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Spin-polarized atoms have applications in many areas such as biological magnetic
resonance imaging, optical magnetometry, atomic clocks and fundamental sym-
metry studies. Polarized atoms are often held in a container, most commonly a
glass cell. Their interactions with the walls of the container during their collisions
with the walls are often the main cause of spin relaxation, which determines the
ultimate attainable polarization, and frequency shift, which for example affects
the long term frequency stability in atomic clocks. This paper presents a crit-
ical review of the studies done in the past six decades of the wall interactions
of spin-polarized atoms, including the hydrogen atom, alkali metal atoms, and
diamagnetic atoms with 1S0 ground states such as mercury, cadmium and noble
gas atoms. It summarizes the progress that has been made in understanding the
nature of wall interactions and the physical mechanisms of spin relaxation and
frequency shift due to wall collisions. It also points out those issues, particularly
in connection with the widely used anti-relaxation coatings, that remain to be
understood.
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I. INTRODUCTION

Spin-polarized atoms have found applications in many
areas, such as biological magnetic resonance imaging us-
ing nuclear spin polarized 129Xe and 3He (Albert et al.,
1994; Middleton et al., 1995), optical magnetometry
based on polarized alkali metal atoms for measuring
static and radio-frequency magnetic fields (Böhi et al.,
2010; Böhi and Treutlein, 2012; Budker and Romalis,
2007; Budker et al., 2002, 1998; Cohen-Tannoudji et al.,
1969; Dang et al., 2010; Farooq et al., 2020; Kominis
et al., 2003; Savukov et al., 2005), atomic frequency stan-
dards (Robinson and Johnson, 1982; Vanier and Audoin,
1989), NMR gyroscopes (Kitching et al., 2011), miniature
atomic devices (Balabas et al., 2006; Knappe et al., 2004;



2

Schwindt et al., 2004; Zhao and Wu, 2006), polarized 3He
as targets for scattering experiments and neutron spin fil-
ters (Chupp et al., 1987; Coulter et al., 1990; Heil et al.,
1999; Jones et al., 2000; Phillips et al., 1962), fundamen-
tal symmetry studies (Bouchiat et al., 1982; Chupp et al.,
1989; Hallin et al., 1984; Lamoreaux et al., 1986), search
for long-range nuclear spin-dependent forces (Vasilakis
et al., 2009), search for an electric dipole moment in
polarized 129Xe and 199Hg (Griffith et al., 2009; Rosen-
berry and Chupp, 2001; Vold et al., 1984), sensitive sur-
face probe using polarized 129Xe atoms (Raftery et al.,
1991), measurement of quadrupole moments of radioac-
tive noble gas nuclei (Kitano et al., 1986), squeezed spin
states of polarized alkali metal atoms (Kuzmich et al.,
2000), quantum memory based on spin-polarized alkali
metal atoms (Julsgaard et al., 2004; Schori et al., 2002)
and study of Berry’s phase using polarized 131Xe (Appelt
et al., 1994).

Alkali metal atoms and diamagnetic atoms such as
mercury and cadmium are typically polarized by optical
pumping (Happer, 1972; Kastler, 1950). The nuclei of
the noble gas atoms are polarized by spin exchange with
optically pumped alkali metal atoms (Bouchiat et al.,
1960; Grover, 1978; Walker and Happer, 1997). The
3He nucleus can also be polarized by optically pumping
the metastable state 2 3S1 followed by a collision with a
ground state 3He atom, transferring the excitation energy
to the ground state 3He atom while retaining its nuclear
polarization (Colegrove et al., 1963; Walters et al., 1962).
Polarized atoms are often held in a container, most com-
monly a glass cell. Their collisions with the cell walls
constitute one of the most important and complicated
mechanisms for spin relaxation and frequency shift. Two
approaches have been used to mitigate these effects. In
the first approach used for alkali metal atoms, the cell
is filled with buffer gas such as N2 or other inert gases
of a few torr or more to slow down the diffusion of the
polarized alkali metal atoms to the glass walls (Brossel
et al., 1955). However, the use of buffer gas leads to inho-
mogeneous line broadening if the magnetic field is inho-
mogeneous (Watanabe and Robinson, 1977). Also, due
to wall interactions, the polarization of the alkali metal
atoms is not uniform near the wall (Grafström and Suter,
1995). An alternative approach used for both alkali metal
atoms and noble gas atoms is to coat the inner walls of
the glass cells with anti-relaxation coatings, which can
greatly reduce the relaxation rate and frequency shift of
polarized atoms due to wall collisions. The use of anti-
relaxation coatings stimulated extensive studies of the
wall interactions of spin-polarized atoms. Recent interest
in miniature atomic devices makes the wall interactions
of polarized atoms even more important because of the
high surface to volume ratio in these devices (Kitching,
2018).

Wall interactions of spin-polarized atoms have been
studied for more than six decades. An excellent sum-

mary of the early studies was given in the classic re-
view by Happer (1972). Much progress has since been
made. This paper aims to give a critical review of the
studies done in the past six decades of the wall interac-
tions of spin-polarized atoms. Because of the large scope
of the field, it will focus on the nature of wall interac-
tions, the physical mechanisms of spin relaxation and
frequency shift due to wall collisions, and the determi-
nation of the microscopic parameters that characterize
wall interactions.

Long-range wall interactions of atoms occurring in the
vicinity (1−1000 nm) of the wall have been reviewed by
Bloch and Ducloy (2005).

In section II the wall interactions of nuclear-spin po-
larized diamagnetic atoms with 1S0 ground states and
nuclear spins I ≥ 1 such as 201Hg (I = 3/2), 109Cd
(I = 5/2), 131Xe (I = 3/2), 83Kr (I = 9/2) and 21Ne
(I = 3/2) are discussed. In section III the wall interac-
tions of spin-polarized noble gas atoms with nuclear spins
I = 1/2, 3He and 129Xe, are reviewed. In section IV, the
wall interactions of spin-polarized alkali metal atoms are
reviewed both in the time domain and in the frequency
domain. In section V, we discuss the importance as well
as the determination of the microscopic time parameters
that characterize wall interactions such as the correlation
time τc, the average dwell time τs that a polarized atom
spends on the wall without being depolarized, and the
average dwell time τ ′

s it stays at a given site on the wall.
The widely used anti-relaxation coatings are discussed in
section VI. Section VII gives a brief review of some of
the instrumentation commonly used in the study of wall
interactions. Finally, section VIII concludes this review
with a brief summary.

II. WALL INTERACTIONS OF SPIN-POLARIZED

DIAMAGNETIC ATOMS WITH 1S0 GROUND STATES

AND NUCLEAR SPINS I ≥ 1

A. The nature of the wall interactions

The nature of the wall interactions of nuclear-spin
polarized diamagnetic atoms (I ≥ 1) with a nuclear
quadrupole moment such as 201Hg, 109Cd, 131Xe, 83Kr
and 21Ne is elucidated by the following observations. It
was found that for 201Hg the relaxation rate for the align-
ment was twice as fast as for the orientation (Cohen-
Tannoudji, 1963). Beats were observed in the free pre-
cession signal of 201Hg (Simpson, 1978), and later were
also observed for 131Xe, 83Kr and 21Ne, indicating an un-
equal splitting between the nuclear Zeeman levels. Fur-
thermore, the beat frequency depends on the angle be-
tween the symmetry axis of the cell and the magnetic
field. The observations of these phenomena, signature
characteristics of quadrupole interaction, unambiguously
show that the dominant wall interaction of the diamag-
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netic atoms (I ≥ 1) with a nuclear electric quadrupole
moment is the quadrupole coupling between the nuclear
quadrupole moment and the fluctuating electric field gra-
dient at the cell wall. This is also corroborated by the
following observations. No beat phenomena are observed
for 199Hg (I = 1/2) and 129Xe (I = 1/2), which do not
possess nuclear quadrupole moments. Furthermore, the
relaxation rate of 201Hg is almost one order of magnitude
larger than that of 199Hg even though their nuclear mag-
netic moments are approximately the same (Cagnac and
Brossel, 1959).

Thus the wall interaction Hamiltonian Hw is given by

Hw =
1

6

∑
i,j

eQij
∂2Vw

∂xi∂xj
, (1)

where e is the proton charge and the microscopic elec-
tric field gradients ∂2Vw/∂xi∂xj , Vw being the electric
potential, couple to the nuclear electric quadrupole mo-
ment tensor Qij of the adsorbed atom. The field gradi-
ents are produced by, for example, the polar groups on
the walls such as −OH, −ONa, etc. Due to the motions of
the adsorbed atom and the atoms of the wall, these field
gradients fluctuate in time. The field gradients at the
nucleus of the adsorbed diamagnetic atom may also be
greatly modified because of the Sternheimer shielding or
antishielding by the induced field gradient in the electron
shells (Campbell et al., 1981).

The wall interaction between the magnetic moment of
the nucleus of the diamagnetic atom and the microscopic
local magnetic field is neglected in Hw because as previ-
ously mentioned it plays a much less important role in
comparison with the quadrupole wall interaction.

B. Quadrupole wall interaction − theory

The theory of the nuclear spin relaxation of diamag-
netic 201Hg due to the quadrupole wall interaction was
first developed by Cohen-Tannoudji (1963), who, apply-
ing the theory of Abragam (1961) for the relaxation in
liquids and gases to the quadrupole wall interaction of
201Hg, calculated T1 and T2 for 201Hg in quartz cells.
The calculation shows that the relaxation rate for align-
ment is twice as fast as for orientation, one of the sig-
nature characteristics of the quadrupole coupling of the
nuclear quadrupole moment to the fluctuating electric
field gradients. The theory does not consider the shift in
the magnetic resonance frequencies of 201Hg due to the
quadrupole wall interaction.

Following a suggestion by Happer, Volk et al. (1979)
and Kwon et al. (1981) developed a semiquantitative the-
ory of the coherent quadrupole wall interaction for 83Kr
and 131Xe based on perturbation theory. It is assumed
that, when the atoms are adsorbed on the wall, they in-
teract through their nuclear electric quadrupole moment

with a constant ensemble-averaged electric field gradient
with a cylindrical symmetry around the cell symmetry
axis. The quadrupole wall interaction is treated as a per-
turbation. The first order corrections to the Zeeman en-
ergy levels explain the beats and confirm the dependence
of the beat period on the cell orientation with respect to
the external magnetic field. The theory, however, does
not explain the dependence of the beat frequency on the
cell asymmetry, nor does it address the interplay between
wall interactions and diffusion in the gas phase, for exam-
ple, the important question of how fast the atoms must
diffuse throughout the cell to effectively sample the entire
inner surface of the cell.

Generalizing the work by Masnou-Seeuws and Bouch-
iat (1967) for the wall relaxation of alkali metal atoms,
Happer developed a perturbative theory of the coherent
quadrupole wall interaction for diamagnetic atoms with
nuclear spins I ≥ 1 (Wu et al., 1988), which allows the
microscopic parameters of the quadrupole wall interac-
tion to be deduced from the experimental data. The
theory will be briefly reviewed here. The boundary con-
dition will be stated in a more general form.

1. Boundary condition

Consider a gas of diamagnetic atoms with a nuclear
spin I ≥ 1 and a nuclear quadrupole moment Q, for
example 131Xe, contained in a glass cell in a static mag-
netic field B0 along the z-axis. The gas phase interaction
Hamiltonian of the atoms is H0 = −~γIB0Iz = −~Ω0Iz ,
where γI is the gyromagnetic ratio and Ω0 = γIB0 is the
Larmor frequency. Neglecting gas phase spin relaxation,
the evolution of the density matrix of the atoms in the
gas phase is given by,

∂ρ(t)

∂t
=

1

i~
[H0, ρ(t)] +D∇2ρ(t) , (2)

where D is the diffusion constant. The evolution of the
density matrix of the atoms while they are adsorbed on
the wall is given by

∂ρ(t)

∂t
=

1

i~
[Hw(t), ρ(t)] , (3)

where H0 is assumed to be small enough to be neglected
during the adsorption time τ on the wall. Eq.(3), which
describes the wall interaction, can be converted into a
boundary condition. Since Hwτ is small, one can solve
Eq.(3) for ρ(τ) by iteration. Taking the ensemble aver-
age, we obtain

〈ρ(τ)〉 = Eρ(0) = (1 + ǫ(1) + ǫ(2) + · · · )ρ(0) , (4)

where 〈ρ(τ)〉 is the density matrix after the collision and
ρ(0) the density matrix before the collision. The brackets
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in 〈ρ(τ)〉 represent the ensemble average over the fluctu-
ating Hw and also over the adsorption time τ on the wall.
The terms in the series expansion of the operator E are

ǫ(1)ρ(0) =
1

i~

≠∫ τ

0

dt [Hw(t), ρ(0)]

∑
, (5)

ǫ(2)ρ(0) =
1

(i~)2

×
Æ∫ τ

0

dt

∫ t

0

dt′
[
Hw(t), [Hw(t′), ρ(0)]

]∏
. (6)

Let J+ and J− be respectively the current of polarized
atoms into the wall and out of the wall. From kinetic
theory we have

J+(0) =
nv̄

4

Å
ρ(0) − 2λ

3

∂ρ(0)

∂n

ã
, (7)

where n is the density of 131Xe atoms, v̄ = (8kT/πm)1/2

their mean speed, λ the mean free path, and ∂/∂n =
n · ∇, with n being the normal vector pointing out of
the cell wall. We assume that the net current to the wall
is given by the law of diffusion:

J+(0) − J−(0) = −nD∂ρ(0)

∂n
. (8)

We also assume that every atom, after colliding with the
wall, stays on the wall for an average time τs before it
leaves the wall as an evolved atom. Thus

J−(τs) = EJ+(0) . (9)

From Eqs.(7)−(9) one obtains the boundary condition,
after neglecting the term ∂2ρ(0)/∂n∂t and replacing
∂ρ(0)/∂t by D∂2ρ(0)/∂n2 with D = λv̄/3,

∂ρ

∂n
= −µρ− η

∂2ρ

∂n2
, (10)

where

µ = − 3

2λ
(E + 1)−1(E − 1) , (11)

η =
τsv̄

2
(E + 1)−1 . (12)

Using the series expansion of E , the operators µ and η
are given by, to the lowest two orders,

µ = − 3

4λ

Å
ǫ(1) + ǫ(2) − 1

2
ǫ(1)ǫ(1) + · · ·

ã
, (13)

η =
τsv̄

4

Å
1 − 1

2
ǫ(1) − · · ·

ã
. (14)

The boundary condition (10) embodies the wall in-
teractions of spin-polarized atoms, with µ and η being
determined by the wall interactions. When combined
with the diffusion equation (2) or the Torrey equation
(55), depending on whether the magnetic field is uniform

(Sec. II.B, Sec. IV.F.2 and Sec. V.B) or there is a field
gradient (Sec. IV.C), the boundary condition (10) gives
a full description of the wall interactions as well as their
interplay with the diffusion in the gas phase. Depend-
ing on the experimental conditions, the second deriva-
tive term in (10) is sometimes required (Sec. IV.C and
Sec. V.B) and sometimes not (Sec. II.B and Sec. IV.F.2).
A discussion of the experimental conditions under which
the second derivative term in (10) cannot be neglected
is given in Sec. IV.C.1. For some experiments µ and η
in (10) are treated as operators (Sec. II.B) while for oth-
ers they are treated as parameters (Sec. IV.C, Sec. IV.F.2
and Sec. V.B).

The physical meaning of the second derivative term
in the boundary condition (10) is that it describes a
meniscus-like behavior at the wall (Schaden et al., 2007).

Due to the high solubility of Xe gas in silicone com-
pounds, the Ostwald solubility coefficient being of the
order of one (Steinberg and Manowitz, 1959), Xe atoms
can readily dissolve in the coating, and consequently have
very long dwell times τs in coated cells (Driehuys et al.,
1995), which in the case of 131Xe leads to a very short re-
laxation time because of the quadrupole interaction (Wu
et al., 1990). Therefore the experimental studies of the
quadrupole wall interaction of 131Xe are performed in un-
coated cells or cells coated with coatings such as alkali
hydride, where τs is expected to be short. Thus the sec-
ond derivative term in the boundary condition (10) can
be neglected, and we have

∂ρ

∂n
= −µρ . (15)

Boundary conditions formally similar to Eq.(15) were
first used by Maxwell to describe the phenomenon of vis-
cous slip discovered by Kundt and Warburg in 1875 (Ken-
nard, 1938), and later by Masnou-Seeuws and Bouchiat
(1967) in the study of the wall relaxation of alkali metal
atoms. Instead of Eq.(9), they assume

J−(τB

s ) = (1 − ξB

s )J+(0) , (16)

where τB

s is the average time a polarized atom stays on
the wall and 0 < ξB

s < 1 represents the relaxation prob-
ability of Rb atoms on the wall. Thus, E = 1 − ξB

s is a
number, and Eq.(10) becomes

∂ρ

∂n
= − 3 ξB

s

2λ(2 − ξB
s )

ρ − τB

s v̄

2(2 − ξB
s )

∂2ρ

∂2n
. (17)

Neglecting the second derivative term in Eq.(17) one ob-
tains the boundary condition used by Masnou-Seeuws
and Bouchiat (1967).

2. Perturbation theory

Since the coherences Pmn = |m〉〈n|, where Iz |m〉 =
m|m〉, are orthonormal in the sense that Tr(P †

mnPm′n′) =
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δmm′δnn′ , we can expand ρ in terms of Pmn

ρ(r, t) =
∑
mn

Pmnfmn(r, t) . (18)

The diffusion equation (2) becomes the following set of
equations for the amplitudes fmn(r, t)

∂fmn(r, t)

∂t
= (D∇2 + iΩmn)fmn(r, t) , (19)

where Ωmn = (m − n)Ω0. Let fmn(r, t) = fmn(r)e−γt.
Eq.(19) becomes

(D∇2 + iΩmn + γ)fmn(r) = 0 . (20)

The boundary condition (15) becomes, in terms of the
amplitudes fmn(r),

∂fmn(r)

∂n
= −

∑
m′n′

µmn, m′n′fm′n′(r) . (21)

The matrix elements µmn,m′n′ of the normal gradient op-
erator µ, functions of position on the cell wall, are defined
by

µmn, m′n′ = Tr (P †
mnµPm′n′) . (22)

The weak quadrupole wall interaction allows one to
treat Hw as a small perturbation to non-relaxing walls,
and solve γ, fmn and µmn,m′n′ perturbatively. Following
the standard procedures of perturbation theory we intro-
duce an expansion parameter κ, and write Hw as κHw.
We expand γ, fmn and µmn,m′n′ in Eqs.(20) and (21) as
a power series of κ, and, equating the coefficients of κl

(l = 0, 1, 2, . . . ), obtain a set of equations and bound-
ary conditions for each order. The zeroth order ampli-

tude f
(0)
mn is the solution of the diffusion equation subject

to the boundary condition ∂f
(0)
mn/∂n = 0, and can be

written as f
(0)
α; mn, where α denotes the diffusion mode

φα. The solution that approximately describes the po-
larization in cells with weakly relaxing walls is the uni-
form diffusion mode φ0 = 1/

√
V , corresponding to po-

larized 131Xe atoms diffusing freely throughout the cell
with no relaxation on the wall. Thus the zeroth order
eigenvalue is γ

(0)
0;mn = −iΩmn, which is purely imaginary

and corresponds to unperturbed magnetic resonance fre-
quency. The theory assumes that gas pressures and mag-
netic fields are sufficiently low that the polarized 131Xe
atoms diffuse easily throughout the cell, making many
wall collisions in one Larmor period.

