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Nucleons (protons and neutrons) are the building blocks of atomic nuclei and are respon-
sible for more than 99% of the visible matter in the universe. Despite decades of efforts
in studying its internal structure, there are still a number of puzzles surrounding the
proton such as its spin and charge radius. Accurate knowledge about the proton charge
radius is not only essential for understanding how quantum chromodynamics (QCD)
works in the non-perturbative region, but also important for bound state quantum elec-
trodynamics (QED) calculations of atomic energy levels. It also has an impact on the
Rydberg constant, one of the most precisely measured fundamental constants in nature.
This article reviews the latest situation concerning the proton charge radius in light
of the new experimental results from both atomic hydrogen spectroscopy and electron
scattering measurements, with particular focus on the latter. We also present theoretical
backgrounds and recent developments concerning the determination of the proton charge
radius using different experimental techniques. We discuss upcoming experiments, and
briefly mention the deuteron charge radius puzzle at the end.
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I. INTRODUCTION

Nucleons (protons and neutrons) are the building
blocks of atomic nuclei and are responsible for more than
99% of the visible matter in the universe. The force that
is responsible for binding nucleons into nuclei – and re-
sponsible for the composite nature of nucleons – is the
strong force, one of the four fundamental forces in na-
ture. The ultimate goal of modern nuclear physics is to
predict properties of nucleons, atomic nuclei and nuclear
reactions from the first principles of Quantum Chromo-
dynamics (QCD), the theory of the strong interaction
with quarks and gluons as the fundamental degrees of
freedom. While QCD has been well tested experimentally
at high energies where perturbative calculations can be
carried out, how QCD works in the low-energy region still
requires much better understanding. Nucleons therefore
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become important QCD laboratories through studies of
their rich internal structure.

Despite decades of efforts studying the internal struc-
ture of the proton, there are still a number of puzzles
and open questions surrounding the proton such as its
spin and charge radius. The so-called “Proton Spin Cri-
sis” was triggered by the European Muon Collaboration
(EMC) experiment (Ashman et al., 1988) in which po-
larized muons were scattered off polarized nucleons – dis-
covering that quarks’ spins contribute little to the pro-
ton spin. After more than three decades of polarization
experiments worldwide, the emerging picture about the
proton spin is that the quark spin contributes about a
third to the proton spin with comparable contribution
likely by the spins of the gluons, and the remaining from
the orbital angular momenta of the quarks and gluons
inside. For a recent review of the proton spin, we refer
readers to (Ji et al., 2020; Kuhn et al., 2009).

The proton mass decomposition has been a topic of in-
creasing interest in recent years motivated by the experi-
mental capability offered by the energy upgraded 12-GeV
CEBAF at Jefferson Lab (Dudek et al., 2012), and the fu-
ture Electron-Ion Collider (EIC) (Accardi et al., 2016) to
be built at the Brookhaven National Laboratory. There
exists various approaches for the proton mass decompo-
sition (Ji, 1995; Lorcé, 2018; Metz et al., 2020; Shifman
et al., 1978). Following Ji’s decomposition, the quark
mass contribution to the proton mass is found to be ∼
11%, trace anomaly is about 22%, and the rest is due
to the quark and gluon energy (Gao et al., 2015). Near-
threshold electro- and photo-production cross sections of
J/Ψ and Υ particles (Gryniuk et al., 2020; Gryniuk and
Vanderhaeghen, 2016; Hatta and Yang, 2018; Kharzeev
et al., 1999) from the proton have been proposed as effec-
tive ways to access the trace anomaly contribution, and
experiments (Gryniuk et al., 2020; Jefferson Lab Pro-
posal E12-12-006, Spokespersons: K. Hafidi, X. Qian, N.
Sparveris, Z.-E. Meziani (contact), and Z. W. Zhao, 2012)
are being planned at Jefferson Lab and at the future EIC.

The proton root-mean-square (rms) charge radius
(a.k.a. proton charge radius) is a quantity that is not
only of importance to QCD, but also for bound state
QED calculations of atomic energy levels. It additionally
has a direct impact on the determination of the Rydberg
constant, one of the most well-known fundamental quan-
tities in Nature. Conventionally, the proton charge radius
can be determined from electron-proton elastic scatter-
ing, a method pioneered by Hofstadter, and atomic spec-
troscopic measurements using ordinary hydrogen atoms.
In the former case, one determines the proton electric
form factor from scattering cross sections, from which
one then extracts the proton charge radius. In the latter
case, experimentally measured atomic transitions com-
bined with state-of-the-art QED calculations allow for
an extraction of the proton charge radius.

The proton charge radius puzzle originated in 2010 fol-

lowing a new ultra-precise determination of the proton
charge radius from muonic hydrogen Lamb shift measure-
ments (Pohl et al., 2010), which reported a radius value
of 0.84184(67) fm. This new result is 4% smaller than
the recommended value of 0.8775(51) fm by the Com-
mittee on Data for Science and Technology (CODATA-
2010) (Mohr, 2012) based on results from electron-proton
scattering and ordinary hydrogen spectroscopy measure-
ments, and represents a 7σ difference. In the last ten
years, major progress has been made in resolving this
puzzle, which is the focus of this review paper. While we
cover the latest progress in atomic spectroscopy concern-
ing the proton charge radius, special emphasis will be
given in this review to the progress from lepton scatter-
ing, and its associated challenges. The rest of the paper
is organized as the following. We set the stage and in-
troduce the proton charge radius puzzle in Section II. In
Section III we describe how the charge radius is defined,
how it can be properly understood in terms of a quark
charge distribution, and how it is connected to the quark
structure of the proton. We subsequently describe the ex-
perimental techniques in determining the proton charge
radius from elastic electron-proton scattering in Section
III and from atomic hydrogen spectroscopy in Section IV.
Section V and VI review the results from the recent lep-
ton scattering and spectroscopy measurements, respec-
tively. In Section VII, we review ongoing and planned
lepton scattering experiments. Section VIII provides a
brief introduction of another charge radius puzzle which
concerns the deuteron before we conclude in Section IX.

II. THE PROTON CHARGE RADIUS PUZZLE

The proton charge radius puzzle developed and quickly
became widely known in 2010 when the CREMA collabo-
ration (Pohl et al., 2010) reported the first determination
of the proton charge radius from a muonic hydrogen spec-
troscopic method ever – giving a value of 0.84184(67) fm
by measuring the transition between the 2S1/2(F = 1)
and the 2P3/2(F = 2) energy levels. It was the most
precise measurement at the time, but 7 σ smaller than
the 2010 CODATA recommended value of 0.8775(51) fm
(Mohr, 2012). In 2013, the CREMA collaboration re-
ported (Antognini et al., 2013a) a value of 0.84087(39)
fm from combined analyses of the original transition they
reported in 2010 together with a different transition be-
tween the 2S1/2(F = 0) and the 2P3/2(F = 1) levels.
See (Carlson, 2015; Pohl et al., 2013) for some early re-
views. From the electron scattering community, two val-
ues of the proton charge radius were reported around the
same time, and they are 0.8791(79) fm by Bernauer et
al. (Bernauer et al., 2010), and 0.875 (10) fm by Zhan
et al. (Zhan et al., 2011) – both were included in the
2010 CODATA compilation and are in excellent agree-
ment with its recommended value. The muonic hydro-
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gen results (Antognini et al., 2013a; Pohl et al., 2010)
had not been included into the CODATA compilation
until its most recent release (Tiesinga et al., 2021).

The release of the proton charge radius result from
a muonic hydrogen spectroscopic measurement by the
CREMA collaboration in 2010 (Pohl et al., 2010) trig-
gered a major proton charge radius puzzle. However,
there was a puzzle even before that, known perhaps only
to a much smaller community. An important motiva-
tion to improve the precision in determining the pro-
ton charge radius from electron scattering experiments is
for precision tests of QED through hydrogen Lamb shift
measurements. The standard hydrogen Lamb shift mea-
surement probes the 1057 MHz fine structure transition
between the 2S1/2 and 2P1/2 states – and can be calcu-
lated to high precision with higher-order corrections in
QED with the proton rms charge radius as an important
input for finite size and other hadronic structure con-
tributions. However, the two most precise values from
electron scattering experiments in the literature before
2010 – each with a relative uncertainty of less than 1.5%
but differing by about 7% (relative) – are rp = 0.805(11)
fm (Hand and Wilson, 1963) and rp = 0.862(12) fm (Si-
mon et al., 1980). The result from (Hand and Wilson,
1963) includes data from several experiments. In the
late 1990s, several groups published high precision re-
sults from hydrogen spectroscopic measurements (Berke-
land, 1995; Bourzeix et al., 1996; Hagley and Pipkin,
1994; Weitz et al., 1994; van Wijngaarden et al., 1998),
and these results supported a larger value of the pro-
ton charge radius (0.862 fm) when compared with QED
predictions including the two-loop binding effects. Mel-
nikov and van Ritbergen (Melnikov, 2000) calculated the
three-loop slope of the Dirac form factor – the last known
contribution to the hydrogen energy levels at order mα7

– and extracted a proton charge radius value of 0.883(14)
fm combining the QED calculation of the 1S Lamb shift
and the experimental measurement (Schwob et al., 1999).

III. ELASTIC ELECTRON-PROTON SCATTERING

Electron scattering has proved to be an effective and
clean way to probe the internal structure of the nu-
cleon – as the lepton vertex is well described by QED
– and higher-order contributions are suppressed com-
pared with the leading-order, one-photon-exchange con-
tribution. This has been demonstrated by the Nobel
Prize winning electron-proton elastic scattering experi-
ment carried out by Robert Hofstadter and collaborators
in the 1950s at the Stanford University (Hofstadter and
McAllister, 1955; McAllister and Hofstadter, 1956) – in
which the root-mean-squared charge radius of the proton
– 0.74±0.24 (fm) – was determined for the first time. The
success of lepton scattering was further demonstrated

by another Nobel Prize awarded to Friedman, Kendall,
and Taylor (Bloom et al., 1969; Breidenbach et al., 1969)
for leading the DIS experiments with electron beams at
SLAC between 1967 to 1973 – that discovered for the first
time the existence of point-like-particles – quarks inside
the proton. For details about the discovery of quarks, one
may refer to the article written by Michael Riordan (Ri-
ordan, 1992).

A. Introduction to Electron-Proton Scattering and Proton
Electromagnetic Form Factors

To lowest-order in QED, the dominant contribution to
the electron-proton elastic scattering is the one-photon-
exchange (OPE) Feynman diagram as shown in Fig. 1.
The 4-momentum of the incoming (scattering) electron
is labeled by k (k′). The 4-momentum of the target (re-
coil) proton is labeled by p (p′). A virtual photon ex-
changed between the electron and the proton carries a 4-
momentum, q, and the corresponding momentum trans-
fer squared q2, is a Lorentz invariant. In electron scatter-
ing, the opposite of the four-momentum transfer squared,
Q2 (Q2 = −q2 ≥ 0) is commonly used.

𝑞

𝑝′

𝑝

𝑘′

𝑘

FIG. 1 The one-photon-exchange diagram describing the elas-
tic electron-proton scattering (figure credit: Jingyi Zhou).

The scattering amplitude for the elastic electron scat-
tering from a hadronic target in OPE based on QED can
be written, as

M = i
e2

Q2
u(k′, h)γµu(k, h)〈p′, λ′|Jµem(0)|p, λ〉, (1)

in which u denotes the electron Dirac spinors with h the
(conserved) helicity of the electrons, λ (λ′) denote the
helicities of initial (final) hadrons, and 〈p′, λ′|Jµem(0)|p, λ〉
the hadron matrix element of the local electromagnetic
current operator (taken at space-time point x = 0).

For a spin- 1
2 extended object such as a nucleon, its elec-

tromagnetic transition current – following the require-
ments of current and parity conservation and covariance
under the improper Lorentz group – can be written as

〈p′, λ′|Jµem(0)|p, λ〉 = N̄(p′, λ′)ΓµN(p, λ), (2)
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in which N denote the nucleon spinors, and where Γµ is
the virtual photon-proton vertex:

Γµ ≡ F1(q2)γµ + F2(q2)
iσµνqν

2M
. (3)

The functions F1 and F2, two independent quantities
which depend on q2(Q2) only, are called the Dirac and
Pauli form factors (FF), respectively, and M is the mass
of the nucleon.

The electric (GE) and the magnetic (GM ) form fac-
tor of the nucleon, also called the Sachs’ form factors,
are two independent linear combinations of F1 and F2,
originally proposed by Ernst, Sachs and Wali (Ernst and
Wali, 1960) as:

GE = F1 −
Q2

4M2
F2, (4)

GM = F1 + F2. (5)

In the limit of Q2 = 0, GEp(0) = 1, GEn(0) = 0, which
are just the charge of the proton, and neutron, respec-
tively; while GMp(0) = µp, GMn(0) = µn, the proton
and neutron magnetic moments, correspondingly. The
Pauli FF at Q2 = 0 is given by the anomalous magnetic
moment F2(0) ≡ κ, with µp = 1 + κp and µn = κn.
In comparison to the F1 and F2 form factors, the GE
and GM were proposed to have a more intuitive physi-
cal interpretation, though GE(0) = F1(0). Sachs (Sachs,
1962) showed that in the Breit frame GE and GM can
be interpreted as Fourier transforms of spatial distribu-
tions of charge and magnetization, treating the nucleon
as a non-relativistic static system. In the Breit frame the
incoming electron has a momentum of ~q/2 and the nu-
cleon initial momentum is −~q/2; the scattered electron
has a momentum of −~q/2 and the recoil proton has a
momentum of ~q/2. So it is a special Lorentz frame in
which q2 = −~q 2, i.e., no energy transfer is involved in
this particular reference frame. For each Q2 value, there
is the corresponding Breit frame, in which the form fac-
tors are represented as GE,M (q2) = GE,M (−~q 2). For
non-relativistic (n-rel) static systems, the analogy to a
“classical” charge density distribution has then been in-
troduced in the literature through the three-dimensional
(3d) Fourier transformation of the matrix element of the
charge operator in the Breit (B) frame:

ρ3d,n−rel(r) =

∫
d3~q

(2π)3
e−i~q·~r

〈p′, λ|J0
em(0)|p, λ〉B
2M

,

=

∫
d3~q

(2π)3
e−i~q·~rGE(−~q 2), (6)

which only depends on r = |~r| for a spherical symmetric
system.

It has been pointed out in (Lorcé, 2020) that for a
relativistic (rel) system, a proper kinematical factor has

to be introduced, leading to the modified quantity:

ρ3d,rel(r) =

∫
d3~q

(2π)3
e−i~q·~r

〈p′, λ|J0
em(0)|p, λ〉B
2P 0

B

,

=

∫
d3~q

(2π)3
e−i~q·~r

1√
1 + ~q 2/(4M2)

GE(−~q 2),(7)

where P 0
B is the nucleon energy in the Breit frame. It

was furthermore argued in (Lorcé, 2020) from a phase-
space perspective that the quantity ρ3d,rel(r) can be in-
terpreted as an internal charge quasi-density of the tar-
get. One notices that such relativistic quasi-density is
obtained by the Fourier transform of GE(q2) multiplied
by the relativistic factor M/P 0

B = 1/
√

1 +Q2/(4M2), as
Q2 ≡ −q2 = ~q 2 in the Breit frame.

To arrive at a strict density or probabilistic interpreta-
tion, the momentum transfer is required to remain small
compared to the inertia of the system. The concept of
a rest-frame density is therefore intrinsically limited by
the Compton wavelength of the system. This limita-
tion can however be avoided in the infinite-momentum
frame (IMF), in which the magnitude of the nucleon’s
momentum |p| � M , i.e. the nucleon is moving at
infinite momentum. The IMF is advantageous in dis-
cussing deep inelastic scattering process in which the vir-
tual photon interacts with a parton (quark) inside the
nucleon. In the IMF due to relativistic time dilation -
the struck quark is essentially free from interacting with
other partons inside the nucleon during the short time
when the quark interacts with the virtual photon. Rine-
himer and Miller (Rinehimer and Miller, 2009) studied
the connection between the Breit frame and IMF and
showed that when the nucleon matrix element of the
time component of the electromagnetic current, which
gives GE/

√
1 +Q2/(4M2) in the Breit frame as dis-

cussed above, is boosted to the IMF, one obtains the
F1 form factor, as was also confirmed by the analysis in
(Lorcé, 2020) as well as the earlier work of (Chung et al.,
1988).

Miller pointed out (Miller, 2019) that the above pic-
ture connecting the proton charge density distribution to
the Fourier transform of the GE form factor is not cor-
rect, and showed that a three-dimensional charge den-
sity, in the strict sense of a probability interpretation,
cannot be defined for a nucleon - as a relativistic sys-
tem of quarks and gluons - because the initial and final
state proton wave functions are not the same. Instead, a
two-dimensional charge density can be defined, and de-
termined by the Dirac form factor F1, as a matrix element
of a density operator between identical initial and final
states which are localized in the plane transverse to the
direction of the fast moving nucleons.

Jaffe (Jaffe, 2021) looked at this issue from a funda-
mental aspect – the interplay between relativity and the
uncertainty principle – and pointed out that any attempt
to extract spatial distributions of local properties of a
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hadronic system that is not much larger than its Comp-
ton wavelength would fail. In the case of the proton,
its Compton wavelength is about 0.2 fm which is not
significantly smaller than its size of ∼0.85 fm. Defin-
ing the expectation value of the spatial charge density
distribution of the proton requires one to localize the
proton, which introduces a localization dependence into
the relationship between the form factor and the local
charge density distribution. Only for systems such as
atoms and heavy atomic nuclei – for which the intrinsic
sizes of the systems are much larger than the correspond-
ing Compton wavelength – is the connection between the
three-dimensional Fourier transform of the charge form
factor and the local charge density distribution meaning-
ful. Belitsky et al. also discussed the proton form factors
and charge distributions in their seminal paper (Belitsky
et al., 2004) on the development of the concept of quan-
tum phase-space (Wigner) distributions for quarks and
gluons in the proton.

In the last two decades or more, there have been major
developments in three-dimensional imaging of the par-
tonic structure of the nucleon – motivated to a large ex-
tent by the desire to solve the “proton spin crisis” or
“puzzle”. These developments also shed new light on the
electromagnetic structure of the nucleon. It is impor-
tant to discuss the proton charge distribution and elec-
tric and magnetic form factors in the context of these new
developments. In the next section, we briefly introduce
the three-dimensional parton distributions first before we
discuss the two-dimensional charge density.

B. Three-dimensional parton distributions

The general framework to describe the partonic struc-
ture of the proton is through the generalized trans-
verse momentum dependent parton distributions (GT-
MDs) (Lorcé and Vanderhaeghen, 2011; Meissner and
Schlegel, 2009), which are obtained by integrating the
fully unintegrated generalized quark-quark correlation
functions for a nucleon in momentum space over the light-
cone energy component of the quark momentum (Meiss-
ner and Schlegel, 2009; Meissner and Goeke, 2008). The
thus obtained GTMDs depend on x, k⊥, and ∆, where x
is the longitudinal momentum fraction of the parton, k⊥,
the transverse momentum of the parton, and ∆ is the
four-momentum transfer to the nucleon. The GTMDs
are related to the Wigner distributions (Belitsky et al.,
2004; Ji, 2003; Lorcé and Pasquini, 2011) via a Fourier
transformation between the transverse momentum trans-
fer ∆⊥ and the quark’s transverse position b. The five-
dimensional Wigner distributions ρ(b,k⊥, x, ~S) (Lorcé

and Yuan, 2012), for a nucleon with polarization ~S, are
the quantum mechanical analogues of the classical phase-
space distributions, with the five dimensions being x, k⊥,
and the transverse coordinates b.

As illustrated in Fig. 2, one can obtain the generalized
parton distributions (GPDs) by integrating the GTMDs
over the transverse momentum k⊥. The GPDs can be
viewed as the generalization of the parton distribution
functions (PDFs) and the form factors. On the other
hand, one can obtain the transverse momentum depen-
dent parton distributions (TMDs) by setting the momen-
tum transfer ∆ to zero or equivalently by integrating
the Wigner distributions over the transverse coordinate
b. The TMDs will reduce to PDFs when the transverse
momentum is integrated. In Fig. 2, TMFF and TMSD
refer to transverse-momentum dependent form factors,
and transverse-momentum dependent spin densities, re-
spectively. While the most general one-parton informa-
tion is contained in the GTMDs, which are connected
to the Wigner distributions through Fourier transforma-
tions, unfortunately, neither the GTMDs nor the Wigner
distributions are measurable in experiments. However,
there are ways to access GPDs, which we will briefly
discuss next and TMDs experimentally. For TMDs, we
refer to a recent review by Anselmino, Mukherjee, and
Vossen (Anselmino et al., 2020).

FIG. 2 (Color online) Parton distribution family. The figure
is from (Lorcé and Vanderhaeghen, 2011).

In 1997, Deeply Virtual Compton Scattering
(DVCS) (Ji, 1997a) was proposed as an experimen-
tal tool to probe GPDs. We refer the reader to (Ji,
1997a,b; Müller et al., 1994; Radyushkin, 1996) for
the original articles on GPDs and to (Belitsky and
Radyushkin, 2005; Boffi and Pasquini, 2007; Diehl,
2003a; Goeke et al., 2001; Guidal et al., 2013; Kumericki
et al., 2016) for reviews of the field. In the Björken
limit, the DVCS amplitude is described through four
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off-forward parton distributions (Ji, 1997a): Hq and
H̃q for a quark of flavor q, which conserve the nucleon
helicity, and Eq and Ẽq that flip the nucleon helicity.
These GPDs are functions of x, ξ, and ∆2 – for example,
Hq(x, ξ,∆2), Eq(x, ξ,∆2) – where x is the average
fraction of quark longitudinal momentum, ξ is the
average fraction of the longitudinal momentum transfer
∆, and ∆2 is the squared momentum transfer.

