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Self-assembly is a ubiquitous process in synthetic and biological systems, broadly defined as the
spontaneous organization of multiple subunits (e.g. macromolecules, particles) into ordered multi-
unit structures. The vast majority of equilibrium assembly processes give rise to two states: one
consisting of dispersed disassociated subunits, and the other, a bulk-condensed state of unlimited
size. This review focuses on the more specialized class of self-limiting assembly, which describes
equilibrium assembly processes resulting in finite-size structures. These systems pose a generic
and basic question, how do thermodynamic processes involving non-covalent interactions between
identical subunits “measure” and select the size of assembled structures? In this review, we begin
with an introduction to the basic statistical mechanical framework for assembly thermodynamics,
and use this to highlight the key physical ingredients that ensure equilibrium assembly will ter-
minate at finite dimensions. Then, we introduce examples of self-limiting assembly systems, and
classify them within this framework based on two broad categories: self-closing assemblies and
open-boundary assemblies. These include well-known cases in biology and synthetic soft matter
— micellization of amphiphiles and shell/tubule formation of tapered subunits — as well as less
widely known classes of assemblies, such as short-range attractive/long-range repulsive systems
and geometrically-frustrated assemblies. For each of these self-limiting mechanisms, we describe
the physical mechanisms that select equilibrium assembly size, as well as potential limitations
of finite-size selection. Finally, we discuss alternative mechanisms for finite-size assemblies, and
draw contrasts with the size-control that these can achieve relative to self-limitation in equilibrium,
single-species assemblies.
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I. INTRODUCTION

A. Overview

Self-assembly is a process in which multiple subunits,
or “building blocks”, spontaneously organize into collec-
tive and coherent structures. This process is ubiquitous
in living systems, where it underpins a wide range of
structures at the cellular and sub-cellular scale, from lipid
membranes to multi-protein filaments and capsules (Al-
berts et al., 2002). Inspired by biology’s successful strate-
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gies to build functional nanostructures, self-assembly is
forming the basis of modern approaches to generate ma-
terials from the “bottom up” (Hamley, 2003). Chem-
ical techniques enable synthesizing a bewildering array
of small-molecule, macromolecular, or particulate sub-
units that are engineered to self-assemble into high-order
architectures (Boles et al., 2016; Klok and Lecomman-
doux, 2001; Stupp and Palmer, 2014). As in the bio-
logical context, the assemblies bridge between the scales
of molecules and chemical function (nanometer and sub-
nanometer) to size scales that are useful for controlling
material properties (microns and beyond).

In different domains of science and engineering, the
term “self-assembly” often connotes a range of distinct,
if overlapping, physical processes. In its broadest usage,
self-assembly implies the collective association of multiple
elements into organized configurations, by dynamics that
start from a relatively “disorganized” state and evolve
with at least some degree of randomness. The great
conceptual appeal of self-assembly in materials science
is that the instructions for a desirable or useful structure
may somehow be imprinted into the assembling subunits
themselves, such that in a simple mixture, the desired
target structures emerge from the random processes of
Brownian motion and subunit association.

In this article, we focus on self-limiting assembly
(SLA), defined as self-assembly processes that terminate
at an equilibrium state in which superstructures have a
well-defined and finite spatial extent in one or more di-
mensions. Many examples of SLA can be found in bio-
logical systems, where the assembly of identical subunits
into larger, yet finite-sized, superstructures is common
and functionally vital. As shown in Fig. 1, examples
include i) the protein shells that enclose viruses (Cas-
par and Klug, 1962; Mateu, 2013; Perlmutter and Ha-
gan, 2015) and microcompartments (Kerfeld et al., 2010;
Rae et al., 2013; Tanaka et al., 2008), ii) finite-size pro-
tein superstructures in photonic tissues (McPhedran and
Parker, 2015; Prum et al., 2009; Saranathan et al., 2012),
and iii) finite-diameter bundles and fibers of cytoskeletal
or extracellular protein filaments (Fratzl, 2003; Neville,
1993; Popp and Robinson, 2012). Each of these exam-
ples shares the notable feature that the finite size of the
assembled structure far exceeds the nanometer size scale
of the protein subunits. Crucial to their biological roles,
the functional properties of these protein superstructures
are regulated through the control of their finite size: re-
spectively, (i) selective encapsulation and transport; (ii)
optical response; and (iii) stiffness and strength. In this
way, Nature exploits self-assembly to deploy structures,
built from the same or similar subunits, in diverse intra-
cellular and extra-cellular environments, and adapts their
performance and functions by controlling the size of the
assembled structure.

In contrast to these examples of SLA, most typical
mechanisms of self-assembly in synthetic systems result
in unlimited organized states, such as crystalline or liquid
crystalline mesophases. In these states, structure may be
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FIG. 1 Functional, finite-sized assemblies of proteins in biology:
(A) protein shells of clathrin (left) and viral capsids of Herpes
simplex (right); (B) photonic nanostructures form by keratin ag-
gregates in feather barbs of Plum-throated Continga (inset); and
(C) finite-diameter fibers in reconstituted fibrin clot. Figures are
adapted from (Royle, 2012) (A, left) and (Baker et al., 2000) (A,
right); (Dufresne et al., 2009) (B); and (Weisel, 2004) (C).

well-defined on some microscopic scale, such as the unit
cell dimension, but its overall size is uncontrolled by as-
sembly thermodynamics. This result, which may be de-
scribed as bulk phase separation, is a generic consequence
of the thermodynamic trade-off between entropic and en-
ergetic drives. In the most general case, once the net co-
hesive drive for a subunit to join an assembled structure
exceeds the entropic penalty for giving up its higher con-
figurational freedom as a disassociated unit, there is no
thermodynamic reason to stop this process. Thus, sub-
units continually add to the aggregate until it reaches
macroscopic proportions and the subunits are nearly de-
pleted.

This review aims to describe the basic physical ingre-
dients and common outcomes of assembly mechanisms
that terminate at well-defined, finite sizes. We draw upon
examples of SLA from biological systems, and consider
the requirements to achieve such assemblies in synthetic
systems. For clarity of presentation, we specifically fo-
cus on assemblies comprising a single species of identical
subunits. Moreover, we restrict our definition of SLA
to equilibrium assembly mechanisms, meaning that as-
sembly terminates at a finite-sized free energy minimum
structure.

Equilibrium assembly processes deserve special focus
for both conceptual and practical reasons. A key ad-
vantage is that they are described by well-defined and
generic statistical mechanical principles. This allows one,
as we attempt to do in this article, to draw sharp dis-
tinctions between assemblies that either are or are not
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self-limiting. Of course, reaching thermodynamic equilib-
rium requires subunits to associate and disassociate from
aggregates sufficiently freely that a thermodynamically
large collection of subunits behaves ergodically, sampling
a sufficiently large ensemble of aggregation states in an
experimentally relevant time. For systems at or near
room temperature, such conditions are accessible when
assembly is driven by non-covalent and reversible inter-
actions, of the type that characterize physical associa-
tion between macromolecules and colloidal particles in
solutions (Israelachvili, 2011; Russel et al., 1989), includ-
ing van der Waals, electrostatic, hydrophobic, hydrogen-
bonding, and depletion forces.

The ability of reversibly associating assemblies, if
given sufficient time, to proceed toward one specific,
thermodynamically-defined state, points to practical ad-
vantages of equilibrium assembly. As evidenced by
the synthetic approaches to size-controlled structures
referenced above, non-equilibrium control over finite-
dimensions of assemblies requires extensive protocols to
control the assembly environment, for example, precisely
regulating the temporal sequence of temperatures and
subunit concentrations. This makes it exceedingly diffi-
cult, if not impossible, to deploy these non-equilibrium
size-control strategies in uncontrolled environments, such
as the complex and dynamic milieu of living organisms.
In such scenarios where assembly cannot be carefully
“supervised”, equilibrium mechanisms of assembly offer
the distinct advantage that the final states may still be
well defined. For example, viruses can exert only lim-
ited control over the inter-cellular media of their host
organisms. Nevertheless, to be infectious, size-controlled
capsid shells must assemble with high-fidelity from the
capsomer subunits. While this assembly process is in gen-
eral not purely equilibrium, biology often achieves such
high fidelity by building upon equilibrium processes. For
example, many viral capsids can spontaneously assem-
ble from their purified components under (near) equilib-
rium conditions, with structures that are indistinguish-
able from capsids formed within a host cell (Fox et al.,
1998; Johnson and Speir, 1997; Wang et al., 2015; Wing-
field et al., 1995), and in some cases are even infectious
(e.g. (Fraenkel-Conrat and Williams, 1955)).

At the center of this specialized focus on equilibrium
mechanisms for self-limiting single-species assembly is
the puzzle: how can equilibrium association processes
“measure” the assembly to select a thermodynamic pre-
ferred state that is larger than a single subunit, yet less
than infinite (i.e. bulk)? Because thermodynamic equi-
librium is independent of the history of system, this state
cannot be defined by the temporal process in which sub-
units arrive to the aggregate. Nor do these identical sub-
units have specific “addresses” that prescribe where they
are supposed to sit in a particular aggregation state. The
answers, not surprisingly, lie in how the shape and inter-
actions of subunits conspire to determine the dependence
of assembly energetics on size. For example, in the canon-
ical example of SLA, formation of spherical micelles from

amphiphillic molecules (Israelachvili et al., 1976), the as-
sembly motif favors individual subunits to span the as-
sembly from the solvophobic core to the solvophillic sur-
face. Hence, in this case it is intuitive that energetics
favors aggregates that are limited to sizes that are com-
parable to the length of amphiphilies themselves. Far
less intuitive is how single-species assemblies select finite
equilibrium sizes that are much bigger than the subunit
dimensions, or the range of their interactions. That is to
say, what are “limits of self-limitation” — i.e., how large
can a self-limited structure be, and how does this size
limit depend on the physical characteristics (e.g. shape,
interactions) of the subunits?

B. Outline

With these basic questions in mind, this review has
two broad aims. We first overview the generic statistical
and thermodynamic elements of SLA, and then present
a broad classification for known mechanisms of SLA of
identical subunits. The article is organized into two main
sections based on these aims. In Sec. II, we present the
thermodynamic principles of SLA based on the statisti-
cal mechanics of ideal aggregation of identical subunits.
This begins with an introduction to ideal aggregation
theory and illustration of the more generic case of un-
limited assembly. Following this, we introduce a generic
description of the ingredients for SLA. We review how
the onset of aggregation – known as the critical aggrega-
tion concentration (CAC) – the self-limiting size of ag-
gregates, and the statistics of aggregate size fluctuations
depend on the functional form for the size-dependence of
the intra-aggregate interaction energy. We then review
the conditions for “polymorphic” SLA, in which assem-
blies exhibit multiple states of aggregration (some finite,
some not). These systems are characterized by so-called
secondary CACs, in which increasing concentration suffi-
ciently far above the CAC leads to additional transitions
between aggregation states.

Sec. III describes physical systems that exhibit SLA,
and classifies the models that capture their behavior into
two categories illustrated schematically in Fig. 2: self-
closing and open boundary assembly. The former cate-
gory describes assembly processes that terminate because
they close upon themselves (Fig. 2A), and applies to shell
and tubule formation, as well as the micellar assembly
of surfactants, co-polymers, and other amphiphiles. The
latter category applies to arguably lesser known classes of
systems that have short-range attractions and long-range
repulsions, or form geometrically-frustrated assemblies.
These conditions enable assembly to terminate when the
aggregate still has “open boundaries” characterized by a
finite surface energy (Fig. 2B). For this case, we introduce
a generic framework for understanding how the interplay
between intra-aggregate stress accumulation and aggre-
gate surface energy controls the finite-size of aggregates
and the phase boundary between self-limiting and bulk
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FIG. 2 Schematic illustrations of two classes of SLA described in
Sec. III: (A) Self-closing assembly, in which inter-subunit rota-
tions lead to cohesive assembly into closed, boundary-free aggre-
gations; and (B) Open boundary (self-limiting) assembly, in which
intra-aggregate stress accumulates with assembly and restrains the
cohesive drive toward unlimited size.

aggregation.
While the core focus of this review is on the ingredients

and outcomes of SLA from the point of view of thermo-
dynamic equilibrium, the kinetic processes by which such
systems reach equilibrium states (or in some cases, not)
are essential to their study, particularly from the experi-
mental point of view. A comprehensive review of kinetic
limitations on assembly, which is relevant to both self-
limited and unlimited assembly, is beyond the scope of
this article. Nevertheless, we provide a basic introduc-
tion to some key considerations of assembly kinetics in
Sec. IV. In that section, our purpose is to illustrate
how those features of the assembly energetics that give
rise to size-selection in equilibrium influence the principle
kinetic pathways of their formation.
Before concluding, we provide a discussion in Sec. V of

physical mechanisms leading to finite-size aggregates that
fall outside of the major scope of the review, namely non-
equilibrium and multi-species SLA, and questions these
pose to the forgoing discussion for the more limited fo-
cus on single-species equilibrium SLA. We conclude with
some remarks about open challenges in the application
of the mechanisms and principles of SLA.

C. Scope of review

This review considers equilibrium assembly mecha-
nisms that terminate at well-defined, finite sizes. As
this focus suggests, we will leave out discussion of non-
equilibrium processes in general, and more specifically,
what might be called active-assembly processes, such as
the steady-state length of treadmilling and severing cy-
toskeleltal filaments (Desai and Mitchison, 1997; Mohap-
atra et al., 2016; Pollard, 2016). Beyond that, we specif-
ically consider assembly mechanisms of a single species
of identical subunits. To be sure, this leaves out an
emerging and fascinating area of research on so-called

“addressable assemblies (Jacobs and Frenkel, 2016; Zer-
avcic et al., 2017), where mixtures of multiple distinct
subunit species may be “programmed” to assemble into
a specifically defined 3D structure in equilibrium. In
this article, we provide only a limited discussion about
size-controlled multi-species assembly and possible trade-
offs with single-species mechanisms, particularly how the
number of required species increases with target size.
Although the fabrication and synthesis of finite, size-

controlled structures is well-known in synthetic materials,
for example, size-controlled nanoparticles of atoms (Coz-
zoli et al., 2006; Yin and Alivisatos, 2005) and macro-
molecules (Hiemenz and Lodge, 2007), these examples
raise a key distinction between equilibrium and non-
equilibrium assembly. The control over finite size in all
of these foregoing examples relies on the non-equilibrium
process by which they form. For example, the size dis-
tribution of metal nanoparticles (O’Brien et al., 2016;
Yin and Alivisatos, 2005) is selected through spatio-
temporal control of the physical-chemical factors that
control nanocrystal growth (e.g. concentrations, temper-
ature, ionic conditions). Indeed, as we discuss below,
in generic conditions under which such assemblies form,
allowing these assemblies to proceed to thermodynamic
equilibrium would destroy the size control. Finite-sizes
are only possible when these processes are driven, main-
tained, and arrested out of equilibrium. In this sense,
we reserve the term “self-limiting” for those rarefied as-
sembly processes that result in finite-size structures in
thermodynamic equilibrium. The physical mechanisms
of equilibrium assembly that achieve such size control
are the central focus of this article.

II. THERMODYNAMIC ELEMENTS

We begin with a review of the elementary statisti-
cal mechanical framework to describe equilibrium ag-
gregation. We then illustrate the statistical thermody-
namics of aggregation in models of what we will call
canonical aggregation, where assembly proceeds via co-
hesive (short-range and stress free) assembly of elemen-
tal units into 1D, 2D, and 3D aggregates. We illustrate
how so-defined canonical assemblies do not exhibit self-
limitation. We then describe the generic conditions for
self-limiting (finite) equilibrium assembly, and give an
overview of the concentration-dependent thermodynam-
ics of self-limiting assembly. Finally, we discuss models of
competing finite aggregates and polymorphic transitions
between finite to unlimited assembly, both of which may
by characterized multiple aggregation thresholds in the
ideal theory.

A. Equilibrium principles

In this review we concern ourselves with equilibrium
association of single subunits, or monomers, into states
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with aggregation number n subunits, or n-mers. Our
purpose is to describe the minimal ingredients of assem-
bly dominated by structures with finite aggregation num-
ber n. To this end, we restrict our presentation to ideal
aggregation theory, where interactions between distinct
aggregates are neglected. This is not to say that inter-
actions among subunits within the same aggregate are
neglected. Quite the contrary, as we describe below,
the intra-aggregate energetics, and its n-dependence, are
critical for determining whether or not association leads
to self-limited states, or instead, more canonical states of
bulk aggregation.

1. Classical aggregation theory: fixed total concentration,
non-interacting aggregates

Ideal aggregation theory is well established for certain
classes of self-assembly systems, particularly in the con-
text of amphiphiles and surfactants. As such, this theory
is better described, and in greater depth, in references
such as (Gelbart et al., 1994; Israelachvili et al., 1976;
Safran, 1994; Tanford, 1974). Here, our purpose is to
consider the application and implications of ideal aggre-
gation theory to a broader class of self-limiting assembly
systems. Hence, we only present a minimal introduction
to the elements necessary to describe aggregation to self-
limiting states.
We consider a solution ofN total subunits in a fixed to-

tal volume V . In what follows, we refer to unnassembled
single subunits as monomers 1. To describe the concen-
tration of subunits, it is convenient to scale concentration
by the reference state concentration v−1

0 ; i.e., v0 is the
volume per subunit in the reference state 2. In this way,
we can define concentration in non-dimensional terms as
the total volume fraction of subunits, Φ = Nv0/V

3. The
N subunits are distributed among distinct n-mer aggre-
gates, with the volume fraction of subunits in n-mers
defined as φn. In the following, we refer to φn as the sub-
unit fraction distribution. Throughout this review, it is
also useful to introduce a separate variable for the aggre-
gate distribution ρn ≡ φn/n, which describes the relative

1 In literature on amphiphile aggregation the term “unimer” is of-
ten used to describe the single subunit, to avoid overlap with
the connotation of “monomer” as the chemical repeat of macro-
molecular chain, which is often a component of self-assembling
molecular subunits.

2 For concreteness, we may take v0 to be the subunit volume in
the disassociated state, which provides a convenient and non-
dimensional measure of concentration which will be much less
than unity for dilute conditions. However, the formalism is in-
dependent of choice of reference state; for example, v0 = 1/NAV

liter with the reference state concentration of 1 mol/liter com-
monly used in the life sciences. Changing the definition of the
reference state only uniformly rescales the free energy of intra-
aggregate interactions ǫ(n).

3 Throughout, we also refer to a Φ more colloquially as the “con-
centration” of subunits

count of n-mers in the mixture. Defined in this way, φn

and ρn are all less than unity for all n. Moreover, for
the particular assumptions of ideal aggregation to hold
(i.e. two-body contacts between aggregates are vanish-
ingly rare), these quantities must all remain much less
than unity. To simplify the nomenclature, throughout
the review we refer to the non-dimensional concentration
(volume-fraction) simply as the concentration.
We define nǫ(n) as the free energy of intra-aggregate

interactions; i.e., ǫ(n) is the per subunit aggregation free
energy in an n-mer. The total free energy F for the ideal
distribution of aggregates is given by

F

(V/v0)
=

∞
∑

n=1

φn

(

ǫ(n) +
kBT

n

[

ln(φn/n)− 1
]

)

, (1)

with the two terms in the parentheses respectively rep-
resenting the intra-aggregate interaction free energy and
translational entropy (in the ideal solution approxima-
tion) of n-mers, with the 1/n in the latter term reflecting
the critical fact that all subunits of an n-mer share a
common, single center-of-mass degree of freedom.
To obtain the equilibrium aggregate size distribution,

we minimize F with respect to φn, subject to the con-
straint that the total subunit concentration is fixed:

∞
∑

n=1

φn = Φ, (2)

i.e.,

∂

∂φn

[

F + µ
(

Φ−
∞
∑

n=1

φn

)]

= 0 (3)

with µ playing the role of a Lagrange multiplier. This
yields

µ = ǫ(1) + kBT lnφ1 = ǫ(2) +
kBT

2
ln(φ2/2) =

. . . = ǫ(n) +
kBT

n
ln(φn/n) =

∂F

∂φn
(4)

showing that µ is the subunit chemical potential. This
condition requires that subunits have the same chemical
potential in all aggregates, and it derives from both the
energetics of the assembly and the (ideal) translational
entropy of the n-mer. Note that the prefactor of 1/n of
the translational entropy, deriving from the sharing of a
single center of mass in an n-mer, reflects a generically
higher translational entropy of disaggregated states. The
limit n → ∞ gives µ = ǫ(∞), describing the equilibrium
between monomers and a bulk phase-separated conden-
sate which has no translational entropy. For simplicity
of notation, throughout this article, we choose to define
energies such that ǫ(1) = 0, in which case ǫ(n) is defined
as the difference of the per subunit energy between an
n-mer and disassembled monomers.
It is convenient to use the first equality in eq. (4) to

recast the chemical potential in terms of the (unknown)
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monomer concentration, from which we can reformulate
the generic chemical equilibrium conditions in terms of
the law of mass action

φn = n
(

φ1e
−βǫ(n)

)n

. (5)

where β−1 ≡ kBT . Inserting the expression for φn(φ1)
into the fixed number concentration eq. (2) and summing
over n then results in an equation of state relating the
total concentration Φ to the monomer concentration φ1.
This equation of state and the underlying distribution of
assemblies, φn, derive from the specific n-dependence of
aggregate interactions, with equilibrium states that are
dominated by self-limited aggregates occurring only for
certain forms of ǫ(n).

2. Unlimited assembly: short-range cohesive aggregation

Before describing models that give rise to SLA, we first
consider the thermodynamics of the simplest models of
physical association, described by short-range attraction
between subunits. Crucially, while these models are rel-
evant to a broad range of physical scenarios like colloidal
crystallization (Manoharan, 2015; Morphew et al., 2018),
they do not exhibit SLA. Yet, they will serve as a use-
ful reference point for illuminating the necessary condi-
tions for SLA. Specifically, these models result in either
a single dispersed state whose most populous aggregate
state is n = 1 (the free monomer), or coexistence be-
tween the dispersed monomer-dominated state and an
unlimited aggregate (macrophase separation). The ab-
sence of equilibrium finite-sized states will be traced to
the generic size-dependence of the cost of open bound-
aries at the edges of cohesive aggregates. In subsequent
sections we will show mechanisms that compete against
the open boundary cost to enable SLA.
Here, we consider models where inter-subunit associa-

tion promotes uniform d-dimensional aggregates, e.g. 1-
dimensional chain-like or 2-dimension sheet-like aggre-
gates. Every internal subunit forms, on average, z at-
tractive bonds of strength −u0, and subunits at the free
boundary have δz fewer contacts (e.g. Fig. 3A). For ex-
ample, in d = 1 chain-like assembly z = 2 and δz = 1.
For the generic dimensionality, the interaction free energy
takes the form

ǫ(n) = −ǫ0 +
∆0

n1/d
, (6)

where ǫ0 = u0z/2 and represents the per subunit cohe-
sive free energy in the bulk (i.e. n → ∞) structure. The
second term derives from the growth of number of par-
ticles at the boundary (∼ n(d−1)/d) and their deficit of
cohesive bonds (δz), so that ∆0 is equal to u0(δz) times
a geometric factor accounting for the mean bond geom-
etry at the boundary. Notably, the bonding-geometry in
these assemblies permits the structure to grow uniformly
without disrupting this local contact structure at any size

scale, a condition that we revisit when describing exam-
ples of self-limiting assembly in Sec. III.
We define the concentration φs ≡ e−βǫ0 , so that the

law of mass action, eq. (5), takes the form

φn = n
(

φ1/φs

)n
e−β∆0n

α

, (7)

where α = 1 − 1/d is an exponent that characterizes
the geometric growth of the exposed boundary with n.
As shown in Fig. 3B, φ1 ≤ φs and the distribution
ρn = φn/n decreases exponentially with aggregate size
for large n, and for any d. Hence, under these condi-
tions Φ, the sum over the subunit fraction distribution
in eq. (2), is finite, implying the existence of conditions
where the concentration of subunits achieves equilibrium
in the suspension. However, no such equilibrium exists
for φ1 > φs, implying that φ1 → φs is an upper limit to
concentrations that may be in equilibrium in a dispersed
state. In other words, when Φ is sufficiently large that
φ1 = φs the solution is saturated, and additional sub-
units (further increasing Φ) must phase separate to the
macroscopic state (i.e. n → ∞).
First consider the linear case (d = 1), where the equa-

tion of state can be ready computed from eq. (7) with
α = 0 and the geometric series,

Φ = e−β∆0
φ1φs

(φs − φ1)2
for d = 1 (8)

which notably diverges as φ1 → φs. As plotted in Fig.
Fig. 3C, this divergence indicates that the monomer con-
centration increases with total concentration, but never
reaches the point of saturation (i.e. φ1 < φs for any fi-
nite Φ). Hence, for all subunit concentrations the system
maintains φ1/φs < 1, implying that the distribution of
linear aggregates is always exponential, φn/n ∝ e−n/〈n〉,
where the number-average length is 〈n〉 = 1/ ln(φs/φ1).

4

Noting that ǫ0 = ∆0 for a 1D chain assembly, the growth
of mean length with end energy in the limit of high
concentration 〈n〉 ≃ eβ∆0/2

√
Φ, which is well-known for

equilibrium polymers (Hiemenz and Lodge, 2007) and
cylindrical micelles (Gelbart et al., 1994; Safran, 1994),
highlights the mechanism that prevents “bulk” assem-
bly for 1D aggregation. In this dimension, the proba-
bility to introduce a free end remains finite ∼ eβ∆0 in
the n → ∞ limit, analogous to the statistics of domain
walls in the 1D Ising model at finite temperature (Fisher,
1984). However, while the mean-size is finite, this case
is distinct from what we will describe as self-limiting as-
sembly, in both the strong dependence of 〈n〉 on total
concentration, and perhaps more significantly, the fact
that fluctuations in aggregate size are always compara-

ble to the mean; that is,
〈

(n− 〈n〉)2
〉1/2 ∝ 〈n〉.

4 The number-average aggregate size is 〈n〉 =
(
∑

n nρn)/(
∑

n ρn) = (
∑

n φn)/(
∑

n φn/n), where φn/n
is the distribution of n-mers, while the mass-average aggregate
size is 〈n〉M = (

∑

n nφn)/(
∑

n φn).
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FIG. 3 (A) Examples of d-dimensional (linear, planar and spherical) short-range cohesive aggregation. (B) Plots of the aggregation
distributions (relative counts of n-mers) for d = 1 (top) and d = 2 (bottom) for monomer concentrations increasing to saturation (i.e.
φ1 = φs) for ∆0 = 1 kBT . While the dispersity (and mean size) of linear aggregates diverges as φ1 → φS, it remains finite for d ≥ 2 at
saturation. (C) The equation of state (ideal aggregation theory) for the free monomer population φ1 as a function of the total concentration
Φ for linear, planar and spherical aggregates for ∆0 = 2.75 kBT . For d = 2 and d = 3 the free monomer concentration saturates at a finite
Φ where φ1 = φS. For linear aggregation, saturation is not reached in the ideal theory.