For a cylindrical cell of diameter d and height h with
its symmetry axis at an angle ψ with the direction of the
quantizing magnetic field, the eigenvalue is, including up

to second order pressure-independent corrections,

γ 0, mn = i

[
− (m− n)Ω0 + ∆Ω0

m2 − n2

2I − 1
P2(cosψ)

− (∆Ω0)2

8 Ω0(2I − 1)2

ï
m
(

(4I2 + 4I − 8m2 − 1) sin2 2ψ

−(2I2 + 2I − 2m2 − 1) sin4 ψ
)

−n
(

(4I2 + 4I − 8n2 − 1) sin2 2ψ

−(2I2 + 2I − 2n2 − 1) sin4 ψ
)ò]

+
2v

45
〈θ2〉

( 1

2h
+

1

d

)ïI(I + 1)(2I + 3)

2I − 1

− [3m2 − I(I + 1)][3n2 − I(I + 1)]

(2I − 1)2

ò
, (23)

where P2(x) = 1
2 (3x2 − 1) is the second-order Legendre

polynomial, and the quadrupole frequency splitting is

∆Ω0 =
v〈θ〉

2

Å
1

h
− 1

d

ã
. (24)

The mean twist angle 〈θ〉 and the mean-squared twist
angle 〈θ2〉 experienced by the adsorbed atom are

〈θ〉 = 〈θ̇nn〉τs , (25)

and

〈θ2〉 = 5〈θ̇2
nn〉 τcτ

2
s

τc + τs
, (26)

where the twist-rate tensor θ̇ij is defined by θ̇ij =
(3eQ/4I~)(∂2Vw/∂xi∂xj − δij∇2Vw/3).

By treating µ as an operator, the perturbation theory
describes the interplay between diffusion and wall inter-
actions through higher order corrections. For example,
the second order correction involving virtual excitations
of diffusion modes with nonzero spatial frequencies by µ
at the cell surface describes a pressure-dependent relax-
ation (Wu et al., 1988).

C. Quadrupole wall interaction − experiment

Diamagnetic atoms − 201Hg (I = 3/2) and 109Cd (I =
5/2)

Early studies of the quadrupole wall interaction were
done on optically pumped mercury and cadmium. The
wall relaxation mechanisms of these diamagnetic atoms
were determined by studying the relaxation times T1 and
T2 of different isotopes. For example, Cagnac and Brossel
(1959) found that 201Hg relaxed almost ten times faster
than 199Hg in evacuated quartz cells. Since the isotopes
201Hg and 199Hg have approximately the same magnetic
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moments but only the former has a nuclear quadrupole
moment, they suggested that the faster relaxation rate of
201Hg was due to a quadrupole wall interaction while the
slower relaxation rate of 199Hg was due to a magnetic wall
interaction, which played a minor role in the relaxation of
201Hg. The exact nature of the wall relaxation of mercury
due to the magnetic coupling is unknown.

The theoretical and experimental studies of 201Hg car-
ried out by Cohen-Tannoudji (1963) in cubic quartz cells
confirmed that the dominant wall relaxation mechanism
for 201Hg was indeed the quadrupole wall interaction. It
was found that the relaxation rate of alignment of 201Hg
was twice as large as that of orientation, in agreement
with the theoretical prediction for quadrupole wall re-
laxation (Cohen-Tannoudji, 1963). No beating in the
precession signal of 201Hg was reported. This is prob-
ably because of the use of cubic cells, which, accord-
ing to Eq.(24), have minimal quadrupole frequency split-
ting. From the measured relaxation rate of the align-
ment of 201Hg and the assumption that τc = 10−12 s and
τs = 10−6 s, the root mean square of the electric field
gradient was estimated to be

√
〈q2〉 = 1.7 × 1010 C/m3

at the nucleus of the 201Hg atom, where q = ∂2Vw/∂n
2

is the electric field gradient along the surface normal.

Wall relaxation of the cadmium isotopes was studied
by Leduc and Brossel (1968), who concluded that 109Cd
relaxed in the quartz cell mainly through a quadrupole
wall interaction whereas 111Cd (I = 1/2) through a mag-
netic wall interaction.

The first experimental observation of the beats in the
free precession signals of 201Hg in a fused silica cell was
made by Simpson (1978), who also observed the remark-
able angular dependence of the beat frequency, which
goes to zero when the angle between the symmetry axis
of the cell and the magnetic field approaches ∼ 55◦. The
relaxation rate of 201Hg depends on the orientation of the
cell with respect to the external magnetic field.

131Xe (I = 3/2)

Since the discovery of the nuclear polarization of the
noble gas atoms by spin exchange collisions with opti-
cally pumped alkali metal atoms (Bouchiat et al., 1960;
Grover, 1978), the studies of the quadrupole wall interac-
tions have been carried out for the noble gas atoms such
as 131Xe, 83Kr and 21Ne. In all these studies, the noble
gas atoms were polarized by spin exchange with optically
pumped Rb atoms, but the methods for monitoring the
nuclear polarization varied among the studies.

The quadrupole wall interaction of 131Xe was first
studied in Pyrex glass cells by Kwon et al. (1981). Af-
ter the 131Xe atoms were polarized along a longitudinal
field, the field was turned off and replaced by a preces-
sional field in the perpendicular direction. The free pre-
cession of the nuclear polarization was monitored using
Rb atoms as a magnetometer (Cohen-Tannoudji et al.,

1970). Both the beats and the angular dependence of the
beat period observed by Simpson (1978) were confirmed.
Using Ea = 0.13 eV (Volk et al., 1980) and assuming
τ0 = 10−12 s, they estimated that τs = 6.6 × 10−11 s
(see Eq.(67)), which, when combined with the measured
quadrupole splitting, yielded an estimate of the mean
electric field gradient 〈q〉 = 1.15 × 108 C/m3 at the 131Xe
nucleus (see Eqs. (24) and (25)).

The most quantitative experimental studies of the co-
herent quadrupole wall interaction of 131Xe were made
by Wu et al. (1987, 1990) in the rotating coordinate sys-
tem. A longitudinal static magnetic field B0 (∼ 0.1 G)
with a long-term stability of 2µG was along the z-axis,
which coincided with the symmetry axis of the cell. This
stability made it possible to study the small shift in the
nuclear magnetic resonance frequency due to the wall in-
teractions. Once the 131Xe nuclei were polarized by spin

FIG. 1 Precession signal of 131Xe in a cylindrical Pyrex-glass
cell of diameter 1.28 cm and height 0.68 cm, which contained
a few milligrams of natural Rb metal, 50 Torr of N2 gas and
5 Torr of xenon, isotopically enriched to an assay of 70 at. %
13lXe and 10 at. % 129Xe. The partial pressures refer to 25◦C.
The fast oscillation is the Larmor precession in the rotating
coordinate system at frequency Ω0 = ω1 since ω was chosen
to be equal to ω0. The signal is proportional to 〈Iz〉 of 131Xe
in the laboratory coordinate system. The Fourier transform
of the transient signal of (a) is shown in (b). From Wu et al.,
1987.
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exchange with optically pumped Rb atoms, the pump
beam was blocked. An oscillating magnetic field
2B1 cosωt was applied along the x-axis. Larger values
of B1 were used for cells with larger quadrupole split-
ting. In a coordinate system rotating at frequency ω
about the static field B0, the 131Xe nuclei precessed at
a frequency Ω0 = [(ω0 − ω)2 + ω2

1 ]1/2 about the effective
magnetic field making an angle ψ = cos−1[(ω0 − ω)/Ω0]
with the z-axis, where ω1 is the Larmor frequency about
the field B1 and ω0 that about the static field B0. The
nuclear polarization of 131Xe was monitored by passing
unpolarized light from a Rb resonance lamp as a probe
beam through the cell. The Rb atoms polarized by 131Xe
imparted to the probe beam a minute amount of ellipti-
cal polarization, which was detected using a photoelastic
modulator (Sec. VII.B.1). Since the Rb relaxation time
is orders of magnitude shorter than that of 131Xe, the
signal is proportional to the longitudinal polarization of
131Xe. A typical transient signal is shown in Fig. 1(a).

From Eq.(23) the transition frequencies between the
adjacent Zeeman sublevels of the 131Xe nucleus in
the rotating frame are, to first order, Ω−3/2, −1/2 =
Ω0 + ∆Ω0 P2(cosψ), Ω−1/2, 1/2 = Ω0, and Ω1/2, 3/2 =
Ω0 − ∆Ω0 P2(cosψ). The P2(cosψ) dependence of the
quadrupole splitting on the angle ψ of the cell symmetry
axis with respect to the effective magnetic field direction
in the rotating coordinate system was studied by vary-
ing the oscillating magnetic field frequency ω instead of
physically rotating the cell with respect to the direction
of the external magnetic field as was done by Simpson
(1978) and Kwon et al. (1981).

The three ∆m = 1 Zeeman transition frequencies
shown in Fig. 1(b) are not equidistant. This is due to
the second order effect of the quadrupole wall interac-
tion. To second order and for ψ = π/2, the frequencies
of the three coherences are given by the imaginary part
of the eigenvalue in Eq.(23)

Ω−3/2, −1/2 = Ω0 − ∆Ω0/2 , (27)

Ω−1/2, 1/2 = Ω0 − δΩ0 , (28)

Ω1/2, 3/2 = Ω0 + ∆Ω0/2 , (29)

where the second order correction δΩ0 is given by δΩ0 =
3(∆Ω0)2/16 Ω0. This relation between the first and sec-
ond order corrections is confirmed by the measured Zee-
man transition frequencies (see, for example, Fig. 1(b)).

The remarkable dependence of the quadrupole split-
ting |∆Ω0|/2π on the cell asymmetry parameter 1/h−1/d
is displayed in Fig. 2 for ψ = π/2. The mean twist angle
|〈θ〉| = (3.8 ± 0.4) × 10−5 rad per wall collision of a 131Xe
atom is deduced from the slope of Eq.(24). The physical
origin of the cell geometry dependence of the quadrupole
splitting is the existence of a local symmetry axis, the
normal to the local macroscopic surface of the cell, along
which the ensemble average value of the fluctuating elec-
tric field gradient does not vanish.

FIG. 2 Measured dependence of the sideband splitting
|∆Ω0|/2π on the cell asymmetry parameter h−1 − d−1. From
Wu et al., 1987.

To second order, the real part of the eigenvalue γ ′
0;mn,

which corresponds to the relaxation rate of the coherence
|m〉〈n|, is given by Eq.(23),

γ ′
0; − 3

2
, − 1

2
= γ ′

0; 1
2

, 3
2

=
3

2
γ ′

0;− 1
2

, 1
2

=
3

5
v〈θ2〉

Å
1

2h
+

1

d

ã
.

(30)
Since they are not resolved in the experiment, they are
assumed to be approximately equal and given by

γ ′
0;− 1

2
, 1

2

=
2

5
v〈θ2〉

Å
1

2h
+

1

d

ã
. (31)

The relaxation time of the precession signal in Fig.
1(a) is 25 s, from which one obtains 〈θ2〉 = (2.8 ± 0.3) ×
10−6 rad2. Thus 〈θ2〉 ≫ 〈θ〉2, implying that the instan-
taneous magnitude of the fluctuating components of the
electric field gradient, which cause the nuclear spin polar-
ization to relax, is much larger than the ensemble average
value along the direction of the normal to the cell wall,
which shifts the ∆m = 1 coherence frequencies of the
nucleus by different amount and generates beats in the
free precession signal of the nuclear polarization.

The beating signals due to the coherent quadrupole
wall interaction are free of any contributions from the
isotropic gas phase interactions, and therefore provide an
ideal probe of the microscopic nature of the surface. For
example, the mean electric field gradients on the surface
can be deduced through Eq.(25) from the mean twist an-
gle 〈θ〉, which is directly obtained from the quadrupole
splitting of the beat signal, provided one knows the
dwell time τs (Butscher et al., 1994, 1996; Kwon et al.,
1981). However, τs has not been directly measured
for the diamagnetic atoms (Sec.V.B), and therefore rea-
sonable estimate is usually made instead. Similarly,
the mean-squared electric field gradient can be deduced
through Eq.(26) from the mean-squared twist angle 〈θ2〉
(Butscher et al., 1994, 1996; Cohen-Tannoudji, 1963).
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Another study of the quadrupole wall interaction of
131Xe was carried out in Duran glass cells by Butscher
et al. (1994). The Rb atom are used as a magnetometer
to monitor the free precession signals of the 131Xe nu-
clear polarization in the laboratory coordinate system.
The angular dependence as well as the cell geometry de-
pendence of the beat period were confirmed. The Fourier
transform of the free precession signal clearly shows that
the relaxation rate of the coherence |−1/2〉〈1/2| is slower
than those of |−3/2〉〈−1/2| and |1/2〉〈3/2| (see Eq.(30)).
From the beat period and the relaxation rate of the
free precession signal they determined 〈θ〉 = (4.6 ±
0.5) × 10−5 rad and 〈θ2〉 = (3.4 ± 0.3) × 10−6 rad2, in
good agreement with the values obtained by Wu et al.

(1987). From 〈θ〉 and 〈θ2〉, the mean and root mean
square quadrupole coupling constant eQ〈q0〉(1 − γ∞)/h
and eQ

√
〈q2

0
〉(1−γ∞)/h, where q0 is the electric field gra-

dient on the wall in the absence of the adsorption of noble
gas atoms and γ∞ is the Sternheimer anti-shielding fac-
tor, are estimated to be 422±45 kHz and 6.17±0.60 MHz,
respectively.

Even though the quadrupole splitting for cubic cells
is expected to be minimal (see Eq.(24)), Donley et al.

(2009), in their studies of the quadrupole wall interac-
tion of 131Xe, used miniature cubic cells of volume 1 mm3

with four silicon walls and two Pyrex windows. Thus
the cubic cells no longer have cubic symmetry, making
it possible to observe the quadrupole splitting and con-
sequently the beats in the precession signal. Further-
more the use of miniature cells significantly enhanced the
quadrupole splitting (see Eq.(24)). From the quadrupole
splitting, it was deduced that the mean twist angle
〈θ〉 = 2.9 × 10−5 rad on the silicon surface.

83Kr (I = 9/2)

The first study of the quadrupole wall interaction of
83Kr was made by Volk et al. (1979). They studied
the decay of the transverse nuclear polarization of 83Kr,
which was monitored using Rb atoms as a magnetometer
(Cohen-Tannoudji et al., 1970). The decay of the preces-
sion signal is not exponential, but becomes exponential
as the angle between the cell symmetry axis and the ex-
ternal magnetic field approaches the magic angle (∼ 55◦).
The decay time for the precession signal strongly depends
on the angle between the cell symmetry axis and the ex-
ternal magnetic field. These observations are in agree-
ment with those of Simpson (1978). Only dephasing but
not rephasing of the precession signal was observed, most
likely owing to the small quadrupole splitting. A quali-
tative agreement between the model and observation was
obtained.

Butscher et al. (1996) also studied the quadrupole wall
interaction of 83Kr in Duran glass cell using the same
experimental technique as they studied 131Xe (Butscher
et al., 1994). The beat period and the relaxation rate

of the free precession signal yield 〈θ〉 = (1.02 ± 0.07) ×
10−5 rad and 〈θ2〉 = (4.9 ± 0.6) × 10−8 rad2, from which
the mean and root mean square quadrupole coupling
constant eQ〈q0〉(1 − γ∞)/h and eQ

√
〈q2

0
〉(1 − γ∞)/h are

estimated to be 502 ± 36 kHz and 5.61 ± 0.70 MHz, re-
spectively. Combining these results with those of 131Xe
(Butscher et al., 1994) and using the nuclear quadrupole
moment Q and the Sternheimer anti-shielding factor
γ∞ for 83Kr and 131Xe, it is found that the ratios
〈q0〉Kr/〈q0〉Xe = 1.10 and

√
〈q2

0
〉Kr/

√
〈q2

0
〉Xe = 0.84.

Physically, that these ratios are close to unity demon-
strates that the same information about the microscopic
nature of the wall, such as the mean or root mean square
electric field gradient on the wall, is obtained regardless
of whether 83Kr or 131Xe is used as a probe.

21Ne (I = 3/2)

The quadrupole wall interaction of 21Ne was studied
by Chupp and Hoare (1990). The 21Ne nuclei were po-
larized along a static magnetic field (z-axis) by spin ex-
change with optically pumped Rb atoms. To initiate
the free precession of the 21Ne nuclear polarization, a
pulse of resonant oscillating magnetic field along the x-
axis was applied to rotate the nuclear polarization 20
degrees away from the static magnetic field. The free
precession of the 21Ne polarization was monitored by the
voltage induced in a pickup coil. The free precession of
the 21Ne nuclear polarization for as long as four and a
half hours was reported and used for a test of the lin-
earity of quantum mechanics. The washing out of the
sharp beat pattern observed in the precession signal was
the first confirmation of the theoretical prediction that
coherences | − 3/2〉〈−1/2|, | − 1/2〉〈1/2| and |1/2〉〈−1/2|
do not relax at the same rate (see Eq.(30)).

III. WALL INTERACTIONS OF SPIN-POLARIZED

NOBLE GAS ATOMS WITH NUCLEAR SPINS I = 1/2

A. The nature of the wall interactions

Wall interactions of spin-polarized noble gas atoms
with nuclear spins 1/2, 3He and 129Xe, have been exten-
sively studied. For 3He in glass cells a good understand-
ing of the wall relaxation mechanism has been achieved
(Cornaz, 1963; Fitzsimmons and Walters, 1967). The
dominant wall interaction of 3He that causes its relax-
ation is believed to be the scalar magnetic dipole-dipole
coupling between the 3He nuclei and the unpaired elec-
trons in the dangling-bond defects in the glass (Mazitov
et al., 1993; Schmiedeskamp et al., 2006a). However, a
definite proof of the dangling-bond defects being respon-
sible for the 3He relaxation is still lacking.

The nature of the wall interactions responsible for
the relaxation of 129Xe on the alkali hydride sur-
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face is not fully understood (Nicol, 1984). How-
ever, on silicone coatings (dichlorooctamethyltetrasilox-
ane Cl[Si(CH3)2O]3Si(CH3)2Cl), it has been unequivo-
cally demonstrated that the dominant wall interaction
responsible for the relaxation of 129Xe is the tensorial
magnetic dipole-dipole interaction between the nuclear
magnetic moments µ

I
= γI~I of the adsorbed 129Xe

atoms and the nuclear magnetic moments µ
K

= γK~K

of the protons in the coating, where ~I and ~K are re-
spectively their nuclear spins, with γI and γK being their
gyromagnetic ratios (Driehuys et al., 1995). The wall
interaction Hamiltonian is

Hw =
~

2γIγK

r3

Å
I · K − 3

(I · r)(K · r)

r2

ã
, (32)

where r is the radius vector from the proton to the nu-
cleus of the 129Xe atom. Due to the relative motion of
the protons and the adsorbed 129Xe atoms, both the di-
rection and magnitude of r fluctuate in time. Therefore
Hw is a stationary random function.

