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(Dated: March 12, 2020)

The atomic nucleus is a quantum many-body system whose constituent nucleons (pro-
tons and neutrons) are subject to complex nucleon-nucleon interactions that include
spin- and isospin-dependent components. For stable nuclei, already several decades ago,
emerging seemingly regular patterns in some observables could be described success-
fully within a shell-model picture that results in particularly stable nuclei at certain
magic fillings of the shells with protons and/or neutrons: N,Z = 8, 20, 28, 50, 82, 126.
However, in short-lived, so-called exotic nuclei or rare isotopes, characterized by a large
N/Z asymmetry and located far away from the valley of beta stability on the nuclear
chart, these magic numbers, viewed through observables, were shown to change. These
changes in the regime of exotic nuclei offer an unprecedented view at the roles of the
various components of the nuclear force when theoretical descriptions are confronted
with experimental data on exotic nuclei where certain effects are enhanced. This article
reviews the driving forces behind shell evolution from a theoretical point of view and
connects this to experimental signatures.

PACS numbers: 21.60.-n,21.10.-k,21.30.Fe
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I. INTRODUCTION

The atomic nucleus is composed of protons and neu-
trons (collectively called nucleons) bound into one en-
tity by nuclear forces. Its properties have been stud-
ied extensively for over a century since its discovery by
E. Rutherford in 1911 (Rutherford, 1911), providing a
rather comprehensive picture of stable nuclei, i.e., nuclei
with infinite or almost infinite lifetimes that are charac-
terized by a balanced ratio of the number of neutrons
(N) and protons (Z), e.g., N/Z ∼ 1− 1.5. Matter found
on the earth is essentially made up of stable nuclei, in-
cluding long-lived primordial isotopes like 235U. Almost
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all matter in the visible universe is comprised of atomic
nuclei.
While the overall picture had thus been conceived for

stable nuclei, the landscape of atomic nuclei has been
significantly expanded in recent years. This is associ-
ated with a major shift in the frontiers of nuclear physics
from stable to exotic (or unstable) nuclei. Here, exotic
nuclei imply atomic nuclei with an unbalanced N/Z ratio
as compared to stable ones, thus losing binding energy
due to a large difference in Z and N (Bethe and Bacher,
1936; von Weizsäcker, 1935). Relatively smaller binding
energies mean that β-decay channels open up, proceed-
ing towards more N/Z balanced systems and resulting in
finite (often short, sub-second) lifetimes.

Such extreme N/Z ratios impact not only lifetimes of
exotic nuclei but also their quantum many-body struc-
ture relative to that of stable nuclei. This is the main
subject of this review article, with a particular emphasis
on the variations of the nuclear shell structure.
Figure 1 shows a nuclear chart (or Segrè chart), where

an individual nucleus is specified by two coordinates: Z
and N . In Fig. 1, stable nuclei (blue squares) stretch
along a “line”, called the β-stability line. Exotic nuclei
are widely distributed as indicated by light brown or light
green squares. Their existence limit on the neutron-rich
(proton-rich) side is called the neutron (proton) dripline.
Although a certain number of exotic nuclei have been fa-
miliar to nuclear physics since the field’s early days, sys-
tematic studies of them have begun in the 1980’s. One of
the examples is the measurement of the matter radius of
11Li (Tanihata et al., 1985), marking a visible milestone
in the development of experiments with radioactive ion
(or rare isotope) beams with the discovery of the neu-
tron halo. Many other experiments have been conducted
in the last decades, re-drawing the nuclear landscape.

The nucleus 11Li is known for its extraordinarily large
matter radius due to the formation of a neutron halo,
inherent to the last two loosely-bound neutrons (Hansen
and Jonson, 1987). The neutron halo is a characteris-
tic phenomenon at and near the dripline that led us to
change the canonical assumption that the nucleon density
is almost constant inside the nucleus and that the nuclear
radius is proportional to A1/3 where A = Z + N is the
mass number. While 11Li is located only four units away
from the β-stability line on the nuclear chart, the distance
between the β-stability line and the neutron dripline in-
creases with Z (see Fig. 1). The nuclei shown in Fig. 1
are all bound. The inset of Fig.1 counts the number
of bound neutron-rich exotic nuclei. It starts with just
a few for Z ∼ 1, but grows rapidly up to more than
fifty for Z=82. Weakly-bound nuclei near the dripline
are shown in dark blue, where neutron halo or phenom-
ena connected to the continuum can be expected. One
notices, however, that the majority of isotopes are still
well bound. Partly because such well-bound exotic nuclei
are so plentiful, but also because they span a remarkable

80
Z

Figure 1 The nuclear chart as a function of neutron and pro-
ton number, N and Z. Each nucleus is represented by a box
specified by Z and N . Blue squares indicate stable nuclei.
Exotic nuclei experimentally observed as of the year 2012 are
shown by light-brown squares, while light-green squares de-
note those predicted by a theoretical model (Koura, 2005).
The 11Li nucleus is highlighted in purple. A possible path
of the r process is indicated schematically by the green ar-
rows. Inset: Number of bound neutron-rich exotic nuclei as
a function of Z based on Ref. (Koura, 2005). The light and
dark blue parts count nuclei with two-neutron separation en-
ergy S2n > and < 2 MeV, respectively. Adapted from Otsuka
(2013); Otsuka and Schwenk (2012).

range of N/Z, we can ask ourselves whether the structure
of those many nuclei is just like that of the stable ones. If
not, an intriguing question arises: what changes can be
expected in extremely N/Z asymmetric nuclei and why?

We also note that the r-process, which creates heavy
elements in explosive scenarios such as neutron star merg-
ers or supernovae in a series of neutron capture reac-
tions and decays, actually proceeds through extremely
neutron-rich exotic nuclei (as shown schematically in
Fig. 1). Thus, for understanding how the elements in
the universe are formed, the study of the properties of
exotic nuclei is essential.

The advent of radioactive ion beam facilities world-
wide, together with constantly improved experimen-
tal techniques, has enabled a more thorough verifica-
tion/discovery of the structure changes in exotic nuclei
and ultimately allowed reaching the nuclear driplines for
some isotopes.

Atomic nuclei show shell structure expressed in terms
of the single-particle orbits of protons and neutrons, sim-
ilar to electrons in an atom. Such shell structure was
proposed originally by Haxel et al. (1949); Mayer (1949),
and has provided a firm footing for various studies on
the structure of stable nuclei. It has been found in re-
cent years that the shell structure changes as a function
of Z and N in exotic nuclei, and this change is often
referred to as shell evolution. While there has been enor-
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mous progress in the physics of exotic nuclei, we rather
concentrate in this article on the shell evolution, partly
because this subject alone is exhaustive and also because
shell evolution is linked to a large variety of observables,
phenomena and features of current interest in the field.
A primer on nuclear shell structure will be presented in
Sec. II.
In Sec. III, we review the definition of the monopole

component of the NN interaction in a pedagogical way.
Although the monopole interaction has been discussed
since (Bansal and French, 1964), open questions remain.
The effective single-particle energies (ESPEs) are then
derived from the monopole interaction and are shown to
be consistent with earlier derivations (see e.g. (Baranger,
1970)). The variation of the ESPEs as a function of N
or Z is shown to be a robust mechanism behind shell
evolution.
In Sec. IV, we discuss the major sources of the

monopole interaction. In addition to the central force,
the tensor force is considered and the unique features of
its monopole interaction are reviewed. The treatment of
the tensor force in other theories is summarized. The
monopole effects of the two-body spin-orbit force is dis-
cussed in Sec. IV.F.

Several features of nuclear forces related to the shell
evolution are presented in Sec. V, starting with the renor-
malization property of the tensor force followed by some
properties obtained by a spin-tensor decomposition. The
monopole effect of the three-nucleon force is discussed.
Finally, in Sec. V we also present a brief overview of ab-
initio approaches.
Examples of structural changes are discussed in Sec. VI

before a summary is given in Sec. VII.
Some specific topics and discussions are inluded in

the Supplemental Material for this article (Otsuka et al.,
2019).

II. NUCLEAR SHELL STRUCTURE: A PRIMER

In this section, we briefly describe the nuclear shell
structure, starting with the nucleon distributions in nu-
clei. Extensive precision electron scattering experiments
carried out on stable targets starting in the 60’s com-
bined with other experiments showed that the nucleon
density ρ(r) is essentially constant well inside the nu-
cleus with smooth but rapid damping at the surface as
shown in Fig. 2 (a): the paradigm of density saturation.
The mean potential for a nucleon inside the nucleus rep-
resents the mean effects of the nucleon-nucleon (NN) in-
teraction, or the nuclear force, as generated by the other
nucleons. The NN interaction between free nucleons is
strongly repulsive at short distances (below 0.7 fm), be-
comes attractive at medium range (≈1.0 fm), and practi-
cally vanishes at large distances (beyond 2 fm). In the nu-
clear interior, the nuclear density is ∼ 0.17 nucleons/fm3.

Figure 2 (a) Nucleon density distribution ρ(r) and (b) mean
potential U(r) are shown as a function of the distance from
the center of the nucleus, r. (c) Single-particle energies for
a Harmonic Oscillator (HO) potential well, with an added

ℓ2 term and a spin-orbit interaction (SO) ~ℓ · ~s. Shell-gap
categories are shown by HO and SO. The N label refers here
to the oscillator shell N = 2(n − 1) + ℓ, with (n − 1) being
the number of nodes of the radial wave function and ℓ the
orbital angular momentum. Figure based on (Ragnarsson and
Nilsson, 1995).

For the description of nucleons confined in the nucleus,
an effective NN interaction, that incorporates various
renormalization effects, such as in-medium effects, short-
range correlation effects, etc., is used. Those nucleons
interact mainly with their immediate neighbors, which
leads to a saturation of the binding energy. Combining
those properties of the density and the nuclear force, a
nucleon well inside the nucleus is subject to the same
mean effect independent of its location. In other words,
the mean potential has a flat bottom. The potential be-
comes gradually shallower towards the surface, as shown
in Fig. 2 (b). Such a mean potential can further be mod-
eled by a Harmonic Oscillator (HO) potential also shown
in Fig. 2 (b). For that, the nucleons move on the orbits
which are the eigenstates of this HO potential, and the
energies are given in terms of the oscillator quanta N as
shown in the column “H.O.”. In order to resolve system-
atic discrepancies with experiment, Mayer and Jensen
included the spin-orbit (SO) coupling (~ℓ · ~s) where ~s de-
notes the nuclear spin (Haxel et al., 1949; Mayer, 1949).

This (~ℓ · ~s) term with the proper strength produces the
spin-orbit splitting, where the orbit with the total angu-
lar momentum j> = ℓ+1/2 becomes lower than the one
with j< = ℓ − 1/2. The resultant single-particle levels
are shown in the right column in Fig. 2 (c).

Without the SO coupling, the single-particle states are
classified by the N and ℓ quantum numbers as shown in
the center column of Fig. 2 (c). The single-particle states
are grouped according to N , forming shells. Shells are
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Figure 3 Schematic illustrations of (a) closed shell and single-
particle states in a Hartree-Fock picture and (b) singe-particle
states with additional neutrons in a valence orbit. The circle
indicates a subshell gap. The green wavy line denotes the
monopole interaction.

separated by shell gaps. The number of protons or neu-
trons below a certain gap defines a magic number. The
magic number is related to the stability of the nucleus:
for instance, up to 20 protons can be put into the shells
formed by the 2s, 1d, 1p and 1s orbits, whereas the 21st

proton must occupy either the 1f or 2p orbit at higher
energy (i.e., leading to a smaller binding energy). Be-
yond the magic number 20, the SO coupling splits the 1f
orbit into 1f7/2 and 1f5/2 sufficiently strong and creates
a magic number at 28, as shown in Fig. 2 (c). The 1f7/2
orbit is bordered in this figure by two magic numbers 20
and 28: the former has HO origin, whereas the latter has
SO origin. Other shells and magic numbers are shown
in the same figure. While N=40 is a sub-shell gap, all
magic nuclei above N=40 are of the SO origin. The ma-
jor magic numbers, which correspond to large shell gaps,
are 2, 8, 20, 28, 50, 82, 126. This shell structure and the
corresponding magic numbers turned out to be extremely
successful in the description of the nuclei.
We note that the above argument is based only on a

few robust properties: density saturation, the short range
of the nuclear force, and the existence of spin-orbit split-
ting. This independent-particle model, where nucleons
are confined by a potential without interacting with each
other, can formally be refined through the Hartree-Fock
(HF) method, based on effective NN interactions. Fig-
ure 3 (a) shows this schematically: a HF calculation for Z
and N being magic numbers is supposed to produce the
corresponding HF ground state, which is a closed shell.
For this ground state, single-particle energies for particle
(and hole) states are obtained within the HF framework,
yielding Mayer-Jensen’s shell structure (Fig. 2 (c)). We
now add nucleons to orbits above the closed shell, called
valence orbits. Figure 3 (b) shows, still schematically,
that the single-particle energies are shifted due to those
added nucleons, mediated by the monopole interaction
(indicated by the green wavy line in the figure), which is
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Figure 4 Systematics of the first 2+ levels, (a) for stable and
long-lived nuclei, and (b) all nuclei included measured up to
2016. Created from (Pritychenko et al., 2016).

a component of the nuclear force. The monopole inter-
action shifts single-particle energies effectively without
mixing different orbits, and its effect depends only on
the occupation numbers of individual orbits (Sec. III for
details). Such energy shifts represent shell evolution and
manifest themselves systematically in a variety of observ-
ables measured for exotic nuclei. They are also one of the
main subjects of this review article.

Figure 3 (b) shows a small energy gap between two pro-
ton orbits (yellow circle). Such energy gaps can appear as
Z and/or N changes. If such gaps become large enough,
they may result in new magic numbers. Alternatively,
some of conventional magic numbers may disappear. We
shall see how the shell structure changes or evolves over
the Segrè chart.

We stress that the single-particle orbits shown in Fig. 3
are obtained for a spherical closed shell, i.e., a spherical
HF ground state. This is the picture for most of the dis-
cussions in this article. For the majority of nuclei, how-
ever, their shape is non-spherical (deformed). Nuclear
deformation has been studied extensively since (Rainwa-
ter, 1950), (Bohr, 1952), (Bohr and Mottelson, 1953), as
one of the major subjects of nuclear physics (Bohr and
Mottelson, 1975). The deformation can be described in
terms of various correlations of nucleons in the single-
particle orbits. Besides this, the HF solution itself can
be deformed in some cases, where the mean field is not
isotropic and the HF ground state is not spherical. With
the onset of deformation, deformed shell gaps can de-
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velop and lead to deformed magic numbers. This is re-
lated to nuclear shape coexistence, i.e., the appearance
of states with different shapes at similar energies (see re-
views (Heyde et al., 1985), (Wood et al., 1992), (Heyde
and Wood, 2011), (Wood and Heyde, 2016)). Such a sit-
uation can be found in many nuclei (Heyde et al., 1985),
(Wood et al., 1992), (Heyde and Wood, 2011).

Coming back to spherical magic numbers, experimen-
tal hints of their appearance/disappearance are visible,
for example, in the excitation energy of the first 2+ state.
In the ground state of a magic nucleus, protons and neu-
trons fill single-particle orbits up to a magic number and
the corresponding large energy gap, and hence nucleons
must be excited across those gaps to form excited states.
Thus, the excitation energy becomes large, similarly to
the relevant energy gaps. Because the first 2+ state is
the lowest excited state in many nuclei with even num-
bers of Z and N , high values of the lowest 2+ level may
indicate the occurrence of magic numbers. Figure 4 (a)
shows the 2+1 energies obtained for stable and long-lived
(half life > 30 days) nuclei as a function of N for many
isotopic chains. Higher 2+1 levels point remarkably well to
Mayer-Jensen’s magic numbers. Panel (b) plots the 2+1
levels for all nuclei, including exotic ones, as of the year
2016. Now, additional elevated 2+1 energies stand out,
e.g. at N=16 (24O), 32 (52Ca), and 34 (54Ca) as well as
at N = 40. We note that 2+1 energies are impacted by a
variety of correlations, such as pairing, for example, but
for the extreme values they can be attributed to magic
numbers. It should be remarked, however, that, while
they provide useful first indicators for magic numbers,
they are not a decisive fingerprint.

Figure 5 indicates schematically how shell closures may
appear for N=32 and 34 from the neutron single-particle
levels for the Ca and Ni isotopes. The figure shows the
relevant single-particle level scheme of the Ni isotopes,
which is consistent with Fig. 2 (c), representing the situ-
ation in stable nuclei. This is confronted with the single-
particle levels of the Ca isotopes, where additional sub-
shell closures at neutron number 32 and 34 are shown,
resulting in an ordering of the neutron orbitals in 52,54Ca
that is different from Fig. 2 (c). We shall discuss through-
out this article why and how such shell evolution occurs.

Thus, the magic numbers and shell structure are not
immutable and undergo change. As we look back sev-
eral decades ago, the concept of rigid magic numbers
was questioned already in the 1970’s by the observation
of anomalies in experimental masses, nuclear radii and
spectroscopy of nuclei far from stability, around N = 20
since (Thibault et al., 1975) with (Détraz et al., 1979;
Guillemaud-Mueller et al., 1984; Huber et al., 1978). A
much weakened effect of the N = 20 gap, combined with
the emergence of deformed intruder states, was seen in
various observables and interpreted to signal a change in
the shell structure. We note that another earlier obser-
vation questioning the conventional understanding was

Ni Ca

proton protonneutron neutron

1f7/2

2p
1/2

32

34

3/2
2p

2p
1/2

3/2
2p

1f7/2

Figure 5 Schematic illustration of shell evolution from Ni to
Ca for neutron orbits. Light blue circles represent protons.
The wavy line implies the interaction between the proton
1f7/2 and the neutron 1f5/2 orbit. The numbers in circles
indicate (semi-)magic numbers. From Otsuka and Tsunoda
(2016).

marked by the discovery of the abnormal ground state
of 11Be by (Wilkinson and Alburger, 1959) followed by a
theoretical analysis (Talmi and Unna, 1960).
Over the years, the local disappearance of many of the

previously well-established shell gaps has been pointed
out far from stability, leading to a revised picture of
the magic numbers and shell structure in general. One
of the goals of the present article is to summarize the
presently available understanding, to extract basic under-
lying mechanisms of the shell evolution, and to overview
various nuclear phenomena related to them. Such out-
comes allow us to anticipate new physics in hitherto un-
explored regions of the Segrè chart.
In this article, the theoretical description of the struc-

ture of those nuclei is given mainly within the shell-model
framework, which is known as Configuration Interaction
method in other disciplines. Protons (neutrons) in va-
lence orbits are called valence protons (neutrons). The
shell-model description of atomic nuclei is made in terms
of such valence orbits on top of the inert core (i.e. closed
shell). Effects of states outside this scheme are expected
to be included in effective NN interaction and effective
operators, obtained in phenomenological, microscopic or
hybrid manners.
The valence nucleons interact each other through the

effective NN interaction, and various configurations of
valence nucleons are mixed in a shell-model eigenstate.
Many-body correlations are important for the resulting
eigenstates and can often be related to certain parts of
the effective NN interaction. We decompose the effec-
tive NN interaction into three parts: (a) monopole as
discussed above, (b) pairing and (c) all other terms. The
pairing part corresponds to proton-proton and neutron-
neutron interactions coupled to the angular momentum
J = 0, which is an extended version of the usual BCS-
type pairing. All other terms account for the remaining
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Figure 6 Contributions of the monopole, pairing and all other
terms of the NN interaction to the ground-state energy of
Mg isotopes with even N . The contribution from the single-
particle energy (SPE) is included also. The other terms are
dominated by a quadrupole interaction. The upper panel
shows the cumulative contributions, while the lower one shows
the variations of pairing and the other terms. For N=20, the
full calculation, including the excitations to the pf shell, is
shown in comparison to the calculation without such excita-
tions. For latter, the small arrow indicates the ground-state
energy because the ”all other terms” gives a repulsive contri-
bution (a positive value). See the text for details.

parts.

Although the remaining parts include various types of
interactions, dominant effects on the energy and struc-
ture of the ground and the low-lying states, which are
of the current interest, are due to the quadrupole inter-
action. Such quadrupole interactions can be modeled,
to a good extent, by the coupling between quadrupole-
moment operators. The quadrupole interaction has been
studied extensively over decades, for instance, in (Bes
and Sorensen, 1969; Dufour and Zuker, 1996; Elliott,
1958; Kaneko et al., 2011; Nilsson, 1955), while SU(3) pic-
ture of the quadrupole moment (Elliott, 1958) has been
generalized, for instance, in (Zuker et al., 2015).

Figure 6 shows the ground-state expectation values of
these parts for the Mg isotopes with even N=8-20, calcu-
lated with a shell model in the sd shell for 20−30Mg, and
in the sd-pf shell for 32Mg, where pf -shell configurations
become important as mentioned above. The USDA in-
teraction (Brown and Richter, 2006) is used for 20−30Mg.
The SDPF-M interaction (Utsuno et al., 1999) is taken
for 32Mg, while the calculation without the excitation
from the sd to the pf shells is also shown for compari-
son. The expectation value of the SPE contribution in-
creases in magnitude up to N=18, since more neutrons
occupy well-bound orbits (negative energies). The mag-

nitude of the “monopole” contribution increases up to
N=20. The “pairing” contribution and that of the “other
terms” are also shown separately in the bottom part of
the figure. This part indicates clearly that the contri-
bution of the pairing interaction does not change much.
In contrast, the contribution of the “other terms”, dom-
inated by the quadrupole interaction as mentioned al-
ready, varies sharply with its maximum (in magnitude) at
N=12 (24Mg). This is consistent with a large quadrupole
moment of 24Mg. The contribution of the “other terms”
decreases up to N=18, as the quadrupole deformation
weakens. These trends resemble the ones shown in Fig. 4
of (Heyde andWood, 2011) across a shell for heavy nuclei.
At N=20, an intruder state composed of many particle-
hole excitations is energetically favored over normal con-
figurations (i.e. no particle-hole excitations across the
N=20 magic gap) and becomes the ground state. To
this state, the contribution of the ”other terms” becomes
large, only a little smaller than for 24Mg, pointing to
a strongly deformed ground state. The “monopole” and
“pairing” contributions increase as well fromN=18 to 20,
but the “SPE” contribution is reduced due to particle-
hole excitations across the N = 20 gap. For comparison,
results of a calculation are shown without cross-shell ex-
citations, resulting in almost no quadrupole correlations
and a higher energy. Thus, the Mg isotopes show vary-
ing deformation and the phenomenon of shape coexis-
tence at N=20 (Heyde and Wood, 2011). The features
shown here apply to many isotopic chains across the nu-
clear chart. The three parts, “monopole”, “pairing” and
”other terms”, exhibit sizable contributions with notable
variations. In this article, we will highlight the important
role of the monopole interaction in describing structural
changes mainly from the shell-model viewpoint.

The Hartree-Fock calculation discussed in Fig. 3 cor-
responds to a spherical ground state. Considering the
strong quadrupole and higher multipole interactions, de-
formed ground states may occur and can be described
through deformed HF configurations. A non-spherical
mean potential is obtained, and the HF ground state be-
comes the intrinsic state of a rotational band (Ring and
Schuck, 1980). There exits extensive literature on the
deformed HF description of shape coexistence, see, e.g.,
(Wood et al., 1992), (Reinhard et al., 1999) and (Heyde
and Wood, 2011).

Before closing this section, we comment on the com-
parisons of the shell structure of atomic nuclei to the
shell structure of other many-body systems. First, as
the nuclear potential is generated by its constituents,
shell structure changes from nucleus to nucleus, leading
to shell evolution. We mention here that shell struc-
ture appears in other mesoscopic systems such as metal-
lic clusters as described, for instance, in (Sugano, 1991),
(Knight et al., 1984), and (Clemenger, 1985), where the
correspondence to the classical motion and geometrical
symmetries is important.
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It has been argued that the damping of the nucleon
density in the radial direction may be more gradual in
neutron-rich exotic nuclei than in stable nuclei, causing
a reduced spin-orbit splittings and single-particle levels
distributed more evenly (Dobaczewski et al., 1994), some-
times referred to as “shell quenching”. This hypothetical
phenomenon is predicted to be found at or near to the
dripline, confined to weakly-bound systems, and remains
a challenge for future experiments. The present article
addresses the shell evolution driven by the combination
of characteristic features of nuclear forces and extreme
neutron/proton ratios of the nucleus.

