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Quantum mechanical effects at the macroscopic level were first explored in Josephson
junction-based superconducting circuits in the 1980’s. In the last decades, the emergence
of quantum information science has intensified research toward using these circuits as
qubits in quantum information processors. The realization that superconducting qubits
can be made to strongly and controllably interact with microwave photons, the quantized
electromagnetic fields stored in superconducting circuits, led to the creation of the field
of circuit quantum electrodynamics (QED), the topic of this review. While atomic cavity
QED inspired many of the early developments of circuit QED, the latter has now become
an independent and thriving field of research in its own right. Circuit QED allows the
study and control of light-matter interaction at the quantum level in unprecedented
detail. It also plays an essential role in all current approaches to gate-based digital
quantum information processing with superconducting circuits. In addition, circuit QED
provides a framework for the study of hybrid quantum systems, such as quantum dots,
magnons, Rydberg atoms, surface acoustic waves, and mechanical systems interacting
with microwave photons. Here, we review the coherent coupling of superconducting qubits
to microwave photons in high-quality oscillators focusing on the physics of the Jaynes-
Cummings model, its dispersive limit, and the different regimes of light-matter interaction
in this system. We discuss coupling of superconducting circuits to their environment,
which is necessary for coherent control and measurements in circuit QED, but which
also invariably leads to decoherence. Dispersive qubit readout, a central ingredient in
almost all circuit QED experiments, is also described. Following an introduction to these
fundamental concepts that are at the heart of circuit QED, we discuss important use
cases of these ideas in quantum information processing and in quantum optics. Circuit
QED realizes a broad set of concepts that open up new possibilities for the study of
quantum physics at the macro scale with superconducting circuits and applications to
quantum information science in the widest sense.
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I. INTRODUCTION

Circuit quantum electrodynamics (QED) is the study
of the interaction of nonlinear superconducting circuits,
acting as artificial atoms or as qubits for quantum infor-
mation processing, with quantized electromagnetic fields
in the microwave frequency domain. Inspired by cav-
ity QED (Haroche and Raimond, 2006; Kimble, 1998),
a field of research originating from atomic physics and
quantum optics, circuit QED has led to advances in the
fundamental study of light-matter interaction, in the de-
velopment of quantum information processing technology
(Blais et al., 2020; Clarke and Wilhelm, 2008; Kjaergaard
et al., 2020; Krantz et al., 2019; Wendin, 2017), and in
the exploration of novel hybrid quantum systems (Clerk
et al., 2020; Xiang et al., 2013).

First steps toward exploring the quantum physics of
superconducting circuits were made in the mid-1980’s. At
that time, the question arose whether quantum phenom-
ena, such as quantum tunneling or energy level quantiza-
tion, could be observed in macroscopic systems of any kind
(Leggett, 1980, 1984b). One example of such a macro-
scopic system is the Josehphson tunnel junction (Joseph-
son, 1962; Tinkham, 2004) formed by a thin insulating
barrier at the interface between two superconductors and
in which macroscopic quantities such as the current flow-
ing through the junction or the voltage developed across
it are governed by the dynamics of the gauge-invariant
phase difference of the Cooper pair condensate across the
junction. The first experimental evidence for quantum
effects in these circuits (Clarke et al., 1988) was the ob-
servation of quantum tunneling of the phase degree of
freedom of a Josephson junction (Devoret et al., 1985),
rapidly followed by the measurement of quantized en-
ergy levels of the same degree of freedom (Martinis et al.,
1985).
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While the possibility of observation of coherent quan-
tum phenomena in Josephson junction-based circuits, such
as coherent oscillations between two quantum states of the
junction and the preparation of quantum superpositions
was already envisaged in the 1980’s (Tesche, 1987), the
prospect of realizing superconducting qubits for quantum
computation revived interest in the pursuit of this goal
(Bocko et al., 1997; Bouchiat et al., 1998; Makhlin et al.,
1999, 2001; Shnirman et al., 1997). In a groundbreaking
experiment, time-resolved coherent oscillations with a
superconducting qubit were observed in 1999 (Nakamura
et al., 1999). Further progress resulted in the observation
of coherent oscillations in coupled superconducting qubits
(Pashkin et al., 2003; Yamamoto et al., 2003) and in signif-
icant improvements of the coherence times of these devices
by exploiting symmetries in the Hamiltonian underlying
the description of the circuits (Clarke and Wilhelm, 2008;
Kjaergaard et al., 2020; Vion et al., 2002).

In parallel to these advances, in atomic physics and
quantum optics, cavity QED developed into an excel-
lent setting for the study of the coherent interactions
between individual atoms and quantum radiation fields
(Brune et al., 1996; Haroche and Kleppner, 1989; Rempe
et al., 1987; Thompson et al., 1992), and its application
to quantum communication (Kimble, 2008) and quantum
computation (Haroche and Raimond, 2006; Kimble, 1998).
In the early 2000’s, the concept of realizing the physics of
cavity QED with superconducting circuits emerged with
proposals to coherently couple superconducting qubits
to microwave photons in open 3D cavities (Al-Saidi and
Stroud, 2001; Yang et al., 2003; You and Nori, 2003),
in discrete LC oscillators (Buisson and Hekking, 2001;
Makhlin et al., 2001), and in large Josephson junctions
(Blais et al., 2003; Marquardt and Bruder, 2001; Plas-
tina and Falci, 2003). The prospect of realizing strong
coupling of superconducting qubits to photons stored in
high-quality coplanar waveguide resonators, together with
suggestions to use this approach to protect qubits from
decoherence, to read out their state, and to couple them
to each other in a quantum computer architecture ad-
vanced the study of cavity QED with superconducting
circuits (Blais et al., 2004). The possibility of exploring
both the foundations of light-matter interaction and ad-
vancing quantum information processing technology with
superconducting circuits motivated the rapid advance in
experimental research, culminating in the first experi-
mental realization of a circuit QED system achieving the
strong coupling regime of light-matter interaction where
the coupling overwhelms damping (Chiorescu et al., 2004;
Wallraff et al., 2004).

Circuit QED combines the theoretical and experimental
tools of atomic physics, quantum optics and the physics
of mesoscopic superconducting circuits not only to further
explore the physics of cavity QED and quantum optics in
novel parameter regimes, but also to allow the realization
of engineered quantum devices with technological appli-

cations. Indeed, after 15 years of development, circuit
QED is now a leading architecture for quantum computa-
tion. Simple quantum algorithms have been implemented
(Arute et al., 2020; DiCarlo et al., 2009; Kandala et al.,
2017; Lucero et al., 2012; Zheng et al., 2017), cloud-based
devices are accessible, demonstrations of quantum-error
correction have approached or reached the so-called break-
even point (Hu et al., 2019; Ofek et al., 2016), and devices
with several tens of qubits have been operated with claims
of quantum supremacy (Arute et al., 2019).

More generally, circuit QED is opening new research
directions. These include the development of quantum-
limited amplifiers (Clerk et al., 2010; Roy and Devoret,
2016) and single-microwave photon detectors (Besse et al.,
2018; Kono et al., 2018; Lescanne et al., 2020a) with
applications ranging from quantum information process-
ing to the search for dark matter axions (Backes et al.,
2020; Dixit et al., 2020; Lamoreaux et al., 2013; Zheng
et al., 2016), to hybrid quantum systems (Clerk et al.,
2020) where different physical systems such as NV centers
(Kubo et al., 2010), mechanical oscillators (Aspelmeyer
et al., 2014), semiconducting quantum dots (Burkard et al.,
2020), or collective spin excitations in ferromagnetic crys-
tals (Lachance-Quirion et al., 2019) are interfaced with
superconducting quantum circuits.

In this review, we start in Sec. II by introducing the two
main actors of circuit QED: high-quality superconducting
oscillators and superconducting artificial atoms. The
latter are also known as superconducting qubits in the
context of quantum information processing. There are
many types of superconducting qubits and we choose to
focus on the transmon (Koch et al., 2007). This choice is
made because the transmon is not only the most widely
used qubit but also because this allows us to present the
main ideas of circuit QED without having to delve into the
very rich physics of the different types of superconducting
qubits. Much of the material presented in this review
applies to other qubits without significant modification.
Section III is devoted to light-matter coupling in circuit
QED including a discussion of the Jaynes-Cummings
model and its dispersive limit. Different methods to
obtain approximate effective Hamiltonians valid in the
dispersive regime are presented. Section IV addresses
the coupling of superconducting quantum circuits to their
electromagnetic environment, considering both dissipation
and coherent control. In Sec. V, we turn to measurements
in circuit QED with an emphasis on dispersive qubit
readout. Building on this discussion, Sec. VI presents
the different regimes of light-matter coupling which are
reached in circuit QED and their experimental signatures.
In the last sections, we turn to two applications of circuit
QED: quantum computing in Sec. VII and quantum optics
in Sec. VIII.

Our objective with this review is to give the reader
a solid background on the foundations of circuit QED
rather than showcasing the very latest developments of
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the field. We hope that this introductory text will allow
the reader to understand the recent advances of the field
and to become an active participant in its development.

II. SUPERCONDUCTING QUANTUM CIRCUITS

Circuit components with spatial dimensions that are
small compared to the relevant wavelength can be treated
as lumped elements (Devoret, 1997), and we start this
section with a particularly simple lumped-element cir-
cuit: the quantum LC oscillator. We subsequently discuss
the closely related two- and three-dimensional microwave
resonators that play a central role in circuit QED experi-
ments and which can be thought of as distributed versions
of the LC oscillator with a set of harmonic frequencies.
Finally, we move on to nonlinear quantum circuits with
Josephson junctions as the source of nonlinearity, and
discuss how such circuits can behave as artificial atoms
with addressable energy levels. We put special emphasis
on the transmon qubit (Koch et al., 2007), which is the
most widely used artificial atom design in current circuit
QED experiments.

A. The quantum LC resonator

An LC oscillator is characterized by its inductance
L and capacitance C or, equivalently, by its angular
frequency ωr = 1/

√
LC and characteristic impedance

Zr =
√
L/C. The total energy of this oscillator is given

by the sum of its charging and inductive energy

HLC =
Q2

2C
+

Φ2

2L
, (1)

where Q is the charge on the capacitor and Φ the flux
threading the inductor, see Fig. 1. From charge conserva-
tion, charge is related to current, I, by Q(t) =

∫ t
t0
dt′ I(t′),

and from Faraday’s induction law flux is related to voltage
by Φ(t) =

∫ t
t0
dt′ V (t′), where we have assumed that the

charge and flux are zero at an initial time t0, often taken
to be in the distant past (Vool and Devoret, 2017).

It is instructive to rewrite HLC as

HLC =
Q2

2C
+

1

2
Cω2

rΦ2. (2)

This form emphasizes the analogy of the LC oscillator
with a mechanical oscillator of coordinate Φ, conjugate
momentum Q, and mass C. With this analogy in mind,
quantization proceeds in a manner that should be well
known to the reader: The charge and flux variables are
promoted to non-commuting observables satisfying the
commutation relation

[Φ̂, Q̂] = i~. (3)
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FIG. 1 (Left) Harmonic potential versus flux of the LC circuit
with Φ0 = h/2e the flux quantum. (Right) Response of the
oscillator to an external perturbation as a function of the
detuning δ of the perturbation from the oscillator frequency.
Here κ = ωr/Q, with Q the oscillator’s quality factor, is the
full width at half maximum (FWHM) of the oscillator response.
Equivalently, 1/κ is the average lifetime of the single-photon
state |1〉 before it decays to |0〉. (Inset) Lumped-element LC
oscillator of inductance L and capacitance C.

It is further useful to introduce the standard annihilation
â and creation â† operators of the harmonic oscillator.
With the above mechanical analogy in mind, we choose
these operators as

Φ̂ = Φzpf(â
† + â), Q̂ = iQzpf(â

† − â), (4)

with Φzpf =
√

~/2ωrC =
√

~Zr/2 and Qzpf =√
~ωrC/2 =

√
~/2Zr the characteristic magnitude of

the zero-point fluctuations of the flux and the charge, re-
spectively. With these definitions, the above Hamiltonian
takes the usual form

ĤLC = ~ωr(â†â+ 1/2), (5)

with eigenstates that satisfy â†â|n〉 = n|n〉 for n =
0, 1, 2, . . . In the rest of this review, we follow the con-
vention of dropping from the Hamiltonian the factor of
1/2 corresponding to zero-point energy. The action of
â† =

√
1/2~Zr(Φ̂− iZrQ̂) is to create a quantized exci-

tation of the flux and charge degrees of freedom of the
oscillator or, equivalently of the magnetic and electric
fields. In other words, â† creates a photon of frequency
ωr stored in the circuit.

While formally correct, one can wonder if this quanti-
zation procedure is relevant in practice. In other words,
is it possible to operate LC oscillators in a regime where
quantum effects are important? For this to be the case, at
least two conditions must be satisfied. First, the oscillator
should be sufficiently well decoupled from uncontrolled
degrees of freedom such that its energy levels are consid-
erably less broad than their separation. In other words,
we require the oscillator’s quality factor Q = ωr/κ, with
κ the oscillator linewidth or equivalently the photon loss
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rate, to be large. An approach to treat the environment of
a quantum system is described in Sec. IV. Because losses
are at the origin of level broadening, superconductors on
low-loss dielectric substrates such as sapphire or high-
resistivity silicon wafers are ideal to reach the quantum
regime. Care must also be taken to minimize the effect
of coupling to the external circuitry that is essential for
operating the oscillator. As discussed below, large quality
factors ranging from Q ∼ 103 to 108 can be obtained in
the laboratory (Bruno et al., 2015; Frunzio et al., 2005;
Reagor et al., 2016).

Given that your microwave oven has a quality factor
approaching 104 (Vollmer, 2004), it should not come as
a surprise that large Q-factor oscillators can be realized
in state-of-the-art laboratories. Relation to kitchen ap-
pliances, however, stops here with the second condition
requiring that the energy separation ~ωr between adja-
cent eigenstates be larger than thermal energy kBT . Since
1 GHz×h/kB ∼ 50 mK, the condition ~ωr � kBT can be
easily satisfied with microwave frequency circuits operated
at ∼ 10 mK in a dilution refrigerator. These circuits are
therefore operated at temperatures far below the critical
temperature (∼ 1− 10 K) of the superconducting films
from which they are made.

With these two requirements satisfied, an oscillator
with a frequency in the microwave range can be operated
in the quantum regime. This means that the circuit
can be prepared in its quantum-mechanical ground state
|n = 0〉 simply by waiting for a time of the order of a
few photon lifetimes Tκ = 1/κ. It is also crucial to note
that the vacuum fluctuations of the voltage are typically
relatively large. For example, taking reasonable values
L ∼ 0.8 nH and C ∼ 0.4 pF, corresponding to ωr/2π ∼ 8
GHz and Zr ∼ 50 Ω, the ground state is characterized by
vacuum fluctuations of the voltage of variance as large
as ∆V0 = [〈V̂ 2〉 − 〈V̂ 〉2]1/2 =

√
~ωr/2C ∼ 1 µV, with

V̂ = Q̂/C. As will be made clear later, this leads to large
electric field fluctuations and therefore to large electric-
dipole interactions when coupling to an artificial atom.

B. 2D resonators

Quantum harmonic oscillators come in many shapes and
sizes, the LC oscillator being just one example. Other
types of harmonic oscillators that feature centrally in
circuit QED are microwave resonators where the elec-
tromagnetic field is confined either in a planar, essen-
tially two-dimensional structure (2D resonators) or in a
three-dimensional volume (3D resonators). The boundary
conditions imposed by the geometry of these different
resonators lead to a discretization of the electromagnetic
field into a set of modes with distinct frequencies, where
each mode can be thought of as an independent harmonic
oscillator. Conversely (especially for the 2D case) one
can think of these modes as nearly dissipationless plasma
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FIG. 2 (a) Schematic layout of a λ/2 coplanar waveguide
resonator of length d, center conductor width w, ground plane
separation s, together with its capacitively coupled input
and output ports. The cosine shape of the second mode
function (m = 1) is illustrated with pink arrows. Also shown
is the equivalent lumped element circuit model. Adapted
from Blais et al. (2004). (b) Cross-section cut of the coplanar
waveguide resonator showing the substrate (dark blue), the
two ground planes and the center conductor (light blue) as well
as schematic representations of the E and B field distributions.
(c) Transmission versus frequency for an overcoupled resonator.
The first three resonances of frequencies fm = (m + 1)f0

are illustrated with f0 = v0/2d ∼ 10 GHz and linewidth
κm/2π = fm/Q.

modes of superconductors.

Early experiments in circuit QED were motivated by
the observation of large quality factors in coplanar waveg-
uide resonators in the context of experiments for radiation
detectors (Day et al., 2003) and by the understanding
of the importance of presenting a clean electromagnetic
environment to the qubits. Early circuit QED experi-
ments were performed with these 2D coplanar waveguide
resonators (Wallraff et al., 2004), which remains one of
the most commonly used architectures today.

A coplanar waveguide resonator consists of a coplanar
waveguide of finite length formed by a center conductor
of width w and thickness t, separated on both sides by a
distance s from a ground plane of the same thickness, see
Fig. 2(a) (Pozar, 2011; Simons, 2001). Both conductors
are typically deposited on a low-loss dielectric substrate of
permittivity ε and thickness much larger than the dimen-
sions w, s, t. This planar structure acts as a transmission
line along which signals are transmitted in a way analo-
gous to a conventional coaxial cable. As in a coaxial cable,
the coplanar waveguide confines the electromagnetic field
to a small volume between its center conductor and the
ground, see Fig. 2(b). The dimensions of the center con-
ductor, the gaps, and the thickness of the dielectric are
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chosen such that the field is concentrated between the
center conductor and ground, and radiation in other direc-
tions is minimized. This structure supports a quasi-TEM
mode (Wen, 1969), with the electromagnetic field partly
in the dielectric substrate and in the vacuum (or other
dielectric) above the substrate, and with the largest con-
centration in the gaps between the center conductor and
the ground planes. In practice, the coplanar waveguide
can be treated as an essentially dispersion-free, linear
dielectric medium. To minimize losses, superconducting
metals such as aluminum, niobium or niobium titanium
nitride (NbTiN), are used in combination with dielectrics
of low loss tangent, such as sapphire or high-resistivity
silicon (McRae et al., 2020; Nersisyan et al., 2019).

Similarly to the lumped LC oscillator, the electromag-
netic properties of a coplanar waveguide resonator are de-
scribed by its characteristic impedance Zr =

√
l0/c0 and

the speed of light in the waveguide v0 = 1/
√
l0c0, where

we have introduced the capacitance to ground c0 and in-
ductance l0 per unit length (Simons, 2001). Typical values
of these parameters are Zr ∼ 50 Ω and v0 ∼ 1.3×108 m/s,
or about a third of the speed of light in vacuum (Göppl
et al., 2008). For a given substrate, the characteristic
impedance can be adjusted by varying the parameters w,
s and t of the waveguide (Simons, 2001). In the copla-
nar waveguide geometry, transmission lines of constant
impedance Zr can therefore be realized for different center
conductor width w by keeping the ratio of w/s close to a
constant (Simons, 2001). This allows the experimenter to
fabricate a device with large w at the edges for convenient
interfacing, and small w away from the edges to minimize
the mode volume or simply for miniaturization.

A resonator is formed from a coplanar waveguide by im-
posing boundary conditions of either zero current or zero
voltage at the two endpoints separated by a distance d.
Zero current can be achieved by micro-fabricating a gap
in the center conductor (open boundary), while zero volt-
age can be achieved by grounding an end point (shorted
boundary). A resonator with open boundary conditions
at both ends, as illustrated in Fig. 2(a), has a fundamental
frequency f0 = v0/2d with harmonics at fm = (m+ 1)f0,
and is known as a λ/2 resonator. On the other hand, λ/4
resonators with fundamental frequency f0 = v0/4d are
obtained with one open end and one grounded end. A typ-
ical example is a λ/2 resonator of length 1.0 cm and speed
of light 1.3 × 108 m/s corresponding to a fundamental
frequency of 6.5 GHz.

This coplanar waveguide geometry is very flexible and
a large range of frequencies can be achieved. In practice,
however, the useful frequency range is restricted from
above by the superconducting gap of the metal from
which the resonator is made (82 GHz for aluminum).
Above this energy, losses due to quasiparticles increase
dramatically. Low frequency resonators can be made
by using long, meandering, coplanar waveguides. For
example, Sundaresan et al. (2015) realized a resonator

with a length of 0.68 m and a fundamental frequency of
f0 = 92 MHz. With this frequency corresponding to a
temperature of 4.4 mK, the low frequency modes of such
long resonators are, however, not in the vacuum state.
Indeed, according to the Bose-Einstein distribution, the
thermal occupation of the fundamental mode frequency
at 10 mK is n̄κ = 1/(ehf0/kBT − 1) ∼ 1.8. Typical circuit
QED experiments rather work with resonators in the range
of 5–15 GHz where, conveniently, microwave electronics
is well developed.

As already mentioned, entering the quantum regime for
a given mode m requires more than ~ωm � kBT . It is
also important that the linewidth κm be small compared
to the mode frequency ωm. As for the LC oscillator, the
linewidth can be expressed in terms of the quality factor
Qm of the resonator mode as κm = ωm/Qm. An expres-
sion for the linewidth in terms of circuit parameters is
given in Sec. IV. There are multiple sources of losses and
it is common to distinguish between internal losses due
to coupling to uncontrolled degrees of freedom (dielec-
tric and conductor losses at the surfaces and interfaces,
substrate dielectric losses, non-equilibrium quasiparticles,
vortices, two-level fluctuators. . . ) and external losses due
to coupling to the input and output ports used to couple
signals in and out of the resonator (Göppl et al., 2008).
In terms of these two contributions, the total dissipation
rate of mode m is κm = κext,m + κint,m and the total,
or loaded, quality factor of the resonator is therefore
QL,m = (Q−1

ext,m +Q−1
int,m)−1. It is always advantageous

to maximize the internal quality factor and much effort
have been invested in improving resonator fabrication
such that values of Qint ∼ 105 are routinely achieved.
A dominant source of internal losses in superconducting
resonators at low power are believed to be two-level sys-
tems (TLSs) that reside in the bulk dielectric, in the
metal-substrate, and in the metal-vacuum and substrate-
vacuum interfaces where the electric field is large (Oliver
and Welander, 2013; Sage et al., 2011; Wang et al., 2015).
Internal quality factors over 106 have been achieved by
careful fabrication minimizing the occurrence of TLSs and
by etching techniques to avoid substrate-vacuum inter-
faces in regions of high electric fields (Bruno et al., 2015;
Calusine et al., 2018; Megrant et al., 2012; Vissers et al.,
2010).

On the other hand, the external quality factor can be
adjusted via the coupling at the ends of the resonator to
input/output transmission lines. For the case of an open
end, this is a capacitive coupling. In coplanar waveguide
resonators, these input and output coupling capacitors are
frequently chosen either as a simple gap of a defined width
in the center conductor, as illustrated in Fig. 2(a), but
can also be formed by interdigitated capacitors (Göppl
et al., 2008). The choice Qext � Qint corresponding to
an ‘overcoupled’ resonator is ideal for fast qubit measure-
ment, which is discussed in more detail in Sec. V. On the
other hand, undercoupled resonators, Qext � Qint, where
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dissipation is only limited by internal losses which are
kept as small as possible, can serve as quantum memories
to store microwave photons for long times. Using different
modes of the same resonator (Leek et al., 2010), or com-
binations of resonators (Johnson et al., 2010; Kirchmair
et al., 2013), both regimes of high and low external losses
can also be combined in the same circuit QED device. A
general approach to describe losses in quantum systems
is described in Sec. IV.

Finally, the magnitude of the vacuum fluctuations of the
electric field in coplanar waveguide resonators is related
to the mode volume. While the longitudinal dimension
of the mode is limited by the length of the resonator,
which also sets the fundamental frequency d ∼ λ/2, the
transverse dimension can be adjusted over a broad range.
Commonly chosen transverse dimensions are on the order
of w ∼ 10µm and s ∼ 5µm (Wallraff et al., 2004). If
desired, the transverse dimension of the center conductor
may be reduced to the sub-micron scale, up to a limit
set by the penetration depth of the superconducting thin
films which is typically of the order of 100 to 200 nm.
When combining the typical separation s ∼ 5µm with the
magnitude of the voltage fluctuations ∆V0 ∼ 1 µV already
expected from the discussion of the LC circuit, we find
that the zero-point electric field in coplanar resonator can
be as large as ∆E0 = ∆V0/s ∼ 0.2 V/m. This is at least
two orders of magnitude larger than the typical amplitude
of ∆E0 in the 3D cavities used in cavity QED (Haroche
and Raimond, 2006). As will become clear later, together
with the large size of superconducting artificial atoms, this
will lead to the very large light-matter coupling strengths
which are characteristic of circuit QED.

1. Quantized modes of the transmission line resonator

While only a single mode of the transmission line res-
onator is often considered, there are many circuit QED
experiments where the multimode structure of the device
plays an important role. In this section, we present the
standard approach to finding the normal modes of a dis-
tributed resonator, first using a classical description of
the circuit.

For the small signals that are relavant to CQED, the
electromagnetic properties along the x-direction of a copla-
nar waveguide resonator of length d can be modeled using
a linear, dispersion-free one-dimensional medium. Fig-
ure 3 shows the telegrapher model for such a system
where the distributed inductance of the resonator’s center
conductor is represented by the series of lumped elements
inductances and the capacitance to ground by a parallel
combination of capacitances (Pozar, 2011). Using the flux
and charge variables introduced in the description of the
LC oscillator, the energy associated to each capacitance
is Q2

n/2C0 while the energy associated to each inductance
is (Φn+1 −Φn)2/2L0. In these expressions, Φn is the flux

L0

C0

x = 0 x = dδx

Cκ CκΦn Φn+1

FIG. 3 Telegrapher model of an open-ended transmission
line resonator of length d. L0 and C0 are, respectively, the
inductance and capacitance associated to each node n of flux
Φn. The resonator is coupled to external transmission lines
(not shown) at its input and output ports via the capacitors
Cκ.

variable associated with the nth node and Qn the conju-
gate variable which is the charge on that node. Using the
standard approach (Devoret, 1997), we can thus write the
classical Hamiltonian corresponding to Figure 3 as

H =

N−1∑

n=0

[
1

2C0
Q2
n +

1

2L0
(Φn+1 − Φn)2

]
. (6)

It is useful to consider a continuum limit of this Hamilto-
nian where the size of a unit cell δx is taken to zero. For
this purpose, we write C0 = δx c0 and L0 = δx l0, with
c0 and l0 the capacitance and inductance per unit length,
respectively. Moreover, we define a continuum flux field
via Φ(xn) = Φn and charge density field Q(xn) = Qn/δx.
We can subsequently take the continuum limit δx → 0
while keeping d = N∆x constant to find

H =

∫ d

0

dx

{
1

2c0
Q(x)2 +

1

2l0
[∂xΦ(x)]

2

}
, (7)

where we have used that ∂xΦ(xn) = limδx→0 (Φn+1 −
Φn)/δx. In this expression, the charge Q(x, t) =
c0∂tΦ(x, t) is the canonical momentum to the generalized

flux Φ(x, t) =
∫ t
−∞ dt′ V (x, t′), with V (x, t) the voltage

to ground on the center conductor.
Using Hamilton’s equations together with Eq. (7), we

find that the propagation along the transmission line is
described by the wave equation

v2
0

∂2Φ(x, t)

∂x2
− ∂2Φ(x, t)

∂t2
= 0, (8)

with v0 = 1/
√
l0c0 the speed of light in the medium. The

solution to Eq. (8) can be expressed in terms of normal
modes

Φ(x, t) =

∞∑

m=0

um(x)Φm(t), (9)

with Φ̈m = −ω2
mΦm a function of time oscillating at the

mode frequency ωm and

um(x) = Am cos [kmx+ ϕm] , (10)

being the spatial profile of the mode with amplitude
Am. The wavevector km = ωm/v0 and the phase ϕm
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are set by the boundary conditions. For an open-ended
λ/2-resonator these are

I(x = 0, d) = − 1

l0

∂Φ(x, t)

∂x

∣∣∣∣
x=0,d

= 0, (11)

corresponding to the fact that the current vanishes at the
two extremities. A λ/4-resonator is modeled by requir-
ing that the voltage V (x, t) = ∂tΦ(x, t) vanishes at the
grounded boundary. Asking for Eq. (11) to be satisfied for
every mode implies that ϕm = 0 and that the wavevector
is discrete with km = mπ/d. Finally, it is useful to choose
the normalization constant Am such that

1

d

∫ d

0

dxum(x)um′(x) = δmm′ , (12)

resulting in Am =
√

2. This normalization implies that
the amplitude of the modes in a 1D resonator goes down
with the square root of the length d.

Using this normal mode decomposition in Eq. (7), the
Hamiltonian can now be expressed in the simpler form

H =

∞∑

m=0

[
Q2
m

2Cr
+

1

2
Crω

2
mΦ2

m

]
, (13)

where Cr = dc0 is the total capacitance of the resonator
and Qm = CrΦ̇m the charge conjugate to Φm. We im-
mediately recognize this Hamiltonian to be a sum over
independent harmonic oscillators, cf. Eq. (1).

Following once more the quantization procedure of
Sec. II.A, the two conjugate variables Φm and Qm are
promoted to non-commuting operators

Φ̂m =

√
~Zm

2
(â†m + âm), (14)

Q̂m = i

√
~

2Zm
(â†m − âm), (15)

with Zm =
√
Lm/Cr the characteristic impedance of

mode m and L−1
m ≡ Crω

2
m. Using these expressions in

Eq. (13) immediately leads to the final result

Ĥ =

∞∑

m=0

~ωmâ†mâm, (16)

with ωm = (m+ 1)ω0 the mode frequency and ω0/2π =
v0/2d the fundamental frequency of the λ/2 transmission-
line resonator.

To simplify the discussion, we have assumed here that
the medium forming the resonator is homogenous. In
particular, we have ignored the presence of the input
and output port capacitors in the boundary condition
of Eq. (11). In addition to lowering the external quality
factor Qext, these capacitances modify the amplitude
and phase of the mode functions, as well as shift the
mode frequencies. Interestingly, it is possible to render

the resonator nonlinear by introducing one or several
Josephson junctions directly in the center conductor of the
resonator. A theoretical treatment of the resonator mode
functions, frequencies and nonlinearity in the presence of
resonator inhomogeneities, including embedded junctions,
can be found in Bourassa et al. (2012) and is also discussed
in Sec. III.D.

C. 3D resonators

Although their physical origin is not yet fully under-
stood, dielectric losses at interfaces and surfaces are im-
portant limiting factors to the internal quality factor of
coplanar transmission line resonators and lumped element
LC oscillators, see Oliver and Welander (2013) for a re-
view. An approach to mitigate the effect of these losses
is to lower the ratio of the electric field energy stored at
interfaces and surfaces to the energy stored in vacuum.
Indeed, it has been observed that planar resonators with
larger feature sizes (s and w), and hence weaker elec-
tric fields near the interfaces and surfaces, typically have
larger internal quality factors (Sage et al., 2011).

This approach can be pushed further by using three-
dimensional microwave cavities rather than planar cir-
cuits (Paik et al., 2011). In 3D resonators formed by
a metallic cavity, a larger fraction of the field energy is
stored in the vacuum inside the cavity rather than close to
the surface. As a result, the ratio of the energy stored at
surfaces versus in vacuum, the surface participation ratio,
can be as small as 10−7 in 3D cavities, in comparison
to 10−5 for typical planar geometries (Reagor, 2015). In
practice, however, this does not lead to a major gain in
quality factor since, while coplanar resonators can have
air-substrate participation ratio as large as 0.9, the bulk
loss tangent of sapphire and silicon substrate is signifi-
cantly smaller than that of the interface oxides and does
not appear to be the limiting factor (Wang et al., 2015).

In practice, three-dimensional resonators come in many
different form factors, and can reach higher quality factors
than lumped-element oscillators and 1D resonators. Qual-
ity factors has high as 4.2× 1010 have been reported at 51
GHz and 0.8 K with Fabry-Pérot cavities formed by two
highly polished copper mirrors coated with niobium (Kuhr
et al., 2007). Corresponding to single microwave photon
lifetimes of 130 ms, these cavities have been used in land-
mark cavity QED experiments (Haroche and Raimond,
2006). Similar quality factors have also been achieved
with niobium micromaser cavities at 22 GHz and 0.15
K (Varcoe et al., 2000). In the context of circuit QED,
commonly used geometries include rectangular (Paik et al.,
2011; Rigetti et al., 2012) and coaxial λ/4 cavities (Reagor
et al., 2016). The latter have important practical advan-
tages in that no current flows near any seams created in
the assembly of the device which can be responsible for
contact resistance (Brecht et al., 2015; Reagor, 2015).
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FIG. 4 (a) Photograph of a 3D rectangular superconduct-
ing cavity showing interior volume of the waveguide enclosure
housing a sapphire chip and transmon qubit, with two symmet-
ric coaxial connectors for coupling signals in and out. Credit:
IBM. (b-e) First four TEmnl modes of a 3D rectangular super-
conducting cavity obtained from COMSOL™. Credit: Dany
Lachance-Quirion. (f) Schematic representation of a coaxial
λ/4 cavity with electric field (full line) pointing from the inner
conductor to the sidewalls and evanescent field (dashed line)
rapidly decaying from the top of the inner conductor. Adapted
from Reagor et al. (2016).

As illustrated in Fig. 4(a) and in close analogy with
the coplanar waveguide resonator, rectangular cavities
are formed by a finite section of a rectangular waveguide
terminated by two metal walls acting as shorts. These
three-dimensional resonators are thus simply vacuum sur-
rounded on all sides by metal, typically aluminum to
maximize the internal quality factor or copper if magnetic
field tuning of components placed inside the cavity is
required. The metallic walls impose boundary conditions
on the electromagnetic field in the cavity, leading to a dis-
crete set of TE and TM cavity modes of frequency (Pozar,
2011)

ωmnl = c

√
(mπ
a

)2

+
(nπ
b

)2

+

(
lπ

d

)2

, (17)

labelled by the three integers (l,m, n) and where c is the
speed of light, and a, b and d are the cavity dimensions.
Dimensions of the order of a centimeter lead to resonance
frequencies in the GHz range for the first modes. The
TE modes, to which superconducting artificial atoms cou-
ple, are illustrated in Fig. 4(b-e). Because these modes
are independent, once quantized, the cavity Hamiltonian
again takes the form of Eq. (16) corresponding to a sum of
independent harmonic oscillators. We return to the ques-
tion of quantizing the electromagnetic field in arbitrary
geometries in Sec. III.D.

As already mentioned, a major advantage of 3D cav-
ities compared to their 1D or lumped-element analogs

is their high quality factor or, equivalently, long photon
lifetime. A typical internal Q factor for rectangular alu-
minum cavities is 5 × 106, corresponding to a photon
lifetime above 50 µs (Paik et al., 2011). These numbers
are even higher for coaxial cavities where Qint = 7× 107,
or above a millisecond of photon storage time, has been
reported (Reagor et al., 2016). Moreover, this latter type
of cavity is more robust against imperfections which arise
when integrating 3D resonators with Josephson-junction-
based circuits. Lifetimes up to 2 seconds have also been
reported in niobium cavities that were initially developed
for accelerators (Romanenko et al., 2020). At such long
photon lifetimes, microwave cavities are longer-lived quan-
tum memories than the transmon qubit which we will
introduce in the next section. This has led to a new
paradigm for quantum information processing where in-
formation is stored in a cavity with the role of the qubit
limited to providing the essential nonlinearity (Mirrahimi
et al., 2014). We come back to these ideas in Sec. VII.C.

D. The transmon artificial atom

Although the oscillators discussed in the previous sec-
tion can be prepared in their quantum mechanical ground
state, it is challenging to observe clear quantum behavior
with such linear systems. Indeed, harmonic oscillators are
always in the correspondence limit and some degree of non-
linearity is therefore essential to encode and manipulate
quantum information in these systems (Leggett, 1984a).
Fortunately, superconductivity allows to introduce non-
linearity in quantum electrical circuits while avoiding
losses. Indeed, the Josephson junction is a nonlinear cir-
cuit element that is compatible with the requirements
for very high quality factors and operation at millikelvin
temperatures. The physics of these junctions was first un-
derstood in 1962 by Brian Josephson, then a 22-year-old
PhD candidate (Josephson, 1962; McDonald, 2001).

Contrary to expectations (Bardeen, 1962), Josephson
showed that a dissipationless current, i.e. a supercurrent,
could flow between two superconducting electrodes sep-
arated by a thin insulating barrier. More precisely, he
showed that this supercurrent is given by

I = Ic sinϕ, (18)

where Ic is the junction’s critical current and ϕ the phase
difference between the superconducting condensates on
either side of the junction (Tinkham, 2004). The critical
current, whose magnitude is determined by the junction
size and material parameters, is the maximum current
that can be supported before Cooper pairs are broken.
Once this happens, dissipation kicks in and a finite voltage
develops across the junction accompanied by a resistive
current. Clearly, operation in the quantum regime re-
quires currents well below this critical current. Josephson
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also showed that the time dependence of the phase dif-
ference ϕ is related to the voltage across the junction
according to

dϕ

dt
=

2π

Φ0
V, (19)

with Φ0 = h/2e the flux quantum. It is useful to write
this expression as ϕ(t) = 2πΦ(t)/Φ0 = 2π

∫
dt′ V (t′)/Φ0,

with Φ(t) the flux variable already introduced in Sec. II.A.
Taken together, the Josephson relations of Eqs. (18)

and (19) make it clear that a Josephson junction relates
current I to flux Φ. The relation Eq. (18) is analogous
to the constitutive relation of a geometric inductance,
Φ = LI, which also links these two quantities. For this
reason, it is useful to define the Josephson inductance

LJ(Φ) =

(
∂I

∂Φ

)−1

=
Φ0

2πIc

1

cos(2πΦ/Φ0)
. (20)

In contrast to geometric inductances, LJ depends on Φ.
As a result, when operated below the critical current,
the Josephson junction can be thought of as a nonlinear
inductor.

Replacing the geometric inductance L of the LC oscil-
lator discussed in Sec. II.A by a Josephson junction, as in
Fig. 5(b), therefore renders the circuit nonlinear. In this
situation, the energy levels of the circuit are no longer
equidistant. If the nonlinearity and the quality factor of
the junction are large enough, the energy spectrum resem-
bles that of an atom, with well-resolved and nonuniformly
spread spectral lines that can be addressed. We therefore
often refer to this circuit as an artificial atom (Clarke
et al., 1988; Martinis et al., 2020). In many situations, and
as is the focus of much of this review, we can furthermore
restrict our attention to only two energy levels, typically
the ground and first excited states, forming a qubit.

To make this discussion more precise, it is useful to see
how the Hamiltonian of the circuit of Fig. 5(b) is modified
by the presence of the Josephson junction taking the place
of the linear inductor. While the energy stored in a linear
inductor is E =

∫
dt V (t)I(t) =

∫
dt (dΦ/dt)I = Φ2/2L,

where we have used Φ = LI in the last equality, the
energy of the nonlinear inductance rather takes the form

E = Ic

∫
dt

(
dΦ

dt

)
sin

(
2π

Φ0
Φ

)
= −EJ cos

(
2π

Φ0
Φ

)
,

(21)
with EJ = Φ0Ic/2π the Josephson energy. This quan-
tity represents the energy associated with the coherent
tunnelling of Cooper pairs across the junction. Taking
into account this contribution, the quantized Hamiltonian
of the capacitively shunted Josephson junction therefore
reads (see Appendix A)

Ĥt =
(Q̂−Qg)2

2CΣ
− EJ cos

(
2π

Φ0
Φ̂

)

= 4EC(n̂− ng)2 − EJ cos ϕ̂.

(22)
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FIG. 5 (a) Cosine potential well of the transmon qubit (full
line) compared to the quadratic potential of the LC oscillator
(dashed lines). The spectrum of the former as eigenstates
labelled {|g〉, |e〉, |f〉, |h〉 . . .} and is characterized by an anhar-
monicity −EC . (b) Circuit for the fixed-frequency transmon
qubit. The square with a cross represents a Josephson junction
with Josephson energy EJ and junction capacitance CJ . (c)
By using a SQUID rather than a single junction, the frequency
of the transmon qubit becomes flux tunable.

In this expression, CΣ = CJ +CS is the total capacitance,
including the junction’s capacitance CJ and the shunt
capacitance CS . In the second line, we have defined the
charge number operator n̂ = Q̂/2e, the phase operator
ϕ̂ = (2π/Φ0)Φ̂ and the charging energy EC = e2/2CΣ.
We have also included a possible offset charge ng = Qg/2e
term representing the effect (up to a constant term in
the Hamiltonian we have neglected) of an external elec-
tric field bias. The offset charge term can arise from
spurious unwanted degrees of freedom in the transmon’s
environment or from an intentional external gate voltage
Vg = Qg/Cg. As we show below, the choice of EJ and
EC is crucial in determining the system’s sensitivity to
the offset charge.

The spectrum of ĤT is controlled by the ratio EJ/EC ,
with EJ/EC � 1 corresponding to charge qubits (Naka-
mura et al., 1999), EJ/EC ∼ 1 to the quantronium (Vion
et al., 2002) and EJ/EC � 1 to the transmon; see for
example the reviews (Clarke and Wilhelm, 2008; Kjaer-
gaard et al., 2020; Makhlin et al., 2001; Zagoskin and
Blais, 2007). Regardless of the parameter regime, one
can always express the Hamiltonian in the diagonal form
Ĥ =

∑
j ~ωj |j〉〈j| in terms of its eigenfrequencies ωj and

eigenstates |j〉. In the literature, two notations are com-
monly used to label these eigenstates: {|g〉, |e〉, |f〉, |h〉 . . .}
and, when there is not risk of confusion with resonator
Fock states, {|0〉, |1〉, |2〉 . . .}. Depending on the context,
we will use both notation in this review. Figure 6 shows
the energy difference E0j/~ = ωj−ω0 for the three lowest
energy levels for different ratios EJ/EC as obtained from
numerical diagonalization of Eq. (22). If the charging
energy dominates, EJ/EC < 1, the eigenstates of the
Hamiltonian are approximately given by eigenstates of
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FIG. 6 Frequency difference ωj − ω0 for the first three energy
levels of the transmon Hamiltonian obtained from numeri-
cal diagonalization of Eq. (22) expressed in the charge basis
{|n〉} for different EJ/EC ratios and a fixed plasma frequency
ωp/2π = 5 GHz. For large values of EJ/EC the energy levels
become insensitive to the offset charge ng.

the charge operator, |j〉 ' |n〉, with n̂|n〉 = n|n〉. In this
situation, a change in gate charge ng has a large impact
on the transition frequency of the device. As a result, un-
avoidable charge fluctuations in the circuit’s environment
lead to corresponding fluctuations in the qubit transition
frequency and consequently to dephasing.