B. Wall relaxation of 3He

The most important relaxation mechanisms for polar-
ized 3He consist of gas phase nuclear dipole-dipole relax-
ation, relaxation due to the magnetic field inhomogeneity
and wall relaxation. The intrinsic gas phase dipolar re-
laxation time T1 for polarized 3He atoms due to magnetic
dipole-dipole interaction between the 3He nuclear spins
is T1 = 744/n hours at a temperature of 296 K, where n
is the 3He density in amagats (Newbury et al., 1993b).
In the early studies the measured relaxation times of 3He
were orders of magnitude shorter than the intrinsic gas
phase dipolar relaxation limit because of the wall relax-
ation. Therefore the early studies focused on understand-
ing the nature of the wall interactions of spin-polarized
3He atoms in order to suppress or eliminate wall relax-
ation. A brief review of the wall relaxation of nuclear
spin polarized 3He was recently given by Gentile et al.

(2017).
The early pioneering work on the wall relaxation of po-

larized 3He (Bouchiat et al., 1960; Colegrove et al., 1963;
Cornaz, 1963; Fitzsimmons and Walters, 1967; Gamblin
and Carver, 1965) paved the way to achieving the ulti-
mate dipolar relaxation limit. It has been shown that if
the helium gas is sufficiently purified to be free of param-
agnetic impurities, if the cell is made with impermeable
glass such as aluminosilicate glass and its inner surface
is fully blown and coated with Rb or other alkali metal,
and if the magnetic field gradient is sufficiently small,
one is able to achieve consistently a 3He relaxation time
close to the gas phase dipolar limit (Chen et al., 2011;
Newbury et al., 1993b; Rich et al., 2002).

In the experimental studies of the wall relaxation of
3He by Fitzsimmons and Walters (1967) and Fitzsim-

mons et al. (1969), the 3He atoms were polarized by
metastability exchange optical pumping in low 3He den-
sity cells or by spin exchange optical pumping in high
3He density cells. The decay of the 3He polarization was
monitored by the adiabatic inversion NMR technique.
The wall relaxation mechanism for 3He was determined
by studying the temperature dependence of the wall re-
laxation time of 3He.

FIG. 3 Nuclear spin relaxation times for 3He measured in
spherical cells, about 5 cm in diameter. Curves 6, 7 and
point 8 represent measurements in cells made of aluminosili-
cate glass, with 3He pressures at room temperature of 12, 15
and 10 Torr, respectively. Curve 2 represents measurements
in a Pyrex glass cell, with 3He pressure at room temperature
of 20 Torr. From Fitzsimmons and Walters, 1967.

Fig. 3 shows the temperature dependence of the wall
relaxation time of 3He in Pyrex and aluminosilicate glass
cells. The reversal of slope in the Pyrex glass cell, which
was also observed in quartz cells, suggests the follow-
ing wall relaxation mechanisms for 3He. For tempera-
tures below 125 K, the 3He atoms, while adsorbed on
the wall, are relaxed by the paramagnetic centers on the
glass surface. The relaxation rate, which is proportional
to the dwell time τs, decreases as temperature increases
according to the Arrhenius relation Eq.(67). However,
the relaxation rate starts to increase above 125 K, which
is interpreted as the onset of a different wall relaxation
mechanism. Since it is known that at higher tempera-
tures helium permeates more readily into silica (SiO2),
it is postulated that permeation of 3He into Pyrex and
quartz becomes the dominant wall relaxation mechanism
at temperatures above 125 K (Fitzsimmons and Walters,
1967). The permeation greatly increases the dwell time
τs and consequently the relaxation rate, resulting in a
reversal of slope.



10

The permeation mechanism was suggested earlier for
the relaxation of 3He in Pyrex cells by Cornaz (1963),
who measured T1 and T2 for 3He, from which it was es-
timated that τc > 10−9 s at room temperature. The long
correlation time led Cornaz to suggest that at room tem-
perature permeation into the Pyrex glass is responsible
for the relaxation of 3He in Pyrex cells.

The most convincing experimental evidence for the
permeation mechanism is that the reversal of slope is
not observed in aluminosilicate glass cells, which is three
orders of magnitude less permeable to 3He than Pyrex or
quartz (Fig. 3).

Based on the adsorption and permeation mechanisms
for the wall relaxation of 3He, several phenomenologi-
cal models have been suggested. The most quantitative
one was proposed by Jacob et al. (2003). It calculated
the 3He relaxation rates and their temperature depen-
dence on the surface of borosilicate glass. The models
assumed the Fe+3 ions to be responsible for the relax-
ation of 3He (Cornaz, 1963; Jacob et al., 2003; Timsit
et al., 1971). The existence of the Fe3+ ions in glass
was indeed demonstrated using paramagnetic resonance
absorption (Castner et al., 1960; Sands, 1955). Their
typical concentration in the glass is ∼ 100 ppm (Timsit
et al., 1971). However, there is no convincing evidence
that the relaxation sites for 3He are Fe3+ ions.

Indeed, a detailed study of the nature of the relaxation
centers for 3He by Schmiedeskamp et al. (2006a) rules
out the possibility that Fe+3 ions play any important
role in the 3He relaxation because of the lack of depen-
dence of T1 on the iron content of glasses. For example,
the relaxation times T1 in aluminosilicate glass cells with
Fe+3 concentrations that differ by more than a factor of
four are approximately equal. The influence of the Fe+3

concentration on the relaxation time is also found to be
minimal in borosilicate glass cells. There is no noticeable
difference between the 3He relaxation times in cells made
of soda lime glass with Fe+3 concentrations that differ by
almost one order of magnitude.

A study of the relaxation of 3He dissolved in fused sil-
ica using NMR suggests that the 3He relaxation in fused
silica is caused by the magnetic dipolar coupling of 3He
with the unpaired electrons in the dangling-bond defects,
the broken Si−O bonds (Mazitov et al., 1993). The scalar
magnetic dipole-dipole interaction between the 3He nu-
clei and the unpaired electrons in the dangling bond de-
fects is also suggested to be the dominant wall interaction
responsible for the relaxation of 3He in Pyrex and alumi-
nosilicate glasses (Schmiedeskamp et al., 2006a).

Physically, the reason dangling-bond defects are ex-
pected to play a much more important role in the re-
laxation of 3He than Fe+3 ions is that the scalar mag-
netic dipole-dipole interaction between the 3He nucleus
and the unpaired electron in the dangling bond, which
has a significant (∼ 25%) s-character (Hochstrasser and
Antonin, 1972), is orders of magnitude larger than the

tensorial magnetic dipole-dipole interaction between the
3He nucleus and the Fe+3 ion (Sec. IV.A).

However, aside from a better fit between the calcula-
tions and the measured T1 data (Schmiedeskamp et al.,
2006a), a definite confirmation of the dangling-bond de-
fects being responsible for the relaxation of 3He is yet to
emerge.

Nonetheless, the dangling-bond defect hypothesis gives
a plausible explanation for the importance of the fully
blown procedure, which is widely used in the fabrication
of glass cells and can greatly increase the relaxation time
T1 (Chen et al., 2011; Newbury et al., 1993b; Parnell
et al., 2009; Rich et al., 2002; Salhi et al., 2014). The
fully blown process melts the glass surface and conceiv-
ably decreases the paramagnetic dangling bond defects
by changing the structure of the glass surface. On the
other hand melting of the inner surface of the cell is not
likely to change the density of the Fe3+ ions on the sur-
face.

Besides the aforementioned wall relaxation sites, the
dangling-bond defects, that are intrinsic to the glass, 3He
can also be relaxed by the magnetic impurities brought
into the cell. One example that has attracted much in-
terest is the following. It was observed that T1 decreased
by a factor of two when the external magnetic field in-
creased from 10 to 225 G in an aluminosilicate glass cell
while T1 increased when the magnetic field increased in
a Pyrex cell (Fitzsimmons et al., 1969). The latter case
might have had to do with the magnetization history of
the cell.

This field dependence of T1 was later studied in greater
detail by Jacob et al. (2001). It was reported that T−1

1

increased by a factor of 2−20 if the cell was exposed to a
magnetic field of a few kG, and had memory of the mag-
netic field the cell was previously exposed to. The origi-
nal T−1

1 can be restored by demagnetizing the cell. These
observations clearly indicate a role played by some fer-
romagnetic sites. The effect was observed in both Pyrex
and aluminosilicate glass cells, but only if the cells had
Rb metal in them. This clearly shows that the ferromag-
netic impurities that are responsible for the field depen-
dence of T1 are not intrinsic to the cell glass. In fact, as
previously mentioned, the ferromagnetic impurities in the
cell glass do not play a significant role in the relaxation
of 3He (Schmiedeskamp et al., 2006a). It was speculated
that they might be brought into the cell as impurities in
the Rb metal.

The field dependence of T1 was also observed in Cs
-coated cells by Hutanu et al. (2007a), who determined
the saturation field, above which T1 no longer decreases
with increasing field, to be ∼ 1 kG, in agreement with
what Jacob et al. (2001) observed in Rb-coated cells.

The observation of the field dependence of T1 was
also reported for cells that did not contain alkali metal
(Hutanu and Rupp, 2005; Schmiedeskamp et al., 2006b),
seemingly inconsistent with the earlier observation of the
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field dependence of T1, which requires the presence of
alkali metal in the cell (Jacob et al., 2001). It was spec-
ulated that the ferromagnetic impurities were brought
into the cell during the cell fabrication process. It is
noted that all those cells seem to have a valve connected
with them. Using the superconducting quantum inter-
ference device (SQUID) Hutanu et al. (2007b) obtained
the magnetic field map of a magnetized cell assembly.
The contribution to the magnetic field from the valve
assembly is found to be more than two orders of magni-
tude larger than that from the cell itself. Whether the
magnetized valve assembly plays any role similar to what
Bouchiat and Brossel (1966) called the “reservoir effect”
in the relaxation of 3He is not known.

It is also observed that in an external magnetic field
of 30 G the relaxation time T1 changes, and most of the
time increases, when the relative orientation of the cell
with respect the field changes (Jacob et al., 2004). The
orientation dependence is observed only if the cell con-
tains Rb and has been heated. Similar observation was
made in cells that contain potassium (Boag et al., 2014).

Thus both the orientation dependence and the field
dependence of T1 seem to be due to the ferromagnetic
impurities brought into the cell. It is suggested that the
ferromagnetic impurities are Fe3O4 particles located at
the inner glass surface (Schmiedeskamp et al., 2006b),
which, however, is disputed by Hutanu et al. (2007a).
Thus no definite conclusion has been reached regarding
the exact nature of the ferromagnetic impurities respon-
sible for the field dependence and the orientation depen-
dence of T1. The following study may shed some light
on the underlying physical mechanism of the field depen-
dence and the orientation dependence of T1. The reason
that T1 in both the orientation dependence and the field
dependence is so sensitive to the magnetization of the cell
is the existence of a correlation among the phase changes
experienced by the 3He atom during its collisions with
the magnetic sites when the cell is magnetized. This is
shown by (Bicout et al., 2013) using a bounded random
walk model. Semi-classically, when the cell is magne-
tized, the rotations experienced by the 3He spin during
its collisions with the magnetic sites are coherent, and a
spin is easier to be flipped by a sequence of coherent rota-
tions than by a sequence of random ones, corresponding
to the demagnetized state of the cell.

C. Wall relaxation of 129Xe

1. Mechanisms

The intrinsic gas phase spin relaxation time T1 for po-
larized 129Xe atoms is determined by the spin-rotation
interaction between the 129Xe nuclear spin and the rota-
tional angular momentum of two colliding Xe atoms, and
is given by 56/n hours at a temperature of 298 K, where

n is the density of 129Xe in amagats (Brinkmann et al.,
1962; Hunt and Carr, 1963). This intrinsic gas phase re-
laxation time of 129Xe is orders of magnitude longer than
what is measured in most experiments due to the exis-
tence of other relaxation mechanisms. One of the most
important relaxation mechanisms is the relaxation at the
cell walls.

Because of the presence of the unknown paramagnetic
centers on the uncoated walls, the relaxation times of
129Xe measured in uncoated cells show wide variation
from cell to cell (Zeng et al., 1983). Therefore, quanti-
tative studies of the wall interactions of 129Xe are only
carried out in coated cells.

The most commonly used anti-relaxation coating for
129Xe is silicone (Surfasil). The experimental studies
carried out by Driehuys et al. (1995) provide a definite
proof about the nature of the dominant wall interaction
of 129Xe atoms in silicone-coated cells. Their experi-
ment is based on the double resonance concept (Hart-
mann and Hahn, 1962). In double resonance, two os-
cillating magnetic fields B1I and B1K at resonant fre-
quencies ωI = γIB0 and ωK = γKB0 are applied along
the x-axis, where B0 is a static magnetic field along the
z-axis. Thus the I-spins and K-spins rotate in their
respective rotating frames around B1I and B1K at fre-
quencies ω1I = γIB1I and ω1K = γKB1K , respectively.
Since both rotating frames rotate around the same z-
axis, when the Hartmann-Hahn condition ω1I = ω1K is
satisfied, the components of the magnetic moments µI

and µK along the z-axis oscillate at the same frequency,
thus allowing angular momentum to be efficiently trans-
ferred between I and K (Slichter, 1980).

Due to the exceedingly long correlation time (τc ∼
10−5 s) of 129Xe in silicone, Driehuys et al. (1995) stud-
ied the relaxation rate of 129Xe polarization locked in
its rotating frame. They found that the spin-locked
relaxation rate 1/Tρ of 129Xe depends strongly on the
Hartmann-Hahn matching condition, which determines
the efficiency of spin transfer between the 129Xe nuclei
and the neighboring protons, thus unmistakably proving
that the dipolar interaction between the magnetic mo-
ments of 129Xe nuclei and protons in the silicone coating
is responsible for the 129Xe relaxation.

Keeping only the terms that are strongly dependent
on the fields B1I and B1K , the relaxation rate of the
spin-locked 129Xe polarization is given by

1

T1ρ
=

1

10T0

Å
1

1 + (ω1I + ω1K)2τ2
c

+
1

1 + (ω1I − ω1K)2τ2
c

ã
. (33)

Experimentally the 129Xe polarization was spin-locked
to a small B1I (1.1 G) such that ω1Iτc ≪ 1 so that both
terms in Eq.(33) are equal to 1/(1 + ω2

1K
τ2

c ). Thus the
Hartmann-Hahn matching condition became less and less
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FIG. 4 A double resonance study of the dependence of the
spin-locked 129Xe relaxation rate 1/T1ρ on the field strength
of the resonant proton field. The inset further corroborates
the nature of the wall interaction of 129Xe on silicone-coated
walls. It shows the dependence of T1ρ on the detuning of
the frequency of the proton field from resonance. The de-
tuning rendered the Zeeman splittings in the rotating frames
of 129Xe and protons to be even more dissimilar, making the
Hartmann-Hahn matching condition even further from being
satisfied and leading to an increase in T1ρ. The resonance
curve was obtained with a constant proton field strength of
4 G while the frequency was varied. Adapted from Driehuys
et al., 1995.

satisfied as the proton field increased, causing the relax-
ation rate of 129Xe to decrease (Fig. 4).

The non-zero asymptotic residual relaxation rate in
Fig. 4, which corresponds to the decoupling between the
xenon spins and the proton spins, suggests the existence
of a second wall interaction, albeit a smaller one, for
129Xe on the silicone surface. The nature of this sec-
ond wall interaction is not known, but the spin-rotation
interaction with the carbon atoms could be a possibility.

The wall relaxation of 129Xe on the rubidium hydride
surface was studied by Nicol (1984). It was reported that
there was hardly any difference between the 129Xe wall
relaxation rates on RbH and RbD. This clearly shows
that the magnetic dipole-dipole interaction between the
magnetic moments of the 129Xe nuclei and the protons on
the RbH surface does not play any significant role in the
129Xe relaxation. This is because the wall relaxation rate
due to the magnetic dipole-dipole interaction is propor-
tional to γ2

K
K(K + 1)/R6, where K is the proton spin,

γK its gyromagnetic ratio and R the distance between
the 129Xe atoms and the protons, and if the magnetic
dipole-dipole interaction were solely responsible for the
wall relaxation of 129Xe, one would expect the relaxation

rate of 129Xe to be sixteen times smaller on RbD than
on RbH (Sec. IV.B.2). Any significant contribution to
the 129Xe relaxation from the dipolar interaction between
129Xe and the cations Rb+ is ruled out on the grounds
that the distance R between 129Xe and Rb+ is larger
than that between 129Xe and H− or D−. Spin-rotation
interaction was suggested as a possible wall relaxation
mechanism (Sec. IV.A and B). But no definite identifi-
cation of the dominant wall relaxation mechanisms for
129Xe on the alkali hydride surface has been made.

2. Theory

The common treatment of the relaxation of the longi-
tudinal polarization 〈Iz〉 of 129Xe is based on the theory
of Abragam (1961) for the relaxation in liquids and gases.
Suppose the 129Xe atom is adsorbed on the wall a fraction
f(T ) of the time, where f(T ) depends on the tempera-
ture of the wall, and is often taken to be τs/(τs + τb), τb

being the time between two consecutive wall collisions.
The Hamiltonian for the dipolar interaction between the
129Xe atoms and the protons on the silicone coating is
given by Eq.(32). We shall use the interaction picture in
order to simplify the equation of motion of the density
matrix, and to focus on the slow time variation of the
observables due to the perturbation Hw. An operator A
in the Schrodinger picture becomes Ã = e

i
~

H0tAe− i
~

H0t

in the interaction picture, where H0 = ~ωIIz + ~ωKKz

represents the Zeeman interaction due to the static mag-
netic field B, with ωI = γIB and ωK = γKB. While a
129Xe atom is adsorbed on the wall, it is described by an
ensemble-averaged density matrix ρ̃I, K(t), which, to sec-

ond order in ‹Hw(t), is governed by the following equation
of motion (Abragam, 1961)

dρ̃I, K(t)

dt
= − 1

~2

∫ ∞

0

dt′
〈[‹Hw(t), [‹Hw(t− t′), ρ̃I, K(t)]

]〉
,

(34)
where the brackets denote ensemble average for the wall
interaction. It is convenient to separate the angular mo-
mentum operators in ‹Hw(t) from the random functions
that depend on r,

‹Hw(t) =
~

2γKγI

r3

∑
q

F (q)(t)Ã(q)(t) , (35)

where

F (2)(t) = F (−2)∗(t) = −3

4
sin2 θe−2iφ ,

F (1)(t) = F (−1)∗(t) = −3

2
sin θ cos θe−iφ , (36)

F (0)(t) =
1

4
(1 − 3 cos2 θ) ,
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Ã(2)(t) = Ã(−2)† = I+K+e
i(ωI +ωK)t ,

Ã(1)(t) = Ã(−1)† = I+Kze
iωI t + IzK+e

iωKt , (37)

Ã(0)(t) = 4IzKz − I+K−e
i(ωI −ωK)t − I−K+e

−i(ωI −ωK)t .

Since we are only interested in the observables of the
I-spins, we write ρ̃I = TrK ρ̃I, K , where ρ̃I is the den-
sity matrix for the I-spins. Taking the trace of Eq.(34)
with respect to spin K and neglecting the polarization
of the K-spins on the wall, one obtains the equation
of motion for ρ̃I , whence the equation of motion of the
longitudinal spin polarization 〈‹Iz〉 = Tr(Iz ρ̃I(t)) of the
129Xe atoms on the wall in the interaction picture, which
agrees with that in the Schrödinger picture because Iz

commutes with H0. Taking into account that the 129Xe
atom is adsorbed on the wall only a fraction f(T ) of the
time, the wall relaxation rate T −1

w of 129Xe is given by

1

Tw
=

1

10Tw0

[
J(ωI −ωK)+3J(ωI)+6J(ωI +ωK)

]
, (38)

where T−1
w0 is the relaxation rate at zero magnetic field

1

Tw0
=

4

3
f(T )K(K + 1)γ2

I
γ2

K
~

2τc

∑
i

r−6
i , (39)

and J(ω) is the spectral density

J(ω) = 1/(1 + ω2τ2
c ) (40)

of the correlation function,

〈F (q)(t)F (q′)(t− t′)〉 = δq,−q′〈|F (q)(0)|2〉 e−|t′|/τc , (41)

where τc is the correlation time of the random functions
F (q)(t).

