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A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with
low error rates and long coherence times. While the experimental advancement towards
realizing such devices will potentially take decades of research, noisy intermediate-scale
quantum (NISQ) computers already exist. These computers are composed of hundreds
of noisy qubits, i.e. qubits that are not error-corrected, and therefore perform imper-
fect operations within a limited coherence time. In the search for achieving quantum
advantage with these devices, algorithms have been proposed for applications in various
disciplines spanning physics, machine learning, quantum chemistry, and combinatorial
optimization. The overarching goal of such algorithms is to leverage the limited avail-
able resources to perform classically challenging tasks. In this review, we provide a
thorough summary of NISQ computational paradigms and algorithms. We discuss the
key structure of these algorithms, their limitations, and advantages. We additionally
provide a comprehensive overview of various benchmarking and software tools useful for
programming and testing NISQ devices.
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I. INTRODUCTION

Quantum computing originated in the eighties when
physicists started to speculate about computational mod-
els that integrate the laws of quantum mechanics (Kaiser,
2011). Starting with the pioneering works of Benioff and
Deutsch, which involved the study of quantum Turing
machines and the notion of universal quantum computa-
tion (Benioff, 1980; Deutsch, 1985), the field continued
to develop towards its natural application: the simula-
tion of quantum systems (Feynman, 1982; Lloyd, 1996;

Manin, 1980). Arguably, the drive for quantum comput-
ing took off in 1994 when Peter Shor provided an efficient
quantum algorithm for finding prime factors of compos-
ite integers, rendering most classical cryptographic pro-
tocols unsafe (Shor, 1994). Since then, the study of quan-
tum algorithms has matured as a sub-field of quantum
computing with applications in search and optimization,
machine learning, simulation of quantum systems, and
cryptography (Montanaro, 2016).

In the last forty years, many scientific disciplines
have converged towards the study and development of
quantum algorithms and their experimental realizations.
Quantum computers are, from a perspective of computa-
tional complexity, fundamentally different tools available
for computationally intensive fields. The implementation
of quantum algorithms requires that the minimal quan-
tum information units, qubits, are as reliable as classical
bits. Qubits need to be protected from environmental
noise that induces decoherence but, at the same time,
their states have to be controlled by external agents. This
control includes the interaction that generates entangle-
ment among qubits and the measurement operation that
extracts the output of the quantum computation. It is
technically possible to tame the effects of noise without
compromising the quantum information process by de-
veloping quantum error correction (QEC) protocols (Li-
dar and Brun, 2013; Shor, 1995; Terhal, 2015). Unfor-
tunately, the overhead of QEC in terms of the number
of qubits is, at the present day, still far from current
experimental capabilities. To achieve the goal of fault-
tolerant quantum computation, the challenge is to scale
up the number of qubits while maintaining sufficiently
high qubit quality and fidelity in operations such as quan-
tum gate implementation and measurement (Aharonov
and Ben-Or, 2008; Kitaev, 2003; Knill et al., 1998). As
the system size grows, it becomes highly challenging to
contain the errors associated with cross-talk and mea-
surements below the required error-correction threshold.

Most quantum algorithms with performance guar-
antees require millions of physical qubits to success-
fully incorporate QEC techniques. Building such fault-
tolerant quantum computers may take decades. Exist-
ing quantum devices contain on the order of 100 phys-
ical qubits. They are sometimes denoted as “Noisy
Intermediate-Scale Quantum (NISQ)” devices (Preskill,
2018), in which qubits and quantum operations sup-
ported on NISQ devices are not error-corrected and,
therefore, imperfect. One of the goals in the NISQ
era is to extract the maximum quantum computational
power from current devices while also continuing to de-
velop techniques towards fault-tolerant quantum compu-
tation (Terhal, 2015).
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A. Computational complexity theory in a nutshell

Defining a new computational paradigm enables solv-
ing or approaching problems which could not be tackled
with previously existing paradigms. With the develop-
ment of quantum computing, new computational com-
plexity classes have been recognized and proposed algo-
rithms and goals have to be developed within well-known
mathematical boundaries.

In this review, we will often use some computational
complexity-theoretic ideas to establish the domain and
efficiency of the quantum algorithms covered. For this
reason, we provide in this subsection a brief synopsis for
a general audience and refer to (Arora and Barak, 2009)
for a more comprehensive treatment.

Complexity classes are groupings of problems by hard-
ness, namely the scaling of the cost of solving the problem
with respect to some resource, as a function of the “size”
of an instance of the problem. We informally describe
several of the most well-known classes here. i) P: prob-
lems that can be solved in time polynomial with respect
to input size by a deterministic classical computer. ii)
NP: a problem is said to be in NP if the problem of
verifying the correctness of a proposed solution lies in P,
irrespective of the difficulty of obtaining a correct solu-
tion. iii) PH: refers to Polynomial Hierarchy. This class
is a generalization of NP. It contains all the problems
which one gets if one starts with a problem in the class
NP and adds additional layers of complexity using quan-
tifiers, i.e. there exists (∃) and for all (∀). As we add
more quantifiers to a problem, it becomes more complex
and is placed higher up in the polynomial hierarchy. Let
us denote the classes in PH by Σi such that PH = ∪iΣi.
We have Σ1 = NP. The class Σi in PH can be interpreted
in the context of two-player games where problems corre-
spond to asking whether there exists a winning strategy
in i

2
rounds for the player 1 in a game. Here, one can

interpret the quantifiers by asking whether there exists
a move k1, such that no matter what move k2 is played,
there exists a move k3, and so on for i

2
rounds such that

player 1 wins the two-player game. With increasing i,
one would expect the problem to become more complex
and hence Σi ⊆ Σi+1. iv) BPP: stands for Bounded-
error Probabilistic Polynomial-time. A problem is said
to be in BPP, if it can be solved in time polynomial in
the input size by a probabilistic classical computer. v)
BQP: stands for Bounded-error Quantum Polynomial-
time. Such problems can be solved in time polynomial
in the input size by a quantum computer. vi) PSPACE:
stands for Polynomial Space. The problems in PSPACE
can be solved in space polynomial in the input size by a
deterministic classical computer. Each class in PH is con-
tained in PSPACE. However, it is not known whether PH
is equal to PSPACE. vii) EXPTIME: stands for Expo-
nential Time. The problems in EXPTIME can be solved
in time exponential in the input size by a determinis-

tic classical computer. viii) QMA: stands for Quantum
Merlin Arthur and is the quantum analog of the complex-
ity class NP. A problem is said to be in QMA, if given a
“yes" as an answer, the solution can be verified in time
polynomial (in the input size) by a quantum computer.
Widely believed containment relations for some of the
complexity classes are shown schematically in Fig. 1.

To understand the internal structure of complexity
classes, the idea of “reductions” can be quite useful. One
says that problem A is reducible to problem B if a
method for solving B implies a method for solving A;
one denotes the same by A ≤ B. It is a common practice
to assume the reductions as polynomial-time reductions.
Intuitively, it could be thought as solving B is at least as
difficult as solving A. Given a class C, a problem X is
said to be C-hard if every problem in class C reduces to
X. We say a problem X to be C-complete if X is C-hard
and also a member of C. The C-complete problems could
be understood as capturing the difficulty of class C, since
any algorithm which solves one C-complete problem can
be used to solve any problem in C.

A canonical example of a problem in the class BQP is
integer factorization, which can be solved in polynomial
time by a quantum computer using Shor’s factoring al-
gorithm (Shor, 1994). However, no classical polynomial-
time algorithm is known for the aforementioned problem.
Thus, the integer factorization problem is in BQP, but
not believed to be in P (Arora and Barak, 2009). While
analyzing the performance of algorithms, it is prudent to
perform complexity-theoretic sanity checks. For exam-
ple, though quantum computers are believed to be pow-
erful, they are not widely expected to be able to solve
NP-Complete problems, such as the traveling-salesman
problem, in polynomial time. The quantum algorithms,
however, could provide a speedup with respect to classi-
cal algorithms for NP-Complete problems.

B. Experimental progress

In this subsection, we present a summary of recent
quantum hardware and experiments. Interested readers
should consult (Acín et al., 2018) and references therein
for further information on various quantum computing
architectures.

Experimental progress in quantum computation can
be measured by various figures of merit. The number of
physical qubits must exceed a certain threshold to solve
problems beyond the capabilities of a classical computer.
However, there exist several classical techniques capa-
ble of efficiently simulating certain quantum many-body
systems. The success of several of these techniques, such
as Tensor Networks (Orús, 2014; Verstraete et al., 2008),
rely on the efficient representation of quantum states that
are not highly entangled (Vidal, 2003, 2004). With uni-
versal quantum computers, one would expect to be able
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EXPTIME: classically solvable in exponential time
Unrestricted chess on an nxn board

PSPACE: classically solvable in polynomial space
Restricted chess on an nxn board

QMA: quantumly verifiable in polynomial time

QMA-Complete: hardest problems in QMA
Quantum Hamiltonian ground state problem

NP-Complete: hardest problems in NP
Traveling salesman problem

NP: classically verifiable in polynomial time

P: classically solvable in polynomial time
Testing whether a number is prime

BQP: quantumly solvable in polynomial time

Integer factorization

Figure 1 An illustrative picture of some relevant complexity
classes together with problem examples. For the chess exam-
ple, the word “restricted” refers to a polynomial upper bound
on the number of moves. The containment relations are sug-
gestive. Some of them have not been mathematically proven,
being a well-known open problem whether P is equal to NP.

to generate and manipulate highly entangled quantum
states. Hence, one imminent and practical direction to-
wards demonstrating quantum advantage over classical
machines consists of focusing on a region of the Hilbert
space in which states cannot be efficiently represented
with classical methods. Alternatively, one may imple-
ment particular computational tasks which are believed
to be intractable using any classical computer, such as
problems belonging only to quantum complexity classes.

Two recent experiments implemented the latter ap-
proach towards achieving quantum computational ad-
vantage. In 2019, the Google AI Quantum team im-
plemented an experiment with the 53-qubit Sycamore
chip (Arute et al., 2019), which supported single-qubit
gate fidelities of 99.85% and two-qubit gate fidelities of
99.64% were attained on average. Quantum advantage
was demonstrated against the best classical computers
for the task of sampling the output of a pseudo-random
quantum circuit.

Another quantum advantage experiment was imple-
mented by Jian-Wei Pan’s group using a Jiuzhang
photonic quantum device performing Gaussian boson
sampling (GBS) with 50 indistinguishable single-mode

squeezed states (Zhong et al., 2020). Here, the quan-
tum advantage was observed in sampling time complex-
ity of a Torontonian of a matrix (Quesada et al., 2018),
which scales exponentially with the photon clicks output.
The Torontonian is a matrix function that determines the
probability distribution of measurement outcomes, much
like the permanent and Hafnian in other boson sampling
models. Intuitively speaking, while the total number of
perfect matchings in a bipartite graph is given by the
permanent, the Hafnian corresponds to the total number
of perfect matchings in an arbitrarily given graph. More-
over, while the Hafnian is used in experiments counting
the number of photons in each mode, the Torontonian
corresponds to the case where one detects whether there
are photons in each mode (see Sec. III.B for more details
about GBS and the related terms).

There are several quantum computing platforms that
researchers are actively developing at present to achieve
scalable and practical universal quantum computers. The
term “universal” is used to describe a quantum com-
puter, using its native gate set, can easily and accu-
rately approximate any unitary gate (see Sec. V.B for
more details). In addition to superconducting circuits
and quantum optics, trapped-ion devices are also lead-
ing candidates for quantum computer architectures. In
recent years, major advancements of trapped-ion devices
include high-fidelity entangling gates reported by the Ox-
ford group (Hughes et al., 2020), all-to-all connectivity
achieved by IonQ (Nam et al., 2020), and transport and
reordering capabilities in 2D trap array by the Boulder
group (Wan et al., 2020). In the last example, in addition
to facilitating efficient transport of ions and quantum in-
formation exchange, the 2D architecture will allow imple-
mentations of more sophisticated QEC codes or surface
codes (Lidar and Brun, 2013), the smallest of it has been
realized in superconducting qubit setup (Córcoles et al.,
2015).

Scientists and engineers are also developing hybrid
quantum computing platforms trying to achieve similar
feats described above. These devices, which are built to
solve specific problems, may not necessarily possess uni-
versal quantum gate sets. Notably, coherent Ising ma-
chines (Inagaki et al., 2016; Marandi et al., 2014; McMa-
hon et al., 2016; Utsunomiya et al., 2011; Wang et al.,
2013), based on mutually coupled optical parametric os-
cillators, are a promising hybrid architecture for solving
instances of hard combinatorial optimization problems.
Recently, it has been shown that the efficiency of these
machines can be improved with error detection and cor-
rection feedback mechanisms (Kako et al., 2020). We ad-
vise the readers to refer to the recent review article (Ya-
mamoto et al., 2020) for an in-depth discussion about
coherent Ising machines. Quantum annealing (Finnila
et al., 1994; Kadowaki and Nishimori, 1998) has been
another prominent approach towards achieving quantum
advantage in the NISQ era (Bouland et al., 2020; Hauke
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et al., 2020; Perdomo-Ortiz et al., 2018). We refer the
readers to Sec. III.A for more details on quantum an-
nealing.

Lastly, in recent years, cloud-based quantum comput-
ers have become available, with which anyone with inter-
net access can control and manipulate delicate qubits and
perform quantum computations on the fly. Examples of
such platforms include IBM Quantum, Rigetti Comput-
ing, and Xanadu Quantum Cloud.

C. NISQ and near-term

The experimental state-of-the-art and the demand for
QEC have encouraged the development of innovative al-
gorithms capable of reaching the long-expected quantum
advantage. Quantum advantage can be defined as a com-
putation involving a quantum device that cannot be per-
formed classically within reasonable amounts of time and
energy resources. The term near-term quantum compu-
tation has been coined to describe quantum algorithms
tailored to be run on current quantum computing hard-
ware or those that could be developed in the next few
years. It is important to note that NISQ is a hardware-
focused definition and does not necessarily imply a tem-
poral connotation. NISQ devices can implement quan-
tum circuits, in which all gates adhere to the topology
of a specified graph G, in which the nodes of the graph
correspond to qubits. The gates typically operate on one
or two qubits. Because each gate operation involves a
certain amount of noise, NISQ algorithms are naturally
limited to employing circuits of shallow depths (Barak
and Marwaha, 2021). Near-term algorithms, however,
refer to those algorithms designed for quantum devices
available in the next few years and carries no explicit ref-
erence to the absence of QEC. The phrase “near-term”
is subjective since different researchers may have other
thoughts on how many years can be considered “near-
term”. Predicting experimental progress is always chal-
lenging, and such predictions are influenced by human
bias. Algorithms developed for near-term hardware may
be unfeasible if hardware advancement does not match
the algorithm’s experimental requirements.

D. Scope of the review

This review aims to accomplish three main objectives.
The first is to provide a proper compilation of the avail-
able algorithms suited for the NISQ era. We present a
summary of the crucial tools and techniques that have
been proposed and harnessed to design such algorithms.
The second objective is to discuss the implications of
these algorithms in various applications such as quan-
tum machine learning (QML), quantum chemistry, and
combinatorial optimization. Finally, the third objective

is to provide some perspective on potential future devel-
opments given the recent progress in quantum hardware.

Most of the current NISQ algorithms harness the power
of quantum computers in a hybrid quantum-classical ar-
rangement. Such algorithms delegate the classically dif-
ficult part of a computation to the quantum computer
and perform the other on a sufficiently powerful classical
device. These algorithms variationally update the vari-
ables of a parameterized quantum circuit and hence are
referred to as Variational Quantum Algorithms (VQA)
(Cao et al., 2019; Cerezo et al., 2020b; Endo et al., 2020a;
McArdle et al., 2020). The first proposals of VQA were
the Variational Quantum Eigensolver (VQE) (McClean
et al., 2016; Peruzzo et al., 2014; Wecker et al., 2015),
originally proposed to solve quantum chemistry prob-
lems, and the Quantum Approximate Optimization Al-
gorithm (QAOA) (Farhi et al., 2014), proposed to solve
combinatorial optimization problems. While NISQ de-
vices can arguably achieve quantum advantage for sam-
pling problems, the question of their ability to pro-
vide advantage for optimization problems remains unan-
swered (Barak and Marwaha, 2021; Barak et al., 2015).
Despite its potential, it is important to note that there is
currently no provable quantum advantage for VQA with
NISQ devices (Barak and Marwaha, 2021). In this re-
view, we describe the building blocks of VQA in Sec. II.

Other quantum computing paradigms propose differ-
ent types of algorithms. They are inspired and hy-
bridized with analog approaches. These paradigms in-
clude quantum annealing, digital-analog quantum com-
putation, Gaussian Boson Sampling, and analog quan-
tum computation. We present their fundamental prop-
erties in Sec. III.

In Sec. V, we examine the methods developed to best
utilize NISQ algorithms as well as their theoretical and
experimental challenges. We include the theoretical guar-
antees that some of these algorithms lay on as well as
techniques to mitigate the errors coming from the use of
noisy quantum devices. We also cover the possible train-
ability challenges that VQA has and how to map theoret-
ical NISQ circuits to real hardware. Section VI presents a
range of applications of NISQ algorithms. Techniques to
benchmark, compare, and quantify performance of cur-
rent quantum devices are presented in Sec. VII. Like any
other computational paradigm, quantum computing re-
quires a language to establish human-machine commu-
nication. We explain the different levels of quantum
programming and provide a list of open-source quantum
software tools in Sec. V.C. Finally, we conclude this re-
view in Sec. VIII by highlighting the increasing commu-
nity involvement in this field and by presenting near-term
and long-term goals of quantum computational research.
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II. BUILDING BLOCKS OF VARIATIONAL QUANTUM
ALGORITHMS

A VQA comprises several modular components that
can be readily combined, extended, and improved with
developments in quantum hardware and algorithms.
These components include the objective function, the
cost function to be variationally minimized; the parame-
terized quantum circuit (PQC), parameterized unitaries
that are manipulated in the minimization of the objec-
tive; the measurement scheme, which estimates the ex-
pectation values needed to evaluate the objective; and
the classical optimizer, the method used to obtain the
optimal circuit parameters that minimize the objective.
In the following subsections, we will define each of these
components, presented diagrammatically in Fig. 2.

A. Objective function

The Hamiltonian is a quantum operator that encodes
information about a given physical system, such as a
molecule or a spin chain. Its expectation value yields
the energy of a quantum state, which is often used as
the minimization target of a VQA, i.e. obtaining the
Hamiltonian ground state. Problems that are not re-
lated to real physical systems can also be encoded into
a Hamiltonian form such that they can be solved on a
quantum computer. In general, any expectation value of
a function written in an operational form (i.e. decom-
posed or encoded into a quantum operator) can also be
evaluated on a quantum computer. After the Hamilto-
nian or operator of a problem has been determined, it
must be decomposed into a set of particular operators
that can be measured with a quantum processor. Such a
decomposition, which is further discussed in Sec. II.A.1,
is an important step of many quantum algorithms.

Within a VQA, one has access to measurements on
qubits, in which the outcome probabilities are deter-
mined by the prepared quantum state. Let us only con-
sider measurements on individual qubits in the standard
computational basis and denote the probability to mea-
sure qubit q in the state ∣0⟩ by pq0, where the qubit la-
bel q will be omitted whenever possible. The central
element of a VQA is a parameterized cost or objective
function O subject to a classical optimization algorithm,
minθO (θ,{p0 (θ)}). The objective function O and the
measurement outcomes p0 of one or many quantum cir-
cuit evaluations depend on the set of parameters θ.

In practice, it is often inconvenient to directly work
with the probabilities of the measurement outcomes when
evaluating the objective function. Higher level formula-
tions employ expectation value of the Hamiltonian H of
the form

⟨H⟩U(θ) ≡ ⟨0∣U †
(θ)HU (θ) ∣0⟩ , (1)

describing measurements on the quantum state gener-
ated by the unitary U (θ). This is in contrast to using
the probabilities for individual qubit measurements. Ar-
bitrary observables can be decomposed into basic mea-
surements of the so-called Pauli strings, which can be
evaluated in the computational basis, as explained be-
low and in Sec. II.C. Restricting ourselves to expectation
values instead of pure measurement probabilities, the ob-
jective function becomes

min
θ
O (θ,{⟨H⟩U(θ)}) . (2)

This formulation often allows for more compact defini-
tions of the objective function. For the original VQE (Pe-
ruzzo et al., 2014) and QAOA (Farhi et al., 2014) it can,
for example, be described as a single expectation value
minθ⟨H⟩U(θ), where the differences solely appear in the
specific form and construction of the qubit Hamiltonian.

The choice of the objective function is crucial in a VQA
to achieve the desired convergence. Vanishing gradient
issues during the optimization, known as barren plateaus,
are dependent on the cost function (Cerezo et al., 2021)
(see Sec. IV.A for details).

1. Pauli strings

To extract the expectation value of the problem Hamil-
tonian, it is sufficient to express the Hamiltonian as a
linear combination of primitive tensor products of Pauli
matrices σ̂x, σ̂y, σ̂z. We refer to these tensor products
as Pauli strings P̂ = ⊗

n
j=1 σ̂, where n is the number of

qubits, σ̂ ∈ {Î , σ̂x, σ̂y, σ̂z} and Î the identity operator.
Then, the Hamiltonian can be decomposed as

H =
M

∑
k=1

ckP̂k, (3)

where ck is a complex coefficient of the k-th Pauli string
and the number of Pauli strings M in the expansion de-
pends on the operator at hand. An expectation value
in the sense of Eq. (1) then naturally decomposes into a
set of expectation values, each defined by a single Pauli
string

⟨H⟩U =
M

∑
k=1

ck⟨P̂k⟩U . (4)

Examples of Hamiltonian objectives include molecules
(by means of some fermionic transformation to Pauli
strings, as detailed in Sec. VI.A), condensed matter mod-
els written in terms of spin chains, or optimization prob-
lems encoded into a Hamiltonian form (see Sec. VI.C).

2. Fidelity

Instead of optimizing with respect to the expectation
value of an operator, several VQAs require a subrou-



7

d Classical optimization Quantum-classical loop

c Basis
changeb Parametrized quantum circuit

Output

distance

Input a Objective function

Figure 2 Diagrammatic representation of a Variational Quantum Algorithm (VQA). A VQA workflow can be divided into four
main components: a) the objective function O that encodes the problem to be solved; b) the parameterized quantum circuit
(PQC) U , in which variables θ are tuned to minimize the objective; c) the measurement scheme, which performs the basis
changes and measurements needed to estimate expectation values that are used to evaluate the objective; and d) the classical
optimizer that minimizes the objective. The PQC can be defined heuristically, following hardware-inspired ansätze, or designed
from the knowledge about the problem Hamiltonian H. Inputs of a VQA are the circuit ansatz U(θ) and the initial parameter
values θ0. Outputs include optimized parameter values θ∗and the minimum of the objective.

tine to optimize the state obtained from the PQC U (θ),
∣Ψ⟩U(θ) with respect to a specific target state ∣Ψ⟩. A
commonly used cost function is the fidelity between the
PQC and the target state

F (Ψ,ΨU(θ)) ≡ ∣⟨Ψ∣ΨU(θ)⟩∣
2, (5)

which is equivalent to the expectation value over the pro-
jector Π̂Ψ = ∣Ψ⟩ ⟨Ψ∣. The state preparation objective is
then the minimization of the infidelity 1 − F (Ψ,ΨU(θ))
or the negated fidelity

max
θ

F (Ψ,ΨU(θ)) = min
θ

(−⟨Π̂Ψ⟩U(θ)) . (6)

If we know the efficient circuit UΨ that prepares the tar-
get state ∣Ψ⟩, we can compute the fidelity with the in-
version test by preparing the quantum state U †

Ψ∣ΨU(θ)⟩

and measuring the projector onto the zero state Π̂0 =

∣0⟩⊗n⟨0∣⊗n with the fidelity given by F (Ψ,ΨU(θ)) =

⟨Π̂0⟩U†
Ψ
U(θ) (Havlíček et al., 2019). If one wants to

avoid optimizing with respect to a projector onto a sin-
gle state, one can instead use a local observable that
also becomes maximal for the target state, namely Ô =
1
N ∑

N
k=1 ∣0k⟩ ⟨0k ∣ ⊗ Ik̄, where Ik̄ is the identity matrix for

all qubits except k and ∣0k⟩ is the zero state for qubit

k (Barison et al., 2021; Cerezo et al., 2021). Alterna-
tively, one can use randomized measurements to measure
the overlap Tr(ρ1ρ2) of two density matrices ρ1, ρ2 (El-
ben et al., 2020, 2019; van Enk and Beenakker, 2012).
First, one selects m unitaries {Vk}k, which are chosen as
tensor product of Haar random unitaries over the local
d-dimensional subspace. These unitaries are applied on
each quantum state ρi = VkρV †

k and ρi is sampled in the
computational basis. Then, one estimates the probabil-
ity P (i)

Vk
(s) of measuring the computational basis state s

for each quantum state ρi and unitary Vk. The overlap
is given by

Tr[ρ1ρ2] =
dN

m

m

∑
k=1

∑
s,s′

(−d)−D[s,s′] P
(1)
Vk

(s)P
(2)
Vk

(s′). (7)

where D[s, s′] is the Hamming distance between sampled
computational basis states s and s′. While the num-
ber of measurements scales exponentially with the num-
ber of qubits, the scaling is better compared to state
tomography. Moreover, importance sampling has been
proposed to substantially reduce the number of samples
necessary (Rath et al., 2021).

Objective formulations over fidelities are prominent
within state preparation algorithms in quantum op-
tics (Kottmann et al., 2020; Krenn et al., 2020a,b), ex-
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cited state algorithms (Kottmann et al., 2021a; Lee et al.,
2018), and QML (Benedetti et al., 2019a; Cheng et al.,
2018; Huang et al., 2021; Pérez-Salinas et al., 2020a) (see
also Sec. VI.B for more references and details). In these
cases, the fidelities are often defined with respect to com-
putational basis states ei, such that Fei = ∣⟨Ψ (θ) ∣ei⟩∣

2.

3. Other objective functions

Hamiltonian expectation values are not the only objec-
tive functions that are used in VQAs. Any cost function
that is written in an operational form can constitute a
good choice. One such example is the conditional value-
at-risk (CVaR). Given the set of energy basis measure-
ments {E1, . . .EM} arranged in a non-decreasing order,
instead of using the expectation value from Eq. (1) as
the objective function, it was proposed to use (Barkout-
sos et al., 2020)

CVaR(α) =
1

⌈αM⌉

⌈αM⌉
∑
k=1

Ek , (8)

which measures the expectation value of the α-tail of the
energy distribution. Here, α ∈ (0,1] is the confidence
level. The CVaR(α) can be thought of as a generalization
of the sample mean (α = 1) and the sample minimum
(α → 0).

Another proposal (Li et al., 2020) is to use the Gibbs
objective function

G = − ln⟨e−ηH⟩, (9)

which is the cumulant generating function of the energy.
The variable η > 0 is a hyperparameter to be tuned. For
small η, the Gibbs objective function reduces to the mean
energy in Eq. (1). Since both the CVaR and the Gibbs
objective function can be reduced to the mean energy for
suitable limits of the hyperparameters (α → 1 and η → 0
respectively), their performances are guaranteed to be at
least as good as using the mean energy ⟨H⟩. Empirically,
by tuning the hyperparameters, both measures have been
shown to outperform ⟨H⟩ for certain combinatorial op-
timization problems (Barkoutsos et al., 2020; Li et al.,
2020).

B. Parameterized quantum circuits

Following the objective function, the next essential
component of a VQA is the quantum circuit that pre-
pares the state that optimizes the objective. This quan-
tum circuit, also called a parameterized quantum circuit
(PQC), is a unitary operation that depends on a series
of parameters. In this subsection, we describe how PQCs
are defined and designed.

We define the state after application of the PQC as

∣Ψ (θ)⟩ = U (θ) ∣Ψ0⟩ , (10)

where θ is a vector of parameters and ∣Ψ0⟩ is some initial
state. Typically, ∣Ψ0⟩ is a product state with all qubits in
the ∣0⟩ state, i.e. ∣00⋯0⟩ = ∣0⟩

⊗n, where n is the number
of qubits. In several VQAs, it is convenient to prepare
that state in a particular form before applying the PQC.
The state preparation operation would then depend on
some other unitary operation P that may depend on vari-
ational parameters φ, ∣Ψ0⟩ = P (φ) ∣0⟩

⊗n. One exam-
ple is the quantum feature maps defined in Sec. VI.B.1
that encode the data into the PQC. Any known property
about the final state can also be used to obtain the ini-
tial guess. For instance, if we expect that the final state
solution will contain all elements of the computational
basis, or if we want to exploit a superposition state to
seed the optimization, an initial state choice might be
P ∣0⟩

⊗n
= H⊗n

d ∣0⟩
⊗n, where Hd is the Hadamard gate.

Applied to all qubits, Hd generates the even superposi-
tion of all basis states, i. e.

∣D⟩ =H⊗n
d ∣0⟩

⊗n
=

1
√
n

n

∑
i=1

∣ei⟩, (11)

where ∣ei⟩ are the computational basis states. In quan-
tum chemistry algorithms, the initial state usually corre-
sponds to the Hartree-Fock approximation (see Sec. VI.A
for details). The choice of a good initial state allows the
VQA to start the search in a region of the parameter
space that is closer to the optimum.

The choice of the ansatz U greatly affects the perfor-
mance of a VQA. From the perspective of the problem,
the ansatz influences both the convergence speed and the
closeness of the final state to a state that optimally solves
the problem. On the other hand, the quantum hardware
on which the VQA is executed has to be taken into ac-
count: Deeper circuits are more susceptible to errors,
and some ansatz gates are costly to construct from na-
tive gates. Accordingly, many of the ansätze developed
to date are classified either as more problem-inspired or
more hardware efficient, depending on their structure and
application.

1. Problem-inspired ansätze

An arbitrary unitary operation can be generated by a
Hermitian operator ĝ which, physically speaking, defines
an evolution in terms of the t parameter,

G(t) = e−iĝt. (12)

As an example, the generator ĝ can be a Pauli matrix
σ̂i and thus, G(t) becomes a single-qubit rotation of the
form

Rk (θ) = e
−i θ2 σ̂k = cos(θ/2)I − i sin(θ/2)σ̂k, (13)
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with t = θ and ĝ = 1
2
σ̂k, corresponding to the spin opera-

tor.
From a more abstract viewpoint, those evaluations can

always be described as the time evolution of the corre-
sponding quantum state, so that the generator ĝ is often
referred to as a Hamiltonian. Note, however, that this
Hamiltonian does not necessarily need to be the oper-
ator that describes the energy of the system-of-interest.
In general, such generators can be decomposed into Pauli
strings in the form of Eq. (3).

Within the so-called problem-inspired approaches, evo-
lutions in the form of Eq. (12), with generators derived
from properties of the system-of-interest are used to con-
struct the parameterized quantum circuits. The unitary
coupled-cluster approach (see below), mostly applied for
quantum chemistry problems, is one prominent example.
The generators are elementary fermionic excitations, as
shown in Eq. (17).

The Suzuki-Trotter (ST) expansion or decomposition
(Suzuki, 1976) is a method to approximate a general
unitary in the form of Eq. (12) as a function of the t
parameter. This can be done by decomposing ĝ into a
sum of non-commuting operators {ôk}k, with ĝ = ∑k ckôk
and some coefficients ck. The operators ôk are chosen
such that the evolution unitary e−iôkt can be easily im-
plemented, for example as Pauli strings P̂k. The full
evolution over t can now be decomposed into integer m
equal-sized steps as

e−iĝt = lim
m→∞

(∏
k

e−i
ckôkt

m )

m

. (14)

For practical purposes, the time evolution can be ap-
proximated by a finite number m. When Pauli strings
are used, this provides a systematic method to decom-
pose an arbitrary unitary, generated by ĝ, into a prod-
uct of multi-qubit rotations e−i

ckP̂kt

m , that can themselves
be decomposed into primitive one and two-qubit gates.
Above, we have used the second-order ST decomposition
to approximate the true unitary at each time step t. The
error incurred from the approximation can be bounded
by ∣∣Uĝ(∆t) − UST

ĝ (∆t)∣∣ ≤ ∑
m
k=1 ∣∣[[Hk,H>k],Hk]] +

[[H>k,Hk],H>k]]∣∣∆
3
t , where H>k = ∑β>kHβ and Hk =

ckôk (Poulin et al., 2014).
Knowledge about the physics of the particular Hamil-

tonian to be trotterized can substantially reduce the num-
ber of gates needed to implement this method. For in-
stance, in (Kivlichan et al., 2018), it is shown that by
using fermionic swap gates, it is possible to implement a
Trotter step for electronic structure Hamiltonians using
first-neighbor connectivity circuits with N2/2 two-qubit
gates width and N depth, where N is the number of spin
orbitals. They also show that arbitrary Slater determi-
nants can be efficiently implemented with N/2 gates of
circuit depth.

Unitary Coupled Cluster. Historically, problem-inspired
ansätze were proposed and implemented before
hardware-efficient ansätze (see Fig. 3). They arose
from the quantum chemistry-specific observation that
the unitary coupled cluster (UCC) ansatz (Taube and
Bartlett, 2006), which adds quantum correlations to the
Hartree-Fock approximation, is inefficient to represent
on a classical computer (Yung et al., 2014). Leveraging
quantum resources, the UCC ansatz was instead realized
as a PQC on a photonic processor (Peruzzo et al., 2014).
It is constructed from the parameterized cluster operator
T (θ) and acts on the Hartree-Fock ground state ∣ΨHF⟩

as

∣Ψ(θ)⟩ = eT (θ)−T (θ)†
∣ΨHF⟩ . (15)

The cluster operator is given by T (θ) = T1(θ)+T2(θ)+⋯
with

T1(θ) = ∑
i∈occ
j∈virt

θji â
†
j âi (16)

T2(θ) = ∑
i1,i2∈occ
j1,j2∈virt

θj1,j2i1,i2
â†
j2
âi2 â

†
j1
âi1 ,

and higher-order terms following accordingly (O’Malley
et al., 2016). The operator âk is the annihilation operator
of the k-th Hartree-Fock orbital, and the sets occ and
virt refer to the occupied and unoccupied Hartree-Fock
orbitals.

Due to their decreasing importance, the series is usu-
ally truncated after the second or third term. The ansatz
is termed UCCSD or UCCSDT, respectively, referring
to the inclusion of single, double, and triple excitations
from the Hartree-Fock ground state. The k-UpCCGSD
approach restricts the double excitations to pairwise ex-
citations but allows k layers of the approach (Lee et al.,
2018). After mapping to Pauli strings as described in
Sec. II.A.1, the ansatz is converted to a PQC usually via
the Trotter expansion in Eq. (14).

In its original form, the UCC ansatz faces several draw-
backs in its application to larger chemistry problems as
well as to other applications. For strongly correlated sys-
tems, the widely proposed UCCSD ansatz is expected to
have insufficient overlap with the true ground state and
produces large circuit depths (Grimsley et al., 2019b; Lee
et al., 2018). Consequently, improvements and alterna-
tive ansätze have been proposed to mitigate these chal-
lenges. We restrict our discussion here to provide a short
overview of alternative ansatz developments. For more
details about the UCC ansatz, see Sec. VI.A.

Factorized Unitary Coupled-Cluster and Adaptive Ap-
proaches. The non-commuting nature of the fermionic
excitation generators, given by the cluster opera-
tors Eq. (17) leads to difficulties in decomposing the
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canonical UCC ansatz Eq. (15) into primitive one- and
two-qubit unitaries. The first approaches employed the
Trotter decomposition Eq. (14) using a single step (Mc-
Clean et al., 2016; Romero et al., 2018). The accuracy
of the obtained factorized ansatz depends, however, on
the order of the primitive fermionic excitations (Grimsley
et al., 2019a; Izmaylov et al., 2020).

Alternative approaches propose to use factorized uni-
taries, directly constructed from primitive fermionic ex-
citations (Evangelista et al., 2019; Izmaylov et al., 2020).
Adaptive approaches are a special case of a factorized
ansatz, where the unitary is iteratively grown by subse-
quently screening and adding primitive unitary operators
from a predefined operator pool. The types of operator
pools can be divided into two classes: Adapt-VQE (Grim-
sley et al., 2019b), which constructs the operator pool
from primitive fermionic excitations, and Qubit-Coupled-
Cluster (Ryabinkin et al., 2018b) that uses Pauli strings.
In both works, the screening process is based on energy
gradients with respect to the prospective operator candi-
date. Since this operator is the trailing part of the circuit,
the gradient can be evaluated through the commutator of
the Hamiltonian with the generator of that operator. In
contrast to commutator-based gradient evaluation, direct
differentiation, as proposed in (Kottmann et al., 2021b),
allows gradient evaluations with similar cost as the orig-
inal objective and generalizes the approach by allowing
screening and insertion of operators at arbitrary positions
in the circuit. This is, for example, necessary for excited
state objectives as discussed in Sec. VI.A.4.

Extended approaches include iterative meth-
ods (Ryabinkin et al., 2020), operator pool con-
struction from involutory linear combination of Pauli
strings (Lang et al., 2020), Pauli string pools from
decomposed fermionic pools (Tang et al., 2019), mutual
information based operator pool reduction (Zhang et al.,
2021d), measurement reduction schemes based on the
density matrix reconstruction (Liu et al., 2020a), and
external perturbative corrections (Ryabinkin et al.,
2021).