For higher assembly dimensionality, (d > 1), the ge-
ometric growth of the free boundary cost restrains the
n → ∞ divergence in the distribution eq. (7) as the
solution approaches saturation. For φ1 = φs the distri-
bution takes the form φn(φ1 → φs) = ne−β∆0n

α

, the
sum over which converges for α > 0 when d > 1. For
example, we can approximate the sum for planar ag-
gregates (d = 2) by replacing the sum over aggregation
number n with dimensionless aggregate radius n = πr2,
i.e.

∑

n φn → 2π
∫

drr φ(r). At saturation, aggregates

sizes are exponentially distributed, φ(r) ≃ πr2e−
√
πβ∆0r,

yielding a saturation concentration

Φs(d = 2) ≃ 12
(kBT

∆0

)4

(9)

at which point the ideal solution of aggregates reaches
equilibrium with the bulk condensate. Thus, with the
exception of the special case of d = 1 assembly, short-
range cohesive aggregation is characterized by a finite
saturation concentration, Φs = Φ(φ1 = φs), above which
subunits phase separate into an unlimited bulk structure.
The thermodynamics of these examples are plotted

in Fig. 3C in terms of the equation of state φ1(Φ) for
each dimensionality. Note that while the distributions of
short-range interacting systems have finite mean sizes in
the absence of macrophase separation, their distributions
are dominated by monomers; i.e., the concentration of n-
mers ρn is always maximal for n = 1, a property that
sharply contrasts with the SLA behavior described next
in Sec. II.B.

B. Self-limiting assembly: Elements and outcomes

In this section, we describe the generic ingredients and
thermodynamic outcomes of assembly models that ex-

hibit self-limitation. That is, unlike the short-range co-
hesive models described above, these systems undergo
ideal assembly into self-limiting states dominated by ag-
gregates with a finite size n∗ that is larger than 1, yet
smaller than bulk (unlimited) states.
The physical mechanisms that give rise to this behav-

ior will be discussed in detail in Sec. III. Here, we give
an overview of the essential thermodynamic ingredients
and behavior based on a generic description of the ener-
getics of a self-limiting system. We consider the assembly
behavior in terms of a generic function for the interac-
tion free energy per subunit, ǫ(n), which, as sketched in
Fig. 4A, favors aggregation at a particular finite size, or
possibly several distinct finite sizes. To highlight its dis-
tinct role from the translational entropy of aggregation,
we use the term aggregation energetics to refer to ǫ(n),
but we note that this describes a free energy per sub-
unit, as interactions in general have both energetic and
entropic contributions.
Given a known form of the ǫ(n), the discussion of

this section addresses several key questions. First, what
determines the onset of aggregation from the dispersed
state? Second, what selects the (dominant) size of finite
aggregates? And third, what are the conditions for driv-
ing transitions between different states of self-limiting ag-
gregation, or between self-limited and unlimited aggrega-
tion states?

1. Aggregation threshold

We first describe the simplest picture of the concen-
tration dependence of ideal aggregation. We begin with
the assumption of an energy per subunit ǫ(n) of the form
shown in Fig. 4A, which has a single energy minimum at
a finite aggregation number nT, which we call the target
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FIG. 4 (A) A schematic plot of the aggregation (free) energy per
subunit is shown as a continuous function of aggregation number
n. The dashed line shows a harmonic expansion around a local
minimum at the target size n = nT. (B) Schematic plots of the
aggregate distribution for a model of the type sketched in (A).

size. The basic dependence of aggregation on concentra-
tion for such a model is sketched in Fig. 4B. There are
two dominant populations of aggregates, monomers and
n-mers, with the n-mers narrowly distributed around the
most populous state n∗ ≈ nT.

For large enough n∗, the thermodynamics of aggre-
gation can be captured, to a first approximation, by
a two-state, or bimodal, distribution, in which fluctu-
ations around free monomers and the n-mer aggregate
peak are neglected. We will self-consistently test the va-
lidity of this approximation below (see eq. 18). When
subunits are distributed strictly between the n = 1 and
n = n∗ states, the conservation of subunit mass is simply
Φ = φ1 + φn∗ . Chemical equilibrium then gives the con-

centration in preferred aggregates φn∗ = n∗
(

φ1e
−βǫ∗

)n∗
,

where ǫ∗ ≡ ǫ(n∗) < 0 is the per subunit energy gain upon
aggregation into the optimal size. Defining the concen-

tration scale

φ∗ ≡
[

n∗e
−n∗βǫ∗

]−1/(n∗−1) ≈ eβǫ∗/n
1/n∗
∗ , (10)

yields the following equation of state, relating total con-
centration to monomer concentration

Φ

φ∗
=

φ1

φ∗
+
(φ1

φ∗

)n∗

, (11)

a result derived originally by Debye to explain scatter-
ing in soap solutions (Debye, 1949). The dependence of
the populations of monomers and n∗-mers on total con-
centration is plotted in Fig. 5A and can be summarized
as follows. For low concentration, Φ ≪ φ∗, and addi-
tional subunits added to the system go predominantly to
monomers, since φ1 ≈ Φ while φn∗ ≈ φ∗(Φ/φ∗)n∗ ≪ Φ.
Notably, the population of aggregates in this regime φn∗

is simply proportional to the random probability of n∗
free subunits to spatially coincide, Φn∗ , times the en-
hanced Boltzmann factor for aggregation, e−n∗βǫ∗ ≈
φ−n∗∗ , and hence is diminishingly small. In the large con-
centration regime Φ ≫ φ∗, the dominant populations are
reversed: the n∗-mer population increases in proportion
to total concentration, φn∗ ≈ Φ, while monomers increase
much more slowly, φ1 ≈ φ∗(Φ/φ∗)1/n∗ ≪ Φ. These two
regimes are characterized by a crossover near Φ ≈ φ∗,
which is known as the critical aggregation concentration
(CAC), although it is not strictly a phase transition for
finite n∗.5 As illustrated in Fig. 5A, the aggregation
crossover becomes increasingly sharp as the aggregation
number n∗ increases. Fig. Fig. 5B shows an example
of CAC behavior observed in experiments of hepatitis B
virus capsid protein assembly (Ruan et al., 2018).
Underlying the transition is a thermodynamic trade off

between translational entropy and the interaction free
energy that drives aggregation. Maximizing the ideal
translational entropy of aggregates favors maximizing the
number of independent translational degrees of freedom,
i.e. the number of independent centers of mass in the
mixture. To form an aggregate, n∗ monomers must give
up their n∗ centers of mass, for the single center of mass
of the aggregate. Only when the aggregation free energy
is sufficient to “pay” this entropic price (i.e. when the
concentration of “excess” monomers is sufficiently large),
does aggregation become thermodynamically favorable.
Hence, the CAC depends not only on aggregation ener-
getics, but also the aggregation number n∗. According
to eq. (11), φ∗ exhibits a modest increase with n∗ (as

∼ n
−1/n∗
∗ ) due to the increased translational entropy loss

5 The CAC is commonly referred to as the critical micelle concen-

tration (CMC) in the amphiphile literature. In the virus assem-
bly literature it is often called the pseudo-critical concentration

to emphasize that it does not correspond to a true phase transi-
tion for finite n∗, and because the CAC observed in finite-time
experiments typically exceeds the equilibrium CAC due to nu-
cleation barriers.
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FIG. 5 (A) Plots of a “two-state” model composed of only
monomers (n = 1) and aggregates of a single peak size (n = n∗ ≈
nT) as functions of the total concentration Φ and for different fi-
nite aggregate sizes. The critical aggregation concentration (CAC),
here φ∗, characterizes the concentration range beyond which ag-
gregates dominate the subunit population. (B) Assembly behavior
of hepatitis B virus (HBV) capsid protein in vitro as a function
of concentration. The plot shows the concentration-dependence of
the fraction of subunits (protein dimer) in two states: free subunits
and assembled capsids composed of 120 subunits. Notice that as
the total concentration crosses the CAC (labeled KD,app), the con-
centration of free subunits is nearly constant, with almost all ad-
ditional subunits assembling into capsids. Figure in (B) reprinted
from (Ruan et al., 2018).

for when joining larger aggregates. We return to the im-
plications of the n∗-dependence of aggregation thresholds
in the discussion of competing aggregate states below.
Notice that although the model ignores physical interac-
tions between distinct aggregates, the change in trans-
lational entropy couples n∗ units, making aggregation a
cooperative process. For this reason, the CAC becomes
progressively sharper and tends toward a thermodynamic
transition as n∗ → ∞ (Fig. 5A).

2. Finite aggregates: Mean size and size dispersity

Here we review the conditions for the most proba-
ble, or optimal aggregate size n∗ given a known form of
ǫ(n), which we assume for the moment to have a single
minimum at target size nT. The optimal size n∗ cor-
responds to the maximum in the aggregate distribution
ρn =

(

eβ(µ−ǫ(n))
)n
, or equivalently, the minimum in the

free energy n
[

ǫ(n) − µ
]

, which includes the total inter-
action free energy and entropy cost of forming an n-mer
from free monomers. However, except under conditions
where monomers are buffered to a fixed concentration,
the chemical potential µ = lnφ1 varies as the equilib-
rium monomer population changes with total concentra-
tion. Naively, this might suggest that the optimal aggre-
gate size should strongly vary with total concentration.
Here, we illustrate why, notwithstanding the variation of
µ with concentration, n∗ is nearly independent of Φ and
almost entirely determined by the form of aggregation en-
ergetics, ǫ(n). Following this, we summarize the effects
of dispersity (i.e. finite width of the aggregation peaks in
Fig. 4B) on aggregation thermodynamics, which is neces-
sary to account for the (weak) concentration dependence
of the optimal aggregate size.
Two-state aggregation: As a first approximation,

consider the two-state aggregation model deep into the
aggregation regime, i.e. well above the CAC (Φ ≫ φ∗).
The optimal aggregate size derives from the condition
dρn

dn

∣

∣

n∗
= 0, or

ǫ(n∗) + n∗ǫ
′(n∗)− µ = 0, (12)

where ǫ′ = dǫ
dn . Using the fact that φ1(Φ ≫ φ∗) ≃

φ∗(Φ/φ∗)1/n∗ = eǫ∗(Φ/n∗)1/n∗ from eq. (11) in the pre-
vious section, this transforms to the condition for the
optimal (peak) aggregate size

ǫ′(n∗) =
kBT

n2
∗

ln
(

Φ/n∗
)

(two− state). (13)

From eq. (13) we may draw two key conclusions. First,
in the limit of large target size n∗ ≫ 1, the optimal
size corresponds to a minimum of ǫ(n). That is, since
ǫ′(n∗) → 0, n∗ → nT and the aggregate peak is selected
by minimizing per sub unit aggregation energy, indepen-
dent (to a first approximation) of concentration. Second,
the right-hand side of eq. (13), which is proportional to
the translational free energy of a dilute concentration of
n∗-mers, is negative, and hence ǫ′(n∗) < 0. Combining
this with eq. (12), we find the inequality,

µ < ǫ(n∗). (14)

This last condition shows that the equilibrium chemical
potential approaches from below, but never quite reaches,
the interaction energy of the optimal aggregate ǫ(n∗) (ex-
cepting the unphysical limit Φ/n∗ → 1).
Finally, the fact that n∗ corresponds to a maximum

in the aggregate size distribution, suggests the following



10

condition from d2ρn

dn2 < 0

ǫ′′(n∗) > −2ǫ′(n∗)

n∗
> 0. (15)

As the righthand side goes to zero as ∼ n−3
∗ , the ag-

gregation energetics must be convex in the vicinity of
the optimal size. Strictly speaking however, a stronger
condition than convexity alone is needed to justify the
neglect of aggregation number fluctuations in the 2-state
approximation, as discussed next.
Gaussian approximation: We now consider the ef-

fect of convexity of the aggregation energetics, character-
ized by the second-derivative of ǫ(n) at the peak aggre-
gate size. As above, we restrict our analysis to the case
of a single, well-defined minimum in ǫ(n) occurring at a
finite target size nT > 1. Close to the minimal-energy
size, the energetics have the form

ǫ(n) ≃ ǫT +
ǫ′′T
2
(n− nT)

2, (16)

where ǫT < 0 and ǫ′′T > 0 respectively characterize the
minimum energy and convexity of the target aggregate,
as illustrated in the harmonic approximation in Fig. 4A.
Physically, ǫ′′T, which we call the convexity, quantifies
(twice) the energetic cost (in kBT ) to alter the aggregate
number from its target by ±1. In the following section,
we will describe the physical effects that control convex-
ity in different models of self-limiting assembly. Here, we
see that the concentration-dependence of the mean (or
peak) self-limiting size, as well as the size-dispersity, are
controlled by a single combination of ǫ′′T and nT.
The effect of finite convexity is to allow fluctuations in

n around the peak size n∗. When ǫ′′T and nT are suffi-
ciently large, the aggregate distribution follows a Gaus-
sian,

ρn(n ≫ 1) ≃ en∗β(µ−ǫ∗)e
− (n−n∗)2

2〈∆n2〉 , (17)

where 〈∆n2〉 characterizes the variance of aggregate sizes
relative to n∗. Assuming that the Gaussian distribution
of aggregates is well separated from the monomer peak,
the size fluctuations around n∗ may be summed in φn =
nρn, yielding the same mass-action formula as eq. (11),
but with a redefined CAC,

φ∗ ≈ eβǫ∗
(

n∗
√

2π〈∆n2〉
)1/n∗

, (Gaussian). (18)

Compared to the two-state approximation, φ∗, is de-
pressed by a factor proportional to 〈∆n2〉1/2n∗ due to the
comparative increase in the number of aggregates states
and associated entropy. Likewise, well above the CAC,
the monomer population is depressed (relative to the 2-
state approximation) by the same factor. Combining this
effect into the chemical potential with the peak aggregate
condition in eq. (12) gives the following prediction for

peak (mean) aggregate

n∗ ≃ nT

(

1 +
kBT

n3
Tǫ

′′
T

ln
[ Φ

nT

√

2π〈∆n2〉

]

)

, (Gaussian)

(19)
where we are considering only the leading correction to
n∗−nT. In this same limit, aggregate dispersity becomes,

〈∆n2〉1/2
nT

≃ 1
(

n3
Tβǫ

′′
T

)1/2
, (Gaussian), (20)

where again averages are taken with respect to aggregate
distribution ρn (i.e. number average).
The results of the Gaussian approximation in eqs.

(19) and (20) highlight two physical effects of convexity.
First, in eq. (19), the mean aggregate size always falls
slightly below the minimal-energy target size (i.e. because
Φ < 1, and hence, the logarithmic factor is always neg-
ative). This “sub-optimal” aggregate size derives from
the (translational) entropic preference for smaller-n ag-
gregates, and hence, this weak depression of n∗ decreases
with increasing supersaturation as the translation free en-
ergy of aggregates (kBT/nT) ln(Φ/nT) tends toward zero.
Second, the relative shift of mean aggregation number
(n∗−nT)/nT and the relative size variance 〈∆n2〉1/2/nT

decrease with the reciprocal of ǫ′′Tn
3
T/kBT . Hence, cor-

rections from size variations become small, in relative
terms, either for sharp minima, when ǫ′′T ≫ kBT , or

for larger aggregate number, when nT ≫ (kBT/ǫ
′′
T)

1/3.
While at first glance, this might suggest a generic ten-
dencies toward monodisperse aggregation in the large nT

limit, SLA models described in Sec. III show convexity
to be a decreasing function of nT. Hence, as it turns out,
the decrease of relative size fluctuations with target size
becomes non-trivially dependent on the geometric sensi-
tivity of aggregation energy.
Self-limitation without minima: Before consider-

ing landscapes with more complex equilibria, we briefly
note that it is possible to construct functional forms of
ǫ(n) which exhibit self-limitation without local minima.
As an example, consider a variation of the general type
of energetics described in Sec II.A.2,

ǫ(n) = −ǫ0 +∆(n) (21)

where ∆(n) is a monotonically decreasing, and convex,
function of n so that the minimal energy per particle
occurs for infinite aggregates, i.e. ǫ(n → ∞) = −ǫ0. The
condition for a maximum in ρn in eq. (12) gives

µ+ ǫ0 ≡ −(∆µ)∞ = ∆(n∗) + n∗∆
′(n∗) (22)

Because the chemical potential is bounded from above by
−ǫ0 (from eq. (14)) and hence (∆µ)∞ > 0, the conditions
for finite optimal aggregate size can be satisfied (at some
accessible µ) provided that ∆(n) decreases faster than
1/n, or more specifically, that

∆′(n)

∆(n)
< − 1

n
, (23)
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for some range of finite n. For example, for any model
that approaches the bulk energy as a power-law ∆(n) =
∆0/n

γ where γ > 1, it is straightforward to show the

peak size obeys n∗ =
[

(γ − 1)∆0/(∆µ)∞
]1/β

, which in-
creases continuously with concentration as ∆µ∞ → 0
from above.
While the previous argument shows that it is possible

to construct mathematical examples of minima-free en-
ergy densities that result in finite-n peaks in ρn, physical
cases of SLA fall outside of this category. For example,
generic physical grounds suggest that aggregates possess
a boundary, or surface, at which the assembly energy is
different (generally higher) than in the interior, as de-
scribed for cases of short-ranged cohesive interactions in
Sec. II.A.2. In the limit of large n, the asymptotic
contribution to the energy density from this boundary,
n−1/d where d ≥ 1, will dominate over other possible
terms falling off faster than n−1 (such as the ∆(n) term
in eqs. (21) and (23)), leading to unlimited assembly.
Hence, we exclude such anomalous cases, and focus the
discussion on situations where self-limitation is directly
associated with well-defined minima of ǫ(n).

3. Competing states of aggregation

Secs. II.B.1 and II.B.2 above describe the simplest
case of self-limiting assembly: a concentration-controlled
crossover, or “pseudo-transition”, from a monomer-
dominated state to a state dominated by aggregates of
one finite size. The finite aggregate size corresponds
to a single minimum in ǫ(n), and the transition oc-
curs at a single CAC. In this section, we overview the
thermodynamics of cases in which assembly is character-
ized by multiple local minima, or instead, by transitions
between self-limiting and unlimited aggregation states.
In these cases, the aggregation thermodynamics can ex-
hibit a more complex dependence on concentration, cor-
responding to secondary CACs between different aggre-
gation states. While concentration-dependent transitions
between different aggregates are commonly attributed to
interactions between aggregates (Israelachvili, 2011), it
is less widely appreciated that they can also occur in
ideal aggregation models, which strictly neglect inter-
aggregate interactions. As we review in Sec. III.A.2, the
possibility of an “ideal” secondary CAC was first con-
sidered in the context of transitions between spherical
and cylindrical surfactant micelles (May and Ben-Shaul,
2001; Porte et al., 1984). In this section, we describe this
behavior as a generic consequence of the translational en-
tropy preferences for smaller aggregate sizes, and as such,
ideal secondary CACs can occur in a much broader class
of SLA models.
Two finite aggregate states: We first describe a

simple model with only 2 states of finite aggregates in
equilibrium with a population of free monomers, for sim-
plicity ignoring number fluctuations around these three
states. We consider two states of small and large aggre-

gates, corresponding to two well-defined local minima of
ǫ(n), at nS and nL > nS subunits, respectively, as shown
schematically in Fig. 6A. In this case, aggregation is con-
trolled by not only the difference in the respective energy
minima ǫS and ǫL, but also the difference in the aggrega-
tion number. To understand aggregation in the presence
of multiple minima, it is convenient to define the nominal
CACs corresponding to either aggregate state, from eq.
(10),

φ∗
ν ≡

[

nνe
−βnνǫν

]−1/(nν−1)

≈ eβǫν

n
1/nν
ν

for ν = S,L (24)

These are concentrations at which aggregates of either
type would overtake free monomers, were it not for the
additional equilibrium between the populations of small
and large aggregates. In terms of these concentration
scales, the law of mass action takes the form

Φ = φ1 + φ∗
S

(φ1

φ∗
S

)nS

+ φ∗
L

(φ1

φ∗
L

)nL

, (25)

where the last two terms represent the respective popu-
lations of subunits in nS-mers and nL-mers , which we
denote as ΦS and ΦL. As above for the case of a sin-
gle minimum in ǫ(n), in the limit of high concentration,
aggregation always proceeds towards the state with the
lowest energy. However, in this case, there are two pos-
sible thermodynamic scenarios for the concentration de-
pendence, depending on the relative energy difference be-
tween small and large aggregates:
i) ǫS < ǫL: Because nS < nL, in this case it is al-

ways true that φ∗
S < φ∗

L, which means that as concen-
tration increases, φ1 → φ∗

S before reaching φ∗
L. Above

the threshold where φ1 ≈ ΦS , monomers remain effec-
tively “buffered” at φ1 ≈ φ∗

S, and it is straightforward to
show that ΦL ≪ ΦS

6. Thus, when the smaller aggregate
has a lower per subunit aggregation energy, aggregation
proceeds as if there was only a single target state with a
CAC at φ∗

S and never yields a significant number of large
aggregates.
ii) ǫS > ǫL: When the large aggregates are energeti-

cally favored, there are two possibilities. Consider first
the case of large energy differences, such that eβ(ǫL−ǫS) <
n
1/nL
L

n
1/nS
S

. For this first regime φ∗
L < φ∗

S, and there is only a

single CAC at the (lower) critical concentration for large
aggregates. For the second regime, when the energy dif-
ference between large and small aggregates is smaller, in

the range 1 > eβ(ǫL−ǫS) >
n
1/nL
L

n
1/nS
S

, the order of the CACs

reverses: φ∗
S < φ∗

L, and leads to two CACs. As shown
shown in Fig. 6B, for this case upon increasing concen-
tration from the dilute limit, the concentration reaches a

6 The assumptions of ideal aggregation require that Φ must remain
below unity, a condition that requires φ1 ≪ φ∗

L for case (i).
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FIG. 6 (A) A schematic plot of the aggregation energetics for a case with two local minima corresponding to small and large finite
aggregates, containing nS and nL respective subunits in their target sizes. The solid curve shows a case where small aggregates are the
global minimum of ǫ(n), while the dashed curve shows a case where the larger aggregate is the global minimum. The latter case can lead
to secondary CAC transitions between small and large aggregates, as shown in (B), which plots the monomer, small aggregate and large
aggregate populations as functions of total concentration for large aggregates that are slightly energetically more favorable than small
ones (eβ(ǫL−ǫS) = 0.8). In this case, small aggregates dominate at intermediate concentrations, but ultimately are overtaken by a second
population of large aggregates above a second CAC. (C) An assembly state map for the two finite aggregate model, as a function of the
(per subunit) energy difference between small and large aggrates and total concentration. The color scale shows the mean aggregate size,
while the solid lines indicate boundaries between states dominated by monomers, nS-mers, and nL-mers. Dashed lines indicate where
subdominant aggregates reach the monomer concentration. Plots in (B) and (C) show results of the two finite aggregate model for nS = 10
and nL = 50.

first CAC at Φ ≈ φ∗
S, with a transition to a state dom-

inated by small aggregates (i.e. ΦS ≫ φ1,ΦL). This
state persists until reaching a second CAC at Φ ≈ φ∗∗,
defined by a crossover in dominant aggregation state to
ΦL > ΦS. The concentration threshold condition can be
estimated by solving for the monomer concentration at
which ΦS(φ1) = ΦL(φ1) ≫ φ1 from eq. (25)

φ∗∗ ≈ φ∗
L

(φ∗
L

φ∗
S

)nS/(nL−nS)

, (26)

which is larger than the “bare” value φ∗
L owing to the

depletion of free monomers by small aggregates, and cor-
responds to a total concentration Φ∗∗ ≈ 2φ∗∗. The high-
concentration regime above the second CAC is dominated
by minimal-energy large aggregates, but maintains a size-
able amount of small aggregates (i.e. ΦL ≫ ΦS ≫ φ1),
approximately buffered at the second CAC concentra-
tion.
To summarize this 2-aggregate model, it is possible

to have two pseudo-critical transitions (as in Fig. 6B),
first from disassembled monomers to small aggregates
and then from small to large aggregates, provided the
energy difference between aggregates is sufficiently small,
in the window

0 < ǫS − ǫL <
kBT

nS
lnnS −

kBT

nL
lnnL. (27)

This is consistent with the secondary CAC behavior
shown in the assembly state diagram in Fig. 6C, calcu-
lated for the case of nS = 10 and nL = 50.
The physical origin of this double CAC behavior can

be traced to a competition between the higher cohe-
sive energy of large aggregates pitted against the higher

(per subunit) translational entropy of smaller aggregates.
This can be cast in terms of the chemical equilibrium be-
tween large and small aggregates, which requires

µ = ǫS +
kBT

nS
ln ρS = ǫL +

kBT

nL
ln ρL. (28)

Energetically favorable large aggregates, ǫL < ǫS, require
aggregate concentrations to adjust to maintain a suitably
higher translational entropy of small aggregates, namely
1
nS

ln ρS < 1
nL

ln ρL, specifically

ρS/ρL =
enSβ(ǫL−ǫS)

ρ
(nL−nS)/nL

L

(29)

This condition shows that the larger entropy of smaller
aggregates requires that ρS/ρL > 1 provided that the
concentration of large aggregates remains sufficiently

small, below ρL < ρ∗∗L =
[

eβ(ǫL−ǫS)
]nSnL/(nL−nS)

. Hence,

when nS and the differential in aggregation energy are
small enough, small aggregates remain more populous
than large aggregates up to total concentrations that ex-
ceed the first CAC to the small aggregate state, until the
second CAC.
This simplified model illustrates a generic conclusion.

Even if an aggregate state does not correspond to the
global minimum of ǫ(n), it may exhibit an entropically-
stabilized window of thermodynamic dominance at in-
termediate concentrations, provided its target size is suf-
ficiently small and its energy is sufficiently close to the
global minimum. Next, we illustrate this entropic sta-
bilization of finite (compact) aggregates in models for
which the competing states are unlimited.
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Finite and unlimited aggregates: While polymor-
phic assembly into multiple finite-number aggregates oc-
curs in some natural and biomimetic systems (Lutomski
et al., 2018; Sun et al., 2007; Wingfield et al., 1995) and
may be desirable for nanomaterials applications, cases in
which aggregates change dimensionality are more com-
mon. That is, aggregate structures that remain finite in
at least one or more spatial directions, but undergo es-
sentially unlimited growth in other directions. The most
common examples are amphiphillic assemblies, which can
either form spherical micelles (finite in all directions),
cylindrical micelles (finite in two spatial dimensions, un-
limited in one), or lamellar/layered assemblies (finite in
one dimension, unlimited in two). In Sec. III.A.2 be-
low we describe the molecular ingredients that lead to
polymorphic transitions between aggregate dimensional-
ity based on a model of surfactant assembly (Bergström,
2016; May and Ben-Shaul, 2001). In this section, we il-
lustrate how the principles of secondary CAC behavior
apply to models which can exhibit states of finite ag-
gregation number (e.g. spherical) that can transition to
states of 1D aggregation or a bulk (unlimited) morphol-
ogy.

