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Many-body physics aims to understand emergent properties of systems made of many
interacting objects. This article reviews recent progress on the topic of radiative heat
transfer in many-body systems consisting of thermal emitters interacting in the near-
field regime. Near-field radiative heat transfer is a rapidly emerging field of research in
which the cooperative behavior of emitters gives rise to peculiar effects which can be
exploited to control heat flow at the nanoscale. Using an extension of the standard Polder
and van Hove stochastic formalism to deal with thermally generated fields in N-body
systems, along with their mutual interactions through multiple scattering, a generalized
Landauer-like theory is derived to describe heat exchange mediated by thermal photons
in arbitrary reciprocal and non-reciprocal multi-terminal systems. In this review, we use
this formalism to address both transport and dynamics in these systems from a unified
perspective. Our discussion covers: (i) the description of non-additivity of heat flux and
its related effects, including fundamental limits as well as the role of nanostructuring
and material choice, (ii) the study of equilibrium states and multistable states, (iii) the
relaxation dynamics (thermalization) toward local and global equilibria, (iv) the analysis
of heat transport regimes in ordered and disordered systems comprised of a large number
of objects, density and range of interactions, and (v) the description of thermomagnetic
effects in magneto-optical systems and heat transport mechanisms in non-Hermitian
many-body systems. We conclude this review by listing outstanding challenges and
promising future research directions.
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I. INTRODUCTION

Heat transfer in a given system is in its simplest sense
(i-e. ignoring any cross-coupling between the different ir-
reversible transport processes (Onsager, 1931)) thermal
energy in transit due to a spatial temperature difference
(Bergman et al., 2011). There are three basic heat trans-
fer modes: conduction, convection, and radiation. In the
case of a stationary medium, which could be a solid or

a fluid, conduction refers to heat transfer through lo-
cal agitation of atoms or charges that occurs across the
medium in response to a temperature difference. Ulti-
mately, the carriers responsible for heat conduction are
phonons, molecular vibrations or electrons/ions in the
case of electrical conductors. The second mode of trans-
port is convection, and refers to heat transfer that oc-
curs between a surface and a moving fluid when they
are at different temperatures (or by advection inside the
fluid itself). Finally, the third heat transfer mechanism
is thermal radiation, which is the topic of this review. All
bodies at a finite temperature emit energy in the form of
electromagnetic waves (or photons). Hence, even in the
absence of an intervening medium, there is always heat
transfer via thermal radiation between bodies at differ-
ent temperatures. This makes thermal radiation one of
the most ubiquitous physical phenomena and its under-
standing of critical importance for many different areas
of science and engineering (Howell et al., 2016; Modest,
2013; Zhang, 2007).

Traditionally, our understanding of thermal radiation
is based on Planck’s law (Planck, 1914), which estab-
lishes that a black body (an object that absorbs all the
radiation that impinges on it) emits thermal radiation
following a broadband distribution that only depends on
the body’s temperature. Planck’s law provides a uni-
fied description of a variety of thermal radiation phe-
nomena and, in particular, it sets an upper limit (Stefan-
Boltzmann’s law) for the radiative heat transfer (RHT)
between bodies. However, Planck’s law was derived using
ray optics and hence, it is expected to fail when the spa-
tial dimensions in a thermal problem are smaller than
or comparable to the thermal wavelength Aty defined
by Wien’s displacement law (~10 pm at room temper-
ature) (Planck, 1914). In particular, Planck’s law fails
to describe RHT between objects separated by distances
< A (for a detailed discussion we refer to Refs. (Pendry,
1999; Volokitin and Persson, 2007)). In this near-field
regime, RHT can be dominated by evanescent waves (or
photon tunneling), not taken into account in Planck’s
law, and the Planckian (or black-body) limit can be
greatly overcome by bringing objects sufficiently close,
see Fig. 1. This phenomenon was first predicted within
the rigorous framework of fluctuational electrodynamics
(FE) (Rytov et al., 1989) by Polder and Van Hove in the
early 1970s (Polder and Hove, 1971), see Sec. II. This
near-field radiative heat transfer (NFRHT) enhancement
was first hinted in several experiments in the late 1960s
(Domoto et al., 1970; Hargreaves, 1969), but it was not
firmly confirmed until the 2000s (Hu et al., 2008; Kit-
tel et al., 2005; Narayanaswamy et al., 2008; Rousseau
et al., 2009; Shen et al., 2009). Since then, numerous
experiments exploring different aspects of NFRHT have
been reported and they have boosted the field of thermal
radiation (Bernardi et al., 2016; DeSutter et al., 2019;
Fiorino et al., 2018a,b,c; Ghashami et al., 2018; Guha
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FIG. 1 (a) Far-field radiative heat transfer between two in-
finite parallel plates (media 1 and 2) separated by a vacuum
gap. In this scenario, the gap size d is much larger than the
thermal wavelength, Arn, and the two plates exchange heat
only via propagating waves. The evanescent waves generated
in the vacuum gap by total internal reflection are not able
to reach the second plate and do not contribute to the heat
transfer. (b) When d < Aty the tunneling of evanescent waves
can give a significant contribution to the radiative heat trans-
fer and in this way the Planckian (or black-body) limit can
be greatly overcome in this near-field regime.

et al., 2012; Ito et al., 2015, 2017; Kim et al., 2015; Kra-
lik et al., 2012; Krlk et al., 2017; Lang et al., 2017; Lim
et al., 2015; Musilov et al., 2019; Ottens et al., 2011; Sali-
hoglu et al., 2020; Shen et al., 2012; Shi et al., 2013; Song
et al., 2015b, 2016; St-Gelais et al., 2016, 2014; Worbes
et al., 2013; van Zwol et al., 2012a,b). These experi-
ments have, in turn, generated hope that NFRHT may
have an impact on different technologies such as heat-
assisted magnetic recording, thermal lithography, scan-
ning thermal microscopy, coherent thermal sources, near-
field based thermal management, thermophotovoltaics,
and other energy conversion devices, see (Basu et al.,
2009; Cuevas and Garcia-Vidal, 2018; Komiyama, 2019;
Song et al., 2015a) and references therein.

In parallel to these experimental advances, over the
last two decades, there has been a huge amount of theo-
retical activity. Initially, attention was devoted to the im-
portance of choice of materials and the elucidation of the
different mechanisms of near-field thermal radiation. In
that regard, polar dielectrics exhibiting polaritonic reso-
nances that lead to surface modes have played a promi-
nent role in this field (Mulet et al., 2002). Then, following
nanophotonics concepts, a lot of work has been devoted
to assess the possibility of further enhancing NFRHT and

to tune its spectral properties by using nanostructures
such as thin films and multilayer systems (Ben-Abdallah
et al., 2009a; Biehs, 2007; Biehs et al., 2007; Francoeur
et al., 2008; Maslovski et al., 2013; Volokitin and Pers-
son, 2007), photonic crystals and gratings (Ben-Abdallah
et al., 2010; Biehs et al., 2011; Guérout et al., 2012;
Messina et al., 2017b; Rodriguez et al., 2011), and meta-
surfaces (Dai et al., 2016a; Ferndndez-Hurtado et al.,
2017; Liu and Zhang, 2015a). The investigation of the use
of metamaterials for further enhancing NFRHT (Biehs
et al., 2011, 2012; Guo et al., 2012; Joulain et al., 2010)
or low-dimensional materials like graphene or phospho-
rene to tune NFRHT (Ilic et al., 2012a; Liu et al., 2019,
2014a; Rodriguez-Lopez et al., 2015; Svetovoy et al.,
2012; Volokitin and Persson, 2011; Zhang et al., 2018)
has also attracted significant attention. Another topic of
great importance has been the study of the active control
of NFRHT by different means, including the use of phase-
transition materials (Menges et al., 2016; van Zwol et al.,
2011a,b), the application of an external magnetic field
(Moncada-Villa et al., 2015), or the regulation of chem-
ical potentials for photons with an external bias (Chen
et al., 2015). There are also several theoretical proposals
for functional devices that make use of NFRHT for ther-
mal management (Ben-Abdallah and Biehs, 2015; Otey
et al., 2010), thermophotovoltaics (Basu et al., 2007;
Laroche et al., 2006; Narayanaswamy and Chen, 2003;
Zhao et al., 2017a), and other energy applications (Chen
et al., 2016, 2015). On a more fundamental level, quan-
tum approaches based on the Huttner-Barnett model,
quantum Langevin equations, non-equilibrium Green’s
function method, and the master-equation approach for
open quantum systems have been proposed (Barton,
2016; Biehs and Agarwal, 2013a; Janowicz et al., 2003;
Saaskilahti et al., 2014; Sasihithlu and Agarwal, 2018;
Wang and Peng, 2017).

From a broader perspective, a new general picture of
RHT has emerged in recent years with profound similar-
ities to other heat and charge transport phenomena, in-
cluding phonon conduction in nanoscale systems and co-
herent electronic transport in mesoscopic devices (Cuevas
and Scheer, 2017). In particular, RHT is now routinely
described in terms of the Landauer formula, originally
proposed in the context of electronic mesoscopic systems
(Datta, 1997; Imry and Landauer, 1999), where the en-
ergy and charge transport are mainly determined by the
transmission function describing the transfer probabil-
ity of the carriers. Moreover, techniques employed to
compute transmission functions (scattering approaches,
Green’s function techniques, etc.) are conceptually very
similar in all those contexts. This connection between
RHT and conduction allows us not only to profit from
the experience in other fields, but can also serve as the
starting point for a unified description of different heat
transfer modes in situations where different types of car-
riers may compete or even interfere. An example of this




type of situation is realized in the context of the heat
transfer in subnanometer gaps where recent experiments
have reported conflicting observations in an intermediate
regime where the contribution of different carriers (pho-
tons, phonons, and electrons) may be comparable (Cui
et al., 2017a; Kloppstech et al., 2017). While the situa-
tion seems to be clear in the limiting cases where either
conduction (Cui et al., 2019, 2017b; Mosso et al., 2017) or
NFRHT (Kim et al., 2015) are clearly expected to domi-
nate, the description of the crossover between them might
require novel theories where different carriers are treated
on an equal footing (Chiloyan et al., 2015; Venkataram
et al., 2018).

Conceptually speaking, a major advance in the field
in the last decade has been the development of theoret-
ical models of RHT in many-body systems, the central
topic of this review. Such a theory deals with radiative
heat exchange in systems composed of multiple thermal
emitters able to cooperatively interact. The collective
behaviors in these systems give rise to singular phenom-
ena that we discuss in the present manuscript. Until
2011, FE had been primarily used to describe RHT be-
tween two bodies, but the situation changed with the
report of the first version of a many-body theory of RHT
describing a collection of small dipolar particles (Ben-
Abdallah et al., 2011). Soon after, this many-body the-
ory was generalized to deal with bodies of arbitrary size
and shape (Kriiger et al., 2012; Messina and Antezza,
2011a), and new refinements of the theory are being con-
stantly reported to deal with more complex optical ma-
terials. Again, there is here a clear analogy with develop-
ments in mesoscopic physics, where Biittiker’s extension
of the Landauer formalism to multi-terminal systems laid
down the basis for the understanding of numerous charge
and energy transport phenomena in mesoscopic systems
(Datta, 1997). As we shall discuss in detail in this re-
view, the many-body theory of NFRHT opened the door
for predicting and analyzing a plethora of novel physi-
cal phenomena with no analogues in two-body systems.
Thus, for instance, it became possible to explore ther-
mal analogues of intrinsic many-body phenomena like
the Hall effect (Ben-Abdallah, 2016) or heat persistent
current (Zhu and Fan, 2016). It has also made it possi-
ble to propose a wide range of thermal functional devices
that are intrinsically many-body in nature, such as the
thermal transistor (Ben-Abdallah and Biehs, 2014). This
theory also allowed for the first time to understand the
different heat propagation regimes in disordered systems
involving large collection of objects, and paved the way
for hydrodynamic modelling of transport in these media.
Although recent experimental works have explored the
possibility to tune radiative heat transfers in many-body
systems (Thompson et al., 2020) by actively changing
the relative position of nearby objects, to our knowledge,
many-body systems have yet to be experimentally inves-
tigated in the purely near-field regime.

The field of NFRHT has been the subject of different
reviews over the years. Thus, for instance, the reviews by
(Joulain et al., 2005) and (Volokitin and Persson, 2007)
covered the FE theory and basic concepts of NFRHT, but
for obvious reasons do not include crucial theoretical and
experimental advances in recent years. The reviews by
(Basu et al., 2007) and (Ben-Abdallah and Biehs, 2019)
focus on potential applications of near-field thermal ra-
diation in thermophotovoltaics. There are recent reviews
like that of (Song et al., 2015a) that already presents
some of the most recent advances and, in particular, de-
scribes the main experimental techniques developed in
recent years. The review by (Cuevas and Garcia-Vidal,
2018) provides an interesting and updated perspective of
the field, but does not contain an in-depth description
of theoretical developments. The present review article
focuses on the theory of NFRHT in many-body systems,
which has not been covered so far in a self-contained and
unified framework. This topic is becoming a central focus
of the field of thermal radiation, as it promises an entirely
new generation of thermal radiation applications, and its
understanding is likely to determine the future of RHT
as a forefront research line.

The structure of the paper goes as follows. In Sec. II,
we set the stage for this review by discussing NFRHT
in two-body systems. Here, we put the emphasis on the
modern view of NFRHT and review the most important
theoretical advances in this topic, as well as the experi-
mental state of the art. Specifically, we begin by briefly
recalling the basics of the theory of FE and then dis-
cuss its application to the important case of two parallel
plates (Sec. IL.LA). This basic configuration is used to
illustrate the critical role of material choice (Sec. II.B),
including a preliminary discussion of non-reciprocal ma-
terials in Sec. II.C. Section II.D is devoted to the analysis
of the role of nanostructuring in tailoring and most im-
portantly enhancing NFRHT, including recent works fo-
cused on multilayer structures, photonic crystals, meta-
materials, gratings, metasurfaces, graphene sheets, and
surface roughness. We then move beyond planar struc-
tures in Sec. ILE to discuss NFRHT between objects
of arbitrary size and shape. General-purpose numerical
methods developed so far for the description of NFRHT
in arbitrary geometries are then discussed in Sec. IL.F.
We conclude this first part of the review in Sec. II.G with
an in-depth discussion of recently derived limits on the
largest NFRHT rates that could ever be realized by an
optimal choice of material and geometric configuration.
Specifically, we highlight the prohibitive role that multi-
ple scattering (a critical feature of many-body physics to
be further discussed in subsequent sections) plays in lim-
iting heat-transfer enhancements that may be achieved
through nanostructuring, resulting in optimal flux rates
not much larger than what is observed in planar polari-
tonic materials, at least in the context of two-body heat
exchange.



Section III constitutes the bulk of this review and cov-
ers a great variety of aspects of the theory of near-field
thermal radiation in many-body systems. We first dis-
cuss the problem of light absorption by a set of non-
emitting objects which collectively interact and show that
these systems can be treated as a whole with a dressed
susceptibility that takes into account both cooperative
interactions as well as the resonant response of individ-
ual objects. Next, a generalized Landauer formula is de-
rived to describe radiative heat transfer in the general
situation in which all objects are emitting, using trans-
mission coefficients describing the pairwise efficiency of
coupling between any two objects. Using this theoreti-
cal framework, we highlight the singular aspects of heat
transport in these systems compared to those seen in two-
body systems. We start to illustrate these peculiarities
in Secs. III.A.3 and III.B.2, where we prove the non-
additivity of heat flux, a fundamental feature of these
systems. We also show that N-body interactions can am-
plify heat flux or lead to saturation mechanisms close to
the contact without the need to introduce non-locality in
material responsivity. In Sec. II1.B.3, we discuss equilib-
rium conditions for any given system, and show that equi-
librium states are generally not unique and can be, along
with their stability, identified and characterized by stan-
dard perturbative techniques. We also show that multi-
stable systems can be exploited, for instance, to make a
boolean treatment of information with thermal photons
or build thermal self-oscillators. In the subsequent sec-
tion, we address the problem of heat transport in various
complex systems using both a kinetic approach based on
the approximate Boltzmann transport equation for the
resonant modes supported by the system, and from a
generalized Landauer theory that takes into account all
modes in the continuum. Several physical effects (radia-
tive drag effect, heat-flux focusing, heat pumping and
long-range heat transport) inherent to many-body sys-
tems are then introduced and discussed. In Sec. IT1.C 4,
we address the relaxation problem of many-body systems
and show that the temperature field can evolve at differ-
ent time scales, depending on the nature of interactions.
Furthermore, we discuss the current solutions proposed
to dynamically control the heat flux exchanged in these
systems by modulating either geometrical configuration,
optical properties, or via adiabatic control of their tem-
perature. In Sec. II1.C.6, we analyze various heat trans-
port regimes in systems consisting of a large number of
objects, and show that RHT can be described as a gen-
eralized random walk with a non-Gaussian probability
distribution function. Unlike what happens in solid-state
physics for heat conduction in bulk materials, we demon-
strate the existence of anomalous heat transport regimes
and highlight that these regimes closely depend on the
system dimension, drastically changing from dilute to
dense systems. The next few sections are devoted to non-
reciprocal systems. Unlike reciprocal systems, in these

non-Hermitian systems the classical notion of Lorentz
reciprocity is violated, giving rise to specific heat-transfer
mechanisms. After extending in Secs. I11.D.2 and II1.D.3
the theoretical framework to deal with heat exchange,
we discuss in Secs. II1.D.4 several thermomagnetic ef-
fects (magnetoresistance, permanent currents, Hall ef-
fect) that take place in magneto-optical systems and we
underline in Sec. II1.D.5 the link between these effects
and the topological structure of the Poynting field. We
also stress in Sec. IT1.D.7 the potential of these systems to
efficiently tune the direction of heat flow. Finally, we con-
clude this review by listing outstanding challenges and a
broader outlook of potential future research directions.

Il. TWO-BODY SYSTEMS

Most theoretical work on the topic of NFRHT is pri-
marily based on Rytov’s FE theory. Developed in the
1950s (Rytov et al., 1989), FE is a semiclassical theory
which assumes that thermal radiation is generated by
random, thermally activated electric currents inside the
bodies. Thus, the technical problem in the description of
RHT between different objects boils down to the solution
of the stochastic Maxwell’s equations, with random elec-
tric currents as radiation sources. To illustrate the idea,
let us consider two optically isotropic and non-magnetic
bodies separated by a vacuum gap, see Fig. 2. In the
framework of FE, the RHT problem is completely speci-
fied by the temperature distributions T;(r) (i = 1,2) and
the dielectric functions of the materials, €;(r,w). The
macroscopic Maxwell’s equations to be solved adopt the
following form in the frequency domain

V x E(r,w) = iwpoH(r,w), (1)
V x H(r,w) = —iwege(r,w)E(r,w) + J(r,w), (2)

where E and H are the electric and magnetic fields, r is
the position vector, and €y and g are the vacuum permit-
tivity and permeability, respectively. In the second equa-
tion, the fluctuating current density distributions J(r, w)
within the bodies are the sources of the thermal radia-
tion. The statistical average of these currents vanishes,
i.e., (J) = 0, but their correlations are finite, and given
by the fluctuation-dissipation theorem (Eckhardt, 1984;
Joulain et al., 2005; Rytov et al., 1989)

26
A(r,w) 0 T w)) = T2

Im{e(r,w)}
x n(w,T(r))d(r — 1),

3)

where h is the Planck constant and n(w,T) =
1/(explhw/kgT] — 1) is the Bose function. In simple
terms, the calculation of the radiative power exchanged
by bodies 1 and 2 is done by first solving the Maxwell
equations with the appropriate boundary conditions de-
fined by geometries of the bodies and assuming that



FIG. 2 Fluctuational electrodynamics: Schematic of radiative
heat transfer in a two-body system. The two bodies of vol-
umes V1 and V, have temperature profiles 71 (r) and T>(r) and
frequency-dependent dielectric functions €1 (r,w) and ez (r,w).
Electromagnetic fields E and H are generated by the random
currents J in the bodies due to their non-vanishing correla-
tions given by the fluctuation-dissipation theorem. The net
power exchanged by the two bodies is determined by the total
transmission 7 that can be expressed as a sum of individual
transmission coefficients 7, .

the random electric currents occupy the whole body 1.
Then, with the solution for the fields around body 2, the
statistical average of the Poynting vector is computed:
(S(r,w)) = Re(E(r,w) x H(r,w))/2. Finally, the results
are integrated over frequency and over a closed surface
enclosing body 2. Of course, to evaluate the net RHT,
one needs to calculate in a similar way the heat trans-
ferred from body 2 to body 1.

This innocent-looking problem is, however, quite chal-
lenging in general, and analytical solutions are only
known in a handful of situations. One of the main goals
of the rest of this section is to present the solution in
cases of increasing complexity focusing on two-body sys-
tems. Let us say at this stage that, as mentioned in the
introduction, the net power, Pt, exchanged via thermal
radiation between two objects of (homogeneous) temper-
atures 77 and T5 can always be expressed via means of the
Landauer formula, as one can easily understand with the
following heuristic argument. The net radiative power
is the balance between the heat power transferred from
one body to the other: Pyt = P12 — P51, where the
individual contributions are given by

* dw
0

Here, hw is the energy of an electromagnetic mode of
frequency w and the Bose function n(w,T) is describ-
ing the thermal occupation of that mode, and 7j;(w) is
the total transmission coefficient that correspond to the
sum of the probabilities over all the modes of frequency
w that can be transferred from body i to body j. In
the case of a two-body system (with no environment),
detailed balance imposes that T21(w) = Ti2(w) = T(w)
and the expression of the net power reduces to the cel-
ebrated Landauer formula (Ben-Abdallah and Joulain,

2010; Biehs and Greffet, 2010a; Polder and Hove, 1971)

* dw

Pret = / ﬁﬁw n(w, T1) — n(w,T2)] T (w). (5)
0

Following the spirit of the Landauer approach in meso-

scopic physics, the total transmission can be analyzed in

terms of radiation channels and it can be expressed as

Tw) =) mulw), (6)

where the 7’s are the individual transmission probabili-
ties of the different open channels (bounded between 0
and 1). This point is particularly useful to establish sim-
ple upper bounds for RHT, as we shall discuss later in
this review.

A. Parallel plates

As mentioned in the introduction, the importance of
the contribution of evanescent waves in the RHT between
two objects and the possibility to overcome the Planckian
limit in the near-field regime was first put forward around
the year 1970 by Cravalho, Tien, Domoto, Caren, and
Boehm (Boehm and Tien, 1970; Cravalho et al., 1967;
Domoto and Tien, 1970). Polder and van Hove (Polder
and Hove, 1971) were the first who used the rigorous
framework of fluctuational electrodynamics to calculate
the NFRHT rate between two infinite parallel plates, a
geometry that has become the workhorse of NFRHT and
that is schematically represented in Fig. 1. We shall refer
to the upper plate as medium 1 and the lower plate as
2, and assume that they are at constant temperatures
Ty and T3, respectively. In the case of optically isotropic
and nonmagnetic materials, Polder an Van Hove showed
that the radiative power per unit area, i.e. the heat flux
®, between the parallel plates is given by Eq. (5) with
the following replacement of the transmission coefficient
by a transmission coefficient per unit area:

T(w) — /000 ;l—: kT(w, Kk, d). (7)

Here, = |/k2 + k2 is the magnitude of the wave vector

parallel to the plates, see coordinate system in Fig. 1(a),
d is the gap size, and 7(w, k,d) is the total (sum over
polarizations) transmission probability of an electromag-
netic mode of frequency w and parallel wave vector k.
In the case of isotropic materials, this total transmission
is equal to 7(w,k,d) = 75(w,K,d) + Tp(w, k,d), where
the contributions of s- and p-polarized waves (or alterna-
tively TE- and TM-waves) are given by (a = s,p)

A=rf ) A=]rg]?)

a ) K< kO
Ta(w’ Hvd) = C‘XD K @y p—2lay ( )
et 2y



where ky = w/c is the wavenumber in vacuum and D =
1 —r§rse?avd cis the speed of light, ¢, = /w?/c? — k2
is the perpendicular component of the wave vector in the
vacuum gap, and r¥ are Fresnel (or amplitude reflection)
coeflicients given by

T'S qv — 4;

_ p_ GGy — 4 9
‘ qv"f'Qi7 ()

rf = :
€iqv + Qi

Here, €;(w) is the dielectric function of medium ¢ = 1,2,
assumed to only depend on frequency (local media), and
q; = \/qu — I€2.

