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The interest in the multiple facets of optical vortices has flourished in the last three
decades. The article reviews the basic research and applications of the interplay be-
tween optical vortices and condensed matter systems. This subfield of optical-vortex
physics has rapidly developed in recent years thanks to a vigorous synergy between the-
ory and experiment. After presenting self-contained and focused introductions to optical
vortices and condensed-matter optics, the theory and current progress in the research on
the interaction of condensed-matter systems and optical vortices are examined. When
considering the interaction of optical vortices with condensed matter systems many as-
pects of the standard theory of the interaction of matter with plane-wave light need
to be reformulated. In bulk, the light-matter Hamiltonian matrix elements have to be
recalculated and novel selection rules are obtained, reflecting the conservation of total
angular momentum. Orbital angular momentum is transferred from the light beam to
the photo-excited electrons, generating macroscopic currents. Semiconductor nanostruc-
tures add the complexity of their own spatial inhomogeneity, which is handled adequately
by the envelope-function approximation. Here again modified matrix elements for the
light-matter interaction dictate the allowed and forbidden optical transitions, distinct
from the ones obtained in traditional optical excitation with smooth fields. Quantum
rings play a central role due to their especially adapted geometry to the cylindrical na-
ture of the twisted light beams. When the electron-electron interaction is taken into
account the rich physics of excitons and exciton-polaritons comes into play, modified
by the finite orbital angular momentum of the structured light. Furthermore, the new
features brought about by optical vortices in plasmonics and in the optical excitation of
two-dimensional materials are reviewed. For all these systems theory and recent experi-
ments are discussed. Finally, an overview of current and prospective applications of the
interaction of optical vortices with condensed matter systems in the fields of quantum
technologies, communications, sensing, and more is presented. Throughout this review
an attempt has been made to present not only a survey of the relevant literature but also
the authors’ perspective on the fascinating and rapidly evolving field of optical vortex -
condensed matter interaction.
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I. INTRODUCTION

From early times we seek to understand the inter-
play between light and matter (Cajori, 1899; Weiner and
Nunes, 2017). Clear evidence points to serious attempts
to learn about reflection, refraction, and vision before
the scientific revolution (16th-17th century), a notable
example being the work by Ibn al-Haytham, in the early
11th century, by some considered the father of optics.
Brilliant discoveries, most of them familiar to us, took
place around the 17th century and helped to shape the
revolution. The law of refraction was enunciated in 1621
by Snellius. Newton (1672) used refraction by a prism to
show the decomposition of white light into colors. Light
projecting out of the direct line-of-sight beyond objects,
was first described by Grimaldi, who named the phe-
nomenon diffraction. Huygens (1690) contributed the
picture of secondary waves in wavefronts, which together
with Young’s interference investigations around 1800 set
the basis for Fresnel’s work that explained diffraction
and wrapped up optics phenomena under a coherent
wave interpretation of light. Among several corrobo-
rations of Fresnel’s theory, the predictions by Hamilton
(1837) of conical refraction in anisotropic biaxial crystals
–experimentally verified soon afterwards using aragonite
mineral (Lloyd, 1833)– stands as a most notable one. On
the one hand, it is an early example of theoretical pre-
diction guiding successful experiments, and on the other

hand it is the earliest known report of a phenomenon in-
volving optical vortices, as we will later see in Sect. II.A.
In parallel, the study of electricity and magnetism ma-
tured to the point in which Maxwell (1865) unified these
phenomena with those of light. Progress in pure optics
continued, as attested by the –here most relevant– work
of Abbe (1874), who established the resolution limit of
optical systems (see Sect. VI). Though diffraction, re-
fraction, and reflection are indeed the result of the in-
teraction of light with objects, our modern splitting of
physics sets them under the umbrella of optics.

However, only few years later it turned out that the
nature of light as an electromagnetic wave was not the
whole truth. Phenomena like the black-body radiation
or the photo-electric effect could not be explained at this
level. To overcome this difficulty, Planck (1900) postu-
lated the quantization of the energy and Einstein (1905)
introduced the concept of light quanta, now generally
called photons. A quantum theory of electrodynamics
was formulated by Dirac (1927) and in the 1950s and
early 1960 seminal papers by Mandel (1958), Sudarshan
(1963) and Glauber (1963) opened the field of quantum
optics. A milestone with enormous impact in the field of
optics was the invention of the laser by Maiman (1960)
which, besides its many applications in everyday life, is
now the light source for the vast majority of optical ex-
periments.

From a current perspective, the study of light-matter
interaction relies strongly on the advances in chem-
istry, quantum mechanics, atomic physics, and solid state
physics. Back to our timeline, modern chemistry (as op-
posed to alchemy) developed in parallel to optics, from
work by celebrated people such as Boyle (1661), Lavoisier
(De Morveau et al., 1787; Lavoisier, 1793), Dalton (1808),
and Mendeleev (1869), who gave modern form to the no-
tions of gases, atoms, and chemical elements.

Milestones in atomic physics that provided greater in-
sight on light-matter interaction are well known to us,
and we recall only few that are most connected to the
following sections: in 1900, before quantum mechan-
ics, Drude proposed a model of free-electron motion in
metals subjected to electric and magnetic fields using
the Lorentz force in a Newtonian mechanics framework
(Drude, 1900); later on the model was extended to bound
electrons by Lorentz himself. The Drude-Lorentz model
has been amply used, for instance, to explain plasmon po-
laritons, the subject of Sect. IV.C. A more sophisticated
and modern way to deal with the light-matter interaction
in classical terms is by employing Lagrangian mechanics
together with Lorentz force. This leads to a generalized
potential in the Lagrangian that depends on the scalar
and vector potentials (and the velocity of the particle).
By shifting to Hamiltonian mechanics, one defines the
well-known minimal-coupling Hamiltonian. This can be
quantized for charged particles and/or fields. Histori-
cally, other crucial developments are the reformulation in
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terms of the dipole approximation in the case of atoms
by Göppert-Mayer (1931) and the generalization in terms
of the multipolar expansion by Power and Zienau (1959)
and Woolley (1971) to describe the interaction of light
with non-relativistic particles, that describe the work-
about of problems related to gauge (see Sect. III.C.1).

Condensed-matter physics is nowadays a collage of
a large number of subject matters. Originally, topics
in condensed matter came from its predecessor, solid-
state physics, which dealt with metals, semiconductors
and their applications. As nicely told by Martin (2019):
“Even in the early days of solid-state physics, the name
was maligned because the field’s topics and techniques
were often equally relevant to liquids, molecules, plas-
mas, and other nonsolids. [...] Critical phenomena such
as phase transitions, nonlinear dynamics of fluid systems,
and liquid helium research that had little or nothing to do
with solids took center stage.” Condensed matter physics
now encompasses the study of a variety of quantum
states such as exciton-polaritons, two-dimensional elec-
tron gas, spin lattices, superconductors, Bose-Einstein
condensates etc., most of them supported in solid-state
media, some of them also in other condensed phases.

The seminal paper by Bloch (1928) constitutes an early
milestone in the formulation of a quantum theory of crys-
talline solids. According to what is now called Bloch’s
theorem, the wave function of an electron in a crystal sat-
isfying the time-independent Schrödinger equation can be
written as a plane wave with a lattice-periodic modula-
tion. The corresponding energies εnk can be classified by
the wave vector k restricted to the first Brillouin zone and
an additional integer number n, forming the band struc-
ture in k-space with n labeling the bands. Combining
this band structure with the Fermi statistics of electrons,
one could distinguish between metals on the one hand
and semiconductors and insulators on the other hand.
The wave vector of the electron provides a natural in-
terface for the coupling to light, which is typically also
expressed in terms of plane waves. In semiconductors and
insulators the coupling to light leads to the excitation of
electrons from an occupied band to an empty one or, in
the often convenient electron-hole picture, to the creation
of electron-hole pairs. However, people soon realized
that the Coulomb interaction between the electrons may
change qualitatively this picture. Instead of a continu-
ous absorption spectrum in the region close to the band
gap discrete absorption lines appeared. The electron and
hole form a new quasi-particle, the exciton, as introduced
by Frenkel (1931) in the limit of strongly bound electron-
hole pairs and by Wannier (1937) for weakly bound pairs,
the latter ones being realized in typical semiconductor
materials. Also in metals the Coulomb interaction leads
to new quasi-particles, called plasmons, introduced by
Bohm and Pines (1953). In the following years many
other types of quasi-particles have been introduced like
polarons, polaritons, magnons, Cooper pairs, and many

more (Haken, 1976; Kittel, 1987).

We have built up much of our theoretical knowledge
in optics from the concept of plane waves. Plane waves
are a perfect building block to represent more complex
light beams through Fourier analysis; however, they are
often not well suited to describe strongly inhomogeneous
waves, which in terms of plane waves correspond to a
superposition involving an extremely large number of
wave vectors. Optical vortices (OVs) are an example
of such strongly space-varying light fields (Allen et al.,
2003, 1999; Andrews and Babiker, 2012; Padgett et al.,
2004; Torres and Torner, 2011), as we will see in Sect. II.

Since the 1990s a variety of experimental techniques
have revealed new effects caused by OVs acting on mat-
ter —atoms, molecules, and nanoparticles—, which go
beyond our expectations based on the interaction with
plane waves. The most prominent ones come from the
fact that OVs may carry orbital angular momentum
(OAM) (Allen et al., 1992). More recently, researchers
have started to predict and measure effects coming from
the interaction of OVs with condensed-matter systems,
and possible applications to quantum technology and ma-
terials science have been proposed.

This article overviews the physics of the interaction
of OVs and condensed-matter systems providing both a
cohesive formulation of the theoretical basis and a com-
prehensive review of the current progress in the field.
We start with a description of fundamental elements
of the theory of OVs (Sect. II) and the theory of con-
densed matter systems (Sect. III) that are necessary to
the development, in Sect. IV, of the theory of the in-
teraction of condensed matter and OVs. Section IV
also reviews the progress achieved in several subfields,
namely, in semiconductor/conductor bulk and nanostruc-
ture physics, exciton-polariton physics, plasmonics, and
in the physics of two-dimensional materials. Progress
towards applications has also been significant, and it is
discussed in Sect. V. Finally, after concluding remarks
we present our view on possible future directions for the
research of OV-condensed matter interaction in Sect. VI.

II. OPTICAL VORTICES

Vortices are part of our daily lives. Some are evident
like whirlpools, tornadoes and hurricanes (typhoones, cy-
clones), with the astonishingly quiet eye of the storm, see
Fig. 1. Other vortices pass unnoticed, for example, am-
phidromic points of tidal waves in the ocean, where the
height of the water remains the same while it changes
in their surroundings (Whewell, 1836), or sound waves
scattered out of rough surfaces, whose wavefronts exhibit
“dislocations” similar to those found in crystals, in which
the intensity becomes zero (Nye and Berry, 1974). What
do all these phenomena have in common? A vector field,
e. g. the wind velocity, has null intensity at the vortex
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center and revolves around it.

FIG. 1 (color online) Satellite photograph of Hurricane Kat-
rina on August 28 (2005), with a clear view of its eye. With
permission of NOAA National Environmental Satellite, Data,
and Information Service (NESDIS).

When it comes to optics, however, many of us may be
reluctant to accept that vortices happen naturally. After
all, as young students we were first taught that light is a
bundle of rays following broken paths of straight trajec-
tories, only later to be told that light is an undulatory
phenomenon representable by plane waves. After such in-
sistent teachings, it is no surprise that many of us extrap-
olated ideas and ended up believing that light around us
are waves with little spatial structure, although we know
about the principle of superposition. But as it happens
with whirls in wind and water, optical vortices are indeed
ubiquitous phenomena in nature. They appear as a result
of light scattering on rough surfaces (speckles) (Baranova
et al., 1981) and even from the simple superposition of a
few plane waves (Masajada and Dubik, 2001; O’Holleran
et al., 2006). Optical vortices are worth studying to free
ourselves from previous prejudices, expand our under-
standing of electrodynamics, and for the sake of the pos-
sible advances they can introduce in current technologies.

A. History

A light phenomenon with vortex character was first
considered by Hamilton in his work on conical refrac-
tion (Hamilton, 1837) and soon afterwards experimen-
tally verified by Lloyd (Lloyd, 1833). In conical refrac-
tion a (Gaussian) light beam entering a biaxial crystal
along the optical axis is refracted inside it into a cone,
emerging as a cylinder (Berry, 2004; Born and Wolf, 2013;
Turpin et al., 2016). The outgoing cylindrical beam is a
superposition of simpler fields some of which have vortex
features. In fact, conical refraction is nowadays used for
the generation of OVs from Gaussian beams (Berry et al.,
2005; Phelan et al., 2009). Hamilton’s prediction and its
experimental corroboration by Lloyd were at the time
a major achievement; however, it is curious that it was
only much later that conical refraction was recognized as
a manifestation of vortical optics.

In modern research, examples of OVs appeared in a
handful of publications around 1950 (Dennis et al., 2009).
Nevertheless, the first systematic study was carried out
by Nye and Berry (1974) on what they called dislocations
in sound (and applicable to general) waves scattered from
rough surfaces. For the scattered wave, they found that
screw dislocations can be expressed as an extra complex
phase in the field; as we will see in Sect. II.B this is the
signature of an optical vortex. The concept of OV was
formulated by Coullet et al. (1989) [see also Shen et al.
(2019)].

A few years later Allen et al. (1992) published what is,
without doubt, the most influential article in the field.
They showed that a Laguerre-Gaussian (LG) beam of
light –a particular OV– carries a well-defined amount of
OAM –as opposed to the spin or intrinsic angular mo-
mentum (SAM) associated with the polarization. Re-
search in OVs boomed and in a few years many physics
branches and other sciences picked up the idea and ap-
plied it to their respective fields.

The concept of quantized vortices in condensed phases
has a long history. They have been studied in different
systems, such as superfluids (Feynman, 1955), type-II su-
perconductors (Abrikosov, 1957) and Bose-Einstein con-
densates (Matthews et al., 1999). The spontaneous for-
mation of optical vortices has been observed in semicon-
ductor microcavities forming a surface-emitting vertical
cavity laser (Scheuer and Orenstein, 1999) or hosting an
exciton-polariton condensate (Lagoudakis et al., 2008).
The investigation of phenomena associated with the ex-
citation of a semiconductor by an OV started about a
decade ago. Two independent works provided theoreti-
cal predictions (Quinteiro and Tamborenea, 2009c) and
experimental results (Ueno et al., 2009).

Optical vortices are famous for their OAM, at first
sight a startling feature. However, Beth (1936) demon-
strated that circularly polarized light carries angular mo-
mentum (AM) in units of ~, which can be transferred
to matter. In a quantum theory of light this AM cor-
responds to the spin of the photon. Moreover, nuclear
physics tells about multipole transitions in spontaneous
emission: One starts from the classical electrodynam-
ics theory in terms of a single-frequency electric-current
source and derives the average energy flux (Poynting vec-
tor) of the radiation. Next, one quantizes the electric
current to a linear-momentum operator (gradient) and
restates the classical single-frequency oscillating state to
a transition between initial and final quantum states. All
along the calculation there is a phase factor exp (ik · r)
that, upon expansion and truncation (kr � 1), yields
the well-known electric dipole radiation exp (ik · r) ' 1,
electric quadrupole radiation ik·r and so forth, as well as
the magnetic 2n-poles (Basdevant and Rich, 2005; Fermi,
1950; Schiff, 1955). Photons from the 2n-pole radiation
carry angular momentum equal to n~ or are superpo-
sitions of states with this angular momentum. Finally,
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quoting Fermi (1950) “[...] it may frequently be necessary
to go several terms down the expansion before finding a
non-zero term. The reason is that more than half of all
conceivable radiation processes are forbidden because of
conservation of angular momentum or because of parity
considerations.”.

B. Basic Theory

Light fields can be represented using different basis
functions. Simplicity usually dictates the choice of one
or another. Thus, for light coming from a distant source,
e.g., a star, the most appropriate representation is by
plane waves. If instead we analyze the field close to a
point source, we would likely decide in favor of spheri-
cal waves. In the case of a cylindrical geometry Bessel
beams provide a basis exhibiting a complete factorization
in cylindrical coordinates which, however, decay rather
slowly in radial direction. Collimated laser beams are of-
ten better described by Gaussian beam profiles. To ob-
tain a basis the Gaussian profile has to be supplemented
by a set of transverse mode functions. Depending on the
geometry, suitable bases are Hermite-Gaussian functions
(in Cartesian coordinates) or Laguerre-Gaussian func-
tions (in cylindrical coordinates).

Optical vortices, also referred to as “twisted light” and
“light carrying OAM”, are electromagnetic fields1 with
single or multiple points/lines in which the phase2 cannot
be defined and therefore the amplitude vanishes. Figure
2 shows exemplary electric-field profiles in planes per-
pendicular to the propagation direction (z-direction) at
different z-positions at a fixed time or at different times
at a given z-position. The Poynting vector swirls around
these so-called singularitites3, much like the wind does
around the eye of a tropical hurricane (see Fig. 1) –
the electric and magnetic fields may also circulate the
singularity4 but then in general they alternate in time
the sense of rotation, as seen in Fig. 2. The singular-
ity may exist in one or several components of the field
and is mathematically represented by a phase exp(i`ϕ)
in cylindrical coordinates {r, ϕ, z}, with r = 0 denoting
the position of the singularity and the integer ` being the
so-called topological charge. If not stated otherwise, in
the following we will always consider beams propagating
in the z-direction.

1 The phenomenon happens in the whole spectrum, thus a more
appropriate name would possibly be “electromagnetic vortex” or
“twisted electromagnetic field”.

2 Singularities can also exist in the polarization.
3 Note that the term “singularity” does not refer here to mathe-

matical infinities.
4 If not otherwise stated, singularity will refer hereafter to a phase

singularity.

An OV is a curious object with features quite unlike
plane waves, as seen in Fig. 2. Let us first concentrate
on the transverse components of the field, i.e., the com-
ponents of E and B lying in the xy-plane. Beams with a
phase dependence ∼ exp(i`ϕ) in these components carry
well-defined OAM in the propagation direction related
to the spatial (orbital) structure of the beam through
the topological charge `. Furthermore, they may carry
intrinsic AM related to the handedness of circular polar-
ization characterized by the parameter σ = ±1 referring
to the polarization vector eσ = (x̂+ iσŷ)/

√
2 with x̂ and

ŷ denoting Cartesian unit vectors.
OVs are in fact a large family of fields all exhibiting

singularities, that can be classified according to differ-
ent criteria. They naturally split into two topologically
distinct classes, according to whether the orbital and in-
trinsic AM are parallel or antiparallel to each other, i.e.,
when sign(σ) = sign(`) or sign(σ) 6= sign(`), respectively.
In terms of critical points, the electric/magnetic vector
field of antiparallel beams at fixed z cycles in time (or
along z for fixed time) through sink, source, and center
with winding number 1, while the vector field of paral-
lel beams remains a saddle point with winding number
-1 as can be seen in Fig. 2 panels b and c, respectively.
Out of these two classes, OVs of the antiparallel set dif-
fer the most from plane waves, for they may exhibit a
magnetic field that dominates over the electric field and
strong longitudinal fields’ components (Sect. II.C.2).

Another surprising feature is that an OV has a field
component along the propagation direction z. Truth is
that all real propagating beams (with finite lateral size)
possess such a component, otherwise Maxwell’s equation
∇ · E = 0 could not be satisfied [Chap. 3 of Novotny
(2006)]. But in OVs the longitudinal component can be
significant with an intensity overcoming that of the trans-
verse component. Moreover, an Ez(r)/Bz(r) component
is required if the light beam has OAM in z, as can eas-
ily be deduced from the double vector product in the
formula for the angular momentum L of electromagnetic
fields (Cohen-Tannoudji et al., 1989; Jackson, 1999),

L =
1

µ0c2

∫
r× [E(r, t)×B(r, t)]dr, (1)

using SI units with µ0 denoting the vacuum permeabil-
ity and c the vacuum speed of light. After Allen et al.
(1992) OVs received another colorful name: Twisted
light, which makes reference to the skrewlike form of
the OV wavefront. Note that this surface of constant
phase helps us to visualize the unusual space-dependence
of the Poynting vector S = E×H, which seems to twist
around the propagation axis. However, the reader should
be warned not to relate the circulation of the transverse
components of the anti-parallel field with the OAM asso-
ciated to the beam, since this circulation reverses sense
for evolving time or z progression, as seen in Fig. 2b. An
alternative formulation for the angular momenta of fields
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a)

b) c)

FIG. 2 (color online) Optical vortex, a highly inhomogeneous
light field: a) Helical or skrewed wavefront for a circularly-
polarized OV with topological charge ` = 1 propagating
along z: electric field components are shown, and the atypi-
cally strong longitudinal component is stressed in red. Lower
panel: Snapshot succession in time/z-coordinate of electric
field maps (Ex, Ey) normal to the propagation direction for
(b) antiparallel-AM and (c) parallel-AM beams. Antiparallel-
AM fields cycle in time/z through sink-center-source to finally
reverse sense; what flows in a definite direction around the
vortex is in fact the energy (Poynting vector) (Dennis et al.,
2009). On the other hand, parallel-AM fields remain saddle
critical points.

is possible if the Poynting vector in Eq. (1) is replaced by
the canonical momentum; this change unveils interesting
phenomena related to the transverse component of the
OAM and SAM as described by Bliokh and Nori (2015).

To formalize the ideas above and arrive at full expres-
sions for OV fields we consider, in cylindrical (Sect. II.C)
or other non-Cartesian coordinate systems (Sect. II.D),
Maxwell’s equations, their potentials or the correspond-
ing wave equations in free space.

For electromagnetic fields in vacuum the wave equation
is easily derived from Maxwell’s equations: Take the curl
of Faraday’s law (∇ × E = −∂tB), use Ampère’s law
(∇ × B = µ0ε0∂tE) to eliminate the magnetic field B
and simplify the expression using the absence of sources
(∇ · E = 0 and ∇ · B = 0) together with the identity
∇× (∇×E) = ∇(∇ ·E)−∇2E, leads to

∇2E(r, t)− 1

c2
∂2

∂t2
E(r, t) = 0 , (2)

with c2 = (µ0ε0)−1, ε0 being the vacuum permittivity,
and the same equation for the magnetic field B. Be-
cause the equations are linear (and thus the superposi-
tion of fields is possible), one can look for harmonic so-
lutions proportional to exp(−iωt); alternatively, one can
assume separability of the space and time dependence of
the electric field and split Eq. (2). Then we arrive at the
Helmholtz equation

∇2E(r, t) + k2E(r, t) = 0 , (3)

with k = ω/c being the absolute value of the wave vec-
tor. Like all partial differential equations the Helmholtz
equation has a variety of different solutions, reflecting
different geometries and boundary conditions.

Let us first concentrate on exact solutions of the
Helmholtz equation. We are interested in light fields
propagating in z-direction. Propagation-invariant fields
–also called non-diffracting beams– are then character-
ized by an electric field of the form

E(r, t) = Ẽ(r⊥)ei(qzz−ωt) + c.c. , (4)

with r⊥ a position vector orthogonal to the propagation
direction, c.c. denoting the complex conjugate and Ẽ(r⊥)
satisfying a two-dimensional Helmholtz equation

∇2
⊥Ẽ(r⊥) +

(
k2 − q2

z

)
Ẽ(r⊥) = 0 , (5)

where ∇2
⊥ is the transverse Laplacian operator. It is

known that this equation can be further separated in four
different types of coordinates: Cartesian, polar, parabolic
and elliptic coordinates, leading to plane waves, Bessel
beams, Weber beams and Mathieu beams, respectively.
We will discuss in particular polar coordinates (Bessel
and LG beams) in more detail below and also briefly
comment on elliptical coordinates (Mathieu beams) in
Sect. II.D.

In addition to the Helmholtz equation the electric field
has to satisfy the Maxwell equation∇·E = 0. As a conse-
quence, the transverse components Ẽ⊥(r⊥) can be inde-
pendently chosen among the solutions of the Helmholtz
equation, the longitudinal component is then determined
as

Ẽz(r⊥) =
i

qz
∇⊥ · Ẽ⊥(r⊥) , (6)

which again shows that a space dependence of the trans-
verse components in general is associated with a longitu-
dinal component.

Propagation-invariant beams have the advantage of be-
ing exact solutions of the Helmholtz equation. However,
they have the practical drawback of exhibiting only a
weak (e.g., in the case of Bessel beams) or even no (in
the case of plane waves) lateral decay. Therefore they are
not normalized and carry infinite energy. Consequently,
they can only be approximations to real light beams. Any
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light beam created in an experiment has a finite lateral
extent. Most prominent examples are Gaussian beams
which, however, are not propagation invariant but ex-
perience diffraction. From Fraunhofer diffraction theory
for a slit with width w0 it is known that the width w
of the central maximum (i.e., the distance between the
first diffraction minima) in the far field grows with dis-
tance z according to w/w0 = 2λz/w2

0 = 4πz/(kw2
0), with

λ = 2π/k being the wavelength. Thus, there is a charac-
teristic length, the diffraction length l = kw2

0 (Lax et al.,
1975) or the Rayleigh range zR = 1

2 l (Loudon, 2003),
which describes the length scale on which a Gaussian
beam with minimal radius w0, called the beam waist,
widens. The beam is therefore characterized by three
different length scales, the wavelength λ, the beam waist
w0 and the diffraction length l. If a beam satisfies the
condition w0 � l, it is weakly divergent or, in other
words, it only consists of plane wave components with
wave vectors close to the beam axis. Such beams are
called paraxial beams. Note that according to the defini-
tion of the diffraction length the condition w0 � l also
implies λ� w0. To quantify the divergence of the beam
a paraxial parameter f can be defined according to

f =
w0

l
=

1

w0k
. (7)

Following Lax et al. (1975), this parameter can be used
as an expansion parameter for beams not deviating too
much from the paraxial limit. The electric field is then
written as

E(r, t) = Ẽ(r)ei(kz−ωt) + c.c.. (8)

Note the difference compared to the ansatz in Eq. (4)
referring to non-diffracting beams: Here, Ẽ(r) depends
on all three coordinates and the propagation term has
the full wave vector k = ω/c. Using the fact that in the
transverse directions Ẽ(r) varies on a length scale w0,
while in the longitudinal direction the respective length
scale is l, the field can be expanded in a power series in
f . Separating the field envelope into transverse (Ẽ⊥) and
longitudinal (Ẽz ẑ) parts, it can be shown that the trans-
verse (longitudinal) components of the field come only in
even (odd) powers of f (Lax et al., 1975). The zeroth
order term then corresponds to the extreme paraxial ap-
proximation of a completely transverse beam, satisfying
the paraxial wave equation

∇2
⊥Ẽ⊥(r) + 2i k ∂zẼ⊥(r) = 0. (9)

Typical solutions of the paraxial wave equation are
Hermite-Gaussian beams, which factorize in Cartesian
coordinates (x, y), and Laguerre-Gaussian beams, which
factorize in cylindrical coordinates (r, ϕ). We will come
back in particular to Laguerre-Gaussian modes below.

The longitudinal component in first order of the parax-
ial parameter is again obtained from the divergence equa-

tion for the electric field leading to

Ẽz(r) = ifw0∇⊥ · Ẽ⊥(r). (10)

For the construction of higher order terms we refer to
Lax et al. (1975).

In electrodynamics and optics it is often convenient
to introduce potentials, because in this way the homo-
geneous Maxwell equations are automatically fulfilled.
Electromagnetic potentials are per se ambiguous due to
gauge invariance (Jackson, 1999): a particular pair of
electric E and magnetic B fields relates to a family of
pairs of vector A and scalar Φ potentials through

E(r, t) = −∂tA(r, t)−∇Φ(r, t) , (11a)

B(r, t) = ∇×A(r, t) . (11b)

Besides the standard scalar and vector potentials also
Hertz vector potentials can be used (Wang et al., 2016),
but they are less common and we will not discuss them
further. Members of the family of potentials differ from
each other by scalar functions χ and, starting from an
initial pair (A(1),Φ(1)), another pair (A(2),Φ(2)) within
the family is obtained by the gauge transformation

A(2)(r, t) = A(1)(r, t) +∇χ(r, t) , (12a)

Φ(2)(r, t) = Φ(1)(r, t)− ∂tχ(r, t) , (12b)

(the superscripts will be omitted when the gauge is un-
derstood). To work with potentials one chooses a partic-
ular gauge that suits the needs. The two most used ones,
both fixing the divergence of the vector potential5, are
the Coulomb gauge

∇ ·A(r, t) = 0 , (13)

and the Lorenz gauge

∇ ·A(r, t) +
1

c2
∂Φ(r, t)

∂t
= 0 . (14)

Far away from sources, i.e., in the regime mostly stud-
ied here, in the Coulomb gauge the scalar potential van-
ishes, the gauge is then also called radiation gauge. This
is usually the starting point for the quantization of elec-
tromagnetic fields in quantum optics. In both gauges
the potentials are still not completely determined by the
gauge conditions [see Chap. 6 of Jackson (1999)]. In
the Coulomb gauge any time-independent gauge field
χ(r) satisfying the Laplace equation ∇2χ(r) = 0 leads
again to potentials satisfying the Coulomb gauge. In
the Lorenz gauge any gauge function χ(r, t) satisfying
the homogeneous wave equation (∇2− c−2∂tt)χ(r, t) = 0
leads again to potentials satisfying the Lorenz gauge.

5 The curl of the vector potential is already fixed by definition
(11b).
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In particular, choosing a gauge function according to
∂tχ(r, t) = Φ(1)(r, t) leads also in the Lorenz gauge to po-
tentials satisfying Φ(2) = 0 and ∇·A(2) = 0, which agrees
with the Coulomb gauge condition. On the other hand,

choosing a gauge function with ∂zχ(r, t) = −A(1)
z (r, t)

results in potentials with a vanishing longitudinal com-

ponent of the vector potential, i.e., A
(2)
z = 0.

