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Abstract

Since the parton model was introduced by Feynman more than fifty years ago, we

have learned much about the partonic structure of the proton through a large body

of high-energy experimental data and dedicated global fits. However, calculating the

partonic observables such as parton distribution function (PDFs) from the funda-

mental theory of strong interactions, QCD, has made limited progress. Recently, the

authors have advocated a formalism, large-momentum effective theory (LaMET),

through which one can extract parton physics from the properties of the proton

travelling at a moderate boost-factor, e.g., γ ∼ (2−5). The key observation behind

this approach is that Lorentz symmetry allows the standard formalism of partons

in terms of light-front operators to be replaced by an equivalent one with large-

momentum states and time-independent operators of a universality class. With

LaMET, the PDFs, generalized PDFs or GPDs, transverse-momentum-dependent

PDFs, and light-front wave functions can all be extracted in principle from lattice

simulations of QCD (or other non-perturbative methods) through standard effective

field theory matching and running. Future lattice QCD calculations with exa-scale

computational facilities can help to understand the experimental data related to

the hadronic structure, including those from the upcoming Electron-Ion Colliders

dedicated to exploring the partonic landscape of the proton. Here we review the

progress made in the past few years in development of the LaMET formalism and

its applications, particularly on the demonstration of its effectiveness from initial

lattice QCD simulations.
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I. INTRODUCTION

The proton and neutron, collectively called the nucleon, are the basic building blocks of

visible matter in the universe today. Ever since they were discovered in laboratories nearly

a century ago (Chadwick, 1932; Rutherford, 1919), their fundamental properties have been

vigorously explored: from the determination of the spin through the specific heat of liquid

hydrogen (Dennison, 1927), to the measurement of the magnetic moments (Estermann et al.,

1933), and the extraction of their electromagnetic sizes through elastic electron scattering

(Hofstadter, 1956). The most revealing discovery, however, came from the electron deep-

inelastic scattering (DIS) on the proton and nuclei at Stanford Linear Accelerator Center

(SLAC) in the late 1960s, in which the constituents of the proton and neutron, quarks

(and later gluons), were discovered (Bloom et al., 1969). Soon after, quantum chromo-

dynamics (QCD), a quantum field theory (QFT) based on “color” SU(3) gauge symme-

try, was established as the fundamental theory of strong interactions (Fritzsch et al., 1973;

Gross and Wilczek, 1973; Politzer, 1973), and of the internal structure of the nucleon as

well (Thomas and Weise, 2001).

During the last fifty years, significant progress has been made in understanding the nu-

cleon’s internal structure in both experiment and theory. Multiple experimental facilities

have been built to study high-energy collisions involving protons and nuclei, from which a

large amount of experimental data has been accumulated. Based on the QCD factorization

theorems (Collins, 2011a), derived from perturbative QCD analyses beyond Feynman’s par-

ton model (Feynman, 1972), the parton distribution functions (PDFs), which characterize

the longitudinal momentum distributions of quarks and gluons in hadrons moving at infinite

momentum, have been obtained from global fits to these data (Ball et al., 2017; Gao et al.,

2018; Harland-Lang et al., 2015; Hou et al., 2019). A recent result of the phenomenological

proton PDFs is shown in Fig. 1 where x is the momentum fraction of the proton carried

by partons. The PDFs provide a comprehensive description of the quark and gluon con-

tent of the nucleon. On the theoretical frontier, the Euclidean path-integral formalism of

QCD, combined with the lattice regularization and Monte Carlo simulations (Wilson, 1974),

has offered a systematic way of performing ab initio calculations of non-perturbative strong
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interactions. The rapid rise in computational power and development of intelligent numer-

ical algorithms have made such a lattice QCD approach extremely successful in computing

hadron spectroscopy, the strong coupling, hadronic form factors, etc., and even scattering

phase shifts (Aoki et al., 2020; Briceno et al., 2018; Tanabashi et al., 2018).

[FIG. 1 about here.]

Despite these impressive achievements, we have not been able to systematically explain

the partonic structure of the proton from first principles, or more explicitly, we have not

made fundamental progress in computing the quark and gluon distributions starting from

the QCD Lagrangian (see Sec. I.C for a brief summary). There is actually a good reason

behind it: The standard formulation of parton physics in the textbooks (Collins, 2011a;

Sterman, 1993) is accomplished through the dynamical correlators of quark and gluon fields

on the light-front (LF) defined by t− z = const., which has the important feature of being

independent of the proton’s momentum. On the other hand, lattice QCD is formulated

in the Euclidean space with imaginary time, and cannot be used to directly calculate the

dynamical correlations that depend on real time. The standard lattice approach to parton

physics has been to calculate the lower moments of parton distributions, which are ma-

trix elements of local operators (Lin et al., 2018c). However, the limitations to the first

few moments prohibit practitioners from reproducing reliably the x-dependent structure

as shown in Fig. 1, other than fitting model functional forms. Over the years, Hamilto-

nian diagonalization in LF quantization (LFQ) (Brodsky et al., 1998) and Schwinger-Dyson

equations (Maris and Roberts, 2003) have been proposed to solve the nucleon structure as

Minkowskian approaches. Although significant advances have been made phenomenologi-

cally, a systematic approximation to calculate the nucleon PDFs is still missing.

A few years ago, some of the present authors proposed a general approach to calculate

x-dependent parton distributions based on Feynman’s original idea about partons: They

are the infinite-momentum limit of static properties of the proton at large momentum, and

therefore are intrinsically Euclidean quantities accessible through lattice QCD (Ji, 2013,

2014; Ji et al., 2013b). According to this, parton physics in an intermediate range of xmin ∼
0.1 < x < xmax ∼ 0.9 can be calculated from the physical properties of the proton at a

moderately-large momentum, e.g., with a Lorentz boost factor γ = 2 − 5. The theory has

been named as large-momentum effective theory (LaMET) because a rigorous connection
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between the infinite-momentum frame (IMF) partons and quarks and gluons at a finite

momentum requires proper account of the ultraviolet (UV) modes with large momentum in

effective field theory (EFT) and systematic power counting.

The basic principle for LaMET comes from an implicit observation in the naive parton

model: The structure of the proton is approximately independent of its momentum so long

as it is much larger than a typical strong-interaction scale ΛQCD, or its mass. For example,

the quark momentum distribution at moderate x in the proton at P = |~P | = 5 GeV is not

very different from that at P = 50 GeV or P = 5 TeV. One might call this phenomenon

large-momentum symmetry, the nature of which is similar to that of the electronic structure

of the hydrogen atom is not sensitive to the proton mass, so long as it is much larger than

that of the electron. The asymptotic behavior of the proton structure might be controlled

by an expansion in ΛQCD/P , but a justification would require a better understanding of

the underlying dynamics. Assuming this, Feynman replaced the protons probed at large

but finite momenta in high-energy scattering with the one at infinite momentum P = ∞,

corresponding to the leading term in the ΛQCD/P expansion, and therefore the idealized

concepts of the proton in the IMF and its constituents—partons—were born.

In QFTs, however, the existence of the P = ∞ limit depends on their UV behavior. In

general, the infinite-momentum limit does not commute with the UV cut-off limit ΛUV →∞.

While the physical limit is (ΛUV ≫ P ) → ∞, the parton model and subsequent QCD

factorization theorems use (P ≫ ΛUV) → ∞, keeping all PDFs with the finite support

|x| ≤ 1 where negative x is for antiquarks. Thus partons are an idealized concept which

does not exist in the real world. Fortunately, because of asymptotic freedom, the above

differences can be calculated in perturbative QCD. Therefore, LaMET is an effective theory

of partons, which uses the ordinary field theoretical calculations (ΛUV ≫ P ) → ∞ and

systematically takes into account non-commuting P → ∞ limits through EFT matching

and running and finite P effects by power corrections. Thus, the PDFs defined in the IMF

or on the LF can be accessed at moderate x from the structure calculations at P ∼ a few

GeVs.

The first application of LaMET was to the total gluon helicity ∆G in the polarized proton,

a quantity of significant experimental interest at the polarized RHIC (Bunce et al., 2000),

but not within theoretical reach for many years. In (Ji et al., 2013b), we have shown that

from a large-momentum matrix element of the gluon spin operator in a physical gauge, ∆G
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can be obtained through an EFT matching. Following this success, LaMET was applied to

the collinear quark PDFs (Ji, 2013). This latter application has generated considerable theo-

retical as well as numerical activities, particularly for the flavor non-singlet u−d distributions

in the proton and other hadrons. A general LaMET framework was subsequently introduced

in (Ji, 2014). More recently, the approach has been extended to the gluons as well (Li et al.,

2019; Zhang et al., 2019b). Therefore, the PDFs can now be computed directly in lattice

QCD at specific Feynman variable x, without using LFQ. Besides, the partonic landscape

of the proton is extremely rich, and LaMET holds the promise of computing parton physics

beyond the collinear PDFs.

In recent years, tremendous progress has been made in formulating new parton observ-

ables for the proton. In particular, two parallel concepts have been developed in charac-

terizing the transverse structure of the proton. The first is the generalized parton distri-

butions (GPDs) (Ji, 1997b; Müller et al., 1994; Radyushkin, 1999). The GPDs combine

the features of the proton’s elastic form factors, which provide the transverse-space den-

sity of partons (Miller, 2007), and Feynman PDFs, and interpolate them. Given the joint

longitudinal-momentum and transverse-space distributions, one can construct the orbital

angular momentum (OAM) of partons, among others (Ji, 1997b). In general, the GPDs can

be used to generate momentum-dissected transverse space images of the proton (Burkardt,

2000). A new class of experimental processes, deeply-virtual exclusive processes (DVEP),

including deeply-virtual Compton scattering (DVCS) in which the final state is a diffrac-

tive real photon plus a recoiling proton, has been found to measure them (Ji, 1997a,b).

The second concept is the transverse-momentum-dependent (TMD) PDFs (or TMDPDFs),

in which the parton’s transverse momentum is explicit (Collins, 2011a; Collins and Soper,

1981). Much theoretical progress has been made in recent years regarding their proper defini-

tions, factorizations, and spin correlations (Collins and Rogers, 2017, 2013; Echevarría et al.,

2013). TMDPDFs can be measured in experimental processes by observing the transverse

momentum of the final-state particles.

Over the years, it has gradually become clear that a dedicated experimental facility to

fully explore the partonic landscape of the proton is required. To meet this requirement,

the US nuclear science community has proposed, to build a high-energy, high-luminosity

Electron-Ion Collider (EIC) (Aprahamian et al., 2015), which has been recently approved

by the US Department of Energy. The new collider accelerates electrons to 10-30 GeV and
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ions— including the proton and heavy nuclei all the way up to Pb or U— up to 100 GeV

per nucleon, realizing the center-of-mass collision energy Ecm from 40 to 170 GeV. The

corresponding electron energy in fixed-target experiments would be 100 GeV to 10 TeV. The

beams are polarized, with high-luminosity up to 1033−34 collisions/(cm2 ·s), which are critical

for studying exclusive processes such as DVCS. The kinematic range of the collisions covers

the Bjorken xB (which coincides with the parton momentum fraction x in the naive parton

model to be discussed in the next section) down to sub-10−4, and Q2 as high as 104 GeV2.

Much of the EIC science has been discussed in a dedicated study (Accardi et al., 2016b).

Of course, the EIC and lattice QCD efforts will not stop at the precision parton physics

of the proton. More importantly, we need to develop ways or languages to describe the

nucleon as a strongly-coupled relativistic quantum system, in much the same way as we

understand, for example, the quantum Hall effects in condensed matter physics. Without a

deep understanding of the mechanisms of strongly-coupled QCD physics, we cannot claim

a fundamental understanding of the structure of the proton and neutron, in particular, the

origin of their mass and spin. This is one of the most challenging goals facing the standard

model of particle and nuclear physics today.

This review is to systematically expose the idea, formalism, and results of the LaMET

approach to parton physics. We do not claim to be entirely complete because the field is

rapidly developing. References in the related fields are not meant to be complete either,

and we apologize for any important omissions. Closely-related reviews on lattice parton

physics can be found in (Cichy and Constantinou, 2019; Zhao, 2019). There have been

studies on the effectiveness of LaMET in various models (Bhattacharya et al., 2019a,b;

Broniowski and Ruiz Arriola, 2017, 2018; Del Debbio et al., 2020b; Gamberg et al., 2015;

Hobbs, 2018; Ji et al., 2019c; Jia and Xiong, 2016; Kock et al., 2020; Ma et al., 2019; Nam,

2017; Radyushkin, 2017d; Son et al., 2019; Xu et al., 2018), some of which we will mention

in the following for illustrative purposes. There have been also papers questioning the valid-

ity of LaMET method (Carlson and Freid, 2017; Rossi and Testa, 2017, 2018) and some got

clarified later in the literature (Briceño et al., 2017; Ji et al., 2017b; Radyushkin, 2019c), We

will not discuss them here and interested readers may refer to the above references. We have

used proton in most places in the text to emphasize its importance in nuclear and particle

physics. However, the discussions apply equally to the neutron and other hadrons as well.

The plan for the presentation of this review is as follows. In the remainder of the Intro-
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duction, we explain the nature of parton physics as an effective description of the internal

structure of the proton at large momentum, as well as other existing methods in the litera-

ture for solving the parton structure. In Sec. II, we introduce the LaMET method starting

from momentum renormalization group equation (RGE) of physical observables in a moving

hadron, followed by the matching between momentum distributions and PDFs. We then for-

mulate an EFT expansion to compute parton physics from theoretical methods suitable for

the structure of a large-momentum proton. In Sec. III, we discuss some important details for

collinear PDFs: renormalization of the nonlocal operators, particularly power divergences in

lattice regularization, and matching to all orders in perturbation theory. Sec. IV is devoted

to applications to general collinear parton observables including GPDs, parton distribution

amplitudes and higher-order parton correlations. We also discuss applications for the OAM

of the partons in a polarized proton. In Sec. V, we consider the application to TMDPDFs, a

new class of parton observables. We study matching of the quasi-TMDPDFs to the physical

ones, and explore the lattice calculation of the soft function. Finally, Sec. VI summarizes

the recent lattice calculations relevant to the LaMET applications, and the conclusion is

given in Sec. VII. The review is completed with an Appendix with a list of acronyms and

glossaries, as well as notations and conventions.

A. Partons through Infinite-Momentum States

Although partons have become a ubiquitous language for high-energy scattering, their role

as effective degrees of freedom of QCD for describing the internal structure of the nucleon

is less emphasized in the literature. In applications within QCD factorization theorems,

they are—following Feynman—objects arising from the limit of infinite momentum, with

the potential UV divergences regulated and renormalized after the limit. Thus, the partons

are an idealized concept, referring to the quark and gluon Fock components of the nucleon

or other hadrons only in the context of IMF and LF gauge A+ = (A0 + Az)/
√
2 = 0. They

are in the same category of concepts as the infinitely-heavy quark in heavy-quark effective

field theory (HQET) (Manohar and Wise, 2000). To motivate LaMET, it is important to

understand this origin and nature of partons.

Built from the knowledge of electron scattering in non-relativistic systems (atoms and

molecules) (West, 1975), Feynman introduced the naive parton model to describe deep-
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inelastic scattering (DIS) on the proton, and to explain the observed phenomenon of Bjorken

scaling (Bjorken and Paschos, 1969; Feynman, 1972, 1969).

[FIG. 2 about here.]

Shown in Fig. 2 is the DIS process in which a virtual photon with large momentum

qµ is absorbed by a proton of momentum P µ and mass M . The invariant variables are

Q2 = −qµqµ and P · q =Mν, and Bjorken xB = Q2/(2P · q) fixed in the scaling (or Bjorken)

limit Q2 → ∞, P · q → ∞. The inclusive DIS cross section can be factored into a product

of leptonic and hadronic tensors, where the former is associated with the electromagnetic

current of the lepton, while the latter contains all information about the electromagnetic

interaction with the target proton.

To learn about the proton structure, it is best to consider the scattering in the Breit

frame where

qµ = (0, 0, 0,−Q) ,

P µ =

(√
Q2

4x2B
+M2, 0, 0,

Q

2xB

)
, (1)

and the virtual photon has zero energy. The probe is sensitive only to the spatial structure as

in non-relativistic electron scattering. However, relativity now constrains the proton to move

at a large momentum P z = Q/(2xB) with boost factor γ = Q/(2xBM), which approaches

P z =∞ in the Bjorken limit.

Feynman made intuitive assumptions about the proton structure and scattering mecha-

nism, without QFT subtleties (Feynman, 1972): The proton structure at different large P z

should be similar, and can be approximated by that at P z = ∞, or in the IMF. The in-

teractions between constituents (partons) are infinitely time-dilated, and the wave function

configurations are frozen. The proton in high-energy scattering can be seen as being made

of non-interacting partons, each with a longitudinal momentum xP z with 0 < x < 1.

The internal structure of non-relativistic systems is independent of their overall momen-

tum. However, relativistic systems is different as they least experience the Lorentz con-

traction. The structures of such systems are inextricably mixed with the overall motion,

and their dependence on the external momentum is a dynamical problem. On the other

hand, if the internal structure depends on a particular hadron scale ΛQCD, the protons at all
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large-momentum with P z ≫ ΛQCD have a similar structure, corresponding to the P z → ∞
limit. This means that if f(kz, P z) is the constituent momentum-kz distribution in a proton

of momentum P z, it might be analytical at P z =∞ and admits Taylor series expansions in

1/P z,

f(kz, P z) = f(x) + f2(x)(ΛQCD/P
z)2 + ... , (2)

where x = kz/P z. If so, one may find a large-momentum symmetry of the proton properties

up to power corrections O(1/P z) (we omit the upper index z sometimes for simplicity), and

f(x) is the parton distribution.

The above picture can be shown to hold in certain simple QFT models, where the dy-

namical frame dependence of wave functions for composite systems can be studied straight-

forwardly. There are many interesting examples of two-dimensional systems, for which solu-

tions can be found. One of the much studied cases is the large Nc QCD, also called ’t Hooft

model (’t Hooft, 1974), in which the bound states have a well-defined large-momentum limit.

The wave functions can be expanded in 1/P , with the corrections starting from (1/P )2. The

momenta of the constituents, k and P − k, scale in this limit. When plotted as a function

of x = k/P , the change in the wave function with the magnitude of the momentum can be

found in Figs. 8–11 in (Jia et al., 2017). This is the type of example in which Feynman’s

intuition applies.

However, such a intuition fails in many 3+1 dimensional QFTs, such as QCD. When a

bound state travels at increasingly large momentum, more and more high-momentum modes

of a field theory are needed to build up its internal structure. Lorentz contraction indicates

that the range of constituent momentum important for the structure also increases. If these

high-momentum modes do not decouple effectively from the low-momentum ones, large

logarithms of the form lnP , will develop in the structural quantities. Hence a singularity

(cut) at P = ∞ can exist in these theories, making P → ∞ limit ill-defined and the large

momentum expansion impossible. This situation is intimately related to UV properties of

the theories, for which the limits of taking the UV cut-off ΛUV → ∞ and P → ∞ do

not commute. While the physically-relevant one is (ΛUV ≫ P ) → ∞, partons in QCD

factorizations are obtained in the other limit (ΛUV ≪ P ) → ∞ when the UV divergences

are ignored. Thus one can formally write the parton distribution as

f(x) =

∫
dλ

2π
eixλ〈P z =∞|ψ†(z)ψ(0)|P z =∞〉 , (3)
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where λ = limP z→∞,z→0(zP
z), and ψ is a quantum field.

Historically, the IMF limit of field theories has been studied first at the level of diagram-

matic rules for perturbation theory (Weinberg, 1966). It was found that taking P → ∞
by ignoring the UV divergences considerably simplifies the perturbation theory rules: Many

time-ordered diagrams vanish and only few have finite contributions. Moreover, scattering

in this limit resembles that in non-relativistic quantum mechanics, and the wave function

description becomes useful. The Fock states define the partons which have the proper

kinematic support (0 < x < 1). After the limit is taken, all physical quantities are now

independent of P , and large-momentum symmetry is exact before UV divergences are reg-

ulated. Therefore, it is the “naive” limit, ΛUV ≪ P → ∞, that corresponds to Feynman’s

naive parton model.

In the standard QCD study of high-energy scattering, the above concept of partons as

effective degrees of freedom has been used implicitly. The PDFs are defined in terms of the

naive P =∞ limit, and are used to match the experimental cross sections, resulting in QCD

factorization theorems (Collins, 2011a).

B. Partons through Light-Front Correlators

In the literature and textbooks, parton distributions are not traditionally represented

in terms of the Euclidean matrix elements as in Eq. (3). Rather, they are represented by

the so-called LF correlators of quantum fields (“operator formalism”) (Brodsky et al., 1998;

Collins, 2011a). A more explicit formulation in terms of collinear quantum fields and effective

lagrangian is made in the soft-collinear effective theory (SCET) (Bauer et al., 2001, 2002;

Bauer and Stewart, 2001).

There is a physical way to see that the parton description of high-energy scattering results

in the light-front correlations. Consider DIS in the rest frame of the proton, where the virtual

photon has momentum

qµ = (ν, 0, 0,−
√
ν2 + 2xBMν) . (4)

In the Bjorken limit ν → ∞, although the invariant mass Q of the photon goes to infinity,

the photon momentum becomes actually light-like in the sense that it approaches the light

front. Therefore, in inclusive DIS cross section, the separation of the two electromagnetic
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currents in the hadronic tensor, which is Fourier conjugate to the photon momentum, also

approaches the light-cone direction.

Thus, it appears natural that all the structural physics of the proton in the IMF can also

be expressed in terms of time-dependent LF correlators or correlations of quantum fields on

the LF. Formally, this is simple to see if one writes

|P →∞〉 = U(Λ∞)|P = 0〉 . (5)

The boost operator U(Λ∞) can be applied to the static nonlocal operators in the ordinary

momentum distributions. In doing so, all static correlations become light-cone ones. The

boost process is then similar to shifting the Hamiltonian evolution in quantum mechanics

from Schrödinger to Heisenberg picture where time-dependence is now in the operators.

To express light-cone correlations, it is convenient to introduce two conjugate light-like

(or light-cone) vectors, pµ = (Λ, 0, 0,Λ) and nµ = (1/2Λ, 0, 0,−1/2Λ), with the following

properties, n2 = p2 = 0, and n · p = 1, where Λ is a parameter. Then any four-vector can

be expanded as,

kµ = k · npµ + k · pnµ + kµ⊥ . (6)

In particular, the momentum P µ of a proton moving in the z-direction can be expressed as

P µ = pµ + (M2/2)nµ , (7)

where M is the proton mass.

Using the above notation, one can express the unpolarized quark distribution in the

proton as (Collins, 2011a),

q(x) =
1

2

∫
dλ

2π
eiλx〈P |ψ(0)/nW (0, λn)ψ(λn)|P 〉c , (8)

where ψ is the quark field and W is a gauge-link defined as

W (x2, x1) =

P exp[−ig
∫ 1

0

dt (x2 − x1)µAµ(x1 + (x2 − x1)t)] (9)

to ensure gauge invariance with P denoting the path ordering. c indicates the connected

contributions only, and will be suppressed in the rest of this work. It is a property of gauge
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theories in which the charge fields are not gauge-invariant, and the physical distributions

must include a beam of collinear gauge particles. Note that the above expression is true for

any momentum P (a residual momentum symmetry), in particular, in the rest frame of the

nucleon. The x-support of the above distribution is [−1, 1]. For negative x, one defines the

antiquark distribution with −q(−x) ≡ q̄(x). The above expression has been more familiar

in the literature than Feynman’s original formulation of PDFs. In the single quark target,

one finds q(x) = δ(x− 1).

To expose the partons in the above equation, one can follow the QCD light-front quan-

titzation (Chang and Ma, 1969; Drell and Yan, 1971; Kogut and Soper, 1970), suggested by

Dirac in 1949 (Dirac, 1949). In LFQ (Brodsky et al., 1998), one defines the LF coordinates,

ξ± = (ξ0 ± ξ3)/
√
2 , (10)

where ξ+ is the LF “time”, and ξ− is the LF “spatial coordinate”. And any four-vector

Aµ will be now written as (A+, A−, ~A⊥). Dynamical degrees of freedom are defined on the

ξ+ = 0 plane with arbitrary ξ− and ~ξ⊥, with conjugate momentum k+ and ~k⊥. Dynamics

is generated by the light-cone Hamiltonian HLC = P−. For a free particle with three-

momentum (k+, ~k⊥) and mass m, the on-shell LF energy is k− = (~k2⊥ +m2)/(2k+).

For QCD, one can define the Dirac matrices γ± = (γ0 ± γ3)/
√
2, and the projection

operators for the quark fields as P± = (1/2)γ∓γ±, so that any ψ can be decomposed into

ψ = ψ++ψ− with ψ± = P±ψ, where ψ+ is considered as a dynamical degree of freedom. For

the gauge field, A+ is fixed by the LF gauge A+ = 0. A⊥ are dynamical degrees of freedom.

ψ− and A− are dependent variables, which can be expressed in terms of ψ+ and A⊥ using

equations of motion (Kogut and Soper, 1970).

The physics of the LF correlations becomes manifest if one introduces the canonical

expansion,

ψ+(ξ
+ = 0, ξ−, ~ξ⊥) =

∫
d2k⊥
(2π)3

dk+

2k+

∑

σ

[
bσ(k)u(k, σ)

× e−i(k+ξ−−~k⊥·~ξ⊥) + d†σ(k)v(k, σ)e
i(k+ξ−−~k⊥·~ξ⊥)

]
, (11)

where b†(k) and d†(k) (b(k) and d(k)) are quark and antiquark creation (annihilation) oper-

ators, respectively. σ is the light-cone helicity of the quarks which can take +1/2 or −1/2.
Covariant normalization is adopted for the particle states and the creation and annihilation
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operators, i.e.,

{
bσ(k), b

†
σ′(k

′)
}
=
{
dσ(k), d

†
σ′(k

′)
}

= (2π)3δσσ′2k
+δ(k+ − k′+)δ(2)(~k⊥ − ~k′⊥) . (12)

Substituting the above expansion into Eq. (8), one finds the quark distribution as

q(x) =
1

2x

∑

σ

∫
d2~k⊥
(2π)3

〈P |b†σ(x,~k⊥)bσ(x,~k⊥)|P 〉/〈P |P 〉 (13)

for x > 0, and similarly for x < 0 for which one gets the antiquark distribution. The factor

1/x comes from the normalization of the creation and annihilation operators. The matrix

element above should be interpreted as the matrix element in a wave packet state, in the

limit of a state of definite momentum (Collins, 2011a). This way, one recovers the physical

meaning of PDFs in the LF correlator (operator) formalism.

C. Other Approaches to Parton Structure

Calculating the partonic structure of the hadrons from QCD has always been an impor-

tant goal in hadronic physics. There have been two main approaches apart from various

phenomenology and models: light-front quantization and lattice QCD. Here the authors

give a very brief review on LFQ and lattice approaches that are different from the main

subject of this review.

Although LFQ explicitly uses the parton degrees of freedom, it has not been very success-

ful in practical calculations. First of all, LF perturbation theory, like the standard Hamilto-

nian perturbation theory, breaks Lorentz symmetry manifestly and requires a sophisticated

renormalization scheme to restore it. A potential renormalization scheme must deal with

the long-range correlations in the ξ− direction which require functional dependence on the

renormalization counterterms (Wilson et al., 1994). Thus LF perturbation theory has not

been used for any calculations beyond one loop, except for the two-loop anomalous mag-

netic moment in QED (Langnau and Burkardt, 1993). In fact, the common wisdom of using

dimensional regularization (DR) for the transverse integrals and cut-off regularization for

the longitudinal one has not been proven useful for multi-loop calculations, although it has

been successfully used to derive the BFKL evolution by Mueller from the quarkonium wave

functions (Mueller, 1994a).
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The enthusiasm for using LFQ in QCD is not about perturbation theory, but to solve the

hadron states. Discretized LFQ was proposed in (Pauli and Brodsky, 1985) to make prac-

tical calculations for the bound state problems. This non-perturbative method turns out

to be successful for models in 1+1 dimension, such as the Schwinger model (Harada et al.,

1996; McCartor, 1994), the 1+1 QCD (Burkardt, 1989; Srivastava and Brodsky, 2001), the

1+1 φ4 theory (Harindranath and Vary, 1987) and the sine-Gordon model (Burkardt, 1993).

For 3+1 dimensional theories, simple approximations have been considered, like the Tamm-

Dancoff approximation (Perry et al., 1990). For QCD itself, one again has to use severe trun-

cations in the number of Fock states. Some recent works of this type include (Jia and Vary,

2019; Lan et al., 2019; Vary et al., 2010). However, to derive a fully-renormalized hamilto-

nian is difficult and moreover, there has been no demonstration so far that the Fock-space

truncation actually converges (Wilson et al., 1994). Therefore a systematic approximation

for QCD bound states in LFQ has yet to be found.

Given the rapid development in lattice QCD, it is natural to use it to compute parton

physics. However, simulating real-time evolution directly is numerically challenging, which

runs into the so-called sign problem or more generally NP-hard problem. Over the years, a

number of methods have been proposed previously to indirectly calculate the PDFs, which

includes well-studied moment methods, hadronic tensor and Compton amplitude method,

coordinate space factorization, etc. These approaches calculate lattice observables that can

be related to the PDFs/structure functions through OPE or the dispersion relation, and thus

can be used to probe certain information on the partonic structure of hadrons. However, their

aims are mainly to get the lower moments of PDFs and/or segments of certain coordinate

correlations, not directly in parton degrees of freedom.

The most-adopted approach on the lattice has been to calculate the moments

of PDFs as the matrix elements of local operators (Kronfeld and Photiadis, 1985;

Martinelli and Sachrajda, 1987). In the moments approach, one starts with the so-called

twist-two operators (Christ et al., 1972),

Oµ1...µn = ψγ(µ1iDµ2 ...iDµn)ψ − trace (14)

in the quark case, where (µ1...µ2) indicates that all the indices are symmetrized, the trace

terms are those with at least one factor of the metric tensor gµiµj multiplied by operators

of dimension (n + 2) with n − 2 Lorentz indices, etc. Their matrix elements in the proton
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state are

〈P |Oµ1...µn(µ)|P 〉 = 2an(µ)(P
µ1 · · ·P µn−trace) , (15)

and the PDFs are related to the local matrix elements through

an(µ) =

∫ 1

−1

dxxn−1q(x, µ2)

=

∫ 1

0

xn−1
[
q(x, µ2) + (−1)nq̄(x, µ2)

]
(16)

with n = 1, 2, .... The time-dependent correlation for the PDF in Eq. (8) is recovered by

taking all the components as + in Eq. (15),

〈P |O+...+(µ)|P 〉 = 2an(µ)P
+ · · ·P+ , (17)

and packaging all the moments into a distribution. Likewise, for the gluon PDF, its moments

are again related to the matrix elements of local operators,

Oµ1...µn
g = −F (µ1αiDµ2 · · · .iDµn−1F µn)

α , (18)

with n = 2, 4, 6, ....

A large number of lattice QCD calculations of PDF moments have been done so far

with various degrees of control in systematics (Lin et al., 2018c), which include discretiza-

tion errors, physical pion mass, finite volume effects, excited state contaminations, and

proper renormalization. Most of the lattice calculations have been focused on the first and

second moments, 〈x〉 (Alexandrou et al., 2017a; Bali et al., 2014; Green et al., 2014), and

〈x2〉(Deka et al., 2009; Dolgov et al., 2002) for the unpolarized distributions, and the zero-

th and first moments, 〈1〉 (Alexandrou et al., 2019a, 2017a; Chang et al., 2018; Gong et al.,

2017), and 〈x〉 (Abdel-Rehim et al., 2015; Aoki et al., 2010) for the polarized distributions.

However, it has been difficult to calculate higher moments, due to power divergences and

rapid decay in signals. Nonetheless, moment calculations can provide a useful calibration

for any comprehensive lattice approach to PDFs.

To get more information about the PDFs, it was proposed to calculate the hadronic tensor

of DIS in Euclidean space, and analytically continue the result to Minkowski space (Liu,

2000, 2016, 2017, 2020; Liu and Dong, 1994; Liu et al., 1999). Since numerical methods for

analytical continuation are known to be difficult for precision control (similar to NP-hard

18



or sign problem mentioned earlier), the approach is useful mainly for the nucleon low-lying

excitations. It is very challenging to obtain parton physics this way.

A similar approach called “operator product expansion (OPE) without OPE” was

suggested in (Aglietti et al., 1998; Martinelli, 1999), see also (Capitani et al., 1999a,b;

Dawson et al., 1998). The point is that the Compton amplitude in the non-dispersive region

can be calculated in the Euclidean space (Ji and Jung, 2001). Through dispersion relation

and Taylor-expansion at ν = P · q = 0, one can extract the higher moments of structure

functions from the lattice Compton amplitude. The recent works and references for parton

structure from this approach can be found in (Chambers et al., 2017; Hannaford-Gunn et al.,

2020; Horsley et al., 2020). A similar method has been adopted for Compton amplitude with

heavy-light currents (Detmold and Lin, 2006). This approach has been used to calculate the

second moment of pion distribution amplitude (Detmold et al., 2020, 2018).

The current-current correlators can also be studied through OPE in the coordinate space

without momentum insertion into the currents (Braun and Müller, 2008). The spatial cor-

relation at small distances can be used to calculate higher-moments of distribution am-

plitudes of the mesons. A number of lattice studies have been performed in (Bali et al.,

2019, 2018a; Braun et al., 2015). Similar strategy has been suggested more recently by

Qiu et al. (Ma and Qiu, 2018a) for parton distributions, and has been used in lattice sim-

ulations (Sufian et al., 2020, 2019). The pseudo-PDF has been proposed based on the

equal-time correlation—or the quasi-PDF in Fourier space—used in LaMET (Radyushkin,

2017a, 2019b), and uses a coordinate-space factorization or OPE at small distance as

in (Braun and Müller, 2008). Because of its close connection with the quasi-PDF, we will

discuss comparisons of the pseudo-PDF data analysis method with that for the quasi-PDF

in Sec. III.C.

There have been pioneering studies on moments of the “quasi” quark TMDPDFs on

lattice (Engelhardt et al., 2016; Hagler et al., 2009; Musch et al., 2012, 2011; Yoon et al.,

2017). The staple-shaped gauge link operators have been used to connect the quark fields

separated in the spatial direction to simulate the moments of TMDPDF. The ratios of these

moments are presumed independent of the unknown soft function and may be compared

with experimental data. However, a rigorous relation of these constructions to the physical

moments of TMDPDFs had not been investigated before LaMET, particularly the relation-

ship between large momentum limit and the rapidity cutoff which is an essential ingredient
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of TMD physics. Comparison of this approach and LaMET will be made in Sec. V.B.