Since our primary interest is to describe conditions
where ideal aggregation gives rise to concentration-
dependent transitions in morphology, we consider a min-
imal description of a generic model including finite and
unlimited aggregation states. As summarized in Fig.7A,
this model considers three disconnected “branches” of as-
sembly:
1) Finite (compact) aggregates, with respective target

size and energy, nF and ǫF
2) 1D aggregates, with energy per subunit

ǫ(n) = ǫ1D +∆0/n

where ∆0 > 0 characterizes the cost of finite “endcaps”
and ǫ1D < 0 is the limiting n → ∞ per subunit assembly
energy in this morphology
3) Bulk aggregates, with energy density ǫbulk. Here, we

consider only one macroscopic aggregate (n → ∞) with
negligible boundary energy.

Based on the foregoing analysis of the 2-finite assembly
state model, it can be anticipated that secondary CAC
behavior from finite to 1D aggregation takes places when
the n → ∞ energy density of 1D aggregates is lower
than finite aggregates, but the energy gap is sufficiently
small that the translational entropy associated with the
compact aggregates can stabilize a window of nF-mer ag-
gregates. Likewise, when the energy density of the bulk
state falls below these dimensionally limited states, we
anticipate an upper limit to concentration (i.e. satu-
ration) which can maintain equilibrium with dispersed
aggregates.
With this in mind, we consider a simplified law of mass

action for subunit populations

Φ = φ1 +ΦF +Φ1D +Φbulk, (30)
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FIG. 7 (A) A schematic plot of polymorphic aggregation en-
ergetics with three competing branches of assembly: finite
aggregates with a local minimum at nF, 1D aggregates, and
bulk aggregates (n → ∞ energy shown as horizontal dashed
line). In this case, the infinite 1D aggregate has a lower per
subunit energy than finite aggregates, and there is a barrier
(in total energy) δ that separates these states at n = nF, i.e.
the double arrow in (A) corresponds to δ/nF. (B) Phase di-
agram for concentration-dependent size selection. The domi-
nant aggregation state is shown for a system with coexistence
among finite aggregates with nF = 100 subunits, separated
by an energy gap ǫF − ǫ1D and a barrier of δ, eq. (34), to 1D
aggregates. There is an additional per subunit energy gap
of ǫ1D − ǫbulk = 0.0005kBT between 1D and bulk aggregates.
The horizontal axis gives the energy gap between spheres and
cylinders, and the vertical axis gives the total concentration
relative to the CAC for finite aggregates φ∗

F ≃ eβǫF/nF. The
boundaries between monomers, finite and 1D aggregates are
determined by crossovers in the most populous aggregate type
from eq. (30), while the point of bulk saturation is determined
by the point when µ = ǫbulk. In this example, the energy per
subunit in finite aggregates is fixed at ǫF = −10 kBT and
the endcap energy of spherocylinders is ∆0 = 20 kBT . The
maximum energy gap for which 2nd CAC behavior occurs
(∆ǫmax ≈ 0.14 kBT , eq. 35) is indicated on the x-axis.
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where the terms respectively describe the populations of
free monomers, subunits in a single finite aggregate size,
1D aggregates of various size, and bulk aggregation. The
population of subunits in finite aggregates is given by
(neglecting number fluctuations)

ΦF = nF

(

φ1e
−βǫF

)nF
, (31)

while the 1D aggregate population is given by

Φ1D ≃
∞
∑

n=nF

ne−β∆0
(

φ1e
−βǫ1D

)n

≃ nFe
−β∆0

(

φ1e
−βǫ1D

)nF

(

1− φ1e−βǫ1D
) . (32)

In this final term, we made the additional assumptions
that 1D assembly is not favorable below some aggregate
size close to nF > 1, and that the monomer concentration
remains well below the value eβǫ1D where Φ1D diverges7.
The results are not qualitatively sensitive to these ap-
proximations.
Based on these forms, it is straightforward to find the

free monomer concentration φ∗∗
1 where finite aggregates

and 1D aggregates are equally populous, i.e. ΦF(φ
∗∗
1 ) =

Φ1D(φ
∗∗
1 ),

φ∗∗
1 = eβǫ1D

(

1− e−βδ
)

, (33)

where

δ = ∆0 + nF(ǫ1D − ǫF) (34)

is the energy difference, or “barrier”, between an nF-mer
and a 1D aggregate of the same size (see Fig. 7A). As de-
scribed above, a stable aggregate population requires at
least a local minimum in the energy and hence a barrier
necessarily separates aggregation states associated with
distinct local maxima in population. Critically, the size
of this barrier determines the window of secondary CAC
transition behavior, as follows.
First, note that δ > 0 implies that the energy of form-

ing two “end caps” on the 1D aggregate exceeds that
of the target nF-mer. Second, the existence of a sec-
ond CAC requires that this concentration exceeds the
primary CAC to a nF-mer dominated state, that is, the

condition φ∗∗
1 > φ∗

F ≃ eβǫF/n
1/nF

F . This gives an upper
limit to the energy gap between nF-mer aggregation and
1D assembly for second CAC behavior, ǫF−ǫ1D < ∆ǫmax,
with

∆ǫmax ≈ kBT

nF
lnnF + kBT ln

(

1− e−δ
)

. (35)

7 Specifically, we assume nF > eβδ. For nF < eβδ, Φ1D ≃

e−β∆
(

φ1e−βǫ1D
)nF+1(

1 − φ1e−βǫ1D
)−2

, φ∗∗
1 ≈ eβǫ1D

(

1 −

e−βδ/2/n
1/2
F

)

.

, the stability window of the nF-mer state expands, in
terms of ∆ǫmax, both with decreasing target size and in-
creasing energy barrier to 1D aggregation. For energy
gaps larger than this limiting condition, the intermedi-
ate nF-mer state disappears 8.
Last, note that monomers reach chemical equilibrium

with the bulk state at a concentration φ1 = eβǫbulk , which
sets an additional condition for second CAC behavior,
φ∗∗
1 < eβǫbulk . This gives the upper limit to the energy

gap between 1D and bulk assembly for second CAC be-
havior before saturation,

ǫ1D − ǫbulk < −kBT ln
(

1− e−βδ
)

(36)

This condition shows that concentration range of the 1D
aggregate state diminishes with increasing energy barrier
between compact and 1D aggregates.
An example assembly state diagram for this model un-

der conditions ǫF > ǫ1D > ǫbulk is shown in Fig. 7B. The
concentration dependent state of aggregation is plotted
versus energy gap between nF-mers and 1D aggregates
for variable ǫF with fixed nF, ∆, ǫ1D, and ǫbulk. Under
these conditions, when the aggregation energy of (com-
pact) nF-mers is larger than, but sufficiently close to,
that of (infinite) 1D aggregation, the system undergoes
a sequence of concentration-driven transitions: first from
monomers to finite-aggregations; then to 1D aggregates;
and finally, to bulk (unlimited) assembly. In the following
section, we revisit the possibility of multi-CAC behavior
in the context of polymorphism of surfactant aggregates,
focusing on its microscopic origin for this effect in terms
of an underlying molecular model of aggregation.

III. MECHANISMS AND MODELS OF SELF-LIMITING

ASSEMBLY

In Sec. II, we overviewed the basic thermodynamics
of ideal aggregation, and described some of the generic
ingredients and outcomes of finite-size equilibria. We
showed that the key ingredient is a per subunit aggrega-
tion free energy which has one or more local minima as a
function of aggregation number (for finite-number aggre-
gates), or as a function of the size of one or more spatial
dimensions of the aggregate (for spatially finite aggre-
gates like quasi-cylindrical or planar structures). In this
section, we review four broad mechanisms of self-limiting
assembly, and a physical example of each mechanism. In
each case, we first focus on the physical ingredients that
give rise to the self-limiting aggregation energetics, and
then illustrate some of the implications of the generic
phenomonology overviewed in Sec. II.

8 Note that eq. (35) is an implicit relation for ∆ǫmax, since δ is a
function of (ǫ1D−ǫF). However, in the limit δ ≫ 1, the maximum
gap is approximately ∆ǫmax ≈ (ǫ1D + kBT lnnF) /nF. Similarly,
in the limit nF < eβδ, ∆ǫmax ≈ (∆0 − 2kBT ) /nF (see previous
footnote 7).
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To organize the discussion, we divide these mechanisms
into two broadly-delineated classes: self-closing assembly
and open-boundary assembly. These classes are distin-
guished by the presence or absence of an open bound-
ary and gradients in intra-aggregate stress in the target
assembly. Self-closing assembly describes aggregates in
which the subunits, by and large, share the same “co-
hesive environment” of neighboring subunits, and fur-
ther adopt a common shape in the target assembly.
In contrast, self-limitation of open-boundary assemblies
requires gradients of the inter-subunit forces through-
out the aggregate. Within the discussion, we highlight
the distinct outcomes and potential “tradeoffs” between
these different mechanisms in terms of size selection.
We divide the remainder of Sec. III into two main

parts, focusing respectively on self-closing and open-
boundary assemblies. Following the introduction of each
broader class of SLA, we further subdivide each into two
subclasses, representing four basic physical mechanisms
of SLA. For each of the four basic mechanisms, we briefly
overview the applicable physical systems and then intro-
duce a simple example model that captures the emer-
gence of self-limited assembly.

A. Self-closing assembly

We define self-closing assembly (SCA) as class of self-
limiting assembly that achieves a finite target size, or fi-
nite target dimension, due to anisotropic binding between
neighbors that leads to a preferred rotation of neighbor
bonds. Such interactions generically arise when subunits
are tapered or wedged-shaped, such that cohesive bond-
ing leads to a relative rotation of the axes of neighbor
units (see Figs. 2A and 9A). In combination with the
relative displacement of subunit centers, this relative ro-
tation, when built up over multiple subunits leads to a
preferred intra-assembly curvature (along one or more
principal directions). In the simplest case, this can be
visualized as 1D “loops” of subunits, whose preferred
curvature radius Rclose leads the structure to close upon
itself.
We include in the SCA class structures that close upon

themselves in all directions of assembly and thus achieve
a finite number of subunits, such as the spherical shell
in Fig. 8A, as well as structures that close in one or
more directions but remain unlimited in others, such
as the tubule in Fig. 8B. In the latter case, structures
have an unlimited number of subunits but achieve a fi-
nite size in the self-closing direction(s). For example,
the tubule is unlimited in the axial direction, but has
a well-defined radius and corresponding number of sub-
units in the circumferential direction. Notably, the un-
derlying principles for size selection remain the same as
for finite number; namely, the self-limiting size W of a
self-closing direction is determined by the minimum of
the energy per subunit with respect W . This can be
readily understood by considering a system with nearly

A B

self-closing 

directions
self-closing 

direction

unlimited direction
A B

FIG. 8 (A) Schematic of spherical (shell) assembly with two inde-
pendent self-closing directions of assembly. (B) Schematic of tubule
assembly with one self-closing direction (circumferential) and one
unlimited direction (axial) of assembly.

all of its N subunits assembled in aggregates of unlimited
number, and correspondingly a negligible fraction of free
monomers. To first approximation, the energetic costs
of free edges and the translational entropy of the unlim-
ited aggregates can be neglected, and the concentration
of free monomers can be assumed a small contribution to
the total free energy, F ≈ Nǫ(W ). Hence, the thermo-
dynamic equilibrium at fixed N corresponds to the se-
lection of the energy-minimizing size W∗, corresponding
to ∂W ǫ|W∗ = 0. We describe similar considerations for
self-limiting, open-boundary assemblies in Sec. III.B.1
below.
Strictly speaking, for SCA it need not be neces-

sary to identify a continuously loop of bonds along the
self-closing direction(s), nor that target curvatures are
strictly uniform. We only require that there are one or
more periodic directions on a representative 2D surface
of the aggregate (e.g., the surface spanned by the sub-
unit centers). Moreover, the preferred curvature does
not need to select a perfectly commensurate number of
subunits per cycle, since physical subunits generically
possess some flexibility of shape and cohesion (bonding)
that permits fluctuation in the inter-unit rotation. In the
simplest case, e.g. with fluid-like intra-assembly order, a
SCA may accommodate such strains through uniform de-
formation of subunits and their bonds. However, certain
physical examples introduce extra geometric constraints
(e.g. solid-like, spherical shells) which require at least
some variable intra-assembly strains. Notwithstanding
the possibility of such gradients, we categorize assembly
as self-closing if its target size is selected through the cur-
vature radius Rclose, as opposed to the accumulation of
stress-gradients, which is described as a distinct class of
self-limiting assembly below.
Physical examples of SCA can be divided, roughly, into

two groups according to the ratio of subunit size, char-
acterized by some thickness d, and the target curvature
radius Rclose. When Rclose/d ≫ 1 the target number of
units per cycle is proportionately large. This case de-
scribes tubules, shells and capsules. The second case,
Rclose ≈ d describes assemblies whose curvature (and
thus self-limited size) is most often selected and regulated
by the molecular dimension itself, which is characteristic
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of amphiphiles and their micellar aggregates.

1. Shells, capsules, and tubules

We first review the case of tubule or shell-like as-
semblies. Examples of these are common in biology,
where “tapered” protein subunits select a preferred
radius of assembly curvature (Oosawa and Asakura,
1975). Quasi-cylindrical (tubular) examples include
microtubules (Cheng et al., 2012; Nogales, 2000) and
the bacterial flagella (Namba and Vonderviszt, 1997),
while quasi-spherical (shell and capsule) examples in-
clude clathrin cages (Bucher et al., 2018; Giani et al.,
2017; Kirchhausen et al., 2014; Mettlen et al., 2018), vi-
ral capsids (Bruinsma and Klug, 2015; Hagan, 2014; Ha-
gan and Zandi, 2016; Mateu, 2013; Perlmutter and Ha-
gan, 2015; Twarock et al., 2018; Zandi et al., 2020; Zlot-
nick and Mukhopadhyay, 2011), bacterial microcompart-
ments (Bobik et al., 2015; Chowdhury et al., 2014; Iancu
et al., 2007; Kerfeld et al., 2010; Kerfeld and Melnicki,
2016; Rae et al., 2013; Schmid et al., 2006), and other
protein-shell organelles (Nott et al., 2015; Pfeifer, 2012;
Sutter et al., 2008; Zaslavsky et al., 2018). Recently,
engineered tapered or patchy colloids have also drawn
interest for their ability to realize synthetic analogs of
self-closing tubules and shells (Li et al., 2011; Morphew
and Chakrabarti, 2017), although many if not most such
realizations to date are properly categorized as analogs
to micelles where curvatures are comparable to colloidal
dimension. Whatever the underlying subunit structure,
the existence of 1D curvature only ensures equilibrium
self-limitation along one of the two assembly dimensions
in the tubular constructs, while the preferred positive
Gaussian curvature of shells and capsules leads to equi-
librium states with finite subunit number.
To illustrate the self-limiting thermodynamics of shells

and capsules, where target curvature radii are much
larger subunit dimensions, consider the following min-
imal model. Spherical fluid capsules, shown schemati-
cally in Fig. 9A, are composed of subunits with nominal
area a0 and a tapered shape that favors a preferred (tar-
get) spherical curvature radius RT. Here, we restrict the
analysis to cases in which the curvature preference suf-
ficiently disfavors locally anisotropic curvature (Lázaro
et al., 2018a) to limit incomplete assembly to cap-like ag-
gregation states with positive Gaussian curvature. Com-
petition between incomplete assemblies with positive and
zero Gaussian curvature was recently considered in Ref.
(Mendoza and Reguera, 2020). We assume the cap cov-
ers an axisymmetric “cap” domain of radius R from its
pole up to the aperture angle Θ (see Fig. 9A). While a
closed capsule with a preferred curvature RT has a target
aggregation number nT = 4πR2

T/a0, a capsule may real-
ize a different aggregation number n = 2πR2(1− cosΘ),
provided that either it is open (i.e. Θ 6= π) or is deformed
from its preferred taper (i.e. R 6= RT).
Taking the simplest possible model, we assume that the

intra-shell order is fluid-like, such that the only elastic
penalty derives from bending deformations away from
target curvature, which we consider via a membrane-like
bending energy

Ebend =
B

2

∫

dA
( 1

R
− 1

RT

)2

, (37)

where B is a bending modulus and the area integration
is carried out over the incomplete shell. Additionally, we
consider the line energy associated with open edge for an
incomplete cap,

Eopen = 2πR sinΘ λ, (38)

where λ is the energy per unit length of the exposed
edge, associated with the fewer cohesive bonds as well
as a difference in solvation of subunits at the edge. The
aggregation energy as a function of n then takes the form

ǫ(n,Θ) = −ǫT +
2πB

nT

(

√

nT(1− cosΘ)

2n
− 1

)2

+

√
2πa0λ

n1/2

sinΘ√
1− cosΘ

(39)

where −ǫT is the “bare” aggregation energy for subunits
in the bulk of undeformed capsules.
It is easy to see that the form of ǫ(n,Θ) in eq. (39)

has a global minimum for closed capsules of the target
size (i.e. n = nT and Θ = π). Nevertheless, the com-
bination of bending elasticity and the edge energy of in-
complete shells influences assembly for n 6= nT. This can
be seen by plotting the landscape of assembly energetics
in the n/nT - Θ plane, as shown in Fig. 9B. For very
small aggregate sizes n/nT ≪ 1, caps lock into the pre-
ferred curvature, R → RT, described by the condition
cosΘ → 1 − 2n/nT, shown as a dotted line in Fig. 9B.
As n increases, the edge energy favors compression of
the open caps to smaller curvature radii R < RT. The
amount of this shape compression grows up to a critical
aggregation number nS, beyond which the minimal en-
ergy capsule “snaps” discontinuously to a closed shell of
suboptimal size, that is Θ → π for nS < n < n0.
Hence, the minimal aggregration vs. n generically ex-

hibits two branches (Fig. 9C): an open cap for n < nS and
an (edge-free) closed shell for nS < n < nT. The tran-
sition between these two branches can be understood in
terms of “nucleation” of an open pore in an over-curved
shell, where nT − nS corresponds to the size of the “crit-
ical nucleus”. The inset of Fig.9C shows that the critical
preclosure size nS generically decreases with an increas-
ing (dimensionless) ratio of edge energy and bending stiff-
ness, λ̄ ≡ (a0nT/8π)

1/2λ/B.
Notwithstanding the generic existence of a transition

between open-cap and preclosed branches of the energy
landscape, the transition does not lead to stable partial
shells (i.e. a minima in ǫ(n) for n 6= nT). Hence, while
the open cap branch and its transition to the closed shell
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FIG. 9 (A) Schematic geometry of a “fluid capsule” of tapered
subunits, which assumes partial shell geometries of spherical caps
with aperture angle 0 < Θ ≤ π. (B) A contour map of the energy
density landscape of the capsule model as a function of aperture
angle and the ratio of subunits n to the preferred number in the
ideal closed shell nT. Low (high) values of ǫ(n) appear as purple
(red). The dotted line shows a partial shell with the target curva-
ture, while the solid line indicates the minimal energy cap, whose
curvature radius is slightly compressed by the line tension of the
boundary. Beyond a threshold cap size n = nS ≃ 0.4nT, this open
cap becomes unstable to preclosure, and the minimal energy branch
runs along Θ → π. This landscape corresponds to a dimensionless
line tension λ̄ = 0.1. (C) Plots of the minimal energy branches of
assembly: incomplete caps are shown as colored curves (metastable
portions are dashed), and the closed shell (Θ → π) is shown as a
black curve. The inset shows the size nS corresponding to the pre-
closure, or “snap”, transition between stable open caps and closed
shells as a function of line tension.

may have implications for assembly pathways and kinet-
ics, the equilibrium distribution of self-limiting capsules
is independent of the edge energy and generically gov-
erned by the energetics of the closed-shell branch. This
fact has further generic consequences for the concentra-
tion dependence and dispersity of aggregate size, both
of which are governed by the product of the convexity
and cube of the target size, ǫ′′(nT)n

3
T/kBT , according

to eqs. (19) and (20). The Θ → π limit of (39) shows
that ǫ′′(nT) = Bπ/n3

T. Hence, the decrease of convex-
ity with target assembly size precisely cancels that en-
tropic factor of n3

T, such that the relative shift in mean
aggregate size and relative dispersity, (n∗ − nT)/nT and
〈∆n2〉1/2/nT, respectively, are limited only by the ra-
tio of bending modulus to thermal energy, B/kBT , and
independent of self-closing target size. 9 Therefore, to
regulate the self-limiting size of self-closing assemblies in
absolute terms, the rigidity of subunits and their angular
interactions must grow with target size.

The predicted growth of size fluctuations with target
size would seem to contradict observations of the best
studied example of self-closing shells, icosahedral virus
capsids. At conditions of optimal assembly, size poly-
dispersity of viruses is remarkably small. In fact, this
high degree of monodispersity has been exploited by us-
ing 3D crystalline arrays of virus capsids for optical ap-
plications requiring precise spatial periodicity (Brillault
et al., 2017; Chen et al., 2016; Dang et al., 2011; Dela-
lande et al., 2016; Judd et al., 2014; Malyutin et al., 2015;
Minten et al., 2011; Park et al., 2015; Rother et al., 2016;
Steinmetz et al., 2011; Young et al., 2008). While high-
precision measurements of size-dispersity in capsids are
challenging, electron microscopy structures that were ob-
tained without the assumption of icosahedral symmetry
show that as many as 40% of alphavirus nucleocapsid
core particles exhibit defects (Wang et al., 2018, 2015),
and hence some dispersity in shape. Notably some non-
icosahedral structures, like immature HIV caspids, ex-
hibit variations in number of subunits (∼ 1000 GAG pro-
tein subunits) that are on the order of the mean capsid
size (Briggs et al., 2009), although such effects may also
be attributed to assembly kinetics (Dharmavaram et al.,
2019). More recently, size distributions of hepatitis B
virus (HBV) capsids (and capsids of other viruses) have
been achieved near or at single-subunit precision using
resistive pulse sensing (Zhou et al., 2018, 2011), mass
spectrometry (Uetrecht et al., 2011), and charge detec-
tion mass spectrometry (Lutomski et al., 2018; Pierson
et al., 2016, 2014). Although metastable defective cap-
sids are observed (Lutomski et al., 2018; Pierson et al.,
2016), these measurements show that at long times (po-

9 This continues until the asymptotic limit of zero spontaneous
curvature (nT → ∞), at which point the free energy per subunit
is independent of size and the size distribution becomes an unlim-
ited exponential (Helfrich, W., 1986) as shown for 1D assemblies
in section II.A.2.
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FIG. 10 Examples of well-formed and defective woodchuck hep-
atitis B virus (WHV) capsids, adapted from Ref. (Pierson et al.,
2016). (A) Portion of a representative cryo-EM image of empty
WHV capsids assembled in vitro in the absence of RNA (from cap-
sid proteins with the C-terminal RNA binding deleted, wCp149).
The population of capsids is structurally heterogeneous; the black
arrow indicates an example of a T = 4 icosahedral capsid, while
the white arrows indicate examples of defective capsids. (B) 2D
class averages of (1) icosahedral and (2-4) defective particles. Red
arrows in (2) and (4) indicate locations where the capsid shell has
overgrown and overlaps itself. (C) Schematic model of a T = 4
icosahedral HBV capsid, with the monomers forming the 12 five-
fold vertices colored green, and others colored blue. (D) Hypothet-
ical model of the structure of a capsid that is non-icosahedral but
closed, with an elongated structure containing 150 protein dimers
(the icosahedral capsid has 120 dimers). Here the green dimers
are in pentamers or extend between pentamers and hexamers, and
the blue dimers are in hexamers or extend between two hexamers.
Images reprinted from (Pierson et al., 2016).

tentially corresponding to a near equilibrium state) the
population is dominated by icosahedral capsids with the
native size 10.
To place these measurements in the context of the

results for the fluid shell model, we note that bending
moduli for virus capsids have been estimated from the
force-displacement curves measured in nanoindentation
experiments in which virus capsids are compressed using
an AFM tip 11. Estimated bending modulus values vary
from 10-200 kBT , but typical values fall in the higher

10 In fact HBV is dimorphic. Both in vitro and in vivo HBV cap-
sid assembly yields mostly 120 protein dimer capsids with T = 4
icosahedral symmetry in the Caspar Klug nomenclature (see sec-
tion V.B), but also a few percent of T = 3 icosahedral capsids.
However, size fluctuations around the dominant T = 4 popula-
tion were shown to be insignificant at long times.

11 It should be noted that estimating elastic moduli from the force-
displacement curve is sensitive to the value chosen for thickness
of the capsid shell, and the relationship between the atomic struc-
ture and the effective mechanical thickness remains at least some-

end of the range, 100-200 kBT . (For comparison, bend-
ing moduli of lipid bilayer membranes are typically in the
range of 10− 20 kBT .) Using the result from above that

〈∆n2〉1/2 ≈ n0/
√
πB, with n0 = 120 and an estimate of

B ∼ 60kBT for HBV12 gives a root mean squared size
fluctuation of about 9 dimers, considerably larger than
the long-time experimental estimates.

This discrepancy highlights two physical ingredients
neglected in the model described above: the discrete
subunit size and the fact that most virus capsids, as
well as most other protein shells, are crystalline rather
than fluid. As discussed below in section V.B, the ar-
rangement of proteins within icosahedral capsids can be
mapped onto a triangular net. However, tiling a spher-
ical topology with a triangular lattice requires the for-
mation of 12 five-fold sites, often consider as “defects”
in a hexagonal packing. A number of equilibrium cal-
culations have shown that the elastic energy of the de-
fects themselves and inter-defect elastic interactions sig-
nificantly affect the energy landscape of such shells (Bru-
insma et al., 2003; Chen et al., 2007; Li et al., 2018, 2019;
Mendoza and Reguera, 2020; Zandi et al., 2004). These
effects are reflected in local minima in the aggregate en-
ergy at certain ‘magic numbers’ of subunits (Zandi et al.,
2004). Notably, these minima correspond to shells with
high degrees of symmetry, with the in-plane bonding en-
ergies corresponding to shells with icosahedral symmetry.
Thus, when including the energetics of this bond-ordering
a size fluctuation of even one subunit can incur a signifi-
cant energy cost (& 10kBT ), since it requires disruption
of the low-energy geometry, for example, through the in-
troduction of a pair of 5- and 7-fold defects. In fact,
the metastable structures observed in HBV capsids are
typically found at discrete intervals corresponding to de-
viations of multiple subunits from the native capsid size
(Lutomski et al., 2018; Pierson et al., 2016, 2014), sug-
gesting that typical fluctuations correspond to insertion
or deletion of multi-subunit oligomers (e.g. hexamers
of the capsid protein) which would minimize disruptions
to the capsid symmetry. For example, Fig. 10A,B show
cryo-EM images and examples of 2D class averages re-
spectively of in vitro assembly products of woodchuck
hepatitis B virus (WHV) capsid proteins, which exhibit
heterogeneous structures including icosahedral capsids,
elongated closed shells, and shells with overlapping edges.
Fig. 10C shows a hypothetical model of a non-icosahedral
closed shell, in which insertion of additional hexamers

what obscure (May et al., 2011; May and Brooks, 2011).
12 The bending modulus is calculated from the 3D Youngs modulus

E = 0.26 GPa obtained from nanoindentation measurements in
Roos et al.(Roos et al., 2010), and assuming a thin shell model so
that the 2D Youngs modulus and bending modulus are respec-
tively given by Y = Et and B = Y t3/(12(1 − ν2)), with t = 2.1
nm the effective shell thickness (Roos et al., 2010; Wynne et al.,
1999) and ν = 0.4 the Poisson’s ratio (Roos and Wuite, 2009;
Uetrecht et al., 2008).
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leads to a prolate structure.
Computational models of icosahedral assembly have

also identified ensembles of defective capsules in which
additional hexamers were added to the icosahedral shell
(Elrad and Hagan, 2010; Nguyen et al., 2009), although
these models and the corresponding defective structures
differ from the HBV system. Hence, for more realis-
tic models that incorporate both bending and “bond-
network” elasticity, we expect that these corrugations in
the energy landscape (i.e. due to communicability with
icosahedral symmetry) versus n will be superposed on
the smooth landscapes illustrated in Fig. 9 for the fluid
shell model, which may account for size fluctuations to
be restricted for a limited set of low-energy values of n
at or near to high-symmetry, or magic number capsomer
arrangements.

