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Abstract

Heavy-ion collisions at BNL’s Relativistic Heavy-Ion Collider (RHIC) and

CERN’s Large Hadron Collider (LHC) provide strong evidence for the for-

mation of a quark-gluon plasma, with temperatures extracted from rela-

tivistic viscous hydrodynamic simulations shown to be well above the tran-

sition temperature from hadron matter. Outstanding problems in QCD

include how the strongly correlated quark-gluon matter forms in a heavy-

ion collision, its properties off-equilibrium, and the thermalization process

in the plasma. We review here the theoretical progress in this field in

weak coupling QCD effective field theories and in strong coupling holo-

graphic approaches based on gauge-gravity duality. We outline the inter-

disciplinary connections of different stages of the thermalization process

to non-equilibrium dynamics in other systems across energy scales rang-

ing from inflationary cosmology, to strong field QED, to ultracold atomic

gases, with emphasis on the universal dynamics of non-thermal and hy-

drodynamic attractors. We survey measurements in heavy-ion collisions

that are sensitive to the early non-equilibrium stages of the collision and

discuss the potential for future measurements. We summarize the current

state-of-the art in thermalization studies and identify promising avenues

for further progress.
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I. BIG PICTURE QUESTIONS AND OUTLINE OF THE REVIEW

Ultrarelativistic collisions of heavy nuclei at the Relativistic Heavy-Ion Collider (RHIC)

and the Large Hadron Collider (LHC) produce several thousand particles in each event

generating the hottest and densest matter on Earth (Adams et al., 2005; Adcox et al., 2005;

Alver et al., 2007; Arsene et al., 2005; Foka and Janik, 2016a,b; Muller et al., 2012; Roland

et al., 2014). At the highest LHC energies, temperatures of the order of five trillion Kelvin

are attained (Adam et al., 2016). Temperatures on this scale only previously existed at

the earliest instants of our universe, a 10th of a microsecond after the Big Bang. Lattice

gauge theory studies (Bazavov et al., 2019b) show strongly interacting matter at these

temperatures to be well over a crossover temperature from hadron matter to a regime where

the degrees of freedom describing bulk thermodynamic quantities are the fundamental quark

and gluon fields of Quantum Chromodynamics (QCD). The results of experimental and

theoretical studies indicate that shortly after the heavy-ion collision, the produced quark-

gluon fields form a strongly correlated state of matter, widely known as the quark-gluon

plasma (QGP) (Shuryak, 1980).

The heavy-ion experiments at RHIC and LHC therefore provide us with a unique oppor-

tunity to study terrestrially the spacetime evolution of this non-Abelian QGP. A striking

finding from the RHIC and LHC experiments is that the experimental data are consistent

with a description of the QGP as a nearly perfect fluid with a very low value of shear viscos-

ity to entropy density ratio of η/s ≤ 0.2 (in natural units) (Romatschke and Romatschke,

2019). These values are very close to η/s = 1/(4π), a universal property of a class of gauge

theories with a large number of degrees of freedom at infinite coupling (Buchel and Liu,

2004; Iqbal and Liu, 2009; Kovtun et al., 2005; Policastro et al., 2001) and described in

terms of a dual gravity picture (Maldacena, 1998).

While our understanding of the thermal properties of QGP matter and the flow of the

nearly perfect fluid has developed significantly, progress in theoretical descriptions of the
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early stages of heavy-ion collisions is relatively recent. In particular, there is a growing

realization that the far-from-equilibrium dynamics that characterizes early time physics

is extremely important in understanding collective phenomena in the heavy-ion experi-

ments (Busza et al., 2018; Mrówczyński et al., 2017; Schlichting and Teaney, 2019). This

review summarizes our perspective on the theoretical and phenomenological progress in this

active research area and places these developments in a wider interdisciplinary context.

The QCD thermalization process represents an initial value problem in quantum field the-

ory (QFT). It requires understanding the many-body correlations in the colliding hadrons,

how such correlations influence multi-particle production as the collision occurs, and the

subsequent effective loss of information of these many-body correlations during the ther-

malization process of the matter produced. While von Neumann entropy is conserved in

the unitary quantum evolution of a nuclear collision in isolation, observables of interest may

nevertheless approach (local) thermal equilibrium. The characteristic time scales for the

corresponding effective loss of information and the extent to which the dynamics finally

leads to an approach to (local) thermal equilibrium for key observables is the central topic

of this review.

In particular, we will focus on the following key questions prompted by the dynamics of

each stage of the spacetime evolution of quark-gluon matter in heavy-ion collisions1:

• What are the many-body correlations of strongly interacting matter in the colliding

nuclei?

The colliding nuclei produce the initial state for the subsequent thermalization pro-

cess. In principle, there can be different thermalization scenarios for different initial

conditions. Though many details of the quantum evolution are lost rather quickly,

it is crucial to classify the range of initial conditions (such as underoccupied versus

overoccupied) leading to a certain class of dynamical processes.

In QCD, a proton (or any other nucleus) must be viewed as a collection of short or

long lived configurations of partons (quarks, antiquarks, and gluons), where each con-

figuration carries the quantum numbers of the proton. When the proton or nucleus is

boosted to high energies, short lived configurations typically containing large numbers

1 For a complementary perspective on open questions in heavy-ion collisions, we refer the reader to

Ref. (Busza et al., 2018).
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of partons live much longer due to time dilation. It is therefore more likely that a

probe of the hadron at high energies will scatter off such many-body configurations of

partons and their decay dominate the physics of multi-particle production in ultrarel-

ativistic nuclear collisions. How precisely multi-particle production occurs requires a

deep knowledge of the spatial and momentum distributions of partons in the boosted

nuclei, the nature of their correlations, and how these correlations change with system

size and with collision energy.

• What is the physics of the first yoctosecond (10−24 seconds) of the collision?

Parton configurations in a boosted nucleus have their momenta distributed between

a few fast modes and more plentiful soft modes. In a heavy-ion collision, these fast

modes in each of the nuclei interact relatively weakly with the other nucleus and

populate the “fragmentation regions” corresponding to polar angles very close to the

beam axes (Van Hove and Pokorski, 1975). The slower degrees of freedom interact

more strongly with each other and produce strongly interacting gluon matter outside

the fragmentation regions.

This spacetime picture of nuclear collisions was developed in a seminal paper by

Bjorken to describe the subsequent hydrodynamic flow of the quark-gluon plasma (Bjorken,

1983), albeit he did not address how thermalization occurs in this scenario. An in-

teresting question in this regard is whether the strong interactions of the soft modes

with each other is due to strong coupling or whether it can be due to the large occu-

pancy of these soft modes. The answer to this question may also influence the degree

of transparency of the fast modes, in particular a “limiting fragmentation” scaling

phenomenon seen in data.

A spacetime scenario in which both soft and hard modes in the nuclei interact

very strongly and generate hydrodynamic flow was suggested by Landau. It is

conceivable that there is a transition between these two spacetime pictures with

energy (Casalderrey-Solana et al., 2013; Gelis et al., 2006b); if so, can they be distin-

guished by phenomena such as limiting fragmentation (Gonçalves et al., 2019)?

• Is there a unifying theoretical description of quark-gluon matter off-equilibrium?

The quark-gluon matter formed in the first few yoctoseconds of the heavy-ion collision
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is very far from equilibrium. A key question in its description is whether weak and

strong coupling extrapolations to realistic values can lead to similar phenomenology.

A potentially rich line of inquiry is to isolate what features of the non-equilibrium evo-

lution of strongly correlated/coupled quark-gluon matter are universal. One example

is universal dynamics in the approach to local thermal equilibrium governed by viscous

hydrodynamics. Another example is universality in time dependence across a class of

non-equilibrium states for certain observables. In a weak coupling scenario, at high oc-

cupancies, these include far-from-equilibrium attractors associated with non-thermal

fixed points (Berges et al., 2014b,c, 2008a).

Far-off-equilibrium hydrodynamic attractors are observed to emerge in both strong and

weak coupling (Heller and Spalinski, 2015; Romatschke, 2018). A related important

set of questions concerns the use of effective theories like hydrodynamics for systems

far away from equilibrium. Yet another line of inquiry is to determine how features

of the dynamics evolve between the weakly coupled and strongly coupled regimes.

An intriguing possibility to consider is whether the topological properties of strongly

correlated systems may help provide unifying descriptions at both weak and strong

coupling.

• Can we cleanly isolate signatures of quark-gluon matter off-equilibrium?

If matter in bulk locally equilibrates in heavy-ion collisions, the only information of the

non-equilibrium evolution that survives is what is imprinted as initial conditions for

its subsequent hydrodynamic evolution. The exceptions are electroweak and so-called

“hard probes”; both of these are sensitive to the full history of the spacetime evolution

of QCD matter.

A significant development in recent years is the vastly improved ability of the RHIC

and LHC experiments to perform “event engineering” whereby final states can be

studied by varying the “control parameters” corresponding to nuclear size, centrality

of collision impact and final state multiplicities (triggering thereby on typical versus

rare event configurations) across a wide range in energy and system size (Schukraft

et al., 2013). A challenging question is whether we can constrain the current state-

of-the-art computational techniques to accurately reflect the systematics of this event
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engineering, and further, to use these to isolate empirically the out-of-equilibrium

dynamics?

• Interdisciplinary connections

The study of the out-of-equilibrium dynamics of strongly correlated systems is an im-

portant topic of significant contemporary interest in a number of sub-fields of physics.

As we will discuss, the ideas and methods outlined in this review have significant

overlap with these fields. Can one exploit these interdisciplinary connections to make

progress?

We will address the outstanding questions listed above in two ab initio theoretical ap-

proaches to the problem of thermalization in QCD. One approach, the Color Glass Conden-

sate Effective Field Theory (CGC EFT), is applicable at very high energies corresponding

to a regime of very weak coupling αS � 1 and very high gluon occupancies fg satisfying

αSfg ∼ 1. This regime of weak coupling and high occupancies in QCD is characterized by

a large emergent “saturation” scale much larger than the intrinsic non-perturbative scales

corresponding to color confinement and chiral symmetry breaking.

The CGC EFT employs weak coupling many-body methods to separate (or factorize)

these soft non-perturbative modes from the harder modes on the order of the saturation

scale. Specifically, the requirement that physics be independent of the scale separation

between soft and hard modes leads to renormalization group equations that describe how

such non-perturbative information provided as an input at a given energy scale changes as

it evolves. As one approaches asymptotic energies, the factorization of the hard and soft

scales becomes increasingly robust and many of the properties of quark-gluon matter can be

computed systematically. The quark-gluon matter in this limit is called the Glasma (Gelis

and Venugopalan, 2006c; Lappi and McLerran, 2006).

The other ab initio approach to thermalization is in the limit of strong ’t Hooft coupling

of αSNc →∞, as the number of colors Nc →∞. In this limit, holographic approaches based

on gauge-gravity duality (Gubser et al., 1998a; Maldacena, 1998; Witten, 1998a) are robust

and can be used to obtain exact results in non-Abelian gauge theories, the best understood

example being N = 4 superconformal Yang-Mills theory.

Neither of these theoretical approaches to the problem of thermalization are directly ap-

plicable to real world heavy-ion collisions at RHIC and LHC energies, where the relevant
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couplings are likely neither particularly weak nor infinitely strong. Thus data-theory com-

parisons rely on phenomenological descriptions characterized by extrapolations of ab initio

approaches well beyond their strict regimes of validity. By anchoring such phenomenological

models in fundamental theory in well controlled limits, their success or failure in compar-

isons to data can then be traced to a particular set of assumptions in the extrapolations.

We will clarify throughout the review whenever such phenomenological extrapolations are

made.

We will begin in Section II by discussing the structure of matter within the colliding

hadrons and heavy nuclei at high energies. After a brief introduction to QCD, and the

associated parton picture of hadrons at high energies, we will focus our attention on what

happens when the phase space density of partons in the wavefunctions of the colliding

hadrons becomes large. Driving this physics is an emergent energy-dependent close packing

“saturation” scale QS (Gribov et al., 1983), which grows with energy and nuclear size,

allowing for a systematic weak coupling description of the properties of saturated partons

in high energy QCD. Specifically, we will discuss the CGC EFT, wherein the high energy

hadron is described as a coherent state of static color sources and dynamical gluon fields. The

saturation scale is manifest in the CGC EFT, allowing one to describe strongly correlated

many-body parton correlations in the hadron wavefunctions (Gelis et al., 2010; Kovchegov

and Levin, 2012).

Non-perturbative soft modes of the high energy nuclei, their color charge distributions,

and many-body correlations thereof, are represented by a density matrix at a given en-

ergy scale much smaller than those of the hard weakly coupled modes. While this non-

perturbative density matrix has to be parametrized at the initial scale by physically plausible

assumptions, a renormalization group (RG) framework (Iancu et al., 2001; Jalilian-Marian

et al., 1998b) allows one to study systematically the energy evolution of parton many-body

correlations as the hadron is boosted to higher energies.

In Section III, we will outline the problem of multi-particle production in quantum field

theory in the presence of strong fields and discuss how this leads to a first principles descrip-

tion of the very early time evolution of the Glasma. Inclusive quantities such as multiplicities

or energy densities, and their spacetime correlations, can be computed systematically in the

Glasma in powers of the coupling αS � 1 at sufficiently high energy. At leading order in

this power counting, the Glasma fields are highly occupied classical fields, with magnitude
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1/αS.

At next-to-leading order (NLO), we discuss how quantum fluctuations, co-moving with

the colliding nuclei, can be absorbed into the density matrices describing their non-

perturbative many-body color charge distributions, as discussed in the previous section. In

contrast, non-comoving quantum fluctuations produced after the collision in the Glasma are

unstable and display quasi-exponential dynamical growth (Romatschke and Venugopalan,

2006a). We will describe how the physics of these unstable modes at very early proper

times τ . 1
QS

log2(1/αS) is captured in a classical-statistical approximation of the quantum

evolution with given quantum initial conditions.

Section IV describes the non-linear time evolution of far-from-equilibrium quark gluon

matter for weak couplings relevant at very high energies. The range of validity of classical-

statistical field theory descriptions for the evolution is discussed in the terms of the two-

particle-irreducible (2PI) quantum effective action, which motivates fully 3+1-dimensional

numerical simulations of the expanding Glasma fields.

The lattice field theory simulations demonstrate the emergence of a non-thermal attrac-

tor described by a self-similar gluon distribution, whose dependence on momentum, and

an overall cooling rate, are characterized by universal numbers independent of the initial

conditions. Because the numerical simulations correctly describe dynamics in the infrared,

the attractor solution helps to identify the right effective kinetic theory amongst several

competing options.

Kinetic theory increasingly captures the relevant dynamics of the thermalization process

as the system expands and cools. In Section V, we discuss the leading order kinetic theory

framework, progressively from elastic 2 ↔ 2 scatterings, to effective collinear 1 ↔ 2 pro-

cesses, taking special note of interference and plasma instability effects. Phenomenological

extrapolations to realistic couplings can also be explored in the language of hydrodynamic

attractors, where the dependence on the coupling is replaced with the kinematic viscos-

ity η/s. For values of the kinematic viscosity extracted from hydrodynamic simulations of

heavy-ion collision, reasonable predictions are obtained for entropy production (Giacalone

et al., 2019), as well as hydrodynamic and chemical equilibration times (Kurkela and Mazeli-

auskas, 2019a; Kurkela et al., 2019b).

In Section VI, we provide an overview of holography based on strong coupling approaches

to thermalization in gauge theories. Our focus is on the conceptual features, universal mech-

12



anisms, and predictions from these studies. In particular, ab initio holographic computations

predict the applicability of hydrodynamics over a time scale set by the local energy den-

sity, when the expanding matter in heavy-ion collisions settings is characterized by a large

spatial anisotropy in its energy-momentum tensor (Chesler and Yaffe, 2010, 2011; Heller

et al., 2012b). This is at variance with the common presumption of local thermal equilib-

rium in applying hydrodynamics; in a paradigm shift, the transition to hydrodynamic flow

is now referred to as hydrodynamization rather than thermalization (Casalderrey-Solana

et al., 2014b).

We will discuss, in particular, phenomenological attempts to apply these ideas to model

heavy-ion collisions in the context of 1+1-dimensional boost invariant flow where hydro-

dynamization and hydrodynamic attractors were first discovered. We will also cover work

on more realistic holographic descriptions of heavy-ion collisions that model confinement,

the breaking of conformal invariance, the running of the coupling, and large Nc suppressed

non-local correlations.

Section VII is devoted to a discussion of signatures of non-equilibrium dynamics in heavy-

ion data. While electromagnetic and high transverse momentum strongly interacting final

states are sensitive to early time dynamics, significant contributions to their rates accrue

from all stages of the spacetime evolution of the system. Measurements of long range

correlations amongst high momentum final states, offer promise in isolating the early time

non-equilibrium dynamics of the Glasma from the late stage hydrodynamic flow. This can

be achieved by “event engineering” the response of these final states to variations in energy

and system size. We will also discuss how bulk observables, in combination with these final

states, can constrain thermalization scenarios.

A striking example of the role of topology in heavy-ion collisions is the Chiral Magnetic

Effect (CME) (Kharzeev et al., 2008) corresponding to a vector current along the direction of

an external magnetic field that is induced by topological transitions. The CME is primarily

an early time effect; in this case as well, event engineering of multi-particle correlations offers

the possibility of uncovering its role.

In Section VIII, we will address the question of the interdisciplinary connections of the

thermalization process in heavy-ion collisions to that of other strongly correlated systems

across energy scales. A striking similarity of strongly correlated flow in heavy-ion collisions

to that of unitary Fermi gases was already noted shortly after the discovery of the QGP
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perfect fluid. The Glasma likewise shares common features with other overoccupied systems

across energy scales, from inflationary dynamics in the early universe, to a quantum portrait

of black holes as highly occupied graviton states, to those of overoccupied ultracold Bose

gases.

A concrete example of the influence of interdisciplinary ideas is that of the turbulent

thermalization process underlying the non-thermal attractor in the Glasma, which is widely

discussed in the context of reheating in the early universe following inflation (Berges et al.,

2008a; Micha and Tkachev, 2004). The latter in turn is in the perturbative high-momentum

regime a relativistic generalization of weak wave turbulence in fluids (Zakharov et al., 2012).

In the non-perturbative infrared regime, the Glasma attractor is nearly identical to that

of overoccupied cold atomic gases, sharing the same scaling functions and exponents in

a wide spectral range (Berges et al., 2015b). This is suggestive of a classification of far-

from-equilibrium systems into universality classes analogous to those for critical phenomena

close to equilibrium (Hohenberg and Halperin, 1977). An exciting development with cross-

disciplinary potential is the use of state-of-the-art cold atom experiments to provide deep

insight into such universal dynamics (Erne et al., 2018b; Glidden et al., 2020; Prüfer et al.,

2018).

The search for effective theories far from equilibrium is also a major research direction in

the theory of complex systems ranging from understanding entanglement, information loss

and thermalization of closed quantum many-body systems, with insights to be gained from

“tabletop” atomic and condensed matter systems (Eisert et al., 2015). On the other end of

the energy scale, are the connections to black holes and string theory with respect to general

questions regarding the scrambling of information (Lashkari et al., 2013; Maldacena et al.,

2016) and the unitary dynamics underlying black hole formation and evaporation (Almheiri

et al., 2019, 2020b; Hawking, 1974, 1976; Page, 1993; Penington, 2019).

Finally, the role of topology in heavy-ion collisions has interdisciplinary connections in the

chiral magnetic effect which is now observed in condensed matter systems (Li and Kharzeev,

2016). Continual advances in laser technology also offer great promise in the precision study

of anomalous currents off-equilibrium.

We end the review in Section IX with a brief summary and outlook towards future

developments in our understanding of thermalization in QCD. As the outline suggests, ther-

malization in QCD is a rich field with many research directions and we have had to make
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choices in our presentation due to space limitations. An important topic we do not address

is the off-equilibrium dynamics of QCD matter in the vicinity of a critical point (Akamatsu

et al., 2019; Bluhm et al., 2020; Bzdak et al., 2020). Another is the related topic of hydro-

dynamic fluctuations (Akamatsu et al., 2017; An et al., 2019). Other noteworthy omissions

in our presentation include the discussion of holographic deep inelastic scattering (Hatta

et al., 2008; Polchinski and Strassler, 2003; Shuryak and Zahed, 2018), holographic hard

probes (Chesler et al., 2009a,b, 2013; Gubser, 2006; Herzog et al., 2006) and features of lin-

ear response theory (Herzog and Son, 2003; Kovtun and Starinets, 2005; Son and Starinets,

2002). Some aspects of holographic approaches that we omit or treat only partially are

discussed in (Casalderrey-Solana et al., 2014b; Chesler and van der Schee, 2015; DeWolfe

et al., 2014; Florkowski et al., 2018a; Heller, 2016).

II. HADRON STRUCTURE AT HIGH ENERGIES

The initial value problem of the thermalization process in hadron-hadron collisions re-

quires a deep understanding of the structure of QCD matter in the wavefunctions of the col-

liding hadrons. The spacetime picture since the early days of QCD is that the highly Lorentz

contracted large x valence partons in the ultrarelativistic hadron wavefunctions go through

unscathed in the collision, while their accompanying small x “fur coat of wee-parton vac-

uum fluctuations” (Bjorken, 1976) interacts strongly to form hot and dense matter (Bjorken,

1983). The wee parton phase space distributions evolve with energy and nuclear size; their

properties determine key features of the bulk properties of the matter produced after the

collision.

In this section, after a brief introduction to QCD and the parton model of hadrons at high

energies, we will discuss significant developments in the description of hadron wavefunction

in the CGC EFT. In particular, we will motivate how the semi-hard saturation scale QS

arises in the nuclear wavefunctions, which justifies their description as highly occupied gluon

shockwaves. As the largest scale in the problem, it not only sets the scale for many-body

correlations in these shockwaves, and in the Glasma matter produced after the collision,

but subsequently also determines the thermalization time and the initial temperature of the

quark-gluon plasma.
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A. Quantum Chromodynamics

Quantum Chromodynamics (QCD), the modern theory of the strong force in nature, is

a nearly perfect theory, the only free parameters being the quark masses (Wilczek, 2000).

The Lagrangian of the theory can be written compactly as

LQCD = −1

4
F a
µνF

µν,a +
∑
f

Ψ̄f
i (iγµDµ,ij −mfδij) Ψf

j . (1)

Here F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν is the QCD field strength tensor for the color gauge

fields Aaµ that live in the adjoint representation of SU(3), with a = 1, · · · , 8 and fabc are

the structure constants of the gauge group. The quark fields live in the fundamental rep-

resentation of SU(3) and are labeled by their color and flavor indices Ψf
i where the color

index i = 1, · · · , 3 and f denotes the flavors of quarks with masses mf . Finally, the Dirac

matrix γµ is contracted with the covariant derivative Dµ,ij = ∂µδij + igtaijA
a
µ, with taij being

the generators of SU(3) in the fundamental representation.

The theory is rich in symmetry. The structure of the Lagrangian is dictated by the

invariance of the quark and gluon fields under local SU(3) color gauge transformations. In

addition, for massless quarks, the theory has a global chiral SU(3)L × SU(3)R symmetry,

global baryon number U(1)V and axial charge U(1)A symmetries, and the quark and gluon

fields are invariant under scale transformations. Not least, the Lagrangian is invariant under

discrete parity, charge and time reversal symmetries.

All of these symmetries, except that of local SU(3) color, are broken by vacuum/quantum

effects that give rise to all the emergent phenomena in the theory, such as confinement,

asymptotic freedom, quantum anomalies and the spontaneous breaking of chiral symmetry.

Because QCD is a confining theory, it is not analytically tractable in general and numerical

methods are essential to uncover its properties. Euclidean lattice Monte Carlo methods can

be applied to compute, with good accuracy, “static” properties of the theory such as the

mass spectrum of hadrons, magnetic moments, and thermodynamic properties of QCD at

finite temperature (Detmold et al., 2019; Lin et al., 2018).

These methods are however very limited in determining dynamical “real time” features

of theory because of the contributions of a large number of paths to the QCD path integral

in Minkowski spacetime. There are promising approaches to surmount this difficulty such

as steepest descent Lefshetz thimble methods but they are currently only applicable to
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problems in 1+1-dimensions (Alexandru et al., 2017). Likewise, quantum computing offers

an alternative paradigm to compute real time dynamics, but its applicability to QCD likely

remains far in the future (Preskill, 2018).

One should note that the production of high transverse momentum and massive particles

(jets, heavy quarkonia being two notable examples) can be computed with high precision in

perturbative QCD (pQCD) (Collins et al., 1989). This is because these processes correspond

to very short transverse distances and asymptotic freedom tells us that the QCD coupling

αS is weak at these scales.

B. QCD at small x and high parton densities

A great success of pQCD is the QCD parton model (Bjorken and Paschos, 1969), wherein

the complex dynamics of quark and gluon fields in hadrons can, at high energies and large

momentum resolutions, be viewed as that of a weakly interacting gas of partons (single-

particle quark, antiquark and gluon states). The cleanest way to access this sub-nucleon

structure is in the deeply inelastic scattering (DIS) of electrons or other leptons off nucleons

and nuclei, wherein a virtual photon emitted by the electron strikes a quark or antiquark

inside the hadron.

For the thermalization process of interest in this review, the asymptotic high energy (or

“Regge”) limit of DIS is most relevant. This limit corresponds to the Bjorken DIS variable

xBj ∼ Q2/s → 0 where Q2 is the squared four-momentum transfer and s is the squared

center-of-mass energy. In the parton model, xBj ≈ x, where x is the light cone fraction of

the momentum of the hadron carried by the struck parton2. At small x, or equivalently at

high energies, the number of partons in the hadron proliferate rapidly, as first observed in

DIS experiments at the HERA collider in Germany (Abt et al., 1993; Ahmed et al., 1995;

Derrick et al., 1993, 1995; Lai et al., 1995; Martin et al., 1994). This growth is consistent

with the predictions of the pQCD DGLAP (Altarelli and Parisi, 1977; Dokshitzer, 1977;

Gribov and Lipatov, 1972; Lipatov, 1975) evolution equations.

The mathematical basis of the parton model in QCD follows from the observation that if

one picks a lightcone3 gauge A+ = 0, and quantizes the quark and gluon fields of QCD along

2 In hadron-hadron collisions, it is more appropriate to speak in terms of momentum fractions, so we shall

henceforth use x instead of xBj.
3 Lightcone coordinates are k± = (k0 ± k3)/

√
2 and lightcone fields are defined as A± = (A0 ±Az)/

√
2; we

17



a light front surface (say, x+ = 0), the Hamiltonian of free quark and gluon fields shares

the same vacuum4 as the fully interacting theory (Brodsky et al., 1998). This allows one to

construct the hadron wavefunction as a linear combination of a complete set of multi-parton

eigenstates, each of which is an eigenstate of the free QCD Hamiltonian.

In this lightcone framework, the parton distribution functions measured in DIS exper-

iments can be interpreted as one-body states of quarks and gluons that carry a lightcone

momentum fraction x = k+/P+, where k+ is the parton’s lightcone momentum and P+ the

lightcone momentum of the hadron. As first argued in (Gribov et al., 1983; Mueller and

Qiu, 1986), two-body “higher twist” gluon distributions, in a lightcone operator product

expansion5 (OPE), grow as the square (xGA(x,Q2))2 of the leading twist gluon distribution.

For a fixed Q2, these two-body distributions become as large as the leading twist one-body

distribution as x→ 0.

Importantly, the net effect of such many-body contributions6 is opposite to that of the

leading term, softening the growth in the gluon distribution. When the gluon phase space

density is maximal, of order 1/αS, all n-body lightcone distributions contribute equally. This

saturation of gluon distributions in a nucleus of radius RA, corresponds to the generation

of the saturation scale QS, where parametrically, for Q2 = Q2
S the maximal occupancy is

equated to the gluon phase space density as

1

αS(QS)
=

xGA(x,Q2
S)

2(N2
c − 1)πR2

AQ
2
S

. (2)

Fig. 1 illustrates the gluon saturation phenomenon and the interpretation of QS as the

emergent “close packing” scale.

C. Effective Field Theory for high parton densities: the Color Glass Condensate

Since the usual formalism of pQCD relies on two-body and higher twist distributions being

small, an alternative framework is necessary to understand the physics of gluon saturation

and the emergence of the saturation scale in the nuclear wavefunction at high energies.

will work in the metric g±,∓ = 1; gi,j = −1, where i, j represent the two transverse coordinates.
4 In lightcone quantization, this argument requires a careful treatment of k+ = 0 vacuum modes (Nakanishi

and Yamawaki, 1977). For a perturbative treatment of lightcone wavefunctions, it may be sufficient to

project out such modes (Collins, 2018; Fitzpatrick et al., 2018).
5 In OPE language, these higher twist contributions are suppressed by powers of 1/Q2.
6 These include the screening of bremsstrahlung gluons by real and virtual gluons, and the recombination

of softer gluons into harder gluons. 18



Fortuitously, the problem of high parton densities can be formulated as a classical effective

field theory on the light front, which as noted, greatly simplifies the problem of heavy-ion

collisions at high energies.

To understand this better, we will outline here an explicit construction performed for

nuclei with large atomic number A � 1 (McLerran and Venugopalan, 1994a,b,c). An

important ingredient in this construction (in the infinite momentum frame (IMF) P+ →∞ of

the nucleus) is a Born-Oppenheimer separation in time scales between the Lorentz contracted

large x (k+ ∼ P+) “valence” modes and the noted “wee fur” of small x (k+ � P+) gluons

and “sea” quark-antiquark pairs. For partons of transverse momentum k⊥, their lightcone

lifetimes are given by

τwee =
1

k−
=

2k+

k2
⊥
≡ 2xP+

k2
⊥

and

τvalence ≈
2P+

k2
⊥
−→ τwee � τvalence , (3)

suggesting that the valence parton modes are static over the times scales over which wee

modes are probed. However one cannot integrate out the valence sources completely out

of the theory because they are sources of color charge for wee partons and must couple to

these in a gauge invariant manner.

Note further that since wee partons have large lightcone wavelengths (λwee ∼ 1/k+ =

1/xP+), they can resolve a lot of color charge provided their transverse wavelength is not

too large. The inequality

λwee ∼
1

k+
≡ 1

xP+
� λvalence ≡

RAmN

P+
, (4)

where on the r.h.s the Lorentz contraction factor is P+/mN (with mN the nucleon mass),

suggests that wee partons with x� A−1/3 resolve partons7 all along the longitudinal extent

2RA ∼ A1/3 in units of the inverse nucleon mass.

These charges will be random since they are confined to different nucleons and do not

know about each other. A wee parton with momentum k⊥ resolves an area in the transverse

plane (∆x⊥)2 ∼ 1/k2
⊥. The number of valence partons it interacts simultaneously with is

k ≡ k(∆x⊥)2 =
Nvalence

πR2
A

(∆x⊥)2 , (5)

7 Wee partons with wavelength k⊥ ≤ ΛQCD ∼ 1 fm−1, see no color charge at all since color is confined (in

nucleons!) on this scale. It is only wee partons with k⊥ � ΛQCD that see color charges from different

nucleons along the longitudinal direction.
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which is proportional to A1/3 since Nvalence = 3 ·A in QCD. For a large nucleus with k � 1,

one can show for Nc ≥ 2 that the most likely color charge representation that the wee

gluons couple to is a higher dimensional classical representation of order
√
k (Jeon and

Venugopalan, 2004).

Thus wee partons couple to ρ, the classical color charge per unit transverse area of large

x sources. On average, since the charge distributions are random, the wee partons will

couple to zero charge; however, fluctuations locally can be large. These conditions can be

represented as

〈ρa(x⊥)〉 = 0 ; 〈ρa(x⊥)ρb(y⊥)〉 = µ2
A δ

ab δ(2)(x⊥ − y⊥) , (6)

where a = 1, · · · , N2
c − 1 and µ2

A = g2A
2πR2

A
is the color charge squared per unit area. For a

large nucleus (A � 1), µ2
A ∝ A1/3 � Λ2

QCD is a large scale. Since it is the largest scale in

the problem, αS(µ2
A)� 1. This result is remarkable because it provides a concrete example

suggesting that QCD at small x is a weakly coupled EFT wherein systematic computations

of its many-body properties are feasible.

We can now put together the kinematic and dynamical arguments above and write down

the generating functional for the small x effective action as

Z[j] =

∫
[dρ]WΛ+ [ρ]

{∫ Λ+

[dA]δ(A+)eiSΛ+ [A,ρ]−
∫
j·A∫ Λ+

[dA]δ(A+)eiSΛ+ [A,ρ]

}
. (7)

Here Λ+ denotes the longitudinal momentum scale that separates the static color sources

from the dynamical gauge fields and the gauge invariant weight functional WΛ+ [ρ] describes

the distribution of these sources at the scale Λ+, with its path integral over ρ normalized to

unity.

The CGC effective action can be written in terms of the sources ρ and the fields A as

SΛ+ [A, ρ] =
1

4

∫
d4xF a

µν F
µν,a

+
i

Nc

∫
d2x⊥dx

−δ(x−)Tr
(
ρU−∞,∞[A−]

)
. (8)

The first term here is the Yang-Mills action in the QCD Lagrangian given in Eq. (1). The

dynamics of wee gluons in the CGC is specified by this term. The second term8 denotes the

coupling of the wee gluon fields to the large x color charge densities ρ, which we have argued

8 This term can alternatively (Jalilian-Marian et al., 2001) be written as Tr (ρ log(U−∞,∞)).
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are static lightcone sources. Because the sources are eikonal sources along the lightcone, their

gauge invariant coupling to the wee fields is described by the path ordered exponential along

the lightcone time direction U−∞,∞ = P exp
(
ig
∫
dx+A−,aT a

)
. Physically, U corresponds to

the color rotation of the color sources in the background of wee gluon fields.

The weight functional in the effective action (for the Gaussian random color charges in

Eq. (6)), in what is now called the McLerran-Venugopalan (MV) model (Kovchegov, 1999;

McLerran and Venugopalan, 1994a,b), can equivalently be written as9

WΛ+ [ρ] = exp

(
−
∫
d2x⊥

ρa(x⊥)ρa(x⊥)

2µ2
A

)
. (9)

For each configuration of ρ’s in Eq. (7), the saddle point of the effective action is given

by the Yang-Mills (YM) equations:

DµF
µν,a = δν+ δ(x−) ρa(x⊥) , (10)

whose solution is the non-Abelian analog of the Weizäcker–Williams (WW) fields in classi-

cal electrodynamics. The chromo-electromagnetic gluon field strengths are singular on the

nuclear sheet of width ∆x− ∼ 2RmN/P
+ and zero (pure gauge) outside.

The gauge field solutions in lightcone gauge are given by A− = 0 and

Akcl =
1

ig
V (x−, x⊥)∇kV †(x−, x⊥) , (11)

where k = 1, 2 are the transverse coordinates and V = P exp
(∫ x−
−∞ dz

− 1
∇2
⊥
ρ̃(z−, x⊥)

)
. This

solution of the equations of motion requires path ordering of the sources in x− (Jalilian-

Marian et al., 1997; Kovchegov, 1999). Further, ρ̃ that appears in the solution is the color

charge density in Lorenz gauge ∂µA
′µ = 0, where one has the solution A′cl

+ = 1
∇2
⊥
ρ̃(x−, x⊥),

A′cl
− = A′cl⊥ = 0. In fact, since the Jacobian of the transformation [dρ] → [dρ̃] is sim-

ple (Jalilian-Marian et al., 1997), many-body distributions in lightcone gauge can be com-

puted in terms of color charges in Lorentz gauge, a natural choice from the analogy to WW

fields (Jackson, 1998).

As a simple example, the correlator of gauge fields in a large nucleus can be computed

analytically in the MV model by averaging the solution in Eq. (11) with the weight functional

W ,

〈AA〉 =

∫
[dρ̃]Acl.[ρ̃]Acl.[ρ̃]WΛ+ [ρ̃] . (12)

9 Sub-leading terms are discussed in (Dumitru and Petreska, 2012; Jeon and Venugopalan, 2005).
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This expression can be further Fourier decomposed to extract the number distribution of

wee gluons dN
d2k⊥

and expressed10 in terms of QS. Specifically, for the occupation number

φ = (2π)3

2(N2
c−1)

dN
πR2d2k⊥

, one obtains φ ∝ Q2
S

k2
⊥

for k⊥ � QS, However for k⊥ � QS, the distribution

is modified substantially from the WW distribution: φ ∼ 1
αS

log(QS/k⊥). This softened

infrared distribution in the CGC EFT provides a simple explanation of gluon saturation.

We are now in a position to understand the term Color Glass Condensate (CGC) (Gelis

et al., 2010; Iancu and Venugopalan, 2003) used to describe the ground state properties of a

hadron/nucleus at very high energies. Color is obvious since the state is comprised primarily

of a large number of gluons and sea quark-antiquark pairs. It is a glass because these small x

gluons and sea quarks are generated by random sources with lifetimes much longer than the

characteristic time scales of the scattering. This explains the structure of Eq. (7), where the

path integral over the curly brackets is performed first for fixed color charge distributions

and then averaged over an ensemble of such distributions. Finally, the state is a condensate

because gluons have occupation numbers φ ∼ 1/αS, with momenta peaked at k⊥ ∼ QS.

To take a specific example, consider the inclusive cross-section in the DIS scattering of a

virtual photon on the nucleus, illustrated in Fig. 2. In the CGC EFT, it is expressed as the

cross-section for a fixed distribution of sources convoluted with an ensemble of such sources:

〈dσ〉 =

∫
[Dρ̃A]WΛ+ [ρ̃A] dσ̂[ρ̃A] . (13)

Thus on the time scale t ∼ 1/Q of the probe, it resolves a condensate of gluons with a well-

defined number density of longitudinal modes down to x ∼ xBj � 1. Due to time dilation

(see Eq. (3)) the averaging over ρA with W takes place on much larger time scales. This

two-stage averaging process clarifies how one reconciles gauge invariance with the presence

of a colored condensate.

The CGC classical equations possess a “color memory” effect (Pate et al., 2017) corre-

sponding to the large gauge transformation V of a quark after interacting with the gluon

shockwave, generating a transverse momentum kick p⊥ ∼ QS to the quark that can be mea-

sured in DIS experiments (Ball et al., 2019). Remarkably, this is exactly analogous to the

inertial displacement of detectors after the passage of a gravitational shockwave (Strominger

and Zhiboedov, 2016). This gravitational memory is deeply related to asymptotic spacetime

10 In the MV model, this defines Q2
S = cAµ

2
A, where the coefficient cA is be determined numerically (Lappi,

2008).

