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Modern electron linear accelerators are often designed to produce smooth bunch dis-
tributions characterized by their macroscopic ensemble-average moments. However, an
increasing number of accelerator applications call for finer control over the beam distri-
bution, e.g., by requiring specific shapes for its projection along one coordinate. Ulti-
mately, the control of the beam distribution at the single-particle level could enable new
opportunities in accelerator science. This review discusses the recent progress toward
controlling electron beam distributions on the “mesoscopic” scale with an emphasis on
shaping the beam or introducing complex correlations required for some applications.
This review emphasizes experimental and theoretical developments of electron-bunch
shaping methods based on bounded external electromagnetic fields or via interactions
with the self-generated velocity and radiation fields.
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I. INTRODUCTION

The ability to control the electron beam distribution
produced by an linear accelerator (linac) evolved during
the 20th century. The first generation of electron linacs
(e-linacs) that begun with Wideroe’s invention (Wideröe,
1928) produced continuous streams of electrons by plac-
ing a cathode in an electrostatic gap and therefore had no
control over the longitudinal distribution and only mod-
est control over the transverse distribution, based on the
size of the hole in the anode plate. Control over the lon-
gitudinal distribution began when RF power generators,
developed for radar applications, became available after
World War II. At that time, Luis Alvarez (Alvarez, 1946)

proposed an accelerator based on a linear array of drift
tubes enclosed in resonant cavities, and the second gen-
eration of e-linacs (operating with DC electron guns) was
born (Ginzton et al., 1948). This generation of e-linacs
culminated in the construction of the 100-GeV electron-
positron SLAC linear collider (Dupen et al., 1968). Elec-
tron bunches in these linacs can be approximated by a
Gaussian distribution in phase space which is character-
ized by its second order moments. The next significant
progression in the control over the bunch distribution in
e-linacs took place in the early 1990s with the widespread
adaptation of the RF photocathode gun (Fraser et al.,
1985) and development of the magnetic chicane com-
pressor (Carlsten and Russell, 1996). This progress fa-
cilitated, for example, the development of X-ray free-
electron lasers (FELs); for a review see (Kim et al., 2017).

Despite the progress that was made during the 20th
century, ever more demanding accelerator applications
continued to appear. The e-linac community responded
to these challenges and is now on the verge of taking
the next step in the evolution of control over the bunch
distribution. There are two aspects in this effort: To-
wards a control at a level finer than the macroscopic
scale but coarser than the microscopic scale, which will
be referred to as mesoscopic level, and towards multi-
dimensional beam shaping for distributions that can no
longer be characterized by the second order moments; see
Fig. 1(b). The next step in beam shaping will in general
involve both of these aspects.

The ultimate challenge for beam control (Nagait-
sev et al., 2021) is to produce interesting and use-
ful distribution at the finest level – the microscopic
scale where the distribution is described by a “granu-
lar” Klimontovich-distribution function (Klimontovich,
1995). Such an ultimate degree of control would open the
path toward producing structured beams, e.g., Wigner-
crystal beams (Wigner, 1934) with arbitrary shapes; see
Fig. 1(c).

The development of multi-dimensional shaping began
in the late 1990s and early 2000s. The flat-beam gen-
eration (Brinkmann et al., 2001; Derbenev, 1998) and
emittance exchange between transverse and longitudinal
phase spaces (Cornacchia and Emma, 2002; Kim and
Sessler, 2006) were introduced in this period. Experi-
mental demonstration followed; the flat beam generation
by (Edwards et al., 2000; Piot et al., 2006) and emit-
tance exchange by (Ruan et al., 2011). The emittance
exchange opened up the possibility of shaping a beam in
transverse dimension and transferring it to the temporal
dimension, and vice versa. The technique was used to
produce a train of sub pico-second bunchlets (Sun et al.,
2010a) and bunches with linearly-ramped current pro-
file (Ha et al., 2017a)

Advanced beam phase-space shaping is needed to en-
able many accelerator applications, e.g., improving the
efficiency of beam-driven advanced acceleration tech-
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Figure 1 Definition of the level of control on a beam distri-
bution: macroscopic (a), mesoscopic (b), and microscopic (c)
scales. The shaded distributions depict the projected beam
distribution in a plane defined by any pair of coordinates asso-
ciated with the beam. The blue traces describe the projection
of the distribution along one arbitrary axis.

niques (Bane et al., 1985), improved X-ray free-electron
laser interaction (Emma et al., 2006), or the development
of compact accelerator-based radiation sources (Gover
et al., 2019). Tailored electron beams are also used as
a tool to manipulate hadron beams by exerting nonlin-
ear focusing (Shiltsev, 2016) and cooling (Blaskiewicz,
2014). Finally beam distributions assuming known con-
tinuous function can also be used to mitigate beam degra-
dation arising from collective effects, such as space-charge
force (Kapchinskij and Vladimirskij, 1959; Kellogg, 1967)
and self-interaction via radiative effects (Derbenev et al.,
1995; Seeman, 1992)

The present review is mainly devoted to phase-space
shaping techniques employing bounded external electro-
magnetic fields or via interactions with self-generated ve-
locity and radiation fields. Techniques that couple lasers
with electron beams are not included here since they been
have reviewed in (Hemsing et al., 2014).

We categorize these techniques into three broad
classes. The first category includes techniques that
control the electron distribution from the electron
gun. This includes shaping the distribution of the
emission-triggering laser in photoemission electron
sources or engineering the cathode properties or surface
to control the emitted electron distribution. The sec-
ond class of manipulation consists of shaping systems
that operate within one degree of freedom, e.g., those
based on the use of external and internal fields to
control the distribution in one of the three phase-space
planes. Finally, the third category involves shaping
techniques that also use the external and internal fields
to introduce correlations between two degrees of freedom.

This article is organized as follows. Section II intro-
duces the fundamental concepts necessary to the under-
standing of phase-space manipulations, and the subse-

quent Sections III, IV, V, and VI discuss the various
classes of manipulation mentioned above. Finally, Sec-
tion VII offers some perspective on likely research direc-
tions motivated by recent developments.

II. GENERAL PRINCIPLES

A. Hamiltonian formalism

1. Equation of motion under EM fields

We consider the motion of a charged particle under
electromagnetic field E and B satisfying Maxwell equa-
tions:

∇ ·E =
ρS
ε0
, ∇×E = − ∂

∂t
B, (1)

∇ ·B = 0, ∇×B = µ0JS +
1

c2
∂

∂t
E.

Here ρS and JS are the charge density and current den-
sity of the sources, respectively, consisting of the exter-
nal sources and the beam itself. External sources are
not present within the beam pipes. Thus ρS = 0 and
JS = 0 until we consider the beam generated fields in
II.D. We will use the MKS units throughout this paper.
Introducing the vector and the scalar potential, A and φ
, respectively, the electromagnetic fields can be written
as follows:

B = ∇×A and E = − ∂

∂t
A−∇φ. (2)

The Hamiltonian H for a particle of mass m and charge
e is

H(x,p, t) =
√
m2c4 + c2(p− eA(x, t))2 + eφ(x, t). (3)

Here c is the velocity of light, x the coordinate vector,
and p is the canonical momentum conjugate to x.

The Hamiltonian equations of motion are

dx

dt
=
∂H

∂p
, and

dp

dt
= −∂H

∂x
. (4)

The Hamilton’s equations reproduce the Lorentz force
equation:

dpkin
dt

= e (E + v ×B) . (5)

Here, pkin is the kinetic momentum related to the canon-
ical momentum p as follows:

pkin ≡ mγ
dx

dt
= p− eA, (6)

where γ = relativistic kinetic energy/mc2 = 1/
√

1− β2,
β = v/c, v = |dx/dt|.



4

Figure 2 Curvilinear coordinate system for particle motion.
See the text for details.

2. Curvilinear coordinates

In a beam, particles are bunched in a small region
of space and stay together while moving. Therefore, it
makes sense to introduce a “reference” particle as the one
that is at the beam “center”. Its trajectory is referred
to as the reference orbit, which may be curved but will
be assumed to lie on a plane referred to as the horizontal
plane. The reference orbit is parametrized as x0(s) where
s is the arc length along the reference orbit. Then the
position of any particle in the beam can be represented
as:

x = x0(s) + xeρ + yey, (7)

where eρ is the unit vector normal to the reference orbit
at s on the horizontal plane, ρ(s) the radius of curvature,
and ey is the unit vector normal in the vertical direc-
tion. The set (x, y, s) constitutes the curvilinear coordi-
nate system shown in Fig. 2. The figure is drawn on the
horizontal plane on which the reference trajectory x0(s)
(solid line) lies. The unit vector eρ is in the horizon-
tal plane and perpendicular to the reference trajectory
and the unit vector ey is directed towards the reader.
The line perpendicular to the reference trajectory at s
represents the transverse plane extending in the vertical
direction. The dotted line represents the projection in
the horizontal plane of an arbitrary particle, intersecting
the transverse plane at s at (x, y).

We now make two canonical transformations (Gold-
stein, 2002; Landau and Lifshitz, 1969) to change the
variables to ones convenient for studying beams in accel-
erators: First, we adopt s as the independent variable
and use (x, y,−t) as the coordinates (Courant and Sny-
der, 1958), where t is the time the particle arrives at the
transverse plane at s. The new canonically conjugate
variables are:

xnew = (x, y,−t), pnew = (px, py, U) , (8)

where U is the energy of the particle The new Hamilto-

nian is ;

H (xnew,pnew; s) = −eAs −
(

1 +
x

ρ(s)

)
×√(

U − eφ
c

)2

−m2c2 − (px − eAx)
2 − (py − eAy)

2
.

(9)

Here ρ(s) is the radius of curvature, As = (1 + x/ρ(s))A·
es, where es is the unit vector in the tangential direction.
Since the transformation is canonical, the equation of
motion is the same as in Eq.(4) with the replacement
t→ s, x→ xnew, p→ pnew, and H → H.

The second transformation is to deviation variables
relative to the trajectory of the reference particle
(x0, y0,−t0; p0x, p0y, U0) = (0, 0,−t0; 0, 0, U0). The devi-
ation variables are therefore (x, y,−t+ t0; px, py, U−U0).
The change to deviation variables is also a canonical
transformation, in which the HamiltonianHD is the same
as Eq. (9) except the zeroth and the linear terms in the
power series expansion of H are excluded (Duffy and
Dragt, 2016).

When the electric field is absent and the magnetic
fields are static and perpendicular to es, we can choose
Ax = Ay = φ = 0. Also, the energy U and the curvature
ρ0 are constant. In this case, HD/p0, where p0 is the
momentum of the reference particle, can be chosen as a
scaled Hamiltonian with canonically conjugate variables
(x, y,−v0(t− t0); px/p0, py/p0, (U − U0)/(v0p0)) (MacKay
and Conte, 2012; Ruth, 1986). Note we introduced an
additional scale factor v0, the velocity of the reference
particle, for the longitudinal variables. For the highly
relativistic case, v ≈ c if we ignore the correction factor
of 1/2γ2 , then we can approximate

px
p0
≈ dx

ds
= x′,

py
p0
≈ dy

ds
= y′,

U − U0

v0p0
≈ ps − p0

p0
= δ.

(10)
We will introduce the following notation for the longitu-
dinal deviation variable:

− c(t(s)− t0(s)) = z(s) (11)

The quantity z(s) is the distance (in general the arc dis-
tance) ahead of the reference particle along s, thus arriv-
ing there at an earlier time. Thus, the canonical variables
in the present case are

(x, y, z; px, py, δ) . (12)

The corresponding scaled Hamiltonian is

HS(x, y, z;x′, y′, δ; s)

≈
[
−eAs

p0
−
(

1 +
x

ρ

)√
(1 + δ)2 − x′2 − y′2

]
≈ −e [As]

p0
− x

ρ
δ + +

1

2

(
x′2 + y′2

)
+ .... (13)
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In the above [..] implies removing the zeroth and the first
order terms in the power series expansion in the scaled
variables of the expression inside the square brackets.

When acceleration is present, then we need to go back
to the original Hamiltonian equation of motion Eq.(4 )
or the Lorentz force equation Eq.(5), as will be done in
Section II.B.2. The presence of longitudinal magnetic
field can be treated by working in a rotating frame, as
discussed Section II.B.4.

3. Symplecticity

Our goal in this section is to illustrate the special prop-
erty enjoyed by a mechanical system that can be de-
scribed by the Hamiltonian equation of motion. We will
mostly consider the cases in which the variables Eq.(12)
and the Hamiltonian Eq.(13) are applicable. This is not
valid when acceleration is present as in Section II.B.2,
where we will revert to the variables (x,p).

We rearrange the 6D canonical variables into a column
vector ZZZ as follows:

ZZZ =


x
x′

y
y′

z
δ

 =


ζ1
ζ2
ζ3
ζ4
ζ5
ζ6

 . (14)

It is often useful to introduce the subspace as follows:

ZZZ =

 X
Y
Z

 ;X =

(
x
x′

)
,Y =

(
y
y′

)
,Z =

(
z
δ

)
.

(15)
Note these are the canonical deviation variables in the
curvilinear coordinates introduced in Section II.A.2, not
the usual Cartesian variables of the laboratory frame.

Introducing the gradient vector ∇ in 6D phase space

∇j =
∂

∂ζj
, (16)

the equation of motion with the scaled Hamiltonian can
be written as

d

ds
ZZZ = J∇HS(ZZZ; s). (17)

Here, we have introduced the unit symplectic matrix:

J =

 J2D 0 0
0 J2D 0
0 0 J2D

 , J2D =

(
0 1
−1 0

)
. (18)

By solving Eq.(17), the map M ZZZ → Z̄ZZ corresponding
to a section of the accelerator from s to s̄ can be found :

Z̄ZZ = M (ZZZ) ; ζ̄i = Mi (ZZZ) . (19)

The inverse map is

ZZZ = M−1
(
Z̄ZZ
)
. (20)

We introduce the Jacobian matrix R whose compo-
nents are:

Rij (ZZZ) =
∂ζ̄i
∂ζj

. (21)

For Hamiltonian dynamics, the Jacobian matrix is sym-
plectic:

RTJR = RJRT = J. (22)

It follows from Eq. (22) and the continuity of R as
s̄→ s that its determinant is unity:

det(R) = 1. (23)

All 2×2 matrices with unit determinant are symplectic.
For higher dimensions, Eq. (22) imposes significant re-
strictions on the matrix.

In the following we will mostly consider the case where
the transformation in Eq. (19) is linear:

Z̄ZZ = RZZZ. (24)

Here R is the Jacobian matrix given by Eq. (21) whose
elements are independent of ZZZ.

B. Single particle motion in external field

In this sub-section, we present some important exam-
ples of the transformation matrix R relevant for beam
shaping.

1. Free space, bending magnets, and quadrupole magnets

With no electric fields, and the components of the
static magnetic fields corresponding to a bending magnet
and quadrupole are given by

Bx = B1(s)y, By = −B0(s) +B1(s)x. (25)

Here B0 = p0/ (eρ) is the strength of the dipole magnet
bending the particle horizontally. In computing the vec-
tor potential As one finds the scaled Hamiltonian Eq.(13)
up to the quadratic terms:

HS = −δ x
ρ

+
x2

2ρ2
+
Kq

2

(
−x2 + y2

)
+

1

2

(
x′2 + y′2

)
(26)

Here Kq = eB1/ (p0c) is the quadrupole strength. When
Kq = 1/ρ = 0, this will be free space. The equation
of motion is obtained from the Hamiltonian equation
Eq.(17). The equations in the transverse directions, after
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reducing first order differential equations to second order
ones, become:

d2x

ds2
+

(
−Kq(s) +

1

ρ(s)2

)
x =

1

ρ (s)
δ, (27)

d2y

ds2
+Kq(s)y = 0. (28)

In deriving these equations, we are using the symbol x′

both as the canonical momentum and as the slope dx/ds.
We indicated that ρ and Kq are functions of s. How-
ever, we assume the functions are piece-wise constant
and neglect the transition effects. Equation(27) shows
that the motion in the x direction is influenced both
the quadrupole force as well as the centripetal force due
to the curvature. For historical reason, the motion de-
scribed by Eqs.(27) and (28) is known as the betatron
motion. Although the sign of the quadrupole focusing
strength Kq in the x direction is opposite to that in the
y-direction, focusing in both direction can be achieved
either by the centripetal focusing (weak focusing) or by
arranging the adjacent quadrupoles to have opposite sign
(strong focusing). See text books for details, for exam-
ple (Wiedemann, 1999).

The solution of Eq. (28) can be written in the following
form (Courant and Snyder, 1958):

y =
√

2Jyβy cos (ψy),

y′ =
β′y
βy
y −

√
2Jy
βy

sin (ψy) (29)

Here Jy is a constant, and

ψy =

∫ s

0

ds̄

βy(s̄)
+ ψy0, (30)

where ψy0 is another constant. The function βy(s) is one
of the Courant-Snyder amplitudes, commonly referred to
as the beta function. The other two are:

αy = −1

2
β′y, γy =

1 + α2
y

βy
. (31)

The oscillatory motion described by Eq.(29) is known as
the betatron motion, which has an invariant known as
the Courant-Snyder invariant given by:

γyy
2 + 2αyyy

′ + βyy
′2 = Jy. (32)

The pair (ψy, Jy) are known as the angle-action variables
in classical mechanics (Goldstein, 2002; Ruth, 1986).
The beta function is determined by the following nonlin-
ear, second order differential equation and appropriate
boundary conditions:

2βyβ
′′
y − β′y

2
+ 4β2

yKq = 4. (33)

The advantage of writing the solution in the form of
Eq.(29) is that the betatron motion is specified by two
distinct characteristics, the initial conditions associated
with each particle via Jy and ψy0 and the magnet ar-
rangement of the beamline via the beta function.

The homogeneous part of the Eq. (27) has the same
structure as that of Eq.(28). Thus, we have the betatron
motion in the x-direction and its associated Courant-
Snyder invariant as well. By forming linear combinations
of solutions of the form given in Eq.(29) with appropriate
constants Jx and ψx0, we can construct two independent
solutions of the homogeneous part of the equation, Csτ
(cosine-like) satisfying Cττ=1, C ′ττ=0 and Ssτ (sine-like)
with Sττ=0, S′ττ=1 . Then the full solution can be writ-
ten as follows (Brown, 1968; Wiedemann, 1999):

xs = Csτxτ + Ssτx
′
τ + ηsτδ,

x′s = C ′sτxτ + S′sτx
′
τ + η′sτδ. (34)

Here

ηsτ = Ssτ

∫ s

τ

dζ Cζτ/ρ (ζ)− Csτ
∫ s

τ

dζ Sζτ/ρ (ζ) . (35)

The longitudinal motion is given by

dz

ds
= − x

ρ(s)
,

dδ

ds
= 0, (36)

with the solution

zs = zτ −
∫ s

τ

dζ
xζ
ρ(ζ)

, δs = δτ . (37)

Inserting Eqs.(34) into Eq.(37) and collecting results so
far, we obtain the R matrix for transformation from τ to
s in X, Z space:

Rsτ =


Csτ Ssτ 0 ηsτ
C ′sτ S′sτ 0 η′sτ
R51sτ R52sτ 1 R56sτ

0 0 0 1

 . (38)

The R5,j elements the above are

(R51sτ , R52sτ , R56sτ ) = −
∫ s

τ

dζ (Cζτ , Sζτ , ηζτ ) /ρ (ζ) ,

(39)
The matrix given by Eq. (38) satisfies the symplectic con-
dition, Eq. (22).

For free space (or drift space), we have ρ → ∞, η =
η′ = R5j = 0 and the 2×2 upper-left bloc of Rsτ becomes

D` =

(
1 `
0 1

)
. (40)

Here ` = s−τ is the length of the free space. If we have a
thin quarupole of focal length fC , then the bock becomes

FfC =

(
1 0

−1/fC 1

)
. (41)
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Using Eq. (39), the matrix for a sector bending mag-
net of constant ρ and deflection angle θ can be found,
see Eq.(77) in (Brown, 1968). The matrix for the corre-
sponding rectangular magnet is obtained by multiplying
a defocusing lens of focal length ρ/ tan (θ/2) on both sides
of the sector magnet matrix with the result :

RBrect (ρ) =
1 ρ sin(θ) 0 ρ (1− cos(θ))
0 1 0 2 tan (θ/2)

−2 tan (θ/2) −ρ (1− cos(θ)) 1 −ρ (θ − sin(θ))
0 0 0 1

 .

(42)

This matrix is also given in (Brown, 1999).1

A dogleg consisting of a rectangular bending magnet,
a drift of length ` , and a reverse rectangular bending
magnet has the following matrix:

RDL =


1 ` 0 η
0 1 0 0
0 η 1 ξ
0 0 0 1

 . (43)

Here

` = d+ 2ρ sin(θ),

η = 2 (d+ ρ sin(θ)) tan

(
θ

2

)
, (44)

ξ = −2ρ (θ + sin(θ)) + 8ρ tan

(
θ

2

)
+ 4d tan2

(
θ

2

)
.

The dogleg is often employed in beam shaping, such as
for bunch compression and emittance exchange ( Sec-
tions II.C.3 and VI.C.1).

2. RF photo-cathode cavity

An RF photo-cathode cavity is an important device for
generating bright beams (Fraser et al., 1985). The cavity
will be assumed to have cylindrical symmetry and shown
schematically in Fig. 3 . Since acceleration is involved, we
need to use the canonical variables introduced in Eq.(8)
in Section II.A.1 with the independent coordinate as the
distance along the axis of the cavity s. The discussion
here follows closely that in reference (Kim, 1989).

The non-vanishing components of the EM field , keep-
ing terms quadratic in radial coordinate r, take the fol-

1 However, the sign convention in this reference such that the z
coordinate has the opposite sign to ours. Thus, the (5, j) and
(j, 5) elements there should be multiplied by −1. Otherwise, the
matrix is not symplectic.

Figure 3 A schematics of an RF photo-cathode cavity. The
first cell where photocathode is located is a half cell. From
Ref. (Kim, 1989).

lowing form:

Es =

(
E(s)− r2

4

(
E ′′(s)− k2E(s)

))
sin(ωt),

Er = −1

2
rE ′(s) sin(ωt),

Bϕ =
k

2c
rE(s) cos(ωt). (45)

Here k = 2π/λ = ω/c, λ is the RF wavelength, and

E(s) = E0Θ(s) cos(kz). (46)

Here, E0 is the peak on-axis electric field and
(′) = (d/ds). The function Θ (s) accounts for the
cavity exit at s = sf = (n + 1/2)λ/2; it is unity inside
the cavity and decreases rapidly to zero as s leaves
the cavity at sf . Therefore Θ is similar to the delta
function. Inside the cavity 0 ≤ s < sf , the transverse
field Er and Bϕ are linear in r while Es is independent
of r. These properties are crucial in minimizing the
emittance growth, especially near the cathode located
at s = 0. The parameters of the finite profile as shown
in Fig. 3 can be chosen to produce fields close to those
in Eq. (45) (McDonald, 1988).

a. Longitudinal motion For the longitudinal motion on
the axis r = 0, the canonical variables can be taken as
(ψ, γ) where

ψ = ωt− ks = k (ct− s) = ψ0 − kz. (47)

Here ψ0 is the reference phase. Note z is the same as that
in Eq.(11) for particles moving with relativistic velocity
c. The equations of motion are

dψ

ds
= k

(
γ√
γ2 − 1

− 1

)
dγ

ds
=

eE0

2mc2
[sin(ψ) + sin(ψ + 2ks)] . (48)
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For photo-cathode cavity operation, we need to solve
Eq.(48) with the initial condition (ψ, γ) = (ψi, 1). Noting
that the RHS of the phase equation is appreciable only
near the cathode, 0 ≤ ks � 1, an approximate solution
for the entire range 0 ≤ s ≤ nλ/2 can be found:

ψ =
1

2α sin (ψi)

[√
γ̃2 − 1− (γ̃ − 1)

]
+ ψi,

γ = 1 + α

[
ks sin (ψi) +

1

2
(cos (ψ)− cos (ψ + 2ks))

]
.(49)

Here ψi is the initial phase and

γ̃ = 1 + 2α sin (ψi)ks (50)

and we introduced the acceleration strength parameter

α =
eE0

2mc2k
. (51)

The approximate solution is fairly accurate for 3+1/2 cell
cavity with α = 1 and 30◦ ≤ ψi ≤ 70◦. Improvement of
the approximation is discussed in reference (Flöttmann,
2015). At the exit, the particle would have accelerated
to a high energy γf � 1. The final phase ψf becomes

ψf =
1

2α sin (ψi)
+ sin (ψi). (52)

Thus the ratio of the final to initial phase spread, or the
the bunch length is

∆ψf
∆ψi

= 1− cos (ψi)

2α sin2 (ψi)
. (53)

The bunch at the photo-cathode cavity exit will be com-
pressed if 0 < ψ0 < π/2. Equation (48) can be cast in
Hamiltonian form by using the longitudinal Hamiltonian

HL(ψ, γ; s) =
eE0

2mc2
[cos(ψ) + cos(ψ + 2ks)]

+
√
γ2 − 1 + arctan

(
1√
γ2 − 1

)
. (54)

Therefore the map connecting the initial to the final
points in the (ψ, γ) phase space is symplectic and area-
preserving. However, the transformation is nonlinear
and will lead to an increase in the effective longitudinal
emittance.

b. Transverse motion The Lorentz force given by Eq.(5)
is purely radial with the magnitude

Fr = e (Er − vsBϕ) . (55)

Here vs = ds/(dt). Using Eq.(45), the force can be writ-
ten in the following form:

Fr = eE0
1

2
ρ

[
−1

c

d

dt
(Θ sin(ks) cos(ωt))

− Θ′ sin(ψ) + (1− β)Θ′ sin(ks) cos(ωt)] (56)

The change of the radial momentum from the cathode
to exit is the time integral of the above equation. The
contribution of the last term is negligible for relativistic
velocities and the first term integrates to zero. The con-
tribution of the middle term comes only from the exit
region with the result

∆pr = eE0
r

2c
sin(ψf ). (57)

Equation(57) gives rise to a bow-tie shaped (r, pr) phase
space at the cavity exit due to the different exit phase ψf
of each particle, leading to an increase in the projected
emittance in the (r, pr) space.

The radial force due to the space charge fields,
Eq.(135), since it also depends on the longitudinal po-
sition z, also leads to an emittance increase. This ef-
fect dominates the transverse emittance growth since the
space-charge force is not localized at the cavity exit but
persistent from the beam creation at the cathode. For-
tunately, the increase can be corrected by the emittance
compensation technique (Carlsten, 1989; Ferrario et al.,
2007, 2000; Flöttmann, 2017; Miginsky, 2009; Serafini
and Rosenzweig, 1997; Wang, 2006).

3. Transverse deflecting cavity

In the RF photo-cathode cavity considered in previ-
ous section, the transverse deflection occur only at the
cavity exit. To see how a sustained deflection can be in-
duced, write the transverse part of the third and fourth
of Maxwell equations, Eq.(1), as follows:

∂

∂s
E⊥ − es ×

∂

∂t
B⊥ = −es ×∇⊥Es,

∂

c2∂t
E⊥ − es ×

∂

∂s
B⊥ = −es ×∇⊥Bs. (58)

The first of the above is the differential form of Panofsky-
Wenzel theorem (Panofsky and Wenzel, 1956) and the
second was noted by (Paramonov and Flöttmann, 2019).
Let’s consider a traveling wave with fields in the following
form:

(E⊥,B⊥) =
(
Ẽ⊥(x, y), B̃⊥(x, y)

)
sin (ψ),

Es = Ẽs(x, y) cos (ψ). (59)

Assuming that the phase velocity of the wave and the
particle velocity are both equal to c, we can show that the
LHS of both equations are proportional to the transverse
force. From the expressions on the RHS, it then follows
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Figure 4 Iris-loaded structure producing HEM modes for
transverse deflection. ∆t is the thickness of the discs and d the
structure periodicity. From Ref (Paramonov and Flöttmann,
2019).

that the transverse gradient of both Es and Bs should not
vanish for a sustainable transverse force . An iris-loaded
structure, such as shown in Fig. 4, supports hybrid elec-
tromagnetic (HEM) modes, that can provide a sustained
transverse force. The mode was studied by many authors
since 1963 (Flöttmann and Paramonov, 2014; Garault,
1964; Hahn, 1963; Paramonov and Flöttmann, 2019).

When the iris thickness ∆t is much smaller than the
structure period d, which in turn is much smaller than
the mode wavelength, the electric field should be in the
radial direction at r = a. The field components up to the
second order of polynomials in x and y are found to be

Ex = −Ê k
2

4

(
a2 + x2 − y2

)
sin (ψ),

Ey = −Ê k
2

2
xy sin (ψ),

Es = Êkx cos (ψ),

cBx = Ê
k2

2
xy sin (ψ),

cBy = −Ê k
2

4

(
a2 − 4/k2 + x2 − y2

)
sin(ψ),

cBs = −Êky cos (ψ). (60)

The Lorentz force is then

F = (Fx, Fy, Fs) = eÊ (− sin (ψ), 0, kx cos (ψ)) (61)

For beam shaping applications, we wish the transverse
deflection changes sign as z varies across a bunch so that
the head and tail receive an opposite kick. Thus, we
choose ψ0 = 0 in Eq.(47). Assuming kz � 1, the force
to first order in the deviation variables (x, z) becomes

F ≈ eÊ (kz, 0, kx) (62)

The equation of motion inside the HEM structure is then

dx

ds
= x′,

dx′

ds
=
κT
`
z,

dz

ds
= 0,

dδ

ds
=
κT
`
x. (63)

Here ` is the length of the cavity and

κT =
eÊ`k

mc2γ
(64)

is a parameter characterizing the deflection strength. In
Eq.(63), dz/ds vanishes since particles are highly rela-
tivistic. The solution of Eq.(63) can be written by the
following matrix connecting the entrance and exit val-
ues of the vector (X,Z) = (x, x′, z, δ) (Cornacchia and
Emma, 2002):

RTDC =


1 ` κT `/2 0
0 1 κT 0
0 0 1 0
κT κT `/2 κ2

T `/6 1

 . (65)

The matrix RTDC has the desirable property that
(RTDC)

n
is the same as the matrix for a cavity n times

longer, corresponding to the matrix obtained by substi-
tuting `→ n` and κT → nκT in Eq.(65).

The (6, 5) element in RTDC wreaks havoc in the
transverse-to-longitudinal emittance exchange discussed
in Section VI. However, it can be removed by suitable
accelerating cavities (Zholents and Zolotorev, 2011).

4. Axial magnetic field

A cathode may be immersed in an axial magnetic field
to guide and focus electron beams (Reiser, 1994) and
for certain beam shaping purpose. Assuming cylindrical
symmetry around the s-axis perpendicular to the cathode
surface, the vector potential can be written as

A(r, s) =
1

2
rB (s) eϕ. (66)

Here we are using the cylindrical coordinate (r, ϕ, s) with
origin at the cathode center, and s is the distance away
from the cathode. The magnetic field is

B(r, s) = ∇×A = B(s)es −
1

2
rB′eρ. (67)

The second term involving B′ = dB/ds gives the mag-
netic flux spreading out radially outside the solenoidal
coil. We are assuming the variation in s is slow, B′′ ≈ 0,
so that ∇×B vanishes.

