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Despite major advances in climate science over the last 30 years, persistent uncertainties
in projections of future climate change remain. Climate projections are produced with
increasingly complex models which attempt to represent key processes in the Earth sys-
tem, including atmospheric and oceanic circulations, convection, clouds, snow, sea-ice,
vegetation and interactions with the carbon cycle. Uncertainties in the representation
of these processes feed through into a range of projections from the many state-of-the-
art climate models now being developed and used worldwide. For example, despite
major improvements in climate models, the range of equilibrium global warming due
to doubling carbon dioxide still spans a range of more than three. Here we review a
promising way to make use of the ensemble of climate models to reduce the uncertain-
ties in the sensitivities of the real climate system. The emergent constraint approach
uses the model ensemble to identify a relationship between an uncertain aspect of the
future climate and an observable variation or trend in the contemporary climate. This
review summarises previous published work on emergent constraints, and discusses the
huge promise and potential dangers of the approach. Most importantly, it argues that
emergent constraints should be based on well-founded physical principles such as the
fluctuation-dissipation theorem. It is hoped that this review will stimulate physicists to
contribute to the rapidly-developing field of emergent constraints on climate projections,
bringing to it much needed rigour and physical insights.
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I. INTRODUCTION

Numerical methods have become a standard technique
to simulate complex systems. The equations govern-
ing components of such systems may be well-known.
But their solutions cannot be solved analytically, cre-
ating a need for numerical approaches. Because of the
discretization of time and space inherent in numeri-
cal techniques, modelling complex systems must involve
ways to include effects of unresolved processes. Of-
ten there is no ‘first principles’ approach to do this.
Typically, the effects of unresolved processes are in-
cluded by resorting to quasi-empirical relationships be-
tween them and explicitly-resolved variables, otherwise
known as ‘parameterization’. There are usually multi-
ple defensible ways to parameterize unresolved processes.
Thus, independently developed models of the same com-
plex system might incorporate different parameterization
choices. The more models that are independently devel-
oped, the greater the diversity of approaches for mod-
elling the same natural system.

A classic example of this model diversity is the use of
numerical models of the atmosphere to predict hurricane
development. Initial conditions are imposed on a model
at some time, and it is integrated forward in time to pro-
duce simulations of critical hurricane features such as in-
tensity and track. This approach might be replicated for
multiple models incorporating different parameterization
choices, producing an ‘ensemble’ of hurricane forecasts.
The spread in the forecasts is a measure of the uncer-
tainty in the future hurricane behaviour, given the range

of plausible approaches to atmospheric modelling. Over
time, with enough hurricanes and associated predictions,
the various models can be evaluated for their prediction
skill. Certain parameterization choices may emerge as
producing systematically better predictions. The mod-
els can then be rebuilt or re-calibrated with the better
choices. Over time the ensemble will become more skil-
ful, with less spread. In fact, this is approximately the
process that has resulted in dramatic improvements not
only in hurricane prediction, but in weather forecasting
generally over the past seven decades.

Earth’s climate is another example of a complex system
whose governing equations can only be solved through
numerical methods. (In fact, the dynamical equations
for the atmospheric component of a climate model are
typically almost identical to those in the hurricane mod-
els referred to above.) As expected, there are a variety
of plausible approaches to parameterization in the com-
ponents of Earth system models (ESMs)1. Thus, mod-
elling groups throughout the world have built a few dozen
ESMs with different approaches to parameterization. Be-
cause of these differences, these models produce different
future climate states, even when the same scenario of ra-
diative forcing is imposed (associated, for example, with
an increase in greenhouse gases).

A classic climate change experiment is to double CO2

concentrations in the atmospheric component of an ESM,
and measure the surface warming that occurs after the
simulation has equilibrated (Manabe and Wetherald,
1975), an important number in climate science referred to
as equilibrium climate sensitivity (ECS). Reaching a true
equilibrium with a full complexity ESM requires long,
computationally expensive simulations of thousands of
years so ECS is usually estimated from shorter dura-
tion CO2 doubling experiments. When these experiments
are done with contemporary ESMs, the spread in values
across the ensemble of ESMs is large, between 1.5 and
6 degrees Celsius (Forster et al., 2019), although true
equilibrium values are higher (median 17% higher, Ru-
genstein et al. (2020)). The international climate science
community has organised itself to generate scenarios of
greenhouse gas (GHG) emissions that result in more re-
alistic future radiative forcing than the CO2 doubling ex-
periment. These correspond to scenarios of controls (or
lack thereof) on future GHG emissions (Moss et al., 2010;
Riahi et al., 2017). The scenarios are designed so that

1 State-of-the-art climate models are also commonly called gen-
eral circulation models (GCMs). This was particularly true in
the past when they consisted of just an atmosphere and some-
times an ocean. As time has progressed and more processes have
been included the term ESM has become more common (previ-
ously ESM may have referred to models of reduced complexity
featuring a carbon cycle). In this review we use the term ESM to
mean a full complexity dynamical state-of-the-art climate model
although this could be used interchangeably with GCM.
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the same radiative forcing time series is imposed on each
ESM. This allows for inter-comparison of ESM response
at some future specified time, say the end of the 21st
century. The ESM responses vary significantly across the
ensemble, an indicator of deep uncertainty in Earths’ cli-
mate future, simply due to the variety of plausible ways
to handle parameterization within ESM components.

If each ESM is treated as being an equally plausible
analogue of the real climate system, known as ‘model
democracy’, an undesirably large factor of three differ-
ence in future response to man-made GHG response cur-
rently results. Apart from the subject of this review,
there are several techniques used to reduce this uncer-
tainty and much research effort has been dedicated to
this important task. One approach is to give ESMs that
simulate the real world ‘better’ (according to some chosen
metric) more weight in the future projection. There are
also methods that do not use ESMs at all, by constrain-
ing future response from past observations and those that
use a combination of all of these. Many more details can
be found in e.g. Eyring et al. (2019); Sherwood et al.
(2020) and chapters 9 and 11-14 in IPCC (2013).

The approach taken to improve hurricane forecasting
models – to evaluate their performance and adjust pa-
rameterizations over the course of multiple prediction
cycles – is unfortunately impractical in the case of pro-
jecting future climate with ESMs. With future climate,
we have only one realisation of the real system’s trajec-
tory, and our mandate is to predict it as best we can
now. To compound the problem, the climate system
involves many more components than the atmosphere
alone, including the ocean, the land surface, glaciers and
ice sheets, and the marine and terrestrial biospheres. The
engineering required to model each component and allow
them to interact in a simulation is impressive. But the
components can interact with one another in information
flows are so complex that it is not easy to predict how
behavior in one component might affect behavior in an-
other. For example, parameterization reformulation or
adjustment in one component can significantly affect the
simulated state of another component for reasons that
are not always clear (e.g. Donner et al. (2011)).

To circumvent the impossibility of directly evaluating
ESMs for their ability to simulate a future climate state
which has not yet been observed, a new technique has
emerged over the past decade and a half, known as the
emergent constraint (EC) approach (Figure 1 shows a
schematic). The basic idea is to identify an element (X)
of the observable climate that varies significantly across
the ESM ensemble, and which exhibits a statistically-
significant relationship with variations in some important
variable (Y ) describing the ESM’s future simulated state.
If we call this relationship f , then Y = f(X) + ε, where
ε is a relatively small departure from f . Since X is an
element of the observable climate, it is a quantity that
can be measured. The relationship f may then place a

FIG. 1 Schematic showing the most common procedure used
to derive emergent constraints on Earth system sensitivities.
An ensemble of ESMs (each red dot is an individual ESM)
running the same experiment (the pdf on the right-hand y-
axis represents the spread in the ensemble) is used to identify
an emergent relationship (black dashed line with grey uncer-
tainty range), between an uncertain Earth system sensitivity
Y (y-axis) and an observed trend or variation X (x-axis). An
observation of the trend or variation (blue pdf on the x-axis)
can then be combined with the model-based emergent rela-
tionship to derive an emergent constraint on the Earth system
sensitivity (green pdf on the left-hand y-axis).

useful constraint on Y , provided the measurement uncer-
tainty in X is small compared to the range of simulated
values. This constraint is ‘emergent’ because the emer-
gent relationship f cannot be diagnosed from a single
ESM. It only becomes apparent when the full ensem-
ble is analysed. If the relationship f arises from model
physics or dynamics common to the ESMs, then reducing
the spread in X through reformulation or adjustment of
parameterizations ought to result in spread reduction in
Y . Corresponding reduction in the spread in other future
climate variables affected by Y should also occur. If the
process is repeated for enough variables X and Y , then
we can imagine that overall simulated spread in multiple
aspects of future climate would gradually be reduced. We
also note that ECs can be used directly to ascertain the
most likely values for a particular Y .

To further illustrate the concept, the subject of the
first published EC well established across multiple gen-
erations of ESMs, is used as an example (Hall and Qu,
2006). In this case, the future climate variable of interest
(Y ) is the snow albedo feedback (SAF), a climate mecha-
nism characterized by the retreat of highly reflective snow
cover under climate warming and the associated reduc-
tion in surface albedo, which amplifies warming and pro-
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motes further snow melt (Bony et al., 2006; Hall, 2004;
Thackeray and Fletcher, 2016). However, modern ESMs
disagree on the strength of this feedback, exhibiting a
nearly threefold spread (Qu and Hall, 2014; Thackeray
et al., 2018). SAF also occurs each spring in the current
climate when Northern Hemisphere snow cover recedes
from its winter peak to its summer minimum, enhanc-
ing seasonal warming in the process (X). A compari-
son between simulated SAF under climate change (Y )
and in the seasonal cycle context (X), uncovers a strong
linear relationship in three different generations of ESM
ensembles (Figure 2). The strength of this relationship
tells us that seasonal SAF is likely highly predictive of
climate change SAF, while the consistency across model
generations illustrates robustness to out-of-sample test-
ing. Furthermore, we can quantify the seasonal SAF us-
ing satellite-derived observations, thus allowing for model
bias to be properly assessed. For example, an ESM that
underestimates observed SAF in the seasonal context is
likely to underestimate SAF in future climate. Produc-
ing a more accurate SAF in ESMs is more than just an
academic exercise as variability in SAF can account for a
significant portion of uncertainty in 21st century projec-
tions of warming across Northern Hemisphere extratropi-
cal land (Qu and Hall, 2014). Thus, by reducing variabil-
ity in SAF we can expect similar reductions in projections
of regional warming. Figure 3 highlights the first appli-
cation of this and several other ECs from the literature
(pertaining to the carbon cycle and climate sensitivity),
all of which will be further discussed in Section V.

In this review article, we synthesise what is now under-
stood about ECs. We discuss how relationships f might
emerge in ESM ensembles in section II, as well as the
theory that underlies ECs in section III. In section IV
we note pitfalls associated with ECs and how to guard
against them. In section V we survey the ECs that have
been found in the climate system, and describe the statis-
tics that can be used to apply them rigorously in section
VI. Finally, we discuss how techniques similar to ECs
have been or might be used in other fields, and consider
the outlook for development of the technique going for-
ward in section VII before concluding in section VIII.

II. HOW RELATIONSHIPS IN MODEL ENSEMBLES
MIGHT ‘EMERGE’

ECs are possible because of ‘emergent relationships’
appearing in an ensemble of ESMs. An emergent re-
lationship, Y = f(X) + ε, between an element of the
observable climate X, something that can be measured
now in the real world, and the unknown future response
Y one wants to know, can then be used to place a con-
straint on the real world value of Y via observations of
X to give an EC. For example, in Cox et al. (2018a) the
observable was the variability in global annual mean sur-

FIG. 2 Emergent relationship between springtime snow
albedo feedback (SAF) across Northern Hemisphere land un-
der climate change (Y ) and an observable snow albedo feed-
back associated with the current climate’s seasonal cycle (X).
An observational estimate derived from satellite data is shown
as a vertical bar. Each point represents an individual cli-
mate model from the three most recent generations (CMIP3,
CMIP5, and CMIP6). Methodology for calculating SAF is
adapted from Qu and Hall (2014) (further details in Thack-
eray et al. (submitted))

face air temperature during roughly the last one hundred
years and the unknown future response was equilibrium
climate sensitivity (ECS, defined as the magnitude of the
Earth’s warming to doubled CO2 levels), one of the old-
est and most important numbers in climate science. De-
spite decades of research the latest ESMs still vary widely
in their predictions of this number by a factor of three
(Forster et al., 2019; Zelinka et al., 2020).

How might a relationship, f , between observable and
response ‘emerge’ in an ensemble of ESMs? In the Cox
et al. (2018a) EC on ECS, an analytically soluble energy
balance model, much reduced in complexity compared to
the ESMs in the ensemble, predicted a functional form
betweenX and Y for the emergent relationship (although
this provoked a lively debate, see Brown et al. (2018); Cox
et al. (2018b); Po-Chedley et al. (2018); Rypdal et al.
(2018); Williamson et al. (2019)). This mechanism from
high to low dimensional relationship emergence and oth-
ers are given in the following subsections. First we discuss
the differences in the types of climate model ensembles
commonly used to find emergent relationships.
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FIG. 3 Emergent constraints on Earth System sensitivities based on some key examples published in the literature: (a) snow-
albedo feedback, from snow seasonal cycle (Hall and Qu, 2006); (b) sensitivity of tropical land carbon to global warming,
from interannual variability in CO2 (Cox et al., 2013); (c) atmospheric CO2 concentration at 2060, from atmospheric CO2

concentration at 2010 (Hoffman et al., 2014); (d) CO2 fertilization of plant photosynthesis, from changes in the seasonal cycle
of CO2 (Wenzel et al., 2016); (e) sensitivity of tropical ocean primary production to warming, from interannual variability
(Kwiatkowski et al., 2017); (f) global ocean carbon sink in the 2090s, from the current day carbon sink in the Southern
Ocean (Kessler and Tjiputra, 2016); (g) Equilibrium climate sensitivity, from interannual variability of temperature (Cox et al.,
2018a); (h) Transient climate response, from increase in global mean temperature (Nijsse et al., 2020). In each case the emergent
constraint was reconstructed from data available in the literature or provided directly by the authors. The model ensemble
used in each original study is shown in the brackets after the panel title.
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A. Commonly used ESM ensembles: Multi-model (MME)
and perturbed physics (PPE) ensembles

Model simulations are not perfect reproductions of the
system they are designed to emulate. Ensembles of mod-
els are used to get a handle on (i) initial condition un-
certainty, (ii) parametric uncertainty and (iii) structural
uncertainty.

Uncertainty in the initial state is particularly impor-
tant for numerical weather prediction. As the equations
governing the weather are chaotic, forecast solutions with
very small differences in their initial states, equally likely
to be the ‘real’ initial state, can diverge strongly after just
a few days. This sensitivity to initial conditions means
running the weather model just once, even if the model
is a perfect reproduction of the real world, may produce
a very different forecast from the one actually experi-
enced. By running the same weather model many times
with different, but equally plausible initial states cho-
sen to sample the most unstable and divergent regions
of the model phase space, the likelihood of experiencing
a particular weather forecast can be constructed. En-
semble forecasting is now a standard tool in numerical
weather prediction (Epstein, 1969; Leith, 1974; Molteni
et al., 1996; Toth and Kalnay, 1993). Initial value en-
sembles in climate applications are usually used to assess
natural climate variability (Kay et al., 2015; Maher et al.,
2019).

Climatic variables are (generally speaking) the long
term statistics of weather and their prediction is less im-
pacted by initial state uncertainty relative to parametric
and structural uncertainties (Hawkins and Sutton, 2009,
2011). Parametric uncertainty arises from uncertainty in
the values of constants (‘parameters’) in quasi-empirical
relations (‘parameterizations’) used to model the effects
of unresolved, subgrid scale processes. Parametric un-
certainty can be sampled by running the same model
with different values of these parameters. ESM model
ensembles that do this are known as perturbed physics
or perturbed parameter ensembles (PPEs, Murphy et al.
(2004)). Examples of ESM PPEs are the climatepredic-
tion.net experiment (Stainforth et al., 2005) and the Met
Office’s Quantifying Uncertainties in Model Projections
(QUMP) ensemble (Collins et al., 2011) that both used
the HadCM3 ESM.

Structural uncertainty arises from uncertainty in the
functional form of equations. Although a lot of the model
equations in ESMs are well known, there are multiple,
equally defensible parameterization schemes for unre-
solved processes (e.g. convective precipitation and cloud
radiative properties) and so different equations can ap-
pear in different ESMs. ESM ensembles that sample
structural uncertainty are called multi-model ensembles
(MMEs) and include the coupled model intercomparison
project (CMIP) ensembles (Eyring et al., 2016; Meehl
et al., 2007a; Taylor et al., 2011) used to inform the Inter-

governmental Panel on Climate Change (IPCC) reports
(Collins et al., 2013; Cubasch et al., 2001; Meehl et al.,
2007b) and used extensively in much of the EC literature.

The CMIP MME ensembles consist of a number of dif-
ferent ESMs developed by different international groups
thus sampling structural uncertainty. Some CMIP
groups also submit multiple initial value runs and occa-
sionally multiple physics parameter runs performed with
the same model, sampling initial condition and paramet-
ric uncertainty to some degree. Numerical weather pre-
diction ensemble forecasting has also incorporated more
parametric and structural uncertainty into their forecast-
ing as time has gone on (Palmer, 2019).