22



symmetries and soft theorems in gravity and may also hold useful lessons for QCD11.

D. Renormalization group evolution in the CGC EFT

We discussed thus far a classical EFT for large nuclei and Gaussian sources where the

separation between fields (wee partons) and sources (valence sources) was picked randomly

to be at the momentum scale Λ+. Physical observables such as the inclusive cross-section

in Eq. (13) should not depend on Λ+. This invariance is the essence of the renormalization

group and we will sketch below how it is realized in the EFT; a detailed discussion can be

found in (Iancu and Venugopalan, 2003).

The important point to note is that real and virtual quantum fluctuations in the clas-

sical background field of the target, while apparently suppressed by O(αS) are actually

αS log(Λ+/Λ′+) ∼ O(1) from the phase space integration of these modes when Λ′+ =

Λ+e−1/αS (or equivalently, when xwee = xval. e
−1/αS). These large NLO contributions can

be absorbed into the form of the LO cross-section in Eq. (13) at the scale Λ′+ by redefining

the weight functional WΛ+ [ρ̃] → WΛ′+ [ρ̃′]. Here ρ̃′ = ρ̃ + δρ̃, is new color source density at

Λ′+ that incorporates the color charge density δρ̃ induced by quantum fluctuations between

Λ+ and Λ′+.

One can thus write

〈dσLO+NLO〉 =

∫
[Dρ̃A]WΛ′+ [ρ̃A] dσ̂LO[ρ̃A] , (14)

where

WΛ′+ [ρ̃A] =
(

1 + log(Λ+/Λ′
+

)HLLx

)
WΛ+[ρ̃A] , (15)

with the quantum fluctuations absorbed into we shall discuss further shortly.

Since the l.h.s of Eq. (14) should not depend on the arbitrary “factorization scale” Λ+,

the derivative of both l.h.s and r.h.s with respect to it should be zero. From Eq. (15), one

can therefore deduce the JIMWLK12 RG equation (Iancu et al., 2001; Jalilian-Marian et al.,

1998a,b)
∂

∂Y
WY [ρ̃A] = HLLxWY [ρ̃A] , (16)

11 An “infrared triangle” between asymptotic symmetries, memory and soft theorems in gravity (Strominger,

2017) also allows for an elegant interpretation of the infrared structure of QED (Bieri and Garfinkle, 2013;

Kapec et al., 2017). While color confinement implies such universal features do not apply to QCD in

general, an emergent QS � ΛQCD suggests that they may be applicable in the Regge limit.
12 JIMWLK is an acronym denoting the last names of the principal authors.23



where the JIMWLK Hamiltonian (Weigert, 2002)

HLLx =
1

2

∫
x⊥,y⊥

δ

δρ̃a(x⊥)
χab(x⊥, y⊥)[ρ̃]

δ

δρ̃b(y⊥)
, (17)

describes the evolution of the gauge invariant weight functional W with rapidity Y =

log(Λ+
0 /Λ

+) ≡ log(x0/x), once the non-perturbative initial conditions for W are specified at

an initial x0.

The Hamiltonian is computed in the CGC EFT, with χab(x⊥, y⊥)[ρ̃] = 〈δρ̃a(x⊥)δρ̃b(y⊥)〉ρ̃
the two-point function of induced charge densities13 in the classical background field of the

hadron. Note that with this computation of HLLx, the solution of Eq. (16) resums leading

logarithms αS log(x0/x) (LLx) to all orders in perturbative theory. Thus this powerful RG

procedure extends the accuracy of computations of the cross-section from 〈dσLO+NLO〉 →
〈dσLO+LLx〉.

The JIMWLK RG equation can equivalently be expressed as a hierarchy of equations (the

Balitsky-JIMWLK hierarchy independently derived in (Balitsky, 1996)) for the expectation

value of an operator O:

∂〈O〉Y
dY

=

〈
1

2

∫
x⊥,y⊥

δ

δαa(x⊥)
χab(x⊥, y⊥)

δ

δαb(y⊥)
O[α]

〉
Y

, (18)

where αa = 1
∇2
⊥
ρ̃a. Remarkably, Eq. (18) has the form of a generalized Fokker-Planck

equation in functional space, where Y is “time” and χ is the diffusion coefficient (Weigert,

2002).

There is no known analytical solution to the JIMWLK equation; as we shall discuss,

it can be solved numerically. However good approximations exist in different limits. In a

“weak field” (and leading twist) limit gα � 1, one recovers for the number distribution

(and the corresponding occupation number φ) extracted from Eq. (12), the celebrated LLx

BFKL equation (Balitsky and Lipatov, 1978; Kuraev et al., 1977) of pQCD. Another mean

field “random phase” approximation (Iancu and McLerran, 2001; Weigert, 2002) allows one

to evaluate the occupation number φ in the “strong field” limit of gα ∼ 1.

The longitudinal extent of the wee gluon cloud generated by the RG evolution has a

width x− = 1
k+ ∼ 1

QS
. This is much more diffuse relative to the width e−1/αS 1

QS
of valence

modes. The RG evolution also predicts that the width of the wee gluon cloud shrinks with

13 Note that here and henceforth in this section,
∫
x⊥

=
∫
d2x⊥ and

∫
x⊥,y⊥

=
∫
d2x⊥d2y⊥.

24



increasing boost (or rapidity) relative to an “observer” quark-antiquark pair, albeit at a

slower rate than their larger x counterparts. Thus in the CGC EFT the scale for the overlap

of the wave functions in the thermalization process is set by 1
QS

rather than the the Lorentz

contracted width of valence quarks, given by 1
P+ .

E. DIS and the dipole model

In this sub-section, and the next, we will concretely relate the CGC EFT to the structure

functions that are measured in DIS. These comparisons are essential for precision tests of

the CGC EFT picture of high energy nuclear wavefunctions. They also play an important

role in constraining the saturation scale and the shadowing of nuclear distributions that are

key to determining the initial conditions for early time dynamics in heavy-ion collisions.

These connections will become more evident in Section III C.

The inclusive cross-section can be expressed in full generality as 〈dσ〉 = LµνW
µν where

Lµν is the well-known lepton tensor (Peskin and Schroeder, 1995) representing the squared

amplitude for the emission of a virtual photon with four-momentum qµ and W µν is the spin-

averaged DIS hadron tensor which, for a nucleus in the IMF can be reexpressed as (McLerran

and Venugopalan, 1999; Venugopalan, 1999)

W µν =
1

2π

P+

mN

Im

∫
d2X⊥dX

−
∫
d4x eiq·x×

〈Tr
(
γµSA(X− +

x

2
, X− − x

2
)γνSA(X− − x

2
, X− +

x

2
)
)
〉 , (19)

where SA(x, y) = −i〈ψ(x)ψ̄(y)〉A is the quark propagator in the gauge fields Aµ of the

nucleus14.

In the CGC, the leading contribution is obtained by replacing the full QCD background

field by the saturated classical background field: Aµ → Aµcl, where Aµcl are the non-Abelian

WW fields in Eq. (11). In A− = 0 gauge15, the momentum space quark propagator in

the classical background field is remarkably simple, given by (McLerran and Venugopalan,

1999) SAcl
(p, q) = S0(p)Tq(p, q)S0(q), where the free Dirac propagator is S0 =

i/p

p2+iε
and

Tq(q, p) = ±(2π)δ(p−− q−)γ−
∫
z⊥
e−i(q⊥−p⊥)·z⊥V ±1(z⊥) is the effective vertex corresponding

14 The second average in Eq. (19) corresponds to averaging over ρ̃. We employ the relativistic normalization

〈P |P 〉 = P+

mN
(2π)3δ3(0) ≡ P+

mN

∫
d2X⊥dX−, where X−, X⊥ are center-of-mass coordinates.

15 The solution of the YM equations is identical in this case to the solution in Lorenz gauge.
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to the multiple scattering of the quark (or antiquark) off the shockwave background field

represented by the eikonal path ordered phase V introduced previously after Eq. (11).

The DIS structure function is simply related to the inclusive cross-section. Plugging the

dressed CGC propagator into Eq. (19), one can show, to this order of accuracy, that it can

be expressed as (McLerran and Venugopalan, 1999),

F2(x,Q2) =
Q2

4π2αem

∫ 1

0

dz

∫
r⊥

|Ψγ∗→qq̄|2σqq̄A(x,Q2) . (20)

This expression can be simply interpreted to be the convolution of the probability of the

virtual photon to split into a quark-antiquark pair (which can be computed in QED (Bjorken

et al., 1971)) with the “dipole” scattering cross-section of the quark-antiquark pair to scatter

off the nucleus. For impact parameter b⊥ = (x⊥ + y⊥)/2, it is given by

σqq̄A = 2

∫
d2b⊥NY (b⊥, r⊥) , (21)

where the forward scattering amplitude NY (b⊥, r⊥) = 1− SY (b⊥, r⊥), with the S-matrix

SY (r⊥) =
1

Nc

〈Tr
(
V (x⊥)V †(y⊥)

)
〉Y . (22)

One can compute the S-matrix explicitly in the MV model, which gives(Kovchegov, 1999;

McLerran and Venugopalan, 1999; Venugopalan, 1999),

SY (r⊥) = exp

[
−αS

π2

2Nc

r2
⊥AxGN(x, 1/r2

⊥)

πR2
A

]
, (23)

where GN denotes the gluon distribution in the proton at the scale 1
r2
⊥

.

One can expand out the exponential for very small values of r⊥, and one observes that

dipole cross-section is nearly transparent to color for small dipoles. As r⊥ grows, the S-

matrix decreases; the saturation scale is defined as the value of r⊥ at which the S-matrix

has a value that is significantly smaller than what one anticipates in pQCD. While there is

some freedom in setting this scale, its growth with decreasing x is determined by the growth

in the gluon distribution.

The MV result in Eq. (23) is the QCD Glauber model (Mueller, 1990) which gives the

survival probability of a dipole after multiple independent scatterings off the nucleus. It can

be refined by introducing an impact parameter distribution inside the proton (Bartels et al.,

2002), the so-called IP-Sat model, which can be further extended to model the S-matrix for

nuclei (Kowalski et al., 2008; Kowalski and Teaney, 2003).
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The IP-Sat model provides very good agreement with a wide range of small x DIS data

on e+p scattering at HERA (Rezaeian et al., 2013). The latter constrains the parameters

of this model, which in turn is an essential ingredient of the IP-Glasma model of the initial

conditions for heavy-ion collisions. We will discuss the IP-Glasma model in Sec. III.C.3.

An advantage of the MV model formulation is that one can compute with relative

ease (Blaizot et al., 2004b; Dominguez et al., 2011; Dusling et al., 2018b; Fujii, 2002;

Fukushima and Hidaka, 2017) not just the dipole Wilson line correlator but quadrupole

and higher point correlators that appear in semi-inclusive final states in e+A and p+A

collisions.

F. RG evolution and geometric scaling

The MV model is valid for a large nucleus at rapidities when the bremsstrahlung of soft

gluons is not significant, namely, for αSY ≤ 1. The classical expressions we derived have

no x dependence. For moderate x, one can introduce x dependence in framework along the

lines of the IP-Sat model we discussed. However when αSY � 1, the model is no longer

applicable. In this regime, the RG evolution of the S-matrix in Eq. (22) is described by

the Balitsky-JIMWLK hierarchy in Eq. (18) which, in addition to the coherent multiple

scattering effects in the MV model, captures the the real and virtual quantum corrections

we discussed previously.

Substituting the expectation value of the correlator of Wilson lines in Eq. (22) into the

Balitsky-JIMWLK hierarchy in Eq. (18), leads, for Nc, A� 1, to the closed form In the limit

Balitsky-Kovchegov (BK) (Balitsky, 1996; Kovchegov, 1999) equation for the RG evolution

in rapidity of the dipole scattering amplitude:

∂NY (x⊥, y⊥)

∂Y
= ᾱS

∫
z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

×
[
NY (x⊥, z⊥) +NY (y⊥, z⊥)−NY (x⊥, y⊥)

−NY (x⊥, z⊥)NY (z⊥, y⊥)
]
. (24)

The BK equation is the simplest RG equation that captures the physics of gluon sat-

uration. For NY � 1, the non-linear term in the last line above can be ignored and the

equation reduces to the linear BFKL equation as anticipated previously. In this limit, the
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amplitude has the solution,

NY (r⊥) ≈ exp

(
ωᾱsY −

ρ

2
− ρ2

2βᾱSY

)
, (25)

where ω = 4 log 2 ≈ 2.77, β = 28 ζ(3) ≈ 33.67 and ρ = log(1/r2
⊥Λ2

QCD). This solution gives

the rapid “Markovian” growth of the dipole cross-section in rapidity due to the copious

production of softer and softer gluons.

However when NY ∼ 1, the non-linear term arising from the fusion and screening of soft

gluons completely saturates the growth of the dipole cross-section. If we impose a saturation

condition NY = 1/2, for r⊥ = 2/QS, on Eq. (25), the argument of the exponential vanishes

for ρs = log(Q2
S/Λ

2
QCD), with

Q2
S = Λ2

QCD ecᾱSY where c = 4.88 . (26)

Further, if we write ρ = ρS +δρ, where δρ = log(1/r2
⊥Q

2
S), one finds that (Iancu et al., 2002)

NY ≈
(
r2
⊥Q

2
S

)γs
, (27)

for Q2 < Q4
S/Λ

2
QCD, where γs = 0.63 is the BK anomalous dimension.

This “geometrical scaling” of the forward scattering amplitude means that Eq. (21) scales

with Q2/Q2
S(x) alone instead of x and Q2 separately. Remarkably, this phenomenon was

observed at HERA, providing a strong hint for the saturation picture (Stasto et al., 2001).

Moreover, the wider scaling window Q2 < Q4
S/Λ

2
QCD stretching beyond QS provides a first

principles explanation for a so-called “leading twist shadowing” of nuclear parton distri-

butions relative to those in the proton (Frankfurt et al., 2012). Such shadowed parton

distributions are used to compute the rates of hard processes in heavy-ion collisions; un-

derstanding their microscopic origins is therefore important for quantifying hard probes of

thermalization.

The BK equation, in a reaction-diffusion approximation, can be formally mapped into

a well-known equation in statistical physics, the Fischer-Kolmogorov-Petrovsky-Piscounov

(FKPP) equation (Munier and Peschanski, 2003). In this context, geometrical scaling ap-

pears as a late-time solution of a non-linear equation describing a traveling wavefront of

constant velocity. In Fig. 3, we show numerical results for the unintegrated gluon distri-

bution phi(k2
⊥) =

πNck2
⊥

2αS

∫ +∞
0

d2r⊥e
ik⊥·r⊥ [1−NY (r⊥)]2, which displays this traveling wave

front structure, with the evolution of the peaks of the wavefronts representing the evolution
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of Q2
S with rapidity. The correspondence of high energy QCD to reaction-diffusion processes

is very rich; specific applications to DIS have been discussed recently (Mueller and Munier,

2018a,b).

Q2
S in Eq. (26) (and the amplitude in Eq. (27)) grows very rapidly with rapidity, much

faster than seen in the HERA data. However this is significantly modified by running

coupling corrections, which are part of the next-to-leading-logs in x (NLLx) contributions

to QCD evolution. The significant effect of these running coupling corrections is clearly seen

in Fig. 3.

These give (Mueller and Triantafyllopoulos, 2002),

Q2
s,runningαS

= Λ2
QCD exp

(√
2b0c(Y + Y0)

)
, (28)

where b0 is the coefficient of the logarithm in the one loop QCD β-function16. The running

coupling results are well approximated by a power law increase of the amplitude consistent

with the HERA data. Further, qualitative features of geometric scaling persist, albeit the

window for geometrical scaling is significantly smaller (Triantafyllopoulos, 2008).

For a large nucleus at the saturation boundary Y0 ∝ log2(A1/3), one recovers the A1/3

scaling of the saturation scale in the MV model from Eq. (28) for Y0 � Y . A striking result,

for Y � Y0, is that the saturation scale for fixed impact parameter becomes independent

of A. In the asymptotic Regge limit, strongly correlated gluons in the nuclear wavefunctions

lose memory of the initial conditions whereby they were generated.

G. The state of the art in the CGC EFT

In previous sub-sections, we outlined a description of the wavefunction of a high energy

nucleus in the CGC EFT, emphasizing a qualitative understanding of gluon saturation and

key related analytical results. There have been significant developments since in the CGC

EFT.

On the formal side, the Balitsky-JIMWLK framework for the LLx evolution of n-point

Wilson line correlators, has been extended to NLLx (Balitsky and Chirilli, 2013b; Balit-

sky and Grabovsky, 2015; Caron-Huot, 2018; Kovner et al., 2014a,b). For the two-point

dipole correlator, which satisfies the LLx BK equation, the formalism has been extended

16 Sub-leading corrections in Y to QS have been computed to high order (Beuf, 2010).
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to NLLx (Balitsky and Chirilli, 2008) and even (for N = 4 supersymmetric Yang-Mills)

to NNLLx in a recent tour de force computation (Caron-Huot and Herranen, 2018). The

BFKL/BK kernel however receives large collinear contributions that need to be resummed

in so-called small x resummation schemes for quantitative predictions (Ciafaloni et al., 1999;

Ducloué et al., 2019; Iancu et al., 2015; Salam, 1998).

While as we have discussed, there are good analytical approximations, a full analytical

solution of the BK equation does not exist. Numerical simulations have however been known

for some time for the LLx BK equation (Albacete et al., 2004), the LLx+running coupling

BK equation (Albacete et al., 2005; Albacete and Kovchegov, 2007), and even more recently

the full NLLx equation implementing collinear resummation (Ducloué et al., 2020; Lappi

and Mäntysaari, 2016). In particular, it is shown in (Ducloué et al., 2020) that this NLLx

framework provides very good agreement with the HERA data.

Numerical simulations have also been performed of higher point correlators in the

Balitsky-JIMWLK hierarchy. As noted, Eq. (18) has the form of a functional Fokker-

Planck equation. This can therefore be reexpressed as a Langevin equation in the space of

Wilson lines (Blaizot et al., 2003b; Weigert, 2002), allowing one to simulate the rapidity

evolution of two-point Wilson line correlators (Rummukainen and Weigert, 2004) as well

as four-point quadrupole and sextupole17 correlators (Dumitru et al., 2011b; Lappi and

Mäntysaari, 2013; Lappi and Ramnath, 2019). Fig. 4 shows a result for the dipole correlator

from these simulations. Unfortunately, a similar Langevin representation is not known at

present for the NLLx JIMWLK Hamiltonian.

Precision computations require not just higher order computations of the JIMWLK kernel

but higher order computations of process dependent “impact factors” analogous to pQCD

computations of coefficient functions that are convoluted, order-by-order, with the DGLAP

splitting functions (Vermaseren et al., 2005). For inclusive DIS, analytical expressions exist

for the virtual photon impact factor |Ψγ∗→qq̄|2 in Eq. (20) (Balitsky and Chirilli, 2013a).

More recently, NLO impact factors have been computed for DIS exclusive diffractive light

vector meson production (Boussarie et al., 2017) and DIS inclusive photon+dijet produc-

tion (Roy and Venugopalan, 2019, 2020). Numerical implementation of these results remains

a formidable task and an essential component of precision studies of gluon saturation at a

17 These are probed in semi-inclusive DIS (Dominguez et al., 2011) and in proton-nucleus collisions (Dusling

et al., 2018a,b; Kovner and Lublinsky, 2011).
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future Electron-Ion Collider (EIC) (Accardi et al., 2016; Aschenauer et al., 2019).

An outstanding problem at small x is the impact parameter dependence of distributions.

The BFKL kernel at large impact parameters contributes a Coulomb tail ∼ 1/b2
⊥; the con-

formal symmetry of the kernel and geometric scaling suggest a particular dependence of the

saturation scale on the impact parameter (Gubser, 2011). The Coulomb tail is however not

regulated by saturation and violates the Froissart bound on the asymptotic behavior of total

cross-sections (Kovner and Wiedemann, 2003). This is only cured non-perturbatively by the

generation of a mass gap in QCD. The Coulomb tail may be less of a problem in large nuclei

with ΛQCDRA � 1 because the contribution of the Coulomb tail may be suppressed relative

to protons, for which ΛQCDRA ∼ 1.

III. NON-EQUILIBRIUM QCD MATTER AT HIGH OCCUPANCY

The CGC EFT provides us with powerful tools to address multi-particle production

in heavy-ion collisions from first principles; the key organizing principle is the kinematic

separation in the hadron wavefunction between static color sources at large x and small x

gauge fields. In the following, we will sketch the elements of the formalism to follow the

thermalization process through the overlap of two CGCs.

To apply this EFT framework to thermalization, one needs to understand first how to

compute from first principles multi-particle production in the presence of strong fields18. The

quark-gluon matter formed in this process is the Glasma (Gelis and Venugopalan, 2006c;

Lappi and McLerran, 2006), a nonequilibrium state with high occupancy f ∼ O(1/αS); this

state decays and eventually thermalizes. The description of the temporal evolution of the

Glasma can be classified systematically in weak coupling into LO, NLO, and so on.

Following our discussion of multi-particle production, we will describe the temporal evolu-

tion of the Glasma at LO. This corresponds to the solution of classical Yang-Mills equations

with CGC initial conditions for the fields using both analytical approaches (valid for trans-

verse momenta greater than the saturation scale) and a nonperturbative real time approach

employing Hamilton’s equation on the lattice. The LO solutions are independent of ra-

pidity, with the dynamics of the corresponding “flux tube” structures occuring entirely in

18 A well-known example of such a formalism is e+e− pair production in strong electromagnetic fields (Gelis

and Tanji, 2016); another is that of Hawking radiation from the Black Hole horizon (Parikh and Wilczek,

2000).
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the transverse plane of the collision. We will next discuss the IP-Glasma model of heavy-

ion collisions, which combines the LO classical solutions with constraints on QS from DIS

experiments on the proton and on nuclei.

However the LO description of the Glasma is limited because the classical fields are

unstable to NLO quantum fluctuations that break boost invariance, growing exponentially

in the square root of the proper time. As we will discuss, a careful treatment of such

NLO modes shows that the dominant contributions can be resummed and absorbed into a

classical-statistical description of the evolution. A key difference to the prior LO description

is that the resummed classical-statistical evolution is now in 3+1-dimensions, involving

both transverse and longitudinal degrees of freedom. This distinction is of fundamental

importance in the subsequent description of the thermalization process in weak coupling.

In Section IV, we will discuss how this classical-statistical description fits into the general

weak coupling classification of the evolution of quantum fields and shall outline the power

counting that delineates the applicability of this approximation and its subsequent matching

to kinetic theory. We will also describe there universal features of the Glasma that makes

its study interesting in its own right.

A. Multi-particle production in strong fields

To compute multi-particle production systematically in the collision of the CGC gluon

“shockwaves”, we will begin with the first principles Lehmann-Symanzik-Zimmerman (LSZ)

formalism in QFT. For simplicity, we consider here a self-interacting φ3 scalar theory; our

discussion extends straightforwardly to the Yang-Mills case.

In the LSZ formalism, the amplitude for n-particles in the “out” state generated from

the “in-vacuum” can be expressed as

〈 p1,out · · · pn,out|0in〉 =
1

Zn/2

∫ [ n∏
i=1

d4xie
ipi·xi

×
(
∂2
xi

+m2
) δ

δJ(xi)

]
exp (iV) . (29)

Here p1, · · · pn denote the momenta of the produced particles and the “in-out” vacuum-

amplitude 〈0out|0in〉 = exp(iV), where V is the sum of all connected vacuum-vacuum di-

agrams coupled to external sources. An illustration of multi-particle production for the
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problem at hand is shown in Fig. 5.

In QFT computations, one usually sets J = 0 after the functional differentiation and

〈0out|0in〉 is a pure phase. When J is physical, |〈0out|0in〉|2 = exp(−2 ImV) 6= 1. In computing

multi-particle production in this context, it is useful to employ19 the Schwinger-Keldysh (SK)

QFT formalism (Keldysh, 1964; Schwinger, 1961). One introduces + and − vertices with

opposite signs of the coupling in Feynman diagrams, and likewise for the sources J±. The

corresponding “+” and “−” fields live on the upper and lower segments of a closed time

contour ranging forward in time from t = −∞ on the upper contour and back to −∞ on the

lower contour, as shown in Fig. 5. Time ordered “++” (anti-time ordered “−−”) Green’s

functions “live” on the upper (lower) contour, and the mixed +− “Wightman” functions

connect the upper and lower contours.

Following LSZ, the probability to produce n-identical particles is

Pn =
1

n!

n∏
i=1

d3pi
(2π)32Epi

|〈p1,out · · · pn,out|0in〉|2 , (30)

where E2
pi

= p2
i + m2. Plugging the expression for the amplitude in Eq. (29) into the r.h.s,

one can express the result as (Gelis and Venugopalan, 2006a)

Pn =
1

n!
Dn exp (iV [J+]− iV [J−]) |J+=J−=J , (31)

with

D =

∫
x,y

Z G0
+−(x, y)

(
∂2
xi

+m2
)

Z

(
∂2
yi

+m2
)

Z

δ

δJ+(x)

δ

δJ−(y)
. (32)

Here
∫
x

= d4x, G0
+−(x, y) =

∫
d3pi

(2π)32Epi
eip·(x−y) ≡ θ(p0)δ(3)(x− y) and Z is the residue of the

pole of the renormalized propagator.

The action of the operator D can be understood as follows. The “+” piece with
(∂2
xi

+m2)
Z

δ
δJ+(x)

acts on a particular diagram in the connected sum of vacuum-vacuum con-

nected diagrams V [J+] by removing a source J+ and then amputating the renormalized

propagator to which it is attached. The same procedure is followed for the “−” piece; the

two amputated propagators are then sewn together by the renormalized “cut” propagator

ZG0
+−.

19 For other discussions of the SK formalism in the context of the CGC and the Glasma, see (Jeon, 2014;

Leonidov and Radovskaya, 2019; Wu and Kovchegov, 2018). For a recent discussion in the context of

thermal field theory, see (Ghiglieri et al., 2020).
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Computing Pn in a theory with physical sources is hard because one also has to compute

the disconnected vacuum-vacuum graphs for each n. However if we define a generating

functional F (z) =
∑

n z
nPn, Eq. (31) gives

F (z) = exp (zD) exp (iV [J+]− iV [J−]) |J+=J−=J , (33)

and successive differentiation of this equation with respect to z (and setting z = 1), generates

the n-particle correlators 〈n(n− 1)(n− 2) · · · 〉. These moments do not require one compute

the disconnected vacuum-vacuum graphs, since they also appear in the normalization of Pn

and therefore cancel out20 in the moments.

This is illustrated by expressing the r.h.s of Eq. (33) for z = 1 as

exp (iVSK[J+, J−]) = exp (D) exp (iV [J+]− iV [J−]) , (34)

where now iVSK[J+, J−] represents the sum over all vacuum–to–vacuum connected graphs

that live on the SK closed time contour. One can then express the inclusive multiplicity

as (Gelis and Venugopalan, 2006a)

〈N〉 =

∫
x,y

ZG0
+−(x, y) [Γ+(x)Γ−(y) + Γ+−(x, y)]J±=J , (35)

with the amputated one-point and two-point Green’s functions in the Schwinger-Keldysh

formalism defined respectively as

Γ±(x) = ∆R
x

δiVSK

δJ±(x)
; Γ+−(x, y) = ∆R

x∆R
y

δ2iVSK

δ2J+(x)J−(y)
, (36)

with ∆R
x = ∂2

x+m2

Z
.

In summing over all the nodes of all the trees connecting Γ+(x) to the sources, the time

(anti-time) ordered Feynman propagators in each tree on the upper (lower) SK contour are

recursively converted to retarded propagators: GR = G++ − G+− ≡ G−+ − G−−. This is

equivalent to solving the classical equations of motion with retarded boundary conditions

when J± = J ! A further important result is that the renormalized cut propagator Γ+− is

obtained by solving the small fluctuation equations of motion in the classical background,

also as an initial value problem with retarded boundary conditions.

20 Such cancellations are seen in the Abramovsky-Gribov-Kancheli (AGK) rules (Abramovsky et al., 1973)

that implement the combinatorics of cut/uncut vacuum-to-vacuum graphs in Reggeon field theory (Gelis

and Venugopalan, 2007).
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As we discussed previously, the classical fields, and sources thereof, of the colliding CGC’s

are static shockwaves; as such, they do not spontaneously decay and are thus part of the

nuclear wavefunction. After the collision, the colored sources become time dependent. Thus

Γ± in Eq. (35) corresponds to ∂2
xAµ±,cl. where Aµ±,cl. is the time dependent O(1/g) Glasma

field in the forward lightcone. The two-point function Γ+−(x, y) in Eq. (35) is O(1) and

therefore NLO in the power counting for the inclusive multiplicity in the Glasma. The

formalism can be extended to higher orders in αS. Its generalization to higher multiplicity

moments was developed in (Gelis and Venugopalan, 2006b).

B. The LO Glasma: classical gluon fields from shockwave collisions

Since at LO in our power counting only the product Γ+(x)Γ−(y) ≡ ∂2
xAµ+∂2

xAν− in Eq. (35)

contributes, one obtains for a fixed distribution of lightcone sources ρ±,1,2 = ρ1,2 (where 1, 2

denote the two nuclei) (Gelis et al., 2007)

d〈N〉LO

dY d2p⊥
[ρ1, ρ2] =

1

16π3

∫
x,y

∆R
x∆R

y ε
µ
λε

ν
λAµ(x)Aν(y) , (37)

where repeated indices are summed over. Note too that A(x) ≡ Aµ[ρ1, ρ2](x) and m = 0 in

∆R
x,y. An integration by parts,∫

d4x eip·x∂2
xAµ(x) =

∫
x0→+∞
d3x eip·x (∂0 − iEp)Aµ(x) , (38)

shows that Eq. (37) can be computed by solving the classical YM equations in Eq. (10)

(with Jµ = δµ+δ(x−)ρ1(x⊥) + δµ−δ(x+)ρ2(x⊥) and Aµ(x)|x0=−∞ = 0) to determine Aµ(x).

In the discussion to follow, it will be convenient to introduce the (τ, η, x⊥) coordinate sys-

tem, where the proper time τ =
√

(x0)2 − (x3)2 and the spacetime rapidity η = 1
2

log(x
0+x3

x0−x3 ),

and gµν = diag(1,−τ 2,−1,−1). A convenient gauge to solve the YM equations in the for-

ward lightcone is the Fock-Schwinger gauge Aτ ≡ x+A− + x−A+ = 0. In this gauge21, the

solution to the YM equations are manifestly boost invariant: Aµ(τ, η, x⊥) ≡ Aµ(τ, x⊥) and

one obtains (Gyulassy and McLerran, 1997; Kovner et al., 1995a,b),

Ai = Ai1,cl. + Ai2,cl. ; Aη =
ig

2
[Ai1,cl., A

i
2,cl.] , (39)

21 A perturbative solution was also found in Lorenz gauge ∂µAµ = 0 (Kovchegov and Rischke, 1997).
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with ∂τAi = 0 and ∂τAη = 0 at τ = 0+. This solution is obtained by matching the

delta-functions on the lightcone wedges in Fig. 6 where .

Since the gauge fields are functionals of ρ1,2, the full average inclusive multiplicity in the

Glasma is obtained by averaging over many nuclear collisions, each with its distribution of

color sources in the two nuclei22. This can be expressed as

d〈〈N〉〉LO

dY d2p⊥
=

∫
[Dρ1][Dρ2]WMV

Ybeam−Y [ρ1]WMV
Ybeam+Y [ρ2]

× d〈N〉LO

dY d2p⊥
[ρ1, ρ2] , (40)

where Ybeam = log(
√
s/mN) is the beam rapidity and WMV

Ybeam−Y (WMV
Ybeam+Y ) are the weight

functionals in the MV model in Eq. (9) and at LO are independent of Ybeam−Y (Ybeam +Y ).

With the initial conditions in Eq. (39), the YM equations for τ = 0+ can be solved

perturbatively to lowest non-trivial order inO( ρ1

∇2
⊥

ρ2

∇2
⊥

); in this “dilute-dilute” approximation,

one obtains for identical nuclei,

d〈〈N〉〉LO

dY d2p⊥
= πR2

A

g6µ4
A

(2π)4

2Nc(N
2
c − 1)

p4
⊥

L(p⊥,Λ) . (41)

This result, which agrees with the pQCD bremsstrahlung formula first derived by Gunion and

Bertsch (Gunion and Bertsch, 1982) is valid for p⊥ � g2µA and L(p⊥,Λ) is a logarithmically

divergent function, screened at Λ ≈ ΛQCD.

From our dipole model discussion (see Eq. (23) and related discussion), Q2
S ∝ GA(x, p2

⊥),

where p⊥ is the momentum conjugate to the dipole size. This suggests that Eq. (41) (em-

ploying Q2
S ∝ µ2

A, as noted in footnote 10) can be generalized to a “k⊥ factorization” form

d〈〈N〉〉LO

dY d2p⊥
∝ αS

∫
dk2
⊥φA(x1, k

2
⊥)φB(x2, (k⊥ − p⊥)2). Here

φA,B(x,k2
⊥)

k2
⊥

is the Fourier transform

of the dipole scattering amplitude23 in the each of the hadrons we discussed previously in

Sec. II.F. This k⊥ factorization formula (Blaizot and Mueller, 1987; Gribov et al., 1983) is

widely used in phenomenological studies of hadron-hadron collisions.

The dilute-dilute analytical approximation for shockwave collisions can be generalized

to compute the inclusive multiplicity to lowest order O( ρ1

∇2
⊥

) in one of the sources but to

all orders O(( ρ2

∇2
⊥

)n) in the other. In this “dilute-dense” case as well, the inclusive gluon

22 Due to color confinement at distances scales 1/ΛQCD, one requires
∫ 1/ΛQCD

0
d2x⊥ρa1,2 = 0 for each such

configuration.
23 This distribution is distinct from the WW-distribution and coincides with it only for large k⊥ (Blaizot

et al., 2004a; Kharzeev et al., 2003).
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multiplicity can be expressed as a k⊥-factorized convolution of the unintegrated gluon dis-

tributions in the projectile and target. It is valid for Q2
S,1(x1) � Q2

S,2(x2), corresponding

to the forward (or backward) kinematic regions of the shockwave collision where the parton

momentum fractions are x1 � x2 . Alternately, it can be a good approximation in proton-

nucleus collisions, where Q2
S,A ∼ A1/3Q2

S,p (Dumitru and McLerran, 2002; Kovchegov and

Mueller, 1998).

C. Non-perturbative evolution of high occupancy fields

1. Real time evolution of boost invariant fields on the lattice

While analytical results for the inclusive multiplicity are available only in limited kine-

matic regions, the YM equations for shockwave collisions can be solved numerically to all

orders O((ρ1,2

∇2
⊥

)n) (Krasnitz and Venugopalan, 1998, 1999) to obtain the full non-perturbative

result to Eq. (40) (Krasnitz et al., 2001, 2003a; Krasnitz and Venugopalan, 2000, 2001; Lappi,

2003). Hamilton’s equations are solved in Fock-Schwinger gauge Aτ = 0 with the initial con-

ditions at τ = 0 specified by Eq. (39). To preserve gauge invariance, lattice gauge theory

techniques can be adapted to this problem. The boost invariance of the LO shockwave gauge

fields provides a significant simplification whereby the 3+1-D Kogut-Susskind QCD lattice

Hamiltonian (Kogut and Susskind, 1975) can be “dimensionally reduced” to the 2+1-D

form (Krasnitz and Venugopalan, 1999)

aH =
∑
x

[
g2a

τ
trEiEi +

2τ

g2a
(Nc − Re trU1,2)

+
τ

a
trπ2 +

a

τ

∑
i

tr
(

Φ− Φ̃i

)2
]
. (42)

Here the trace refers to SU(2) color and the sum is over all discretized cells with lattice

spacing a in the transverse plane. For clarity, we have omitted the cell index j for all

quantities in this expression. Further, the Ei with i ∈ {1, 2} are the components of the

transverse electric field living on each site; discretizing the initial conditions gives Ei = 0 at

τ = 0. The spatial plaquette of link variables U i
j ,

U j
1,2 = U1

j U
2
j+ê1

U1†
j+ê2

U2†
j , (43)
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(where +êi indicates a shift from j by one lattice site in the i = 1, 2 transverse direction)

represents the squared longitudinal magnetic fields in the Glasma. In Eq. (42), we have

represented Aη(τ, x⊥) as an adjoint scalar field Φ because, as a result of boost invariance, it

transforms covariantly under η-dependent gauge transformations:

Φ̃j
i = U i

jΦj+êiU
i†
j . (44)

Finally, π = Eη = Φ̇/τ in Eq. (42) represents the longitudinal electric field.

The details of the numerical simulations of the real time evolution of gauge fields can be

found in (Krasnitz and Venugopalan, 1999; Lappi, 2003). In the early work, only uniform

sheets of nuclei were considered with constant (x independent) values of QS. These were

subsequently relaxed to consider finite nuclei (Krasnitz et al., 2003b,c); more realistic sim-

ulations with event-by-event simulations of RHIC and LHC collisions were developed later

in the IP-Glasma model we shall discuss shortly (Schenke et al., 2012b).

As anticipated, the numerical results reproduce the perturbative result in Eq. (41) at large

k⊥ � QS. However, unlike that expression, there is no logarithmic factor L(k⊥,ΛQCD). At

momenta k⊥ < QS, the 1/k4
⊥ distribution is modified to a form that is well fit by a Bose-

Einstein exponential distribution (Krasnitz et al., 2003a). Even more remarkably, the non-

linear dynamics generates a plasmon mass24 that screens the momentum distribution in the

infrared (Krasnitz and Venugopalan, 2001; Lappi and Peuron, 2018). The energy density is

therefore well-defined at all proper times without infrared or ultraviolet divergences (Lappi,

2006).

