides with those of the theory Eqs. (5.58) and (5.60)
obtained from the SYK model (Boruch et al., 2022; Gaik-
wad et al., 2020; Heydeman et al., 2020; Iliesiu and
Turiaci, 2020; Moitra et al., 2019; Nayak et al., 2018;
Sachdev, 2019). Below, we will outline how this theory
may be obtained starting from Eq. (12.1). A more de-
tailed review of these fluctuation computations has been



63

presented elsewhere (Sachdev, 2019), and here we shall
highlight the key steps:

1. Reduce the d + 2 spacetime dimensional theory in
IEM to a 1+1 dimensional theory IEM,2 by tak-
ing all fields dependent only upon the radial co-
ordinate r and imaginary time τ .

2. Take the low energy limit of IEM,2 by mapping it
to a near-horizon theory, IJT , in a 1+1 dimensional
spacetime with a boundary: so we “integrate out”
region (C) in Fig. 25, and obtain an effective the-
ory in regions (A) and (B). In these regions, the
near-horizon AdS2 saddle point in Eqs. (12.16) and
(12.17) is an exact saddle point of IJT . Outside the
boundary, there is a crossover to the full solution of
IEM in Eqs. (12.3) and (12.6) to region (C) where
spacetime does not factorize into AdS2 × Sd.

3. Compute fluctuations about the AdS2 saddle point
of IJT . Einstein gravity in 1+1 dimensions has no
graviton, and is ‘pure gauge’. In the JT-gravity
theory with boundary, there is a remnant degree
of freedom which is a boundary graviton. The
action for this boundary graviton is precisely the
Schwarzian theory in Eqs. (5.58) and (5.60).

We outline these steps for the gravity sector in the fol-
lowing subsections. The electromagnetic sector produces
the action for the phase field φ in the Schwarzian theory,
as is discussed elsewhere (Sachdev, 2019).

1. Dimensional reduction from d+ 2 to 1 + 1.

We write the (d + 2)-dimensional metric g of IEM in
Eq. (12.2) in terms of a two-dimensional metric h and a
scalar field Φ (Davison et al., 2017; Nayak et al., 2018):

ds2 =
ds2

2

Φd−1
+ Φ2 dΩ2

d . (12.26)

Both h and Φ, and the gauge field A, are allowed to be
general functions of the two-dimensional co-ordinates ζ
and τ (recall Eq. (12.14) for the definition of the radial
co-ordinate ζ). Note that the scalar field Φ represents
radial fluctuations in the size of the black hole. Then
Eq. (12.2)) and an associated Gibbons-Hawking bound-
ary term reduce to (x ≡ (τ, ζ))

IEM,2 =

∫
d2x
√
h

[
− sd

2κ2
ΦdR2 + U(Φ) +

Z(Φ)

4g2
F

F 2

]
IGH = − sd

κ2

∫
∂

dx
√
hbΦ

dK1 (12.27)

along with an additional term not displayed which can-
cels in IEM,2 + IGH (Nayak et al., 2018). The Gibbons-
Hawking term is to be evaluated at the boundary at
ζ → 0 or r → ∞. Here R2 is the two-dimensional

Ricci scalar, the second integral is over a one-dimensional
boundary with metric hb and extrinsic curvature K1. The
explicit forms of the potentials U(Φ) and Z(Φ) are,

U(Φ) = − sd
2κ2

(
d(d− 1)

Φ
+
d(d+ 1)Φ

L2

)
Z(Φ) = sdΦ

2d−1 . (12.28)

The 1+1 dimensional action in Eqs. (12.27,12.28) has
exactly the same saddle point solution as that of the d+2
dimensional action in Eq. (12.2). The 1+1 dimensional
theory IEM,2 now involves a metric h and a scalar field
Φ, and in terms of the new variables, the solution is given
by matching Eq. (12.3) with the ansatz in Eq. (12.27).
In this manner, it is easy to see that the exact solution
for the scalar field is

Φ(ζ) = Rh +
R2

2

ζ
. (12.29)

2. JT gravity in the near-horizon limit

Note that the T = 0 horizon is obtained as ζ → ∞,
and the factorization of the metric to AdS2×Sd fails for
ζ . Rh. So we reduce the theory to the near-horizon
spatial region ζ > ζb, with

Rh � ζb �
1

T
(12.30)

which applies in regions (A) and (B) of Fig. 25. The low
energy limit of the 1+1 dimensional theory of step 1 to
ζ > ζb was argued (Almheiri and Polchinski, 2015; Mal-
dacena et al., 2016b) to be the JT gravity theory (Jackiw,
1985; Teitelboim, 1983) of a metric h and a scalar field
Φ1 given by

IJT = −S +

∫
d2x
√
h

[
− sd

2κ2
Φ1

(
R2 +

2

Hb

)]
IGH = − sd

κ2

∫
∂

dx
√
hbΦ1K1 (12.31)

where S was defined in (12.19). We also have the bound-
ary conditions

hττ (ζ ↘ ζb) =
Hb

ζ2

Φ1(ζ ↘ ζb) =
Φb
ζ
. (12.32)

This theory depends upon 2 constants, Hb and Φb, and
we can obtain their values by matching to the solution
for the two-dimensional metric h and scalar field Φ ob-
tained in Step 1, which was valid at all ζ. The boundary
condition on hττ is obtained by comparing Eq. (12.26)
with with Eq. (12.16), and using the leading term in
Eq. (12.29) for large ζ we obtain:

Hb = R2
2R

d−1
h . (12.33)
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The subleading term in Eq. (12.29) contributes to the
co-efficient of R2 in Eqs. (12.27) and (12.31), which from
Eq. (12.29) yields

lim
ζ→∞

[Φ(ζ)]d = Rdh + Φ1(ζ) + . . . (12.34)

Then the boundary value of Φ1 in Eq. (12.32) determines

Φb = dRd−1
h R2

2 . (12.35)

Now, the saddle point solution of the JT gravity theory
in Eqs. (12.31) and (12.32) co-incides with the metric
Eq. (12.16), which we now generalize to T > 0:

ds2
2 =

R2
2R

d−1
h

ζ2

[
(1− 4π2T 2ζ2)dτ2 +

dζ2

1− 4π2T 2ζ2

]
Φ1(ζ) =

Φb
ζ
. (12.36)

Note that the boundary form of Φ1 in Eq. (12.32) holds
for all ζ in the regime of validity of the JT theory, a
result also evident from Eq. (12.34). The horizon is at
ζ = 1/(2πT ), and it can be verified that the analog of
Eq. (12.9) for the Hawking temperature is satisfied here.

3. From JT gravity to the Schwarzian

We address fluctuations about the saddle-point solu-
tion Eq. (12.36) of the JT gravity theory defined by
Eqs. (12.31) and (12.32). The effective theory now has a
simple enough form that these fluctuations can be evalu-
ated reliably (Maldacena et al., 2016b). The integral over
Φ1 in Eq. (12.31) can be evaluated exactly, and yields a
constraint on the bulk metric and the only dynamical de-
gree of freedom in JT gravity is a time reparameterization
along the boundary τ → f(τ). To ensure that the bulk
metric obeys the boundary condition Eq. (12.32), we also
have to make the spatial co-ordinate ζ a function of τ , so
we map (τ, ζ)→ (f(τ), ζ(τ)). Then the boundary metric
induced by Eq. (12.36) equals the value in Eq. (12.32)
provided ζ(τ) is related to f(τ) by

ζ(τ) = ζbf
′(τ) + ζ3

b

(
[f ′′(τ)]

2

2f ′(τ)
− 2π2T 2 [f ′(τ)]

3

)
+O(ζ4

b ) . (12.37)

Finally, we evaluate IGH in Eq. (12.31) along this bound-
ary curve (the bulk contribution IJT vanishes from equa-
tion of motion of Φ1, which is R2 + 2/Hb = 0). In this
manner we obtain the action (Maldacena et al., 2016b;
Sachdev, 2019) I1,eff = −S + Ieff with

Ieff [f ] = −sdΦb
κ2

∫ 1/T

0

dτ
(
{f(τ), τ}+ 2π2T 2 [f ′(τ)]

2
)

= −sdΦb
κ2

∫ 1/T

0

dτ {tan(πTf(τ)), τ} . (12.38)

Notice that the arbitrary value of ζb has cancelled out,
and this is an important consistency check on our steps.
Remarkably, we have obtained the Schwarzain action,
found earlier for the SYK model. Here, its presence is
a consequence of the SL(2,R) symmetry of pure AdS2

discussed in Appendix C, which require that the action
vanish for f(τ) which are isometries of AdS2. The ac-
tion for other f(τ) appears from the ‘boundary gravi-
ton’ (Maldacena et al., 2016b) obtained by embedding
of AdS2 in the d+ 2 dimensional geometry of a charged
black hole.

Comparing the action Eq. (12.38) with the action for
the SYK model in Eq. (5.60), we obtain from the co-
efficient of the Schwarzian (ignoring the N prefactor in
Eq. (5.60))

γ =
4π2sdΦb
κ2

. (12.39)

After using the value of Φb in Eq. (12.35), we find that
this value of γ is in precise agreement with the value in
Eq. (12.22), which was computed the T dependence of
the entropy in Eq. (12.12) for the full d+ 2 dimensional
theory. So the γ co-efficients of both charged black holes
and the SYK model (in Eq. (5.53)) are given by the co-
efficient of the Schwarzian effective action.