In the forward limit, ∆µ → 0, H and H̃ are just the
quark momentum, and helicity PDFs:

Hq(x, 0, 0) = q(x), H̃q(x, 0, 0) = ∆q(x). (8)

Furthermore, one can write down the following sum rules
relating these new distributions to the quark flavor com-
ponents of the Dirac and Pauli form factors in a nucleon
as:

F q1 (∆2) =

∫ +1

−1

dxHq(x, ξ,∆2), (9)

F q2 (∆2) =

∫ +1

−1

dxEq(x, ξ,∆2), (10)

where the ξ-independence of these sum rules is a conse-
quence of Lorentz invariance.

C. The nucleon transverse charge densities

We next discuss in more detail how to define a charge
density in a nucleon, and how such density is related to
the elastic form factors and generalized parton distribu-
tions discussed above. For relativistic quantum systems,
such as hadrons composed of nearly massless quarks,
a proper definition of a charge density requires care as
discussed above. For such systems, the number of con-
stituents is not constant as a result of virtual pair pro-
duction. Consider, as an example, a hadron such as the
proton, which is probed by a space-like virtual photon,
as shown in Fig. 3. A sizable fraction of the proton’s re-
sponse when probed by a virtual photon with small (or
even intermediate) virtuality is coming from wave func-
tion components beyond the three valence quark state
state (Sufian et al., 2017). In such a system, the wave
function contains, besides the three valence quark Fock
component |qqq〉, components where additional qq̄ pairs,
so-called sea-quarks, or (transverse) gluons g are excited,
leading to an infinite tower of |qqqqq̄〉, |qqqg〉, ... com-
ponents. When probing such a system using electron
scattering, the exchanged virtual photon will couple to
any quark or anti-quark in the proton as shown in Fig. 3
(upper panel). In addition, the virtual photon can also
produce a qq̄ pair, giving rise e.g. to a transition from
a 3q state in the initial wave function to a 5q state in
the final wave function, as shown in Fig. 3 (lower panel).
Such processes, leading to non-diagonal overlaps between

FIG. 3 Coupling of a space-like virtual photon to a relativis-
tic many-body system, as a proton. Upper panel : diagonal
transition where the photon couples to a quark, in the leading
3q Fock component (left), or in a higher 5q Fock component
(right). Lower panel : process where the photon creates a qq̄
pair leading to a non-diagonal transition between an initial
3q state and a final 5q state in the proton.

initial and final wave functions, are not positive definite,
and do not allow for a simple probability interpretation
of the density ρ anymore. Only the processes shown in
the upper panel of Fig. 3 with the same initial and final
wave function yield a positive definite particle density,
allowing for a probability interpretation.

This relativistic dynamical effect of pair creation or an-
nihilation fundamentally hampers the interpretation of
density and any discussion of size and shape of a rela-
tivistic quantum system. An interpretation in terms of
the concept of a density requires suppressing the contri-
butions shown in the lower panel of Fig. 3. This is pos-
sible when viewing the hadron from a light-front frame,
that allows one to describe the hadron state by an in-
finite tower of light-front wave functions. Consider the
electromagnetic (e.m.) transition from an initial hadron
(with four-momentum p) to a final hadron (with four-
momentum p′) when viewed from a light-front moving
towards the hadron. Equivalently, this corresponds with
an infinite-momentum frame (IMF) where the hadrons
have a large momentum component along the z-axis cho-
sen along the direction of the hadrons average momen-
tum P = (p + p′)/2. One then defines the light-front
plus (+) component by P+ ≡ (P 0 +P 3)/

√
2, which is al-

ways a positive quantity for the quark or anti-quark four-
momenta in the hadron. When one views the hadron in
a so-called Drell-Yan frame (Drell and Yan, 1970), where
the virtual photon four-momentum ∆ = p′ − p is purely
transverse, satisfying ∆+ = 0, energy-momentum con-
servation will forbid processes where this virtual photon
splits into a qq̄ pair. Such a choice is possible for a space-
like virtual photon, and its virtuality is then given by
t ≡ ∆2 = −∆2

⊥ < 0, where ∆⊥ is the transverse photon
momentum, lying in the transverse spatial (x, y)-plane.
Here −t or ∆2

⊥ is the same as the virtuality Q2 in elas-
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tic e-p scattering. In such a frame, the virtual photon
only couples to forward moving partons, i.e. only pro-
cesses such as those shown in the upper panel in Fig. 3
are allowed. We can then define a proper density op-
erator through the + component of the four-current by
J+ = (J0 + J3)/

√
2. For one quark flavor q it is given

by (Soper, 1977):

J+
q (z−,b) = q̄(0, z−,b)γ+q(0, z−,b)

=
√

2q†+(0, z−,b)q+(0, z−,b), (11)

where the q+ fields are related to the quark fields q
through a field redefinition, involving the ± components
of the Dirac γ-matrices as q+ ≡ (1/2)γ−γ+q. In Eq. (11)
light-cone coordinates are used with a± ≡ (a0 ± a3)/

√
2,

and both quark fields are taken at equal light-cone time
z+ = 0. The transverse spatial coordinates are written as
two-dimensional vector b. The relativistic density opera-
tor J+

q , defined in Eq. (11), is a positive definite quantity.
The electromagnetic charge density operator J+

em is then
obtained by a sum over quarks weighted by their electric
charges eq (in units of e) as :

J+
em(z−,b) =

∑
q

eq q̄(0, z
−,b)γ+q(0, z−,b). (12)

One can then examine the transverse structure of
the nucleon due to the fact that transverse boosts are
independent of interactions in the infinite momentum
frame (Burkardt, 2006; Kogut and Soper, 1970). Trans-
versely localized nucleon states (Burkardt, 2003; Diehl,
2002, 2003b; Soper, 1977) with its transverse center-of-
mass position R being set to 0, can be defined in terms
of linear superposition of states of transverse momentum
as (Miller, 2019)

|p+,R = 0, λ〉 ≡ N
∫

d2p⊥

(2π)2
√

2p+
|p+,p⊥, λ〉, (13)

with |p+,R = 0, λ〉 being light-cone helicity (λ) eigen-
states (Soper, 1977), and N a normalization factor.

Using the density operator of Eq. (11), one can define
transverse densities ρqλ for a quark of flavor q in a trans-
versely localized hadron as (Burkardt, 2000, 2003; Miller,
2007):

ρqλ(b) ≡ 1

2P+
〈P+,R = 0, λ|J+

q (0,b)|P+,R = 0, λ〉.

(14)

Using the translation operator in transverse spatial direc-

tion, one can express J+
q (0,b) = e−iP̂⊥·bJ+

q (0)eiP̂⊥·b, in
terms of the local current operator at the origin J+

q (0).
Using Eq. (13) then allows to express the quark trans-
verse density of Eq. (14) as:

ρqλ(b) ≡
∫
d2∆⊥
(2π)2

e−i∆⊥·b
1

2P+

×〈P+,
∆⊥

2
, λ | J+

q (0) |P+,−∆⊥
2
, λ〉. (15)

In the two-dimensional Fourier transform of Eq. (15),
the vector b denotes the quark position (in the trans-
verse plane) from the transverse center-of-momentum of
the hadron. It is the position variable conjugate to the
hadron relative transverse momentum ∆⊥. The quan-
tity ρqλ(b) has the interpretation of the two-dimensional
(transverse) density to find a quark of flavor q at dis-
tance b = |b| from the transverse c.m. of the hadron
with helicity λ.

For a quark of flavor q in the proton, the matrix ele-
ment of the J+

q operator, entering the two-dimensional
Fourier-transform in Eq. (15), can be expressed in terms
of the quark flavor contribution F q1 to the proton Dirac
form factor as:

1

2P+
〈P+,

∆⊥
2
, λ|J+

q (0)|P+,−∆⊥
2
, λ〉 = F q1 (−∆2

⊥),

(16)
which allows to express the density for a quark of flavor
q in the proton, using Eq. (15), as:

ρq(b) =

∫
d2∆⊥
(2π)2

e−i∆⊥·b F q1 (−∆2
⊥),

=

∫ ∞
0

dQ

2π
QJ0(bQ)F q1 (−Q2), (17)

where in the last line the circular symmetry of the trans-
verse density was used to convert the two-dimensional
Fourier transform to a one-dimensional integral over
Q ≡ |∆⊥|, with Jn denoting the cylindrical Bessel func-
tion of order n. Furthermore, the helicity subscript λ has
been omitted, as for a spin-1/2 system ρ+ 1

2
= ρ− 1

2
.

The two-dimensional electric charge density in a pro-
ton is then obtained as sum over the quarks weighted by
their electric charges:

ρ(b) =
∑
q

eqρ
q(b). (18)

From the experimentally measured Dirac form factor F1

of the proton:

F1p =
∑
q

eqF
q
1 , (19)

one obtains:

ρp(b) =

∫ ∞
0

dQ

2π
QJ0(bQ)F1p(−Q2). (20)

A similar formula holds for the neutron with the inter-
change ρu ↔ ρd in Eq. (18) and Fu1 ↔ F d1 in Eq. (19).
In this way, it was observed in (Miller, 2007) that the
neutron transverse charge density reveals the well known
negative contribution at large distances, around 1.5 fm,
due to the pion cloud, a positive contribution at inter-
mediate b values, and a negative core at b values smaller
than about 0.3 fm. One can understand the negative
value of the neutron ρ(b = 0) from Eq. (20) and the
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observation that over the whole measured Q2 range the
neutron Dirac form factor F1n is negative.

The quark charge densities in Eq. (20) do not fully de-
scribe the e.m. structure of the hadron. For a proton,
the densities with λ = ±1/2 yield the same information,
while a spin-1/2 system is described by two independent
electromagnetic form factors. In general, a particle of
spin S is described by (2S + 1) e.m. moments. To
fully describe the structure of a hadron one also needs
to consider the charge densities in a transversely polar-
ized hadron state, denoting the transverse polarization
direction by S⊥. The transverse charge densities can be
defined through matrix elements of the density operator
J+
q in eigenstates of transverse spin (Carlson and Van-

derhaeghen, 2008, 2009; Lorcé, 2009) as:

ρqTs⊥(b) ≡
∫
d2∆⊥
(2π)2

e−i∆⊥·b
1

2P+

×〈P+,
∆⊥

2
, s⊥|J+

q (0)|P+,
−∆⊥

2
, s⊥〉,(21)

where s⊥ is the hadron spin projection along the trans-
verse spin direction S⊥ ≡ cosφSex + sinφSey, with ex

and ey the two unit-vectors in the transverse plane.
By expressing the transverse spin state in terms of the

light-front helicity spinor states as:

|s⊥ = +
1

2
〉 =

1√
2

{
|λ = +

1

2
〉+ eiφS |λ = −1

2
〉
}
, (22)

the matrix element of the J+
q operator, entering the two-

dimensional Fourier-transform in Eq. (21), can be ex-
pressed in terms of the quark flavor contribution to both
the Dirac (F q1 ) and Pauli (F q2 ) form factors as:

1

2P+
〈P+,

∆⊥
2
, s⊥|J+

q (0)|P+,−∆⊥
2
, s⊥〉

= F q1 (−∆2
⊥) +

i

2M
(S⊥ ×∆⊥)z F

q
2 (−∆2

⊥). (23)

Taking the weighted sum over the quark charges, the
Fourier transform defined by Eq. (21) can then be worked
out as (Carlson and Vanderhaeghen, 2008):

ρTs⊥(b) = ρ(b)

+ sin(φb − φS)

∫ ∞
0

dQ

2π

Q2

2M
J1(bQ)F2(−Q2),(24)

where the second term, which describes the deviation
from the circular symmetric unpolarized charge density,
depends on the quark position b = b(cosφbex+sinφbey).
Whereas the density ρλ for a hadron in a state of defi-
nite helicity is circularly symmetric for all spins, the den-
sity ρTs⊥ depends also on the orientation of the position
vector b, relative to the transverse spin vector S⊥, as
illustrated in Fig. 4. Therefore, it contains information
on the hadron shape, projected on a plane perpendicular

to the line-of-sight. It was emphasized recently in (Guo
et al., 2021) that in order to define intrinsic quark densi-
ties in transverse space, one needs to remove the center-
of-mass motion. This amounts to the replacement of F2

by F1 + F2 in Eqs. (23) and (24).

FIG. 4 Schematic view of the projection of the charge den-
sity along the line-of-sight (perpendicular to the figure), for a
hadron polarized along the direction of S⊥. The position of
the (quark) charge inside the hadron is denoted by b.

As the density ρT is not circularly symmetric, one can
calculate the dipole moment of its distribution as

d ≡ e
∫
d2b b ρTs⊥(b) = − e

2M
F2(0) (S⊥ × ez) .(25)

Eq. (25) implies that polarizing the proton along the x-
axis leads to an induced electric dipole moment along the
y-axis which is equal to the value of the anomalous mag-
netic moment, i.e. F2(0) (in units e/2M) as first noticed
in (Burkardt, 2000). One can understand this induced
electric dipole field pattern from special relativity, as the
nucleon spin along the x-axis is the source of a magnetic
dipole field, denoted by ~B. An observer moving towards
the nucleon with velocity ~v will see an electric dipole field
pattern with ~E′ = −γ(~v× ~B) giving rise to the observed
effect.

We show the transverse charge densities in a proton
and neutron in Fig. 5 based on the recent parameteri-
zation of (Ye et al., 2018) for the proton and neutron
form factors. One notices that, for the proton, the un-
polarized charge density is positive everywhere. For a
transversely polarized proton along the x-axis one no-
tices a small displacement of the charge density along the
y-axis proportional to the proton’s anomalous magnetic
moment. For the neutron, the unpolarized density shows
the negatively charged core, positive intermediate con-
tribution, and negative pion cloud contribution at large
distances, as described above. The corresponding trans-
verse charge density for a neutron polarized along the
x-axis gets significantly displaced due to the large (nega-
tive) value of the neutron anomalous magnetic moment.
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FIG. 5 (Color online) Transverse charge densities for proton (left panel) and neutron (right panel). The curves show the
density along the y-axis for an unpolarized nucleon (dashed blue curves), and for a nucleon polarized along the x-axis (solid
red curves). For the nucleon form factors, the empirical parameterization of (Ye et al., 2018) was used.

The above discussed light-front densities require us
to develop some new intuition, as they are defined at
equal light-front time (z+ = 0) of their constituents.
When constituents move non-relativistically, it does not
make a difference whether they are observed at equal
time (t = 0) or equal light-front time (z+ = 0), since
the constituents can only move a negligibly small dis-
tance during the small time interval that a light-ray
needs to connect them. This is not the case, however,
for bound systems of relativistic constituents such as
hadrons (Hoyer, 2009; Jarvinen, 2005). For the latter,
the transverse density at equal light-front time can be
interpreted as a 2-dimensional flash photograph of a 3-
dimensional object (Brodsky et al., 2015), reflecting the
position of charged constituents at different times, which
are (causally) connected by a light-ray.

D. Radii of quark distributions in a proton

As discussed above, to define and reconstruct a 3-
dimensional charge distribution from elastic electron
scattering measurements of the form factors of a system
requires that one is able to localize the object and fix
its center-of-mass, with respect to which one defines the
charge distribution (Jaffe, 2021). This is possible for non-
relativistic (static) systems for which the typical size is
much larger than its Compton wavelength, allowing the
probe to localize the charges at distances between both
scales. For atomic nuclei, this condition is well satisfied
as their Compton wavelength (of order 0.2/A fm) is typi-
cally much smaller than their size (of order 1.2 A1/3 fm).
As an example, for the 12C nucleus, its size of around
2.5 fm is much larger than its Compton wavelength of
around 0.02 fm, allowing one to localize charges in be-
tween these length scales and reconstruct a charge distri-
bution. For such systems, one can define a 3-dimensional

charge distribution as Fourier transform of the measured
electric form factor GE as given in Eq. (6). For such
charge distribution, one can define a radius through the
normalized moment:

〈r2
E〉 ≡

∫
d3~r r2 ρ3d,n−rel(r)∫
d3~r ρ3d,n−rel(r)

. (26)

Inserting the 3-dimensional density defined in Eq. (6) al-
lows one to express the charge radius as:

〈r2
E〉 = −6

G′E(0)

GE(0)
, (27)

where G′E(0) ≡ dGE

dQ2

∣∣
Q2=0

, with Q2 = ~q 2. One can there-

fore express the Taylor expansion of GE at low values of
Q2 as:

GE(−Q2) ≡ GE(0)

{
1− 1

6
〈r2
E〉Q2 +O(Q4)

}
, (28)

and access the charge radius experimentally from the
electric form factor slope at the origin.

Applying the above concepts to a nucleon becomes
problematic since the nucleon’s size (of order 0.85 fm)
is not very much larger than its Compton wavelength
(of order 0.2 fm), making it impossible to localize the
center-of-mass in three spatial dimensions. Besides for
light-quark systems, we have discussed that an interpre-
tation in terms of a positive definite quantity is spoiled
in the rest frame due to pair creation processes. In the
previous section, we reviewed how to properly define den-
sity distributions for a nucleon, which is a relativistic
bound state. By going to the infinite momentum frame,
it allows one to localize the hadron in a plane perpen-
dicular to the direction of a fast moving observer and
define density distributions in that plane. For the result-
ing two-dimensional transverse distributions for a quark
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of flavor q in the proton, one can then define a mean-
squared transverse radius as:

〈b2〉q =

∫
d2b b2 ρq(b)∫
d2b ρq(b)

= −4
F ′q1 (0)

F q1 (0)
,

(29)

where F ′q1 (0) ≡ dF q
1

dQ2

∣∣
Q2=0

denotes the slope at the or-

gin of the corresponding Dirac form factor. Note that
the radius definition of Eq. (29) for each quark flavor is
properly normalized to the number of valence quarks in
the proton: Fu1 (0) = 2 and F d1 (0) = 1, yielding:

〈b2〉u = −2F ′u1 (0), 〈b2〉d = −4F ′d1 (0). (30)

To determine the mean-squared transverse radii
Eq. (30) for each quark flavor, we start by expressing
the proton and neutron Dirac form factors, using isospin
symmetry, as:

F1p = euF
u
1 + edF

d
1 ,

F1n = euF
d
1 + edF

u
1 , (31)

which allows one to extract the Dirac form factors for the
u- and d-quark flavors. These enter the corresponding
transverse quark densities, as:

Fu1 = 2F1p + F1n, F d1 = 2F1n + F1p. (32)

Combining Eqs. (30) and (31), this allows one to express
the proper mean-squared transverse radii for the u- and
d-quark distributions in a proton as:

〈b2〉u = −2
{

2F ′1p(0) + F ′1n(0)
}
,

〈b2〉d = −4
{
F ′1p(0) + 2F ′1n(0)

}
. (33)

The last equation allows one to express the difference of
the mean-squared radii for d- and u-quark distributions
in a proton as:

〈b2〉d − 〈b2〉u = −6F ′1n(0). (34)

In order to empirically determine the mean-squared
transverse radii of u- and d-quark distributions in a pro-
ton, we relate the derivative of the Dirac form factors to
the conventional Sachs form factors GE and GM , defined
through Eqs. (4, 5), which yields:

F ′1(0) = G′E(0) +
κ

4M2
. (35)

Following the convention for non-relativistic (static) sys-
tems, one can Taylor expand the proton and neutron
Dirac form factors at low momentum transfer Q2 as:

GEp(−Q2) ≡ 1− 1

6
〈r2
Ep〉Q2 +O(Q4), (36)

GEn(−Q2) ≡ −1

6
〈r2
En〉Q2 +O(Q4). (37)

We like to emphasize again that for relativistic bound
states, such as a nucleon, where the concept of a

3-dimensional charge distribution is not well defined,
Eqs. (36,37) are merely used as operational definitions
for the form factor slopes at the origin, even though we
will refer to these quantities for simplicity as “radii” in
the remainder of this review. Eqs. (36,37) then allow one
to express for the nucleon (N = p, n):

−6F ′1N (0) = 〈r2
EN 〉 −

3κN
2M2

, (38)

where the anomalous magnetic moment contribution is
known as the Foldy term.

The radius of the transverse charge distribution in a
proton is then obtained as sum over the radii for the
quark distributions weighted by their charges:

〈b2〉p =
4

3
〈b2〉u − 1

3
〈b2〉d = −4F ′1p(0). (39)

For the neutron, assuming isospin symmetry, we define a
transverse charge radius as1:

〈b2〉n =
2

3
〈b2〉d − 2

3
〈b2〉u = −4F ′1n(0). (40)

In Table I, we show the empirical values of proton and
neutron radii 〈r2

E〉, the Foldy terms, the extracted Dirac
slopes F ′1(0), and transverse charge radii 〈b2〉. For the
proton values for 〈r2

Ep〉 we are showing both the recent
analysis of (Cui et al., 2021) based on e-p scattering re-
sults, which will be discussed in Section V, Eq. (73), and
the extracted value from the µH Lamb shift measure-
ments, which will be discussed in Section VI, Eq. (76).
Anticipating the discussion in Section VI, the quantity
entering the hydrogen spectroscopy Lamb shift experi-
ments is also given by the slope G′Ep(0). Therefore, it is
important and meaningful to compare the proton charge
radius values obtained by these two experimental tech-
niques. We see from Table I that the extracted mean-
squared transverse radii 〈b2〉 are consistent between both
analyses, showing that the transverse charge distribution
in a proton has a rms radius around 0.63 fm, as seen by
an observer moving with a light-front. For the neutron,
one notices that its Dirac slope value F ′1n(0) is the re-
sult of a large cancellation between the 〈r2

En〉 term and
the Foldy term, which have opposite signs, resulting in
a value of F ′1n(0) around 10% of the size of each con-
tribution. As the Foldy term for the neutron is slightly
larger in absolute value than the 〈r2

En〉 term, the posi-
tive value of −6F ′1n(0) results from Eq. (34) in a slightly
larger mean-squared radius for the d-quarks in a proton
in comparison with the u-quarks in the proton, confirm-
ing the observation of (Cates et al., 2011) based on a
flavor decomposition of proton and neutron form factors.