The vector potential in Coulomb and Lorenz gauges
and the scalar potential in Lorenz gauge satisfy in free
space the same homogeneous wave equation (2) as the
electric and magnetic fields. Therefore, everything that
has been stated above for the electric field concerning
exact and propagation-invariant solutions as well as re-
garding the paraxial approximation remains valid also for
the potentials. In particular, for monochromatic poten-
tials with time dependence ∼ exp(−iωt) in the zeroth
order of the paraxial approximation the transverse com-
ponents of the vector potential, both in Coulomb and
Lorenz gauges, satisfy the paraxial wave equation

∇2
⊥Ã⊥(r) + 2i k ∂zÃ⊥(r) = 0. (15)

The longitudinal component Az (in the case of Φ = 0)
and the scalar potential Φ (in the case of Az = 0) are of
first order in the paraxial parameter and satisfy

Ãz(r) = ifw0∇⊥ · Ã⊥(r) if Φ = 0, (16a)

Φ̃(r) = −ifcw0∇⊥ · Ã⊥(r) if Az = 0. (16b)

Due to the gauge invariance there is no unique way
to derive OVs through vector potentials. When looking
into the literature, in paraxial optics it is more likely
to find derivations in terms of the Lorenz gauge with
vanishing Az (Allen et al., 1992; Dávila Romero et al.,
2002; Loudon, 2003), while in non-paraxial optics it is
more common to find work using the Coulomb gauge
with Φ = 0 (Jáuregui, 2004; Matula et al., 2013; Volke-
Sepulveda et al., 2002).

Typically, the derivation starts from a guess on the
form of the transverse component A⊥ of the vector po-
tential. The remaining components (Φ in the case of
Az = 0 and Az in the case of Φ = 0) are then fixed either
by the exact gauge condition (in non-paraxial optics) or
by Eq. (16) when working in the paraxial approxima-
tion. A generalization scheme inspired by the two afore-
mentioned procedures was developed in Quinteiro et al.
(2019b), and we will further discuss it in Sect. II.C.2 to
derive general Bessel beams; a discussion on Laguerre-
Gaussian beams is given in Quinteiro et al. (2019b). Once
scalar and vector potentials are obtained, electric and
magnetic fields result from Eqs. (11).

Thus far we have treated the electromagnetic field as
a classical quantity. A quantum point of view is indeed
necessary in specific problems of OV-condensed matter
interaction, e.g., in polariton physics (Sect. IV.B) or if
the photon statistics comes into play. Quantization of the

fields is usually performed in the Coulomb gauge. With-
out going into the details at this point of our discussion,
it is worth reminding some correspondences between the
viewpoint of light waves and photons that help navigate
through the literature. A circularly polarized field with
handedness σ = ±1 is formed out of photons with definite
helicity σ = ±1 and SAM ~σ –sometimes called intrinsic
AM. And a paraxial classical OV with topological charge
` is formed out of photons with OAM ~`, a fact that was
verified in a number of experiments (Arnaut and Bar-
bosa, 2000; Courtial et al., 1997; Mair et al., 2001) and is
of most relevance for studies on single-photon OV-matter
interaction (Sect. IV).

Finally, OVs are not restricted to the visible region
of the electromagnetic spectrum and interesting research
and applications have been done in other spectral regions,
see Sects. II.H and V.C.

C. Single-singularity fields

The family of OVs embraces all sorts of fields with sin-
gle and multiple phase singularities. Single-singularity
fields have been by far the most studied ones, and they
also are the easiest to analyze. In the following we de-
scribe the two most important cases in cylindrical coor-
dinates: (i) Laguerre-Gaussian beams as solutions of the
paraxial wave equation, and (ii) Bessel beams as solu-
tions of the full wave equation, but also solutions of the
paraxial wave equation. Because of its relevance in past
and current research in general and singular optics we
start from case (i), despite it describing an approximate
situation.

1. Laguerre-Gaussian beams

Beams with finite lateral extension are obtained as
solutions of the paraxial wave equation. In the lowest,
i.e., zeroth order of the paraxial parameter f electric and
magnetic fields as well as the vector potential are purely
transverse and they are described by the paraxial wave
equation (9) or (15). Introducing a scalar mode function
u(r) we can write

A(r, t) = A0u(r)ei(kz−ωt) + c.c. (17)

with a two-dimensional constant vector A0. The impor-
tant case of a well-defined intrinsic (or spin) AM is real-
ized for circularly polarized beams with A0 = A0eσ. The
electric and magnetic fields have the same structure, only
with A0 replaced by E0 = iωA0 and B0 = ikẑ×A0 (note
that the terms resulting from ∂zu(r) are of higher order
in the paraxial parameter). The mode function satisfies
the paraxial wave equation. A factorization in Cartesian
coordinates (x, y) leads to the Hermite-Gaussian modes,
while the –for our purposes more relevant– factorization
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in polar coordinates (r, ϕ) leads to the Laguerre-Gaussian
modes (Barnett et al., 2017)

u(r) =

√
2p!

π(p+ |`)|!
1

w(z)

(
r
√

2

w(z)

)|`|
ei`ϕeiψ(z)

×L|`|p
(

2r2

w2(z)

)
exp

[
− r2

w2(z)

]
exp

[
−ik r2

2R(z)

]
,(18)

where w(z) = w0

√
1 + (z/zR)2 is the beam radius,

R(z) = z[1 + (zR/z)
2] is the radius of curvature of the

wavefront, ψ(z) = −(|`|+2p+1)arctan(z/zR) is the Gouy

phase and L
|`|
p is a generalized Laguerre polynomial. The

parameters w0 and zR = 1
2kw

2
0 are the already mentioned

beam waist and the Rayleigh range, respectively. This
expression for the mode function shows that LG beams
are fields with a single singularity located at r = 0 and
with topological charge `.

In the lowest order of the paraxial approximation the
fields are completely transverse. This is nevertheless in-
consistent with real beams with finite width, whose rays
travel –at least slightly– at an angle. When a beam di-
verges/converges a longitudinal component of the field
necessarily exists. This component is restored in the
first order correction to the paraxial beam according to
Eqs. (16). Using the Lorenz gauge with Az = 0 (Loudon,
2003), a scalar potential is obtained according to

Φ(r, t) = −ifcw0e
i(kz−ωt)A0 · ∇⊥u(r) , (19)

leading to a longitudinal component of the electric field

Ez(r, t) = −∂zΦ(r, t)

= −cei(kz−ωt)A0 · ∇⊥u(r) , (20)

where we have used f = (w0k)−1 [see Eq. (7)].

A calculation based on the angular momentum den-
sity (Cohen-Tannoudji et al., 1989; Jackson, 1999) of the
field u0(r, z)ei`ϕ reveals that the ratio of AM in the z-
direction to energy is Jz/W = `/ω+σ/ω. The separation
between spin and orbital AM and what it suggests about
the quantization of the OAM (take the energy W being
that of a photon ~ω) is a delicate matter, and the reader
is referred to Sect. 2 of Allen et al. (1999).

2. Bessel beams

The Helmholtz Eq. (3) written in cylindrical coordi-
nates is separable. The equations in the angle ϕ and lon-
gitudinal z coordinates are simply solvable by complex
exponential functions; the equation for the radial r coor-
dinate is Bessel’s differential equation (Arfken and We-
ber, 1999), for which the solutions and their properties
have been extensively studied (Korenev, 2002). Bessel
beams (Durnin et al., 1987) have their own benefits, they:
(i) retain their spatial profile on propagation and are
therefore also called non-diffracting beams, (ii) describe
non-paraxial fields and are therefore valid for any values
of the beam parameters, (iii) are mathematically simpler
than LG beams, (iv) have the simplest modal decomposi-
tion (Sect. II.F). However, and as it happens with plane
waves, they are not realizable in the real world, since
they decay very slowly in the radial direction and there-
fore carry infinite energy.

We now derive Bessel beams by a scheme mentioned in
Sect. II.B that uses potentials (Quinteiro et al., 2019b).
Let us look for the solution of the Helmholtz equation
for the transverse component of the vector potential. As-
suming a monochromatic field and circular polarization
of the transverse part the solution reads

A⊥(r, t) = A0J`(qrr)e
i`ϕei(qzz−ωt)eσ + c.c. , (21)

in which J`(qrr) is a Bessel functions of the first kind
of order `, the latter denoting the topological charge,
qr =

√
k2 − q2

z with the inverse q−1
r being related to the

beam waist, and eσ is the circular polarization vector.
As discussed above, this transverse part has to be com-
plemented by a longitudinal component and/or a scalar
potential to satisfy the gauge condition. Using the Lorenz
condition we get

∇⊥ ·A⊥(r, t) + ∂zAz(r, t) +
1

c2
∂tΦ(r, t) = 0 . (22)

While in the previous discussions we have always taken
either Az or Φ to be zero, a more general choice is

∂zA
(γ)
z (r, t) = −γ∇⊥ ·A⊥(r, t), (23a)

Φ(γ)(r, t) = −i (1− γ)
c2

ω
∇⊥ ·A⊥(r, t) (23b)

with a real parameter 0 ≤ γ ≤ 1. Obviously, γ = 1
and γ = 0 restore the abovementioned limiting cases of
only Az or only Φ. From Eq. (21) ∇⊥ · A⊥ is deter-
mined. Finally, using Eqs. (11) as well as the separation
of the propagating part according to Eq.(4), the electro-
magnetic fields are obtained as
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Ẽ(γ)(r) = iE0

{
J`(qrr)e

i`ϕeσ −
1− γ

2

(qr
k

)2
[
J`(qrr)e

i`ϕeσ − J`+2σ(qrr)e
i(`+2σ)ϕe−σ

]

−iσ qr(q
2
z + γ q2

r)√
2qzk2

J`+σ(qrr)e
i(`+σ)ϕẑ

}
, (24a)

B̃(γ)(r) = σB0

{
J`(qrr)e

i`ϕeσ +
γ

2

(
qr
qz

)2 [
J`(qrr)e

i`ϕeσ + J`+2σ(qrr)e
i(`+2σ)ϕe−σ

]

−iσ qr√
2qz

J`+σ(qrr)e
i(`+σ)ϕẑ

}
, (24b)

with E0 = ωA0 and B0 = qzA0. This is actually a family
of beams. Some interesting choices are: (i) γ = 1: Close
to r = 0 for qr/qz ' 1 (i.e., in the strongly non-paraxial
regime) the magnetic field may surpass the electric field
(Sect. IV.A) while the transverse part of the electric
field has a well-defined circular polarization; (ii) γ = 0:
Now the electric field dominates close to the beam center
while the transverse part of the magnetic field has a well-
defined circular polarization; (iii) γ = γs = (1+k/qz)

−1:
The ratio between the magnitudes of electric and mag-
netic fields resembles that of plane waves (Bliokh et al.,
2010; Li, 2009). Another family of beams related to Eqs.
(24) can be easily obtained from duality, i. e., the re-
placement of E → −cB and B → E/c (Anderson and
Arthurs, 1990; Mignaco, 2001).

It should be noted that the potentials of Eq. (23) for
different values of γ are not related by a gauge transfor-
mation, as is obvious from the fact that the electric and
magnetic fields depend on γ. For each value of γ gauge
functions χ can be found that either remove Φ or Az.
These gauge transformation will then modify the trans-
verse components A⊥ of the vector potential [Eq. (21)]
in such a way that they also contain counter-circular con-
tributions ∼ e−σ with different topological charges.

The fields of Eqs. (24) are characterized by a single
singularity at r = 0 but with varying topological charges
for different parts and components. Several interesting
features of such fields, like the mixing of orbital and spin
AM or the appearance of longitudinal components, will
be discussed in Sect. IV when needed; for more details
the reader is also referred to Quinteiro et al. (2015, 2017b,
2019b), and references therein.

D. Multiple-singularity fields

Simple solutions to the paraxial or full wave equation
are LG and Bessel beams, that present a single singular-
ity at the beam axis located at r = 0. More complex
fields can of course be built by using the superposition
principle; for example, adding two LG beams whose op-
tical axes are parallel but displaced by a distance such

that there is essentially no overlap would result in a two-
singularity field. However, a different approach based on
the fact that, as already mentioned, the wave equation
is separable also in other coordinates than in Cartesian
and cylindrical coordinates, can be applied. In particu-
lar, the solution of the wave equation –both of the exact
and the paraxial one– in elliptical coordinates (ξ, η, z)
leads to yet another class of elementary beams, among
which there are beams that exhibit multiple phase sin-
gularities (Alpmann et al., 2010; Gutiérrez-Vega et al.,
2000; Gutierrez-Vega et al., 2001; Hernández-Hernández
et al., 2010; Mathieu, 1868; Pabon et al., 2017; Shen
et al., 2019).

Elliptical and Cartesian coordinates are related by the
transformation x = h cosh(ξ) cos(η), y = h sinh(ξ) sin(η)
with 0 ≤ ξ <∞ and 0 ≤ η < 2π with curves of constant
ξ being ellipses. Due to the separability of the Helmholtz
equation (5) solutions are given in the form of products
of radial and angular parts, i.e., Ẽ(ξ, η) = E0R(ξ)Θ(η)
with R and Θ satisfying Mathieu differential equations

d2R(ξ)

dξ2
− [a− 2b cosh(2ξ)]R(ξ) = 0, (25a)

d2Θ(η)

dη2
+ [a− 2b cos(2η)]Θ(η) = 0. (25b)

Here, a is the separation constant and b is proportional to
the ellipticity. These solutions are called Mathieu beams.
They present a greater variety of situations, from solu-
tions with single singularities to solutions with multiple
singularities. Figure 3 compares a LG beam (single sin-
gularity) with a particular Mathieu beam with two sin-
gularities on the horizontal axis.

E. Paraxial versus non-paraxial beams

Propagation invariant beams like plane waves, Bessel
or Mathieu beams are solutions to both the exact and
the paraxial wave equation. In contrast, LG beams as
an example of beams with a finite width have only been
obtained from the paraxial wave equation. In this sec-
tion we will take a closer look at the relation between
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FIG. 3 LG and Mathieu beams. (a) and (c) show numerical
simulations of LG (left) and Mathieu (right) beams: (a) single
beam intensity and (c) interference pattern with a reference
Gaussian beam. (b) and (d) experimental results correspond-
ing to single beam intensity and interference with a Gaus-
sian beam, respectively. The single beam images show a sin-
gle (LG) or double (Mathieu) zero-intensity point, while the
interference images present the characteristic single (LG) or
double (Mathieu) fork-like pattern. First and fourth columns
are zoom-in’s of (a) and (c). Adapted from Pabon et al.
(2017).

beams described by the full Helmholtz equation and by
the paraxial wave equation. We will consider a generic
transverse component of the electromagnetic field or the
vector potential with a harmonic time dependence ac-
cording to ψ(r) exp(−iωt), where ψ(r) describes the spa-
tial profile of the wave.

Normalized transverse eigenmodes vn(r⊥) of both the
Helmholtz and the paraxial wave equation are given by
solutions of the eigenvalue equation

−∇2
⊥vn(r⊥) = q2

nvn(r⊥) (26)

with eigenvalues q2
n, where qn corresponds to a charac-

teristic transverse wave vector of the mode n. Depend-
ing on the symmetry, the eigenfunctions can be plane
waves in the transverse directions, Bessel functions times
exp(i`ϕ), products of Mathieu functions or also other
functions that do not factorize in the two transverse co-
ordinates. Propagation-invariant beams are character-
ized by a single transverse eigenmode (or a superposition
of degenerate eigenmodes), which explains that they are
solutions to both the Helmholtz and the paraxial wave
equation. The Bessel beam of Eq. (21), for example, is a
solution with qn = qr.

The transverse modes have to be complemented by lon-
gitudinal modes. Here, the difference between the two
types of wave equations comes into play. Since the parax-
ial wave equation is of first order in z there is one lon-
gitudinal mode ∼ exp(iqzz) for a given transverse mode.
In contrast, the Helmholtz equation is of second order in
z leading to two modes ∼ exp(±iqzz).

Due to the orthogonality and completeness of the mode
functions any solution can be expanded into a sum of
these modes. For waves satisfying the paraxial wave
equation this leads to

ψ(r⊥, z) =
∑
n

Cnvn(r⊥)e
i

(
k− q

2
n

2k

)
z
. (27)

(Note that when inserting Eq. (27) into the paraxial wave
equation the factor exp(ikz) has to be omitted.) The
expansion coefficients Cn are obtained in the standard
way from the profile at a given z, e.g., z = 0, according
to

Cn =

∫
v∗m(r⊥)ψ(r⊥, 0)dr⊥ . (28)

This demonstrates that if the transverse profile at z = 0 is
given by a transverse eigenmode, the shape remains fixed
and the beam is non-diffracting. On the other hand, we
can introduce a propagator G(r⊥, z; r

′
⊥, z

′) according to

ψ(r⊥, z) =

∫
G(r⊥, z; r

′
⊥, z

′)ψ(r′⊥, z
′)dr′⊥ (29)

with

G(r⊥, z; r
′
⊥, z

′) =
∑
n

v∗n(r′⊥)vn(r⊥)e
i

(
k− q

2
n

2k

)
(z−z′)

=
k

2πi (z − z′)
e
ik

[
(z−z′)+

|r⊥−r′⊥|2
2(z−z′)

]
,(30)

where the second form is most easily obtained by using
plane waves as transverse eigenmodes. Replacing the lon-
gitudinal coordinate z by time, this is exactly the propa-
gator for the time-dependent Schrödinger equation for a
free particle, which reflects the equivalence of the parax-
ial wave equation with the time-dependent Schrödinger
equation. The widening of a Gaussian beam along z is
thus completely equivalent to the broadening of a Gaus-
sian wave packet with increasing time in quantum me-
chanics.

Let us now turn to the full Helmholtz equation. Here
the expansion of a wave in the eigenmodes reads

ψ(r⊥, z) =
∑
n

vn(r⊥)
[
Ane

i
√
k2−q2nz +Bne

−i
√
k2−q2nz

]
.

Obviously, now it is not anymore sufficient to know the
wave at a given longitudinal position z; instead, also its
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derivative with respect to z is needed. The expansion
coefficients are obtained from

An =
1

2

∫
v∗n(r⊥)

[
ψ(r⊥, 0) +

∂zψ(r⊥, 0)

i
√
k2 − q2

n

]
dr⊥, (31a)

Bn =
1

2

∫
v∗n(r⊥)

[
ψ(r⊥, 0)− ∂zψ(r⊥, 0)

i
√
k2 − q2

n

]
dr⊥. (31b)

The decomposition with these coefficients is valid for ar-
bitrary beam profiles ψ(r⊥, 0) and ∂zψ(r⊥, 0) at a fixed
longitudinal position, here taken to be z = 0. In par-
ticular we find that as soon as there is more than one
transverse mode contributing, the beam has necessarily
also a counterpropagating (∼ Bn) part. We can now
ask: When does this profile correspond to a paraxial
beam? First, the z-dependence of a paraxial beam is
dominated by eikz, leading to ∂zψ(r⊥, 0) ≈ ikψ(r⊥, 0).
Second, the transverse wave vector is much smaller than
the longitudinal one, i.e., qn � k for all modes appear-
ing in the expansion. Under these conditions Bn � An
and An ≈ Cn, i.e., the counterpropagating part becomes
negligible and the coefficient of the term propagating in
positive z-direction is essentially the same as in the case
of the paraxial wave equation. If we furthermore expand
in the exponent

√
k2 − q2

n ≈ k−q2
n/2k we recover the so-

lution and thus also the propagator of the paraxial wave
equation.

We briefly summarize our understanding on paraxial
and non-paraxial solutions. A simplified picture relying
solely on the paraxial wave equation leads us to interpret
paraxiality as a binary property: either a field satisfies
the equation or not; in addition, the paraxial solution is
disconnected from the exact solution to the Helmholtz
equation. Already Lax et al. (1975) showed that instead
paraxiality is a feature that comes in degrees. In this
section, we further demonstrated that simple approxi-
mations on a non-paraxial solution reduce it smoothly
to a paraxial solution, thus completing the link between
both fields.

F. Representing optical vortices by plane waves

Bessel and Laguerre-Gaussian functions each form sets
of solutions that can be used to define more complicated
fields through superpositions. This is of course also the
case for plane waves, that are routinely used as a ba-
sis set to build up other functions using Fourier analy-
sis. For problems involving simple OVs with (approxi-
mately) cylindrical symmetry, such as single-singularity
beams generated in the lab, a mathematical representa-
tion is easiest in terms of Bessel, LG, or other cylindrical
basis functions. However, there are important situations
in which a decomposition of the OV into a plane wave
basis becomes necessary, for instance, in the study of

reflection and refraction. The celebrated Fresnel’s coeffi-
cients relate the amplitudes of incident, reflected and re-
fracted plane waves, and thus are unsuitable for a direct
use with OVs. Furthermore, this decomposition provides
additional insight in the properties of OVs. The rep-
resentation in terms of plane waves is referred to as a
modal decomposition or an angular spectrum represen-
tation (Kaiser et al., 2009; Novotny, 2006; Schmidt et al.,
2011; Siegman, 1990). Such a decomposition is possible
for all relevant fields, E, B, A and Φ; here we will con-
centrate on the decomposition of the E-field.

Starting point is the general representation of the spa-
tial part of a vector field by its plane wave (or spatial
Fourier) components

E(r) =

∫
E(q)eqσe

iq·rdq, (32)

where E(q) denotes the Fourier component of the field
and eqσ its polarization vector. Since we only con-
sider monochromatic waves, all plane waves must have
the same frequency. Therefore, the absolute value of q
is fixed to q = k = ω/c. Using spherical coordinates
(q, θq, ϕq), only integrals over the angles θq and ϕq re-
main.

To be specific, let us concentrate in the following
on propagation-invariant beams traveling in z-direction.
These beams have a well-defined longitudinal wave vec-
tor qz and thus, since cos θq = qz/k, a well-define θq, such
that only the integral over ϕq remains. Fixing θq fixes
also the perpendicular wave vector qr = k sin θq. Using
cylindrical coordinates (qr, ϕq, qz) and (r, ϕ, z), we have

q · r = qrr (cosϕq cosϕ+ sinϕq sinϕ) + qzz

= qrr cos(ϕq − ϕ) + qzz , (33)

leading to the decomposition of a propagation-invariant
beam according to

E(r) = eiqzz
∫ 2π

0

Ẽ(ϕq)eqσe
iqrr cos(ϕq−ϕ)dϕq. (34)

The beam therefore represents a superposition of plane
waves with wave vectors q lying on the surface of a cone
around the propagation direction ẑ. To specify the beam,
we have to fix the angle dependence Ẽ(ϕq) and the po-
larization vectors eqσ of the plane wave components.

As an example, let us decompose the electric field of
Eq. (24a) into plane waves. The electric field has the
general form

E(γ)(r) = iE0e
iqzz
[
c(γ)
σ J`(qrr)e

i`ϕeσ

+c
(γ)
−σJ`+2σ(qrr)e

i(`+2σ)ϕe−σ

−iσc(γ)
z J`+σ(qrr)e

i(`+σ)ϕẑ
]

(35)

with coefficients c
(γ)
σ , c

(γ)
−σ and c

(γ)
z as can be deduced from

Eq. (24a). Using the Jacobi-Anger identity or the corre-
sponding integral representations of the Bessel functions
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[see also their multiple uses in Sect. IV],

Jm(qrr) =
1

2πim

∫ 2π

0

eiqrr cos ηe−imηdη , (36)

with η = ϕq−ϕ, we can identify the integrand in Eq. (34)
as

Ẽ(ϕq)eqσ =
iE0

2πi`
ei(`+σ)ϕq

[
c(γ)
σ e−iσϕqeσ

+i−2σc
(γ)
−σe

iσϕqe−σ − iσi−σc(γ)
z ẑ

]
. (37)

Using the identities i−2σ = −1 and i−σ = −iσ, we thus
obtain the angle-dependent weight

Ẽ(ϕq) = (−1)`i`+1

√
NE0

2π
ei(`+σ)ϕq (38)

and the polarization vector

eqσ =
1√
N

[
c(γ)
σ e−iσϕqeσ − c(γ)

−σe
iσϕqe−σ − c(γ)

z ẑ
]

=
1√
N

{[
1− 1− γ

2

(qr
k

)2]
e−iσϕqeσ (39)

−1− γ
2

(qr
k

)2

eiσϕqe−σ −
qr(q

2
z + γ q2

r)√
2qzk2

ẑ

}
,

with N being a normalization constant for the polariza-
tion vector. In the latter form the explicit expressions for
the coefficients from Eq. (24a) have been inserted. Ac-
cording to Eq. (38) plane waves with different angles in
the xy-plane indeed contribute with a weight given by
a phase factor exp(imϕq), as might be expected for an
OV. The polarization vector eqσ of Eq. (39) of the plane-
wave component traveling in direction q becomes more
transparent when expressed in terms of unit vectors in
spherical coordinates (q, θq, ϕq), given by

eq = x̂ sin θq cosϕq + ŷ sin θq sinϕq + ẑ cos θq,

eθq = x̂ cos θq cosϕq + ŷ cos θq sinϕq − ẑ sin θq,

eϕq = −x̂ sinϕq + ŷ cosϕq.

Using cos θq = qz/k, sin θq = qr/k and eσ = (x̂ +
iσŷ)/

√
2, the polarization vector (39) can be rewritten

as

eqσ =
1√
2N

{
cos2 θq + γ sin2 θq

cos θq
eθq + iσeϕq

}
. (40)

We notice that, as it should be, all plane wave compo-
nents are indeed transverse, i.e., they have no component
along eq. Furthermore, all components are in general el-
liptically polarized. When looking at different values of γ
we find: (i) γ = 1: The major axis of the ellipse is along
eθq ; (ii) γ = 0: The major axis of the ellipse is along
eϕq ; (iii) γ = γs = cos θq/(1 + cos θq): The beam is a
superposition of circularly polarized plane waves as dis-
cussed, e.g., by Jentschura and Serbo (2011) and Matula
et al. (2013). Figure 4 shows the modal recomposition

in action producing an OV that captures the qualitative
features seen in Fig. 2, interestingly with a superposition
of only four plane waves (Dennis et al., 2009).

Laguerre-Gauss modes are not propagation-invariant
and thus not characterized by a well-defined qz. There-
fore, their decomposition requires the inclusion of varying
qz (and also qr), which corresponds to an angular weight
function E(θq, ϕq) depending on both the polar and the
azimuthal angle (Barnett and Allen, 1994).

X [arbitrary units]

Y
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FIG. 4 (color online) Vector fields resulting from the sum of
four plane waves, each traveling in a direction k lying on the
surface of the same cone but differing in their relative phase.
All four plane waves share the same phase ` = 1, but the
polarization is σ = +1 on the left and σ = −1 on the right.
The composite fields are in perfect qualitative agreement with
those calculated as for example, from Eq. (21) and shown in
Fig. 2.

The modal decomposition offers an alternative way to
study the OV-matter interaction, based on the action of a
multitude of plane wave. An example is the treatment of
the reflection and refraction of a LG beam impinging at
an angle on a dielectric interface to understand the Goos-
Hänchen and Imbert-Fedorov effects of OVs (Lusk et al.,
2018). Here a LG beam is numerically decomposed into
plane waves. The Fresnel coefficients then determine the
reflection and transmission of each plane wave, that are
finally summed up to yield the complete fields. Another
interesting example is that of the electronic excitation in
bulk semiconductors in which one may choose to decom-
pose the OV into plane waves to match Bloch electron
states, or conversely retain the simplest representation
of an OV in terms of Bessel functions and transform the
electronic states to cylindrical coordinates (Sect. IV.A.2).

G. Generation and measurement

Optical vortices are by now routinely created in many
labs. Various techniques to produce such beams are avail-
able. They mostly work by converting a laser output
beam into an OV, but there are also ways to directly
generate a coherent OV beam (Forbes, 2017; Pan et al.,
2020; Seghilani et al., 2016; Yin et al., 2003).

A spiral phase plate is the most intuitive converter
(Kotlyar et al., 2005). It is a transparent cylinder with
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one of its bases carved into a spiral. A conventional
(Gaussian or the like) light beam incident on a base
emerges as an OV: geometrically, a ray impinging at a
particular position along the surface arc traverses a dif-
ferent optical path than other rays and thus picks a rel-
ative phase.

The use of diffraction gratings with dislocations, typ-
ically having the shape of a fork, is widely spread (Car-
pentier et al., 2008). In simple terms, the fringes’ design
is the pattern resulting from the interference between a
plane wave and an OV and printed on a transparent glass;
upon illumination by a plane wave (Gaussian beam) dif-
ferent OV beams (orders) are transmitted, with varying
topological charge. Fork gratings can also be made to
work in reflection. Moreover, a Spatial Light Modulator
(SLM) based on high-resolution liquid crystal displays
can be used to modulate the beam in real time.

Other alternative techniques are available. A Q-plate
is a birefringent liquid crystal, that converts SAM into
OAM. Some of its advantages are the high conversion
efficiency, easy alignment, and its possible use in a wide
range of frequencies (Rubano et al., 2019). As anticipated
in Sect. II.A conical diffraction can be used to generate
OV beams (Berry et al., 2005; Phelan et al., 2009; Turpin
et al., 2016); here the cylindrical beam coming out of the
biaxial crystal is a superposition of fields with and with-
out OAM, that can be separated. Another way is to
convert Hermite-Gaussian into LG beams with cylindri-
cal lenses (Padgett and Allen, 2002). Metamaterials are
also employed to shape beams (Chen et al., 2019; Zhang
et al., 2020a). Well suited for photonic applications are
microring resonators (Cai et al., 2012; Zhu et al., 2013)
and micrometer size lasers that can emit OVs with con-
trollable topological charge and polarization (Miao et al.,
2016; Zhang et al., 2020b).