Finally, we can combine the Schwarzian fluc-
tuation contribution to the entropy in Eq. (5.77)
with leading Bekenstein-Hawking entropy in
Eqs. (12.12,12.15,12.21,12.22) to obtain the univer-
sal, leading, low T form of the entropy of charged black
holes when the AdSd+2 radius is much larger than the
size of the black hole (L � Rh) (Iliesiu and Turiaci,
2020; Sachdev, 2019)

S(T ) =
1

GN

[
A0

4
+

πdA(d+1)/d
0

2(d− 1)2s
1/d
d

T

]
− 3

2
ln

(
U

T

)
,

(12.40)
where A0 = sdR

d
h is the horizon area at T = 0, and the

factor is square brackets accounts for the change in the
horizon area with increasing T at fixed Q. The non-
universal energy scale U is now presumably a Planck
scale energy, but the 3/2 co-efficient of the logarithm
is independent of the nature of the high energy cutoff.
The Schwarzian fluctuation correction to the entropy be-
comes of order the Bekenstein-Hawking term only at an
exponentially low temperature T ∼ U exp(−A0/(6GN )),
when the theory breaks down, and the discrete level
spacing of the black hole has to be accounted for: the
path integral over the Einstein-Maxwell theory Eq. (12.2)
only has information on the density of states coarse-
grained over the exponentially small level spacing, and
determining the precise energy levels requires embedding
Eq. (12.2) in a higher energy theory like string theory.
As in Section V.F.2, the logarithmic correction to the
entropy in Eq. (12.40) translates to the coarse-grained
density of many-body states in Eq. (5.79); for a charged
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black hole in d+2 dimensional Minkowski spacetime with
L � Rh the density of states takes the form (Sachdev,
2022)

D(E) ∼ exp

( A0c
3

4~GN

)

× sinh

[ πdA(d+1)/d
0

(d− 1)2s
1/d
d

c3

~G
E

~c

]1/2
 (12.41)

after restoring factors of ~ and c. Eq. (12.41) is a rare for-
mula which combines Planck’s constant ~ with Newton’s
gravitational constant GN : the exponential prefactor was
obtained by Hawking, the sinh follows from developments
ensuing from the solution of the SYK model. Both terms
depend only upon the T = 0 area of the black hole hori-
zon, A0, and fundamental constants of nature. Note also
that there is no dependence upon the electromagnetic
coupling, gF .

We note that the black hole density of states obtained
above is very different from that obtained in supersym-
metric SYK models and black hole solutions of string
theory (Boruch et al., 2022; Fu et al., 2017; Heydeman
et al., 2020): the latter have an exponentially large
exact degeneracy of ground states with multiplicity ∼
exp(A0/(4GN )), and a gap ∼ 1/A1/d

0 to the first excited
state. Contrast this with the generic non-supersymmetric
situation with an exponentially small level spacing down
to the ground state illustrated in Fig. 6. Indeed, it was
the determination of the density of states of the SYK
model which led to the understanding that black holes
with AdS2 horizons and no low-energy supersymmetry
do not have ground states with an exponentially large
degeneracy.

C. Wormholes

We have so far considered a single SYK model in ther-
mal equilibrium, and argued that it is equivalent to a
charged black hole, also in thermal equilibrium. The past
few years have seen very rapid developments on the the-
ory of more complex configurations of SYK models and
black holes, including remarkable progress in resolving
Hawking’s quantum information paradox on evaporating
black holes. A common thread in these developments
have been ‘wormholes’, which are the analogs of solitons
or instanton tunneling events in quantum gravity.

Consider a pair of identical coupled SYK models, i.e.
a ‘homonuclear diatomic SYK-molecule’, with Hamilto-
nian(Sahoo et al., 2020)

H =
∑
ij;k`

Uij;k`
∑
a=1,2

c†iac
†
jackac`a − µ

∑
i,a

c†iacia

+
∑
i

κ
(
c†i1ci2 + c†i2ci1

)
. (12.42)

Here a = 1, 2 labels the two SYK-atoms, and κ is the
tunneling amplitude between them. Notice that the ran-
dom interactions Uij,k` are the same on both SYK-atoms.
This 2-atom model is clearly similar to the lattices of
SYK-atoms considered in Section X.A. At half-filling,
this model can acquire a gapped ground state, when
the fermions occupy only the lower energy ‘bonding’ or-
bitals which are eigenstates of the κ term. Holographi-
cally, this gapped state corresponds to an eternal worm-
hole between 2 black holes with AdS2 horizons, as has
been discussed in many recent works (Gao and Jafferis,
2021; Garćıa-Garćıa et al., 2019; Maldacena and Qi, 2018;
Nikolaenko et al., 2021; Plugge et al., 2020; Sahoo et al.,
2020; Zhang, 2021, 2022; Zhou et al., 2021; Zhou and
Zhang, 2020).

Next consider a single Majorana q = 4 SYK model of
N sites (as in Section V) coupled to a Majorana q =
2 random matrix model of M sites (as in Section IV),
with M � N ; this is a ‘heteronuclear diatomic SYK-
molecule’ with one atom much larger than the other, and
is described by the Hamiltonian (Su et al., 2020; Zhang,
2022)

H =
∑

i<j<k<`

USijklψiψjψkψ` + i
∑
a<b

UE
abχaχb

+ i
∑
i,a

Viaψiχa . (12.43)

Here i, j, k, ` = 1 . . . N and a, b = 1 . . .M . (The same
considerations apply to models of complex fermions, but
the authors chose Majorana fermions for simplicity.) The
SYK-atom of ψ fermions models a black hole, and we
consider a situation in which it is in some pure excited
state with energy E at time t = 0. The χ free fermions
represent the environment into which the black hole is
going to radiate its energy, and so this setup models an
evaporating black hole. At the initial time, the black
hole is presumed to be decoupled from the environment,
and so the entanglement entropy between the black hole
and the environment vanishes. In the early stages of the
evaporation, the energy E will radiate out into the envi-
ronment, and so the entanglement entropy will increase
with time. However, we can also see that as t → ∞,
the energy E will be essentially all absorbed by the envi-
ronment (because M � N), and so the SYK model will
be in a low energy state, with small entanglement with
the environment. This time evolution of the entangle-
ment is a model of the black hole Page curve (Su et al.,
2020; Zhang, 2022). In the holographic representation,
the computation of such a Page curve involves spacetime
wormholes (Almheiri et al., 2020, 2021; Chen et al., 2021,
2020; Penington et al., 2019; Saad et al., 2019). These
works have led to the realization (Bousso et al., 2022)
that, upon including wormhole contributions, the path
integrals over Einstein-Maxwell theories like (12.2) are
also able to properly compute the time evolution of en-
tanglement entropy in black hole evaporation, along with
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the density of states noted at end of Section XII.B.3, de-
spite their lack of knowledge of the precise black hole
energy levels.

D. AdS/CFT correspondence

An alternative route to a connection between strange
metals and quantum gravity uses the AdS/CFT cor-
respondence of string theory. This is a correspon-
dence between a conformal field theory (CFT) in flat d-
dimensional space, and gravity on a AdSd+2 spacetime
(Maldacena, 1998; Witten, 1998). The canonical exam-
ple in spatial dimension d = 3 is SU(NYM ) Yang-Mills
gauge theory with N = 4 supersymmetry (Maldacena,
1998), and in spatial dimension d = 2 is SU(NYM ) Yang-
Mills gauge theory with N = 8 supersymmetry (Aharony
et al., 2008). Both theories are conformally invariant, and
map to neutral Q = 0 black hole solutions of the action
Eq. (12.2), with coupling constants

κ = κ̄ N−aYM Ld/2 , gF = ḡF N
−a
YM L(d−2)/2 , (12.44)

where κ̄ and ḡF are dimensionless constants of order
unity, and a = 1 for d = 3, and a = 3/4 for d = 2.

To obtain a connection to strange metals, we have to
‘dope’ these CFTs i.e. we have to place them in a chem-
ical potential coupling to a global U(1) symmetry, which
induces a conjugate charge density N2a

YMQYM (Hartnoll
et al., 2007). In the gravity theory, this doped CFT maps
to the same charged black hole solutions we have consid-
ered for the SYK model, with the crucial difference that
the relevant solutions are the flat black-brane solutions in
Section XII.A.1, which describe the strange metals pro-
duced by doped supersymmetric Yang-Mills theory in in-
finite d-dimensional space in the limit of large NYM . We
note that the doping breaks the supersymmetry, so the
low energy theory has no supersymmetry. The non-zero
charge density in the supersymmetric Yang-Mills theory
introduces a length scale of order [QYM ]−1/d, and we are
interested in physics at longer length scales. At these
length scales, black brane solutions described in Sec-
tion XII.A.1 have a AdS2×Rd geometry (Faulkner et al.,
2011b). The doped Yang-Mills theories are described by
continuum Lagrangians similar to the disorder-free mod-
els of non-Fermi liquids we considered in Section XI (Hui-
jse and Sachdev, 2011; Huijse et al., 2012). The holo-
graphic flow of the doped Yang-Mills theory to a AdS2

geometry is therefore evidence that models in the class of
Section XI could have an intermediate energy range over
which their physics is described by the SYK-like local
criticality. While the SYK-critical state of Section VII
is unstable to spin glass order at the lowest tempera-
tures, there could be a crossover from local criticality to
the momentum-dependent Fermi surface physics at the
lowest energies for the models of Section XI. This is in

contrast to the supersymmetric doped Yang-Mills theo-
ries, for which the AdS2 geometry is stable down to zero
temperature in the large NYM limit. We note another
discussion (Iqbal et al., 2011, 2012) with a related point
of view.