2. Glasma flux tubes

An interesting consequence of the LO Glasma solution is that the Weizäcker-Williams

plane polarized E and B fields in the colliding CGCs become purely longitudinal immediately

after the collision at τ = 0+; Eη, Bη 6= 0 and Ei, Bi = 0. It was pointed out in (Kharzeev

et al., 2002) that this configuration satisfies the identity

QCS =
αS
2π

∫
d4xTrEη ·Bη , (45)

24 This plasmon mass is parametrically larger than the confining scale; its properties have been investigated

recently in a number of approaches (Boguslavski et al., 2019; Dumitru et al., 2014).
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where the topological charge QCS = αS
16π

∫
d3xK0 and Kµ is the Chern-Simons current. A

neat interpretation (Chen et al., 2015a; Lappi and McLerran, 2006) of this result is that the

YM equations at τ = 0+ can be expressed as ∇·E = ρel. and ∇·B = ρmag., where ρel., ρmag.

are respectively electric and magnetic charges densities25 on the gluon shockwaves after the

collision.

As sketched in Fig. 7, the induced electric and magnetic charges generate a “stringy”

Glasma flux tube (Dumitru et al., 2008a) of chromo-electromagnetic fields that is uni-

form in rapidity stretching between the fragmentation regions of the nuclei and are color

screened (Krasnitz et al., 2003c) on transverse distance scales ≥ 1/QS.

One can straightforwardly compute the energy densities and pressures in the Glasma from

the different components of the stress-energy tensor26. We obtain E = 2PT + PL where,

PT ≡
1

2
(T xx + T yy) = Tr

(
Fxy + E2

η

)
PL ≡ τ 2T ηη =

1

τ 2
Tr
(
F 2
ηi + E2

i

)
− Tr

(
Fxy + E2

η

)
. (47)

At the earliest times after the collision τ = 0+, as noted, only the longitudinal Eη and

Bη = Fxy fields are non-zero. The above equation then immediately gives PT = E and

PL = −E . Thus at the earliest times, the pressure in the Glasma is purely transverse; after

initial transverse dynamics, the longitudinal pressure PL → 0 from below by τ ∼ 1/QS.

Since the Glasma at LO is conformal, the energy density satisfies E = 2PT at this time.

Stringy models capture essential features of confining dynamics in QCD (Bali, 2001).

In high energy collisions, they have a long history and capture the bulk features of the

spectrum of multi-particle production (Andersson et al., 1979; Artru, 1983); they underlie

event generators such as PYTHIA (Andersson et al., 1983). These models however screen

color at distance scales 1/ΛQCD and only carry electric flux and no magnetic flux; particle

production is assumed to arise from the Schwinger mechanism (Andersson et al., 1979). It

is remarkable nevertheless to observe that similar stringy solutions emerge from the more

fundamental framework of classical YM equations.

Motivated by this stringy picture, we expect the number of gluons per unit rapidity

equals the number of flux tubes (S⊥/(1/Q
2
S)) times the gluon occupancy in a flux tube

25 These induced charge densities are proportional to the commutators δij [Ai1,cl., A
j
1,cl.] and εij [Ai1,cl., A

j
1,cl.]

respectively.
26 Note that

Tµν = −gµαgνβgγδFαγFβδ +
1

4
gµνgαγgβδFαβFγδ. (46)
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(2(N2
c − 1)/ᾱS/(2π)3) multiplied by a non-perturbative coefficient of O(1). Extracting the

number density from the correlator of gauge fields at τ ∼ 1/QS (Krasnitz and Venugopalan,

2001), one indeed finds that27

dNLO

dY
= cN

2 (N2
c − 1)

(2π)3

Q2
SS⊥
ᾱS

, (48)

where S⊥ is the transverse area of the collision, ᾱS = αSNc/π and cN is a gluon liberation

coefficient (Mueller, 2000) estimated from the numerical simulations to be cN = 1.1 with

10% accuracy (Lappi, 2008).

The YM simulations can also be extended to compute two particle correlations in the

Glasma (Lappi et al., 2010):

d2N conn.
LO

dY1d2p⊥dY2d2k⊥
=

κ2

(N2
c − 1)Q2

SS⊥

dNLO

dY1d2p⊥

dNLO

dY2d2k⊥
, (49)

where κ2 is a non-perturbative constant28. Again, the numerical simulations bear out the

Glasma flux tube interpretation: the likelihood that two particles are correlated is suppressed

by the number of flux tubes, and non-factorizable color connected graphs by O(1/N2
c ).

Perturbative arguments suggest that this picture can be extended to n-particle cumulants

and that the n-particle multiplicity distribution that generates these cumulants is a negative

binomial distribution (Gelis et al., 2009). For n-particle multiplicities, this expectation is

confirmed by non-perturbative numerical simulations (Schenke et al., 2012a).

3. The IP-Glasma model

In the discussion thus far, color charge fluctuations on the scale 1/QS provide the only

structure in the colliding gluon shockwaves. However nucleon distributions in nuclei are not

uniformly smooth and can fluctuate from event to event. These fluctuations in nucleon posi-

tions are extremely important to understand key features of the data such as the azimuthal

moments vn of the flow distributions at low momenta (Alver and Roland, 2010; Alver et al.,

2010). Another important ingredient in the realistic modeling of heavy-ion collisions is the

dependence of the saturation scale in the nuclei on x (or equivalently,
√
s), which describes

the variations of particle multiplicites in energy and rapidity at RHIC and the LHC.

27 Here and henceforth, for simplicity of notation, the path integral over gauge fields (moot at LO), and over

sources, 〈〈〉〉 is implicit.
28 The results have a weak dependent on the ratio m/QS , where m is an infrared lattice regulator.
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We will outline here the IP-Glasma model (Schenke et al., 2012a,b, 2014a,b), and im-

provements thereof, which incorporates the fluctuations in the nucleon positions to construct

event-by-event lumpy color charge distributions and corresponding gluon field configurations

in the LO Glasma framework. As we will also discuss, the energy dependence of these con-

figurations at a given Y or
√
s is determined by the saturation scales in the two nuclei.

An essential input is the dipole cross-section of the proton. Herel we consider here the IP-

Sat saturation model (Bartels et al., 2002; Kowalski and Teaney, 2003) which, as discussed

in Sec. II.E, is an impact parameter dependent generalization of the MV model. As noted,

high precision combined data from the H1 and ZEUS collaborations (Aaron et al., 2010;

Abramowicz et al., 2013) are used to constrain the parameters of the model and excellent

fits are obtained (Rezaeian et al., 2013).

The dipole cross-section for each nucleus at a given x is constructed by taking the product

of the S-matrices corresponding to the dipole cross-sections of overlapping nucleons at a given

spatial location x⊥. It can be expressed as (Kowalski et al., 2008)

1

2

dσA
dip

d2x⊥
=

[
1− e− π2

2Nc
r⊥

2αS(Q2)xG(x,Q2)
∑A
i=1 Tp(x⊥−xT i)

]
, (50)

where Tp stands for the Gaussian thickness function for each of the A nucleons in each

nucleus and Q2 = 4/r2
⊥ + Q2

0, with Q0 fixed by the HERA inclusive data. The gluon

distribution xG(x,Q2) is parametrized at the initial scale Q2
0 and then evolved up to the

scale Q2 using LO DGLAP-evolution. We define the nuclear saturation scale QS = 1/
√

r2
⊥,s,

at the r⊥ = r⊥,s for which the argument of the exponential in Eq. (50) equals one-half. To

obtain the spatial dependence of QS, one self-consistently solves x = 0.5QS(x⊥, x)/
√
s for

every x⊥.

The result of this procedure is a lumpy distribution of Q2
S(x⊥, x) denoting the sub-nucleon

structure of the nucleus. Since the IP-Sat model is a simple generalization of the MV

model, one can extract the variance of the color charge density g2µ2
A(x⊥) at each x from

Q2
S(x⊥, x) (Lappi, 2008). One then samples random color charges ρa(x⊥) on a transverse

lattice,

〈ρak(x⊥)ρbl (y⊥)〉 = δabδklδ2(x⊥ − y⊥)
g2µ2

A(x⊥)

Ny

, (51)

where the indices k, l = 1, 2, . . . , Ny label the Ny points of representing the width of the

nucleus in x−. The path ordered Wilson line in the dipole model S-matrix (see (22)) is
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discretized as

VA(B)(x⊥) =

Ny∏
k=1

exp

(
−igρ

A(B)
k (x⊥)

∇2
T −m2

)
, (52)

where m is a infrared cut-off and A,B distinguish the color charge distributions in the two

colliding nuclei. The corresponding dipole distributions in each of the incoming nuclei for a

particular configuration of color sources is shown in Fig. 8(a).

To each lattice site j, one then assigns two SU(Nc) matrices V(A),j and V(B),j, each of

which defines a pure gauge configuration with the link variables U i
(A,B),j = V(A,B),jV

†
(A,B),j+êi

,

where +êi indicates a shift from j by one lattice site in the i = 1, 2 transverse direction.

The link variables in the future lightcone U i
j which are an input into Eqs. (43) and (44), are

determined (Krasnitz and Venugopalan, 1999) from solutions of the lattice CYM equations

at τ = 0,

tr
{
ta
[(
U i

(A) + U i
(B)

)
(1 + U i†)

−(1 + U i)
(
U i†

(A) + U i†
(B)

)]}
= 0 , (53)

where ta are the generators of SU(Nc) in the fundamental representation. (The cell index

j is omitted here.) The N2
c − 1 equations in Eq. (53) are highly non-linear and for Nc = 3

are solved iteratively. With these initial conditions, Hamilton’s equations corresponding to

Eq. (42), are solved to compute inclusive quantities in the LO Glasma. Fig. 8(b) shows the

result for the energy density in the transverse plane at τ = 1/QS

The IP-Glasma model gives a good description of bulk features of distributions at RHIC

and the LHC (Schenke et al., 2014a,b). In particular, when matched with the MUSIC

relativistic viscous hydrodynamic code (Schenke et al., 2011), the IP-Glasma+MUSIC model

provides an excellent description of the multiplicity distributions, the inclusive centrality and

p⊥ distributions, and not least, the vn distributions in heavy-ion collisions putting strong

constraints on the extracted transport coefficients of the quark-gluon plasma (Gale et al.,

2013; Ryu et al., 2015).

There have been several developments since. Firstly, the model has been extended to in-

clude JIMWLK evolution of the sources ρ(x⊥)→ ρ(x⊥, x
∓) for nuclei with large P± enabling

one so study rapidity correlations of produced gluons (Dusling et al., 2010; Schenke and

Schlichting, 2016) and 3-D evolution of the LO Glasma fields (McDonald et al., 2020; Müller,

2019; Schenke and Schlichting, 2016). Further, the extension of the IP-Glasma+MUSIC
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model to hadron-hadron and hadron-nucleus collisions (Bzdak et al., 2013) indicates that

sub-nucleon shape fluctuations in the Glasma are essential in understanding final state contri-

butions to two and multi-particle cumulants of azimuthal anisotropies for high multiplicity

events in small systems (Schenke and Venugopalan, 2014), the so-called “ridge” correla-

tions (Dusling et al., 2016).

Data on incoherent diffraction from HERA are sensitive to such non-perturbative “shape”

fluctuations (Mäntysaari, 2020; Mäntysaari and Schenke, 2016a,b); the framework developed

here allows one to constrain the latter with HERA data and in future likely more precisely

with the EIC. Numerical simulations suggest that long range two particle correlations in

the Glasma (Lappi et al., 2016) when combined with hydrodynamic flow can explain the

systematics of high multiplicity azimuthal moments in small systems (Schenke et al., 2016,

2020b).

D. The Glasma at NLO

Thus far, we focused on the leading order dynamics of classical fields A ≡ O(1/g) in

the Glasma. As we shall discuss now, quantum fluctuations that are parametrically O(1)

and contribute to Γ+− in Eq. (35) play a big role both before (pη = 0 modes) and after

(pη 6= 0 modes) the collision29. We discussed the former previously in the context of the

small x evolution of the hadron wavefunctions. We will discuss here the role of these modes

after the collision. The pη 6= 0 modes only appear after the collision; as we shall discuss

subsequently, they play a fundamental role in the thermalization of the Glasma.

1. Dynamics of pη = 0 modes: QCD factorization and energy evolution

At NLO (O(1) relative to the leading O(1/αS) contribution) for the inclusive multiplicity

in Eq. (35), one of the two terms is the amputated small fluctuations propagator Γ+− and

the other is a one loop correction to Γ± (or equivalently, the classical field). The pη = 0

modes lie close to the beam rapidities ±Ybeam; before the collision, they can be visualized as

the fur of wee gluon modes accompanying the valence partons moving along the light cone.

After the collision, the valence partons are stripped of the small x wee gluon modes which

29 pη is the Fourier conjugate of the spacetime rapidity η.
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then populate pη 6= 0. The surviving pη = 0 modes are valence modes and the quasi-static

cloud of large x partons than accompany them into the fragmentation region of the nuclear

collision. Thus pη = 0 modes after the collision are likely not very interesting from the

perspective of thermalization at central rapidities.

Before the collision, all one has are the pη = 0 modes. These modes are further separated

into sources and fields with the latter dynamically absorbed into the former via the “small

x” evolution of the weight functionals WYbeam±Y[ρ1,2] of each of the comoving nuclei. This

however requires a factorization of the quantum fluctuations of each of the two nuclei from

each other.

The resulting factorized form of Eq. (40) can be proven to leading logarithmic accuracy

in x (Gelis et al., 2008a,b). An important ingredient in the proof is the structure of the

cut propagator G+−(u, v) ∝
∫

d2k⊥dk
+

k+ eik
+(u−−v−)+i

k2
⊥

2k+ (u+−v+). If the spacetime points u and

v reside on one of the nuclei, say moving along x+, then u− ≈ v− and one of the phases

vanishes. The other phase oscillates rapidly when k+ → 0 giving a convergent contribution.

However for k+ →∞, it converges to unity, and one obtains a logarithmic divergence dk+/k+

which is the source of the large logs resummed in the small x evolution of the nucleus.

In the case where quantum fluctuations in the two nuclei could “talk” to each other

before the collision, the spacetime points u and v reside respectively on the lightcones of

the incoming nuclei corresponding to u± − v± 6= 0. The phases therefore oscillate rapidly

when either k± →∞ and there are no logarithmic divergences from such contributions. The

only possible region where such fluctuations may contribute is when the nuclei overlap. The

area of this region is x+x− = 1
P+P−

∼ 1
s
; such contributions are therefore suppressed by the

squared c.m. energy.

Thus the factorized form in Eq. (40) at LLx is satisfied to high accuracy, and one can

replace WMV
Ybeam±Y[ρ1,2]→ WYbeam±Y[ρ1,2], where the latter satisfies the JIMWLK equation in

Eq. (16). This allows one to go beyond the boost invariant MV expression and to treat the

dynamical evolution (in Y ) of the weight functionals in the two nuclei. While our arguments

are suggestive that the factorization theorem can be extended to NLLx, a formal proof is

lacking.

As Ybeam increases with increasing energy, the W ’s in Eq. (40) describe the energy evolu-

tion of the inclusive multiplicity30. Running coupling corrections, that are part of the NLLx

30 This LLx result is implicitly assumed in the 3+1-D IP-Glasma simulations (Schenke and Schlichting,
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contributions, improve the accuracy of the computations significantly. In future, one may

anticipate using the NLLx JIMWLK Hamiltonian as a systematic improvement to describing

energy evolution and rapidity correlations in heavy-ion collisions.

The details of the factorization of the W ’s, and their energy evolution, are crucial for phe-

nomenology because they dictate concretely the dependence of final state observables (such

as the energy density and correlators thereof) on the saturation scales in the wavefunctions

of the colliding nuclei.

2. Dynamics of pη 6= 0 modes: plasma instabilities and the classical-statistical approximation

The pη 6= 0 modes are generated right after the collision when the sources become time

dependent and produce gluon modes away from the rapidities of the beams. At NLO, their

contribution to the gluon spectrum, for a fixed distribution of color sources, can be written

as (Gelis et al., 2007)

dNNLO

dY d2p⊥
=

1

16π3

∫
d4x d4y eip·(x−y)∂2

x∂
2
y

∑
λ

ελµε
λ
ν

× [Aµ(x)δAν(y) + δAµ(x)Aν(y) +G+−(x, y)] , (54)

where ελµ is a gluon polarization vector of helicity λ. The first two terms in this expression

represent the NLO contribution to Γ+(x)Γ−(y) in Eq. (35), with δA the one-loop correction

to the classical field A ≡ A[ρ1, ρ2], and the last term represents Γ+−, which first appears at

NLO.

Let’s first consider the cut propagator term G+− in this expression. Its contribution to

the NLO multiplicity can be written as

∑
λ,λ′

∫
d3k

(2π)32Ek

∣∣∣∣∫
x0→∞
d3x eip·x (∂0

x − iEq) ελµ aµλ′k
∣∣∣∣2 , (55)

where aµλ′ak(x) is a small fluctuation field of O(1) about Aµ with the plane wave initial

condition eµλ′T
aeik·x, where T a are the SU(3) generators in the adjoint representation31.

Note that the structure above is analogous to Eq. (38) except that the classical field is

replaced by the small fluctuation field. The latter obeys the small fluctuation equations of

2016).
31 For compactness, we will suppress color indices henceforth.
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motion, and its solution can be expressed as

aµ(x) =

∫
τ=0+

d3u [a(y) ·Ty] Aµ(x) , (56)

where Ty is a linear operator that corresponds to a shift of the initial data on the classical

fields and their derivatives (Dusling et al., 2011b; Gelis et al., 2008a),

a(y) ·Ty = aµ(y)
δ

δAµ(y)
+ (∂νaµ(y))

δ

δ(∂νAµ)
, (57)

on the initial spacelike surface at τ = 0+.

The key insight provided by Eq. (56) is that to compute the small fluctuation field at

a spacetime point x in the forward lightcone, it is sufficient to know the small fluctuation

field at τ = 0+, rather than solve the small fluctuation equations on a time-dependent

background. We will return to this point shortly.

Plugging Eq. (56) into Eq. (55), and thence into Eq. (54), one obtains

dNNLO

dY d2p⊥
=

[∫
Σy

[δA(y) ·Ty] +

∫
Σy ,Σz

[Γ2(y, z) ·TyTz]

]
τ=0+

× dNLO

dY d2p⊥
, (58)

where Σy =
∫
d3y denotes the initial spacelike surface τ = 0+ and

Γ2(y, z) =
∑
λ

∫
d3k

(2π)32Ek
a+kλ(y)a−kλ(z) , (59)

is the small fluctuation propagator evaluated on this surface32.

This NLO result is however not suppressed parametrically by O(αS) relative to the LO

result because the LO Glasma is very unstable to small fluctuations:

TyA(x) ∼ δA(x)

δA(y)
∼ ge

√
γinst.τ , (60)

where γinst., parametrically of order QS, denotes the growth rate of the instability. This

exponential growth of small fluctuations in Eq. (56) with
√
τ is clearly demonstrated in Fig. 9

from 3+1-D numerical simulations of the YM equations for an η-dependent fluctuation a(η)

on top of the boost invariant Glasma background (Romatschke and Venugopalan, 2006a,b).

32 Discussions of the computation of this propagator at τ = 0+ can be found in (Dusling et al., 2011b;

Epelbaum and Gelis, 2013; Fukushima et al., 2007).
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The very small values of g in the plot33 are chosen to ensure that the classical-statistical

approximation is satisfied in the numerical simulations. This point is discussed further in

Section IV.

The existence of such instabilities was previously predicted (Mrówczyński, 1993) and

studied with the context of a finite temperature hard thermal loop effective field theory (At-

tems et al., 2013; Rebhan et al., 2005). They are understood to be analogous to Weibel

instabilities familiar in plasma physics (Arnold et al., 2003a); for a recent review, we refer

the reader to (Mrówczyński et al., 2017).

As a result of the instability, the exponentially growing small fluctuations can become

of the order of the LO classical field for τ ∼ 1
γinst.

log2 1
αS

. In a so-called classical-statistical

approximation (Aarts and Berges, 2002), these leading instabilities can be resummed to all

orders, modifying Eq. (58) to

dNresum

dY d2p⊥
=

∫
[Da]F [a]

dNLO

dY d2p⊥
[A+ a] , (61)

where F [a] ∼ exp
(
−
∫

ΣyΣz
a(y)Γ−1

2 (y, z)a(z)
)

.

To conclude our discussion of the classical-statistical approximation, as a final step, we

need to perform the average of the color sources to obtain the inclusive multiplicity distri-

bution at early times in the Glasma:

〈〈dN〉〉
dY d2p⊥

=

∫
[Dρ1][Dρ2]WYbeam−Y [ρ1]WYbeam+Y [ρ2]

×
∫

[Da]F [a]
dNLO

dY d2p⊥
[A+ a] . (62)

This result of course applies to other inclusive quantities such as components of stress-energy

tensor given in Eq. (46).

In the classical-statistical approximation, the one loop correction to the classical field

(δA) is suppressed at early times relative to the G+− term we consider here. In general,

the classical-statistical approximation does not account for the full quantum evolution of the

Glasma fields. In the next section, we will discuss the dynamical power counting of quantum

fields within the framework of the two-particle irreducible (2PI) effective action that specifies

33 At RHIC (LHC) energies, g2µ ∝ QS ∼ 1− 2 GeV on the x-axis of Fig. 9. With these values, τ � 10 fm,

the typical life time of such a collision. However for g ∼ 10−5, from QCD running, g2µ is larger than the

Planck scale. The takeaway message from Fig. 9 is the functional form of the fit and not the absolute

values.
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the range of validity of the classical-statistical approximation, the nature of the corrections

beyond, as well as numerical results from the implementation of this approximation and the

consequences thereof.

IV. FAR-FROM-EQUILIBRIUM GLUON AND QUARK PRODUCTION: FROM

PLASMA INSTABILITIES TO NON-THERMAL ATTRACTORS

We have seen in the previous section that the overoccupied Glasma is unstable with

respect to small quantum fluctuations which break longitudinal boost invariance. As noted

there, the growth of fluctuations is caused by primary (Weibel-like (Mrówczyński et al.,

2017)) instabilities (Fukushima and Gelis, 2012; Romatschke and Venugopalan, 2006a,b).

However, there are also secondary instabilities that arise due to the nonlinear interactions

of unstable modes (Berges and Schlichting, 2013). The fluctuations that are initially small

grow with time and an over-occupied plasma emerges on a time scale QSτ ∼ log2(α−1
S ).

At this stage, the details about the initial spectrum of fluctuations is effectively lost as a

consequence of the strongly nonlinear evolution. The apparent loss of information at such

an early stage gives rise to decoherence towards a more isotropic equation of state in this

prethermalization regime (Arnold et al., 2005; Berges et al., 2004; Dusling et al., 2011a).

Subsequently, a universal scaling behavior emerges far from equilibrium with increasing

anisotropy (Berges et al., 2015b), which is described in terms of non-thermal attractor solu-

tions (Berges et al., 2014b,c), representing the first stage of the “bottom-up” thermalization

scenario (Baier et al., 2001; Bodeker, 2005).

In the following, we will describe how this nonlinear behavior emerges starting from the

underlying quantum field theory, formulated as an initial value problem in time. Essential

aspects of the far-from-equilibrium quantum evolution can be approximated by a controlled

weak-coupling expansion around the full (non-perturbative) classical-statistical theory, first

pointed out in the context of scalar field theories (Aarts and Berges, 2002; Khlebnikov and

Tkachev, 1996; Son, 1996) and then extended to include fermions (Aarts and Smit, 1999;

Berges et al., 2011; Borsanyi and Hindmarsh, 2009; Kasper et al., 2014; Saffin and Tranberg,

2011).

In strong field QCD, this corresponds to an expansion in αS ≡ g2/(4π), where the lead-

ing order contribution includes the full classical-statistical theory of gluons as described in
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Sec. III. The next-to-leading order contributions take into account the back-reaction of the

quarks onto the gluons, and encodes important quantum effects such as anomalies. The non-

equilibrium time evolution of gluons with dynamical quarks has been studied numerically

on the lattice in Refs. (Gelfand et al., 2016; Gelis et al., 2006a; Tanji and Berges, 2018).

Such an expansion around the full classical-statistical field theory breaks down on the time

scale QSτ ∼ α
−3/2
S (Baier et al., 2001; Berges et al., 2014b), where typical gluon occupancies

become of order unity. To continue further and capture the late-time evolution towards

local thermal equilibrium, one employs a resummed perturbative description of quantum

field theory in an on-shell approximation. This also underlies the effective kinetic theory we

will discuss in Sec. V.

The range of validity of both approximation schemes, the expansion around the classical-

statistical theory at early times, as well as effective kinetic theory employed at late times

with their common overlap at intermediate times (Jeon, 2005; Mueller and Son, 2004), can be

efficiently discussed using the two-particle irreducible (2PI) quantum effective action (Baym,

1962; Cornwall et al., 1974) on the closed time path (Berges, 2004a; Calzetta and Hu, 1988).

A. Non-equilibrium time evolution equations from the quantum effective action

Quantum evolution equations can be formulated in terms of expectation values of field op-

erators, such as the macroscopic field A(x) and the connected two-point correlation function

or propagator G(x, y) on the closed time contour C we introduced in Sec. III. In practice,

the space-time evolution of the one-point, two-point or higher-point correlation functions

cannot be computed for the full quantum theory without approximations. However one

can formally write down exact evolution equations, which provide an efficient starting point

justifying the applicability of systematic expansion schemes.

Writing for simplicity only the gauge field part, the evolution equations for connected

one and two-point correlation functions follow from the stationarity of the 2PI effective

action (Baym, 1962; Cornwall et al., 1974)

Γ[A, G] = S[A] +
i

2
tr
(
lnG−1

)
+
i

2
tr
(
G−1

0 (A)G
)

+ Γ2[A, G] + const , (63)

where iG−1,µν
0;ab (x, y;A) ≡ δ2S[A]/δAaµ(x)δAbν(y) is the inverse propagator with Lorentz in-
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dices µ, ν and color indices a, b = 1, . . . , N2
c − 1 for SU(Nc) gauge theories with classical

action S[A]. Here Γ2[A, G] contains all two-particle irreducible contributions, which lead

to the self-energy Πµν
ab (x, y) ≡ 2iδΓ2[A, G]/δGab

µν(x, y). Higher n-point correlation functions

can be obtained from Γ[A, G] by functional differentiation with respect to the fields, once

the solutions for A and G are known.

1. Macroscopic field, spectral and statistical functions

The full quantum evolution equation for the macroscopic field is obtained from the sta-

tionarity of Γ[A, G] with respect to variations in A(x), and is given by

δS[A]

δAaµ(x)
= −Jµa (x)− i

2
tr

[
δG−1

0 (A)

δAaµ(x)
G

]
− δΓ2[A, G]

δAaµ(x)
.

(64)

For the discussion of the evolution equations for two-point functions, it is convenient to

introduce spectral and statistical components by

Gab
µν(x, y) ≡ F ab

µν(x, y)− i

2
ρabµν(x, y) sgnC(x

0 − y0) (65)

where the spectral function ρ(x, y) is associated with the expectation value of the com-

mutator of two fields and the statistical function F (x, y) by the anti-commutator for

bosons34 (Berges, 2004a). A similar decomposition can be done for the self-energy, Π(x, y) ≡
−iΠ(0)(x)δ(x− y) + Π(F )(x, y)− iΠ(ρ)(x, y)sgnC(x

0− y0)/2, where Π(0) describes a local con-

tribution to the self-energy. With this notation, the equations for spectral and statistical

two-point correlation functions, which follow from the stationarity of Γ[A, G] with respect

to variations in G, can be written as (Berges, 2004a)

[
iG−1,µγ

0,ac (x;A) + Π(0),µγ
ac (x)

]
ρcbγν(x, y) =−

∫ x0

y0

dz Π(ρ),µγ
ac (x, z)ρcbγν(z, y) ,

[
iG−1,µγ

0,ac (x;A) + Π(0),µγ
ac (x)

]
F cb
γν(x, y) =−

∫ x0

t0

dz Π(ρ),µγ
ac (x, z)F cb

γν(z, y) +

∫ y0

t0

dz Π(F ),µγ
ac (x, z)ρcbγν(z, y) .(66)

34 In terms of the Keldysh components of the propagator employed in Sec. III, this reads:

G++(x, y) = F (x, y)− iρ(x, y)sgn(x0 − y0)/2,

G−−(x, y) = F (x, y) + iρ(x, y)sgn(x0 − y0)/2,

G+−(x, y) = F (x, y) + iρ(x, y)/2,

G−+(x, y) = F (x, y)− iρ(x, y)/2.
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Here we denote
∫ b
a
dz ≡

∫ b
a
dz0
∫
d3z
√
−g(z) with given initial time t0 and g is the determi-

nant of the metric. The inverse propagator enters Eq. (66) as

iG−1,µν
0,ab (x;A) = (−g)−

1
2 Dac

γ (A) (−g)
1
2 gγαgµνDcb

α (A)

− (−g)−
1
2 Dac

γ (A) (−g)
1
2 gγνgµαDcb

α (A)− gfabcFµνc (A)

with the covariant derivative Dab
µ (A) = δab∂µ − gfabcAcµ and Faµν(A) = ∂µAaν − ∂νAaµ +

gfabcAbµAcν is the field strength tensor.

The non-zero spectral and statistical parts of the self-energy Π(ρ/F )(A,F, ρ) on the r.h.s

and the space-time local part Π(0)(F ) on the l.h.s of these coupled set of equations make

the evolution equations nonlinear in the fluctuations. In general, they contain contributions

from the interaction vertices of QCD, where in addition to the standard three- and four-

vertices there is a three-gluon vertex associated with the presence of a non-vanishing field

expectation value. The explicit expressions for the derivatives on the r.h.s of Eq. (64) and the

self-energy contributions entering Eq. (66) are given to three loop order (g6) in Ref. (Berges,

2004b), and the corresponding expressions in co-moving (τ, η) coordinates can be found in

Ref. (Hatta and Nishiyama, 2012). The inclusion of quark degrees of freedom follows along

the same lines and can also be found in Ref. (Berges, 2004b).

The non-equilibrium initial conditions for the coupled evolution equations Eq. (64) and

Eq. (66) can be formulated in (τ, η) coordinates (and Fock-Schwinger gauge Aτ = 0) for the

Glasma initial conditions we discussed in the previous section. The gauge field expectation

values in Eq. (39) correspond to the Glasma background fields, while the spectral and

statistical two-point functions describe the fluctuations. The former satisfy at all times the

equal-time commutation relations

ρabµν(x, y)
∣∣
x0=y0 = 0 ,

∂x0ρabµν(x, y)
∣∣
x0=y0 = −δab gµν√

−g(x)
δ(~x− ~y) ,

∂x0∂y0ρabµν(x, y)
∣∣
x0=y0 = 0 . (67)

2. Resummed evolution equations to leading order

In order to isolate the leading contributions one has to take into account the strong exter-

nal currents J ∼ O(1/g) in the Glasma, which induce non-perturbatively large background
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fields A ∼ O(1/g). In contrast, the statistical fluctuations F originate from the vacuum and

are therefore initally O(1). The spectral function ρ encodes the equal-time commutation

relations and is therefore parametrically O(1) at any time.

Considering only the leading contributions in a weak coupling expansion, the evolution

equation Eq. (64) reduces to the classical Yang-Mills equation for the classical Glasma field

A, and the equations for the spectral and statistical two-point correlation functions read

iG−1,µγ
0,ac (x;A) ρcbγν(x, y) = 0 ,

iG−1,µγ
0,ac (x;A) F cb

γν(x, y) = 0 . (68)

Here sub-leading contributions are suppressed by at least a factor of g2 relative to the leading

contribution.

At this order the evolution of the Glasma background fields decouples from that of the

fluctuations. The evolution of vacuum fluctuations of the initial state is taken into account

by Eq. (68) to linear order in the fluctuations. This was an important assumption in the

derivation in Sec. III.D.2 and was exploited in Ref. (Dusling et al., 2011b; Epelbaum and

Gelis, 2013) to obtain the spectrum of initial fluctuations right after the collision. These

approximations are therefore only valid for short enough evolution times such that the

fluctuations have parametrically small values.

In general, it is difficult to find suitable approximation schemes for the 2PI effective

action in gauge theories beyond the linear regime (Arrizabalaga and Smit, 2002). However

it provides a formal justification of a resummed coupling expansion of the quantum field

theory around the full classical-statistical solution; as we will soon discuss, this scheme can

be implemented numerically on a lattice to describe dynamics far from equilibrium.

Furthermore, as we shall also discuss below, the different dynamical stages of the Glasma

undergoing a non-equilibrium instability at early times can be conveniently understood

analytically from power counting in the 2PI effective action beyond the linear regime (Berges

and Schlichting, 2013). Not least, the 2PI effective action approach allows for efficient on-

shell approximations employing a gradient expansion; these lead to effective kinetic equations

describing non-equilibrium evolution at later times (Blaizot and Iancu, 2002). We will discuss

these equations and their numerical solutions in Sec. V.
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B. Nonlinear evolution of plasma instabilities

In Sec. III.D.2, we demonstrated that the highly anisotropic state of the Glasma is unsta-

ble with respect to small quantum fluctuations. In the language of Eq. (68), these correspond

to the quasi-exponential growth of the statistical function, (Berges et al., 2014e; Fukushima,

2007; Fukushima and Gelis, 2012; Romatschke and Venugopalan, 2006a,b)

F ab
µν(τ, τ, xT , yT , ν) ∼ exp

[
Γ(ν)

√
g2µτ

]
, (69)

where we recall g2µ ∝ QS and Γ(ν) is a function of order unity for characteristic modes ν

that are Fourier coefficients with respect to the relative rapidity35

F ab
µν(x, y) =

∫
dν

2π
F ab
µν(x, y, ν)eiν(ηx−ηy) . (70)

1. Dynamical power counting

The behavior of the quantum evolution beyond the linear regime is captured by a dynam-

ical power counting scheme (Berges et al., 2012, 2009, 2008b; Berges and Serreau, 2003).

Self-energy corrections are classified according to powers of the coupling constant g, of the

background field A, and of the statistical fluctuations F . Thus a generic self-energy contri-

bution is of order gnFmAlρk and contains the suppression factor from powers of the coupling

constant (n) as well as the enhancement due to a parametrically large background field (l)

and large fluctuations (m). The “weight” of the spectral function (k) remains parametrically

of order one at all times as encoded in the equal-time commutation relations, see Eq. (67).

For the strong macroscopic fields A ∼ 1/g in the Glasma, sizable self-energy corrections

occur once fluctuations grow to be as large as F ∼ 1/g(n−l)/m for characteristic modes. This

yields a hierarchy of time scales, where diagrammatic contributions with smaller values of

r = (n − l)/m become important at earlier times (since g � 1) compared to contributions

with larger values of r.

The quasi-exponential growth stops when fluctuations become of O(1/g2), where they

saturate. At O(1/g2) the fluctuations lead to sizable contributions from every given loop-

order and the perturbative power-counting scheme breaks down. The corresponding time

scale may be estimated from the one-loop correction

35 Here ν is equivalent to the momentum pη in the (τ, η) coordinate system.
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,

which has r = 2 (n = 2, l = 0, m = 1). Using the quasi-exponential growth behavior Eq. (69)

the factor of ∼ g2 from the vertex is compensated by the propagator line F ∼ O(1/g2) at

time

τocc
g�1∼ 1

QS

log2
(
g−2
)
, (71)

which denotes the characteristic time for the end of the instability regime.

The earliest time for nonlinear amplification to set in can be inferred from the diagram

with the lowest value of r. For our problem, this is realized by the one-loop contribution

with r = 1 (n = 2, l = 0, m = 2),

which already becomes sizable when F ∼ O(1/g), where the two propagator lines compen-

sate for the two powers of the coupling. Using again the quasi-exponential growth behavior

Eq. (69) of the primary unstable modes, the time at which this O(1/g) correction becomes

important relative to the O(1/g2) in Eq. (71) is ∼ τocc/4 in the weak-coupling limit. This is

followed by a series of higher-loop corrections, all leading to a fast broadening of the primary

unstable range in rapidity wave number ν (Berges and Schlichting, 2013).

2. Classical-statistical field theory limit

The evolution of the Glasma to later times than τocc is non-perturbative. While in scalar

quantum field theories there are different ways to address it, an example being large-N

resummation techniques (Aarts et al., 2002; Berges, 2002), for gauge theories the most

frequently employed approach is the classical-statistical approximation. The latter can be

understood starting from the full quantum 2PI effective action by a set of well-defined

approximations.

One first notes that a given propagator line of a diagram may be associated to either

the statistical (F ) or the spectral (ρ) correlation function. The set of diagrams included in

the classical-statistical approximation can be identified as those corrections that contain the

most powers of the statistical function relative to powers of the spectral function for each
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type of diagram (Aarts and Berges, 2002). This corresponds to resumming the leading effects

of the instability to all orders in the coupling constant (Dusling et al., 2011b; Epelbaum and

Gelis, 2013).

Therefore, in contrast to expansions at fixed loop-orders, the classical-statistical approach

provides a controlled approximation scheme which is particularly well suited for problems

involving large statistical fluctuations. Specifically, for the large F ∼ O(1/g2) values encoun-

tered at the end of the plasma instability regime, neglecting powers of ρ ∼ O(1) compared to

those of F represents a systematic weak-coupling approximation of a system that is strongly

correlated because of the large fluctuations.

While leading order in this expansion corresponds to the full non-equilibrium classical-

statistical field theory for the gauge fields, genuine quantum corrections for the dynamics

arise. As we will soon discuss, the dynamical evolution of quarks and anti-quarks represent

a class of such genuine quantum corrections (Tanji and Berges, 2018).

We can conclude from this discussion that for the far-from-equilibrium overoccupied

Glasma there is a well-controlled mapping of the weak-coupling quantum dynamics for

correlation functions onto a classical-statistical field theory. The latter can be simulated

numerically on a lattice. In principle, starting with large field amplitudes, the mapping

involves two steps: I) The field is separated into a large coherent part and a small fluctuation

part in which one linearizes the field evolution equations. The set of linearized equations

is given by Eq. (68). II) Though small initially, the fluctuations grow because of plasma

instabilities. Once they become sizable, the time evolution of the linearized equations is

stopped and the results are used as input for a subsequent classical-statistical simulation

which is fully non-linear.

A virtue of the two-step procedure of mapping the original quantum theory to the classical

description is that it has a well-defined continuum limit, enabling one to recover the full

physical results for certain quantities in the weak-coupling limit (Aarts and Smit, 1998). In

scalar field theories, this is well tested by comparisons to fully quantum calculations using

2PI effective action techniques (Aarts and Berges, 2002) and likewise, when scalar fields are

coupled to fermions (Berges et al., 2014d). The mapping was first applied in cosmology in

the context of post-inflationary scalar preheating dynamics (Khlebnikov and Tkachev, 1996;

Son, 1996).