The transverse motion is given by

d2x

ds2
= −eB (s)

ps
es ×

dx

ds
− eB′ (s)

2ps
es × x. (68)
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The motion looks simpler in a special rotating frame.
The coordinate vector x in the laboratory frame is related
to the coordinate vector xR in a frame rotating at a rate
κ (Kim and Wang, 2000) as follows :

x = MϕxR, Mϕ =

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
,

with ϕ (s) =

∫ s

0

κ (τ) dτ. (69)

By differentiating, we obtain

dx

ds
=

(
d

ds
Mϕ

)
xR +Mϕ

d

ds
xR. (70)

The first term is(
d

ds
Mϕ

)
xR = −κ

(
sin(ϕ)xR − cos(ϕ) yR
cos(ϕ)xR + sin(ϕ) yR

)
= −κMϕ (es × xR) . (71)

We thus obtain the well-known relationship between the
space-frame (laboratory frame) and body-frame (moving
with the body) differentiation (Goldstein, 2002):

d

ds
x = Mϕ

(
d

ds
− κes×

)
xR. (72)

The second derivative is

d2x

ds2
= Mϕ

(
d

ds
− κes×

)(
d

ds
− κes×

)
xR. (73)

Using Eq. (73) in Eq. (68), and choosing

κ (s)→ κL (s) ≡ eB (s)

2ps
, (74)

we find that the equation of motion in the rotating frame
becomes very simple:

d2xR
ds2

= −κ2
L (s)xR. (75)

The spatial frequency κL given by Eq. (74), is one half
of the cyclotron frequency, and is known as the Larmor
frequency (Brillouin, 1945). In this frame the particle
appears to be under a cylindrically symmetric focusing
force. Equation (72) can also be written as

d

ds
xR = R−1

(
d

ds
+ κLes×

)
x. (76)

Noting that es × x = ρeϕ and in view of Eq. (66), we
have

pR ≡ psx′ = R−1 (p + eA) . (77)

Therefore, the transverse momentum in the instanta-
neous rotating frame is simply the canonical momentum.
The canonical angular momentum is

LLL = psxR × x′R = 2psLes. (78)

The magnitude of LLL in laboratory frame quantities is

L = ps
(
xy′ − x′y + κL

(
x2 + y2

))
= γmr2ϕ̇+

e

2π
Φ.

(79)
Here the term proportional to ϕ̇ = dϕ/dt is the kinetic
part and the term proportional to Φ, which is the mag-
netic flux enclosed inside a circle of radius r at a given
location in s, is the field part. L is constant due to the
conservation of canonical angular momentum (Noether,
1971). This is also referred to as the Busch’s theorem
(Busch, 1926; Reiser, 1994). The conversion of field part
to kinetic part occurs as the particle exits the solenoid
when it receives an azimuthal kick from the radial mag-
netic field in the transition region.

The relation between the 4D phase-space vector in the
rotating frame and that in the laboratory frame is

(
XR

YR

)
=


xR
x′R
yR
y′R

 = RB


x
x′

y
y′

 . (80)

Here

RB =


1 0 0 0
0 1 −κL 0
0 0 1 0
κL 0 0 1

 . (81)

Note MB is not simplectic. However, its determinant is
unity:

det[RB ] = 1. (82)

C. Beam transformation under external field

1. Liouville’s theorem and manipulation of phase-space
distribution

A beam consists of many particles and can be specified
by its phase-space distribution function f(ZZZ; s). Let the
phase-space volume Ω in ZZZ at s1 transform to Ω̄ in Z̄ZZ
at s2. Here, we are going back to the general nonlinear
map M , Eq.(19). Assuming that there are no obstruc-
tions leading to particle loss, the distribution function
can be normalized to unity as the beam goes through an
accelerator beamline:∫

Ω

d6ZZZf (Z, s1) =

∫
Ω̄

d6Z̄ZZf
(
Z̄ZZ, s2

)
= 1. (83)

The left-hand side of Eq. (83) can, noting Eq. (23), be
written as ∫

Ω̄

d6Z̄ZZ det
(
R−1

)
f
(
M−1

(
Z̄ZZ
)
, s1

)
=

∫
Ω̄

d6Z̄ f
(
M−1

(
Z̄ZZ
)
, s1

)
. (84)
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Here R is the Jacobian matrix given by Eq.(21). Com-
paring this with RHS of Eq. (83), we find that the trans-
formation of the distribution function corresponding to
the transform of the phase-space variable in Eq. (19):

f (ZZZ, s2) = f
(
M−1 (ZZZ) , s1

)
. (85)

This is the celebrated Liouville’s theorem (Liouville,
1838), fundamental to many beam shaping schemes in-
volving external fields.

Section III discusses how f(ZZZ; s) at the cathode leads
to different distribution subsequently. If the 6D distribu-
tion function f (ZZZ, s) is integrated over all components
of ZZZ except the variable ζj , we obtain the 1D density
distribution in ζj . Section IV discusses various ways of
obtaining interesting 1D distributions by suitable map
M .

We now return to the case where the map is linear and
can be represented by matrix R.

To give a simple example, consider the distribution in
the (z, δ) subspace:

f (z, δ; s1) =
1

`
√

2πσδ
exp

[
− δ2

2σδ2

]
. (86)

Here ` is the bunch length, over which the distribution is
regarded as constant.

The corresponding line density in z is constant:

λ (z; s1) =

∫
dδf (z, δ; s1) =

1

`
. (87)

The matrix for the bunch compression section consisting
of chirping (energy change linear in z) followed by an R56

is

RC =

(
1 R56

0 1

)(
1 0
h 1

)
=

(
1 + hR56 R56

h 1

)
. (88)

Its inverse is

RC
−1

(
z
δ

)
=

(
1 −R56

−h 1 + hR56

)(
z
δ

)
=

(
z −R56δ
−hz + δ/C

)
. (89)

Here we introduced the compression factor C:

C = 1/ (1 + hR56) . (90)

Therefore, the distribution after the beamline, apply-
ing Eq. (85), becomes

f (z, δ; s2) =
1

`
√

2πσδ
exp

[
− (−hz + δ/C)

2

2σ2
δ

]
. (91)

The corresponding line density is

λ (z; s2) =

∫
dδf (z, δ; s2) =

C

`
. (92)

The line density is increased by C since the bunch length
is compressed by the same factor.

2. Beam matrix and emittance

A beam can also be completely specified by all of its
beam moments, which are:

〈ζiζjζk...〉s =

∫
d6ZZZ f (Z; s) ζiζjζk..., (93)

with i, j, k, .. = 1, 2, ..6. The moments transform accord-
ingly to

〈ζi2ζj2ζk2..〉s2 = Ri2,i1Rj2,j1Rk2,k1.. 〈ζi1ζj1ζk1..〉s1 .
(94)

The first order moments can be made to vanish noting
that ζ’s are deviation variable, that is variables relative
to the trajectory of the reference particle. The reference
particle is at the “center” of the beam in the sense that
the first order moments of the deviation variables vanish:

〈ζi〉 =

∫
d6ZZZ ζif(ZZZ, s) = 0. (95)

The second order moments are

Σ =
〈
ZZZZZZT

〉
; Σij =

∫
d6ZZZ f (Z) ζiζj . (96)

Since f (ZZZ) ≥ 0 and cannot vanish identically, the beam
matrix Σ is symmetric and positive definite.

Note that the R matrix is symplectic, satisfying
Eq. (22). The first moments vanish by suitably choosing
the coordinate frame. The second moments are elements
of the beam matrix, which can be written as

Σ =
〈
ZZZZZZT

〉
=


〈
XXT

〉 〈
XYT

〉 〈
XZT

〉〈
YXT

〉 〈
YYT

〉 〈
YZT

〉〈
ZXT

〉 〈
ZYT

〉 〈
ZZT

〉
 . (97)

Here
〈
XXT

〉
, etc., are 2×2 matrices and 〈〉 is the averag-

ing operation as in Eq. (93). The beam matrix transforms
as

Σ(s2) = RΣ(s1)RT . (98)

We introduce the quantities called projected emittances
in each X,Y,Z subspace:

εprojx =

√
det
(〈

XXT
〉)

=

√
〈x2〉 〈x′2〉 − 〈xx′〉2,

εprojy =

√
〈y2〉 〈y′2〉 − 〈yy′〉2, (99)

εprojz =

√
〈z2〉 〈δ2〉 − 〈zδ〉2.

The projected emittances are in general not invariant.
Williamson (Williamson, 1936) has proved that a pos-

itive definite, symmetric matrix such as Σ can be trans-
formed to a 2×2 block diagonal form by a symplectic
matrix A:

AΣAT =

 〈X1X1
T
〉

0 0
0

〈
X2X2

T
〉

0
0 0

〈
X3X3

T
〉
 . (100)
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Here the 2-vectors Xj , j=1,2,3 represent a new partition
of the 6D space into three, decoupled, 2D phase spaces.
The emittances in each decoupled space

εj =
√

det 〈XjXj
T 〉. (101)

will be referred to as the principal emittance2. The ele-
ments of the 2×2 beam matrix can be parametrized as
follows:

〈XjXj
T 〉 ≡

(
〈x2
j 〉 〈xjx′j〉

〈xjx′j〉 〈x′j
2〉

)
= εj

(
βj −αj
−αj γj

)
.

(102)
From Eq.(101), it follows that the parameters are related
by βjγj − α2

j = 1. Note that this relation is the same
as the second of Eq.(31). The parametrization here is
directly connected to that introduced in the Courant-
Snyder form of betatron motion (29) (identifying the y-
subspace with the j-subspace); If we compute the beam
matrix using Eq.(29) as the beam trajectory, assuming
that the betatron phase ψj0 is uniformly distributed,
then we find that the principal emittance in jth subspace
is the statistical average of particles’ action variable in
that subspace:

εj = 〈Jj〉. (103)

Therefore, the parameters αj ,βj and γj here are in fact
identical to those introduced in Eq.(29).

The beam matrix Eq.(102) can be diagonalized with
the matrix

Bj =

(
1 −αj/γj
0 1

)
. (104)

Indeed

Bj〈XjXj
T 〉BjT =

(
εjβj

∗ 0
0 εj/βj

∗

)
. (105)

Here we used the notation

βj
∗ ≡ 1/γj . (106)

The transformation represented by matrix Bj is a free-
space translation going back a distance ` = αj/γj to
the waist location of the beam where the correlation αj
vanishes. In this sense, βj

∗ is known as the beta function
at the waist. Since angular divergence does not change
under a free-space translation, the value of γj does not
change while translating to the waist. Note the second
of Eq.(31) can be written as

βj =
(
1 + αj

2
)
/γj = βj

∗ (1 + (`/βj
∗)2
)

(107)

2 In reference (Dragt, 2011), this emittance is referred to as eigen-
emittance.

This is the well-known and useful equation describing
how the beta function changes away from the waist.

Performing diagonalization in other dimensions, we ob-
tain

BAΣATBT =

diag (ε1β1
∗, ε1/β1

∗, ε2β2
∗, ε2/β2

∗, ε3β3
∗, ε3/β3

∗) . (108)

The beta functions at the waist, βj
∗s, are also positive

but not invariant. With an additional transformation,
Eq. (108) can be reduced to Williamson’s normal form
diag (ε1, ε1, ε2, ε2, ε3, ε3). However, this last transforma-
tion is not physical since it changes the dimensions of the
elements.

The principal emittance εj is invariant under any
transformation that leaves the subspace j intact, if there
is no acceleration. If j = x, a translation along z-axis is
an example of such transformation. If particles are accel-
erated in the z direction, for example, then x′ = dx/ds is
no longer a canonical variable, and we need to start from
the correct canonical variable px = mγdx/dt = mcγβx′

and its conjugate x. When the particle velocities are
nearly the same, the emittance that is invariant under
acceleration also is

εj
n = βγεj . (109)

Note that β and γ in the above equation are the velocity
in the z-direction divided by c and the particle energy
divide by mc2, not the Courant-Snyder amplitudes. The
emittance defined by Eq.(109) is referred to as normal-
ized emittance, while that defined by Eq. (101) is known
as the un-normalized emittance. The emittances in this
review are un-normalized emittances unless specified oth-
erwise.

The principal emittances can be found by adopting
the standard eigenvalue problem (Dragt, 2011). They
can also be obtained as follows (Courant, 1966; Neri and
Rangarajan, 1990). First, note that the quantities

Γn = Tr[(JΣ)
2n

], n = 1, 2, 3.. (110)

are, in view of Eq. (22), invariant under symplectic trans-
formation. Note also that Σ inside the trace of Eq.(110)
can be replaced by the diagonal matrix Eq.(108). Thus,
we obtain

Γn = 2(−1)n
(

(ε1)
2n

+ (ε2)
2n

+ (ε3)
2n
)
. (111)

The above gives three equations for three principal emit-
tances. We also have

det (Σ) = (ε1ε2ε3)
2
. (112)

Any of the three equations from Eqs. (111) and (112) can
be solved for the three principal emittances.

The square root of Eq.(112), or the product of three
principal emittances, are known as the 3D emittance.
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3. Emittance exchange (EEX) and phase-space exchange (PSE)

An important corollary of Williamson’s theorem is that
an arbitrary re-partition of the emittances is not possible
by means of symplectic transformation. Thus, for ex-
ample, we exchange (εx, εy, εz) to (εz, εy, εx) but can-
not re-partition it to (εx/4, 4εy, εz). This fact appears
to be first noted in the accelerator physics context by
Courant (Courant, 1966).

Although the set of three principal emittances does
not change, the ordering in the set could be changed.
For example, the emittance in X space can be exchanged
to the emittance in Z space. To explain the meaning of
the emittance exchange (EEX), consider a beam matrix
of the form:

ΣI =

(
Σx 0
0 Σz

)
;

Σx =

(
〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉

)
,Σz =

(
〈z2〉 〈zδ〉
〈zδ〉 〈δ2〉

)
. (113)

The matrix ΣI is uncoupled, that is, the off-diagonal
blocks vanish. Therefore, the determinants of the 2×2
matrices Σx and Σz are, respectively, εx

2 and εz
2, where

εx and εz are the principal emittances . Suppose a beam-
line gives rise to the following transformation:

R

(
Σx 0
0 Σz

)
RT =

(
Σz
′ 0

0 Σx
′

)
. (114)

Here, Σx
′ is a 2×2 beam matrix symplectically connected

to Σx and similarly Σz
′ to Σz. It can be shown that R is

of the following form:

R =

(
0 B
C 0

)
, (115)

where B and C are 2× 2 symplectic matrices. Thus

R

(
X
Z

)
=

(
BZ
CX

)
. (116)

Therefore, an EEX transformation is much more than an
exchange of the magnitude of the sub-space area—it ex-
changes the whole sub-space X with the whole sub-space
Z. A phase-space shape in X will be transformed to a
corresponding shape in Z, making the exchange transfor-
mation useful for beam shaping purposes. Although the
transformation was named EEX since it was considered
in the context of the emittance exchange (Cornacchia and
Emma, 2002; Emma et al., 2006; Kim and Sessler, 2006),
it would be more proper to refer to it as phase-space ex-
change(PSE).

Examples of emittance and phase-space exchange
methods are discussed in Sections VI.C.1 and VI.C.2 ,
respectively.

4. Emittance repartitioning

Although emittances can only be exchanged wholly
in a symplectic transformation, an emittance re-
partitioning is possible if a non-symplectic step occurs
at some point during the transformation. An example
is provided by a beam produced from a photocathode
immersed in an axial magnetic field B, as discussed in
Section II.B.4. We construct the beam matrix of the ro-
tating frame-vector Eq. (80):

ΣB =

( 〈
XRXR

T
〉 〈

XRYR
T
〉〈

YRXR
T
〉 〈

YRYR
T
〉 ) . (117)

The subscript B indicates the presence of the magnetic
field. Let εR1 and εR2 be the two principal emittances as-
sociated with the beam matrix ΣB , which will in general
be different from the principal emittance of the beam in
the absence of the magnetic field, ε01 and ε02. In view of
Eq. (82), we have

det [ΣB ] = det
[
RBΣ0RB

T
]

= det [Σ0] . (118)

Here, Σ0 is the beam matrix for B = 0. Thus,

εB1εB2 = ε01ε02. (119)

Invoking the Busch’s theorem for beam, it is shown in
Section VI that the emittances εB1 and εB2 can be de-
termined and their ratio arbitrarily adjusted by varying
the magnetic field . Is this a violation of the Williamson-
Courant theorem? No, since the matrix RB in Eq. (81) is
not symplectic. Since the beam is really born in a mag-
netic field with the beam matrix RBΣ0RB

T , one may
object calling this example an emittance re-partition. In-
deed, if the beam is first produced from a cathode in a
field-free region and then encounters an axial magnetic
field, its principal emittances will not change. Emittance
re-partitioning schemes always involve non-symplectic
elements, such as beam masks or tapered absorbing
blocks. A generalization of Busch’s theorem to a non-
cylindrically symmetric system was discussed by (Groen-
ing et al., 2018). A general emittance re-partitioning was
investigated in Ref. (Carlsten et al., 2011a).

Details of experimental setup and results are discussed
later in Sections VI.B.1 and VI.B.2.

5. Nonlinear case

If the Hamiltonian contains polynomials of order
higher than quadratic in the scaled deviation variables,
the variables in Eq. (14) are not canonical and the map
M in Eq. (19) becomes nonlinear. If the nonlinearity is
small, the canonical variables Eq. (8) can be expressed
in Taylor series in ZZZ. The map from ZZZ → Z̄ZZ can be
found by solving the equation of motion using the origi-
nal Hamiltonian Eq. (9) in the following form:

ζ̄i = Rijζj + Tijkζjζk + ... (120)
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The coefficients Tijk, .. were worked out in detail
in (Brown, 1968) ( However, see footnotes 1 for the sign
convention). The constraints on these coefficients from
symplectic property was discussed in (Wollnik and Berz,
1985).

Higher order solutions can be obtained in classical
mechanics by canonical perturbation theory, which pro-
vides a procedure for finding canonical transformations
in which the new canonical momenta become constants of
motion (Arnold, 1978). The procedure was applied to ac-
celerator beam dynamics, see for example (Ruth, 1986).
A powerful method using Lie canonical transformation
with polynomial generators has been developed that can
handle very high order polynomial terms by numerical
computation (Dragt, 2011).

If the transformation is nonlinear, Liouville’s theorem
still applies microscopically. However, there can be an
apparent increase in the macroscopic phase-space volume
due to filamentation (Sørensen, 1988). For a weakly non-
linear system, one can still introduce adiabatic invariants,
which is the phase-space area following the physical or-
bit (Landau and Lifshitz, 1969).

D. Beam-generated fields

1. Wakefield and impedance

A particle moving uniformly at a speed βc, β ≈ 1
carries a Coulomb field with it, squeezed to an angular
width of ∼ 1/γ =

√
1− β2 due to Lorentz contraction.

If there is a surface parallel to the particle trajectory at
a distance b, a moving area of longitudinal length b/γ
is under the influence of the Coulomb field. If the sur-
face is perfectly conducting and smooth, the boundary
condition at the surface will be maintained. If there are
interruptions in the surface , however, then the field in-
teracts with the surface and produces fields behind the
particle ( thus, the term wake) that can influence the
motion of the trailing particles.

The longitudinal wakefield w(z) is defined as the EM
field Es on a test particle trailing a fixed distance z be-
hind the drive particle (Chao, 1993; Heifets and Kheifets,
1991; Stupakov, 2001; Wilson, 1989):

w (z) = −1

e
Es|z=s−ct . (121)

The minus sign in the above is to make a positive wake
that corresponds to the test particle losing its energy.
The sign of z is that it is ahead if positive. The depen-
dence on the transverse coordinates is not important in
most of the following and is thus neglected. The unit of
the wake field is V per C per m. In the above, we are
considering the case where the wake is uniform along the
beam chamber. When the wake is localized, the wake
function is defined by the integral over the passage of the
local structure.

The energy loss per unit distance of a particle at po-
sition z due to other particles is3

∆E (z) = eQ

∫ ∞
−∞

dz′ w (z − z′)λ (z′) . (122)

Here Q is the total charge and λ(z) is the line-charge
density of the particles in the beam normalized as∫
dzλ (z) = 1.
Now we introduce the impedance per unit length and

Fourier transform of the electric field and current profile
as follows (Chao, 1993; Nielsen et al., 1959):

Z(k) =
1

c

∫ ∞
−∞

ds w (z) e−ikz, (123)

Ẽ(k) =

∫ ∞
−∞

dz e−ikzE (z) , (124)

I(k) = cQ

∫ ∞
−∞

dz e−ikzλ (z) . (125)

From Eq. (122) these quantities are related via

Ẽ (k) ≡ V (k) = −Z (k) I (k) , (126)

where V (k) is the (negative) voltage applied per unit
distance. In Eq. (87) the line density λ(z) was given as
an integral of the phase space distribution keeping only
the Z. In the more general case, we should write

λ(z; s) =

∫
dδd2Xd2Yf (ZZZ; s) . (127)

In discussing coherent instabilities including free-electron
lasers, one often uses the term bunching factor b(k; s) =
I(k)/cQ. Note that I(k) or b(k) can be expressed as an
integral in 6D phase space ZZZ:

b (k; s) =

∫
dze−ikzλ(z; s) =

∫
d6ZZZe−ikzf (ZZZ; s) .

(128)
The collective force due to a beam-generated field on a
particle at z will change the longitudinal momentum and
hence δ:

dδcoll
ds

= eE(z) = −re
γ
N

∫
dkeikzZ(k)b(z; s). (129)

Here re is the the classical electron radius, and N is the
total number of particles. The subscript coll is to em-
phasize that this is the beam-generated, collective force.

The meaning of equations(126) and (129) is that a
current modulation at spatial frequency k impresses an
energy modulation via the impedance Z(k). Passing
through the subsequent beamline, energy modulation can
cause beam instabilities, as discussed in Section II.D.5 .

Next, we discuss three representative cases of
impedance.

3 Note that w(z−z′) is written as w(z′−z) in some references, e.g.,
(Chao, 1993; Stupakov, 2001). Our choice is convenient since it
ensures the same Fourier-transform convention for impedance as
well as current.
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2. Fields due to boundary perturbation

Since wakefields originate from the EM field in the
moving disc scattered off by the surface interruptions, a
wakefield satisfies the causality condition (Wilson, 1989)

w (z) = 0; z > 0. (130)

A wakefield device, referred to as a dechirper, with cor-
rugated walls can be useful in correcting the energy chirp
that may arise while compressing a bunch for high peak
current (Bane and Stupakov, 2016, 2012; Deng et al.,
2014; Emma et al., 2014b). A flat dechirper consisting of
two opposing corrugated plates separated by a half gap
a has been shown to be effective in removing the chirp in
the bunches driving an X-ray FEL oscillator (Qin et al.,
2016). The wakefield of such a device was computed and
can be represented approximately by the following form:

w (z) ≈ πcZ0

16a2
for z < 0; = 0 for z > 0, (131)

with Z0 = 377 Ω being the free-space impedance. For
a flat-top charge density, we see readily from Eq. (122)
that the energy loss is linear in z, and the particles in
the tail losing more energy than those at the head. The
difference in energy correction from head to tail is found
to be

∆E (z) = −πcZ0QL

16a2
. (132)

The impedance per unit length corresponding to
Eq. (131) can be computed from Eq. (123):

Zflat (k) = i
πZ0

16a2k
. (133)

We note here that the impedance of a round pipe of
radius a with random or periodic corrugations in the high
frequency limit is given by (Gluckstern, 1989)

Zround(k) = i
Z0

πa2k
. (134)

Impedances due to the interruption of perfectly con-
ducting walls are sometimes referred to as geometric
impedances.

3. Space-charge force

The longitudinal space-charge wake was computed for
a bunch moving between two parallel conductors (Nielsen
and Sessler, 1959) and moving inside a pipe (Neil and
Sessler, 1965) with the following approximate method:

Recall the variable z = s − cβt ≈ s − ct. Consider a
beam of uniform charge density λ(z) = constant and a
uniform cross section, of radius b, travelling at velocity

βc, β ≈ 1 along the axis of a circular, perfectly conduct-
ing pipe of radius a. The non-vanishing EM field com-
ponents in cylindrical coordinates are the radial electric
field Er and the azimuthal magnetic field Bϕ given by

r ≤ b : Er(r, z) =
Qλ(z)r

2ε0b2
, Bϕ(r, z) =

βQλ(z)r

2ε0b2c
,

b < r < a : Er(r, z) =
Qλ(z)

2ε0r
,Bϕ(r, z) =

βQλ(z)

2ε0rc
.(135)

Now consider the density has a variation so that the z-
dependence of λ (z) needs to be taken account. If the
dependence on z is slow, the main fields are still given by
Eq. (135) , but , in addition, there will be a longitudinal
electric field on axis Ez (0, z) . This can be determined
from Faraday’s law: The line integral of electric field
along the loop consists of straight lines connecting the
points in cylindrical coordinates, (0, z)→ (0, z + ∆z)→
(a, z+ ∆z)→ (a, z)→ (0, z) should be equal to the time
derivative of the magnetic flux into the loop. We obtain
in this way

Ez (0, z) = − Q

2ε0γ2

(
1 + 2 log

a

b

) dλ
dz
. (136)

According to Eq. (136), the space-charge field tends
to smooth away a density bump , as the particles repel
each other. This is dramatically illustrated by Fig. 28
(b) in Section V.A.1. If there is a periodic modulation in
the density, the other hand, then the modulation could
become enhanced, as discussed in SectionV.A.3.

Equation (136) diverges logarithmically as a → ∞.
However, the derivation is valid only if the density bump
is not too steep, implying [see problem of 1.5 of (Chao,
1993)]

a < γ∆z, (137)

where ∆z is the extent of the density variation. The
corresponding impedance is

ZSC = i
Z0k

4πγ2

(
1 + 2 log

[a
b

])
. (138)

In the absence of a vacuum chamber pipe, the inequal-
ity Eq. (137) is violated. In this case, one can use the
squeezed electric field due to a single particle moving
with uniform velocity βc ≈ c parallel to the z-axis (Jack-
son, 1998) as the Green’s function, perform the Fourier
transform in z variable, and observe that only the 0-th
component in the azimuthal series will contribute. The
impedance per unit length can then be computed with
the result (Rosenzweig et al., 1997; Venturini, 2008):

ZSC(k) = i
Z0

πb2k

(
1− kb

γ
K1

(
kb

γ

))
. (139)
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Expanding K1 (kb/γ) for small kb/γ (Huang et al., 2005;
Venturini, 2008):

ZSC (k) = i
Z0k

4πγ2

(
2 log

[ γ
kb

]
+ 2 log 2− 2γE + 1

)
≈ i Z0k

4πγ2

(
2 log

[ γ
kb

]
+ 1.23

)
, (140)

where γE = 0.577 is the Euler number.

4. Coherent synchrotron radiation

A particle on a circular path emits synchrotron radia-
tion. The radiation from the tail of a bunch, proceeding
in a path tangential to the circular path, can exert a force
to the head of the bunch moving on an arc. Making use
of the results known in 1912 (Schott, 1912), the wake-
field at a distance s ahead of the emitting particle (note
s is negative) can be written as follows (Derbenev et al.,
1995; Murphy et al., 1997; Saldin et al., 1997):

E‖(z) = − e

4πε0

2

31/3ρ2/3

d

ds
G (z) , (141)

with G(z) =
1

(z)
1/3

, for z � 2ρ

3γ3
.

In the above equation ρ is the radius of curvature. The
function G (s) vanishes for s ≥ 0. The force due to den-
sity distribution λ (s) will then be

E‖,λ (z) =
e

2πε0

1

31/3ρ2/3

∫ s

−∞
dz′

1

(z − z′)1/3

d

dz′
λ (z′) .

(142)
In the above equation we used integration by parts and
also assumed that |s− s′| is about the bunch length,
which is much greater than ρ/γ3. The impedance associ-
ated with this force is referred to as coherent synchrotron
radiation (CSR) impedance:

ZCSR (k) =
Z0

2π31/3ρ2/3

∫ ∞
0

1

(z)
1/3

e−ikzdz

=
Z0k

1/3

2π31/3ρ2/3
eiπ/6Γ (2/3)

≈ (1.63 + 0.94i)
Z0k

1/3

4πρ2/3
. (143)

The CSR impedance was first identified in connection
with storage ring physics, in which the mode number
n = kρ, where ρ is the radius of the curvature (Faltens
and Laslett, 1975; Iogansen and Rabinovich, 1960). The
CSR impedance can be significant when bending magnets
are used in linacs, e.g., in the final chicane magnet of
a bunch compressor where the current is high (Heifets
et al., 2002; Huang and Kim, 2002).

Synchrotron radiation has also high frequency incoher-
ent part, referred to as incoherent synchrotron radiation

(ISR) (Saldin et al., 1996; Sands, 1955, 1969). However,
the ISR effects that may reduce shaping accuracy are not
significant for low energy electron beams for shaping.

5. Collective motion

We now discuss how the force due to the beam-
generated fields acting back on the beam, limiting to the
4D phase space ZZZ = (X,Z) for simplicity. The first ques-
tion to ask is whether the Liouville’s theorem, Eq.(85),
is still valid in the presence of the beam-generated field.
The answer is yes, as long as we can neglect the discrete
particle aspects and regard the beam as a continuous
fluid. The fluid description is valid if the Debye length
λD is much shorter than the length scale of the collective
disturbance:

kλD � 1, (144)

where k is the wave number of the disturbance. The cri-
teria in Eq. (144) were first derived for non-relativistic
plasma (Pines and Bohm, 1952) and extended to rel-
ativistic beams (Kim and Lindberg, 2011; Rosenzweig
et al., 1997; Sørensen, 1988). For beam physics, we define
the Debye length as the transverse spread of the particles
during one plasma oscillation:

λD =
cσ∆β

ωp
, (145)

where cσ∆β
is the RMS velocity spread and

ωp =

√
e2n

ε0mβγ3
. (146)

is the plasma frequency for a relativistic beam. The basic
process behind collective motion is as follows: A region
in phase space may develop higher spatial density when
the beam goes through some part of the beamline, such
as a compressor. This part of the phase space then exerts
a collective force via Eq. (129). This force is added to the
external force to modify the beam evolution. A classic
example is the plasma oscillation when the density of a
part of the beam is increased at the expense of another
part. These two parts then oscillate against each other
with the plasma frequency given by Eq. (146). Collective
motion is often detrimental for beam shaping, but it can
be useful in some particular cases, such as generation of
ultrashort bunch trains via nonlinear plasma oscillation,
as will be discussed in Section V.A.3.

Let’s now discuss how a beam-generated field affects
the evolution of the phase-space distribution f (ZZZ; s) in a
beamline beginning at s = 0 (Heifets et al., 2002; Huang
and Kim, 2002). In the absence of a beam-generated
field, the beam distribution functions f0 at two different
locations are related by the Liouville’s theorem

f0 (ZZZs; s) = f0 (ZZZτ ; τ) ;ZZZτ = Rsτ
−1ZZZs. (147)
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This is the same as Eq. (85), Rτs being a combination
of any transformation matrix discussed in Section II.B.
For notational clarity, a variable at location τ was given
the same subscript, e.g., ZZZτ . Let dδcoll (zτ ; τ) be the
increase in the electron’s relative energy due to the beam-
generated field in a small interval between τ and τ + dτ .
We obtain

f(ZZZs, s) = f0(ZZZs; s)−
∫ s

0

dτ
∂f0(ZZZτ ; τ)

∂δτ

dδcoll (zτ ; τ)

dτ
.