1 Note that for a neutron, this follows the convention in defin-
ing a charge radius for a neutral system, as one cannot use the
definition of Eq. (29) which is normalized to the total charge.
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〈r2E〉 − 3κN
2M2 −6F ′1(0) 〈b2〉

(fm2) (fm2) (fm2) (fm2)

proton 0.717± 0.014 0.598± 0.014 0.399± 0.009

(e-p) (Cui et al., 2021)

−0.1189

proton 0.7071± 0.0007 0.5882± 0.0007 0.3921± 0.0005

(µH) (Antognini et al., 2013a)

neutron −0.1161± 0.0022 0.1266 0.0105± 0.0022 0.0070± 0.0015

(PDG) (Zyla et al., 2020)

TABLE I Empirical values of the proton and neutron radii 〈r2E〉, Foldy terms, Dirac slopes F ′1(0), and transverse charge radii
〈b2〉. For the proton, we show the values both using the e-p scattering data analysis of (Cui et al., 2021), and the values from
µH Lamb shift measurements (Antognini et al., 2013a).

〈b2〉u 〈b2〉d

(fm2) (fm2)

proton (e-p) 0.402± 0.009 0.413± 0.010

proton (µH) 0.396± 0.001 0.406± 0.003

TABLE II Extracted values of the mean-squared transverse
radii for u- and d-quark distributions in the proton, using the
neutron PDG value for 〈r2En〉 given in Table I, and for the
proton values for 〈r2Ep〉 from both the analysis of (Cui et al.,
2021) based on e-p scattering results, as well as the extracted
value from the µH Lamb shift measurements (Antognini et al.,
2013a).

In Table II, we show the extracted values of the mean-
squared transverse radii for u- and d-quark distributions
in the proton, using the neutron PDG value for 〈r2

En〉,
and both analyses for the proton as shown in Table I.
For the more accurate values extracted from the µH
Lamb shift measurements, one obtains a precision of 0.3%
(0.7%) on the mean-squared transverse radii for the u (d)-
quark distributions. Using the values in Table I, we no-
tice that the neutron F ′1n(0) term contributes 1% (4%) to
the mean-squared radii for the u (d)-quark distributions
respectively in Eq. (33). One also notices that the uncer-
tainty on the neutron F ′1n(0) value is at present the lim-
iting uncertainty in the extraction of the mean-squared
transverse radius value for the d-quark distribution.

In the next sections, we will discuss unpolarized
and polarized electron-proton elastic scatterings and the

methods to extract the proton electric form factor and
the proton charge radius value based on the definition
of Eq. (36) as slope of the form factor GE at the origin.
Likewise, one can also define a magnetic radius as slope
at the origin of the form factor GMN for the nucleon
(N = p, n):

GMN (−Q2) ≡ µN
{

1− 1

6
〈r2
MN 〉Q2 +O(Q4)

}
, (41)

where µN is the nucleon magnetic moment, µp = 2.79
and µn = −1.91, in the units of the nucleon magneton.

Ideally, to extract the proton charge radius value, one
needs to extract the proton electric form factor, GE all
the way down to Q2 = 0, and then determine its slope.
In practice, it is not possible to measure GE at Q2 ∼ 0,
which corresponds to near 0◦ scatterings. Therefore some
type of extrapolation is unavoidable which may introduce
systematic uncertainties associated with the determina-
tion of 〈r2

Ep〉1/2 as discussed below.
A theoretical determination of the proton radius start-

ing from QCD requires a nonperturbative framework.
The only ab-initio tool so far is lattice QCD. The stan-
dard procedure in lattice QCD is to compute the electric
form factor for finite values of the momentum transfer
and then perform a fit to determine the slope at zero
momentum transfer, e.g. through a popular dipole fit or
a z-expansion fit. However, on a finite lattice, the small-
est nonzero momentum is 2π/L with L is the spatial size
of the lattice. Therefore, reaching very small momentum
transfers is challenging as it requires very large lattices.
Furthermore, although electromagnetic form factors have
been studied within lattice QCD for many years, it is only
recently that they have been extracted using simulations
with physical values of the light quark masses.
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FIG. 6 (Color online) Compilation of recent lattice QCD results for the isovector charge radius (left panel) and the proton
charge radius (right panel), obtained from ensembles at the physical pion mass. Results shown are from LHPC (Hasan et al.,
2018); ETMC, both using a form factor fit ETMC 18 (Alexandrou et al., 2019), as well as the direct calculation of the
radius ETMC 20, avoiding an extrapolation through a form factor fit (Alexandrou et al., 2020); PNDME (Jang et al., 2020);
PACS (Shintani et al., 2019); CLS (Djukanovic et al., 2021). Inner error bars display the statistical errors, whereas outer error
bars display the full error. The vertical bands show the empirical result extracted from muonic hydrogen spectroscopy and the
CODATA-2014 recommended value, as discussed in Sections V and VI (figure credit: Jingyi Zhou).

In Fig. 6, we show a compilation of recent lattice
QCD results for both the isovector charge radius (〈r2

Ep〉−
〈r2
En〉)1/2, as well as the proton charge radius, obtained

from ensembles at or near the physical pion mass. For
the isovector radius, only the connected quark diagrams,
in which the photon couples to the quarks connected to
either the intial or final nucleon, contribute. The proton
charge radius also requires the much harder calculation
of the contribution from disconnected diagrams, in which
the photon couples to a qq̄ loop, which interacts with the
quarks in the intial and final proton through gluon ex-
changes. Although the disconnected contribution to the
proton electric form factor at low momentum transfer is
found to be in the 1 % range (Alexandrou et al., 2019),
its omission would result in an uncontrolled systematic
error. Such systematics need to be under control for pre-
cision comparisons of the proton charge radius at the 1%

level or better.

Improving on the precision of the lattice extractions of
the proton charge radius also requires reducing the model
error induced by a form factor fit, which is done in most
of the lattice results so far. To this end, a first step was
taken in the lattice study of (Alexandrou et al., 2020),
which has explored a direct method to extract the proton
radius that does not depend on fitting the form factor,
displayed by ETMC 20 in Fig. 6.

The lattice calculations have made important progress
in recent years by controlling excited state contamina-
tion and by performing calculations at the physical point.
One notices however from Fig. 6 that further improve-
ments are called for to reach the precision level obtained
in the empirical extractions.
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E. The extraction of proton electromagnetic form factors

The differential cross-section based on OPE for elastic
electron-nucleon scattering can be written as:

dσ

dΩ lab
=

α2

4E2 sin4 θ
2

E′

E

×
{
G2
E + τG2

M

1 + τ
cos2 θ

2
+ 2τG2

M sin2 θ

2

}
, (42)

where E is the incident electron energy; E′ the energy
of the scattered electron, and θ the electron scattering

angle, α is the fine structure constant, τ ≡ Q2

4M2 , and
where the mass of the electron is neglected.

To separately determine the proton electric and mag-
netic form factor for each Q2 value, ideally one would
need to perform two measurements with independent
combinations of the GE and GM at the corresponding
Q2 value, with one of the measurements involving po-
larizations which we will discuss further on. However,
polarization experiments only became possible in recent
decades. Historically, the Rosenbluth technique (Rosen-
bluth, 1950) had been used extensively which allows for
the separation of these two form factors by performing
unpolarized differential cross section measurements only.
To see how this works, one can rewrite Eq. (42) as:

dσ

dΩ lab
= σM

1

1 + τ

{
G2
E +

τ

ε
G2
M

}
, (43)

where ε = (1 + 2(1 + τ) tan2 θ
2 )
−1

is the virtual photon
longitudinal polarization, and σM is the Mott cross sec-
tion describing the scattering from a pointlike spinless
target (where we included the recoil factor E′/E):

σM =
α2 cos2 θ

2

4E2 sin4 θ
2

(
E′

E

)
. (44)

At a fixed Q2 value, one can take a series of measure-
ments by varying the incident electron beam energy and
the scattering angle. According to Eq. (43), one can then
fit the measured reduced cross section G2

M + ε/τG2
E as a

function of ε. Then from the slope and the intercept of
the fit, one can determine G2

E and G2
M . There are limi-

tations to the Rosenbluth method: at low Q2, due to the
kinematic suppression, the extraction of the proton mag-
netic form factor is problematic while at high Q2, the
magnetic contribution dominates the cross section and
the extraction of the proton GE becomes difficult.

To overcome the aforementioned limitations associated
with the Rosenbluth technique, an independent combina-
tion of the proton electric and magnetic form factors can
be obtained by a double polarization measurement from
electron-proton elastic scattering in addition to unpolar-
ized differential cross section measurements, thereby sep-
arating these two form factors. Double polarization mea-
surements in the context of electron-proton scattering re-
fer to the following two cases: (i) longitudinally polarized

x
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𝑒′

𝒒

𝜙∗

Ԧ𝑧

Proton 
Polarization

FIG. 7 (Color online) The one-photon-exchange diagram
for spin-dependent electron-proton scattering (figure credit:
Jingyi Zhou).

electrons scattering from a polarized proton target; (ii)
longitudinally polarized electrons scattering from an un-
polarized proton target with the recoil proton polariza-
tion measured by a polarimeter. In this paper, we will not
review the technical aspects of polarized electron beams,
polarized proton targets, nor the recoil proton polarime-
ters. We refer interested readers to review articles (Gao,
2003; Perdrisat et al., 2007) instead.

The one-photon-exchange diagram for spin-dependent
electron-nucleon scattering is shown in Fig. 7. In this
picture the incident electron is longitudinally polarized
with helicity of h = ±1, corresponding to an electron’s
spin being parallel or anti-parallel to its momentum di-
rection, respectively. The target proton spin vector is
shown by a thick arrow, with θ∗ and φ∗ as its po-
lar and azimuthal angles defined with respect to the
three-momentum transfer vector q of the virtual photon.
The scattering plane is defined as the x, z plane with
ẑ = q/|q| and ŷ = (k × k′)/(|k||k′|), with k and k′ be-
ing the incident and scattered electron three-momentum
vector, respectively. The spin-dependent asymmetry A
is defined as A = (σh+ − σh−)/(σh+ + σh−), where σh

±

denotes the differential cross sections for the two different
helicities of the polarized electron beam.

For longitudinally polarized electrons scattering from
a polarized proton target, the differential cross section
can be written (Donnelly and Raskin, 1986) as:

dσ

dΩ
= Σ + h∆ , (45)

where Σ is the unpolarized differential cross section given
by Eq. (42), and ∆ is the spin-dependent differential cross
section given by:

∆ = σMott[vz cos θ∗G2
M + vx sin θ∗ cosφ∗GMGE ] , (46)
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where

vz = −2τ tan
θ

2

√
1

1 + τ
+ tan2 θ

2
, (47)

vx = −2 tan
θ

2

√
τ

1 + τ
, (48)

are kinematic factors. The spin-dependent asymmetry
A is defined in terms of the polarized and unpolarized
cross-sections as:

A =
∆

Σ
=
vz cos θ∗G2

M + vx sin θ∗ cosφ∗GMGE
(εG2

E + τG2
M )/[ε(1 + τ)]

. (49)

The experimental asymmetry Aexp is related to the spin-
dependent asymmetry of Eq. (49) by the relation

Aexp = PbPtA , (50)

where Pb and Pt are the beam and target polarization,
respectively. A determination of the ratio GE/GM , in-
dependent of the knowledge of the beam and target po-
larization can be precisely obtained by measuring the so-
called super ratio

R =
A1

A2
=
vz cos θ∗1G

2
M + vx sin θ∗1 cosφ∗1GMGE

vz cos θ∗2G
2
M + vx sin θ∗2 cosφ∗2GMGE

, (51)

where A1 and A2 are elastic electron-proton scattering
asymmetries measured at an identical value of Q2 simul-
taneously, but at two different proton spin orientations
relative to q, corresponding to (θ∗1 , φ

∗
1) and (θ∗2 , φ

∗
2), re-

spectively. However, the proton spin direction is fixed in
the laboratory frame, therefore it is feasible if one has
a symmetric detection system. For a symmetric detec-
tor configuration with respect to the incident electron
momentum direction, the A1 and A2 can be measured
simultaneously by forming two independent asymmetries
with respect to either the electron beam helicity or the
target spin orientation in the beam-left and beam-right
sector of the detector system, respectively. Thus, the
proton form factor ratio can be determined with high
systematic accuracy using this technique because it is in-
sensitive to the uncertainties in determining the beam
and the target polarizations. Such a technique was pi-
oneered (Crawford et al., 2007) in the BLAST experi-
ment (Hasell et al., 2011) at the former MIT-Bates linear
accelerator center, where the proton electric to magnetic
form factor ratio was extracted in the Q2 range from 0.15
to 0.65 (GeV/c)2.

In polarization transfer measurements – the polariza-
tion from the incident electron beam is transferred to the
recoil protons – and the recoil proton polarization is mea-
sured using a recoil proton polarimeter as illustrated in
Fig. 8. Such a polarimeter relies on secondary scatter-
ings – recoil protons from e-p scattering off an analyzer
such as CH2 – and spin-orbital interaction of protons
and nuclei, and spin-dependent proton-proton interac-
tion which give rise to azimuthal angular dependence in
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FIG. 8 (Color online) The one-photon-exchange diagram for
polarization transfer from longitudinally polarized electron to
unpolarized proton (figure credit: Jingyi Zhou).

the distribution of the scattered protons. By analyzing
such azimuthal angular dependence, one can determine
the recoil proton polarization components in the reaction
plane (x− z plane in Fig. 8). Such secondary scatterings
take place at the focal plane of the spectrometer and the
polarimeter is also called focal-plane polarimeter (FPP).
In order to determine the proton electric to magnetic
form factor ratio at the target from the proton polariza-
tion components measured at the focal plane, an involved
spin transport process is needed because the proton spin
rotates as it goes through various magnetic components
inside a magnetic spectrometer. The proton polarization
measured by FPP, ~Pfpp, and the proton polarization at

the target, ~P , are related through a 3-dimensional spin
rotation matrix. The elements of the spin rotation ma-
trix can be calculated from a detailed modeling of the
magnetic spectrometer including all spectrometer mag-
nets (dipole, quadrupoles), fringe fields, and dipole field
gradient, etc. For details about such polarimeters, we re-
fer interested readers to the review article by Perdrisat,
Punjabi, and Vanderhaeghen (Perdrisat et al., 2007).

In the one-photon exchange Born approximation, the
scattering of longitudinally polarized electrons results in
a transfer of polarization to the recoil proton with only
two nonzero components, Px perpendicular to, and Pz
parallel to the proton momentum in the scattering plane
as illustrated in Fig. 8 (Arnold, 1981). The form factor
ratio can be determined from a simultaneous measure-
ment of the two recoil polarization components in the
scattering plane as

GE
GM

= −Px
Pz

E + E′

2M
tan(θ/2), (52)

in terms of the incident and scattered electron energies
E and E′ respectively, and electron scattering angle θ.
The polarization transfer measurement was carried out
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by Zhan et al. (Zhan et al., 2011) and a proton charge ra-
dius value was extracted combining unpolarized electron-
proton scattering data (see Section VB).

F. Two-Photon-Exchange Contribution to Electron-Proton
Scattering

Note so far all our discussions are based on the dom-
inant one-photon-exchange (OPE) Born diagram con-
tribution in electron-proton scattering as higher orders
contributions are suppressed due to the smallness of the
fine-structure constant, α ' 1/137. The next-to-leading-
order contribution is the two-photon-exchange (TPE)
contribution, as shown in Fig. 9, which is proportional
to the doubly-virtual Compton subprocess on the proton
side.

FIG. 9 The two-photon-exchange diagram for elastic
electron-proton scattering. The blob denotes the doubly-
virtual Compton subprocess on the proton.

The TPE contribution became a strong interest after
a drastic difference was reported on the proton GE/GM
ratio measured directly using a recoil proton polarime-
ter (Jones et al., 2000) from those using Rosenbluth sep-
aration. The data from (Jones et al., 2000) and the sub-
sequent recoil polarization experiments (Gayou et al.,
2002; Puckett et al., 2010; Punjabi et al., 2005) show
very intriguing behavior at higher Q2, i.e., GEp falls off
much faster than GMp as a function of Q2, while the two
form factors extracted from unpolarized differential cross
section measurements using the Rosenbluth separation
method show a similar Q2 dependence. The near con-
stant behavior of the proton GEp/GMp ratio extracted
from unpolarized measurements was confirmed, and ex-
tended to a higher Q2 value near 5.5 (GeV/c)2 by an-
other experiment at Jefferson Lab (Christy et al., 2004).
The first explanations of such puzzling behavior pointed
towards hard TPE processes between the electron and
the proton, which become relevant once experiments aim
to access terms which contribute at or below the per-
cent level to the scattering cross section as is the case
in the Rosenbluth method at larger Q2 values (Blun-
den et al., 2003; Guichon and Vanderhaeghen, 2003).
This unexpected behavior triggered intensive experimen-

tal and theoretical studies of the TPE effect in electron-
proton scattering in the last two decades as its effect is
expected to be different in unpolarized cross section mea-
surements compared to recoil polarization experiments;
see (Arrington et al., 2011; Carlson and Vanderhaeghen,
2007) for some early reviews of this field.

To account for two- and multi-photon exchange effects
in a model independent way requires one to generalize
the amplitude of Eq. (1) describing the elastic e-p scat-
tering. Neglecting the electron mass, the elastic e-p scat-
tering amplitude, following the notations introduced in
Section III.A, can be expressed through three indepen-
dent structures (Guichon and Vanderhaeghen, 2003) :

Mh, λ′λ = i(e2/Q2) ū(k′, h)γµu(k, h)

× N̄(p′, λ′)

(
G̃M γµ − F̃2

Pµ

M
+ F̃3

γ ·KPµ

M2

)
N(p, λ),

(53)

in whichK ≡ (k+k′)/2, and where the functions G̃M , F̃2,
and F̃3 are complex functions of ε and Q2. In the OPE
approximation, the functions G̃M and F̃2 reduce to the
Q2 dependent form factors GM and F2 respectively, while
the function F̃3 vanishes. When accounting for the (very
small) electron helicity flip effects, which are proportional
to its mass, it was shown in (Gorchtein et al., 2004) that
three more amplitudes are needed to fully describe the e-
p scattering amplitude. Based on such general analysis,
the TPE corrections to both unpolarized and polariza-
tion observables have been expressed in (Guichon and
Vanderhaeghen, 2003) in terms of the amplitudes G̃M ,
F̃2, and F̃3. In that work it was shown that by adding
a TPE contribution of the size expected from perturba-
tion theory, it is possible to simultaneously account for
the relatively large correction to the unpolarized observ-
able when extracting the GEp/GMp ratio at larger Q2,
while maintaining a small correction in the polarization
observables.

To use electron scattering as a precision tool, it is
clearly indispensable to arrive at a better quantitative
understanding of TPE processes, and a lot of activi-
ties have taken place over the past two decades or are
planned in the near future. Firstly, there exists observ-
ables which provide us with very clear indications of the
size of TPE effects, as they would be exactly zero in
the absence of two- or multiphoton-exchange contribu-
tions. Such observables are normal single-spin asymme-
tries (SSA) of electron-nucleon scattering, where either
the electron spin or the nucleon spin is polarized normal
to the scattering plane. Because such SSAs are propor-
tional to the imaginary part of a product of two ampli-
tudes, they are zero for real (nonabsorptive) processes
such as OPE. At leading order in the fine-structure con-
stant, they result from the product of the OPE amplitude
and the imaginary part of the TPE amplitude. For the
target normal SSA, they were predicted to be in the (sub)
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percent range some time ago (De Rujula et al., 1971). A
measurement of the normal SSA for the elastic electron-
3He scattering, by the JLab Hall A Coll., has extracted
a SSA for the elastic electron-neutron subprocess in the
percent range (Zhang et al., 2015). For the experiments
with polarized beams, the corresponding normal SSAs
were predicted to be in the range of a few to hundred ppm
for electron beam energies in the GeV range (Afanasev
et al., 2002; Gorchtein et al., 2004; Pasquini and Van-
derhaeghen, 2004). Although such beam normal spin
asymmetries are small, being proportional to the elec-
tron mass, the parity-violation programs at the major
electron laboratories have reached precisions on asym-
metries with longitudinal polarized electron beams well
below the ppm level, and the next generations of such
experiments are designed to reach precisions at the sub-
ppb level (Kumar et al., 2013). The beam normal SSA,
which is due to TPE and thus parity conserving, has
been measured over the past two decades as a spinoff in
the parity-violating electron scattering programs at MIT-
BATES (SAMPLE Coll.) (Wells et al., 2001), at MAMI
(A4 Coll.) (Balaguer Rios, 2012; Gou et al., 2020; Maas
et al., 2005), and at JLab (G0 Coll. (Androic et al., 2011;
Armstrong et al., 2007), HAPPEX/PREX Coll. (Abra-
hamyan et al., 2012), and Qweak Coll. (Androić et al.,
2020)). The resulting beam normal SSA range from a
few ppm in the forward angular range to around a hun-
dred ppm in the backward angular range, in qualitative
agreement with theoretical TPE expectations.