II. LARGE-MOMENTUM EFFECTIVE THEORY

As has been explained in Sec. I.A, Feynman’s partons were motivated from describing

the structure of a bound state travelling at large momentum P . On the other hand, in QCD

factorizations, they appear as effective degrees of freedoms arising in infinite momentum limit

disregarding UV divergences. Reconciling these two pictures results in large-momentum

effective theory (LaMET) for the parton structure of hadrons.

In this section, we start by considering the structure of the proton at finite momentum.

We define the ordinary momentum distributions of the constituents, and trying to illustrate

their dependence on the proton momentum. We demonstrate that the large-P momentum-

dependence follow a RGE, similar to the well-known RGE for partons. In Sec. II.C, we show

that momentum distributions at large P , are related to PDFs through a matching between

different orders of P → ∞ and UV cut-off limits. This matching process has a standard

EFT explanation: Parton physics or observables can be obtained from an effective theory in

which P ≪ ΛUV are calculated non-perturbatively in the so-called P space (Messiah, 1979),

after “integrating out” degrees of freedom between P and ∞ (or Q = 1−P space) through

perturbation theory. Therefore, the LaMET approach to partons is in some sense similar to

lattice QCD as an EFT approach for continuum field theories, in which all active degrees

of freedom (P space) are bounded by |k| ≤ π/a, where a is lattice spacing, whereas those

at |k| ≥ π/a (Q space) are taken into account through perturbative coefficients and higher

dimensional operators.

In Sec. II.D, we outline the formalism of LaMET for a general parton observable. The

method can in principle be used also to calculate any LF correlations in terms of large

momentum external states (see in particular the application to soft function in Sec. V). The

strategy is also applicable for the components of the LF wave functions. Thus, LaMET offers

a practical and systematic way to carry out the program of LFQ. Instead of working with

the LF coordinates directly, one uses the instant form of dynamics and large momentum or

boost factor γ as a regulator for the LF divergences. In a certain sense, the quantization

using tilted light-cone coordinates (Lenz et al., 1991) is similar to the spirit of the LaMET

approach.
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At present, the only systematic approach to solve non-perturbative QCD is lattice field

theory (Wilson, 1974). Therefore, a practical implementation of LaMET can be done

through lattice calculations. It can also be done with other bound-state methods using Eu-

clidean approaches, such as the instanton liquid model (Schäfer and Shuryak, 1998). While

LFQ may provide an attractive physical picture for the proton, the Euclidean equal-time

formulation is more practical for carrying out the calculations, and LaMET serves to bridge

them.

A. Structure of the Proton at Finite Momentum

In relativistic theories, the internal structure of a composite system is frame-dependent

(we always refer to the total momentum eigenstates), and we are interested in the properties

of the proton at a momentum much larger than its rest mass.

We start from the quark momentum density in a fast-moving proton, assuming that it

moves in the z-direction. A straightforward definition is

NP (~k) =
∑

σ

〈P |b†σ(~k)bσ(~k)|P 〉/〈P |P 〉 , (19)

where the quark helicity, color, and other implicit indices are summed over. This equation

should be compared with the parton density in Eq. (13). To make it gauge invariant, it is

convenient to consider the definition from a coordinate-space correlator,

NP,W (~k) =

∫
d3ξ

(2π)3
e−i

~k·~ξ〈P |ψ(0)γ0W (0, ~ξ)ψ(~ξ)|P 〉 , (20)

where the Dirac matrix γ0 ensures that it is a number density. Clearly, it is a static quantity

without time-dependence and can be calculated in Euclidean field theories, in contrast to

Eq. (8) for partons. The gauge invariance is ensured by the Wilson line W (0, ~ξ) between the

quark fields separated by ~ξ, which is defined in the fundamental representation of the color

SU(3) group. There are infinitely many choices for the Wilson line, generating infinitely

many momentum densities. For example, one can choose a straight-line link between 0

and ~ξ. One can also let the Wilson line run from the fields along the z-direction for a

long distance (if not infinity) before joining them together along the transverse direction (a

staple).
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For its obvious connection to the PDFs, we consider a transverse-momentum integrated,

longitudinal-momentum distribution,

NP (k
z) =

∫
d2~k⊥ NP,W (~k)

=

∫
dz

2π
e−ik

zz〈P |ψ(0)γ0W (0, z)ψ(z)|P 〉, (21)

where we ignore the question of convergence at large |~k⊥|. Now the gauge-link W (0, z) is

naturally taken as a straight-line,

W (0, z) = exp(−i
∫ z

0

Az
′

(z′)dz′)

= exp(i

∫ 0

∞
Az

′

(z′)dz′) exp(i

∫ ∞

z

Az
′

(z′)dz′)

= W †(∞, 0)W (∞, z) , (22)

where in the second line we have split the gauge link into two, going from z to the infinity

and coming back from the infinity to zero. We can define a “gauge-invariant” quark field

Ψ(~ξ) = W (∞, ~ξ)ψ(~ξ) , (23)

and the above density becomes,

NP (k
z) =

∫
dz

2π
e−ik

zz〈P |Ψ(0)γ0Ψ(z)|P 〉 , (24)

where again we have not considered UV divergences. The momentum distribution defined

above has been called quasi-PDF, but it is really a physical momentum distribution in a

proton of momentum P .

In the rest frame of the proton, NP=0(k
z) is symmetric in positive and negative kz,

probably peaks around kz = 0 and decays away as kz → ±∞. Due to the perturbative QCD

effects, it decays algebraically at large kz, instead of exponentially. Because of this property,

the high moments of the distribution,
∫
dkz(kz)nN0(k

z) with n > 0, have the standard QFT

UV divergences.

As P becomes non-zero and large, the peak NP (kz) will be around αP z, where α is a

constant of order one. The density at negative kz becomes smaller, but not zero. This is due

to the so-called backward-moving particles from the large momentum kick in perturbation

theory. For the same reason, the density at kz > P z is not zero either.

22



NP (k
z) has a renormalization scale dependence because the quark fields must be renor-

malized. One can choose DR and modified minimal subtraction (MS) scheme. Any other

regularization scheme can be converted into this one perturbatively. For z 6= 0, the only

renormalization necessary is the quark wave function (with anomalous dimension γF ) in the

Az = 0 gauge, because the linear divergence associated with the gauge link vanishes in the

MS scheme. More extensive discussions on the renormalization issue, particularly about

non-perturbative renormalization, will be made in the following section.

As an example showing how the parton momentum density depends on P , we depict in

Fig. 3 the quark wave function amplitude of a meson in the ’t Hooft model (1+1 dimensional

QCD with Nc → ∞) (’t Hooft, 1974) , the square of which yields the quark momentum

density. In this model, a meson of momentum P µ can be built as

|P µ
n 〉 =

∫
dk

2π|P |
[
M(k − P, k)φ+

n (k, P )

+M †(k, k − P )φ−
n (k, P )

]
|0〉 , (25)

where M(p, k) =
∑

i d
i
−pb

i
k/
√
Nc, and M †(p, k) =

∑
i b
i†
k d

i†
−p/
√
Nc are annihilation and cre-

ation operators for quark-antiquark pairs. The corresponding wave function amplitudes,

φ+
n (k, P ) and φ−

n (k, P ), satisfy a pair of equations first derived in (Bars and Green, 1978).

[FIG. 3 about here.]

The meson bound state defined above has a well-defined large-momentum limit. The

wave functions can be expanded in 1/P , with the corrections starting from (1/P )2. The

momenta of the constituents, k and P −k, scale in this limit. When plotted as a function of

x = k/P , the change in the wave function with the magnitude of the momentum is shown

in Fig. 3.

B. Momentum Renormalization Group

In this subsection, we consider how to calculate the external momentum P dependence of

physical observables discussed in the previous subsection. Clearly, the dependence is related

to the boost properties of the operators under consideration, namely their commutation

relations with the boost generators, K̂i. We argue that in the large momentum limit, one

has a momentum RGE which is a differential equation relating properties of the system at
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different momenta. Momentum RGE will be, in the end, related to the renormalization

properties of the observables on the LF.

Consider a generic operator Ô, and its matrix element in a state with momentum P ,

O(P ) = 〈P |Ô|P 〉 . (26)

We calculate the momentum dependence by writing |P 〉 = exp(−iω(P )K̂)|P = 0〉, where K̂

is the boost operator along the momentum direction and ω is a boost parameter depending

on P . Taking a derivative with respect to the boost parameter gives

dO(P )

dP
= i

dω(P )

dP
〈P |[Ô, K̂]|P 〉 . (27)

The r.h.s. of the equation depends on the commutator [Ô, K̂], i.e., the boost properties

of the operator. For a scalar operator, the commutation relation vanishes, and O(P ) is

frame independent. For a vector operator, the commutation relation resembles that of an

energy-momentum four-vector, and the result is the standard Lorentz transformation of

a four-vector. For nonlocal operators, the commutation relation requires the elementary

formula,

[Jµν , φi(x)] = i
[
lµνδij + Sµνij

]
φj(x) , (28)

where lµν=−i(xµ∂ν−xν∂µ) is the OAM operator and Sµν is the intrinsic spin matrix. Thus

one of the fields is now φi(t = sinhωz, 0, 0, coshωz) which generates a time-dependent

correlation function.

In the large-momentum limit, because of asymptotic freedom, the P -dependence is calcu-

lable in perturbation theory, and Eq. (27) simplifies. One obtains the momentum or boost

RGE (Ji, 2014),

dO(P )

dP
= lim

∆P→0
[O(P +∆P )− O(P )]/∆P (29)

P≫M−−−→ C(αs(P ))⊗O(P ) +O(M2/P 2) . (30)

where C(αs(P )) is a perturbative expansion in the strong coupling αs. The symbol “⊗” can

be a simple multiplication or certain form of convolution, depending on the observable O(P )

studied. The proof of the above equation is non-trivial, and it can be analyzed on a case-

by-case basis. There can be mixings among a set of independent operators with the same

quantum numbers. The momentum RGEs are very similar to those for scale transformation

24



or that for the coarse graining of a Hamiltonian. That the two are connected in some cases

may be traced to Lorentz symmetry.

[FIG. 4 about here.]

As an example of the momentum RGE, we calculate the quark momentum distribution

in a perturbative quark state using Eq. (24). Since it is gauge invariant, we can calculate it

in any gauge, for example, the Feynman gauge. The one-loop diagrams in QCD are shown

in Fig. 5. There are two sources of UV divergences, one is the logarithmic divergences

from the vertex and self-energy diagrams, and the other is the linear divergence in the self-

energy of the Wilson line. For the moment, we will use transverse momentum cut-off, ΛUV,

as the UV regulator. Using y = kz/P z, the one-loop result reads for a large momentum

quark (Xiong et al., 2014),

q̃(1)(y, P z,ΛUV) =
αsCF
2π

×






1+y2

1−y ln y
y−1

+ 1 + ΛUV

(1−y)2P z , y > 1

1+y2

1−y ln (P z)2

m2 + 1+y2

1−y ln 4y
1−y

− 4y
1−y + 1 + ΛUV

(1−y)2P z , 0 < y < 1

1+y2

1−y ln y−1
y
− 1 + ΛUV

(1−y)2P z , y < 0

(31)

where we have ignored all power-suppressed contributions and keep the leading P z depen-

dence only. There is an additional contribution of the form δZ1(ΛUV/P
z)δ(y − 1).

The above result has several interesting features:

• The distribution does not vanish outside [0, 1]. The radiative gluon can carry a large

negative momentum fraction, resulting in a recoiling quark carrying larger momentum

than the parent quark, and thus y > 1. The same gluon can also carry a momentum

larger than P z, making the active quark have y < 0.

• While the above effect is easy to understand perturbatively, it is surprising that a

scaling contribution remains outside [0,1] in the IMF. As the proton travels faster, one

might think any constituent has a momentum kz positive from Lorentz transformation.

However, the order of limits matters because no matter how large the parent-quark

momentum is, there are always quarks with much larger momentum, i.e., kz ≫ P z ≫
ΛQCD. In this sense, Feynman’s parton model does not describe the exact properties

of the momentum distribution in a large-momentum nucleon.
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• The contribution outside [0, 1] at one-loop is entirely perturbative because of the ab-

sence of any infrared (IR) divergence. This is no longer true at two-loop level, but the

contribution depends only on the same one-loop IR physics in [0, 1].

• The distribution for y in [0,1] has a term depending on lnP z. This dependence reflects

that the quark substructure is resolved as a function of P z, an interesting feature of

boost. This dependence is perturbative in the sense that the derivative is IR safe,

P z dq̃(y, P
z,ΛUV)

dP z

=
αsCF
π

[(
1 + y2

1− y

)

+

− 3

2
δ(1− y)

]
. (32)

Apart from the δ-function term, the r.h.s. is similar to the one-loop quark split-

ting function in DGLAP evolution (Altarelli and Parisi, 1977; Dokshitzer, 1977;

Gribov and Lipatov, 1972). Therefore one might suspect that the momentum depen-

dence is closely related to the familiar renormalization scale evolution in the PDFs.

In fact, the physics is just the other way around: It is the hadron-momentum depen-

dence of the physical momentum distribution that generates the DGLAP evolution in

the infinite-momentum limit. One can derive an all-order momentum RGE for the

momentum distribution function. Momentum RGE also provides a method to sum

over the large logarithms of the momentum.

• There is a singularity at y = 1. This singularity is generated from soft-gluon radiation.

Fortunately, this singularity combined with the virtual contribution yields a finite

result.

• There is a linear divergence in the cut-off regulator, leading to ΛUV/P
z term, which

is absent in DR. Thus, to keep 1/(P z)2 power counting, it is important to work in a

renormalization scheme where this term does not exist.

We can also move on to study the hadron momentum RGEs of other structural properties

considered in the previous subsection. In particular, the RGE for TMD distributions will

lead to the familiar rapidity RGE in the literature. We reserve these discussions to Sec. V.
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C. Effective Field Theory Matching to PDFs

As we have seen in the previous subsection, the momentum distributions of the con-

stituents (now called quasi-PDFs in the literature) in a proton at large P are different from

the PDFs or LF distributions in many ways. In particular, the momentum fraction y in a

physical momentum distribution is not limited to [0,1] due to backward moving particles,

which is the case even in the P → ∞ limit. In fact, the infinite-momentum limit is not

analytical due to the presence of lnP .

However, partons are effective objects arising from a different limit ΛUV ≪ P → ∞.

There is also an important computational advantage in taking the naive limit P ≫ ΛUV

in perturbative calculations: Feynman integrals have one fewer four-momentum. Therefore,

this limit of QFTs serves as a reference system where the structure of the bound states is

manifestly independent of the hadron momentum, and is similar to scale-invariant critical

points at which second-order phase transitions occur in condensed matter systems. However,

the theory in the naive IMF limit introduces additional UV divergences.

Therefore, the partons in QCD are very similar to the infinitely heavy quarks in

HQET (Manohar and Wise, 2000). In certain QCD systems, heavy quarks such as the

bottom quark are present, and their masses are much larger than the typical QCD scale

ΛQCD. In this case, one might study the dependence on the heavy quark mass by expanding

around mQ = ∞. This expansion will generally produce a power series in 1/mQ. However,

the limits of taking ΛUV →∞ and infinite heavy-quark mass limits are not interchangeable,

due to the presence of the large logarithms lnmQ. In an EFT approach, one takes the

mQ →∞ limit first, this will result in a new theory with different UV behavior, but without

the heavy-quark mass, and symmetries among very different heavy-quark systems become

manifest. The renormalization of the extra UV divergences yields a RGE which can be used

to resum large quark-mass logarithms.

Therefore, the momentum distribution at large-P differs from the parton distributions

only in the order of limits, their IR non-perturbative physics is the same. In asymptotically

free theories such as QCD, differences (or discontinuities) in taking the limits of P ≫ ΛUV

and ΛUV ≫ P → ∞ are perturbatively calculable, as only the high-momentum modes

matter. The differences are called matching coefficients. Therefore, one is able to write

down a power expansion for the momentum-dependent distribution (quasi-PDF) in terms
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of the PDF (Izubuchi et al., 2018; Ma and Qiu, 2018a,b; Xiong et al., 2014),

q̃(y, P z, µ)=

∫ 1

−1

dx

|x|C
(y
x
,
µ

xP z

)
q(x, µ)

+O
(

Λ2
QCD

(yP z)2
,

Λ2
QCD

((1− y)P z)2

)
, (33)

where the power correction is suppressed by the parton momentum yP z and the spectator

momentum (1 − y)P z (Ji et al., 2020b). This expansion may be also called a factorization

formula, as the quasi-PDF contains all the IR physics in the PDF, and C involves only

UV physics. As we will discuss extensively in the next section, this factorization formula is

true to all orders in perturbation theory. The above relation allows us to calculate the LF

parton physics from the momentum distribution at large P . Since the expansion parameter

is Λ2
QCD/(yP

z)2 and Λ2
QCD/((1− y)P z)2 , for intermediate y one might not need very large

P z to neglect the power corrections.

The above relation between the two quantities has a simple explanation in terms of the

Lorentz boost: Consider the spatial correlation along z shown in Fig. 6 in a large momentum

state. It can be seen as approaching the LF one in the rest frame of the proton. In other

words, we are using a near-LF correlation to approximate a LF correlation. Accordingly,

we can invert the above equation recursively to express the PDF in terms of quasi-PDF

with their differences being taken care of through the perturbative matching C̃ and power

corrections,

q(x, µ)=

∫ ∞

−∞

dy

|y|C̃
(
x

y
,
µ

yP z

)
q̃(y, P z, µ)

+O
(

Λ2
QCD

(xP z)2
,

Λ2
QCD

((1− x)P z)2

)
. (34)

The above equation has an EFT interpretation: The parton physics is calculated in an ef-

fective field theory with physical momentum scale from 0 to P , whereas the physics from

degrees of freedom from P to ∞ can be integrated out to generate the perturbative coeffi-

cients C̃ and the high-order terms in 1/(P z)2. In constrast to HQET, the full QCD degrees

of freedom are used in LaMET calculations. In other words, the effective Lagrangian of

LaMET is the standard QCD one, while the large momentum P for expansions appears

only in the external states.

[FIG. 5 about here.]
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D. Recipe for Parton Physics in LaMET

The principle of LaMET is to simulate the time-dependence of parton observables through

external states at large momentum. Thus, we can generalize the discussions in the previous

subsection to any type of physical observables for the large momentum proton, which will

be generally called quasi-parton observables. Examples will be given in the later sections

including transverse-momentum dependent distributions and LF wave functions.

Consider any Euclidean quasi-observable O which depends on a large hadron momentum

P z and UV cut-off ΛUV ≫ P z. Using asymptotic freedom, we can systematically expand

the P z dependence,

O
(
P z,ΛUV

)
= Z

( P z

ΛUV
,
P z

µ

)
⊗o(µ) +O

(Λ2
QCD

(P z)2

)
+ ... , (35)

where ⊗ refers to a convolution if appropriate, and Z factorizes all the perturbative depen-

dence on P z and does not contain any IR divergence. The quantity o(µ) is defined in a

theory with P z → ∞, exactly as in Feynman’s parton model. In fact, o(µ) is a LF corre-

lation containing all the IR collinear (and soft) singularities. The important point of the

expansion is that it may converge at moderately large P z, say a few GeV, allowing access

to quantities needed for very large P z (a few TeV). One can also use the large boost-factor

γ = P z/M as the expansion parameter 1/γ.

Momentum dependence of the quasi-observables can be studied through momentum

RGEs. Defining the anomalous dimension through

γP (αs) =
1

Z

∂Z

∂ lnP z
, (36)

it follows that

∂O(P z)

∂ lnP z
= γP (αs)⊗ O(P z) , (37)

up to power corrections. One can resum large logarithms involving P z using the above

equation.

When taking P z →∞ first in O(P z) before a UV regularization is imposed, one recovers

from Ô the light-cone operator ô, by construction. On the other hand, the physical matrix

element is calculated at a large P z, with UV regularization such as the lattice cut-off imposed

first. Thus the difference between the matrix elements of ô and Ô is a matter of the order
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of limits. This is the standard set-up for an EFT. The different limits do not change the

IR physics. In fact, the factorization in terms of Feynman diagrams can be proved order by

order as in the renormalization program, as discussed in the following section.

The parton physics can be calculated more directly by reversing Eq. (35) to produce an

EFT expansion,

o(µ) = Z̃
( P z

ΛUV
,
P z

µ

)
⊗O
(
P z,ΛUV

)
+O

(Λ2
QCD

(P z)2

)
+ ... . (38)

Thus, to compute any parton observable defined by an operator made of LF dynamical

fields, ô, one constructs a time-independent version Ô which, under an infinite Lorentz

boost, approaches ô. Then, one calculates the matrix element of Ô in a hadron with large

momentum P z using whatever approach (lattice QCD is an obvious choice for the time-

independent operator Ô) and then uses Eq. (38) to systematically approximate the parton

observable. Usually the matrix element of Ô depends on P z as well as all the lattice UV

artifacts. In principle, the latter does not affect the EFT expansion and will be cancelled by

the matching coefficient Z̃ and higher order terms in the expansion. However, in practical

applications such as the quasi-PDF calculations, a nonperturbative renormalization is still

necessary to remove all the power divergences to ensure a continuum limit.

E. Universality

LaMET provides a framework to systematically compute partonic observables on the LF

from the properties of a large-momentum proton. However, the relationship is not one-

to-one. There can be infinitely many possible Euclidean operators in the large-momentum

proton which generate the same LF observable. This is because the large-momentum physical

states have built-in collinear (as well as soft) parton modes, and upon acting on a Euclidean

operator, they help to project out the leading LF physics. All operators projecting out the

same LF physics form a universality class. Accordingly, in the operator formulation for

parton physics such as SCET, one uses LF operators to project out parton physics off the

external states of any momentum, including P = 0.

The concepts such as universality class have been used in critical phenomena in condensed

matter physics, where systems with different microscopic Hamiltonians can have the same

scaling properties near their critical points. Critical phenomena correspond to the IR fixed
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points of the scale transformation, and are dominated by physics at long-distance scales. In

the present case, parton physics arises from the infinite-momentum limit, P = ∞, which is

a UV fixed point of the momentum RGEs. It is the longitudinal short distance (or large

momentum) physics that is relevant at the fixed point. However, the short distance here

does not mean everything is perturbative. The part that is non-perturbative characterizes

the partonic structure of the proton. The critical region near P =∞ acts as a filter to select

only the physics that is relevant, so universality classes emerge.

In the case of unpolarized PDFs, the initial proposal in LaMET starts from the matrix

element of the following operator (Ji, 2013),

O1(z) = ψ(0)γzW (0, z)ψ(z) . (39)

However, one can equally start from (Constantinou and Panagopoulos, 2017; Radyushkin,

2017b),

O2(z) = ψ(0)γ0W (0, z)ψ(z) , (40)

and the leading contributions in the large-momentum expansion are the same. One can also

consider any linear combination of the two. In (Jia et al., 2018), the calculations have been

done with these two operators in the ’t Hooft model, and the results have been compared at

different hadron momenta. For lattice simulations, an important issue is about the operator

mixing, which depends on specific choices of the operators in the universality class.

Another example of Euclidean operators for PDFs is the current-current correlators in a

pure space separation,

O3(z) = Jµ(0)Jν(z) , (41)

where Jµ is, for example, an electromagnetic current. This type of correlator was first

considered in (Bali et al., 2018b; Braun and Müller, 2008) for calculating pion DA, and re-

cently has been suggested to calculate PDFs with generalized bilocal “currents” (Ma and Qiu,

2018a). When the matrix elements are calculated in the large-momentum states, O(z) falls

into the same universality class as the operators in Eqs. (39) and (40). Instead of using

light quarks as the intermediate propagator in O(z), one can have a number of other choices

for LaMET applications, including scalars (Abada et al., 2001; Aglietti et al., 1998) and

heavy-quarks (Detmold and Lin, 2006). One can also similarly work with quark bilinear
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operators in any physical gauge which become the light-front one in the large momentum

limit (Gupta et al., 1993).

Another important example of universality class is the gluon helicity contribution to the

spin of the proton, as we will discuss in detail in Sec. IV.D. The gluon spin operator ~E × ~A

is gauge-dependent. However, in physical gauges where the transverse degrees of freedom

are dynamical, its matrix element is the same in the large-momentum limit. Therefore,

one can potentially choose different gauges to perform calculations at finite momentum on

lattice, such as Coulomb gauge ~∇ · ~A = 0, axial gauge Az = 0 or temporal gauge A0 = 0.

Different gauge choices will have different UV properties (lnP ) and hence different matching

conditions. However, the IR part of the matrix element is the same (Hatta et al., 2014).

At a practical level, it is very useful to find which operator has the fastest convergence

in the LaMET expansion. The current-current correlators use the light-quark propagator to

simulate the light-like Wilson line (sometimes called light-ray). The quasi-PDF approach

not only starts from a quantity with clear physical meaning (a momentum distribution),

but also generates the needed Wilson line simply by rotating a space-like one, shown in Fig.

6. Thus, it is plausible that the quasi-PDF will provide mathematically the fastest large-P

convergence than the other choices.

III. RENORMALIZATION AND MATCHING FOR PDFS

In this section, we consider the LaMET application to calculating the simplest collinear

PDFs, which have been most extensively studied in the literature so far. Although universal-

ity allows one to extract the collinear PDFs from the matrix elements of a wide class of oper-

ators evaluated at large momentum, we will focus on physical observables closely resembling

the collinear PDFs, i.e., the quark and gluon momentum distributions or the quasi-PDFs.

We also discuss the coordinate-space factorization approach in which the pseudo-PDF and

current-current correlators have been studied.

We mainly review the technical progress made in renormalization and matching using

the quasi-PDFs. The matching can be done in principle at the bare matrix elements level,

since the factorization formula like Eq. (33) is valid for both bare and renormalized momen-

tum distributions. All the UV divergences in the bare quasi-PDF can be factorized into the

matching coefficient C, and the latter automatically renormalizes the bare lattice matrix ele-
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ments, so the continuum limit can be taken afterwards. However, such a matching coefficient

then has to be calculated in lattice perturbation theory, which is computationally challeng-

ing and converges slowly (Lepage and Mackenzie, 1993). More importantly, the quasi-PDF

contains linear power divergence under UV cutoff regularization due to the Wilson line self-

energy (Ji, 2013; Xiong et al., 2014), which makes it impossible to take the continuum limit

with fixed-order calculations in lattice perturbation theory. Though the latter problem can

be improved by resumming the linear and possibly logarithmic divergences, it is usually

preferred to nonperturbatively renormalize the quasi-PDFs on the lattice, after which a

continuum limit can be taken and a perturbative matching can be done in the continuum

theory. To this end, a thorough understanding of the renormalizability of Wilson-line oper-

ators defining the quasi-PDFs is required. In addition to renormalization, the applications

of LaMET rely on the validity of the large-momentum factorization formula Eq. (33), which

can be proven in perturbation theory to all orders by showing that the collinear divergences

are the same in the momentum distributions and light-cone PDFs.

We begin in Sec. III.A with the proof of multiplicative renormalizability of the Wilson-

line operators that define the quasi-PDFs. We first work in the continuum theory with

MS scheme, and then generalize the conclusion to lattice theory. Next, in Sec. III.B we

outline the factorization theorem for momentum distributions to all orders in perturbation

theory, and state the form of convolution between the matching coefficient and the PDF.

In Sec. III.C we show that the factorization theorem has an equivalent form in coordinate

space, which can be used as an alternate route to extract PDFs from lattice matrix elements.

Finally, we discuss the nonperturbative renormalization of quasi-PDFs on the lattice and

their matching to the MS PDF in Sec. III.D.

A. Renormalization of Nonlocal Wilson-Line Operators

The momentum distributions of the proton are defined from equal-time nonlocal Wilson

line operators of the form in Eq. (21). In this subsection, we review the renormalization of

these spacelike nonlocal operators (the renormalization of lightlike nonlocal operators defin-

ing the PDFs can be found in (Collins, 2011a; Collins and Soper, 1982b)). We first discuss

their renormalization in DR using an auxiliary field approach, followed by the discussion on

similar gluon operators. We then consider power divergences in the momentum cutoff type
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of UV regularization. The conclusion is that they are all multiplicatively renormalizable

with a finite number of mixings with other operators.

1. Renormalization of nonlocal quark operators

We are interested in operators of the following kind,

OΓ(z) = ψ̄
(z
2

)
ΓW

(z
2
,−z

2

)
ψ
(
− z
2

)
. (42)

Since the Wilson line W (z1, z2) is a path-ordered integral of gauge fields, it is not obvious

that such operators are multiplicatively renormalizable. The renormalization of non-lightlike

Wilson loops and Wilson lines has been studied in early literature (Craigie and Dorn,

1981; Dotsenko and Vergeles, 1980), and the all-order proof of their multiplicative renor-

malizability was first made using diagrammatic methods in (Craigie and Dorn, 1981;

Dotsenko and Vergeles, 1980) and then the functional formalism of gauge theories in (Dorn,

1986). The same conclusion was conjectured to hold also for the quark bilinear operator

OΓ(z), whose renormalization takes the following form (Chen et al., 2017; Ishikawa et al.,

2016; Musch et al., 2011),

OB
Γ (z,Λ) = Zψ,z(Λ, µ)e

δm(Λ)|z|OR
Γ (z, µ) , (43)

where “B” and “R” stand for bare and renormalized operators respectively, and all the fields

and couplings in OB
Γ (z,Λ) are bare ones which depend on the UV cutoff Λ. δm(Λ) is the

“mass correction” of the Wilson line, which includes all the linear power divergences of its

self-energy. Zψ,z(Λ, µ) includes all the logarithmic divergences from wavefunction and vertex

renormalizations.

An early two-loop study of the quasi-PDF in the MS scheme indeed indicated the multi-

plicative renormalizability of OΓ(z) (Ji and Zhang, 2015). The first rigorous proof of Eq. (43)

was given in the auxiliary “heavy quark” field formalism (Green et al., 2018; Ji et al., 2018)

which was used to prove the renormalizability of Wilson lines (Arefeva, 1980; Dorn, 1986;

Gervais and Neveu, 1980; Samuel, 1979). This formalism is defined by extending the QCD

Lagrangian to include the auxiliary “heavy quark” fields Q, Q̄ and their gauge interaction,

L = LQCD + Q̄0inz ·D0Q0 , (44)
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where the subscript “0” denotes bare quantities. nµz = (0, 0, 0, 1) is the direction vector of the

spacelike Wilson line W (z, 0), Dµ
0 = ∂µ + ig0A

µ
0 , and Q0 is a color-triplet scalar Grassmann

field in the fundamental representation of SU(3). Note that if we replace nµz with the timelike

vector nµt = (1, 0, 0, 0), then Eq. (44) yields the leading order HQET Lagrangian.

In the theory defined by Eq. (44), the Wilson line can be expressed as the connected

two-point function of the “heavy-quark” fields,

〈Q0(ξ)Q̄0(η)〉Q = SQ0 (ξ, η) , (45)

where ξ and η are space-time coordinates, and 〈...〉Q stands for integrating out the auxiliary

fields. The above equation is valid up to the determinant of inz ·D0, which is a constant and

can be absorbed into the normalization of the generating functional (Mannel et al., 1992).

The Green’s function SQ0 (ξ, η) satisfies

inz ·D0(ξ) S
Q
0 (ξ, η) = δ(4)(ξ − η) , (46)

which has the solution

SQ0 (ξ, η)=W (ξ3, η3)θ(ξ3 − η3)δ(ξ0 − η0)δ(2)(~ξ⊥ − ~η⊥) (47)

with a proper choice of boundary condition. In this way, the Wilson-line operator OB
Γ (z) can

be replaced by the product of two local composite operators averaged over all the “heavy-

quark” field configurations (Dorn, 1986),

OB
Γ (z) =

∫
d4ξ δ(ξ3 − z

)

× 〈ψ̄0

(ξ
2

)
Q0

(ξ
2

)
ΓQ̄0

(
− ξ
2

)
ψ0

(
− ξ
2

)
〉Q , (48)

where the UV regulator is suppressed.

Consequently, the renormalization of OB
Γ (z) is reduced to that of the two local “heavy-

to-light” currents

JB = Q̄0ψ0 . (49)

The renormalizability of this auxiliary field theory has been proven using the standard

functional techniques for gauge theories (Dorn, 1986). After fixing the covariant gauge and

introducing the ghost fields, the theory including the auxiliary “heavy-quark” has a residual

35



BRST symmetry, from which one can derive the Ward-Takahashi identities to show that

all the UV divergences of the Green’s functions can be subtracted with a finite number of

local counterterms. In analogy, the same method has also been used to prove the all-order

renormalization of HQET in perturbation theory (Bagan and Gosdzinsky, 1994).

According to (Dorn, 1986), the “heavy-quark” Lagrangian can be renormalized in a co-

variant gauge as

L = LQCD[g0, ψ0, A0, c0] + Q̄0inz ·D0Q0

= LQCD[g, ψ, A, c] + Lc.t.[g, ψ, A, c]

+ ZQQ̄ (inz · ∂ − iδm)Q− gZQQg
1 Q̄nz · AataQ , (50)

where Lc.t.[g, ψ, A, c] are the QCD counterterms, and the bare fields and coupling are related

to the renormalized ones through

ψ0 = Z
1

2

ψψ, A0 = Z
1

2

AA, Q0 = Z
1

2

QQ, g0 = Zgg . (51)

The heavy-quark-gluon vertex renormalization constant ZQQg
1 is related to Zg through the

Slavnov-Taylor identities of the auxiliary field theory (Dorn, 1986),

Zg = ZQQg
1 Z

− 1

2

A Z−1
Q . (52)

The iδm can be regarded as the mass correction of the “heavy quark” except that it is imag-

inary. For Dirac fermions, the mass correction is logarithmically divergent and proportional

to the bare mass, as a result of chiral symmetry; for HQET, the mass correction of the heavy

quark is proportional to the UV cutoff, i.e. linearly divergent, which is also expected for the

auxiliary field here. Since the proof of renormalizability for this auxiliary field theory is car-

ried out in the MS scheme with DR (d = 4− 2ǫ), all power divergences vanish, so does δm.

Nevertheless, δm may include O(ΛQCD) contributions due to the renormalon ambiguities

which are known to exist in HQET (Beneke and Braun, 1994; Bigi et al., 1994).

Since the auxiliary field theory is renormalizable, the renormalization of the operator

product in Eq. (48) amounts to the renormalizations of the two “heavy-to-light” currents.