The key point in this result is that the integral in
Eq. (7) is carried out over all possible values of k and
therefore, it includes the contribution of both propagat-
ing waves (k < ko) and evanescent waves (k > ko).
These latter ones are not taken into account in Stefan-
Boltzmann’s law. The contribution of the evanescent
waves decays exponentially with the gap size, see Eq. (8),
and it becomes negligible in the far-field regime (d >
Atn). However, in the near-field regime (d < Ary) the
contribution of evanescent waves, often referred to as
photon tunneling, can become very significant and for
sufficiently small gaps, it may completely dominate the
heat transfer. The black-body result is obtained from
Eq. (7) by ignoring the evanescent waves and assuming
perfect transmission for the propagating waves for all fre-
quencies and wave vectors. In that case, the radiative
power per unit area is given by Stefan-Boltzmann’s law:
Opp = (T} — Ty), where o = 5.67 x 1078 W/(m?K*).

B. Metals vs. dielectrics

The parallel-plate configuration allows us to illustrate
not only the impact of evanescent waves in the near-field
regime, but also the importance of the choice of materials.
There are two main classes of materials when it comes to
NFRHT, namely metals (or related materials with free
carriers like doped semiconductors) and dielectrics (espe-
cially polar dielectrics that exhibit polaritonic resonances
like SiO9, SiN, SiC, etc.). As an example of the results for
these two types of materials, we show in Fig. 3(a,c) the
gap dependence of the room-temperature heat-transfer
coefficient, i.e. the radiative heat conductance per unit
area, for two parallel plates made of Au and SiOs. In
those panels we also show the individual contributions of
propagating and evanescent waves for TE and TM polar-
izations. Notice that in both cases the Planckian limit
(indicated with an horizontal line) is greatly overcome for
sufficiently small gaps. This is particularly remarkable in
the silica case, where for d = 1 nm the heat flux is almost
5 orders of magnitude larger than the black-body limit.
Notice also that there are clear differences between Au
and SiOy. For Au, the NFRHT rate is dominated by TE
evanescent waves, which originate from eddy currents in-
side the Au plates (Chapuis et al., 2008c). This typically
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FIG. 3 (a) Heat transfer coefficient at room temperature (300
K) as a function of the gap size for two infinite thick paral-
lel plates made of Au. The different lines correspond to the
total contribution (black solid line) and to the contributions
of propagating and evanescent waves for TE and TM polar-
izations. The horizontal line shows the result for two black
bodies: 6.124 W/(m? K). (b) The spectral heat flux (or con-
ductance per unit area and frequency) as a function of the
radiation frequency corresponding to the case of panel (a).
The solid lines correspond to three different values of the gap
size in the near-field regime, while the blue dashed line is the
result for two black bodies. (c,d) The same as in panels (a,b)
for SiOa.

leads to a saturation of the heat transfer coefficient for
small gaps. On the contrary, in the silica case, NFRHT
is dominated by TM evanescent waves that can be shown
to stem from surface phonon polaritons (SPhPs): quasi-
particle excitations that arise from the strong coupling of
electromagnetic fields with the optical phonon modes of
polar dielectrics (Mulet et al., 2002). These surface elec-
tromagnetic waves are hybrid or cavity modes that reside
in both plates and have a penetration depth that is on
the order of the gap size (Basu and Zhang, 2009), which
implies that they are more and more confined to the sur-
faces as the gap is reduced (Song et al., 2015b). The in-
crease of the density of the states of theses modes (Ben-
Abdallah and Joulain, 2010; Biehs and Greffet, 2010a)
upon reducing the gap size is reflected in a characteristic
1/d? dependence of the heat transfer coefficient for polar
dielectrics.

Apart from enhancing NFRHT, evanescent waves are
also responsible for a drastic modification of the spectral
heat flux (or heat conductance per unit frequency), see
Fig. 3(b,d). Thus, for instance, in the SiOy case the
spectral heat flux is dominated by two peaks that appear
at the frequencies of the SPhP resonances of this polar
dielectric. This is dramatically different as compared to
the broadband Planck’s distribution and it is also due to
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FIG. 4 (a) Schematic illustration of NFRHT measurement
configuration used by (Fiorino et al., 2018b). The emit-
ter microdevice is comprised of a square mesa and Pt
heater/thermometer suspended on a thermally isolated island.
The receiver is a macroscopically large (1 cm X 1 cm) plate.
(b) The corresponding heat flux versus gap size in the case of
an emitter and an receiver made of SiO2. Measured data (red
squares) is compared to the theoretical result (solid black line)
obtained within FE. Reprinted with permission from (Fiorino
et al., 2018b). Copyright 2018 ACS.

the fact that NFRHT in this case is dominated by SPhPs.

In principle, the plate-plate configuration discussed
above is ideally suited to experimentally investigate
NFRHT because some of the largest enhancements in this
regime are expected to occur in this setting. However,
this configuration is very difficult to realize in practice
because it is very complicated to achieve and maintain
good parallelism between macroscopic plates at nanome-
ter separations. In recent years several groups have over-
come this hurdle and have developed novel techniques
to explore the plate-plate configuration in the near-field
regime and they have been able to confirm the results
of the FE theory. Some of those experiments have made
use of macroscopic (~cm x cm) planar surfaces (Bernardi
et al., 2016; DeSutter et al., 2019; Ghashami et al., 2018;
Hu et al., 2008; Ottens et al., 2011), while others are
based on microscopic plates (50 pm x 50 pm) (Fiorino
et al., 2018b; Song et al., 2016; St-Gelais et al., 2016,
2014). The use of macroscopic planar surfaces is con-
ceptually simple, but in practice it is more difficult to
ensure the parallelism and to have clean and smooth sur-
faces over such large areas. For this reason, the smallest
gaps achieved with this strategy are still above a hun-
dred nanometers (DeSutter et al., 2019). On the other
hand, the use of microdevices facilitates the paralleliza-

tion of the systems and the characterization of the sur-
faces. With this approach, it has become possible to ex-
plore gaps as small as 30 nm (Fiorino et al., 2018b), as we
illustrate in Fig. 4. In this example, a microdevice com-
prising a Pt resistor, that heats up the emitter and mea-
sures its temperature, was used to measure the NFRHT
rate between two SiOy surfaces down to gaps of about
30 nm. For these tiny gaps, it was found that the heat
conductance was about 1200 times larger than in the far-
field regime and about 700 times larger than the black-
body limit, in excellent agreement with the theory results
based on FE. Recently, it has even been claimed that dis-
tances below 10 nm are reachable (Salihoglu et al., 2020).

C. Non-reciprocal materials

A special class of materials that has attracted a lot
of attention in the context of thermal radiation is that
of non-reciprocal materials. These materials do not sat-
isfy Lorentz reciprocity (Caloz et al., 2018) and, in prac-
tice, are optically anisotropic materials with dielectric
tensors which are non-symmetric. A paradigmatic exam-
ple is that of magneto-optical (MO) materials where the
non-reciprocity is induced either by an internal magne-
tization like in ferromagnets or by an external magnetic
field like in doped semiconductors. Part of the atten-
tion is due to the suggestion that these materials might
violate Kirchhoff’s law (Zhu and Fan, 2014), which es-
tablishes the equality of thermal emissivity and absorp-
tivity. Although it has been shown that this is not case
in a two-body situation (one body could be an environ-
ment) (Ekeroth et al., 2017), this class of materials does
give rise to countless novel thermal-radiation phenomena
in the context of many-body systems, as it will be amply
discussed later in this review.

In the context of NFRHT in two-body non-reciprocal
systems, most of the work so far has focused on the anal-
ysis of MO materials and, in particular, on the study of
the use of an external magnetic field as a way to actively
control thermal radiation. Special attention has been
devoted to doped semiconductors, which in the presence
of an external magnetic field exhibit a very strong MO
activity in the infrared. The first theoretical study of
this kind was reported by (Moncada-Villa et al., 2015)
who analyzed the magnetic-field dependence of the heat-
transfer coefficient of two parallel plates made of doped
semiconductors (InSb or Si). These materials become op-
tically anisotropic and non-reciprocal in the presence of
an external magnetic field. Thus, the problem is to com-
pute the RHT between between two anisotropic parallel
plates. This generic problem was addressed by (Biehs
et al., 2011; Bimonte, 2009) and, similarly to the isotropic
case discussed in Sec. II.A| the net power per unit area or
heat flux ® is given by the Landauer formula of Eq. (5)



with the substitution

T(w) — /(;T’{)QT(W, K, d). (10)

Here, k = (ks ky)" (and therefore dx = dk,dk,) is the
wave vector parallel to the surface planes, and 7(w, K, d)
is the transmission probability of the individual electro-
magnetic waves. Notice that the integral in Eq. (10) is
now carried out over all possible directions of K (7 is
no longer isotropic in k-space (Fan et al., 2020)) and,
as usual, it includes the contribution of both propagat-
ing and evanescent waves. The transmission coefficient
7(w, K, d) can be expressed as

T(w, k,d) =

Tr m—Rmﬂww—Rng} Kk <ko (11)
Tr mrJﬂmm@—Rmﬂeﬂ%W K > ko
where the 2 x 2 matrices R; (with ¢ = 1,2) are the re-

flection matrices characterizing the two interfaces. These
matrices have the following generic structure

rs it
R; = (r?s r?p> ; (12)
where 7} ? with a,B = s,p is the reflection amplitude

for the scattering of an incoming a-polarized plane wave
into an outgoing B-polarized wave. In particular, the off-
diagonal elements describe the polarization conversion,
which does not occur for isotropic materials. Finally, the
2 x 2 matrix D in Eq. (11) is defined as

D = [1 — RyRpe ) ~1, (13)

The different reflection matrices appearing in Eq. (12)
can be computed within standard approaches for
anisotropic multilayer systems.

This formalism was used in (Moncada-Villa et al.,
2015) to show that the NFRHT rate between two par-
allel plates made of doped InSb and Si can be strongly
affected by the application of a static magnetic field, and
relative changes of up to 700% were predicted for fields
of a few teslas. These results are illustrated in Fig. 5
for the case of a magnetic field oriented parallel to the
plates. More recently, the same authors have also shown
that NFRHT between two parallel plates made of MO
materials can also be modulated by simply changing the
orientation of the external magnetic field (Moncada-Villa
and Cuevas, 2020), which is the thermal analogue of well-
known phenomenon of anisotropic thermal magnetoresis-
tance in the field of spintronics. This and other thermo-
magnetic phenomena in the context small MO particles
will be discussed in more detail in Sec. II1.D.
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FIG. 5 (a) Heat-transfer coefficient for two parallel plates
made of n-doped InSb at room temperature (300 K) as a
function of the gap size for different values of a magnetic field
applied parallel to the surfaces of the plates (z-direction).
The inset shows the ratio between the zero-field coefficient
and the coefficient for different values of the field in the near-
field region. (b) The corresponding spectral heat flux as a
function of the frequency (and wavelength) for a gap of d = 10
nm and different values of the parallel field. Reprinted with
permission from (Moncada-Villa et al., 2015). Copyright 2015
American Physical Society.

D. Nanostructuring, Roughness, and Materials

Following ideas and concepts of nanophotonics, many
groups have explored nanostructuring as a strategy to
further enhance NFRHT and to tune its spectral prop-
erties. In this subsection, we shall briefly review some
of the ideas put forward in recent years in the context
of NFRHT in nanostructured planar systems and also
discuss the impact of deviations from planarity.

1. Multilayer structures and photonic crystals

A natural extension of the plate-plate configuration
discussed above is to replace the plates by planar multi-
layer structures or 1D photonic crystals (Basu and Fran-
coeur, 2011; Ben-Abdallah et al., 2009a,b, 2010; Biehs,
2007; Biehs et al., 2007; Francoeur et al., 2008, 2010a,




2011; lizuka and Fan, 2018; Jin et al., 2017a; Maslovski
et al., 2013; Miller et al., 2014). A central idea in this
case is to incorporate thin films in layered systems to
make better use of surface electromagnetic modes. In
practice, the RHT rate between two planar multilayer
bodies comprised of an arbitrary number of layers can
be formally described with the same formulas as in the
plate-plate case, see Egs. (7) and (8), but in this case
r{* and r§ have to be interpreted as the reflection coef-
ficients of the two subsystems (including their complete
layered structures), see (Ben-Abdallah et al., 2010; Bi-
monte, 2009). To give a concrete example, let us follow
(Song et al., 2015b) and consider the multilayer structure
shown in the inset of Fig. 6 where the first body is an
infinite SiOz plate (medium 1) and the second body fea-
tures a SiOg film of thickness ¢ (medium 3) deposited on
a semi-infinite layer of Au (medium 4), while the medium
2 is the vacuum gap of size d. In this case, r$ in Eq. (8)
has to be replaced by (Biehs, 2007)

a a ,2igst
R — 23 +T3€
T 1 _ . ,2iqgst’
L —rgyrgpesas

(14)

which is the reflection coefficient of the subsystem formed
by media 3 and 4. Here, as usual, the Ty; are the Fresnel
coeflicients of the different interfaces:

qi — g5 p €iqi — €iq;
re,=——= and rf, = ——=, 15
Y gt g Y€ +€ig; (15)
where ¢; = \/€;k3 — k2. Finally, the Fabry-Pérot de-

nominator in Eq. (8) adopts now the form D® = 1 —
rsy R e2ia2d,

In Fig. 6 we show representative results of the gap de-
pendence of the heat transfer coefficient of this multilayer
structure for different values of the thickness of the silica
film, ranging from 50 nm to bulk. We also show the result
with no SiOs film for comparison. Notice that for small
gaps (d < 100 nm), the results are independent of the
silica film thickness, which shows that the extraordinary
NFRHT enhancements that occur in the bulk systems
made of polar dielectrics are also possible in thin-film
structures as long as the gap size is smaller than the
film thickness (Biehs, 2007; Biehs et al., 2007). As ex-
plained above, the physical origin of these results can be
traced back to the fact that NFRHT is dominated by
electromagnetic cavity modes arising from SPhPs whose
penetration depth scales with the gap size. Thus, when
the gap is sufficiently small, all the heat transfer comes
from a shallow region on the surface of the two bodies
and NFRHT becomes independent of the film thickness.
These qualitative predictions were subsequently experi-
mentally confirmed by (Song et al., 2015b) using a 53-
pm-diameter silica sphere as an emitter, instead of the
silica plate used in the calculations of Fig. 6. The finite
curvature of the sphere results in smaller NFRHT en-
hancements, as compared to the planar structure, as it is
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FIG. 6 Computed heat transfer coefficient as a function of
gap size for the multilayer system shown in the inset at room
temperature (300 K). This structure comprises a thick, semi-
infinite silica surface separated by a vacuum gap of size d from
a silica thin film coating on a semi-infinite Au surface. Dif-
ferent curves correspond to different thicknesses of the silica
coating. Adapted from (Song et al., 2015b).

easy to understand with the standard proximity approx-
imation, see (Song et al., 2015b) for details. The validity
of this approximation for the description of NFRHT has
been amply discussed in the literature, see (Otey and
Fan, 2011) and references therein.

To increase NFRHT beyond bulk systems, different
groups have proposed to combine several thin films to
make use of the hybridization of the surface modes in dif-
ferent interfaces (Ben-Abdallah et al., 2009a; Biehs, 2007;
Francoeur et al., 2008, 2011; Tizuka and Fan, 2018; Jin
et al., 2017a). Another proposed strategy to outperform
bulk systems relies on the use of 1D photonic crystals
(Ben-Abdallah et al., 2010; Tschikin et al., 2012a). In
this case the heat transfer mechanism involves the sur-
face Bloch states coupling supported by these media.

2. Metamaterials

Another topic that has been extensively studied in the
context of NFRHT between nanostructured systems is
the use of metamaterials, i.e., artificial structures with
subwavelength features designed to exhibit complex op-
tical properties that are difficult to find in naturally oc-
curring (bulk) materials. In particular, special attention
has been devoted to hyperbolic metamaterials, which are
a special class of highly anisotropic media whose elec-
tromagnetic modes have an hyperbolic dispersion rela-
tion. To be precise, they are uniaxial materials for which
one of the principal components of either the permit-
tivity or the permeability tensor is opposite in sign to
the other two principal components. These systems have
been primarily fabricated based on designs involving hy-
brid metal-dielectric superlattices and metallic nanowires



embedded in dielectric hosts (Poddubny et al., 2013).
The interest in these metamaterials in the context of
NFRHT lies in the fact that they have been predicted
to behave as broadband super-Planckian thermal emit-
ters (Biehs et al., 2012; Guo et al., 2012; Nefedov and
Simovski, 2011). This behavior originates from the fact
that these metamaterials can support large wavevector
frustrated modes that are evanescent in a vacuum gap,
but which are propagating inside the material. This leads
to broadband enhancement of the transmission efficiency
of the evanescent modes (Biehs et al., 2012). From the
computational point of view, the heat transfer between
hyperbolic metamaterials can be described using either
the scattering approach for multilayer media described in
the previous subsection, or the more general method dis-
cussed in the following subsection and applicable to lat-
erally periodic patterned structures. In this latter case,
and for appropriate (subwavelength) periodicities, it is
typical to expoit an effective medium theory in order
to reduce the problem to one involving planar but op-
tically anisotropic materials, allowing application of the
approach described in Sec. II.C.

The special properties of hyperbolic metamaterials
have spurred many theoretical investigations of their use
in the context of NFRHT (Biehs et al., 2013; Guo and Ja-
cob, 2013, 2014; Lang et al., 2015; Liu et al., 2013, 2014b;
Miller et al., 2014; Simovski et al., 2013; Tschikin et al.,
2015, 2013). These works have in turn demonstrated
that metamaterials do not outperform thin-film-based
structures exhibiting SPhPs, as their increased density of
states is compensated for by a decrease in the strength
of the evanescent fields (Miller et al., 2014). Neverthe-
less, metamaterials exhibit other interesting properties;
for instance, the long penetration depth of the hyperbolic
modes can be advantageous for applications in near-field
thermophotovoltaics.

3. Gratings and Metasurfaces

Also inspired by nanophotonic concepts, NFRHT be-
tween periodically patterned systems has been inten-
sively investigated from a theoretical point of view, both
in 1D (gratings) and in 2D (photonic crystals and peri-
odic metasurfaces). Again, the goal of such nanostruc-
turing is to tune the spectral heat transfer and enhance
net NFRHT. Technically speaking, the Landauer formula
of the previous subsections can be straightforwardly gen-
eralized to deal with periodic systems by making use of
Bloch’s theorem. This was first done by Bimonte and we
refer to (Bimonte, 2009) for technical details. Using that
generalized formula in combination with different tech-
niques for the computation of reflection coefficients in
periodic systems, typically via the rigorous coupled wave
analysis (RCWA) method, several groups have reported
calculations of NFRHT between periodic metallic nanos-
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FIG. 7 (a) Schematic of two doped-Si metasurfaces made
of 2D periodic arrays of square holes placed on semi-infinite
planar substrates and held at temperatures 71 and T>. (b)
Room-temperature heat transfer coefficient as a function of
the gap size for the doped-Si metasurfaces of panel (a) with
a = 50 nm and a filling factor of 0.9 (black line). For compar-
ison, the plot also includes the results for the Si metasurfaces
computed with an effective medium theory (orange dashed
line), SiO2 parallel plates (blue line), and doped-Si parallel
plates (red line). The horizontal dashed line shows the black-
body limit. Reprinted with permission from ref (Ferndndez-
Hurtado et al., 2017). Copyright 2017 by the APS.

tructures in both 1D (Dai et al., 2016a, 2015; Guérout
et al., 2012; Messina et al., 2017b) and 2D (Dai et al.,
2016b; Jin et al., 2019). The key idea in this case is
to use nanostructuring to create new surface modes, re-
ferred to as spoof plasmons (Pendry et al., 2004), whose
frequencies can be adjusted by tuning the length scales
of these periodic systems so that their surface modes can
be thermally populated at the desired working temper-
ature. The reported results have clearly demonstrated
the possibility of enhancing NFRHT over the correspond-
ing planar (bulk) materials. However, NFRHT in these
periodically patterned metallic structures continues to
be smaller than that observed in simple (unstructured)
planar polar dielectrics, with few exceptions (Jin et al.,
2019).

There has also been significant theoretical work on the
topic of NFRHT between dielectric photonic crystals and
metasurfaces (Liu and Zhang, 2015a; Liu et al., 2015;
Rodriguez et al., 2011). Again, these structured sys-




tems exhibit enhanced NFRHT with respect to their bulk
counterparts, but the resulting NFRHT rates are again
much smaller than those of planar polar dielectrics. In
this regard, it is worth mentioning that it has been pre-
dicted that metasurfaces can indeed provide a way to en-
hance NFRHT between extended structures (Fernandez-
Hurtado et al., 2017). To be precise, it has been shown
that Si-based metasurfaces featuring two-dimensional pe-
riodic arrays of holes, see Fig. 7, can exhibit a room-
temperature near-field radiative heat conductance larger
than any unstructured material to date. This enhance-
ment relies on the possibility of largely tuning the spec-
tral properties of the surface plasmon polaritons that
dominate NFRHT in these structures. In particular,
nanostructuring enables the appearance of broadband
and lower-frequency surface modes, increasing their con-
tribution and occupation at room temperature, which
constitutes one of the main strategies being pursued to
enhance NFRHT. We conclude this subsection by not-
ing that, to our knowledge, no experiment has thus far
probed NFRHT between patterned structures.

4. Graphene

Two-dimensional materials are revolutionizing mate-
rial science and they also hold promise in the field of
NFRHT. In particular, graphene has attracted much at-
tention as it can support delocalized surface plasmon po-
laritons (SPPs) that can contribute to NFRHT in spite
of graphene’s ultrasmall (one-atom) thickness (Ilic et al.,
2012a; Volokitin and Persson, 2011). What makes these
surface modes so attractive, as compared to SPhPs in po-
lar dielectrics, is the possibility of modulating them elec-
tronically (Messina et al., 2013a), which can be achieved
by controlling graphene’s chemical potential by means of
a nearby gate electrode. Such a mechanism provides an
ideal strategy to actively control NFRHT in graphene-
based structures (Papadakis et al., 2019). On the other
hand, several theoretical studies have shown that coat-
ing structures with graphene sheets may lead to a sub-
stantial increase in NFRHT (Lim et al., 2013; Messina
et al., 2017a; Svetovoy et al., 2012). In this case, the
idea is that appropriate engineering of the coupling of
graphene’s SPPs with other surface modes, like SPPs in
doped Si or SPhPs in polar dielectrics, may increase the
efficiency of heat exchange in the near-field regime. An-
other topic of great interest that has been theoretically
investigated is the use of graphene-based structures in
thermophotovoltaics (Ilic et al., 2012b; Messina and Ben-
Abdallah, 2013; Svetovoy and Palasantzas, 2014). Fur-
thermore, the role of graphene in NFRHT has been the-
oretically studied in a wide variety of hybrid structures
(Liu et al., 2014b; Liu and Zhang, 2015b; Shi et al., 2017,
2018, 2019b; Zhao et al., 2017b).

From an experimental perspective, recent works have
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FIG. 8 Comparison of the NFRHT rate between

graphene(Gr)/SiO2 pair (red-solid line) and SiOg pair
(blue-solid line) with various gap sizes. The temperatures
of the emitter and the receiver are 323.2 K and 301.5,
respectively. Lines show the calculated values and spheres
are the average values of four repeated measurements at
each point. The inset shows a schematic illustration of the
Gr/SiO2 heterostructure. The black-body limit has been
plotted for comparison (black-dashed line). Reprinted with
permission from (Shi et al., 2019a). Copyright 2019 ACS.

confirmed that graphene enables enhanced NFRHT be-
tween polar dielectrics (Shi et al., 2019a; van Zwol et al.,
2012b) and between Si substrates (both insulating and
conductive) (Yang et al., 2018). In particular, Shi et
al. (Shi et al., 2019a) measured the NFRHT flux be-
tween two identical graphene-coated SiOs heterostruc-
tures with millimeter-scale surface area and reported
a 64-fold enhancement compared to the corresponding
black-body limit for a gap size of 170 nm, see Fig. 8.
Moreover, these authors showed theoretically that the
physical mechanism behind this large NFRHT enhance-
ment is indeed the coupling between graphene’s SPPs
and silica’s SPhPs. It is also worth mentioning that the
first experimental demonstration of NFRHT modulation
by electronic gating of a graphene field-effect heterostruc-
ture was just recently reported (Thomas et al., 2019).