While the nonzero normal SSAs in elastic electron-
nucleon scattering quantify the imaginary parts of the
TPE amplitudes, measurements of their real parts have
also been performed by several dedicated experiments
over the past few years. In particular, the deviation
from unity of the elastic scattering cross-section ratio
R2γ ≡ e+p/e−p is proportional to the real part of the
product of OPE and TPE amplitudes. Recent measure-
ments of R2γ , for Q2 up to 2 GeV2, have been performed
at VEPP-3 (Rachek et al., 2015), by the CLAS Coll. at
JLab (Adikaram et al., 2015; Rimal et al., 2017), and by
the OLYMPUS Coll. at DESY (Henderson et al., 2017).
These experiments show that R2γ ranges, for the kine-
matic region corresponding with Q2 = 0.5− 1 GeV2 and
virtual photon polarization parameter ε = 0.8−0.9, from
a value R2γ ≈ 0.99 (Henderson et al., 2017), showing a
deviation from unity within 2−3 σ (statistical and uncor-
related systematic errors), to a value R2γ = 1.02 − 1.03
for Q2 ≈ 1.5 GeV2 and ε ≈ 0.45 (Rachek et al., 2015; Ri-
mal et al., 2017). Furthermore, the GEp2gamma Coll. at
JLab (Meziane et al., 2011) has performed a pioneering
measurement of the deviation from the OPE prediction
for both double-polarization components Px and Pz of
the ~ep → e~p process at Q2 = 2.5 GeV2. While for Px
the TPE corrections were found to be negligible, for Pz
it has found a deviation from the OPE result at the 4σ
level at ε = 0.8 (Meziane et al., 2011). In combination

with the unpolarized data, these measurements of the
ε dependence of both double-polarization observables in
the ~ep→ e~p process at a fixed value of Q2 have been used
in (Guttmann et al., 2011) to provide a first disentangle-
ment of the three TPE amplitudes describing elastic e-p
scattering for massless electrons, as given by Eq. (53).

While the TPE effects have been shown by experiments
to be of the size needed to bring the form factor ratio re-
sults from unpolarized measurements closer to those from
the recoil polarization experiments, further quantitative
studies are needed to reach a conclusive statement, es-
pecially in the larger Q2 range. On the theoretical side,
various dispersion theoretical approaches have been de-
veloped in recent years, see (Ahmed et al., 2020; Borisyuk
and Kobushkin, 2015; Tomalak et al., 2017b) and older
references therein, which relate the TPE amplitudes at
intermediate Q2 values to empirical input on the elec-
tromagnetic structure of the nucleon and its excitations,
while at very large Q2 approaches based on perturba-
tive QCD have been proposed (Borisyuk and Kobushkin,
2009; Chen et al., 2004; Kivel and Vanderhaeghen, 2013,
2009). Further experiments investigating the TPE effect
at larger values of Q2 will be highly desirable to further
test and constrain the TPE model descriptions.

In the low Q2 region, the TPE effect can be predicted
with less model dependence (Hill et al., 2013; Tomalak
et al., 2017a). Especially in the forward angular range,
relevant for the proton electric charge radius determi-
nation from elastic e-p scattering, it is found to be un-
derstood at the level of precision of current experiments.
The TPE effect increases for the backward angular range,
where a better understanding is required for improving
the extraction of the proton magnetic radius.

G. Radiative Corrections in Electron Scattering

Besides the TPE correction corresponding with two
hard photons in Fig. 9, another important aspect associ-
ated with lepton scattering, especially with electron scat-
tering is the so-called radiative correction (RC) effect to
the OPE picture. RC refers to effects from various types
of radiation and soft-photon exchanges in electron scat-
tering which need to be corrected before one can extract
information such as the proton electric and magnetic
form factors defined in the OPE picture. A few examples
can be the initial state electron radiates a photon prior to
the scattering, or the final state electron radiates a pho-
ton before it is detected in the detector. Similar pictures
can be applied to the proton side, though such radiative
effects are suppressed because the proton mass is signifi-
cantly larger than that of an electron. A different way to
look at the proton side is that such RC effect in principle
can be included in the definition of the proton electric
and magnetic form factors. Another important RC con-
tribution is due to the QED vacuum polarization, which
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refers to the fact that a virtual photon can fluctuate into
an electron-positron pair before they are absorbed, and
the vertex correction on electron and proton sides. Fur-
thermore, the radiative corrections conventionally also
include a part of the TPE correction, in which one of
the photons in the box diagram of Fig. 9 has a soft four-
momentum. These are just examples of leading-order
RC contributions, which are at the next-to-leading order
compared to the leading-order OPE in electron-proton
scattering. Two classic review articles on this subject
still widely used and cited are by Mo and Tsai (Mo and
Tsai, 1969) and by Maximon (Maximon, 1969). In recent
years, there have been renewed interests in performing
and pushing the state-of-the-art calculations on RC for
various lepton-nucleon scattering processes not only due
to the demand from the experimental side to improve
precision, but also due to the need for other processes
such as semi-inclusive deep-inelastic-scattering to probe
partonic three-dimensional momentum distributions and
fragmentation functions. The effect of RC is also ex-
periment specific for which we refer readers to specific
experiments that are discussed in this review for further
details.

H. The Extraction of the Proton Charge Radius from
Proton Electric Form Factor

The proton charge radius can be extracted from the ex-
perimentally determined proton electric form factor val-
ues. According to Eq. (36), the proton rms charge ra-
dius is directly related to the GEp Q

2-slope at Q2 = 0.
Experimentally this is of course not possible due to the
requirement of conducting electron-proton elastic scat-
tering at zero-degree scattering angle. Therefore, while
it is important to reach as low a Q2 value as possible,
it is inevitable that one needs to extrapolate from the
measured values of Q2 down to zero. Furthermore, it is
also important for any scattering experiment to cover a
sufficient range of Q2, i.e. to have a good leverage in
Q2 coverage. When Q2 is sufficiently close to zero, the
slope becomes rather flat because GE would converge to
1, which is just the net charge of the proton as expected.
Therefore, it is important to experimentally cover a Q2

range in which one can capture whatever a Q2 depen-
dence nature calls for, and at the same time still be as
close to Q2 = 0 as practically possible.

Given the aforementioned limitations, it is important
to develop ways that allow for a robust extraction of
the proton charge radius. Such a study was carried out
by Yan et al. (Yan et al., 2018). Below we briefly de-
scribe this study. Pseudo-data sets on the proton electric
form factor are generated for a particular experiment or
a planned measurement according to various proton elec-
tromagnetic form factor parametrizations/models in the
literature. These parametrizations/models in general de-

scribe the existing data on the proton form factors well.
One then smears the generated pseudo data sets accord-
ing to the experimental resolutions, and any other rele-
vant experimental aspects such as the statistical and sys-
tematic uncertainties. The way to take into account the
experimental systematic uncertainties is quite elaborate
and we refer interested readers to the original paper (Yan
et al., 2018) for more details. One then fits the smeared
data sets to various functional forms and extracts for each
functional form the corresponding proton charge radius
value, rEp, and its uncertainty, δrEp. The bias is defined
as the difference between the input rEp value from the pa-
rameterization/model used to generate the pseudo-data
set in the first place, and the rEp obtained from the fit.
The goodness of a fit is to consider both the bias and the
variance from the fit by using the root-mean-square error
(RMSE) defined as RMSE =

√
bias2 + σ2.

The functional forms studied by Yan et al. (Yan
et al., 2018) include monopole, dipole, Gaussian, multi-
parameter polynomial expansion of Q2, multi-parameter
rational function of Q2, continuous fractional (CF) ex-
pansion of Q2, and also the multi-parameter polynomial
expansion of z, defined as:

z =

√
tcut +Q2 −

√
tcut − t0√

tcut +Q2 +
√
tcut − t0

, (54)

where tcut = 4m2
π corresponds to the threshold for the

lowest 2π intermediate state in the timelike region, with
mπ being the mass of π0, and t0 is a free parameter set
to zero in (Yan et al., 2018). So the full functional form
is expressed as:

fpolyz(Q
2) = p0GE(Q2) = p0(1 +

N∑
i=1

piz
i). (55)

The CF expansion form is expressed as:

fCF (Q2) = p0GE(Q2) = p0
1

1 + p1Q2

1+
p2Q2

1+...

, (56)

and has been used previously in (Griffioen and Maddox,
2016; Hill and Paz, 2010) to extract the proton charge
radius from proton electric form factor values.

The multi-parameter rational function of Q2 is written
as:

frational(Q
2) = p0GE(Q2) = p0

1 +
∑N
i=1 p

(a)
i Q2i

1 +
∑M
j=1 p

(b)
j Q2j

. (57)

In all these functional forms of Eqs. (55,56,57), the p0

is a floating normalization parameter. For the PRad ex-
periment (Xiong et al., 2019) in its entire data range, the
study found that the (N = M = 1) = (1, 1) rational
function, the two-parameter continued fraction, and the
second-order polynomial expansion in z can all extract
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the proton charge radius in a robust way with small vari-
ance independent of the model or parameterization used
for generating the pseudo data. The published rEp re-
sult (Xiong et al., 2019) from the PRad experiment is
based on fits to the rational (1,1) function. While in (Yan
et al., 2018) the case study was presented for the PRad
experiment, the approach can be applied to any lepton
scattering experiment to extract the proton charge ra-
dius.

IV. ATOMIC HYDROGEN SPECTROSCOPY

The proton charge radius is an important input to
QED calculations of bound states such as ordinary
atomic hydrogen and muonic hydrogen. High precision
spectroscopic measurements, combined with the state-
of-the-art QED calculations, can determine the proton
charge radius. In this section, we provide a brief discus-
sion and focus on aspects most relevant to the finite size
of the proton due to our interest in the determination

of the proton charge radius. We follow closely the re-
view paper by Eides, Grotch and Shelyuto (Eides, 2001),
to which we refer for a comprehensive discussion of the
QED calculations including various higher-order effects.

The energy levels for one-lepton atoms can be obtained
in the first approximation by solving the non-relativistic
Schrödinger equation for an electron in the field of an
infinitely heavy Coulomb center with a charge Z in units
of the proton charge. The energy levels are written as:

En = −m(Zα)2

2n2
, (58)

where n = 1, 2, 3, ... is the principal quantum number, α
the fine structure constant, and m is the mass of the lep-
ton. Considering the Coulomb source still to be infinitely
heavy, solving the Dirac equation for a lepton in such a
Coulomb field, one obtains the following Dirac spectrum:

Enj = mf(n, j), (59)

where

f(n, j) =

1 +
(Zα)2(√

(j + 1
2 )2 − (Zα)2 + n− j − 1

2

)2


−1/2

(60)

≈ 1− (Zα)2

2n2
− (Zα)4

2n3

(
1

j + 1/2
− 3

4n

)
− (Zα)6

8n3

[
1

(j + 1/2)3
+

3

n(j + 1/2)2
+

5

2n3
− 6

n2(j + 1/2)

]
+ ...,

where j = 1/2, 3/2, ....n − 1/2 is the total angular mo-
mentum of the state. Compared with the nonrelativistic
Schrödinger spectrum – where all levels with the same
n are degenerate – the energy levels in the Dirac spec-
trum with the same principal quantum number n but
different j are no longer degenerate. However, energy
levels with the same n and j, but different l = j ± 1/2
remain degenerate. Such degeneracy is lifted when one
takes into account the finite size of the proton, recoil
contributions and most importantly the QED loop cor-
rections, where the corresponding energy shifts are called
the Lamb shifts. Details on calculating the QED ra-
diative corrections, recoil and radiative-recoil corrections
can be found in (Eides, 2001).

Below we briefly review the leading relativistic cor-
rections with exact mass dependence in the external
field approximation following (Eides, 2001). For a non-
relativistic system of two particles with Coulomb inter-
action such as a hydrogen atom, the Hamiltonian in its
center-of-mass system can be written as:

H0 =
p2

2m
+

p2

2M
− Zα

r
, (61)

where p is the momentum, and in the case of hydro-
gen (muonic hydrogen), Z = 1, and where m and M
are the masses of the electron (muon), and the proton,
respectively. In the remainder of this section, we will
focus on hydrogenlike atoms only. For a nonrelativis-
tic loosely bound system such as a hydrogen atom, ex-
pansions over α2 correspond to expansions over v2/c2.
Therefore, an effective Hamiltonian including terms of
the first order in v2/c2 would provide proper corrections
of relative order α2 to the nonrelativistic energy levels.
Breit (Breit, 1929, 1930, 1932) proposed such a potential
realizing that all corrections to the nonrelativistic two-
particle Hamiltonian of the first order in v2/c2 can be
written as the sum of the free relativistic Hamiltonian
of each of the particles and the relativistic one-photon
exchange between the two. Barker and Glover (Barker,
1955) derived the following Breit potential from the one-
photon-exchange amplitude using the Foldy-Wouthuysen
transformation (Foldy, 1950):
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VBr =
πα

2

(
1

m2
+

1

M2

)
δ3(r)− α

2mMr

(
p2 +

r(r · p) · p
r2

)
+
α

r3

(
1

4m2
+

1

2mM

)
[r× p] · ~σ. (62)

In the above potential, the hyperfine structure is not con-
sidered, i.e., terms which depend on the proton spin are
omitted. The corrections to the energy levels up to or-
der α4 can be calculated from the total Breit Hamilto-
nian of HBr = H0 + VBr, where the interaction poten-

tial is the sum of the Coulomb and the Breit Potential.
These corrections are just the first-order matrix elements
of the Breit interaction between the eigenfunctions of the
Coulomb Hamiltonian H0, and the result is

Etotnj = (m+M)− mrα
2

2n2
− mrα

4

2n3

(
1

j + 1/2
− 3

4n
+

mr

4n(m+M)

)
+

α4m3
r

2n3M2

(
1

j + 1/2
− 1

l + 1/2

)
(1− δl0), (63)

where mr = mM/(m + M) is the reduced mass of the
hydrogenlike atom. One can see that the last term
in Eq. (63) breaks the degeneracy in the Dirac spec-
trum between states with the same j and l = j ± 1/2,
and contributes to the classical Lamb shift defined as

E(2P1/2) − E(2S1/2). However, due to the smallness of
the electron to proton mass ratio, the contribution of
this term is extremely small in the hydrogen case and
the leading contribution to the Lamb shift is the QED
radiative correction. Fig 10 shows the hydrogen 1S, 2S
and 2P energy levels.
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FIG. 10 (Color online) Hydrogen 1S, 2S, and 2P energy levels (figure credit: Jingyi Zhou).

In the discussion so far, the proton has been treated as a point-like charge. Eq. (3) provides the photon-proton
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vertex operator involving the Dirac (F1) and Pauli (F2)
form factors of the proton. Calculating the finite size con-
tribution to the hydrogen atom energy levels amounts
to evaluating the zero component of Eq. (3) between
nucleon spinors, normalized as N†N = 1. An elemen-
tary calculation yields the spin independent term at low
momentum transfer q ≡ p′ − p (Eides, 2001), see e.g.
(Miller, 2019) for an explicit derivation, as:

N(p′, λ)Γ0N(p, λ) =

(
1− q2

8M2

)
GE(−q2) +O

(
1

M4

)
≈ 1− q2

[
1

8M2
+

1

6
〈r2
Ep〉
]
, (64)

where in the last line we have used the low-momentum ex-
pansion of the proton electric form factor GE in terms of
the proton charge radius 〈r2

Ep〉, defined through Eq. (36).
For a point-like proton, the only term that survives in
Eq. (64) is the first term in the square brackets, which
leads to the well-known local Darwin term in the lepton-
proton interaction (Barker, 1955) that gives rise to the
term proportional to δl0 in Eq. (63). Note that the lead-
ing relativistic correction factor in front of GE in Eq. (64)
is the same as the one appearing in Eq. (7). The estab-
lished convention is not to include it in the definition of
GE , but to include it separately. Therefore, the lead-
ing nuclear (proton) structure contribution to the energy
shift is determined by the slope of the conventionally de-
fined nuclear (proton) form factor GE . The correspond-
ing perturbative potential which corrects the Coulomb
potential of a point charge to account for the finite pro-
ton size is therefore given by (Eides, 2001)

δVfin.size =
2πα

3
〈r2
Ep〉. (65)

The associated energy level shift is then

∆Efin.size =
2πα

3
〈r2
Ep〉|ψnl(0)|2,

=
2α4

3n3
m3
r〈r2

Ep〉δl0. (66)

One notices from Eq. (66) that the radius entering the
finite size correction to the S-levels of the hydrogen
atom is the proton charge radius, obtained from the
form factor GE as measured in electron-proton scatter-
ing experiments. This consistency between the proton
charge radius determined from spectroscopic experiments
of hydrogenlike atoms and from electron scattering ex-
periments has also been emphasized recently in (Miller,
2019).

While the Lamb shift of hydrogenlike atoms is dom-
inated by the QED radiative effects of the lepton, the

contribution from the proton charge radius is the leading
term due to the finite size of the proton. By measuring
Lamb shifts or other transitions between energy levels
involving at least one S-state of hydrogenlike atoms pre-
cisely and utilizing the state-of-the-art QED calculations,
one can determine the proton charge radius value. In the
case of muonic hydrogen, the proton charge radius effect
is 6.4 × 106 times larger compared to that of ordinary
hydrogen atoms for the same nS level, due to the m3

r de-
pendence. For the 2P − 2S Lamb shift in muonic hydro-
gen, the term due to the proton charge radius amounts
to around -3.7 meV, and contributes to about 2% of the
overall Lamb shift (Eides, 2001). This large relative con-
tribution is the important reason why muonic hydrogen
spectroscopic measurements are significantly more pre-
cise in extracting the proton charge radius than those
from ordinary hydrogen atoms.

In order to extract the proton radius from muonic hy-
drogen spectroscopic measurements accurately, it is im-
portant to also calculate the proton structure corrections
of next order in α, i.e. O(α5). These proton structure
corrections, which arise from the two-photon exchange
(TPE) diagram shown in Fig. 11, in which both photons
in the loop carry the same four-momentum, are known as
the polarizability correction. They have been evaluated
using different approaches: chiral effective field theory,
see (Hagelstein et al., 2016) and references therein for a
review of the ongoing activity in this field; within non-
relativistic QED (Dye et al., 2016; Hill et al., 2013; Hill
and Paz, 2011; Pineda, 2003); or by connecting them
model-independently to other data through dispersive
frameworks (Birse, 2012; Carlson and Vanderhaeghen,
2011; Pachucki, 1999).

q q

kk

p p

FIG. 11 (Color online) The box diagram for the O(α5) cor-
rections to l = 0 energy levels in muonic hydrogen. The blob
denotes all possible hadronic intermediate states.

The n-th S-level shift in the (muonic) hydrogen spec-
trum due to TPE is related to the spin-independent for-
ward double virtual Compton amplitudes as:
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∆ETPE(nS) = 8πe2mφ2
n

1

i

∫ ∞
−∞

dν

2π

∫
d3q

(2π)3

(
Q2 − 2ν2

)
T1(ν,Q2)− (Q2 + ν2)T2(ν,Q2)

Q4(Q4 − 4m2ν2)
, (67)

where φ2
n = 1/(πn3a3) is the wave function at the origin

and a−1 = αmr is the inverse Bohr radius. Furthermore,
T1 and T2 are the forward double virtual Compton am-
plitudes which are complex functions of photon energy ν
and photon virtuality Q2. The optical theorem relates
the imaginary parts of T1 and T2 to the two unpolarized
structure functions of inclusive electron-nucleon scatter-
ing as:

Im T1(ν, Q2) =
e2

4M
F1(x, Q2) ,

Im T2(ν, Q2) =
e2

4ν
F2(x, Q2) , (68)

where x ≡ Q2/2Mν, and where F1, F2 are the conven-
tionally defined structure functions parametrizing inclu-
sive electron-nucleon scattering.

The TPE contribution to the hydrogen spectrum can

be separated in two distinct contributions. Firstly a Born
contribution, which corresponds with the nucleon inter-
mediate state in Fig. 11 and depends solely on the elastic
nucleon Dirac and Pauli form factors. Secondly a po-
larizability contribution, corresponding to all non-Born
contributions to T1 and T2, denoted by T̄i ≡ Ti − TBorn

i ,
which depends on the excitation spectrum of the nucleon.

The polarizability effect on the hydrogen spectrum can
be further split into the contribution of the subtraction
function T̄1(0, Q2) (Carlson and Vanderhaeghen, 2011):

∆Esubtr.(nS) =
2e2mφ2

n

π

∫ ∞
0

dQ

Q3

vl + 2

(1 + vl)2
T̄1(0, Q2),

(69)

with vl =
√

1 + 4m2/Q2, and contributions of the in-
elastic structure functions (Carlson and Vanderhaeghen,
2011; Hagelstein et al., 2016):

∆Einel.(nS) = −32α2Mmφ2
n

∫ ∞
0

dQ

Q5

∫ x0

0

dx
1

(1 + vl)(1 +
√

1 + x2τ−1)

×

{[
1 +

vl
√

1 + x2τ−1

vl +
√

1 + x2τ−1

]
F2(x,Q2) +

2x

(1 + vl)(1 +
√

1 + x2τ−1)

[
2 +

3 + vl
√

1 + x2τ−1

vl +
√

1 + x2τ−1

]
F1(x,Q2)

}
,

, (70)

with τ as in Eq. (42), and x0 the πN inelastic threshold
in the hadronic blob in Fig. 11.