Using the standard techniques in quantum field theory (Collins, 1986), one can show re-

cursively that the overall UV divergence of the insertion of JB into Green’s functions is

absorbed into a renormalization factor ZJ to all orders in perturbation theory,

JB = ZJJ
R = Z

1/2
ψ Z

1/2
Q ZV JR , (53)
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where ZV is the vertex renormalization constant of the “heavy-to-light” current. The

renormalization of heavy-to-light currents in HQET has been calculated up to three-loop

order in perturbative QCD (Broadhurst and Grozin, 1991; Chetyrkin and Grozin, 2003;

Ji and Musolf, 1991; Politzer and Wise, 1988; Shifman and Voloshin, 1987). More recently,

it has been argued that the anomalous dimension of the “heavy-to-light” current is identical

to that in HQET to all orders (Braun et al., 2020), which is also the case for the “heavy-to-

gluon” current that will be discussed below, so the renormalization factors for the spacelike

and timelike Wilson line operators should be exactly the same.

Using the above results, we can show that

OB
Γ (z)= Z2

J

∫
d4ξ δ(ξ3−z)

〈
J̄R
(ξ
2

)
ΓJR

(
− ξ
2

)〉
Q

= Z2
Je

δm|z|OR
Γ (z) , (54)

where δm arises from the determinant of (inz · ∂ − δm) in Eq. (50). In this way, we identify

that Zψ,z = Z2
J in Eq. (43) which is independent of Γ. At one-loop order (Stefanis, 1984),

Zψ,z = 1 +
αsCF
4π

3

ǫUV

, (55)

where the UV regulator ǫUV is to be distinguished from the IR regulator ǫIR in DR.

The multiplicative renormalizability of OB
Γ (z) has also been proven with a recursive anal-

ysis of all-order Feynman diagrams (Ishikawa et al., 2017). In addition to Eq. (43), it was

found that OB
Γ (z) does not mix with gluons or quarks of other flavors. This can also be eas-

ily understood within the auxiliary field formalism, as the flavor-changing “heavy-to-light”

current does not mix with other operators (Green et al., 2020).

Finally, under lattice regularization we can still use the above techniques to prove Eq. (54),

where the mass correction δm is now nonvanishing and equal to the lattice UV cutoff 1/a

multiplied by a perturbative series in the coupling constant αs.

2. Renormalization of nonlocal gluon operators

Using the same “heavy-quark” auxiliary field formalism, it has also been proven

that the Wilson-line operators for the gluon quasi-PDF are multiplicatively renormaliz-

able (Zhang et al., 2019b), which is echoed by the diagrammatical proof in (Li et al., 2019).
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According to LaMET, the gluon quasi-PDF can be defined as (Ji, 2013)

g̃(x, P z) = N

∫
dλ

4πx(P z)2
eiλx〈P |Og(z)|P 〉 , (56)

where N is a normalization factor, and

OB
g (z) = g⊥,µνF

n1µ
0,a

(z
2

)
W ab

(z
2
,−z

2

)
F n2ν
0,b

(
− z
2

)
(57)

with F nµ
0,a = nρF

ρµ
0,a and nµ1 , n

µ
2 being either nµz or nµt . a, b are color indices in the adjoint

representation. The transverse metric tensor

gµν⊥ = gµν − nµt nνt /n2
t − nµznνz/n2

z , (58)

and N = (nz · P/nt · P )(n1+n2)·nt . For lattice implementation, OB
g (z) can also be defined

as (Dorn, 1986; Zhang et al., 2019b)

OB
g (z)=2gµν⊥ tr

[
F n1

0,µ

(z
2

)
W
(z
2
,−z
2

)
F n2

0,ν

(
− z
2

)
W
(
− z
2
,
z

2

)]
, (59)

where F µν = F µν
a ta and W are in the fundamental representation. Similar to Eq. (48), we

can express OB
g (z) as a product of two local composite operators,

ÕB
g (z) =

∫
d4ξ δ(ξ3−z) (60)

× g⊥,µν
〈
F n1µ
0,a

(ξ
2

)
Qa

0

(ξ
2

)
Q̄b

0

(
− ξ
2

)
F n2ν
0,b

(
− ξ
2

)〉
Q

≡
∫
d4ξ δ(ξ3−z)gµν⊥

〈
JBn1µ

(ξ
2

)
J̄Bn2ν

(
− ξ
2

)〉
Q
,

where the auxiliary “heavy” quark fields are in the adjoint representation, and

JµνB = F µν
0,aQ

a
0, J̄µνB = Q̄a

0F
µν
0,a . (61)

The renormalization of JµνB and J̄µνB is more involved than the quark case, as they can

mix with other composite operators of the same or less dimensions. In DR, BRST symmetry

allows JµνB to mix with (Dorn, 1986; Zhang et al., 2019b)

Jµν2B=
(
nνzF

µnz

0,a − nµzF νnz

0,a

)
Qa

0/n
2
z , (62)

Jµν3B=(−inµzAν0,a+inνzAµ0,a)
[
(inz ·D0−iδm)Q0

]a
/n2

z . (63)

Their renormalization matrix is given by (Dorn, 1986)



JµνB

Jµν2B

Jµν3B


 =




Z11 Z12 Z13

0 Z22 Z23

0 0 Z33







JµνR

Jµν2R

Jµν3R


 , (64)
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where Jµν2B is gauge invariant while Jµν3B is gauge dependent and proportional to the equation

of motion (EOM) for the auxiliary field. The Green’s functions of the EOM operator will

result in a δ-function,

(inz ·D0(ξ)− iδm)〈Q0(ξ)Q̄0(0)〉Q = δ(4)(ξ) , (65)

which only contributes a contact term δ(z) after integrating over the auxiliary fields. As long

as z 6= 0, such mixing vanishes in all Green’s functions of OB
g (z), so we can ignore the mixing

between JµνB and Jµν3B in the renormalization of OB
g (z). At z = 0, OB

g (z) becomes a local

operator and is known to mix with BRST-exact and EOM operators (Collins and Scalise,

1994), whose renormalization can be performed in the standard way.

Note that when contracted with nz,

Jnzµ
2B =Jnzµ

B = F nzµ
0,a Q

a
0 , (66)

Jnzµ
3B = i

(
−Aµ,a0 +

nµz
n2
z

nz ·Aa0
)[
(inz ·D0 − iδm)Q0

]
a
,

the Jnzµ
B only mixes with the EOM operator Jnzµ

3B . As has been argued above, we can ignore

such mixing for z 6= 0. Moreover, this degeneracy also leads to relations among elements in

the renormalization matrix (Dorn, 1986),

Z11 + Z12 = Z22, Z13 = Z23 . (67)

When contracted with nt,

Jntµ
B = F ntµ

0,a Q
a
0 ,

Jntµ
2B = nµzF

ntnz

a,0 Qa
0/n

2
z ,

Jntµ
3B = i

nµz
n2
z

nt · Aa0
[
(inz ·D0 − iδm)Q0

]
a
. (68)

As one can see, Jntµ
2B and Jntµ

3B vanish after contraction with gµν⊥ , so Jntµ
B with transverse

Lorentz index µ is multiplicatively renormalizable.

To summarize, for z 6= 0 and transverse Lorentz index µ, both Jnzµ
B and Jntµ

B are mul-

tiplicatively renormalizable in coordinate space, thus proving the renormalizability of the

gluon Wilson-line operator OB
g (z),

OB
g (z) = ZJZJ̄

∫
d4ξ δ(ξ3−z) gµν⊥

〈
JRn1µ

(ξ
2

)
J̄Rn2ν

(
− ξ
2

)〉
Q

= eδm|z|ZJZJ̄ O
R
g (z) , (69)
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where

Jn1µ
B = ZJ J

n1µ
R = (Zg

Q)
1

2Z
1

2

AZ
g
V J

n1µ
R , (70)

J̄n2ν
B = ZJ̄ J

n2ν
R = (Zg

Q)
1

2Z
1

2

AZ
g

V̄
Jn2µ
R , (71)

with Zg
V and Zg

V̄
being the renormalization constants for the vertex involving one gluon

and one “heavy quark” fields. The wavefunction renormalization constant for the auxiliary

“heavy quark”, Zg
Q, is different from the quark case as it is in the adjoint representation.

In addition, since Jnzµ
B and Jntµ

B do not mix with “heavy-to-light” quark currents due to

the mismatch of quantum numbers, it implies that the nonlocal gluon Wilson-line operator

does not mix with the singlet quark one under renormalization.

For the polarized gluon quasi-PDF, its definition is the same as Eq. (56), except that the

gluon Wilson-line operator becomes

∆OB
g (z) = ǫ⊥,µνF

n1µ
0,a (z)W ab(z, 0)F n2ν

0,b (0) , (72)

where ǫµν⊥ = ǫ03µν . Since ǫµν⊥ only contracts with the transverse Lorentz indices, one can use

the same proof for OB
g (z) to show that ∆OB

g (z) is also multiplicatively renormalizable and

does not mix with singlet quark case (Zhang et al., 2019b).

Finally, one can also prove that Eq. (69) is valid under lattice regularization with δm

being linearly divergent (Zhang et al., 2019b). This completes the proof of renormalizability

of the gluon Wilson-line operators.

One-loop renormalization. Now we demonstrate the above result by an explicit one-loop

example. For the nonlocal Wilson-line operators to be multiplicatively renormalizable, it

is important that all linear divergences associated with diagrams other than the Wilson

line self-energy cancel out among themselves. To see this, a gauge symmetry preserving

regularization is crucial. We use DR and keep poles around d = 3 to identify the linear

divergences (Wang et al., 2019b; Zhang et al., 2019b).

The one-loop vertex correction to the “heavy-to-gluon” current is shown in Fig. 8. Each
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diagram contributes

Iρνa =
αsCA
π

[
1

4− d
3

4
F ρν
a Qa + finite terms

]
,

Iρνb =
αsCA
π

[ 1

d− 4
(Aνan

ρ
z − Aρanνz)nz · ∂Qa/n

2
z

+
πµ

d− 3

(
nρzA

ν
a − nνzAρa

)
Qa + finite terms

]
,

Iρνc =
αsCA
π

{ 1

d− 4

[1
2

(
F ρnz

a nνz − F νnz

a nρz
)
Qa/n

2
z

+
1

4
F ρν
a Qa +

1

2
(Aρan

ν
z − Aνanρz)nz · ∂Qa/n

2
z

]

− πµ

d− 3

(
nρzA

ν
a − nνzAρa

)
Qa + finite terms

}
. (73)

[FIG. 6 about here.]

Both Fig. 7b and Fig. 7c include a linear divergence that is evident as the µ/(d − 3)

term, but they cancel among themselves. This guarantees that the overall UV divergence

in the vertex correction is logarithmic, thus the renormalization of the “heavy-to-gluon”

current is multiplicative. Combining the one-loop results in Eq. (73) and wavefunction

renormalizations, we have

Z11 = 1 +
αsCA
4π

1

ǫUV

, Z12 = 1− αsCA
4π

1

ǫUV

,

Z13 = Z23 = 1− αsCA
4π

1

ǫUV

, Z22 = 0 , (74)

where CA = Nc = 3 for QCD. If we ignore the mixing to the EOM operator,

ZJnzν

V = ZJνnz

V = 0 ,

ZJnti

V = ZJint

V = ZJij

V = ZJji

V = 1 +
αsCA
4π

1

ǫUV

, (75)

where i, j = 1, 2. As a result, the one-loop current renormalization constant is

ZJnzν = ZJνnz = 1 +
αs
4π

(
1

6
CA −

4

3
nfTF

)
1

ǫUV

,

ZJnti = ZJint = ZJij = ZJji

= 1 +
αs
4π

(
7

6
CA −

4

3
nfTF

)
1

ǫUV

, (76)

where TF = 1/2, and nf is the number of active quark flavors. The two-loop results can be

found in (Braun et al., 2020).
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As one can see, the anomalous dimension of the “heavy-to-gluon” current is the same for

µ, ν = 0, 1, 2, which is due to SO(2, 1) (or SO(3) in Euclidean space) symmetry around the

z-axis.

B. Factorization of Quasi-PDFs

The key to LaMET applications for collinear parton physics is the factorization formula

that relates the quasi-PDFs to light-cone PDFs (Ji, 2013). Here we use the perturbative

properties of the matching coefficients to write the factorization form in the MS scheme in

a way consistent with a direct EFT calculations of PDFs at any given x (Izubuchi et al.,

2018; Wang et al., 2019b)

qi(x, µ)=

∫ ∞

−∞

dy

|y|

[∑

j

C̃qiqj

(
x

y
,
µ

yP z

)
q̃j(y, P

z, µ) (77)

+ C̃qg

(
x

y
,
µ

yP z

)
g̃(x, P z, µ)

]
+ · · · ,

g(x, µ)=

∫ ∞

−∞

dy

|y|

[∑

j

C̃gq

(
x

y
,
µ

yP z

)
q̃j(y, P

z, µ) (78)

+ C̃gg

(
x

y
,
µ

yP z

)
g̃(y, P z, µ)

]
+ · · · ,

where i, j runs over quark and anti-quark flavors. The “ · · · ” term includes mass corrections

whose anayltical forms have been derived to all orders of M2/(P z)2 (Chen et al., 2016), and

higher-twist contributions of order O
(
Λ2

QCD/(xP
z)2,Λ2

QCD/((1− x)P z)2
)

(see Eq. (33)). All

P z-dependence on the right hand side cancels out, just like a renormalization scale.

As we have explained in the Sec. II, the above factorization is guaranteed on the physics

ground because the difference between quasi-PDFs and light-cone PDFs is the order of limits

in P z →∞ and ΛUV →∞, and the IR physics in both quantities must be the same. An all-

order factorization proof for the quark quasi-PDF in perturbation theory was first given with

a diagrammatical approach (Ma and Qiu, 2018b). The formula has also been derived using

the operator product expansion (OPE) of nonlocal Wilson-line operators (Izubuchi et al.,

2018; Ma and Qiu, 2018a; Wang et al., 2019b). Here we outline the diagrammatic proof

similar to (Ma and Qiu, 2018b), showing that the collinear divergences of the quasi-PDFs

do factorize and are equal to those of the light-cone PDFs. Since the collinear divergence is a

concept in perturbation theory, we will show the factorization using a massless external quark
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state with lightlike momentum P µ = (P z, 0, 0, P z). While the proof is only for perturbative

free quark states, the factorization formulas are widely believed to be true nonperturbatively

as well. We use DR to regulate both UV and collinear divergences and only consider bare

quantities, since UV renormalization does not change the leading collinear divergences.

Before the analysis, we should mention that all the soft divergences cancel between the

real and virtual contributions to the quasi-PDFs, as discussed in Sec. II.B, thus we only need

to focus on the collinear divergences. To obtain an intuitive understanding of the structure

for collinear divergences, we start from the one-loop diagram in Fig. 4a in the Feynman

gauge. The integral reads

∫
d4−2ǫk

(2π)4−2ǫ

tr
[
/P /kγz/k

]
δ(kz − yP z)

(k2 + i0)2((P − k)2 + i0)
. (79)

The internal quark momentum is kµ = (k+, k−, ~k⊥) and the gluon momentum is P − k.

When k− and k⊥ = |~k⊥| are very small, the internal quark and gluon become collinear to

the external quark, i.e. kµ ∼ (k+, 0, 0⊥) and (P − k)µ ∼ (P+ − k+, 0, 0⊥). In this case, the

denominator of the quark and gluon propagators, (k2)2 and (P − k)2, both vanish, which

leads to collinear divergence. Conversely, for k2 = (P − k)2 = 0, k must be collinear to P

since the condition requires k2 = k · P = P 2 = 0. For small k− and k⊥, the δ function is

dominated by the k+ term of kz = (k+ − k−)/
√
2 and reduces to

√
2δ(k+ − yP+). This

is just the vertex which restricts k+ = yP+ for the light-cone PDF, up to the factor
√
2.

Furthermore, for collinear k and (P − k), the spinor trace in the numerator is dominated

by the γ+ part of γz = (γ+ − γ−)/
√
2, tr

[
/P /kγz/k

]
∼ tr

[
/P /kγ+/k

]
/
√
2. Thus in the collinear

region kµ ∼ (k+, 0, 0, 0) the above integral reduces to that for the light-cone PDF:

∫

c

d4−2ǫk

(2π)4−2ǫ

tr
[
/P /kγ+/k

]
δ(k+ − yP+)

(k2 + i0)2((P − k)2 + i0)
, (80)

where the subscript “c” denotes the collinear region.

The above picture naturally arises in a highly boosted hadron state where the quark is

approximately onshell. Therefore, as explained in Sec. II.E, although the operator contains no

light-cone information, the large-momentum external hadron state can still generate collinear

divergences equivalent to those in the light-cone PDFs. By subtracting the full integral for

light-cone PDF from that for the quasi-PDF, the logarithmic collinear divergence cancels,

and the remaining difference is perturbative and can be absorbed into the matching kernel.
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Similarly, for the vertex diagram in Fig. 4b, the loop integral is proportional to

∫
d4−2ǫk

(2π)4−2ǫ

1

P z − kz
tr
[
/Pγz/kγz

]
δ(kz − yP z)

(k2 + i0)((P − k)2 + i0)
. (81)

The whole integral in the collinear region reduces to

∫

c

d4−2ǫk

(2π)4−2ǫ

1

P+ − k+
tr
[
/Pγ+/kγ+

]
δ(k+ − yP+)

(k2 + i0)((P − k)2 + i0)
, (82)

which is the corresponding integral for the light-cone PDF. One key feature of the diagram

is that while the gauge link probes the z-component of the gluon field Az = (A+ − A−) /
√
2,

only the A+ component (longitudinal polarization) contributes to the leading collinear diver-

gence. While attaching a new collinear gluon to the gauge-link induces a power suppression

from the link propagator of O(1/P z), the A+ component of the collinear gluon radiated from

fast-moving color charges receives enhancement from Lorentz boost factor γ that compen-

sates for the suppression.

The above result can be generalized to all orders. Similar to the one-loop diagrams, in

the leading region of collinear divergence there are an arbitrary number of longitudinally

polarized A+ gluons, which are emitted dynamically from the fast-moving state instead of

being put in by hand using the lightlike gauge link, in contrast to the standard collinear

PDF. The existence of the A+ gluons clearly increases the level of complication in showing

the equivalence of collinear divergences between the quasi- and light-cone PDFs. For sim-

plification, from now on we choose to work in the light-cone gauge A+ = 0 to eliminate all

the A+ gluons. Therefore, the vertex diagrams no longer contribute to the leading collinear

divergence, thus making its structure much simpler.

In a general diagram, we decompose the potential leading region of the quasi-PDF into

the ladder structure shown in Fig. 9. The upper two-particle-irreducible (2PI) kernel that

contains the nonlocal operator defining the quasi-PDF is H . The 2PI kernel in the ladder is

K. K contains the upper two external quark lines but not the lower ones. The momentum

flowing out of the ladders are labeled as k1 to kn from bottom to top when there are n 2PI

kernels. We write H and K as matrices in spinor and momentum space. H = Hα′β′(yP z; k)

where k denotes the momentum flowing into H and K = Kαβ;α′β′(k, k′) where k, k′ are the

momenta of the upper and lower external legs, respectively. Here αβ and α′β ′ are the spinor

indices for the upper and lower two external legs, respectively.

[FIG. 7 about here.]
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Following the method in (Collins, 2011a; Curci et al., 1980), we find that:

1. There are no collinear divergences in the upper part H in the light-cone gauge.

2. If none of k1, · · · , kn is collinear, there will be no leading collinear divergence. More

generally, for the i’th 2PI kernel, if either of ki−1 and ki is not collinear, then the

sub-integrals inside the kernel are finite and it does not contribute to leading collinear

divergence.

3. If ki is not collinear, then there are no collinear divergences for the upper part of the

diagram above the i’th ladder.

Therefore, the collinear divergences are generated in the momentum regions Ri in which k1

to ki are collinear while ki+1 to kn are not. We can construct counter terms that subtract out

the collinear divergences in each of the regions Ri. For this we keep only the + component of

ki in the convergent upper part HKn−i as in the one-loop example, namely ki → (k+i , 0, 0⊥)

in the upper part. This will clearly leave the collinear divergence unchanged. Also notice that

[HKn−i]αβ = Hα′β′Kn−i
α′β′;αβ should be understood as a 4 × 4 Dirac matrix with indices αβ,

while the lower part is [Ki /P ]αβ = Ki
αβ;α′β′ /P α′β′. In the leading region of collinear divergence,

HKn−i andKi /P are proportional to γ+ and γ− respectively. Therefore, to obtain the leading

collinear divergence, we can disentangle the spinor traces for the upper and lower parts by

contracting them with γ−/2 and γ+/2 separately. The only communication between them

is the k+ integration. The collinear divergence is contained in the lower part

qi(x, ǫIR)=

∫
dk−dd−2k⊥
2(2π)d

tr
[
γ+Ki(xP+, k−, k⊥;P )/P

]
, (83)

where d = 4−2ǫ, k+ = xP+, and the subtraction for the region Ri can be written effectively

as a convolution

∫
dx

x
Ĉn−i(y, x, P z)qi(x, ǫIR) , (84)

where

Ĉn−i(y, x,P z) =
1

2
tr
[
HKn−i(yP z; xP+,0, 0⊥)(xP

+)γ−
]

(85)

is the naive matching kernel. Here the y dependence comes from the operator in H . How-

ever, the naive matching kernel still suffers from collinear sub-divergences that need to be
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subtracted. This can be achieved using the subtracted matching kernels Cn−i(y, x) defined

recursively in a way similar to the BPHZ relation for UV renormalization (Collins, 2011a).

Summing over n and i, the recursive relation leads to

q̃(y, P z, ǫIR) =
∞∑

n=0

n∑

i=0

∫
dx

x
Cn−i(y, x, P z)qi(x, ǫIR)

=

∫
dx

x
C(y, x, P z)q(x, ǫIR) , (86)

where q̃(y, P z, ǫIR) is the quasi-PDF, C(y, x, P z) =
∑∞

n=0C
n(y, x, P z) is the all-order match-

ing kernel and q(x, ǫIR) =
∑

i=0 q
i(x, ǫIR). Based on the definition of qi(x, ǫIR), it is clear

that qi equals the light-cone PDF with i 2PI kernels and q is the full light-cone PDF with

natural support 0 < x < 1. The light-cone PDF q(x) is independent of the operator defin-

ing the quasi-PDF, as it is only sensitive to the explicit form of the collinear divergence.

The r.h.s. of Eq. (86) contains all the collinear divergences from the quasi-PDF q̃. Thus the

matching relation for bare quantities is established. A similar matching can be written down

for the renormalized quantities, where the renormalization only affects the matching kernel

C(y, x, P z). Note that the explicit solution for Cn−i(y, x, P z), which leads to Eq. (33), can

be given based on a subtraction operator defined similar to that in (Collins, 2011a). Be-

sides, Eq. (86) can be inverted order by order in αs, thus proving Eq. (33), which can also

be generalized to Eqs. (77) and (78).

Now we present the matching coefficient in the MS scheme at one-loop order. The one-

loop expansion of the MS quasi- and light-cone PDFs in a free massless quark state with

momentum pµ = (pz, 0, 0, pz) are

q̃(y, µ/pz, ǫIR) = q̃(0)(y) +
αsCF
2π

q̃(1)(y, µ/pz, ǫIR) , (87)

q(x, ǫIR) = q(0)(x) +
αsCF
2π

q(1)(x, ǫIR) . (88)

At tree level, q̃(0)(y) = q(0)(y) = δ(1−y). At one loop, the MS quasi-PDF and its counterterm

46



are (Izubuchi et al., 2018)

q̃(1)(y, µ/pz, ǫIR)

=






(
1+y2

1−y ln y
y−1

+ 1 + 3
2y

)[1,∞]

+(1)
− 3

2y
y > 1

(
1+y2

1−y
[
− 1

ǫIR
− ln µ2

4(pz)2
+ ln

(
y(1− y)

)]

−y(1+y)
1−y + 2σ(1− y)

)[0,1]
+(1)

0 < y < 1
(
− 1+y2

1−y ln −y
1−y − 1 + 3

2(1−y)

)[−∞,0]

+(1)

− 3
2(1−y) y < 0

+ δ(1− y)
[
3

2
ln

µ2

4(pz)2
+

5 + 2σ

2

]
, (89)

δq̃(1)(y, µ/pz, ǫUV) =
3

2ǫUV

δ(1− y) , (90)

where ǫIR regulates the collinear divergence, σ = 0 for Γ = γt and 1 for Γ = γz. The plus

function at y = y0 with support in a given domain D is defined as
∫

D

dy
[
g(y)

]D
+(y0)

h(y)=

∫

D

dy g(y) [h(y)−h(y0)] (91)

with arbitrary g(y) and h(y). Note that the MS renormalization of the quasi-PDF actu-

ally requires a subtle treatment of vector current conservation (Izubuchi et al., 2018). We

only present results in the form that is sufficient for our discussion, which differs slightly

from that in (Izubuchi et al., 2018) by the δ-functions at y = ±∞ and from the treatment

in (Alexandrou et al., 2019b).

On the other hand,

q(1)(x, ǫIR) =
αsCF
2π

(−1)
ǫIR

(
1 + x2

1− x

)[0,1]

+(1)

, (92)

which is limited to the physical region as expected.

By comparing the quasi- and light-cone PDFs in Eqs. (89) and (92), we find that both of

them have the same collinear divergence, or in other words, they share the same IR physics,

thus validating the factorization formula at one-loop order. Setting pz = xP z and plugging

the one-loop results into Eq. (33), we extract the matching coefficient for the hadron matrix

element which only depends on the perturbative scales µ and P z,

CMS
(
y,

µ

xP z

)
= δ (1− y) + αsCF

2π

[
q̃(1)
(
y,

µ

xP z
, ǫIR

)

−q(1)(y, ǫIR)
]
. (93)
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The complete one-loop matching coefficients in Eq. (33) in the transverse-momentum cutoff

and MS schemes can be found in (Wang et al., 2019b; Wang and Zhao, 2018; Wang et al.,

2018). The two-loop results were obtained recently in (Chen et al., 2020a,b,c; Li et al.,

2020).

C. Coordinate-Space Factorization of Bilinear Operators

Although the LaMET application to PDFs concerns the expansion of momentum densities

in the P z → ∞ limit, lattice QCD calculations actually start from computing coordinate-

space correlations, for example,

h̃(z, P z) =
1

NΓ
〈P z|OΓ(z)|P z〉 , (94)

at all z and do Fourier transform with respect to λ = zP z at a fixed P z. Here the normal-

ization factor NΓ = 2P z for Γ = γz and NΓ = 2P t for Γ = γt. The h̃(z, P z) is a function of

two independent variables z and P z, and in LaMET analysis the relevant combinations are

quasi-LF distance λ (see Fig. 6) and P z, hence h̃(λ, P z) will be called quasi-LF correlation,

which is distinguished from the LF correlation h(λ, µ) below.

The coordinate-space factorization approach in (Braun et al., 1995) has been suggested

as an alternative way to extract the PDFs from h̃(z, P z) (Orginos et al., 2017; Radyushkin,

2017a, 2019a), which is closely related to the OPE. Instead of working with variables λ and

P z, one may consider h̃ as a function of λ and z2, i.e., h̃(λ, z2). The Fourier transform

of h̃(λ, z2) with respect to λ is no longer the momentum distribution of the proton at a

fixed momentum. Instead, it is called a pseudo-distribution (Radyushkin, 2017a). At small

|z| ≪ Λ−1
QCD, h̃(λ, z2) can be factorized into the light-cone correlation (Izubuchi et al., 2018;

Radyushkin, 2018a),

h̃(λ, z2µ2) =

∫ 1

−1

dα C(α, z2µ2) h(αλ, µ) + ... , (95)

where ... are the power corrections in z2Λ2
QCD, and the matching coefficient C is related to

C in Eq. (33) by

C
(
η,

µ

xP z

)
=

∫
dλ

2π
eiηλ

∫ 1

−1

dα e−iλα C
(
α,

µ2λ2

(xP z)2

)
. (96)

To illustrate the connection between the above factorization in Eq. (95) and OPE, let us

take the non-singlet quark case as an example (Izubuchi et al., 2018; Wang et al., 2019b).

48



In the MS scheme, the renormalized Oγµ0 (z, µ) can be expanded in terms of local gauge-

invariant twist-2 operators as z2 → 0,

Oγµ0 (z, µ) =

∞∑

n=0

[
Cn(µ

2z2)
(iz)n

n!
(nz)µ1 · · · (nz)µn

× Oµ0µ1···µn(µ) + higher-twist
]
, (97)

where µ0=0 or 3, Cn=1+O(αs) is the Wilson coefficient, and Oµ0µ1···µn(µ) is the twist-two

operator in Eq. (14).

Using the hadron matrix elements in Eq. (15) and their relation to the light-cone

PDF in Eq. (16), we write down the small-|z| expansion of the hadron matrix element

of Oγµ0 (z, µ) (Izubuchi et al., 2018),

h̃(λ, z2µ2) = 〈P |Oγµ0 (z, µ)|P 〉/(2P µ0)

=
∞∑

n=0

Cn(z
2µ2)

(−iλ)n
n!

[
1 +O

( M2

(P z)2
)]

×
∫ 1

−1

dx xnq(x, µ) +O
(
z2Λ2

QCD

)
, (98)

where the O (M2/(P z)2) term comes from the kinematic trace contribution and the

O
(
z2Λ2

QCD

)
term from higher-twist. The Wilson coefficients Cn(z

2µ2) have been calcu-

lated at one-loop (Izubuchi et al., 2018) and two-loop (Li et al., 2020) orders. Comparing

the above equation with Eq. (95), we identify

C(α, µ2z2) ≡
∫
dλ

2π
eiλα

∑

n

Cn(µ
2z2)

(−iλ)n
n!

. (99)

Since z2 is fixed in C(α, µ2z2), the integration in Eq. (99) is actually over P z from −∞ to

+∞. C(α, z2µ2) has support −1 ≤ α ≤ 1, and its one-loop result is

C(α, z2µ2) (100)

=

[
1 +

αsCF
2π

(
3

2
ln
z2µ2e2γE

4
+

3

2

)]
δ(1− α)

+
αsCF
2π

{(
1 + α2

1− α

)[0,1]

+(1)

[
− ln

z2µ2e2γE

4
− 1

]

−
(
4 ln(1− α)

1− α

)[0,1]

+(1)

+2(1 + σ)(1− α)
}
θ(α)θ(1− α) ,
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which was also calculated and further studied in (Ji et al., 2017b; Li et al., 2020; Radyushkin,

2018a,b; Zhang et al., 2018). One can check that the above result is indeed related to one-

loop momentum-space matching by Eq. (96). Since we are interested in the relation between

the quasi-LF correlation with the matrix element of the light-ray operator Oγ+(λn), Eq. (95)

can also be obtained by using the light-ray operator expansion in (Balitsky and Braun, 1989;

Braun et al., 1995; Braun and Müller, 2008).

Using OPE or short-distance expansion, the exact factorization formula for the gluon and

singlet quark quasi-PDFs, which includes their mixings, has also been derived in coordinate

space and studied at one-loop order (Balitsky et al., 2019; Wang et al., 2019b).

It is easy to see that the limits P z →∞ in LaMET expansion and z → 0 in coordinate-

space factorization, keeping finite λ = zP z, are equivalent. However, in practical lattice

QCD calculations, one is limited by the largest momentum P z
max in a specific setup, and the

two approaches start to differ.

In LaMET systematic approximation, one should calculate h̃(z, P z
max) with all possible z

or λ, but in practice the largest λmax = zmaxP
z
max is limited by the lattice volume as well

as data quality at large z. Due to QCD confinement, h̃(z, P z
max) has a correlation length

∼ 1/ΛQCD, leading to an exponential decay at large z (Ji et al., 2020b). Therefore, if zmax

is sufficiently large (e.g., the proton size ∼ 1 fm) for h̃(z, P z
max) to fall to almost zero, then

the truncated Fourier transform of h̃(z, P z
max) should converge quickly, and the truncation

effects mainly affect results at small x . 1/λmax. If h̃(z, P z
max) exhibits exponential decay but

still has a nonzero value at zmax, then one can perform a physically motivated extrapolation

beyond zmax (Ji et al., 2020b) to do the Fourier transform, which removes the unphysical

oscillation from truncation and only affects the small-x region. In the momentum space,

one can use LaMET expansion to calculate the PDF point by point in x with systematic

error controlled by Λ2
QCD/(xP

z
max)

2 and Λ2
QCD/((1− x)P z

max)
2, which gives the prediction for

a cetain region of x, [xmin, xmax], with a target error.

In coordinate-space factorization, one expands h̃(λ, z2) in z2Λ2
QCD. For the factor-

ization formula to be valid, z must remain in the perturbative region. For example,

an estimate in (Ji et al., 2020b) gives zmax ∼ 0.3–0.4 fm. Although there have been

observations that forming ratios of h̃(λ, z2) may cancel the higher-twist contributions

at z > 0.4 fm (Orginos et al., 2017), this cancellation needs be quantified for preci-

sion calculations. With a finite range of quasi-LF correlations, the PDFs can be ex-
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tracted through modelling the x-dependence or more advanced techniques such as Bayesian

analysis (Bringewatt et al., 2020) or neural network (Cichy et al., 2019; Del Debbio et al.,

2020a; Karpie et al., 2019), which is similar to extracting the PDFs from experimental

data (Ma and Qiu, 2018a), although quantifying the systematic error from fitting can be

challenging. The coordinate-space factorization can also provide the extraction of the low-

est moments of PDFs (Gao et al., 2020; Joó et al., 2020; Karpie et al., 2018; Shugert et al.,

2020), where the main systematic error is controlled by z2Λ2
QCD.

So far, there have been very limited studies about the comparison between quasi- and

pseudo-PDF analysis (Alexandrou et al., 2020c; Bhat et al., 2020). It remains to be seen

how systematic errors in the two strategies are compared and contrasted.