2. Amphiphillic aggregates

Arguably the most common and well-studied class of
self-limiting assemblies is amphiphiles. In the broadest
sense, these refer to subunits with chemically dissimilar
ends, which consequently favor distinct solvent environ-
ments. For example, lipids and surfactants possess oily
hydrocarbon tails attached to a polar or charged head
group (Israelachvili, 2011), which imparts a respective
hydrophobic and hydrophillic character to either end of
the same molecule (e.g. schematic in Fig. 11A). Dis-
persing such amphiphiles in a solvent that has higher
affinity to one end of the molecule generically drives
them to form aggregates that partially hide, or sequester,
the solvophobic portions while maintaining exposure of
the solvophillic portions. Examples of such aggregrates,
spherical and cylindrical micelles, and bilayer sheets, are
shown schematically in Fig. 11B-C. Notably these struc-
tures curve upon themselves, but do so on a lengthscale
that is limited by, and comparable to, the size of the am-
phiphile itself, e.g. the molecular tail length in Fig. 11A.
The tendency to exclude unfavorable solvent from the
“core” of the aggregate, in combination with the packing
constraints of filling this region with the solvophobic por-
tions, requires each amphiphillic subunit to “span” the
entire thickness of the aggregate, which is fundamental
to their self-limiting assembly.
In this section we describe a simple model to capture

the self-limiting assembling of amphiphiles, and high-
light, in particular, how thermodynamic considerations
of changes in aggregate thickness shape the preferred ag-
gregate curvature, but also give rise to polymorphism in
the dimensionality of aggregates (e.g. spheres, cylinders,
membranes). For illustration, we review a model for the
thermodynamics of surfactant aggregation, of the type
shown in Fig. 11A, capturing central ingredients of the
well-known packing model developed by Israelachvili and
coworkers (Israelachvili, 2011; Israelachvili et al., 1976).
While this model aims to capture molecular elements of
low-molecular weight surfactants and lipids, the essential
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FIG. 11 (A) A cartoon model of a (single-tailed) surfactant
molecule. (B) A schematic of a spherical micelle with the thick-
ness of the solvophobic core (ℓ) and the area per head group (a)
highlighted. A wedge-like portion of the micelle is cutaway to il-
lustrate the interior packing of tails. (C) A spherocylinder model
of a worm-like micelle, which has a cylindrical portion of length
L capped by two hemispherical micelles of equal radius. (D) An
energy landscape for spherocylinders described by the model in eq.
(44) with P−1 = 2.25 and k̄ = 0.1. The dashed orange line shows
the (L = 0) spherical micelle branch and the dashed pink line shows
the (L = 0) worm-like micelle branch, whose corresponding energy
as a function of reduced aggregation number is plotted in (E).
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thermodynamic features carry over to other amphiphillic
assemblies, such as block copolymers in selective sol-
vents (Halperin et al., 1992; Jain and Bates, 2003; Leibler
et al., 1983; Zhang and Eisenberg, 1996). The thermody-
namics of amphiphile aggregation incorporates three in-
gredients: (i) the thermodynamics of area per solvophillic
head group; (ii) the thermodynamics of molecular exten-
sion; and (iii) the constraint of uniform density in the
solvophobic core, which links the first two elements.

A simple model to describe the head-group energet-
ics considers the per subunit energy to form aggregates
with an area a at the solvent/core interface (Israelachvili,
2011; Israelachvili et al., 1976). The generic tendency to
“hide” amphiphiles from the solvent is parameterized by
a surface energy cost γa, where γ > 0 favors dense lateral
packing of head groups. Competing against this lateral
compression is the cost of inter-unit repulsive interac-
tions, which in the simplest case are described by the
two-body term in the virial series, giving a per subunit
energy A2/a, where A2 > 0 (Tanford, 1974). These two
terms can be combined into a single form

ǫint = γ
(

a+
a20
a

)

, (40)

where a0 =
√

A2/γ is the optimal head group area.

In combination with the tendency to achieve optimal
head group area are additional thermodynamics of tail
packing in the core, and the costs to extend its length,
ℓ. There are various models proposed for this effect, in-
cluding a finite-maximum extension (Israelachvili, 2011;
Israelachvili et al., 1976) or instead treating the core as
melt of flexible polymers (Ben-Shaul et al., 1984; Dill
and Flory, 1980; Nagarajan, 2002; Nagarajan and Ruck-
enstein, 1991). Here, we adopt a simplified model used
by May and Ben-Shaul for the free energy of tail length ℓ
that spans from the solvent/core interface into the center
of the aggregate

ǫstretch =
k

2

(

ℓ− ℓ0
)2
, (41)

where k is an elastic constant for intra-subunit stretch
and ℓ0 is a preferred length, which parameterizes the free
energy cost of deformations from a preferred conforma-
tion state of the short tail. Here, we consider k and ℓ0 as a
minimal description of the extensional thermodynamics,
and like γ and a0, these parameters can be varied through
a combination of subunit structure and physical-chemical
conditions, e.g. temperature and solvent properties.

Extensional energetics are linked by packing con-
straints associated with occupying the core with a fixed
density of solvophobic portions of the subunits (Is-
raelachvili, 2011; Israelachvili et al., 1976). These con-
straints vary with the dimensionality of the limited di-
rections in the aggregate: dL = 3, spherical micelles;
dL = 2, cylindrical micelles; and dL = 1 planar bilay-

ers 13. By considering the ratio between the core volume
and interfacial area of an aggregate of thickness (radius)
ℓ, it is straightforward to show that the (solvophobic)
volume per subunit satisfies

v0 =
aℓ

dL
. (42)

As aggregates change their shape and number, uniform
density requires adjustment of a and ℓ to maintain con-
stant v0. Using this constraint, we rewrite the assembly
energy in terms of a single dimensionless thickness,

r ≡ ℓ

(v0/a0)
= dL

a0
a
, (43)

giving

ǫ(r, dL)

γa0
=

(dL
r

+
r

dL

)

+
k̄

2

(

r − P−1
)2

+ ǫ0, (44)

where k̄ = kv20/(γa
3
0) is a scaled stretch modulus of the

tail, and ǫ0 parameterizes the negative energetic gain
to assemble. The parameter P was introduced by Is-
realachvili as the packing parameter, a measure of the
commensurability of the preferred shape with accessible
aggregate geometries,

P ≡ a0ℓ0
v0

. (45)

Written in this way, it is straightforward to understand
how area and stretch thermodynamics compete to de-
termine the optimal aggregate morphology. While area
terms favor a thickness r = dL, stretch thermodynamics
favor a thickness r = 1/P . Only for particular preferred
headgroup areas and subunit lengths do these two val-
ues coincide, i.e. when P = 1/dL; otherwise there is at
least some shape frustration between these terms. As a
heuristic, we therefore expect aggregation to favor the di-
mensionality dL closest to 1/P , which corresponds to the
“tapered” geometry that most closely approximates the
favored areal and thickness packing at uniform density.
A more complete picture of the polymorphism of ag-

gregates is given by considering assembly landscapes that
allow for transitions of micellar dimension. Fig. 11C
shows the structure of a “wormlike” micelle, modeled as a
spherocylinder composed of a length L of cylindrical mi-
celle capped by two equal-radius hemispherical micelle
caps. As L increases, the fraction of the aggregate in the
dL = 2 (vs. dL = 3) packing increases, and thus con-
sideration of the energy as a function of both n and L
illustrates the landscape of aggregates intermediate to a
uniformly cylindrical or spherical geometry. An example

13 Note that dL refers to the number of limited directions, while we
use d to refer to the dimensionality of the unlimited directions,
e.g. d = 1 and d = 2 for cylindrical and lamellar aggregates.
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FIG. 12 (A) An assembly state phase diagram for the amphiphillic aggregate model in eq. (44) for dimensionless stiffness k̄ = 1 and
v20/a

3
0 = 10, where φ∗ is the nominal CMC for cylinders. Solid lines mark the boundaries between the most populous aggregate type, and

dashed lines indicate the boundaries in the infinite Φ limit. The inset shows a zoom in near the boundary between cylinders and bilayers,
illustrating an extremely narrow window of secondary CMC behavior due to the large mean (finite) size of cylinders. (B) Summarizes the
polymorphic assembly of the amphiphile model in the plane of stiffness k̄ and inverse packing parameter P−1, for v20/a

3
0 = 10. Regimes of

single CMC behavior are shown as solid red, white, and blue for bilayers, cylinders, and spheres, respectively. The regime of polymorphic
concentration-driven sphere-to-spherocylinder transitions is colored on a blue-green scale according to the ratio of second CMC (spheres
to spherocylinders) to the first CMC (monomers to spheres). (C-F) show cryo-transmission electron micrographs of micelles formed by
dimeric (gemini) surfactancts, at 25◦ C at increasing weight percent: (C) 0.26%; (D) 0.5%; (E) 0.62%; and (F) 0.74% (scale bars equal
100 nm). The coexistence of cylindrical micelles of increasing total length for (D-F), and absence of lengths intermediate to spheres and
the shortest cylinders is consistent with a concentration-dependent second-CMC. The inset of (F) shows the bulbous ends of a cylindrical
micelle (scale bar, 25 nm), consistent with an energy barrier between spherical and (long) cylinders due to a mismatch in preferred radius.
(C-F) are adapted from (Bernheim-Groswasser et al., 2000).

landscape is shown in Fig. 11D, for a packing parameter
P−1 = 2.25 intermediate to spheres and cylinders, which
exhibits two branches of local minima. In the spherical
branch, L = 0 and changes in number are accommodated
purely through changes in micelle radius. The second,
cylindrical, branch appears only above a threshold aggre-
gate number (n ≃ 111v20/a

3
0), beyond which further sub-

unit addition is accommodated through increasing the
length. The per subunit aggregation energies for these
two branches are shown in Fig. 11E. Notably, an en-
ergy barrier separates the convex minimum of the spher-
ical branch from the cylindrical branch, which asymp-
totically approaches the global minimum of ǫ at n → ∞
via the 1/n falloff characteristic of 1D assembly. The
origin of this “barrier” between spherical and cylindrical

aggregates derives from the fact that the preferred radii
of these two micelle types are different, and hence the
confinement energy of the “endcaps” on the spherocylin-
drical micelle exceeds that of a minimal-energy (larger
radius) sphere. We note that this spherocylinder geom-
etry will overestimate the cost of endcaps relative to a
more realistic model that includes, say, variation of the
radial thickness along the micelle (May and Ben-Shaul,
2001).

As described in Sec. II.B.3, the existence of multiple
low-energy branches of aggregation leads to a rich phase
behavior, which can be analyzed according to the law
of mass action eq. (5). As summarized in Appendix A,
we analyze the polymorphic assembly of the model de-
scribed by eq. (44), making several simplifying assump-
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tions. Specifically, we adopt the continuum limit for
n, calculate the optimal spherocylinder radius for each
length L by minimizing the per-molecule energy eq. (44)
as a function of r (i.e. neglecting radius fluctuations),
and numerically calculate the mass fractions of spheres,
spherocylinders, and membranes as functions of k, P , Φ
from eq. (5).

Fig. 12A shows the phase diagram as a function of
the packing parameter and total concentration Φ for a
dimensionless stretching stiffness k̄ = 1. Analogous to
the phase diagram of the generic model in Fig. 7B, with
increasing packing parameter the system undergoes di-
mensional transitions from spheres to spherocylindrical
assemblies and finally to bulk lamellar aggregates (cor-
responding to packing dimensionalities of dL = 3, 2, 1).
The infinite concentration limits of the phase boundaries
(indicated by dashed lines in Fig. 12A) correspond to the
packing parameter values where the bulk free energy per
subunit of two aggregate geometries are equal: ǫ3 = ǫ2 at
the sphere/spherocylinder boundary, and ǫ2 = ǫ1 at the
spherocylinder/lamella boundary, with ǫdL the optimal
energy per subunit in the aggregate interior for aggre-
gates with dimensionality dL. Notably, for values of the
packing parameter near each of these dimensional tran-
sitions, there is a concentration-dependent dimensional
transition. I.e., for packing parameter values close to the
infinite-concentration value for the spherocylinder-sphere
transition 2.45 & P−1 & 2.3, spheres are favored at
low concentrations, with a transition to spherocylinders
occurring above a threshold concentration that diverges
exponentially as the packing parameter approaches the
transition value, i.e. P−1 → 2.45. An analogous behavior
occurs at the spherocylinder/lamella transition (Fig. 12
inset), but the range of P−1 values is exceptionally nar-
row due to the very large (yet finite) mean size of sphe-
rocylinder aggregates (see below).

In Fig. 12B, we show an overview of the polymorphic
assembly in terms of the two control parameters of the
amphiphile aggregation model, P−1 and k. Boundaries
in the P−1− k̄ space are shown for infinite-concentration
sphere/spherocylinder and spherocylinder/lamella tran-
sitions, indicated by blue and red lines respectively, with
gray dashed lines corresponding to the values of these
transitions in the extensionally “floppy” (k̄ → 0) and
“stiff” (k̄ → ∞) limits 14. We also show the region in
P−1 − k̄ space for which there is a concentration-driven
sphere/spherocylinder transition (a secondary CMC),
with color indicating the width in concentration space of
the transition. More specifically, the color scale indicates
the ratio of pseudo-critical concentrations, Φcyl/Φsph

where spherocylinders or spheres, respectively, become
the most populous subunit state (i.e. greater than 50%)

14 The transition values between dL and d1 + 1 are P−1 = (d(d −
1))1/2 and P−1 = dL−1/2 in the respectively stiff (k̄ → ∞) and
floppy (k̄ → 0) limits.

at a given value of stiffness and packing parameter.

The emergence of the polymorphic, concentration-
driven transition between spherical and spherocylindrical
micelles captured in Fig. 12 can be understood in terms
of the three ingredients of the secondary CAC behavior
encoded in eq. (35): the energy gap between minimal-
energy spheres and infinite cylinders ∆ǫ = ǫ3 − ǫ2, the
finite aggregation number in spherical micelles nsph, and
an energy barrier δ separating the spherical aggregates
from spherocylinders (as in Fig. 11D). Below the blue
curve in Fig. 12B, where ∆ǫ > 0, the physical origin
of the intermediate concentration state of spheres is the
higher (per subunit) entropy associated with their fewer
subunits. This window of second CMC behavior widens
in Φ as the gap between infinite cylinders and spheres
vanishes to zero, which happens as the inverse packing
parameter increases and approaches the blue curve in
Fig. 12B. Likewise, from eq. (44) it is straightforward
to see that the gap between dL = 3 and dL = 2 van-
ishes as k̄ → 0, since the is no obstacle to achieving the
optimal head group packing (a → a0) for any dL in the
absence of extensional stiffness. Hence, the ratio of the
second CMC (spheres to spherocylinders) relative to the
first (monomers to spheres) grows large in both of these
regimes.

The regime of second CMC behavior is restricted to
lower values of extensional stiffness, and disappears above
a threshold value of k̄, due to its effect on the energy bar-
rier between spheres and spherocylinder micelles. In the
limit of k → 0, the thickness of spheres and cylinders
is determined purely by head group packing, and hence
dL = 3 and dL = 2 micelles have different radii, imply-
ing a finite frustration cost for the hemispherical endcaps
of the spherocylindrical micelles. As summarized in eq.
(35), the window of second CMC behavior is widened
with increasing energy barrier between compact and 1D
assemblies. With increasing k̄, this barrier diminishes,
ultimately vanishing the in the k̄ → ∞ limit, because
the high stiffness requires the micelle thickness to main-
tain ℓ = ℓ0 independent of dimensionality. Hence, as
is the case for the “ladder model” of cylindrical micelle
thermodynamics (Missel et al., 1980), in the absence of
an energy barrier between spheres and elongated cylin-
ders, there is only a single CMC to a state where mean
aggregation number continuously increases with Φ.

Similar arguments apply to the spherocylinder/lamella
transition, except that spherocylindrical aggregates have
a very small translational entropy due to their large mean
size, and thus are stabilized by entropy over a vanishingly
narrow region of parameter space.

Evidence for the secondary CMC transition between
spherical and cylindrical micelles has been reported for
range of surfactant systems; see (Bergström, 2016) for
a review. Many experiments report an indirect signa-
ture of an inflection point, and secondary upturn, in the
mean aggregation number as a function of concentra-
tion. For example, the convex dependence of viscosity
on concentration for certain ionic surfactants was inter-
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preted by Porte in coworkers as a secondary CMC, and
motivated their model with an energetic gap between
spherical and cylindrical states for second CMC behavior
(Porte et al., 1984). Elsewhere, experimental imaging of
the concentration-dependence micelle morphologies has
been used to probe second CMC behavior. For exam-
ple, Figs. 12 C-F show cryo-electron microscopy (cryo-
EM) images of micelles formed by dimeric (gemini) sur-
factants (Bernheim-Groswasser et al., 2000). Above the
first CMC, but still below a second threshold concen-
tration, cryo-EM shows monodisperse spherical micelles
Fig. 12. With increased concentration (Fig. 12D-F), cryo-
EM shows the appearance of cylindrical, or worm-like,
micelles. While these grow in length with concentration,
they also retain coexistence with a population of spher-
ical micelles. This, along with an observed gap in mi-
celle sizes intermediate to spheres and the shortest cylin-
ders, is consistent with the secondary CMC transition in-
duced by an energetic gap between spheres and cylinders.
As described above, and consistent with the apparently
“bulbous” ends of worm-like micelles (Fig. 12F), such an
energetic gap is a natural consequence of the mismatch
between radii of spherical and cylindrical micelle pack-
ings.
To conclude the overview of amphiphillic aggregation,

we briefly return to the question of convexity of the en-
ergetics described by (40) - (44) for spherical micelles
(dL = 3). It is straightforward to consider two simple
limits to esimtate the dependence of convexity on target
size. When k̄ ≪ 1, energetics are dominated by head-

group area terms and ǫ′′T(k̄ ≪ 1) ∝ γv
2/3
0 /n

7/3
T . Whereas,

the opposite limit is controlled by length elasticity, and

ǫ′′T(k̄ ≫ 1) ∝ kv
2/3
0 /n

4/3
T . Notably, as with the fluid

capsule model in the previous section, convexity gener-
ically decreases with target size, however, not nearly as
quickly. In particular, for the amphiphile model the prod-

uct n3
Tǫ

′′
T/kt is always increasing with nT (i.e. as n

2/3
T

and n
5/3
T for small and large k̄, respectively). Hence, ac-

cording to eq. (20) the relative number fluctuations of
micelles decrease with mean size. This is in marked dis-
tinction with the predictions of the bending elasticity of
the fluid shell model, for which ǫ′′T ∝ n−3

T and size fluc-
tuations grow in proportion to mean size. The origin
of this relatively sharper minima of aggregation energet-
ics, and correspondingly tighter control of aggregate size,
can be traced to the fact the the closure radius is on the
scale of the subunit thickness (i.e. Rclose ≈ t), or more
specifically, the additional considerations of tail packing
constant density in the micellar cores, which are absent
for the membrane bending elasticity of fluid capsules.

B. Self-limited, open-boundary assembly

Here we describe a class of self-limiting assembly char-
acterized by an open boundary, a surface that separates
the aggregate interior from the solution of freely asso-
ciating subunits. Unlike the SCA described above, in

open-boundary assemblies (OBA) this free boundary is
maintained in the target self-limiting states. Therefore,
the target state has a finite surface energy associated with
loss of short-range cohesion or differences in solvation at
its exterior.

As described in Sec. III.A.1, a finite boundary energy
alone generically favors unlimited aggregates. Hence, to
be self-limited, OBA structures require additional inter-
action terms that grow with aggregate dimensions, and
thus balance the generic tendency to minimize the bound-
ary to interior ratio. We define this additional (non-
surface) energetics as the excess energy, and its essential
feature is a regime of super-extensive growth, meaning
the total excess energy increases with size faster than
the number of subunits n. Below we describe two ex-
ample mechanisms that generate such a form of excess
energy, but the key underlying feature is the existence of
gradients in stress throughout the aggregate. Whereas
SCA can realize finite target dimensions with uniform
subunit shape and packing, in OBA long-range, gradient
patterns of intra-aggregate stress are required for self-
limitation and ultimately dictate the range of possible
self-limiting sizes.

Before introducing these two physical mechanisms,
which will illustrate the microscopic origins of excess en-
ergy accumulation, we begin with a generalized descrip-
tion of the thermodynamics of OBA.

1. Limits of self-limitation

To describe the aggregation energetics of OBA, we con-
sider a structure with an open boundary that can grow in
D possible spatial dimensions (directions). We let dL of
these directions be potentially self-limiting, while in the
remaining d = D−dL directions the structure undergoes
unlimited growth. Denoting the limited and unlimited
dimensions of the structure as W and L respectively, the
scaling of aggregate volume gives n ∝ W dLLd. In the
limit that L ≫ W , the amount of the open boundary
then grows as Ab ∼ W dL−1Ld. 15 For example, consider
subunits that can bind in all three spatial dimensions,
i.e. D = 3. Quasi-cylindrical aggregates of such sub-
units accrue a surface energy cost deriving from their
full boundaries, which are limited in two transverse spa-
tial dimensions (dL = 2) and unlimited in the axial di-
rection (d = 1); whereas finite-thickness planar aggre-
gates are limited along the normal direction (dL = 1),
but unlimited in the two in-plane directions (d = 2). No-
tably, such structures are self-limiting spatially, but do
not necessarily have a finite or even well-defined peak ag-

15 For D = 2, assemblies are sheet-like and the boundary corre-
sponds to a 1D edge due to fewer (lateral) cohesive bonds, while
for D = 3, the boundary corresponds to the entire 2D surface
surrounding the aggregate.
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FIG. 13 (A) A schematic plot of the aggregation energetics (per
subunit) for self-limiting open boundary assembly, where the blue,
red, and black curves respectively show the surface energy den-
sity, excess energy, and total energy density. The dashed curve
shows power-law growth of excess energy at small size. The red
point highlights the equilibrium self-limiting width W∗, and the
inset shows the variation of this equilibrium width with increasing
surface energy Σ, assuming fixed ǫex(W ). (B) A schematic plot of
the equilibrium width as a function of Σ, where the dashed portion
indicates the possibility of a finite-width branch that is metastable
relative to the bulk state W → ∞. The boundary between equi-
librium self-limiting and bulk states is marked by a maximum self-
limiting size Wmax, denoted as the escape size.

gregation number 16. Nevertheless, equilibrium in these
cases (e.g. finite-thickness “filaments” and “slabs”) de-
rives from the optimal energy per subunit with respect
to the self-limiting dimension(s) of the assembly.