5. Surface roughness

Most calculations of NFRHT in planar structures as-
sume that the corresponding surfaces are perfectly flat.
Such an idealization, for instance, ignores practical con-
siderations such as surface roughness. The impact of
surface roughness on NFRHT was addressed theoreti-
cally by Biehs and Greffet (Biehs and Greffet, 2010b),
in a plate-plate configuration. Using a form of perturba-
tion theory, they showed that assuming reasonable values
for the height of the roughness profile (~ 5 nm), correc-
tions to the heat transfer coefficient due to roughness



can lead to roughly order of magnitude differences com-
pared to perfectly flat surfaces when the gap size is on
the order of a few tens of nm, both for metals and po-
lar dielectrics. Moreover, they showed that proximity
approximations previously used for describing rough sur-
faces are highly innacurate when gap sizes become much
smaller than the correlation length of the surface rough-
ness, even when the heat transfer is dominated by the
coupling of surface modes. We also note that the influ-
ence of surface roughness has also been studied by way
of the finite-difference time-domain method in combina-
tion with the Wiener chaos expansion approach (Chen
and Xuan, 2015), along with its interplay with surface
curvature (Krger et al., 2013).

E. Impact of geometry

Thus far, we have mainly discussed NFRHT in planar
geometries in which the translational symmetry greatly
simplifies the resolution of Maxwell’s equations. In what
follows, we turn to the analysis of the impact of geometry
(heat exchange between structured bodies) and briefly
discuss how the aforementioned RHT formulas can be
generalized to handle objects of arbitrary size and shape.

The Polder-van Hove formula expressing 7 (w) in terms
of Fresnel reflection coefficients or generalized reflection
matrices is well-suited for calculations of heat transfer in
systems with translational symmetry, including the afore-
mentioned uniform planar slabs, thin films, gratings, pho-
tonic crystals, and periodic metamaterials. However, this
leaves out a large class of systems of experimental and
theoretical interest that do not exhibit such translational
symmetries, particularly compact bodies like spheres or
structured nanoparticles whose finite dimensions are rel-
evant to the analysis of radiative heat transfer. Typically,
in such cases, it is incumbent to exploit general-purpose
techniques to compute field response quantities entering
T (w), for the geometry in question, in terms of the sys-
tem’s Green’s function. One such powerful general scat-
tering formalism was developed by Kriiger and cowork-
ers (Bimonte et al., 2017; Kriiger et al., 2012), arriving
at the general formula (for reciprocal media),

’T(w) =4Tr [R§W1,2R1W;71] (16)

in terms of the radiation operator R, = Go(Im(T,) —
T,Im(Go)T})G§ and scattering operator Wy, = Gyt(1—
GoT,GoT,) ! for bodies p,q € {1,2} defined in terms of
the scattering T-operators T,, which depend on the ma-
terial properties and shape of the bodies and the Green
function operator Gg in vacuum. The strength of this for-
mulation lies in its broad applicability, as it generalizes
beyond systems with discrete or continuous translational
symmetry: it can in principle be used for arbitrary ge-
ometries, including compact bodies whose finite sizes in
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each dimension are relevant, with faster numerical con-
vergence for appropriate choices of basis functions. Ad-
ditionally, while this T-operator formalism casts thermal
radiation in terms of volumetric scattering quantities, re-
lated contemporaneous surface integral equation formu-
lations (Rodriguez et al., 2013a) can similarly recover
known semi-analytical results for uniform planar media
and be computationally amenable to general compact or
extended geometries by casting thermal radiation purely
in terms of surface unknowns, vastly reducing the com-
putational complexity of calculations.

Furthermore, beyond simply aiding in generalizations
of computations beyond extended media with transla-
tional symmetry, the T-operator formalism can shed fur-
ther light on the number of contributing transmission
channels to 7 (w). In the operators of Eq. (16), an op-
erator of particular interest (Miller, 2000, 2007; Miller
et al., 2015; Molesky et al., 2020; Venkataram et al., 2020)
is the off-diagonal block Gg2,1) of the Green function
connecting points 1’ restricted to the volume of body
1 and r restricted to the volume of body 2. At first
glance, the ability of electromagnetic fields to propagate
through vacuum, or equivalently the coupling of all pairs
of volumetric degrees of freedom in each of the differ-
ent bodies, suggests that the number of channels will
scale like the volume of each body. However, the electro-
magnetic surface equivalence theorem (Harrington, 1989;
Otey et al., 2014; Reid and Johnson, 2015; Reid et al.,
2013b; Rengarajan and Rahmat-Samii, 2000; Rodriguez
et al., 2013a) shows that the electromagnetic fields radi-
ated by any volumetric polarization distribution to the
exterior of some fictitious bounding surface can be ex-
actly reproduced in that exterior region by an equivalent
surface current distribution, therefore suggesting that the
rank of Gg(z,1) actually scales with the surface area of
each body; as shown by Polimeridis et al. (Polimeridis
et al., 2015), it is indeed the effective rank of this off-
diagonal scattering operator that determines the number
of contributing transmission channels 7,,.

Based on the scattering approach and standard
Green’s function formalism, there have been many stud-
ies of the heat flux between a sphere and a plane, as
shown in Fig. 9, and between two spheres (Kriiger et al.,
2011; Narayanaswamy et al., 2008; Otey and Fan, 2011;
Sasihithlu and Narayanaswamy, 2011). Reviews high-
lighting other studies of NFRHT in non-planar geome-
tries can be found in (Bimonte et al., 2017; Otey et al.,
2014). Early studies of heat transfer between compact
bodies typically focused on high-symmetry objects with
simple shape. However, there have been far fewer studies
of NFRHT in nanostructured compact bodies compared
to the preponderance of examples for extended media (in-
cluding the previously-discussed gratings, photonic crys-
tals, and metasurfaces) because the former, unlike the
latter, does not easily succumb to semianalytical expres-
sions for arbitrary geometries in the absence of symme-
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FIG. 9 (Kriiger et al., 2011) Transferred power Hs by
NFRHT between a SiO2 sphere with radius R = 5um at
300K and a SiO2 plane at 0K as a function of distance d.
The transferred power is normalized to the power emitted by
a black body with a surface area given by the cross section of
the sphere. From (Kriiger et al., 2011).

tries like continuous or discrete translational invariance.
With this in mind, the next section discusses the develop-
ment of various numerical methods to compute radiative
heat transfer in a broad array of systems.

F. Numerical methods

Advances in computational hardware and numerical
algorithms have led to an explosion of computational
methods to study radiative heat transfer. Notably, the
facts that the Landauer form of the radiative heat trans-
fer power depends only on the Bose function n(w,T)
and the Landauer energy transmission spectrum 7 (w),
and that the latter in Eq. (16) only depends on classical
electromagnetic scattering quantities, means that stan-
dard computational techniques may be readily applied
to studying radiative heat transfer. These methods, illus-
trated schematically with examples in Fig. 10, essentially
fall into one of two categories, depending on the choice
of either a spectral or localized basis expansion (Bimonte
et al., 2017; Cuevas and Garcia-Vidal, 2018; Otey et al.,
2014; Reid et al., 2013a; Song et al., 2015a), each of which
brings a set of benefits and drawbacks.

1. Spectral methods

Techniques based on spectral expansions (Bimonte
et al., 2017; Kriiger et al., 2012) express the T-operators
of each individual body in terms of delocalized spec-
tral functions (e.g. the spherical vector waves discussed
above). These basis functions include but are not lim-
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ited to plane waves (Fourier basis) (Bimonte, 2009; Jin
et al., 2017a; Messina and Antezza, 2011b; Messina
and Ben-Abdallah, 2013; Messina et al., 2016b), Bloch
waves (Ben-Abdallah et al., 2010; Francoeur et al., 2009;
Messina et al., 2017b; Narayanaswamy and Chen, 2005;
Tschikin et al., 2012a), and spherical or cylindrical har-
monics (Kriiger et al., 2011; McCauley et al., 2012;
Narayanaswamy et al., 2008; Otey and Fan, 2011). The
use of these basis functions is most convenient when the
geometries involved exhibit discrete or continuous sym-
metries, like translation or rotation, as that can make
the resulting matrix expressions for the relevant opera-
tors nearly diagonal, making computations far more ef-
ficient. However, in the absence of such symmetries, or
when different bodies have shapes of different symme-
tries, not only are the resulting matrices dense, but the
convergence with respect to increasing numbers of basis
functions slows dramatically. Furthermore, we note that
with few exceptions, such as work on graphene sheets (Ilic
et al., 2012a; Neto et al., 2009; Sernelius, 2012; Wunsch
et al., 2006), most applications of these spectral tech-
niques have in practice focused on simple local isotropic
homogeneous susceptibilities x(w).

2. Decomposition methods

By contrast, techniques based on localized expan-
sions (Cuevas and Garcfa-Vidal, 2018; Otey et al., 2014;
Song et al., 2015a) express either T-operators or Maxwell
Green’s functions in terms of localized basis functions.
One such technique is the finite-difference frequency do-
main method (Jin et al., 2019; Wen, 2010), in which
Maxwell’s equations in the frequency domain are dis-
cretized on a lattice of grid points. In the context of RHT,
fields in response to individual dipolar sources embedded
in the radiating objects can be computed independently
and then summed according to weights determined by the
fluctuation—dissipation theorem; alternatively, the uncor-
related nature of dipolar sources at different spatial po-
sitions means that all such fluctuating sources can be
simultaneously introduced and modelled as stochastic,
random sources with correlation functions given by the
fluctuation—dissipation theorem (requiring ensemble av-
erages over many source realizations to reduce noise, as in
Monte-Carlo integration). The latter interpretation lends
itself to a direct Langevin or stochastic time-domain sim-
ulation of Maxwell’s equations (Rodriguez et al., 2011).
This last class of time-domain method has the added ben-
efit that discretized spatial differential operators are rep-
resented as sparse matrices, and allows representations
of select classes of nonlocal (spatially dispersive) suscep-
tibility models (particularly those arising in metals) in
terms of spatial differential operators, such as the hydro-
dynamic model (Klimchitskaya and Mostepanenko, 2015;
Xiao et al., 2016), all the while being applicable to ar-
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FIG. 10 Collage of selected computational methods. Schematics of basis functions, along with selected results, for spectral (Bi-
monte et al., 2017; McCauley et al., 2012; Messina and Antezza, 2011b; Messina et al., 2017b), finite-difference (Jin et al., 2019;
Rodriguez et al., 2011; Werner et al., 2013), volume integral (Polimeridis et al., 2015), and surface integral (Reid et al., 2013b;

Rodriguez et al., 2013a,b) methods.

bitrary body shapes. On the other hand, multiscale or
large problems become particularly challenging to simu-
late as the propagation of electromagnetic fields through
vacuum means that the entire space between bodies must
also be discretized, even if the separation is much larger
than relevant body feature sizes, so the resulting con-
vergence with respect to resolution can be prohibitively
slow.

A related class of technique is the so-called volume-
integral formulation of Maxwell’s equations (Jin et al.,
2017b, 2016; Polimeridis et al., 2015), of which the dis-
crete dipole approximation (DDA) (Edalatpour et al.,
2016; Edalatpour and Francoeur, 2014, 2016; Ekeroth
et al., 2017) may be thought of as a special case. In

general, volume integral formulations use various classes
of localized basis functions as basis expansions for T-
operators and Gq. Unlike finite-difference methods, these
techniques have the advantage of only requiring basis
functions within the volumes of material bodies, with
the full scattering problem represented by expressing the
full Green function in terms of the individual materials’
scattering matrices and the analytically known free-space
Green function of the corresponding intervening medium.
As expected, however, different choices of basis functions
offer challenges and tradeoffs with respect to numerical
convergence. As further elucidated below, DDA is effec-
tively a volume integral formulation in which each body
is discretized into point dipolar particles with equiva-



lent Clausius—Mossotti polarizabilities: this approxima-
tion typically yields accurate results for dielectric me-
dia, but suffers from poor convergence when simulating
metals with highly delocalized plasmons. In contrast,
volume-integral formulations guaranteed to converge re-
quire a so-called Galerkin discretization of the problem
based on use of either voxel (Polimeridis et al., 2015)
or Schaubert-Wilton-Glisson (tetrahedral) (Reid et al.,
2017) basis functions. In either case, the basis functions
may be identical and displaced on a regular grid/lattice
covering each body, in which case the matrix representa-
tion of Gg may be sparse (and therefore computationally
easier to handle) due to the translational symmetries in-
herent in Gy, though this often comes at the costs of com-
puting matrix elements of G for regions where no mate-
rials are present, or of losing flexibility over discretizing
certain regions more finely than others (Polimeridis et al.,
2015). Exactly the opposite tradeoff occurs if the vol-
umes are discretized in an irregular manner, with differ-
ent weights given to different basis functions (Reid et al.,
2017): it then becomes possible to discretize certain re-
gions more finely than others, which is of particular rele-
vance to near-field radiative heat transfer between large
bodies where only a few fine features are very close to
one another, but at the cost of the matrix representation
of Gy becoming dense due to the loss of obvious symme-
tries in the representation. Furthermore, in all cases, vol-
ume integral formulations can model inhomogeneous and
anisotropic susceptibilities and even temperature gradi-
ents (Jin et al., 2016; Polimeridis et al., 2015), but mod-
eling nonlocal susceptibilities has proved to be more of a
challenge.

A class of techniques related to the volume integral for-
mulation are those based on the surface integral formula-
tion (Rodriguez et al., 2013a,b) of Maxwell’s equations.
These techniques compute the Landauer energy trans-
mission spectrum 7 according to a formula that looks
superficially similar to Eq. (16) but whose derivation and
implementation requires a different set of techniques. In
particular, surface-integral formulations make consistent
use of the surface equivalence theorem (Harrington, 1989;
Otey et al., 2014; Reid and Johnson, 2015; Reid et al.,
2013b; Rengarajan and Rahmat-Samii, 2000; Rodriguez
et al., 2013a) to recast all free polarization sources and
total electromagnetic fields in terms of equivalent surface
currents, with the relevant operators being the Green
functions of the homogeneous susceptibilities comprising
each body, as well as the surface integral operator re-
lating incident fields to induced equivalent surface cur-
rents. In principle, the operators relevant to the surface
integral formulation can be expanded in a spectral ba-
sis (Rodriguez et al., 2013a), but as in the T-operator
formulation, convergence suffers for bodies that do not
exhibit requisite symmetries. Instead, it is more common
to expand the relevant operators in a localized basis like
the Rao-Wilton-Glisson basis (Rodriguez et al., 2013a,b)
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of tetrahedral functions.

Finally, we point out that any of these frequency do-
main methods could have instead been cast in the time
domain. In the context of computational electromag-
netism, this is most commonly achieved by using the
finite-difference time domain method (Luo et al., 2004;
Rodriguez et al., 2011). This has many of the same
benefits and detriments of the aforementioned finite-
difference frequency domain method. Techniques based
on molecular dynamics have also been used to compute
radiative heat transfer in systems comprising nanoparti-
cles (Domingues et al., 2005), though the scaling of the
volume with the cube of the number of atoms makes
computations unwieldy in practice for large nanoparti-
cles. For both of these time domain techniques, the main
advantages are their generality with respect to materi-
als, the simple computational implementation (as the
temporal evolution operators are represented as sparse
matrices), the ability to extract dynamical information,
and their ability in principle to incorporate nonlinear
material response. In the case of molecular dynamics,
susceptibilities can be simulated fairly generally as the
method is based on simulating classical Newtonian par-
ticle dynamics, though interactions other than harmonic
or Coulomb couplings are typically based on empirical
rather than ab-initio models. The main disadvantages
for both sets of techniques are losses in computational
efficiency from needing to explicitly simulate fluctuat-
ing polarization sources obeying fluctuation—dissipation
statistics, which requires that averages be taken over a
large ensemble of calculations.

G. Upper bounds on near-field heat transfer

As noted above, the Stefan—Boltzmann formula or
blackbody limit was derived over a century ago under
the assumptions of ray optics, and consequently fails to
provide an upper bound of the maximum heat flux that
can be extracted from an object in the near-field regime.
While it is known that, as in far-field emission, appro-
priate choice of object geometry (nanostructuring) and
materials can enhance NFRHT, the lack of such a limit
applicable in the near field begs the question: how much
more room for improvement can be expected from ei-
ther of these design criteria? Over the past few decades,
there have been several succesful attempts at addresing
this fundamental question, starting with analyses of max-
imum NFRHT achievable in planar geometries (where
the main design criterion is the choice of material) (Ben-
Abdallah and Joulain, 2010; Biehs et al., 2012; Volok-
itin and Persson, 2004) and followed more recently by
limits applicable to arbitrary nanostructures and mate-
rials (Miller et al., 2015; Venkataram et al., 2020). Tech-
nically speaking, it is clear that upper limits to the heat
flux are determined by bounds on the transmission coef-




ficient 7 (w) per unit area in Eq. (5), which is itself de-
termined by the per-channel transmission factors 7, (w)
entering Eq. (6). The aim of arriving at a bound on RHT
is therefore to discern the maximum number and contri-
bution of tranmission channels that may be excited by a
yet unknown optimal choice of material and geometry.

In the case of two planar bodies, the maximum heat
flux is determined by the bounds on the transmission
coefficient 7 (w) per unit area in Eq. (7), which is deter-
mined by the transmission factor 7,(w,x) € [0,1] cor-
responding to transversal waves of frequency w, lateral
wavevector x, and polarization a = s,p. It is then clear
that 7T (w) can be maximized if the transmission factor
To(w, k) is maximal over a broad frequency and lateral
wavevector range. For example, when assuming that at a
given frequency, all transversal waves contribute a max-
imal transmission factor of unity up to some threshold
value Kmax, the upper bound for the transmission coef-
ficient per unit area between two planar bodies can be
written as

Kmax dff

Toi(w) < 2/ —r = N(w), (17)

0 m
where N(w) may be interpreted as the number of
contributing transmission modes or channels per unit
area (Ben-Abdallah and Joulain, 2010; Biehs and Greffet,
2010a). By definition, the contribution of propagating
waves is restricted to K < kg. Hence, setting xmax = ko,
one obtains the maximum value of T (w) = kZ/2rm for
propagating waves. Inserting this maximum value in
Eq. (7), one finds that the largest heat flux ®7** that
can ever be carried by propagating waves is precisely
the black-body value ®pp given by Stefan-Boltzmann’s
law (Bergman et al., 2011; Planck, 1914). Thus, it is the
additional contribution coming from evanescent waves
with k > ko and not accounted for in Stefan-Boltzmann’s
law that allows NFRHT to surpass the blackbody limit.
At first glance, it may appear that there is no upper
bound to kmax in the evanescent sector, at least within
the scope of local continuum electromagnetism, suggest-
ing that T,1(w) is unbounded. However, even simple con-
siderations imply otherwise. For instance, inside a di-
electric, the largest possible lateral wavevector allowed is
given by the edge of the Brillouin zone 7/a, where a is
the lattice constant of the medium. Hence, only waves up
to wavevectors kmax & 7/a contribute heat flux. Ignor-
ing possible band degeneracies and physical constraints
imposed by material and geometric considerations, this
gives the following idealized upper bound on the maxi-
mum possible heat flux between two dielectrics (Volokitin
and Persson, 2004):
. kZm?
?l,di)t(ieal ~ %W(le - T22) (18)
Assuming a wavevector cutoff set by a lattice constant on
the order of the atomic scale (a ~ 1071%m), and room-
temperature operation (73 = 300 K and Ty = 0K), yields
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a heat flux of 10 Wm™2 that is unrealistically large
compared to the black-body value of about 460 Wm™2.
Taking into account the nature of evanescent waves
within the vacuum gap between the two planar mate-
rials, one may derive a more sensible upper bound. For
instance, the field amplitude of evanescent waves of a
given k in the quasi-static regime drops exponentially as
exp(—kz) with respect to the distance z from the inter-
face. As a consequence, one can expect that only evanes-
cent waves having 1/k = z > d or kK < 1/d can meaning-
fully contribute to the heat flux between two planar in-
terfaces a distance d apart, suggesting that xmax =~ 1/d.
In (Ben-Abdallah and Joulain, 2010), it is argued that
only evanescent modes with 1/k & 2z > d/2 overlap sig-
nificantly and contribute, so a distance-dependent cut-
off Kmax =~ 2/d is used to provide an estimate of the
upper limit for 7 < 2/7d?, leading to the following
gap-dependent upper bound on the net heat flux (Ben-
Abdallah and Joulain, 2010):

2
max  __ kB
plgap = o 72

The choice of Kmax = 1/d would decrease this estimate
by a factor of 1/4. Note that this cutoff is consistent with
the fact that T scales as exp(—2kd) with the separation
distance d. A similar simple and general, albeit material
independent expression for the upper limit of the heat
flux contribution has also be found for the case of two
hyperbolic metamaterials (Biehs et al., 2012).

Material considerations further constrain the allowed
heat flux between planar media. In particular, Biehs and
Greffet (Biehs and Greffet, 2010a) derived a more real-
istic frequency-dependent cutoff k. = In[2/Im(x)]/d
that accounts for the impact of material absorption
through the material-specific loss rate Im[y(w)], where
x is the medium’s susceptibility. In particular, knowl-
edge of the analytical form of the reflection coefficients
at an interface can be used to show that the maximum
flux occurs for materials satisfying the surface-mode res-
onance condition, Re(1/x) = —1/2. The fact that in the
quasi-static regime the heat flux scales like 1/d? can be
understood from the fact that the number of contribut-
ing evanescent modes per unit area scales like 1/d? (Ben-
Abdallah and Joulain, 2010; Biehs and Greffet, 2010a;
Biehs et al., 2012). Generalizations of related analysis to
bound the performance of planar metasurfaces (nanstruc-
tured materials with subwavelength systems) have re-
cently been made (Biehs et al., 2012; Miller et al., 2014),
showing for instance that metasurfaces cannot signifi-
cantly enhance NFRHT beyond planar thin films.

Efforts aimed at identifying the number and relative
contribution of transmission channels that may arise in
non-planar media require a different framework. Re-
cently, Miller et al (Miller et al., 2015) recast radiative
heat transfer between two bodies as a series of indepen-
dent absorption and emission problems (ignoring addi-

(T} = T3). (19)




tional constraints posed by the presence of multiple scat-
tering among the two objects) to obtain bounds that only
depend on the bodies’ material susceptibilities and sep-
aration. In particular, recent work showed that given
an incident field on an object of susceptibility x(w), the
maximum polarization field that can arise at any point
inside the object at a frequncy w depends on the “mate-
rial response factor” (Miller et al., 2016),

_ Ix(w)P
Im[x(w)]

Such a figure of merit yields a measure of the resis-
tivity or dissipation of the medium and thereby cap-
tures the impact of losses on the resonant optical re-
sponse of a body. The material response factor arises
from the optimal magnitude of the T-operator for max-
imal absorption in isolation (Miller et al., 2016), and
encodes electromagnetic many-body and multiple scat-
tering effects within the body in isolation; this opti-
mal magnitude is achievable at a polaritonic resonance,
determined by the value of Re(1/x), which in turn
can be tailored through nanostructuring. Exploiting
the maximum polarization responsivity of a medium
in combination with electromagnetic reciprocity, Miller
et al found an upper bound on the net transmission
T <4GG [y, dr’ [, drds, |Go(w,r, ') that depends
quadratically on the effective loss rate of the system
¢ = /(1(o, with {4 and (5 denoting the material fac-
tors of the bodies, and on the integral of the vacuum
Green function over volumes V; and V5 representing any
convenient domain that may contain bodies 1 and 2, re-
spectively. Such a double integral may be cast as a Frobe-
nius norm of the off-diagonal matrix Gg(g,1), which was
previously identified in related works by D. A. Miller et
al (Miller, 2000, 2007) on optical communication limits.
However, such an analysis depends crucially on the as-
sumption that each body is capable of simultaneously
and optimally emitting electromagnetic fields in the ab-
sence of the other, and of optimally absorbing electro-
magnetic fields in the presence of the other, which ef-
fectively neglects additional physical constraints arising
from the unavoidable impact of multiple scattering be-
tween the two bodies. As a result, the limits have been
shown to be tight in situations where multiple scattering
can be neglected, namely quasistatic media subject to rel-
atively large material losses (Jin et al., 2019). This prob-
lem becomes particularly acute in the context of bounds
on extended structures, where the inability to account for
tighter bounds on the transmission eigenvalues causes the
quadratic dependence on ( to far outstrip the observed
logarithmic dependence on ( seen in polaritonic planar
media near the resonance condition Re(1l/x) = —1/2
(and predicted by the above planar bounds), suggesting
more room for enhancements in NFRHT through nanos-
tructuring than has been observed in practice.