Lastly, we mention that the aforementioned methods
focus on creating phase singularities on input beams.
The radial profile (LG, Bessel, Mathieu, etc.) has to be
further considered and introduced. For example, Bessel
beams can be generated using axicons, a conical optical
element that transforms the beam into a ring by mapping
each source point into the optical axis (Arlt and Dho-
lakia, 2000; Bock et al., 2012; Jaroszewicz et al., 2005;
Kazak et al., 1999).

The same ideas and methods just described can be
used to measure the topological charge of an unknown
field (Chen et al., 2019). The most basic fact one wishes
to learn is whether the unknown beam is an OV or not.
This one decides by making the beam interfere with an-
other one, either a plane wave (Gaussian) or a spherical
wave. With the former (latter) the interference pattern of
an OV is that of a fork (spiral) (Carpentier et al., 2008).
If the beam is indeed an OV, one can infer the topo-
logical charge from the number of bifurcations (arms).
As expected, this rudimentary method has been by now
much improved by more delicate techniques using: a sin-

gle cylindrical lens to measure fractional (Alperin et al.,
2016) and spectra of (Volyar et al., 2019) OAM, sets
of spatial light modulators for real-time measurements
(Berkhout et al., 2010), and more.

H. Optical vortices in physics, chemistry and biology

After the work by Allen et al. (1992) the subject of
OVs blossomed, specially in optics with research on basic
theory, generation, and measurement (Allen et al., 2003;
Andrews, 2008); and in only few years it was expanding
to other areas of physics.

The interaction of OVs with atoms started with theo-
retical studies on their motion under the torque exerted
by LG beams and the transfer of OAM (Allen et al.,
1996; Andrews, 2008; Van Enk, 1994), and experimen-
tal work on the interaction of an OV with an ensemble
of cold cesium atoms (Tabosa and Petrov, 1999). Sev-
eral other studies followed, deepening the understand-
ing on the basics of absorption of OVs and exploring
other properties, such as the exchange of OAM in the
interaction with molecules and the role of the dipole-
moment approximation (Babiker et al., 2002) the gen-
eration of currents (Köksal and Berakdar, 2012), inter-
action in an atomic Bose-Einstein condensate (Bhowmik
et al., 2016; Mondal et al., 2014), the photoexcitation
of many-electron atoms (Scholz-Marggraf et al., 2014;
Surzhykov et al., 2015), and the photoionization of H+

2

(Peshkov et al., 2015). These and other works pointed
to the expected transfer of OAM to atoms (internal and
center-of-mass degrees of freedom) and to the existence
of higher than dipolar electronic transitions (Sect. II.A).
Schmiegelow et al. (2016) provided a direct experimental
demonstration of the transfer of OAM to a single trapped
ion, with implications on the importance of the longi-
tudinal component of the field (Quinteiro et al., 2017c)
(Sect. II.C), the alignment of the beam axis with the
atom (Afanasev et al., 2018; Peshkov et al., 2017; Quin-
teiro et al., 2010) (Sect. IV.A.3.b), and the character-
istic length scale associated with the singularity (Sect.
VI.B.1). Theoretical work continues describing subwave-
length trapping (Schulze et al., 2017), interaction with
Rydberg atoms (Mukherjee et al., 2017), the scattering
by hydrogenic ions (Peshkov et al., 2018), resonant scat-
tering by fast ions (Serbo et al., 2021), multipolar transi-
tions (Solyanik-Gorgone et al., 2019), Bose-Einstein con-
densates (Das et al., 2020; Ghosh Dastidar et al., 2022),
trapping by counter-propagating beams (Koksal et al.,
2020, 2019), and more (Babiker et al., 2018; Franke-
Arnold, 2017).

Naturally, the studies in atom-OV interaction have
been accompanied by studies in molecules. A primary
concern has been to establish whether the OAM of light
plays a role in chiral molecule-light interaction, as it is
well known with spin AM. Studies pointing in the pos-
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itive –OAM does affect chiral matter– (Brullot et al.,
2016; Forbes and Andrews, 2018b; Rosales Guzmán,
2015; Woźniak et al., 2019; Ye et al., 2019) and nega-
tive (Andrews et al., 2004; Araoka et al., 2005; Babiker
et al., 2002; Giammanco et al., 2017; Löffler et al., 2011;
Mathevet et al., 2013) direction exist, and the accumu-
lated evidence so far indicates that the effect does take
place at the quadrupole electronic transition level (Sect.
III.C.1), and can be induced using Bessel beams or tight
focusing mixing orbital and spin AM (Monteiro et al.,
2009; Zhao et al., 2007) (Sect. II.C.2). Other research
into more general properties of OV-molecule interaction
were conducted on, for example, the photo-induced cur-
rents and magnetic fields in ring-shape molecules (Köksal
and Koç, 2017a) and nanocages (Köksal and Koç, 2017b),
and twisted excitons in molecules (Zang and Lusk, 2017).

Other fields also profit from OVs. The propagation
properties of OVs in a plasma was investigated by Noba-
har et al. (2019), and Zhang et al. (2021) proposed the
generation of high-order OV harmonics by irradiating a
plasma with a circularly polarized Gaussian beam. Op-
tical vortices out of the visible spectrum have also been
investigated. In the ultraviolet regime, they can improve
lithography and ablation techniques (Hernández-Garćıa
et al., 2017; Pabon et al., 2017). Metalenses can generate
OVs in microwaves (Zhang et al., 2018) and V-shaped an-
tennas can generate OVs in the terahertz range (He et al.,
2013). In the radio frequency regime corresponding stud-
ies were conducted (Mohammadi et al., 2010; Thidé et al.,
2014, 2007). In astronomy, a so-called vortex corono-
graph technique can be used to improve imaging of exo-
planets (Foo et al., 2005; Serabyn et al., 2010), and there
are methods to determine the OAM of light (Berkhout
and Beijersbergen, 2008) or the rotation (Lavery et al.,
2013; Tamburini et al., 2011) of astronomical sources.
In biology, Shi et al. (2017) studied the transmission of
LG beams through mouse brain tissue to explore pos-
sible uses of OVs for imaging purposes. Optical tweez-
ers with OVs can help manipulate biological molecules
and structures (Grier, 2003; Otte and Denz, 2020). Also
single-cell nanosurgery using OVs are reported to pro-
duce in organelles less damage than conventional optical
tweezers (Jeffries et al., 2007). Finally, OVs can much
improve microscopy, e.g., in biology and nanotechnology,
by Stimulated Emission Depletion (STED) (Keller et al.,
2007) and other techniques (Ritsch-Marte, 2017).

III. CONDENSED MATTER BASICS

Condensed-matter physics encompasses a vast collec-
tion of phenomena in different materials, from liquids
to crystalline solids. This review focuses on the in-
teraction of OVs with bulk solids and structured sys-
tems like quantum rings, a two-dimensional electron gas
either in a quantum well or in modern 2D materials,

quantum dots, semiconductor microcavities, dielectric-
metal interfaces, and topological insulators. In this sec-
tion, we discuss the basic physics behind crystals in the
bulk and nanostructure forms, their excitations –such as
single-particle excitations, excitons, exciton-polaritons,
plasmon-polaritons–, and condensed-matter optics in-
cluding the topics of gauge invariance, the vertical-
transition approximation, and dynamics of material ex-
citations.

A. Crystalline solids

A crystal is a solid with well-ordered elementary units,
either atoms or collections of atoms, forming a lattice.
This periodicity determines much of the electronic struc-
ture and single-particle excitations, as well as the dy-
namics of their collective excitations –excitons, plasmons,
phonons, and magnons (Ashcroft and Mermin, 1976;
Ibach and Lüth, 2013; Kittel, 1987).

A classification criterion advantageous to discuss op-
tical processes is to separate the set of crystalline solids
into insulators, semiconductors and metals, i.e., by their
electrical conductivity. The description of electron dy-
namics in solids was continuously improved in successive
steps. Drude (1900) postulated his celebrated model for
conduction in metals, in which electrons move accord-
ing to Newton’s laws including the Lorentz force, bounce
on fixed and randomly located ions, and thermalize to a
classical Maxwell-Boltzmann velocity distribution. The
Drude model explained the Hall effect, and combined
with experiments it predicted electron relaxation times
and mean free paths in metals. Nowadays, it is still
an ubiquitous tool in research, and plays, for example,
an important role in the theory of surface plasmon po-
laritons (Sect. IV.C). Sommerfeld (1928) introduced the
Fermi-Dirac distribution and the wave nature of electrons
through the free electron wave functions exp(ik · r), with
quasi-momentum k. A significant improvement comes
from incorporating the periodicity of the ionic arrange-
ment (Bragg and Bragg, 1913). The general form of the
electron wave function in a periodic potential is given by
the Bloch theorem (Bloch, 1928), which states that the
single-particle wave function ψbk(r) can be written as

ψbk(r) =
1√
V
eik·rubk(r) , (41)

with the quasi-momentum k,6 the band index b and
a normalization volume V . The microscopic function
ubk(r) has the periodicity of the lattice and satisfies the
orthogonality relation

1

v

∫
v

dru∗b′k(r)ubk(r) = δbb′ , (42)

6 Rigorously speaking, the quasi-momentum of the electron is ~k.
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where the integral runs over a single unit cell with vol-
ume v. The electron states are grouped in energy bands
with energy εbk (Ashcroft and Mermin, 1976). The Bloch

Bloch

Lattice

FIG. 5 (color online) In the independent-electron approxima-
tion, the single electron states are grouped into energy bands
due to their interaction with the lattice. Left: Schematic plot
of the Bloch wave functions. Right: Band structure of GaAs,
adapted from Cohen and Chelikowsky (2012).

description together with the Fermi-Dirac statistics of
the electrons finally achieves a microscopic description
of metals, semiconductors and insulators. In conductors,
the electronic ground state is characterized by partially-
filled energy bands. In contrast, semiconductors and in-
sulators have at zero temperature fully-occupied energy
bands separated by a band-gap from empty energy bands,
see Fig. 5.

In contrast to the fairly simple solution for energy
bands and wave function found in the Bloch model, the
many-body problem of electron-electron interactions is
of such a complexity that no single solution is known.
Instead, approximations to specific situations are ap-
plied. Ab-initio calculations of the electronic structure of
solids are most often based on the density-functional the-
ory and its variants (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965). In the optical excitation of a direct
band-gap semiconductor (e.g., GaAs, see Fig. 5), the ab-
sorption of light induces the transition of electrons be-
tween valence and conduction bands. The mutual inter-
action between electrons and holes gives rise to quasi-
particles called excitons (Frenkel, 1931; Wannier, 1937).
Here the essential physics is captured by the dynami-
cal Hartree-Fock approximation –a mean-field approach
leading to the semiconductor Bloch equations (Haug and
Koch, 2009; Lindberg and Koch, 1988; Rossi and Kuhn,
2002). An alternative approach is based on the Bethe-
Salpeter equation for the two-particle correlation func-
tion (Albrecht et al., 1998; Drueppel et al., 2018; Onida
et al., 2002; Rohlfing and Louie, 1998; Strinati, 1988).

A lattice made out of static ions is clearly unrealis-
tic; not only temperature but also quantum fluctuations
cause the ions to move. At low temperatures, every ion
undergoes small oscillations around its equilibrium posi-
tion (lattice site) that lead to the normal modes of vi-

brations, with dispersion relation ωs(k) for branch s and
wave vector k. A quantum description yields the picture
of phonons as the quanta of crystal vibrations, analogous
to photons in quantum electrodynamics (Ashcroft and
Mermin, 1976; Ibach and Lüth, 2013).

The spin degree of freedom of electrons and ions plays
an important role in optical selection rules and a variety
of magnetic phenomena. We will discuss its relevance to
OV-crystal interaction in Sect. IV.A.3.a.

The evolution in our understanding of electronic ex-
citations is a neat example of how particles are to be
thought of in solid-state physics. In Drude’s and Som-
merfeld’s model electrons are individual particles ran-
domly scattering from individual ions. Incorporating the
effect of the whole lattice potential leads to “dressed”
states and the corresponding quasi-particles, the Bloch
electrons. Incorporating the electron-electron interaction
leads to Landau’s quasi-particles (Abrikosov et al., 2012)
in metals and excitons in semiconductors (Dexter and
Knox, 1965).

This process of hybridization of correlated excitations
yielding new quasi-particles goes on: including light as
a degree of freedom one finds exciton-(Sect. IV.B) and
plasmon-(Sect. IV.C) polaritons or, including phonons,
one finds polarons. A description based on collective ex-
citations is a clever way to deal with the complexity found
in condensed matter, and also hints to the interconnect-
edness of idealized individual physical units (such as the
Sommerfeld electron).

B. Structured systems

Modern technology and condensed matter physics are
inextricably intertwined. And the electronic industry
based on the solid state has constantly sought device
miniaturization, since the invention of the transistor in
the late 1940s or even earlier (Mills, 2011), and it has
driven intense basic research on small semiconductor,
metal, and hybrid structures (see Fig. 6).

The theory of nanoscale (10−9 − 10−8m) systems is
built upon that of the bulk crystal and will be discussed
in Sects. III.C.3 and IV.A.1. However, nanostructures
exhibit new effects due to their reduced dimensionality,
the number of excitations involved, the existence of in-
terfaces, the combination of different materials, etc. that
require the reexamination of bulk models. Are the clas-
sical and semiclassical (e.g., Drude) models applicable?
Can one use thermodynamics for a system with few par-
ticles? What assumptions are not valid for optics at the
nanoscale? The result of almost half a century of research
is a well-developed understanding of nanostructures that
deserves dedicated attention (Bastard, 1988; Ihn, 2010).
Section IV discusses in depth the interaction of OVs with
structured systems.
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FIG. 6 (color online) Comparison of structures of different
types and sizes. From Maragò et al. (2013).

C. Condensed-matter optics

Among crystals, semiconductors exhibit the richest re-
sponse to light in the visible range of the electromag-
netic spectrum. Halfway between metals and insula-
tors, the electronic ground state has a completely filled
valence (highest occupied energy) band separated from
a completely empty conduction (lowest unoccupied en-
ergy) band by a few electronVolts. Light in the visible
range therefore carries the necessary amount of energy to
induce electronic interband transitions between valence
and conduction bands. Metals with the Fermi energy
lying inside the conduction band and metallic-dielectric
hybrid systems present also interesting features. Their
interaction with light is to a large extent understandable
in terms of the Drude model for electrons in a single band
(Sect. IV.C).

The general formulation of light-matter interaction is
based on the minimal coupling Hamiltonian, in which
the electromagnetic field is described in terms of poten-
tials instead of fields. As discussed in Sect. II.B, po-
tentials are not uniquely defined by the fields, instead
different gauges can be chosen. In the analysis of the
light-matter interaction the consideration of the problem
of gauge invariance is therefore important, in particu-
lar in the case of extended systems (solid state bulk or
nanostructures) and/or strongly varying electromagnetic
fields (Sect. III.C.1). Due to the phase singularities OVs
are indeed strongly varying fields; moreover, under cer-
tain experimental conditions, the spatial variation can be
further enhanced by tight focusing of a free propagating
beam or by near-field techniques (Sect. IV.C).

A prevailing model of the interband optical excitation
is that of vertical transitions, in which the photon’s linear
momentum is neglected. However, the vertical transition
approximation is incompatible with strongly inhomoge-
neous light beams such as OVs, and must be thus revis-

ited (Sect. III.C.2).
Finally, the modeling of the dynamics of the optical

excitation and the subsequent relaxation and dephasing
processes of the generated electronic excitations are dis-
cussed in Sect. III.C.3.

1. Gauge invariance

As a starting point for a theoretical description of the
light-matter interaction (Cohen-Tannoudji et al., 1989)
it is convenient to take the Lagrangian L for a particle of
charge q and mass m0 in the presence of electromagnetic
fields represented by scalar (Φ) and vector (A) potentials
[see Chap. 1 of Goldstein (1980)]

L =
1

2
m0ṙ

2 − V (r) + qṙ ·A(r, t)− qΦ(r, t) , (43)

with the electrostatic potential energy V due to the lat-
tice and possibly other static sources and the canonical
momentum

p =
∂L

∂ṙ
= m0ṙ + qA(r, t) . (44)

By a Legendre transformation h = p · ṙ−L the so-called
minimal coupling Hamiltonian is obtained as

h =
1

2m0
[p− qA(r, t)]2 + V (r) + qΦ(r, t), (45)

which is the key quantity for the transition to a quantum
mechanical description. The Hamiltonian is likewise ex-
pressed in terms of the electromagnetic potentials instead
of fields. This can be a source of troubles in calculations
and the interpretation of results, in particular if approx-
imations like the truncation of a basis are performed.

Electromagnetic potentials are auxiliary functions that
assist us in the calculations involving the physically real
and measurable electric and magnetic fields. Gauge
transformations do not change the fields (Sect. II.B): The
values of measurable electromagnetic quantities and their
dynamics –governed by Maxwell’s equations– are unaf-
fected.

When charges enter the picture, one expects to
have corresponding invariant equations of motion (EoM)
and quantities. The Schrödinger equation for the
minimal coupling Hamiltonian is preserved under a
gauge transformation if the wave function under-
goes a local phase transformation ψ(2) = Tχψ

(1) =
exp(iqχ/~)ψ(1).7 The Hamiltonian transforms concomi-
tantly by8 h(2) = Tχh

(1)T †χ − q∂tχ. All other operators

7 This is also the case in relativistic quantum mechanics with the
Dirac equation.

8 The transformed Hamiltonian can also be written by replacing
old by new potentials.
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transform according to O(2) = TχO
(1)T †χ, which ensures

that matrix elements and mean values of operators are
invariant: 〈ψ(1)|O(1) |ϕ(1)〉 = 〈ψ(2)|O(2) |ϕ(2)〉. Note the
special transformation rules that obeys h –the operator
driving the system’s dynamics– and the scalar and vector
potentials [Eqs. (12)]. A physically meaningful quantity
O should have gauge-invariant eigenvalues of its operator
O and it should retain its functional form upon trans-
formation: O(2) = O(1)(A(2),Φ(2)) (Scully and Zubairy,
1997). Examples of physical and non-physical quan-
tites are the mechanical (π = p − qA) and canoni-
cal (p = −i~∇) momenta, respectively. Evidently, the
Hamiltonian Eq. (45) is not a physical operator, but by
excluding the scalar potential one gets a physical opera-
tor called the instantaneous energy (Yang, 1976). Nor is
h0 = p2/(2m0) + V a physical operator if A 6= 0.

In addition to eigenvalues and expectation values of
operators, one is concerned with transition probabilities
(Ballentine, 2014; Yang, 1976) induced by the optical
field. These transition rates are usually calculated in the
framework of time-dependent perturbation theory. For
this purpose the minimal coupling Hamiltonian is split
into an unperturbed part

h0 =
p2

2m0
+ V (r)

in the absence of electromagnetic fields and a perturba-
tion that depends on scalar and/or vector potentials, for
instance,

hI = − q

2m0
[p ·A(r, t) + A(r, t) · p] + qΦ(r, t), (46)

in which the quadratic term in A has been neglected.
Perturbation theory then predicts transition rates be-
tween eigenvectors |ηi〉 of h0, satisfying the eigenvalue
equation h0 |ηi〉 = εi |ηi〉. In most cases one is interested
in the transition rates for monochromatic fields with fre-
quency ω, for which the interaction Hamiltonian –like the
potentials and fields– can be split into a positive and a
negative frequency part according to

hI = h
(+)
I e−iωt + h

(−)
I eiωt. (47)

Transition rates in first-order perturbation theory
–describing single photon absorption or emission
processes– are then given by Fermi’s golden rule

Γfi =
2π

~

[∣∣∣〈ηf |h(+)
I |ηi〉

∣∣∣2 δ (εf − εi − ~ω)

+
∣∣∣〈ηf |h(−)

I |ηi〉
∣∣∣2 δ (εf − εi + ~ω)

]
. (48)

Using higher-order perturbation theory transition rates
for multi-photon absorption and emission processes can
be obtained.

Obviously, these transition rates involve gauge-
dependent quantities. Therefore the question arises:

Do the transition rates change if the potentials are
transformed by a gauge function χ according to
Eq. (12) leading to a modified interaction Hamiltonian

h
(2)
I = h

(1)
I + ∆hIχ, where h

(1)
I refers to the interaction

Hamiltonian in the original gauge. Using the fact that
also χ has a harmonic time dependence and can be sepa-
rated in positive and negative frequency components, the
correction terms are given by

∆h
(±)
Iχ = − q

2m0

[
p · ∇χ(±)(r) +∇χ(±)(r) · p

]
±iωqχ(±)(r). (49)

As can be easily checked, the gauge field satisfies the
commutation relation[

h0, χ
(±)(r)

]
=

~
2m0i

[
p · ∇χ(±)(r) +∇χ(±)(r) · p

]
.

(50)
Using this relation, the matrix elements of the correction
terms to the interaction Hamiltonian are given by

〈ηf |∆h(±)
Iχ |ηi〉 = − iq

~
(εf − εi ∓ ~ω) 〈ηf |χ(±)(r)|ηi〉 .

(51)
These matrix elements therefore vanish when the ener-
gies satisfy the energy selection rules in Eq. (48). From
this result we can draw several conclusions: (i) transition
rates for resonant transitions, as described by Fermi’s
golden rule, are unchanged and are therefore gauge in-
variant; (ii) this does not hold anymore, if approximate
eigenfunctions of h0, obtained, e.g., from a variational
calculation, are used for the calculation of the rate (Dal-
garno and Lewis, 1956); (iii) transitions in the case of
a decaying states may also depend on the gauge (Fried,
1973; Lamb Jr et al., 1987). This is again related to
the fact that h0 does not completely describe the unper-
turbed system, but there are other parts, e.g., electron-
phonon interaction or radiative decay due to the coupling
to the photon vacuum, which lead to dephasing and a fi-
nite lifetime of the excited state.

For two-photon transitions, where the rate involves the
summation of intermediate states, it has been shown that
the exact result from second-order perturbation theory is
independent of the gauge, while a truncation of the basis
of the intermediate states can lead to strongly gauge-
dependent results and the convergence behavior with in-
creasing number of basis functions may strongly depend
on the gauge (Bassani et al., 1977). Furthermore, non-
resonant two-photon transitions in the case of a broad-
ened line may also depend on the gauge (Kobe, 1978).
However, for not too large broadenings this gauge de-
pendence will be very weak because the deviations of the
energy from the resonance condition are very small.

To avoid such possible gauge dependencies one may
try to find a formulation of the coupling only in terms
of measurable fields. The dipole-moment approximation
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for the coupling of light to atoms (or other sufficiently lo-
calized structures) accomplishes this. Let us assume that
a smooth external electromagnetic field with wavelength
much larger than the spatial extent of the electron wave
function is impinging on an atom centered at r = 0. If
the sources of the field are far away Φ(1) ' 0 can be as-
sumed and A(1)(r, t) can be approximated by A(1)(0, t).
Then, the Hamiltonian in the Coulomb gauge reads
h(1) = [p − qA(1)(0, t)]2/(2m0) + V (r). The Göppert-
Mayer (1931) gauge transformation χ = −r ·A(1)(0, t)
produces new potentials A(2) = 0 and Φ(2) = −r ·E(0, t),
and consequently h(2) = p2/(2m0) + V (r) − qr · E(0, t),
i.e., a Hamiltonian completely described in terms of the
electric field.

We note, however, that the Hamiltonian with the elec-
tric dipole coupling is only an approximation. The ex-
act gauge transformation results in a vector potential
A(2)(r, t) = A(1)(r, t)−A(1)(0, t), which only vanishes in
the case of a homogeneous electromagnetic field, i.e., in
the limit of an infinite wavelength. Moreover, even in the
case of a system much smaller than the wavelength one
can find a gauge transformation to a null vector poten-
tial only in the cases when the coupling to the magnetic
field is negligible. If there is a non-negligible magnetic
coupling A 6= 0 in all gauges.

In general, the dipole-moment approximation fails to
describe extended matter states and/or highly inhomo-
geneous light fields. In the case of the coupling to a crys-
talline solid, however, a formulation in terms of dipole
moments remains possible due to the Bloch theorem and
the smallness of the length of the unit cell compared to
the wavelength. The dipole moment then refers to a sin-
gle unit cell. In other cases it can be improved by other
gauge transformations (Cohen-Tannoudji et al., 1989;
Quinteiro et al., 2015, 2017b) or by formally extending
the dipole-moment Hamiltonian to hI = −qr · E(r, t)
(Kira et al., 1999). All these transformations share the
fact that they retain some spatial dependence of the po-
tentials and fields, see Sect. IV.A.2.

2. Vertical transition approximation

A widely used approximation in semiconductor op-
tics is that of vertical transitions (Dresselhaus, 2001).
The excitation of an electron from valence to conduction
band annihilates a photon with energy around that of
the semiconductor band-gap. Let us exemplify this for
the excitation of a GaAs bulk crystal (band-gap energy
Eg = 1.44 eV at 300 K). The corresponding photon’s
linear momentum is q ' 8 × 10−3 nm−1.9 The quasi-
momentum k of the electron is restricted to the first Bril-
louin zone with maximum value kmax = π/a ' 6 nm−1,

9 Rigorously speaking, the photon’s linear momentum is ~q.

where a is the linear size of the unit cell. By arguing
that q � kmax, one often neglects q. This is equivalent
to neglecting the spatial variation of the light field over a
unit cell. Neglecting furthermore the spatial variation of
the light field over the whole system leads to the vertical
transition approximation. In the electron-hole or exciton
picture a vertical transitions corresponds to the genera-
tion of an electron-hole pair or an exciton with vanishing
center-of-mass momentum.

This vertical transition approximation has proven very
useful. However, the conservation of linear momentum
in the light-matter interaction must be taken into ac-
count in some cases of historical and current interest. In
the late 1950s Hopfield (1958) developed the theory of
hybrid exciton-photon quasiparticles, known as exciton-
polaritons, a topic that has regained interest in recent
years in particular in the field of semiconductor nanos-
tructures and is currently extensively explored in theory,
experiments and applications (Sect. IV.B). A decade
later, and almost simultaneously, Grinberg (1970) and
Gibson with coworkers (Cameron et al., 1975; Gibson
et al., 1970; Gibson and Walker, 1971) investigated the
photon-drag effect; in Grinberg’s words “In the absorp-
tion of light by free carriers, the momentum of the elec-
tromagnetic wave is absorbed together with its energy.
Consequently, the electron system can acquire a transla-
tional motion that is manifest in the form of a current or
a voltage [...]”. The effect is nowadays being used in com-
mercial detectors. If the light is circularly polarized car-
riers may pick both the photon’s linear momentum and
spin AM resulting in the generation of a spin-dependent
electric current (Shalygin et al., 2007).

Taking into account the linear momentum of the pho-
ton the transitions are not anymore vertical, nevertheless
there is still a well-defined momentum transfer. In the
electron-hole picture the generated electron-hole pair has
a center-of-mass momentum given by the photon’s mo-
mentum. In contrast, for strongly inhomogeneous light
fields, the photon does not anymore have a well-defined
momentum, which leads to a broading of the transitions
in k-space and thus to an uncertainty in the center-of-
mass momentum of the generated exciton or electron-
hole pair (Herbst et al., 2003; Hess and Kuhn, 1996; Rossi
and Kuhn, 2002).

In structures with cylindrical symmetry it is often con-
venient to characterize the electronic state not by the
linear momentum k but by its OAM with respect to the
symmetry axis, specified by a quantum number m. Also
here, a light field which can be assumed to be spatially
homogeneous over the structure leads to “vertical” tran-
sitions in the sense that the quantum number m of the
initial and final state in an absorption or emission process
is the same.

To describe the interaction of OVs with condensed
matter, the assumption of a slowly varying field is vi-
olated in particular in the region around the phase sin-
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gularity and has therefore to be abandoned. Here, the
transfer of OAM has to be incorporated in the models in
a similar way as the linear momentum in the case of po-
laritons or the photon drag effect. In fact, based on such
an approach circular photo-currents in bulk (Quinteiro
and Tamborenea, 2009c) and nanostructures (Quinteiro
and Berakdar, 2009) have been predicted. Later mea-
surements have recently confirmed this effect (Ge, 2020;
Ji et al., 2020).

3. Dynamics under light excitation

In a nutshell, a light beam creates an out-of-
equilibrium many-electron state by altering the popu-
lations of conduction and valence bands as well as the
quantum coherences within and between bands (Rossi
and Kuhn, 2002). With no further energy input, the over-
all state eventually relaxes and loses quantum coherence
through different channels, most notably electron-phonon
and electron-electron scattering and radiative recombi-
nation. Many tools have been developed to measure and
model the generation of a non-equilibrium state in mat-
ter by means of an optical excitation and the subsequent
relaxation and dephasing back to the equilibrium state.

The dynamics of optically excited semiconductors are
conveniently described starting from a second quantiza-
tion picture with creation (annihilation) operators a†bα
(abα) denoting the creation (annihilation) of an electron
in the state ψbα(r) in band b with quantum number α. In
bulk material α is the three-dimensional wave vector k of
the Bloch electron and the Bloch function ψbk(r) is given
by Eq. (41). In a spatially confined system α may be a
purely discrete (multi-)index (e.g., in the case of a quan-
tum dot) or a combination of discrete and a continuous
index (e.g., a subband index and a two-dimensional wave
vector in the case of a quantum well). The states in such
systems are often well described in terms of the envelope
function approximation (Bastard, 1988; Ihn, 2010) by a
wave function

ψbα(r) = Ebα(r)ub(r), (52)

for a state with energy εbα. Here, Ebα(r) denotes the
envelope function and the k-dependence of the lattice
periodic Bloch function is neglected, i.e., ubk(r) is re-
placed by the function at the band edge ubk0

(r) = ub(r)
(Bastard, 1988). The Hamiltonian of the non-interacting
electrons then reads

H0 =
∑
bα

εbαa
†
bαabα, (53)

while the coupling to a light field in any gauge has the
general structure

HI =
∑

b′α′,bα

hIb′α′,bαa
†
b′α′abα, (54)

with hIb′α′,bα = 〈b′α′|hI |bα〉 and the interaction Hamilto-
nian hI , such as Eq. (46).