Most ECs have derived from MME ensembles to date
although there are some examples from PPEs e.g. Knutti
et al. (2006). ECs derived from MMEs are, in our opin-
ion, the most believable. Each model in a MME could
be thought of as that particular group’s best guess of the
Earth system. PPEs on the other hand, generally vary
only a handful of parameters and thus sample just a few
dimensions of the model’s phase space. Due to the few
varied dimensions, relationships hard coded in the fixed
equations between model variables become easy to find
(based on the authors experience with the QUMP PPE
(Lambert et al., 2013)). These ECs need to be backed
up with physical arguments and ideally tested in MMEs.
Collins et al. (2011) found that long wave cloud feed-
back was highly correlated to climate sensitivity in the
QUMP HadCM3 PPE ensemble, however this correlation
was absent in (smaller sample size) MMEs. Yokohata
et al. (2010) also found that strong correlations in a PPE
with HadSM3 were not always present in the equivalent
MIROC3.2 PPE. Further, Yokohata et al. (2010) found
the mechanism for variations in climate sensitivity was
different.

Values of parameters chosen to correctly give the
proper balance between opposing processes in MMEs
could be skewed to one of the processes by simultane-
ously varying them in a PPE thus reducing the realism
of each ensemble member solution. However, PPEs can
be useful for testing ECs (e.g. Kamae et al. (2016); Wag-
man and Jackson (2018) and section IV.I) and quantify-
ing parametric uncertainty (section VII.F).

B. Null hypothesis: Emergent relationships occur by
chance

A starting null hypothesis is that emergent relation-
ships occur by chance and are not indicative of a deeper
mechanistic relationship (Hall et al., 2019). Data min-
ing an ESM ensemble for high correlations between pairs
of variables may fall into this category (see also section
IV.A). If an ESM ensemble is reasonably small and the
number of variables output by each ESM is high, the ex-
pected number of variable pairs with high correlation is
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high purely by chance (Caldwell et al., 2014).

More precisely, an ESM labelled by the index i in an
ensemble of n ESMs i = {1, 2, . . . , n} calculates a large
number m of different variables X l, each variable la-
belled with index l and l = {1, 2, . . . ,m}. In this data
mining scenario, a pair of variables (X l

i , X
k
i ) is chosen

for the prospective emergent constraint, one for the ob-
servable X l and the other, the response Xk one wishes
to know in the real world (previously written Y ). In
an indiscriminate data mining approach, every possible
pair of variables are used to create 1

2m(m − 1) data
sets, each labelled Skl. Each dataset has n elements,
Skl = {(X l

1, X
k
1 ), (X l

2, X
k
2 ), . . . , (X l

n, X
k
n)} with each el-

ement corresponding to one of the n ESMs. If the pair
of variables making up Skl is a good candidate for an
emergent relationship and we assume this relationship is
linear, then the correlation rkl in Skl should be high.
Correlation here is defined as rkl = cov(X l, Xk)/σXlσXk

and σX is the standard deviation of X.

The number of ESMs in a model ensemble, n, is typi-
cally small being around 10 to 40 in the state-of-the-art
CMIP ensembles although numbers increase with each
successive generation (Eyring et al., 2016; Meehl et al.,
2007a; Taylor et al., 2011). If we calculate the correlation
rkl within every one of the 1

2m(m− 1) possible datasets,
some will have high correlations purely by chance. The
likelihood increases as the number of models in the en-
semble n gets smaller giving less data points in each
Skl. While the fraction of datasets with high correlations
|r| > |rhigh|, does not increase as the number of variables
m gets larger, the total number of datasets with cor-
relation above |rhigh| will increase simply because there
are more possible variable pairs to correlate. Thus one
must be careful that any prospective emergent constraint
makes physical sense, particularly in current, small ESM
ensembles to avoid this pitfall.

To illustrate this point in a worst case type scenario
where every ESM output variable is uncorrelated to any
other output variable or any of the other ESMs, we can
calculate the correlations expected between all possible
pairs of variables as a function of ensemble size n. Figure
4 shows the fraction of all possible datasets with a par-
ticular correlation for a ‘toy’ ESM ensemble of n models
where each of the toy ESMs is a modelled as a random
number generator. This is a rather extreme and unre-
alistic example, each ESM producing m random output
variables, the lth one labelled X l

i , drawn from a normal
distribution with unit standard deviation, X l

i ∈ N (0, 1).
Even though there are no mechanistic relationships in
this example by construction, a fraction of the datasets
have strong correlations, particularly in smaller ensemble
sizes (small n). This is purely by chance.

FIG. 4 High correlations between pairs of variables across
small ESM ensembles are expected by chance. To illustrate
this point, the fraction of all possible pairs of variables across
a ‘toy’ ESM ensemble of size n plotted against correlation r.
Each ESM is not a real ESM; it is represented by a random
variable drawn from a normal distribution of unit standard
deviation and each of the n ESMs produces m = 100 out-
put variables giving 4950 different possible variable pairs to
correlate with each other. This example is designed to be a
worst case scenario yet still shows calculated correlation even
between uncorrelated objects can be large in small enough en-
sembles. In the left panel, histograms of fraction of datasets
with correlation falling in a particular interval are plotted. In
the right hand panel, the total fraction of datasets with mag-
nitude of correlation greater than |r| is plotted. Ensemble size
is varied for toy ESM ensemble sizes of n = 5, n = 30 and
n = 100,

C. Low dimensional relationships ‘emerge’ from high
dimensional ESMs

In the last example even though all n ×m ‘toy’ ESM
variables in the ensemble were uncorrelated from each
other by construction, high correlations were still possi-
ble. This is more likely in small ensembles. In reality
there are mechanistic relationships between X and Y in
any particular ESM. Real ESMs are not random number
generators, the output of a ESM is the numerical solution
of a large set of coupled, nonlinear equations codifying re-
lationships between variables representing the ocean and
atmosphere dynamics and thermodynamics and biogeo-
chemical feedbacks2. However the exact relationship be-
tween any pair of X and Y is not solely a function of
just these two variables, it is generally also a function of
many others that prescribe the exact state of the ESM
at every point in space and time on the ESM grid. The
minimal number of (non-unique) variables, d, required
to describe the exact state of the ESM at time t can be
thought of as a point in d dimensional phase space with
coordinates (x1, x2, . . . , xd) and in the case of a ESM, the

2 Many of these equations are well known from other fields of
physics such as the fluid dynamics Navier-Stokes equations. See
for example Ghil and Lucarini (2020) and references within for
the equations that commonly feature in ESMs.
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dimension of this space is extremely high3. As the ESM
state changes with time, a trajectory is drawn between
these phase space coordinates connecting the past and
present states. Variables describing the precise state of
the ESM such as temperature or precipitation, the X and
the Y , may be functions of all the d phase space coordi-
nates as well as time (d+1) i.e. X = fX(t, x1, x2, . . . , xd)
and Y = fY (t, x1, x2, . . . , xd).

Although the mechanistic relationship between X and
Y is generally a function of all d+1 coordinates, climatic
variables of interest are usually, although not exclusively,
long term temporal and/or spatial averages that can be
thought of as (time invariant) attractors of the phase
space reducing the information relative to a precise con-
figuration at any one time. In many circumstances the
mechanistic relation between X and Y can be approxi-
mated to a good degree by a much smaller dimensional
subset of the full phase space reducing the effective di-
mension.

The success of statistical mechanics and science in gen-
eral4 relies on this effective dimension reduction, that
certain properties of systems with many degrees of free-
dom can be well approximated by fewer state parameters.
For example, a container of gas is, as far as we know at
present, most completely described by the equations of
quantum mechanics. In principle, one could solve these
equations for each of the N gas molecules, at each po-
sition and time in the container. The dimension of this
space increases exponentially with N , requiring a huge
number of degrees of freedom to specify the state ex-
actly even for just a handful of molecules. This could be
useful if the question one wanted to answer required de-
tailed knowledge of the full quantum state. However, if
we ‘only’ want to know the configuration of positions and
momenta of the gas molecules, one can use an approx-
imation of the quantum theory. Treating the gas as a
bunch of identical spheres each with a mass and a differ-
ent position and momentum, the state can be described
by a point in 6N dimensional phase space, a reduction
in the phase space dimension yet still a massive number
of dimensions for a realistic gas.

Generally detailed knowledge of a precise system state
is not desired or required. Bulk properties describing

3 To give an idea of a lower bound on the dimension of the phase
space required to describe a typical CMIP6 era ESM, the atmo-
sphere is typically cut into a total number of ∼ 200×200×100 =
4 × 106 spatial cubes. A single atmospheric prognostic variable
will need at least this many phase space dimensions at each point
in time to specify it exactly. A lower estimate for the number of
prognostic variables required just to specify the physical state of
the atmosphere is O(10). This already gives d ∼ 107 even before
including the ocean, land and biogeochemisty.

4 Low dimensional models can often mimic the responses of more
complex ones to a good approximation and this is essentially why
science is successful i.e. we can comprehend and predict the high
dimension real world using (relatively) simple models.

the mean overall state are a useful way of reducing in-
formation and making sense of complex systems. Going
back to the container of gas, kinetic theory provides a
way of mapping the many degrees of freedom from each
of the molecules to the few bulk parameters of the ideal
gas law, under reasonable assumptions (see for exam-
ple Schekochihin (2015)). That is, the 6N dimensions
effectively reduces to the three encoded by the relation-
ship pV = nRT . The bulk variable pressure p felt as a
force per unit area on the container wall and is related to
how often and how vigorously on average molecules with
mean square velocity 〈v2〉 hit the sides of the container
(p = n

3V 〈v
2〉, n is the number of moles in the container

of volume V ), whereas the temperature T is a measure
of the most probable kinetic energy of a molecule in the
container. R is the ideal gas constant. This approach
works well when N is large as one finds more of the 6N
states correspond to the ideal gas law.

Effective dimension reduction in ESMs can also hap-
pen when we want answers to questions about bulk mean
states of the climate. For instance, relations between
bulk variables such as the annual global mean surface
air temperature and the net incoming radiation are well
modelled by the few degrees of freedom in a simple energy
balance model (see for example Gregory (2000); Hassel-
mann (1976); and Wigley and Raper (1990)) even though
the exact state of a ESM is given by all prognostic vari-
ables at every point and multiple times on its spatial
grid. If one wanted to ask detailed questions about the
state of a ESM such as ‘How many days in March does
it rain more than x mm in Madagascar?’ then the full
ESM theory is best placed, however if the question was
‘How much does the global mean temperature increase
from a spatially uniform doubling of atmospheric CO2’,
a lot of that extra detail seems unnecessary. The analogy
we attempt to present here is that ESMs are analogous
to the solutions to the laws of quantum mechanics and
the effective, reduced dimension relationship for a par-
ticular ESM i, Y = fi(X) + ε is analogous to the ideal
gas law. The analogy is far from perfect, ESMs are of
course not as simple as containers of large numbers of
identical molecules and there is, as yet, no such elegant
route between the two solutions provided by the statis-
tical mechanical or kinetic theory recipes. The best can-
didates for ESM ideal gas laws to serve as theoretical
bases for emergent relationships are simplified, analyti-
cally soluble models of the climate or its subsystems such
as the energy balance models previously mentioned (Gre-
gory, 2000; Hasselmann, 1976; Wigley and Raper, 1990).
These act more as testable, plausible hypotheses of the
bulk behaviour of ESMs rather than derivations from the
basic laws that constitute them.

So far we have discussed how a physically plausi-
ble, mechanistic, low dimensional relationship fi be-
tween X and Y may appear from a particular ESM i,
Y = fi(X) + ε. We have not yet discussed how low di-



9

mensional relationships, the emergent relationship, could
appear across an ensemble of ESMs. Although each ESM
is different, they should be equally plausible models of
the (X,Y ) relationship in the real world and it should
not be a surprise that ESM solutions across a model en-
semble should be also be mechanistically related. This is
because many of equations are based on well established
and tested physics (such as the Navier-Stokes equations)
and are common amongst ESMs. Indeed, if the all the
equations were well known and could be numerically in-
tegrated exactly, the ESMs should produce identical out-
puts (and the problem of climate modelling would be
solved and emergent relationships would disappear).

However, some equations can not be exactly numeri-
cally integrated due to limitations on temporal and spa-
tial resolution. One then has to parameterize subgrid
scale processes and this may be a source of difference
between ESM solutions, each model giving a different
(X,Y ) pair (see section II.A). Although they are our
best attempts at understanding the climate, some ESM
responses diverge on important questions. Such a sce-
nario is where the emergent constraint approach may be
helpful. To have a chance of finding an emergent relation-
ship, the set of n (Xi, Yi) data points should be different
(i.e. (Y1, X1) 6= (Y2, X2)) and span a wide enough range
for the emergent relationship to become apparent. The
model relationship fi also needs to be shared amongst
the model ensemble (fi(X) ≈ fj(X)∀i, j = {1, 2, . . . , n}).
Provided such a relationship exists, the emergent rela-
tionship f(X) can be determined. If this model relation
is also shared by the real world, the real world’s response
can also be determined (along with its uncertainty) to
give an emergent constraint (see section II.E).

D. Range in response due to the same physical process
having a wide range across ESMs

A related mechanism for a low dimensional relationship
to emerge between X and Y occurs when the magnitude
of the same physical process, correlated to the observ-
able X, differs appreciatively across the ESM ensemble
and the magnitude of this process heavily determines the
size of the response Y . This is also a case of effective di-
mension reduction - the range in response is dominated
by the dimensions of phase space of just that physical
process.

An example of this happening was provided by Cald-
well et al. (2018) who evaluated ECs on equilibrium cli-
mate sensitivity (ECS) in the CMIP3 and CMIP5 ESM
ensembles. That is, the targeted unknown response, Y ,
amongst these ECs was the same, ECS, although differ-
ent observables X were found to be well correlated to
it. Examples of a few of the X used in the different
ECs were the strength of resolved-scale mixing between
the boundary layer and lower troposphere in the trop-

ical east Pacific and Atlantic (Sherwood et al., 2014),
error in the distribution of cloud-top pressure and opti-
cal thickness for regions between 60oN/S (Klein et al.,
2013), fraction of tropical clouds with tops below 850 mb
whose tops are also below 950 mb (Brient et al., 2016) and
variability in global mean air temperature (Cox et al.,
2018a). Caldwell et al. (2018) showed all of these observ-
ables were also highly correlated to the short wave (SW)
cloud feedback, a strong and uncertain feedback on the
resulting global temperature. The SW cloud feedback
in turn was shown to be highly correlated to intermodel
variations in ECS within the CMIP5 ensemble. To para-
phrase Caldwell et al. (2018), ‘...intermodel variations in
cloud feedback were so big that they left a strong im-
print on intermodel variations in ECS. This means that
fields that are strongly correlated with ECS are probably
correlated with the SW cloud feedback (and vice versa).’

E. What is needed for an EC?

In addition to having an emergent relationship in a
model ensemble, an EC also ideally requires a few other
things to be useful.

1. Observable (X) range and uncertainty

The range of X in the ESM ensemble should be large
relative to the uncertainty in the value of the real world
observable. Uncertainty in each of the model X should
also be small relative to the range in model X. Ideally
the real world value of the observable Xobs should also
fall well within the range of values in the ESM ensemble
to avoid extrapolation issues.

2. Response (Y ) range and uncertainty

One would like a large range in the values of the ESM
ensemble responses relative to the uncertainty in each of
the individual ESM responses. This reduces the uncer-
tainty in the real world value of Y derived from the EC.

3. Relationship between X and Y

A particular ESM labelled i should have a physically
plausible relationship fi between the observable and re-
sponse Y = fi(X) + ε. It should be based on a simpli-
fied theory that predicts a functional response and has
clear, testable assumptions that can be falsified indepen-
dently. In addition, all models in the ensemble should
share roughly the same relation between observable and
response i.e. fi = fj . The stronger this relationship is,
the more useful the emergent constraint due to the po-
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tential uncertainty reduction in Y . And this relationship
should also be shared by the real world.

4. Large ensemble size n

Ideally you would have a large number of independent
ESMs in your ensemble (larger sample, lower error in
estimates, less chance for high correlations by chance).
See section IV.E for further discussion of ESM ensemble
independence.

III. UNDERLYING THEORY FOR EMERGENT
CONSTRAINTS BASED-ON TEMPORAL VARIABILITY

Many published EC studies relate the longer-term sen-
sitivity of interest to aspects of the mean climate sim-
ulation in models - see Table I (Brient and Schneider,
2016; Kidston and Gerber, 2010; Lin et al., 2017; Li-
pat et al., 2017; Massonnet et al., 2012; Selten et al.,
2020; Siler et al., 2018; Simpson and Polvani, 2016; Tian,
2015; Volodin, 2008). However, a growing number of
papers are also now relating Earth System sensitivities
to observable temporal variations, such as trends (Boe
et al., 2009; Jiménez-de-la Cuesta and Mauritsen, 2019;
Nijsse et al., 2020; Tokarska et al., 2020), interannual
variability (Clement et al., 2009; Cox et al., 2018a, 2013;
Kwiatkowski et al., 2017; O’Gorman, 2012; Qu et al.,
2015; Wenzel et al., 2014) and seasonal cycles (Hall and
Qu, 2006; Knutti et al., 2006; Qu and Hall, 2014; Thack-
eray and Hall, 2019; Wenzel et al., 2016; Zhai et al.,
2015). This section discusses the theoretical basis for
emergent constraints based on such temporal variations.