(148)
From this equation the bunching factor at s, Eq.(128),
can be obtained after some mathematical manipula-
tion (Huang and Kim, 2002):

b (k, s) = b0 (k, s) +

ikre
γ

∫
dτR56,sτ

∫
dk1

2π
Z (k1; τ) b (k1; τ)

×
∫
dZZZ0e

−ikzs(ZZZ0)+ik1zτ (ZZZ0)f0 (ZZZ0) . (149)

Here

zs (ZZZτ ) =

6∑
j=1

R5j,sτζj,τ

= zτ +R51,sτxτ +R52,sτx
′
τ +R56,sτδτ .(150)

In the first part, ζj,τ denote the components of ZZZτ , see
Eq. (14). The second part of the above equation is for the
case ZZZ = (X,Z). Equation (149) is an integral equation
for the evolution of the bunching factor. We consider the
initial distribution in the following form:

f0 (ZZZ0) = f̄0 (ZZZ0) + f̂0 (ZZZ0) . (151)

The first part f̄0 is smooth and the second part f̂0 con-
tains high-frequency modulation giving rise to the initial
bunching factor b0. This term is regarded to be small.
Therefore, f0 in Eq. (149) can be replaced by f̄0. Equa-
tion (149) can be solved iteratively.

To see the physical meaning of Eq. (149), we neglect
the (X) and (Y) phase space, that is, ZZZ = Z = (z, δ).
We assume the initial distribution given by

f0(z, δ; 0) = n0
1√

2πσδ
e−(δ−hz)2/2σδ2 . (152)

This is a Gaussian distribution, as in Eq. (86), but
chirped with chirping coefficient h, with n0 = 1/` be-
ing the line density. The quantities in the exponent of
Eq. (149) are

zs (ZZZ0) = z +R56(s)δ,

zτ (ZZZ0) = z +R56(τ)δ. (153)

Here we simplified the notation by Rs0,56 → R56(s) and
(z0, δ0) → (x, δ). The integral over δ and z can be per-
formed to obtain

b(k; s) = b0(k, s) +

∫ s

0

dτR56,sτ
I(τ)

γIA
×Z [k(τ); τ ] b [k(τ); τ ] ξ(s, τ). (154)

Here, IA = ec/re is the Alfven current, I = ecn0C(τ) is
the peak current at τ , and

k(τ) =
C(τ)

C(s)
k;C(τ) =

1

1 + hR56(τ)
. (155)

The compression factor C was introduced in Eq. (90) and

ξ(s, τ) = e−k
2σδ

2[C(s)R56(s)−C(τ)R56(τ)]2/2. (156)

The meaning of Eq. (154) is clear: The density modu-
lation at τ becomes an energy modulation through the
impedance (that can be enhanced through compression),
which in turn becomes density modulation through R56.
The process can lead to an instability detrimental for
beam applications such as X-ray free-electron laser. Note
the factor ξ becomes small if the energy spread σδ is large.
Intentionally increasing σδ could therefore suppress the
instability.

III. BUNCH CONTROL VIA THE ELECTRON GUN

In this Section, we present a variety of gun-based meth-
ods for controlling the electron bunch distribution. We
classify these methods according to the distribution of the
generated bunch: either mesoscopically shaped or macro-
scopically smooth bunches. (see Fig. 1 and the related
discussion in Section I). In the shaped case, the electron
gun is used to directly generate the desired shaped bunch.
In the smooth case, the gun generates a smooth bunch
which is subsequently shaped by the methods presented
in the later Sections, IV and V, of this review. Gun-based
methods presented will include those that have achieved
control over the 2D transverse or 1D longitudinal dis-
tribution, as well as recent progress in controlling the
complete 3D distribution.

A. Introduction

The electron gun consists of a cathode surface in a re-
gion of accelerating and focusing fields and is used to gen-
erate the initial electron bunch which is injected into the
linac. The emission of the initial electron bunch distribu-
tion from the cathode surface and its evolution through
the gun is complex and varied. The reader interested in
understanding electron gun physics in-depth is pointed
to (Dowell et al., 2008; Dowell, 2010, 2016; Rao and Dow-
ell, 2015) and the references therein. In the introduction
to this Section, we only present high-level details needed
for understanding gun-based shaping.

Electron bunch generation begins at the cathode sur-
face and continues until the bunch exits the external
fields (accelerating and focusing) of the gun. The initial
electron distribution emitted from the cathode surface is
affected by both the properties of the cathode material
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and the fields at the cathode surface while the evolu-
tion of the bunch is affected by the self-generated fields
of the bunch (e.g. space charge) as well as the external
fields. However, in this Section, we focus on an idealized
regime where the self-generated fields are negligible, and
the external fields of the gun merely accelerate and guide
the bunch to high energy while preserving the shape (al-
though not the size) of initial cathode distribution. The
later Sections of this review include the other effects.

Electron guns used in e- linacs can be classified by their
electric fields (DC and RF) or by their cathode type.
There are a wide variety of cathodes in use, but they
can conveniently be classified by their emission mecha-
nism: field, thermionic, and photo emission, FE, TE and
PE, respectively. When these cathodes are operated in
an electron gun, they go by the names of (DC or RF)
field emission gun, (DC or RF) thermionic gun, and (DC
or RF) photoemission cathode, which is usually shorted
to ”photocathode” gun. However, as stated above, the
impact of the gun fields on shaping are being ignored
(in this Section) so we will drop the DC and RF labels,
unless noted otherwise. On the other hand, the classi-
fication according to the emission mechanism is crucial
to understanding gun-based shaping methods since the
methods presented in this section differ substantially in
their capabilities for controlling the initial cathode dis-
tribution emitted from each cathode type.

Historically, all three cathode types have been used to
generate smooth beams, but the same cannot be said
of shaped beams. TE cathode guns are robust elec-
tron sources and they are the workhorse of storage rings
for light sources around the world (LightSources, 2021).
They are widely used in e- linacs for producing smooth
bunches but have not been used in applications requiring
either transverse or longitudinal shaping. FE cathode
guns are still in the R&D phase and are not yet used in
the e- linacs that are the topic of this review. Nonethe-
less, the FE cathode gun has great potential and it has
demonstrated transverse shaping, although not longitu-
dinal, in proof of principle experiments. The PE cathode
gun is the workhorse for linacs in SASE FEL facilties
and they are being used for both transverse and longitu-
dinal shaping applications. The reason FE and TE cath-
odes are not used for longitudinal shaping is because the
electron emission from these cathodes follows the time
structure of the applied electric field (ranging from con-
tinuous in a DC gun to ns-scale in an RF gun) which
is too long for the time scales of interest (fs-ps) in this
review. In principle, TE cathodes could be used for gen-
erating transversely shaped bunches, but this avenue has
not been pursued. For a thorough discussion of the var-
ious cathode types, we refer the interested reader to the
tutorial paper from (Jensen, 2018).

The remainder of this Section is organized into three
parts. In III.B, we present a review of cathodes focused
on cathode properties relevant to bunch shaping. Second,

we present demonstrated methods for generating smooth
bunches ( III.C) and end with methods for generating
shaped bunches ( III.D).

B. Cathode review

In this Section, we review different cathodes types and
summarize their properties relevant to shaping (see Table
I). These properties include the magnitude of the electric
field at the cathode (Ec) and the work function (W ) of
the cathode, which is the minimum energy needed to ex-
tract an electron from the cathode surface. There are also
several properties of the emitted electron bunch of rele-
vance: current density (J), average kinetic energy emit-
ted from the cathode (Ek), transverse and longitudinal
rms spot sizes (σx, σz) and dimensionless rms momen-
tum (σpx , σpz ). We also include some parameters that
are specific to the particular cathode type but those will
be introduced in the corresponding Sections below.

1. Current density

There is great variation in the magnitude of the current
density, J , generated by the three cathode types. Typ-
ical values of J for the three cathode types are shown
in row Longitudinal Parameters of Table I. Note that
while the current density does not play a direct role in
bunch shaping we include this Section since it provides
the necessary background to understand how we classify
cathodes in this review.

A FE cathode consists of an arrangement of one or
more sharply pointed tips, or emitters, located on a cath-
ode immersed in an applied ”macroscopic” electric field,
Ec. The geometry of the tip is characterized by the field
enhancement factor β which enhances Ec (∼100 MV/m)
to generate extremely high local fields, F = βEc (∼10
GV/m) on the tip, from where the electrons are ex-
tracted. The local FE current density is given by the
Fowler-Nordheim equation (Fowler and Nordheim, 1928)

jFE (F ) = AFEF
2e−

w3/2

F , (157)

with material constant AFE . Lower case letters, jFE
and w, are used to differentiate local from macroscopic
parameters, JFE and W . The field emission electron
microscope (FEM) is an example of a DC FE gun based
on a single FE tip. In a typical FEM, a tungsten tip
(W = 4.5 eV) has a radius ranging from 100 nm to 1 mm.
Small tips are capable of extremely high local current
densities, jFE ∼106A/mm2, with correspondingly small
emission areas ∼100 nm2.

The challenge of operating an electron gun with a sin-
gle FE tip is that the current emitted is only ∼0.1 mA
per tip, which is inadequate for operation of the linacs
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we consider in this review since they require larger cur-
rent (at least 1A is needed) from the cathode. The solu-
tion is to use large surface area FE cathodes engineered
to hold many microscopic emitters. Three such engi-
neered FE cathodes have been developed and used in
FE electron guns: field emission arrays (FEAs) (Jarvis
et al., 2010), carbon nanotubes (CNTs) (Laszczyk, 2020),
and ultra-nanocrystalline diamonds (UNCDs) (Baryshev
et al., 2014). These surfaces are composed of a quasi-
continuous distribution of electron emitters of macro-
scopic area ∼1 mm2 and achieve macroscopic current
densities of JFE ∼1 A/mm2, sufficient for e- linacs. The
FE parameters shown in Table I are for large area engi-
neered FE cathodes, not single tips.

TE is the liberation of electrons from a heated sur-
face and are operated in guns with applied electric field
on the cathode Ec (∼100 MV/m). Dispenser cathodes
have work functions of W (∼1.6 eV) and are represen-
tative of TE cathode and are operated with a tempera-
ture of T (∼1400 K) to allow electron emission. The TE
macroscopic current density is given by the Richardson’s
Law (Richardson, 1913),

JTE (T ) = ATET
2e
− W
kbT (158)

at temperature T (K), where ATE is a material constant,
and kb is the Boltzmann constant. Dispenser cathodes
operated in electron guns with high electric fields, Ec,
(∼100 MV/m) can achieve current densities of JTE ∼1
A/mm2 and are therefore sufficient for electron linacs.

PE occurs when the photons illuminating the photo-
cathode surface have an energy in excess of the work
function of the cathode material. The current density
emitted from a PE cathode (Dowell and Schmerge, 2009)
is

JPE (hν) = nphAPE(hν −W )
2
, (159)

where hν is the photon energy, h is Plank’s constant,
APE is a material constant, nph is the number of pho-
tons per unit area, and (hν −W ) is known as the excess
energy and is the kinetic energy of the emitted electrons.
PE cathodes are operated in electron guns with high elec-
tric fields, Ec, (∼100 MV/m) and achieve the highest
macroscopic current density of the three cathode types,
JPE ∼1000 A/mm2.

2. Kinetic energy

Ek is the average, total kinetic energy of the electrons
emitted from the cathode which are emitted isotropically
into the half-sphere over the cathode. In this Section, we
give the expression for Ek for each of the different cathode
types. As will be seen in the next section, the intrinsic

emittance is determined by Ek. Note that the total ki-
netic energy, Ek, is equipartitioned into each degree of
freedom, x, y, z.

The average kinetic energy of electrons emitted from a
FE cathodes (Forbes, 2015) is ,

Ek =
e~F√
8meW

, (160)

where me is the electron mass and typical Ek = 0.3 eV
for FE cathode tips. For electrons emitted from a TE
cathode, their average kinetic energy is,

Ek =
3

2
kbT, (161)

where, for example, Ek = 0.12 eV for a dispenser cathode
operating at T=1400 K. Finally, electrons emitted from
PE cathodes have average kinetic energy given by,

Ek =
hν −W

2
, (162)

where, for example, a copper cathode (work function
of 4.65 eV) is illuminated by a laser of wavelength
λ=248nm, has Ek = 0.18 eV.

An examination of the three expression for Ek reveal
two things worth pointing out. First, the expressions for
FE and PE both depend on the work function W . In
practice, the work function W is usually replaced by the
effective work function φeff to account for the Schottky
effect (Dowell and Schmerge, 2009) which is the reduc-
tion of the work function by the applied field and it plays
a role in all emission processes, especially field emission.
However, we keepW in all expressions for simplicity. Sec-
ond, note that a parameter associated with the emission
mechanism appears in each expression for Ek: it depends
on the local field F for FE cathodes, on temperature T
for TE cathodes, and on photon energy hν for PE cath-
odes.. Typical values of Ek are shown in Excess Kinetic
Energy of Table I.

3. Emittance

In the first half of this Section, we explain the fun-
damental role that emittance plays in limiting the res-
olution of the shape and end with a discussion on the
intrinsic emittance generated by the three cathode types.

a. Shaping resolution We define the shaping resolution
to be the smallest spot size that can be obtained at the
end of a beamline, of transfer matrix R, for a fixed beam
spot size at the beginning of the beamline. If we place a
lens (i.e. a quadrupole magnet) at the beginning of this
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beamline (Carey, 1987), then the lens can be varied to
minimize the transverse spot size at end,

σx,min =
R12εx
σx,0

, (163)

where R12 is the (1, 2) element of R, σx,0 is the beam
size at the beginning of the beamline (which is also at
the lens) and εx is the horizontal beam emittance (as-
sumed to be constant). Note, we are ignoring collective
effects of the beam and higher-order magnetic optics of
the beamline. (For the derivation of Eq. (163) see Eq.
6.45 in (Carey, 1987) and the discussion therein. Also
note that smallest spot size is not necessarily the waist of
Eq. (106).) A similar expression for the minimum longi-
tudinal bunch length (σz,min) at the end of the beamline
can be derived,

σz,min =
R56εz
σz,0

, (164)

where σz,0 is the longitudinal bunch length at the begin-
ning of the beamline, εz is the longitudinal beam emit-
tance, and R56 is an element of the transfer matrix. Note
that in this case, we use a longitudinal lens (i.e. an RF
cavity) at the beginning of the beamline to minimize the
bunch length at the end of the beamline

The significance of the preceding two equations is that
they give us three ways to minimize the spot size. or in-
crease the resolution. Two ways can be easily controlled,
increase the initial spot size (σx,0, σz,0) or decrease the
elements (R12 and R56). The third way of increasing the
resolution is to decrease the emittance (εx, εz), however,
this is not possible once the beam leaves the cathode
since the emittance is an invariant. Therefore, the in-
trinsic emittance of the beam emitted from the cathode
is the ultimate limit on the shaping resolution, assuming
no collimation or cooling of the beam. We now turn to
the intrinsic emittance generated at the cathode.

b. Intrinsic emittance Having established the fundamen-
tal importance of emittance in shaping, we now discuss
the emittance of the electron bunch emitted from the
cathode, i.e. the intrinsic emittance. Assuming there is
no correlation between the three phase-space planes of
the electrons emitted from the cathode, the normalized
intrinsic emittance (see Eq. (109)) in 6D is given by the
product of the three normalized intrinsic 2D emittances,

εn6D = εnxε
n
yε
n
z , (165)

Assuming there is no correlation between the position
of an emitted electron and its transverse momentum,
then intrinsic rms normalized horizontal emittance at the
cathode is,

εnx = σxσpx , (166)

where σx=
√
< x2 > and σpx=

√
< p2

x >/m0c. Corre-
sponding expressions apply for each coordinate so we can
rewrite, Eq. (166) to give the intrinisic rms normalized
emittance at the cathode for each of the 2D phase space
planes as,

εnc = σcσpc , (167)

where σc and σpc are the initial rms bunch size and the di-
mensionless rms momentum at the cathode, respectively,
in the horizontal/vertical/longitudinal plane. The accel-
erator designer can easily control σc, but σpc is an intrin-
sic property of the cathode. Developing cathodes with
low initial σpc is an active area of research for each of
the emission mechanisms. The intrinsic rms normalized
transverse emittance of all three cathode types (e.g., us-
ing the x-direction to be definite) (Flöttmann, 1997) can
be written in terms of the kinetic energy of the electrons
emitted from the cathode, Ek, and is given by,

εnx = σx

√
2Ek

3mec2
, (168)

where c is the speed of light, σx is the rms horizontal spot
radius on the cathode. The dimensionless rms horizontal
momentum at the cathode, σpx , is given by the square
root term in Eq. (168) and can also be thought of as the
intrinisic rms normalized emittance at the cathode per
rms spot size (i.e. σpx = εnx/σx) by virtue of Eq. (166)
and has units of µm/mm. This equation shows that the
intrinsic emittance of the cathode depends on Ek (of the
emitted electrons) and implies that low emittance can
be achieved if the electrons are emitted with small Ek.
Unfortunately, as we can see in the PE cathode case, as
Ek approaches 0, so does the emitted current JPE , see
Eq. (159). Thus there is no way to have both low intrinsic
emittance and high current density.

The expression for the intrinisic rms normalized hori-
zontal emittance at the cathode per rms spot size of any
of the cathode types can be found by substituting the ap-
propriate expression for Ek from III.B.2 into Eq. (168).
As an example, the expression for σpx for PE is found to
be,

εnx/σx =

√
hν −W
3mec2

, (169)

with typical values shown in the row Transverse Param-
eters of Table I along with typical spot sizes on the cath-
ode, σx. Note that it is becoming increasingly common to
talk about the mean transverse energy (MTE = 2/3 Ek)
of the electrons emitted from the cathode. By equiparti-
tion of energy, we know the mean longitudinal energy is
1/3 Ek and we can find an expression the intrinisic rms
normalized longitudinal emittance at the cathode per rms
bunch length as,

εnz /σz =

√
hν −W
6mec2

, (170)
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4. Response time

The response time of a cathode is defined as the tem-
poral lag between the excitation of the cathode and emis-
sion of electrons. While all types of cathodes have intrin-
sically short response times, in practice, the duration of
the electron bunch emitted by FE and TE cathodes is
controlled by the duration of the electric field, not the
cathode response time. On the other hand, the emission
of electrons from PE cathodes is gated by a laser pulse
which can be much shorter than the electric field dura-
tion of the gun. Therefore, the PE cathode is the only
one used for generating longitudinally shaped bunches.

The response time of PE cathodes varies from the
fs-scale, for metallic photocathode, to 10’s ps-scale, for
certain semiconductor photocathodes, (Smedley and
Poelker, 2012). Row Longitudinal Parameters of Table I
shows response times of the cathodes. However, we do
not list these times for FE and TE cathodes since they
are not used for longitudinal shaping in electron guns.

5. Cathode selection guidance

Based on the above considerations, the source designer
must choose one of the three electron cathodes for their
shaping application. The choice between cathodes is
made by considering the trade-offs between the various
factors shown in Table I. The following factors must be
considered by the electron source designer in choosing a
cathode that meets the requirements of the shaping ap-
plication.

1. Longitudinal shaping. If the application requires
longitudinal shaping at the source then there is only
one choice, choose PE.

2. Charge per bunch required. This is a product of the
transverse spot size and current density. The larger
the spot size on the cathode the more charge.

3. Transverse and longitudinal emittance require-
ments. These will determine the bunch shaping
resolution. The smaller the spot size on the cath-
ode the lower the emittance.

While PE cathodes have the most shaping capabilities,
they also come with the most operational complexity as
they require large laser systems that must be actively
synchronized the linac. TE cathodes do not require laser
systems but have the added complexity of operating at
T > 1000◦C. While FE cathodes do not require laser
systems or heating so are the simplest of all.

We end this Section with the caveat that we left out
the hybrid cathodes that combine two of the three basic
emission mechanisms: photo-assisted field emission cath-
ode (Mustonen et al., 2011; Swanwick et al., 2014) and

photo-assited thermionic emission cathode (Sun et al.,
2006). These are potentially important cathodes, since
they open up the possibility of longitudinal shaping for
FE and TE cathodes, however, we do not cover them
here due to space limitations.

C. Smooth distributions

We now turn to the most common initial electron dis-
tribution emitted from an electron gun, a smooth bunch.
The methods introduced in this section focus on gener-
ating smooth bunch profiles, and therefore, bunches with
low intrinsic emittance, Eq.(168), in order to provide high
shaping resolution. In this case, shaping is accomplished
by shaping systems located downstream of the electron
gun described in Sections IV, V, and VI of this review.
In this Section, we describe how the smooth distributions
are produce for each of the three cathode types (Jensen,
2018).

1. FE based smooth transverse distributions

FE cathodes are thought to have the potential of pro-
viding a robust source of low emittance electrons. As
discussed in III.B.1, large area, engineered FE cathodes,
can be based on FEAs, CNTs or UNCDs. All of their
surfaces are composed of a quasi-continuous distribution
of electron emitters (Fig. 5). In this Section, we describe
demonstrated methods of producing smooth transverse
distributions for each of the engineered FE cathode types.

The FEA is an arrangement of a large number of dis-
crete tips on the cathode surface. The emission sites of
the FEA, shown in Fig. 5(a), come from diamond tips
on pyramid bases (Piot et al., 2014) separated by 10 µm.
The CNTs can be deposited into regular arrays, like the
FEA, or randomly oriented on the cathode surface. In
the later case, emission sites of the CNT, shown in Fig. 5
(top, center), comes from the randomly oriented fibers
covering the CNT surface (Mihalcea et al., 2015). The
emission site of the UNCD cathode, shown in Fig. 5(top,
right), is believed to come from the grain boundaries of
the UNCD thin film deposited on the surface (Baryshev
et al., 2014). The emitter separation of the FEA, UNCD,
and CNT cathodes are approximately 1-10 µm, 0.1-1 µm,
and 10-100 nm, respectively (Fig. 5, top row). All engi-
neered FE cathode types have experimentally produced
smooth electron distributions (Fig. 5, bottom row). The
smoothness of the transverse distribution from large-area
FE cathodes is limited by two factors: the need to merge
emission from discrete emission sites and non-uniformity
of the emitters across the cathode. The discreteness of
the emitters becomes less noticeable as the separation be-
tween sites decreases. Further, another limitation of the
FE cathode RF gun is the large energy spread and long
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Table I Cathode characteristics

(large area) Field Emission Thermionic Emission (TE) Photoemission (PE) units
typical field at cathode (Ec) 100 100 100 MV/m
Local field, temperature, wavelength F ∼ 10 GV/m T = 1400 K λ ' 260 nm
typical work function (W ) 4.5 (tungsten) 1.6 (dispenser) 4.6 (copper) eV
typical excess kinetic energy (Ek) 0.3 0.12 0.2 eV
typical spot size σx 1-3 1-3 0.1-10 mm
typical εx,y 0.3-1.0 0.12-0.36 0.02-2 µm
emission time — — 10−3 − 10 ps
current density (J) ≤ 1 ≤ 1 ≤ 103 A/mm2

Figure 5 Three types of large area FE cathodes. Surface im-
ages (top row, left-right) of FEA, CNT, and UNCD cathodes.
The distance between the emitters is largest for FEA (10 µm),
smaller for CNT (0.1-1 µm) and smallest for UNCD (10-
100 nm). Smooth beam images (bottom row, left-right) gen-
erated by FEA, CNT, and UNCD cathodes. Figure adapted
from (Baryshev et al., 2014; Mihalcea et al., 2015; Piot et al.,
2014).

duration of the electron bunches due to emission taking
place over a large range of RF phases. This issue arises in
TE cathode RF guns too and it is handled with an alpha
magnet (Lewellen et al., 1998). Even though these are
longitudinal parameters, they adversely affect the trans-
verse properties of the bunch. Most importantly, the
large energy spread leads to strong chromatic aberra-
tions.

2. TE based smooth transverse distributions

The TE cathode gun is one of the simplest and most
robust electron sources; it is the workhorse of light source
facilities around the world (LightSources, 2021). Histori-
cally, the TE cathode gun has not been used for the more
demanding application of driving FELs, due to its lower
transverse beam brightness and difficulty with achieving
a short pulse. However, researchers at SACLA (Asaka
et al., 2017) have developed a low-emittance thermionic-
gun-based injector. In the injector, electron beams are
emitted from a CeB6 thermionic cathode of 3-mm diam-

Figure 6 Comparison of inhomogeneous (a) and homogeneous
(b) laser profiles at the plane of the PE cathode. From (Hala-
vanau et al., 2017).

eter located in a DC 500-kV gun followed by a beam
chopper and a bunch compresso to produce an electron
beam with high peak current (3–4 kA) and low trans-
verse normalized-slice emittance (below 1 µm) sufficient
to drive a compact free-electron laser.

3. PE based smooth transverse distributions

Many applications of the electron source require
smooth transverse distributions, such as the uniform flat-
top or the Gaussian profile. While the typical IR out-
put from the photocathode laser (TEM00) is very nearly
Gaussian at the output, its shape can become distorted
during the frequency upconversion process to generate
UV. In the typical case, smoothing is usually needed
due to inhomogeneities in the far-field image of the UV
beam at the PE cathode plane (see Fig. 6(a)) to produce
the desired homogeneous profile (see Fig. 6(b)). Meth-
ods to achieve smooth transverse electron distributions
with PE cathodes use optical elements, inserted into the
laser path, of which there are two types: passive (e.g.,
micro-lens array) and active (e.g., deformable mirror).
In general, passive elements are simpler but active ele-
ments have greater capabilities for obtaining complicated
transverse distributions as we describe below.

Microlens arrays (MLAs) are passive optical elements
used to homogenize the laser’s transverse profile (Bich
et al., 2008). Fig. 7(a) shows a schematic of homog-
enizing optics where a UV laser beam (248 nm) passes
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Figure 7 Microlens array (MLA) based homogenization sys-
tem. (a) Diagram of several rays passing through the MLA
pair onto the homogenization plane. (b,c) ray tracing from
the homogenization plane, through imaging optics and to the
photocathode plane for two different systems. From (Hala-
vanau et al., 2017).

through a pair of MLAs followed by a convex lens re-
sulting in a continuous and homogenized laser profile at
the homogenization plane (see Fig. 6(b)). The MLA sys-
tem is located outside the beam vacuum, and the laser
emerging from the MLA system (at the homogenization
plane) has large beam divergence, which makes trans-
port to the cathode difficult. A solution was found in
Ref. (Halavanau et al., 2017) where the laser was imaged
from the homogenization plane to the PE cathode plane
located approximately 3.5 m away with an imaging sys-
tem Fig. 7(b,c). Another advantage of passive homog-
enization systems (e.g. MLA) have over active ones is
that they will homogenize a laser profile even if its pro-
file fluctuates from shot to shot. Active homogenization
systems cannot do this because they use feedback loops to
transform an incoming inhomogeneous laser profile into
a homogeneous one which requires the incoming profile
to be stable on the time-scale of the feedback loop. On
the other hand, the passive system will instantaneously
transform an arbitrary inhomogeneous laser profile into
a homogeneous.

Active optical elements provide a flexible, yet more
complicated system for obtaining a homogenized trans-
verse distribution at the phototcathode. The first sys-
tems were based on deformable mirrors (DMs) consisting
of an array of electrically adjustable small mirrors. The
intensity profile of the laser pulse is controlled by ad-
justing the angles of the small mirrors which are under
computer control. After the laser beam reflects off the

Figure 8 Spatial light modulator (SLM) homogenization sys-
tem. An SLM is actively adjusted via a computer (not shown)
in a feedback loop to homogenize the laser profile on the pho-
tocathode by monitoring the profile at the virtual cathode
location with a camera (CCD). From (Maxson et al., 2015)

.

DM, a beam splitter sends a small fraction of the beam
to the CCD camera located at the virtual cathode while
the majority continues to the PE cathode. Numerical
optimization algorithms, such as the genetic algorithm
(GA), are run on a computer to adjust the angles of the
small mirrors to optimize the profile (Matsui et al., 2008).
The DM method is still actively underdevelopment by re-
searchers at (Li et al., 2017). A second active approach
is based on spatial light modulators (SLMs) as shown in
Fig. 8. While SLMs work on a different optical principal
(birefringence) than DMs (reflection), their shaping func-
tionality is the same. The SLM is placed in a feedback
loop which monitors the transverse profile of the laser
(again, a small fraction at the virtual cathode) while a
computer running a GA is used to control the SLM el-
ement. In Fig. 8, laser light enters from the bottom (in
the z direction) and is polarized along x. A quarter-wave
plate and SLM act as a polarization rotator with spatial
dependence, which shapes the light when used with a po-
larizing beam splitter (PBS). The surface of the SLM is
then 4-f imaged (f =100mm lens pair) onto an interme-
diate plane to preserve the beam divergence, and then
this intermediate plane is imaged with a single long focal
length lens (f =750mm) onto either the photocathode
or a CCD. An ultrahigh vacuum (UHV) mirror reflects
light to the center of the photocathode. The SLM-based
system was found to have greater capacity in handling
poor input laser quality (Maxson et al., 2015) than the
DM-based system. On the other hand, the SLM only
works with IR and visible light while DM-based methods
can work in the UV (Li et al., 2017) thus avoiding the
distortions in the up-conversion process. In other words,
this continues to be a lively area of research.
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Figure 9 FEA cathodes for transverse shaping. Photograph
of an FEA cathode with a triangular array inside a central
square area of a round cathode plug (a) and its correspond-
ing electron bunch image on a downstream screen showing
a slight triangular shape (b). SEM image of rectangular ar-
ray on a cathode plug (c) with diamond tips (inset), and its
corresponding electron bunch image on a downstream screen
showing a grid-shaped pattern (d). From (Andrews et al.,
2020; Nichols et al., 2020).

D. Shaped distributions

Transverse bunch shaping methods have been demon-
strated for both FE and PE cathodes. In this subSec-
tion, we present shaping methods developed for these two
emission mechanisms.

1. FE based shaped transverse distributions

Transverse shaping of the electron distribution gener-
ated by large area FE cathodes is controlled by engi-
neering the emitting surface. This is an active research
area but is not yet capable of generating high quality
electron bunches suitable for the modern electron linacs
we consider here. None the less, due to the recent ac-
tivity in this area coupled with its great potential to be
used in electron linacs we present it here. In particular,
FEA-based cathodes have been used to generate both
continuous (e.g., triangular) and modulated (e.g., array
of beamlets) transverse distributions.

As an example of a transversely shaped distribution,
a triangular array of pyramid emitters was deposited
into a 1-mm equilateral triangle with ∼ 10 µm spac-
ing on a cathode plug (Andrews et al., 2020), as shown
in Fig. 9(a). The downstream electron bunch image
captured on an electron imaging screen, as shown in
Fig. 9(b), suggests a triangular shape, but space-charge

effects and the long phase emission period are suspected
to have blurred the image. The emission period can be
shortened with gated FEAs (Jarvis et al., 2009). Mod-
ulated transverse distributions (e.g., an array of spots)
have been generated at the source with FEA cathodes,
see Fig. 9(c) (Nichols et al., 2020). The downstream
electron bunch image Fig. 9(d) shows that original mod-
ulation was maintained but degraded due to the non-
uniformity of the emitters. Note that as spacing of the
emitters gets closer (e.g., a nanoengineered FEA (Graves
et al., 2012), it becomes more difficult to maintain the
modulation. In order to reproduce the initial source mod-
ulation out of the gun, the charge must be kept very low,
to avoid space charge dilution, and the FEA must be
gated to keep energy spread low.

2. PE based shaped transverse distributions

In this Section, we present methods for shaping the
transverse distribution of the electron bunch generated
by a PE cathode in an electron gun. This distribution
is controlled by controlling the transverse profile of the
photocathode laser beam.