To mitigate this problem, a solution is to work in
the transmon regime where, as alluded to above, the
ratio EJ/EC is large with typical values being EJ/EC ∼
20− 80 (Koch et al., 2007; Schreier et al., 2008). In this
situation, the charge degree of freedom is highly delocal-
ized due to the large Josephson energy. For this reason,
and as clearly visible in Fig. 6(c), the first energy levels
of the device become essentially independent of the gate
charge. It can in fact be shown that the charge disper-
sion, which describes the variation of the energy levels
with gate charge, decreases exponentially with EJ/EC in
the transmon regime (Koch et al., 2007). The net result
is that the coherence time of the device is much larger
than at small EJ/EC . However, as is also clear from
Fig. 6, the price to pay for this increased coherence is the
reduced anharmonicity α = E12 − E01 of the transmon,
anharmonicity that is required to control the qubit with-
out causing unwanted transitions to higher excited states.
Fortunately, while charge dispersion is exponentially small
with EJ/EC , the loss of anharmonicity has a much weaker
dependence on this ratio given by ∼ (EJ/EC)−1/2. As
will be discussed in more detail in Sec. VII, because of
the gain in coherence, the reduction in anharmonicity is
not an impediment to controlling the transmon state with
high fidelity.

While the variance of the charge degree of freedom
is large when EJ/EC � 1, the variance of its conju-
gate variable ϕ̂ is correspondingly small, with ∆ϕ̂ =√
〈ϕ̂2〉 − 〈ϕ̂〉2 � 1. In this situation, it is instructive to

rewrite Eq. (22) as

Ĥt = 4EC n̂
2 +

1

2
EJ ϕ̂

2 − EJ
(

cos ϕ̂+
1

2
ϕ̂2

)
, (23)

the first two terms corresponding to an LC circuit of
capacitance CΣ and inductance E−1

J (Φ0/2π)2, the linear
part of the Josephson inductance Eq. (20). We have
dropped the offset charge ng in Eq. (23) on the basis
that the frequency of the relevant low-lying energy levels
is insensitive to this parameter. Importantly, although
these energies are not sensitive to variations in ng, it is
still possible to use an external oscillating voltage source
to cause transition between the transmon states. We
come back to this later. The last term of Eq. (23) is the
nonlinear correction to this harmonic potential which, for
EJ/EC � 1 and therefore ∆ϕ̂� 1 can be truncated to
its first nonlinear correction leading to the approximate
transmon Hamiltonian

Ĥq = 4EC n̂
2 +

1

2
EJ ϕ̂

2 − 1

4!
EJ ϕ̂

4. (24)

As expected from the above discussion, the transmon
is thus a weakly anharmonic oscillator. Note that the
2π periodicity of the Hamiltonian is broken under this
approximation.

Following the previous section, it is then useful to
introduce creation and annihilation operators chosen to
diagonalize the first two terms of Eq. (24). Denoting these

operators b̂† and b̂, in analogy to Eq. (4) we have

ϕ̂ =

(
2EC
EJ

)1/4

(b̂† + b̂), (25)

n̂ =
i

2

(
EJ

2EC

)1/4

(b̂† − b̂). (26)

This form makes it quite clear that fluctuations of the
phase ϕ̂ decrease with EJ/EC , while the reverse is true
for the conjugate charge n̂. Using these expressions in
Eq. (24) finally leads to1

Ĥq =
√

8ECEJ b̂
†b̂− EC

12
(b̂† + b̂)4

≈ ~ωq b̂†b̂−
EC
2
b̂†b̂†b̂b̂,

(27)

where ~ωq =
√

8ECEJ −EC . In the second line, we have
kept only terms that have the same number of creation
and annihilation operators. This is reasonable because,
in a frame rotating at ωq, any terms with an unequal

number of b̂ and b̂† will be oscillating. If the frequency
of these oscillations is larger than the prefactor of the
oscillating term, then this term rapidly averages out and
can be neglected (Cohen-Tannoudji et al., 1977). This

1 The approximate Hamiltonian Eq. (27) is not bounded from below
– an artefact of the truncation of the cosine operator. Care should
therefore be taken when using this form, and it should strictly
speaking only be used in a truncated subspace of the original
Hilbert space.
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rotating-wave approximation (RWA) is valid here if ~ωq �
EC/4, an inequality that is easily satisfied in the transmon
regime.

We can interpret Eq. (22) as describing an effective
phase particle in a cosine potential, with the phase playing
the role of position and C the role of mass. The plasma
frequency ωp =

√
8ECEJ/~ corresponds to the frequency

of small oscillations at the bottom of a well of the cosine
potential. In the transmon regime, this frequency is
renormalized by a ‘Lamb shift’ equal to the charging
energy EC such that ωq = ωp − EC/~ is the transition
frequency between ground and first excited state. Finally,
the last term of Eq. (27) is a Kerr nonlinearity, with EC/~
playing the role of Kerr frequency shift per excitation of
the nonlinear oscillator (Walls and Milburn, 2008). To see
this even more clearly, it can be useful to rewrite Eq. (27)

as Hq = ~ω̃q(b̂†b̂)b̂†b̂, where the frequency ω̃q(b̂
†b̂) = ωq −

EC(b̂†b̂− 1)/2~ of the oscillator is a decreasing function

of the excitation number b̂†b̂. Considering only the first
few levels of the transmon, this simply means that the
e–f transition frequency is smaller by EC than the g–e
transition frequency, see Fig. 5(a). In other words, in the
regime of validity of the approximation made to obtain
Eq. (24), the anharmonicity of the transmon is −EC
with typical values EC/h ∼ 100–400 MHz (Koch et al.,
2007). Corrections to the anharmonicity from −EC can
be obtained numerically or by keeping higher-order terms
in the expansion of Eq. (24).

While the nonlinearity EC/~ is small with respect to
the oscillator frequency ωq, it is in practice much larger
than the spectral linewidth that can routinely be obtained
for these artificial atoms and can therefore easily be spec-
trally resolved. As a result, and in contrast to more
traditional realizations of Kerr nonlinearities in quan-
tum optics (Walls and Milburn, 2008), it is possible with
superconducting quantum circuits to have a large Kerr
nonlinearity even at the single-photon level. Some of the
many implications of this observation will be discussed fur-
ther in this review. For quantum information processing,
the presence of this nonlinearity is necessary to address
only the ground and first excited state without unwanted
transition to other states. In this case, the transmon acts
as a two-level system, or qubit. However, it is important
to keep in mind that the transmon is a multilevel system
and that it is often necessary to include higher levels in
the description of the device to quantitatively explain ex-
perimental observations. These higher levels can also be
used to considerable advantage in some cases (Elder et al.,
2020; Ma et al., 2020a; Reinhold et al., 2020; Rosenblum
et al., 2018).

E. Flux-tunable transmons

A useful variant of the transmon artificial atom is the
flux-tunable transmon, where the single Josephson junc-

tion is replaced with two parallel junctions forming a
superconducting quantum interference device (SQUID),
see Fig. 5(c) (Koch et al., 2007). The transmon Hamilto-
nian then reads

Ĥt = 4EC n̂
2 − EJ1 cos ϕ̂1 − EJ2 cos ϕ̂2, (28)

where EJi is the Josephson energy of junction i, and ϕ̂i the
phase difference across that junction. In the presence of
an external flux Φx threading the SQUID loop and in the
limit of small geometric inductance of the loop2, flux quan-
tization requires that ϕ̂1−ϕ̂2 = 2πΦx/Φ0 ( mod 2π) (Tin-
kham, 2004). Defining the average phase difference
ϕ̂ = (ϕ̂1 + ϕ̂2)/2, the Hamiltonian can then be rewritten
as (Koch et al., 2007; Tinkham, 2004)

Ĥt = 4EC n̂
2 − EJ(Φx) cos(ϕ̂− ϕ0), (29)

where

EJ(Φx) = EJΣ cos

(
πΦx
Φ0

)√
1 + d2 tan2

(
πΦx
Φ0

)
, (30)

with EJΣ = EJ2 + EJ1 and d = (EJ2 − EJ1)/EJΣ the
junction asymmetry. The phase ϕ0 = d tan(πΦx/Φ0) can
be ignored for a time-independent flux (Koch et al., 2007).
According to Eq. (29), replacing the single junction with
a SQUID loop yields an effective flux-tunable Josephson
energy EJ(Φx). In turn, this results in a flux tunable
transmon frequency ωq(Φx) =

√
8EC |EJ(Φx)| −EC/~. 3

In practice, the transmon frequency can be tuned by as
much as one GHz in as little as 10–20 ns (DiCarlo et al.,
2009; Rol et al., 2019; Rol et al., 2020). This possibility is
exploited in several applications, including for quantum
logical gates as discussed in more detail in Sec. VII.

As will become clear later, this additional control knob
can lead to dephasing due to noise in the flux thread-
ing the SQUID loop. With this in mind, it is worth
noticing that transmon qubits with a finite asymmetry
d can have a smaller range of tunability than symmetric
transmons, and thus also made less susceptible to flux
noise (Hutchings et al., 2017).Finally, first steps towards
realizing voltage tunable transmons where a semiconduct-
ing nanowire takes the place of the SQUID loop have been
demonstrated (Casparis et al., 2018; Luthi et al., 2018).

2 If the geometric inductance is sufficiently small, we can neglect the
dynamics of the high-frequency mode associated with oscillating
circulating currents in the loop.

3 The absolute value arises because when expanding the Hamilto-
nian in powers of ϕ̂ in Eq. (24), the potential energy term must
always be expanded around a minimum. This discussion also
assumes that the ratio |EJ (Φx)|/EC is in the transmon range for
all relevant Φx.
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F. Other superconducting qubits

While the transmon is currently the most extensively
used and studied superconducting qubit, many other types
of superconducting artificial atoms are used in the con-
text of circuit QED. In addition to working with different
ratios of EJ/EC , these other qubits vary in the number
of Josephson junctions and the topology of the circuit
in which these junctions are embedded. This includes
charge qubits (Bouchiat et al., 1998; Nakamura et al.,
1999; Shnirman et al., 1997), flux qubits (Mooij et al.,
1999; Orlando et al., 1999) including variations with a
large shunting capacitance (Yan et al., 2016; You et al.,
2007), phase qubits (Martinis et al., 2002), the quantro-
nium (Vion et al., 2002), the fluxonium (Manucharyan
et al., 2009), the 0 − π qubit (Brooks et al., 2013; Gye-
nis et al., 2019), the bifluxon (Kalashnikov et al., 2020)
and the blochnium (Pechenezhskiy et al., 2020), amongst
others. For more details about these different qubits, the
reader is referred to reviews on the topic (Clarke and Wil-
helm, 2008; Kjaergaard et al., 2020; Krantz et al., 2019;
Makhlin et al., 2001; Zagoskin and Blais, 2007).

III. LIGHT-MATTER INTERACTION IN CIRCUIT QED

A. Exchange interaction between a transmon and an
oscillator

Having introduced the two main characters of this re-
view, the quantum harmonic oscillator and the transmon
artificial atom, we are now ready to consider their in-
teraction. Because of their large size coming from the
requirement of having a low charging energy (large capaci-
tance), transmon qubits can very naturally be capacitively
coupled to microwave resonators, see Fig. 7 for schematic
representations. With the resonator taking the place of
the classical voltage source Vg, capacitive coupling to a
resonator can be introduced in the transmon Hamilto-
nian Eq. (22) with a dynamical gate voltage ng → −n̂r,
representing the effective offset charge term of the trans-
mon due to the quantum electric field operator of the
resonator (the choice of sign is simply a common con-
vention in the literature that we will adopt here, see
Appendix A). The Hamiltonian of the combined system
is therefore (Blais et al., 2004)

Ĥ = 4EC(n̂+ n̂r)
2 − EJ cos ϕ̂+

∑

m

~ωmâ†mâm, (31)

where n̂r =
∑
m n̂m with n̂m = (Cg/Cm)Q̂m/2e the con-

tribution to the offset charge term due to the mth res-
onator mode. Here, Cg is the gate capacitance and Cm the
associated resonator mode capacitance. To simplify these
expressions, we have assumed here that Cg � CΣ, Cm.
A derivation of the Hamiltonian of Eq. (31) that goes
beyond the simple replacement of ng by −n̂r and without

(b) (c)
Cg

(a)

∼ 300
µm

d ∼
1 cm

λ/4

E

FIG. 7 Schematic representation of a transmon qubit (green)
coupled to (a) a 1D transmission-line resonator, (b) a lumped-
element LC circuit and (c) a 3D coaxial cavity. Panel (a) is
adapted from Blais et al. (2004) and panel (c) from Reagor
et al. (2016).

the above assumption can be found in Appendix A for
the case of a single LC oscillator coupled to the transmon.

Assuming that the transmon frequency is much closer
to one of the resonator modes than all the other modes,
say |ω0 − ωq| � |ωm − ωq| for m ≥ 1, we truncate the
sum over m in Eq. (31) to a single term. In this single-
mode approximation, the Hamiltonian reduces to a single
oscillator of frequency denoted ωr coupled to a transmon.
It is interesting to note that, regardless of the physical
nature of the oscillator—for example a single mode of a
2D or 3D resonator—it is possible to represent this Hamil-
tonian with an equivalent circuit where the transmon is
capacitively coupled to an LC oscillator as illustrated in
Fig. 7(b). This type of formal representation of complex
geometries in terms of equivalent lumped element circuits
is generally known as “black-box quantization” (Nigg
et al., 2012), and is explored in more detail in Sec. III.D.
As will be discussed in Sec. IV.E, despite the single-mode
approximation being useful, there are many situations of
experimental relevance where ignoring the multi-mode
nature of the resonator leads to inaccurate predictions.

Using the creation and annihilation operators intro-
duced in the previous section, in the single-mode approxi-
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mation Eq. (31) reduces to 4

Ĥ ≈ ~ωrâ†â+ ~ωq b̂†b̂−
EC
2
b̂†b̂†b̂b̂

− ~g(b̂† − b̂)(â† − â),

(32)

where ωr is the frequency of the mode of interest and

g = ωr
Cg
CΣ

(
EJ

2EC

)1/4√
πZr
RK

, (33)

the oscillator-transmon, or light-matter, coupling con-
stant. Here, Zr is the characteristic impedance of the
resonator mode and RK = h/e2 ∼ 25.8 kΩ the resis-
tance quantum. The above Hamiltonian can be simplified
further in the experimentally relevant situation where
the coupling constant is much smaller than the system
frequencies, |g| � ωr, ωq. Invoking the rotating-wave
approximation, it simplifies to

Ĥ ≈ ~ωrâ†â+ ~ωq b̂†b̂−
EC
2
b̂†b̂†b̂b̂

+ ~g(b̂†â+ b̂â†).
(34)

As can be seen from Eq. (26), the prefactor
(EJ/2EC)1/4 in Eq. (33) is linked to the size of charge
fluctuations in the transmon. By introducing a length
scale l corresponding to the distance a Cooper pair trav-
els when tunneling across the transmon’s junction, it
is tempting to interpret Eq. (33) as ~g = d0E0 with
d0 = 2el(EJ/32EC)1/4 the dipole moment of the trans-
mon and E0 = (ωr/l)(Cg/CΣ)

√
~Zr/2 the resonator’s

zero-point electric field as seen by the transmon. Since
these two factors can be made large, especially so in the
transmon regime where d0 � 2el, the electric-dipole in-
teraction strength g can be made very large, much more
so than with natural atoms in cavity QED. It is also
instructive to express Eq. (33) as

g = ωr
Cg
CΣ

(
EJ

2EC

)1/4√
Zr
Zvac

√
2πα, (35)

where α = Zvac/2RK is the fine-structure constant and
Zvac =

√
µ0/ε0 ∼ 377 Ω the impedance of vacuum with

ε0 the vacuum permittivity and µ0 the vacuum perme-
ability (Devoret et al., 2007). To find α here should not
be surprising because this quantity characterizes the in-
teraction between the electromagnetic field and charged
particles. Here, this interaction is reduced by the fact that
both Zr/Zvac and Cg/CΣ are smaller than unity. Very

4 One might worry about the term n̂2
r arising from Eq. (31). How-

ever, this term can be absorbed in the charging energy term of
the resonator mode, see Eq. (1), and therefore leads to a renor-
malization of the resonator frequency which we omit here for
simplicity. See Eqs. (A9) and (A10) for further details.

large couplings can nevertheless be achieved by working
with large values of EJ/EC or, in other words, in the
transmon regime. Large g is therefore obtained at the
expense of reducing the transmon’s relative anharmonic-
ity −EC/~ωq ' −

√
EC/8EJ . We note that the coupling

can be increased by boosting the resonator’s impedance,
something that can be realized, for example, by replacing
the resonator’s center conductor with a junction array
(Andersen and Blais, 2017; Stockklauser et al., 2017).

Apart from a change in the details of the expression of
the coupling g, the above discussion holds for transmons
coupled to lumped, 2D or 3D resonators. Importantly, by
going from 2D to 3D, the resonator mode volume is made
significantly larger leading to an important reduction in
the vacuum fluctuations of the electric field. As first
demonstrated in Paik et al. (2011), this can be made
without change in the magnitude of g simply by making
the transmon larger thereby increasing its dipole moment.
As illustrated in Fig. 7(c), the transmon then essentially
becomes an antenna that is optimally placed within the
3D resonator to strongly couple to one of the resonator
modes.

To strengthen the analogy with cavity QED even fur-
ther, it is useful to restrict the description of the transmon
to its first two levels. This corresponds to making the
replacements b̂† → σ̂+ = |e〉〈g| and b̂ → σ̂− = |g〉〈e|
in Eq. (32) to obtain the well-known Jaynes-Cummings
Hamiltonian (Blais et al., 2004; Haroche and Raimond,
2006)

ĤJC = ~ωrâ†â+
~ωq
2
σ̂z + ~g(â†σ̂− + âσ̂+), (36)

where we use the convention σ̂z = |e〉〈e|− |g〉〈g|. The last
term of this Hamiltonian describes the coherent exchange
of a single quantum between light and matter, here real-
ized as a photon in the oscillator or an excitation of the
artificial atom.

B. The Jaynes-Cummings spectrum

The Jaynes-Cummings Hamiltonian is an exactly solv-
able model which very accurately describes many situ-
ations in which an atom, artificial or natural, can be
considered as a two-level system in interaction with a
single mode of the electromagnetic field. This model
can yield qualitative agreement with experiments in sit-
uations where only the first two levels of the transmon,
|σ = {g, e}〉, play an important role. It is often the case,
however, that quantitative agreement between theoreti-
cal predictions and experiments is obtained only when
accounting for higher transmon energy levels and the mul-
timode nature of the field. Nevertheless, since a great
deal of insight can be gained,in this section we consider
the Jaynes-Cummings model more closely.
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In the absence of coupling g, the bare states of the
qubit-field system are labelled |σ, n〉 with σ defined above
and n the photon number. The dressed eigenstates of the
Jaynes-Cummings Hamiltonian, |σ, n〉 = Û†|σ, n〉, can be
obtained from these bare states using the Bogoliubov-
like unitary transformation (Boissonneault et al., 2009;
Carbonaro et al., 1979)

Û = exp
[
Λ(N̂T )(â†σ̂− − âσ̂+)

]
, (37)

where we have defined

Λ(N̂T ) =
arctan

(
2λ
√
N̂T

)

2
√
N̂T

. (38)

Here, N̂T = â†â+ σ̂+σ̂− is the operator associated with
the total number of excitations, which commutes with
ĤJC, and λ = g/∆ with ∆ = ωq − ωr the qubit-resonator

detuning. Under this transformation, ĤJC takes the diag-
onal form

ĤD = Û†ĤJCÛ

= ~ωrâ†â+
~ωq
2
σ̂z −

~∆

2

(
1−

√
1 + 4λ2N̂T

)
σ̂z.

(39)

The dressed-state energies can be read directly
from this expression and, as illustrated in Fig. 8,
the Jaynes-Cummings spectrum consists of doublets
{|g, n〉, |e, n− 1〉} of fixed excitation number5

Eg,n = ~nωr −
~
2

√
∆2 + 4g2n,

Ee,n−1 = ~nωr +
~
2

√
∆2 + 4g2n,

(40)

and of the ground state |g, 0〉 = |g, 0〉 of energy Eg,0 =
−~ωq/2. The excited dressed states are

|g, n〉 = cos(θn/2)|g, n〉 − sin(θn/2)|e, n− 1〉,
|e, n− 1〉 = sin(θn/2)|g, n〉+ cos(θn/2)|e, n− 1〉,

(41)

with θn = arctan(2g
√
n/∆).

A crucial feature of the energy spectrum of Eq. (40)
is the scaling with the photon number n. In particular,
for zero detuning, ∆ = 0, the energy levels Eg,n and
Ee,n−1 are split by 2g

√
n. This is to be contrasted to

coupled harmonic oscillators where the energy splitting is
independent of n. Experimentally probing this spectrum
thus constitutes a way to assess the quantum nature of the
coupled system (Carmichael et al., 1996; Fink et al., 2008).
We return to this and related features of the spectrum
in Sec. VI.A.

5 To arrive at these expressions, we have added ~ωr/2 to ĤD . This
global energy shift is without consequences.

|g |e |f
|0

|1 |0

|0
|1|2 2g

√
2

2g

ωr ωq

2ωq−EC

FIG. 8 Box: Energy spectrum of the uncoupled (gray lines)
and dressed (blue lines) states of the Jaynes-Cummings Hamil-
tonian at zero detuning, ∆ = ωq − ωr = 0. Transmon states
are labelled {|g〉, |e〉} while photon number in the cavity are
labelled |n = 0, 1, 2 . . .〉 and are plotted vertically. The de-
generacy of the two-dimensional manifolds of states with n
quanta is lifted by 2g

√
n by the electric-dipole coupling. The

light blue line outside of the main box represents the third
excited state of the transmon, labelled |f〉. Although this is
not illustrated here, the presence of this level shifts the dressed
states in the manifolds with n ≥ 2 quanta (Fink et al., 2008).

C. Dispersive regime

On resonance, ∆ = 0, the dressed-states Eq. (41) are
maximally entangled qubit-resonator states implying that
the qubit is, by itself, never in a well-defined state, i.e. the
reduced state of the qubit found by tracing over the res-
onator is not pure. For quantum information processing,
it is therefore more practical to work in the dispersive
regime where the qubit-resonator detuning is large with
respect to the coupling strength, |λ| = |g/∆| � 1. In this
case, the coherent exchange of a quanta between the two
systems described by the last term of ĤJC is not reso-
nant, and interactions take place only via virtual photon
processes. Qubit and resonator are therefore only weakly
entangled and a simplified model obtained below from
second-order perturbation theory is often an excellent ap-
proximation. As the virtual processes can involve higher
energy levels of the transmon it is, however, crucial to
account for its multi-level nature. For this reason, our
starting point will be the Hamiltonian of Eq. (34) and
not its two-level approximation Eq. (36). For the same
reason, the results obtained here are only applicable to
the transmon. The energy level structure of other super-
conducting qubits can lead to very different expressions
than those obtained below.

1. Schrieffer-Wolff approach

To find an approximation to Eq. (34) valid in the disper-
sive regime, we perform a Schrieffer-Wolff transformation
to second order (Blais et al., 2004; Koch et al., 2007). As
shown in Appendix B, as long as the interaction term
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in Eq. (34) is sufficiently small, the resulting effective
Hamiltonian is well approximated by

Ĥdisp ' ~ωrâ†â+ ~ωq b̂†b̂−
EC
2
b̂†b̂†b̂b̂

+

∞∑

j=0

~
(
Λj + χj â

†â
)
|j〉〈j|,

(42)

where |j〉 label the eigenstates of the transmon which,
under the approximation used to obtain Eq. (27), are just

the eigenstates of the number operator b̂†b̂. Moreover, we
have defined

Λj = χj−1,j , χj = χj−1,j − χj,j+1, (43a)

χj−1,j =
jg2

∆− (j − 1)EC/~
, (43b)

for j > 0 and with Λ0 = 0, χ0 = −g2/∆. Here the χj ’s
are known as dispersive shifts, while Λj are Lamb shifts
and are signatures of vacuum fluctuations (Bethe, 1947;
Fragner et al., 2008; Lamb and Retherford, 1947).

Truncating Eq. (42) to the first two levels of the trans-
mon leads to the more standard form of the dispersive
Hamiltonian (Blais et al., 2004)

Ĥdisp ≈ ~ω′râ†â+
~ω′q
2
σ̂z + ~χâ†âσ̂z, (44)

where χ is the qubit state-dependent dispersive cavity-
shift with (Koch et al., 2007)

ω′r = ωr −
g2

∆− EC/~
, ω′q = ωq +

g2

∆
,

χ = − g2EC/~
∆(∆− EC/~)

.

(45)

These dressed frequencies are what are measured experi-
mentally in the dispersive regime and it is important to em-
phasize that the frequencies entering the right-hand-sides
of Eq. (45) are the bare qubit and resonator frequencies.
The spectrum of this two-level dispersive Hamiltonian
is illustrated in Fig. 9. Much of this review is devoted
to the consequences of this dispersive Hamiltonian for
qubit readout and quantum information processing. We
note that the Scrieffer-Wolff transformation also gives rise
to resonator and qubit self-Kerr nonlinearities at fourth
order (Zhu et al., 2013).

As already mentioned, the above perturbative results
are valid when the interaction term in Eq. (34) is suf-
ficiently small compared to the energy splitting of the
bare transmon-oscillator energy levels, |λ| = |g/∆| � 1.
Because the matrix elements of the operators involved in
the interaction term scale with the number of photons in
the resonator and the number of qubit excitations, a more
precise bound on the validity of Eq. (42) needs to take into
account these quantities. As discussed in Appendix B.2.a,

|g |e
|0

|1
|0

|1
|2

ωr − χ

∆

ωr + χ

Lorem ipsumωq + χ

FIG. 9 Energy spectrum of the uncoupled (gray lines) and
dressed states in the dispersive regime (blue lines). The two
lowest transmon states are labelled {|g〉, |e〉} while photon
numbers in the cavity are labelled |n = 0, 1, 2 . . .〉 and are
plotted vertically. In the dispersive regime, the g−e transition
frequency of the qubit in the absence of resonator photons is
Lamb shifted and takes value ωq + χ. Moreover, the cavity
frequency is pulled by its interaction with the qubit and takes
the qubit-state dependent value ωr ± χ.

we find that for the above second order perturbative re-
sults to be a good approximation, the oscillator photon
number n̄ should be much smaller than a critical photon
number ncrit

n̄� ncrit ≡
1

2j + 1

( |∆− jEC/~|2
4g2

− j
)
, (46)

where j = 0, 1, . . . refers to the qubit state as before. For
j = 0, this yields the familiar value ncrit = (∆/2g)2 for
the critical photon number expected from the Jaynes-
Cummings model (Blais et al., 2004), while setting j = 1
gives a more conservative bound. In either case, this gives
only a rough estimate for when to expect higher-order
effects to become important.

It is worth contrasting Eq. (45) to the results expected
from performing a dispersive approximation to the Jaynes-
Cummings model Eq. (36), which leads to χ = g2/∆
(see Appendix B.2.b, Blais et al. (2004) and Boissonneault
et al. (2010)). This agrees with the above result in the
limit of very large EC but, since EC/~ is typically rather
small compared to ∆ in most transmon experiments, the
two-level system Jaynes-Cummings model gives a poor
prediction for the dispersive shift χ in practice. The
intuition here is that EC determines the anharmonicity of
the transmon. Two coupled harmonic oscillators can shift
each other’s frequencies, but only in a state-independent
manner. Thus the dispersive shift must vanish in the
limit of EC going to zero.

2. Bogoliubov approach

We now present an approach to arrive at Eq. (44)
that can be simpler than performing a Schrieffer-Wolff
transformation and which is often used in the circuit QED
literature.
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To proceed, it is convenient to write Eq. (34) as the
sum of a linear and a nonlinear part, Ĥ = Ĥlin + Ĥnl,
where

Ĥlin = ~ωrâ†â+ ~ωq b̂†b̂+ ~g(b̂†â+ b̂â†), (47)

Ĥnl = − EC
2
b̂†b̂†b̂b̂. (48)

The linear part Ĥlin can be diagonalized exactly using
the Bogoliubov transformation

Ûdisp = exp
[
Λ(â†b̂− âb̂†)

]
. (49)

Under this unitary, the annihilation operators transform
as Û†dispâÛdisp = cos(Λ)â + sin(Λ)b̂ and Û†dispb̂Ûdisp =

cos(Λ)b̂ − sin(Λ)â. With the choice Λ = 1
2 arctan(2λ),

this results in the diagonal form

Û†dispĤlinÛdisp = ~ω̃râ†â+ ~ω̃q b̂†b̂, (50)

with the dressed frequencies

ω̃r =
1

2

(
ωr + ωq −

√
∆2 + 4g2

)
, (51a)

ω̃q =
1

2

(
ωr + ωq +

√
∆2 + 4g2

)
. (51b)

Applying the same transformation to Ĥnl and, in the
dispersive regime, expanding the result in orders of λ
leads to the dispersive Hamiltonian (see Appendix B.3)

Ĥdisp = Û†dispĤÛdisp

' ~ω̃râ†â+ ~ω̃q b̂†b̂

+
~Ka

2
â†â†ââ+

~Kb

2
b̂†b̂†b̂b̂+ ~χabâ†âb̂†b̂,

(52)

where we have introduced

Ka ' −
EC
~

( g
∆

)4

, Kb ' −EC/~,

χab ' −2
g2EC/~

∆(∆− EC/~)
.

(53)

The first two of these quantities are self-Kerr nonlineari-
ties, while the third is a cross-Kerr interaction. All are
negative in the dispersive regime. As discussed in Ap-
pendix B.3, the above expression for χab is obtained after
performing a Schrieffer-Wolff transformation to eliminate
a term of the form b̂†b̂ â†b̂+H.c. that results from applying
Udisp on HNL. Higher-order terms in λ and other terms
rotating at frequency ∆ or faster have been dropped to
arrive at Eq. (52). These terms are given in Eq. (B32).

Truncating Eq. (52) to the first two levels of the trans-
mon correctly leads to Eqs. (44) and (45). Importantly,
these expressions are not valid if the excitation num-
ber of the resonator or the transmon is too large or if
|∆| ∼ EC/~. Indeed, the regime 0 < ∆ < EC , known as

the straddling regime, is qualitatively different from the
usual dispersive regime. It is characterized by positive
self-Kerr and cross-Kerr nonlinearities, Ka, χab > 0, and
is better addressed by exact numerical diagonalization
of Eq. (31) (Koch et al., 2007).

A remarkable feature of circuit QED is the large nonlin-
earities that are achievable in the dispersive regime. Dis-
persive shifts larger than the resonator or qubit linewidth,
χ > κ, γ, are readily realized in experiments, a regime
referred to as strong dispersive coupling (Gambetta et al.,
2006; Schuster et al., 2007). Some of the consequences of
this regime are discussed in Sec. VI.B. It is also possible
to achieve large self-Kerr nonlinearities for the resonator,
Ka > κ.6 These nonlinearities can be enhanced by em-
bedding Josephson junctions in the center conductor of
the resonator (Bourassa et al., 2012; Ong et al., 2013), an
approach which is used for example in quantum-limited
parametric amplifiers (Castellanos-Beltran et al., 2008) or
for the preparation of quantum states of the microwave
electromagnetic field (Holland et al., 2015; Kirchmair
et al., 2013; Puri et al., 2017).

D. Josephson junctions embedded in multimode
electromagnetic environments

So far, we have focussed on the capacitive coupling
of a transmon to a single mode of an oscillator. For
many situations of experimental relevance it is, however,
necessary to consider the transmon, or even multiple
transmons, embedded in an electromagnetic environment
with a possibly complex geometry, such as a 3D cavity.

Consider the situation depicted in Fig. 10(a) where
a capacitively shunted Josephson junction is embedded
in some electromagnetic environment represented by the
impedance Z(ω). To keep the discussion simple, we con-
sider here a single junction but the procedure can easily be
extended to multiple junctions. As discussed in Sec. II.D,
the Hamiltonian of the shunted junction Eq. (23) can
be decomposed into the sum of a linear contribution
of capacitance CΣ = CS + CJ and linear inductance
LJ = E−1

J (Φ0/2π)2, and a purely nonlinear contribu-
tion. This decomposition is illustrated in Fig. 10(b),
where the spider symbol represents the nonlinear contri-
bution (Bourassa et al., 2012; Manucharyan et al., 2007).

We assume that the electromagnetic environment is
linear, nonmagnetic and has no free charges and currents.
Since CΣ and LJ are themselves linear elements, we might
as well consider them part of the electromagnetic envi-
ronment too, something that is illustrated by the box in
Fig. 10(b). Combining all linear contributions, we write a

6 Of course, the transmon is itself an oscillator with a very large
self-Kerr given by ~Kb = −EC .
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Z(ω) Z(ω)

(b)

(c)

(a)

FIG. 10 (a) Transmon qubit coupled to an arbitrary
impedance, such as that realized by a 3D microwave cavity.
(b) The Josephson junction can be represented as a capacitive
element CJ and a linear inductive element LJ in parallel with
a purely nonlinear element indicated here by the spiderlike
symbol. Here, CΣ = CS + CJ is the parallel combination of
the Josephson capacitance and the shunting capacitance of
the transmon. (c) Normal mode decomposition of the parallel
combination of the impedance Z(ω) together with LJ and CΣ

represented by effective LC circuits.

Hamiltonian for the entire system, junction plus the sur-
rounding electromagnetic environment, as Ĥ = Ĥlin +Ĥnl

where

Ĥnl = −EJ
(

cos ϕ̂+
1

2
ϕ̂2

)
(54)

is the nonlinear part of the transmon Hamiltonian already
introduced in Eq. (23). A good strategy is to first diag-
onalize the linear part, Ĥlin, which can in principle be
done much as was done in Sec. III.C. Subsequently, the
phase difference ϕ̂ across the junction can be expressed
as a linear combination of the eigenmodes of Ĥlin, a de-
composition which is then used in Ĥnl.

A convenient choice of canonical fields for the elec-
tromagnetic environment are the electric displacement
field D̂(x) and the magnetic field B̂(x), which can be
expressed in terms of bosonic creation and annihilation
operators (Bhat and Sipe, 2006)

D̂(x) =
∑

m

[Dm(x)âm + H.c.] , (55a)

B̂(x) =
∑

m

[Bm(x)âm + H.c.] , (55b)

where [âm, â
†
n] = δmn. The more commonly used elec-

tric field is related to the displacement field through
D̂(x) = ε0Ê(x) + P̂(x), where P̂(x) is the polarization
of the medium. Moreover, the mode functions Dm(x)
and Bm(x) can be chosen to satisfy orthogonality and
normalization conditions such that

Ĥlin =
∑

m

~ωmâ†mâm. (56)

In Eqs. (55) and (56), we have implicitly assumed that
the eigenmodes form a discrete set. If some part of the
spectrum is continuous, which is the case for infinite sys-
tems such as open waveguides, the sums must be replaced
by integrals over the relevant frequency ranges. The re-
sult is very general, holds for arbitrary geometries, and
can include inhomogeneities such as partially reflecting
mirrors, and materials with dispersion (Bhat and Sipe,
2006). We will, however, restrict ourselves to discrete
spectra in the following.

Diagonalizing Ĥlin amounts to determining the mode
functions {D̂m(x), B̂m(x)}, which is essentially a clas-
sical electromagnetism problem that can, e.g., be ap-
proached using numerical software such as finite element
solvers (Minev et al., 2020). Assuming that the mode
functions have been found, we now turn to Ĥnl for which
we relate ϕ̂ to the bosonic operators âm. This can be
done by noting again that ϕ̂(t) = 2π

∫
dt′ V̂ (t′)/Φ0, where

the voltage is simply the line integral of the electric field
V̂ (t) =

∫
dl·Ê(x) =

∫
dl·D̂(x)/ε across the junction (Vool

et al., 2016). Consequently, the phase variable can be
expressed as

ϕ̂ =
∑

m

[ϕmâm + H.c.] , (57)

where ϕm = i(2π/Φ0)
∫ xJ

x′J
dl ·Dm(x)/(ωmε) is the dimen-

sionless magnitude of the zero-point fluctuations of the
mth mode as seen by the junction and the boundary
conditions defined as in Fig. 10(a).

Using Eq. (57) in Ĥnl we expand the cosine to fourth
order in analogy with Eq. (24). This means that we
are assuming that the capacitively shunted junction is
well in the transmon regime, with a small anharmonicity
relative to Josephson energy. Focusing on the dispersive
regime where all eigenfrequencies ωm are sufficiently well
separated, and neglecting fast-rotating terms in analogy
with Sec. III.C leads to

Ĥnl '
∑

m

~∆mâ
†
mâm +

1

2

∑

m

~Km(â†m)2â2
m,

+
∑

m>n

~χm,nâ†mâmâ†nân,
(58)

where ∆m = 1
2

∑
n χm,n, Km =

χm,m

2 and

~χm,n = −EJϕ2
mϕ

2
n. (59)

It is also useful to introduce the energy participation
ratio pm, defined to be the fraction of the total inductive
energy of mode m that is stored in the junction pm =
(2EJ/~ωm)ϕ2

m such that we can write (Minev et al., 2020)

χm,n = −~ωmωn
4EJ

pmpn. (60)

As is clear from the above discussion, finding the nonlin-
ear Hamiltonian can be reduced to finding the eigenmodes
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of the system and the zero-point fluctuations of each mode
across the junction. Of course, finding the mode frequen-
cies ωm and zero-point fluctuations ϕm, or alternatively
the energy participation ratios pm, can be complicated
for a complex geometry. As already mentioned this is,
however, an entirely classical electromagnetism problem
which can be handled numerically (Bhat and Sipe, 2006;
Minev et al., 2020).

An alternative approach is to represent the linear elec-
tromagnetic environment seen by the purely nonlinear
element as an impedance Z(ω), as illustrated in Fig. 10(c).
Neglecting loss, any such impedance can be represented
by an equivalent circuit of possibly infinitely many LC
oscillators connected in series. The eigenfrequencies
~ωm = 1/

√
LmCm, can be determined by the real parts

of the zeros of the admittance Y (ω) = Z−1(ω), and the
effective impedance of the m’th mode as seen by the junc-
tion can be found from Zeff

m = 2/[ωmImY ′(ωm)] (Nigg
et al., 2012; Solgun et al., 2014). The effective impedance
is related to the zero-point fluctuations used above as
Zeff
m = 2(Φ0/2π)2ϕ2

m/~ = RKϕ
2
m/(4π). From this point

of view, the quantization procedure thus reduces to the
task of determining the impedance Z(ω) as a function of
frequency.

E. Beyond the transmon: multilevel artificial atom

In the preceding sections, we have relied on a per-
turbative expansion of the cosine potential of the trans-
mon under the assumption EJ/EC � 1. To go beyond
this regime one can instead resort to exact diagonaliza-
tion of the transmon Hamiltonian. Returning to the full
transmon-resonator Hamiltonian Eq. (31), we write (Koch
et al., 2007)

Ĥ = 4EC n̂
2 − EJ cos ϕ̂+ ~ωrâ†â+ 8EC n̂n̂r

=
∑

j

~ωj |j〉〈j|+ ~ωrâ†â+ i
∑

ij

~gij |i〉〈j|(â† − â),

(61)
where |j〉 are now the eigenstates of the bare transmon
Hamiltonian ĤT = 4EC n̂

2 −EJ cos ϕ̂ obtained from nu-
merical diagonalization and we have defined

~gij = 2e
Cg
CCΣ

Qzpf〈i|n̂|j〉. (62)

The eigenfrequencies ωj and the matrix elements 〈i|n̂|j〉
can be computed numerically in the charge basis, an ap-
proach that is applicable to other superconducting qubits.
Alternatively, these expressions can be determined by
taking advantage of the fact that, in the phase basis,
ϕ̂|ϕ〉 = ϕ|ϕ〉, Eq. (22) takes the form of a Mathieu equa-
tion whose exact solution is known (Cottet, 2002; Koch
et al., 2007).

The second form of Eq. (61) written in terms of energy
eigenstates |j〉 is a very general Hamiltonian that can

describe an arbitrary multilevel artificial atom capacitively
coupled to a resonator. Similarly to the discussion in
Sec. III.C, in the dispersive regime where |gij |

√
n+ 1�

|ωi − ωj − ωr| for all relevant atomic transitions i ↔ j
and with n the oscillator photon number, it is possible
to use a Schrieffer-Wolff transformation to approximately
diagonalize Eq. (61). As discussed in Appendix B.2, to
second order one finds (Zhu et al., 2013)

Ĥ '
∑

j

~(ωj + Λj)|j〉〈j|+ ~ωrâ†â+
∑

j

~χj â†â|j〉〈j|,

(63)
where

Λj =
∑

i

|gij |2
ωj − ωi − ωr

, (64a)

χj =
∑

i

( |gij |2
ωj − ωi − ωr

− |gij |2
ωi − ωj − ωr

)
. (64b)

This result is, as already stated, very general, and can
be used with a variety of artificial atoms coupled to a
resonator in the dispersive limit. Higher order expressions
can be found in Boissonneault et al. (2010) and Zhu et al.
(2013).

F. Alternative coupling schemes

Coupling the electric dipole moment of a qubit to the
zero-point electric field of an oscillator via a capacitor
is the most common approach to light-matter coupling
in a circuit but it is not the only possibility. Another
approach is to take advantage of the mutual inductance be-
tween a flux qubit and the center conductor of a resonator
to couple the qubit’s magnetic dipole to the resonator’s
magnetic field. Stronger interaction can be obtained by
galvanically connecting the flux qubit to the center con-
ductor of a transmission-line resonator (Bourassa et al.,
2009). In such a situation, the coupling can be engineered
to approach, or even be larger, than the system frequen-
cies allowing to reach what is known at the ultrastrong
coupling regime, see Sec. VI.C.