Variational Hamiltonian Ansatz. Motivated by adiabatic
state preparation, the Variational Hamiltonian Ansatz
(VHA) was developed to reduce the number of param-
eters and accelerate the convergence (McClean et al.,
2016; Wecker et al., 2015). Instead of the Hartree-Fock
operators, the terms of the fermionic Hamiltonian itself
are used to construct the PQC. For this purpose, the
fermionic Hamiltonian H is written as a sum of M terms
H = ∑i ĥi. The grouping of Hamiltonian terms depends
on the problem. The PQC is then chosen as

UVHA =
M

∏
i=1

e
(iθiĥi), (17)

with the operators in the product ordered by decreas-
ing i. The unitary corresponds to n short time evolu-
tions under different parts of the Hamiltonian, where the
terms ĥi of the Hamiltonian can be repeated multiple
times. The initial state is chosen so that it is easy to
prepare yet is related to the Hamiltonian. An example
is the eigenstate of the diagonal part of H. The Fermi-
Hubbard model, with a few simple interaction terms, is
proposed as the most promising near-term application of
the method. However, it is also shown that the VHA
can outperform specific forms of the UCCSD ansatz for
strongly correlated model systems in quantum chemistry.
In Sec. VI.A we discuss some VQE-inspired algorithms
that also use adiabatic evolution to improve the perfor-
mance of the algorithm.

Quantum Approximate Optimization Algorithm. The
Quantum Approximate Optimization Algorithm
(QAOA) is one of the canonical NISQ era algo-
rithms, designed to provide approximate solutions
to combinatorial optimization problems (Farhi et al.,
2014). QAOA has been studied in depth over the years
both empirically and theoretically. It is important to
note that as of now QAOA has not demonstrated any
speed-up over classical algorithms for any practically
relevant task. Understanding the potential of QAOA
with respect to classical algorithms is an active area of
study.

The cost function C of a QAOA is designed to encode a
combinatorial problem by means of bit strings that form
the computational basis. With the computational basis
vectors ∣ei⟩, one can define the problem Hamiltonian HP

as (see Sec. VI.C.1 for an example)

HP ≡
n

∑
i=1

C(ei)∣ei⟩⟨ei∣, (18)

and the mixing Hamiltonian HM as

HM ≡
n

∑
i=1

σ̂ix. (19)

The initial state in the QAOA algorithm is conventionally
chosen to be the uniform superposition state ∣D⟩ from
Eq. (11). The final quantum state is given by alternately
applying HP and HM on the initial state p-times,

∣Ψ(γ,β)⟩ ≡ e−iβpHM e−iγpHP⋯e−iβ1HM e−iγ1HP ∣D⟩, (20)

with γ ≡ (γ1, γ2,⋯, γp) and β ≡ (β1, β2,⋯, βp). A quan-
tum computer is used to evaluate the objective function

C(γ,β) ≡ ⟨Ψ(γ,β)∣HP (γ,β) ∣Ψ(γ,β)⟩ , (21)

and a classical optimizer is used to update the 2p an-
gles γ and β until C is maximized, i.e. C(γ∗,β∗) ≡

maxγ,β C(γ,β). Here, p is often referred to as the QAOA
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level or depth. Since the maximization at level p − 1
is a constrained version of the maximization at level p,
the performance of the algorithm improves monotonically
with p in the absence of experimental noise and infideli-
ties.

In adiabatic quantum computing (see Sec. III.A), we
start from the ground state of HM and slowly move to-
wards the ground state of HP by slowly changing the
Hamiltonian. In QAOA, we alternate between HM and
HP . One can think of QAOA as a Trotterized version of
quantum annealing. Indeed, the adiabatic evolution as
used in quantum annealing can be recovered in the limit
of p→∞.

For a combinatorial optimization problem with hard
constraints to be satisfied, penalties can be added to the
cost function. In practice, this may not be an efficient
strategy as it is still possible to obtain solutions that vi-
olate several of the hard constraints. A variation of the
QAOA to deal with these constraints was also discussed
in the Sec. VII from the original proposal (Farhi et al.,
2014). Building on previous work in quantum anneal-
ing (Hen and Sarandy, 2016; Hen and Spedalieri, 2016),
it was proposed to encode the hard constraints directly
into the mixing Hamiltonian (Hadfield et al., 2017). This
approach yields the main advantage of restricting the
state evolution to the feasible subspace where no hard
constraints are violated. This speeds up the classical op-
timization routine to find the optimal angles. This frame-
work was later generalized as the Quantum Alternating
Operator Ansatz to consider phase-separation and mixing
unitary operators (UP (γ) and UM(β) respectively) which
need not originate from the time-evolution of a Hamilto-
nian (Hadfield et al., 2019). The operators e−iβHM and
e−iγHP from Eq. (20) are replaced by UM(β) and UP (γ)
respectively. It is worth noting that both the Quantum
Approximate Optimization Algorithm and the Quantum
Alternating Operator Ansatz are abbreviated “QAOA” in
the literature. In this case, we suggest “QuAltOA” as an
acronym for the Quantum Alternating Operator Ansatz
to distinguish the same from the Quantum Approximate
Optimization Algorithm.

The use of QAOA for combinatorial optimization is
presented in Sec. VI.C. Some theoretical guarantees of
this ansatz are introduced in Sec. IV.D.

2. Hardware-efficient ansätze

Thus far, we have described circuit ansätze constructed
from the underlying physics of the problem to be solved.
Although it has been shown computationally that such
ansätze can ensure fast convergence to a satisfying so-
lution state, they can be challenging to realize experi-
mentally. Quantum computing devices possess a series of
experimental limitations that include, among others, spe-
cific qubit connectivity, a restricted gate set, and limited

a Problem-inspired ansatz

b Hardware-efficient ansatz

Figure 3 Example circuits for problem-inspired and
hardware-efficient ansätze. (a) Circuit of the Unitary Cou-
pled Cluster ansatz with a detailed view of a fermionic exci-
tation as discussed in (Yordanov et al., 2020). (b) Hardware-
efficient ansatz tailored to a processor that is optimized for
single-qubit x- and z-rotations and nearest-neighbor two-
qubit CNOT gates.

gate fidelities and coherence times. Therefore, existing
quantum hardware is not suited to implement deep and
highly connected circuits required for the UCC and simi-
lar ansätze for applications beyond basic demonstrations
such as the H2 molecule (Moll et al., 2018).

A class of hardware-efficient ansätze (see Fig. 3(b)) has
been proposed to accommodate device constraints (Kan-
dala et al., 2017). The common trait of these circuits is
the use of a limited set of quantum gates as well as a par-
ticular qubit connection topology. The gate set usually
consists of a two-qubit entangling gate and up to three
single-qubit gates. The circuit is then constructed from
blocks of single-qubit gates and entangling gates, which
are applied to multiple or all qubits in parallel. Each of
these blocks is usually called layer, and the ansatz circuit
generally has multiple such layers.

The quantum circuit of a hardware-efficient ansatz
with L layers is usually given by

U(θ) =
L

∏
k=1

Uk (θk)Wk, (22)

where θ = (θ1, ,⋯,θL) are the variational parameters,
Uk (θk) = exp (−iθkVk) is a unitary derived from a Her-
mitian operator Vk, andWk represents non-parametrized
quantum gates. Typically, the Vk operators are single-
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qubit rotation gates, i.e. Vk are Pauli strings acting lo-
cally on each qubit. In those cases, Uk becomes a prod-
uct of combinations of single-qubit rotational gates, each
one defined as in Eq. (13). Wk is an entangling unitary
constructed from gates that are native to the architec-
ture at hand, for example, CNOT or CZ gates for super-
conducting qubits or XX gates for trapped ions (Krantz
et al., 2019; Wright et al., 2019). Following this approach,
the so-called Alternating Layered Ansatz is a particular
case of these Hardware-efficient ansätze which consists
of layers of single-qubit rotations, and blocks of entan-
gling gates that entangle only a local set of qubits and
are shifted every alternating layer.

The choice of these gates, their connectivity, and their
ordering influences the portion of the Hilbert space that
the ansatz covers and how fast it converges for a spe-
cific problem. Some of the most relevant properties of
hardware-efficient ansätze, namely expressibility, entan-
gling capability, and the number of parameters and layers
needed are studied in Refs. (Bravo-Prieto et al., 2020b;
Nakaji and Yamamoto, 2020a; Sim et al., 2019; Woitzik
et al., 2020) and further discussed in Sec. IV.B.

Instead of choosing between the problem-inspired and
hardware-efficient modalities, some PQC designers have
chosen an intermediate path. One example is the use
of an exchange-type gate, which can be implemented na-
tively in transmons, to construct a PQC that respects the
symmetry of the variational problem (Ganzhorn et al.,
2019; Sagastizabal et al., 2019b). Such an ansatz leads to
particularly small parameter counts for quantum chem-
istry problems such as the H2 and LiH molecules (Gard
et al., 2020). Another intermediate approach, termed
QOCA for its inspiration from quantum optimal con-
trol, is to add symmetry-breaking unitaries, akin to a
hardware-efficient ansatz, into the conventional VHA cir-
cuit (Choquette et al., 2020). This modification en-
ables excursions of the variational state into previously
restricted sections of the Hilbert space, which is nu-
merically shown to yield shortcuts in solving particular
fermionic problems.

C. Measurement

To gain information about the quantum state that has
been prepared on the quantum hardware, one needs to
estimate the expectation value of the objective function
⟨Ô⟩Uθ

. The most direct approach to estimate expecta-
tion values is to apply a unitary transformation on the
quantum state to the diagonal basis of the observable Ô
and obtaining the probability of measuring specific com-
putational states corresponding to an eigenvalue of Ô. In
other words, to determine whether a measured qubit is
in the ∣0⟩ or ∣1⟩ state. For experimental details on this
task, we refer to existing reviews, such as for supercon-
ducting qubits (Krantz et al., 2019) or ion traps (Häffner

et al., 2008). However, on NISQ devices, the transfor-
mation to the diagonal basis mentioned before can be an
overly costly one. As a NISQ friendly alternative, most
observables of interest can be efficiently parameterized in
terms of Pauli strings, as shown above, and transformed
into their diagonal basis by simple single-qubit rotations,
as shown below.

Measurement of Pauli strings. The expectation value of
the σ̂z operator on a particular qubit can be measured by
reading out the probabilities of the computational basis
state {∣0⟩ , ∣1⟩} as

⟨ψ∣σ̂z ∣ψ⟩ ≡ ⟨σ̂z⟩ = ∣α∣2 − ∣β∣2, (23)

where ∣α∣2 is the probability to measure the qubit in state
∣0⟩, ∣β∣2 is the probability to measure the qubit in state
∣1⟩ and ∣ψ⟩ = α ∣0⟩ + β ∣1⟩. Measurements defined by σ̂x
and σ̂y can be defined similarly by transforming them
into the σ̂z basis first. The transformation is given by
primitive single-qubit gates

σ̂x = R
†
y (π/2) σ̂zRy (π/2) =Hdσ̂zHd, (24)

σ̂y = R
†
x (π/2) σ̂zRx (π/2) = SHdσ̂zHdS

†, (25)

where S =
√
σ̂z and Hd = (σ̂x + σ̂z)/

√
2 is the Hadamard

gate. Then, to measure σ̂x on a quantum state ∣ψ⟩, we
rotate σ̂x into the z-axis by applying Hd and measure in
logical σ̂z basis, i.e.

⟨σ̂x⟩ ≡ ⟨ψ∣ σ̂x ∣ψ⟩ = ⟨ψ∣Hdσ̂zHd ∣ψ⟩ = αβ∗ + α∗β. (26)

The same applies for ⟨σ̂y⟩. Arbitrary Pauli strings P̂ ,
with primitive Pauli operations σ̂f(k) ∈ {σx, σy, σz} on
qubits k ∈ K, can then be measured by the same proce-
dure on each individual qubit as

⟨P̂ ⟩U = ⟨∏
k∈K

σz(k)⟩ŨU (27)

where Ũ is a product of single qubit rotations according
to Eq. (24) and Eq. (25) depending on the Pauli opera-
tions σ̂f(k) at qubit k.

So far we discussed expectation values of a physical
observable ⟨Ô⟩, which is the mean value averaged over
an infinite number of measurements. In practice, one can
sample only a finite number of single-shot measurements
Ns of the quantum state and estimate the expectation
values within some finite error. For a Pauli string P̂ , the
number of measurement samples Ns needed to estimate
the expectation value ⟨P̂ ⟩U with an additive error of at
most ε with a failure probability of at most δ is bounded
by Hoeffding’s inequality (Huang et al., 2019)

Ns ≥
2

ε2
log (

2

δ
) . (28)
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In particular, the error ε decreases with the inverse
square-root of the number of measurements ε∝ 1/

√
Ns.

For many problems, such as quantum chemistry-
related tasks, the number of terms in the cost Hamil-
tonian to be estimated can become very large. A naive
way of measuring each Pauli string separately may incur
a prohibitively large number of measurements. Recently,
several more efficient approaches have been proposed (see
(Bonet-Monroig et al., 2020) for an overview). The com-
mon idea is to group different Pauli strings that can be
measured simultaneously such that a minimal number of
measurements needs to be performed.

Pauli strings that commute qubit-wise, i.e. the Pauli
operators on each qubit commute, can be measured at the
same time (Kandala et al., 2017; McClean et al., 2016).
The problem of finding the minimal number of groups can
be mapped to the minimum clique cover problem, which
is NP-hard in general, but good heuristics exist (Vertelet-
skyi et al., 2020). One can collect mutually commuting
operators and transform them into a shared eigenbasis,
which adds unitary transformation to the measurement
scheme (Crawford et al., 2019b,b; Gokhale et al., 2019;
Yen et al., 2020). Combinations of the single-qubit and
Bell measurements have been proposed as well (Hama-
mura and Imamichi, 2020).

Alternatively, one can use a method called unitary par-
titioning to linearly combine different operators into a
unitary, and use the so-called Hadamard test (see be-
low) to evaluate it (Izmaylov et al., 2019a; Zhao et al.,
2020a). In (Izmaylov et al., 2019b), the observables can
be decomposed into the so-called mean-field Hamiltoni-
ans, which can be measured more efficiently if one mea-
sures one qubit after the other, and uses information from
previous measurement outcomes.

For specific problems such as chemistry and condensed
matter systems, it is possible to use the structure of the
problem to reduce the number of measurements (Cade
et al., 2020; Cai, 2020; Gokhale and Chong, 2019; Hug-
gins et al., 2019). In particular, in (Cai, 2020), where a
Fermi-Hubbard model is studied using VQE, the num-
ber of measurements is reduced by considering multi-
ple orderings of the qubit operators when applying the
Jordan-Wigner transformation. In the context of quan-
tum chemistry, the up-to-date largest reduction could be
achieved by the Cartan subalgebra approach of (Yen and
Izmaylov, 2020). Other approaches use classical shad-
ows (Hadfield et al., 2020), a classical approximation of
the quantum state of interest, or neural network estima-
tors (Torlai et al., 2020) to decrease the number of mea-
surements. All those kinds of optimizations require an
understanding of the underlying problem and are usually
not applicable for every use of the VQE.

Measurement of overlaps. Several VQA require the mea-
surement of overlap of a quantum state ∣ψ⟩ with unitary

U in the form of ⟨ψ∣U ∣ψ⟩. This overlap is in general not
an observable and has both real and imaginary parts.
The Hadamard test can evaluate such a quantity on the
quantum computer using a single extra qubit (Miquel
et al., 2002). The idea is to apply a controlled U oper-
ation, with control on that qubit, and target U on the
quantum state. Then, one can measure from this single-
qubit state both real and imaginary parts of the overlap.
A downside of this method is the requirement to be able
to implement a controlled unitary, which may require too
many resources on current quantum processors. Alterna-
tive methods to measure the overlap without the use of
control unitaries have been proposed (Mitarai and Fujii,
2019). One idea is to decompose U into a sum of Pauli
strings, and then to measure the expectation value of
each Pauli string individually. Another approach is pos-
sible if U can be rewritten into a product of unitaries Uq
that act locally on only a few qubits. Then, one can find
via classical means the diagonalization of Uq = V †

q DVq,
with the diagonal matrix D and Vq being a unitary. The
overlap can be found by applying the Vq unitaries on the
state ∣ψ⟩, measure the outcomes on the computational
basis, and do post-processing of the results with the clas-
sically calculated eigenvalues of D.

Classical shadows. This is a powerful technique to accu-
rately predictM expectation values Tr(Ôiρ), 1 ≤ i ≤M of
an unknown quantum state ρ (Huang et al., 2020c). The
method is based on and inspired by shadow tomography
(Aaronson, 2019). First, a random unitary U is applied
on the state ρ → UρU † and then all the qubits are mea-
sured on a computational basis. This step is repeated
with several random unitaries U . Common choices for
U are unitaries that can be efficiently computed on a
classical computer such as random n-qubit Clifford cir-
cuits or tensor products of single-qubit rotations. By
post-processing the measurement results, one can gather
a classical shadow, which is a classical representation of
the quantum state ρ. There exist performance guarantees
that classical shadows with a size of order logM suffice to
predict M expectation values simultaneously. For inves-
tigations involving classical shadow tomography proto-
cols in the presence of noise, refer to (Chen et al., 2020b;
Koh and Grewal, 2020). Experimental realizations have
been performed recently as well (Struchalin et al., 2021;
Zhang et al., 2021c).

D. Parameter optimization

In principle, the PQC parameter optimization to min-
imize the objective is not different from any multivariate
optimization procedure and standard classical methods
can be applied (Lavrijsen et al., 2020). However, in the
NISQ era, the coherence time is short, which means that
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high-depth analytical gradient circuits cannot be imple-
mented. In addition, one of the biggest challenges in
parameter optimization is the large number of measure-
ments required for estimating the mean value of an ob-
servable to high precision. Due to this high sampling
rate, the measurement process can become a significant
bottleneck in the overall algorithm runtime. Thus, an
effective optimizer for PQCs should try to minimize the
number of measurements or function evaluations. As the
last criterion, the optimizer should be resilient to noisy
data coming from current devices and precision on expec-
tation values that are limited by the number of shots in
the measurement. These three requirements imply that
certain existing algorithms are better suited for PQC op-
timization and are more commonly used and that new
algorithms are being developed specifically for PQC op-
timization. Some intuitive concepts of the mechanisms
behind the optimization of quantum problems have been
investigated in (McClean et al., 2020a). Recently, (Bittel
and Kliesch, 2021) has shown that the classical optimiza-
tion corresponding to VQAs is an NP-hard problem.

In this section, we first review two classes of opti-
mization, gradient-based and gradient-free. We also con-
sider resource-aware optimization methods and strategies
that additionally minimize quantities associated with the
quantum cost of optimization. While we reserve more
detailed descriptions of the respective references and the
Supplementary Material, we highlight the main features
and advantages for each optimization strategy.

1. Gradient-based approaches

A common approach to optimise an objective function
f(θ) is via its gradient, i.e. the change of the func-
tion with respect to a variation of its M parameters
θ = (θ1,⋯, θM). The gradient indicates the direction in
which the objective function shows the greatest change.
This is a local optimization strategy as one uses informa-
tion starting from some initial parameter value θ(0) and
iteratively updates θ(t) over multiple discrete steps t. A
common update rule for each θi is

θ
(t+1)
i = θ

(t)
i − η ∂if(θ) , (29)

or θ(t+1)
= θ(t) − η ∇f(θ), where η is a small parameter

called learning rate and

∂i ≡
∂

∂θi
, ∇ = (∂1,⋯, ∂M) (30)

is the partial derivative with respect to the parameter
θi and the gradient vector, respectively, using Einstein
notation.

There are various ways of estimating the gradient on a
quantum computer (Romero et al., 2018). The most rele-
vant of them are detailed in the Supplementary Material
and summarized in the following paragraphs.

Finite difference. One can compute the gradients using
finite differences, i.e. ∂if(θ) ≈ (f(θ+εei)−f(θ−εei))/2ε,
where ε is a small number and ei is the unit vector with
1 as its i-th element and 0 otherwise. As the objective
function f(θ) is obtained with limited accuracy, a good
estimation of the gradient requires smaller ε, i.e. more
samples taken from the quantum hardware.

Parameter shift rule. This strategy was proposed
in (Romero et al., 2018) and developed in (Mitarai et al.,
2018; Schuld et al., 2019). This method computes the
exact gradients and ε can be large (commonly ε = π/2).
This method assumes that the unitary to be optimized
can be written as U(θ) = V G(θi)W , where G = e−iθig is
the unitary affected by the parameter θi, g is the gener-
ator of G and V,W are unitaries independent of θi. If
g has a spectrum of two eigenvalues ±λ only, the gradi-
ent can be calculated by measuring the observable at two
shifted parameter values as follows:

∂i⟨f(θ)⟩ = λ (⟨f(θ+)⟩ − ⟨f(θ−)⟩) , (31)

where θ± = θ ± (π/4λ)ei. This rule can be generalised
to the case where the generator g does not satisfy the
eigenspectrum condition (see Supplementary Material for
details). It can also be adapted to calculate analytical
gradients for fermionic generators of Unitary Coupled-
Cluster operators (Kottmann et al., 2021a) and higher
order derivatives (Mari et al., 2020).

L-BFGS. It is a quasi-Newton method that efficiently
approximates the “inverse Hessian” using a limited his-
tory of positions and gradients (Fletcher, 2000; Liu and
Nocedal, 1989). While effective in simulations, recent
studies observed BFGS methods do not perform well in
experimental demonstrations of VQA due to the level of
noise in the cost function and gradient estimates (Lavri-
jsen et al., 2020). Two heuristics were proposed to find
quasi-optimal parameters for QAOA using BFGS (Zhou
et al., 2020a), INTERP and FOURIER explained in
the Supplementary Material. Efficient initialization of
parameters has also been reported using the Trotterized
quantum annealing (TQA) protocol (Sack and Serbyn,
2021). These heuristic strategies can be easily extended
to gradient-free optimization methods such as Nelder-
Mead.

Quantum natural gradient. The update rule of standard
gradient descent assumes that the parameter space is a
flat Euclidean space. However, in general, this is not the
case, which can severely hamper the efficiency of gra-
dient descent methods. In classical machine learning,
the natural gradient was proposed that adapts the up-
date rule to the non-Euclidean metric of the parameter
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space (Amari, 1998). Its extension, the quantum natural
gradient (QNG) defines the following update rule (Stokes
et al., 2020):

θ
(t+1)
i = θ

(t)
i − η F−1

(θ)∂if(θ) , (32)

where F(θ) is the Fubini-Study metric tensor or quan-
tum Fisher information metric given by

Fij = Re(⟨∂iψ(θ)∣∂jψ(θ)⟩−⟨∂iψ(θ)∣ψ(θ)⟩ ⟨ψ(θ)∣∂jψ(θ)⟩) .
(33)

The superior performance of the QNG compared to other
gradient methods has been reported (Stokes et al., 2020;
Yamamoto, 2019) and it has been shown that it can avoid
becoming stuck in local minima (Wierichs et al., 2020).
It can be generalized to noisy quantum circuits (Koczor
and Benjamin, 2019). The QNG can be combined with
adaptive learning rates η(θti) that change for every step
of gradient descent to speed up training. For hardware
efficient PQCs, one can calculate adaptive learning rates
using the quantum Fisher information metric (Haug and
Kim, 2021b). While the full Fubini-Study metric tensor is
difficult to estimate on quantum hardware, diagonal and
block-diagonal approximations can be efficiently evalu-
ated (Stokes et al., 2020) and improved classical tech-
niques to calculate the full tensor exist (Jones, 2020). A
special type of PQC, the natural PQC, has a euclidean
quantum geometry such that the gradient is equivalent
to the QNG close to a particular set of parameters (Haug
and Kim, 2021a).

Quantum imaginary time evolution. Instead of using the
standard gradient descent for optimization, a varia-
tional imaginary time evolution method was proposed
in (McArdle et al., 2019a) to govern the evolution of pa-
rameters. They focused on many-body systems described
by a k-local Hamiltonian and considered a PQC that
encodes the state ∣ψ(τ)⟩ as a parameterized trial state
∣ψ(θ(τ))⟩. The evolution of θ(τ) with respect to all the
parameters can then be obtained by solving a differen-
tial equation (see Supplementary Material for details). It
was later shown in (Stokes et al., 2020) that this method
is analogous to the gradient descent via the QNG when
considering infinitesimal small step sizes.

Hessian-aided gradient descent. A recent work (Huembeli
and Dauphin, 2021) proposed computing the Hessian and
its eigenvalues to help analyze the cost function land-
scapes of QML algorithms. Tracking the numbers of
positive, negative, and zero eigenvalues provides insight
whether the optimizer is heading towards a stationary
point. The Hessian can be computed by doubly applying
the parameter shift rule as shown in (Mitarai and Fujii,
2019) and reproduced in the Supplementary Material.
While a deeper analysis is necessary to compare their

performance, both QNG and Hessian-based methods try
to accelerate optimization by leveraging local curvature
information.

Quantum Analytic Descent. A method consisting of us-
ing a classical model of the local energy landscape to
estimate the gradients is proposed in (Koczor and Ben-
jamin, 2020). In this hybrid approach, a quantum device
is used to construct an approximate ansatz landscape
and the optimization towards the minima of the corre-
sponding approximate surfaces can be carried out effi-
ciently on a classical computer. Using this approximate
ansatz landscape, the full energy surface, gradient vec-
tor, and metric tensor can be expressed in terms of the
ansatz parameters. The analytic descent has been shown
to achieve faster convergence as compared to the QNG.

Stochastic gradient descent. A major drawback of
gradient-based methods is the high number of measure-
ments. The stochastic gradient descent (SGD) algorithm
addresses this issue by replacing the normal parameter
update rule with a modified version

θ(t+1)
= θ(t) − α g(θ(t)), (34)

where α is the learning rate and g is an unbiased esti-
mator of the gradient of the cost function. As an es-
timator, one can take the measurement of the gradient
with a finite number of shots (Harrow and Napp, 2019).
This technique can be combined with a sampling of the
parameter-shift rule terms (Sweke et al., 2020) or by ex-
tending it to the doubly stochastic gradient. For the lat-
ter, the finite measurements are performed for only a sub-
set of the expectation values of the Hamiltonian terms.
This sampling can be performed in the extreme situation
where only one Pauli-term is evaluated at a single point
in the quadrature. This is a very powerful method that
reduces the number of measurements drastically (Anand
et al., 2020b). This method can be extended beyond cir-
cuits that allow the parameter-shift rule by expressing
the gradient as an integral (Banchi and Crooks, 2020).
To accelerate the convergence of SGD for VQA, differ-
ent strategies are proposed (Lyu et al., 2020) and briefly
explained in the Supplementary Material.

2. Gradient-free approaches

In this section, we discuss optimization methods for
VQA that do not rely on gradients measured on the quan-
tum computer.

Evolutionary algorithms. Evolutionary strategies
(Rechenberg, 1978; Schwefel, 1977) are black-box
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optimization tools for high dimensional problems that
use a search distribution, from which they sample data,
to estimate the gradient of the expected fitness to update
the parameters in the direction of steepest ascent. More
recently, natural evolutionary strategies (NES) (Wierstra
et al., 2014) have demonstrated considerable progress in
solving these high dimensional optimization problems.
They use natural gradient estimates for parameter
updates instead of the standard gradients. They have
been adapted for optimization of VQA (Anand et al.,
2020a; Zhao et al., 2020b) and have been shown to have
similar performance as the state-of-the-art gradient-
based method. In (Anand et al., 2020a) it is shown
that NES, along with techniques like Fitness shaping,
local natural coordinates, adaptive sampling, and batch
optimization, can be used for the optimization of deep
quantum circuits.

Reinforcement learning. Several authors have used rein-
forcement learning (RL) to optimize the QAOA param-
eters (Garcia-Saez and Riu, 2019; Khairy et al., 2019;
Wauters et al., 2020b; Yao et al., 2020a,b). This frame-
work consists of a decision-making agent with policy
πθ(a∣s) parameterized by θ, which is a mapping from
the state space s ∈ {S} to an action space a ∈ {A}. In re-
sponse to the action, the environment provides the agent
with a reward r from the set of rewards {R}. The goal of
RL is to find a policy that maximizes the expected total
discounted reward. For more details, refer to Sec. VI.B.3.
In the context of QAOA, for example, {S} can be the set
of QAOA parameters (γ,β) used, a can be the value of
γ and β for the next iteration, and the reward can be the
finite difference in the QAOA objective function between
two consecutive iterations. The policy can be parameter-
ized by a deep neural network with the weights θ. The
policy parameters θ can be optimized using a variety of
algorithms such as Monte-Carlo methods (Hammersley,
2013; Sutton and Barto, 2018), Q-Learning (Watkins and
Dayan, 1992) and policy gradient methods (Sutton and
Barto, 2018).

Sequential minimal optimization. In machine learning, the
sequential minimal optimization (SMO) method (Platt,
1998) has proven successful in optimizing the high-
dimensional parameter landscape of support vector ma-
chines. The method breaks the optimization into smaller
components for which the solution can be found analyti-
cally. This method has been applied to variational circuit
optimization (Nakanishi et al., 2020), circuit optimiza-
tion with classical acceleration (Parrish et al., 2019b) and
circuit optimization and learning with Rotosolve and Ro-
tosolect (Ostaszewski et al., 2019).

Surrogate model-based optimization. When function eval-
uations are costly, it pays off to not only use the current
function value to determine the next parameter value
but to use all previous evaluations to extract information
about the search space. The function values in memory
are used to build a surrogate model, an auxiliary func-
tion that represents the full expensive cost function based
on the current information. All optimization happens on
the surrogate cost landscape, so no explicit derivatives of
the cost function are needed. Through the use of a fit-
ted cost function, these methods are also expected to be
more resilient to noise. Several classical surrogate models
have been included in the scikit-quant package (Lavri-
jsen and the scikit-quant contributors, 2020; Lavrijsen
et al., 2020). In the Bound optimization by quadratic
approximation (BOBYQA) algorithm (Powell, 2009), a
local quadratic model is formulated from the previous
function values. It is then minimized in the trust region
to obtain a new parameter value. When the evaluation at
this new parameter value does not result in a lower func-
tion value, the trust region is altered and the quadratic
model is optimized in this new parameter space. It was
shown that this method works well when the PQC is ini-
tialized close to the optimal parameters but has more
problems with shallow optimization landscapes and gets
stuck in local minima (Lavrijsen et al., 2020). The stable
noisy optimization by branch and fit (SnobFit) (Huyer
and Neumaier, 2008) algorithm uses a branching algo-
rithm to explore new areas in parameter space.

3. Resource-aware optimizers

Optimization methods and strategies adopted for early
demonstrations of VQAs are largely general-purpose and
black-box with minimal emphasis on reducing the quan-
tum resources used in the optimization. Therefore, they
are more costly and prone to errors than their classi-
cal counterparts. Optimizers developed in more recent
years are tailored to additionally minimize quantities as-
sociated with the quantum cost of the optimization, e.g.
number of measurements or real hardware properties.
Additionally, one can use circuit compilation methods
like the ones described in Sec. V.B.

ROSALIN. While VQA leverage low-depth circuits to
execute on near-term quantum processors, a significant
challenge in implementing these algorithms is the pro-
hibitive number of measurements, or shots, required to
estimate each expectation value that is used to com-
pute the objective. To address the challenge, (Arra-
smith et al., 2020b) developed a shot-frugal optimizer
called ROSALIN (Random Operator Sampling for Adap-
tive Learning with Individual Number of shots) that ef-
fectively distributes fractions of a predefined number of
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shots to estimate each term of the Hamiltonian as well
as each partial derivative. Given the expectation value
of the Hamiltonian decomposed into the hi terms as in
Eq. (3), the authors note several strategies for allocat-
ing shots for estimating each term ⟨hi⟩. While a naive
strategy would allocate equal numbers of shots per term,
the authors observed lower variance in the energies us-
ing weighted approaches in which the number of shots
allocated to the i-th term bi is proportional to the corre-
sponding Hamiltonian coefficient ci.

SPSA. In experimental realizations of VQA, the opti-
mizer is often hindered by statistical noise. In (Kan-
dala et al., 2017) this issue is circumvented by applying
the simultaneous perturbation stochastic approximation
(SPSA) algorithm (Spall, 1992), in which the algorithm
hyperparameters are determined by experimental data
on the level of statistical noise. Compared to the finite-
difference gradient approximation, which requires O(p)
function evaluations for p parameters, SPSA requires
only two evaluations, as explained in the Supplementary
Material. The convergence of SPSA with various types
of PQCs has been studied (Woitzik et al., 2020).

III. OTHER NISQ APPROACHES

We proceed to review some of the notable NISQ algo-
rithms other than VQA. These algorithms do not require
tuning the parameters of a PQC in an adaptive feedback
manner and often exploit analog or hybrid paradigms
that constitute alternatives to the digital quantum com-
putation.

A. Quantum annealing

Quantum annealing (QA) (Finnila et al., 1994; Kad-
owaki and Nishimori, 1998) derives its inspiration from
simulated annealing (SA), a classical global optimization
technique that is usually employed to solve combinatorial
optimization problems. SA can be valuable in discover-
ing global optima in optimization landscapes with many
local optima. The word “annealing” comes from met-
allurgy and refers to heating and slow cooling. In SA,
one identifies the objective function with the energy of
a statistical-mechanical system. The system is assigned
an artificially-induced control parameter, called temper-
ature. Like annealing, SA starts at some high temper-
ature T , and then the value of T is decreased follow-
ing some temperature variation function called “anneal-
ing schedule” such that the final temperature is T = 0.
The algorithm chooses a candidate state close to the cur-
rent state randomly. If it improves the solution, it is
always accepted with a probability 1. If it does not, then

the acceptance is determined based on a temperature-
dependent probability function. The idea of tolerating
worse solutions can be considered as a virtue of the al-
gorithm. In SA, the probability that a bad solution is
accepted is slowly decreased as the solution space is ex-
plored. This relates to the notion of “slow cooling” in
annealing.

In QA, one utilizes quantum mechanical fluctuations
like quantum tunneling to explore the solution space.
This is related to the idea of using thermal fluctuations
in SA to explore the solution space. In QA, artificial
degrees of freedom of quantum nature are introduced
via non-commutative operators, which induces quantum
fluctuations. The strength of these quantum fluctuations
is controlled using an annealing schedule (similar to SA,
where we decrease the temperature). The physical idea
behind the annealing schedule in QA is to move the sys-
tem from some initial Hamiltonian ground state to the
ground state of the problem Hamiltonian. The concept
of QA is related to the notion of quantum adiabatic evo-
lution, which is being used for adiabatic quantum com-
putation (Albash and Lidar, 2018; Farhi et al., 2000).

We proceed to a formal discussion, starting with adia-
batic quantum computation and then making the connec-
tion to QA. Adiabatic quantum computation is a model
of computation based on quantum mechanical processes
operating under adiabatic conditions (Albash and Lidar,
2018; Farhi et al., 2000). Before understanding adiabatic
quantum computation, the concept of k-local Hamiltoni-
ans needs to be introduced.

Definition 1 k-local Hamiltonian: A k-local Hamil-
tonian is a Hermitian matrix of the form H = ∑

r
i=1 ĥi

where each term is a Hermitian operator acting non-
trivially on at-most k qudits, i.e., ĥi = h ⊗ I where h is
a Hamiltonian acting on at-most k neighbouring qudits
and I is the identity operator.

Let us consider a time-dependent Hamiltonian H(s),
with s ≡ t

T
∈ [0,1], and a quantum system initialized

in the ground state of H(0). We assume that H(s)
varies smoothly as a function of s and H(s) has a unique
ground state for s ∈ [0,1]. A quantum state initialized in
∣ψ(t = 0)⟩ evolves according to the following Schrödinger
equation (setting h̵ = 1),

i
d

dt
∣ψ(t)⟩ =H(t) ∣ψ(t)⟩ . (35)

The above equation can be written equivalently as

i
d

ds
∣ψ(s)⟩ = TH(s) ∣ψ(s)⟩ . (36)

Assuming ∣ψ(0)⟩ is a ground state of H(0), then in the
limit T → ∞, ∣ψ(t)⟩ is a ground state of H(1) obtained
via evolution Eq. (35). Such an evolution will be, hence-
forth, referred as adiabatic evolution according to H for
time T . We proceed to define adiabatic quantum com-
putation.
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Definition 2 Adiabatic quantum computation
(adapted from (Aharonov et al., 2008)): An
adiabatic quantum computation is specified by two k-local
Hamiltonians H0 and H1 acting on n qudits and a map
s(t) ∶ [0, T ] Ð→ [0,1]. The input of the computation
is the ground state of H0, which is unique and is a
product state. The desired output is given by a quantum
state which is ε−close in l2-norm to the ground state of
H1. Furthermore, T is the smallest time such that the
adiabatic evolution generated via H(s) = (1− s)H0 + sH1

for time T yields the desired output. The running time
of the algorithm is given by T.maxs ∥H(s)∥ , where ∥.∥
denotes the spectral norm.

QA relaxes the strict requirement of adiabatic evolu-
tion, thus allowing diabatic transitions due to the finite
temperature of the system, fast changes of Hamiltonian
parameters, or the interaction with the noisy environ-
ment (Hauke et al., 2020). Because of diabatic transi-
tions, QA is prone to get trapped in excited states.

QA has been investigated for problems in diverse ar-
eas including machine learning (Benedetti et al., 2016,
2017, 2018; Li et al., 2018; O’Gorman et al., 2015), pro-
tein folding (Babbush et al., 2012; Babej et al., 2018;
Perdomo et al., 2008; Perdomo-Ortiz et al., 2012), fault
diagnosis (Perdomo-Ortiz et al., 2019, 2015), compres-
sive sensing (Ayanzadeh et al., 2019), finance (Bouland
et al., 2020; Cohen et al., 2020; Marzec, 2016; Orus et al.,
2019; Rosenberg et al., 2016; Venturelli and Kondratyev,
2019), fermionic simulation (Babbush et al., 2014) and
high energy physics (Das et al., 2019; Mott et al., 2017).
The protein folding problem entails calculating a pro-
tein’s lowest free energy structure given its amino acid
sequence. The goal is to solve the protein folding prob-
lem by mapping it to a Hamiltonian and then using QA to
identify low-energy conformations of the protein model.
In (Perdomo-Ortiz et al., 2012), authors use five and eight
qubits for the four-amino-acid sequence to encode and
solve the protein folding problem for a short tetrapep-
tide and hexapeptide chain. QA has been one of the
prominent approaches in the NISQ era in the search for
quantum advantage (Bouland et al., 2020; Hauke et al.,
2020; Perdomo-Ortiz et al., 2018).