The two-step procedure is in practice replaced by a simplified description whereby one
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starts with the fully non-linear classical-statistical description already from the initial time

in the strong-field regime. This can be well controlled, for a given regularization with

lattice spacing a in the weak coupling limit, by ensuring that vacuum fluctuations from

modes with momenta near the cutoff ∼ 1/a do not dominate the dynamics. Several studies

investigated the range of validity of this simplified “one-step” mapping of the original quan-

tum theory onto the classical-statistical description–see for instance Ref. (Epelbaum et al.,

2014); the limitations of the classical-statistical approximation have been studied in detail

in Ref. (Berges et al., 2014a) for scalar field theories.

Fig. 10 provides snapshots of the time evolution of the gluon distribution for an analyt-

ically computed initial spectrum of fluctuations given in Ref. (Epelbaum and Gelis, 2013)

employing the fully non-linear classical-statistical description already from the initial time

in the strong-field regime. The non-equilibrium evolution is computed numerically using the

Wilson formulation of lattice gauge theory in real time (Berges et al., 2014e). In addition

to gauge invariant quantities, (Coulomb type) gauge fixed distribution functions can be ex-

tracted for comparison to effective descriptions such as kinetic theory. The definition of the

distrubution function shown in Fig. 10 employs the two-point correlation function of the

gauge field following Ref. (Berges et al., 2014b). While the gluon distribution as a function

of transverse momentum pT and rapidity wave number ν is dominated by the boost-invariant

(ν = 0) background at early times QSτ ∼ 1, an over-occupied plasma emerges on a time

scale QSτ ∼ log2(α−1
S ).

A corresponding evolution is found irrespective of the details of the fluctuations in the

initial conditions. Fig. 11 shows the example of the gauge-invariant longitudinal pressure-

pressure correlation function for different rapidity wave numbers ν, averaged over transverse

coordinates, as a function of time (Berges and Schlichting, 2013). The evolution starts from

initial conditions with simplified initial fluctuations taken as an additive contribution to the

strong background gauge fields. While primary unstable modes at non-zero rapidity wave

number exhibit quasi-exponential amplification first, secondary instabilities with enhanced

growth rates set in with a delay for higher momentum modes due to the nonlinear processes

described above. Subsequently the instability propagates towards higher momenta until

saturation occurs and the system exhibits a much slower dynamics (Berges and Schlichting,

2013; Romatschke and Venugopalan, 2006b). This behavior is similar to that observed in

non-expanding gauge theories (Berges et al., 2009, 2008b) and cosmological models for scalar
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field evolution (Berges and Serreau, 2003).

C. Non-thermal attractor

The plasma instabilities lead to a far-from-equilibrium state at time QSτocc ∼ log2(α−1
S ),

which exhibits an over-occupied gluon distribution whose characteristic properties may be

parametrized as

f(pT , pz, τocc) =
n0

2g2
Θ

(
Q−

√
p2
T + (ξ0pz)2

)
. (72)

Here n0 denotes the magnitude of the initial over-occupancy of the plasma, averaged over

spin and color degrees of freedom up to the momentum Q. The momentum scale Q is of

comparable magnitude, albeit non-trivially related, to the saturation scale QS. The degree

of anisotropy of the gluon distribution in momentum space is described by the parameter

ξ0.

While Eq. (72) does not capture all details of the state at τocc, a precise matching to

the Glasma appears inessential because of the existence of an attractor solution for the

subsequent dynamics. In fact, variation of the parameters of Eq. (72) can be used to visualize

attractor properties.

Fig. 12 illustrates the evolution of the plasma in the occupancy–anisotropy plane, orig-

inally introduced in Refs. (Kurkela and Moore, 2011a,b). The horizontal axis shows the

characteristic “hard scale” occupancy nHard(τ) = f(p⊥ ' Q, pz = 0, τ), while the vertical

axis shows the momentum-space anisotropy, which can be characterized in terms of the ratio

of typical longitudinal momenta (ΛL) to the typical transverse momenta (ΛT ). These typ-

ical longitudinal and transverse momentum scales are gauge invariant quantities expressed

as ratios of the product of covariant derivatives of the field strength tensor normalized by

the energy density (Berges et al., 2014c). In a weak coupling limit, these are proportional

to 〈p⊥〉 and 〈pz〉 for a single particle distribution f(p⊥, pz, τ).

The blue lines in Fig. 12 show a projection of lattice simulation results onto the anisotropy-

occupancy plane. The different initial conditions are indicated by blue dots. After some time

all curves exhibit a similar evolution along the diagonal, clearly illustrating the presence of

a non-thermal attractor independent of the initial conditions. The attractor has a number

of interesting properties associated to non-thermal fixed points that we shall discuss in

Sec. IV.C.1–Sec. IV.C.3.
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1. Far-from-equilibrium universal scaling

Apart from the insensitivity to details of the initial conditions, the Glasma’s evolution

exhibits a universal scaling behavior such that the dynamics in the vicinity of the attractor

becomes self-similar. In the weak coupling limit, the gluon distribution can be expressed in

terms of a time independent scaling function fS (Berges et al., 2014b),

f(τ, pT , pz) =
(Qτ)α

αS
fS

(
(Qτ)βpT , (Qτ)γpz

)
. (73)

This scaling behavior is characteristic of the phenomenon of wave turbulence and has been

observed in a variety of systems far from equilibrium (Berges et al., 2015a; Micha and

Tkachev, 2004). As shown in Fig. 13, the moments of the longitudinal momentum distribu-

tion at different times in the evolution (top) collapse into universal curves for each moment

m of the single particle distribution. One observes a corresponding behavior for moments of

the transverse momentum distribution. This self-similar behavior of the distribution allows

one to extract numerically the values of the scaling exponents in Eq. (73) to be α ' −2/3,

β ' 0 and γ ' 1/3 (Berges et al., 2014b).

These values are consistent with those obtained also analytically from small-angle elastic

scattering as the dominant process and confirm the onset of the “bottom-up” thermalization

scenario (Baier et al., 2001). The competition between longitudinal momentum broadening

via small-angle scattering and the red-shift due to the longitudinal expansion leads to a

decrease of the typical longitudinal momenta as pz/Q ∼ (Qτ)−1/3, while the typical trans-

verse momenta remain approximately constant, pT/Q ∼ const. At the same time, the gluon

occupancy decreases as f(τ, pT ∼ Q) ∼ αS
−1(Qτ)−2/3 and becomes of order unity on a time

scale Qτquant ∼ α
−3/2
S when quantum effects can no longer be neglected. Beyond τquant,

the classical-statistical framework becomes inapplicable and one may resort to an effective

kinetic description as will be discussed in Sec. V.

2. Identifying the weak-coupling thermalization scenario

In Fig. 12, we showed the predictions of various thermalization scenarios for the momen-

tum anisotropy with decreasing occupancy. These thermalization scenarios are based on

estimates in effective kinetic theory and differ primarily in how infrared momentum modes
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are treated. Clearly, these differences lead to very different paths in the thermalization pro-

cess. As the system evolves with decreasing occupancy from the initial f ∼ αS
−1, classical-

statistical field theory simulations accurately capture the physics of the infrared regime.

This may be used to distinguish whether a particular thermalization scenario is indeed re-

alized, especially since lattice simulations and effective kinetic theory have an overlapping

regime of validity when 1 < f < αS
−1.

The gray lines in Fig. 12 indicate the different thermalization scenarios put forward in

Refs. (BMSS) (Baier et al., 2001), (BD) (Bodeker, 2005), (KM) (Kurkela and Moore, 2011a)

and (BGLMV) (Blaizot et al., 2012). Besides the BMSS scenario, which is consistent with

the lattice simulation results and is discussed in detail in Sec. V, the BD scenario considers

the possibiliity that plasma instabilities lead to an overpopulation f ∼ 1/αS of modes

with |p| . mD. The coherent interaction of hard excitations with the soft sector then

causes an additional momentum broadening such that the longitudinal momenta of hard

excitations fall at a slower rate. A possible variant of the impact of plasma instabilities for

the subsequent quantum evolution underlies also the KM scenario. In the BGLMV scenario,

elastic scattering is argued to be highly efficient in reducing the anisotropy of the system.

This would generate an attractor with a fixed anisotropy such that ΛL/ΛT remains constant

in time.

The selection of the appropriate effective kinetic theory using lattice simulation data

represents the state of the art, and is the basis for the thermalization discussion of Sec. V.

The justification of the kinetic description solely based on perturbation theory in its range of

validity raises important open questions on how to incorporate the effects of infrared modes.

3. Non-thermal attractors in scalar field theories

Non-thermal attractors in overoccupied weakly coupled field theories have been studied

earlier in the context of cosmological (p)reheating and thermalization after inflation in the

early universe (Berges et al., 2008a; Micha and Tkachev, 2003, 2004). A large class of infla-

tionary models employs scalar field theories, where an initially coherent inflaton field decays

due to non-equilibrium instabilities. These may originate from tachyonic/spinodal dynam-

ics or parametric resonance (Berges and Serreau, 2003; Kofman et al., 1994; Traschen and

Brandenberger, 1990). The instabilities lead to overoccupied excitations, whose transient
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dynamics can exhibit self-similar evolution.

The dynamics is in general spatially isotropic on large scales, in contrast to the longituinal

expansion relevant for heavy-ion collisions. To compare the two, if we impose the isotropic

case of no expansion with overoccupied initial conditions for gauge fields, the gluon distri-

bution function in the self-similar regime obeys f(t, p) = t−4/7fS(t−1/7p) in three spatial

dimensions. This is characteristic of an energy cascade towards higher momentum scale due

to weak wave turbulence (Kurkela and Moore, 2011b, 2012; Schlichting, 2012).

In the fixed box case for a relativistic real scalar field theory in the self-similar regime,

the distribution function obeys fφ(t, p) = t−(d+1)/(2l−1)fφS (t−1/(2l−1)p) for l-vertex scattering

processes (Micha and Tkachev, 2004). For quartic (l = 4) self-interactions, the exponents

are identical to the gauge theory with the same geometry. However in the presence of

spontaneous symmetry breaking, the non-zero field expectation value leads to effective three-

vertex scattering processes off the macroscopic field. These analytical estimates have been

numerically verified using 2PI effective action techniques in Refs. (Berges and Wallisch, 2017;

Shen and Berges, 2020) for a N -component scalar field theory with quartic self-interactions.

In classical-statistical simulations, which construct the ensemble averages from individual

runs with a non-zero field value, the observed scaling exponents are consistent with the

estimates in the presence of an effective three-vertex (Micha and Tkachev, 2004).

In Ref. (Berges et al., 2015b) longitudinally expanding N -component scalar field theories

are analyzed starting from over-occupied initial conditions. In the vicinity of the non-thermal

attractor, very similar scaling behavior as for the non-Abelian gauge theory is observed. The

universal scaling exponents and shape of the scaling function agree well with those obtained

for the early stage of the bottom-up thermalization process for gauge theories for not too

late times.

As an example, Fig. 14 shows results for the N = 4 component scalar theory for inter-

mediate transverse momentum pT ∼ Q/2, where the normalized scaling distribution as a

function of the rescaled longitudinal momentum is given. All data curves at different times

in the scaling regime collapse onto a single curve using the scaling exponents α = −2/3, and

γ = 1/3. This scaling curve is seen to be indistinguishable from the corresponding scaling

curve for non-Abelian gauge theory, which shares the same scaling exponents. The results

provide a striking manifestation of universality far from equilibrium.
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D. Far-from-equilibrium separation of scales and ultrasoft scale dynamics

The weakly coupled QCD plasma exhibits a hierarchy of scales in thermal equilibrium

at high temperature T , with the separation of hard momenta ∼ T dominating the system’s

energy density, soft (electric screening/Debye) momenta ∼ gT , and ultrasoft (magnetic)

momenta∼ g2T for g2 = 4παS � 1. A similar separation of scales exists far from equilibrium

in the vicinity of the non-thermal attractor, where for comparison we will consider the

spatially isotropic case without longitudinal expansion.

Starting from over-occupied initial conditions, in this fixed-box case the gluon distri-

bution function in the self-similar regime obeys f(t, p) = t−4/7fs(t
−1/7p) in three spatial

dimensions (Kurkela and Moore, 2011b, 2012; Schlichting, 2012). Accordingly, the time-

dependent hard momentum scale dominating the energy density is given by Λ(t) ∼ t1/7.

The Debye scale mD(t) ∼ g
√∫

d3p f(t, p)/p ∼ t−1/7 decreases with time (Berges et al.,

2014c; Boguslavski et al., 2018; Kurkela and Moore, 2012; Lappi and Peuron, 2017; Mace

et al., 2016).

At even lower scales, the dynamics becomes non-perturbative for momenta K(t) where

the occupancy reaches ∼ 1/αS, and the perturbative notion of a gluon distribution function

becomes problematic in this ultrasoft regime. As suggested in Ref. (Kurkela and Moore,

2012), the evolution of the ultrasoft scale may be estimated approximately as K(t) ∼ t−2/7

using the power law form of the occupation number distribution extracted in the perturbative

regime. While initially all characteristic momentum scales are of the same order QS, this

suggests that during the self-similar evolution a dynamical separation of these scales K(t)�
mD(t)� Λ(t) occurs as time proceeds.

1. Non-equilibrium evolution of the spatial Wilson loop

A proper description of the non-perturbative low momentum regime can be based on

gauge-invariant quantities. This should take into account that the infrared excitations

of non-Abelian gauge theories are extended objects, which can be computed from Wilson

loops (Berges et al., 2019, 2017a, 2008b; Dumitru et al., 2014; Mace et al., 2016). At the

magnetic scale, spatial Wilson loops capture the long-distance behavior of gauge fields A,
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defined as

W =
1

Nc

TrPe−i g
∫
C Ai(z,t) dzi , (74)

where the index i labels spatial components (Montvay and Munster, 1997). Here P denotes

path ordering along a closed line C, and the trace is in the fundamental representation of

SU(Nc).

The behavior of the spatial Wilson loop for large areas A� 1/Q2
S enclosed by the line C

reflects the long-distance or infrared properties of the strongly correlated system. Similarly

to the large-distance behavior of the spatial Wilson loop in a high-temperature equilibrium

plasma, the spatial Wilson loop exhibits an area law in the overoccupied regime of the non-

equilibrium plasma, i.e. − log〈W 〉 ∼ A (Berges et al., 2008b; Dumitru et al., 2014; Mace

et al., 2016).

However, here the area-law behavior occurs in the self-similar regime of the non-

equilibrium evolution. This is demonstrated in Fig. 15, which shows the logarithm of

the Wilson loop as a function of the time-rescaled area ∼ t−ζA with universal scaling ex-

ponent ζ (Berges et al., 2019, 2017a). Results for both SU(2) and SU(3) gauge groups are

displayed. After taking into account the Casimir color factors, normalizing the data points

with CF = (N2
c − 1)/(2Nc) discloses a very similar behavior for Nc = 2 and Nc = 3 (Berges

et al., 2017a). The scaling exponent ζ = 0.54±0.04 (stat.)±0.05 (sys.) agrees for both gauge

groups to very good accuracy (Berges et al., 2019). This value of the scaling exponent for

the ultra-soft scale
√
σ obtained from lattice simulations and the perturbatively motivated

result for the scaling of K(t) (Kurkela and Moore, 2012) are rather close, corroborating
√
σ ∼ K.

The positive value for ζ signals evolution towards larger length scales, with a growing

characteristic area A(t) ∼ tζ . For large A/tζ one observes from Fig. 15 the generalized

area-law behavior (Berges et al., 2019, 2017a)

− log〈W 〉 ∼ A/tζ . (75)

This implies a time-dependent string tension scale σ(t) = −∂ log〈W 〉/∂A ∼ t−ζ .

In Ref. (Mace et al., 2016), this behavior is related to the rate of topological transitions,

the so-called sphaleron transition rate:

Γsphaleron = C σ2 , (76)
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where C is a number of order unity. The picture that emerges is that the rate of topological

transitions is large at early times, Γsphaleron ∼ Q4
S, but subsequently decreases with time at

a rate dictated by the universal scaling exponent ζ. One expects this rate to converge from

above to the thermal rate for sphaleron transitions in a high-temperature plasma (Moore

and Tassler, 2011). We will return to the implications of these results for the evolution of

anomalous currents in Sec. IV.E.

Fig. 16 summarizes the behavior of the different characteristic scales in the self-similar

regime far from equilibrium. Apart from the perturbative behavior of the hard scale,

classical-statistical lattice simulations results are given for the Debye and the non-perturbative

string tension scale (Mace et al., 2016). The result clearly demonstrate the dynamical sep-

aration of scales as a function of time.

2. Effective condensate dynamics

The traced Wilson loop Eq. (74) may be directly related to correlation functions of a

gauge-invariant scalar field (Ford et al., 1998; Gasenzer et al., 2014; Mitreuter et al., 1998).

In thermal equilibrium, this scalar field serves as an order parameter for the confinement-

deconfinement phase transition of the underlying gauge theory (Braun et al., 2010; Fister

and Pawlowski, 2013). In the self-similar scaling regime of the non-thermal attractor, the

dynamical evolution of the scalar order-parameter field modes towards the infrared bears

many similarities (Berges et al., 2019) with the dynamics of Bose condensation in non-

relativistic field theories far from equilibrium (Berges and Sexty, 2012; Chantesana et al.,

2019; Piñeiro Orioli et al., 2015). Even quantitatively, the values for the infrared scaling

exponents in the different theories agree well within errors (Berges et al., 2019).

The non-equilibrium infrared dynamics for scalars starting from over-occupation has been

studied in great detail (Berges et al., 2015b, 2008a; Berges and Sexty, 2011, 2012; Boguslavski

and Piñeiro Orioli, 2019; Chantesana et al., 2019; Deng et al., 2018; Moore, 2016; Nowak

et al., 2012, 2011; Piñeiro Orioli and Berges, 2019; Piñeiro Orioli et al., 2015; Scheppach

et al., 2010; Shen and Berges, 2020; Walz et al., 2018). The emergence of self-similar scaling

behavior is closely related to the existence of non-thermal fixed points (Berges and Hoffmeis-

ter, 2009; Berges and Mesterhazy, 2012; Berges et al., 2008a; Corell et al., 2019). For scalar

N -component theories, the behavior can be approximately described by a large-N effective
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kinetic theory to next-to-leading order, which describes the perturbative higher momentum

regime as well as the non-perturbative infrared dynamics (Walz et al., 2018).

Both relativistic and non-relativistic scalar theories can show the same infrared scaling

and condensation properties (Piñeiro Orioli et al., 2015). This is true even for the anisotropic

dynamics of relativistic scalars with longitudinal expansion along the z-direction; the latter

geometry is relevant in the context of heavy-ion collisions, and both scalars and gauge

theories show also a very similar behavior for higher momenta in this case (Berges et al.,

2015a). Because of the strong enhancement in the overoccupied infrared regime, the low

momentum modes exhibit essentially isotropic properties despite longitudinal expansion.

A remarkable development in this regard is that table-top experiments with ultracold

quantum gases have discovered universal transport processes towards the infrared starting

from initial overoccupation of bosonic excitations of trapped atoms (Erne et al., 2018b;

Prüfer et al., 2018), similar to the case discussed here. This is discussed further in Sec. VIII.

E. Early-time fermion production and quantum anomalies

In the high energy limit, strong gauge fields dominate the earliest stages of the plasma’s

space-time evolution. However, the Bose enhancement from over-occupied gluons can lead to

a rapid production of quarks with important phenomenological consequences for heavy-ion

collisions, such as direct photon production from the electrically charged quarks (Chatterjee

et al., 2010) or the breaking of classical symmetries due to anomalies, a prominent example

being the chiral magnetic effect (Kharzeev et al., 2016; Koch et al., 2017). At early times

these processes occur far from equilibrium and require suitable techniques for their compu-

tation. We will discuss here these techniques and their consequences for the production and

evolution of fermions off-equilibrium.

1. Real-time simulations for fermions and gauge fields beyond the classical-statistical approxi-

mation

Since identical fermions cannot occupy the same state, their quantum nature is in general

highly relevant and a consistent quantum treatment of their dynamics is of crucial impor-

tance. In the QCD Lagrangian in Eq. (1), quarks appear as bilinear fields. Their real-time
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quantum dynamics may therefore be computed by numerically solving the operator Dirac

equation coupled to the gluon fields.

This can be achieved in an approximation where the gauge fields are treated using

classical-statistical field theory and by employing a mode function analysis of the operator

Dirac equation for quarks with available lattice simulation techniques (Aarts and Smit, 1999;

Berges et al., 2011; Borsanyi and Hindmarsh, 2009; Kasper et al., 2014; Saffin and Tranberg,

2011). For strong gauge fields ∼ 1/g, this approximate description amounts to a systematic

expansion of the quantum dynamics in αS ≡ g2/(4π), where the leading order includes the

full (non-perturbative) classical-statistical theory of gluons, and the next-to-leading order

takes into account back-action of the quarks onto the gluons, which is controlled by ∼ αSNf

for Nf quark flavors.

This can be also directly understood from the path integral formulation of the quantum

theory as described in detail in Ref. (Kasper et al., 2014) for Abelian and non-Abelian gauge

theories with fermions on a lattice. Performing the Gaussian integration for the quark fields

in QCD analytically yields a path integral for the gauge fields A± on the forward (+) and

backward (−) part of the closed time contour (see Sec. III) with an effective action

Seff [A+, A−] = Tr log ∆−1[A+, A−] + iSYM[A+, A−] . (77)

The term Tr log ∆−1[A+, A−] arises from the Gaussian integral over the quarks, where

i∆−1[A+, A−] denotes the inverse fermion propagator in the presence of the gauge fields.

Here SYM[A+, A−] is the Yang-Mills action of the pure gauge theory evaluated on the upper

and lower branch of the closed time contour.

The power counting for strong gauge fields is most efficiently done by a rotation of the ±-

basis for the gauge fields, splitting the gauge fields into a “classical” part Ā and a “quantum”

one Ã, according to

A+ =
1

g
Ā+

g

2
Ã , A− =

1

g
Ā− g

2
Ã . (78)

Expressed thus in terms of Ā and Ã, the interaction terms of SYM can be similarly decom-

posed into classical and quantum parts.

This is illustrated in Fig. 17, which indicates the classical three-vertex ∼ Ā2Ã and four-

vertex ∼ Ā3Ã parts of SYM, which are linear in the quantum field Ã. Fig. 18 gives the

corresponding quantum three-vertex ∼ g4Ã3 and four-vertex ∼ g4ĀÃ3 parts of SYM, which
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are cubic in the quantum field Ã and suppressed by two powers of αS compared to their

classical counterparts.

A similar analysis can be done for the Tr log ∆−1[Ā, Ã] contribution coming from the quark

fluctuations. Expanding this contribution in powers of the quantum field Ã yields (Kasper

et al., 2014)

Tr log ∆−1[Ā, Ã] ∼ g2 Tr
(
jq[Ā]Ã

)
+ g4O(Ã3) . (79)

The linear term in Ã is proportional to the quark vector-current in the presence of the clas-

sical gauge field, jq[Ā] (Aarts and Smit, 1999; Berges et al., 2011; Borsanyi and Hindmarsh,

2009; Kasper et al., 2014; Saffin and Tranberg, 2011).

Correspondingly, in this formulation the limit g = 0 represents the classical-statistical

field theory limit of pure Yang-Mills theory. In fact, the rescalings with the gauge coupling

employed in Eq. (78) reflect the fact that for classical-statistical field theory the coupling can

always be scaled out by suitable field re-definitions, while this not possible in the presence

of quantum corrections. Since fermions are genuinely quantum, one cannot scale out the

coupling from their contributions, as seen in Eq. (79) which starts at order αS.

According to the above analysis, genuine quantum corrections to the dynamics in pure

Yang-Mills theory enter only at order α2
S. Both the classical-statistical field contribution for

the Yang-Mills part, and the lowest contribution from quark fluctuations to Seff , are linear

in Ã. Neglecting higher-order corrections coming from terms with higher powers of Ã, the

stationarity condition δSeff [Ā, Ã]/δÃ = 0 yields the classical Yang-Mills evolution equation

for Ā with the quark current as a source term. This can be efficiently implemented numer-

ically with sampling techniques using the Wilson plaquette formulation on a lattice (Aarts

and Smit, 1999; Berges et al., 2011; Borsanyi and Hindmarsh, 2009; Kasper et al., 2014;

Saffin and Tranberg, 2011).

Numerical solutions of the non-equilibrium time evolution of gluons with dynamical

quarks have been obtained in Ref. (Gelis et al., 2006a) from 2+1 dimensional boost invariant

simulations, in Ref. (Gelfand et al., 2016) in 3+1 space-time dimensions for a non-expanding

system, and in Ref. (Tanji and Berges, 2018) for the realistic case with longitudinal expan-

sion. The calculations provide important first principles results on early quark production

and the approach towards chemical equilibrium. The results for the gluon sector are in line

with earlier simulations without quarks as expected at weak couplings, including self-similar

scaling characteristic of the first stage of the bottom-up thermalization scenario (Baier et al.,
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2001; Berges et al., 2014b). Several properties of the quark number distributions are carried

over from the gluon distributions, such as longitudinal momentum broadening (Tanji and

Berges, 2018; Tanji and Venugopalan, 2017).

We also note recent work on the real-time propagation of heavy quarks in the Glasma

that are important for a first-principles understanding of quarkonium production in heavy-

ion collisions (Lehmann and Rothkopf, 2020).

Classical-statistical lattice simulations cannot correctly describe the late-time thermal-

ization dynamics, when typical gluon occupancies become of order unity. The evolution may

then be continued with effective kinetic descriptions as reported in Sec. V.E.3.

2. Real-time off-equilibrium dynamics of quantum anomalies

The pair production of quarks and antiquarks lead to macroscopic manifestations of quan-

tum anomalies, corresponding to the breaking of classical symmetries by quantum effects.

These may be observable in heavy-ion collisions in the form of a Chiral Magnetic Effect

(CME) whereby topological transitions in the very strong electromagnetic B fields at early

times generate a vector current in the direction of the B field (Fukushima et al., 2008;

Kharzeev et al., 2008). The prospects for the discovery of this and related phenomena are

reviewed in Refs. (Kharzeev et al., 2016; Koch et al., 2017).

The key idea is that transitions between different topological sectors of the non-Abelian

gauge theory can induce a net axial charge asymmetry j0
a of light quarks, which can fluctuate

on an event-by-event basis. In off-central heavy-ion collisions, where strong electromagnetic

~B-fields are present, this axial charge asymmetry can be converted into an electric current

~j ∼ j0
a
~B that is potentially observable. Since the large “magnetar strength” B fields die off

very quickly after the collision (Skokov et al., 2009), the CME is most pronounced at the

earliest times after the collision.

The non-equilibrium dynamics of topological transitions in a highly occupied, albeit non-

expanding, Glasma were studied in Ref. (Mace et al., 2016) by performing classical-statistical

simulations and employing a cooling technique to isolate infrared dominated topological

transitions. Since gluon saturation generates a large scale QS � ΛQCD, so-called sphaleron

transitions generate real-time transitions between configurations characterized by integer

valued topological charge that may be separated by an energy barrier.
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Interestingly, the boost invariant Glasma configurations discussed in Sec. III.C.2 do not

not correspond to integer valued configurations of topological charge (Kharzeev et al.,

2002); sphaleron transitions therefore go hand in hand with the explosive growth of

plasma instabilites that break boost invariance, a phenomenon dubbed as “exploding

sphalerons” (Shuryak and Zahed, 2003). As noted in Eq. (76), the sphaleron transition

rate is controlled by the spatial string tension in the Glasma.

While off-equilibrium topological transitions are an essential ingredient, the CME in

heavy-ion collisions is mediated by the transport of quarks in this topological background

and in the presence of externalB fields. To address this problem of anomaly transport in such

backgrounds, real-time lattice simulations have been performed with dynamical fermions for

3+1 dimensional Abelian and non-Abelian gauge theories in Refs. (Mace et al., 2017; Müller

et al., 2016) for given background gauge fields. Transient anomalous charge production in

strong-field QCD has also been studied in Refs. (Tanji, 2018; Tanji et al., 2016).

Anomalies have been investigated for Abelian theories off-equilibrium for the fully dy-

namical situation, including the back-reaction of the fermions onto the gauge fields, in

one (Kharzeev and Kikuchi, 2020; Zache et al., 2019), two (Ott et al., 2019) and three (Mace

et al., 2019; Mueller et al., 2016) spatial dimensions. In Refs. (Kharzeev and Kikuchi, 2020;

Zache et al., 2019) dynamical topological transitions in the massive Schwinger Model with

a θ-term, as a prototype model for CP-violation, are studied. A dynamical order parameter

for quantum phase transitions between different topological sectors is established, which can

be accessed through fermion two-point correlators. Using exact diagonalization techniques,

it is shown that the topological transitions persist beyond the weak-coupling regime (Zache

et al., 2019).

Quantum fluctuations lead to an anomalous violation of parity symmetry in quantum

electrodynamics for an even number of spatial dimensions, which is studied in Ref. (Ott

et al., 2019) using the lattice simulation techniques described above. While the leading

parity-odd electric current vanishes in vacuum, a non-cancellation of the anomaly for strong

electric fields off-equilibrium is observed with distinct macroscopic signatures.

The non-linear dynamics of the CME in QED has been computed in Ref. (Mueller et al.,

2016) using real-time lattice simulations. For field strengths exceeding the Schwinger limit

for pair production, one encounters a highly absorptive medium with anomaly-induced dy-

namical refractive properties. An intriguing tracking behavior is found, where the system
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spends longest times near collinear field configurations with maximum anomalous current.

An interesting phenomenon observed in such simulations of off-equilibrium QED plasmas

is that of chiral instabilities proceeding through the primary and secondary instabilities

we discussed previously culminating in a self-similar turbulent magnetic helicity transfer to

macroscopic length scales (Mace et al., 2019), see also Ref. (Buividovich and Ulybyshev,

2016).

V. EQUILIBRATION IN QCD KINETIC THEORY

A. The quasi-particle description of QCD plasmas

In order to solve the quantum equations of motion, Eq. (66), for the late time evolution

towards local thermal equilibrium, an effective description with a well defined range of

validity at some (long) time and distance scales is needed. A well known example is kinetic

theory, which describes the state of the system in terms of phase space distributions of

particles. Such effective kinetic description of the plasma may be obtained from n-particle

irreducible quantum effective action techniques following along the lines of Refs. (Berges,

2004b; Blaizot and Iancu, 2002; Carrington and Kovalchuk, 2009).

The derivation of kinetic theory from the underlying quantum field theory involves a

series of approximations. First, for the notion of particles with a well defined position and

momentum between collisions to be valid, the de Broglie wavelength of the (quasi-)particles

must be small compared to the mean free path between collisions Likewise, quantum inter-

ference effects between successive scattering events should not spoil a description in terms

of independent scatterings. For the weakly coupled QCD plasma at high temperature these

questions have been addressed in a series of works culminating into the kinetic theory for-

mulation by Arnold, Moore and Yaffe (Arnold et al., 2003b).

The phase space distribution functions employed in kinetic descriptions are derived from

two-point correlation functions of the underlying quantum field theory. In local thermal

equilibrium, the system is locally homogeneous and time independent. Therefore all two-

point functions can only depend on the relative coordinate sµ = xµ−yµ. For slow variations

in space and time of the central coordinates Xµ = (xµ+yµ)/2, one considers the evolution in

X as given by a gradient expansion of Eq. (66) for the spectral function ρ and the statistical
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function F . To the lowest order in gradients, the evolution equation for ρ is not dynamical,

and a quasi-particle description emerges from an on-shell spectral function ρ in the weak

coupling limit (Berges, 2004b).

Here we consider the temperature T of the QCD plasma to be the single dominant

energy scale in the problem. Already at leading order in the coupling, the self-energy

receives contributions from an infinite number of perturbative loop diagrams with hard

O(T ) internal momentum—Hard Thermal Loops (HTL) (Braaten and Pisarski, 1990). This

results in quasi-particles acquiring a screening mass m ∼ gT .

The equation of motion for the statistical function is solved by generalizing the Kubo-

Martin-Schwinger (KMS) relation to introduce a non-equilibrium distribution function

f(X, p)

F (X, p) = −i
(

1

2
± f(X, p)

)
ρ(X, p), (80)

where “+” is for bosons and “−” for fermions, and the quasi-particle momentum pµ is the

Fourier conjugate to the relative coordinate sµ. In general, there can be separate distri-

butions for different color, spin and polarisation components of the two-point correlation

function.

From the equation of motion for the statistical function one obtains the kinetic Boltzmann

equation for the distribution function, which is written as36

pµ∂µf(X, p) = −C[f ]. (81)

The leading order collision term C[f ] is obtained by a systematic power counting in the

coupling constant; this computation is non-trivial and various diagrammatic approaches

have been employed to derive the relevant collision processes. For a systematic derivation of

kinetic theory from the underlying field theory see (Calzetta et al., 2000; Jeon, 1995; Jeon

and Yaffe, 1996) for the scalar case and (Aarts and Martinez Resco, 2005; Gagnon and Jeon,

2007) for Abelian field theories.

For non-Abelian gauge theories at high temperatures, the leading order collision kernel

appears at g4 order. However in addition to elastic scattering processes, there are collinear

splitting processes, which contribute at the same order. The importance of the latter was

recognized only later (Arnold et al., 2001; Aurenche et al., 1998). The corresponding vertex

36 Keeping interactions with strong background gauge fields leads to more general equations (Mrówczyński

et al., 2017).
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corrections for the underlying quantum field theory can be formulated using higher nPI

effective actions (Berges, 2004b; Carrington and Kovalchuk, 2009).

Once relevant physics processes are accounted for at the given order, Eq. (81) describes

the non-equilibrium evolution of QCD plasmas with the coupling constant g as the only free

parameter at high temperature (with the possible exception of heavy quark masses). In par-

ticular, one can use linearized kinetic theory to compute various transport properties of the

plasma around thermal equilibrium: shear and bulk viscosities, conductivity, diffusion and

higher order transport coefficients (Arnold et al., 2006, 2003c; York and Moore, 2009). For

a recent comprehensive review on perturbative thermal QCD techniques in kinetic theory,

and beyond, see Ref. (Ghiglieri et al., 2020). As we will discuss in detail below, the QCD

kinetic theory also provides a phenomenologically successful picture of QCD thermalization

in heavy-ion collisions (Abraao York et al., 2014; Keegan et al., 2016a; Kurkela and Lu,

2014; Kurkela and Zhu, 2015). For a complementary review, see (Schlichting and Teaney,

2019).

1. Chiral kinetic theory

In the following sections, we will discuss in detail the equilibration of QCD in the frame-

work of spin and color averaged kinetic theory. Spin and color dependent kinetic descrip-

tions require extensions of phase space distributions (Berezin and Marinov, 1977; Mueller

and Venugopalan, 2019). Such theories must include a relativistic covariant description of

Berry curvature and of the dynamics of the chiral anomaly for spinning and colored particles

in external background fields (Chen et al., 2015b; Son and Yamamoto, 2013; Stephanov and

Yin, 2012).

Recent work in this direction include a Wigner function approach (Gao and Liang, 2019;

Hattori et al., 2019; Sheng et al., 2020; Weickgenannt et al., 2019; Yang et al., 2020), chi-

ral effective field theory (Carignano et al., 2019) and a worldline formalism (Mueller and

Venugopalan, 2017). An important question to resolve in this context is the relation of

the dynamics of Berry’s phase to that of the chiral anomaly (Fujikawa, 2006; Mueller and

Venugopalan, 2018; Yee and Yi, 2020). A common goal of these approaches is a consistent

framework to describe anomalous transport in QCD which can be matched to an anomalous

relativistic hydrodynamic description at late times (Inghirami et al., 2020). These studies
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have strong interdisciplinary connections to chiral transport across energy scales ranging

from Weyl and Dirac semi-metals to astrophysical phenomena (Landsteiner, 2016).

B. Leading order kinetic theory

We will briefly recap here the main ingredients of QCD effective kinetic theory at leading

order in the coupling constant (Arnold et al., 2003b). We will consider the time evolution

of the color and spin/polarization averaged distribution function fs with effective 2 ↔ 2

scatterings and 1↔ 2 collinear radiation terms. For a transversely homogeneous and boost

invariant system (applicable at early times in central heavy-ion collisions), the phase space

distribution f s(τ,p) ≡ f sp is a function only of Bjorken time τ =
√
t2 − z2 and momentum.

The resulting Boltzmann equation is(
∂τ −

pz

τ

∂

∂pz

)
f sp = −Cs

2↔2[f ](p)− Cs
1↔2[f ](p) (82)

with the massless37 dispersion relation, p0 = |p| = p. Consequently, this kinetic theory

describes a conformal system with temperature T as the only dimensionful scale. The

index s refers to different particle species in the theory, for example, quarks and gluons

in SU(Nc) gauge theory with Nf fermion flavors. The second term on the left hand side

is due to the longitudinal gradients in a boost invariant expansion (Baym, 1984). The

expansion redshifts the distribution in the pz direction making it more anisotropic along

the longitudinal direction. Different stages of the thermalization process are defined by the

competition between the expansion which drives the system away from equilibrium and the

collision terms that isotropize and equilibrate the system.

1. Elastic two-body scattering

The 2↔ 2 collision term for particle species s = a is

Ca
2↔2[f ](p) =

1

4pνa

∑
bcd

∫
d3kd3p′d3k′

(2π)92k2p′2k′

×
{
fapf

b
k(1± f cp′)(1± fdk′)− f cp′fdk′(1± fap)(1± f bk)

}
×
∣∣Mab

cd

∣∣2 (2π)4δ(4)(pµ + kµ − p′µ − k′µ), (83)

37 At leading order, we can neglect the thermal mass correction ms ∼ gT to the dispersion relation p =√
|p|2 +m2

s for hard momenta |p| ∼ T on external legs.
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where
∑

bcd is the sum over all particle and antiparticle species. The second line represents

the phase space loss and gain terms. |Mab
cd|2 is the 2↔ 2 scattering amplitude squared and

summed over spin and color degrees of freedom of the external legs, with νg = 2(N2
c − 1) for

gluons and νq = 2Nc for quarks.

The scattering matrix element |Mab
cd|2 in Eq. (83) should be calculated using in-medium

corrected propagators and vertices from the HTL effective Lagrangian (Ghiglieri et al., 2020).