III. MONOPOLE INTERACTION AND EMPIRICAL
ANALYSIS BASED ON IT

The shell structure can be specified by a set of single-
particle energies of valence (or active) orbits on top of
a closed shell (or inert core). As more neutrons or pro-
tons are added to a nucleus, the single-particle energies
of those valence orbits may change due to the interaction
between valence nucleons. This implies some changes
of shell structure, called shell evolution as introduced in
Sec. I. The shell evolution is generated by the monopole
part of the nucleon-nucleon (NN) interaction, which will
be abbreviated hereafter as the monopole interaction.
The NN interaction here means an effective one for nu-
cleons in nuclei. Although there can be a variety of such
interactions from fitted to microscopically-derived ones
including hybrid versions, we shall discuss their general
properties. In this section, we first introduce the defini-
tion of the monopole interaction, and discuss how it acts.
The monopole interaction has been discussed in the past,
for instance, by Bansal and French (Bansal and French,
1964) and by Poves and Zuker (Poves and Zuker, 1981).
We introduce the monopole interaction in a different way,
as an average of correlation energies of two nucleons in
an open-shell nucleus, without referring to closed-shell
energies. The final outcome of this formulation turns out
to be basically consistent with those earlier works.

The effective single-particle energy will then be de-
fined for open-shell nuclei in a close connection to the
monopole interaction there, in a possibly more transpar-
ent and straightforward way than the simple interpola-
tion between the beginning and end of a given shell.

We will then move forward to the evolution of the
shell structure by defining effective single-particle ener-
gies with this monopole interaction. We also present ap-
plications of the monopole interaction to some examples
taken from actual nuclei. At this point, we stress that
the monopole interaction is a part of the NN interaction,
and that the rest of the interaction produces various dy-
namical correlations and must be taken into account for
an actual description of the nuclear structure. Neverthe-
less, as the monopole interaction generates unique and

crucial effects, it deserves special efforts and attention.

A. Monopole interaction

We start with single-particle orbits. For each orbit, the
total angular momentum is specified by ~j = ~ℓ + ~s with
its orbital angular momentum ~ℓ and spin ~s. The single-
particle orbits are labelled by the magnitudes of their
~j’s, referred to as j, j′, ... hereafter. They are combined
with the corresponding magnetic quantum numbers, m,
m′, ... as (j,m), (j′,m′), ... The symbol j, j′, .... are
put in a fixed order, and may carry implicitly such a
sequential ordering as well as other quantum numbers
like the node of the radial wave function n. Having these
single-particle orbits on top of the inert core (i.e., closed
shell), we denote the single-particle energies (SPEs) of
those orbits as ǫ0j , ǫ

0
j′ , .... As usual, this SPE ǫ0j stands

for the sum of the kinetic energy of a nucleon on this orbit
j and the total effects of nuclear forces on this nucleon
from all nucleons in the inert core.
We shall begin with the simpler case by assuming that

there is only one kind of nucleons, e.g., neutrons. The
Hamiltonian is expressed then as

Ĥn =
∑

j

ǫ0j n̂j + v̂nn , (1)

where n̂j denotes the number operator for the orbit j and
v̂nn stands for the neutron-neutron effective interaction.
The product state with the first and second neutron in

the states j,m and j′,m′, respectively, is written as

| j,m⊗ j′,m′ ). (2)

Their antisymmetrized state is indicated by

|j,m ; j′,m′ >

=
{

|j,m⊗ j′,m′ )− |j′,m′ ⊗ j,m )
}

/
√
2. (3)

A two-body interaction between two neutrons can be
written as

v̂nn = Σ(j1,m1 ; j′
1
,m′

1
),(j2,m2 ; j′

2
,m′

2
)

〈j1,m1 ; j
′
1,m

′
1| v̂nn |j2,m2 ; j

′
2,m

′
2〉

a†j1,m1
a†j′

1
,m′

1

aj′
2
,m′

2
aj2,m2

, (4)

where (j,m ; j′,m′) in the summation is an ordered pair
of two states j,m and j′,m′, 〈...| v̂ |...〉 denotes an anti-

symmetrized two-body matrix element, and a†j,m (aj,m)
implies the creation (annihilation) operator of the state
j,m. Regarding the ordered pair (j1,m1 ; j

′
1,m

′
1), we can

assume without generality that m1 < m′
1 if j1 = j′1 or

j1 < j′1 in their prefixed ordering as mentioned above.
The monopole interaction is defined as a component

extracted from a given interaction, v̂nn, so that it repre-
sents the effect averaged over all possible orientations of



9

� � �
✁ ✁ ✁ ✁vvv

� �
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ �✁ ✁ ✁ ✁

v v

number of matrix elements in the summation

✁ ✁ ✁ ✁
: magnetic substates of orbit j ✁ ✁ ✁ ✁ : magnetic substates of orbit j’

Monopole matrix element between orbits j and j’

Figure 7 A schematic visualization of monopole matrix elements for the two-body interaction v.

two neutrons in the orbits j and j′. Here, orientations
refer to various combinations of m and m′ within the or-
bits j and j′. Figure 7 provides a general visualization
of the monopole matrix element, exhibiting different ori-
entations by differently tilted orbiting planes. In order
to formulate this, the monopole matrix element for the
orbits j and j′ is defined as

V m
nn(j, j

′) =

∑

(m,m′)〈j,m ; j′,m′|v̂nn|j,m ; j′,m′〉
∑

(m,m′) 1
,

(5)

where the summation over m,m′ is taken for all ordered
pairs allowed by the Pauli principle.
As the denominator counts the number of allowed

states, this is exactly the average mentioned above. The
monopole interaction as an operator is then expressed as

v̂nn,mono =
∑

j≤j′

v̂mnn(j, j
′) (6)

with

v̂mnn(j, j
′) = V m

nn(j, j
′)Σm,m′ a†j,ma†j′,m′aj′,m′aj,m. (7)

After simple algebra, this turns out to be

v̂mnn(j, j
′) =







Vm
nn(j, j)

1
2 n̂j (n̂j − 1) for j = j′

Vm
nn(j, j

′) n̂j n̂j′ for j 6= j′
(8)

where n̂j stands for the number operator for the orbit j.
The form in eq. (8) appears to be in accordance with what
can be expected intuitively, from the concept of average,
for identical fermions. The two neutrons in the orbits j
and j′ can be coupled to the total angular momentum,
J , where ~J = ~j+ ~j′, and the wave function with a good J
value is given by a particular superposition of the states
in eq. (6) over all possible values of m and m′. It is
obvious that the effects of the monopole interaction in
eq. (8) is independent of the total angular momentum,
J . We emphasize again that the monopole interaction is
simply an average of a given general interaction over all
possible orientations, and its effect can be expressed by

the orbital number operator as in eq. (8) for the neutron-
neutron interaction.

We next discuss systems composed of protons and neu-
trons. The total Hamiltonian is then written as

Ĥ = Ĥn + Ĥp + v̂pn , (9)

where Ĥp stands for the proton Hamiltonian defined sim-
ilarly to eq. (1) and v̂pn means the proton-neutron effec-
tive interaction.

The proton and neutron number operators in the orbit
j are denoted, respectively, as n̂p

j and n̂n
j . We introduce

the isospin operators in the orbit j: τ̂+j , τ̂−j and τ̂zj . We
adopt the convention that protons are in the state of
isospin z-component τz = +1/2, whereas neutrons are in
τz = −1/2. Here, τ̂+j (τ̂−j ) denotes the operator chang-
ing a neutron (proton) to a proton (neutron) in the same
(j,m) state, and τ̂zj equals (n̂p

j − n̂n
j )/2. In other words,

τ̂+j and τ̂−j are nothing but the isospin raising and low-

ering operators restricted to the orbit j, while τ̂0j is its z
component.

The magnitude of the usual isospin, i.e., not specific to
an orbit, is denoted by T , including that of two nucleons
interacting through the NN interaction.

We now discuss the proton-neutron monopole interac-
tion. Although the basic idea remains the same as the
previous case for two neutrons, certain differences arise.
To be precise, a proton and a neutron are coupled in a
symmetric way for the T=0 case, whereas in an antisym-
metric way for the T=1 case. Details of the discussions
are presented in Supplemental Material Sec. S1, and we
show here only major points, referring to the correspond-
ing parts there.

The monopole interaction due to the T=0 part of v̂pn
is expressed as (see discussions in Supplemental Material
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Figure 8 Implication of τ̂+

j τ̂−

j′
terms. Panels (a) and (c) are

for the {τ̂+

j τ̂−

j′ + τ̂−

j τ̂+

j′ } and : τ̂+

j τ̂−

j : cases in the isospin

scheme, respectively. Panels (b) and (d) are similar to (a) and
(c), respectively, in the proton-neutron scheme. The magnetic
substates are indicated by m and m′.

Sec. S1 up to eq. (S16)),

v̂pn,mono,T=0 =
∑

j, j′

V m
T=0(j, j

′)
1

2
n̂p
j n̂

n
j′

−
∑

j<j′

V m
T=0(j, j

′)
1

2

{

τ̂+j τ̂−j′ + τ̂−j τ̂+j′
}

−
∑

j

V m
T=0(j, j)

1

2
: τ̂+j τ̂−j : , (10)

where the symbol : ... : denotes a normal product and
the T=0 monopole matrix element is defined as an av-
erage over states with all possible orientations with the
symmetric coupling of proton and neutron, as indicated
by S (see discussions in Supplemental Material Sec. S1
linked to eqs. (S5, S15)):

V m
T=0(j, j

′) =

∑

(m,m′)(m;m′ : S|v̂pn|m;m′ : S)
∑

m,m′ 1
.(11)

If the interaction v̂ is isospin invariant as usual, the
monopole matrix element in eq. (5) is nothing but the
T = 1 monopole matrix element,

V m
T=1(j, j

′) = V m
nn(j, j

′) . (12)

Coming back to antisymmetric couplings of a proton
and a neutron, we apply the procedures similar to those
for T = 0 states, and obtain (see discussions in Supple-

mental Material Sec. S1 linked to eq. (S22))

v̂pn,mono,T=1 =
∑

j, j′

V m
T=1(j, j

′)
1

2
n̂p
j n̂

n
j′

+
∑

j<j′

V m
T=1(j, j

′)
1

2

{

τ̂+j τ̂−j′ + τ̂−j τ̂+j′
}

+
∑

j

V m
T=1(j, j)

1

2
: τ̂+j τ̂−j : . (13)

By combining eqs. (10) and (13), the whole expression of
the proton-neutron monopole interaction becomes

v̂pn,mono =
∑

j, j′

1

2

{

V m
T=0(j, j

′) + V m
T=1(j, j

′)
}

n̂p
j n̂

n
j′

−
∑

j< j′

1

2

{

V m
T=0(j, j

′) − V m
T=1(j, j

′)
}

{

τ̂+j τ̂−j′ + τ̂−j τ̂+j′
}

−
∑

j

1

2

{

V m
T=0(j, j) − V m

T=1(j, j)
}

: τ̂+j τ̂−j : .

(14)

Although the meaning of the first term on the right-hand
side of eq. (14) is straightforward, it needs some explana-
tions to understand the other two terms in depth. Fig-
ure 8 may help, by showing how they work. In the case of
j 6= j′, panels (a) and (b) indicate the same process in the
isospin and proton-neutron schemes, respectively. Panel
(a) indicates that the {τ̂+j τ̂−j′ + τ̂−j τ̂+j′ } term produces
a monopole interaction with a charge exchange process,
whereas the same process may look differently in panel
(b). Panels (c) and (d) are for the case of one orbit j with
similar implications. One thus see, from Fig. 8, how the
charge exchange processes can be incorporated into the
monopole interaction. We will come back to this figure.
We note that the T = 0 and T = 1 monopole matrix
elements contribute with opposite sign relations as com-
pared to the first term.
The neutron-neutron and proton-proton monopole in-

teractions can be re-written in similar ways, as

v̂nn,mono =
∑

j

V m
T=1(j, j)

1

2
n̂n
j (n̂

n
j − 1)

+
∑

j<j′

V m
T=1(j, j

′) n̂n
j n̂

n
j′ , (15)

and

v̂pp,mono =
∑

j

V m
T=1(j, j)

1

2
n̂p
j (n̂

p
j − 1)

+
∑

j<j′

V m
T=1(j, j

′) n̂p
j n̂

p
j′ . (16)

We thus gain the complete expression for the total
monopole interaction,

v̂mono = v̂pp,mono + v̂nn,mono + v̂pn,mono . (17)
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B. Multipole interaction

We have discussed the monopole interaction which is
a part of the NN interaction. The remaining part of
the NN interaction is called the multipole interaction.
The multipole interaction is often expressed as v̂M , and
it includes, in particular the quadrupole interaction. In
this article, we denote the multipole interaction as v̂multi,
being defined by

v̂multi = v̂ − v̂mono , (18)

where v̂ stands for the full interaction, and v̂mono is de-
fined in eq. (17). The multipole interaction may have
subscript pp, nn, or pn, if necessary.
We note that although the notion of the multipole

interaction has appeared, for instance, in (Brown and
Kuo, 1967), including the importance of the quadrupole
and hexadecupole forces, the multipole interaction in
the present sense was introduced, as “non monopole”,
in (Poves and Zuker, 1981). A model of the multipole
interaction was introduced and developed in a global de-
scription of collective states in (Dufour and Zuker, 1996).

C. Monopole matrix element in the j − j coupling scheme

The monopole matrix element is defined, in some cases,
by an alternative but equivalent expression.

V m
T (j, j′) =

∑

J (2J + 1)〈j, j′; J, T |v̂|j, j′; J, T 〉
∑

J(2J + 1)

for T = 0 and 1, (19)

where J takes only even (odd) integers for j = j′ with
T = 1 (T = 0). Supplemental Material Sec. S2 shows
that this expression is indeed equivalent to the one pre-
sented here.
The closed-shell properties are derived from the expres-

sions shown so far. The actual derivations and results are
given in Supplemental Material Sec. S3.

D. Effective single particle energy

We discuss, in this subsection, effective single particle
energy and its derivation from the monopole interaction.
As one moves on the Segrè chart, the proton number,

Z, and the neutron number, N , change, and the single-
particle energy ǫ0j mentioned in Sec. III.A will change
also. This change has the following two aspects. One
is due to the kinetic energy: as A increases, the radius
of the nucleus becomes larger, and consequently the ra-
dial wave function of each orbit becomes wider. This
lowers the kinetic energy. The other aspect is the vari-
ation in the effects from nucleons in the inert core. As
A increases, the radial wave functions of the orbits in

the inert core also become stretched out radially. This
can reduce the magnitude of their effects. While these
two changes can be of relevance, for instance, over a long
chain of isotopes, they are considered to be rather minor
within each region of current interest on the Segrè chart
(Bohr and Mottelson, 1969), and we do not take them
into account in this article.
The single-particle energy has another origin: the con-

tribution from other nucleons outside the inert core, i.e.,
valence nucleons. This valence contribution to the orbit
j is referred to as ǫ̂j hereafter. The total single-particle
energy, called effective single particle energy (ESPE) usu-
ally, is denoted as,

ǫj = ǫ0j + ǫ̂j . (20)

We shall discuss, in this subsection, the valence contri-
bution, ǫ̂j , in some detail. Note that ǫ0j is a constant as
stated, whereas ǫ̂j is an operator by nature because of its
dependence on the states of other valence nucleons.
The magnetic substates of the orbits j and j′ are de-

noted, respectively, by m (m = j, j − 1, ...,−j + 1,−j)
and m′ (m′ = j′, j′ − 1, ...,−j′ + 1,−j′). The matrix el-
ement 〈m,m′| v̂ |m,m′〉 varies for different combinations
of m and m′. On the other hand, as ǫ̂j is a part of the
single-particle energy of the orbit j, it should be inde-
pendent of m. We therefore extract the m-independent
component from these matrix elements, in order to eval-
uate their contribution to ǫ̂j. Because of the m and m′

dependences, this can be done by taking the average over
all possible combinations of m and m′, which is nothing
but the monopole interaction discussed in Sec. III.A.
In the case of two neutrons in the same orbit j, the

monopole interaction is included in eq. (15). The differ-
ence due to the addition of one neutron, n̂n

j → n̂n
j + 1,

gives the contribution to ǫ̂j as

∆(j,nn)ǫj = V m
T=1(j, j)

1

2

{

(n̂n
j + 1)n̂n

j − n̂n
j (n̂

n
j − 1)

}

= V m
T=1(j, j) n̂

n
j . (21)

The difference due to the increase, n̂n
j → n̂n

j +1, for j 6= j′

is written as

∆(j′,nn)ǫj = V m
T=1(j, j

′)
{

n̂n
j′(n̂

n
j + 1) − n̂n

j′ n̂
n
j

}

= V m
T=1(j, j

′) n̂n
j′ . (22)

Thus, the contribution from neutron-neutron interaction
results in

ǫ̂n→n
j =

∑

j′

V m
T=1(j, j

′) n̂n
j′ . (23)

The contribution from the proton-proton interaction can
be shown similarly,

ǫ̂p→p
j =

∑

j′

V m
T=1(j, j

′) n̂p
j′ . (24)
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In the case of the proton-neutron interaction, the
monopole interaction is shown in eq. (14). We first dis-
cuss the effect from the first term on the right-hand-side.
The difference due to the increase, n̂n

j → n̂n
j + 1, gives

the contribution to ǫ̂j (of neutrons) as

ǫ̂p→n;0
j =

∑

j′

1

2

{

V m
T=0(j

′, j) + V m
T=1(j

′, j)
}

×
{

n̂p
j′ (n̂

n
j + 1) − n̂p

j′ n̂
n
j

}

=
∑

j′

1

2

{

V m
T=0(j

′, j) + V m
T=1(j

′, j)
}

n̂p
j′ .(25)

Likewise, the difference due to the increase, n̂p
j → n̂p

j +1,
gives the contribution to ǫ̂j (of protons) as

ǫ̂n→p;0
j =

∑

j′

1

2

{

V m
T=0(j, j

′) + V m
T=1(j, j

′)
}

n̂n
j′ . (26)

We next discuss the effect from the second and third
terms on the right-hand-side of eq. (14). Because the
operator τ̂+j τ̂−j′ + τ̂−j τ̂+j′ working between j 6= j′ shifts a
proton j′ → j and a neutron j → j′ and vice versa (see
Fig. 8 (a,b)), the second term does not contribute to the
ESPE. Note that effects of this term are fully included
when the Hamiltonian is diagonalized.
The situation is different for the last term on the right-

hand-side of eq. (14), : τ̂+j τ̂−j :. Note that the protons and
neutrons occupy the same orbit j now. Since the term,
− : τ̂+j τ̂−j :, exchanges a proton and a neutron, a subset
of its effect is relevant now, if this term annihilates a pro-
ton and a neutron both in the same magnetic substate
m, and creates them in exactly the same substate. For-
mally speaking, this process cannot be written like the
first term on the right-hand side of eq. (14). We, however,
can introduce a practical approximation. If there are nn

j

neutrons in the orbit j, they can be assumed, in first
approximation, to be equally distributed over all possi-
ble m-states. In this equal distribution approximation,
a proton in the magnetic substate m can feel an interac-
tion with a neutron in the substate m with a probability
n̂n
j /(2j + 1). This approximation can be expressed as

− : τ̂+j τ̂−j : ∼
n̂p
j n̂

n
j

2j + 1
. (27)

This approximation can be understood also by consid-
ering the case of m = m′ in Fig. 8 (d). By combin-
ing eq. (27) with the first term on the right-hand side of
eq. (14), we define the effective proton-neutron monopole
interaction as

v̂pn,mono−eff

=
∑

j 6= j′

1

2

{

Vm
T=0(j, j

′) + V m
T=1(j, j

′)
}

n̂p
j n̂

n
j′

+
∑

j

1

2

{

V m
T=0(j, j)

2j + 2

2j + 1
+ Vm

T=1(j, j)
2j

2j + 1

}

n̂p
j n̂

n
j .

(28)

The ESPE is evaluated with this effective monopole in-
teraction hereafter.
The proton-neutron interaction thus contributes to the

ESPE of the neutron orbit j as

ǫ̂p→n
j =

∑

j′

1

2

{

Ṽ m
T=0(j

′, j) + Ṽ m
T=1(j

′, j)
}

n̂p
j′ , (29)

while to the ESPE of the proton orbit j as

ǫ̂n→p
j =

∑

j′

1

2

{

Ṽ m
T=0(j, j

′) + Ṽ m
T=1(j, j

′)
}

n̂n
j′ , (30)

where Ṽ ’s are modified monopole matrix elements de-
fined by

Ṽ m
T=0,1(j, j

′) = V m
T=0,1(j, j

′) for j 6= j′ , (31)

Ṽ m
T=0(j, j) = V m

T=0(j, j)
2j + 2

2j + 1
, (32)

and

Ṽ m
T=1(j, j) = V m

T=1(j, j)
2j

2j + 1
. (33)

We note that this substitution of V m
T=1(j, j) by Ṽ

m
T=1(j, j)

is only for the proton-neutron interaction, keeping
eqs. (23,24) unchanged. It is worth mentioning that
the effective monopole interaction in eq. (28) produces
the energy exactly for a closed shell, 〈n̂p

j 〉 = 2j + 1 or
〈n̂n

j 〉 = 2j+1, because the equal distribution approxima-
tion turns out to be exact.
We express the valence contribution to the ESPE from

eqs. (23,24,26,29), by introducing

Ṽ m
pn(j, j

′) =
1

2

{

Ṽ m
T=0(j, j

′) + Ṽ m
T=1(j, j

′)
}

. (34)

It is then for the proton orbit j,

ǫ̂pj =
∑

j′

V m
T=1(j, j

′) n̂p
j′ +

∑

j′

Ṽ m
pn(j, j

′) n̂n
j′ , (35)

and for the neutron orbit j,

ǫ̂nj =
∑

j′

V m
T=1(j, j

′) n̂n
j′ +

∑

j′

Ṽ m
pn(j

′, j) n̂p
j′ . (36)

Note that one can use V m
x (j, j′) = V m

x (j′, j) for any sub-
script x, if more convenient.
We point out that for the closed-shell-plus-one-nucleon

systems, the results shown in eqs. (35,36) produce the
exact energy for a single proton state j,

ǫpj =
∑

occ. j′p

V m
T=1(j, j

′
p) (2j

′
p + 1)

+
∑

occ. j′n

Ṽm
pn(j, j

′
n) (2j

′
n + 1) , (37)

where the summation of j′p or j′n is taken for all fully
occupied orbits in the valence space and the ESPEs are
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treated as c-numbers. This is because the approxima-
tion in eq. (27) becomes an equality relation due to the
apparent equal distribution in the closed shell. Single-
hole states can be treated in the same way. A similar
expression is obtained for neutrons.