A major experimental implementation of QA is the D-
Wave machine. It attempts to solve problems of a par-
ticular form called Quadratic Unconstrained Binary Op-
timization (QUBO) (Lucas, 2014). Optimization prob-
lems can be cast as a polynomial unconstrained binary
optimization (PUBO) expressed in the form of a k-local
interaction with k ≥ 3 over binary variables xi ∈ {0,1}
(Hauke et al., 2020; Perdomo-Ortiz et al., 2019). QUBO
is a special case of PUBO with k = 2. For a vector of n
binary variables x ∈ {0,1}

n and problem specified values
of Q ∈ Rn×n and c ∈ Rn, QUBO is defined as

arg minxTQx + cTx. (37)

Using the map xi →
1−σiz

2
, one can convert the problem in

Eq. 37 to a ground state finding problem of the following
diagonal n-qubit Ising Hamiltonian (up to a constant):

HQUBO = −∑
i,j

Ji,j σ̂
i
zσ̂

j
z −∑

i

hiσ̂
i
z, (38)

where Ĵi,j = −
Qi,j

4
and hi =

−ci+∑j Qi,j
2

.
Starting with the ground state of the base Hamilto-

nianH0 = −∑i σ̂
i
x, solving the QUBO problem on a quan-

tum annealer corresponds to implementing the annealing
schedule A(t) and B(t) for the Hamiltonian

H(t) = A(t)H0 +B(t)HQUBO. (39)

Here, A(0) = B(T ) = 1 and A(T ) = B(0) = 0, where T
is computation time. Because annealing does not nec-
essarily satisfy the constraints of adiabatic evolution, it
is possible to get trapped in excited states as mentioned
earlier. However, one can run the annealing schedule
multiple times and take the best answer, i.e. the one
corresponding to the lowest energy. The qubits in an
annealer are not necessarily all-to-all connected, necessi-
tating additional engineering restrictions, such as the mi-
nor embedding problem (Choi, 2008, 2011; Klymko et al.,
2014).

The potential of QA has been studied extensively
(Brady and van Dam, 2016; Denchev et al., 2016; Farhi
et al., 2002; Hastings, 2020; Hauke et al., 2020). The per-
formance of D-Wave annealers have also been explored
comprehensively (Albash et al., 2015; Cohen et al., 2020;
Shin et al., 2014). In particular, an extensive study com-
paring the performance of quantum annealing with other
quantum-inspired and classical optimization state-of-the-
art strategies, and in the context of a real-world applica-
tion, can be found in (Perdomo-Ortiz et al., 2019). For
the details of QA, refer to (Hauke et al., 2020) and the
references therein. A review of adiabatic quantum com-
putation is presented in (Albash and Lidar, 2018). Refer
to Sec. VI.B and Sec. II of the Supplementary Material
for a discussion regarding applications of QA in machine
learning and finance.

B. Gaussian boson sampling

Boson sampling was first proposed as a candidate for
quantum computational supremacy by (Aaronson and
Arkhipov, 2011). The scenario consists of having n
photons that enter an optical circuit consisting of m
modes. This state is then acted upon by a series of
phase-shifters and beam-splitters. A phase-shifter adds
a phase R(θ) = eiθj with some angle θj to the amplitude
in mode j, and acts as the identity in the other m − 1
modes. A beam-splitter acts on two modes with a rota-

tion (
cosφ − sinφ
sinφ cosφ

) for some angle φ and as the identity
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Figure 4 Gaussian boson sampling circuit for a photonic
setup. The qumodes are prepared in gaussian states from
the vacuum by squeezing operations S(zi), followed by an in-
terferometer consisting of phaseshifters R(θ) = eiθj and beam-
splitters BS. At the end, photon number resolving measure-
ments are made in each mode.

in the otherm−2 modes. Finally, a measurement is made
where the number of photons in each mode is found. An
optical circuit with these elements is shown in Figure 4.
Each of these measurement outcomes represents a sample
from the symmetric wavefunction that bosonic systems
have. Aaronson and Arkhipov found that the existence
of an efficient classical algorithm for sampling from the
distribution implies the existence of a classically efficient
algorithm for the calculation of the permanent of a re-
lated matrix. It is unlikely that such an algorithm exists
as it would imply the collapse of the polynomial hierar-
chy (see I.A) to the third order, which is believed to be
unlikely (Arora and Barak, 2009).

Gaussian boson sampling (GBS) is a variant of boson
sampling, in which instead of photon states as inputs to
the optical circuit, Gaussian states are used as inputs
(Hamilton et al., 2017). Gaussian states are those whose
Wigner quasi-probability distributions W (q, p) have a
Gaussian shape. A good introduction to the theory
can be found in (Serafini, 2017). Gaussian states have
the advantage that they can be created deterministically
(Hamilton et al., 2017; Kruse et al., 2019). They also
provide additional degrees of freedom in comparison to
boson sampling. Where boson sampling is equivalent to
sampling from the permanent of a matrix, GBS is compu-
tationally equivalent to sampling from the Hafnian func-
tion of a matrix. Given a graph G with adjacency matrix
E, the Hafnian of E is the number of perfect matchings of
the graph G. A matching of a graph G is a subset of edges
M such that no two edges in M have a vertex in com-
mon. A matching M is perfect if every vertex is incident
to exactly one edge in M. While the Permanent gives
the number of perfect matchings for a bipartite graph;
the Hafnian gives perfect matching for any graph. Thus,
the Hafnian can be thought of as a generalization of the
Permanent. Using the adjacency matrix E, the relation
between the Hafnian and the Permanent is given by

Haf (
0 E
ET 0

) = Per(E). (40)

The hardness of simulating a noisy version of GBS has
been studied (Qi et al., 2020) and GBS has recently be-

come the second platform to show quantum computa-
tional supremacy (Zhong et al., 2020), and the latest ex-
perimental venture towards dynamically programmable
GBS nanophotonic chip was carried out by (Arrazola
et al., 2021).

1. The protocol

In GBS we considerm quantum modes (qumodes), rep-
resented by harmonic oscillators with canonically conju-
gate variables q and p. Gaussian states of the qumodes
are those represented by a Wigner-function W (q, p) that
has a Gaussian form. These states can be efficiently rep-
resented by the complex amplitude α = 1√

2h̵
(q+ ip) and a

covariance matrix Σ ∈ C2m×2m. A general pure Gaussian
state can be generated from a vacuum with three steps:
i) Single-mode squeezing; ii) multi-mode linear interfer-
ometry; and iii) single-mode displacements. In the GBS
protocol, the state is then measured in the Fock-basis,
performed in practice using photon number resolving de-
tectors. The optical circuit in Figure 4 shows how the sys-
tem is initialized in the vacuum state, followed by single-
and multi-mode squeezing operators S(zi) and S(zi, zj),
respectively, and an interferometer with phase shifters
R(θj) and beamsplitters BS. At the end of the protocol,
the photon number in each mode is measured.

For a Gaussian state with zero mean (of the Wigner-
function), the probability of detecting si photons in the
i-th qumode is given by: (Hamilton et al., 2017; Kruse
et al., 2019)

P (s1, s2...sm) =
1

det(Q)

Haf(As)
√
s1!s2!⋯sm!

(41)

where all the matrices are defined in terms of the covari-
ance matrix Σ:

Q = Σ + 1/2

A =X(1 −Q−1
)

X = [
0 1
1 0

]

The As matrix is a matrix created from A such that if
si = 0, we delete the rows and colums i and i +m of the
matrix, and if si ≠ 0, we repeat the rows and columns si
times.

This means that by manipulating the covariance ma-
trix Σ, we control the matrix from which we sample the
Hafnian. For a pure Gaussian state, it can be shown that
the A matrix is symmetric (Bromley et al., 2020).

A simpler form of the experiment where instead of
counting the number of photons in each mode, we only
detect if there are photons or not in each mode, can be
used to sample from the so-called Torontonian function
of a matrix (Quesada et al., 2018). If the probability of
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observing more than one photon per output mode stays
low enough, this model has been shown to stay classically
intractable to simulate. A more general experiment in-
stead, where the mean of the Gaussian states is non-zero,
can be used to sample from the loop Hafnian (Björklund
et al., 2019).

2. Applications

Several algorithms for applications of GBS have been
investigated, and are reviewed by (Bromley et al., 2020).
Here we only briefly summarize that work. Typically
GBS algorithms are based on heuristics, and GBS devices
are often used to provide a seed for starting points of
classical algorithms. GBS can also be viewed as directly
giving access to a statistical distribution, such as in the
case of point processes (Jahangiri et al., 2020b).

Problems in chemistry have been approached using
GBS. Vibrational spectra of molecules have been com-
puted using GBS by mapping the phononic modes of the
molecule to the qumodes of the GBS device (Huh et al.,
2015), and by extension, electron-transfer reactions have
been studied (Jahangiri et al., 2020a). The technique
of sampling high-weight cliques has also been applied to
predict molecular docking configurations (Banchi et al.,
2020a).

The largest number of GBS algorithms are for graph
problems since the adjacency matrix of a graph is a natu-
ral fit as the symmetric A matrix. The Hafnian function
computes the number of perfect matchings of a graph, so
the samples from the GBS device are with high likelihood
from sub-graphs with high density. This is how GBS is
used to identify dense subgraphs (Arrazola and Bromley,
2018), and to get good initial guesses for classical search
algorithms to compute the max-clique of a graph (Banchi
et al., 2020a).

GBS can also be used to build succinct feature vec-
tors, or “fingerprints”, of larger graphs via coarse-graining
techniques. These feature vectors can then be used as in-
puts to statistical methods or machine learning to classify
graphs. One such problem is to measure the similarity
between graphs (Schuld et al., 2020b), which has appli-
cations in tasks such as checking fingerprint comparison
or detecting mutations of molecules.

GBS can also be used as a type of importance sam-
pling device to speed up algorithms requiring random-
ness. This is how stochastic search algorithms have been
sped up by sampling from a GBS device encoding the
graph to be searched, instead of sampling uniformly (Ar-
razola et al., 2018).

Recently variational methods have been used within
the GBS framework (Banchi et al., 2020b) and applied to
stochastic optimization and unsupervised learning. The
method is based on varying the squeezing and interfer-
ometer parameters in the device and updating based on

the measurement outcomes.

C. Analog quantum simulation

Simulating a quantum system is a hard problem for
classical computers as the Hilbert space increases expo-
nentially with the size of the system. As a solution to this
long-standing problem, Feynman suggested the ground-
breaking idea to harness those physical systems given us
by nature that are quantum-mechanical. He proposed
to use quantum systems that are well-controlled in the
lab to simulate other quantum systems of interest (Feyn-
man, 1982). This concept has spurred the field of analog
quantum simulation (Georgescu et al., 2014; Trabesinger,
2012).

The core idea differs from digital quantum simula-
tion (Lloyd, 1996). Digital quantum simulators decom-
pose the quantum dynamics to be simulated into a cir-
cuit of discrete gate operations that are implemented on
a quantum processor. The quantum processor is a well-
controlled quantum system, that is engineered to be able
to efficiently apply a set of specific quantum gates that
are universal, i.e. a sequential application of those gates
can realize arbitrary unitaries (see Sec. V.B.1).

With this universal approach, a wide range of quantum
problems can be simulated to the desired accuracy with
a polynomial increase in quantum resources only (Lloyd,
1996). However, current quantum processors have lim-
ited coherence time and cannot correct errors that in-
evitably appear during the computation, severely limit-
ing the range of dynamics that can be reliably simulated.
In contrast, the idea of analog quantum simulators is to
map the problem Hamiltonian to be simulated Ĥsys to
the Hamiltonian of the quantum simulator Ĥsim, which
can be controlled to some degree, Ĥsys ↔ Ĥsim. One then
runs the quantum simulator and maps the results back
to the problem.

The range of problems that can efficiently be mapped
to the simulator is limited, however as one uses the na-
tive quantum dynamics of the simulator, the accessible
system size, coherence length, and errors are often more
favorable compared to current digital quantum simula-
tors.

1. Implementations

A wide-range of implementations in various controlled
quantum systems has been achieved, ranging from solid
state superconducting circuits (Houck et al., 2012), quan-
tum dot arrays (Hensgens et al., 2017), nitrogen-vacancy
centers (Yao et al., 2012), atomic and molecular physics
based platforms such as trapped ions (Blatt and Roos,
2012), interacting photons (Chang et al., 2014; Hart-
mann, 2016), Rydberg atoms (Adams et al., 2019), and
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cold atoms (Amico et al., 2021; Bloch et al., 2012; Gross
and Bloch, 2017).

Concepts of analog quantum simulation have been used
within VQA as well, such as problem inspired ansätze
(see Sec. II.B.1) or protocols inspired by quantum con-
trol (Meitei et al., 2020; Yang et al., 2017). Experimen-
tal results for a quantum many-body problem beyond
current classical computational capabilities have been re-
ported for 2-D systems (Choi et al., 2016).

2. Programmable quantum simulators

An analog quantum system, such as a superconduct-
ing circuit, can be adapted to simulate arbitrary dynam-
ics (Bastidas et al., 2020). The idea is to drive the param-
eters of the Hamiltonian H(t) that describes the analog
quantum simulator in time t. This can be achieved by
adjusting the physical parameters of the quantum sim-
ulator in time. The driving protocol is engineered via
machine learning methods (Haug et al., 2021b) such that
the effective dynamics of the driven system over a time
T corresponds to the evolution of a problem Hamilto-
nian one wants to simulate. The effective dynamics that
are generated can realize long-range interactions as well
as complicated many-body terms, which are not natively
supported by the quantum simulator and are often hard
to simulate on digital quantum simulators. By period-
ically driving the analog quantum simulator with the
aforementioned driving protocol, various problem Hamil-
tonians can be simulated (Oka and Kitamura, 2019). One
can realize complicated many-body dynamics or chem-
istry problems, as well as solve combinatorial tasks such
as SAT-3. Trapped ion-based analog quantum simulators
have been recently used for the implementation of quan-
tum approximate optimization algorithm (Pagano et al.,
2020).

Highly controllable analog quantum simulators have
also been proposed for engineering quantum chemistry
Hamiltonians by combining different cold atom species
embedded within cavity modes, which mediate long-
range interactions required to simulate Coulomb repul-
sion. Optical fields can be used to modify the potential
and interaction parameters to simulate large-scale chem-
istry problems (Argüello-Luengo et al., 2019), as well as a
quantum spin model with tunable interactions for system
sizes ranging from 64 to 256 qubits (Ebadi et al., 2020).
For ion traps, a programmable quantum simulator can be
designed by light fields, that are applied to manipulate
the internal degrees of freedom as well as the interac-
tion between different ions. This allows one to simulate
various types of spin Hamiltonians with a high degree of
control over the parameters (Monroe et al., 2019).

D. Digital-analog quantum simulation and computation

As opposed to analog simulators that are limited by the
Hamiltonians they can simulate (Goldman and Dalibard,
2014; Kyriienko and Sørensen, 2018), digital quantum
simulators can simulate any system’s Hamiltonian but
sometimes with costly quantum resources. To benefit
from a combination of the two approaches, the digital-
analog method to quantum computation (Dodd et al.,
2002; Parra-Rodriguez et al., 2020) and simulation (Mez-
zacapo et al., 2014; Yung et al., 2014) have been pro-
posed. These schemes combine the application of digital
single-qubit gates with the underlying analog Hamilto-
nian of the quantum processor. This approach allows for
universal simulation of quantum dynamics while replac-
ing two-qubit gates for an analog Hamiltonian and has
been argued to be more resilient against certain types
of noise than digital quantum computing (García-Molina
et al., 2021; Martin et al., 2020; Parra-Rodriguez et al.,
2020).

Digital-analog quantum simulation has been proposed
to simulate the Rabi model (Mezzacapo et al., 2014),
Dicke model (Lamata, 2017; Mezzacapo et al., 2014),
and fermionic systems (Céleri et al., 2021; García-Álvarez
et al., 2015). Digital-analog quantum simulation has
been reviewed in (Lamata et al., 2018b), whereas digital-
analog quantum computing is more recent. The im-
plementation of digital-analog quantum computing has
been proposed for superconducting platforms (Gonzalez-
Raya et al., 2021; Yu et al., 2021). In (Gonzalez-Raya
et al., 2021), authors employ cross-resonance gate inter-
action between two superconducting qubits to implement
digital-analog quantum computation. So far the comput-
ing framework has been used to simulate Ising models
(Parra-Rodriguez et al., 2020), where the analog blocks
can be used to enhance the effective connectivity of the
qubits to simulate graphs that have different connectivity
from the native connectivity of the quantum device (Gali-
cia et al., 2020). The analog blocks have also been ap-
plied to reduce the operation count required to perform
the quantum Fourier transform (Martin et al., 2020).

The digital-analog approach has also been combined
with VQA (see Sec. II) resulting in a digital-analog
QAOA algorithm, where the two-qubit gates have been
replaced by analog blocks (Headley et al., 2020). This
also has two versions: i) where a layer of entangling gates
is replaced by an analog block, and ii) where an analog
block is applied continuously with single-qubit operations
overlaid.

E. Iterative quantum assisted eigensolver

Almost all of the VQAs update a PQC’s parameters in
a feedback loop. However, there exist alternative algo-
rithms that can circumvent this approach with the ansatz
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given by (Bharti and Haug, 2021a; Huang et al., 2019;
McClean et al., 2017)

∣φ (α(t),θ)⟩ =
m−1

∑
i=0

αi(t)∣ψi (θi)⟩, (42)

where αi ∈ C and θi ∈ Rki for non-negative integers ki.
This ansatz is a linear combination of quantum states,
where the αi parameters are stored on a classical device.
In the special casem = 1 it corresponds to the usual PQC,
whereas for m > 1 this ansatz subsumes it. This ansatz
has been used for finding the ground state of Hamilto-
nians (Bharti, 2020; Bharti and Haug, 2021a), excited
state (Huggins et al., 2020; Parrish et al., 2019a; Parrish
and McMahon, 2019; Stair et al., 2020) the simulation of
quantum dynamics (Bharti and Haug, 2021b; Haug and
Bharti, 2020), error mitigation (McClean et al., 2017),
nonlinear dynamics (Bharti and Haug, 2021b; Haug and
Bharti, 2020), linear systems (Huang et al., 2019) and
semidefinite programming (Bharti et al., 2021). If one
keeps the parameters of the PQC θi fixed and only varies
the αi, the algorithm can be considered a borderline
non-VQA algorithm. Update of θi parameters has been
shown to cause trainability issues in VQA (see Sec. IV.A)
and thus by fixing θi one can by construction circumvent
these issues. We present here the iterative quantum as-
sisted eigensolver algorithm (IQAE) as an illustration,
and in the applications subsection the quantum assisted
simulator for closed systems (see Sec. VI.A.5), open sys-
tems (see Sec. VI.A.7) and Gibbs state preparation (see
Sec. VI.A.9).

The IQAE algorithm provides an approximation to the
ground state of a Hamiltonian H. Without loss of gen-
erality, the N -qubit Hamiltonian H is assumed to be a
linear combination of unitaries

H =
m

∑
i=1

βiUi . (43)

Here, βi ∈ C and Ui ∈ SU (2N) for i ∈ {1,2,⋯,m} . The
unitaries Ui act on at most O (poly (logN)) qubits. This
condition can be relaxed if the unitaries Pauli strings (see
Sec. II.A.1). The ansatz state is taken as linear combina-
tion of “cumulativeK-moment states” CSK , which is gen-
erated using some efficiently preparable quantum states
and the unitaries defining the Hamiltonian in Eq. (43).
For pedagogical reasons, we present the definition of K-
moment states and cumulative K-moment states.

Definition 3 (adapted from (Bharti and Haug, 2021a))
For a given positive integer K, a set of unitaries U ≡

{Uj}
m
j=1 and a quantum state ∣ψ⟩, K-moment states is

the set of quantum states of the form {UjK⋯Uj2Uj1 ∣ψ⟩}j
for Ujl ∈ U. Let us denote the aforementioned set by SK .
We define the singleton set {∣ψ⟩} as the 0-moment state
(denoted by S0). Finally, we define the cumulative K-
moment states CSK as CSK ≡ ∪Ki=0Si.

As instructive example, note that the set of 1-moment
states is {Uj ∣ψ⟩}

m
j=1, where the unitaries {Uj}

m
j=1 make

up the Hamiltonian H. The set of cumulative 1-moment
states is CS1 = {∣ψ⟩} ∪ {Uj ∣ψ⟩}

m
j=1 , and the set of cumu-

lative K-moment states is CSK = {∣ψ⟩} ∪ {Uj1 ∣ψ⟩}
m
j1=1 ∪

⋅ ⋅ ⋅ ∪ {UjK . . . Uj1 ∣ψ⟩}
r
j1=1,...,jK=1.

Now, the ansatz is is given by ∣ξ (α)⟩(K) =

∑∣χj⟩∈CSK αj ∣χj⟩. The ground state problem reduces to
the following optimization program

min
α
α†
D

(K)α

subject to α†
E
(K)α = 1 . (44)

Here, the overlap matrices D(K) and E(K) are given by
D

(K)
nm = ∑i βi⟨χn∣Ui∣χm⟩ and E(K)

nm = ⟨χn∣χm⟩. These
overlap matrices can be computed on a quantum com-
puter without the requirement of any complicated mea-
surement involving multi-qubit controlled unitaries. For
example, for a Hamiltonian composed of Pauli strings,
the product of Pauli strings is a Pauli string up to a phase
factor ±1 or ±ι. Thus, the overlap matrices are simply
expectation values ⟨ψ∣P̂ ∣ψ⟩ of some Pauli string P̂ , which
can be easily measured (see Sec. II.C). The optimization
program 44 is a quadratically constrained quadratic pro-
gram (QCQP) with a single equality constraint. The
algorithm proceeds in three serial and disjoint steps.

1. Select ansatz, which can be done on paper.

2. Estimate overlap matrices on a quantum computer,
which can be done efficiently in a parallel fashion.

3. Post-processing on a classical computer to solve the
QCQP based on the overlap matrices from step 2.

As a major speedup compared to standard VQA, there is
no feedback loop between classical and quantum comput-
ers such that the calculations can be easily parallelized.
The ansatz can be improved by changing K to K + 1.
The ansatz construction is systematic and there is no
trainability issue such as the barren plateau problem (see
Sec. IV.A). For the QCQP, there exist conditions that
tell whether a local minimum is a global minimum as
stopping criteria for the classical solver. Moreover, the
Lagrangian relaxation of the program 44 is a semidefinite
program and is efficiently solvable.

IV. THEORETICAL CHALLENGES

A. Barren plateaus

It was recently shown that the expectation value of
the gradient of the objective function corresponding to
randomly initialized PQCs (RPQC) decays exponentially
to zero as a function of the number of qubits (McClean
et al., 2018). The mathematical basis of this result hinges



23

on the fact that the PQC from Eq. (22) becomes a unitary
2-design as the circuit depth increases polynomially with
the circuit width i.e, the number of qubits. The notion of
unitary 2-design has been used extensively in the recent
proofs of barren plateau in RPQCs, which necessitate a
small discussion about their mathematical structure.

Using the notion of 2-design, the appearance of bar-
ren plateaus in the training landscape has been estab-
lished for various kinds of ansätze. Barren plateaus can
be thought of as a consequence of the Hilbert space
dimension increasing exponentially with the number of
qubits and of the variational circuit being a 2-design
for randomly initialized parameters. Consequently, the
strategies proposed to tackle this problem focus on re-
ducing the dimension of this unitary or breaking the
randomness properties related to the 2-designs. An-
other way to think of the origin of the barren plateau
issue could be the problem-agnostic nature of the ansatz,
faced with an exponentially large parameter space. Thus,
one could attempt to devise ansätze as well as the opti-
mization methodology in a problem-aware manner by us-
ing physically-inspired or problem-specific ansätze as the
ones presented in Sec. II.B or those proposed in Sec. III.E.

Besides the exponential parameter space that induces
barren plateaus, other physical phenomena can also gen-
erate them. In particular, the noise and decoherence
present in the quantum computing experiments can also
generate this problem in VQAs (Wang et al., 2020b).
Entanglement-induced barren plateaus have also been re-
ported recently (Marrero et al., 2020).

While certain ansätze can be assumed or proven to
form (approximate) 2-designs, such proofs are challeng-
ing for general ansätze. To numerically verify the pres-
ence of barren plateaus, past studies often considered
computing the gradients and variances of a local ob-
servable using a particular ansatz over increasing system
sizes (McClean et al., 2018; Skolik et al., 2020).

Another attempt to avoid a barren plateau is to initial-
ize the variational circuit with a particular state choice.
Intuitively, the algorithm will start in a particular re-
gion of the Hilbert space allowing the optimization sub-
routine to potentially find the minima in a nearby re-
gion. This strategy includes all physically inspired meth-
ods mentioned in Sec. II.B. The use of clever encod-
ings for the algorithm parameters can also be understood
as a initialization strategy (Cervera-Lierta et al., 2021a)
(see Sec. VI.B). Classical algorithms such as neural net-
works can also be used to learn the proper circuit encod-
ings (Sauvage et al., 2021; Verdon et al., 2019a; Wilson
et al., 2021).

A good choice for the initial state is often not enough
to reduce the size of the Hilbert space. Although ex-
pressive circuit ansätze are usually a requirement for the
success of a VQA (see Sec. IV.B for more details), such
ansätze can expand the parameter space that the op-
timizer has to explore. Several works propose circuit

structures that reduce the space by introducing corre-
lations between the variational parameters of the cir-
cuit (Volkoff and Coles, 2021), block-wise initialization
of parameters (Grant et al., 2019) or exploring particu-
lar ansatz structures (Sharma et al., 2020).

The mentioned works require a circuit design that is
not necessarily hardware efficient. Other ideas focus on
the classical parts of the VQA instead of the quantum
circuit designs. One example is using local instead of
global cost functions for the optimization. It has been
shown (Cerezo et al., 2021) that barren plateaus also
emerge in shallow depth circuits and that the use of local
cost functions reduces the exponential decay tendency to
a polynomial one. The optimization strategy may also
reduce the effect of the vanishing gradients, for instance
by training the circuit layer by layer (Lyu et al., 2020;
Skolik et al., 2020) or by measuring low depth gradi-
ents (Harrow and Napp, 2019). Certain variational quan-
tum algorithms for quantum simulation can be free of
barren plateaus when at every training step the state to
be learned is close to the state of the circuit (Haug and
Kim, 2021b).

Barren plateaus are a roadblock in trainability and
hence any PQC ansatz which suffers from this phe-
nomenon will likely fail to properly train the parame-
ters in its search for the near-optimal (or optimal) solu-
tion. As shown in Ref. (Arrasmith et al., 2020a), even the
family of gradient-free approaches which perform a local
search, therefore mimicking gradient-based optimization,
appear to face similar challenges. However, one can cir-
cumvent this issue by using hybrid quantum states of the
form of equation Eq. (42) or hybrid density matrices as
introduced in Ref. (Haug and Bharti, 2020). The idea
is to write the overall ansatz as a classical combination
of quantum states i.e, ∣φ (α(t),θ)⟩ = ∑

m−1
i=0 αi(t)∣ψi (θi)⟩.

Tuning the θi can often lead to barren plateaus. One can
avoid such issues by fixing θi by harnessing the structure
of the problem to find the basis states of the ansatz, i.e,
{∣ψi (θi)⟩} (see Sec. III.E for more details). Interestingly,
quantum convolutional neural networks also do not ex-
hibit barren plateaus (Pesah et al., 2021).

B. Expressibility of variational ansätze

A cornerstone of the success of VQA is choosing the
proper ansatz for the problem. In addition to trainability,
i.e. how well the ansatz can be optimized, another major
quality is expressibility. This concerns whether a given
PQC is able to generate a rich class of quantum states.
The number of PQC layers, parameters, or entangling
gates required to achieve a given accuracy is also linked
to the expressibility of the circuit.
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Expressibility. Sampling states from a PQC ∣ψθ⟩ for ran-
domly chosen θ generates a distribution of states. Ex-
pressibility is defined as the deviation of this distribution
from the Haar measure, which samples uniformly from
the full Hilbert space

A(t)
= ∣∣∫

Haar
(∣ψ⟩ ⟨ψ∣)⊗tdψ − ∫

θ
(∣ψθ⟩ (⟨ψθ ∣)

⊗tdψθ ∣∣2HS ,
(45)

where ∫Haar dψ denotes the integration over a state ∣ψ⟩
distributed according to the Haar measure and ∣∣A∣∣2HS =

Tr(A†A) the Hilbert-Schmidt norm. An ansatz circuit
U with small A(t)

U is more expressive, with A(t)
U = 0 cor-

responding to being maximally expressive, as it gener-
ates quantum states with a distribution closer to the
Haar measure. The PQC samples uniformly from the
full Hilbert space and thus is able to approximate any
possible state. This is especially important in the case
where one wants to train the PQC to represent a partic-
ular quantum state while having little prior information
about the state. A highly expressive PQC is more likely
to be able to represent the target state.

Entangling capability. This measure denotes the power
of a PQC to create entangled states and can be used as
another quantifier of the expressiveness of an ansatz. In
(Sim et al., 2019) the Meyer-Wallach Q measure (Meyer
and Wallach, 2002) has been proposed to estimate the
number and types of entangled states a particular PQC
can generate. One defines a linear mapping ιj(e)
that acts on the computational basis ιj(b) ∣b1⋯bn⟩ =

δbbj ∣b1⋯b̃j⋯bn⟩, where bj ∈ {0,1} and b̃j denotes absence
of the j-th qubit. The entanglement measure Q is then
defined as

Q(∣ψ⟩) ≡
4

n

n

∑
j=1

D(ιj(0) ∣ψ⟩ , ιj(1) ∣ψ⟩ ), (46)

where D is the generalized distance defined by the coef-
ficients of two states ∣u⟩ = ∑ui ∣ei⟩ and ∣v⟩ = ∑ vi ∣ei⟩,

D(∣u⟩ , ∣v⟩) =
1

2
∑
i,j

∣uivj − ujvi∣
2. (47)

It can be rewritten as the average of the purity of each
qubit (Brennen, 2003)

Q(∣ψ⟩) = 2(1 −
1

n

n

∑
k=1

Tr[ρ2
k]) , (48)

where ρk is the density matrix of the k-th qubit. Thus,
Q(∣ψ⟩) is an entanglement monotone (Scott, 2004) and
can be interpreted as the average of the entanglement of
each qubit with the rest of the system. Only if the state
is a product state we find Q = 0, whereas Q = 1 is reached
for certain entangled states such as the GHZ state. The

entangling capability of a PQC is then defined as the
average Q of states randomly sampled from the circuit.

Ent =
1

∣S∣
∑
θi∈S

Q( ∣ψθi⟩ ), (49)

where S = {θi}i is the set of sampled circuit parameters.

Parameter dimension The parameter dimension DC is
the number of independent parameters of the quantum
state that is generated by the PQC (Haug et al., 2021a).
From this measure, one can calculate the redundancy
of a PQC, i.e. the fraction of parameters that can be
removed without loss of expressive power. A further
local measure of expressibility is the effective quantum
dimension GC(θ), which can be used to calculate the
expressive power of initialization strategies for the PQC.
Under a small variation of the PQC parameter θ, it mea-
sures how many independent directions in the parameter
space exist for the quantum state. Both measures
can be calculated as the number of non-zero eigenval-
ues of the Fubini-Study metric tensor defined in Eq. (33).

In (Haug et al., 2021a; Nakaji and Yamamoto, 2020a;
Sim et al., 2019), a wide class of circuits has been in-
vestigated with the aforementioned expressibility mea-
sures. It has been found that certain types of ansätze are
more expressive, e.g. layered PQCs consisting of CNOT
or

√
iSWAP gates are more expressive than CZ. There

is a trade-off between an ansatz being expressive and
trainable. Making an ansatz more expressive most likely
will result in reducing the gradient of the objective func-
tion. In (Holmes et al., 2021), the authors suggest sev-
eral strategies for reducing expressibility and improving
trainability, including correlating parameters or restrict-
ing rotation angles of parameterized gates. Interpolat-
ing the PQC parameters between fixed and random an-
gles has been proposed as another method (Haug et al.,
2021a). Expressibility of PQCs has been further explored
using classical Fisher information (Abbas et al., 2021)
and memory capacity (Wright and McMahon, 2019).

It has been shown that alternating layered ansatz (see
Sec. II.B.2) is relatively expressive and does not ex-
hibit barren plateaus in certain regimes (Nakaji and Ya-
mamoto, 2020a). In VQE algorithms, there is a trade-off
between the number of layers in this ansatz and the cor-
relation length of critical Hamiltonians. However, in the
critical phase, the number of layers must exceed a cer-
tain threshold dictated by the system size to show an
exponential improvement. The circuit depth unravels an
effective correlation length that can be used as an esti-
mation of the number of free parameters in the ansatz
(Bravo-Prieto et al., 2020b).
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C. Reachability

Reachability discusses the question whether a given
PQC ∣Ψ(θ)⟩ with parameters θ is capable of representing
a quantum state that minimizes some objective function.
This can be quantified by the reachability deficit over
finding the minimum of an objective function Ô (Akshay
et al., 2020a) as

fR =minψ∈H ⟨ψ∣O ∣ψ⟩ −minθ ⟨Ψ(θ)∣O ∣Ψ(θ)⟩ , (50)

where the first term on the right side is the minimum
over all states ∣ψ⟩ of the Hilbert space, whereas the sec-
ond term is the minimum over all states that can be rep-
resented by the PQC. The reachability deficit is equal or
greater than zero fR ≥ 0, with fR = 0 when the PQC can
generate a state ∣Ψ(θ∗)⟩, where θ∗ are the parameters
that minimize the objective function.

Reachability has been studied in-depth for QAOA.
Although QAOA has been shown to exhibit quantum
computational universality (Lloyd, 2018; Morales et al.,
2019), which implies that any unitary operator is reach-
able under the QAOA ansatz, this statement does not
hold true for finite fixed depths p. In fact, it was shown
that QAOA exhibits reachability deficits for the MAX-2-
SAT and MAX-3-SAT problems, where the optimal value
of the objective function cannot be found using a fixed
circuit depth p beyond a critical clause density (defined
as the ratio between the number of clauses and the num-
ber of variables in the problem) (Akshay et al., 2020a). In
other words, for problems with a certain clause density,
there is a critical depth p∗ for which the optimal solution
can only be found (up to a threshold) if p ≥ p∗. As p∗

grows with the clause density, this limits the performance
of QAOA for problem instances with high clause density.

Similar reachability deficits have also been found in the
variational Grover search problem (Akshay et al., 2020a).
Moreover, by re-analyzing the experimental data from
Google’s Sycamore quantum processor on the application
of QAOA to various graph optimization problems (Har-
rigan et al., 2021), authors from (Akshay et al., 2020b)
also discovered reachability deficits in this case, where the
graph density (defined as the ratio between the number
of graph edges to the number of graph nodes) replaces
the clause density as the order parameter.

Note that the reachability deficits are distinct from the
barren plateau problem, where the gradients of the ob-
jective function concentrate to zero for many choices of
initial variational parameters, thus slowing down the op-
timization process. On the other hand, the reachability
deficit for p < p∗ is independent of the initial parameters.

D. Theoretical guarantees of the QAOA algorithm

The QAOA has several key analytical results which
have contributed to its considerable interest in recent

years. The quantum advantage of QAOA algorithm has
been studied in (Farhi and Harrow, 2016), where they
showed that the efficient sampling of the output dis-
tribution of QAOA, even for the lowest depth case of
p = 1, implies the collapse of the polynomial hierarchy
(see Sec. I.A). Following the conjecture from complexity
theory that the polynomial hierarchy does not collapse,
this result propels QAOA as a possible candidate for es-
tablishing a quantum advantage in a sampling task. In
particular, it has been shown that for p = 1, 420 qubits
would suffice to demonstrate quantum advantage (Dalzell
et al., 2020).

It is worth noting that QAOA has yet to demonstrate
any speedup over classical algorithms for practical ap-
plications. Understanding the potential of QAOA in
comparison to classical algorithms is an active research
topic (Barak et al., 2015; Bravyi et al., 2019; Farhi and
Harrow, 2016; Hastings, 2019; Wecker et al., 2016; Yang
et al., 2017). For specific instances of the Max-Cut prob-
lem, QAOA for p = 1 was shown to perform equally
well or worse than classical algorithms (Bravyi et al.,
2019; Hastings, 2019). For more discussion on QAOA
for Max-Cut, refer to Sec. VI.C.1. For QAOA of depth
p, the measurement outcomes of a qubit depend on the
p-neighbourhood of that qubit. Thus if p is too small,
it does not ‘see’ the whole graph (Farhi et al., 2020a,b).
For large p, the QAOA algorithms can ‘see’ the whole
graph with no known indications regarding the perfor-
mance limitations.

For the case where the problem Hamiltonian HP takes
the form

HP =∑
i

ωAσ̂
2i
z +ωBσ̂

2i+1
z + γABσ̂

2i
z σ̂

2i+1
z + γBAσ̂

2i+1
z σ̂2i+2

z ,

(51)
where ωA(B) are the coefficients for the even (odd) sites
and γAB(BA) are the interaction strengths between first
(second) neighbour spins. Taking HM as defined in
Eq. (19) for a 1D lattice, (Lloyd, 2018) showed that
QAOA can be used to implement universal quantum
computation. This result was proven and generalized in a
later work (Morales et al., 2019) to include a larger class
of problems and mixing Hamiltonians that can provide
computational universality for QAOA.

By connecting VQA with optimal control theory, Pon-
tryagin’s minimum principle of optimal control shows
that the bang-bang protocol in which the evolution
switches abruptly between two Hamiltonians is optimal
for a fixed total time T (Yang et al., 2017). Since QAOA
can be regarded as a bang-bang ansatz by switching be-
tween unitary evolution under HP and HM respectively,
this suggests the optimality of QAOA as a VQA. How-
ever, recent works have challenged this claim. By gener-
alizing the argument in (Yang et al., 2017), it has been
shown that the optimal protocol actually possesses the
‘bang-anneal-bang’ structure (Brady et al., 2020). Such
protocols begin and end with a bang, with regions of
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smoothly varying control function akin to quantum an-
nealing in between. It was also shown that when the total
time T is large, bang-bang QAOA suffers from the pro-
liferation of local minima in the control parameters, ren-
dering it difficult to find optimal or near-optimal QAOA
parameters.