Some studies of the AdS2 × Rd black brane solu-
tions have focused on their response to additional probe
fermions (Cubrovic et al., 2009, 2011; Faulkner et al.,
2011a,b; Liu et al., 2011). In particular, it was shown
that probe fermions in such a geometry acquired a Fermi
surface and a self energy with some similarities to the
critical Fermi surface described in Section XI.A, with
a self-energy which obeyed a scaling form similar to
Eq. (11.8). But there were also significant differences
from the microscopic critical Fermi surface theory of Sec-
tion XI.A: (i) the self energy of the probe fermions had
an exponent which varied with momentum across the
Fermi surface; (ii) the size of the Fermi surface of the
probe fermions was determined by the density of the
probe fermions, and did not include the large density
N2a
YMQYM of the Yang-Mills theory itself. There is ex-

pected to be a separate Fermi surface of the latter back-
ground fermions upon including finite NYM corrections
(Faulkner and Iqbal, 2013; Sachdev, 2012). These fea-
tures imply that the probe fermion black-brane strange
metal is really a description of a spectator band of
fermions (Huijse and Sachdev, 2011; Huijse et al., 2012;
Sachdev, 2010) scattering off a background which has a
large density of low energy excitations, and the source of
the breakdown of the quasiparticles does not arise from
interactions between the putative quasiparticles them-
selves.

1. Connection to the SYK model

The SYK model mapping of Section XII.B appeared
for a spherical black hole horizon of radius Rh, which at
temperatures T � 1/Rh mapped on to the SYK model
at T � U . We can also place the supersymmetric Yang-
Mills theory on a sphere of radius RYM , and then this
supersymmetric Yang-Mills theories is connected to the
Schwarzian path integral in Eqs. (5.60) and (12.38), as
we now discuss.

The Yang-Mills theory is characterized by 2 length
scales, RYM and [QYM ]−1/d, and the charged black hole
solution of Sections XII.A and XII.B, with a near-horizon
AdS2×Sd geometry, provides a complete holographic de-
scription as 1/T is varied across these length scales. To
make this correspondence precise, we have to relate RYM
and [QYM ]−1/d to the length scales in the black hole so-
lution, which are Rh, L, and R2. The connection between
the total charge and charge density in Eq. (12.23) imme-
diately implies

L = RYM , (12.45)
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while the total charge of the black hole solution in
Eq. (12.13) leads to

QYM =
Rd−1
h

√
d [(d+ 1)R2

h + (d− 1)L2]

L2dκ̄ḡF
. (12.46)

The value of R2 remains connected to Rh and L as in
Eq. (12.15).

Finally, we connect to the low energy Schwarzian ap-
proximation of the charged black hole. The charge den-
sity breaks the supersymmetry of the Yang-Mills theory,
so we don’t need to consider the super-Schwarzian the-
ories that are needed for supersymmetric SYK models
and supersymmetric black holes (Boruch et al., 2022; Fu
et al., 2017; Heydeman et al., 2020; Stanford and Witten,
2017). If we are at low temperatures so that the thermal
length is larger than charge length T � [QYM ]1/d, and
also so that fluctuations of non-constant horizon modes
can be neglected T � 1/Rh, we can map these values
L, Rh, and R2 to obtain the dimensionless coupling con-
stant gSch (Stanford and Witten, 2017) of the low energy
Schwarzian theory from Eq. (12.39)

π

g2
Sch

= γT

=
4π2dsdN

2a
YM

κ̄2

R2
2R

d−1
h T

Ld
. (12.47)

The ratio of length scales R2
2R

d−1
h /Ld is to be determined

as a function of the length scales RYM and [QYM ]−1/d

by solving Eqs. (12.45), (12.46) and (12.15). Thus
Eq. (12.47) is the main result of this subsection, deter-
mining the Schwarzian coupling gSch as a function of the
parameteres of the Yang-Mills theory, which are the tem-
perature T , the radius of the sphere RYM , and the charge
density N2a

YMQYM . Note that the coupling g becomes
small in the limit of large NYM .

Let us examine the value of gSch in the limiting regime
when the size of the sphere of the Yang-Mills theory
is much larger than the size set by the charge density,
RYM � [QYM ]−1/d. Then we find Rh � L with

Rh ∼ RYM [QYMR
d
YM ]1/d, R2 ∼ RYM (12.48)

so that

1

g2
Sch

∼ N2a
YM

[
QYMR

d
YM

](d−1)/d
RYMT . (12.49)

We observe that g2
Sch ∼ [RYM ]

−d
so the coupling be-

comes weak in the limit of a large sphere. Of course,
as always, we have to maintain T � 1/Rh to apply the
Schwarian theory, so the minimum possible value of the
Schwarzian coupling is

g2
Sch,min ∼ N−2a

YM

[
QYMR

d
YM

](2−d)/d
. (12.50)

E. Out-of-time-order correlations

The connections to quantum gravity have also
introduced a new diagnostic—the out-of-time-order
correlator— for detecting how quickly local perturbations
become entangled with a macroscopic number of degrees
of freedom in quantum many-body systems evolving un-
der their own unitary dynamics. Out-of-time-order cor-
relations (OTOCs) were studied a long time ago (Larkin
and Ovchinnikov, 1969) as an approach to diagnosing the
semiclassical consequences of classical chaos in a quan-
tum system. The modern incarnation of OTOCs ap-
peared (Shenker and Stanford, 2014) in the study of
shock waves in black holes (Dray and ’t Hooft, 1985),
where they were proposed as a signature of intrinsically
quantum chaos in a strongly interacting many-body sys-
tem. Shenker and Stanford argued that any strongly in-
teracting quantum system, which is holographically dual
to a black hole described by a theory containing Einstein
gravity, has an OTOC of local operators V , W which has
an exponential growth at early times:

〈W (t)V (0)W (t)V (0)〉 ∼ exp(λLt) , (12.51)

and the ‘Lyapunov growth rate exponent’ is given by

λL = 2πT . (12.52)

This value of λL is a direct consequence of Einstein grav-
ity, and the circumference of the Euclidean temporal cir-
cle being equal to ~/kBT . This exponential growth was
argued to be related to a rapid loss of memory of the
initial perturbations with time, a characteristic also ex-
pected from the absence of quasiparticle excitations. It
was subsequently argued (Maldacena et al., 2016a), with-
out using any holographic connection, that the inequality
λL ≤ 2πT must apply to all strongly interacting quan-
tum systems. The bound has also been shown to fol-
low directly from the structure of generic operators that
satisfy the eigenstate thermalization hypothesis (Murthy
and Srednicki, 2019). A complementary bound has also
been proposed on a closely related quantity that diag-
noses operator growth (Parker et al., 2019). However,
none of these statements suggest that generic quantum
many body systems necessarily display an exponential
growth of the OTOC.

The OTOC ideas have found a precise realization in
the SYK model. For the model of Section V, we define
the OTOC by

OTOC(t1, t3, ; t2, t4) =

1

N2

∑
i,j

〈
c†i (t1)cj(t3)ci(t2)c†j(t4)

〉
conn.

(12.53)

We examine the real time regime with t1 ≈ t2 � 1/T ,
and t3 ≈ t4, and define the ‘center of mass’ time separa-
tion

t =
1

2
(t1 + t2 − t3 − t4) (12.54)
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The OTOC of the SYK model can be computed by gen-
eralizing the expression Eq. (5.59) for Schwarzian fluctu-
ations corrections from 2 point to 4 point correlators. In
imaginary time, we have the 4-point correlator

F(τ1, τ3; τ2, τ4) =
〈

[f ′(τ1)f ′(τ2)f ′(τ3)f ′(τ4)]1/4

×Gc(f(τ1)− f(τ2))Gc(f(τ3)− f(τ4)
〉
Z
, (12.55)

where the average is over the Schwarzian path integral
in Eq. (5.58) (we have omitted the unimportant fluctua-
tions of φ), and the conformal saddle-point Green’s func-
tion Gc(τ) is given by Eq. (5.25). After careful analytic
continuation of this correlator to real times, it was found
that in the time range 1 . Tt � lnN there is an expo-
nential growth of the OTOC (Kitaev, 2015; Kitaev and
Suh, 2018; Maldacena and Stanford, 2016)

OTOC(t1, t3, ; t2, t4) ∝ 1

N
exp(2πTt) (12.56)

So the chaos inequality (Maldacena et al., 2016a) is sat-
urated by the SYK model, which, not surprisingly, has
the same chaos growth rate as systems holographically
dual to Einstein gravity.

The spatial structure associated with the OTOC
is equally interesting and directly diagnoses operator
growth. In Eq. (12.51), if the operators are spatially
separated, W (t, r), V (0, 0), the OTOC exhibits a bal-
listic wavefront associated with the growing operators
as a function of (t − |r|/vB). The ‘butterfly-velocity’,
vB , is an intrinsic speed associated with the quantum
many-body state and can, in principle, be parametrically
smaller than the microscopic scales associated with the
Hamiltonian (Swingle and Chowdhury, 2017).

OTOCs have been studied in a variety of models, in-
cluding the critical Fermi surface model of Section XI.A
(Patel and Sachdev, 2017; Tikhanovskaya et al., 2022),
the lattice models related to those of Section X (Gu
and Kitaev, 2019; Gu et al., 2017a; Guo et al., 2019),
disordered metals (Patel et al., 2017), and conformal
field theories (Chowdhury and Swingle, 2017; Grozdanov
et al., 2019; Kim et al., 2021; Stanford, 2016; Steinberg
and Swingle, 2019), and all find a regime of exponential
growth with a λL that obeys the chaos bound, accompa-
nied by a sharp ballistic wavefront. All of these settings
involve a large−N or a weak-coupling semiclassical limit.
Direct numerical studies of realistic lattice models in one
dimension (Bohrdt et al., 2017; Luitz and Bar Lev, 2017;
Xu and Swingle, 2020) have revealed a ballistic growth
of operators but no indication of a well defined (i.e. posi-
tion and velocity independent) Lyapunov exponent and
a sharp front.