Certain accelerator applications require shaped elec-
tron bunches with modulated transverse distributions,
such as an array of beamlets [( Fig. 10(a,b)] or hollow
beams [ Fig. 10(c)]. To date, these patterns have only
been generated with passive optical systems in PE cath-
ode guns based on an optical mask (Rihaoui et al., 2009;
Wisniewski et al., 2012) or an MLA (Halavanau et al.,
2017). In the former case, an optical mask is inserted
into the laser path to block the unwanted part of the laser
beam to create the desired laser pattern, which is then
imaged onto the PE cathode to create the electron distri-
bution on the cathode. Examples include: an aluminum
plate with six holes was used to generate a positive array
of laser spots [(Fig. 10(a)], and a painted quartz plate was
used to create a negative hollow laser ring [(Fig. 10(c)].
In the latter case, an MLA system was used to create a
large array of spots [(Fig. 10(b)] by changing the loca-
tion of the convex lens (Fig. 7(top)) as described in the
reference.

3. PE based shaped longitudinal distributions

As stated above, due to the difficulties in gating
FE and TE cathodes at the picosecond (and shorter)
timescale, longitudinal bunch shaping is the domain of
PE cathode guns. The longitudinal bunch shape of the
electron distribution generated by a PE cathode gun de-
pends on both the temporal laser pulse shape and the re-
sponse time of the PE material. Photocathode laser sys-
tems can generate laser pulse duration ranging from 10’s
fs to 10’s of ps while PE cathode response times range
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Figure 10 Transversely shaped electron bunch distributions
from a PE cathode. An array of spots generated with an
optical mask (a) and an MLA (b). A hollow beam generated
with an optical mask (c). Images from (Halavanau et al.,
2017; Rihaoui et al., 2009; Wisniewski et al., 2012).

Figure 11 Fourier Transform laser pulse shaping system. An
input laser pulse enters a 4-f grating stretcher and its fre-
quency spectrum is exposed at the Fourier Transform Plane.
A mask described by a frequency domain transfer function,
H(ω), is placed at this plane to modify the spectrum of the
input laser pulse resulting in a modified time structure of the
output laser pulse. From (Weiner et al., 1988).

from the fs-scale, for metallic cathodes, to 10’s ps for
some semiconductor cathodes (Dowell et al., 2008). For
longitudinal shaping applications via the electron gun,
one chooses a PE cathode with a response time much
less that the duration of the laser pulse. In this way,
the electron bunch temporal shape will simply follow the
laser temporal shape. Laser pulse shaping methods have
been used to generate both single bunches (smooth and
shaped) and bunch trains. Various methods used to con-
trol the longitudinal distribution are presented below and
are categorized as either frequency domain or time do-
main.

a. Frequency domain laser shaping Frequency domain
methods manipulate the frequency spectrum of the input
laser pulse to control the time profile of the output laser
pulse. There are two approaches to frequency domain-
based laser shaping that have been applied to PE cath-
ode guns: acousto-optic programmable dispersive filter
and Fourier Transform pulse shaping.

The acousto-optic programmable dispersive filter
(AOPDF) relies on a longitudinal interaction between a
polychromatic acoustic wave and a polychromatic opti-
cal wave in the bulk of a birefringent crystal. It controls
the IR spectrum by controlling the group delay versus
wavelength with a programmable acoustic wave in the
birefringent crystal. Optical signals in the hundreds of
Terahertz range are controlled with RF signals in the
tens of MHz range. This is a compact IR device, installed
between the photocathode laser oscillator and amplifier,
with high temporal resolution, which makes it suitable for
the shaping of femtosecond IR pulses. A widely utilized
commercial AOPDF—the dazzler™—can shape pulse
length over a 6-ps duration at a maximum repetition rate
close to a MHz (Tournois, 1997; Verluise et al., 2000).

In Fourier Transform pulse shaping, a 4-f grating
stretcher is used to expose the spectrum of the input
laser pulse in the spectral Fourier Transform plane of the
stretcher (see Fig. 11). The spectrum can be controlled
with an optical element placed in this plane. Let the
spectrum of the input laser pulse be given by X(ω) and
the frequency-domain transfer function of the optical ele-
ment at the Fourier plane be represented by, H(ω), then
the spectrum of the output laser pulse is given by their
convolution,

Y (ω) = X(ω)H(ω), (171)

so that the output laser pulse in the time-domain is just
the inverse Fourier Transform of this convolution,

y(t) = F−1[Y (ω)], (172)

The first systems used for longitudinal shaping with
an RF photocathode gun (Neumann et al., 2009, 2003)
used a fixed mask, described by H(ω), located in the
Fourier Transform plane to modify the amplitude of the
input spectrum. However, this method can be based on
the modification of any of the amplitude, phase, or po-
larization of the input spectrum. described by the ap-
propriate H(ω). After the spectrum is modified, the
second grating is used to bring the spectrum back to a
line in the time domain to generate the desired tempo-
ral pulse shape of the output pulse. The laser commu-
nity has achieved both laser pulse trains and temporal
flattop laser pulses (Fig. 12) using masks to modify the
amplitude of the spectrum (Weiner et al., 1988). Recent
Fourier Transform pulse shaping approaches are based on
programmable SLMs due to their superior resolution and
flexibility. The first beam physics applications used an
SLM system to convert a Gaussian pulse of 9 ps FWHM
into a flattop pulse of the same length to drive a photo-
cathode RF gun (Yang et al., 2002) in order to reduce
the transverse emittance. Gaussian pulses were trans-
formed into both triangular and super-triangular laser
pulses with an SLM-based system (Kuzmin et al., 2018)..

The advantage of the frequency domain method is its
high resolution and flexibility to produce various pulse
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Figure 12 Demonstrated laser pulse temporal shapes gener-
ated with the Fourier Transform laser pulse shaping system
of Fig. 11 using an amplitude mask. Laser pulse train (left)
and quasi-flattop laser pulse (right). Courtesy (Weiner et al.,
1988).

shapes while the downside is its complexity and sta-
bility. In addition, the need to transmit the IR laser
pulse shape through the laser amplifier and harmonic
conversion crystals introduces non-linearities causing dif-
ferences between the IR and UV laser pulse shapes. One
solution to this issue would be the development of pro-
grammable Fourier Transform pulse shaping applied di-
rectly in the UV and another would be the development
of PE cathodes that can respond to IR; this is another
active area of research.

b. Time domain laser shaping Time domain methods are
based on laser pulse stacking. This is where a series
of short laser pulses are longitudinally combined (i.e.,
stacked) to form the desired longitudinal profile. There
are a number of methods that have been tried in the
past. An early method used for PE cathode guns (Siders
et al., 1998) was based on a Michelson interferometer in
which n 50/50 beam splitters, embedded in a set of op-
tical delay legs, were used to split a single input laser
pulse into a series of 2n output laser pulses. Their de-
vice was used to generate a train of 16 pulses at THz
spacing with very low loss. More recently, pulse stacking
with birefringent crystals is almost exclusively used. It
exploits the group velocity mismatch between the ordi-
nary and extraordinary axes of a birefringent crystal (e.g.
α -BBO) (Power and Jing, 2009; Will and Klemz, 2008;
Zhou et al., 2007). When a single Gaussian input pulse
passes through a uniaxial birefringent crystal rotated at
an angle relative to the crystal axis, two output pulses
will emerge projected onto the ordinary and extraordi-
nary axes. The time delay difference between these two
components is due to the differing group velocities along
the ordinary and extraordinary axes

∆t = LXtal

(
1

vg,e
− 1

vg,o

)
, (173)

where LXtal is the length of the crystal, and vg,e and vg,o
are the group velocities associated with the extraordi-
nary and ordinary optical axes, respectively. The crystal

Figure 13 Measured double-triangular electron bunch gener-
ated with α -BBO laser pulse stacking. (top) x-z projection
of the bunch on a screen. (bottom) corresponding current
profile. From (Loisch et al., 2018).

length controls the delay between the different polariza-
tions while crystal angle controls the relative intensity of
the different polarizations. If the angles are set to 45◦,
a flattop laser pulse is obtained (Will and Klemz, 2008).
However, it is also possible to obtain more complicated
shapes (e.g., a double triangle) by passing the input laser
pulse through a stack of crystals rotated at optimized an-
gles relative to the incident laser pulse. In (Liu et al.,
2019; Loisch et al., 2018), they used this method to gen-
erate a double-triangular laser pulse which was then used
in PE cathode gun to generate the corresponding double-
triangular electron bunch as shown in Fig.13.

The advantage of the time domain method lies in its
simplicity. Moreover, if the pulse stacker is implemented
in the UV (Power and Jing, 2009) the distortion of the
pulse due to nonlinearities arising during the frequency-
conversion process is completely averted. Its downside is
its limited flexibility since there is no way to change the
crystal length on the fly though some control over the
pulse shape can be achieved by rotating the crystals.

In addition to producing shaped the “continuous” dis-
tributions shown above (i.e. triangle and flattop), bire-
fringent crystals have also been used to produce bunch
trains. Reference (Li and Kim, 2008) proposes a simple
and more compact system specifically adapted to bunch
train generation. The setup consists of a concentric stair-
step echelon combined with a focusing lens. The echelon
consists of a series of concentric flat zones with different
thicknesses, so as to introduce a discrete delay correlated
to the transverse radius. At the focal point of a down-
stream lens, such a configuration produces pulses that
are delayed in time. The nature of the echelon design in-
troduces small delays so that the method is well adapted
to the generation of pulses with ps-scale temporal separa-
tion. In (Li and Kim, 2008) the technique is numerically
investigated for the formation of a train comprising 20- to
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100-fs bunches with an associated bunching factor peaked
at ∼ 0.5 THz for application to a coherent Smith-Purcell
THz source based on a 50-kV electron beam.

4. PE based spatio-temporal (3D) shaping

A natural continuation of the progress with pro-
grammable 2D transverse and 1D longitudinal laser shap-
ing are methods for shaping the complete 3D spatio-
temporal distribution of the laser. This method gives
the electron source designer complete control over the
initial electron distribution in a PE cathode gun. Recall,
however, that this does not mean complete control over
electron distribution in general, since, once it leaves the
cathode it is subject to nonlinear space-charge forces that
will distort the initial distribution. Interestingly, one of
the main motivations for this line of R&D is to generate
electron bunches with uniform 3D ellipsoid distributions
since these are the only distributions whose space-charge
fields (i.e., internal force fields) are linear functions of
position (Luiten et al., 2004). This gives rise to par-
ticularly simple dynamical behavior: a uniform ellipsoid
under the influence of its self-fields (electrostatic) will
change its size but retain its shape; a uniform ellipsoid
with linear internal fields. In addition to the 3D ellip-
soid laser pulse shapes, other distributions of interest.
For example, one could combine a 2D circular transverse
distribution, for low emittance, with a triangular 1D lon-
gitudinal distribution, for high-transformer ratio, to si-
multaneously achieve different objectives.

Recent progress in 3D laser shaping with IR laser
pulses has been achieved by several groups (Kuzmin
et al., 2020, 2019; Mironov et al., 2016). For example,
researchers used multiple programmable SLMs (Fig. 14)
to generate both a 3D quasi-cylinder and 3D quasi-
ellipsoidal IR laser distribution (Mironov et al., 2016).
In addition to SLM-based techniques, 3D shaping can
also be accomplished via control of chromatic aberra-
tion. as discussed by (Li and Chemerisov, 2008), where
a dazzler™ system is used to introduce a complex spec-
tral structure that, in combination with a highly disper-
sive section, resulted in the generation of a 3D ellipsoidal
bunch (Li and Lewellen, 2008).

Despite the successful demonstration of these 3D IR
laser distributions, these have not yet been used to ex-
tract electrons from a photocathode gun. The next steps
require converting the IR pulse shapes to the UV where
they can be used to exicte PE cathodes. Nonetheless, this
is an exciting and important area of research. Further, it
is interesting to note that the demand for 3D laser pulse
shaping, and its subsequent progress, has been lead by
the PE cathode gun community, not the laser community.

Figure 14 Demonstrated 3D laser distributions based on
SLMs. (a) measured transverse intensity distributions of
quasi-cylindrical pulses; (b) reconstructed 3D distribution of
quasi-cylindrical; (c) reconstructed 3D distribution of quasi-
ellipsoidal. From (Mironov et al., 2016).

IV. BEAM CONTROL WITHIN ONE DEGREE OF
FREEDOM USING EXTERNAL FIELDS

This section discusses the use of externally applied
fields to shape the beam distribution. We introduce
the general formalism and discuss various methods com-
monly employed or recently proposed to control the beam
distribution in longitudinal or transverse directions and
some of the associated projections.

A. General considerations

We categorize beam-shaping methods using external
fields into three main approaches. The first approach
consists of finding a phase-space transformation that
maps a given initial distribution to a final target dis-
tribution. A second approach introduces a local coupling
between two variables so that the overall transformation
is still within one degree of freedom (DOF) but the lo-
cal coupling enables access to another variable. A com-
mon example is the use of dispersive collimation where
particles with given energies are removed via the intro-
duction of a local correlation between energy and posi-
tion. Finally, another technique employs an interceptive
mask that modifies the momentum or affects the parti-
cles’ transmission according to their transverse position.

The use of an external electromagnetic field to im-
part correlation within one DOF is commonly employed
to control the beam properties along any of the DOFs.
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For instance time-dependent fields are commonly used
to introduce, e.g., a linear correlation in the longitudi-
nal phase space (LPS) such as δ = hz, that can later be
exploited using a longitudinally dispersive beamline to al-
ter the final bunch length via σz,f = C−1σz,0, where the
compression factor is defined in Eq. (90) and h and R56

are, respectively, the chirp in the incoming (z, δ) LPS and
the longitudinal dispersion associated with the dispersive
section. It should be pointed out that the same mecha-
nism applies to the other DOFs, e.g., in the transverse
planes to focus the beam.

Generally, this type of manipulation can be split into
two stages referred to as a modulator and a converter.
The modulator introduces a position-dependent momen-
tum whereas the converter consists of a beamline pro-
viding a momentum-dependent change in the position.
For the sake of simplicity, we consider the case of uncou-
pled motion between the three DOFs, and focus on one
of the DOFs, with particle conjugated variables (ζi, ζi+1)
[where i ∈ [1, 3, 5]]. We consider the effect of the modu-
lator to impact a position-dependent external force along
ζ̂i+1 of the form Fi+1(ζi), resulting in the coordinate
transformation

ζi,0 → ζi,m = ζi,0,

ζi+1,0 → ζi+1,m = ζi+1,0 + Fi+1(ζi,0), (174)

under an impulse approximation (where we ignore change
in the particle position). In the latter equation, the sub-
scripts 0 and m respectively refer to the values before and
after the modulator section. The downstream converter
beamline introduces a momentum-dependent change in
position so that the final position ζi,f is related to the
upstream coordinate as

ζi,m → ζi,f = ζi,m +Gi(ζi+1,m),

ζi+1,m → ζi+1,f = ζi+1,m. (175)

Overall, the transformation associated with the beam-
line takes the coordinate (ζi,0, ζi+1,0) and transforms it
to the final coordinate(

ζi,f
ζi+1,f

)
=

(
ζi,0 +Gi[ζi+1,0 + Fi+1(ζi,0)]

ζi+1,0 + Fi+1(ζi,0)

)
, (176)

and a transfer map defined such that (ζi,f , ζi+1,f ) =
M(ζi,0, ζi+1,0) can be formally associated with the trans-
formation.

Considering an initial phase-space-density distribution
Φ0(ζi,0, ζi+1,0) and invoking Liouville’s theorem II.C.1
Φf (ζi,f , ζi+1,f )dζi,fdζi+1,f = Φ0(ζi,0, ζi+1,0)dζi,0dζi+1,0,
we can write the final phase-space distribution as

Φf (ζi,f , ζi+1,f ) = Φ0[M−1(ζi,0, ζi+1,0)], (177)

since the Jacobian of the transformation is unity. We
now consider the projection along the position direction
ζ̂i defined as

Pi(ζi) =

∫
dζi+1Φ(ζi, ζi+1). (178)

By virtue of the charge-conservation we now have

Pf (ζi,f ) = P0[ζi,0(ζi,f )]
∂ζi,0
∂ζi,f

, (179)

where the RHS can be written solely in term of ζi,f via in-
version of the map described in Eq. (176). Therefore, by
properly tailoring the transformation M, one can mod-
ify the shape of the projection along any direction. To
illustrate the set of derived equations we first consider
the simple example of the bunch compression discussed
in Section II.C.1. Given the incoming-LPS coordinate
(z0, δ0), the correlation introduced by the linear acceler-
ator and the energy-dependent path length from the com-
pression can be described, respectively, by F (z) = hz and
G(δ) = R56δ. Here for sake of simplicity we take both
F and G to be linear functions of s such that the overall
transformation is described by(

zf
δf

)
=

(
z0 +R56[δ0 + h(z0)]

δ0 + h(z0)

)
, (180)

so that the final longitudinal charge distribution is

λf (zf ) = Cλ0

(
zf −R56δ0

C

)
, (181)

where C represents the compression factor defined in

Eq. (90). Taking λ0(z0) = 1/
√

2πσ2
z,0 exp[−z2

0/(2σ
2
z,0)]

and assuming that δ0 represents a random uncorrelated
fraction energy spread, we obtain

λf (zf ) =
C√

2πσz,0
e
−
C2z2f

2σ2z,0 e
−C

2R2
56δ0

2σ2z,0 , (182)

which showcases the well-known results associated with
linearized bunch compression previously mentioned in
Section II. A simple extension is to consider the case
where nonlinearities play a role in the compression. For
instance, owing to RF curvature in the linac employed
to impart the chirp, a quadratic dependence on ζ5,0 is
also introduced when the bunch length does not strictly
verify the condition σz,0 � λ (where λ is the wavelength
of the accelerating mode in the linac) so that F (z) =
hz+h2z

2. Likewise, standard four-bend bunch compres-
sors are known to introduce a second-order longitudinal
dispersion T566, and consequently G(δ) = R56δ+ T566δ

2.
Following the same approach as before yields a final dis-
tribution along the longitudinal axis to be of the form (Li,
2001)

λf (zf ) =
1√

2πσz,f

ezf/(
√

2σz,f )

[−zf/(
√

2σz,f )]1/2
Θ(−zf ),(183)

where Θ() is the Heavide function. Thus, the nonlin-
ear transformation introduced by the functions F and G
now results in a change of the bunch current profile com-
monly encountered in, e.g., magnetic compression, sub-
jected to strong nonlinearities; see for instance (Dohlus
et al., 2004).
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The example considered so far can be generalized via
the introduction of arbitrary nonlinear functions F and
G to control the final phase space (ζi, ζi+1) correlations.
By controlling the degree of the non-linearity introduced,
one can, in principle, tailor the correlations within the
phase space to produce the desired profile along each of
the phase-space directions.

In beam physics, it is customary to expand the trans-
port map via a truncated Taylor series and consider
each nonlinear order separately; see Section II.C.5. This
is a typical process in optics where, e.g., the energy-
dependent path length introduced by a dispersive sec-
tion, e.g., a bunch compressor as discussed above, is now
written as ζ5,f =

∑6
i=1R5iζi,0 +

∑6
i=1

∑6
j≥1 T5ijζi,0ζj,0 +

O(ζ3
0 ) and likewise for any beamline; see Eq. (120). For

sake of simplicity we assume a pencil bunch so that high-
order coupling between the longitudinal and transverse
phase spaces can be neglected in the expansion of the
transfer map.

Although we have taken the modulator function to be
a continuous function of the coordinate over a finite in-
terval one can also consider a periodic function of the
form F (u) = F0 cos(ku + φ). In such a case, a series
of concatenated modulators described with a function
Fi(u) = F0,i cos(kiu + φi) could be used to synthesize
the desired final distribution by controlling the term of
the Fourier series associated with the final distribution.
Such a description can be employed to describe a chain of
linacs operating at different frequencies. By shaping the
energy spectrum and using a transformation in z =M(δ)
one could tailor the energy spread or current profile. In
practice introducing an arbitrarily high harmonic may be
challenging, especially for the time-dependent field given,
e.g., the limited set of klystron frequencies.

1. Interceptive beam shaping

The shaping techniques described so far combine non-
linear external fields with the beamline providing non-
linear correlation between the position and momentum
of particles. A straightforward shaping technique con-
sists of intercepting the beam with a mask that has a
given “transmission” function T (x, y) so that the mask
can only affect the distribution in the transverse spa-
tial coordinates. The incoming phase-space distribution
Φi(ζ1...ζ4) is then simply transformed as

Φf (x, y) = Φi(x, y)T (x, y), (184)

where we assume the mask to be thin and only affecting
the beam according to the transverse coordinate (and
not the momentum). Consequently, the transverse profile
along, e.g., ζ1 can be found from

Pf (x) =

∫
dyΦi(x, y)T (x, y) =

∫ Υ+

Υ−

dyΦi(x, y),(185)

where we have taken the mask to be a binary function
with unity value in the domain y ∈ [Υ−(x),Υ+(x)].

A drawback of such a masking technique is its intrusive
nature, which may hinder its application to high-power
or high-repetition-rate beams, as the beam loss associ-
ated with the shaping process could result in radiological
activation or hardware damage.

2. Manipulation with local coupling

In such a transformation, an external field introduces
the required correlations ζj = H(ζi) and the coordinate
ζj is manipulated (e.g., via a function similar to F or G).
Finally, the inverse transformation H−1 to remove the
correlation between ζj and ζi. In the process the shaping
imparted to ζi via shaping of ζj is preserved. A sim-
ple example of implementation of a manipulation based
on local coupling regards dispersive collimation where a
local dispersion bump locally introduces a correlation be-
tween transverse position and energy where a collimator
is used to tailor the energy distribution (e.g. remove
energy tail). One advantage of local-coupling methods
combined with a mask is its simple implementation while
providing a high degree of control over the beam shape
(via precise shaping of the intercepting mask (Majernik
et al., 2021)). However, the mask can result in significant
particle losses.

B. Generation of shaped current distributions

One important aspect of LPS control resides in the
ability to control the beam current profiles for application
in beam-driven wakefield accelerators and light sources.
Historically, current beam shaping has been an integral
part of electron injectors based on continuous wave (CW)
electron sources where a combination of masks and RF
cavities − often dubbed “chopping” systems − are com-
monly employed to form bunches for injection in the sub-
sequent linear accelerators (Smith, 1986; Tiefenback and
Krafft, 1993).

1. Local coupling combined with transverse masking

Current shaping techniques were initially discussed as
a means to prebunch the beam for free-electron laser
(FEL) (Nguyen and Carlsten, 1996) applications. The
method was eventually demonstrated at the ATF fa-
cility (Muggli et al., 2008) where it was also extended
to shaping beyond microbunch generation (Shchegolkov
et al., 2015). In brief, the method combined local cou-
pling between the transverse (horizontal) and longitudi-
nal phase spaces with masking. To explain the technique
we consider an incoming bunch with an LPS chirp h0 sent
to a dispersive section with a transfer matrix producing
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the horizontal and longitudinal dispersions η and ξ−, re-
spectively. Downstream of such a dispersive section the
final horizontal and longitudinal positions of an electron
is

xm = xβ + ηδ0,

zm = z0 + ξ−δ0, (186)

where xβ is the geometric contribution to the beam spot.
An intercepting mask in (xm, ym) with transmission func-
tion dependent on the horizontal coordinate f(xm) will
tailor the transverse profile. For a beam with corre-
lated momentum spread δ0 = h0z0 the mask will al-
ter the shape of the longitudinal distribution following
f [xm/(ηh0)]. A downstream dispersive section with lon-
gitudinal dispersion ξ+ and designed to suppress the dis-
persion introduced by the section upstream of the mask
results in the overall shaping function f [xm/(ηh0)]. This
technique bears similarities with the frequency-domain
temporal shaping method commonly encountered in ul-
trafast laser shaping, where a frequency-chirped laser is
dispersed, its spectrum modified with a mask, and subse-
quently recombined (Kuzmin et al., 2018; Weiner et al.,
1988); see Section III.D.3.a.

The method was implemented in (Muggli et al., 2008)
to form train of sub-ps bunch. In such a case the mask
consists of a set of N slits so that the transmission can be
approximated as f(xm) =

∑N
`=1 δ(xm−X`) where X` are

the horizontal positions of the vertical slits. Considering
X` = `D, withD being the inter-slit spacing on the mask,
the final modulation period is shown to be (Hyun et al.,
2019; Muggli et al., 2008)

∆z ' D1 + ξ+h0

ηh0
. (187)

A practical implementation of the method used for a
proof-of-principle experiment at the Accelerator Test Fa-
cility (ATF) appears in Fig. 15(a). The beam was locally
dispersed in a dogleg beamline with vanishing net disper-
sion. The dogleg included an optical lattice providing an
antisymmetric dispersion function with maximum value
attaining η ' 1.5 m in close proximity to the mask lo-
cation. The mask consisted of sub-mm tungsten wire;
see inset photograph in Fig. 15(a). The produced bunch
was modulated in energy and time (z) owing to the fi-
nal LPS chip. Given the fixed dispersion, the mask sets
the energy modulation period and ultimately the final
current modulation, which can be controlled via the in-
coming chirp and ξ+ function of the beamline. It was
demonstrated that the technique enables some control
over the final temporal period downstream of the dogleg
beamline: for ∼ 10 pC modulations with sub-mm periods
were produced, consistent with the resonant excitation
of wakefield in plasmas (Muggli et al., 2010a). Likewise,
this method was extended to produce bunches with trian-
gular beam distribution at the ATF (Shchegolkov et al.,
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Figure 15 Experimental generation of a sub-picosecond
bunch train at the ATF using a dogleg beamline (a) with fi-
nal beam distribution in a downstream spectrometer (b) and
measured temporal distribution via interferometry of coherent
transition radiation (c). Figure adapted from (Muggli et al.,
2008) and (Muggli et al., 2010b).

2015) for wakefield excitation in dielectric-lined waveg-
uides (Antipov et al., 2012).

More recently, a current-shaping method based on di-
rectly introducing a spatio-temporal coupling was pro-
posed using a pair of transverse-deflecting cavities (Kur
et al., 2009; Zholents et al., 1999). Such a concept is
similar to the one commonly employed in DC electron
injectors as part of the low-energy “chopping” system re-
quired to form the bunched beam before injection in an
RF linac (Wilson et al., 1985).

The main advantage of this shaping method compared
to the one based on dispersive coupling stems from its
ability to directly couple z to one of the transverse co-
ordinates. In the method does not suffer from CSR-
induced phase-space degradation. It can also provides
control over the LPS chirp. In its simplest implementa-
tion, the beamline consists of two transverse deflecting
cavities (TDCs) separated by a beamline described by a
transfer matrix M . The overall matrix of the system in
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(x, x′, z, δ) is

S = RTDC(κd)MRTDC(κu) ≡
(
A B
C D

)
, (188)

where RTDC(κ) represents the matrix of a TDC with
strength κ, see Section (II.B.3). In order for the beam-
line to be globally uncoupled, the 2 × 2 block matrix
should vanish: B = C = 0. Solving for B = 0 yields the
condition on the elements of M and cavity strength to

m12 = −L (κd + κu (Lm21 +m11 + 2m22))

2κu
,

κd = −κu (Lm21 + 2m22)

2
, and (189)

m11 = −Lm21

2
− κu
κd
.

These matching conditions ensure S becomes block di-
agonal. The (x, x′) block matrix is independent of the
TDC strengths, and the overall effect of the combined

TDCs is to modify the LPS chirp h ≡ 〈ζδ〉/〈ζ2〉1/2 as
h→ h = h0 − S65 with

S65 =
Lκ2

u

[
(Lm21 + 2m22)2 + 4

]
16

. (190)

We have S65 > 0 for a cavity length L 6= 0. It is interest-
ing to note that the chirp vanishes in the thin-lens model
of the TDC (L = 0). Likewise the block matrix becomes

M⊥ =

(
m−1

22 0
m21 m22

)
, (191)

consistent with Ref. (Kur et al., 2009) where the choice
m11 = m22 = −1 was made so that κu = κd (given that
decoupling forces m12 = 0). The shaping mask is lo-
cated between the two TDCs and with sufficient phase
advance from the upstream TDC to ensure the beam has
a significant correlation 〈xz〉 at its location. The profile
of the mask T (x, y) is then tailored to provide the de-
sired temporal shape. The application of this method to
produce a modulated relativistic electron bunch was first
discussed in (Du et al., 2012) in the context of superradi-
ant THz radiation, and further investigated numerically
in (Ha et al., 2020) to support the formation of vari-
ous current shapes to support a beam-driven wakefield
accelerator with enhanced transformer ratio. Figure 16
presents numerical simulation results for a minimal sys-
tem composed of two TDCs and a quadrupole magnet
with a different type of mask to produce doorstep distri-
butions [Fig. 16(a,b)] for beam-driven acceleration and
sub-ps bunch trains with variable microbunch spacing
[Fig. 16(c,d)].

The masks described so far stop a fraction of the inci-
dent beam. An alternative solution is to use a spoiling
mask made of a thin foil to alter the beam properties
associated with a fraction of the beam. An example of

(e)
TDC TDCmask

Figure 16 Numerical modeling of current-profile shaping
showcasing the generation of ramped (a), reverse-triangle (b)
and modulated (c,d) bunch distributions using local corre-
lations imparted by a pair of transverse-deflecting cavities
(TDC) combined with a mask (e) (adapted from (Ha et al.,
2020)).

implementation uses a slotted foil at the Linac Coher-
ent Light Source (LCLS) (Emma et al., 2004) to selec-
tively spoil the transverse emittance of an electron beam
(the fraction of the beam intercepted by the foil under-
goes multiple scattering and suffer an emittance growth).
The method was employed to ultimately control the du-
ration of X-ray pulses in FELs, as only the unscattered
beam population contributed to the lasing mechanism
and supported the generation of isolated femtosecond X-
ray pulses along with twin variable-delay X-ray pulses
using a dual-slot foil (Ding et al., 2015).

2. Modulators combined with longitudinally dispersive sections

A simple implementation of a current-shaping tech-
nique consists of introducing an energy modulation using
RF accelerating cavities to properly control the longitu-
dinal dispersion in the downstream beamline. The energy
modulation is introduced as a time-varying field with ac-
celerating voltage of the form V (z) = V̂ cos(kz + ψ),

where V̂ , ψ, and k are, respectively, the peak accel-
erating voltage and phase, and the accelerating mode
wavevector. The LPS transformation associated with the
downstream dispersive sections is described via the Tay-
lor expansion of the longitudinal map with, e.g., first- and

second-order the coefficients R56 ≡ ∂z
∂δ , T566 ≡ ∂2z

∂δ2 as de-
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Figure 17 Experimental setup for phase-space shaping via
introduction of nonlinear longitudinal dispersion at the NEP-
TUNE facility (a) and resulting LPS (b,d) with associated
current distribution (c,e) experimentally generated. Figure
adapted from (England et al., 2008).

tailed in Section II.C.5. The two widely-used approaches
are to either (i) introduce a linear energy modulation
and controls the nonlinear dispersion in the dispersive
section, or to (ii) control the nonlinear modulation using
accelerating sections operating at multiple frequencies.