At leading order in the coupling constant, and for hard p ∼ T external legs, the scattering

matrix element coincides with the tree level vacuum matrix element; for instance, in the

case of two gluon scattering,

|Mgg
gg|2 = 8νgN

2
c g

4

(
3− st

u2
− su

t2
− tu

s2

)
, (84)

where s, t and u are the Mandelstam variables. In-medium corrections become relevant

when −t,−u ∼ (gT )2 is small, but s is large, as is the case for the small angle scattering

of hard particles. When the exchanged gluon (or quark) is soft, so that q = |p′ − p| � T

in the t-channel (and similarly in the u-channel), the vacuum collision matrix suffers from

a soft Coulomb divergence |M|2 ∝ 1/(q2)2. Therefore the problematic scattering matrix

elements in this region need to be reevaluated using the non-equilibrium propagators for

internal lines, which regulate the divergence (Arnold et al., 2003b).

For isotropic distributions and hard p ∼ T external legs, the soft self-energy (which cuts

off the long range Coulomb interactions) is proportional to the in-medium effective masses of

hard gluons and quarks (Arnold et al., 2003b). For gluons, it is given by (assuming f qp = f q̄p)

m2
g = 2g2

∫
d3p

(2π)3p

[
Ncf

g
p +Nff

q
p

]
, (85)

However for anisotropic distributions, the HTL resummed gluon propagator38 develops poles

at imaginary frequency indicating the presence of a soft gauge instability (Mrówczyński,

1997; Mrówczyński et al., 2017). Formally, this restricts the applicability of kinetic theory

to parametrically small anisotropies (Arnold et al., 2003b).

The rich physics of plasma instabilities has been studied extensively (Mrówczyński et al.,

2017). While such instabilities are of fundamental importance at early times, remarkably,

classical-statistical simulations of the non-equilibrium field dynamics of the Glasma (dis-

cussed in Sec. IV.C) show that such instabilities do not play a significant role at late times

38 Note that there are no unstable fermionic modes in anisotropic plasmas (Mrówczyński, 2002; Schenke and

Strickland, 2006).
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in expanding 3+1 dimensional non-Abelian plasmas. Motivated by these findings, phe-

nomenological approaches in kinetic theory simulations for anisotropic distributions use an

isotropic screening prescription (Abraao York et al., 2014; Kurkela and Zhu, 2015).

2. Fokker-Planck limit of elastic scatterings

For isotropic distributions, the elastic collision kernel for soft momentum exchange can be

rewritten as a drag and diffusion process in momentum space (Blaizot et al., 2014; Ghiglieri

et al., 2016, 2018a; Ghiglieri and Teaney, 2015; Hong and Teaney, 2010; Moore and Teaney,

2005; Schlichting and Teaney, 2019). First, one needs to separate the full collision kernel

into a diffusion term for soft momentum transfers q < µ and large-angle scatterings q > µ,

where the cutoff scale µ satisfies gT � µ� T :

Cg
2↔2[f ](p) = Cg

diff[f ](µ)|q<µ + Cg
2↔2[f ](p)|q>µ . (86)

The physics of the diffusion term is that of hard particles being kicked around by the

fluctuating soft gauge fields generated by other particles. For an isotropic non-equilibrium

plasma, the expectation value of such gauge field fluctuations can be related to equilibrium

fluctuations with the help of an effective temperature T∗ (taking f qp = f q̄p)

T∗ ≡
g2

m2
g

∫
d3p

(2π)3
[Ncf

g
p(1 + f gp) +Nff

q
p(1− f qp)]. (87)

Note that although T∗ = T in equilibrium, T∗ is distinct from the effective temperature

defined by the energy density and used in Sec. V.E and Sec. VI. Evaluating the collision

kernel in the limit of soft momentum transfer and isotropic distributions, results in a Fokker-

Planck type collision term

Cg
diff[f ](µ) = ηD(p)p̂i

∂

∂pi
(
f gp(1 + f gp)

)
+

1

2
qij

∂2f gp
∂pi∂pj

, (88)

where ηD is the drag coefficient, qij = q̂Lp̂
ip̂j + 1

2
q̂ (δij − p̂ip̂j) is the diffusion tensor and

p̂i = pi/p is the unit vector.

The transport coefficients q̂ and q̂L can be evaluated using the resumed HTL propagators,

while ηD is constrained by the Einstein relation and the requirement that Eq. (88) vanish in

equilibrium (Arnold, 2000a,b; Ghiglieri et al., 2016; Moore and Teaney, 2005). The leading
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order result for q̂ is

q̂(µ) =
g2NcT∗m

2
g

2π
log

µ2

2m2
g

. (89)

The UV divergence in the diffusion term is canceled by the corresponding IR divergence in

the large-angle scattering term in Eq. (86).

We can now specify the isotropic screening prescription for regulating the elastic collision

kernel for anisotropic distributions: for a soft gluon exchange in the t-channel (similarly for

the u-channel), the divergent term is replaced by IR regulated term t → t(q2 + ξ2
gm

2
g)/q

2,

where ξg = e5/6/2 is a numerical constant fixed such that the new matrix element repro-

duces the full HTL result for the drag and momentum diffusion properties of soft gluon

scattering (Abraao York et al., 2014).

Similarly, one can regulate divergent soft fermion exchanges to reproduce gluon to quark

conversion gg → qq̄ at leading order for isotropic distributions (Ghiglieri et al., 2016; Kurkela

and Mazeliauskas, 2019b). Formally, this regulated collision kernel is accurate for small cou-

plings and for near-isotropic systems. However in practice, numerical simulations for phe-

nomenological applications are often performed for stronger couplings g ≈ 1 and anisotropic

systems.

3. Effective collinear one-to-two processes

In addition to the momentum diffusion of hard particles, soft gluon exchange can also

take the particle slightly off shell and make it kinematically possible for it to split into two

nearly collinear hard particles. Naively, such a 2 → 3 process has an additional vertex

relative to elastic 2↔ 2 scattering making it subleading in the coupling constant. However

both the soft gluon exchange and the perturbed off-shell hard particle have ∼ 1/(g2T 2)

enhancements from the propagators. These compensate for the additional vertex insertion

and the nearly-collinear emission phase space (Arnold et al., 2001). For the same reason,

multiple soft scatterings N + 1→ N + 2 also have to be summed over.

Physically, this means that the nearly on-shell hard particle lives long enough before

splitting to receive multiple kicks from the plasma, which destructively interfere, leading to

the suppression of emissions from very energetic particles. This phenomenon is known as

the Landau-Pomeranchuk-Migdal (LPM) effect (Landau and Pomeranchuk, 1953a,b; Migdal,
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1955, 1956). Collectively these processes are described as an effective 1↔ 2 matrix element.

In Eq. (82) it is denoted by C1↔2[f ](p) and has the explicit form,

Ca
1↔2[f ](p) =

(2π)3

2νap2

∑
bc

∫ ∞
0

dp′dk′
[

(90)

γabc(p; p
′, k′)δ(p− p′ − k′)

×
{
fapp̂[1± f bp′p̂][1± f ck′p̂]− f bp′p̂f ck′p̂[1± fapp̂]

}
− 2γbac(p

′; p, k′)δ(p′ − p− k′)

×
{
f bp′p̂[1± fapp̂][1± f ck′p̂]− fapp̂f ck′p̂[1± f bp′p̂]

}]
,

where the unit vector p̂ = p/|p| defines the splitting direction and γabc(p; p
′, k′) is the effective

collinear splitting rate.

As required by detailed balance, Eq. (90) describes both particle splitting p↔ p′+k′ and

fusion p+k′ ↔ p′ processes. Factoring out the kinematic splitting function Pg→g

(
z = p′

p

)
=

Nc
1+z4+(1−z)4

z(1−z) for the gluonic process g → gg, this rate is given by

γggg(p; p
′, k′) =Pg→g(z)

νgg
2

4π

∫
d2h

(2π)2

2h · ReFg(h; p, p′, k′)

4 (2π)3 pp′2k′2
, (91)

where the integral has mass dimension two and is proportional to the virtuality acquired by

the hard particle due to interactions with the soft gauge field. The complex two-dimensional

function Fg(h; p, p′, k′) (with mass dimension one) solves the integral equation (Arnold et al.,

2001, 2002, 2003b),

2h = iδE(h)Fg(h) + g2Nc

2
T∗

∫
d2q⊥
(2π)2

A(q⊥) (92)

{3Fg(h)− Fg(h− k′q⊥)− Fg(h− p′q⊥)− Fg(h + pq⊥)} ,

where the energy difference between the incoming and the outgoing states is

δE(h; p, p′, k′) ≡ m2
g

2k′
+
m2
g

2p′
− m2

g

2p
+

h2

2pk′p′
, (93)

and h = (p′ × k′)× p̂ quantifies the transverse momentum in the near collinear splitting.

The second term on the r.h.s. of Eq. (92) can be interpreted as a linearized collision

integral with loss and gain terms describing the probability of a particle to scatter in and

out of transverse momentum h/p. The scattering rate A(q⊥) is proportional to the mean
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square fluctuation of soft gauge fields; for isotropic distributions it is given by (Aurenche

et al., 2002b),

A(q⊥) =
1

q2
⊥
− 1

q2
⊥ + 2m2

g

. (94)

Even with this isotropic approximation, Eq. (92) is highly non-trivial. Various numerical

schemes have been proposed for solving it (Aurenche et al., 2002a; Ghiglieri and Moore,

2014; Ghisoiu and Laine, 2014).

4. Bethe-Heitler and LPM limits of collinear radiation

We will now discuss two limiting cases of the soft gluon radiation z = p′

p
� 1. In the first

case, the so-called Bethe-Heitler (BH) limit, the interference between successive scattering

events can be neglected. This corresponds to the first (decoherence) term in Eq. (92) being

much larger than the scattering integral, pzg2T∗/m
2
g � 1. In this case, the equation can be

solved iteratively. One obtains (Ghiglieri et al., 2018a)

γggg(p; p
′, k′)

∣∣z�1

BH
=Pg→g(z)

νgαS
(2π)4

q̂(µ)p

m2
g

∣∣∣∣
µ=emg

, (95)

where q̂(µ) is given in Eq. (89). In the opposite limit zpT∗/m
2
g � 1 (but still z � 1), the

successive scatterings by the medium interfere destructively reducing the emission rate to

γggg(p; p
′, k′)

∣∣z�1

LPM
=Pg→g(z)

νgαS
(2π)4

(
q̂(µ)p

z

)1/2

, (96)

where, at next-to-leading-logarithmic order, µ solves µ2 = 2
√

2e2−γE+π/4
√
q̂(µ)pz (Arnold

and Dogan, 2008).

Due to soft gauge field instabilities, collinear radiation in anisotropic plasmas contains un-

stable modes (Hauksson et al., 2018, 2020). In phenomenological applications these unstable

modes are neglected and the isotropic approximation in Eq. (94) is employed instead.

C. Bottom-up thermalization

1. Initial conditions

Baier et al. (BMSS) (Baier et al., 2001) spelled out a bottom-up scenario for thermal-

ization beginning from the overoccupied Glasma discussed previously in Sections II, III and
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IV. In this framework, the momentum modes p ∼ QS can be interpreted as quasi-particles

with a well-defined anisotropic distribution after time39 τ QS ≥ log2 α−1
S . The initial gluon

distribution in kinetic simulations of this scenario is parametrized at QSτ0 = 1 as (Kurkela

and Zhu, 2015)

f gp =
2A

g2Nc

〈pT 〉c√
p2
⊥ + p2

zξ
2
0

e
− 2

3

p2⊥+ξ20p
2
z

〈pT 〉2c . (97)

The normalizationA is chosen to reproduce the co-moving energy density τE = 〈pT 〉c dNg/d
2x⊥dY .

In this expression the gluon number density at a fixed initial rapidity is determined at LO by

numerical simulations of the Glasma and the result can be read off Eq. (48). To obtain the

first principles input for the initial gluon production as a function of rapidity, one further

needs to solve the JIMWLK equations described previously in Sec. II.D. Likewise, one can

determine the average transverse momentum 〈pT 〉c ≈ 1.8QS (Lappi, 2011). Finally, the

anisotropy parameter ξ0 is varied to quantify our ignorance of the longitudinal momentum

distribution.

For the evolution of the overoccupied and highly anisotropic initial state, specified at its

initial time by Eq. (97), the typical gluon occupancy and the deviation from isotropy can

be monitored by computing the following ratios,

〈pf〉
〈p〉 =

∫
d3p

(2π)3pf
g
pf

g
p∫

d3p
(2π)3pf

g
p

,
PT
PL

=

1
2

∫
d3p

(2π)3p
p2
⊥f

g
p∫

d3p
(2π)3p

p2
zf

g
p

. (98)

2. Stage one: collisional broadening

The solution of the collisionless Boltzmann equation in the boost invariant expansion

is a simple rescaling of initial longitudinal momentum which does not change the typical

occupancy, but increases the anisotropy quadratically in time. However in the presence of

elastic collisions, gluons scatter into the longitudinal momentum direction thus broadening

the distribution. The longitudinal momentum diffusion for anisotropic distributions can be

estimated from the Fokker-Planck equation Eq. (88)(
∂τ −

pz

τ

∂

∂pz

)
f gp =

q̂

4

∂2f gp
∂p2

z

, (99)

39 Plasma instabilities operational over shorter time-scales are well described by classical-statistical simula-

tions – see Sec. IV.B.
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where we kept the dominant term on the right hand side. Note that for a highly occu-

pied anisotropic system q̂ ∼
∫
p
(f gp)2, this equation admits the scaling solution Eq. (73); as

discussed in Sec. IV.C.2, this solution is singled out in the classical-statistical simulations.

The physical picture is that the longitudinal momentum diffuses as 〈p2
z〉 ∼ q̂τ , where q̂ ∼

α2
Sn

2
g/(Q

2
S

√
〈p2
z〉) and the hard gluon number density per rapidity is constant αSngτQ

−2
S ∼ 1.

From this, it follows that the longitudinal momentum decreases as

〈
p2
z

〉
∼ Q2

S(QSτ)−2/3. (100)

This clearly shows that the increase in anisotropy is milder than in the free streaming case.

One obtains, PT/PL ∝ (τ/τ0)2/3 and 〈pf〉/〈p〉 ∝ (τ/τ0)−2/3 in agreement with the scaling

behavior of the non-thermal attractor of Sec. IV.C.1. The typical occupancy becomes of

O(1) at the time

τQS ≥ α
−3/2
S . (101)

This is the first stage of bottom-up thermalization. As discussed previously, this corresponds

to a “quantum breaking” time where the classical-statistical approximation breaks down

definitively. After this time, hard gluons with pT ∼ QS are no longer overoccupied, although

they still carry most of the energy and particle number.

3. Stage two: collinear cascade

Once the typical hard parton occupancy becomes O(1), the diffusion coefficient scales as

q̂ ∼ α2
Sng, where we still have αSngτQ

−2
S ∼ 1. At this time, the longitudinal momentum

diffusion rate and the expansion rate are comparable, with the result that the longitudinal

momentum reaches the constant value

〈
p2
z

〉
∼ αS Q

2
S . (102)

This ensures that the momentum anisotropy remains constant in the second bottom-up

stage.

In this stage, in addition to elastic scatterings, medium induced collinear radiation be-

comes important, that rapidly increases the population of soft gluons.

The soft gluon multiplicity can be estimated using the Bethe-Heitler formula Eq. (95);

integrating over soft momentum mD < p <
√
〈p2
z〉 and neglecting logarithmic factors, one
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obtains nsoft
g ∼ τ

α3
S

m2
g

(
nhard
g

)2
. The screening mass is now dominated by soft isotropic gluons,

m2
g ∼ αSn

soft
g /

√
〈p2
z〉. Using the expression above for the longitudinal momentum, we can

show that the soft and hard gluon multiplicities are of the same order at times

QSτ ≥ α
−5/2
S . (103)

At this time, the soft gluons have thermalized amongst themselves forming a bath with an

effective temperature. This marks the end of the second stage of bottom-up thermalization.

4. Stage three: mini-jet quenching

Even though the soft gluons have thermalized, the hard gluons still dominate the energy

density. They are however highly diluted 〈fp〉 / 〈p〉 � 1; the non-equilibrium modes are now

underoccupied as opposed being overoccupied in the first bottom-up stage. Although soft

gluon emission is very efficient in populating the infrared, the successive z ∼ 1/2 branching of

modes is more efficient for energy transfer. Such branching suffers from the LPM suppression.

The hard gluons are finally absorbed by the thermal bath in a “mini-jet” quenching that is

formally identical to the jet quenching formalism that is typically applied to describe much

harder modes.

The system finally thermalizes when the energy in soft and hard components becomes

comparable. This happens at the time

τthermal = C1Q
−1
S α

−13/5
S , (104)

with the thermalization temperature T = C2α
2/5
S QS. Here C1 and C2 are O(1) con-

stants (Baier et al., 2011, 2002). This time scale is parametrically α
−1/10
S longer than when

stage two ends and therefore only cleanly distinguishable at asymptotically small values of

the coupling.

The bottom-up thermalization scenario provides an intuitive picture of equilibration at

weak coupling. It is remarkable, given the complexity of the thermalization process in QCD,

that this scenario allows one to relate the final thermalization time and temperature to the

scale for gluon saturation in the nuclear wavefunctions.

Asymptotic freedom tells us that the coupling constant must run with QS, which is the

relevant hard scale in the problem. Therefore an interesting consequence of Eq. (104) is
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that τthermal ∼ log13/5(QS)/QS → 0 as QS → ∞. Thus contrary to naive expectations, the

bottom-up thermalization scenario predicts that thermalization in the asymptotic Regge limit

of QCD will occur nearly instantaneously relative to the size of the system.

5. Numerical realization of bottom-up thermalization

The thermalization time scales in the discussion above were only parametric estimates.

We will discuss now the results of a numerical implementation of the bottom-up kinetic

evolution from the overoccupied initial phase space distribution in Eq. (97) to the Bose-

Einstein distribution (Kurkela and Zhu, 2015).

For ’t Hooft coupling λ = Ncg
2 = 1 and initial anisotropy ξ0 = 10, we show in Fig. 19(a-

c) the evolution of the gluon distribution (integrated over spherical angle) with different

momentum weights. The three panels correspond respectively to the distribution of the

gluon energy density dE/dp, the number density dn/dp and the screening mass dm2
g/dp as

a function of gluon momentum. To factor out the dilution due to expansion, all of these

quantities are normalized by the total gluon number density n. The lines correspond to

different times τ QS ≈ 1, 10, 103.

We see that at early times τ QS ≈ 1 − 10 the hard p > QS modes dominate both the

energy and particle number, and even have significant contributions to the screening mass.

At very late times τQS ≈ 103, the particle number and the screening mass are completely

dominated by the soft sector, but there is still a noticeable contribution to the energy density

from the modes with p > QS.

It is interesting to compare the momentum distributions in Fig. 19 with the anisotropy and

occupancy evolution in Fig. 20 (which is a kinetic theory extension of the lattice computation

in Fig. 12). We mark the times τ QS ≈ 1, 10, 103 with a diamond, a circle and a triangle

respectively on the λ = 1, ξ0 = 10 simulation trajectory (blue solid line). We observe

that typical occupancies drop rather quickly below unity and we see a slight increase of

anisotropy as it happens. However the slope of the anisotropy increase is different from the

naive expectation in the first stage of bottom-up thermalization and is dependent on the

choice of initial conditions.

The anisotropy plateaus of the second stage is reached, already at τ QS ≈ 10, somewhat

quicker than what the parametric estimates would suggest. Finally, because the soft sector
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is more isotropic than that of hard gluons, we observe that as the gluon number shifts

towards lower momentum (see Fig. 19(b)), the anisotropy starts falling sharply in Fig. 20.

This marks the onset of the third stage of bottom-up thermalization. Although dilute hard

modes still contribute significantly to the energy density, the balance shifts towards more

densely populated soft modes whose occupancy steadily increases as the system isotropizes.

The bottom-up process ends finally when the system isotropizes. In practice, the third

stage of bottom-up equilibration is significantly longer than the second stage, in contrast to

the α
−1/10
S difference in the parametric time scales.

For an initial distribution with different initial anisotropy values ξ0 = 4, 10 (dashed and

solid lines) in Fig. 20, the evolution follows a qualitatively similar path. Although we expect

all initial conditions to converge at thermal equilibrium, it is remarkable that different

initializations merge already at rather large values of the anisotropies PT/PL ≈ 10, when

the system is still far away from local thermal equilibrium. This precocious collapse to a

universal curve, independent of the initial conditions, is termed a “hydrodynamic attractor”.

This phenomenon is discussed further in Sec. V.E and Sec. VI.D.

Finally, Fig. 20 also shows kinetic equilibration with increasing coupling constant (and

decreasing shear viscosity η/s). For λ ≥ 5, corresponding to small values of η/s . 2,

(and for which the initial occupancy is already below unity), the system starts to isotropize

almost immediately and the distinct stages of the bottom-up scenario are no longer clearly

discernible.

D. Self-similar evolution in the high-occupancy regime

1. Self-similar scaling

When characteristic field occupancies are sufficiently large for the classical-statistical

approximation to be valid, but small enough for the perturbative kinetic expansion to apply,

there is an overlapping regime where both approximations to the dynamics of the system

are valid (Aarts and Smit, 1998; Jeon, 2005; Mueller and Son, 2004).

As discussed in Sec. IV.C and Sec. V.C, the non-equilibrium dynamics of the overoccu-

pied plasma undergoes a remarkable simplification in complexity by exhibiting self-similar

evolution. In kinetic theory language, the self-similar behavior refers to the situation when
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the particle distributions at different times can be related by rescaling the momentum argu-

ments and the overall normalization – see Eq. (73), where α, β, γ denote the universal scaling

exponents. The relations between the exponents are constrained by conservation laws and

the Boltzmann equation Eq. (81), for which Eq. (73) provides a solution.

Longitudinally expanding systems are anisotropic and subject to soft gauge instabili-

ties. Therefore from a perturbative viewpoint it is very surprising that plasma instabilities

do not seem to affect the late time evolution of the classical-statistical real time simula-

tions, as shown in Fig. 12. The self-similar evolution near the non-thermal attractor is

consistent with the bottom-up thermalization scenario and numerical QCD kinetic theory

simulations (Kurkela and Zhu, 2015), which explicitly neglects plasma instabilities. How to

consistently solve the effective kinetic theory in anisotropic plasmas is an important open

question (Mrówczyński et al., 2017).

Finally, as mentioned in Sec. IV.C.2, in the case of the non-expanding isotropic systems,

the self-similar direct energy cascade plays an important role in equilibration of overoccupied

bosons. The same scaling exponents and the scaling function are also reproduced in kinetic

theory simulations (Abraao York et al., 2014; Kurkela and Lu, 2014). Fermions are never

overoccupied and chemical equilibration takes place over longer timescales than the direct

energy cascade (Kurkela and Mazeliauskas, 2019b).

2. Pre-scaling phenomenon

In Ref. (Mazeliauskas and Berges, 2019) it was found that the far-from-equilibrium QGP

already exhibits a self-similar behavior before the scaling exponents attain their constant

values α = −2/3, β = 0 and γ = 1/3. The pre-scaling phenomenon is realized through the

time dependent rescaling of the distribution function and its arguments (c.f. work by (Micha

and Tkachev, 2004)),

f gp
prescaling

=
(Qτ)α(τ)

αS
fS
(
(Qτ)β(τ)p⊥, (Qτ)γ(τ)pz

)
, (105)

where α(τ), β(τ) and γ(τ) are generic time dependent functions.

Figure 21 shows the evolution of time dependent scaling exponents in QCD kinetic theory

at very small couplings and overoccupied initial conditions (Mazeliauskas and Berges, 2019).

The value of the exponents is calculated from the time dependence of various moments of

83



the distribution,

nm,n(τ) =

∫
d3p

(2π)3
pmT |pz|nf gp . (106)

The different lines of the same color in Fig. 21 correspond to integrals with different powers

of the momentum. It is important to note that the rescaling in Eq. (105) is implicitly

assumed to be valid in a certain physically relevant momentum range. Therefore a finite set

of moments of Eq. (106) contains all the physically relevant information in the distribution.

As shown in Fig. 21, different extractions rapidly collapse onto each other and a unique set

of scaling exponents emerge that govern the time evolution of all probed moments.

The time dependent scaling exponents provide a more differential picture of how self-

similar behavior and information loss emerges near the non-thermal attractor. Here the

scaling exponents act as effective degrees of freedom, whose slowly varying evolution con-

stitutes a hydrodynamic description of the system around the non-thermal attractor. In

particular, the time dependent exponents could be well suited to study the evolution away

from the attractor in equilibrating systems even if the non-thermal attractor is never fully

reached, for instance, at larger values of the coupling. For related studies in scalar field

theory, see also Ref. (Schmied et al., 2019).

E. Extrapolation to stronger couplings

We have discussed thus far a non-equilibrium QCD evolution scenario which is strictly

valid only for g � 1. However the coupling constant is not parametrically small even at

the Z boson mass scale, where αS(M2
Z) ≈ 0.1179 ± 0.0010 (g =

√
4παS ≈ 1.2) (Tanabashi

et al., 2018). In the case of finite temperature perturbation theory, the expansion parameter

is ∼ αST/mD ∼ g – the convergence is therefore very slow (Blaizot et al., 2003a). In this

section, we will therefore discuss phenomenological extrapolations of the QCD kinetic theory

to “realistic” couplings.

The first calculation at next-to-leading order for QGP transport properties was performed

for heavy quark diffusion and the corrections were found to be large (Caron-Huot and Moore,

2008). On the other hand, the NLO contributions to the photon emission nearly cancel and

the overall contribution is only ∼ 20% (Ghiglieri et al., 2013). Recently, computations of the

shear viscosity, quark diffusion and second order transport coefficients have been extended

to include higher order contributions (dubbed “almost NLO” in (Ghiglieri et al., 2018a,b))
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thanks to the breakthrough idea of evaluating HTL correlations on the lightcone (Caron-

Huot, 2009). From Fig. 22, we see that NLO results for the specific shear viscosity η/s can

be a factor five smaller than the leading order result at the accessible QGP temperatures

T . 1 GeV. It is conceivable that a better reorganization of the perturbative expansion will

result in an improved convergence at NLO (Ghiglieri et al., 2018a).

Nevertheless, for phenomenological applications in heavy-ion collisions, the strong cou-

pling constant value αS ≈ 0.3 (g ≈ 2) is commonly used in leading order calculations.

Examples of these include thermal photon emission (Paquet et al., 2016), heavy quark

transport (Yao et al., 2020) or parton energy loss (Burke et al., 2014). At this point, it

is fair to admit that the leading order kinetic theory applications to equilibration processes

in the QGP do not provide a controlled expansion at realistic energies and therefore have

large theoretical uncertainties.

On the other hand, QCD kinetic theory does contain the necessary physical processes,

such as elastic and inelastic scatterings, to describe QCD thermalization at weak coupling.

Therefore in the absence of real time non-perturbative QCD computations, extrapolating

the weak coupling results to larger couplings provides a useful baseline, which can be sys-

tematically improved upon.

As we will discuss below, the dependence on the coupling constant is better replaced by

the value of shear viscosity η/s—a physical property of the QGP. The relaxation to equi-

librium is naturally controlled by the strength of dissipative processes. Therefore rescaling

weakly coupled kinetic theory dynamics to small values of η/s (favored by hydrodynamic

modeling of QGP) can be fairly compared to heavy-ion phenomenology and other micro-

scopic models. This includes the genuinely strongly coupled systems that will be discussed

in Sec. VI. This may indicate that lessons learned from QGP equilibration in leading order

kinetic theory are more robust than the LO expansion itself.

There have been a number of phenomenological applications of kinetic theory to the study

of thermalization in QCD. Early notable examples include Refs. (Biro et al., 1993; Geiger

and Muller, 1992; Hwa and Kajantie, 1986). Numerical implementations of classical kinetic

theory including elastic gg ↔ gg and inelastic gg ↔ ggg gluon scatterings were pioneered

in Ref. (El et al., 2008; Xu and Greiner, 2005). Below we will focus on the results from

the numerical implementations of the quantum kinetic theory including all leading order

processes, which was discussed in Sec. V.B.
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1. Hydrodynamic attractors in QCD kinetic theory

The universal macroscopic effective theory close to local thermal equilibrium is given by

fluid dynamics consisting of the conservation laws and constitutive equations (Landau and

Lifshits, 1959)

∂µT
µν = 0, T µν = T µνhydro(E , uµ, . . .). (107)

The only surviving information is contained in the macroscopic fluid variables, the energy

density E and fluid velocity uµ; all other information about the initial conditions is lost.

The surprising phenomenological success of viscous hydrodynamics in describing many

soft hadronic observables in heavy-ion collisions leads one to consider the possibility whether

a fluid dynamic description is applicable to systems with significant deviations from local

thermal equilibrium. This topic was first investigated in the strongly coupled holographic

models, and subsequently in the relaxation time approximation (RTA) kinetic theory and

hydrodynamic models; see reviews (Florkowski et al., 2018a; Romatschke and Romatschke,

2019) and Sec. VI.

In the QCD kinetic theory simulations of boost invariant expansion of homogeneous

plasmas (Heller et al., 2018; Keegan et al., 2016b; Kurkela et al., 2019a), it was observed

that the energy-momentum tensor quickly becomes a sole function of time measured in units

of the characteristic kinetic relaxation time40 τR ∼ η/(sT ), i.e.,

w̃ ≡ τT

4πη/s
. (108)

In such case the evolution of the energy-momentum tensor can be characterized by PL/E
as a function of w̃ (Heller et al., 2012b, 2018). Because w̃−1 is proportional to the Knud-

sen number—the natural expansion parameter for deviations from equilibrium—one would

expect that for large w̃ the kinetic theory will agree with viscous hydrodynamic result

PL/E = 1
3
− 16

9
η/s
τT

. Surprisingly, the simplest viscous constitutive relation is satisfied already

for w̃ ≈ 1, when viscous correction is comparable to the equilibrium pressure. Such effective

hydrodynamic description of systems substantially away from equilibrium is called nowadays

the hydrodynamic attractor. This notion is in fact much richer and its further aspects are

discussed in Sec. VI.D.

40 The effective temperature can be defined as a function of the energy density that would play the role of

the temperature in equilibrium. In conformal models it is given by the fourth root of the energy density

T = (E/(νeffπ
2/30))1/4. For an ideal gas of quarks and gluons, νeff = 47.5 and νeff = 16 for gluons only.
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Figure 23 shows the pressure anisotropy PL/PT as a function of rescaled time in an ex-

panding homogeneous system for different values of the coupling constant. The system is

prepared in an equilibrium state at initial time and then is allowed to undergo a boost in-

variant expansion which drives the system away from equilibrium. However as the expansion

slows down, it relaxes back to isotropy, satisfying PL/PT = 1.

Note that the kinetic simulations for different couplings (which corresponds to very dif-

ferent kinetic relaxation times) collapse onto each other even when the pressure anisotropy

PL/PT is significant. Overall, the kinetic evolution is very close to that of an infinitely

strongly coupled system. Although neither a weakly coupled kinetic theory, nor an in-

finitely strongly coupled supersymmetric Yang-Mills theory is an exact description of QCD

in heavy-ion collisions, Fig. 23 gives some indication that in the rescaled time units w̃ the

final stages of QCD equilibration could follow a very similar hydrodynamic attractor curve.

To map the hydrodynamic attractor evolution in dimensionless time w̃ to that in physical

units, one needs to fix the interaction strength by setting the shear viscosity over entropy

ratio η/s and the dimensionful temperature scale. Extensive hydrodynamic model com-

parisons to data constrain the shear viscosity to rather small values of 4πη/s ∼ 2 close to

Tc ≈ 155 MeV, although its value at higher temperatures is not well determined (Bernhard

et al., 2019; Devetak et al., 2019). The characteristic temperature scale in the hydrodynamic

stage is well constrained by the transverse entropy density per rapidity (sτ)hydro ∼ (T 3τ)hydro,

which is directly proportional to the produced particle multiplicity, and hence can be in-

ferred from the experimental measurements (Hanus et al., 2019). Inverting Eq. (108), we can

relate the dimensionless time w̃ in a longitudinally expanding conformal plasma to Bjorken

time τ via the relation

τ = κ1/2 w̃3/2(4πη/s)3/2 (sτ)
−1/2
hydro . (109)

The proportionality coefficient κ = (sτ)hydro/(τT
3) becomes a numerical constant in thermal

equilibrium, where κ = νeff4π2/90. Because the kinetic simulations converge towards con-

ventional viscous hydrodynamics predictions for w̃ & 1, it was estimated in Ref. (Kurkela

et al., 2019a,b) that the hydrodynamic description becomes applicable for times τ & 1 fm/c

for η/s ≈ 0.16 and typical entropy densities found in central PbPb collisions (Kurkela et al.,

2019a,b). This is consistent with the early hydrodynamization picture employed in the

modeling of heavy-ion collisions.
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2. Entropy production and initial energy density

At even earlier times w̃ . 1, kinetic simulations with very different initial conditions

might have not yet collapsed onto a single curve (Almaalol et al., 2020; Kurkela and Zhu,

2015). Nevertheless one may employ the hydrodynamic attractor curve, which is regular

for w̃ → 0, for a macroscopic fluid dynamic description far from equilibrium (Romatschke,

2018) (see also Sec. VI.C). In kinetic theory at early times, such an attractor curve has

vanishingly small longitudinal pressure PL ≈ 0 and constant energy density per rapidity

Eτ = const. Such initial conditions are typical for kinetic evolution in the bottom-up

picture discussed in Sec. V.C. Figure 24 shows the energy density E normalized by the

equilibrium evolution (Eτ 4/3)hydro/τ
4/3 for different hydrodynamic attractors obtained from

QCD and Yang Mills (YM) kinetic theory (Kurkela and Mazeliauskas, 2019a,b; Kurkela

et al., 2019a,b), AdS/CFT (Heller et al., 2012b; Heller and Spalinski, 2015; Romatschke,

2018) and Boltzmann RTA (Behtash et al., 2019b; Blaizot and Yan, 2018; Heller et al.,

2018; Strickland, 2018; Strickland et al., 2018). All attractors approach the universal viscous

hydrodynamic description at late times w̃ > 1, while at early times they follow E ∼ τ−1,

corresponding to “free-streaming” behavior41, which can be expressed as

Eτ 4/3(w̃ � 1)

(Eτ 4/3)hydro

= C−1
∞ w̃4/9. (110)

Here the dimensionless constant C∞ quantifies the amount of work done.

A directly observable consequence of the equilibration process is the particle multiplicity

which is a measure of the entropy produced in heavy-ion collisions (Muller and Schafer,

2011). For a given hydrodynamic attractor, the final entropy for boost invariant expansion

is proportional to the initial energy and is given by a simple formula (Giacalone et al., 2019)

(sτ)hydro =
4

3
C3/4
∞

(
4π

η

s

)1/3

κ1/3 (Eτ)2/3
0 , (111)

Ref. (Giacalone et al., 2019) shows that combining the entropy production from hydrody-

namic attractors with initial initial state energy deposition in the CGC framework gives a

good description of the centrality dependence of measured particle multiplicities. In par-

ticular, one can extend the original Bjorken estimate (Bjorken, 1983) of the initial en-

ergy density in heavy-ion collisions to much earlier times. For central Pb-Pb collisions at

41 The presence of scattering terms in Eq. (81) are crucial for the early time anisotropy evolution, but not

for the energy density. According to the equations of motion ∂τ (τE) = −PL, and τE ≈ const as long as

PL/E � 1.
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√
sNN = 2.76 TeV one finds E(τ0) = 270 GeV/fm3 at τ0 = 0.1 fm/c — nearly a thousand

times larger energy density than at the QCD crossover temperature.

3. Chemical equilibration of QGP

The early quark production from strong gauge fields was discussed in Sec. IV.E. However

once the gluon fields are no longer overoccupied, chemical equilibration has to be described

using QCD effective kinetic theory. A study of light quark flavor (up, down and strange)

chemical equilibration in isotropic and longitudinally expanding systems were recently pre-

sented in (Kurkela and Mazeliauskas, 2019a,b). At leading order, there are two fermion

production channels: gluon fusion gg → qq̄ and splitting g → qq̄. It was found that quark

production processes are slower than gluon self-interactions. Therefore, for example, the

gluon self-similar energy cascade seen in non-expanding isotropic systems is over well before

an appreciable number of fermions is produced. Similarly, gluons maintain an approximate

kinetic equilibrium among themselves, while fermions attain a Fermi-Dirac distribution at

much later times.

The longitudinal expansion drives both gluons and fermions from the kinetic equilibrium,

ensuring that equilibrium distributions can only be approached at late times when the ex-

pansion rate slows down. However the expansion does not seem to affect fermion production;

therefore chemical equilibrium is achieved before thermal equilibrium. For massless quarks,

the quark-gluon plasma satisfies the conformal equation of state P = 1
3
E and the chemical

composition of the plasma has little effect on the total evolution of the energy-momentum

tensor. Therefore hydrodynamization, chemical and thermal equilibrium are achieved se-

quentially (Kurkela and Mazeliauskas, 2019a,b) satisfying

τhydro < τchem < τtherm . (112)

Figure 25 shows the total energy density (red solid line), gluon energy density (green

dotted line) and quark energy density (blue dashed line) as a function of time. Gluons,

which dominate initially, are quickly overtaken by quarks and the approximate chemical

equilibrium energy ratios are reached by τ = 1.5 fm/c. This supports assumption of chemical

equilibrium in the lattice equation of state used in hydrodynamic simulations of the quark-

gluon plasma.
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Finally, an important piece of evidence for the formation of a chemically equilibrated QGP

in heavy-ion collisions is the enhanced production of hadrons carrying strange quarks (An-

dronic et al., 2018). It is believed that in small collision systems such as proton-proton

collisions, strange quarks are not produced thermally in sufficient numbers and therefore

strange hadron production is suppressed. Although in the kinetic description above the

three light flavors are all taken to be massless, the chemical equilibration rate can be used

to estimate the necessary life time (and system size) for the creation of the chemically equi-

librated QGP. The results in Ref. (Kurkela and Mazeliauskas, 2019a) show that the plasma

may reach chemical equilibrium for particle multiplicities down to dNch/dη ∼ 102. Strange

hadron production in such high multiplicity proton-proton collisions will be tested in future

runs of the LHC (Citron et al., 2019).