Physically, the term J(ωI −ωK) in Eq.(38), which cor-
responds to the operators I±K∓ in Eq.(37), represents
a simultaneous flip of one spin up and the other down.
Similar meanings can be given to the terms J(ωI) and
J(ωI + ωK) in Eq.(38). The sum in Eq.(39) accounts for
the fact that the adsorbed 129Xe atom may interact with
more than one proton on the wall.

3. Experiments

The first detailed experimental studies on the wall re-
laxation of 129Xe were carried out in cells coated with
silicone (Zeng et al., 1983, 1985). The experiments were
performed in low magnetic fields of a few gauss. The nu-
clei of 129Xe were polarized through spin exchange colli-
sions with optically pumped Rb atoms. The pump beam
was then blocked. The relaxation of the longitudinal po-
larization of 129Xe due to wall interaction was monitored
by passing a weak unpolarized D1 probe beam through
the Rb vapor, which was weakly polarized through spin

exchange with the polarized 129Xe. The Rb polariza-
tion was proportional to the 129Xe polarization, and im-
parted to the probe beam a small elliptical polariza-
tion, which was measured using a photoelastic modulator
(Sec. VII.B.1).

The relaxation rate T−1
1 of 129Xe is given by

T−1
1 = C [Rb] + T−1

w , (42)

where T−1
W

is the wall relaxation rate and C[Rb] the re-
laxation rate due to gas phase Rb atoms, C being a con-
stant and [Rb] the Rb vapor number density. The heat
of vaporization of Rb is so much larger than the adsorp-
tion energy of 129Xe that T−1

W
is commonly assumed to

be independent of temperature within the temperature
range of the experiment. Thus one obtains T−1

w as the
intercept of the linear fit of T−1

1 to a number of different
Rb vapor densities (Fig. 5).

FIG. 5 Dependence of the spin relaxation rate of 129Xe on
the 87Rb vapor number density in an uncoated cell and a cell
coated with silicone (Surfasil). The different slopes are due
to different N2 pressures in the cells. From Zeng et al., 1985.

D. Cross polarization

The magnetic dipole-dipole interaction transfers the
angular momentum from the polarized 129Xe nuclei to
the surface protons, resulting in the relaxation of the
adsorbed 129Xe nuclei and the polarization of the pro-
tons. With a highly polarized 129Xe gas it was observed
that this cross polarization increased the surface pro-
ton polarization on silicone by a factor of 104−105 over
the thermal equilibrium polarization at 0.2 T (Driehuys
et al., 1993) and on Aerosil R812, poly(triarylcarbinol)
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and poly(tetrabiphenyl silane) by a factor of 103 at 90 K
and 4.2 T (Gaede et al., 1995).

IV. WALL INTERACTIONS OF SPIN-POLARIZED

ALKALI METAL ATOMS

A. The nature of the wall interactions

Unlike diamagnetic atoms with a 1S0 ground state,
which can collide with uncoated glass walls thousands
of times without being depolarized (Happer, 1972), spin-
polarized alkali metal atoms can lose their polarization in
a single collision on uncoated glass walls (Sec. VI). There-
fore quantitative studies of the wall interactions of spin
-polarized alkali metal atoms are almost always done in
coated cells.

The pioneering studies by Bouchiat and her collab-
orators (Bouchiat, 1963; Bouchiat and Brossel, 1966)
have clearly demonstrated that the wall interactions of
spin-polarized Rb atoms in cells coated with paraffin
(CnH2n+2) consist of two types of interactions: the mag-
netic dipole-dipole interaction, both tensorial and scalar,
with the protons on the wall and the spin-rotation inter-
action with the C atoms, which have zero spin.

Tensorial magnetic dipole-dipole interaction

When the alkali metal atom and the proton on the wall
are sufficiently far apart, their interaction is the tensorial
magnetic dipole-dipole interaction between the magnetic
moment µ

K
= γK~K of the proton and the magnetic

moment µs = −γs~S of the valence electron of the alkali
metal atom, where ~S is the electron spin and γS > 0
the gyromagnetic ratio. The Hamiltonian is

H = −~
2γKγS

r3

Å
S · K − 3

(S · r)(K · r)

r2

ã
, (43)

where r is the radius vector from the proton to the va-
lence electron.

Scalar magnetic dipole-dipole interaction

When the alkali metal atom and the proton on the
wall are close, the s-electron wave function is not neg-
ligibly small at the proton, and the tensorial magnetic
dipole-dipole interaction (43) is replaced by the scalar
magnetic dipole-dipole interaction or Fermi contact in-
teraction VFermi = (8π/3)~2γKγSδ(r) S · K.

Fermi contact interaction between the s-electron of an
alkali metal atom and the nucleus of a noble gas atom
has been studied in great detail (Herman, 1965; Walker,
1989; Walker et al., 1987), and will be briefly reviewed
here because the theory can be applied as a first approx-
imation to the wall collisions of alkali metal atoms.

To a first approximation the scattering of the valence
electron of an alkali metal atom in the Coulomb potential

of a noble gas nucleus can be accounted for by orthog-
onalizing the unperturbed alkali metal valence electron
wave function φ1(r+R) to the occupied core-electron or-
bitals ψi(r) of the noble gas atom, where r is the position
vector from the noble gas nucleus and R is a vector from
the alkali metal atom nucleus to the noble gas nucleus.
Thus the orthogonalized valence electron wave function
is

φ(r) = φ1(r + R) −
∑

i

ψi(r)

∫
ψ∗

i (r′)φ1(r′ + R)d3r′ .

(44)
Taking the expectation value of VFermi in the state φ(r)
and noting that due to the delta function only the oc-
cupied core s-orbitals of the noble gas atom in Eq.(44)
contribute, one obtains the Hamiltonian for the scalar
magnetic dipole-dipole interaction

H = α(R)S · K , (45)

where the coupling constant α(R) is given by

α(R) =
8π

3
~

2γKγSη
2|φ1(R)|2 . (46)

The enhancement factor η(R) in Eq.(46) is the ratio of
the alkali metal valence electron wave function evaluated
at R in the presence of the noble gas atom to that in
the absence of the noble gas atom. It is given by η =
1 − ∑

n Cnsψns(0), where Cns =
∫
ψns(r)d3r (Herman,

1965). Thus, to a first approximation, η only depends on
the property of the surface atom.

Spin-rotation interaction

During the wall collision of an alkali metal atom, its va-
lence electron can couple to the magnetic field produced
by the relative motion of the alkali metal atom and the
surface atom in much the same way as in a collision be-
tween an alkali metal atom and a noble gas atom in the
gas phase (Bernheim, 1962). As a first approximation
we assume the spin-rotation interaction between the ad-
sorbed alkali metal atom and the surface atom can be
treated by the theory developed for the spin-rotation in-
teraction between an alkali metal atom and a noble gas
atom in the gas phase (Wu et al., 1985).

Suppose the noble gas atom is moving at a velocity v

relative to the alkali metal atom. The scattering of the
alkali metal valence electron in the Coulomb potential
V (r) of the noble gas atom can be treated using the same
orthogonalized wave approximation Eq.(44) except that
one needs to replace the occupied core orbitals ψi(r) of
the noble gas atom by ψi(r)eimv·r/~ to account for the
relative motion of the noble gas atom and the alkali metal
atom. The spin-orbit interaction is

Vso = − e~

2mc2
∇V × v · S , (47)
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where m is the electron mass. Focusing on the contri-
butions of the occupied p-orbitals of the noble gas atom,
the expectation value of Vso in the orthogonalized valence
electron wave function yields the spin-rotation Hamilto-
nian

H = γ(R)N · S . (48)

The coupling constant γ(R) in Eq.(48) is

γ(R) =
mG

MR

d |φ1(R)|2
dR

, (49)

where M is the reduced mass of the alkali metal atom
and the noble gas atom, and the factor G is given by

G =
1

2

ï
~

mc

ò2 ∫ ∞

0

[∑
n

CnpRnp(r)

]2
1

r

dV

dr
dr , (50)

and depends only on the spin-orbit interaction of the no-
ble gas atom. The coefficient Cnp in Eq.(50) is given by
Cnp =

∫
zψnp0(r)d3r, where ψnp0 = r−1Rnp(r)Y10(θ, φ)

is the wave function of the noble gas p-electron of prin-
cipal quantum number n and the sum extends over all
occupied p-orbitals of the noble gas atom. Since the
ground state of the helium atom does not have occupied
p-orbitals, the orthogonalized wave approximation is not
applicable, and other methods must be used (Walker and
Happer, 1997).

Table I. Calculated values of η (Walker et al., 1987) and G

(Wu et al., 1985)

Noble gas |η| |G| (eV · Å5)
He 9.5 0.00093 a

Ne 15 0.26
Ar 21 2.03
Kr 35 12.4
Xe 50 40.6
Rn 63 128

a Walker and Happer, 1997

The dependence of η and G on the atomic number
Z of the noble gas atoms is shown in Table I. Thus on
paraffin surfaces the spin-rotation interaction is expected
to be far more important on C atoms than on protons.
Because of the enhancement factor η, the scalar magnetic
dipole-dipole interaction is generally orders of magnitude
larger than the tensorial one (Herman, 1965).

B. Study of the wall interactions of alkali metal atoms in

the time domain

1. Relaxation of Rb on paraffin-coated walls − theory

The theory of the wall interactions of spin-polarized
Rb atoms in paraffin-coated cells was developed by

Bouchiat (1963), who calculated the wall relaxation rates
of various observables. These relaxation rates served as
a guide to analyze the experimental data, from which
the nature of the wall interactions was deduced. For low
magnetic fields the electron spin ~S and the nuclear spin
~I of the alkali metal atom are coupled (hyperfine cou-
pling). It was shown that in the presence of the magnetic
dipole-dipole interaction and the spin-rotation interac-
tion, 〈S · I〉 and 〈Iz〉 relax with a single time constant
TH and Tn, respectively, whereas 〈Sz〉 relaxes with two
time constants Te and Tn,

T−1
H

= CddJdd(∆W ) + CsrJsr(∆W ) , (51)

T−1
n =

Cdd

(2I + 1)2

[
Jdd(ωF ) + Jdd(∆W )

]

+
Csr

(2I + 1)2

[
Jsr(ωF ) + Jsr(∆W )

]
, (52)

T−1
e =

Cdd

(2I + 1)2
[Jdd(ωF ) + 4I(I + 1)Jdd(∆W )]

+
Csr

(2I + 1)2
[Jsr(ωF ) + 4I(I + 1)Jsr(∆W )] , (53)

where Jdd and Jsr are the spectral densities of the corre-
lation function defined in Eq.(40) for the magnetic dipole
-dipole interaction and for the spin-rotation interaction,
ωF = γFB and ∆W being respectively the Zeeman and
hyperfine splittings. The constant Cdd for the magnetic
dipole-dipole interaction has two contributions, tensorial
and scalar,

Cdd = k
γ2

S
γ2

K
K(K + 1)~2τsτc

R 6 (τb + τs)
, (54)

where k is respectively 16π/3 and 128π2/27 for tenso-
rial and scalar dipole-dipole interactions, and R−6 =
〈|rSK(t)|−6〉, rSK(t) being the distance at time t between
the spins S and K (Bouchiat, 1963).

2. Relaxation of Rb on paraffin-coated walls − experiment

The experimental studies of Bouchiat and Brossel
(1966) were carried out in the time domain, using the “re-
laxation in the dark” method first suggested by Franzen
(1959). Cells coated with paraffin contained only Rb va-
por and no buffer gas. The temperature was below 35◦C
and the Rb vapor density was ∼ 1010 cm−3. At such low
Rb vapor density the Rb atoms bounced from wall to
wall with practically no relaxation in the gas phase, thus
greatly simplifying the analysis of the experimental data.
After the alkali metal vapor was polarized with optical
pumping, a weak probe beam passed through the vapor.
The relaxation of the observables under study was mon-
itored by the intensity of the transmitted probe beam
(Sec. VII.A).
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Their experimental observations and analysis provide
clear evidence that the relaxation of the longitudinal
spin polarization 〈Sz〉 is mainly caused by the magnetic
dipole-dipole interaction whereas the relaxation of the
hyperfine polarization 〈S · I〉 is mainly due to the spin
-rotation interaction.

The conclusion that the relaxation of 〈Sz〉 is caused
by the magnetic dipole-dipole interaction and to a lesser
extent by the spin-rotation interaction is drawn from the
following observations. (1) The relaxation times of 〈Sz〉
for 85Rb and 87Rb are longer by a factor of 5 on deuter-
ated paraffin CnD2n+2 than on CnH2n+2, which clearly
shows that magnetic dipole-dipole interaction contribute
to the relaxation because the relaxation rate due to the
magnetic dipole-dipole interactions is proportional to
γ2

K
K(K + 1), and we have γK = 4.26 kHz/G, K = 1/2

for protons and γK = 0.65 kHz/G, K = 1 for deuterons.
However, the fact that the difference is only a factor of 5
instead of 12.8 (the CnD2n+2 coating has 1.7% H impu-
rity), as one would expect if the magnetic dipole-dipole
interaction were the sole type of wall interaction, implies
the existence of a second type of wall interaction, which
also contributes to the relaxation of 〈Sz〉, albeit to a lesser
extent. (2) The observation that the ratios of T−1

H , T−1
n

and T−1
e for a given isotope 85Rb or 87Rb are different

for different coatings, CnH2n+2 and CnD2n+2, is another
indication that there is more than one type of wall in-
teraction (see Eqs. (51)−(53)). (3) The relaxation rate of
〈Sz〉 for 87Rb on CnH2n+2, which is dominated by the
magnetic dipole-dipole interaction and is proportional to
Jdd(ωF ), decreases rapidly from 12 s−1 to an asymptotic
residual relaxation rate of about 4 s−1 as the magnetic
field increases to over 5000 G. The decrease of the relax-
ation rate is much less pronounced on CnD2n+2 due to
the much smaller magnetic dipole-dipole interaction on
CnD2n+2. However, the asymptotic residual relaxation
rates for 87Rb on CnH2n+2 and CnD2n+2 seem to merge
at high magnetic fields, lending support to the existence
of a second type of wall interaction, which does not de-
pend on the nuclear spins K of the coatings and can
therefore be identified as the spin-rotation interaction.

The conclusion that the relaxation of the hyperfine po-
larization 〈S · I〉 is mainly due to the spin-rotation in-
teraction with a minor contribution from the magnetic
dipole-dipole interaction is drawn from the observation
that for 87Rb the ratio of the relaxation rate of 〈S · I〉 on
CnH2n+2 to that on CnD2n+2 is 1.3. This clearly shows,
firstly, that 〈S · I〉 is relaxed predominantly by the spin
-rotation interaction, which is mainly contributed by car-
bon atoms, and, secondly, that the magnetic dipole-
dipole interaction also played a role, though a lesser one,
in relaxing 〈S · I〉. The minor role of the magnetic dipole
-dipole interaction is further corroborated by the obser-
vation that on CnH2n+2 the relaxation rate of 〈S · I〉 is
slightly larger for 85Rb than for 87Rb. This is because
∆W85 < ∆W87 and therefore Jdd(∆W85) > Jdd(∆W87).

The microscopic parameters that describe the wall
interactions of Rb on paraffin such as their strength
can be estimated from the measured relaxation data
(Eqs. (51)−(53)) by writing the Hamiltonian for the mag-
netic dipole-dipole interaction and the spin-rotation in-
teraction as Hw = γS~S ·B(t), where B(t) is the effective
random magnetic field on the wall. Its root mean square
amplitude is estimated to be 14 G for the magnetic dipole
-dipole interaction and 51 G for the spin-rotation inter-
action (Bouchiat and Brossel, 1966).

C. Study of the wall interactions of alkali metal atoms in

the frequency domain

The wall interactions of spin-polarized alkali metal
atoms can also be studied in the frequency domain using
edge enhanced electron paramagnetic resonance (EPR)
of optically pumped alkali metal atoms. Physically the
edge enhancement is due to the restricted diffusion near
the walls, resulting in an enhanced EPR signal localized
near the walls (localized modes). Edge enhancement has
been extensively studied in NMR (Callaghan et al., 1993;
Grebenkov, 2007; Pütz et al., 1992; Saam et al., 1996;
Song et al., 1998; Stoller et al., 1991; de Swiet, 1995;
de Swiet and Sen, 1994; Tseng et al., 1998), and a de-
tailed theory of the edge enhancement in NMR for non-
relaxing surfaces was developed by Stoller et al. (1991).
The effects of diffusion and magnetic field gradient on
the EPR in optically pumped Rb vapor was first studied
by Skalla et al. (1997), but edge enhancement was not
observed. Edge enhanced EPR in optically pumped Rb
vapor was first reported by Zhao et al. (2008a), and was
found to have both localized and non-localized modes. A
detailed theory of edge enhancement in optically pumped
alkali metal vapor with wall interactions being taken into
account was developed by (Schaden et al., 2007, 2008).

1. Edge enhanced EPR in optically pumped Rb vapor

To observe edge enhanced EPR in optically pumped
Rb vapor it is important to use evanescent pump and
probe beams (Zhao et al., 2010). The thin cylindrical
cells have adjustable length L, and contain Rb vapor and
N2 gas. The z axis is along the cell axis. A magnetic
field B is applied along the x-axis, parallel to the cell
front (z = −L/2) and back (z = L/2) surfaces, with a
relatively large field gradient ∂Bx/∂z along the z-axis.
The inhomogeneous magnetic field is such that the Lar-
mor frequency ωL(z) is given by ωL(z) = ω0 +σ‖z, where
ω0 is the Larmor frequency at the center of the cell and
σ‖ = γS∂Bx/∂z is the Larmor frequency gradient associ-
ated with the field gradient.

The polarization of the Rb vapor is produced and
probed by circularly polarized evanescent pump and
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probe beams at the front surface. To use phase-sensitive
detection, the intensity of the transmitted probe beam,
modulated by an amplitude-modulated oscillating mag-
netic field along the y-axis, is monitored (Sec. VII.A).
The EPR curves are obtained by scanning the frequency
of the oscillating magnetic field across the Larmor fre-
quency of the Rb atoms. Neglecting gas phase relaxation,
the amplitude of the transverse polarization produced by
the oscillating magnetic field in the presence of a mag-
netic field gradient is governed by the Torrey equation
(Torrey, 1956)

∂ψ(t)

∂t
=

(
D∇2 − iσ‖z − iω0

)
ψ(t) . (55)

Because the cell length is more than one order of mag-
nitude smaller than its radius, the signal is predomi-
nantly affected by the wall interactions on the front and
back surfaces, and determined by the longitudinal modes
ψn(z) of the Torrey equation

Å
D
d2

dz2
− iσ‖z − iω0 + αn

ã
ψn(z) = 0 . (56)

The real and imaginary parts of the eigenvalues αn corre-
spond to the width and center frequency of the modes of
the magnetic resonance lines. The wall interactions are
described by a boundary condition, which in the present
case is shown to be (Schaden et al., 2007)

0 = ± ∂

∂z
ψn(z) + µψn(z) + η

∂2

∂z2
ψn(z)

∣∣∣∣
z=±L/2

, (57)

with

µ =
3(ξs + iφs)

4λ
and η =

τsv̄

4
, (58)

where ξs is the relaxation probability per wall collision,
φs the average phase shift of Zeeman transitions during
the wall collision, and τs the dwell time. The boundary
condition (57) is derived using a binomial model for diffu-
sion (Schaden et al., 2007) and agrees with the boundary
condition (10) except that µ and η in (57) are parameters
and not operators.