Yet another approach is to couple the qubit to the oscil-
lator in such a way that the resonator field does not result
in qubit transitions but only shifts the qubit’s frequency.
This is known as longitudinal coupling and is represented
by the Hamiltonian (Billangeon et al., 2015a,b; Didier
et al., 2015a; Kerman, 2013; Richer and DiVincenzo, 2016;
Richer et al., 2017)

Ĥz = ~ωrâ†â+
~ωq
2
σ̂z + ~gz(â† + â)σ̂z. (65)

Because light-matter interaction in Ĥz is proportional to
σ̂z rather than σ̂x , the longitudinal interaction does not
lead to dressing of the qubit by the resonator field of the
form discussed in Sec. III.B. Some of the consequences
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of this observation, in particular for qubit readout, are
discussed in Sec. V.C.3.

IV. COUPLING TO THE ENVIRONMENT

So far we have dealt with isolated quantum systems. A
complete description of quantum electrical circuits, how-
ever, must also take into account a description of how
these systems couple to their environment, including any
measurement apparatus and control circuitry. In fact,
the environment plays a dual role in quantum technol-
ogy: Not only is a description of quantum systems as
perfectly isolated unrealistic, as coupling to unwanted
environmental degrees of freedom is unavoidable, but a
perfectly isolated system would also not be very useful
since we would have no means of controlling or observing
it. For these reasons, in this section we consider quantum
systems coupled to external transmission lines. We also
introduce the input-output theory which is of central im-
portance in understanding qubit readout in circuit QED
in the next section.

A. Wiring up quantum systems with transmission lines

We start the discussion by considering transmission
lines coupled to individual quantum systems, which are
a model for losses and can be used to apply and receive
quantum signals for control and measurement. To be
specific, we consider a semi-infinite coplanar waveguide
transmission line capacitively coupled at one end to an
oscillator, see Fig. 11. The semi-infinite transmission line
can be considered as a limit of the coplanar waveguide
resonator of finite length already discussed in Sec. II.B.1
where one of the boundaries is now pushed to infinity,
d → ∞. This leads to a densely packed frequency spec-
trum, which in its infinite limit must be treated as a
continuum. In analogy with Eq. (16), the Hamiltonian of
the transmission line is consequently

Ĥtml =

∫ ∞

0

dω ~ωb̂†ω b̂ω, (66)

where the mode operators now satisfy [b̂ω, b̂
†
ω′ ] = δ(ω −

ω′). Similarly, the position-dependent flux and charge
operators of the transmission line are, in analogy with
Eqs. (9), (10), (14) and (15), given in the continuum limit
by (Yurke, 2004)

Φ̂tml(x) =

∫ ∞

0

dω

√
~

πωcv
cos
(ωx
v

)
(b̂†ω + b̂ω), (67a)

Q̂tml(x) = i

∫ ∞

0

dω

√
~ωc
πv

cos
(ωx
v

)
(b̂†ω − b̂ω). (67b)

These are the canonical fields of the transmission line
and in the Heisenberg picture under Eq. (66) are related

Cκ

Ĥtml

b̂in(t)

b̂out(t)

ωr

Ĥs

FIG. 11 LC circuit capacitively coupled to a semi-infinite
transmission line used to model both damping and driving of
the system. Here, b̂in(t) and b̂out(t) are the oscillators input
and output fields, respectively.

through Q̂tml(x, t) = c
˙̂
Φtml(x, t). In these expressions,

v = 1/
√
lc is the speed of light in the transmission line,

with c and l the capacitance and inductance per unit
length, respectively.

Considering capacitive coupling of the line to the oscil-
lator at x = 0, the total Hamiltonian takes the form

Ĥ = Ĥs + Ĥtml − ~
∫ ∞

0

dω λ(ω)(b̂†ω − b̂ω)(â† − â), (68)

where Ĥs = ~ωrâ†â is the oscillator Hamiltonian. More-
over, λ(ω) = (Cκ/

√
cCr)

√
ωrω/2πv is the frequency-

dependent coupling strength, with Cκ the coupling capac-
itance and Cr the resonator capacitance. These expres-
sions neglect small renormalizations of the capacitances
due to Cκ, as discussed in Appendix A.

In the following, λ(ω) is assumed sufficiently small
compared to ωr such that the interaction can be treated as
a perturbation. In this situation, the system’s Q factor is
large and the oscillator only responds in a small bandwidth
around ωr. It is therefore reasonable to take λ(ω) ' λ(ωr)
in Eq. (68). Dropping rapidly oscillating terms finally
leads to (Gardiner and Zoller, 1999)

Ĥ ' Ĥs + Ĥtml + ~
∫ ∞

0

dω λ(ωr)(âb̂
†
ω − â†b̂ω). (69)

Under the well-established Born-Markov approximations,
Eq. (69) leads to a Lindblad-form Markovian master equa-
tion for the system’s density matrix ρ (Breuer and Petruc-
cione, 2002; Carmichael, 2002; Gardiner and Zoller, 1999)

ρ̇ = −i[Ĥs, ρ] + κ(n̄κ + 1)D[â]ρ+ κn̄κD[â†]ρ, (70)

where κ = 2πλ(ωr)
2 = Ztmlω

2
rC

2
κ/Cr is the photon decay

rate, or linewidth, of the oscillator introduced earlier
and which, as expected from the Fermi Golden Rule
(Clerk et al., 2010), is evaluated at the system frequency
ωr. Moreover, n̄κ = n̄κ(ωr) is the number of thermal
photons of the transmission line as given by the Bose-
Einstein distribution, 〈b̂†ω b̂ω′〉 = n̄κ(ω)δ(ω − ω′), at the
system frequency ωr and environment temperature T .
The symbol D[Ô]• represents the dissipator

D[Ô]• = Ô • Ô† − 1

2

{
Ô†Ô, •

}
, (71)
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with {·, ·} the anticommutator. Focussing on the second
term of Eq. (70), the role of this superoperator can be
understood intuitively by noting that the term ÔρÔ†

with Ô = â in Eq. (71) acts on the Fock state |n〉 as
â|n〉〈n|â† = n|n− 1〉〈n− 1|. The second term of Eq. (70)
therefore corresponds to photon loss at rate κ. Finite
temperature stimulates photon emission, boosting the loss
rate to κ(n̄κ + 1). On the other hand, the last term of
Eq. (70) corresponds to absorption of thermal photons by
the system. Because ~ωr � kBT at dilution refrigerator
temperatures, it is often assumed that n̄κ → 0. Devia-
tions from this expected behavior are, however, common
in practice due to residual thermal radiation propagating
along control lines connecting to room temperature equip-
ment and to uncontrolled sources of heating. Approaches
to mitigate this problem using absorptive components are
being developed (Córcoles et al., 2011; Wang et al., 2019).

B. Input-output theory in electrical networks

While the master equation describes the system’s
damped dynamics, it provides no information on the
fields radiated by the system. Since radiated signals are
what is measured experimentally, it is of practical impor-
tance to include those in our model. This is known as the
input-output theory for which two standard approaches
exist. The first approach is to work directly with Eq. (69)
and consider Heisenberg picture equations of motion for
the system and field annihilation operators â and b̂ω. This
is the route taken by Gardiner and Collett, and which is
widely used in the quantum optics literature (Collett and
Gardiner, 1984; Gardiner and Collett, 1985).

An alternative approach is to introduce a decomposition
of the transmission line modes in terms of left- and right-
moving fields, linked by a boundary condition at the
position of the oscillator which we take to be x = 0 with
the transmission line at x ≥ 0 (Yurke and Denker, 1984).
The advantage of this approach is that the oscillator’s
input and output fields are then defined in terms of easily
identifiable left- (b̂Lω) and right-moving (b̂Rω) radiation
field components propagating along the transmission line.
To achieve this, we replace the modes cos(ωx/v)b̂ω in

Eqs. (67a) and (67b) by (b̂Rωe
iωx/v+b̂Lωe

−iωx/v)/2. Since
the number of degrees of freedom of the transmission
line has seemingly doubled, the modes b̂L/Rω cannot be
independent. Indeed, the dynamics of one set of modes
is fully determined by the other set through a boundary
condition linking the left- and right-movers at x = 0.

To see this, it is useful to first decompose the voltage

V̂ (x, t) =
˙̂
Φtml(x, t) at x = 0 into left-moving (input) and

right-moving (output) contributions as V̂ (t) = V̂ (x =
0, t) = V̂in(t) + V̂out(t), where

V̂in/out(t) = i

∫ ∞

0

dω

√
~ω

4πcv
eiωtb̂†L/Rω + H.c. (72)

The boundary condition at x = 0 follows from Kirchhoff’s
current law

Î(t) =
V̂out(t)− V̂in(t)

Ztml
, (73)

where the left-hand side Î(t) = (Cκ/Cr)
˙̂
Qr(t) is the cur-

rent injected by the sample, with Q̂r the oscillator charge
(see Appendix C for a derivation), while the right-hand
side is the transmission line voltage difference at x = 0.7 A
mode expansion of the operators involved in Eq. (73) leads
to the standard input-output relation (see Appendix C
for details)

b̂out(t)− b̂in(t) =
√
κâ(t), (74)

where the input and output fields are defined as

b̂in(t) =
i√
2π

∫ ∞

−∞
dω b̂Lωe

−i(ω−ωr)t, (75)

b̂out(t) =
i√
2π

∫ ∞

−∞
dω b̂Rωe

−i(ω−ωr)t (76)

and satisfy the commutation relations [b̂in(t), b̂†in(t′)] =

[b̂out(t), b̂
†
out(t

′)] = δ(t− t′). To arrive at Eq. (74), terms
rotating at ω + ωr have been dropped based on the al-
ready mentioned assumption that the system only re-
sponds to frequencies ω ' ωr such that these terms are
fast rotating (Yurke, 2004). In turn, this approximation
allows to extend the range of integration from (0,∞) to
(−∞,∞) in Eqs. (75) and (76). We have also approxi-
mated λ(ω) ' λ(ωr) over the relevant frequency range.
These approximations are compatible with those used to
arrive at the Lindblad-form Markovian master equation
of Eq. (70).

The same expressions and approximations can be used
to obtain the equation of motion for the resonator field â(t)
in the Heisenberg picture, which takes the form (see Ap-
pendix C for details)

˙̂a(t) = i[Ĥs, â(t)]− κ

2
â(t) +

√
κb̂in(t). (77)

This expression shows that the resonator dynamics is
determined by the input field (in practice, noise or drive),
while Eq. (74) shows how the output can, in turn, be found
from the input and the system dynamics. The output field
thus holds information about the system’s response to the
input and which can be measured to, indirectly, give us
access to information about the dynamics of the system.
As will be discussed in more detail in Sec. V, this can
be done, for example, by measuring the voltage at some

7 Note that if instead we have a boundary condition of zero current
at x = 0, it would follow that V̂in(t) = V̂out(t), i.e. the endpoint
simply serves as a mirror reflecting the input signal.
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Φx

Ĥs

FIG. 12 Transmon qubit capacitively coupled to a semi-
infinite transmission line and inductively to a flux line. These
ports are used to control the qubit state and to change its
transition frequency. They also lead to qubit decay into the
transmission line and to dephasing due to flux noise.

x > 0 away from the oscillator. Under the approximations
used above, this voltage can be expressed as

V̂ (x, t) '
√

~ωrZtml

2

[
eiωrx/v−iωrtb̂out(t)

+ e−iωrx/v−iωrtb̂in(t) + H.c.

]
.

(78)

Note that this approximate expression assumes that all
relevant frequencies are near ωr and, furthermore, neglects
all non-Markovian time-delay effects.

In this section we have considered a particularly simple
setup: A single quantum system connected to the endpoint
of a semi-infinite transmission line. More generally, quan-
tum systems can be made to interact by coupling them to
a common transmission line, and multiple transmission
lines can be used to form quantum networks. These more
complex setups can be treated using the SLH formalism,
which generalizes the results in this section (Combes et al.,
2017; Gough and James, 2009).

C. Qubit relaxation and dephasing

The master equation Eq. (70) was derived for an os-
cillator coupled to a transmission line, but this form of
the master equation is quite general. In fact, Eq. (68) is
itself a very generic system-bath Hamiltonian that can
be used to model dissipation due to a variety of different
noise sources (Caldeira and Leggett, 1981). To model
damping of an arbitrary quantum system, for example a
transmon qubit or a coupled resonator-transmon system,
the operator â in Eq. (68) is simply replaced with the
relevant system operator that couples to the transmission
line (or, more generally, the bath).

For the case of a transmon, see Fig. 12, Ĥs in Eq. (70)
is replaced with the Hamiltonian Ĥq of Eq. (27) to-

gether with the additional replacements D[â]• → D[b̂]•,
D[â†]• → D[b̂†]•, and κ→ γ. Here, γ = 2πλ(ωq)

2 is the
relaxation rate of the artificial atom which is related to
the qubit-environment coupling strength evaluated at the

qubit frequency. This immediately leads to the master
equation

ρ̇ = −i[Ĥq, ρ] + γ(n̄γ + 1)D[b̂]ρ+ γn̄γD[b̂†]ρ, (79)

where ρ now refers to the transmon state and n̄γ is the
thermal photon number of the transmon’s environment.
It is often assumed that n̄γ → 0 but, just like for the
oscillator, a residual thermal population is often observed
in practice (Córcoles et al., 2011; Wang et al., 2019).

Superconducting quantum circuits can also suffer from
dephasing caused, for example, by fluctuations of pa-
rameters controlling their transition frequency and by
dispersive coupling to other degrees of freedom in their
environment. For a transmon, a phenomenological model
for dephasing can be introduced by adding the following
term to the master equation (Carmichael, 2002)

2γϕD[b̂†b̂]ρ, (80)

with γϕ the pure dephasing rate. Because of its insensi-
tivity to charge noise (see Fig. 6), γϕ is often very small
for the 0-1 transition of transmon qubits (Koch et al.,
2007). Given that charge dispersion increases exponen-
tially with level number, dephasing due to charge noise
can, however, be apparent on higher transmon levels, see
for example Egger et al. (2019). Another source of de-
phasing for the transmon is the residual thermal photon
population of a resonator to which the transmon is disper-
sively coupled. This can be understood from the form of
the interaction in the dispersive regime, χabâ

†âb̂†b̂, where
fluctuations of the photon number lead to a fluctuations
in the qubit frequency and therefore to dephasing (Bertet
et al., 2005; Gambetta et al., 2006; Rigetti et al., 2012;
Schuster et al., 2005). Other sources of relaxation and
dephasing include two-level systems within the materi-
als and interfaces of the devices (Müller et al., 2019),
quasiparticles (Glazman and Catelani, 2020) generated
by a number of phenomena including infrared radiation
(Barends et al., 2011; Córcoles et al., 2011), and even
ionizing radiation (Vepsäläinen et al., 2020). We note

that a term of the form of Eq. (80) but with b̂†b̂ replaced
by â†â can also be added to the master equation of the
oscillator to model dephasing of the cavity itself. Oscilla-
tor dephasing rates are, however, typically small and this
contribution is often neglected (Reagor et al., 2016).

Combining the above results, the master equation for a
transmon subject to relaxation and dephasing assuming
n̄γ → 0 is

ρ̇ = − i[Ĥq, ρ] + γD[b̂]ρ+ 2γϕD[b̂†b̂]ρ. (81)

It is common to express this master equation in the two-
level approximation of the transmon, something that
is obtained simply by taking Ĥq → ~ωaσ̂z/2, b̂†b̂ →
(σ̂z + 1) /2, b̂→ σ̂− and b̂† → σ̂+.

Note that the rates γ and γϕ appearing in the above
expressions are related to the characteristic T1 relaxation
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time and T2 coherence time of the artificial atom which
are defined as (Schoelkopf et al., 2003)

T1 =
1

γ1
=

1

γ↓ + γ↑
' 1

γ
, (82a)

T2 =
1

γ2
=
(γ1

2
+ γϕ

)−1

, (82b)

where γ↓ = (n̄γ + 1)γ and γ↑ = n̄γγ. The approximation
in Eq. (82a) holds for n̄γ → 0. At zero temperature, T1

is the characteristic time for the artificial atom to relax
from its first excited state to the ground state. On the
other hand, T2 is the dephasing time, which quantifies
the characteristic lifetime of coherent superpositions, and
includes both a contribution from pure dephasing (γϕ)
and relaxation (γ1). Current best values for the T1 and
T2 time of fixed frequency transmon qubits is in the 50
to 120 µs range for aluminum-based transmons (Devoret
and Schoelkopf, 2013; Kjaergaard et al., 2020; Nersisyan
et al., 2019; Wei et al., 2020). Relaxation times above
300 µs have been reported in transmon qubits where the
transmon pads have been made with tantalum rather than
aluminum, but the Josephson junction still made from
aluminum and aluminum oxide (Place et al., 2020). Other
superconducting qubits also show large relaxation and
coherence times. Examples are T1, T2 ∼ 300 µs for heavy-
fluxonium qubits (Zhang et al., 2020), and T1 ∼ 1.6 ms
and T2 ∼ 25 µs for the 0− π qubit (Gyenis et al., 2019).

Qubit relaxation and incoherent excitation occur due
to uncontrolled exchange of GHz frequency photons be-
tween the qubit and its environment. These processes are
observed to be well described by the Markovian master
equation of Eq. (81). In contrast, the dynamics leading
to dephasing are typically non-Markovian, happening at
low-frequencies (i.e. slow time scales set by the phase
coherence time itself). As a result, it is observed that
these processes cannot very accurately be described by a
Markovian master equation such as Eq. (81). This equa-
tion thus represents a somewhat crude approximation to
dephasing in superconducting qubits. That being said, in
practice, the Markovian theory is still useful in particular
because it correctly predicts the results of experiments
probing the steady-state response of the system.

D. Dissipation in the dispersive regime

We now turn to a description of dissipation for the
coupled transmon-resonator system of Sec. III. Assum-
ing that the transmon and the resonator are coupled to
independent baths as illustrated in Fig. 13, the master
equation for this composite system is (taking n̄κ,γ → 0
for simplicity)

ρ̇ = − i[Ĥ, ρ] + κD[â]ρ+ γD[b̂]ρ+ 2γϕD[b̂†b̂]ρ, (83)

where ρ is now a density matrix for the total system, and
Ĥ describes the coupled system as in Eq. (34). Impor-

Φx ωr

ωr

FIG. 13 Because the dressed states in the dispersive regime
are entangled qubit-cavity states, cavity damping at the rate
κ leads to qubit relaxation at the Purcell rate γκ. Conversely,
qubit relaxation leads to cavity decay at the rate inverse
Purcell rate κγ . Adding a Purcell filter (not shown) reduces
the cavity density of states at the qubit frequency and therefore
suppresses Purcell decay.

tantly, the above expression is only valid at small values
of g/(ωr, ωq). This is because energy decay occurs via
transitions between system eigenstates while the above
expression describes transitions between the uncoupled
bare states. A derivation of the master equation valid at
arbitrary g can be found, for example, in Beaudoin et al.
(2011).

More important to the present discussion is the fact
that, at first glance, Eq. (83) gives the impression that
dissipative processes influence the transmon and the res-
onator in completely independent manners. However,
because Ĥ entangles the two systems, the loss, for ex-
ample, of a resonator photon can lead to relaxation of
the dressed qubit. Moving to the dispersive regime, a
more complete picture of dissipation therefore emerges
after applying the unitary transformation Eq. (49) not
only on the Hamiltonian but also on the above master
equation. Neglecting fast rotating terms and considering
corrections to second order in λ (which is consistent if
κ, γ, γϕ = O(ECg

2/∆2)), leads to the dispersive master
equation (Boissonneault et al., 2009)

ρ̇disp = − i[Ĥdisp, ρdisp]

+ (κ+ κγ)D[â]ρdisp + (γ + γκ)D[b̂]ρdisp

+ 2γϕD[b̂†b̂]ρdisp

+ γ∆D[â†b̂]ρdisp + γ∆D[b̂†â]ρdisp,

(84)

where we have introduced

γκ =
( g

∆

)2

κ, κγ =
( g

∆

)2

γ, γ∆ = 2
( g

∆

)2

γϕ, (85)

and ρdisp = Û†dispρÛdisp the density matrix in the disper-
sive frame. This expression has three new rates, the first
of which is known as the Purcell decay rate γκ (Purcell,
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1946). This rate captures the fact that the qubit dressed
by the field can relax by emission of a resonator photon.
It can be understood simply following Eq. (41) from the
form of the dressed eigenstate |e, 0〉 ∼ |e, 0〉+ (g/∆)|g, 1〉
which is closest to a bare qubit excitation |e〉. This state
is the superposition of the qubit first excited state with
no photon and, with probability (g/∆)2, the qubit ground
state with a photon in the resonator. The latter compo-
nent can decay at the rate κ taking the dressed excited
qubit to the ground state |g, 0〉 with a rate γκ. A sim-
ilar intuition also applies to κγ , now associated with a
resonator photon loss through a qubit decay event.

The situation is more subtle for the last line of Eq. (84).
Following Boissonneault et al. (2008, 2009), an effective
master equation for the transmon only can be obtained
from Eq. (84) by approximately eliminating the resonator
degrees of freedom. This results in transmon relaxation
and excitation rates given approximately by n̄γ∆, with
n̄ the average photon number in the resonator. Com-
monly known as dressed-dephasing, this leads to spurious
transitions during qubit measurement and can be inter-
preted as originating from dephasing noise at the detuning
frequency ∆ that is up- or down-converted by readout
photons to cause spurious qubit state transitions.

Because we have taken the shortcut of applying the
dispersive transformation on the master equation, the
above discussion neglects the frequency dependence of
the various decay rates. In a more careful derivation, the
dispersive transformation is applied on the system plus
bath Hamiltonian, and only then is the master equation
derived (Boissonneault et al., 2009). The result has the
same form as Eq. (84), but with different expressions for
the rates. Indeed, it is useful to write κ = κ(ωr) and
γ = γ(ωq) to recognize that, while photon relaxation
is probing the environment at the resonator frequency
ωr, qubit relaxation is probing the environment at ωq.
With this notation, the first two rates of Eq. (85) become
in the more careful derivation γκ = (g/∆)2κ(ωq) and
κγ = (g/∆)2γ(ωr). In other words, Purcell decay occurs
by emitting a photon at the qubit frequency and not at the
resonator frequency as suggested by the completely white
noise model used to derive Eq. (85). In the same way, it is
useful to write the dephasing rate as γϕ = γϕ(ω → 0) to
recognize the importance of low-frequency noise to dephas-
ing. Using this notation, the rates in the last two terms of
Eq. (84) become, respectively, γ∆ = 2(g/∆)2γϕ(∆) and
γ−∆ = 2(g/∆)2γϕ(−∆) (Boissonneault et al., 2009). In
short, dressed dephasing probes the noise responsible for
dephasing at the transmon-resonator detuning frequency
∆. This observation was used to probe this noise at GHz
frequencies by Slichter et al. (2012). Moreover, in the
presence of qubit or resonator drives, effective master
equations derived from the full system plus bath Hamil-
tonian without the rotating-wave or two-level approxima-
tions also obtain drive-power dependent relaxation rates
(Malekakhlagh et al., 2020; Müller, 2020; Petrescu et al.,

2020). In particular, these theories attributes the drive-
induced enhancement of qubit relaxation to correlated
qubit-cavity processes such as stimulated emission.

It is important to note that the observations in this
section result from the qubit-oscillator dressing that oc-
curs under the Jaynes-Cummings Hamiltonian. For this
reason, the situation is very different if the electric-dipole
interaction leading to the Jaynes-Cummings Hamiltonian
is replaced by a longitudinal interaction of the form of
Eq. (65). In this case, there is no light-matter dressing
and, consequently, no Purcell decay or dressed-dephasing
(Billangeon et al., 2015a; Kerman, 2013). This is one of
the advantages of this alternative light-matter coupling.

E. Multi-mode Purcell effect and Purcell filters

Up to now we have considered dissipation for a qubit
dispersively coupled to a single-mode oscillator. Replacing
the latter with a multi-mode resonator leads to dressing
of the qubit by all of the resonator modes and there-
fore to a modification of the Purcell decay rate. Fol-
lowing the above discussion, one may then expect the
contributions to add up, leading to the modified rate∑∞
m=0(gm/∆m)2κm, with m the mode index. However,

when accounting for the frequency dependence of κm, gm
and ∆m, this expression diverges (Houck et al., 2008).
It is possible to cure this problem using a more refined
model (Parra-Rodriguez et al., 2018). The divergence is
removed when the finite size of the transmon and the
frequency dependence of the impedance of the resonator’s
input and output capacitors is included (Bourassa, 2012)
or, in the dipole approximation for the qubit, taking into
account the frequency dependence of the qubit-resonator
coupling capacitance (Malekakhlagh et al., 2017).

Given that damping rates in quantum electrical circuits
are set by classical system parameters (Leggett, 1984b),
a simpler approach to compute the Purcell rate exists.
It can indeed be shown that γκ = Re[Y (ωq)]/CΣ, with
Y (ω) = 1/Z(ω) the admittance of the electromagnetic
environment seen by the transmon (Esteve et al., 1986;
Houck et al., 2008). This expression again makes it clear
that relaxation probes the environment (here represented
by the admittance) at the system frequency. It also sug-
gests that engineering the admittance Y (ω) such that it is
purely reactive at ωq can cancel Purcell decay (see the in-
set of Fig. 13). This can be done, for example, by adding
a transmission-line stub of appropriate length and termi-
nated in an open circuit at the output of the resonator,
something which is known as a Purcell filter (Reed et al.,
2010b). Because of the increased freedom in optimizing
the system parameters (essentially decoupling the choice
of κ from the qubit relaxation rate), Purcell filters of
various types are commonly used experimentally (Bronn
et al., 2015; Jeffrey et al., 2014; Walter et al., 2017).
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F. Controlling quantum systems with microwave drives

While connecting a quantum system to external trans-
mission lines leads to losses, such connections are nev-
ertheless necessary to control and measure the system.
Consider a continuous microwave tone of frequency ωd

and phase φd applied to the input port of the resonator.
A simple approach to model this drive is based on the
input-output approach of Sec. IV.B. Indeed, the drive
can be taken into account by replacing the input field
b̂in(t) in Eq. (77) with b̂in(t) → b̂in(t) + β(t), where
β(t) = A(t) exp(−iωdt−iφd) is the coherent classical part
of the input field of amplitude A(t). The resulting term√
κβ(t) in the Langevin equation can be absorbed in the

system Hamiltonian with the replacement Ĥs → Ĥs + Ĥd

where

Ĥd = ~
[
ε(t)â†e−iωdt−iφd + ε∗(t)âeiωdt+iφd

]
), (86)

with ε(t) = i
√
κA(t) the possibly time-dependent ampli-

tude of the drive as seen by the resonator mode. Gener-
alizing to multiple drives on the resonator and/or drives
on the transmon is straightforward.

The drive Hamiltonian Ĥd is the generator of displace-
ment in phase space of the resonator. As a result, by
choosing appropriate parameters for the drive, evolution
under Ĥd will bring the intra-resonator state from vac-
uum to an arbitrary coherent state (Carmichael, 2002;
Gardiner and Zoller, 1999)

|α〉 = D̂(α)|0〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉, (87)

where D̂(α) is known as the displacement operator and
takes the form

D̂(α) = eαâ
†−α∗â. (88)

As discussed in the next section, coherent states play an
important role in qubit readout in circuit QED.

It is important to note that Ĥd derives from Eq. (77)
which is itself the result of a rotating-wave approxi-
mation. As can be understood from Eq. (22), before
this approximation, the drive rather takes the form
i~ε(t) cos(ωdt + φd)(â† − â). Although Ĥd is sufficient
in most cases of practical interest, departures from the
predictions of Eq. (86) can been seen at large drive am-
plitudes (Pietikäinen et al., 2017; Verney et al., 2019).

V. MEASUREMENTS IN CIRCUIT QED

Before the development of circuit QED, the quantum
state of superconducting qubits was measured by fabri-
cating and operating a measurement device, such as a
single-electron transistor or DC-SQUID, in close prox-
imity to the qubit (Clarke and Wilhelm, 2008; Makhlin

et al., 2001). A challenge with such an approach is that
the readout circuitry must be strongly coupled to the
qubit during measurement so as to extract information
on a time scale much smaller than T1, while being well
decoupled from the qubit when the measurement is turned
off to avoid unwanted back-action. Especially given that
measurement necessarily involves dissipation (Landauer,
1991), simultaneously satisfying these two requirements
is challenging. Circuit QED, however, has several advan-
tages to offer over the previous approaches. Indeed, as
discussed in this section, qubit readout in this architec-
ture is realized by measuring scattering of a probe tone
off an oscillator coupled to the qubit. This approach first
leads to an excellent measurement on/off ratio since qubit
readout only occurs in the presence of the probe tone. A
second advantage is that the necessary dissipation now
occurs away from the qubit, essentially at a voltage meter
located at room temperature, rather than in a device
fabricated in close proximity to the qubit. Unwanted
energy exchange is, moreover, inhibited when working in
the dispersive regime where the effective qubit-resonator
interaction Eq. (44) is such that even the probe-tone pho-
tons are not absorbed by the qubit. As a result, the
backaction on the qubit is to a large extent limited to
the essential dephasing that quantum measurements must
impart on the measured system leading, in principle, to a
quantum non-demolition (QND) qubit readout.

Because of the small energy of microwave photons with
respect to optical photons, single-photon detectors in the
microwave frequency regime are still being developed, see
Sec. VIII.F. Therefore, measurements in circuit QED rely
on amplification of weak microwave signals followed by
detection of field quadratures using heterodyne detection.
Before discussing qubit readout, in the next subsection
we explain these terms and go over the main challenges
related to such measurements in the quantum regime.

A. Microwave field detection

Figure 14 illustrates a typical measurement chain in
circuit QED. The signal of a microwave source is directed
to the input port of the resonator first going through
a series of attenuators thermally anchored at different
stages of the dilution refrigerator. The role of these atten-
uators is to absorb the room-temperature thermal noise
propagating towards the sample. The field transmitted
by the resonator is first amplified, then mixed with a ref-
erence signal, converted from analog to digital, and finally
processed with an FPGA or recorded. Circulators are
inserted before the amplification stage to prevent noise
generated by the amplifier from reaching the resonator.
Circulators are directional devices that transmit signals
in the forward direction while strongly attenuating signals
propagating in the reverse direction (here coming from the
amplifier) (Pozar, 2011). In practice, circulators are bulky
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FIG. 14 Schematic representation of the microwave mea-
surement chain for field detection in circuit QED, with the
resonator depicted as a Fabry-Perot cavity. The signal (RF)
from a microwave source is applied to the input port of the
resonator first passing through attenuators to reduce the level
of thermal radiation. After passing through a circulator, the
resonator’s output field is first amplified by a quantum-limited
amplifier, such as a JPA or a JTWPA, and then by an HEMT
amplifier. The signal is then mixed with a local oscillator
(LO). The signal at the output of the mixer is digitized with
an analog-to-digital converter (ADC) and can be further pro-
cessed by a field-programmable gate array (FPGA). The two
lines at the output of the mixer correspond to the two quadra-
tures of the field. The temperature at which the different
components are operated is indicated.

off-chip devices relying on permanent magnets that are
not compatible with the requirement for integration with
superconducting quantum circuits. They also introduce
additional losses, for example due to insertion losses and
off-chip cable losses. Significant effort is currently being
devoted to developing compact, on-chip, superconducting
circuit-based circulators (Abdo et al., 2019; Chapman
et al., 2017; Kamal et al., 2011; Lecocq et al., 2017).

In practice, the different components and cables of the
measurement chain have a finite bandwidth which we will
assume to be larger than the bandwidth of the signal of
interest b̂out(t) at the output of the resonator. To account
for the finite bandwidth of the measurement chain and to
simplify the following discussion, it is useful to consider
the filtered output field

âf (t) = (f ? b̂out)(t)

=

∫ ∞

−∞
dτf(t− τ)b̂out(τ)

=

∫ ∞

−∞
dτf(t− τ)

[√
κâ(τ) + b̂in(τ)

]
,

(89)

which is linked to the intra-cavity field â via the input-
ouput boundary condition Eq. (74) which we have used in
the last line. In this expression, the filter function f(t) is

normalized to
∫∞
−∞ dt|f(t)|2 = 1 such that [âf (t), â†f (t)] =

1. As will be discussed in the context of qubit readout,

in addition to representing the measurement bandwidth,
filter functions are used to optimize the distinguishability
between the qubit states.

Ignoring the presence of the circulator and assuming
that a phase-preserving amplifier (i.e. an amplifier that
amplifies both signal quadratures equally) is used, in
the first stage of the measurement chain the signal is
transformed according to (Caves, 1982; Clerk et al., 2010)

âamp =
√
Gâf +

√
G− 1ĥ†, (90)

where G is the power gain and ĥ† accounts for noise
added by the amplifier. The presence of this added noise
is required for the amplified signal to obey the bosonic
commutation relation, [âamp, â

†
amp] = 1. Equivalently, the

noise must be present because the two quadratures of
the signal are canonically conjugate. Amplification of
both quadratures without added noise would allow us to
violate the Heisenberg uncertainty relation between the
two quadratures.

In a standard parametric amplifier, âf in Eq. (90) rep-
resents the amplitude of the signal mode and h represents
the amplitude of a second mode called the idler. The
physical interpretation of Eq. (90) is that an ideal ampli-
fier performs a Bogoliubov transformation on the signal
and idler modes. The signal mode is amplified, but the
requirement that the transformation be canonical im-
plies that the (phase conjugated and amplified) quantum
noise from the idler port must appear in the signal out-
put port. Ideally, the input to the idler is vacuum with
〈ĥ†ĥ〉 = 0 and 〈ĥĥ†〉 = 1, so the amplifier only adds quan-
tum noise. Near quantum-limited amplifiers with ∼ 20 dB
power gain approaching this ideal behavior are now rou-
tinely used in circuit QED experiments. These Josephson
junction-based devices, as well as the distinction between
phase-preserving and phase-sensitive amplification, are
discussed further in Sec. VIII.B.

To measure the very weak signals that are typical in
circuit QED, the output of the first near-quantum limited
amplifier is further amplified by a low-noise high-electron-
mobility transistor (HEMT) amplifier. The latter acts
on the signal again following Eq. (90), now with a larger
power gain ∼ 30 − 40 dB but also larger added noise
photon number. The very best cryogenic HEMT ampli-
fiers in the 4-8 GHz band have noise figures as low as
〈ĥ†ĥ〉 ∼ 5− 10. However, the effect of attenuation due to
cabling up to the previous element of the amplification
chain, i.e. a quantum-limited amplifier or the sample of in-
terest itself, can degrade this figure significantly. A more
complete understanding of the added noise in this situa-
tion can be derived from Fig. 15(a). There, beam splitters
of transmissivity η1,2 model the attenuation leading to
the two amplifiers of gain labelled G1 and G2. Taking
into account vacuum noise v̂1,2 at the beam splitters, the
input-output expression of this chain can be cast under
the form of Eq. (90) with a total gain GT = η1η2G1G2
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FIG. 15 (a) Amplification chain with amplifiers of gain G1,2

and noise mode ĥ1,2 with attenuation modeled by beam split-
ters of transmitivity η1,2. The beam splitters each have a vac-

uum port with vacuum mode v̂1,2 such that 〈v̂†1,2v̂1,2〉 = 0. The
quantum efficiency derived from this model is η = 1/(NT+1) ≤
1, with NT = 〈ĥ†T ĥT 〉 the total added noise number given in
Eq. (91). (b) Alternative model where a noisy amplifier is
modeled by a noiseless amplifier preceded by a beam splitter
of transmitivity η̄. The quantum efficiency derived from this
model is η̄ = 1/(2A+ 1) ≤ 1/2, with A the added noise given
in Eq. (94).

and noise mode ĥ†T corresponding to the total added noise
number

NT =
1

GT − 1

[
η1(G1 − 1)G2(N1 + 1)

+ (G2 − 1)(N2 + 1)
]
− 1

≈ 1

η1

[
1 +N1 +

N2

η2G1

]
− 1,

(91)

with Ni = 〈ĥ†i ĥi〉 with i = 1, 2, T . The last expression
corresponds to the large gain limit. According to this
expression, if the gain G1 of the first amplifier is large,
the noise of the chain is dominated by the noise N1 of
the first amplifier. This emphasizes the importance of
using near quantum-limited amplifiers with low noise in
the first stage of the chain. In the literature, the quantum
efficiency η = 1/(NT + 1) is often used to characterize the
measurement chain, with η = 1 in the ideal case NT = 0.

It is worthwhile to note that another definition of the
quantum efficiency can often be found in the literature.
This alternative definition is based on Fig. 15(b) where a
noisy amplifier of gain G is replaced by a noiseless ampli-
fier of gain G/η̄ preceded by a fictitious beam splitter of
transmittivity η̄ adding vacuum noise to the amplifier’s in-
put (Leonhardt and Paul, 1993). The quantum efficiency
corresponds, here, to the transmittivity η̄ of the fictitious
beam splitter. The input-ouput relation of the network
of Fig. 15(b) with its noiseless phase-preserving amplifier
reads âamp =

√
G/η̄(

√
η̄âf +

√
1− η̄v̂), something which

can be expressed as

〈|âamp|2〉 =
G

η̄

[
(1− η̄)

1

2
+ η̄〈|âf |2〉

]
, (92)

with 〈|Ô|2〉 = 〈{Ô†, Ô}〉/2 the symmetrized fluctuations.
The first term of the above expression corresponds to the

noise added by the amplifier, here represented by vacuum
noise added to the signal before amplification, while the
second term corresponds to noise in the signal at the input
of the amplifier. On the other hand, Equation (90) for a
noisy amplifier can also be cast in the form of Eq. (92)
with

〈|âamp|2〉 = G(A+ 〈|âf |2〉), (93)

where we have introduced the added noise

A =
(G− 1)

G

(
〈ĥ†ĥ〉+

1

2

)
. (94)

In the limit of low amplifier noise 〈ĥ†ĥ〉 → 0 and large
gain, the added noise is found to be bounded by A ≥
(1−G−1)/2 ' 1/2 corresponding to half a photon of noise
(Caves, 1982). Using Eqs. (92) and (93), the quantum
efficiency of a phase-preserving amplifier can therefore
be written as η̄ = 1/(2A+ 1) ≤ 1/2 and is found to be
bounded by 1/2 in the ideal case. Importantly, the concept
of quantum efficiency is not limited to amplification, and
can be applied to the whole measurement chain illustrated
in Fig. 14.

Using Eqs. (78) and (90), the voltage after amplification
can be expressed as

V̂amp(t) '
√

~ωRFZtml

2

[
e−iωRFtâamp + H.c.

]
, (95)

where ωRF is the signal frequency. To simplify the expres-
sions, we have dropped the phase associated to the finite
cable length. We have also dropped the contribution from
the input field b̂in(t) moving towards the amplifier in the
opposite direction at that point, cf. Fig. 14, because this
field is not amplified and therefore gives a very small
contribution compared to the amplified output field. Re-
call, however, the contribution of this field to the filtered
signal Eq. (89).

Different strategies can be used to extract information
from the amplified signal, and here we take the next
stage of the chain to be an IQ-mixer. As schematically
illustrated in Fig. 16, in this microwave device the signal
first encounters a power divider, illustrated here as a beam
splitter accounting for added noise due to internal modes,
followed in each branch by mixers with local oscillators
(LO) that are offset in phase by π/2. The LO consists in a
reference signal of well-defined amplitude ALO, frequency
ωLO and phase φLO:

VLO(t) = ALO cos(ωLOt− φLO). (96)

Mixers use nonlinearity to down-convert the input sig-
nal to a lower frequency referred to as the intermediate
frequency (IF) signal.

Describing first the signal as a classical voltage VRF(t) =
ARF cos(ωRFt+ φRF), the output at one of these mixers
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FIG. 16 Schematic representation of an IQ mixer. The RF
signal âamp is split into two parts at a power divider, here
illustrated as a beam splitter to account for added noise due
to internal modes. Ideally, only vacuum noise v̂ is introduced
at that stage. The two outputs are combined with a local
oscillator (LO) at mixers. By phase shifting the LO by π/2 in
one of the two arms, it is possible to simultaneously measure
the two quadratures of the field.

is (Pozar, 2011)

Vmixer(t) = KVRF(t)VLO(t)

=
1

2
KALOARF {cos[(ωLO − ωRF)t− φLO]

+ cos[(ωLO + ωRF)t− φLO]} ,
(97)

where K accounts for voltage conversion losses. Accord-
ing to the above expression, mixing with the LO results
in two sidebands of frequencies ωLO ± ωRF. The high
frequency component is filtered out with a low-pass filter
(not shown) leaving only the lower sideband of frequency
ωIF = ωLO−ωRF. The choice ωIF 6= 0 is known as hetero-
dyne detection. Taking the LO frequency such that ωIF

is in the range of few tens to a few hundreds of MHz, the
signal can be digitized using an analog to digital converter
(ADC) with a sampling rate chosen in accordance with
the bandwidth requirements of the signal to be recorded.
This bandwidth is set by the choice of IF frequency and
the signal bandwidth. For qubit readout, this is typically
a few MHz to a few tens of MHz and is set by the band-
width κ/2π of the readout cavity. The recorded signal
can then be averaged, or processed and analyzed in more
complex ways, using real-time field-programmable gate
array (FPGA) electronics or processed offline. A detailed
discussion of digital signal processing in the context of
circuit QED can be found in Salathé et al. (2018).

Going back to a quantum mechanical description of the
signal by combining Eqs. (95) and (97), the IF signals at

the I and Q ports of the IQ-mixer read

V̂I(t) = VIF

[
X̂f (t) cos(ωIFt)− P̂f (t) sin(ωIFt)

]

+ V̂noise,I(t),
(98a)

V̂Q(t) = −VIF

[
P̂f (t) cos(ωIFt) + X̂f (t) sin(ωIFt)

]

+ V̂noise,Q(t),
(98b)

where we have taken φLO = 0 in the I arm of the IQ-
mixer, and φLO = π/2 in the Q arm. We have defined
VIF = KALO

√
κGZtml~ωRF/2, and V̂noise,I/Q as the con-

tributions from the amplifier noise and any other added
noise. We have also introduced the quadratures

X̂f =
â†f + âf

2
, P̂f =

i(â†f − âf )

2
, (99)

the dimensionless position and momentum operators of
the simple harmonic oscillator, here defined such that
[X̂f , P̂f ] = i/2. Taken together, V̂I(t) and V̂Q(t) trace a
circle in the xf − pf plane and contain information about

the quadratures X̂f and P̂f at all times. It is therefore
possible to digitally transform the signals by going to a
frame where they are stationary using the rotation matrix

R(t) =

(
cos(ωIFt) − sin(ωIFt)
sin(ωIFt) cos(ωIFt)

)
(100)

to extract X̂f (t) and P̂f (t).