The expectation value of any single-particle operator
of the electrons can be calculated from the single-particle
density matrix

ρb′α′,bα(t) = 〈a†b′α′(t)abα(t)〉, (55)

which satisfies the equation of motion

i~
d

dt
ρb′α′,bα =

〈[
a†b′α′abα, H0 +HI

]〉
= (εbα − εb′α′) ρb′α′,bα (56)

+
∑
b′′α′′

(
hIbα,b′′α′′ρb′α′,b′′α′′ − hIb′′α′′,b′α′ρb′′α′′,bα

)
.

Note that while here we have explicitly used the Heisen-
berg picture, ρb′α′,bα(t) as an expectation value is inde-
pendent of the picture and the same equation (56) could
be obtained by using the Liouville-von Neumann equa-
tion in the Schrödinger picture. Often, when dealing with
the dynamics of optically excited semiconductors, it is
sufficient to restrict the model to two bands, the valence
(v) and the conduction (c) band. Then, the system is de-
scribed by three single-particle density matrices, the in-
traband coherences ρv,α′α ≡ ρvα′,vα and ρc,α′α ≡ ρcα′,cα
(including occupations for α = α′), and the interband
coherence ρvc,α′α ≡ ρvα′,cα. We will come back to these
equations for various types of structures in the following
Sections. As a reference for the description of solid-state
systems driven by OVs, here we will give a brief overview
of the theoretical background for the standard case of a
bulk semiconductor excited by a homogeneous light field.

In the case of a homogeneous excitation of a bulk semi-
conductor the single-particle density matrices are diago-
nal in the wave vector k and the dynamical variables
reduce to the electron occupations in the valence and
conduction bands, ρv,k and ρc,k, as well as the inter-
band coherence (also called interband polarization) ρvc,k.
The coupling to the light field is treated in terms of the
vertical transition approximation. The interaction ma-
trix elements in the electric field gauge then reduce to
hIck,vk = −dcv · E(t) with the interband dipole matrix
element

dcv =
q

v

∫
v

u∗c(r) ruv(r)dr. (57)

A more detailed discussion of the coupling to the light
field including intraband and interband processes as well
as spatially inhomogeneous light fields will be given in
Sect. IV.A.1.

In the simplest case the optical excitation is described
in terms of a generation rate gk according to

d

dt
ρc,k = − d

dt
ρv,k = gk, (58)
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where gk is obtained from Fermi’s golden rule and reads
for a spatially homogeneous light field E with frequency
ω

gk =
2π

~2
|dcv ·E|2 (ρv,k − ρc,k) δ(ωk − ω) , (59)

with ~ωk = εck − εvk. In the case of excitation by a
short laser pulse the δ-function is replaced by the spectral
shape of the pulse.

The coupling to the light field, however, does not
only generate populations of electrons and holes, it also
creates an interband coherence ρvc,k between the light-
coupled states. In the present case of non-interacting
electrons a closed set of EoM for the occupations and the
interband coherence is obtained,

d

dt
ρc,k = − d

dt
ρv,k = −2

~
Im
[
dcv ·E(t)ρ∗vc,k

]
, (60a)

d

dt
ρvc,k = −iωkρvc,k +

i

~
dcv ·E(t) (ρv,k − ρc,k) (60b)

with Im[. . .] denoting the imaginary part. Each optically
coupled pair of valence and conduction band states rep-
resents a two-level system and Eqs. (60) correspond to
a set of optical Bloch equations (OBE) for each of these
two-level systems (Haug and Koch, 2009). An exten-
sion including intraband terms of the electric field can
be found in Rossi and Kuhn (2002). Generalizations of
the OBE to the case of excitation of semiconductor bulk
and various elementary nanostructures will be discussed
in Sects. IV and V.

The EoM (60) have been derived in the electron pic-
ture. Alternatively, one may work in the electron-hole
picture, in which the annihilation of an electron with
wave vector k in the valence band is replaced by the
generation of a hole with wave vector −k. Instead of
the occupation of the valence band states one then uses
the occupation of hole states given by ρh,−k = 1 − ρv,k,
the other two variables remain the same. The excitation
of an electron from the valence to the conduction band
is then interpreted as the generation of an electron-hole
pair, where electron and hole have opposite momenta.
An advantage of the electron-hole picture is the fact that
before the optical excitation the system is in the well-
defined vacuum state with all dynamical variables being
zero. In this review, however, we will mainly use the
equally valid electron picture, because it provides a more
compact notation, especially in systems with more than
two bands or when including intraband processes.

In a real semiconductor, in particular in the case of
excitation close to the band gap, the many-body nature
of the electronic system cannot be neglected. The attrac-
tive Coulomb interaction between electron and hole leads
to the formation of bound exciton states which manifest
themselves in discrete absorption lines below the band
gap. The general structure of the electron-electron inter-

action Hamiltonian in a multiband model is given by

Hee =
1

2

∑
ijkl

〈ij|hee |kl〉a†ia
†
jalak , (61)

in which latin characters collect band and envelope in-
dices (for example, i = biαi) and

hee =
q2

4πε0εs|r− r′|

with the static dielectric constant εs. For the two-band
bulk system of Bloch states this leads to

Hee =
1

2

∑
kk′g 6=0

Vg

(
2a†ck+ga

†
vk′−gavk′ack

+a†vk+ga
†
vk′−gavk′avk + a†ck+ga

†
ck′−gack′ack

)
,

with Vg = q2/(V ε0εsg
2) and we have neglected terms

that do not conserve the number of particles in each
band as well as the interband exchange term (Fetter and
Walecka, 2012). Those terms are of short-range nature
and are therefore often of minor importance. To obtain
the contribution from electron-electron interaction to the
EoM of the single-particle density matrices we need the
commutators of a†b′k′abk with Hee. For the interband

operator a†vk′ack this leads to

[a†vk′ack, Hee] =
∑

k1,g 6=0

Vg

(
a†vk′a

†
vk1+gavk1

ack+g

−a†vk′+ga
†
ck1−gack1

ack + a†vk′a
†
ck1+gack1

ack+g

−a†vk′+ga
†
vk1−gavk1

ack

)
. (62)

Analogous equations are obtained for the intraband op-
erators.

When taking the expectation value of Eq. (62) we ob-
serve that we get expectation values of four operators.
Thus, instead of getting a closed set of EoM, this consti-
tutes the starting point of an infinite hierarchy of equa-
tions for expectation values of an increasing number of
operators, much like the BBGKY hierarchy of statistical
thermodynamics (Huang, 1963).

A variety of techniques has been developed to treat
such many-body systems. In a correlation expansion ap-
proach (Rossi and Kuhn, 2002) [also called cumulant or
cluster expansion approach (Fiori et al., 2013; Kira et al.,
1999)] one starts again with the single-particle density
matrices ρc, ρv and ρvc. The expectation values of four
operators appearing in their EoM, which represent two-
particle density matrices, are then separated into a sum
over all possible factorizations into single-particle density
matrices and a rest containing two-particle correlations.
The same factorization scheme is applied to higher-order
density matrices leading to correlations among an in-
creasing number of particles. Setting up EoM for these
higher correlations leads to an infinite set of equations of



22

motion, that needs to be truncated by an approximation
in order to become closed.

On the lowest order, all correlations are neglected
which leads to the time-dependent Hartree-Fock approx-
imation. Considering again a spatially homogeneous sys-
tem only single-particle density matrices which are diag-
onal in k are non-zero. Reordering the operators in Eq.
(62), such that creation and annihilation operators in a
factorization are next to each other leads to〈

[a†vkack, Hee]
〉

= −
∑
g 6=0

Vg [ρvc,k+g (ρv,k − ρc,k)

−ρvc,k (ρv,k+g − ρc,k+g)] . (63)

Note that the restriction of the summation to g 6= 0,
which reflects the total charge neutrality, eliminates all
Hartree-type factorizations.

Adding the contributions from electron-electron inter-
action to the OBE (60) leads to the semiconductor Bloch
equations (SBE) (Lindberg and Koch, 1988). They have
the same structure as the OBE, however with renormal-
ized energies and field couplings:

d

dt
ρc,k = − d

dt
ρv,k = −2Im

[
Ω̃(t)ρ∗vc,k

]
, (64a)

d

dt
ρvc,k = −iω̃kρvc,k + iΩ̃(t) (ρv,k − ρc,k) . (64b)

The external light field is complemented by an internal
field resulting from the interband term of the Coulomb
interaction leading to an effective Rabi frequency Ω̃(t)
according to

~Ω̃(t) = dcv ·E(t) +
∑
g 6=0

Vgρvc,k+g. (65)

The energies of the electrons in the valence and conduc-
tion bands are renormalized by the intraband Coulomb
terms, respectively, leading to the effective transition fre-
quency ~ω̃k = (ε̃ck−ε̃vk). For the conduction band states
this leads to

ε̃ck = εck −
∑
g 6=0

Vgρc,k+g. (66)

For the valence band states the derivation produces the
analogous result. However, the single-particle energy
usually is defined in such a way that it already includes
the energy renormalization of the completely filled va-
lence band. Therefore, only the missing electrons in the
valence band, i.e., the holes, contribute to the renormal-
ization and we have

ε̃vk = εvk +
∑
g 6=0

Vg (1− ρv,k+g) . (67)

This result is indeed directly obtained if the calculations
are performed in the electron-hole picture. The inter-
nal field gives rise to the appearance of exciton lines in

the absorption spectrum while the energy renormaliza-
tions lead to a density-dependent reduction of the band
gap. In the linear response regime the occupations in the
valence and conduction bands are replaced by their equi-
libirum values and Eq. (64b) can be written in the form
of a Wannier equation driven by a homogeneous light
field, reflecting the excitation of excitons with vanish-
ing center-of-mass motion. In Sect. IV.A.2 the Wannier
equation for the case of excitation of a bulk semiconduc-
tor by a Bessel-type OV will be derived and we will see
that under these conditions excitons with a non-vanishing
center-of-mass momentum are generated.

Going beyond the level of the SBE and including cor-
relation effects, either due to the Coulomb interaction or
due to electron-phonon interaction, one obtains scatter-
ing and dephasing contributions which lead to a redistri-
bution of the carriers in the bands and to a loss of inter-
band coherence. Keeping only correlations up to a given
level, the equations for these correlations can be solved
numerically, which corresponds to a quantum kinetic de-
scription of scattering and dephasing processes (Schilp
et al., 1994). Alternatively, they can be formally solved
by performing a Markov approximation, which leads to
scattering contributions to the SBE similar to a Boltz-
mann equation (Rossi and Kuhn, 2002).

For inhomogeneous optical excitation, the vertical
transition approximation fails, and electron states with
different initial and final quasi-momentum are coupled;
here, off-diagonal variables such as ρc,k′k(t), ρv,k′k(t),
and ρvc,k′k(t) are relevant. The off-diagonal terms con-
tain the information on the space dependence and the
EoM then also describe spatial transport phenomena.
The factorization of the Coulomb contributions to the
equation of motion [Eq. (62) and the corresponding
equations for the intraband variables] now also involves
Hartree-like factorizations describing the self-consistent
electric field caused by the inhomogeneous charge dis-
tribution. While the spatial information is rather hid-
den in this non-diagonal momentum representation, a
more intuitive interpretation is provided by a Wigner
function representation in terms of functions ρc,K(r, t),
ρv,K(r, t), and ρvc,K(r, t), where K = 1

2 (k + k′) and the
r-dependence is obtained from a Fourier transformation
with respect to k − k′ (Rossi and Kuhn, 2002). We will
come back to the Wigner and other mixed momentum-
position representations when discussing the excitation of
a bulk semiconductor by OVs in Sect. IV.A.2. Non-linear
scattering and dephasing terms in the EoM of single-
particle density matrices for inhomogeneous systems have
also been derived by employing Lindblad-type superop-
erators (Rosati et al., 2014).

Another widely used approach to describe optically
induced dynamics in many-body systems is based on
nonequilibrium Green’s functions (Balzer and Bonitz,
2013; Haug and Jauho, 2008). The main difference com-
pared to density matrix-based approaches is the fact that
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the basic variables, the single-particle Green’s functions,
are two-time functions. The theory has been developed in
the 1960s by Kadanoff and Baym (1962) and by Keldysh
(1965) as a generalization of the equilibrium Green’s
function approach. While in the equilibrium case a sin-
gle type of Green’s function contains the full information
about the system, out of equilibrium in general four dif-
ferent functions are needed. The information on the dy-
namics of occupations and coherences is obtained from
the “less” and “greater” Green’s functions G< and G>

while spectral information is provided by the retarded
and advanced Green’s function Gr and Ga, respectively.
For electrons in the general multiband system G< and
Gr are defined as

G<bα,b′α′(t1, t2) = −i〈a†b′α′(t2)abα(t1)〉 ,

Grbα,b′α′(t1, t2) = −iΘ(t1 − t2)〈[abα(t1), a†b′α′(t2)]+〉,

with Θ(x) denoting the Heaviside step function and
[. . . , . . .]+ being the anticommutator. G> and Ga are
defined analogously. On the level of time-dependent
Hartree-Fock theory this approach leads for the equal
time variables again to the SBE. Many-body effects like
scattering and dephasing can then be described in terms
of a generalized Dyson equation, which can be treated
within a diagrammatic expansion using Feynman dia-
grams. Nonequilibrium Green’s functions have been used
to study the effects of OV pulses on the disordered sur-
face of a topological insulator, as will be discussed in
Sect. IV.A.3.d.

Yet another popular approach is the use of the
Liouville-von Neumann equation (Rossi, 2011) for the
dynamics of the density operators ρ(t) by the equation
i~dρ/dt = −[ρ,H] –note the difference in sign compared
to the Heisenberg equation of motion. Here, expectation
values result from 〈O〉(t) = Tr[Oρ(t)]. This approach
is particularly useful in the case of systems with a dis-
crete spectrum, such as atoms or semiconductor nanos-
tructures like quantum dots, interacting with a bath. Re-
laxation and dephasing processes are often described in
terms of a Lindblad superoperator (Lindblad, 1976) act-
ing on ρ, which leads to a non-unitary time-evolution
but preserves basic properties of the density operator
like Hermiticity and positivity (Breuer and Petruccione,
2002). For important special cases –a prototypical ex-
ample being the coupling of a semiconductor quantum
dot to acoustic phonons– a numerically exact solution of
the optically driven many-body problem can be obtained
in the framework of a real-time path integral approach
(Vagov et al., 2011).

The experimental exploration of the crystal’s excited
states and their evolution is done with linear and non-
linear optical techniques (Axt and Kuhn, 2004; Kalt and
Klingshirn, 2019; Lu and Fu, 2018; Shah, 1999; Shree
et al., 2021). In photoluminescence spectroscopy the
sample is excited at a fixed high energy and the resulting

photons emitted by the electrons undergoing radiative
decay are recorded as a function of frequency; in a vari-
ant of that, photoluminescence excitation, the system is
excited at varying energies, and the resulting emission is
measured at a fixed frequency. Non-linear spectroscopic
techniques (Boyd, 2020; Cundiff, 2008) rely on the fact
that the polarization of the system responds to a strong
electric field in non-linear ways P ∝ χ(n)En, with χ(n)

being an n-th order susceptibility. They are more pow-
erful than linear methods, because they can probe a va-
riety of processes, such as the decay of populations and
dephasing of coherences. In a typical experiment a se-
quence of laser pulses is used to “pump” the crystal creat-
ing the out-of-equilibrium state and to “probe” the state
of the system after some delay. Specific techniques are
pump-probe spectroscopy that measures the dynamics of
populations generated by the pump beam, but also time-
dependent energy shifts, intraband coherences or a per-
turbed free-induction decay (Joschko et al., 1997; Koch
et al., 1988; Krügel et al., 2007), Faraday/Kerr rotation
that measures the spin dynamics and spin decoherence
(Kikkawa and Awschalom, 1999; Kugler et al., 2011),
and four-wave mixing as well as 2D spectroscopy (Cun-
diff and Mukamel, 2013) that, depending on the pulse
sequence and the extraction of the signal, can measure
both interband coherence and population dynamics and
allows for the separation of homogeneous and inhomoge-
neous broadening (Honold et al., 1988; Koch et al., 1993;
Lindberg et al., 1992). Pump-probe and four-wave mix-
ing spectroscopy on bulk semiconductors using OV pulses
will be discussed in Sect. IV.A.2.

When it comes to measuring nanostructures, bulk tech-
niques can only probe an ensemble of particles, miss-
ing important properties of individual particles that are
blurred by, e.g., inhomogeneous broadening. Single
nanostructure measurements are better suited for this
task. One can use emission or extinction (absorption)
spectroscopy (Chatterjee et al., 2018). In the latter the
extinction of light going through the nanostructure at
different frequencies is measured, yielding a spectrum
that reveals large portions of the energy level structure.
In contrast, typical emission spectroscopy relies on the
emission of light from the lowest excited energy states.
Also pump-probe (Henzler et al., 2021; Sotier et al., 2009)
or four-wave-mixing (Patton et al., 2006; Wigger et al.,
2020) techniques are nowadays sensitive enough to be
applied to single nanostructures.

In all the cases discussed so far the coupling to the light
is used as an excitation and/or measurement tool with
the goal to obtain information on the spectral and/or dy-
namical properties of the material system. In some situ-
ations, however, when the coupling is sufficiently strong,
the light becomes part of the system and one cannot any-
more separate system and light dynamics. Instead, the
coupling of electronic excitations and light leads to the
emergence of new quasiparticles, such as different types
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of polaritons. Prominent examples are exciton polaritons
in semiconductor micro-cavities which have been exten-
sively studied in the past years (Deng et al., 2010; Ka-
vokin et al., 2017; Weisbuch et al., 1992). Their gen-
eration and dynamics have been modeled based on the
Heisenberg equation of motion (Ciuti et al., 2001; Por-
tolan et al., 2008; Quinteiro et al., 2012; Shelykh et al.,
2009; Vasilieva et al., 2018), one-particle Green’s func-
tions (Citrin, 1994; Quinteiro, 2008; Quinteiro et al.,
2006; Savona et al., 1999, 1997), and the Liouville equa-
tion (Quinteiro and Piermarocchi, 2005; Shelykh et al.,
2005). In addition, the Gross-Pitaevskii equation, the
bosonic version of the Hartree-Fock equation, has been
used for the quasi-bosonic polaritons to account for their
interaction and the excitation by a source field (Gip-
pius et al., 2007; Liew and Shelykh, 2009; Shelykh et al.,
2006).

In metallic nanostructures the light couples to the elec-
tron plasma. Close to surfaces of the metal or interfaces
between the metal and a dielectric environment this gives
rise to the formation of surface plasmon polaritons, which
are another example of quasi-particles that treat light
and matter on equal footing. Simple models of plasmon-
ics combine the Drude model for electrons in metals and
Maxwell’s equations of electrodynamics (Maier, 2007).
Here, the Drude model provides a dielectric function for
the response of the electron plasma in the metal to an
external perturbation. This and the dielectric constant
of the dielectric material are plugged into the Helmholtz
equation for the propagation of the electromagnetic field;
the solutions are the plasmon polaritons. For plasmon
polaritons in the sub-wavelength scale, a quasi-static ap-
proximation for the fields can be used, for example, in a
tiny metallic sphere surrounded by a dielectric. For larger
particles for which the quasi-static approximation fails,
one can resort to Mie theory (Mie, 1908). The imaging
of plasmon polaritons can be done using different tech-
niques, and near-field microscopy stands among them as
a powerful one. In photon scanning tunneling microscopy
a metallic tip is brought close to the surface, so that it
couples to the evanescent field; this makes possible the
collection of photons out of the surface and their mea-
surement (Maier, 2007).

IV. OPTICAL VORTICES MEET CONDENSED MATTER

About a decade ago, two independent works addressed
the topic of the excitation of condensed matter systems
by OVs. One of them provided theoretical predictions
(Quinteiro and Tamborenea, 2009c) and the other exper-
imental results (Ueno et al., 2009). The former predicted
the generation of circular electric currents in bulk semi-
conductors, a new type of “circular photon-drag” effect.
The latter demonstrated, using four-wave-mixing tech-
niques, the transfer of OAM to excitons in GaN semi-

conductors. Since then, many groups have contributed
to the advancement of the subject by investigating the
interaction of OVs with bulk semiconductors, nanostruc-
tures, metals, metal-dielectric interfaces, micro-cavities,
and more. In this section we review the basic tools to
study the interaction of light beams having phase singu-
larities with condensed-matter systems, and in doing so
we report on what has been learned so far about each
system from theory and experiments.

A. Semiconductor optics and the silent assumptions

Two pervasive assumptions must be abandoned be-
fore theoretical progress and real understanding in OV-
semiconductor physics can be made –some of them must
also be reexamined in the broader interface between
condensed-matter and OVs, see Table I. The first one
is the vertical transition approximation (Sect. III.C.2),
in which the momentum of the photon is neglected, that
eliminates from the start most important effects of OV-
semiconductor interaction, such as the generation of elec-
tric currents in bulk or the excitation of normally in-
accessible states in quantum dots. The second one is
the dipole moment approximation (Sect. III.C.1) that
assumes a constant electric field at the position of the
matter system; if the system is localized at the optical
phase singularity (intensity zero point), then the dipole
moment approximation fails completely to account for
the interaction. We note that these two assumptions are
related. They are most detrimental, and their reevalu-
ation, as has been done in previous and will be done in
this and the following sections, shows that they can (and
indeed must) be safely dropped. The reexamination of
other well-entrenched –though not extremely harmful–
assumptions widens our understanding of the topic, and
provides extra tools to model particular problems.

The dipole-like interaction Hamiltonian
HI = −d ·E(r, t) with d = qr has proven useful
in treating the interaction of semiconductors with
inhomogeneous fields,e.g., accounting for the trans-
fer of linear momentum in exciton-polariton physics
[Khitrova et al. (1999), Appendix A.2]. However,
Quinteiro et al. (2015) recognized that the proper
electric interaction Hamiltonian for parallel momenta
OVs is different and must be derived by ways of a
new twisted-light gauge transformation, leading to the
interaction Hamiltonian HI = −[1/(`+ 1)]d⊥ ·E(r, t)
for flat structures, which was further generalized to
include the interaction with anti-parallel momenta
OVs by using the Poincaré gauge with interaction
Hamiltonian HI = −d · Eeff(r, t) − mB · Beff(r, t),
with mB = −(q/2m)(p × r) and effective fields of
the form Eeff = fE⊥(`)E⊥(r, t) + fEz(`)Ez(r, t) and
correspondingly for Beff (Quinteiro et al., 2017b).

Bulk is the archetypical system to theoretically study
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TABLE I Silent assumptions based on Quasi-Homogeneous
(QH) beams –plane waves, Gaussian beams, etc.– mainly used
in condensed-matter optics, and their applicability to describe
the interaction with OVs.

SILENT ASSUMPTIONS

Beams
Feature Quasi-

Homogeneous
Optical Vortex

Coupling dipole moment or
dipole-like electric
interaction

non-dipole

k-space transition vertical tilted
Interaction field E E and B
Interaction with
field component

transverse transverse and lon-
gitudinal

Convenient
representation

plane waves Bessel, LG, Math-
ieu and other func-
tions

Archetypical
system

bulk quantum ring

Optical-to-
structure axes
displacement:
effects on

transition
amplitudes

transition
amplitudes and se-
lection rules

the interaction of condensed matter with spatially uni-
form light –typified by plane waves–, providing the sim-
plest approach and clearest results and interpretation.
This is due, mostly, to the fact that both the envelope
part of the Bloch electronic wave function and plane
waves are usually treated in Cartesian coordinates. How-
ever, for OVs the situation is different: vortices are writ-
ten most easily in cylindrical coordinates, and the ana-
lytical treatment of their interaction with bulk systems
is thus cumbersome (Sect. IV.A.2).

Fourier analysis and plane waves are widespread tools
to understand wave optics and quantum mechanics, and
it is easy to oversee that other bases are good representa-
tions as well. In fact, a light field with a single-singularity
is much more easily represented by a single Bessel or LG
function.

The research on the effects produced by uniform light
brings about another prejudice. Light at the optical fre-
quencies predominantly interacts with matter via its elec-
tric field. However, some OVs present a specially intense
magnetic field that makes the magnetic interaction dom-
inant [consider Eq. (24b) for {σ = ±1, ` = ∓2, γ = 1};
for details see Quinteiro et al. (2019b)].

The widespread use of plane waves may lead us to dis-
regard the longitudinal component of the beam in the
light-matter interaction; OVs present significant compo-
nents in the direction of propagation [see Eqs. (24)] –the
presence of a field component Ez does not contradict the
transversality of the field, for each plane wave composing
the beam is transverse to its propagation direction, or in
other words ∇ ·E = 0 is satisfied (Sect. II.F).

Finally, the relative position of the vortex optical axis
and nanostructure symmetry axis has a direct influence
on optical selection rules, in stark contrast to the in-
teraction with plane waves that present no optical axis
whatsoever and their positioning with respect to the sys-
tem is irrelevant. The subject of displaced optical axes
brings about the topic of intrinsic and extrinsic AM, as
discussed, e. g., by Bliokh and Nori (2015).

1. Basics

Among several approaches to model the light-matter
interaction –such as the Gross-Pitaevski equation for
exciton-polaritons in micro-cavities or non-equilibrium
Green’s functions–, the method of reduced density ma-
trices has found the most widespread application in the
study of the OV-semiconductor interaction. As antic-
ipated in Sect. III.C.3, the basic variables are the in-
traband (b = b′) and interband (b 6= b′) single-particle

density matrices ρb′α′,bα(t) = 〈a†b′α′(t)abα(t)〉 with the

operators a†bα (abα) denoting the creation (annihilation)
of an electron in the state ψbα [Eq. (52)] in band b with
envelope function quantum number α. The equations
of motion for ρb′α′,bα(t) are most conveniently obtained
by using the Heisenberg EoM for the operators. When
many-body interactions, such as the Coulomb interaction
or the electron-phonon interaction, are involved, higher-
order density matrices involving more than one creation
and one annihilation operator appear in the EoM of the
single-particle density matrices, and the resulting hierar-
chy of equations has to be truncated at a certain level.

An essential building block is the matrix element of
the light-matter interaction Hamiltonian hI , that enters
the derivation of the EoM through its second quantiza-
tion form HI =

∑
bb′αα′〈b′α′|hI |bα〉a

†
b′α′abα –the matrix

element also features in other common calculations, such
as in Fermi’s Golden Rule to calculate transition rates,
as shown in Eq. (59) for the homogeneous case. In the
following we first present the matrix element for an arbi-
trary basis, and next the EoM; in doing so we comment
on the silent assumptions and their incompatibility with
a sound description of OV-matter interaction.

We model a direct band-gap semiconductor with wave
functions ψbα(r) that can represent either a Bloch state
for bulk [see Eq. (41)] or the state of a nanostructure
in the Envelope Function Approximation [see Eq. (52)]
excited by an OV. Following the standard practice, only
states close to the band edges (with the approximation
for the microscopic wave function ubk → ubk0

.
= ub, k0

being the wave vector at the corresponding band edge)
are used, so ψbα(r) = Ebα(r)ub(r) [Eq. (52)]. For bulk,
according to Bloch’s theorem, the envelope function is
given by a plane wave Ek(r) = exp(ik · r)/

√
V [Eq. (41)].

We remark that the electron spin –or in the presence of
spin-orbit coupling the z-component of the total angular



26

R

x

r

X

Z

Y

FIG. 7 (color online) Pictorial representation of a crystal with
the change of variables to calculate the interaction Hamilto-
nian matrix element: r → x + R, in which R points to unit
cells, and x maps points within a unit cell.

momentum– can either be included in the band index b
or the state index α. Since the interaction Hamiltonian
depends only on spatial coordinates the corresponding
matrix elements are diagonal in spin, but not in the total

angular momentum. Therefore, the interaction selects
the spin and angular momentum projections that are ex-
cited –the so-called optical orientation (Meier and Za-
kharchenya, 2012)– through the polarization of the light
and the microscopic wave function ub (Bastard, 1988).
In Sect. IV.A.3 we will come back to the spin-orbit inter-
action and discuss this point in more detail.

The OV-matter interaction Hamiltonian in its general
form reads [see Eq. (46)]

hOV = − q

2m0
[p ·A(r, t) + A(r, t) · p] + qΦ(r, t)

= − q

m0
A(r, t) · p + qΦ′(r, t) , (68)

with Φ′(r, t) = Φ(r, t)− (~/2m0i)[∇·A(r, t)] and the A2

term being neglected. Different gauges will be considered
for special cases, as they may require specific approxima-
tions (Sect. IV.A.3).