There have also been studies involving random uni-
tary circuits with a finite dimensional local Hilbert space
and no semi-classical limit, which observed a behavior of
the OTOC that is qualitatively distinct from the above
models (von Keyserlingk et al., 2018; Khemani et al.,

2018a; Nahum et al., 2018; Xu and Swingle, 2019); im-
portantly the growth is not identified by a well-defined
λL and the ballistic wavefront is not sharp. However,
these models do not have a conserved energy and an as-
sociated notion of temperature, thereby making a direct
comparison to the chaos bound far from being clear. A
recent study (Keselman et al., 2021) has demonstrated
a way to access a regime of exponential growth of the
OTOC even in random unitary circuits by effectively tun-
ing vB � λL × (microscopic length scale), thereby pre-
senting evidence that a finite Hilbert space can have an
exponential growth of the OTOC.

The relevance of λL and vB for measurable trans-
port quantities has been scrutinized in a number of
works. Bounds on transport quantities, such as the vis-
cosity (Kovtun et al., 2005) and charge diffusion coeffi-
cient (Hartnoll, 2014), have been suggested to hold for
strongly interacting phases without quasiparticle excita-
tions. Both of these bounds can be interpreted in terms
of a bound on the diffusion coefficient, D ∼ ~v2/kBT ,
where v is a characteristic (but unknown) velocity scale
in the problem. The statement of the bound was sharp-
ened with the bold proposition (Blake, 2016) that the
relevant velocity scale is set by v = vB . While there are
a number of holographic examples where these bounds
have been shown to apply and even be saturated (Gu
et al., 2017b), there are explicit counterexamples where
the proposed bounds are violated (Gu et al., 2017a; Lu-
cas and Steinberg, 2016). Stepping away from concrete
models, a ‘hydrodynamic’ understanding of some aspects
of operator growth and chaos has also been developed
in situations where the exponential regime exists (Blake
et al., 2018).

In general, the relation between diffusive spreading of
conserved charges and ballistic growth of non-conserved
operators is complicated. For a class of generic random
unitary circuits with conserved charges, it was shown
that a spreading operator consists of a conserved part
spreading diffusively, which acts as a source of noncon-
served operators and leads to dissipation at a rate set by
the local diffusion current (Khemani et al., 2018b). The
nonconserved operators spread ballistically at a butter-
fly speed, becoming increasingly entangled with a macro-
scopic number of degrees of freedom in the system, acting
as a dissipative ‘bath’. So in this random unitary circuit
approach, the diffusion coefficient need not be related to
any of the metrics associated with the OTOCs.

However a close relationship has been found between
the OTOC λL and the thermal diffusivity in computa-
tions for the critical Fermi surface (Patel and Sachdev,
2017), and in a wide class of holographic models (Blake
et al., 2017). The relationship between the thermal dif-
fusivity and v2

B/λL has also been analyzed in a fam-
ily of strongly interacting bosonic variants of the SYK
model (Tulipman and Berg, 2021), which are more closely
related to the quantum spherical p−spin-glass model
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(Cugliandolo et al., 2001), inspired by the observation
of Planckian diffusivities in a class of complex insulators
(Mousatov and Hartnoll, 2020; Zhang et al., 2019). A
simplified interpretation is that both quantum chaos and
thermal diffusivity are related to loss of phase coherence.
The time derivative of a local phase is the local energy
density, and the fluctuation-dissipation theorem relates
energy fluctuations to thermal transport.

The exact relation between OTOCs and universal as-
pects of transport remains unclear. Inspired by the uni-
versality of scattering rates across distinct materials dis-
playing non-Fermi liquid properties, it has been conjec-
tured (Chowdhury et al., 2018) that there is an emergent
length scale, ` � a(≡ lattice spacing), which is char-
acterized by maximal chaos with a Lyapunov exponent
λL = 2πT at low temperature (i.e. either as T → 0, or,
T > W ∗ but still small compared to microscopic energy
scales) and effectively reaches local thermal equilibrium
in a time of order 1/T (Sachdev, 1999). The universal
coarse-grained description for the non-Fermi liquids can
then possibly be built by coupling the islands of typical
size `. This does not imply that the system is necessar-
ily maximally chaotic at the scale of the system size. In
contrast, in a system with quasiparticles that does not
display any non-Fermi liquid behavior, we expect that
λL � T as T → 0.

We end by noting that a different diagnostic of quan-
tum chaos, which measures the correlations between en-
ergy levels and diagnoses the spectral ‘rigidity’, is the
spectral form factor (SFF). The SFF has been analyzed
in the past in the context of mesoscopic physics and ran-
dom matrix theory (Altshuler and Shklovskii, 1986). The
celebrated ‘ramp-plateau’ form of the SFF beyond the
Thouless time, signifies the onset of chaotic random ma-
trix like behavior and has been analyzed for the SYK
model using a variety of different methods (Altland and
Bagrets, 2018; Altland et al., 2021; Cotler et al., 2017;
Garćıa-Garćıa and Verbaarschot, 2017; Gharibyan et al.,
2018; Liao et al., 2020; Saad et al., 2018; Winer et al.,
2020).

XIII. OUTLOOK

Finding models of interacting electrons that can be
solved reliably in the regime of strong interactions and
at finite temperatures, without making uncontrolled ap-
proximations, remains a key challenge in quantum many-
body physics. The family of models studied in this re-
view offer a remarkably useful starting point for describ-
ing compressible metallic phases without any ‘Landau’
quasiparticles at strong interactions. Furthermore, they
naturally lead to nFL regimes exhibiting electronic inter-
action induced T−linear resistivity and Planckian behav-
ior over a wide range of energy scales and are accompa-
nied by (ω/T )−scaling. The theoretical results reviewed

here are consistent with much of the universal experimen-
tal nFL phenomenology across numerous distinct micro-
scopic materials. Therefore, it is natural to consider the
possibility that a large class of strongly interacting mi-
croscopic models describing real materials flow (in a RG
sense) to the different families of models considered in
this article, over a significant intermediate energy range.
Proving this remains an outstanding challenge.

A notable recent result in the study of non-Fermi liq-
uids is the phase diagram of Fig. 13 (Dumitrescu et al.,
2022; Shackleton et al., 2021). This presents the results
of a numerical study of the doped random exchange t-
U -J Hubbard model. Many features of the phase di-
agram are reminiscent of the observations in the hole-
doped cuprates, as we discussed in Section VII.G. These
include a doping induced transition from a disordered
Fermi liquid satisfying Luttinger’s theorem for p > pc
to a low temperature metallic spin glass for p < pc. At
higher temperatures, the latter has a small carrier density
and violates Luttinger’s theorem. The quantum critical
metal near p = pc exhibits a single-particle lifetime that
has a Planckian form (see Fig. 14) with an O(1) coeffi-
cient; in the low-temperature limit the inferred resistivity
is significantly below the MIR value. The quantum crit-
ical spin correlations are given by those of the SY spin
liquid.

At first sight, this concordance is remarkable and puz-
zling: the theory relies on a random exchange coupling
with zero mean, which is far from the physical situation
in the cuprates. We can take the concordance as an indi-
cation that AdS2/SYK ‘local’ criticality has a robustness,
and can be present in models over a significant interme-
diate energy range. We note the renormalization group
arguments (Patel and Sachdev, 2019) that enhancement
of resonant scattering can lead to the emergence of lo-
cal SYK criticality. We also discussed holographic evi-
dence of such a crossover (Iqbal et al., 2011, 2012; Liu
and Sonner, 2020) in disorder-free non-Fermi liquids of
Fermi surfaces coupled to gauge fields in Section XII.D.
See also other thoughts (Khveshchenko, 2018a, 2022) on
the emergence of SYK local criticality.

The universality of the models studied is also encoded
in their remarkable maximal many-body chaos, as di-
agnosed using the OTOC. Whether this aspect also in-
directly controls the universality of Planckian transport
scattering rates across distinct nFL materials is an impor-
tant and non-trivial theoretical question. A recent work
has highlighted some of the fundamental differences be-
tween the growth of operators in maximally chaotic vs.
non maximally chaotic quantum systems (Blake and Liu,
2021), which could be of some relevance to understanding
transport in nFL without quasiparticles.

For the disordered models considered in Section VII,
the SY spin liquid behavior (Joshi et al., 2020) cannot ex-
tend down to T = 0 because of the divergence of the spin
glass susceptibility (Georges et al., 2000, 2001) (although
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this instability is not visible over the accessible temper-
ature range in the Planckian behavior in Fig. 14). So we
expect the eventual appearance of a metallic spin glass or
a disordered Fermi liquid in which the zero temperature
entropy is quenched, with the SY spin liquid surviving
at T = 0 only at the ‘spinodal’ critical point where the
Fermi liquid solution disappears. In more realistic mod-
els with weak disorder, we can expect the pseudogap to
acquire the topological order of a fractionalized Fermi liq-
uid, or have spin or charge density wave order. The crit-
ical theory asymptotically close to the pseudogap critical
point will also be different: for the models of Section VII,
we can expect a transition from a disordered Fermi liq-
uid to a metallic spin glass, as described in theories with-
out fractionalization (Sachdev et al., 1995; Sengupta and
Georges, 1995). Another possibility, present in the non-
Fermi liquid large M limit of Section VII.D.2, is that the
entire overdoped regime is a critical metal with linear-T
resistivity (Christos et al., 2022b), and then the criti-
cal point is also a deconfined theory. The connections
between the transition outlined above and ‘deconfined’
metallic criticality (Zhang and Sachdev, 2020; Zou and
Chowdhury, 2020) associated with abrupt Fermi surface
changing transitions in clean systems, and in the absence
of fractionalization in the adjacent phase, remains an in-
teresting open problem.