We note that the case ωIF = 0 is generally known as
homodyne detection (Gardiner and Zoller, 1999; Leon-
hardt, 1997; Pozar, 2011; Wiseman and Milburn, 2010).
Leaving the LO phase to be arbitrary, in this situation,
the IF signal after down conversion by a mixer is directly
proportional to time-independent quadrature

X̂f,φLO =
â†fe

iφLO + âfe
−iφLO

2

= X̂f cosφLO + P̂f sinφLO.

(101)

While this is in appearance simpler than the previous
appproach since a quadrature is immediately obtained,
this measurement is susceptible to 1/f noise and drift be-
cause the homodyne signal is at DC. It is also worthwhile
to note that homodyne detection as realized with the
approach described here differs from optical homodyne
detection which can be performed in a noiseless fashion
(in the present case, noise is added at the very least by
the phase-preserving amplifiers and the noise port of the
IQ mixer) (Eichler et al., 2012a). The reader is referred
to Schuster et al. (2005) and Krantz et al. (2019) for more
detailed discussions of the different field measurement
techniques in the context of circuit QED.



29

X

P

Xφ

φ

Xφ+π/2

Xφ

P (Xφ)

FIG. 17 Pictorial phase-space distribution of a coherent state
and its marginal along an axis Xφ rotated by φ from X.

B. Phase-space representations and their relation to field
detection

In the context of field detection, it is particularly useful
to represent the quantum state of the electromagnetic field
using phase-space representations. There exists several
such representations and here we focus on the Wigner
function and the Husimi-Q distribution (Carmichael, 2002;
Haroche and Raimond, 2006). This discussion applies
equality well to the intra-cavity field â as to the filtered
output field âf .

The Wigner function is a quasiprobability distribution
given by the Fourier transform

Wρ(x, p) =
1

π2

∫∫ ∞

−∞
dx′dp′Cρ(x

′, p′)e2i(px′−xp′) (102)

of the characteristic function

Cρ(x, p) = Tr
{
ρ e2i(pX̂−xP̂ )

}
. (103)

With ρ the state of the electromagnetic field, Cρ(x, p) can
be understood as the expectation value of the displace-
ment operator

D̂(α) = e2i(pX̂−xP̂ ) = eαâ
†−α∗â, (104)

with α = x+ ip, see Eq. (88).
Coherent states, already introduced in Eq. (87), have

particularly simple Wigner functions. Indeed, as illus-
trated schematically in Fig. 17, the Wigner function
W|β〉(α) of the coherent state |β〉 is simply a Gaussian
centered at β in phase space:

W|β〉(α) =
2

π
e−2|α−β|2 . (105)

The width 1/
√

2 of the Gaussian is a signature of quantum
noise and implies that coherent states saturate the Heisen-
berg inequality, ∆X∆P = 1/4 with ∆O2 = 〈Ô2〉 − 〈Ô〉2.
We note that, in contrast to Eq. (105), Wigner functions
take negative values for non-classical states of the field.

In the context of dispersive qubit measurements, the
Wigner function is particularly useful because it is related
to the probability distribution for the outcome of measure-
ments of the quadratures X̂ and P̂ . Indeed, the marginals
P (x) and P (p), obtained by integrating Wρ(x, p) along
the orthogonal quadrature, are simply given by

P (x) =

∫ ∞

−∞
dpWρ(x, p) = 〈x|ρ|x〉, (106a)

P (p) =

∫ ∞

−∞
dxWρ(x, p) = 〈p|ρ|p〉, (106b)

where |x〉 and |p〉 are the eigenstate of X̂ and P̂ , re-
spectively. This immediately implies that the probabil-
ity distribution of the outcomes of an ideal homodyne
measurement of the quadrature X̂φ is given by P (xφ)
obtained by integrating the Wigner function Wρ(α) along

the orthogonal quadrature X̂φ+π/2. This is schematically
illustrated for a coherent state in Fig. 17.

Another useful phase-space function is the Husimi-Q
distribution which, for a state ρ, takes the simple form

Qρ(α) =
1

π
〈α|ρ|α〉. (107)

This function represents the probability distribution of
finding ρ in the coherent state |α〉 and, in contrast to
Wρ(α), it is therefore always positive.

Since Qρ(α) and Wρ(α) are both complete descrip-
tions of the state ρ, it is not surprising that one can
be expressed in terms of the other. For example, in
terms of the Wigner function, the Q-function takes the
form (Carmichael, 2002)

Qρ(α) =
2

π

∫ ∞

−∞
d2βWρ(β)e−2|α−β|2 = Wρ(α) ∗W|0〉(α).

(108)
The Husimi-Q distribution Qρ(α) is thus obtained by con-
volution of the Wigner function with a Gaussian, and is
therefore smoother than Wρ(α). As made clear by the sec-
ond equality, this Gaussian is in fact the Wigner function
of the vacuum state, W|0〉(α), obtained from Eq. (105)
with β = 0. In other words, the Q-function for ρ is ob-
tained from the Wigner function of the same state after
adding vacuum noise. As already illustrated in Fig. 16,
heterodyne detection with an IQ mixer adds (ideally)
vaccum noise to the signal before detection. This leads
to the conclusion that the probability distributions for
the simultaneous measurement of two orthogonal quadra-
tures in heterodyne detection are given by the marginals
of the Husimi-Q distribution rather than of the Wigner
function (Caves et al., 2012).
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C. Dispersive qubit readout

1. Steady-state intra-cavity field

As discussed in Sec. III.C, in the dispersive regime the
transmon-resonator Hamiltonian is well approximated by

Ĥdisp ≈ ~ (ωr + χσ̂z) â
†â+

~ωq
2
σ̂z. (109)

To simplify the discussion, here we have truncated the
transmon Hamiltonian to its first two levels, absorbed
Lamb shifts in the system frequencies, and neglected a
transmon-induced nonlinearity of the cavity [the term
∝ Ka in Eq. (52)]. As made clear by the first term of the
above expression, in the dispersive regime, the resonator
frequency becomes qubit-state dependent: If the qubit
is in |g〉 then 〈σ̂z〉 = −1 and the resonator frequency is
ωr −χ. On the other hand, if the qubit is in |e〉, 〈σ̂z〉 = 1
and ωr is pulled to ωr + χ. In this situation, driving the
cavity results in a qubit-state dependent coherent state,
|αg,e〉. Thus, if the qubit is initialized in the superposition
cg|g〉 + ce|e〉, the system evolves to an entangled qubit-
resonator state of the form

cg|g, αg〉+ ce|e, αe〉. (110)

To interpret this expression, let us recall the paradigm
of the Stern-Gerlach experiment. There, an atom passes
through a magnet and the field gradient applies a spin-
dependent force to the atom that entangles the spin state
of the atom with the momentum state of the atom (which
in turn determines where the atom lands on the detector).
The experiment is usually described as measuring the
spin of the atom, but in fact it only measures the final
position of that atom on the detector. However, since the
spin and position are entangled, we can uniquely infer
the spin from the position, provided there is no overlap
in the final position distributions for the two spin states.
In this case we have effectively performed a projective
measurement of the spin.

By analogy, if the spin-dependent coherent states of
the microwave field, αe,g, can be resolved by heterodyne
detection, then they act as pointer states (Zurek, 1981)
in the qubit measurement. Moreover, since Ĥdisp com-
mutes with the observable that is measured, σ̂z, this is
a QND (quantum non-demolition) measurement8 (Bra-
ginsky et al., 1980) (in contrast to the Stern-Gerlach

8 Note that the original Jaynes-Cummings Hamiltonian (from which

Ĥdisp is derived) does not commute with the ‘bare’ qubit operator
σ̂z . However, in writing the dispersive Hamiltonian we have
made a unitary transformation which slightly ‘dresses’ (coherently
mixes) the qubit and cavity excitations and this dressed spin
operator does commute with the dispersive Hamiltonian. This
dressing implies a small Purcell-effect damping inherited by the
qubit from the bare cavity damping, which we are neglecting for
the moment. We will however return to this point further below
when discussing the measurement fidelity and other approaches
to qubit readout.
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FIG. 18 (a) Path in phase space leading up to steady-state
of the intra-cavity pointer states αg and αe for 2χ/κ = 1, a
measurement drive at the bare cavity frequency with an ampli-
tude leading to one measurement photon at steady-state, and
assuming infinite qubit relaxation time. (top). Corresponding
marginals along x with the signal, noise and error defined
in the text (bottom). The circles of radius 1/

√
2 represent

vacuum noise. (b) Path in phase space for 2χ/κ = 10 and (c)
2χ/κ = 0.2. (d) Signal-to-noise ratio as a function of 2χ/κ for
an integration time τm/κ = 200 (dark blue) and τm/κ = 10
(light blue). The maximum of the SNR at short integration
time is shifted away from 2χ/κ = 1. The letters correspond
to the ratio 2χ/κ of the three previous panels.

measurement which is destructive). Note that for a sys-
tem initially in a superposition of eigenstates of the mea-
surement operator, a QND measurement does in fact
change the state by randomly collapsing it onto one of
the measurement eigenstates. The true test of ‘QNDness’
is that subsequent measurement results are not random
but simply reproduce the first measurement result.

The objective in a qubit readout is to maximize the
readout fidelity in the shortest possible measurement time.
To see how this goal can be reached, it is useful to first
evaluate more precisely the evolution of the intra-cavity
field under such a measurement. The intra-cavity field
is obtained from the Langevin equation Eq. (77) with
Ĥs = Ĥdisp and by taking into account the cavity drive as
discussed in Sec. IV.F. Doing so, we find that the complex
field amplitude 〈â〉σ = ασ given that the qubit is in state
σ = {g, e} satisfies

α̇e(t) = −iε(t)− i(δr + χ)αe(t)− καe(t)/2, (111a)

α̇g(t) = −iε(t)− i(δr − χ)αg(t)− καg(t)/2, (111b)

with δr = ωr − ωd the detuning of the measurement
drive to the bare cavity frequency. The time evolution
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of these two cavity fields in phase space are illustrated
for three different values of 2χ/κ by dashed gray lines in
Fig. 18(a-c).

Focusing for the moment on the steady-state response
(α̇σ = 0)

αs
e/g =

−ε
(δr ± χ)− iκ/2 , (112)

with + for e and − for g, results in the steady-state
intra-cavity quadratures

〈X̂〉e/g =
ε(δr ± χ)

(δr ± χ)2 + (κ/2)2
, (113a)

〈P̂ 〉e/g =
εκ/2

(δr ± χ)2 + (κ/2)2
. (113b)

From these expressions, we what that when driving the
cavity at its bare frequency, δr = 0, information about
the qubit state is only contained in the X quadrature, see
Fig. 18(a-c).

It is also useful to define the steady-state amplitude

As
e/g =

√
〈X̂〉2e/g + 〈P̂ 〉2e/g =

ε√
(κ/2)2 + (δr ± χ)2

,

(114)
and phase

φs
e/g = arctan

(
〈X̂〉e/g
〈P̂ 〉e/g

)
= arctan

(
δr ± χ
κ/2

)
. (115)

These two quantities are plotted in Fig. 19. As could
already have been expected from the form of Ĥdisp, a
coherent tone of frequency ωr ± χ on the resonator leads
to a large displacement of the resonator field and is largely
transmitted if the qubit is in the ground (excited) state,
and is mostly reflected if the qubit is in the excited
(ground) state. Alternatively, driving the resonator at
its bare frequency ωr leads to a different phase accumu-
lation for the transmitted signal depending on the state
of the qubit. In particular, on resonance with the bare
resonator, δr = 0, the phase shift of the signal associated
to the two qubit states is simply ± arctan(2χ/κ). As a
result, in the dispersive regime, measuring the amplitude
and/or the phase of the transmitted or reflected signal
from the resonator reveals information about the qubit
state (Blais et al., 2004). On the other hand, when driving
the resonator at a frequency that is largely detuned from
(ωr, ωr ± χ), for example, when driving at the qubit fre-
quency to realize a logical gate discussed in Sec. VII.A, the
response of the resonator field only negligibly depends on
the qubit state. This results in negligible entanglement
between the resonator, and consequently on negligible
measurement-induced dephasing on the qubit.

It is very important to note that to simplify the presen-
tation, the above discussion has been couched in terms
of the amplitude and phase of the field internal to the

T
ra

n
sm

is
si

on
(a

rb
.

u
n
it
s)

P
h
as

e
sh

if
t

(d
eg

re
es

)

Frequency
ωr− χ ωr + χ ωq

∆

|g |e

90−

90

45

−45

0

FIG. 19 Resonator transmission (dashed lines) and corre-
sponding phase shifts (full lines) for the two qubit states
(blue: ground; red: excited). When driving the resonator close
to its pulled frequencies, the resonator response strongly de-
pends on the state of the qubit. Adapted from (Blais et al.,
2007).

microwave resonator. In practice, we can typically only
measure the field externally in the transmission line(s)
coupled to the resonator. The relation between the two
is the subject of input-output theory discussed in Sec. IV
and Appendix C. The main ideas can be summarized
rather simply. Consider an asymmetric cavity with one
port strongly coupled to the environment and one port
weakly coupled. If driven from the weak port, nearly all
of the information about the state of the qubit is in the
field radiated by the cavity into the strongly coupled port.
The same is true if the cavity is driven from the strongly
coupled side, but now the output field is a superposition
of the directly reflected drive plus the field radiated by
the cavity. If the drive frequency is swept across the
cavity resonance, the signal undergoes a phase shift of
π in the former case and 2π in the latter. This affects
the sensitivity of the output field to the dispersive shift
induced by the qubit. If the cavity is symmetric, then
half the information about the state of the qubit appears
at each output port so this configuration is less efficient.
Further details can be found in (Clerk et al., 2010).

2. Signal-to-noise ratio and measurement fidelity

Except for the last paragraph, the above discussion
concerned the steady-state intra-cavity field from which
we can infer the steady-state heterodyne signal. It is,
however, crucial to consider the temporal response of
the resonator’s output field to the measurement drive
since, in the context of quantum computing, qubit readout
should be as fast as possible. Moreover, the probability
of assigning the correct outcome to a qubit measurement,
or more simply put the measurement fidelity, must also
be large. As the following discussion hopes to illustrate,
simultaneously optimizing these two important quantities
requires some care.
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As discussed in Sec. V.A, the quadratures X̂f (t) and

P̂f (t) are extracted from heterodyne measurement of the
resonator output field. Combining these signals and inte-
grating for a time τm, the operator corresponding to this
measurement takes the form

M̂(τm) =

∫ τm

0

dt
{
wX(t)

[
VIFX̂f (t) + V̂noise,Xf

(t)
]

+wP (t)
[
VIFP̂f (t) + V̂noise,Pf

(t)
]}

,

(116)

where V̂noise,Xf/Pf
(t) is the noise in the Xf/Pf quadrature.

The weighting functions wX(t) = |〈X̂f 〉e − 〈X̂f 〉g| and

wP (t) = |〈P̂f 〉e − 〈P̂f 〉g| are multiplied with the signal
and are chosen such as to increase the discrimination
of the two qubit states (Bultink et al., 2018; Magesan
et al., 2015; Ryan et al., 2015; Walter et al., 2017). Quite
intuitively, because of qubit relaxation, these functions
give less weight to the cavity response at long times since
it will always reveal the qubit to be in its ground state
irrespective of the prepared state (Gambetta et al., 2007).
Moreover, for the situation illustrated in Fig. 18, there is
no information on the qubit state in the P quadrature.
Reflecting this, wP (t) = 0 which prevents the noise in
that quadrature from being integrated.

Following Secs. V.A and V.B, the probability distribu-
tion for the outcome of multiple shots of the measurement
of M̂(τm) is expected to be Gaussian and characterized
by the marginal of the Q-function of the intra-cavity
field. Using the above expression, the signal-to-noise ratio
(SNR) of this measurement can be defined as illustrated
in Fig. 18(a) for the intra-cavity field: it is the separation
of the average combined heterodyne signals corresponding
to the two qubit states divided by the standard deviation
of the signal, an expression which takes the form

SNR2(t) ≡ |〈M̂(t)〉e − 〈M̂(t)〉g|2
〈M̂2

N (t)〉e + 〈M̂2
N (t)〉g

. (117)

Here, 〈M̂〉σ is the average integrated heterodyne signal
given that the qubit is in state σ, and M̂N = M̂ − 〈M̂〉
the noise operator which takes into account the added
noise but also the intrinsic vacuum noise of the quantum
states of the resonator field.

In addition to the SNR, another important quantity is
the measurement fidelity (Gambetta et al., 2007; Walter
et al., 2017) 9

Fm = 1− [P (e|g) + P (g|e)] ≡ 1− Em, (118)

9 An alternative definition known as the assignment fidelity is
1 − 1

2
[P (e|g) − P (g|e)] (Magesan et al., 2015). This quantity

takes values in [0, 1] while formally Fm ∈ [−1, 1]. Negative values
are, however, not relevant in practice. Indeed, because Fm = −1
corresponds to systematically reporting the incorrect value, a
fidelity of 1 is recovered after flipping the measurement outcomes.

where P (σ|σ′) is the probability that a qubit in
state σ is measured to be in state σ′. In the sec-
ond equality, we have defined the measurement er-
ror Em which, as illustrated in Fig. 18(a), is simply
the overlap of the marginals Pσ(x) of the Q-functions
for the two qubit states. This can be expressed
as Em =

∫
dxφLO+π/2 min[P0(xφLO+π/2), P1(xφLO+π/2)],

where the LO phase is chosen to minimize Em. Using this
expression, the measurement fidelity is found to be related
to the SNR by Fm = 1− erfc(SNR/2), where erfc is the
complementary error function (Gambetta et al., 2007). It
is important to note that this last result is valid only if the
marginals are Gaussian. In practice, qubit relaxation and
higher-order effects omitted in the dispersive Hamiltonian
Eq. (109) can lead to distortion of the coherent states and
therefore to non-Gaussian marginals (Gambetta et al.,
2007; Hatridge et al., 2013). Notably, Kerr-type nonlin-
earities that are common in circuit QED tend to create a
banana-shaped distortion of the coherent states in phase
space, something that is sometimes referred to as ba-
nanization (Boutin et al., 2017; Malnou et al., 2018; Sivak
et al., 2019).

Although we are interested in short measurement times,
it is useful to consider the simpler expression for the long-
time behavior of the SNR which suggests different strate-
gies to maximize the measurement fidelity. Assuming
δr = 0 and ignoring the prefactors related to gain and
mixing, we find (Gambetta et al., 2008)

SNR(τm →∞) ' (2ε/κ)
√

2κτm |sin 2φ| , (119)

where φ is given by Eq. (115); see (Didier et al., 2015a)
for a detailed derivation of this expression. The reader
can easily verify that the choice χ/κ = 1/2 maximizes
Eq. (119), see Fig. 18(d) (Gambetta et al., 2008). This
ratio is consequently often chosen in experiments (Walter
et al., 2017). While leading to a smaller steady-state SNR,
other choices of the ratio χ/κ can be more advantageous
at finite measurement times.

In the small χ limit, the factor 2ε/κ in SNR(τm →∞)
can be interpreted using Eq. (112) as the square root of
the steady-state average intra-cavity measurement photon
number. Another approach to improve the SNR is there-
fore to work at large measurement photon number n̄. This
idea, however, cannot be pushed too far since increasing
the measurement photon number leads to a breakdown
of the approximations that have been used to derive the
dispersive Hamiltonian Eq. (109). Indeed, as discussed in
Sec. III.C the small parameter in the perturbation theory
that leads to the dispersive approximation is not g/∆
but rather n̄/ncrit, with ncrit the critical photon number
introduced in Eq. (46). Well before reaching n̄/ncrit ∼ 1,
higher-order terms in the dispersive approximation start
to play a role and lead to departures from the expected
behavior. For example, it is commonly experimentally
observed that the dispersive measurement loses its QND
character well before n̄ ∼ ncrit and often at measurement
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photon populations as small as n̄ ∼ 1−10 (Johnson et al.,
2011; Minev et al., 2019). Because of these spurious qubit
flips, measurement photon numbers are typically chosen
to be well below ncrit (Walter et al., 2017). While this
non-QNDness at n̄ < ncrit is expected from the discussion
of dressed-dephasing found in Sec. IV.D, the predicted
measurement-induced qubit flip rates are smaller than
often experimentally observed. We note that qubit transi-
tions at n̄ > ncrit caused by accidental resonances within
the qubit-resonator system have been studied by Sank
et al. (2016).

To reach high fidelities, it is also important for the
measurement to be fast compared to the qubit relaxation
time T1. A strategy to speed-up the measurement is to
use a low-Q oscillator which leads to a faster readout rate
simply because the measurement photons leak out more
rapidly from the resonator to be detected. However, this
should not be done at the price of increasing the Purcell
rate γκ to the point where this mechanism dominates qubit
decay (Houck et al., 2008). As discussed in Sec. IV.E, it is
possible to avoid this situation to a large extent by adding
a Purcell filter at the output of the resonator (Bronn et al.,
2015; Jeffrey et al., 2014; Reed et al., 2010b).

Fixing κ so as to avoid Purcell decay and working at the
optimal χ/κ ratio, it can be shown that the steady-state
response is reached in a time ∝ 1/χ (Walter et al., 2017).
Large dispersive shifts can therefore help to speed up the
measurement. As can be seen from Eq. (45), χ can be
increased by working at larger qubit anharmonicity or,
in other words, larger charging energy EC . Once more,
this cannot be pushed too far since the transmon charge
dispersion and therefore its dephasing rate increase with
EC .

The above discussion shows that QND qubit measure-
ment in circuit QED is a highly constrained problem.
When readout time is to be minimized while achieving
maximum fidelity, the state-of-the-art for such measure-
ments recently reached Fm ∼ 98.25% in τm = 48 ns or
99.2% in 88 ns, in both cases using n̄ ∼ 2.5 intra-cavity
measurement photons (Walter et al., 2017). These re-
sults were obtained by careful optimization of the system
parameters, simultaneously realizing one of the largest
dispersive shifts and cavity bandwidths explored in the
literature, and following the concepts introduced above
but also given an understanding of the full-time response
of the measurement signal |〈M̂(t)〉1−〈M̂(t)〉0|. The main
limitation in these reported fidelities was the relatively
short qubit relaxation time of 7.6 µs. With qubits of
sufficiently long relaxation time, state-selectively excited
to higher states to increase read-out performance, and
at the expense of longer integration time, fidelities of up
to 99.96 % has been achieved (Elder et al., 2020). Joint
simultaneous dispersive readout of two transmon qubits
capacitively coupled to the same resonator has also been
realized (Filipp et al., 2009).

The very small photon number used in some of

these readout experiments underscores the importance of
quantum-limited amplifiers in the first stage of the mea-
surement chain, see Fig. 14. Before the development of
these amplifiers, which opened the possibility to perform
strong single-shot (i.e. projective) measurements, the SNR
in dispersive measurements was well below unity, forcing
the results of these weak measurements to be averaged
over tens of thousands of repetitions of the experiment to
extract information about the qubit state (Wallraff et al.,
2005). The advent of near quantum-limited amplifiers has
made it possible to resolve the qubit state in a single-shot
something which has led, for example, to the observation
of quantum jumps of a transmon qubit (Vijay et al., 2011),
and even to the possibility to catch and reserve quantum
jumps (Minev et al., 2019).

Finally, we point out that the quantum efficiency, η, of
the whole measurement chain can be extracted from the
SNR using (Bultink et al., 2018)

η =
SNR2

2βm
, (120)

where βm = 2χ
∫ τm

0
dt Im[αg(t)αe(t)

∗] is related to the
measurement-induced dephasing discussed further in
Sec. VI.B.210. This connection between quantum effi-
ciency, SNR, and measurement-induced dephasing results
from the fundamental link between the rate at which
information is gained in a quantum measurement and the
unavoidable backaction on the measured system (Clerk
et al., 2010; Korotkov, 2001).

3. Other approaches to qubit readout

a. Josephson Bifurcation Amplifier While the vast major-
ity of circuit QED experiments rely on the approach
described above, several other qubit-readout methods
have been theoretically explored or experimentally imple-
mented. One such alternative is known as the Josephson
Bifurcation Amplifier (JBA) and relies on using, for ex-
ample, a transmission-line resonator that is made non-
linear by incorporating a Josephson junction in its cen-
ter conductor (Boaknin et al., 2007). This circuit can
be seen as a distributed version of the transmon qubit
and is well described by the Kerr-nonlinear Hamiltonian
of Eq. (27) (Bourassa et al., 2012). With a relatively
weak Kerr nonlinearity (∼ −500 kHz) and under a co-
herent drive of well-chosen amplitude and frequency, this
system bifurcates from a low photon-number state to a

10 Note that Eq. (120) differs by a factor of 2 from the expression
found in Bultink et al. (2018). This is because we have used
the convention that the noise entering the SNR in Eq. (117) has

contributions from both 〈M̂2
N (t)〉e and 〈M̂2

N (t)〉g , while Bultink
et al. (2018) take these two terms to be equal and do not add
their contributions in their definition of the SNR.
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high photon-number state (Dykman and Krivoglaz, 1980;
Manucharyan et al., 2007). By dispersively coupling a
qubit to the nonlinear resonator, this bifurcation can be
made qubit-state dependent (Vijay et al., 2009). It is
possible to exploit the fact that the low- and high-photon-
number states can be easily distinguished to realize high-
fildelity single-shot qubit readout (Mallet et al., 2009).

b. High-power readout and qubit ‘punch out’ Coming back
to linear resonators, while the non-QNDness at moderate
measurement photon number mentioned above leads to
small measurement fidelity, it was observed by a fearless
graduate student that, in the limit of very large measure-
ment power, a fast and high-fidelity single-shot readout
is recovered (Reed et al., 2010a). An intuitive under-
standing of this observation can be obtained from the
Jaynes-Cummings Hamiltonian Eq. (36) (Bishop et al.,
2010; Boissonneault et al., 2010). Indeed, for n� √n, the
first term of this Hamiltonian dominates over the qubit-
oscillator interaction ∝ g such that the cavity responds
at its bare frequency ωr despite the presence of the trans-
mon. This is sometimes referred to as ‘punching out’ the
qubit and can be understood as a quantum-to-classical
transition where, in the correspondence limit, the system
behaves classically and therefore responds at the bare cav-
ity frequency ωr. Interestingly, with a multi-level system
such as the transmon, the power at which this transition
occurs depends on the state of the transmon, leading to
a high-fidelity measurement. This high-power readout
is, however, obtained at the expense of completely losing
the QND nature of the dispersive readout (Boissonneault
et al., 2010).

c. Squeezing Finally, the
√
n scaling of SNR(τm → ∞)

mentioned above can be interpreted as resulting from
populating the cavity with a coherent state and is known
as the standard quantum limit. It is natural to ask if
replacing the coherent measurement tone with squeezed
input radiation (see Sec. VIII.C.2) can lead to Heisenberg-
limited scaling for which the SNR scales linearly with the
measurement photons number (Giovannetti et al., 2004).
To achieve this, one might imagine squeezing a quadra-
ture of the field to reduce the overlap between the two
pointer states. In Fig. 18, this corresponds to squeezing
along X. The situation is not so simple since the large
dispersive coupling required for high-fidelity qubit readout
leads to a significant rotation of the squeezing angle as
the pointer states evolve from the center of phase space
to their steady-state. This rotation results in increased
measurement noise due to contributions from the anti-
squeezed quadrature (Barzanjeh et al., 2014). Borrowing
the idea of quantum-mechanics-free subsystems (Tsang
and Caves, 2012), it has been shown that Heisenberg-
limited scaling can be reached with two-mode squeezing

by dispersively coupling the qubit to two rather than one
resonator (Didier et al., 2015b).

d. Longitudinal readout An alternative approach to qubit
readout is based on the Hamiltonian Ĥz of Eq. (65) with
its longitudinal qubit-oscillator coupling gz(â

† + â)σ̂z. In
contrast to the dispersive Hamiltonian which leads to
a rotation in phase space, longitudinal coupling gener-
ates a linear displacement of the resonator field that is
conditional on the qubit state. As a result, while under
the dispersive evolution there is little information gain
about the qubit state at short times [see the poor pointer
state separation at short times in Fig. 18(a)], Ĥz rather
generates the ideal dynamics for a measurement with a
180◦ out-of-phase displacements of the pointer states αg
and αe. It is therefore expected that this approach can
lead to much shorter measurement times than is possible
with the dispersive readout (Didier et al., 2015a).

Another advantage is that Ĥz commutes with the mea-
sured observable, [Ĥz, σ̂z] = 0, corresponding to a QND
measurement. While the dispersive Hamiltonian Ĥdisp

also commutes with σ̂z, it is not the case for the full
Hamiltonian Eq. (34) from which Ĥdisp is perturbatively
derived. As already discussed, this non-QNDness leads
to Purcell decay and to a breakdown of the dispersive
approximation when the photon populations is not signif-
icantly smaller than the critical photon number ncrit. On
the other hand, because Ĥz is genuinely QND it does not
suffer from these problems and the measurement photon
number can, in principle, be made larger under longitudi-
nal than under dispersive coupling. Moreover, given that
Ĥz leads to displacement of the pointer states rather than
to rotation in phase space, single-mode squeezing can also
be used to increase the measurement SNR (Didier et al.,
2015a).

Because the longitudinal coupling can be thought of
as a cavity drive of amplitude ±gz with the sign being
conditional on the qubit state, Ĥz leads in steady-state
to a pointer state displacement ±gz/(ωr + iκ/2), see
Eq. (112). With ωr � gz, κ in practice this displacement
is, however, negligible and cannot realistically be used
for qubit readout. One approach to increase the pointer
state separation is to activate the longitudinal coupling by
modulating gz at the resonator frequency (Didier et al.,
2015a; Kerman, 2013). Taking gz(t) = g̃z cos(ωrt) leads,
in a rotating frame and after dropping rapidly oscillating
terms, to the Hamiltonian

H̃z =
g̃z
2

(â† + a)σ̂z. (121)

Under this modulation, the steady-state displacement now
becomes ±g̃z/κ and can be significant even for moderate
modulation amplitudes g̃z.

Circuits realizing the longitudinal coupling with trans-
mon or flux qubits have been studied (Billangeon et al.,
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2015a,b; Didier et al., 2015a; Kerman, 2013; Richer and
DiVincenzo, 2016; Richer et al., 2017). Another approach
to realize these ideas is to strongly drive a resonator
dispersively coupled to a qubit (Blais et al., 2007; Das-
sonneville et al., 2020). Indeed, the strong drive leads to
a large displacement of the cavity field â→ â+ α which
on the dispersive Hamiltonian leads to

χâ†âσ̂z → χâ†âσ̂z + αχ(â† + â)σ̂z + χα2σ̂z, (122)

where we have assumed α to be real for simplicity. For χ
small and α large, the second term dominates therefore
realizing a synthetic longitudinal interaction of amplitude
gz = αχ. In other words, longitudinal readout can be
realized as a limit of the dispersive readout where χ
approaches zero, while α grows such that χα is constant.
A simple interpretation of this observation is that, for
strong drives, the circle on which the pointer states rotate
due to the dispersive interaction has a very large radius α
such that, for all practical purposes, the motion appears
linear.

A variation of this approach which allows for larger lon-
gitudinal coupling strength was experimentally realized
by Touzard et al. (2019) and Ikonen et al. (2019) and
relies on driving the qubit at the frequency of the res-
onator. This is akin to the cross-resonance gate discussed
further in Sec. VII.B.3 and which leads to the desired
longitudinal interaction, see the last term of Eq. (146). A
more subtle approach to realize a synthetic longitudinal
interaction is to drive a qubit with a Rabi frequency ΩR
while driving the resonator at the sideband frequencies
ωr ± ΩR. This idea was implemented by Eddins et al.
(2018) who also showed improvement of qubit readout
with single-mode squeezing. Importantly, because these
realizations are based on the dispersive Hamiltonian, they
suffer from Purcell decay and non-QNDness. Circuits
realizing dispersive-like interactions that are not derived
from a Jaynes-Cummings interaction have been studied
(Dassonneville et al., 2020; Didier et al., 2015a).

VI. QUBIT-RESONATOR COUPLING REGIMES

We now turn to a discussion of the different coupling
regimes that are accessible in circuit QED and on their
experimental signatures. We first consider the resonant
regime where the qubit is tuned in resonance with the
resonator, before moving on to the dispersive regime char-
acterized by a large qubit-resonator detuning. While the
situation of most experimental interest is the strong cou-
pling regime where the coupling strength g overwhelms
the decay rates, we also touch upon the so-called bad-
cavity and bad-qubit limits because of their historical
importance and their current relevance to hybrid quan-
tum systems. Finally, we briefly consider the ultrastrong
coupling regime where g is comparable, or even larger,

than the system’s frequencies. To simplify the discus-
sion, we will treat the artificial atom as a simple two-level
system throughout this section.

A. Resonant regime

The low-energy physics of the Jaynes-Cummings model
is well described by the ground state |g, 0〉 = |g, 0〉 and
first two excited states

|g, 1〉 = (|g, 1〉 − |e, 0〉)/
√

2,

|e, 0〉 = (|g, 1〉+ |e, 0〉)/
√

2,
(123)

which, as already illustrated in Fig. 8, are split in fre-
quency by 2g. As discussed in Sec. V.C in the context
of the dispersive readout, the coupled qubit-resonator
system can be probed by applying a coherent microwave
tone to the input of the resonator and measuring the
transmitted or reflected signal.

To arrive at an expression for the expected signal in such
an experiment, we consider the equations of motion for
the field and qubit annihilation operators in the presence
of a coherent drive of amplitude ε and frequency ωd on
the resonator. In a frame rotating at the drive frequency,
these equations take the form

〈 ˙̂a〉 = −
(κ

2
+ iδr

)
〈â〉 − ig〈σ̂−〉 − iε, (124)

〈 ˙̂σ−〉 = − (γ2 + iδq) 〈σ̂−〉+ ig〈âσ̂z〉, (125)

with δr = ωr − ωd and δq = ωq − ωd, and where γ2 is
defined in Eq. (82b). These expressions are obtained us-
ing ∂t〈Ô〉 = Trρ̇Ô and the master equations of Eqs. (70)
and (81) at zero temperature and in the two-level approx-
imation for the transmon. Alternatively, the expression
for ∂t〈â〉 is simply the average of Eq. (77) with Ĥs the
Jayne-Cummings Hamiltonian.

At very low excitation amplitude ε, it is reasonable
to truncate the Hilbert space to the first three levels
defined above. In this subspace, 〈âσ̂z〉 = −〈â〉 since
â acts nontrivially only if the qubit is in the ground
state (Kimble, 1994). It is then simple to compute the
steady-state transmitted homodyne power by solving the
above expressions with ∂t〈â〉 = ∂t〈σ−〉 = 0 and using
Eq. (114) to find

|A|2 =

(
εVIF

2

)2 ∣∣∣∣
δq − iγ2

(δq − iγ2)(δr − iκ/2)− g2

∣∣∣∣
2

. (126)

Taking the qubit and the oscillator to be on resonance,
∆ = ωq − ωr = 0, we now consider the result of cavity
transmission measurements in three different regimes of
qubit-cavity interaction.

1. Bad-cavity limit

We first consider the bad-cavity limit realized when
the cavity decay rate overwhelms the coupling g which is



36

itself larger than the qubit linewidth: κ > g � γ2. This
situation corresponds to an overdamped oscillator and,
at qubit-oscillator resonance, leads to rapid Purcell decay
of the qubit. A simple model for this process is obtained
using the truncated Hilbert space discussed above where
we now drop the cavity drive for simplicity. Because of
the very large decay rate κ, we can asume the oscillator
to rapidly reach its steady-state ∂t〈â〉 = 0. Using the
resulting expression for 〈â〉 in Eq. (125) immediately leads
to

〈 ˙̂σ−〉 = −
(
γ1 + γ′k

2
+ γϕ

)
〈σ̂−〉, (127)

where we have defined the Purcell decay rate γ′κ = 4g2/κ.
The expression for this rate has a rather different form
than the Purcell rate γκ = (g/∆)2κ given in Eq. (85).
These two results are, however, not incompatible but have
been obtained in very different regimes. An expression
for the Purcell rate that interpolates between the two
above expressions can be obtained and takes the form
κg2/[(κ/2)2 + ∆2] (Sete et al., 2014).

The situation described here is illustrated for κ/g = 10
and γ1 = 0 in Fig. 20(a) which shows the probability
for the qubit to be in its excited state versus time after
initializing the qubit in its excited state and the resonator
in vacuum. Even in the absence of qubit T1, the qubit
is seen to quickly relax to its ground state something
which, as discussed in Sec. IV.D, is due to qubit-oscillator
hybridization. Figure 20(b) shows the steady-state trans-
mitted power versus drive frequency in the presence of
a very weak coherent tone populating the cavity with
n̄� 1 photons. The response shows a broad Lorentzian
peak of width κ together with a narrow electromagneti-
cally induced transparency (EIT)-like window of width
γ′κ (Mlynek et al., 2014; Rice and Brecha, 1996). This
effect which is due to interference between the intra-cavity
field and the probe tone vanishes in the presence of qubit
dephasing.

Although not the main regime of interest in circuit QED,
the bad-cavity limit offers an opportunity to engineer the
dissipation seen by the qubit. For example, this regime
has been used to control the lifetime of long-lived donor
spins in silicon in a hybrid quantum system (Bienfait
et al., 2016).

2. Bad-qubit limit

The bad qubit limit corresponds to the situation where
a high-Q cavity with large qubit-oscillator coupling is real-
ized, while the qubit dephasing and/or energy relaxation
rates is large: γ2 > g � κ. Although this situation is
not typical of circuit QED with transmon qubits, it is
relevant for some hybrid systems that suffer from signif-
icant dephasing. This is the case, for example, in early
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FIG. 20 Numerical simulations of the qubit-oscillator mas-
ter equation for (a,c,e) the time evolution starting from
the bare state |0, e〉 (light blue) or |1, g〉 (blue), and (b,d,f)
steady-state response A2 = |〈â〉|2 as a function of the
cavity drive frequency (dark blue) for the three coupling
regimes. Pe: qubit excited state population. (a,b) Bad-
cavity limit: (κ, γ1, g)/2π = (10, 0, 1) MHz. (c,d) Bad-qubit
limit: (κ, γ1, g)/2π = (0, 10, 1) MHz. (e,f) Strong coupling:
(κ, γ1, g)/2π = (0.1, 0.1, 100) MHz (dashed lines in panel (e)
and solid in (f) and (κ, γ1, g)/2π = (1, 1, 100) (full lines in e).
The light blue line in panel (f) is computed with a thermal
photon number of n̄κ = 0.35 rather than n̄κ = 0 for all the
other results.

experiments with charge qubits based on semiconduc-
tor quantum dots coupled to superconducting resonators
(Frey et al., 2012; Petersson et al., 2012; Viennot et al.,
2014).

In analogy to the bad-cavity case, the strong damping of
the qubit together with the qubit-resonator coupling leads
to the photon decay rate κ′γ = 4g2/γ1 which is sometimes
known as the ‘inverse’ Purcell rate. This is illustrated in
Fig. 20(c) which shows the time-evolution of the coupled
system starting with a single photon in the resonator and
the qubit in the ground state. In this situation, the cavity
response is a simple Lorentzian broadened by the inverse
Purcell rate, see Fig. 20(d). If the qubit were to be probed
directly rather than indirectly via the cavity, the atomic
response would show the EIT-like feature of Fig. 20(b),
now with a dip of width κ′γ (Rice and Brecha, 1996). The
reader should also be aware that qubit-resonator detuning-
dependent dispersive shifts of the cavity resonance can be
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observed in this bad-qubit limit. The observation of such
dispersive shifts on its own should not be mistaken for an
observation of strong coupling (Wallraff et al., 2013).

3. Strong coupling regime

We now turn to the case where the coupling strength
overwhelms the qubit and cavity decay rates, g > κ, γ2.
In this regime, light-matter interaction is strong enough
for a single quantum to be coherently exchanged between
the electromagnetic field and the qubit before it is ir-
reversibly lost to the environment. In other words, at
resonance ∆ = 0 the splitting 2g between the two dressed
eigenstates {|g, 1〉, |e, 0〉} of Eq. (123) is larger than their
linewidth κ/2 + γ2 and can be resolved spectroscopically.
We note that, with the eigenstates being half-photon and
half-qubit11, the above expression for the dressed-state
linewidth is simply the average of the cavity and of the
qubit linewitdh (Haroche, 1992). Figure 20(f) shows cav-
ity transmission for (κ, γ1, γϕ)/g = (0.1, 0.1, 0) and at low
excitation power such that, on average, there is signifi-
cantly less than one photon in the cavity. The resulting
doublet of peaks located at ωr ± g is the direct signature
of the dressed-states {|g, 1〉, |e, 0〉} and is known as the
vacuum Rabi splitting. The observation of this doublet is
the hallmark of the strong coupling regime.

The first observation of this feature in cavity QED
with a single atom and a single photon was reported
by (Thompson et al., 1992). In this experiment, the num-
ber of atoms in the cavity was not well controlled and it
could only be determined that there was on average one
atom in interaction with the cavity field. This distinction
is important because, in the presence of N atoms, the
collective interaction strength is g

√
N and the observed

splitting correspondingly larger (Fink et al., 2009; Tavis
and Cummings, 1968). Atom number fluctuation is obvi-
ously not a problem in circuit QED and, with the very
strong coupling and relatively small linewidths that can
routinely be experimentally achieved, reaching the strong
coupling regime is not particularly challenging in this
system. In fact, the very first circuit QED experiment
of Wallraff et al. (2004) reported the observation of a
clear vacuum Rabi splitting with 2g/(κ/2 + γ2) ∼ 10, see
Fig. 21(a). This first demonstration used a charge qubit
which, by construction, has a much smaller coupling g
than typical transmon qubits. As a result, more recent
experiments with transmon qubits can display ratios of
peak separation to linewidth in the several hundreds, see
Fig. 21(b) (Schoelkopf and Girvin, 2008).