4. Equilibration of spatially inhomogeneous systems

Up to this point, we discussed the equilibration of longitudinally expanding but otherwise

homogeneous systems. Realistic heavy-ion collisions create initial conditions which are not

homogeneous in the transverse plane. Such geometric deformations are strongly believed to

be the source of the multi-particle correlations observed experimentally (Heinz and Snellings,

2013). In the weak coupling picture discussed in Sec. III, the spatial fluctuations are the

result of the uneven color charge distributions in the colliding nuclei. On the largest scale

∼ 10 fm it is determined by the overlap of the average nuclear profiles. On nucleon scales

∼ 1 fm one can resolve event-by-event fluctuations of individual colliding nucleons. On

yet smaller scales ∼ 0.1fm one has stochastic fluctuations of color charges in the internal

structure of a nucleon.

Equilibration in kinetic theory, of small transverse perturbations around the homogeneous

far-from-equilibrium background, has been investigated in several works (Keegan et al.,

2016a; Kurkela et al., 2019a,b). Relevant information on the complicated kinetic evolution

of the particle distribution f sp can be captured by the linearized energy-momentum tensor
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response functions Gµν
αβ

δT µνx (τhydro,x) =

∫
d2x′ Gµν

αβ (x,x′, τhydro, τekt)

× δTαβx (τekt,x
′)
T
ττ

x (τhydro)

T
ττ

x (τekt)
. (113)

Here the Green functions Gµν
αβ (x,x′, τekt, τhydro) describe the evolution and equilibration of

energy-momentum tensor perturbations from an early time τekt to a later time τhydro.

Remarkably, the linearized response functions are to a good approximation universal

functions of the dimensionless time w̃, similar to the hydrodynamic attractor describing

the background equilibration. This provides a practical tool–the linearized pre-equilibrium

propagator KøMPøST–for a pre-equilibrium kinetic description of heavy-ion collisions based

on QCD kinetic theory-(Kurkela et al., 2019a,b). For the first time, the combination of the

initial state IP-Glasma model discussed in Sec. III.C.3, kinetic equilibration and viscous

hydrodynamics evolution make it possible to describe all the early stages of heavy-ion colli-

sions in a theoretically complete setup. Experimental signatures of such setups are currently

being investigated (Gale et al., 2020; Schenke et al., 2020a).

Similarly to the evolution of the background, the equilibration of linearized perturbations

in QCD kinetic theory shares universal features with other microscopic descriptions (Bro-

niowski et al., 2009; Liu et al., 2015; Romatschke, 2015; van der Schee et al., 2013). Thanks

to this universal behavior, “universal pre-flow” is guaranteed to grow linearly with time for

small gradients ∇E/E � 1 (Keegan et al., 2016a; Kurkela et al., 2019a; Vredevoogd and

Pratt, 2009)

~v ≈ −1

2

~∇E
E + PT

τ, (114)

where, for long wavelength perturbations, ~∇E/(E + PT ) = const in conformal theories (Kee-

gan et al., 2016a). These response functions have been compared directly in Yang-Mills and

RTA kinetic theories (Kamata et al., 2020).

QCD kinetic theory simulations beyond the linearized regime have not been accomplished

to date, albeit there exist phenomenological studies of parton transport simulations based

on perturbative QCD matrix elements (Greif et al., 2017). To what extent the macroscopic

description in terms of hydrodynamics can be applicable in inhomogeneous systems with

non-linear transverse expansion is still an open question (see Sec. VI.E.2 for a discussion

in holography). However, encouragingly, the results of several works (Kurkela et al., 2020,
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2018b, 2019c,d) have demonstrated that for transversely expanding systems, the hydrody-

namic attractor remains a good description of local equilibration until the evolution time

becomes comparable to the transverse system size.

VI. AB INITIO HOLOGRAPHIC DESCRIPTION OF STRONG COUPLING PHE-

NOMENA

A. Holography and heavy-ion collisions

The preceding sections were concerned with the description of heavy-ion collisions in a

weak coupling QCD framework. This section will present what currently constitutes the

only approach capable of describing real time phenomena in genuinely strongly coupled

(1+3)-dimensional quantum field theories in a fully ab initio manner – holography (Gubser

et al., 1998a; Maldacena, 1998; Witten, 1998a).

The available description in this case does not make visible use of the gauge field degrees

of freedom. Instead, it is based on the notion of a correspondence to higher dimensional ge-

ometries, which arise as solutions of Einstein’s equations with negative cosmological constant

and appropriate matter fields.

The guiding principle for our presentation will be universality. We will be interested in

phenomena shared across strongly-coupled quantum field theories and seek in them theoret-

ical lessons and phenomenological implications for thermalization in QCD.

A prime example of such a quantity is the aforementioned η/s = 1/(4 π) in all holographic

QFTs as long as they are described by two-derivative gravity theories. One purpose of this

article is to review other kinds of universalities that exist in the genuine non-equilibrium

regime.

B. Controlled strong coupling regime

The best-known holographic gauge theory is the N = 4 super Yang-Mills theory. At

the Lagrangian level, it can be viewed as the gluon sector of SU(Nc) QCD coupled in a

maximally supersymmetric way to 4 Weyl fermions and 6 real scalars, both in the adjoint

representation of the gauge group (Ammon and Erdmenger, 2015). This theory, as opposed
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to QCD, is conformally invariant; the coupling constant does not run with the energy and

becomes an external parameter that defines the theory.

In the planar Nc → ∞ limit for asymptotically large values of the ’t Hooft coupling

constant

λ ≡ 4παSNc →∞ , (115)

the degrees of freedom in the N = 4 super Yang-Mills theory reorganize themselves in such

a way that correlation functions of certain operators including the energy-momentum tensor

in a whole class of interesting states can be computed using a 5-dimensional Einstein gravity

action with a negative cosmological constant

Sgrav =
1

16πGN

∫
d5x
√

detg

{
R− 2

(
− 6

L2

)}
(116)

and sublemented with matter fields. Here R is the Ricci scalar and L is the length scale set

by the cosmological constant. For the N = 4 super Yang-Mills theory at λ→∞ one has

L3

GN

=
2N2

c

π
(117)

and a particular matter sector. They both follow from relevant string theory considera-

tions (Maldacena, 1998).

One should view the Einstein gravity description to be applicable only when λ → ∞.

Since the QFT coupling constant does not appear in any form in Eq. (116), it indicates that

the coupling constant dependence drops from all the QFT quantities one can describe in

this way for λ → ∞. When the coupling constant is large, but not infinite, the relevant

description becomes Einstein gravity supplemented with higher-curvature terms like the

fourth power of the curvature. The form of these terms follows again from string theory

considerations and in controllable situations they should be necessarily treated as small

corrections. Due to equations of motion becoming generically higher order in derivatives,

the uncontrollable extrapolation of the kind one does in, e.g., kinetic theory can be done

here only in a very limited number of cases (Woodard, 2015). We will discuss these topics

in Sec. VI.F.2.

The “vanilla” setting in holography is 5-dimensional gravity with negative cosmological

constant encapsulated by Eq. (116), which provides a consistent dual holographic description

of an infinite class of strongly coupled conformal field theories (CFTs) with a large number

of microscopic constituents (Bhattacharyya et al., 2008). Specifically, it describes a class of
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states in strongly coupled CFTs in which the only local operator acquiring an expectation

value is the energy-momentum tensor T µν . The most comprehensive holographic results on

heavy-ion collisions concern this particular case.

A generic 5-dimensional metric can be always brought to the form

ds2 =
L2

u2

(
−du2 + gµν(u, x) dxµdxν

)
. (118)

Here u is an additional direction emerging on the gravity side interpreted as a scale in a

dual QFT. Einstein’s equations put conditions on acceptable forms of gµν(u, x). The most

symmetric solution for gravity with negative cosmological constant has gµν(u, x) = ηµν ,

which is the 4-dimensional Minkowski metric. This is the empty AdS5 (anti-de Sitter)

solution, which represents in gravitational language the time development of the vacuum

in holographic CFTs. The surface u = 0 acts as a boundary of AdS5 and, more generally,

gµν(u = 0, x) has the interpretation of a metric in which the corresponding QFT lives.

The expectation value of the energy-momentum tensor arises by looking at the subleading

behaviour of gµν(u, x) close to the boundary (Balasubramanian and Kraus, 1999; de Haro

et al., 2001). This is particularly simple for CFTs living in Minkowski space:

gµν(u, x) = ηµν +
4π GN

L3
〈Tµν〉(x)u4 + . . . (119)

The ellipsis denotes higher order terms in the small-u expansion that turn out to contain

only even powers of u with the coefficients being polynomials in 〈T µν〉 and its derivatives.

One cannot a priori exclude terms like exp (−1/u) which were considered for example in

Ref. (Heller et al., 2013b), but a general understanding of such terms is lacking. In the

following, we will refer to the interior of AdS spacetimes as “bulk physics” and the QFT

physics as “boundary physics”.

We are interested here in discussing time dependent states in Minkowski spacetime that

model the dynamics of heavy-ion collisions. Given Eq. (119), such states can be probed

through their expectation value of the energy-momentum tensor by solving the equations of

motion of Eq. (116) as an initial value problem. This is achieved using numerical relativity

techniques (Chesler and Yaffe, 2014; Heller et al., 2012a; Liu and Sonner, 2018) and requires

one to specify initial conditions and the solutions are subject to boundary conditions at u =

0.

There are two natural ways (with pros and cons) of studying the non-equilibrium physics

of quantum field theories using holography, see Fig. 26. The first approach circumvents

94



the problem of finding initial conditions, a key reason for its use in early works on the

subject (Chesler and Yaffe, 2009, 2010). Moreover, this approach allows one to compare

equilibration across theories by starting with the same kind of initial state (for example,

the vacuum or a thermal state) and perturbing it in a defined manner. In particular, it

underlies a significant body of research on understanding features of linear response theory

in different microscopic models (Grozdanov et al., 2016; Kovtun and Starinets, 2005; Kurkela

and Wiedemann, 2019; Romatschke, 2016). As an example, Ref. (Keegan et al., 2016b)

discussed in Sec. V.E – see Fig. 23 – compared the approach to hydrodynamics across

models (including holography) using fully non-linear kicks. The drawbacks to perturbing

simple states are that firstly, the approach to hydrodynamics is so rapid that it is hard to

disentangle exciting the system from its subsequent relaxation; secondly, the class of states

one obtains in this way is rather limited.

The second method, in which one solves gravity equations for different initial conditions,

allows one to access a larger range of transient behavior. In particular, since we do not know

which initial conditions are closest to the physics realized in experiment, one may wish to

scan as many of these initial conditions as possible to obtain a comprehensive picture.

The downside is that in most cases this way of phrasing the problem is very specific to

the geometric language of describing strongly coupled QFTs similarly to the one-particle

distribution function being very specific to the weak coupling language. It does not allow

for controllable comparisons with other frameworks akin to Ref. (Keegan et al., 2016b).

This can be somewhat ameliorated in holographic collisions in which the initial conditions

for gravity originate from superimposing two exact solutions corresponding to individual

projectiles approaching each other.

Thermalization at strong coupling is a process in which one starts with an excited geom-

etry in the bulk and after some time it becomes locally very close to a black hole geometry.

This encapsulates the notion of thermalization of expectation values of local operators. Non-

local observables discussed in Sec. VI.F.3 can still show traces of non-equilibrium behaviour

after local thermalization occurs. This should not come as a surprise since the thermalization

of non-local observables is necessarily constrained by causality.

The discussion thus far was quite generic but the explicit formulas were provided for

strongly coupled CFTs. While QCD is not a CFT, holography does not pose any conceptual

problems in studying strongly coupled gauge theories with a non-trivial RG provided the
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theory remains strongly coupled at all scales. This can be realized by introducing relevant

deformations to holographic CFTs, modifying their Lagrangian by
∫
d4x J O(x) with the

(scaling) dimension ∆ < 4 of O(x). This triggers a non-trivial bulk metric dependence on

u, providing the gravitational counterpart of an RG flow.

In holography, the bulk object corresponding to O is a scalar field φ appearing in the

matter sector that supplements the universal sector in Eq. (116). This scalar field is non-

zero because the J of the QFT translates into its asymptotic boundary conditions; the latter

generates a non-trivial profile for φ when solving the bulk equations of motion. Of course,

the action for the bulk matter fields equips φ with a potential and the form of the potential

determines the physics of the RG flow in the corresponding QFT (including the information

about ∆). We will review representative results in Sec. VI.F.1.

To close, holography provides an ab initio window to study strongly-coupled QFTs, which

include conformal and non-conformal gauge theories. The conceptual problem of fully non-

perturbative real time evolution of a whole class of QFTs reduces in this setting to a tech-

nical challenge of solving a set of coupled partial differential equations in higher number of

dimensions, which is well within reach of the existing numerical relativity methods.

The holographic approach is very general and can be equally well applied to the problem of

time evolution of the nuclear medium in heavy-ion collisions, as well as problems originating

in branches of physics (Ammon and Erdmenger, 2015; Hartnoll et al., 2016). Finally, we

stress again that holography as a tool for QFT comes with its own limitations illustrated

by the fact that one needs to work in regimes where the gravity description is classical or

semi-classical.

C. Early times in Bjorken flow at strong coupling

Bjorken flow (Bjorken, 1983) without transverse expansion in a CFT setting is arguably

the best studied example of a nonlinear non-equilibrium phenomenon in holography42. Be-

cause of the conservation of the energy-momentum tensor, all the non-trivial information

about the dynamics can be extracted from 〈T ττ 〉 ≡ E(τ). This parametrization is useful

to describe the early time physics relevant for modeling initial stages of ultra-relativistic

42 Recently devised hyperbolic quenches (Mitra et al., 2019) adopt effectively (1+1)-dimensional boost in-

variant geometry of heavy-ion collisions in the context of condensed matter physics.
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heavy-ion collisions.

Towards this end, Ref. (Beuf et al., 2009) noticed that combining Eq. (119) (expanded

to sufficiently high order in u) with a general Taylor series ansatz for E(τ) around τ = 0

does not lead to singular bulk metric coefficients in the limit τ → 0 as long at the early time

expansion contains only positive even powers of proper time:

E(τ ≈ 0) = E0 + E2τ
2 + E4τ

4 + . . . . (120)

The coefficients in the above equation are not entirely arbitrary but they are related one-

to-one to the near-boundary expansion of the bulk metric that satisfies the constraints on

the initial time slice, as encapsulated by Eqs. (118) and Eq. (119). The early time series

(120) turns out to have a non-zero, but finite radius of convergence, which allows one to

reliably study the initial dynamics of the system. However, as shown in Ref. (Beuf et al.,

2009), and later corroborated in Ref. (Heller et al., 2012a) using the full numerical solution

of bulk Einstein’s equations, the radius of convergence of (120) is much too small to see

the transition to hydrodynamics. This point is illustrated in Fig. 27 using the effective

temperature40. Furthermore, simple analytic continuations of the series (120) based on the

Padé approximants method provide unreliable extrapolations.

One lesson therefore is that the only method to obtain 〈T µν〉 in strongly coupled QFTs

beyond the early time limit examples is to use numerical relativity. Before we proceed there,

a few more comments related to Eq. (120) are in order. Firstly, the analysis of Ref. (Beuf

et al., 2009) uses regularity of the initial metric on a particular constant time slice of the bulk

geometry, namely the one dictated by the coordinates chosen in Eq. (118). It is therefore

logically possible43 that there are initial metrics defined on other bulk constant time slices

that give rise to energies densities of the form different than dictated by Eq. (120). Second,

note that in Eq. (120) any number of the lowest order terms can vanish and the energy

density at early time can behave like, e.g., E
∣∣
τ≈0
∼ τ 2 (Grumiller and Romatschke, 2008).

Another point is that there are various reasons why one may not want to start the

evolution at τ = 0. The most obvious one is related to creating either non-equilibrium

initial states from the vacuum or thermal states, as discussed in Fig. 26. In these cases, the

sources will need some non-zero time to act (Chesler and Yaffe, 2010). The other reason

43 Ref. (Jankowski et al., 2014) chose initial surfaces in the bulk as in Fig. 26 with results consistent with

Eq. (120).
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is more conceptual and is related to the observation that while one should not expect the

infinitely strongly coupled approach to be a phenomenologically viable description at τ = 0,

it may become one from some τ > 0 onward. Note that from the gravity point of view, it

is far from clear that all the initial conditions set in the bulk for τ > 0 are extendable to

τ = 0 and, as a result, one can view them as, a priori, containing richer behavior.

Because of this issue, it is unclear whether all well behaved initial conditions for numerical

relativity simulations actually describe genuine states in underlying QFTs. As opposed to

Refs. (Heller et al., 2012a,b; Jankowski et al., 2014), the papers initializing their codes at

later times with turned off sources include Refs. (Kurkela et al., 2020; Romatschke, 2018;

Wu and Romatschke, 2011). In particular, Ref. (Romatschke, 2018) finds initial conditions

at some early but non-zero τ such that E ∼ 1
τ

initially, which is clearly very different from

Eq. (120).

As already discussed in Sec. V.E, the transition to hydrodynamics can be observed in the

cleanest way upon introducing the scale-invariant time variable w̃ defined in Eq. (108) and

using PT/PL, PL/E or any reasonable function of this ratio such as

A =
PT − PL
E/3 =

3PTPL − 3

2PTPL + 1
(121)

introduced in Refs. (Florkowski et al., 2018a; Heller et al., 2012b; Jankowski et al., 2014) as

a function of w ≡ τT . Note that in strongly coupled limit of holography 4π η/s = 1 and we

will simply denote then w̃ as w.

It is well understood by now that at late time A (w) acquires the form of a trans-

series (Aniceto et al., 2019b; Aniceto and Spaliński, 2016; Heller et al., 2013a; Heller and

Spalinski, 2015) known from the studies of asymptotic expansions in mathematical and

quantum physics, see Refs. (Aniceto et al., 2019a; Dorigoni, 2019) for reviews. The hydro-

dynamic part is a series in inverse powers of w and has a vanishing radius of convergence44.

Its first few terms read

A (w) =
2

π
w−1 +

2− 2 log 2

3π2
w−2

+
15− 2π2 − 45 log 2 + 24 log2 2

54π3
w−3 + . . . , (122)

44 The same applies to Gubser (Denicol and Noronha, 2019b) and cosmological (Buchel et al., 2016) flows,

but is not the case for Bjorken flow with fine-tuned transport coefficients (Denicol and Noronha, 2019a).

Furthermore, Ref. (Heller et al., 2020b) used the results of (Grozdanov et al., 2019a,b; Withers, 2018) to

show that divergence of the hydrodynamic gradient expansion is a generic feature of the linear response

theory. 98



see Refs. (Booth et al., 2009; Florkowski et al., 2018a; Heller and Janik, 2007; Heller et al.,

2012b, 2009; Janik, 2007; Jankowski et al., 2014; Kinoshita et al., 2009a,b; Nakamura and

Sin, 2006). This relation should be understood as expressing the energy-momentum tensor

in terms of hydrodynamic constitutive relations to the third lowest order. The first term

carries information about the first derivative of flow velocity and the shear viscosity, the

second term is a contribution from second derivatives of velocity and associated transport

coefficients. The third term is the last one that is known analytically. The current state

of the art is set by Ref. (Casalderrey-Solana et al., 2018) which, improving on the earlier

efforts of Ref. (Heller et al., 2013a), computed numerically the lowest 380 terms in the

expansion Eq. (122). On top of the power law late time (w) expansion come exponentially

suppressed terms that represent transient phenomena visible also in the linear response

theory (Heller et al., 2013a; Heller and Spalinski, 2015; Heller and Svensson, 2018; Janik

and Peschanski, 2006b).

Fig. 27 illustrates time evolution of the effective temperature T (τ). Hydrodynamics is

applicable at a time after which the pressure anisotropy deviates from Eq. (122) by very

little. As discussed in detail in Ref. (Heller et al., 2012a), the precise moment of applicability

of hydrodynamics depends on the desired accuracy of the match to Eq. (122) and the order

of the truncation. Of course, the latter aspect should be understood in the sense of an

asymptotic series.

The main message from the studies in Refs. (Chesler and Yaffe, 2010; Heller et al., 2012a,b;

Jankowski et al., 2014; Kurkela et al., 2020; Romatschke, 2018; Wu and Romatschke, 2011)

and related works is that low order hydrodynamic constitutive relations (see Eq. (122)) be-

come applicable at strong coupling after τ = O(1/T ). This is the regime where the pressure

anisotropy in the system is sizable, as illustrated in Fig. 28. Since the system is still far away

from local thermal equilibrium, the word hydrodynamization was coined in (Casalderrey-

Solana et al., 2014b) to distinguish the applicability of viscous hydrodynamics constitutive

relations from local thermalization. In particular, the latter phenomenon occurs at strong

coupling for times which can be even 10 times larger than the hydrodynamization time.

The modern perspective on hydrodynamics, viewing in particular the gradient expansion

as a part of a trans-series, is reviewed in detail in Ref. (Florkowski et al., 2018a). In the

following, we will discuss an alternative way of thinking about the applicability of hydro-

dynamics using the concept of hydrodynamic attractors. These objects already made their
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appearance in Sec. V.E and bear a structural similarity to non-thermal attractors (fixed

points) discussed in Sec. IV.C.

D. Hydrodynamic attractors in holography

Hydrodynamic attractors proposed in Ref. (Heller and Spalinski, 2015), and developed in

many works including Refs. (Almaalol et al., 2020; Almaalol and Strickland, 2018; Aniceto

and Spaliński, 2016; Basar and Dunne, 2015; Behtash et al., 2019a, 2018, 2019c; Blaizot and

Yan, 2018, 2020; Brewer et al., 2019; Casalderrey-Solana et al., 2018; Chattopadhyay and

Heinz, 2020; Dash and Roy, 2020; Denicol and Noronha, 2018, 2019a,b; Florkowski et al.,

2018b; Heller et al., 2020a; Jaiswal et al., 2019; Kurkela et al., 2020; Romatschke, 2017, 2018;

Shokri and Taghinavaz, 2020; Spaliński, 2018; Spaliński, 2018; Strickland, 2018; Strickland

et al., 2018; Strickland and Tantary, 2019) can be viewed as a way of approaching the

problem of information loss about the underlying state from the point of view of observations

restricted to the energy-momentum tensor 〈T µν〉.
Reexamining Fig. 28 through these lenses, we see that a set of different states considered

there follows to a good approximation a single profile of A (w) from a certain value of w

onward. This is the notion of attraction between different initial conditions as seen by an

effective phase space covered by A at a fixed value of w. While this observation does not call

for invoking a truncated gradient expansion, the emerging universality seen in Fig. 28 agrees

very well with hydrodynamic gradient expansion truncated at low order. These observations

lie behind the name hydrodynamic attractor and parallel the discussion in Sec. V.E.1.

Let us step back and review this phenomenon from a broader perspective advocated

recently in Ref. (Heller et al., 2020a). To proceed, we will utilize the aforementioned notion

of phase space introduced in this context in Ref. (Behtash et al., 2018). Specifically, one

should think of A as a particularly clean (scale invariant) way of representing information

about 〈T µν〉 and w as a useful way of parametrizing time evolution, adjusted to the fact that

transient phenomena in conformal theories occur over time scales set by the energy density.

Of course, knowing A at a given value of w does not allow one to predict its value

later, since the true microscopic variable is the bulk metric. A bigger chunk of information

is provided by considering A and some of its derivatives with respect to w (or E and its

derivatives with respect to τ). Such sets of variables form the notion of an effective phase
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space. In fact, there is a limit to how big such phase space needs to be – numerical solutions

of Einstein’s equations displayed in Fig. 28 require typically specifying a few functions on

several dozen grid points.

One can then assign a metric to an effective phase space, i.e. the distance between

points representing here classes of solutions, and track how such a distance changes as time

evolves. The loss of information is expected to make a set of solutions reduce its volume in

the effective phase space. For example, in Fig. 28 one introduces the notion of proximity

between two solutions |A1(w)−A2(w)|. With respect to this notion, various solutions from

the chosen set eventually approximately collapse to a point in A at a fixed value of w.

It should be clear that the hydrodynamic attractor at a given value of w is not a notion

relevant for all states. It needs to be regarded as a statement about properties of some class

of states initialized prior to that.

Furthermore, assigning a distance measure to phase spaces allows one to define the notion

of slow evolution. It was introduced to this topic in Ref. (Heller and Spalinski, 2015)

under the name slow roll approximation, which originates from the field of inflationary

cosmology (Liddle et al., 1994). For example, the distance notion discussed above leads to

the magnitude of velocity of a given state being |A ′(w)| and slowly evolving solutions (note

that Ref. (Heller et al., 2020a) was defining rather regions of slow evolution) are those which

lead to the flattest form of A (w). In Fig. 28, such a solution found in Ref. (Romatschke,

2018) by fine tuning initial conditions is denoted by orange. What is quite remarkable is

that this solution at early times has A very close to 3
2
. This corresponds to free streaming

PL = 0, which evades the study of initial conditions behind Eq. (120) reported in Ref. (Beuf

et al., 2009).

It is also important to stress that the notion of slowly evolving solutions is a priori

independent from the notion of convergence (attraction). However in full phase space, or at

least a representative projection of it, one can make a thermodynamic-like argument, as in

Ref. (Heller et al., 2020a), in favor of typical states residing in the slow roll region. One can

think of the slow evolution as a generalization of the notion of the gradient expansion that

does not involve an expansion with individual terms badly behaving at very early times,

namely, as inverse powers of w in Eq. (122).

Finally, the approach to the hydrodynamic attractor at strong coupling and mechanisms

that govern it were questions raised in Ref. (Kurkela et al., 2020) by looking at results of
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simulations with different initialization time. This is depicted in Fig. 29. The idea behind it,

building on earlier results in Refs. (Blaizot and Yan, 2018, 2020), is that information loss can

be driven by at least two distinct mechanisms. The first one are exponentially suppressed

corrections to Eq. (122), which stem from the linear response theory physics. The character-

istic feature of them is that their decay rates do not depend on w. The second mechanisms

driving the information loss is expansion, which for the comoving velocity uµ∂µ ≡ ∂τ gives

∇µu
µ = 1

τ
. What one therefore expects is that information loss predominantly driven by

the expansion is going to be faster at earlier times (smaller w) and slower at later times.

Indeed, such feature was seen in Ref. (Kurkela et al., 2020) for hydrodynamic models and

for the kinetic theory for early initialization times. However, in holography this does not

seem to be the case and the approach to the hydrodynamic attractor takes roughly a fixed

amount of time regardless of the chosen initialization time, see Fig. 29, which is consistent

with it being governed by transients.

E. Holographic collisions

In CFTs, Bjorken flow in the absence of transverse expansion has a high degree of sym-

metry that allows for comprehensive studies of hydrodynamization and associated phenom-

ena. In particular, the numerical approach pursued in Refs. (Chesler and Yaffe, 2010, 2014;

Jankowski et al., 2014) fully determines the evolution of 〈T µν〉 as a function of proper time τ

upon specifying one positive number (initial energy density E) and a single function of the

AdS direction u, see Eq. (119). As a result, it was possible to comprehensively scan over

initial states in search of universal behavior.

If one relaxes these symmetry assumptions and allows for dynamics in the transverse

plane (van der Schee, 2013; van der Schee et al., 2013), the space of initial conditions

becomes too big to allow for a comprehensive analysis. Therefore one would like to have

another guiding principle to arrive at interesting configurations for modeling non-equilibrium

evolution of 〈T µν〉 in holographic heavy-ion collisions. This key idea is to study holographic

collisions of localized lumps of matter (Casalderrey-Solana et al., 2013, 2014a; Chesler, 2015,

2016; Chesler et al., 2015; Chesler and Yaffe, 2011, 2015; Grumiller and Romatschke, 2008).

The localized objects (shockwaves) in question move at the speed of light and are char-
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acterized by the following non-zero components of 〈T µν〉,

〈T 00〉 = 〈T 33〉 = ±〈T 03〉 = µ±(x⊥)h(x0 ∓ x3) , (123)

where x0 is the lab-frame time, x3 is the direction along which the object is moving (specified

by ∓ in the argument of h), µ±(x⊥) ≥ 0 is an arbitrary function specifying the transverse

profile and h(x0 ∓ x3) ≥ 0 is another arbitrary function specifying the longitudinal pro-

file (Chesler, 2015). While a single projectile defined by Eq. (123) is exact, the superposition

of two projectiles approaching each other and overlapping in the transverse plane leads to a

non-trivial collisional process.

Such collisions should not be regarded as literal models of the early stages of heavy-ion

collisions, since the projectiles do not originate from QCD. (See however (Gubser et al.,

2008b; Lin and Shuryak, 2009; van der Schee and Schenke, 2015).) Instead, one should treat

holographic shockwaves collisions as illustrating possible far-from-equilibrium phenomena

accessible in a fully ab initio way at strong coupling that goes well beyond the Bjorken flow

geometry discussed previously.

1. Planar shocks

The simplest settings to consider are collisions of planar shockwaves – objects defined

by Eq. (123) with µ± constant. Following Ref. (Casalderrey-Solana et al., 2013), one can

consider a Gaussian longitudinal profile for h of the form,

h(x0 ∓ x3) =
N2
c

2π2
%4e−

(x0∓x3)2

2d2 , (124)

and recognize that, in heavy-ion collisions, the dimensionless product of the amplitude %

(not to be confused with the charge density discussed in previous sections) and the width d

decreases as γ−1/2 as the total center-of-mass energy of the collision (
√
s = 2γMion) increases.

Within this analogy, high energy collisions correspond to collisions of very thin shock-

waves45. The collisions of projectiles defined by Eq. (123) do not lead to longitudinal boost

invariance since the initial state of the two projectiles is not boost invariant even when they

are infinitely thin. The extent to which this is the case was explored in (Casalderrey-Solana

45 The problem of colliding planar projectiles in Eq. (123) with h(x0∓x3) ∼ δ(x0∓x3) was posed originally

in (Janik and Peschanski, 2006a) and addressed in an early time expansion akin to Eq. (120) in (Grumiller

and Romatschke, 2008).
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et al., 2013) and, quite remarkably, the results fit well (Gubser and van der Schee, 2015)

with complex deformations of the purely boost invariant flow introduced in (Gubser, 2013).

As it turns out, the features of the collision change as a function of γ. Firstly, the collision

of “low-γ” (thick) shockwaves proceed such that the two blobs of matter first merge and

their subsequent evolution is approximated well by viscous hydrodynamics. This is referred

to (Casalderrey-Solana et al., 2013) as to the Landau scenario (Belenkij and Landau, 1956;

Landau, 1953). As can be seen in Fig. 30, the “high-γ” regime of thin shocks leads to a

rich set of transient physics before hydrodynamics becomes applicable. Another important

phenomenon discussed in (Casalderrey-Solana et al., 2014a; Müller et al., 2020; Waeber

et al., 2019) is the notion of longitudinal coherence. This notion applies to the “centre-of-

mass” frame of high energy collisions and states that the longitudinal structure of projectiles

does not leave an imprint on the transient form of the energy-momentum tensor in the post-

collision region provided it is sufficiently localized. Finally, despite the differences between

thin and thick shocks’ collisions at transient times after the remnants dissolve, which take

much longer time than shown in Fig. 30, the structure of the late time hydrodynamic flow

is very similar in the two cases (Chesler et al., 2015).

2. Transverse dynamics in holography

Studies of hydrodynamization in the presence of transverse expansion in (Chesler, 2015,

2016; Chesler and Yaffe, 2015) still define the state-of-the-art in numerical applied holog-

raphy. Fig. 31 illustrates the profile of the energy density in such collisions. The main

lesson from these works is the early applicability of viscous hydrodynamics not just for very

large longitudinal gradients of the energy-momentum tensor (as for Bjorken flow and for

planar shocks), but also in the presence of large transverse gradients generating transverse

expansion.

From the perspective of these strong coupling results, the applicability of hydrodynamics

in pA and even pp collisions (Chesler, 2016) is as natural as the applicability of hydrody-

namics in Bjorken flow and can be explained in terms of fast decaying contributions to the

trans-series for 〈T µν〉. Further, these works corroborate studies in (van der Schee, 2013) by

providing successful tests of the early time radial expansion model proposed in (Vredevoogd

and Pratt, 2009). Towards this end, Ref. (Chesler and Yaffe, 2015) found very small elliptic
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flow despite off-central collision and confirmed that near mid-rapidity the energy flux grew

linearly with proper time, as predicted in Ref. (Vredevoogd and Pratt, 2009).

As discussed earlier in Sec. V.E.4, such “universal flow” at small wavenumbers is also

reproduced by weak coupling kinetic theory. It would be interesting to compare if the full

transverse response functions of the energy-momentum tensor in strong coupling agrees with

those discussed in Sec. V.E.4 in the context of kinetic theory.

F. Other aspects of thermalization at strong coupling

1. Non-conformal strongly-coupled QFTs

All the strong coupling results reviewed thus far concerned well defined QFTs without a

scale. As reviewed in Sec. VI.B, in holography there are no conceptual obstacles to breaking

conformal symmetry. However considering QFTs with non-trivial renormalization group

flows does make gravitational calculations more involved due to the presence of field(s) in

addition to gravity that one needs to solve for and due to the more involved near-boundary

analysis that generalizes Eq. (119). All-in-all, the number of results on this front relevant

for thermalization in QCD is significantly lower than in the conformal case, but still allows

one to draw lessons.

Broadly speaking, there are two approaches to this problem. The first is top-down and

studies renormalization group flows originating from turning on a relevant deformation in a

known holographic CFT. The prime example is the so-called N = 2∗ gauge theory arising as

a deformation ofN = 4 super Yang-Mills theory by adding masses to half of its fields (Buchel

et al., 2007). The advantage of this approach is that one makes sure that one is studying

well defined features of a strongly coupled QFT. The drawback is that such well understood

examples are scarce and might have rigid features that do not exist in QCD.

The other class are so-called bottom-up models that couple AdS gravity to a bulk scalar

field or fields whose Lagrangian is chosen by insisting on it reproducing some desired feature

of QCD. One such approach was introduced in (Gursoy and Kiritsis, 2008; Gursoy et al.,

2008) using the QCD β-function as a guideline; another model (Gubser et al., 2008a) uses

as a benchmark reproducing the QCD equation of state at vanishing baryon density.

Furthermore, one can also introduce confinement by making the geometry end smoothly
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in the bulk (Witten, 1998b). One can think of it as the manifestation of a mass gap, with

no excitations below the lowest bound state energy.

The breaking of conformal symmetry introduces an additional scale in the problem of

thermalization and changes hydrodynamization times, although in none of the setups ex-

plored to date by an order of magnitude or more with respect to the strong coupling CFT

prediction of ∼ 1/T (Buchel et al., 2015; Janik et al., 2015). This also indicates that w̃

defined in Eq. (108) plays a less prominent role in non-conformal QFTs than it does in

strongly coupled CFTs.

Furthermore, the hydrodynamic gradient expansion acquires new transport terms, most

notably, the bulk viscosity ζ. Hydrodynamization and (on a much later time scale)

isotropization still do occur, but there are now two more emergent time scales related

to i) the applicability of the equation of state and ii) the expectation value of the operator

breaking conformal symmetry reaching its thermal value. The relation between these scales

depends on the details of the model (Attems et al., 2018, 2017a,b).

Finally, confinement represented holographically as the appearance of an infrared wall

leads to the new physical effect in which excitations of the bulk geometry and matter fields

bounce back and forth as in a cavity (Bantilan et al., 2020; Craps et al., 2015). Such an

effect was not present in the studies reviewed earlier and is not yet explored in the context

of expanding plasmas.

2. Away from the strong coupling regime

Another important direction studied in the context of thermalization in strongly coupled

gauge theories concerns corrections from finite values of the coupling constant. In the

context of the N = 4 super Yang-Mills, the leading correction in the inverse power of

the ’t Hooft coupling constant behaves as λ−3/2; on the gravity side, it arises at least in

part due to a particular expression quartic in the curvature (Gubser et al., 1998b). Such a

higher curvature gravity action when treated exactly is ill-behaved due to the Ostrogradsky

instability (Woodard, 2015). It is however not meant to be considered as such since it is

just an effective field theory truncated at a fixed order in the derivative expansion.

Treating these higher curvature terms as small contributions to the Einstein’s equations

with negative cosmological constant allows one to derive the leading order corrections to
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various holographic predictions at λ → ∞. For example, they increase the shear viscosity

of the N = 4 super Yang-Mills from η/s = 1/(4π) at λ → ∞ (Policastro et al., 2001) to

η/s = 1/(4π)×
(
1 + 15 ζ(3)λ−3/2

)
for large, but finite λ (Buchel, 2008a,b).

The quartic term discussed above is the first higher order term appearing for the N = 4

super Yang-Mills, but one should remember that the Einstein-Hilbert action with nega-

tive cosmological constant describes infinitely many strongly coupled CFTs. For some of

these (Buchel et al., 2009), the leading correction to Eq. (116) is quadratic in curvature and

can be written as the so-called Gauss-Bonnet term

δSGBgrav =
λGB

2
L2
(
R2 − 4RabR

ab +RabcdR
abcd
)
. (125)

This contribution has |λGB| � 1 in top-down settings and the sign of λGB can be either

positive or negative.

As a result, there are bona fide holographic CFTs for which the ratio of shear viscosity to

entropy density is slightly lower than 1/(4π) (Buchel et al., 2009; Kats and Petrov, 2009).

This important result showed that the celebrated value of 1/(4π) is not the lower bound

in nature as originally conjectured in Ref. (Kovtun et al., 2005), although the existence of

another lower bound cannot be excluded.

Furthermore, the combined gravity action of (116) and (125) leads to, at least superficially,

second order equations of motion. While it is known that microscopically this does not

correspond to a well behaved QFT outside the regime |λGB| � 1 (Camanho et al., 2016),

in the spirit of bottom-up models discussed in Sec. VI.F.1 one can treat it, at least in some

cases, as a model of QFT at a finite value of the “coupling constant”.

In the context of planar shockwaves collisions discussed in Sec. VI.E, perturbative

calculations in λGB predict less stopping and more energy deposited close to the light-

cone (Folkestad, Asmund and Grozdanov, Sašo and Rajagopal, Krishna and van der Schee,

Wilke, 2019; Grozdanov, Sašo and van der Schee, Wilke, 2017). There appears to be also

a correlation between the shear viscosity and hydrodynamization times, as encapsulated

by (108).