A consequence of models with Jij having zero mean
is that there is no superconductivity. Adding a non-zero
mean Jij , or other attractive interaction should lead to
superconductivity (Chowdhury and Berg, 2020; Esterlis
and Schmalian, 2019; Hauck et al., 2020; Patel et al.,
2018a; Wang et al., 2020; Wang, 2020a), and a theory
is needed for the onset of superconductivity from the
Planckian metal phase of Figs. 13 and 14.

We discussed theories of non-Fermi liquids with critical
Fermi surfaces in Section XI. Without disorder, such the-
ories have zero resistivity in the absence of exponentially
weak umklapp scattering, and so cannot produce linear-
in-T resistivity at low T . Adding potential scattering
disorder to such a critical Fermi surface does produce a
non-zero residual resistivity, but the temperature depen-
dence of the resistivity is Fermi liquid-like, even though
there is marginal Fermi liquid behavior in the fermion
self energy (Patel et al., 2022). An interesting recent ob-
servation (Patel et al., 2022) is that spatial disorder in
the interaction strength does indeed produce a linear-T
resistivity (along with a T ln(1/T ) specific heat). Two
different types of disorder are therefore responsible for
the residual resistivity and the slope of the linear-T re-
sistivity: the former arises from potential disorder, and
the latter from interaction disorder. This feature has
promise in explaining observations, and a better under-
standing is needed of the strengths of these disorders in
the context of microscopic models.

An emerging application of the SYK model is to meso-
scopic systems, and this has not been covered in our re-

view. In this context, the behavior of the SYK model at
finite N is important, and we have to reverse the orders
of limit of N →∞ (which we generally have taken first)
and long time t→∞. The SYK model has a new emer-
gent criticality for t > N/U , some aspects of which were
covered in Section V.F. Note that even for finite but large
N , we do not immediately have a crossover to a regime
where the discreteness of the energy spectrum is impor-
tant; in a many-body system, the energy level spacing
∼ exp(−αN), and so even for t > N/U we deal with an
effectively continuous spectrum. We refer the reader to
the literature (Franz and Rozali, 2018) for studies of ap-
plications to quantum dots and graphene flakes (Altland
et al., 2019a,b; Gnezdilov et al., 2018; Khveshchenko,
2019; Kobrin et al., 2021; Kruchkov et al., 2020; Mick-
litz et al., 2019; Pavlov and Kiselev, 2021; Pikulin and
Franz, 2017), lattices of quantum dots (Altland et al.,
2019a; Khveshchenko, 2020), Majorana fermions (Chen
et al., 2018; Chew et al., 2017), ultracold atoms (Dan-
shita et al., 2017; Wei and Sedrakyan, 2021), and quan-
tum simulation (Garćıa-Álvarez et al., 2017; Luo et al.,
2019). The latter keep N finite, and so differ from the
models in Section X, which take the N → ∞ first. In
Sections VI, VII, and VIII, our interest was in dynam-
ical mean field theories of lattice systems in the ther-
modynamic limit, and so it was appropriate to take the
N →∞ limit first.
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Appendix A: Time reparametrization and gauge symmetries
of the SYK model

In this appendix, we will elaborate on the origin of Eq.
(5.22) from a more fundamental basis, and generalize it
to the particle-hole asymmetric case. We return to the
original equations Eq. (5.2a) and Eq. (5.2b), and sim-
plify them in the low energy limit. As we saw in Eq.
(5.13), at frequencies � U , the iω + µ can be dropped,
because µ−Σ(0) = 0 and the iωn term is smaller than the
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singular frequency dependence in Σ(iωn). After Fourier
transforming to the time domain, we can rewrite the orig-
inal saddle-point equations as∫ β

0

dτ2 Σsing(τ1, τ2)G(τ2, τ3) = −δ(τ1 − τ3) (A1a)

Σsing(τ1, τ2) = −U2G2(τ1, τ2)G(τ2, τ1) , (A1b)

where Σsing is the singular part of Σ. Also the saddle
point Green’s functions and self energies are functions
only of time differences, like τ1−τ2. Nevertheless, we have
written them as a function of two independent times, be-
cause the fluctuations about the saddle point will involve
the bilocal fields, as we will see. Moreover, the symme-
tries are more transparent in the bilocal formulation.

It is now not difficult to verify that Eq. (A1a) and Eq.
(A1b) are invariant under the following transformation

τ = f(σ) (A2a)

G(τ1, τ2) = [f ′(σ1)f ′(σ2)]
−1/4 g(σ1)

g(σ2)
G̃(σ1, σ2) (A2b)

Σ(τ1, τ2) = [f ′(σ1)f ′(σ2)]
−3/4 g(σ1)

g(σ2)
Σ̃(σ1, σ2) (A2c)

where f(σ) and g(σ) are arbitrary functions. Here f(σ)
is a time reparametrization, and g(σ) is a U(1) gauge
transformation in imaginary time. These are emergent
symmetries because the form of the equations obeyed by
G̃(σ1, σ2) and Σ̃(σ1, σ2) is the same as Eq. (A1a) and
Eq. (A1b) obeyed by G(τ1, τ2), and Σ(τ1, τ2).

We obtain the non-zero temperature solution by choos-
ing the time reparametrization in Eq. (A2a) as the con-
formal map

τ =
1

πT
tan(πTσ) (A3)

where σ is the periodic imaginary time co-ordinate with
period 1/T . Applying this map to Eq. (5.7) we obtain

G(±σ) = ∓Cg(±σ) sin(π/4 + θ)

(
T

sin(πTσ)

)1/2

, (A4)

for 0 < ±σ < 1/T . The function g(σ) is so far undeter-
mined apart from a normalization choice g(0) = 1. We
can now determine g(σ) by imposing the KMS condition

G(σ + 1/T ) = −G(σ) (A5)

which implies

g(σ) = tan(π/4 + θ)g(σ + 1/T ). (A6)

The solution is clearly

g(σ) = e−2πETσ (A7)

where the new parameter E and the angle θ are related
as in Eq. (5.10). This yields the final expression for G(σ)
in (5.25).

Appendix B: Symmetries of the SYK saddle point

We showed in Appendix A that the low energy limit of
the saddle point equations in Eq. (A1a) and Eq. (A1b)
have a very large set of symmetries, when expressed in
terms of bilocal correlators of 2 times. However, the ac-
tual solution of the saddle point equations in Eq. (5.25) is
a function only of time differences. Here we ask a some-
what different question: what subgroup of the symme-
tries in Appendix A apply to the thermal solution in Eq.
(5.25). In other words, how are the emergent low energy
time reparametrization and gauge symmetries broken by
the low T thermal state?

First, let us consider the simplest case with particle-
hole symmetry at T = 0, when we can schematically
represent the large N solutions in Section V.A as

Gc(τ1 − τ2) ∼ (τ1 − τ2)−1/2

Σc(τ1 − τ2) ∼ (τ1 − τ2)−3/2.

The saddle point will be invariant under a reparameteri-
zation f(τ) when choosing G(τ1, τ2) = Gc(τ1 − τ2) leads

to a transformed G̃(σ1, σ2) = Gc(σ1 − σ2) (and similarly
for Σ). It turns out this is true only for the SL(2, R)
transformations under which

f(τ) =
aτ + b

cτ + d
, ad− bc = 1. (B1)

So the (approximate) reparametrization symmetry is
spontaneously broken down to SL(2, R) by the saddle
point.

Now let us consider the most general case with T > 0
and no particle-hole symmetry. We write Eq. (A2c) as

G(τ1, τ2) = [f ′(τ1)f ′(τ2)]1/4

×Gc(f(τ1)− f(τ2))eiφ(τ1)−iφ(τ2) , (B2)

where Gc(τ) is the conformal saddle point solution given
in Eq. (5.25). Here, we have parameterized g(τ) =
e−iφ(τ) in terms of a phase field φ; we will soon see that
the derivative of φ is conjugate to density fluctuations.

It can now be checked that the G(τ1, τ2) obtained from
Eq. (B2) equals Gc(τ1 − τ2) only if the transformations
f(τ) and φ(τ) satisfy

tan(πTf(τ))

πT
=
a

tan(πTτ)

πT
+ b

c
tan(πTτ)

πT
+ d

, ad− bc = 1,

−iφ(τ) = −iφ0 + 2πET (τ − f(τ)) (B3)

The transformation of f(τ) looks rather mysterious, but
we can simplify it as follows: we define

z = e2πiTτ , zf = e2πiTf(τ) (B4)

and then the transformation in Eq. (B3) is between uni-
modular complex numbers representing the thermal cir-
cle

zf =
w1 z + w2

w∗2 z + w∗1
, |w1|2 − |w2|2 = 1, (B5)
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where w1,2 are complex numbers. In this form, we have a
SU(1,1) transformation, a group which is isomorphic to
SL(2,R).

The symmetries in Eq. (B3) and (B5) are crucial in
determining the structure of the low energy action for
fluctuations.

Appendix C: Symmetries of AdS2

This Appendix notes that the AdS2 metric

ds2 =
dτ2 + dζ2

ζ2
(C1)

is invariant under isometries which are SL(2,R) transfor-
mations, as in Eq. (B1). It is easy to verify that the
co-ordinate change

τ ′ + iζ ′ =
a(τ + iζ) + b

c(τ + iζ) + d
, ad− bc = 1 , (C2)

with a,b,c,d real, leaves the metric (C1) invariant.