E. Short summary and relations to earlier works

We first summarize some properties relevant to sub-
sequent discussions. The variation of ESPE is more rel-
evant than the ESPE itself, in many applications. The
difference can be taken between different nuclei, or be-
tween different states of the same nucleus. It can be
expressed conveniently, based on eqs. (35,36), as,

∆ǫ̂pj =
∑

j′

V m
T=1(j, j

′)∆n̂p
j′ +

∑

j′

Ṽ m
pn(j, j

′) ∆n̂n
j′ , (38)

and

∆ǫ̂nj =
∑

j′

V m
T=1(j, j

′)∆n̂n
j′ +

∑

j′

Ṽm
pn(j

′, j)∆n̂p
j′ . (39)

Here ∆ refers to the difference like 〈Ψ |ǫ̂pj |Ψ〉−〈Ψ′ |ǫ̂pj |Ψ′〉
between two states Ψ and Ψ′.
While the occupation numbers, n̂p

j and n̂n
j , in

eq. (35,36) are operators, relevant are their expectation
values in many cases. Thus, although the ESPE (of an
orbit) is an operator, its expectation value (with respect
to some state, e.g. the ground state) is sometimes called
ESPE also. The same is true for their differences in
eq. (38,39). Likewise, in the filling scheme where nu-
cleons are put into the possible lowest orbit one by one,
these operators are c-numbers for a given nucleus, and
the ESPEs become c-numbers also. We omit the symbol
ˆ in those cases.

The coefficients in these equations are given by the
monopole matrix elements and their slight modifications
Ṽ m
pn(j, j

′) (see eqs. (31,32,33,34)). In practical studies,
the expression in eq. (19) is more convenient than the
definition with m-scheme states, because the values can
be taken directly from shell-model interactions.
We next comment on relations of the present ap-

proach to earlier ones. Based on some initial shell-
model works, for instance (French, 1966, 1969; de Shalit
and Talmi, 1963), Bansal and French (1964) introduced
“the average two-body interaction energy (taken with a
(2J+1)(2T+1) weighting)” and also “Another average,
taken without the (2T+1) weighting”. Thus, Bansal
and French regarded these approaches as two different
schemes. The former is basically suitable for a closed
shell where both proton and neutron shells are com-
pletely occupied. The averaging of all two-body matrix
elements is carried out for all neutron-neutron, proton-
proton and proton-neutron pairs, and the weighting fac-
tor (2J+1)(2T+1) arises. As the T=0 and 1 two-body

matrix elements are very different in size, another pa-
rameter was introduced to account for it (Bansal and
French, 1964; Zamick, 1965). The formulation of the
present work is based on an averaging also. But this
is the averaging over all possible orientations of a given
two-nucleon configuration j⊗j′, and the idea is visualized
in Fig. 7 with the definition in eq. (5) and in other related
equations. The derived monopole interaction is shown in
Sec. III.A with eqs. (14,15,16,17). These equations in-
clude the terms proportional to n̂p

j n̂
n
j′ , which may be re-

lated to Bansal-French’s second scheme mentioned above.
This second scheme is described further in (Bansal and
French, 1964) as “This is the average which one encoun-
ters in an n-p formalism (one in which neutrons and
protons are separately numbered) in those cases where
the neutron is necessarily in one orbit, the proton in the
other”. Equations (14,15,16,17) include terms dependent
on isospin operators as illustrated in Fig. 8, which en-
ables us to remove such a restriction of the orbits and
allow protons and neutrons to be in the same orbit.

Poves and Zuker (1981) developed the scheme of
Bansal and French, stating “Hm andHmT can be thought
of as generalization of the French-Bansal formulae”. The
weighting factors (2J+1)(2T+1) are included in HmT

(see also (Caurier et al., 2005)), while the isospin is not
considered in Hm (see also (Zuker, 1994)). The monopole
interaction HmT presented in (Poves and Zuker, 1981)
produces the same energy for closed-shell states as the
present approach. So, the result of (Poves and Zuker,
1981) and the relevant result of the present approach
are obtained, most likely, by different procedures with
consistent outcome. This consistency may be supported
by the fact that the monopole interaction can be com-
posed of the number and isospin operators of individual
orbits, and closed shells can give sufficient constraints on
the values of their parameters. The use of the monopole
Hamiltonian of (Poves and Zuker, 1981) has been devel-
oped and applied to properties of closed-shell nuclei and
their neighbors with ± one particle, producing precisely
the global systematics of nuclear masses (Caurier et al.,
2005; Duflo and Zuker, 1995, 1999; Zuker, 1994, 2005).
A review of them is given in (Caurier et al., 2005).

One thus sees that the two approaches mentioned by
Bansal and French are basically two facets of one com-
mon monopole interaction derived from the orientation
averaging in the present scheme, keeping isospin proper-
ties. In this way, we can settle a long-standing question
on the definition and uniqueness of the monopole interac-
tion, finding that basically all those arguments are along
the same line. The additional ττ term of eq. (14) is of
interest.

Another interest can be in the variational approach
with monopole interaction in open-shell nuclei as dis-
cussed in (Yazaki, 1977).
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F. Equivalence to ESPE as defined by Baranger

We discuss the definition of the ESPE by Baranger
(1970). The ESPE of the orbit j on top of the eigen-
state |0〉 is considered by referring to the n-th (N -th)
eigenstate, |n〉 (|N〉), of the nucleus with one more (less)
particle of interest. The ESPE is then expressed as,

ǫj =
∑

n

(En − E0)S
+
n +

∑

N

(E0 − EN )S−
N , (40)

where E0 is the energy of the state |0〉, and En (EN )
denotes the energy of the state |n〉 (|N〉). Here, S+

n (S−
N )

stands for spectroscopic factors |〈n|a†q|0〉|2 (|〈N |aq|0〉|2)
with q being a magnetic substate of the orbit j. Equa-
tion (40) implies that the ESPE is comprised not only of
energy gains in going from |0〉 to |n〉 weighted by the spec-
troscopic factors, but also of minus times energy losses
from |0〉 to |N〉 weighted similarly. Note that the lat-
ter contributes if the orbit j is occupied in |0〉. We dis-
cuss now the relation between this definition and the one
discussed so far. Note that the state |0〉 is assumed to
be the ground state of a double-closed-shell nucleus in
(Baranger, 1970), but we can generalize it to a 0+ state.
However, if its spin/parity is not 0+, eq. (40) does not
represent the ESPE.
Equation (40) can be rewritten

ǫj = 〈0|aq(H − E0)a
†
q |0〉+ 〈0|a†q(H − E0)aq |0〉 , (41)

whereH is the Hamiltonian. This is identical to eq. (6) of
(Baranger, 1970), even though they look different. After
algebraic processing, we come to

ǫj = ǫ0j +
∑

β,δ

vqβqδ〈0|a†βaδ |0〉 , (42)

where ǫ0j is defined in eq. (1) and vqβqδ denotes an anti-
symmetrized matrix element of the two-body interaction.
Because |0〉 being a 0+ state, the following relations

hold in eq. (42) for the magnetic quantum number,
mβ=mδ, and for the angular momentum, jβ=jδ denoted
by j′. We assume that the states β and δ are the same for
the sake of simplicity, while a more general treatment is
possible. We note that this assumption is valid with two
HO major shells or in other similar cases. The matrix ele-
ment 〈0|a†βaδ |0〉 can be replaced with 〈0|n̂j′ |0〉/(2j′+1),
which is independent of mβ . Here, n̂j′ is the number
operator of the orbit j′. Although ǫj in eq. (40) is inde-
pendent of q, we sum vqβqβ over q, and the sum can be
expressed as the monopole matrix element V m(j, j′) mul-
tiplied by the number of relevant antisymmetrized states
of j and j′. Note that the difference in this number be-
tween j=j′ and j 6= j′ cases is incorporated. We finally
obtain the following unified expression,

ǫj = ǫ0j +
∑

j′

V m
j,j′ 〈0|n̂j′ |0〉 . (43)

This is nothing but the ESPE discussed so far with the
substitution of n̂p

j′ and n̂n
j′ in eq. (35) and eq. (36) by

their expectation values with respect to the eigenstate
|0〉. Namely, the ESPE formulation by Baranger (1970)
is included in the present monopole formulation as a spe-
cific case with |0〉 being a 0+ state, while the present one
is applicable to the other states as well. We mention
that the present approach has a modification due to the
isospin (see eqs. (32,33)), and it is of interest how to in-
clude this in the above discussion.

We can thus present a unified formulation on the
monopole properties, starting from the natural construc-
tion of the monopole interaction. In (Duguet et al.,
2015), it is stated in footnote 1 “In the traditional shell
model, ESPE usually refers to single-particle energies ob-
tained by averaging over the monopole part of the Hamil-
tonian on the basis of a naive filling ... The latter denotes
an approximate version of the full Baranger-French def-
inition ...”. This footnote remark may be applicable to
some earlier works using the filling scheme for defining
the ESPE, but is not relevant to the present formulation.

The ESPE, as the expectation value of the 0+ ground
state (see the texts below eq. (39)), can be extracted
from experiment if all relevant spectroscopic factors in
eq. (40) are obtained to a great precision. Because one-
nucleon addition and removal experiments are required,
this is a very difficult task in general, except for cases
where the spectroscopic factors are negligible in either
direction, e.g. at a closed shell. Despite this experimen-
tal challenge, the ESPE is useful for understanding and
explaining phenomena and mechanisms.

G. Illustration by an example

We present an example of the change of ESPE’s of the
N = 9 isotones as shown in Fig. 9. This figure is taken
from Fig. 2 of Ref. (Talmi and Unna, 1960), as one of the
earliest related papers. We discuss here how the changes
shown in Fig. 9 can be described within the framework
presented in the previous subsection. The discussions are
somewhat detailed because this is the first actual exam-
ple.

We assume the 14C core with Z = 6 and N = 8. Fig-
ure 10 illustrates the shell structure on top of this 14C
core. The levels shown in Fig. 10 are taken from experi-
mental data (ENSDF, 2017), assuming that the observed
lowest levels are of single-particle nature, and are almost
the same as the corresponding ones in Fig. 9. Figure 10
(a) indicates somewhat schematically neutron 2s1/2 and
1d5/2 orbits on top of the 14C core. Note that in Fig. 10
(a), the 2s1/2 orbit is 0.74 MeV below 1d5/2.

We then add protons into the 1p1/2 orbit, as shown in
Fig. 10 (b). The proton 1p1/2 orbit is fully occupied, or
closed now. The ESPE’s of neutron 2s1/2 and 1d5/2 or-
bits are both lowered, but more interestingly, their order
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Figure 9 Experimental energy levels of N=9 isotones, some of
which are regarded as neutron 2s1/2 and 1d5/2 single-particle
energies. See the text. Based on Talmi and Unna (1960).

is reversed due to protons in the 1p1/2 orbit, following
eq. (36) with j′ = 1p1/2, and j = 2s1/2 or 1d5/2. The
ESPEs are treated here as c-numbers because the wave
function of the other nucleons is fixed, as mentioned in
Sec. III.D. The difference of ESPEs can be written as

ǫn2s1/2(
17O)− ǫn1d5/2

(17O)

= ǫn2s1/2(
15C)− ǫn1d5/2

(15C)

+
{

V m
pn(1p1/2, 2s1/2) − V m

pn(1p1/2, 1d5/2)
}

× 2 .

(44)

The proton sector of the Hamiltonian produces the
common effect between the Jπ=1/2+ and 5/2+ states.
Thus, the above difference of ESPEs corresponds to the
difference of experimental levels in the assumption that
these states are of single-particle nature (which will be
re-examined in Sec. IV.F with Fig. 34), and the monopole
matrix elements satisfying

Vm
pn(1p1/2, 2s1/2) − V m

pn(1p1/2, 1d5/2)

= (0.87 + 0.74)/2 = 0.805 (MeV) (45)

explain the change in Fig. 10. This result indicates that
V m
pn(1p1/2, 1d5/2) is more attractive by ∼0.8 MeV than

V m
pn(1p1/2, 2s1/2). Thus, what actually occurs is more

rapid lowering of the neutron 1d5/2 orbit than that of the
neutron 2s1/2 orbit, as protons fill the 1p1/2 orbit. This
can be explained as a consequence of very important and
general features of the monopole interactions of nuclear
forces as discussed in Sec. IV extensively.
If the energy is measured relative to the neutron 1d5/2

orbit, the monopole-matrix-element difference in eq. (45)
pushes up the neutron 2s1/2 orbit from 15C to 17O. We
shall describe the approach by Talmi and Unna (1960)
with this convention such that the energy is measured
from the neutron 1d5/2 ESPE with the filling scheme.
The energy levels in Fig. 10 can be viewed in this con-
vention, including 16N (Z=7 and N=9) with one proton
in the 1p1/2 orbit. This proton is coupled with a neu-
tron either in 2s1/2 or 1d5/2. The former coupling yields

1p1/2

protons neutrons

14C core

1d5/2

2s1/2

0.0 MeV

-0.74 MeV

protons neutrons

0.0 MeV

0.87 MeV

(a)     C15

14C core

2s1/2

1d5/21p1/2

(b)     O17S   = 1.22 MeVn S   = 4.14 MeVn

Figure 10 (a) Schematic picture of shell structure (a) on top
of the 14C core. (b) Two more protons (red solid circles) are
added into the 1p1/2 orbit. Experimental levels are identi-
fied as single-particle states: green level for 1d5/2, and pink
level for 2s1/2. Numbers near the levels are energies rela-
tive to 1d5/2. The wavy lines imply proton-neutron inter-
actions. Solid arrows indicate the changes of SPE’s. The
dashed-dotted line denotes neutron threshold, and downward
dashed arrows mean one neutron separation energy (Sn).

Jπ=0− and 1− states, while the latter Jπ=2− and 3−

states. In this simple configuration, the proton-neutron
interaction, v̂pn, shifts the energies of these states by

1

2
ΣT=0,1 〈j, j′; J, T |v̂pn|j, j′; J, T 〉. (46)

The (2J+1)-weighted average of the quantities in eq. (46)
is nothing but the corresponding monopole matrix ele-
ment, because of eqs. (19, 31, S2). Thus, those averages
can be discussed as the ESPEs driven by the monopole
interaction, and the aforementioned convention can be
adopted. As the change from 15C to 17O is then twice
the monopole-matrix-element difference due to two ad-
ditional protons, the middle point of the line connecting
the states of the same spin/parity of 15C and 17O rep-
resents the corresponding monopole quantity. Thus, if
the present scheme works ideally, the 1/2+ levels and the
relevant average quantity of 16N should be on a straight
line. Talmi and Unna did, in (Talmi and Unna, 1960),
this analysis in a slightly different way: they took the ob-
served energy levels of 17O and the weighted averages for
the observed levels of 16N, and extrapolated to 15C. The
extrapolated value appeared rather close to the observed
one, implying the validity of this picture, which will be
re-visited in Sec. IV.F.
Talmi and Unna discussed another case with 11Be -

12B - 13C (N=7 isotones with Z=4, 5 and 6) (Talmi and
Unna, 1960). Although the 1/2+ levels change almost lin-
early as a function of N , the mechanism is different from
the N=9 isotone case discussed above. Since protons oc-
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cupy the 1p3/2 orbit now, one has to take into account
the coupling of two protons. It was taken to be J = 0 (see
eq. (1) in (Talmi and Unna, 1960)), which enables us to
connect the change of the structure to the monopole in-
teraction, because multipole interactions are completely
suppressed. Note that the terminology of monopole in-
teraction was not used then, but the same quantity was
used. This restriction to the J = 0 coupling, however,
may not be appropriate, because the deformation of the
shape is crucial and simultaneously configuration mixings
occur even between the 1p3/2 and 1p1/2 proton orbits.
The single-particle nature is broken also on the neutron
side due to configuration mixing between the 2s1/2 and
1d5/2 orbits. Thus, the N=7 isotones may not be a good
example of the change of single-particle energies. In fact,
the magnitude of the change is twice larger than the N=9
isotone case, which may be indicative of dominant addi-
tional effects.

An example of the ESPE change due to the T=1 in-
teraction is given in Supplemental Material Sec. S4.

IV. SHELL EVOLUTION, MONOPOLE INTERACTION
AND NUCLEAR FORCES

The effective single-particle energy (ESPE) is shown
to be varied according to the relations in eqs. (38, 39).
Since it depends linearly on the proton or neutron num-
ber operators of a particular orbit j, denoted respectively
as n̂p

j and n̂n
j , the ESPE can be changed to a large ex-

tent if the occupation number of a given orbit becomes
large. This further can result in a substantial change of
the shell structure, called shell evolution. Thus, the shell
evolution can occur, for instance, as a function ofN along
an isotopic chain. We shall discuss, in this section, some
basic points of the shell evolution in close relations to
nuclear forces.

We note here that the multipole interaction defined in
Sec. III.A produces a variety of correlations, for instance,
quadrupole deformation, and that the final structure is
determined jointly by the monopole and multipole inter-
actions, as is done automatically when the Hamiltonian
is diagonalized. Although there is no a priori separa-
tion of effects of the monopole interaction from those of
the multipole interaction, the monopole effects, partic-
ularly the shell evolution, can be made visible in many
cases. We shall focus, in this section, on such effects of
the monopole interactions due to various constituents of
the NN interaction, such as central, tensor and two-body
spin-orbit.

A. Contributions from the central force

The central-force component of the nuclear force is the
main driving force of the formation of the nuclear struc-

ture.
Let us start with an extreme case, if the effective

nucleon-nucleon (NN) interaction, v̂, is a central force
with infinite range and no dependence on spin, the values
of monopole matrix elements V m

T=1(j, j
′) and V m

pn(j, j
′)

become independent of j and j′, being constants. If this
v̂ is attractive, V m

T=1(j, j
′) and V m

pn(j, j
′) take separate

constant negative values. This implies, for instance, that
if more neutrons occupy the orbit j′, all proton orbits j
become more bound to the same extent. In other words,
the proton shell structure is conserved but becomes more
deeply bound.
On the other hand, if v̂ is given by a δ-function with

a certain strength parameter, the values of V m
T=1(j, j

′)
and V m

pn(j, j
′) become sensitive to the overlap between

the wave functions of the orbit j and that of the orbit
j′. This implies, for instance, that if more neutrons oc-
cupy the orbit j′, proton ESPE for the orbit j in eq. (38)
become more bound, but the amount of the change is
not uniform. In other words, the pattern of the proton
single-particle orbits may change while they all become
more bound as a whole.
The actual situation is certainly somewhere in be-

tween. We here show how monopole matrix elements
look like for a central Gaussian interaction given by

vc =
∑

S,T

fS,T PS,T exp(−(r/µ)2) , (47)

where S(T ) means spin (isospin), P denotes the projec-
tion operator onto the channels (S, T ) with strength f ,
and r and µ are the internucleon distance and Gaussian
parameter, respectively. We fix here all f parameters to
a common value of +166 MeV just in order to see the ef-
fects of the four terms on the right-hand side. The µ = 1
fm is used as we shall discuss in Sec. IV.C too. Note that
we shall use this vc extensively hereafter with realistic
values of parameters such as f1,0 = f0,0 = −166 MeV
(i.e., the same magnitude with the opposite sign from
the above value), and f0,1 = 0.6f1,0 and f1,1 = −0.8f1,0.
Such vc gives basic features of effective NN interaction of
the shell-model calculation, as called VMU (Otsuka et al.,
2010b).
Figure 11 shows monopole matrix elements thus ob-

tained. The harmonic oscillator wave functions are used
as single-particle wave functions hereafter. We take
A = 100 in Fig. 11.
Figure 11 indicates that the (S = 1, T = 0) chan-

nel produces major contributions, apart from the actual
fS,T values. Furthermore, as mentioned just above, the
actual value of fS=1,T=0 appears to be the largest among
the four (S, T ) channels (e.g., in the VMU (Otsuka et al.,
2010b)), and this dominance becomes enhanced after
considering the actual fS,T values.
Within the (S = 1, T = 0) channel, Fig. 11 demon-

strates that the coupling between orbits with n = 1 (i.e.,
no node in the radial wave function) like 1g9/2-1g9/2,7/2
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Figure 11 Monopole matrix elements of central Gaussian in-
teractions of eq. (47) for all (S, T ) channels with an equal
strength parameter (i.e., +166 MeV, see the text). One of
the orbits is 1g9/2, and the other is shown.
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Figure 12 Monopole matrix elements of delta interactions for
(S,T) channels. See the caption of Fig. 11.

or 1g9/2-1h11/2 are stronger than the others. This can be
understood in terms of the larger overlap between their
radial wave functions than those in the other categories
in Fig. 11.

We show similar histograms for the δ-function interac-
tion in Fig 12. One finds rather good overall similarity
to Fig. 11. On the other hand, the monopole matrix el-
ements vanish for (S = 1, T = 1) or (S = 0, T = 0)
channel, as not shown in Fig 12. This is a consequence
of the Pauli principle which forbids two nucleons at the
same place for S = 0, T = 0 or S = 1, T = 1.

It is now of interest to survey the overall dependence
of the monopole matrix element on the nodal structure
of the radial wave function. Figure 13 shows monopole
matrix elements in the (S = 1, T = 0) channel for the
Gaussian and δ-function interactions. In Fig. 13, various
pairs of orbits are taken for the valence shells around (a)
A = 100 and also (b) A = 70, with their labels abbre-
viated like g7 for 1g7/2. The strength of the δ-function
interaction is adjusted so that the monopole matrix ele-
ment becomes equal to that given by the Gaussian inter-
action for (a) the g9-g7 pair and (b) the f7-f5 pair.