In the case of changes in relatively fast variables, such
as seasonal snow-cover (Qu and Hall, 2007), or marine
phytoplankton concentration (Kwiatkowski et al., 2017),
there may be a fairly straightforward near one-to-one
relationship between the short-term variability and the
longer-term sensitivity, because the fast variable will be
in a quasi-equilibrium state even with short-term cli-
mate variations. For slower variables (such as the for-
est carbon storage), short-term variations are more likely
to measure fluxes (or equivalently the rate of change
of the store). In this case, finding a constraint on fu-
ture changes in the store requires multiplying the flux
sensitivity to short-term variations by a characteristic
timescale for each model. In some cases, the characteris-
tic timescale may be similar across the model spectrum,
leading to a simple emergent relationship between the
short-term flux sensitivity and the long-term sensitivity
of the store (Cox et al., 2013; Wenzel et al., 2014). In
general though, converting a flux sensitivity to a store
sensitivity requires an independent estimate of the char-
acteristic timescale of the store, which itself requires a
theoretical basis (Williamson et al., 2019).

The Fluctuation-Dissipation Theorem (FDT) provides
one such theoretical framework (Kubo, 1966). The FDT
relates the sensitivity of a system to a small external
forcing to the response of the same system to its own
internally-generated fluctuations. FDT is therefore a po-
tential theoretical basis for ECs, as it links the natu-
ral variability of a system to its sensitivity. The size
of the forcing is important because the theorem only
strictly applies to near-equilibrium linear systems. Nev-
ertheless, FDT-based approaches have had a huge im-
pact in statistical physics, including Einstein’s work on
Brownian motion (Einstein, 1905), and the understand-
ing of Johnson-Nyquist noise in electrical circuits (John-
son, 1928; Nyquist, 1928) .

The first proposal to apply FDT to the climate sys-
tem came almost 40 years ago (Leith, 1975), but there
has been a recent resurgence of interest in this area fu-
elled by methodological advances and detailed compar-
ison of FDT-derived estimates of climate change to cli-
mate model simulations (Majda et al., 2010). In princi-
ple, it may be possible to use FDT to get good estimates
of the response of the real climate system to small forc-
ing (e.g. that due to doubling CO2) purely from accurate
long-term climate observations that reveal the full spec-
trum of natural fluctuations of the climate (Bell, 1980;
Schwartz, 2007). Unfortunately though, the length of the
detailed climate records required to achieve this are typ-
ically much longer than those available (Kirk-Davidoff,
2009), and include the contemporary period when the
mean climate is changing.

In the EC technique model projections are instead
used to define emergent relationships between observ-
able variations and future climate (Hall et al., 2019), and
then specific observations provide a selection principle to
constrain the range of future climate projections from
these model-defined relationships (Eyring et al., 2019).
The EC technique has yielded many proposed constraints
on aspects of the future climate (Hall et al., 2019) and
the carbon cycle (Cox, 2019). However, this power also
comes with a danger - that blind data-mining of mul-
tidimensional model outputs could lead to spurious and
misleading constraints (Caldwell et al., 2014). Protection
from this risk can come from tests of robustness across
different model ensembles, and from basing the search for
ECs on firm theoretical and mathematical foundations.
Theory-led ECs can also be considered as hypotheses that
can be tested against the ensemble of complex ESMs.
The remainder of this section aims to describe the reasons
why relationships between Earth System variability and
sensitivity are ubiquitous, and to provides some exam-
ples of the emergent relationships to be expected under
different types of time-varying forcing (such as seasonal
cycles and longer-term trends).
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A. Relationships between variability of fluxes and the
sensitivity of stores

We can write the time evolution of a dynamical system
variable V in the general form:

dV

dt
= F (V, zi) (1)

where F is the net flux into the system, and zi are the en-
vironmental variables that affect this net flux. Equation
1 represents a local conservation law as it implies that
the variable V can only change if the net flux is non-
zero. When the environmental variables are in a steady
state, zi = zi(0), the variable V has an equilibrium state
V = V (0), defined by:

F (V (0), zi(0)) = 0 (2)

In climate science we are typically interested in how a cli-
mate system variable, such as global mean temperature
or land carbon storage in the tropics, varies with environ-
mental factors, such as the atmospheric carbon dioxide
concentration or the climate in the tropics. Where the as-
sociated perturbations ∆zi are small compared to zi(0),
equation 1 can be linearly expanded about the equilib-
rium state:

d∆V

dt
=
∂F

∂V
∆V +

∂F

∂zi
∆zi (3)

where ∆V is the resulting perturbation to the state vari-
able, and the partial derivatives are calculated around the
initial equilibrium {V (0), zi(0)}. The initial equilibrium
is stable if ∂F

∂V < 0, and we can then define an effective

timescale to perturbations of V as τ = (− ∂F
∂V )−1. Equa-

tion 3 can therefore be written as:

d∆V

dt
+

∆V

τ
=
∂F

∂zi
∆zi (4)

The righthand-side of equation 4 can be viewed as the
‘external’ forcing factors that produce changes in V (e.g.
the radiative forcing due to increasing atmospheric CO2).
For a permanent time-invariant change in the environ-
mental variable ∆zi, V will be changed by an amount
∆Veq where:

∆Veq = τ
∂F

∂zi
∆zi (5)

Defining the sensitivity of V to the environmental vari-
able zi as ξi = ∂Veq/∂zi, we can rewrite this equation
as:

ξi = τ µi (6)

where µi = ∂F/∂zi. Equation 6 implies that the sensitiv-
ity of V to a step change in zi will be proportional to the
sensitivity of the net flux F , with a constant of propor-
tionality which is the characteristic lifetime of perturba-
tions to V . In climate change research, the equilibrium
sensitivities (ξi) are often the things we would most like
to constrain (e.g. Equilibrium Climate Sensitivity, ECS).

B. Theoretical emergent relationships for idealised
time-varying forcing

For emergent constraints we therefore need to find re-
lationships between sensitivities ξi and observable vari-
ations in the climate system. In this subsection we de-
rive candidate emergent relationships for different time-
variations in the environmental variables zi. First we
rewrite equation 4 in the form:

d∆V

dt
+

∆V

τ
= µi ∆zi (7)

As we limit ourselves here to this linear model with a
single timescale τ , the emergent relationships presented
below are intended to be illustrative, or as simple hy-
potheses to be tested against the outputs from complex
models.

1. Sinusoidal forcing

As an idealised representation of the response of our
system to diurnal and seasonal forcing, we first consider
sinusoidal environmental variations of angular frequency
ω and amplitude az, for which ∆zi = az e

iωt. The solu-
tion to equation 7 under these circumstances (after initial
transients have died-down) is:

∆V = µi az
τ√

1 + ω2τ2
ei(ωt−φ) (8)

where φ = arctan (ωτ). Therefore ∆V also has a si-
nusoidal variation but with a phase-lag relative to the
forcing of φ which asymptotes to π/2 as ωτ → ∞. Sub-
stituting ∆zi = Az e

iωt. The amplitude of the sinusoidal
variation in ∆V , av, is proportional to av but also de-
pends on the frequency of the sinusoidal forcing:

av
az

= µi
τ√

1 + ω2τ2
(9)

Using equation 6 we can therefore write the sensitivity ξi
in terms of the ratio of the sinusoidal amplitudes:

ξi =
av
az

√
1 + ω2τ2 (10)

In the limit of slowly-varying forcing compared to the
system timescale (ωτ → 0) this formula reduces to :

ξi →
av
az

; for ωτ → 0 (11)

This is the limit of very fast variables that are in a quasi-
equilibrium with the sinusoidal forcing, such as seasonal
snow-cover (Qu and Hall, 2007) or marine primary pro-
duction (Kwiatkowski et al., 2017). However, in the op-
posite high-frequency limit (ωτ � 1) the emergent re-
lationship also depends linearly on the frequency of the
forcing:

ξi →
av
az
ωτ ; for ωτ � 1 (12)
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2. Linearly-increasing forcing

Contemporary climate change is largely being driven
by an approximately exponential rate of increase in at-
mospheric carbon dioxide above the pre-industrial level,
which yields a radiative forcing that is approximately lin-
ear in time. This has motivated a long-running series
of idealised climate model experiments which prescribe
an exponential increase in carbon dioxide, including the
1% per year runs which are used to define the concept
of the Transient Climate Response (TCR) . In addition,
many other Earth System changes can be approximated
by linear trends. In this sub-section we therefore con-
sider emergent relationships under a linear increase in
the environmental variable zi:

∆zi = γ t (13)

where γ is the linear rate of increase zi which begins at
time t = 0. Under this idealised forcing the solution to
equation 7 is

∆V (t) = τµi γ
{
t− τ(1− e−t/τ )

}
(14)

From equation 5 we note that the sensitivity ξi = τµi, so
equation 14 can be rewritten as:

ξi =
∆V (t)

γ

1{
t− τ(1− e−t/τ )

} (15)

The exponential decay-term here is a transient response
to the sudden switch-on of the linear trend at t = 0.
Once this term has died-out the transient solution lags
the quasi-equilibrium solution by τ years such that:

ξi =
∆V (t)

γ (t− τ)
(16)

This equation represents a potential emergent relation-
ship between the sensitivity ξi and a transient change
∆V (t).

3. White-noise forcing

Emergent relationships have also been proposed be-
tween interannual variability and sensitivities (Cox et al.,
2013; Nijsse et al., 2019; Schwartz, 2007), assuming that
the environmental variable zi is approximately gaussian
white-noise. Under those circumstances equation 7 be-
comes the widely-used Ornstein-Uhlenbeck equation of
statistical physics (Uhlenbeck and Ornstein, 1930). Stan-
dard solutions relating the variance of V to the variance
of zi can be derived by integrating the sinusoidal solution
given by equation 8 over all frequencies ω. For interan-
nual variability this yields the following relationship for
the ratio of standard deviations:

σv
σz

= µi

√
τ

2
= ξi

√
1

2τ
(17)

and an even simpler relationship for the lag-1 autocorre-
lation of Y :

αv1 = e−1/τ (18)

These equations can be combined to yield an equation for
the sensitivity ξi without needing to know the timescale
τ (Cox et al., 2018a) :

ξi =
σv
σz

√
2

− ln (αv1)
(19)

Similar formulae can be derived for more sophisticated
representations, such as two-box and semi-infinite heat
diffusion models of ocean heat uptake (Williamson et al.,
2019).

IV. HOW MIGHT EMERGENT CONSTRAINTS GO
WRONG AND HOW TO GUARD AGAINST IT?

Uncertainty in future projections makes adaptation
planning difficult, and so there is tremendous pressure
on climate researchers to provide much more refined pre-
dictions of expected large-scale environmental change as
atmospheric greenhouse gases (GHGs) rise. However, in
the absence of a full knowledge of all climate processes
and their parameterizations, such deficiencies will con-
tinue to cause substantial ESM differences. For this rea-
son, the method of emergent constraints has attracted
substantial attention. Such interest is because ECs offer
a method to potentially ‘short cut’ current deficiencies
in process understanding, by providing better estimates
of change. Or, as a minimum, ECs offer more reliable
estimates of bulk aggregated parameters of the climate
system of interest to policy. We believe ECs do provide a
route to reduce uncertainty, and consider it is appropriate
for the technique to substantially underpin societal de-
cisions both regarding adaptation planning and parallel
mitigation programs to reduce GHG emissions. However
this brings tremendous responsibility, and so the method
must be reliable and robust. It is therefore prudent to
discuss the multiple circumstances in which the method
may fail, thus altering to where caution is needed. We
now describe such situations.

A. Risks of purely using data mining

One approach with ECs is to simply ‘data mine’ within
climate model ensembles, such as CMIP5 and CMIP6,
searching for two quantities in each model that when an-
alyzed form a statistically significant inter-ESM regres-
sion. In these circumstances, the researcher is not led by
process understanding, a hypothesis to be tested, or in-
deed intuition (see section II.B for an extreme example).
However, there is a logic that in some circumstances, this



13

approach might be valid. In the climate system, there
may be links between different parts of the Earth system,
and including between a contemporary measurable quan-
tity and an attribute change in a future climate state,
that are not immediately obvious as being connected.

One set of examples could be similar to the on-going
discovery of teleconnections in the climate system, where
strong correlations are noted between variations in two
parts that are a substantial geographical distance apart
(Nigam and Baxter, 2015). Besides spatial distances, dis-
covered teleconnections can contain lags, although unlike
ECs that are designed to project decades ahead, the de-
lays are months. These delays are often used to estimate
expected meteorological conditions in the months ahead.
For example, the status of El Niño, can strongly weight
the probabilities of particular weather features for land
regions and across the tropics and for the season ahead.
Although El Niño is an obvious system fluctuation to
investigate for its impacts elsewhere, over the last cou-
ple of decades, researchers have been investigating other
candidates e.g. Feldstein (2000).

Given the sometimes diverse form of teleconnections,
their discovery can require a data mining approach, as
comparison between two different parts of the climate
system, additionally offset in space and time, are unlikely
to be found through intuition-led inspection of ESMs. If
novel ECs exist, between diverse parts of the Earth sys-
tem, then such mining methods may be needed to aid
their discovery. If ECs are discovered by statistical meth-
ods, then subsequent process analysis may reveal the con-
nection to have a strong physical basis. Hall et al. (2019)
refers to this as ‘EC confirmation’, although this may
take many years to achieve, and especially if additional
ESM diagnostics are needed to confirm the size of any
transport equation terms between different spatial loca-
tions.

However, whilst such an approach is expected to re-
veal new ECs, caution is needed. The concern is that
statistically-significant regressions are likely to be found
in a small number of instances, simply by chance, and the
resultant EC is therefore not a robust indicator of future
change (i.e. section II.B). That is, and presented loosely,
if statistical mining finds a large number of new ECs,
all with non-zero regressions forming them and at a 90%
confidence level, then roughly one-in-ten will be invalid.
This highlights the need to undertake process-based con-
firmation of ECs found through statistical means.

B. The risk of p-hacking and overconfidence

The term ‘p-hacking’ was first introduced by Nuzzo
(2014), and alerts to the risk of self-selecting only sci-
entific findings that are statistically significant. In the
context here, that would be ECs having their regressions
at small p values, suggestive of a low probability of an

X−Y relation occurring merely by chance. The concept
has strong similarities to the dangers noted in data min-
ing, where scanning across a range of potential ECs could
lead investigators to only concentrate on a few with low
p-values, with the attendant risk they occur by chance.
However, p-hacking goes further and cautions over other
decisions that researchers may make, in a rush to find a
significant result. Behaviours could include a deliberate
selection of one-sided tests and the stopping of sampling
upon finding a low p-value. It could also involve adjusting
the parameters, relationships between data, or time fre-
quencies considered until lower p-values are discovered.
In the case of the climate system, and as an example, the
assessment of attributes of the global hydrological cycle
offers many time scales of interest. Precipitation statis-
tics with potential to form different X and Y quantities
of ECs, range from short, intense rainfall events through
to seasons or even decades. To account for overconfi-
dence Bretherton and Caldwell (2020) suggests that ECs
be corrected by scaling up the unexplained variance by a
user-defined factor across the board.

C. Missing process in all current models, measurement
errors and model compensating errors

ECs most frequently link a fluctuating quantity that
is measurable for the contemporary period, to either a
future change (e.g. extent of polar ice sheet cover), or
an invariant system attribute that describes change (e.g.
climate sensitivity). A potential concern for the validity
of an EC is if there is a missing process in every model
that affects the regression forming the basis for the EC.
If, for instance, that error affected the X-axis fluctuating
quantity, but the measured quantity was accurate, then
this would introduce a bias in to the projection of the
future Y -axis quantity.

Such a missing process could itself impact ESM per-
formance at all modelled levels of atmospheric GHG con-
centrations. One potential example is that many ESMs
underestimate interception loss, by vegetation, of rainfall
e.g. Lian et al. (2018) and Yang et al. (2018). Intercep-
tion loss is the return of water from rainfall to the atmo-
sphere, and that has not passed through soils but instead
is temporarily held on leaves and branches instead. If an
emergent constraint on, for instance, a feature of the at-
mospheric part of the hydrological cycle that depended
on the overall land-atmosphere exchange of water, then
the EC could have an overly strong dependence on plant
evaporation (i.e. to compensate for the low modelled val-
ues of interception loss). If, then, the true X value was
taken from data of actual plant evaporation, this would
introduce a bias in the estimate of the Y quantity. A
straightforward corollary to this is if an EC depends on
an X quantity that is modelled well, but measurements
of it contain a bias, then this too would lead to inaccurate
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estimates of the value of the Y quantity.

Alternatively, other process omissions could become
more important as GHG levels rise. Until recently, an ex-
ample of a component frequently not modelled in ESMs
is the terrestrial nitrogen cycle (Thomas et al., 2015).
Nitrogen limitation could become an increasingly impor-
tant factor as CO2 concentrations rise, by suppressing
levels of vegetation fertilisation from the increased CO2

in the atmosphere. The lack of nitrogen cycle inclusion in
the land components of ESMs could therefore affect ECs
linking current variations of the carbon cycle to future
carbon stores, leading to potential overestimates of the
capability of terrestrial ecosystems to offset future an-
thropogenic CO2 emissions. That said, in Wenzel et al.
(2014), two ESMs that did have the nitrogen cycle in-
cluded were close to an EC regression line in an ensemble
of carbon cycle only ESMs. That analysis linked con-
temporary fluctuations in temperature and atmospheric
CO2 concentrations to the long-term stability of terres-
trial carbon stores under global warming.