Appendix D: Schwarzian determinant

This appendix will evaluate quadratic fluctuation
correction to the free energy of the SYK model in
Eq. (5.76) arising from the time reparameterization mode
in Eq. (5.74). The formal expression for this correction
is

I =
1

2

∑
n6=0,±1

ln
[
2π2NγTn2(n2 − 1)

]
. (D1)

This expression is clearly divergent, and we have to reg-
ulate it by finding the proper measure over the path in-
tegral of the εn in Eq. (5.74) (Maldacena et al., 2016b;
Stanford and Witten, 2017). For simplicity, we will only
consider the particle-hole symmetric case µ = 0 in our
discussion below, but the final result is more general.

We will regulate the divergence in Eq. (D1) by re-
turning to the original G-Σ path integral in Eq. (5.56)
to which the Schwarzian path integral in Eq. (5.73) is
a low energy approximation. The saddle-point equa-
tions of Eq. (5.56) are simply the original SYK equa-
tions Eqs. (5.2a,5.2b). Denoting the exact saddle point
solution of the latter as G and Σ, we can write the fluc-
tuations as

G = G+ δG , Σ = Σ + δΣ . (D2)

Then we expand the action in Eq. (5.56) to quadratic or-
der, and find that the needed eigenmodes of the quadratic
fluctuations are eigenmodes of the kernels (Gu et al.,
2020; Tikhanovskaya et al., 2021a) which generalize that

in Eq. (5.48)

KA/S(τ1, τ2; τ3, τ4) = (D3)

−
(q

2
±
(q

2
− 1
))
U2G(τ13)G(τ24)G(τ34)q−2 .

We are considering the general case of SYK model with
q fermion terms, and τij ≡ τi − τj . The eigenmodes are
defined by the equations (which generalize Eq. (5.47))

kA/S(h)v
A/S
h (τ1, τ2, τ0) = (D4)∫

dτ3dτ4KA/S(τ1, τ2; τ3, τ4)v
A/S
h (τ3, τ4, τ0) ,

with dimensionless eigenvalue kA/S(h). For kA/S(h) = 1
we obtain the scaling dimension h of composite operators
associated with the fermion bilinears in the conformal
limit theory. Our overall task is to expand δG and δΣ is
terms of the eigenmodes of KA/S , each of which will also
be eigenmodes of the quadratic fluctuation of the action
in Eq. (5.56).

The Schwarzian fluctuation focuses on a specific eigen-
mode, vA2 , which is associated with time reparameteri-
zation symmetry. The infinitesimal version of the time
reparameterization in Eq. (B2), using Eq. (5.68), is

δG(τ1, τ2) = [∆ε′(τ1) + ∆ε′(τ2) (D5)

+ε(τ1)∂τ1 + ε(τ2)∂τ2 ]G(τ1 − τ2) .

For the conformal limit result, G = Gc in Eq. (5.25), and
also for conformal Green’s functions in Eq. (D3), δG in
Eq. (D5) is indeed an eigenmode vA2 of Eq. (D4) with
kA(2) = 1, as can be verified by explicit evaluation.

We now have all the ingredients necessary to expand
the time reparameterization eigenmode of KA in terms
of the eigenmodes εn in Eq. (5.74). One needed technical

step is that we multiply the KA eigenmode by G
(q−2)/2
c

to make the kernel in Eq. (D3) a Hermitian operator.
Then we write

[Gc(τ1, τ2)](q−2)/2δG(τ1, τ2) =∑
n

εn fn (2πT [τ1 − τ2]) e−iπnT (τ1+τ2) . (D6)

We can easily obtain the explicit form of the co-efficients
fn(θ) in this expansion by using Eqs. (5.25), (5.74) and
(D5):

fn(θ) =
sin(nθ/2) cos(θ/2)

sin2(θ/2)
− ncos(nθ/2)

sin(θ/2)
. (D7)

Recall we are working at µ = E = 0, and we have dropped
an unimportant n-independent prefactor in Eq. (D7).
The functions fn(θ) are analogs for SL(2,R) of the Leg-
endre polynomials for SO(3). As expected, they vanish
identically for n = 0,±1 because Gc is invariant under
SL(2,R) transformations. The property we need here is
the n-dependence of their normalization∫ 2π

0

dθ

2π
[fn(θ)]2 =

|n|(n2 − 1)

3
. (D8)
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Using the eigenmodes of Eq. (D3), the Gaussian fluctu-
ation contribution to the free energy from the G-Σ path
integral in Eq. (5.56) can be written schematically as
(Maldacena et al., 2016b)

IG−Σ =
1

2

∑
ln

(
1

kA/S(h)
− 1

)
. (D9)

We now compare this G-Σ form of the fluctuation contri-
bution, with the εn fluctuation contribution in Eq. (D1).
Given the transformation between the eigenmodes in
Eq. (D6), and the normalization in Eq. (D8), we con-
clude that the n2(n2 − 1) factor in Eq. (D1) should be
identified with the product of a |n|(n2 − 1) factor from
Eq. (D8), and a (1−kA(2)) ∼ T |n|/U factor. The devia-
tion of kA(2) from unity arises from conformal corrections
to the saddle point G − Gc, and arguments have been
given (Maldacena et al., 2016b) for their |n| dependence.

With this corrected measure for εn fluctuations, we
conclude that the properly regulated form of Eq. (D1) is
that deduced from Eq. (D9) (Maldacena et al., 2016b)

Ĩ =
1

2

|n|<c1U/T∑
|n|6=0,±1

ln

(
T |n|
U

)
, (D10)

where we have dropped T -independent constants, and c1
is a non-universal number determining the high energy
cutoff. We can now apply the ζ function theory result

m∑
n=1

ln (an) = m ln(am)−m+
ln(2πm)

2
+O

(
1

m

)
(D11)

to Eq. (D10), and obtain Eq. (5.77). Note the 3/2 co-
efficient of the logarithm in Eq. (5.77) is independent of
c1; it is the sum of the 1/2 co-efficient in Eq. (D11), and
the omitted n = ±1 contributions in Eq. (D10).

Appendix E: Generalization to SYKq model

Much of our discussion of the SYK model has focused
on the physically motivated problem with four-fermion
interactions. However, the model can be readily gener-
alized to q ≥ 4 fermion interactions (Gross and Rosen-
haus, 2017), otherwise referred to as the SYKq model.
We review here the low-energy properties of a local SYKq

model and the effect of perturbing it by a quadratic (hop-
ping) term. The interaction Hamiltonian for electrons
occupying orbitals labeled i` = 1, ..., N is given by,

Hq =
(q/2)!

N
q−1
2

∑
{i`}

Ui1i2...iq

[
c†i1c
†
i2
...c†iq/2ciq/2+1

...ciq−1
ciq

]
−µ
∑
i`

c†i`ci` , (E1)

where as before we choose the couplings Ui1i2...iq to be

independent random variables with Ui1i2...iq = 0, and

(Ui1i2...iq )
2 = U2. The density, Q, can be tuned by an

external chemical potential, µ.
In the large N limit, once again only the melon graphs

survive, but the number of internal legs is now (q − 1).
The on-site Green’s function reduces to the solution of
the equations

G(iωn) =
1

iωn + µ− Σ(iωn)
(E2a)

Σ(τ) = −U2[G(τ)]q/2[G(−τ)]q/2−1 (E2b)

G(τ = 0−) = Q. (E2c)

Following the analysis in Sec. V.A, we can obtain the
low energy solution at T = 0 for the electron Green’s
function. Importantly, the power-law singularity at low
frequencies is now determined by the dimension, ∆ =
1/q, such that the Green’s function has the form,

G(τ) ∼ sgn(τ)

(U |τ |)2/q
, |τ | � 1/U (E3a)

G(iω) ∼ isgn(ω)

U2/q|ω|1−2/q
, |ω| � U. (E3b)

For the sake of simplicity, we chose the density to be at
half-filling where the spectral asymmetry vanishes. In
spite of the different scaling dimension, the finite com-
pressibility and residual entropy (including the T−linear
correction) have the same qualitative behavior as the
model with q = 4. Generalizations to two-band mod-
els involving distinct q−body interactions have also been
studied (Haldar and Shenoy, 2018).

Let us now consider a lattice generalization of the
model as in Sec. X, where the local interaction at ev-
ery site is given by Hq, and the sites are coupled together
via uniform translationally invariant hopping terms, Hkin

(see Eq. 10.1a). The hopping term is a relevant pertur-
bation and the gapless scale invariant solutions can not
survive down to the lowest energies. Starting from the de-
coupled limit, one finds that the coherence scale is given
by

W ∗q ∼ t
(
t

U

) 2
(q−2)

, (E4)

below which the hopping terms can no longer be treated
perturbatively and the ground state is a Fermi liquid. In
spite of the similarities in the thermodynamic properties
with the q = 4 model, charge transport is dramatically
different for T � W ∗q . The electrical resistivity in the
incoherent regime is now given by,

ρdc ∼
h

Ne2

(
T

W ∗q

)2−4/q

. (E5)

Interestingly, for q 6= 4 the resistivity scales faster than
T (but slower than T 2) with increasing temperature. Im-
portantly, the T−linearity of the resistivity is tied to the
electron scaling dimension of ∆ = 1/4 for q = 4.
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Simon Bergeron, A.-M. S. Tremblay, Jure Kokalj, David A.
Huse, Peter Schauß, and Waseem S. Bakr (2019), “Bad
metallic transport in a cold atom Fermi-Hubbard system,”
Science 363 (6425), 379–382.

Bruin, J A N, H. Sakai, R. S. Perry, and A. P. Mackenzie

(2013), “Similarity of scattering rates in metals showing
t-linear resistivity,” .
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Žitko, Ehsan Khatami, B. Sriram Shastry, and Antoine
Georges (2016), “Transport and optical conductivity in the
Hubbard model: A high-temperature expansion perspec-
tive,” Phys. Rev. B 94, 235115.
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Maple (2000), “Phase transitions and non-Fermi-liquid be-
havior in UCu5−xPdx at low temperatures,” Phys. Rev. B
61, 1218–1222.