D. Nonperturbative Renormalization and Matching

The multiplicative renormalizability of the nonlocal Wilson-line operators for quasi-

PDFs allows a nonperturbative renormalization on the lattice, after which the contin-

uum limit can be taken. This is an important step in the application of LaMET. One

way of doing so is to perform a mass subtraction of the Wilson line first (Chen et al.,

2017; Green et al., 2018, 2020; Ishikawa et al., 2016; Musch et al., 2011; Zhang et al.,

2017), and then renormalize the remnant UV divergences with lattice perturbation the-

ory or other nonperturbative schemes. Another scheme which has gained more popular-

ity in recent years is the regularization-independent momentum subtraction (RI/MOM)

scheme (Alexandrou et al., 2017b; Chen et al., 2018; Constantinou and Panagopoulos, 2017;

Liu et al., 2020; Stewart and Zhao, 2018). In the coordinate space approach where |z| ≪
Λ−1

QCD, the ratios of quasi-LF correlations in different states (Braun et al., 2019; Li et al.,

2020; Orginos et al., 2017; Radyushkin, 2017a) have also been proposed as a renormaliza-

tion scheme. At large z, the RI/MOM and ratio schemes introduce extra nonperturbative

effects at different levels, which may distort the IR property of the original quasi-LF corre-

lations. Due to the suppression of long-range contributions by large P z in the Fourier trans-

form, this nonperturbative contamination mainly affects the end-point region in x-space,

while the existing LaMET calculations with RI/MOM scheme at moderate x, for example

in (Alexandrou et al., 2018b; Lin et al., 2018a), suffers less from such systematics. Never-

theless, the above complication can be avoided by switching to the hybrid scheme (Ji et al.,
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2020b) where one utilizes the advantages of different schemes at short and large distances.

In the following, we discuss the above schemes in order, with a particular focus on the hybrid

renormalization scheme.

Before we proceed, it should be noted that the current-current correlators

in (Braun and Müller, 2008; Detmold and Lin, 2006; Ma and Qiu, 2018a) do not need or

have simple renormalization on the lattice, though it might be more costly to simulate

them. Besides, there is another distinct method based on a redefinition of the quasi-PDF

with smeared fermion and gauge fields via the gradient flow (Monahan and Orginos, 2017).

The smeared quasi-PDF is free from UV divergences and remains finite in the continuum

limit, which can be perturbatively matched onto the PDF (Monahan, 2018b). Nevertheless,

this method awaits to be implemented on the lattice.

1. Wilson-line mass-subtraction scheme

Since the mass correction δm includes all the linear UV divergences, it is highly favored

to nonperturbatively subtract it from the quasi-PDFs. It is well known that the Wilson

line renormalization is related to the additive renormalization of the static quark-antiquark

potential, i.e., δm, especially in the context of finite temperature field theory. For a rectangle-

shaped Wilson loop of dimension L× T in the spatial and temporal directions, its vacuum

expectation value for large T scales as

lim
T→∞

W (L, T ) = c(L)e−V (L)T . (101)

The renormalized static potential is

V R(L) = V (L) + 2δm , (102)

and δm can be fixed by imposing the condition V R(L0) = 0 for a particular value of L0.

Alternatively, one can also fit δm from the famous string potential model,

V (L) = σL− π

12L
− 2δm . (103)

Apart from using the static potential to determine δm, it was also proposed to cal-

culate this quantity in the auxiliary “heavy quark” field theory with the following condi-

tion (Green et al., 2018),

δm =
d

dz
ln Tr

〈
Q(x+ znz)Q̄(x)

〉
QCD+Q

∣∣∣
z=z0

. (104)
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Other suggestions have also been made for a nonperturbative calculation of δm (Ji et al.,

2020b). For example, one can investigate the asymptotic large-z behavior of the hadron

matrix element or the single quark Green’s function, of the vacuum expectation value of

OΓ(z, a) in a fixed gauge. The δm calculated from all these matrix elements will have the

following dependence on the lattice spacing a,

δm = m−1(a)/a +m0 , (105)

where m−1(a) is the coefficient of the power divergence which is independent of the specific

matrix element, while m0 ∼ O(ΛQCD) is finite and depends on the external state. The

determination of m0 can be rather nontrivial, and in practical calculations one could adopt

a fine-tuning method, such as that for the Wilson-fermion mass, to find the critical value of

m0 at which the final result converges fastest in the large P z limit.

After the Wilson-line mass subtraction, there are still logarithmic UV divergences in

OΓ(z, a). One can use lattice perturbation theory to match δm-subtracted OΓ(z, a) to the MS

scheme (Constantinou and Panagopoulos, 2017; Ishikawa et al., 2016; Xiong et al., 2017),

but the convergence still needs to be examined at higher orders. In (Green et al., 2018,

2020), the logarithmic divergences were nonperturbatively renormalized with RI/MOM-like

schemes.

The Wilson-line mass-subtraction has been implemented on the lattice

in (Alexandrou et al., 2020c; Green et al., 2018; Musch et al., 2011; Zhang et al., 2017,

2019c).

2. RI/MOM scheme

The RI/MOM scheme has been widely used in lattice QCD for the renormalization of lo-

cal composite quark operators that are free from power-divergent mixings (Martinelli et al.,

1995). It is essentially a momentum subtraction scheme in QFT and can be nonperturba-

tively implemented on the lattice. For an arbitrary composite quark bilinear operator OB

that is multiplicatively renormalized as OB = ZOO
R, the RI/MOM scheme is defined by

imposing the following condition on its off-shell quark matrix element at a subtraction scale

µR,

Z−1
O 〈p|OB|p〉

∣∣∣
p2=−µ2R

= 〈p|O|p〉tree . (106)

53



where the subscript “tree” means the tree-level matrix element in perturbation theory. If

µR ≫ ΛQCD, ZO defined in Eq. (106) is in the perturbative region, and we can convert it

to the MS scheme order by order in perturbation theory. In this sense, ZO is not literally

nonperturbative, but an all-order calculable quantity.

Since the nonlocal quark bilinear operator OΓ(z) has been proven to be multiplicatively

renormalizable in the coordinate space, one can also renormalize it in the RI/MOM scheme

and then match the result to PDF in the MS scheme (Constantinou and Panagopoulos,

2017; Stewart and Zhao, 2018). On the lattice, the off-shell matrix element of an operator is

defined from its amputated Green’s function, or vertex function, with off-shell quarks. For

the nonlocal Wilson-line operator, the latter is

ΛΓ
0 (z, a, p) ≡

[
S−1
0 (p, a)

]†∑

x,y

eip·(x−y)

×
〈
0
∣∣T
[
ψ0(x, a)O

B
Γ (z, a)ψ̄0(y, a)

]∣∣0
〉
S−1
0 (p, a) , (107)

where S0(p, a) is the bare quark propagator, and the external momentum p is Euclidean on

the lattice. Since Green’s functions are not gauge invariant, one needs to fix a gauge (usually

Landau gauge ∂ ·A = 0 is chosen), and the gauge dependence is expected to be canceled by

the matching or scheme conversion order by order in perturbation theory.

After including the quark wavefunction renormalization Zq, which can be determined

independently on the lattice (Martinelli et al., 1995), Eq. (106) is revised as

ZqZ
−1
OΓ

ΛΓ
0 (z, a, p)

∣∣∣
p=pR

= ΛΓ
tree(z, a, p) = ΓeipR·z . (108)

Since OΓ(z, a) is not O(4) covariant, one needs to define the RI/MOM scheme with two

scales, one is µR = |pR|, and the other pzR. For convenience we simply denote them as

p = pR. To work in the perturbative region and control the lattice discretization effects that

are of order O
(
a2µ2

R, a
2(pzR)

2
)
, one must work in the window ΛQCD ≪ µR ≪ a−1, pzR ≪ a−1,

which is attainable if the lattice spacing is small enough.

Since the quarks are off-shell, also finite mixings with the EOM operators can appear. As

a result, Eq. (108) in general cannot be satisfied as a matrix equation. Instead, one usually

needs a projection operator P to define the off-shell matrix elements, i.e.

〈p|OB
Γ |p〉 = tr

[
ΛΓ

0 (z, a, p)P
]
, (109)

so as to calculate the renormalization factor ZOΓ
.
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Then, the bare hadron matrix element h̃B(z, P
z, a) can be renormalized in coordinate

space as

h̃R(z, P
z, pzR, µR, a) = Z−1

O (z, pzR, µR, a)h̃B(z, P
z, a) , (110)

In the continuum limit, the renormalized matrix element is independent of the UV regulator,

so we should obtain the same result in DR under RI/MOM scheme, i.e.,

h̃R(z, P
z, pzR, µR) = lim

a→0
h̃R(z, P

z, pzR, µR, a)

= lim
ǫ→0

Z−1
O (z, pzR, µR, ǫ)h̃B(z, P

z, ǫ) , (111)

which allows us to compute the matching coefficients in continuum perturbation theory.

Note that δm vanishes in ZO due to the use of DR.

By Fourier transforming the above renormalized matrix element to momentum space, one

can then work out the RI/MOM matching coefficient for the quasi-PDFs (Stewart and Zhao,

2018). The one-loop matching coefficient for different spin structures has been obtained in

(Liu et al., 2018, 2020; Stewart and Zhao, 2018), and the two-loop result for the unpolarized

case can be found in (Chen et al., 2020b). Alternatively, one can also first convert the

RI/MOM matrix element to the MS or modified MS schemes (Alexandrou et al., 2019b;

Constantinou and Panagopoulos, 2017), and then do the Fourier transform and momentum-

space matching.

3. Ratio scheme

In the coordinate-space factorization, |z| ≪ Λ−1
QCD must be small, whereas P z can be of

any value. In this case, the ratio scheme in (Orginos et al., 2017; Radyushkin, 2017a) can

be an effective choice for lattice renormalization. Consider the ratio

h̃(λ, z2, a)/h̃(0, z2, a) , (112)

where the denominator is a nonperturbative matrix element at P z = 0. Since h̃(λ, z2, a)

and h̃(0, z2, a) calculated from the same lattice ensemble are correlated with each other, the

error in the ratio can be reduced. Besides, the ratio does not need further renormalization

on the lattice, so one can directly take the continuum limit

lim
a→0

h̃(λ, z2, a)

h̃(0, z2, a)
=
h̃(λ, z2)

h̃(0, z2)
, (113)
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which has referred to as the “reduced Ioffe-time pseudo” distribution in (Orginos et al., 2017;

Radyushkin, 2017a). In the MS scheme, h̃(0, z2µ2) has a small-z expansion,

h̃(0, z2µ2) = C0(z
2µ2) +O(z2M2, z2Λ2

QCD) , (114)

where the lowest moment of the iso-vector quark PDF a0 is trivially one. If we ignore all the

power corrections, then h̃(0, z2µ2) is perturbative and can be regarded as a renormalization

factor. Therefore, the ratio in Eq. (113) still satisfies a similar OPE or factorization formula

to Eqs. (98) and (95), except that the matching coefficient must be modified correspond-

ingly (Izubuchi et al., 2018; Radyushkin, 2018a),

Cratio(α, z2µ2) = C(α, z2µ2)− δ(1− α)C0(z
2µ2) . (115)

In other variants of the ratio scheme, it has also been suggested that one replaces

h̃(0, z2, a) by the vacuum matrix element of the nonlocal Wilson line operator (Braun et al.,

2019; Li et al., 2020), as the UV divergence does not depend on the external state.

4. Hybrid scheme

Since the factorization formula for the quasi-PDF is only proven in the MS scheme, it is

not legitimate to use momentum-space factorization for any other scheme that differ from MS

nonperturbatively. The RI/MOM and ratio schemes fall into this category as the conversion

factors that match them to MS includes logarithms of z2 (Constantinou and Panagopoulos,

2017; Izubuchi et al., 2018), which requires running αs to the IR region when z ∼ Λ−1
QCD.

In contrast, the Wilson-line mass-subtraction scheme with wavefunction renormalizations is

essentially the same as MS, so it will not introduce extra IR effects.

However, the Wilson-line mass-subtraction scheme also has disadvantages. On the lattice,

due to discretization effects at z ∼ a, the lattice scheme cannot reproduce the short-distance

ln z2 behavior of the MS matrix elements of the nonlocal operator. Such discretization effects,

however, are cancelled in the RI/MOM or ratio scheme. To take advantages of both types

of schemes, the hybrid scheme was proposed in (Ji et al., 2020b) which provides a viable

approach to renormalize the quasi-LF correlations at all z.

To begin with, for |z| ≤ zS where zS is smaller than the distance at which the leading-twist
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approximation in the OPE becomes unreliable, one renormalizes the quasi-LF correlation as

h̃(z, a, P z)

ZX(z, a)
, (116)

where “X” can be the RI/MOM or ratio scheme.

For |z| > zS, one applies the Wilson-line mass subtraction

h̃(z, a, P z)e−δm|z|Zhybrid , (117)

where Zhybrid denotes the wavefunction and vertex renormalizations, which can be nonper-

turbatively determined by imposing a continuity condition at z = zS,

Zhybride
−δm|zS|h̃(z, a, P z) =

h̃(z, a, P z)

ZX(zS, a)
, (118)

leading to

Zhybrid(zS, a) = eδm|zS|/ZX(zS, a) . (119)

In this way, one only has to calculate δm. Note that the final result should be independent

of zS, so one should try multiple values and find the optimal one around which the result

changes the most slightly.

The perturbative matching for the hybrid renormalized quasi-PDF can be derived ac-

cordingly. Taking ZX being the zero-momentum matrix element in the ratio scheme as an

example, the O(αs) matching has been derived as (Ji et al., 2020b)

Chybrid(ξ, µ
2/(pz)2, z2Sµ

2) = Cratio(ξ, µ
2/(pz)2)

+
αsCF
2π

3

2

[
− 1

|1− ξ|+
+

2Si((1− ξ)λS)
π(1− ξ)

]
, (120)

where Cratio can be found in (Izubuchi et al., 2018), ξ = y/x, and λS = zSp
z with pz = xP z

being the parton momentum. The plus function is defined as

1

|1− ξ|+
≡ lim

β→0+

[
θ(|1− ξ| − β)
|1− ξ| + 2δ(1− ξ) lnβ

]
. (121)

Due to finite lattice volume and deteriorating signal-to-noise ratios at large z, the available

lattice data have to be truncated at zL. As we have discussed in Sec. III.C, the quasi-

LF correlation has a correlation length ξz ∼ Λ−1
QCD and exhibits an exponential decay at

large z (∼ 1 fm). If zL is not sufficiently large and the quasi-LF correlation still has a
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considerable nonzero value, then a direct Fourier transform truncated at zL will lead to

unphysical oscillations and other systematics in the quasi-PDF.

To improve this situation, it is suggested in the hybrid scheme to perform an extrap-

olation to z → ∞ (Ji et al., 2020b). When P z is not very large and the lattice matrix

elements exhibit the exponential behavior near zL, one can use the form ∼ e−z/ξz to do the

extrapolation, although some algebraic behavior can be added on top to better reflect the

z-dependence. If P z is very large, then the signal-to-noise ratio gets worse, so zL is smaller.

In this case, the quasi-LF correlation is yet to show exponential decay and dominated by the

leading-twist contributions, so one can use the algebraic decay form to do the extrapolation.

Since λL = zLP
z can reach reasonably large values with contemporary computing resources,

the extrapolation will only affect very small-x region, for which the LaMET expansion is

not well under control after all.

To summarize, the hybrid scheme provides a proper renormalization of the quasi-LF

correlations at all z, which allows for a controlled calculation of the PDF for x ∈ [xmin, xmax]

through LaMET expansion in momentum space. Therefore, we expect it to play a dominant

role in the LaMET calculation of PDFs in the future.

E. Total Gluon Helicity ∆G and Transversity PDF

Apart from the collinear PDFs, the first application of LaMET is the gluon helicity

contribution ∆G to the proton spin (Ji et al., 2013b). In the naive sum rule for the proton

spin (Jaffe and Manohar, 1990), ∆G is related to the matrix element of a nonlocal light-cone

correlation operator (Manohar, 1991),

∆G=〈PS
∣∣i
∫

dxdλ

2πxP+
eiλxF+α(0)W (0,λn)F̃ +

α (λn)
∣∣PS〉 , (122)

which in the light-cone gauge A+ = 0 reduces to

∆G = 〈PS|
(
~E × ~A

)z|PS〉/(2P+) . (123)

Within the LaMET framework, one can start from a static “gluon spin” operator, which

is defined as ~E × ~A fixed in a time-independent gauge which maintains the transverse po-

larizations of the gluon field in the IMF limit. For example, the Coulomb gauge ~∇ · ~A = 0,

axial gauges Az = 0 and A0 = 0 are viable options (Hatta et al., 2014).
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In the Coulomb gauge and MS scheme, the static “gluon spin” ∆G̃ in a massive on-shell

quark state at one-loop order is (Chen et al., 2011; Ji et al., 2013b)

∆G̃(P z, µ)(2Sz) = 〈PS|ǫij⊥F i0Aj |PS〉q

~∇· ~A=0

(124)

=
αsCF
4π

[
5

3
ln
µ2

m2
− 1

9
+

4

3
ln

(2P z)2

m2

]
(2Sz) ,

where the subscript q denotes a quark, and Sµ is the spin vector. The collinear divergence

is regulated by the finite quark mass m.

If we follow the procedure in (Weinberg, 1966) and take P z → ∞ limit before UV

regularization (Ji et al., 2013b), then

∆G̃(∞, µ)(2Sz) = 〈PS|ǫij⊥F i0Aj |PS〉q

~∇· ~A=0

=
αsCF
4π

(
3 ln

µ2

m2
+ 7

)
(2Sz) , (125)

which is exactly the same as the light-cone gluon helicity ∆G(µ) (Hoodbhoy et al., 1999a).

Therefore, despite the difference in the UV divergence, the collinear divergences of ∆G̃(P z, µ)

and ∆G(µ) are exactly the same, which allows for a perturbative matching between them.

The complete factorization formula that relates ∆G̃(P z, µ) to ∆G and ∆Σ is

∆G̃(P z, µ) = Zgg(P
z/µ)∆G(µ)

+ Zgq(P
z/µ)∆Σ(µ) + ... , (126)

where ... are power corrections suppressed by 1/P z, and the matching coefficients Zgg and

Zgg have been calculated for the Coulomb gauge at one-loop (Ji et al., 2015c).

Besides, one can also calculate the gluon helicity PDF ∆g(x) according to the factoriza-

tion formula in Sec. III, and then integrate it over x to obtain ∆G.

At leading-twist, apart from the unpolarized and helicity PDFs that we have discussed

before, there is also the transversity PDF defined as (Jaffe and Ji, 1991, 1992)

h1(x)=
1

2P+

∫
dλ

2π
e−iλx〈PS⊥|ψ(0)γ+γ⊥γ5ψ(λn)|PS⊥〉 . (127)

The h1(x) simply counts the number of transversely polarized quarks carrying the mo-

mentum fraction x in a transversely polarized proton. The first moment of this distribution

corresponds to the so-called tensor charge δq, which is the matrix element of a chiral-odd op-

erator. h1(x) can be accessed through the transverse-transverse spin asymmetry in Drell-Yan
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processes (Jaffe and Ji, 1991, 1992; Ralston and Soper, 1979) or the Collins single-spin asym-

metry in SIDIS where the transversity TMDPDF couples to a chiral-odd TMD fragmentation

function (Collins, 1993). At present, experimental results on the transversity PDF are very

limited (Barone et al., 2002; Cammarota et al., 2020; Kang et al., 2016; Lin et al., 2018b;

Radici and Bacchetta, 2018), especially for the sea quark contributions (Chang and Peng,

2014), so this is one scenario where lattice QCD calculation can make an important differ-

ence.

The LaMET calculation of h1(x) is straightforward as the nonlocal operator has the same

renormalization as the unpolarized case, and its one-loop matching has been calculated in

the MS and RI/MOM schemes at one-loop order (Alexandrou et al., 2018b; Liu et al., 2018).

First lattice calculations of h1(x) have been done in (Alexandrou et al., 2018b; Chen et al.,

2016; Liu et al., 2018), which will be discussed with more details in Sec. VI.

IV. GENERALIZED COLLINEAR PARTON OBSERVABLES

In the previous section, we have extensively discussed the leading-twist collinear PDFs

that characterize the 1D structure of the proton in longitudinal momentum space. There

exist various other parton observables that provide complementary information. In this

section, we focus on observables defined by collinear parton correlators, in the sense that

only the collinear quark and gluon mode contribute, corresponding to the so-called collinear

expansion in QCD factorizations (Collins, 2011a; Sterman, 1993). We call them “general-

ized collinear parton observables” (GCPOs), and discuss their calculations through LaMET

framework. For observables defined by parton correlators involving transverse separations,

in particular, the TMDPDFs, Wigner functions, and LFWFs, we will consider them in the

following sections.

One of the important GCPOs is the GPDs introduced in (Müller et al., 1994), and redis-

covered (Ji, 1997b) from their connection to the spin structure of the proton. They describe

the correlation between the transverse position and longitudinal momentum of partons in-

side the proton, and thus provide important information for 3D imaging of the proton. A

proton spin sum rule was derived in terms of the moments of the GPDs, which has stim-

ulated considerable general interest in the GPDs. It was also found that in the so-called

zero skewness limit or when the longitudinal momentum transfer vanishes, the GPD has a
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probability interpretation in the impact parameter space (Burkardt, 2000). In general case,

it is related to the quantum phase-space distributions or Wigner functions (Belitsky et al.,

2004; Ji, 2003). Experimentally, the GPDs can be measured through hard exclusive pro-

cesses such as deeply virtual Compton scattering (DVCS) or meson production (DVMP)

that were first proposed in (Ji, 1997a,b). Much effort has been devoted to measuring such

processes at completed and ongoing experiments, including HERA, COMPASS and JLab.

For a more comprehensive discussion on the GPDs, we refer the readers to the review arti-

cles (Belitsky and Radyushkin, 2005; Diehl, 2003; Ji, 2004, 1998). Despite that the GPDs

have more complicated kinematic dependence and relation to experimental observables, var-

ious fitting methods have been proposed in the literature to fit available DVCS and DVMP

data (Favart et al., 2016; Kumericki et al., 2016). In parallel, one can also extract certain

information on the GPDs from lattice calculations of their moments (Alexandrou et al.,

2020b; Gockeler et al., 2004; Hagler et al., 2008), which, however, is again very limited due

to the same difficulties existing in lattice calculations of the PDF moments. For JLab 12

GeV program and future EIC, it is critically important to have first-principle calculations

of GPDs with much better understanding of the physical landscape in different kinematic

variables.

A simpler but closely related GCPO is the parton distribution amplitudes (DAs), which

are collinear matrix elements of light-cone operators between a hadron state and the QCD

vacuum, representing the probability amplitude of finding a given Fock state in the hadron.

They can be probed in certain exclusive processes (Brodsky, 2002), and are crucial inputs for

processes relevant to measuring fundamental parameters of the Standard Model and probing

new physics. There exists a vast amount of literature on this subject, particularly about the

pion DA. For a review see e.g. (Braun, 2006; Brodsky and Lepage, 1989; Grozin, 2005).

Another type of GCPO is the higher-twist parton distributions. They are defined by

multi-parton correlation functions, and quantify the proton structure in terms of longitudi-

nal momentum correlations (Ellis et al., 1983; Jaffe and Ji, 1992; Jaffe and Soldate, 1982).

Although physically interesting, they are hard to separate theoretically due to mixing with

the leading-twist ones (Ji, 1995; Mueller, 1985), and difficult to extract experimentally be-

cause they are power-suppressed (Ji, 1993). Higher-twist effects can become important in

kinematic regions where the suppression is relaxed. Moreover, some twist-three distributions,

gT and hL, are different; they have no leading-twist to mix with and are dominant in spin-
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related observables (Jaffe and Ji, 1992). Twist-three GPDs are also relevant for studying

parton OAM in the proton (Courtoy et al., 2014; Hatta and Yoshida, 2012; Ji et al., 2013a)

and can be accessed through DVCS process (Kiptily and Polyakov, 2004; Penttinen et al.,

2000).

In principle, all the GCPOs discussed above can be computed within LaMET. In ad-

dition, an accurate LaMET expansion for the leading-twist PDFs requires calculations of

quasi higher-twist matrix elements. In the following, we begin with the flavor non-singlet

quark GPDs and hadronic DAs for which the computational procedure has been well es-

tablished, and then give some generic discussions on higher-twist distributions, followed by

the discussion on power-suppressed contributions required to extract the leading-twist quark

PDFs, which have been investigated using different approaches though not yet implemented

in numerical computations.

A. Generalized Parton Distributions

The operators defining the GPDs are the same as those defining the PDFs. Thus, the

LaMET calculation of PDFs can be rather straightforwardly generalized to the GPDs by

taking into account the non-forward kinematics (Liu et al., 2019b). To illustrate how it

works, let us take the nonsinglet unpolarized quark GPDs in the nucleon as an example.

The unpolarized quark GPDs are defined through the following matrix element (Ji, 2004)

F =
1

2P̄+

∫
dλ

2π
e−ixλ〈P ′S ′|Oγ+(λn)|PS〉

=
1

2P̄+
ū(P ′S ′)

[
Hγ+ + E

iσ+µ∆µ

2M

]
u(PS) , (128)

where we have suppressed the arguments (x, ξ, t, µ) of F , H and E for simplicity. The

operator

Oγ+(λn) = ψ̄(
λn

2
)γ+W (

λn

2
,−λn

2
)ψ(−λn

2
) (129)

with nµ = 1/
√
2(1/P̄+, 0, 0,−1/P̄+) is the same operator used to define the unpolarized

quark PDF, M is the nucleon mass. The momentum fraction x ∈ [−1, 1], and

∆ ≡ P ′ − P, t ≡ ∆2, ξ ≡ −P
′+ − P+

P ′+ + P+
= − ∆+

2P̄+
, (130)
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where without loss of generality we have chosen a Lorentz frame in which the average

momentum takes the following form

P̄ µ ≡ P ′µ + P µ

2
= (P̄ 0, 0, 0, P̄ z) . (131)

The skewness parameter ξ ∈ [−1, 1] since P+, P ′+ ≥ 0. Besides, there exists another

kinematic constraint on ξ, which follows from ~∆2
⊥ ≥ 0,

ξ ≤ ξmax(t) =

√
−t

−t + 4M2
. (132)

In the following, we will also assume ξ > 0 without loss of generality. With these kinematic

constraints, the GPDs can be divided into several kinematic regions that have different

physical interpretations. As shown in Fig. 10, in the region ξ < x < 1 (−1 < x < −ξ) the

distribution describes the emission and reabsorption of a quark (antiquark), while in the

region −ξ < x < ξ it represents the creation of a quark and antiquark pair. The first region

is similar to that present in usual PDFs and referred to as the DGLAP region, whereas

the second is similar to that in a meson DA, which will be discussed later in this section,

and referred to as the Efremov-Radyushkin-Brodsky-Lepage (ERBL) region. The easiest

way to see this is in light-cone quantization and light-cone gauge where the matrix element

defining the GPDs can be rewritten in terms of parton creation and annihilation operators,

for details see e.g. (Ji, 2004).

[FIG. 8 about here.]

The quark GPDs defined above have a number of remarkable properties, see,

e.g., (Belitsky and Radyushkin, 2005; Diehl, 2003; Ji, 2004, 1998) , which either hold or

have similar counterparts for the quark quasi-GPDs to be defined below. Apart from their

physical significance, these properties also serve as useful checks on calculations related to

GPDs.

According to LaMET, the unpolarized quark GPDs defined above can be determined by

calculating the following quasi-GPDs

F̃ =
1

2P̄ 0

∫
dλ

2π
eiyλ〈P ′S ′|Oγ0(z)|PS〉

=
1

2P̄ 0
ū(P ′S ′)

{
H̃γ0 + Ẽ

iσ0µ∆µ

2M

}
u(PS) , (133)

63



where we have again suppressed the arguments (y, ξ̃, t, P̄ z, µ) of F̃ , H̃, and Ẽ. The operator

Oγ0(z) = ψ̄( z
2
)γ0W ( z

2
,−z

2
)ψ(−z

2
) is the same operator defining the unpolarized quark quasi-

PDF, and λ = zP̄ z. As in the quasi-PDF case, the momentum fraction y extends from −∞
to ∞. The skewness parameter for the quasi-GPD

ξ̃ = −P
′z − P z

P ′z + P z
= − ∆z

2P̄ z
= ξ +O

(
M2

(P̄ z)2
,

t

(P̄ z)2

)
(134)

differs from the light-cone skewness ξ by power suppressed corrections. Moreover, the con-

straint from ~∆2
⊥ ≥ 0 becomes (Ji et al., 2015a)

ξ̃ ≤ 1

2P̄ z

√
−t
[
(P̄ z)2 +M2 − t/4

]

M2 − t/4 , (135)

which differs from the constraint in Eq. (132) by corrections of O(M2/(P̄ z)2, t/(P̄ z)2). We

can replace ξ̃ with ξ and attribute the difference to generic power suppressed contributions.

The quasi-GPDs defined above can be renormalized by observing that their UV divergence

depends only on the operators defining them, but not on the external states. Since Oγ0(z)

is multiplicatively renormalized, we can choose the same renormalization factor as that for

the quasi-PDF (Liu et al., 2020; Stewart and Zhao, 2018) to renormalize the quasi-GPD.

After renormalization, the quasi-GPD can then be matched to the usual GPD through a

factorization formula.

The factorization of quasi-GPDs was first proposed and verified at one-loop order

in (Ji et al., 2015a; Xiong and Zhang, 2015), where a transverse momentum cutoff and a

quark mass were used as the UV and IR regulator, respectively. Later on, a detailed deriva-

tion based on OPE was given in (Liu et al., 2019a). In contrast with the OPE for the

quasi-PDF, a crucial difference here is that the total derivative of operators can come into

play, as it simply gives momentum transfer factors when sandwiched between non-forward

external states, and therefore is non-vanishing. In other words, the local twist-two operators

as those in Eq. (97) will mix under renormalization with operators with total derivatives.

The RGE that governs the mixing reads (Braun et al., 2003),

µ2 d

dµ2
Oµ0µ1...µn(µ) =

[n/2]∑

m=0

Γnm (136)

×
[
i∂(µ1 · · · i∂µ2m ψ̄γµ0i←→D µ2m+1 · · · i←→D µn)ψ − trace

]
,
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where Γnm is the anomalous dimension of the associated operators,
←→
D = (

−→
D −←−D)/2 with

−→
D(
←−
D) denoting the covariant derivative acting to the right (left). The above equation can

be diagonalized by choosing an appropriate operator basis. Such an operator basis has been

studied in the literature and known as the “renormalization group improved” conformal

operators (Braun et al., 2003; Mueller, 1994b). In terms of the matrix elements of these

operators, we have

〈P ′|Oγ0(z)|P 〉 = 2P 0

∞∑

n=0

Cn(µ
2z2)Fn(−λ)

n∑

m=0

Bnm(µ)

× ξn
∫ 1

−1

dx C3/2
m

(
x

ξ

)
F (x, ξ, t, µ) + . . . , (137)

where Fn(−λ) are partial wave polynomials whose explicit forms are known in the confor-

mal OPE of current-current correlators for the hadronic light-cone DAs (Braun and Müller,

2008), Bnm can be found in (Braun et al., 2003; Mueller, 1994b), and . . . denotes the higher-

twist contributions O
(
M2/(P̄ z)2, t/(P̄ z)2, z2Λ2

QCD

)
.

Fourier transforming the l.h.s of the above equation to momentum space and invert it

order by order in αs, we then obtain the following EFT expansion of the unpolarized quark

GPD,

F (x, ξ, t, µ) (138)

=

∫ ∞

−∞

dy

|ξ|C̄
(
x

ξ
,
y

ξ
,
µ

ξP̄ z

)
F̃ (y, ξ, t, P̄ z, µ) + . . .

=

∫ ∞

−∞

dy

|y|C
(
x

y
,
ξ

y
,
µ

yP̄ z

)
F̃ (y, ξ, t, P̄ z, µ) + . . . ,

which has been organized following the same spirit as the factorization of PDFs in previous

sections. Both forms have been used in the literature (Ji et al., 2015a; Liu et al., 2019a;

Xiong and Zhang, 2015) with the matching coefficients being related by

C

(
x

y
,
ξ

y
,
µ

yP̄ z

)
=

∣∣∣∣
y

ξ

∣∣∣∣ C̄
(
x

ξ
,
y

ξ
,
µ

ξP̄ z

)
, (139)

and . . . denotes the higher-twist contributions which have the same power-counting as in

Eq. (137) except that z2 is replaced by 1/(xP̄ z)2. For the helicity and transversity quark

quasi-GPDs, the factorization formula has the same form as Eq. (138) (Liu et al., 2019a).

The matching coefficient can be obtained by replacing the hadron states in Eqs. (128) and

(133) with the quark states carrying momentum p+∆/2 and p−∆/2 with pµ = (p0, 0, 0, pz),
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and calculating the quark matrix element in perturbation theory. The explicit expression for

the O(αs) matching coefficients can be found in (Liu et al., 2019a). An important feature

of the result is: The quasi-GPDs do not vanish in all y range, but the collinear singularities

only show up in DGLAP and ERBL regions at one-loop. They are exactly the same as those

in light-cone GPDs, and thus cancel in the matching coefficient. Moreover, one can derive

momentum RGEs for the quasi-GPDs, which are turned into RGE for the scale dependence

of the GPDs by the matching procedure.

To conclude this subsection, let us make some remarks on the EFT formula for the quark

GPD above. First, at zero skewness ξ = 0, we have

F (x, 0, t, µ) =

∫ ∞

−∞

dy

|y|C
(
x

y
, 0,

µ

yP z

)
F̃ (y, 0, t, P z, µ)

+ . . . , (140)

where the matching kernel C(x/y, 0, µ/(yP z)) is exactly the same as the matching coefficient

for the quasi-PDF (Izubuchi et al., 2018), even when t 6= 0. This can be understood as

follows: At zero skewness, both the longitudinal momentum transfer and the energy transfer

vanish, the momentum transfer is purely transverse and thus is not affected by Lorentz boost

along the longitudinal z direction. As a result, no extra matching related to t is required in

the large P z limit, and the matching remains the same as in the quasi-PDF case. If we take

the forward limit ∆→ 0, then Eq. (140) reduces exactly to the EFT expansion formula for

the PDF (Izubuchi et al., 2018; Ji et al., 2015a).

Second, in the limit ξ → 1 and t→ 0, the quasi-GPD reduces to the quasi-DA that will

be discussed in the next subsection, and the corresponding matching kernel also reduces to

that for the quasi-DA.

B. Hadronic Distribution Amplitudes

Within LaMET, the DAs of protons as well as other hadrons can also be extracted from

lattice simulations of appropriately chosen quasi-DAs. In this subsection, we show how this

can be done in practice. For illustration, we take the leading-twist pion DA as an example.

The application to other hadrons (Wang et al., 2019a; Zhang et al., 2019c) is analogous.