A corollary to single model errors is the case where two
contemporary processes are defined, but together they al-
low a model to perform well on some metrics as a conse-
quence of compensating errors. There is quite substantial
anecdotal evidence that many ESMs have these issues, as
model developers often discover that improvement of one
component, by removing the compensation, actually re-
sults in less accurate contemporary climate simulations.
Poor performance is only then resolved when the pro-
cess representation of the second feature is also upgraded.
Such compensations present a risk for ECs. Specifically,
if the X-axis quantity of an EC relates to just one of
the two process that compensate, then that will intro-
duce a bias. Returning to the interception example, if we
consider the deficiency recognised but accounted for by
parameterizing overly strong plant evaporation amounts,
any EC dependent on plant evaporation (X) would in-
troduce a bias in prediction of Y if actual measurements
of X are used.

Ultimately, climate science requires a set of ESMs that
make similar projections and are highly accurate. Hence
the on-going attempt to include all relevant processes
in ESMs, and to remove compensating errors, remains
an appropriate activity to advance such predictive tools.
However, a co-benefit is that such ESM enhancements
will likely raise the accuracy of any ECs that are used to
constrain understanding where uncertainty remains.

D. System passes through a tipping point

It is arguable that moderate human adjustment to
the climate system is relatively linear, and so the ex-
pected meteorological changes increase proportionally
with changes to the combined radiative forcing of at-
mospheric GHG concentrations. If this same linearity

extends to higher frequency system responses such as in-
terannual variability, then observations of contemporary
fluctuations may give a strong indication of the system’s
response to a more permanent forcing from increased
GHGs. One example is Cox et al. (2013), where the
change to tropical atmospheric CO2 concentration in re-
sponse to annual temperature variation may project any
expected loss of rainforest carbon stores under sustained
global warming. Hence, there is an assumption of linear-
ity present in each individual ESM, or at least a relation-
ship that is monotonic in increasing temperature. When
plotting the simultaneous variations in temperature and
CO2 (X) against response of future carbon stores in re-
sponse to warming (Y ), then a further linear inter-ESM
relationship is found, and this is the EC itself.

A legitimate question, therefore, is what happens
should the planetary system move beyond linear re-
sponses, and further, start to pass through tipping points
(Lenton et al., 2008)? Many examples of such potential
nonlinear behaviours are conjectured, where a relatively
small increase in radiative forcing could cause major sys-
tem changes. Potential climate tipping points such as the
collapse of the Atlantic meridional circulation (Stocker
and Wright, 1991), Amazon dieback (Cox et al., 2000),
Greenland ice sheet melt (Toniazzo et al., 2004) and oth-
ers (Drijfhout et al., 2015) are presently thought to be low
probability, high risk events although there is evidence
subsystems of the climate have ‘tipped’ many times in
the past (Bond et al., 1992). Most of these ‘tips’ have re-
sulted in regional rather than global climate changes and
have been emulated through simpler equation systems,
amenable to bifurcation analysis to characterise the non-
linearity (e.g. Dijkstra (2013)).

Once past a large-scale tipping point, the Earth System
might have radically different responses and feedbacks,
and so behave very differently. This is likely to impact
on the EC approach is two ways. First, for each individ-
ual ESM, for sufficiently changed climate, the contem-
porary fluctuating quantity may no longer give accurate
information in that model on future store size. Second,
if there are system tipping points, but an EC is only vali-
dated for moderate changes to the climate system (so, for
instance, the Y -axis quantity is only derived from ESMs
operated under lower emission scenarios), then using it
to project to more severe climate alteration might be in-
appropriate.

A more abstract but relevant question is whether in-
formation from pre-tipping point conditions has any va-
lidity at constraining climatic conditions beyond one?
Do tipping points invalidate ‘information exchange’ be-
tween different GHG levels when passing through one?
Two ESMs may have very similar responses up to a tip-
ping point, and thereby appear as points near each other
on a standard EC X − Y plot, but marked different re-
sponses beyond a tipping point, thus weakening an EC-
based inter-ESM regression. Also in the abstract is a view
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that ECs are capitalising on the ‘hard-wiring’ implicit in
ESMs, as based on model parameterizations constrained
from contemporary measurement datasets. Beyond any
major tipping point represents a world that has not yet
been witnessed and so not measured for equation param-
eterization purposes.

We hope that climate researchers can be encouraged to
investigate further whether the planet passing through a
tipping point invalidates ECs, and possibly also the pe-
riod just beforehand. This could be in the form of a
conceptual model, or by analysis of ESMs in the CMIP5
ensemble. ESM simulations with a tipping point could
be split in to a future period pre-tipping point, and one
post-tipping point for a high emissions scenario, testing
the EC on both modelled time frames. One obstacle to
undertaking such analysis is that although ESMs do ex-
hibit tipping points, they vary markedly between models
regarding their location, component of the Earth system
affected, and level of global warming (Drijfhout et al.,
2015). Notable is that the strong regional features of tip-
ping points implies that any ECs that may be affected
by their presence also have to be localised in application.
Possibly of more concern is that if tipping points affect
the predictive capability of ECs, there will be little inter-
ESM consensus on when and how this might occur. This
lack of understanding is due to major model differences in
predictions of tipping point occurrence, or even existence
(Drijfhout et al., 2015), and so an ‘EC-type’ modulation
factor to the original EC and common across models is
unlikely to be discovered.

E. Problems with common code across many models and
implications for ‘out-of-sample’ testing

ECs rely on the statistics of regressions, which in turn
assume an independence of data points. However, indi-
vidual ESMs may not be completely independent. For
parts of the climate system known to respond to well-
established and well-understood physical processes, com-
monality in models is to be expected. The concern is for
the model parts that are suspected as characterising ac-
tual processes less well, and where ECs seek to constrain
this uncertainty. The lack of independence may take
the form of individual research centres offering multiple
model versions but at different resolutions. Alternatively,
some components of ESMs are shared between research
centres, or are coded in similar ways (Knutti et al., 2013).
The lack of independence could appear in the range of
effective bulk parameters sampled, such as equilibrium
climate sensitivity. Another possibility is there may be
a common component existing between models, and that
an EC seeks to reveal, but the ESM differences to reveal
this are in the fluctuating forcings. These fluctuating
quantities could have relatively low sampling due to sim-
ilarities between how ESMs calculate their values.

As part of developing comprehensive process under-
standing of discovered ECs, Hall et al. (2019) encourage
‘out-of-sample’ testing. Such testing is where the EC
relationship is checked to be valid in additional ESMs
that are not part of the original set used to initially find
the EC. New simulations from individual modelling cen-
tres can be analysed as they become available. A more
comprehensive test is to search within new ensembles,
and so for instance an EC found in the CMIP5 climate
model ensemble can be checked for its presence in the
newly-released CMIP6 set of ESM simulations. How-
ever this too may not be a completely independent as-
sessment, if modelling centres retain substantial amounts
of model code and parameterizations between ensemble
contributions. We note that the out-of-sampling test-
ing performed by Schlund et al. (2020), that assesses
if the ECs for climate sensitivity, ECS, found in the
CMIP5 ensemble remain valid for the CMIP6 models.
As commented elsewhere, they find that for CMIP6, the
CMIP5-based ECs have less predictive capability, and
also give generally higher ECS values. Schlund et al.
(2020) note that the majority of emergent constraints
for ECS are related to some extent to cloud feedbacks,
and this is a major on-going area of climate research
to create numerical cloud schemes with strong predic-
tive skill. As many cloud schemes are currently under
development, then their newness implies that this is an
example of little carrying of common code from CMIP5
to CMIP6. From that perspective, CMIP6 models have
independent features from CMIP5, validating using this
more recent ensemble for out-of-sample testing. However,
if it is the new cloud schemes that cause the CMIP6-
derived ECs to have less predictive capability, then this
suggests that previously estimated EC-based uncertain-
ties on ECS from the CMIP5 models are overly narrow.
This form of error differs from that of Section IV.C that
considers how a missing process in all models may cre-
ate a systematic bias in an EC projection. Here, instead,
the suspected missing processes associated with cloud dy-
namics and feedbacks are such that there likely remains
substantial uncertainty in how to model them accurately.
Alternative cloud schemes may weaken ECs by causing
a larger spread around their regression lines, expanding
the bounds on predictions of quantity Y for quantity X
and for which contemporary data also exists.

F. What to do when different ECs are found for the same
quantity, but differ in value, or differ between ensembles?

In some instances, multiple and different contempo-
rary measurements have been suggested, via ECs, to be
able to predict the same quantity. This is particularly
the situation where a broad range of climate attributes
have been used to evaluate equilibrium climate sensitiv-
ity (ECS). However, and notably, cloud feedback (Brient
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and Schneider, 2016; Brient et al., 2016; Sherwood et al.,
2014; Zhai et al., 2015) or top-of-atmosphere (TOA) ra-
diation flux (Brown and Caldeira, 2017) based emergent
constraints tend to project higher ECS values than sur-
face temperature based constraints (Cox et al., 2018a).
Investigations need to continue to ascertain why these
ECs disagree. Some disagreements may be due to spu-
rious correlations, affecting Y values. However, Caldwell
et al. (2018) show that these emergent relationships are
highly correlated. With high correlation, but different
ECS estimates, this implies that differences may instead
be due to measurement biases in some X value observa-
tions. Alternatively, the real world may not be sharing
the same responses as the models, which could suggest a
persistent error across ESMs for at least one of the ECs.

As ECs come under increasing scrutiny due to their
growing widespread use, more needs to be understood
about how they operate and any limitations. In that con-
text, we suggest understanding the differences between
projections of the same quantity will be a highly reward-
ing research path. However in order to generate a sin-
gle EC-based projection, Bretherton and Caldwell (2020)
present statistical methods to merge multiple ECs of the
same quantity in to a single range of uncertainty for the
quantity being estimated. That analysis focuses on com-
bining the multiple ECs used by other researchers to es-
timate ECS.

As noted in Section IV.E, new ensembles provide an
‘out-of-sample’ test for existing ECs. The question then
is how to use that new value, and especially if it is sub-
stantially different to the value for an earlier ensemble.
One possibility is to use the methods of Bretherton and
Caldwell (2020) to merge the findings from two ensem-
bles. A further possibility is to introduce a weighting to
the Bretherton and Caldwell (2020) approach, but with a
high influence for the more recent ensemble, correspond-
ing to the hope that newer ESMs are better models.

G. ECs may cause future CMIP-type climate model
ensembles to have much less spread in projections

In the most general terms, a reduction of spread of cli-
mate models is to be highly welcomed, and especially if
their convergence is on to projections that are accurate
estimates of future change. Such convergence is good if
what is learnt from ECs applied to previous ensembles is
accurate, and this has caused climate modellers to make
their new simulations achieve the constrained Y values
(see section VII.B). Convergence may also occur sim-
ply because previously uncertain parts of the Earth sys-
tem have become better understood. However, the rapid
development of ECs could cause a reduction in model
spread that is potentially unwelcome, precluding further
progress with the methodology.

As ECs are discovered, and estimates of future change

are refined, this may cause climate modelling groups to,
either consciously or unconsciously, parameterize new
ESMs so as to estimate changes that fall within those
EC-based bounds. This convergence of projections could
be because many modelling groups might not wish to esti-
mate climatological changes that fall outside a consensus
view based on previous EC-based estimates. However,
this could have two detrimental side effects, and poten-
tially cause future EC calculations to be less accurate.
First, re-noting that it is almost a paradox of ECs, as
designed to constrain estimates of change, that they can
only work well with large inter-ESM differences. It is a
substantial spread of ESM estimates that enable ‘strong’
regressions. Hence any clustering of projections will re-
duce the capability to re-test ECs for new ensembles of
ESMs, and certainly make them less reliable. Second, it
risks that if new processes are believed to be needed in
the majority of new models, then other balancing process
could be tuned, incorrectly, to balance these changes an
in order to fit the earlier EC. For example, introducing
the terrestrial nitrogen cycle more routinely into ESMs
may suppress projections of future land carbon stores.
But to remain in alignment with earlier EC estimates
and as using ESMs mainly without nitrogen suppression,
then instead in new ESMs this could encourage param-
eterization of an offsetting and incorrect overly strong
CO2 fertilisation effect for vegetation.

Despite the aim of ECs being to reduce the effects
of ESM uncertainty, we suggest that climate science re-
mains alert to these two concerns, where the existence of
an EC may overly reduce the model spread in any new
ensemble (although this is not something that we have
encountered to date). Such a reduction in a new ensem-
ble, where model developers may wish to replicate the
earlier EC, risks, in particular, the propagation of errors
that might be prevalent in the earlier ensemble.

H. Inability to verify an EC

In Section IV.A we heed the dangers of ECs based
on data mining, noting that Hall et al. (2019) encour-
age that ECs discovered statistically should first move
to having potential, i.e. contain an element of intuition
as their confirmation. Detailed process understanding,
maybe even as far as analytical assessment of related key
climate-based differential equations, ideally then move
an EC from having ‘potential’ to being ‘verified’. At the
same time, we suggest a potential danger whereby it is
not possible to follow this cascade of increased certainly
in validity of an EC. For example, there may be insuffi-
cient saved diagnostics from ESMs to build and study of-
fline the process interactions that need understanding to
achieve EC verification. The risk here is that important
and informative potential ECs are dismissed as their un-
derstanding cannot be developed. Although this may ini-
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tially appear opposite to the suggestions in Section IV.A,
we advise such ECs are not cast aside, thereby with the
danger of losing valuable insights into the climate system.
Instead such potential ECs from data mining can gener-
ate requests to climate research centres to provide related
additional ESM outputs, to allow additional testing.

Any additional ESM diagnostics may also reveal the
extent to which a potential EC is dependent on one ma-
jor physical process, or is caused by an amalgamation of
multiple interacting effects. If more than one major pro-
cess is present, then this may make it more difficult to
transition from ‘plausible’ to ‘verified’.

I. Lack of perturbed physics experiments with ESMs

The operation of ESMs is hugely computationally ex-
pensive and often there is only capacity in research cen-
tres to perform simulations for standardised scenarios of
changes in future atmospheric greenhouse gas concentra-
tions (e.g. the Representative Concentration Pathways,
RCPs; Meinshausen et al. (2011)). Unfortunately, this
precludes performing simulations with varied parameters,
and especially for those where there is substantial uncer-
tainty surrounding their true value (or effective value,
if grid-dependent). We suggest that this lack of model
investigation restricts further testing of ECs, and in a
way that may either preclude gaining extra confidence in
their reliability or alternatively fails to alert to one that
may not be as robust as initially believed. We suggest
that PPEs may require interpretation in two ways, and
that are converse to each other. If a parameter value is
changed, and if it relates to a part of the Earth system
believed to be independent of the underlying processes
associated with a particular emergent constraint, then
for that ESM the Y value should not change in the EC.
Such invariance both confirms EC robustness and helps
illustrates that the EC aligns to the parts of the model
expected from intuition or process understanding. The
alternative situation is where a parameter believed to re-
late to an EC is perturbed, and potentially adjusted to
the outer bounds of its expected value or beyond. The
expectation then may be that for that particular ESM,
the point moves to the bounds of the EC regression. Such
an anomaly confirms that the EC is affected by the part
of the climate system the parameter pertains to, and may
indicate that outlier parameter values are not present in
the other ESMs.

If spare computational cycles become available, we sug-
gest perturbed physics experiments with ESMs will be
beneficial to the development and testing of ECs.

V. EMERGENT CONSTRAINTS FOUND IN THE
EARTH SYSTEM

Numerous ECs have been identified across physical and
biogeochemical components of the Earth System (a hand-
ful of which have been discussed thus far), with a sub-
stantial increase in their number over the past decade. In
order to capture the breadth of its application in the geo-
sciences, we discuss previously documented ECs based
on their broad geophysical classification here. A list of
EC studies is provided in Table I. Note that this list
is not exhaustive and may be easily superseded. More-
over, some of the references in Table I offer more than
one potential current climate quantity to explain Y , in
which case we list only one example. For example, Sher-
wood et al. (2014) provide three metrics that describe
various aspects of lower-tropospheric mixing to explain
equilibrium climate sensitivity. Rather than list all three
metrics, we only discuss the one that appears most robust
(Caldwell et al., 2018; Schlund et al., 2020). An impor-
tant criterion for establishing credibility of an EC is to
show robustness to the choice of ensemble. Therefore,
Table I also documents the model ensemble(s) for which
each EC appears to have value (i.e., a statistically signif-
icant emergent relationship is present). In several cases
this is only the ensemble from which the EC was derived
as many of the more recent examples have not undergone
out-of-sample verification at the time of this paper. We
expect several upcoming publications to assess the valid-
ity of previously published ECs with the newer CMIP6
ensemble (e.g. Pendergrass (2020) and Schlund et al.
(2020)).