Because surface subunits typically have fewer cohe-
sive bonds with neighbor subunits and potentially more
unfavorable contacts with surrounding solvent, an open
boundary generically accrues a surface energy cost pro-
portional to Ab. Parameterizing this cost by the bound-

16 Indeed, cylindrical aggregates have an exponential length distri-
bution, while planar aggregates (e.g. plates and membranes) will
correspond to a bulk state according to the analysis of Sec. II.A.2.

ary energy Σ and the “bare” aggregation energy for in-
terior subunits −ǫ0, we may write a generic form for the
per-subunit aggregation energy as a function of the self-
limiting dimension W :

ǫ(W ) = −ǫ0 +
Σ

W
+ ǫex(W ). (46)

For simplicity, we absorbed a geometric factor associated
with the dimensionsality of the boundary into the defi-
nition of Σ. The first two terms describe the short-range
cohesive interactions, with a constant bulk energy gain
and a surface energy penalty, while the final term defines
the excess energy relative to the short-range model. An
example energy of this form is shown in Fig. 13A. As
we illustrate below, such an excess energy arises from ef-
fects such as long-range inter-subunit repulsions or elas-
tic stresses that increase with aggregate size. In self-
limiting assemblies, these “cumulative” effects give rise
to an excess energy (per subunit) that increases mono-
tonically in size; hence, ǫex(W ) captures energetic effects
that grow super-extensively with aggregate size. In any
physical system, this super-extensive energy growth will
only persist up to some threshold assembly size, cross-
ing over from convex (e.g. power-law) growth at small
sizes to some asymptotically saturating energy density as
W → ∞. The large-W saturation of excess energy can
occur for a variety of reasons. For example, long-range
repulsions may be screened beyond some length scale. Al-
ternatively, above a threshold excess energy cost, it will
become energetically favorable for subunits to reorganize
or deform to avoid further excess energy accumulation.
Notwithstanding its microscopic origin, the effect of this
saturating excess energy is to renormalize the per subunit
energetics from its bare value to −ǫ0 + ǫ∞.
In OBA, self-limitation follows directly from the bal-

ance between the accumulating cost of ǫex(W ) and the
generic decrease of surface energy with increasing W . It
is then straightforward to show that equilibrium assem-
blies satisfy the following “equation of state” that links
the finite equilibrium size W∗ to the surface energy,

Σ = W 2
∗ ǫ

′
ex(W∗), (47)

with ǫ′ex = ∂W ǫex. Stability criteria additionally require
that ǫ′′ex > 0, but the basic results of the competition
between surface energy and excess energy accumulation
are shown schematically in Fig. 13. Since the surface
energy always drives assembly toward larger sizes, the
equilibrium finite size W∗ generically increases with Σ
given a fixed form of ǫex(W ). Self-limitation can arise
in two ways: either the equilibrium width can increase
continuously with Σ to the bulk state (i.e. W∗ → ∞),
or as illustrated in Fig. 13B, self-limitation will persist
only up to a maximal finite size before a discontinuous
transition to bulk assembly occurs. In the latter case, the
energy density of the finite state eventually increases with
surface energy, to the point where the energy densities of
the finite and bulk (unlimited) states become equal; i.e.
ǫ(W → ∞) = −ǫ0 + ǫ∞. For surface energies above
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this maximal value, the bulk (unlimited) state is favored.
Hence, such systems can be characterized by a maximal
self-limiting size, Wmax, and a maximal surface energy
Σmax below which equilibrium structures are finite (e.g.
Fig. 13B).
For a general OBA, it is then useful to consider the

following question: What are the range of possible self-
limited equilibrium states that a given system can ex-
hibit? As described in Sec. II.B.2, provided that the con-
centration is well above the aggregation threshold (CAC),
the mean aggregate size is determined by the minimum
of the per-subunit energy ǫ(n). Thus, the answer to this
generic question depends only on the excess energy and
its accumulation with width 17.
To see this, we reformulate the condition for equilib-

rium of the self-limiting state relative to bulk assembly,
ǫ(W∗) < ǫ(W → ∞), in terms of the surplus of energy in
the bulk relative to the finite state,

∆ǫ(W∗) ≡ǫ(W → ∞)−
(

Σ

W∗
+ ǫex(W∗)− ǫ0

)

(48)

=
∂

∂W∗

(

W∗
[

ǫ∞ − ǫex(W∗)
]

)

, (49)

where we used the equation of state linking stable size to
surface energy in eq. (47). The condition that ∆ǫ(W∗) >
0 is required for equilibrium finite (self-limited) states can
then be simply formulated in terms of the first integral
of surplus bulk energy

A(W ) ≡ W
[

ǫ(W → ∞)−ǫ(W )
]

= W
[

ǫ∞−ǫex(W )
]

−Σ,

(50)
so the equilibrium of finite structures relative to bulk
corresponds to the condition

( ∂A
∂W

)

Σ
> 0. (51)

We refer to the function A(W ) as the accumulant, and
note that graphically it corresponds to the area of the
rectangular regions of the plot of ǫex(W ) versus W high-
lighted in Fig. 14A, for the model (1) described by the
blue curve. Notably, because the fixed-Σ partial deriva-
tive in eq. (51) is independent of surface energy, for a
given form of excess energy the accumulant may be con-
structed for any value of surface energy, and analyzed as
a function of W to consider potential finite-size equilibria
at all values of Σ.
According to eq. (51), finite-W equilibria correspond

to the range of increasing A(W ). Fig. 14 illustrates two
models of excess energy, both of which are character-
ized by crossovers from power-law growth at small-W to

17 Eq. 19 shows a small concentration-dependent shift of the op-
timal size n∗ below the size corresponding to the minimum of
ǫ(n); the optimal size approaches the energy-minimizing size as
Φ → ∞.
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FIG. 14 (A) Schematic plots of excess energy versus width for two
different models of OBA: model 1 (blue); and model 2 (orange).
Both crossover from power-law growth at small size to saturating
excess energy at large size, but do so with different functional forms
(notably, the asymptotic approach to ǫ∞ is slower in model 2 com-
pared to model 1). The area of the blue rectangles graphically
illustrates the definition of the accumulant in eq. (50). (B) Accu-
mulant A(W ) as a function of width for the two models shown in
(A). Regions of increasing A(W ) correspond to possible ranges of
equilibrium self-limiting sizes for a given form of ǫex(W ). That is,
values of W for which A′(W ) > 0 correspond to energy minima of
ǫ(W ), which are lower in energy than the bulk state ǫ(W → ∞), for
a particular value of the surface energy Σ give by eq. (47). Hence,
model 1 shows an upper limit for maximal self-limiting size Wmax,
while model 2 exhibits stable self-limiting equilibria at all sizes.

asymptotic saturation to finite values of ǫex(W → ∞) =
ǫ∞, but do so via different functional dependencies on
the finite size W .

For model 1 (blue), the range of increasing A(W ) ex-
tends only up to a maximum, with corresponding width
Wmax, indicating that a first-order transition between fi-
nite and bulk states occurs at Wmax and the correspond-
ing value of Σmax

18. For model 2 (orange), the mono-
tonically increasing range of the accumulant extends to

18 Defining the accumulant in terms of the Σ = 0 energetics, i.e.
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W → ∞. This indicates that model 2 supports equi-
librium self-limited states at all values of Σ, and only
reaches bulk assembly in the limit of infinite surface cost.
Hence, even if the excess energy saturates in the W → ∞
limit, self-limitation may still, in principle, extend to
all possible size ranges, depending on the nature of the
asymptotic approach to the bulk energy.
Given the form of the accumulant defined in eq. (50)

and the condition eq. (51) for its increase, the pos-
sibility for self-limited states that extend continuously
up to the bulk state (i.e. limΣ→∞ W∗ → ∞) can be
deduced from the asymptotic form of the residual en-
ergy ∆ǫ(W ) = ǫex(∞) − ǫex(W ) as W → ∞. Follow-
ing an argument made by (LeRoy, 2018; Terzi et al.,
2020), we assume this residual vanishes as a power law
ǫex(∞) − ǫex(W ) ∼ W−ν . It is then straightforward to
show that when ν > 1, A(W ) decreases asW → ∞. Such
cases correspond to the first-order type self-limitation
exhibited by model 1 in Fig. 14. Alternatively, when
0 < ν < 1, indicating a slower saturation of excess en-
ergy, the accumulant continues to increase as W → ∞,
indicating the existence of self-limited equilibria extend-
ing up to the bulk state. The case of ν = 1 is marginal,
and can exhibit either first- or second-order like behav-
ior. Below, we describe models in the context of geo-
metrically frustrated assemblies that can illustrate both
types of behavior, either a continuous or discontinuous
transition between the finite and bulk states depending
on the mechanisms underlying the accumulation of excess
energy.

2. Short-range attractions, long-range repulsions

As described in the previous section, self-limitation in
OBA requires superextensive growth of the excess energy.
In this first class of examples, the accumulation of ex-
cess energy derives from long-range interactions between
subunits, specifically, interactions characterized by short-
range attraction and long-range repulsion (SALR) (Groe-
newold and Kegel, 2001; Sciortino et al., 2004). Models
of such systems usually consider isotropic pair-potentials
u(r) that can be split into two parts,

u(r) = uSA(r) + uLR(r), (52)

where the short-ranged potential describes cohesive inter-
actions uSA(r) < 0 between neighboring subunits, which
act on scales comparable to the subunit hard-core diam-
eter d; i.e., uSA(r ≫ d) ≃ 0. Outside of this cohesive
range, the potential is dominated by a long-range repul-
sion uLR(r) > 0 that extends over sizes much larger than
single particles. Even when the repulsive interactions

A(W ) ≡ W
[

ǫ∞−ǫex(W )
]

, as in Fig. 14B, it can be easily shown

that Σmax = A(Wmax).

between neighboring subunits are much weaker than the
cohesion, the fact that repulsive interactions extend far
beyond the first shell of neighbors can lead to superex-
tensive growth of repulsive energy with increasing assem-
bly size. A model of this form has been applied to ex-
plain finite-sized aggregate formation in a broad range of
systems (Dinsmore et al., 2011), including protein com-
plexes (Cardinaux et al., 2007; Foderà et al., 2013; Strad-
ner et al., 2004), charged nanoparticles (Nguyen et al.,
2007), colloidal particles in low-dielectric solvents (Sedg-
wick et al., 2004; Van Schooneveld et al., 2009), dipolar
mesophases (Seul and Andelman, 1995), and even models
of “nuclear matter” (Caplan and Horowitz, 2017).

To illustrate the mechanism of self-limitation in this
class of systems, we consider the following specific model:
Short-range cohesive interactions lead to −u0 per neigh-
bor contact, and aggregates maintain an (approximately)
uniform density ρ0 ≈ d−3. For repulsive interactions, we
assume that subunits are isotropic and repel according
to a screened (Yukawa) repulsion,

uLR(r) =
q2

r
e−κr. (53)

Here q is the electrostatic charge per subunit, assumed
to be fixed, and κ is the screening length, which arises
from Debye-Hückel screening by mobile ions in solution,
and truncates the far-field repulsions for r ≫ κ−1. For
simplicity, we illustrate a simplified version of the theory
by Groenowold and Kegel (GK) (Groenewold and Kegel,
2001). In our presentation, we consider the case where
charge per subunit is fixed, a point which we revisit be-
low. Our primary purpose is to illuminate a model with
the minimal ingredients for a self-limiting equilibrium,
and due its finite screening length, the long-range Yukawa
potential provides a convenient example. For purposes of
illustration, we consider spherical aggregates with radius
R, whose interaction (free) energy can be described by

ǫ(R) = −u0
〈z〉
2

+
3Σ

R
+ ǫex(R) (54)

where 〈z〉 is the mean number of neighbor contacts in
the bulk of the aggregate, and Σ ≈ u0/d

2 is the surface
energy associated with fewer (short-ranged) cohesive con-
tacts at the boundary. Here, the excess energy derives
directly from the sum of long-range, pairwise repulsions
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FIG. 15 (A) Schematics of aggregates of particles interacting via short-range (i.e. contact) interactions and long-range repulsions,
with a screening length κ−1, which can be large or small compared to the aggregate size R. (B) Excess energy of spherical aggregates
versus radius, showing a crossover from power-law growth for R ≪ κ−1 to an asymptotically saturating bulk energy for R ≫ κ−1. (C)
Plot of the equilibrium finite radius R∗ of the SALR model versus surface energy Σ, showing a continuous divergence to the bulk at
a finite Σ = Σmax. The second-order-like transition from finite-to-bulk states predicted by this model (solid curve) is consistent with
the monotonically increasing form of the accumulant plotted in the inset, where this result assumes the bulk state has uniform density.
Assuming instead, that the bulk state has a lower energy, non-uniform density (e.g. a periodic aggregate morphology (Zhang et al., 2019)),
the transition will be first-order, as illustrated by the non-monotonic accumulant shown as a dashed line. (D) shows a confocal microscope
image of clusters of charged colloidal particles (radius 660 nm) adapted from (Stradner et al., 2004). In these experiments short-range
attractions are induced by depletion forces generated by inert polymers in suspension, while electrostatic repulsions are maintained at
relative long range due to the low-concentration of mobile ions in host organic solvent (Stradner et al., 2004).

in the aggregate volume V 19,

ǫex(R) =
q2ρ0
2V

∫

V
d3r d3r′uLR(|r− r′|)

=
q2ρ0
2κ2

{

1− 3(1 + κR)

2(κR)3
(1+ e−2κR)

[

κR− tanh(κR)
]

}

.

(55)

The behavior encoded in ǫex(R) is plotted in Fig. 15B,
and can be understood physically by considering the
asymptotic limits of small and large aggregate size rela-
tive to the screening-length of the repulsive interactions,
as shown schematically in Fig. 15A. For small aggregates,

ǫex(R ≪ κ−1) ≃ q2ρ0
5

R2, (56)

which derives from the fact that, when repulsions ex-
tend over the entire aggregate, the per-subunit cost of
the Coulomb self-energy of an aggregate of is roughly
Q2/(nR) ∝ R2, where the total aggregate charge Q =
qn ∝ R3. In the opposite regime, where aggregate sizes

19 The form of the self-energy can be readily calculated using
Greens theorem, where the total repulsive energy can be written
as

∫

V
d3r qρ(r)φ(r) with a potential that satisfies the linearized

(Debye-Hückel) equation, (∇2 + κ2)φ(r) = 4πqρ(r). Solving
this for spherically symmetric aggregates, ρ(r ≤ R) = ρ0 and
ρ(r > R), yields the explicit form of screened electrostatic en-
ergy.

far exceed the screening length,

ǫex(R ≫ κ−1) ≃ ǫ∞
(

1− 3

2κR
+

3

2(κR)3

)

, (57)

where ǫ∞ ≡ q2ρ0κ
−2/2. This leading term R → ∞ de-

rives from the fact that each subunit in the bulk of the
aggregate experiences repulsive interactions with roughly
ρ0κ

−3 other subunits within a screening length, while the
first correction accounts for the surface layer of thickness
κ−1 with fewer neighbors within the screening length.
Notably, the subleading 1/R3 term can be associated
with a square curvature cost (per unit area) for deform-
ing the boundary shape from planar, which alters the
distribution of repulsive particles near the free surface of
the aggregate.
Fig. 15C shows the predicted equation of state for the

self-limiting radius R∗ as a function of surface energy,
Σ(R∗) = R2

∗ǫ
′
ex(R∗)/3. For small Σ, the balance between

the “charging energy” of aggregates and surface energy
leads to a growthR∗ ∼ Σ1/3, which proceeds until the op-
timal aggregate size grows beyond the screening length.
In the large aggregate regime, the asymptotic approach
to ǫ∞ leads to an aggregate size that diverges continu-
ously at a critical surface energy Σmax = κǫ∞/2. The
origin of the second-order-like transition to the bulk in
this model can be traced to the R ≫ κ−1 form of the
excess energy in eq. (57). The leading correction to
ǫex(R → ∞) = ǫ∞ goes as −1/R, that is, in the notation
of the foregoing Sec. III.B.1, ν = 1. Hence, this leading
correction at large R behaves like a negative contribu-
tion to the surface energy, Σeff = Σ − Σmax, due to the
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reduced electrostatic repulsion within a screening length
of the surface. When Σ < Σmax, the effective surface
energy is negative, and the aggregate equilibrium derives
from the balance between the −1/R drive to create more
surface and the sub-leading +1/R3 term, to give

R∗ ∼
√

ǫ∞κ−3

Σmax − Σ
, (58)

which diverges (continuously) as Σ → Σmax. This predic-
tion, that there is a maximal cohesive surface energy for
aggregates, but that their equilibrium self-limiting size
extends to arbitrarily large values, is consistent with the
plot in Fig. 15C(inset), which shows the accumulant of
spherical aggregates to be monotonically increasing over
the full range of R.

The result that self-limitation can extend up to arbi-
trarily large sizes (i.e. Wmax → ∞) for this simplified
model may be surprising, as it implies that the thermo-
dynamics are sensitive to the finite size of aggregates over
much larger size ranges than the finite interaction range,
κ−1. That is, a subunit whose interactions extend only
κ−1 can still “sense” that it should join an aggregate
with a radius smaller than R∗ ≫ κ−1, but not a larger
one. The resolution of this puzzle is that the physical
term that restrains aggregate growth in this R∗ ≫ κ−1

regime derives from the square curvature cost of the free
boundary (contributing as +1/R3 to the excess energy).
Although repulsions are short-ranged compared to large
aggregates (i.e. R ≫ κ−1), they are sufficiently non-local
to sense the curvature of the boundary, and thereby, the
global radius of the aggregate. That is, repulsions in this
regime give rise to precisely the type of square-curvature
energetics that selects for finite sizes in self-closing as-
semblies in Sec. III.A.1; i.e., with a preferred boundary
curvature that vanishes as Σ → Σmax

20.

While self-limited assembly due to a competition be-
tween cohesive boundary costs and accumulation of long-
range repulsion is generic, the specific features of this
simplified model, including continuously diverging finite
size for R∗ ≫ κ−1, require several caveats. Foremost,
the convexity of the assembly energetics decreases with
aggregate size as ǫ′′∗ ∼ n−3

∗ for R∗ ≫ κ−1 for this
model, similar to the case of self-closing shells in Sec.
III.A.1. Thus, according to eq. (20), fluctuations in n
grow with self-limiting size, and diverge at the threshold
as 〈(∆n)2〉1/2 ∝ n∗ ∼ (Σc−Σ)−3/2. Hence, for all practi-
cal purposes the self-limitation to finite and well-defined
sizes will not persist to arbitrarily large structures.

Beyond this, the model is oversimplified and fails to
incorporate a number of physical ingredients, which can

20 Consistent with this result, performing an analogous calculation
for a planar slab geometry shows that the self-limited size di-
verges exponentially above a threshold value of Σ, due to the
absence of such a curvature term.

influence the form of excess energy accumulation. For
example, more realistic models would include: a fi-
nite compressibilty of the short-range cohesive forces,
which allows for density variation with aggregate size
and position within the aggregate; and for charged sub-
units in solvent, the effects of dielectric contrast be-
tween aggregates and the solvent, as well as variable
degrees of charge condensation/dissociation as aggre-
gates vary in size. Indeed, when initial applications
of this GK model aimed to understand the aggrega-
tion of lysosyme proteins in low-salt aqueous solutions,
comparison to scattering measurements of the aggre-
gate size suggested that variable ionization of subunits
could not be neglected (Zaccarelli, 2007). While to a
first approximation, it was argued that subunit charg-
ing is independent of aggregation number (Groenewold
and Kegel, 2001), the charge per subunit and the screen-
ing length, which varies with counterion concentration,
both vary with total concentration of ionizable subunit
species (Cardinaux et al., 2007). Hence, accounting
quantitatively for the concentration dependence of aggre-
gation for these electrostatic systems requires considera-
tion of subunit charge in a self-consistent fashion, lead-
ing potentially to aggregation-dependent renormalization
of repulisive interactions (Nguyen et al., 2007), not to
mention additional effects associated with non-spherical
aggregate shapes (Sciortino et al., 2005). Notably, the
non-spherical nature of aggregates of charged particles is
evident in confocal images of a colloidal analog to the ag-
gregation of nanoscopic proteins (Sedgwick et al., 2004),
as shown Fig. 15D.

Finally, even beyond specific physical considerations
of electrostatic SALR systems, the prediction of the sim-
plified Yukawa model of diverging finite aggregate size
assumes a spatially uniform bulk state, whereas mod-
els of systems with short-range attractions and long-
range repulsions have been shown to form periodically-
modulated aggregate phases, e.g. stripes, layers and
spheres, at high concentration (Sciortino et al., 2004;
Sear and Gelbart, 1999; Seul and Andelman, 1995;
Zhuang and Charbonneau, 2016). That is, at sufficiently
high densities, the uniform density bulk state is unsta-
ble to lower free energy periodic bulk states such that
ǫ∞(periodic) = ǫ∞(uniform). If the stability of equilib-
rium self-limitation is reanalyzed in terms of a compe-
tition with a lower-energy, non-uniform bulk state, then
the maximal size range of self-limiting equilibrium be-
comes finite (see e.g. the accumulant plot in Fig. 15D).
The full thermodynamics of the transition between a di-
lute phase of self-limiting aggregates (above the CAC)
to the long-range ordered bulk aggregate phases requires
considerations beyond the ideal aggregation thermody-
namics considered here.
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FIG. 16 (A) A heuristic “warped jigsaw” model for GFA, after
(Grason, 2017), in which directional interactions promote curva-
ture along rows of a locally preferred 2D “lattice”. Assembly in
both bonding directions leads to “misfits”, as in the tetrameric ag-
gregate. (B) A schematic plot of the excess energy (per subunit)
for the warped jigsaw model, due to the superextensive build-up
of elastic costs of misfits. Intra-assembly strains are illustrated via
particle color, from unstrained (yellow) to highly-strained (red).
The excess energy shows the characteristic crossover from power-
law growth at small aggregates to an asymptotic approach to a
strained bulk state (in this case envisioned as “shape flattening”
of jigsaw particles). (C) A schematic phase diagram for a generic
model GFA in eq. (59), considered (at fixed concentration and
temperature) as a function of the ratio of surface energy to elastic
stiffness and a measure of the “strength” of frustration, f0.

3. Geometrically frustrated assembly (GFA)

The notion of geometric frustration (GF) originally
emerged in the context of low-temperature, condensed
matter systems (e.g. magnetic materials, spin mod-
els) (Vannimenus and Toulouse, 1977). It refers to the
impossibility of propagating an energetically-preferred
arrangement throughout space, due to global geometric
constraints (Kléman, 1989; Sadoc and Mosseri, 2006).

For bulk, infinite systems, GF leads to a rich phe-
nomenology: extensive arrays of topological defects
thread through the highly-degenerate bulk ground states
that populate a rough energy landscape.

Recently has it been recognized that GF gives rise
to new behaviors in self-assembling materials (Grason,
2016), deriving from two key features. First, the con-
stituent subunits (e.g. polymers, colloids, proteins) are
relatively “soft” and held together by weak, non-covalent
forces. Second, assemblies need not reach bulk states,
and thus have additional degrees of freedom associated
with the (potentially) finite-size and shape of the assem-
bled domain. Unlike bulk or rigid systems where GF
must be resolved by defects (Sadoc and Mosseri, 2006),
in soft assemblies it can be tolerated, at least over some
size range, by smooth gradients in the subunit shapes
and packings. As an illustration, see the schematic of
“warped jigsaw” particles in Fig. 16A, where the taper-
ing of the particle shape favors curvature along one row of
the lattice assembly (Grason, 2017). Provided particles
or their interactions are sufficiently deformable, aggre-
gates can accommodate frustration through strain gradi-
ents, leading to arrangements that are more (less) relaxed
near to (far from) the free boundary of the aggregate.

This self-organization of long-range stress gradients is
the defining characteristic of geometrically frustrated as-
sembly (GFA), giving rise to the form of accumulating
excess energy that can limit assembly size (Sec. III.B.1).
The balance between the surface energy and the (su-
perextensive) cost of GF can select equilibrium domain
sizes that are finite, and in principle, arbitrarily larger
than the subunits themselves.

To date, GFA has been implicated in the emergent
structures of various soft matter systems, including self-
twisting protein bundles (Aggeli et al., 2001; Brown
et al., 2014; Cameron et al., 2018; Grason and Bruinsma,
2007; Hall et al., 2016; Turner et al., 2003; Yang et al.,
2010), twisted molecular crystals (Haddad et al., 2019;
Li et al., 2020), chiral smectics (Hough et al., 2009; Mat-
sumoto et al., 2009) and membranes (Armon et al., 2014;
Ghafouri and Bruinsma, 2005; Gibaud et al., 2012; Kang
and Lubensky, 2017; Sakhardande et al., 2017; Selinger
et al., 2004; Sharma et al., 2014; Zhang et al., 2019),
particle-coated droplets (Bausch, 2003; Irvine et al.,
2010; Meng et al., 2014; Yu et al., 2016), curved pro-
tein shells (Li et al., 2018; Zandi et al., 2004), and
phase-separated lipid vesicles (Schneider and Gompper,
2005). Consideration of GF in these systems has primar-
ily stemmed from experimental observations of assem-
blies that (A) terminate at finite size and/or (B) exhibit
“defect-ordered” morphologies. Continuum models that
consider the interplay between the elastic costs of “mis-
fit” and domain formation have been developed to ad-
dress a range of distinct frustration mechanisms, includ-
ing frustration of 2D liquid crystalline/crystalline order
on non-Euclidean manifolds (Bowick and Giomi, 2009;
Nelson and Peliti, 1987), metric and orientational frus-
tration of chiral fibers (Brown et al., 2014; Grason, 2015;
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Haddad et al., 2019), shape-frustration in stacking assem-
blies of curved layers (Achard et al., 2005; DiDonna and
Kamien, 2003; Matsumoto et al., 2009), chirality frus-
tration in crystalline (Armon et al., 2014; Ghafouri and
Bruinsma, 2005) and liquid crystalline membranes (Kang
and Lubensky, 2017; Selinger et al., 2001), and the assem-
bly of non-tiling polygonal particles (Lenz and Witten,
2017).
We first describe a heuristic model that highlights the

common thermodynamic features of these apparently di-
verse realizations of GFA, which are encoded in a simpli-
fied form of the excess energy,

ǫex(W ) ≈ k

2
δ2(f,W ) +

C

2
(s− s0)

2. (59)

Here, k is a generalized elastic parameter for strain-
ing inter-element packing, as measured by a generalized
(mean) strain δ(f,W ), which itself varies with the finite
size W of the domain and a parameter f that measures
the “strength of frustration”. To be clear, local strains
vary with position throughout the assembly, as we de-
scribe for a specific example below, but for simplicity we
focus here on how the magnitude of strain varies with size
and frustration. While frustration mechanisms vary con-
siderably among distinct GFA systems, they all exhibit
power-law growth of strain with domain size W . This
can be modeled heuristically as

δ ≈ f(s)W η (60)

where η and f vary for different cases of GFA. For exam-
ple, the orientational strains in 2D liquid crystal domains
grow linearly with domain size (η = 1), whereas posi-
tional strains in frustrated 2D crystals grow quadratically
(η = 2) (Grason, 2016; Niv and Efrati, 2018). The defi-
nition of “frustration strength” f depends on the specific
GF mechanism; however, it can generally be expressed as
a function f(s) of the local shape of inter-subunit packing
(e.g. inter-subunit bend or twist), which we denote gener-
ically with the shape parameter s. In many cases, the
frustration strength can be expressed as a simple power
law of shape,

f(s) ≈ sµ (61)

where µ is a positive exponent. For the example of a crys-
talline cap on a spherical surface (Grason, 2016), f corre-
sponds to the Gaussian curvature, which is the square of
the 1D curvature in this geometry and thus corresponds
to a shape parameter with µ = 2. In the form of eq.
(61), the strength of frustration generically vanishes, in-
tuitively, in the limit that the shape “flattens” to s → 0.
The second term in eq. (59) describes generic costs for
deformations away from an ideal, misfitting shape with
s = s0 6= 0, which incur elastic penalties described by the
“shape modulus” C.
This basic form of eq. (59) implies a generic size de-

pendence for the excess energy shown schematically in

Fig. 16B. For small sizes, assemblies retain their pre-
ferred, misfitting shape (s ≃ s0) leading to a power-
law growth of excess energy, ǫex(W → 0) ≃ kf2

0W
2η/2,

where f0 = f(s0) = sµ0 is the frustration strength of
the preferred shape. If power-law growth of ǫex(W ) ex-
tended to all size scales, then the compromise between
costs of GF and surface energy would select a finite equi-

librium size W∗ ∼ f
−2/(2η−1)
0 for any surface energy Σ.