Figure 22 shows the qubit-oscillator spectrum as a
function of probe frequency, as above, but now also as a

11 According to some authors, these dressed states should therefore
be referred to as quton and phobit (Schuster, 2007).
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FIG. 21 (a) Transmission-line resonator transmission versus
probe frequency in the first observation of vacuum Rabi split-
ting in circuit QED (full blue line). The qubit is a Cooper
pair box qubit with EJ/h ≈ 8 GHz and EC/h ≈ 5.2 GHz. The
full red line is a calculated spectrum with 2g/2π ≈ 11.6 MHz,
κ/2π ≈ 0.8 MHz and γ2/2π ≈ 0.7 MHz. As a reference, the
dashed light blue line is the measured transmission with the
qubit strongly detuned from the resonator. Adapted from
Wallraff et al. (2004). (b) Resonator transmission with a trans-
mon qubit. The vacuum Rabi splitting is even more resolved
with 2g/2π = 350 MHz, κ/2π ∼ 800 kHz and γ2/2π ∼ 200
kHz. Notice the change in probe frequency range from panel
(a). Adapted from Schoelkopf and Girvin (2008).

function of the qubit frequency allowing to see the full
qubit-resonator avoided crossing. The horizontal dashed
line corresponds to the bare cavity frequency while the
diagonal dashed line is the bare qubit frequency. The
vacuum Rabi splitting of Fig. 20(f) is obtained from a
linecut (dotted vertical line) at resonance between the
bare qubit frequency ωq and the bare cavity frequency ωr.
Because it is the cavity that is probed here, the response
is larger when the dressed-states are mostly cavity-like
and disappears away from the cavity frequency where the
cavity no longer responds to the probe (Haroche, 1992).

It is interesting to note that the splitting predicted by
Eq. (126) for the transmitted homodyne signal is in fact
smaller than 2g in the presence of finite relaxation and
dephasing. Although not significant in circuit QED with
transmon qubits, this correction can become important in
systems such as charge qubits in quantum dots that are
not very deep in the strong coupling regime. We also note
that the observed splitting can be smaller when measured
in reflection rather than in transmission.

Rather than spectroscopic measurements, strong light-
matter coupling can also be displayed in time-resolved
measurements (Brune et al., 1996). Starting from the
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FIG. 22 Vacuum Rabi splitting revealed in numerical simula-
tions of the cavity transmission A2 = |〈â〉|2 as a function of
probe frequency and qubit transition frequency for the same
parameters as in Fig. 20(f) The bare cavity and qubit fre-
quencies are indicated by the horizontal and diagonal dashed
lines, respectively. The vacuum Rabi splitting of Fig. 20(f)
is obtained at resonance (ωr = ωq) along the vertical dotted
line.

qubit-oscillator ground state, this can be done, for exam-
ple, by first pulsing the qubit to its first excited state and
then bringing it on resonance with the cavity. As illus-
trated in Fig. 20(e), this results in oscillations in the qubit
and cavity populations at the vacuum Rabi frequency 2g.
Time-resolved vacuum Rabi oscillations in circuit QED
were first performed with a flux qubit coupled to a discrete
LC oscillator realized in the bias circuitry of the device
(Johansson et al., 2006). This experiment was followed
by a similar observation with a phase qubit coupled to a
coplanar waveguide resonator (Hofheinz et al., 2008).

In the limit of weak excitation power which we have
considered so far, the coupled qubit-oscillator system is
indistinguishable from two coupled classical linear oscil-
lators. As a result, while the dressed-states that are
probed in these experiments are entangled, the observa-
tion of an avoided crossing cannot be taken as a conclusive
demonstration that the oscillator field is quantized or of
qubit-oscillator entanglement. Indeed, the vacuum Rabi
splitting can be interpreted as the familiar normal mode
splitting of two coupled classical oscillators.

A clear signature of the quantum nature of the system
can, however, be obtained by probing the

√
n dependence

of the spacing of the higher excited states of the Jaynes-
Cummings ladder already discussed in Sec. III.B. This
dependence results from the matrix element of the opera-
tor â and is consequently linked to the quantum nature of
the field (Carmichael et al., 1996). Experimentally, these
transitions can be accessed in several ways including by
two-tone spectroscopy (Fink et al., 2008), by increasing
the probe tone power (Bishop et al., 2009), or by increas-
ing the system temperature (Fink et al., 2010). The light
blue line in Fig. 20(f) shows cavity transmission with a
thermal photon number of n̄κ = 0.35 rather than n̄κ = 0
(dark blue line). At this more elevated temperature, ad-
ditional pairs of peaks with smaller separation are now

√
2g 2

2g
|g, 1

|g, 2

|e, 0

|e, 1

= |g, 0
FIG. 23 Ground state and first two doublets of the Jaynes-
Cummings ladder. The dark blue arrows correspond to the
transitions that are probed in a vacuum Rabi experiment. The
transitions illustrated with light blue arrows lead to additional
peaks at transition frequencies lying inside the vacuum Rabi
doublet at elevated temperature or increased probe power. On
the other hand, the matrix element associated with the red
transitions would lead to response at transition frequencies
outside of the vacuum Rabi doublet. Those transitions are,
however, suppressed and are not observed (Rau et al., 2004).

observed in addition to the original peaks separated by
2g. As illustrated in Fig. 23, these additional structures
are due to multi-photon transitions and their

√
n scaling

reveal the anharmonicity of the Jaynes-Cummings ladder.
Interestingly, the matrix elements of transitions that lie
outside of the original vacuum Rabi splitting peaks are
suppressed and these transitions are therefore not ob-
served, see the red arrow in Fig. 23 (Rau et al., 2004). We
also note that, at much larger power or at elevated tem-
perature, the system undergoes a quantum-to-classical
transition and a single peak at the resonator frequency
ωr is observed (Fink et al., 2010). In short, the impact
of the qubit on the system is washed away in the corre-
spondence limit. This is to be expected from the form of
the Jaynes-Cummings Hamiltonian Eq. (36) where the
qubit-cavity coupling ~g(â†σ̂−+ âσ̂+) with its

√
n scaling

is overwhelmed by the free cavity Hamiltonian ~ωrâ†â
which scales as n. This is the same mechanism that leads
to the high-power readout discussed in Sec. V.C.3.

Beyond these spectroscopic evidences and as discussed
further in Sec. VIII.A, the

√
n dependence of the Jaynes-

Cummings ladder was exploited to prepare Fock state of
the oscillator field (Hofheinz et al., 2008; Wang et al.,
2008). The quantum nature of the field and qubit-
oscillator entanglement was also demonstrated in a num-
ber of experiments directly measuring the joint density
matrix of the dressed states. For example, Eichler et al.
(2012b) have achieved this by creating one of the entan-
gled states {|g, 1〉, |e, 0〉} in a time-resolved vacuum Rabi
oscillation experiment and, subsequently, measuring the
qubit state in a dispersive measurement and the pho-
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ton state using a linear detection method (Eichler et al.,
2012a). A range of experiments used the ability to create
entanglement between a qubit and a photon through the
resonant interaction with a resonator, e.g. in the context
of quantum computation (Mariantoni et al., 2011), to
entangle two independent resonators (Wang et al., 2011),
and to transfer quantum states (Sillanpää et al., 2007).

B. Dispersive regime

For most quantum computing experiments, it is com-
mon to work in the dispersive regime where, as already
discussed in Sec. III.C, the qubit is strongly detuned from
the oscillator with |∆| � g. There, the dressed eigenstates
are only weakly entangled qubit-oscillator states. This
is to be contrasted to the resonant regime where these
eigenstates are highly entangled resulting in the qubit and
the oscillator to completely lose their individual character.

In the two-level system approximation, the dispersive
regime is well described by the Hamiltonian Ĥdisp of
Eq. (109). In the discussion surrounding that equation,
we had interpreted the dispersive coupling as a qubit-
state dependent shift of the oscillator frequency. This
shift can be clearly seen in Fig. 22 as the deviation of
the oscillator response from the bare oscillator frequency
away from resonance (horizontal dashed line). This figure
also makes it clear that the qubit frequency, whose bare
value is given by the diagonal dashed line, is also modified
by the dispersive coupling to the oscillator. To better
understand this qubit-frequency shift, it is instructive to
rewrite Ĥdisp as

Ĥdisp ≈ ~ωrâ†â+
~
2

[
ωq + 2χ

(
â†â+

1

2

)]
σ̂z, (128)

where it is now clear that the dispersive interaction of
amplitude χ not only leads to a qubit-state dependent
frequency pull of the oscillator, but also to a photon-
number dependent frequency shift of the qubit given
by 2χâ†â. This is known as the ac-Stark shift (or the
quantized light shift) and is here accompanied by a Lamb
shift corresponding to the factor of 1/2 in the last term
of Eq. (128) which we had dropped in Eq. (109). In this
section, we explore some consequences of this new point
of view on the dispersive interaction, starting by first
reviewing some of the basic aspects of qubit spectroscopic
measurements.

1. Qubit Spectroscopy

To simplify the discussion, we first consider spectro-
scopically probing the qubit assuming that the oscillator
remains in its vacuum state. This is done by applying a
coherent field of amplitude αd and frequency ωd to the
qubit, either via a dedicated voltage gate on the qubit or
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FIG. 24 Power broadening of the qubit line. (a) Excited qubit
population (left vertical axis) and phase (right vertical axis)
as a function of the drive detuning δq for the Rabi amplitudes
ΩR/2π = 0.1 MHz (light blue), 0.5 MHz (blue) and 1 MHz
(dark blue). The phase is obtained from φ = arctan(2χ〈σ̂z〉/2),
with 2χ/κ = 1. (b) Excited qubit population and phase at
δq = 0 and as a function of Ω2

R. The horizontal dashed gray
line corresponds to qubit saturation, Pe = 1/2. (c) Qubit
linewidth as a function of Ω2

R. All three panels have been
obtained from numerical simulations of the dispersive qubit
master equation with γ1/2π = 0.1 MHz and γϕ/2π = 0.1 MHz,
to the exception of the dashed blue lines in panels (b) and
(c) that correspond to the analytical expressions found in the
text.

to the input port of the resonator. Ignoring the resonator
for the moment, this situation is described by the Hamil-
tonian δqσ̂z/2 + ΩRσ̂x/2, where δq = (ωq +χ)−ωd is the
detuning between the Lamb-shifted qubit transition fre-
quency and the drive frequency, and ΩR ∝ αd is the Rabi
frequency. Under this Hamiltonian and using the master
equation Eq. (81) projected on the two qubit levels, the
steady-state probability Pe = (〈σ̂z〉s + 1)/2 for the qubit
to be in its excited state (or, equivalently, the probability
to be in the ground state, Pg) is found to be (Abragam,
1961)

Pe = 1− Pg =
1

2

Ω2
R

γ1γ2 + δ2
qγ1/γ2 + Ω2

R

. (129)

The Lorantzian lineshape of Pe as a function of the drive
frequency is illustrated in Fig. 24(a). In the limit of
strong qubit drive, i.e. large Rabi frequency ΩR, the
steady-state qubit population reaches saturation with
Pe = Pg = 1/2, see Fig. 24(b). Moreover, as the power
increases, the full width at half maximum (FWHM) of
the qubit lineshape evolves from the bare qubit linewidth
given by γq = 2γ2 to 2

√
1/T 2

2 + Ω2
RT1/T2, something that

is known as power broadening and which is illustrated in
Fig. 24(c). In practice, the unbroadenend dephasing rate
γ2 can be determined from spectroscopic measurements
by extrapolating to zero spectroscopy tone power the
linear dependence of ν2

HWHM. This quantity can also be
determined in the time domain from a Ramsey fringe
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experiment (Vion et al., 2002).12

In typical optical spectroscopy of atoms in a gas, one
directly measures the absorption of photons by the gas
as a function of the frequency of the photons. In circuit
QED, one typically performs quantum jump spectroscopy
by measuring the probability that an applied microwave
drive places the qubit into its excited state. The variation
in qubit population with qubit drive can be measured
by monitoring the change in response of the cavity to
the spectroscopy drive. This is realized by measuring
the cavity transmission, or reflection, of an additional
drive of frequency close to ωr. In the literature this
approach is referred to as two-tone spectroscopy, with
the second drive often called the probe or measurement
tone, while the spectroscopy drive is also known as the
pump tone. As shown by Eq. (115), the phase of the
transmitted probe tone is related to the qubit population.
In particular, with the probe tone at the bare cavity
frequency and in the weak dispersive limit χ � κ, this
phase is simply proportional to the qubit population,
φs = arctan(2χ〈σ̂z〉s/2) ≈ 2χ〈σ̂z〉s/κ. Monitoring φs as
a function of the spectroscopy tone frequency therefore
directly reveals the Lorentzian qubit lineshape (Schuster
et al., 2005).

2. AC-Stark shift and measurement-induced broadening

In the above discussion, we have implicitly assumed that
the amplitude of the measure tone is such that the intra-
cavity photon population is vanishingly small, 〈â†â〉 → 0.
As is made clear by Eq. (128), increase in photon pop-
ulation leads to a qubit frequency shift by an average
value of 2χ〈â†â〉. Figure 25(a) shows this ac-Stark shift
in the steady-state qubit population as a function of spec-
troscopy frequency for three different probe drive powers
populating the cavity with different 〈n̂〉. Taking advan-
tage of the dependence of the qubit frequency on mea-
surement power, prior knowledge of the value of χ allows
one to infer the intra-cavity photon number as a function

12 Different quantities associated with the dephasing time are used
in the literature, the three most common being T2, T ∗2 and T echo

2 .
While T2 corresponds to the intrinsic or “natural” dephasing time
of the qubit, T ∗2 ≤ T2 accounts for inhomogeneous broadening.
For example, for a flux-tunable transmon, this broadening can be
due to random fluctuations of the flux treading the qubit’s SQUID
loop. A change of the flux over the time of the experiment needed
to extract T2 results in a qubit frequency shifts, something that
is measured as a broadening of the qubit’s intrinsic linewidth.
Notably, the slow frequency fluctuations can be cancelled by
applying a π-pulse midway through a Ramsey fringe experiment.
The measured dephasing time is then known as T echo

2 and is
usually longer than T ∗2 with its exact value depending on the
spectrum of the low-frequency noise affecting the qubit (Martinis
et al., 2003). The method of dynamical decoupling which relies
on more complex pulse sequences can be used to cancel higher-
frequency components of the noise (Bylander et al., 2011).
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FIG. 25 Excited state population as a function of the qubit
drive frequency. (a) Dispersive regime with χ/2π = 0.1 MHz
and (b) strong dispersive limit with χ/2π = 5 MHz. The
resolved peaks correspond to different cavity photon numbers
|n〉. The spectroscopy drive amplitude is fixed to ΩR/2π = 0.1
MHz and the damping rates to γ1/2π = κ/2π = 0.1 MHz. In
panel (a) the measurement drive is on resonance with the bare
cavity frequency, with amplitude ε/2π = (0, 0.2, 0.4) MHz for
the light blue, blue and dark blue line, respectively. In panel
(b) the measurement drive is at the pulled cavity frequency
ωr − χ with amplitude ε/2π = 0.1 MHz.

of input pump power from such measurements (Schuster
et al., 2005). However, care must be taken since the linear
dependence of the qubit frequency on power predicted in
Eq. (109) is only valid well inside the dispersive regime
or, more precisely, at small n̄/ncrit. We come back to this
shortly.

As is apparent from Fig. 25(a), in addition to causing a
frequency shift of the qubit, the cavity photon population
also causes a broadening of the qubit linewidth. This can
be understood simply by considering again the form of
Ĥdisp in Eq. (128). Indeed, while in the above discussion
we considered only the average qubit frequency shift,
2χ〈â†â〉, the actual shift is rather given by 2χâ†â such
that the full photon-number distribution is important.
As a result, when the cavity is prepared in a coherent
state by the measurement tone, each Fock state |n〉 of
the coherent field leads to its own qubit frequency shift
2χn. In the weak dispersive limit corresponding to χ/κ
small, the observed qubit lineshape is thus the result
of the inhomogeneous broadening due to the Poisson
statistics of the coherent state populating the cavity. This
effect becomes more apparent as the average measurement
photon number n̄ increases and results in a crossover from
a broadenned Lorentzian qubit lineshape whose linewidth
scales with n̄ to a broadenned Gaussian lineshape whose
linewidth rather scales as

√
n̄ (Gambetta et al., 2006;
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Schuster et al., 2005). This square-root dependence can
be traced to the coherent nature of the cavity field. For
a thermal cavity field, a n̄(n̄ + 1) dependence is rather
expected and observed (Bertet et al., 2005; Kono et al.,
2017).

This change in qubit linewidth due to photon shot
noise in the coherent measurement tone populating the
cavity can be interpreted as the unavoidable dephas-
ing that a quantum system undergoes during measure-
ment. Using a polaron-type transformation familiar
from condensed-matter theory, the cavity can be inte-
grated out of the qubit-cavity master equation and, in
this way, the associated measurement-induced dephas-
ing rate can be expressed in the dispersive regime as
γm(t) = 2χIm[αg(t)α

∗
e(t)], where αg/e(t) are the time-

dependent coherent state amplitudes associated with the
two qubit states obtained from Eq. (111) (Gambetta et al.,
2008). In the long time limit, the above rate can be ex-
pressed in the more intuitive form γm = κ|αs

e − αs
g|2/2,

where |αs
e − αs

g| is the distance between the two steady-
state pointer states (Gambetta et al., 2008). Unsurpris-
ingly, measurement-induced dephasing is faster when the
pointer states are more easily distinguishable and the
measurement thus more efficient. This last expression can
also be directly obtained from the entangled qubit-pointer
state Eq. (110) whose coherence decays, at short times,
at the rate γm under photon loss (Haroche and Raimond,
2006).

Using the expressions Eqs. (111a) and (111b) for the
steady-state pointer states amplitude, γm can be expressed
as

γm =
κχ2(n̄g + n̄e)

δ2
r + χ2 + (κ/2)2

, (130)

with n̄σ = |ασ|2 the average cavity photon number given
that the qubit is state σ. The distinction between n̄g
and n̄e is important if the measurement drive is not
symmetrically placed between the two pulled cavity fre-
quencies corresponding to the two qubit states. Taking
δr = ωr − ωd = 0 and thus n̄g = n̄e ≡ n̄ for a two-level
system, the measurement-induced dephasing rate takes,
in the small χ/κ limit, the simple form γm ∼ 8χ2n̄/κ.
Thus as announced above, the qubit linewitdth scales
with n̄. With the cautionary remarks that will come be-
low, measuring this linewidth versus the drive power is
thus another way to infer n̄ experimentally.

So far, we have been concerned with the small χ/κ limit.
However, given the strong coupling and high-quality fac-
tor that can be experimentally realized in circuit QED,
it is also interesting to consider the opposite limit where
χ/κ is large. A first consequence of this strong disper-
sive regime, illustrated in Fig. 25(b), is that the qubit
frequency shift per photon can then be large enough
to be resolved spectroscopically (Gambetta et al., 2006;
Schuster et al., 2007). More precisely, this occurs if 2χ is
larger than γ2 + (n̄+ n)κ/2, the width of the nth photon

peak (Gambetta et al., 2006). Moreover, the amplitude
of each spectroscopic line is a measure of the probabil-
ity of finding the corresponding photon number in the
cavity. Using this idea, it is possible, for example, to
experimentally distinguish between coherent and thermal
population of the cavity (Schuster et al., 2007). This
strong dependence of the qubit frequency on the exact
photon number also allows for conditional qubit-cavity
logical operations where, for example, a microwave pulse
is applied such that qubit state is flipped if and only if
there are n photons in the cavity (Johnson et al., 2010).
Although challenging, this strong dispersive limit has also
been achieved in some cavity QED experiments (Gleyzes
et al., 2007; Guerlin et al., 2007). This regime has also
been achieved in hybrid quantum systems, for example
in phonon-number resolving measurements of nanome-
chanical oscillators (Arrangoiz-Arriola et al., 2019; Sletten
et al., 2019) and magnon-number resolving measurements
(Lachance-Quirion et al., 2017).

We now come back to the question of inferring the
intra-cavity photon number from ac-Stark shift or qubit
linewidth broadening measurements. As mentioned previ-
ously, the linear dependence of the ac-Stark shift on the
measurement drive power predicted from the dispersive
Hamiltonian Eq. (109) is only valid at small n̄/ncrit. In-
deed, because of higher-order corrections, the cavity pull
itself is not constant with n̄ but rather decreases with in-
creasing n̄ (Gambetta et al., 2006). This change in cavity
pull is illustrated in Fig. 26(a) which shows the effective
resonator frequency given that the qubit is in state σ as a
function of drive amplitude, ωrσ(n) = Eσ,n+1−Eσ,n, with
Eσ,n+1 the dressed state energies defined in Eq. (40) (Bois-
sonneault et al., 2010). At very low drive amplitude, the
cavity frequency is pulled to the expected value ωr±χ de-
pending on the state of the qubit. As the drive amplitude
increases, and with it the intra-cavity photon number,
the pulled cavity frequency goes back to its bare value ωr.
Panels (b) and (c) show the pulled frequencies accounting
for three and six transmon levels, respectively. In con-
trast to the two-level approximation and as expected from
Eq. (42), in this many-level situation the symmetry that
was present in the two-level case is broken and the pulled
frequencies are not symmetrically placed around ωr. We
note that this change in effective cavity frequency is at
the heart of the high-power readout already discussed in
Sec. V.C.2.

Because of this change in cavity pull, which can be
interpreted as χ itself changing with photon numbers, the
ac-Stark shift and the measurement-induced dephasing
do not necessarily follow the simple linear dependence
expected from Ĥdisp. For this reason, it is only possible to
safely infer the intra-cavity photon number from measure-
ment of the ac-Stark shift or qubit linewidth broadening
at small photon number. It is worth nothing that, in
some cases, the reduction in cavity pull can move the
cavity frequency closer to the drive frequency, thereby
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FIG. 26 Change of effective resonator frequency ωrσ with
increasing measurement drive power for the different states σ
of the transmon qubit (dotted blue line: ground state, full red
line: first excited state and dashed gray line: second excited
state). The horizontal green dashed line is the bare resonator
frequency. (a) Two-level artificial atom, (b) taking into account
three levels of the transmon and (c) 6 levels of the transmon.
The system parameters are chosen such that (ω01, ω12, g)/2π =
(6, 5.75, 0.1) GHz. Adapted from Boissonneault et al. (2010).

leading to a nonlinear increase in cavity population with
power. For some system parameters, these two nonlinear
effects – reduction in cavity pull and increase in cavity
population – can partly compensate each other, leading
to an apparent linear dependence of the qubit ac-Stark
with power (Gambetta et al., 2006). We can only repeat
that care must be taken when extracting the intra-cavity
photon number in the dispersive regime.

C. Beyond strong coupling: ultrastrong coupling regime

We have discussed consequences of the strong coupling,
g > κ, γ2, and strong dispersive, χ > κ, γ2, regimes which
can both easily be realized in circuit QED. Although
the effect of light-matter interaction has important conse-
quences, in both these regimes g is small with respect to
the system frequencies, ωr, ωq � g, a fact that allowed
us to safely drop counter-rotating terms from Eq. (32).
In the case of a two-level system this allowed us to work
with the Jaynes-Cummings Hamiltonian Eq. (36). The
situation where these terms can no longer be neglected is
known as the ultrastrong coupling regime.

As discussed in Sec. III.A, the relative smallness of g
with respect to the system frequencies can be traced to
Eq. (35) where we see that g/ωr ∝

√
α, with α ∼ 1/137

the fine-structure constant. This is, however, not a fun-
damental limit and it is possible to take advantage of the
flexibility of superconducting quantum circuits to engi-
neer situations where light-matter coupling rather scales
as ∝ 1/

√
α. In this case, the smallness of α now helps

boost the coupling rather than constraining it. A circuit
realizing this idea was first proposed in (Devoret et al.,
2007) and is commonly known as the in-line transmon.
It simply consists of a transmission line resonator whose
center conductor is interrupted by a Josephson junction.
Coupling strengths has large as g/ωr ∼ 0.15 can in prin-
ciple be obtained in this way, but increasing this ratio

further can be challenging because it is done at the ex-
pense of reducing the transmon anharmonicity (Bourassa
et al., 2012).

An alternative approach relies on galvanically coupling
a flux qubit to the center conductor of a transmission-line
resonator. In this configuration, light-matter coupling
can be made very large by increasing the impedance of
the center conductor of the resonator in the vicinity of the
qubit, something that can be realized by interrupting the
center conductor of the resonator by a Josephson junction
or a junction array (Bourassa et al., 2009). In this way,
coupling strengths of g/ωq ∼ 1 or larger can be achieved.
These ideas were first realized by Forn-Dı́az et al. (2010)
and Niemczyk et al. (2010) with g/ωq ∼ 0.1, and more
recently with coupling strengths as large as g/ωq ∼ 1.34
by Yoshihara et al. (2016). Similar results have also been
obtained in the context of waveguide QED where the
qubit is coupled to an open transmission line rather than
to a localized cavity mode (Forn-Diaz et al., 2016).

A first consequence of reaching this ultrastrong coupling
regime is that, in addition to a Lamb shift g2/∆, the qubit
transition frequency is further modified by the so-called
Bloch-Siegert shift of magnitude g2/(ωq +ωr) (Bloch and
Siegert, 1940). Another consequence is that the ground
state of the combined system is no longer the factoriz-
able state |g0〉 but is rather an entangled qubit-resonator
state. An immediate implication of this observation is
that the master equation Eq. (83), whose steady-state is
|g0〉, is not an appropriate description of damping in the
ultrastrong coupling regime (Beaudoin et al., 2011). It is
also worth mentioning that the two-level approximation
for the artificial atom and the single-mode approximation
for the oscillator that we have used in this section may
no longer be valid in this regime. The reader interested
in learning more about this regime of light-matter inter-
action can consult the reviews by Forn-Dı́az et al. (2019)
and Frisk Kockum et al. (2019).

VII. QUANTUM COMPUTING WITH CIRCUIT QED

One of the reasons for the rapid growth of circuit QED
as a field of research is its prominent role in gate-based
quantum computing. The transmon is today the most
widely used superconducting qubit, and the dispersive
measurement described in Sec. V is the standard approach
to qubit readout. Moreover, the capacitive coupling be-
tween transmons that are fabricated in close proximity
can be used to implement two-qubit gates. Alternatively,
the transmon-resonator interaction can also be used to
implement gates between qubits that are separated by
distances as large as a centimeter, the resonator acting as
a quantum bus to mediate qubit-qubit interactions. As
illustrated in Fig. 27, realizing a quantum computer ar-
chitecture, even of modest size, requires bringing together
in a single working package essentially all of the elements
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FIG. 27 False colored optical microscope image of a four-transmon device. The transmon qubits are shown in yellow, the
coupling resonators in cyan, the flux lines for single qubit tuning in green, the charge lines for single-qubit manipulation in
pink, and a common feedline for multiplexed readout in purple, with transmission line resonators for dispersive readout (red)
employing Purcell filters (blue). Adapted from Andersen et al. (2019).

discussed in this review.
In this section, we describe the basic principles behind

one- and two-qubit gates in circuit QED. Our objective
is not to give a complete overview of the many different
gates and gate-optimization techniques that have been
developed. We rather focus on the key aspects of how light-
matter interaction facilitates coherent quantum operations
for superconducting qubits, and describe some of the more
commonly used gates to illustrate the basic principles.
Unless otherwise noted, in this section we will assume the
qubits to be dispersively coupled to the resonator.

A. Single-qubit gates

Arbitrary single-qubit rotations can be realized in an
NMR-like fashion with voltage drives at the qubit fre-
quency (Blais et al., 2007, 2004). One approach is to
drive the qubit via one of the resonator ports (Wallraff
et al., 2005). Because of the large qubit-resonator de-
tuning, a large fraction of the input power is reflected
at the resonator, something that can be compensated by
increasing the power emitted by the source. The reader
will recognize that this approach is very similar to a qubit
measurement but, because of the very large detuning, with
δr � χ such that |αe−αg| ∼ 0 according to Eq. (112). As
illustrated in Fig. 19, this far off-resonance drive therefore
causes negligible measurement-induced dephasing (Blais
et al., 2007). We also note that in the presence of multiple
qubits coupled to the same resonator, it is important that
the qubits be sufficiently detuned in frequency from each
other to avoid the control drive intended for one qubit to

inadvertently affect the other qubits.
Given this last constraint, an often more convenient

approach, already illustrated in Fig. 13, is to capacitively
couple the qubit to an additional transmission line from
which the control drives are applied. Of course, the
coupling to this additional control port must be small
enough to avoid any impact on the qubit relaxation time.
Following Sec. IV.F, the amplitude of the drive as seen
by the qubit is given by ε = −i√γβ, where β is the
amplitude of the drive at the input port, and γ is set by the
capacitance between the qubit and the transmission line.
A small γ, corresponding to a long relaxation time, can be
compensated by increasing the drive amplitude |β|, while
making sure that any heating due to power dissipation
close to the qubit does not affect qubit coherence. Design
guidelines for wiring, an overview of the power dissipation
induced by drive fields in qubit drive lines, and their effect
on qubit coherence is discussed, for example, in Krinner
et al. (2019).

Similarly to Eq. (86), a coherent drive of time-
dependent amplitude ε(t), frequency ωd and phase φd

on a transmon is then modeled by

Ĥ(t) = Ĥq + ~ε(t)
(
b̂†e−iωdt−iφd + b̂eiωdt+iφd

)
, (131)

where Ĥq = ~ωq b̂†b̂− EC

2 (b̂†)2b̂2 is the transmon Hamil-

tonian. Going to a frame rotating at ωd, Ĥ(t) takes the
simpler form

Ĥ ′ = Ĥ ′q + ~ε(t)
(
b̂†e−iφd + b̂eiφd

)
, (132)

where Ĥ ′q = ~δq b̂†b̂ − EC

2 (b̂†)2b̂2 with δq = ωq − ωd the
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detuning between the qubit and the drive frequencies.
Truncating to two levels of the transmon as in Eq. (36),

Ĥ ′ takes the form

Ĥ ′ =
~δq
2
σ̂z +

~ΩR(t)

2
[cos(φd)σ̂x + sin(φd)σ̂y] , (133)

where we have introduced the standard notation ΩR =
2ε for the Rabi frequency. This form of Ĥ ′ makes it
clear how the phase of the drive, φd, controls the axis of
rotation on the qubit Bloch sphere. Indeed, for δq = 0,
the choice φd = 0 leads to rotations around the X-axis
while φd = π/2 to rotations around the Y -axis. Since
any rotation on the Bloch sphere can be decomposed
into X and Y rotations, arbitrary single-qubit control is
therefore possible using sequences of on-resonant drives
with appropriate phases.

Implementing a desired gate requires turning on and off
the drive amplitude. To realize as many logical operations
as possible within the qubit coherence time, the gate time
should be as short as possible and square pulses are opti-
mal from that point of view. In practice, however, such
pulses suffer from important deformation as they propa-
gate down the finite-bandwidth transmission line from the
source to the qubit. Moreover, for a weakly anharmonic
multi-level system such as a transmon, high-frequency
components of the square pulse can cause unwanted tran-
sitions to levels outside the two-level computational sub-
space. This leakage can be avoided by using smooth
(e.g. Gaussian) pulses, but this leads to longer gate times.
Another solution is to shape the pulse so as to remove
the unwanted frequency components. A widely used ap-
proach that achieves this is known as Derivative Removal
by Adiabatic Gate (DRAG). It is based on driving the
two quadratures of the qubit with the envelope of the
second quadrature chosen to be the time-derivative of
the envelope of the first quadrature (Gambetta et al.,
2011b; Motzoi et al., 2009). More generally, one can cast
the problem of finding an optimal drive as a numerical
optimization problem which can be tackled with optimal
control approaches such as the GRadient Ascent Pulse
Engineering (GRAPE) (Khaneja et al., 2005).

Experimental results from Chow et al. (2010) compar-
ing the error in single-qubit gates with and without DRAG
are shown in Fig. 28. At long gate times, decoherence
is the dominant source of error such that both Gaussian
and DRAG pulses initially improve as the gate time is
reduced. However, as the pulses get shorter and their
frequency bandwidth become comparable to the trans-
mon anharmonicity, leakage leads to large errors for the
Gaussian pulses (red squares). In contrast, the DRAG
results (blue circles) continue to improve as gates are
made shorter and the results are consistent with a two-
level system model of the transmon (Chow et al., 2010;
Lucero et al., 2010). These observations show that small
anharmonicity is not a fundamental obstacle to fast and
high-fidelity single-qubit gates. Indeed, thanks to pulse
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FIG. 28 Single-qubit gate errors extracted from randomized
benchmarking for Gaussian and DRAG pulses as a function
of total gate time and pulse width σ for Gaussian pulses.
The experimental results (symbols) are compared to numerical
simulations (lines) with two or three transmon levels. Adapted
from Chow et al. (2010).

shaping techniques and long coherence times, state of the
art single-qubit gate errors are below 10−3, well below
the predicted threshold for topological error correcting
codes (Barends et al., 2014; Chen et al., 2016; Fowler
et al., 2012).

While rotations about the Z axis can be realized by
concatenating the X and Y rotations described above,
several other approaches are used experimentally. Work-
ing in a rotating frame as in Eq. (133) with δq = 0, one
alternative method relies on changing the qubit transition
frequency such that δq 6= 0 for a determined duration. In
the absence of drive, ΩR = 0, this leads to phase accu-
mulation by the qubit state and therefore to a rotation
about the Z axis. As discussed in Sec. II.E, fast changes
of the qubit transition frequency are possible by, for exam-
ple, applying a magnetic field to a flux-tunable transmon.
However, working with flux-tunable transmons is done at
cost of making the qubit susceptible to dephasing due to
flux noise. To avoid this, the qubit transition frequency
can also be tuned without relying on a flux-tunable device
by applying a strongly detuned microwave tone on the
qubit. For ΩR/δq � 1, this drive does not lead to Rabi
oscillations but induces an ac-Stark shift of the qubit fre-
quency due to virtual transition caused by the drive (Blais
et al., 2007). Indeed, as shown in Appendix B.4, to second
order in ΩR/δq and assuming for simplicity a constant
drive amplitude, this situation is described by the effective
Hamiltonian

Ĥ ′′ ' 1

2

(
~ωq −

EC
2

Ω2
R

δ2
q

)
σ̂z. (134)
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The last term can be turned on and off with the amplitude
of the detuned microwave drive and can therefore be used
to realize Z rotations. Care must, however, be taken to
avoid unwanted transitions due to the potentially strong
drive.

Finally, since the X and Y axis in Eq. (133) are de-
fined by the phase φd of the drive, a particularly simple
approach to realize a Z gate is to add the desired phase
offset to the drive fields of all subsequent X and Y rota-
tions and two-qubit gates. This so-called virtual Z-gate
can be especially useful if the computation is optimized to
use a large number of Z-rotations (McKay et al., 2017).

B. Two-qubit gates

Two-qubit gates are generally more challenging to re-
alize than single-qubit gates. Error rates for current
two-qubit gates are often around one to a few percent,
which is an order of magnitude higher than those of single-
qubit gates. Recent experiments are, however, closing this
gap (Foxen et al., 2020; Neĝırneac et al., 2020). Improving
two-qubit gate fidelities at short gate times is a very active
area of research, and a wide variety of approaches have
been developed. A key challenge in realizing two-qubit
gates is the ability to rapidly turn interactions on and
off. While for single-qubit gates this is done by simply
turning on and off a microwave drive, two-qubit gates
require turning on a coherent qubit-qubit interaction for
a fixed time. Achieving large on/off ratios is far more
challenging in this situation.

Broadly speaking, one can divide two-qubit gates into
different categories depending on how the qubit-qubit in-
teraction is activated. The main approaches discussed in
the following are illustrated schematically in Fig. 29. An
important distinction between these different schemes is
whether they rely on frequency-tunable qubits or not. Fre-
quency tunability is convenient because it can be used to
controllably tune qubits into resonance with one another
qubit or with a resonator. Using flux-tunable transmons
has led to some of the fastest and highest fidelity two-
qubit gates to date, see Fig. 29(a,b) (Arute et al., 2019;
Barends et al., 2014; Chen et al., 2014). However, as men-
tioned previously this leads to additional qubit dephasing
due to flux noise. An alternative are all-microwave gates
which only use microwave drives, either on the qubits
or on a coupler bus such as a resonator to activate an
effective qubit-qubit interaction, see Fig. 29(c). Finally,
yet another category of gates are parametric gates where
a system parameter is modulated in time at a frequency
which bridges an energy gap between the states of two
qubits. Parametric gates can be all-microwave but, in
some instances, involve modulating system frequencies
using external magnetic flux, see Fig. 29(d).

1. Qubit-qubit exchange interaction

a. Direct capacitive coupling One of the conceptually sim-
plest ways to realize two-qubit gates is through direct
capacitive coupling between the qubits, see Fig. 29(a). In
analogy with Eq. (34), the Hamiltonian describing this
situation reads

Ĥ = Ĥq1 + Ĥq2 + ~J(b̂†1b̂2 + b̂1b̂
†
2), (135)

where Ĥqi = ~ωqib̂†i b̂i −ECi
(b̂†i )

2b̂2i /2 is the Hamiltonian

of the ith transmon and b̂i the corresponding annihilation
operator. The interaction amplitude J takes the form

~J =
2EC1EC2

ECc

(
EJ1

2EC1
× EJ2

2EC2

)1/4

, (136)

with EJi and ECi the transmon Josephson and charg-
ing energies, and ECc = e2/2Cc the charging energy of
the coupling capacitance labelled Cc. This beam-splitter
Hamiltonian describes the coherent exchange of an excita-
tion between the two qubits. In the two-level approxima-
tion, assuming the qubits to be tuned in resonance with
each other, ωq1 = ωq2, and moving to a frame rotating at
the qubit frequency, Eq. (135) takes the familiar form

Ĥ ′ = ~J(σ̂+1σ̂−2 + σ̂−1σ̂+2). (137)

Evolution under this Hamiltonian for a time π/(4J) leads
to the two-qubit

√
iSWAP gate which is an entangling

gate (Burkard et al., 1999; Zhang et al., 2003).
As already mentioned, to precisely control the evolution

under Ĥ ′ and therefore the gate time, it is essential to be
able to vary the qubit-qubit interaction with a large on/off
ratio. There are essentially two approaches to realizing
this. The most straightforward way is to tune the qubits
in resonance to perform a two-qubit gate, and to strongly
detune them to stop the coherent exchange induced by
Ĥ ′ (Bialczak et al., 2010; Blais et al., 2003; Dewes et al.,
2012). Indeed, for J/∆12 � 1 where ∆12 = ωq1 − ωq2
is the detuning between the two qubits, the coherent ex-
change J is suppressed and can be dropped from Eq. (135)
under the RWA. A more careful analysis following the
same arguments and approach used to describe the dis-
persive regime (cf. Sec. III.C) shows that, to second order
in J/∆12, a residual qubit-qubit interaction of the form
(J2/∆12)σ̂z1σ̂z2 remains. This unwanted interaction in
the off state of the gate leads to a conditional phase accu-
mulation on the qubits. As a result, the on/off ratio of this
direct coupling gate is estimated to be ∼ ∆12/J . This di-
rect coupling approach was implemented by Barends et al.
(2014) using frequency tunable transmons with a coupling
J/2π = 30 MHz and an on/off ratio of 100. In practice,
the on/off ratio cannot be made arbitrarily small because
increasing the detuning of one pair of qubits in a multi-
qubit architecture might lead to accidental resonance with
a third qubit. The unwanted phase accumulation due to
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FIG. 29 Schematic illustration of some of the two-qubit gate schemes discussed in the text. Exchange interaction between two
qubits (a) from direct capacitive coupling or (b) mediated by a coupler such as a bus resonator. The qubits are tuned in and
out of resonance with each other to activate and deactivate the interaction, respectively. (c) All-microwave gates activated by
microwave drives on the qubits and/or a coupler such as a bus resonator. In this scheme, the qubits can have a fixed frequency.
(d) Parametric gates involving modulating a system parameter, such a tunable coupler. Inspired from Yan et al. (2018).

the residual σ̂z1σ̂z2 can, in principle, be eliminated using
refocusing techniques borrowed from nuclear magnetic
resonance (Slichter, 1990).

Another approach to turn on and off the swap interac-
tion is to make the J coupling itself tunable in time. This
is conceptually simple, but requires more complex cou-
pling circuitry typically involving flux-tunable elements
that can open additional decoherence channels for the
qubits. One advantage is, however, that tuning a coupler
rather than qubit transition frequencies helps in reducing
the frequency crowding problem. This approach is used,
for example, by (Chen et al., 2014) where two transmon
qubits are coupled via a flux-tunable inductive coupler.
In this way, it was possible to realize an on/off ratio of
1000, with a maximum coupling of 100 MHz correspond-
ing to a

√
iSWAP gate in 2.5 ns. A simpler approach

based on a frequency tunable transmon qubit acting as
coupler, as suggested in Yan et al. (2018), was also used
to tune qubit-qubit coupling from 5 MHz to −40 MHz
going through zero coupling with a gate time of ∼ 12 ns
and a gate infidelity of ∼ 0.5% (Arute et al., 2019).

b. Resonator mediated coupling An alternative to the
above approach is to use a resonator as a quantum
bus mediating interactions between two qubits, see
Fig. 29(b) (Blais et al., 2007, 2004; Majer et al., 2007). An
advantage compared to direct coupling is that the qubits
do not have to be fabricated in close proximity to each
other. With the qubits coupled to the same resonator,
and in the absence of any direct coupling between the

qubits, the Hamiltonian describing this situation is

Ĥ = Ĥq1 + Ĥq2 + ~ωrâ†â+

2∑

i=1

~gi(â†b̂i + âb̂†i ). (138)

One way to make use of this pairwise interaction is, as-
suming the resonator to be in the vacuum state, to first
tune one of the two qubits in resonance with the resonator
for half a vacuum Rabi oscillation cycle, swapping an ex-
citation from the qubit to the resonator, before tuning it
back out of resonance. The second qubit is then tuned
in resonance mapping the excitation from the resonator
to the second qubit (Sillanpää et al., 2007). While this
sequence of operations can swap the quantum state of the
first qubit to the second, clearly demonstrating the role
of the resonator as a quantum bus, it does not correspond
to an entangling two-qubit gate.