V. PROGRAMMING AND MAXIMIZING NISQ UTILITY

Current NISQ devices have a limited number of qubits
(∼ 50 − 100) available. In addition, due to their noisy
nature and short coherence time, one can only per-
form a restricted number of gate operations. In order
to make maximal use of the currently available quan-
tum resources, there are two approaches from the oper-
ational point-of-view: the bottom-up and the top-down
approach. In the bottom-up approach one has full con-
trol over the design of the quantum computing platform
to keep improving the performance quality such as gate fi-
delity and coherence time within the given hardware con-
straints. The top-down approach implies that one does
not get involved in hardware design and simply makes
use of what has already been made or fabricated in the
experimental labs. In this section, we focus on the latter
approach that extends the utility of current and near-
term quantum devices from an algorithmic perspective.
Finally, we also present a summary of software tools to
control, program, and maximize the utility of NISQ al-
gorithms.

A. Quantum error mitigation (QEM)

Sensitivity to errors and noise are the two most
prominent roadblocks towards scalable universal quan-
tum computers. Fault-tolerant quantum computing
can be attained by encoding non-Abelian anyons in
topological materials (Kitaev, 2003) or applying QEC
codes (Raussendorf and Harrington, 2007). While the
former is still in its infancy, the latter mandates phys-
ical resources exceeding our current experimental capa-
bilities. In the NISQ era of running hybrid quantum-
classical algorithms, it is desirable to use all the restricted
and available qubits as logical qubits without applying
QEC techniques. As we discuss throughout this review
article, the hybrid quantum-classical algorithms rely on
computing the expectation value of physical observables
using quantum processors. Quantum error mitigation
(QEM) techniques discussed in this subsection do not
need extra qubits in general and can suppress errors via
classical post-processing techniques and multiple runs of
quantum circuits. In QEM, we do not aim to recover
the ideal quantum output state ρ̂(0), but to estimate the
ideal expectation value E[µ(0)] = ⟨Â(0)⟩ = Tr(ρ̂(0)Â) of
an observables Â (Kandala et al., 2019; Li and Benjamin,

2017; Temme et al., 2017). This approach can surpass
the break-even point, where the effective gates are supe-
rior to their physical building blocks with an affordable
cost in quantum resources for near-term quantum hard-
ware (Zhang et al., 2020b). Here, µ is the outcome of
measurements and we use the superscript (0) to denote
an ideal noise-free realization of a state, operation, or
observable quantity. Recently, it was also shown how to
achieve stochastic error mitigation for a continuous-time
evolution (Sun et al., 2020). For a comprehensive treat-
ment of quantum error mitigation refer to (Endo et al.,
2020a).

1. Zero-noise extrapolation

(Li and Benjamin, 2017) and (Temme et al., 2017)
independently proposed the Richardson extrapolation
QEM or zero-noise extrapolation (ZNE) technique. Here,
a quantum program operates at various effective noise
levels of a quantum processor, where the output is then
extrapolated to gain an estimated expectation value
without noise.

Formally, a quantum circuit in the presence of noise
can be modelled as an open quantum system (Breuer
et al., 2002) using the Gorini-Kossakowski-Sudarshan-
Lindblad equation or in short the Lindblad master equa-
tion

d

dt
ρ̂(t) = −i [K̂ (t) , ρ̂ (t)] +

ˆ̂
L [ρ̂ (t)] , (52)

where we set h̵ = 1, K̂(t) acts as time-dependent driving
Hamiltonian, and ˆ̂

L[.] = ∑k Γk(Ôk[.]Ô
†
k −

1
2
{ÔkÔ

†
k, [.]})

is a superoperator. The above equation describes Marko-
vian dynamics for Γk ≥ 0. Whenever the loss rate Γk
becomes negative (Fleming and Hu, 2012; Rivas et al.,
2010), Eq. (52) can also describe non-Markovian dy-
namics (Bastidas et al., 2018; Kyaw et al., 2020a; Tan
et al., 2010). To ensure complete positivity, we require
∫
t

0 Γ(t′)dt′ > 0, ∀t. In general, Γk are fixed by the na-
ture of the noise affecting the quantum system. For the
ZNE, we parametrize Γk with a dimensionless scalar λ,
i.e., Γk → λΓk. When λ = 0, there is no noise and the
loss term ˆ̂

L [ρ̂ (t)] in Eq. (52) is zero, resulting in pure
unitary dynamics. When λ = 1, the noise matches the
actual quantum device. In summary, ZNE involves two
steps.

1. Noise-scaling: we measure several instances of
E[µ(λj)] for λj ≥ 1.

2. Extrapolation: using the previous measurements,
we estimate E[µ(0)] by extrapolating to λ = 0.

Noise-scaling can be accomplished in three ways. Firstly,
in Ref. (Temme et al., 2017) it was proposed to use a
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time-scaling approach to take λ > 1, which means that
the time-dependent driving Hamiltonian K̂(t) is now
rescaled by 1

λ
K̂(t/λ). This approach is only possible

if the user has full control over the quantum proces-
sor as the control pulses for each quantum gate have
to be recalibrated and be applied for a longer duration.
Secondly, one can apply a technique called circuit fold-
ing (Giurgica-Tiron et al., 2020). Suppose that a quan-
tum circuit is composed of d unitary layers such that
U = Ld⋯L2L1 where d refers to the circuit depth and
each Lj either represents a single layer of gate opera-
tions or just a single quantum gate. The circuit folding
is then achieved by

U → U(U †U)
n, (53)

where n is some positive integer. Since U †U is an identity,
this action has no effect on an ideal circuit. However, in a
noisy circuit, U is imperfect and the above 1+ 2n circuit
operations increase the noise level. Thirdly, instead of
folding the entire circuit, one can also use the gate folding
technique where individual gates are folded (Giurgica-
Tiron et al., 2020):

Lj → Lj(L
†
jLj)

n. (54)

The second and third techniques do not require users
to have full control of the pulses applied to the quan-
tum computer and thus these methods are more suitable
when only a limited control of the quantum computer is
possible.

Extrapolation step of the ZNE method can be consid-
ered as a regression problem if we choose to consider
a generic model for calculating the expectation value
Emodel[µ

(λ;Υ)], where the meaning of model would be-
come clear shortly and Υ corresponds to the model pa-
rameters. We note that the expectation value E is a real
number that can only be obtained for an infinite amount
of measurements. With a limited number of measure-
ment samples Ns, the statistical estimation is given by
Ê[µ(λ)] = E[µ(λ)] + δ̂ 1, where δ̂ is a random variable
with zero mean and variance σ2 = E(δ̂2) = σ2

0/Ns. Here,
σ2

0 is the single-shot variance. Given a set of m scaling
parameters λ = {λ1, λ2,⋯, λm} with λj ≥ 1, and the corre-
sponding measurement outcomes µ = {µ1, µ2,⋯, µm}, the
ZNE corresponds to building a good estimator Ê[µ(0)]
for E[µ(0)] such that its bias E(Ê[µ(0)]−E[µ(0)]), and its
variance E(Ê[µ(0)]2) − E(Ê[µ(0)])2 are both reasonably
small. From now on, let us adopt a simplified notation
of E[µ(λ)] = E(λ).

1 The hat notation used is in accordance with statistics notation
and should not be confused with a quantum operator.

We now discuss various statistical models for extrap-
olation. The expectation value E(λ) cannot be an ar-
bitrary function, which would make ZNE impossible to
extrapolate back to E(0). Depending on some underlying
noise model assumption, one can apply various statistical
models.

The polynomial extrapolation is based on the polynomial
model of degree d such that

E
(d)
poly(λ) = c0 + c1λ +⋯ + cdλ

d, (55)

where cj are d + 1 unknown real parameters. This ex-
trapolation is justified in a weak noise limit and we need
the number of data points m to be equal or larger than
d+1. Consequently, we can obtain two other variants: the
linear extrapolation (d = 1) and the Richardson extrapo-
lation (d =m−1) (Temme et al., 2017). By construction,
the error with respect to the true expectation value is
O(m) when we have a large sample size Ns →∞. By us-
ing the interpolating Lagrange polynomial, the estimator
is explicitly given by

ÊRich(0) = ĉ0 =
m

∑
k=1

µk∏
i≠k

λi
λi − λk

, (56)

with the assumption that all λj are different. One im-
portant observation is that the Richardson model-based
ZNE is dictated by a statistical uncertainty that is scal-
ing exponentially with the number of data points. There
are also other statistical models such as poly-exponential
extrapolation (Giurgica-Tiron et al., 2020) and exponen-
tial extrapolation (Endo et al., 2018). Various exponen-
tial extrapolation methods have been proposed and in-
vestigated in (Cai, 2021a) and applied to depolarizing
noise in (Vovrosh et al., 2021). One can combine the
ZNE, quasi-probability, and stabiliser-based approaches
together for further improvements (Cai, 2021a).

The ZNE scheme suffers from a few limitations. The
scheme works by extrapolation, and hence it is challeng-
ing to obtain result guarantees in general. The number
of measurement shots required to obtain the mitigated
expectation value can be relatively high compared to the
unmitigated case. More importantly, the fundamental
drawback of both ZNE and probabilistic error cancella-
tion (PEC) (Temme et al., 2017), or quasi-probability
method (which is discussed next) is that one needs to
know the precise physical noise model in advance, which
in itself is a difficult problem. Experimentalists in the
lab will have imperfect knowledge about the real noise,
which typically differs from the canonical ones. We will
also discuss a more practical approach based on gate set
tomography proposed in Ref. (Endo et al., 2018), which
does not require explicit knowledge of the noise model
and mitigates any localized Markovian errors, such that
the error in the final output is only due to unbiased sta-
tistical fluctuation.
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Quasi-probability decomposition

Figure 5 Quantum computing of the expectation value of an observable using gate set tomography-based PEC. Quasiprobability
decomposition of the initial state preparation is performed, and single- and two-qubit processes are computed. Implementing
the resulting decomposition is done using a Monte Carlo approach. With QEM, the probability distribution of the expected
value of the physical observable is centered around an ideal value with a larger variance as compared to the one without QEM.
Figure is inspired by (Zhang et al., 2020b).

2. Probabilistic error cancellation

Let us familiarize ourselves first with the notations
used in quantum tomography (Greenbaum, 2015; Merkel
et al., 2013), which we adopt here. A quantum state is
represented by a density matrix ρ̂, and a physical observ-
able is denoted by a Hermitian Â operator. An operation
is a map on the states space such that one can use the
Kraus representation to denote it as ˆ̂

L[ρ̂] = ∑j K̂j ρ̂K̂
†
j .

We note that this equivalence with Eq. (52) is only valid
when we have Markovian dynamics. Here, K̂j are Kraus
operators. In terms of the Pauli transfer matrix repre-
sentation, ρ̂ in Eq. (52) can be written as a column vector
denoted as ∣ρ⟫ (Navarrete-Benlloch, 2015). Similarly, the
Lindblad superoperator ˆ̂

L can be recast as a square ma-
trix using the Pauli transfer matrix representation. For
simplicity and without loss of generality, we absorb the
unitary dynamics (the first term on the right-hand side of
Eq. (52)) into ˆ̂

L. A physical observable Â is now written
as a row vector ⟪A∣. Consequently, the expectation value
is ⟨Â⟩ = Tr[Âρ̂] = ⟪A∣ρ⟫. Likewise, the expectation of Â
after the state ρ̂ passing through a series of linear maps
is written as Tr[Â

ˆ̂
LN ○ ⋯ ○

ˆ̂
L1(ρ̂)] = ⟪A∣LN⋯L1∣ρ⟫.

The central theme of probabilistic error cancellation
(PEC) or quasiprobability decomposition introduced by
Ref. (Temme et al., 2017) is that one can estimate the
expectation value of an observable by sampling from a

set of erroneous circuits, labelled by L(l)
tot for l = 1,2,⋯,

such that

⟨Â(0)
⟩ =∑

l

ql⟪A
(l)

∣L
(l)
tot∣ρ

(l)
⟫. (57)

The expectation value of the observable differs from its
ideal value due to the presence of noise. Given specific er-
ror models (assuming the experimentalist has full knowl-
edge about them), the real numbers ql, which represent
quasiprobabilities, can be efficiently derived. Here, each
L

(l)
tot represents the total sequence of noisy gates in the

lth circuit. Monte Carlo sampling could be used to com-
pute ⟨Â(0)⟩ by randomly choosing the lth circuit with
a probability pl = ∣ql∣/C, where C = ∑l ∣ql∣. Lastly, the
computed result is given by the expected value of effec-
tive measurement outcomes ⟨A(0)⟩ = CE[µeff], where the
effective outcome is µeff = sgn(ql)µ(l) if the lth circuit is
chosen and µ(l) is the outcome from the lth circuit. As a
consequence, the mean value of the PEC outcome centers
around the ideal one with a larger variance due to C (see
Fig. 5 right corner).

The above PEC method relies on the correct knowl-
edge of error model L(l)

tot as is apparent from Eq. (57).
To enable practical implementations, (Endo et al., 2018)
proposes to combine linearly independent basis set opera-
tions and gate set tomography to fully remove the impact
of localized Markovian errors by systematically measur-
ing the effect of errors to design efficient QEM circuits.
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The set of operations including measurement and single-
qubit Clifford gates is universal in computing expectation
values of observables. For the single-qubit case, any op-
eration L which is a 4×4 real matrix in the Pauli transfer
matrix representation, can be expressed as a linear com-
bination of 16 basic operations L = ∑

16
i=1 qiB

(0)
i , which are

composed of {π,H,S,Rx,Ry} gates (Endo et al., 2018).
Similarly, the same decomposition can be applied to the
two-qubit case. See Fig. 5 for example decompositions.

A way to systematically measure errors is through gate
set tomography (GST), with which one can even mitigate
state preparation and measurement errors. In short, the
purpose of GST is to measure noisy individual quantum
circuit performance a priori. For a single-qubit gate, one
prepares initial states ∣0⟩ , ∣1⟩ , ∣+x⟩, and ∣+y⟩, where ∣+x⟩

and ∣+y⟩ are the eigenstates of Pauli operators σ̂x and σ̂y
with +1 eigenvalue, respectively. For noisy devices, these
four states are denoted as ρ̄1, ρ̄2, ρ̄3 and ρ̄4, accordingly.
We also use L̄ (superoperator) to denote a noisy or im-
perfect gate to be measured. Since we care about the
expectation value of physical observables, for the single-
qubit case we have observables Î , σ̂x, σ̂y, σ̂z, denoted as
Ā1, Ā2, Ā3, Ā4. The mean value of observables, the 4 × 4
matrix Ã, is nothing but Ãj,k = Tr[ĀjL̄ρ̄k]. Similarly, we
can also construct the 4 × 4 matrix g without applying
any gate to the initial states as gj,k = Tr[Āj ρ̄k]. This is
repeated for each qubit and each single-qubit gate. Sta-
tistical estimation of the initial states ρ̄k and the observ-
ables Āj are then given by

∣ρ̂k⟫ = T●,k, (58)

⟪Âj ∣ = (gT −1
)j,●, (59)

where we note that the hat symbol represents the statis-
tical estimate and T●,k(Tj,●) denotes the kth column (jth
row) of the matrix T , where T is an invertible 4×4 matrix
with the following relationship L̂ = Tg−1L̃T −1. The same
procedure applies for the two-qubit case with the only
difference being that there is a total of 16 initial states
ρ̄k1 ⊗ ρ̄k2 and 16 observables Āj1 ⊗ Āj2 to be measured.
Similarly, we have g = g1 ⊗ g2 and T = T1 ⊗ T2. We have
to implement a two-qubit gate GST for each qubit pair
involved in the quantum program.

The Quasiprobability decomposition is then computed
based on GST results above. From GST, we have esti-
mation of initial states ∣ρ̂k⟫, observables to be measured
⟪Âj ∣, and gates L̂. Let’s denote L(0) as the Pauli trans-
fer matrix of the ideal gate with no error. The main
idea of decomposition is that noisy gate operation can be
modeled as an ideal operation followed by a noise oper-
ation, i.e., L = NL(0). Hence, the inverse of the noise
is given by N −1 = L(0)L̂−1 = ∑i qL,iB̂i. By applying the
inverse of the noise after the operation, we can obtain
the operation without error L(0) = N −1L. Notice that
the matrices in the above equation are obtained from the
first GST step. The remaining task is to determine the

quasiprobabilities qL,i for each qubit and gate involved by
solving above equation. We note that instead of quasi-
probabilistic decomposition of quantum gates, one could
also use the randomized compiling technique proposed
in (Wallman and Emerson, 2016).

GST-based PEC experiments have recently been re-
alized in trapped-ion systems (Zhang et al., 2020b) and
superconducting circuits (Song et al., 2019). Lastly, a
similar strategy was recently applied to mitigating errors
in measurement readout (Kwon and Bae, 2020).

3. Other QEM strategies

We have seen that the quantum error mitigation tech-
niques discussed so far do not require extra qubits with
the caveat that one needs to perform more measurements.
At the same time, one is only interested in information
about the expectation value. Along this line of thought,
there exist several proposals, which we will outline be-
low. However, some of the methods might require extra
qubits.

Subspace expansion method (Barron et al., 2020; Colless
et al., 2018; McArdle et al., 2019c; McClean et al., 2020b,
2017; Sagastizabal et al., 2019a) are designed to miti-
gate errors in the VQE routine, where we want find an
approximate ground state ∣ψa⟩ of a system Hamiltonian
H. However, the state found by VQE may differ from
the true ground state ∣ψg⟩ due to noise. In general, we
do not know which error occurred to the state. The
subspace expansion method works by resolving the ac-
tion of H on the linear combination of quantum states
ansatz Eq. (42). The subspace is spanned by a set of
operators Ôi, i.e., {∣Ôiψa⟩}. Now, one proceeds to evalu-
ate Hij = ⟨ψa∣ ÔiHÔj ∣ψa⟩, and Sij = ⟨ψa∣ ÔiÔj ∣ψa⟩. The
latter is needed since the subspace states are in general
not orthogonal to each other. By solving the general-
ized eigenvalue problem HC = SCE, with eigenvectors
C and diagonal matrix of eigenvalues E, we can obtain
the Hamiltonian spectra including the excited states (see
Sec. VI.A.4). This method requires an appropriate choice
of subspace operators to mitigate errors due to noise. In
general, without knowing the noise models of the quan-
tum device, it would require an exponential number of
expansion operators to obtain the optimal ground state.

Stabilizer based approach (Bonet-Monroig et al., 2018;
Cai, 2021b; McArdle et al., 2019c; Sagastizabal et al.,
2019a) relies on the information associated with con-
served quantities in the ansatz such as spin or particle
number. If any change in these quantities is detected,
one can pinpoint an error in the circuit, which is simi-
lar to stabilizer measurements in QEC schemes. We can
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implement the stabilizer measurements by adding ancilla
qubits to the qubit registers or taking additional mea-
surements and post-processing.

Individual error reduction method was proposed in Ref.
(Otten and Gray, 2019). As we have seen earlier, Marko-
vian noise can be modelled using the Lindblad master
equation, Eq. (52), where we have dρ̂

dt
=

ˆ̂
L(ρ̂) = ∑iLi(ρ̂),

where each Li denotes a noise channel present. Here,
we have absorbed the unitary component into ˆ̂

L. It was
shown that

ρ̃(T ) = ρ̂(T ) −
m

∑
j=1

1

gj
(ρ̂(T ) − ρ̂j(T )) , (60)

= ρ̂(0)(T ) +O(τ2
). (61)

Here, ρ̂(T ) is the density matrix after applying quantum
gates with the presence of all associated noise channels at
the final evolution time T . In contrast, ρ̂j(T ) is the state
under the influence of all the noise channels but one less
Lj according to the ratio gj . Notice that if gj = 1, we have
fully removed the entire channel Lj . ρ̂(0)(T ) is the ideal
output state without any error, while τ is the evolution
time for each noise process after the application of the
gate. As a result, the first-order error O(τ) is removed.
Using Eq. (60), we can now obtain the mitigated expec-
tation value ⟨Â⟩ = Tr[ρ̂(0)(T )Â] for a physical observable
Â. However, this method assumes it is possible to remove
individual noise channels. Hence, it may be challenging
to achieve on current quantum hardware compared to
other strategies.

Dynamic error suppression/robust control techniques aim
to suppress experimental gate errors at the pulse control
level, which can be performed in a passive or in an active
way. The pulse shaping technique is a strategy for passive
cancellation of system-bath interaction. This method
builds upon techniques to obtain high-fidelity quantum
gates in nonlinear qubits such as transmons, commonly
known as derivative removal of adiabatic gate (DRAG)
scheme (De, 2015; Gambetta et al., 2011; Motzoi et al.,
2009). On the other hand, dynamical decoupling (DD)
(Santos and Viola, 2005; Viola and Knill, 2005; Viola
et al., 1999) is a very well-known and widely used quan-
tum control technique in the literature, which is designed
to suppress decoherence via fancy pulses to the system so
that it cancels the system-bath interaction to a given or-
der in time-dependent perturbation theory (Lidar, 2014)
in an active manner. Recently, DD experiments were
performed on the 16-qubit IBMQX5, 5-qubit IBMQX4,
and the 19-qubit Rigetti Acorn chips (Pokharel et al.,
2018), where the gain in substantial gate fidelity rela-
tive to unprotected, free evolution of individual trans-
mon qubits was demonstrated. One may combine DD

and pulse shaping techniques to obtain dynamically cor-
rected gates (Edmunds et al., 2020; Khodjasteh and Vi-
ola, 2009) composing of shaped pulses which actively
drive state evolution within a Hilbert space in order to
cancel certain system-bath couplings. With IBM Qiskit
Pulse (Alexander et al., 2020) that allows users to control
backend pulse shapes and sequences of a quantum proces-
sor on the fly, a recent study (Carvalho et al., 2020) us-
ing robust control techniques substantially improved the
performance of NISQ computer. They achieved a ∼ 10×
single-qubit gate coherent-error reduction; ∼ 5× average
coherent-error reduction; ∼ 10× increase in calibration
window to one week of valid pulse calibration; ∼ 12×
reduction gate-error variability across qubits and over
time; and up to ∼ 9× reduction in single-qubit gate error
including crosstalk. These improvements have implica-
tions on the performance of multiqubit gates in trapped
ions (Milne et al., 2020). With these tools, we envisage a
possibility to realize holonomic quantum gates (Zanardi
and Rasetti, 1999; Zhang et al., 2021a, 2015) which are
robust against parameter fluctuations and attain even
better gate fidelity and performance.

Lanczos-inspired approach (Suchsland et al., 2020)
estimates the expectation value of a physical ob-
servable Tr[ρ̂(0)Â] by constructing a basis of
the order-m Krylov subspace K(m) spanned by
{∣Ψ⟩ ,H ∣Ψ⟩ ,H2 ∣Ψ⟩ , ...,Hm ∣Ψ⟩}. This can be used
to systematically construct the objective function to be
minimised. For the mth-order, the objective function is
given by

EL,k,n,m = min
a∈Rm

k

¿
Á
ÁÀ⟨Ψ∣Hk(∑

m−1
i=0 aiHi)n ∣Ψ⟩

⟨Ψ∣ (∑
m−1
i=0 aiHi)n ∣Ψ⟩

. (62)

With the Krylov expansion, this technique can reduce
the impact of different sources of noise by performing
additional measurements, without the need to increase
the circuit depth. Calculating dynamic quantities such
as Hamiltonian moments (Vallury et al., 2020) and quan-
tum power method based on higher-order Suzuki-Trotter
expansion (Seki and Yunoki, 2021) on near-term quan-
tum computers are two recent examples of this approach.

Learning-based and AI-inspired methods employ machine
learning techniques such as regression for error mitiga-
tion. The process consists of training different candi-
date circuit variants with non-Clifford gates substituted
with gates with efficient classical simulability (Czarnik
et al., 2020; Strikis et al., 2020). A recent approach
suggests merging zero noise extrapolation with learning-
based methods for near-Clifford circuits (Lowe et al.,
2020). There are also genetic algorithms to mitigate er-
rors in quantum simulations (Las Heras et al., 2016a;
Spagnolo et al., 2017).
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B. Circuit compilation

As it will be discussed in Sec. V.C, a quantum com-
puter is composed of its hardware (quantum) and soft-
ware (classical). The software translates a quantum al-
gorithm into a set of instructions that implement the de-
sired quantum operations and read out the qubit states.
This process can be understood as quantum compilation
(Chong et al., 2017), but the term is not limited to this
particular application. When mapping a quantum circuit
to a specific device architecture, one needs to consider the
available quantum gates, the qubit connectivity that al-
lows two-qubit gates implementation, and experimental
limitations such as decoherence time, which imposes a
certain maximum circuit depth in terms of the number
of gates. For these reasons, it has become indispens-
able to develop tools that allow for circuit simplifications
and efficient mappings of the general algorithm to spe-
cific hardware. These tools are also known as quantum
compilers since they translate the theoretical circuit to
a realistic simulator or device. In the following, we de-
scribe some of these tools. Many of them are suited both
for NISQ and fault-tolerant quantum computation.

1. Native and universal gate sets

The available gates that can be implemented exper-
imentally on a particular hardware platform are some-
times referred to as the native gate set. With a uni-
versal gate set G ∈ SU(d) (also called instruction gate
set), any unitary operation can be constructed efficiently.
More formally, the Solovay-Kitaev theorem (Dawson and
Nielsen, 2006) states that given this universal set G, any
unitary operation U ∈ SU(d) can be approximated with
ε accuracy with a finite sequence S of gates from G. This
sequence scales logarithmically as O(logc(1/ε)), where c
is a constant that depends on the theorem-proof. For
d = 2n this theorem guarantees that qubit quantum cir-
cuits can be decomposed using a finite gate sequence.
Although this is one of the most important theorems in
quantum computation, it is an existence theorem, i.e. it
does not provide the decomposition that it predicts. It
also requires that the gate set contains the inverse of all
gates. Further developments presented in (Bouland and
Ozols, 2018) try to remove this assumption.

The Clifford group is an important object in quantum
information science because of its applications in QEC,
randomized benchmarking and investigations for quan-
tum advantage. The generalized Pauli operators in prime
dimension p are given by

T(a,b) =
⎧⎪⎪
⎨
⎪⎪⎩

ω−
ab
2 ZaX b (a, b) ∈ Zp ×Zp, p ≠ 2

ιabZaX b (a, b) ∈ Z2 ×Z2, p = 2
(63)

where ω = exp ( 2πi
p

) and Zp denotes an integer modulo

p. The Z and X operators are defined via their action
on computational basis states {∣k⟩}k, with X ∣k⟩ = ∣k + 1
mod p⟩, and Z ∣k⟩ = ωk ∣k⟩. The unitaries which map the
set of generalized Pauli operators to themselves up to a
phase are called Clifford unitaries. Let us denote the set
of p dimensional Clifford unitaries by Cp. Mathematically
speaking,

U ∈ Cp ⇐⇒ ∃φ ∶ UT(a1,b1)U
†
= exp (iφ)T(a2,b2) (64)

where T(a1,b1) and T(a2,b2) are generalized Pauli opera-
tors. The set of Clifford unitaries Cp forms a group, called
the Clifford group. In this review, we focus on p = 2, i.e.
the qubit Clifford group.

For qubits, the generators of the Clifford group are the
Clifford gates H, S = exp(−iπ/4σz) and CNOT . Any
circuit composed of Clifford gates can be simulated effi-
ciently with a classical computer as stated by the Gottes-
man–Knill theorem (Aaronson and Gottesman, 2004).
The states generated by the Clifford gates are also called
stabilizer states can contain a high amount of entangle-
ment. However, not all unitaries can be decomposed into
Clifford gates. A universal gate set is a set of gates that
can perform arbitrary quantum computations. The Clif-
ford gates combined with the T = exp(−iπ/8σz) gate form
an example of such a universal gate set. It is a necessary
condition for quantum advantage that a circuit contains
T gates. As such, the computational difficulty of simulat-
ing a quantum circuit with classical computers increases
with the number of T gates in the circuit. For this rea-
son, many algorithms try to reduce quantum circuits to
the minimal number of T gates to give an estimation
of the difficulty of classically simulating a circuit (Amy
et al., 2013; Amy and Mosca, 2019; Gosset et al., 2013;
Heyfron and Campbell, 2018; Kissinger and van de We-
tering, 2019).

Besides these minimal reduction algorithms, other ba-
sic decompositions are useful. Even if only a native gate
set is available experimentally, other basic gates can be
constructed and used in algorithms. As an example, S
and T gates are particular cases of the single-qubit ro-
tational gate Rz, and the H gate can be obtained from
Ry and Rx gates as H = Ry(−π/2)Rx(π). Any single-
qubit unitary can be decomposed into the gate sequence
U(θ, φ, λ) = Rz(φ)Ry(θ)Rz(λ). This motivates using
single-qubit rotational gates and at least one entangling
gate (e.g. CNOT or CZ gate) as native gate sets. Any
two-qubit gate can be obtained from this minimal set
by using circuit decompositions (Barenco et al., 1995;
Blaauboer and De Visser, 2008; de Guise et al., 2018;
Peterson et al., 2020; Watts et al., 2013). The partic-
ular choice of the entangling gate can be motivated by
the experimental platform. Depending on the technology
used to construct the quantum device, a natural 2-qubit
gate implementation can be more suited. Some exam-
ples are the use of CZ gates in tunable superconduct-
ing circuits (Krantz et al., 2019), cross-resonance gates
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in fixed frequency superconducting qubits (Kjaergaard
et al., 2020; Krantz et al., 2019) or the XX gates in
trapped ions (Häffner et al., 2008). More expressive gate
sets with continuous gate parameters or long-range inter-
actions can be achieved by further control over the hard-
ware parameters in time (Bastidas et al., 2020; Foxen
et al., 2020; Krinner et al., 2020; Lacroix et al., 2020).
The complexity of the circuit decomposition into CNOT
and Rz gates is analyzed in (Amy et al., 2018).

2. Circuit decompositions

Once the native gate set is fixed, the next step con-
sists of decomposing the theoretical unitary circuit into
this basic set. A raw translation of all single and two-
qubit gates into the native set might imply a large cir-
cuit depth, reducing the effectiveness of that decomposi-
tion. Moreover, finding the decomposition of gates acting
on more than one qubit might prove challenging in gen-
eral. Besides common circuit decompositions mentioned
before, one may need mathematical tools to understand
and derive general circuit reductions to particular smaller
pieces.

One of these mathematical tools is the so-called ZX-
Calculus. It is a graphical language that maps quantum
circuits to particular graph representations and derives a
set of rules to manipulate these graphs. Its application
range goes from measurement-based quantum computa-
tion to QEC. For a complete review about ZX-calculus
and its variety of applications, see Ref. (van de Wetering,
2020). For the purpose of this review, we are interested in
the quantum circuit simplification applications (de Beau-
drap et al., 2019; Cowtan et al., 2019b; Duncan et al.,
2020; Hanks et al., 2020; Kissinger and van de Wetering,
2020).

Other approaches use well-known artificial intelligence
algorithms to find optimal circuit decompositions such
as reinforcement learning (Pirhooshyaran and Terlaky,
2020; Zhang et al., 2020c). Evolutionary algorithms such
as genetic algorithms have been widely studied as well
(Bang and Yoo, 2014; Lamata et al., 2018a; Las Heras
et al., 2016b; Li et al., 2017b; Massey et al., 2004; Massey
et al., 2006; Potoček et al., 2018; Spagnolo et al., 2017;
Williams and Gray, 1999). In these approaches, multi-
ple random circuits composed of the native gate set are
generated and evolved. The evolution strategy includes
the definition of possible mutations such as introducing a
new gate on a particular qubit, the swap between circuit
gates, or the deletion of a particular gate. Then, a multi-
objective loss function is used to estimate the success of
each circuit family under a given convergence criterion,
after which the circuit with the best performance is se-
lected. These works can be applied to finding the optimal
PQC for a given VQA, as discussed in Sec. II.B. A VQA
for circuit compilation using a genetic algorithm as op-

timization subroutine is presented in Ref. (Khatri et al.,
2019), called Quantum Assisted Quantum Compiler.

3. The qubit mapping problem

After decomposing and simplifying the quantum cir-
cuit into the native gates, a hardware-specific task re-
mains: mapping the resultant circuit to the particular
qubit connectivity or topology, a task also known as the
qubit routing problem. In general, due to experimen-
tal limitations, not all qubits are connected such that
two-qubit gates can be applied between them. A naive
approach to circumvent this limitation consist of swap-
ping each qubit state with its neighbor (by using SWAP
gates) until we find a connected pair, perform the de-
sired two-qubit operation and swap back the states of
the qubits involved, returning to the original state with
the intended two-qubit gate applied to it. This translates
into a significant growth of the circuit depth for circuit
topologies with a sparse qubit connectivity.

Some NISQ algorithms presented in this review may
include the qubits’ connectivity by means of the loss
function or the available rules used to decompose the
unitaries. However, quantum compilation is a hardware-
specific transformation and it might be more useful to
apply this step independently of the quantum circuit and
depending on the chip architecture. Unfortunately, the
qubit mapping problem is NP-complete (Botea et al.,
2018). Several heuristic approaches based on dynamic
programming, depth partitioning (Cowtan et al., 2019a;
Li et al., 2019; Siraichi et al., 2018; Zulehner et al.,
2017, 2018; Zulehner and Wille, 2019) and reinforce-
ment learning(Pozzi et al., 2020) have been explored.
Exact methodologies based on reasoning engines such
as Boolean satisfiability solvers have also been proposed
(Tan and Cong, 2020; Wille et al., 2019). The so-called
LHZ architecture is an approach that solves the con-
nectivity issue at the cost of increasing the number of
qubits (Lechner, 2020). The same framework can be
applied to quantum annealing systems as well (Lechner
et al., 2015). Encoding this problem into a QUBO (see
Sec. III.A) to solve it using classical simulated anneal-
ing has also been proposed in (Dury and Di Matteo,
2020). Approaches for circuit compilation based on com-
mutation algebra of quantum gates have been suggested
in (Itoko et al., 2020, 2019).

There can be many possible qubit mappings of a given
algorithm into a particular device if not all qubits are
required. In those cases, one can put some extra effort
to find the best performing qubits in terms of error rates
and coherence times (Nishio et al., 2020; Niu et al., 2020).
In that direction, finding the mapping with the lowest
circuit depth may prove valuable to reduce the errors
due to decoherence (Zhang et al., 2020a).

Finally, the use of circuit synthesis with connectivity
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constraints has also been proposed. Some of these works
are based on Gaussian elimination processes where one
takes the matrix representation of the circuit transfor-
mation and manipulates it to extract the basic trans-
formations (in particular, the CNOT gates that respect
the connectivity) (Kissinger and de Griend, 2019; Nash
et al., 2020). In (Gheorghiu et al., 2020), the strat-
egy consists of slicing the circuit into smaller parts that
can be adapted and transformed to fit into the partic-
ular topology. One can also adapt this problem to the
syndrome decoding problem (de Brugière et al., 2020).
Ref. (de Griend and Duncan, 2020) solves the qubit rout-
ing problem for phase polynomial circuits, which are cir-
cuits that only contain CNOTs and Rz gates.

4. Resource-aware circuit design

As described in Sec. II.B, there are different strategies
to design a circuit ansatz. Unfortunately, many of them
require circuit depths, qubit connectivity, and a number
of parameters beyond the capabilities of current quan-
tum hardware. In the following paragraphs, we discuss
strategies to design and adapt PQCs and VQAs to the
characteristics of devices.

ADAPT-VQE. Early VQA employed a fixed ansatz
design with its parameters tuned using a classi-
cal optimizer. The Adaptive Derivative-Assembled
Pseudo-Trotter ansatz Variational Quantum Eigensolver
(ADAPT-VQE) was introduced as a more scalable and
efficient way to simultaneously design and optimize a pa-
rameterized ansatz (Grimsley et al., 2019b). At each it-
eration, ADAPT-VQE constructs an ansatz by adding
an operator corresponding to the largest gradient from a
carefully designed operator pool. That is, given an oper-
ator τ̂i from the operator pool, the gradient of the energy
with respect to the corresponding parameter θi is defined
as

∂iE = ⟨ψ∣ [H, τ̂i] ∣ψ⟩ , (65)

where ∣ψ⟩ is the ansatz at the current iteration to be
updated. After computing the gradient components and
choosing the operator corresponding to the largest gra-
dient, the gate operation implementing τ̂i is added to
the ansatz with its parameter value initialized at 0. The
ansatz is then optimized before adding the next operator.
The ADAPT-VQE algorithm terminates when the norm
of the gradient vector falls below a predefined threshold.

In the case of fermionic ADAPT-VQE, the operator
pool consists of fermionic operators that are transformed
into quantum gate operations through, e.g., the Jordan-
Wigner mapping. A more hardware-efficient variant of
the ADAPT-VQE algorithm is the qubit ADAPT-VQE,

in which the pool consists of gate operators acting di-
rectly on qubits (Tang et al., 2019). Both versions of
ADAPT-VQEs were able to generate optimized circuits
with reduced depths and CNOT counts compared to pre-
vious ansatz construction and optimization methods.

MI-ADAPT-VQE. The mutual information-assisted
ADAPT-VQE (MI-ADAPT-VQE), introduced by
(Zhang et al., 2021d), leverages the density matrix
renormalization group (DMRG) (Hallberg, 2006; White,
1992) method to accelerate the circuit constructions
for the ADAPT-VQE routine. Instead of gradients, it
uses mutual information to guide the construction of
circuits. At the beginning of the algorithm, the pair-wise
quantum mutual information is approximated using
DMRG, which is then applied to construct a reduced
pool of entangling gates. In each iteration of the method,
new circuits are generated in which quantum gates are
mainly distributed among pairs of qubits corresponding
to large mutual information. This avoids allocating
quantum resources on pairs of qubits that are less
important to entangle. Numerical experiments suggest
that the number of new circuits needed in each step of
the adaptive construction can be significantly reduced
using MI-ADAPT-VQE, saving both time and quantum
resources. The number of trial circuits in certain cases
can be reduced to about 5% for H2 and 10% for H2O
as compared to ADAPT-VQE, using an operation pool
based on the qubit coupled-cluster method (Ryabinkin
et al., 2020).