In recent work, Venkataram et al (Molesky et al., 2020;

((w) (20)
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Venkataram et al., 2020) developed a set of algebraic
techniques to derive tighter bounds on NFRHT that in-
corporate not only constraints on material response but
also multiple scattering. Specifically, the transmission
coeflicient for two arbitrarily shaped bodies at any given
frequency w was found to be bounded above by,

Tarb(w) = Y mn(w)

L, CiGagn > 1
< Z{ 461Gag? (21)

n (1+¢1C292)2° ClC29721 <1

where the dependence on w inside the various factors has
been deprecated. These bounds depend not only on the
resistivity (;(w) of each body i = {1,2} at the given
frequency, but also on a set of “radiative efficacy” coeffi-
cients g,(w) denoting the singular values of the vacuum
off-diagonal Maxwell Green function Gg(o,1) connecting
dipoles in one object to the resulting fields on the other
and thereby quantifying how strongly these two volumes
may be coupled by electromagnetic waves. Moreover,
the bounds move beyond simply identifying the set of
channels able to contribute to heat transfer, previously
estimated on the basis of the effective rank of Gg(z 1),
and instead exploit the specific singular values of Go(z,1)
in combination with the loss rate of the medium to quan-
titatively determine the maximum possible transmission
for each channel. Once the set of channels that could
possibly contribute (having nonzero radiative coupling
gn) is identified, the ability of each transmission channel
to saturate the Landauer upper bound of unity (7, < 1)
is determined by the degree to which the radiative rate
of energy transport is able to overcome material losses,
captured by the condition (;¢2g2 > 1; the per-channel
bound is less than unity for those channels unable to meet
such a condition. In addition to correctly reproducing
the transition and eventual saturation in the growth of
NFRHT between dipolar nanoparticles, from material-
loss-dominated growth in the polarization response to
the Landauer tranmission bounds of unity, these limits
reveal that extended nanostructured bodies cannot sig-
nificantly outperform resonant planar polaritonic slabs
even in principle. Specifically, evaluation of the radiative
efficacies for any set of nanostructures contained within
semi-infinite half-space domains yields a limit on the net
transmission of

Erb(w) X dz/A <
1 ln(l—i-%), C1¢a <4

2 %1n(<142)+§[1n(%>]27 (> (22)

which exhibits a weak squared-logarithmic dependence
on (, in line with the observed logarithmic peak value of
T for planar slabs at a polaritonic resonance (Biehs and
Greffet, 2010a; Miller et al., 2015).



Based on this recent analysis, it is evident that the
observed inability of nanostructuring to significantly en-
hance the amplitude of 7 at any given frequency be-
yond what is achievable with resonant planar materi-
als is a “feature” of the underlying physics of NFRHT,
and not a “bug” in sampling a limited design space: the
maximum channel able to saturate the Landauer trans-
mission limit of unity for any nanostructure scales loga-

rithmically as 2*111 In (%) provided the system is in the

underdamped (resonant) regime (1(a > 4. Intuitively,
this result may be seen as dissonant with the established
utility of nanostructuring for enhancing far-field electro-
magnetic absorption and scattering, and the significantly
stronger enhancements of local densities of states that
can arise in the vicinity of structured materials. How-
ever, the channels of radiative heat transfer between two
separable bodies in proximity have little to do with the
channels that carry energy away from a body (or an ag-
gregate two-body system), so there is no reason to believe
that enhancement of the latter transmission channel con-
tributions would necessarily increase the former.

The transition from a quadratic (Miller et al., 2015)
to a much weaker logarithmic (Venkataram et al., 2020)
dependence of the bounds on material conductivity once
multiple-scattering constraints are introduced illustrates
the restricted and prohibitive nature of nanostructuring
in tailoring mutual scattering across a wide range of res-
onant channels. Such a tradeoff precisely explains why
the success of nanostructuring in enhancing local fields
does not readily translate into equivalent enhancements
in NFRHT. As reviewed in Sec. I1.B and Sec. I1.D, metal-
lic nanostructures can indeed greatly enhance heat ex-
change compared to their planar counterparts, but as
these limits suggest, not much more than what may be
achieved with planar polar dielectrics. Finally, while mul-
tiple scattering ultimately hampers the maximum heat
exchange that any two bodies can experience, as we shall
see in the next section, it underlies several important
transport effects in many-body systems.

I1l. MANY-BODY SYSTEMS

Until this last decade, theoretical and experimental
work in the topic near-field radiative heat transport was
primarily relegated to the study of heat exchange be-
tween two objects, while transport in systems composed
of objects in mutual interactions remained largely un-
explored and out of the reach of classical FE. In 2011,
Ben Abdallah et al. (Ben-Abdallah et al., 2011) laid
out the theoretical foundations for studying NFRHT
in simple many-body systems made of small interact-
ing objects in the dilute regime, paving the way for a
nerevtex4-2.clsrevtex4-2.clsw research direction on the
topic of nanoscale heat transfer. Since then, numerous
works have revealed new many-body effects, including
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the emergence of new physical and transport behaviors,
and unraveling a large number of potential applications in
domains such as nanoscale thermal management, energy-
conversion technology, and information processing. In
the following sections, we describe these peculiarities.

A. Heat flux in dipolar many-body systems

Understanding the mechanisms that drive light matter
interactions is one of the main goal in optics. In the fol-
lowing, we address the problem of light absorption and
thermal emission by a set of small objects in which coop-
erative interactions as well as heat exchange take place
in these systems.

1. Light absorption in dipolar systems

To start let us consider the case of non-emitting objects
which are only able to scatter and absorb light from an
external source, i.e. we are neglecting thermal radiation
at this stage. In the simplest case of a small isolated
particle located at position r’ in vacuum, the optical re-
sponse of this particle can be described by the response
to a simple permanent dipolar electric moment p(r’).

The electric field produced at point r around this
dipole takes the following form

Ep(r) = w?uoGo(r, r')p(r). (23)
Here (Novotny and Hecht, 2006)
i _ exp(ikop) ikop — 1
= O 1+ =2 )1
Golr.x) dmp K Tk
3 — 3ikop — k3p? . .
" kgp? pep

(24)

is the free space Green tensor defined with the unit vec-
tor p = p/p, p=r1r—1' kg = w/c is the wave vector
while 1 denotes the unit dyadic tensor and pg denotes
the vacuum permeability. When this particle is illumi-
nated by an incident field Ej,., the local electric field
Ej,. measured at any point r is the superposition of the
incident field and the field generated (scattered) by the
dipole. Therefore, according to expression (23), this field
decomposes into

Eioe(r) = Eppe (1) 4+ w0 Go (r, v/ )p(r'). (25)

The electromagnetic power P dissipated in the particle
can be calculated from the rate of work

Pabs = % / dV Re(j* - Ec) (26)
1%

done by the electromagnetic field in a volume V including
the particle. Here j denotes the local electric current
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FIG. 11 (a) Absorption cross-section of spherical silver

nanoparticles with respect to the wavelength. (b) Orthogonal
and parallel configurational resonance frequencies for a dimer
of silver nanoparticles (R = 10 nm) in vacuum with respect
to their separation distance d. The red horizontal line rep-
resents the plasmon resonance of an isolated particle.(c)-(d)
Absorption cross-sections for a dimer of silver nanoparticles
(R = 10nm) and normalized by the absorption of a single
particle. From (Raj et al., 1995)

density in the volume V. In the dipolar approximation
j(r') = —iwpd(r — r’) so that

Pabs = %Re(iwp* ’ Eloc) = _%Im(p* ’ Eloc)- (27)

Using the following relation
p(r) = egaEi (1) (28)

between the incident field and the dipolar moment, where
« is the electric polarizability, the power dissipated in the
particle reads (Tretyakov, 2014)

~ wlEin|%e ko 1o
Puan = B0 (1) - K poz) (2

It is common to quantify light absorption using the ab-
sorption cross-section defined as the ratio

P
Oabs = f?:j (30)
of this dissipated power by the incident flux
]:inc - ? | Einc |2 . (31)

For a collection of dipoles located at the position r;
(i = 1,...,N) the multi-scattering process between the
particles must be taken into account (Langlais et al.,
2014). Under an external illumination by an incident
field Ein¢, the local electric field Ej,. measured at any
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point results from the superposition of the incident and
all scattered fields as

N
Eloc(r) - Einc (I‘) + w2,u0 Z GO (I', rj)pj' (32)
j=1

By introducing the notation p; = p(r;), Eioc,i = Ejoc(r;),
Einc,i = Einc(r;) the total power absorbed by this set of
dipoles takes the general form (Hugonin et al., 2015)

N
w *
Pabs = 5 (l_zl Im(pl : Einc,i )

N (33)
- Im(p*iDiij)>
ij=1
where we have introduced the N x N block matrix
Dij = ,uongo(ri, I‘j). (34)

This relation generalizes expression (29) to arbitrary sys-
tems of coupled dipoles. For isotropic and homogeneous
particles the generalized vector field of dipolar moments
reads

P1 Eloc,l
|l =al (35)
PN Eioe, N
introducing the block matrix
Aij = codija, (36)

where a, is the electric polarizability tensor associated
to the particle i. Using Eq. (32), this expression can be
reformulated with respect to vectorial incident field as

P1 Einc,l
C | = AT ; (37)
PN Einc,N
with
T;j = i1 — (1~ 6ij)kgGo(ri, rj)a . (38)

This block matrix 7! defines the interplay between all
dipoles and the block matrix

gy =~ AT (39)

€0

also called dressed polarizability (Castanié et al., 2012)
results from the multi-scattering process in the set of
dipoles. Using the slightly different block matrix

Tij = 0ij1 — (1 = ij)kga, Go(rs, 1)) (40)



it can also be expressed as

agr = lT—lA, (41)
€0

because TA = AT and T~'A = AT~'. This dressed
polarizability shows that two types of resonances play a
role in the interaction of light with the set of coupled
dipoles. The first ones are the resonances of the isolated
particles themselves (i.e. the poles of %) while the sec-
ond (i.e. the poles of the determinant of ag, or T—1)
are configurational resonances (see Fig. 11) and they de-
pend on the spatial distribution of dipoles. So that the
3N dipolar resonance which are degenerate for spheri-
cal nanoparticles, for instance, couple and form a band
of 3NN resonances in general. Depending on the symme-
try in the configuration some of the resonances remain
degenerate despite the coupling. A simple example is a
chain of nanoparticles. There one finds N two-fold de-
generate vertical and N longitudinal resonances (Weber
and Ford, 2004) forming bands of coupled modes. A gen-
eral consequence of this dressing due to the coupling is
a broadening of the absorption spectrum in a coupled
N-dipole system.

2. Exchanged Power and Poynting vector

Now we consider the most general situation where the
particles are also emitting heat radiation. The funda-
mental relations to describe heat exchange in a system
of N dipoles having temperatures 771, ...,TN within the
framework of the FE have first been derived in (Ben-
Abdallah et al., 2011). In Ref. (Messina et al., 2013b) the
relations for the heat exchange were generalized to treat
also the interaction of the IV dipolar objects with an envi-
ronment or background in thermal equilibrium at some
temperature T, (i.e. the temperature of the surround-
ing radiation field), but only for isotropic dipolar object.
Subsequently, these expressions have been extended to
anisotropic and non-reciprocal systems taking also the
radiation correction into account (Ekeroth et al., 2017;
Nikbakht, 2014) and the expression for the mean Poynt-
ing vector of such an N-dipole system have been deter-
mined to quantify its far-field thermal emission (Ekeroth
et al., 2017). Finally, in Refs. (Ott and Biehs, 2020;
Ott et al., 2019a) the method from Ref. (Messina et al.,
2013b) was used to determine the general expressions for
the mean Poynting vector and the exchanged heat in a
system of N dipoles immersed in an environment at tem-
perature T, which can also be non-reciprocal. A further
generalization which takes the possibility of magnetic po-
larizabilities into account can be found in Ref. (Dong
et al., 2017a; Manjavacas and de Abajo, 2012). Here
we review mainly the derivation of the heat exchange
and the mean Poynting vector for N dipolar objects de-
scribed by an electric polarizability tensor o within the
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framework of (Messina et al., 2013b). This approach is
valid for nanoparticles with a size much smaller than the
thermal wavelength and for inter-particle distances and
distance between the particles and interfaces of the en-
vironment larger than twice the diameter (Becerril and
Noguez, 2019; Narayanaswamy and Chen, 2008; Otey and
Fan, 2011).

To derive the exchanged power and the mean Poynting
vector in an N-dipole system we consider the total electric
and magnetic fields

N

E(r,w) = wzuo Z GEE(r, r;)p; + Eb(l', w), (42)
i=0

N
H(r,w) = wuo » _ GI¥(r,r,)p; + H'(r,w)  (43)
i=0

which are generated by the fluctuational background
fields E®(r) and H®(r) and the induced and fluctuational
dipoles of all particles (i = 1,...,N)

pi = P + p; (44)
where the induced dipole moments

p" = coa E(r;) (45)
can be expressed in terms of the polarizability tensor
a, of the i*? dipole. Here we have introduced the elec-
tric and magnetic Green functions G®* and GH* gener-
ated by electric dipole moments as defined in Ref. (Eck-
hardt, 1984) which are now not necessarily the vacuum
Green functions, but the general Green functions taking
the geometry and material properties of the backround
into account. As a consequence the total electric field
E; = E(r;) at the position of the i-th dipole is given by
the field contributions due to the fluctuating dipole mo-
ments pjﬂ of all other dipoles j # i and the background
field E? = E°(r;) including direct thermal emission and

multiple scattering. It can be written as (Messina et al.,
2013b)

E, P? E]f
| =DT'| : |+@+DTA)| : |. (46)
EN p{;iv EE)V
Similarly the induced dipole moments p; for each par-
ticle i can be expressed in terms of the fluctuating

dipole moments of all other particles and the background
field (Messina et al., 2013b)

P1 pf EY
=T s |+ @A) s | (7

PN Pi E}
The auxilliary 3N x 3N-block matrices D, A, and T are
defined as in Egs. (34), (36), (40) but with the vacuum



Green function Go(r;, r;) replaced by G = GFF(ry, ;)
and by 1;; = 6;;1.

Equipped with this set of expressions it is now possible
to derive the dissipated heat in a given dipole ¢ and the
mean Poyting vector in a general N dipole system. Anal-
ogous to (26) the mean power received by the it" dipole

is defined as the power dissipated in dipole ¢

_[apit) o
P; = < P El(t)> .
~ 2Im / ) E;(w)).

Hence by definition the dissipated power inside dipole 1,
i.e. the heat flowing into that dipole, is positive. The
mean Poynting vector due to the dipoles and the back-
ground fields is given by

(S(r)) = (E(t) x H(t))

> dw 49
= 2Re/0 (217 (E(r,w) x H*(r,w)). (49)

These expressions already include the fact that the fluc-
tuational fields and dipole moments are stationary so
that the mean power and mean Poynting vector do not
depend on time. They can be evaluated by assuming that
the fluctuational dipole moments and the background
fields are in local thermal equilibrium at temperatures
T, (i = 1,...,N) and T;. Then the mean values for
the power and Poynting vector which are obviously given
by the correlation functions of the fields and the dipole
moments can be evaluated by employing the fluctuation-
dissipation theorem (Kubo, 1966) and assuming that the
background fields and the dipole moments are statisti-
cally independent, i.e. correlation functions between the
background field and the fluctuating dipoles (EP @ p;)
vanish. For the fields the fluctuation-dissipation theo-
rems are (Agarwal, 1975a)

GEP - GEEf
b b*y _ gi
(E? @ EY) = 2 puoh(my + 2) sl (50)
1 GEH — GHE'
b by 2 - i
using the notation GJJ = G™(r;r;) and GEE =

GHE(r;,r;), ny = n(w,T},). Analoguously, for the dipole
moments the fluctuation-dissipation theorem is deter-
mined by (Messina et al., 2013b)

* 1
The generalized susceptibility of the i*! particle is given
by (Ekeroth et al., 2017; Herz and Biehs, 2019; Messina
et al., 2013b)

_of EE EET
Q. [o% G G
=i =i _ 1.2
X, =~ 5 kya, —

:
5 al. (53)
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The first term of the generalized susceptibility describes
simply the intrinsic absorptivity of the dipole, whereas
the second term is a radiation correction taking into ac-
count that the dipole is coupled to the environment which
modifies its absorptivity. In free space this second term
simply reads —k§ /(67)a o (Ekeroth et al., 2017). Hence,
by comparing with Eq. (29) we see that w1th X, we re-

trieve the absorptivity of a dipole ¢ placed in vacuum for
the isotropic case a, = a; 1.

Inserting the expressions for the fields and dipole mo-
ments into the definitions (48) one obtains for the mean
power received by particle ¢ (Ott and Biehs, 2020)

P [
0

where the transmission coefficients are defined as

N

WZ

- nb (54)

X (DT} (55)

J

4
7—1']‘ = geoImTr |:

Equation (54) is the general expression for the dissipated
power or heat flowing into a dipole at temperature T;
surrounded by N — 1 dipoles at temperatures T} (j # )
described by an anisotropic or even non-reciprocal po-
larizability immersed in a general environment or back-
ground at temperature T which can itself be anisotropic
or non-reciprocal, properties which are taken into ac-
count via the polarizability and the Green function. In
general, if either the dipole or the background or both
are non-reciprocal one has 7;; # T;; (Herz and Biehs,
2019; Zhu et al., 2018). It should be noted that in the
literature a variety of different equivalent expressions for
the transmission coefficients 7;; can be found as for in-
stance in (Ben-Abdallah et al., 2011; Ekeroth et al., 2017;
Messina et al., 2013b; Nikbakht, 2014; Ott and Biehs,
2020; Ott et al., 2019a). Finally, when replacing n; — ny
by n; —n; +n; —ny Eq. (54) can be recast into the more
intuitive form (Messina et al., 2013b)

ni)Tij + (ni nb)ﬁb) (56)

with T = > ; Tij. This formula has the advantage that
it clearly expresses the power dissipated into dipole i by
the power exchanged between dipole 7 and all the other
dipoles and the power of dipole i exchanged with the
environment.

Similarly, by starting with the definition of the mean
Poynting vector in (49) one obtains for the spectral heat
flux for the N fluctuating dipoles immersed in a back-



ground (Ott and Biehs, 2020)

<Sw,(x> = 471(*]2/1’0]{;3 Z eaB'yRe

Byy=z,y,z
N N N
Z(nj —np) Z GEET X Z
j=1 i=1 J =1

N

2i
3,j=1

(G o
k2 2%

),

(57)

where €,5, is the Levi-Civita tensor and GEF =
GPE(r,r;), GEF = G®E(r,r), etc. The first term de-
scribes the heat flux emitted by the particles into the
background, the last term describes the heat flux of the
background fields without the dipoles, and the second
term describes the interference of the background fields
due to the presence of the dipoles. In the case that the
background geometry fulfills Lorentz reciprocity (Caloz
et al., 2018) the last term vanishes since then G%HT =
—G?ZE*. This simply means that if we have no dipoles the
mean heat flux in the background (S®) = (E*(¢) x Hb(¢))
which is at local thermal equilibrium vanishes. On the
other hand, as shown by Silvereinha (Silveirinha, 2017)
for a non-reciprocal background there can be a non-
vanishing mean Poynting vector even in thermal equi-
librium.

In certain cases the heat flux between the dipolar ob-
jects is dominant so that the emission into the back-
ground is negligibly small. If for example the dipoles
are placed into a vacuum at temperature T then the
power exchanged between the dipoles is for distances
much smaller than the thermal wavelength, i.e. in the
near-field regime, much larger then the power exchange
with the background (Messina et al., 2013b). When plac-
ing the dipolar objects, for instance, close to a substrate
then the inter-dipole heat exchange is still dominating if
the distance between the dipoles is much smaller than
the distance to the substrate (Ott and Biehs, 2020). In
such situations, the N-dipole system can also be treated
as a closed system. This can be done by neclegting in the
above expressions the heat exchange between the dipoles
and the background and the heat flux due to the back-
ground fields so that

* dw

ﬁwZ(n] - m)ﬁj (58)

J#i

n t
+ —f > (GEET 'a G - (GHPT; ', GI) )
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and
(Sw,a) = 4hw? pokg Z €apy an
B.y=w,y,z
N N
x Re| Y (GEFT; " )x > (GHET; b
i=1 k=1 8y

(59)

Note that, even though P; contains only the power dissi-
pated in dipole ¢ due to the heat exchange with all other
dipoles, the mean Poynting vector includes also the ther-
mal radiation of all dipoles into their background which
is assumed to have zero temperature. To be fully consis-
tent with the assumption that the background is simply
removed from the description the second term in the gen-
eralized susceptibility x in Eq. (53) might be neglected.

For systems where the dipole approximation is valid this
term is typically very small and can therefore often be
neglected anyway.

The same equations can be obtained by neglecting in
the derivation right from the start any contribution from
the background fields. In this case P; can also be ob-
tained by considering the power exchanged between all
pairs of dipoles, only, as originally done in many works
as for instance in Ref. (Ben-Abdallah et al., 2011). To
this end, the heat dissipated in dipole ¢ due to a fluctu-
ational field E;; = (DT‘l)ijp? generated by a fluctu-

ational dipole p? is considered as the power flow from
dipole j to i yielding

:3/0 d—whwan( )

(60)

Then the power dissipated by the i*" dipole is just the
sum of the power flowing between dipole i and the other
objects

Pi=> (Pjoi— Picsj)

J#i

=33 [ (T w) - ()

J#i

Since in thermal equilibrium P; = 0 we can derive the
condition (Latella and Ben-Abdallah, 2017; Ott et al.,

2019a)
> Tijw) = Tiw). (62)
i i
This condition simply expresses the fact that even though
Tij # T;: in general, the heat flux from ¢ to all other
dipoles [RHS of (62)] must be the same as the heat flow
from all other dipoles to ¢ [LHS of (62)] in equilibrium.
By inserting this equilibrium condition into the second
term of (61) we retrieve (58).

(61)



3. Non-additivity in many-dipole systems

Before we discuss the non-additivity of the power ex-
change in a N-dipole system based on Eq. (60), let us fo-
cus on the power exchange between two dipoles (N = 2).
The first derivation of the heat exchange between two
dipolar objects within the framework of FE was given in
(Volokitin and Persson, 2001) and extended to take mag-
netic dipole moments into account (Chapuis et al., 2008a;
Manjavacas and de Abajo, 2012) as well as multipolar
contributions (Becerril and Noguez, 2019; Pérez-Madrid
et al., 2008). A quantum dynamical description can be
found in (Barton, 2016; Biehs and Agarwal, 2013a) and
a discussion of different prefactors found in the literature
in (Dedkov and Kyasov, 2011; Sasihithlu, 2019). Using
our expression in Eq. (60) for N = 2 and temperatures
Ty # 0K and T5 = 0K we obtain for the power received
by dipole 2

dw
Pioo = 3/ 777/007117—21 (63)
0
The transmission coefficient 715 can be expressed as
4
7-21 = gkélmTr |:]D71G21K1 (]Dingl)Tzz} . (64)

with D = (1 + ké@glglegZ) introducing the general-
ized susceptibility

T
~ 72 g k2 T G22 Ggg o

4 2i 2 =2 (65)

Note that this general susceptibility only differs slightly
from the definition (53), whereas for isotropic dipoles
both definitions coincide. This is the most general ex-
pression of the transmission coefficient for two dipolar
objects in a given environment of any shape. The ap-
pearance of the terms ID~! in the transmission coeffi-
cient are due to multiple interactions between the dipoles.
Therefore the hybridization of any localized dipole res-
onance due to the strong coupling for small distances is
accounted for in this expression. Note that Eq. (64) re-
sembles Eq. (36) of (Ekeroth et al., 2017) but with the
slight difference that in that work X, is used instead of

XQ. On the other hand, the form of the transmission

coefficient (64) has also been found in (Herz and Biehs,
2019; Kriiger et al., 2012) within the scattering approach
of (Kriiger et al., 2012). However, within the range of
validity of the dipole approximation the second term in
x or X typically can be neglected and many works simply
use

ol 66

Now, when adding a third dipole at 75 = 0K then
we still can use (63) and (64) to quantify the power ex-
changed between dipole 1 and 2. The main difference is

=<
Q
Il
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FIG. 12 Power flow exchanged between two SiC nanoparti-
cles at 71 = 300K (red) and at 7> = 0K (blue) in presence of
a third SiC nanoparticle at temperature T35 = 0K (grey) and
normalized by the power exchanged between two isolated par-
ticles, i.e. @i = Pioo(T1, T2, T3)/Pio2(T1,T2). From (Ben-
Abdallah et al., 2011).
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FIG. 13 Transmission coefficient 721 between (a) two SiC
nanoparticles and (b) between two SiC nanoparticles in pres-
ence of a third SiC nanoparticles as in Fig. 12 for d = 0.
The dashed line marks the region where the particles would
touch. The unphysical region beyond this line is shown to
illustrate the hybridization mechanism of dipolar resonances,
which can be nicely seen in that region. From (Ben-Abdallah

et al., 2011).



that Tj,' now also contains the coupling with the third
dipole. Hence the sheer presence of the third particle
changes the transmission coefficients due to the fact that
it changes the mode structure which is for dipoles with
a localized resonance again due to the hybridization for
three dipoles this time (see Fig. 13) responsible for the
broadening of the absorption spectrum as discussed in
Sec. III.A.1. As a consequence, the presence of a third
dipole changes the power exchange P;_o proving that
the heat exchange in an N-dipole system is non-additive.
This formalism is only valid for interparticles distances
larger than 4R, R being the radius of the particles. It can
be extended to smaller distances by including multipolar
contributions (Czapla and Narayanaswamy, 2019).