Alternatively, a two-qubit gate can be performed by
only virtually populating the resonator mode by work-
ing in the dispersive regime where both qubits are far
detuned from the resonator (Blais et al., 2007, 2004; Ma-
jer et al., 2007). Building on the results of Sec. III.C,
in this situation the effective qubit-qubit interaction is
revealed by using the approximate dispersive transforma-

tion Û = exp
[∑

i
gi
∆i

(
â†b̂i − âb̂†i

)]
on Eq. (138). Making

use of the Baker-Campbell-Hausdorff expansion Eq. (B2)
to second order in gi/∆i, we find

Ĥ ′ = Ĥ ′q1 + Ĥ ′q2 + ~J(b̂†1b̂2 + b̂1b̂
†
2)

+ ~ω̃râ†â+

2∑

i=1

~χabi â†âb̂
†
i b̂i

+
∑

i 6=j
~Ξij b̂

†
i b̂i

(
b̂†j b̂i + b̂†i b̂j

)
,

(139)
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with H ′qi ' ~ω̃qib̂†i b̂i − ECi

2 (b̂†i )
2b̂2i the transmon Hamil-

tonians, and χabi ' −2ECig
2
i /∆

2
i a cross-Kerr coupling

between the resonator and the ith qubit. The frequencies
ω̃qi and ω̃r include Lamb shifts. The last line can be
understood as an excitation number dependent exchange
interaction with Ξij = ECigigj/(2∆i∆j). Since this term
is much smaller than the J-coupling it can typically be
neglected. Note that we have dropped a self-Kerr term of
magnitude close to χabi on the resonator. This term is of
no practical consequences in the dispersive regime where
the resonator is only virtually populated. More interest-
ingly, the resonator-induced J coupling in Ĥ ′ takes the
form

J =
g1g2

2

(
1

∆ 1
+

1

∆ 2

)
, (140)

and reveals itself in the frequency domain by an anticross-
ing of size 2J between the qubit states |01〉 and |10〉. This
is illustrated in Fig. 30(b) which shows the eigenenergies
of the Hamiltonian Eq. (138) in the 1-excitation manifold.
In this figure, the frequency of qubit 1 is swept while that
of qubit 2 is kept constant at ∼ 8 GHz with the resonator
at ∼ 7 GHz. From left to right, we first see the vacuum
Rabi splitting of size 2g at ωq1 = ωr, followed by a smaller
anticrossing of size 2J at the qubit-qubit resonance. It is
worth mentioning that the above expression for J is only
valid for single-mode oscillators and is renormalized in the
presence of multiple modes (Filipp et al., 2011; Solgun
et al., 2019).

To understand the consequence of the J-coupling in
the time domain, it is useful to note that, if the resonator
is initially in the vacuum state, it will remain in that
state under the influence of Ĥ ′. In other words, the
resonator is only virtually populated by its dispersive
interaction with the qubits. For this reason, with the
resonator initialized in the vacuum state, the second line
of Eq. (139) can for all practical purposes be ignored and
we are back to the form of the direct coupling Hamiltonian
of Eq. (135). Consequently, when both qubits are tuned
in resonance with each other, but still dispersive with
respect to the resonator, the latter acts as a quantum bus
mediating interactions between the qubits. An entangling
gate can thus be performed in the same way as with direct
capacitive coupling, either by tuning the qubits in and out
of resonance with each other (Majer et al., 2007) or by
making the couplings gi itself tunable (Gambetta et al.,
2011a; Srinivasan et al., 2011).

2. Flux-tuned 11-02 phase gate

The 11-02 phase gate is a controlled-phase gate that
is well suited to weakly anharmonic qubits such as trans-
mons (Barends et al., 2014; DiCarlo et al., 2009, 2010;
Foxen et al., 2020; Kjaergaard et al., 2020; Martinis and
Geller, 2014; Rol et al., 2019; Strauch et al., 2003). It is
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FIG. 30 Spectrum of two transmon qubits coupled to a com-
mon resonator as a function of the frequency of the second
qubit in the (a) 2-excitation and (b) 1-excitation manifold.
The full lines are obtained by numerical diagonalization of
Eq. (138) in the charge basis with 5 transmon levels and 5 res-
onator levels, and with parameters adapted from DiCarlo et al.
(2009): EJ1(2)/h = 28.48(42.34) GHz, EC1(2)/h = 317(297)
MHz and g1(2)/2π = 199(190) MHz. In the one-excitation
manifold, both the 2g anticrossing of the first qubit with the
resonator and the 2J anticrossing of the two qubits are vis-
ible. In the two-excitation manifold, the 11-02 anticrossing
of magnitude ζ can be seen. Notice the change in horizon-
tal scale between the two panels. The states are labelled as
|1st qubit, 2nd qubit, resonator〉. The dashed light blue lines
are guides to the eye following the bare frequency of the first
qubit.

obtained from the exchange interaction of Eq. (135) and
can thus be realized through direct (static or tunable)
qubit-qubit coupling or indirect coupling via a resonator
bus.

In contrast to the
√
iSWAP gate, the 11-02 phase gate

is not based on tuning the qubit transition frequencies
between the computational states into resonance with
each other, but rather exploits the third energy level
of the transmon. The 11-02 gate thus relies on tuning
the qubits to a point where the states |11〉 and |02〉 are
degenerate in the absence of J coupling. As illustrated in
Fig. 30(a), the qubit-qubit coupling lifts this degeneracy
by an energy ζ whose value can be found perturbatively
(DiCarlo et al., 2009). Because of this repulsion caused
by coupling to the state |02〉, the energy E11 of the state
|11〉 is smaller than E01 + E10 by ζ. Adiabatically flux
tuning the qubits in and out of the 11− 02 anticrossing
therefore leads to a conditional phase accumulation which
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is equivalent to a controlled-phase gate.
To see this more clearly, it is useful to write the unitary

corresponding to this adiabatic time evolution as

ĈZ(φ01, φ10, φ11) =




1 0 0 0
0 eiφ01 0 0
0 0 eiφ10 0
0 0 0 eiφ11


 , (141)

where φab =
∫
dtEab(t)/~ is the dynamical phase ac-

cumulated over total flux excursion. Up to single-qubit
rotations, this is equivalent to a standard controlled-phase
gate since

ĈZ(φ) = diag(1, 1, 1, eiφ)

= R̂1
Z(−φ10)R̂2

Z(−φ01)ĈZ(φ01, φ10, φ11),
(142)

with φ = φ11 − φ01 − φ10 =
∫
dt ζ(t) and where R̂iZ(θ) =

diag(1, eiθ) is a single qubit phase gate acting on qubit
i. For φ 6= 0 this is an entangling two-qubit gate and, in
particular, for φ = π it is a controlled-Z gate (CPHASE).

Rather than adiabatically tuning the flux in and out of
the 11−02 resonance, an alternative is to non-adiabatically
pulse to this anti-crossing (DiCarlo et al., 2010; Strauch
et al., 2003; Yamamoto et al., 2010). In this sudden
approximation, leaving the system there for a time t, the
state |11〉 evolves into cos(ζt/2~)|11〉+sin(ζt/2~)|02〉. For
t = h/ζ, |11〉 is mapped back into itself but acquires a
minus sign in the process. On the other hand, since they
are far from any resonance, the other logical states evolve
trivially. This therefore again results in a CPHASE gate.
In this way, fast controlled-Z gates are possible. Some
of the fastest and highest fidelity two-qubit gates have
been achieved this way with error rates below the percent
level and gate times of a few tens of ns (Barends et al.,
2014; Chen et al., 2014). Notably, a fidelity of 99.93% in
a 50 ns gate time has been reported by Neĝırneac et al.
(2020).

Despite its advantages, a challenge associated with this
gate is the distortions in the flux pulses due to the finite
bandwidth of the control electronics and line. In addition
to modifying the waveform experienced by the qubit, this
can lead to long time scale distortions where the flux
at the qubit at a given time depends on the previous
flux excursions. This situation can be partially solved by
pre-distorting the pulses taking into account the known
distortion, but also by adapting the applied flux pulses
to take advantage of the symmetry around the transmon
sweet-spot to cancel out unwanted contributions (Gus-
tavsson et al., 2013; Rol et al., 2019).

3. All-microwave gates

Because the on/off ratio of the gates discussed above
is controlled by the detuning between the qubits, it is
necessary to tune the qubit frequencies over relatively

large frequency ranges or, alternatively, to have tunable
coupling elements. In both cases, having a handle on
the qubit frequency or qubit-qubit coupling opens the
system to additional dephasing. Moreover, changing the
qubit frequency over large ranges can lead to accidental
resonance with other qubits or uncontrolled environmental
modes, resulting in energy loss. For these reasons, it
can be advantageous to control two-qubit gates in very
much the same way as single-qubit gates: by simply
turning on and off a microwave drive. In this section, we
describe two so-called all-microwave gates: the resonator-
induced phase (RIP) gate and the cross-resonance (CR)
gate. Both are based on fixed-frequency far off-resonance
qubits with an always-on qubit-resonator coupling. The
RIP gate is activated by driving a common resonator
and the CR gate by driving one of the qubits. Other all-
microwave gates which will not be discussed further here
include the sideband-based iSWAP (Leek et al., 2009), the
bSWAP (Poletto et al., 2012), the microwave-activated
CPHASE (Chow et al., 2013) and the fg-ge gate (Egger
et al., 2019; Zeytinoğlu et al., 2015).

a. Resonator-induced phase gate The RIP gate relies on
two strongly detuned qubits that are dispersively coupled
to a common resonator mode. The starting point is thus
Eq. (139) where we now neglect the J coupling by taking
|ωq1 − ωq2| � J . In the two-level approximation and
accounting for a drive on the resonator, this situation is
described by the Hamiltonian

Ĥ ′ =
~ω̃q1

2
σ̂z1 +

~ω̃q2
2

σ̂z2 + ~ω̃râ†â

+

2∑

i=1

~χiâ†âσ̂zi + ~ε(t)(â†e−iωdt + âeiωdt),
(143)

where ε(t) is the time-dependent amplitude of the res-
onator drive and ωd its frequency. Note that we also
neglect the resonator self-Kerr nonlinearity.

The gate is realized by adiabatically ramping on and
off the drive ε(t), such that the resonator starts and
ends in the vacuum state. Crucially, this means that the
resonator is unentangled from the qubits at the start and
end of the gate. Moreover, to avoid measurement-induced
dephasing, the drive frequency is chosen to be far from
the cavity mode, |δ̃r| = |ω̃r − ωd| � κ. Despite this
strong detuning, the dispersive shift causes the resonator
frequency to depend on the state of the two qubits and,
as a result, the resonator field evolves in a closed path in
phase space that is qubit-state dependent. This leads to a
different phase accumulation for the different qubit states,
and therefore to a controlled-phase gate of the form of
Eq. (141).

This conditional phase accumulation can be made
more apparent by moving Eq. (143) to a frame rotat-
ing at the drive frequency and by applying the po-
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laron transformation Û = exp[α̂′(t)â† − α̂∗′(t)â] with
α̂′(t) = α(t)−∑i χiσ̂zi/δ̃r on the resulting Hamiltonian.
This leads to the approximate effective Hamiltonian (Puri
and Blais, 2016)

Ĥ ′′ '
∑

i

~

[
δ̃qi
2

+ χ|α(t)|2
]
σ̂zi + ~δrâ†â

+

2∑

i=1

~χiâ†âσ̂zi − ~
2χ1χ2|α(t)|2

δr
σ̂z1σ̂z2,

(144)

with δ̃x = ω̃x − ωd and where the field amplitude α(t)
satisfies α̇ = −iδ̃rα− iε(t). In this frame, it is clear how
the resonator mediates a σ̂z1σ̂z2 interaction between the
two qubits and therefore leads to a conditional phase
gate. This expression also makes it clear that the need to
avoid measurement-induced dephasing with δ̃r � κ limits
the effective interaction strength and therefore leads to
relatively long gate times. This can, however, be mitigated
by taking advantage of pulse shaping techniques (Cross
and Gambetta, 2015) or by using squeezed radiation to
erase the which-qubit information in the output field of
the resonator (Puri and Blais, 2016). Similarly to the
longitudinal readout protocol discussed in Sec. V.C.3,
longitudinal coupling also offers a way to overcome many
of the limitations of the conventional RIP gate (Kerman,
2013; Royer et al., 2017).

Some of the advantages of this two-qubit gate are that it
can couple qubits that are far detuned from each other and
that it does not introduce significant leakage errors (Paik
et al., 2016). This gate was demonstrated by Paik et al.
(2016) with multiple transmons coupled to a 3D resonator,
achieving error rates of a few percent and gate times of
several hundred nanoseconds.

b. Cross-resonance gate The cross-resonance gate is based
on qubits that are detuned from each other and cou-
pled by an exchange term J of the form of Eq. (135) or
Eq. (139) (Chow et al., 2011; Rigetti and Devoret, 2010).
While the RIP gate relies on off-resonant driving of a
common oscillator mode, this gate is based on directly
driving one of the qubits at the frequency of the other.
Moreover, since the resonator is not directly used and, in
fact, ideally remains in its vacuum throughout the gate,
the J coupling can be mediated by a resonator or by
direct capactitive coupling.

In the two-level approximation and in the absence of
the drive, this interaction takes the form

Ĥ =
~ωq1

2
σ̂z1 +

~ωq2
2

σ̂z2 +~J(σ̂+1σ̂−2 + σ̂−1σ̂+2). (145)

To see how this gate operates, it is useful to diagonalize Ĥ
using the two-level system version of the transformation
Eq. (49). The result takes the same general form as
Eq. (50) and Eq. (51), after projecting to two levels.

In this frame, the presence of the J coupling leads to a
renormalization of the qubit frequencies which for strongly
detuned qubits, |∆12| = |ωq1−ωq2| � |J |, take the values
ω̃q1 ≈ ωq1 + J2/∆12 and ω̃q2 ≈ ωq2 − J2/∆12 to second
order in J/∆12. In the same frame, a drive on the first
qubit, ~ΩR(t) cos(ωdt)σ̂x1, takes the form (Chow et al.,
2011)

~ΩR(t) cos(ωdt) (cos θσ̂x1 + sin θσ̂z1σ̂x2)

≈ ~ΩR(t) cos(ωdt)

(
σ̂x1 +

J

∆12
σ̂z1σ̂x2

)
,

(146)

with θ = arctan(2J/∆12)/2 and where the second line
is valid to first order in J/∆12. As a result, driving the
first qubit at the frequency of the second qubit, ωd = ω̃q2,
activates the term σ̂z1σ̂x2 which can be used to realize a
CNOT gate.

More accurate expressions for the amplitude of the CR
term σ̂z1σ̂x2 can be obtained by taking into account more
levels of the transmons. In this case, the starting point is
the Hamiltonian Eq. (135) with, as above, a drive term
on the first qubit

Ĥ = Ĥq1 + Ĥq2 + ~J(b̂†1b̂2 + b̂1b̂
†
2)

+ ~ε(t)(b̂†1e
−iωdt + b̂1e

iωdt),
(147)

where ωd ∼ ωq2. Similarly to the previous two-level
system example, it is useful to eliminate the J-coupling.
We do this by moving to a rotating frame at the drive
frequency for both qubits, followed by a Schireffer-Wolff
transformation to diagonalize the first line of Eq. (147)
to second order in J , see Appendix B.1. The drive term
is modified under the same transformation by using the
explicit expression for the Schrieffer-Wolff generator Ŝ =
Ŝ(1) + . . . given in Eq. (B6), and the Baker-Campbell-

Hausdorff formula Eq. (B2) to first order: eŜ b̂1e
−Ŝ '

b̂1 + [Ŝ(1), b̂1]. The full calculation is fairly involved and
here we only quote the final result after truncating to the
two lowest levels of the transmon qubits (Magesan and
Gambetta, 2020; Tripathi et al., 2019)

Ĥ ′ ' ~δ̃q1
2
σ̂z1 +

~δ̃q2
2
σ̂z2 +

~χ12

2
σ̂z1σ̂z2

+~ε(t)
(
σ̂x1 − J ′σ̂x2 −

EC1

~
J ′

∆12
σ̂z1σ̂x2

)
.

(148)

In this expression, the detunings include frequency shifts
due to the J coupling with δ̃q1 = ωq1 +J2/∆12 +χ12−ωd

and δ̃q2 = ωq2 − J2/∆12 + χ12 − ωd. The parameters χ12

and J ′ are given by

χ12 =
J2

∆12 +
EC2

~

− J2

∆12 − EC1

~

, (149a)

J ′ =
J

∆12 − EC1

~

. (149b)
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Equations (146) and (148) agree in the limit of large
anharmonicity EC1,2 and we again find that a drive on
the first qubit at the frequency of the second qubit acti-
vates the CR term σ̂z1σ̂x2. However, there are important
differences at finite EC1/2

, something which highlights the
importance of taking into account the multilevel nature
of the transmon. Indeed, the amplitude of the CR term
is smaller here than in Eq. (146) with a two-level system.
Moreover, in contrast to the latter case, when taking into
account multiple levels of the transmon qubits we find
a spurious interaction σ̂z1σ̂z2 of amplitude χ12 between
the two qubits, as well as a drive on the second qubit
of amplitude J ′ε(t). This unwanted drive can be echoed
away with additional single-qubit gates (Córcoles et al.,
2013; Sheldon et al., 2016). The σ̂z1σ̂z2 interaction is
detrimental to the gate fidelity as it effectively makes the
frequency of the second qubit dependent on the logical
state of the first qubit. Because of this, it is not possible
to choose the drive frequency ωd to be always exactly
on resonance with the second qubit, irrespective of the
state of the first. As a consequence, the CR term σ̂z1σ̂x2

in Eq. (148) will rotate at an unknown qubit-state depen-
dent frequency, leading to a gate error. The σ̂z1σ̂z2 term
should therefore be made small, ultimately limiting the
gate speed. Interestingly, for a pair of qubits with equal
and opposite anharmonicity, χ12 = 0 and this unwanted
effect is absent. This cannot be realized with a pair of
conventional transmons, but is possible with other types
of qubits (Ku et al., 2020; Winik, 2020).

Since J ′ is small, another caveat of the CR gate is that
large microwave amplitudes ε are required for fast gates.
For the typical low-anharmonicity of transmon qubits, this
can lead to leakages and to effects that are not captured
by the second-order perturbative results of Eqs. (146)
and (148). More detailed modeling based on the Hamilto-
nian of Eq. (147) suggests that classical crosstalk induced
on the second qubit from driving the first qubit can be
important and is a source of discrepancy between the
simple two-level system model and experiments (Magesan
and Gambetta, 2020; Tripathi et al., 2019; Ware et al.,
2019). Because of these spurious effects, CR gate times
have typically been relatively long, of the order of 300
to 400 ns with gate fidelities ∼ 94–96% (Córcoles et al.,
2013). However, with careful calibration and modeling
beyond Eq. (148), it has been possible to push gate times
down to the 100–200 ns range with error per gates at the
percent level (Sheldon et al., 2016).

Similarly to the RIP gate, advantages of the CR gate
include the fact that realizing this gate can be realized
using the same drive lines that are used for single-qubit
gates. Moreover, it works with fixed frequency qubits
which often have longer phase coherence times than their
flux-tunable counterparts. However, both the RIP and the
CR gate are slower than what can now be achieved with
additional flux control of the qubit frequency or of the
coupler. We also note that, due to the factor EC1/~∆12 in

the amplitude of the σ̂z1σ̂x2 term, the detuning of the two
qubits cannot be too large compared to the anharmonicity,
putting further constraints on the choice of the qubit
frequencies. This may lead to frequency crowding issues
when working with large numbers of qubits.

4. Parametric gates

Another approach to enact a two-qubit gate with a
large on/off ratio is to activate an off-resonant interaction
by modulating a parameter of the system at an appropri-
ate frequency. This parametric modulation provides the
energy necessary to bridge the energy gap between the
far detuned qubit states. Several such schemes, known as
parametric gates, have been theoretically developed and
experimentally realized, see for example Beaudoin et al.
(2012); Bertet et al. (2006); Caldwell et al. (2018); Didier
et al. (2018); Kapit (2015); Liu et al. (2007); McKay et al.
(2016); Naik et al. (2017); Niskanen et al. (2007, 2006);
Reagor et al. (2018); Sirois et al. (2015); and Strand et al.
(2013).

The key idea behind parametric gates is that modula-
tion of a system parameter can induce transitions between
energy levels that would otherwise be too far off-resonance
to give any appreciable coupling. We illustrate the idea
first with two directly coupled qubits described by the
Hamiltonian

Ĥ =
~ωq1

2
σ̂z1 +

~ωq2
2

σ̂z2 + J(t)σ̂x1σ̂x2, (150)

where we assume that the coupling is periodically modu-
lated at the frequency ωm, J(t) = J0 + J̃ cos(ωmt). Mov-
ing to a rotating frame at the qubit frequencies, the above
Hamiltonian takes the form

Ĥ ′ = J(t)

(
ei(ωq1−ωq2)tσ̂+1σ̂−2

+ ei(ωq1+ωq2)tσ̂+1σ̂+2 + H.c.

)
.

(151)

Just as in Sec. VII.B.1.a, if the coupling is constant
J(t) = J0, and |J0/(ωq1 − ωq2)|, |J0/(ωq1 + ωq2)| � 1,

then Ĥ ′ is fast-rotating and can be neglected. In this
situation, the gate is in the off state. On the other hand,
by appropriately choosing the modulation frequency ωm,
it is possible to selectively activate some of these terms.
Indeed, for ωm = ωq1 − ωq2, the terms σ̂+1σ̂−2 + H.c. are
no longer rotating and are effectively resonant. Dropping
the rapidly rotating terms, this leads to

Ĥ ′ ' J̃

2
(σ̂+1σ̂−2 + σ̂−1σ̂+2) . (152)

As already discussed, this interaction can be used to
generate entangling gates such as the

√
iSWAP. If rather

ωm = ω1 + ω2 then σ̂+1σ̂+2 + H.c. is instead selected.
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In practice, it can sometimes be easier to modulate
a qubit or resonator frequency rather than a coupling
strength. To see how this leads to a similar result, consider
the Hamiltonian

Ĥ =
~ωq1(t)

2
σ̂z1 +

~ωq2
2

σ̂z2 + Jσ̂x1σ̂x2. (153)

Taking ωq1(t) = ωq1 +ε sin(ωmt), the transition frequency
of the first qubit develops frequency modulation (FM)
sidebands. The two qubits can then be effectively brought
into resonance by choosing the modulation to align one
of the FM sidebands with ωq2, thereby rendering the
J effectively coupling resonant. This can be seen more
clearly by moving to a rotating frame defined by the
unitary

Û = e−
i
2

∫ t
0
dt′ ωq1(t′)σ̂z1e−iωq2tσ̂z2/2, (154)

where the Hamiltonian takes the form (Beaudoin et al.,
2012; Strand et al., 2013)

Ĥ ′ = J

∞∑

n=−∞
Jn

(
ε

ωm

)(
inei(∆12−nωm)tσ̂+1σ̂−2

+ inei(ωq1+ωq2−nωmt)tσ̂+1σ̂+2 + H.c.

)
.

(155)

To arrive at the above expression, we have used the Jacobi-
Anger expansion eiz cos θ =

∑∞
n=−∞ inJn(z)einθ, with

Jn(z) Bessel functions of the first kind. Choosing the
modulation frequency such that nωm = ∆12 aligns the
nth sideband with the resonator frequency such that a
resonant qubit-resonator interaction is recovered. The
largest contribution comes from the first sideband with
J1 which has a maximum around J1(1.84) ' 0.58, thus
corresponding to an effective coupling that is a large frac-
tion of the bare J coupling. Note that the assumption of
having a simple sinusoidal modulation of the frequency
neglects the fact that the qubit frequency has a nonlin-
ear dependence on external flux for tunable transmons.
This behavior can still be approximated by appropriately
varying Φx(t) (Beaudoin et al., 2012).

Parametric gates can also be mediated by modulating
the frequency of a resonator bus to which qubits are dis-
persively coupled (McKay et al., 2016). Much as with
flux-tunable transmons, the resonator is made tunable by
inserting a SQUID loop in the center conductor of the res-
onator (Castellanos-Beltran and Lehnert, 2007; Sandberg
et al., 2008). Changing the flux threading the SQUID
loop changes the SQUID’s inductance and therefore the
effective length of the resonator. As in a trombone, this
leads to a change of the resonator frequency. An advan-
tage of modulating the resonator bus over modulating
the qubit frequency is that the latter can have a fixed
frequency, thus reducing its susceptibility to flux noise.

Finally, it is worth pointing out that while the speed of
the cross-resonance gate is reduced when the qubit-qubit

detuning is larger than the transmon anharmonicity, para-
metric gates do not suffer from this problem. As a result,
there is more freedom in the choice of the qubit frequen-
cies with parametric gates, which is advantageous to avoid
frequency crowding related issues such as addressability
errors and crosstalk. We also note that the modulation
frequencies required to activate parametric gates can be a
few hundred MHz, in contrast to the RIP gate or the CR
gate which require microwave drives. Removing the need
for additional microwave generators simplifies the control
electronics and may help make the process more scalable.
A counterpoint is that fast parametric gates often require
large modulation amplitudes, which can be challenging.

C. Encoding a qubit in an oscillator

So far we have discussed encoding quantum informa-
tion into the first two energy levels of an artificial atom,
the cavity being used for readout and two-qubit gates.
However, cavity modes often have superior coherence
properties than superconducting artificial atoms, some-
thing that is especially true for the 3D cavities discussed
in Sec. II.C (Reagor et al., 2016). This suggests that
encoding quantum information in the oscillator mode can
be advantageous. Using oscillator modes to store and
manipulate quantum information can also be favorable
for quantum error correction which is an essential aspect
of scalable quantum computer architectures (Nielsen and
Chuang, 2000).

Indeed, in addition to their long coherence time, oscil-
lators have a simple and relatively well-understood error
model: to a large extent, the dominant error is single-
photon loss. Taking advantage of this, it is possible to
design quantum error correction codes that specifically
correct for this most likely error. This is to be contrasted
to more standard codes, such as the surface code, which
aim at detecting and correcting both amplitude and phase
errors (Fowler et al., 2012). Moreover, as will become
clear below, the infinite dimensional Hilbert space of a
single oscillator can be exploited to provide the redun-
dancy which is necessary for error correction thereby, in
principle, allowing using less physical resources to protect
quantum information than when using two-level systems.
Finally, qubits encoded in oscillators can be concatenated
with conventional error correcting codes, where the latter
should be optimized to exploit the noise resilience pro-
vided by the oscillator encoding (Grimsmo et al., 2020;
Guillaud and Mirrahimi, 2019; Puri et al., 2020; Tuckett
et al., 2018, 2020, 2019).

Of course, as we have already argued, nonlinearity re-
mains essential to prepare and manipulate quantum states
of the oscillator. When encoding quantum information in
a cavity mode, a dispersively coupled artificial atom (or
other Josephson junction-based circuit element) remains
present but only to provide nonlinearity to the oscillator
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4-qubit code Simplest binomial code

Code word |0L〉 1√
2
(|0000〉+ |1111〉) 1√

2
(|0〉+ |4〉)

Code word |1L〉 1√
2
(|1100〉+ |0011〉) |2〉

Mean excitation number n̄ 2 2

Hilbert space dimension 24 = 16 {0, 1, 2, 3, 4} = 5

Number of correctable errors {Î , σ−1 , σ
−
2 , σ

−
3 , σ

−
4 } = 5 {Î , a} = 2

Stabilizers Ŝ1 = Ẑ1Ẑ2, Ŝ2 = Ẑ3Ẑ4, Ŝ3 = X̂1X̂2X̂3X̂4 P̂ = (−1)n̂

Number of Stabilizers 3 1

Approximate QEC? Yes, 1st order in γt Yes, 1st order in κt

TABLE I Comparison of qubit and bosonic codes for amplitude damping. γ and κ are respectively the qubit and oscillator
energy relaxation rates.

ideally without playing much of an active role.
Oscillator encodings of qubits investigated in the con-

text of quantum optics and circuit QED include cat codes
(Cochrane et al., 1999; Gilchrist et al., 2004; Grimm
et al., 2020; Lescanne et al., 2020b; Mirrahimi et al.,
2014; Ofek et al., 2016; Puri et al., 2017; Ralph et al.,
2003), the related binomial codes (Hu et al., 2019; Michael
et al., 2016a), and Gottesman-Kitaev-Preskill (GKP)
codes (Campagne-Ibarcq et al., 2020; Flühmann et al.,
2019; Gottesman et al., 2001), as well as a two-mode am-
plitude damping code described in (Chuang et al., 1997).

To understand the basic idea behind this approach, we
first consider the simplest instance of the binomial code
in which a qubit is encoded in the following two states of
a resonator mode (Michael et al., 2016a)

|0L〉 =
1√
2

(|0〉+ |4〉) , |1L〉 = |2〉, (156)

with Fock states |n〉. The first aspect to notice is that for
both logical states, the average photon number is n̄ = 2
and, as a result, the likelihood of a photon loss event is
the same for both states. An observer detecting a loss
event will therefore not gain any information allowing
her to distinguish whether the loss came from |0L〉 or
from |1L〉. This is a necessary condition for a quantum
state encoded using the logical states Eq. (156) not to be
‘deformed’ by a photon loss event. Moreover, under the
action of â, the arbitrary superposition c0|0L〉 + c1|1L〉
becomes c0|3〉+c1|1〉 after normalization. The coefficients
c0 and c1 encoding the quantum information are intact
and the original state can in principle be recovered with a
unitary transformation. By noting that while the original
state only has support on even photon numbers, the
state after a photon loss only has support on odd photon
numbers, we see that the photon loss event can be detected
by measuring photon number parity P̂ = (−1)n̂. The
parity operator thus plays the role of a stabilizer for this
code (Michael et al., 2016b; Nielsen and Chuang, 2000).

This simple encoding should be compared to directly
using the Fock states {|0〉, |1〉} to store quantum infor-
mation. Clearly, in this case, a single photon loss on

c0|0〉 + c1|1〉 leads to |0〉 and the quantum information
has been irreversibly lost. Of course, this disadvantage
should be contrasted to the fact that the rate at which
photons are lost, which scales with n̄, is (averaged over the
code words) four times as large when using the encoding
Eq. (156), compared to using the Fock states {|0〉, |1〉}.
This observation reflects the usual conundrum of quantum
error correction: using more resources (here more pho-
tons) to protect quantum information actually increases
the natural error rate. The protocol for detecting and cor-
recting errors must be fast enough and accurate enough
to counteract this increase. The challenge for experimen-
tal implementations of quantum error correction is thus
to reach and go beyond the break-even point where the
encoded qubit, here Eq. (156), has a coherence time ex-
ceeding the coherence time of the unencoded constituent
physical components, here the Fock states {|0〉, |1〉}. Near
break-even performance with the above binomial code
has been experimentally reported by Hu et al. (2019).

The simplest binomial code introduced above is able to
correct a single amplitude-damping error (photon loss).
Thus if the correction protocol is applied after a time
interval δt, the probability of an uncorrectable error is
reduced from O(κ δt) to O((κ δt)2), where κ is the cavity
energy decay rate.

To better understand the simplicity and efficiency ad-
vantages of bosonic QEC codes, it is instructive to do a
head-to-head comparison of the simplest binomial code
to the simplest qubit code for amplitude damping. The
smallest qubit code able to protect logical information
against a general single-qubit error requires five qubits
(Bennett et al., 1996; Knill et al., 2001; Laflamme et al.,
1996). However, the specific case of the qubit amplitude-
damping channel can be corrected to first order against
single-qubit errors using a 4-qubit code (Leung et al., 1997)
that, like the binomial code, satisfies the Knill-Laflamme
conditions (Knill and Laflamme, 1997) to lowest order
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and whose two logical codewords are

|0L〉 =
1√
2

(|0000〉+ |1111〉) , (157a)

|1L〉 =
1√
2

(|1100〉+ |0011〉) . (157b)

This four-qubit amplitude damping code and the single-
mode binomial bosonic code for amplitude damping are
compared in Table VII.C. Note that, just as in the bino-
mial code, both codewords have mean excitation number
equal to two and so are equally likely to suffer an excita-
tion loss. The logical qubit of Eq. (157) lives in a Hilbert
space of dimension 24 = 16 and has four different physical
sites at which the damping error can occur. Counting
the case of no errors, there are therefore a total of five
different error states which requires measurement of three
distinct error syndromes Ẑ1Ẑ2, Ẑ3Ẑ4, and X̂1X̂2X̂3X̂4 to
diagnose (where P̂i refers to Pauli operator P̂ acing on
qubit i). The required weight-two and weight-four oper-
ators have to date not been easy to measure in a highly
QND manner and with high fidelity, but some progress
has been made towards this goal (Chow et al., 2014, 2015;
Corcoles et al., 2015; Ristè et al., 2015; Takita et al., 2016).
In contrast, the simple bosonic code in Eq. (156) requires
only the lowest five states out of the (formally infinite)
oscillator Hilbert space. Moreover, since there is only a
single mode, there is only a single error, namely photon
loss (or no loss), and it can be detected by measuring a
single stabilizer, the photon number parity. It turns out
that, unlike in ordinary quantum optics, photon number
parity is relatively easy to measure in circuit QED with
high fidelity and minimal state demolition (Ofek et al.,
2016; Sun et al., 2014). It is for all these reasons that,
unlike the four-qubit code, the bosonic code Eq. (156)
has already been demonstrated experimentally to (very
nearly) reach the break-even point for QEC (Hu et al.,
2019; Ma et al., 2020b). Generalizations of this code
to protect against more than a single photon loss event,
as well as photon gain and dephasing, are described in
Michael et al. (2016a).

Operation slightly exceeding break-even has been re-
ported by (Ofek et al., 2016) with cat-state bosonic en-
coding which we describe now. In the encoding used in
that experiment, each logical code word is a superposition
of four coherent states referred to as a four-component
cat code (Mirrahimi et al., 2014):

|0L〉 = N0 (|α〉+ |iα〉+ | − α〉+ | − iα〉) , (158a)

|1L〉 = N1 (|α〉 − |iα〉+ | − α〉 − | − iα〉) , (158b)

where Ni are normalization constants, with N0 ' N1 for
large |α|. The Wigner function for the |0L〉 codeword is
shown in Fig. 31(a) for α = 4. The relationship between
this encoding and the simple code in Eq. (156) can be seen
by writing Eq. (158) using the expression Eq. (87) for |α〉
in terms of Fock states. One immediately finds that |0L〉
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FIG. 31 Plot of Wigner function W (β) obtained numerically
for four-component (a) and two-component (b) cat states with
α = 4. Red is positive and blue is negative.

only has support on Fock states |4n〉 with n = 0, 1, . . . ,
while |1L〉 has support on Fock states |4n + 2〉, again
for n = 0, 1, . . . It follows that the two codewords are
mapped onto orthogonal states under the action of â,
just as the binomial code of Eq. (156). Moreover, the
average photon number n̄ is approximately equal for the
two logical states in the limit of large |α|. The protection
offered by this encoding is thus similar to that of the
binomial code in Eq. (156). In fact, these two encodings
belong to a larger class of codes characterized by rotation
symmetries in phase space (Grimsmo et al., 2020).

We end this section by discussing an encoding that is
even simpler than Eq. (158), sometimes referred to as a
two-component cat code. In this case, the codewords are
defined simply as |+L〉 = N0(|α〉 + | − α〉) and |−L〉 =
N1(|α〉 − | − α〉 (Cochrane et al., 1999; Gilchrist et al.,
2004; Mirrahimi et al., 2014; Puri et al., 2017; Ralph
et al., 2003). The Wigner function for |+L〉 is shown
in Fig. 31(b). The choice to define the above codewords
in the logical X̂L basis instead of the ẐL basis is, of course,
just a convention, but turns out to be convenient for this
particular cat code. In contrast to Eqs. (156) and (158),
these two states are not mapped to two orthogonal states
under the action of â. To understand this encoding, it is
useful to consider the logical ẐL basis states in the limit
of large |α|

|0L〉 =
1√
2

(|+L〉+ |−L〉) = |α〉+O(e−2|α|2), (159a)

|1L〉 =
1√
2

(|+L〉 − |−L〉) = | − α〉+O(e−2|α|2). (159b)

As is made clear by the second equality, for large enough
|α| these logical states are very close to coherent states of
the same amplitude but opposite phase. The action of â
is thus, to a very good approximation, a phase flip since
â|0L/1L〉 ∼ ±|0L/1L〉.

The advantage of this encoding is that, while photon
loss leads to phase flips, the bit-flip rate is exponentially
small with |α|. This can be immediately understood from
the golden rule whose relevant matrix element for bit flips
is 〈1L|â|0L〉 ∼ 〈−α|â|α〉 = αe−2|α|2 . In other words, if
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the qubit is encoded in a coherent state with many pho-
tons, losing one simply does not do much. This is akin to
the redundancy required for quantum error correction. As
a result, the bit-flip rate (1/T1) decreases exponentially
with |α|2 while the phase flip rate increases only linearly
with |α|2. The crucial point is that the bias between bit
and phase flip error rates increases exponentially with α,
something which has been verified experimentally (Grimm
et al., 2020; Lescanne et al., 2020b). While the logical
states Eq. (159) do not allow for recovery from photon-
loss errors, the strong asymmetry between different types
of errors can be exploited to significantly reduce the qubit
overhead necessary for fault-tolerant quantum computa-
tion (Guillaud and Mirrahimi, 2019; Puri et al., 2020).
The basic intuition behind this statement is that the qubit
defined by Eq. (159) can be used in an error-correcting
code tailored to predominantly correct the most likely
error (here, phase flips) rather than devoting resources
to correcting both amplitude and phase errors (Tuckett
et al., 2018, 2020, 2019).

Another bosonic encoding that was recently demon-
strated in circuit QED is the Gottesman-Kitaev-Preskill
(GKP) code (Campagne-Ibarcq et al., 2020). This demon-
stration is the first QEC experiment able to correct all
logical errors and it came close to reaching the break-
even point. While all the bosonic codes described above
are based on codewords that obey rotation symmetry in
phase space, the GKP code is instead based on translation
symmetry. We will not describe the GKP encoding in
more detail here, but refer the reader to the review by
Terhal et al. (2020).

VIII. QUANTUM OPTICS ON A CHIP

The strong light-matter interaction realized in circuit
QED together with the flexibility allowed in designing and
operating superconducting quantum circuits has opened
the possibility to explore the rich physics of quantum
optics at microwave frequencies in circuits. As discussed
previously it has, for example, made possible the clear
observation of vacuum Rabi splitting, of photon-number
splitting in the strong-dispersive regime, as well as of
signatures of ultrastrong light-matter coupling. The new
parameter regimes that can be achieved in circuit QED
have also made it possible to test some of the theoret-
ical predictions from the early days of quantum optics
and to explore new research avenues. A first indication
that circuit QED is an ideal playground for these ideas
is the strong Kerr nonlinearity relative to the decay rate,
K/κ, that can readily be achieved in circuits. Indeed,
from the point of view of quantum optics, a transmon
is a Kerr nonlinear oscillator that is so nonlinear that
it exhibits photon blockade. Given the very high Q fac-
tors that can be achieved in 3D superconducting cavities,
such levels of nonlinearity can also readily be obtained

in microwave resonators by using transmons or other
Josephson junction-based circuits to induce nonlinearity
in electromagnetic modes.

Many of the links between circuit QED and quantum
optics have already been highlighted in this review. In
this section, we continue this discussion by presenting
some further examples. The reader interested in learning
more about quantum optics at microwave frequencies can
consult the review article by Gu et al. (2017).

A. Intra-cavity fields

Because superconducting qubits can rapidly be tuned
over a wide frequency range, it is possible to bring them
in and out of resonance with a cavity mode on a time
scale which is fast with respect to 1/g, the inverse of the
qubit-cavity coupling strength. For all practical purposes,
this is equivalent to the thought experiment of moving
an atom in and out of the cavity in cavity QED. An
experiment by Hofheinz et al. (2008) took advantage
of this possibility to prepare the cavity in Fock states
up to |n = 6〉. With the qubit and the cavity in their
respective ground states and the two systems largely
detuned, their approach is to first π-pulse the qubit to
its excited state. The qubit frequency is then suddenly
brought in resonance with the cavity for a time 1/2g such
as to swap the qubit excitation to a cavity photon as the
system evolves under the Jaynes-Cummings Hamiltonian
Eq. (36). The interaction is then effectively stopped by
moving the qubits to its original frequency, after which the
cycle is repeated until n excitations have been swapped in
this way. Crucially, because the swap frequency between
the states |e, n− 1〉 and |g, n〉 is proportional to

√
n, the

time during which qubit and cavity are kept in resonance
must be adjusted accordingly at each cycle. The same√
n dependence is then used to probe the cavity state

using the qubit as a probe (Brune et al., 1996; Hofheinz
et al., 2008).

Building on this technique and using a protocol pro-
posed by Law and Eberly (1996) for cavity QED, the
same authors have demonstrated the preparation of ar-
bitrary states of the cavity field and characterized these
states by measuring the cavity Wigner function (Hofheinz
et al., 2009). Figure 32 shows the result of this Wigner
tomography for superpositions involving up to six cavity
photons (top row: theory, bottom row: data). As noted
in Hofheinz et al. (2008), a downside of this sequential
method is that the preparation time rapidly becomes com-
parable to the Fock state lifetime, limiting the Fock states
which can be reached and the fidelity of the resulting
states.

Taking advantage of the very large χ/κ which can be
reached in 3D cavities, an alternative to create such states
is to exploit qubit transitions conditioned on the Fock
state of the cavity. Together with cavity displacements,
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FIG. 32 Wigner function of the intra-cavity field for Fock state superpositions |0〉+ eiϕ|3〉+ |6〉 for five values of the phase ϕ,
see panel titles. Top row: theory, Bottom row: experimental data. Figure adapted from Hofheinz et al. (2009).

these photon-number dependent qubit transitions can
be used to prepare arbitrary cavity states (Heeres et al.,
2015; Krastanov et al., 2015). Combining these ideas with
numerical optimal control has allowed Heeres et al. (2017)
to synthesize cavity states with high fidelity such as Fock
states up to |n = 6〉 and four-legged cat states.

The long photon lifetime that is possible in 3D super-
conducting cavities together with the possibility to realize
a single-photon Kerr nonlinearity which overwhelms the
cavity decay, K/κ > 1, has enabled a number of similar
experiments such as the observation of collapse and re-
vival of a coherent state in a Kerr medium (Kirchmair
et al., 2013) and the preparation of cat states with nearly
30 photons (Vlastakis et al., 2013). Another striking ex-
ample is the experimental encoding of qubits in oscillator
states already discussed in Sec. VII.C.