Furthermore, linear response calculations performed exactly in λGB reveal that the singu-

larity structure of real time correlators in equilibrium can change drastically as the coupling

is varied (Grozdanov et al., 2016). In particular, the results seem to mimic features expected

from a kinetic theory, such as the appearance of branch cuts (Kurkela and Wiedemann,
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2019; Romatschke, 2016), rather than single pole singularities known in strongly coupled

QFTs (Kovtun and Starinets, 2005).

The situation at a nonlinear level is more complicated. While the equations of motion

are second order, the coefficients in front of the highest derivative terms are complicated and

can vanish in regions of spacetime. This signals a breakdown of the initial value problem.

Overcoming this obstacle is currently an active topic of research in the relativity commu-

nity (Cayuso et al., 2017; Ripley and Pretorius, 2019, 2020a,b).

Finally, we wish to bring the reader’s attention to a more phenomenological set of hy-

brid approaches (Ecker et al., 2018; Iancu and Mukhopadhyay, 2015; Kurkela et al., 2018a;

Mukhopadhyay et al., 2016) in which gravity is used to model the IR of a QFT and a weak

coupling framework is put to work to represent the UV. Both frameworks are coupled to

each other and predictions rely on a subtle interplay between the two combined models.

Such a setting bears structural similarity to (Gursoy and Kiritsis, 2008; Gursoy et al., 2008)

discussed in the previous section. However it uses the gravitational description only where

it can be trusted, which is the regime where the coupling constant is large.

3. Non-local correlators

All the quantities discussed by us at strong coupling until now concerned one-point func-

tions of gauge invariant operators. Because of the underlying large-Nc hierarchy, the problem

of finding connected two- and higher-point functions correlation functions decouples from

the problem of finding the one-point functions discussed so far. Such correlation functions

can be thought of as correlation functions of the bulk free (for two-point functions) or weakly

interacting (for higher-point functions) quantum fields46 living on top of gravitational back-

grounds when the insertion points of the bulk correlators are taken to the boundary (Banks

et al., 1998). In the following, we will focus on two-point functions.

Since we are talking about time dependent setups and, hence, Lorentzian correlators,

the distinction between Wightman, retarded, etc correlators is appropriate (Herzog and

Son, 2003; Skenderis and van Rees, 2008, 2009; Son and Starinets, 2002). Towards this

end, the retarded correlator depends only on the gravitational background and captures the

46 They should not be confused with the underlying strongly coupled QFT for which both the classical bulk

background, as well as free bulk quantum fields are an effective description.
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response of the strongly coupled QFT to sources. However the Wightman correlator depends

both on the constructed gravitational background and the state of the bulk quantum field.

Therefore its calculation is challenging in time dependent processes and, unless one creates

a non-equilibrium state using sources exciting the vacuum or a thermal state (Chesler and

Teaney, 2011, 2012; Keranen and Kleinert, 2015, 2016), one has to deal with an additional

freedom of initial conditions to scan.

It should perhaps not come as a surprise that to date there were no studies of such

correlators in an expanding plasma. Noteworthy works in this area are Refs. (Chesler and

Teaney, 2011, 2012; Keranen and Kleinert, 2015, 2016), which studied equilibration of scalar

operator two-point functions under a spatially uniform quench.

Many references use a proxy for correlators being a bulk geodesic spanned between the in-

sertion points appropriate for operators of large scaling dimension in the Euclidean signature.

However, in Lorentzian signature, this is an uncontrollable approximation (Headrick et al.,

2014; Keranen and Kleinert, 2015; Louko et al., 2000). On the other hand, the comparison

between Wightman functions calculated according to the correct microscopic prescription,

and the geodesic proxy, led to qualitatively similar results (Keranen and Kleinert, 2015,

2016).

If one takes this as an indication of the geodesic proxy as capturing the relevant physics,

then one lesson following from such studies is that the symmetrized correlator with small

spacelike separation between its insertion points thermalizes earlier than the one with larger

separation (Balasubramanian et al., 2011a,b). This is also natural from the point of view of

causality.

Furthermore, Ref. (Keranen and Kleinert, 2016) observed a relation between the equili-

bration time scale of the spatially Fourier transformed Wightman function and the equili-

bration time scale of 1/T governing hydrodynamization at strong coupling and discussed in

Sec. VI.C. This study was done for a scalar operator, which does not exhibit a hydrodynamic

tail.

It is natural to conjecture that the energy-momentum tensor or a U(1) current Wightman

function would take longer to equilibrate due to the presence of hydrodynamic modes, but

such studies have not been yet performed. Finally, as noted in Ref. (Keranen and Kleinert,

2016), we should stress that the aforementioned momentum space features of equilibration

do not translate easily to the real-space properties. This is so because sharp features in the
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correlator do not necessarily reside at small distances.

VII. SIGNATURES OF NON-EQUILIBRIUM QCD

The experimental heavy-ion collision programs at BNL and CERN, combined with ad-

vances in theory and empirically motivated models have, over the last couple of decades,

greatly advanced our understanding of deconfined QCD matter. The successful multi-

observable data-to-model comparisons provide ample evidence that a new phase of matter is

created with the thermodynamic properties predicted by lattice QCD (Andronic et al., 2018;

Bazavov et al., 2019a; Bellwied et al., 2020; Bernhard et al., 2019; Ding et al., 2016; Gardim

et al., 2019; Pang et al., 2018). While thermodynamic features of QCD can possibly also be

extracted from neutron star physics—a spectacular recent example being the gravitational

radiation pattern of neutron star mergers (Weih et al., 2020)—heavy-ion collisions are likely

the only place in the universe where the non-equilibrium many-body properties of QCD can

be explored.

We will not discuss here signatures of high parton density matter in the hadron wave-

functions that have been discussed elsewhere (Blaizot, 2017). Uncovering definitive evidence

for and systematic study of gluon saturation is a major goal of the Electron-Ion Collider

(EIC) (Accardi et al., 2016; Aschenauer et al., 2019). We note that diffractive and exclusive

signatures of gluon saturation at the EIC are especially promising (Mäntysaari et al., 2020;

Mäntysaari and Venugopalan, 2018).

Our focus here will be on quark-gluon matter formed after the collision. In the high

parton density framework of the CGC EFT, the Glasma matter at the earliest times is

most sensitive to the physics of gluon saturation. Indeed, if the contributions of the initial

state can be isolated from that of the final state, heavy-ion collisions could present definitive

evidence for gluon saturation.

However, as we will discuss, a clean separation of initial and final state effects in the

complex spacetime evolution of the heavy-ion collision is challenging (Adolfsson et al., 2020).

Nevertheless, data from both light and heavy-ion collisions at RHIC and the LHC can

help constrain key features of gluon saturation, an example being the energy and nuclear

dependence of the saturation scale QS.
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A. Electromagnetic and hard probes

Since the Glasma matter is likely to be far off-equilibrium at the earliest instants of the

heavy-ion collision, its features can be extracted most directly in probes that are the least

sensitive to the later stages of the collision. The primary candidates here are electromagnetic

probes of the medium such as photons and dileptons which, once emitted, do not interact

with the medium.

The problem here is that photons and di-leptons are produced continuously through out

the spacetime evolution of the quark-gluon matter and from the subsequent hadronic phase

as well. Current models of heavy-ion collisions, which include photon yields from the pre-

hydro kinetic theory phase tend to under predict the produced photon yields (Churchill

et al., 2020; Gale et al., 2020); for an alternative mechanism, see (Oliva et al., 2017).

Photons emitted from the highly occupied Glasma have been suggested as an additional

source of radiation (Berges et al., 2017b). While phenomenological model comparisons

show a significant Glasma contribution (Garcia-Montero, 2019), the theoretical modeling of

photon rates at present carries sizable uncertainty.

Besides photons and di-leptons, inclusive yields of high momentum strongly interacting

final states are also sensitive to gluon saturation and to early time dynamics in the heavy-

ion collision. These include hadrons at high transverse momenta, jets and heavy quarkonia.

Gluon saturation influences the production rates for these processes and rescattering in the

Glasma influences their dynamics. These effects are most pronounced for p⊥ ∼ QS. We

discussed heavy quark pair production in the Glasma in Section IV. The diffusion coeffi-

cient of these heavy quarks has been computed recently in this framework, and scales as

Q3
S (Boguslavski et al., 2020). Heavy quark diffusion in Glasma-like environments and their

subsequent evolution have also been explored recently in several works (Carrington et al.,

2020; Liu et al., 2019; Mrówczyński, 2018). A non-trivial problem is distinguishing this

early-time evolution of heavy quarks from their late time evolution (Akamatsu et al., 2018;

Brambilla et al., 2019; Rapp and van Hees, 2010). Similar considerations also hold for the

propagation of jets47 in the Glasma (Asakawa et al., 2011; Carrington et al., 2017; Dumitru

et al., 2008b; Ipp et al., 2020).

47 The final stage of “bottom up” thermalization corresponds to the “jet quenching” of partons of momentum

∼ QS that are quenched to the thermal medium; this framework also explains key features of the quenching

of very high momentum jets in the QGP (Blaizot et al., 2013, 2016).
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Higher point correlations of hard probes, add significant sensitivity to the dynam-

ics of quark-gluon matter off-equilibrium. An example is the potential of two-particle

Hanbury-Brown–Twiss (HBT) photon interferometry to study early time dynamics (Garcia-

Montero et al., 2019). Such measurements are sensitive to the large longitudinal-transverse

anisotropies that are not reflected in photon yields. However experimental measurements

of soft photon correlations are very challenging experimentally and high statistics will be

needed to disentangle the signal.

B. Long-range rapidity correlations

Long-range rapidity correlations are an important tool in unentangling initial and final

state effects in hadron-nucleus and nucleus-nucleus collisions. This is because causality

dictates that the latest time that a correlation can be induced between two particles A and

B that freeze-out is given by

τ = τfreeze−out exp

(
−|yA − yB|

2

)
. (126)

Thus two particles that are long-range in rapidity |yA−yB| � 1 would be correlated at very

early times in the collision (Dumitru et al., 2008a). A particular example is the so-called

“ridge” effect, reviewed in (Dusling et al., 2016) that correlates two particles not just in

rapidity but also in relative azimuthal angle (Dumitru et al., 2011a). A recent summary of

the physics of initial state correlations can be found in Ref. (Altinoluk and Armesto, 2020).

However if hydrodynamic flow also sets in early, this ridge could be a final state ef-

fect (Shuryak and Zahed, 2013) due to the underlying boost-invariance of the hydrodynamic

fluid. A way forward to disentangling initial state physics of CGCs and the Glasma at early

times from late time dynamics is to look at the evolution of two-particle correlations with

their rapidity separation (Bzdak and Dusling, 2016) Another is to study the long range

correlations of particles with large transverse momenta that do not follow hydrodynami-

cally (Dusling and Venugopalan, 2013; Martinez et al., 2019).

C. Bulk observables

We discussed previously limiting fragmentation of hadron distributions and its potential

to distinguish initial and final state effects in hadron-hadron collisions (Gonçalves et al.,
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2019). We will now discuss other bulk observables in high energy nucleus-nucleus, hadron-

nucleus and hadron-hadron collisions that can help constrain the properties of saturated

gluons and their early-time evolution. In the smaller systems, even if the system hydrody-

namizes quickly, the large shape fluctuations of partons will provide insight into multi-parton

correlations in the initial state (Mäntysaari, 2020); understanding these from first principles

is a challenging problem (Dumitru et al., 2020) that may also require the EIC to resolve.

A number of works have explored applications of holographic ideas to the study of bulk

observables in heavy-ion collisions. A universal prediction of holography is that of hydro-

dynamization being distinct from local thermalization. A specific phenomenological inves-

tigation implementing this idea used holographic boost invariant dynamics with transverse

expansion as a successful model of preflow (van der Schee et al., 2013). Another develop-

ment is (van der Schee and Schenke, 2015), which treated the planar shockwave collisions

discussed in Sec. VI.E.1 as an explicit model of initial state physics. While this study re-

covered qualitative features of soft particle spectra, the rapidity distribution of produced

particles are too narrow relative to experimental data. It would be very interesting to ex-

plore more complicated holographic models of heavy-ion collisions and constrain them with

experimental data.

In a thermalizing system, the loss of information of the initial conditions manifest itself

as production of entropy. Therefore if the system locally thermalizes, and its flow is nearly

isentropic, the measured number of particles probes the entropy produced during the non-

equilibrium evolution of quark-gluon matter. The CGC framework accounts for the increase

of particle multiplicity with increasing collision energy with the growth of the saturation

scale QS (Albacete and Marquet, 2014). Recent calculations of entropy production in the

equilibration processes using hydrodynamic attractors provides a quantitative relation be-

tween the energy deposition in the CGC picture and the final particle numbers (Giacalone

et al., 2019).

On the other hand, the energy of the observed particles depends on the work done during

the whole expansion and therefore has different dependencies on the dynamics of the pre-

equilibrium stage. Comparing these two robust experimental measurements (energies and

multiplicities) already casts doubts on complete equilibration of QGP in peripheral nucleus-

nucleus collisions (Giacalone et al., 2019; Kurkela et al., 2019c).

Many of the experimental signatures of QGP (strangeness enhancement, jet suppression,
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flow harmonics,...) show a smooth dependence on system size from central to peripheral

nucleus-nucleus collisions, proton-nucleus and proton-proton collisions. As the system size

shrinks, so does its lifetime, corresponding to an increase in the relative importance of non-

equilibrium QCD processes increases.

Equilibration studies in large systems already put a lower bound below which the sys-

tem will not reach hydrodynamization or chemical equilibrium (Kurkela and Mazeliauskas,

2019a; Kurkela et al., 2019b). Therefore explaining observed signals of collectivity (or ab-

sence thereof) in small collisions systems requires a proper treatment of non-equilibrium

QCD dynamics. Some recent examples of work in this direction include studies of flow

harmonics (Kurkela et al., 2019d; Schenke et al., 2020b), parton energy loss (Andres et al.,

2020) and heavy-quark evolution (Mrówczyński, 2018). Furthermore, as we discussed in

sec. VI.E.2, hydrodynamization without equilibration, of small systems is very natural in

holography.

Also noteworthy is recent phenomenological work (Huang et al., 2018) quantifying the

role of non-equilibrium dynamics in the Chiral Magnetic Effect we discussed in Section IV. A

topic that demands further investigation is the origin of the very large vorticities measured

in off-central heavy-ion collisions, as extracted from measurements of the polarization of

Λ-baryons (Becattini and Lisa, 2020). The vorticities are introduced on macroscopic scales

on the order of the system size; how these propagate efficiently down to the microscopic

scales of the Λ remains to be understood.

D. Future prospects

A recent recommendation from the European Strategy for Particle Physics report em-

phasized that the main physics goal of future experiments with heavy-ion and proton beams

at the LHC will be a detailed, experimentally tested dynamical understanding of how out-of-

equilibrium evolution occurs and equilibrium properties arise in a non-Abelian quantum field

theory (Citron et al., 2019; Ellis et al., 2019). The scheduled runs 3 and 4 of the LHC will

mark a decade of high-statistics data across system sizes at the highest achievable collision

energies.

In the United States, the continued operation of RHIC with provide further insight into

several of the signatures we have discussed. In particular, with the anticipated commission-
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ing of the sPHENIX detector (Roland, 2019), hard probes of QCD off-equilibrium will be

studied in a dynamical range that is complementary to that of the LHC.

Looking further to the future, the Electron-Ion Collider (EIC) project has received Critical

Mission Zero (CD0) approval from the US Department of Energy. The EIC will explore

with high precision the landscape of hadron structure at high energies (Accardi et al., 2016;

Aschenauer et al., 2019).

One may therefore anticipate that this decade and the next will bring many opportunities

to exploit the signatures we have articulated here, and likely several novel ones, of the

properties of QCD off-equilibrium.

VIII. INTERDISCIPLINARY CONNECTIONS

Understanding the thermalisation process in QCD associated to heavy-ion collisions ad-

dresses some of the most fundamental questions in quantum dynamics, with exciting in-

terdisciplinary connections to very different many-body systems. The transient “fireball”

expanding in vacuum explores far-from-equilibrium conditions at early times, followed by

a series of characteristic stages which are finally expected to lead to a fluid-like behavior

governing the approach to local thermal equilibrium. Very similar questions of equilibration

and the emergence of collective behavior from the underlying unitary quantum dynamics

are relevant for diverse applications ranging from high-energy and condensed matter physics

to practical quantum technology. For reviews in the context of condensed matter physics,

see (Borgonovi et al., 2016; D’Alessio et al., 2016; Gogolin and Eisert, 2016).

Several non-equilibrium phenomena were first proposed in the context of QCD matter in

extreme conditions, and then explored and experimentally probed in alternative quantum

many-body systems. For instance, the phenomenon of prethermalization (Berges et al.,

2004) with the rapid establishment of an effective equation of state during the early stages

of heavy-ion collisions (Arnold et al., 2005; Dusling et al., 2012) has been explored for early-

universe inflaton dynamics (Podolsky et al., 2006), or condensed matter systems (Langen

et al., 2016; Moeckel and Kehrein, 2008; Mori et al., 2018), and experimentally discovered

in ultracold quantum gases on an atom chip (Smith et al., 2013).

In turn, aspects of entanglement represent one of the major overarching schemes in con-

temporary physics of quantum-many body systems, and gravity in and out of equilibrium,
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while investigations about its relevance to the thermalization process in QCD are compa-

rably recent. There are many excellent topical reviews on entanglement and we refer the

reader to Refs. (Calabrese and Cardy, 2009; Casini and Huerta, 2009; Eisert et al., 2010;

Rangamani and Takayanagi, 2017), while we discuss some aspects of entanglement in our

context in more detail below.

To capture the thermalisation dynamics in QCD related to heavy-ion collisions, detailed

comparisons take into account that the coupling of non-Abelian gauge theories is not a

constant but changes with characteristic energy or momentum scale in a particular way.

While strong at low scales, the coupling becomes weak at sufficiently high energies because

of the phenomenon of asymptotic freedom (Gross and Wilczek, 1973; Politzer, 1973). Even in

the high-energy limit, where the gauge coupling is weak, one is facing a strongly correlated

system because a plasma of gluons with high occupancy f(QS) ∼ 1/αS(QS) is expected

to form, see Sec. III. Such a transient over-occupation leading to strong correlations even

for weakly coupled systems can be found in a variety of physical applications far from

equilibrium. Examples include the pre-heating scenario for the very early stages of our

universe after a period of strongly accelerated expansion called inflation (Kofman, 2008),

or the relaxation dynamics in table-top setups with ultracold quantum gases following a

sudden change in external control parameters such as magnetic fields (Prüfer et al., 2018).

The very high level of control in experiments with synthetic quantum systems, such as ul-

tracold quantum gases, enables dedicated quantum simulations. These systems provide very

flexible testbeds, which can realize a wide range of Hamiltonians with variable interactions

and degrees of freedom based on atomic, molecular and optical physics engineering (Bloch

et al., 2008). Since these setups can be well isolated from the environment, they offer the

possibility of studying fundamental aspects such as the thermalisation process from the

underlying unitary quantum evolution.

While digital quantum simulations based on a Trotterized time evolution on a universal

quantum computer are challenging to scale up, present large scale analog quantum simulators

using ultracold quantum gases already explore the many-body limit described by quantum

field theory (Bernien et al., 2017; Bloch et al., 2008; Eckel et al., 2018; Erne et al., 2018a; Feng

et al., 2019; Gring et al., 2012; Haller et al., 2010; Hu et al., 2019; Hung et al., 2013; Keesling

et al., 2019; Langen et al., 2015; Murthy et al., 2019; Navon et al., 2015, 2016; Parsons

et al., 2016; Prüfer et al., 2019; Prüfer et al., 2018; Schweigler et al., 2017; Zache et al.,
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2020). In principle, with quantum simulators also non-universal aspects of the dynamics

of gauge theories can be studied. This has been first achieved for Abelian gauge theory

with digital quantum simulations, such as using trapped ions (Martinez et al., 2016) or with

superconducting qubits (Klco et al., 2018).

An interesting possibility to consider is applying a hybrid quantum-classical framework

to real time problems. This has been discussed in a “single particle” digital strategy for

scattering problems whereby higher loop quantum contributions can be simulated digitally

and the background gauge field treated in principle on a quantum simulator (Mueller et al.,

2019, 2020). It is also important to note that scalable analog systems for the quantum

simulations of gauge theories using ultracold atoms have been reported (Kokail et al., 2019;

Mil et al., 2020). We anticipate significant progress in all of these approaches to quantum

computation of real time problems in the decade ahead.

A. Strong interactions: Unitary Fermi gas

A paradigmatic example for the interdisciplinary cross-fertilization among the different

physical applications is the work on collective motion of a unitary Fermi gas. Near unitarity,

the s-wave scattering length, which characterises the two-body interaction strength, becomes

very large and the effective scale invariance of the interaction at unitarity can lead to uni-

versal behavior (Chin et al., 2010), which can also be accessed out of equilibrium (Eigen

et al., 2018). Many similarities for dynamical properties, such as a low ratio of shear viscos-

ity to entropy density, have been discussed in this context in comparison to QCD. See the

discussion in Sec. V.

We noted that heavy-ion experiments indicate that the hot quark-gluon plasma may be

described as the most perfect fluid realized in nature (Aad et al., 2012; Aamodt et al.,

2010; Adams et al., 2005; Adcox et al., 2005; Chatrchyan et al., 2011). The only serious

experimental competitors are ultracold quantum gases at temperatures that differ by twenty

orders of magnitude! Strong interactions play also a central role in holographic approaches,

which is addressed in Sec. VI, and there exist concrete proposals on how to realize holo-

graphically systems resembling unitary Fermi gases starting with Refs. (Balasubramanian

and McGreevy, 2008; Son, 2008). A comprehensive review of common aspects of QCD,

unitary Fermi gases and holography is provided by Ref. (Adams et al., 2012).
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B. Highly occupied systems I: Preheating in the early universe

The dilution of matter and radiation during the inflationary period of the early uni-

verse leads to an extreme condition, which may be well characterised by a pure state with

vacuum-like energy density carried by a time dependent coherent (inflaton) field with large

amplitude (Kofman, 2008). A wide class of post-inflationary models with weak couplings

exhibit the subsequent decay of the inflaton field amplitude via non-equilibrium instabili-

ties (Kofman et al., 1994; Traschen and Brandenberger, 1990). The detailed mechanisms

for the origin of an instability and the scattering processes are different than in QCD with

strong color fields.

However the rapid growth of fluctuations from the inflaton decay leads to a non-linear time

evolution that follows along similar lines as outlined in Sec. IV for QCD. For instance, for

scalar fields with weak quartic interaction λ� 1, a corresponding overoccupation ∼ 1/λ up

to a characteristic momentum scale is achieved after the instability. Likewise, at this stage,

the prethermalization (Arnold et al., 2005; Berges et al., 2004) of characteristic properties,

such as an effective equation of state, is observed in these scalar models (Podolsky et al.,

2006).

Moreover, a self-similar attractor solution is approached subsequently as discussed in

Sec. IV.C.3. As compared to the longitudinally expanding QCD plasma, a major difference

stems from the isotropic expansion of the universe. Some aspects of isotropic expansion can

be lifted for the inflaton field dynamics by introducing suitably rescaled (conformal) time and

field amplitudes, such that the dynamics is essentially that of Minkowski spacetime without

expansion (Micha and Tkachev, 2003). In fact if compared to QCD dynamics without

expansion, then characteristic dynamical properties such as the values of scaling exponents

in the attractor regime agree with what is found for self-interacting scalar field dynamics

with quartic interactions in the absence of spontaneous symmetry breaking (Berges and

Wallisch, 2017).

This concerns both the gauge theory’s direct energy cascade towards the perturbative

high-momentum regime (Kurkela and Moore, 2011b, 2012; Schlichting, 2012), as well as the

inverse particle cascade towards low momenta in the non-perturbative regime associated

with non-thermal fixed points (Berges et al., 2019). In turn, scalar fields with longitudinal

expansion seem to exhibit several universal features shared with QCD dynamics in the
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transient scaling regime (Berges et al., 2015a). In particular, the inverse cascade essentially

follows the behavior of the corresponding non-expanding system because of the strong Bose

enhancement of rates at low momenta (Berges et al., 2015a); see also Sec. IV.D.2.

C. Highly occupied systems II: Bose gases far from equilibrium

Though the inflaton dynamics is described by a relativistic field theory, the self-similar

scaling behavior at sufficiently low momenta below the screening mass scale is predicted

to exhibit universal properties of a non-relativistic system (Piñeiro Orioli et al., 2015).

The non-equilibrium infrared dynamics for scalars starting from overoccupation has been

theoretically studied in great detail (Berges et al., 2015b, 2008a; Berges and Sexty, 2011,

2012; Boguslavski and Piñeiro Orioli, 2019; Chantesana et al., 2019; Deng et al., 2018; Moore,

2016; Nowak et al., 2012, 2011; Piñeiro Orioli and Berges, 2019; Scheppach et al., 2010; Shen

and Berges, 2020; Walz et al., 2018). However important aspects of this far-from-equilibrium

dynamics can be probed experimentally using Bose gases in an optical trap. For the example

of an interacting, non-relativistic Bose gas of density n in three spatial dimensions, this

concerns the dilute regime,
√
na3 � 1, with a characteristic inverse coherence length given

by the momentum scale Q =
√

16πan. Here Q plays a similar role as the saturation scale

for gluons in the gauge theory case, and the diluteness
√
na3 provides the dimensionless

coupling parameter. An overoccupied Bose gas then features large occupancies ∼ 1/
√
na3

for modes with momenta of order Q (Piñeiro Orioli et al., 2015).

Universal scaling far from equilibrium associated with non-thermal fixed points has been

experimentally discovered using different cold atom systems (Erne et al., 2018a; Prüfer et al.,

2018). For instance, in Refs. (Prüfer et al., 2019; Prüfer et al., 2018) the non-equilibrium

dynamics of magnetic hyperfine excitations of a spin one Bose gas is studied in an elon-

gated trap, following a sudden change in the applied magnetic field as an external control

parameter. Fig. 32 exemplifies the scaling dynamics of the measured transversal spin for

three different initial conditions. After an initial non-equilibrium instability regime, all

data in the self-similar scaling regime are seen to collapse to a single curve after rescaling

with time using universal scaling exponents. While this example concerns infrared scal-

ing, bi-directional scaling including a self-similar evolution towards higher momenta with

subsequent thermalization has been experimentally analyzed in Ref. (Glidden et al., 2020).
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D. Highly occupied systems III: Classicalization and unitarization of gravitational

amplitudes

An intriguing idea is that of black holes as long lived states of highly occupied gravitons

(f � 1) that satisfy the condition αgrf = 1 (Dvali and Gomez, 2013). Here αgr = L2
P/R

2
S,

where LP is the Planck length and RS denotes the Schwarzchild radius. A dynamical

picture of the formation of such a black hole state is in 2 → N scattering of gravitons at

trans-Planckian energies. In the Regge limit, as first discussed in Ref. (Lipatov, 1991), and

subsequently in Ref. (Amati et al., 1987), the scattering is dominated by the formation of

N − 2 soft quanta. The argument of Dvali and collaborators is that the copious production

of soft gravitons leads to perturbative unitarization of the scattering cross-section precisely

when αgrf = 1.

This “classicalization of amplitudes” was shown explicitly (Dvali et al., 2015) using the

tree level Kawai-Lewellen-Tye (KLT) relations (Kawai et al., 1986) that express N -point

tree level gravity amplitudes in terms of sums of products of Yang-Mills N -point tree am-

plitudes. These results are in remarkable agreement with computations in Lipatov’s EFT

approach (Addazi et al., 2017).

The ideas of the classicalization and unitarization of 2→ N gravitational amplitudes are

remarkably similar to the discussion of the CGC EFT in Sec. II and Sec. III. The BFKL

results on 2→ N gluon scattering are likewise reproduced in the semi-classical CGC EFT. A

path forward is to employ so-called “double copy” methods that exploit a color-kinematics

duality between gravity and QCD amplitudes (Bern et al., 2019). Such a correspondence

was prefigured in the high energy limit in Ref. (Lipatov, 1991) and discussed further more

recently (Liu, 2019; Sabio Vera et al., 2012).

Of particular interest in our context is of a “classical double copy” between classical Yang-

Mills equations and classical gravity (Goldberger and Ridgway, 2017; Monteiro et al., 2014).

This points to a concrete correspondence between collisions of the classical gluon shock waves

producing the Glasma and that of gravitational shock waves that produce black holes (Dvali

and Venugopalan, 2020). It would also be interesting to understand if this correspondence

shares universal features at the unitarity limit with that of the holographic gravitational

shock waves discussed in Sec. VI.
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E. Anomalous currents in non-equilibrium QED: Condensed matter systems and

strong laser fields

Strong color fields as well as strong electromagnetic fields are an essential ingredient for

the understanding of the early stages of the plasma’s space-time evolution in off-central

heavy-ion collisions. Strong gauge fields lead to a wealth of intriguing phenomena related to

quantum anomalies, such as the chiral magnetic effect (Kharzeev et al., 2016; Koch et al.,

2017) described in Sec. IV. As we discussed there, there are strong connections between the

transport properties of anomalous currents in hot QCD and in strongly correlated condensed

matter systems, in particular Dirac/Weyl semimetals with applied fields (Li and Kharzeev,

2016).

Here we wish to note that the similar questions can also be addressed in future strong laser

field experiments that will be able to explore QED dynamics in extreme conditions (Di Pi-

azza et al., 2012). For instance, for QED field strengths exceeding the Schwinger limit for

pair production, a highly absorptive medium with quantum anomaly-induced dynamical

refractive properties related to the chiral magnetic effect is predicted (Mueller et al., 2016).

F. Thermalization and entanglement

While the time evolution of isolated quantum systems is unitary, relevant observables

in non-equilibrium quantum field theory can approach thermal equilibrium values at suffi-

ciently late times, without the need for any coarse-graining or reference to a reduced density

operator. Thermalization in quantum field theory has been demonstrated for scalar quantum

field theories in various spatial dimensions (Arrizabalaga et al., 2005; Berges, 2002; Berges

and Cox, 2001; Juchem et al., 2004) and with fermions (Berges et al., 2003; Shen et al.,

2020), see Ref. (Berges, 2004a) for an introductory review48. In gauge theories at strong

coupling, thermalization from unitary dynamics was observed using holographic approaches,

as we discussed in Sec. VI.

It has been analyzed in detail how, in particular, locally defined quantities of isolated

quantum many-body systems can exhibit thermal features (Deutsch, 1991; Rigol et al.,

2008; Srednicki, 1994). In such time-dependent processes, entanglement entropy of spatial

48 For thermalization studies in classical-statistical field theories for given regularization, see Ref. (Aarts

et al., 2001).
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subregions – the von Neumann entropy of spatially reduced density matrices – was seen to

reach the value predicted by thermal states after exhibiting a period of growth, see, e.g.,

Refs. (Abajo-Arrastia et al., 2010; Alba and Calabrese, 2017; Calabrese and Cardy, 2005;

Cotler et al., 2016; Kaufman et al., 2016; Liu and Suh, 2014). Understanding why and how

this happens has been an active sub-field of research in lattice systems, quantum field theory

and holography.

Ref. (Berges et al., 2018a,b) applied similar considerations to a model of e+e− collisions

and pursued the idea to view entanglement as a source of an apparent thermal behavior

seen in multiparticle production in such events as discussed in Refs. (Andronic et al., 2009;

Becattini, 1996). Recently an entanglement entropy measure devised for proton-proton

collisions at the LHC has been argued to be consistent with the data; the latter is at

variance with expectations from Monte-Carlo simulations (Tu et al., 2020). In the same vein,

Ref. (Ecker et al., 2016) explored the behavior of the entanglement entropy in a holographic

model of heavy-ion collisions discussed in Sec. VI.E and found it can serve as an order

parameter distinguishing between the Landau (full stopping) and Bjorken (transparency)

scenarios.

The notion of entanglement plays the key role in tensor networks methods which represent

quantum-many body wave functions and density matrices of physical interest yet low enough

entanglement allowing for their efficient manipulation on classical computers, see Ref. (Orus,

2014) for a review. Such methods are robust in describing ground states and low-lying excited

states in 1+1 dimensions (Hastings, 2006; Vidal, 2008) and considerable progress has been

made in the past few years on using them for condensed-matter physics applications in 2+1

dimensions (Corboz, 2016a,b; Corboz et al., 2018; Rader and Läuchli, 2018; Vanderstraeten

et al., 2016).

In the context of the present review, we want to highlight a number of recent developments

in applying tensor networks to QCD and heavy-ion collision motivated problems in (1+1)-

dimensional settings ranging from the applications to gauge theories reviewed in Ref. (Bañuls

and Cichy, 2020) to non-equilibrium processes in interacting QFTs on a lattice (Banuls et al.,

2020; Buyens et al., 2017, 2016; Pichler et al., 2016). In the latter cases, the aforementioned

growth of entanglement with time is a bottle neck for simulations being able to reach late

times.

Finally, entanglement entropy in holography arises as a Bekenstein-Hawking entropy of a

122



special class of surfaces (Dong et al., 2016; Hubeny et al., 2007; Lewkowycz and Maldacena,

2013; Ryu and Takayanagi, 2006). This discovery has led to new insight into quantum

gravity by bringing quantum information tools to the mix. An impressive results in this

direction is the quantitative understanding of the time evolution of the entropy of Hawking

radiation from an evaporating black hole (Almheiri et al., 2019, 2020a,b; Penington, 2019;

Penington et al., 2019). These works point to a new mechanism towards resolving Hawking’s

information paradox (Hawking, 1976; Page, 1993). From the point of view of the present

review, they can be thought of as including finite-Nc effects in holographic studies of a class

of thermalization processes at very late times.

IX. SUMMARY AND OUTLOOK

In 1974, T.D. Lee suggested that it would be interesting to explore new phenomena by dis-

tributing a high amount of energy or high nuclear density over relatively large volume (Baym

et al., 1975). Forty six years later we are beginning to come to grips with the richness of

many-body QCD dynamics, made possible by experimental programs in nucleus-nucleus

collisions in the decades since, culminating in the discovery of the quark-gluon plasma at

RHIC and the LHC. As demonstrated at these colliders, the non-Abelian QGP is a nearly

perfect fluid showing little resistance to pressure gradients.

This conclusion is a consequence of the remarkable and apparently unreasonable success

of relativistic viscous hydrodynamics in the description of the heavy-ion data from RHIC

and LHC. However the quantitative phenomenological success of hydrodynamical models

also owes a great deal to our improved understanding of the initial conditions for hydrody-

namic evolution, in particular in the modeling of event-by-event fluctuations in the nuclear

geometry, as well as a deepening understanding of how the quark-gluon matter is released

in the heavy-ion collisions and thermalizes to form the QGP.

With regard to the latter, comparisons of the hydrodynamical models to data require

that thermalization occurs very rapidly on time scales on the order of three yoctoseconds –

approximately a tenth of the lifetime of the nuclear collision. These very short lifetimes

and the nearly perfect fluidity of the subsequent flow of the QGP suggest that the non-

equilibrium matter formed is very strongly correlated. The quest to understand ab initio

the structure of strongly correlated QCD matter in nuclear wavefunctions at high energies,
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and how this matter is released, decoheres, and thermalizes, has motivated a large body of

work over the last couple of decades, right from the inception of the RHIC program to the

present.

Strongly correlated QCD matter can arise either in weak coupling when the occupancies

of the constituents are very large, or in strong coupling. Further, since the coupling runs

towards strong coupling as the system evolves, both weak and strongly couplings may be

realized in the fluid. In this review, we have summarized the theoretical ideas and techniques

in both strong and weak coupling frameworks that address the thermalization process in

heavy-ion collisions.

We emphasized the emergence of attractors in both the weak coupling EFT and in the

holographic approaches that may be universal across a wide range of energy scales. We also

noted concomitantly the very concrete interdisciplinary connections of strongly correlated

QCD (and QCD-like) matter off-equilibrium to dynamical features of phenomena ranging

from pre-heating in inflationary cosmology, pair-production in laser induced strong QED

fields, and to non-equilibrium dynamics in ultracold atomic gases.

In particular, we discussed an intriguing universality in the non-thermal attractor dis-

covered in simulations of overoccupied expanding Glasma to that discovered in identically

prepared simulations of the self-interacting scalar fields that model the ultracold systems.

Remarkably, cold atom experiments have discovered such a non-thermal attractor, albeit

with a different geometry than that of a heavy-ion collision. This opens up the exciting

prospect of extending the program underway of the “tabletop engineering” of ultracold

atom systems as analog quantum simulators of the ground state properties of gauge theories

to uncover far-from-equilibrium properties of non-Abelian gauge theories.

We also discussed the signatures for QCD matter off-equilibrium and the challenges of

disentangling these from contributions at later stages of the heavy-ion collision. On-going

and near-term experiments at both RHIC and the LHC will greatly enhance these prospects

both through novel measurements and larger data sets than present ones. The EIC will

provide information complementary to those of the heavy-ion experiments to further tease

out and make more precise our understanding of the initial state. Further progress will also

depend on theoretical developments in the weak and strong coupling frameworks and the

convergence between the two when extrapolated to the realistic couplings of the heavy-ion

experiments.
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Computations of the properties of saturated gluons in the CGC EFT are now at next-

to-leading-order and next-to-leading log accuracy for a few processes. We expect this trend

to continue, which will allow for very precise extractions of the saturation scale in DIS

and proton-nucleus collisions. A more conceptual challenging problem is to understand the

large fluctuations in the large x initial conditions that may generate very anisotropic shape

distributions of small x partons. As we noted briefly, such studies may benefit from the

universality between the non-linear equations that describe high energy QCD evolution and

those that describe reaction diffusion processes in statistical mechanics.

In the description of the Glasma, a straightforward but technically challenging prob-

lem is to extend several of the computations in fixed box geometries to the more realistic

longitudinally expanding case. A more difficult challenge is to implement fully quantum

contributions beyond the classical-statistical approximation. While there is considerable in-

sight gained from on-going studies of scalar field theories in this regard, further progress will

require further conceptual breakthroughs. A noteworthy feature of the overoccupied Glasma

is the emergence of infrared structures that may have non-trivial topological features (Spitz

et al., 2020). This may be universal to other many-body systems leading to novel potential

synergies in addition to those discussed in this review.