MoG-VQE. To reduce two-qubit gate counts for near-
term experiments, the multiobjective genetic variational
quantum eigensolver (MoG-VQE) optimizes for both the
energy and the number of CNOTs in the quantum cir-
cuit (Chivilikhin et al., 2020). The MoG-VQE algorithm
combines two evolutionary strategies: i) NSGA-II (Deb
et al., 2000), a multiobjective genetic algorithm, to pro-
pose a circuit structure to minimize both the energy and
CNOT count, and ii) CMA-ES (Hansen et al., 2003) to
tune parameters and evaluate optimized energies for the
qubit topologies suggested by the NSGA-II algorithm.
MoG-VQE initializes a diverse population by sampling a
checkerboard pattern of two-qubit circuit blocks. To vary
the populations over different generations, the three pos-
sible mutation operators are: i) inserting a two-qubit cir-
cuit block in a random position; ii) removing a two-qubit
circuit block in a random position; and iii) adding or re-
moving 10 circuit blocks to help escape from local min-
ima. The authors note that iii) is selected with a lower
probability than mutation operators i) and ii). Par-
ents are selected using the tournament selection method.
For each circuit topology, the corresponding energy is
evaluated using the CMA-ES optimizer. These steps re-
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peat until some termination criteria are satisfied. Using
MoG-VQE, the authors reported significant reductions in
the CNOT counts compared to those of other hardware-
efficient circuits when estimating the ground state ener-
gies of several molecules. For example, for a 12-qubit
LiH Hamiltonian, MoG-VQE generated a circuit corre-
sponding to estimating the ground state energy within
chemical precision using only 12 CNOTs.

PECT. An alternative approach for adaptively con-
structing and optimizing an ansatz was introduced by the
parameter-efficient circuit training (PECT) scheme (Sim
et al., 2020). PECT enables optimizations of predefined
ansätze, such as unitary coupled-cluster or the low-depth
circuit ansatz (LDCA) (Dallaire-Demers et al., 2019),
by dynamically pruning and adding back parameterized
gates during an optimization. After selecting an ansatz
U , a subset of gate operations from A is chosen while
other parameterized gate operations are tuned to iden-
tity operations. This results in an ansatz substructure
A′ with reduced circuit depth and gate count. Parame-
ters of A′ are then optimized, following what the authors
call a “local optimization” step. After local optimization,
to refine or reparameterize the ansatz substructure, pa-
rameters with small magnitudes are pruned or removed.
A heuristic growth rule is used to grow back the same
number of parameters that were pruned. Steps of local
optimization and ansatz reparameterization are repeated
until termination criteria are met. Because PECT opti-
mizes parameter subsets at any iteration, circuits that are
executed on the quantum computer have reduced depths
and CNOT counts compared to the original ansatz. Us-
ing PECT, the authors were able to optimize 12-qubit
LDCA circuits, naively equipped with hundreds to low
thousands of parameters, to estimate ground state ener-
gies of LiH and H2O. Previous optimizations of LDCA
were limited to 8 qubits.

C. Quantum software tools

A quantum computer is a hybrid device composed of
quantum hardware and classical software that controls
it by sending a list of instructions and processing the
results of the computation. This hybrid nature is ac-
centuated in the NISQ era, as explained in the review.
Thus, the classical subroutines are part of the core in
state-of-the-art NISQ algorithms and a language to com-
municate with the quantum device is a necessity. On
top of that, almost all progress in quantum algorithms
is tested in quantum simulators making it essential to
perform proof-of-concept simulations, before or until the
algorithm is applicable to real devices.

Fig. 6 represents diagrammatically the typical work-
flow of a NISQ algorithm. The individual parts of the

problem, such as the objective function to optimize, the
quantum circuit design, or the initialization parameters,
are translated into quantum circuits by a classical pre-
computation step. The syntax of this language includes
quantum gates, qubit initialization, objective function
definition, etc. The theoretical circuit is then compiled to
fulfill experimental limitations such as qubit connectivity,
native quantum gate set, or circuit depth. To accomplish
this task, compilers that allow for circuit simplification
(see Sec. V.B), or noise models (for simulation purposes)
might be useful. After this pre-processing step, the algo-
rithm is ready to enter into the quantum-classical loop.
The quantum circuit can be run in a quantum simulator
or real hardware. In the latter case, an assembly lan-
guage (Cross et al., 2017; Khammassi et al., 2018; Kil-
loran et al., 2019; Smith et al., 2016) will translate the
quantum circuit into a set of instructions for the device.
After the qubits are measured, the result can be post-
processed and techniques such as error mitigation might
be used. Either the algorithm finishes or the result is
sent to the classical optimizer that computes the next
loop variables (e.g. for VQA).

We define a quantum software library as a library or
a set of libraries written in a classical programming lan-
guage (e.g. python or C++) that allows writing quantum
programs. In some cases, these libraries are open-source
and can be used directly on real hardware or on a quan-
tum simulator. The proliferation of all these libraries,
simulators, and devices has also created a necessity for
some multi-platform languages. These are those that can
use multiple quantum software libraries as a backend, re-
ducing the programming efforts substantially by unify-
ing the language syntax. Some of these packages include
built-in sub-libraries suited for particular applications,
from chemistry to QML, or particular well-known algo-
rithms such as VQE or QAOA.

We provide a list of some open-source libraries suited
for NISQ computation in Tab. VII of the Supplemen-
tary Material. This list represents just a snapshot of the
state-of-the-art of quantum software ecosystem as new
tools are being developed and some projects are being
abandoned. An updated list of quantum software re-
sources can be found in Ref. (QOSF, 2020; Quantum
Computing Reports, 2020) and a detailed comparative
analysis between some of these languages and libraries in
Ref. (Garhwal et al., 2019; Gay, 2006; Heim et al., 2020;
Nguyen et al., 2020). Due to the broad applications of
NISQ algorithms, specific libraries used in other fields
beyond quantum computation can also be required, e.g.
quantum chemistry and machine learning libraries or ex-
ternal compilers and simulators. These libraries are used
for other applications besides quantum computing, so we
consider and list them as external libraries in Tab. VIII
of the Supplementary Material, although most of them
are integrated within the quantum software libraries.
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Figure 6 Schematic representation of a standard NISQ programming workflow (color online). Green circular boxes represent
the libraries and languages used for designing, optimizing, and running a quantum algorithm in a real quantum device or in a
simulator. External libraries can be used to define the problem or to improve the performance of the algorithm by simplifying
the circuit or providing error-mitigation techniques. An assembly language is needed to translate the theoretical algorithm to
a set of physical operations on the quantum hardware. Classical post-processing is necessary to manipulate the result of the
computation and to either obtain the final result or send the provisional one to a classical optimizer (VQA).

VI. APPLICATIONS

A. Many-body physics and chemistry

Understanding the static and dynamic properties of
quantum mechanical systems is a core challenge at the
heart of many fields such as chemistry and physics. Clas-
sical numerical methods often struggle in solving these
problems, due to the exponential increase of resources
needed with a growing number of particles to simulate.
Owing to their quantum-mechanical nature, quantum
computers offer a way to simulate even large-scale many-
body systems (von Burg et al., 2020; Feynman, 1982).
The initial application for chemistry was to obtain molec-
ular energies via quantum phase estimation on a quan-
tum computer (Aspuru-Guzik et al., 2005). Besides the
molecular energy, properties that can be extracted from a
successfully prepared ground state, such as energy deriva-
tives with respect to the nuclear framework, are of sim-
ilar interest (Kassal and Aspuru-Guzik, 2009; O’Brien
et al., 2019). Fault-tolerant quantum algorithms have the
potential to become killer applications in the computa-
tional discovery of chemical reaction mechanisms (Reiher
et al., 2017) and NISQ algorithms could play a major
role in their realization. Here we review various NISQ
algorithms that have been proposed to tackle quantum
chemistry and many-body physics-related problems. We
start by introducing concepts on mapping physical prob-
lems onto the quantum computer. Then, we introduce
algorithms for common challenges, such as finding the

static and the dynamic properties of quantum systems in
various settings. All NISQ algorithms discussed in this
section are listed in Tab. I of the Supplementary Mate-
rial.

1. Qubit encodings

In general, any physical system can be written in terms
of a Hamiltonian which is the sum of its kinetic and po-
tential energy. In quantum theory, each physical system
is associated with a language of operators and an alge-
bra establishing such language. Depending on the system
constituents, there are three types of particles (operators)
in Nature: fermions, bosons, and anyons. The first two
are elementary particles obeying Fermi-Dirac (FD) and
Bose-Einstein (BE) statistics, respectively. The latter be-
ing quasiparticles obeying continuous or anyonic statis-
tics, and existing only in two-dimensional confinement.
Quantum computers operate in the language of qubits
(a distinguishable set of spin-1/2 particles). Hence, the
quantum simulation of a physical system refers to per-
forming a one-to-one mapping from the system opera-
tor to the quantum computing language, preserving the
underlying statistics. For a recent review on hardware-
dependent mappings of spin Hamiltonians into their cor-
responding quantum circuit, refer to (Tacchino et al.,
2020b).

In the standard model of quantum computation, a two-
level system or spin-1/2 particle is denoted by its spin



36

orientation ∣↑⟩ = ∣0⟩ = (1,0)T and ∣↓⟩ = ∣1⟩ = (0,1)T .
A N -qubit system is then constructed from the stan-
dard Pauli matrices σ̂ix, σ̂

i
y, σ̂

i
z, where the superscript i

refers to the ith local qubit site. These operators sat-
isfy the commutation relations of an ⊕Ni=1 su(2)i algebra
[σ̂lµ, σ̂

m
ν ] = 2iδlmεµνλσ̂

l
λ, where εµνλ is the totally anti-

symmetric Levi-Civita symbol with µ, ν, λ ∈ {x, y, z}.

Fermions. In the second quantized notation, N
fermions are denoted by fermionic operators f̂ †

i (f̂i), the
creation (annihilation) operators of a fermion in the
ith mode/site (i = 1,⋯,N). The fermionic operators
obey Pauli’s exclusion principle and the anti-symmetric
nature of the fermion wave function. Hence, the
fermionic algebra is defined by the anti-commutators
{f̂i, f̂j} = 0,{f̂ †

i , f̂j} = δij . There are a number of
well-known mappings that allow the description of a
fermionic system by the standard model of quantum
computers. They are the Jordan-Wigner transformation
(Jordan and Wigner, 1928), Bravyi-Kitaev transforma-
tion (Bravyi and Kitaev, 2002) and Ball-Verstraete-Cirac
transformation (Ball, 2005; Verstraete and Cirac, 2005).
In (Steudtner and Wehner, 2019), the two-dimensional
topology of most proposed qubit architectures is taken
explicitly into account and compared to some of the
aforementioned one-dimensional mappings. More ad-
vanced mappings, using the interaction graph of the
Hamiltonian (Setia et al., 2019; Setia and Whitfield,
2018) or customized quasi-local and local encod-
ings (Chien and Whitfield, 2020; Derby and Klassen,
2020; Jiang et al., 2020; Havlíček et al., 2017) have been
introduced as well. Other approaches try to lower the
qubit requirements of the mapped fermionic operators by
taking inspiration from classical error correction codes
and the internal symmetries of the system (Bravyi et al.,
2017; Steudtner and Wehner, 2018). Other examples are
mappings based on point-group symmetries of molecular
Hamiltonians (Setia et al., 2020). Recently, mappings of
SU(N) fermions to qubits have been proposed (Consiglio
et al., 2021).

In the following, we will briefly outline the oldest and
most intuitive mapping: the Jordan-Wigner transfor-
mation. In this mapping, the qubit states are equiv-
alent to the second-quantized occupation number vec-
tors, and fermionic creation and annihilation operators
are transformed to qubit raising and lowering operators
σ̂j± = (σ̂jx ± iσ̂

j
y)/2 combined with strings of σ̂z operators

that ensure the correct anti-commutation properties

f̂j → (

j−1

∏
l=1

−σ̂lz) σ̂
j
−, f †

j → (

j−1

∏
l=1

−σ̂lz) σ̂
j
+ . (66)

In this transformation, one can verify that f̂ †
j , f̂j satisfy

the above anticommutation relations, while σ̂jµ satisfies

the commutation relations showed above. The reader is
referred to the literature (Aspuru-Guzik et al., 2005; See-
ley et al., 2012; Somma et al., 2003; Tranter et al., 2018,
2015) and the respective original references for details
and comparisons regarding the other transformations.

Bosons. Bosonic operators satisfy the commutation re-
lations [

ˆ̃
bi,

ˆ̃
bj] = 0, [

ˆ̃
bi,

ˆ̃
b†j] = δij in an infinite-dimensional

Hilbert space. At first, it seems it is impossible to simu-
late bosonic systems due to the nature of infinite dimen-
sions. However, sometimes we are interested in study-
ing some finite modes of excitations above the ground
state. Hence, the use of the entire infinite-dimensional
Hilbert space is unnecessary. In a finite-dimensional ba-
sis, the bosons b̂†i , b̂i obey the following commutation re-
lations (Batista and Ortiz, 2004)

[b̂i, b̂j] = 0, [b̂i, b̂
†
j] = δij [1 −

Nb + 1

Nb!
(b̂†i)

Nb(b̂i)
Nb] , (67)

with b̂†i b̂i ∣ni⟩ = ni ∣ni⟩ with ni = 0,⋯,Nb, where Nb is the
maximum truncated excitation number, corresponding to
the ith bosonic site or mode. A direct consequence is
one can then write down the creation and annihilation
operators as

b̂†i =
Nb−1

∑
n=0

√
n + 1∣n + 1⟩⟨n∣, (68)

and b̂i, which is the complex conjugate of b̂†i . There
are infinite means to translate such truncated opera-
tors into the quantum computing language, the so-called
Pauli words. A commonly used one is known as stan-
dard binary or compact encoding (McArdle et al., 2019b;
Sawaya and Huh, 2019; Sawaya et al., 2020; Somma
et al., 2003; Veis et al., 2016), where {α,β ∈ W} in
∣α⟩⟨β∣ are now written in terms of binary strings. Using
the following identities: ∣0⟩⟨1∣ ≡ σ̂−; ∣1⟩⟨0∣ ≡ σ̂+; ∣0⟩⟨0∣ ≡
(I + σ̂z)/2; ∣1⟩⟨1∣ ≡ (I − σ̂z)/2, Pauli words translation
can be accomplished. Recently, detailed studies on vari-
ous encodings (binary, Gray, Unary, block Unary), have
been studied and Gray code in particular is found to
be resource efficient (in terms of number of qubits and
two-qubit entangling gates) in simulating some specific
bosonic and spin Hamiltonians (Sawaya et al., 2020).

Anyons. As seen above, we can now proceed to simu-
late more general particle statistics, in particular hard-
core anyons. With “hard-core”, we refer to Pauli’s ex-
clusion principle where only zero or one particle can
occupy a single mode. The anyonic operators âi, â

†
i

obey the commutation relations [âi, âj]θ = [â†
i , â

†
j]θ = 0,

[âi, â
†
j]−θ = δij(1 − (e−iθ+1)n̂j) and [n̂i, â

†
j] = δij â

†
j , where

n̂j = â†
j âj , [Â, B̂]θ = ÂB̂ − eiθB̂Â, with (i ≤ j) and
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0 ≤ θ < 2π. Specifically, θ = π mod(2π) gives rise to
canonical fermions, and θ = 0 mod(2π) would recover
hard-core bosons. By simply applying the following iso-
morphic mapping between algebras (Somma et al., 2003):

â†
j =∏

i<j
(
e−iθ + 1

2
+
e−iθ − 1

2
σ̂iz) σ̂

j
+,

âj =∏
i<j

(
eiθ + 1

2
+
eiθ − 1

2
σ̂iz) σ̂

j
−, n̂j =

1 + σ̂jz
2

, (69)

we obtain Pauli words for the quantum computer. The
above mapping also ensures the anyonic algebra shown
above.

2. Constructing electronic Hamiltonians

The electronic structure problem is one of the most
prominent tasks within VQAs (see for example the re-
views (Cao et al., 2019; McArdle et al., 2020)) and was
the pioneering task for VQE (McClean et al., 2016; Pe-
ruzzo et al., 2014). In this section, we will illustrate how
the original continuous many-electron problem can be
discretized to a second-quantized formulation that can it-
self be encoded into qubits by the techniques introduced
at the beginning of Sec. VI.A. This encoded qubit sys-
tems define then the central problem of the VQAs further
described in Sec. VI.A.3.

The electronic structure problem aims to approximate
eigenfunctions of electronic Hamiltonians

He = Te + Vee + Vext, (70)

describing a system of Ne electrons through their accu-
mulated kinetic energies Te = − 1

2 ∑
Ne
k=1 ∆rk , the electronic

Coulomb repulsion Vee = ∑k≠l Vee (rk − rl) = ∑k≠l
1

∣rk−rl∣ ,
and an external potential Vext = ∑

Ne
k=1 Vext (rk) that is

usually given by the accumulated Coulomb potential of
nuclear point charges. If the external potential is not ex-
plicitly spin dependent, the electronic Hamiltonian only
acts on the spatial coordinates rk ∈ R3 of the elec-
trons and, to ensure proper electronic wave functions, the
fermionic anti-symmetry is achieved via restrictions in
the Hilbert-space. We refer to (Herbst, 2018; Kottmann,
2018; Rohwedder, 2010) and the textbook (Yserentant,
2010) for the direct construction and discretization of
these continuous Hilbert spaces.

A more compact, but formally equivalent, definition is
offered through second quantization by introducing the
abstract anti-commuting field operators ψ̂† (x) and ψ̂ (x)
that create and annihilate electrons at spin-coordinate
xk ∈ R3×{± 1

2
} (Jordan and Klein, 1927; Jørgensen, 2012;

Surján, 2012). The electronic Hamiltonian can then be

written as

He =∫ dx ψ̂†
(x) (T (x) + Vext (x)) ψ̂ (x) (71)

+ ∫ dxd y ψ̂†
(x) ψ̂†

(y)Vee (x − y) ψ̂ (y) ψ̂ (x)

where the potential operators still only act on the spa-
tial part of the spin components. Although direct ap-
proaches on real-space grids are possible (Kivlichan et al.,
2017; Kottmann, 2018; Kottmann and Bischoff, 2017; Ku-
nitsa and Hirata, 2020) the majority of VQAs employs
a fixed set of three dimensional functions (so-called or-
bitals) to capture the spatial part of the electronic Hilbert
space. The orbitals are usually determined by solving a
mean-field problem (Hartree–Fock) within a set of glob-
ally defined atomic orbitals. Alternatives to the stan-
dard representation are, for example, direct determina-
tion of system adapted orbitals (Kottmann et al., 2021b),
compactification of basis sets through intrinsic atomic or-
bitals (Barison et al., 2020) and optimized virtual orbitals
represented by plane-waves (Bylaska et al., 2020).

For the formal description of the discretized second-
quantized electronic Hamiltonian, the origin of the or-
bitals is not important as long as they form an orthonor-
mal set of H1 (R3) functions. Using such a set of spatial
orbitals we can formally expand the field operators in the
corresponding spin-orbitals

ψ̂†
(x) =∑

k

φ∗k (x) f
†
k , ψ̂ (x) =∑

k

φk (x) fk, (72)

where f †
k and fk are fermionic creation and annihila-

tion operators obeying the anticommutation relations
shown in the previous subsection. Using the expansion
from Eq. (71) leads to the common discretized second-
quantized Hamiltonian,

He =∑
kl

hklf
†
kfl + ∑

klmn

gklmnf
†
kf

†
l fnfm, (73)

with the molecular integrals (Fermann and Valeev, 2020)

hkl = ∫ φ∗k (x) (T (x) + Vext (x))φl (x)dx, (74)

gklmn ∫ φ∗k (x)φ
∗
l (y)Vee (x − y)φ

∗
m (x)φ∗n (y)dxd y.

Note that the indices of the two body integrals are de-
noted in the standard Dirac notation gklmn ≡ ⟨kl∣Vee ∣mn⟩
but other notations, such as Mulliken (km∣lm) =

⟨kl∣Vee ∣mn⟩ are sometimes used. Generally speaking,
an arbitrary set of spatial orbitals, that can in principle
be any set of orthonormal H1 (R3) functions, defines a
discretized second-quantized Hamiltonian as in Eq. (73)
over the corresponding molecular integrals Eq. (74). This
discretized Hamiltonian can then be encoded into a qubit
Hamiltonian by corresponding fermion to qubit mappings
discussed in Sec. VI.A.
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3. Variational quantum eigensolver

Estimating the ground state and its energy of Hamil-
tonians is an important problem in physics, which has
numerous applications ranging from solid-state physics
to combinatorial optimization (see Sec. VI.C). While this
problem is in general QMA-hard and even quantum com-
puters are not expected to be able to efficiently solve it in
general (Kempe et al., 2006), there is hope that approxi-
mate solutions of the ground state could be found faster
and for larger system sizes compared to what is possible
with classical computers.

To this end, VQE (McClean et al., 2016; Peruzzo et al.,
2014) has been proposed, to find the ground state of
a Hamiltonian H in a manner that is suited for NISQ
devices (Wecker et al., 2015). Following the concept
introduced in Sec. II.A and Sec. II.B, a parameterized
circuit U(θ) is minimized with respect to the objec-
tive function, which in general is the expectation value
of the energy of the Hamiltonian from Eq. (1). The
approximated ground state is given by the quantum
state ∣ψmin⟩ = U(θmin) ∣0⟩ which minimizes the energy
minθ⟨Hθ⟩ ≥ Eg upper bounded by the true ground state
energy Eg as guaranteed by the Rayleigh-Ritz variational
principle (Gould, 2012). VQE has been intensively stud-
ied in both theory and experiments, and various adap-
tions and extensions have been proposed, which we dis-
cuss in the following paragraphs.

Self-verification. Whether the variational quantum sim-
ulator has converged to an actual eigenstate of the Hamil-
tonian, can be checked directly on the quantum proces-
sor by verifying that the variance of the energy var =

⟨(H − ⟨H⟩)2⟩ is zero. This has been demonstrated for
solving a many-body Hamiltonian on 8 qubits on a ion-
trap (Kokail et al., 2019) (see also Sec. VI.E.6).

Accelerated VQE. A key computational effort in VQE
lies in estimating the cost function, which is achieved by
repeatedly running the circuit and taking measurements
of the Pauli strings (see Sec. II.C). For a given desired
additive error bounded by ε, it takes O(1/ε2) number of
samples. This can be improved by using the Quantum
Phase estimation algorithm to estimate the expectation
value, which takes only O(log(1/ε)) samples, however at
the cost of additional computation which may be hard in
the NISQ era. To leverage a trade-off between the ad-
vantages and disadvantages of both methods, an accel-
erated version of VQE that interpolates between regular
measurements and quantum phase estimation has been
proposed (Wang et al., 2019).

Measurement-based VQE. In (Ferguson et al., 2020), the
authors present two strategies to implement the VQE al-
gorithm on a measurement-based quantum computer, an
alternative quantum computing paradigm that uses en-
tanglement as a resource and achieves the desired com-
putation by performing particular sets of local measure-
ments (see (Briegel et al., 2009) for a review). They
propose a way to generate the needed variational state
families using measurements on a highly entangled state
and provide equivalence between the measurement- and
gate-based schemes.

Reusing qubits in VQE. A recent proposal suggested a
VQE method that relies on fewer qubits by re-using some
of them (Liu et al., 2019). The core idea is to represent
a virtual N qubit state by R + V < N physical qubits,
where R qubits have to be reusable qubits, e.g. they can
be measured and re-initialized during the circuit runtime.
These intermittent measurements are possible on current
ion trap hardware (Pino et al., 2020). The R + V qubits
are entangled by a PQC, then R qubits are measured and
the outcome is recorded. The R qubits are re-initialized
to the ∣0⟩

⊗R state, and again entangled with the V other
qubits by another PQC. This procedure is repeated un-
til in total N qubits have been measured. The concept
and expressiveness of this type of ansatz is the same as
Tensor networks methods such as MPS, which have been
highly useful for the classical calculation of many-body
problems, and open up a way to perform quantum com-
puting of many qubits on devices with a limited number
of qubits.

Adiabatically assisted VQE. The ground state of more
challenging Hamiltonians can be difficult to find for stan-
dard VQE due to convergence to local minima instead of
the global minima of the energy. To alleviate this, quan-
tum annealing (see Sec. III.A) can be used to adiabat-
ically assist the optimization procedure, as proposed in
the adiabatically assisted VQE (Garcia-Saez and Latorre,
2018). This approach uses an objective function O(s) =
⟨0∣U †(θ)H(s)U(θ) ∣0⟩, where H(s) = (1 − s)H0 + sH1.
Here, H0 is a Hamiltonian with easily preparable ground-
state and the goal is to find the ground state of a Hamil-
tonian H1. In this algorithm, VQE is run for multiple
discrete steps sn. One starts with s0 = 0 and finds the
minimal parameters θ∗0 of the objective function O(s0).
Then, θ∗0 is used as initial guess for VQE for the next in-
creasing step s1 = s0 +∆s with objective function O(s1).
This procedure is repeated until s = 1 is reached. This ap-
proach eases the optimization task, as the initial Hamilto-
nian H0 is a simple Hamiltonian with a ground state that
can be easily found via optimization. For small steps ∆s,
the ground state of the Hamiltonian H(s) and H(s+∆s)
will not differ too much, making the optimization task at
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every step less challenging compared to directly solving
forH(1). Previous works (McClean et al., 2016) also sug-
gest using adiabatically prepared states as initial states
of a VQE algorithm (see Sec. II.B).

4. Variational quantum eigensolver for excited states

The methods of VQE have been extended to obtain the
excited states of a given Hamiltonian. Finding excited
states or the spectrum of a Hamiltonian is an important
problem in quantum chemistry and many-body physics.
Various proposals have been put forward.

Folded spectrum method. A straightforward way of cal-
culating excited states is the folded spectrum method
proposed by (Peruzzo et al., 2014). To find an excited
state of a Hamiltonian H with approximate energy λ, the
above-defined VQE method is here applied to the objec-
tive function C(θ) = ⟨(H − λ)

2
⟩U(θ) . VQE will target

the eigenstate with an energy that is closest to λ. This
method requires approximate knowledge of the energy of
the excited state that one wants to find, as well as es-
timating ⟨H2⟩, which may require an excessively large
number of measurements to be performed.

An extension of this method can also be used to find
states that are constrained to a specific value of the
conserved quantity of the problem, such as total parti-
cle number or magnetization (Ryabinkin et al., 2018a).
Here, one defines the objective function C(θ) = ⟨H⟩U(θ)+
∑i µi(⟨Si⟩U(θ)−si)

2, where Si is the operator correspond-
ing to the conserved quantity, and si is the target value
of that quantity. Note, that this does not restrict the
target space to be an eigenstate of Si.

Orthogonally constrained VQE. Excited states can be
found by constraining the VQE objective function such
that it penalizes the ground state (Higgott et al., 2019).
First, one finds an approximation to the ground state
of Hamiltonian H via VQE with θ0 = arg minθ⟨H⟩U(θ)
and approximated ground state ∣ψ(θ0)⟩ = U(θ0) ∣0⟩.
Then, one uses this information to formally project out
the approximate ground state to find the next high-
est excited state. One defines the Hamiltonian H1 =

H + a ∣ψ(θ0)⟩ ⟨ψ(θ0)∣, with some sufficiently large pos-
itive parameter a. The ground state of H1 then corre-
sponds to the first excited state of H and can be found
with a VQE. This procedure can be repeated to find
higher excited states up to any order by sequentially ac-
cumulating the projector terms of all states found. The
Hamiltonian for the k-th excited state is then given by
Hk =H+∑

k−1
i ai ∣ψ(θi)⟩ ⟨ψ(θi)∣. Combined with the uni-

tary coupled-cluster ansatz, the orthogonally constrained
VQE can find excited states of small molecules (Higgott

et al., 2019; Lee et al., 2018). It was further extended for
adaptive circuit construction (Kottmann et al., 2021a)
and imaginary time evolution (Jones et al., 2019).

The projector term requires calculating the overlap
∣⟨ψ(θ)∣ψ(θ0)⟩∣, which can be achieved for example by
the SWAP test, by applying the inverse of the circuit
that generated the ground state ∣ ⟨0∣U †(θ)U(θ0) ∣0⟩ ∣

2, or
randomized measurements (Elben et al., 2020). An al-
ternative approach that relies on a discriminator circuit
that is trained in parallel to distinguish between the ex-
cited state to be learned and previously found lower-lying
states has been proposed (Tilly et al., 2020) and demon-
strated on a small model system. Scalable proposals still
remain an open research question. Since the projector
term does not require the overlap itself, but the absolute
square of it, it can be computed with the help of Eq. (5)
by computing the fidelity of the current trial state with
the previously found states (Kottmann et al., 2021b; Lee
et al., 2018).

Subspace expansion. The subspace expansion method
was introduced in Sec. V.A.3 for error mitigation. This
method can be also used to find excited states (McClean
et al., 2017) and it was demonstrated for a small molecule
in (Colless et al., 2018). After finding the ground state of
a Hamiltonian H with VQE, one follows the steps that
were detailed in Sec. V.A.3. One expands the prepared
quantum state with different appropriate operators that
match the low-energy excitations of H and generates a
set of states that span the low-energy subspace. Then,
overlaps between the states are measured, which are then
used to solve a generalized eigenvalue problem on a clas-
sical computer. The eigenvalues and eigenstates give the
excited states of the Hamiltonian. For quantum chem-
istry problems, the subspace expansion method was also
proposed for including dynamical correlations to ground
states over external corrections (Takeshita et al., 2020),
in the spirit of classical quantum chemistry methods, like
for example CAS-CI (Roos et al., 1980).

An alternative approach, the expansion in the subspace
can also be accomplished by real-time evolving a refer-
ence state and picking states at different evolution times
as a basis for expansion (Stair et al., 2020). This is moti-
vated by the fact that the time evolution can be seen as
an approximate Krylov expansion of the quantum state.
Then, one proceeds to solve the generalized eigenvalue
problem to find eigenstates and eigenvalues of the Hamil-
tonian.

Subspace-search VQE/State-averaged VQE. The core idea
of a subspace-search VQE (SSVQE) (Nakanishi et al.,
2019) or state-averaged VQE (SAVQE) (Arimitsu et al.,
2021; Yalouz et al., 2021) is to minimize the energy of
a PQC U(θ) over a set of orthogonal quantum states.
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The goal is to find the k-th eigenstates with the lowest
eigenenergy of a Hamiltonian H. In the weighted SSVQE
the cost function is

L(θ) =
k

∑
j=1

wj ⟨ϕj ∣U
†
(θ)HU(θ) ∣ϕj⟩ , (75)

where {∣ϕj⟩}
k
j=0 is a set of k easily preparable mutu-

ally orthogonal quantum states (with ⟨ϕi∣ϕj⟩ = δi,j)
and {wj}j are positive real numbers with wi > wj for
i < j. Minimizing θ∗ = arg minθL(θ) to its global
minimum gives us the ground state and excited states
∣ψj⟩ = U(θ) ∣ϕj⟩, where j = 1 is the ground state and
j > 1 the excited states sorted in ascending order. This
algorithm gives all k eigenstates in a single optimization
routine. Note however that the more states to be op-
timized, the more complex the optimization landscape
and the effort to minimize becomes. An alternative for-
mulation of the algorithm to find specifically the k-th
lowest eigenstate is the unweighted SSVQE. Here, one
minimizes L1(θ) = ∑

k
j=1 ⟨ϕj ∣U

†(θ)HU(θ) ∣ϕj⟩. How-
ever, due to the absence of weights, the found states
∣ψ′j⟩ = U(θ∗) ∣ϕj⟩ for minimal θ∗ are not proper eigen-
states of H, but are superposition states that span the
subspace of the k lowest energies. As final step to find the
k-th eigenstate, one fixes θ = θ∗ to its minimized value,
and then maximizes φ∗ = maxφL2(φ), with L2(φ) =

∑
k
j=1 ⟨ϕj ∣V

†(φ)U †(θ∗)HU(θ∗)V (φ) ∣ϕj⟩ and V (φ) be-
ing a unitary that acts only on the Hilbert space of the
k lowest eigenstates. Then, for the maximized φ∗, the k-
th lowest eigenstate is given by ∣ψk⟩ = U(θ∗)V (φ∗) ∣ϕk⟩.
Besides general applications that involve excited states,
state-averaged orbital-optimized VQEs (SA-OO-VQE)
were proposed to treat chemical systems that require a
“democratic description of multiple states” as for example
necessary in the vicinity of conical intersections (Yalouz
et al., 2021). Here, “democratic description” corresponds
to treating degenerate or quasi-degenerate states on the
same footing.

Multistate contracted VQE. This algorithm combines the
non-weighted SSVQE with the subspace expansion to
find the ground state and excited states (Parrish et al.,
2019a). First, one runs the non-weighted SSVQE routine
to find the unitary U(θ∗) to find k states that span the
subspace of the k smallest eigenvalues ∣ψ′j⟩ = U(θ∗) ∣ϕj⟩.
Then, to find the correct eigenstates, one runs the sub-
space expansion and measures the overlap matrix Hij =

⟨ψ′i∣H ∣ψ′j⟩, and diagonalizes it to find estimates of the k
lowest eigenenergies and eigenstates.

Fourier transform of evolution. Recent experiments have
determined the spectra of molecular and many-body
Hamiltonians using superconducting processors (Aleiner

et al., 2020; Quantum et al., 2020; Roushan et al., 2017).
A particular method to determine the eigenenergies of
Hamiltonians via Fourier transforming the dynamics of
observables has been applied in (Aleiner et al., 2020;
Roushan et al., 2017). The idea is to prepare a Fock state
that has overlap with the eigenstates whose eigenvalues
one wants to calculate. The Fock state is then evolved in
time with the Hamiltonian and specific observables are
measured over a range of time. The Fourier transform
of the time evolution of the observables can be used to
deduce the eigenenergies of the Hamiltonian.

Witness-assisted variational eigenspectra solver (WAVES).
WAVES core idea is to use a single reference qubit as an
eigenstate witness to variationally find the ground state
and excited states (Santagati et al., 2018). A variational
ansatz applied to a reference state is chosen. Then, the
time evolution operator U(t) = exp(−iHt) is evolved on
the ansatz state as a control unitary CU(t), with the
control being the single qubit in a superposition state.
Then, full tomography is performed on the single qubit
to read out its von-Neumann entropy. If the variational
state is an eigenstate of the Hamiltonian H, then the en-
tropy is zero. Further, the energy of the state can be
estimated from the state of the qubit as well. The ansatz
is variationally updated using the information from the
qubit in an iterative fashion until the ground state is
found. Excited states can be found by applying an ap-
propriate excitation operator on the found ground state,
and then variationally minimizing the von-Neumann en-
tropy of the qubit. As the last step, the authors suggest
using the iterative phase estimation algorithm to further
improve the accuracy of the excited state as well as de-
termine its eigenvalue. This method requires implemen-
tation of a controlled time evolution operator, similar to
non-variational proposals (Jensen et al., 2020), which are
considered to be challenging for larger systems on NISQ
devices.

5. Hamiltonian simulation

A major application for quantum computers is the sim-
ulation of the dynamics of Hamiltonians for problems
such as many-body physics and chemistry. One stan-
dard approach for quantum simulation of Hamiltonians
is based on the Trotter-Suzuki expansion from Eq. (14),
where the evolving unitary is split up into small discrete
timesteps of efficiently implementable unitaries, which
can be run on the quantum computer. Naturally, the
depth of the quantum circuit increases polynomially with
the desired time to be evolved and target accuracy, which
may not be feasible on NISQ devices without access to
error correction. The relevant algorithms are reviewed
in the following. We remark that some necessary tools
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to simulate many-body interaction Hamiltonian (Bravyi
et al., 2008; Menke et al., 2019) has also been proposed.

Variational quantum simulator. VQA has been proposed
to solve dynamical problems in the NISQ era (Li and
Benjamin, 2017). The core idea is to iteratively update
an efficiently implementable variational quantum state
∣ψ(θ)⟩ with a new set of parameters θ → θ′ such that
it minimizes the error between the actual time evolu-
tion exp(−iHδt) ∣ψ(θ)⟩ for a timestep δt and the updated
variational state ∣ψ(θ′)⟩. The rules to update the param-
eters θ to solve the Schrödinger equation id/dt ∣ψ(t)⟩ =
H ∣ψ(t)⟩ can be found by the variational McLachlan’s
principle δ∣∣(d/dt + iH) ∣ψ(θ)⟩ ∣∣ = 0 with ∣∣ ∣ψ⟩ ∣∣ =

√
⟨ψ∣ψ⟩

and demanding that θ remains real-valued. One finds a
set of linear equations of motion Aθ̇ = C with

Ai,j = Re(∂θi ⟨ψ(θ)∣∂θj ∣ψ(θ)⟩),
Ci = Im(∂θi ⟨ψ(θ)∣H ∣ψ(θ)⟩) . (76)

At a given step of the iteration, one needs to measure
the elements of A and C using the Hadamard test or
methods from (Mitarai and Fujii, 2019) (see Sec. II.C),
and then update θ with the solution of the linear equa-
tion of motion by a small timestep δt. The solver can
be combined with adaptive strategies to reduce the com-
plexity of the Ansatz circuit (Yao et al., 2020c; Zhang
et al., 2020d).