However, in any physical system, the excess energy can
only accumulate up to some maximal size scale, beyond
which the assemblies escape frustration through one of a
number of competing morphological “modes” (Hall et al.,
2016; Hall and Grason, 2017). These include, for exam-
ple, the formation of topological defects that screen far-
field frustration stresses (Grason, 2012; Li et al., 2019),
as well as shape flattening, which refers to the smooth
deformation of an incompatible (i.e. misfit) shape to
a uniformly strained, compatible one (Grason, 2020).
Because subunits and their interactions are generically
soft, the excess energy required to escape frustration
must be finite. Thus, as shown in Fig. 16B, ǫex(W )
generically crosses over from power-law accumulation at
small W to an asymptotic approach to this finite energy
ǫex(W → ∞) = ǫ∞. In the minimal description of eq.
(59), the cost of shape flattening is simply ǫ∞ = Cs20/2
per subunit.
Comparing power-law accumulation at small sizes to

the asymptotic shape-flattened energy, one expects a
crossover between these regimes at a characteristic “flat-

tening” size Wflat ≈
[

(C/k)/s
2(µ−1)
0

]1/η
. This size scale

defines the maximum size for which assemblies will tol-
erate the accumulating frustration cost, beyond which
deformation to an unfrustrated shape (s → 0) becomes
energetically favorable. Intuitively, this length scale also
sets a bound on the escape size, Wmax ≤ Wflat, since for
W ≫ Wflat the bulk energy is simply renormalized by
the cost of flattening. In general, the escape size is set
by the lowest-energy mode of relaxing frustration in the
bulk state, which may be also involve “Wigner lattice”
states of defects that neutralize the long-range cost of
frustration (Li et al., 2019). Understanding the practical
limit of self-limitation then requires considering all pos-
sible competing modes of relaxing frustration, and deter-
mining which of these has the lowest energy for a particu-
lar regime of assembly. Notably, this distinction between
power-law growth of energy density with W vs. asymp-
totic approach to a constant value has been proposed, by
Meiri and Efrati, to classify distinct regimes of GF it-
self, as respectively “cumulative” and “non-cumulative”
frustration (Meiri and Efrati, 2021). The analysis of
the accumulant in Sec. III.B.1 translates that criteria
into directly into their thermodynamics consequences for
equlibrium SLA.
Notwithstanding which mode facilitates escape to the

bulk, the heuristic picture of GFA implies a common
phase diagram (Fig. 16C), spanned by the bare frus-
tration strength f0 on one axis, and the ratio of cohesion
to intra-assembly stiffness Σ/k on the other (say for fixed
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FIG. 17 (A) A schematic of a chiral, crystalline ribbon, where colors indicate the local extensional strains required by negative Gaussian
curvature, from low (blue) to high (red). (B) Plots of the equilibrium shape relaxation of the narrow ribbon model of (Ghafouri and
Bruinsma, 2005) as a function of increasing ribbon width, for curvature components Cij and Gaussian curvature KG, which is approximately
uniform over the ribbon. The solid branches show the minimal energy configurations, while the dashed line indicates the (unstable)
helicoidal equilibrium. Widths are scaled by the characteristic length Wun, defined in Eq. (63). (C) shows schematics of the shape
equilibrium, in particular the shape transition from helicoids to spiral ribbons at a critical width Wc. (D) and (E) plot the respective
excess energies for helicoidal (dashed) and helicoid-spiral shape branches (solid). While both shape modes predict an asymptotically
relaxed frustration energy and a finite self-limiting width, spiral ribbons expel KG at much faster rate, leading to a narrower range of
self-limitation. (E-G) show transmission electron microscopy images of ribbons assembled from chiral bola-amphiphiles adapted from
(Zhang et al., 2019). The panels illustrate morphologies evolving with assembly time (scale bars 100 nm): in (E), helicoids are observed
after 24 hours; in (F) spiral ribbons are observed after one week; and finally, in (G), closed tubules are observed after 5 months.

subunit concentration and temperature). Above a criti-
cal frustration strength, there is a regime of self-limiting
aggregates between the dispersed state (below the CAC)
and the bulk state. Within the self-limited regime, the
equilibrium domain size increases with Σ/k but decreases
with frustration strength f0.

As a specific example of the origin and implications
of GFA, we briefly discuss a well-studied model for crys-
talline ribbons frustrated by chirality (Armon et al., 2014;
Ghafouri and Bruinsma, 2005; Selinger et al., 2004). This
model has been developed to understand the polymor-
phic assembly of chiral surfactant bilayers that adopt a
variety of quasi-1D structures (Oda et al., 1999; Selinger
et al., 2001; Zhang et al., 2019; Ziserman et al., 2011);
i.e., they form 2D sheets that are much narrower in width
than length, W ≪ L. Ghafouri and Bruinsma first de-

scribed this mechanism of frustration (Ghafouri and Bru-
insma, 2005), posing it as a competition of the bend-
ing cost of a chiral (anisotropic) membrane against the
elastic costs of in-plane stretching for a 2D crystal with
Gaussian curvature. More recently, this model has been
extended (Armon et al., 2014; Grossman et al., 2016)
to describe experimental observations of bola-amphiphile
ribbons by Sharon and coworkers (Zhang et al., 2019).

For the purposes of this discussion, we present here
only a simplified picture of the frustration and its effects
in chiral ribbons, and provide a more detailed summary
in Appendix B. As shown in Fig. 17A, we consider as-
semblies of ribbons of width W and much longer (unlim-
ited) length L ≫ W . For the case of sufficiently narrow
ribbons, it can be shown that the favored morphology is
that of a helicoid: a strip whose width axis twists around
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a straight central ribbon at a uniform rate Ω. In this
regime, the excess energy of the helicoidal chiral ribbon
takes the following form (see Appendix B),

ǫex(W ) =
Y a0
1440

Ω4
0W

4 +Ba0(Ω− Ω0)
2, (62)

where a0 is the area per subunit in the membrane, and Y
and B are the respective in-plane stretching and out-of-
plane bending moduli for the assembled membrane. Here
Ω plays the role of a shape parameter in the heuristic
model introduced above, and the second term has the
form of a chiral bending energy that favors uniform twist
Ω0 (Ghafouri and Bruinsma, 2005; Helfrich and Prost,
1988). The first term derives from the elastic cost of in-
plane deformation of the 2D lattice of the ribbon, and
describes the accumulating elastic cost of frustration. It
is intuitive to understand the growth of stretching energy
with ribbon width by considering the contour length per
helical turn of the longitudinal strip of the ribbon at a
distance r from the center, (2π/Ω)

√

1 + (Ωr)2. Due to
the resistance to shearing and stretching of local elements
in the 2D solid, this motif leads to strains that grow with
relative longitudinal extension compared to the midline,
roughly ≈ (Ωr)2 to lowest order, and hence, it generates
an elastic energy density of ∼ Y (Ω2W 2)2. It can be
shown that the underlying source for stress gradients in
such an assembly derives from the incompatibility of a
2D planar metric with the non-zero (negative) Gaussian
curvature of the membrane, KG ≃ −Ω2 (Armon et al.,
2014; Ghafouri and Bruinsma, 2005). In the language of
the heuristic picture introduced above, we can identify
the strength of frustration with KG, and hence η = µ =
2, due to the quartic growth of frustration cost with shape
misfit Ω and width W .
An instructive, albeit oversimplified, analysis of the

size-dependence of frustration in chiral ribbons considers
only the relaxation of helicoidal twist for variable width.
For small widths, the ribbon adopts a preferred twist,
Ω∗(W → 0) = Ω0, due to the vanishing cost of frustration
as W → 0, and ǫex ≈ Y Ω4

0W
4. For large widths W →

∞, the balance between stretching and bending favors
unwinding of the pitch, Ω∗ ≃ Ω0(Wun/W )4/3, where

Wun ≡
(720B

YΩ2
0

)1/4

, (63)

defines a characteristic unwinding size. That is, for
W ≪ Wun the ribbon retains roughly the twist preferred
by chirality and the power-law (∼ W 4) accumulation in
excess energy, while for much larger ribbons, the pro-
hibitive cost of frustration causes the ribbon to unwind,
expelling Gaussian curvature. Fig. 17D (dashed curve)
shows the characteristic crossover in the excess energy of
helicoidal ribbons, with an asymptotic flattening of the
excess energy characterized by the exponent ν = 4/3,
which implies self-limiting widths are not stable in the
unwinding region (see section III.B.1). In terms of the
accumulant analysis (inset Fig. 17D), the escape of frus-

tration by helicoid unwinding would imply a maximum
self-limiting size of Wmax(helicoid) ≃ 2.1Wun.

How do we understand physical parameters that deter-
mine the range of possible self-limiting widths? Here, we
note that it arises from the combination of two physical
lengths. One of these derives from the ratio of bending to
stretching moduli,

√

B/Y ≡ t, which is typically of order
of the thickness an elastic membrane. In other words,
in can be expected that t is of order of the molecular
(≈ nm) size of the constituent amphiphiles. The second
length scale is the preferred pitch P0 = 2π/|Ω0|, which
derives from the chiral preference for local skew pack-
ing of neighbor amphiphiles (Zhang et al., 2019). Unlike
t, the size range of P0 is mesoscopic, on the order of
100s of nm. With these definitions, we see that the un-
winding size scale, and hence the maximum self-limiting
width, are the geometric mean of these two length scales
Wun ≃ 11

√
tP0, one molecular and one mesoscopic. It

can then be understood that frustration can limit the
size of helicoids up to a size range intermediate to these
molecular and mesoscopic sizes, that is, ribbons of order
of 10s of nm in width.

As we describe in more detail in Appendix B, frus-
tration escape in chiral ribbons is more complex than
suggested by considering only helicoidal shapes. As chi-
ral ribbons grow beyond a critical width Wc =

√
2Wun

(Fig. 17B-C), they become mechanically unstable to a
new class of shape equilibria, spiral ribbons (Armon et al.,
2014; Ghafouri and Bruinsma, 2005). With increasing
width, this class of shapes approaches an isometric strip
that is wound helically around a cylinder. Hence, unlike
the helicoid, this more complex shape relaxation allows
the assembly to retain some residual chiral twist while
at the same time expelling the Gaussian curvature that
includes in-plane stresses. Therefore, these spiral shapes
facilitate a more “efficient” escape of frustration than he-
licoidal unwinding (see Fig. 17D).

Notwithstanding the quantitative frustration relax-
ation for large widths, it can be shown that the mechani-
cal instability does not change the basic conclusion, that
the scale of the self-limiting width is set by the geomet-
ric mean of the t and P0. That is, according to the ac-
cumulant analysis of the spiral ribbon branch (inset of
Fig. 17D), Wmax ≃ 0.85Wun, and the instability only
reduces the numerical prefactor of the unwinding scale.
This is consistent with a recent experimental study of
ribbon morphologies of bola-amphiphiles (Zhang et al.,
2019) (Figs. 17E-G). In this system, the molecular size
suggests t ≈ 3 − 4 nm, while skewed packing of chi-
ral neighbors in the crystal leads to much larger pitches
of 200 nm. The observation of helicoidal ribbons up to
≈ 50 nm (consistent with the geometric mean of molec-
ular size and helical pitch) demonstrates that frustration
stress can propagate far beyond molecular dimensions.
Notably, when ribbons grow beyond this size, they do
not grow to infinitely wide and untwisted sheets, but in-
stead, transition to a second mechanism of self-limitation,
forming closed tubules of finite diameter proportional to
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the pitch.
The preceding discussion has neglected relaxation of

frustration by defects. For 2D solid chiral ribbons this
can be justified because the critical width for defect for-
mation in helicoids 21 far exceeds the transition to a
shape-flattening state, whose lower energy is facilitated
by the soft bending modes of thin solids. This conclu-
sion does not hold in general, even when the same mor-
phologies arise, if the underlying mechanism of frustra-
tion differs. For example, chiral ribbons with only liquid-
crystalline (LC) in-plane order (e.g. hexatic) would be
described by the same shape (bending) elasticity, but
with a frustration cost that arises from orientational
strains from Gaussian curvature (Mbanga et al., 2012;
Vitelli and Turner, 2004). Such angular strains grow with
a weaker power-law ∼ KGW than positional strain (Niv
and Efrati, 2018), and hence, are an example of η = 1
strain growth. This “softer” growth of frustration en-
ergetics implies a shape flattening transition that takes
place at a much larger size, proportional to the meso-
scopic pitch |Ω0|−1. This is a size scale at which discli-
nations may also be expected to lower the ribbon energy,
implying that frustration escape for LC ribbons likely
falls into a different class than solid ribbons, one that
may mix both smooth (shape flattening) and singular
(defect-mediated) modes.

IV. KINETIC PATHWAYS TOWARDS SELF-LIMITING

EQUILIBRIUM

As the primary focus of this review is the equilibrium
ingredients and thermodynamics of SLA, the foregoing
sections have not considered the non-equilibrium path-
ways by which such systems, starting from an out-of-
equilibrium initial condition, may arrive at a self-limited
(equilibrium) distribution. However, the kinetics of as-
sembly can have significant influence over the size dis-
tributions and resulting morphologies formed in experi-
mental systems of SLA systems, since they are necessarily
limited to observations at finite times. Hence, interpre-
tation of practically all experiments must allow for the
possibility of non-equilibrium effects. In this section, we
provide a basic introduction to a few of the key prin-
ciples for understanding and modeling kinetics of SLA.
Rather than an exhaustive review, our purpose is largely
to illustrate how the language and formalism introduced
in the foregoing discussions of equilibrium SLA “trans-
lates” to the basic conceptual and theoretical frameworks
used for analyzing these same systems out of equilibrium.
A reader will find a far more thorough and general de-
scription of the interplay between kinetics and assem-
bly products, in both bulk and SLA processes, in several

21 This can be conjectured to be ∝ |Ω0|−1 based on standard argu-
ments of Gaussian curvature “screening”, see e.g. (Bowick and
Giomi, 2009).

reviews (Agarwal and Peters, 2014; Hagan, 2014; Sear,
2007; Whitelam and Jack, 2015).

Theory, computation, and experiments have shown
that the ability of a self-assembling system to approach
equilibrium within practical timescales depends on a del-
icate balance between thermodynamic and kinetic ef-
fects (Ceres and Zlotnick, 2002a,b; Cheng et al., 2012;
Endres and Zlotnick, 2002; Grant and Jack, 2012; Grant
et al., 2011; Hagan, 2014; Hagan and Chandler, 2006; Ha-
gan et al., 2011; Jack et al., 2007; Klotsa and Jack, 2011;
Nguyen et al., 2007; Rapaport, 2008; Whitelam et al.,
2009; Whitelam and Jack, 2015; Whitesides and Grzy-
bowski, 2002; Wilber et al., 2009, 2007; Zlotnick, 2003;
Zlotnick et al., 1999). In a broad variety of systems,
yields are nonmonotonic with the strength of cohesive in-
teractions that drive assembly. Optimal assembly occurs
when the cohesive free energy is on the order of 5−10kBT
per subunit-subunit contact depending on the initial sub-
unit concentration and valency of subunit contacts. To
understand this behavior, we require a consideration of
the kinetics of assembly.

To begin, we consider a typical bulk (in vitro) assem-
bly kinetics experiment, such as, for example, solution
assembly of reconstituted proteins into multi-unit struc-
tures. To prepare an initial state, the system is equili-
brated under conditions that do not lead to assembly;
i.e., the total subunit concentration is below the CAC
(Φ < φ∗) and thus the equilibrium aggregate distribu-
tion is peaked at monomers (see Fig. 4). In practice, this
is accomplished by setting a low subunit concentration, a
solution pH and salt concentration that ensure very weak
subunit-subunit attractions, or sufficiently high temper-
ature that the translational entropy of unassembled sub-
units dominates over inter-subunit attractions. The sys-
tem is then rapidly quenched into a condition that fa-
vors assembly (Φ > φ∗), either by increasing the subunit
concentration Φ, or decreasing the CAC above the cur-
rent concentration, by changing temperature or physico-
chemical changes that increase subunit-subunit interac-
tions (e.g. changes to pH and salt concentration). That
is, the new equilibrium state (post-quench) corresponds
to a population of aggregates coexisting with monomers
as described in Sec. II. However, the pre-quench dis-
tribution is out-of-equilibrium, consisting predominantly
of unassembled monomers, and as such gradients in the
system free energy will drive assembly toward lower free
energy states with assembled clusters. Note that this
scenario can equally well describe experiments of both
unlimited (e.g. bulk crystals) and self-limited (e.g. cap-
sules) assembly.

The study of assembly kinetics is concerned with the
timescale required to approach the equilibrium state,
as well as the structures and lifetimes of long-lived
metastable states which may occur along the way. To
understand the influence of kinetics on practical appli-
cations or biological function, these timescales must be
compared to those that are accessible to an experimenter
or a biological organism.
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A. Classical nucleation theory and assembly timescales

A useful starting point to understand the dependence
of assembly timescales on control parameters is given
by the framework of classical nucleation theory; see e.g.
(Agarwal and Peters, 2014; Becker and Döring, 1935;
Binder and Stauffer, 1976; De Yoreo and Vekilov, 2003;
Hagan, 2014; Hagan and Elrad, 2010; Oxtoby, 1992;
Whitelam and Jack, 2015; Zandi et al., 2006) and (Ox-
toby, 1992) for a review. In this approach, the assembly
of a cluster is broken into two phases: nucleation and
growth (often called ‘elongation’ in the context of finite
structures). Nucleation refers to the process of overcom-
ing a free energy barrier to form a small but relatively
stable aggregate, while the second phase describes growth
of such an aggregate to its final (optimal) size. We will see
below that for most assembly reactions to be productive
(i.e. observable on experimentally realistic timescales),
nucleation must be the rate limiting process, and thus
the assembly timescale can be estimated by calculating
the nucleation rate.

1. Nucleation kinetics

Consider a general form of aggregation free energy for
aggregates that describes assembly driven by short-range
cohesive interactions, with possible additional terms to
describe higher-order effects such as those that give rise
to SLA:

ǫ(n) = −ǫmin +
∆0

n1/d
+ ǫex(n) (64)

where ǫmin is the bulk energy per subunit in the aggregate
with optimal size, ∆0 accounts for surface energy (as in
Eq. (6)) and following Sec. III.B.1 we define ǫex(n) as the
excess energy relative to the bulk and surface effects, in-
cluding effects that are super-extensive in n 22. Note that
this description may apply equally to either self-limiting
(i.e. with a minimum at a finite n = nT and ǫT = −ǫmin

from Sec. II.B ) or unlimited (i.e. where ǫ(n) is minimal
for n → ∞ and ǫT = −ǫmin per Sec. II.A.2 ) assem-
bly. We begin the discussion by considering nucleation
for the simplest case ǫex(n) = 0, i.e. unlimited assembly.
We will see shortly that this analysis also qualitatively
applies to most SLA examples, since nucleation occurs
at small sizes, where the size dependence of the excess
energy, ǫex(n) is much smaller than that of the surface
terms, whose large values at small sizes constitute the
generic origin of the nucleation barrier.
As noted in section II.A.2, small aggregates generically

have a smaller cohesive energy than large aggregates, be-
cause the fraction of subunits at the aggregate surface

22 Here, the notion of excess energy is shifted by an unimportant
constant relative to eq. (46).

with unsatisfied interactions (accounted for by the sec-
ond term ∆0 in Eq. 6) decreases with aggregate size. In
contrast, the bulk energy (ǫmin) dominates over surface
terms for large aggregates. We define the ‘critical nucleus
size’ nnuc as the crossover between these two regimes.
Below nnuc disassembly is favored over assembly because
the bulk cohesive energy driving assembly is outcompeted
by this unfavorable surface energy and the greater trans-
lational entropy of unassembled monomers. Above the
critical nucleus size, on the other hand, the bulk cohe-
sion dominates and assembly is favored23.
Because forward assembly of pre-nuclei aggregates is

unfavorable, growth of an aggregate to the critical nu-
cleus size is improbable and nucleation is a rare event.
In particular, we will see that productive assembly re-
quires that nucleation is a rare event on the timescale
of typical subunit-subunit association. This gives rise to
a separation of timescales — pre-nucleated aggregates
rapidly reach a quasi-equilibrium on timescales much
shorter than the overall timescale required for the assem-
bly process to approach equilibrium. Thus, based on this
assumption, the aggregation distribution for sizes below
the critical nucleus size nnuc can be modeled by a variant
of the law of mass action

φn = n
(

φ1e
−βǫ(n)

)n

= ne−βΩ(n) for n < nnuc (65)

where Ω(n) = n
[

ǫ(n) − µ
]

with µ = −kBT lnφ1 is the
size-dependent grand free energy of n-mers (sometimes
referred to as the ‘excess’ free energy) that accounts for
the inter-aggregate interactions as well as the entropy
cost incurred by subunits joining an aggregate. It is im-
portant to point out that this nonequilibrium descrip-
tion is a departure from from the thermodynamic one
introduced in Sec. II, in which µ and φ1 are thermody-
namically defined by the total concentration and tem-
perature. Here, the chemical potential is used to de-
fine only the partial equilibrium of pre-nuclei with free
monomer. Hence, in this usage, φ1 and hence µ and Ω
should be understood as time-dependent quantities ac-
cording to the depletion of free monomers as assembly
proceeds. However, the quasi-equilibrium approximation
assumes that these quantities vary slowly in comparison
to the timescale required for the pre-nuclei aggregate dis-
tribution to reach this form.
By substituting Eq. (6) for the aggregate energy into

Eq. (65), we see that (for d > 1) there will be a max-
imum in the grand free energy Ω(n) at a size nnuc =
(

d−1
d

∆0

−ǫmin−µ

)d

, owing to the competing drives of (neg-

ative) bulk assembly and (positive) surface growth. This

23 Specifically, critical nucleus denotes a structure for which either
complete disassembly or growth to a large aggregate are equally
probable. In general, for a particular system there will be an
ensemble of critical nuclei that have different structures and (if
size is not a complete reaction coordinate) different sizes,see e.g.
(Pan and Chandler, 2004)
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corresponds to the critical nucleus size, since aggregate
growth beyond nnuc will decrease the free energy. Here,
the factor ∆0

−ǫmin−µ gives a ratio of the unfavorable sur-

face energy ∆0 that impedes assembly to the net ther-
modynamic driving force for assembly −ǫmin − µ. This
provides a natural measure for how far out of equilibrium
are initial conditions

∆µ ≡ −ǫmin − µ = kBT ln
( Φ

Φs

)

≥ 0 (66)

where we have taken φ1 ≃ Φ since we are considering the
initial conditions where nearly all subunits are free. We
have defined Φs ≡ eβǫmin so the that ratio Φ/Φs approxi-
mately measures how far the total subunit concentration
exceeds the CAC and is often referred to as the supersat-
uration.
The key argument of classical nucleation theory is that

because aggregates of the critical nucleus size are rar-
efied, the nucleation timescale grows exponentially with
the barrier height

τnuc ∼ e−βΩ(nnuc). (67)

There are several important points to make here. First,
this is the initial nucleation timescale at the inception
of the assembly; the nucleation timescale increases as as-
sembly proceeds because free subunits are depleted and
thus µ decreases, in turn, increasing Ω(nnuc) . Second,
Eq. (65) only applies up to nnuc; above the critical nu-
cleus size the decreasing free energy implies that growth
is relatively rapid and thus post-nuclei aggregates do not
reach a quasi-equilibrium. Instead, there is a predomi-
nant flux of monomers (via association to intermediates)
from the population of pre-nuclei toward larger aggre-
gates, either toward system-sized aggregates in the case
of unlimited assembly or toward a population of target-
sized structures in SLA. Third, if the barrier height be-
comes too small (e.g. Ω(nnuc) . 10kBT depending on the
relevant timescales), the separation of timescales that en-
abled the quasi-equilibrium approximation breaks down,
and Eq. (67) will under-predict nucleation timescales
since free subunits are rapidly depleted. Fourth, for SLA,
additional corrections to this classical nucleation picture
will arise (such as an apparent size-dependent surface
tension) if the critical nucleus size approaches the finite
system size due to the higher-order effects captured by
the excess energy (Alder and Wainwright, 1962; Mayer
and Wood, 1965; Reguera et al., 2003; Thompson et al.,
1984). Fifth, this analysis has assumed that aggregate
size n is a good ‘reaction coordinate’, meaning that it ac-
counts for all relevant slow degrees of freedom and thus
the dynamics and probability of an aggregate success-
fully nucleating can be determined as a function of n.
In practice, a complete reaction coordinate must include
other aggregate characteristics such as its surface area
(Pan and Chandler, 2004). Sixth, a variety of other ex-
tensions to classical nucleation theory have been investi-
gated, but it remains highly challenging to quantitatively

predict nucleation rates (Auer and Frenkel, 2001; Jacob-
son et al., 2010; Joswiak et al., 2013; Knott et al., 2012;
Loeffler et al., 2013; Mcgraw et al., 1997; Peters, 2009;
Prestipino et al., 2012; Statt et al., 2015; Zimmermann
et al., 2015).
While the discussion so far has considered an aggre-

gate energy form that drives unlimited assembly, in gen-
eral the results are qualitatively similar for SLA with
large target structures, since the interaction terms that
eventually limit assembly grow superextensively and thus
are small for small aggregates. As an example, here and
throughout the remainder of this section, we consider the
fluid capsid model of section III.A.1 for which self-closing
leads to a finite assembly size nT. To simplify the pre-
sentation, we assume the limit of high bending modulus
B → ∞, so the curvature radius of the assembling shell is
fixed to RT =

√

a0nT/4π, and the free energy becomes

ǫ(n) = −ǫmin + λ̃

√

nT − n

n
(68)

with the effective line tension associated with the bound-
aries of incomplete shells (which gives rise to the nucle-

ation barrier) given by λ̃ =
√

4πa0/nTλ, with λ the bare
line energy. Notice that in the limit of small n, Eq. (68)
reduces to a bulk cohesive energy ǫmin and a surface term
∝ √

n as anticipated above.
This specific (B → ∞) model has been considered in

the context of viral capsid assembly in Refs (Hagan and
Elrad, 2010; Zandi et al., 2006). The grand free energy
that corresponds to Eq. (68) is given by

Ω(n) = ∆µn+ λ̃
√

n (nT − n). (69)

which corresponds to a barrier height (Zandi et al., 2006)
of

Ω(nnuc) =
nTλ̃

2

(

√

Γ2 + 1− Γ
)

(70)

where Γ = ∆µ/λ̃ defines a measure of the dimension-
less ‘quench depth’; i.e., the driving force for assembly
in the initial state compared to line energy that impedes
assembly (Zandi et al., 2006).
Fig. 18a shows the grand free energy as a function

of aggregate size for several values of the target shell
size nT, as well as for unlimited assembly into a flat
disk, nT → ∞. Here we have plotted the portions of
the free energy profiles below(above) the critical nucleus
size as solid(dashed) lines to emphasize that the quasi-
equilibrium assumption only applies below the critical
nucleus. That is, φ(n) ∝ e−βΩ(n) for n ≤ nnuc, but for
n > nnuc there is a constant flux of subunits toward com-
plete shells and the nonequilibrium distribution of inter-
mediate concentrations does not follow the law of mass
action.
Notice that the free energy profiles for the self-limited

cases are qualitatively similar to that of the unlimited
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FIG. 18 The grand free energy Ω for the capsid model with
fixed curvature RT (Eq. (70)), as a function of partial cap-
sid size n. (A) shows Ω(n) for indicated complete capsid
sizes nT, with the limit nT → ∞ corresponding to unlimited
assembly (a flat disk). The calculation is performed for a
chemical potential difference ∆µ = −ǫT − µ = −4kBT , and a
per-subunit binding free energy ǫT = −15kBT , corresponding
to a subunit-subunit contact energy of 7.5kBT and tetrava-
lent subunits (e.g. (Ceres and Zlotnick, 2002b; Zlotnick et al.,

2000)). We set the line energy to λ = ǫT/2a
1/2
0 , correspond-

ing to one unsatisfied contact per subunit on the partial shell
rim. (B) shows Ω(n) as a function of the chemical poten-
tial difference ∆µ for ǫT = −15kBT and complete capsid size
nT = 120. In (A) and (B), the solid lines correspond to sizes
for which the quasi-equilibrium approximation described in
the text applies (i.e., n ≤ nnuc) and thus the concentration

of intermediates is approximately given by φ(n) ∝ e−βΩ(n).
The dashed lines correspond to sizes n > nnuc for which this
assumption is not valid and the intermediate concentrations
cannot be described by a quasi-equilibrium (except approxi-
mately for the case ∆µ = 0).

case at small aggregate sizes, consistent with the analy-
sis above. However, the shell geometry that gives rise to
SLA does have quantitative effects — the shell curvature
causes the length of the unfavorable free boundary to de-
crease relative to a flat disk (i.e. of equal area). Thus, the
critical nucleus size and barrier height increase with tar-
get size, asymptotically approaching the flat disk limit.