The leading-twist DA of the pion is the simplest and most extensively studied hadronic

DA. It represents the probability amplitude of finding the valence qq̄ Fock state in the pion
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with the quark carrying a fraction x of the total pion momentum, and is defined as

φπ(x) =
1

ifπ

∫
dλ

2πP+
e−i(x−

1

2
)λ〈0|Oγ+γ5(λn)|π(P )〉 , (141)

with normalization
∫ 1

0
dx φπ(x) = 1. Here fπ denotes the decay constant, and Oγ+γ5(λn)

has the same structure as that used in Eq. (128) with γ+ replaced by γ+γ5. The pion

DA can be constrained from experimental measurements of, e.g., γγ∗ → π0 from BaBar

and Belle (Aubert et al., 2009; Uehara et al., 2012), and then used as an input to test

QCD in other measurements such as the pion form factor (Efremov and Radyushkin, 1980;

Farrar and Jackson, 1979). In the asymptotic limit, it is well known that the pion DA takes

the form 6x(1− x) (Efremov and Radyushkin, 1980; Lepage and Brodsky, 1979). However,

how it behaves at lower scales remains under debate (see e.g. (Chernyak and Zhitnitsky,

1982)). Calculating the pion DA with controllable systematics in LaMET will be able to

shed new lights on its shape and thus on our understanding of pion structure.

Following the same strategy as before, we can access the x-dependence of the pion DA

by studying the following quasi-DA (Ji et al., 2015a; Zhang et al., 2017)

φ̃π(y, P
z) =

1

ifπ

∫
dλ

2πP z
ei(y−

1

2
)λ〈0|Oγzγ5(z)|π(P )〉 , (142)

The longitudinally and transversely polarized vector meson quasi-DAs can be defined anal-

ogously by replacing γzγ5 in the above equation with γ0, γzγ⊥, respectively (Liu et al.,

2019b).

The quark bilinear operators defining quasi-DAs follow the same renormalization pattern

as those defining the quasi-PDFs or quasi-GPDs. In the literature, the Wilson-line mass-

subtraction scheme was used in the first LaMET calculations of the meson DAs (Zhang et al.,

2017, 2019c), and the RI/MOM scheme has been adopted in more recent works (Zhang et al.,

2020b).

The LaMET expression for DAs takes the following form in the MS scheme (Ji et al.,

2015a; Liu et al., 2019b)

φπ(x, µ) =

∫ ∞

−∞
dy Cπ (x, y, P

z/µ) φ̃π(y, P
z, µ) + . . . . (143)

The matching coefficient for the quasi-DAs can be obtained by replacing the meson state

|π(P )〉 in Eqs. (141) and (142) with the lowest Fock state |q(yP )q̄((1 − y)P )〉 and calcu-

lating the quark matrix elements, where yP and (1 − y)P are the momenta of the quark
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q and anti-quark q̄, respectively. Its one-loop results have been calculated in both MS and

RI/MOM schemes (Liu et al., 2019b), which agrees with matching coefficient for the quasi-

GPDs (Ji et al., 2015a; Liu et al., 2019a; Xiong and Zhang, 2015) in Eq. (138) with the

replacement of ξ → 1/(2y − 1), x/ξ → 2x− 1, and the external momentum pz to pz/2.

Apart from the LaMET approach in momentum space, the shape of the pion DA

has also been studied using equal-time current-current correlation in coordinate space ap-

proach (Bali et al., 2018a,b),

〈0|T
{
Jµ

(z
2

)
Jν

(
− z

2

)}
|π0(P )〉

=
2i fπ
3π2z4

ǫµναβP
αzβΦπ(λ, z

2) , (144)

where Φπ(λ, z
2) can be factorized as

Φπ(λ, z
2) = C2(λ, z

2µ2, x)⊗ φπ(x, µ) + · · · . (145)

Here the matching coefficient C2 depends on the choice of the currents. Its explicit expression

can be found in (Bali et al., 2018a). The above factorization is controlled by O(z2Λ2
QCD),

with power corrections denoted by “ · · · ”. In (Bali et al., 2018a), a combined analysis of

several current-current correlations has been performed where twist-four contributions were

also included using the model estimate in (Ball et al., 2006; Braun and Filyanov, 1990).

The leading-twist pion DA was then extracted from a global fit to the data, and the second

moment of the pion DA has been fitted with controlled precision, both of which favor a

considerably broader shape than the asymptotic DA at a scale of 2 GeV. A large pion

momentum is required to access information at large λ so that we can extract wider range

of x or higher moments of the pion DA (Bali et al., 2018b).

C. Higher-Twist Distributions

Higher-twist distributions are quantities of great interest because they describe the coher-

ent quark-gluon correlations in the proton. In contrast with the leading-twist distributions,

our understanding of the higher-twist ones is rather poor. On one hand, they often depend

on more than one parton momentum fractions; on the other hand, there is no physical intu-

ition about what they may look like, in particular, about how they behave asymptotically
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at small and large x (Braun et al., 2011). There have been studies on the higher-twist dis-

tributions in the context of their connection to the DIS structure function, the transverse

single-spin asymmetries in various hadron productions, GPDs related to quark and gluon

OAM, parton DAs, etc. LaMET will be able to shed new lights by providing a possibility

to access them from the lattice.

Higher-twist contributions also appear in LaMET expansion, where the suppression is

provided by powers of the hadron momentum squared. In all factorizations presented in

previous sections, only the leading-twist terms that capture the logarithmic dependence

on hadron momentum are taken into account. The higher-twist contributions have been

assumed to be small. If the hadron momentum is not sufficiently large compared and/or

one is close to the endpoint region (x → 0 and x → 1), the higher-twist contributions can

become non-negligible, whose structure and impact require understanding.

1. Higher-twist collinear-parton observables

Beyond leading-twist, there exist three simplest twist-three quark distributions e(x),

gT (x) and hL(x) related to the unpolarized, transversely and longitudinally polarized pro-

ton (Jaffe and Ji, 1992),

e(x) =
1

2M

∫
dλ

2π
eixλ (146)

× 〈PS|ψ†
+(0)γ0ψ−(λn)|PS〉+ h.c. ,

gT (x) =
1

2M

∫
dλ

2π
eixλ (147)

× 〈PS⊥|ψ†
+(0)γ0γ⊥γ5ψ−(λn)|PS⊥〉+ h.c. ,

hL(x) =
1

2M

∫
dλ

2π
eixλ (148)

× 〈PSz|ψ†
+(0)γ0γ5ψ−(λn)|PSz〉+ h.c. ,

where we have again employed the decomposition of quark fields ψ = ψ+ + ψ− in Sec. I.A

and the light-cone gauge A+ = 0, and “h.c.” stands for Hermitian conjugate.

The twist-three distributions can contribute as leading effects in certain experimental

observables. For example, gT (x) and hL(x) can be measured as the leading effects in the

longitudinal-transverse spin asymmetry in polarized Drell-Yan process.
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Since ψ− is a non-dynamical component depending on ψ+, all the above distribu-

tions can be shown to be related to more complicated quark-gluon correlation func-

tions (Balitsky et al., 1996; Ji and Chou, 1990). A complete set of such correlation functions

has been given in (Ji, 1992; Ji and Osborne, 2001; Kang and Qiu, 2009; Qiu and Sterman,

1991), where the quark-gluon correlations in a transversely-polarized proton take the follow-

ing form

Tq(x1, x2) =
1

(P+)2

∫
dλdζ

(2π)2
eiλx1+iζ(x2−x1) (149)

× 〈PS⊥|ψ̄(0)γ+ǫ+−S⊥igF+i(ζn)ψ(λn)|PS⊥〉,

T∆q(x1, x2) =
1

(P+)2

∫
dλdζ

(2π)2
eiλx1+iζ(x2−x1) (150)

× 〈PS⊥|ψ̄(0)iγ+γ5Si⊥gF+i(ζn)ψ(λn)|PS⊥〉 .

There are also ones in an unpolarized and longitudinally-polarized proton. Generalizing to

off-forward kinematics, the resulting twist-three GPDs are also related to quark and gluon

OAM contribution to the proton spin (Hatta and Yoshida, 2012; Ji et al., 2013a).

One can also define twist-four distributions in a similar way as in Eq. (149) by using

ψ− for both quark fields. More general twist-four distributions will involve three light-cone

variables, which will contribute to, e.g., 1/Q2 term in DIS (Ellis et al., 1983; Jaffe and Ji,

1992; Jaffe and Soldate, 1982; Ji, 1993).

In principle, all the above higher-twist distributions, as well as others that have not been

listed here, can be computed using the LaMET approach by choosing appropriate quasi-

LF correlations. For example, the first exploratory lattice calculation of gT (x) has been

done in (Bhattacharya et al., 2020a), which will be discussed in Sec. VI.C. However, extra

complications are expected due to their complex structure. For instance, the lightcone zero

modes that do not enter in dealing with leading-twist distributions come into play here.

Recently, one of the authors has shown how to study the properties of these zero modes

from lattice simulations in LaMET (Ji, 2020). In addition, the higher-twist distributions will

have a more complex mixing pattern (Balitsky et al., 1996; Ji and Chou, 1990). Thus, their

matching from the corresponding quasi distributions must take into account such mixings,

making them more challenging than calculating the twist-two PDFs. One-loop studies of the

matching for twist-three disributions have been carried out in (Bhattacharya et al., 2020b,c).
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2. Higher-twist contributions to quasi-PDFs

Let us turn to the power suppressed higher-twist contributions appearing in the extraction

of leading-twist quark PDFs using LaMET. Such contributions have two distinct origins.

To understand them, let us recall the OPE for the quasi-LF correlation in Eq. (98). For

simplicity, we ignore the renormalization here. Recovering the leading-twist quark PDF

requires removing the contributions of both trace terms in that equation. The trace terms

on the r.h.s. of Eq. (98), which lead to contributions suppressed by powers of M2/(P z)2,

are known as kinematic power contributions or target mass corrections. In DIS, they can be

accounted for by changing the scaling variable x to the Nachtmann variable (Nachtmann,

1973). In the case of LaMET, it behaves slightly differently, as shown in the following. The

second type of power corrections come from the trace terms in the operators on the r.h.s.

of Eq. (97), and in general leads to contributions of O(Λ2
QCD/(P

z)2) . These are genuine

higher-twist contributions that involve multi-parton correlations, sometimes also known as

dynamical higher-twist contributions. The target mass corrections have been computed

to all orders in M2/(P z)2 for the quark quasi-PDFs in (Chen et al., 2016; Radyushkin,

2017c). The genuine higher-twist contributions have been investigated using two different

approaches (Braun et al., 2019; Chen et al., 2016).

According to (Chen et al., 2016), the M2/(P z)2 corrections can be obtained from the

ratio

Km ≡
n(µ1 · · ·nµm)P

µ1 · · ·P µm

nµ1 · · ·nµmP µ1 · · ·P µm
=

imax∑

i=0

C i
m−ic

i , (151)

where imax = (m −Mod[m, 2])/2, C is the binomial function and c = −n2M2/4 (n · P )2 =

M2/4(P z)2 with nµ = (0, 0, 0,−1) and n · P = P z.

Plugged into the tree-level OPE formula in Eq. (98), the above factors can then be

converted to the following relation between unpolarized PDF and quasi-PDF (Chen et al.,

2016)

q(x) =
√
1 + 4c

∞∑

n=0

(4c)n

f 2n+1
+

[
(1 + (−1)n)q̃

(f 2n+1
+ x

2(4c)n

)

+ (1− (−1)n)q̃
(−f 2n+1

+ x

2(4c)n

)]
, (152)

where f+ =
√
1 + 4c + 1. It is worth noting that quark number conservation is preserved

71



in the above result. The target mass corrections for the longitudinally and transversely

polarized quasi-PDFs can be derived analogously.

The trace part on the r.h.s. of Eq. (97) is a genuine higher-twist effect. One may

try to construct a non-local form of the higher-twist operators from OPE. The lead-

ing trace term, which is a twist-four effect, has been studied in (Chen et al., 2016) (see

also (Balitsky and Braun, 1989)) and shown to give rise to a twist-four PDF

q4(x, P
z) =

∫ ∞

−∞

dλ

8πP z
Γ0 (−ixλ) 〈P |Otr(z)|P 〉 , (153)

with

Otr(z) =

∫ z

0

dz1 ψ̄(0)
[
ΓνW (0, z1)DνW (z1, z) (154)

+

∫ z1

0

dz2 n · ΓW (0, z2)D
νW (z2, z1)DνW (z1, z)

]
ψ(zn) ,

where one has Γµ = γµ, γµγ5, γ⊥γµγ5 for the unpolarized, helicity and transversity PDFs,

respectively. Γ0 is the incomplete Gamma function

Γ0 (−ix) =
∫ 1

0

dt

t
eix/t . (155)

The above twist-four contribution needs to be removed from the quasi-PDF to recover the

leading-twist PDF. It also provides a possibility for practical computations on the lattice.

However, as a multi-parton correlation involving more gauge links and covariant derivatives,

its lattice computation is rather challenging and has not been carried out in any existing

work yet.

Another approach that has been used to estimate power corrections related to quark

quasi-PDFs is the renormalon model (see (Beneke, 1999) for a comprehensive review). It is

based on the observation that the perturbative expansion of the matching coefficient for the

quasi-PDF diverges factorially with the loop order, implying that it is only well defined up

to a power accuracy. This is known as the renormalon ambiguity, which must be cancelled

by terms in the higher-twist contributions.

In (Braun et al., 2019), it was shown that the cancellation of renormalon ambiguity re-

quires that the leading higher-twist or twist-four contribution takes the following form

q4(y, P
z, µ) = µ2

∫ 1

−1

dx

|x|D
(y
x

)
q(x, µ) + q′4(y, P

z, µ) , (156)
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where the first term on the r.h.s. cancels the renormalon ambiguity from the leading-twist

matching coefficient, and q′4 depends on µ at most logarithmically. Since the first term is to

merely cancel similar contributions in the matching coefficient, it does not contribute to any

physical observable. The renormalon model of power corrections (Beneke and Braun, 1995;

Beneke et al., 1997; Braun et al., 2004; Dasgupta and Webber, 1996, 1997; Dokshitzer et al.,

1996) is based on the assumption that, by replacing µ with a suitable nonperturbative scale,

this contribution reflects the order and the functional form of actual power-suppressed con-

tributions. This was known as “ultraviolet dominance” in (Beneke, 1999; Beneke and Braun,

2000; Braun, 1995). Under this assumption, we obtain the following estimate,

q4(y, P
z, µ) = κΛ2

QCD

∫ 1

−1

dx

|x|D
(y
x

)
q(x, µ) , (157)

where κ is a dimensionless coefficient of O(1) that cannot be fixed within theory and remains

a free parameter.

A detailed analysis (Braun et al., 2019) showed that for the quasi-PDF we have

q4(y, P
z) =

κΛ2
QCD

y2(1− y)(P z)2
(158)

×(1− y)
[∫ 1

|y|

dx

x

[ x2

(1− x)+
−2x2

]
q
(y
x

)
+2q(y)−|y|q′(y)

]
,

where the first term in the integral was reproduced in a recent analysis of the renormalon

effects in the quasi-PDF (Liu and Chen, 2020). As one can see, the second row vanishes as

q(y) when y → 1 if limy→1 q(y) ∼ (1−y)a with a > 0. This gives an estimate of the twist-four

contribution on the r.h.s. of Eq. (33), which implies that the higher-twist contributions are

enhanced as 1/y2 and 1/(1− y) for y ∼ 0 and y ∼ 1, respectively. Similar analysis can also

be done for the pseudo-PDF. The above result can be used as a way to model the twist-four

contribution with κ as the only parameter.

D. Orbital Angular Momemntum of Partons in the Proton

Over the past three decades, much experimental and theoretical work has been done

on the origin and structure of proton spin, which has been covered in depth in the review

articles (Aidala et al., 2013; Bass, 2005; Deur et al., 2019; Filippone and Ji, 2001; Ji, 2017;

Ji et al., 2020c; Leader and Lorcé, 2014).
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In addition to the spin-dependent PDFs and TMDs, the GCPOs—in particular the

GPDs—also play an important role in understanding the spin structure of the proton. Since

GPDs describe the correlation between the transverse position and longitudinal momentum

of quarks and gluons inside the proton, they offer a unique channel to study the orbital

angular momentum (OAM) from experiments.

There are two widely known definitions of OAM in literature. One is the kinetic OAM

in the gauge-invariant and frame-independent sum rule for the proton spin (Ji, 1997a,b),

which is related to the first moment of twist-two GPDs and can be calculated from the form

factors of the symmetric QCD energy-momentum tensor. A review of the lattice calculations

of kinetic OAM can be found in (Ji et al., 2020c). The other definition, which has a clear

partonic interpretation in comparison to the kinetic OAM, is the canonical OAM in the

naive partonic sum rule (Jaffe and Manohar, 1990) based on the free-field form of the QCD

angular momentum,

~J =

∫
d3ξ ψ†

~Σ

2
ψ +

∫
d3ξ ψ†

[
~ξ × (−i~∇)

]
ψ

+

∫
d3ξ ~E × ~A+

∫
d3ξ Ei

(
~ξ × ~∇

)
Ai , (159)

where i is the spatial Lorentz index. Except for the first one, the other three operators

are gauge dependent, and their matrix elements are generally frame dependent. In high-

energy scattering, there is one frame and gauge that are special: the IMF and light-front

gauge, A+ = 0. Therefore, the naive partonic sum rule for proton spin can be expressed

as (Jaffe and Manohar, 1990)

1

2
=

1

2
∆Σ(µ) + lzq(µ) + ∆G(µ) + lzg(µ) , (160)

where lzq(µ) and lzg(µ) are the canonical OAM of the quark and gluon partons, respectively.

Both lzq and lzg can be related to twist-three GPDs (Hatta, 2012; Hatta and Yoshida, 2012;

Ji et al., 2013a), which can be accessed through spin-asymmetries in hard exclusive pro-

cesses (Bhattacharya et al., 2018, 2017; Hatta et al., 2017; Ji et al., 2017a) (see the recent

review (Ji et al., 2020c)).

To fully understand the partonic spin structure of the proton, one also needs to determine

the quark and gluon canonical OAM, lzq and lzg . LaMET allows extraction of lzq and lzg from

lattice calculation in the same way as the gluon helicity that was reviewed in Sec. III.E.
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The quasi-partonic OAM operators can be chosen as the free-field operators fixed in

gauges that belong to the universality class (Hatta et al., 2014). Their matrix elements

l̃zq and l̃zg can be calculated from the off-forward matrix elements of the relevant energy-

momentum tensors (Zhao et al., 2016), for example,

l̃zq(2S
z) = lim

∆→0
ǫij

∂

∂i∆i
〈P ′S|ψ†(0)i∂jψ(0)|PS〉

∣∣∣
~∇· ~A=0

. (161)

where the kinematics is the same as Eq. (130).

Along with ∆G, l̃zq and l̃zg can be matched to the partonic quantities defined in the Jaffe-

Manohar sum rule through the factorization formulas,

l̃zq(P
z, µ) = Pqql

z
q(µ) + Pgql

z
g(µ)

+ pqq∆Σ(µ) + pgq∆G(µ) + ... , (162)

l̃zg(P
z, µ) = Pqgl

z
q(µ) + Pggl

z
g(µ)

+ pqg∆Σ(µ) + pgg∆G(µ) + ... , (163)

where · · · are power corrections suppressed by the momentum P z, and the one-loop match-

ing coefficients in front of each term on the r.h.s. have been calculated in the Coulomb

gauge (Ji et al., 2015c). Since the quasi-partonic operators are gauge-variant and need to

be fixed in a particular gauge, they can mix with new operators that are not allowed by

Lorentz or gauge symmetries. For example, the gauge-dependent potential angular momen-

tum ψ†(~r× ~A)ψ comes into play (Ji et al., 2016; Wakamatsu, 2014). Such mixings must be

taken into account in lattice renormalization to have a controlled calculation of the canonical

OAM.

Apart from the above approach, it has also been proposed to calculate the ratio of lzq

and the valence quark number from the derivatives of off-forward matrix elements of staple-

shaped quark Wilson line operators (Engelhardt, 2017), whose definition can be found in

Eq. (195) below. The first lattice calculations with this approach have been carried out

in (Engelhardt, 2017; Engelhardt et al., 2018), which shows different size of effects between

the kinetic and canonical OAM. For systematic improvement in this calculation, one should

include the matching of such matrix elements to the physical lzq in the limit when the

transverse separation of the quark fields approaches zero.

For the transverse polarization, it is natural to define a twist-two partonic transverse

angular momentum density of quarks (Hoodbhoy et al., 1999b; Ji et al., 2012; Ji and Yuan,
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2020; Ji et al., 2020c),

Jq⊥(x) = x [q(x) + Eq(x)] /2, (164)

and similarly for the gluons, where q(x) is the unpolarized quark/antiquark distributions,

and Eq,g(x) is the GPDs defined earlier in this section. Thus to get a simple partonic picture

of the proton transverse spin from the first principles, it is important to calculate the GPD

E(x) using LaMET.

V. TRANSVERSE-MOMENTUM DEPENDENT PDFS

The transverse-momentum-dependent (TMD) parton distribution functions (TMDPDFs)

are a natural generalization of the collinear PDFs to include both longitudinal and trans-

verse momentum of partons. They are in principle probability distributions fi(x,~k⊥, σ) of

finding a parton of given species i, longitudinal and transverse momentum (xP+, ~k⊥), and

polarization σ inside the hadron state. TMDPDFs are playing an increasingly important

role in understanding the partonic structure of hadrons and high-energy scattering.

The TMD parton densities were firstly introduced by Collins and Soper in 1980s (Bodwin,

1985; Collins and Soper, 1981, 1982a; Collins et al., 1983, 1985a,b) to understand the Drell-

Yan (DY) and e+e− annihilation process, and generalized in (Ji et al., 2004, 2005) to semi-

inclusive deep-inelastic scattering(SIDIS) process. The TMD factorization has been rean-

alyzed in the framework of SCET in which modes are made manifest by effective fields

(Bauer et al., 2001, 2002; Becher and Neubert, 2011; Chiu et al., 2012; Echevarria et al.,

2012; Echevarría et al., 2013; Manohar and Stewart, 2007). Various TMD factorization for-

malisms finally converged to the standard one where a scheme-independent TMDPDF can

be defined (Collins and Rogers, 2017, 2013; Echevarría et al., 2013).

The TMD parton densities are important in understanding the experimental processes

where the transverse momenta of final state particles are measured. For example, in DY pair

and W,Z production it is known that the differential cross section dσ/dQ2
T normally peaks

at relatively small transverse momentum. For Q ∼ 10 GeV, the peak is typically located at

Q⊥ ∼ 1 GeV where nonperturbative effects are important (Collins et al., 1985b). A good

knowledge of TMD parton densities is therefore crucial for the determination of the cross

sections and precision test of perturbative QCD predictions.

Besides their importance in understanding the high-energy experimental data, the TMD
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parton densities are also important by themselves for their crucial role in describing hadron

structures. With them, one can simultaneously study the fast-moving collinear physics

through the longitudinal x-dependencies, and the nonperturbative effect from the transverse

~k⊥-dependencies. Moreover, the TMDPDFs are sensitive to effects such as soft radiations.

Therefore, the physics in the presence of transverse degrees of freedom is rather rich. This

is particularly true in studies of spin-dependent phenomena where one can define various

TMDPDFs through Lorentz decompositions (see Sec. V.B). One example is the Sivers func-

tion for a transversely polarized proton, ǫijk
i
⊥S

i
⊥f

⊥
1T (x, k⊥), which is naive-time-reversal odd

and is predicted to change sign between the DY and SIDIS processes (Collins, 2011a). Sim-

ilar properties also exist in the Boer-Mulders function (Boer and Mulders, 1998) concerning

a transversely-polarized parton distribution in an unpolarized hadron. These two func-

tions are related to the single transverse spin asymmetry. If we generalize the TMDPDFs

to include the impact parameter dependence, we can further define the Wigner function,

the parton orbital angular momentum distributions, etc (Belitsky et al., 2004; Lorce et al.,

2012). Therefore, the TMDPDFs allow for a more complete and refined 3D description (or

tomography) of the hadron structure (Boer et al., 2011; Burkardt, 2000). The 3D tomog-

raphy of the proton is a major physical goal of the EIC program. The TMDPDFs are also

important in understanding small-x physics (Balitsky, 1996; Balitsky and Lipatov, 1978;

Kovchegov, 1999; Kovchegov and Levin, 2012; Kuraev et al., 1977).

Our current knowledge on TMDPDFs mainly comes from fitting to the experimental

data (Bacchetta et al., 2019, 2017; Bertone et al., 2019; Echevarria et al., 2014; Kang et al.,

2016; Konychev and Nadolsky, 2006; Landry et al., 2001; Scimemi and Vladimirov, 2018a,

2019; Sun et al., 2018). This is, however, rather primitive due to the paucity of data. Al-

though the future EIC will make up the gap and produce more data for TMD measurements,

it is still important to develop first-principle methods for the determination of nonpertur-

bative TMDPDFs, which can serve as a test or provide useful inputs to constrain the global

fits. LaMET provides a systematic way to extract TMDPDFs from the lattice calcula-

tions. Early studies (Ebert et al., 2019a,b; Ji et al., 2019a, 2015b) have tried to construct a

quasi-TMDPDF on the lattice, but its relation to the physical TMDPDF is expected to be

nonperturbative due to complications in the soft function (Ebert et al., 2019b). The recent

works in (Ji et al., 2019b, 2020a) provide a formulation to calculate the soft function so that

a perturbative matching formula can be established between the quasi- and physical TMD-
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PDFs, allowing for a complete determination of the latter from lattice QCD. In this section

we review the application of LaMET to the nonperturbative TMDPDFs. The investigation

is still in its early stage and a lot remains to be explored, particularly in lattice calculations

and matching.

In the first subsection we introduce the TMDPDFs and discuss the associated rapidity di-

vergences. In the following subsections, we define the quasi-TMDPDFs or TMD momentum

distributions in a proton of finite momentum, and study their momentum RGEs and UV

renormalization properties. In the process, we introduce the off-light-cone soft functions.

We then present the factorization of the quasi-TMDPDFs into the light-cone TMDPDFs

and the off-light-cone soft function, where various one-loop results and the relevant RGEs

are also given. The properties of the off-light-cone soft function are discussed in the last

subsection, where it is shown to be related to the form factor of a pair of charged color

sources, which paves the way for its calculation on a Euclidean lattice.

A. Introduction to TMDPDFs and Rapidity Divergence

As explained in Sec. II, we can define various TMDPDFs by choosing different gauge-links

between the quark or gluon bilinears. The one relevant to high-energy phenomena is defined

with light-like Wilson lines. The links represent the propagation of high-energy color-charged

particles, and are crucial in forming gauge-invariant nonlocal operators (Belitsky et al.,

2003). As argued in previous sections, such operators are the result of an EFT description

(more explicitly so in SCET) arising from taking the infinite-momentum limit of the proton.

Thus, it is natural to expect that they require additional regularization and renormalization.

Let us take the non-singlet quark unpolarized TMDPDF as an example. Without the

field theoretic subtleties, the distribution is

f(x,~k⊥) =
1

2P+

∫
dλ

2π

d2~b⊥
(2π)2

e−iλx+i
~k⊥·~b⊥ (165)

× 〈P |ψ̄(λn/2 +~b⊥)γ+Wn(λn/2 +~b⊥)ψ(−λn/2)|P 〉 ,

where Wn(λn+~b⊥) is the staple-shaped gauge-link of the form

Wn(ξ) = W †
n(ξ)W⊥Wn(−ξ · pn) , (166)

Wn(ξ) = P exp

[
−ig

∫ −∞

0

dλn · A(ξ + λn)

]
, (167)
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along the light-cone direction nµ, as shown in Fig. 11.The W⊥ is a transverse gauge-link at

light-cone infinity to maintain gauge-invariance.. If one uses LFQ and ignores the transverse

gauge-link, the above distribution is just 〈P |b†(x,~k⊥)b(x,~k⊥)|P 〉 for x > 0, as expected.

[FIG. 9 about here.]

However, there are a number of qualifications in the above definition. First, the light-like

gauge-linksWn are chosen to be past-pointing in accordance with the DY kinematics, but for

SIDIS they should be chosen as future-pointing, as shown in Fig. 11. For unpolarized TMD-

PDFs there is no distinction between the two choices, but for spin-dependent TMDPDFs

there are physical consequences associated with the direction of gauge-links.

Second, there exists a new type of divergence associated with the infinitely-long light-

like gauge-links. These divergences are due to radiation of gluons collinear to the light-like

gauge-link and cannot be regularized by the standard UV regulators. An example is the

following integral in dimensional regularization (DR) (Ebert et al., 2019b),

I =

∫
dk+dk−

f(k+k−)

(k+k−)1+ǫ
=

1

2

∫
dy

y

∫
dm2f(m

2)

m2+2ǫ
, (168)

where m2 = k+k− and y = k+/k− is the rapidity-related variable. The divergences in y arise

from large and small y where the integral is unregulated. The contribution from k+ = 0 is

called the light-zero mode in LFQ, where it is also called light-cone divergence which causes

considerable problems.

To regulate the light-cone or rapidity divergences, a number of methods have been in-

troduced in the literature (for a review see (Ebert et al., 2019b)). They can be put into

two classes: on-light-cone regulators and off-light-cone regulators. In the former case, the

gauge-links are kept along the light-cone direction nµ after regularization. For example, the

so-called δ regulator (Echevarria et al., 2016a,b) regularizes the gauge-link as:

Wn(ξ)→Wn(ξ)|δ−

= Pexp
[
−ig

∫ −∞

0

dλA+(ξ + λn)e
− δ−

2p+
|λ|
]
, (169)

and similarly for the conjugate direction. The δ regulator breaks gauge-invariance, but

preserves the boost invariance δ± → e±Y δ± where Y is the rapidity of the Lorentz boost.

79



Other on-light-cone regulators include the exponential regulator (Li et al., 2016), η regu-

lator (Chiu et al., 2012), analytical regulator (Becher and Neubert, 2011), etc. In the re-

mainder of this section, we will use the δ regulator as a representative whenever we need an

on-light-cone regulator.

The off-light-cone regulator was introduced in (Collins, 2011a; Collins and Soper, 1981;

Ji et al., 2004, 2005), and also used in (Ji et al., 2005). This type of regulator chooses

off-light-cone directions to avoid the rapidity divergence. One can choose, for instance, to

deform the gauge-links into the space-like region:

n→ nY = n− e−2Y p

(p+)2
. (170)

Here Y plays the role of a rapidity regulator, as when Y → ∞, nY → n. In certain cases

one can also deform nY into time-like region (Collins and Metz, 2004).

The on-light-cone regulators are consistent with the spirit of parton physics, and therefore

are useful to define COM-momentum-independent parton densities. The off-light-cone reg-

ulators, on the other hand, follow a similar spirit as LaMET, and therefore can be exploited

for practical lattice QCD calculations, as we shall see in the next subsection.

To avoid light-cone divergences, from now on we include the rapidity regulator in the

definition of the light-cone TMDPDFs. Using the same label f for the TMDPDFs in both

momentum and coordinate spaces, we have

f(λ, b⊥, µ, δ
−/P+) (171)

= 〈P |ψ̄(λn/2 +~b⊥)/nWn(λn/2 +~b⊥)|δ−ψ(−λn/2)|P 〉 ,

where µ is the MS scale for UV renormalization. Due to rotational invariance, the bare

TMDPDF defined above is a function of b⊥ = |~b⊥|, so we have omitted the vector arrow for

~b⊥ in f and will do so throughout the discussion for the soft functions, quasi-TMDPDFs,

etc. The subscript δ− denotes that the staple-shaped gauge-link W is regulated by the δ

regulator in the light-cone minus direction. f diverges logarithmically as δ− → 0, and the

finite part also depends on the rapidity regulator. To define the physical TMDPDF, we need

to remove all divergences and rapidity regularization scheme dependencies in f , in a way

similar to removing UV divergences in physical quantities.

[FIG. 10 about here.]
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The rapidity divergence for TMDPDFs can be removed by the soft function, which also

plays an important role in TMD factorization. Intuitively, the soft function represents a cross

section for fast-moving charged particles emitting soft gluons into final states. It has rapidity

divergence associated with the light-cone direction, which is ultimately related to the mass

singularity. The TMD soft function corresponding to Drell-Yan process is defined (Collins,

2011b; Echevarria et al., 2016b) as

S(b⊥, µ, δ
+, δ−)

=
Tr〈0|T̄Wp(~b⊥)|δ+W †

n(
~b⊥)|δ−TWn(0)|δ−W †

p (0)|δ+ |0〉
Nc

=
tr〈0|Wn(~b⊥)|δ+W†

p(
~b⊥)|δ−|0〉

Nc

, (172)

where T /T̄ stands for time/anti-time ordering. The first equality defines the soft function

in terms of cut-diagrams as an amplitude square. Since the soft function for DY process

is independent of time ordering, one can also define it with a single time ordering or no

time ordering, leading to the second equality. The staple-shaped gauge-link Wn is defined

in Eq. (166), while the staple-shaped gauge-link Wp is defined similarly as:

Wp(ξ) = W †
p (ξ)W⊥Wp(0) , (173)

Wp(ξ) = Pexp
[
−ig

∫ −∞

0

dλp · A(ξ + pλ)

]
. (174)

The soft function is shown in Fig. 12 as a Wilson loop in Minkowski space.

If the rapidity divergences are multiplicative, one can use S as the rapidity renormal-

ization factor for the TMDPDF defined in Eq. (165). In on-light-cone schemes such as

the δ regularization, it has been argued in (Vladimirov, 2018) based on conformal trans-

formation that the rapidity divergences are indeed multiplicative in position space. For

each of the staple-shaped light-like gauge-links, the rapidity divergence is proportional

to exp [−(1/2)K(b⊥, µ) ln (µ
2/2(δ±)2)] where K(b⊥, µ) is the nonperturbative Collins-Soper

evolution kernel (Collins and Soper, 1981). Thus at small δ±, we can write

S(b⊥, µ, δ
+, δ−) = eln

µ2

2δ+δ−
K(b⊥,µ)+D2(b⊥,µ) , (175)

where D2(b⊥, µ) is a b⊥-dependent but rapidity-independent function. Notice that our def-

initions of δ± differ from those in Ref. (Echevarria et al., 2016b) by a factor of
√
2 due to

our normalization of light-cone vectors.
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The soft-function in δ regularization satisfies the renormalization group equation

µ2 d

dµ2
lnS(b⊥, µ, δ

+, δ−)

= −Γcusp(αs) ln
µ2

2δ+δ−
+ γs(αs) , (176)

where Γcusp(αs) is the light-like cusp anomalous dimension (Korchemsky and Radyushkin,

1987; Polyakov, 1980) and the γs(αs) is the soft anomalous dimen-

sion (Korchemskaya and Korchemsky, 1992). The Collins-Soper kernel and the rapidity-

independent part D2 satisfy the RGEs:

µ2 d

dµ2
K(b⊥, µ) = −Γcusp(αs) , (177)

µ2 d

dµ2
D2(b⊥, µ) = γs(αs)−K(b⊥, µ) . (178)

At one-loop, the soft function S(b⊥, µ, δ
+, δ−) is given by (Echevarría et al., 2013) :

S(b⊥, µ, δ
+, δ−)

= 1 +
αsCF
2π

(
L2
b − 2Lb ln

µ2

2δ+δ−
+
π2

6

)
, (179)

where Lb = ln (µ2b2⊥e
2γE/4). Therefore, we have at the leading order,

K(b⊥, µ) = −
αsCF
π

Lb , (180)

D2(b⊥, µ) =
αsCF
2π

(
L2
b +

π2

6

)
, (181)

and Γcusp = αsCF/π+O(α2
s), γs = O(α2

s). It is worth pointing out thatK (Li and Zhu, 2017;

Vladimirov, 2017) and D2 (Li and Zhu, 2017) are known to 3-loop order in the exponential

regularization scheme.