A vast majority of ECs pertain to one of the fol-
lowing general topics: climate sensitivity, cloud feed-
backs, cryospheric feedbacks and change, carbon cycle
feedbacks, and the hydrologic cycle, but in theory the
methodology can be used for any number of applications.
There are also additional examples relating to topics such
as radiative forcing (Bowman et al., 2013), regional air
and sea surface temperature change (Lin et al., 2017; Sel-
ten et al., 2020; Sgubin et al., 2017), frequency of tem-
perature extremes (Donat et al., 2018), and atmospheric
circulation changes (Kidston and Gerber, 2010; Simpson
and Polvani, 2016). For the purpose of this review, we
will focus primarily on the main applications to date.
Along with the differing applications, ECs can also be
sorted by the type of constraint (Figure 5). One way to
think of this is to group ECs by the time-scale of informa-
tion that defines their X (e.g., from multi-decadal to ex-
treme events). For example, a rather simple class of ECs
relates climatological biases or multi-decadal trends in
some quantity (X) to the future change in Y . Similarly,
a collection of ECs use seasonal or interannual variations
in X to constrain future changes in Y . In many of these
instances, variability in some quantity to seasonal or in-
terannual temperature variability is related to sensitivi-
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FIG. 5 Schematic showing the different types of emergent
constraints proposed in the literature to date. Each number
corresponds to a study listed in Table 1. ECs are sorted by
the timescale of their current climate quantity and the type of
future constrained quantity. ECs are also sorted by whether
the future quantity relates to an impact or a physical or geo-
chemical quantity.

ties of that same quantity to future warming. Constraints
using climatological biases or short-term sensitivities are
also common for attempting to constrain invariant prop-
erties such as equilibrium climate sensitivity. Applica-
tions to future changes in higher-order climate statistics
(e.g., extreme events) are more rare. This highlights a
relatively unexplored area of EC research.

A. Equilibrium Climate Sensitivity

By far the most popular application of the EC ap-
proach has been in relation to equilibrium climate sensi-
tivity (ECS) (Table I). ECS is seemingly an ideal candi-
date for this technique because of its importance to pre-
dicting future warming rates and its consistently large
spread across various GCMs, which has been a persis-
tent feature of all model generations. (The likely range
of ECS according to the IPCC (1.5 to 4.5K) has been
largely unchanged for decades). A series of contempo-
rary quantities (X) have been identified as being closely
linked to ECS, many of which relate to simulated cloud
feedbacks or properties. In general, these cloud-based
constraints tend to suggest relatively high ECS values
(3.5-4.1K) (Brient, 2020; Knutti et al., 2017). Relevant
examples include the height of tropical low clouds (Brient

et al., 2016), the sensitivity of the reflection by subtrop-
ical low clouds to sea-surface temperature (Brient and
Schneider, 2016), seasonal sensitivity of low cloud be-
tween 20-40°N and 20-40°S to sea-surface temperature
(Zhai et al., 2015), variability in relative humidity and
cloud extent (Fasullo and Trenberth, 2012), vertically re-
solved zonally-average relative humidity and clouds be-
tween 45S-40N (Su et al., 2014), and the climatologi-
cal difference between tropical and Southern Hemisphere
mid-latitude cloud fraction (Volodin, 2008).

Another suite of studies relate ECS to intermodel
differences in the characteristics of historical radiative
fluxes, such as climatological TOA energy balance in the
Southern Hemisphere (Trenberth and Fasullo, 2010), fea-
tures of TOA radiation fluxes (Brown and Caldeira, 2017;
Huber et al., 2011; Tett et al., 2013), and cloud-sky ra-
diative flux sensitivity to temperature (Lutsko and Taka-
hashi, 2018). Alternatively, studies have also used tem-
perature characteristics defined over a variety of time-
scales to constrain ECS. This approach tends to suggest
relatively weaker ECS values than the others (Knutti
et al., 2017). Examples of X include the seasonal cy-
cle of temperature (Knutti et al., 2006), 20th century
warming (Annan and Hargreaves, 2006), and statistics
of interannual variability (Cox et al., 2018a). Similar
to this, there is a collection of studies that have eval-
uated temperature changes over much longer timescales
(e.g., global-mean cooling during the Last Glacial Maxi-
mum: 19-23 ka before present) as derived from paleocli-
mate data (Hargreaves et al., 2012; Schmidt et al., 2014).
These paleoclimate-based constraints suggest ECS of 2.3
and 3.1 K, respectively. However, there is a large amount
of uncertainty surrounding the model simulations of the
LGM, the proxies used to constrain the intermodel rela-
tionship, and the validity of using data from these time
periods as proxies for anthropogenic warming (Brient,
2020; Harrison et al., 2015). A variety of other metrics
have also been proposed as being strongly related to ECS
with large variability in their constrained predictands.
The highest value (4.5K) is derived from a constraint us-
ing vertical mixing between the boundary layer and lower
troposphere over tropical oceans (Sherwood et al., 2014).
Tian (2015) use climatological precipitation in the In-
tertropical Convergence Zone (ITCZ) region to suggest a
slightly weaker ECS (4.1K), while the weakest non-paleo
estimate uses the climatological latitude of SH Hadley
Cell edge in Dec-Feb to suggest an ECS of only 2.5K
(Lipat et al., 2017).

As discussed in Section IV.F, having such a large num-
ber of ECs for the same quantity can complicate their
interpretation when the constraints suggest differing Y
values. In this instance, rigorous testing of various pro-
posed ECs is necessary to better understanding their va-
lidity. Along these lines, ECs on ECS have been heav-
ily scrutinized over the past few years with assessments
tied to their plausibility and robustness across both mul-
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timodel ensembles (Caldwell et al., 2018; Grise et al.,
2015; Schlund et al., 2020) and, to a lesser extent, per-
turbed physics ensembles (Kamae et al., 2016; Wagman
and Jackson, 2018; Zhao et al., 2016). Caldwell et al.
(2018) provide the most robust assessment to date on
the credibility of various constraints on ECS. In doing so,
they find that several of the aforementioned constraints
lack a physically plausible mechanism connecting the X
quantity with ECS (Siler et al., 2018; Su et al., 2014;
Tian, 2015; Volodin, 2008). This limits how much faith
can be put into the EC itself as the statistical relation-
ship could be fortuitous. Furthermore, many of the con-
straints are found to be closely related (Caldwell et al.,
2018). For example, one strongly correlated group re-
lates aspects of present-day Southern Hemisphere cloud
cover with ECS, suggesting they may all be capturing
a single SH mechanism (Lipat et al., 2017; Siler et al.,
2018; Trenberth and Fasullo, 2010; Volodin, 2008). Ad-
ditional testing of EC robustness comes in the form of
out-of-sample verification (i.e., evaluating the emergent
relationship in a different model ensemble to the one from
which the EC was originally derived). Although there are
some known limitations to this approach related to the
existence of common model code across generations (Sec-
tion IV.E), it is still seen as a valuable exercise for evalu-
ating ECs. For example, Grise et al. (2015) show that the
Trenberth and Fasullo (2010) EC derived from CMIP3 is
not valuable in CMIP5 because the emergent relationship
only exists in a subset of models with unrealistic cloud
properties in the Southern Hemisphere subtropics. Cald-
well et al. (2018) extend this type of analysis to show
that Fasullo and Trenberth (2012) is also non-existent
in CMIP5. On the other hand, they find the Volodin
(2008) EC to be present in both CMIP3 and CMIP5, de-
spite lacking a physically plausible explanation. Schlund
et al. (2020) recently assessed a number of the constraints
on ECS documented here using the CMIP6 ensemble.
They find that most of these constraints appear less skil-
ful at predicting ECS in CMIP6, largely tied to differing
representation of cloud processes. Three of the ECs dis-
cussed here (Brient and Schneider, 2016; Sherwood et al.,
2014; Volodin, 2008) still exhibit statistically significant
skill, while two others no longer have value (Lipat et al.,
2017; Su et al., 2014). Lastly, two ECs are somewhat
in between, what the authors define as “indeterminate”,
including Cox et al. (2018a) and Tian (2015) (Schlund
et al., 2020). Further testing of these ECs has utilised
perturbed physics ensembles to better sample the para-
metric uncertainty space associated with various emer-
gent relationships (section II.A). Of particular interest
to these studies is the EC proposed by Sherwood et al.
(2014). Results from three different PPEs show that the
physical mechanism proposed by this study may not be
valid, while the emergent relationship between lower tro-
pospheric mixing and ECS only exists when certain con-
vection schemes are used (Kamae et al., 2016; Wagman

and Jackson, 2018; Zhao et al., 2016). Similar doubts
have also been reported for the Fasullo and Trenberth
(2012) EC (Wagman and Jackson, 2018).

This collection of analyses implies that the most ro-
bust constraints on ECS (determined by successful out-
of-sample testing and plausible physical mechanisms) are
tied to the present-day response of subtropical low clouds
to SST variability (Brient and Schneider, 2016; Zhai
et al., 2015). However, one factor that may limit con-
fidence in these constraints is the short observational
record of low cloud characteristics (Brient, 2020). ECs
from Sherwood et al. (2014) and Volodin (2008) are also
statistically significant in three ensembles (Table I), but
they face credibility issues tied to their physical mech-
anism (or lack thereof) (Caldwell et al., 2018; Wagman
and Jackson, 2018). Despite these signs of robustness,
the much weaker correlation values associated with these
ECs in CMIP6 (Schlund et al., 2020) supports the be-
lief that it is unlikely that a single predictor will be able
to physically explain a large amount of ECS variability
(Caldwell et al., 2018; Hall et al., 2019). Rather, several
constraints on various feedback components will likely
be needed to make a difference for such complex pro-
cesses. In this fashion, a recent comprehensive assess-
ment of ECS gave little weight to ECs on ECS when at-
tempting to determine its likely value instead favouring
observations of actual temperature change and climate
feedbacks (Sherwood et al., 2020). This is also believed
to be true for the global cloud feedback (described in
more detail below) (Klein and Hall, 2015) given that the
radiative effect of clouds in response to warming is ex-
pected to vary by cloud type and regime (Gettelman and
Sherwood, 2016).

Similar research efforts have recently suggested that
historical decadal warming trends are strongly predic-
tive of the transient climate response (TCR; defined as
the amount of warming that occurs at the time of atmo-
spheric carbon dioxide doubling, having increased by 1%
each year) (Jiménez-de-la Cuesta and Mauritsen, 2019;
Nijsse et al., 2020; Tokarska et al., 2020). TCR is of in-
terest because it more closely resembles the way carbon
dioxide concentrations have changed in the past. These
constraints suggest that the best estimate of TCR is
1.67K in CMIP5 (Jiménez-de-la Cuesta and Mauritsen,
2019) and between 1.60K and 1.68K in CMIP6 (Nijsse
et al., 2020; Tokarska et al., 2020). The difference be-
tween the latter two studies largely stems from the choice
of historical time period evaluated (Nijsse et al., 2020).
All three of these estimates are lower than the raw ensem-
ble statistics (median of 1.95K in CMIP6). Similar con-
straints on future warming have also been developed for
regional temperature changes. Both Lin et al. (2017) and
Selten et al. (2020) find that present-day summer tem-
peratures across central USA and Europe, respectively,
are strongly tied to future continental summer warming.
The authors hypothesise that the same physical mecha-
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nisms operating in the current climate (tied to precipi-
tation biases and soil hydrology) also govern the future
climate response. Incorporating observations allows for
the future spread in European summer warming to be
reduced by nearly 50% (Selten et al., 2020).

B. Cloud Feedbacks

One of the primary contributors to intermodel spread
in climate sensitivity is the cloud feedback, which en-
compasses changes in how clouds modulate the radia-
tion budget in response to warming. (For a recent syn-
thesis of cloud feedbacks see Section 3.3 of Sherwood
et al. (2020)). The global mean cloud feedback is the
most uncertain component of the total climate feedback
(Bony et al., 2006; Ceppi et al., 2017; Sherwood et al.,
2020), varying from -0.36 to 1.17 W m−2 K−1 in the lat-
est generation of climate models (Zelinka et al., 2020).
Strengthening of ensemble mean cloud feedback strength
in CMIP6 is also thought to be largely responsible for
a recent ECS increase in many models (Zelinka et al.,
2020). Thus, many of the aforementioned constraints
for ECS include cloud effects either directly or indirectly
(Brient and Schneider, 2016; Brient et al., 2016; Fasullo
and Trenberth, 2012; Qu et al., 2018; Su et al., 2014;
Volodin, 2008; Zhai et al., 2015). This also means that
there is great interest in constraining cloud feedbacks as
well (Brient and Bony, 2013; Gordon and Klein, 2014;
Qu et al., 2014; Siler et al., 2018; Zhou et al., 2015). For
example, Siler et al. (2018) propose a constraint on fu-
ture global mean cloud feedback using the climatological
latitudinal gradient in cloud reflectivity (a quantity that
can be derived from satellite observations). In general,
this EC suggests that ESMs with lower cloud albedo in
warm-SST regions and higher cloud albedo in cool-SST
regions will exhibit greater cloud feedback (and to a lesser
extent ECS). It suggests a global cloud feedback in the
upper range of ESM estimates (0.58 ±0.31 W m−2 K−1).
However, this constraint lacks a testable physical expla-
nation (Caldwell et al., 2018). Another study that seeks
to constrain the global mean cloud feedback is Zhou et al.
(2015). This paper highlights strong similarities between
the global mean cloud feedback and a present-day ana-
logue cloud feedback derived from interannual climate
variability (Zhou et al., 2015). This follows the assump-
tion of several ECs that processes operating on seasonal
to interannual timescales are also likely to be occurring
on longer timescales. However, the usefulness of this
EC is limited because the observational uncertainty in
the present-day quantity is large relative to inter-model
spread.

As previously mentioned, it is seen as unlikely that a
single current climate quantity can account fully explain
variability in the global cloud feedback (Klein and Hall,
2015). Thus, a number of studies have focused on iso-

lating the individual components of the cloud feedback
(high-cloud altitude, tropical marine low-cloud, tropical
anvil cloud-area, land cloud amount, mid-latitude marine
low cloud amount, and high-latitude low-cloud optical
depth). For example, Po-Chedley et al. (2019) narrow
in on the changes to upper troposphere clouds and rela-
tive humidity across the tropics. They show that future
changes in upper troposphere cloud fraction under cli-
mate warming are strongly tied to the vertical gradient
in climatological mean cloud fraction and relative humid-
ity. Elsewhere, much of this research concerns tropical
low clouds as ESMs struggle to represent them, they ac-
count for nearly half of the variance in the global mean
cloud feedback (Klein et al., 2017; Zelinka et al., 2016).
Moreover, intermodel spread in the low cloud feedback
is closely tied to variability in ECS (Sherwood et al.,
2020). An early EC along these lines showed that the
future low cloud feedback sign (Y ) is related to current
low cloud sensitivity as a result of natural variability (X)
in CMIP3 (Clement et al., 2009). Unlike most other
ECs, this example simply suggests the sign of a feed-
back rather than specific values. Thus, it is not always
mentioned in reviews of this nature (Brient, 2020; Klein
and Hall, 2015). More traditional ECs relating to this
topic include the link between low cloud optical depth
changes with warming and the optical depth response to
temperature anomalies associated with natural variabil-
ity (Gordon and Klein, 2014). This feedback is of limited
importance globally, but makes an important contribu-
tion at high latitudes (Klein and Hall, 2015). The Gordon
and Klein (2014) EC also has a simple thermodynamic
explanation, which makes it a promising example. Low
cloud amount changes under future warming play a much
larger role in the global cloud feedback so this has natu-
rally been an area of focus (Brient and Schneider, 2016;
Qu et al., 2015, 2014). Qu et al. (2014) identified an EC
on this low cloud response through the low cloud response
to temperature and stability anomalies derived from in-
terannual variability. Although weaker in CMIP5 than
CMIP3 (Klein and Hall, 2015), this EC has value in both
ensembles and features a strong physical basis explain-
ing the relationship (Qu et al., 2015, 2014). This type of
process based evidence can then be used in combination
to assemble a best estimate of the more complex global
mean cloud feedback. Figure 7 of Sherwood et al. (2020)
illustrates this concept to get a global cloud feedback of
0.45 ±0.33 W m−2 K−1. Going forward, it is imperative
that we continue to improve our process-based under-
standing of individual cloud components, where potential
physical mechanisms are more likely to be uncovered.

C. Carbon Cycle

Elsewhere, the EC technique has been used exten-
sively to constrain elements of climate-carbon cycle feed-
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backs (Table I #28-36) (Cox et al., 2013; Hoffman
et al., 2014; Mystakidis et al., 2017; Wenzel et al., 2014,
2016). Climate-carbon cycle feedbacks are characterised
by changes in terrestrial and ocean carbon storage in re-
sponse to climate change, which modify the atmospheric
CO2 concentration, thus enhancing warming. Intermodel
differences in feedback strengths lead to highly variable
projections of future atmospheric carbon dioxide (more
than 300 ppmv of intermodel spread at the end of the
21st century for a high-emissions scenario (Cox, 2019)).
A rather simple relationship was uncovered between the
mid-century atmospheric CO2 concentration in ESMs
and the simulated present-day concentration, but it was
shown to weaken as the influence of varying climate-
carbon feedbacks becomes more apparent later in the
21st century (Hoffman et al., 2014). This EC suggests
a much narrower likely range for atmospheric CO2 con-
centrations at the end of the century (947 ±35 ppm) than
the full ensemble (980 ±161 ppm).