The orbital pairs are classified into categories accord-
ing to the difference of the number of the nodes in their
radial wave functions, as denoted by ∆n in Fig, 13. It is
noticed that the monopole matrix elements are generally
large when the radial wave functions have the same num-
ber of the nodes (i.e., ∆n = 0). The monopole matrix
elements become smaller as ∆n increases, while the dif-

ference between the two categories ∆n = 1 and ∆n = 2 is
much smaller. On the other hand, the monopole matrix
element varies within the ∆n = 0 category. The large
value of the s1-s1 in Fig, 13 (a) is exceptional. Among
the others with ∆n = 0 in Fig, 13 (a), stronger coupling
can be found between the following orbits:

j> = ℓ + 1/2 and j< = ℓ − 1/2 , (48)

where ℓ stands for the orbital angular momentum and
1/2 represents the spin. In other words, j> and j< are
spin-orbit partners having the same radial wave func-
tions in the Harmonic Oscillator scheme, and therefore
the central force, both the Gaussian and the δ-function
interactions, produces stronger monopole interactions be-
tween them. This feature is seen in the cases of (i) g9
and g7, (ii) d5 and d3, (iii) f7 and f5, and (iv) p3 and p1
in Fig, 13. We note that this type of enhanced coupling
becomes weaker with the Gaussian interaction than with
the δ-function interaction.
We emphasize that the monopole matrix elements of

the central force, as modeled by the Gaussian interac-
tion in eq. (47), vary considerably, and can produce siz-
able shell evolution depending on the occupation pattern
over relevant single-particle orbits. Concrete examples
are shown in Secs. IV.C and IV.D.
Regarding the dependence on the mass number, A, the

monopole matrix elements of A = 100 in Fig, 13 (a) is,
as a whole, about 2/3 of those of A = 70 in Fig, 13 (b).
This feature can be expressed by a 1/A dependence in a
rough approximation if wished. This approximate scal-
ing law appears to be reasonable because the probability
to find the partner of a pair of interacting nucleons inside
the interaction range is inversely proportional to the nu-
clear volume, as far as the density saturation holds. Note
that this overall trend is seen in experimentally extracted
data, while other A-dependences can be found locally in
certain groups (see Fig. 8 of (Sorlin and Porquet, 2008)).
Stronger couplings between particular orbits are a nat-

ural idea, and were, in fact, discussed in earlier works,
for instance, by Federman, Pittel, et al. (Federman and
Pittel, 1977, 1979; Federman et al., 1979, 1984; Pittel
et al., 1993). It has been argued by Federman and Pittel
(1977) that the proton-neutron central force in the 3S1

channel, where S stands for the s wave (L=0) with the
spin triplet and the relative orbital (total) angular mo-
mentum L=0 (J=1), gives rise to a strong attraction be-
tween two orbitals (nP , lP , jP ) and (nN , lN , jN ) when the
relations nP = nN and lP ≈ lN are satisfied because of
a large spatial overlap (de Shalit and Goldhaber, 1953).
It certainly contributes to the present (S = 1, T = 0)
channel. Figure 13 (a) suggests that the monopole ma-
trix element V m

T=0(1g7/2, 1g9/2) is about 0.3 MeV more
attractive than V m

T=0(2d5/2, 1g9/2) with the realistic sign
of the parameter mentioned above. Equation (39) com-
bined with eqs. (31,34) indicates that the present Gaus-
sian central force lowers the ESPE of the neutron 1g7/2
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Figure 13 Monopole matrix elements of central Gaussian and
δ interactions for the (S = 1, T = 0) channel. The opposite
sign should be taken for actual values. The orbit labeling is
abbreviated like g9 for 1g9/2, etc. The orbits are from the
valence shell for (a) A = 100 and (b) A = 70.

orbit relative to the 2d5/2 orbit by ∼ 1
2 × 0.3× 10 =

1.5 MeV, in going from Z = 40 to Z = 50. Here we
assumed that the Z = 40 and N = 50 closed shells are
kept, the neutron 1g7/2 and 2d5/2 orbits are on top of this
closed shell, and additional 10 protons occupy the 1g9/2
orbit. This change is quite sizable, but will be shown to
be about a half of what has been known experimentally,
which hints that the central force is responsible only for
a part of the story. Smirnova et al. (2004) compared
δ-function and G-matrix interactions. The former is a
central force, but the latter contains other components.
The reported difference is therefore consistent with the
present observation on the deficiency of the central force.
Relevant further studies were reported in (Umeya and

Muto, 2004, 2006).
We here come back to the limit of long-range inter-

action, but include dependences on the spin and isospin
(Otsuka et al., 2001). If there is no spin dependence,
an infinite-range interaction gives a constant shift as dis-
cussed above. Let us now take a spin-isospin interaction
such as

vττσσ = ~τ · ~τ ~σ · ~σ f(r) , (49)

where f(r) represents the dependence on the relative dis-
tance r, “·” implies a scalar product, and ~σ (~τ ) refers to
spin (isospin) operators.
The matrix element of the term ~τ · ~τ is trivial, being

− 3
4 and 1

4 for T=0 and 1, respectively. The monopole
matrix elements of this interaction with f(r) ≡1 show an
interesting analytic property, and we shall discuss it now.
We consider antisymmetric states in eq. (3) or (S17) and
symmetric states in eq. (S3) or eq. (S4). The monopole
matrix element consists of direct and exchange contribu-
tions. The direct contribution from the ~σ · ~σ term is

Σm,m′ ( j,m|σz |j,m )( j′,m′|σz|j′,m′ ) = 0, (50)

where σz stands for the z−component of ~σ and
∑

m ( j,m|σz |j,m ) = 0 is used. On the other hand,
the exchange contribution is expressed as

∓Σm,m′

{

(1/2) { ( j,m|σ+|j′,m′ )( j′,m′|σ−|j,m )

+ ( j,m|σ−|j′,m′ )( j′,m′|σ+|j,m )}
+ ( j,m|σz |j′,m′ )( j′,m′|σz |j,m )

}

, (51)

where σ+ and σ− stand for the raising or lowering op-
erator of ~σ, and the overall sign ∓ corresponds to the
antisymmetric and symmetric states, respectively. Thus,
direct terms do not contribute, and only exchange con-
tributions remain. We point out that for interactions
without the ~σ · ~σ term, the situation is very different as
the direct term is the major source of the monopole inter-
action. In order to have finite values in eq. (51), j and j′

must have the same ℓ, implying that j and j′ are either j>
or j< for the same ℓ. After some algebra of angular mo-
mentum, the final results are tabulated in Table I. The
j>−j< coupling appears to be about twice stronger than
the j> − j> or the j< − j< couplings. This is precisely
due to larger matrix elements of spin-flip transitions, like
( j> |~σ| j< ) or ( j< |~σ| j> ), than spin-nonflip transitions
like ( j> |~σ| j> ) or ( j< |~σ| j< ) (Otsuka et al., 2001). The
same mathematical feature applies to the isospin matrix
elements, enhancing charge exchange processes like the
one shown in Fig. 14 (d). The most important outcome
of these features is the strong proton-neutron coupling
between j> or j< with the same ℓ, or between ℓ + 1/2
and ℓ− 1/2 (see Fig. 14 (c)).
A concrete example is shown in Fig. 14 (a,b). We as-

sume here the simple filling configuration that the last
six protons in 30Si are in the 1d5/2 (shown as 0d5/2) or-
bit in Fig. 14 (a). On the other hand, 24O has no proton
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Table I Monopole matrix elements of the ττσσ interaction
with f(r) ≡1. Based on Table 1 of (Otsuka, 2002).

j1 j2 T=0 T=1

ℓ + 1

2
ℓ + 1

2
-3/16(2ℓ+1) -(2ℓ+3)/16(2ℓ+1)2

ℓ + 1

2
ℓ− 1

2
-3/8(2ℓ+1) -1/8(2ℓ+1)

ℓ− 1

2
ℓ− 1

2
-3(2ℓ−1)/16(2ℓ+1)2 -1/16(2ℓ+1)

0

4

8

j>= l +1/2

j<= l −1/2
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Figure 14 Neutron ESPEs for (a) 30Si and (b) 24O, relative to
the 2s1/2 (shown as 1s1/2) orbit. The dotted line connecting
(a) and (b) is drawn to indicate the change of the 1d3/2 (shown
as 0d3/2) level. (c) The major interaction producing the basic
change between (a) and (b). (d) The process relevant to the
interaction in (c). From Otsuka et al. (2001).

in the 1d5/2 orbit, and shows a large gap between neu-
tron 1d3/2 and 2s1/2 orbits, consistent with experiment
(Hoffman et al., 2008; Kanungo et al., 2009).
The monopole matrix element of the ττσσ interaction

with f(r) ≡1 vanishes for any pair involving an s1/2 orbit.
Thus, these last six protons in 30Si lower the ESPE of the
neutron 1d3/2 orbit relative to the 2s1/2 orbit through the
monopole matrix element,

V m
pn(1d5/2, 1d3/2) = −1 / {4 (2× 2 + 1)} , (52)

obtained from Table I, following eq. (39). Although not
shown in Fig. 14, the ESPE of the neutron 1d5/2 orbit is
lowered by about half of the change of the neutron 1d3/2
ESPE, as can be seen in Table I with ℓ ≫ 1. Thus, while
the ττσσ interaction can change the spin-orbit splitting,
both spin-orbit partners are shifted in the same direction.
The above argument on a more attractive monopole

matrix element between ℓ + 1/2 and ℓ − 1/2 orbits can
be extended, with certain modifications, to finite-range
and zero-range central interactions as we have seen nu-
merically in Fig. 13. We note that in the case of the
zero-range δ-function central interaction, the total spin
of two interacting nucleons is restricted to S=0 for T=1
and S=1 for T=0, and this induces some spin-spin effects

even for a simple δ-function interaction without explicit
spin dependence. We point out also that within the cen-
tral forces, the coupling between orbits with ℓ and ℓ′ with
ℓ 6= ℓ′ is not enhanced as can be understood from Fig. 14
(d) and as can be confirmed numerically from Fig. 13.
We will come back to these features after discussing the
tensor-force effect.

B. Shell Evolution due to the Tensor force

1. Tensor force

We now study the shell evolution due to another major
component of the nuclear force, the tensor force. Yukawa
proposed the meson exchange process as the origin of the
nuclear forces (Yukawa, 1935). Although this was on the
exchange of a scalar meson and is not directly related
to the tensor force, the meson exchange theory was de-
veloped further, and Bethe demonstrated that the tensor
force is formulated with the coupling due to another kind
of meson (i.e., referred to as π-meson (or pion) presently),
with explicit reference to the tensor force and its effect
on the deuteron property (Bethe, 1940a,b). We can thus
identify the tensor force with its unique features as one
of the most important and visible manifestations of the
meson exchange process initiated by Yukawa.
We start our discussion with the one-π exchange po-

tential between the i-th and j-th nucleons,

Vπ = f (~τi · ~τj)(~σi · ∇)(~σj · ∇)
e−mπr

r
, (53)

where ~τi and ~σi indicate, respectively, the isospin and
spin operators of the i-th nucleon, ~r denotes the relative
displacement between these two nucleons with r = |~r|,
and ∇ stands for the derivative by ~r. Here, f and mπ

are the coupling constant and the π-meson mass, respec-
tively. Equation (53) is rewritten as

Vπ =
f m2

π

3
(~τi · ~τj)

×
{

(~σi · ~σj) + Sij {1 +
3

mπr
+

3

(mπr)2
}
} e−mπr

r
,

(54)

with

Sij = 3(~σi · ~r)(~σj · ~r)/r2 − (~σi · ~σj) . (55)

Here an additional δ function term is omitted in eq. (54)
as usual (because there are other processes at short dis-
tances). The first term within

{ }

on the right-hand side
of eq. (54) produces a central force, and is not considered
hereafter. The second term within this

{ }

generates the
tensor force from the one-π exchange process.
As an example of the radial dependence of actual ten-

sor potentials, Fig. 15 shows the triplet-even (TE) poten-
tial due to the tensor potentials in some approaches (see
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Figure 15 Triplet-even potential due to the tensor force for
various interaction models. Adapted from (Otsuka et al.,
2005).

(Otsuka et al., 2005) for details). Except for the π-meson
exchange case (no ρ meson), the TE potentials exhibit
rather similar behaviors outside ∼ 0.6 fm. While differ-
ences arise inside, the relative-motion wave functions of
two interacting nucleons are suppressed there because of
forbidden coupling between S-wave bra and ket states.
The tensor force has been known for a long time in con-

nection to the one-π exchange potential as stated here,
and its effects were studied extensively from many angles.
Early studies in connection to the nuclear structure in-
clude an extraction of the tensor-force component in the
empirical NN interaction by Schiffer and True (Schif-
fer and True, 1976), a derivation of microscopic effective
NN interaction (i.e., so-called “G-matrix interaction”)
including second-order effects of the tensor force by Kuo
and Brown (Kuo and Brown, 1966), a calculation of mag-
netic moments also including second-order tensor-force
contributions by Arima and his collaborators (Shimizu
et al., 1974) and by Towner (Towner, 1987), a review on
its effects in light nuclei (Fayache et al., 1997), etc.
Besides such effects, the tensor force produces another

effect on the shell structure in its lowest order, or, by the
one-π exchange process. This effect must have been con-
tained in numerical results, but its simple, robust and
general features had not been mentioned or discussed
until the work done in (Otsuka et al., 2005), where the
change of the shell structure, i.e., the shell evolution, due
to the tensor force was presented for the first time.
We now present the monopole interaction of the tensor

force first, in order to clarify such tensor-force driven shell
evolution. Because the S operator in eq. (55) between
nucleons “1” and “2” can be rewritten as

S12 =
√
24 π [ [ ~σ1 × ~σ2]

(2) × Y (2)(θ, φ)](0) , (56)

where [× ](K) means the coupling of two operators in the
brackets to an angular momentum (or rank) K, and Y
denotes the spherical harmonics of the given rank for the
Euler angles, θ and φ, of the relative coordinate. The

tensor force can then be rewritten in general as

V ten = (~τ1 · ~τ2) ( [ ~σ1 × ~σ2]
(2) · Y (2)(θ, φ))f ten(r), (57)

where f ten(r) is an appropriate function of the relative
distance, r. Note that the scalar product is taken instead
of [× ](K). Eq. (57) is equivalent to the usual expression
containing the S12 function. Because the spins ~σ1 and
~σ2 are dipole operators and are coupled to rank 2, the
total spin S (magnitude of ~S = ~s1+~s2) of two interacting
nucleons must be S=1. If both of the bra and ket states of
V ten have L=0, with L being the relative orbital angular
momentum, their matrix element vanishes because of the
Y (2) coupling. The crucial roles of these properties will
be shown in the rest of this subsection.
Besides the π-meson exchange, the ρmeson contributes

to the tensor force. In the following, we use the π+ρ me-
son exchange potential with the coupling constants taken
from (Osterfeld, 1992). The function f ten(r) therefore
corresponds to the sum of these exchange processes. The
magnitude of the tensor-force effects to be discussed be-
comes about three quarters as compared to the results by
the one-π exchange only. The basic physics will not be
changed. We will compare the π+ρ meson results with
those by modern theories of nuclear forces.

2. Tensor force and two-nucleon system

Having these setups, we first recall the basic proper-
ties of the tensor force, by taking a two-nucleon system.
From the previous subsubsection, we know S = 1 for two
nucleons interacting through the tensor force. We there-
fore assign sz = 1/2 for each nucleon, taking the z-axis
in the direction of the spin.
Figure 16 displays schematically this system in two dif-

ferent situations. The spins are shown by arrows pointing
upwards, and are placed where two nucleons are placed
at rest. In other words, two nucleons are displaced (a)
in the direction of the spin or (b) in the perpendicular
direction. This is certainly a modeling of the actual situ-
ation of which the wave function of the relative motion is
shown schematically by yellowish shaded areas in Fig. 16.

�✁✂✄ ☎✆✝✞✟✠✝ ✠☎
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Figure 16 Intuitive picture of the tensor force acting on two
nucleons.

We now consider the effect of the tensor force in these
two cases, by denoting the value of the operator in
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eq. (55) by Sij . In the case of Fig. 16 (a), we obtain

(~σi · ~r)/r × (~σj · ~r)/r =
1

2
× 1

2
, (58)

while this quantity vanishes for Fig. 16 (b) because of the
orthogonality between ~σ and ~r. Because of S = 1,

(~σi · ~σj) =
1

4
(59)

holds. Combining these, we obtain

Sij =







3
4 − 1

4 = 1
2 for (a)

0 − 1
4 = − 1

4 for (b)
(60)

The tensor force works for the two cases in Fig. 16 (a)
and (b) with opposite signs. The actual sign of f in
eq. (54) is positive, while the (~τi · ~τj) term becomes -
3/4 for T = 0 where T stands for the coupled isospin of
the nucleons. The case in Fig. 16 (a) gains the binding
energy from the tensor force, and indeed corresponds to
the deuteron. The other case is actually unbound. In the
case of T = 1, the attractive effect from the tensor force
is three times weaker than in the T = 0 case, in a näıve
approximation.

3. Tensor-force effect and orbital motion: intuitive picture

We next consider tensor-force effects on the ESPEs in
nuclei: the reduction of the spin-orbit splitting. As will
be shown in this and subsequent sections, the monopole
interaction of the tensor force is always attractive be-
tween j> and j′< orbits, whereas it is always repulsive be-
tween j> and j′> as well as between j< and j′<. Figure 17
shows a typical case that the occupation of the neutron
j′> orbit changes the splitting between the proton j> and
j< orbits, as expected by applying these monopole ma-
trix elements to eq. (38). Such changes lead us to the
significant variation of the shell structure, i.e., shell evo-
lution, in association with sizable occupations of a par-
ticular orbit. This basic feature has been presented in
(Otsuka et al., 2005) followed by further developments.
We shall discuss here the mechanism and consequence
of such tensor-force driven shell evolution in some detail
including those developments.
Figure 18 shows, in an intuitive way, the phenomena

we are looking into. Spins are shown by arrows, and
they are set to be both up, because of S = 1 for the
tensor force. We compare two cases: (a) the tensor-force
coupling between j> and j′< orbits, (b) the one between
j> and j′> (and also j< and j′<).
Before evaluating quantitatively these couplings, we

present a simplified picture. This is based on the argu-
ment first shown briefly in (Otsuka et al., 2005), followed
by an elaborated description in (Otsuka, 2013) and by a
further extended version with a figure in (Otsuka, 2014).
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Figure 17 (a) Schematic picture of the monopole interaction
produced by the tensor force between a proton in j>,< = l ±
1/2 and a neutron in j′>,< = l′ ± 1/2. (b) Exchange processes
contributing to the monopole interaction of the tensor force.
From Otsuka et al. (2005).
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Figure 18 Intuitive picture of the tensor force acting on two
nucleons on orbits j and j′. From Otsuka et al. (2005).

As the last one is most extensive but in Japanese, we
provide a slightly revised text and figure here.

We begin with the case shown in Fig. 18(a) where a nu-
cleon in j< is interacting with another in j′> through the
tensor force. Since the spin of each nucleon is fixed to be
up, two nucleons must rotate on their orbits in opposite
ways. We shall look into the relative motion of the two
interacting nucleons, as the interaction between them is
relevant only to their relative motion but not to their
center-of-mass motion. We model the relative motion by
a linear motion on the x axis. When two nucleons are
close to each other within the interaction range, which is
shorter than the scale of the orbital motion, the motion
of two nucleons can be approximated by a linear motion,
and the interaction works only within this region. It is
also assumed that the two nucleons continue to move on
the x axis, which is fulfilled in the present case. As the
tensor-force potential becomes quite damped at the dis-
tance & 2 fm, this is a reasonable modeling for nuclei
with larger radii.

In this linear motion model, the wave functions of the
two nucleons are approximated by plane waves. The case
(a), shown in Fig. 18 (a), correspond to the “head-on col-
lision” in the linear motion model. The case (b), shown
in Fig. 18, corresponds on the other hand to the parallel
linear motion of the two nucleons. We assign indices 1
and 2 to the two nucleons. Their wave numbers on the x
axis are denoted by k1 and k2, while their coordinates are
denoted by x1 and x2. The wave function, Ψ, consists of
products of two plane waves. We now take a system of a
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Figure 19 Intuitive picture of the tensor force acting between
two nucleons in a one-dimensional model. The relative-motion
wave function is shown for (a) head-on collision and (b) par-
allel motion cases. In (a), the change is shown as the relative
momentum k becomes larger. See the text for explanation.
Adapted from Otsuka (2014).

proton and a neutron in the total isospin T=0, which is
antisymmetric with respect to the exchange of the nucle-
ons 1 and 2. The spin part is S=1, which is symmetric.
As the total wave function must be antisymmetric, the
coordinate wave function has to be symmetric, taking the
form such as,

Ψ ∝ eik1x1eik2x2 + eik2x1eik1x2 = eiKX {eikx + e−ikx}
= 2 eiKX cos(kx), (61)

where center-of mass and relative momenta are defined,
respectively, as,

K, = k1 + k2, k = k1 − k2, (62)

and center-of mass and relative coordinates are likewise
as,

X, = (x1 + x2)/2, x = (x1 − x2)/2. (63)

With these definitions, we see that the relative motion is
expressed by the wave function

φ(x) ∝ cos(kx) (64)

and the center-of-mass motion has a wave number K for
eiKX .
In the present case (i.e., Fig. 18(a)), k1 ∼ −k2 can

be assumed. The relative motion then has a large mo-
mentum, k ∼ 2 k1. Its wave function φ(x) is shown in
Fig. 19 (a), with the trend with increasing k. We note
K ∼ 0 with k1 ∼ −k2, implying the center of mass being
almost at rest, or a nearly uniform wave function of the
center-of-mass motion.
Based on Fermi momentum in nuclei, k is considered

to be of the order of magnitude 1 fm−1, but not to ex-
ceed ∼ 1.5 fm−1. From the range of the force, the area
inside x ∼ 1 fm is relevant, as the tensor-force poten-
tial becomes very weak beyond 2 fm. Thus, the relevant

range of kx in Eq. (64) is |kx| . π/2. Because of this,
Fig. 19 (a) displays up to the first zeros in both direc-
tions. The wave function φ(x) in Eq. (64) is damped
more quickly for k larger within this range (see Fig. 19
(a)). Figure 16 shows that two nucleons attract each
other if they are displaced in the direction of spin, but
repel each other if they are displaced in the direction per-
pendicular to the spin, i.e., the x axis now. We point out
that if two nucleons are at a very short distance without
high momenta, the tensor force does not work because its
angular dependence comes from the spherical harmonics
Y (2) prohibiting a finite probability at zero distance. The
two nucleons should have a certain distance in order to
experience some effects, attractive or repulsive, from the
tensor force. If the distance is too large, the effect is di-
minished also. Thus, although schematically, the region
shown by bi-directional arrows in Fig. 19 is relevant to
the tensor force, which is repulsive presently. With larger
relative momentum k, Fig. 19 (a) suggests that the wave
function is damped faster or the region of sizable prob-
ability amplitude is more compressed, along the x axis.
This occurs in the region where the tensor force works
repulsively. Thus the reduction of the repulsion takes
place more strongly with larger k. This means that as
k becomes larger, the repulsion becomes weaker, but the
attraction remains basically unchanged. This is nothing
but the net effect becoming more attractive.

We now come back from one-dimensional modeling
to the three-dimensional orbital motion. The relative-
motion wave function is discussed in a similar manner.
The yellow shaded area in Fig. 18(a) indicates, schemat-
ically, the region with a sizable probability amplitude of
the relative-motion wave function, as discussed above.
Its vertically stretched shape implies the attractive net
effect, being consistent with the deuteron case.

We now move on to the case of Fig. 18(b). The cor-
responding case in the linear motion model is shown in
Fig. 19 (b). The parallel motion of the two nucleons oc-
curs, and k1 ∼ k2 can be assumed. The relative motion
then has a small momentum, k ∼ 0, implying a stretched
wave function of the relative motion along the x axis, as
shown in Fig. 19 (b). The probability amplitude then
turns out to be large in the region of the repulsive effect
of the tensor force, yielding the net repulsive effect, as-
suming that the net effect has vanished before this repul-
sive enhancement. This case corresponds to Fig. 18(b),
where the two nucleons are apart from each other in the
direction perpendicular to the total spin. The region of
larger probability amplitude of the relative wave func-
tion (shown by the yellow area) is stretched horizontally,
which is consistent with the case different from the bound
deuteron shown in Fig. 16 (b).

In the above linear-motion model, the wave functions
in the y and z directions are not discussed. The prob-
ability amplitude in the z direction contributes to the
attraction, whereas those in the y direction to the repul-
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sion. Those amplitudes are not constant, unlike the ideal
plane-wave modeling. But they are not affected by the
mechanism based on the relative momentum discussed so
far, and hence do not differ between the two cases rep-
resented by Figs. 16 (a) and (b). In short, by having
k high enough for the case (a), the linear-motion wave
function is pushed into the region with no sensitivity to
the tensor force, and only the attractive effect remains.
On the contrary, k becomes ∼0 for the case (b), and the
full repulsion works out.

Thus, we obtain a robust picture that j< and j′> (or
vice versa) orbits attract each other, whereas j> and j′>
(or j< and j′<) repel each other. As the monopole inter-
action represents average effects, it is natural that they
follow the same trend. We will discuss below analytically
and numerically how the monopole matrix elements be-
have. Note that the essence of the above one-dimensional
explanation can also be considered as Heisenberg’s uncer-
tainty principle.

We make some remarks on the findings made so far.
The coordinate wave function is symmetric in the above
cases, corresponding the coupling between S and D waves
of the relative motion. If the total isospin is T=1, the
antisymmetric coordinate wave function is taken, corre-
sponding to P waves. In this case, the wave function in
Eq. (64) is replaced by sin(kx). This wave function pro-
duces horizontally stretched wave function, reversing the
above argument for the case in Fig. 18(a). However, be-
cause of the isospin dependence (see (~τ1 ·~τ2) in eq. (57)),
there is another sign change, producing an attractive ef-
fect in total. Thus, j>-j

′
< and j<-j

′
> couplings give us

always attractive effect, whereas j>-j
′
> and j<-j

′
< cou-

plings repulsive.

The radial wave functions of the two orbits must be
similar in order to have sizable monopole matrix ele-
ments. In addition, a narrow distribution in the radial
direction is favored in order to have a “deuteron-like”
shape for the relative-motion wave function. This is ful-
filled if the two orbits are both near the Fermi energy, be-
cause their radial wave functions have rather sharp peaks
around the surface. If the radial distributions of the two
orbits differ, not only their overlap becomes smaller but
also the relative spatial wave function is stretched in the
radial direction, which weakens the deuteron-like shape,
making the effect less pronounced. Note that for the
same radial condition, larger ℓ and ℓ′ enhance the tensor
monopole effect in general, as their relative momentum
increases (See Fig. 18).