With the above soft function, we can take its square root to perform rapidity renormaliza-

tion for the bare TMD correlator. The square root can be explained as follows: S contains

two staples, while f contains one, thus the rapidity divergences as well as scheme dependen-

cies in S are twice as those in f . This leads to the following definition of the renormalized

physical TMDPDF (Collins and Rogers, 2013; Echevarría et al., 2013):

fTMD(x, b⊥, µ, ζ) = lim
δ−→0

f(x, b⊥, µ, δ
−/P+)√

S(b⊥, µ, δ−e2yn , δ−)
, (182)
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where the rapidity scale reads

ζ = 2(xP+)2e2yn . (183)

The rapidity dependence in the numerator of the right-hand side of Eq. (182) has the form

exp[−1
2
K(b⊥, µ) ln

(δ−)2

(xP+)2
], while in the denominator it behaves as exp[1

2
K(b⊥, µ) ln

µ2

2(δ−)2e2yn
].

The δ− dependence thus cancels out in the ratio, leaving a dependence on the rapidity scale

as exp[−1
2
K(b⊥, µ) ln

µ2

2(xP+)2e2yn
], which is controlled by the so-called Collins-Soper evolution

equation:

2ζ
d

dζ
ln fTMD(x, b⊥, µ, ζ) = K(b⊥, µ) . (184)

The ζ-dependence comes from the initial-state quark radiation and is intrinsically nonper-

turbative for large b⊥. fTMD(x, b⊥, µ, ζ) is the standard object to be matched to in LaMET.

We should emphasize that although fTMD is free from rapidity divergences, it does contain

soft radiation from the charged particles in the initial state. This can be seen clearly by

considering Feynman diagrams for the unsubtracted f and applying soft approximation to

gluons. “One-half” of the soft contribution in f is subtracted to define the physical fTMD

due to the requirement of factorization of physical processes. The remaining soft radiation

also has a natural rapidity cut-off associated with ln(xP+), reflected in the ζ-dependence.

What is remarkable, however, is that fTMD is rapidity-regulator independent. Although a

general proof to all orders in perturbation theory is beyond the scope of this review, it is due

to factorization and exponentiation of the soft physics in f and thus the scheme cancellation

can be done systematically in the exponent. It worth mentioning that in old-fashioned or

SCET-like approaches, one can define the “subtracted” TMDPDF or “beams functions” that

contains only collinear physics. However, they are generically scheme dependent and must

be combined with an extra soft functions in factorization theorems. At one-loop level, the

scheme-independent one-loop TMDPDF for an external quark state reads,

fTMD(x, b⊥, µ, ζ) = δ(1− x)

+
αsCF
2π

F (x, ǫIR, b⊥, µ)θ(x)θ(1− x) +
αsCF
2π

δ(1− x)

×
[
−1
2
L2
b +

(
3

2
− ln

ζ

µ2

)
Lb +

1

2
− π2

12

]
, (185)

where

F (x, ǫIR, b⊥, µ) =

[
−
(

1

ǫIR
+ Lb

)
1 + x2

1− x + 1− x
]

+

. (186)
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Two-loop order results for the TMDPDFs can be found in (Catani and Grazzini, 2012;

Catani et al., 2012; Echevarria et al., 2016c; Gehrmann et al., 2014; Luo et al., 2019;

Lübbert et al., 2016) and three-loop order results can be found in (Luo et al., 2020).

The physical TMDPDF also satisfies the RG equation,

γµ(µ, ζ) = µ2 d

dµ2
ln fTMD(x, b⊥, µ, ζ)

≡ 1

2
Γcusp(αs) ln

µ2

ζ
− γH(αs) , (187)

where γH is called the hard anomalous dimension. At one-loop, the cusp and hard anomalous

dimensions read

Γcusp(αs) =
αsCF
π

; γH(αs) = −
3αsCF
4π

. (188)

Recently the cusp anomalous dimension have been calculated to 4-loops (Henn et al., 2019;

von Manteuffel et al., 2020).

Combining the RGE and the rapidity evolution equation for the TMDPDF, one obtains

the consistency condition :

µ2 d

dµ2
K(b⊥, µ) = −2ζ

d

dζ
γµ(µ, ζ) = −Γcusp(αs(µ)) , (189)

from which one finds a resummed form for the Collins-Soper kernel:

K(b⊥, µ) = −2
∫ µ

1/b⊥

dµ′

µ′ Γcusp(αs(µ
′)) +K(αs(1/b⊥)) . (190)

Here K(αs(1/b⊥)) contains both perturbative and non-perturbative contributions. The

TMDPDFs at different scales are then related by

fTMD(x, b⊥, µ, ζ) = fTMD(x, b⊥, µ0, ζ0) (191)

× exp

[∫ µ

µ0

dµ′

µ′ γµ(µ
′, ζ0)

]
exp

[
1

2
K(b⊥, µ) ln

ζ

ζ0

]
.

The double-scale evolution in the µ− ζ plane for phenomenology has been recently studied

in (Scimemi and Vladimirov, 2018b). With the scheme-independent physical TMDPDF

defined above, the DY cross section at s = (PA + PB)
2 and small Q⊥ can be factorized as

dσ

dQ2
⊥
=

∫
dxAdxBd

2b⊥e
i~b⊥· ~Q⊥σ̂(xAxBs, µ)

× fTMD
A (xA, b⊥, µ, ζA)f

TMD
B (xB, b⊥, µ, ζB) + ... . (192)
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The rapidity scales satisfy ζAζB = Q4 ≡ (xAxBs)
2. The remaining term at large but finite Q2

are called power corrections or “higher-twist” contributions. A detailed study of the power

corrections to TMD factorization is beyond the scope of this review. Without mention we

will omit all the power-corrections in equations. The QCD part of the hard cross section σ̂

at one-loop level reads

σ̂(xA, xB) =

∣∣∣∣1 +
αsCF
4π

(
−L2

Q + 3LQ − 8 +
π2

6

)∣∣∣∣
2

, (193)

where LQ = ln −Q2−i0
µ2

, and the result is now known up to three loops (see (Baikov et al.,

2009; Gehrmann et al., 2010; Lee et al., 2010; Moch et al., 2005) and the references therein).

Similarly for the SIDIS process we have

dσ

dQ2
⊥
=

∫
dxdzd2b⊥e

i~b⊥· ~Q⊥H(x, z, µ,Q)

× fTMD(x, b⊥, µ, ζA)d
TMD(z, b⊥, µ, ζB) , (194)

where dTMD(z, b⊥, µ, ζB) is the TMD fragmentation function and H is the hard kernel.

B. Lattice Quasi-TMDPDFs and Matching

Before LaMET, there had been efforts to access TMD physics from lattice QCD by cal-

culating the ratios of the x-moments of TMDPDFs (Engelhardt et al., 2016; Hagler et al.,

2009; Musch et al., 2012, 2011; Yoon et al., 2017), which are free from complications asso-

ciated with the soft function and can be compared to certain experimental observables. In

LaMET, we are more interested in obtaining the full x and ~k⊥ dependence of the TMD-

PDFs (Ebert et al., 2019a,b; Ji et al., 2019a,b, 2020a, 2015b). Therefore, a proper treatment

of the soft function subtraction and matching is essential. The earliest suggestion of a bent

soft function in (Ji et al., 2015b) and the follow-up work (Ebert et al., 2019b) has the cor-

rect IR logarithms at one-loop order, but this is expected to break down at higher-loop

orders (Ji et al., 2020a), thus not allowing for a perturbative matching. Another suggestion

which uses a naive rectangle-shaped Wilson loop (Ebert et al., 2019b; Ji et al., 2019a) does

not possess the correct IR physics, either. Nevertheless, in (Ebert et al., 2019a) important

progress was made for calculating the nonperturbative Collins-Soper kernel K(b⊥, µ) from

the ratio of quasi-TMDPDFs at two different large momenta. Recently, some of the au-

thors showed (Ji et al., 2019b, 2020a) that the quasi-TMDPDF combined with a reduced
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soft function capture the correct IR physics to all-orders and thus allow for a perturbative

matching to the physical TMDPDF.

To construct such quasi-TMDPDFs, the collinear part can be treated in a way similar to

the collinear PDFs, while the soft piece is more challenging. Our starting point is that the

physical fTMD is independent of the rapidity regulator, so one can use a scheme in which the

gauge-links in both f and S are off the light-cone, such as that used in (Collins, 2011a). In

this case, one can use Lorentz symmetry to boost the staple-shaped gauge-linkWn in f to a

purely space-like staple with no time dependence. However, one can only use this trick for

one of the staples in S, say Wn, whereas the other one Wp is still time-dependent. In other

words, there is no way to get rid of the time dependence in S entirely with Lorentz boost

alone. This is natural because S in fact represents the square of an S-matrix, which appears

to be intrinsically Minkowskian. However, using the LaMET principle that time dependence

of an operator can be simulated through external physical states at large momentum, we

find that S can indeed be calculated on the lattice in the off-light-cone scheme as a form

factor. A detailed discussion will be given in the next subsection. Here we assume that this

is true, and discuss the matching between quasi- and physical TMDPDFs.

First, we define the quasi-TMDPDF with a staple–shaped gauge-link along the z direc-

tion (Ebert et al., 2019b; Ji et al., 2019a,b, 2015b) as

f̃(λ, b⊥, µ, ζz) (195)

= lim
L→∞

〈P |ψ̄
(
λnz

2
+~b⊥

)
γzWz(

λnz

2
+~b⊥;L)ψ

(
− λnz

2

)
|P 〉√

ZE(2L, b⊥, µ)
,

where the MS renormalization is implied, and

Wz(ξ;L) = W †
z (ξ;L)W⊥Wz(−ξznz;L) , (196)

Wz(ξ;L) = Pexp
[
− ig

∫ L

ξz
dλnz · A(~ξ⊥+nzλ)

]
. (197)

Here ξz = −ξ · nz and ζz = (2xP z)2 is the Collins-Soper scale of the quasi-TMDPDF. W⊥

is inserted at z = L to maintain explicit gauge invariance.
√
ZE(2L, b⊥, µ, 0) is the square

root of the vacuum expectation value of a flat rectangular Euclidean Wilson-loop along the

nz direction with length 2L and width b⊥:

ZE(2L, b⊥, µ) =
1

Nc
Tr〈0|W⊥Wz(~b⊥; 2L)|0〉 . (198)
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Again, γz can be replaced by γt as in the collinear quasi-PDF. For a depiction of f̃ and ZE

see Fig. 13.

The purpose of the factor ZE is as follows. At large L, the naive quasi-TMD correlator

in the numerator of Eq. (195) contains divergences that go as e−LE(b⊥,µ) where E(b⊥) is the

ground state energy of a pair of static heavy-quarks. E(b⊥, µ) = 2δm + V (b⊥, µ) contains

both the linear divergent mass corrections 2δm and the heavy-quark potential V (b⊥, µ)

due to mutual interactions. In literature the LV (b⊥, µ) part was sometimes called the

“pinch pole singularity.” Therefore, we introduce the square root of a rectangular Wilson-

loop ZE(2L, b⊥, µ) with twice the length to cancel all these divergences and guarantee the

existence of the L→∞ limit after the subtraction. The introduction of
√
ZE also removes

additional contributions from the transverse gauge link. An alternative approach to avoid

the pinch-pole singularity was proposed in (Li, 2016). We should mention that although

the
√
ZE subtraction removes all the linear divergences, the logarithmic UV divergences

are still present. Therefore, a non-perturbative renormalization of f̃ on the lattice is still

required, which has been studied in the RI/MOM scheme (Shanahan et al., 2019), and its

matching to the MS scheme has been calculated at one-loop order (Constantinou et al.,

2019; Ebert et al., 2020b).

[FIG. 11 about here.]

The quasi-TMDPDFs defined above satisfy the following RGE (Collins and Soper, 1981;

Ji et al., 2019b, 2015b)

µ2 d

dµ2
ln f̃(x, b⊥, µ, ζz) = γF (αs(µ)) , (199)

where γF is the anomalous dimension for the heavy-to-light current in Sec. III.A. This is due

to the fact that the quasi-TMDPDF, after the self-energy subtraction, contains only log-

arithmic UV divergences associated with quark-Wilson-line vertices. In the MS scheme,

the one-loop quasi-TMDPDF in an external quark state with momentum (pz, 0, 0, pz)

reads (Ebert et al., 2019b; Ji et al., 2019a)

f̃(x, b⊥, µ, ζz) =

1 +
αsCF
2π

F (x, ǫIR, b⊥, µ)θ(x)θ(1− x) +
αsCF
2π

δ(1− x)

×
[
− 1

2
L2
b + Lb

(5
2
− Lz

)
− 3

2
− 1

2
L2
z + Lz

]
, (200)
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where Lz = ln(ζz/µ
2). As expected, the L dependence has been cancelled in the large L

limit.

As there is no light-like gauge-link in f̃ , no additional rapidity regulator is needed. In-

stead, there is an explicit dependence on the hadron momentum (or energy), which is similar

to the momentum RGE for collinear quasi-PDF. The momentum (rapidity) evolution equa-

tion for f̃ reads (Collins and Soper, 1981; Ji et al., 2019b, 2015b),

P z d

dP z
ln f̃(x, b⊥, µ, ζz)=K(b⊥, µ)+G

((P z)2

µ2

)
, (201)

where G(ζz/µ2) is perturbative and K(b⊥, µ) is the Collins-Soper kernel. A similar equation

was proven for off-light-cone TMD-fragmentation functions in (Collins and Soper, 1981).

From this equation, it is clear that a correct matching to fTMD(x, b⊥, µ, ζ) with arbitrary ζ

must include K(b⊥, µ) to compensate the P z dependence.

There is actually one more requirement for the matching: there is a rapidity scheme

dependence which must be removed, since the quasi-TMDPDF can be viewed as defined

with an off-light-cone regulator along the z direction. To understand this dependence,

let us consider f again in the off-light-cone regularization, where there are rapidity di-

vergences. The divergence is cancelled by the square root of an off-light-cone soft func-

tion SDY(b⊥, µ, Y, Y
′), with Y, Y ′ being the rapidities of the off-light-cone space-like vectors

p→ pY = p− e−2Y (p+)2n and n→ nY ′ = n− e−2Y ′

p/(p+)2. Schematically, we have:

SDY(b⊥, µ, Y, Y
′) =

tr〈0|WnY ′
(~b⊥)W†

pY
(~b⊥)|0〉

Nc

√
ZE
√
ZE

, (202)

where WnY ′
(~b⊥) and W†

pY
(~b⊥) are staple-shaped gauge-links in nY ′ , pY directions, respec-

tively.
√
ZE is introduced to subtract the pinch pole singularities for the off-light-cone

staple-shaped gauge-links. In terms of ln ρ2 = 2(Y + Y ′) sometimes we also write this soft

function as SDY(b⊥, µ, ρ). At large ρ, we have

SDY(b⊥, µ, Y, Y
′) = e(Y+Y ′)K(b⊥,µ)+D(b⊥,µ) + ... . (203)

We can perform a Lorentz boost ofWnY ′
(~b⊥)W†

pY
(~b⊥) in Eq. (202) such that one of the gauge-

links, say WnY ′
, is boosted to the equal-time version Wz in f̃ , whereas the other gauge-link

WnY
is boosted to WnY +Y ′

. The soft function becomes SDY(b⊥, µ, Y + Y ′, 0) which contains

light-cone divergence for the pY+Y ′ direction, but is still the same SDY(b⊥, µ, Y, Y
′) due to

boost invariance. The square-root of the finite part eD(b⊥,µ) is exactly what is needed to
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cancel the rapidity-scheme dependence. We define the rapidity-independent part as the

reduced soft function:

Sr(b⊥, µ) ≡ e−D(b⊥,µ) . (204)

Based on the renormalization property of non-light-like Wilson-loops, the reduced soft func-

tion satisfies the RG equation

µ2 d

dµ2
lnSr(b⊥, µ) = ΓS(αs) , (205)

where ΓS is the constant part of the cusp-anomalous dimension at large hyperbolic cusp

angle Y + Y ′ for the off-light-cone soft function:

µ2 d

dµ2
lnSDY(b⊥, µ, Y, Y

′)

= −(Y + Y ′)Γcusp(αs)− ΓS(αs) . (206)

At one-loop level (Ebert et al., 2019b),

S
(1)
DY(b⊥, µ, Y, Y

′) =
αsCF
2π

[
2− 2(Y + Y ′)

]
Lb , (207)

and Γ
(1)
S (αs) = αsCF/π. Based on RGE, at two-loop level D(b⊥, µ) can be predicted to be

D(2)(b⊥, µ) = c2 + Γ
(2)
S Lb −

α2
sβ0CF
2π

L2
b , (208)

where

Γ
(2)
S = −α

2
s

π2

[
CFCA

(
− 49

36
+
π2

12
− ζ3

2

)
+ CFNF

5

18

]

is the two-loop anomalous dimension for Sr which can be extracted from (Grozin et al.,

2016), β0 = −
(
11
3
CA − 4

3
NfTF

)
/(2π) is the coefficient of one-loop β-function, and c2 is a

constant to be determined by explicit calculation.

After taking into account the reduced soft function, we can now write down the match-

ing formula between the quasi-TMDPDF and the scheme-independent TMDPDF(Ji et al.,

2019b):

fTMD(x, b⊥, µ, ζ) (209)

= H

(
ζz
µ2

)
e− ln( ζz

ζ
)K(b⊥,µ)f̃(x, b⊥, µ, ζz)S

1

2
r (b⊥, µ) + ... ,
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where the power-corrections of order O
(
Λ2

QCD/ζz,M
2/(P z)2, 1/(b2⊥ζz)

)
. The above relation

except for the definition of Sr(b⊥, µ) was argued to hold in (Ebert et al., 2019b), where the

unknown function gSq in Eq. (5.3) should be identified as the reduced soft function here; it

has also been confirmed recently in (Vladimirov and Schäfer, 2020).

We now explain the individual factors of the formula.

1. The factorH(ζz/µ
2) is the perturbative matching kernel, which is a function of ζz/µ

2 =

(2xP z)2/µ2. The kernel is responsible for the large logarithms of P z generated by the

G(ζz/µ2) term of the momentum RG equation. Unlike the case of quasi-PDFs, the

momentum fractions of the quasi-TMDPDF and the TMDPDF are the same. This is

due to the fact that at leading power in 1/ζz expansion, the k⊥ integral is naturally cut

off by the transverse separation around k⊥ ∼ 1/b⊥ ≪ P z. Therefore, the momentum

fraction can only be modified by collinear modes for which there are no distinction

between x = kz/P z and x = k+/P+. In comparison, for the ~k⊥ integrated quasi-PDF,

the k⊥ ≥ P z region leads to non-trivial x dependence outside the physical region.

This is also consistent with the fact that the momentum evolution equation for quasi-

TMDPDF is local in x instead of being a convolution.

2. The factor exp
[
ln( ζz

ζ
)K(b⊥, µ)

]
is the part involving the Collins-Soper evolution ker-

nel. From the momentum evolution equation, it is clear that at large P z there are

logarithms of the form K(b⊥, µ) ln
ζz
µ2

with ζz being the natural Collins-Soper scale.

Therefore, to match to the TMDPDF at arbitrary ζ , a factor exp
[
ln( ζz

ζ
)K(b⊥, µ)

]

is required to compensate the difference. An important implication of this property

is that one can obtain the Collins-Soper kernel K(b⊥, µ) by constructing the ratio of

quasi-TMDPDFs at two different momenta or ζz’s (Ebert et al., 2019a),

f̃(x, b⊥, µ, ζz,1)

f̃(x, b⊥, µ, ζz,2)
=
H
(
ζz,2
µ2

)

H
(
ζz,1
µ2

)
(
ζz,1
ζz,2

)K(b⊥,µ)

. (210)

Thus given the f̃ ’s at the two rapidity scales, the Collins-Soper kernel K(b⊥) can be

obtained.

Combining the RGEs of the quasi-TMDPDF f̃ , reduced soft function Sr and physical
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TMDPDF fTMD, we obtain the RGE of the matching kernel H
(
ζz
µ2

)
(Ji et al., 2019b),

µ2 d

dµ2
lnH−1

(
ζz
µ2

)
=

1

2
Γcusp(αs) ln

ζz
µ2

+
γC(αs)

2
, (211)

where γC(αs) = 2γF (αs) + ΓS(αs) + 2γH(αs). The matching kernel is closely related to the

perturbative part of the rapidity evolution kernel G
(
ζz
µ2

)
through

2ζz
d

dζz
lnH−1

(
ζz
µ2

)
= G

(
ζz
µ2

)
. (212)

Again, we can see that the anomalous dimension of G
(
ζz
µ2

)
is Γcusp(αs).

It is convenient to write H in the exponential form, H = e−h. Collecting all the above

results, one obtains at one-loop level (Ebert et al., 2019b; Ji et al., 2019a)

h(1)
(
ζz
µ2

)
=
αsCF
2π

(
−2 + π2

12
− L2

z

2
+ Lz

)
. (213)

Similar as before, the two loop contribution h(2) is predicted to be

h(2)
(
ζz
µ2

)
= c′2 −

1

2

(
γ
(2)
C − α2

sβ0c1

)
ln
ζz
µ2

(214)

− 1

4

(
Γ(2)
cusp −

α2
sβ0CF
2π

)
ln2 ζz

µ2
− α2

sβ0CF
24π

ln3 ζz
µ2

,

where c1 =
CF

2π

(
−2 + π2

12

)
and c′2 is again a constant to be determined in perturbation theory

at two-loop level.

Finally, we compare the current formulation with previous approaches to lattice TMD-

PDF. First, we comment on the developments in (Engelhardt et al., 2016; Hagler et al.,

2009; Musch et al., 2012, 2011; Yoon et al., 2017) in which the x-moments of TMDPDF are

extracted from ratio of quasi-TMDPDF. From Eq. (209), it is clear that both the match-

ing kernel H and the exponential factor of Collins-Soper kernel depends on x non-trivially.

Therefore, simply taking the ratio of moments for quasi-TMDPDF will not be sufficient

to reproduce the same ratio for TMDPDF, although the soft function does cancel. This

observation is also made recently in Ref. (Ebert et al., 2020a). Second, the quasi-TMDPDF

defined with the naive rectangle-shaped soft function, i.e. ZE , is f̃ in Eq. (195), so it is

obvious that it still needs the reduced soft function Sr to be matched to fTMD. As for the

other proposal in (Ebert et al., 2019b; Ji et al., 2015b), it replaces ZE in f̃ with Sbent which

is the vacuum matrix element of a spacelike bent-shaped Wilson loop with angle π/2 at
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each junction, and does not include the function S
1

2
r in Eq. (209). Although

√
Sbent/ZE

agrees with S
−1

2
r at one-loop order (Ebert et al., 2019b; Ji et al., 2019a), it is expected to be

different at higher orders. In fact, for the anomalous dimension Γπ
2

defined through

Γπ
2
(αs) ≡ µ2 d

dµ2
ln

(
Sbent(L, b⊥, µ)

ZE(2L, b⊥, µ)

)
, (215)

it starts to deviate from ΓS(αs) at two-loop order (Grozin et al., 2016), as

−ΓS(αs) =
αsCF
π

(216)

+
α2
s

π2

[
CFCA

(
−49
36

+
π2

12
− ζ3

2

)
+ CFNF

5

18

]
,

Γπ
2
(αs) =

αsCF
π

(217)

+
α2
s

π2

[
CFCA

(
−49
36

+
π2

24

)
+ CFNF

5

18

]
.

In the equation, ζ3 =
∑∞

n=1(1/n
3) 6= π2/12, therefore the two anomalous dimensions are

different. The differences in the anomalous dimension will result in different logarithmic

behaviors in b⊥, as the soft functions are dimensionless and depend on b⊥ and µ only. At

large b⊥, it will lead to different IR physics that cannot be controlled by perturbation theory.

Combining the reduced soft function and the quasi-TMDPDF, one can effectively factorize

the DY cross section,

σ =

∫
dxAdxBd

2b⊥e
i ~Q⊥·~b⊥σ̂(xA, xB, Q

2, µ)

× f̃(xA, b⊥, µ, ζA)f̃(xB, b⊥, µ, ζB)Sr(b⊥, µ) . (218)

where all non-perturbative quantities do not involve the light cone, and can be calculated

on lattice.

Spin-dependent TMDPDFs are also physically important. They can be computed using

LaMET theory (Ebert et al., 2020a). Again one can define quasi distributions just like the

spin-independent ones. For a general proton target |PS〉 and the general spin structure Γ

of the parton, the parent TMDPDF can be defined as :

fTMD
[Γ] (x,~k⊥, µ, ζ) =

1

2P+

∫
dλ

2π

∫
d2~b⊥
(2π)2

e−iλx+i
~k⊥·~b⊥

× lim
δ−→0

〈PS|ψ̄(λn+~b⊥)ΓWn(λn+~b⊥)|δ−ψ(0)|PS〉√
S(b⊥, µ, δ−e2yn , δ−)

, (219)
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where the ζ = 2(P+)2e2yn is the rapidity scale, see Sec. V for more detail of the soft func-

tion subtraction. The individual spin-dependent TMD distributions can then be obtained

through Lorentz decompositions (Mulders and Tangerman, 1996; Ralston and Soper, 1979;

Tangerman and Mulders, 1995):

fTMD
[γ+] = f1 −

ǫijkiSj⊥
M

f⊥
1T , (220)

fTMD
[γ+γ5]

= S+g1 +
~k⊥ · ~S⊥
M

g1T , (221)

fTMD
[iσi+γ5]

= Si⊥h1 +
(2kikj − ~k2⊥δij)Sj⊥

2M2
h⊥1T

+
S+ki

M
h⊥1L +

ǫijkj

M
h⊥1 , (222)

where we suppress the arguments (x,~k⊥, µ, ζ) in all distributions; f1, g1, and h1 are unpolar-

ized, helicity and transversity TMDPDFs, respectively; the indices i and j are in transverse

space of ~k⊥; S+ and Si⊥ are longitudinal and transverse spin components.

Note that the Sivers function f⊥
1T (Sivers, 1990) and the Boer-Mulders function

h⊥1 (Boer and Mulders, 1998) are T -odd. The orientation of the gauge-link have important

effects on these two functions (Collins, 2011a, 2002), such that they change sign between the

DY and SIDIS processes. In the light-cone gauge, these contributions arise from the transver-

sal gauge-link at infinities (Belitsky et al., 2003). They are related to the phenomenologically

interesting single transverse-spin asymmetry (Boer and Mulders, 1998; Collins et al., 2005,

2006; Efremov et al., 2005).

C. Off-light-cone Soft Function

In previous subsections, the soft function has been introduced to define rapidity-scheme-

independent TMDPDFs. The major motivation of introducing the soft function is to cap-

ture nonperturbative effects due to soft-gluon radiations from fast moving color-charges.

For many inclusive processes the soft radiations cancel in the total cross section, but for

certain processes where a small transverse momentum is measured, such cancellation can

be incomplete and result in measurable consequences. In such cases, the TMD soft func-

tion is introduced to account for the soft-gluon effects and appears in factorization theo-

rems for the Drell-Yan (DY) process (Collins et al., 1985b, 1988) and semi-inclusive DIS

(SIDIS) (Ji et al., 2004, 2005).
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To calculate the TMD physics nonperturbatively, formulating a Euclidean version of the

soft function is critical. Since the soft function in fact is a cross section and hence real and

positive, it satisfies the necessary condition for a Monte Carlo simulation. In this subsection,

we present an approach to calculate it in heavy-quark effective theory (HQET) (Ji et al.,

2020a). There is also another method proposed to extract the reduced soft function Sr from

a light-meson form factor (Ji et al., 2020a), where many subtleties of HQET can be avoided.

The first lattice calculation of the reduced soft function based on the light-meson formalism

has been performed in the recent work (Zhang et al., 2020a).

Due to the different space-time pictures of the DY and SIDIS processes, the soft functions

for the two processes also differ from each other as shown in Fig. 12. To define the soft

function, one also needs to specify a time-ordering prescription. Since it is a cross section, it

involves a time order and an anti-time order (or cut diagrams). However, in the light-cone

limit, the time order does not matter. What really matters is the rapidity regularization

scheme. It has been proven for the δ regulator in (Vladimirov, 2018) that the time ordering

is not quite relevant up to overall phase factors, and the soft functions for the two processes

are equal. The method therein can be modified to apply to the off-light-cone scheme too.

Therefore, our first step is to convert the cut-diagrams into Feynman diagrams by imposing

just the single time order. In this way, the soft function can be viewed as a scattering

amplitude.

In the off-light-cone scheme, there are further complications caused by the space-like or

time-like choices for off-light-cone vectors. Fortunately, one can show that in the light-cone

limit, the space-like and time-like choices are equivalent up to overall phase factors (Ji et al.,

in preparation). Thus we will use the notation S(b⊥, µ, Y, Y
′) to denote a generic off-light-

cone soft function that satisfies our demands.

With these in mind, we show that the off-light-cone soft function S(b⊥, µ, Y, Y
′) is equiv-

alent to an equal-time form factor of fast-moving color sources and can be formulated on

the Euclidean lattice. From the matching formula Eq. (209) in the last subsection, once the

off-light-cone soft function is known, we can combine it with the lattice calculated quasi-

TMDPDF to obtain the physical TMDPDF. Therefore, the cross section of DY processes in

the low transverse-momentum region (Collins et al., 1985b) becomes predictable from first

principles (Ji et al., 2020a).
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To begin with, we define the scattering amplitude of a Wilson loop as shown in Fig. 14:

W (t, t′, b⊥, Y, Y
′)

=
1

Nc
Tr 〈0|T

[
W†

v′(
~b⊥, t

′)Wv(~b⊥, t)
]
|0〉 (223)

where |0〉 is the QCD vacuum state and Nc is number of colors and Tr is the color-trace.

Timelike four-vectors vµ = γ(1, β,~0⊥) and v′µ = γ′(1,−β ′,~0⊥) approach the lightcone as β

and β ′ → 1. The rapidity Y and the speed β are related through β = tanhY , in terms

of the light-cone vectors p and n, the velocities read v = eY√
2

(
p
p+

+ e−2Y p+n
)

and v′ =

eY√
2

(
e−2Y p

p+
+ p+n

)
. The Wv(~b⊥, t) is a staple-shaped gauge-link along v direction similar

to those defined in Eqs. (173) and (196). t and t′ are the lengths of the t-components of

the staples. The single time-order prescription for S allows physical interpretation as a

chronological process.

[FIG. 12 about here.]

Similar to the quasi-TMDPDF, the Wilson-loop in Eq. (223) contains pinch-pole singularities

associated to time evolution of initial and final states at large t and t′. Therefore, we need

to subtract them out in Eq. (223) with rectangular Wilson-loops (Collins, 2008; Ji et al.,

2019a). This leads to an off-light-cone realization of the soft function:

S(b⊥, µ, Y, Y
′)

= lim
t→∞
t′→∞

W (t, t′, b⊥, µ, Y, Y
′)√

Z(2t, b⊥, µ, Y )Z(2t′, b⊥, µ, Y ′)
, (224)

where Z(2t, b⊥, Y ) is the vacuum expectation value of rectangular Wilson loop which is

similar to W by setting v′ = v and t′ = t, i.e. Z(2t, b⊥, Y ) = W (t, t, b⊥, Y,−Y ). The factor

Z has a clear physical interpretation: It can be viewed as the wave function renormalization

for incoming or outgoing color sources. After the subtraction through Z, the only remaining

UV divergences for S(b⊥, µ, Y, Y
′) are the cusp divergences with hyperbolic angle Y + Y ′.

We should mention that a more common definition of the soft function SDY(b⊥, µ, Y, Y
′)

for the DY process was proposed in (Collins, 2011a,b). The space-like vectors uµ =

γ(β, 1, 0, 0) and u′µ = γ′(−β ′, 1, 0, 0) were chosen instead of time-like v and v′ to define

the soft function for the DY process. This soft function has already been defined in the last

subsection in Eq. (202). u and u′ are equal to pY , nY ′ up to overall normalization factors.
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While S and SDY are defined differently, we can show that

S(b⊥, µ, Y, Y
′) = SDY(b⊥, µ, Y, Y

′) (225)

using analyticity property (Ji et al., in preparation). Here we focus on S in Eq. (224), which

has a simple Euclidean realization.

After defining the soft function S, we now show that it is equal to a form factor. In HQET,

the propagator of a color source is equivalent to a gauge-link along its moving direction. Thus

W (t, t′, b⊥, µ, Y, Y
′) can be expressed by fields in HQET with the Lagrangian

LHQET = Q†
v(x)(iv ·D)Qv(x) + Q̄†

v(x)(iv ·D)Q̄v(x) , (226)

where Qv and Q̄v are quark and anti-quark in the fundamental and anti-fundamental repre-

sentations, respectively; vµ = γ(1, β,~0⊥) is the four velocity; D is the covariant derivative.

Note that quarks in HQET can be viewed as color sources. If the gluon soft function is

considered, the heavy quarks should be in the adjoint representation.

In HQET, a color-singlet heavy-quark pair separated by ~b generates a heavy quark po-

tential V (|~b|) in the ground state, and the spectrum includes a gapped continuum above it.

The state can also have a residual momentum δ ~P , which is arbitrary due to reparameteriza-

tion invariance (Luke and Manohar, 1992; Manohar and Wise, 2000), and for simplicity we

always consider δ ~P = 0. When the sources move with a velocity v, the ground state can be

labeled by |QQ,~b, δ ~P 〉v, where the residue momentum δ ~P = ~Ptotal−2mQγ~β is the difference

between the total momentum ~Ptotal and the kinetic momentum of the heavy-quarks. The

residual energy of the state is E = γ−1V (|~b⊥|) + ~β · δ ~P .