VQS has been applied on the IBM quantum processor
to simulate energy transfer in molecules (Lee et al., 2021)
as well as to simulate a time-dependent Hamiltonian (Lau
et al., 2021a). A straightforward extension of the vari-
ational quantum simulator can be applied to solve the
Schrödinger equation in imaginary time (McArdle et al.,
2019a), for time-dependent problems (Yuan et al., 2019)
or for general linear differential equations (Endo et al.,
2020c; Kubo et al., 2020). Its implementation to open
quantum systems (Endo et al., 2020c; Yuan et al., 2019)is
discussed in Sec. VI.A.7. Using the hardware-efficient
structure of the PQC, it is possible to reduce the cost of
measuring theA and C matrices (Benedetti et al., 2020).
Alternatively, the projected - Variational Quantum Dy-
namics method (p-VQD) has been proposed to bypass
the measurement of aforementioned matrices (Barison
et al., 2021; Otten et al., 2019). Here, one variation-
ally maximizes the fidelity between the PQC ∣ψ(θ)⟩ and
the Trotter evolved state exp(−iHδt) ∣ψ(θ′)⟩. The opti-
mized PQC yields the state evolved by a time δt. This
algorithm is then repeated to gain evolution for longer
times. By appropriately choosing the evolution time δt,
barren plateaus can be avoided (Haug and Kim, 2021b).

Subspace variational quantum simulator. The subspace
variational quantum simulator (SVQS) (Heya et al.,
2019) builds upon the idea of the SSVQE (Nakanishi

et al., 2019) introduced earlier in Sec. VI.A.4. The core
idea is to rotate the initial state to be evolved onto the
low-energy subspace found by the weighted SSVQE, then
evolve it in time within the subspace, and then apply
the reverse mapping. First, run the weighted SSVQE by
preparing k initial states {∣ϕj⟩ = σ

x
j ∣0⟩}

k

j=0
which are or-

thogonal with each other (⟨ϕi∣ϕj⟩ = δi,j) and lie in the
computational subspace, as well as a PQC U(θ). Now
as in the weighted SSVQE minimize Eq. (75). Then,
prepare an initial state ∣ψin⟩ to be evolved, which is
encoded into the computational subspace by applying
the Hermitian conjugate of the obtained circuit U †(θ).
Here, the evolution of the state in time is performed
by applying single-qubit rotations on each qubit T (t) =

⊗j RZ(−Ejt), where {Ej}j are the eigenenergies of the
eigenstates {∣Ej⟩}j obtained by SSVQE earlier. Finally,
the state T (t)U †(θ) ∣ψin⟩ in the computational subspace
is reverse mapped by applying U(θ), giving the evolved
state

∣ψ(t)⟩ = U(θ)T (t)U †
(θ) ∣ψin⟩ . (77)

This method has the key advantage that since the evo-
lution is directly implemented as simple rotations in the
computational subspace, the circuit depth is independent
of the evolution time to be simulated. However, the ini-
tial SSVQE optimization can be difficult, especially when
one considers many eigenstates k.

Variational fast forwarding. Similar to the idea of the
SVQS, variational fast forwarding (VFF) relies on the
idea of evolving a quantum state in time exp(−iHt)
within a diagonal subspace, such that an enhanced evo-
lution time can be achieved (Cirstoiu et al., 2020). First,
a circuit that implements a small timestep of the desired
evolution is implemented as V (δt) = exp(−iHδt). Then,
an approximate diagonal factorization of V (δt) is trained
for a particularly structured variational circuit

U(θ,γ, δt) =W (θ)D(γ, δt)W †
(θ) . (78)

Here, D(γ, δt) is composed of commuting unitaries and
chosen to parameterize the eigenvalues of unitary V (δt),
whereasW (θ) represents its eigenvectors. Then, the evo-
lution to an arbitrary time T = Nδt, where N is some
integer, is found by fast forwarding with U(θ,γ,Nδt) =
W (θ)DN(γ, δt)W †(θ). For the training of the varia-
tional Ansatz, the fidelity between V (δt) and U(θ,γ, δt)
is maximized by a quantum-classical feedback loop with
a cost function that uses the local Hilbert-Schmidt
test (Khatri et al., 2019). As alternative approach, it
was proposed to diagonalize the Hamiltonian H instead
of the unitary V (δt), and fast forward via U(θ,γ, T ) =

W (θ) exp(−iD(γ)T )W †(θ) (Commeau et al., 2020).
Fast-forwarding can also be performed without being re-
quired to train via a feedback loop using the linear com-
bination of states approach (Eq. (42)) (Lim et al., 2021).
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Quantum Assisted Simulator. The VQS algorithm em-
ploys a classical-quantum feedback loop to update the
parameters of the PQC. Until the classical processor
has calculated its output, the classical-quantum feedback
loop delays any use of the quantum device, slowing the al-
gorithm on the current cloud computing framework. The
VQS algorithm, as well as its VQE based variant, i.e.
SVQS share similarities and most of the concerns faced
by VQE, such as the barren plateau issue (see Sec. IV.A).
Further, the VQS algorithm requires controlled-unitaries,
which make it difficult to realize for current-term de-
vices. To tackle the issues faced by VQS, the quantum
assisted simulator (QAS) was suggested recently (Bharti
and Haug, 2021b). The QAS algorithm does not need
any classical-quantum feedback loop, can be parallelized,
evades the barren plateau problem by construction, sup-
plies a systematic approach to constructing the ansatz,
and does not require any complicated unitaries.

The QAS algorithm shares its approach with IQAE
(see Sec. III.E). The ansatz is given as a linear com-
bination of states ∣φ (α(t))⟩ = ∑∣ψi⟩∈CSK

αi(t)∣ψi⟩ (see
Eq. (42)), with classical coefficients α(t) for ansatz state
∣ψi⟩, which can be systematicly constructed (see Defini-
tion 3). The Hamiltonian H is given as a linear combi-
nation of unitaries (see Eq. (43)). The QAS algorithm
employs Dirac-Frenkel principle to obtain the following
classical evolution equation for α(t)

E
∂α(t)

∂t
= −ιDα(t). (79)

Here, Ei,j = ⟨ψi∣ψj⟩ and Di,j = ∑k βk⟨ψi∣Uk ∣ψj⟩ are over-
lap matrices that can be efficiently measured on a quan-
tum computer, i.e. for H given as combination of Pauli
strings, the overlaps are measurement of Pauli strings.

Recently, QAS was run on the IBM quantum computer
and showed superior performance compared to Trotter
and VQS for a time-dependent Hamiltonian (Lau et al.,
2021a). A novel Hamiltonian simulation algorithm based
on truncated Taylor series was proposed recently (Lau
et al., 2021b). The classical post-processing in the afore-
mentioned algorithm corresponds to a QCQP.

6. Quantum information scrambling and thermalization

Quantum information scrambling is a quantum phe-
nomenon occurring when initially local states become in-
creasingly non-local with the time-evolution of the sys-
tem. It can be analyzed by computing the so-called out-
of-time-ordered correlation function (OTOC) and has
strong implications in thermalization in closed quantum
systems dynamics. Recent experiments have been carried
out to study this phenomenon in a few qubits trapped-
ion devices and simulators (Joshi et al., 2020; Landsman
et al., 2019), and in a 53 superconducting qubit proces-
sor (Mi et al., 2021). The algorithms proposed are based

on the well-known teleportation algorithm and use single
and two-qubit gates to reproduce the scrambling process.

In the context of VQAs, a variation of the VQE al-
gorithm has been proposed to obtain the thermal evo-
lution of quantum systems (Verdon et al., 2019b). The
authors present the Quantum Hamiltonian-Based Mod-
els (QHBM), an extension of the VQA’s PQC to mixed
states instead of pure states. Within this approach, the
QHBM is classically trained to learn a mixed state dis-
tribution as a function of the optimization parameters.
A direct application of such a model is the Variational
Quantum Thermalizer (VQT), an algorithm which goal
is to prepare a fixed-temperature thermal state of a given
Hamiltonian.

The limitations of using variational QML algorithms
to learn a scrambling unitary have also been studied in
(Holmes et al., 2020), where it is found trainability issues
related with barren plateaus (see Sec. IV.A).

7. Simulating open quantum systems

In the following, we deal with the physics of open quan-
tum systems (Huh et al., 2014) which are well-described
by the Lindblad master equation from Eq. (52).By sam-
pling from a mixture of pure state trajectories evolved
by a non-Hermitian Hamiltonian and random quantum
jumps, one recovers the Lindblad dynamics.

Trotter simulation of open systems. NISQ quantum hard-
ware can be used to directly simulate the dynamics
of small-scale open systems by using ancillae combined
with measurements in the spirit of the quantum jump
method (Hu et al., 2020; Koppenhöfer et al., 2020). Here,
the unitary part of the dynamics is implemented via a
Suzuki-Trotter decomposition (see Sec. II.B). The non-
unitary part of the dynamics that encodes the interac-
tion with the external degrees of freedom is simulated
by entangling the circuit with ancillae and subsequently
measuring them. For every time step of the dynamics,
a new set of ancilla qubits has to be provided. Current
quantum computers based on superconducting circuits
do not allow one to measure and re-use qubits, thus re-
quiring a linear increase in the number of qubits with
every timestep. Further, in general, the circuit depth
scales polynomially with simulation time.

Generalized variational quantum simulator. In Ref. (Endo
et al., 2020c) the VQS algorithm is extended to sim-
ulate the method of quantum jumps in a variational
setting. They implemented the algorithm for 2D Ising
Hamiltonians for 6 qubits and observed a dissipation in-
duced phase transition. In another work (Yuan et al.,
2019), VQS is extended to mixed states and simulate the



43

Lindblad dynamics fully without the need of stochastic
sampling. The idea is to write the density matrix as
ρ = ρ (θ (t)) and simulate the evolution of ρ via evolution
of the parameters θ(t). One can re-express Eq. (52) as
d
dt
ρ = ∑i giSiρT

†
i , where Si and Ti are unitaries and gi

are coefficients. Using Dirac and Frenkel equation, the
evolution of parameters is given by

∑
j

Mi,j θ̇j = Vi, (80)

Mi,j = Tr [(∂iρ (θ(t)))
†
∂jρ (θ(t))] (81)

Vi = Tr
⎡
⎢
⎢
⎢
⎣
(∂iρ (θ(t)))

†
∑
j

gjSjρT
†
j

⎤
⎥
⎥
⎥
⎦
. (82)

This method can also be extended to deep quantum neu-
ral network type ansatzes (Liu et al., 2020b).

These algorithms, however, suffer from the canonical
drawbacks of the VQS algorithm, such as the requirement
of a feedback loop, trainability issues and necessity of
controlled unitaries.

Generalized quantum assisted simulators. Recently,
the generalized quantum assisted simulator (Haug and
Bharti, 2020) was proposed as extension of the quantum
assisted simulator to tackle above issues (see Sec. VI.A.5).
Instead of using a density matrix, the generalized quan-
tum assisted simulator algorithm introduced the concept
of “hybrid density matrix”

ρ̂ =∑
k,l

βk,l∣ψk⟩⟨ψl∣ (83)

for βk,l ∈ C and ∣ψl⟩ are chosen from the set of cumu-
lative K moment states (see Definition 3). A classical
device stores the coefficients β and the quantum states
correspond to some quantum register. A hybrid den-
sity matrix is a valid density matrix, if Tr (ρ̂) = 1 and
ρ̂ ≽ 0. Note that the normalization condition is fulfilled
when Tr (ρ̂) = Tr (βE) = 1, where Ek,l = ⟨ψk ∣ψl⟩. Using
Dirac-Frenkel principle, the simulation of open system
dynamics for the hybrid density matrix is given by

E
d
dt
β(t)E = −ι(Dβ(t)E − Eβ(t)D)+

K

∑
n=1

γn(Rnβ(t)R
†
n −

1

2
Fnβ(t)E −

1

2
Eβ(t)Fn), (84)

where Dk,l = ⟨ψk ∣H ∣ψl⟩, Rnk,l = ⟨ψk ∣Ln∣ψl⟩ and Fnk,l =
⟨ψk ∣L

†
nLn∣ψl⟩. For a given choice of ansatz, the quantum

computers only have to compute the overlap matrices
as measurements of Pauli strings. Then, the classical
computer uses this information to simulate the dynamics.
There is no quantum-classical feedback loop, which on
the currently available quantum computers can speed up
computations substantially.

8. Nonequilibrium steady state

Unlike the previous Sec. VI.A.7, we concern the physics
of open quantum system that is out-of-equilibrium in na-
ture, which is common in designing devices for molecular-
scale electronics (Xiang et al., 2016), excitonic trans-
port (Kyaw et al., 2017) as well as quantum thermody-
namics (Vinjanampathy and Anders, 2016). By “out-of-
equilibrium”, we mean that a quantum system and bath/s
are constantly driven by external forces such as voltage
differences, during which the composite particles of the
system and bath are also interacting with each other.

Notice that the method used in the previous
Sec. VI.A.7 would also lead to extremely high dimen-
sional matrices in the Lindblad like master equation ap-
proach dρ̂/dt =

ˆ̂
Lρ̂ (see Sec. V.A.1, Eq. (52)), and it

deems impossible to capture all the degrees-of-freedom
involved. However, one may relax some of the constraints
involved in the problem setup, say time-independent dis-
sipation and non-interaction among particles with a small
system size. The steady state density matrix of a quan-
tum system ρ̂SS at the limit t → ∞ is then given by
solving

ˆ̂
L ∣ρ̂SS⟩ = 0, (85)

or equivalently ˆ̂
L† ˆ̂
L ∣ρ̂SS⟩ = 0. A recent study (Yoshioka

et al., 2020) has shown that with ancilla qubits, the above
non-Hermitian superoperator ˆ̂

L can be simulated. The
main idea is to map the density matrix of N qubits onto
a vector of twice the number of qubits 2N

ρ̂ =∑
ij

ρij ∣i⟩ ⟨j∣→ ∣ρ̂⟩ =∑
ij

ρij

C
∣i⟩P ∣j⟩A , (86)

where C =
√
∑ij ∣ρij ∣

2. By using a digital
quantum computer and the variational approach
one iteratively minimize the expectation value of
a parameterized density matrix ∣ρθ⟩ = U(θ) with
minθ ⟨0∣

⊗2N
U †(θ)

ˆ̂
L† ˆ̂
LU(θ) ∣0⟩

⊗2N . A drawback of this
approach is that measuring expectation values from the
parameterized density matrix directly is difficult and thus
requires an additional transformation.

Beyond the Lindblad master equation, to capture
and describe truly the “out-of-equilibrium” processes,
the nonequilibrium Green’s function (NEGF) formalism
(Dalla Torre et al., 2013; Sieberer et al., 2016; Stefanucci
and Van Leeuwen, 2013) is commonly used. These exist-
ing Green’s function techniques are very complicated to
be solved. Many assumptions need to be made in order to
have some closed-form and do some calculations. In par-
ticular, it requires that the interaction among particles
is weak such that one does not need to find higher-order
Feynman diagrams in finding the self-energy functional.

Since some of the existing quantum algorithms pro-
vide promising speedup over classical ones, one may
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wonder to use quantum algorithms to solve the NEGF,
with a strategy of leaving classically hard computational
tasks to the quantum processor and feeding its output
back to a classical computer, which could be done in a
variational fashion. There exists a number of propos-
als (Endo et al., 2020b; Jaderberg et al., 2020; Kreula
et al., 2016) in the literature that undertakes such a hy-
brid quantum-classical approach. However, these meth-
ods assume no interaction among composite particles. In
a generic open quantum system in which many-body ef-
fects cannot be neglected, one would like to go beyond
those assumptions. It is yet to see any quantum advan-
tage of those near-term quantum algorithms over exist-
ing methods (Fitzpatrick et al., 2017; Härtle et al., 2008;
Li et al., 2016) for solving nonequilibrium steady-state
solution of an extremely complex physical setup such
as vibrationally-coupled electron transport with multiple
electronic levels (Härtle et al., 2008).

9. Gibbs state preparation

Finding the ground state of quantum Hamiltonians is
known to be QMA-hard. Under reasonable assumptions,
preparing Gibbs state corresponding to arbitrarily small
temperatures is as challenging as the Hamiltonian ground
state problem. Gibbs state preparation has applications
in many areas including quantum annealing, quantum
SDP solvers, Boltzmann training and simulation of equi-
librium physics. For a Hamiltonian H, the Gibbs state
at temperature T (with kB = 1) is given by

ρ(T ) =
exp (−H

T
)

Tr (exp (−H
T
))
. (87)

Some of the approaches to prepare Gibbs state are men-
tioned in the following

1. Starting with d-dimensional maximally mixed state
Id
d
, under imaginary time evolution for time τ, one

gets Gibbs state corresponding to temperature T =
1
2τ

(Verstraete et al., 2004).

2. One can start with maximally entangled state ∣ξ⟩d =
1√
d
∑j ∣j, j⟩AB of a system combined of two equally

sized subsystems A and B, and evolve it under
imaginary time evolution using Hamiltonian H⊗I.
After tracing out system B, the state of system A
at time τ is given by Gibbs state corresponding to
temperature T = 1

2τ
.

3. The Gibbs state of a system is the density matrix
which corresponds to a minimum of its free energy.
Thus, one can variationally tune the parameters of
a parametrized density matrix such that it leads to
minimization of free energy.

Recently, a few NISQ algorithms for Gibbs state prepara-
tion have been proposed, which apply the aforementioned
ideas. In (Yuan et al., 2019), authors used VQS based
imaginary time evolution to prepare Gibbs state follow-
ing the second approach. The first approach does not
work in VQS based imaginary time evolution. In another
work (Chowdhury et al., 2020), the third approach was
used to prepare Gibbs states. The aforementioned works
require complicated controlled unitaries and a classical-
quantum feedback loop. In (Haug and Bharti, 2020),
QAS based imaginary time evolution (see Sec. VI.A.5)
was suggested to prepare the Gibbs state with either first
or second approach. The QAS approach does not require
any classical-quantum feedback loop or complicated con-
trolled unitaries. Using random circuits as initial state,
(Richter and Pal, 2020) suggested an approach based on
imaginary time evolution prepare Gibbs state.

10. Simulation of topological phases and phase transitions

NISQ devices can be used to study the ground states
of quantum Hamiltonians for understanding topologi-
cal phases and phase transitions. An important exam-
ple is the one-dimensional cluster Ising Hamiltonian, de-
scribing a symmetry-protected topological phase of mat-
ter. The ground state of this Hamiltonian is the one-
dimensional cluster state, which can be created by apply-
ing Hadamard gates to all qubits, followed by control-Z
gates on each pair of neighboring qubits. State tomog-
raphy and symmetry arguments were used to study the
entanglement measures of this state and to highlight its
topological nature (Azses et al., 2020; Choo et al., 2018).
A modified algorithm was implemented to simulate an
enlarged family of Hamiltonians and study the quantum
phase transition between topological and topologically-
trivial phases of matter (Smith et al., 2019a). NISQ de-
vices were also used to simulate the dynamics of funda-
mental models of quantum magnetism (Bassman et al.,
2020; Smith et al., 2019b) and topological phases in one
and two dimensions (Mei et al., 2020).

11. Many-body ground state preparation

The preparation of non-trivial many-body quantum
states is crucial for many applications in quantum metrol-
ogy and quantum information processing (Kyaw et al.,
2014b). QAOA has been used as a resource-efficient
scheme for many-body quantum state preparation. In
this context, the state ∣ψ⟩ for a system with linear di-
mension L (e.g. L can refer to the number of spins in a
1D spin chain) is non-trivial if there is no local unitary
circuit U with depth O(1) which can generate ∣ψ⟩ from
a product state ∣φ⟩: ∣ψ⟩ = U ∣φ⟩ (Ho and Hsieh, 2019).
The Greenberger-Horne-Zeilinger (GHZ) state, which is
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an essential resource in several quantum metrology pro-
posals (Dür et al., 2014; Tóth and Apellaniz, 2014), is
an example of a non-trivial quantum state due to its
highly-entangled nature, and is the ground state of the
1D Ising Hamiltonian with periodic boundary conditions,
i.e. HP = −∑

L
i=1 σ̂

i
zσ̂

i+1
z

Using QAOA, it has been shown that the GHZ state
can be prepared efficiently with perfect fidelity using
p = L/2, where p is the QAOA depth (Ho and Hsieh,
2019). The authors conjectured that the ground state
of the 1D transverse-field Ising model with L even and
periodic boundary conditions, can be prepared perfectly
at any point in the phase diagram using QAOA with
p = L/2. The ground state of the antiferromagnetic
Heisenberg model with open boundary conditions HP =

∑
L−1
i=1 σ̂

i
⋅ σ̂i+1, where σ̂i ≡ (σ̂ix, σ̂

i
y, σ̂

i
z), has also been pre-

pared with near perfect fidelity using QAOA. Using a
long-range 1D Ising Hamiltonian HP = −∑i<j Jij σ̂z

iσ̂jz,
where Jij = J0/∣i − j∣

α, QAOA can achieve the ultrafast
preparation of a GHZ state with a circuit depth of O(1)
(for α = 0) (Ho et al., 2019). This result was generalized
by (Wauters et al., 2020a), which showed that QAOA
can prepare the ground states of the fully-connected fer-
romagnetic q-spin model (note that q is used here instead
of the conventional p in order to avoid confusion with the
QAOA depth p)

H = −
1

Nq−1
(
N

∑
i=1

σ̂iz)

q

− h(
N

∑
i=1

σ̂ix) (88)

with resources scaling polynomially with the number of
spins N . Since the system can encounter a first-order
phase transition where the spectral gap becomes very
small, QAOA greatly outperforms quantum annealing in
this instance since an exponentially long annealing time
is needed.

12. Quantum autoencoder

The quantum autoencoder (Romero et al., 2017)
(QAE) is a VQA for the compression of data on a quan-
tum computer. It finds a new data state representation
that requires fewer qubits than the data was originally
defined upon. This new encoding is said to be a repre-
sentation in the latent space. The process of transforming
the data into the latent space is referred to as encoding,
and the converse, transformation of states in the latent
space back onto the original, is known as decoding.

Training a QAE requires the minimization of an objec-
tive defined over several related quantum states. For a
set of n-qubit states {∣ψ⟩i}, the goal of the QAE is to find
a unitary circuit E(θ) which accomplishes the following
transformation

E ∶H
n
→H

k
⊗H

n−k
∣E ∣ψ⟩i = ∣φ⟩i ⊗ ∣0⟩

⊗(n−k)
, (89)

where k is the dimension of the latent space. Thus,
the application of a perfectly trained autoencoder to any
state of the relevant set yields a product state that con-
sists of the transformed state on k qubits with a (n− k)-
qubit “trash” state. In principle, the trashed state could
be any state, but the all-zero state is chosen for simplic-
ity.

The loss function of the QAE may be defined in several
ways. It is a fidelity loss function (see Sec. II.A), in which
minimization is performed by increasing the overlap be-
tween a (partial) measurement of the state resulting from
the application of the encoder and a known state. The
most practical definition for training the autoencoder,
called “trash training”, uses as its objective the overlap
between the “trash” qubits and the ∣0⟩

⊗(n−k) state. For-
mulated in the density matrix picture, the objective of
minimization is

O = −Tr(I⊗k ⊗ ∣0⟩⟨0∣⊗(n−k)ρi), (90)

where ρi = ∑i pi∣ψi⟩⟨ψi∣ with, in general, all states in the
set equally weighted.

The QAE can be trained by training only the encoding
circuit, due to the unitarity of the encoder. The decoding
operation is achieved by the complex conjugate of the
encoder circuit. Improvements in the encoding results
translate to improvements in the decoder, a boon not
possessed by classical autoencoders.

After the successful training of a QAE, the encoder
and decoder circuits may be used for data transforma-
tion in further algorithms. Here, processing the data in
the latent space, in which the data is represented more
densely, may be beneficial for further applications.

A data re-uploading strategy to construct a QAE en-
coder is presented in (Bravo-Prieto, 2020), where the so-
called enhanced feature quantum autoencoder is trained
to compress the ground state of the 1-D Ising model as a
function of the external field and samples of handwritten
digits. The QAE has also been deployed experimentally
for the compression of qutrits on a photonic device (Pep-
per et al., 2019). Small states have been experimentally
compressed without loss on photonic devices in (Huang
et al., 2020a). (Bondarenko and Feldmann, 2020) de-
signed a QAE capable of denoising entangled quantum
states such as GHZ or W states which are subject to
spin-flip errors and random unitary noise.

13. Quantum computer-aided design

Two recent proposals use the computing power of
NISQ devices to improve the NISQ processors them-
selves. Here, techniques were developed to simulate
quantum hardware on a quantum computer (Kottmann
et al., 2020; Kyaw et al., 2020b). They establish the
paradigm of “quantum computer-aided design”, indicat-
ing that classically intractable simulations of quantum
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hardware properties can be performed on a quantum
computer, thereby improving the prediction of device
performance and reducing experimental testing cycles.

In the first approach, optical path modes are mapped
to sets of qubits and quantum optical elements are
mapped to digital quantum circuits for simulating pho-
tonic setups (Kottmann et al., 2020). The framework is
used to simulate a Boson sampling experiment and the
optimization of a setup for preparing high-dimensional
multipartite entangled states.

The second proposal introduces quantum simulation
techniques for superconducting circuit hardware (Kyaw
et al., 2020b). In this work, a circuit module consisting of
coupled transmon qubits is designed. The corresponding
superconducting circuit Hamiltonian, which is written on
a basis of multi-level operators, is efficiently mapped to
a set of data qubits (Sawaya et al., 2020). Simulations
of a multi-level extension to the VQE algorithm (Hig-
gott et al., 2019) is used to determine the spectrum of
the superconducting circuit. The resulting states and
eigenenergies are directly related to experimentally rele-
vant device characteristics and can be used to seed the
simulation of time evolution.

Device and setup design is a key challenge for im-
proving and scaling quantum systems. Therefore, dig-
ital quantum simulation of quantum processors will be a
relevant application for NISQ quantum computers when
classical resources become too small to capture the rele-
vant Hilbert space of the hardware.

B. Machine learning

Machine learning aims to enable a computer to act
without being explicitly programmed to do so. As per
Tom Mitchell (Mitchell, 1997), given some class of tasks
T and performance metric P, a computer program is said
to learn from experience E if

P(T )∝ E , (91)

i.e. its performance measured by P for task T increases
with E .

Depending on the kind of experience E permitted to
have during the learning process, the machine learning
algorithms are classified into three categories:

1. Supervised learning. Given a function y = f(x), the
goal is to learn f so that it returns the label y for
the unlabelled data x. A canonical example would
be pictures of cats and monkeys, with the task to
recognize the correct animal. Given training exam-
ples from the joint distribution P (Y,X), the task
of supervised learning is to infer the probability of a
label y given example data, x, i.e., P (Y = y∣X = x).

2. Unsupervised learning. The data is provided with-
out any label. The task is to recognize an under-

lying pattern in this data. Given access to several
examples x ∈ X the algorithm goal is to learn the
probability distribution P (X) or some important
properties of the aforementioned distribution.

3. Reinforcement learning. In this case, neither data
nor label is provided. The machine has to generate
data and improve the aforementioned data genera-
tion process via optimizing a given reward function.
This is similar to how a human child learns to walk.
If it fails, the output acts as a negative reward.

Machine learning has uncovered applications in physics
such as Monte Carlo Simulation (Huang and Wang, 2017;
Liu et al., 2017), many-body physics (Carleo and Troyer,
2017), phase transition (Wang, 2016), quantum founda-
tions (Bharti et al., 2019a), and state tomography (Torlai
et al., 2018) For a meticulous review on machine learn-
ing for physics, refer to (Bharti et al., 2020; Carleo et al.,
2019; Dunjko and Briegel, 2018).

Most of the success in machine learning come from the
use of artificial neural networks, structures capable of
learning sophisticated distributions and that encompass
multiple features that can be fine-tuned depending on
the problem to tackle. In that direction, there are sev-
eral proposals to define a model for quantum neural net-
works with different kind of activation functions (Schuld
et al., 2014; Torrontegui and García-Ripoll, 2019; Wan
et al., 2017). For implementations of artificial neurons
and artificial neural networks on the NISQ hardware, re-
fer to (Tacchino et al., 2020a, 2019).

The merger of quantum theory and machine learning
has recently led birth to a new discipline, known as quan-
tum machine learning (QML). Both algorithms that deal
classically with data from a quantum origin and quantum
algorithms that process quantum and classical data are
usually known as QML applications. However, in this re-
view, we will focus only on those algorithms that process
data quantum-mechanically, in particular, those that use
quantum algorithms that can be run in NISQ comput-
ers. For QML review that mainly focus on fault-tolerant
quantum algorithms check (Biamonte et al., 2017). For
a survey of quantum computational learning theory, re-
fer to (Arunachalam and de Wolf, 2017). An analysis of
QML from a classical ML perspective can be found at
(Ciliberto et al., 2018; Dunjko and Briegel, 2018), and
for near-term devices in (Benedetti et al., 2019b; Li and
Deng, 2021; Perdomo-Ortiz et al., 2018).

It might be surprising that a linear theory as quan-
tum physics can generate the non-linearities that a ma-
chine learning model needs. However, the linearity
of quantum mechanics comes from the dynamical part
(quantum states evolution) and one can encounter mul-
tiple sources of non-linearities arising from measurement,
post-selection or coupling the system with environment.
Quantum operations in the Hilbert space can also encode
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non-linear behaviour, as it will be shown with Kernel
methods.

In the following subsections, we will present the quan-
tum mechanical analogs of the three machine learning
categories defined above. The algorithms discussed will
be listed in Tab. II of the Supplementary Material.

1. Supervised learning

The two prominent methods to perform a supervised
learning classification task using a NISQ computer are
quantum Kernel estimation (Havlíček et al., 2019; Huang
et al., 2021; Kusumoto et al., 2019; Schuld and Killoran,
2019) and Variational Quantum Classifier (VQC) (Farhi
and Neven, 2018; Mitarai et al., 2018).

Classical Kernel methods include well-known machine
learning algorithms such as Support Vector Machines
(SVM) (Cortes and Vapnik, 1995), Principal Component
Analysis (PCA) or Gaussian Processes, among others.
The rich theoretical structure of Kernel methods can be
expanded to the quantum world by defining and working
in the Hilbert space with the quantum equivalent of fea-
ture vectors (Schuld and Killoran, 2019). To that aim,
one needs to modify and adapt the well-known theorems
to work in a quantum feature space. For more details
about classical Kernel methods we refer to (Hofmann
et al., 2008). A review on Kernel methods in the context
of QML can be found in (Mengoni and Di Pierro, 2019).
In the following lines, we will directly describe the quan-
tum versions of them. The basics of supervise learning
with quantum computers are presented in (Schuld and
Petruccione, 2018).

Given an input set X and quantum Hilbert space H,
data x ∈ X is encoded into a quantum state (quantum
feature vector) ∣Φ(x)⟩ by means of the quantum feature
map, i.e. Φ ∶ X →H. The inner product of two quantum
feature vectors defines a kernel

κ (xi,xj) ≡ ⟨Φ (xi) ∣Φ (xj)⟩H , (92)

for xi,xj ∈ X . In comparison with classical kernels, the
inner product is defined in a Hilbert space by replacing
the standard definition ⟨⋅, ⋅⟩ by the Dirac brackets ⟨⋅∣⋅⟩.
For a map Φ, the reproducing kernel Hilbert space takes
the form

Rφ = {f ∶ X → C∣ f(x) = ⟨w∣Φ(x)⟩H ,∀x ∈ X , ∣w⟩ ∈H} .
(93)

The orthogonality of ∣w⟩ w.r.t. ∣Φ(x)⟩ defines a decision
boundary, i.e. depending on the sign of the inner prod-
uct, x lies in one side of the hyperplane. The function
f is thus a linear function in H. The representer theo-
rem (Schölkopf et al., 2001) states that this function can
be approximated by the linear function f⋆ by using the

kernel defined above, i.e.

f⋆(x) =
D
∑
i=1

αiκ (x,xi) (94)

for an input dataset D. Using Eq. (94), one can solve a
convex optimization problem to get the coefficients αi.
The analysis so far entails the connection between linear
models in reproducing kernel Hilbert space with kernel-
ized models in the input space.

One can use a quantum computer to calculate the in-
ner product of feature mapped quantum states to obtain
the kernel κ. This kernel can be fed to a classical de-
vice, which can use Eq. (94) to obtain the coefficients αi,
for instance, by maximizing a cost function of the form
(Havlíček et al., 2019)

C(α) =
D
∑
i=1

αi −
1

2

D
∑
i,j

yiyjαiαjκ (xi,xj) , (95)

where yi are the labels of the training points and con-
strained to ∑Di=1 αiyi = 0. Ideas based on connections
between kernel methods and quantum circuit based ma-
chine learning has been used to justify that the models
for QML can be framed as kernel methods (Schuld, 2021).
For some of the other relevant works on quantum kernel
methods, refer to (Blank et al., 2020; Park et al., 2020).
A high-dimensional data classification experiment with
quantum kernel methods was carried out recently (Pe-
ters et al., 2021). The encoding of data into quantum
circuits is characterized by the quantum Fisher informa-
tion metric (Haug et al., 2021c). For hardware efficient
PQCs, the kernel can be related to radial basis func-
tion kernels (Haug and Kim, 2021b; Haug et al., 2021c).
Measuring the quantum kernel using the SWAP or in-
version test scales as D2. Using randomized measure-
ments (Elben et al., 2020), the kernel can be computed
in a time that scales linearly with the dataset size D,
which allows for processing large datasets with quantum
computers (Haug et al., 2021c).

Also, a Gaussian Boson Sampling device (see
Sec. III.B) can be used for computing kernel functions
(Schuld et al., 2020b).

Another approach is to use a variational circuit U(θ)
and directly perform the classification task in the repro-
ducing kernel Hilbert space, without using Eq. (94). This
approach is sometimes referred as a variational quan-
tum classification. Data is also embedded into the state
∣Φ(x)⟩ and then processed with a PQC U(θ). The resul-
tant state becomes

∣Ψ(x,θ)⟩ = U(θ)∣Φ(x)⟩, (96)

which parameters are estimated by training it to match
the target states ∣yi⟩ that represent the yi labels of the
training points, i.e. by minimizing the infidelity

C(θ) =
D
∑
i=1

(1 − ∣⟨yi∣Ψ(xi,θ)⟩∣
2) . (97)
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Both methods require a way to encode the data into a
quantum state. There are several strategies to define the
quantum feature map. It is a key step in the success of
the classification task, as the needed non-linearities must
come from it. Furthermore, to eventually obtain any
quantum advantage, one should search from the set of
classically intractable feature maps. One of the first pro-
posed approaches was the amplitude encoding (Schuld
et al., 2016) also required in other quantum algorithms
(Harrow et al., 2009). This approach encodes the classi-
cal data points into the amplitudes of a quantum state,
i.e. ∣Φ(x)⟩ = ∑i xi∣ei⟩, where ∣ei⟩ are the basis states.
However, this raw encoding requires i) knowing which
gates can be used to perform this operation for general
data points and ii) having an efficient way to extract and
process these amplitudes. Although the first point can
eventually be overcome by using similar approaches as
the ones used to define a PQC, the second one requires
tools as QRAM (Giovannetti et al., 2008), experimen-
tally challenging for the NISQ era. The studies towards
QRAM in (Park et al., 2019a) proposed an approach to
update classical data consisting of M entries of n bits
each using O(n) qubits and O(Mn) steps. A forking-
based sampling scheme was suggested in (Park et al.,
2019b) to reduce the resource requirements for state
preparation for tasks involving repeated state prepara-
tion and sampling. At the moment of writing, building
a QRAM remains challenging and further investigations
are required.

In general, the encoding strategies used in state-of-the-
art algorithms are based on introducing classical data
points into the parameters of the quantum circuit gates.
As briefly mentioned in Sec. II.B, one designs a state
preparation circuit E that encodes the data points,

∣Φ(x)⟩ = E(x,φ)∣0⟩. (98)

The use of φ parameters is optional and they can be
subject to the optimization subroutine too.

Typically, the encoding gates are designed using the
same structure of a layer-wise PQC from Eq. (22). Data
points are introduced in layers of single-qubit rotational
gates R, as defined in Eq. (13), followed by an entangling
gate unitary W , e.g.

E(x) =
LE

∏
k=1

(
n

⊗
i=1

Rk(xi))Wk, (99)

with LE being the total number of encoding layers. Then,
the whole Variational Quantum Classifier (VQC) is com-
posed of the encoding circuit and a processing circuit
UV QC(θ,x) = E(x)U(θ) which is optimized for the re-
spective task.

Alternatively, some works propose to remove the dis-
tinction between the encoding E and processing U cir-
cuits and introduce the data values along the circuit
(Lloyd et al., 2020; Nghiem et al., 2020; Pérez-Salinas

et al., 2020a; Schuld et al., 2020c; Vidal and Theis,
2019). This strategy, sometimes called input-redundancy
or data-reuploading, introduce the data in all circuit lay-
ers, e.g.

UV QC(θ,x) =
L

∏
k=1

(
n

⊗
i=1

Rk(xi,θ))Wk, (100)

where L is now the total number of circuit layers. This
strategy has been proven to be universal when applied
to one qubit (Pérez-Salinas et al., 2020a) and can recon-
struct the coefficients of the Fourier series (Schuld et al.,
2020c; Vidal and Theis, 2019).