Much of the model uncertainty in future atmospheric
CO2 has been shown to stem from differences in the land
carbon sink (Cox et al., 2013; Wenzel et al., 2014). There-
fore, significant effort has gone into constraining this fea-
ture of the carbon cycle. A prominent example uses
the historical sensitivity of annual atmospheric carbon
dioxide growth-rate to temperature variability (which is
strongly impacted by tropical land carbon storage fluctu-
ations) to constrain the future loss of terrestrial tropical
carbon (Cox et al., 2013; Wenzel et al., 2014). As with
prior examples, the CO2 growth rate sensitivity is an ob-
servable quantity, thus allowing for the EC to suggest
future tropical land carbon stability. This EC has been
proven robust across both C4MIP and CMIP5 ensembles
(Wenzel et al., 2014)5, but has yet to undergo testing
pertaining to CMIP6. This is an important EC because
there was a fourfold simulated spread in tropical land
carbon reductions per degree of warming in C4MIP (29-
133 GtC K−1) (Jones et al., 2016), with the higher-end
models suggesting potentially catastrophic dieback of the
Amazon rainforest (Cox et al., 2004, 2000). However, the
Cox et al. (2013) EC suggests tropical land carbon re-
ductions slightly weaker than the ensemble mean (53±17
GtC K−1).

Another carbon cycle EC uses the change in seasonal
atmospheric CO2 amplitude to constrain CO2 fertilisa-
tion of photosynthesis on the extratropics (Wenzel et al.,

5 It should be noted that Wang et al. (2014) also attempt to eval-
uate this EC in CMIP5, but their use of RCP8.5 to diagnose
the sensitivity of tropical land carbon loss to tropical warming
is not comparable to the work of Cox et al. (2013) and Wenzel
et al. (2014). Given that there is land-use change in RCP8.5, the
authors conflate changes in tropical land carbon due to climate
change, with changes in land carbon due to deforestation (for
which there is no physical reason to expect a correlation with
X).

2016). On a more regional basis, Winkler et al. (2019a)
highlight a strong relationship between future increases
in terrestrial Arctic gross primary productivity and his-
torical increases in leaf area index (greening). These two
ECs both suggest that most models are underestimating
future changes in gross primary productivity across the
high latitudes (Wenzel et al., 2016; Winkler et al., 2019a).
While these ECs have yet to undergo out-of-sample ver-
ification, Winkler et al. (2019b) provides detailed eval-
uation of the factors contributing to uncertainty in the
(Winkler et al., 2019a) constraint. They point to choices
relating to the temporal period of the predictor variable,
choice of observational dataset, and the rate of CO2 forc-
ing as particularly large sources of uncertainty (Winkler
et al., 2019b). Lastly, additional research identified con-
straints on terrestrial carbon cycle feedbacks using inter-
annual variability in evapotranspiration, net biome pro-
ductivity, and gross primary productivity. This EC sug-
gests a 40% reduction in the climate-carbon feedback and
a 30% reduction in the concentration-carbon feedback
(Mystakidis et al., 2017).

When it comes to understanding how the ocean car-
bon cycle will respond to climate change, one of the main
challenges is to reduce uncertainty in estimates of tropi-
cal ocean primary productivity. Satellite observations of
the interannual variability in ocean productivity resulting
from ENSO-driven SST anomalies have been used to con-
strain highly uncertain projected changes in tropical ma-
rine primary productivity with warming (Kwiatkowski
et al., 2017). There is a strong inverse relationship
between NPP and SST anomalies in the observational
record, but the number of ENSO events in the satellite
record is limited. This EC suggests a substantial re-
duction in the long-term tropical NPP sensitivity (-3.4%
K−1 to -2.4 % K−1) from the unconstrained ensemble
average (-4.0 ±2.2 % K−1). Another recently published
EC by Kessler and Tjiputra (2016) relates future global
ocean carbon uptake to the contemporary carbon uptake
by the Southern Ocean. In this example, models with
anomalously low uptake in the current climate project
low global uptake over the course of the 21st century.
Uncertainty in simulated ocean uptake also translates to
uncertainty in projections of future ocean acidification,
the impacts of which are expected to be greatest in the
Arctic ecosystem (Terhaar et al., 2020). Recent work
uses CMIP5 models to identify an EC on future Arctic
ocean acidification using the simulated density of Arc-
tic ocean surface waters in the current climate (Terhaar
et al., 2020). Observations of sea surface density when
coupled with this emergent relationship imply that future
Arctic Ocean acidification will be greater than previously
expected.
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D. High-latitude Processes

The Earth's high-latitude regions are rapidly warming
and there is a great deal of uncertainty in how various
components of the cryosphere (Earth's frozen surfaces)
will evolve in the future (Meredith et al., 2019; Mudryk
et al., 2020; Notz et al., 2020). Thus, ECs are an intrigu-
ing option for reducing intermodel spread here. One of
the earliest documented examples of an emergent con-
straint is for the snow albedo feedback (Hall and Qu,
2006), which was introduced in Section I. This is a lead-
ing example of the EC technique because of the simplicity
behind its physical mechanism and its robustness across
several generations of models (Figure 2). An interesting
point on the SAF EC is that despite substantial time
since its initial publication, we have yet to see a mean-
ingful reduction in its current climate quantity (X).

Following on from its application to SAF, recent work
has identified that the emergent constraint approach can
also be applied to a similar process over Arctic sea ice
(Thackeray and Hall, 2019). The sea ice albedo feed-
back (SIAF) is characterized by the enhancement of fu-
ture warming through the reduction of surface albedo as
a result of decreasing sea ice (Hall, 2004; Holland and
Bitz, 2003). An analogue of this process operates in the
seasonal cycle during the transition from maximum to
minimum ice extent (X). These two processes are found
to be closely linked across the CMIP5 ensemble, forming
the basis of an EC. However, given the projected rapid
loss of sea ice in the 21st century, this constraint exhibits
a regime-dependence whereby the relationship between
seasonal cycle and climate change SIAF begins to break
down in the latter half of the 21st century, when most
models exhibit an ice-free Arctic (Thackeray and Hall,
2019). This is similar to the concept of tipping points
discussed in Section IV.D.

In addition to the aforementioned radiative feedbacks,
there is a large amount of uncertainty when it comes
to the fate of a number of high-latitude Earth system
components, notably sea ice and permafrost (Slater and
Lawrence, 2013; Stroeve et al., 2012). Given this uncer-
tainty and the potential widespread implications associ-
ated with these changes, ECs can provide valuable infor-
mation here. Notably, a number of studies have proposed
constraints on projections of future Arctic sea ice (Boe
et al., 2009; Liu et al., 2013; Massonnet et al., 2012).
Boe et al. (2009) used the observed historical trend in
September Arctic sea ice extent over the satellite era to
constrain the time in the 21st century when the Arc-
tic is likely to become ice-free during summer. Similar
research by Massonnet et al. (2012) used a series of his-
torical ice characteristics and trends in an attempt to
constrain the time period when the Arctic is likely to
become seasonally ice-free. Their results suggest ice-free
conditions for September to begin somewhere between
2041-2068 under a high-emissions scenario, a significant

reduction from the full CMIP5 spread that spans nearly
100 years. The presence of constraints between histori-
cal ice properties and the future change in both CMIP3
and CMIP5 is a promising sign, but we are not aware
of CMIP6 testing for this EC thus far. Similar histori-
cal sea-ice metrics have also been used to inform future
changes in high-latitude temperature variability (Borod-
ina et al., 2017a). Permafrost underlies a significant por-
tion of the Northern Hemisphere high-latitudes and is
highly sensitive to warming (Lawrence et al., 2012), with
its degradation expected to have detrimental climate and
developmental effects (Teufel and Sushama, 2019). How-
ever, modern ESMs struggle to agree upon future changes
in permafrost area (Slater and Lawrence, 2013). Chad-
burn et al. (2017) use a relationship between mean annual
air temperature and permafrost area during the historical
period (X) to constrain projections of future permafrost
thaw (Y ). This constraint suggests that roughly 20%
more permafrost will be lost per degree of warming than
previously expected (Chadburn et al., 2017).

E. Hydrologic Cycle

Future changes to precipitation are of great interest to
the climate science community because of wide-ranging
impacts on natural and human systems. However, pre-
cipitation is highly variable in space and time, thus mak-
ing it difficult to both observe and predict. These factors
contribute to large intermodel differences in future pro-
jections of precipitation. Reducing this uncertainty is
therefore vital for those making policy and infrastruc-
ture decisions based on model projections. ECs have
been applied to multiple aspects of the hydrologic cy-
cle across various scales (DeAngelis et al., 2015; Li et al.,
2017; O’Gorman, 2012; Rowell, 2019; Watanabe et al.,
2018). First, we consider the globally-averaged changes
to the hydrologic cycle. In response to rising tempera-
tures and increasing atmospheric water vapour, global-
mean precipitation is projected to increase. This is be-
cause the atmosphere radiatively cools to space and this
radiative cooling must be balanced by latent heat release
from precipitation, thus setting the radiative-convective
balance (DeAngelis et al., 2015; Pendergrass and Hart-
mann, 2014). Under a high-emission scenario, models
project a future increase of between 2 to 10 % in global-
mean precipitation (Kharin et al., 2013). This spread
can be partially explained by differing rates of future
warming (Fläschner et al., 2016), although a threefold
spread still exists when the precipitation change is nor-
malised by warming (Kharin et al., 2013). In an attempt
to minimise this spread, DeAngelis et al. (2015) used the
sensitivity of clear-sky shortwave radiation absorption to
changes in column water vapour to constrain the global
mean precipitation increase with warming (termed hy-
drologic sensitivity). This constraint suggests a 35 %
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reduction in the ensemble spread and a 40 % reduction
in the ensemble mean hydrologic sensitivity. This work
was followed by Watanabe et al. (2018), who use the
climatological global mean surface longwave cloud radia-
tive effect (CRE) to constrain the future surface longwave
CRE feedback. In combination with the most-likely sen-
sitivity of clear-sky shortwave radiative absorption to wa-
ter vapour (DeAngelis et al., 2015), this EC suggests a
constrained estimate of 1.8 % K−1 for global hydrologic
sensitivity, down from an ensemble mean of 2.6 % K−1

(Watanabe et al., 2018). However, a recently published
assessment of these constraints in CMIP6 reveals that al-
though the DeAngelis et al. (2015) EC is still present, its
strength is weakened (Pendergrass, 2020). Moreover, the
Watanabe et al. (2018) EC on HS is found to be non-
existent in the new ensemble. This highlights the impor-
tance of applying out-of-sample testing to the remainder
of the ECs on hydrologic cycle components discussed be-
low.

Another key component of the global hydrologic cycle
is terrestrial evapotranspiration (ET), which is made up
of evaporation and biological transpiration (T). The ratio
of T to ET is used to estimate land water fluxes, while be-
cause similar processes influence T and land-atmosphere
carbon exchanges, better estimates of T/ET help to re-
duce uncertainty in global carbon cycle projections (Lian
et al., 2018). Climate models exhibit large variability
in the global strength of T/ET, spanning a factor of 3.
Lian et al. (2018) found a strong relationship (r2 = 0.93)
between simulated local T/ET (averaged over grid-cells
corresponding to in situ measurements) and global mean
T/ET. This EC reveals that the constrained global T/ET
ratio is significantly higher than the CMIP5 ensemble
mean.

Alternatively, several studies have attempted to use
this technique to constrain the change in aspects of the
hydrologic cycle over specific regions. Regional con-
straints have the potential for more policy and impacts
relevance than globally averaged metrics. As a first at-
tempt, O’Gorman (2012) proposed an EC on the change
in future daily tropical precipitation extremes using the
observed sensitivity of tropical precipitation extremes to

temperature variability. They found a strong relation-
ship between the sensitivity of very heavy precipitation
(99.9th percentile) to both seasonal and future temper-
ature changes. The constrained estimate based on ob-
servations (6-14% K−1) was substantially narrower than
the intermodel spread across the CMIP3 ensemble (2-
23% K−1). Similarly, Borodina et al. (2017b) found that
the scaling of annual maximum one day precipitation
(Rx1day) with warming global land temperatures can
be used to constrain the future intensification of heavy
rainfall across extratropical regions with sufficient data
records. This EC suggests that the CMIP5 models are
likely underestimating the future change in extreme rain-
fall where climatological rainfall intensity is high.

Another example links biases in simulated historical
climate and future Indian Summer Monsoon (ISM) rain-
fall (Li et al., 2017). In this case, the authors find that
models overestimating historical precipitation across the
tropical western Pacific also exhibit larger increases in
Monsoon rains in the future (Li et al., 2017). Using obser-
vations of western Pacific rainfall reduces the projected
increase in ISM rainfall by nearly 50%. CMIP5 models
also differ greatly in their projections of future total East
African Long Rains (March-April-May mean spanning a
region from northwest Tanzania to southwest Ethiopia)
– from a 20% decrease to a 120% increase (Rowell and
Chadwick, 2018). Rowell (2019) use an EC between
present day interannual SST-low level cloud sensitivity
and future SST change over the Indian Ocean to assess
the credibility of projections of East African precipita-
tion. They find that one outlier model, which projects
a doubling of seasonal precipitation is likely unreliable
because of unrealistic SST/low cloud processes. This re-
duction in intermodel spread is another example of the
value that an EC approach can provide. Along these
lines, Lehner et al. (2019) recently suggested that the
sensitivity of historical runoff to temperature and pre-
cipitation change across three watersheds in the Western
US is closely tied to projections of future runoff across a
series of ESMs. It is expected that regional applications
of ECs to highly uncertain quantities like precipitation
change will be a key area of future research.

TABLE I: Collection of existing ECs. Note that some of these ECs in-
volve correlations that are lower than those portrayed in Figure 1, with
correspondingly less potential for uncertainty reduction. The ensem-
ble(s) for which the EC appears to have value is also listed (note that
many have only been tested on the ensemble that they were developed
on).

Future constrained quantity (Y) Current climate quantity (X) Ensemble Reference

1 Equilibrium Climate Sensitivity Seasonal cycle of temperature CMIP1
PPE

Covey et al.
(2000) and
Knutti et al.
(2006)
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2 Equilibrium Climate Sensitivity Difference in cloud fraction between the
tropics and SH midlatitudes

CMIP3
CMIP5
CMIP6

Volodin (2008)

3 Equilibrium Climate Sensitivity TOA radiation balance in the SH CMIP3 Trenberth and
Fasullo (2010)

4 Equilibrium Climate Sensitivity Features of TOA radiation fluxes CMIP3 Huber et al.
(2011) and Tett
et al. (2013)

5 Equilibrium Climate Sensitivity Variability in climatological May-August rel-
ative humidity and cloud extent

CMIP3 Fasullo and Tren-
berth (2012)

6 Equilibrium Climate Sensitivity Last Glacial Maximum Cooling CMIP3/
PMIP2
CMIP5/
PMIP3

Hargreaves et al.
(2012) and
Schmidt et al.
(2014)

7 Equilibrium Climate Sensitivity Vertical mixing strength between the bound-
ary layer and lower troposphere over tropical
oceans

CMIP3
CMIP5
CMIP6

Sherwood et al.
(2014)

8 Equilibrium Climate Sensitivity Vertically resolved relative humidity and
clouds between 45◦S and 40◦N

CMIP5 Su et al. (2014)

9 Equilibrium Climate Sensitivity Precipitation in the double-ITCZ region CMIP3
CMIP5

Tian (2015)

10 Equilibrium Climate Sensitivity Seasonal sensitivity of low cloud to SSTs (20-
40◦latitude)

CMIP3
CMIP5
CMIP6

Zhai et al. (2015)

11 Equilibrium Climate Sensitivity Height of tropical low clouds CMIP5 Brient et al.
(2016)

12 Equilibrium Climate Sensitivity Sensitivity of subtropical low cloud albedo to
SSTs

CMIP5
CMIP6

Brient and
Schneider (2016)

13 Equilibrium Climate Sensitivity Climatological latitude of the SH Hadley Cell
edge in winter

CMIP5 Lipat et al. (2017)

14 Equilibrium Climate Sensitivity Statistics of interannual temperature
variability

CMIP5 Cox et al. (2018a)

15 Equilibrium Climate Sensitivity Cloudy-sky radiative flux sensitivity to
temperature

CMIP5 Lutsko and Taka-
hashi (2018)

16 Future global warming (mid-century or end
of century)

Recent warming trend in CMIP models
(1981-2017)

CMIP6 Tokarska et al.
(2020)

17 Transient climate response and Equilibrium
Climate Sensitivity

Recent warming in CMIP models CMIP5
CMIP6

Jiménez-de-la
Cuesta and Mau-
ritsen (2019)
and Nijsse et al.
(2020)

18 Low cloud feedback sign Low cloud sensitivity to Pacific variability CMIP3 Clement et al.
(2009)

19 Global mean cloud feedback and ECS Climatological latitudinal gradient in the re-
flectivity of clouds

CMIP5 Siler et al. (2018)

20 Low cloud optical depth change per degree
climate warming

Low cloud optical depth response to temper-
ature anomalies

CMIP3
CMIP5

Gordon and Klein
(2014)

21 Subtropical low cloud cover change under cli-
mate warming

Subtropical low cloud cover response to
inter-annual temperature and stability
anomalies

CMIP3
CMIP5

Qu et al. (2015,
2014)

22 Global mean cloud feedback under climate
change

Global mean cloud feedback derived from in-
terannual variability in current climate

CMIP5 Zhou et al. (2015)

23 Change in upper troposphere relative humid-
ity and cloud fraction

Vertical gradient in climatological mean rel-
ative humidity and cloud fraction

CMIP5 Po-Chedley et al.
(2019)

24 Snow albedo feedback Seasonal snow albedo feedback (spring) CMIP3
CMIP5
CMIP6

Hall and Qu
(2006); Qu and
Hall (2014)

25 Sea ice albedo feedback Seasonal sea ice albedo feedback (summer) CMIP5 Thackeray and
Hall (2019)

26 Timing of Arctic ice-free summer Historical September sea ice trend CMIP3 Boe et al. (2009)
27 Timing of Arctic ice-free summer Historical sea ice characteristics CMIP5 Massonnet et al.