The matrix element is handled by recognizing that the
periodicity in the unit cell [ub(r + R) = ub(r)] allows
one to do an additional simplification (Haug and Koch,
2009): The integral over the whole crystal is separated
into integrals over the unit cell and a summation over all
the unit cells in the volume V = Nv with v being the
volume of the unit cell and N the number of unit cells;
thus, with r→ x + R (see Fig. 7)

〈b′α′|h(A)
OV |bα〉 = 〈b′α′|h(A1)

OV |bα〉+ 〈b′α′|h(A2)
OV |bα〉

= − q

m0
v
∑
R

E∗b′α′(R)A(R, t) ·
[
Ebα(R)

1

v

∫
v

dxu∗b′(x) pub(x)− i~∇Ebα(R)
1

v

∫
v

dxu∗b′(x)ub(x)

]
,(69a)

〈b′α′|h(Φ)
OV |bα〉 = 〈b′α′|h(Φ1)

OV |bα〉+ 〈b′α′|h(Φ2)
OV |bα〉

= q v
∑
R

E∗b′α′(R)Ebα(R)

[
∇Φ′(R, t) · 1

v

∫
v

dxu∗b′(x)xub(x) + Φ′(R, t)
1

v

∫
v

dxu∗b′(x)ub(x)

]
. (69b)

Here we have assumed that the envelope functions and
the potentials vary slowly over a unit cell and kept only
the lowest orders. The two terms in Eq. (69a) arise from
the action of the momentum operator p = −i~∇ on the
lattice-periodic part and the envelope part of the wave
function, respectively, while the two terms in Eq. (69b)
reflect the lowest orders in the expansion of Φ′.

The microscopic wave functions ubk0
at a fixed k0

form a complete orthonormal system in a unit cell, thus
v−1

∫
v
dxu∗b′(x)ub(x) = δbb′ . Therefore, the second

terms on the right hand side of Eqs. (69a) and (69b)
give rise to intraband processes. Replacing v

∑
R by the

integral
∫
dR over the whole system, these process are

described by the matrix elements

〈bα′|h(2)
OV |bα〉 =

∫
dR E∗bα′(R)

[
i~q
m0

A(R, t) · ∇

+qΦ′(R, t)

]
Ebα(R). (70)

If the microscopic wave functions ub have a well-defined
parity, the first terms on the right hand side of Eqs.
(69a) and (69b) give rise to purely interband processes,
because the operators p and x both have odd par-
ity. In many typical semiconductors the parities of
ub are different in the valence (v) and the conduc-
tion (c) band; then these terms induce dipolar tran-
sitions between valence and conduction band. With
b′ = c and b = v and introducing the momentum and
dipole matrix elements, pcv = v−1

∫
v
dxu∗c(x)puv(x) and

dcv = qv−1
∫
v
dxu∗c(x)xuv(x) [see Eq. (57)], respectively,
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we obtain for the interband-transition matrix element

〈cα′|h(1)
OV |vα〉 =

∫
dR E∗cα′(R)

[
− q

m0
A(R, t) · pcv

+∇Φ′(R, t) · dcv
]
Evα(R). (71)

Assuming a bulk semiconductor with plane wave enve-
lope functions and a spatially homogeneous electric field
E(t), we recover the vertical transition approximation,

either in the Coulomb gauge with A(t) = −
∫ t
t0

E(t′)dt′

and Φ = 0 or in the dipole (Göppert-Mayer) gauge
with A = 0 and Φ′ = Φ = −r · E(t), that leads to
∇Φ′(R, t) = −E(t) (Sect. III.C.3). We want to remark
that in some semiconductors, a prototype being cuprous
oxide Cu2O, the parities of valence and conduction band
states at the band extrema are the same. In this case one
has to take into account the linear order in k in the ex-
pansion of the microscopic wave functions ubk around the
band extrema, which leads to weaker, so called “second
class” transitions (Elliott, 1957; Nikitine, 1969).

The Rotating Wave Approximation (RWA) simpli-
fies further the coupling Hamiltonian. Recalling that
all fields are real quantities, we separate the potentials
into the positive and negative frequency components
A = A(+) + A(−), with A(±) ∝ exp(∓iωt) and corre-
spondingly for Φ. The RWA stipulates that in a frame
rotating with the light field only slowly varying terms
are to be retained. For a light field resonant or near-
resonant to an interband transition A(+) and Φ(+) (A(−)

and Φ(−)) account for the absorption (emission) of light
by the material system. On the other hand, a matrix el-
ement 〈b′α′|hOV |bα〉 implies the transition bα → b′α′.
Therefore, matrix elements compatible with the RWA
are: (i) a transition from valence to conduction band
induced by A(+), (ii) a transition from conduction to
valence induced by A(−) (Cohen-Tannoudji et al., 1998;
Scully and Zubairy, 1997). For light fields in the optical
frequency range intraband terms are far off-resonant and
are therefore neglected in RWA. They are usually impor-
tant if there is –either only or in addition to the optical
field– a static or low-frequency electromagnetic field lead-
ing, e.g., to intraband transport terms (Rossi and Kuhn,
2002) or phenomena like the static or dynamical Franz-
Keldysh effect (Franz, 1958; Jauho and Johnsen, 1996;

Keldysh, 1958). Furthermore, they become important in
the case of strongly off-resonant or extremely strong light
fields, where the RWA is not applicable, e.g., when deal-
ing with two-photon transitions (Duc et al., 2005) or high
harmonic generation (Golde et al., 2008). If not explic-
itly stated otherwise, in the following we will assume that
the RWA is applicable and we will neglect the intraband

matrix elements h
(2)
OV .

To describe the interaction with OVs, one has to de-
part from traditional semiconductor optics by keeping
the spatial structure of the beam at the level of the whole
system in Eq. (71).10 From a different standpoint, one
is abandoning the vertical-transition and dipole-moment
approximations, at least in their most strict sense. A
strict dipole-moment approximation requires a spatially
uniform vector potential A and a scalar potential Φ linear
in r, that brings the integrals in the case of bulk Bloch
functions, where α corresponds to the wave vector k, into
a δkk′ or in the case of angular momentum eigenstates,
where α comprises an angular momentum quantum num-
ber m, into a δmm′ . In contrast to smooth fields, OVs
have a spatial structure that strongly varies on the scale
of the semiconductor. For example, a monochromatic
Bessel beam with angular frequency ω, single topological
charge ` and polarization σ for general γ [Eq. (23)] reads

Ã(r, t) = A0J`(qrr)e
i`ϕeσ

− iγσ qr
qz

A0√
2
J`+σ(qrr)e

i(`+σ)ϕez (72a)

Φ̃(r, t) = i(1− γ)σ
c2

ω

A0√
2
qrJ`+σ(qrr)e

i(`+σ)ϕ ,(72b)

with amplitude A0. The space dependence of the po-
tentials clearly precludes the simplification of Eq. (71)
leading to vertical transitions in k or m or, more general,
diagonal transitions in α. Note that the dipole-moment
approximation at the level of the microscopic wave func-
tion is however retained; therefore, multipolar transitions
are only possible between envelope states –for further dis-
cussion see Sect. VI.B.3.

By using the interband matrix elements of the inter-
action Hamiltonian according to Eq. (71) we can now
specify the general EoM (56) to the two-band case, lead-
ing to

10 This is not to be confused with a “parametrical” dependence, in
which R is a constant indicating the position of a nanostructure,

and no integration is performed on R.
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i~
d

dt
ρvc,αα′ = ∆cα′,vαρvc,αα′ +

∑
β

(
〈cα′|h(1)

OV |vβ〉ρv,αβ − 〈cβ|h
(1)
OV |vα〉ρc,βα′

)
, (73a)

i~
d

dt
ρv,αα′ = ∆v,α′αρv,αα′ +

∑
β

(
〈vα′|h(1)

OV |cβ〉ρvc,αβ − 〈cβ|h
(1)
OV |vα〉ρcv,βα′

)
, (73b)

i~
d

dt
ρc,αα′ = ∆c,α′αρc,αα′ +

∑
β

(
〈cα′|h(1)

OV |vβ〉ρcv,αβ − 〈vβ|h
(1)
OV |cα〉ρvc,βα′

)
, (73c)

with ∆cα′,vα = (εcα′ − εvα), and ∆b,α′α = (εbα′ − εbα)
for b ∈ {c, v}. The contributions of the Coulomb interac-
tion are not included here. As discussed in Sect. III.C.3
they involve two-particle density matrices (i.e., expecta-
tion values of four operators) which after factorization
give rise to renormalizations of energies and light field
similar to the homogeneous bulk case [Eq. (64)]. In Sect.
IV.A.2 the Coulomb term will be considered when dis-
cussing excitonic effects associated with the excitation of
bulk semiconductors by an OV.

In the case of a homogeneous bulk semiconductor the
single particle density matrices are diagonal in k. With
the interaction matrix elements for a homogeneous elec-
tric field Eqs. (73) immediately reduce to Eqs. (60), im-
plying vertical transitions.

In general, however, due to the non-diagonal character
of the interaction matrix elements even a density matrix
which is initially diagonal in α will not remain diagonal
in the course of time. Assuming, for instance, at a given
time the single particle density matrices to be diagonal
in α, according to the EoM (73) in the next time step the
density matrix elements with all combinations (αα′), for

which also the interband matrix element 〈cα′|h(1)
OV |vα〉

is nonzero, will be nonzero.

Due to the lack of the diagonal (or vertical) nature
of the light-induced transitions, the EoM are consider-
ably more complicated than the Eqs. (60) for the ho-
mogenous bulk system, for they couple in principle all
possible values of the quantum number α in each band,
even without taking into account many-body effects. If
one is not only interested in the carrier generation pro-
cess itself, typically the EoM have to be complemented
by some relaxation terms. In the simplest case one can
just include phenomenological interband and intraband
relaxation times. A more microscopic description of scat-
tering, relaxation and recombination processes can be ob-
tained by adding Boltzmann-like scattering terms, which
can be formally derived, e.g., by a correlation expansion
of the terms induced by the coupling of the electrons to
phonons, to other electrons, or to the photon vacuum
(Rossi and Kuhn, 2002).

Besides a full numerical solution of the system of
equations involving a suitable restriction of the set of
quantum numbers or a suitable discretization in the
case of (quasi-)continuous quantum numbers, general ap-

proaches to solve this system of equations under specific
conditions exist, which provide further insight into the
optical properties and dynamics induced by the excita-
tion with OVs. Under low-excitation conditions, a per-
turbative, iterative approach in terms of the amplitude
of the driving field (or its potentials) provides approxi-
mate solutions for interband and intraband density ma-
trices for a system initially in its electronic ground state.
To lowest order, i.e., without electromagnetic fields, the
only non-zero matrix elements are the valence-band pop-

ulations ρ
(0)
v,αα′ = δαα′ while ρ

(0)
c,αα′ = ρ

(0)
vc,αα′ = 0 (the su-

perscript indicates the order). The only non-zero source
term then appears in interband coherences ρvc,αα′ ; thus,

the lowest order interband coherence ρ
(1)
vc,αα′ is linear in

the driving, e.g., in the vector potential amplitude A0

[see Eq. (72)]. This in turn induces a second order term
in the intraband coherences and occupations. Following
this iterative process, it is clearly seen that interband
(intraband) coherences come only in odd (even) powers
of the amplitude. Keeping in mind that the interband
density matrix elements oscillate with the frequency of
the band gap while the intraband coherences oscillate
with frequencies corresponding to energy differences in
the bands, the transfer of OAM from light to electrons
can thus be separated into fast (odd) and slow (even)
contributions. However, we want to remark that this sep-
aration into fast and slow variables is only possible if the
RWA is applicable. Non-RWA contributions in the inter-
band matrix elements of the interaction Hamiltonian lead
to additional fast contributions in the intraband density
matrices. Including intraband matrix elements according
to Eq. (70) interband and intraband coherences as well
as occupations appear in all orders of the field.

A different approach based on a quasi-equilibrium ap-
proximation relies on the difference in time scales of
scattering-induced relaxation and light-induced excita-
tion processes. For sufficiently strong scattering the
intraband populations can be approximated by quasi-
equilibrium distributions with a given temperature and
chemical potential, allowing for a solution of the inter-
band coherence that feeds slowly varying EoM for intra-
band coherences or populations (Chow and Koch, 1999).
In this way, absorption spectra of highly excited semi-
conductors can be obtained.
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2. Bulk

Bloch states are the natural representation of electrons
in a bulk crystal; though not specially well-suited to de-
scribe the interaction with OVs, they still shed light onto
interesting features that complement those learned from
a representation of electrons in cylindrical states, and
connect well to what we learned about the modal de-
composition of OVs in Sect. II.F.

In semiconductor optics, one is mostly concerned with
interband processes, in which an electron undergoes tran-
sitions between valence and conduction bands, separated
from each other by the band gap Eg. The transition is in-
duced by resonant or nearly resonant light ~ω ' Eg. The
simplest theoretical model is that of a two-band semi-
conductor excited by a monochromatic single-singularity
OV. Working in the Coulomb and radiation gauge, the
scalar potential vanishes and the relevant light-matter in-
teraction matrix element [Eq. (71)] between Bloch states
ψbα(r) = exp(ik · r)ub(r)/

√
V is given by

〈ck′|h(1)
OV |vk〉 = − q

m0
pcv ·

1

V

∫
dRe−i(k

′−k)·RA(R, t) ,

i.e., it involves the Fourier transform of the beam pro-
file. Irrespective of the particular form of the single-
singularity OV being considered (see Sect. II.C), the vec-
tor potential has in the component j the form

Aj(r, t) = A0j(r)e
injϕei(qzz−ωt) + c.c. , (74)

with nj = `, ` + σ, . . . and A0j(r) the space- and nj-
dependent amplitude. We handle the calculation of the
matrix elements in the following way. Because of the
symmetry of the light field we use a normalization vol-
ume of the Bloch functions in the form of a cylinder
with radius R0 and height L. We split the integral
into an in-plane integral and one in z-direction and use
the vectors κ = k′ − k and R in cylindrical coordi-
nates {κr, ϕκ, κz} and {R,ϕ,Z}, respectively, leading to
κ · R = κrR cos(ϕκ − ϕ) + κzZ [see Eq. (33)]. The z-
integral simply reduces to

∫
dZ ei(qz−κz)z = Lδqz,κz . To

simplify the in-plane integral we introduce the Jacobi-
Anger identity eiu cos η =

∑
t i
tJt(u)eiηt (Korenev, 2002)

[compare to Eq. (36)]. The resulting matrix element is

〈ck′|h(1)
OV |vk〉|j = − q

m0
pcv,j(−i)njδqz,κze−iωteinjϕκ

× 2

R2
0

∫
dRRJnj (κrR)A0j(R) ,

where we have taken into account that due to the RWA
only the positive frequency component A(+) of the po-
tential contributes to the matrix element describing a
transition from valence to conduction band.

A simplification of the last integral is possible if we
specify the radial profile of the beam. If the beam profile
is of Bessel type, A0j(R) = A0jJnj (qrR), we use the

orthogonality
∫∞

0
RJα(κrR)Jα(qrR)dR = δ(κr − qr)/qr

and replace the delta function δ(qr−κr) by (R0/π)δqr,κr
appropriate for the cylindrical normalization volume with
radius R0. The contribution of the j-th component of the
vector potential to the matrix element then reads

〈ck′|h(1)
OV |vk〉|j = −(−i)njpcv,jA0j

2q

πm0qrR0

×δqr,κrδqz,κzeinjϕκe−iωt . (75)

The factor δqz,κz imposes conservation of the linear mo-
mentum in the z-direction, the factor δqr,κr fixes the in-
plane distance of the vectors k′ and k. However, there is
no explicit expression signaling the conservation of OAM,
which is obviously due to the fact that Bloch states are
not eigenstates of the angular momentum operator.

FIG. 8 Pictorial representation of the electronic excitation
of a bulk semiconductor in the Bloch electron representation.
An electron in the valence band is promoted to a superposition
state in the conduction band. From Quinteiro and Tambore-
nea (2009c).

We can get additional insight by looking at the in-
finitesimal time evolution of an electron initially in the
Bloch state ψvk(r). Realizing that the evolution opera-
tor for a single particle state in the interaction picture
for short times δt is given by U = 1 − (iδt/~)hOV leads
to ψ(r, δt) = ψ(r, 0) − (iδt/~)δψ(r). Assuming initially
an electron in the Bloch state ψvk(r), we obtain

δψ(r) =
∑
k′

ψck′〈ck′|h(1)
OV |vk〉

= − 2q

πm0qrR0
e−iωδt

∑
j

(−i)njpcv,jA0j

×
∫
dϕκe

injϕκψck+κ̄(r)

= f(r)ψck(r) , (76)

in which the action of δκ,qr and δqz,κz has been in-
corporated by defining κ̄ = (qr, ϕκ, qz). The second
form stresses the fact that the new wave function is not
an eigenstate of the crystal Hamiltonian (Quinteiro and
Tamborenea, 2009c). Pictorially, the excitation looks like
a cone in momentum space with fixed aperture qr, see
Fig. 8. The final superposition is formed by states lying
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on the curve resulting from the intersection of the cone
and the conduction band, each state having a particular
phase exp(injϕκ). The existence of a cone-like excitation
is not surprising: According to Sect. II.F the OV can
be decomposed into a superposition of plane waves with
wave vectors lying on the surface of a cone and varying
phases. In the picture of plane waves, each component
induces a one k-state-to-one k-state electronic transition,
with conservation of its linear momentum; the whole ex-
citation is however one k-state to a superposition of many
k-states.

The expectation value of the OAM picked by elec-
trons, and the concomitant electric current density
j = (q~/m0)Im[ψ∗∇ψ]− (q2/m0)Re[ψ∗Aψ] can be stud-
ied in powers of A0 (Quinteiro and Tamborenea, 2009a).
The first order (∝ A1

0) current is of microscopic origin
and analogous to the optical polarization induced by
plane waves: The vector potential imprints its spatial
and temporal pattern onto the electronic state, see Fig.
9, and a net circulation around r = 0 is only observed for
{` = ±1, σ = ∓1}, but with zero time average. The sec-
ond order (∝ A2

0) current is macroscopic and produces a
net circulation with non-zero average. The circular elec-

x

y

FIG. 9 First order electric current in bulk for ` = 1...4 and
fixed polarization σ = −1. The current cycles in time and z
following the electric field as shown in Fig. 2. From Quinteiro
and Tamborenea (2009c).

tric current generated by OVs in semiconductor represent
a new example of photon-drag effects which has recently
been observed in experiments (Ge, 2020; Ji et al., 2020).

Extensions to the simple model just explained have
been done so far in two directions. On the one hand,
a model still without electron-electron interaction was
used to predict electronic transitions, OAM transfer and
electric currents using a more suitable representation of

electrons by envelope states factorizing in cylindrical co-
ordinates instead of the plane-wave envelope of Bloch
states (Quinteiro and Tamborenea, 2010). On the other
hand, using Bloch states and including electron-electron
interaction the EoM relevant for excitons and derived
quantities were deduced (Quinteiro, 2010).

The symmetry mismatch between OVs and Bloch
states led to a complex model of the optical excitation
in bulk, that ultimately required the transformation of
Bloch states to a cylindrical representation using the
Jacobi-Anger identity. One can face the OV-bulk prob-
lem instead directly by using cylindrical coordinates. For
a large system and in the presence of the envelope func-
tion approximation bulk properties are independent of
the chosen boundary, being this a cubic box or a cylin-
der. Since the optical excitation takes place at the band
edges the envelope function approximation is applicable
and one can describe electron states by [see also Eq. (52)]

ψbkm(r) = NJm(krr)e
imϕeikzzub(r) ,

defined inside a large cylinder of height L, radius R0,
quasi-momenta kz, kr and OAM ~m. The electron wave
function with the normalization constant N is expressed
in cylindrical coordinates {r, ϕ, z} (Quinteiro and Tam-
borenea, 2010). From the strong similarities between
the representation of a typical single-singularity OV [Eq.
(72)] and electron states in a cylinder we foresee that the
light-matter matrix element will be simpler than in the
case of Bloch states based on plane waves. The inter-
band matrix element with vector potential according to
Eq. (74) having A0j(r) = A0jJnj (qrr) reads in the basis
of the cylinder functions

〈c, k′r,m′, k′z|h
(1)
OV |v, kr,m, kz〉

= − q

m0
pcv,jA0jNN

′δk′z,kz+qzδm′,m+nj

×
∫
dRRJm′(k

′
rR)Jnj (qrR)Jm(krR) . (77)

In fact, by fixing the final values m′ and k′z, the matrix
element reflects the conservation of the orbital quantum
number m and the linear quasi-momentum kz, and only
the radial quantum numbers k′r and kr are coupled by
an integral over the Bessel functions of the beam and
initial and final electron states. We thus obtain a com-
plementary situation compared to the calculation in the
Bloch state basis. While there the transfer in the radial
component of the Bloch wave vector κr was fixed while
the angle was continuous, now the change of the angle
dependence, characterized by the quantum numbers m′

and m, is fixed and the radial quantum number in the
Bessel function changes continuously.

It is instructive to look at the lowest order results
of interband and intraband variables obtained for a
monochromatic Bessel beam. Assuming a sufficiently
small paraxiality parameter qr/qz the longitudinal field
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component can be neglected and we assume a transverse
vector potential amplitude A0 and a beam with a given
topological charge `. The zeroth order is given by a

completely filled valence band, i.e., ρ
(0)
v,αα′ = δαα′ with

α = (kr,m, kz), and all other density matrices vanish.

In first order we obtain from Eqs. (73) an interband
coherence according to

ρ
(1)
vc,αα′ = −〈cα′|h(1)

OV |vα〉
1− e−i(εcα′−εvα−~ω)t/~

εcα′ − εvα − ~ω
. (78)

Inserting the matrix element from Eq. (77), we thus find
that the OV excites interband coherences with m′−m =
`, k′z − kz = qz and in general arbitrary k′r and kr.

In second order Eqs. (73) give rise to intraband co-
herences and, as a special case, the populations in the
conduction and the valence band. For the populations of
the conduction band states one gets

ρ
(2)
c,α′α′ = 4

∑
α

|〈cα′|h(1)
OV |vα〉|2

(εcα′ − εvα − ~ω)2

× sin2

(
(εcα′ − εvα − ~ω)t

2~

)
. (79)

While the populations start to grow quadratically in t, for
longer time the growth is linear with a growth rate given
by Fermi’s golden rule, as is expected for transitions in a
continuous spectrum.

Important observables that one can calculate from the
coherence are the OAM and the electric current in the
electronic system. Gauge invariance imposes the need to
express appropriately the quantities for which expecta-
tion values are to be calculated. In the Coulomb gauge,
as is the case here, the OAM and electric current de-
pend on the mechanical momentum of electrons p− qA;
the first (second) term gives rise to the so-called param-
agnetic (diamagnetic) contributions. A detailed calcula-
tion of the OAM and electric current has been done in
Quinteiro and Tamborenea (2010). The results, in agree-
ment with those from the simple model for Bloch states,
show that the interband coherence produces a fast os-
cillation of the OAM and a current with zero average,
while the occupations and intraband coherences induce
a permanent transfer of OAM from the light to the elec-
trons that generate a slow electric current with a non-zero
mean value. The latter can be seen as the consequence
of tilted transitions when plotting the energies of the va-
lence and conduction band states versus their angular
momentum quantum number m, a feature that will be
discussed in more detail in the context of the excitation
of quantum rings (Sect. IV.A.3.a); note that the OAM as-
sociated with the beam is also proportional to the square
of the field amplitude, as seen in Eq. (1).

Yet another extension to the simple single-particle bulk
model is the inclusion of the Coulomb interaction, which
allows for the description of excitons. Excitonic effects

are important for a correct description of light-matter in-
teraction close to the band edge, in particular at low ex-
citation densities, because they qualitatively modify the
absorption spectrum leading to discrete lines below the
band-to-band continuum. In fact, excitonic effects ap-
pear already at the lowest order in the field amplitude,
i.e., by considering the EoM for the interband coherence
alone (Haug and Koch, 2009). Quinteiro (2010) consid-
ered the excitation of a bulk semiconductor with two en-
ergy bands by a monochromatic and transverse OV in
a Bloch state representation. The non-vertical nature of
optical transitions induced by OVs makes it convenient to
work in a mixed representation of momentum and space
coordinates, in analogy to the general approach based on
Wigner functions discussed by Rossi and Kuhn (2002).

The derivation of the contributions to the EoM of
the single-particle density matrix elements due to the
electron-electron interaction Hamiltonian [Eq. (62)] has
been discussed in Sect. III.C.3 and the results on the
level of the time-dependent Hartree-Fock theory has been
given for the case of a homogeneous two-band semi-
conductor in Eqs. (64)-(67). The excitation by an in-
homoegenous light field, in particular by an OV, leads
to inhomogeneous excitations, which are described by
non-diagonal density matrices ρvc,kk′ , ρv,kk′ , and ρc,kk′ .
The derivation of the EoM proceeds in the same way as
for a homogeneous system, only in the factorization of
the four-operator terms like in Eq. (63) also off-diagonal
terms have to be kept. This has two consequences: (i)
The renormalizations of the field and the energies [see
Eqs. (65)-(67)] become non-diagonal in k and k′; (ii) the
renormalizations of the energies get additional contribu-
tions from Hartree terms, which vanish in the homoge-
neous case due to charge neutrality. The full, off-diagonal
terms (in an electron-hole representation) can be found
in Rossi and Kuhn (2002). Here we will restrict our-
selves to the lowest order, i.e., to the linear response of
the semiconductor to the excitation with an OV.

From the discussion above we recall that interband
density matrices appear in odd orders of the field and
intraband density matrices in even orders. Restricting
ourselves to the linear order therefore implies setting
ρv,kk′ = δkk′ and ρc,kk′ = 0. Since the renormalizations
of the energies are caused by deviations of the intraband
density matrices from their equilibrium value, they do
not contribute to the first order response. The equation
of motion for the interband density matrix then reads

i~
d

dt
ρvc,kk′ = ∆ck′,vkρvc,kk′ + 〈ck′|hOV |vk〉

−
∑
g 6=0

Vgρvc,k−g k′−g , (80)

with ∆ck′,vk = εck′ − εv,k.
The evolution of the coherence is driven by the OV-

matter matrix element Eq. (75) which, for the case of
excitation by a Bessel beam can be translated into a non-
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vanishing matrix element 〈ck + κ̄|hOV |vk〉 , with κ̄ =
qr cosϕκx̂+ qr sinϕκŷ + qz ẑ, in which qr and qz are fixed
by the corresponding parameters of the beam and ϕκ is
variable. Once again we find the connection to the modal
decomposition and the solution of the bulk problem in
Bloch states: the matrix element gives rise to a non-
vanishing contribution for each plane wave on a cone.

Instead of using a non-diagonal k-representation of
the density matrix elements also various types of mixed
(k, r)-representations can be useful. Starting point is
typically a transformation from the wave vectors k, k′

to some relative and center-of-mass wave vectors accord-
ing to k = K−ηκ, k′ = K+η′κ with η+η′ = 1. A spatial
variable is then obtained by Fourier transformation with
respect to one of the wave vectors. Choosing η = η′ = 1

2
and Fourier transforming with respect to κ leads to an
interband Wigner function [and correspondingly to intra-
band Wigner functions when transforming the intraband
density matrices (Rossi and Kuhn, 2002)]. Especially for
the interband variable in the case of parabolic bands with
εck = Eg + ~2k2/(2mc) and εvk = −~2k2/(2mv) with
conduction band and valence band massesmc andmv, re-
spectively, and band gap Eg, the choice η′ = mc/M , η =
mv/M with M = mc + mv can be more convenient, be-
cause it leads to ∆ck′,vk = ~2K2/(2µ)+~2κ2/(2M)+Eg
with µ−1 = m−1

c +m−1
v . In contrast to Fourier transform-

ing with respect to κ, as in the case of the Wigner func-
tion, here it is more useful to perform a Fourier transform
with respect to K. Performing additionally a temporal
Fourier transform the function ρ̃κ(ω, r) is defined as

ρ̃κ(ω, r) =
1

2π

∑
K

∫
dtρvc,K+mv

M κ,K−mcM κ(t)ei(K·r+ωt),

(81)
which satisfies the equation of motion[

~ω − Eg −
~2κ2

2M
+

~2

2µ
∇2 + V (r)

]
ρ̃κ(ω, r)

= V δ(r)〈c, mc

M
κ|hOV |v,−

mv

M
κ〉

= −V δ(r)
2q

πm0qrR0
(−i)`pcv ·A0δqr,κrδqz,κze

i`ϕκ , (82)

where we have used the identity
∑

K exp(iK · r) = V δ(r)
and assumed an excitation by a transverse Bessel beam
with topological charge ` and longitudinal (transverse)
wave vector qz (qr).

The homogeneous part of Eq. (82) has the form of a
Wannier equation for a quasiparticle with mass M and
center-of-mass momentum ~κ. The relative motion of
electron and hole reflects the motion of a particle with the
reduced mass µ in the Coulomb potential V (r). The right
hand side is the source term which describes the excita-
tion by the OV. Equation (82) is solved by a composition
ρ̃κ̄ =

∑
ν bνψν of solutions ψν to the homogeneous equa-

tion [see Chapter 10 of Haug and Koch (2009)], where ν

summarizes the quantum numbers for both the relative
and the center-of-mass motion.

Due to the function δ(r) in the source term we notice
that also in the case of excitation by an OV only exci-
tons with s-type wave function of the relative motion can
be excited. As a consequence of the factors δqr,κrδqz,κz
a superposition of excitons with non-vanishing center-of-
mass wave vector in longitudinal and radial direction, de-
termined by the corresponding wave vector components
of the beam, is excited with relative phases determined
by the topological charge `.

By an inverse Fourier transform, the coherence in mo-
mentum space is recovered, and can be used to derive the
local polarization of the system, from it the susceptibil-
ity and optical response. The spectrum presents a small
shift compared to the conventional exciton theory, due
to the center-of-mass motion.

So far we have discussed dipole-allowed excitonic tran-
sitions, as they appear in many III-V or II-VI semicon-
ductors. In some materials the microscopic dipole (dcv)
or momentum (pcv matrix element between the band
edge states vanishes for symmetry reasons and one has
to go to the next order in the expansion of the micro-
scopic wave function with respect to k (Elliott, 1957).
This is the case, e.g., in bulk Cu2O, a material which
has recently regained a lot of attention because of the
observation of Rydberg excitons with quantum numbers
up to ∼ 26 (Kazimierczuk et al., 2014). In this material
selection rules different from the typical zincblende semi-
conductors hold. By using group theoretical methods,
Konzelmann et al. (2019) analyzed the selection rules for
the excitation of large (about 400nm radius) Rydberg
excitons in bulk Cu2O by OVs, and concluded that s-d
envelope wave function excitons are addressable by light
with topological charge ` = 1, 3.