Consider a process with incoming and outgoing states being heavy-quark pairs separated

by ~b⊥ and at velocity v and v′, respectively. Such a state is created by the interpolating

fields

Ov(t,~b⊥) =
∫
d3~r Q†

v(t, ~r )U(~r, ~r ′, t)Q̄†
v(t, ~r

′) , (227)

where ~r ′ = ~r +~b⊥ and U(~r, ~r ′, t) is a gauge-link connecting ~r ′ to ~r at time t. The heavy-

quark pair created by Ov is forced to be at relative separation ~b⊥ and to have vanishing

residual momentum δ ~P = 0. Between the incoming and outgoing states, a product of two

local equal-time operators

J(v, v′,~b⊥) = Q̄†
v′(
~b⊥)Q̄v(~b⊥)Q

†
v′(0)Qv(0) (228)
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is inserted at t = 0. Then W can be expressed in terms of HQET propagators which are

gauge-links in the v, v′ directions. After integrating out the heavy-quark fields, we obtain

up to an overall volume factor (Ji et al., 2020a)

W (t, t′, b⊥, µ, Y, Y
′) (229)

=
1

Nc
〈0|O†

v′(t
′,~b⊥)J(v, v

′,~b⊥)Ov(−t,~b⊥)|0〉

−−−→
t→∞
t′→∞

1

Nc
Φ†(b⊥, µ)S(b⊥, µ, Y, Y

′)Φ(b⊥, µ)e
−iE′t′−iEt ,

where

Φ(b⊥, µ) = lim
T→∞ v〈QQ,~b⊥|Ov(T,~b⊥)|0〉 , (230)

S(b⊥, µ, Y, Y
′) = v′〈QQ,~b⊥|J(v, v′,~b⊥)|QQ,~b⊥〉v .

In the last line of Eq. (229), we have inserted a complete set of heavy-quark pair states

before and after J . At large t and t′, the contribution from the continuum spectrum is

damped out due to the Riemann-Lebesgue lemma (Zuazo, 2001), while the contribution

from |QQ,~b⊥, δ ~P = 0〉v with residual energy E = γ−1V (|~b⊥|) survives. As a result we

obtain Eqs. (229)—(230), where we have omitted the state label δ ~P = 0 for simplicity.

Alternatively, we can also give t and t′ a small negative imaginary part, which is consistent

with the time order, to damp out all states except |QQ,~b⊥〉v at large t and t′. Note that

Φ(~b⊥, µ) is independent of Y because it is boost invariant.

Similarly, Z can also be formulated in HQET as

Z(2t, b⊥, Y ) =
1

Nc
〈0|O†

v′(t,
~b⊥)Ov(−t,~b⊥)|0〉

−−−→
t→∞

1

Nc
Φ†(~b⊥, µ)Φ(~b⊥, µ)e

−2iEt , (231)

whose t-component has length 2t. The Y dependence of Z is implicit in the energy E.

Combining Eqs. (229) and (231), we obtain S defined in Eq. (224). We emphasize that

Eq. (224) can be seen as a LSZ reduction formula, in which we amputate the external

heavy-quark pair states |QQ,~b⊥〉v.
Being an equal-time observable, S(b⊥, µ, Y, Y

′) can be straightforwardly realized in Eu-
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clidean time as:

S(b⊥, µ, Y, Y
′) (232)

= lim
T→∞
T ′→∞

WE(T, T
′, b⊥, µ, Y, Y

′)√
ZE(2T, b⊥, µ, Y )ZE(2T ′, b⊥, µ, Y ′)

,

where the subscript E indicates the quantity is defined in Euclidean time, with correspond-

ing variables T and T ′. Due to boost invariance, the factor ZE(T, b⊥, µ, Y ) relates to the

rectangular Wilson-loop defined in Eq. (198) along the nz direction through the relation

ZE(2T, b⊥, µ, Y ) = ZE(2γ
−1T, b⊥, 0). The relevant matrix elements are now calculated by

a lattice version of HQET with the Lagrangian (Aglietti, 1994; Hashimoto and Matsufuru,

1996; Horgan et al., 2009)

LEHQET (233)

= Q†
v(x)(iṽ ·DE)Qv(x) + Q̄†

v(x)(iṽ ·DE)Q̄v(x) ,

where the subscript E denotes the Euclidean space, iṽ · DE = γ(Dτ − iβ)Dz with ṽµ =

γ(−i,−β,~0⊥). We have explicitly verified Eq. (232) in Euclidean perturbation theory to the

one-loop order.

The soft function cannot be calculated on the lattice by simply replacing the Minkowskian

gauge-links in Eq. (223) with a finite number of Euclidean gauge-links. Through HQET, we

find a time-independent formulation of the soft function, which opens up the possibility of

direct lattice calculations.

D. Light-Front Wave-Function Amplitudes And Soft Function from Meson Form

Factor

Light-front quantization (LFQ) or formalism is a natural language for parton physics

in which partons are made manifest at all stages of calculations. It favors a Hamiltonian

approach to QCD like for a non-relativistic quantum mechanical system, i.e., to diagonalize

the Hamiltonian

P̂−|Ψn〉 =
M2

n + ~P 2
⊥

2P+
|Ψn〉 , (234)

to obtain wave functions for the QCD bound states (Brodsky et al., 1998). The light-

front wave functions (LFWFs) thus obtained can, in principle, be used to calculate all the
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partonic densities and correlations functions. Moreover, like in condensed matter systems,

knowing quantum many-body wave-functions allows one to understand interesting aspects

of quantum coherence and entanglement, as well as the fundamental nature of quantum

systems. Therefore, a practical realization of light-front quantization program clearly would

be a big step forward in understanding the fundamental structure of the proton.

However, from a field theory point of view, wave functions are not the most natural

objects to consider due to the non-trivial vacuum, UV divergences as well as the requirement

of Lorentz symmetry, according to which the space and time should be treated on equal

footing. The proton or other hadrons are excitations of the QCD vacuum which by itself

is very complicated because of the well-known phenomena of chiral symmetry breaking and

color confinement. To build a proton on top of this vacuum, one naturally has a question

of what part of the wave-function reflects the property of the proton and what reflects the

vacuum: It is the difference that yields the properties of the proton that are experimentally

measurable. There is no clean way to make this separation unless one builds the proton out

of elementary excitations or quasi-particles that do not exist in the vacuum, as often done

in condensed matter systems.

The partons in the IMF avoids the above problems to a certain extent. In fact, due to

the kinematic effects, in the IMF all partons in the vacuum have longitudinal momentum

k+ = 0, and to some degree of accuracy, the proton is made of partons with k+ 6= 0. This

natural separation of degrees of freedom (DOF) is particularly welcome, making a wave-

function description of the proton more natural and interesting in IMF than in any other

frame.

To implement the above DOF separation, one possibility is to assume triviality of the

light-front vacuum. The question that to what extent this holds has been continuously

debated over the years. One knows a priori that in relativistic QFT, the vacuum state is

boost invariant and frame-independent. In fact, it was proven in (Nakanishi and Yabuki,

1977; Nakanishi and Yamawaki, 1977) that not only the vacuum can not be trivial, even

the Green’s functions of the full theory cannot pose generic meaningful restrictions to the

null-planes ξ+ = c. In fact, the vacuum zero modes do contain non-trivial dynamics and

contribute to the properties of the proton (Ji, 2020). Nevertheless, one can adopt an ef-

fective theory point of view to simply cut off the zero-modes and relegate their physics to

renormalization constants. In some simple cases, these zero-modes can be treated explic-
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itly (Heinzl et al., 1991; Yamawaki, 1998).

By imposing an IR cut-off on the k+ ≥ ǫ in the effective Hilbert space, all physics below

k+ = ǫ are taken into account through renormalization constants. We then obtain an

effective LF theory with trivial vacuum,

akλ|0〉 = bpσ|0〉 = dpσ|0〉 = 0 . (235)

where |0〉 is the vacuum of LFQ. Therefore, the proton can be expanded in terms of the

superposition of Fock states in the LF gauge A+ = 0 (Brodsky et al., 1998),

|P 〉 =
∞∑

n=1

∫
dΓnψ

0
n(xi,

~ki⊥)
∏

a†i (xi,
~ki⊥)|0〉 . (236)

where a† are generic quarks and gluon quanta on the light-front, the phase-space integral

reads dΓn =
∏ dk+d2k⊥

2k+(2π)3
. The ψn(xi, ~ki⊥) are LFWF amplitudes or simply WF amplitudes,

where xi to denote the set of momentum fractions from x1 to xn. They are a complete set of

non-perturbative quantities which describe the partonic landscape of the proton. The above

amplitudes can in principle be calculated through Hamiltonian diagonalization. However,

as explained in Sec. II.A, a direct systematic solution in LFQ is impractical.

LaMET offers an alternate route to calculate these WF amplitudes. Thanks to the

triviality of the vacuum after the truncation k+ ≥ ǫ, they can then be written in terms of

the invariant matrix elements by inverting the above expansion,

ψ0
n(xi,

~ki⊥) = 〈0|
∏

ai(xi, ~ki⊥)|P 〉 . (237)

After properly restoring gauge-invariance and imposing regularizations, they become the

matrix elements of light-cone correlators, the same type as those in the TMDPDFs. There-

fore, the LaMET method applies to them, which allows one to effectively obtain the results

of light-front quantization through instant quantization in a large momentum frame.

To realize the goal, the LFWF amplitudes also need a rapidity renormalization, as in

the case of TMDPDFs. In this section, we explain how the reduced soft function Sr can be

obtained by combining the LFWF amplitudes and a special light-meson form factor, instead

of as the form factor in HQET discussed in the previous section. A lattice calculation based

on the light-meson framework has been performed in (Zhang et al., 2020a).
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Let us consider the following form factor of a pseudoscalar light-meson state with con-

stituents ψη,

F (b⊥, P, P
′, µ) = 〈P ′|η(~b⊥)Γ′η(~b⊥)ψ(0)Γψ(0)|P 〉 (238)

where ψ and η are light quark fields of different flavors; P µ = (P t, 0, 0, P z) and P ′µ =

(P t, 0, 0,−P z) are two large momenta which approach two opposite light-like directions in

the limit P z →∞; Γ and Γ′ are Dirac gamma matrices, which can be chosen as Γ = Γ′ = 1,

γ5 or γ⊥ and γ⊥γ5, so that the quark fields have leading components on the respective

light-cones.

At large momentum, the form factor factorizes through TMD factorization into LFWF

amplitudes. To motivate the factorization, we need to consider the leading region of IR

divergences in a similar way for SIDIS and Drell-Yan (Collins, 2011b; Ji et al., 2005), and

the result is shown in Fig. 15.

[FIG. 13 about here.]

There are two collinear sub-diagrams responsible for collinear modes in + and − directions,

and a soft sub-diagram responsible for soft contributions. Besides, there are two IR-free hard

cores localized around (0, 0, 0, 0) and (0,~b⊥, 0). In the covariant gauge, there are arbitrary

numbers of longitudinally-polarized collinear and soft gluons that can connect to the hard

and collinear sub-diagrams. Based on the region decomposition, we now follow the standard

procedure to make factorization into LF quantities (Collins, 2011b).

We first factorize the soft divergences. This can be done with the soft function

S(b⊥, µ, δ
+, δ−). It re-sums the soft gluon radiations from fast-moving color-charges. In-

tuitively, soft gluons have no impact on the velocity of the fast-moving color charged par-

tons, and the propagators of partons eikonalize to straight gauge links along their moving

trajectory.

We then factorize the collinear divergences. For the incoming direction, the collinear

divergences is captured by the LFWF amplitude for the incoming parton ψq̄q(x, b⊥, µ, δ
′−)

defined with future-pointing gauge-links.

ψq̄q(x, b⊥, µ, δ
′−) =

∫
dλ

4π
e−ixλ (239)

〈0|ψ̄(λn/2 +~b⊥)γ+Wn(λn/2 +~b⊥)|δ′−ψ(−λn/2)|P 〉 ,
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where the staple-shaped gauge-link Wn is defined similar to that in Eq. (166), the only

exception being the gauge-links Wn should point to +∞ instead of −∞.

However, the naive LFWF amplitude contains soft divergences as well, to avoid double-

counting, we must subtract out the soft contribution from the bared collinear WF amplitude

with the soft function S(b⊥, µ, δ
+, δ

′−). This leads to the collinear function for the incom-

ing direction: ψq̄q(x, b⊥, µ, δ
′−)/S(b⊥, µ, δ

+, δ
′−). Similarly, for the out-going direction one

obtains the collinear function ψ†(x′, b⊥, µ, δ
′+)/S(b⊥, µ, δ

′+, δ−).

Here we briefly comment on the choices for the gauge-link directions in the soft func-

tions and the WF amplitudes. Naively, the gauge-links along the p direction have to be

past-pointing. However, similar to the arguments in (Collins and Metz, 2004) for the SIDIS

process, based on the space-time picture of collinear divergences, one can chose future point-

ing gauge-links along p direction as well. With all the gauge-links being future pointing, the

soft function equals to S− which is manifestly real, and the WF amplitudes for the incoming

and outgoing hadrons are in complex conjugation to each other.

Besides the collinear and soft functions, we still need the hard core HF (Q
2, Q̄2, µ2) where

Q2 = xx′P ·P ′, Q̄2 = x̄x̄′P ·P ′ and an integral over the momentum fractions x,x′ is assumed.

Taking together, we have the TMD factorization of the form factor into hard, collinear and

soft functions:

F (b⊥, P, P
′, µ) =

∫
dxdx′HF (Q

2, Q̄2, µ2) (240)

×
[
ψ†
q̄q(x

′, b⊥, µ, δ
′+)

S(b⊥, µ, δ
′+, δ−)

] [
ψq̄q(x, b⊥, µ, δ

′−)

S(b⊥, µ, δ+, δ
′−)

]

× S(b⊥, µ, δ+, δ−) .

All the rapidity regulators in all the WF amplitudes and the soft functions are cancelled.

Let us consider a one-loop example. The incoming hadron state consists of a free quark

with momentum x0P
+ and a free anti-quark with momentum x̄0P

+. Similarly the outgoing

state consists of a pair of free quark and anti-quark with momentum x′0P
′−, x̄′0P

′−, respec-

tively. The spin projection operator for the incoming state is proportional to γ5γ− and for

the out-going state is proportional to γ5γ+. The tree level form factor is normalized to 1.

At one-loop level, the pseudo-scalar form factor with vector currents Γ = γµ, Γ′ = γµ where
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a summation over µ is assumed reads:

F (b⊥, P, P
′, µ) = 1 +

αsCF
2π

F (1)(b⊥, Q
2, Q̄2, µ2) , (241)

where Q2 = 2x0x
′
0P

+P
′−, Q̄2 = 2x̄0x̄

′
0P

+P
′− and

F (1)(b⊥, Q
2, Q̄2, µ2) (242)

= −7 +
(
−1
2
ln2 b2⊥Q

2 +
3

2
ln b2⊥Q

2 +
(
Q→ Q̄

))
.

This result can be obtained from the one-loop DY structure function (D’Alesio et al., 2014)

using the substitution ln2(−Q2b2⊥) → 1
2
ln2Q2b2⊥ + ln2 Q̄2b2⊥ and ln(−Q2b2⊥) → 1

2
lnQ2b2⊥ +

ln Q̄2b2⊥. Similar to the TMD factorization for SIDIS and DY process, one should also notice

that the hard kernel HF (Q
2, Q̄2, µ2) can be obtained from that of the space-like Sudakov

form factor:

HF (Q
2, Q̄2, µ2) = Hsud(−Q2)Hsud(−Q̄2) , (243)

where Hsud(−Q2) is given in (Collins and Rogers, 2017). At one-loop level, we then obtain:

HF (Q
2, Q̄2, µ2) = 1

+
αs
4π

(
−16 + π2

3
+ 3LQ + 3LQ̄ − L2

Q − L2
Q̄

)
, (244)

where LQ = ln Q2

µ2
and LQ̄ = Q̄2

µ2
.

Now we construct the Euclidean version of the factorization in terms of the quasi-WF

amplitudes, the reduced soft function, and hard contribution. The quasi-WF amplitudes

are defined in a way similar to Eq. (195):

ψ̃q̄q(x, b⊥, µ, ζz) =

∫
dλ

4π
eixλ

〈0|ψ̄
(
λnz

2
+~b⊥

)
γzWz(

λnz

2
+~b⊥;L)ψ

(
− λnz

2

)
|P 〉

ZE(2L, b⊥, µ)
, (245)

in which the staple-shaped gauge-link Wz is defined in Eq. (196). The gauge-links should

point to +z direction in accordance to the +∞ choice on the light-cone side.

The factorization to the LFWF amplitude follows a similar reasoning to that of the quasi-

TMDPDFs presented in previous sections. Alternatively, we can factorize it using quantities

defined in on-light-cone rapidity scheme,

ψ̃q̄q(x, b⊥, µ, ζz) = H+
1

(
ζz/µ

2, ζ̄z/µ
2
)

(246)

×
[
ψq̄q(x, b⊥, µ, δ

−)

S(b⊥, µ, δ+, δ−)

]
S(b⊥, µ, δ

+) .
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This factorization is the result of applying a similar leading-region analysis to the quasi-WF

amplitude. The ψq̄q(x, b⊥, µ, δ
−)/S(b⊥, µ, δ

+, δ−) re-sums all the collinear divergences, while

the soft function S(b⊥, µ, δ
+) contains an off-light-cone direction along nz. It re-sums the soft

divergences of the quasi-WF amplitude. The soft functions S(b⊥, µ, δ
+, δ−) and S(b⊥, µ, δ

+)

subtract away the regulator dependencies introduced in the bare LFWF amplitude. The

overall combination in the right-hand side of Eq. (246) is rapidity-scheme independent.

Similar to the case of the form factor, we can chose all the gauge-links along the incoming

collinear direction to be future-pointing.

Combining together Eqs. (240) and (246) and using the relation ζζ ′ = ζzζ
′
z, one obtains

the form factor factorization,

F (b⊥, P, P
′, µ) (247)

=

∫
dxdx′H(x, x′)ψ̃†

q̄q(x
′, b⊥)ψ̃q̄q(x, b⊥)Sr(b⊥, µ) ,

where we have only kept the x, b⊥ dependencies of the WF amplitudes with other variables

being omitted , and the hard kernel H is given by:

H(x, x′) = H(ζz, ζ
′
z, ζ̄z, ζ̄

′
z, µ

2)

=
HF (Q

2, Q̄2, µ2)

H+
1

(
ζz/µ2, ζ̄z/µ2

)
H+

1

(
ζ ′z/µ

2, ζ̄ ′z/µ
2
) , (248)

where Q2 =
√
ζzζ ′z and Q̄2 =

√
ζ̄zζ̄ ′z. And the reduced soft function is

Sr(b⊥, µ) = lim
δ+,δ−→0

S(b⊥, µ, δ
+, δ−)

S(b⊥, µ, δ+)S(b⊥, µ, δ−)
. (249)

It can be shown based on property of off-light-cone soft functions that Sr defined here agrees

with the one defined in Eq. (204).

Therefore, with non-perturbative quantities F and ψ+, we obtain the reduced soft func-

tion,

Sr(b⊥, µ) =
F (b⊥, P, P

′, µ)∫
dxdx′H(x, x′)ψ̃†

q̄q(x′, b⊥)ψ̃q̄q(x, b⊥)
, (250)

where H can be obtained perturbatively.

Based on the one-loop results for the form factor, the quasi-WF amplitudes and the

reduced soft function, the one-loop matching kernel for the vector current can be extracted
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as:

H(ζz, ζ
′
z, ζ̄z, ζ̄

′
z, µ

2) = 1 +
αsCF
2

i ln

√
ζzζ̄z√
ζ ′zζ̄

′
z

(251)

+
αsCF
4π

(
−8 + ln2

√
ζz√
ζ ′z

+ ln

√
ζzζ ′z
µ2

+ (ζ → ζ̄)

)
,

and the renormalization group equation for H reads:

µ2 d

dµ2
lnH(ζz, ζ

′
z, ζ̄z, ζ̄

′
z, µ

2) = −2γF (αs)− ΓS(αs) , (252)

where γF and ΓS have been defined before.

Here we briefly comment on the end-point behavior. As x ∼ 0, the hard kernel diverges

logarithmically near the end point as 1+αs ln
2 x, but the quasi-WF amplitudes approach zero

at large or small x linearly, thus the end point regions behave as x ln2 x, which is free from

those problems for the kT factorization for electromagnetic form factor (Li and Sterman,

1992). Moreover, we can fix the z-component momentum transfer at each of the vertices to

be P z, which indicating that x+ x′ = 1. In this case the end-point behavior is improved to

x2 ln2 x.

VI. LATTICE PARTON PHYSICS WITH LAMET

Lattice gauge theory simulates continuum QCD in imaginary time on a discretized 4D

Euclidean lattice. The method is characterized by the finite lattice spacing a and volume

L1 × L2 × L3 × T , and input parameters such as the strong coupling and quark masses. To

calculate physical quantities, one usually expects to take the continuum (a→ 0) and infinite

volume Li, T → ∞ limits, as well as tuning the quark masses so that observables such as

the pion mass mπ agrees with the physical value of ∼ 140 MeV. There are different methods

to implement the fermions on the lattice (Rothe, 1992), which leads to different properties

of the lattice action such as chiral symmetry breaking for Wilson fermions. In the lattice

calculation of hadron matrix elements, the initial and final states are generated by acting the

source and sink interpolation operators on the vacuum, and the ground-state contributions

are filtered out by propagating over a sufficiently large Euclidean time. A boosted hadron

state can be obtained by inserting momentum into the source and sink operators through

Fourier transform in the 3D spatial coordinates.
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The lattice QCD calculations of parton physics using LaMET started with the exploratory

studies on the simplest PDFs and the gluon helicity (Alexandrou et al., 2015; Lin et al., 2015;

Yang et al., 2017), which yielded fairly encouraging results, demonstrating that LaMET is

a viable approach. In subsequent studies, more attention has been paid to the systemat-

ics, including establishing a proper renormalization and matching procedure, simulating at

the physical pion mass, removing the excited-state contamination, etc. Such studies have

greatly improved the precision of the calculations, with the latest results exhibiting a reason-

able agreement with phenomenological PDFs (Alexandrou et al., 2018a,b; Gao et al., 2020;

Izubuchi et al., 2019; Lin et al., 2018a). In the meantime, explorations have also been made

on similar large momentum data using the coordinate-space factorization methods including

the pseudo-PDF (Joó et al., 2019a,b, 2020; Orginos et al., 2017) and current-current corre-

lation (Bali et al., 2019; Sufian et al., 2020, 2019). Nevertheless, dedicated large-scale efforts

with the state-of-art resources are yet to be seen. Lattice parton physics with LaMET is

just at its dawn. With EIC in the US going forward, a new era of lattice calculations is to

come.

In this section, we summarize the current status of lattice calculations using LaMET and

discuss future prospects. We will begin with a general discussion on what kind of lattice

setups are best suited for LaMET calculations, and then briefly summarize relevant lattice

techniques that facilitate such calculations. After that, we review the lattice calculations

that have been carried out so far and point out future improvements. A nice complemen-

tary discussion about lattice calculations has been made in (Cichy and Constantinou, 2019).

Other reviews that summarize the recent developments in the lattice calculation of PDFs

can be found in (Constantinou, 2020; Monahan, 2018a; Zhao, 2020).

A. Special Considerations for Lattice Calculations

In this subsection, we discuss the challenges for lattice calculations in LaMET, and esti-

mate the required lattice requirements by taking the collinear PDFs as an example.
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1. Challenges due to large momentum

In addition to common challenges with other lattice calculations, such as taking the

continuum and infinite volume limits, simulating at or extrapolating to the physical pion

mass, etc., LaMET applications require generating large-momentum hadron on lattice. For

LaMET expansion, 1/(xP z) is the expansion parameter, and for the coordinate-space factor-

izations, large quasi-light-cone distance λ requires even bigger hadron momentum. However,

realizing this faces a number of practical challenges. First, it has been difficult to generate

large-momentum hadron states on the lattice, until the technique of momentum smear-

ing (Bali et al., 2016) was proposed. The conventional smearing method in coordinate space

is designed to increase the overlap with ground state hadron at rest. Thus, it is not sur-

prising that such a smearing is not efficient when the hadron has a large momentum. The

momentum smearing technique introduces an extra phase factor ei
~k·~z to the quark field, such

that it is peaked at nonzero momentum ~k in Fourier space, as shown in Fig. 16. In this way,

the overlap with high momentum state is vastly increased after Euclidean time evolution.

Recently, the momentum smearing technique has been incorporated into the framework of

distillation (Egerer et al., 2020) to improve the extraction of ground-state energy and matrix

elements at momentum . 3 GeV. Although there are other proposed methods to generate

large momentum (Wu et al., 2018), the momentum smearing has become a standard tech-

nique in LaMET applications.

[FIG. 14 about here.]

Second, the proton size is frame-dependent and changes with its momentum. In the

proton’s rest frame, simulating its structure requires that the lattice spacing be much smaller

than the QCD confinement scale, i.e. a ≪ Λ−1
QCD. When the proton is moving fast, it

undergoes Lorentz contraction by a boost factor γ in the momentum direction, thus a finer

lattice spacing a ≪ (γΛQCD)
−1 is needed. If a ≤ 0.2 fm is the minimum requirement to

investigate a static proton, one will need at least a ≤ 0.04 fm to have the same resolution for

a proton at 5 GeV. A smaller lattice spacing is difficult to achieve with current computing

resources, for it suffers from the well-known critical slowing down problem, i.e., the auto-

correlation times of observables such as the topological charge increase when approaching

the continuum limit (Schaefer et al., 2011), which can be much longer than the Monte-Carlo
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simulation times. A lattice with open (Neumann) boundary condition on gauge fields in the

Euclidean time direction (Luscher and Schaefer, 2011), which allows topological charge to

flow in and out at boundaries of time, may overcome this problem.

Third, the gaps between the ground state and the excited state energies become smaller

because of the time dilation effect. In the proton’s rest frame, the excited state contamination

exponentially decays with the mass gap ∆M and evolution time τ in the form of e−∆Mτ .

In the boosted frame, the mass gap ∆M in the decay factor is replaced by the energy gap

∆E ∼ ∆M/γ, and the decay changes like e−∆Mτ → e−∆Eτ = e−∆Mτ/γ under Euclidean time

evolution. Therefore, with a boosted state, a longer time evolution (source-sink separation)

is needed. For example, if a source-sink separation of 1 fm is needed to separate the excited

state of proton with 2 GeV momentum, a proton with 5 GeV momentum will require a

source-sink separation of 2.5 fm. Even if the two-state fit technique is used, a longer time

evolution is still required so that only the ground and first excited states dominate.

Last but not the least, lattice calculation requires P z ≪ 1/a, so that discretization

effects of O((aP z)n) are under control. Therefore, one has to go to smaller lattice spacing in

order to reach larger momentum. The quantification of O((aP z)n) effects alone in LaMET

calculations has not been done, as all discretization errors are treated on equal footing in

continuum extrapolation.

To summarize, to achieve a precision calculation of boosted hadron structure on lattice,

a fine lattice spacing (at least in the longitudinal direction) and a large box size in the time

direction are essential, which of course will also require control over the signal-to-noise ratio

at large Euclidean times.

2. Considerations for lattice setup

In practical calculations, a correlation function is first obtained on lattice in coordinate

space, and then Fourier transformed to momentum space with the phase factor eiλx where

λ = zP z. Therefore, the smallest x one can reach can be roughly estimated from the largest

λ as x ∼ 1/λ. However, a more stringent constraint comes from requiring that the higher-

twist contribution O(Λ2
QCD/(xP

z)2) be small so that the factorization is still valid, which

implies x ≫ ΛQCD/P
z. This also provides a rough estimate for the largest attainable x

(x ≪ 1 − ΛQCD/P
z) since the momentum fraction carried by other partons is ∼ (1 − x)
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which should also be bounded from below by the above estimate.

For the current state-of-the-art simulations, the lattice spacing can reach 0.04

fm (Fan et al., 2020a; Gao et al., 2020), which implies P z
max ∼ 5 GeV and the effective

resolution in longitudinal direction is about γa ∼ 0.2 fm. Thus the valid x region that can

be extracted from lattice is roughly 0.1 to 0.9. On the other hand, to avoid finite volume

effects, it is believed that mπL & 4. For physical pion mass, the box size in spatial direction

L should be at least 6 fm, which means the box size is 150 lattice spacing. So far, the largest

box size in LaMET calculations is 5.8 fm (Lin et al., 2018a). As discussed in Sec. VI.A.1, the

source-sink separation of 2.5 fm is needed for P z = 5 GeV. So the box size in time direction

T does not need to be particularly longer than L, and T = L is sufficient in this lattice setup.

In summary, with a = 0.04 fm at physical pion mass, one need a L3×T = 1503×150 lattice

to reliably extract 0.1 < x < 0.9 region, which could be possible in an exa-scale computer.

There are potential tricks to reduce the computational cost. First, the required source-

sink separation can be shorter if one uses a multi-state instead of two-state fit with enough

statistics. However, since the number of fitting parameters in n-state fit grows as n2, such

a fitting will become infeasible for too large n. Second, note that the resolution required

for transverse proton structures is not affected by the Lorentz boost, one may use a coarse

lattice in the transverse directions, a⊥ = 0.1 fm. The required box size is then L‖×L2
⊥×T =

150× 602 × 150. This asymmetric lattice can greatly reduce the resources needed for large

momentum since the transverse box size is fixed. However, generating configurations and

renormalization on such a lattice might bring new problems and should be further studied.

In the near future, exascale supercomputers may help to reach higher momentum, as

large as 5 GeV for the proton, and improve the precision of LaMET calculations. Further

theoretical developments and new ideas on the technique and algorithms are also needed to

overcome the simulation difficulties.

B. Non-Singlet PDFs

In this subsection, we review current status of lattice calculations of flavor non-singlet

(isovector) PDFs in the proton and pion. The non-singlet case has the advantage that the

mixing with gluons as well as the lattice calculation of disconnected diagrams can be avoided,

thus greatly reducing the computational challenge. It is the most extensively studied parton
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observable with LaMET so far.

1. Proton

The pioneering lattice studies for the isovector quark PDF in the proton were carried

out in (Alexandrou et al., 2015; Lin et al., 2015). These are proof-of-principle studies as

the renormalization of quasi-PDFs was not well understood at that time. Nevertheless,

their results encouraged the follow-up theoretical works on LaMET, including a proper

renormalization and matching suitable for lattice implementations.

Certain lattice artifacts have also been studied. For example, although there is no power-

divergent mixing for the quasi-PDF operators on the lattice, additional operator mixings

that are not seen in the continuum can still occur if a non-chiral lattice fermion such as

the Wilson-type fermion is used. In (Chen et al., 2019a; Constantinou and Panagopoulos,

2017) it was shown that at O(a0) the operator for the unpolarized quark quasi-PDF, Oγz(z),

can mix with the scalar operator O1(z), whereas Oγt(z) does not. To reduce the systematic

uncertainty from such mixing, Γ = γt has been used since then for lattice calculations of the

unpolarized quark PDF, e.g. in (Alexandrou et al., 2017b; Chen et al., 2018; Green et al.,

2018). Similarly, for helicity and transversity cases, one should choose Γ = γ5γz and Γ =

iσz⊥ = γ⊥γz, respectively, in order to avoid the mixing. It should be noted that at O(a) all

ÕΓ(z)’s can mix with others (Chen et al., 2019a). Nevertheless, a fine lattice spacing can

reduce these effects.

In (Alexandrou et al., 2017b; Chen et al., 2018; Green et al., 2018), the nonper-

turbative renormalization (NPR) of the quasi-PDFs was studied in the RI/MOM

scheme (Martinelli et al., 1995). This scheme has several advantages: The lattice regu-

larization scheme can be converted to MS scheme through RI/MOM renormalization condi-

tion, the computation cost is affordable, the systematic errors can be reduced or quantified

more easily, etc. The works before 2018 did not include NPR and the systematics were

not accurately quantified. The later works have implemented the RI/MOM scheme and

the corresponding perturbative matching (Constantinou and Panagopoulos, 2017; Liu et al.,

2020; Stewart and Zhao, 2018). The coordinate-space method is also developed in paral-

lel in (Bhat et al., 2020; Cichy et al., 2019; Joó et al., 2019a, 2020; Orginos et al., 2017).

In Figs. 17 and 18, we select some most recent lattice results. ETMC published the
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proton unpolarized, helicity and transversity PDFs with P z = 1.4 GeV at physical pion

mass (Alexandrou et al., 2018a,b), and LP3 published the proton helicity PDF with un-

precedented momentum P z = 3.0 GeV at physical pion mass (Lin et al., 2018a). Recently,

calculations on fine lattices (Alexandrou et al., 2020c; Fan et al., 2020a) and an extrapola-

tion to the continuum limit (Alexandrou et al., 2020c) have become available. The finite

volume effects, which was first studied in a model (Briceño et al., 2018), have also been inves-

tigated on the lattice lately in (Lin and Zhang, 2019), where no sizeable volume-dependence

was observed at P z = 1.3 and 2.6 GeV.

The PDFs extracted from LaMET can be useful for phenomenology by providing in-

put in kinematic regions that are difficult to measure in experiments. It has attracted

attention from global fit community (Bringewatt et al., 2020; Constantinou et al., 2020;

Hobbs et al., 2019; Lin et al., 2018c). For example, it has been found that in the large-

x region of unpolarized PDF the lattice result will lead to significant improvement on global

fit result if it reaches an accuracy of about 10% (Lin et al., 2018c). The sea quark asymme-

try (Geesaman and Reimer, 2019) is also possible to be investigated now directly on lattice.

For the transversity PDF, due to the difficulty of measurement in experiment, lattice re-

sults can already have impact on improving global fit and even making predictions. In

addition to the isovector cases, calculations of the strange and charm unpolarized distribu-

tions (Zhang et al., 2020c), as well as the flavor separation of light quarks in the helicity

PDF (Alexandrou et al., 2020a), have also been carried out recently. From early exploratory

results showing qualitative behavior of PDFs to the latest results which are comparable with

global fits, it has come a long way in developing new techniques (momentum smearing, renor-

malization, matching, etc.) and the computation resources have been steadily increased over

time. The systematic uncertainties in the lattice calculation of PDFs have been thorougly

investigated by the ETMC (Alexandrou et al., 2019b). Further studies on systematics such

as the discretization effects and finite volume effects on various lattice ensembles are still

necessary. In the future, lattice QCD is expected to make a significant impact on nuclon

structure.