The inclusion of encoding strategies and data re-
uploading can help well-known VQAs such as the VQE.
In general, one of the final goals of a VQE can be the
identification of interesting points on a potential energy
surface generated by a parametrized Hamiltonian. Com-
monly, one is interested in the ground state energy as a
function of some Hamiltonian parameter λ such as the in-
teratomic distance, however other properties such as the
energy gap between ground state and first excited state
are of interest as well (Kyaw et al., 2020b). To learn
the ground state energy as function of parameter λ, one
often scans discretely over λ for some particular inter-
val and runs a VQE to obtain the ground state energy
for each of these points. This can become an additional
computational cost, especially if we are interested only
in a particular region of the ground state profile such
as the parameter λmin where the ground state energy
is minimal. In that direction, some proposals suggest
to encode the parameters of the Hamiltonian into the
PQC and learn the energy profiles (Mitarai et al., 2019).
In particular, the Meta-VQE algorithm (Cervera-Lierta
et al., 2021a) proposes to encode the λ into the PQC
gates together with the optimization parameters. Then
one optimizes an objective function that corresponds to
the sum of expectation values for some M training λ
parameters, i.e. ⟨Ô⟩=∑

M
i=1⟨H⟩U(θ,λi). Once the circuit

has been optimized, one can run it again with the new
λi to directly extract an estimation of the ground state,
without having to optimize the full circuit again. An
extension of this approach is the optimized Meta-VQE
(opt-meta-VQE ), which consists of using the optimized
parameters from the Meta-VQE as starting points of a
standard VQE. This approach tries to avoid the vanishing
gradients problem (see Sec. IV.A) by starting in a partic-
ular region of the parameter space instead of a random
initialization.

Some VQC use additionally the definition of the target
state ∣yi⟩ to construct the objective function and opti-
mize the fidelity with respect to these states. The goal
of the quantum circuit is to divide and push the quan-
tum states that encode the data points into two or more
regions of the Hilbert space. To that aim, the param-
eters of the circuit are trained to match every encoded
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state into a particular representative of one of these re-
gions. Therefore, the more separated these regions are,
the lesser misclassified points are expected. As discussed
in Sec. II.C, measuring qubits implies a certain computa-
tional cost. For that reason, many proposals suggest to
use the state of only a single qubit to train the whole cir-
cuit (Farhi and Neven, 2018; Schuld et al., 2020a). The
cost function estimation reduces to measuring the prob-
ability distribution of one qubit. Other works use a more
sophisticated definition of these target states by select-
ing the most orthogonal states of the qubits space (Lloyd
et al., 2020; Pérez-Salinas et al., 2020a). This strategy
is inspired from optimal state discrimination (Helstrom,
1969).

Using the nonlinear character of quantum mechani-
cal processes as “reservoir”, the notion of quantum reser-
voir computing has been suggested. The reservoir is a
highly nonlinear system whose parameters are arbitrary
but fixed. One can perform reservoir computing by em-
ploying a basic training algorithm such as linear regres-
sion at the readout stage. Since the reservoir parameters
are fixed, only the readout stage parameters are trained.
The aforementioned idea utilizes the high nonlinearities
of the reservoir without requiring the high computational
cost of training. The concept of employing quantum sys-
tems as quantum reservoirs was first introduced in (Fujii
and Nakajima, 2017; Nakajima et al., 2019). Quantum
reservoir computing has been proposed for many exper-
imental platforms such as Gaussian states in the optical
set-up (Nokkala et al., 2020), two-dimensional fermionic
lattices (Ghosh et al., 2019) and nuclear spins (Negoro
et al., 2018). Quantum gate based implementation of
quantum reservoir computing for NISQ devices has also
been discussed (Chen et al., 2020a). A Gaussian Boson
Sampler (see Sec. III.B) can also be used for quantum
reservoir computing as suggested in (Wright and McMa-
hon, 2019) to perform machine learning tasks such as
classification. NISQ devices have also been used for re-
gression (Mitarai et al., 2018). Further, distance-based
classifiers using quantum interference circuits have been
proposed in (Schuld et al., 2017).

Quantum annealing has been also applied to super-
vised learning to predict biological data (Li et al., 2018).
Here, the quantum annealer is used to train the param-
eters of the classification model, which is done by map-
ping the problem of finding the optimal parameters to
the minimization of a QUBO.

2. Unsupervised learning

The use of quantum devices to speed up different unsu-
pervised learning tasks has been investigated thoroughly,
leading to different algorithms for generative modelling
(Benedetti et al., 2019a, 2016, 2017), clustering (Otter-
bach et al., 2017), among others (Lloyd et al., 2013). An

analysis of quantum speedup in unsupervised learning for
fault-tolerant algorithms is presented in (Aïmeur et al.,
2013). The task of learning probabilistic generative mod-
els in particular has been of interest to the QML commu-
nity, because of the potential advantage quantum com-
puters may exhibit over their classical counterparts in
the near future (Perdomo-Ortiz et al., 2018). For the ad-
vantages rendered by quantum correlations such as con-
textuality and Bell non-locality for generative modelling,
refer to (Gao et al., 2021).

Generative Modelling involves learning the underlying
probability distribution from a finite set of samples from
a data set, and generating new samples from the dis-
tribution. There have been several proposals for using
PQCs as models for generative learning (Amin et al.,
2018; Benedetti et al., 2019a, 2018), including quantum
Boltzmann machines, quantum circuit Born machines,
quantum assisted Helmholtz machines, quantum genera-
tive adversarial networks, amongst others (Amin et al.,
2018; Benedetti et al., 2019a,b, 2018). We discuss some
of these proposals in detail hereafter.

Quantum Boltzmann Machines. The quantum Boltz-
mann machine (Amin et al., 2018) (QBM) extends the
classical Boltzmann machine (Ackley et al., 1985), a neu-
ral architecture capable of several tasks including gener-
ative modeling of data. These models are inspired by
the Boltzmann distribution over the Ising model in the
classical case and the Boltzmann distribution over the
transverse-field Ising model for the quantum case. Such
a network consists of a mixture of visible and hidden ver-
tices, connected by weighted edges. The visible vertices
function as both input and outputs to the network, whilst
the hidden vertices add extra degrees of freedom to the
network.

The QBM can be modeled with the Hamiltonian

H = −
N

∑
a

(baσ̂
a
z + Γaσ̂

a
x) −∑

a,b

ωabσ̂
a
z σ̂

b
z, (101)

where ba, Γa, and ωab are the parameters to be fine-tuned
to generate the training data. The marginal probability
that the visible variables are in some state v is given by
Pv = Tr (Λvρ). Here, we define Λv = (⊗ν

1+vν σ̂νz
2

) ⊗ Ih
as a projector onto the subspace spanned by the visible
variables tensored with the identity acting on the hidden
variables and ρ = e−H

Z
as a density matrix with Z being

the usual partition function Z = Tr (e−H). The objective
of training the QBM is to match the family of probabil-
ity distributions Pv with the family inherent to the data
P data
v for arbitrary v. This is achieved by minimizing the

negative log-likelihood measure shown below

L = −∑
v

P data
v log

TrΛve−H

Tre−H
. (102)
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The gradients of L with respect to the Hamiltonian pa-
rameters are difficult to calculate by sampling the Boltz-
mann machine, both classically and in the quantum vari-
ant. Methodologies of approximating these gradients are
necessary to advance the deployment of QBMs.

The QBM can be trained to be a generator or a dis-
criminator with respect to the distribution it is trained to
mimic. Consider the joint distribution of input and out-
put variables x and y respectively. In the discriminative
case, the objective is to minimize negative log-likelihood
with respect to Py∣x. For generative learning, the goal is
to learn the joint distribution Px,y directly.

The implementation of the QBM designed by (Amin
et al., 2018) found that a ten qubit QBM with only visible
vertices is able to learn a mixture of randomly generated
Bernoulli distributions more effectively than a classical
Boltzmann machine and performed better in generative
applications. (Kieferová and Wiebe, 2017) found that a
QBM outperformed classical Boltzmann machines in gen-
erative training to reproduce small Haar-random states.
Extensions of the QBM, such as the Variational Quantum
Boltzmann Machine (VQBM) (Zoufal et al., 2020), have
improved upon trainability. Using ideas similar to (Zo-
ufal et al., 2020), VQBM were also proposed in (Shingu
et al., 2020). Additionally, QBMs have shown poten-
tial in reinforcement learning (Crawford et al., 2019a)
where they achieve better fidelity compared to restricted
Boltzmann machines or deep Boltzmann machines with
multiple layers of hidden vertices. To suit NISQ de-
vices, (Verdon et al., 2017) suggested that QBMs can
be approximated using QAOA as a subroutine and (An-
schuetz and Cao, 2019) proposed an efficient method for
training QBMs with NISQ devices based on the eigen-
state thermalization hypothesis.

Quantum Circuit Born Machines. PQCs can function as
generative models to sample from probability distribu-
tions. The Quantum Circuit Born Machine (QCBM)
(Benedetti et al., 2019a) outputs bitstrings x sampled
from measurements in the computational basis of a quan-
tum circuit U(θ), with the probability of each bit string
given by the Born rule pθ(x) ∼ ∣ ⟨x∣U(θ) ∣0⟩ ∣2. The goal
is that the distribution of the QCBM matches the one
from a given target distribution.

QCBMs can prepare classical probability distribu-
tions as well as entangled quantum states by training
the QCBM to match the probability distribution corre-
sponding to the desired quantum state (Benedetti et al.,
2019a). In (Liu and Wang, 2018), training of QCBMs
using the gradients of a PQC was proposed using the
maximum mean discrepancy loss, which calculates the
difference of the sampled output from the quantum cir-
cuit and the desired distribution in a kernel feature space.

QCBMs are well suited to be run on current NISQ
hardware and can serve as benchmarks (Hamilton et al.,

2019; Leyton-Ortega et al., 2019; Zhu et al., 2019)
and have been applied to tasks such as generating im-
ages (Rudolph et al., 2020) or financial data (Alcazar
et al., 2020; Coyle et al., 2020a). It has been shown that
QCBMs can potentially outperform classical computers
as they are able to sample from probability distributions
that are difficult for classical computers (Coyle et al.,
2020b; Du et al., 2020).

Quantum Generative Adversarial Networks. Generative
adversarial learning (Goodfellow et al., 2014) has been a
major recent breakthrough in machine learning and has
become a powerful tool in the machine learning commu-
nity for image and video generation as well as materials
discovery. Generative adversarial networks (GANs) con-
sist of two networks, a generator FG(z; θg) and a discrim-
inator FD(x; θd). They are parameterized with θg and θd
respectively and play the following adversarial game

min
θg

max
θd

(Ex∼pdata(x)[log(FD(x)]

+Ez∼pz(z)[log(1 − FD(FG(z)))] .
(103)

Here, pz(z) is a fixed prior distribution, pdata(x) is the
target distribution, x is the data sampled from pdata(x),
and z is the noise sampled from pz(z). The training of
GANs is carried iteratively, until the generator produces
a distribution indistinguishable from the target distribu-
tion.

A quantum version of GANs was proposed theoreti-
cally in (Dallaire-Demers and Killoran, 2018; Lloyd and
Weedbrook, 2018) and further developed for near term
quantum devices in (Romero and Aspuru-Guzik, 2019;
Situ et al., 2020; Zeng et al., 2019), where PQCs are
used for adversarial learning instead of classical neural
networks.

The different adaptions of quantum GANs can be di-
vided into different categories depending on whether the
data and networks are classical or quantum (Romero and
Aspuru-Guzik, 2019). There have been different studies
with hybrid models of GANs using both classical and
quantum data and it has been shown that the train-
ing of these networks are robust to moderate level of
noise (Anand et al., 2020b).

The training of quantum GANs has been demonstrated
experimentally on various quantum processing units for a
variety of tasks including quantum state estimation (Hu
et al., 2019), image generation (Huang et al., 2020b,d),
generating continuous distributions (Anand et al., 2020b)
and learning distribution (Nakaji and Yamamoto, 2020b;
Zoufal et al., 2019).

3. Reinforcement learning

The general framework of reinforcement learning (RL)
involves an agent interacting with an environment at-
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tempting to maximize an underlying reward function.
The mathematics of RL can be captured using Markov
decision process (MDP) (Sutton and Barto, 2018). An
MDP is a 4-tuple (S,A,R,P ) , where S is the set of all
possible valid states; A is the set of all possible actions; R
is the reward function, i.e. a map R ∶ S×A×S → R; and P
is the transition probability, i.e. a map P ∶ S×A→ [0,1].
Specifically, the transition probability P (s̃∣s, a) repre-
sents the probability of the transition to state s̃ given
that the present state is s and the action a has been
taken. The term “Markov” in MDP means that the tran-
sitions are memory-less and depend only on the current
state and action. The agents in RL learn via trial and er-
ror. For a successful training, a proper balance between
the exploration of unknown strategies and the exploita-
tion of prior experience is required.

RL models are trained via agent-environment interac-
tion. At the beginning of time step t, the environment
state is st. From the set A, the agent selects an action at.
The transition probability dictates the next state of the
environment st+1 and the agent gets reward rt+1 based
on the reward function R. The agent-environment inter-
action yields a series of states and actions of the form
τ = (s1, a1, s2, a2,⋯, sH , aH) . The aforementioned series
is called a trajectory and the number of interactions (H)
in an episode is called horizon. Suppose the probabil-
ity of a trajectory is P (τ) and the corresponding cumu-
lative reward is Rtot (τ) . Then, the expected reward is
∑τ P (τ)Rtot (τ) .

By harnessing quantum mechanical phenomena such
as superposition and entanglement, one can expect to
achieve speedups in the RL tasks (Dong et al., 2008; Dun-
jko et al., 2016, 2017; Paparo et al., 2014). The aforemen-
tioned intuition has led to recent works towards quantum
RL (Cornelissen, 2018; Dunjko et al., 2017)

We discuss the essence of quantum RL by providing a
brief synopsis of the quantum agent environment (AE)
paradigm. For details, refer to (Dunjko et al., 2017). In
the AE paradigm, agent and environment are modelled
via sequences of unitary maps for the agent {E

j
A}j

and

the environment {E
j
E}

j
respectively. The agent and en-

vironment have access to memory registers belonging to
Hilbert spaces HA and HE . The communication reg-
ister between the agent and the environment belongs
to the Hilbert space HC . The agent maps {E

j
A}j

act

on HA ⊗ HC and the environment maps {E
j
E}

j
act on

HE ⊗ HC . The agent and environment interact with
each other by applying their maps sequentially. The set
of actions and states correspond to an orthonormal set
of vectors {∣a⟩∣a ∈ A} and {∣s⟩∣s ∈ S} respectively. The
Hilbert space of the communication register is given by
HC = span (∣y⟩∣y ∈ S ∪A) . The classical AE paradigm
corresponds to the case where the agent and environment
maps are classical.

Quantum RL has been studied for algorithms such

as SARSA or Q Learning (Jerbi et al., 2019), which
are some of the elementary RL algorithms (Sutton and
Barto, 2018).

In the set-up of variational quantum circuits, RL has
been explored for small input sizes (Chen et al., 2020).
This work revealed a possibility of quadratic advantage
in parameter space complexity. Using better encoding
schemes, (Lockwood and Si, 2020b) showed the case of
RL with variational quantum circuits for larger input
sizes. In a follow-up work, (Lockwood and Si, 2020a)
demonstrated the possibility of dealing with the relatively
complicated example of playing Atari games.

RL with quantum annealers has also been investi-
gated by (Crawford et al., 2016). In their framework,
they explore RL with QBMs. A detailed study of ba-
sic RL protocols with superconducting circuits is pro-
vided in (Lamata, 2017). Some exciting proposals of RL
with trapped ions and superconducting circuits have also
been proposed recently (Cárdenas-López et al., 2018).
For quantum eigensolvers, RL has been investigated as
well (Albarrán-Arriagada et al., 2020). RL with optical
set-up has been discussed in (Yu et al., 2019).

C. Combinatorial optimization

Given a finite set of objects S, combinatorial opti-
mization aims to find the optimal object from the set
S. It is a sub-discipline of mathematical optimization
theory, with applications in diverse fields such as arti-
ficial intelligence, logistics, supply chain and theoreti-
cal computer science. Some typical examples of com-
binatorial optimization problems are the traveling sales-
man problem (Lenstra and Kan, 1975), job-shop schedul-
ing (Manne, 1960), max-cut (Festa et al., 2002) and
Boolean satisfiability (Tovey, 1984).

To understand combinatorial optimization, let us con-
sider the canonical problem of Boolean satisfiability.
Boolean variables admit two truth values, TRUE and
FALSE. These can be combined together using operators
AND or conjunction (denoted by ∧), NOT or negation
(denoted by ¬), and OR or disjunction (denoted by ∨).
These combinations are called Boolean expressions. A
Boolean expression is said to be satisfiable if it can be
TRUE for appropriate assignment of logical values to its
constituent Boolean variables. Given a Boolean expres-
sion E, the Boolean satisfiability problem (SAT) consists
of checking if E is satisfiable. The well-known Cook-
Levin theorem showed that SAT is NP-complete (Arora
and Barak, 2009).

Every combinatorial optimization problem can be ex-
pressed asm clauses over n Boolean variables. A Boolean
variable is known as a positive literal, while its negation
is known as a negative literal. A disjunction of literals is
known as clause or constraint. For every constraint Cα
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for α ∈ {1,2,⋯,m} and every string z ∈ {0,1}
n, let define

Cα(z) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if z satisfies Cα(z)
0 if z does not satisfy

.

The goal of a combinatorial optimization problem is to
find a string which maximizes the following objective
function

C(z) =
m

∑
α=1

Cα (z) , (104)

which counts the number of satisfied constraints.
Approximate optimization algorithms such as QAOA

seeks to find a solution z (usually a bit-string) with a de-
sired approximation ratio r∗ ≤ C(z)/Cmax, where Cmax
is the maximum value of C(z). Using C(z) and compu-
tational basis vectors ∣ei⟩ ∈ C2n for i = 1, . . . ,2n, one can
construct the problem Hamiltonian as the one in Eq. (18),
and thus map the combinatorial optimization problem
to a Hamiltonian ground state problem. The NISQ al-
gorithms for combinatorial optimization discussed in the
following lines are listed in Tab. III of the Supplementary
Material.

1. Max-Cut

Max-Cut is an important combinatorial optimization
problem with applications in diverse fields such as theo-
retical physics and circuit design. In theoretical physics,
the Max-Cut problem is equivalent to finding the ground
state of a spin glass Hamiltonian. Given a graph G =

(V,E) with a vertex set V and edge set E, a cut is a
partition of the elements of V into two disjoint subsets.
Given a weight function w ∶ E → R+ such that the edge
(i, j) ∈ E has weight Eij , the Max Cut problem consists
of finding a cut K ∪ K̄ = V that maximizes

∑
i∈K,j∈K̄,(i,j)∈E

wij . (105)

For every vertex vi ∈ V , let us associate a variable xi
which can take the values ±1. Given an arbitrary cut
K∪K̄ = V , let us define xi = 1 if vi ∈K and −1 otherwise.
Then, the Max-Cut problem is equivalent to the following
quadratic program

max ∑
(vi,vj)∈E

wij
(1 − xixj)

2
, (106)

subject to xi ∈ {−1,+1}∀vi ∈ V .
Considering n vertices as n qubits in the computational

basis, we can classify qubits by assigning quantum states
∣0⟩ or ∣1⟩. For the classical objective function in the opti-
mization program from Eq. (106), we can use the follow-
ing Hamiltonian as the problem Hamiltonian,

HP = ∑
(i,j)∈E

1

2
(I − σ̂iz ⊗ σ̂

j
z) ≡ ∑

(i,j)∈E
Cij . (107)

It has been shown that it is NP-hard to achieve an
approximation ratio of r∗ ≥ 16/17 ≈ 0.9412 for Max-Cut
on all graphs (Håstad, 2001). For the QAOA with p = 1,
it has been shown that for a general graph

⟨Cij⟩ =
1

2
+

1

4
(sin 4β sinγ)(cosdi γ + cosdj γ)

−
1

4
(sin2 β cosdi+dj−2λij γ)(1 − cosλij 2γ), (108)

where di+1 and dj+1 denote the degrees of vertices i and j
respectively, and λij is the number of triangles containing
the edge (i, j) in the graph (Wang et al., 2018b). Here,
γ and β refer to the QAOA parameters from Eq. (20).
Analytical results for general Ising optimization problems
with p = 1 have also been found (Ozaeta et al., 2020).

In the case of unweighted 3-regular (u3R) graphs, the
above result gives the approximation ratio of 0.692, which
is consistent with the pioneering result by Farhi, Gold-
stone and Gutman (Farhi et al., 2014). In comparison,
the best classical algorithms to date gives the approxi-
mation ratio of r∗ ≈ 0.8786 for general graphs (Goemans
and Williamson, 1995), and r∗ ≈ 0.9326 for u3R graphs
(Halperin et al., 2004) using semidefinite programming.
While QAOA for p = 1 does not outperform its classi-
cal counterparts for the Max-Cut problem, QAOA has
been found to surpass the Goemans-Williamson bound
for larger values of p (Crooks, 2018).

QAOA has also been applied to the clustering problem
of unsupervised learning by mapping it to the Max-Cut
problem (Otterbach et al., 2017). Remarkably, it was
shown that by fixing the QAOA parameters and select-
ing the typical problem instances from a reasonable dis-
tribution, the objective function value concentrates, i.e.
the objective function value is almost independent of the
problem instance (Brandao et al., 2018). This implies
that the parameters optimized for one instance can be
used for other typical instances, which would drastically
reduce the optimization cost. Similar concentration be-
havior was also reported for the Sherrington-Kirkpatrick
model in the infinite size limit (Farhi et al., 2019).

Recently, a non-local version of QAOA called recursive
QAOA (RQAOA) was proposed (Bravyi et al., 2019). It
consists of running a QAOA as a subroutine on a specific
problem with N qubits and measuring the expectation
values of the correlations between all qubit pairs (i, j)
withMij = ⟨σizσ

j
z⟩. Then, one picks out the pair of qubits

(n,m) that have maximal absolute value of correlation
n,m = arg max(i,j)∣Mij ∣. ForMnm > 0, the selected qubit
pair (n,m) are positively correlated and very likely to be
in the same state, whereas for Mnm < 0 they are anti-
correlated and likely to be in the opposite state. Now,
this correlation is fixed as a constraint on the problem by
fixing the state of the qubit σmz = sign(Mnm)σnz . With
this constraint, one of the two qubits can be removed as
its state is completely determined by the other, reducing
the total qubit number by one. The above procedure is
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repeated for the reduced problem of size N − 1 qubits,
i.e. one runs again the QAOA subroutine, measures the
correlations and fixes the qubit pairs with maximal cor-
relation. The RQAOA algorithm is run recursively until
the size of the problem is reduced to a small number of
qubits such that it can be easily solved classically. When
RQAOA is run with the QAOA subroutine of depth p = 1,
it can efficiently simulated on a classical computer, which
can serve as an important benchmark with classical al-
gorithms (Bravyi et al., 2019). Numerical experiments
with higher p suggest similar or better performance on
combinatorial problems compared to other classical algo-
rithms (Bravyi et al., 2020b; Egger et al., 2020).

Finally, QAOA with depth p = 1 has been investi-
gated in comparison with quantum annealing (Streif and
Leib, 2020). In the limit of infinite depth p, QAOA is
equivalent to quantum annealing (refer to Sec. II.B.1 for
QAOA, and Sec. III.A for quantum annealing). How-
ever, QAOA can already outperform quantum annealing
at depth p = 1. For specific problems, QAOA arrives at
the correct solution with unit probability, whereas quan-
tum annealing struggles to find the solution (Streif and
Leib, 2020). This shows that QAOA is strictly more pow-
erful than quantum annealing.

2. Other combinatorial optimization problems

While the usage of QAOA on Max-Cut has been stud-
ied extensively, QAOA has also applications in other
important combinatorial optimization problems such as
max-k vertex cover problem, which seeks to find the set of
k vertices on a graph that maximizes the number of edges
incident on the vertices (Cook et al., 2019). Other ap-
plications of QAOA are for the exact-cover problem with
applications to the tail-assignment problem (Bengtsson
et al., 2020; Vikstål et al., 2020), lattice protein folding
(Fingerhuth et al., 2018; Robert et al., 2021), the knap-
sack problem as applied to battery revenue optimiza-
tion (de la Grand’rive and Hullo, 2019), multi-coloring
graph problems (Oh et al., 2019), maximum indepen-
dent set problems with applications to scheduling (Choi
et al., 2020; Saleem, 2020), and the vehicle routing prob-
lem (Utkarsh et al., 2020). In (Streif et al., 2021), the
authors describe how to utilize QAOA to solve the bi-
nary paint shop problem and show that in the infinite
size limit QAOA with constant depth can beat classical
heuristics on average. An adiabatically assisted approach
was suggested in (Garcia-Saez and Latorre, 2018) to
tackle combinatorial optimization problems. Investiga-
tions involving variational Grover search could be helpful
to solve combinatorial optimization problems (Morales
et al., 2018; Zhang et al., 2021b). Gaussian Boson Sam-
pling (see Sec. III.B) has been used to assist in a wide
variety of combinatorial optimization problems (Arrazola
et al., 2018; Bromley et al., 2020), most prominently to

solve Max-Clique (Arrazola and Bromley, 2018; Banchi
et al., 2020b). This has applications in predicting molec-
ular docking configurations (Banchi et al., 2020a), com-
puting vibrational spectra of molecules (Huh et al., 2015),
and electron-transfer reactions (Jahangiri et al., 2020a).
Using NISQ devices, an approach was suggested in (Met-
walli et al., 2020) for the triangle finding problem and its
k-clique generalization.

Quantum Annealing, which has been the inspiration of
QAOA, is a prominent platform that has been applied to
various combinatorial optimization problems and its ap-
plications, such as protein folding (Perdomo-Ortiz et al.,
2012), reviewed in (Hauke et al., 2020). As gate-based
devices mature, it will open the possibility for experi-
mental benchmarking of QAOA against state-of-the-art
solvers for suitable real-world applications, as performed
in (Perdomo-Ortiz et al., 2019) in the context of quantum
annealing machines.

D. Numerical solvers

We proceed to discuss NISQ algorithms used to solve
numerical problems such as factoring, singular value de-
composition, linear equations and non-linear differential
equations, which are listed in Tab. IV of the Supplemen-
tary Material.

1. Variational quantum factoring

The factoring problem accepts a composite positive in-
teger N as input and returns its prime factors as output.
There is no known efficient classical algorithm for prime
factorization and the hardness of factoring is used to pro-
vide the security in the RSA public-key cryptosystems.
The famous Shor’s algorithm is a polynomial time quan-
tum algorithm for the factoring problem (Shor, 1999),
which implies that prime factorization is in BQP, and
hence has been extensively investigated by quantum com-
puting researchers (for details refer to (Anschuetz et al.,
2019) and references therein). However, the resource esti-
mates for implementing the Shor’s algorithm are way be-
yond the capabilities of the NISQ era. A detailed analysis
has shown that factoring a 2048-bit RSA number would
necessitate a quantum processor with 105 logical qubits
and a circuit depth on the order of 109 to run for roughly
10 days (Jones et al., 2012; Van Meter et al., 2010). On
a photonic architecture with 1.9 billion photonic mod-
ules, factoring a 1024-bit RSA number is expected to
require around 2.3 years (Devitt et al., 2013). To tackle
the factoring problem in near-term quantum devices, it is
imperative to develop NISQ-era compatible alternatives
to Shor’s algorithm.

The factoring problem can be mapped to the ground
state problem of an Ising Hamiltonian (Burges, 2002;
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Dattani and Bryans, 2014). To understand this mapping,
let us consider the factoring of m = p×q. Suppose the bi-
nary representations of m, p and q are m = ∑

nm−1
k=0 2imk,

p = ∑
np−1
k=0 2ipk and q = ∑

nq−1
k=0 2iqk. Here, mk ∈ {0,1}

is the kth bit of m and the total number of bits for
m has been denoted by nm. A similar notation has
been employed for p and q. Since m = p × q, it induces
nc = np +nq − 1 constraints on the individual bits of m,p
and q,

i

∑
j=0

qipi−j +
i

∑
j=0

zj,i −mi −
nc

∑
j=1

2jzi,i+j = 0 , (109)

for i ∈ [0, nc), where the carry bit from position i to
position j is represented by zi,j . The constraint i in
Eq. (109) induces clause Ci ≡ ∑ij=0 qipi−j +∑

i
j=0 zj,i−mi−

∑
nc
j=1 2jzi,i+j over Z such that factoring can be modelled

as an assignment of binary variables {mi} , {pi} and {qi}
which solves ∑nc−1

i=0 C2
i = 0.

One can map the binary variables to quantum ob-
servables to quantize the clause Ci to Ĉi using the
mapping bk →

1
2
(1 − σzb,k) and obtain the Hamiltonian

HP = ∑
nc−1
i=0 Ĉi

2
, which we refer to as factoring Hamil-

tonian. Note that the factoring Hamiltonian is a 4-local
Ising Hamiltonian.

By using the aforementioned ideas, one can use NISQ
algorithms for the ground state problem to tackle the
factoring problem (see Sec. VI.A.3 and Sec. VI.C). In
Ref. (Anschuetz et al., 2019), authors employ QAOA to
find the ground state of the factoring Hamiltonian with
the variational quantum factoring (VQF) algorithm. Nu-
merical simulations were provided for numbers as high
as 291311. For a recent experimental realization and de-
tailed analysis of VQF, refer to (Karamlou et al., 2020).

2. Singular value decomposition

Given a matrix M ∈ Cm×n, the Singular Value De-
composition (SVD) provides a factorization of the form
M = UΣV †, where U ∈ Cm×m is a unitary matrix,
Σ ∈ Rm×n

+ is a rectangular diagonal matrix with non-
negative real diagonal entries and V ∈ Cn×n is a unitary
matrix. The diagonal entries of Σ are called the singular
values of matrix M. The columns of the unitary matri-
ces U and V are called left-singular and right-singular
vectors of M. Using Dirac notation, one can write

M =
r

∑
j=1

dj ∣uj⟩⟨vj ∣. (110)

where dj , ∣uj⟩, ∣vj⟩ are singular values, left-singular vec-
tors and right-singular vectors. The rank of matrix M is
r and is equal to the number of non-zero singular values.

SVD finds applications in calculating the pseudoin-
verse (Gregorcic, 2001), solving homogeneous linear

equations (Klema and Laub, 1980), signal process-
ing (Vandewalle and De Moor, 1991) and recommenda-
tion systems (Koren et al., 2009). Moreover, the Schmidt
decomposition for studying the entanglement of bipartite
quantum states is related to SVD.

In the quantum information context, the SVD can be
used to compute the Schmidt decomposition of bipartite
quantum states. For a quantum state ∣ψ⟩ ∈HA⊗HB , the
Schmidt decomposition is given by

∣ψ⟩ =∑
i

di∣ui⟩∣vi⟩, (111)

where di are non-negative real numbers such that ∑i d2
i =

1. Moreover, {∣ui⟩}i and {∣vi⟩}i correspond to orthonor-
mal basis sets for HA and HB respectively. The num-
ber χ of non-zero di is called the Schmidt rank of the
quantum state ∣ψ⟩ and is used to quantify the bipartite
entanglement. To calculate the Schmidt decomposition
by performing the SVD of a matrix A, one can write the
bipartite quantum state as a matrix ∣ψ⟩ = ∑i,j Aij ∣i⟩∣j⟩,
where ∣i⟩ and ∣j⟩ are the computational basis states of
each qubit.

Ref. (Bravo-Prieto et al., 2020a) provide a NISQ al-
gorithm to perform SVD of pure bipartite states. Start-
ing with two unitary circuits, which act on different bi-
partitions of the system, the authors variationally deter-
mine the singular values and singular vectors by training
the circuits on exact coincidence of outputs. The cen-
tral ideas of their method is to variationally find circuits
that provides the following transformation of the initial
quantum state ∣ψ⟩AB with Schmidt rank χ

UA ⊗ VB ∣ψ⟩AB =

χ

∑
i=1

λie
iγi ∣ei⟩A∣ei⟩B , (112)

where UA∣vi⟩A = eiαi ∣ei⟩A, VB ∣vi⟩B = eiβi ∣ei⟩B such that
αi = βi + γi ∈ [0,2π) and {∣ek⟩A,B}k are the computa-
tional basis states in HA,B . Using their algorithm, they
also suggest the possibility to implement SWAP gates
between parties A and B without the requirement of any
gate connecting the two subsystems.

Using variational principles for singular values and the
Ky Fan theorem (Fan, 1951), (Wang et al., 2020c) pro-
vide an alternative NISQ algorithm for SVD. The authors
provide proof of principle application of their algorithm
in image compression of handwritten digits. They also
discuss the applications of their algorithm in recommen-
dation systems and polar decomposition.

3. Linear system problem

Systems of linear equations play a crucial role in var-
ious areas of science, engineering and finance. Given a
matrix A ∈ CN×M and b ∈ CN , the task of the linear
system problem consists of finding x ∈ CM such that

Ax = b . (113)
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Depending on the dimensions M and N , the linear sys-
tem problem takes various forms. If M = N and A is in-
vertible, x = A−1b is unique. If M ≠ N, the linear system
problem can be under-determined or over-determined.
For the sake of simplicity, it is natural to assume the
matrix A to be square i.e. M = N. If the matrix A has at
most s non-zero elements per row or column, the linear
system problem is called s-sparse.

The quantum version of the linear system problem,
known as the quantum linear system problem, assumes
A to be N × N Hermitian matrix and b to be a unit
vector, i.e. it can be represented as a quantum state
∣b⟩ = ∑

N
i=1 bi∣ei⟩. The quantum linear system problem thus

is formulated as

A ∣x⟩ = ∣b⟩→ ∣x⟩ = A†
∣b⟩. (114)

The first quantum algorithm proposed for solving the
quantum linear system problem was the famous Harrow-
Hassidim-Lloyd (HHL) algorithm (Harrow et al., 2009).
Apart from the size N of the matrix A and its sparsity s,
the two other dominant factors that determine the run
time of the algorithm are the condition number κ of the
matrix A and the additive error ε corresponding to the
solution. The condition number is given by the ratio
of maximal and minimal singular values of A. The best
classical algorithm for the linear system problem is the
conjugate gradient method with a runtime complexity
O (Nsκ log ( 1

ε
)). On the other hand, the original HHL

algorithm for the quantum linear system problem has
a runtime complexity O (log (N) s2 κ2

ε
) . Further works

on the HHL algorithm have improved the scaling of κ
to linear (Ambainis, 2012) and the error dependence to
poly (log ( 1

ε
)) (Childs et al., 2017). However, the imple-

mentation of the HHL algorithm requires a fault-tolerant
architecture and hence its guarantees can not be lever-
aged on NISQ devices. The largest quantum linear sys-
tem problem solved on a gate based quantum computer
has been implemented on a nuclear magnetic resonance
(NMR) processor for N = 8 (Wen et al., 2019).

Recently, VQA based implementations of the quantum
linear system problem were proposed (Bravo-Prieto et al.,
2019; Huang et al., 2019; Xu et al., 2019). Given a quan-
tum linear system problem with input A and ∣b⟩, the idea
is to find the ground state of the following Hamiltonian

H(u) = A(u)P ⊥+,bA(u) , (115)

where A(u) and P ⊥+,b are defined as

A(u) ≡ (1 − u)σz ⊗ I + u σx ⊗A, (116)
P ⊥+,b = I − ∣+, b⟩⟨b,+∣ . (117)

Both A and ∣b⟩ are assumed to be constructed efficiently
with a quantum circuit, i.e. A = ∑

KA
k=1 βkUk and ∣b⟩ =

Ub∣0⟩, with KA = O (poly (logN)). The phase in βk can
be absorbed into Uk and hence one can assume βk > 0.

For u = 1, the Hamiltonian in Eq. (115) has a unique
ground state ∣+⟩∣x⋆⟩ = ∣+⟩

A−1∣b⟩
∥A−1∣b⟩∥2

with zero ground state
energy. After removing the ancilla, the ground state is
proportional to A−1∣b⟩. Thus, one can define the following
loss function

LH (∣x⟩) = ⟨+, x∣H(1)∣+, x⟩. (118)

Without the ancilla, the above loss function can be writ-
ten as LH (∣x⟩) = ⟨x∣A2∣x⟩ − ⟨x∣A∣b⟩⟨b∣A∣x⟩.

In (Huang et al., 2019), the authors analyze the opti-
mization landscape for VQA based optimization of the
loss function of Eq. (118) and show the presence of bar-
ren plateaus which persist independent of the architec-
ture of the quantum circuit for generating ∣x (θ)⟩. Even
techniques based on adiabatic morphing (Garcia-Saez
and Latorre, 2018) fail to evade the effect of the bar-
ren plateaus. To circumvent the barren plateau prob-
lem, (Huang et al., 2019) proposed a classical-quantum
hybrid state (see also Sec. III.E and Eq. (42)) x =

∑
r
i=1 αi∣ψi (θi)⟩, where αi ∈ C and θi ∈ Rki for i ∈

{1,2,⋯, r} . Note that θi are the usual variational pa-
rameters and αi are the combination parameters, which
are stored on a classical computer. The state x is not ex-
plicitly created on the quantum processor and may not
be normalized. To solve the quantum linear system prob-
lem, one minimizes the following loss function

LR (x) = ∥Ax − ∣b⟩∥
2
2 = x

†A†Ax − 2Re{⟨b∣Ax} + 1. (119)

Since optimization with respect to θi suffers from the
barren plateau problem, one can fix and subsequently
drop the variational parameter θi.

The optimization landscape is convex in α =

(α1, α2,⋯, αr) . Starting from ∣ψ1⟩ = ∣b⟩, other quantum
states can be generated using the ansatz tree approach
in (Huang et al., 2019). It was proved that finding
the combination parameters of ∣ψ1⟩, ∣ψ2⟩,⋯, ∣ψr⟩ to mini-
mize LR (∑

r
i=1 αi∣ψi⟩) is BQP complete. Moreover, using

O (K2
A
r2

ε
) measurements, one can find a ε-suboptimal

solution. With this approach, linear systems as high as
2300 × 2300 can be solved by considering cases which are
classically tractable.

4. Non-linear differential equations

Nonlinear differential equations (NLDE) are a system
of differential equations (DE) that cannot be expressed
as a linear system. The numerical approaches to tackle
DE can be local or global. Local methods employ nu-
merical differentiation techniques (Butcher, 1987) such
as Runge-Kutta methods or discretization of the space
of variables. Global methods represent the solution via
a suitable basis set and the goal is to find optimal coeffi-
cients (Gottlieb and Orszag, 1977). In many cases, as the
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number of variables or the nonlinearity of the differential
equations increase, finding solutions becomes challeng-
ing. To achieve higher accuracy, local methods require a
fine grid, which requires a high computational cost. In
the case of global methods, high accuracy necessitates a
large number of elements in the basis set, leading to more
extensive resource requirements. To tackle resource chal-
lenges, quantum algorithms are proposed.