A number of experiments have been performed on bulk
semiconductors that shed light on the excitation by OVs
of bulk systems. Ueno et al. (2009) performed a four-
wave mixing (FWM) experiment in bulk GaN using a
pair of LG beams to study the coherent dynamics of ex-
citons. The FWM signal was measured to carry pre-
dominantly the topological charge 2`2 − `1, which is the
expected value for excitons picking the OAM of pump
and probe pulses with `1 and `2, respectively. Shige-
matsu et al. (2016) extended these studies by analyzing
the transfer of OAM to other values than the expected
one of 2`2−`1. In fact, additional values of OAM are car-
ried by the signal, as shown in Fig. 10. According to their
theoretical analysis, this can be attributed to a space de-
pendent dephasing, which generates a distribution of `
in the OAM spectrum even in the case of excitation with
beams with well-defined OAM. The dephasing was ana-
lyzed by comparing experiments, theory and numerical
simulations. From the experimental data they extracted
a decay of the degree of OAM, with a decay time of 88±3
ps that happens to be much longer than the exciton de-
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FIG. 10 (color online) Experimental evidence of OAM trans-
fer to excitons in bulk GaN. The plot shows the OAM spec-
trum and intensity profile (inset) of the FWM signal produced
by pump with `1 = −2 and probe with `2 = 1 after a delay
τ giving rise to a signal with ` = 4 in agreement with theory.
Adapted from Shigematsu et al. (2016).

phasing time T2 = 1.9 ps, suggesting that the OAM of
the excitons is more robust than its phase coherence. Nu-
merical simulations also show the detrimental effect of a
defect on the OAM spectrum, supporting the hypoth-
esis that space-dependent dephasing causes broadening
of the OAM signal. Four-wave mixing experiments with
OVs have also been performed on quantum wells (Persuy
et al., 2015), and they will be discussed in Sect. IV.A.3.d.

In a different type of experiment Noyan and Kikkawa
(2015) studied the dynamics of OAM transfer to the
electronic degrees of freedom in doped and un-doped
bulk GaAs. By using time-resolved pump-probe spec-
troscopy and concentrating on the incoherent regime they
extended the results on the exciton dynamics beyond
the coherent regime addressed in four-wave mixing spec-
troscopy. The results show an unusually long decay time
(pico- to nanoseconds) of the time-resolved OAM dichro-
ism, that can neither be explained by the typical decay
times associated with momentum scattering nor by the
effect of transfer of OAM from the electronic spatial to
the spin degree of freedom.

The experimental work by Noyan and Kikkawa (2015)
and Shigematsu et al. (2016) agree on the fact that the
decay time of the OAM signal is longer than expected
from traditional arguments in similar systems excited by
non-vortex light. One may try to explain from topol-
ogy these long-lived OAM states. We have previously
shown that the electric-field pattern is imprinted in the
electronic state polarization. As its name suggests, ev-
ery OV carries a different topological charge `, and im-
prints a particular pattern on matter. A change to
the topologically-distinct electronic polarization implies
therefore a global change that is unlikely to occur with
local interactions.

The impact of OAM on the spin polarization of photo-
electrons in unstrained GaAs excited by LG beams was
experimentally studied by Clayburn et al. (2013), who

found no supporting evidence that the OAM of light is
transferred to the spin of photoexcited electrons. Later,
Solyanik-Gorgone and Afanasev (2019) studied the pho-
toionization of electrons using a theoretical model with
near and remote basis functions, allowing for a calcu-
lation of selection rules using the Wigner-Eckart theo-
rem. The authors’ results agree with those of Clayburn
et al. (2013) after they are averaged over space; how-
ever, their model provides insight into the spatial depen-
dence of the optical orientation, which is not available
in the experiment and would be relevant in the photoex-
citation of small semiconductor systems. Cygorek et al.
(2015) showed that the spin-orbit interaction in extended
systems fails to transfer orbital to spin angular momen-
tum of the photoexcited electron, thus complementing
the theoretical explanation of the null experimental re-
sult of Clayburn et al.

Another argument to understand the null experimen-
tal results is that the OV acts on the envelope part of the
wave function [Eq. (69)], and thus does not affect the op-
tical orientation that is only dictated by the polarization
(spin AM) of light. On the other hand, a recent exper-
iment has shown a measurable effect on the polarized
photocurrent generated by LG beams on GaAs photo-
cathodes (Sordillo et al., 2019). Clearly, the seemingly
different results from different experimental setups, and
what theory explains, reflects a controversy that calls for
more research in the subject.

3. Semiconductor elementary nanostructures

Material, geometry and dimensionality strongly influ-
ence the properties of elementary nanostructures. Those
based on semiconductor materials are among the most
studied ones, and they are building blocks for more com-
plex structures, for instance, microcavities (Sect. IV.B).
They are quantum dots (0D) (Biasiol and Heun, 2011;
Jacak et al., 2013; Reimann and Manninen, 2002), quan-
tum rings (1D) (Biasiol and Heun, 2011; Fomin, 2014),
quantum wires (1D) (Barrigoón et al., 2019; Zhang et al.,
2017), and quantum wells (Kelly and Nicholas, 1985;
Rosencher et al., 2012; Weber et al., 1999). Other sys-
tems with reduced dimensionality, which have become
highly topical in the past decade, are atomically thin
(2D) materials –or van der Waals materials– with the pro-
totype graphene (Novoselov, 2011) and the class of tran-
sition metal dichalcogenides (TMDs) (Mak et al., 2010;
Splendiani et al., 2010) which, when rolled up, e.g., into
carbon nanotubes, can again form 1D systems (Fig. 6).
Here, 0D, 1D, and 2D refers to effectively zero-, one-, and
two-dimensional systems, respectively, where the dimen-
sionality reflects the number of spatial dimensions with a
continuous spectrum. Nanostructures can be fabricated
by molecular beam epitaxy, chemical vapor deposition,
self assembly, catalytic growth, exfoliation, etc. (Ihn,
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2010; Moriarty, 2001).
The analytical description of their electronic properties

often uses the envelope function approximation with re-
sulting electron wave function ψbα(r) = Ebα(r)ub(r) [see
Eq. (52)], where ub(r) is the microscopic Bloch wave func-
tion at the band edge and Ebα(r) the envelope wave func-
tion with α denoting the necessary quantum numbers for
the specific structure being considered. As an example,
the envelope wave function for a one-dimensional quan-
tum ring is Ebm(r) = N exp(imϕ)Rb(r)Zb(z), with nor-
malization N and OAM (or magnetic) quantum number
m. The restriction to one-dimensional motion implies
fixed radial (Rb) and height (Zb) wave functions which,
however, may be different for different bands.

Two main distinctions in the OV-matter interaction
arise when the size of the material system is reduced
below the characteristic size of the beam. On the one
hand, the studies on bulk semiconductors (Sect. IV.A.2)
have been done exclusively in terms of vector and scalar
potentials, because the approximations involved in the
use of other gauges that set up the interaction in terms
of fields often create difficulties when applied to ex-
tended systems. However, other gauges are often use-
ful in treating the OV-nanostructure interaction; these
are: the twisted-light gauge (Quinteiro et al., 2015), the
Poincaré gauge (Cohen-Tannoudji et al., 1989; Quinteiro
et al., 2017b), the electric-field or dipole-like coupling
gauge (Herbst et al., 2003; Khitrova et al., 1999; Re-
iter et al., 2006, 2007; Rossi and Kuhn, 2002), and the
Power-Zienau-Woolley gauge (Cohen-Tannoudji et al.,
1989) –we exclude the dipole-moment approximation or
Göppert-Mayer transformation because by completely
neglecting the space-dependence of the field it misses the
characteristics of OVs. We will discuss different gauges,
summarized in Table II at the appropriate point in the
following. On the other hand, to observe new effects
related to OVs the electron’s wave function should span
the phase singularity. The new effects are strongest when
the nanostructure is fully centered with the singularity;
this will be first discussed, and only later the dependence
of the light-matter interaction and selection rules on the
lateral displacement of nanostructure and OV singularity
axes will be reviewed.

a. The paradigmatic case of the quantum ring: As the
name suggests, quantum rings (QRs) are structures that
confine electrons and holes to an annular region, which
can be 1D if only a single transverse wave function in
each band is involved, or 2D or 3D if several subbands
contribute. Quantum rings of high quality have been
fabricated by molecular beam epitaxy in GaAs (Tong
et al., 2012) and GaSb (Kobayashi et al., 2004), and in
Si by chemical vapor deposition (Yu et al., 2007). They
are among the basic semiconductor nanostructures ex-
tensively studied in the past few decades, for they help

to understand basic principles –e.g., the Aharonov-Bohm
effect and persistent currents (Bluhm et al., 2009; Klee-
mans et al., 2007; Schwiete and Oreg, 2009)–, and be-
cause they promise various uses in nanotechnology, for
instance, the control of spin states near the ring (Räsänen
et al., 2007), or the possibility to build lasers out of a
stack of rings (Suárez et al., 2004). Quantum rings rep-
resent the archetypical system to theoretically study OV-
semiconductor interaction. This is simply due to the fact
that both, QRs and OVs are most naturally represented
in cylindrical coordinates.

A model that captures the kinematics of electrons in
a 1D-QR including two bands without Coulomb inter-
action already reveals interesting features. Quinteiro
and Berakdar (2009) considered, in a second quanti-
zation formalism, interband transitions induced by the
transverse component of the vector potential in the
Coulomb gauge [γ = 1 in Eq. (72)] with centered OV
and QR axes. The OV-QR interaction matrix ele-
ment [Eq. (71)] between wave functions with envelope
Em(r) = N exp(imϕ)R(r)Z(z) having fixed radial and
longitudinal wave functions yields the simplest possible

result in the RWA 〈cm′|h(1)
OV |vm〉 ∝ δm′,m+`. The EoM

m

E
2d

hw

unbalanced
population

FIG. 11 (color online) Pictorial representation of tilted transi-
tions in a QR by a finite-width (2δ) OV with center frequency
ω. For an easier understanding of the revelant process, we
have (realistically) approximated the valence band as flat; the
inclusion of the finite mass of holes is straightforward. The
optical excitation generates a population imbalance, in the
valence band for this simplified example, that brings about
electric currents.

(73) become

~
d

dt
ρv,mm = 2 Im [ξ∗ ρ̃vc,mm+`]

~
d

dt
ρc,m+`m+` = −2 Im [ξ∗ ρ̃vc,mm+`]

i~
d

dt
ρ̃vc,mm+` = ∆̃cm+`,vm ρ̃vcmm+`

+ξ (ρv,mm − ρc,m+`m+`) , (83)

with ∆̃cm+`,vm = εcm+`−εvm−~ω and ξ = −(q/m0)pvc ·
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TABLE II Light-matter interaction Hamiltonians and their uses with optical vortex.

LIGHT-MATTER INTERACTION HAMILTONIAN

Applicable to
Hamiltonian Bulk NanoStr. Note Reference

Minimal coupling [p− qA(r, t)]2/(2m) + qΦ(r, t) X X Difficult to interpret and compare
to experiments

(Cohen-Tannoudji
et al., 1989)

Dipole moment −d ·E(t) 7 7 Ignores completely the phase sin-
gularity / only applicable for a
component of the OV with no
singularity

(Cohen-Tannoudji
et al., 1989; Göppert-
Mayer, 1931)

Dipole-like electric −d ·E(r, t) 7 7 Does not properly capture phase
singularity / only applicable for
a component of the OV with no
singularity

(Herbst et al., 2003;
Khitrova et al., 1999;
Reiter et al., 2006,
2007; Rossi and
Kuhn, 2002)

Twisted light −[(1/(`+ 1)]d⊥ ·E(r, t) 7 X Applicable to flat structures
z � r⊥

(Quinteiro et al.,
2015)

Poincaré −d ·Eeff(r, t)−mB ·Beff(r, t) 7 X Applicable to all OVs (Cohen-Tannoudji
et al., 1989; Quin-
teiro et al., 2017b)

A0 exp(iqzz0), where equal envelope functions in the con-
duction and valence bands have been assumed. The
equations are written in the rotating frame ρvc,mn =
ρ̃vc,mn exp(−iωt). As in the case of the semiconductor
Bloch equations for non-interacting electrons in a homo-
geneous bulk system [Eq. (64)], the EoM are completely
decoupled, and electrons undergo one-to-one transitions,
but tilted in m-space, see Fig. 11. The clearest possible
description of an optical excitation process with an OV
is thus achieved with 1D-QRs, which in that sense are to
OVs, what bulk is to plane waves.

FIG. 12 (color online) The OAM of electrons in a QR. In-
terband (solid red) and intraband (` = 1 in dotted blue and
` = 5 in dashed black) contributions. A similar plot holds for
the electric current, calculated from simple argument based
on an electric current loop. From Quinteiro and Berakdar
(2009).

From the EoM (83), in complete analogy with what
was done for bulk, one calculates the OAM transfer to
electrons that contains “interband” coherence and “in-
traband” populations contributions, see Fig. 12. The
latter can be increased by increasing |`|, has non-zero

mean value and follows the Rabi oscillations between
bands. In the low excitation regime and for short times
the z-component of the angular momentum is given by

L
(pop)
z = (2n+ 1)~`(R0t)

2, with R0 the Rabi frequency,
t the time, and (2n+1) the number of transition channels
coupled by the light field (assuming that the OV has a
spectral width, as shown in Fig. 11). It can be put to use
by shaping the pulse duration to set permanent electric
currents and generate magnetic fields (Sect. V).

The intraband transitions in QRs deserve also atten-
tion. The theoretical simplicity exhibited by the 1D-QR
calls for further studies, in particular to unveil the pos-
sible long-sought coupling of light’s orbital and matter
spin AM, with direct implications to technology –e.g., the
generation of photoelectrons from bulk, see Sect. IV.A.2.
To this end, a QR with Rashba spin-orbit interaction
was theoretically considered (Quinteiro et al., 2011) in
a one-band model with intraband processes induced by
the transverse component of a single-singularity centered
OV. The problem requires the inclusion of the spin degree
of freedom, transforming wave functions to spinors. The
Rashba Hamiltonian reads hSOI = (αR/~)(σ × π)z, in
which αR is the Rashba constant, σ is the vector of Pauli
matrices, and π is the mechanical momentum containing
the vector potential (Sect.III.C.1). The full Hamiltonian
is

h =
p2

2mc
+ V (r) +

αR
~

(σ × p)z

− q

mc
A(r, t) · p− qαR

~
[(σ ×A(r, t)]z , (84)

with mc being the effective mass in the considered band
and the Coulomb and radiation gauge have been as-
sumed. An analytical solution is possible by separating
h0 from the perturbation [second line of Eq. (84)]. The
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expectation is that the term containing the product of
Pauli matrices and OV vector potential may lead to cou-
pling between light’s orbital and matter spin AM. From
time-dependent perturbation theory without the RWA
the authors concluded that the rate of spin conversion
is not proportional to `, in contrast to the original ex-
pectation. Besides, the authors found that anti-parallel
momenta beams produce unusual situations, an interest-
ing finding given that other later reports also point to the
fact that the interaction of antiparallel OV beams with
matter present uncommon features (Quinteiro and Kuhn,
2014; Quinteiro et al., 2015, 2017c, 2019b), see e.g., Fig.
14.

Mike et al. (2018) studied a 2D-QR by numerical cal-
culations, and described selection rules for the intraband
transitions induced by OVs. The emission of light from
OV-excited 2D-QRs was numerically studied by Kraus
et al. (2018). A few-picosecond light pulse induces rapid
intraband transitions, and the subsequent dynamics un-
der the action of electron-phonon relaxation emits light
at different frequencies, whose time dependence can also
be analyzed. Specially interesting is the influence of the
external OV topological charge on the spectrum of short-
lived high-harmonics emitted light.

A different photovoltaic effect was studied in a 2D-QR
by numerical simulations (Wätzel et al., 2017; Wätzel
and Berakdar, 2016). The authors investigated in detail
a centrifugal-type generation of electric currents, in which
the electrons separate in the radial direction due to their
OAM, and are collected by a ring or wire electrode.

A preliminary micro-photoluminescence experiment
using OVs with ` = 1 on an ensemble of GaAs QRs
yielded negative results (Johnson et al., 2017). The au-
thors speculate that the lack of observable effects is due
to problems related to ensemble measurements (Sect.
IV.A.3.b).

b. Excitation of QRs with tilted and/or displaced OV beams:

On nanostructures smaller than the characteristic size of
the beam the relative position of the electron wave func-
tion to the optical axis matters –in fact, this applies as
well to atoms (Afanasev et al., 2018; Quinteiro et al.,
2019a), trapped excitons to impurities/defects in bulk
(Shigematsu et al., 2016), etc. The effects of OVs are in-
deed strongest when the electron cloud is centered with
respect to the beam axis and excited at normal incidence.
The dependence of the light-matter interaction and selec-
tion rule on the lateral displacement and tilt of field axis
and nanostructure clarifies the outcome and precautions
of experiments on single and ensemble of nanostructures.

A reasonable strategy to cope with tilted and/or dis-
placed beams is to use what we learned on head-on exci-
tation. Thus, we must convert the incoming beam to a
superposition of normal incident OVs referred to the ref-
erence frame centered on the nanostructure: To reorient

the incoming field one simultaneously transforms coordi-
nates and rotates polarization vectors. Once the beam
is transformed to a superposition of OVs at normal inci-
dence, we rewrite each one as a superposition of OVs cen-
tered at the nanostructure. The composition of rotation
and parallel transport of a single-singularity beam leads
to a superposition of multiple single-singularity beams
seen as impinging the nanostructure head-on. Every
one of these OVs –with various topological charges– pro-
duces an optical transition on its own. Alternatively, one
may state that from the reference frame attached to the
nanostructure, the displaced beam exhibits an extrinsic
OAM (Bliokh and Nori, 2015), that can be converted –by
translation– to a multitude of beams with intrinsic OAM.

A simpler scenario is that of a normal incident
OV, whose optical axis is displaced by a distance D
from the nanostructure (Quinteiro et al., 2010), as
schematically shown in Fig. 13. Consider the trans-
verse component of its vector potential A(y, t) [Eqs.
(4) and (21)] with topological charge ` and profile
Ã(y⊥) = A0F`(y⊥) = A0J`(qry) exp(i`ϕy), for which the
coordinate y is measured from the optical axis located at
D from the nanostructure reference frame (see Fig. 13).
Using the identity (Korenev, 2002)

J`(qry)ei`ψ =

∞∑
s=−∞

J`+s(qrD)Js(qrr)e
isφ , (85)

one obtains

F`(y⊥) =

∞∑
s=−∞

J`+s(qrD)Js(qrr)e
isφei`(ϕy−ψ)

=

∞∑
s=−∞

(−1)sJ`−s(qrD)Js(qrr)e
−isφei`(π+φ+ϕ)

=

∞∑
s=−∞

(−1)`−sF`−s(D)Fs(r⊥) , (86)

and the azimuthal angles with respect to a fixed axis are
related by ϕy = π+ψ+ φ+ϕ and ϕD = φ+ϕ (see Fig.
13). Thus, A(y, t) can be written as a superposition of
vector potentials A(r, t) with topological charge s. The
weight F`−s(D) of each component in the superposition
depends on ` − s, qrD and the angle φ. Therefore, the
interaction with a QR produces one-m-to-many-m tran-
sitions induced by

h(+) =

∞∑
s=−∞

(−1)`−sF`−s(D)

[
− q

m0
A(+)
s · p

]
, (87)

as shown in Fig. 13.
Even non-vortex fields, such as Gaussian beams, ex-

hibit the same behavior. When the optical axis is dis-
placed and the beam width is of the same order or smaller
than the size of the nanostructure, non-vertical transi-
tions become allowed.
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FIG. 13 (color online)Excitation of nanostructures by a dis-
placed normal-incidence OV. Upper panel, left: Pictorial rep-
resentation of the nanostructure (QR) and a displaced beam
located at a distance D. Upper panel, right: Weights of the
decomposition into vector potentials centered at the nanos-
tructure, see Eq. (87). Lower panel: Allowed optical inter-
band transitions in a QR with magnetic quantum number
m, examples for an OV with ` = 1. Left: head-on excita-
tion (D = 0), a pure one-to-one transition is predicted [Sect.
IV.A.3.a]; Right: once the field is displaced, transitions with
other values of OAM transfer are possible. Adapted from
Quinteiro et al. (2010).

Somewhat connected to this discussion is the study on
the interband transitions in a QR induced by inclined
plane waves (Vänskä et al., 2011). The authors found
that the tilt of the beam with respect to the QR axis
results in new selection rules such that the OAM of the
electrons envelope (~m) is not conserved. Moreover, by
expressing the plane wave in terms of Bessel functions
they conclude that the original beam can be seen as a
superposition of OVs with various topological charges.

Finally, the preceding discussion clarifies a possible
strategy to cope with a multiple-singularity field inter-
action, e. g. superposition of displaced single-singularity
beams, Mathieu beams, etc (Sect. II.D). If multiple sin-
gularities shine on a coherent electronic excitation (for
example in a mesoscopic QR), each one of them can be
converted to OVs centered on the excitation [Eq. (86)].
The total interaction is then given by the sum of inter-
action terms as in Eq. (87), which translates into a sum
of the responses in the regime of linear optics.

c. Quantum dots: Within the class of man-made nanos-
tructures, quantum dots (QDs) are certainly among the

most prominent ones. From a theoretical point of view,
they are specially interesting for they present a discrete
set of energy levels, much like atoms. This makes them
particularly interesting candidates for applications in the
field of quantum information technology, e.g., as emitters
of single photons (Dusanowski et al., 2019; Michler et al.,
2000) or pairs of entangled photons (Schimpf et al., 2021;
Stevenson et al., 2006). They are fabricated in a variety
of different materials and shapes. Those fabricated from
semiconductors inherit the band structure of the bulk
material, and the discrete energy levels are grouped in
shells, making them sensible to excitation by light.

Before engaging on the OV-QD interaction, we remind
the reader that within the envelope function approxima-
tion the wave function of electrons in a cylindrically sym-
metric nanostructure is given by Eq. (52) with the enve-
lope function Ebmn = N exp(imϕ)Rbmn(r)Zb(z) with an-
gular momentum (m) and radial (n) quantum numbers
(Jacak et al., 2013). Here, a factorization of in-plane and
out-of-plane directions has been assumed and the thick-
ness has been taken to be so small that only a single
function Zb contributes. The spin or –in the presence
of spin-orbit coupling– the total angular momentum of
the microscopic Bloch states can be included in the band
index b. In addition to the envelope OAM ~m, the elec-
tron (or hole) has band and spin contributions to the
AM. From the functional form of Ebmn(r) one immedi-
ately realizes that there will be a selection rule for the
envelope AM, but as it happened in bulk for cylindrical
wave functions, a multitude of radial states are excited
by an OV with a single topological charge.

Geometry dictates to a large extent the complexity of
the interaction with light; we have seen that the sim-
plest structure for OV-nanostructure interaction is the
QR. Therefore, our discussion will be mainly focused on
lens-shaped, cylindrically symmetric self-assembled QDs;
however, we will also comment on the effects due to re-
duced symmetry, like for example, in elongated QDs.
Self-assembled QDs are routinely fabricated in laborato-
ries around the world, and the theoretical and experimen-
tal knowledge is vast. In the early times of QD research
experiments were commonly performed on ensembles of
QDs exhibiting a distribution of sizes and, thus, of tran-
sition energies and dipole matrix elements; as a result
of highly refined sample fabrication and detection effi-
ciencies nowadays measurements on single QDs with im-
pressive precision in the positioning of light beams with
respect to the QD are routinely performed.

Let us reexamine the generic Bessel-type OVs of Eqs.
(21)-(24). From a viewpoint of control, these fields are
highly tunable by changing the topological charge `, the
circular polarization σ, the relative OAM to SAM di-
rection, the degree of paraxiality expressed by the ra-
tio qr/qz, and the type of beam as determined by γ.
The freedom in shaping the beam allows one to envis-
age different sorts of excitation modes, see Fig. 14 for
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TABLE III Dominant fields for the three modes of excitations
of a self-assembled quantum dot. The parallel symbol (‖)
refers to the relative orientation of SAM and OAM, “arb.”
denotes an arbitrary value of γ. For comparison, we also
present the excitation mode of a plane wave.

EXCITATION MODES OF A QUANTUM DOT

Mode γ σ ` qr/qz ‖ Dominant field

(a) - ±1 0 0 - Ẽ(r) = E0e±
(b) arb. ±1 ±n � 1 P Ẽ(r) = E0n(qrr)

ne±inϕe±
(c) arb. ∓1 ±1 ' 1 AP Ẽ(r) = ∓E0(qr/qz)ez

(d) arb. ∓1 ±2 ' 1 AP B̃(r) = ∓B0(qr/qz)2e±

just three examples. One foresees that OVs have a po-
tential to applications that will be considered in Sect.
V. Here we will concentrate on basic properties that are
associated with the excitation of QDs by OVs with differ-
ent values of their parameters. As shown schematically
in Fig. 14, we will discuss three modes of excitation of
a cylindrically symmetric QD treated in an effectively
six-band model (conduction, heavy hole and light hole
bands, each with two orientations of the intrinsic angu-
lar momentum) without taking into accout two-particle
interactions. In the s-type conduction band the band
and spin angular momentum consists only of a spin part
with Jz = ±1/2, in the p-type valence bands the heavy
hole band is characterized by Jz = ±3/2 and the light
hole band by Jz = ±1/2.

The first mode [panel (b) in Fig. 14] makes use of OV
parameters ` = ±n, σ = ±1 (parallel momenta beam),
and qr/qz � 1; for any value of γ the transverse field
component dominates the interaction (see Table III) con-
necting the usual heavy-hole Jz = ∓3/2 to the conduc-
tion Jz = ∓1/2 band states transferring the OAM and
producing non-vertical transitions in the envelope quan-
tum number m. Note that in this review we use the
electron picture; the angular momenta of the valence
band states therefore have the opposite sign compared to
the corresponding valence band hole. A detailed study
based on Fermi’s Golden Rule (Quinteiro and Tambore-
nea, 2009b) concluded in addition that the strength of
the excitation depends on the ratio ζ (typically small)
of QD to beam sizes, and it compares to the strength of
excitation by plane waves (a) as

|hOV |2

|hPW |2
' ζ` . (88)

Moreover, the absorption spectrum for different types of
OVs can be predicted (Kuhn et al., 2015).

The second mode (c) of excitation relies on antipar-
allel spin and orbital momenta with ` = ±1, σ = ∓1,
a high non-paraxiality degree qr/qz ' 1 and again arbi-
trary γ (Quinteiro and Kuhn, 2014). For these sets of
values, the interaction is dominated by an essentially ho-
mogeneous electric field in the longitudinal direction –a

curious feature of OVs anticipated in Sect. IV.A. The in-
teraction matrix element can be conveniently calculated
using the dipole-moment approximation expressing the
Hamiltonian in terms of fields –the lack of spatial depen-
dence of the longitudinal component over the region of
the QD enables one to use this approximation despite the
fact that other components exhibit a phase singularity.
If the frequency of the beam is tuned to excite electrons
from the light hole band with Bloch microscopic part
u±(r) = 〈r| J, Jz〉 (Bastard, 1988), |J, Jz〉 being

|3/2,+1/2〉 = − 1√
6

[( |px〉+ i |py〉) ↓ −2 |pz〉 ↑]

|3/2,−1/2〉 = − 1√
6

[( |px〉 − i |py〉) ↑ +2 |pz〉 ↓] ,(89)

with atomic orbitals |pj〉 and the spin orientation indi-
cated by the arrows, the Ez-component couples to the
pz orbital producing electron-hole pairs with total (en-
velope+band+spin) angular momentum equal to zero.
Moreover, the strength of the interaction is, in contrast
to the previous mode of excitation, comparable to that
of irradiation by plane waves; this is due to the fact that
Ez(t) is approximately homogeneous over the extension
of the QD.

In the third example (d), the beam is tuned to ` = ±2,
σ = ∓1, a high non-paraxiality degree qr/qz ' 1 and
γ = 1 (Quinteiro and Kuhn, 2014; Quinteiro et al.,
2017a). The dominant contribution to the interaction
comes from the in-plane components of the magnetic
field that, close to the phase singularity, can be approxi-
mated by a constant –once again, as anticipated in Sect.
IV.A, this is another unusual behavior of OVs, for it is
a magnetic interaction at optical (ultra-high) frequen-
cies. The interaction can be again expressed in terms
of fields, though the use of the dipole-moment approxi-
mation is inappropriate. A correct and general theoret-
ical description of the interaction with antiparallel mo-
menta beams is provided by the Poincaré gauge (Quin-
teiro et al., 2017a) that results in the Hamiltonian

hOV = − q

2m0
B⊥(r, t) · (r× p) ,

resembling the well-known magnetic-dipole interaction
but with a space-dependent field. When resonant with
the transitions from light hole bands [Eq. (89)], the
OV induces a non-vertical transition in m with zero
band+spin angular momentum.

The studies above expose the unlocking of new selec-
tion rules in QDs, i. e., transitions with changes in the en-
velope as well as the microscopic parts of the wave func-
tion. Most notable is the excitation of electron-hole pairs
with unusual AM, which results from the combination of
a longitudinal electric field or a transverse magnetic field
with LH states; the action of these OV components on
bulk has not yet been reported (Sect. VI).
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FIG. 14 (color online) Three possible modes of excitation of a lens-shaped semiconductor QD by varying the OV beam
parameters `, σ, γ, and qr/qz. For the sake of comparison, panel (a) presents the usual excitation by a plane wave. Panels
(b),(c) and (d) are pictorial representations of the field, material system and modes of excitation, see Table III. Center: Single-
particle QD energy levels and characteristic transitions induced by the corresponding beam in each panel.