Wang, Hanteng, A. L. Chudnovskiy, Alexander Gorsky, and
Alex Kamenev (2020), “Sachdev-Ye-Kitaev superconduc-
tivity: Quantum Kuramoto and generalized Richardson
models,” Phys. Rev. Research 2, 033025.

Wang, S-C, H.-B. Yang, A. K. P. Sekharan, H. Ding, J. R. En-
gelbrecht, X. Dai, Z. Wang, A. Kaminski, T. Valla, T. Kidd,
A. V. Fedorov, and P. D. Johnson (2004), “Quasiparticle
line shape of sr2ruo4 and its relation to anisotropic trans-
port,” Phys. Rev. Lett. 92, 137002.

Wang, Wei, Andrew Davis, Gaopei Pan, Yuxuan Wang, and
Zi Yang Meng (2021), “Phase diagram of the spin-1/2
Yukawa-Sachdev-Ye-Kitaev model: Non-Fermi liquid, insu-
lator, and superconductor,” Phys. Rev. B 103 (19), 195108,
arXiv:2102.10755 [cond-mat.str-el].

Wang, Xiaoyu, and Erez Berg (2019), “Scattering mech-
anisms and electrical transport near an Ising nematic
quantum critical point,” Phys. Rev. B 99 (23), 235136,
arXiv:1902.04590 [cond-mat.str-el].

Wang, Yuxuan (2020a), “Solvable Strong-Coupling Quantum-
Dot Model with a Non-Fermi-Liquid Pairing Transition,”
Phys. Rev. Lett. 124, 017002.

Wang, Yuxuan (2020b), “Solvable Strong-coupling Quantum
Dot Model with a Non-Fermi-liquid Pairing Transition,”
Phys. Rev. Lett. 124 (1), 017002, arXiv:1904.07240 [cond-
mat.str-el].

Wang, Yuxuan, Artem Abanov, Boris L. Altshuler, Emil A.
Yuzbashyan, and Andrey V. Chubukov (2016), “Supercon-
ductivity near a quantum-critical point: The special role
of the first matsubara frequency,” Phys. Rev. Lett. 117,
157001.

Wang, Yuxuan, and Andrey V. Chubukov (2020), “Quantum
Phase Transition in the Yukawa-SYK Model,” Phys. Rev.

https://doi.org/10.1007/JHEP10(2017)008
https://arxiv.org/abs/1703.04612
https://arxiv.org/abs/1907.03363
https://doi.org/10.1103/PhysRevD.99.076007
https://arxiv.org/abs/1901.04984
https://doi.org/10.1103/RevModPhys.73.797
https://doi.org/10.1007/JHEP06(2021)156
https://arxiv.org/abs/2101.11238
https://doi.org/10.1103/PhysRevB.95.060201
https://doi.org/10.1103/PhysRevB.95.060201
https://doi.org/10.1103/PhysRevB.101.205106
https://arxiv.org/abs/2002.12381
https://arxiv.org/abs/2201.02820
https://doi.org/https://doi.org/10.1016/0370-2693(83)90012-6
https://doi.org/https://doi.org/10.1016/0370-2693(83)90012-6
https://doi.org/10.1103/PhysRevB.69.214418
https://arxiv.org/abs/cond-mat/0404551
https://arxiv.org/abs/cond-mat/0404551
https://doi.org/10.1103/PhysRevB.103.075141
https://arxiv.org/abs/2010.09742
https://arxiv.org/abs/2010.09742
https://doi.org/10.1103/PhysRevB.103.075142
https://arxiv.org/abs/2012.14449
https://arxiv.org/abs/2012.14449
https://arxiv.org/abs/2202.01845
https://doi.org/10.1103/PhysRevB.99.115132
https://doi.org/10.1103/PhysRevB.104.195113
https://doi.org/10.1103/PhysRevB.104.195113
https://arxiv.org/abs/2108.01107
https://doi.org/10.1103/PhysRevB.58.R10107
https://doi.org/10.1103/PhysRevB.58.R10107
https://doi.org/10.1126/science.285.5436.2110
https://doi.org/10.1126/science.285.5436.2110
https://doi.org/10.1016/j.aop.2006.04.012
https://doi.org/10.1016/j.aop.2006.04.012
https://arxiv.org/abs/cond-mat/0604037
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1088/0034-4885/79/8/082501
https://doi.org/10.1088/0034-4885/79/8/082501
https://doi.org/10.1103/RevModPhys.92.031001
https://doi.org/10.1103/RevModPhys.92.031001
https://doi.org/10.1103/PhysRevLett.125.047702
https://doi.org/10.1038/227936a0
https://doi.org/10.1038/227936a0
https://doi.org/10.1103/PhysRevB.61.15152
https://doi.org/10.1103/PhysRevB.61.15152
https://doi.org/10.1103/PhysRevB.70.094502
https://doi.org/10.1103/PhysRevB.70.094502
https://arxiv.org/abs/cond-mat/0309262
https://doi.org/10.1103/PhysRevB.61.1218
https://doi.org/10.1103/PhysRevB.61.1218
https://doi.org/10.1103/PhysRevResearch.2.033025
https://doi.org/10.1103/PhysRevLett.92.137002
https://doi.org/10.1103/PhysRevB.103.195108
https://arxiv.org/abs/2102.10755
https://doi.org/10.1103/PhysRevB.99.235136
https://arxiv.org/abs/1902.04590
https://doi.org/10.1103/PhysRevLett.124.017002
https://doi.org/10.1103/PhysRevLett.124.017002
https://arxiv.org/abs/1904.07240
https://arxiv.org/abs/1904.07240
https://doi.org/10.1103/PhysRevLett.117.157001
https://doi.org/10.1103/PhysRevLett.117.157001
https://doi.org/10.1103/PhysRevResearch.2.033084


86

Res. 2 (3), 033084, arXiv:2005.07205 [cond-mat.str-el].
Weber, Manuel, and Matthias Vojta (2022), “SU(2)-

symmetric spin-boson model: Quantum criticality, fixed-
point annihilation, and duality,” arXiv:2203.02518 [cond-
mat.str-el].

Wei, Chenan, and Tigran A. Sedrakyan (2021), “Optical lat-
tice platform for the sachdev-ye-kitaev model,” Phys. Rev.
A 103, 013323.

Wen, Xiao-Gang (2017), “Colloquium: Zoo of quantum-
topological phases of matter,” Rev. Mod. Phys. 89, 041004.

Werman, Yochai, and Erez Berg (2016), “Mott-Ioffe-Regel
limit and resistivity crossover in a tractable electron-
phonon model,” Phys. Rev. B 93, 075109.

Werman, Yochai, Steven A. Kivelson, and Erez Berg (2017),
“Non-quasiparticle transport and resistivity saturation: a
view from the large-N limit,” npj Quantum Materials 2 (1),
7.

Werner, Philipp, Armin Comanac, Luca de’ Medici, Matthias
Troyer, and Andrew J. Millis (2006), “Continuous-Time
Solver for Quantum Impurity Models,” Phys. Rev. Lett.
97, 076405.

Werner, Philipp, Aaram J. Kim, and Shintaro Hoshino (2018),
“Spin-freezing and the Sachdev-Ye model,” Europhysics
Letters 124 (5), 57002.

Winer, Michael, Shao-Kai Jian, and Brian Swingle (2020),
“Exponential Ramp in the Quadratic Sachdev-Ye-Kitaev
Model,” Phys. Rev. Lett. 125, 250602.

Witten, Edward (1998), “Anti-de Sitter space and holog-
raphy,” Adv. Theor. Math. Phys. 2, 253–291, arXiv:hep-
th/9802150.

Wu, Wei, Xiang Wang, and A. M. S. Tremblay (2021),
“Non-Fermi liquid phase and linear-in-temperature scat-
tering rate in overdoped two dimensional Hubbard model,”
arXiv:2109.02635 [cond-mat.str-el].

Wu, Xiaochuan, Xiao Chen, Chao-Ming Jian, Yi-Zhuang You,
and Cenke Xu (2018), “Candidate theory for the strange
metal phase at a finite-energy window,” Phys. Rev. B 98,
165117.

Wu, Yi-Ming, Artem Abanov, Yuxuan Wang, and Andrey V.
Chubukov (2020), “Interplay between superconductivity
and non-Fermi liquid at a quantum critical point in a metal.
II. The γ model at a finite T for 0 < γ < 1,” Phys. Rev. B
102 (2), 024525, arXiv:2006.02968 [cond-mat.supr-con].

Xu, Shenglong, and Brian Swingle (2019), “Locality, Quan-
tum Fluctuations, and Scrambling,” Phys. Rev. X 9 (3),
031048, arXiv:1805.05376 [cond-mat.str-el].

Xu, Shenglong, and Brian Swingle (2020), “Accessing scram-
bling using matrix product operators,” Nature Physics
16 (2), 199–204.

Xu, W, W. R. McGehee, W. N. Morong, and B. DeMarco
(2019), “Bad-metal relaxation dynamics in a fermi lattice
gas,” Nature Communications 10 (1), 1588.

Zaanen, Jan (2004), “Superconductivity: Why the tempera-
ture is high,” Nature 430 (6999), 512–513.

Zapf, V S, R. P. Dickey, E. J. Freeman, C. Sirvent, and M. B.
Maple (2001), “Magnetic and non-Fermi-liquid properties

of U1−xLaxPd2Al3,” Phys. Rev. B 65, 024437.
Zhang, Jiecheng, Erik D. Kountz, Kamran Behnia, and

Aharon Kapitulnik (2019), “Thermalization and possible
signatures of quantum chaos in complex crystalline mate-
rials,” Proceedings of the National Academy of Sciences
116 (40), 19869–19874.