Comparing with Eq.(17) one sees that ξs and τs are
related to the corresponding quantities ξB

s and τB

s de-
fined by Masnou-Seeuws and Bouchiat (1967) by ξs =
2 ξB

s /(2−ξB

s ) and τs = 2 τB

s /(2−ξB

s ). The difference orig-
inates from the definition of the dwell time τs. Schaden
et al. (2007) assumed a Poisson process for the adsorp-
tion, in which a Rb atom leaves the surface in any equal
time interval with equal probability, and τs is the av-
erage of the Poisson distribution. Masnou-Seeuws and
Bouchiat, on the other hand, assumed that the polar-
ized Rb atoms, on average, leave the surface after a rela-
tively sharp time delay τB

s , such that Eq.(16) is satisfied.
On anti-relaxation coatings, ξB

s ≪ 1, the two definitions
agree with each other.

The second derivative term in the boundary condi-
tion (57), which contains τs, is important and cannot
be ignored in some cases. For edge enhanced EPR, the
longitudinal mode is ψn(z) ∼ A(en − 2isz/L), where A
is the principal Airy function. In dimensionless quanti-
ties, the relative orders of magnitude of the three terms
on the right-hand side of (57) are 1, (D/σ‖)1/3µ and

(σ‖/D)1/3η. Thus, when (σ‖/D)1/3η ∼ 1, which cor-
responds to long τs, the second derivative term cannot
be ignored. When the longitudinal magnetic field gradi-
ent is zero or can be neglected as in the case of ultra-
thin cells, the longitudinal modes are plane waves with
wavenumber k ∼ 1/L. The orders of magnitude of the
three terms in (57) are 1, Lµ, η/L. Thus, for sufficiently
small cell length L or sufficiently long dwell time τs such
that η/L ∼ Lµ holds, the second derivative term again
is not negligible (Zhao et al., 2010).

The eigenvalue αn in Eq.(56) can be written as αn =
(Dσ2

‖)1/3en + iω0, where en is the dimensionless longitu-

dinal eigenvalue. Through the boundary conditions (57)
and (58), en depends on the wall interaction parameters
ξs, φs, and τs as well as the gas kinetic parameters λ and
v̄, and in general must be determined numerically.

To understand some general features of the edge en-
hanced EPR signals, we consider the special case µ =
η = 0, where analytical solutions can be obtained. The
line shape in such cells depends qualitatively on a di-
mensionless parameter s = L

2 (σ‖/D)1/3 (Schaden et al.,
2007; Stoller et al., 1991; de Swiet, 1995; de Swiet and
Sen, 1994). For s < 1.31, all the eigenvalues are real,
corresponding to the absence of localized modes. As s
increases, the lowest pair of eigenvalues e0 and e1 co-
alesce, and for s > 1.31 they form a pair of complex
conjugate eigenvalues, corresponding to the appearance
of the first two localized modes near the front and back
surfaces (edge enhancement). As s increases further, the
next pair of eigenvalues e2 and e3 begin to coalesce, and
for s > 3.06 they form another complex conjugate pair,
corresponding to the formation of a second pair of lo-
calized modes. For small s, there are only nonlocalized
modes, and en (n > 0) is much larger than e0. In this
case only the lowest mode e0 contributes significantly to
the signal.

This dependence of the EPR curves on the dimension-
less parameter s is illustrated in Fig. 6. For OTS (octade-
cyltrichlorosilane CH3(CH2)17SiCl3) coating, the charac-
teristics of the EPR curves are similar to those in a cell
with nonrelaxing walls. Thus for s < 1.31, the EPR
curves consist only of nonlocalized modes. For s > 1.31,
localized modes start to appear.

From the symmetry point of view, the EPR signal is
governed by Eq.(56) with a non-hermitian Hamiltonian,
which, however, is PT-symmetric. The boundary condi-
tions (57) at z = ±L/2 are approximately PT-symmetric
in cells coated with anti-relaxation coatings. Fig. 6 pro-
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vides an experimental demonstration of the continuous
transition from the unbroken PT-symmetry (nonlocal-
ized modes) to spontaneously broken PT-symmetry (lo-
calized modes) in non-hermitian quantum mechanical
systems with PT-symmetry. If L → ∞, s → ∞. In
that case all the eigenmodes are localized, and PT-
symmetry is always spontaneously broken, in agreement
with the theoretical studies for infinite space by Bender
and Boettcher (1998).
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FIG. 6 A representative series of edge enhanced EPR curves.
The Larmor frequency gradient σ‖/2π is 400 kHz/cm. The po-
sition of the front cell surface remains fixed as the cell length
L is varied. Symbols denote experimental data, and solid lines
are calculated from theory (Schaden et al., 2007, 2008; Zhao
et al., 2008b). Adapted from Zhao et al., 2010.

2. Study of wall interactions using edge enhanced EPR

The localized modes of the edge enhanced EPR are
very sensitive to wall interactions, especially when the
edge enhanced peaks are well resolved, and therefore can
be used to study the wall interactions of spin-polarized
alkali metal atoms. Unlike the symmetric edge enhance-
ment peaks in the traditional NMR experiments, the use
of evanescent waves results in an asymmetry between the
mode localized near the front wall, where the evanescent
pump and probe beams are, and the one at the back wall.
This asymmetry strongly depends on surface character-
istics.

To determine the microscopic parameters τs, ξs and φs

for the wall interactions of Rb atoms, it is important to
use a cell of adjustable length so that the series of edge
enhanced EPR curves obtained for a number of different
cell lengths can be fitted by adjusting only the length of
the cell and using the same set of surface parameters since
the surface properties remain exactly the same when the

cell length is varied. This fitting procedure is based on
the calculations described in Schaden et al. (2007, 2008)
and Zhao et al. (2008b), and accurately determines the
surface parameters (Fig. 7). The parameters τs and ξs

are given in Table II for three representative cells. The
Zeeman phase shift φs on OTS and silicone is too small
to be determined reliably. The sensitivity of the fit to
surface parameters is demonstrated in Fig. 7(a) for τs,
illustrating the importance of the second derivative term
in the boundary condition (10), which is proportional to
τs. Using the values of ξs and neglecting φs, one can
deduce from Eq.(58) the normal gradient coefficient µ on
coated walls as shown in Table II.
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FIG. 7 Representative edge enhanced EPR curves. Filled
squares represent experimental data, and solid red lines are
the calculated curves corresponding to the best fit. Also
shown in (a) are calculated curves (dashed blue and dash-
dotted green) that correspond to less optimal values of τs,
with all other parameters being kept the same. The cell body
temperature is 105◦C. From Zhao et al., 2008a.

Table II. Representative values of τs, ξs, φs, and µ at cell
temperature 105◦C for three Pyrex glass cells coated with
OTS and silicone (Surfasil), the buffer gas (N2) density being
6 × 10−3 amg. Adapted from Zhao et al., 2008a.

Coating τs ξs φs µ
(µs) (10−3) (mrad) (cm−1)

OTS 0.6 1.6 < 1.0 0.40
OTS 0.5 1.0 < 1.0 0.25

Surfasil 1.8 15 < 1.0 3.75
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D. Spatial distribution of the polarization of the alkali

metal atoms near the wall

1. Normal gradient coefficient

For alkali metal atoms, due to the wall interactions,
the polarization near the wall is usually smaller than
that far away from the wall, resulting in a layer of in-
homogeneous polarization near the wall. When the dif-
fusion equation is applicable, the spatial distribution of
the polarization near the wall can be determined as fol-
lows (Masnou-Seeuws and Bouchiat, 1967). Consider a
one dimensional problem with the cell wall at z = 0.
The z-axis points out of the cell. Suppose the optical
pumping rate P and gas phase relaxation rate 1/T are
spatially uniform. In the steady state, diffusion equation
(2) for the expectation value of an observable Q, such as
longitudinal polarization, becomes

−Dd
2〈Q〉
dz2

= P (q − 〈Q〉) − 〈Q〉
T

, (59)

where q is related to 〈Q〉−∞, the equilibrium value of 〈Q〉
far away from the wall, by 〈Q〉−∞ = Pq/(P +T−1). The
wall interaction is described by the boundary condition
(17), neglecting the second derivative term,

d〈Q〉
dz

∣∣∣∣
z=0

= −µ〈Q〉0 , (60)

where the normal gradient coefficient µ = 3 ξB

s /2λ(2 −
ξB

s ). The solution of Eqs.(59) and (60) is

〈Q〉 = 〈Q〉0 + µλD〈Q〉0 (1 − ez/λD ) , (61)

where λD =
√
D/(P + T−1) is the characteristic width

of the inhomogeneous layer near the wall. For small z,
the boundary condition (60) allows 〈Q〉 to be written as

〈Q〉 = 〈Q〉0 − µ〈Q〉0 z . (62)

From the boundary condition (60) one sees that if the
cell wall were displaced backward a distance 1/µ and the
slope of 〈Q〉 at z = 0 were to extend to the displaced
wall, 〈Q〉 would be zero at the displaced wall, in analogy
with viscous slip in gas kinetic theory (Kennard, 1938).
Thus 1/µ describes how close to zero the polarization at
the cell wall is. For example, µ = ∞ corresponds to zero
polarization at the wall and µ = 0 to uniform polarization
in a cell with non-relaxing walls.

2. Zeeman polarization near the wall

Grafström and Suter (1996a,b) used reflection spec-
troscopy to study the Zeeman polarization near the cell
wall. They measured µ and ξB

s for Na atoms in both
coated and uncoated Pyrex cells. The experiment was

done in cells that contained Na and 0.12 amg Ar buffer
gas at a temperature of 540 K. The Na vapor was po-
larized by a horizontal pump beam, the polarization of
which was modulated between left and right circular po-
larizations. A static magnetic field was applied in the
vertical direction. The inhomogeneous layer of the vapor
polarization near the wall was studied using a linearly
polarized horizontal probe beam at an angle of incidence
slightly smaller than the critical angle θc of total internal
reflection. The change in the polarization of the reflected
probe beam served as the signal (Sec. VII.B).

The wall interaction parameters were obtained by com-
paring the measured line shape of the signal with the
calculated one. The experiment was carried out using
two different but complementary methods. In the first
method the polarization of the pump beam was modu-
lated at the Larmor frequency while its frequency was
scanned across the resonance. In the second method
the frequency of the pump beam was fixed at resonance
while the modulation frequency of its polarization was
scanned across the Larmor frequency. The former is suit-
able for large ξB

s while the latter for small ξB

s . Thus it
was found that for uncoated Pyrex glass cells ξB

s = 0.47
and µ = 5.1 × 103 cm−1. The polarization at the wall is
3% of that far away from the wall. For silicone-coated
cells it was found that ξB

s = 0.01 and µ = 84 cm−1. The
polarization at the wall is 70% of that far away from the
wall. Thus the values of ξB

s and µ in silicone-coated cells
agree with those obtained using edge enhanced EPR in a
silicone-coated cell (see Table II) since µ is proportional
to the buffer gas density.

3. Hyperfine polarization near the wall

The normal gradient coefficient for the hyperfine polar-
ization in uncoated cells was estimated using evanescent
wave spectroscopy (Zhao and Wu, 2003, 2005). The hy-
perfine polarization of the ground-state Rb atoms is

〈S · I〉 =
I(I + 1)

na + nb

Å
na

ga
− nb

gb

ã
, (63)

where na and nb are, respectively, the population den-
sities of the ground-state hyperfine multiplets, with ga

and gb being their statistical weights. Uncoated Pyrex
glass cells were filled with 87Rb vapor and 0.03 amg
of N2 gas. The hyperfine polarization was produced
by a pump beam perpendicular to the cell surface and
tuned to the transitions 2S1/2 F = 1 → 2P1/2 F

′ = 1, 2,
and probed by a weak beam at an angle of incidence
slightly larger than the critical angle θc of total inter-
nal reflection (Sec. VII.C). The frequency ν of the probe
beam was scanned across the Rb D1 line, and its re-
flectivity R(ν) measured. For each penetration depth
d of the probe beam, the average population densities
na and nb, determined as the fitting parameters that
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gave the best fit between the measured R(ν) and the
calculated one, were used in Eq.(63) to compute the
average hyperfine polarization 〈S · I〉. A linear fit of
the data points from three uncoated Pyrex cells that
correspond to d ≤ 1.0 × 10−4 cm yields an intercept
〈S · I〉0 = 0.14 as compared with 〈S · I〉−∞ = 0.73 and
a slope of − 0.9 × 103 cm−1. From Eq.(62) one obtains
µ = 6 × 103 cm−1.

E. Phase shift of hyperfine transitions due to wall collisions

During the wall collision of an alkali metal or hydro-
gen atom, the van der Waals forces between the colliding
atom and the constituent atoms of the wall in most cases
outweigh the Pauli exclusion forces, and cause a net re-
duction of the unpaired electron density at the nucleus of
the alkali metal or hydrogen atom, resulting in a down-
ward shift of its hyperfine transition frequency and con-
sequently a negative phase shift. However, for hydrogen
atoms, due to their small polarizability, the van der Waals
forces in some cases are cancelled or even outweighed by
the Pauli exclusion forces. This causes the unpaired elec-
tron density at the proton to remain unchanged or even
increase, resulting in a null or an upward frequency shift
and hence a zero or a positive phase shift. The measured
phase shift φhfs per wall collision is the ensemble aver-
age of the time-weighted average phase shifts per wall
collision of individual atoms.

Zitzewitz and Ramsey (1971) studied the temperature
dependence of φhfs for the hyperfine transition of H atoms
on Teflon−120, and observed a continuous change of the
phase shift from negative to positive values, crossing zero
at 374 K. Similar temperature dependence of φhfs for H
atoms on Teflon−120 was observed with a slightly dif-
ferent temperature (385 K) for the zero phase shift (Petit
et al., 1980). This change of φhfs from negative to positive
values with increasing temperature was attributed to the
change of the relative importance of the van der Waals
forces and the Pauli exclusion forces as a result of phase
changes in Teflon. The same physics, that is, the rel-
ative importance of the attraction and repulsion forces,
also explains the hyperfine frequency shift of H atoms
trapped in noble gas matrices, upward shift for Ne, and
downward shift for Ar, Kr, and Xe (Adrian, 1960; Foner
et al., 1960), and the pressure shift in optical pumping
(Anderson et al., 1960; Arditi and Carver, 1958).

In hydrogen masers (Goldenberg et al., 1960; Kleppner
et al., 1962a) the hyperfine frequency shift due to wall
collisions in the storage bulb constitutes one of the most
important factors that affect the long term frequency sta-
bility. Due to its importance in atomic frequency stan-
dards, the phase shift φhfs for alkali metal and hydrogen
atoms on various coatings has been measured. Some rep-
resentative measured values are listed in Table III.

Table III. Average phase shift φhfs per wall collision of the
0 − 0 hyperfine transition in the ground state of the alkali
metal atom and hydrogen atom in coated cells. In the study
of Robinson and Johnson, (2,±2) → (1,±1) hyperfine transi-
tions were used.

Coating Isotope φhfs T Reference

(mrad) (K)

Paraflint 85Rb −21 343 Vanier et al. (1974)
Paraflint 85Rb −22 298 Budker et al. (2005)
C50H102

85Rb −37 298 Budker et al. (2005)
D−Paraffin 85Rb −49 306 Corsini et al. (2013)
Alkene C20−24 85Rb −32 302 Corsini et al. (2013)
Alkene C30 85Rb −39 303 Corsini et al. (2013)
Paraflint 87Rb −59 303 Brewer (1963)
C40H82

87Rb −58 299 Robinson and Johnson
(1982)

Paraflint 87Rb −65 298 Budker et al. (2005)
C40H82

87Rb −50 294 Budker et al. (2005)
C40H82

87Rb −43 295 Budker et al. (2005)
Alkene C20−24 87Rb −39 302 Corsini et al. (2013)
Paraflint 133Cs −90 Goldenberg et al.

(1961)
Paraffin 39K −2.8 325 Guzman et al. (2006)
(CH3)2SiCl2 H 0.19 Kleppner et al. (1962a)
(CH3)2SiCl2 H −0.076 300 Zitzewitz and Ramsey

(1971)
Teflon−120 H −0.022 150 Desaintfuscien et al.

(1977)
Teflon−120 H −0.0016 360 Zitzewitz and Ramsey

(1971)
Teflon−120 H 0 374 Zitzewitz and Ramsey

(1971)
Teflon−120 H 0.0039 410 Zitzewitz and Ramsey

(1971)

The phase shift φhfs is proportional to ν0Ea, where ν0

is the hyperfine frequency of the free atom and Ea the
adsorption energy (Goldenberg et al., 1961). The latter
is proportional to ααs, with α and αs being respectively
the polarizability of the adsorbed atom and that of the
constituent atoms of the wall (see Eq.(68)). For example,
the ratio of the measured phase shift for 87Rb to that for
85Rb on Paraflint is approximately equal to the ratio of
ν0 for 87Rb to that for 85Rb since α is the same for iso-
topes. The small phase shift for hydrogen, especially on
flurocarbon surfaces, is due to the small polarizabilities
of hydrogen and fluorine.

The average phase shift φhfs per wall collision is de-
duced from the measured hyperfine frequency shift ∆ωhfs,
which is related to φhfs by

∆ωhfs =
φhfs

τb + τs
, (64)

where τb is the average time between two consecutive wall
collisions. Since τs ≪ τb in most experiments, Eq.(64)
can often be written as ∆ωhfs = φhfs/τb.

Eq.(64) is the ensemble average of the time-weighted
average frequency shifts of individual atoms. It is valid
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for ξs ≪ 1, in which case the atom undergoes many wall
collisions before it relaxes so that the width of the distri-
bution of time-weighted average frequency shifts for in-
dividual atoms is sufficiently narrow for an ensemble av-
erage frequency shift given by Eq.(64) to be well-defined.
The dispersion in the time-weighted average frequency
shifts of individual atoms results in a line broadening
(Goldenberg et al., 1961).

F. Wall interactions on alkali hydride

On the alkali hydride walls such as CsH, the Cs+ and
H− are isoelectronic to Xe and He, and therefore both the
scalar magnetic dipole-dipole interaction and the spin-
rotation interaction of the alkali metal atoms are orders
of magnitude larger on Cs+ than on H− (Sec. IV.A).

1. Polarization of alkali hydride walls

Even though the polarization of the hydrocarbon or
silane coatings due to the wall collisions of polarized al-
kali metal atoms is negligible (Sec. V.C and Table II), the
nuclear polarization of 133Cs+ on the CsH coating by the
polarized Cs vapor was observed (Ishikawa et al., 2007).

Cells coated with CsH film were filled with Cs vapor
and N2 gas. To facilitate the detection of the nuclear
polarization of CsH salt, a magnetic field of 9.4 T was
used. At such high fields the electron and nuclear spins
of the Cs atom are decoupled to a first approximation.
However, optical pumping can still produce a small nu-
clear polarization of the gas phase Cs atoms through the
momentary hyperfine-shift interaction δA ~

2S · I due to
a small change in the valence electron density at the nu-
cleus of the Cs atom during the Cs−N2 collisions (Adrian,
1960; Arditi and Carver, 1961; Walter et al., 2002).