4. Tensor-force effect and orbital motion: analytic relations

We now move on to the analytic expression on the
monopole matrix element. An identity on the monopole
matrix element of the tensor force has been derived in
(Otsuka et al., 2005), showing the properties consistent

with the discussions in the previous subsubsection. For
the orbits j and j′, the following identity has been derived
for the tensor force in (Otsuka et al., 2005),

(2j> + 1)V ten;m
T (j>, j

′) + (2j< + 1)V ten;m
T (j<, j

′) = 0 ,

(65)

where j′ is either j′> or j′<. The identity in eq. (65) can be
proved, for instance, with angular momentum algebra by
summing all spin and orbital magnetic substates for the
given ℓ, where j>,< = ℓ ± 1/2. The quickest but some-
what more mathematical proof is described here: The
left hand side of eq. (65) is equivalent to the total effect
of the T = 0 or 1 tensor force from the fully occupied j>
and j< orbits coupled with a nucleon in the orbit j′. In
the state comprised of fully occupied j> and j< orbits,
all magnetic substates of ℓ and those of spin 1/2 are fully
occupied, respectively. This means that the total spin
should be zero. The sole nucleon in the j′ orbit has a spin
1/2, which then constitutes the total spin 0+1/2 = 1/2.
The spin sector of the tensor force in eq. (57) is [ ~σ1 ~σ2]

(2),
which has a rank 2 (angular momentum carried by the
operator). If this operator is sandwiched by the states
of spin 1/2, the angular momentum can not be matched,
and the outcome is zero. Thus, one can prove the iden-
tity. The proof can also be made through the re-coupling
of angular momenta in the monopole matrix elements and
the explicit form of the tensor force. In all these proofs,
it is assumed that the radial wave function is the same
for j> and j< orbits, which is exactly fulfilled in the har-
monic oscillator and practically so in other models if the
orbits are well bound.
We make some remarks on this identity.

• By moving the second term to the right-hand side
of eq. (65), one sees that the j>-j

′ and j<-j
′ cou-

plings have the opposite signs always, being per-
fectly consistent with the intuitive explanation in
Sec. IV.B.3. There is no exception. On the other
hand, the identity in eq. (65) does not suggest
which sign is positive and vice versa. The intu-
ition explained in Sec. IV.B.3 plays a crucial role
for the general argument.

• Although this identity is not applicable to the cases
with j> or j< = j′ in eq. (65) with a good isospin
(T=0 or 1), quite similar behavior is found numer-
ically. We note that despite this feature, this iden-
tity holds exactly for the proton-neutron interac-
tion in the proton-neutron formalism. Thus, the
opposite sign is a really universal feature of the
monopole matrix elements of the tensor force, and
can be used in all cases.

• One can prove that V ten;m
T (j>, j

′) = 0 for j or
j′ = s1/2. This is reasonable as one cannot define
j> or j< for an s orbit.
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Figure 20 Monopole matrix elements of the tensor force in
the T=0 channel. The orbit labeling is abbreviated like g9
for 1g9/2, etc. The orbits are from valence shell for A = 100.

• As already mentioned, eq. (65) suggests that if both
j> and j< orbits are fully occupied, there is no
monopole effect from the tensor force on any or-
bit. Consequently, LS closed shells produce no
monopole effect from the tensor force.

• The above derivation indicates also that only ex-
change processes shown in Fig. 17(b) contribute to
the monopole matrix elements of the tensor force,
while the contribution of direct processes vanishes.
The same property holds for a spin-isospin central
interaction discussed in Sec. IV.A. This can be
understood from the point of view that the ver-
tex (~σ · ∇) in eq.(53) does not allow a monopole
direct process. If only exchange terms remain, the
spin-coordinate contributions of T=0 and 1 are just
opposite. Combining this property with (~τ1 · ~τ2) in
eq. (57), one obtains

V ten;m
T=0 (j, j′) = 3× V ten;m

T=1 (j, j′) for j 6= j′ . (66)

Thus, the proton-neutron tensor monopole interac-
tion is twice as strong as the T=1 monopole inter-
action. This implies also that the monopole effect
from the tensor force has the same sign between
T=0 and 1, provided that the (~τ1 · ~τ2) is included
in the potential.

Figures 20 and 21 display some examples of the
monopole matrix elements of the π-meson + ρ-meson

Δ
n

=
0

Δ
n

=
1 A=70  tensor force 

Monopole matrix element (MeV)

Figure 21 Monopole matrix elements of the tensor force in
the T=0 channel. The orbit labeling is abbreviated like f7 for
1f7/2, etc. The orbits are from the valence shell for A = 70.

exchange tensor force with the parameters of (Osterfeld,
1992). The same set of single-particle orbits are taken
as in Fig. 13. The identity in eq. (65) is exactly fulfilled.
The magnitude of the monopole matrix elements is gen-
erally larger for the central force, while the variations, for
instance within the spin-orbit partners, are of the same
order of magnitude between the central and the tensor
forces. Their competition produces intriguing phenom-
ena in many cases.

C. Combination of the central and tensor forces

The previous two subsections presented the monopole
interactions from the central and tensor forces. We com-
bine them in this subsection.
The central and tensor forces are major components in

the effective NN interaction used for nuclear structure
studies. As typical examples of such effective NN in-
teractions, we take the interactions, SDPF-M, GXPF1A
and G-matrix, described, respectively, in (Utsuno et al.,
1999), (Honma et al., 2005), and (Hjorth-Jensen et al.,
1995). The former two have been obtained by fitting
some two-body matrix elements to experimental energy
levels using microscopically derived interactions as ini-
tial input. In addition, the sd-shell part of SDPF-M was
obtained by modifying the USD interaction (Brown and
Wildenthal, 1988). The G-matrix interaction refers to G-
matrix + in-medium corrections by the Q-box formalism
(Hjorth-Jensen et al., 1995), and will be called this way
hereafter, for the sake of brevity.
The monopole matrix elements of these interactions

are shown in Fig. 22, where the panels (a)-(d) are for the
pf shell, while (e)-(h) for the sd shell. The T=0 matrix
elements are shown in the panels (a), (b), (e), and (f),
while the T=1 are in (c), (d) (g) and (h).
In the panel (a), the monopole matrix elements from

GXPF1A and G-matrix interactions are shown as well
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Figure 22 Monopole matrix elements of various forces for (a)-
(d) pf and (e)-(h) sd shells. In (b),(d),(f ),(h), the tensor
force effect is subtracted from the others, and results from a
Gaussian central force are shown. Adapted from Otsuka et al.
(2010b).

as those obtained from the π-meson + ρ-meson exchange
tensor force with the parameters in (Osterfeld, 1992).

It was pointed out in (Otsuka et al., 2010b) that the
kink pattern is quite similar among the GXPF1A, the G-
matrix, and the tensor-force monopole matrix elements.
This similarity is indeed remarkable, and is indicative
of the tensor-force origin of the kinks of the other two.
We can subtract this tensor-force contribution from the
GXPF1A or G-matrix results, as shown in the panel (b).
It was also noted in (Otsuka et al., 2010b) that the re-
maining monopole matrix elements are surprisingly flat.
In order to reproduce such monopole matrix elements, a
Gaussian central force was introduced in (Otsuka et al.,
2010b). This interaction is called the monopole based
universal interaction, or VMU , and it was already men-
tioned in eq. (47). The parameters selected in (Otsuka
et al., 2010b) are f1,0 = f0,0 = −166 MeV, f0,1 = 0.6f1,0
and f1,1 = −0.8f1,0, and µ = 1 fm. The VMU interac-
tion was described in (Otsuka et al., 2010b) as “we can
describe the monopole component by two simple terms:
the tensor force generates “local” variations, while the
Gaussian central force produces a flat “global” contribu-
tion.”, as illustrated graphically in Fig. 23. Here, “local”
refers to the strong dependences on the single-particle
orbits up to sign changes, whereas “global” to the weak

(b) tensor force :
      π + ρ meson
      exchange

 (a) central force :
      Gaussian
     (strongly renormalized)

V     =
MU

+

Figure 23 (Color online) Diagrams for the VMU interaction.
From Otsuka et al. (2010b).

dependences with large magnitudes.

The T=1monopole matrix elements are shown in panel
(c). One notices that they are much weaker than the T=0
monopole matrix elements, by a factor of about 1/10.
This large difference is a general trend. Within such small
monopole matrix elements, the pattern is not so simple.
Panel (d) shows that the repulsive T=1 monopole inter-
action in the central Gaussian potential is important.

Moving from the pf -shell to the sd-shell, quite similar
properties can be found in panels (e)-(h). Note that the
parameters of the VMU potential are independent of the
orbits or the shells. The good description is remarkable
in this respect. The reason for this with respect to the
tensor force will be presented in Sec. V.A.

D. Shell evolution driven by the central and tensor forces
in actual nuclei

This subsection demonstrates how the shell evolution
occurs due to the central and tensor forces. The ten-
sor force is taken from the π-meson + ρ-meson exchange
potential in all cases (as in the VMU interaction), in or-
der to clarify the underlying mechanism. Likewise, the
central force is modeled by the VMU interaction for all
cases, exhibiting different roles of these interactions in a
consistent manner.

1. Inversion of proton 1f5/2 and 2p3/2 in Cu isotopes

One of the most visible examples of the shell evolu-
tion driven by the tensor force is the change of the pro-
ton 1f7/2 - 1f5/2 splitting due to neutron occupations
of the 1g9/2 orbit, from the theoretical viewpoint. We
shall describe this case in some detail, as it is one of
the early examples regarding the tensor force. The un-
derlying mechanism can be understood by Fig. 18 in a
straightforward way. Namely, in this case, the neutron
j′> orbit is 1g9/2, and it is occupied by more neutrons
as we move on the Segrè chart from 69Cu to heavier
Cu isotopes. The changes of the ESPEs of the proton
j> = 1f7/2 and j< = 1f5/2 orbits are given, by following
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eq. (38), as

∆ǫpf5/2 = V m
pn(f5/2, g9/2)∆nn

g9/2
, (67)

and

∆ǫpf7/2 = V m
pn(f7/2, g9/2)∆nn

g9/2
, (68)

where the symbol ˆ is omitted because the occupation
number of the neutron 1g9/2 orbit is treated as a c-
number here. Note that such a simpler treatment was
mentioned as a possible option in Sec. III.D. From the
VMU interaction, the monopole matrix elements have two
sources: one from the central force and the other from
the tensor force. Table II shows their corresponding val-
ues. One sees that between the two couplings 1f5/2 -
1g9/2 and 1f7/2 - 1g9/2, the central force gives a some-
what stronger attraction to the latter, as can be expected
from Fig. 13 (b). On the other hand, the tensor force
pushes the 1f5/2 orbit down with more neutrons in the
1g9/2 orbit, whereas it pulls the 1f7/2 orbit up at the
same time.

Table II Monopole matrix elements from the central and
tensor forces. The unit is MeV. The mass number A=70
is taken for the Harmonic Oscillator Wave Function of the
single-particle orbit.

proton orbit neutron orbit central tensor
1f5/2 1g9/2 -0.63 -0.15
1f7/2 1g9/2 -0.70 +0.11

difference between 1f5/2 and 1f7/2 +0.07 -0.26
2p3/2 1g9/2 -0.46 +0.02

difference between 1f5/2 and 2p3/2 -0.17 -0.17

The ESPEs provided by eqs. (67) and (68) are shown in
the left panel of Fig. 24, where the number of neutrons in
the 1g9/2 orbit is given by N − 40 as the filling scheme is
taken. The ESPEs at N=40 are obtained from empirical
values (Grawe et al., 2005; Otsuka et al., 2010b). The
full VMU interaction is taken for the ESPEs displayed
by the solid lines in the left panel of Fig. 24, while the
dashed lines depict results only with the central force.
One confirms the same trends as discussed above: the
central force (with neutrons in the 1g9/2 orbit) slightly
repels the 1f5/2 and 1f7/2 orbits from each other, while
the tensor force brings them distinctly closer. The 1f5/2
- 1f7/2 splitting is ∼8 MeV at N=40, but is decreased to
∼6 MeV at N=50. The Z=28 gap is between the 2p3/2
and 1f7/2 orbits at N=40 with a gap of ∼6 MeV, whereas
it is between the 1f5/2 and 1f7/2 orbits at N=50 with a
gap of ∼6 MeV.
The lowering of the proton 1f5/2 orbit produces an-

other significant consequence. The left panel of Fig. 24
shows that the proton 2p3/2 orbit comes down, as a func-
tion of N more slowly than the 1f5/2 orbit, and their
order is inverted around N=45. In fact, Table II sug-
gests that the central-force contribution to the lowering
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Figure 24 (left) Proton ESPEs of Cu isotopes as predicted by
the VMU interaction (solid lines). Dashed lines are obtained
only with the central-force part. The neutron number in the
1g9/2 orbit is equal to N−40, as the filling scheme is assumed.
(right) Same quantities by the A3DA-m Hamiltonian used in
(Sahin et al., 2017). From Otsuka et al. (2010b) (left) and
Sahin et al. (2017) (right).

of the proton 2p3/2 orbit is ∼2/3 of the one for 1f7/2 or
1f5/2 and the tensor-force contribution almost negligi-
ble. These properties are quite natural due to differences
in the radial wave functions. Table II shows also how
the 1f5/2-2p3/2 gap is changed by the central and tensor
forces. Both contribute to the inversion equally, and the
total effect is large enough.

The change of the ESPE of the proton 1f5/2 orbit has
been investigated experimentally. The earlier ones (Fran-
choo et al., 1998, 2001) were made for 69,71,73Cu prior to
the theoretical studies presented above. The experimen-
tal findings were compared to shell-model calculations
(Ji and Wildenthal, 1989), (Sinatkas et al., 1992). The
main message may be found in the quoted statements
as “unexpected and sharp lowering of the πf5/2 orbital”
and “the energy shift originates from the residual proton-
neutron interaction, while its magnitude is proportional
to the overlap of the proton and neutron wave function”
(Franchoo et al., 2001). There was no mention of the
tensor force, and the lowering of the proton 1f5/2 orbit
seems to have been attributed to the central force. We
can see from Table II that the central force accounts for
one half of the effect. Note that spectroscopic factors
have been deduced for 69,71Cu (Morfouace et al., 2015).
We point out that the interplay of collective and single-
particle behavior is discussed for 67−73Cu in (Stefanescu
et al., 2008).

The experimental studies were further extended in
(Flanagan et al., 2009) up to 75Cu, as shown in Fig. 25.
The inversion between the lowest 5/2− and 3/2− levels
was observed for the first time in the Cu isotopic chain.
The role of the tensor force was known then, and the
work was recognized as “a crucial step in the study of
the shell evolution” (Flanagan et al., 2009). The ob-
served levels were compared to shell-model calculations
by (Brown and Lisetskiy, 2009) with a reasonable agree-
ment. It is very likely that a proper amount of the tensor
force was included in the shell-model interaction as a re-
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Figure 25 Energy of the lowest levels from experiment and
shell-model calculations. Reprinted with permission from
Flanagan et al. (2009).

sult of the fit well-done (Lisetskiy et al., 2004, 2005). The
single-particle nature of the lowest 5/2− being the 1f5/2
single-particle state in 75Cu was confirmed by the mea-
sured magnetic moment and by the shell-model calcula-
tion, as well as the lowest 3/2− being the 2p3/2 single-
particle state in 69Cu. On the other hand, the ground
state (i.e., 3/2− state) of 71,73Cu was shown to have
mixed nature. Besides such intermediate situations, an
inversion between the 1f5/2 and the 2p3/2 states has thus
been suggested (Flanagan et al., 2009), and the trend was
extended to heavier Cu isotopes (Daugas et al., 2010;
Köster et al., 2011). This series of experiments showing
a clear signal of the lowering of the 1f5/2 orbit can be
considered as a major milestone in establishing the shell
evolution.
Effects of various correlations including collective ones

were investigated both theoretically and experimentally,
but the main conclusion will remain apart from minor
changes. For instance, the precise point of the inversion
is sensitive theoretically to the adopted values of ESPEs
at N=40 which are not known so accurately constrained
to date (see Fig. 24).
The structures of neutron-rich 77Cu and 79Cu isotopes

have recently been studied experimentally (Sahin et al.,
2017) and (Olivier et al., 2017), respectively, and exper-
imental data were compared well to the results of the
shell-model calculation with the A3DA-m Hamiltonian.
The right panel of Fig. 24 indicates the ESPEs obtained
from this Hamiltonian including the 1f5/2-2p3/2 crossing,
and shows also that the Z=28 gap becomes smaller but
remains still greater than 4 MeV up to N=50. As the
shell-model calculations contain correlations in the con-
figuration space, the 5/2− and 3/2− levels are inverted
at N=46 in agreement with experiment. Because the
A3DA-m interaction contains empirical corrections (for
the given model space) as compared to the VMU in-
teraction, they produce somewhat different reduction of
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Figure 26 (left) Neutron ESPEs relative to the 2d5/2 orbit as
a function of Z. Dashed and full lines have the same meaning
as in Fig. 24. Adapted from Otsuka et al. (2010b). (right)
Measured energies of the 7/2+ level relative to the 5/2+

1 states
for N = 51 isotones. The squares show states with large
1g7/2 single-neutron strength, as quoted in (Federman and

Pittel, 1977). The circles stand for the lowest observed 7/2+

level (ENSDF, 2017). The present assignment for 101Sn is by
Darby et al. (2010). The straight line connects the points at
Z=38 and 50.

the 1f7/2-1f5/2 splitting, but the substantial reduction
is common, being consistent with the tensor-force driven
shell evolution.

2. Shell Evolution from 90Zr to 100Sn

Another typical case of the tensor-force-driven shell
evolution is discussed with Fig. 26, in the filling scheme
on top of the Z=40 and N=50 closed shell. In its left
panel, the ESPEs of neutrons are displayed relative to
the one for the 2d5/2 orbit, where the number of protons
in the 1g9/2 orbit is increased from 0 to 10. This repre-
sents the change from 90Zr to 100Sn. The neutron ESPEs
for Z=40 were adjusted to experimental data including
the fragmentation of single-particle strengths (ENSDF,
2017), and their evolution for larger Z’s follows eq. (39)
with the VMU interaction. The corresponding experimen-
tal data, including those mentioned in (Federman and
Pittel, 1977), are shown in the right panel.
One finds, in the left panel, two sets of calculated re-

sults: one (solid lines) is obtained with the full VMU in-
teraction, while the other (dashed lines) is only with the
central-force part of VMU . A sharp drop of the 1g7/2
ESPE with the full VMU interaction is remarkable, end-
ing up with an ESPE below 2d5/2. A similar behavior is
seen in experimental data (see the right panel). This drop
is largely due to a strong proton-neutron monopole inter-
action on a proton in the 1g7/2 orbit generated by neu-
trons in the 1g9/2 orbit. The actual values of the relevant
central-force monopole matrix elements are −0.51 MeV
for the proton-neutron 1g9/2-1g7/2 coupling and −0.32
MeV for the 1g9/2-2d5/2 coupling (see Fig. 13 for T=0
contribution), while the tensor force contribution −0.13
MeV for the former and +0.02 MeV for the latter (see
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Figure 27 Single-particle energies of 90Zr and 100Sn calculated
by (left) SIII and (right) SLy4 Skyrme interactions.

Fig. 20 for T=0 contribution). Thus, the difference be-
tween two couplings is −0.19 MeV from central, while
−0.15 MeV from tensor. It may be worth mentioning
that the notable central-force contribution was suggested
by Federman and Pittel (1977) as stated in Sec. IV.A.

The left panel of Fig. 26 shows also that if the central-
force part only is taken, the 1g7/2 and 1h11/2 ESPEs
come down together (dashed lines). These two ESPEs,
however, repel each other towards Z=50, if the tensor
force is included (solid lines). This is because a repulsive
monopole interaction works on the h11/2 orbit due to the
j> - j′> coupling, whereas the tensor interaction is at-
tractive on the 1g7/2 as discussed above. This attraction
produces an additional lowering of 1g7/2, letting it reach
below 2d5/2 at Z=50. We note that a similar trend in
the 1g7/2 - 1h11/2 splitting was shown with a monopole-
corrected G-matrix interaction in (Sieja et al., 2009). The
energy levels of 101Sn have been investigated experimen-
tally (Darby et al., 2010; Seweryniak et al., 2007), which
show different ground-state spins but are consistent with
the lowering of the 1g7/2 orbit.

As the second interesting point, we mention that the
bunching of three orbits, 1h11/2, 2d3/2 and 3s1/2, seems
to be consistent with the shell structure of the Sn iso-
topes. The left panel of Fig. 26 demonstrates that the
tensor force plays a crucial role for obtaining it. The
tensor-force contribution is thus essential for the shell
structure of 100Sn, which has further relevance to various
issues of exotic nuclei.

Another feature of interest is the relation to the
Skyrme Hartree-Fock calculation as shown in Fig. 27.
With the SIII interaction, the 1g7/2 - 2d5/2 gap is
decreased by about 1.2 MeV. This change is comparable
to the corresponding shift by the central force of the
VMU interaction. Note that the ESPE of the 1g7/2
(2d5/2) orbit is predicted to be lower (higher) than the
empirical value, and thereby the change of their splitting
is smaller than that shown in Fig. 26. Thus, the tensor

force is needed to account for a larger relative change
between the 2d5/2 and 1g7/2 orbits, eventually leading to
their crossing in Sn. Furthermore, Fig. 27 (b) indicates
that the gap between the 1g7/2 and 2d5/2 orbits is even
increased with the SLy4 interaction.

3. Appearance of N=16 magic number and disappearance of
N=20

The change of the neutron 1d3/2 ESPE was discussed
in Sec. IV.A. Figure 14 shows that the neutron 1d3/2
ESPE is about 6 MeV above the 2s1/2 ESPE in 24O, but
comes down by about 4 MeV in 30Si.

This change was discussed, in Sec. IV.A, as a conse-
quence of the strong attractive monopole matrix element
between ℓ+1/2 and ℓ−1/2 orbits. This strong coupling is
included in shell-model effective interactions, e.g., SDPF-
M (Utsuno et al., 1999) and in the G-matrix (Kuo and
Brown, 1966), whereas it was weakened in some others,
e.g., USD (Brown and Wildenthal, 1988). It was indi-
cated in Sec. IV.A that the ττσσ interaction in eq. (47)
can lower, in principle, the neutron 1d3/2 orbit as pro-
tons occupy the 1d5/2 orbit. Although this coupling is
strongest in Table I, if the ττσσ interaction is taken, the
neutron 1d5/2 orbit is lowered by about half the amount,
implying some difficulty. On the other hand, the strong
attraction between the ℓ + 1/2 and ℓ − 1/2 orbit was
suggested, leading us to a sizable spin-isospin coupling
(Otsuka et al., 2001).

Four years later (Otsuka et al., 2005), another ori-
gin in nuclear forces was proposed for this spin-
isospin coupling, the tensor force. In fact, the ten-
sor force provides the relevant monopole matrix el-
ements being V ten;m

pn (1d5/2, 1d3/2) = -0.37 MeV and
V ten;m
pn (1d5/2, 2s1/2) = 0 MeV. By having six protons

in the 1d5/2 orbit, the 1d3/2 orbit is then lowered by 2.2
MeV relative to the 2s1/2 orbit. This implies that one
half of the lowering of the 1d3/2 orbit is due to the ten-
sor force. We stress also that the neutron 1d5/2 orbit is
pushed up by the tensor force with six protons in 1d5/2,
in contrast to the ττσσ interaction.

The neutron 1d3/2 orbit needs to be shifted down by
another 2 MeV relative to the 2s1/2 orbit by the central
force, because the tensor-force effect is robust (not tun-
able much) as we shall discuss in Sec. V.A. In fact, the
central force should produce a weaker monopole matrix
element for the 1d5/2 - 2s1/2 coupling, and this is the
case.