Table III shows the TPE corrections due to the in-
elastic structure functions estimate of (Carlson and Van-
derhaeghen, 2011) and resulting from the subtraction-
function estimate of (Birse, 2012), both of which are cur-
rently used in estimating the total polarizability contri-
bution to the 2S-level in the muonic hydrogen analy-
ses (Antognini et al., 2013b). The estimate of (Birse,
2012) assumes a dipole ansatz for T̄1(0, Q2)/Q2, and con-
strains the mass parameter by a HBChPT calculation to
fourth-order in the chiral expansion for the Q4 term in
T̄1(0, Q2). We compare these results with the LO BChPT
analysis of (Alarcon et al., 2014), a NLO BChPT analysis
which includes the ∆-pole contribution (Hagelstein, 2017;
Lensky et al., 2018), and with the NLO HBChPT anal-
ysis of (Peset and Pineda, 2014). One notices that the
BChPT result which includes the ∆-pole is in very good
agreement with the DR estimate for the inelastic con-
tribution and with the estimate of (Birse, 2012) for the
subtraction function contribution. It is also interesting
that, although the ∆-pole contributes sizeably to both

terms, these contributions come with opposite sign, re-
sulting in a small total polarizability contribution due to
the ∆-pole, and a total result close to the LO BChPT es-
timate. The NLO HBChPT estimate (Peset and Pineda,
2014), shown in the last column of Table III comes with
a larger error estimate, and its value is larger (in magni-
tude), deviating by about 2σ from the BChPT and DR
estimates. It was noticed however (Peset and Pineda,
2014), that upon adding the nucleon Born term contri-
butions it yields a total TPE result which is similar in
size as the DR and BChPT results.

Recall that the Lamb shift is the difference between
the shifts of the 2P and 2S levels; the TPE contribution
to the former is negligible, and the TPE contribution to
the Lamb shift is thus just −∆ETPE(2S).

Using dispersion relations, with input from forward
proton structure functions and a subtraction function,
the value for the O(α5) TPE proton structure correction
to the 2P − 2S Lamb shift which is presently used in the
extraction of the proton charge radius from the muonic
hydrogen Lamb shift measurements as discussed further
in Section VI, is given by (Antognini et al., 2013b; Birse,
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DR + HBChPT BChPT (LO) BChPT (LO + ∆) HBChPT (NLO)

(Alarcon et al., 2014) (Hagelstein, 2017), (Peset and Pineda, 2014)

(Lensky et al., 2018)

∆Einel. −12.7± 0.5 −5.2 −11.8 −
(Carlson and Vanderhaeghen, 2011)

∆Esubtr. 4.2± 1.0 −3.0 4.6 −
(Birse, 2012)

∆Epol. −8.5± 1.1 −8.2+1.2
−2.5 −7.2+1.2

−2.5 −26.2± 10.0

(Antognini et al., 2013b)

TABLE III TPE corrections to the 2S-level in muonic hydrogen. All values are given in µeV. The first two rows are the disper-
sive, ∆Einel., and subtraction function, ∆Esubtr., contributions. The sum of both yields the total polarizability contribution,
∆Epol..

2012; Carlson and Vanderhaeghen, 2011):

∆ETPE(2P − 2S) = 0.0332(20) meV. (71)

V. MODERN LEPTON SCATTERING EXPERIMENTS

A. Mainz 2010

Bernauer et al. (Bernauer et al., 2010) (the A1 Collab-
oration) carried out an unpolarized electron-proton elas-
tic scattering experiment at the Mainz accelerator facility
MAMI and extracted the proton charge and the magnetic
radii. The experiment utilized electron beam energies up
to 855 (180, 315, 450, 585, 720 and 855) MeV and three
high-resolution magnetic spectrometers with one serving
as a relative luminosity monitor at a fixed laboratory an-
gle. The other two spectrometers were moved as a func-
tion of electron scattering angle during the experiment to
provide the kinematic coverage and also redundancy in
the coverage. The targets used in this experiment were
2 and 5 cm long cells filled with liquid hydrogen. Fig. 12
shows the schematics of the three-spectrometer setup for
this experiment (top) and a photo of the setup is shown
at the bottom where the red, blue and green apparatus
are spectrometer A, B and C, respectively.

In total the experiment measured over 1400 differential
cross sections covering a Q2 range of 0.004 to 1 (GeV/c)2

and achieved a statistical precision better than 0.2% for
these cross section measurements. To extract the proton
electric and magnetic form factors, least square fits to
models of GEp and GMp were carried out on the 1400
cross section data points, covering all Q2 and scattering
angles of the experiment. The proton form factors up to
Q2 = 0.6 (GeV/c)2 were extracted from this approach.
The authors carried out detailed studies of model depen-
dence in extracting the proton form factors using various
form factor models and parameterizations. The experi-
ment extracted the following for the proton charge and

magnetic radii:

〈r2
Ep〉1/2 = 0.879(5)stat(4)syst(2)model(4)group fm,

〈r2
Mp〉1/2 = 0.777(13)stat(9)syst(5)model(2)group fm,

where the uncertainty labeled as “group” is assigned to
account for the difference between the radius values ob-
tained using two groups of models for the form factors
in the fits, namely the spline and the polynomial groups.
Details can be found in (Bernauer et al., 2010, 2014).
The result on the proton charge radius from this elec-
tron scattering experiment was consistent with the CO-
DATA06 (Mohr, 2008) value at the time of the publica-
tion, but 5 standard deviations larger than the value from
the muonic hydrogen Lamb shift measurement (Pohl
et al., 2010). The magnetic radius obtained is smaller
than those from previous fits of electron scattering data,
but consistent with the result of 0.778(29) (Volotka et al.,
2005) fm from hyperfine splitting in hydrogen.

B. JLab recoil polarization experiment

The Jefferson Lab experiment E08-007 (Zhan et al.,
2011) carried out a high-precision measurement of the po-
larization transfer from electron-proton elastic scattering
using a recoil proton polarimeter covering a momentum
transfer squared Q2 region between 0.3 to 0.7 (GeV/c)2.
The experiment was performed in Hall A and utilized a
longitudinally polarized electron beam with polarization
higher than 80% at 1.2 GeV, beam currents between 4
and 15 µ-A, and a 6-cm long unpolarized liquid hydrogen
target. There were two high-resolution magnetic spec-
trometers (HRS) in Hall A placed on each side of the
electron beam line. In E08-007, the recoil proton was
detected in the left HRS with its polarization being mea-
sured by a focal plane polarimeter, in coincidence with
the scattered electron which was measured in a large ac-
ceptance spectrometer (“BigBite”). The experiment ex-
tracted the proton electric to magnetic form factor ratio
µpGEp/GMp with a total uncertainty of about 1%. Using
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FIG. 12 (Color online) Top: the schematics of the three-
spectrometer setup of the A1 experiment at Mainz, and a
photo is shown at the bottom in which Spectrometer A, B
and C are shown in red, blue and green respectively. The
electron beam is from right to left (figure credit: Arnd P.
Liesenfeld (top), and Markus Weis (bottom)).

these results together with a few other proton form factor
ratio measurements from Jefferson Lab (Paolone et al.,
2010; Puckett et al., 2010; Ron et al., 2011), a global fit of
the proton form factors (Arrington, 2007) was updated.
This updated global analysis did not include the Mainz

FIG. 13 (Color online) Feynman diagrams showing electron-
proton scattering with electron or proton radiates a real pho-
ton in the initial state or final state. In the electron case, the
two diagrams are labeled as Bethe-Heitler (BH-i) and (BH-
f), while for the proton: (Born-i) and (Born-f), where i and
f stand for the initial-state and final-state radiation, respec-
tively. The figure is from (Mihovilovič et al., 2017).

data (Bernauer et al., 2010), and gave the following val-
ues for the proton electric and the magnetic charge radii:

〈r2
Ep〉1/2 = 0.875± 0.010 fm,

〈r2
Mp〉1/2 = 0.867± 0.020 fm.

The proton charge radius value from this updated
global analysis is in excellent agreement with the
value from the Mainz electron-proton scattering exper-
iment (Bernauer et al., 2010), and also with the CO-
DATA 2006 value (Mohr, 2008) which is based mostly
from ordinary hydrogen spectroscopic measurements. It
is in disagreement with the muonic hydrogen result (Pohl
et al., 2010). The magnetic radius value from this global
analysis is more than 5 standard deviations (larger) away
from the Mainz value (Bernauer et al., 2010).

C. Mainz ISR measurements

Following the Mainz experiment by Bernauer et
al. (Bernauer et al., 2010), another electron-proton elas-
tic scattering experiment at Mainz was carried out us-
ing the same three-spectrometer setup but reached lower
values of Q2 (0.001 to 0.004 GeV/c2) using the tech-
nique of initial-state radiation (ISR) (Mihovilovič et al.,
2017). For electron-scattering experiments, the lowestQ2

value that is achievable is determined by the lowest elec-
tron beam energy the associated accelerator can deliver,
and the most forward electron scattering angle the cor-
responding detector can reach. The ISR technique over-
comes such limits by utilizing the information within the
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radiative tail of the elastic peak. The technique works in
the following way, as depicted by Fig. 13. The incoming
electron can radiate a real photon before the scattering
takes place. As a result, the corresponding Q2 value for
the e-p scattering would be lower than what’s limited
by the accelerator and the detector because the incident
electron energy is lower than its original value delivered
by the accelerator and before the initial state radiation
of the real photon by the incoming electron. This is the
diagram labeled as Bethe-Heitler (BH-i) in Fig. 13. Such
an ISR technique was proposed and used successfully in
particle physics experiments previously (Arbuzov et al.,
1998; Aubert et al., 2004). One of the challenges of such
an ISR experiment is in separating the contribution from
the diagram labeled as (BH-f), where the scattered elec-
tron radiates a real photon, as only scattered electrons
are measured (inclusive measurement). Furthermore, al-
though contributions from diagrams involving the proton
initial-state and final-state radiation are suppressed due
to the proton mass, they need to be included as they also
contribute to the radiative tail of the elastic scattering,
as well as higher order radiative effects. For details on
how to account for these effects, see (Mihovilovič et al.,

2017), which extracted a proton charge radius value of
〈r2
Ep〉1/2 = 0.810± 0.035stat. ± 0.074syst. ± 0.003mod. fm,

with the last uncertainty accounting for higher moments
in parameterizing the proton electric form factor. The
collaboration reported a follow-up result through a com-
prehensive reinterpretation of the existing cross section
data from this first ISR e-p scattering experiment by im-
proving the description of the radiative tail. They ob-
tained 〈r2

Ep〉1/2 = 0.878±0.011stat.±0.031syst.±0.002mod.
fm with major improvements in both the statistical and
systematic uncertainties, see (Mihovilovič et al., 2021).

D. The PRad experiment at JLab

The proton charge radius (PRad) experiment (Xiong
et al., 2019) at Jefferson Lab was designed with a number
of important points in mind: (i) an experiment that is
different from previous e-p scattering experiments, there-
fore having different systematics; (ii) the reach of un-
precedentedly low values of Q2; (iii) the ability to pre-
cisely measure e-p elastic scattering cross sections by ac-
curate control of the integrated luminosity; (iv) minimiz-
ing changes during the experiment and taking all the data
using a fixed experimental apparatus.
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FIG. 14 (Color online) The schematics of the PRad experiment in Hall B at Jefferson Lab. In this figure, the electron beam
is from left to right (figure credit: Eugene Pasyuk and others (Brock et al., 2021)).

The PRad experiment innovated electron-scattering
measurements in the following ways. Instead of using a
magnetic spectrometer, which usually limits the forward-
most scattering angles due to its physical size, the PRad

experiment used a two-dimensional large-area, granular,
high-resolution electromagnetic calorimeter with a hole
at the center for the electron beam to pass through. The
novel design allows the access to significantly smaller
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scattering angles (∼ 0.7◦) in comparison to experi-
ments using magnetic spectrometers. To overcome major
background issues associated with small-angle scattering,
the PRad experiment used a windowless, cryogenically
cooled, flowing hydrogen gas target. The internal target
was a first for Jefferson Lab, giving the facility’s electron
beam unobstructed access to the windowless hydrogen
target. In order to have an excellent control of the inte-
grated luminosity for the electron-proton elastic scatter-
ing cross section measurements, Møller scattering, a well-
known QED process, was used as a reference process and
was measured simultaneously during the e-p scattering.
Lastly, to improve the scattering angle (Q2) determina-
tion, a large plane of Gas Electron Multiplier (GEM)
detectors was used. The GEM detector used in PRad
was the largest ever used in any experiment at the time.

The schematics of the PRad experiment are shown in
Fig. 14, in which the electron beam is from left to right.

PRad was the first experiment to complete its data tak-
ing in June 2016 after the Continuous Electron Beam
Accelerator Facility (CEBAF) – consisting of a polarized
electron source, an injector and a pair of superconduct-
ing radio frequency (RF) linear accelerators – energy up-
grade from 6 GeV to 12 GeV at Jefferson Lab was com-
pleted. Two values of electron beam energies were used
in the PRad experiment, 1.1 and 2.143 GeV. For the 1.1
GeV data set, most of the data were obtained at a beam
current of 15 nA with the rest at 10 nA, while for the
2.143 GeV data, the nominal beam current was 55 nA.
To minimize the background from the air, the scattered
electrons traveled through a two-stage vacuum chamber
followed by the GEM detector and a hybrid electromag-
netic calorimeter (HyCal) built originally for precision
measurements of the neutral pion lifetime (Larin et al.,
2011, 2020). More details about the PRad target and the
experimental setup can be found in (Pierce et al., 2021;
Xiong et al., 2019; Xiong, 2020).
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FIG. 15 (Color online) The proton electric form factor GpE from the PRad experiment together with results from the Mainz
experiment (Bernauer et al., 2010; Bernauer, Jan C., 2020) in the overlapping Q2 region. Both data sets include statistical and
systematic uncertainties (see text). Two fits of the PRad data (Alarcón et al., 2019; Xiong et al., 2019) and a fit of the Mainz
data (Bernauer et al., 2014) are also shown (figure credit: Weizhi Xiong).

The proton electric form factor values in the Q2 range
of 2 × 10−4 to 0.06 (GeV/c)2 have been extracted from
the PRad experiment with statistical uncertainties of
∼ 0.2% at 1.1 GeV, and ∼ 0.15% at 2.143 GeV per
data point, respectively. The systematic uncertainties
range from ∼ 0.1% to 0.6% (relative) for the entire
PRad data set (Xiong, 2020). The PRad GpE results

with statistical and systematic uncertainties combined in
quadrature are presented in Fig. 15. The Mainz GpE re-
sults (Bernauer, Jan C., 2020) extracted from the Mainz
experiment (Bernauer et al., 2010) including both the
statistical and systematic uncertainties in the Q2 over-
lapping region of these two experiments are shown in
Fig. 15. Also shown are the fits of the PRad results



26

(Alarcón et al., 2019; Xiong et al., 2019), and also a fit
of the Mainz data (Bernauer et al., 2014). In Fig. 16, ad-
ditional GpE data from (Hand and Wilson, 1963; Murphy
et al., 1974b; Simon et al., 1980) are also shown normal-
ized to that of the standard dipole form. Other than the

data by (Hand and Wilson, 1963) which has rather larger
uncertainties, the PRad results are systematically higher
than other data in the higher end of the Q2 range covered
by the PRad experiment, specifically ∼ 0.03 (GeV/c)2

and higher.
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FIG. 16 (Color online) The proton electric form factor GpE from the PRad experiment together with those from (Bernauer,
Jan C., 2020; Hand and Wilson, 1963; Murphy et al., 1974b; Simon et al., 1980) normalized to the standard dipole form in the
overlapping Q2 region, on linear scale (figure credit: Weizhi Xiong).

Yan et al. (Yan et al., 2018) studied how to extract the
proton charge radius in the low Q2 region from the mea-
sured GpE values in a robust way and demonstrated that
the rational (1,1) function, defined in Eq. (57) is such a
function and the best choice for the PRad data. Fig. 17
shows fits using various rational functions of pseudo-data
generated with nine proton form factor models including
the projected PRad statistical and systematic uncertain-
ties. Apart from monopole, dipole and Gaussian func-
tional forms, the proton form factor parameterizations
and fits from (Alarcón and Weiss, 2018; Arrington, 2007;
Bernauer et al., 2014; Kelly, 2004; Ye et al., 2018) have
been used. Additional details including fits of other func-
tional forms can be found in (Yan et al., 2018). The PRad
collaboration adopted the rational (1,1) functional form
to fit the data with two individual normalization param-
eters, n1 and n2, corresponding to the two separate beam
energy values for which the data were taken, while keep-
ing the rest of the rational (1,1) parameters the same, i.e.

n1
1+p1Q

2

1+p2Q2 , and n2
1+p1Q

2

1+p2Q2 . At Q2 = 0, this normalization
parameter is just the proton charge, which should be 1.
The results from the fit are given by:

〈r2
Ep〉1/2 = 0.831± 0.007(stat.)± 0.012(syst.) fm,

n1 = 1.0002± 0.0002(stat.)± 0.0020(syst.),(72)

n2 = 0.9983± 0.0002(stat.)± 0.0013(syst.),

showing that the two normalization values obtained are
consistent with 1.

The PRad result for the proton charge radius is smaller
than the two latest 〈r2

Ep〉1/2 values extracted from elec-
tron scattering experiments (Bernauer et al., 2010; Zhan
et al., 2011), but consistent with the 〈r2

Ep〉1/2 values from
the muonic hydrogen spectroscopic measurements (An-
tognini et al., 2013a; Pohl et al., 2010). While this result
is also consistent with two recent hydrogen spectroscopic
measurements (Beyer et al., 2017; Bezginov et al., 2019),
it is not consistent with (Fleurbaey et al., 2018). These
latest hydrogen spectroscopic measurements will be dis-
cussed in later sections.
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FIG. 17 (Color online) Sample fits using rational functions of pseudo-data generated with nine proton form factor models
including the projected PRad statistical and systematic uncertainties. The figure is from (Yan et al., 2018).

FIG. 18 (Color online) The proton charge radius 〈r2Ep〉1/2 as extracted from electron scattering and spectroscopic experiments
since 2010 and before 2020 together with CODATA-2014 and CODATA-2018 recommended values. Note the reinterpreted
result from the Mainz ISR experiment is published in 2021 (figure credit: Jingyi Zhou).

Fig. 18 shows the PRad result for the proton charge
radius together with the recent results from the hy-
drogen spectrocopic measurements, and the muonic hy-
drogen results. Also shown are the latest CODATA-
2018 value (Tiesinga et al., 2021), CODATA-2014 val-
ues (Mohr et al., 2016), results from (Bernauer et al.,
2010; Zhan et al., 2011) and also the result from the
Mainz ISR experiment (Mihovilovič et al., 2021). One
interesting observation is that among the most precise
measurements from hydrogen spectroscopic and electron

scattering measurements in recent years (Beyer et al.,
2017; Bezginov et al., 2019; Fleurbaey et al., 2018; Xiong
et al., 2019), three experiments reported a value that is
smaller than the one from the muonic results, though
they are all consistent within experimental uncertainties.
Improving the precision of such measurements will be
crucial to investigate whether there might be a substan-
tiated difference between results from muonic versus elec-
tronic systems.
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E. Proton charge radius from modern analyses of proton
electric form factor data

In addition to new experiments, numerous analyses
have been carried out in recent years in order to under-
stand the difference between the 〈r2

Ep〉1/2 values deter-
mined from electron scattering experiments, especially
the modern precision electron-proton scattering experi-
ment at Mainz (Bernauer et al., 2010), and the muonic
hydrogen results (Antognini et al., 2013a; Pohl et al.,
2010). Some of these analyses obtain results consistent
with the precise values from muonic hydrogen, while oth-
ers are in agreement with larger values of rEp. Below we
describe some of these analyses.

Hill and Paz (Hill and Paz, 2010) carried out a model-
independent determination of the proton charge radius
from electron scattering by first performing a conformal
mapping of the domain of analyticity onto the unit circle
in terms of z(t, tcut, t0) defined in Eq. (54), where t = q2,
tcut = 4m2

π, and t0 is a free parameter mapping onto
z = 0. The form factor GE(q2) can then be written
as a function of z, where a z expansion can be carried
out with the advantage that higher-order terms in z are
suppressed. Using electron-proton scattering data sets, a
proton charge radius value of 〈r2

Ep〉1/2 = 0.870± 0.023±
0.012 fm is obtained (see Ref. (Hill and Paz, 2010) for
details).

Lorenz, Hammer and Meissner (Lorenz and Meissner,
2012) analyzed the 2010 Mainz data using a dispersive
approach to ensure analyticity and unitarity in the de-
scription of the nucleon form factors. In their analy-
sis they have included the world data on the proton
and also the neutron, obtaining a charge radius value of
〈r2
Ep〉1/2 = 0.84±0.01 fm, consistent with the result from

muonic hydrogen. Lorenz and Meissner (Lorenz, 2014)
later also reanalyzed the Mainz data using a fit function
based on conformal mapping, and showed that the ex-
tracted value for the proton charge radius – with a larger
statistical uncertainty than that from (Bernauer et al.,
2010) – is in agreement with the value from muonic hy-
drogen spectroscopic measurements, and also their previ-
ous dispersive analysis. Lorenz et al. (Lorenz et al., 2015)
calculated the TPE corrections to the electron-proton
scattering, and applied these corrections to the Mainz
data (Bernauer et al., 2010). They also investigated the
impact on the extraction of the proton form factors from
the inclusion of physical constraints and the extraction
of 〈r2

Ep〉1/2 due to the enforcement of a realistic spec-
tral function, which dominates the latter. Very recently,
a further improvement of the dispersive description has
been presented in (Lin et al., 2021) using an improved
two-pion continuum based on a Roy-Steiner analysis of
pion-nucleon scattering (Hoferichter et al., 2016a,b), re-
sulting in a value 〈r2

Ep〉1/2 = 0.838 ± 0.005 ± 0.004 fm,
where the first error is due to the fitting procedure and
the second is from the spectral function.