Either the polarized electrons or the polarized nuclei
of the Cs atoms in the vapor can polarize the 133Cs+

nuclei on CsH. However, the dependence of the NMR
enhancement on the N2 pressure is different for the two
mechanisms, from which it was concluded that at 9.4 T
the 133Cs+ nuclei were polarized mainly by the electrons
of the Cs atoms via the scalar magnetic dipole-dipole
interaction. The enhanced NMR signal for the 133Cs+

nuclei at 9.4 T is shown in Fig. 8. One possible reason
for the modest NMR enhancement is the large energy
mismatch of the spin exchange wall interaction between
the Cs electron and the Cs+ nucleus at high fields.

Larger enhancement was observed at a lower magnetic
field of 2.7 T. The lower magnetic field allows the hy-
perfine coupling A~2S · I to bring into the decoupled
states |mS,mI〉 larger amplitude of admixtures such as
|mS ± 1,mI ∓ 1〉 with the same mS +mI so that optical
pumping can directly excite transitions which change the
values of mI , thus increasing the nuclear polarization of

the gas phase Cs atoms, which can therefore also con-
tribute to the nuclear polarization of 133Cs+ through the
tensorial magnetic dipole-dipole interaction.

N
M

R
 a

m
pl

itu
de

 (m
V/

H
z)

NMR Detuning (kHz), relative to 52.386 MHz

-300

-200

-100

0

100

200

300

-8-6-4-2024

FIG. 8 NMR spectra of 133Cs+ in CsH coating. Also shown
for comparison is the thermal signal. From Ishikawa et al.,
2007.

2. Phase shift of Zeeman transitions on alkali hydride walls

The phase shift of Zeeman transitions for alkali metal
atoms due to wall collisions, while being too small to
be reliably measured on silane coatings such as OTS be-
cause of the negligible wall polarization (Sec. IV.C.2), was
measured on RbH-coated walls thanks to the enhanced
scalar magnetic dipole-dipole interaction at the Rb+ sites
(Ulanski and Wu, 2014). The phase shift φs produces a
Zeeman frequency shift δωs. EPR frequency shift of the
same origin is also observed for the alkali metal atoms in
a gaseous mixture with polarized noble gas atoms (Hap-
per et al., 1984; Newbury et al., 1993a; Schaefer et al.,
1989, 1990).

The experiment was performed in two identical cylin-
drical Pyrex cells of variable length containing 87Rb and
N2, one coated with OTS and the other with RbH. The
σ± beams optically pumped 87Rb atoms from the F = 1
level in order to guarantee that the sign of the light shift
δωlight is opposite to that of the wall shift δωs (Mathur
et al., 1968), thus allowing δωs to be unambiguously
identified. A weak s-polarized evanescent probe beam
was tuned to 5 2S1/2 F = 2 → 5 2P1/2 F

′ = 1, 2, and
its Faraday rotation, which depends on the polarization
of the F = 2 level, was measured by a Wollaston prism
(Sec. VII.B.2) and produced the EPR curve when the fre-
quency of an oscillating magnetic field along the y-axis
scanned across the Larmor frequency of the Rb atom.

The EPR frequency is ω(±) = ω0 ± δωlight ± δωs for
σ± pumping. Thus ω(+) − ω(−) = 2δωlight + 2δωs. The
observation that ω(+) −ω(−) does not depend on the cell
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length L and remains negative in the OTS-coated cell
whereas in the RbH-coated cell it increases from negative
to positive as L decreases shows that the frequency shift
due to wall collisions is negligible in the OTS-coated cell
but not in the RbH-coated cell. By measuring ω(+)−ω(−)

in cells coated with OTS and RbH one obtains δωs.
Including the light shift and considering only the lowest

mode ψ0(z) ∼ cos 2x0z/L (Sec. IV.C.1), one obtains from
Eq.(56) the eigenvalue α0 = iω0 + iδωlight + 4x2

0D/L
2.

The imaginary part of 4x2
0D/L

2 is the EPR frequency
shift due to wall collisions

Im 4x2
0D/L

2 = δωs . (65)

Since τs is expected to be short on the alkali hydride
wall, the second derivative term can be neglected in the
boundary condition (57), which can then be written as

x0 tan(x0) =
3L

8λ
(ξs + iφs) , with 0 < Rex0 < π/2 .

(66)
The boundary condition (66) can be used together with
Eq.(65) to compute φs (Zhao et al., 2010), which was
found to be about 70 mrad per wall collision.

V. THE TIME SCALE OF WALL INTERACTIONS

A complete microscopic description of the wall inter-
actions of spin-polarized atoms requires the knowledge
of three microscopic time parameters τc, τs and τ ′

s. The
important roles they play in the wall interactions and
the experimental methods for determining them will be
discussed in this section.

A. Correlation time τc

The wall interaction as a stationary random function
is characterized by a correlation time τc. Physically τc

describes the time interval in which the wall interaction
is coherent and efficacious in causing the spin relaxation
of adsorbed atoms. The correlation time τc is most help-
ful in identifying the type of wall interactions that is re-
sponsible for the relaxation of a given observable. The
relaxation probability is proportional to the spectral den-
sity J(ωfi) of the correlation function of the wall inter-
action at the transition frequency ωfi (see Eq.(40)). The
spectral width of J(ωfi) is ∼ 1/τc, and consequently the
wall interaction is effective in producing transitions of fre-
quency ωfi < 1/τc. Thus, for transitions with large ωfi,
wall interactions with shorter τc are expected to be more
effective in relaxing the spins. For example, in the case
of Rb on paraffin, since for the typical magnetic fields
used in the experiment, ωF ≪ ∆W , the relaxation of
〈Sz〉 is associated with the magnetic dipole-dipole inter-
action, which has a longer correlation time, whereas the

relaxation of 〈S · I〉 is mainly due to the spin-rotation
interaction, which has a much shorter correlation time
(Bouchiat and Brossel, 1966).

Vastly different values for τc have been reported, rang-
ing from 10−12 to 10−5 s. For example, for Rb on paraffin,
the correlation time is ∼ 10−12 s for the spin-rotation in-
teraction and 4 × 10−10 s for the magnetic dipole-dipole
interaction (Bouchiat and Brossel, 1966). On the other
hand, τc for the wall interaction of 129Xe on silicone-
coated walls is ∼ 10µs (Driehuys et al., 1995). One possi-
ble explanation for such a long correlation time is that the
129Xe atoms are trapped in clathrates formed by the con-
stituent atoms of the coating (Driehuys et al., 1995; Dy-
bowski et al., 1991). The exceedingly long τc also seems
to imply that the neighboring protons in the clathrate
are polarized, which is consistent with the observation of
the proton polarization in the coating (Sec. III.D).

For the wall interactions that cause the relaxation of
Zeeman polarization, the transition frequency ωfi is pro-
portional to the external magnetic field B. Thus the re-
laxation rate, which is proportional to J(ωfi), decreases
with increasing B. The magnetic decoupling method
utilizes this magnetic field dependence of the relaxation
rate to determine τc. For example, a fit of the magnetic
field dependence of the relaxation rate of 〈Iz〉 for 129Xe
on silicone-coated walls to a sum of two expressions of
Eq.(38) yields two correlation times, the longer one be-
ing τc = 8.1±1.0µs (Driehuys et al., 1995). Similarly, the
magnetic field dependence of the relaxation rate of 〈Sz〉
for Rb on paraffin yields a correlation time τc > 10−10 s
for the magnetic dipole-dipole wall interaction (Bouchiat
and Brossel, 1966). For the quadrupole wall interaction
of 201Hg in quartz cells, there was little change in the re-
laxation rate of 201Hg when the magnetic field increased
from zero to 350 G, from which an upper limit τc < 10−7 s
was deduced for the correlation time of the quadrupole
wall interaction (Cohen-Tannoudji, 1963).

For the spin-rotation interaction, which causes the re-
laxation of 〈S · I〉, one deduces τc by comparing the re-
laxation rate of 〈S · I〉 for two isotopes which have dif-
ferent ∆W . For example, the observation that the re-
laxation rate of 〈S · I〉 on CnD2n+2 is practically the
same for both Rb isotopes implies that Jsr(∆W85) =
Jsr(∆W87) so that ∆Wτc ≪ 1 for both isotopes, from
which one deduces τc ≪ 2.3 × 10−11 s (Bouchiat and
Brossel, 1966). Physically, the spin-rotation wall inter-
action has a short correlation time because v in Eq.(47)
changes sign in a vibration period (∼ 10−12 s).

B. Average dwell time τs on the wall

The average dwell time τs on the wall is the ensem-
ble average of the time that a spin-polarized atom stays
on the wall without losing its polarization. It is one of
the most important microscopic parameters of wall in-
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teractions. The dwell time τs is given by the Arrhenius
relation (de Boer, 1953)

τs = τ0 e
−Ea/kT , (67)

where Ea is the adsorption energy and τ0 describes the
migration of adsorbed atoms on or in the wall. When
there is diffusion into the wall, τ0 can be orders of mag-
nitude larger than τ ′

0
(see Eq.(71)).

Adsorption energy Ea is a negative quantity. Thermo-
dynamically, this is due to the fact that the change of the
Gibbs free energy must be negative (∆G = ∆H−T∆S <
0) for adsorption of gas phase atoms to occur. Since
the motion of the atoms is more restricted when they
are adsorbed on the wall than when they are in the gas
phase, the entropy of the system decreases with adsorp-
tion (∆S < 0). Therefore, adsorption must be exother-
mic (∆H < 0), and hence Ea < 0.

The microscopic nature of the adsorption is the van
der Waals attraction forces between the adsorbed atom
and the constituent atoms of the wall. Considering only
the dipole-dipole interaction, the adsorption energy Ea

is approximately given by (de Boer, 1950)

Ea = −
∑ 3

2 r6
ααs

IsI

Is + I
, (68)

where the summation includes all the constituent atoms
of the wall, r is the distance between these wall atoms
and the adsorbed atom, I the ionization energy of the
adsorbed atom, and Is that of the constituent atoms.

When the Arrhenius relation (67) holds, Ea and τ0

can be deduced from the temperature dependence of τs.
However, in almost all the experimental studies, τs is not
directly measured. What is measured is the tempera-
ture dependence of a quantity that is proportional to τs.
Therefore only Ea and not τ0 can be determined. Some
of these quantities are the hyperfine frequency shift of
alkali metal or hydrogen atoms, the relaxation rate of
〈Sz〉 of alkali metal atoms, the relaxation rate of 〈Iz〉 of
3He and 129Xe, and the beat period of the precession sig-
nal of 131Xe. For example, the hyperfine frequency shift
∆νhfs due to wall collisions is proportional to the frac-
tion τs/(τb + τs) of time an atom is adsorbed on the wall,
which is approximately equal to τs/τb because in most
experiments τs ≪ τb. Since τb is proportional to T−1/2,
the slope of a plot of ln(∆νhfsT

−1/2), or ln(∆νhfs), an ap-
proximation used in some studies for small temperature
ranges, against 1/kT yields Ea. Some reported values of
Ea for alkali metal atoms, the hydrogen atom and noble
gas atoms on various walls are listed in Table IV.

More than one type of adsorption site could exist on
the wall. Müller (1965) found that the adsorption of un-
polarized helium atoms on the glass surface for temper-
atures between 13.8 K and 20.4 K could be described by
two different adsorption energies, Ea = − 0.01 ± 0.002 eV
and Ea = − 0.023 ± 0.001 eV, with the latter correspond-

ing to only a very small fraction (∼ 10−4) of the ad-
sorption sites. Fitzsimmons et al. (1969) found that the
temperature dependence of the relaxation rate 1/T1 for
polarized 3He on aluminosilicate glass could be described

Table IV. Some representative measured values of the adsorp-
tion energy Ea on various walls.

Coating Isotope |Ea| Reference

(eV)

Paraflint 85Rb 0.078 Vanier et al. (1974)

Si(CH3)2Cl2 Rb 0.2 Camparo (1987)
Paraflint 87Rb 0.1 Brewer (1963)
Paraffin 87Rb 0.1 Bouchiat and Brossel

(1966)
C40H82

87Rb 0.062 Rahman and Robinson
0.076 a (1987)

OTS 87Rb 0.065 Yi et al. (2008)
OTS 87Rb 0.19 Zhao et al. (2009)
C40H82

87Rb 0.06 Budker et al. (2005)
Sapphire Na 0.75 Bonch-Bruevich et al.

(1985)
Pyrex Na 0.71 Gozzini et al. (1992)
Paraflint Cs 0.09 Liberman and Knize

(1986)
Pyrex Cs 0.53 Stephens et al. (1994)
Sapphire Cs 0.43 Stephens et al. (1994)
3He (liquid) H 3.6 × 10−5 Jochemsen et al. (1981)
3He +4 He H 2.9 × 10−5 van Yperen et al.
(liquid) (1981)

4He (liquid) H 7.7 × 10−5 Matthey et al. (1981)
4He (liquid) H 8.0 × 10−5 Morrow et al. (1981)
4He (liquid) D 2.2 × 10−4 Silvera and Walraven

(1980)
Glass He 0.01 Müller (1965)
Pyrex 3He 0.01 Fitzsimmons et al.

(1969)
Aluminosilicate 3He 0.1, 0.01b Fitzsimmons et al.
glass (1969)
Solid H2

3He 1.0 × 10−3 Lefevre-Seguin et al.
(1985)

Solid D2
3He 1.7 × 10−3 Lefevre-Seguin et al.

(1985)
Solid Ne 3He 3.3 × 10−3 Lefevre-Seguin et al.

(1985)
Solid O2

3He 0.011 Lefevre-Seguin and Brossel
(1988)

Solid N2
3He 0.017 Lefevre-Seguin and Brossel

(1988)
Cesiated-glass 3He 2.0 × 10−4 Tastevin (1992)
Duran glass 83Kr 0.095 Butscher et al. (1996)
Silicone 129Xe 0.1 Driehuys et al. (1995)
Duran glass Xe 0.3 Ahrens-Botzong et al.

(1973)
Duran glass 131Xe 0.12 Butscher et al. (1994)
Pyrex 131Xe 0.13 Volk et al. (1980)
Pyrex (cured) 131Xe 0.03 Wu et al. (1990)
RbH 131Xe 0.1 (Wu et al., 1990)

a Corresponding to temperatures 72.9 and 81.7◦C, respectively.
b Corresponding to two kinds of adsorption sites.
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by two distinct adsorption energies, Ea = − 0.01 eV for
temperatures below ∼ 240 K and Ea = − 0.1 eV for higher
temperatures. The exact nature of these sites is un-
known.

FIG. 9 Wall temperature dependence of the 87Rb hyperfine
frequency shift νr − ν0, where νr is the observed hyperfine
frequency and ν0 the hyperfine frequency of the free atom, in
a Paraflint-coated cell. The Rb reservoir temperature is fixed
at 30◦C while the wall temperature T varies. From Brewer,
1963 with the permission of AIP Publishing.

Fig. 9 shows the temperature dependence of the 87Rb
0 − 0 hyperfine transition frequency shift due to wall col-
lisions in a Paraflint-coated cell. Since the frequency
shift is proportional to τs (Brewer, 1963), Fig. 9 shows
that τs follows the Arrhenius relation (67), decreasing as
temperature increases up to 72◦C, above which τs starts
to increase rapidly as temperature further increases. It
is known that Paraflint undergoes a structural change
around 72◦C, becoming more amorphous with increas-
ing temperature (Brewer, 1963; Seltzer et al., 2010). The
large increase in τs is attributed to the onset of diffu-
sion of Rb atoms into Paraflint as a result of its struc-
tural change. This reversal of slope was later observed
in numerous experiments. For example, the temperature
dependence of the relaxation rate of 〈Sz〉 for 87Rb in
paraffin-coated cells displays a reversal of slope around
60◦C, which approximately corresponds to the melting
point of paraffin (Bouchiat and Brossel, 1966; Seltzer
et al., 2013). The reversal of slope was also observed for
diamagnetic atoms such as 199Hg and 201Hg in quartz
cells and was attributed to a change in the structure
of the wall (Cagnac and Lemeignan, 1967). The un-
derlying physics of the reversal of slope was elucidated
by the study of the wall relaxation of 3He as described
in Sec. III.B (Fitzsimmons et al., 1969; Fitzsimmons and
Walters, 1967). It is demonstrated that the onset of dif-
fusion into the wall is responsible for the rapid increase
in τs. This is further corroborated by the simultaneous
observations of a rapid increase in τs for Rb in alkene
-coated cells and a sharp decrease in the gas phase Rb
density in crossing the melting point (33◦C) of alkene
(Balabas et al., 2010).

Physically, the reason that diffusion into the coating
causes a large increase in τs could be twofold. First,
as was suggested by Brewer (1963), diffusion into the
coating could make Ea more negative. This is probably
because the Rb atoms inside the coating are in close prox-
imity to more constituent atoms than when they are on
the surface, and since van der Waals forces are additive,
one expects a more negative adsorption energy Ea for
Rb atoms inside the coating. Second, more importantly,
diffusion into the coating causes Rb atoms to visit more
sites, resulting in a large increase in τ0 and hence τs. A
more negative Ea as a result of diffusion into the coat-
ing seems to be supported by the study of Rahman and
Robinson (1987), who found that for Rb on tetracon-
tane (C40H82) coating Ea = − 0.062 eV at 72.9◦C, below
the melting temperature (∼ 81◦C) of tetracontane, and
Ea = − 0.076 eV at 81.7◦C, slightly above the melting
temperature. A direct measurement of τs for Rb atoms
on OTS coating at temperatures 366 K < T < 408 K
yielded τ0 = 2.2×10−9 s and Ea = − 0.19 eV (Zhao et al.,
2009). That Ea is more negative and τ0 is much larger
than τ ′

0
is also consistent with the aforementioned physi-

cal picture since Rb atoms are known to diffuse into OTS
at these temperatures (Rampulla et al., 2009).

The physical meaning of τ0 is further illustrated by
the following. The values of τs span several orders of
magnitude. For example, for Rb on paraffin (24◦C <
T < 35◦C), it was estimated that τs ∼ 10−9 s (Seltzer
et al., 2013) whereas for 129Xe on silicone-coated walls
(170 K < T < 300 K), it was found that τs > 10µs
(Driehuys et al., 1995). Since Ea = − 0.1 eV is the same
for Rb on paraffin and 129Xe on silicone (see Table IV),
the most obvious explanation for such a large difference
in τs is that τ0 is vastly different. Physically, this means
that, compared with Rb, the 129Xe atoms, due to their
high solubility in silicone and their much weaker wall
interaction, on average visit far more sites in the coat-
ing before leaving the wall without losing their polariza-
tion. In Paraflint-coated cells the exceedingly long τs for
the Rb atoms suggested by Brewer (1963) to account for
the disappearance of the hyperfine signal when Paraflint
completely melts above 105◦C can naturally be explained
by the exceedingly large τ0 in liquid Paraflint.

Since the adsorption energy Ea is relatively easy to
measure, the uncertainty in τs is mainly due to τ0, which
usually is not directly measured, but is taken to be
equal to τ ′

0
∼ 10−12 s, that is, the migration on the

wall or the diffusion into the wall is ignored, and τs is
underestimated. For example, using Ea = − 0.1 eV and
τ0 = 10−12 s, Brewer (1963) deduced τs = 5 × 10−11 s for
87Rb on hydrocarbon-coated walls at 30◦C, about two
orders of magnitude smaller than the value reported by
Seltzer et al. (2013).