B. Quantum-limited amplification

Driven by the need for fast, high-fidelity single-shot
readout of superconducting qubits, superconducting low-
noise linear microwave amplifiers are a subject of intense
research. There are two broad classes of linear amplifiers.
First, phase-preserving amplifiers that amplify equiva-
lently both quadratures of the signal. Quantum mechanics
imposes that these amplifiers add a minimum of half a pho-
ton of noise to the input signal (Caves, 1982; Caves et al.,
2012; Clerk et al., 2010). Second, phase-sensitive ampli-
fiers which amplify one quadrature of the signal while
squeezing the orthogonal quadrature. This type of ampli-
fier can in principle operate without adding noise (Caves,
1982; Clerk et al., 2010). Amplifiers adding the minimum
amount of noise allowed by quantum mechanics, phase
preserving or not, are referred to as quantum-limited
amplifiers. We note that, in practice, phase sensitive
amplifiers are useful if the quadrature containing the rele-
vant information is known in advance, a condition that

is realized when trying to distinguish between two coher-
ent states in the dispersive qubit readout discussed in
Sec. V.C.

While much of the development of near-quantum-
limited amplifiers has been motivated by the need to
improve qubit readout, Josephson junction based ampli-
fiers have been theoretically investigated (Yurke, 1987)
and experimentally demonstrated as early as the late
80‘s (Yurke et al., 1989, 1988). These amplifiers have now
found applications in a broad range of contexts. In their
simplest form, such an amplifier is realized as a driven
oscillator mode rendered weakly nonlinear by incorporat-
ing a Josephson junction and are generically known as a
Josephson parametric amplifier (JPA).

For weak nonlinearity, the Hamiltonian of a driven
nonlinear oscillator is well approximated by

H = ~ω0â
†â+ ~

K

2
â†2â2 + ~εp(â†e−iωpt + âeiωpt), (160)

where ω0 is the system frequency, K the negative Kerr
nonlinearity, and εp and ωp are the pump amplitude
and frequency, respectively. The physics of the JPA is
best revealed by applying a displacement transformation
D̂†(α)âD̂(α) = a + α to H with α chosen to cancel the
pump term. Doing so leads to the transformed Hamilto-
nian

HJPA = ~δâ†â+
~
2

(
ε2â
†2 + ε∗2â

2
)

+Hcorr, (161)

where δ = ω0 + 2|α|2K − ωp is the effective detuning,
ε2 = α2K, and are Hcorr correction terms which can
be dropped for weak enough pump amplitude and Kerr
nonlinearity, i.e. when the single-photon loss rate κ is
large in comparison to K and thus the drive does not
populate the mode enough for higher-order nonlinearity
to become important (Boutin et al., 2017). The second
term, of amplitude ε2, is a two-photon pump which is
the generator of quadrature squeezing. Amplification is
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obtained when operating the device close to but under
the parametric threshold ε2 <

√
δ2 + (κ/2)2 (Wustmann

and Shumeiko, 2013). Rather than driving the nonlinear
oscillator as in Eq. (160), an alternative approach to arrive
at HJPA is to replace the junction by a SQUID and to
apply a flux modulation at 2ω0 (Yamamoto et al., 2008).

Equation (161) is the Hamiltonian for a parametric
amplifier working with a single physical oscillator mode.
Using appropriate filtering in the frequency domain, single-
mode parametric amplifiers can be operated in a phase-
sensitive mode, when detecting the emitted radiation over
the full bandwidth of the physical mode, see e.g. Eichler
et al. (2011a). This is also called the degenerate mode
of operation. Alternatively, the same single-oscillator-
mode amplifier can be operated in the phase-preserving
mode when separating frequency components above and
below the pump in the experiment, e.g. by using ap-
propriately chosen narrow-band filters, see for example
Eichler et al. (2011a). Parametric amplifiers with two or
multiple physical modes are also frequently put to use
(Roy and Devoret, 2016) and can be operated both in
the phase-sensitive and phase-preserving modes, e.g. in
degenerate or non-degenerate mode of operation, as for
example demonstrated in Eichler et al. (2014).

Important parameters which different approaches for
implementing JPAs aim at optimizing include amplifier
gain, bandwidth and dynamic range. The latter refers
to the range of power over which the amplifier acts lin-
early, i.e. powers at which the amplifier output is linearly
related to its input. Above a certain input power level,
the correction terms in Eq. (161) resulting from the junc-
tion nonlinearity can no longer be ignored and lead to
saturation of the gain (Abdo et al., 2013; Boutin et al.,
2017; Kochetov and Fedorov, 2015; Liu et al., 2017; Planat
et al., 2019). For this reason, while transmon qubits are
operated in a regime where the single-photon Kerr nonlin-
earity is large and overwhelms the decay rate, JPAs are
operated in a very different regime with |K|/κ ∼ 10−2 or
smaller.

An approach to increase the dynamic range of JPAs is
to replace the Josephson junction of energy EJ by an array
of M junctions, each of energy MEJ (Castellanos-Beltran
et al., 2008; Castellanos-Beltran and Lehnert, 2007; Eich-
ler and Wallraff, 2014). Because the voltage drop is now
distributed over the array, the bias on any single junc-
tion is M times smaller and therefore the effective Kerr
nonlinearity of the device is reduced from K to K/M2.
As a result, nonlinear effects kick-in only at increased in-
put signal powers leading to an increased dynamic range.
Importantly, this can be done without degrading the am-
plifier’s bandwidth (Eichler and Wallraff, 2014). Typical
values are ∼ 50 MHz bandwidth with ∼ −117 dBm sat-
uration power for ∼ 20 dB gain (Planat et al., 2019).
Variations of this idea based on modified SQUID loops
known as a superconducting nonlinear asymmetric induc-
tive elements (or SNAIL for short) have been realized with

larger saturation power of ∼ −100 dBm with otherwise
similar characteristics (Frattini et al., 2018; Sivak et al.,
2019, 2020). A reason for this increased dynamic range is
that the SNAIL allows for more flexibility in its design
and operation to reduce the amplitude of the unwanted
nonlinear effects (Frattini et al., 2017). It is also useful
to point out that impedance engineering can be used to
improve these numbers further (Roy et al., 2015).

Because the JPA is based on a localized oscillator mode,
the product of its gain and bandwidth is approximately
constant. Therefore, increase in one must be done at the
expense of the other (Clerk et al., 2010; Eichler and Wall-
raff, 2014). As a result, it has proven difficult to design
JPAs with enough bandwidth and dynamic range to si-
multaneously measure more than a few transmons (Jeffrey
et al., 2014).

To avoid the constant gain-bandwidth product which
results from relying on a resonant mode, a drastically
different strategy, known as the Josephson traveling-wave
parametric amplifier (JTWPA), is to use an open nonlin-
ear medium in which the signal co-propagates with the
pump tone. While in a JPA the signal interacts with the
nonlinearity for a long time due to the finite Q of the cir-
cuit, in the JTWPA the long interaction time is rather a
result of the long propagation length of the signal through
the nonlinear medium (O’Brien et al., 2014). In practice,
JTWPA are realized with a metamaterial transmission
line whose center conductor is made from thousands of
Josephson junctions in series (Macklin et al., 2015). This
device does not have a fixed gain-bandwidth product and
has been demonstrated to have 20 dB over as much as
3 GHz bandwidth while operating close to the quantum
limit (Macklin et al., 2015; Planat et al., 2020; White
et al., 2015). Because every junction in the array can
be made only very weakly nonlinear, the JTWPA also
offers large enough dynamic range for rapid multiplexed
simultaneously readout of multiple qubits (Heinsoo et al.,
2018).

C. Propagating fields and their characterization

1. Itinerant single and multi-photon states

In addition to using qubits to prepare and characterize
quantum states of intra-cavity fields, it is also possible to
take advantage of the strong nonlinearity provided by a
qubit to prepare states of propagating fields at the output
of a cavity. This can be done, for example, in a cavity
with relatively large decay rate κ by tuning a qubit into
and out of resonance with the cavity (Bozyigit et al., 2011)
or by applying appropriately chosen drive fields (Houck
et al., 2007). Alternatively, it is also possible to change
the cavity decay rate in time to create single-photon
states (Sete et al., 2013; Yin et al., 2013).

The first on-chip single-photon source in the microwave
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regime was realized with a dispersively coupled qubit en-
gineered such that the Purcell decay rate γκ dominates
the qubit’s intrinsic non-radiative decay rate γ1 (Houck
et al., 2007). In this situation, exciting the qubit leads
to rapid qubit decay by photon emission. In the absence
of single-photon detectors working at microwave frequen-
cies, the presence of a photon was observed by using a
nonlinear circuit element (a diode) whose output signal is
proportional to the square of the electric field, ∝ (â†+ â)2,
and therefore indicative of the average photon number,
〈â†â〉, in repeated measurements.

Rather than relying on direct power measurements,
techniques have also been developed to reconstruct arbi-
trary correlation functions of the cavity output field from
the measurement records of the field quadratures (Men-
zel et al., 2010; da Silva et al., 2010). These approaches
rely on multiple detection channels with uncorrelated
noise to quantify and subtract from the data the noise
introduced by the measurement chain. In this way, it is
possible to extract, for example, first- and second-order
coherence functions of the microwave field. Remarkably,
with enough averaging, this approach does not require
quantum-limited amplifiers, although the number of re-
quired measurement runs is drastically reduced when such
amplifiers are used when compared to HEMT amplifiers.

This approach was used to measure second-order coher-
ence functions, G2(t, t+ τ) = 〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉,
in the first demonstration of antibunching of a pulsed
single microwave-frequency photon source (Bozyigit et al.,
2011). The same technique also enabled the observation
of resonant photon blockade at microwave frequencies
(Lang et al., 2011) and, using two single-photon sources
at the input of a microwave beam splitter, the indistin-
guishability of microwave photons was demonstrated in a
Hong-Ou-Mandel correlation function measurement (Lang
et al., 2013). Moreover, a similar approach was used to
characterize the blackbody radiation emitted by a 50 Ω
load resistor (Mariantoni et al., 2010).

Building on these results, it is also possible to recon-
struct the quantum state of itinerant microwave fields
from measurement of the fields moments. This technique
relies on interleaving two types of measurements: mea-
surements on the state of interest and ones in which the
field is left in the vacuum as a reference to subtract away
the measurement chain noise (Eichler et al., 2011b). In
this way, the Wigner function of arbitrary superpositions
of vacuum and one-photon Fock states have been recon-
structed (Eichler et al., 2011b; Kono et al., 2018). This
technique was extended to propagating modes containing
multiple photons (Eichler et al., 2012a). Similarly, entan-
glement between a (stationary) qubit and a propagating
mode was quantified in this approach with joint state to-
mography (Eichler et al., 2012a,b). Quadrature-histogram
analysis also enabled, for example, the measurement of
correlations between radiation fields (Flurin et al., 2015),
and the observation of entanglement of itinerant photon
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FIG. 33 (a) Wigner function of a squeezed vacuum state
S(ζ)|0〉 with r = 0.75 and θ = π/2. The white contour line
is an ellipse of semi-minor axis e−r/2 and semi-major axis
er/2. (b) Squeezing level versus φ for r = 0.5, 1.0, 1.5 and
θ = π. The horizontal line corresponds to vacuum noise
∆X2

vac = 1/4. (c) Experimental setup used by Murch et al.
(2013b) to prepare a squeezed vacuum state using a Josephson
parametric amplifier and to send, via a circulator (gray box),
this state to a transmon qubit in a 3D cavity (blue box). Panel
c) is adapted from Murch et al. (2013b).

pairs in waveguide QED (Kannan et al., 2020).

2. Squeezed microwave fields

Operated in the phase-sensitive mode, quantum-limited
amplifiers are sources of squeezed radiation. Indeed, for
δ = 0 and ignoring the correction terms, the JPA Hamil-
tonian of Eq. (161) is the generator of the squeezing
transformation

S(ζ) = e
1
2 ζ
∗â2− 1

2 ζâ
†2
, (162)

which takes vacuum to squeezed vacuum, |ζ〉 = S(ζ)|0〉.
In this expression, ζ = reiθ with r the squeezing parame-
ter and θ the squeezing angle. As illustrated in Fig. 33(a),
the action of S(ζ) on vacuum is to ‘squeeze’ one quadra-
ture of the field at the expense of ‘anti-squeezing’ the
orthogonal quadrature while leaving the total area in
phase space unchanged. As a result, squeezed states, like
coherent states, saturate the Heisenberg inequality.

This can be seen more clearly from the variance of the
quadrature operator X̂φ which takes the form

∆X2
φ =

1

4

(
e2r sin2 φ̃+ e−2r cos2 φ̃

)
, (163)

where we have defined φ̃ = φ− θ/2. In experiments, the
squeezing level is often reported in dB computed using
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the expression

S = 10 log10

∆X2
φ

∆X2
vac

. (164)

Figure 33(b) shows this quantity as a function of φ. The
variance ∆X2

φ reaches its minimal value e−2r/4 at φ =
[θ + (2n+ 1)π]/2 where it dips below the vacuum noise
level ∆X2

vac = 1/4 (horizontal line).
Squeezing in Josephson devices was observed already in

the late 80’s (Movshovich et al., 1990; Yurke et al., 1989,
1988), experiments that have been revisited with the devel-
opment of near quantum-limited amplifiers (Castellanos-
Beltran et al., 2008; Zhong et al., 2013). Quantum state
tomography of an itinerant squeezed state at the output
of a JPA was reported by Mallet et al. (2011). There,
homodyne detection with different LO phases on multiple
preparations of the same squeezed state, together with
maximum likelihood techniques, was used to reconstruct
the Wigner function of the propagating microwave field.
Moreover, the photon number distribution of a squeezed
field was measured using a qubit in the strong dispersive
regime (Kono et al., 2017). As is clear from the form of
the squeezing transformation S(ζ), squeezed vacuum is
composed of a superposition of only even photon numbers
(Schleich and Wheeler, 1987), something which Kono et al.
(2017) confirmed in experiments.

Thanks to the new parameter regimes that can be
achieved in circuit QED, it is possible to experimentally
test some long-standing theoretical predictions of quan-
tum optics involving squeezed radiation. For example, in
the mid-80’s theorists predicted how dephasing and reso-
nance fluorescence of an atom would be modified in the
presence of squeezed radiation (Carmichael et al., 1987;
Gardiner, 1986). Experimentally testing these ideas in the
context of traditional quantum optics with atomic systems,
however, represents a formidable challenge (Carmichael,
2019; Turchette et al., 1998). The situation is different
in circuits where squeezed radiation can easily be guided
from the source of squeezing to the qubit playing the role
of artificial atom. Moreover, the reduced dimensionality
in circuits compared to free-space atomic experiments
limits the number of modes that are involved, such that
the artificial atom can be engineered so as to preferentially
interact with a squeezed radiation field.

Taking advantage of the possibilities offered by circuit
QED, Murch et al. (2013a) confirmed the prediction that
squeezed radiation can inhibit phase decay of an (arti-
ficial) atom (Gardiner, 1986). In this experiment, the
role of the two-level atom was played by the hybridized
cavity-qubit state {|g, 0〉, |e, 0〉}. Moreover, squeezing was
produced by a JPA over a bandwidth much larger than the
natural linewitdh of the two-level system, see Fig. 33(c).
According to theory, quantum noise below the vacuum
level along the squeezed quadrature leads to a reduc-
tion of dephasing. Conversely, along the anti-squeezed
quadrature, the enhanced fluctuations lead to increased

dephasing. For the artificial atom, this results in differ-
ent time scales for dephasing along orthogonal axis of
the Bloch sphere. In the experiment, phase decay inhi-
bition along the squeezed quadrature was such that the
associated dephasing time increased beyond the usual
vacuum limit of 2T1. By measuring the dynamics of the
two-level atom, it was moreover possible to reconstruct
the Wigner distribution of the itinerant squeezed state
produced by the JPA. Using a similar setup, Toyli et al.
(2016) studied resonance fluorescence in the presence of
squeezed vacuum and found excellent agreement with
theoretical predictions (Carmichael et al., 1987). In this
way, it was possible to infer the level of squeezing (3.1 dB
below vacuum) at the input of the cavity.

The discussion has so far been limited to squeezing of a
single mode. It is also possible to squeeze a pair of modes,
which is often referred to as two-mode squeezing. Labeling
the modes as â1 and â2, the corresponding squeezing
transformation reads

S12(ζ) = e
1
2 ζ
∗â1â2− 1

2 ζâ
†
1â
†
2 . (165)

Acting on vacuum, S12 generates a two-mode squeezed
state which is an entangled state of modes â1 and â2. As
a result, in isolation, the state of one of the two entangled
modes appears to be in a thermal state where the role of
the Boltzmann factor exp(−β~ωi), with ωi=1,2 the mode
frequency, is played by tanh2 r (Barnett and Radmore,
2002). In this case, correlations and therefore squeezing is
revealed when considering joint quadratures of the form
X̂1 ± X̂2 and P̂1 ± P̂2, rather than the quadratures of a
single mode as in Fig. 33(a). In Josephson-based devices,
two-mode squeezing can be produced using nondegenerate
parametric amplifiers of different types (Roy and Devoret,
2016). Over 12 dB of squeezing below vacuum level be-
tween modes of different frequencies, often referred to as
signal and idler in this context, has been reported (Eich-
ler et al., 2014). Other experiments have demonstrated
two-mode squeezing in two different spatial modes, i.e. en-
tangled signals propagating along different transmission
lines (Bergeal et al., 2012; Flurin et al., 2012).

D. Remote Entanglement Generation

Several approaches to entangle nearby qubits have been
discussed in Sec. VII. In some instances it can, however,
be useful to prepare entangled states of qubits separated
by larger distances. Together with protocols such as
quantum teleportation, entanglement between distant
quantum nodes can be the basis of a quantum internet
(Kimble, 2008; Wehner et al., 2018). Because optical
photons can travel for relatively long distances in room
temperature optical fiber while preserving their quantum
coherence, this vision appears easier to realize at opti-
cal than at microwave frequencies. Nevertheless, given
that superconducting cables at millikelvin temperatures
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have similar losses per meter as optical fibers (Kurpiers
et al., 2017), there is no reason to believe that complex
networks of superconductor-based quantum nodes cannot
be realized. One application of this type of network is a
modular quantum computer architecture where the nodes
are relatively small-scale error-corrected quantum com-
puters connected by quantum links (Chou et al., 2018;
Monroe et al., 2014).

One approach to entangle qubits fabricated in distant
cavities relies on entanglement by measurement, which is
easy to understand in the case of two qubits coupled to
the same cavity. Assuming the qubits to have the same
dispersive shift χ due to their coupling to the cavity, the
dispersive Hamiltonian in a doubly rotating frame takes
the form

H = χ(σ̂z1 + σ̂z2)â†â. (166)

Crucially, the cavity pull associated with odd-parity states
{|01〉, |10〉} is zero while it is±2χ for the even-parity states
{|00〉, |11〉}. As a result, for χ � κ, a tone at the bare
cavity frequency leads to a large cavity field displacement
for the even-parity subspace. On the other hand, the
displacement is small or negligible for the odd-parity sub-
space. Starting with a uniform unentangled superposition
of the states of the qubits, homodyne detection therefore
stochastically collapses the system to one of these sub-
spaces thereby preparing an entangled state of the two
qubits (Lalumière et al., 2010), an idea that was realized
experimentally (Ristè et al., 2013).

The same concept was used by Roch et al. (2014) to
entangle two transmon qubits coupled to two 3D cavities
separated by more than a meter of coaxial cable. There,
the measurement tone transmitted through the first cavity
is sent to the second cavity, only after which it is mea-
sured by homodyne detection. In this experiment, losses
between the two cavities – mainly due to the presence
of a circulator preventing any reflection from the second
cavity back to the first cavity – as well as finite detection
efficiency was the main limit to the achievable concur-
rence, a measure of entanglement, to 0.35. Alternatively,
a protocol where losses reduce the success probability
but not the fidelity of the resulting entangled state has
been implemented by Narla et al. (2016). Although the
concurrence was only 0.1 in this particular realization, an
advantage of this approach is that it results in a larger
on/off ratio between the nodes of the network.

While the above protocol probabilistically entangles a
pair of qubits, a more powerful but also more experimen-
tally challenging approach allows, in principle, to realize
this in a fully deterministic fashion (Cirac et al., 1997).
Developed in the context of cavity QED, this scheme
relies on mapping the state of an atom strongly coupled
to a cavity to a propagating photon. By choosing its wave
packet to be time-symmetric, the photon is absorbed with
unit probability by a second cavity also containing an
atom. In this way, it is possible to exchange a quantum

state between the two cavities. Importantly, this protocol
relies on having a unidirectional channel between the cav-
ities such that no signal can propagate from the second to
the first cavity. At microwave frequencies, this is achieved
by inserting a circulator between the cavities. By first
entangling the emitter qubit to a partner qubit located
in the same cavity, the quantum-state transfer protocol
can be used to entangle the two nodes.

Variations on this more direct approach to entangle
remote nodes have been implemented in circuit QED (Ax-
line et al., 2018; Campagne-Ibarcq et al., 2018; Kurpiers
et al., 2018). All three experiments rely on producing
time-symmetric propagating photons by using the interac-
tion between a transmon qubit and cavity mode. Multiple
approaches to shape and catch propagating photons have
been developed in circuit QED. For example, Wenner et al.
(2014) used a transmission-line resonator with a tunable
input port to catch a shaped microwave pulse with over
99% probability. Time-reversal-symmetric photons have
been created by Srinivasan et al. (2014) using 3-island
transmon qubits (Gambetta et al., 2011a; Srinivasan et al.,
2011) in which the coupling to a microwave resonator is
controlled in time so as to shape the mode function of
spontaneously emitted photons. In a similar fashion,
shaped single photons can be generated by modulating
the boundary condition of a semi-infinite transmission line
using a SQUID (Forn-Dı́az et al., 2017) which effectively
controls the spontaneous emission rate of a qubit coupled
to the line and emitting the photon.

Alternatively, the remote entanglement generation ex-
periment of Kurpiers et al. (2018) rather relies on a
microwave-induced amplitude- and phase-tunable cou-
pling between the qubit-resonator |f0〉 and |g1〉 states,
akin to the fg-ge gate already mentioned in Sec. VII.B.3
(Zeytinoğlu et al., 2015). Exciting the qubit to its |f〉
state followed by a π-pulse on the f0 − g1 transition
transfers the qubit excitation to a single resonator photon
which is emitted as a propagating photon. This single-
photon wave packet can be shaped to be time-symmetric
by tailoring the envelope of the f0 − g1 pulse (Pechal
et al., 2014). By inducing the reverse process with a time-
reversed pulse on a second resonator also containing a
transmon, the itinerant photon is absorbed by this second
transmon. In this way, an arbitrary quantum state can
be transferred with a probability of 98.1% between the
two cavities separated by 0.9 m of coaxial line bisected by
a circulator (Kurpiers et al., 2018). By rather preparing
the emitter qubit in a (|e〉+ |f〉)/

√
2 superposition, the

same protocol deterministically prepares an entangled
state of the two transmons with a fidelity of 78.9% at a
rate of 50 kHz (Kurpiers et al., 2018). The same protocol
was extended to two transmon qubits located in separate
dilution refrigerators connected by a 5 meter-long cryo-
genic link (Magnard et al., 2020). The experiments of
Axline et al. (2018) and Campagne-Ibarcq et al. (2018)
reported similar Bell-state fidelities using different ap-
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proaches to prepare time-symmetric propagating photons
(Pfaff et al., 2017). The fidelity reported by the three
experiments suffered from the presence of a circulator
bisecting the nearly one meter-long coaxial cable sepa-
rating the two nodes. Replacing the lossy commercial
circulator by an on-chip quantum-limited version could
improve the fidelity (Chapman et al., 2017; Kamal et al.,
2011; Metelmann and Clerk, 2015). By taking advantage
of the multimode nature of a meter long transmission line,
it is also possible to deterministically entangle remote
qubits without the need of a circulator. In this way, a
bidirectional communication channel between the nodes
is established and deterministic Bell pair production with
79.3% fidelity has been reported (Leung et al., 2019).

E. Waveguide QED

The bulk of this review is concerned with the strong
coupling of artificial atoms to the confined electromagnetic
field of a cavity. Strong light-matter coupling is also
possible in free space with an atom or large dipole-moment
molecule by tightly confining an optical field in the vicinity
of the atom or molecule (Schuller et al., 2010). A signature
of strong coupling in this setting is the extinction of the
transmitted light by the single atom or molecule acting
as a scatterer. This extinction results from destructive
interference of the light beam with the collinearly emitted
radiation from the scatterer. Ideally, this results in 100%
reflection. In practice, because the scatterer emits in all
directions, there is poor mode matching with the focused
beam and reflection of ∼ 10% is observed with a single
atom (Tey et al., 2008) and ∼ 30% with a single molecule
(Maser et al., 2016).

Mode matching can, however, be made to be close to
ideal with electromagnetic fields in 1D superconducting
transmission lines and superconducting artificial atoms
where the artificial atoms can be engineered to essentially
only emit in the forward and backward directions along
the line (Shen and Fan, 2005). In the first realization of
this idea in superconducting quantum circuits, Astafiev
et al. (2010) observed extinction of the transmitted signal
by as much as 94% by coupling a single flux qubit to a
superconducting transmission line. Experiments with a
transmon qubit have seen extinction as large as 99.6%
(Hoi et al., 2011). Pure dephasing and non-radiative de-
cay into other modes than the transmission line are the
cause of the small departure from ideal behavior in these
experiments. Nevertheless, the large observed extinction
is a clear signature that radiative decay in the transmis-
sion line γr (i.e. Purcell decay) overwhelms non-radiative
decay γnr. In short, in this cavity-free system referred to
as waveguide QED, γr/γnr � 1 is the appropriate defi-
nition of strong coupling and is associated with a clear
experimental signature: the extinction of transmission by
a single scatterer.

Despite its apparent simplicity, waveguide QED is a rich
toolbox with which a number of physical phenomena have
been investigated (Roy et al., 2017). This includes Autler-
Townes splitting (Abdumalikov et al., 2010), single-photon
routing (Hoi et al., 2011), the generation of propagating
nonclassical microwave states (Hoi et al., 2012), as well
as large cross-Kerr phase shifts at the single-photon level
(Hoi et al., 2013).

In another experiment, Hoi et al. (2015) studied the
radiative decay of an artificial atom placed in front of a
mirror, here formed by a short to ground of the waveg-
uide’s center conductor. In the presence of a weak drive
field applied to the waveguide, the atom relaxes by emit-
ting a photon in both directions of the waveguide. The
radiation emitted towards the mirror, assumed here to
be on the left of the atom, is reflected back to interact
again with the atom after having acquired a phase shift
θ = 2×2πl/λ+π, where l is the atom-mirror distance and
λ the wavelength of the emitted radiation. The additional
phase factor of π accounts for the hard reflection at the
mirror. Taking into account the resulting multiple round
trips, this modifies the atomic radiative decay rate which
takes the form γ(θ) = 2γr cos2(θ/2) (Glaetzle et al., 2010;
Hoi et al., 2015; Koshino and Nakamura, 2012).

For l/λ = 1/2, the radiative decay rate vanishes corre-
sponding to destructive interference of the right-moving
field and the left-moving field after multiple reflections
on the mirror. In contrast, for l/λ = 1/4, these fields
interfere constructively leading to enhanced radiative re-
laxation with γ(θ) = 2γr. The ratio l/λ can be modi-
fied by shorting the waveguide’s center conductor with
a SQUID. In this case, the flux threading the SQUID
can be used to change the boundary condition seen by
the qubit, effectively changing the distance l (Sandberg
et al., 2008). The experiment of Hoi et al. (2015) rather
relied on flux-tuning of the qubit transition frequency,
thereby changing λ. In this way, a modulation of the
qubit decay rate by a factor close to 10 was observed. A
similar experiment has been reported with a trapped ion
in front of a movable mirror (Eschner et al., 2001).

Engineering vacuum fluctuations in this system has
been pushed even further by creating microwave photonic
bandgaps in waveguides to which transmon qubits are
coupled (Liu and Houck, 2016; Mirhosseini et al., 2018).
For example, Mirhosseini et al. (2018) have coupled a
transmon qubit to a metamaterial formed by periodically
loading the waveguide with lumped-element microwave
resonators. By tuning the transmon frequency in the band
gap where there is zero or only little density of states to
accept photons emitted by the qubit, an increase by a
factor of 24 of the qubit lifetime was observed.

An interpretation of the ‘atom in front of a mirror’ ex-
periments is that the atom interacts with its mirror image.
Rather than using a boundary condition (i.e. a mirror)
to study the resulting constructive and destructing inter-
ferences and change in the radiative decay rate, it is also
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possible to couple a second atom to the same waveguide
(Lalumière et al., 2013; van Loo et al., 2013). In this
case, photons (real or virtual) emitted by one atom can
be absorbed by the second atom leading to interactions
between the atoms separated by a distance 2l. Similar to
the case of a single atom in front of a mirror, when the
separation between the atoms is such that 2l/λ = 1/2,
correlated decay of the pair of atoms at the enhanced rate
2γ1 is expected (Chang et al., 2012; Lalumière et al., 2013)
and experimentally observed (van Loo et al., 2013). On
the other hand, at a separation of 2l/λ = 3/4, correlated
decay is replaced by coherent energy exchange between
the two atoms mediated by virtual photons (Chang et al.,
2012; Lalumière et al., 2013; van Loo et al., 2013). More-
over, adding a boundary condition acting as a mirror to a
device holding two artificial atoms as allowed Wen et al.
(2019) measuring a collective Lamb shift as large as 0.8%
of the qubit transition frequency. We note that these ex-
periments with transmon qubits agree with a Markovian
model of the interaction of the qubits with the waveguide
(Chang et al., 2012; Lalumière et al., 2013; Lehmberg,
1970). Deviations from these predictions are expected
as the distance between the atoms increases (Zheng and
Baranger, 2013).

Finally, following a proposal by Chang et al. (2012),
an experiment by Mirhosseini et al. (2019) used a pair
of transmon qubits to act as an effective cavity for a
third transmon qubit, all qubits being coupled to the
same waveguide. In this way, vacuum Rabi oscillations
between the dark state of the effective cavity and the qubit
playing the role of atom were observed, confirming that
the strong-coupling regime of cavity QED was achieved.

F. Single microwave photon detection

The development of single-photon detectors at infrared,
optical and ultraviolet frequencies has been crucial to
the field of quantum optics and in fundamental tests of
quantum physics (Eisaman et al., 2011; Hadfield, 2009).
High-efficiency photon detectors are, for example, one of
the elements that allowed the loophole-free violation of
Bell’s inequality (Giustina et al., 2015; Hensen et al., 2015;
Shalm et al., 2015). Because microwave photons have
orders of magnitude less energy than infrared, optical or
ultraviolet photons, the realization of a photon detector
at microwave frequencies is more challenging. Yet, photon
detectors in that frequency range would find a number of
applications, including in quantum information processing
(Kimble, 2008; Narla et al., 2016), for quantum radars
(Barzanjeh et al., 2015, 2020; Chang et al., 2019), and for
the detection of dark matter axions (Dixit et al., 2020;
Lamoreaux et al., 2013; Zheng et al., 2016).

Non-destructive counting of microwave photons local-
ized in a cavity has already been demonstrated experi-
mentally by using an (artificial) atom as a probe in the

strong dispersive regime (Gleyzes et al., 2007; Schuster
et al., 2007). Similar measurements have also been done
using a transmon qubit mediating interactions between
two cavities, one containing the photons to be measured
and a second acting as a probe (Johnson et al., 2010).
The detection of itinerant microwave photons remains,
however, more challenging. A number of theoretical pro-
posals have appeared (Fan et al., 2014; Helmer et al.,
2009; Koshino et al., 2013, 2016; Kyriienko and Sorensen,
2016; Leppäkangas et al., 2018; Romero et al., 2009; Royer
et al., 2018; Sathyamoorthy et al., 2014; Wong and Vav-
ilov, 2017). One common challenge for these approaches
based on absorbing itinerant photons in a localized mode
before detecting them can be linked to the quantum Zeno
effect. Indeed, continuous monitoring of the probe mode
will prevent the photon from being absorbed in the first
place. Approaches to mitigate this problem have been
introduced, including using an engineered, impedance
matched Λ-system used to deterministically capture the
incoming photon (Koshino et al., 2016), and using the
bright and dark states of an ensemble of absorbers (Royer
et al., 2018).

Despite these challenges, first itinerant microwave pho-
ton detectors have been achieved in the laboratory (Chen
et al., 2011; Inomata et al., 2016; Oelsner et al., 2017), in
some cases achieving photon detection without destroying
the photon in the process (Besse et al., 2018; Kono et al.,
2018; Lescanne et al., 2020a; Narla et al., 2016). Notably,
a microwave photon counter was used to measure a su-
perconducting qubit with a fidelity of 92% without using
a linear amplifier between the source and the detector
(Opremcak et al., 2018). Despite these advances, the real-
ization of a high-efficiency, large-bandwith, QND single
microwave photon detector remains a challenge for the
field.

IX. OUTLOOK

Fifteen years after its introduction (Blais et al., 2004;
Wallraff et al., 2004), circuit QED is a leading architecture
for quantum computing and an exceptional platform to ex-
plore the rich physics of quantum optics in new parameter
regimes. Circuit QED has, moreover, found applications
in numerous other fields of research. In closing this review,
we turn to some of these recent developments.

Because it is a versatile platform to interface quantum
devices with transition frequencies in the microwave do-
main to photons stored in superconducting resonators at
similar frequencies, the ideas of circuit QED are now used
to couple to a wide variety of physical systems. An exam-
ple of such hybrid quantum systems are semiconducter-
based double quantum dots coupled to superconducting
microwave resonators. Here, the position of an electron
in a double dot leads to a dipole moment to which the
resonator electric field couples. First experiments with
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gate-defined double quantum dots in nanotubes (Delbecq
et al., 2011), GaAs (Frey et al., 2012; Toida et al., 2013;
Wallraff et al., 2013), and InAs nanowires (Petersson et al.,
2012) have demonstrated dispersive coupling and its use
for characterizing charge states of quantum dots (Burkard
et al., 2020). These first experiments were, however, lim-
ited by the very large dephasing rate of the quantum dot’s
charge states, but subsequent experiments have been able
to reach the strong coupling regime (Bruhat et al., 2018;
Mi et al., 2017; Stockklauser et al., 2017). Building on
these results and by engineering an effective spin-orbit
interaction (Beaudoin et al., 2016; Pioro-Ladrière et al.,
2008), it has been possible to reach the strong coupling
regime with single spins (Landig et al., 2018; Mi et al.,
2018; Samkharadze et al., 2018).

When the coupling to a single spin cannot be made
large enough to reach the strong coupling regime, it can
be possible to rely on an ensemble of spins to boost the
effective coupling. Indeed, in the presence of an ensemble
of N emitters, the coupling strength to the ensemble is
enhanced by

√
N (Fink et al., 2009; İmamoğlu, 2009), such

that for large enough g
√
N the strong coupling regime can

be reached. First realization of these ideas used ensembles
of ∼ 1012 spins to bring the coupling from a few Hz to
∼ 10 MHz with NV centers in diamond (Kubo et al.,
2010) and Cr3+ spins in ruby (Schuster et al., 2010). One
objective of these explorations is to increase the sensitivity
of electron paramagnetic resonance (EPR) or electron spin
resonance (ESR) spectroscopy for spin detection with the
ultimate goal of reaching the single-spin limit. A challenge
in reaching this goal is the long lifetime of single spins
in these systems which limits the repetition rate of the
experiment. By engineering the coupling between the
spins and an LC oscillator fabricated in close proximity, it
has been possible to take advantage of the Purcell effect to
reduce the relaxation time from 103s to 1s (Bienfait et al.,
2016). This faster time scale allows for faster repetition
rates thereby boosting the sensitivity, which could lead
to spin sensitivities on the order of 0.1 spin/

√
Hz (Haikka

et al., 2017).

Mechanical systems operated in the quantum regime
also benefited from the ideas of circuit QED (Aspelmeyer
et al., 2014). An example is a suspended aluminium
membrane that plays the role of a vacuum gap capacitor
in a microwave LC oscillator. The frequency of this
oscillator depends on the separation between the plates of
the capacitor leading to a coupling between the oscillator
and the flexural mode of the membrane. Strong coupling
between mechanical motion and the LC oscillator has
been demonstrated (Teufel et al., 2011b), which allowed
to sideband cool the motion of the mechanical oscillator
to phonon occupation number as small as nphonon ∼ 0.34.
(Teufel et al., 2011a). Squeezed radiation generated by
a Josephson parametric amplifier was also used to cool
beyond the quantum backaction limit to nphonon ∼ 0.19
(Clark et al., 2017). Building on these ideas, entanglement

of the mechanical motion and the microwave fields was
demonstrated (Palomaki et al., 2013b) as well as coherent
state transfer between itinerant microwave fields and a
mechanical oscillator (Palomaki et al., 2013a).

Hybrid systems are also important in the context of mi-
crowave to optical frequency transduction in the quantum
regime. This is a very desirable primitive for quantum
networks, as it would allow quantum processors based on
circuit QED to be linked optically over large distances. A
variety of hybrid systems are currently being investigated
for this purpose, including electro-optomechanical, electro-
optic and magneto-optic ones (Higginbotham et al., 2018;
Lambert et al., 2019; Lauk et al., 2020; Zhu et al., 2020).
Two other hybrid quantum systems that have recently
emerged are quantum surface acoustic waves interacting
with superconducting qubits (Gustafsson et al., 2014; Ma-
nenti et al., 2017), and quantum magnonics where quanta
of excitation of spin-wave modes known as magnon are
strongly coupled to the field of a 3D microwave cavity
(Lachance-Quirion et al., 2019).

In addition to these emerging directions, the prospect
of realizing circuit QED-based fault-tolerant quantum
computers remains one of the main reasons for the en-
thusiasm towards this field of research. Although there
remain formidable challenges before large-scale quantum
computation becomes a reality, the increasing number of
qubits that can be wired up, as well as the improvements
in coherence time, gate fidelity and readout fidelity, does
suggests that it will eventually be possible to perform
computations on circuit QED-based quantum processors
that are out of reach of current classical computers. As a
testament to these advances, quantum supremacy on a
53-qubit device has already been claimed (Arute et al.,
2019), albeit on a problem of no immediate practical
interest, and 65-qubit devices are now available online.

Before fault-tolerant quantum computation becomes
a reality, there is much effort being deployed in finding
useful computational tasks which can be performed on
current and near-term noisy intermediate-scale quantum
(NISQ) devices (Preskill, 2018). First experimental steps
in this direction include the determination of molecular en-
ergies with variational quantum eigensolvers (Arute et al.,
2020; Colless et al., 2018; Kandala et al., 2017; O’Malley
et al., 2016) or boson sampling approaches (Wang et al.,
2020), and machine learning with quantum-enhanced fea-
tures (Havĺıček et al., 2019).

Engineered circuit QED-based devices also present an
exciting avenue toward performing analog quantum simu-
lations. In contrast to gate-based quantum computing ar-
chitectures, quantum simulators can be tailored to explore
a single specific problem. An example is arrays of res-
onators capacitively coupled to allow photons to hop from
resonator to resonator creating photonic materials (Caru-
sotto et al., 2020). Taking advantage of the flexibility of
superconducting quantum circuits, it is possible to create
exotic networks of resonators such as lattices in an effec-
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tive hyperbolic space with constant negative curvature
(Kollár et al., 2019). Coupling a qubit to each resonator
realizes a Jaynes-Cummings lattice exhibiting a quantum
phase transition similar to the superfluid-Mott insulator
transition in Bose–Hubbard lattices (Houck et al., 2012).
Moreover, the nonlinearity provided by capacitively cou-
pled qubits, or of Josephson junctions embedded in the
center conductor of the resonators, creates photon-photon
interactions. This leads to effects such as photon blockade
bearing some similarities to Coulomb blockade in meso-
scopic systems (Schmidt and Koch, 2013). Few resonator-
and qubit-devices are also promising for analog quantum
simulations and examples include the exploration of a
simple model of the light-harvesting process in photo-
synthetic complexes in a circuit QED device under the
influence of both coherent and incoherent drives (Potočnik
et al., 2018), and the simulation of dissipatively stabilized
strongly correlated quantum matter in a small photon
Bose–Hubbard lattice (Ma et al., 2019). Superconducting
quantum circuits with few qubits have also been used
in the context of digital quantum simulations including
fermionic models (Arute et al., 2020; Barends et al., 2015),
many-body localization (Roushan et al., 2017; Xu et al.,
2018) and spin models (Salathé et al., 2015).

An important goal for the field is to scale to larger num-
ber of qubits. The strategies to do so broadly fall in two
categories: i) Qubits coupled by oscillator busses, para-
metric couplers, or direct linear capacitive or inductive
couplers discussed in most of Sec. VII, and ii) The bosonic
approach where oscillators are coupled and controlled by
qubits discussed specifically in Sec. VII.C. While each
have their own sets of challenges, some are shared by
the two approaches (Blais et al., 2020). One such chal-
lenge lies in engineering architectures with high qubit
connectivity, something which can facilitate the execution
of complex quantum algorithms. A price to pay for in-
creased connectivity can, however, be frequency collisions
between the qubits, couplers and readout oscillators lead-
ing to unwanted interactions, something that is generally
referred to as frequency crowding. Related nuisances are
crosstalk where a drive intended for a given qubit or os-
cillator affects neighboring circuits, and coherent errors
where residual qubit-qubit dispersive interactions lead to
the accumulation of unwanted dynamical phases (Krin-
ner et al., 2020). In practice, these considerations limit
the number of qubits that can be coupled to the same
oscillator mode. One approach to minimize unwanted
interactions is to rely on modular architectures where
small quantum computers with limited numbers of qubits,
the modules, are interconnected by quantum links (see
Sec. VIII.D).

Another challenge is that increasing the qubit count
also comes with an increase in the number of required con-
trol lines. In current architectures, to every qubit may be
associated individual input-output lines (IO’s) for single-
qubit gates, two-qubit gates, and readout. This is to be

contrasted with classical computer architectures which,
even with billions of transistors, have only of the order
of 103 IO’s (Vandersypen et al., 2017). Frequency mul-
tiplexing where a single IO is used to control or readout
multiple qubits can be used to reduce the total number
of IO’s, see e.g. Fig. 27 where a common feedline (purple)
is used to dispersively measure several qubits. Even with
frequency multiplexing, routing control and readout sig-
nals to all the qubits and resonators is already challenging
in current processors with only a few tens of qubits. 3D
integration where signals are routed using through-silicon-
vias appears to be a promising path forward for both
2D planar circuits (Rosenberg et al., 2017) and the 3D
cavities often associated with the bosonic qubit approach
(Brecht et al., 2017, 2016).