We mention here that some features of the ττσσ in-
teraction are shared by the tensor force, for instance, the
spin-isospin operator τσ acts on the vertex in favor of
spin-isospin-flip process, and only the exchange process
contributes to the monopole matrix element (see Fig. 14
and Fig. 17). These properties produce stronger cou-
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plings between j> and j< orbits with a common ℓ with
both the central and tensor forces, but only the tensor
force does it also for j> and j′<, i.e., ℓ 6= ℓ′. In this sense,
the special importance of the spin-isospin interaction in
the shell evolution in exotic nuclei was pointed out as an
initial study in (Otsuka et al., 2001), being a precursor to
more comprehensive studies including the tensor force.

The relative raising of the neutron 1d3/2 orbit from
Fig. 14 (a) to (b) occurs as Z is reduced from 14 to 8,
while N is kept at 16. This isotonic change from a stable
to an exotic nucleus creates anN=16 gap, and diminishes
the N=20 conventional gap. Thus, the present shell evo-
lution can change the magic numbers. We mention here
that the large N=16 gap was recognized in an earlier
shell model study within the systematics of the oxygen
isotopes (Brown, 1993). The gap was pointed out based
on experimental data on the masses and radii (Ozawa
et al., 2000).

We will come back to the N=20 magic number in
Secs. V.D and VI.A.

4. Appearance of N=34 magic number in the isotonic chain

Another case of new magic numbers has been found
in the Ca isotopes, with N=32 and 34. A remarkable
proton-neutron j> - j< coupling within a major shell is
seen in the shell evolution between Ca and Ni. Figure 28
displays this shell evolution concretely in terms of the
VMU interaction. We take the filling scheme, where no
proton occupies the 1f7/2 orbit in 48Ca. In 56Ni, on the
other side, eight protons occupy the 1f7/2 orbit, changing
the ESPEs of the neutron orbits 1f5/2, 2p3/2 and 2p1/2.
Figure 28 then indicates how much each orbit is moved
with the decomposition into the tensor- and central-force
monopole contributions. It is found that in going from
48Ca to 56Ni, both forces contribute additively to the
sharp rise of the 1f5/2 orbit relative to the 2p3/2 and
2p1/2 orbits. The splitting between the 2p3/2 and 2p1/2
orbits is slightly increased, and becomes a (sub-) magic
gap as the 1f5/2 orbit is not in between any longer.

Figure 28 exhibits, the changes of the ESPEs with
the decomposition into the tensor- and central-force
monopole contributions. We point out that the monopole
components of the tensor and central forces contribute to
the evolution of the 1f5/2 ESPE, showing its sharp rise.
The splitting between the 2p3/2 and 2p1/2 orbits remains
almost unchanged, and becomes a (sub-)magic gap after
the 1f5/2 orbit is shifted above 2p1/2. Thus, the N=32
gap corresponds to the 2p3/2 - 2p1/2 spin-orbit gap, but
its effect is hidden if the 1f5/2 is lying between the 2p3/2
and 2p1/2 orbits. So, the evolution of the 1f5/2 orbit cru-
cially affects the appearance of the N=32 magic num-
ber. It is noted that the tensor force enlarges the gap
between the 2p3/2 and 2p1/2. The magic numbers 32 and
34 thus appear in going from Ni to Ca as indicated also in
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Figure 28 Change of ESPEs from 56Ni to 48Ca, and to 54Ca.
The arrows indicate the change of the ESPE of each orbit.
The arising magic numbers, N=32 and 34, are shown in black
circles. The dashed line just below the 1f5/2 ESPE (red bar)
in the right column means the 1f5/2 ESPE calculated with
one neutron hole in the 2p1/2 orbit.

Fig. 28, as the eight protons in 56Ni are taken away. We
emphasize that the N=34 gap basically vanishes when
the tensor-force effect is taken away, and that is, since
the present shell-evolution effect is linearly dependent on
the number of proton holes in the 1f7/2 orbit, as Z de-
creases, the N=34 (sub-)magic structure fades away first
and the N=32 also disappears eventually.

The far-right part of Fig. 28 shows the shell evolu-
tion from 48Ca to 54Ca due to the neutron-neutron in-
teraction, adding six more neutrons still in the filling
scheme. The GXPF1Br shell-model interaction (Step-
penbeck et al., 2013) is used, as more fine details are
relevant now. The neutron-neutron effective interaction
produces the shell evolution with patterns very different
from those of the proton-neutron interaction. Four and
two neutrons occupy the 2p3/2 and 2p1/2 orbits, respec-
tively, in 54Ca. The ESPE is shown for the 1f5/2 orbit on
top of the 54Ca core, with a very small change from 48Ca.
As the 2p3/2 and 2p1/2 orbits are occupied in the 54Ca
core, we show the ESPE for the last neutron to occupy
these orbits. The 2p3/2 ESPE is calculated for 54Ca by
assuming a fully occupied 2p1/2 orbit. In order to assess
the energy needed for particle-hole excitation, in the far-
right part of Fig. 28, the dashed line below the 1f5/2 level
shows the ESPE calculated with one neutron hole in the
2p1/2 orbit, which is very close to the solid line. Thus,
the effects of the neutron-neutron monopole interaction
is minor and can be repulsive. The 2p3/2 and 2p1/2 ES-
PEs are somewhat lowered due to the pairing component
between the same orbit, when they are occupied.

We can thus see the basic mechanism of the appear-
ance of the N=32 and 34 gaps. This was the predic-
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Figure 29 Observed first 2+ levels as a function of (a) N
and (b) Z. Observed first 3− levels are shown in panel (a).
Adapted from (Steppenbeck et al., 2013).

tion in Ref.(Otsuka et al., 2001), being a consequence
of the strong attractive coupling between the ℓ + 1/2
and ℓ − 1/2 orbit with ℓ = 3, analogous to a similar
coupling with ℓ = 2 leading to the N = 16 new magic
number. The corresponding text in (Otsuka et al., 2001)
is quoted as “we can predict other magic numbers, for
instance, N=34 associated with the 0f7/2 − 0f5/2 inter-
action”, where 0f7/2,5/2 means 1f7/2,5/2 in the present
notation. The experimental investigation of the N=34
magic number in the Ca isotopes had not been feasible
for more than a decade, casting doubt over this magic
number (Janssens, 2005). In 2013, finally, the 2+ exci-
tation energy was measured at the RIBF (Steppenbeck
et al., 2013) to be significantly higher than in heavier iso-
tones consistent with an N=34 gap, as shown in Fig. 29.
A sharp rise of the 2+ excitation energy as a function of
Z was thus confirmed experimentally for 54Ca, as shown
in panel (b) of Fig. 29, in accordance with the rise of
the 1f5/2 orbit from 56Ni to 48Ca (see Fig. 28). The
intermediate situation between the Ca and Ni isotopes
is discussed in (Steppenbeck et al., 2013). The N=32
gap in the Ca isotopes was investigated experimentally
at ISOLDE in 1985 in terms of the 2+ excitation energy
(Huck et al., 1985). The magic structures of Ca isotopes
attracted much attention in recent years (Bürger et al.,
2005; Coraggio et al., 2009; Crawford et al., 2010; Dinca
et al., 2005; Gade et al., 2006; Garcia Ruiz et al., 2016;
Hagen et al., 2012a; Holt et al., 2012b; Honma et al.,
2008; Janssens et al., 2002b; Kaneko et al., 2011; Lid-
dick et al., 2004; Perrot et al., 2006; Prisciandaro et al.,
2001; Rejmund et al., 2007; Rodŕıguez and Egido, 2007;
Steppenbeck et al., 2015; Utsuno et al., 2012b; Wienholtz
et al., 2013).

Figure 29 (b) exhibits that raising pattern towards
Z=20 of the 2+1 level differs between N=32 and 34 iso-
tonic chains. Significant experimental efforts were made,
particularly for Ti (Z=22), for instance (Dinca et al.,
2005; Fornal et al., 2004, 2005; Janssens et al., 2002a; Lid-
dick et al., 2013), partly because Ti is only ∆Z=2 away
from Ca. As three quarters of the shift from Ni to Ca

occurs in Ti in Fig. 28, the 1f5/2 level is located near the
2p1/2 level, making the N=32 gap rather visible but not
the N=34 gap, consistent with these experiments. Thus,
studies on Ti and Sc isotopes (Steppenbeck et al., 2017),
rather support the appearance mechanism of N=32 and
34 magic numbers in Ca isotopes, .

The levels of single-particle-like states on top of the
N(Z) = 28 and 50 closure were discussed systematically
by (Grawe, 2004), with sharp decreases of (a) neutron
1f5/2 with proton 1f7/2 filled, (b) proton 1f5/2 with neu-
tron 1g9/2 filled, (c) proton 1g7/2 with neutron 1h11/2

filled, and (d) neutron 1g7/2 with proton 1g9/2 filled. The
case (a) is nothing but the change from 48Ca to 56Ni de-
picted in Fig. 28. All of them are of the j>-j

′
< coupling

with large j and j′, and hence the sharp decreases can
be understood in terms of the coherent effects of the cen-
tral and tensor forces discussed so far. Related system-
atic trends of the monopole matrix elements are obtained
empirically in (Sorlin, 2014), indicating that the proton-
neutron 1d5/2- 1d3/2 monopole matrix element is more
attractive than the 1d5/2- 1f7/2 one, which is more at-
tractive than the 1d5/2- 2p3/2 one. This is consistent with
the monopole properties discussed and supports them.

5. Repulsion between proton 1h11/2 and 1g7/2 orbits in the Sb
isotopes

Figure 30 shows the ESPEs of the proton 1h11/2 and
1g7/2 orbits in Sb isotopes as a function of N . There
are 51 protons in the Sb isotopes: one proton on top
of the Z=50 magic core in the filling scheme. This last
proton can be either in the 1h11/2 orbit or the 1g7/2 or-
bit. The experimental values are taken from (Schiffer
et al., 2004), which report that the centroid of fragmented
single-particle strengths are evaluated as much as possi-
ble. Some questions on the validity of this analysis have
been raised, for instance in (Sorlin and Porquet, 2008), in
connection to the couplings to various collective modes
including the octupole one. While this remains an open
problem both experimentally and theoretically, we dis-
cuss it here from the viewpoint of the monopole effect,
to explore what can be presented with such a simple ar-
gument. We expect more developments for further clari-
fications.

Around the middle (N ∼ 66) of the major shell be-
tween N=50 and 82, the 1h11/2 and 1g7/2 orbits (or
two corresponding experimental states) are close to each
other with a gap of less than 1 MeV. The gap increases
with N , as seen in Fig. 30. It was quite difficult to repro-
duce this enlargement of the gap within mean field mod-
els when the experimental values were published (Schiffer
et al., 2004). In those Sb isotopes, the neutron 1h11/2 or-
bit is filled more and more as N increases. The monopole
interaction from the tensor force is repulsive between the
proton 1h11/2 orbit and the neutron 1h11/2 orbit (see
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Fig. 18). Its effect is, on the other hand, attractive
between the proton 1g7/2 orbit and the neutron 1h11/2

orbit (see also Fig. 18). In fact, the theoretical ESPEs in
Fig. 30 are calculated from the monopole matrix elements
(see eq. (39)) of the VMU interaction, which consists of
the π+ρ meson-exchange tensor force and the Gaussian
central force, as discussed in Sec. IV.C.

The ESPEs in Fig. 30 are calculated with the mono-
tonic increase of the uniform occupation probabilities of
the neutron 1h11/2, 2d3/2 and 3s1/2 orbits starting from
N=64, for the sake of simplicity. Figure 30 shows the ES-
PEs calculated without the tensor force (dashed lines),
indicating that the two ESPEs come down together with
the gap even slightly narrowing. Once the tensor force
is included (solid lines in Fig. 30), however, it moves the
two orbit more apart from each other as N increases. A
similar but simpler figure was shown in Fig. 4 (d) of (Ot-
suka et al., 2005), which was published immediately after
(Schiffer et al., 2004), demonstrating the explanation of
the anomalous gap-widening in terms of the tensor force
for the first time. It was remarkable that the gap in-
crease can be explained almost perfectly once the tensor
force is incorporated without adjustment of the tensor-
force strength. This point has to be clarified with more
precise calculations including other correlations. We also
point out the upbending curvature towards N=82 shown
in Fig. 30 may suggest some effects beyond the monopole
effect.

It is thus important and essential to examine to
what extent other effects, for instance, couplings to
collective excitations, affect the observed energy levels,
while the tensor-force effects seem to remain as a major
mechanism.

E. Mean-field approaches to the tensor-force driven shell
evolution

The effects of the tensor-force has been included in
various studies of nuclear models by now, those based
on the mean-field models (Bender et al., 2009; Brink
and Stancu, 2007; Brown et al., 2006; Colò et al., 2007;
Lalazissis et al., 2009; Lesinski et al., 2007; Long et al.,
2006; Otsuka et al., 2006). Regarding the inclusion of the
tensor force into Skyrme-based mean field approaches,
rather few studies have been done before these works,
probably in considerations of some issues pointed out,
for instance, in (Bender et al., 2003).

The importance of the tensor force was anticipated by
Skyrme, when the original form of the Skyrme interac-
tion was proposed (Skyrme, 1958). The tensor force was,
however, not much studied within the Skyrme-model cal-
culations for a while, with probably only the exception
of the work of Stancu, Brink and Flocard (Stancu et al.,
1977), who adopted the zero-range approximate form for
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Figure 30 ESPEs of proton 1h11/2 and 1g7/2 orbits in Sb iso-
topes as functions of N . Assuming Sn-isotope core, the solid
lines are calculated with the tensor-force effect, whereas the
dotted lines are without it. Symbols are based on experi-
mental values from (Schiffer et al., 2004): fragmentation of
single-particle strength is considered for filled circles, while
bare energies are used for open symbols. See the text for
relevant arguments on those values. From (Otsuka, 2013).

the tensor force with terms mixing S and D waves of
the relative motion as well as P waves (Skyrme, 1958;
Vautherin and Brink, 1970). This form can be written as

vT =
1

2
T {[( ~σ1 · ~k′)( ~σ2 · ~k′)−

1

3
( ~σ1 · ~σ2)k

′2]δ(~r1 − ~r2)

+ δ(~r1 − ~r2)[( ~σ1 · ~k)( ~σ2 · ~k)−
1

3
( ~σ1 · ~σ2)k

2]}

+ U{( ~σ1 · ~k′)δ(~r1 − ~r2)( ~σ1 · ~k)

− 1

3
( ~σ1 · ~σ2)[~k′δ(~r1 − ~r2)~k]} (69)

where ~k =(~∇1−~∇2)/2i acts on the right and ~k′ = −(~∇1−
~∇2)/2i on the left.
The tensor term gives rise to additional spin-orbit

strengths written as

∆Wn = αTJn + βTJp
∆Wp = αTJp + βT Jn,

(70)

where Jρ (ρ = p, n) are the spin densities given by

Jρ(r) =
1

4πr3

∑

a

(2ja + 1)

×
[

ja(ja + 1)− ℓa(ℓa + 1)− 3
4

]

R2
a(r)

(71)

with occupied orbitals {a}. Since the spin-orbit po-

tential for ρ = p, n is Wρ
~ℓ · ~σ/r, a large negative Wρ

gives a strong spin-orbit splitting. From the sign of
ja(ja+1)−ℓa(ℓa+1)− 3

4 , one can see that Jρ increases and
decreases with the occupation of α = j> and j< orbitals,
respectively, and that changing Jρ causes the evolution of
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the spin-orbit coupling as discussed already. The αT and
βT correspond to like-particle and proton-neutron tensor
forces. The equality βT =2αT holds if the tensor force
has the same isospin structure, τ1τ2, as the π+ρ meson-
exchange potential. Monopole terms of the tensor forces
given by the two parameters are compared with those of
the tensor forces by π + ρ meson exchanges to study the
validity of the use of the approximate zero-range form.

(a) pn monopole matrix element

tensor force by 

tensor force by 

(b) pn monopole matrix element

Figure 31 Comparison of monopole matrix elements of the
zero-range tensor force of (Stancu et al., 1977) to those of the
π+ρ meson-exchange tensor force. The p, sd and pf shells are
covered in the upper panel, while the valence shell relevant
to A ∼140 is considered in the lower panel. The parameter
βT =128.75 MeV·fm5 is used.

Figure 31 depicts a comparison between monopole ma-
trix elements of the zero-range tensor force of (Stancu
et al., 1977) to those of the π + ρ meson-exchange ten-
sor force. For the former, the parameters obtained by
a chi-square fitting to the monopole matrix elements of
the π + ρ tensor forces for A ≈40 mass region are used
with actual values (αT , βT ) = (64.38, 128.75) MeV·fm5.
As shown in Fig. 31, the zero-range form for the tensor
force can simulate the monopole interaction of the π + ρ
tensor force to a certain extent, but there are rather large
fluctuations and deviations, especially in case of light nu-
clei. We note that the present (αT , βT ) values are close to
the G-matrix ones (αT , βT ) = (60, 110) MeV·fm5 (Brown
et al., 2006). For lighter nuclei, larger parameters become
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Figure 32 Evolution of the proton h11/2-g7/2 gap in the Sb
isotopes with and without the tensor term. (upper left) π + ρ
meson-exchange tensor force on top of the usual Woods-Saxon
potential. (upper right) A Gogny-type calculation with the
tensor force (GT2) and without it (D1S). (lower) A zero-range
tensor force calculation added to the SLy5 force. From Otsuka
et al. (2005) (upper left) and Otsuka et al. (2006) (upper
right), and reprinted with permission from Colò et al. (2007)
(lower).

necessary to reproduce the monopole matrix elements of
the π + ρ tensor force, whereas the deviation is opposite
in heavy nuclei. This variation of the parameters is not
much in accordance of the Skyrme phenomenology where
constant parameters for all nuclei are a major advantage.

Although the effect of the tensor force on the spin-orbit
potential was thus recognized in the 1970s, the tensor
term has been dropped in most of the Skyrme parame-
terizations until recently. One of the probable reasons for
this is that the inclusion of the tensor term does not lead
to significant improvement in the single-particle spectra
for doubly magic nuclei (Stancu et al., 1977). In addition,
as pointed out by Sagawa and Colò (2014), not much at-
tention was paid to the evolution of shells with successive
mass numbers, likely due to the missing expectation of
the shell evolution. We point out also that the mean-
ing of the zero-range approximation of the tensor force
remains to be investigated.

Following the work of (Otsuka et al., 2005), the tensor
term in the Skyrme forces has been revisited in terms
of the shell evolution. For instance, Brown et al. (2006)
reported the first investigation of the effects of the in-
clusion of tensor forces into the shell evolution based on
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Figure 33 Same as Fig.=32. (upper) A zero-range tensor
force calculation. (lower) A relativistic mean field calculation.
Reprinted with permission from Brink and Stancu (2007) and
from Lalazissis et al. (2009).

the Skyrme density functionals, employing empirical val-
ues (αT , βT ) = (−118, 110) MeV·fm5. Brink and Stancu
(Brink and Stancu, 2007) re-investigated, after their work
in (Stancu et al., 1977), the ESPE gaps between the pro-
ton 1h11/2 and 1g9/2 single-particle levels in Sb (Z=51)
isotopes as well as those between the neutron 1i13/2 and
1h9/2 single-particle levels in N=83 isotones. Figures 32
and 33 depict results of various calculations on the pro-
ton 1h11/2 - 1g9/2 gap in Sb isotopes. While this gap
was discussed in case (5) in Sec. IV.D with Fig. 30 from
the viewpoint of the VMU interaction, we shall survey
other approaches, in some of which other correlation ef-
fects were investigated. Upper panel of Fig. 32 shows,
as a reference, the monopole effect by the π + ρ meson-
exchange tensor force on top of the usual mean potential
effect like a Woods-Saxon potential (Otsuka et al., 2005).
Colò et al. (2007) has examined this shell evolution as

shown in the right panel of Fig. 32, confirming that the
inclusion of the tensor term clearly improves the agree-
ment with experimental data with the adopted values
(αT , βT ) = (−170, 100) MeV·fm5. Upper panel of Fig. 33
displays a similar calculation by (Brink and Stancu, 2007)
with (αT , βT ) = (−118.75, 120)MeV·fm5. To the present
shell evolution, the proton-neutron monopole interaction
matters, which is controlled by the βT parameter. We no-
tice that three works (Brown et al., 2006), (Colò et al.,
2007), and (Brink and Stancu, 2007) use, respectively,
rather close values, βT = 110, 100, and 120 MeV·fm5.

Besides the extension of Skyrme phenomenology, there
was another early attempt based on the Gogny force plus
Gaussian-type finite-range tensor force (Otsuka et al.,
2006) like the AV8’ interaction (Pudliner et al., 1997).
The result for the shell evolution discussed above is
shown in middle panel of Fig. 32, exhibiting a good re-
production of observed systematics. A relevant system-
atic study with the M3Y-type interactions was reported
(Nakada, 2008). Combining these works with Skyrme-
based calculations, the tensor-force driven shell evolution
has been confirmed quite well (Anguiano et al., 2011,
2012; Bartel et al., 2008; Dobaczewski, 2006; Dong et al.,
2011; Moreno-Torres et al., 2010; Shi, 2017; Tarpanov
et al., 2008; Wang et al., 2013; Zalewski et al., 2008,
2009a,b; Zou et al., 2008).

We comment on αT values empirically determined.
They causes the opposite direction of the evolution to
the ones of the π + ρ meson exchange potential and the
G-matrix results. The justification of using such nega-
tive αT values is not clear in connection to the nucleon-
nucleon forces. Regarding open problems with Skyrme-
based approaches, we quote a comment “the currently
used central and spin-orbit parts of the Skyrme energy
density functional are not flexible enough to allow for
the presence of large tensor terms” from (Lesinski et al.,
2007), and another remark “Studies of tensor terms are
extended to the case with deformations for future con-
struction of improved density functionals” from (Bender
et al., 2009).

In relativistic mean-field models, π-meson degrees of
freedom were taken into account in relativistic Hartree-
Fock (RHF) method by its exchange contributions
(Bouyssy et al., 1987; Lalazissis et al., 2009; Long et al.,
2006). Lower panel of Fig. 33 depicts an example of such
calculations for the proton 1h11/2 - 1g9/2 gap in Sb iso-
topes, presenting the tensor-force effect within the rel-
ativistic framework and the more explicit treatment of
π meson in contrast to Skyrme zero-range tensor force.
Contributions from ρ meson were found to cure the
pseudo-shell closures at N or Z=58 and 92 leading to
realistic subshell closure at 64 (Long et al., 2007). In re-
cent RHF models, density dependent meson-nucleon cou-
plings (Long et al., 2007, 2006) or softened parametrized
couplings (Lalazissis et al., 2009) are adopted, which re-
sult in smaller effects of tensor forces from π or π + ρ
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meson exchanges compared to non-relativistic models
(Lalazissis et al., 2009; Liang et al., 2008). Inclusion
of many-body correlations beyond RHF+RPA is still in
progress (Litvinova, 2016; Litvinova and Ring, 2006) and
left to future investigations.

F. Contributions from the 2-body LS force

The 2-body LS (2b-LS) force is another substantial
source of the monopole interaction. Although it has
been proposed in (Elliott and Lane, 1954) based on an
earlier work (Blanchard and Avery, 1950), its monopole
component has never appeared explicitly in literatures.
We sketch its major monopole features here with more
detailed discussions presented in Supplemental Material
Sec. S5.
The monopole matrix elements of the 2b-LS force con-

tribute, in many cases, to the spin-orbit splitting in the
usual sense. Schematic explanations on their basic prop-
erties are shown in Supplemental Material Sec. S5, and
the obtained characteristic features are listed below.
(1) The monopole interaction from the 2b-LS force

turns out to be consistent with the usual one-body spin-
orbit splitting (see, e.g., (Bohr and Mottelson, 1969)) in
many cases, as discussed below.
(2) A schematic semi-classical picture can be drawn for

the intuitive understanding of the general and basic prop-
erties of the 2b-LS monopole interaction (see Fig. S2).
The usual one-body spin-orbit interaction (see (Bohr and
Mottelson, 1969)) includes the radial derivative of the
density, ∂ρ/∂r, with ρ and r being, respectively, the nu-
cleon density and the distance from the center of the
nucleus. The present picture leads us to an explanation
of this dependence in terms of the difference between the
monopole contributions from nucleons inside r and those
from nucleons outside r.