(2012)
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28 Arctic thermal feedbacks Different aspects of Northern Latitude re-
gional temperatures

CMIP3
CMIP5

Bracegirdle and
Stephenson
(2013)

29 Sensitivity of tropical land carbon storage to
warming

Short-term sensitivity of CO2 to interannual
temperature variability

C4MIP
CMIP5

Cox et al. (2013)
and Wenzel et al.
(2014)

30 CO2 fertilisation of photosynthesis on the
extratropics

Seasonal fluctuations in CO2 concentrations CMIP5 Wenzel et al.
(2016)

31 Global land carbon feedback strength Interannual variations in evapotranspiration,
net biome productivity, and gross primary
productivity

CMIP5 Mystakidis et al.
(2017)

32 Change in tropical primary production to
temperature anomalies

Sensitivity of tropical primary production to
interannual SST anomalies

CMIP5 Kwiatkowski
et al. (2017)

33 Future permafrost thaw Relationship between mean annual air tem-
perature and permafrost area

CMIP5 Chadburn et al.
(2017)

34 Future CO2 concentration Simulated CO2 concentration by 2010 CMIP5 Hoffman et al.
(2014)

35 Change in Arctic Gross Primary
Productivity

Sensitivity of annual maximum leaf area in-
dex to increasing CO2

CMIP5 Winkler et al.
(2019a)

36 Global Ocean Carbon Uptake Present-day Southern Ocean carbon uptake CMIP5 Kessler and
Tjiputra (2016)

37 Future Arctic Ocean acidification Present-day Arctic sea surface density CMIP5 Terhaar et al.
(2020)

38 Intensification of heavy rainfall across cer-
tain extratropical regions

Scaling of annual maximum daily precipita-
tion with global land temperatures

CMIP5 Borodina et al.
(2017b)

39 Change in tropical precipitation extremes
under climate warming

Sensitivity of tropical precipitation extremes
to temperature variability

CMIP3
CMIP5

O'Gorman
(2012)

40 Indian summer monsoon rainfall increase
with warming

Climatological mean precipitation in the
Western Tropical Pacific

CMIP5 Li et al. (2017)

41 Future SST change over the Indian
Ocean with application for East African
precipitation

Present-day interannual SST-low level cloud
sensitivity

CMIP5 Rowell (2019)

42 Future runoff projections over the Western
US

Historical runoff sensitivity to temperature
and precipitation variations

CMIP5 Lehner et al.
(2019)

43 Clear-sky shortwave absorption (Global
mean precipitation increase)

Sensitivity of shortwave radiative absorption
to changes in column water vapor

CMIP5
CMIP6

DeAngelis et al.
(2015)

44 Global hydrologic sensitivity Variation between surface longwave cloud ra-
diative effect and its sensitivity

CMIP5 Watanabe et al.
(2018)

45 Global transpiration to evapotranspiration
ratio

Local transpiration to evapotranspiration
ratio

CMIP5 Lian et al. (2018)

46 North Atlantic subpolar gyre cooling Stratification of the subpolar North Atlantic
Ocean

CMIP5 Sgubin et al.
(2017)

47 Summer warming over the Central USA Climatological summer temperature over the
central USA

CMIP5 Lin et al. (2017)

48 Change in high-latitude temperature
variability

Historical sea-ice metrics CMIP5 Borodina et al.
(2017a)

49 Future continental warming over Europe Present-day climatological summer temper-
atures over Europe

CMIP5 Selten et al.
(2020)

50 Frequency of heat extremes Seasonal land-atmosphere feedbacks CMIP5 Donat et al.
(2018)

51 Poleward jet shifts under warming Climatological position of jet stream CMIP5 Simpson and
Polvani (2016)

52 Poleward shift of Southern Hemisphere
eddy-driven jet stream with climate warming

Climatological latitudinal position of South-
ern Hemisphere eddy-driven jet stream

CMIP3 Kidston and Ger-
ber (2010)

53 Anthopogenic ozone radiative forcing Tropospheric ozone effect on outgoing long-
wave radiation

ACCMIP Bowman et al.
(2013)

VI. STATISTICAL UNDERPINNINGS

Accurately constraining the unknown future value of
Y in the real world requires one to include and quan-

tify all the possible sources of uncertainty in each step
of the EC procedure. This section will give an overview
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of four types of uncertainty that have been incorporated
into ECs so far: those stemming from uncertainty in the
real world observation of X, uncertainty in X from inter-
nal variability, uncertainty in the functional form of the
emergent relationship and uncertainty from ESMs being
imperfect replications of the real world. The section con-
cludes with a discussion on how to combine those four
types of uncertainty in the resulting in EC. In addition,
we discuss how to combine multiple emergent constraints
of the same quantity, derived from alternative features of
historical climate.

A. Uncertainty in observations

There are multiple sources of observational error in
the real world value of X. First, a lack of spatial and/or
temporal coverage can be present and this may lead to
biases if not taken into account (Cowtan and Way, 2014).
There are two ways to handle missing data: it can be in-
terpolated and extrapolated from existing data, or alter-
natively, model output can be filtered to reflect only lo-
cations and times for which observational data is present
(e.g. AchutaRao et al. (2006); Cox et al. (2018a); Durack
et al. (2014)). Secondly, observational records are of fi-
nite length, introducing additional uncertainty from low
sample size. Standard errors quantifying finite size effects
can be computed, but care should be taken when time-
series are autocorrelated as this increases the standard
error by effectively reducing the sample size (Trenberth,
1984). For stationary processes, standard equations for
autocorrelation errors can be found in Zhang (2006).

Estimates of errors in instrumentation and data gath-
ering are often available from literature e.g. Hennermann
(last edited July 2018). If multiple observational data
sets are available, these can be used to infer uncertainty
(Kwiatkowski et al., 2017; Trenberth and Fasullo, 2010).
The errors in these data sets might not be independent;
different satellite products might for instance have the
same biases. Independent sources of error σ1 and σ2 can
simply be computed by σ2

total =
√
σ2
1 + σ2

2 .

If observational uncertainty makes up a large percent-
age of overall uncertainty, care should be taken to as-
sess whether to use a normal distribution to describe the
probability density function (pdf). It may sometimes be
possible to estimate a full pdf from measurements. Alter-
natively, stochastic reduced-form modelling of the system
can be used to estimate the shape (Nijsse and Dijkstra,
2018; Williamson et al., 2019).

Whatever method is used, it is important that this step
of capturing observational error is not neglected (Hall
et al., 2019).

B. Uncertainty from internal variability

Like the real world, climate models have internal vari-
ability. Because of the finite length of the simulation
or observed climate record, internal variability can have
a significant impact on the estimation of the predictor.
One possibility is to use very long model control sim-
ulations to estimate the size of internal variability if it
is believed to be independent of forcing (Nijsse et al.,
2019). Variability may however be dependent on forcing,
and consequently, estimating it from a forced initial value
ensemble (see section II.A) may be preferable (Tokarska
et al., 2020). For instance, global inter-annual variabil-
ity is expected to decrease in the future (Huntingford
et al., 2013). Jiménez-de-la Cuesta and Mauritsen (2019)
used the 100-member historical ensemble of MPI-ESM1.1
to quantify the effect of internal variability, whereas Ni-
jsse et al. (2020) used all available historical initial value
members from each CMIP6 model to estimate the mean
model variability. Both used model estimates as a proxy
for real internal variability.

C. Uncertainty in the functional form of the relationship

Reducing a high-dimensional climate model to a lower
dimension brings some uncertainty. Clearly, not all the
variance will be explained with only two variables, and
performing a regression is a tool to quantify this. While
most emergent constraints so far assume linear relation-
ships between X and Y and use linear regression to infer
the emergent relationship, the regression does not nec-
essarily have to be linear (Bracegirdle and Stephenson,
2012; Nijsse and Dijkstra, 2018). If a linear relationship
is imposed when, in reality, the relationship is nonlinear,
additional errors will occur. A nonlinear emergent rela-
tionship leads mostly to a non-normal pdf for Y with a
standard deviation that is potentially significantly larger
or smaller than for a linear fit (see Figure 6). Of course,
more data or clear prior information on the parameters
is needed when fitting additional parameters.

Regression dilution takes place as a consequence of er-
rors in estimating model predictors (e.g. finite simulation
length): when there is an error in the modelled explana-
tory variables, the slope of a linear regression fit will be
smaller than without error and the intercept regresses
towards the mean (Frost and Thompson, 2000). Multi-
ple strategies to reduce this can be employed: taking the
mean of a set of initial value simulations (Jiménez-de-la
Cuesta and Mauritsen, 2019), using orthogonal distance
regression, which takes into account both errors in the de-
pendent and independent variable (Jiménez-de-la Cuesta
and Mauritsen, 2019) or using a hierarchical Bayesian
method that assume the ‘true’ independent variable is
unknown (latent) and using the realizations to infer this
true value simultaneously while performing the regression
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FIG. 6 Using a quadratic relationship decreases the uncer-
tainty in Y compared to a linear fit provided the observations
line up with the shallow section of the quadratic function. Il-
lustration with synthetic data.

(Nijsse et al., 2020; Sansom, 2014).

Regression confidence intervals also depend on sam-
ple size. As climate models often have shared computer
code, effective sample size is probably lower than the to-
tal number of models (Herger et al., 2018; Masson and
Knutti, 2012; Pennell and Reichler, 2010), effectively re-
ducing significance (Knutti et al., 2013). This commonal-
ity can be partially addressed by selecting only one model
per modelling centre (Cox et al., 2018a; Sansom et al.,
2019), where centres frequently offer multiple versions of
alternative spatial resolutions or other small differences
in model physics. However, even then effective sample
size may be overestimated. As strongly related models
in terms of code may have very different values for X and
Y , it is not always clear how important corrections are
(Nijsse et al., 2020).

D. Uncertainty from imperfect models

Almost paradoxically, the technique of emergent con-
straints relies on errors in models. Hence some type
of errors are useful, while others simply contribute to
widening the confidence interval. Model error comes from
parameteric and from structural errors (see also section
II.A). Parameter error is often examined by perturbed
physics ensembles (PPEs), an ensemble where a single
climate model is run repeatedly with systematically var-
ied parameters designed to span a large range of model
responses. Care should be taken to only include the phys-
ically adequate parameter choices, but not restrict the
parameter space too much (Wagman and Jackson, 2018).

Usually, due to the expense of running climate mod-
els, an ad hoc ensemble of different models is exploited
to establish emergent constraints, the so called ‘ensem-
ble of opportunity’. In this case, models should be cho-

sen in such a way that they are still comparable: If half
the models contain a nitrogen cycle, while the other half
does not, they are unlikely to fit on a single regression
(Wenzel et al., 2014). Williamson and Sansom (2019)
argue that due to structural uncertainty, the derived re-
gression between X and Y should not be regarded as the
real relationship, but instead as only informing the real
relationship.

E. Combining sources of uncertainty in an EC

Williamson and Sansom (2019) argue on theoretical
grounds that emergent constraints should be performed
using a Bayesian framework, instead of the more com-
mon frequentists’ framework using ordinary least square
fitting (e.g. Wenzel et al. (2014)), in which priors are set
for the regression parameters but not for the predictand
Y . Bowman et al. (2018) formulated a Bayesian hierar-
chical statistical framework that combines uncertainty in
observations with uncertainty related to the regression it-
self. An explicit formula for the probability distribution
can be approximated incorporating these uncertainties:
assuming normality and performing a linear regression
with intercept a, slope b and confidence around the re-
gression of σf , the probability density function for the
predictand p(y) is computed by integrating the condi-
tional probability function p(y|x) with the observational
probability density p(x). This formula for p(y), rewritten
in the notation of other statistical frameworks and under
Gaussian assumptions, turns into

p(y) =

∫ ∞
−∞

p(y|x)p(x)dx

= N
(
y
∣∣a+ bXobs,

√
σ2
f + b2σ2

O

)
(20)

Here X is the predictor, Y the predictand, and Xobs is
the best estimate of the observation. The observational
uncertainty is denoted by σO.

To better estimate the regression and incorporate in-
ternal climate variability explicitly, a second hierarchical
model was developed independently by Sansom (2014)
and Nijsse et al. (2020). Internal climate variability is
incorporated both as part of the regression, and as an
additional term in the uncertainty around observations,
by using all initial value simulations Xm,j of each model
m and each initial value member j. Here formulated us-
ing Gaussian distributions:

Xm,j ∼ N (Xm, σI) (21)

Ym ∼ N (a+ bXm, σf ) (22)

The internal variability is denoted by σI and is assumed
to be independent of Y and X (and therefore model in-
dependent). The probability density function is sampled
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from estimates of the observed Xobs and the parameters
of the emergent relationship, giving a similar equation to
Eq. 20.

p(y) = N
(
a+ bN

(
Xobs,

√
σ2
I + σ2

O

)
, σf

)
Hall et al. (2019) queries the extent to which we should

trust in only partially confirmed ECs. This can be ad-
dressed formally, by inclusion of a researcher’s assess-
ment of how reliable a certain EC is. Williamson and
Sansom (2019) describe a method explicitly incorporat-
ing the trust that is put in any particular EC, includ-
ing for instance by how much the EC changes in differ-
ent ensembles. They introduce an additional parame-
ter σR that represents the uncertainty even after having
taken all model information into account. This param-
eter is set subjectively, judged on the degree of physi-
cal trust the researcher has in the EC and features as
p(y) = N (βx, σ2

f + σ2
R), where β is a covariance ma-

trix of the regression parameters, for which priors are
also provided with information about possible biases or
errors in the regression parameters.

F. Combining multiple constraints

A very simple method to combine multiple constraints
was used in Brient (2020). They use a Gaussian ker-
nel density estimation of a histogram of the best val-
ues of previous constraints. To account for the variance,
the posterior variance of the different ECs was included
in a weighted Gaussian kernel density estimation. This
method suffers from multiple drawbacks. Most promi-
nently it cannot capture increasing confidence from hav-
ing multiple independent constraints. Adding a new con-
straint with the same mean does not automatically lead
to a narrower combined constraint, with the choice of ker-
nel bandwidth remaining subjective. It further does not
take into account to what extent the different emergent
constraints are related to each other.

In Bretherton and Caldwell (2020) multiple emergent
constraints were combined using a multivariate Gaussian
PDF, which can be viewed as a form of multilinear re-
gression. Their ‘method C’ (for Correlated) includes in-
formation about correlations between different emergent
relationships. Regularization was applied to deal with
the strong collinearity between the emergent relation-
ships. A second ‘method U’ (for Uncorrelated) used a
smaller subset of ECs, those regarded as confirmed con-
straints. As collinearity is less important with fewer ECs
this method simplifies C by dropping the covariance ECs.
Both variants were extended with a transparent method
to account for overconfidence in the EC: they scale the
ratio of the explained to unexplained variance with a fac-
tor α2 ≤ 1, reducing all correlation coefficients.

FIG. 7 Standard, ordinary least squares linear regression
p(y|x) compared with the reverse regression p(x|y). If the
latter were to be used as the relationship on which the emer-
gent constraint is founded, the final constraint has a bias.

In a discussion paper by Renoult et al. (2020), a sim-
ple method was proposed to combine independent ECs to
create a tighter estimate for Y . Where the regression is
normally given as p(y|x), they propose to instead formu-
late the statistical model as p(x|y), allowing for a prior
on π(y) to be integrated into the emergent constraint as

p(y) =

∫ ∞
−∞

p(x|y)π(y)p(x)dx. (23)

p(y) here is the posterior distribution of a previous EC.
To make sure the two ECs are indeed independent, the
authors state that observations need to be independent,
and that insofar possible, the errors in models should
also stem from different sources. Their example involved
a warm and cold climate state for which temperature
change was reconstructed. Temperature change is dom-
inated by different processes in this case, so that model
error can be considered independent to first order. This
method is not consistent with other methods described
above. Linear regression is typically not symmetric; re-
gression where X predicts Y , p(y|x), describes a differ-
ent function than regression where Y predicts X, p(x|y)
(Smith, 2009), as illustrated in Fig. 7.

VII. OUTLOOK

In this section we give some directions which we think
are promising or exciting for future EC research.