The dwell time τs has not been directly measured for
polarized diamagnetic atoms. For polarized alkali metal
atoms, the following two direct measurements of τs have
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been reported.

Determination of τs using edge enhanced EPR

The dwell time τs as well as other wall interaction pa-
rameters can be determined from the best fit between
the measured localized edge enhanced EPR lines and the
calculated ones (Sec. IV.C.2). As can be seen in Fig. 7,
as dwell time τs increases, the peaks localized near the
front and back surfaces shift in frequency space further
toward front and back surfaces, illustrating vividly the
role of τs.

Determination of τs using light shift

The experimental arrangement is the same as that
described in Sec. IV.C.1 except that the magnetic field
along the x-axis is uniform throughout the cell (Zhao
et al., 2009). The cylindrical cell has a diameter of 25 mm
and an adjustable length between 70 and 500µm. The
method owes its sensitivity to the use of thin cells of vari-
able length in which the average time a Rb atom spends
on the surface is comparable to the time it spends in the
bulk. For a uniform magnetic field one only needs to
consider the lowest mode ψ0(z) ∼ cos 2x0z/L of Eq.(56)
and its eigenvalue α0 = iω0 + 4x2

0D/L
2. The Rb Larmor

frequency ω, which is given by Imα0, can be written as

ω = ω0 +
φs

2L/v̄ + τs
, (69)

where we have used the boundary condition (57), which
on anti-relaxation coatings (ξs ≪ 1) can be approximated
as x2

0 = L2µ/2(L+ 2η).
Since the length of the cell is approximately two orders

of magnitude smaller than the diameter, the collisions of
Rb atoms with the side walls can be neglected. From
kinetic theory, the average time between two consecutive
collisions of a Rb atom with the front or back surface
is τb = 2L/v̄. Thus the boundary condition with the
second derivative term reproduces the ensemble average
frequency shift due to wall collisions given by Eq.(64).

Evanescent beams with σ± polarizations are used to
pump and probe the 87Rb atoms in the vicinity (∼
10−4 cm) of the cell wall. The negligible phase shift φs in

Eq.(69) due to wall collisions is now replaced by φs+φ
(±)
e ,

where φ
(±)
e is the average light shift (Mathur et al., 1968)

due to the evanescent σ± pump beam. Let the difference
between the EPR frequencies for σ− and σ+ pumping be
∆ = ω(−) − ω(+). We have

2L

v̄
= (φ(−)

e − φ(+)
e )

1

∆
− τs . (70)

Due to the use of evanescent pump beam, the light in-

duced phase shift φ
(−)
e − φ

(+)
e remains unchanged while

the cell length L is varied. Thus the intercept of a plot
of 2L/v̄ against 1/∆ is equal to −τs (Fig. 10). The dwell

times on the OTS coating determined using this method
agree with those obtained using edge enhanced EPR (see
Table II). By directly measuring τs for a number of differ-
ent wall temperatures in an OTS-coated cell and fitting
the temperature dependence of τs to the Arrhenius re-
lation (67), one obtains both τ0 = 2.2+5.1

−1.4 × 10−9s and
Ea = − 0.19 ± 0.03 eV.
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FIG. 10 Representative plots of 2L/v̄ against 1/∆ for a cell
coated with OTS (✷) at 103◦C, and cells coated with OTS
(©) and paraffin (�) at 72◦C. Adapted from Ulanski and Wu,
2011 with the permission of AIP Publishing and Zhao et al.,
2009.

C. Average dwell time τ ′
s at a given site

While the atoms are adsorbed on the wall, they hop
from site to site. The physical reason for this hopping
instead of sliding behavior of the adsorbed atoms on the
surface is that the adsorption energy Ea at different sur-
face sites tends to be slightly different because of the
sightly different atomic environment at different sites.
The adsorbed atom hops from a site to a neighboring
one whenever its thermal kinetic energy exceeds the dif-
ference between the adsorption energies Ea at the two
sites. If we let ∆Ea, sometimes referred to as the activa-
tion energy, be the average difference of the adsorption
energies Ea at neighboring sites, the average dwell time
τ ′

s at a given site is (de Boer, 1953)

τ ′
s = τ ′

0
e−∆Ea/kT , (71)

where τ ′
0

is commonly taken to be of the order of the
vibration period (∼ 10−12 s). The vibration period of
an adsorbed atom in the surface potential well is pro-
portional to the square root of the mass of the adsorbed
atom, and therefore the vibration period can be an order
of magnitude smaller for hydrogen than, for example, for
caesium (Goldenberg et al., 1961).
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For Rb on paraffin-coated walls it was reported that
τ ′

s = 4×10−10 s, which is equal to the correlation time τc

for the magnetic dipole-dipole wall interaction (Bouchiat
and Brossel, 1966). This implies that the dipole-dipole
interaction at different sites on the wall is not coherent.
Physically, this is because of the negligible proton polar-
ization on the paraffin surface.

The potential importance of ∆Ea in the wall interac-
tions of spin-polarized atoms was pointed out in a study
by Corsini et al. (2013). It was reported that the Zeeman
relaxation rate of Rb atoms in cells coated with alkene
(CnH2n) is almost two orders of magnitude smaller than
in cells coated with alkane whereas the hyperfine fre-
quency shifts of Rb in alkene- and alkane-coated cells
are comparable. Since the hyperfine frequency shift due
to wall collisions is proportional to dwell time τs, which
in turn has an Arrhenius dependence on Ea, it was sug-
gested that the small Zeeman relaxation rate in alkene
-coated cells was not owing to a small |Ea| but to a small
|∆Ea| on alkene-coated walls. Physically, a small |∆Ea|
would make the motion of the Rb atoms more like sliding
on the wall, resulting in a shorter interaction time (τ ′

s)
at each site. Hence a smaller relaxation rate.

VI. ANTI-RELAXATION COATINGS

Experiments involving polarized atoms are usually car-
ried out in glass cells. However, due to the presence of
paramagnetic centers on the glass walls, in most appli-
cations the inner walls of the cells are coated with anti-
relaxation coatings to mitigate the spin relaxation and
frequency shift due to the wall collisions.

The most commonly used anti-relaxation coatings are
alkanes such as paraffin and silane compounds such
as dimethyldichlorosilane, silicone, and OTS. Alkane
coating eicosane (C20H42) was first used by Robin-
son et al. (1958). Silane coating dimethyldichlorosilane
((CH3)2SiCl2) was first used by Bouchiat et al. (1960)
and Alley (1961). The difference between the alkanes and
the silane compounds is that the former is physisorbed
whereas the latter is chemisorbed on the glass surfaces.
Therefore the silane coatings such as OTS can be oper-
ated at much higher temperatures up to 170◦C than the
alkane coatings such as paraffin (Seltzer and Romalis,
2009). The silane compounds tend to polymerize, result-
ing in a more uniform coating on the glass surface. The
outmost layer of both the alkane coatings and the silane
coatings is composed of the inert methyl groups −CH3,
which are responsible for the anti-relaxation property of
the coatings (Camparo, 1987). The methyl groups −CH3

do not react chemically with alkali metal atoms, which
are physisorbed on these coatings. This is corroborated
by x-ray photoelectron spectroscopy, which indicates that
there are no Rb−C bonds on the coatings (Seltzer et al.,
2010). More recently it was reported that the spin re-

laxation probability on the alkene that has 20 carbon
atoms per molecule is more than one order of magnitude
smaller than on the paraffin coating (Balabas et al., 2010;
Balabas and Tretiak, 2013). The melting temperature of
the alkene coating is 33◦C. However, the alkenes with
a longer chain (∼ 30 carbon atoms per molecule) can
be operated at higher temperatures (> 100◦C) but with
an anti-relaxation property comparable to OTS (Seltzer
et al., 2013). The reason that the unsaturated C = C
bonds result in a much smaller spin relaxation probabil-
ity is not fully understood.

Cells freshly coated with anti-relaxation coatings often
require to be cured. For example, silicone-coated cells
are usually baked at 85◦C for a few days (Zeng et al.,
1985). In paraffin-coated cells filled with Rb, there is no
absorption of the D lines until the cells are baked for
four to five days at 40◦C, after which the coating would
reach a stable state (Bouchiat and Brossel, 1966). The
anti-relaxation property tends to improve once the cells
are cured. For example, the curing process results in a
decrease of the wall relaxation rate of Rb hyperfine po-
larization (Camparo et al., 1987). A closely related phe-
nomenon is that in coated cells the alkali vapor number
density is always lower than one would expect from the
vapor-liquid equilibrium number density (Bouchiat and
Brossel, 1966; Gozzini et al., 1993; Grafström and Suter,
1996a; Meucci et al., 1994; Zeng et al., 1983). The cur-
ing process tends to decrease the discrepancy between the
alkali vapor density and the saturated number density.

The microscopic nature of the curing process is not
completely understood, but the following studies have
shed some light on the nature of the curing process. For
a freshly prepared dimethyldichlorosilane coating, Cam-
paro et al. (1987) showed that the residual silanol groups
(Si−OH) were removed from the glass surface by chem-
ical reactions with Rb atoms, making the surface more
uniformly covered with the methyl −CH3 groups and re-
sulting concomitantly in a reduction of Rb vapor number
density. Tretiak et al. (2016) studied the curing process
in the alkene-coated cells using NMR and Raman spec-
troscopy, and showed that, during the curing process, the
alkene molecules, in the presence of the alkali metal (Cs),
were converted to trans- and cis-isomers of non-terminal
alkene molecules. It is also known that alkali metal atoms
diffuse into the coatings (Bouchiat and Brossel, 1966;
Liberman and Knize, 1986), which is responsible for the
phenomenon of light induced atomic desorption (Gozzini
et al., 1993). Diffusion of Rb atoms into OTS coating at
120◦C (Rampulla et al., 2009) and into tetracontane at
60◦C (Seltzer et al., 2010) was confirmed by x-ray photo-
electron spectroscopy. Raman spectra taken at 21◦C as a
function of the distance from the cell wall in a potassium
cell coated with alkene showed that the K atoms per-
meated through the entire 180µm-thick alkene coating
(Tretiak et al., 2016).

The curing process also happens in bare glass cells.
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For example, in bare Pyrex glass cells, the relaxation
time for 129Xe can be lengthened by one order of mag-
nitude by exposing the inner cell walls to Rb vapor at
80◦C for a few weeks (Zeng et al., 1983). For 131Xe the
beat period and relaxation rate in bare Pyrex glass cells
reach a value that depends only on the cell geometry and
temperature after the cell surface has been exposed to
Rb vapor at about 80◦C for several days. The curing
process in those cells probably corresponds to the inner
cell walls being gradually coated by the Rb atoms. This
assumption is supported by the observation that the ad-
sorption energy of 131Xe on cured walls is found to be
Ea = −0.03 eV (Wu et al., 1990), significantly smaller
in magnitude than Ea = −0.3 eV for xenon on Pyrex
glass walls not exposed to alkali metal (Ahrens-Botzong
et al., 1973). It is also in agreement with the observa-
tion that the adsorption energy for 3He on cesiated Pyrex
glass walls is Ea = −2 × 10−4 eV (Tastevin, 1992), much
smaller in magnitude than Ea = −0.01 eV on Pyrex glass
walls not exposed to alkali metal (Fitzsimmons et al.,
1969).

A more quantitative study concludes that at 94 ◦C the
inner wall of cured bare Pyrex glass cells that contain
Rb metal is covered with 6−7 layers of liquid Rb (Ma
et al., 2009). This is consistent with the observation that,
unlike the Pyrex glass cells coated with anti-relaxation
coatings, the Rb vapor density in bare Pyrex cells is well
described by the equilibrium density even in the vicinity
(∼ 10−4 cm) of the cell wall (Zhao et al., 2001).

The presence of a Rb film on the cell wall in cured
bare glass cells containing Rb metal also explains why
in those cells a Rb atom becomes depolarized in a single
wall collision, i.e. the relaxation probability per wall
collision ξB

s = 1 (Happer, 1972; Seltzer et al., 2013). In
steady state, when a polarized Rb atom collides with
the Rb film on the wall, it is replaced by an unpolarized
Rb atom released from the film into the gas phase. In
contrast, the fact that a Rb atom can collide with the
walls in cured paraffin-coated cells many times before
losing its polarization clearly indicates that the paraffin
-coated walls are not covered with a thin film of Rb even
though the Rb atoms diffuse into the paraffin coating
(Bouchiat and Brossel, 1966). Physically, this difference
most likely appertains to the different adsorption energies
of Cs on the bare glass surface and on the paraffin-coated
surface (see Table IV).

The following observation seems to suggest that the
alkali metal layers on the cured bare glass surface are
slightly fragmented, resulting in an incomplete coverage
of the cell surface by the alkali metal. The relaxation
time T1 of 3He in bare aluminosilicate glass cells is about
one order of magnitude longer than in bare Pyrex glass
or fused silica cells, and is about 10% longer in Cs-coated
aluminosilicate glass cells than in Cs-coated Pyrex or
fused silica cells (Heil et al., 1995). This seems to im-
ply that, to some degree, 3He atoms in Cs-coated cells

still come in contact with the glass surface probably be-
cause of the incomplete coverage of the glass surface by
Cs (Deninger et al., 2006; Heil et al., 1995).

The assumption of the incomplete coverage of the bare
glass surface by the alkali metal also seems to be consis-
tent with the observation that ξB

s < 1 for the alkali metal
atoms on the bare glass surface. For example, Grafström
and Suter (1996a) studied the Zeeman polarization of
Na near the bare glass surface (Sec.IV.D.2). They found
ξB

s = 0.47, which implies that the bare glass surface is not
fully covered with Na and that ξB

s < 0.47 on the parts of
the bare glass surface that are not covered with Na. In a
study by Horsley et al. (2013) the Franzen’s “relaxation
in the dark” technique was used to perform spatially re-
solved imaging of T1 of the hyperfine polarization of Rb
in a cell with glass windows and silicon side walls. They
deduced that ξB

s = 0.05 ± 0.01 for Rb atoms on the sili-
con wall, which indicates that the silicon wall is partially
covered with Rb and that ξB

s < 0.05 on the parts of the
silicon surface that are not covered with Rb. The silicon
surface is covered with a thin layer (∼ 2 nm) of native
SiO2 (Mang et al., 1996), and therefore is similar to the
Pyrex glass surface, possessing dangling bond defects. It
is not clear why for Rb atoms the relaxation probabilities
per wall collision on the silicon surface uncoated with Rb
and on the Pyrex glass surface coated with silicone have
the same order of magnitude (see Table II).

The curing process was also reported in bare fused sil-
ica cells that contain 199Hg (Lehmann and Brossel, 1966).
The T1 and T2 in a 4 cm cubic fused silica cells increased
from ∼ 0.1 s to 15 s and 5 s, respectively, after the cell
inner surface was exposed to the 199Hg vapor at room
temperature for several days. Thus the curing process in
the 199Hg cells is different from that in the Rb cells be-
cause the curing process in the 199Hg cells leads to a two
orders of magnitude increase in the relaxation time T1 of
199Hg, which clearly is not consistent with the presence of
a 199Hg film on the inner cell surfaces. The physics of the
curing process in the 199Hg cells is yet to be understood.

The performance of anti-relaxation coatings varies
widely. For example, a spin-polarized Rb atom can, on
average, collide more than 105 times with alkene-coated
walls before being depolarized (Balabas et al., 2010; Bal-
abas and Tretiak, 2013). This number goes down to
∼ 104 for cell walls coated with paraffin (Bouchiat and
Brossel, 1966), to ∼ 103 for cell walls coated with multi-
layer OTS (Seltzer et al., 2007; Zhao et al., 2008a) and to
∼ 102 for silicone-coated walls (Zhao et al., 2008a). De-
spite numerous studies using different techniques (Cam-
paro et al., 1987; Rampulla et al., 2009; Seltzer et al.,
2010, 2008; Yi et al., 2008; Zhao and Wu, 2004), the
large variation of the anti-relaxation property of these
coatings remains to be understood.

The performance of anti-relaxation coatings depends
on the coating temperature because the dwell time τs de-
pends on the physical state of the coating (Sec. V.B). For
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example, for rubidium, the reason for the degradation of
the performance of paraffin above its melting point 60◦C
is the increase in τs due to the onset of rapid diffusion of
Rb into the paraffin.

Even though alkane and silane coatings are very effec-
tive for alkali metal and 129Xe, they are not for 3He. In
fact, it was reported that uncoated Pyrex glass cells and
cells coated with dimethyldichlorosilane yielded the same
relaxation time for 3He (Gamblin and Carver, 1965).
The most obvious explanation is that the 3He atoms,
due to their small size, can readily diffuse through the
dimethyldichlorosilane coating and reach the Pyrex glass
surface.

In search of effective coatings for 3He to be used in,
for example, compressors, neutron spin filters, target
cells and others, the relaxation times of 3He have been
measured on a wide variety of materials, including semi-
conductors, metals, salts, oxides and plastics (Deninger
et al., 2006; Heil et al., 1999, 1995; Hussey et al., 2005;
Katabuchi et al., 2005; Timsit et al., 1971). For exam-
ple, silicon windows are often used in neutron spin filters
because of their high neutron transmission, but the re-
laxation time T1 of 3He on the Si surface is more than one
order of magnitude shorter than on the aluminosilicate
glass surface, and is comparable to that on the Pyrex
glass surface (Heil et al., 1999). This is consistent with
the observation that the mean twist angle 〈θ〉 for the
quadrupole wall interaction of 131Xe on the silicon sur-
face is comparable to that on the Pyrex surface (Donley
et al., 2009). Physically, this is because of the native
SiO2 layer on the silicon surface. Of all the materials
studied, only a handful of them have turned out to be
good coatings for 3He. They include diamagnetic metal
bismuth, alkali metals, and cesium oxide. For example,
a four-fold increase in the relaxation time of 3He was re-
ported in aluminosilicate glass cells coated with bismuth
(Heil et al., 1995). The physical reason for the increase in
the relaxation time on bismuth is the lack of the s-state
coupling between the 3He nuclear spins and the electron
spins at the Fermi surface of bismuth, resulting in a small
Korringa relaxation rate (Deninger et al., 2006; Slichter,
1980) and also because the metal coatings, due to their
compact packing, can prevent 3He atoms from coming
in contact with the paramagnetic sites on the glass sur-
face. On the other hand, the relaxation time of 3He on
a clean diamagnetic metal mercury surface is about the
same as on the Pyrex glass surface (Gamblin and Carver,
1965; Timsit et al., 1971). Alkali metals such as Cs, Rb
and K, which in fact in spin exchange optical pumping
cells would automatically coat the inner cell walls, are
found to be excellent anti-relaxation coatings for 3He.
The relaxation time T1 of 3He was found to be one or-
der of magnitude longer in Cs-coated Pyrex cells than in
uncoated Pyrex cells, and a similar increase in T1 was ob-
served in aluminosilicate glass cells, albeit by a smaller
amount (Deninger et al., 2006; Heil et al., 1995). The

increase in T1 in Cs-coated cells is attributed to the ex-
ceedingly small magnitude of the adsorption energy Ea

of 3He on Cs-coated surface (Heil et al., 1999, 1995),
which is the physical reason for the non-wetting of ce-
sium surface by superfluid helium (Nacher and Dupont-
Roc, 1991). It was also reported that the relaxation time
T1 for 3He increased by more than one order of magni-
tude in fused silica cells coated with the suboxide Cs7O
of cesium (Deninger et al., 2006).