This many-body effect can be exploited to enhance
for example the exchanged power between two dipolar
objects 1 and 2 by bridging the distance via a third
dipole which is placed between 1 and 2 as shown in (Ben-
Abdallah et al., 2011) (see Fig. 12). However, it should
be kept in mind that the heat flux between two dipoles
in a N-dipole system cannot be arbitrarily enhanced. As
discussed in (Ben-Abdallah et al., 2011) it can be easily
shown that each of the conductance between two dipoles
can be at most 3 times the quantum of thermal con-
ductance. Nonetheless, this upper limit is difficult to
achieve leaving much space for optimizations. Several
works have shown that it is possible to tailor the inter-
dipole heat flux via a third dipole or third object. For ex-
ample, (Messina et al., 2013b) has studied the relaxation
dynamics for the three-body configuration and (Dong
et al., 2017a) have also included the possibility to have
a magnetic polarizability as needed to describe metallic
nanoparticles in the infrared. Furthermore, using pro-
late (Incardone et al., 2014; Nikbakht, 2014, 2015) or
oblate (Choubdar and Nikbakht, 2016) spheroidal nano-
particles it has been demonstrated that by changing the
relative orientation of the nano-particles and in partic-
ular an intermediate nanoparticle the heat flux can be
switched and enhanced efficiently (see also Fig. 31. Fur-
thermore, the coupling of two nanoparticles via the sur-
face modes of an interface or intermediate medium has
been studied as discussed in detail in Sec. III1.C.3. Finally,
the non-additivity of the heat exchange has consequences
for the transport properties in nano-particle chains and
complex nanoparticle networks as discussed in detail in
Sec. II1.C.2.

4. Application: Thermal Discrete Dipole Approximation

The expressions for the heat exchange in systems
with N dipolar objects in (58) without the contribution
of the background as derived by (Ben-Abdallah et al.,
2011) have been employed first by (Edalatpour and Fran-
coeur, 2014) to determine the heat exchange between
macroscopic objects with isotropic and later by (Ekeroth
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et al., 2017) for macroscopic objects with anisotropic and
magneto-optical material properties. The idea is to re-
place the macroscopic objects by a great number N of
small cubes of volume V; (i = 1,...,N) which can be
approximated as dipoles with the corresponding polariz-
abilities. In Ref. (Ekeroth et al., 2017) the polarizability
including the radiative corrections, as rederived by (Al-
baladejo et al., 2010) and originally also used by (Draine,

1988), writes
KO\
o = (]1 — i670ra0i> a,; (67)

in terms of the quasistatic polarizability

a,, =3Vi(e —1)(e +21)". (68)

Note that in Ref. (Edalatpour and Francoeur, 2014) an-
other expression for the dressed polarizability has been
used known as the strong form of the coupled dipole
method. A detailed discussion on the different expres-
sions of the dressed polarizabilities in the context of clas-
sical coupled dipole method (Purcell and Pennypacker,
1973) has been given by (Lakhtakia, 1992).

This method known as discrete dipole approximation
(DDA) for describing thermal radiation phenomena be-
tween macroscopic objects has been coined (Edalatpour
and Francoeur, 2014) thermal discrete dipole approxi-
mation (T-DDA). It has been succesfully employed to
determine the heat flux between macroscopic reciprocal
and non-reciprocal cubes and spheres (Edalatpour and
Francoeur, 2014; Edalatpour et al., 2015; Ekeroth et al.,
2018, 2017), and also for the heat flux between a sharp
conical tip and a planar substrate (Edalatpour and Fran-
coeur, 2016). In principle this method can also be used
to determine the heat flux between two macroscopic ob-
jects in arbitrary many-body systems. As discussed in
(Edalatpour et al., 2015) in detail, the large number of
dipolar subvolumes needed to describe macroscopic ob-
jects or have a convergent numerical result sets a certain
limit to this numerical method. See also the discussion
in Sec. IL.F.

Finally, the TDDA method also allows for determining
the thermal emission of macroscopic objects by calcula-
tion of the mean Poynting vector from Eq. (59) in the
far-field regime (Ekeroth et al., 2017). This can also be
done with a standard DDA by determing the absorptiv-
ity as discussed in Sec. ITI.A.1 of the macroscopic object
modelled by an assembly of dipoles and then using the
Kirchhoff law to determine the emissivity. Now, the main
advantage of the TDDA is that it allows to attribute to
each volume element a given temperature. Hence, TDDA
opens up the possibility to calculate thermal emission of
macroscopic objects with a given temperature distribu-
tion, whereas the standard DDA can only handle emis-
sion of isothermal objects or dipolar assemblies. Note,
that the assumption of local thermal equilibrium sets
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FIG. 14 (a) Spectral conductance as a function of the energy
for InSb cubes with a cube side of 1 micron separated by a 500
nm gap, at T = 300 K, and for various values of the magnetic
field H applied along the z direction. The inset shows the
discretization geometry: the number of dipoles per cube is
4913 (each one has an edge length of 59 nm). From (Ekeroth
et al., 2017). (b) Spectral heat flux between a silica probe
and silica surface. From (Edalatpour and Francoeur, 2016).

strict bounds to the spatial variation of temperature dis-
tributions (Eckhardt, 1984).

B. Heat flux in macroscopic many-body systems

In the last section we have described a formalism allow-
ing to account for the heat exchange in an arbitrary set
of dipolar particles. As clarified above, although formally
and computationally simpler, this framework is limited in
terms of distance between the particles. For this reason,
in the last decade several theoretical schemes have been
developed to account for the heat transfer in configura-
tions of two or more macroscopic bodies. The purpose
of these techniques is to address bodies with in princi-
ple arbitrary geometry and optical properties. As we
have seen in Secs. II.LE and IL.F, several techniques have
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been introduced to successfully treat this problem. We
are going to focus here on scattering-matrix techniques,
where each macroscopic body is described in terms of its
scattering operators, accounting for its response to an
incoming electromagnetic field.

1. Scattering-matrix formalism

Two closely-related formalisms based on this ap-
proach have been introduced between 2009 and 2011
by Bimonte (Bimonte, 2009), Kriiger and collabora-
tors (Kriiger et al., 2012, 2011) and Messina and An-
tezza (Messina and Antezza, 2011a,b). The main differ-
ence between the these works is that Kriiger et al. de-
rive expressions which are suitable to any choice of basis
for the electromagnetic field, while Messina and Antezza
explicitly use a plane-wave basis, thus providing more
explicit (albeit less general) expressions in terms of the
individual scattering operators. In order to define these
operators, the electric field in any region of the system is
decomposed in plane waves as

>[5

ﬂ&@%%w+

E?(r,t) = 2Re 5 exp| [ik? - r]

(69)
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where w is the frequency, K = (k, ky) the projection of
the wavevector on the z-y plane, p the polarization index,
taking values 1 (transverse electric) and 2 (transverse
magnetic), ¢ the propagation direction along the z axis.
Moreover, k? = (k, ¢k.) is the full wavevector, while the
unit polarization vectors are defined as follows:

) .1 . .

erp(k,w)=2x k= —(—kyX+k,y)

. (70)

ek, w) = — (=K + Ph:R).
Each body is described in terms of four scattering oper-
ators R?(w) and T%(w) (¢ = +, —), connecting the am-
plitudes Eg’(n, w) of the incoming and scattered fields, as
(suppressing the frequency arguments)

Z/

(tr)¢ Z
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(p, 6| T, &YES ('),

(71)

where each mode (w,k,p) of the scattered field has in
general components from each mode (w, &', p’) of the in-
coming field, the frequency w being conserved since we
are addressing only stationary processes. The action of
these operators is schematically represented in Fig. 15.
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FIG. 15 Definition of reflection and transmission operators
associated with an individual body. From (Messina and An-
tezza, 2011b).

At this stage, it is interesting to sketch the main steps
and assumptions leading to the expression of the radia-
tive heat flux on each body, which can be summarized as
follows:

1. The fields generated by the fluctuating charges in-
side each body are identified as the source fields,
along with the environmental field in which the sys-
tem is embedded.

2. The correlation functions of the individual source
fields are deduced from the assumption of local
thermal equilibrium.

3. The total field in each region is explicitly written,
in terms of the source fields, as a result of the scat-
tering (reflection and transmission) processes oc-
curring due to the presence of the bodies.

4. The correlation functions of the total field in each
region can be deduced.

5. These are used for the calculation of the average
value of the Poynting vector.

We stress that in point 2 the assumption of local thermal
equilibrium is equivalent to stating that the statistical
properties of the field emitted by each body are the same
we would have if the body was at thermal equilibrium at
its own temperature. The details about the derivation of
such correlation functions can be found in Ref. (Messina
and Antezza, 2011b). This step leads to a source cor-
relation function equivalent to Eq. (52) already seen in
the case of dipoles, with the difference that in this case
the scattering operator, accounting for the geometric and
optical properties of the body, will explicitly appear.

The steps described above allow to explicitly write the
power absorbed by each body ¢ under the form

Pi=Tr [hw (Z(nj —ni)Tij + (n; — nb)ﬂb)] , (72)

J#i
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analogous to Eq. (56) already encountered in the dipolar
case, where the trace operator is defined as

2k [T°dw
TrAsz:/(gw)z/o g—w(p,nM\p,K,). (73)

We focus here on the contribution to the heat flux on
body 1 associated with the presence of body 2. The cor-
responding transmission coefficient 775 reads

Tio = (](2»1)X2U(271)T>~<17 (74)

where U = (1 — RA-RM+)~1 is the operator de-
cribing the infinite series of reflections inside the cavity
formed by bodies 1 and 2 and the generalized suscepti-
bilities are defined as

x2 = f(RP7) =T PRITET - (75)
%1 = A(RWH) — TO-tppw))- (76)
by means of the auxiliary functions
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(77)
The operators PP and P defined (for any integer
n) as

(p, KPP/ k') = k2 (p, k|9 |p/ k'), (78)

where TI®P") = ©(w — ck) and II(®") = ©(ck — w) are the
projectors on the propagative and evanescent sector, re-
spectively. The transmission coefficient 71 has the same
form as in Eq. (64) for two dipolar objects. By choosing
the T-operator for dipolar objects or using the plane wave
expansion of the T-operators both forms of transmission
coefficients can be obtained from the general T-operator
expression in (Herz and Biehs, 2019; Kriiger et al., 2012).

This approach was later generalized to the case of
three arbitrary bodies (Messina and Antezza, 2014). The
Landauer-like expression (72) of the power absorbed by
each body remains valid, meaning that e.g. the flux on
body 1 has contributions coming from bodies 2 and 3, as
well as from the environment. It is interesting to inves-
tigate here the expression of the transmission coefficient
T12 between bodies 1 and 2 in this three-body configura-
tion. It reads

Ty = U3 ( F(RPI) Ty (RO

% U(3’2>+T(2>7T)U<23,1>T>~<17

(79)

in which a two-body reflection operator (and the asso-
ciated multi-reflection operator U (23’1)) appears, defined
as

RE@)= = RO~ L 7O-ygGARE) -T2+, (80)



We immediately see that Eqs. (74) and (79) are different.
The important message behind this comparison is that as
for the dipolar case discussed in Sec. I11.A.3 not only does
the presence of body 3 introduce an additional source for
the energy transfer on body 1, but it modifies the trans-
mission coefficient 712, and consequently the way bodies
1 and 2 exchange heat. In other words, the third body
in the system acts both as a source/sink of radiation and
as a scatterer (independently of its temperature), modi-
fying the transmission amplitudes of other channels. We
conclude that Eq. (79) is by itself a proof and a quanti-
tative evaluation of the non-additive nature of RHT, in
the simplest possible many-body system made of three
bodies.

The same approach described in Sec. IT1.B and applied
both to two- and three-body systems has been general-
ized some years later to the case of N bodies (Latella
et al., 2017). In this case, for the sake of simplicity,
only planar bodies, i.e. parallel slabs of finite thickness
separated by vacuum gaps, have been considered. This
assumptions has two main advantages: first, the plane-
wave development is particularly convenient for this con-
figuration, since it fully suits its symmetry; moreover the
translational invariance along the transverse coordinates
makes all the scattering operators diagonal with respect
to both p and k, significantly simplifying all the expres-
sions. We stress that, since we are dealing here with
infinite systems, the power on each body has to be re-
placed with the heat flux ® it receives (power per unit
surface).

2. Non-additivity in many-body systems

In the last Section, we have analytically shown the non-
additivity of RHT. In the simplest case of three bodies,
the appearance of the third one modifies the transmission
amplitude 772, namely the way in which bodies 1 and 2
exchange energy. This is shown by the comparison of
Egs. (74) and (79). Apart from this formal comparison,
it is interesting to address quantitatively the modifica-
tion to the energy flux between bodies 1 and 2 due to the
introduction of a third body in the system. This anal-
ysis has been performed analogous to the configuration
discussed in III.A.3 by (Miiller et al., 2017), where the
authors generalize the formalism developed in (Kriiger
et al., 2012), already valid in the scenario of N bodies,
to the case of the presence of a nonabsorbing background
medium. In this work, the authors apply their formalism
to the calculation of RHT between two SiC planar slabs
(bodies 1 and 2) separated by a vacuum gap of thickness
d, when a particle of polarizability « (assumed to be non-
dispersive and real) is placed between them, at distance
dy from body 1. The system is depicted in Fig. 16.

The heat flux is evaluated after linearizing the general
expressions with respect to the particle polarizability, as-
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FIG. 16 Two planar slabs (bodies 1 and 2) are placed at dis-
tance d and separated by vacuum. A particle of polarizability

« is placed at distance di from slab 1. From (Miiller et al.,
2017).

suming that the scattering contribution is weak. As a
result, the heat flux ® (power P per unit area) is conve-
niently expressed as

® = q)vac + A(I)v (81)

where @, is the well-known heat flux between two slabs
separated by a vacuum gap, and the correction term A®
(proportional to « in the linearized approximation) is a
direct description of the non-additivity of radiative heat
flux.

The non-additive correction is numerically evaluated
for slab temperatures of 301 K and 300K in two differ-
ent configurations: for a slab-slab distance d = 10nm
(near field) and for d = 10 um (far field), as a function
of the particle position d; (see Fig. 16). The results are
shown in Fig. 17. In both configurations we clearly ob-
serve the expected symmetry with respect to the central
particle position d; = % In the near field, we observe
that the effect is maximized when the atom is close to
one of the two slabs. This reflects, apart from the sym-
metry of the system, the typical exponentially decreasing
behavior of heat flux in the near field, which is in turn
a consequence of the dominating contribution of evanes-
cent waves. The situation is clearly different in the far
field. First, not surprisingly, the effect is several orders
of magnitude smaller that in the near field. Moreover,
the external positions d = 0,d; are now minima of the
effect, which oscillates with respect to d;. These oscil-
lations are due to the interferences between propagating
waves (dominating in this scenario), reflected between
the two plates and scattered by the particle inside the
cavity which change the local density of states (Doro-
feyev et al., 2002; Francoeur et al., 2010b) at the par-
ticle’s position which is also known from the context of
spontaneous emission of atoms and molecules within a
such a configuration (Danz et al., 2002).

Another interesting consequence of three-body effects
in NFRHT was shown in Ref. (Messina et al., 2012; Zheng
and Xuan, 2011). In these works, the authors consid-
ered a system made of three parallel slabs as shown in
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FIG. 17 Non-additive correction to the two-body heat flux
AH'"™? = A® [see Eq. (81)] in the presence of a atomic,
i.e. pointlike, particle of polarizability a. The upper curve
corresponds to the near-field configuration d = 10 nm, while
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FIG. 18 Heat-flux amplification ®34(d,d)/P2s(d) in a three-
body configuration compared to a two-body configuration
shown in inset as a function of distance d and thickness of
the intermediate slab 6. The black dashed line corresponds
to the constant value ®35(d,d)/P2s(d) = 1. From (Messina
et al., 2012).
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the inset of Fig. 18. The intermediate slab, of thick-
ness ¢, is placed at distance d from the external slabs,
assumed to have infinite thickness. This configuration
is compared to the standard two-body scenario, shown
in the inset of Fig. 18, where the intermediate slab is
removed and d is now the distance between the exter-
nal slabs. We stress that in both systems the minimum
distance between adjacent slabs, very relevant parame-
ter in a near-field configuration, is the same. Moreover,
for a chosen couple of temperatures (more specifically,
400 and 300 K), the temperature of the intermediate slab
is taken as the equilibrium one, i.e. the one at which
the net flux on it vanishes. Based on this assumption,
adding the third intermediate slab has no impact on the
energy balance of the system, and thus the third body
is only acting as a passive relay added to the two-body
system. The heat flux amplification, defined as the ratio
®35(d, 0)/Pas(d) between the three- and two-body fluxes,
is shown in Fig. 18. The figure clearly shows that the
flux can be amplified for reasonable values (hundreds of
nanometers) of both d and 0, and that this amplification
factor goes up to a maximum value around 70% for small
distances. This amplification for d &~ ¢ reminiscent of the
superlens effect (Biehs et al., 2016; Pendry, 2000) which
leads to an optimal energy transfer between two atoms
which are separated by a superlens if the distance d to
the interface of the superlens coincides with the thickness
of the superlens §. Here, it is a purely three-body effect,
which is confirmed by the spectral and mode analysis
performed in Ref. (Messina et al., 2012). More recently
patterned intermediate media (Kan et al., 2019), two-
dimensional atomic systems (Simchi, 2017) and hyper-
bolic media (Song et al., 2018) have also been considered
to enhance furthermore the transfers. The use of such
kind of three-body control of heat flux was proposed to
design many-body heat engines (Latella et al., 2015) with
thermodynamic performances better than their two body
counterpart and the thermal analog of transistor (Ben-
Abdallah and Biehs, 2014) driven by photons. In the pro-
posed scheme, the combination of many-body effects and
the presence of a phase-change material playing the role
of the gate/base of the transistor, allows to switch, am-
plify and modulate the heat flux between source/emitter
and drain/collector (see also Fig. 32).

It is interesting to remark that the role of a third ther-
mally interacting body can also be played by a thermal
bath, described as a body far from the rest of the system
and emitting as a black-body surface at a given temper-
ature. This was recently shown in (Latella et al., 2020),
where the heat flux between two planar slabs or between
a slab and a particle was considered in the presence of
a thermal bath. It was shown that, in virtue of many-
body interactions taking place in these three-body sys-
tems, the flux exchanged between the two slabs (or the
slab and the particle) saturates to a constant value when
the distance goes to zero even at relatively large sep-
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FIG. 19 Heat flux exchanged between two slabs immersed
in a thermal bath with respect to their separation distance
d. Slab 1 has a fixed temperature of 71 = 400 K, while the
thermal bath is at 75 = 300 K. The second slab, of thickness
0, thermalizes to the equilibrium temperature at which the
net flux it receives vanishes. From (Latella et al., 2020).

aration distance where the non-local optical effects are
negligible, as shown e.g. in Fig. 19 in the case of two SiC
slabs.

3. Steady-state temperatures and multistable states

In arbitrary many-body systems consisting of N ob-
jects at temperatures 71, ..., Ty the time evolution reads
(i=1,...,N)
ar;
dt
where I; = p;C;V; is the termal inertia defined by the
heat capacity per unit mass C;, volume V;, and the mass
density p; of object ¢ while P; is the net power received

by this object. Following expressions in Eq. (72) and (56)
the latter can be broken up into

’Pi(Tl,..,TN;t) :ZPij(Tl,..,TN;t)+Pib(t) (83)
J#i

I; Pi(Th, .., Tn;t), (82)

where P;; is the power exchanged between object j and
i and P;p is the power exchanged between object ¢ and
the background which can also be an external heat bath
or thermostat connected to object i. If all P; are lin-
ear functions of the temperatures which is generally the
case close to the global equilibrium or non-equilibrium
steady state (in the following, for the sake of notation
simplicity, we use the abreviation T°% for the steady-
state temperatures), i.e. for small temperature differ-
ences | T; — Tj |< min(T7,...,Ty)), the system of equa-
tions can be linearized by introducing the conductances

_ 9Py
@i =3,

. (84)
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FIG. 20 (a) Phase portrait (i.e. trajectories of temperatures)
in a bistable system consisting of two membranes of SiO»
and VO3 in interaction with two thermal baths for different
initial conditions. The green (red) points denote the stable
(unstable) global steady-state temperatures. From (Kubyt-
skyi et al., 2014). (b) Self-oscillation of the temperature of a
VO2 membrane in vicinity of a SiO2 substrate when adding
a specific external constant power Fext. From (Dyakov et al.,
2015a)

For multilayer systems with infinitely large interfaces the
above equations can be used as well by simply replacing
the quantities by the corresponding quantities normal-
ized to a surface area A so that the thermal inertia be-
comes the thermal inertial per area I; — I;/A, the dis-
sipated power becomes the heat flux P; — P;/A = &,
and the conductance becomes the heat transfer coefficient
Gij — Gij/A = Hij~

When assuming that no energy is added or removed
from outside of the system, the thermal steady state is a
solution of the system of equations (i =1,...,N)

Pi(Ty,...,Tn) =0,. (85)

The local thermal equilibrium of the object ¢ is reached
when P;(T1y,..,Tn) = 0. This equation defines a hyper-
surface in temperature space. The intersection of the hy-
persurfaces associated to all local equilibria defines the
global steady state of the system. In the specific case
where the system is composed of two objects the local
equilibrium state of each object corresponds to a curve
in the two dimensional space of temperatures (71, T3) and
the intersection of the two local equilibrium lines defines
the global steady-state temperatures.

If all P; are linear functions of the temperatures which
is generally the case close to the global equilibrium or
steady state and when the conductances G;; can be con-
sidered as independent of the temperatures, i.e. when in
particular the material properties can be considered as
temperature independent, the system has a unique so-
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FIG. 21 (left) AND gate made with two SiO2 membranes
(gates) suspended between a thermal SiO2 source and a VOq
drain. The color map represents the output temperature Tp
of the drain with respect to the two input temperatures Tg1
and T2 of the two gates. In the bottom is the thruth table for
the AND gate. From (Ben-Abdallah and Biehs, 2016). (right)
NOR gate designed by coupling of SiC and V02 nanoparticles.
From (Kathmann et al., 2020)

lution (779,...,Tx')*. On the contrary, when the opti-
cal properties of materials are temperature dependent P;
become nonlinear with respect to the temperatures. In
this case, the system of equations (85) might admit more
than one steady-state solution. Among these tempera-
ture solutions one finds in general stable and unstable
solutions. The stability of these temperatures can be as-
sessed by following a perturbative approach. Starting
from a steady state o with temperature (179, ..., Ty',)"
and adding a small perturbation then the dynamicé is
described by the following linearized system

0T (1) 0T ,o(t)
i el e R0
0N o(t) 0TN o (t)

where 07} o(t) = Ti — T g (i = 1,...,N) is the pertur-
bation from the steady state o and

P, Py
8T1 o 8TN
IJ=1 : : (87)
OPN OPnN
0T, 0 OTN

is the Jacobian matrix associated to the dynamical sys-
tem (82). As in any linear dynamical system the sign of
the eigenvalues of J allows us to conclude on the stability
of thermal state.