(3) Based on this feature, a standard value for each
2b-LS monopole matrix element can be introduced (see
the text for eq. (S49)). The actual values of the 2b-LS
monopole matrix elements are not far from the corre-
sponding standard values in many cases. This property
may be related to the empirical systematics suggested in
(Mairle, 1993).

(4) Sizable deviations are found in some cases, how-
ever. Among them, the coupling between an s and a
p orbits can be quite strong with a large magnitude of
monopole matrix element, (see Fig. S3 for example). This
anomaly can be explained in a simple quantum mechan-
ical manner based on the range of the 2b-LS force and
the relative motion of two interacting nucleons, being a
robust effect.
Although this effect has been presented orally since

2004, the first publication of one of its outcome was as
late as in (Suzuki and Otsuka, 2008), where a notable
enlargement of the proton 1p3/2-1p1/2 splitting due to

neutrons in the 2s1/2 orbit was shown as a consequence
of the 2b-LS force (see Fig. 1 of (Suzuki and Otsuka,
2008) and relevant texts). Another example was pre-
sented in (Burgunder et al., 2014) for the effect of the
proton 2s1/2 occupation on the neutron 2p3/2-2p1/2 split-
ting in comparison to experiment as will be discussed in
Secs. VI.A.7, VI.A.8. A trend consistent with the present
effect can be seen in the spin-tensor decomposition, for
instance, in Sect. V.B.
(5) In some other cases, the sign of the monopole inter-

action can be opposite from the standard one mentioned
above, due to the radial wave functions (see Fig. S5).
(6) If two nucleons are in the same orbit, the semi-

classical picture is inapplicable, and another type of large
deviation occurs, for instance, between two nucleons
in the same 2p1/2 orbit (see Fig. S6). This case is
very interesting and important. In fact, the monopole
matrix element represents the whole interaction for two
neutrons in the 2p1/2 orbit, and the tensor and 2b-LS
forces produce strong repulsion (see Figs. 22 (c), 35
(b) and S6). This feature lowers the 2+ level of 54Ca
discussed in Sec. IV.D.4, by reducing the pairing gap
and thereby shifting the ground-state energy upward.
Thus, the actual N = 34 shell gap is likely larger than
what is expected from the actual 2+ level. The present
repulsive effect also gives a natural explanation to the
unusually weak or even repulsive value of the 2p21/2
pairing matrix element mentioned in (Brown, 2013).
While the tensor-force effect was suggested earlier
(Otsuka et al., 2010b), another argument was given in
(Brown, 2013).

We now look into the shell structure of 15C and 17O,
as an example of notable contributions of the 2b-LS
monopole interaction. Although this case has been dis-
cussed in III.G, we revisit it. Figure 9 depicts the inver-
sion between neutron 2s1/2 and 1d5/2 orbits between 15C
and 17O, and Fig. 34 (a) shows how the monopole ma-
trix elements work for this inversion. We now illustrate
the origins of those monopole matrix elements in Fig. 34
in terms of the tensor, 2b-LS and central forces between
protons and neutrons. Here it is assumed that from 15C
to 17O, the proton 1p1/2 orbit is fully occupied, and the
last neutron is either in the 2s1/2 or 1d5/2 orbit. Fig-
ure 34 (a) displays how the neutron 2s1/2 orbit is shifted
relative to the 1d5/2 orbit in going from 15C to 17O in
this genuine single-particle limit.
Figure 34 (b) shows a related analysis. This is similar

to Fig. 34 (a), but the contributions of the tensor, 2b-LS
and the rest of Hamiltonian are shown with respect to
the shell-model eigenstates obtained by the diagonaliza-
tion of the Hamiltonian. These energy levels can be cal-
culated by shell-model Hamiltonians recently developed,
SFO-tls (Suzuki and Otsuka, 2008) and YSOX (Yuan
et al., 2012). The latter is taken in Fig. 34 (b), while
the former gives a similar result. The contributions here
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Figure 34 (a) Energy of the neutron 2s1/2 orbit relative to

the 1d5/2 orbit in 15C and 17O, calculated within the single-
particle scheme using the VMU interaction plus the M3Y 2b-
LS force (see the text). Contributions from the tensor, 2b-LS
and central forces are decomposed. The changes are added to
the experimental 1/2+

1 level placed relative to the experimen-
tal 5/2+

1 level. The experimentally observed level of 17O is
shown far right. (b) Analysis similar to panel (a) in terms of
the shell-model calculation with the YSOX (Yuan et al., 2012)
interaction. Some expectation values obtained by the YSOX
calculation are shown correspondingly to (a) with respect to
the shell-model eigenstates. See the caption of (a).

mean the expectation values. The tensor and 2b-LS val-
ues are about 80% of the corresponding values in Fig. 34
(a), which appear to be very similar to the probability
of the lowest configuration in the shell-model full wave
functions of 17O. Thus, the discussions in terms of the
monopole matrix elements and ESPEs are further proven
to be sensible. On the other hand, the contributions from
the central force in Fig. 34 (a) is reduced much in the rest
part of Fig. 34 (b). Here the rest includes not only ef-
fects of the central force but also effects of the (bare)
single-particle energies due to excitations from lower to
higher orbits. It is clear that various correlations due to
the rest part decrease the raising of the 1/2+1 level. The
general aspect of this feature is of certain interest. The
importance of non-central forces is thus confirmed in the
case shown in Figure 34, consistent with earlier remark
(Millener and Kurath, 1975).

V. RELATED FEATURES OF NUCLEAR FORCES

In this section, we discuss some features of nuclear
forces related to the shell evolution.

A. Renormalization persistency of the tensor force

The effects of the tensor force have been discussed in
previous subsections in terms of the π+ρ-meson exchange
potential. This potential is derived in the free space,
and one has to investigate the changes due to various
renormalization procedures for the short-range repulsion
and the in-medium corrections. This study has been done
in Refs. (Otsuka et al., 2010b; Tsunoda et al., 2011),
which suggest that the changes are quite small for the
tensor force, referred to as renormalization persistency.
An example is shown in Fig. 35 (Otsuka et al., 2010b),

where the AV8’ interaction (Pudliner et al., 1997) was
used as the starting nuclear force in the free space. A low-
momentum interaction Vlow k (Bogner et al., 2003) was
derived in order to treat short-range correlations, and
the third order Q-box calculation with folded diagram
corrections (Hjorth-Jensen et al., 1995) was performed
in order to include medium effects like core polarization.
The spin-tensor decomposition has been carried out

over decades (Brown et al., 1988; Elliott et al., 1968; Kir-
son, 1973; Klingenbeck et al., 1977; Osnes and Strottman,
1992; Yoro, 1980), in order to extract the tensor-force
component. Here, the spin-tensor decomposition serves
as a very useful classification technique of a given two-
body interaction into several pieces such as the scalar-
(central force), axial-vector- (two-body LS (spin-orbit)
force), and tensor-coupled spin components.
We shall outline this now. A given two-body interac-

tion can be rewritten in general as

V =
∑

k=0,1,2

Vk =
∑

k=0,1,2

Uk ·Xk, (72)

where Uk and Xk are tensor operators of rank k in the
coordinate and spin spaces, respectively. One can thus
uniquely extract the LS-coupled matrix elements of each
k component:

〈naℓanbℓbLSJT |Vk|ncℓcndℓdL
′S′JT 〉

= (−1)J(2k + 1)

{

L S J
S′ L′ k

}

×
∑

J′

(−1)J
′

(2J ′ + 1)

{

L S J ′

S′ L′ k

}

×〈naℓanbℓbLSJ
′T |V |ncℓcndℓdL

′S′J ′T 〉.

(73)

The k = 0, 1, 2 matrix elements correspond, as mentioned
above, to the central force, spin-orbit (plus antisymmet-
ric spin-orbit) force(s), and tensor force, respectively.
These are all possible components for interactions with

the dependence on relative coordinates. If dependence
on the center-of-mass coordinate is allowed for some rea-
son, other terms like antisymmetric LS appear. Since the
shells being considered are full harmonic oscillator shells
containing all spin-orbit partners, this spin-tensor decom-
position is possible. We note that the tensor component
here is obtained from a given interaction, and can differ
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Figure 35 Monopole matrix elements from tensor forces in the
AV8’ interaction (Pudliner et al., 1997), in low momentum
interactions obtained from the AV8’, and in the third order
Qbox interaction for (a) T=0 and (b) T=1. From Otsuka et al.
(2010b).

from the one form the π+ρ-meson exchange potential.
We will see that this turns out to be a minor difference
in the present discussion with realistic interactions.

Figure 35 displays monopole matrix elements thus cal-
culated for T = 0 and 1 in the pf shell, starting with
the AV8’ interaction (Pudliner et al., 1997) and varying
the cutoff parameter in the Vlow k process. For the usual
value 2.1 fm−1, the result is very close to those obtained
directly from the bare AV8’ tensor-force.

This feature that a nuclear-force component remains
unchanged to a good extent by the renormalization pro-
cesses has been referred to as renormalization persistency
(Tsunoda et al., 2011). The renormalization persistency
was studied particularly well for the monopole interaction
of the tensor force with a variety of the shell, the original
interaction and the renormalization methods. Such stud-
ies, not only the earliest one (Tsunoda et al., 2011) but
also more recent ones with χEFT forces (Yoshida, 2017),
indicate that the tensor force fulfills the renormalization
persistency at least at the level of the monopole interac-
tion. The renormalization persistency therefore provides
us with a good rationale to discuss general features of
the monopole effects of the tensor force in terms of the
π+ρ-meson exchange potential, as was done so far.

Figure 36 (a) Neutron effective single-particle energies of the
SDPF-U interaction (Nowacki and Poves, 2009) and their (b)
k = 0, (c) k = 1, and (d) k = 2 contributions with increasing
proton number. Reprinted with permission from Smirnova
et al. (2010).

B. Spin-tensor decomposition of shell-model interaction

The spin-tensor decomposition, discussed in the previ-
ous subsection, is a useful tool to analyze the amount of
the tensor and other components contained in the shell-
model interaction. Smirnova et al. (2010, 2012) applied
the spin-tensor decomposition technique (Brown et al.,
1988; Elliott et al., 1968; Kirson, 1973; Klingenbeck et al.,
1977; Osnes and Strottman, 1992; Yoro, 1980) to a real-
istic interaction for the sd-pf shell (Nowacki and Poves,
2009) and examined k = 0, 1, 2 contributions in eq. (72)
to the ESPEs. Figure 36 shows the evolution of the neu-
tron effective single-particle energies with protons occu-
pying d5/2 (Z = 8 − 14), s1/2 (Z = 14 − 16) and d3/2
(Z = 16 − 20). It is demonstrated that the spin-orbit
splittings, especially those of f7/2-f5/2 and d5/2-d3/2, are
changed notably by the tensor component and that their
increase from Z = 16 to 20 and decrease from Z = 8
to 14 follow the way we have presented already, which
can be regarded as a confirmation of the appropriateness
of the empirically fitted shell-model interaction used in
(Smirnova et al., 2010, 2012). The tensor component also
accounts for nearly half of the reduction of the N = 20
shell gap (i.e. d3/2-f7/2 gap) when going from Z = 14
to 8. These behaviors are in accordance with what the
VMU interaction gives (Otsuka et al., 2010b) (see the left
panel of Fig. 47).
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C. Fujita-Miyazawa three-body force and the shell
evolution

We now turn to three-nucleon forces (3NF), shedding
light on their contributions to the shell evolution. Three-
nucleon forces were introduced in the pioneering work
of Fujita and Miyazawa (1957) (FM). One of the main
sources of 3NF is the fact that nucleons are composite
particles. In fact, the FM 3N mechanism is due to one
nucleon virtually exciting a second nucleon to the ∆(1232
MeV) resonance, which is de-excited by scattering off a
third nucleon, see Fig. 37(e).

The quantitative role of FM 3N interactions has
been pointed out in ab initio calculations for A ≤ 12
by the Green Function Monte Carlo (GFMC) method
(Pieper, 2005; Pieper and Wiringa, 2001; Pudliner et al.,
1997) and by the No-Core Shell Model (NCSM) method
(Navrátil et al., 2000a,b, 2007). These works have been
reviewed in (Carlson et al., 2015) and in (Barrett et al.,
2013), respectively. Three-nucleon interactions arise nat-
urally also in the chiral effective field theory (χEFT) (see
a review in (Hammer et al., 2013)) as will be discussed
in the next subsection.

We here focus on the monopole effect from the FM
3NF with the actual example of the oxygen anomaly (Ot-
suka et al., 2010a). We sketch first the mechanism for
the monopole effect presented in (Otsuka et al., 2010a).
Figure 37 (a) depicts the leading contribution to NN
forces due to ∆-resonance excitation, induced by the ex-
change of π-mesons between nucleons. Because this is a
second-order perturbation approach, its contribution to
the monopole interaction is attractive. The same pro-
cess changes the SPE of the state j,m, as illustrated in
Fig. 37 (b), by the ∆–nucleon-hole loop where the initial
nucleon in the state j,m is virtually excited to another
state j′,m′. This lowers the energy of the state j,m.
However, if another nucleon of the same kind occupies
the state j′,m′ as shown in Fig. 37 (c), this process is
forbidden by the Pauli exclusion principle. The corre-
sponding contribution must be subtracted from the SPE
change. This is taken into account by the inclusion of
the exchange diagram shown in Fig. 37 (d), where the
nucleons in the intermediate state are exchanged and this
leads to the exchange of the final (or initial) labels j,m
and j′,m′. Because this process reflects a cancellation of
the lowering of the SPE, the contribution from Fig. 37 (d)
has to be repulsive. Finally, we can rewrite Fig. 37 (d) as
the FM 3N force of Fig. 37 (e), where the middle nucleon
is summed over all nucleons in the core. We thus obtain
robustly repulsive monopole interactions between the va-
lence nucleons originating in the FM 3NF. It is clear that
only the monopole component is produced by this partic-
ular process, without touching on multipole components.

Figure 38 shows, as an example, neutron ESPEs of the
oxygen isotopes starting from the stable 16O to heavier
ones with more neutrons. The ESPEs calculated (Ot-
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Figure 37 Processes involved in the discussion of 3N forces
and their contributions to the monopole components of the
effective interactions between two valence neutrons. The solid
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include the long-range two-π-exchange parts, diagram (f),
which take into account the excitation to a ∆ and other reso-
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2010a).
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Figure 38 ESPE of neutron 1d5/2, 2s1/2 and 1d3/2 orbitals

measured from the energy of 16O as a function of N . The
ESPEs calculated (left) from a G matrix and (right) from
low-momentum interactions Vlow k are shown. The changes
due to 3N forces based on ∆ excitations are highlighted by
the shaded areas. Based on (Otsuka et al., 2010a).

suka et al., 2010a) with NN interactions in the G matrix
formalism (Hjorth-Jensen et al., 1995). A similar result
with χEFT forces will be discussed in the next subsec-
tion. The d3/2 ESPE decreases rapidly as neutrons oc-
cupy the d5/2 orbit, and remains well-bound fromN = 14
on. This leads to bound oxygen isotopes out to N = 20
and puts the neutron drip-line incorrectly beyond 28O.

The changes in the ESPE evolution due to the addition
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Figure 39 (Left, 2nd left) Ground state energies of oxygen isotopes including processes shown in (2nd right). Based on (Otsuka
et al., 2010a). (right) The ground state energies calculated in several χEFT approaches(Hergert et al., 2016). Reprinted with
permission from (Hergert et al., 2016).

of FM 3NF are included in the left panel of Fig. 38. The
repulsive FM 3N contributions become significant with
increasing N . Figure 22(g,h) indicates that monopole
components are modified to be more repulsive from G-
matrix to SDPF-M in the sd shell, except for the case
with j=j′=d3/2. Since SDPF-M reproduces the experi-
mental data rather well, this general trend seems to sug-
gest that a good fraction of the effects of the FM 3NF,
and perhaps other 3NFs in general, are included empiri-
cally in shell-model interactions. It was argued (Zuker,
2003, 2005) that effective NN interaction was nearly per-
fect and any deviation suggested by experiment should
be due to some three-body force.
The ground-state energies of oxygen isotopes are shown

in Fig. 39, where the 3NF changes them to be very close
to experimental values and places the dripline correctly.
Figure 38 shows the key role of the FM 3NF for new
magic numbers N = 14 between the 1d5/2 and 2s1/2 or-
bits (Stanoiu et al., 2004), and N = 16 between the 2s1/2
and 1d3/2 orbits (Hoffman et al., 2008; Kanungo et al.,
2009; Ozawa et al., 2000).

D. Ab-initio approaches to nuclear structure

We discuss ab-initio approaches to the nuclear struc-
ture in this subsection. As there have been many activi-
ties on this topic recently, a devoted review is needed, and
we mainly discuss certain recent outcomes related to the
shell and structure evolutions in exotic nuclei. Quite nat-
urally, few-body systems have been studied in ab-initio
ways as reviewed in (Leidemann and Orlandini, 2013).
The GFMC (Carlson et al., 2015; Pieper, 2005; Pieper
and Wiringa, 2001; Pudliner et al., 1997) and the NCSM
(Barrett et al., 2013; Navrátil et al., 2000a,b, 2007) calcu-
lations were started around the year 2000, showing that
the structure of light nuclei (up to A ∼ 10) can be de-
scribed well from the nucleon-nucleon forces (2NF) deter-
mined by the nucleon-nucleon scattering combined with
the 3NF appropriately determined. In the mean time, the

χEFT (Epelbaum et al., 2002; van Kolck, 1994) was de-
veloped to construct nuclear forces in a systematic expan-
sion from leading to successively higher orders (Entem
and Machleidt, 2003; Epelbaum, 2006; Epelbaum et al.,
2009), which are visualized by diagrams showing nucle-
ons interacting via π exchanges and shorter-range con-
tact terms (see a review (Machleidt and Entem, 2011)).
The interactions from the χEFT are modified to be ap-
plicable to low-momentum phenomena by using the low-
momentum interactions Vlow k (Bogner et al., 2003) or
by the similarity renormalization method (SRG) (Bogner
et al., 2007).

The right panel of Fig. 38 displays the ESPE calcu-
lated from chiral low-momentum interactions Vlow k in-
cluding the changes due to the leading (N2LO) 3N forces
in χEFT (Epelbaum et al., 2002; van Kolck, 1994), (see
Fig. 37 (f)–(h)), as well as due to ∆ excitations (Bogner
et al., 2009). The second left panel of Fig. 39 shows the
ground-state energy of oxygen isotopes calculated with
these interactions, depicting a good agreement with ex-
periment (Otsuka et al., 2010a).

A similar shell evolution is seen in exotic Ca isotopes,
where the inclusion of 3NF effects raises ESPE’s of the
pf -shell neutron orbits (Holt et al., 2012a; Otsuka and
Suzuki, 2013).

The Coupled-Cluster (CC) calculations (Hagen et al.,
2008, 2010, 2009) started with the 2NF obtained as the
N3LO χEFT interaction. The N2LO 3NF was included
in the CC calculation (Hagen et al., 2012a,b) for O and
Ca isotopes, with results consistent with those mentioned
just above. Figure 40 shows the 2+1 level of Ca iso-
topes calculated by the CC method (Hagen et al., 2012b),
showing results consistent with the shell evolution in Ca
isotopes discussed in IV.D.4, including the 54Ca 2+ level
(see Fig. 29).

The 3NF is converted into an effective 2NF by the
normal ordering combined with a reference state, which
is Fermi gas or a Hartree-Fock state. The In-Medium
SRG (IM-SRG) was introduced and developed in (Herg-
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ert et al., 2013a,b, 2014; Tsukiyama et al., 2011, 2012)
(see a review in (Hergert et al., 2016)) so as to renormal-
ize in-medium effects into effective interactions.
A frequently used interaction (called A for brevity) has

been introduced (Hebeler et al., 2011) by the SRG trans-
formation of the N3LO 2NF of (Entem and Machleidt,
2003) with the cut-off parameter 500 MeV/c combined
with the N2LO 3NF where the parameters cD and cE
(shown in Fig. 37 (g,h), respectively) are fitted to the tri-
ton binding energy and the 4He charge radius. This set
A interaction was shown to produce larger radii of proton
distribution by the CC calculations (Hagen et al., 2016a).
Since then, this interaction has been used in many works;
for magic nuclei (Hagen et al., 2016b), for sd-shell nuclei
(Simonis et al., 2016), and for density saturation in finite
nuclei (Simonis et al., 2017). The CC calculations show
larger charge radii of heavy Ca isotopes, being consistent
with recent measurement made up to 52Ca (Garcia Ruiz
et al., 2016).
There is another frequently used interaction (called B

for brevity) introduced by (Roth et al., 2012), where the
3NF is different from the set A in a local form with
the cut-off parameter 400 MeV/c. This set B interac-
tion has been used in (Binder et al., 2013, 2014; Hergert
et al., 2014; Tichal et al., 2014) for ground-state proper-
ties of Ca, Ni, Sn etc. The Self-Consistent Green’s Func-
tion theory also provided ground-state energies (Soma
et al., 2014, 2011), and furthermore, the ESPEs (Cipol-
lone et al., 2013, 2015) as shown in Fig. 41, which indi-
cates results consistent with those shown in the previous
subsection. We point out that the ESPE in (Cipollone
et al., 2013, 2015), based on the formulation by Baranger
(1970), is consistent with the ESPE discussed in this ar-
ticle, as illustrated in III.F.
The procedures with the sets A and B can be summa-

rized:
(1) The Hamiltonian consisting of N3LO 2NF and N2LO
3NF is obtained from the χEFT. For set B, the values

Figure 41 (Upper panel) ESPEs of neutrons calculated
(Cipollone et al., 2013) at sub-shell closures of oxygen iso-
topes. (Lower panel) Similarly calculated ground-state ener-
gies compared to experiment (bars). Reprinted with permis-
sion from (Cipollone et al., 2013).

Figure 42 Ground-state energies of Na isotopes calculated
with IM-SRG (SM). The IM-SRG (SM) curves use a core
reference, while the curves labeled IM-SRG (ENO) use an en-
semble reference. Reprinted with permission from (Stroberg
et al., 2017).

of the parameters cD and cE are fitted to the triton and
4He properties by performing a few-body calculation.
(2) Short-range correlations are processed by the SRG,
being truncated up to three-nucleon terms. These are
2NF and 3NF for set A, with cD and cE fitted in the
same way at this stage.
(3) HF calculation is carried out with 2NF and 3NF
thus derived/fitted as the reference state(s).
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Figure 43 Results of (Simonis et al., 2017). The two-neutron
separation energies of Na isotopes calculated with IM-SRG.
Reprinted with permission from (Simonis et al., 2017).

(4) The Hamiltonian is truncated up to two-nucleon
terms by the normal-ordering with the reference state(s).
(5) With such two-nucleon interactions, the CC, IM-
SRG, MBPT, etc. are carried out.

The right panel of Fig. 39 shows that ab-initio calcu-
lations based on the χEFT reproduce the ground state
energies of oxygen isotopes well (Hergert et al., 2016),
being consistent with other works in the left panels. In
going to proton-neutron open-shell nuclei, further devel-
opments are made to obtain the shell-model interactions
so that their eigenvalues are calculated. A shell-model
interaction has been calculated in (Lisetskiy et al., 2008)
based on the NCSM. With the IM-SRG (Simonis et al.,
2017; Stroberg et al., 2017, 2016), the reference state was
improved so that two reference states are considered with
the ensemble normal ordering (ENO) in going through an
open shell taking a weighted average. Figure 42 and 43
display, respectively, the ground-state energies (Stroberg
et al., 2017) and the two-neutron separation energies (Si-
monis et al., 2017) of Na isotopes. The agreement with
experiment was improved, with certain differences be-
tween the two calculations. The difference is mainly due
to the different interactions sets A and B. In the latter,
the experimental values are reproduced up to N ∼ 16,
but some deviations arise over the neutron magic number
20 probably because of substantial mixings of intruder
configurations.