A technique to control the nonlinear longitudinal dis-
persion to shape the beam current distribution was in-
troduced in (England et al., 2005). It was observed that
compression of a “long” incoming bunch accelerated in
an S-band linac such that kz � 1 is not strictly valid.
As a result, the final fractional energy offset is

δ ' eV̂

Ē

[
−kz sinψ +

(kz)2

2
cosψ

]
, (192)

(where Ē is the final beam energy) resulting in signif-
icant quadratic correlation in the LPS with associated
current profile described by an equation similar to
Eq. (183). It was recognized that the addition of
sextupole magnets in the dispersive section (arranged
as a dogleg beamline) provided a sufficient handle over
the T566 coefficient to ultimately control the current
distribution. The experimental implementation of this
technique at the NEPTUNE facility demonstrated the

generation of ∼ 12-MeV bunches with linearly ramped
current profiles (England et al., 2008); see Fig. 17. The
technique was also shown to provide some control over
the ramp shape and direction.

The introduction of higher-order longitudinal disper-
sion (up to third order) was also proposed to suppress
current spikes arising from collective effects in the LCLS
accelerator (Charles et al., 2017). At LCLS, extreme
current values at the head and tail of the electron
bunch are responsible for substantial CSR-induced
projected emittance growth. The nominal operating
mode of LCLS consits of truncating the head and tail to
suppress the current spikes to improve the FEL lasing
performances. It was shown that current spikes can be

strongly suppressed via control of the U5666 ≡ 1
6
∂3z
∂δ3

longitudinal-dispersion term using an octupole magnet
without a significant increase of the horizontal slice
emittance.

Further improving the precision of shaping methods
discussed in this section can be accomplished using multi-
ple energy modulators operating at different frequencies.
Such an approach allows for the incoming LPS to be an
arbitrary polynomial function δ(z) with its coefficients
controlled by the settings of the modulator accelerating-
voltage amplitude and phase. The solution was investi-
gated using a dual frequency modulator operating at the
frequencies f1 and fn ≡ nf1 with total accelerating volt-
age V (z) = V1 cos(k1z + ψ1) + Vn cos(knz + ψn), where

V̂1,n and ψ1,n are, respectively, the accelerating voltages
and operating phases of the two linac sections, and k1,n ≡
2πf1,n/c. Assuming k1,nz0 � 1, the electron’s LPS coor-
dinates downstream of the linac are (zl = z0, δl = alz0 +
blz

2
0), where al ≡ a0 − e(k1V1 sinψ1 + knVn sinψn)/Ēl,

bl ≡ b0 − e(k2
1V1 cosψ1 + k2

nVn cosψn)/(2Ēl) with e be-
ing the elementary charge and Ē the beam’s average
energy downstream of the linac. The passage of the
bunch through a longitudinally dispersive section results
in an electron final coordinate to be given as a func-
tion of the initial coordinates following zf = afz0 + bfz

2
0

with af ≡ 1 + alR56 and bf ≡ blR56 + a2
l T566. Tak-

ing the initial current to follow the Gaussian distribution
I0(z0) = Î0 exp[−z2

0/(2σ
2
z,0)] (where Î0 is the initial peak

current), and invoking the charge conservation gives the
final current distribution

Iuf (zf ) =
Î0

∆1/2(zf )
exp

[
− (af + ∆1/2(zf ))2

8b2fσ
2
z,0

]
,

×Θ[∆(zf )], (193)

where ∆(zf ) ≡ a2
f +4bfzf and Θ() is the Heaviside func-

tion.
An example of the method discussed above was ex-

perimentally implemented in the FLASH facility at
DESY (Piot et al., 2012), where a linac composed of 1.3-
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(a)

(b)

(c)

Figure 18 Experimental results on phase-space shaping us-
ing a dual-frequency linac at the FLASH facility at DESY
(a) with corresponding nominally compressed beam (b) and
linearly-ramped bunch generation (c) obtained via proper
control of the accelerating voltage phase and amplitude of the
linac sections ACC1 (1.3 GHz) and ACC39 (3.9 GHz) prior
to the bunch compressor 1 (BC1) (adapted from Ref. (Piot
et al., 2012)).

GHz and 3.9-GHz superconducting-linac modules and
two magnetic bunch compressors was used; see Fig. 18(a).
Specifically, the accelerator settings were optimized to
form a linear-ramped current profile; see Fig. 18(b,c).
The technique provided ample control over the shape ow-
ing to the number of variables available and produced
a shaped beam at 300 MeV for future injection in the
FLASH-Forward facility (Aschikhin et al., 2016).

This method could be generalized in principle by
introducing an arbitrary number of accelerating sections
operating at different frequencies to ultimately synthe-
size any correlation in the LPS via a Fourier series. The
generalized scheme is challenging in practice due to the
limited number of RF sources and associated prohibitive
cost. However, it could be implemented passively as
discussed in Section V.

As a final note, we should point out that most of
the time, current shaping relies on an integration of dif-
ferent shaping techniques as explored in (Cornacchia

(a)                            (b)

(c)                            (d)

Figure 19 Examples of LPS (a,c) and associated current
distribution(b,d) obtained via a fully integrated combining
the photocathode-laser shaping method discussed in Sec-
tion III with multi-frequency linacs and nonlinear disper-
sive sections. Plots (a,b) are reproduced from (Cornacchia
et al., 2006), which simulated a possible operation mode of
the FERMI@ELETTRA FEL. Plots (c,d) are extracted from
(Tan et al., 2021), which investigated the generation of shaped
bunches for efficient acceleration in a corrugated-waveguide
wakefield accelerator. In plot (c), the superimposed trace
corresponds to the slide RMS energy spread (right label).

et al., 2006; Lemery and Piot, 2015). For instance,
the generation of uniform beams required for cascaded
harmonic lasing in X-ray FELs combines photocathode
laser shaping to precisely precompensate for nonlinear-
ities introduced in the compression process or arising
from collective effects (Cornacchia et al., 2006). This
work especially demonstrated the generation of uniform
current distribution based on numerical simulations; see
Fig. 19(a,b). Likewise, numerical simulations indicate
that a properly shaped photocathode laser pulse com-
bined with a multi-frequency linac and a two-stage non-
linear compression process could provide precise control
over the LPS and current distribution (Tan et al., 2021),
ultimately realizing the sought-after door-step distribu-
tion without the requirement for any collimation; see
Fig. 19(c,d).

C. Realizing ultra-low energy spread

A recurrent topic associated with the use of bright elec-
tron beams regards the generation of ultra-low longitu-
dinal emittance. One application of such a capability
is the production of a low-energy-spread beam, ultra-
short electron bunch for use in ultra-fast electron scat-
tering experiments. There has been a renewed interest
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(a)

(b)                            (c)                          (d)

Figure 20 A TDC-based beamline for the generation of
strong LPS chirps (a). The diagrams (b-d) illustrate the x−y
electron-bunch distribution inside each TDC with the arrows
gives the direction of the transverse kick x′. The color map
indicates the energy distribution. Adapted from (Yampolsky
et al., 2020).

in meV energy-spread, sub-MeV electron bunches for ap-
plications in electron energy-loss spectroscopy (Egerton,
2008).

In principle, the method described above and detailed
in (Zeitler et al., 2015) could be tailored to produce low
energy spread. However, most of the low-energy-spread
instruments have been based on dispersive collimation
implementing an ‘omega filter’ (Tsuno and Munro, 1997).
One issue associated with this class of monochromator
commonly used in electron-scattering instrument is the
limited beam transmission. To palliate this limitation,
a lossless monochromator was proposed (Duncan et al.,
2020) and demonstrated via numerical simulation the
ability to produce 200-keV electron bunch with meV-
level energy spread. The setup combines a photoemis-
sion electron source with a pair of accelerating cavi-
ties. The bunch-length lengthening ultimately set the
final fraction energy spread σδ,f under Liouville’s theo-
rem as σδ,f = σδ,0

σz,0
σz,f

≥ ~
2 where 0 refers to the ini-

tial bunch length and fractional energy spread. (Duncan
et al., 2020) note that the final kinetic energy EK dis-
tribution along the bunch is quadratically dependent on
the particles’ time of arrival and radial position within
the bunch EK(t, r) = at2 + br2 such a dependence can
be compensated by the pair of accelerating cavities.

D. Controlling longitudinal-phase-space (LPS) correlations

As discussed so far, the shaping of the bunch’s current
profile is often implemented by controlling correlation in
the LPS. In this section, we focus on methods that have
been implemented with the primary purpose of control-
ling correlation in the LPS. An example is the removal
of correlated energy spread downstream of an accelerator
to produce, e.g., a more monoenergetic bunch.

Although linear energy-spread control is convention-
ally achieved using an accelerating cavity operated off
the crest, the method introduced in (Yampolsky et al.,

2020) combines several deflecting cavities to provide a
power-efficient control of the LPS chirp. Specifically, the
technique considers three horizontally deflecting cavities
separated by a distance D and with respective deflection
strengths κ, −2κ, and κ to produce an uncoupled trans-
port matrix in (x, x′, z, δ) with longitudinal 2 × 2 block
given by

Rz|δ =

(
1 0

− 2
3κ

2(3D + 2Lc) 1

)
, (194)

where Lc is the transverse-deflecting cavity length; see
Fig. 20. The latter equation reveals the main advan-
tage associated with the proposed TDC-based scheme
over conventional off-crest acceleration. The introduced
chirp R65 scales quadratically with the cavity’s strength
κ while the off-crest acceleration scales linearly with the
accelerating field. Although this simple model is not ca-
pable of altering the polarity of the chirp, introducing
focusing elements between the TDC does enable such
control. Additionally, the focusing elements can also be
optimized to mitigate transverse-emittance degradation
throughout the beamline (Yampolsky et al., 2020).

(a)                       (b)

energy

Figure 21 Example of longitudinal phases-space lineariza-
tion at the LCLS facility (adapted from (Akre et al., 2008).
Shown is the LPS measurement without (a) and with (b) op-
eration of the fourth-harmonic linearizing cavity (operating
at 11.424 GHz).

Accessing higher-order correlation in the LPS is
more challenging especially when dealing with short
(picosecond-scale) bunches, as the required RF wave-
length needs to be comparable to the bunch length. How-
ever, some correction can be achieved with proper choice
and interplay between RF systems operating at differ-
ent frequencies or through non-relativistic effects. For
example, correcting or imposing quadratic nonlineari-
ties in the LPS can be achieved by combining a har-
monic RF field to the fundamental mode, as introduced
in (Smith, 1986) and later adapted for the LCLS and
FLASH FELs (Flöttmann et al., 2001). The method re-
lies on introducing a harmonic frequency so that the fi-
nal fractional energy offset associated with an electron
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located at z is approximately

δ(z) ' δ0
E0

Ef
+

(
eV1

Ef
k1 sinψ1 +

eVn
Ef

kn sinψn

)
z

−
(
eV1

2Ef
k2

1 cosψ1 +
eVn
2Ef

k2
n cosψn

)
z2, (195)

where δ0 is the initial relative energy offset, ψ1 and
V1 (resp. ψn and Vn) are, respectively, the phase and
amplitude of the fundamental (resp. harmonic) sec-
tion of the linac, and Ef the final energy. Consider-
ing the simple case of on-crest operation ψ1 = ψn = 0,
we note that cancellation of the second-order term can
be accomplished when the harmonic section is operat-
ing on the deceleration phase with voltage amplitude

Vn = V1

(
k1
kn

)2

. Such an approach was first demon-

strated at the Free Electron LASer in Hamburg (FLASH)
facility in DESY (Harms et al., 2011) by adding a third-
harmonic linac (fn = 3.9-GHz) to the fundamental-
frequency linac (f1 = 1.3 GHz). The same scheme
was implemented at the European X-ray FEL (Decking
et al., 2020). Figure 21 showcases a measurement of the
LPS-linearization process at the LCLS where a fourth-
harmonic cavity (fn = 11.424 GHz = 4 × 2.856 GHz) is
employed (Akre et al., 2008). Similar, methods were in-
vestigated in the context of ultrafast electron-diffraction
setups (Flöttmann, 2014).

It has also been recognized that this type of LPS lin-
earization can be implemented without the need for a
harmonic field when dealing with non-ultrarelativistic
bunches. Such a scheme was introduced in (Krafft, 1996)
were it was shown via numerical simulations and experi-
mentally confirmed that a proper control of the phase and
amplitude of a buncher and capture cavities could control
the R56 and T566 in the CEBAF injector (Wang et al.,
1998). A similar technique was explored theoretically
and via simulation for an ultra-fast electron source using
an RF photoinjector; see (Zeitler et al., 2015). Specif-
ically, the authors show that expanding the beam after
the electron source enabled a higher-order correction of
the longitudinal focus by a subsequent accelerating cav-
ity that is operated at the same frequency as the electron
gun. Although the method was implemented as part of a
ballistic-compression scheme to demonstrate the genera-
tion of sub-fs bunches at low energy, it could in principle
be extended to higher energy when combined with stan-
dard compression beamlines.

Additionally, introducing high-order longitudinal dis-
persion, as discussed previously in Section IV.B can also
be used to control LPS nonlinearity. Such a method
was successfully implemented in a high-power energy-
recovery linac (Piot et al., 2003) and supported the first
demonstration of same-cell energy recovery of a high-
power electron beam with increased energy-spread after
its interaction in an FEL oscillator (Neil et al., 2000);
see Fig. 22. Higher-order correction using octupole mag-

nets was also implemented in the JLab 10-kW FEL fa-
cility (Neil et al., 2006).

(c) (b) (a)

(d)

(e)

(f)

(g)

(h)

Figure 22 Nonlinear control of LPS with high-order longi-
tudinal dispersion in JLab IR-FEL Demo for two settings of
the longitudinal lattice along with resulting measured energy
spread measured after energy recovery [images (g) and (h)].
The simulated LPS are displayed at acceleration-module exit
(a), before(b) and after (c) the FEL iteration, and after energy
recovery for the cases of linear (e) and nonlinear (f) correction
(via independent control of the R56 and T566 of the recircula-
tor) of the LPS. . The measured (δE, y) distributions shown
in images (g) and (h) correspond respectively to simulated
LPS presented in (e) and (f). Adapted from Ref. (Piot et al.,
2003).

Finally, a laser-pulse shaping similar to the one dis-
cussed in Sections II and IV.B initially proposed in (Cor-
nacchia et al., 2006) can also be combined with a
beamline with nonlinear longitudinal dispersion to con-
trol the final LPS of a relativistic bunch. An exper-
imental demonstration of the concept was performed
at the FERMI@ELETTRA accelerator using a 1.4-GeV
beam (Penco et al., 2014). The photocathode laser was
temporally shaped to precompensate nonlinear correla-
tions nominally accumulated during the acceleration and
two-stage bunch compression processes. The measured
LPS upstream of the FEL beamline is uncorrelated and
linearized; see Fig. 23. In the process, the authors demon-
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strated that the beam dynamics of the ramped bunch
did not significantly affect the beam transverse emittance
compared to their nominal operating point.

  

Figure 23 Experimental demonstration of control of LPS
correlation at at the FERMI@ELETTRA accelerator using a
1.4-GeV beam. Electron-bunch LPS (image) with superim-
posed current profile (white line, right axis). These data were
obtained using a shaped photocathode laser with ramped tem-
poral profile configuration. The 300-fs bunch core has a nearly
constant incoherent energy spread of about σE ' 150 keV.
From (Penco et al., 2014).

E. Transverse phase-space control

We now examine techniques to transversely shape the
beam expanding on the methods described in Sec. III.D.
This type of shaping is ultimately impacted by collective
effects so that devising shaping methods implementable
at high energy is beneficial. For instance, producing
uniform electron beams with uniform transverse distri-
bution is critical to a broad range of applications in-
cluding beam irradiation of a target, e.g., to produce
X rays, as it provides a uniform dose and mitigates
thermo-mechanical stress on the target (Pasquali et al.,
2019). Likewise, using bright electron beams with uni-
form transverse distribution offers an effective way of im-
proving the performance and output power of tapered
X-ray FELs (Emma et al., 2014a). Finally, transversely
shaped beams combined with the mask-based shaping
techniques discussed earlier can lower beam losses on the
mask. These transverse-shaping methods have gained
considerable interest, as their possible combination with
the phase-space-exchanging techniques discussed in Sec-
tion VI could enable control of the current distribution
with unprecedented precision and versatility.

1. Nonlinear transformations

The idea of using nonlinear transformations parallels
the early discussion related to LPS manipulation. Such
an approach was first explored in (Merminga et al., 1991)
to remove the beam tail via nonlinear focusing (imple-
mented with sextupole magnets) as part of a “nonlin-

ear collimation” scheme proposed for future linear col-
liders. Likewise, the use of nonlinear focusing to form
uniform beam distributions was discussed in (Meads,
1983). Numerical simulations (Kashy and Sherrill, 1987)
demonstrated the formation of uniform distribution us-
ing an octupole magnet implemented in practical beam-
line. Likewise, (Batygin, 1993) derives the nonlinear
force required to redistribute an incoming beam non-
uniform distribution into a uniform distribution using a
beamline composed of a multipole lens followed by a drift
space. Further work discussed in (Meot and Aniel, 1996)
analytically shows that the odd-order multipole fields,
such octupole and dodecapole components, are required
for transverse uniformization. Efforts to produce trans-
versely uniform distributions over appreciable distances
along an accelerator beamline has been investigated for
possible use in combination with undulator tapering in X-
ray FELs (Jiao and Cui, 2015). Over the years several ex-
periments have been conducted. An early demonstration
experiment using a 200-MeV H− beam was performed at
BNL (Tsoupas et al., 1991), and an example of distribu-
tion measured at the NASA Space Radiation Laboratory
(NSRL), using an electron beam at BNL (Tsoupas et al.,
2007), appears in Fig. 24. Similarly, uniform beam dis-
tributions are sometime used in medical accelerators.

pr
oj

ec
tio

n

projection

Figure 24 Measured beam distribution obtained downstream
of a uniformizing beamline composed of octupole magnets.
Adapted from (Tsoupas et al., 2007).

Reference (Yuri et al., 2007) develops a theoretical
framework to understand the formation of shaped beam
profiles using a nonlinear focusing beamline. Following
this work, the phase-space coordinates downstream of the
beamline under consideration can be expanded as a trun-
cated power series of the initial phase-space coordinate
upstream of the beamline (x0, x

′
0) via a transformation
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Figure 25 Example of computed transverse profiles down-
stream of a nonlinear-transport beamline composed of mul-
tipole field. The upper row demonstrates (a) the impact of
an octupole magnet with increasing strength, and (b) the ef-
fects associated with various multipole orders on the hori-
zontal beam distribution. The lower row showcases the use of
two sextupole magnets to control the beam distribution [plots
(c) and (d) correspond to the distributions recorded at two
locations downstream of the sextupole magnets]. Adapted
from (Yuri et al., 2007).

of the form(
xt
x′t

)
=

(
(M11 − α0

β0
M12)x0 −M12

∑∞
n=3

K2n

(n−1)!x
n−1
0

(M21 − α0

β0
M22)x0 −M22

∑∞
n=3

K2n

(n−1)!x
n−1
0

)
.

Imposing Liouville’s theorem as discussed in Sec-
tion II.C.1 indicates that the final distribution along one
of the position coordinates can be written as

ρt =
ρ0

M11 − α0

β0
M12 −

∑∞
n=3

K2n

(n−2)!x
n−1
0

. (196)

This equation provides the values of the magnetic multi-
pole strength K2n required to transform the initial distri-
bution into the desired one. The work also extends previ-
ous methods by investigating the effect of the even-order
multipole fields on beam uniformization and demonstrat-
ing the feasibility of uniformization of a Gaussian beam
for even-order fields, or considering incoming transversely
asymmetric beams. The authors conclude that using
a combination of even-order multipoles may ultimately
provide uniform beam over a larger transverse section;
see Fig. 25(b).

Finally, although the emphasis has often been on the
generation of uniform beams, the technique can also
produce beams with transversely shaped distribution.
For instance, Fig. 25 demonstrates the generation of a
ramped horizontal distribution obtained as an intermedi-
ary step to generate a uniform distribution. Furth devel-
opment demonstrated the generation of patterned hallow
beams (Yuri et al., 2019). This latter capabilities could
be taken advantage of and combined with phase-space-
exchange methods discussed in Section VI.

Figure 26 Configuration for transverse beam shaping using a
“transverse”-wiggler magnet (left) and horizontal phase-space
(right) immediately downstream (upper plot) the wiggler and
after a subsequent drift (lower plot). Adapted from (Ha et al.,
2019a).

Another method toward shaping the transverse phase
space is to use a transversely periodic magnetic field to
modulate the electron divergence across the transverse
beam distribution as proposed in (Ha et al., 2019b) and
illustrated in Fig. 26. Taking the example of the horizon-
tal phase space (x, x′) passing through a set of transverse
wigglers − a wiggler oriented transverse to the beam di-
rection − with wiggler parameter Kw,i, the divergence of
an electron at initial position x0 will be given by

x′ = x′0 +

n∑
i=1

Kw,i(sin kix), (197)

where ki ≡ 2π/λi is the transverse wavevector with λi
being the ith wiggler period. A proper choice of ki and
Kw,i allows the synthesis of any correlation in the (x, x′)
phase space that could produce a tunable profile along
the horizontal spatial or divergence direction.

2. Interceptive beam shaping: beyond binary masks

As discussed in Section IV.B, an interceptive “binary”
mask with optimized contour provides a versatile and
simple tool to shape the beam transverse distribution
but is rarely used owing to the accompanying losses.
These losses are especially problematic when the shaping
technique is implemented in a high-current accelerator as
they can lead to, e.g., radiological activation and damage
of beamline hardware.

For ultra-low emittance beams where quantum co-
herence is achieved and the beam can be described by
its wavefunction, optical (photon) techniques have been
adapted to shape the beam with a high degree of control,
e.g., in electron microscopes (Nagayama, 2011; Shiloh
et al., 2019). An example of such a manipulation is the
generation of “vortex” electron beams carrying orbital
angular momentum (Uchida and Tonomura, 2010) using
a nano-engineered spiral-like phase plate made of stacked
graphite thin film.
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(a)

(b)              (c)                    (d)

Figure 27 Principle of diffraction modulation to produce a
nano-patterned beam (a) with diffraction pattern downstream
of the grating (b) and final transverse distribution of the
transmitted beam (c) with associated spatial spectrum along
the vertical coordinate (d). Figure adapted from (Graves
et al., 2019).

Although electron beams produced in conventional ac-
celerators are incoherent, ultralow-emittance relativis-
tic electron beams can be manipulated with variable-
transmission masks, as discussed in (Nanni et al., 2018),
provided their transverse coherent L⊥ = ~

mc
σ⊥
ε⊥

(van

Oudheusden et al., 2007) is comparable or larger than the
intercepting-mask crystalline structure (where σ⊥ and ε⊥
respectively refer to the transverse beam size and emit-
tance). In this reference, a diffraction contrast modu-
lation technique was proposed to realize nano-patterned
electron beams. The method relies on electron diffraction
in a transmission grating with periodically variable thick-
ness. The grating structure spatially modulates the frac-
tion of electrons diffracted into a particular Bragg peak.
An aperture selecting the transmitted beam or one of the
Bragg peaks then results in a final modulated beam. The
method was demonstrated at SLAC using a 2.3-MeV 1-
pC electron beam from an ultrafast electron-diffraction
setup (Graves et al., 2019). The beam was diffracted
through a thin lithographically patterned Si membrane
[Fig. 27(a)] to produce a vertically modulated beam dis-
tribution [Fig. 27(d)] with a spatial period of ∼ 400 nm
and an associated bunching factor of 0.5 [see spatial spec-
trum in Fig. 27(b)]. In this experiment, the unwanted
electrons were scattered into the (220) Bragg peak, and
the transmitted electron associated with the (000) peak
was used to produce the final 300-fC modulated beam

[Fig. 27(c,d)]. This masking technique has some limited
tunability accomplished by varying the tilt angle of the
grating and selecting the Bragg peak to diffract the beam
where desired. This method ultimately suffers from the
mask’s limited lifetime due to atomic displacement over
long periods of time. The achieved sub-micrometric spa-
tial period combined with demagnifying optics could pro-
duce beams with nanometric modulations.

V. LONGITUDINAL SHAPING WITH BEAM
SELF-GENERATED FIELD

Self-generated fields are usually considered to be an
obstacle to improving the beam quality. While fully de-
coupled Gaussian beam or beams having linear correla-
tions are desirable, most self-generated fields introduce
non-linear correlations on the beam. The non-linearity
on the beam’s phase space not only increases the emit-
tance, but it introduce intrinsic limitations on the ma-
nipulation of the beam. Overcoming the degradation of
the beam quality caused by the self-fields is one of the
major research topics in accelerator physics. In the best
case, self-fields might enable manipulation of the beam
and avoid its degradation simultaneously.

This section focuses on shaping mechanisms that are
based on beam-generated fields. Most of the methods in-
troduced in this section are for longitudinal shaping be-
cause the use of self-generated fields for transverse shap-
ing is scarce. We first discuss longitudinal profile shap-
ing using the space-charge field and CSR in Sec. V.A
and Sec. V.B. Then we describe the mechanism using
wakefields in Sec. V.C. Each subsection provides a short
description of the results and their applications.

A. Shaping profiles using space-charge field

The space-charge field has two characteristics. The
first is that it depends on the beam’s spatial distribution.
If the beam has a symmetric profile, the field strength is
symmetric to the beam center. The second is that it
acts in a way to defocus or lengthen the bunch when
the beam is not density modulated because electrons re-
pel each other. These two characteristics give us several
methods for using the space-charge field for shaping. The
following subsections describe these shaping methods and
give relevant results.

1. Space-charge field with a single bunch

Due to the field’s dependence on the beam’s spatial dis-
tribution, the usefulness of the space-charge field from a
single bunch is limited. However, we can imagine two dif-
ferent uses of the space-charge field from a single bunch.
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(a) (b)

Figure 28 Current profile shaping using space-charge force.
(a) Gaussian longitudinal profile (solid) and corresponding
longitudinal space-charge field from Eq. (198). (b) Longitu-
dinal profile of the initial particle distribution (solid), and the
longitudinal profile after a 3-m-long drift (dash). (b) is a sim-
ulation result of a beam with 1-nC charge and 3-MeV energy.

First, the space-charge force applied to the bunch is
not linear except for a few profiles. Thus, similar to
the transverse shaping using an octupole magnet (Yuri
et al., 2007) (see Sec. IV.E.1 for further details), a
symmetric-nonlinear space-charge field can induce a sym-
metric change in the profile. For example, in a cylindrical
beam with a uniform transverse distribution and a lon-
gitudinal distribution of λ(z), the space-charge field can
be expressed as in Eq. (136). If the initial longitudinal
distribution is Gaussian, then the axial space-charge field
will be

Ez(z) =
e

4πε0γ2

Nbz

σ3
z

(
1 + 2 ln

b

a

)
exp

[
− z2

2σ2
z

]
. (198)

The Gaussian profile and corresponding space-charge
field in Eq. (198) are visualized in Fig. 28(a). In the
case of the example shown in Fig. 28, all particles move
outward due to the space-charge field as the beam drifts,
and the bunch length will increase. The space-charge
field in this example is nonlinear and has its maximum
strength at around ±0.5 mm. Thus, particles initially lo-
cated at ±0.5 mm gain more momentum than particles in
|z| > 0.5 mm, and eventually overtake these particles in
|z| > 0.5 mm. This situation is very similar to octupole-
based transverse shaping, see Fig. 24. Thus, if the beam
traverses a long enough distance (i.e., large enough R56),
then this Gaussian distribution would evolve into a uni-
form distribution. Figure 28(b) shows a particle track-
ing simulation result, which demonstrates the idea. As
we can see from Eq. (198), the space-charge field gets
weaker as the beam energy increases. Thus, the change
arising from the space-charge field requires a large R56 to
convert momentum change to position change. This re-
quirement limits the use of the space-charge field to near
the electron gun; thus, so far this type of shaping is not
demonstrated experimentally.

We can consider a similar type of shaping for generat-
ing asymmetric bunches, but it is necessary to introduce
an originally asymmetric profile. Thus, using the space-
charge field for asymmetric control is not an attractive

option, but the understanding of this mechanism may
help to improve the shaping quality of emission-based
shaping methods introduced in Section III.

The other usage is exploiting the symmetric lengthen-
ing feature of the space-charge field. In (Luiten et al.,
2004) they suggested a new concept, the so-called blow-
out regime, to generate a 3D ellipsoidal distribution with
uniform density. In this concept, an ultra-short laser
pulse with an appropriate radial distribution (λ⊥(r) ∼√

1− (r/A)2 where A is the maximum radius) shines on
a photocathode. This generates an ultra-thin sheet of
electrons that evolves into a uniform ellipsoidal shape.
Here, the ultra-short pulse length plays a key role because
it allows that all particles in the bunch to experience a
similar space-charge field strength. This allows the beam
to evolve into a uniform ellipsoid regardless of the origi-
nal pulse shape. The imperfection here will appear as a
soft edge of the ellipsoid. In (Luiten et al., 2004) they
ran simulations using a 100-pC beam with 1-mm radius
and 0.4-eV energy at the cathode surface. The electric
field at the cathode surface is assumed to be 100 MV/m,
and the incident laser pulse is assumed to have a Gaus-
sian profile with 30-fs FWHM. The original disk-shaped
distribution has evolved into a nearly elliptical one that
is slightly less than ideal due to the imperfection.

In (Rosenzweig et al., 2006), further theoretical work
was performed to combine the blow-out regime and emit-
tance compensation. Later, this blow-out regime was ex-
perimentally demonstrated by (Musumeci et al., 2008;
O’Shea et al., 2011; Piot et al., 2013). The first experi-
ment in (Musumeci et al., 2008) demonstrated the blow-
out regime using 15-pC beam; see Fig. 29. Later, the
experiment in (Piot et al., 2013) demonstrated the blow-
out using a higher charge level (0.5-nC) with a Cs2Te
cathode, and it showed well-shaped bunches. However,
the method required a disk-shaped beam, making it dif-
ficult to reduce the laser spot size at the cathode to ob-
tain target charge. This limits the intrinsic emittance,
which scales with laser spot size, Eq. 168. The emit-
tance demonstrated so far does not show a clear advan-
tage of this method. There is another emission scheme,
based on a cigar-beam, introduced in (Rosenzweig et al.,
2019) that achieved lower emittance. While the blow-out
regime uses a short but large radius laser profile, which
produces a longitudinal expansion of the beam, the cigar-
beam regime uses a long but small radius laser profile
which produces radial expansion of the beam. Simula-
tions showed a noticeable improvement in beam bright-
ness of the cigar compared to the blow-out regime. Due
to these limitations, research efforts were moved to using
ellipsoidal laser profiles instead of the blow-out regime to
generate an ellipsoidal beam; see (Khojoyan et al., 2014).
See Section III for further details of laser shaping.
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Figure 29 Experimental demonstration of ellipsoidal beam
generation using blow-out method. The beam images were
measured after a deflecting cavity. The beam was focused
vertically, and the deflecting cavity kicked the beam verti-
cally. x and y axes correspond to the beam’s horizontal and
longitudinal distributions, respectively. The beam’s energy
was 3.75 MeV and the charge was 15 pC. From (Musumeci
et al., 2008).

2. Space-charge field with a few bunches

When more than a single bunch exists, the bunches
mutually repel each other via the space-charge field. If
there are extra bunches in front of and behind the tar-
get bunch, the electromagnetic field felt by the target
bunch will depend on these extra bunches and the target
bunch’s self-field. Here, the charge ratio of each bunch
and the spacing between the bunches can be used as
knobs to control the space-charge field applied to the
target bunch.