Recent numerical simulations using QCD effective kinetic theory have painted a detailed

picture of the different equilibration stages in longitudinally expanding, albeit homogeneous,

QCD matter. However the kinetic description of inhomogeneous systems with rapid radial

expansion needs further development. This is especially important for studies of collisions

of light nuclei or in proton-nucleus collisions, where tantalizing signals of collective behavior

have been seen. It will be interesting within this framework to understand whether a unified

many-body description emerges which smoothly interpolates from a few parton scatterings

in the smallest collision systems to the emergent fluid-like behavior in the largest systems.

On the more formal side, computations of various transport properties of the QGP beyond

leading order have higher order corrections that are large for all but extremely small values

of the coupling constant. Finite temperature resummation techniques may help improve

the convergence of the perturbative expansion. A potential path forward is to combine a

non-perturbative description of the infrared sector with kinetic theory in the UV.

A key part of our review was devoted to developments in holographic approaches to

off-equilibrium dynamics in QCD like theories. An important discovery is that the hydrody-
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namic gradient expansion is an asymptotic series, which allows one to view the applicability

of hydrodynamics through the emergent universal behavior of a hydrodynamic attractor.

An open problem is the existence of hydrodynamic attractors for flows with transverse

expansion and/or broken conformal symmetry. It would be very interesting to make a

clear-cut statement to what extent these phenomena appear in a tracktable manner outside

idealizations of the geometry of ultrarelativistic heavy-ion collisions or highly-symmetric cos-

mologies. Another important future direction is to address collisions in holographic models

that incorporate confinement following recent promising work in this direction. Not least, it

would be interesting to reconsider expanding plasma setups and, more broadly, thermaliza-

tion at strong coupling in the context of Gauss-Bonnet gravity discussed in Section VI.F.2.

First steps in this direction relied on treating the Gauss-Bonnet term as a small correction.

Going beyond this regime, which challenging from many perspectives, can reveal genuinely

new effects in holographic setups like non-thermal fixed points discussed in Section IV.C.

Finally, an important open question in holography is to understand if long-range “ridge-

like” correlations can naturally arise at strong coupling and whether they can survive till

late time.
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Chantesana, I., A. Piñeiro Orioli, and T. Gasenzer (2019), Phys. Rev. A99 (4), 043620,

arXiv:1801.09490 [cond-mat.quant-gas].

Chatrchyan, S., et al. (CMS) (2011), Phys. Rev. C 84, 024906, arXiv:1102.1957 [nucl-ex].

Chatterjee, R., L. Bhattacharya, and D. K. Srivastava (2010), Lect. Notes Phys. 785, 219,

arXiv:0901.3610 [nucl-th].

Chattopadhyay, C., and U. W. Heinz (2020), Phys. Lett. B 801, 135158, arXiv:1911.07765 [nucl-

th].

Chen, G., R. J. Fries, J. I. Kapusta, and Y. Li (2015a), Phys. Rev. C92 (6), 064912,

arXiv:1507.03524 [nucl-th].

Chen, J.-Y., D. T. Son, and M. A. Stephanov (2015b), Phys. Rev. Lett. 115 (2), 021601,

arXiv:1502.06966 [hep-th].

Chesler, P. M. (2015), Phys. Rev. Lett. 115 (24), 241602, arXiv:1506.02209 [hep-th].

Chesler, P. M. (2016), JHEP 03, 146, arXiv:1601.01583 [hep-th].

138

http://dx.doi.org/ 10.1007/JHEP03(2018)036
http://arxiv.org/abs/1501.03754
http://dx.doi.org/ 10.1007/JHEP02(2018)058
http://arxiv.org/abs/1604.07417
http://dx.doi.org/ 10.1088/1126-6708/2008/02/081
http://arxiv.org/abs/0801.2173
http://dx.doi.org/ 10.1103/PhysRevD.80.085013
http://arxiv.org/abs/0906.1140
http://arxiv.org/abs/2001.05074
http://dx.doi.org/ 10.1103/PhysRevC.95.024906
http://arxiv.org/abs/1607.02359
http://dx.doi.org/ 10.1007/JHEP04(2018)042
http://arxiv.org/abs/1712.02772
http://arxiv.org/abs/1712.02772
http://dx.doi.org/10.1103/PhysRevLett.111.181601
http://dx.doi.org/10.1103/PhysRevLett.111.181601
http://arxiv.org/abs/1305.4919
http://dx.doi.org/ 10.1103/PhysRevLett.112.221602
http://dx.doi.org/ 10.1103/PhysRevLett.112.221602
http://arxiv.org/abs/1312.2956
http://dx.doi.org/ 10.1017/CBO9781139136747
http://arxiv.org/abs/1101.0618
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://arxiv.org/abs/0905.2562
http://dx.doi.org/10.1103/PhysRevD.96.084043
http://arxiv.org/abs/1706.07421
http://dx.doi.org/ 10.1103/PhysRevA.99.043620
http://arxiv.org/abs/1801.09490
http://dx.doi.org/10.1103/PhysRevC.84.024906
http://arxiv.org/abs/1102.1957
http://dx.doi.org/ 10.1007/978-3-642-02286-9_7
http://arxiv.org/abs/0901.3610
http://dx.doi.org/ 10.1016/j.physletb.2019.135158
http://arxiv.org/abs/1911.07765
http://arxiv.org/abs/1911.07765
http://dx.doi.org/10.1103/PhysRevC.92.064912
http://arxiv.org/abs/1507.03524
http://dx.doi.org/ 10.1103/PhysRevLett.115.021601
http://arxiv.org/abs/1502.06966
http://dx.doi.org/ 10.1103/PhysRevLett.115.241602
http://arxiv.org/abs/1506.02209
http://dx.doi.org/10.1007/JHEP03(2016)146
http://arxiv.org/abs/1601.01583


Chesler, P. M., K. Jensen, and A. Karch (2009a), Phys. Rev. D 79, 025021, arXiv:0804.3110

[hep-th].

Chesler, P. M., K. Jensen, A. Karch, and L. G. Yaffe (2009b), Phys. Rev. D 79, 125015,

arXiv:0810.1985 [hep-th].

Chesler, P. M., N. Kilbertus, and W. van der Schee (2015), JHEP 11, 135, arXiv:1507.02548

[hep-th].

Chesler, P. M., M. Lekaveckas, and K. Rajagopal (2013), JHEP 10, 013, arXiv:1306.0564 [hep-ph].

Chesler, P. M., and W. van der Schee (2015), Int. J. Mod. Phys. E 24 (10), 1530011,

arXiv:1501.04952 [nucl-th].

Chesler, P. M., and D. Teaney (2011), arXiv:1112.6196 [hep-th].

Chesler, P. M., and D. Teaney (2012), arXiv:1211.0343 [hep-th].

Chesler, P. M., and L. G. Yaffe (2009), Phys. Rev. Lett. 102, 211601, arXiv:0812.2053 [hep-th].

Chesler, P. M., and L. G. Yaffe (2010), Phys. Rev. D82, 026006, arXiv:0906.4426 [hep-th].

Chesler, P. M., and L. G. Yaffe (2011), Phys. Rev. Lett. 106, 021601, arXiv:1011.3562 [hep-th].

Chesler, P. M., and L. G. Yaffe (2014), JHEP 07, 086, arXiv:1309.1439 [hep-th].

Chesler, P. M., and L. G. Yaffe (2015), JHEP 10, 070, arXiv:1501.04644 [hep-th].

Chin, C., R. Grimm, P. Julienne, and E. Tiesinga (2010), Reviews of Modern Physics 82 (2),

1225–1286.

Churchill, J., L. Yan, S. Jeon, and C. Gale (2020), in 28th International Conference on Ultrarel-

ativistic Nucleus-Nucleus Collisions (Quark Matter 2019) Wuhan, China, November 4-9, 2019,

arXiv:2001.11110 [hep-ph].

Ciafaloni, M., D. Colferai, and G. P. Salam (1999), Phys. Rev. D60, 114036, arXiv:hep-ph/9905566

[hep-ph].

Citron, Z., et al. (2019), CERN Yellow Rep. Monogr. 7, 1159, arXiv:1812.06772 [hep-ph].

Collins, J. (2018), arXiv:1801.03960 [hep-ph].

Collins, J. C., D. E. Soper, and G. F. Sterman (1989), Adv. Ser. Direct. High Energy Phys. 5, 1,

arXiv:hep-ph/0409313 [hep-ph].

Corboz, P. (2016a), Phys. Rev. B 93, 045116.

Corboz, P. (2016b), Phys. Rev. B 94, 035133, arXiv:1605.03006 [cond-mat.str-el].

Corboz, P., P. Czarnik, G. Kapteijns, and L. Tagliacozzo (2018), Phys. Rev. X 8, 031031.

Corell, L., A. K. Cyrol, M. Heller, and J. M. Pawlowski (2019), arXiv:1910.09369 [hep-th].

139

http://dx.doi.org/10.1103/PhysRevD.79.025021
http://arxiv.org/abs/0804.3110
http://arxiv.org/abs/0804.3110
http://dx.doi.org/10.1103/PhysRevD.79.125015
http://arxiv.org/abs/0810.1985
http://dx.doi.org/10.1007/JHEP11(2015)135
http://arxiv.org/abs/1507.02548
http://arxiv.org/abs/1507.02548
http://dx.doi.org/10.1007/JHEP10(2013)013
http://arxiv.org/abs/1306.0564
http://dx.doi.org/ 10.1142/S0218301315300118
http://arxiv.org/abs/1501.04952
http://arxiv.org/abs/1112.6196
http://arxiv.org/abs/1211.0343
http://dx.doi.org/ 10.1103/PhysRevLett.102.211601
http://arxiv.org/abs/0812.2053
http://dx.doi.org/ 10.1103/PhysRevD.82.026006
http://arxiv.org/abs/0906.4426
http://dx.doi.org/ 10.1103/PhysRevLett.106.021601
http://arxiv.org/abs/1011.3562
http://dx.doi.org/10.1007/JHEP07(2014)086
http://arxiv.org/abs/1309.1439
http://dx.doi.org/10.1007/JHEP10(2015)070
http://arxiv.org/abs/1501.04644
http://dx.doi.org/10.1103/revmodphys.82.1225
http://dx.doi.org/10.1103/revmodphys.82.1225
http://arxiv.org/abs/2001.11110
http://dx.doi.org/ 10.1103/PhysRevD.60.114036
http://arxiv.org/abs/hep-ph/9905566
http://arxiv.org/abs/hep-ph/9905566
http://dx.doi.org/ 10.23731/CYRM-2019-007.1159
http://arxiv.org/abs/1812.06772
http://arxiv.org/abs/1801.03960
http://dx.doi.org/10.1142/9789814503266_0001
http://arxiv.org/abs/hep-ph/0409313
http://dx.doi.org/ 10.1103/PhysRevB.93.045116
http://arxiv.org/abs/1605.03006
http://dx.doi.org/10.1103/PhysRevX.8.031031
http://arxiv.org/abs/1910.09369


Cornwall, J. M., R. Jackiw, and E. Tomboulis (1974), Phys. Rev. D10, 2428.

Cotler, J. S., M. P. Hertzberg, M. Mezei, and M. T. Mueller (2016), JHEP 11, 166,

arXiv:1609.00872 [hep-th].

Craps, B., E. J. Lindgren, and A. Taliotis (2015), JHEP 12, 116, arXiv:1511.00859 [hep-th].

Dash, A., and V. Roy (2020), arXiv:2001.10756 [nucl-th].

Deng, J., S. Schlichting, R. Venugopalan, and Q. Wang (2018), Phys. Rev. A97 (5), 053606,

arXiv:1801.06260 [hep-th].

Denicol, G. S., and J. Noronha (2018), Phys. Rev. D 97 (5), 056021, arXiv:1711.01657 [nucl-th].

Denicol, G. S., and J. Noronha (2019a), arXiv:1908.09957 [nucl-th].

Denicol, G. S., and J. Noronha (2019b), Phys. Rev. D 99 (11), 116004, arXiv:1804.04771 [nucl-th].

Derrick, M., et al. (ZEUS) (1993), Phys. Lett. B316, 412.

Derrick, M., et al. (ZEUS) (1995), Z. Phys. C65, 379.

Detmold, W., R. G. Edwards, J. J. Dudek, M. Engelhardt, H.-W. Lin, S. Meinel, K. Orginos, and

P. Shanahan (USQCD) (2019), Eur. Phys. J. A55 (11), 193, arXiv:1904.09512 [hep-lat].

Deutsch, J. M. (1991), Phys. Rev. A 43, 2046.

Devetak, D., A. Dubla, S. Floerchinger, E. Grossi, S. Masciocchi, A. Mazeliauskas, and I. Se-

lyuzhenkov (2019), arXiv:1909.10485 [hep-ph].

DeWolfe, O., S. S. Gubser, C. Rosen, and D. Teaney (2014), Prog. Part. Nucl. Phys. 75, 86,

arXiv:1304.7794 [hep-th].

Di Piazza, A., C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel (2012), Rev. Mod. Phys. 84,

1177, arXiv:1111.3886 [hep-ph].

Ding, H.-T., F. Karsch, and S. Mukherjee (2016), in Quark-Gluon Plasma 5 , edited by X.-N.

Wang, pp. 1–65.

Dokshitzer, Y. L. (1977), Sov. Phys. JETP 46, 641, [Zh. Eksp. Teor. Fiz.73,1216(1977)].

Dominguez, F., C. Marquet, B.-W. Xiao, and F. Yuan (2011), Phys. Rev. D83, 105005,

arXiv:1101.0715 [hep-ph].

Dong, X., A. Lewkowycz, and M. Rangamani (2016), JHEP 11, 028, arXiv:1607.07506 [hep-th].

Dorigoni, D. (2019), Annals Phys. 409, 167914, arXiv:1411.3585 [hep-th].
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Garcia-Montero, O., N. Löher, A. Mazeliauskas, J. Berges, and K. Reygers (2019),

arXiv:1909.12246 [hep-ph].

Gardim, F. G., G. Giacalone, M. Luzum, and J.-Y. Ollitrault (2019), 10.1038/s41567-020-0846-4,

arXiv:1908.09728 [nucl-th].

Gasenzer, T., L. McLerran, J. M. Pawlowski, and D. Sexty (2014), Nucl. Phys. A930, 163,

arXiv:1307.5301 [hep-ph].

Geiger, K., and B. Muller (1992), Nucl. Phys. B 369, 600.

Gelfand, D., F. Hebenstreit, and J. Berges (2016), Phys. Rev. D 93 (8), 085001, arXiv:1601.03576

[hep-ph].

143

http://dx.doi.org/10.1007/JHEP12(2019)093
http://arxiv.org/abs/1907.13134
http://dx.doi.org/10.1006/aphy.1998.5841
http://arxiv.org/abs/hep-th/9802191
http://dx.doi.org/ 10.1016/j.physrep.2011.12.002
http://arxiv.org/abs/1106.2091
http://dx.doi.org/ 10.1016/S0375-9474(02)01072-2
http://arxiv.org/abs/nucl-th/0205066
http://dx.doi.org/ 10.1103/PhysRevD.73.025017
http://arxiv.org/abs/hep-th/0511142
http://dx.doi.org/ 10.1103/PhysRevC.76.021902, 10.1103/PhysRevC.77.029901
http://arxiv.org/abs/0711.2634
http://dx.doi.org/ 10.1016/j.nuclphysa.2011.11.003
http://arxiv.org/abs/1106.1396
http://dx.doi.org/ 10.1016/j.nuclphysa.2007.01.086
http://arxiv.org/abs/hep-ph/0610416
http://arxiv.org/abs/hep-ph/0610416
http://dx.doi.org/ 10.1007/JHEP11(2017)114
http://arxiv.org/abs/1708.03051
http://dx.doi.org/ 10.1103/PhysRevD.78.074033
http://arxiv.org/abs/0808.3382
http://dx.doi.org/10.1103/PhysRevD.76.105019
http://arxiv.org/abs/0708.1631
http://dx.doi.org/10.1103/PhysRevLett.110.012302
http://dx.doi.org/10.1103/PhysRevLett.110.012302
http://arxiv.org/abs/1209.6330
http://arxiv.org/abs/2002.05191
http://dx.doi.org/ 10.1103/PhysRevD.100.056021
http://arxiv.org/abs/1902.06510
http://arxiv.org/abs/1909.12294
http://arxiv.org/abs/1909.12246
http://dx.doi.org/10.1038/s41567-020-0846-4
http://arxiv.org/abs/1908.09728
http://dx.doi.org/ 10.1016/j.nuclphysa.2014.07.030
http://arxiv.org/abs/1307.5301
http://dx.doi.org/10.1016/0550-3213(92)90280-O
http://dx.doi.org/10.1103/PhysRevD.93.085001
http://arxiv.org/abs/1601.03576
http://arxiv.org/abs/1601.03576


Gelis, F., E. Iancu, J. Jalilian-Marian, and R. Venugopalan (2010), Ann. Rev. Nucl. Part. Sci. 60,

463, arXiv:1002.0333 [hep-ph].

Gelis, F., K. Kajantie, and T. Lappi (2006a), Phys. Rev. Lett. 96, 032304, arXiv:hep-ph/0508229.

Gelis, F., T. Lappi, and L. McLerran (2009), Nucl. Phys. A828, 149, arXiv:0905.3234 [hep-ph].

Gelis, F., T. Lappi, and R. Venugopalan (2007), Hadron physics. Proceedings, 10th Interna-

tional Workshop, Florianopolis, Brazil, April 26-31, 2007, Int. J. Mod. Phys. E16, 2595,

arXiv:0708.0047 [hep-ph].

Gelis, F., T. Lappi, and R. Venugopalan (2008a), Phys. Rev. D78, 054019, arXiv:0804.2630 [hep-

ph].

Gelis, F., T. Lappi, and R. Venugopalan (2008b), Phys. Rev. D78, 054020, arXiv:0807.1306 [hep-

ph].

Gelis, F., A. M. Stasto, and R. Venugopalan (2006b), Eur. Phys. J. C48, 489, arXiv:hep-

ph/0605087 [hep-ph].

Gelis, F., and N. Tanji (2016), Prog. Part. Nucl. Phys. 87, 1, arXiv:1510.05451 [hep-ph].

Gelis, F., and R. Venugopalan (2006a), Nucl. Phys. A776, 135, arXiv:hep-ph/0601209 [hep-ph].

Gelis, F., and R. Venugopalan (2006b), Nucl. Phys. A779, 177, arXiv:hep-ph/0605246 [hep-ph].

Gelis, F., and R. Venugopalan (2006c), Theoretical physics. Proceedings, 46th Cracow School,

Zakopane, Poland, May 27-June 5, 2006, Acta Phys. Polon. B37, 3253, arXiv:hep-ph/0611157

[hep-ph].

Gelis, F., and R. Venugopalan (2007), Proceedings, 2nd International Conference on Hard and

Electromagnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2006): Asilomar, USA,

June 9-16, 2006, Nucl. Phys. A782, 297, [Nucl. Phys.A785,146(2007)], arXiv:hep-ph/0608117

[hep-ph].

Ghiglieri, J., J. Hong, A. Kurkela, E. Lu, G. D. Moore, and D. Teaney (2013), JHEP 05, 010,

arXiv:1302.5970 [hep-ph].

Ghiglieri, J., A. Kurkela, M. Strickland, and A. Vuorinen (2020), arXiv:2002.10188 [hep-ph].

Ghiglieri, J., and G. D. Moore (2014), JHEP 12, 029, arXiv:1410.4203 [hep-ph].

Ghiglieri, J., G. D. Moore, and D. Teaney (2016), JHEP 03, 095, arXiv:1509.07773 [hep-ph].

Ghiglieri, J., G. D. Moore, and D. Teaney (2018a), JHEP 03, 179, arXiv:1802.09535 [hep-ph].

Ghiglieri, J., G. D. Moore, and D. Teaney (2018b), Phys. Rev. Lett. 121 (5), 052302,

arXiv:1805.02663 [hep-ph].

144

http://dx.doi.org/10.1146/annurev.nucl.010909.083629
http://dx.doi.org/10.1146/annurev.nucl.010909.083629
http://arxiv.org/abs/1002.0333
http://dx.doi.org/10.1103/PhysRevLett.96.032304
http://arxiv.org/abs/hep-ph/0508229
http://dx.doi.org/10.1016/j.nuclphysa.2009.07.004
http://arxiv.org/abs/0905.3234
http://dx.doi.org/10.1142/S0218301307008331
http://arxiv.org/abs/0708.0047
http://dx.doi.org/10.1103/PhysRevD.78.054019
http://arxiv.org/abs/0804.2630
http://arxiv.org/abs/0804.2630
http://dx.doi.org/10.1103/PhysRevD.78.054020
http://arxiv.org/abs/0807.1306
http://arxiv.org/abs/0807.1306
http://dx.doi.org/ 10.1140/epjc/s10052-006-0020-x
http://arxiv.org/abs/hep-ph/0605087
http://arxiv.org/abs/hep-ph/0605087
http://dx.doi.org/10.1016/j.ppnp.2015.11.001
http://arxiv.org/abs/1510.05451
http://dx.doi.org/ 10.1016/j.nuclphysa.2006.07.020
http://arxiv.org/abs/hep-ph/0601209
http://dx.doi.org/ 10.1016/j.nuclphysa.2006.08.015
http://arxiv.org/abs/hep-ph/0605246
http://arxiv.org/abs/hep-ph/0611157
http://arxiv.org/abs/hep-ph/0611157
http://dx.doi.org/ 10.1016/j.nuclphysa.2006.10.062, 10.1016/j.nuclphysa.2006.11.152
http://arxiv.org/abs/hep-ph/0608117
http://arxiv.org/abs/hep-ph/0608117
http://dx.doi.org/10.1007/JHEP05(2013)010
http://arxiv.org/abs/1302.5970
http://arxiv.org/abs/2002.10188
http://dx.doi.org/ 10.1007/JHEP12(2014)029
http://arxiv.org/abs/1410.4203
http://dx.doi.org/ 10.1007/JHEP03(2016)095
http://arxiv.org/abs/1509.07773
http://dx.doi.org/ 10.1007/JHEP03(2018)179
http://arxiv.org/abs/1802.09535
http://dx.doi.org/ 10.1103/PhysRevLett.121.052302
http://arxiv.org/abs/1805.02663


Ghiglieri, J., and D. Teaney (2015), Int. J. Mod. Phys. E24 (11), 1530013, [,271(2016)],

arXiv:1502.03730 [hep-ph].

Ghisoiu, I., and M. Laine (2014), JHEP 10, 083, arXiv:1407.7955 [hep-ph].

Giacalone, G., A. Mazeliauskas, and S. Schlichting (2019), Phys. Rev. Lett. 123 (26), 262301,

arXiv:1908.02866 [hep-ph].

Glidden, J. A. P., C. Eigen, L. H. Dogra, T. A. Hilker, R. P. Smith, and Z. Hadzibabic (2020),

arXiv:2006.01118 [cond-mat.quant-gas].

Gogolin, C., and J. Eisert (2016), Reports on Progress in Physics 79 (5), 056001.

Goldberger, W. D., and A. K. Ridgway (2017), Phys. Rev. D95 (12), 125010, arXiv:1611.03493

[hep-th].
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Waeber, S., A. Rabenstein, A. Schäfer, and L. G. Yaffe (2019), JHEP 08, 005, arXiv:1906.05086

[hep-th].

162

http://arxiv.org/abs/hep-ph/0007192
http://arxiv.org/abs/hep-ph/0007192
http://dx.doi.org/ 10.1103/PhysRevLett.109.162001
http://arxiv.org/abs/1207.0747
http://dx.doi.org/ 10.1007/JHEP12(2018)128
http://arxiv.org/abs/1809.01200
http://dx.doi.org/ 10.1103/PhysRevD.97.036020
http://arxiv.org/abs/1709.06644
http://arxiv.org/abs/1709.06644
http://dx.doi.org/ 10.1007/JHEP10(2019)069
http://arxiv.org/abs/1903.03145
http://arxiv.org/abs/1703.05448
http://dx.doi.org/ 10.1007/JHEP01(2016)086
http://arxiv.org/abs/1411.5745
http://dx.doi.org/ 10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevD.98.014025
http://arxiv.org/abs/1805.00775
http://dx.doi.org/10.1103/PhysRevD.97.034013
http://arxiv.org/abs/1711.03445
http://dx.doi.org/10.1103/PhysRevD.93.074507
http://arxiv.org/abs/1603.03331
http://arxiv.org/abs/1603.03331
http://dx.doi.org/ 10.1103/PhysRevD.95.094009
http://arxiv.org/abs/1703.01372
http://dx.doi.org/ 10.1103/PhysRevD.42.2491
http://arxiv.org/abs/0804.1918
http://arxiv.org/abs/0804.1918
http://dx.doi.org/10.1103/PhysRevLett.124.062001
http://arxiv.org/abs/1904.11974
http://arxiv.org/abs/1904.11974
http://dx.doi.org/ 10.1016/0550-3213(75)90443-5
http://dx.doi.org/10.1103/PhysRevB.94.155123
http://arxiv.org/abs/hep-ph/9911371
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.020
http://arxiv.org/abs/hep-ph/0504242
http://arxiv.org/abs/hep-ph/0504242
http://dx.doi.org/ 10.1103/PhysRevLett.101.110501
http://arxiv.org/abs/quant-ph/0610099
http://dx.doi.org/ 10.1103/PhysRevC.79.044915
http://arxiv.org/abs/0810.4325
http://dx.doi.org/10.1007/JHEP08(2019)005
http://arxiv.org/abs/1906.05086
http://arxiv.org/abs/1906.05086


Walz, R., K. Boguslavski, and J. Berges (2018), Phys. Rev. D97 (11), 116011, arXiv:1710.11146

[hep-ph].

Weickgenannt, N., X.-L. Sheng, E. Speranza, Q. Wang, and D. H. Rischke (2019), Phys. Rev.

D100 (5), 056018, arXiv:1902.06513 [hep-ph].

Weigert, H. (2002), Nucl. Phys. A703, 823, arXiv:hep-ph/0004044 [hep-ph].

Weih, L. R., M. Hanauske, and L. Rezzolla (2020), Phys. Rev. Lett. 124 (17), 171103,

arXiv:1912.09340 [gr-qc].

Wilczek, F. (2000), Particles and nuclei. Proceedings, 15th International Conference, PANIC ’99,

Uppsala, Sweden, June 10-16, 1999, Nucl. Phys. A663, 3, arXiv:hep-ph/9907340 [hep-ph].

Withers, B. (2018), JHEP 06, 059, arXiv:1803.08058 [hep-th].

Witten, E. (1998a), Adv. Theor. Math. Phys. 2, 253, arXiv:hep-th/9802150.

Witten, E. (1998b), Adv. Theor. Math. Phys. 2, 505, arXiv:hep-th/9803131.

Woodard, R. P. (2015), Scholarpedia 10 (8), 32243, arXiv:1506.02210 [hep-th].

Wu, B., and Y. V. Kovchegov (2018), JHEP 03, 158, arXiv:1709.02866 [hep-ph].

Wu, B., and P. Romatschke (2011), Int. J. Mod. Phys. C22, 1317, arXiv:1108.3715 [hep-th].

Xu, Z., and C. Greiner (2005), Phys. Rev. C71, 064901, arXiv:hep-ph/0406278 [hep-ph].

Yang, D.-L., K. Hattori, and Y. Hidaka (2020), arXiv:2002.02612 [hep-ph].

Yao, X., W. Ke, Y. Xu, S. A. Bass, and B. Müller (2020), arXiv:2004.06746 [hep-ph].

Yee, H.-U., and P. Yi (2020), Phys. Rev. D101 (4), 045007, arXiv:1909.12409 [hep-th].

York, M. A., and G. D. Moore (2009), Phys. Rev. D79, 054011, arXiv:0811.0729 [hep-ph].

Zache, T., N. Mueller, J. Schneider, F. Jendrzejewski, J. Berges, and P. Hauke (2019), Phys. Rev.

Lett. 122 (5), 050403, arXiv:1808.07885 [quant-ph].

Zache, T. V., T. Schweigler, S. Erne, J. Schmiedmayer, and J. Berges (2020), Phys. Rev. X 10 (1),

011020, arXiv:1909.12815 [cond-mat.quant-gas].

Zakharov, V., V. L’vov, and G. Falkovich (2012), Kolmogorov Spectra of Turbulence I: Wave

Turbulence, Springer Series in Nonlinear Dynamics (Springer Berlin Heidelberg).

FIGURES

163

http://dx.doi.org/10.1103/PhysRevD.97.116011
http://arxiv.org/abs/1710.11146
http://arxiv.org/abs/1710.11146
http://dx.doi.org/10.1103/PhysRevD.100.056018
http://dx.doi.org/10.1103/PhysRevD.100.056018
http://arxiv.org/abs/1902.06513
http://dx.doi.org/ 10.1016/S0375-9474(01)01668-2
http://arxiv.org/abs/hep-ph/0004044
http://dx.doi.org/10.1103/PhysRevLett.124.171103
http://arxiv.org/abs/1912.09340
http://dx.doi.org/10.1016/S0375-9474(99)00567-9
http://arxiv.org/abs/hep-ph/9907340
http://dx.doi.org/10.1007/JHEP06(2018)059
http://arxiv.org/abs/1803.08058
http://dx.doi.org/ 10.4310/ATMP.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/ 10.4310/ATMP.1998.v2.n3.a3
http://arxiv.org/abs/hep-th/9803131
http://dx.doi.org/ 10.4249/scholarpedia.32243
http://arxiv.org/abs/1506.02210
http://dx.doi.org/ 10.1007/JHEP03(2018)158
http://arxiv.org/abs/1709.02866
http://dx.doi.org/ 10.1142/S0129183111016920
http://arxiv.org/abs/1108.3715
http://dx.doi.org/10.1103/PhysRevC.71.064901
http://arxiv.org/abs/hep-ph/0406278
http://arxiv.org/abs/2002.02612
http://arxiv.org/abs/2004.06746
http://dx.doi.org/10.1103/PhysRevD.101.045007
http://arxiv.org/abs/1909.12409
http://dx.doi.org/ 10.1103/PhysRevD.79.054011
http://arxiv.org/abs/0811.0729
http://dx.doi.org/10.1103/PhysRevLett.122.050403
http://dx.doi.org/10.1103/PhysRevLett.122.050403
http://arxiv.org/abs/1808.07885
http://dx.doi.org/10.1103/PhysRevX.10.011020
http://dx.doi.org/10.1103/PhysRevX.10.011020
http://arxiv.org/abs/1909.12815
https://books.google.fr/books?id=GMD-CAAAQBAJ
https://books.google.fr/books?id=GMD-CAAAQBAJ


FIG. 1 Transverse hadron profile resolved in scattering with fixed squared momentum transfer

Q2 and increasing center-of-mass energy
√
s. The requirement that proliferating soft gluons have

maximal occupancy 1/αS generates the close packing saturation scale QS . Figure adapted from

(Iancu and Venugopalan, 2003).

(A[ρ])

Dipole

small-x gluons

γ ∗

Fast hadron (ρ)fast partons

FIG. 2 DIS in the dipole picture. The virtual photon emitted by the electron splits into a qq̄ dipole

which scatters off dynamical small x gauge fields coupled to the static large x lightcone sources.

Figure from (Iancu and Venugopalan, 2003).
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FIG. 4 Solution of JIMWLK equation for the correlator of Wilson lines V (x⊥)V †(y⊥) probed by

the DIS dipole (Dumitru et al., 2011b). As the nucleus is boosted from low energy (or rapidity)

to high energy, the regions with large values of these correlator shrink spatially, corresponding to

larger values of QS .

C +

-

FIG. 5 a) Multi-particle production from cut “vacuum-vacuum” graphs connecting time dependent

sources of the two nuclei after the collision. Figure from (Gelis et al., 2010). b) The Schwinger-

Keldysh closed time contour on which the sources and fields are defined.
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FIG. 6 Spacetime diagram of gauge field configurations. Before the collision, the gauge fields

are pure gauge solutions with zero field strength. (In the text, the pure gauge solution of the

right moving nucleus is denoted by Ai1,cl. and that of the left moving nucleus by Ai2,cl..) After the

collision, the gauge field solution (Ai,η in text) correspond to finite field strengths in the Glasma.

Figure from (Lappi and McLerran, 2006).

FIG. 7 Glasma flux tubes: Boost invariant LO Glasma configurations of transverse size 1/QS at

τ = 0+ with parallel Eη and Bη, corresponding to finite Chern-Simons charge. Such configurations

decay rapidly and are unstable to quantum fluctuations. Figure from (Dumitru et al., 2008a).

FIG. 8 a) Collisions of nuclei with sub-nucleon color charge fluctuations determined by the IP-Sat

model. b) The LO energy density in the Glasma at τ = 1/QS . Figures from (Schenke et al., 2012a).

167



0 500 1000 1500 2000 2500 3000 3500
g

2
 µ τ

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

m
ax

 τ
2  T

η
η
 / 

g4
 µ

3  L
η

c
0
+c

1
 Exp(0.427 Sqrt(g

2
 µ τ))

c
0
+c

1
 Exp(0.00544 g

2
 µ τ)

FIG. 9 Growth of the maximally unstable Fourier mode of the longitudinal pressure PL = τ2T ηη.

Note that since g2µ ∝ QS , the results are in units of Q3
S/g

2, with g ∼ 10−5 and Lη = 1.6. Figure

from (Romatschke and Venugopalan, 2006a).
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FIG. 10 Time evolution of the gluon distribution at early times 0 . QSτ . log2(α−1
S ) from

next-to-leading order CGC initial conditions (Epelbaum and Gelis, 2013) at very weak coupling

(αS ∼ 10−6). Fig. taken from Ref. (Berges et al., 2014e).
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numbers ν with parameters as described in Ref. (Berges and Schlichting, 2013). Once the initial

fluctuations have grown larger, one observes the emergence of secondary instabilities at larger ν

with enhanced growth rates.
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FIG. 14 The normalized distribution for the scalar theory (fφ) as a function of the rescaled

longitudinal momentum at different times in the self-similar regime compared to the gauge theory

(fg) (Berges et al., 2015b).
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Ā

Ã Ã
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coupling. Fig. taken from Ref. (Kasper et al., 2014).
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FIG. 18 Illustration of rescaled “quantum” three- and four-vertices, which are ∼ g4. Fig. taken

from Ref. (Kasper et al., 2014).
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FIG. 20 The gluon kinetic theory equilibration in anisotropy-occupancy plane for initial anisotropy

ξ0 = 10 and different values of the coupling constant. Times corresponding to τQS = 100, 101, 103

are indicated by black symbols. Simulations with smaller initial anisotropy ξ0 = 4 is shown by

dashed curves. Figure adapted from (Kurkela and Zhu, 2015).
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FIG. 21 The time evolution of instantaneous scaling exponents extracted from different sets of

integral moments of the distribution. Horizontal lines indicate possible asymptotic values. Figure

is taken from (Mazeliauskas and Berges, 2019).
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FIG. 22 The shear viscosity over entropy ratio as a function of temperature at leading (LO) and

(nearly) next to leading order (NLO) thermal QCD. The bands correspond to the scale variation

of running coupling prescriptions. Figure taken from (Ghiglieri et al., 2018a).

FIG. 23 The pressure anisotropy evolution in expanding geometry. Gluon kinetic theory simula-

tions λ = 1, . . . 10 are compared to a holographic model of supersymmetric Yang-Mills (λ = ∞ ).

Note that here Ti is initial temperature and so at late times (η/s)4/3Tit ≈ 32 w̃3/2. Figure adapted

from (Keegan et al., 2016b).
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FIG. 25 The energy density evolution in a chemically equilibrating quark-gluon plasma. The

vertical lines indicate the times of approximate hydrodynamic, chemical and thermal equilibriums.

Figure taken from (Kurkela and Mazeliauskas, 2019a).

FIG. 26 Penrose diagrams dual to far-from-equilibrium states in strongly coupled QFTs. Left

plot: The system starts in the vacuum with known bulk geometry and is perturbed by a non-

trivial source, which appears as an asymptotic boundary condition in gravity. After the source is

turned off, the QFT is in a non-equilibrium state modeled by a time dependent geometry. Right

plot: The sources are always off, but one instead specifies non-trivial initial conditions for the bulk

metric. Figure adapted from Ref. (Heller et al., 2012c).
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FIG. 27 Evolution of the effective temperature as a function of time for 3 different states with

nonzero initial energy density. The gray curves denote the far-from-equilibrium regime. The blue

dashed parts extending indefinitely to the right mark the applicability of viscous hydrodynamic

relations truncated at the third order in derivatives (122). The red dotted curves denote the series

in Eq. (120) extracted using Ref. (Beuf et al., 2009). The figure is adapted from Ref. (Heller et al.,

2012a).

FIG. 28 〈Tµν〉 in a holographic CFT as a function of the dimensionless clock variable w for

29 different initial states (grey curves). Magenta, blue and green curves denote predictions of

hydrodynamic constitutive relations truncated respectively at first, second and third order (122).

The orange curve is the hydrodynamic attractor (Romatschke, 2018). The figure is adapted from

Refs. (Heller et al., 2012a,b; Romatschke, 2018).
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FIG. 29 Hydrodynamization of states whose gravity dual has initially support close to the boundary

(dashed curves) or deep in the bulk (solid curves) initialized at different times (different colors),

see text for details. The figure is adapted from Ref. (Kurkela et al., 2020).
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FIG. 30 〈Tµν〉 resulting from a collision of thin planar shocks with % d = 0.08 (124). TOP: Lab-

frame energy density as a function of time x0 and longitudinal position x3. Between the remnants

and the central rapidity region, there are small regions of negative energy density. BOTTOM-

LEFT: At mid-rapidity, the transverse and longitudinal pressure after the collision are consistent

with 〈T 00〉 ∼ τ2 in Eq. (120). BOTTOM-RIGHT: The color encoding denotes deviations from con-

stitutive relations and points to the applicability of hydrodynamics. The post-collision 〈Tµν〉 does

not have a rest frame in the gray region (Arnold et al., 2014). Plots adapted from Ref. (Casalderrey-

Solana et al., 2013).
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FIG. 31 Energy density in holographic heavy-ion collisions with transverse dynamics. TOP: Off-

central collision with modest elliptic flow. BOTTOM: Proton-nucleus collision, as modeled by a

shockwave with a small Gaussian extent in the transverse plane (left projectile) and a planar shock

(right projectile). The smaller projectile punches out a hole in the larger projectile and excites

matter at mid-rapidity, leading to substantial radial flow. Plots adapted from (Chesler and Yaffe,

2015) and (Chesler, 2015).
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