It was reported that a relaxation time T1 close to the
gas phase dipole-dipole limit was obtained in a Pyrex
glass cell coated with high-purity sol-gel (Hsu et al.,
2000). Pyrex glass cells coated with sol-gel have an
advantage over the GE180 (boron-free aluminosilicate
glass) cells in that the latter produce more neutron back-
ground events because of the rich content of barium in
the aluminosilicate glass (Ye et al., 2010).

At low temperatures (∼ 4 K) the 3He polarization in
uncoated Pyrex glass cells is undetectable due to the long
dwell time τs on the cell wall and hence the short relax-
ation time. Probably for the same reason a 3He polariza-
tion consistent with zero was reported at ∼ 6 K in a tar-
get cell made of ultra-pure aluminum (99.999%) (Korsch
et al., 1997). However, relaxation times of 3He longer
than 2 days were obtained at 4.2 K in a Pyrex glass cell
of 3 cm in diameter and coated with solid H2 film about
30 layers thick (Barbé et al., 1975).

For the relaxation of the hyperfine transitions in the
ground state of hydrogen in atomic hydrogen masers,
Teflon, a synthetic polymerized fluorocarbon, is often
used as the anti-relaxation coating instead of hydrocar-
bon because of the lower polarizability, the much smaller
phase shift |φhfs|, the considerably smaller wall relaxation
rate, and the substantially higher activation energy for
surface recombination of H atoms on fluorocarbon than
on hydrocarbon surfaces (Kleppner et al., 1962b; Zitze-
witz and Ramsey, 1971).

VII. INSTRUMENTATION

Wall interactions of spin-polarized alkali metal atoms
are studied by their effect on the polarization of the alkali
metal atoms. For noble gas atoms, the effect of wall inter-
actions on their polarization can be studied using NMR
techniques such as free induction decay and adiabatic
passage or using as a magnetometer the repolarization of
the alkali metal atoms through spin exchange interaction
with the noble gas atoms. A detailed discussion of mon-
itoring the polarization of alkali metal atoms is given in
the classic review by Happer (1972). A brief review was
given by Knize et al. (1988). Here we will focus on the
transmission monitoring, commonly used in the study of
wall interactions of polarized atoms, in which the change
in the intensity or polarization of the transmitted probe
beam is studied.
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A. Absorption monitoring

The intensity of the transmitted probe beam is deter-
mined by the polarization of the alkali metal vapor, as
well as the polarization and spectral profile of the probe
beam. If the alkali metal vapor is optically thin and its
polarization is uniform along the path length l of the
probe beam, the absorption of the probe beam is given
by (Bhaskar et al., 1980; Happer, 1972)

I0 − I = I0l(k0 + k1 sz〈Sz〉 + k2〈S · I〉) , (72)

where I0 and I are respectively the intensities of the inci-
dent and transmitted probe beams, k0 is the attenuation
coefficient of unpolarized vapor and sz is the component
of the mean photon spin s = ie × e∗, e being the po-
larization vector of the probe beam. The coefficients k1

and k2 represent the contributions from the longitudinal
spin polarization 〈Sz〉 and hyperfine polarization 〈S · I〉,
respectively, and depend on the polarization and spectral
profile of the probe beam, which can be chosen to make
the absorption signal depend on only one particular type
of polarization.

B. Polarization monitoring − Poincaré sphere

Consider an elliptically polarized light beam propagat-
ing along the z-axis, which is taken to be horizontal. For
convenience, the x- and y-axes are respectively taken to
be vertical and horizontal. The polarization of the light
can be characterized by two angles, χ and ψ, where χ is
the ellipticity defined by tanχ = b/a (−π/4 ≤ χ ≤ π/4),
with 2a and 2b being the major and minor axes of the
ellipse, and ψ is the azimuth defined as the angle the
major axis makes with the x-axis (0 ≤ ψ ≤ π). The
positive (negative) value of χ corresponds to the positive
(negative) helicity of the photons.

The polarization of a light beam is best described us-
ing Poincaré sphere, an elegant geometric representation
of the polarization of light (Ramachandran and Ramase-
shan, 1961). For example, the elliptical polarization of a
light beam characterized by χ and ψ is represented by a
point P on the Poincaré sphere, with a latitude 2χ and
a longitude 2ψ (see Fig. 11). The points on the equa-
tor represent linear polarizations (χ = 0). Thus point V
(χ = 0, ψ = 0) represents vertical linear polarization and
point H (χ = 0, ψ = π/2) horizontal linear polarization.
The north pole corresponds to left circular polarization
(σ+ or positive helicity) and the south pole right circular
polarization (σ− or negative helicity).

A polarized alkali metal vapor is birefringent, with left
and right circular polarizations being its eigenpolariza-
tions. The change in the polarization of the transmitted
probe beam provides a sensitive way to study the polar-
ization of the alkali metal vapor. Here we shall use the
Poincaré sphere to illustrate the use of two instruments,

photoelastic modulator and Wollaston prism, that are
commonly used for measuring the polarization of light.
For simplicity we shall assume the probe beam to be lin-
early polarized along the vertical direction, and therefore
is represented by point V (χ = 0, ψ = 0) on the Poincaré
sphere. After passing through the polarized alkali metal
vapor, it becomes elliptically polarized, characterized by
χ and ψ, and is represented by point P on the Poincaré
sphere. For a weakly polarized alkali metal vapor, both
χ and ψ are very small.

FIG. 11 Poincaré sphere, a sphere of unit radius, as a geo-
metric representation of the polarization of light. Polarization
characterized by angles χ and ψ is represented by a point P
on the Poincaré sphere, which has a latitude 2χ (∠POJ) and
a longitude 2ψ (∠V OJ).

1. Photoelastic modulator

A photoelastic modulator is a device that modulates
the polarization of an incident beam, and when used in
combination with an analyzer, allows phase sensitive de-
tection of the polarization of the incident beam. It is
based on photoelastic effect, which refers to the phe-
nomenon, first discovered by Brewster in 1815, that an
isotropic transparent material becomes birefringent un-
der mechanical stress. The isotropic optical element used
in a photoelastic modulator is typically made of fused sil-
ica or crystalline materials with cubic symmetry such as
calcium fluoride (CaF2), and is made to vibrate at its
natural resonant frequency Ω, typically several tens of
kHz, by a piezoelectric transducer. The periodic com-
pression and stretching of the optical element cause it
to be linearly birefringent with its optic axis along the
direction of the compression and stretching, and intro-
duce a time-varying phase retardation β sin Ωt between
the two polarizations, one parallel and one perpendicular
to the optic axis, where β denotes the magnitude of the
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retardation. These two polarizations are represented by
points C and D on the equator of the Poincare sphere
if the optic axis is at 45◦ with respect to the vertical
direction (see Fig. 11).

Geometrically the phase difference β sin Ωt between the
polarizations C and D is equivalent to a rotation of the
point P around the axis CD, looking from C to D, clock-
wise or counterclockwise, depending on whether C lags
or leads D, by an angle β sin Ωt, changing ∠PCV to
∠PCV −β sin Ωt. The periodic phase retardation β sin Ωt
between the polarizations C and D causes the point P
to move back and forth along the orange small circle
in Fig. 11. Let the linear analyzer transmit completely
light linearly polarized in the horizontal direction (point
H on the equator). It can be shown that the fraction of
the intensity I0 of the probe beam that passes through

the analyzer is given by cos2(P̄H/2), where P̄H is the
length of the arc that connects the two points P and H

on the Poincare sphere. Since P̄H = π − P̃ V , one has

cos2(P̄H/2) = sin2(P̃ V /2) = (1 − cos P̃ V )/2. Using the
law of cosines of sides for the spherical triangle △PCV ,
one finds for the intensity of the probe beam after passing
through the analyzer

I =
I0

2

[
1 − cos 2χ cos 2ψ cos(β sin Ωt)

− sin 2χ sin(β sin Ωt)
]
. (73)

Thus the phase sensitive detection for this configuration
measures the ellipticity χ in the first order and the az-
imuth ψ, sometimes referred to as the Faraday rotation
angle, in the second order.

2. Wollaston prism

Wollaston prism is usually made up of two right trian-
gle calcite prisms cemented together on their base. The
optic axes of the front and rear prisms are perpendicular
to each other, and both are parallel to the front surface
of the prism. The calcite crystal is a negative uniaxial
crystal with the indices of refraction for ordinary and
extraordinary rays being respectively no = 1.6584 and
ne = 1.4864. Suppose the Wollaston prism is oriented
such that the optic axis of the front right angle prism
is at 45◦ with respect to the vertical direction. For an
elliptically polarized incident beam characterized by χ
and ψ, or point P on the Poincaré sphere, the differ-
ence between the intensities of the two beams exiting
from the Wollaston prism with e- and o-polarizations is

Ie − Io = I0 cos2(P̃C/2) − I0 cos2(P̃D/2). Therefore we
have

Ie − Io = I0 cos 2χ sin 2ψ . (74)

Thus the intensity difference of the two exiting beams is
proportional to the first order of the azimuth ψ.

C. Evanescent wave monitoring

Both absorption monitoring and polarization moni-
toring as described above can also be performed using
evanescent waves, which have some advantages in the
study of the wall interactions of spin-polarized alkali
metal atoms because they only probe the atoms in the
vicinity (∼ 10−4 cm) of the cell wall.

The evanescent wave is an inhomogeneous wave prop-
agating along the wall. That is, the surfaces of constant
amplitude of the wave do not coincide with the surfaces
of constant phase. Whereas the former are parallel to,
the latter are perpendicular to the wall. The evanescent
wave is not transversal. Depending on its polarization,
the component of the electric vector in the direction of
propagation is not necessarily zero. The polarization of
the evanescent wave is in general different from that of
the incident wave. For example, while for s-polarized in-
cident wave the evanescent wave is also s-polarized, for p-
polarized incident wave the evanescent wave is elliptically
polarized in the plane of incidence and thus the electric
field vector has a component in the direction of prop-
agation (Born and Wolf, 1980; Józefowski et al., 2007;
Kawalec et al., 2007). Therefore s-polarized probe beam
is most commonly used. Due to the exceedingly small
penetration depth, which is of the order of the wave-
length of the probe beam, typically ∼ 10−4 cm, relatively
high alkali metal vapor densities (> 1012 cm−3) are often
used.

VIII. SUMMARY

We have presented a critical review of the studies done
in the past six decades of the wall interactions of spin-
polarized atoms. The theoretical studies have shown that
wall interactions can be described by a boundary condi-
tion, which, when combined with the diffusion equation
or the Torrey equation, depending on whether the mag-
netic field is uniform or there is a field gradient, also
describes the interplay between wall interactions and dif-
fusion in the gas phase. This boundary value problem
has been studied in great detail using different methods.
When analytical solutions are not available, perturbation
theory or numerical method is used, as demonstrated in
the studies of the wall interactions of diamagnetic atoms
(I ≥ 1) and alkali metal atoms. The eigenvalues of the
boundary value problem allow the information about the
microscopic nature of the walls to be deduced from the
experimental data. The real part of the eigenvalue de-
termines the spin relaxation rate and the imaginary part
the frequency shift due to wall collisions.

We have reviewed the experimental studies that elu-
cidate the nature of wall interactions on a number of
different surfaces. The understanding of the nature of
wall interactions helps to determine the physical mecha-
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nisms of the spin relaxation and frequency shift due to
wall collisions. Studies that determine the microscopic
parameters that characterize wall interactions are also
described in some detail.

Due to the presence of paramagnetic centers on the
glass walls, uncoated glass cells in most cases do not give
optimal performance. Various anti-relaxation coatings
have therefore been used to coat the inner walls of the
cells. Coatings such as alkanes, alkenes and silane com-
pounds are used for spin-polarized alkali metal atoms.
Silane coatings such as silicone are commonly used for
129Xe. The most effective and common anti-relaxation
coatings for 3He are the alkali metals such as Cs, Rb
and K. Other effective anti-relaxation coatings for 3He
include bismuth film, suboxide Cs7O of Cs, and solid H2

film for low temperatures (∼ 4 K). For the hyperfine
polarization of the ground state H atoms in hydrogen
masers, fluorocarbon coating is used.

A good understanding of the nature of wall interac-
tions has been achieved on most of the practically im-
portant surfaces. For polarized diamagnetic atoms with
1S0 ground states and nuclear spins I ≥ 1, such as 21Ne
(I = 3/2), 83Kr (I = 9/2), 109Cd (I = 5/2), 131Xe
(I = 3/2), and 201Hg (I = 3/2), their dominant wall
interaction on the glass surface is the coupling of their
nuclear electric quadrupole moment to the electric field
gradients on the wall. For 129Xe (I = 1/2) on silicone
-coated walls the dominant wall interaction is the ten-
sorial magnetic dipole-dipole interaction with the pro-
tons on the wall. The dominant wall interaction of spin-
polarized 3He (I = 1/2) on the glass surface is believed to
be the scalar magnetic dipole-dipole interaction between
the 3He nuclei and the unpaired electrons in the dangling
bond defects although a definite proof is still lacking.
For spin-polarized alkali metal atoms on paraffin-coated
walls, the wall interactions consist of the magnetic dipole
-dipole interaction, both tensorial and scalar, with the
protons and the spin-rotation interaction with the car-
bon atoms on the wall.

In spite of the significant progress, there are still many
issues in the wall interactions of spin-polarized atoms
that remain to be understood, such as the underlying
physics for the orders of magnitude difference in the per-
formance of various anti-relaxation coatings. A good un-
derstanding of these issues will help develop optimum
coatings with reproducible quality. More studies are
needed.
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Treutlein (2010), “Imaging of microwave fields using ultra-
cold atoms,” Appl. Phys. Lett. 97 (5), 051101.

Böhi, Pascal, and Philipp Treutlein (2012), “Simple mi-
crowave field imaging technique using hot atomic vapor
cells,” Appl. Phys. Lett. 101 (18), 181107.

Bonch-Bruevich, A M, Yu M Maksimov, and V V Khromov
(1985), “Variation of the absorption spectrum of sodium
atoms when they are adsorbed on a sapphire surface,” Opt.
Spectrosc. (USSR) 58 (6), 854–856.

Born, M, and E Wolf (1980), Principles of Optics (Pergamon
Press, Oxford).

Bouchiat, M A (1963), “Relaxation magnétique d’atomes de
rubidium sur des parois paraffinées,” J. Phys. (Paris) 24,
379–390, 611–621.

Bouchiat, M A, and J Brossel (1966), “Relaxation of optically
pumped Rb atoms on paraffin-coated walls,” Phys. Rev.
147, 41–54.

Bouchiat, M A, T R Carver, and C M Varnum (1960), “Nu-
clear polarization in 3He gas induced by optical pumping
and dipolar exchange,” Phys. Rev. Lett. 5, 373–375.

Bouchiat, M A, J Guena, L Hunter, and L Pottier (1982),
“Observation of a parity violation in cesium,” Phys. Lett.
B 117, 358–364.

Brewer, R G (1963), “Study of atom–wall collisions by optical
pumping,” J. Chem. Phys. 38, 3015–3020.

Brinkmann, D, E Brun, and H H Staub (1962), “Kernresonanz
im gasformigen Xenon,” Helv. Phys. Acta 35, 431–436.

Brossel, J, J Margerie, and A Kastler (1955), “Augmentation
du taux d’orientation atomique de la vapeur de sodium en
présence d’hydrogène,” C. R. Acad. Sci. Ser. B 241, 865–
867.

Budker, D, L Hollberg, D F Kimball, J Kitching, S Pustelny,
and V V Yashchuk (2005), “Microwave transitions and non-
linear magneto-optical rotation in anti-relaxation-coated
cells,” Phys. Rev. A 71, 012903.

Budker, D, and M Romalis (2007), “Optical magnetometry,”
Nature physics 3, 227–234.

Budker, Dmitry, Wojciech Gawlik, D F Kimball, S M
Rochester, V V Yashchuk, and A Weis (2002), “Resonant
nonlinear magneto-optical effects in atoms,” Rev. Mod.
Phys. 74 (4), 1153–1201.

Budker, Dmitry, Valeriy Yashchuk, and Max Zolotorev
(1998), “Nonlinear magneto-optic effects with ultranarrow
widths,” Phys. Rev. Lett. 81 (26), 5788–5791.
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Kawalec, T, L Józefowski, J Fiutowski, M J Kasprowicz, and
T Dohnalik (2007), “Spectroscopic measurements of the
evanescent wave polarization state,” Opt. Commun. 274,
341–346.

Kennard, E H (1938), Kinetic Theory of Gases (McGraw-Hill,
New York).

Kitano, M, M Bourzutschky, F P Calaprice, J Clayhold,
W Happer, and M Musolf (1986), “Measurement of mag-
netic dipole moments of 129Xem and 131Xem by spin ex-
change with optically pumped Rb,” Phys. Rev. C 34, 1974–
1979.

Kitching, J (2018), “Chip-scale atomic devices,” Appl. Phys.
Rev. 5, 031302.

Kitching, John, Svenja Knappe, and Elizabeth A Donley
(2011), “Atomic sensors–a review,” IEEE Sensors Journal
11 (9), 1749–1758.

Kleppner, D, H M Goldenberg, and N F Ramsey (1962a),
“Properties of the hydrogen maser,” Appl. Opt. 1, 55–60.

Kleppner, D, H M Goldenberg, and N F Ramsey (1962b),
“Theory of the hydrogen maser,” Phys. Rev. 126, 603–615.

Knappe, Svenja, Vishal Shah, Peter D D Schwindt, Leo Holl-
berg, John Kitching, Li-Anne Liew, and John Moreland
(2004), “A microfabricated atomic clock,” Appl. Phys. Lett.
85 (9), 1460–1462.

Knize, R J, Z Wu, and W Happer (1988), “Optical pumping
and spin exchange in gas cells,” in Advances in atomic and
molecular physics, Vol. 24, pp. 223–267.

Kominis, I K, T W Kornack, J C Allred, and Michael V Ro-
malis (2003), “A subfemtotesla multichannel atomic mag-
netometer,” Nature 422 (6932), 596–599.

Korsch, W, R W Carr, D DeSchepper, A Dvoredsky, L H

Kramer, Y Li, R D McKeown, R G Milner, S F Pate,
M L Pitt, and T Shin (1997), “Temperature dependence
of 3He polarization in aluminum storage cells,” Nucl. In-
strum. Methods Phys. Res., Sect. A 389, 389–397.

Kuzmich, A, L Mandel, and N P Bigelow (2000), “Generation
of spin squeezing via continuous quantum nondemolition
measurement,” Phys. Rev. Lett. 85, 1594–1597.

Kwon, T M, J G Mark, and C H Volk (1981), “Quadrupole
nuclear spin relaxation of 131Xe in the presence of rubidium
vapor,” Phys. Rev. A 24, 1894–1903.

Lamoreaux, S K, J P Jacobs, B R Heckel, FJ Raab, and
E N Fortson (1986), “New limits on spatial anisotropy from
optically-pumped 201Hg and 199Hg,” Phys. Rev. Lett. 57,
3125–3128.

Leduc, M, and J Brossel (1968), “Comparative study of relax-
ation on silica walls of nuclei of 109Cd and 111Cd oriented
by optical pumping,” C. R. Acad. Sci. Ser. B 266, 287–290.

Lefevre-Seguin, V, and J Brossel (1988), “Attempts to in-
crease the nuclear relaxation time of a 3He gas at low tem-
peratures,” J. Low Temp. Phys. 72, 165–188.

Lefevre-Seguin, V, P J Nacher, J Brossel, W N Hardy, and
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