Adamuscin et al. (Adamuscin et al., 2012) analyzed
all nucleon electromagnetic form factor data using their
unitary and analytic ten-resonance model of the nucleon
electromagnetic structure in order to find the correspond-
ing behavior of the proton electric form factor in the
extended space-like region. The non-dipole behavior of
GEp is found to have a zero around Q2 = 13 (GeV/c)2.
The extracted proton radius from this global analysis is
〈r2
Ep〉1/2 = 0.84894± 0.0069 fm.
The first analysis of the electron-proton elastic scat-

tering data based on Bayesian statistical methods was
carried out by Graczyk and Juszczak (Graczyk and
Juszczak, 2014) and the most probable proton charge
radius value was found to be 〈r2

Ep〉1/2 = 0.899 ± 0.003
fm. This analysis was done by accounting for the TPE
effect using a box diagram model, including nucleon and
∆(1232) states.

The effect of TPE corrections in extracting the proton
charge radius has also been studied in an earlier analysis
of the electron-proton scattering data (Borisyuk, 2010).
Using a dispersive formalism for the TPE for the nucleon
elastic contribution, Borisyuk (Borisyuk, 2010) reported
a value 〈r2

Ep〉1/2 = 0.912± 0.009(stat)± 0.007(syst) fm.
Lee, Arrington and Hill carried out a comprehen-

sive global analysis (Lee et al., 2015) of the world
electron-proton elastic scattering data with a focus on
the Mainz measurements (Bernauer et al., 2010). This
study involves enforcing model-independent constraints
from form factor analyticity, and systematic studies of
possible systematic effects. The extracted proton ra-
dius from this improved analysis of the Mainz data is
〈r2
Ep〉1/2 = 0.895(20) fm, while 〈r2

Ep〉1/2 = 0.916(24)
fm from analyzing the world data without including the
Mainz data. Arrington and Sick (Arrington, 2015) car-
ried out a global examination of the elastic electron-
proton scattering data and recommended a proton charge
radius value of 0.879(11) fm.

Griffioen, Carlson and Maddox (Griffioen and Mad-
dox, 2016) analyzed the Mainz data set (Bernauer et al.,
2010) using a continued fraction functional form to map
the GE assuming it is monotonically falling and inflec-
tionless. They obtained a proton charge radius value of
0.840(16) fm, consistent with the mounic hydrogen result
after rescaling different data sets on a level that is smaller
than the original normalization uncertainties, and also in-
flating the point-to-point systematic uncertainty by 15%.

A proton charge radius value consistent with muonic
hydrogen results was also obtained by Higinbotham et al.
(Higinbotham et al., 2016) from analyzing data in the low
momentum transfer region from Mainz in the 1980s (Si-
mon et al., 1980) and Saskatoon in 1974 (Murphy et al.,
1974a,c) using a stepwise regression of Maclaurin series
and applying the F-test and the Akaike information cri-
terion. Including the Mainz results on GEp (Bernauer
et al., 2014), the same analysis favors a radius that is con-
sistent with the muonic hydrogen results, though their
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result is more sensitive to the range of the data included
in the analysis.

Horbatsch and Hessels (Horbatsch and Hessels, 2016a)
also analyzed the Mainz data (Bernauer et al., 2010) and
obtained 〈r2

Ep〉1/2 values ranging at least from 0.84 to
0.89 fm using two single-parameter form factor models
with one being a dipole form, and the other a linear fit
to a conformal-mapping variable.

Sick and Trautmann (Sick and Trautmann, 2017) ar-
gued that the smaller values of 〈r2

Ep〉1/2 from (Griffioen
and Maddox, 2016; Higinbotham et al., 2016; Horbatsch
and Hessels, 2016a) are due to the neglect of higher mo-
ments in these analyses. Kraus et al. (Kraus et al., 2014)
found that fits of the proton charge form factor with trun-
cated polynomials give too small values for the proton
charge radius. In a later paper by Horbatsch et al. (Hor-
batsch et al., 2017), a 〈r2

Ep〉1/2 value of 0.855(11) fm was
obtained with the higher moments fixed to the values
based on Chiral Perturbation theory.

Alarcón, Higinbotham, Weiss, and Ye (Alarcón et al.,
2019) used a new theoretical frame work that combines
chiral effective field theory and dispersion analysis. The
behavior of the spacelike form factor in the finite Q2 re-
gion correlates with its derivative at Q2 = 0 due to the
analyticity in the momentum transfer. In this approach,
predictions for spacelike form factors are made with the
proton charge radius as a free parameter. By compar-
ing the predictions for different values of the proton ra-
dius with a descriptive global fit (Lee et al., 2015) of
the spacelike form factor data, the authors of (Alarcón
et al., 2019) extracted a proton radius value of 0.844(7)
fm, that is consistent with the muonic hydrogen results.
A more recent analysis by Alarcón, Higinbotham, and
Weiss (Alarcón et al., 2020) using the aforementioned
method to extract both the proton magnetic and charge
radius from the Mainz A1 data (Bernauer et al., 2010),
obtained 〈r2

Mp〉1/2 = 0.850± 0.001(fit 68%)± 0.010 (the-

ory full range) fm, and 〈r2
Ep〉1/2 = 0.842 ± 0.002 (fit) ±

0.010 (theory) fm. Including the PRad data (Xiong et al.,
2019) into their fit, they found no change in the extracted
radius values within uncertainties.

Sick (Sick, 2018) carried out a detailed study to re-
duce the model dependence associated with the required
extrapolation in determining dGE

dQ2 (Q2 = 0) to extract

〈r2
Ep〉1/2. The approach takes into account the fact that

GEp in regions of lower than experimentally measured
momentum transfer values is closely related to the charge
density ρ(r) at large values of r, which is constrained
using form factor data at finite values of Q2, reducing
model dependence in extrapolation. While corrections
for relativistic effects are applied in this analysis, it is
however not possible to rigorously define an accurate 3-
dimensional charge density for the proton as has been
discussed above. Using different form factor parameteri-
zations of the data prior to 2010, Sick obtains a 〈r2

Ep〉1/2

value of 0.887(12) fm, that is consistent with the Mainz
result (Bernauer et al., 2010), but inconsistent with the
muonic hydrogen results (Antognini et al., 2013a; Pohl
et al., 2010).

Zhou et al. (Zhou et al., 2019) adopted a flexible ap-
proach within a Bayesian paradigm which does not make
any parametric assumptions for GEp, but with two phys-
ical constraints – a normalization constraint for GEp(0),
and GEp being monotonically decreasing as Q2 increases.
The value of the proton charge radius extracted from the
Mainz data is found to be sensitive to the Q2 range of
the data used in this analysis.

Horbatsch (Horbatsch, 2020) analyzed the PRad data
on the proton GE following a proposal by Hagelstein and
Pascalutsa (Hagelstein and Pascalutsa, 2019) by taking
the logarithm to yield a Q2 dependent radius function.
This analysis shows that the PRad data is in agreement
with theoretical predictions from dispersively improved
chiral perturbation theory.

Atac et al. (Atac et al., 2021) extracted both the
proton and the neutron charge radius from a global
analysis of the world proton and neutron form factor
data by carrying out a flavor separation of the Dirac
form factor F1 assuming isospin symmetry. The u- and
d-quark root-mean-squared transverse radii are subse-
quently determined from a fit to the slope of the cor-
responding flavor-dependent Dirac form factors, from
which both the proton and the neutron charge radii are
reconstructed. In this analysis, a proton charge radius
value of 0.852± 0.002(stat.) ± 0.009(syst.) fm is obtained,
which is consistent with the muonic hydrogen results as
well as the latest result from the PRad experiment (Xiong
et al., 2019). Excluding the PRad data, a 〈r2

Ep〉1/2 value
of 0.857(13) fm is extracted, consistent with the value
including the PRad data but with a larger uncertainty.

Borisyuk and Kobushkin (Borisyuk and Kobushkin,
2020) reanalyzed the Mainz data (Bernauer et al., 2010)
and found that the radius value obtained under certain
conditions can be consistent with the muonic hydrogen
results.

Cui et al. (Cui et al., 2021) extracted values of 〈r2
Ep〉1/2

using the electron-proton scattering data from the PRad
experiment at JLab (Xiong et al., 2019) and the A1 ex-
periment at Mainz (Bernauer et al., 2010) using a statis-
tical sampling approach based on the Schlessinger Point
Method (SPM). The SPM method, with an important
feature that no specific functional form is assumed for
the interpolation, is used in this analysis for the interpo-
lation and extrapolation of smooth functions to minimize
biases associated with assumed forms. The authors ob-
tained a radius value of 〈r2

Ep〉1/2 = 0.838 ± 0.005stat fm

from the PRad experiment, and a value of 〈r2
Ep〉1/2 =

0.856 ± 0.014stat fm from the Mainz A1 experiment in-
cluding data up to a Q2 value of 0.014 (GeV/c)2. Com-
bining these two values, Cui et al. finds a proton charge
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radius value of

〈r2
Ep〉1/2 = 0.847± 0.008stat fm, (73)

from the two most recent experiments (Bernauer et al.,
2010; Xiong et al., 2019) measuring the unpolarized
electron-proton elastic scattering cross sections, that is
consistent with the muonic hydrogen results (Antognini
et al., 2013a; Pohl et al., 2010), as well as the most recent
ordinary hydrogen spectroscopy results (Bezginov et al.,
2019; Grinin et al., 2020) for the proton charge radius.

Most recently, Gramolin and Russell (Gramolin
and Russell, 2021) analyzed the entire Mainz data
set (Bernauer et al., 2010) using the two-dimensional
Fourier transform of the Dirac form factor F1(Q2), i.e.,
the proton transverse charge density discussed in Sec-
tion III.C. The proton charge radius is related to the
second moment of this transverse charge density. With

this approach, they obtained a radius value 〈r2
Ep〉1/2 =

0.889(5)stat(5)syst(4)model fm, that is consistent with the
original Mainz result (Bernauer et al., 2010).

Fig. 19 shows proton charge radius results from
electron-proton scattering experiments since 2010 and
the extracted 〈r2

Ep〉1/2 values from some of the various
analyses described above. Also included are the muonic
hydrogen results as well as the CODATA-2014 recom-
mended value. While the results of some of these anal-
yses are consistent with muonic hydrogen results on the
〈r2
Ep〉1/2, others are consistent with the CODATA-2014

recommended value based on electron scattering data,
and few are in between. There is no conclusive state-
ment one can draw regarding the proton charge radius
puzzle from these analyses of electron-proton scattering
data. New and further improved measurements from lep-
ton scattering are highly desirable, which we describe in
Section VII.

FIG. 19 (Color online) The proton charge radius values determined from electron scattering experiments since 2010 together
with the results from the various analyses of electron-proton scattering data (see text) (figure credit: Jingyi Zhou).

VI. MODERN SPECTROSCOPIC MEASUREMENTS

A. Muonic hydrogen spectroscopic experiments

The first determination of the proton charge radius us-
ing muonic hydrogen atoms was carried out by Pohl et

al. (Pohl et al., 2010) at the Paul Scherrer Institute
(PSI) by measuring the transition frequency between the
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2SF=1
1/2 and the 2PF=2

3/2 states at wavelengths around 6.01
µm using pulsed laser spectroscopy, see Fig. 20. The
muonic hydrogen atoms were produced by stopping neg-
ative muons in a hydrogen gas target with a pressure of
1 hPa (1 mbar) at the πE5 beam-line of the proton ac-
celerator at PSI. The muonic atoms produced are in the
n ≈ 14 excited state, which then decay with about 1%
probability to the 2S metastable state, while the major-
ity (99%) decay to the 1S ground state. The lifetime of
the long-lived 2S state at 1 hPa pressure is 1 µs. A 5-ns
pulsed laser with a wavelength tunable around 6 µm is in-
cident upon and illuminates the target volume about 0.9

µs after the muons reach the target. The laser wavelength
is scanned through the resonance of the 2S → 2P tran-
sition. Upon the excitation, the 2P state with a lifetime
of 8.5 ps will decay to the 1S state via emission of the
1.9-keVKα x-ray. Therefore, in this pulsed muonic atom
laser spectroscopic measurement, the resonance curve is
recorded by the coincidence of the 1.9-keV x-ray and the
laser pulse as a function of the laser wavelength. A co-
incidence time window of 0.9 to 0.975 µs is chosen, i.e.
0.9 µs after the muons enter the H2 target, and the 75-ns
window corresponds to the confinement time of the laser
light within the optics surrounding the target.

(a)
n = 14

2S

1S

2P
1% 99%

2 keV x-rays
(𝐊𝛂, 𝐊𝛃, 𝐊𝛄)
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2 keV x-rays

(𝐊𝛂)

𝟐𝐏𝟑/𝟐

𝟐𝐏𝟏/𝟐

F = 2
F = 1

F = 1

F = 0

𝟐𝐒𝟏/𝟐

F = 1

F = 0

Lamb
shift

𝛎𝐭𝐫𝐢𝐩𝐥𝐞𝐭
𝛎𝐬𝐢𝐧𝐠𝐥𝐞𝐭

2P fine splitting

2S hyperfine splitting

2S

1S

2P

FIG. 20 (Color online) The muonic hydrogen energy levels relevant to the proton charge radius measurement (figure credit:
Jingyi Zhou).

The resonance frequency for the transition between
the 2SF=1

1/2 and the 2PF=2
3/2 states was measured to be

49881.88 (76) GHz (Pohl et al., 2010), which gave a pro-
ton charge radius value of 〈r2

Ep〉1/2 = 0.84184(67) fm
based on the state-of-the-art QED calculations. In a
follow-up paper by the CREMA collaboration (Antognini
et al., 2013a), the tunable laser wavelength was scanned
from 5.5 to 6.0 µm, and in addition to the original
transition between the 2SF=1

1/2 (triplet) and the 2PF=2
3/2

states, a second transition between 2SF=0
1/2 (singlet) and

the 2PF=1
3/2 states was also measured. The corresponding

resonance frequencies were determined to be

νt = 49881.35 (57)stat.(30)syst. GHz,

νs = 54611.16 (1.00)stat.(30)syst. GHz.

From these two transitions, the Lamb shift (LS) and the
hyperfine splitting (HFS) can be independently deter-
mined and they are:

∆EexpLS = 202.3706 (23) meV, (74)

∆EexpHFS = 22.8089 (51) meV.

Relating the state-of-the-art theory calculations of the
Lamb shift (Borie, 2012; Eides, 2001; Jentschura, 2011;
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Karshenboim, 2010; Karshenboim et al., 2012; Pachucki,
1996, 1999) to the proton 〈r2

Ep〉, one obtains (in meV):

∆EthLS(2P − 2S) = 206.0336 (15)

− 5.2275 (10) 〈r2
Ep〉+ ∆ETPE , (75)

where the last term is due to the two-photon-exchange
proton polarizability contribution discussed in Sec-
tion IV. Using the estimate of Eq. (71) for the latter,
the extracted value for the proton charge radius is:

〈r2
Ep〉1/2 = 0.84087(26)exp(29)th fm = 0.84087(39) fm.

(76)
This result is not only consistent with the earlier re-
sult from the muonic hydrogen spectroscopic measure-
ment (Pohl et al., 2010), but also represents the most
precise value for the proton charge radius. Both these
results have been included in the 2018 CODATA com-
pilation (Tiesinga et al., 2021) and dominate its recom-
mended value for the proton charge radius.

One notices from Eq. (71) that the uncertainty (δ)
of the present TPE estimate for the muonic hydrogen
2P − 2S Lamb shift, δ(∆ETPE) = 2.0 µeV, is compa-
rable to the present experimental Lamb shift precision,
δ(∆EexpLS ) = 2.3 µeV, see Eq. (74). A further improve-
ment on the proton charge radius extraction from muonic
hydrogen spectroscopy results therefore hinges upon fur-
ther improving the TPE estimates.

B. Ordinary Hydrogen spectroscopic experiments

Since the release of the first muonic hydrogen spectro-
scopic determination of the proton charge radius (Pohl
et al., 2010), there have been four atomic hydrogen
spectroscopic measurements of the proton charge ra-
dius (Beyer et al., 2017; Bezginov et al., 2019; Fleur-
baey et al., 2018; Grinin et al., 2020) with Bezginov et
al. (Bezginov et al., 2019) being a direct measurement of
the hydrogen Lamb shift.

Beyer et al. (Beyer et al., 2017) carried out a mea-
surement of the 2S − 4P transition of ordinary hydro-
gen atoms using a cryogenic beam of H atoms. A ma-
jor improvement over previous experiments in overcom-
ing the limitation due to the electron-impact excitation
used to produce atoms in the metastable 2S state is the
use of the Garching 1S − 2S apparatus (Matveev et al.,
2013; Parthey et al., 2011) as a well-controlled cryogenic
source of 5.8-K cold 2S atoms. In this case, the 2SF=0

1/2

sublevel is almost exclusively populated via Doppler-free
two-photon excitation without imparting additional mo-
mentum on the atoms. The line shifts due to quantum
interference of neighboring atomic resonances, and the
first-order Doppler shift are the two remaining major sys-
tematic issues of this experiment. In (Beyer et al., 2017),
apart from the use of a cryogenic H source which reduces
the thermal velocity of atoms by a factor of 10 compared

with prior experiments, the employment of a specifi-
cally developed active fiber-based retroreflector (Beyer
et al., 2016) allows for a high level of compensation of
the first-order Doppler shift – 4 parts in 106 of the full
collinear shift. To suppress the quantum interference ef-
fect in order to determine the absolute 2S−4P transition
frequency, the experiment was designed to observe line
shifts due to the quantum interference effect and to simu-
late the line shifts fully using an atomic line shape model.
Finally the quantum interference effect is removed us-
ing the Fano-Voigt line shape to obtain the unperturbed
transition frequency for both the 2SF=0

1/2 − 4PF=1
1/2 and

the 2SF=0
1/2 − 4PF=1

3/2 transitions. Combining with pre-
vious precision measurements of the 1S − 2S transition
by the same group (Matveev et al., 2013; Parthey et al.,
2011), values for both the Rydberg constant and the pro-
ton charge radius were determined to be (Beyer et al.,
2017):

R∞ = 10 973 731.568 076(96) m−1,

〈r2
Ep〉1/2 = 0.8335(95) fm.

The uncertainty on the proton charge radius from this
single experiment is comparable to the prior aggregate
atomic hydrogen world data. This result is consistent
with the muonic hydrogen results on the proton charge
radius, but 3.3 combined standard deviations smaller
than the 2014 CODATA recommended value (Mohr
et al., 2016) based on previous world data from ordinary
hydrogen.

Fleurbaey et al. (Fleurbaey et al., 2018) in Paris re-
ported a result on the proton charge radius and the Ry-
dberg constant in 2018 by combining their measurement
of the 1S − 3S transition from ordinary atomic hydro-
gen with the 1S− 2S transition measurement performed
by the Garching group (Parthey et al., 2011). The Paris
experiment measured the 1S − 3S two-photon hydrogen
transition frequency using a continuous-wave laser with a
wavelength of 205 nm and through the Balmer-α 3S−2P
fluorescence detection. A room temperature atomic hy-
drogen beam was used in the experiment and the main
systematic effect of the experiment is the second-order
Doppler effect due to the room-temperature atomic ve-
locity distribution. The results presented included data
taken during two different periods (2013 and 2016-2017)
with improvements taking place between the two periods.
The reported results are (Fleurbaey et al., 2018):

R∞ = 10 973 731.568 53(14) m−1,

〈r2
Ep〉1/2 = 0.877(13) fm.

While the extracted rEp value is consistent with the
CODATA-2014 (Mohr et al., 2016) recommended value,
it disagrees with the muonic hydrogen Lamb shift re-
sult (Antognini et al., 2013a) by 2.6 standard devia-
tions. This experiment and the aforementioned exper-
iment (Beyer et al., 2017) used a similar measurement
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technique in which two transition frequencies are in-
volved. Each transition is between two ordinary hydro-
gen energy levels, corresponding to two different principal
quantum numbers n1 and n2 with at least one of them
being a S state. We note that both the Rydberg constant
and the proton charge radius determined from the Paris
experiment (Fleurbaey et al., 2018) disagree with those
from the Garching experiment (Beyer et al., 2017) at a
level of about 2 standard deviations. It will be impor-
tant to resolve such a discrepancy especially by repeating
the same transition, either the 1S − 3S or the 2S − 4P
transition.

To determine the proton charge radius from ordinary
hydrogen spectroscopic measurements, one can also mea-
sure the Lamb shift (the 2S1/2−2P1/2 transition) directly,
in which case, the principal quantum numbers for the
two states between the transition are the same, and as
such the precision of the Rydberg constant from other ex-
periments is sufficient and the Lamb shift measurement
itself together with the state-of-the-art QED calculation
is used to extract 〈r2

Ep〉1/2. The most recent rEp deter-
mination (Bezginov et al., 2019) from ordinary atomic
hydrogen spectroscopy is such a measurement. In the ex-
periment by Bezginov et al. (Bezginov et al., 2019), a fast
beam of hydrogen atoms was created by passing protons
– which were accelerated to 55 keV – through a molecular
hydrogen target chamber. About half of the protons were
neutralized into hydrogen atoms from collisions with the
molecules, and about 4% were created in the metastable
2S state. The experiment used two different radio fre-
quency cavities to drive the 2S state away from the F = 1
substates so that only the F = 0 substate survives. The
transition between the 2S1/2(F = 0) → 2P1/2(F = 1) is
the Lamb shift measured in this experiment using the ex-
perimental technique of frequency-offset separated oscil-
latory field (Kato et al., 2018; Vutha and Hessels, 2015),
which is a modified Ramsey technique of separated os-
cillatory fields (Ramsey, 1949). The measured transition
frequency of 2S1/2(F = 0) → 2P1/2(F = 1) from this
experiment is 909.8717(32) MHz. The Lamb shift de-
termined is 1057.8298(32) MHz after including the con-
tribution from hyperfine structure, which is 147.9581
MHz (Horbatsch and Hessels, 2016b). The proton charge
radius value deduced from this experiment is (Bezginov
et al., 2019):

〈r2
Ep〉1/2 = 0.833(10) fm, (77)

which is consistent with the muonic hydrogen Lamb
shift measurements (Antognini et al., 2013a; Pohl et al.,
2010), the 2017 ordinary hydrogen measurement (Beyer
et al., 2017), and the PRad result from electron scatter-
ing (Xiong et al., 2019). It disagrees however with the
Paris measurement (Fleurbaey et al., 2018) at a level of
about two standard deviations.