Note that, while in this case the self-closing physics giv-
ing rise to SLA decreases the nucleation barrier relative
to the unlimited case, SLA effects can in general shift it
in either direction. For example, the strain energy that
gives rise to GFA in section III.B will increase the barrier
beyond the surface costs. We reiterate though that the
effects of SLA on nucleation are typically quantitative
rather than qualitative.

Fig. 18b shows the grand free energy as a function of
aggregate size for several values of the supersaturation,
at fixed target size and line tension. We see that as the
supersaturation decreases, the critical nucleus size and
corresponding barrier height increase, since the transla-
tional entropy of free monomers increases and thus the
net assembly driving force decreases. Note that the dif-
ferent curves corresponding to different supersaturation
levels in Fig. 18a can be viewed from two perspectives.
On one hand, each supersaturation level can correspond
to the initial condition of a separate experiment with a
different total subunit concentration Φ, with each curve
corresponding to the aggregate free energy at the begin-
ning of the experiment. In this interpretation, Eq. 67
describes the initial nucleation rate and its dependence
on quench conditions. On the other hand, as a single
experiment proceeds, the supersaturation is continually
decreasing as free monomers are depleted by assembly,
and curves at decreasing supersaturation levels reveal the
instantaneous nucleation rate as the experiment proceeds
(and subunits are effectively removed from the pre-nuclei
pool). Notice, then, that the barrier height increases as
the reaction proceeds, and thus the nucleation rate de-
creases over time. For large target sizes nT ≫ 1, as the
reaction proceeds the nucleation barrier eventually be-
comes so large in comparison to the thermal energy that
assembly ceases on relevant timescales; thus, the reaction
only asymptotically approaches equilibrium.

Finally, the curve corresponding to no supersaturation,
∆µ = 0, corresponds to the equilibrium state with co-
existence of shells and free monomers (hence the entire
curve is plotted with a solid line). In this case the crit-
ical nucleus size is given by nnuc = nT/2, corresponding
to a half shell. Notice that at equilibrium, intermediates
are higher in free energy than free monomers or complete
shells due to the unfavorable line energy at the bound-
aries and are thus present only at low concentrations (see
also section II.B.2).

2. Growth

We define growth as the process by which a critical
nucleus assembles to its final state, commensurate with
the optimal aggregation size. In contrast to unlimited
assembly (e.g. bulk crystal growth), for SLA there is a
well-defined mean timescale for growth of the aggregate,
since about nT − nnuc ≈ nT subunits must associate to
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reach the optimal size24.

The physical process of growth differs fundamentally
from nucleation. Nucleation is a highly cooperative
process — from Eq. (70), we see that the nucleation
timescale decreases exponentially with subunit interac-
tion strength ǫmin and decreases with subunit concentra-
tion according to φnnuc

1 . The latter condition reflects the
fact that nnuc subunits must come together within a short
timescale in order to create a stable nucleus. In contrast,
because post-nucleus intermediates are relatively stable,
the growth phase can proceed through independent ad-
ditions of individual subunits or small oligomers. Thus,
it can generally be expected that growth timescale τgrow
depends only weakly on ǫmin. Moreover, it can be ex-
pected that τgrow varies inversely with subunit concen-

tration τgrow ∝ φ−1
1 , since the rate of addition should

increase in proportion to concentration unless growth
requires overcoming any secondary nucleation barriers.
This latter prediction has been tested and confirmed ex-
perimentally for Hepatitis B capsid assembly by Selzer et
al (Selzer et al., 2014).

In general, the mean growth timescale can be esti-
mated as

τgrow =
nα
T

φ1fassem
(71)

where we have assumed nT ≫ nnuc so that nT − nnuc ≈
nT. The quantity fassem is the association rate constant
for subunit addition, averaged over the growth phase
since it may vary with aggregate size. The factor in
the numerator indicates that the growth timescale gener-
ically increases with optimal aggregate size (i.e. α > 0)
since O(nT) independent subunit additions must occur.
The value of the exponent α will depend on factors
such as the dimensionality, the aggregate geometry, and
the relative stability of intermediates. For example, for
growth of a globular aggregate in 3D (i.e. a crystal or the
SALR system of section III.B.2), we expect α ≈ 1/3 if
growth is proportional to the diffusion limited rate. For
the capsid example that we consider in this section, we
expect 1/2 ≤ α ≤ 2. In particular, if assembly is strongly
biased over disassembly during growth and the assembly
rate is proportional to the perimeter of the free boundary,
we obtain α = 1/2 (Hagan and Elrad, 2010). For mod-
erately biased assembly, growth tends to occur along a
single point on the perimeter, giving α = 1, while for
weakly biased assembly (near the reversible limit), the
growth timescale approaches that of a random walk, giv-
ing α = 2.

24 However, even for a system with no minimum in its aggregation
free energy, one can define a growth timescale to reach a given
finite-size, which can be analyzed as described here.

3. Beyond nucleation and growth

It is important to note that not all assembly pro-
cesses can be adequately described by the nucleation
and growth mechanism. In some systems there are addi-
tional timescales which may become rate-limiting. These
include subunit conformational changes, or cooperative
global rearrangements required to achieve the optimal
self-limited structure. For example, strains must propa-
gate across scales on the order of the size of the structure
in the frustrated open-boundary assemblies described in
section III.B. Similar behaviors may occur in self-closing
aggregates; for example recent evidence suggests that as-
sembly of empty HBV capsids proceeds by nucleation,
growth into large but defective or disordered intermedi-
ates, followed by a ‘completion phase’ in which the inter-
mediate rearranges into the icosahedral capsid structure
(Chevreuil et al., 2020). Additional multi-step mecha-
nisms are possible if we move beyond the scope of this
review (SLA from a single species). For example, compu-
tation and experiments have shown that assembly around
a substrate or template can proceed by an alternative
‘en masse’ pathway (Elrad and Hagan, 2010; Garmann
et al., 2014, 2016; Hagan, 2008; Panahandeh et al., 2020;
Perlmutter et al., 2014; Tsvetkova et al., 2012). In this
process, subunits rapidly adsorb on a substrate in a disor-
dered manner, and then cooperatively rearrange to form
an ordered aggregate. While that process involves con-
densation and assembly of individual substrates, it is also
possible for the assembling components to undergo bulk
phase separation into a metastable liquid phase prior to
assembly. For example in many virus families the host
cell undergoes liquid-liquid phase separation to form a
domain that is concentrated in viral proteins and nucleic
acids, within which the nucleocapsid (capsid assembled
around the viral RNA) assembles, e.g. (Brocca et al.,
2020; Carlson et al., 2020; Fernández de Castro et al.,
2020; Guseva et al., 2020; Kieser et al., 2020; Nikolic
et al., 2017; Savastano et al., 2020; Schoelz and Leis-
ner, 2017). A related mechanism occurs for unlimited
assembly — it has been shown that crystallization can
proceed by a two-step mechanism in which subunits first
condense into a metastable liquid phase, followed by for-
mation of an ordered crystal, see e.g. (Basios et al., 2008;
Fortini et al., 2008; Gliko et al., 2005; Nicolis and Nico-
lis, 2003; Schubert et al., 2017; Sear, 2009; Veesler et al.,
2006; Whitelam, 2010; ten Wolde and Frenkel, 1997).

B. Interplay between thermodynamic stability, assembly

rates and kinetic traps

Achieving productive assembly requires thermody-
namic stability of the target structure, which implies that
subunit interactions must be strong enough to overcome
the translational and rotational entropy losses incurred
by the subunits forming an aggregate. Achieving produc-
tive assembly in finite time places even more restrictive
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conditions on interactions, based on the kinetics of assem-
bly. Interactions must be strong enough to ensure that
the nucleation timescale discussed above falls within rele-
vant timescales. However, overly strong subunit interac-
tions lead to kinetic traps, or metastable states which
evolve toward equilibrium very slowly. These kinetic
traps can be broadly classified into two categories. We
discuss each category and its effects in turn, followed by
a brief survey of open questions for optimizing assembly
kinetics.

1. Overnucleation (i.e. monomer starvation)

First, the monomer starvation trap arises when nu-
cleation timescales are short in comparison to growth
timescales, or the time required for a nucleated aggre-
gate to grow to its equilibrium size. In this situation, so
many nuclei form that the system becomes depleted of
monomers before most nuclei grow to completion. Subse-
quent evolution to equilibrium requires either redistribu-
tion of subunits from smaller to larger aggregates (Ost-
wald ripening), which incurs significant free energy bar-
riers, or coalescence of large intermediates, which is rare
and frequently leads to mis-assembled structures.
In the context of SLA, this condition becomes more

stringent as the target assembly size increases, since
about nT monomers will eventually be depleted during
the growth of each nucleus, and the growth timescale
typically increases with target size since the critical nu-
cleus size depends at most weakly on nT. The param-
eter regimes that give rise to the monomer starvation
trap can be understood from the different dependence
of nucleation and growth timescales on subunit-subunit
interaction strengths and subunit concentrations (En-
dres and Zlotnick, 2002; Hagan and Elrad, 2010; Zlot-
nick et al., 1999). In particular, from Eq. (67) the initial
nucleation timescale for the capsid model is τnuc(Φ) ∼

exp [−βΩ(nnuc(Φ))] However, as noted above the nucle-
ation timescale increases as the reaction proceeds due to
monomer depletion. By evolving aggregates according to
the kinetics described by Eq. (C1), we can integrate the
cumulative depletion of monomers as a function of time,
from which one can obtain median assembly time τ1/2
(defined as the time required for half of the subunits to
be assembled, φ1(τ1/2) = Φ/2) (Hagan and Elrad, 2010)
(see Appendix C for details):

τ1/2 ∼

τnuc(Φ)

nT
. (72)

The boundary between productive assembly (which we
define as having initial nucleation times shorter than, say,
1 day) and monomer starvation can be estimated by the
locus in parameter space at which the median assem-
bly time and growth time are equal. Fig. 19 shows this
and boundaries between other kinetic regimes as a func-
tion of supersaturation and nT for the capsid model de-
scribed above. For any optimal size, we see that as the
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FIG. 19 (A) Assembly ‘phase diagram’ for the capsid model
(B → ∞ model of the fluid capsule model). The boundaries
between the different kinetics regimes discussed in the text
are shown as a function of capsid size and supersaturation
Φ/Φs = e−β∆µ. The calculation was performed using Eqs. 68,
5, 71 with α = 1, and C2. We set ǫmin = −15kBT and

λ = ǫT/2a
1/2
0 as in Fig. 18. (B), (C) TEM images of in vitro

assembly of empty capsids from CCMV capsid proteins. (B)
corresponds to productive assembly, while (C) corresponds to
assembly of long-lived partial shells (the monomer starvation
trap) that occurs under stronger subunit-subunit interactions.
Images in (B) and (C) reproduced from (Zlotnick et al., 2000).

total subunit concentration increases, the system transi-
tions from a monomer-dominated equilibrium phase, to a
state in which the monomer rich phase is only metastable
with respect to aggregates, but assembly does not occur
on relevant timescales due to a large nucleation barrier,
to a window of productive assembly, and finally to the
monomer starvation regime. Notice that the concentra-
tion at which assembly becomes kinetically accessible can
significantly exceed the CAC, showing that accurately in-
ferring the CAC from experimental measurements can be
challenging. Moreover, the region of productive assem-
bly between the nucleation threshold and the monomer
starvation trap narrows with increasing target size, due
to the different dependencies of the nucleation and elon-
gation timescales on nT. In particular, the median as-
sembly time increases with nT a small sizes due to rim
curvature as discussed above, but decreases as 1/nT at
large sizes because the nucleation time saturates while
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each nucleus consumes nT subunits (see Eq. (72)). Fur-
ther, the growth time increases with nT (Eq. (71) with
α = 1)25.

2. Malformed assemblies

In the second class of kinetic traps, mis-assembled
structures arise when incorrectly bound subunits do not
have time to anneal before becoming trapped within the
aggregate by binding of additional subunits. That is,
subunit interactions must be reversible on the timescale
of subunit association, even in the growth phase of ag-
gregate assembly. This condition depends on both the
cohesive interaction strength and initial monomer con-
centration, since the annealing time increases exponen-
tially with interaction strength while the time interval
between subunit association events decreases inversely
with monomer concentration. Moreover, in the case of
open-boundary assembly (and possibly some instances of
curvature-controlled assembly), subunit association must
occur sufficiently slowly and close to reversibility that
strains due to frustration have time to propagate across
the structure. Otherwise, defects or cracks that allow the
system to escape frustration may occur. The conditions
leading to such escape scenarios remain an open question
in open-boundary assembly.
A similar trade-off between thermodynamic and ki-

netic considerations applies to the orientational speci-
ficity of subunit interactions. While some degree of
orientational specificity is required to stabilize the tar-
get structure over other competing morphologies and
to avoid mis-assembly, overly high specificity (e.g. ex-
tremely precise lock-and-key interactions) leads to small
kinetic cross-sections for subunit association and thus low
assembly rates (Whitelam et al., 2009).

3. Non-equilibrium protocols for optimal kinetics

Finally, we briefly note that it may be possible to
achieve faster assembly and/or higher assembly yields
of SLA over a larger region of parameter space by us-
ing non-equilibrium protocols in which assembly driving
forces are varied over time, for example by varying the
temperature, solution conditions, or concentration. An
intuitive approach is to use strong subunit interactions
for sufficient duration to rapidly form a desired number
of nuclei, and then to reduce subunit interactions to a
level where post-nuclei intermediates can undergo growth
but further nucleation is suppressed by a large nucleation
barrier. Several approaches have been developed to use

25 Note that a similar analysis can be performed for crystallization
in a finite-sized system, to tune nucleation and growth rates so
that a single nucleus forms on accessible timescales but grows to
system-size before additional nuclei arise.

feedforward for feedback control to optimize such time
varying protocols, e.g. (Green et al., 2019; Grover et al.,
2019; Klotsa and Jack, 2013; Pineros et al., 2018; Tang
et al., 2016b, 2017). A simpler but highly effective strat-
egy is to seed nucleation of particular structures, e.g.
(Mohammed and Schulman, 2013). This is related to
the more general context of harnessing non-equilibrium
assembly pathways to achieve size-controlled aggregates
out of equilibrium, which we return to in detail in the
next section.

V. FINITE SIZES BY OTHER MEANS

In Secs. II.B and III, we overviewed the statistical
thermodynamics of and known physical mechanisms for
identical subunits to achieve equilibrium states with well-
defined and finite dimensions. Here, we briefly survey two
broad classes of mechanisms for achieving size-controlled
assemblies that fall outside of this basic paradigm: non-
equilibrium size control and programmable assemblies
multiple species.

A. Non-equilibrium mechanisms of size-controlled assembly

While Sec. IV showed that kinetic effects introduce lim-
itations to the practical ability to achieve equilibrium
SLA, in this section we consider how non-equilibrium
effects can be exploited to achieve size-control of finite
assemblies even when the equilibrium states are non self-
limiting.
Such nonequilibrium mechanisms leading to size-

controlled assembly distributions can be further classified
into two categories. (i) In ‘kinetically-controlled’ assem-
bly reactions, kinetic effects drive a system to a well-
defined metastable state which is either sufficiently long-
lived for practical applications or can be subsequently
stabilized by additional reactions. Examples of such
kinetically-controlled reactions include polymer/particle
synthesis processes (de Pablo et al., 2019), nonequilib-
rium formation of finite size droplets in microemulsions
(Woltornist et al., 2015, 2017), flow-driven aggregate
breakup (Conchúir and Zaccone, 2013) and kinetically
arrested coarsening (Siggia, 1979). (ii) The second class,
typically referred to as ‘non-equilibrium assembly’ mech-
anisms, requires continual energy input into the system
to stabilize the self-limited size distribution. These mech-
anisms use energy consumption to modify the aggregate-
size-dependence of subunit association and/or dissoci-
ation rates. In both equilibrium and nonequilibrium
mechanisms, a stable assemblage requires that associa-
tion and dissociation rates are equal at a finite aggregate
size. The resulting fixed point must also be stable, re-
quiring that dissociation rates exceed association rates
at larger aggregate sizes, and association rates are larger
for smaller aggregates. These conditions are guaranteed
in an equilibrium system by the criteria for self-limited
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assembly sizes discussed in section II.B.2. However, addi-
tional nonequilibrium mechanisms to modify association
or dissociation rates can also lead to stable finite sizes.
For example, a number of biological mechanisms have
been proposed in which assembly sizes are regulated by
energy-consuming processes, such as active assembly and
disassembly by molecular machines, or coupling between
protein conformational states and phosphotransfer reac-
tions (e.g. changes in a protein’s phosphorylation state
or hydrolysis of a bound, nucleotide triphosphate). Simi-
larly, assembly/disassembly rates can be modulated by
externally controlled gradients in monomer concentra-
tions or nucleation factors, as occurs during embryoge-
nesis (Briscoe and Small, 2015).

In a well-studied example, the lengths of microtubules
or actin filaments are regulated by a suite of accessory
proteins that modulate assembly and disassembly rates
at filament ends, as well as molecular motors that actively
remove subunits from filament ends or sever filaments
in their interiors (Desai and Mitchison, 1997; Mohapa-
tra et al., 2016; Pollard, 2016). Moreover, the subunits
themselves undergo conformational changes powered by
hydrolysis of nucleotide triphosphates (ATP or GTP).
The hydrolysis event shifts subunits into geometries that
are incompatible with the global filament structure, thus
inhibiting further assembly and/or weakening the exist-
ing structure. These nonequilibrium processes not only
allow stable finite-length distributions, but also struc-
tural dynamics, such as actin treadmilling and micro-
tubule dynamical instability, that allow the cellular cy-
toskeleton to rapidly respond and reconfigure to environ-
mental cues. Using models ranging from idealized one-
dimensional filaments to geometrically realistic particle-
based dynamical simulations (Bollinger and Stevens,
2018; Fai et al., 2019; Hemmat and Odde, 2020; Mo-
hapatra et al., 2016; Tong and Voth, 2020), researchers
have identified multiple mechanisms by which active fila-
ment assembly/disassembly processes and energy-driven
subunit conformational changes can lead to 1D filaments
which exhibit dynamical instabilities and/or with well-
defined stable sizes. In contrast, recall from section II.A.2
that equilibrium 1D filaments generically exhibit expo-
nential length distributions.

Other biological structures thought to be subject to
non-equilibrium size regulation include COP protein
bound vesicles in the eukaryotic secretory system (Foret
and Sens, 2008), neuronal synapses (Broadhead et al.,
2016; Burlakov et al., 2012; Lisman and Raghavachari,
2006, 2015; Liu et al., 2017; Miermans et al., 2017;
Shomar et al., 2017; Tang et al., 2016a), transcrip-
tional regulatory complexes (enhancers) (Cho et al.,
2018; Chong et al., 2018; Hnisz et al., 2017; Sabari et al.,
2018), and other phase-separated liquid domains (Weber
et al., 2019; Zwicker et al., 2014, 2015). The key char-
acteristic of all of these systems is that the finite size
of the assembled structure depends on continual energy
consumption; e.g. through the replacement of ‘inactive’
subunits with ‘active’ ones by the disassembly of GDP

bound tubulin subunits and reassembly of GTP bound
tubulin at a microtubule end, or the continual dephos-
phorylation and re-phosphorylation of subunits by phos-
phatases and kinases within a neuronal synapse (Lisman
and Raghavachari, 2006, 2015).
More broadly, it has been known since Turing’s sem-

inal paper (Turing, 1952) that combining imbalances
in diffusion rates with interconverting molecular species
(e.g. through chemical reactions) can lead to compo-
sitional inhomogeneities with well-defined, steady state
sizes, e.g. (Halatek and Frey, 2018; Haselwandter et al.,
2011, 2015). More recently, advances in stochastic ther-
modynamics (Seifert, 2008, 2012) have demonstrated
that active processes can play important roles in regu-
lating the structures and functions of assembly and self-
organization (Marsland and England, 2018; Nguyen and
Vaikuntanathan, 2016). Moreover, theoretical and ex-
perimental studies suggest that spatiotemporal patterns
with well-defined domain sizes can occur in some active
matter systems, whose constituent components consume
energy at the particle scale to drive motion, e.g. (Bär
et al., 2020; Bechinger et al., 2016; Doostmohammadi
et al., 2018; Marchetti et al., 2013; Needleman and Dogic,
2017; Shaebani et al., 2020).

B. Addressable assembly of programmable subunit mixtures

In Sec. III above, we reviewed two broad categories
of self-limiting assemblies, both of which achieve equilib-
rium finite-size assemblies from a single species of sub-
unit. Here, we briefly describe an emerging class of self-
assembling systems that also realizes equilibrium finite-
size assembly, but which falls (at least partly) outside of
these two categories.
We refer to this class of systems as addressable as-

semblies (AAs) following the terminology introduced in
(Jacobs and Frenkel, 2016; Jacobs et al., 2015). AAs
are formed by mixtures of multiple assembling subunit
species (say species A,B,C,D etc.), each with specific
interactions that selectively bind to a subset of all sub-
unit species (e.g. A binds selectively only to D, while B
binds to itself as well as C). The core design principle of
AAs is: one can “program” the matrix of species inter-
actions to match the 3D adjacency matrix of a desired
structure, perhaps uniquely, such that this target struc-
ture becomes the equilibrium assembly state in mixtures
of controlled subunit stoichiometry (Hormoz and Bren-
ner, 2011). That is, each particle has an “address” (or
set of addresses) where it sits in the 3D target assembly.
Examples of AAs include colloids and nanoparticles

functionallized by single-stranded DNA tethers that me-
diate interactions via complementary base pairing (Jones
et al., 2015), as well as “DNA bricks” assembled by mix-
tures of oligmeric DNA strands whose sequences are de-
signed to interleave ends into 3D patterns via comple-
mentary base pairing (Ke et al., 2012). Each of these
systems has been considered and studied for its poten-
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tial to selectively design and assemble target superstruc-
trures that terminate at specifically predetermined di-
mensions (Zeravcic et al., 2014). In the sense that the
self-limiting target structure can be designed to be stress-
free with each cohesive bond ideally satisfied, finite AAs
can be thought of as multi-species analogs to self-closing
structures, albeit with more complex bond networks. As
an example, rectangular beams with precisely defined
and finite cross-sectional dimensions were assembled us-
ing the programmable DNA bricks (Ke et al., 2014).
The different values of target finite dimension each re-
quired mixtures composed of different numbers of dis-
tinct oligomeric species. For example, finite width beams
of 6× 6, 8× 8 and 10× 10 dsDNA helices across were as-
sembled, respectively, from mixtures containing 60, 112
and 180 distinct oligomers. Generically, equilibrium ter-
mination at specific size via AA requires a number of dis-
tinct subunit species nS that grows with the finite target
size W∗ (Ong et al., 2017), presumably with some power

law nS ∼ W β
∗ (e.g. β = 2 if distinct subunits are required

in every 2D cross-section of a beam).

The unbounded growth of the number of subunit
species with target size for such an implementation of
AA would seem to limit its practical applicability, due
to the cost (in terms of design, synthesis, and process-
ing) and limited scalability of the programmable mixture.
This raises a basic question about AA: Are there optimal
strategies that minimize the complexity (e.g. number of
distinct species) of a subunit mixture needed to achieve
self-limiting AAs of a given topology, and how do these
scale in the limit of large target size? The self-assembly
of viral shells, or capsids, may provide clues for how to
approach this question.

Capsids are “crystalline” shells composed of protein
subunits (capsomers) that self-assemble to enclose the
viral genome. Since the enclosed genome has to code for
the capsomers themselves, it has been understood since
Crick and Watson’s seminal paper (Crick and Watson,
1956) that such assemblies should be economical. I.e.,
a viral capsid is under selective pressure to enclose the
largest possible volume using the minimal number of dis-
tinct capsomer types. Caspar and Klug (CK) proposed
that viruses achieve this optimization by exploiting sym-
metry principles (Caspar and Klug, 1962). In their well-
known construction, quasi-spherical capsid structures are
mapped to high-symmetry triangulations of the sphere,
in which each triangle is constituted by 3 capsomeric sub-
units (Prasad and Schmid, 2012). Based on this reason-
ing, CK conjectured that “optimal” capsids correspond
to sub-triangulations of the icosahedron. Each CK struc-
ture can be classified by the number T = h2 + k2 + hk
of sub-triangles per each of the 20 triangular faces of the
icosahedron, where h and k are positive integers. Since
regular triangulations of the sphere are not possible be-
yond those corresponding to Platonic solids, CK noted
that higher triangulation numbers require capsomers to
accommodate different local environments, correspond-
ing to variations in neighbor spacing, orientation, and

the number of neighbors. In CK capsids, the triangula-
tion number T is the number of symmetry-inequivalent
capsomer positions.

In this way, we might view CK capsids as a highly-
symmetric and economical limit of AA. While the com-
plete shell could be assembled from 60T distinct and
specifically interacting capsomeric subunits, the large
number of symmetry elements of the icosahedral net im-
plies that there are many redundancies in such a de-
sign, and in fact, the same unique target structure could
be realized from specific interactions of only T distinct
units. This approach has been adopted by the protein
design community, enabling researchers to engineer pro-
teins that assemble into icosahedral shells of various sizes
(Bale et al., 2016; Butterfield et al., 2017; King et al.,
2014; Lai et al., 2014; Mosayebi et al., 2017). Recently,
the CK design principles have been repurposed for the
de novo design of triangular DNA origami particles with
precisely defined geometry and edge interactions that se-
lectively assemble into T icoshedral shells (Sigl et al.,
2020). Notably they show such capsids can be uniquely
programmed and assembled from even a fewer number
of distinct subunit species, ⌈T/3⌉, because each triangle
can have three inequivalent edges.