In (Lu et al., 2018), this concept was used to compress
an electron bunch. During the experiment, they gen-
erated a low-charge main bunch and two extra bunches
for space-charge field shaping using a laser beam splitter
and α-BBO crystals. The main bunch was located be-
tween two field-shaping bunches. These two field-shaping
bunches push the target bunch, which generates a nega-
tive longitudinal chirp of the target bunch’s longitudinal
phase space (LPS). Note that the negative chirp means
the head of the bunch has lower energy. Because the
space-charge field outside of the bunch shows the usual
1/r2 tendency, they located the target bunch at the mid-
dle so that the nonlinearity of the space-charge field com-
ing from the field-shaping bunches almost cancels out.
This provided a nearly linear longitudinal chirp to the
target bunch; the relative separation was adjusted by us-
ing a laser delay line. The laser was injected into the RF
photocathode gun that accelerated the beam to about 3.4
MeV. Due to the beam’s low energy, a few meters of drift
provided enough R56 for ballistic bunching. Note that
ballistic bunching means that the bunch compression is
accomplished by the velocity difference of the particles
in a drift. Velocity bunching is a more general term, but
the ballistic bunching is used when acceleration is not
included in the compression.

During the experiment, they fixed the target bunch’s
charge level to 50 fC while varying the field-shaping

Figure 30 Space-charge field shaping for bunch compression.
Measured longitudinal phase spaces are displayed. Each panel
corresponds to different charge level of field-shaping bunches.
(a-d) correspond to charges of 0.2, 3.2, 4.5, and 6.7 pC, re-
spectively. t > 0 corresponds to the head. From (Lu et al.,
2018).

bunches’ charges from 0.2 to 6.7 pC. Here, the charges of
the field-shaping bunches were used to control the field
strength applied to the target bunch. They observed
bunch compression with an LPS measurement as shown
in Fig. 30. Also, the main bunch length was controlled
from 220 fs to 109 fs by varying the charge. As we can
see from Fig. 30(d), there is still room for further com-
pression.

Another interesting point of this work is stability. In
the case of chicane compression, the RF jitter of the cav-
ity controlling the chirp affects the longitudinal chirp or
the beam energy. This RF jitter, in turn, result in an
increase of the bunch length jitter and arrival time jitter.
On the other hand, all three bunches originated from a
single laser pulse, and there are no RF cavities other than
the gun in this scheme. Thus, it can provide better stabil-
ity than other methods. This is an interesting method for
applications requiring a short bunch with good stability
such as ultra-fast electron diffraction (UED), ultra-fast
electron microscopy (UEM), or FELs.

A similar method was also experimentally demon-
strated for transverse phase space. In (Rihaoui et al.,
2009), they introduced extra bunches surrounding a cen-
tral main bunch in the transverse space; see Sec. III.D.2.
Due to the interaction via the space-charge force and the
beam’s distribution change by solenoid focusing, these
extra bunches either introduced extra focusing to the
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main beam or changed the beam’s distribution to a shape
that was other than a Gaussian distribution. This could
be an interesting option for a system having difficulty us-
ing magnets. For example, locating a solenoid near the
cathode of superconducting guns is difficult, but trans-
verse control is necessary to preserve the beam’s quality.
These extra bunches may provide all-beam-focusing to
the target beam, so it may be able to locate a solenoid
further downstream while preserving the beam quality.

Although the experimental demonstrations discussed
in this section are limited to one-dimensional density con-
trol, we can imagine appling this method to more general
bunch shaping applications. For example, nonlinearity is
a key for asymmetric bunch shaping, as we saw in Sec-
tion IV. We can imagine exploiting nonlinearities that
space-charge force introduces. Bunch charges and spac-
ing can be used to control the shape of LPS. Controlling
the space-charge field of the main bunch by using addi-
tional bunches which may provide a new way to apply a
laser-shaping technique to high-charge bunches.

We should note that beam shaping with extra bunches
always has the problem of eliminating the extra bunches
after they are no longer needed for shaping. The elimina-
tion process may introduce additional disadvantages that
make the method less beneficial than described so far.
A beam cutting process may happen using a mask and
an additional beamline element such as chicane or RF
deflecting cavities. However, these beamlines can easily
add extra timing jitter to the beam, negating one of the
benefits of this method.

3. Space-charge field with multiple bunches: space-charge
oscillation

We now consider more than three bunches by provid-
ing a density modulation at the beginning. This initial
density modulation introduces oscillatory behavior in the
longitudinal phase space, which is similar to the plasma
oscillation that ions and electrons form. In the electron
bunch case, the initial density modulation and bunch-to-
bunch interaction via the space-charge force introduces
the same oscillation.

This behavior is shown in the left panel of Fig. 31. The
initial density modulation lengthens each micro-bunch,
due to the space-charge force, so that the modulation be-
comes weaker as the beam drifts until it finally disappears
at a certain distance. Once the beam passes this point,
the particles in each micro-bunch continue to move in the
same direction, due to their momentum. These particles
build another density modulation whose phase is 180◦ off
from the original modulation, thus the direction of the
space-charge force now is reversed. At a certain point,
the momentum direction changes, due to the reversed
space-charge force, and this density modulation starts to
oscillate. The oscillation frequency of this oscillation is

Figure 31 Nonlinear plasma oscillation of the beam to gener-
ate a bunch train with a high bunching factor. Beam’s lon-
gitudinal density profiles and their evolution are displayed.
The left panel started with a bunching factor of 0.01, and the
right panel started with a bunching factor of 0.24. These are
numerical solutions of the system of equations describing a
coasting beam’s density profile evolution. From (Musumeci
et al., 2011).

equal to the plasma oscillation’s frequency in Eq. (146).
The change of the relative energy spread induced by the
longitudinal space-charge force can be written as

∆δLSC = 4
γ3ωpb

ck
, (199)

where k is wave number (= 2π
λ ), and b is bunching factor

= |
∫
λ(z, 0)eikzdz|; see (Musumeci et al., 2013).

In the linear oscillation situation described above, a
sine-like shape on the phase space does not break and
keeps oscillating because the energy modulation induced
by the initial density modulation is small so that all parti-
cles cannot arrive at the density peak area before the mo-
mentum is reversed (i.e., R56δ � λ/4). However, when
the modulation becomes big enough, the space-charge
force can induce wave-breaking where the momentum
modulation is large enough to cause all particles to reach
the density peak area (i.e., R56δ ≈ λ/4).

It is also possible to understand this process as the
summation of harmonics. In the case of linear oscilla-
tion, only the fundamental mode governs the oscillation.
However, as the initial density modulation gets larger,
the oscillation process picks up more harmonic compo-
nents of the fundamental wavelength. After half of the
plasma period, these harmonic components sum in-phase
and generate current spikes. This viewpoint can be seen
from the equation below showing the electron density.
More details are described in (Musumeci et al., 2013).

λ(z, t) =

[
1 + cos (ωpt)

∞∑
m=1

mcm(t) cos (mkz)

]
, (200)

where cm(t) = (−1)m+1

m
2
α(t)Jm [mα(t)b], and α(t) =

2 sin2(ωpt/2).
Although this concept can be applied to any coasting

beam, it is impractical for a high-energy beam because
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of its long plasma wavelength. Thus, it was applied to
an electron gun by several groups (Harris et al., 2007;
Neumann et al., 2009, 2003). Here we describe more de-
tails of the experiment done by (Musumeci et al., 2011),
which successfully demonstrated the generation of cur-
rent spikes.

They used three α-BBO crystals to generate eight
equally spaced laser pulses to form a 1-THz (λ = 300
µm) pulse train. They tested the bunch charge up to 40
pC, and the gun solenoid was used to focus the beam. To
demonstrate the method, they varied the laser intensity,
which controls the charge, to change the phase advance of
the oscillation. The phase advance determines the final
modulation density. The modulation was measured with
a deflecting cavity at the end of an experimental beam-
line. The solenoid field was fixed, and the gun phase was
set to 35◦ to preserve the original modulation period.
The result is summarized in Fig. 32.

According to their simulation, the phase advance of
the lowest charge case (1.6 pC) was about 0.18π; see
Fig. 32. Thus, it still showed the original modulation
and all eight peaks appeared at the end of the beam-
line. When the charge was increased to 3.9 pC, the mod-
ulation was washed out; this charge level corresponds
to the phase advance of 0.25π in their simulation. As
the charge increased further, the phase advance became
slightly lower or higher than 0.5π, so a density modula-
tion appeared again, but now there were only seven peaks
because of the π phase shift of density peaks in a given
total bunch length.

A few years later, this method was revisited and experi-
mented at a higher charge level to consider an application
to terahertz (THz) radiation. In (Zhang et al., 2016) they
set up an experimental beamline similar to (Musumeci
et al., 2011) and added a chicane to broaden the fre-
quency tuning range. They used a charge up to 1 nC,
and results were very similar to the ones from (Musumeci
et al., 2011). They controlled both the charge level and
the solenoid focusing strength to control the phase ad-
vance. The initial modulation was washed out with a
low phase advance while the modulation was shifted by
180◦ when the phase advance was 0.25π.

In addition to confirming the oscillation at a higher
charge level, they also tried to generate THz coherent
transition radiation (CTR) using a foil. They adjusted
two tuning parameters to control the modulation fre-
quency and measured the spectrum of CTR using a
Michelson interferometer equipped with a Golay cell (Go-
lay, 1947). The first parameter was the launching phase
of the gun. Depending on the launching phase, the bunch
had different longitudinal chirps. This eventually intro-
duced different compression ratios for ballistic bunching
in the low energy area. They varied the phase from 25◦

to 50◦, and the frequency of CTR was varied from 1 THz
to 0.7 THz, correspondingly. The second parameter was
the chicane’s bending angle, which controlled R56. Com-

Figure 32 Experimental demonstration of bunch train gener-
ation using nonlinear plasma osciallation. (a-d) shows tempo-
rally streaked beam images, and corresponding longitudinal
profiles are shown in (e). Streaking direction for beam images
is vertical. From (Musumeci et al., 2011).

pared to the launching phase, this second parameter pro-
vided a much wider tuning range. They varied R56 from
0 to 18 mm, and it changed the frequency from 0.8 THz
to 1.6 THz.

Because of the high charge level, they achieved 2 µJ
of THz energy from CTR. They expected that a 30-mm-
long quartz tube with 0.3- and 0.4-mm inner and outer
diameters, respectively, would provide 8-MW, 1.4-mJ
THz radiation at 0.7-THz frequency. This intense and
tunable THz radiation from a compact beamline can be
useful for a typical spectroscopy-type equipment, pump-
probe measurements in XFELs, or THz wakefield accel-
erators.

4. Space-charge field with multiple bunches: longitudinal
cascade amplifier

When a momentum modulation from an initial density
modulation is strong enough, the initial density modu-
lation can be amplified with an appropriate R56. This
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Figure 33 Measurement of microbunching instability. The
left panel shows the measured longitudinal phase space with-
out a laser heater. The strong modulation originated from the
shot noise and its amplification. The right panel shows the
corresponding current profile. Adapted From (Ratner et al.,
2015).

phenomenon was studied extensively in the early 2000s
to understand the significant beam quality degradation
and radiation generated from the beam. This is called
the microbunching instability and many theories and ex-
perimental papers were published to explain and sup-
press this phenomenon; for example, (Heifets et al., 2002;
Huang et al., 2010; Huang and Kim, 2002; Lumpkin et al.,
2009; Marinelli et al., 2011; Prat et al., 2017; Ratner
et al., 2015; Saldin et al., 2002a, 2004, 2002b; Spampinati
et al., 2014; Wu et al., 2008). One of them, (Ratner et al.,
2015), showed a picture of the longitudinal phase space
with various conditions, and Fig. 33 clearly shows the
modulation amplified by the gain process; see Sec.II.D.5.

As described in Sec. II.D.5, (Saldin et al., 2002a) de-
rived a simple equation to estimate the gain (G) of the
density modulation, which is the ratio of final to initial
modulation amplitude. Longitudinal space-charge fields
introduced energy modulation to the beam, as appeared
in Eq. (156) as an impedance term. Then, R56 of the
given beamline converted an energy modulation to a den-
sity modulation. For the microbunching instability, the
longitudinal space-charge force from the shot noise makes
the gain higher than 1 and amplified this unwanted shot
noise. Thus, an effort, such as using a laser heater, was
made to reduce the gain [see the σδ term in the exponent
of Eq. (156)].

On the other hand, (Schneidmiller and Yurkov, 2010)
introduced a concept to use this amplification of shot
noise as a way for generating a high-frequency bunch
train; it was called the longitudinal space-charge cascade
amplifier (LSCA). In this concept, they used a drift with
a focusing channel to introduce a momentum modula-
tion from the density modulation, then a chicane is used
to introduce an R56 optimized for the modulation con-
version with maximum gain. This focusing channel and
chicane form a single cell of the amplifier, and each cell
provides gain to the density modulation. Thus, they used
a cascade of cells to saturate the density modulation. The
numerical example they provided shows that the gain per
cell reaches more than 40 for a beam with an energy of 3
GeV, a peak current of 2 kA, a normalized emittance of

2 µm, and an energy spread of 0.3 MeV, which is close
to typical FEL parameters. Thus, two cascades would
provide a G > 1, 000. This is high enough to saturate
the shot noise for this example case.

The LSCA method was experimentally demonstrated
in 2013 by (Marinelli et al., 2013). The experiment ampli-
fied shot noise using three chicanes with drifts between
them. The amplified modulation was used to generate
radiation by using an undulator, with an undulator pa-
rameter of 0.58, a period of 1.9 cm, and a total of 11
periods. Each chicane provided R56 of 4 mm, 2.5 mm,
and 1.5 mm, in order, and the chicanes were 2 m apart.
The initial momentum modulation was accumulated for
a 10-m-long drift before the first chicane, and the beam
energy was 72 MeV. The spectrum of undulator radiation
was measured. They used a photodiode detector to mea-
sure the integrated intensity gain. With a 12-pC bunch,
the average gain in the integrated intensity over the in-
coherent background was 600. When they measured the
gain of on-axis radiation and only considered the bunch
charge contributing to the coherent radiation, the gain
went up to 1.5×104, which was in good agreement with
their estimated gain of 2.5×104 from the linear theory.

This method is considered for FEL facilities to gener-
ate high-power coherent radiation, large radiation band-
width, or attosecond pulses as described in (Schneid-
miller and Yurkov, 2010) and (Dohlus et al., 2011). On
the other hand, another use of this cascade method was
proposed by (Ratner, 2013) wherein they suggested using
the cascade method to achieve a high cooling rate for co-
herent electron cooling. Here, the modulation imprinted
by an hadron beam onto the electron beam is amplified
with the cascade amplifier, and the field from the ampli-
fied modulation of electron beam is then used to cool the
hadron beam.

5. Space-charge field with multiple bunches: plasma cascade
amplifier

While the previous LSCA did not consider transverse
behavior much, (Litvinenko et al., 2018) introduced a
new method called the plasma-cascade amplifier (PCA),
which generates modulation at the plasma frequency us-
ing solenoid focusing. As previously mentioned, G >
1 occurs when the space-charge induced momentum is
strong enough, which is converted to the density by an
appropriate R56. It is hard to expect a high gain in a
drift because the R56 of a drift (Ld/γ

2
0) is much lower

than the one from a chicane (2Ldoglegθ
2, θ � 1). How-

ever, the final density modulation is governed by how
many particles gather together at one spot, so R56δ is
the critical term. Thus, even though a drift provides
a low R56, providing a stronger momentum modulation
from the space-charge force can make a similar amplifi-
cation. One of the clear ways to achieve it is to increase
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the density by focusing the beam, as we can infer from
Eq. (199).

The plasma cascaded instability can also be under-
stood as a parametric resonance of harmonic oscillators
as described by (Litvinenko et al., 2018). In the harmonic
oscillator, the oscillation can increase exponentially when
the oscillation frequency is modulated at a certain fre-
quency (i.e., ω0(t) = ω0 [1 +A cos(ωt)]). This resonance
happens when ω ' 2ω0. In the case of the PCA, ω0

corresponds to the plasma oscillation frequency. Thus, if
the plasma oscillation frequency can be modulated, then
a parametric resonance will occur in the beam’s longi-
tudinal density modulation. Here, a series of focusing
solenoids are used to modulate the plasma oscillation fre-
quency, as shown in Fig. 34. Due to the required rela-
tionship between the plasma oscillation frequency and its
modulation frequency, it is clear that system parameters
such as the beam envelope, solenoid-to-solenoid distance,
and charge level should be carefully designed. Thorough
theoretical work has been done by (Litvinenko et al.,
2018), and further work is on-going [see (Blaskiewicz,
2019)].

The method was experimentally demonstrated by
(Litvinenko et al., 2019; Petrushina et al., 2019). A long
bunch (400 ps) with low energy (1.76 MeV) was used for
the experiment, and the charge was varied. They used
5 cells to amplify the shot noise, and the solenoids were
not placed periodically, which works equally well as a
periodic setup. From the simulation, they expected a
gain of 400-500 for 0.4 THz, and a gain around 200 for
0.6 THz. Figure 34 shows measured longitudinal beam
profiles. The density modulation is very clear, and it
shows a charge dependency, which is expected because
G > 1 occurs with a strong enough momentum modula-
tion from the space-charge force. The spectrum of these
modulated bunches is broadband with a peak around 0.4
THz as (Litvinenko et al., 2019; Petrushina et al., 2019)
expected from their simulation. See (Litvinenko et al.,
2021) for further details.

As LSCA had applications to radiation and coherent
electron cooling, the PCA can be applied for the same
purposes. While the LSCA requires a dispersive beam-
line such as a chicane, the PCA does not introduce any
dispersion to the beam. This may provide a relative ben-
efit in terms of beam quality preservation due to the lack
of CSR and timing issues for the electron cooling.

B. Shaping profiles using coherent synchrotron radiation

CSR is another beam-generated field that changes a
longitudinal beam momentum distribution along time.
Similar to the space-charge field, a CSR field is deter-
mined by the bunch’s longitudinal profile, and the field
strength is the only controllable knob, as we can see from
Eq. (142). CSR cannot be generated without a disper-

Figure 34 Experimental demonstration of plasma cascade
amplification. The conceptual figure on top shows the con-
figuration of a PCA with corresponding plasma wavelength
modulation (top), and the measured longitudinal density dis-
tribution (bottom). Adapted from (Petrushina et al., 2019).

sive element such as a dipole magnet. This means that
the transverse and longitudinal phase space will be cor-
related along the path, and it makes the analysis and
control more difficult than the space-charge field of a
single bunch. Thus, using CSR directly for shaping is
challenging, and no direct use of it has been proposed so
far.

However, CSR is indeed a field that can change the
longitudinal profile. It is normally considered an obsta-
cle for longitudinal beam manipulation. There have been
several research efforts that tried to preserve the shape
through a beamline with CSR. In the rest of this section,
we describe efforts to suppress CSR’s impact on the pro-
file. Studying these methods will tell us how to use CSR
as a shaping tool.

(Mitchell et al., 2013) showed theoretically that a
certain beam shape can flatten the CSR wake, and it
can minimize the CSR’s impact on transverse emittance
growth through the chicane. The beam profile is given
by

λ(z) =
4

3

(z − a)1/3

(b− a)4/3
, (201)

where a and b are the limits of the longitudinal bunch
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Figure 35 Theoretical estimation of aberrations of ideal cur-
rent profile flattening CSR wake and aberration’s impact on
the CSR wake. Current profile with aberrations are displayed
in the left panel. The right panel shows corresponding CSR
wakes. The dashed curve in the left panel shows the ideal
profile from Eq. (201). Solid curves show profiles aberrated
by the chicane. Each curve corresponds to a different D/L
where L is the initial bunch length. Lf (= L/C) is the fi-
nal bunch length after compression. Adapted from (Mitchell
et al., 2013).

domain (a ≤ z ≤ b). This shape is given on the left of
Fig. 35, and the corresponding CSR field is on the right.

Here, preserving the initial shape is critical to minimize
CSR’s impact on the emittance, so (Mitchell et al., 2013)
derived an equation for the longitudinal profile starting
from a decoupled 6D distribution. The profile at distance
s can be written as

λ(z; s) =
C√
2πD

∫ ∞
−∞

λ(ζ; 0) exp

(
− (ζ − zC)2

2D2

)
dζ,

(202)
where C is the compression factor, D is given by

D2(s) = C2
(
R2

56(s)σ2
δ +H(s)

)
, (203)

and H is given by

H(s) =

[
σ2
xR51(s)− σxx′R52(s)

]2
+ ε2

xR
2
52(s)

σ2
x

. (204)

The change of the profile depends on C and D. When
D is close to zero, λ(z; s) = Cλ(zC; 0), which means
the final profile has the same shape as the initial profile
but is compressed. Thus, the profile would not change
significantly when D is small. Figure 35, which shows
the longitudinal profile for different values of D and their
corresponding CSR wakes, proves that CSR has a small
impact on the profile when D is small. This tells us
that a small R56, initially low energy spread, and a small
transverse emittance are preferred. Also, beam matching
into the beamline is another important factor.

(Ha et al., 2016) tracked CSR effects on the beam in
an EEX beamline to find a way to preserve the shap-
ing quality of EEX-based shaping (see Sec. II.C.3 and
Sec. VI.C.1). They found that R56 of the second dogleg
is the carrier of CSR-induced momentum change. Thus,
reducing R56 was simulated to confirm its impact. Figure
36 shows current profiles at the exit of an EEX beamline

Figure 36 Correction of CSR-induced aberration in start-to-
end simulation. The x-axis is the beam’s longitudinal position
after a EEX beamline, and the y-axis is the normalized longi-
tudinal density. The colors represent charges of 1.1, 3.3, 5.5,
7.7, and 11 nC. The left panel was simulated with a 20◦ bend
for the dogleg, and the right panel used a 12◦ bend. Adapted
from (Ha et al., 2016).

for several different charge levels. The left figure corre-
sponds to an EEX beamline with a 20◦ bend, and the
right figure corresponds to a bending angle of 12◦. The
R56 of the doglegs were 0.29 m and 0.18 m, respectively.
The profile of 11 nC case has several clear differences
from the 1.1 nC case when R56 is high. For example, the
tail is lengthened, the peak is rounded, the linear ramp
is changed to a concave curve, and the bunch length is
significantly lengthened. On the other hand, the low R56

case preserved all features (tail, peak, ramp, and bunch
length) even for 11 nC.

(Tan et al., 2021) performed an optimization by using a
reverse tracking simulation to find a beamline setting and
an initial beam condition for providing the desired final
profile. By optimizing the entire beamline, nonlineari-
ties introduced by each part of the beamline could cancel
each other out. The beamline they used in the simula-
tion consisted of an SRF gun, 650-MHz linac cavities, a
3.9-GHz linac cavity, and two chicane compressors. Opti-
mization variables included accelerating gradient, phase,
frequencies of 650-MHz linac cavities, R56 and T566 of
each chicane, and parameters defining the initial profile.

Even though the charge of the beam they used was 10
nC, they found that a reasonable beamline setting pro-
vided the desired final longitudinal profile. Even this set-
ting included quite a high R56 for both chicanes, 0.129
m and 0.131 m, which can introduce a strong CSR ef-
fect on the profile. However, the work was done with
a simulation code with several simplified physics (e.g.,
beam propagation using R56 and T566, steady-state CSR
only, etc.). Thus, more work is required to reach a defi-
nite conclusion. However, it is promising that control of
nonlinearities of the beamline may compensate a strong
CSR’s impact on the final profile.

From the study of this research on CSR suppression, we
can infer how to make CSR’s impact on the final profile
stronger. Strong CSR, due to high charge or short bunch,
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coupled with high R56 may provide the CSR dominant
control over the final profile. This would induce a profile
change along the beamline; thus the final profile could
be made to have completely different features than the
initial one. However, the final profile that the CSR can
generate would be limited because the CSR field is de-
termined by the beam’s profile along the beamline. This
means that we need to either shape the initial profile or
create other knobs to control the beam’s longitudinal pro-
file inside the beamline. R51, R52, and transverse phase
space may be good candidates for the additional knob,
and we may be able to use nonlinearities from other parts
of the beamline to manipulate the final profile further.

C. Shaping profiles using wakefields

The longitudinal wakefield inside a given structure can
be expressed as the convolution of current distribution
and wake function, which is the wakefield from a sin-
gle particle; see Eq. (122). Here, the longitudinal wake
function can be written as the summation of each mode
excited in the structure:

wz(z) =
∑
i

2Kicos(kiz), (205)

where ki is the wavenumber of the ith mode, and Ki is
the loss factor of ith mode which is defined as the energy
lost by the particle exciting the mode per unit charge
squared. While the space-charge field and CSR did not
provide an additional knob other than its strength, in
the case of the wakefield, the material or geometry of
the vacuum pipe determines the wake function (i.e., loss
factor and fundamental frequency). Thus, manipulation
using the wakefield provides higher degrees of freedom
than other beam-generated fields.

In this section, we discuss the use of the wakefield
in shaping the longitudinal density profile. Similar to
methods described in Section IV, wakefields control time-
energy correlation and the subsequent beamline (e.g.
drift and anisochronous beamline) make the correlation
that determines the longitudinal density distribution.
Thus, we can easily imagine applications such as bunch
compression, bunch train generation, and single-bunch
shaping. These applications will follow the same prin-
ciple as the ones in Section IV, but the wakefield-based
techniques could be more compact and cost effective than
external devices.

In addition to profile shaping, the degrees of freedom
that wakefields provide enable further control over the
longitudinal phase space. Therefore, we also discuss ma-
nipulations of the energy distribution and longitudinal
phase space using wakefields.

Figure 37 Experimental demonstration of wakefield-based
bunch compression using THz structure with drive bunch.
The figures show measured longitudinal phase space of the
target bunch and corresponding projections. Each figures cor-
responds to different drive bunch charges. The charges were
(a) 0, (b) 0.6, (c) 0.9, and (d) 1.3 pC. Adapted from (Zhao
et al., 2018a).

1. Bunch compression

A wakefield can work with two compression mecha-
nisms; ballistic bunching and magnetic bunching. Both
mechanisms require control over the longitudinal chirp,
which can be provided by the wakefield. The chirp can be
produced in two different ways. If there is a wakefield-
driving bunch, the target bunch can be placed at the
zero-crossing phase of the wakefield, to provide either a
negative or a positive chirp. If there is no driving bunch,
then the self-wakefield inside the target bunch always
makes the tail lose more energy than the head of the
bunch (with an appropriate choice of frequency). Thus,
the target bunch always has a positive chirp. The pos-
itive chirp can work with magnetic bunching, but it is
not appropriate for ballistic bunching because a drift has
R56 > 0.

Ballistic bunching using a wakefield was experimen-
tally demonstrated by (Zhao et al., 2018a). They split
a Ti:sapphire laser at 800 nm into three pulses. Two
pulses were used to generate the drive and target bunch
while the third pulse was used for diagnostics purposes
by converting it to THz radiation through optical rectifi-
cation. A 5-cm-long quartz tube with an inner diameter
of 400 µm was used to generate a wakefield, and a drive
bunch charge ranging from 0.6 to 1.3 pC was used to
generate different longitudinal chirps. Thus, for a given
R56 ≈ 3.07 cm, they generated different compression ra-
tios. The results are displayed in Fig. 37. An uncom-
pressed bunch length of 150 fs rms was compressed to
2.8 fs rms in the case of (c).

While a similar compression can be easily accom-
plished with conventional RF cavities, the wakefield-
based ballistic bunching offers a few advantages. First,
this compression requires a driving bunch that can eas-
ily be generated by splitting UV laser pulses. Therefore,
it does not require extra cavities for chirping and corre-
sponding RF power sources. Second, RF sources always
introduce jitter on the beam energy. Because the wake-
field fully relies on the given structure and the beam, it
can provide better energy stability. (Zhao et al., 2018a)
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measured energy stability of 2.4×10−4 rms for wakefield-
based bunching, while it was 1.5×10−3 rms for bunching
with a buncher cavity. Third, this bunching also reduces
arrival time jitter. In (Zhao et al., 2018a) they measured
arrival timing jitter using a THz streaking method pro-
posed by (Zhao et al., 2018b). The measured arrival time
jitter for wakefield-based bunching was about 60 fs rms,
while the buncher provided a jitter of 170 fs rms.

Similarly, magnetic bunching with a wakefield can also
have the benefit of reduced timing jitter. Small tim-
ing jitter is highly demanded in many modern acceler-
ators. Especially, it is important for wakefield accelera-
tors. Wakefield accelerators usually operate at very high
frequency, so placing a short target bunch at the right
time is critical because it determines the beam’s energy
spread and energy gain. However, controlling the sepa-
rated bunch’s timing in a few ps or lower is not straight-
forward.

(Zhao et al., 2018a) proposed a scheme to use the wake-
field to reduce the timing jitter between an externally in-
jected drive bunch and main bunch. The proposed con-
cept uses the wakefield from a drive bunch to produce
a negative chirp on the main bunch’s longitudinal phase
space. This chirping process is followed by a chicane to
compress the main bunch. If the main bunch is a little
late compared to the ideal time, it will be accelerated by
the driving bunch’s wakefield. In the following chicane,
the main bunch will take a shorter path than the path it
would take when it arrives at the ideal time (i.e., zero-
crossing of the wakefield). This path length difference
compensates the original timing error after the compres-
sion. Similarly, if the main bunch arrives earlier than
the ideal time, the main bunch will be decelerated by the
wakefield and this bunch will take a longer path than the
bunch at the right timing. Thus, the timing errors can
be compensated.

2. Bunch train generation

The bunch compression discussed in the previous sec-
tion requires a condition σz

λwake
� 1. If we go to the

other regime ( σz
λwake

� 1), the wakefield can imprint a
sinusoidal energy modulation on the beam, which can
be used for bunch train generation. Once again, we can
use either a drift or other anisochronous beamline as a
momentum-to-density modulation converter. A drift re-
quires a low-energy beam to provide sufficient R56, and
the overall beamline setup can be simple and compact.
On the other hand, an anisochronous beamline, such as
a chicane, can generate a high R56 that is compatible
with any beam energy. This was experimentally demon-
strated by (Lemery et al., 2019) using a low-energy beam
with drift and by (Antipov et al., 2013) using a compact
chicane.

In (Lemery et al., 2019), they used a beam with charge

of 1 nC and an energy of 6.2 MeV. Two structures were
prepared (Inner diameter: 450, 750 µm, 5 and 8 cm long),
followed by an accelerating cavity providing 14 MeV of
energy gain. For both structures, downstream diagnos-
tics measured the phase space, and the modulation was
successfully imprinted in the LPS. The measured wave-
length of the final modulation was 1.01, and 1.81 mm for
each structure. They showed good agreement with the
expected fundamental wavelengths of each structure.

On the other hand, (Antipov et al., 2013) used a chi-
cane consisting of four permanent magnets to provide a
high R56 (≈ 4.9 cm). Here the beam’s charge and en-
ergy were 0.5 nC and 57 MeV, respectively. A 5-cm-
long Kapton capillary with an inner diameter of 300 µm
was used. The corresponding fundamental frequency was
around 0.8 THz. During the experiment, they controlled
the incident longitudinal chirp by controlling the phase
of the linac before the compressor. This macro-chirp on
top of sinusoidal modulation, can provide either a fre-
quency upshift or downshift. The modulation frequency
was measured from the autocorrelation of the coherent
transition radiation, and the result is shown in Fig. 38.
When there was no chicane, the modulation conversion
to the density modulation was not observed. When a
chicane was introduced, a density modulation appeared,
and its frequency was close to the expected 0.8 THz (see
the 189 keV/mm case). Also, depending on the linac
phase, the chirp was changed from -567 keV/mm to +567
keV/mm. Although the initial modulation frequency was
about 0.8 THz, the final density modulation frequency
could be tuned from 0.68 to 0.9 THz.