Most recently, a new result on 〈r2
Ep〉1/2 from ordinary

hydrogen spectroscopy has been published (Grinin et al.,
2020). This experiment measured the same 1S − 3S
transition as that of (Fleurbaey et al., 2018) but with
significantly improved precision. Major improvements
in reducing systematic uncertainties have been achieved
by using a cold atomic beam and a two-photon di-
rect frequency comb technique. The experiment also
achieved an almost shot noise limited statistical uncer-
tainty of 110 Hz. The unperturbed frequency for the
1S(F = 1) − 3S(F = 1) transition determined from
this experiment is 2,922,742,936,716.72(72) kHz, and
f1S−3S(centroid) = 2, 922, 743, 278, 665.79(72) KHz af-
ter subtracting the hyperfine shifts. Combing this new
result on the 1S − 3S transition with the 1S − 2S tran-
sition frequency measured by the same group (Matveev
et al., 2013) before, Grinin et al. obtained (Grinin et al.,
2020):

R∞ = 10 973 731.568 226(38) m−1,

〈r2
Ep〉1/2 = 0.8482(38) fm.

This extracted Rydberg constant is in agreement with
the latest CODATA-2018 (Tiesinga et al., 2021) recom-
mended value. The new proton charge radius result
from (Grinin et al., 2020) is more than a factor of two
more precise but also 2.9 standard deviations smaller
compared with the CODATA-2014 recommended value
from ordinary hydrogen spectroscopic measurements. It
is more than a factor of three more precise, but 2.1 stan-
dard deviations smaller than the Paris result (Fleurbaey
et al., 2018). Compared with muonic hydrogen results on
〈r2
Ep〉1/2, this new result from the 1S − 3S transition is

about two standard deviations larger. Fig. 21 shows the
results on 〈r2

Ep〉1/2 from these four latest spectroscopic
measurements using ordinary hydrogen atoms (Beyer
et al., 2017; Bezginov et al., 2019; Fleurbaey et al., 2018;
Grinin et al., 2020) together with the muonic hydrogen
results (Antognini et al., 2013a; Pohl et al., 2010). Also
shown is the CODATA-2014 (Mohr et al., 2016) recom-
mended value based on ordinary hydrogen spectroscopy.
While major progress has been made in recent years, and
most of these recent measurements of the proton charge
radius support a smaller value including the PRad re-
sult (Xiong et al., 2019), the comparison of 〈r2

Ep〉1/2 ex-
tractions between electronic versus muonic systems is not
fully settled. This situation highlights the importance of
future high-precision scattering experiments, to improve
on the result obtained by PRad. It is also highly de-
sirable to have future spectroscopic measurements from
ordinary hydrogen to achieve a comparable precision, i.e.,
a relative precision of 0.5% or better. The PRad-II and
other ongoing and upcoming scattering experiments will
be discussed in the following section.

Table IV provides a summary of the aforementioned
spectroscopic measurements using both muonic and or-
dinary hydrogen published since 2010.
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Experiment Type Transition(s)
√
< r2Ep > (fm) r∞ (m−1)

Pohl 2010 µH 2SF=1
1/2 − 2PF=2

3/2 0.84184(67)

Antognini 2013 µH 2SF=1
1/2 − 2PF=2

3/2 0.84087(39)

2SF=0
1/2 − 2PF=1

3/2

Beyer 2017 H 2S − 4P 0.8335(95) 10 973 731.568 076 (96)

with (1S − 2S)

Fleurbaey 2018 H 1S − 3S 0.877(13) 10 973 731.568 53(14)

with (1S − 2S)

Bezginov 2019 H 2S1/2 − 2P1/2 0.833(10)

Grinin 2020 H 1S − 3S 0.8482(38) 10 973 731.568 226(38)

with (1S − 2S)

TABLE IV Summary of proton charge radius results from muonic and ordinary hydrogen spectroscopic measurements published
since 2010.

FIG. 21 (Color online) The latest proton charge radius results from ordinary hydrogen spectroscopic measurements together
with muonic hydrogen results and the CODATA-2014 recommended value based on ordinary hydrogen spectroscopy (figure
credit: Jingyi Zhou).

VII. ONGOING AND UPCOMING EXPERIMENTS

In this section we aim to briefly describe the current
and planned experiments aimed at extracting the pro-
ton charge radius. Some of these plans have also been
discussed in a recent review by Karr, Marchand, and
Voutier (Karr and Voutier, 2020).

A. The MUSE experiment at PSI

The muonic hydrogen spectroscopic results on the pro-
ton charge radius (Antognini et al., 2013a; Pohl et al.,

2010) also motivated lepton-proton scattering measure-
ments with muon beams. The MUon proton Scattering
Experiment (MUSE) (Gilman et al., 2013, 2017) at PSI
is currently ongoing, in which measurements of lepton-
proton elastic scattering cross sections utilizing both the
µ+ and µ− (muon) beams will be compared to those per-
formed with electron and positron beams. The MUSE ex-
periment uses the PSI πM1 beam line with e±, and µ±

beams at incident momentum values of 115, 153 and 210
MeV/c to allow for simultaneous measurements of the
µ±p and e±p elastic scattering cross sections. The cover-
age of the scattering angle for the MUSE experiment is
20-100◦, corresponding to a Q2 range of 0.0016 (with 115
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MeV/c beam momentum) to 0.08 (GeV/c)2 (210 MeV/c
incident beam momentum). Due to the mass difference of
e±, and µ±, there is a small difference in the Q2 coverage
between the two. The lowest Q2 value reached by MUSE
is comparable to that of the Mainz experiment (Bernauer
et al., 2010), but much higher than that of the PRad
experiment (Xiong et al., 2019), 0.0002 (GeV/c)2. In
addition to the µ and e beam particles, there are also
pions in the πM1 mixed beam. Therefore, beam-line de-
tectors for identifying various beam particles, determin-
ing the beam particle momentum and trajectories into
the target, and counting the beam particles are impor-
tant for the MUSE experiment. The beam-line detectors
include a beam hodoscope (fast scintillator array) mea-
suring times relative to the accelerator RF to identify
beam particle type, GEM detectors, a veto scintillator, a
beam monitor and a calorimeter. A liquid hydrogen tar-

get is the main target for the production data taking with
two symmetric spectrometers each equipped with detec-
tors consisting of two scattered particle scintillator (SPS)
paddles and two straw-tube trackers (STT). A schematic
setup of the MUSE experiment is shown in Fig. 22. The
uncertainties from the MUSE experiment in the proton
charge radius separately determined with µ+p, µ−p, e+p,
and e−p are expected to be nearly the same, around 0.01
fm. In addition to the determination of the proton charge
radius, the MUSE experiment will allow for tests of the
two-photon-exchange effect in lepton scattering by com-
paring the µ±p and e±p cross section, and a direct test
of lepton universality. More details about the MUSE ex-
periment can be found in (Cline et al., 2021). The MUSE
collaboration is working towards commissioning the en-
tire experiment with production data taking expected to
start in the fall of 2021.

Straw-Tube
Tracker (STT)

Scattered Particle
Scintillator (SPS)

GEM
Detectors

Beam
Hodoscope

UM1
Beam-Line

Veto
Scintillator

Target
Chamber

Beam
Monitor

Calorimeter

~ 100 cm

FIG. 22 (Color online) The schematic of the MUSE experiment at PSI (figure credit: Steffen Strauch).
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B. The AMBER Experiment at CERN

The COMPASS collaboration proposed a precision
measurement of elastic µp scattering at high energy and
low Q2 with the M2 beam-line at CERN with AM-
BER (Dreisbach et al., 2019). By carrying out muon-
proton scattering at high energies – compared with low-
energy lepton-proton scattering – the proposed experi-
ment has different, and in some cases favorable systemat-
ics. The AMBER measurement of the proton radius will
use 100 GeV muons of the CERN M2 beam-line. The hy-
drogen target will be an active target – a high-pressure
time projection chamber (TPC) – in which the recoil pro-
tons will be measured for proton energies of 0.5 to 20
MeV. For small-angle scattered muon detection, silicon
detectors will be used for precision tracking. The trig-
gers will be formed by scattered muons using the 200 µm

SciFi stations, and the inner tracking and the ECAL of
the COMPASS spectrometer will be used for measuring
the scattered muons. The proposed experiment with 200
days of beam time will extract the proton electric form
factor in a Q2 range of 0.001 to 0.04 (GeV/c)2 with rela-
tive point-to-point precision better than 0.001. The pro-
jected precision in the determination of the proton charge
radius is expected to be better than 0.01 fm. The exper-
iment has been approved to run at CERN in the com-
ing years. Fig. 23 shows the schematics of the AMBER
setup for the proton charge radius measurement (top)
including the time-projection chamber, scintillating-fiber
hodoscope, and the silicon-pixel detectors. The entire
setup in the AMBER spectrometer with relevant parts
shown is illustrated in the bottom part of Fig. 23.
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FIG. 23 (Color online) Top: schematics of the AMBER setup for the proton charge radius measurement. Bottom: the entire
setup in the AMBER spectrometer with relevant parts shown (figure credit: AMBER Collaboration).

C. The PRad-II experiment at Jefferson Lab

Following the PRad experiment (Xiong et al., 2019),
the PRad collaboration proposed a new and upgraded

experiment, PRad-II (Gasparian et al., 2020; Jefferson
Lab Proposal PR12-20-004, Spokespersons: D. Dutta,
H. Gao, A. Gasparian (contact), K. Gnanvo, D. Higin-
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botham, N. Liyanage, E. Pasyuk, and C. Peng, 2020) to
the Jefferson Lab program advisory committee (PAC).
Leading the next generation of the proton charge ra-
dius measurements, PRad-II will use an electromagnetic
calorimeter together with two planes of tracking detec-
tors with several major upgrades and improvements over
the PRad experiment. The experiment has been ap-
proved by the PAC with the highest scientific rating.

One important aspect of PRad-II compared with PRad
is to reduce the statistical uncertainty of the electron-
proton elastic scattering cross section measurement by
a factor of 4. Furthermore, a number of upgrades will
improve the precision in determining the proton electric
form factor and the charge radius significantly by reduc-
ing systematic uncertainties. The upgrades include (i)
adding a second tracking detector plane for improving
the tracking capability and further suppressing the beam-
line related background; (ii) upgrading the HyCal by re-
placing its outer-region lead glass modules with PbWO4

crystals to improve the detector resolutions and unifor-
mity and to suppress the inelastic contamination; (iii)
adding a set of cross-shaped scintillator detectors in or-
der to detect scattered electrons from ep at scattering an-
gles as forward as 0.5◦ while still being cleanly separated
from ee scattering; (iv) upgrading the HyCal readout to
flash ADC to enhance the data taking rate; (v) adding a

second beam halo blocker together with improved beam-
line vacuum to further suppress the background; (vi) and
future improved radiative correction calculations at the
next-to-next-to-leading order (NNLO) for both ep and ee
scattering. These upgrades and improvements will lead
to the reduction of the overall experimental uncertainty
in the radius determination by a factor of 3.8 compared
to PRad. As the muonic hydrogen result with its un-
precedented precision (∼0.05%) dominates the CODATA
value of the proton charge radius, it is critically impor-
tant to help evaluate possible systematic uncertainties as-
sociated with muonic experiments using different exper-
imental methods with high precision and different sys-
tematics. The PRad-II experiment, with its projected
total uncertainty smaller than 0.5%, could potentially
inform whether there is any systematic difference in the
radius results between e − p scattering and muonic hy-
drogen measurements. PRad-II will cover a Q2 range of
4 × 10−6 to 2 × 10−2 (GeV/c)2 – the first lepton scat-
tering experiment to reach below 10−4 (GeV/c)2 – with
three proposed incident beam energies: 0.7, 1.4 and 2.1
GeV. Fig. 24 shows the schematics of the proposed PRad-
II setup. The tracking detectors proposed can be built
based on the new µRWELL technology (Bencivenni et al.,
2015), or the GEM as used in the PRad experiment.

FIG. 24 (Color online) Schematic of the setup for the proposed PRad-II experiment. The incident electron beam is from left
to right (figure credit: Dipangkar Dutta).

Fig. 25 shows the projected radius measurement from
PRad-II together with some of the most recent re-
sults on the proton radius including the e − p scatter-
ing results (Xiong et al., 2019), the two muonic hydro-

gen results (Antognini et al., 2013a; Pohl et al., 2010),
and the three recent atomic hydrogen spectroscopic re-
sults (Beyer et al., 2017; Bezginov et al., 2019; Grinin
et al., 2020). Also shown is the CODATA 2018 (Tiesinga
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et al., 2021) recommended value. The blue line and
the band represent the weighted average of the 〈r2

Ep〉1/2
value and its uncertainty of the three proton radius val-
ues (Beyer et al., 2017; Bezginov et al., 2019; Xiong et al.,
2019) from ordinary hydrogen spectroscopy and electron-
proton scattering. The grey line and band are the results
from the weighted average of all four including the result
from (Grinin et al., 2020). This figure illustrates two
points: (i) the importance of improving the precision of
〈r2
Ep〉1/2 measurements from electronic systems whether

it be ordinary hydrogen spectroscopy or electron-proton
scattering; (ii) additional new measurements from ordi-
nary hydrogen in addition to the results from (Grinin
et al., 2020) and the upcoming PRad-II will be essen-
tial to determine whether there is a difference between
〈r2
Ep〉1/2 determined between the electronic versus the

muonic systems.
For the PRad-II projection, it is shown that with

all proposed upgrades and improvements, the projected
overall uncertainty in the proton radius measurement will

be 0.0036 fm, which is slightly smaller than the 0.0038
fm precision from the latest hydrogen spectroscopy result
of (Grinin et al., 2020) – the most precise measurement
from ordinary hydrogen atomic spectroscopy.

If the PRad 〈r2
Ep〉1/2 value would prevail, the PRad-II

result could signal a more than 2.7 standard deviations
smaller value than the muonic hydrogen result. While
it does not seem possible in the foreseeable future for
lepton-scattering experiments to reach the precision of
muonic hydrogen spectroscopic measurements, the im-
provement of PRad-II is significant and will have great
potential to inform whether there is any systematic differ-
ence between muonic hydrogen results and results from
electron scattering. The PRad-II measurement together
with future improvements in ordinary hydrogen spectro-
scopic measurements will shed light on whether there is
any systematic difference between the proton charge ra-
dius determined from electronic versus muonic systems.
Therefore, they may uncover interesting new physics such
as the violation of lepton universality.

FIG. 25 (Color online) The PRad-II projection for 〈r2Ep〉1/2 with all proposed upgrades and improvements shown with a few
selected results from other experiments and CODATA-2018 recommendations (see text) (figure credit: Jingyi Zhou).

D. Electron scattering experiments at Mainz University

There are two major new programs at Mainz Univer-
sity aimed at measuring the electron-proton elastic scat-
tering at low Q2, which will provide new results on the

proton charge radius in the coming years.

The first is the PRES experiment (Belostotski et al.,
2019; Vorobyev, 2019; Vorobyov and Denig, 2017) at the
Microtron MAMI in the A2 experimental hall. In this ex-
periment the polar angle of the scattered electron will be
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measured with high accuracy using a Forward Tracker.
For the recoil proton the energy and the angle will be
measured with a time projection chamber (TPC). There-
fore, the experiment will have overdetermined kinemat-
ics, and access e − p elastic scattering in a Q2 region
from 0.001 to 0.04 (GeV/c)2. Compared with other e−p
scattering experiments in which scattered electrons are
commonly measured, the Mainz PRES experiment will
have different systematics. The projected systematic er-
ror for the cross section will be controlled with an accu-
racy of 0.1% (relative) and 0.2% (absolute). The PRES
experiment is projected to reach 0.5% statistical preci-
sion on 〈r2

Ep〉1/2, with systematic errors ≤ 0.3%. The
combination of the electron scattering result from the
PRES experiment and the muon scattering result from
COMPASS++/AMBER will allow for a test of lepton
universality in the proton charge radius, taking advan-
tage of a very similar experimental approach used in both
measurements. Also, PRES will provide crucial input for
calibration of the TPC setup at COMPASS++/AMBER,
taking advantage of the high-quality electron beam de-
livered by MAMI.
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FIG. 26 Bethe-Heitler direct (left) and crossed (right) dia-
grams to the γp→ l−l+p process, where the four-momenta of
the external particles are: k for the photon, p(p′) for initial
(final) protons, and l−, l+ for the lepton pair.

A further test of the lepton universality in the pro-
ton charge radius extraction was proposed in (Pauk and
Vanderhaeghen, 2015) through the photoproduction of
a lepton pair on a proton target in the limit of small
momentum transfer, in which this reaction is dominated
by the Bethe-Heitler process shown in Fig. 26. By de-

tecting the recoiling proton in the γp → l−l+p reaction,
it was shown that a measurement of a cross section ra-
tio of e−e+ + µ−µ+ vs e−e+, above vs below dimuon
threshold respectively, accesses the same information as
muon vs electron scattering experiments. Furthermore
such a measurement is free from hadronic background
if one performs the measurement in the di-lepton mass
window between di-muon threshold and below ππ thresh-
old. It thus complements a comparison of elastic l − p
scattering data, as the overall normalization uncertainty
due to the photon flux drops out of the di-lepton pho-
toproduction cross section ratio. The feasibility of such
experiment using a high-pressure TPC as an active tar-
get in combination with the Crystal Ball/TAPS setup at
MAMI is currently under study (Sokhoyan, 2020).

The second program at Mainz consists of two
parts. The first is the A1@MAMI, an ongoing exper-
iment (Bernauer, Jan C., 2020) in the A1 experimen-
tal hall with the MAMI accelerator using a hydrogen
gas jet target to provide better control of a few sys-
tematic uncertainties associated with the original A1 ex-
periment (Bernauer et al., 2010), and also to investigate
the systematic difference in the GpE results between the
PRad (Xiong et al., 2019) and the A1 experiments. The
second (MAGIX@MESA) is centered around the Mainz
Superconducting Energy Recovery Linac (MESA), which
is a new accelerator presently under construction at the
University of Mainz (Hug et al., 2020). MESA is de-
signed as a recirculating superconducting linear acceler-
ator which provides an external beam with high current
and high degree of polarization. In the energy recov-
ery mode, MESA will deliver an electron beam with 20
- 105 MeV and a current of 1 mA, which is ideal for
precision experiments. The MAGIX experiment (Mainz
Gas-Internal Target Experiment) at MESA will consist
of a quadrupole in front of two medium sized dipole
magnets, see Fig. 27. The compact design of the spec-
trometers will allow for a relative momentum resolu-
tion of order 10−4. For the focal-plane detector, a time
projection chamber with an open field cage and GEM
readout is being developed (Caiazza et al., 2020; Gülker
et al., 2019). Finally, a windowless internal gas-jet tar-
get (Grieser et al., 2018), which has already been com-
missioned at MAMI (Schlimme et al., 2021), will be used.

With the MAGIX experiment at MESA, for the first
time in hadron physics, an experiment will be developed
that combines the advantages of an ultra-light window-
less gas target with the high intensity of an Energy Re-
covery Linac accelerator. This combination of a high
beam intensity and a target, in which multiple scattering
of the outgoing particles will be minimized, will lead to
competitive luminosities in the range of 1035 cm−2 s−1,
while providing at the same time a very clean experimen-

tal environment. With the low beam energies of MESA,
it will be possible to reach Q2 values in e − p scatter-
ing down to 10−4 (GeV/c)2, and a relative precision on
the proton electron form factor GEp down to 0.05 %. It
will also significantly improve the determination of the
proton magnetic radius (Bernauer, Jan C., 2020).
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FIG. 27 (Color online) The MAGIX high resolution dual-spectrometer setup at the MESA accelerator. The gas-jet target in
the centre is also visible (figure credit: MAGIX Collaboration, (Schlimme et al., 2021)).

E. The ULQ2 experiment at Tohoku University

The Ultra-Low Q2 (ULQ2) (Suda, T., 2018) collabo-
ration has proposed to carry out an electron-scattering
experiment at the Research Center for Electron-Photon
Science at Tohoku University using its 60 MeV electron
linac. This experiment will use the electron beam at en-
ergies from 20-60 MeV with a scattering angular range of
30 to 150◦, corresponding to a Q2 range of 0.0003 to 0.008
(GeV/c)2 for e− p elastic scattering, aiming at an abso-
lute cross section measurement with a precision of 0.1 %.
The ULQ2 experiment will use a CH2 target with elastic
e−12C as a reference reaction for normalization purposes.
The root-mean-square charge radius of the 12C nucleus
is known to a relative precision of ∼ 3× 10−3. The pro-
ton electric form factor GEp will be extracted using the
Rosenbluth separation technique. The proposed experi-

mental setup will consist of two magnetic spectrometers
for Rosenbluth separation measurements, and luminosity
monitoring. To carry out this experiment, a new beam
line and a high-resolution new spectrometer with single-
sided silicon detectors (SSD) have been built and com-
missioned already. The SSD, developed together with
the J-PARC muon g-2 and the neutron electric dipole
moment experiments (Sato, 2017) are employed as the
focal plane detector. The second spectrometer for lumi-
nosity monitoring is under construction and will be com-
missioned in the near future. This experiment is aiming
at a precision of ∼ 1% (relative.) in determining the
proton charge radius, and is expected to start data tak-
ing in 2022. Fig. 28 shows the schematics of the ULQ2

experimental setup.