In its simplest implementation, a CK capsid can be
assembled by synthesizing a distinct subunit species for
each of the T symmetry-equivalent positions. While some
small viruses follow this approach, it becomes increas-
ingly impractical as the target capsid size grows, since the
number of distinct species scales linearly with the capsid
area. In practice, there are two mechanisms to reduce
the number of distinct subunits that need to be synthe-
sized by a virus (or by any other manufacturer). In many
viruses, the capsid protein interconverts between differ-
ent ‘quasi-equivalent’ conformations with slightly differ-
ent interaction geometries that accommodate the differ-
ent local symmetry environments in the capsid, thus en-
abling assembly of capsids with T > 1 from a single
subunit species (Caspar and Klug, 1962; Johnson and
Speir, 1997). More broadly, it has been shown that such
high symmetry constructions correspond to free energy
minima of assembled structures with spherical topolo-
gies with relatively generic types of short-range cohesive
subunit-subunit interactions, although the free energy
minimum symmetry depends on the size of the assembled
structure (Chen et al., 2007; Zandi et al., 2004). Corre-
spondingly, CK-like capsids emerge naturally from the
assembly of elastic structures from subunits resembling
the tapered subunits discussed in section III.A.2 (Chen
et al., 2007; Fejer et al., 2010; Lázaro et al., 2018a,b;
Reguera et al., 2019), and many of the principles dis-
cussed in that section can be extended to systems that
form CK capsids. However, the assembly dynamics of
such structures remains an open question — how does
the ‘right’ subunit conformation end up in the appropri-
ate location within an assembling capsid (Berger et al.,
1994; Elrad and Hagan, 2008; Li et al., 2018; Morton
et al., 2010; Panahandeh et al., 2020, 2018; Perkett et al.,
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2016; Perlmutter and Hagan, 2015; Stockley et al., 2013;
Twarock et al., 2018; Zandi et al., 2020)? More recently,
the CK construction has been extended to account for
other viruses in which capsomers accommodate more ex-
treme differences in local environments and other sym-
metry classes (Luque and Reguera, 2010; Twarock, 2004;
Twarock and Luque, 2019). In a second strategy, finite
shells are assembled from a single (or few) subunit types
which do not adopt explicitly distinct conformations, but
are sufficiently deformable to accommodate different lo-
cal symmetry environments by the formation of inhomo-
geneous strains within the capsid structure. It is easy
to imagine that these two strategies (different confor-
mations with specific interactions or subunits with de-
formable interaction geometries) could be combined to
extend the size and complexity of a shell that can be
assembled by the CK mechanism.

Returning to the context of AA, CK constructions and
their extensions can be viewed as limiting cases of AA
in which one uses symmetry to putatively minimize the
number of distinct subunits types need to enclose a given
volume. The CK framework suggests that there is a
trade-off between the complexity of the mixture of dis-
tinct subunits and the complexity, or asymmetry, of the
target assembly (i.e. fewer symmetry elements in the
target structure implies more subunit species). This idea
can be extended more broadly to designing self-limiting
AAs that target other, non-spherical topologies. In this
context, a more precise, and potentially useful notion of
“economy” may be to consider the ratio of target finite
size to number of subunit types W∗/nS, and ask what are
the analogs to CK designs for arbitrary topologies that
maximize this ratio in the limit of increasing W∗.

VI. CONCLUDING REMARKS: SELF-LIMITING

ASSEMBLY BY DISCOVERY AND DESIGN

In this review we have attempted to provide a uni-
fied theoretical perspective on assembly processes that,
while occurring in chemically and physically diverse sys-
tems, share the common thread of autonomously termi-
nating at a well-defined equilibrium finite size. Start-
ing from the framework of ideal aggregation theory, we
showed that the necessary conditions for such self-limited
assembly are linked to the existence of a minimum in the
size-dependent aggregation energetics ǫ(n). In contrast,
systems which do not meet these conditions generically
assemble bulk structures such as crystals. We saw that
properties of self-limited assembly reactions can be iden-
tified from the functional form of ǫ(n), including the onset
of aggregation with increasing subunit concentration and
the size of fluctuations around the optimal aggregate size.
Systems with multiple local minima in ǫ(n) can exhibit
polymorphic self-limited assembly, with concentration-
dependent transitions (secondary CACs) between differ-
ent aggregation states. We saw that the small, but non-
zero, translational entropy of the aggregates plays a key

role in driving secondary CACs.

The existence of local minima at non-trivial sizes nT ≫
1 implies that the energetics of assembly, as mediated by
the shape and interactions between subunits themselves,
requires the ability to “sense” the aggregate size on scales
comparable to the optimal size. Surveying known exam-
ples of equilibrium SLA from identical subunits, we ar-
gued that there are two broad classes of physical mech-
anisms that achieve this. Either the subunit interaction
geometries encode a target assembly geometry that “re-
turns to itself” after a characteristic number of subunits,
or instead, there is a source of intra-assembly stress gra-
dients that can propagate up to the finite-size scale of the
assembly. An important feature of the latter mechanism
is that it enables finite-sized aggregates that have open
boundaries. We presented generic descriptions for un-
derstanding each of these mechanisms, including how to
assess the limits to the finite size that can be achieved.
Toward that end, we considered mechanisms by which
the system can “escape” finite size, resulting in bulk as-
sembly products. For example, a system can curtail the
accumulation of stress gradients with assembly size by
expelling strain to its periphery or by locally relaxing
strain through defects. We presented distinct physical
mechanisms that can give rise to accumulating stress gra-
dients: the interplay between short-range attractions and
long-range repulsions, or an incompatibility between the
preferred local subunit packing and the large-scale assem-
bly geometry. We also presented example experimental
systems that may correspond to each of these SLA mech-
anisms.

In part, our purpose in spotlighting the relatively rar-
efied conditions required for equilibrium self-limitation
is to reframe broadly open challenges in understanding
and engineering SLA. One such challenge could be de-
scribed as the experimental inference of SLA. That is,
for a given set of experimental observations of assembly,
is it possible to determine if finite aggregates are the re-
sult of equilibrium self-limitation? This is a particularly
vexing issue for experimental observations of both syn-
thetic and biological assemblies that appear to be finite
and well-defined. While it is often desirable to link the
observations to specific microscopic models that recapit-
ulate aspects of finite assembly a posteriori, such models
often require assumptions about the interactions and en-
ergetics of complex subunits that are poorly understood.
Thus, it is challenging to rule out alternative mechanisms
of kinetic trapping of assembly in such systems. As one
example, in living tissues collagen forms fibrillar assem-
blies that appear to have well-defined diameters reaching
up to microns, well beyond the nm-scale width of a single
pro-collagen molecule (Ottani et al., 2002). Moreover,
the mean diameter varies considerably between tissue
types. Fibers in tendons have mean diameters in excess of
& 1 µm, while those found in corneal tissue have a tighter
distribution around . 50nm (Wess, 2008). Such observa-
tions combined with the functional needs of these differ-
ent tissues (Meek, 2009), high stiffness vs. optical trans-
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parency respectively, suggest a need to regulate the as-
sembly of the same subunits to form architectures of tun-
able finite size. Indeed, physical models have proposed
mechanisms of geometric frustration deriving from the
chiral organization within fibers as a means of imposing
a self-limited diameter (Brown et al., 2014; Grason and
Bruinsma, 2007; Turner et al., 2003; Yang et al., 2010).
While these explanations are plausible and broadly con-
sistent with observations of finite-diameter collagen fibers
and other fibrous biofilament structures, these physical
models require knowledge of parameters describing chi-
ral inter-molecular forces and inter-molecular mechanics,
which are difficult to predict under conditions relevant
to assembly (Grason, 2020). Without direct knowledge
of these inter- and intra-molecular parameters, not to
mention the non-equilibrium conditions of assembly, at
best, such models can plausibly explain the finite size
of fiber diameters. Developing generalizable experimen-
tal methodologies that strictly prove (or disprove) mech-
anisms of equilibrium self-limitation, particularly from
complex biomolecular subunits for which the intermolec-
ular aggregation energetics is poorly understood, remains
a more distant and unmet goal.

A related challenge is to use advances in synthetic
techniques to design and engineer self-limiting assem-
blies that target a priori finite dimensions. Great ad-
vances have been made in designing shape-controlled par-
ticles (Glotzer and Solomon, 2007; Sacanna and Pine,
2011) whose symmetries and interactions direct assembly
to targeted structures. However, assembly targets have
thus far been largely restricted to various bulk structures
(albeit with complex unit cells), or 1D or 2D aggregates
of uncontrolled ultimate size. Alternately, the field of
“supramolecular chemistry” has leveraged chemical syn-
thesis of an outstanding variety of architecturally- and
compositionally-defined macromolecules to direct their
assembly. The chemical control over these “precision
amphiphiles” has significantly increased the ability to
rationally design and form periodic mesophases, ther-
motropic supramolecular crystals, or liquid crystals (Su
et al., 2020). However, while the symmetries of these
phases have become increasingly complex, they remain
bulk structures. Synthetic advances in amphiphile as-
sembly have largely focused on imbuing micellar assem-
blies with functional properties, such as controlled up-
take and release of drugs (Geng et al., 2007; Oltra et al.,
2014). While micellar assemblies are finite-size in terms
of diameter, as in the case of traditional surfactants, the
finite size remains limited to the size of the molecules that
span the aggregate core. Thus, notwithstanding tremen-
dous advances in synthesizing shape- and interaction-
controlled subunits, controlling the finite-size of target
superstructures, particularly on size scales much larger
than the subunits themselves, remains a relatively un-
explored aspect of engineered assemblies. While recent
advances in methods such as DNA nanotechnology seem
to pave the way to geometric control of subunits needed
to realize bioinspired capsules and tubules (Benson et al.,

2015; Rothemund et al., 2004; Sigl et al., 2020; Tian et al.,
2014), it remains to be explored what the experimentally
realizable upper limits to finite sizes are, and what mech-
anisms of self-limitation are needed to reach this limit.
A further challenge is to design supramolecular struc-

tures that do not have a single finite size but, rather,
can exist in multiple different sizes, all of which are sta-
ble. Such classes of structures enable essential functions
in biology. For example, recent evidence suggests that a
neuronal synapse changes size during long-term memory
storage, but then must remain stable at that size over the
lifetime of a memory (Lisman and Raghavachari, 2006;
Tang et al., 2016a). Designing such variable-size stable
structures is also becoming of interest to nanomaterials
science, since materials capable of “learning” or “remem-
bering” multiple stable configurations (Murugan et al.,
2015; Zhong et al., 2017) could adapt their structures to
store information, self-heal, or respond to environmen-
tal cues. Despite this interest and insights from biology,
the principles underlying such variable-size stable struc-
tures remain far from clear. In this context, it would be
of interest to extend the considerations in section II.B.3
of secondary CACs, to understand more broadly how the
interplay between aggregate translational entropy and in-
teraction energies can lead to controllable transitions be-
tween structures with different finite number sizes and/or
dimensionalities. Similarly, can these principles be com-
bined with the concepts of nonequilibrium assembly to
design subunits that are preprogrammed to organize into
nanoscale machines capable of autonomously manipulat-
ing matter or performing other functions currently found
only in living organisms?
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Appendix A: Polymorphic amphiphile assembly phase

diagram

Here we summarize the calculation of the polymor-
phic assembly phase diagram for the amphiphile model
in Fig. 12. The aggregate energy for each of the dimen-
sionalities is given by Eq. (44). To determine the phase
diagram, we calculate the following law of mass action
for subunit populations:

Φ = φ1 +Φ3 +Φ2 +Φ1 (A1)

with ΦdL the mass fraction of subunits in spherical, cylin-
drical, or planar aggregates for dL = 3, 2, 1 respectively,
and φ1 the free monomer population
Adopting the continuum limit, the mass fraction of

subunits in spheres is given by

Φ3,cont. =

∫ ∞

0

dr4πr2n0φ3(r)

φ3(r) = nsph(r) exp [− (ǫsph(r)− µ)nsph(r)] (A2)

with ǫsph(r) = ǫ(r, 3) from Eq. (44), nsph(r) = 4
3πr

3n0,

and n0 = v20/a
3
0 a dimensionless number density.

Likewise, the mass fraction in spherocylinders is

Φ2 =

∫ ∞

LB

dL

∫ ∞

0

dr2πrn0φ2(r, L)

φ2(r, L) = (nsph(r) + ncyl(r, l))×
exp [− (ǫSC(r, L)− µ) (nsph(r) + ncyl(r, L))]

(A3)

with LB set by the minimal length of the stable sphero-
cylinder branch (calculated below), ncyl(r, L) = n0πr

2L,
and

ǫSC(r, L) =
nsph(r)ǫsph(r) + ncyl(r, l)ǫcyl(r)

nsph(r) + ncyl(r, L)
(A4)
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with ǫcyl(r) = ǫ(r, 2) from Eq. (44). Note that the first
term in the numerator of Eq. (A3) corresponds to the
“endcap energy” arising from the hemispherical cap at
either end of the spherocylinder. We make the simplest
assumption, that the radius of the hemispherical cap is
equal to that of the cylindrical portion of the micelle,
so that solvophobic tails remain shielded from solvent
contact at the cylinder-endcap connection. More realis-
tic models consider lower energy shapes that smoothly
connect “bulbous” ends to cylindrical cores (May and
Ben-Shaul, 2001).
Finally, Φ1 is the mass fraction in layers, and is calcu-

lated below.
To proceed, recall from section II.B.2 that for the case

of a minimum in the aggregate size around an optimal
size nT, fluctuations vanish in the limit of large nT or
ǫ′′|nT . Specifically, consider a generic aggregate energy
function ǫ(n) with a minimum ǫ∗ at the optimal size nT.
The mass fraction of subunits in aggregates is then given
by

ΦT =

∫ ∞

0

dnn exp[µ− ǫ(n)]. (A5)

Performing a saddle point as in section II.B.2 then results
in

Rfluc =
ΦT

ΦT(nT)
=

√

2π

ǫ′′|nTnT
(A6)

with ΦT(nT) = nTe
−(ǫ∗−µ)nT the mass of subunits in ag-

gregates if fluctuations are neglected. Thus, we see that
when ǫ′′|nTnT & 1 the width of the distribution smaller
than a subunit, and fluctuations are negligible. For sphe-
rocylinders, we see that the contribution due to fluctua-
tions in the radial direction r diminishes with length as
Rfluc ∼ L−1/2. Thus, even for narrow spherocylinders,
fluctuations become negligible in the large-length limit.
With this in mind, we account for polydispersity in

micelles as follows. We first calculate the optimal ra-
dius for spherical aggregates, r̄sph by minimizing ǫsph(r)
for given values of k and P . We then numerically cal-
culate the location of the barrier between the spherical
and spherocylindrical branches of Eq. (A4), as LB =

arg max
L

(

min
r

ǫSC(r, L)
)

; i.e., the length at which a

spherocylinder of optimal radius has a maximum en-
ergy per particle. The number of particles at the bar-
rier is then given by nB = nsph(rB) + ncyl(rB) with
rB = arg max

r
ǫSC(r, LB) the optimal radius at the bar-

rier.
To calculate the mass of spherical micelles, we numer-

ically integrate the expression in Eq. (A2). To maintain
the assumptions of section III.A.2, we perform the inte-
gral over the range n ∈ [n̄sph, nB] with n̄sph = nsph(r̄sph),
although the result is largely insensitive to increasing
these integration bounds. We then include fluctuations
only when they exceed the size of a single subunit by

setting

Φ3 = max
[

Φ3,cont., n̄sphe
−(ǫsph(n̄sph)−µ)n̄sph

]

. (A7)

where the second argument is simply the concentration
of micelles at the optimal size.
For spherocylinders we make the simplifying as-

sumption that radial fluctuations can be neglected at
all lengths, and take the optimal radius r̄SC(L) =
arg max

r
ǫSC(r, L) as a function of spherocylinder length

L. In practice, we found that the numerics are more
tractable if the integral is performed over particle num-
ber n rather than spherocylinder length L, so we cal-
culate the optimal spherocylinder length LSC(n) =
arg max

L
ǫSC(r̄SC(n, L), L) with r̄SC(n̂, L) determined

from the volume of the spherocylinder: nsph(r̄SC) +
ncyl(r̄SC, L) = n̂. To make the integral numerically
tractable, we perform the integral to a predefined (large)
size nmax, beyond which we assume that the effect of
changing radius from the hemispherical caps is negligi-
ble, so that the optimal radius is given by the minimum
of the cylinder energy, r̄SC ≈ r̄cyl = arg max

r
ǫcyl(r), and

the energetics becomes simply the 1D energetics of the
form in sec. II.A.2:

Φ2 ≈
∫ nmax

nB

dnΦ2(r̄SC(n, LSC(n)), LSC(n)) + Φ∞(nmax)

(A8)

with the contribution from the spherocylinders with sizes
larger than nmax given by

Φ∞(nmax) = e−ǫcape(µ−ǭcyl)nmax
1 + (ǭcyl − µ)nmax

(ǭcyl − µ)
2

(A9)

with ǭcyl = ǫcyl(r̄cyl) the energy per particle within the
cylindrical region and ǫcap = nsph(r̄cyl) (ǫsph(r̄cyl)− ǭcyl)
the total extra energy that arises due to the unfavorable
hemispherical caps.
Finally, the fraction of subunits in layers Φ1 is calcu-

lated by noting that the free subunit chemical potential
can never exceed the chemical potential of a subunit in
a sheet, φ1 ≤ eǭlayer with ǭlayer = min

r
ǫlayer(r), where

ǫlayer(r) = ǫ(r, 1) from eq. (44). Thus, the amount of
subunits in layers and the corresponding free subunit con-
centration are given by mass conservation as

Φ1 =max
[

Φ− Φ3 − Φ2 − eǭlayer, 0
]

φ1 =Φ− Φ3 − Φ2 − Φ1, (A10)

effectively treating layers as an unlimited bulk phase,
with negligible edge energy.
Phase boundaries in Fig. 12A are calculated from

Eq. (A2) - Eq. (A10) by determining the total sub-
unit concentration at which the fraction of subunits in
an aggregate of a given dimensionality exceeds 50%.
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That is, the concentrations corresponding to transitions
between monomers/layers, layers/spherocylinders, and
spherocylinders/spheres are calculated as the lowest total
concentration at which Φ (Φ1 = 0.5), Φ (Φ2 = 0.5), and
Φ (Φ3 = 0.5) respectively. The concentrations in Fig. 12
are normalized by the CAC for cylinders, φ∗ = eǭcyl . Note
that φ∗ is the only result within this section that depends
on the cohesive energy strength ǫ0; the relative concen-
trations corresponding to the transitions depend only on
the elastic and boundary energy terms.
The CAC ratio shown within the

spheres/spherocylinders coexistence region in Fig. 12B
is computed as Φ (Φ3 = 0.5) /Φ (Φ2 = 0.5). The infinite-
concentration transitions, shown as solid red and blue
lines in Fig. 12B, are calculated respectively from
ǭlayer(k̄, P ) = ǭcyl(k̄, P ) and ǭcyl(k̄, P ) = ǭsph(k̄, P ).
Finally, the boundary of the spheres/spherocylinders

coexistence region (solid green line in Fig. 12B) is es-
timated as the minimum concentration at which either
the height of the barrier between the sphere and sphe-
rocylinder branches goes to zero (i.e. corresponding to
δ = 0 in Eq. (34) of section II.B.3) or the point at which
the transition concentration from spheres to spherocylin-
ders becomes equal to the threshold concentration for
assembling cylinders in the absence of other aggregates
Eq. (35).

Appendix B: Continuum elastic theory of frustrated chiral

ribbons

Here we present details of the “narrow ribbon” theory
of frustrated chiral ribbons. As the model has been de-
scribed elsewhere (Armon et al., 2014; Ghafouri and Bru-
insma, 2005; Grossman et al., 2016), our primary aim is
to present provide more details on the physical ingredi-
ents of the model, and further to describe how the elastic
instability of wide helicoids quantitatively alters the pic-
ture of “frustration escape” presented in the Sec. III.B.3.
Following the approach of (Ghafouri and Bruinsma,

2005), we consider a simplified theory that describes the
shape of ribbons in terms of the surface curvature ten-
sor Cij along the mid-line of ribbons, written in terms
of coordinate directions x̂e and x̂p that point, respec-
tively, along and perpendicular to the wide direction of
the ribbon (see e.g. Fig. 17A). Specifically, this assumes
that the in-plane curvatures vary little away from the
mid-line of the ribbon, which is strictly valid when the
ribbon widths are narrow with respect to their curvature
radii. Since the ribbons effective “flatten” in shape as
they grow wider, this narrow-ribbon approximation pro-
vides at least a qualitative picture of the ribbons’ ther-
modynamics over the entire range of the widths.
The excess energy derives from two elastic contribu-

tions,

Eelast = Eintrinsic + Eextrinsic, (B1)

where the first term depends on the intrinsic geometry,

or metric distortions away from a planar 2D lattice, while
the second term describes the elasticity of the extrinsic
geometry of the ribbon, i.e. , a generalized form of its
bending energy expressed as quadratically in terms of
curvature elements Cij . The former term is captured by
a 2D elastic energy,

Eintrinsic =

∫

dA σijuij , (B2)

with uij and σij ≈ Y uij as the respective in-plane stress
and strain of the 2D crystal ribbon order, and Y as the
2D Youngs modulus of the crystal (Seung and Nelson,
1988). Assuming that the crystalline packing favors uni-
form inter-subunit spacing, there is a geometrical and
mechanical coupling between in-plane stress and out-of-
plane deflections described by the so-called compatibility
equation,

∇2
⊥σii = −Y KG, (B3)

where σii = σpp + σee and KG ≃ CeeCpp − C2
ep is the

Gaussian curvature (neglecting variations of KG across
the ribbon width). Assuming approximately uniform
negative curvature, it is straightforward to show that
Eintrinsic/(WL) = Y K2

GW
4/1440 (Ghafouri and Bru-

insma, 2005; Grason, 2016).
The extrinsic energy takes the form of the generalized

bending energy

Eextrinsic =
1

2

∫

dA
[

BppC
2
pp+BeeC

2
ee+2Bep(Cep−Ω0)

2
]

(B4)
where Bij are bending coefficients for different curvature
elements. Here we consider the case of B = Bpp = Bee =
Bep; relaxing this restriction does not alter the quali-
tative behavior. Symmetry considerations (i.e. lack of
inversion symmetry) argue that chirality at the subunit
scale generates a linear coupling to the off-diagonal cur-
vature component, which we define as the ribbon twist,

Ω ≡ Cep (B5)

and hence Ω0 can be associated with the preferred ro-
tation, or twist, of the tangent plane along the edge or
pitch axis (Helfrich and Prost, 1988). At a subunit scale,
this preferrence for mesoscopic twist derives form a ener-
getic preferrence for locally skewed packing of molecules
in the membrane (Zhang et al., 2019), although a predic-
tive understanding of the relationship between preferred
pitch and structure of constituent chiral molecules is a
notoriously complex and long-standing issue in and of
itself, see e.g. (Harris et al., 1999).
Combining these together and dividing by the num-

ber of subunits per ribbon n = WL/a0 gives the excess
energy

ǫex(W ) =
Y a0
1440

(

CppCee − C2
ep

)2
W 4

+
Ba0
2

[

C2
pp + C2

ee + 2(Cep − Ω0)
2
]

, (B6)
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where again, the curvature components in this expression
are taken to correspond in to the ribbon shape at the
mid-line, and further assumed to be constant along the
length of the ribbon. Reconsidering the comparison to
the heuristic description in Eq. (59), inspection of the
chirality-frustrated ribbon energy in Eq. (B6) shows that
Gaussian curvature plays the role of frustration strength
(i.e. f → KG ≃ det(Cij)), while the shape parameter can
be captured by the curvature tensor (i.e. s → Cij) with
a preferred (tensorial) shape component that is non-zero
only along the off-diagonal elements.
The shape equilibrium of the ribbon varies with width

from the roots of the equations

∂ǫex
∂Cee

=
∂ǫex
∂Cpp

=
∂ǫex
∂Cep

= 0 (B7)

for fixed W . The shape equilibrium is characterized by
two branches. The first is the helicoidal branch,

Cee = Cpp = 0

Cep +
YW 4

720BC3
ep = Ω0







(helicoid). (B8)

This is the branch of equilibria discussed in the main text.
Helicoid twist tends to its preferred value for narrow rib-
bons Cep(W ≪ Wun) ≃ Ω0; and the helicoid unwinds

in the wide limit as Cep(W ≫ Wun) ≃ Ω0(Wun/W )4/3,

where the unwinding size Wun ≡
(

720B/YΩ2
0

)1/4
, de-

fined in eq. (63, characterizes the crossover width be-
tween the these two regimes.
The second branch corresponds to a symmetry-

breaking transition to a spiral ribbon shape,

Cee = Cpp = ±
√

C2
ep − Ω2

0(Wun/W )4

Cep = Ω0/2











(spiral ribbon).

(B9)
Note that this branch only exists above a critical width
Wc =

√
2Wun, for which Cee and Cpp are real.

The critical value corresponds to an elastic instability.
For W < Wc the helicoid branch is stable, and no spiral
equilibrium exists. For W ≥ Wc, the helicoid branch

becomes unstable, and the stable branches become the
two degenerate spiral states, which differ by signs of Cee

and Cpp. The shape equilibria and excess energy of both
branches are plotted in Fig. 17B and C respectively.
Notice that for wide ribbons, the Gaussian curva-

ture of both branches vanishes: for (unstable) helicoids,
KG = −C2

ep(W ≫ Wun) ≈ −Ω2
0(Wun/W )2/3; and for

(stable) spiral ribbons, KG(W ≥ Wc) = −Ω2
0(Wun/W )4.

The difference in power law suggests a much more rapid
expulsion with Gaussian curvature with increasing width
of spirals. Notwithstanding the faster “frustration es-
cape” of spiral ribbons, the accumulant analysis shown
in the inset of Fig. 17C predicts that the maximum
self-limiting size preempts the mechanical stability with
Wmax = 0.85Wun < Wc =

√
2Wun. Hence, a generic pre-

diction of this narrow ribbon model is that self-limiting
ribbons can only be helicoidal in shape (Armon et al.,
2014; Ghafouri and Bruinsma, 2005).

Appendix C: Assembly timescales and kinetic traps

From Eq. (67) the initial nucleation timescale for the
capsid model is

τnuc(φ) ≈
exp [−βΩ(nnuc(φ))]

Zφfassem(nnuc(φ))
. (C1)

with Z =
√

βλ̃
πnT

(

1 + Γ2
)3/4

the Zeldovich factor that

accounts for the time the system spends in the vicinity
of the critical nucleus and fassem(nnuc) ≈ fassem.
The median assembly time is then given by us-

ing Eq. (C1) to integrate the cumulative depletion of
monomers as a function of time, approximately account-
ing for reversibility of the reaction as in (Hagan and El-
rad, 2010), resulting in

τ1/2 ≈ 2nnuc(Φ)−1/ (nnuc(Φ)− 1) fT
τnuc(Φ)

nT
(C2)

in which we made the approximation that the critical
nucleus size remains constant over time, nnuc(φ1(t)) ≈
nnuc(Φ) ≡ nnuc(Φ).