Equation (154) is applicable to both (Lemery et al.,
2019) and (Antipov et al., 2013) methods. In the case
of the wakefield, the modulation amplitude induced by
the initial energy modulation and R56 was Aind =
Ck|R56|∆δ exp

(
− 1

2C
2k2R2

56σ
2
δ

)
, where ∆δ is the ampli-

tude of the initial energy modulation [see (Saldin et al.,
2002a)]. Note that the required R56∆δ for the same fi-
nal modulation amplitude decreases as modulation fre-
quency increases. R56∆δ is the particle’s travel distance.
To build a density spike from the sinusoidal energy mod-
ulation, particles need to travel a little less than λ/4.
Thus, high-frequency modulation naturally requires ei-
ther a small R56 or a small initial modulation amplitude.
Although the beam energy was 57 MeV for (Antipov
et al., 2013), the total length of the chicane was less
than 50 cm, and R56 was only around 0.049 m. Their
high modulation frequency (0.8 THz) enabled the use of
a compact chicane. Also, as the modulation frequency
increases, the initial uncorrelated energy spread becomes
more important. The exponent of Aind includes a kσδ
term. As the frequency increases, the modulation am-
plitude decays exponentially. Thus, a higher frequency
requires a lower initial spread to keep the exponential
decay at the same level.

Finally, we note that modulation does not occur if the



48

Figure 38 Experimental demonstration of bunch train gener-
ation using a dielectric structure followed by a chicane. The
figure shows measured CTR signals, which are autocorrelation
results. Each curve corresponds to a different initial energy
chirp as described in the label next to the curve. The squares
are the data points, and the curves are the smoothed fits.
From (Antipov et al., 2013).

bunch’s longitudinal profile’s frequency spectrum does
not overlap with the structure’s frequency spectrum.
Thus, imprinting multi-period modulation is not possi-
ble for a Gaussian profile. Both experiments described
above used flat-top profiles.

3. Single-bunch profile shaping

The current profile of a single bunch can be shaped
by introducing an appropriate nonlinearity or by mask-
ing. As we saw from transverse manipulation by (Yuri
et al., 2007), introducing an appropriate nonlinearity on
the phase space can change the profile. Figure 39 shows
an example for a triangular profile. A wakefield intro-
duces a nonlinear curvature in the linear phase space. In
this example, particles in the tail are accelerated due to
the wakefield, while particles near the center lose their
energy. Thus, when the beam enters a chicane, particles
in the tail overtake the leading particles and build up
a density spike. At the same time, due to the nonlin-
earity in the energy gain along the longitudinal position,
the tail becomes sharp. The head of the current profile
smears out for the same reason. Note that this happens
when the wavelength of the wakefield is comparable to
the bunch length so that the appropriate nonlinearity is
introduced to the phase space.

In (Andonian et al., 2017) this method was experimen-
tally demonstrated using an 80-pC, 50-MeV beam and a
compact chicane with R56 = 9.2 mm. They used a di-
electric wakefield structure having an inner diameter of
200 µm and a length of 5 cm. The fundamental mode fre-
quency was 0.39 THz, which is about a quarter of 1/σz.
The beam’s profile was measured with and without the
structure to compare the effect of the wakefield. The re-
constructed profile from CTR interferometry is given in

(a) (b)

(c) (d)

Figure 39 Experimental demonstration of triangular current
profile generation using a dielectric structure followed by a
chicane.(a-c) are simulation results, and (d) is reconstructed
profile from interferometer measurements with and without
the structure. (a-c) corresponds to longitudinal phase space
before the structure, after the structure, and after the chicane,
respectively. The initial phase space (a) is generated artifi-
cially using beam parameters used for the experiment. The
modulation applied to this phase space is calculated from a
formula using structure parameters used for the experiment.
Adapted from (Andonian et al., 2017).

Fig. 39(d).

The method can be extended to generate arbitrary cur-
rent profiles when we use a series of structures with ap-
propriate frequencies. Similar to (Piot et al., 2012) and
(Ha et al., 2019a), each structure represents a Fourier
component of the target correlation. With an appropri-
ate R56, the correlation can change the initial profile to
the desired profile. A scheme using transverse wigglers
was proposed by (Ha et al., 2019a) and can be used for
the longitudinal phase space directly by simply replac-
ing transverse wigglers with wakefield structures. Simu-
lations in (Mayet et al., 2020) showed the feasibility of
using several structures with different frequencies. They
also showed the feasibility of structure fabrication.

A masking-based technique has not been proposed yet.
However, combining wakefield-based shaping with meth-
ods introduced this paper could provide advantages. For
example, one can adopt a wakefield-based deflector (see
(Novokhatski, 2015)) instead of RF deflecting cavities for
the method in (Ha et al., 2020); see Sec. IV.B.1. The
wakefield deflector uses a transverse wakefield that kicks
the trailing particle transversely. Thus, it generates time
and transverse correlation just like RF deflecting cavities.
While this passive device may provide a big advantage on
timing jitter, the nonlinearity of the transverse wake will
require more extensive analysis to design the mask and
eliminate the correlation after chopping (Bettoni et al.,
2016; Craievich and Lutman, 2017; Seok et al., 2018).
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Figure 40 Experimental demonstration of energy spread re-
duction by wakefield from dielectric structure. The left panel
shows beam images on the spectrometer with different struc-
ture gap sizes. Corresponding profiles are shown in the right
panel. From (Antipov et al., 2014).

4. Control over the energy distribution

Both (Antipov et al., 2014) and (Emma et al., 2014b)
experimentally demonstrated the effectiveness of the
wakefield dechirper. Both experiments used a slab struc-
ture, which consists of two jaws. Thus, the wakefield
strength was adjusted by the gap size. When the operat-
ing conditions, such as a beam’s profile, are known, the
structure can be optimized for the operating condition.
However, these proof-of-principle experiments used the
slab structure with an adjustable gap to provide flex-
ibility to the experiment. Figure 40 shows measured
beam images after the spectrometer and corresponding
spectrum from (Antipov et al., 2014). As the gap size
decreased, a quasi-linear wakefield amplitude increased,
and it successfully reduced the energy spread.

The low correlated energy spread from a dechirper can
benefit all modern accelerator applications. For exam-
ple, the X-ray free-electron oscillator (XFELO) requires
energy spread of < 1× 10−4 (Kim et al., 2008), which is
challenging to achieve with existing methods. However,
a recent study by (Qin et al., 2016) showed its feasibility.
Optimization of most of the linac parameters (phase, gra-
dient, R56, etc.) was performed, and the beamline had
a dechirper at the end. This optimization in the simula-
tion generated the core of the beam (∼400 fs) having a
relative energy spread of ∼ 2.6× 10−5 (105 keV rms).

Although the methods just introduced demonstrate
the compensation of the chirp by experiments or sim-
ulations, there was a common limitation. The methods
introduce a nonlinearity in phase space that increases the
correlated energy spread. The linearity in the core of the
phase space can be preserved by designing a structure
having a low-frequency single-mode, whose wavelength
is much longer than the bunch length. However, preserv-
ing the linearity in the periphery is challenging. When

kσz � 1, Eq. (122) and Eq. (205) can be simplified to

Wz(z) ≈ 2KQb
∫ z

−∞
λ(ζ)dζ, (206)

where Qb is the total charge, and λ(z) is the normalized
density profile. Thus, only a uniform profile provides
Wz(z) ∼ z, which preserves both the core and the pe-
riphery’s linearity. All other profiles would would have a
nonlinear periphery in their phase space. .

A simulation in (Antipov et al., 2014) showed the feasi-
bility of extending linear region of the wakefield by using
a multi-mode structure. However, this approach does not
provide any tunability after the fabrication of a struc-
ture. (Antipov et al., 2014) also remarked about the use
of two or more dechirpers to control nonlinearity issues.
This multi-structure approach was recently simulated by
(Mayet et al., 2020). It provided high-quality dechirping,
but the dechirping for the periphery was still limited due
to the limitation of Fourier synthesis known as the Gibbs
phenomenon.

5. Control over longitudinal phase space

As we notice with the previous single-bunch shaping
and energy distribution control, a wakefield applied to
the beam changes the longitudinal phase space, and it can
be used to control the correlation of the phase space. The
most demanding control over the correlation is lineariza-
tion, and it is experimentally demonstrated by (Deng
et al., 2014) and (Fu et al., 2015). For a simple de-
scription, if we assume that only the RF curvature from
the linac generates nonlinearities and the beam’s energy
gain from the linac can be written as ERF cos(kRF z),

this gain can be approximated to ERF

[
1− (kRF z)

2

2

]
for kRF z � 1. Similarly, the wakefield from a struc-
ture having only a single mode and a uniform profile
can be written as n0W0

kw
sin (kw(z + ∆z/2)), where ∆z

is the width of the uniform profile, and n0 is the den-
sity. Because kwt should be small while the wavelength
of the wakefield should be shorter than the wavelength
of the RF field in the linac, we can approximate it

as n0W0

[
−∆zk2w

4 z2 +
(

1− k2w∆z2

8

)
z + ∆z

2

]
. Thus, it is

possible to eliminate the quadratic term that generates
the curvature in the phase space by choosing the proper
strength of the wakefield. This can be simply done by
adjusting the gap size in the case of slab structures.

An experiment by (Deng et al., 2014) demonstrated the
linearization, and they generated undulator radiation to
estimate the impact of the linearization on the radiation
quality. They expected to see a significant reduction of
the radiation bandwidth due to the linearization and a
shift of the central wavelength. As the wakefield strength
increased, the bandwidth became narrower. The band-
width from the 6-mm gap was measured to 7.8 nm. On
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Figure 41 Longitudinal correlation control via a series of di-
electric structures. The top panels show simulated longitu-
dinal phase spaces before and after the correction using 10
dielectric structures, and the bottom panels show the corre-
sponding structure geometries for simulations. The left col-
umn shows an example of linearization while the right column
shows dechirping. Adapted from (Mayet et al., 2020).

the other hand, the 2-mm gap provided 3.7-nm band-
width.

This experiment was designed to observe the effect of
linearization on the radiation. However, we can imag-
ine that the bunch compression will benefit from this
linearization too. Currently, most of the linearization is
done with harmonic cavities, which require additional RF
power sources. However,the beam-generated field may be
able to manage the nonlinearity with lower cost. (Penco
et al., 2017) used wakefields from a high-impedance linac
and a dielectric waveguide structure to replace high-
harmonic cavities. The result was similar to the lineariza-
tion result by high-harmonic cavities.

A series of structures with different frequencies may
enable further control of the phase space such as corre-
lation control of the phase space for an arbitrary current
profile or control of longitudinal chirp with the lineariza-
tion. The wakefield from each structure will work as a
Fourier component and can generate arbitrary correla-
tion in the phase space; see (Ha et al., 2019a). This
concept was demonstrated in a simulation (Mayet et al.,
2020) using a series of dielectric structures. Because the
choice of parameter set becomes too complex, they used
an optimization algorithm to find the best result. Fig-
ure 41 shows two of their simulation results. The top
panel shows the longitudinal phase space with and with-
out linearization by wakefields, and the bottom panel
shows the corresponding structure geometries. They used
a total of 10 structures to correct the shape and control
the chirp. Although this approach requires experimental
demonstration and further study on beam transport, in-
stability, fabrication error, etc., this is indeed a powerful
method that would enable us to optimize the longitudinal
phase space for each application.

VI. COUPLING BETWEEN DEGREES OF FREEDOM
FOR PHASE-SPACE TAILORING

A. Introduction

This section discusses shaping methods that rely on
the coupling between phase spaces associated with dif-
ferent degrees of freedom (DOF). In Section IV, the in-
troduction of local coupling was shown to provide some
control over a coordinate not usually accessible in an un-
coupled beamline. In that case, shaping is performed
within “coupling bumps” and the correlation is removed
downstream. Ultimately, the fact that the coupling is
partial limits the precision of that shaping method. This
section focuses on beamlines that have strong coupling or
can swap phase-space coordinates. This class of phase-
space manipulation enables precise shaping of the beam
phase space and opens a path to emittance repartition
among the different DOFs.

B. Coupling between the two transverse degrees of
freedom

1. Producing beams with canonical angular momentum

Canonical angular momentum (CAM)-dominated, or
“magnetized”, beams have important applications in
electron cooling of heavy-ion beams (Budker et al., 1975;
Derbenev and Skrinsky, 1978; Parkhomchun and Skrin-
skii, 2000). In such a scheme, a cold electron beam
co-propagates with the ion beam at the same average
velocity. Collisions between ions and electrons trans-
fer thermal motion away from the ion to the electron
beam. The cooling efficiency can be greatly improved by
using a magnetized beam. More recently, the use of a
CAM-dominated beam was also considered for mitigat-
ing a resonance-driven instability in long periodic focus-
ing channels (Cheon et al., 2020). A simple technique
for forming CAM-dominated beam consists of immers-
ing a cathode in an axial magnetic field Bz, i.e., inside a
solenoid magnet. In such a case, the canonical momen-
tum L = eBz

2 r2 is proportional to Bz. In a rotationally
invariant system, the conservation of angular momentum
implies that the beam acquires a mechanical angular mo-
mentum (MAM) equal to the CAM once it exits the
solenoidal field as Bz vanishes; henceforth the beam’s
motion in the two transverse planes becomes coupled.

As discussed in Section- II, beam dynamics is deter-
mined by several factors including space charge, thermal
emittance, angular momentum, and external fields. How-
ever, beam dynamics differs drastically when one factor
dominates over the others; see Fig. 42. In Fig. 42(a) the
dynamics is dominated by the thermal emittance, and the
electrons have random momentum direction; in (b) the
beam is dominated by its angular momentum, and the
electrons shear in a vortex pattern; and in (c) the beam
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is dominated by space charge, and the electrons repel
each other by the Coulomb force and move outwards.

(a) (c)(b)

Figure 42 Motions of the electrons when the beam is domi-
nated by (a) emittance, (b) angular momentum or (c) space
charge. Each dot represents an electron in (x, y) space, and
the arrows show the magnitude and direction of the electrons’
velocities. From (Sun, 2005).

Taking into account all if these contributions, the rms
transverse envelope equation for an electron bunch prop-
agating in a drift space is described by (Reiser, 1994)
as

σ′′ − Kp

4σ
− ε2

u

σ3
− L

2

σ3
= 0, (207)

where σ is the transverse rms size, Kp = 2I
I0β3γ3 is the

generalized perveance, I is the absolute value of the peak
beam current, I0 = 4πε0mc

3/e ≈ 17 kA is the Alfvén cur-
rent, εu is the uncorrelated transverse rms emittance, and
L is related to the average canonical angular momentum
〈L〉 (see Section II.B.4) and the longitudinal momentum
ps of the beam via the magnetization

L =
〈L〉
2ps

. (208)

The second, third, and fourth terms of Eq. (207) rep-
resent the effects due to space charge, emittance, and
angular momentum, respectively. When the fourth term
is much greater than the second and the third terms, the
beam is angular-momentum-dominated.

If there is external electromagnetic linear focusing, an
extra term in the form of k0σ can be added to the enve-
lope equation, where k0 is related to the strength of the
external focusing force.

The magnetic field on the photocathode is normally ze-
roed to minimize the projected emittances. This can be
seen from Eq. (207), where the canonical angular momen-
tum term L plays the same role as the emittance term in
the beam-envelope equation so that it can be introduced
to an effective emittance εeff =

√
ε2
u + L2, as noted in

Section II. However, a large magnetic field is required to
produce an angular-momentum-dominated beam in order
that the correlation between the two transverse degrees
of freedom dominates, i.e., L � εu.

Recall the conservation of canonical angular momen-
tum, Eq. (79). At the photocathode, the average of the
first term is zero since 〈φ̇〉 = 0. The second term must

not vanish in order to allow the beam to acquire angular
momentum. Therefore, an axial magnetic field on the
cathode is required to generate an angular-momentum-
dominated electron beam. The first photoinjector-based
generation of a CAM-dominated beam was demonstrated
at Fermilab’s A0 photoinjector facility (Sun et al., 2004)
using an L-band RF gun. The solenoidal lenses surround-
ing the RF gun were tuned to provide a variable mag-
netic field on the photocathode, and the beam’s MAM
was measured; see Fig. 43. In the latter work, the beam
was further accelerated using a superconducing cavity,
and the MAM was measured at ∼ 15 MeV. Similar in-
vestigations were most recently conducted at Jefferson
Laboratory on a 300-keV electron beam produced from a
DC gun (Mamun et al., 2018) and at the Fermilab FAST
facility in a high-charge regime (3.2 nC) at 40 MeV (Fet-
terman et al., 2022).

(a)

(b) (c)
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Figure 43 Experimental setup used to produce a CAM-
dominated beam at the Fermilab A0 facility (a), exam-
ple measured conversion between CAM and MAM (b), and
demonstration of the quadratic dependence on laser spot size
on the cathode (c). In diagram (a), the letters represent
solenoidal magnetic lenses (L), skew quadrupoles (Q), and di-
agnostic stations (X, which means “cross”). Dimensions are
in mm. In (b) and (c), the circles are measurements and the
lines are fits. In plot (b), the dashed-curve shows the corre-
sponding simulations. Adapted from (Sun et al., 2004).

2. Decoupling of CAM-dominated beams and transverse
emittance partitioning

A set of quadrupoles, with properly selected strength
and separation, can apply a net torque to the CAM-
dominated beam and remove its angular momentum.
The result is an asymmetric beam with its two trans-
verse degrees of freedom no longer coupled, i.e., a flat
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beam. A flat electron beam, i.e., a beam with high trans-
verse emittance ratio, can be produced from an angular-
momentum-dominated beam (Brinkmann et al., 2001).
The technique consists of manipulating an angular-
momentum-dominated beam produced by a photoinjec-
tor using the linear transformation described in (Der-
benev and Skrinsky, 1978). A round-to-flat beam trans-
former, consisting of three skew quadrupoles and drift
spaces, is discussed in (Burov and V.Danilov, 1998).
This technique was proposed as a way of producing a
high-aspect-ratio beam to mitigate beamsstrahlung in fu-
ture linear colliders while also circumventing the use of
an electron damping ring conventionally used to reduce
the vertical emittance (Brinkmann et al., 2001). Like-
wise, the technique was also adapted for applications in of
microwave- and THz-radiation generation (Carlsten and
Bishofberger, 2006; Kim and Kumar, 2007) using, e.g.,
the concept of Smith-Purcell backward oscillator (An-
drews et al., 2005).

Finally, flat beams were also proposed as an interme-
diary way of transporting and accelerating magnetized
beams by transforming them from magnetized beams
into flat beams and back again (Benson et al., 2018; Piot
and Sun, 2014).

The theory of generating a flat beam from an incoming
angular-momentum-dominated beam is treated in several
papers (Brinkmann et al., 2001; Burov et al., 2002; Der-
benev, 1998; Kim, 2003). In this section, we follow the
theoretical treatment based on the 4D beam matrix pre-
sented in (Kim, 2003), in which the round-to-flat beam
transformation analysis was performed assuming that the
beam and the transport channel upstream of the trans-
former are cylindrically symmetric and that the particle
dynamics is Hamiltonian.

We will specify the coordinates of a particle in trans-
verse trace space by two vectors:

X =

(
x
x′

)
and Y =

(
y
y′

)
. (209)

The corresponding 4× 4 beam matrix is

Σ =

(
〈XXT 〉 〈XYT 〉
〈YXT 〉 〈YYT 〉

)
. (210)

Let R(θ) be the 4× 4 rotation matrix of angle θ:

R(θ) =

(
I · cos θ I · sin θ
−I · sin θ I · cos θ

)
, (211)

where I stands for the 2× 2 identity matrix. The beam
matrix is rotationally invariant if

Σ = R(θ) · Σ ·R(θ)−1. (212)

From Eq. (212), we obtain

〈XXT 〉 cos2θ + 〈YYT 〉 sin2θ

+(〈XYT 〉+ 〈YXT 〉) sinθ cosθ = 〈XXT 〉.

Since the rotation angle θ is arbitrary, Eq. (213) leads to

〈XXT 〉 = 〈YYT 〉, (213)

〈XYT 〉 = −〈YXT 〉. (214)

Taking the transpose of both sides of Eq. (214)

〈XYT 〉T = −〈YXT 〉T = −〈XYT 〉, (215)

we find that 〈XYT 〉 is antisymmetric and can be written
as

〈XYT 〉 = LJ2D, (216)

where L is a constant related to the angular momentum
L and longitudinal momentum ps by

L = 〈xy′〉 = −〈x′y〉 =
L

2ps
, (217)

and J2D is the 2 × 2 unit symplectic matrix given by
Eq. (18).

By expressing the beam matrix in terms of Courant-
Snyder parameters (also known as Twiss parameters) α,
β (see, for example, (Wiedemann, 1999)), the general
form of a round beam matrix in (x, x′) or (y, y′) subspaces
can be written as

〈XXT 〉 = 〈YYT 〉 = εT0,

with T0 =

(
β −α
−α 1+α2

β

)
, (218)

where ε is the rms transverse emittance, and |T0| = 1.
Gathering Eq. (216) and Eq. (218), we may write the

general form of a cylindrically symmetric 4 × 4 beam
matrix in the following convenient form:

Σ0 =

(
εT0 LJ2D

−LJ2D εT0

)
. (219)

Let M be the transfer matrix of the transformer, which
is symplectic. The beam matrix at the exit of the trans-
former is

Σ = MΣ0M
T . (220)

Kim noticed two invariants associated with the sym-
plectic transformation given by Eq. (220) (Kim, 2003):

I1 = ε4D =
√

det(Σ), (221)

I2(Σ) = − 1
2Tr(J4DΣJ4DΣ). (222)

where “Tr” is the trace operator, and J4D is the 4 × 4
unit symplectic matrix .

Suppose a proper transfer matrix M exists such that
the beam matrix at the exit of the transformer is block
diagonalized

Σ =

(
ε−T− 0

0 ε+T+

)
, with T± =

(
β± −α±
−α±

1+α2
±

β±

)
.

(223)
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Applying Eq. (221) to the symplectic transformation
given by Eq. (220), we have√

det(Σ) =
√

det(Σ0)⇒ ε+ε− = ε2 − L2. (224)

It is easy to calculate the second invariant once we verify
that

J2DT0J2DT0 = −I, (225)

which leads to

J4DΣ0J4DΣ0 =

(
−(ε2 + L2)I 0

0 −(ε2 + L2)I

)
, and

J4DΣJ4DΣ =

(
−ε−2I 0

0 −ε+
2I

)
.

So, from Eq. (222) we have

I2(Σ) = I2(Σ0)⇒ ε+
2 + ε−

2 = 2(ε2 + L2). (226)

Finally, the two transverse emittances can be derived
from Eq. (224) and Eq. (226)

ε± = ε± L. (227)

Equation (227) gives the two transverse emittances of
a completely decoupled asymmetric beam. One emit-
tance (ε+) can be orders of magnitude larger than the
other (ε−) given properly chosen initial conditions such
as ε and L, which are related to the beam matrix at the
cathode surface:

Σc =


σ2
c 0 0 L

0 σ′
2
c −L 0

0 −L σ2
c 0

L 0 0 σ′
2
c

 , (228)

where σc and σ′c are the initial beam size and divergence
spread at the cathode, respectively. The intrinsic (or
thermal) rms normalized emittance on the cathode (see
Eq. (167)) is εnc = σcσpc = βγσcσ

′
c = βγε.

The experimental generation of a flat beam from a
CAM-dominated beam was first demonstrated at the Fer-
milab A0 photoinjector (Edwards et al., 2000, 2001). The
experimental setup was identical to the one displayed in
Fig. 43 and three skew-quadrupole magnets located at
∼ 15 MeV were employed to remove the angular mo-
mentum, as demonstrated via numerical simulation in
Fig. 44(a-c). Ultimately, the experiment demonstrated
the generation of a flat beam with a transverse emittance
ratio of εy/εx ' 100 (Piot et al., 2006); see Fig. 44. The
experiment confirmed the underlying physics and was
validated against numerical simulation; see Fig. 44(d,e).
Most notably, the smaller measured normalized emit-
tance was εnx ' 0.4 µm. This number, although limited
by the diagnostics resolution, was a factor ∼ 2 smaller
than the thermal emittance estimated from the laser spot
size on the cathode which was ∼ 1 µm.

(a)

(b)

(c)

(d)

(e)

Figure 44 Simulations (a-c,e) and measurements of flat-beam
generation for the A0 photoinjector. Plots (a), (b), and (c)
are Astra simulation of respectively the beam size, emit-
tance and magnetization evolution along the beamline show-
casing the removal of angular momentum using three skew-
quadrupole magnets S1, S2 and S3 to transform the incoming
magnetized beam into a flat beam. The images displayed in
(d) are measured beam distribution at X3, X7, and X8 screens
while the distribution shown in (e) are the corresponding nu-
merical simulations. The labels ”Xi” refer to the diagram
appearing in Fig. 43(a). Adapted from (Piot et al., 2006)

Further experiments, carried out at the AWA facility
at Argonne, demonstrated the generation of a flat beam
using a similar principle but with high charge up to 2
nC and an emittance ratio close to 200. The beamline
also included a high-resolution phase-space measurement
(using scanning slits) that permitted the reconstruction
of the flat-beam phase space (Xu et al., 2019).
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3. Phase-space exchange between the two transverse planes

In this section, we consider the phase-space coordinate
exchange in the X-Y 4D phase space. Such a phase-
space swapping was first proposed for spectrometer ap-
plications in 1972 (Kowalski and Enge, 1972) and then
for a Möbius accelerator (Talman, 1995). If introduced
in an electron storage ring for a light source, the beam
emittance in the x - and y-directions become equal and
one half of the natural emittance in the normal ring, thus
mitigating the lifetime limitation for intra-beam scatter-
ing (Aiba et al., 2015). The XY exchange is also in-
teresting for the next generation synchrotron radiation
rings since it can lead to better horizontal injection ef-
ficiency (Kuske and Kramer, 2016). Likewise, such an
exchange could be critical in lowering collective instabili-
ties such as regenerative beam-break-up (BBU) instabil-
ities in superconducting linacs (Rand and Smith, 1980;
Tennant et al., 2005) and in beam-driven wakefield ac-
celerators (Gai et al., 1997).

The transformation matrix of the form

RXY =

(
0 A
B 0

)
;

(
X
Y

)
→ RXY

(
X
Y

)
=

(
AY
BX

)
(229)

can be constructed from an symmetric arrangement of
five skew quadrupoles as follows:

RXY = QS1L1QS2L2QS3L2QS2L1QS1. (230)

Here QSi and Li are the matrices for skew quadrupoles
and drifts:

QSi =


1 0 0 0
0 1 qi 0
0 0 1 0
qi 0 0 1

 , Li =


1 di 0 0
0 1 0 0
0 0 1 di
0 0 0 1

 .(231)

To simplify calculations, note that a skew quadrupole is
obtained by a 45◦ rotation of a normal quadrupole:

QSi = Rπ/4
−1QiRπ/4; Qi =


1 0 0 0
qi 1 0 0
0 0 1 0
0 0 −qi 1

 ,

and Rπ/4 =
1√
2


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

 . (232)

Here we are using the 2×2 block matrix notation and
since drift matrices are rotationally invariant, we can
write

RXY = Rπ/4
−1Q1L1Q2L2Q3L2Q2L1Q1Rπ/4. (233)

Since the product of drifts and quadrupoles is a 2×2 block

diagonal, we have

RXY = Rπ/4
−1

(
C 0
0 C̄

)
Rπ/4

=
1

2

(
C + C̄ C − C̄
C − C̄ C + C̄

)
. (234)

The 2×2 matrix C is easy to calculate and C̄ is obtained
from C by replacing qi → −qi. The condition that RXY
gives an emittance exchange is

C̄ = −C. (235)

This gives

q1 =
d2q2

−d1 − d2 + d1
2d2q2

2
, (236)

q3 = −d1 + d2 + d1
2d2q2

2

d1d2q2 (d1 + d2)
. (237)

The condition that C is a pure drift gives

d2 =
−1 + η2 −

√
1 + 2η2 − 4η3 + η4

2q2η (−1 + η)
; η = d1q2.

(238)
Lastly, the drift length becomes equal to the total drifts
in the RHS of Eq. (230), that is, dT = 2 (d1 + d2) if

d1 =
1

9

1− 4× 22/3(
−67 + 9

√
57
)1/3 +

21/3
(
−67 + 9

√
57
)1/3

]
1

q2
≈ −0.469

q2
. (239)

The system is therefore completely determined by spec-
ifying the value of q2 (Kim, 2020). The final transform
matrix is

RXY =


0 0 1 dT
0 0 0 1
1 dT 0 0
0 1 0 0

 . (240)

The exchange of transverse emittance via five skew
quadrupoles in a transfer line prior to injection to the
storage ring was numerically studied in (Kuske and
Kramer, 2016) and (Armborst, 2016) for the BESSY
II machine. The purpose of the manipulation was to
exchange the smaller vertical emittance with the larger
horizontal emittance prior to injection in order to stay
within the acceptance of the ring. However, due the ad-
ditional dispersion generated, the authors concluded that
a different way of transverse emittance exchange, i.e.,
“resonance crossing” (Aiba and Kallestrup, 2020; Carli
et al., 2002), was more feasible. Indeed, the emittance ex-
change via resonance crossing in a booster synchrotron
was demonstrated in (Kallestrup and Aiba, 2020). On
the other hand, in the upgrade of the Advanced Photon
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Source at Argonne National Lab., a horizontal on-axis
injection scheme from the booster to the storage ring
has been adopted. The lattice of the booster to stor-
age ring transport beamline was successfully designed to
achieve transverse emittance exchange using a set of skew
quadrupoles based (Kuske and Kramer, 2016).

C. Transverse-to-longitudinal phase-space exchangers

1. Emittance exchange

Transverse-to-longitudinal emittance exchange was
first proposed by (Cornacchia and Emma, 2002) as a
means to mitigate the microbunching instability in bright
electron beams. The rationale there was that, generally,
the transverse emittance produced by a state-of-the-art
photoinjector is larger than desired for FEL generation,
while the beam energy spread is smaller than necessary
in order to avoid gain reduction in an x-ray FEL. As a
result, they proposed a transverse-to-longitudinal phase-
space exchange (i) to increase the slice energy spread,
thereby reducing their sensitivity to the microbunching
instability, while simultaneouly, to reduced the transverse
emittance to improve the FEL performance (e.g., reduce
the gain length). Utilization of emittance exchange in a
compact XFEL facility was proposed in (Graves et al.,
2018). It was also suggested as a way to mitigate BBU
instabilities and to improve efficiency in energy-recovery
linacs (Piot, 2009). Mathematically, we follow a similar
approach to the one described in Section VI.B.3 and seek
a transformation that provides a matrix of the form

RXZ =

(
0 A
B 0

)
;(

X
Z

)
7→ RXZ

(
X
Z

)
=

(
AZ
BX

)
. (241)

A possible beamline capable of providing such a trans-
formation was first discussed in (Cornacchia and Emma,
2002). The beamline consists of a horizontal deflecting
cavity located at the symmetry point of a chicane beam-
line; see Fig. 45(a). Using the transfer matrix of a de-
flecting cavity introduced in Section II.B.3, the overall
transfer matrix of the system depicted in Fig. 45(a) is

REEX = R−DLRTDCRDL, (242)

where RDL is the matrix of a dogleg under the small
bending angle approximation; see Eq. (43) and R−DL is
the matrix of a reversed dogleg (i.e., R−DL is obtained
from RDL via the substitution η 7→ −η).