Looking ahead, for fault-tolerant quantum computation
to become a reality, then in addition to addressing these
challenges, it remains crucial to continue to improve qubit
coherence times as well as gate and readout fidelities. This
may require the development of more robust qubits, and
of new mechanisms to control and measure these qubits.
In short, progress will likely require new ideas beyond
those discussed in this review, and we think that this is
one of the many reasons why the field of circuit QED will
continue being so exciting for years to come.
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Appendix A: Hamiltonian of a voltage biased transmon

An excellent introduction to the quantization of electro-
magnetic circuits can be found in Vool and Devoret (2017).
Here, we only give a brief introduction to this topic by
means of two examples that are used throughout this
review: a transmon qubit biased by an external voltage
source, and a transmon coupled to an LC oscillator.
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1. Classical gate voltage

Consider first the circuit shown in Fig. 34(a), illustrat-
ing a transmon biased by an external voltage Vg. Follow-
ing Vool and Devoret (2017), we start by associating a

branch flux Φi(t) =
∫ t
−∞ dt′ Vi(t′) to each branch of the

circuit, with Vi the voltage across branch i = A,B,C
indicated in Fig. 34(a). Because Kirchoff’s laws impose
constraints between the branch fluxes, these fluxes are not
independent variables and are therefore not independent
degrees of freedom of the circuit. Indeed, Kirchoff’s volt-
age law dictates that VC + VB + VA = Vg + Φ̇B + Φ̇A = 0
where we have used the sign convention dictated by the
(arbitrarily chosen) orientation of the arrows in Fig. 34(a).
This constraint allows us to eliminate ΦB in favor of ΦA.
Moreover, following Kirchoff’s current law, the currents
IA and IB flowing into and out of the node indicated
by the black dot in Fig. 34(a) obey IA = IB. This con-
straint can be expressed in terms of the branch fluxes
using the constitutive relations for the capacitances Cg
and CΣ = CS + CJ

QA = CΣΦ̇A, QB = CgΦ̇B , (A1)

as well as the Josephson current relation

IJ = Ic sinϕA, (A2)

where ϕA = (2π/Φ0)ΦA and Ic is the critical current. We
can thus write IA = Q̇A + IJ = CΣΦ̈A + Ic sinϕA and
IB = Q̇B = CgΦ̈B . Combining the above expressions, we
arrive at

CΣΦ̈A + Ic sinϕA = −Cg(Φ̈A + Φ̈C). (A3)

Here, Φ̇C = Vg is the applied bias voltage and the only
dynamical variable in the above equation is thus ΦA. As
can easily be verified, this equation of motion for ΦA can
equivalently be derived from the Euler-Lagrange equation
for ΦA with the Lagrangian

LT =
CΣ

2
Φ̇2
A +

Cg
2

(Φ̇A + Φ̇C)2 + EJ cosϕA, (A4)

where EJ = (Φ0/2π)Ic.
The corresponding Hamiltonian can be found by first

identifying the canonical momentum associated to the
coordinate ΦA, QA = ∂LT /∂Φ̇A = (CΣ +Cg)Φ̇A+CgΦ̇C ,
and performing a Legendre transform to obtain (Goldstein
et al., 2001)

HT = QAΦ̇A −LT =
(QA − CgVg)2

2(CΣ + Cg)
−EJ cosϕA, (A5)

where we have made the replacement Φ̇C = Vg and
dropped the term CgV

2
g /2 which only leads to an overall

shift of the energies. Promoting the conjugate variables
to non-commuting operators [Φ̂A, Q̂A] = i~, we arrive
at Eq. (22) where we have assumed that Cg � CΣ to
simplify the notation.

L CCSEJ

(a) (b)

Cg

ΦC ΦA

ΦB

Vg

ABBC

FIG. 34 (a) Voltage-biased transmon qubit with the three
relevant flux branches. (b) Replacing the classical voltage
source by a LC oscillator. The dashed arrows indicate the sign
convention.

2. Coupling to an LC oscillator

As a model for the simplest realization of circuit QED,
we now replace the voltage source by an LC oscillator, see
Fig. 34(b). The derivation follows the same steps as before,
now with Vg + Φ̇B − Φ̇A = 0 and IA + IB = 0 because of
the different choice of orientation for branch A. Moreover,
at the node labelled BC we have IB = IC . Eliminating
ΦB as before and using the constitutive relations for the
capacitance C and inductance L of the LC oscillator
to express the current through the oscillator branch as
IC = CΦ̈C + ΦC/L, we find

CΦ̈C +
ΦC
L

= Cg(Φ̈A − Φ̈C). (A6)

In contrast to the above example, ΦC is now a dynamical
variable in it’s own right rather than being simply set
by a voltage source. Together with Equation (A3) which
still holds, Eq. (A6) can equivalently be derived using the
Euler-Lagrange equations with the Lagrangian

L = LT + LLC , (A7)

where LT is given in Eq. (A4) and LLC = C
2 Φ̇2

C − 1
2LΦC .

It is convenient to write Eq. (A7) as L = T − V with
T = 1

2ΦTCΦ and V = ΦC/2L−EJ cosϕA where we have
defined the vector Φ = (ΦA,ΦC)T and the capacitance
matrix

C =

(
CΣ + Cg −Cg
−Cg C + Cg

)
. (A8)

Defining the vector of conjugate momenta Q =
(QA, QC)T , the Hamiltonian is then (Goldstein et al.,
2001)

H =
1

2
QTC−1Q + V

=
(C + Cg)

2C̄2
Q2
A +

Cg
C̄2

QAQC − EJ cosϕA

+
(CΣ + Cg)

2C̄2
Q2
C +

ΦC
2L

,

(A9)
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where we have defined C̄2 = CgCΣ + CgC + CΣC. The
limit Cg � CΣ, C results in the simplified expression

H '

(
QA +

Cg

C QC

)2

2CΣ
− EJ cosϕA +HLC ,

(A10)

with HLC =
Q2

C

2C + ΦC

2L the Hamiltonian of the LC circuit.
By promoting the flux and charge variables to operators,
and defining n̂ = Q̂A/2e, n̂r = (Cg/C)Q̂C/2e and diago-

nalizing ĤLC as in Sec. II.A, we arrive at Eq. (31) for a
single mode m = r.

Equation (A10) can easily be generalized to capacitive
coupling between other types of circuits, such as resonator-
resonator, transmon-transmon or transmon-transmission
line coupling by simply replacing the potential energy
terms −EJ cosϕA and Φ2

C/2L to describe the type of
circuits in question. This leads, for example, to Eq. (135)
for two capacitively coupled transmons after introducing
ladder operators as in Eqs. (25) and (26).

Appendix B: Unitary transformations

We introduce a number of unitary transformations often
employed in the field of circuit QED. The starting point
is the usual transformation

ĤU = Û†ĤÛ − i~Û† ˙̂
U, (B1)

of a Hamiltonian under a time-dependent unitary Û with
the corresponding transformation for the states |ψU 〉 =
Û†|ψ〉. Since the unitary can be written as Û = exp(−Ŝ)
with Ŝ an anti-Hermitian operator, a very useful result
in this context is the Baker-Campbell-Hausdorff (BCH)
formula, which holds for any two operators Ŝ and Ĥ

eŜĤe−Ŝ = Ĥ + [Ŝ,H] +
1

2!
[Ŝ, [Ŝ, Ĥ]] + . . .

=

∞∑

n=0

1

n!
Cn
Ŝ

[Ĥ],
(B2)

where in the last line we have introduced the shorthand

notation Cn
Ŝ

[Ĥ] =
n times

[Ŝ, [Ŝ, [Ŝ, . . . , Ĥ]]] and C0
Ŝ

[Ĥ] = Ĥ (Bois-

sonneault et al., 2009).

1. Schrieffer-Wolff perturbation theory

We often seek unitary transformation that diagonalize
the Hamiltonian of an interacting system. Exact diag-
onalization can, however, be impractical, and we must
resort to finding an effective Hamiltonian which describes
the physics at low energies using perturbation theory. A
general approach to perturbation theory which we follow
here is known as a Schrieffer–Wolff transformation (Bravyi

et al., 2011; Schrieffer and Wolff, 1966). The starting point
is a generic Hamiltonian of the form

Ĥ = Ĥ0 + V̂ , (B3)

with typically Ĥ0 some free Hamiltonian and V̂ a pertur-
bation. We divide the total Hilbert space of our system
into different subspaces such that Ĥ0 does not couple
states in different subspaces while V̂ does. The goal of
the Schrieffer-Wolff transformation is to arrive at an ef-
fective Hamiltonian for which the different subspaces are
completely decoupled.

The different subspaces, which we label by an index
µ, can conveniently be defined by a set of projection
operators (Cohen-Tannoudji et al., 1998; Zhu et al., 2013)

P̂µ =
∑

n

|µ, n〉〈µ, n|, (B4)

where |µ, n〉, n = 0, 1, . . . , is an orthonormal basis
for the subspace labeled µ. For the Schrieffer-Wolff
transformation to be valid, we must assume that V̂
is a small perturbation. Formally, the operator norm
||V̂ || = max|ψ〉 ||Ô|ψ〉|| should be smaller than half the
energy gap between the subspaces we intend to decouple;
see Eq. (3.1) of Bravyi et al. (2011). While V̂ is often
formally unbounded in circuit QED applications, the op-
erator is always bounded when restricting the problem to
physically relevant states.

The Schrieffer-Wolff transformation is based on finding

a unitary transformation Û = e−Ŝ which approximately
decouples the different subspaces µ by truncating the
Baker-Campbell-Hausdorff formula Eq. (B2) at a desired
order. We first expand both Ĥ and Ŝ in formal power
series

Ĥ = Ĥ(0) + εĤ(1) + ε2Ĥ(2) + . . . , (B5a)

Ŝ = εŜ(1) + ε2Ŝ(2) + . . . , (B5b)

where ε is a fiducial parameter introduced to simplify
order counting and which we can ultimately set to ε→ 1.
The Schrieffer-Wolff transformation is found by insert-
ing Eq. (B5) back into Eq. (B2), and collecting terms at
each order εk. We can then iteratively solve for S(k) and
Ĥ(k) by requiring that the resulting Hamiltonian ĤU is
block-diagonal (i.e. it does not couple different subspaces
µ) at each order, and the additional requirement that Ŝ
is itself block off-diagonal (Bravyi et al., 2011).

For the reader’s convenience, the explicit results up to
k = 2 are for the generator (with ε = 1)

〈µ, n|Ŝ(1)|ν, l〉 =
〈µ, n|V̂ |ν, l〉
Eµ,n − Eν,l

, (B6a)

〈µ, n|Ŝ(2)|ν, l〉 =
∑

k

(
〈µ, n|V̂ |ν, k〉
Eµ,n − Eν,l

〈ν, k|V̂ |ν, l〉
Eµ,n − Eν,k

− 〈µ, n|V̂ |µ, k〉
Eµ,n − Eν,l

〈µ, k|V̂ |ν, l〉
Eµ,k − Eν,l

) , (B6b)
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for ν 6= µ, while block-diagonal matrix element where
µ = ν are zero, and

Ĥ(0) = Ĥ0, (B7a)

Ĥ(1) =
∑

µ

P̂µV̂ P̂µ, (B7b)

〈µ, n|Ĥ(2)|µ,m〉 =
∑

ν 6=µ,l
〈µ, n|V̂ |ν, l〉〈ν, l|V̂ |µ,m〉

×1

2

(
1

Eµ,n − Eν,l
+

1

Eµ,m − Eν,l

)
,

(B7c)

for the transformed Hamiltonian (block off-diagonal ma-
trix element are zero, i.e., 〈µ, n|Ĥ(2)|ν,m〉 = 0 for µ 6= ν).
In these expressions, Eµ,n refers to the bare energy of

|µ, n〉 under the unperturbed Hamiltonian Ĥ0. An explicit
formula for Ĥ(k) up k = 4 can be found, e.g. in Winkler
(2003).

2. Schrieffer-Wolff for a multilevel system coupled to an
oscillator in the dispersive regime

As an application of the general result of Eq. (B7) we
consider in this section a situation that is commonly en-
countered in circuit QED: An arbitrary artificial atom
coupled to a single mode oscillator in the dispersive regime.
Both the transmon artificial atom and the two-level sys-
tem discussed in Sec. III.C are special cases of this more
general example. The artificial atom, here taken to be a
generic multilevel system, is described in its eigenbasis
with the Hamiltonian Ĥatom =

∑
j ~ωj |j〉〈j|. The full

Hamiltonian is therefore given by

Ĥ = ~ωrâ†â+
∑

j

~ωj |j〉〈j|+
(
B̂â† + B̂†â

)
, (B8)

where B̂ is an arbitrary operator of the artificial atom
which couples to the oscillator. For example, in the case
of capacitive coupling, it is proportional to the charge
operator with B̂ ∼ in̂, cf. Eq. (31).

By inserting resolutions of the identity Î =
∑
j |j〉〈j|,

the interaction term can be re-expressed in the atomic
eigenbasis as (Koch et al., 2007)

Ĥ = ~ωrâ†â+
∑

j

~ωj |j〉〈j|

+
∑

ij

~
(
gij |i〉〈j|â† + g∗ij |j〉〈i|â

)
,

(B9)

where ~gij = 〈i|B̂|j〉, and with gij = gji if B̂ = B̂†.
To use Eq. (B7), we identify the first line of Eq. (B9) as

Ĥ0 and the second line as the perturbation V̂ . The sub-
spaces labeled by µ are in this situation one-dimensional,
P̂µ = |µ〉〈µ|, with |µ〉 = |n, j〉 = |n〉 ⊗ |j〉, |n〉 an oscil-
lator number state and |j〉 an artificial atom eigenstate.

A straightforward calculation yields the second order re-
sult (Zhu et al., 2013)

Ĥdisp = eŜĤe−Ŝ ' ~ωrâ†â+
∑

j

~(ωj + Λj)|j〉〈j|

+
∑

j

~χj â†â|j〉〈j|,

(B10)
where

Λj =
∑

i

χij , χj =
∑

i

(χij − χji) , (B11)

with

χij =
|gji|2

ωj − ωi − ωr
. (B12)

Note that we are following here the convention of Koch
et al. (2007) rather than of Zhu et al. (2013) for the
definition of χij .

Projecting Eq. (B10) on the first two-atomic levels
j = 0, 1 with the convention σ̂z = |1〉〈1|− |0〉〈0| we obtain

Ĥdisp ' ~ω′râ†â+
~ω′q
2
σ̂z + ~χâ†âσ̂z, (B13)

where we have dropped a constant term and defined
ω′r = ωr + (χ0 + χ1)/2, ω′q = ω1 − ω0 + Λ1 − Λ0 and
χ = (χ1 − χ0)/2.

a. The transmon

The transmon capacitively coupled to an oscillator is
one example of the above result. From Eq. (34), we
identify the free Hamiltonian as

Ĥ0 = ~ωrâ†â+ ~ωq b̂†b̂−
EC
2
b̂†b̂†b̂b̂, (B14)

and the perturbation as

V̂ = ~g(b̂†â+ b̂â†). (B15)

In this nonlinear oscillator approximation for the trans-
mon, the transmon eigenstates are number states b̂†b̂|j〉 =
j|j〉, with j = 0, 1, . . . ,∞. Moreover, the coupling opera-

tor is B̂ = ~gb̂, and thus

gj,j+1 = g〈j|b̂|j + 1〉 = g
√
j + 1 = g∗j,j+1, (B16)

while all other matrix elements gij are zero. We conse-
quently find

Λj = χj−1,j =
jg2

ωq − EC/~(j − 1)− ωr
, (B17a)

χj = χj−1,j − χj,j+1

= g2

(
j

ωj − ωj−1 − ωr
− j + 1

ωj+1 − ωj − ωr

)
,

(B17b)
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for j > 0, while for j = 0 we have Λ0 = 0 and χ0 =
−χ01 = −g2/∆ where ∆ ≡ ωq − ωr. In the two-level
approximation of Eq. (B13), this becomes (Koch et al.,
2007)

ω′r = ωr −
χ12

2
= ωr −

g2

∆− EC/~
, (B18a)

ω′q = ω1 − ω0 + χ01 = ωq +
g2

∆
, (B18b)

χ = χ01 −
χ12

2
= − g2EC/~

∆ (∆− EC/~)
, (B18c)

which are the results quoted in Eq. (45).
Recall that this Schrieffer-Wolff perturbation theory

is only valid if the perturbation V̂ is sufficiently small.
Following Bravyi et al. (2011), a more precise statement is
that we require 2||V̂ || < ∆min, where ∆min is the smallest
energy gap between any of the bare energy eigenstates
|n〉 ⊗ |j〉, where |n〉 is a number state for the oscillator.

Here, V̂ = g(b̂†â+b̂â†) is formally unbounded but physical
states have finite excitation numbers. Therefore, replacing
the operator norm by 〈n, j|V̂ †V̂ |n, j〉1/2 and using ∆min =
|∆− jEC/~| corresponding to the minimum energy gap
between neighboring states |n, j〉 and |n ± 1, j ∓ 1〉, we
find that a more precise criterion for the validity of the
above perturbative results is

n� ncrit ≡
1

2j + 1

( |∆− jEC/~|2
4g2

− j
)
. (B19)

Setting j = 0, this gives the familiar expression ncrit =
(∆/2g)2, while setting j = 1 gives a more conservative
estimate. As quoted in the main text, the appropriate
small parameter is therefore n̄/ncrit, with n̄ the average
oscillator photon number. For the second order effective
Hamiltonian Ĥdisp to be an accurate description of the
system requires n̄/ncrit to be significantly smaller than
unity (it is difficult to make a precise statement but the
criteria n̄/ncrit . 0.1 is often used).

b. The Jaynes-Cummings model

It is interesting to contrast the above result in which the
transmon is treated as a multilevel system with the result
obtained if the artificial atom is truncated to a two-level
system before performing the Schireffer-Wolff transfor-
mation. That is, we start with the Jaynes-Cummings
Hamiltonian

ĤJC = ~ωrâ†â+
~ωq
2
σ̂z + ~g(â†σ̂− + âσ̂+). (B20)

Identifying the first two terms as the unperturbed Hamil-
tonian Ĥ0 and the last term as the interaction V̂ , we
can again apply Eq. (B7). Alternatively, the result
can be found more directly from Eq. (B13) by taking

g01 = g∗01 = g and all other gij = 0. The result is

ω′r = ωr, ω′q = ωq +
g2

∆
, χ =

g2

∆
, (B21)

with ∆ = ωq − ωr as before. We see that the results
agree with Eq. (B18) only in the limit EC/~ � ∆, g.
Importantly, since EC is relatively small compared to
the detuning ∆ in most transmon experiments, the value
for χ predicted from the Jaynes-Cummings model is far
from the multi-level case. Moreover, following the same
argument as above, we find that the Schrieffer-Wolff trans-
formation is valid for photon numbers n̄ < ncrit with
ncrit = (∆/2g)2 − j with j = 0, 1 for the ground and
excited qubit states, respectively.

It is interesting to note that the transformation used
here to approximately diagonalize the Jaynes-Cummings
Hamiltonian can be obtained by Taylor expanding the
generator Λ(N̂T ) of the unitary transformation Eq. (37)
which exactly diagonalizes ĤJC. This exercise also leads
to the conclusion that n̄/ncrit, with ncrit = (∆/2g)2, is
the appropriate small parameter. Alternatively, Ĥdisp can
also be obtained simply by Taylor expanding the diagonal
form Eq. (39) of ĤJC (Boissonneault et al., 2010).

3. Bogoliubov approach to the dispersive regime

We derive the results presented in Sec. III.C.2. Our
starting point is thus the transmon-resonator Hamilto-
nian Eq. (34) and our final result the dispersive Hamilto-
nian of Eq. (52).

It is first useful to express Eq. (34) as a sum of a linear
and a nonlinear part, Ĥ = Ĥlin + Ĥnl where

Ĥlin = ~ωrâ†â+ ~ωq b̂†b̂+ ~g(b̂†â+ b̂â†), (B22)

Ĥnl = − EC
2
b̂†b̂†b̂b̂. (B23)

The linear Hamiltonian Ĥlin can be diagonalized exactly
with the Bogoliubov transformation

Û = exp
[
Λ(â†b̂− âb̂†)

]
. (B24)

Under this unitary transformation, the annihilation op-
erators transform as Û†âÛ = cos(Λ)â+ sin(Λ)b̂, Û†b̂Û =

cos(Λ)b̂− sin(Λ)â, leading to

Ĥ ′lin = Û†ĤlinÛ = ω̃râ
†â+ ω̃q b̂

†b̂

+

[
g cos(2Λ)− ∆

2
sin(2Λ)

]
(â†b̂+ âb̂†),

(B25)

where

ω̃r = cos2(Λ)ωr + sin2(Λ)ωq − g sin(2Λ), (B26)

ω̃q = cos2(Λ)ωq + sin2(Λ)ωr + g sin(2Λ). (B27)
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To cancel the last term of Ĥ ′lin, we take Λ = 1
2 arctan(2λ)

with λ = g/∆ and ∆ = ωq − ωr to obtain the diagonal
form

Ĥ ′lin = ~ω̃râ†â+ ~ω̃q b̂†b̂, (B28)

with the mode frequencies

ω̃r =
1

2

(
ωr + ωq −

√
∆2 + 4g2

)
, (B29)

ω̃q =
1

2

(
ωr + ωq +

√
∆2 + 4g2

)
. (B30)

The same transformation on Ĥnl gives

Ĥ ′nl = Û†ĤnlÛ

= − EC
2

cos4(Λ)(b̂†)2b̂2 − EC
2

sin4(Λ)(â†)2â2

− 2EC cos2(Λ) sin2(Λ)â†âb̂†b̂

+ EC cos3(Λ) sin(Λ)
(
b̂†b̂ â†b+ H.c.

)

+ EC cos(Λ) sin3(Λ)
(
â†â âb̂† + H.c.

)

− EC
2

cos(Λ)2 sin(Λ)2[(â†)2b̂2 + H.c.].

(B31)
Note that, at this stage, the transformation is exact.

In the dispersive regime, we expand the mode frequencies
and Ĥ ′nl in powers of λ. For the nonlinear part of the
Hamiltonian, this yields

Ĥ ′nl = − EC
2

(b̂†)2b̂2 − λ4EC
2

(â†)2â2

− 2λ2EC â
†âb̂†b̂

+ λEC(b̂†b̂ â†b̂+ H.c.)

+ λ3EC(â†â âb̂† + H.c.)

− λ2EC
2

[(â†)2b̂2 + H.c.] +O(λ5).

(B32)

The magnitude λ2EC of the cross-Kerr term â†âb̂†b̂ in
this expression does not coincide with Eq. (3.12) of Koch
et al. (2007). To correct this situation, we apply an
additional transformation to eliminate the third line of
Eq. (B32). This term is important because it corresponds,

roughly, to an exchange interaction â†b̂ + b̂†â with an
additional number operator b̂†b̂ which distinguishes the
different transmon levels. To eliminate this term, we
apply a Schrieffer-Wolff transformation to second order
with the generator S = λ′(b̂†b̂ â†b̂ − H.c.) where λ′ =
λEC/[∆ + EC(1 − 2λ2)]. Neglecting the last two lines
of Eq. (B32) and omitting a correction of order λ2, we
arrive at Eq. (52) which agrees with Koch et al. (2007).

4. Off-resonantly driven transmon

We derive Eq. (134) describing the ac-Stark shift re-
sulting from an off-resonant drive on a transmon qubit.

Our starting point is Eq. (131) which takes the form

Ĥ(t) = ~ωq b̂†b̂−
EC
2

(b̂†)2b̂2 + ~ε(t)b̂† + ~ε∗(t)b̂, (B33)

where we have defined ε(t) = ε(t)e−iωdt−iφd . To account
for a possible time dependence of the drive envelope ε(t)
it is useful to apply the time-dependent displacement
transformation

Û(t) = eα
∗(t)b̂−α(t)b̂† . (B34)

Under Û(t), b̂ transforms to Û†b̂Û = b̂− α(t), while

Û† ˙̂
U = α̇∗(t)b̂− α̇(t)b̂†. (B35)

Using these expressions, the transformed Hamiltonian
becomes

Ĥ ′ = Û†HÛ − iÛ† ˙̂
U

' ~ωq(b̂†b̂− α∗b̂− αb̂†)

− EC
2

[(b̂†)2b̂2 + 4|α|2b̂†b̂)

+ ~εb̂† + ~ε∗b̂− i~(α̇∗b̂− α̇b̂†),

(B36)

where we have dropped fast-rotating terms and a scalar.
The choice

α̇(t) = −iωqα(t) + iε(t), (B37)

cancels the linear drive term leaving

Ĥ ′(t) ' [~ωq − 2EC |α(t)|2]b̂†b̂− EC
2

(b̂†)2b̂2. (B38)

Taking a constant envelope ε(t) = ε for simplicity such
that |α(t)|2 = (ε/δq)

2, the above expression takes the
compact form

Ĥ ′′(t) ' 1

2

(
~ωq − EC

Ω2
R

2δ2
q

)
σ̂z, (B39)

in the two-level approximation which is Eq. (134) of the
main text.

It is instructive to obtain the same result now using the
Schrieffer-Wolff approach. Assuming a constant envelope
ε(t) = ε and with φd = 0 for simplicity, our starting point
is

Ĥ = ~δq b̂†b̂−
EC
2

(b̂†)2b̂2 + ~ε(b̂† + b̂), (B40)

in a frame rotating at ωd and where δq = ωq − ωd. We
treat the drive as a perturbation and apply the second
order formula Eq. (B7) to obtain

ĤU ' ~δq b̂†b̂−
EC
2

(b̂†)2b̂2

+|ε|2
∑

j

(
j

δq − EC(j−1)
~

− j + 1

δq − ECj
~

)
|j〉〈j|

' ~δq b̂†b̂−
EC
2

(b̂†)2b̂2 − 2EC
|ε|2
δ2
q

b̂†b̂− |ε|
2

δq
,

(B41)
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where |j〉 is used to label transmon states, as before.
In the last approximation we have kept only terms to
O(jEC/δq). This agrees with Eq. (B38) for |α|2 = |ε/δq|2.
More accurate expressions can be obtained by going to
higher order in perturbation theory (Schneider et al.,
2018).

Appendix C: Input-output theory

Following closely Yurke (2004) and Yurke and Denker
(1984), we derive the input-output equations of Sec. IV.B.
As illustrated in Fig. 11, we consider an LC oscillator
located at x = 0 and which is capacitively coupled to
a semi-infinite transmission line extending from x = 0
to ∞. In analogy with Eq. (7), the Hamiltonian for the
transmission line is

Ĥtml =

∫ ∞

−∞
dx θ(x)

{
Q̂tml(x)2

2c
+

[
∂xΦ̂tml(x)

]2

2l

}
, (C1)

where c and l are, respectively, the capacitance and induc-
tance per unit length, and θ(x) the Heaviside step func-
tion. The flux and charge operators satisfy the canonical
commutation relation [Φ̂tml(x), Q̂tml(x

′)] = i~δ(x− x′).
On the other hand, the Hamiltonian of the LC oscillator

of frequency ωr = 1/
√
LrCr is Ĥs = Q̂2

r/(2Cr) + Φ̂2
r/(2Lr)

and the interaction Hamiltonian takes the form

Ĥint =

∫ ∞

−∞
dx δ(x)

Cκ
cCr

Q̂rQ̂tml(x), (C2)

where Cκ is the coupling capacitance between the oscilla-
tor and the line. In deriving Eq. (C2), we have neglected
renormalizations of c and Cr due to Cκ (c.f Appendix A).
The total Hamiltonian is thus Ĥ = Ĥs + Ĥtml + Ĥint =∫∞
−∞ dxH, where we have introduced the Hamiltonian

density H in the obvious way.
Using these results, Hamilton’s equations for the field

in the transmission line take the form

˙̂
Φtml(x) = θ(x)

Q̂tml(x)

c
+ δ(x)

Cκ
Crc

Q̂r, (C3)

˙̂
Qtml(x) = ∂x

[
θ(x)

∂xΦ̂tml(x)

l

]
. (C4)

These two equations can be combined into a wave equation
for Φ̂tml which, for x > 0, reads

¨̂
Φtml(x) = v2∂2

xΦ̂tml(x), (C5)

and where v = 1/
√
lc is the speed of light in the line. At

the location x = 0 of the oscillator, we instead find

¨̂
Φtml(x) = θ(x)v2

[
δ(x)∂xΦ̂tml(x) + ∂2

xΦ̂tml(x)
]

+ δ(x)
Cκ
Crc

˙̂
Qr,

(C6)

where we have used ∂xθ(x) = δ(x). We integrate the last
equation over −ε < x < ε and subsequently take ε → 0
to find the boundary condition

v2∂xΦ̂tml(x = 0) = − Cκ
Crc

˙̂
Qr. (C7)

From Eq. (C5), we find that the general solution
for the flux and charge fields, defined as Q̂tml(x, t) =
c∂tΦ̂tml(x, t), can be written for x > 0 as Φ̂tml(x, t) =
Φ̂L(x, t) + Φ̂R(x, t) and Q̂tml(x, t) = Q̂L(x, t) + Q̂R(x, t),
with the subscript L/R denoting left- and right-moving
fields

Φ̂L/R(x, t) =

∫ ∞

0

dω

√
~

4πωcv
e±iωx/v+iωtb̂†L/Rω

+ H.c.,

(C8a)

Q̂L/R(x, t) = i

∫ ∞

0

dω

√
~ωc
4πv

e±iωx/v+iωtb̂†L/Rω

−H.c.

(C8b)

In this expression, we introduced the operators b̂νω satis-
fying [b̂νω, b̂µω′ ] = δνµδ(ω − ω′) for ν =L, R.

Because of the boundary condition at x = 0, the left-
and right-moving fields are not independent. To see this,
we first note that, following from the form of Φ̂tml(x, t),

Ztml
∂xΦ̂tml(x, t)

l
=

˙̂
ΦL(x, t)− ˙̂

ΦR(x, t), (C9)

with Ztml =
√
l/c the characteristic impedance of the

transmission line. Noting that Î(x) = ∂xΦ̂tml(x) is the

current and defining voltages V̂L/R(x) =
˙̂
ΦL/R(x), we can

recognize Eq. (C9) as Ohm’s law. Using Eq. (C7), we
finally arrive at the boundary condition of Eq. (73) at
x = 0

V̂out(t)− V̂in(t) = Ztml
Cκ
Cr

˙̂
Qr, (C10)

where we have introduced the standard notation
V̂in/out(t) = V̂L/R(x = 0, t).

Using the mode expansion of the fields in Eq. (C8)
together with Eq. (4) for the LC oscillator charge operator
in terms of the ladder operator â, Eq. (C10) can be
expressed as

− i
∫ ∞

0

dω

√
ω

4πcv
e−i(ω−ωr)t

(
b̂Rω − b̂Lω

)

= − ωrZtml
Cκ
Cr

√
ωrCr

2
â,

(C11)

where we have neglected terms rotating at ω + ωr. After
some rearrangements, this can be written in the form of
the standard input-output boundary condition (Collett
and Gardiner, 1984; Gardiner and Collett, 1985)

b̂out(t)− b̂in(t) =
√
κâ(t), (C12)
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with input and output fields defined as

b̂in(t) =
i√
2π

∫ ∞

−∞
dω b̂Lωe

−i(ω−ωr)t, (C13a)

b̂out(t) =
i√
2π

∫ ∞

−∞
dω b̂Rωe

−i(ω−ωr)t. (C13b)

and the photon loss rate κ is given by

κ =
ZtmlC

2
κω

2
r

Cr
. (C14)

There are two further approximations which are made
when going from Eq. (C11) to Eq. (C12): We have ex-
tended the range of integration over frequency from [0,∞)
to (−∞,∞), and we have replaced the factor

√
ω by

√
ωr

inside the integrand. Both approximations are made
based on the assumptions that only terms with ω ' ωr
contribute significantly to the integral in Eq. (C11).

Moreover, we rewrite Eq. (C9) as

∂xΦ̂tml(x, t) = Ztml

[
Q̂L(x, t)− Q̂R(x, t)

]

= Ztml

[
2Q̂L(x, t)− Q̂tml(x, t)

]
,

(C15)

where in the last equality we have used Q̂tml(x, t) =
Q̂L(x, t) + Q̂R(x, t). At x = 0, this gives

Q̂tml(x = 0, t) = 2Q̂L(x = 0, t) +
1

v

Cκ
Cr
Q̂r(t). (C16)

Using this result in the Heisenberg representation equa-
tions of motion for the LC oscillator,

˙̂
Φr =

i

~
[Ĥ, Φ̂r] =

Q̂r

Cr
+
Cκ
Crc

Q̂tml(x = 0), (C17)

˙̂
Qr =

i

~
[Ĥ, Q̂r] = − Φ̂r

Lr
, (C18)

we arrive at a single equation of motion for the oscillator
charge

¨̂
Qr = −ω2

r

[
Q̂r +

Cκ
c

(
1

v

Cκ
Cr
Q̂r + 2Q̂in

)]
. (C19)

Again writing Q̂r in terms of bosonic creation and an-
nihilation operators, it is possible to express Eq. (C19)
in the form of the familiar Langevin equation Eq. (77)
for the mode operator â(t). This standard expression is
obtained after neglecting fast rotating terms and making
the following “slowly varying envelope” approximations
(Yurke, 2004)

d2

dt2
âe−iωrt ' − ω2

r âe
−iωrt − 2iωr ˙̂ae−iωrt, (C20a)

d

dt
âe−iωrt ' − iωrâe−iωrt, (C20b)

d

dt
b̂−ωe

−iωt ' − iωr b̂−ωe−iωt. (C20c)

Equation (77) can be viewed as a Heisenberg picture
analog to the Markovian master equation Eq. (70).
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Havĺıček, V., A. D. Córcoles, K. Temme, A. W. Harrow,

A. Kandala, J. M. Chow, and J. M. Gambetta, 2019, Nature
567(7747), 209.

Heeres, R. W., P. Reinhold, N. Ofek, L. Frunzio, L. Jiang,
M. H. Devoret, and R. J. Schoelkopf, 2017, Nature
Communications 8, 94, URL https://doi.org/10.1038/

s41467-017-00045-1.
Heeres, R. W., B. Vlastakis, E. Holland, S. Krastanov, V. V.

Albert, L. Frunzio, L. Jiang, and R. J. Schoelkopf, 2015,
Phys. Rev. Lett. 115, 137002, URL http://journals.aps.

org/prl/abstract/10.1103/PhysRevLett.115.137002.
Heinsoo, J., C. K. Andersen, A. Remm, S. Krinner, T. Wal-
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S. J. Glaser, 2005, Journal of Magnetic Resonance 172(2),
296, ISSN 1090-7807, URL http://www.sciencedirect.

com/science/article/pii/S1090780704003696.
Kimble, H., 1994, Advances in Atomic, Molecular, and Optical

Physics, Supplement 2, Cavity Quantum Electrodynamics
(Academic Press), chapter Structure and dynamics in cavity
quantum electrodynamics, pp. 203–267.

Kimble, H. J., 1998, Physica Scripta T76, 127.
Kimble, H. J., 2008, Nature 453(7198), 1023, ISSN 0028-0836.
Kirchmair, G., B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik,

E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and
R. J. Schoelkopf, 2013, Nature 495(7440), 205, ISSN 0028-
0836, URL http://dx.doi.org/10.1038/nature11902.

Kjaergaard, M., M. E. Schwartz, J. Braumüller,
P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D.
Oliver, 2020, Annual Review of Condensed Matter
Physics 11(1), 369, URL https://doi.org/10.1146/

annurev-conmatphys-031119-050605.
Kjaergaard, M., M. E. Schwartz, A. Greene, G. O. Samach,

A. Bengtsson, M. O’Keeffe, C. M. McNally, J. Braumüller,
D. K. Kim, P. Krantz, M. Marvian, A. Melville, et al., 2020,
arXiv e-prints , arXiv:2001.08838eprint 2001.08838.

Knill, E., and R. Laflamme, 1997, Phys. Rev. A 55, 900, URL
https://link.aps.org/doi/10.1103/PhysRevA.55.900.

Knill, E., R. Laflamme, and G. J. Milburn, 2001, Nature
409(6816), 46, ISSN 0028-0836.

Koch, J., T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, 2007, Phys. Rev. A 76(4), 042319, URL http:

//link.aps.org/abstract/PRA/v76/e042319.
Kochetov, B. A., and A. Fedorov, 2015, Phys. Rev. B

92, 224304, URL http://link.aps.org/doi/10.1103/

PhysRevB.92.224304.
Kollár, A. J., M. Fitzpatrick, and A. A. Houck, 2019, Nature

571(7763), 45.
Kono, S., K. Koshino, Y. Tabuchi, A. Noguchi, and Y. Naka-

mura, 2018, Nature Physics ISSN 1745-2481, URL https:

//doi.org/10.1038/s41567-018-0066-3.
Kono, S., Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki,

K. Usami, K. Koshino, and Y. Nakamura, 2017, Phys. Rev.
Lett. 119, 023602.

Korotkov, A. N., 2001, Phys. Rev. B 63, 115403, URL https:

//link.aps.org/doi/10.1103/PhysRevB.63.115403.
Koshino, K., K. Inomata, T. Yamamoto, and Y. Nakamura,

2013, Phys. Rev. Lett. 111, 153601, URL https://link.

aps.org/doi/10.1103/PhysRevLett.111.153601.
Koshino, K., Z. Lin, K. Inomata, T. Yamamoto, and Y. Naka-

mura, 2016, Phys. Rev. A 93, 023824, URL https://link.

aps.org/doi/10.1103/PhysRevA.93.023824.
Koshino, K., and Y. Nakamura, 2012, New J. Phys. 14(4),

043005, ISSN 1367-2630, URL http://stacks.iop.org/

1367-2630/14/i=4/a=043005.

http://link.aps.org/doi/10.1103/PhysRevLett.115.180501
http://link.aps.org/doi/10.1103/PhysRevLett.115.180501
http://link.aps.org/abstract/PRL/v101/e080502
http://link.aps.org/abstract/PRL/v101/e080502
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
https://link.aps.org/doi/10.1103/PhysRevApplied.8.044003
https://link.aps.org/doi/10.1103/PhysRevApplied.8.044003
https://link.aps.org/doi/10.1103/PhysRevLett.122.080503
https://link.aps.org/doi/10.1103/PhysRevLett.122.080503
http://link.aps.org/abstract/PRL/v102/e083602
http://www.nature.com/articles/ncomms12303
http://link.aps.org/doi/10.1103/PhysRevLett.112.190504
http://link.aps.org/doi/10.1103/PhysRevLett.112.190504
http://link.aps.org/abstract/PRL/v96/e127006
http://link.aps.org/abstract/PRL/v96/e127006
http://link.aps.org/doi/10.1103/PhysRevB.84.220503
http://link.aps.org/doi/10.1103/PhysRevB.84.220503
http://www.sciencedirect.com/science/article/B6X44-47RBX8S-5/2/31fc71946bd983d4a8fd06a69e777173
http://www.sciencedirect.com/science/article/B6X44-47RBX8S-5/2/31fc71946bd983d4a8fd06a69e777173
http://www.sciencedirect.com/science/article/B6X44-47RBX8S-5/2/31fc71946bd983d4a8fd06a69e777173
https://link.aps.org/doi/10.1103/PRXQuantum.1.010307
https://link.aps.org/doi/10.1103/PRXQuantum.1.010307
http://dx.doi.org/10.1038/nphys1893
http://dx.doi.org/10.1038/nphys1893
http://dx.doi.org/10.1038/nature23879
http://dx.doi.org/10.1038/nature23879
https://advances.sciencemag.org/content/6/41/eabb8780
https://advances.sciencemag.org/content/6/41/eabb8780
http://link.aps.org/doi/10.1103/PhysRevA.92.012302
http://link.aps.org/doi/10.1103/PhysRevA.92.012302
http://stacks.iop.org/1367-2630/15/i=12/a=123011
http://www.sciencedirect.com/science/article/pii/S1090780704003696
http://www.sciencedirect.com/science/article/pii/S1090780704003696
http://dx.doi.org/10.1038/nature11902
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://link.aps.org/doi/10.1103/PhysRevA.55.900
http://link.aps.org/abstract/PRA/v76/e042319
http://link.aps.org/abstract/PRA/v76/e042319
http://link.aps.org/doi/10.1103/PhysRevB.92.224304
http://link.aps.org/doi/10.1103/PhysRevB.92.224304
https://doi.org/10.1038/s41567-018-0066-3
https://doi.org/10.1038/s41567-018-0066-3
https://link.aps.org/doi/10.1103/PhysRevB.63.115403
https://link.aps.org/doi/10.1103/PhysRevB.63.115403
https://link.aps.org/doi/10.1103/PhysRevLett.111.153601
https://link.aps.org/doi/10.1103/PhysRevLett.111.153601
https://link.aps.org/doi/10.1103/PhysRevA.93.023824
https://link.aps.org/doi/10.1103/PhysRevA.93.023824
http://stacks.iop.org/1367-2630/14/i=4/a=043005
http://stacks.iop.org/1367-2630/14/i=4/a=043005


77

Krantz, P., M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavs-
son, and W. D. Oliver, 2019, Applied Physics Reviews 6(2),
021318.

Krastanov, S., V. V. Albert, C. Shen, C.-L. Zou, R. W. Heeres,
B. Vlastakis, R. J. Schoelkopf, and L. Jiang, 2015, Phys.
Rev. A 92, 040303, URL http://link.aps.org/doi/10.

1103/PhysRevA.92.040303.
Krinner, S., S. Lazar, A. Remm, C. Andersen, N. Lacroix,

G. Norris, C. Hellings, M. Gabureac, C. Eichler, and A. Wall-
raff, 2020, Phys. Rev. Applied 14, 024042, URL https://

link.aps.org/doi/10.1103/PhysRevApplied.14.024042.
Krinner, S., S. Storz, P. Kurpiers, P. Magnard, J. Heinsoo,

R. Keller, J. Lütolf, C. Eichler, and A. Wallraff, 2019, EPJ
Quantum Technology 6(1), 2.

Ku, J., X. Xu, M. Brink, D. C. McKay, J. B. Hertzberg,
M. H. Ansari, and B. L. T. Plourde, 2020, arXiv e-prints ,
arXiv:2003.02775eprint 2003.02775.

Kubo, Y., F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng,
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Lescanne, R., S. Deléglise, E. Albertinale, U. Réglade,
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Khan, M. C. Collodo, S. Gasparinetti, Y. Salathé,
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