A. Key gaps in ECs to date

The collection of ECs described in Section V highlight
key areas of focus to date, but this also demonstrates
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where gaps exist, thus highlighting where the potential
for EC growth is greatest going forward. For the most
part, ECs have been traditionally focused on globally-
aggregated quantities related to the mean state of climate
(e.g., climate feedbacks, hydrologic sensitivity). How-
ever, recent applications to more regional features of the
climate system are particularly encouraging (e.g. inform-
ing future monsoonal precipitation change over India;
Li et al. (2017)). Seeing as these regional applications
have the potential for greater policy impact than most
globally-averaged metrics we anticipate much more focus
in this area going forwards. Climate extremes are also
of great societal importance, but from Figure 5 we can
see that very few studies have attempted to constrain
the uncertainty in their future changes. We anticipate a
greater focus on these and other higher order moments of
climate statistics going forward. This advance is spurred
on by an ever-lengthening satellite record that is now long
enough to robustly sample extreme precipitation events.
Similarly, improving paleoclimate records offer great po-
tential for constraining emergent relationships pertain-
ing to aspects of the climate system that vary on long
timescales. In terms of their Earth system components,
proposed constraints are heavily skewed towards atmo-
spheric and biogeochemical fields, while constraints per-
taining to oceanography and ice sheets are lacking. The
latter is a rather recent addition to ESMs, but as obser-
vational records continue to improve there could be great
potential for reducing uncertainty in critical metrics like
sea level rise. Lastly, most ECs pertain to local rela-
tionships, but there are likely many undiscovered remote
relationships in the climate system, where the current
variability in one region is strongly tied to the future
change in another region through atmospheric telecon-
nections (Rowell, 2019). It is also believed that biases in
the position of various climate features may be systemat-
ically tied to how the features respond to future forcing
(Hall et al., 2019). Utilising these spatial characteristics
of climate for ECs has begun (Kidston and Gerber, 2010;
Simpson and Polvani, 2016), but better detection of these
remote constraints likely requires improved analysis tech-
niques e.g. Barnes et al. (2019).

B. Targeted model development

An appealing yet underused aspect of ECs is targeted
model development for bias reduction in a particular as-
pect of climate change (Y ), although there are dangers to
be aware of too (see section IV.G). If an EC has strong
physical underpinnings, then we can expect that taking
steps to reduce the spread in X will result in a corre-
sponding spread reduction in Y . First, we must assess in
detail how the structural and parametric makeup of the
ESMs influence the spread in X. Through this analysis
the best parameterizations or parameters for simulating

X may be uncovered, thus providing guidelines for mod-
elling centres on how they can efficiently reduce bias in
X going forward. This type of analysis is encouraged for
all well-established ECs, but has only been completed for
ECs on hydrologic cycle intensification (DeAngelis et al.,
2015), the sensitivity of extratropical cloud reflectivity to
temperature (Gordon and Klein, 2014), and snow albedo
feedback (Thackeray et al., 2018). It is also possible that
these targeted development activities will lead to a re-
duction in spread for related attributes of climate change
affected by Y .

C. Use of conceptual models as the basis of emergent
relationships and understanding of more complex ESMs

In the earlier years of ECs there may have been a ten-
dency to data mine for variables with high correlations
within ESM ensembles, potentially resulting in bad ECs
(see section II.B). However, data mining is not necessar-
ily bad if it guides the search for independently testable
mechanisms that may not have been obvious otherwise
(section IV.A).

One way of guarding against fortuitous correlations
and hypothesizing new mechanisms is using conceptual,
analytically soluble models as the basis of the emergent
relationship. Building and solving conceptual models re-
quires one to make assumptions about the real world.
These assumptions are often clear, simple to understand
and ideally, testable against real world and ESM ensem-
ble data (Williamson et al., 2018). Provided the assump-
tions survive these tests, the solution to the conceptual
model can form the basis of the emergent relationship.
This testing of simplified theory not only aids under-
standing and intuition of what might (or might not) be
going on in the complex ESMs but also adds a greater
degree of rigour to ECs. There are potential dangers one
should be aware of however; (i) p-hacking might occur
(see section IV.B) and (ii) it might be that a process in
the ESM one is trying to constraint is closer to the con-
ceptual model in the spectrum of complexity than it is to
reality. The use of conceptual models could therefore be
used to justify the relationships arising from slightly less
conceptual parameterizations which are implemented in
the ESMs.

State-of-the-art ESM spatial resolution has continu-
ally increased and more physical and biogeochemical pro-
cesses have been incorporated making these models ever
more comprehensive representations of the Earth as time
has gone on. They have become the main theoretical tool
in climate science. However, due to their ever increasing
complexity, their behaviour is difficult to understand and
predict without running the models themselves. They are
also frequently treated as one-stop shops and oracles for
any question about contemporary and future climate.

In the past, numerical simulation was more limited by
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computing power and researchers had to think carefully
about which bits of the Earth system were important to
include in their models to answer a particular question.
This led to wider use of conceptual models specific to
that question, analytical techniques and a better intu-
ition due to the reduction of model complexity (Budyko,
1969; Dijkstra, 2013; Hasselmann, 1976; Saltzman, 2002;
Wigley and Raper, 1990).

Today, there is even more of an opportunity for the top
down insights of specific conceptual models to meet and
complement the comprehensive, bottom up approach of
from state-of-the-art ESMs; there are many more high
quality observations from satellites (Yang et al., 2013),
ocean floats (Roemmich et al., 2019), and continuous
temperature records; the global warming signal also has
become clearer through the passage of time; there is also
a large archive of past and present ESM simulations.
With all the new data, it would be worth revisiting these
simple, understandable models. We think a promising
way forward to incorporate all the extra information from
ESMs, conceptual models and observations is the EC ap-
proach.

D. Multidimensional ECs and nonlinear emergent
relationships

Much of the work on ECs has used just two scalar
variables, a predictor X, and a response or predictand Y ,
related linearly. This could be extended to two or more
predictors or predictands (Renoult et al., 2020). The
predictand space to constrain will become larger however,
and this might be difficult with small ESM ensembles.

Most of the work to date has also assumed a lin-
ear emergent relationships, exceptions being the con-
straints on ECS using global mean temperature change
in Jiménez-de-la Cuesta and Mauritsen (2019) and Ni-
jsse et al. (2020). This is also not necessary if theoretical
reasoning suggests a different relation is more suitable.

Equivalently to the use of multiple predic-
tors/predictands, one could imagine using vectors
for X and Y , rather than scalars if theory suggested
such a relationship. These vectors could for example
encode spatial fields of a climate variable (Brown and
Caldeira, 2017), spatial normal modes of variance,
referred to a empirical orthogonal functions (EOFs)
in meteorology (von Storch and Zwiers, 1999) or the
leading linear dynamical modes, also known as principal
oscillation patterns (POPs) in meteorology (Hasselmann,
1988; Williamson and Lenton, 2015).

E. Continued improvement of climate projections and
impacts-led requirements

One prediction we make is that the discovery of new
ECs will be led more by those asking questions as to

how climate impacts of concern may adjust in the future.
Many altered meteorological features expected to have
the most detrimental effect on societal safety, livelihoods
and well-being are the magnitude and frequency of ex-
treme weather events. A focus on extremes may result in
ECs that are different in composition to those discovered
to date. Rather than a fluctuating and observable con-
temporary quantity (X) projecting a ‘bulk’ climate prop-
erty (Y ) of importance to the future, instead a different
format is required. That is, summary climate properties
of large-scale features (or trends in them), as observable
quantity X, require investigation to determine if they can
estimate the future extreme frequency of quantity Y . In
addition, a search for such ECs will focus attention on
three further challenges. First, attributes of extremes
and their changes might show substantial geographical
variation. Second, by definition, extremes are rare, and
so there are few data points available for investigation in
ESM diagnostics where meteorological values are above
thresholds that may be unsafe. Third, the future connec-
tion between observable X and extreme feature Y may
involve a teleconnection between locations, and possibly
with seasonal inertia.

F. Better understanding of the effects of parametric and
structural uncertainty on ECs

Presently, the most commonly used ESM ensembles in
climate as well as EC research are multi-model ensembles
(MMEs, see section II.A) allowing structural uncertainty
to be explored and in more recent MMEs such as the
CMIP datasets, initial condition uncertainty. Paramet-
ric uncertainty is also captured to some degree although
not in a systematic way unlike in PPEs. It is therefore
unclear whether all plausible model parameteric configu-
rations are explored. See also sections IV.I and VI.D.

The strengths of MMEs and PPEs could be combined
in a ‘super-ensemble’ of PPEs generated from struc-
turally different models. Apart from better assessment
of confidence intervals, questions about the necessity of
plausible ESM simulations for good ECs could be an-
swered i.e. is it necessary to filter out unrealistic sim-
ulations to strengthen the EC, based on an observation
unrelated to the predictor? Statistical emulators (Sacks
et al., 1989) of ESMs may help to give enough effective
simulations after filtering unrealistic simulations from a
PPE.

G. Machine Learning

Use of machine learning (ML) techniques in ECs may
prove fruitful in future research. Machine Learning (ML)
(Webb and Copsey, 2011) is a wide definition but en-
compasses ECs, particularly supervised learning type al-
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gorithms. In a supervised ML approach, the algorithm
builds a mathematical model from a set of training data
that contains both inputs and desired outputs. In the
case of ECs, this training data is from an ESM ensemble,
the inputs being the observable X and the outputs being
the future projection Y . The mathematical model is f i.e.
Y = f(X) + ε. The mathematical model that has been
a popular choice in ECs so far has been f(X) = aX + b
where a and b are constants fitted via linear regression.

Phrasing linear regression as an example of supervised
ML could be seen to be an over complicated generaliza-
tion. However, viewing ECs within this framework po-
tentially allows one to take advantage of the existing tools
within ML. For example, the mathematical models fitted
by the supervised ML algorithms could be more elaborate
with more physical or statistically based parameters that
give better explanatory power or more realism. The in-
puts and outputs equally could be more elaborate having
extra spatial dimensions and/or extra variables (section
VII.D). This could of course get as complicated as repro-
ducing the original models that the inputs and outputs
derive from. However, one ideally would like to walk
the line between physical plausibility/understandability
of the model and explanatory power to derive a minimal
description.

One also has to be aware of the number of data avail-
able to fit to a particular mathematical model. Presently,
MMEs consist of around 30 ESMs limiting defensible fits
of mathematical models to just a few parameters. How-
ever, one may be able to leverage the extra information
in the ESMs spatial and temporal degrees of freedom
to increase data size and therefore mathematical model
complexity.

H. Building connections to other fields

Though our expertise is in the area of climate and
Earth system dynamics, we have found a few examples
of EC-like approaches in other fields.

In the closely related field of weather prediction, an
approach known as ‘Model Output Statistics’ is used to
enhance the quality and relevance of weather forecasts
produced by numerical models (e.g. Veenhuis (2013)).
As models are used again and again to make forecasts, an
archive of past simulated data accumulates. This archive
can be analysed to diagnose systematic statistical rela-
tionships between model output and observed quantities
of interest. (An example of a quantity of interest might
be temperature at a particular weather station.) When
the models are then used to make real-time forecasts,
these relationships can be applied to the forecast output,
generating values for the quantities of interest. This is
similar to the EC approach in that the structure of model
biases is ascertained and exploited to produce future pre-
dictions that are likely more realistic.

We find another example in the field of cosmology,
where models have been created to simulate galaxy de-
velopment. Like climate models, these models have tun-
able parameters. When the model parameters are varied
to produce an ensemble of simulations, statistical rela-
tionships among galaxy components across the ensemble
can be analysed. In the study of Terrazas et al. (2020),
their galaxy model produces strong statistical relation-
ship between the black hole mass and the associated stel-
lar mass (c.f. Figure 7 of that paper). Under certain
conditions, observations of black hole and stellar mass
mirror the simulated relationship. This suggests that
given an observation of black hole mass for a galaxy with-
out a corresponding stellar mass observation, the model
could be used to make a meaningful prediction of stellar
mass. This example is similar to ECs in the sense that
the intrinsic model (and real world) physics connecting
key quantities of interest can only be ascertained through
analysis of a multi-model ensemble.

In the field of economics, past forecasts of economic
performance using multiple economic models have been
analysed and compared to the actual ensuing economic
performance. Felix et al. (2018) found that the skewness
of the ensemble forecast’s distribution is a strong predic-
tor of economic surprises. The implication is that if a
current ensemble of economic models produces a skewed
forecast distribution, the likelihood of an economic sur-
prise is elevated. Such an outcome might not be de-
tectable from more conventional predictions, such as the
ensemble mean forecast. This example has some similari-
ties to the Model Output Statistics example from weather
forecasting: Model biases are ascertained from multiple
realisations of past forecast performance, and used to im-
prove the current forecast.

This brief survey of a few close cousins to the EC ap-
proach reveals that ECs and their variants are most likely
to be useful where we are trying to understand complex
systems where experimentation with the real system is
not possible or is cumbersome. In such systems we often
need to simulate dynamical evolution, initialising from
a snapshot in time or at best a relatively short period
of observations. Multiple models of the system are pos-
sible, and which model is the correct one is unknown.
Emergent relationships across model variants are a way
to reveal the deeper connections between observable el-
ements of simulations and model outcomes of interest.
There are likely many more examples of EC-like research
being done on complex systems. These disparate com-
munities appear to be unaware of one another, and could
benefit from organised efforts to convene in workshops
and meetings.
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VIII. CONCLUSION

The spread in climate change projections has not re-
duced substantially despite major advances in model res-
olution and process understanding and inclusion over re-
cent decades. The lack of progress represents a disap-
pointment for climate science, and hinders society’s abil-
ity to plan for future impacts. These challenges cannot
be overcome by just increasing the resolution of ESMs
and including more and more physical and biogeochem-
ical processes. A balanced interplay of observations as
well as top down, conceptual and bottom up, compre-
hensive modelling and theory is required to achieve the
required progress and scientific understanding. In this
review, we have argued that the EC approach offers a
promising way to incorporate all of these elements and
ultimately reduce key uncertainties in future climate.

The development of ECs has arisen from the require-
ment to reduce often substantial inter-ESM differences
in projections of climate. Large model differences makes
adaption planning difficult and risks spending funds set
aside to help societies cope with climate change. For
those tasked with formulating mitigation plans that will
reduce greenhouse gas emissions in order to contain
global warming, uncertainty prevents the formation of
accurate trajectories of ‘allowable’ fossil fuel burning. In
this review paper, we have shown existing applications of
ECs, discussed theoretical issues surrounding them that
likely require further investigation, and characterised a
few circumstances where they may start to fail. Never-
theless, although this seemingly points to more research
required, ECs are a key methodology to distil the of-
ten conflicting information from climate modelling cen-
tres across the world. For this reason, we anticipate that
the application of ECs will continue to grow, and results
from their application will have an increasing role in pro-
jecting future change, and with strong representation in
future UN reports by the IPCC.

This review has looked in depth at how ECs have
become a standard methodology, used by climate re-
searchers to synthesize substantial inter-ESM prediction
differences, into projections of change with lower levels
of uncertainty. We make a critical assessment of the EC
technique, and many of the open questions raised here
may lead to exciting avenues of research over the years
ahead. It may also be true that other research disci-
plines will find a role for the EC approach. However, it
is always worth recalling that the main scientific issue
remains pressing, as without substantial reductions in
emissions, the climate is expected to change substantially
and to a dangerous state for large fractions of society. For
this reason, intense scrutiny of the EC method is highly
welcome and appropriate. The relentless need for climate
predictions is also likely to trigger the discovery of new
ECs, caused instead by impacts led requirement for in-
formation taking precedence over more curiosity driven

investigation.
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Yongqiang Zhang, and Tao Wang (2018), “Partitioning
global land evapotranspiration using cmip5 models con-
strained by observations,” Nature Climate Change 8 (7),
640–646.

Lin, Yanluan, Wenhao Dong, Minghua Zhang, Yuanyu Xie,
Wei Xue, Jianbin Huang, and Yong Luo (2017), “Causes
of model dry and warm bias over central u.s. and impact on
climate projections,” Nature Communications 8 (1), 881.

Lipat, Bernard R, George Tselioudis, Kevin M. Grise, and
Lorenzo M. Polvani (2017), “CMIP5 models’ shortwave
cloud radiative response and climate sensitivity linked to
the climatological Hadley cell extent,” Geophysical Re-
search Letters 44 (11), 5739–5748.

Liu, Jiping, Mirong Song, Radley M. Horton, and Yongyun
Hu (2013), “Reducing spread in climate model projections
of a september ice-free arctic,” Proceedings of the National
Academy of Sciences 110 (31), 12571.

Lutsko, N J, and K. Takahashi (2018), “What can the inter-
nal variability of cmip5 models tell us about their climate
sensitivity?” Journal of Climate 31 (13), 5051–5069.

Maher, Nicola, Sebastian Milinski, Laura Suarez-Gutierrez,
Michael Botzet, Mikhail Dobrynin, Luis Kornblueh, Jürgen
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Petr Havlik, Florian Humpenöder, Lara Aleluia Da Silva,
Steve Smith, Elke Stehfest, Valentina Bosetti, Jiyong
Eom, David Gernaat, Toshihiko Masui, Joeri Rogelj, Jes-
sica Strefler, Laurent Drouet, Volker Krey, Gunnar Lud-
erer, Mathijs Harmsen, Kiyoshi Takahashi, Lavinia Baum-
stark, Jonathan C. Doelman, Mikiko Kainuma, Zbigniew
Klimont, Giacomo Marangoni, Hermann Lotze-Campen,
Michael Obersteiner, Andrzej Tabeau, and Massimo
Tavoni (2017), “The Shared Socioeconomic Pathways and
their energy, land use, and greenhouse gas emissions impli-
cations: An overview,” Global Environmental Change 42,
153–168.

Roemmich, Dean, Matthew H. Alford, Hervé Claustre, Ken-
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