In Table V we provide a summary of these ongoing and
future lepton scattering experiments in terms of beam
type(s), the location, the Q2 coverage, the projected pre-
cision in the proton charge radius determination when
available, and the status of each experiment.

VIII. THE DEUTERON CHARGE RADIUS

A less well known charge radius puzzle is concerning
the deuteron, the simplest nucleus in nature, which is
loosely bound with a binding energy of 2.2 MeV. Like

the proton, the deuteron charge radius can be deter-
mined by the extraction of the deuteron charge form fac-
tor, GCd(Q

2) at low values of Q2 from electron-deuteron
elastic scattering first, and the subsequent extrapolation
of the measured GCd(Q

2) to the unmeasured region in
order to determine its slope at Q2 = 0.

The unpolarized elastic e − d scattering cross section
is described in the one-photon exchange picture as

dσ

dΩ
(E, θ) = σ

NS

{
Ad(Q

2) +Bd(Q
2) tan2 θ

2

}
, (78)
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FIG. 28 (Color online) The schematics of the ULQ2 experimental setup (figure credit: Toshimi Suda).

Experiment Beam Laboratory Q2 (GeV/c)2 δrp (fm) Status

MUSE e±, µ± PSI 0.0015 - 0.08 0.01 Ongoing

AMBER µ± CERN 0.001 - 0.04 0.01 Future

PRad-II e− Jefferson Lab 4× 10−5 - 6× 10−2 0.0036 Future

PRES e− Mainz 0.001 - 0.04 0.6% (rel.) Future

A1@MAMI (jet target) e− Mainz 0.004 - 0.085 Ongoing

MAGIX@MESA e− Mainz ≥ 10−4 − 0.085 Future

ULQ2 e− Tohoku University 3× 10−4 - 8× 10−3 ∼ 1% (rel.) Future

TABLE V Summary of ongoing and future lepton scattering experiments on proton charge radius measurements.

where σ
NS

is the differential cross section for the elas-
tic scattering from a point-like and spinless particle at a
scattering angle θ and an incident energy E. For a spin-1
object such as the deuteron, its electromagnetic structure
can be described by three form factors: the charge GCd,
the magnetic dipole GMd, and the electric quadrupole
GQd. The structure functions Ad(Q

2), Bd(Q
2) are re-

lated to these form factors via (Gourdin, 1963; Jankus,
1956):

Ad(Q
2) = G2

Cd(Q
2) +

2

3
τdG

2
Md(Q

2) +
8

9
τ2
dG

2
Qd(Q

2),

Bd(Q
2) =

4

3
τd(1 + τd)G

2
Md(Q

2), (79)

with τd ≡ Q2/(4M2
d ), where Md is the deuteron mass.

Also, there are the following additional relations:

GCd(0) = 1, GMd(0) = µd, GQd(0) = Qd,

with µd being the deuteron magnetic dipole moment (in
units e/(2Md)), and Qd, the electric quadrupole moment
(in units e/M2

d ). With three form factors, one needs to
carry out three measurements with independent combi-
nations of the three form factors in order to separate
them for each Q2 value. It was shown in (Carlson and
Vanderhaeghen, 2009) how these three form factors al-
lows one to map out the transverse charge densities in a
deuteron, in a state of helicity 0 or ±1, as viewed from
a light front moving towards the deuteron. Furthermore,
the charge densities for a transversely polarized deuteron
are characterized by monopole, dipole and quadrupole
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patterns.
At low values of Q2 most relevant for the charge ra-

dius determination, in the range 10−2 to 10−4 (GeV/c)2,
and small scattering angles, the unpolarized e − d elas-
tic scattering cross section is dominated by the deuteron
charge form factor. One can therefore extract GCd with
negligible systematic uncertainties using data driven pa-
rameterizations for GMd, and GQd (Zhou et al., 2021)
from measured scattering cross section. The deuteron
rms charge radius radius can then be determined by fit-
ting the experimental GCd data as a function of Q2, and
calculating the slope of this function atQ2 = 0, according
to

〈r2
Cd〉 ≡ −6

dGdC(Q2)

dQ2

∣∣∣∣
Q2=0

, (80)

in analogy to how 〈r2
Ep〉 is obtained. Zhou et al. (Zhou

et al., 2021) demonstrated how one can extract rd reliably
using robust fitters.

Like the proton charge radius, the deuteron rd can also
be determined from atomic spectroscopic measurements
using ordinary deuterium or muonic deuterium atoms.
The CREMA collaboration has reported a deuteron
charge radius value from a muonic spectroscopy-based
measurement of three 2P → 2S transitions in muonic
deuterium atoms as (Pohl et al., 2016) (labeled as µD
2016 in Fig. 27.)

〈r2
Cd〉1/2 = 2.12562± 0.00078 fm, (81)

which is 2.7 times more accurate but 7.5 standard de-
viations smaller than the CODATA-2010 recommended
value (Mohr, 2012). Newer values of 〈r2

Cd〉1/2 based on
the muonic deuterium spectroscopic measurement (Pohl
et al., 2016) with improved theoretical calculations
are (Hernandez et al., 2018)

〈r2
Cd〉1/2 = 2.12616± 0.00090 fm,

and (Kalinowski, 2019; Pachucki et al., 2018)

〈r2
Cd〉1/2 = 2.12717± 0.00082 fm.

From the spectroscopic measurement of 1S → 2S tran-
sitions from ordinary deuterium atoms (Parthey et al.,
2010), Pohl et al. extracted a deuteron radius value (Pohl
et al., 2017):

〈r2
Cd〉1/2 = 2.1415± 0.0045 fm,

which is 3.5 standard deviations larger than the extracted
value of Eq. (81) from muonic deuterium atoms.

Another spectroscopic method commonly used to ex-
tract the deuteron charge radius utilizes the isotope shift
of the 1S → 2S transition between atomic hydrogen
and deuterium (Huber et al., 1998; Parthey et al., 2010),
from which one can precisely determine the difference
between the squares of the deuteron and proton charge
radii (Jentschura et al., 2011):

〈r2
Cd〉 − 〈r2

Ep〉 = 3.82007(65) fm2.

Combining the proton charge radius values with the iso-
tope shift results, one can extract 〈r2

Cd〉1/2. In fact, the
CODATA-2010 recommended value

〈r2
Cd〉1/2 = 2.1415 (21) fm,

used the isotope shift results on the radii and the proton
charge radius values from electron scattering.

From the electron scattering side, all the elastic e − d
scattering measurements with rather large experimental
uncertainties are not able to resolve the discrepancy be-
tween the 〈r2

Cd〉1/2 values obtained from ordinary deu-
terium and muonic deuterium spectroscopic measure-
ments. The re-analysis of world e − d data gives (Sick
and Trautmann, 1998):

〈r2
Cd〉1/2 = 2.130± 0.003 (stat.)± 0.009 (syst.) fm.

With rather large overall uncertainty, this deuteron
charge radius value from the re-analysis is consistent with
both the muonic deuterium result as well as that from or-
dinary deuterium spectroscopic measurements.

A recent analysis (Hayward and Griffioen, 2020) gives
a deuteron charge radius value that is consistent with
muonic deuterium results with a larger statistical uncer-
tainty:

〈r2
Cd〉1/2 = 2.092± 0.019 (stat.) fm.

In the same work, the analysis of the electron-proton
scattering data prefers a proton radius value consistent
with muonic hydrogen results.

Therefore, a significantly improved 〈r2
Cd〉1/2 determi-

nation from a new electron-deuteron scattering experi-
ment is needed to help resolve the current situation sur-
rounding the deuteron charge radius. Fig. 29 is a sum-
mary of results on the deuteron charge radius discussed

above including the CODATA 2014 value (Mohr et al.,
2016) shown with the uncertainty as a band, and the CO-
DATA 2018 recommended value (Tiesinga et al., 2021).
Also included is an extraction of the rd using the iso-
tope shift (Jentschura et al., 2011) and the muonic hy-
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FIG. 29 (Color online) The existing results on the deuteron charge radius 〈r2Cd〉1/2, see text for details (figure credit: Randolf
Pohl).

drogen result of the 〈r2
Ep〉 (Antognini et al., 2013a). The

two latest extractions of the deuteron charge radius from
the muonic deuterium measurement are labeled as µD
2018 (Hernandez et al., 2018), and µD (Kalinowski, 2019;
Pachucki et al., 2018), respectively in Fig. 29.

The PRad collaboration proposed a new electron-
deuteron elastic scattering experiment, called DRad (Jef-
ferson Lab Proposal PR12-20-006, Spokespersons: D.
Dutta, H. Gao, A. Gasparian (contact), D. Higinbotham,
N. Liyanage, and E. Pasyuk, 2020), using an apparatus
modified from that for the proposed PRad-II experiment
by installing a low-energy Silicon-based recoil detector
in a cylindrical shape inside the windowless gas flowing
target to detect the recoil deuterons in coincidence with
the scattered electrons. As demonstrated by the PRad
experiment (Xiong et al., 2019), the proposed DRad ex-
periment will also employ a well-known QED process,
Møller scattering, to control the systematic uncertain-
ties associated with measuring the absolute e − d cross
section. The DRad experiment will aim at an overall
precision that is 0.22% (relative) or better in the deter-
mination of the rd, in an essentially model-independent
way.

An elastic e− d cross section measurement (Schlimme
et al., 2016) was carried out at the Mainz Microtron sev-
eral years ago in a momentum transfer squared range of
2.2 × 10−3 to 0.28 (GeV/c)2 with the goal of extract-
ing the deuteron charge form factor and ultimately the
deuteron charge radius. The data analysis is ongoing.

Furthermore, Carlson and Vanderhaeghen investigated
the sensitivity of the cross section for lepton pair produc-
tion off a deuteron target, γd→ e+e−d, to the deuteron
charge radius (Carlson et al., 2019). They demonstrated

that for small momentum transfer this reaction is dom-
inated by the Bethe-Heitler process, shown in Fig. 26.
They propose to measure the deuteron at a fixed angle,
and scan the momentum transfer (t) dependence of the
γd→ e+e−d cross section ratio defined as:

R(t, t0) ≡ dσ/dt dM2
ll(t)

dσ/dt dM2
ll(t0)

, (82)

with t = (p′ − p)2 the momentum transfer, which is in
one-to-one relation with the recoil deuteron lab momen-
tum, |~p ′|lab = 2Md

√
τd(1 + τd), with τd ≡ −t/(4M2

d ).
Furthermore in Eq. (82), M2

ll is the squared invariant
mass of the dilepton pair, which at a fixed deuteron an-
gle is a function of t, and the denominator in the ratio
R is the cross section for the same deuteron scattering
angle and for a reference momentum transfer t0. This
ratio is shown in Fig. 30 for three extractions of the
deuteron charge radius displayed in Fig. 29: the muonic
deuterium Lamb shift value (Pohl et al., 2016) (gold
solid line, with uncertainty comparable to the width of
the line); e-d elastic scattering value (Sick and Traut-
mann, 1998) (green dashed line, with uncertainty limits
indicated by the green band) and the deuterium atomic
spectroscopy value (Pohl et al., 2017) (red dot-dashed
line, with uncertainty limits indicated by the red band).
One sees from Fig. 30 that such cross section ratio mea-
surement of about 0.1% relative accuracy could give a
deuteron charge radius more accurate than the current
e − d scattering value (Sick and Trautmann, 1998) and
sufficiently accurate to distinguish between the electronic
and muonic atomic values.

IX. CONCLUSIONS

In this paper, we reviewed the experimental progress
towards the resolution of the proton charge radius puz-

zle over the past decade as well as the related theoret-
ical background and developments. In light of the lat-
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FIG. 30 (Color online) The momentum transfer t-dependence of the γd→ e+e−d cross section ratio R(t, t0), defined in Eq. (82),
for reference value t0 = −0.01 GeV2, at fixed deuteron lab angle, and for beam energy 0.65 GeV. For convenience, the ratio is
normalized to the result using Abbott et al. form factors (Abbott et al., 2000). The curves and associated error bands are for
different extractions of the deuteron charge radius (see text for details). Figure from (Carlson et al., 2019).

est precise determinations of the proton charge radius
from ordinary atomic hydrogen spectroscopic measure-
ments, the PRad electron scattering experiment, and
several improved re-analyses of electron scattering data,
some might be tempted to conclude that the puzzle has
been resolved. We point out however, while the re-
cent experimental results prefer the CREMA value at
about 0.84 fm, they are still within 3 standard devia-
tions from the previously compiled value of about 0.88
fm. Furthermore, the most precisely determined value of
rEp (Grinin et al., 2020) from ordinary hydrogen spec-
troscopy – also the most recent measurement – is about
two standard deviations larger than the muonic hydrogen
results. We believe more experiments, especially those
with improved precision from electron scattering, and
new results from muon scattering will be essential to fully
resolve this puzzle. To answer a more tantalizing ques-
tion – whether there is a difference in the proton charge
radius determined from experiments involving electronic
(e-p and ordinary hydrogen) versus muonic systems – sig-
nificantly improved precision from lepton scattering and
also measurements from ordinary hydrogen spectroscopy
with precision comparable to that of (Grinin et al., 2020)
will be critical. Pushing the precision frontier has more
than once proven to be the harbinger of new discoveries.
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“Hydrogen-deuterium isotope shift: From the 1S − 2S-
transition frequency to the proton-deuteron charge-radius
difference,” Phys. Rev. A 83, 042505.

Ji, X (2003), “Viewing the proton through ‘color’ filters,”
Phys. Rev. Lett. 91, 062001.

Ji, Xiang-Dong (1997a), “Deeply virtual Compton scatter-
ing,” Phys. Rev. D 55, 7114–7125.

Ji, Xiang-Dong (1997b), “Gauge-Invariant Decomposition of
Nucleon Spin,” Phys. Rev. Lett. 78, 610–613.

Ji, Xiangdong (1995), “QCD Analysis of the Mass Structure
of the Nucleon,” Phys. Rev. Lett. 74, 1071–1074.

Ji, Xiangdong, Feng Yuan, and Yong Zhao (2020), “Proton
spin after 30 years: what we know and what we don’t?”
arXiv:2009.01291 [hep-ph].

Jones, M K, et al. (Jefferson Lab Hall A) (2000), “G(E(p))
/ G(M(p)) ratio by polarization transfer in polarized e p
—> e polarized p,” Phys. Rev. Lett. 84, 1398–1402.

Kalinowski, Marcin (2019), “Deuteron charge radius from the
lamb-shift measurement in muonic deuterium,” Phys. Rev.
A 99, 030501.

Karr, JP, Marchand D, and E. Voutier (2020), “The proton
size,” Nature Review Physics 2, 601–614.

Karshenboim, S G, Korzinin E Yu Ivanov V G Shelyuto V A
(2010), “Contribution of light-by-light scattering to energy
levels of light muonic atoms,” JETP Letters 92, 8–14.

Karshenboim, Savely G, Vladimir G. Ivanov, and Evgeny Yu.
Korzinin (2012), “Relativistic recoil corrections to the
electron-vacuum-polarization contribution in light muonic
atoms,” Phys. Rev. A 85, 032509.

Kato, K, T. D. G. Skinner, and E. A. Hessels (2018),
“Ultrahigh-Precision Measurement of the n = 2 Triplet
P Fine Structure of Atomic Helium Using Frequency-
Offset Separated Oscillatory Fields,” Phys. Rev. Lett. 121,
143002.

Kelly, J J (2004), “Simple parametrization of nucleon form

http://dx.doi.org/10.1146/annurev-nucl-100809-131956
http://dx.doi.org/10.1103/PhysRevD.98.074003
http://dx.doi.org/ 10.1016/j.nuclphysa.2020.121767
http://dx.doi.org/ 10.1103/PhysRevLett.118.092501
http://dx.doi.org/ 10.1103/PhysRevLett.118.092501
http://dx.doi.org/ https://doi.org/10.1016/j.physletb.2018.01.043
http://dx.doi.org/ https://doi.org/10.1016/j.physletb.2018.01.043
http://dx.doi.org/ 10.1103/PhysRevC.93.055207
http://dx.doi.org/ 10.1103/PhysRevC.93.055207
http://dx.doi.org/ 10.1103/PhysRevD.87.053017
http://dx.doi.org/ 10.1103/PhysRevD.87.053017
http://dx.doi.org/10.1103/PhysRevD.82.113005
http://dx.doi.org/10.1103/PhysRevLett.107.160402
http://dx.doi.org/10.1140/epja/i2016-16331-7
http://dx.doi.org/10.1140/epja/i2016-16331-7
http://dx.doi.org/10.1016/j.physrep.2016.02.002
http://dx.doi.org/10.1103/PhysRev.98.217
http://dx.doi.org/10.1103/PhysRevC.93.015204
http://dx.doi.org/10.1103/PhysRevA.93.022513
http://dx.doi.org/10.1103/PhysRevA.93.022513
http://dx.doi.org/ https://doi.org/10.1016/j.physletb.2020.135373
http://dx.doi.org/ https://doi.org/10.1016/j.physletb.2020.135373
http://dx.doi.org/ 10.1103/PhysRevC.95.035203
http://arxiv.org/abs/0909.3045
http://dx.doi.org/10.1103/PhysRevLett.80.468
http://dx.doi.org/ 10.18429/JACoW-ERL2019-MOCOXBS05
http://dx.doi.org/ 10.18429/JACoW-ERL2019-MOCOXBS05
http://dx.doi.org/10.1103/PhysRevD.103.016017
http://dx.doi.org/10.1103/PhysRevD.103.016017
http://dx.doi.org/10.1103/PhysRevD.101.014507
http://dx.doi.org/10.1103/PhysRev.102.1586
http://dx.doi.org/10.1103/PhysRevD.71.085006
http://dx.doi.org/ https://doi.org/10.1016/j.aop.2010.11.012
http://dx.doi.org/10.1103/PhysRevA.83.042505
http://dx.doi.org/ 10.1103/PhysRevLett.91.062001
http://dx.doi.org/10.1103/PhysRevD.55.7114
http://dx.doi.org/10.1103/PhysRevLett.78.610
http://dx.doi.org/10.1103/PhysRevLett.74.1071
http://arxiv.org/abs/2009.01291
http://dx.doi.org/ 10.1103/PhysRevLett.84.1398
http://dx.doi.org/ 10.1103/PhysRevA.99.030501
http://dx.doi.org/ 10.1103/PhysRevA.99.030501
http://dx.doi.org/10.1038/s42254-020-0229-x
http://dx.doi.org/10.1134/S0021364010130023
http://dx.doi.org/10.1103/PhysRevA.85.032509
http://dx.doi.org/10.1103/PhysRevLett.121.143002
http://dx.doi.org/10.1103/PhysRevLett.121.143002


49

factors,” Phys. Rev. C 70, 068202.
Kharzeev, D, H. Satz, A. Syamtomov, and G. Zinovjev

(1999), “J/ψ photoproduction and the gluon structure of
the nucleon,” Eur. Phys. J. C 9, 459–462.

Kivel, N, and M. Vanderhaeghen (2013), “Two-photon ex-
change corrections to elastic electron-proton scattering at
large momentum transfer within the SCET approach,”
JHEP 04, 029.

Kivel, Nikolai, and Marc Vanderhaeghen (2009), “Two-
photon exchange in elastic electron-proton scattering:
QCD factorization approach,” Phys. Rev. Lett. 103,
092004.

Kogut, JB, and D. Soper (1970), “Quantum Electrodynamics
in the Infinite-Momentum Frame,” Phys. Rev. D. 1, 2901.

Kraus, E, K. E. Mesick, A. White, R. Gilman, and S. Strauch
(2014), “Polynomial fits and the proton radius puzzle,”
Phys. Rev. C 90, 045206.

Kuhn, S, et al. (2009), “Spin structure of the nucleon–
status and recent results,” Progress in Nuclear and Particle
Physics 63, 1–50.

Kumar, K S, Sonny Mantry, W. J. Marciano, and P. A.
Souder (2013), “Low Energy Measurements of the Weak
Mixing Angle,” Ann. Rev. Nucl. Part. Sci. 63, 237–267.

Kumericki, Kresimir, Simonetta Liuti, and Herve Moutarde
(2016), “GPD phenomenology and DVCS fitting: Entering
the high-precision era,” Eur. Phys. J. A 52 (6), 157.

Larin, I, et al. (PrimEx Collaboration) (2011), “New Mea-
surement of the π0 Radiative Decay Width,” Phys. Rev.
Lett. 106, 162303.

Larin, I, et al. (2020), “Precision measurement of the neutral
pion lifetime,” Science 368 (6490), 506–509.

Lee, Gabriel, John R. Arrington, and Richard J. Hill (2015),
“Extraction of the proton radius from electron-proton scat-
tering data,” Phys. Rev. D 92, 013013.

Lensky, Vadim, Franziska Hagelstein, Vladimir Pascalutsa,
and Marc Vanderhaeghen (2018), “Sum rules across the
unpolarized Compton processes involving generalized po-
larizabilities and moments of nucleon structure functions,”
Phys. Rev. D 97 (7), 074012.

Lin, Yong-Hui, Hans-Werner Hammer, and Ulf-G Meißner
(2021), “High-precision determination of the electric and
magnetic radius of the proton,” Phys. Lett. B 816, 136254.
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