The demonstration of multistable thermal behaviors in
many-body systems as shown in Fig. 20 has opened the
possibility to design thermal analogs of volatile electronic
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memories (Ben-Abdallah and Biehs, 2015, 2017; Dyakov
et al., 2015b; Khandekar and Rodriguez, 2017; Kubytskyi
et al., 2014), logic gates (Ben-Abdallah and Biehs, 2016;
Kathmann et al., 2020) (see Fig. 21) and self-oscillating
systems (Dyakov et al., 2015a) that allow to switch from
one global equilibrium to another and which can be po-
tentially interesting for practical realization of heat en-
gines (Latella et al., 2015, 2014).

C. Heat transport and heat flux dynamics

In the 2000s the first attempts of treating heat trans-
fer in N-body systems were made in order to quan-
tify the contribution of plasmonic modes to the thermal
conductance in one dimensional arrays of nanoparticles
in nanofluids (Ben-Abdallah, 2006; Ben-Abdallah et al.,
2008). Inside these simple networks all inner nanoparti-
cles are assumed to be at zero temperature while the two
particles at both ends of the chain are connected to two
thermostats. In these systems heat carried by photons
is simply scattered between the two thermostats. But
in contrast to Polder and Van Hoves theoretical frame-
work, which is based on the FE theory, in these works a
kinetic approach has been followed. The main features
and limitations of this approach will be discussed in the
next section.

1. Kinetic approach vs exact calculations

This approximate theory is based on the solution of a
Boltzmann transport equation

of of [of
ARG b I

for the distribution function f of thermal photons inside
a given system. Here vy(k) is the group velocity of the
mode k and the RHS of this equation stands for the col-
lision term which can be simplified within the relaxation
time approximation. When assuming that one thermo-
stat is at temperature 7" and the other one at zero tem-
perature, then the power P flowing through this system
results from the calculation of first-order moment associ-
ated with the photonic equilibrium distribution function
f =n(w,T) (Ben-Abdallah et al., 2008; Dye-Zone et al.,
2005)

P=d [ e .16

where wy(k) is the dispersion relation of resonant mul-
tipole modes ¢ supported by the structure. The con-
ductance is then defined as G = 9P/9T. It is impor-
tant to note that only the eigenstates of the system are
assumed to play a role in the heat transport process.
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FIG. 22 (a) Dispersion curves (real part) of collective plas-
monic modes along a chain of copper nanoparticles (10 nm
radius) dispersed in vacuum in the case of dipolar moments
(¢ = 1) and for the multipolar moments of order £ = 5. (b)
Thermal conductance G of linear chains of copper particles
calculated from the kinetic theory for different multipole or-
ders £ versus the separation distance d normalized to the par-
ticle diameter 2a. The inset is a zoom on the near-contact
region. From (Ben-Abdallah et al., 2008).

Since these preliminary studies, more complex systems
like chains of ellipsoidal polaritonic particles (Ordonez-
Miranda et al., 2015), nanoparticle crystals (Ordonez-
Miranda et al., 2016; Tervo et al., 2016), nanoresonators
inclusions (Tervo et al., 2019b) or chains of graphene
disks (Ramirez and McGaughey, 2017) have been inves-
tigated (see Fig. 23) as well as multilayer photonic crys-
tals (Lau et al., 2009, 2008) using this kinetic approach.
But as shown recently within a full FE calculation based
on the N-body theory introduced in Sec. III.A.2, the ki-
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FIG. 23 (a) Thermal conductance of the colloidal crystals
made up of spheroidal SiC nanoparticles, as a function of their
horizontal radius. (b) Thermal conductivity of coplanar disk
arrays for different diameters and separations at temperature
T = 300K. From (Ordonez-Miranda et al., 2016; Ramirez
and McGaughey, 2017).

netic approach fails in describing heat exchanges in sys-
tems where heat is also carried by non-resonant modes
over a broad spectral band (Kathmann et al., 2018).
This result has been confirmed recently (Tervo et al.,
2020). Further studies of conductance within two and
three dimensional dipolar systems based on the flucta-
tional electrodynamic calculations have been published
recently (Tervo et al., 2019a) which opens also to test
the validity of the kinetic approach in such systems as
studied in (Ordonez-Miranda et al., 2016; Tervo et al.,
2016). A discussion of the conductance within multi-
layer photonic crystals within the FE approach discussing
the role of surface phonon polaritons can be found in
(Narayanaswamy and Chen, 2005; Tschikin et al., 2012a).

2. Heat transfer in complex networks

Based on the rigorous FE approach we will now address
the heat flux in arbitrary systems. The thermal behav-
ior of fractal structures and the heat exchanges between
fractal clusters of nanoparticles has also been theoreti-
cally investigated. These studies have revealed (Dong
et al., 2017b; Nikbakht, 2017) that the (self)conductance
increases as RPf where R is the gyration radius of the
structure and Dy its fractal dimension (see Fig. 24(a)).
When two of these structures interact in near-field the
thermal conductance of heat exchange between metal-
lic clusters increases with the fractal dimension as can
be seen in Fig. 24(b). Moreover, in contrast to ordered
media, the localization of plasmons or phonon-polaritons
in fractal structures could be responsible of a significant
reduction of the self-conductance in fractal structures al-
though no clear evidence about this claim has been pre-
sented so far. However, a recent study (Luo et al., 2019)
has revealed that the heat transfer between fractal struc-
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FIG. 24 (a) Thermal conductance of Vicsek fractal structures
as a function of normalized gyration radius. From (Nikbakht,
2017) (b) Thermal conductance between two Ag nanoparticles
clusters at various fractal dimensions. From (Luo et al., 2019)

tures does not depend on their fractality at separation
distance larger than the localization lengths, which tends
to confirm this statement.

Beside their original thermal properties several phys-
ical effect inherent to many-body systems have been
highlighted in complex plasmonic structures. Among
these effects, a thermal analog of Coulomb drag effect in
nanoparticle networks has been recently predicted the-
oretically (Ben-Abdallah, 2019a). The configuration is
sketched in Fig.25. As in its electric counterpart where
interactions at close separation distances (compared to
the range of Coulombic interactions) of free charge car-
riers between two electric conductors gives rise to a drag
current in a passive conductor when a bias voltage is
applied along the so called drive conductor, a radiative
heat flux in a many-body systems can be induced in a
given region by a primary flux generated by a temper-
ature gradient in another region of the system. In the
case of two parallel chains of nanoparticles as sketched
in Fig.25(b), where the extremities of the first chain are
held at fixed temperature with two external thermostats
while all other particles can relax to their own local equi-
librium temperature, the magnitude and the direction of
drag flux can be calculated using the following procedure.

In the steady state the net power received by each
particle vanishes which allows to determine unknown
temperatures (Ta, .., Tn—-1,TN+1, -, Ton) (11 and Ty are
fixed by the thermostats) and the power P; and Py com-
ing from the external thermostats in order to keep the
temperatures of particle 1 and NV fixed. Then the heat
current in the upper chain in Fig. 25(b)

J =Py —Pi. (90)

as well as the induced heat current in the lower chain in
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(a) (b)

FIG. 25 (a) Illustration of the classical Coulomb drag effect.
A drag electric current I4 in a passive conducting wire is in-
duced by a primary current I flowing in a driving conductor
placed close to it. (b) Radiative drag effect in a many-body
system: a drag heat flux Jy carried by thermal photons be-
tween two particles is induced by a heat flux J exchanged
between two thermostated objects in a many-body system.
From (Ben-Abdallah, 2019a).

Fig. 25(b)
JD = PQN — 'PN+1 (91)
can be determined. Finally, the thermal drag resistance

T - T
Rp = N+1 2N

- (92)

quantifies the frictional effect induced by the electromag-
netic interactions between the different regions inside the
system. In hybrid polar-metal systems this friction can
be negative (Ben-Abdallah, 2019a) proving the existence
of regions within these systems where heat can locally
flow in an opposite direction to the applied temperature
difference.

Beside this generation of heat flux by frictional effect
in many-body systems the temperature of the particles
in particle networks can be individually addressed with
a subwavelength accuracy (Yannopapas and Vitanov,
2013) using external excitations such as chirped pulses
and can be controlled by adaptive optimization tech-
niques at the time scale of thermal relaxation processes.
The interplay between nano-objects can also be used to
focus and even pump heat (Ben-Abdallah, 2019b) out-
side of the system itself. The heat flux radiated through
an oriented surface by a collection of emitters held at
different temperature T; (i = 1,..., N) can be calculated
from Eq. (59). By tuning the temperature of three ther-
mal emitters in vicinity of a substrate as shown in Fig.26,
for instance, the heat flux can be locally focused and even
amplified in tiny regions which are much smaller than the
diffraction limit and even smaller than the regions heated
with a single emitter (Ben-Abdallah, 2019b). This con-
trol of flux lines by a collection of nano-sources can be
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FIG. 26 (a) Schematic of a multi-tip SThM platform with
three tips. Nano-spheres (thermal emitters) are grafted on
single scanning probe tips and held close to a substrate.
Their temperatures and positions are individually controlled.
(b) Normal component (S.) of the Poynting vector radiated
through the substrate surface at z = 0 by a three-tip SThM
setup with glass nano-emitters at ' = 300 K. (c) As in (b)
but with 75 = T5 = 350K (red) and 7% = 300 K (blue). The
inset shows the flux at z = 0 for a single particle at 7" = 300K.
(d)-(e) Magnitude of Poynting vector field in the (z, z) plane
radiated by a multi-tip setup in the case (d) for an angular
opening of § = 20° and in the case (e) for an angular opening
6 = 80°. From (Ben-Abdallah, 2019b).

used to tailor the heat flux at the nanoscale or to an-
alyze and change at this scale the local temperature of
solid surfaces.

3. Long range heat transport and amplification of heat flux

Instead of enhancing the heat flux between two
nanoparticles or two slabs by introducing an interme-
diate nanoparticle or slab as discussed in Sec. III.A.3
and ITI.B.2 it is also possible to guide the radiative heat
flux over a long distance by exploiting the properties of
specific modes such as surface or hyperbolic modes sup-
ported by some structures. This guiding can for example
be done by bringing two nanoparticles close to a planar
interface as sketched in Fig 27(a) which supports a sur-
face polariton in the infrared. Then the hot nanoparticle
can directly couple to this surface mode and subsequently
transfer its heat to the second (cold) particle over rela-

34

(@)dle)

& Propagating surface wave channel

No graphene

12
----- =0.1eV
100 HEEEE .10
..... u=03eV FREN 0.8 I
50 /o 06 /i N\ )
o p=05ev % \‘\ 04 "l \\\ .
) / yLo02b f ~—
<, (b) i . 0.0k e
% 10 H % 1.75 1.80 1.85 1.90 1.95 2.00

i S w(10"rad - s™")

0.1 1 10 100 1000

d (um)

FIG. 27 (a) Heat flux between two nanoparticles at inter-
particle distance d by coupling via the surfacce modes of an
inferface. From Ref. (Dong et al., 2018). (b) conductance ra-
tio G/G*? (G conductance with interface and G*? with-
out interface) as a function of d between two Au nanoparticles
placed at distance z = 150 nm from a SiC substrate. The four
lines correspond to the absence of graphene (black solid line),
and to configurations with graphene having p = 0.1eV (red
dashed line), 0.3eV (blue dot-dashed line) and 0.5eV (orange
dotted line). The inset shows the spectral conductance asso-
ciated with the four same configurations. From Ref. (Messina

et al., 2018).

tively long distances.

Such a transport has been first investigated in
Ref. (Saaskilahti et al., 2014) between polar nanoparti-
cles above single polaritonic surfaces and inside cavities
formed of two mirrors or made with slabs supporting sur-
face modes. This study and more recent studies (Ashe-
ichyk and Kriiger, 2018; Dong et al., 2018; Messina et al.,
2018) have shown that the heat current between dipoles
placed in a cavity can be enhanced by several orders of
magnitude as compared to the free-space heat current
with a similar interparticle distance. In particular, in
Ref. (Messina et al., 2018) it has been shown that a sim-
ilar enhancement and long range heat transport can be
also observed between metallic particles when a graphene
sheet covers a SiC interface. In this case the heat flux
can be enhanced by several orders of magnitude at inter-
particle distance of about 1-10 gm as shown in Fig. 27(b)
suggesting that the near-field enhanced thermal radia-
tion can be brought to distances which are comparable
to the thermal wavelength. Similar enhancement effects
were reported for the heat flux along chains of nanoparti-
cles close to a phonon-polaritonic interface (Dong et al.,
2018), between two nanoparticles mediated by an inter-




mediate macroscopic phonon polaritonic sphere (Ashe-
ichyk et al., 2017), by an anisotropic meta-surface made
of graphene stripes (Zhang et al., 2019a) or a stack of
graphene sheets (He et al., 2019b). As shown in (Ott
and Biehs, 2020) the distance at which the maximum
heat flux enhancement occurs is connected to the prop-
agation length of surface modes (Ott and Biehs, 2020).
Hence, the enhancement mechanism for the heat flux is
reminiscent of the enhancement of Forster resonance en-
ergy transfer between atoms, molecules, or quantum dots
which are brought in close vicinity to a plasmonic in-
terface where also a maximal enhancement is found at
distances coinciding with the propagation length of the
surface modes involved in the energy transport (Biehs
and Agarwal, 2013b; Bouchet et al., 2016; Poudel et al.,
2016; Velizhanin and Shahbazyan, 2012) allowing for a
long-range energy transfer.

Motivated by the very promising properties of hyper-
bolic metamaterials for long-range Forster energy trans-
fer (Biehs et al., 2016; Deshmukh et al., 2018; Newman
et al., 2018) another strategy has been explored to trans-
port the near-field heat flux over long distances using
such hyperbolic guides. Hence, it has been shown that
the large wavevector surface waves supported by polari-
tonic materials can be converted into propagating hyper-
bolic modes inside such media, such that the usual ultra-
small penetration depth of near-field heat flux (Basu and
Zhang, 2009) can become very large (tens to hundreds of
nanometers) (Biehs and Ben-Abdallah, 2017; Lang et al.,
2015; Tschikin et al., 2015) as does the net amount of
heat they can transport (Biehs et al., 2015; Liu and Na-
rimanov, 2015). Since the hyperbolic media can support
hyperbolic modes over a broad spectral band the flux
they can transport can be very high. It seems even possi-
ble to achieve with hyperbolic metamaterials a radiative
thermal conductivity which can in principle be compa-
rable to the phononic conductivity (Biehs et al., 2015;
Liu and Narimanov, 2015). Recently, first experimental
steps have been made to verify this claim (Salihoglu et al.,
2019), but the experimental results are not yet convinc-
ing because the measurement is not clearly demonstrat-
ing the impact of the radiative part. In a more detailed
study it could be demonstrated that the near-field heat
flux between two slabs can be guided through a hyper-
bolic waveguide over distances larger than the thermal
wavelength so that larger heat fluxes than the black-
body value are achievable for far-field distances (Messina
et al., 2016a). On the other hand, it could also be shown
that the guiding performance highly depends on the dis-
sipative properties of the waveguide material and that
for long-distance guiding also low-loss infrared materials
like Ge, for instance, would already have very good long-
range guiding properties (Messina et al., 2016a). The
long-range guiding effect has also been predicted for the
heat flux between two nano-particles through a hyper-
bolic multilayer structures (Zhang et al., 2019b) as shown
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FIG. 28 (a) Sketch of heat flux between two nanoparti-
cles through a hyperbolic multilayer meta-material. (b) Ex-
changed power ® as function of interparticle distance L nor-
malized to the exchanged power ®; where the hyperbolic mul-
tilayer meta-material has been replaced by vacuum. The
numbers in the brackets give the distance L (in microns)
and the amplification factor ®/®¢ at the maximum. From
Ref. (Zhang et al., 2019b).

in Fig. 28.

Even though the enhancement of the heat flux due to
coupling to the surface modes of the phonon-polaritonic
or plasmonic structures can be several orders of magni-
tude it has to be kept in mind that the mentioned studies
consider the steady-state heat flux between the nanopar-
ticles and that the enhancement is relative to the case
where the interface is removed. Hence, even by increasing
the heat flux by several orders of magnitude at a distance
of 1 micron the absolute value of the heat flux is still
small, because the heat flux between the nanoparticles
follows the 1/d® law in the near-field regime (Volokitin
and Persson, 2001). Furthermore, it should be kept in
mind that by bringing the nanoparticles in close vicinity
of an interface not only the heat flux between the parti-
cles increases, but also the thermal emission of the hot
particle into the substrate so that the hot particle will
rather tend to cool by thermal emission into the sub-
strate then by heating the cooler nanoparticle. However,
a first thermal relaxation study shows (Ott and Biehs,
2020) that by choosing wisely the distances between the
nanoparticles and between the nanoparticles and the in-
terface, a substantial heating of the cold nanoparticle can



be observed. Similar considerations also hold for the heat
flux though a structure. Hence, it is very useful to focus
in future studies on heat fluxes and the thermal relax-
ation or actual heating/cooling performance as well.

4. Relaxation dynamics

The temporal dynamics of any many-body system in
interaction with an external environment or with local
thermostats is simply driven by the competition between
its thermal inertia and the strength of the thermal link
with the external environment and these thermostats.
Close to the thermal equilibrium, the time evolution of
temperatures T = (T1,...,Ty) in Eq. (83) is driven by
the linear dynamical system

ﬂ% — _CT(t) + €T, 93)
where I = diag(Iy, ..., Ix) is the diagonal inertia matrix
which depends on the mass density, heat capacity and
size of each element, Ty = (Tp1, ..., Tpn) is the temper-
ature of external bath and reservoirs with which each
elements interact, C, = diag(Ghy, ..., Gnp), Gip being the
thermal conductance between element 7 and the bath or
a thermostat while C is the general conductance matrix
with components

Cij = (Z Gk + Gib> 8ij — (1= 65;)Glij. (94)
ki

with G; the conductance between element ¢ and j de-
fined as follows
d 0
Gij:?)/ Wp o ). (95)
0

o OT =T,

A corresponding definition can also be used for slabs.
Note that this definition is only valid in the absence of
temperature dependence of optical properties of the ma-
terials involved. When the conductance matrix is inde-
pendent of time the thermal state of the system reads

T(t) = exp[-1'C ¢]T(0)

+ /texp[—]l_lC(t — I Cy Ty (7)dr (96)
0

T(0) being the initial state. Hence, it is clear that the
relaxation dynamic is driven by the set {I';} of eigenval-
ues of the matrix I7!C, the dominant relaxation time is
given by 7 = 1/min(T’;) (C being a strictly diagonally
dominant matrix with positive diagonal elements).
Generally speaking the relaxation process takes place
at different scales (Messina et al., 2013b). When the
separation distance between the different elements is sub-
wavelength they are first thermalized in near-field regime
at the same temperature. This generally happens in few
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FIG. 29 Time evolution of thermal state in a single (red), two-
body (black) and a three-body system (blue) of SiC nanopar-
ticles with radii of 50 nm in a bath at temperature T' = 300 K.
The distance between particles 1 and 2 is 400 nm, while the
distances (solid line for dipole 1, dashed line for dipole 2, and
dot-dashed line for dipole 3). From (Messina et al., 2013b).

millisecond (Wang and Wu, 2016) for objects of nano-
metric size (Fig.29) and even in hundreds microseconds
for two dimensional nanosystems (Zundel and Manjava-
cas, 2020). In a second step each element and therefore
the whole system thermalizes in far-field toward the bath
temperature.

This difference in the time scales for the relaxation
dynamics can also be studied in a simpler system when
considering a single nanoparticle at temperature 77 close
to a sample with a fixed background temperature Tj then
the dynamical equation in (93) reduces to

dIn G

T Tl(Tb —Ty) (97)

or equivalently

dAT
T AT (98)
where Iy = pC,V is the thermal inertia of the nanopar-
ticle and AT = T} — T}, and the relaxation rate I' =
G1p/I1. The solution to this differential equation is
simply AT(t) = AT(0)exp(—TI't) or Ti(t) = (T1(0) —
Tb) exp(—TI't) + T,. Hence, the relaxation time in this
case is the inverse of the relaxation rate 7 = I'"! which
is itself determined by the thermal inertia and the heat
conductance between the nanoparticle and the sample.
The heat conductance for this configuration has been
studied for spherical dielectric and metallic nanopar-
ticles close to a sample with a flat surface (Chapuis
et al., 2008b; Dedkov and Kyasov, 2007; Dorofeyev, 1998;
Mulet et al., 2001; Volokitin and Persson, 2002), between
a spherical dielectric nanoparticle and a structured or
rough surface (Biehs and Greffet, 2010c; Biehs et al.,
2008; Kittel et al., 2008; Rting et al., 2012) and be-
tween dielectric and metallic ellipsoidal particles and a
flat or structured surfaces (Biehs et al., 2010; Huth et al.,
2010). Here we focus on a spherical nanoparticle with
radius R in a distance d over a planar interface. For




d > R it can be shown (Chapuis et al., 2008b; Dedkov
and Kyasov, 2007; Dorofeyev, 1998; Mulet et al., 2001;
Volokitin and Persson, 2002) that Gy, is proportional to
the electric (magnetic) photonic local density of states
DE(w,d) (DY) as defined in (Agarwal, 1975b; Eckhardst,
1982) for dielectric (magnetic) nanoparticles above a di-
electric (magnetic) substrate. Hence, when disregarding
mixed cases as considered in (Dong et al., 2017a; Man-
javacas and de Abajo, 2012) the relaxation rate can be
written as (Tschikin et al., 2012b)

dn

a7, (99)
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where o is its electric and o' its magnetic polariz-
ability. The latter takes the magnetic moments due to
eddy currents into account which play an important role
for thermal emission of metallic nanoparticles (Chapuis
et al., 2008b; Dedkov and Kyasov, 2007; Martynenko and
Ognev, 2005; Tomchuk and Grigorchuk, 2006). Hence,
we find that in comparison to the spontaneous emission
of an atom or molecule above a substrate (Novotny and
Hecht, 2006) where the emission rate is proportional to
the local density of states for the transition frequency,
the thermal emission rate is given by a spectral average
of the local density of states with respect to Awdn/dT.
Hence, the thermal relaxation rate ressembles the spon-
taneous emission rate if the nanoparticles have a narrow-
band emission spectrum.

In Fig. 30 it can be nicely seen that the thermal re-
laxation time changes by orders of magnitude when go-
ing from the far-field into the near-field regime which is
due to the strong increase in Gyp, i.e. the local density
of states, in the near-field regime (Dorofeyev and Vino-
gradov, 2011; Joulain et al., 2003). There is also a large
difference for metallic and dielectric nanoparticles due
to the fact that thermal radiation is more efficient for di-
electric than for metals. Furthermore, it can be seen that
for SiC oscillations in the transition region between near-
field and far-field regime which can be interpreted as the
photonic counterpart of the Friedel oscillations (Joulain
et al., 2003). These oscillations are due to the oscilla-
tions in the local density of states which average out for
the gold nanoparticle (broad band thermal emission spec-
trum) but remain for the SiC nanoparticle (narrow band
thermal emission spectrum). A detailed discussion can
be found in (Tschikin et al., 2012b).

5. Dynamical control

A control of the magnitude of heat flux has been high-
lighted in layered many-body systems (He et al., 2019a)
coated by graphene sheets simply by tuning the doping
level of graphene. Beyond this control several principles

37

40
- 30
.|
g
g 207
N |
10 —Au, R=10nm |
---Au, R =100 nm |
Ol—=m-==T ;
107 10° 107 107
d (meters)
600 '
£ 400 fr NAONNRL
2
' 200
\li: —SiC, R=100nm
---SiC, R=500nm
0 n
107 107 107
d (meters)

FIG. 30 Distance dependence of the relaxation time 7 = '~}
of a nanoparticle above a substrate with temperature 7, =
300K (a) for a gold nanoparticle above a gold surface, (b)
a SiC nanoparticle above a SiC surface. We use pA“C’f}“ =
2.404 - 10°Jm K" and p¥°CHC = 2.212- 10° JmPK .
From (Tschikin et al., 2012b).

have been introduced during the last decade to dynam-
ically control both the magnitude and the direction of
heat flux at nanoscale with many-body systems. For
example, by changing the shape and orientation of el-
ements (Nikbakht, 2014) the heat flux can be modulated
by several orders of magnitude with anisotropic parti-
cles as shown in Fig. 31(a). Another example for a dy-
namical modulation which can by realized by electrical
gating is the heat flux splitter as sketched in Fig. 31(b).
It enables to control the direction of the heat flux in
the near-field regime. The design is based on a network
of tunable graphene palets (Ben-Abdallah et al., 2015)
which allow us to control spatially the near-field interac-
tions and therewith the direction of heat flux by dynam-
ically tuning the graphene plasmons. A similar control
also has been performed with polar particles covered by
graphene (Song et al., 2019).