In (Cornacchia and Emma, 2002) they show that the
condition κ = 1/η (here η is the horizontal dispersion
generated by one dogleg) causes most of the elements
associated with the 2 × 2 anti-diagonal blocks of REEX
to vanish for a thin-lens TDC. From this, they show that

Figure 45 Top: Partial emittance exchange using a deflect-
ing cavity and and chicanes. Bottom: Complete emittance
exchange using a deflecting cavity and double doglegs.

the emittance is mapped as

(εx,0, εz,0) 7→ (εx, εz)

=(
√
ε2
z,0 + λ2εx,0εz,0,

√
ε2
x,0 + λ2εx,0εz,0), (243)

where λ is a coupling term that can be minimized via
a proper choice of the incoming horizontal and longitu-
dinal phase-space parameters. For λ � 1 we note that
the beamline approximately exchanges the horizontal and

longitudinal emittances [(εx,0, εz,0)
REEX7−→ (εz,0, εx,0)]. It

was subsequently recognized by (Kim and Sessler, 2006)
that flipping the second half of the chicane so that the
TDC is flanked by two horizontally dispersive sections
arranged as doglegs [see Fig. 45(b)] produces an ideal
exchange (taking `c = 0). The emittance exchange con-
dition is found to be

κη + 1 = 0, (244)

and the resulting transformation takes the form

REEX =


0 `c

4 − `+
`c
4

η

η2− ξ(4`+`c)4

η

0 0 − 1
η − ξ

η

− ξ
η

−`ξ− `cξ4 +η2

η
`cξ
4η2

`cξ
2

4η2

− 1
η − `+

`c
4

η
`c

4η2
`cξ
4η2

 ,

(245)

where `c and ` are, respectively, the TDC length and the
distances between the dogleg dipole magnets. Under the
thin lens approximation (`c = 0), the latter matrix is
2 × 2-block anti-diagonal. In the most general case, it
is possible to exchange the beam emittance by proper
choice of the phase-space correlation on the incoming
bunch. Specifically, the emittance mapping adopts the
same form as Eq. (243) with the coupling term

λ2 =
`2c(1 + α2

x,0)[ξ2 + (ξαz,0 − βz,0)2]

16η2βx,0βz,0
. (246)

Here αi,0 and βi,0 are the initial Courant-Snyder param-
eters associated with the horizontal (i = x) and longitu-
dinal (i = z) degrees of freedom. The quantity λ2 can be
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Table II Direct measurements of horizontal transverse (x) to
longitudinal (z) emittance exchange compared to simulation.
Emittance measurements are in units of µm and are normal-
ized. From (Ruan et al., 2011); experiment performed using
the configuration displayed in Fig. 43(a).

Simulated Measured
In Out In Out

εnx 2.9 13.2 2.9± 0.1 11.3± 1.1
εny 2.4 2.4 2.4± 0.1 2.9± 0.5
εnz 13.1 3.2 13.1± 1.3 3.1± 0.3

minimized by a proper choice of either the longitudinal or
transverse C-S parameters. A possible solution consists
of tuning the incoming LPS chirp to fullfill αz,0 = βz

ξ ,
corresponding to an incoming longitudinal phase space
chirp C ≡ dδ

dz

∣∣
0

= − 1
ξ that produces a minimum bunch

length at the cavity location (Sun et al., 2007). Such a
beamline was numerically investigated in (Emma et al.,
2006) to confirm its ability to mitigate the microbunching
instability in an X-ray FEL.

This double-dogleg configuration was used to ex-
perimentally demonstrate a near-ideal horizontal-to-
longitudinal emittance exchange at the Fermilab A0 pho-
toinjector (Ruan et al., 2011) with final results summa-
rized in Table II.

Further work on improving the EEX beamline by (Zho-
lents and Zolotorev, 2011) proposed combining the TDC
with two accelerating-mode cavities for providing a sim-
ple way of cancelling the thick-lens effect of the TDC,
which induces beam energy gain, as detailed in Sec-
tion II.B.3. The design also developed a chicane-based
exhanger with quadrupole magnets to control the disper-
sion and circumvent the limitation associated with the
early design (Cornacchia and Emma, 2002). A similar
design was later discussed in (Xiang and Chao, 2011).
Ultimately, the capability to exchange emittance is lim-
ited by higher-order effects and requires the addition of
higher-order multipole magnets, as discussed in (Nanni
and Graves, 2015). Also, in the shaping process, col-
lective effects such as CSR can significantly reduce the
shaping quality (Carlsten et al., 2011b; Ha et al., 2016;
Zholents and Zolotorev, 2011). Here, the exchange intro-
duces extra difficulty than other well-studied beamlines
such as chicane. Researches to control CSR’s impact on
the shaping are underway (Ha et al., 2018a,b, 2017b; Ma-
lyzhenkov and Scheinker, 2018).

2. Current profile shaping

An important application of emittance exchange is
its potential capability for shaping the beam’s tempo-
ral distribution with unprecedented versatility and pre-
cision (Piot et al., 2010). Considering Eq. (245) with

`c = 0, we find that the initial phase space coordinates
(X0,Y0)T of an electron will be mapped to final co-
ordinates (X,Y)T = REEX(X0,Y0)T . In particular,
the electron’s final longitudinal coordinates Z = (z, δ)
are solely functions of its initial transverse coordinates
X0 = (x0, x

′
0): {

z = − ξ
ηx0 − `ξ−η2

η x′0
δ = − 1

ηx0 − `
ηx
′
0

. (247)

Exploiting the mapping described by these equations, one
can produce arbitrarily shaped current or energy pro-
files by controlling the incoming transverse phase space.
Specifically, the incoming phase-space distribution in X
is mapped into the Z space via

Φz(Z) = Φx(B−1Z), (248)

where the subscript of the function Φ indicates to which
of the two-dimensional phase spaces the function corre-
sponds. Consequently, many of the techniques discussed
in Section IV can be readily applied. We can, for in-
stance, use a mask to shape the incoming distribution in
the X space and map this distribution into the Z plane
as originally proposed in (Piot et al., 2010) and further
discussed in (Jiang et al., 2011). In principle, arbitrary
bunch current distributions can be achieved using the
EEX technique (Piot et al., 2011b), but ultimately the
incoming emittance partition limits the shaping resolu-
tion, as discussed in Section III; see Fig. 46.

Figure 46 Example of simulated generation of a linearly
ramped current profile from an initial uniform triangular dis-
tribution in (a) shown with corresponding final transverse dis-
tribution (b) and longitudinal phase space (c) downstream of
the EEX beamline. The current profiles after EEX are shown
in plots (d) and (e) for initial horizontal and longitudinal pro-
files equal to (10,1) µm and (1,10) µm, respectively. From
(Piot et al., 2011b).

An experimental demonstration of the shaping capabil-
ity of an EEX beamline was demonstrated in (Sun et al.,
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2010b), where the incoming beam was transversely sliced
into multiple beamlets using a multislit plate and sent
through an EEX beamline as diagrammed in Fig. 43(a).
Doing so produced a train of subpicosecond bunches with
tunable separation as depicted in Fig. 47, where an au-
tocorrelation of coherent transition radiation emitted by
the beam downstream of the EEX beamline confirmed
the beam was temporally modulated when the incom-
ing beam was intercepted by the multislit mask located
upstream of the EEX beamline. In addition, the experi-

(d) (e)

Figure 47 Experimental demonstration of sub-picosecond
bunch train generation with an EEX beamline. (a) Nor-
malized autocorrelation function Γ(τ)/Γ(0) of the CTR sig-
nal recorded with (solid) and without (dashed) insertion of
a multi-slit mask upstream of the EEX beamline (τ is the
optical path difference). The corresponding beam transverse
densities downstream of the EEX appear in (b) and (c). The
vertical axis on (b) and (c) is proportional to the beam’s frac-
tional momentum spread (δ). The nominal bunch charge is
550 ± 30 pC and reduces to ∼ 15 ± 3 pC when the slits are
inserted. Total normalized CTR energy detected at X24 as a
function of quadrupole magnet currents IQ1 and IQ2 with X3
slits out (d) and in (e) the beamline. The bolometer signal is
representative of the inverse of the bunch duration σt. The
intensity island appearing at (IQ1, IQ2) '(1.5,-0.5) in (e) is
indicative of a density-modulated bunch. From (Sun et al.,
2010a).

ment demonstrated that tuning the upstream quadrupole
magnets Q1 and Q2 (labeled as N6 and N7 in Fig. 43)
provided control over the final LPS correlation and could
transfer the incoming transverse density modulation into
an energy or temporal modulation as discussed in (Sun
et al., 2010a); see also Fig. 47(b-e). This setup was also
employed to investigate the generation of narrowband
coherent transition radiation with tunable central wave-
length (Piot et al., 2011a).

LPS shaping was further investigated at the Argonne
Wakefield Accelerator (AWA) (Ha et al., 2017a) in the
context of producing a beam suitable to improve the effi-
ciency of a beam-driven wakefield accelerator. The EEX
beamline used in the first generation of experiments at
AWA adopted the double-dogleg configuration depicted
in Fig. 48 using a 48-MeV high-charge bunch. Four
quadrupole magnets downstream of the linac were used
to manipulate the transverse beam phase space prior to
the exchanger. A set of 100-µm-thick insertable tung-
sten masks of various shapes located ∼0.2 m upstream
of the exchanging beamline were used to demonstrate
high-precision control over the final temporal shape of
the bunch. Each dogleg provided η ' 0.9 m and the TDC
was a 1/2+1+1/2-cell L-band cavity. The experimental
setup incorporated full, single-shot LPS diagnostics that
were used to directly measure the produced temporal dis-
tribution downstream of the exchanger. Figure 48 (g-j)
showcases some examples of the final current distribution
experimentally achieved with four different mask shapes.
After these initial experimental demonstrations, AWA’s
EEX shaping beamline was then used set new records
for transformer ratio. The beamline produced ramped
current profiles for driving the wakefield in a dielectric
structure (Gao et al., 2018) and a plasma medium (Rous-
sel et al., 2020) with transformer ratios of R ' 4.5 and
R ' 7.8 respectively.

The most recent developments on EEX have focused
on using this class of beamline to form nanometer-scale
modulations for coherent-radiation emission at X-ray
wavelengths either by combing structured beams formed
using a structure, e.g., field-emission-array, photocath-
ode (Graves et al., 2012), or by impressing beam mod-
ulation in the transverse phase space upstream of the
exchanging beamlines which is then converted in a mod-
ulation on the LPS (either along the energy or temporal
direction). In (Nanni et al., 2018) a transmission mask
such as described in Section IV.E.2 is employed to pro-
duce the initial transverse modulation while (Ha et al.,
2019b) explores the use of a transverse wiggler as shown
in Fig. 26.

3. Bunch compression

The final bunch length downstream of the
EEX is σz,f = [R2

EEX,33σ
2
x + R2

EEX,44σ
2
x′ +
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Figure 48 Experimental demonstration of versatile bunch shaping using an EEX beamline at AWA. (a-j) Beam shaping
experiments using different transverse masks at the AWA EEX beamline. Images (a-e) are upstream of the EEX, and images
(f-j) are downstream of the EEX. From (Ha et al., 2016).

2REEX,33REEX,44〈xx′〉]. Substituting Eq. (245),
with the assumption `c = 0 for simplicity, and express-
ing all beam quantities in term of εx and C-S parameters
(αx, βx) associated with the horizontal phase space
upstream of the EEX beamline, we obtain

σz,f =

√
εx
βx

[(
ξ

η
βx −

(
η − `ξ

η

)
αx

)2

+

(
η − `ξ

η

)2
]1/2

. (249)

The latter part of this equation indicates that upon
choosing the proper incoming phase space correlation
αx/βx = ξ/(η2 − `ξ), the final bunch length becomes

σz,f = |η − `ξ
η |
√

εx
βx

, which depends on the EEX design

and can be made very small. Based on this observa-
tion, (Carlsten et al., 2011b) investigated the perfor-
mance of an EEX beamline for producing short bunches.
The reference specifically discusses design choices that
lead to extremely short final bunch duration σz,f/c at
the subfemtosecond time scale. The advantages of EEX
beamlines employed for compression includes the re-
duced susceptibility to CSR-induced effects (including
microbunching instability and bunch-length broadening),
and elimination of the need for an initial longitudinal-
phase-space chirp for compression using a chicane as
well as any residual energy-phase correlation after com-
pression. The drawback of an EEX-based bunch com-
pressor is that the final horizontal phase space is de-
termined by the incoming longitudinal phase space, and

the final transverse partition is generally not symmetric,
which may be problematic for some applications, such as
FELs (Emma et al., 2006). In addition, any longitudi-
nal phase space jitter (e.g., timing, energy and energy
spread) will be manifested in the transverse phase space,
resulting in beam position and spot size jitter (Ha et al.,
2017b).

4. Double phase-space exchangers

A limitation of the EEX technique for shaping the
beam profile stems from the associated emittance ex-
change between, e.g., the horizontal and longitudinal
phase spaces. To circumvent this limit, a possible config-
uration consists of a beamline composed of two concate-
nated EEX beamlines providing the mapping (X0,Z0) 7→
(Z1,X1) 7→ (X2,Y2). Consequently, inserting a mask at
location “1” produces a shaped beam downstream of the
beamline while ideally leaving the incoming emittance
unaltered. In practice such a method is not viable as col-
lective effects such as space charge and CSR ultimately
dilute the bending-plane emittance.

Despite tihs limitation, another advantage of the dou-
ble phase-space exchanger configuration was recognized
in (Zholents and Zolotorev, 2011) as providing a way
to transparently tune the final LPS parameters without
requirements on the incoming LPS. To understand such
an application, we can write the matrix of the beamline
as a block diagonal matrix flanked by two matrices rep-
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resenting the EEX using Eq. (245):

RDEEX = REEX

(
A 0
0 B

)
REEX , (250)

assuming Lc = 0 so that REEX '
(

0 M
N 0

)
. Con-

sequently, the total matrix of the double EEX (DEEX)
simplifies as

RDEEX =

(
MBN 0

0 NAM

)
γ�1→

(
MN 0

0 NAM

)
,

(251)

which is a 2×2 block diagonal matrix and confirmed that
the DEEX beamline does not provide any global cou-
pling. The simplification B = I in the ultra-relativistic
limit γ � 1 comes from the longitudinal dispersion as-
sociated with a longitudinal a drift and scales as −`/γ2

where ` is the length of the telescope beamline. These
results are generally available even when `c 6= 0 as long
as thick-lens effects are corrected via, e.g., the addition
of accelerating-mode cavities (Zholents and Zolotorev,
2011). Equation (251) suggests a simple way of tuning
the final LPS correlation of the beam by properly design-
ing the insertion beamline optical lattice between the two
EEXs. The second EEX simply converts the transversely
fine-tuned beam via the insertion beamline to the longi-
tudinal phase space. Focusing on the LPS mapping and
treating the insertion beamline as a telescope, i.e. con-
sidering A to be diagonal with element A11 = 1/A22 ≡ a,
we find

NAM =

 `ξ+a2(`ξ−η2)
aη2

ξ(a2+1)(`ξ−η2)
aη2

`(a2+1)
aη2

`a2ξ+`ξ−η2
aη2

 . (252)

As an example, considering the case when the beamline
is designed such that `(a2 + 1)/(aη2) � 1, the above
matrix is approximately

NAM '
(
−a ξ

(
a+ 1

a

)
0 − 1

a

)
; (253)

therefore, the final rms bunch length is

σz = [σ2
z,0a

2 + ξ2(a+ 1/a)2σ2
δ,0

− 2aξ(1 + a2)〈z0δ0〉]1/2. (254)

An important consequence of Eq. (254) is that
bunch compression can be accomplished without any
longitudinal-phase-space chirp (i.e. 〈z0δ0〉 = 0) and de-
signing the beamline such that |a2 +ξ2(a+1/a)2| < 1. A
numerical simulation of a double-EEX-based bunch com-
pressor is shown in Figure 49.

Additionally, the configuration enables control of non-
linear correlation in the longitudinal-phase-space by us-
ing nonlinear magnets between the two EEXs. For in-
stance, (Seok et al., 2019b) discusses various configura-
tions to reduce the beam final energy spread via control of

(a)

(b) (c)

Figure 49 Schematic of a double-EEX-based bunch compres-
sor (a) with a simulated example of an application to provide
a 10-fold increase in modulation frequency of an incoming
laser-modulated electron beam (b) and (c). From (Zholents
and Zolotorev, 2011).

the longitudinal phase-space nonlinearities with a DEEX
configuration. The method closely follows the technique
described in Section IV.E.1. Here, the first EEX is ap-
plied to the phase space (X0,Z0) 7→ (X1 ' Z0,Z1 '
X0), a then a nonlinear transformation is applied to the
horizontal phase space

x′1 = f(x1, y1), (255)

and then the second EEX is applied to change back
the longitudinal and transverse phase space (X1,Z1) 7→
(X2 ' Z1,Z2 ' X1) ' (X0,Z0). Figure 50 showcases a
configuration capable of introducing a nonlinear phase-
space correlation with a DEEX beamline. In this partic-
ular case, a sextupole magnet, judiciously located down-
stream of the first EEX, imposes a quadratic correlation.
Extension of this technique to control higher-order distor-

Figure 50 Overview of a DEEX-based energy-spread reduc-
tion via correction on quadratic nonlinearity with a sextupole
magnet. From (Seok et al., 2019b).

tion is straightforward: correction of third order nonlin-
earties to, e.g., suppress current spike “horns” sometimes
encountered in bright-beam injectors, was demonstrated
via numerical simulations (Seok et al., 2019a) as an al-
ternative to the technique described in Section IV.B.2;
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(a)

(c)

(b)

(d)

Figure 51 Longitudinal phase spaces from numerical particle
tracking. (a) shows the beam’s initial phase space and (b)
shows the phase space after a modulator. (c) and (d) show
the final phase space after a double EEX beamline, and each
of them corresponds to spectral and temporal bunching re-
spectively. From (Seok et al., 2021).

see also Ref. (Charles et al., 2017).

Another recent development introduced in (Seok et al.,
2021) is using a DEEX beamline with a phase space mod-
ulator, such as wakefield structure or transverse wiggler
discussed in Sections IV and V. Similar to generating a
bunch train from the energy modulation, this method
can generate density spikes on both the time and energy
axes. If we only consider a small fraction of the sinu-
soidal modulation that builds up the density spike, we
can write this microbunch’s longitudinal correlation as
δ = hz (i.e., locally linear correlation with chirp h); see
Fig. 51(b). In general, we can define the compression fac-
tor for this microbunch as 1/(R55 + hR56). Appropriate
beamline parameters for a given local chirp can maxi-
mize the compression factor and build up density spikes.
We can imagine the same situation for the energy dis-
tribution. The energy compression factor will be simply
1/(R65 + hR66). In the case of the chicane, R55 is 1 and
R56 is non-zero, so there is a corresponding h. How-
ever, R65 is zero and R66 is 1, so no controls are allowed
on the energy distribution. On the other hand, a dou-
ble EEX beamline that provides non-zero R65 and R66

would be able to generate energy spikes. This beamline
provides control over R65 and R66 using the quadrupole
magnets between two EEX beamlines; see (Zholents and
Zolotorev, 2011) and (Ha et al., 2017c).

Figure 51 showcases numerical tracking results. Simi-
lar to the density modulation case, a dielectric structure
in front of a double EEX beamline imprints a sinusoidal
modulation on the longitudinal phase space. Then, this

modulation is converted into energy spikes, controlled
with quadrupole magnets located in the middle of the
beamline. These energy spikes can be considered as sev-
eral beams, each with small energy spread. Because the
EEX beamline provides control of R55, R56, R65, and
R66, it can be used to generate a multi-energy beam with
controllable time separation from a single bunch. This
may be a useful technique to generate multi-color radi-
ation for various spectroscopy methods or pump-probe
experiments.

D. Generalized phase-space repartitioning between the
three degrees of freedom

1. Flat beam transformation combined with emittance
exchange

Future electron-positron linear colliders (LCs) require
unprecedented ultra-low transverse emittances. Addi-
tionally, the transverse emittance ratio should be high
to mitigate beamsstrahlung effects (Yokoya and Chen,
1992). The present requirements from high-energy
physics call for 80% spin-polarized electron beams. The
electron bunch charge range from fC to nC depends on
the LC technology choice. The vertical emittance re-
quired to mitigate beamsstrahlung effects is attained by
injecting the beam into a damping ring to decrease its
transverse emittance via radiative cooling, yielding a
“flat” beam with a transverse emittance ratio ranging
from 300 to 500, depending on the LC concept. Tak-
ing the example from the International Linear Collider
(ILC) (Adolphsen et al., 2013), the final emittance par-
tition of (εnx , ε

n
y , ε

n
z ) = (5.5, 20 × 10−3, 6.5 × 104) µm

corresponding to a six-dimensional emittance εn6D =
εnxε

n
yε
n
z ' 7150 µm3 is generally larger than values typi-

cally achieved by state-of-the-art photoinjectors (e.g., for
3.2 nC bunch charges). Consequently, there has been
some effort to develop a damping-ring-free electron injec-
tor for a future linear collider by combining the round-
to-flat-beam transformer (RFTB) and EEX beamlines.
Specifically, (Xu et al., 2021) considers a 3.2-nC bunch
produced in an L-band photoinjector and demonstrates
via numerical simulation that a transverse intrinsic emit-
tance partition of (εn+, ε

n
−, ε

n
z ) ∼ (500, 10× 10−3, 10) µm

assumes an ideal mapping of the intrinsic emittances
(εnx , ε

n
y ) = (εn1 , ε

n
2 ) using an RFBT beamline. The au-

thor suggests that the downstream EEX beamline would
produce an emittance partition (εnx , ε

n
y , ε

n
z ) ∼ (10, 10 ×

10−3, 500) µm.

2. Coupling between the longitudinal and transverse phase
spaces

So far we have discussed beamlines capable of phase-
space swapping between the two transverse phase space
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planes [(x, x′)↔ (y, y′)] or between one of the transverse
phase space planes and the longitudinal plane [(x, x′)↔
(z, δ)]. We also presented a method to repartition the
phase space between (x, x′) and (y, y′) using a magne-
tized beam and an RFBT beamline. We now exam-
ine whether a similar transformation is possible between,
e.g., (x, x′) and (z, δ) following (Carlsten et al., 2011a).
In this work, the authors noticed that the matrix of a
deflecting cavity in (x, x′, z, δ) under the thin lens ap-
proximation (i.e., described by Eq. (65) with L = 0) is
similar to the matrix of a skew-quadrupole magnet in
(x, x′, y, y′). Consequently, introducing an initial corre-
lation similar to the one described for the case of a mag-
netized beam (i.e., by Eq. (228)) in the (x, x′, z, δ) plane
combined with several deflecting cavities separated by
“drift” (with matrix described by Eq. (43) with η = 0)
could repartition the emittances between the (x, x′) and
(z, δ) planes. Specifically, (Carlsten et al., 2011a) con-
sider the practical case of a tilted-front laser pulse im-
pinging on a photocathode so that the initial correlation
is imparted in the (x, x′, z, δ) phase space of the form

zc = z + τx, (256)

where τ is a parameter representing the x− z correlation
introduced by the tilt. The corresponding beam matrix
at the cathode location is written as

Σc =


σ2
x 0 τσ2

x 0

0 σ′
2
x 0 0

τσ2
x 0 σ2

z + τ2σ2
x 0

0 0 0 σ2
δ

 . (257)

The corresponding intrinsic emittances are

εx ' σxσδτ,
εz ' σ′xσz

τ ,
(258)

where it is assumed that τ2 � σ′xσz
σxσδ

. Then (Carlsten

et al., 2011a) shows that this initial coupling can be re-
moved by locating four deflecting cavities downstream
of the electron source to map the intrinsic emittance to
conventional emittances. The cavities are separated with
drifts with longitudinal dispersion (e.g. magnetic chicane
described by Eq. (43) with η = 0).

This approach can be further expanded by introducing
both a transverse and longitudinal tilt to introduce ar-
bitrary emittance repartitioning within the three degrees
of freedom (Yampolsky et al., 2010).

VII. FUTURE DIRECTIONS

The techniques described in this paper along with that
discussed in (Hemsing et al., 2014) have open the path
to finer control over the beam’s phase-space distribution
beyond the ensemble-averaged techniques. Further devel-
opment of phase-space tailoring methods will ultimately

aim to provide full six-dimensional control of the phase-
space distributions, possibly enabling the design of a tai-
lored beam at the single-particle level. Examples of pos-
sible expansions based on recent developments are pre-
sented in this section for each of the beam-shaping classes
considered. The list below is by no means exhaustive
given the vigorous on-going research on the topic.

A. Ab-initio shaping

Controlling the final beam distribution by properly
programming the initial conditions is widespread owing
to its versatility and easy implementation, as discussed in
Section III. Further expanding the resolution of this class
of methods will benefit from new electron-source emission
concepts, integrated photonic progress, and advances in
ultrafast-laser systems.

Over the last decade, new ultra-cold electron sources
based on trapped atoms have emerged (Claessens et al.,
2005; Zolotorev et al., 2007). Although the primary mo-
tives of this work were related to the generation of elec-
tron beam close to quantum degeneracy, an experiment
demonstrated a high degree of control over the beam dis-
tribution (McCulloch et al., 2011) via shaping of the ion-
ization laser using a spatial light modulator similar to
the one discussed in Section III. These sources typically
produce electron beams with keV energies, and their in-
tegration into relativistic electron sources remains a chal-
lenge (van der Geer et al., 2014). Yet they will provide
another toolkit for ab-initio shaping of the beam distri-
bution.

Likewise, novel laser architecture based on cohrently
combining laser pulses that have been individually con-
trolled (Lemons et al., 2021), could form laser pulses with
finer structure to precisely program the photoemission
process. Although it is ultimately limited by cathode
response time and intrinsic emittance.

Finally, recent progress in integrated nanophotonic
fabrication (Komljenovic et al., 2016) has opened the
path to the fabrication of pixelized cathodes (Blanke-
meier et al., 2019). This type of cathode could ultimately
support initial control over the emitted beam spatiotem-
poral distribution with unprecedented spatial and tem-
poral scales.

B. Controlling the beam via external fields

Over the years the possibility of shaping the
electromagnetic-field distribution using metamaterials
has flowed in many applications, most notably optics, and
has led to the development of “transformation electro-
magnetics” (Werner and Kwon, 2014), a branch of elec-
tromagnetism aimed at tailoring electromagnetic fields.
These techniques have recently been applied to the de-
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sign of electromagnets with unusual properties (e.g., pro-
ducing a negative magnetic permeability) that could ex-
pand the methods described in Section IV. For instance,
(Mach-Batlle et al., 2020) experimentally demonstrated
that an active magnetic metamaterial can emulate the
field of a straight current wire at a distance. Such a
demonstration opens the way to manipulating magnetic
fields in inaccessible regions. It is expected that these
emerging technologies will be critical to further the de-
velopment of beam-control techniques based on external
electromagnetic fields. Finally, the discovery of knot-
ted solutions to Maxwell’s equations (Kedia et al., 2013;
Ranada, 1990) could also have applications to beam shap-
ing as they provide faster (e.g., localized) spatiotem-
poral variations of the field compared to conventional
“plane-wave” synthesis solutions. Experimentally pro-
ducing these knotted solutions is challenging as the so-
lutions can be mathematically formulated as a summa-
tion of spherical-harmonic functions. A possible approx-
imate experimental implementation discussed in (Irvine
and Bouwmeester, 2008) uses tightly focused circularly-
polarized laser pulses.

C. Shaping the beam using collective effects

Similar to the discussion in the previous section, we
expect engineered new materials to play a critical role in
fostering more precise control over the beam using the
beam’s self field. The main advantages of beam shaping
techniques based on wakefield-driven structures reside in
their ability to (i) support electromagnetic fields with
wavelengths comparable to the bunch length (which is
challenging in conventional RF cavities) and (ii) ensure
these fields are carrier-envelope-phase (CEP) locked with
the bunch, thereby alleviating the need for precise ex-
ternal synchronization and consistently mitigating possi-
ble issues associated with shot-to-shot jitter. Over the
last two decades, wakefield structures based on meta-
material have been developed (Antipov et al., 2007) and
tested (Antipov et al., 2008; Duan et al., 2017; Lu et al.,
2019). Likewise, photonic band-gap (PBG) structures
have been introduced (Smirnova, 2004). PBG structures
can control the distribution of excited modes, e.g., to sup-
press noxious modes in a wakefield accelerators (Simakov
et al., 2016). It is conceivable that PBG structures de-
signed to introduce a well-defined superposition of modes
could find applications in bunch shaping (e.g., to synthe-
size the desired longitudinal or transverse force), expand-
ing on techniques presented in Section V.

D. Redistributing phase space between planes

Exchanging phase space between two or three degrees
of freedom has facilitated the generation of shaped beams

for, e.g., advanced acceleration concepts as showcased
in Section VI. We note that so far the implementa-
tion of phase-space exchanging beamlines has often been
based on a simple configuration and further optimiza-
tion, e.g., to mitigate sources of 6D-emittance dilution
would be critical to the deployment of this class of meth-
ods. Likewise, and similar to a laser-based method de-
scribed in (Xiang, 2010), one could consider simpler ver-
sions of phase-space exchangers where the required time-
dependent deflecting fields are introduced using trans-
verse wakefields. Finally, extending the concept of phase-
space exchange to control the beam at smaller time scales
along the ideas discussed in (Graves et al., 2019) could
have ground-breaking consequences for the development
of room-sized coherent X-ray sources.

LIST OF SYMBOLS

s, s̄, s2, τ distance along the reference trajectory
of the reference particle

x, y, z coordinates relative to the reference particle
r, ϕ, s cylindrical coordinates
x′, y′ transverse angles
δ relative momentum deviation
ZZZ 6D canonical phase-space variables
ζi ith component of ZZZ
px, py, ps momenta
M map corresponds to position s to s̄
R Jacobian or linear transformation matrix
e electron charge
E electric field
B magnetic field
E0 peak electric field strength
Kq focusing strength of quadrupole magnet
η dispersion
ξ R56 of dogleg matrix
ω angular frequency
k wave number
λ wavelength
∆p fractional momentum increase
A vector potential
κL (spatial) Larmor frequency
L canonical angular momentum
f(ZZZ; s) normalized phase-space distribution

of particles at s
` length of bunch or device
σi root-mean square (rms) value of i ∈ Z
λ(z) normalized line charge density
λ⊥(x) normalized transverse charge density
C compression factor
Σ second-order-moment beam matrix

εproji RMS emittance along i ∈ [x, y, z]
εi intrinsic emittances where i ∈ [1, 2, 3]
εni normalized emittance along i ∈ [x, y, z]
Q bunch charge
Z(k) impedance
Z0 free-space impedance
b(k; s) bunching factor
re classical electron radius
λD Debye length
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ωp plasma frequency
h longitudinal-phase-space chirp strength
K2n magnetic multipole strength
Kw wiggler parameter
ε0 permittivity in vacuum
Nb total number of particles in bunch
I current
IA Alfven current
K loss factor
w(z) wake function
W (z) wakefield of bunch
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