Naturally, a more realistic model of a QD includes
two-particle interactions and other effects. Such a model
serves to verify/falsify the findings of the aforementioned
simple model, can be used to predict new effects and –
most importantly– is useful to compare predictions to ex-
periments. Holtkemper et al. (2020, 2021) included the
Coulomb interaction, valence-band mixing, and the ef-
fects of QD asymmetry using a Configuration-Interaction
approach. Figure 15 compares the spectra of a single-
particle (reduced) model with the spectra of the full
model with interactions.

One observes that the full model reproduces important
features of the simplified model, for instance, the impor-
tant predicted zero total AM e-LH pair S → sLH ± 0
(for nomenclature see the caption of Fig. 15); but, in ad-
dition we learn that this e-h pair will strongly mix with
the d → sHH ± 2 pair. Moreover, by using a longitu-
dinal electric field one can excite high-energy dark ex-
citons, such as d → sHH ± 2(+S → sLH ± 0). It is
worth noting that the state with band+spin AM zero is
not completely dark, for it can radiate into a field that
propagates in the in-plane direction with electric field
in z-direction. In contrast, the exciton with band+spin
AM equal to two is truly dark. The full model awaits for
experiments, specially on single QDs.

Quantum dot ensembles are a common, easy to prepare
and measure experimental system. Though tempting for
the study of OV-QD interaction, the analysis of signals

obtained from such measurements presents a significant
challenge. In Sect. IV.A.3.b we have seen that nanos-
tructures illuminated by tilted and/or displaced single-
singularity OVs exhibit complex excitation paths, that
would result in complex spectra. And clearly, different
QDs will react according to where the optical axis of the
single-` OV impinges the ensemble. An extinction exper-
iment on an ensemble of QDs could record the intensity
of the light passing through the sample as a function of
the energy, in a range that spans a number of QD levels.
Simulated spectra are shown in Fig. 16. A simple or re-
duced model (see Fig. 15 and Fig. 14), as shown in the
upper panel, is used. We compare, for two values of the
topological charge, the absorption spectra of an ensemble
of QDs and a single centered QD. The ensemble spectra
reveal no qualitative difference for ` = 0 (Gaussian) and
` = 1 (OV) beams, and would make hard the interpre-
tation of measurements. On the contrary, the single-QD
spectra show clear differences, most notable, the peak at
Eg + ~ωc is only seen for ` = 1.

d. Other nanostructures The peculiarities of OVs result
in interesting new effects also in other nanostructures
besides QRs and QDs. This is the case with two-
dimensional systems and nanoparticles.

In a combined theoretical/experimental work Persuy
et al. (2015) analyzed the OAM contributions to different
diffraction orders of wave-mixing experiments. By per-
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FIG. 15 (color online) Calculated spectra for a QD excited
by the transverse and longitudinal components of an OV. Top
panel: Single-particle picture; lines correspond to electron-
hole pairs. Bottom panel: Model including Coulomb inter-
action and valence-band mixing; lines correspond to exci-
tons. Each line is named according to its “envelope-hole →
envelope-electron” pair, with the additional information of
its light (LH) or heavy (HH) hole character and the micro-
scopic (band+spin) angular momentum. The energy levels
are grouped in shells s, p, d, . . . for electrons and heavy holes
and S, P,D, . . . for light holes. In the full model, exciton
states are superpositions of non-interacting pairs; when the
superposition is dominated by more than one e-h pair, the
second contribution appears in between parenthesis, for ex-
ample, d → sHH ± 2(+S → sLH ± 0) is a high-energy
exciton with an admixture of HH-e and LH-e pairs in which
the holes are in different shells (d and s). From Holtkemper
et al. (2021).

forming four-wave mixing spectroscopy with LG beams
on a CdTe quantum well sample, they demonstrate that
the selectivity of the OAM transfer can be used to extract
the four-wave mixing signal even in the case of collinear
pump and probe beams which suggests the possibility of
enhanced spatial resolution by excitation through a mi-
croscope objective.

The action of a longitudinal electric field component in
the excitation of a quantum well was investigated theoret-
ically by Sbierski et al. (2013). The authors considered an
excitation in the infrared range to induce intersubband
transitions, using OVs with different topological charges
that impinge the sample at normal incidence. As is the
case for the interaction with QDs (Sects. IV.A.3.c and
V), the claim is that the excitation by an Ez component
is experimentally easiest if done at normal incidence, be-
cause it does not require cleaving of the sample.

Cygorek et al. (2015) studied theoretically QWs (and
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FIG. 16 (color online) Simulated extinction experiment on
a single centered and an ensemble of QDs. Upper panel:
Single-particle energy levels of a QD in a reduced model, with
m the envelope OAM, and in between parenthesis the radial
quantum number (Quinteiro and Tamborenea, 2009b). Lower
panel: extinction spectra using beams with ` = 0 (Gaussian)
and ` = 1 (LG). The light frequency ω = (Eg + δE)/~ scans
the energy leveles within the blue dashed box (upper panel).
The absorption appears as dips in the extinction spectra. No
qualitative difference exists between the Gaussian and LG
excitation for the ensemble measurement; in contrast, clear
differences appear for an experiment on a single QD.

QDs) with Rashba interaction in order to explore the
possibility of transferring angular momentum from an
OV to the spin of electrons via the spin-orbit interaction.
It was found that spin-orbit interactions at the level of
the effective mass approximation are unable to produce
the desired net transfer in large systems (thermodynamic
limit), leaving quantum disks/dots and rings as the only
possible scenarios for significant OAM to SAM transfer.

Tikhonova and Voronina (2021) analyzed the inter-
band transitions in a semiconductor quantum well (disk)
induced by a quantum non-classical OV field, revealing
a transfer of correlations to the electronic system.

The selection rules, transfer of OAM and induced pho-
tocurrents in a two-dimensional electron gas were theo-
retically studied by Takahashi et al. (2018, 2019). They
found that the current in bulk is canceled out but there
remains a current that flows along the edge of the system
inducing magnetization.

The electronic wave function kinematics in a macro-
scopic stripe of GaAs was numerically simulated using
Schrödinger’s equation (Wätzel et al., 2012). The deflec-
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tion of the wave package occurs in the region where the
OV intensity is significant; moreover, the report shows
that even the use of OVs with random additional phases,
simulating natural light, produce deviations of the elec-
tron’s trajectory.

In a report combining experiments and Mie theory
Nechayev et al. (2019) considered the inverse prob-
lem of orbital-to-spin AM conversion. They showed
that a focused linearly-polarized OV focused on a sili-
con nanoparticle results in circularly polarized scattered
light.

Using a time-dependent Keldysh-Green’s function
method, Shintani et al. (2016) considered the effects
of OV pulses on the disordered surface of a three-
dimensional doped topological insulator. They deter-
mined the local charge and spin densities, showed that
the inhomogeneous nature of the field plays an impor-
tant role, and demonstrated that the OV imprints its
polarization pattern on the charge densities, in agree-
ment with what was found in Sect. IV.A.2 for bulk and
will be seen later in Sect. IV.B in the case of microcavi-
ties. Most interesting is that, due to the locking between
electron spin and momentum, the optical polarization
pattern determines a spatially structured spin density.
The momentum-spin locking might be an indirect way to
control the spin using OVs. The imprinting of the spatial

FIG. 17 (color online) Spin density induced by the electric
field of an optical vortex. The left (right) panels show the
local (nonlocal) spin density. The color map and the direction
of the arrow show the magnitude and direction of the spin
density, respectively. σz

L = ±1 and mz
L are the spin and

orbital AM of the beam, respectively. Adapted from Shintani
et al. (2016).

pattern of the OV field was also predicted in the excita-
tion of two-dimensional chiral ferromagnets, leading to
the formation of skyrmions (Fujita and Sato, 2017).

B. Microcavity exciton polaritons

Atoms, molecules and nanostructures placed inside op-
tical cavities display a variety of new phenomena (Ya-
mamoto et al., 2000). A prominent example is the inhi-
bition or enhancement of the spontaneous emission due to
the Purcell effect (Purcell, 1946), but there is much more.
Inside a cavity, photons and matter excitations can be
strongly or weakly coupled, depending on the experimen-
tal conditions. In the weak coupling regime, the coupling
between photons and matter excitations is smaller than
the individual decay rates. As a result the particles retain
their individual character, and the phenomena observed
resemble that of free (off cavity) light-matter interaction.
However, the matter-light interaction can be strongly re-
duced or enhanced depending on, e. g., the position of
the active structure in the cavity. Under strong coupling,
photons and matter states hybridize, and extraordinary
effects take place.

In a cavity containing a semiconductor structure, pho-
tons couple to excitons, and in the strong-coupling regime
form exciton-polariton quasi-particles that for not too
high densities follow Bose-Einstein statistics. A semi-
classical model of exciton polaritons is deduced in a sim-
ilar way to that of plasmon polaritons (Sect. IV.C): From
quantum mechanics one calculates an exciton dielectric
function that is used in the wave equation for electro-
magnetic fields. For a fully quantum mechanical treat-
ment, one quantizes the electromagnetic field and writes
a Hamiltonian for excitons, photons and the mutual cou-
pling (Haug and Koch, 2009; Khitrova et al., 1999).

An extensively investigated system is that of a quan-
tum well microcavity. The system is fabricated using
on each side of the quantum well a set of thin layers of
alternating refractive index that act as mirrors, called
Distributed Bragg Reflectors. By optically exciting the
system from outside, exciton-photon pairs or polaritons
are formed. Many interesting phenomena have been re-
ported. For low polariton losses and low density of po-
laritons, thermalization produces a large population of
zero-momentum polaritons which under suitable condi-
tions form a Bose-Einstein condensate (Kasprzak et al.,
2006; Wertz et al., 2010) that may lead to lasing (Deng
et al., 2010, 2003; Schneider et al., 2013; Tsintzos et al.,
2008). Under strong excitation and in the strong cou-
pling regime, polaritons are seen to interact forming a
liquid and exhibit superfluidity (Lerario et al., 2017).

Before examining the research in OV-microcavity
physics, we recall that we have so far only considered
the action of external and fixed OVs on matter. Nev-
ertheless, due to the strong coupling of excitons and
photons inside a microcavity, there is a mutual interac-
tion between these constitutive particles. Thus, exciton-
polariton vortices (called “quantized vortices”) can be
observed without the need of pumping the microcavity
with an external OV, as indeed reported by Lagoudakis
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et al. (2008). The spontaneous formation of vortical
structures in a polariton fluid in a CdTe microcavity was
inferred from fork-like patterns in the interference of the
luminescence signal coming out of the cavity, see Fig. 18.
The exciton-polariton vortices are speculated to form out
of a combination of system inhomogeneities and continu-
ous (non-singular) pumping. Theoretical modeling using
the Gross-Pitaevskii equation supports the experimental
findings (Abdalla et al., 2018; Lagoudakis et al., 2008;
Sigurdsson et al., 2014).

FIG. 18 (color online) Interferogram and extracted phase.
The fork-like dislocation can be seen within the red circle.
Adapted from Lagoudakis et al. (2008).

Further experimental investigations revealed also the
existence of half-integer vortices in planar (Lagoudakis
et al., 2009) and ring (Liu et al., 2015) cavities, first
predicted in exciton-polariton systems by Rubo (2007).
Half-integer vortices are known to occur in other sys-
tems, e.g., He3 (Salomaa and Volovik, 1987), and result
from the two-component nature of polariton condensates
(Toledo-Solano et al., 2014).

Of course microcavities can be pumped using OVs.
An experiment conducted by Kwon et al. (2019) demon-
strated, using again interferometric techniques on the
condensate luminescence, that a non-resonant LG pulse
can inject quantized exciton-polariton vortices in planar
GaAs microcavities. Furthermore, the authors show that
the chirality of the exciton-polariton vortex is highly con-
trollable by the external field, which led them to the con-
clusion that the OAM of the pump beam is transferred
to the exciton-polariton condensate.

An ingenious procedure to inject quantized vortices is
that of Boulier et al. (2016), in which four tilted and
non-overlapping Gaussian beams excite the microcavity
in such a way to produce exciton polaritons with appro-
priate linear momentum, that convey OAM to the whole
condensate. We note that the similarity with the modal
decomposition of Sect. II.F is only apparent, since the

four Gaussian beams neither overlap to interfere nor do
they have the appropriate phase difference.

C. Plasmonics

When light propagates inside a metal or a struc-
tured material containing metal-dielectric interfaces, the
electromagnetic fields interacts with conduction elec-
trons producing quasi-particles called plasmon polaritons
(Kawata et al., 2001; Maier, 2007; Novotny, 2006). They
exhibit notable effects, such as the confinement of the
electromagnetic field to sizes of the order of the wave-
length or less, and strong enhancement of fields. Plas-
mon polaritons exist in bulk and lower-dimensional sys-
tems. They are called surface plasmon polaritons (SPPs)
when confined to a metal-dielectric interface, and local-
ized plasmon polaritons (LPPs) if further confined, for
example, to a tiny metallic sphere.

Surface plasmon polaritons are excitations that prop-
agate along dielectric-metal interfaces, but are bound in
the perpendicular direction, with a corresponding evanes-
cent field decaying in both directions from the surface.
The SPP dispersion relation deviates significantly from
that of light in dielectric media. For a single-interface
ideal-conductor system –the paradigmatic case– the dis-
persion relation exhibits a gap and a region where the
in-plane wave vector can assume larger values than in
dieletrics, without appreciable changes in the frequency.

Due to the spatial confinement in all directions, LPPs
in plasmonic structures exhibit and are characterized by
resonances in their response to external fields, e.g., res-
onance in polarizability. The resonance in polarizabil-
ity results in a field enhancement, one of the main fea-
tures exploited in applications. From the theory of the
archetypical metallic sub-wavelength sphere in a dielec-
tric medium, the understanding of other structures –such
as ellipsoids and rods– can be built, in which other phe-
nomena occur, like multiple resonances, response depen-
dent on the polarization of the excitation field, and more.

The textbook SPP is an object represented in Carte-
sian coordinates propagating in a uniform 2D system.
As plane waves in free space, it is a suitable building
block for other more complex excitations. But, as previ-
ously discussed, other geometries are more adequate in
problems related to OVs. Liu et al. (2005) experimen-
tally demonstrated SPPs in a circular system that result
in the focusing of light at the center. The edge can be
viewed as a set of point-like sources (Ren et al., 2011),
each emitting waves that converge inwards.

Point-like sources are also building blocks that help
understand, by the superposition principle, the SPP field
of other plasmonic structures. A point-like source on a
metal-dielectric interface produces cylindrical waves of
SPPs describable in terms of Hankel functions (Chang
et al., 2005; Hecht et al., 1996; Lee and Mok, 2016;
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Nerkararyan et al., 2010; Yin et al., 2004).
The natural next step towards the study of singular

SPPs is to consider a spiral or an array of spirals (also
called an Archimedean structure) milled on the metal-
dielectric system; excited from outside by a plane wave,
the structure produces a vortex field around its center.
The phenomenon is easy to understand: Regard the spi-
ral as a set of point-like sources, each emitting a sec-
ondary cylindrical wave as a result of the excitation at
normal incidence by a circularly polarized plane wave of
handedness σ. Their superposition at the spiral center
produce a vortex, as next explained.

The field of a point source at the origin of coordinates
is dominated by the electric field z-component, which in
the medium with evanescent constant χ reads, in analogy
to Eq. (4), Ez(r) = Ẽz(r⊥) exp(−χz − iωt) + c.c.

Ẽz(r⊥) = E0e
iσφH

(1)
1 (kρ)

with H
(1)
1 a Hankel function of the first kind (outward

propagation) of order one, r = (ρ, φ, z), and k the plas-
mon wavevector –we disregard in-plane attenuation. For
observation points far from the source kρ � 1, and

H
(1)
1 (kρ) '

√
2/(πkρ) exp[i(kρ− 3π/4)]; then

Ẽz(r⊥) = E′0e
iσφ

√
1

kρ
eikρ

with E′0 = E0 exp(−i3π/4)
√

2/π.
We imagine the spiral as a set of infinitesimal segment,

each acting as a point-like source. To calculate the out-
going field of each, we displace Ez to the corresponding
position R = (R(Θ),Θ, z) on the spiral with |m| turns,
parametrized byR(Θ) = R0+mΘ/k, see Fig. 19. The ob-
servation point is now indicated by r = (r, ϕ, z). We ap-
proximated the distance ρ = |R−r| ' R(Θ)−r cos(Θ−ϕ)
for the exponential factor, ρ = |R − r| ' R0 for the de-
nominator factor (as customary), and φ ' Θ + π,

Ẽz(r⊥) = −E′0eiσΘ

√
1

kR0
eik[R(Θ)−r cos(Θ−ϕ)] ,

The contribution of all point sources on the spiral to the
field in the region close to the center is

Ẽz(r) = −E′0
eikR0

√
kR0

[
R0

∫ 2π

0

dΘ e−ikr cos(Θ−ϕ)ei(m+σ)Θ

]
,

Changing variables to η = Θ − ϕ, the integral becomes
of the form Eq. (36), and finally

Ez(r, t) = E′′0 e
i(m+σ)ϕJm+σ(kr)e−χz−iωt + c.c. , (90)

with E′′0 = −E′0(−i)m+σ2π
√
R0/k exp(ikR0). Note the

striking similarities with the modal decomposition of
Bessel beams in free space Sect. II.F. Therefore, the
superposed field close to the center presents a phase sin-
gularity. Figure 20 shows the numerical calculations of
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FIG. 19 (color online) Schematics of the coordinate transfor-
mation of a point-like source, which is used to generate the
field of spirals.

FIG. 20 (color online) Numerical calculations for a discrete
single-turn spiral with N = 20 point sources and m = −1.
First row: (arbitrary units) Intensity maps, at r = 0 with
σ = 1 there is a bright spot, while for σ = −1 there is dark
spot. Second row: (arbitrary units) For fixed y = 0 and as
a function of x numerical field amplitudes (solid blue lines)
fitted by a Bessel function J0 (σ = 1) and J−2 (σ = −1)
(dotted lines) showing very good match at short distances
from the center and confirming the validity of the theoretical
model Eq. (90).

the field produced by twenty point-like sources located
on a single-turn spiral. We also show fitting curves com-
paring Bessel functions and numerical data. One notes
that, given a spiral with a particular sense of rotation,
the field at the origin has a dramatic change for each po-
larization of the light exciting the structure (Yang et al.,
2009); this is why the system is also referred to as a plas-
monic lens, and the effect as a spin-orbit interaction or
spin-to-orbital AM conversion. The generation of plas-
mons by such structures is well documented in theoret-
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ical and experimental reports (Boriskina and Zheludev,
2014; Gorodetski et al., 2008; Guo et al., 2017; Kim et al.,
2010; Ohno and Miyanishi, 2006; Spektor et al., 2017;
Yang et al., 2009). Plasmonic vortices yield naturally
sub-wavelenght fields, achieving for example, a lateral
size of λ/6, with λ the wavelength of the incident exter-
nal light (Spektor et al., 2017). This is one of the most
important features, for it allows one to explore a regime
not accessible with far-field OVs that are limited by the
diffraction limit.

Other plasmonic systems can generate singular fields,
as demonstrated by Tsesses et al. (2019) using hexagonal
structures. These act as sources of surface plane waves
whose interference pattern produce a lattice of topolog-
ical defects –we recall that the superposition of three or
more plane waves results in singularities, see Fig. 2 and
Dennis et al. (2010).

Interesting physics also occurs when exciting plas-
monic structures with OVs. Sakai et al. (2015) numer-
ically showed the creation of multipole LPPs in an air-
suspended nanodisk (400 nm diameter/30 nm hight), by
studying the plasmon resonance and field maps as a func-
tion of topological charge and polarization of an incident
OV. Kerber et al. (2018) explored the generation of plas-
monic vortices in Archimedean structures by OV excita-
tion. Their numerical results reinforce the notion that the
OAM of the plasmonic vortex arises from a combination
of OV parameters (topological charge and polarization)
and the chirality of the plasmonic structure (Forbes and
Andrews, 2018a). Through theory and numerical simula-
tions Cao et al. (2021b) showed that a metallic cylinder
with a patterned surface reacts to incident OVs with pos-
itive and negative topological charge by either converting
the incoming OAM or absorbing it.

D. Two-dimensional materials

A single layer of carbon atoms in a honeycomb lat-
tice, known as graphene, displays striking features (Cas-
tro Neto et al., 2009). It is best known for the Dirac-like
behavior of electrons close to special points in k-space,
where no band-gap exists, and the sublattice of graphene
plays the role of (pseudo-)spin. The seminal work of
Novoselov et al. (2004) in graphene boosted the research
on a variety of 2D materials (Novoselov, 2011), together
with their applications (Fiori et al., 2014; Zeng et al.,
2020).

Two-dimensional Transition Metal Dichalcogenides
(TMDs) –a combination of a transition metal, e.g., Mo
or W, and a chalcogen like S, Se or Te– are complex sys-
tems of single or multiple layers of atomically thin cova-
lently bound ions stacked and bound together by van der
Waals forces (Berkelbach and Reichman, 2018; Das et al.,
2015; Miró et al., 2014; Parvez, 2019; Shinde and Singh,
2019). In contrast to their bulk counterparts, they are di-

rect band-gap semiconductors. A monolayer TMD shares
with graphene the Dirac-like states, however, the elec-
tronic states in this case correspond to massive particles
in a gapped two-band system. As in any semiconductor,
exciton states are possible; in multiple layer structures
excitons can be either spatially direct with electron and
hole being in the same layer or spatially indirect, with an
electron and a hole residing in different layers. Compared
to other semiconductor materials, TMDs are character-
ized by very large exciton binding energies of the order of
500 meV, which is mainly due to the effectively strongly
reduced screening in layers of these materials.

A first study of the interaction of graphene with OVs
was conducted by Farias et al. (2013). They considered
theoretically the interaction with the transverse compo-
nent of an OV beam, described by the Hamiltonian

h = ~vF (ασxkx − σyky)

+evF [ασxAx(r, t)− σyAy(r, t)] , (91)

with α = ±1 designating each Dirac point, and σi a Pauli
matrix. Note the similarities with the Rashba Hamil-
tonian Eq. (84) for a QR: once again there is a term
coupling (pseudo-)spin to vector potential suggesting the
possible exchange of OAM and pseudo-SAM. Using the
EoM, the evolution of the angular momentum and in-
duced current were calculated, reflecting analog behav-
ior to other systems excited by OVs in the intraband
regime. New in the case of graphene is the fact that
the light-matter interaction exchanges the pseudo-spin of
electrons, moving them from one sublattice to the other,
when the Rotating Wave Approximation is invoked; how-
ever, this effect is not exclusive to OVs. Inglot et al.
(2018) included Rashba and a static magnetic field, and
found also no effect of the topological charge of the light
field on the electron spin dynamics.

In their theoretical investigation Cao et al. (2021a)
considered the excitation by an OV of a graphene ring
(Corbino disk) in the quantum Hall regime. The electric
current between the inner and outer contacts was studied
under disorder, and it was found that the current results
from the transfer of OAM from light to electron states.

Simbulan et al. (2021) performed photoluminescence
experiments in mono- and bi-layer MoS2 excited with
OVs, together with theoretical modeling and numerical
simulations. They found a clear dependence of the en-
ergy shift on the OV topological charge, that can be in-
terpreted as resulting from the transfer of OAM to valley
A-excitons, see Fig. 21.

Transition metal dichalcogenides can easily be com-
bined with other materials (Krasnok et al., 2018). Guo
et al. (2020) implemented a hybrid system consisting of
a TMD WS2 on top of a plasmonic spiral structures on
aluminum. The plasmonic vortex conveys its chirality to
the achiral C-excitons in WS2, with a resulting second-
harmonic generation emission that depends on the sense
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FIG. 21 (color online) Exciton energy shift for an uncapped
MoS2 sample at two different temperatures. The MoS2 sam-
ple consists of one layer of MoS2, one layer on h-BN and
SiO2/Si. Adapted from Simbulan et al. (2021).

of circular polarization of the light exciting the plas-
monic structure. Li et al. (2017) explored the coupling
between MoS2 excitons and plasmons from spirals us-
ing spectroscopy and numerical simulations, and showed
the enhancement of the photoluminescence signal for a
particular state of polarization of the external light, see
Fig. 22. These spin dependent effects are directly related
to the spin-to-orbital AM conversion discussed in Sect.
IV.C.

FIG. 22 (color online) Photoluminescence spectra of MoS2

monolayer with and without spiral structures, under the ex-
citation by light with different circular polarization at 633 nm
and laser power at 2.1 mW. Inset: Cross section view of 2-
turn spiral structure (scale bar is 400 nm). From Li et al.
(2017).

V. APPLICATIONS

Condensed matter physics deals with basic physical
phenomena as well as their applications. After having
reviewed, in the previous section, basic properties of the
OV-condensed matter interaction, it is time to turn our
attention to actual and prospective technologies.

Electronics, a vital technology based on semiconduc-
tors, relies exclusively on the charge of electrons. In or-
der to keep up with technological progress, spintronics
seeks to control the spin of electrons in nanostructured
systems. A set of discoveries in the 1980 boosted the
interest in applications based on spin, mainly the giant
magnetoresistance (Baibich et al., 1988; Binasch et al.,
1989) but also the injection of spin-polarized electrons
(Wolf et al., 2001). Spintronics promises faster data pro-
cessing, lower energy consumption and higher miniatur-
ization (Ahn, 2020; Hirohata et al., 2020).

Around the same time Feynman (1982) proposed the
concept of quantum computing for the simulation of
the hard-to-solve many-body quantum systems. The
new computer, based entirely on the prinicples of quan-
tum mechanics, may outperform any conceivable classical
computer (Galindo and Martin-Delgado, 2002; Steane,
1998). Basic elements of a quantum computer are ac-
cording to the famous five criteria formulated by DiVin-
cenzo (2000): (i) A scalable system with logical units
for storing and performing operations, the qubits, (ii) a
procedure to prepare the set of qubits to a given initial
state, (iii) long relevant decoherence times, much longer
than the gate operation times, (iv) a “universal” set of
quantum gates, which control the system dynamics via
unitary transformations on qubits and thus implement
the algorithms, and (v) a procedure to measure the final
state of specific qubits, reading the output of the compu-
tation.

The field of quantum technology is a wide endeavor
to outperform classical counterparts. Another example
is the use of quantum light in quantum communication
(Al-Amri et al., 2021) for secure data transmission be-
yond classical protocols (Gisin and Thew, 2007; Liao
et al., 2018). Quantum computing, quantum communica-
tion and spintronics have only recently become a reality,
boosting the further exploration of diverse platforms and
tools to implement their components and operations in
more effective ways. A key feature for quantum technolo-
gies is entanglement. In fact, entanglement of photons in
OAM states have been observed in various experiments
(Arnaut and Barbosa, 2000; Franke-Arnold et al., 2002;
Krenn et al., 2017; Mair et al., 2001) making OVs a valu-
able resource for applications in this field.

Solid-state physics has been an essential part of mate-
rials science, which aims to develop new fabrication and
processing techniques of materials, including metals and
semiconductors in various forms, for all sorts of applica-
tions. And material processing is starting to benefit from
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the use of OVs.

In the following, we choose to classify applications
by the area in which they were proposed or reported.
Clearly, this scheme is arbitrary, since a proposed idea
may well serve nowadays or in the future several fields;
an example is the use of OVs in materials science, specif-
ically in metal ablation as reported by Hamazaki et al.
(2010), which may become in the future applicable in
medicine to surgery (Jeffries et al., 2007).

A. Semiconductor elementary nanostructures

Quantum dots are a platform for quantum technolo-
gies. Impurities or additional electrons charging the dot
implement qubits via their spin. In quantum comput-
ing, one requires the control of single and pairs of qubits
as building blocks of more complex operations and ul-
timately algorithms. The operations on qubits can be
done by optical means, improving speed, and avoiding
noise from electrical contacts for example. The single
qubit operation requires the ability to control the spin
direction at will. Many protocols have been devised
to manipulate the in-plane (perpendicular to the nanos-
tructure’s z growth direction) spin component (Kroutvar
et al., 2004; Quinteiro et al., 2012; Wolf et al., 2001).
However, it is challenging to control the longitudinal
component, necessary to complete all possible one-qubit
operations. Quinteiro and Kuhn (2014, 2015) proposed
the use of a sequence of three light pulses (P`,σ) in the
sub-picosecond time scale to achieve full inversion of the
spin z-component of an extra electron charging a self-
assembled semiconductor QD. The pulse sequence is in-
dependent of the initial spin state of the extra electron,
and works by inducing an e-LH pair with zero total AM
(second excitation method of Fig. 14) in the QD. Figure
23 shows the results from numerical simulations of the
density matrix ρij using the master-equation formalism
within a 4-level system i = {1 : |↑ 00〉, 2 : |↓ 00〉, 3 :
|↑↓⇑〉, 4 : |↑↓⇓〉}, with single (double) arrow for electron
(hole). It is worth noting that the addition of electron-
electron interactions does not affect the proposal sig-
nificantly; as seen in Sect. IV.A.3.c the full model still
presents the most important ingredient of the proposal:
the state s→ sLH± 0 essential to the spin inversion.