To conclude this subsection, we would like to mention that there are also lattice studies

of the isovector PDF of other baryons, ∆+ to be more concrete, using LaMET (Chai et al.,

2020).
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[FIG. 15 about here.]

[FIG. 16 about here.]

2. Pion

The pion valence quark distribution has been extracted from various Drell-Yan data for

pion-nucleon/pion-nucleus scattering, while theoretical predictions do not yield consistent re-

sults with the experimental extraction, especially in large-x region (Holt and Roberts, 2010).

LaMET calculations will be able to shed valuable light on how to resolve this disagreement,

provided that all systematics are well under control.

In principle, calculating the pion valence PDF is easier than the proton PDF. First, the

pion state is easier to produce and the quark contractions are fewer. Second, the energy gap

between the first excited and ground state of the pion is much bigger than the energy gap of

the proton. Therefore, the excited-state contamination is easier to control. The simulation

was first performed in (Zhang et al., 2019a) with the same lattice setup and procedure used

in exploratory studies of the proton PDF. A more thorough study on the pion valence

quark PDF was done by the lattice QCD group of BNL (Izubuchi et al., 2019). It is worth

pointing out that the excited state contamination was thoroughly studied using multi-state

fits, with the ground and first excited states both agreeing with the expected dispersion

relations, indicating that the excited contamination is well under control. The comparison

of the lattice results from quasi-PDF, pseudo-PDF and current-current correlator approach

are shown in Fig. 19. Note that the LP3 (Zhang et al., 2019a) result was obtained using

Fourier transformation and inversion of factorization formula, while other three groups used

parameterization models to fit the lattice data. More dedicated effort is needed to reduce

the errors, and a meaningful comparison between different operators and analysis methods

should be made.

For other mesons, we would like to mention that there is a study of kaon valence quark

PDF using MILC configurations (Lin et al., 2020).

[FIG. 17 about here.]
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C. Gluon Helicity and Other Collinear Parton Properties

In this subsection, we summarize the applications of LaMET to other collinear parton

observables, including the gluon helicity, the gluon PDFs, meson DAs and GPDs.

1. Total gluon helicity

The total gluon helicity ∆G is a key component in understanding the proton spin struc-

ture. It has been intensively explored at RHIC and will be dedicatedly pursued at EIC in

the future. However, a theoretical lattice calculation of ∆G had not been possible until the

proposal of LaMET.

The first such effort was made by χQCD collaboration in (Yang et al., 2017). The cal-

culation was carried out with valence overlap fermions on 2 + 1 flavor domain-wall fermion

gauge configurations, using ensembles with multiple lattice spacings and volumes including

one with physical pion mass. The authors simulated proton matrix elements of the free-field

operator ( ~E × ~A)3 in the Coulomb gauge at various momenta, and then converted them to

the MS scheme with one-loop lattice perturbation theory. The MS matrix elements at each

lattice momentum are shown in Fig. 20. Though a LaMET matching is necessary to match

the results to the physical gluon helicity, the authors did not apply it due to the concern of

perturbative convergence of the matching coefficient (Ji et al., 2015c). Instead, as the MS

matrix elements show rather mild momentum dependence up to the maximum momentum

∼1.5 GeV, they extrapolated the results to infinite momentum, as well as physical pion

mass and continuum limits, with a model motivated by chiral EFT. Their final result is

∆G(µ2 = 10 GeV2) = 0.251(47)(16), or 50(9)(3)% of the total proton spin, which agrees

with the truncated moment of ∆g(x) (de Florian et al., 2014; Nocera et al., 2014) within

uncertainties.

Despite such progress, one should be cautious that this calculation still needs further

improvements in the future. Among others, the most important ones are simulations at

larger proton momentum, performing an NPR and investigating perturbative convergence

of LaMET matching and its implementation.

[FIG. 18 about here.]
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2. Gluon PDF

The gluon PDF is of great interest not only for precision physics at LHC, but also for un-

derstanding the gluonic structure of the proton and nuclei—as well as the small-x dynamics—

at the future EIC. With the recent progress on the renormalization and matching for gluon

quasi-PDFs (Li et al., 2019; Wang et al., 2019b; Wang and Zhao, 2018; Wang et al., 2018;

Zhang et al., 2019b) or the coordinate-space “pseudo distributions” (Balitsky et al., 2019),

a systematic lattice calculation of the gluon PDFs can be carried out in principle.

Before the above theoretical developments, an exploratory lattice study of the proton and

pion unpolarized gluon PDFs were carried out in (Fan et al., 2018). The authors calculated

quasi gluon LF correlations and compared them to the LF correlations for the gluon PDFs.

Later on, based on the multiplicative renormalizability of certain choice of the quasi gluon

LF correlator (Zhang et al., 2019b), the same authors used the ratio scheme (Balitsky et al.,

2019) in coordinate space to renormalize the lattice matrix elements, and fitted the proton

unpolarized gluon PDF with a simple two-parameter model (Fan et al., 2020b). Although

the results show agreement with the global analyses in the large-x region, the systematics

from the model-dependence of the fit remains to be quantified for a controlled calculation

of the gluon PDF.

3. DA

According to Sec. IV.B, LaMET can be readily applied to calculating DAs, and the lattice

resource needed is expected to be cheaper than that for PDFs since there is one less external

state, which reduces the number of contractions for the quark propagators. So far there

are a few exploratory investigations on meson DAs, in particular, on pion (Zhang et al.,

2017) and kaon DAs (Zhang et al., 2019c). The lattice calculations of pion (Zhang et al.,

2017) and kaon DAs (Zhang et al., 2019c) were first explored without the NPR and the

corresponding matching. Recently, the pion and kaon DAs from the RI/MOM scheme

analysis are extrapolated to the continuum limit (Zhang et al., 2020b), where the authors

eventually adopted a two-parameter model to fit the final result. The above results are shown

in Fig. 21. Apart from LaMET, the current-current correlation methods (Braun and Müller,

2008; Braun et al., 2015; Detmold and Lin, 2006) have also made much progress on the pion

114



DA (Bali et al., 2019; Detmold et al., 2020, 2018).

[FIG. 19 about here.]

4. GPD

As discussed in Sec. IV, the global fitting of GPDs still faces challenges from their com-

plicated kinematic dependence and limited information from the experimental observables

despite the progress made (Favart et al., 2016; Kumericki et al., 2016). On the other hand,

previous lattice QCD method is only able to calculate the lowest few moments of the

GPDs (Hagler, 2010), which is far from sufficient to reconstruct their full kinematic de-

pendence. Applying LaMET to GPD calculations will provide important information on

the GPDs, especially in kinematic regions that are not accessible in currently available ex-

periments. In addition, on the lattice one can study the GPD dependence on one kinematic

variable by fixing the others. All these will help differentiate commonly used models in GPD

parameterization.

Calculating the quasi-GPDs requires more resources than quasi-PDF, but does not need

further techniques in principle. Besides, the lattice renormalization factors for the quasi-

PDFs can be used here, as has been argued in Sec. IV. The first lattice calculation of

the pion unpolarized isovector quark GPD was carried out in (Chen et al., 2019b), though

the results are not yet able to differentiate models or compare to experiments. Recently,

ETMC completed the first proof-of-principle calculation of the proton unpolarized and he-

licity GPDs (Alexandrou et al., 2020d), as shown in Fig. 22, which demonstrates that it

is feasible to extract the GPDs with controlled systematics on available computational re-

sources.

[FIG. 20 about here.]

5. Higher-twist PDF

The higher-twist PDFs probe multi-parton correlations, and their contribution at x = 0

can shed light on the LF zero modes (Ji, 2020). As we discussed in Sec. IV, such distributions

can also be calculated on the lattice with the LaMET approach.
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The first attempt to calculate the isovector twist-three PDF gT (x) has been car-

ried out by ETMC (Bhattacharya et al., 2020a) using the one-loop matching coefficient

they computed in (Bhattacharya et al., 2020b,c). Their results show agreement with the

Wandzura-Wilczeck approximation (Wandzura and Wilczek, 1977), which ignores the con-

tribution from dynamical twist-three contributions, and the Burkhardt-Cottingham sum

rule (Burkhardt and Cottingham, 1970). Nevertheless, the mixing between gT (x) and other

twist-three distributions was not considered, and further study is still required for an accu-

rate matching to the light-cone PDF.

D. TMDs

With tremendous experimental focus on the TMDPDFs for studying 3D proton struc-

tures and gluon saturation at EIC, their first-principle calculation from lattice QCD will

significantly boost this direction by providing useful nonperturbative inputs for all the phe-

nomenological analyses.

In this subsection, we discuss the status and prospects of calculating the quasi-TMDPDF

and soft function with LaMET. Besides, we note that before LaMET there had already

been efforts to extract information of TMDs by studying ratios of the lattice correla-

tors (Engelhardt et al., 2016; Hagler et al., 2009; Musch et al., 2012, 2011; Yoon et al.,

2017), which has made a series of progress in the past decade. We begin with a brief

review of them.

1. Pre-LaMET study — ratio of lattice correlators

By employing Lorentz covariance, the x-moments of TMDPDFs are related to the form

factors of spacelike staple-shaped gauge link operators, which can be directly simulated on

the lattice. Although the lattice calculation of the soft function was not available during

that time, ratios of the spin-dependent and the unpolarized matrix elements were formed

to cancel it, thus providing useful information of different TMDPDFs. For example, the

time-reversal odd TMDPDFs can be studied with the staple-shaped gauge link operator in a

transversely polarized proton state, thus helping understand properties related to single-spin

asymmetry (SSA), which was measured experimentally at STAR (Adamczyk et al., 2016)
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and COMPASS (Aghasyan et al., 2017). In (Engelhardt et al., 2016; Musch et al., 2012),

the Sivers and Boer-Mulders functions of proton and pion were studied; Other time-reversal

even functions, such as the worm-gear function g1T (Tangerman and Mulders, 1995), were

also studied (Yoon et al., 2017).

2. Quasi-TMDPDF and Collins-Soper kernel

The lattice calculation of the quasi-TMDPDF defined in Eq. (195) is straightforward.

The matrix element of the staple-shaped quark Wilson line operator can be simulated the

same way as the quasi-PDF case, except that the geometry of the gauge-link is different,

while the calculation of Wilson loop ZE is standard practice in lattice QCD. The more

challenging part, however, is the renormalization of the quasi-TMDPDF and its matching

to the MS scheme.

Using the auxiliary field theory formalism, one can argue that staple-shaped quark Wil-

son line operator is also multiplicatively renormalizable (Ebert et al., 2020b; Green et al.,

2020). On a non-chiral lattice, it suffers from finite mixing with other quark bilinear

operators, as was predicted by one-loop lattice perturbation theory (Constantinou et al.,

2019). The full mixing pattern for such operators with different Dirac matrices have been

studied in the RI/MOM scheme on three quenched lattice ensembles with different spac-

ings (Shanahan et al., 2019), and a diagonalization of the mixing matrix is adopted to

renormalize these operators. Meanwhile, the one-loop conversion factors that convert the

RI/MOM matrix elements to the MS scheme have been calculated in continuum perturba-

tion theory for both the z = 0 (Constantinou et al., 2019) and z 6= 0 (Ebert et al., 2020b)

cases.

Although the soft function is still needed to fully determine the physical TMDPDF,

the MS quasi-TMDPDF can already be used to extract the Collins-Soper kernel according

to Eq. (210) (Ebert et al., 2019a,b; Ji et al., 2015b). Since the Collins-Soper kernel can be

defined from both the bare TMDPDF and the soft function, it is independent of the external

state and can be calculated in a pion which is the least expensive on the lattice. Up to mass

corrections suppressed by the momentum in Eq. (209), this calculation also allows for using

an unphysical valence pion mass, as long as the sea quark masses are physical.

With the method developed in (Ebert et al., 2019a), the first exploratory lattice calcu-
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lation of the Collins-Soper kernel was performed in (Shanahan et al., 2020) on a quenched

lattice with heavy valence pion mass mπ ∼ 1.2 GeV, and the result is shown in Fig. 23.

As one can see, the lattice prediction is robust for 0.1 fm < b⊥ < 0.8 fm, which covers the

nonperturbative region that is important for TMD evolution in global analyses. Besides, at

small b⊥, the perturbative calculation can serve as a calibration for estimating the system-

atic uncertainties, as there are power corrections of O(1/(P zb⊥)) which can only be reduced

with larger P z. In (Zhang et al., 2020a), the Collins-Soper kernel has also been extracted

from a pion quasi-TMD DA, where the lattice renormalization was left out, and the result

is in agreement with (Shanahan et al., 2020) within errors for a wide range of b⊥. With

improved lattice ensembles and systematic corrections in the future, it is promising to have

a precise determination of the Collins-Soper kernel for TMD phenomenology.

[FIG. 21 about here.]

3. Soft function

As the remaining piece towards physical TMDPDFs, the soft function must be calculated

in lattice QCD. In particular, the reduced soft function in Eq. (204) eliminates the regulator-

scheme-dependence of the off-the-light-cone quasi-TMDPDF, so its calculation alone has

great physical significance. According to Secs. (V.C) and (V.D), two methods have been

proposed to calculate the off-the-light-cone soft function or reduced soft function on the

lattice (Ji et al., 2020a), as we discuss in the following. One relies on simulating HQET on

the lattice, while the other requires calculating a light-meson form factor of transversely-

separated current products.

The latter method has been implemented in the first exploratory lattice calculation of

the reduced soft function (Zhang et al., 2020a), which includes simulations of the pion form

factor in two external states with opposite large momenta, as well as the pion quasi-TMD

DA. The results for the reduced soft function, which are obtained with tree-level matching

and omission of lattice renormalization, are shown in Fig. 24. As one can see, they agree with

the perturbative prediction for small b⊥ within errors, as expected, and start to deviate when

b⊥ becomes large. Since the quasi-TMD DA depends on the momentum P z, the stability of

results at different P z suggests the validity of Eq. (250). In the future, larger statistics and
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improved systematics in both lattice and perturbative matching will be necessary to achieve

a precision calculation of this quanity.

[FIG. 22 about here.]

VII. CONCLUSION AND OUTLOOK

Since Feynman proposed the parton model more than fifty years ago, our understanding

of the partonic structure of the proton has been greatly advanced. On one hand, a number of

high-energy experiments carried out at facilities worldwide including SLAC, DESY, CERN,

Fermi Lab, JLab, BNL, etc. allowed us to probe various aspects of hadronic structures at

different energies and polarizations. On the other hand, many parton observables have been

proposed in parallel that provide a multi-dimensional description of the proton structure,

including the collinear PDFs, TMDPDFs, GPDs, parton DAs, LFWFs and so on.

Although QCD factorization theorems with RG improvement allow us to extract these

parton observables through their connection to experimental observables, it is highly desir-

able to predict them from ab initio calculations such as lattice QCD. Developments along

this line have been rather slow due to difficulties in simulating real-time dynamics. The sit-

uation, however, has changed since the proposal of LaMET a few years ago, which provides

a systematically improvable method to calculate parton physics from first principles.

In this paper, we give an overview of LaMET formalism and its applications to observables

which can be accessed in lattice QCD and other non-perturbative methods. By investigating

the frame dependence of the structure of bound state hadrons, we explain how the IMF

physics or parton physics naturally arises as an EFT description of the proton structure.

Such an EFT description is most naturally formulated in SCET and LFQ, but practical

non-perturbative calculations of the proton matrix elements have been difficult. LaMET

in effect provides what is needed to realize LFQ. This is achieved by forming appropriate

quasi parton observables in a large momentum state and match them to the true parton

observables on the LF through factorization. In the case of PDFs, the former corresponds to

finite-momentum distributions whose running is controlled by the momentum RGE, whereas

the latter corresponds to IMF PDFs whose running is controlled by the usual RGE. It

should be pointed out that LaMET is a very general framework which can be applied to

large-momentum physical quantities calculated with any non-perturbative methods, either
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Euclidean (with imaginary time) or Minkowskian (with real time). Moreover, given a large

momentum state, the same parton physics can be determined from different quasi observables

that form a universality class.

We then present how to calculate the parton observables in practice, with a particular

focus on the collinear PDFs, GPDs, DAs, TMDPDFs and LFWFs. We also discuss the proton

spin structure and show how the partonic contributions to proton spin can be obtained

following the same approach. We finally summarize the lattice studies carried out so far

with LaMET which, on one hand, demonstrate that LaMET is a promising approach to

compute partonic structures of the proton, and on the other hand, clearly indicate that a

lot of improvements are still required to reach such an accuracy that the lattice results can

have considerable impact on phenomenology.

We complete this review with a few comments on improvements of lattice calculations

for the future. We recommend (Alexandrou et al., 2019b) for more systematic discussion

on some of the issues, for example, the continuum, infinite volume, and physical pion mass

limits.

• Large hadron momentum. Since the future of LaMET lies in larger momenta which

naturally require smaller lattice spacings, it will be critical to address the challenges

from using large momenta and small spacings for exa-scale computations, such as the

excited state contamination or topological charge freezing problem.

• Renormalization. As discussed in Sec. III.D, the mass renormalization of Wilson line

operators is favored for it is gauge invariant and does not introduce extra higher-twist

effects or large statistical errors at long distance. However, its matching to the MS

scheme, especially the renormalon ambiguities, still needs to be resolved for a full

systematic application. Moreover, alternative schemes that include the above features

are also highly desirable.

• Higher-order perturbative matching. In current LaMET calculations, one-loop pertur-

bative matching has brought considerable corrections. Higher-order matching kernels

will be necessary to control the systematics from this procedure.

• Power corrections. They are important if the hadron momentum is not very large or

when x is close to 0 or 1. Little progress has been made toward a model-independent
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determination of the power corrections so far. One contingent strategy is to extrapolate

to P z → ∞ limit after implementing matching and target-mass corrections, but the

ultimate solution relies on the lattice calculation of higher-twist distributions that has

been discussed in Sec. IV.C.

The above discussion of systematics is generic and applies to all quasi-observables. The

rich theoretical developments in the past years have paved the way for calculating a wide

range of parton observables using LaMET. With the rapid increase in computing resources

and progress in developing new techniques and algorithms, we expect to see the above

systematics to be kept under control step by step in the future. That would be important

in establishing LaMET as a systematic approach to computing parton physics, and making

lattice calculations play a crucial role in the EIC era.
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Appendix A: Acronyms, abbreviations and terminologies

Here we list some acronyms, abbreviations and terminologies used throughout this review:

AM angular momentum

BFKL Balitsky–Fadin–Kuraev–Lipatov

BPHZ Bogoliubov-Parasiuk-Hepp-Zimmermann

BRST Becchi-Rouet-Stora-Tyutin

DA distribution amplitude

DGLAP Dokshizer-Gribov-Lipatov-Altarelli-Parisi

DIS deep-inelastic scattering

DR dimensional regularization

DVCS deeply-virtual Compton scattering

DVMP deeply-virtual meson production

DY Drell-Yan

EFT effective field theory

EIC Electron-Ion Collider

EOM equation of motion

ERBL Efremov-Radyushkin-Brodsky-Lepage

GCPO generalized collinear parton observable

GPD generalized parton distribution

GTMD generalized transverse-momentum-

dependent distribution

HQET heavy-quark effective theory

IMF infinite-momentum frame

IR infrared

LaMET large momentum effective theory

LC light-cone

LF light-front

LFWF light-front wave function

MS modified minimal subtraction

NPR non-perturbative renormalization

OAM orbital angular momentum

OPE operator product expansion

PDF parton distribution function

QCD quantum chromodynamics
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Parton model: a model proposed by R. Feynman in which hadrons are viewed as a

collection of point-like quasi-free partons.

Parton distribution function: a probability function describing how the longitudinal

momentum is distributed among the partons (quarks and gluons) in a hadron.

Factorization theorem: a theorem that separates hadronic observables into process-

dependent short-distance partonic observables and universal long-distance functions

characterizing the hadron structure.

Light-front quantization: a quantization program that is carried out at equal light-front

time and yields a relativistic description of QCD bound states in terms of light-front

wave functions.

Bjorken xB: The variable proposed by J. D. Bjorken to characterize the kinematics in

DIS. Its definition is given above Eq. (1).

Scaling: The behavior that an observable is independent of the scale at which it is

probed.

Effective field theory: a theory framework that describes physical phenomena at a

given length scale using only active degrees of freedom at that scale, while integrating

out degrees of freedom at other length scales.

Renormalization group equation: an equation that describes how a physical system

can be viewed and interpreted at different scales.

HQET: an effective field theory obtained from QCD by taking the infinite heavy quark

mass limit.

Gauge link or Wilson line: a nonlocal quantity constructed as exponentials of integrals

of gauge fields along a given path, used to connect fields at different spacetime points

to maintain gauge invariance.

Compton amplitude: the quantum amplitude for scattering of a (virtual) photon by

the proton.

Auxiliary field approach: an approach in which the nonlocal gauge link can be replaced

by the two-point function of the auxiliary field.
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Matching: a procedure used to relate full theory operators to effective field theory

operators.

Nonsinglet: a combination accounting for the difference between quark distributions,

e.g., the isovector combination u−d discussed extensively in the context of this review.

Universality class: a collection of operators that flow into the same fixed point under

momentum renormalization group running.

Quasi-light-front correlations: spatial correlations defining the finite momentum dis-

tributions.

Collinear divergence: divergence in a Feynman diagram when loop momentum of the

internal line is collinear to that of the external massless particle.

Two-particle-irreducible diagram: a Feynman diagram that cannot be divided into

disconnected parts by cutting two internal lines.

Wilson fermion: a way to discretize the QCD fermion action on the lattice, which

breaks down the chiral symmetry.

Generalized parton distribution: generalization of PDFs to non-forward kinematics,

i.e., the initial and final states have different momenta.

Skewness: defined to characterize the longitudinal momentum transfer in GPDs.

Distribution amplitude: transition matrix element between vacuum and hadron state,

representing the probability amplitude of finding a given Fock state in the hadron.

Twist: defined as dimension - spin of the operator. Leading-twist (higher-twist) de-

notes the leading (nonleading) power behavior in the quantity under investigation.

Zero-mode: the degrees of freedom with zero longitudinal momentum in LFQ.

Transverse momentum dependent(TMD) PDF: defined in Eq. (220), the distribution

function of both longitudinal and transverse momentum for partons.

Staple-shaped gauge-link: the pair of gauge-links separated along transverse directions

that appear in the definition of TMD-PDFs, they are defined in Eq. (166), Eq. (173)

and Eq. (196).

Rapidity divergence: the divergence of TMDPDF and soft functions due to the presence

of infinite rapidity scale introduced by the infinite-long gauge-links.
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Light-cone regulator: regulators that regulates the rapidity divergence. First appeared

in the paragraph of Eq. (168).

On-light-cone: rapidity regulator that maintain the presence of light-like separations

in the gauge-link.

Off-light-cone: rapidity regulator that makes the separations of the gauge-link non-

light-like.

Soft function: functions that capture the factorable soft radiations of TMDPDF. De-

fined in Eq. (172) for on-light-cone and Eq. (202) for off-light-cone.

Collins Soper kernel: the kernel for rapidity evolution of TMDPDF, see Eq. (191).

Quasi-TMDPDF: defined in Eq. (195), similar to TMDPDF but with light-like sepa-

rations replaced by space-like ones.

Pinch-pole singularity: the divergence due to infinite long gauge-link pair in the quasi-

TMDPDF. Can be subtracted out by the factor ZE, see discussion below Eq. (198).

Off-light-cone soft function: soft function using off-light-cone regulator. Defined in

Eq. (202) and Eq. (224). Required for matching quasi-TMDPDF to TMDPDF.

Reduced soft function: the rapidity independent part of off-light-cone soft function, see

Eq. (204).

Light-Front wave function: the wave function for hadron state in light-front quantiza-

tion, expanded in the Free -Fock state.

Reduced diagram: the diagram showing the power-leading region of IR divergences.

All the IR safe propagators are shrunk to blobs.

Momentum smearing: a lattice technique to increase the overlap of the field and

nonzero-momentum state.

Non-singlet: transforms under the fundmental representation of SU(Nf ) with Nf the

quark flavor number.
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Appendix B: Conventions

We use the following convention for the metric tensor

gµν = diag (1,−1,−1,−1) . (253)

In ordinary coordinates, a generic four-vector is denoted as vµ = (v0, vx, vy, vz) or vµ =

(v0, ~v⊥, v
z). For example, the spacelike and timelike direction vector are written as nz =

(0, 0, 0, 1) and nt = (1, 0, 0, 0), respectively. In light-cone coordinates ξ± = 1√
2
(ξ0 ± ξ3), a

vector is denoted as vµ = (v+, v−, ~v⊥).

The hadron state |P 〉 is normalized as

〈P ′|P 〉 = (2π)32P 0δ(3)(~P − ~P ′) . (254)

The covariant derivative and the Wilson line gauge link in the fundamental representation

are defined as

Dµψ = (∂µ + igAµ)ψ = (∂µ + igtaAµa)ψ, (255)

and

W (x2, x1) =

exp

[
−ig

∫ 1

0

dt(x2 − x1)µAµ(x1 + (x2 − x1)t)
]
. (256)

The ones in the adjoint representation are completely analogous.

We use OΓ(s) to generically denote an operator defining the corresponding (quasi) parton

observable, where s can be a lightlike (for parton observables) or spacelike (for quasi parton

observables) separation, and Γ is a Dirac structure. The momentum fraction in a quasi-

observable is denoted as y, while that in the usual parton observable is denoted as x.

The lightcone operator that defines the quark parton observable is

OΓ(λn) = ψ̄(0)ΓW (0, λn)ψ(λn) (257)

with Γ denoting a Dirac matrix. If we take Γ = /n ≡ γ+, the unpolarized quark PDF is then

given by

q(x) =
1

2P+

∫
dλ

2π
eixλ〈P |Oγ+(λn)|P 〉 (258)
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with nµ = 1/
√
2(1/P+, 0, 0,−1/P+).

Accordingly, the quark quasi-observable is defined by

OΓ(z) = ψ̄(znz/2)ΓW (znz/2,−znz/2)ψ(−znz/2) . (259)

If we choose Γ = γt, the unpolarized quark quasi-PDF is then defined as

q̃(y) =
1

2P 0

∫
dλ

2π
eiyλ〈P |Oγt(z)|P 〉 (260)

with the quasi light-cone distance λ = zP z.

The staple-shaped gauge link required for the TMDPDFs is defined as:

Wn(λn/2 +~b⊥) = W †
n(λn/2 +

~b⊥)W⊥Wn(−λn/2) , (261)

where

Wn(ξ) = W (ξ +∞n, ξ) . (262)

The un-subtracted unpolarized quark TMDPDF is then defined as:

f(x,~k⊥, µ, δ
−/P+) =

1

2P+

∫
dλ

2π

d2~b⊥
(2π)2

e−iλx+i
~k⊥·~b⊥

× 〈P |ψ̄(λn/2 +~b⊥)/nWn(λn/2 +~b⊥)|δ−ψ(−λn/2)|P 〉 , (263)

and the TMD soft function for DY process is defined as:

S(b⊥, µ, δ
+, δ−)

=
Tr〈0|T̄Wp(~b⊥)|δ+W †

n(
~b⊥)|δ−TWn(0)|δ−W †

p (0)|δ+ |0〉
Nc

=
Tr〈0|Wn(~b⊥)|δ+W†

p(
~b⊥)|δ− |0〉

Nc
, (264)

where |δ± denotes the rapidity regulator for the gauge links involved. In terms of these, the

physical scheme independent TMDPDF is defiend as:

fTMD(x, b⊥, µ, ζ) = lim
δ−→0

f(x, b⊥, µ, δ
−/P+)√

S(b⊥, µ, δ−e2yn , δ−)
, (265)

where ζ ≡ 2(xP+)2e2yn is the rapidity scale.

The staple-shaped gauge link for the quasi-TMDPDF is defined as:

Wz(
λnz
2

+~b⊥;L) =W †
z (ξ;L)W⊥Wz(−ξznz;L) , (266)
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where

Wz(ξ) =W (ξ + (L− ξz)nz, ξ) . (267)

The quasi-TMDPDF is then defined using Wz(
λnz

2
+~b⊥;L) in exactly the same way as that

for the un-subtracted TMDPDF:

f̃(λ, b⊥, µ, ζz) = (268)

lim
L→∞

〈P |ψ̄
(
λnz

2
+~b⊥

)
γzWz(

λnz

2
+~b⊥;L)ψ

(
−λnz

2

)
|P 〉

√
ZE(2L, b⊥, µ)

,

where ZE(2L, b⊥, µ) is a flat rectangular Euclidean Wilson-loop along the nz direction with

length 2L and width b⊥:

ZE(2L, b⊥, µ) =
1

Nc
Tr〈0|W⊥Wz(~b⊥; 2L)|0〉 . (269)

The staple-shaped operators for LFWFs and quasi-LFWFs are the same as those for TMD-

PDFs and quasi-TMDPDFs, and can be found in Sec. V.D.
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FIG. 1: Phenomenological parton distributions obtained by the CTEQ-TEA collaboration (CT18) from

fits to global high-energy scattering data (Hou et al., 2019), where 0 ≤ x ≤ 1 is the fraction of the proton’s

infinite momentum carried in a parton.
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FIG. 2: Deep-inelastic scattering in which partons are probed in the proton.
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FIG. 3: Wave function amplitudes of a meson in the ’t Hooft model at different external

momenta (Jia et al., 2017).
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FIG. 5: One-loop diagrams for the quasi-PDF in a free quark state in the Feynman gauge. The conjugate

diagrams of (b), (c), (e), (f) do contribute but are not shown here.
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FIG. 6: The line segment in the z-direction in the frame of a large-momentum hadron. Through Lorentz

boost, it is equivalent to a line segment of length ∼ γz close to the light-one in the hadron state of zero

momentum. Here γz/
√
2 is the length of projection of the boosted line segment to the light-cone direction

n. Thus, we call the dimensionless variable λ = zP z ∼ γzM as the quasi light-cone distance.
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FIG. 8: One-loop vertex corrections to the “heavy-to-gluon” current.
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FIG. 9: The ladder decomposition of the quasi-PDF (left). The upper 2PI kernel H contains the operator

defining the quasi-PDF, and external two legs at the bottom of the diagram is the external large P z state.

The kernels H and K are shown on the right.
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FIG. 10: Parton interpretation of the GPDs in different kinematic regions.
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FIG. 11: The space-time picture of TMDPDF for DY and SIDIS process. The circled crosses denote the

quark-link vertices. Notice that the vertices are placed at λn+~b⊥ and 0 which gives the same result as the

symmetric choice in Eq. (165).
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FIG. 12: The soft function S(b⊥, µ, δ
+, δ−) as space-time Wilson-loop arising in the factorization of DY

and SIDIS process.
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FIG. 13: The quasi-TMDPDF (upper) and the Euclidean Wilson-loop ZE(2L, b⊥, µ, 0) (lower). In the

figure, A = λnz/2 +~b⊥/2, B = −λnz/2−~b⊥/2 and C = Lnz +~b⊥. The crosses denote the quark-link

vertices.
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FIG. 14: The Wilson-loop W showing a pair of quark and antiquark scattering at t = 0.
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FIG. 15: The reduced diagram for the large-momentum form factor F of a meson. Two H denote the two

hard cores separated in space by ~b⊥, C are collinear sub-diagrams and S denotes the soft sub-diagram.
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FIG. 16: Conventional smearing (left) versus momentum smearing (right) (Bali et al., 2016):

Conventional smearing has small overlap with high momentum state. Momentum smearing shifts

momentum to peak at nonzero value in momentum space.
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FIG. 17: Proton isovector quark PDF (Alexandrou et al., 2018a,b): The unpolarized PDF with P z from

0.82 to 1.4 GeV and the transversity PDF with P z = 1.4 GeV are in upper and lower figures.

CJ15 (Accardi et al., 2016a), ABMP16 (Alekhin et al., 2017), and NNPDF3.1 (Ball et al., 2017) are global

fits. SIDIS is global fit and SIDIS+glattice
T

is global fit with lattice constraint on tensor charge

glattice
T

(Lin et al., 2018b).
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FIG. 18: The proton isovector quark helicity PDF (P z = 3.0 GeV) (Lin et al., 2018a) with red band for

statistic error and grey band for statistic and systematic errors. NNPDF1.1pol (Nocera et al., 2014) and

JAM17 (Ethier et al., 2017) are global fits.
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FIG. 19: Pion valence quark PDFs in various approach: Compare the results of pesudo-PDF [Reduced

pseudo-ITD (Joó et al., 2019b)], quasi-PDF [quasi-PDF-1 (Izubuchi et al., 2019) and

quasi-PDF-2 (Zhang et al., 2019a)], and the current-current correlator approach [LCSs (Sufian et al.,

2019)].
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FIG. 20: Total gluon helicity (Yang et al., 2017): The results are extrapolated to the physical pion mass

and continuum as a function of the proton momentum p3 on all the five ensembles indicated by different

colors of the data points.
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FIG. 21: Pion DA (Zhang et al., 2019c): Comparison of φπ (Lat LaMET) to previous determinations in

the literature. Lat Mom 1 and 2 are parameterized fits to the lattice moments (Braun et al., 2015); DSE is

Dyson-Schwinger equation calculations (Chang et al., 2013); Asymp is the asymptotic form 6x(1 − x);

Belle is a fit to the Belle data (Agaev et al., 2012); LFCQM is light-front constituent quark

model (de Melo et al., 2016).

184



-1 -0.5 0 0.5 1

0

1

2

3

FIG. 22: Proton unpolarized isovector quark GPD (Alexandrou et al., 2020d) H(x, ξ, t) for t = −0.69 GeV2

extracted from quasi-GPDs at P3 = 1.25 GeV, which is compared to the unpolarized PDF f1(x).
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FIG. 23: The Collins-Soper kernel from the first exploratory calculation on a quenched

lattice (Shanahan et al., 2020). The results are obtained by using fits to the MS unsubtracted

quasi-TMDPDFs with Hermite and Bernstein polynomial bases. The solid and dashed lines are the

perturbative predictions (Li and Zhu, 2017; Vladimirov, 2018), which is hit the Landau pole near

b⊥ ∼ 0.25 fm. The background shading density is proportional to a naive estimate of the power corrections

1/(b⊥P
z) + b⊥/L.
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FIG. 24: The reduced soft factor as a function of b⊥ extracted from the light-meson form factor in

Sec. V (Zhang et al., 2020a). The results are obtained with quasi-TMD DAs at different pion momentum

P z, with perturbative matching and power corrections ignored. The dashed line is one-loop prediction in

perturbation theory, which hits the Landau pole at b⊥ ∼ 0.3 fm, and the grey band is the error by varying

µ by a factor of 1/
√
2 and

√
2.
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