Already in 2014 it could be demonstrated that the
flux exchanged between two solids can even be ampli-
fied through a transistor effect (Ben-Abdallah and Biehs,
2014) by using a phase-change material like VO for an
intermediate relay also called gate between two SiOg
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FIG. 31 (a) Normalized heat flux between two spheroidal
nanoparticles with respect to the orientation of a third parti-
cle placed in between. From (Nikbakht, 2014). (b) Graphene-
based heat flux splitter. Three graphene disks with different
Fermi levels controlled by external gating exchange thermal
energy in the near-field through many-body interactions. The
magnitude of heat flow from 1 to 2 and 1 to 3 can be controlled
by an appropriate tuning of the Fermi level of the graphene
disks 2 and 3. The thermal power exchanged in the near-field
between graphene disks of 100 nm radius versus the separa-
tion distance in a three body system. From (Ben-Abdallah
et al., 2015).

slabs functioning as source and drain at temperatures
Ts = 360K and Tp = 300 as illustrated in Fig. 32. Since
this configuration corresponds to two oppositely con-
nected heat radiation diodes (Ben-Abdallah and Biehs,
2013; Fiorino et al., 2018a; Gu et al., 2015; Ito et al., 2014;
Yang et al., 2013) this transistor corresponds to a bipolar
transistor so that the terminology emitter, base, and col-
lector would be more appropriate but this has no impact
on the physics involved. In the region of the phase tran-
sition around its critical temperature T, ~ 340K, even
though the temperature difference between the gate and
the drain is increased a drastic reduction of flux ®p re-
ceived by the drain takes place. This arises due to the
strong change in the optical properties of the VO gate
from a dielectric to a metallic response shielding the heat
flux from the source towards the drain as can be seen in
Fig. 32(b). This variation corresponds to the presence
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of a negative differential thermal conductance or resis-
tance (Li et al., 2006) Rp = (g%;’)_l induced by the
phase transition. In the transition region, the amplifica-

tion factor

|0%p

of the flux received by the drain ®, compared to the heat
flux & removed or added to the gate can be defined. It
can also be recast in terms of the thermal resistances of
the source and the drain as

Rs
a= |5 101
‘ Rs+ Rp (101)
with the postive resistance Rg = —(g%)_l. This ex-

pression clearly shows that the amplification factor can
only become larger than one if Rp is negative so that
a negative thermal resistance is a necessary condition
for obtaining an amplification. For the thermal tran-
sistor the amplification factor is clearly larger than one
in the phase-change temperature region as can be seen
Fig. 32(c). Note that the peaks at the edges of the phase
transition are an artefact of the effective medium model
used to model the transition of the optical properties of
VO, at the edges of the transition region which was due
to a lack of experimental data at these edges.. Investiga-
tions of the same effect in the far-field regime the impact
of the hysteresis of the transistor can be found in (Joulain
et al., 2015; Prodhomme et al., 2016, 2018) while the dy-
namical response of transistors can be found in (Latella
et al., 2019).

The principle of negative thermal resistance plays fur-
ther an important role for the so-called radiative heat
shuttling which has been proposed (Latella et al., 2018b),
recently. In a system consisting of only two parallel slabs,
it has been shown that the periodic modulation of the
temperature and/or chemical potential of the two bodies
can be exploited to control the heat flux between them.
More specifically, it has been proven that in order to ther-
mally insulate them a negative thermal differential resis-
tance is required. A further step in this direction has
been done in (Messina and Ben-Abdallah, 2020), where
the heat flux between two particles is tailored by periodi-
cally modulating the temperature 75 and the position z3
of a third particle in a three-particle system as sketched in
the inset of Fig. 33. This many-body configuration allows
for controlling the direction and amplitude of the heat
exchanged between the two particles 1 and 2, even when
they are kept at the same temperature and (differently
from the shuttling effect mentioned above) in the absence
of a negative thermal differential resistance (Messina and
Ben-Abdallah, 2020). This possibility can be anticipated
already by performing a Taylor expansion up to second
order, around the middle position x3 = 0 and the equi-
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FIG. 32 (a) Radiative thermal transistor made of a three-
terminal system composed of a SiO2 source, a VO gate and a
SiOg2 drain. The gate is a layer based on a phase-change mate-
rial and its temperature can be actively controlled around its
local equilibrium value TS by an external thermostat while
the temperature Ts = 360K and Tp = 300 of source and
drain are fixed so that Ts > Tp. (b) Radiative fluxes &g, ®p,
and ®¢ exchanged between the different parts inside the tran-
sistor. (c¢) Amplification factor with respect to the gate tem-
perature. From (Ben-Abdallah and Biehs, 2014).

librium temperature T3 = T3 oq of particle 3. This gives

P1 >~ P1(0,T5,eq) + %563 + %
1°P, , 10°P
58733?,)963 2 0T2
0*P;
023075 °

(TS - T3,eq)

+ (T3 — T30q)* (102)

(TB - T3,eq)~

For a time variation of the form T3(t) = T3.q +
AT sin(wt) and z3(t) = Azsin(wt 4+ ¢), and in the spe-
cific case 11 = Ty = T3 ¢q, the time average over a period
reads

AT 9?P,

cos ¢ + —

(Pr)e =~ 2 12

g (A 82P1

2 xaxgaTg )’ (103)

This equality clearly shows that magnitude of the first
term can be easily modulated simply by changing the
dephasing ¢ between x3 and T35, paving the way to an
active heat pumping mechanism. More intringuing , the
sign can be changed as well so that the heat can flow
from cooler to warmer regions. A numerical example of
this modulation for a vanishing dephasing ¢ = 0 is shown
in Fig. 33, where the average over a period of the powers
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FIG. 33 Inset: geometrical configuration of a three-particle
system, where the position of particle 3 is periodically mod-
ulated. Main part of the figure: radiative heat pumping by
modulation of control parameters in a three-particles system
sketched in the inset. The three particles are made of SiC.
In this specific case, particles 1 and 2 are thermostated at
temperature 71 = T» while the temperature 75 and the x3
coordinate of particle 3 can be modulated with respect to
time. Powers P; and P2 absorbed by particles 1 (solid red
line) and 2 (dashed black line) as a function of time for the a
periodic variation of the coordinate and temperature of par-
ticle 3 of frequency w = 2w s~ ! and amplitudes Az = 100 nm
and AT = 5K around z3 = 0 and 75 = 300K. We have
d = 600nm and y3 = 300nm, and the radius of the particle
is R = 50nm. From (Messina and Ben-Abdallah, 2020).

Py and P, absorbed by particles 1 and 2 (having tem-
peratures T} = T5 = 300K) are positive and negative,
respectively.

6. Heat transport regimes

It is commonly admitted that heat conduction in-
side a bulk solid is governed by a normal diffusion pro-
cess. Heat carriers that are electrons or phonons move
through the atomic lattice following a usual random walk
which is driven by a Gaussian distribution function as in
Fig. 34(a). In this section we discuss how heat carried by
thermal photons is transported in many-body systems.
We demonstrate the existence of anomalous regimes of
transport as in Fig. 34(b). In dilute systems we show
that heat can spread out following a superdiffusive pro-
cess (Lévy, 1937; Shlesinger et al., 1995) while in dense
systems it can be ballistically transported.

To start this analysis, let us consider a network of small
objects at temperature T; which are distributed inside a
background or environment at temperature 7,. When
the separation distance between two arbitrary objects in
this network is much larger than their characteristic size
and that their size is small enough compared with the
thermal wavelengths Ap, = cfi/(kgT;) then this network
can be modelled as a set of simple dipoles located at po-
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FIG. 34 Types of heat transport regimes in a N-body sys-
tem. When an element (red) is heated up its heat spread
out through the system either by (a) a classical (Gaussian)
diffusion process or (b) an anomalous process. The trajec-
tories correspond to random walks with a Gaussian and a
non-Gaussian probability distribution function, respectively.
Here, the non-Gaussian process is a Levy flight with an alge-
braic pdf.

sitions r; in mutual interaction and in interaction with
the surrounding bath. In near-field regime the power
exchanged with the bath is negligible as discussed in
Sec. II1.C.4 compared to the internal exchanges. Then
the time evolution of objects temperature is governed
by Eq. (93) neglecting the heat exchange with the back-
ground yielding
dT;
gy = 2. Gu(Ty = ), (104)
J#i

where I; represents the thermal inertia of object i while
G;j stands for the thermal conductance between dipole
j and 7 as defined in Eq. (95) which depends only on the
distance between the dipoles

Gij = G(| r,—r; |) (105)

In the continuous limit the energy balance equation
(104) can be recast as (Ben-Abdallah et al., 2013)
8E _ drp(ri,r) T(I’,t) _ T(ri7t)’
ot R4 T(I‘) T(I‘i)
where the integration is done over the whole space
of dimension d. This equation is formally analog to
a Chapman-Kolmogorov master equation which drives
a generalized Markov process. The temperature field
T(r,t) is a passive scalar which evolves by following a
generalized random walk of probability distribution func-

tion (pdf)

(106)

_ G(r-v)
fRd dr’'G(|r — 1r'|)

p(r,r’) (107)
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FIG. 35 (a)Thermal conductance G in log-log scale along a
chain of SiC spherical particles 100 nm radius with different
inter-particle distances h and different particle numbers N as
a function of the separation distance Az = |r — r'| at tem-
perature 7' = 300 K. From (Ben-Abdallah et al., 2013). (b)
Heat-transfer coefficients h, ; with respect to the normalized
separation z;;/zy in a dilute multilayer system made with
SiC layers 200 nm thick separated by a distance d=40 nm at
T = 300K. From (Latella et al., 2018a).

and the rate of jumps between two collision events

(r) = < Rddr'G(|r—r’|)>_1. (108)

Hence, by analyzing the spatial variation of the pdf
and therefore of the conductance as well between two
points inside the system we can identify the regime of
heat transport. If the asymptotic behavior of the pdf
p(z) (where we have set & =| r —r' |) is Gaussian, all
its moments M (™ = [ a™p(x)dx are finite so that the
regime of transport is diffusive. On the other hand if
it decays algebraically, i.e. p(x) = O(1/z7) and hence
G(z) = O(1/z"), then there is a given order n beyond
which M (™) diverges for any n > n. In this case, the heat
transport regime becomes superdiffusive (see right tra-
jectory on Fig.34). In this specific case the (continuous)
energy balance equation takes the form (Ben-Abdallah
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FIG. 36 Heat transfer coefficient h, ; with respect to the nor-
malized separation z;;/zn in a dense multilayer system made
with SiC layers 200 nm thick separated by a distance d=5 nm
at T'= 300 K. The inset decomposes he, ; into TE and TM po-
larization contributions. From (Latella et al., 2018a).

et al., 2013).

O = k(- A)= 1)

= (109)

where k is a parameter that depends on the dimension d
and (—A)®/? denotes the fractional Laplacian (Shlesinger
et al., 1995)

T(r) - T

a/2
(—A) / T(r) =cqu PV [ dr v — [+

Rd

(110)

—a_1+4+d/2
F(1+a/22)r(g§“)sin(a7r/2) ; PV stands for the
principal value. It is worthwhile to note that Eq.(109) is
general and can be applied for describing the energy bal-
ance in arbitrary dipolar or macroscopic systems. When
v — d + 2 the fractional Laplacian degenerates into its
classical form, i.e. (—A)*/?) = (—=A), and the transport
regime is diffusive. On the other hand when v — d
the fractional Laplacian approaches the identity opera-
tor and the transport becomes ballistic. Finally when
d < v < d—+ 2 the regime is superdiffusive.

In Figs.35 and 36 we show the existence of those
regimes in two simple many body systems: (1) linear
chains of nanoparticles periodically dispersed in vacuum
and (2) multilayer periodic systems. In the first sys-
tem (see Fig. 35(a)), the thermal conductance G(Ax)
between a central particle and another particle at a dis-
tance Az, is calculated for different filling factors (2R/h).
For any filling factor, we see that G decays asymptoti-
cally at long separation distance as 1/Axz?, ie. v = 2,
showing according to our previous discussion that the
regime of heat transport is superdiffusive. In the ex-
ample plotted in Fig. 35(a) the long range interactions
which give rise to this anomalous regime comes from the
presence of collective electromagnetic modes supported
by the whole structure. In the case of a chain made
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FIG. 37 Temperature profile as a function of the normal-
ized position z;/zn along a multilayer made with N = 60
SiC layers 200nm thick for different separation distances d
and at fixed distance D = 500nm from the thermostats.
From (Latella et al., 2018a).

with silicon carbide (SiC) particles these modes result
from the coupling of surface phonon-polaritons localized
on each particle (Ben-Abdallah et al., 2013; Kathmann
et al., 2018; Ordonez-Miranda et al., 2015; Tervo et al.,
2020).

A similar superdiffusive regime is observed in dilute
multilayer systems (see Fig. 35(b)) where the heat trans-
fer coefficient h;; between layers | and j decays alge-
braically and scales as 1/ le).js) where 2; ; is the distance be-
tween layers [ and j so that v = 2.5. On the other hand,
in a dense multilayer system as considered in Fig. 35(b) a
transition occurs between this superdiffusive regime and
a ballistic regime (He et al., 2019¢; Latella et al., 2018a).
In this case we see that h; ; scales as 1/z; ; meaning that
the transport becomes clearly ballistic and the temper-
ature profile inside the structure submitted to a tem-
perature difference is constant as can be seen in Fig. 37
having a value T which is close to the Casimir temper-
ature To = % This regime of heat transport seems
to be inconsistent with the previous arguments about the
collective modes supported by the structure, but it oc-
curs due to the fact that the coupling of the inner dense
multilayers is much stronger than the coupling to the
two outer baths when d < D. For D = d on the other
hand the temperature profile in Fig. 37 is reminiscent of
a quasi-ballistic temperature distribution. Although the
transition mechanism remains today partially elusive it
has been shown in (Latella et al., 2018a) that it is related
to a change of channel for heat exchanges in dense sys-
tems from TM dominated to TE dominated heat transfer
(see inset of Fig. 36). For this TE polarization state the
slabs do not support anymore surface waves.




D. Non-reciprocal systems

In electromagnetics, a nonreciprocal system is defined
as a system that exhibits different received-transmitted
field ratios when a source and a detector are inter-
changed. This concept is also closely related to a time re-
versal symmetry breaking of Maxwell’s equation. In this
case the classical Lorentz’s reciprocity is violated (Caloz
et al., 2018). Here below we discuss first the general
formulation of radiative power exchange between non-
reciprocal objects and then show how RHT is taking
place in non-reciprocal many-body systems made for sets
of simple non-reciprocal nano-particles.

1. General discussion

As a first step, let us consider only two objects 1 and
2 having temperatures 77 and T5, respectively, which are
immersed into a background or environment having an-
other temperature 73,. Under the assumption that the
objects and the environment can be considered to be in
local thermal equilibrium, the power absorbed by object
1 can be determined with the conventional FE approach
analogous to Eq. (54) as (Herz and Biehs, 2019; Latella
and Ben-Abdallah, 2017)

*d
P = 3/ % ﬁw[(nl — nb)’ﬁl + (’Ilg — nb)’Tlg], (111)
0

where 14/ = n(Ty2) and n, = n(T},). The transmis-
sion coefficients 7,5 are, for example, explicitly given
in terms of the T operators of the objects in (Herz and
Biehs, 2019) where they were derived within the scatter-
ing approach (Kriiger et al., 2012). Here we only give
explicitly the expression for 72; which is given by (Herz
and Biehs, 2019)
4 -1 -1 <

Tio = T [D™ ' Gx2(D7'6) (112)
where Tr is the operator trace, G is the operator for the
Green function, D = (1 — GT2GT;) written in terms of
the T-operators T/, of both objects and the generalized
susceptibilities are defined as

Ty — T}, G-Gt .
- -T T 11
X2 % 2 % 25 ( 3)
T, -T] . :G-Gf
_ -T T,. 114
X1 %3 ST (114)

Note that this expression is formally equivalent to the
expressions in Egs. (64) and (74). Analogous expres-
sions can also be found in the work (Zhu et al., 2018)
and more explicitly for spherical nanoparticles in (Ott
and Biehs, 2020). The corresponding expression for the
absorbed power P, in object 2 can be obtained by ex-
changing 1 < 2 in the above expression. First of all, it
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can now easily be seen in Eq. (111) that in global thermal
equilibrium the overall absorbed power is zero. Secondly,
when setting 77 = T, then the expression in Eq. (111)
can only describe the absorbed power in object 1 due
to the heat flow coming from or going towards object 2.
Thus, 712 can be identified as the transmission coefficient
describing the heat flow from object 2 to 1. Thirdly, when
assuming that 7o = T}, then Eq. (111) describes the heat
flow from object 1 to the environment and to object 2 or
vice versa. Therefore we can identify 771 as the transmis-
sion coefficient standing for the so called “self emission”
of object 1 (Kriiger et al., 2012). Finally, when taking
Ty = T, then Eq. (111) describes merely the power flow-
ing from the environment towards object 1 either directly
or via object 2. Therefore 711 + 712 equals the transmis-
sion coefficient 77y, as discussed also for N dipolar objects
when deriving Eq. (56). These observations allows us to
rewrite Eq. (111) as

*dw
P = 3/ o hw[nlﬂl +n2Ti2 — nbﬂb}
0

(115)
= P51 (Th) + P (T2) + Pooi (Th)
introducing
*dw
Pi1(Th) = +3/ o hwny T11, (116)
0 v
*dw
Pa(T3) = +3 / S honaT (117)
0 Y[y
“dw
Pbi)l(Tb) = —3/ 7 hwanlb. (118)
0 Y[y

where the first term stands for the self-emission of body
1, the second is the emission toward body 2 and the last
term is the power coming from the bath. Notice that
when the two bodies are set at the same temperature we
can make a connection between the transmission coeffi-
cient Tp—1 and the thermal emissivity € = oa,s/S (Biehs
and Ben-Abdallah, 2016). More specifically, T,—1 can
be expressed as a function of its absorption-cross section
(30), its geometrical cross section S and the absorbed
power as follows

A ( )WZ A Oaps(w) w?
= —ew)—5 = — 5
67 c? 6 S 2’

where A is the surface of the object (assumed convex).

The self-emission term P;_,; appearing in Eq. (116)
must balance the energy flow from the other object 2
and the environment described by Po_; and Py to
establish global equilibrium so that this term describes
the power needed to keep the temperature of object 1
constant in thermal equilibrium. Hence, when taking
T, =Ty =T}, we have P; = 0 and therefore

P1o1(Th) = —Posi(Th) — Poi(Thy).

This equation relates P11 to Po1 and Pp_; and
therefore allows us to eliminate the background term

To1(w) (119)

(120)



Pov—1(Tp) from the expression for the overall absorbed
power giving (Kriiger et al., 2012)

Pl = Plal(TI) - Pl*}l(Tb)

+ Pos1(T2) — Pass1 (Thy). (121)

This elimination of the background term is of course
clear from the above definitions showing that 7;_,,, can
also be expressed by 71,1 and 75,1 and obviously the
implementation of the equilibrium condition brought us
back to Eq. (111). As described in (Kriiger et al., 2012)
this expression for P; can now be generalized to the
case of NV objects in a given environment. In this case
(i=1,...,N)

N
P = Z[Pj—m’(Tj) —Pisi(Th)]. (122)

Jj=1

This is the general N-body formula for the power ab-
sorbed by object i of which Eq. (54) can be considered
as a special case for dipolar objects. For an explicit cal-
culation of the absorbed power it is, of course, necessary
to determine the transmission coefficients for the studied
configuration. Before focusing on the heat flow in some
specific cases, we want to discuss in the next section the
impact of the non-reciprocity in a similarly general way.

2. General impact of non-reciprocity

For Lorentz-reciprocal objects and their environment
the coresponding response functions, i.e. the permittiv-
ity tensor, the polarizability tensor, T-operator, Green’s
function etc. are symmetric (Caloz et al., 2018). Con-
sequently, in this case we have symmetric transmission
coefficients T2 = T1 or more generally for N objects
Ti; = Tji (i # 7). This means that we have detailed bal-
ance for the heat flux between any two objects (Kriiger
et al., 2012). In contrast, for configurations where the
objects or the environment do not fulfill the conditions
for Lorentz reciprocity it has been explicitly proven in
(Herz and Biehs, 2019) that in general Ti2 # T21. More
precisely, 712 = 721 if and only if the objects and their en-
vironment are both reciprocal. Therefore non-reciprocity
introduces in general a directionality for the heat flow.

One of the astonishing consequences is that in non-
reciprocal systems one has P12 # P2; in general so that
the heat flux related expressions for the reciprocal case
fulfilling detailed balance need to be generalized to the
non-reciprocal case where detailed balance is broken (Zhu
and Fan, 2014) like, for instance, the Green-Kubo re-
lation for heat radiation (Golyk et al., 2013; Herz and
Biehs, 2019). More surprisingly, this asymmetry in the
heat flow from object 1 to object 2 and from 2 to 1 even
exists in global thermal equilibrium suggesting that there
might be a net heat flow even though there is no temper-
ature difference. However, by looking at Eq. (111) it is
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clear that although the heat flux from object 1 towards
object 2 is different from the heat flux from object 2 to
1 there is no net heat flow in global equilibrium because
P1 = Po = 0 in that case. The same is also true for N
objects where due to non-reciprocity one has in general
Pisj # Pjoi (1 # j). As we discuss below in more detail,
this can result in a so-called persistent heat current in a
N-body configuration in global thermal equilibrium (Ott
et al., 2019a; Zhu and Fan, 2016; Zhu et al., 2018).

In many works on the radiative heat exchange between
two objects the contribution of the environmental field is
neglected. In that case, as pointed out in (Latella and
Ben-Abdallah, 2017), the global equilibrium can only be
achieved if the transmission coeflicients fulfill the condi-
tion

> [T =Tl =0

J#i

(123)

In particular, this implies that when having only two
objects T2 = T21. Hence, for two isolated objects the
non-reciprocity has no impact and therefore at least three
objects are necessary to observe for example a broken de-
tailed balance. From this very general finding it can be
understood that in (Zhu and Fan, 2014) it was necessary
to consider three non-reciprocal thermal emitters to show
that detailed balance can be broken for thermal radiation
and in (Zhu and Fan, 2016) it was necessary to consider
three non-reciprocal nanoparticles to observe the persis-
tent heat current. On the other hand, it is also clear
that the heat exchange between two non-reciprocal half-
spaces will not show any rectification effect (Fan et al.,
2020; Moncada-Villa et al., 2015). It is interesting to
note that the symmetry relation 7i2(k,w) = T21(—kK,w)
for the transmission coefficient of the heat flux between
two planar reciprocal media will be violated if at least one
medium is non-reciprocal which allows to distinguish the
reciprocal from non-reciprocal case (Fan et al., 2020).
Finally, when considering two objects with an environ-
ment, then the environment can be regarded as a third
object. This explains why in general for only two objects
in a given environment the transmission coefficients can
be asymetric (712 # T2-1) so that we have here no
contradiction to the discussion at the beginning of this
paragraph.