Linear DE can be re-expressed as a system of linear
equations using the finite difference method and one can
employ NISQ linear system algorithms to tackle the prob-
lem (see Sec. VI.D.3). For a recent theoretical proposal
with experimental work on linear differential equations,
refer to (Xin et al., 2020). However NLDE defy this ap-
proach for large nonlinearities.

A canonical example of a NLDE appearing in quan-
tum theory is the 1-D nonlinear Schrödinger equation
[− 1

2
d2

dx2 + V (x) + g ∣f(x)∣
2
] f(x) = Ef(x). Here, E de-

notes energy, g quantifies nonlinearity, and V is the exter-
nal potential. Recently, NISQ algorithms for NLDE have
been proposed. Ref. (Lubasch et al., 2020) use ancillary
quantum registers and controlled-multiqubit operations
to implement nonlinearities to simulate the nonlinear
Schrodinger equation. Ref. (Haug and Bharti, 2020) pro-
pose the nonlinear quantum assisted simulator (NLQAS)
to tackle NLDE without any controlled unitaries. Using
NLQAS, they simulate this equation for 8 qubit systems.
NLDE have also been studied in (Gaitan, 2020) for fluid
dynamics problems. Using differentiable quantum cir-
cuits, (Kyriienko et al., 2020) have proposed an interest-
ing approach to solving NLDE via global methods.

E. Other applications

In this subsection, we cover other applications for
which NISQ algorithms can provide promising improve-
ments. They are listed in Tab. VI of the Supplementary
Material.

1. Quantum foundations

One of the first experiments in digital quantum com-
puters were the Bell nonlocality tests known as Bell in-
equalities (Brunner et al., 2014). Those experiments
computed a type of Bell inequalities known as Mermin in-
equalities in up to five superconducting quantum qubits.
The experiment consisted in preparing the GHZ state
(Greenberger et al., 1990), measure it in a particular
basis and obtain the expectation value of the Mermin
operator (Alsina and Latorre, 2016). These nonlocality
tests can be extended to higher dimensions by controlling
quantum levels beyond the qubit subspace. For example,
(Cervera-Lierta et al., 2021b) experimentally generated a
qutrit GHZ state using a programmable device controlled

with Qiskit pulse software (Alexander et al., 2020), which
represents the first step towards performing a GHZ test.

In the context of VQA, the non-classicality in VQEs is
examined using contextuality, which is a nonclassical fea-
ture of quantum theory (Amaral and Cunha, 2018). Us-
ing the notion of “strong contextuality”, (Kirby and Love,
2019) categorized VQE experiments into two categories:
contextual and non-contextual. Such foundational works
could be utilized to comprehend the possible sources of
quantum advantage in NISQ algorithms. Using novel
concepts from this field, contextual subspace VQE was
recently proposed (Kirby et al., 2020).

In another work, the variational consistent history al-
gorithm was suggested to investigate foundational ques-
tions (Arrasmith et al., 2019). The consistent history
approach has been used to examine topics from quantum
cosmology and quantum-classical transition. In the vari-
ational consistent history algorithm, the quantum com-
puter is used to compute the “decoherence functional”,
which is challenging to calculate classically. The classi-
cal computer is employed to tune the history parameter
such that the consistency is improved.

2. Quantum optimal control

Quantum optimal control is a topic of paramount im-
portance in the pursuit to harness the potential of near-
term devices. For a given quantum control system and a
cost function that measures the quality of control, it aims
to find a control that can achieve optimal performance.

Some recent works have investigated quantum optimal
control in the NISQ framework. Recent detailed per-
spective in this direction can be found in Ref. (Magann
et al., 2021). Ref. (Li et al., 2017a) provides a hybrid
quantum-classical approach to quantum optimal control.
To remedy some of the difficulties of classical approaches
to optimal control related to scaling of resources, (Dive
et al., 2018) proposed another NISQ framework. Experi-
mental demonstration of quantum control for a 12-qubit
system has also been realized (Lu et al., 2017). However,
the aforementioned approaches restrict their target states
to be sparse matrices. For dense target states, (Policharla
and Vinjanampathy, 2020) recently proposed a NISQ
algorithm. Along with their algorithm, they also sug-
gested a few algorithmic primitives to calculate overlap
of quantum states and transition matrix elements. Hy-
brid quantum-classical algorithms have also been imple-
mented for computing quantum optimal control pulses,
in particular for controlling molecular systems (Castaldo
et al., 2020; Magann et al., 2020).
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3. Quantum metrology

Quantum metrology harnesses non-classical features
of quantum theory for parameter estimation tasks. A
canonical example is estimating the parameter φ of a uni-
tary map under the action of a Hamiltonian Ĥ given by
ρ̂ (φ) = e−iĤφρ̂0e

+iĤφ where the density matrix ρ̂0 refers
to the initial state of the system. The goal is to estimate
φ via measurements on ρ̂(φ). The quantum Cramér-Rao
bound provides a lower bound to the achievable precision

(∆φ)
2
≥

1

nFQ (ρ̂ (φ))
. (120)

Here, n represents number of samples, FQ (ρ̂ (φ)) is the
quantum Fisher information and (∆φ)

2 is the variance
of the estimation of φ. Common parameters of interest
are temperature or the strength of magnetic fields.

Notice that the precision of the estimation procedure
increases as the quantum Fisher information increases.
Using it as a cost function, recent works have explored
quantum metrology to prepare a better probe state in
a VQA set-up (Beckey et al., 2020; Kaubruegger et al.,
2019; Koczor et al., 2020; Ma et al., 2020). In addi-
tion, (Meyer et al., 2020) provided a toolbox for multi-
parameter estimation and (Haug and Kim, 2021a) the
natural PQC with the lowest possible quantum Cramér-
Rao bound for a general class of circuits. For a survey of
recent applications of Fisher information for NISQ com-
puting, refer to (Bharti, 2021; Meyer, 2021).

4. Fidelity estimation

In Sec. II.A, we discussed how to use the fidelity as
an objective function, a quantity which is useful to train
particular VQAs. In addition, estimating the fidelity of a
quantum state with respect to another state is of general
interest in the context of quantum computing. For this
reason, algorithms that can estimate fidelity may become
useful in the NISQ era.

Given the density matrices of two quantum states ρ1

and ρ2, their fidelity is given by

F (ρ1, ρ2) = (Tr
√√

ρ1ρ2
√
ρ1)

2
. (121)

Due to the large dimensionality of the Hilbert spaces,
computing fidelity can be challenging.

Recently, the variational quantum fidelity estimation
(VQFE) algorithm was proposed to tackle a slightly mod-
ified version of the fidelity estimation task which works
efficiently when ρ1 has low-rank. Ref. (Cerezo et al.,
2020a) provide lower and upper bounds on F (ρ1, ρ2) via
VQFE. The algorithm calculates the fidelity between ρn1 ,
which is a truncated version of ρ1 obtained by projecting
ρ1 to subspace spanned by n largest eigenvalue eigenvec-
tors of ρ1. The bounds improve monotonically with n and

are exact for n = rank (ρ1) . The VQFE algorithm pro-
ceeds in three steps: i) a variational diagonalization of
ρ1, ii) computing the matrix elements of ρ2 in the eigen-
basis of ρ1 and iii) using the matrix elements from ii) to
estimate the fidelity.

5. Quantum error correction

The leading error correction schemes carry high re-
source overheads, which renders them impractical for
near-term devices (Fowler et al., 2012; Johnson et al.,
2017). Moreover, many of the schemes mandate knowl-
edge of the underlying noise model (Fletcher et al., 2008;
Kosut and Lidar, 2009; Kosut et al., 2008). For an en-
coding process E , decoding process D and noise model
N , the quality of a quantum error correction scheme can
be characterized by how close D◦N◦E is to identity. The
range of E is called code space C.

In (Johnson et al., 2017), the quantum variational er-
ror corrector (QVECTOR) was proposed by defining an
objective function over the code space C. The authors
employ two trainable PQCs V (p) and W (q) for encod-
ing and decoding respectively with tunable parameter
vectors p and q. For a given encoding-decoding pair,
characterized by (p,q) , the authors calculate a quantity
called “average code fidelity” with respect to the Haar
distribution of states over the code space C. The algo-
rithm is model-free as no assumption of the noise model
is made. The goal of the QVECTOR algorithm is to
maximize average code fidelity in a variational set-up.

In the context of VQA, error correction has also been
explored in (Xu et al., 2019) where the target logical
states are encoded as ground state of an appropriate
Hamiltonian. (Xu et al., 2019) employ imaginary time
evolution to find the ground state. The authors imple-
ment a scheme for five and seven qubit codes. For a
brief discussion on error correction and quantum fault-
tolerance refer to Sec. VIII.B.

6. Nuclear physics

The Standard Model of particle physics is the theory
that describes the nature of the electromagnetic and nu-
clear interaction. Its current formulation consist of de-
scribing the forces as quantum fields via the quantum
field theory (QFT) formalism. Perturbative calculations
of QFT provide the dynamics of physical processes at a
given energy scale. However, in some cases as in quantum
chromodynamics (QCD), perturbation theory cannot be
applied due the impossibility to observe free quarks or
gluons due to confinement. For this reason, QCD cal-
culations are obtained by means of numerical methods
such as Monte Carlo simulations in a discretized version
of QFT on a lattice structure (LQFT). The high compu-
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tational cost of LQFT has motivated the use of quantum
computation and quantum simulation to obtain the de-
sired QCD predictions (Joó et al., 2019).

The Schwinger model describes the dynamics of the
quantum electromagnetic (QED) interaction in one spa-
tial and temporal dimensions. It is used as a toy model to
study QCD since it shows fermion confinement but it is
simple enough to be solved analytically. The first exper-
imental quantum simulations of this model were carried
out in trapped ions (Hauke et al., 2013) and later with
a superconducting circuit quantum computer (Martinez
et al., 2016). A first proposal to use a quantum-classical
algorithm to simulate this model was presented in (Klco
et al., 2018), where the quantum computer simulates the
dynamics of the symmetry sectors suggested by a classical
computation. In Ref. (Kokail et al., 2019) a VQS is used
in an analog setup to reduce the number of variational
parameters and thus reduce the computational cost of
the algorithm. Their proposal is experimentally imple-
mented in a trapped-ion analog simulator. A significant
reduction of the computational cost of LQFT is proposed
in (Avkhadiev et al., 2020) by using a VQA approach to
compute the optimized interpolating operators, which are
approximators of the quantum state wavefunction.

Adaptations of the UCC quantum chemistry ansatz as
introduced in Sec. II.B.1 are presented in (Dumitrescu
et al., 2018; Liu and Xin, 2020) for the quantum-
variationally QCD and in (Roggero et al., 2020) for
neutrino-nucleus scattering. A 10-qubit VQC is used in
(Wu et al., 2020) to study the Higgs boson production
processes and decay. In (Chen et al., 2020c) a quantum
convolutional neural network model is proposed to study
basic high-energy processes. Recently, PQC were used to
learn the parton distribution function of protons (Pérez-
Salinas et al., 2020b).

7. Entanglement properties

Entanglement is a resource for numerous quantum
information tasks. A bipartite quantum state ρAB ∈

HA ⊗HB is called separable if it admits the form ρAB =

∑i piρ
A
i ⊗ ρBi , where pi are non-negative and ∑i pi = 1.

If a state is not separable, then it is called entangled.
The problem of detecting whether a state is separable or
entangled is known as the separability problem and has
been shown to be NP-hard (Gurvits, 2003).

As mentioned in Sec. VI.D.2, computing the Schmidt
rank of ρAB gives a measure of the bipartite entangle-
ment. Thus, the algorithms that tackle the SVD prob-
lem can also be used to extract entanglement proper-
ties (Bravo-Prieto et al., 2020a). In (Wang et al., 2020a),
authors propose a NISQ algorithm for the separability
problem by providing a variational approach to employ
the positive map criterion. This criterion establishes that
the quantum state ρAB is separable if and only if for an

arbitrary quantum system R and an arbitrary positive
map NB→R from B to R, we have NB→R (ρAB) ≥ 0. The
authors start with a positive map and decompose it into
a linear combination of NISQ implementable operations.
These operations are executed on the target state and
the minimal eigenvalue of the final state is variationally
estimated. The target state is deemed entangled if the
optimized minimal eigenvalue is negative.

Exploring a similar strategy as the one presented in
(Bravo-Prieto et al., 2020a), (Pérez-Salinas et al., 2020c)
proposed a VQA to compute the tangle, a measure of
tripartite-entanglement. VQAs have also been employed
for extracting the entanglement spectrum of quantum
systems in (Cerezo et al., 2020b; LaRose et al., 2019).

VII. BENCHMARKING

One of the central questions at the intersection of soft-
ware and hardware is evaluating the performance and ca-
pabilities of NISQ devices. Here, benchmarking concepts
provide various metrics to measure and compare the ca-
pabilities of different machines and track their change
over time. A benchmarking protocol can be characterized
by its inherent assumptions, resource costs and informa-
tion gain. The goal is to build benchmarking protocols
that make minimal and practical assumptions, have low
resource costs, and have high information gain.

Benchmarking protocols have been developed for NISQ
as well as for fault-tolerant devices. For a pedagogi-
cal summary, refer to (Eisert et al., 2019). In this re-
view, we focus on quantum benchmarking protocols for
NISQ devices. Some of the leading NISQ benchmark-
ing schemes are randomized benchmarking, quantum vol-
ume, cross-entropy benchmarking and application-based
benchmarks.

A. Randomized benchmarking

The most straightforward way of comparing devices is
by simply counting qubits. To really compare different
qubits, we must also have a sense of how many operations
we can do with them before the noise arising from errors
drowns out the signal. Randomized benchmarking (RB)
is a convenient method for finding average error rates
for quantum operations, in particular for single and two-
qubit gates (Magesan et al., 2011, 2012). RB is robust
against state preparation and measurement (SPAM) er-
rors and unlike tomography admits an efficient and prac-
tical implementation.

RB involves the following assumptions: i) for every
gate, the incurred noise is independent of other Clifford
gates; ii) the involved unitaries should constitute a 2-
design (see Sec. IV.A) and should not be universal. In
other words, no T gates are allowed; iii) during the ex-



59

periment, there is no drifting in the noise processes; and
iv) one can describe noise processes using completely pos-
itive trace-preserving (CPTP) maps.

A RB protocol starts by sampling a sequence of m
Clifford gates (see Sec. V.B.1). The sequence is applied
to the initial state, followed by its inverse. Finally, a two-
outcome POVM measurement is performed to calculate
the fidelity between the initial state and the output state,
followed by classical post-processing. The RB protocol
discretizes time so that it is measured in the number of
gates, and it then averages over many sequences of each
length m. More formally, a 4-step RB protocol consists
of

1. Generate Km sequences of m quantum operations
Cij with i ∈ [1,m] and j ∈ [1,Km], where i in-
dexes over the sequence of operations, and j over
the statistical samples. These operations are ran-
domly chosen from the Clifford group, and a m+1-
th operation is chosen that cancels the first m op-
erations such that the net operation is the identity.
The operations can be chosen from the 2-,4- or 2n-
dimensional Clifford group, depending on whether
we are benchmarking single-, two- or n-qubit opera-
tions (McKay et al., 2019). These operations come
with some error, which is modeled with linear op-
erators Λij ,j . The full sequence of m operations is
given by

SKm =◯
m+1
j=1 (Λij ,j ○Cij) (122)

Here, ○ denotes composition and◯ represents com-
position of the terms defined with index j.

2. For each sequence we find the fidelity with the ini-
tial state by measuring Tr[EψSKm(ρ(ψ))], where
ρ(ψ) is the initial state (with preparation errors)
and Eψ is a POVM measurement operator cor-
responding to the measurement including noise.
Without noise, this would be the projector Eψ =

∣ψ⟩⟨ψ∣.

3. Average over the Km statistical samples to find
the sequence fidelity F (m,ψ) = Tr[EψSm(ρ(ψ))]
where Sm is the mean over the operations SKm .

4. Fit the data with the function

Ffit(m,ψ) = A0p
m
+B0 , (123)

where we assume that the errors are independent
of gate and time. This is not a fundamental as-
sumption, but can be relaxed (Magesan et al., 2011,
2012). The average gate error is here given by
εRB = 1 − p − (1 − p)/2n and the constants A0 and
B0 absorb the SPAM errors.

The operations Cij are chosen from the Clifford group,
because these are relatively easy to perform on quantum

hardware, and because the final m + 1-th operation that
undoes the sequence can easily be pre-computed on a
classical computer. Averaging over the Clifford group (or
any other finite group) also has the property that even
though the real noise-channel would be more complicated
than the purely depolarizing one, the average over the
group will still give rise to exponential decay.

These gate errors extracted from randomized bench-
marking can be used to compare the quality of quantum
gates, and to estimate that an algorithm of depth ∼ 1/εRB
gates can be run on the device before the output is only
statistical noise. The intuition behind the RB protocol
is that a (purely) depolarizing channel will cause expo-
nential decay of an excited state over time.

Simultaneous randomized benchmarking (SRB) has
been proposed to acquire information about cross-
talk and undesired coupling between neighbouring
qubits (Gambetta et al., 2012). RB has also been
extended for gatesets that do not form a Clifford
group (Brown and Eastin, 2018; Carignan-Dugas et al.,
2015; Cross et al., 2016; França and Hashagen, 2018;
Gambetta et al., 2012; Harper and Flammia, 2017;
Hashagen et al., 2018). In such cases, the expression for
Ffit(m,ψ) does not follow equation Eq. (123) (Helsen
et al., 2019). An extension of RB has been suggested to
extract the fidelity for a broad category of gatesets, in-
cluding T-gate, using principles from representation the-
ory (Helsen et al., 2019). A practically scalable protocol
called cycle benchmarking was developed lately to char-
acterize local and global errors for multi-qubit quantum
computers (Erhard et al., 2019).

B. Quantum volume

To further refine the concept of the computational
power of a quantum computer from just counting qubits
and gate-errors, the IBM Quantum team introduced the
“quantum volume” (Cross et al., 2019; Moll et al., 2018).
It is one of the widely accepted metrics for benchmarking
NISQ-era quantum computers. As mentioned earlier, one
can not rank quantum computers based on the number of
qubits alone. Quantum volume gives a rough estimate of
the number of effective qubits a quantum computer has
based on their performance on the “heavy output gener-
ation problem”. The heavy output generation problem
is related to the random circuit sampling task used in
Google’s quantum supremacy experiment. Quantum vol-
ume treats the depth and width of a quantum circuit on
the same footing. Hence, its estimation depends on the
largest square-sized circuit, which can successfully imple-
ment the heavy output generation problem. The quan-
tum computer’s performance also depends on its software
stack such as the compiler, and thus quantum volume can
increase with improvements in the software stack.

The quantum volume benchmark can be thought anal-
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ogous to the classical LINPACK benchmark (Dongarra,
1987). Like the LINPACK benchmark, it is architecture-
agnostic and provides a single real number metric based
on the quantum computer’s performance for a model
problem such as the heavy output generation problem.

More formally, quantum volume can be defined in the
following terms. Given an n qubit quantum computer
with the largest achievable model circuit depth d(m) for
model circuit width m ∈ {1,2,⋯, n} such that the proba-
bility of observing a heavy output for a random selection
of model circuits is strictly greater than 2/3, the quantum
volume VQ is defined as (Cross et al., 2019)

log2 VQ = argmax
m

min (m,d(m)) . (124)

Intuitively speaking, quantum volume estimates the
largest square random quantum circuit for which the
quantum computer can successfully implement the so-
called heavy output generation problem. To conclude
the discussion, it remains to describe the “model circuit”
and the “heavy output generation problem”.

The model circuit with depth d and width m for es-
timating quantum volume is given by the d-layered se-
quence U = U (d)U (d−1)⋯U (1) where layer t consists of
random permutations πt ∈ Sm applied to qubit labels, fol-
lowed by the tensor product of Haar-random two-qubit
unitaries from SU(4). If the model circuit width m is
odd, one of the qubits is left idle in every layer. See
Figure 7 for a pictorial description.

Layer 1 Layer 2 Layer d

Figure 7 Model circuit for the quantum volume benchmark.
Each layer consists of random permutations of qubit labels,
followed by two-qubit Haar-random unitaries. Inspired by
(Cross et al., 2019).

Given a model circuit U with width m, the ideal out-
put distribution over bit strings x ∈ {0,1}

m is given
by PU(x) = ∣⟨x∣U ∣0⟩∣2. One can arrange the probabil-
ities for various bitstrings in ascending order in a set
P = {p0 ≤ p ≤ ⋯ ≤ p2m−1} . The median of the set P is
given by pmed =

p2m−1+p2m−1−1

2
. The heavy outputs are

defined as HU = {x ∈ {0,1}
m

∣pU(x) > pmed} . The goal of
the heavy output problem is to sample a set of strings
such that at least 2/3 are heavy output. For an ideal
quantum circuit, the expected heavy output probability
asymptotically tends to ∼ 0.85. For a completely depo-
larized device, it is ∼ 0.5.

On the target system, one implements Ũ by using
a circuit compiler with native gate set such that 1 −
Favg (U, Ũ) ≤ ε ≤ 1 for some approximation error ε, where
Favg is average gate fidelity, as defined in Ref. (Horodecki
et al., 1999). The role of the circuit compiler is crucial in
the aforementioned step. Suppose the observed distribu-
tion for the implemented circuit Ũ of the model circuit
U is gu(x). The probability of sampling heavy output is
given by

hU = ∑
x∈HU

qU (x) . (125)

For a randomly selected circuit of depth d, the probability
of sampling a heavy output is given by

hd = ∫
U
hUdU. (126)

The term d(m) in Eq. (124) is equal to the largest depth
d for model circuit of width m ∈ {1,2,⋯, n} such that
hd >

2
3
.

The quantum volume benchmark requires simulation
of the model circuit’s heavy output generation problem
on a classical computer. Hence, it is not a scalable
method as the quantum volume increases. Moreover,
the special treatment for square circuits is not entirely
justified. Investigations are needed to devise other inter-
esting benchmarks. A benchmark for rectangular circuits
has also been proposed in the literature (Blume-Kohout
and Young, 2020).

At the time of writing, Honeywell’s system model H1
has achieved log2 VQ = 9 (Honeywell, 2021), and the
IBM quantum device named “IBM Montreal” has demon-
strated log2 VQ = 6 (IBM, 2020).

C. Cross-entropy benchmarking

The linear cross-entropy benchmarking is a statistical
test used by Google in their quantum supremacy experi-
ment (Arute et al., 2019; Neill et al., 2018). It measures
how often high-probability bitstrings are sampled in an
experimental scenario. Suppose we perform a sampling
task and obtain bitstrings {xj}j via measurements on a
givenm-qubit circuit CE . The linear cross-entropy bench-
marking fidelity is given by

FXEB = 2m ⟨P (xj)⟩j − 1 . (127)

Here, the average ⟨.⟩j is over the experimentally observed
bitstrings {xj}j and P (xj) denotes the probability of ob-
serving bitstring xj for the ideal circuit version of CE . In
other words, P (xj) denotes the ideal probability of the
generated sample xj . Since one can not have an ideal cir-
cuit in practice, P (xj) are calculated using a classical
computer simulation of the ideal circuit. FXEB com-
pares how often a bitstring xj is observed experimen-
tally with its classically simulated ideal probability. For
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the ideal case, FXEB approaches unity for a large num-
ber of qubits. On the other hand, it is equal to zero
for uniform distribution. As the circuit’s noise grows,
FXEB decreases and approaches zero. Since the prob-
abilities P (xj) are calculated via classical simulation,
it renders the computation of FXEB intractable in the
supremacy regime. The classical hardness of spoofing lin-
ear cross-entropy benchmarking was studied by Aaranson
and Gunn (Aaronson and Gunn, 2019), where they sug-
gested the absence of any efficient classical algorithm for
the aforementioned task.

D. Application benchmarks

While hardware benchmarks, such as randomized
benchmarking or quantum volume, provide valuable in-
sight into the performance of quantum devices, they may
not well represent or predict the performance of VQAs
which employ structured circuits. Application bench-
marks were developed to complement hardware bench-
marks and provide a more complete picture of both
the performance and (near-term) utility of quantum de-
vices. These benchmarks execute experimental demon-
strations of VQA instances that can be compared to clas-
sically computed exact results. Examples of application
benchmarks can be found in Refs. (Arute et al., 2020;
Benedetti et al., 2019a; Dallaire-Demers and Killoran,
2018; Karamlou et al., 2020). In particular, (Arute et al.,
2020) demonstrated VQE experiments for the hydrogen
chain binding energy and diazene isomerization mecha-
nism with PQCs of up to 12 qubits and 72 two-qubit
gates.

As a specific example of an application benchmark,
quantum circuits that diagonalize spin Hamiltonians
have been proposed in recent years (Cervera-Lierta, 2018;
Schmoll and Orús, 2017; Verstraete et al., 2009). By
comparing the results obtained from the quantum device
with the analytical solution, one can discern the perfor-
mance of the computation for a specific purpose experi-
ment. Small experiments have shown that gate fidelities
and decoherence times alone do not provide a complete
picture of the noise model (Cervera-Lierta, 2018).

In that direction, authors of (Dallaire-Demers et al.,
2020) proposed a figure-of-merit called the effective
fermionic length to quantify the performance of a NISQ
device in which the application-at-hand is estimating the
energy density of the one-dimensional Fermi-Hubbard
model over increasing chain lengths. Theoretically, as
the chain length increases, the energy density should ap-
proach the infinite chain limit. In practice, the NISQ
device will accrue some level of noise and decoherence,
which will cause the computed energy density to diverge
past some chain length. The maximum chain length af-
ter which noise and decoherence start degrading the al-
gorithm performance reveals the “limit” of the quantum

device in carrying out related algorithms. Ref. (Dallaire-
Demers et al., 2020) abstracts this idea to redefine an ap-
plication benchmark as a way to systematically test the
limits of quantum processors using exactly solvable VQA
instances that can be scaled to larger system sizes such
as the chain length in Ref. (Dallaire-Demers et al., 2020)
or the number of preprocessing steps in Ref. (Karamlou
et al., 2020).

Generative models such as the QCBM (see Sec. VI.B.2)
can also serve as benchmarks for NISQ devices (Hamil-
ton et al., 2019; Leyton-Ortega et al., 2019; Zhu et al.,
2019). Here, the measurement output of hardware ef-
ficient variational ansäte are used to represent different
types of distributions and study the effect of noise and
hardware limitations on the result.

In addition to VQAs, one can analyze more funda-
mental benchmarks, such as the ability of NISQ de-
vices to violate local-realism by means of Mermin in-
equalities (Alsina and Latorre, 2016) or the entanglement
power of the devices by trying to construct maximal en-
tangled states (Cervera-Lierta et al., 2019; Wang et al.,
2018a).

VIII. OUTLOOK

In the last decade, quantum computing has expe-
rienced notable progress in applications, experimental
demonstrations, and theoretical results. The number of
papers in quantum computation, particularly in NISQ
applications, is increasing at a nearly exponential rate.
This community push is explained by many factors, one
of which is remarkable advancements in quantum hard-
ware.

Quantum computing is a relatively young field in sci-
ence, and, as such, there is plenty of room for pioneering
research and discoveries. Together with the theoretical,
practical, and experimental challenges (several of them
covered in this review), this fact has strengthened the mo-
tivation for an open-source strategy in the field. Nowa-
days, many universities and research centers subscribe to
an open-access policy that pushes towards the free and
open-source publication of all computational tools, data,
and programs used in their research. These policies have
proved valuable for rapid scientific development as well
as for democratizing community knowledge. This way of
thinking has percolated through academic walls. It has
been introduced into several private companies, not just
for its advantage but also because it facilitates the con-
tinuous healthy flow of quantum computing researchers
to themselves (and, in some cases, resulting in the foun-
dation of startups). Consequently, a rich open quan-
tum computing ecosystem is composed of universities,
institutes, big corporations, startups, and uncountable
individual enthusiasts. Another product of the symbiosis
between academia and the private sector is cloud quan-
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tum computing. Companies are offering access to their
hardware remotely, in some cases at zero cost for their
small prototypes and simulators. On the one hand, sci-
entists and quantum computing enthusiasts around the
world have the opportunity to experience real quantum
devices from their homes. On the other hand, this in-
creases the chances of finding real-world applications in
quantum computation and solving the current challenges
of this field. The proliferation of open-source quantum
computing languages, simulators and tools (detailed in
Sec. V.C) have burgeoned many user communities. Var-
ious international initiatives have been set up to attract
quantum computing talent, and the private sector’s in-
volvement is ramping up. Several non-profit initiatives
are also encouraging the use and development of these
tools (QOSF, 2020; Unitary Fund, 2020).

Experimental realizations of quantum computation, al-
though in the early stages, have interested many com-
munities in this quantum information subfield. Healthy
competition has also arisen between the classical and
quantum computing branches. Classical computational
scientists have put their efforts into moving the quan-
tum advantage frontier further, raising the bar to claim
that a quantum algorithm shows a significant speed-up.
Along that direction, an off-shoot is an effort in de-
quantization, first exhibited in the case of recommenda-
tion systems, to devise quantum-inspired classical algo-
rithms that are nearly as fast as their quantum coun-
terparts (Tang, 2019). Such attempts have eliminated
examples of speed-up for some problems in linear alge-
bra. So far, dequantized machine learning algorithms
have been developed for recommendation systems (Tang,
2019), principal component analysis and supervised clus-
tering (Tang, 2018), stochastic regression (Gilyén et al.,
2018) and low-rank linear systems (Arrazola et al., 2019;
Chia et al., 2018).

Since NISQ devices are inherently noisy, analysis sim-
ilar to (Napp et al., 2019; Zhou et al., 2020b; Zlokapa
et al., 2020) will be required to find out how much noise
a NISQ algorithm can endure until its classical simula-
tion becomes efficient. This is crucial in order to under-
stand the boundary where quantum computers provide
an advantage. Investigating the potential of NISQ al-
gorithms using ideas from quantum foundations such as
contextuality and entanglement are helpful in that re-
spect (Bharti et al., 2020; Deutsch, 2020). More theo-
retical results as the ones presented in (Biamonte, 2019;
Bouland et al., 2021; Bravyi et al., 2020a, 2021; Farhi and
Harrow, 2016; Lloyd, 2018; Movassagh, 2019) may also
prove valuable. It is also imperative to develop strategies
that help us bypass complicated measurements involv-
ing controlled multi-qubit unitaries (Mitarai and Fujii,
2019). For machine learning tasks, ideas similar to (Har-
row, 2020) would be valuable.

Another fascinating frontier that needs to be inves-
tigated in the next few years, we believe, is quantum

and classical certification schemes for quantum devices
and quantum computation (Eisert et al., 2020). The in-
tractability of quantum computation by classical devices
poses the challenge to verify the correct functioning of
the quantum devices as well as the correctness of the fi-
nal output (Eisert et al., 2020). The existence of multiple
quantum computing platforms requires new methodolo-
gies and figures of merit to benchmark and compare these
devices. Other works are being proposed in that direc-
tion (Kottmann et al., 2020; Kyaw et al., 2020b), as well
as the development of benchmarking measures discussed
in Sec. VII. Ideas from complexity theory (Mahadev,
2018; Metger and Vidick, 2020) and quantum founda-
tions (Bharti et al., 2019b,c) could be valuable in this
direction.

At the moment of documenting this review, there is no
known demonstration of industrially relevant quantum
advantage. Quantum computing is still in its early days,
and so far, a useful quantum computer is missing. The
potential of NISQ devices is not fully understood, and a
lot of rigorous research is required to release the power of
early quantum computers. However, several experiments
overcoming classical computational resources have been
performed, and many theoretical and practical tools are
being used and developed, as explained in Sec. V.

A. NISQ goals

We expect experimental pursuit in the NISQ era would
focus on the design of quantum hardware with a larger
number of qubits and gates with lower error rates capa-
ble of executing deeper circuits. Along the way, one of
the goals is to demonstrate quantum advantage for prac-
tical use cases. If the NISQ paradigm is not powerful
enough to exhibit any quantum advantage, theoretical
pursuits would be required to understand its limitations.
The prime direction of the NISQ and near-term era is
to engineer the best possible solution with the limited
quantum resources available. The tools and techniques
invented during this period could be valuable in the fault-
tolerant era as well.

To conduct a successful demonstration of quantum ad-
vantage, the right blend of the following three crucial
components is required:

1. Hardware development: The design of quantum
computers with more qubits, lesser error rates,
longer coherence times, and more connectivity be-
tween the qubits will be one of the top priorities
in the NISQ era. Intensive research in new qubits
developments, quantum optimal control and mate-
rial discovery will be indispensable for both univer-
sal programmable quantum computers or special-
purpose ones. A way to scale up the number of
qubits present in a quantum platform is to design a
novel qubit that has built-in autonomous quantum
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error correction down to the hardware level (Cham-
berland et al., 2020a; Paz and Zurek, 1998) or pro-
tected novel qubit (Douçot and Ioffe, 2012; Kyaw,
2019; Nataf and Ciuti, 2011) which is robust against
specific noises in the hardware. As a quantum pro-
cessor size grows, there is a tremendous need to
store quantum information during quantum infor-
mation processing (Kyaw et al., 2014a, 2015a,b).
Even miniaturizing microwave circulator onto the
superconducting chip (Chapman et al., 2017; Ma-
honey et al., 2017) can be seen as a means to scale
up the quantum platform. However, it has nothing
to do with novel qubit design.

2. Algorithm design: To harness the potential of noisy
but powerful quantum devices, we expect break-
throughs on the algorithm frontier. Algorithms
with realistic assumptions, like the ones mentioned
in Sec. V.B, regarding device capabilities will be
favored. To lessen the effect of noise, progress to-
wards the design of error mitigation algorithms is
expected. Efforts have to be made to develop algo-
rithms that harness the problem’s structure in the
best possible manner and map it to the given hard-
ware in efficient ways, such as in Sec. III.D. VQA
with better expressibility and trainability will also
be helpful.

3. Application problem: We have discussed the exist-
ing applications of NISQ devices in many areas in
Sec. VI. Collaborations between experts with do-
main knowledge from these fields and quantum al-
gorithm researchers will be required more and more
to develop the field and integrate quantum com-
putation into industrial workflows. New collabo-
rations might reveal difficult problems for classical
computers that are well suited for NISQ devices. It
is not clear yet which applications will be the first
ones to witness quantum advantage, though there
is plenty of speculation and opinions.

B. Long-term goal: fault-tolerant quantum computing

Noise is regarded as one of the most prominent threats
to a quantum computer’s practical realization. In 1995,
Peter Shor established that by encoding quantum infor-
mation redundantly using extra qubits, one could circum-
vent the effect of noise (Shor, 1995). The quantum infor-
mation is spread over multiple physical qubits to generate
a logical qubit (Calderbank and Shor, 1996; Gottesman,
1997; Knill and Laflamme, 1997; Shor, 1995). Most of the
transformative algorithms such as Shor’s factoring algo-
rithm, Grover search algorithm, and HHL require error-
corrected qubits for their execution. Soon after Shor’s
error-correcting code, many others were developed. Some
of the famous error-correcting codes are stabilizer and

topological error-correcting codes (Fowler et al., 2012;
Terhal, 2015). While the stabilizer code utilizes extra
qubits to protect the logical qubit, topological codes em-
ploy a set of qubits positioned on a surface, such as a
torus, in a lattice structure.

Over the years, quantum error correction has evolved
as a subfield of quantum computation and has trans-
formed from a theoretical pursuit to a practical possi-
bility. The process of detecting and correcting errors can
be, itself, prone to noise. Thus error correction alone
does not guarantee the prospect of storing or processing
quantum information for an arbitrarily long period. The
aforesaid issue can be tackled by utilizing the Quantum
Fault-Tolerant threshold theorem. Informally speaking, it
is possible to execute arbitrarily large quantum compu-
tation by arbitrarily suppressing the quantum error rate,
given the noise in the individual quantum gates are below
a certain threshold (Aharonov and Ben-Or, 2008). If one
wants to simulate an ideal circuit of size N , the size of the
noisy quantum circuit for fault-tolerant quantum compu-
tation scales O (N (logN)

c
), for some constant c, given

the noisy circuit is subjected to stochastic noise strength
p < pc for some noise threshold pc (Terhal, 2015). This
theorem rises some practically relevant questions such as
i) How high is pc; ii) what is the value of the constant c;
and iii) what is the value of the multiplicative constant
in O (.). These questions determine the practicality of
any fault-tolerant quantum computation scheme (Terhal,
2015).

Looking forward, lowering the noise level will be a
critical challenge. Though the problem is demanding,
significant progress has been made recently at the algo-
rithmic as well as hardware frontier (Campagne-Ibarcq
et al., 2020; Lidar and Brun, 2013; Noh and Cham-
berland, 2020; Terhal, 2015). Quantum error-correcting
codes amenable to architectures with limited qubit con-
nectivity have also been proposed (Chamberland et al.,
2020b). As we transition towards fault-tolerant quantum
computing, partial quantum error correction demonstra-
tions such as exponential suppression of bit or phase er-
rors (Google, 2021) and approximate quantum error cor-
rection schemes (Faist et al., 2020; Leung et al., 1997)
become highly relevant. Recently, Monroe and Brown’s
groups have confirmed the first-ever fault-tolerant oper-
ation on a logical qubit (Egan et al., 2020).

We are at an exciting juncture in the history of com-
puting. Completely new kinds of computers that were
once only figments of imagination are rapidly becoming
a reality. The NISQ era offers fantastic opportunities to
current and future researchers to explore the theoretical
limits of these devices and discover practical and exciting
applications in the near-term. Theoretical investigations
and experimental challenges will help us to comprehend
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quantum devices power and build better algorithms. The
success of the field lies in the hands of the researchers and
practitioners of the area, so we encourage everyone with
interest to join the effort.
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