Zhang, Pengfei (2017), “Dispersive Sachdev-Ye-Kitaev model:
Band structure and quantum chaos,” Phys. Rev. B 96,

205138.
Zhang, Pengfei (2019), “Evaporation dynamics of the

Sachdev-Ye-Kitaev model,” Phys. Rev. B 100 (24), 245104,
arXiv:1909.10637 [cond-mat.str-el].

Zhang, Pengfei (2021), “More on Complex Sachdev-Ye-Kitaev
Eternal Wormholes,” JHEP 03, 087, arXiv:2011.10360
[hep-th].

Zhang, Pengfei (2022), “Quantum Entanglement in the
Sachdev-Ye-Kitaev Model and its Generalizations,”
arXiv:2203.01513 [cond-mat.str-el].

Zhang, Ya-Hui, and Subir Sachdev (2020), “Deconfined crit-
icality and ghost Fermi surfaces at the onset of antiferro-
magnetism in a metal,” Phys. Rev. B 102, 155124.

Zhao, Hengcan, Jiahao Zhang, Meng Lyu, Sebastian Bachus,
Yoshifumi Tokiwa, Philipp Gegenwart, Shuai Zhang,
Jinguang Cheng, Yi-feng Yang, Genfu Chen, Yosikazu
Isikawa, Qimiao Si, Frank Steglich, and Peijie Sun (2019),
“Quantum-critical phase from frustrated magnetism in a
strongly correlated metal,” Nature Physics 15 (12), 1261–
1266, arXiv:1907.04255 [cond-mat.str-el].

Zhou, Tian-Gang, Lei Pan, Yu Chen, Pengfei Zhang, and
Hui Zhai (2021), “Disconnecting a Traversable Wormhole:
Universal Quench Dynamics in Random Spin Models,”
Phys. Rev. Res. 3 (2), 022024, arXiv:2009.00277 [cond-
mat.quant-gas].

Zhou, Tian-Gang, and Pengfei Zhang (2020), “Tunneling
through an Eternal Traversable Wormhole,” Phys. Rev. B
102, 224305, arXiv:2009.02641 [cond-mat.str-el].

Zhu, Jian-Xin, D. R. Grempel, and Qimiao Si (2003), “Con-
tinuous Quantum Phase Transition in a Kondo Lattice
Model,” Phys. Rev. Lett. 91, 156404.

Zhu, Jian-Xin, Stefan Kirchner, Ralf Bulla, and Qimiao
Si (2007), “Zero-Temperature Magnetic Transition in an
Easy-Axis Kondo Lattice Model,” Phys. Rev. Lett. 99,
227204.

Zhu, Lijun, and Qimiao Si (2002), “Critical local-moment
fluctuations in the Bose-Fermi Kondo model,” Phys. Rev. B
66 (2), 024426, arXiv:cond-mat/0204121 [cond-mat.str-el].

Ziman, John M (1960), Electrons and phonons: the theory of
transport phenomena in solids (Oxford university press).

Zondiner, U, A. Rozen, D. Rodan-Legrain, Y. Cao,
R. Queiroz, T. Taniguchi, K. Watanabe, Y. Oreg, F. von
Oppen, Ady Stern, E. Berg, P. Jarillo-Herrero, and S. Ilani
(2020), “Cascade of phase transitions and Dirac revivals
in magic-angle graphene,” Nature 582 (7811), 203–208,
arXiv:1912.06150 [cond-mat.mes-hall].

Zou, Liujun, and Debanjan Chowdhury (2020), “Deconfined
metallic quantum criticality: A U(2) gauge-theoretic ap-
proach,” Phys. Rev. Research 2, 023344.

https://doi.org/10.1103/PhysRevResearch.2.033084
https://arxiv.org/abs/2005.07205
https://arxiv.org/abs/2203.02518
https://arxiv.org/abs/2203.02518
https://doi.org/10.1103/PhysRevA.103.013323
https://doi.org/10.1103/PhysRevA.103.013323
https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1103/PhysRevB.93.075109
https://doi.org/10.1038/s41535-017-0009-8
https://doi.org/10.1038/s41535-017-0009-8
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1209/0295-5075/124/57002
https://doi.org/10.1209/0295-5075/124/57002
https://doi.org/10.1103/PhysRevLett.125.250602
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://arxiv.org/abs/hep-th/9802150
https://arxiv.org/abs/2109.02635
https://doi.org/10.1103/PhysRevB.98.165117
https://doi.org/10.1103/PhysRevB.98.165117
https://doi.org/10.1103/PhysRevB.102.024525
https://doi.org/10.1103/PhysRevB.102.024525
https://arxiv.org/abs/2006.02968
https://doi.org/10.1103/PhysRevX.9.031048
https://doi.org/10.1103/PhysRevX.9.031048
https://arxiv.org/abs/1805.05376
https://doi.org/10.1038/s41567-019-0712-4
https://doi.org/10.1038/s41567-019-0712-4
https://doi.org/10.1038/s41467-019-09526-x
https://doi.org/10.1038/430512a
https://doi.org/10.1103/PhysRevB.65.024437
https://doi.org/10.1073/pnas.1910131116
https://doi.org/10.1073/pnas.1910131116
https://doi.org/10.1103/PhysRevB.96.205138
https://doi.org/10.1103/PhysRevB.96.205138
https://doi.org/10.1103/PhysRevB.100.245104
https://arxiv.org/abs/1909.10637
https://doi.org/10.1007/JHEP03(2021)087
https://arxiv.org/abs/2011.10360
https://arxiv.org/abs/2011.10360
https://arxiv.org/abs/2203.01513
https://doi.org/10.1103/PhysRevB.102.155124
https://doi.org/10.1038/s41567-019-0666-6
https://doi.org/10.1038/s41567-019-0666-6
https://arxiv.org/abs/1907.04255
https://doi.org/10.1103/PhysRevResearch.3.L022024
https://arxiv.org/abs/2009.00277
https://arxiv.org/abs/2009.00277
https://doi.org/10.1103/PhysRevB.102.224305
https://doi.org/10.1103/PhysRevB.102.224305
https://arxiv.org/abs/2009.02641
https://doi.org/10.1103/PhysRevLett.91.156404
https://doi.org/10.1103/PhysRevLett.99.227204
https://doi.org/10.1103/PhysRevLett.99.227204
https://doi.org/10.1103/PhysRevB.66.024426
https://doi.org/10.1103/PhysRevB.66.024426
https://arxiv.org/abs/cond-mat/0204121
https://doi.org/10.1038/s41586-020-2373-y
https://arxiv.org/abs/1912.06150
https://doi.org/10.1103/PhysRevResearch.2.023344

	Sachdev-Ye-Kitaev Models and Beyond: A Window into Non-Fermi Liquids
	Abstract
	Contents
	Introduction
	Typology of non-Fermi liquids 
	Experimental signatures of non-Fermi liquids
	Theoretical models of non-Fermi liquids
	Perspective of this review

	Bad Metals and Planckian Metals
	Bad Metals: Mott-Ioffe-Regel criterion and a high-temperature perspective
	Planckian relaxation: unity in diversity?

	Random matrix model: free fermions
	Green's function
	Many-body density of states

	The SYK model
	Low energy solution at T=0
	Luttinger's theorem
	Non-zero temperatures
	Computation of the T 0 entropy
	Corrections to scaling
	Finite N Fluctuations
	Rotor path integral
	Schwarzian path integral


	Random exchange quantum magnets
	SU(M) symmetry with M large
	SU(2) model
	RG analysis of the SU(2) model

	Random exchange t-U-J Hubbard models
	Effective local action
	The SU(2) Hubbard model at half-filling
	The SU(2) Hubbard model away from half-filling
	Doped t-J model: analytical insights
	SU(M) symmetry: Fermi liquid large-M limit
	SU(M) symmetry: non-Fermi liquid large-M limit
	b = f =1/4: doped SY spin liquid.
	b =0, f = 1/2: disordered Fermi liquid.
	0 < b < 1/4, f = 1/2 - b: critical metal.

	RG analysis for SU(2) symmetry

	Transport in random exchange t-U-J models
	General mechanism for T-linear resistivity as T 0 from time reparameterization
	Experimental relevance

	Random exchange Kondo-Heisenberg model
	Effective local action
	SU(M) symmetry with M large
	Luttinger theorem
	RG analysis for SU(2) symmetry
	Numerical analysis

	Overview of numerical algorithms for fully connected SU(2) models
	Lattice models of SYK-atoms
	Breakdown of a heavy Fermi liquid
	Marginal Fermi liquid and critical Fermi surface from incoherent `flavor' fluctuations
	Thermodynamics and Transport
	Superconductivity

	Fermi surfaces coupled to gapless bosons
	Fermi surface coupled to a dynamical U(1) gauge field
	Large N limit
	Luttinger's theorem
	Thermodynamics
	Transport
	Pairing instability

	Adding spatial disorder

	Connections to quantum gravity
	Charged black holes: Einstein-Maxwell theory
	Charged black branes

	Charged black holes: quantum fluctuations
	Dimensional reduction from d+2 to 1+1.
	JT gravity in the near-horizon limit
	From JT gravity to the Schwarzian

	Wormholes
	AdS/CFT correspondence
	Connection to the SYK model

	Out-of-time-order correlations

	Outlook
	Acknowledgements

	Time reparametrization and gauge symmetries of the SYK model
	Symmetries of the SYK saddle point
	Symmetries of AdS2
	Schwarzian determinant
	Generalization to SYKq model
	References