In fact, the s → sLH ± 0 transitions in QDs may
prove useful in quantum storage, as shown by Holtkem-
per et al. (2021). The Coulomb interaction produces
the admixture of high energy dark with optically active
e-h pairs. In particular, as seen in Fig. 15, the e-HH
pair d → sHH ± 2 mixes with the e-LH s → sLH ± 0
forming an exciton that can be excited by the longitudi-
nal component of the antiparallel ` = ±1, σ = ∓1 OV
(second excitation method of Fig. 14). After the light
pulse is turned off, the system decays to its ground state;
thus, the excited exciton relaxes, mainly by electron-

Final stateInitial state

FIG. 23 (color online) Numerical simulations of the master
equation for the extra electron plus e-LH system in a nega-
tively charged QD, for the case when the initial spin states
of the extra electron is a superposition of up and down sz.
After the application of three normal-incident pulses (one an
OV), full inversion is achieved on a sub-picosecond time scale.
Adapted from Quinteiro and Kuhn (2014).

phonon scattering without spin flip to the almost un-
mixed s → sHH ± 2 state. This is optically forbidden,
and so robust against radiative recombination. States
s→ sHH + 2 and s→ sHH−2 can be generated at will,
and represent qubits of information.

Yet another application of QDs is their use for the con-
version of light’s orbital AM to electronic spin AM and
vice versa. The device consists of a photonic crystal cou-
pled to a QD, and it can work as an emitter/receiver
for quantum communications (Fong et al., 2018). For
instance, in the emitter mode the spin state of the ex-
cited electron in the QD emits –upon recombination–
light with a particular circular polarization. This drives a
combination of quadrupole modes in the photonics crys-
tal, which in turn are capable to emit light with OAM
(see Fig. 24).

Structured light, including OVs, can extract the spa-
tial phase information of the excitonic wave functions in
QDs. Holtkemper et al. (2020) propose repeated absorp-
tion measurements of the state under investigation using
complex fields formed out of a superposition of struc-
tured beams. A particular set of superposition coeffi-
cients will maximize the absorption. These coefficients
can be directly related to the expansion coefficients of
the exciton wave function in a given basis; in this way
one deduces the complete exciton wave function includ-
ing relative phases.

The transfer of OAM to nanostructures sets up an elec-
tric current that can be used in electronics, spintronics
and communications. One such application is the gen-
eration of magnetic fields in nanostructures, e.g., a QR
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FIG. 24 (color online) Light’s OAM to and from electron spin
AM conversion. Top panel: The device consists of a photonic
nanocavity with an embedded QD. Lower panel: Schematics
of conversion process, from left to right: the light emission
of a spin polarized electron drives the rotation of nanocavity
modes, resulting in the nanocavity emitting an OV. From
right to left: an OV drives the rotating modes, which in turn
generates an electron spin in the QD. Adapted from Fong
et al. (2018).

(Kraus et al., 2018) or bulk (Quinteiro and Tamborenea,
2009c) to control the spin state of a nearby impurity,
QD, etc. Ji et al. (2020) demonstrated that the circular
photon-drag can serve to detect the OAM of light imping-
ing a U-shape device on WTe2, for the use of OAM-based
communications.

The invention of new devices to generate OVs is an ac-
tive field of research for possible uses in comunications,
sensing and other applications (Kerridge-Johns, 2018).
Semiconductor technology plays an important role in in-
novations to the field, specially in lasers that can create
vortex fields from within the cavity, see also Sect. II.G.
A good example is the vertical (external) cavity surface
emitting laser (VCSEL/VECSEL) formed out of one or
several semiconductor quantum wells coupled to addi-
tional intracavity devices, see Fig. 25. Examples of in-
tracavity devices are metasurfaces (Seghilani et al., 2016;
Xie et al., 2020) and spiral phase plates (Li et al., 2015)
that shape the beam to an OVs. Micrometer-size whis-
pering gallery modes on solid-state systems can generate
OVs with controllable topological charge and polariza-
tion state (Chen et al., 2021; Miao et al., 2016; Zhang
et al., 2020b) and microlasers producing fractional OAM
that can be controlled at GHz frequencies were reported
by Zhang et al. (2020c).

Stimulated emission depletion microscopy (STED), a

FIG. 25 (color online) Schematic of the Metasurface-VCSEL
system: standard VCSEL structure and the beam-shaping
metasurface integrated at the back side of the substrate. From
Xie et al. (2020).

technique that makes use of donut-shape beams includ-
ing OVs (Keller et al., 2007), can be used to read
and control quantum states in nanostructures. Arroyo-
Camejo et al. (2013) showed that individual nitrogen-
vacancy (NV) color centers can be resolved with STED
microscopy up to 15 nm. A similar technique, the so-
called charge-state depletion (CSD) microscopy was used
by Chen et al. (2015) to detect and manipulate the state
of NV-centers in diamond, with applications to sensing
and quantum computation. The manipulation procedure
combines Gaussian and donut-shape beams to produce
space-dependent changes in the populations of NV0 and
NV− states, and the authors demonstrated subdiffraction
manipulation on the order of few nanometers.

B. Exciton polaritons

Exciton-polariton vortices (or quantum vortices)
driven by external optical perturbation have been shown
to be robust entities against changes in power, shape and
size of the pump (Borgh et al., 2012; Kwon et al., 2019;
Ma et al., 2020; Sigurdsson et al., 2014). Ma et al. (2020)
demonstrated control and switching of the vortex topo-
logical charge in a few hundreds of pico-seconds at non-
resonant excitation. In their experiment a GaAs micro-
cavity is excited by a ring-shape cw field that creates a
vortex exciton-polariton condensate rotating in a random
sense. The topological charge is controlled and switched
by an additional Gaussian laser beam that breaks cylin-
drical symmetry. In addition, the authors show robust-
ness against system’s disorder and imperfection. Quan-
tum vortices can also be trapped, moved, and mutually
scattered, as shown by several authors (Dominici et al.,
2018, 2015; Pigeon et al., 2011; Sanvitto et al., 2011).
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FIG. 26 (color online) Copying exciton-polariton vortices.
Left column: Density plots of the copier process (same topo-
logical charge). Yellow dashed lines show the edges of the
guide. At t = 300ps the transfer is complete and at t = 1000ps
the state is nearly stationary. Right column: The inverter (op-
posite topological charge) process. At t = 400ps the transfer
is complete and at t = 1000ps the state is nearly station-
ary. Bottom panels show the phase profiles at t = 1000ps.
Adapted from Sigurdsson et al. (2014).

Motivated by possible applications to quantum technol-
ogy in information transfer and storage Sigurdsson et al.
(2014) consider in detail the switching and copying of
quantum vortices of topological charge ` = ±1 from one
vortex to a second one created at a distance of tens of
micrometers, see Fig. 26.

C. Plasmonics

Light in general, and OVs in particular, are used to
trap and manipulate particles (Grier, 2003; Jones et al.,
2015), and recent studies suggest that the localization
and enhancement of fields provided by plasmonics may

improve optical tweezers. Liu et al. (2020) studied by
numerical means plasmonic structures containing a spiral
and a tip to trap or push away particles, depending on the
topological charge of the plasmonic vortex. Hoshina et al.
(2020) compared two scenarios to rotate a particle using
light: The first makes direct use of a LG beam, which
can only rotate the particle on a macroscopic scale, due
to its large donut shape. The second employs the spin-
to-orbital AM conversion by plasmon polaritons (Sect.
IV.C): a circularly polarized light excites a nanostruc-
ture, consisting of four rectangular-shape metallic pieces,
that creates localized plasmonic vortices that rotate the
particle on the nanometer scale.

FIG. 27 (color online) Near-field distribution around the cir-
cular array antenna illuminated by a vortex beam with ring
diameter 310µm: Intensity (left) and phase (right) image
showing an intensity null at the center (white cross) and the
2π phase rotation. Adapted from Arikawa et al. (2017).

The squeezing of fields by plasmonic structures was
also exploited by Heeres and Zwiller (2014), who showed
by numerical simulations that a set of nanoantennas can
focus an incident OV to a subwavelength lateral size,
eluding the diffraction limit, and so enhancing the light
intensity close to the phase singularity. Large field inten-
sities reduce the excitation time, improving the quantum
operation speed and diminishing the importance of the
decay/decoherence of states. Later Arikawa et al. (2017)
demonstrated very similar concepts in an experiment us-
ing THz OVs. They illuminate an array of eight anten-
nas with an OV beam of ring diameter 310µm, and find
within the array system that the OV is reduced to a ring
diameter of 90µm, a factor of 3.4 smaller, see Fig. 27.

Much work is devoted to the exploitation of the ad-
ditional degree of freedom of OAM (`) for communica-
tion purposes, and high transfer rates have been achieved
through fiber (Bozinovic et al., 2013) and wireless (Wang
et al., 2012) channels by multiplexing with OAM states
of light. Clearly, communication requires channels (Chen
et al., 2018), emitters (Jiang et al., 2020) and receivers.
Garoli et al. (2016) demonstrated an OV emitter. The
authors designed a plasmonic device, consisting of a plas-
monic lens (spiral structure) plus a hole in its center, and
illuminated it by circularly polarized light. The plas-
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monic lens converts the non-singular field, via the spin-
to-orbital AM conversion effect, to a plasmonic vortex
that upon interaction with the milled hole propagates an
OV to the far-field, see Fig. 28.

FIG. 28 (color online) Schematic illustration of the plasmonic
structure emitter used to convert circularly polarized light
into far-field OVs. Adapted from Garoli et al. (2016).

D. Materials science

A first use of OVs is to employ the donut shape of the
beam, which can generate a different pattern to that of
conventional Gaussian beams (Nolte et al., 1997). Abla-
tion in copper by OVs was demonstrated by Anoop et al.
(2014), who showed the formation of annular structures
of different character depending on the values of light
fluence and number of pulses employed. Further investi-
gation on the ablation dynamics of copper was conducted
by Tsakiris et al. (2014) through experiments and numer-
ical simulations. Optical vortices were reported to im-
prove ablation on Ta plates, by creating with a lower ab-
lation fluence clearer and smoother ablated zones and less
debris (Hamazaki et al., 2010). Oosterbeek et al. (2018)
extended the D-Scan method (Samad et al., 2008), used
to determine the ablation threshold fluence, to weakly
focused OVs, and put the method to test measuring ab-
lation on silicon and quartz. In their inverse work, Nivas
et al. (2015) sought to understand how an OV can be in-
vestigated via the ablation spots it produces. They found
that spots features such as surface texture and size of the
annulus depend on local fluence, number of pulses, and
polarization (radial, azimuthal or circular).

Optical vortices can do more than ablate structures in
annular shapes, and the formation of chiral structures
has been demonstrated by several groups. Such chiral
nanostructures may help to further probe the interaction
of light with chiral matter, study the optical activity and
chirality of molecules, and create new devices for quan-

FIG. 29 (color online) Microneedles in tantalum fabricated
by an optical vortex with a total AM J = 2. Left: 25◦ view,
and right: side view. Adapted from Toyoda et al. (2012).

tum information purposes (Omatsu et al., 2019). Chiral
microstructures, such as needles and fibers, result from
the direct illumination of intense OVs on metals (Omatsu
et al., 2010; Syubaev et al., 2017, 2019; Toyoda et al.,
2012), silicon (Ablez et al., 2020), azo-polymers (Am-
brosio et al., 2012; Juman et al., 2014), isotropic poly-
mer (Ni et al., 2017), and photopolymerized resins (Lee
et al., 2018). Laser parameters control the formation
of the structures, and most notably, the helicity of the
structure results from a combination of light’s OAM and
SAM, see Fig. 29.

VI. CONCLUSIONS AND OUTLOOK

The early 1990s witnessed a breakthrough in optics
with the development of techniques to generate coher-
ent beams of highly inhomogeneous light, known as op-
tical vortices (OVs) or twisted light. These objects ex-
hibit unique features (most notably phase singularities
and OAM) that challenge our intuition based on plane
waves and Gaussian beams. These properties are more
than a curiosity, and bring about new physics in their
interaction with matter, with important implications to
technology.

The present article reviewed the physics of the inter-
action of OVs and condensed-matter systems, providing
the theoretical basis and a detailed account of the current
progress in the theoretical and experimental research as
well as in applications to the field. In the following Sec-
tion we will summarize the main aspects discussed so
far. We will then finish this review with an account of
our own perspective on future directions that research
in OV-condensed matter may take to unfold new physics
and applications and on challenges associated with these
developments. These are by no means exhaustive, they
are meant to spark the readers’ curiosity, and help dis-
cover their own research lines.
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A. Concluding remarks

A historical account of discoveries leading to the un-
derstanding of light and its interaction with matter in-
troduced the theoretical description of OVs. We briefly
surveyed their most curious and relevant properties. A
key concept in the classification of optical beams is the
paraxial approximation, which has been the basis for the
majority of theoretical and experimental studies on opti-
cal beams either with or without singularities. Beams in
this regime are characterized by purely transverse electric
and magnetic fields and OVs may exhibit a well-defined
topological charge and circular polarization. The parax-
ial regime is limited to beams with characteristic lateral
dimensions much larger than the wavelength. Going be-
yond this limit, the beams may exhibit intriguing new
phenomena such as a strong component in the propa-
gation direction or a dominant magnetic field close to
the singularity and in general there are components with
different topological charges. These features open new
possibilities, e.g., for the optical control of nanostruc-
tures. We provided a detailed discussion and compari-
son of paraxial and full solutions of the Helmholtz equa-
tion, exemplified by the well-known Laguerre-Gauss and
Bessel beams, respectively. Other solutions were men-
tioned, emphasizing the existence of OVs with multiple-
singularities. We discussed the derivation of OVs from
potentials and the role of the gauge, in particular in the
non-paraxial regime, as well as the representation of OVs
in terms of plane waves, aspects on generation and mea-
surement of the OAM content, and the impact that sub-
ject has on physics, chemistry and biology.

The field of OV-condensed matter interaction builds
on a long history of condensed-matter physics, in partic-
ular solid-state physics and condensed-matter optics. To
provide the necessary background, we offered a focused
overview of the basic concepts of solid-state physics rel-
evant for the field. A recount of the crystalline state
reminded the reader of the electronic state of semicon-
ductors and metals that form the basis of simple and
complex systems. Bulk materials and the relevant nanos-
tructures, like quantum wells, dots, and rings, together
with the modern two-dimensional materials were intro-
duced. Motivated by the subject of the review, a focus
was on condensed-matter optics. The issues of gauge
choice and invariance were carefully examined, and then
the usual approximation of vertical optical transitions
for plane-wave like or weakly inhomogeneous light fields
was revisited. The theoretical toolbox to treat the dy-
namics of condensed matter systems under light excita-
tion was presented in considerable detail. The formalism
most often applied in the field of OV-condensed matter
interaction is based on the equations of motion for the
single-particle density matrices and accommodates aptly
both the light-matter and the electron-electron interac-
tions, however also other approaches like non-equilibrium

Green’s functions have been used and are therefore briefly
reviewed.

The preceding sections paved the way to the main part
of the article: a cohesive analysis of the fundamental the-
ory of the interaction of OVs with condensed-matter sys-
tems, alongside the review of the current literature in the
field. Standard semiconductor optics is a rich discipline
despite the fact that it is based on strong simplifying
assumptions regarding the light-matter interaction. We
pointed out that these customary and almost silent as-
sumptions are the first conceptual sacrifices needed to
describe the effects of structured light on matter. The
main misleading assumptions that must be abandoned
are the vertical-transition and the dipole-moment ap-
proximations. And other notions that hinder a sound
understanding of this new field are the beliefs that light
beams interact with matter mostly (or only) via their
transverse electric field, that bulk semiconductors are the
simplest model to understand the OV-matter interaction,
and that light is always well represented by plane waves.
Striped away from notions that lead us off track, we com-
prehensively studied the theory of crystal-OV interaction
that constitutes the building block to tackle phenomena
taking place in many systems.

In bulk semiconductors, the light-matter Hamiltonian
matrix elements for the case of strongly inhomogeneous
light fields has to be recalculated and novel selection rules
are obtained, based on the conservation of total angular
momentum. The OAM is transferred from the light beam
to the photo-excited electrons, generating macroscopic
currents and ultrafast local magnetic fields. Various ex-
periments indeed confirmed this transfer of AM. When
the electron-electron interaction is taken into account the
rich physics of excitons comes into play, modified by the
finite OAM of the structured light, which results in the
creation of excitons in a superposition of states with non-
zero center-of-mass momentum.

Semiconductor nanostructures add the complexity of
their own spatial inhomogeneity, which is typically han-
dled adequately by the envelope-function approximation.
Here again novel matrix elements for the light-matter in-
teraction dictate the allowed and forbidden optical tran-
sitions, distinct from the ones obtained in traditional op-
tical excitation with plane waves. Quantum rings play a
central role due to their especially adapted geometry to
the cylindrical nature of the twisted light beams.

In semiconductor microcavities the strong coupling
between excitons and light gives rise to the forma-
tion of exciton-polaritons. Here, vortical structures in
the polariton fluid can also form spontaneously with-
out the need of pumping by an OV. Analogously, in
metallic nanostructures the light-matter coupling leads
to plasmon-polaritons which again provide new features
when studying their interplay with OVs. Of particular
interest are spiral geometries which provide a singular-
ity already in their structure and thus may create OVs
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from excitation by plane waves. Angular momentum
transfer has also been observed for OV excitation of two-
dimensional materials. For all these systems theory and
recent experiments have been reviewed.

The peculiarities of the interaction of OVs with con-
densed matter resulted in a bunch of –theoretically pro-
posed or already experimentally realized– applications
relevant for fields such as quantum technologies, com-
munications, sensing, and materials science. They rely
on the precise control and transfer of AM, conversion of
spin and orbital AM, switching and copying of quantum
vortices, squeezing of OVs to subwavelenght lateral size,
creation of annular structures by ablation, to name just
a few. Other applications can be envisaged. In the next
section we will finish this review by our personal view on
possible future directions in the field.

B. Current limitations and future perspectives

In a little more than a decade, the research in OV-
condensed matter interaction has covered a large num-
ber of topics; nevertheless, it is safe to say that the topic
is far from been exhausted. A better understanding of
basic principles on explored topics (e.g., bulk semicon-
ductors) is still hindered by several factors, while other
topics have been only superficially studied. These include
two-dimensional and other van der Waals materials, su-
perconductors, skyrmions, localized plasmon polaritons,
color centers, and non-linear effects in solids. In the fol-
lowing we discuss limitations in our present knowledge
together with possible future directions to overcome these
limitations.

1. Inhomogeneity and excitation strength

Inhomogeneity has been a central point throughout
this review; we argued that, when matter fields (wave
functions) are subjected to spatial variations in light’s
amplitude and phase, curious effects take place. Optical
vortices are special objects, for they have an unavoidable
phase inhomogeneity at the singularity: Irrespective of
the extent of the matter field, the vortex causes unex-
pected effects, as demonstrated by the excitation of a
single Ca ion by far-field OVs (Afanasev et al., 2018;
Quinteiro et al., 2017c; Schmiegelow et al., 2016). How-
ever, this strong spatial phase variation comes at a cost:
the amplitude in its vicinity is small. Then, optical tran-
sitions are orders of magnitude weaker than their coun-
terparts induced by non-singular beams [see Eq. (88)],
with detrimental consequences to applications that re-
quire ultra-fast transitions to improve speed operation
and avoid data-destroying decay or dephasing processes.

Needless to say, one can speak of near-field vs. far-field
optics, and far-field beams can be further split into colli-

mated/paraxial and strongly focused/non-paraxial ones.
Loosely speaking, the degree of field inhomogeneity can
be pushed furthest in near field optics, for which the
diffraction limit does not apply. In contrast, strongly
focused/non-paraxial far fields are limited to the order
of the wavelength.

Most of our knowledge regards the action of far-field
OVs on typical semiconductors, e. g., GaAs, for which
optical transitions are weak. With applications in mind,
it is then a must to improve fluence around the vortex.

Far-field optics with OVs can benefit from the use
of high focusing techniques and materials with large
band gaps. Abbe’s diffraction-limit law states that the
minimum resolution d is given by d = λ/(2 NA), with
NA. 1.4 (Chen et al., 2017; Wang et al., 2017) being
the numerical aperture of the optical system –the reso-
lution is a measure of the beam’s lateral size. High fo-
cusing is achieved by increasing the NA to decrease the
lateral size of the beam. Alternatively, a change in the
wavelength will compress the minimally achievable lat-
eral size too. In interband optical transitions, the size of
the band gap determines the photon’s wavelength. Semi-
conductors with larger band gaps (Andreev and O’Reilly,
2000; Arakawa and Kako, 2006; Jarjour et al., 2007; Kako
et al., 2004; Ranjan et al., 2003) are excited at shorter
wavelength; thus, the lower bound d decreases. The inter-
action of highly focused OVs with large band-gap semi-
conductors is worth exploring.

An alternative is near-field optics. Little work has been
done so far, but the experimental report by Arikawa et al.
(2017) shows that the radius of the ring exhibiting the
maximum intensity of the OV can be decreased by a fac-
tor n ' 4 (Sect. V.C); considering Eq. (88) the rela-
tive interaction strength would increase by a factor n` in
QDs. More enthusiastic theoretical estimates promise an
enhancement of the interaction by orders of magnitude
(Heeres and Zwiller, 2014).

Another route to overcome weak excitation is to con-
sider more extended quantum systems. A notable case,
central to this review, is that of electronic excitations in
bulk semiconductors, 1D and 2D nanostructures; never-
theless, we remind the reader that real solids have de-
fects and impurities, that effectively reduce the span of
the wave function (Leosson et al., 2000; Martelli et al.,
1996; Takagahara, 1989), making important the pursue of
more pure systems. Yet other quantum states of matter
exhibit macroscopic wave functions too,: superconduct-
ing circuits, superfluids, condensates, etc. (Wan, 2006).

2. Experiments

Experimental work reveals unexpected effects, and
confirms/disproves theoretical predictions. The experi-
ments in bulk by Noyan and Kikkawa (2015) and Shige-
matsu et al. (2016) indeed confirmed the transfer of OAM
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to free carriers and excitons, while at the same time
showed unexpected long lifetimes of OAM excitations.

There is an imbalance between theoretical and experi-
mental work. While many theoretical predictions have
been reported, only scarce experimental research was
conducted, especially with elementary nanostructures.
An exception is the field of microcavity exciton polari-
tons, where experimental and theoretical work seems to
be well balanced.

Experiments with OVs and 0D nanostructures are in-
deed challenging. Two main obstacles hinder their re-
alization. First, many experiments rely on ensemble
measurements, which are easy to carry out but trou-
blesome to interpret. Often, the growth process (e.g.,
self-assembly) forms nanostructures of slightly different
sizes and shapes, resulting in large inhomogeneous broad-
ening on very nearly spaced (few meV) energy levels,
which causes difficulties in the extraction of information
already from experiments with homogeneous light. For
excitations by OVs an additional difficulty arises from the
fact that the majority of nanostructures will be located
off the optical axis, which causes on them multiple opti-
cal transitions as explained in Sect. IV.A.3.b and spoils
many of the clear signatures of OV excitation seen in the
ideal, centered case. Second, single-nanostructure mea-
surements require more sophisticated techniques that,
though available with current technology, face additional
challenges when it comes to the excitation by OVs; these
include the tight focusing and precise positioning of the
beam to irradiate a single nanostructure out of an en-
semble and align the singularity of the beam with the
structure, and the read-out of low signals obtained from
nanostructures positioned close to the singularity.

3. Analytical models and numerical simulations

From a theoretician’s point of view, common sense dic-
tates that a new field should be explored from basic phe-
nomena, which can be addressed by relatively simple an-
alytical and numerical models. We have reached now a
good understanding of particular systems, namely, bulk
semiconductors, quantum rings, quantum dots, and mi-
crocavities; in others, our theoretical understanding is
rudimentary. Many important ingredients that would
render a more complete picture of the system under
scrutiny are still to be incorporated. Sophisticated ana-
lytical and numerical models are necessary to guide ex-
perimental work and propose future applications.

Essential elements of material systems that only in few
cases have been considered are: (i) the electron-electron
interaction responsible, for example, for the formation of
excitons and thus exciton-polaritons, but also higher ex-
citonic complexes such as biexcitons and trions; (ii) the
electron-phonon interactions that drives relaxation and
dephasing of electron populations and coherences, but

also opens new and efficient ways of excitation of nanos-
tructures, e.g., by employing phonon-assisted transitions;
(iii) phenomena related to impurities and crystal defects,
which cause loss of spatial coherence and localization of
electronic states, but also provide new functionalities like
single-photon emission; and (iv) the influence of temper-
ature which plays a key role for applications.

Specific to nanostructures, we are in need of a descrip-
tion beyond the envelope function approximation. An
assumption that underlies all our treatment is that of
constant light field within the crystal unit cell [Eqs. (69)],
an assumption supported by the order of magnitude dif-
ference in length scales of unit cell and far-field optical
wavelengths. However, in Sect. VI.B.1 we argue that the
very phase singularity is an unavoidable inhomogeneity
at all scales. Therefore, one wonders what would result
from lifting the restriction imposed by Eqs. (69). This
is indeed a search worth pursuing, though not devoid
from difficulties. The main one is the fact that the enve-
lope function approximation is an assumption of a similar
sort: the so-called envelope part of the wave function is
a constant within the unit cell. An additional complica-
tion is that the variation of fields on the sub-nanometer
scales would render the basic assumption of macroscopic
electromagnetic fields in media invalid (Jackson, 1999).
Thus, a reexamination of the validity of Eqs. (69) requires
a concomitant reexamination of the envelope function ap-
proximation and macroscopic fields in media.

Another possible improvement concerns a better de-
scription of the nanostructure geometry by including in-
terfaces. The external OV driving field goes through lay-
ers of different geometries and compounds that perturb it
to some extent before it reaches the active region, where
the optical excitation of interest takes place. Besides pos-
sibly unimportant attenuation by other partially active
layers, reflection and refraction of OVs result in distor-
tion and displacement of the field by complex mecha-
nisms such as the Goos–Hänchen and Imbert–Fedorov
shifts (Bliokh et al., 2009; Lusk et al., 2018; Novitsky
and Barkovsky, 2008; Okuda and Sasada, 2008).

One can also improve the description of the driving
field. This includes replacing the ideal Bessel beams by
Bessel-Gaussian beams (Gori et al., 1987; Li et al., 2004),
accounting for the imperfections introduced by the exper-
imental generation of beams –e. g., producing beams with
unintended multiple-singularity components (Bekshaev
and Karamoch, 2008; Heckenberg et al., 1992; Karimi
et al., 2007)–, or the use of multiple pulses. The addi-
tion of the interaction with the bath modes in weak and
strong coupling regime reflects not only relaxation pro-
cesses in matter (radiative recombination) but also the
leakage of relevant modes outside cavities, and others.

The physics of optical vortices in microcavities treats
fully quantum mechanically matter and light on equal
footing (Sect. IV.B). Somewhat similarly, but in a semi-
classical fashion, excitations in metal-dielectric interfaces
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solves the coupled dynamics of matter and electromag-
netic fields (IV.C). For other systems, an extension to
a description of the self-consistent problem of the mu-
tual light-matter interaction is in order, for instance, in
systems embedded in cavities under the strong coupling
regime. In addition, a quantum mechanical description
of light is also desirable, for example, in situation of very
low fluence (few photons case).

4. Structured light beyond Laguerre-Gauss and Bessel beams

Little is known about the interaction of condensed-
matter systems with multiple-singularity OVs, and more
general structured beams. Holtkemper et al. (2020)
demonstrated in their theoretical study that structured
light can unveil details of the exciton wave function in
QDs (Sect. IV.A.3.c). This work shows that new physics
and applications can be expected out of the simplest
case of single-singularity OV. In particular, we expect
that interesting research could arise from the study of
Mathieu beams (Sect. II.D). We recall that these are the
solutions of the Helmholtz equation in elliptical coordi-
nates –Bessel beams are in a sense a particular case when
the ellipse collapses to a circle. Mathieu beams exhibit
one or several singularities, whose location, number and
topological charge can be manipulated by adjusting the
beam’s parameters, see Fig. 3.

All these examples show that the topic of OV-
condensed matter interaction is open in many directions
and a variety of interesting results can be expected from
future experimental and theoretical work in the field.
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B. Diény, P. Pirro, and B. Hillebrands (2020), Journal of
Magnetism and Magnetic Materials 509, 166711.

Hohenberg, P., and W. Kohn (1964), Phys. Rev. 136, B864.
Holtkemper, M., G. Quinteiro, D. Reiter, and T. Kuhn (2020),

Physical Review B 102 (16), 165315.
Holtkemper, M., G. Quinteiro, D. Reiter, and T. Kuhn (2021),

Physical Review Research 3 (1), 013024.
Honold, A., L. Schultheis, J. Kuhl, and C. W. Tu (1988),

Appl. Phys. Lett. 52, 2105.
Hopfield, J. (1958), Phys. Rev. 112, 1555.
Hoshina, M., N. Yokoshi, and H. Ishihara (2020), Optics Ex-

press 28 (10), 14980.
Huang, K. (1963), Statistical Mechanics (Wiley, New York).
Huygens, C. (1690), Oeuvres completes XIX 1737.
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Köksal, K., and J. Berakdar (2012), Phys. Rev. A 86, 063812.
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Maragò, O. M., P. H. Jones, P. G. Gucciardi, G. Volpe, and

A. C. Ferrari (2013), Nature nanotechnology 8 (11), 807.
Martelli, F., A. Polimeni, A. Patane, M. Capizzi, P. Borri,

M. Gurioli, M. Colocci, A. Bosacchi, and S. Franchi (1996),
Phys. Rev. B 53 (11), 7421.

Martin, J. D. (2019), Physics Today 72, 30.
Masajada, J., and B. Dubik (2001), Opt. Commun. 198, 21.
Mathevet, R., B. V. de Lesegno, L. Pruvost, and G. L. Rikken

(2013), Optics Express 21, 3941.



58
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