3. Magneto-optical nano-particles

In the following we will review the results obtained for
the RHT in many-body systems consisting of subwave-
length nano-particles. Most of the works are neglecting
the coupling to the background which can be justified
in steady-state situations when the distance between the
objects is much smaller than the thermal wavelength so
that the near-field coupling dominates over the coupling
to the environment (Messina et al., 2013b). Therefore,



we will work with expression (58) together with the trans-
mission coefficients 7;; as defined in Eq. (55). Neglecting
the radiation correction it can also be written as

ca—af
g @ T )

(124)
assuming that all particles have the same polarizabil-
ity a defined for spherical nano-particles by means of
the permittivity in Eq. (68) with the volume V =
4w R3/3 (Lakhtakia et al., 1991)

a=4rR¥*(e—1)(e+21)"". (125)

The transmission coefficients in Eq. (124) are equal to the
expressions given in (Ben-Abdallah et al., 2011; Ekeroth
et al., 2017) for spherical nano-particles within the so
called weak-coupled dipole limit (Lakhtakia, 1992) where
the radiation correction can be neglected (Albaladejo
et al., 2010). They can also be derived from the gen-
eral T-operator expressions obtained within the scatter-
ing approach for the reciprocal (Kriiger et al., 2012) and
for the non-reciprocal case (Herz and Biehs, 2019; Zhu
et al., 2018).

As already done in Sec. I1.C we consider again InSb as
magneto-optical material for which the permittivity ten-
sor becomes asymmetric €’ # ¢, i.e. the material proper-

ties are non-reciprocal, when a magnetic field is applied.
As a consequence, the polarizability tensor then has the
same asymmetry o # of. Furthermore, due to the ap-
plied field the three-fold degeneracy of the dipolar local-
ized plasmon resonances, solution of the transcendental
equation det(e 4+ 21) = 0, with magnetic quantum num-
ber m = 0, %1 is lifted (Pineider et al., 2013; Weick and
Weinmann, 2011). In particular, there is a red-shift of the
resonance with m = +1 and a blue-shift of the resonance
with m = —1. The size of the splitting is proportional
to the cyclotron frequency w. = eB/m*, m* being the
effective mass of electrons (Pineider et al., 2013; Weick
and Weinmann, 2011). To be more precise, in the regime
where the dissipation can be neglected we find the reso-
nances (Ott et al., 2018)

2 2
€chp wg We
71 = +—= =,
Wm F1 \/(600 + 2 4 ) 2
| 2
. eoowp
Wm=0 = oo + 27

which are deterimined by the poles of the polarizability
tensor. Therefore, for small magnetic fields the two cir-
cular resonances with m = %1 are shifted by Fw./2 with
respect to the unaffected resonance for m = 0.

(126)
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4. Giant magneto-resistance

Due to the strong dependence of dipolar resonances of
particles on the magnetic field the heat flux emitted by a
magneto-optical particle can drastically change by tuning
this field (Ekeroth et al., 2018; Latella and Ben-Abdallah,
2017). It turns out that the thermal magneto-resistance

@) = (3 [ ;k;nwg;imu,m)_l (127)

between two particles in a many-body system is strongly
dependent on the magnitude of applied magnetic field
as it can be seen in Fig. 38(a). Variations of about
50% along nanoparticle chains has been highlighted with
magnetic fields of magnitude of about 500 mT (Latella
and Ben-Abdallah, 2017). This sensitivity to the mag-
netic field is of the same order of magnitude than the
giant electric magneto-resistance reported in ferromag-
netic/normal metal multilayers (Baibich et al., 1988).
This resistance can also be tuned by changing the direc-
tion of applied magnetic field (Ekeroth et al., 2018). In
this case we speak of an anisotropic magneto-resistance.
As shown in Fig. 38(b), for certain orientations of the
magnetic field the heat flux can drop by more than
90%. These effects open up the opportunity to control or
modulate the amplitude of the heat flux between nano-
particles by external means. A more detailed discussion
can be found in (Ekeroth et al., 2018; Latella and Ben-
Abdallah, 2017; Ott et al., 2019a).

5. Persistent heat flux, angular momentum, spin and heat
current

As shown in (Ott et al., 2018) the circular plasmonic
resonances for m = =+1 of a single particle responsible
for magnetic circular dichroism (Pineider et al., 2013)
and “inverse Faraday effect” (Gu and Kornev, 2010) are
connected with a circular mean heat flux

(S) = (E x H) (128)

emitted by the nano-particle in planes perpendicular to
the applied magnetic field. This results in a certain spec-
tral angular momentum density (J,) = (L), + (Sa)w
which can be divided in an orbital (L), and spin angular
momentum density (Sq), defined as (Bliokh and Nori,
2015)

(L), = r x (P),, (129)

(Sd)w = glm ((E* x E) + IZ—S(H* X H>) . (130)

with ¢ = €p/w and the canonical spectral momentum
density is given by

(P)., = ZIm[(E*(V)E) + 22(H*(V)H)),
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FIG. 38 (a) Giant thermal magneto-resistance along linear
chains of InSb and InSb/Ag nanoparticles at 77 = 300K
as a function of the strength of an external magnetic field
B applied in the direction orthogonal to the chain axis.
From (Latella and Ben-Abdallah, 2017). (b) Anisotropic
magneto-resitance between two InSb nanoparticles with re-
spect to the orientation of magnetic field. From (Ekeroth
et al., 2018). Copyright 2018 ACS.

adopting the notations from (Bliokh and Nori, 2015) that
X(Y)Z = Do X,;YZ;. Using these definitions together
with FE the persistent angular momentum close to the
walls of a cavity was first evaluated and discussed in (Sil-
veirinha, 2017) and the angular momentum and spin for
a thermally emitting nanoparticle by (Ott et al., 2018).
A more detailed study of the angular momentum and
spin close to a planar interface has been published re-

cently (Khandekar and Jacob, 2019a).

That there is a finite angular momentum and spin of
the thermally emitted radiation is not surprising, be-
cause the Lorentz force constrains the electrons in the
nanoparticles on a circular orbit so that the dipolar reso-
nance is rotating in the plane perpendicular to the mag-
netic field which is the microscopic origin of the circular
heat flux and the total angular momentum. The right-
hand rule determines the direction of the circular heat
flux in the near-field regime (Ott et al., 2018). It is
interesting to note that the angular momentum of the
m = +1 (m = —1) resonance is oriented in the (oppo-
site) direction of the magnetic field as one would expect,
whereas the spin of the m = —1 (m = +1) is oriented
in the (opposite) direction of the magnetic field in the
near-field regime. From this perspective the splitting
of the m = +1 resonances can also be understood as
a Zeeman splitting, where m = —1 (m = +1) is blue-
shifted (red-shifted) because the near-field direction of
the spin is in direction (opposite) to the magnetic field,
but of course the correct quantity determining the Zee-
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FIG. 39 Normalized mean Poynting vector (S) of thermal
radiation emitted by an InSb nanoparticle at the origin of the
coordinate system with radius of 300nm at a temperature of
300K into a cold environment (vacuum) at T, = 0K when
a magnetic field is applied in z direction. This circular heat
flux persists in global thermal equilibrium. From (Ott et al.,
2018)

man splitting is the magnetic momentum of the dipolar
resonance itself (Gu and Kornev, 2010). The presence
of a finite spin means that the thermal emission of the
non-reciprocal nanoparticle will be circularly polarized in
general as is well known for solid matter within a mag-
netic field like semi-conductors (Kollyukh et al., 2005)
but also white dwarfs (Kemp, 1970; Kemp et al., 1970),
for instance. More recently, circularly polarized thermal
emitters based on chiral meta-surfaces (Dyakov et al.,
2018) and nano-antennas (Khandekar and Jacob, 2019b)
have been proposed.

Interestingly, it turns out that these three quantities,
mean heat flux, orbital angular momentum, and spin per-
sist in global equilibrium if @ # o' and therefore is a di-

rect consequence of the non-reciprocity of the permittiv-
ity or polarizability. Even though it might seem strange
to have a non-zero mean heat flux in global equilibrium
circulating around the nanoparticle, this does not pose
any problem from the thermodynamical point of view,
since it can be shown that V - (Spers) = 0, which means
that there is no heat flux through any closed surface
including the nanoparticle (Ott et al., 2018). In other
words, no heat is finally emitted. Similar conclusions
have been made for the thermal radiation field of the non-
reciprocal surface modes on planar interfaces (Khandekar
and Jacob, 2019a; Silveirinha, 2017).

Instead of a persistent heat flux, i.e. a non-zero heat
flux in global thermal equilibrium, as observed from the
mean Poynting vector around a non-reciprocal nanopar-
ticle or in the vicinity of a planar interface of a non-
reciprocal sample, there can also be a persistent heat cur-
rent as first discussed in (Zhu and Fan, 2016) for the ther-
mal radiation exchanged by three nanoparticles, but it of
course exists also for more than three particles (Zhu et al.,
2018). As clear from the above discussion, when neglect-
ing the contribution of the environment of the nanoparti-




y (nm)
o

-500
-500 0o 500

X (nm)

FIG. 40 Normalized mean Poynting vector (S) and its mag-
nitude (Wm™2 in color scale) of thermal radiation emitted by
three InSb nanoparticles with a radius of 300 nm having the
same temperatures 717 = To = T3 = 300 K when a magnetic
field is applied in z direction. From (Ott et al., 2019a).

cles, then it follows from the constraint in Eq. (123) that
for only two nanoparticles 712 = 721 and consequently
P19 = Po_y1 if T} = T5. Therefore it is necessary to
have at least three nanoparticles to have Ti5 # Ta1. For
three particles as in Fig. 40 the constraint in Eq. (123)
demands Ti2 = T2z = T31 and Ti3 = T32 = Ta1 due to
the C3 symmetry. If the three nanoparticles are now non-
reciprocal then it can be shown from the definition of the
transmission coefficient in Eq. (124) that 712 # 721 and
hence

Piog = Poyg = P31 # Pios = Pso = Pasy. (132)

This means there is a clockwise heat flow exchanged by
the nanoparticles which is different from the heat flow
in counter-clockwise direction even if 77 = T, = T3 and
therefore there is a persistent heat current in clockwise
or counterclockwise direction depending on which of the
two heat flows is larger. This persistent heat flow or bet-
ter heat current (Zhu and Fan, 2016) is the many-body
analogue of the persistent heat flux, which of course also
exists in the three-body configuration. It is worthwhile
to note from relation (123) that, in a non-reciprocal sys-
tem at temperature T', the body 7 and j still exchange a
power (Latella and Ben-Abdallah, 2017)

Pl =Pl — Pl

] Jj— i—7

> dw
- | Semen(e DT, - T,

(133)

although the net power P;? = 37, P/L . vanishes so
that the persistent heat flux does not lead to any heating
or cooling. Hence the magnitude of asymmetry of trans-
mission coefficients spectra (Fig. 41) and the value of the
equilibrium temperature are directly responsible for the
value of persistent current. Today, the measurement of

this current is still a challenging problem. Recently, a
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FIG. 41 Heat transfer spectra in a many-body system con-
sisting of six InSb nanospheres placed at the vertices of a
regular hexagon on z-y plane without (reciprocal) and with
(non-reciprocal) an externally applied magnetic field in the
z-direction. From (Zhu and Fan, 2016; Zhu et al., 2018)

setup has been proposed in Ref. (Khandekar and Jacob,
2019a) which might be able to access it in the vicinity of
a magneto-optical planar sample.

6. Hall effect for thermal radiation

The asymmetry in the exchanged heat flux in many-
body configurations observed in global equilibrium, i.e.
the persistent heat current, has directly measurable con-
sequences when driving the system out of global equilib-
rium. An astonishing consequence is the Righi-Leduc or
Hall-effect for thermal radiation (Ben-Abdallah, 2016).
Classically, the Righi-Leduc effect (Leduc, 1887; Righi,
1887) is just the thermal analogue of the Hall-effect (Hall,
1879). When applying a temperature difference in a
metallic sample together with a magnetic field the heat
current by the electrons will be deflected due to the
Lorentz force acting on the electrons such that a tem-
perature difference perpendicular to the initially applied
temperature difference will build up in steady state. Such
an effect has also been highlighted for other heat carriers
in solids like magnons and spinons (Fujimoto, 2009; Kat-
sura et al., 2010; Onose et al., 2010) or even phonons (In-
yushkin and Taldenkov, 2007; Strohm et al., 2005).

Now, when considering heat radiation exchanged be-
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FIG. 42 Photon thermal Hall effect: a four terminal junc-
tion with magneto-optical particles forming a square with Cy
symmetry is submitted to an external magnetic field B in the
direction orthogonal particle plane. When a temperature gra-
dient AT = T, — Tr is applied between the particles L and
R, a Hall flux transfers heat transversally between particles
B and T, thus bending the overall flux (red arrow) towards
the top or the bottom. In this case the heat P;_,; and P;_;
exchanged between two particles ¢ and j is not symmetric.

tween four nanoparticles in a C4 symmetric configura-
tion as in Fig. 42, and applying a temperature difference
AT = Ty, — Tg between particle L (left) and R (right),
then in the steady state of the system a temperature dif-
ference T](;t) — T}St) between particle B (bottom) and U
(up) can build up when using non-reciprocal InSb nano-
particles and applying a magnetic field perpendicular to
the particle plane. Hence, one observes a Righi-Leduc or
Hall effect for thermal radiation (Ben-Abdallah, 2016).
Again, the effect can be understood by the Lorentz force
acting on the electrons in the nanoparticles. However,
here the electrons do not serve as the heat carriers but
introduce a circular heat flux leading to an asymmet-
ric heat flow and finally to the Righi-Leduc effect. Its
magnitude and directionality can be measured by the
relative Hall temperature difference or Righi-Leduc-like
coeflicient

(st) _ rp(st)
_ Ty —Tp

Ry = 134
T TL — TR ) ( )

which is shown in Fig. 43. Written in terms of thermal
conductances, this coefficient reads (Ben-Abdallah, 2016;
Ott et al., 2020)

Grp —GBL

Ry = .
T GLp+GpL+2Gpr

(135)

It can be seen that depending on the magnitude of the
magnetic field the effect will change its directionality and
there is a maximum for a magnetic field amplitude of
about 0.5T for the considered configuration.The effect
is not very strong and high field amplitudes are needed
to have a maximum effect. However it highly depends
on the configuration and material parameters (Ott et al.,
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FIG. 43 Magnetic field strength dependence of the Righi-
Leduc-like coefficient defined in Eq. (134) for four spher-
ical InSb nanoparticles with a radius of 100nm in a Cy-
symmetric configuration as depicted in Fig. 42 choosing an
interparticle distance of opposite particles of d, = 500 nm
and d, = 700 nm. From (Ott et al., 2019a).

2019b) and therefore its magnitude can certainly be opti-
mized by changing the spatial distribution of particles or
their physical properties. To date an experimental proof
of photon thermal Hall effect remains a challenging prob-
lem. However a direct measurement of the Hall tempera-
ture difference with measurements of electrical resistance
variations with a very high accuracy (St-Gelais et al.,
2014) in magneto-optical nanowires networks seems fea-
sible.

Beside the “normal” thermal Hall effect, anomalous
effects also called anomalous thermal Hall effects (Fer-
reiros et al., 2017; Huang et al., 2020), thermal analog of
anomalous Hall effect (Karplus and Luttinger, 1954; Na-
gaosa et al., 2010), have also been described for the heat
transport with electron or phonons in ferromagnetic ma-
terials and in semimetals. Very recently a similar effect
in Weyl semi-metal nanoparticles networks for thermal
photons has been predicted (Ott et al., 2020). Since the
Weyl semi-metals can exhibit a strong nonreciprocal re-
sponse in the infrared, this effect allows for a directional
control of heat flux by simply locally tuning the magni-
tude of temperature field without changing the direction
of temperature gradient.

7. Heat flux rectification with non-reciprocal surface waves

For most of the non-reciprocal effects discussed so far
the environment does not play a decisive role. Now, in-
stead of using only the intrinsical non-reciprocal prop-
erties of the nanoparticles to achieve a directional heat
flux, also the non-reciprocity of the environment can be
exploited as first shown in (Ott et al., 2019a). As we
have seen in Sec. III.C.3 before, the heat flux between
two nanoparticles or more generally between two objects
brought in close vicinity to an interface of a sample can be
enhanced by transporting the heat via the surface modes
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FIG. 44 (a) Sketch of the diode in forward direction. Two
InSb nanoparticles above an InSb substrate. The left particle
is heated with respect to the other particle and the environ-
ment. (b) Sketch of the diode in backward direction. (c)
Normalized mean spectral in-plane Poynting vector and its
amplitude (Jm™2, colorbar) for the m = +1 particle reso-
nance for the diode in forward direction. (d) as in (c) but for
the backward case and for the m = —1 particle resonance.
See also (Ott and Biehs, 2020).

of the interface (Asheichyk et al., 2017; Dong et al., 2018;
He et al., 2019b; Messina et al., 2018; Séaskilahti et al.,
2014; Zhang et al., 2019a). If the material properties of
the planar sample are non-reciprocal then the presence
of a magnetic field will affect the surface modes (Chiu
and Quinn, 1972).

To be more specific, within the Voigt configuration
as in Fig. 44(a) and (b) the dispersion relation for the
surface modes at the interface of the substrate travel-
ing to the right and left will be different (Chiu and
Quinn, 1972). Similar to the localized mode inside an
InSb nanoparticle the degeneracy of the surface modes
for k, > 0 and k, < 0 is lifted and there is a split-
ting of the surface mode resonance frequency (Chiu and
Quinn, 1972). Since the spin associated with the surface
modes (Bliokh and Nori, 2012) shows a spin momentum
locking (Mechelen and Jacob, 2016), meaning that the
waves with k, > 0 and &k, < 0 have a different spin direc-
tion, the splitting can again be understood as a Zeeman
splitting (Khandekar and Jacob, 2019a; Mechelen and
Jacob, 2016).

Now, considering the situation in Fig. 44(a) and (b) the
thermally excited localized modes of the hot nanoparti-
cle can directly couple to the localized modes of the cold
nanoparticle leading to a direct heat transfer between
the particles. The thermally-excited localized modes of
the hot particle can couple to the surface modes of the
substrate, travel along the interface of the substrate and
then couple to the localized modes of the cold nanopar-
ticle so that in this case the heat is transferred between
the two nanoparticles via the surface modes. Due to the
non-reciprocity of the substrate the heat flow P in the
forward direction in Fig. 44(a) and the heat flow P; in
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FIG. 45 Rectification coefficient from Eq. (136) for two InSb
nanoparticles with 100 nm radius in 500 nm distance above an
InSb substrate as sketched in Fig. 44 as a function of the in-
terparticle distance d for different magnetic field amplitudes.
See also (Ott and Biehs, 2020).

the backward direction in Fig. 44(b) will be different,
leading to a rectification effect (Ott et al., 2019a). A de-
tailed analysis shows (Ott and Biehs, 2020) that there
is a spin-selective coupling so that the localized modes
couple preferably to the surface modes with the spin in
the same direction. For example, the m = —1 (m = +1)
resonance couples preferably to the surface modes with
ky > 0 (k; < 0) providing the main heat flux channel
in forward (backward) direction as shown in Fig. 44(c)
(Fig. 44(d)). This can be also understood by a match-
ing of the circularity of the particle resonances and the
directionality of the interface resonances. The resulting
rectification coefficient

PP
n= 77)1

(136)

shown in Fig. 45 can be rather high even for relatively
small magnetic fields. It should be kept in mind that
when bringing the nanoparticles close to a substrate most
of the heat will go to the substrate rather than to the
other nanoparticle. Nonetheless, the rectification effect
can result in a measurable heating of the cold nanopar-
ticle (Ott and Biehs, 2020).

IV. OUTLOOK AND OPEN QUESTIONS

While the heat transport mechanisms mediated by
thermal photons in 1D and 3D systems have been inten-
sively studied during the last decade they remain today
unknown in 2D systems. Can we observe a diverging ra-
diative conductivity with respect to system size as has
already been predicted for the phononic conductivity in
2D anharmonic lattices? To answer this question and
also identify different heat transport regimes in these sys-
tems, the scaling laws of radiative thermal conductance
must be analyzed. Another fundamental problem is the



crossover from 1D to 2D and from 3D to 2D systems.
The spatial confinement of evanescent photons in these
systems should play a key role in those transitions.

So far, dense many-body systems and effects like weak
and strong localization for thermal radiation remain
largely unexplored. In these strongly correlated systems,
heat is typically carried through multiple connected chan-
nels associated with different heat carriers like electrons,
phonons, and photons, which raises the question: under
which conditions can one or more of these heat carriers
dominate heat transport? As highlighted in the introduc-
tion of this review, progress in unifying various transport
mechanisms is beginning to be made, yet a complete the-
ory capable of describing multichannel heat exchange in
large many-body systems remains a challenge for under-
standing possible transport effects associated with cou-
pling across such different channels.

As the number of bodies in interaction becomes large,
the general formalism described in this review becomes
numerically prohibitive. This is a serious issue to investi-
gate heat transport in many-body systems in presence of
long range interactions. A continuous description of heat
transport in these systems could make the study of these
systems feasible and it could in the same time be a pow-
erful tool to study the NFRHT in mesoscopic physics or
to make calculations of NFRHT between objects of arbi-
trary shape. Using the Chapman-Kolmogorov equation
for the local temperature field, a Fokker-Planck equation
can be derived and written in the hydrodynamic limit
as an advection-diffusion equation which depends on di-
rectly measurable macroscopic quantities like the effec-
tive diffusion coefficient and which could be easily solved
with standard numerical methods.

When it comes to recent exploration of the spin and
angular momentum of thermally fluctuating fields, nearly
all investigations have focused on single particles or semi-
infinite materials. However, a corresponding general N-
body theory should be straightforwardly derived using
the general framework presented in this review. This ex-
tension could pave the way to studies of thermal-field spin
and angular momentum transport in atomic and molec-
ular systems. Since magneto-optical effects based on the
use of magneto-optical materials or Weyl semi-metals re-
ported thus far have been relatively small, further studies
aimed at enhancing these effects should be considered in
the future, for instance by exploiting ferromagnetic or
more strongly magnetic materials.

Non-Hermitian physics has attracted tremendeous in-
terest during the last decade from a variety of fields
in classical physics due to their mathematical equiva-
lence with the Schrodinger equation, thus allowing one
to mimic non-Hermitian wave physics with classical sys-
tems. Bipartite plasmonic and phonon-polaritonic many-
body systems provide a natural platform to investigate
such physics. Among their many peculiarities, one might
point to the existence of original topological states that
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give rise to Berry-like phases and which may lead to the
development of new materials such as topological insula-
tors. These states and their consequences for the thermal
management (active control of heat flux, heat pumping,
heat flux focusing) remain largely unexplored in many-
body systems.

Out-of equilibrium thermodynamics of many-body sys-
tems and its connections with information theory is also
a future field of investigation. In systems with long-range
interactions, the classical thermodynamic theory fails to
describe the evolution of state variables since they can-
not be sequenced in small independent parts. Normally,
to calculate thermodynamic properties it is necessary to
determine the microscopic states of a given system. How-
ever a phenomenological approach analogous to Landau’s
transition theory may be employed to study the thermo-
dynamic behavior of these systems by considering macro-
scopic quantities. Hence, mechanisms such as phase tran-
sitions in magneto-optical systems could be investigated
by analyzing the dependence of quantities like the ther-
mal conductance or the entropy flux with order parame-
ters such as the magnitude or orientation of a magnetic
field.

The peculiarities of heat transfer in many-body sys-
tems has given rise to numerous development in the
emerging field of thermotronics to manipulate heat flux
in analogy with electric currents in electric circuits. This
radical change of paradigm opens the way to a new gener-
ation of devices for active thermal management, innova-
tive wireless sensors using heat as their primary source of
energy, and to low-electricity technologies capable of in-
formation processing. In these devices, infrared emission
coming from various systems (people, machines, electric
devices) may for instance be captured by active thermal
components to launch a sequence of logical operations
in order to either control the heat propagation (modu-
late, amplify, split), trigger specific actions (opto-thermo-
mechanical coupling with MEMS, thermal energy stor-
age) or even process information. Hence the development
of thermal logical circuits such as neural networks could
open the door to a low-power and even zero-power com-
munication technology for the Internet of Things, allow-
ing machine-to-machine communication with heat. The
design of thermal metamaterials such as thermal insula-
tors, topological insulators or superdiffusive solids is also
a promising challenge.

Finally, building experimental platforms based on
multi-tip SThM setups, suspended membranes or even
networks of electromechanical systems interacting at the
nanometre-scale is one of the most important challenges
for the next few years to measure the NFRHT in many-
body systems, prove all already predicted effects and de-
velop operational devices. In order to be able to have an
access to conductance variations of few nWK™!, high-
sensitive heat flux sensors must be developed. This
will require fabrication of thermometers working at the



nanoscale and able to measure temperatures with an ac-
curacy < 10 mK.
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