It is worth mentioning that the radius is predicted of-
ten too small in ab-initio calculations, but this problem
was avoided by the so-called N2LOsat interaction where
the parameters are taken only up to the N2LO being
fitted to properties of heavier nuclei such as 14C and
16,23,24,25O (Ekström et al., 2015).
Despite these significant improvements in ab-initio ap-

proaches in general, the discrepancy with experiment re-
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Figure 44 ESPEs of N=20 isotones for neutrons obtained in
the normal filling scheme. Solid (dotted) lines in (a) show
the case with (without) three-nucleon forces, while the solid
(dot-dashed) lines in (b) represent the case with (without) the
tensor component. From (Tsunoda et al., 2017).

mains at present. For instance, the extra binding due to
intruder configurations may not be reproduced well, as
discussed for Figs. 42 and 43. On the other hand, this
is one of the most crucial features of exotic nuclei, as
emphasized also in the next section. As a possible break-
through, the Extended-Kuo-Krenciglowa (EKK) method
has been proposed and developed (Takayanagi, 2011a,b;
Tsunoda et al., 2014). The EKK method is one of the
Many-Body Perturbation Theories (MBPT). The other
MBPT calculations have a possibility of divergence when
applied to two or more major shells, but the EKKmethod
is free from this difficulty. As two major shells merge or
the shell gap becomes smaller in exotic nuclei rather of-
ten, it is crucial to include two or more shells properly.

The EEdf1 interaction was obtained for the sd − pf
shell from a χEFT NN interaction at N3LO with the
EKK treatment of in-medium effects and from the FM
3NF (Sec. V.C) (Tsunoda et al., 2014). Figure 44 shows
ESPE calculated from the EEdf1 interaction, for N=20
isotones as a function of Z. Figure 44 (a) shows the
ESPEs obtained by the full calculation and those ob-
tained after removing the FM 3NF. One finds that this
3NF shifts the SPEs upwards, and that the shifts become
larger as Z increases. Figure 44 (b) depicts the ESPEs
obtained by the full calculation and those obtained after
removing the tensor component from the EEdf1 interac-
tion. Although the magnitude of the tensor-force effects
is smaller than that of the 3NF as a whole, the tensor
force effects are not monotonic and produce more rapid
changes in the shell structure in contrast to the 3NF ef-
fects. We note that the tensor component is quite minor
in the effective NN interaction originating in the FM
3NF. In those calculations, although the one-body SPEs
are fitted at certain nuclei, the evolution of the ESPEs is
given by the interaction thus derived, and the resulting
changes as a function of Z or N have nothing to do with
the fit. In this sense, Figure 44 (a,b) confirms the shell
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evolution at N=20, appearing consistent with earlier re-
sults to be discussed in the next section. Some results
of the EEdf1 interaction will be presented in the next
section.

VI. EXAMPLES OF STRUCTURAL CHANGE
MANIFESTED IN EXPERIMENTAL OBSERVABLES

We discuss in this section how theoretical results are
confronted with a variety of experimental measurements.
In such cases, both shell-evolution effects and other
many-body correlations arise and can mutually affect
each other. For the examples, we explain the mecha-
nisms of shell evolution at play.

A. Measuring the key indicators of shell evolution in the
island of inversion

Since short-lived “exotic” nuclei cannot be made into
targets, measurements of their properties have to start
from an ion beam which is subjected to an in-beam mea-
surement in inverse kinematics, implanted into an active
or passive stopper to observe its decay, or manipulated
for ion trapping or laser spectroscopic approaches, for
example.
The first challenge of any experiment with short-lived,

“exotic” nuclei is their production. Today, a broad range
of rare isotopes is available for experiments in the form of
ion beams. Two main production and separation mecha-
nisms have emerged as the workhorse techniques in rare-
isotope beam production and are employed in nuclear
physics laboratories around the world:

• Beams of short-lived nuclei are produced and sepa-
rated in-flight and are directly used for experiments
(in-flight separation).

• Exotic nuclei are produced and thermalized in a
thick target, extracted, ionized, transported or
reaccelerated (isotope separation on-line – ISOL).

The production strategies for rare-isotope beams and
the different types of rare-isotope facilities around the
world were recently reviewed (Blumenfeld et al., 2013).
In this subsection, we use the example of the “Island

of Inversion” (IoI) centered around 32Na (see Fig. 45), in
order to describe how typical observables are measured
and interpreted as indicators of structure changes.

1. Sketch of the Island of Inversion

We first sketch the IoI mainly from the shell-evolution
viewpoint, and will be brief because dedicated reviews
exist (Caurier et al., 2005). The IoI was named by (War-
burton et al., 1990), after earlier experimental studies
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v

had reported various anomalous features, for example,
(Thibault et al., 1975) followed by (Détraz et al., 1979;
Guillemaud-Mueller et al., 1984; Huber et al., 1978). It
is characterized by deformation-related neutron particle-
hole excitations from the sd shell into the pf shell across
the N = 20 shell gap. Such particle-hole excitations
across a shell gap are often referred to as “intruder con-
figurations”, which can be energetically favored over the
normal configurations and dominate the ground states
of the nuclei in the IoI, as shown in the right panel of
Fig. 45. States comprised mainly of intruder configura-
tions are called “intruder states” or “intruders”. Most of
the binding-energy gains are due to the deformation from
a sphere to an ellipsoid. Thus, an intruder at zero or low
excitation energy implies shape coexistence with states
based on spherical normal-order configurations, which is
seen in many exotic nuclei.
Early theoretical studies also indicated that the ground

states can be deformed for nuclei in the IoI, such as a de-
formed Hartree-Fock solution for 31Na in (Campi et al.,
1975), and intruder shell-model ground states despite
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the rather constant N=20 gap in (Poves and Retamosa,
1987). Regarding the shell evolution, so-called “modified
single-particle energy” was introduced in (Storm et al.,
1983), corresponding to the present ESPE in the special
case of a (sub)shell closure ± one particle (see the texts
around eq. (37)). Although the monopole interaction was
not mentioned, this may be the first appearance of the
ESPE. The changes of the neutron shell structure was
then discussed in (Storm et al., 1983) with some differ-
ences from the current picture.

The left panel of Fig. 46 displays the N=20 shell gap of
N=20 isotones obtained from (Warburton et al., 1990),
with values > 5 MeV. The right panel of Fig. 46 presents
ESPEs calculated from the SDPF-M interaction (Utsuno
et al., 1999), and the resulting N=20 gap is included in
the left panel of Fig. 46. The gaps now vary more, and be-
come as low as 2 MeV for Z=8. A quite similar evolution
of the ESPEs of the d3/2 and f7/2 orbits were obtained
in (Fukunishi et al., 1992), where large-scale shell-model
calculations made successful predictions. The d3/2 ESPE
changes more steeply with the SDPF-M interaction, how-
ever. This is because (Fukunishi et al., 1992) uses the
USD interaction where some change was made from G-
matrix (Kuo, 1967). This change appeared to be rather
inappropriate (Otsuka et al., 2001), and was removed in
the SDPF-M interaction, resulting in a better descrip-
tion. This is an example of the importance of nuclear
forces to the shell evolution. This N=20 gap reduction
was schematically shown earlier in (Heyde and Wood,
1991) in terms of the proton-neutron monopole interac-
tion of a δ-function interaction, while the obtained pat-
tern is too monotonic partly due to missing tensor force.
The intruder states stay higher towards Z=8 in (Caurier
et al., 1998), as exhibited in the right panel of Fig. 45.
Thus, although the breakdown of the N=20 magicity in
the IoI was commonly accepted, in the 1990’s, the vanish-
ing of the N=20 gap towards Z=8 was suggested (in a
quantitative way) rather uniquely in (Fukunishi et al.,
1992; Utsuno et al., 1999). The situation is changed
now, and other calculations also suggest a similar reduc-

tion, (see Figs. 47 and 44), as a trend with more realis-
tic interactions, particularly with the tensor force. Note
that such reduction of the gap facilitates more particle-
hole excitations, which can enhance quadrupole defor-
mation and pairing correlations. Thus, anomalous fea-
tures around N=20 have been intensely studied, provid-
ing a strong motivation to clarify, both experimentally
and theoretically, how the gap evolution occurs and what
consequences arise. We here refer to other related works
from mean-field or clustering viewpoints (Campi et al.,
1975; Hinohara et al., 2011; Kimura, 2007; Péru et al.,
2000; Péru and Martini, 2014; Reinhard et al., 1999; Ren
et al., 1996; Rodŕıguez-Guzmán et al., 2000; Stevenson
et al., 2002; Stoitsov et al., 2000; Terasaki et al., 1997;
Yao et al., 2011), some of which have been or will be
discussed concretely. Those anomalous features are still
very much contemporary subjects, as we shall see also
below.

2. Masses and separation energies

The mass of a nucleus is among the most basic prop-
erties directly accessible to measurements. Masses and
derived quantities, e.g. one- and two-nucleon separation
energies, frequently provide the first hints for the evolu-
tion of shell structure and signal the onset of deformation.

Experimental methods for the determination of atomic
masses basically fall into two broad categories. Ap-
proaches that measure the Q values in decays or reactions
make use of Einstein’s mass-energy equivalence; mass
measurements that are based on the deflection of ions
in electromagnetic fields determine the mass-to-charge
ratio. The most precise mass spectrometry is accom-
plished through frequency measurements (Myers, 2013).
The cyclotron or revolution frequencies of ions in a mag-
netic field are measured to determine the mass-to-charge
ratio in a Penning trap (Blaum, 2006) or in a storage
ring (Franzke et al., 2008). A recent example for a mass
measurement at the northern boundary of the IoI is found
out to A = 34 (Kwiatkowski et al., 2015) from Penning-
trap mass spectrometry at TITAN facility (Dilling et al.,
2006).

The two-neutron separation energies (S2n values) for
the Al and Mg isotopic chains are shown in Fig. 48
with overlaid shell-model calculations in the sd-pf model
space using the SDPF-U-MIX interaction (Caurier et al.,
2014). Typically, along an isotopic chain, the two-
neutron separation energy, S2n, decreases steadily to-
wards the neutron dripline. We remind the reader that,
in the presence of a large spherical shell gap at N=20, the
S2n values would drop at N=21 when the shells above
the gap start to be filled. The flattening in the trend for
N = 19 − 21 in the Mg chain is contradictory to this,
and indicates the increased correlation energy of these
deformed nuclei relative to their neighbors with two neu-
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trons less. In Al, a hint of this effect only appears beyond
N = 21, putting 31−34Al outside and 35−37Al at the very
boundary if not inside the IoI. Of interest is the unique
crossing of S2n in the Mg and Al isotopic chains at 34Al,
which – in comparison to shell model – is attributed to
Mg significantly gaining correlation energy upon entrance
into the IoI between N = 20 and 21, while the S2n in the
Al chain is still on its almost linear downward trend up
to N = 22.

Figure 48 Symbols indicate two-neutron separation energies
for the Mg and Al isotopic chains from the 2015 TITAN ex-
periment and the mass compilation by Audi et al. (2012).
Shell-model calculations in the sd-pf shell (Caurier et al.,
2014) are shown also by the solid and dashed lines. Reprinted
with permission from Kwiatkowski et al. (2015).

3. Magnetic Dipole and Electric Quadrupole moments

The deviation from sphericity of nucleus that has
non-zero spin can be quantified through its electric
quadrupole moment. The electric quadrupole moment
was measured for the ground state of Al isotopes at
the LISE spectrometer at GANIL (DeRydt et al., 2009),
with spectroscopic quadrupole moment |Qs| extracted for
31,33Al relative to 27Al (Heylen et al., 2016).
The implications for the structure of 33Al are shown in

Fig. 49. The improved uncertainty of |Qs(
33Al)| com-

pared to that of the previous measurement (Shimada
et al., 2012) led to argue the presence of neutron in-
truder configurations in comparison to shell-model cal-
culations that are restricted to the sd shell only (USD)
and that allow for neutron intruder configurations across
the N = 20 shell gap (SDPF-M) (Utsuno et al., 1999,
2004). It is noted that these conclusions contradict the
ones from the mass measurements reviewed above, where
33Al was placed outside of the IoI and they are at odds
with shell-model calculations using the SDPF-U-MIX ef-
fective interaction (Caurier et al., 2014) that also allows
for neutrons in the pf shell. This may highlight the dif-
ferent levels of detail probed, with the moment measure-
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Figure 49 Measured spectroscopic quadrupole moments of Al
isotopes compared to shell-model calculations limited to the
neutron sd shell (USD) and allowing for particle-hole excita-
tions across N = 20 (SDPF-M). The given percentage signi-
fies the amount of ground-state intruder configurations in the
respective shell-model approach. Reprinted with permission
from Heylen et al. (2016).

ment more sensitive to the very details of the configura-
tions, or point to a puzzle in our understanding of 33Al
at the northern border of the IoI. Spectroscopic data on
33Al, obtained for example using direct reactions, may
identify the energies of intruder states, assessing in a
complementary way the degree of intruder admixtures
to the low-lying level structure of this nucleus.
Measuring hyperfine structure using laser spectroscopy

is a powerful method to unambiguously determine the
spin and magnetic moment of the ground state. A good
example applied to the IoI is 31Mg, whose ground state
was assigned to be 1/2+ (Neyens et al., 2005). This mea-
surement clearly shows that the N = 19 nucleus 31Mg
belongs to the IoI, because the normal state, dominated
by neutron 1d−1

3/2, must have Jπ=3/2+. The spectroscopy

of 31,33Mg and their particle-hole structure were reviewed
(Neyens et al., 2011), indicating a variety of intruders co-
exist at low-excitation energies. The properties of low-
lying states of odd-A nuclei, including their spin/parities,
can thus be related to the shell evolution, sometimes, up
to the gap between two major shells.

4. Excitation energy

Energies of excited nuclear states are often among the
first quantities accessible in experiments (Gade, 2015).
They can be measured directly and without any model
dependence and are thus some of the key observables
that can be tracked to unravel changes in the nuclear
structure. For instance, the systematics of the lowest 2+

energies was discussed in Sec. I as one of the indicators
of the magic structure (Fig. 4). For excited states below
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Figure 50 Energy levels of 31Mg. (a) experimental val-
ues, (b) EEdf1 (Tsunoda et al., 2017), (c) SDPF-M (Utsuno
et al., 1999), (d) SDPF-U-MIX (Caurier et al., 2014) and (e)
AMD+GCM calculation (Kimura, 2007), respectively. From
Tsunoda et al. (2017).

the nucleon separation energies, prompt or delayed γ-ray
spectroscopy is frequently used to extract excitation ener-
gies of rare isotopes with great precision, measured from
the spectroscopy of the γ-ray transitions that connect
different states. Electric monopole transitions between
0+ states (Wood et al., 1999), of E0 character, proceed
to a large extent through conversion electron emission
and electron spectroscopy or other charged-particle spec-
troscopy techniques, e.g. in transfer reactions, are re-
quired (Gade and Liddick, 2016). Excited states can be
populated in nuclear reactions (Gade and Glasmacher,
2008) or β decay (Rubio and Gelletly, 2009), exploit-
ing the selectivities inherent to the different population
mechanisms. For instance, the coexistence of normal and
intruder states in 29Na was found through β-delayed γ-
ray spectroscopy (Tripathi et al., 2005). The energies of
very long-lived isomeric states can be accessed, for ex-
ample, with Penning-trap (Block et al., 2008) or storage-
ring (Reed et al., 2010) mass spectrometry. For states
that are unbound with respect to neutron or proton emis-
sion, excited-state energies can be deduced from invariant
mass or missing mass spectroscopy. The spectroscopy of
bound (Gade, 2015) and unbound (Baumann et al., 2012)
excited states was reviewed recently.

The most recent spectroscopy inside the N = 20 IoI
addressed one of the hallmark nuclei in this region of
shell evolution, 32Mg, that has been subject to experi-
mental study since its low-lying 2+1 energy contradicted
the presence of the N = 20 magic number in this iso-
topic chain (Détraz et al., 1979). Using the advanced
γ-ray tracking array GRETINA (Paschalis et al., 2013),
excited states in 32Mg (Crawford et al., 2016) were pop-
ulated in the secondary fragmentation of an 46Ar rare-
isotope beam at NSCL. The γ rays spectrum is displayed
in Fig. 51. Aside from the previously known γ-ray tran-
sitions at 885 keV and 1438 keV that are attributed to
the 2+1 → 0+1 and 4+1 → 2+1 transitions, respectively, a
new transition at 1773 keV was observed that is pro-
posed to connect the 6+1 and 4+1 states (Crawford et al.,
2016). With 32Mg suspected to be well-deformed, this
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Figure 51 (Left) Prompt γ-ray spectrum detected with
GRETINA in coincidence with the 32Mg projectile-like frag-
mentation residues identified in the S800 spectrograph.
Reprinted with permission from Crawford et al. (2016).
(Right) Comparison to theoretical calculations with EEdf1
and SDPF-U-MIX interactions. From (Tsunoda et al., 2017).

would establish the lowest part of the yrast rotational
band. Figure 51 shows good agreement with shell model
calculation with the SDPF-U-MIX interaction as well as
that with the EEdf1 interaction which is of ab initio type.

5. Electromagnetic transition strength

Nuclear structure can be probed experimentally in
quantitative ways by a variety of nuclear reactions that
are selective to specific degrees of freedom. Inelas-
tic scattering, in particular Coulomb excitation, of nu-
clei has long been used to investigate collective de-
grees of freedom that involve the coherent motion of
many nucleons. B(σλ) reduced electromagnetic transi-
tion matrix elements are extracted from measured cross
sections to quantify the degree of collectivity (Alder
et al., 1956; Cline, 1986; Glasmacher, 1998). Reduced
electromagnetic transition strength can alternatively be
deduced from excited-state lifetime measurement, ex-
tracted from Doppler energy shifts or lineshapes in γ-ray
spectroscopy (Dewald et al., 2012).

At collision energies below the Coulomb barrier, the
excitation probabilities and interaction times are large
enough to allow for multistep excitations and the deter-
mination of quadrupole moments and their signs, giving
a glimpse at the degree and the character of deforma-
tion (Cline, 1986). In the regime of intermediate-energy
or relativistic projectile energies, multistep processes are
suppressed by several orders of magnitude. This greatly
simplifies the analysis of the resulting excitation spectra,
and the B(E2; 0+1 → 2+1 ) value has been measured for
32Mg (Motobayashi et al., 1995), establishing the strong
deformation of this nucleus, for instance, a prediction by
(Fukunishi et al., 1992) shown in the left panel of Fig. 52.
The higher-lying states of collective bands, on the other
hand, remain out of reach with this technique in typical
experiments lasting a few days with beam rates of a few
per second (Gade and Glasmacher, 2008; Glasmacher,
1998). Excited-state lifetime measurements on the other
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Figure 52 B(E2) value of the N = 20 isotones plotted as func-
tion of Z. (Left) Shell-model calculation by (Fukunishi et al.,
1992) where the solid line includes neutron excitations across
the N = 20 gap but the dashed line does not. (Right) The
measured values are confronted with the NpNn scheme calcu-
lation (Casten and Zamfir, 1993) for Nn = 0 (N = 20 closed)
and Nn = 12 (sd and lower pf shells combined). See the text
for details. From Fukunishi et al. (1992) (left) and adapted
with permission from (Doornenbal et al., 2016) (right).

hand do not require nuclear models to extract transition
strengths but can suffer from observed and unobserved
feeding from higher-lying states depending on the popu-
lation mechanism of the excited states.

In a recent inelastic scattering experiment at RIBF
in RIKEN (Nakamura et al., 2017), the quadrupole col-
lectivity or deformation of 36Mg and 30Ne was deter-
mined from measured 0+1 → 2+1 excitation cross sec-
tions. The beams of 30Ne and 36Mg impinged upon Pb
and C targets. Inelastic scattering off C and relativis-
tic Coulomb excitation on a Pb target revealed a B(E2)
value and deformation length, respectively, that indicates
a quadrupole deformation parameter of β2 ≈ 0.5 for both,
showing that the quadrupole deformation in the Mg chain
persists towards the neutron dripline and that neutron
excitations across N = 20 are critical for reproducing
the collectivity of N = 20 30Ne (Doornenbal et al., 2016).
The telltale nature of the reduced B(E2; 0+1 → 2+1 ) value
as nuclear structure observable is illustrated in the right
panel of Fig. 52, where the B(E2) strength of the N = 20
isotones is plotted as function of Z. The measured val-
ues show good agreement with the earlier shell-model
prediction (Fukunishi et al., 1992). Note that the order
is inverted between the left and right panels. In addition,
the measured values are confronted with the phenomenol-
ogy of the NpNn scheme (Casten and Zamfir, 1993) for
Nn = 0 (N = 20 shell closure intact and no valence neu-
trons) and Nn = 12 (sd shell+f7/2+p3/2 combined as
the neutron shell)). The sharp onset of collectivity for
Z ≤ 12 is consistent with the picture of dominant neu-
tron particle-hole excitations across the N = 20 shell gap
for the Mg and Ne N = 20 isotones, a hallmark of the
IoI, at least for its northern boundary. When moving
from Z=12 to 14, the proton quadrupole collectivity is
likely reduced due to the closure of the 1d5/2 orbit, and
the N=20 shell gap becomes wider (Figs.46, 47, 44).

6. Shape coexistence in the Island of Inversion and at its
boundaries: additional evidences from β-decay and E0
transition

Outside the IoI, excited intruder states can coexist
with the still spherical ground states (Gade and Liddick,
2016). So far, shape-coexisting 0+ states have been iden-
tified in 34Si (Rotaru et al., 2012) and 30Mg (Schwerdt-
feger et al., 2009). Along the line of the N = 20 isotones,
34Si is situated at the northern boundary of the IoI. In
a pioneering measurement at GANIL, the β decay of the
1+ isomer of 34Al was used to selectively feed 0+ states
in 34Si, including the previously unobserved excited 0+2
state at 2719(3) keV (Rotaru et al., 2012). This state is
located below the 2+1 , presenting an experimental chal-
lenge. Since γ-ray decays between 0+ states are angular-
momentum forbidden, this low-lying 0+ state can only
de-excite via electron conversion or internal pair forma-
tion, where an electron-positron e+e− pair is released
with a total energy of Ee− + Ee+ = E(0+2 ) − 2 × 511
keV. From the difference timing between the β-decay
events and the e+e− pair signals, a half-life of 19.4(7) ns
was determined for the 0+2 state (Rotaru et al., 2012).
The resulting low E0 transition strength indicates only
weak mixing between the 0+1 ground state and the 0+2
excited state. Combining all spectroscopic information,
including B(E2; 2+1 → 0+2 ) = 61(40)e2fm4, as extracted
from a small γ-ray branch and the 2+1 lifetime, results
in a quadrupole deformation parameter for the 0+2 state
of β = 0.29(4), in agreement with SDPF-U-MIX shell-
model calculations (Rotaru et al., 2012). All these prop-
erties are consistent with the argument presented at the
end of the previous subsection. Once the ground state be-
comes closed-shell like, the shape coexistence often arises
(Heyde and Wood, 2011).

For 32Mg, at the heart of the IoI, a (t, p) neutron-
pair transfer reaction was used in reverse kinematics to
– for the first time – identify the 0+2 state in 32Mg at
1058(2) keV at the REX-ISOLDE facility (CERN) (Bild-
stein et al., 2012; Wimmer et al., 2010). The proton an-
gular distributions of both states were shown to display
the shape of an angular-momentum transfer of ∆L = 0
onto the ground state of 30Mg. It was thus concluded
that both states in 32Mg populated in the (t, p) transfer
have spin 0.

Coincident γ-ray transitions detected, a new transi-
tion with an energy of 172 keV and the well-known
2+1 → 0+1 transition at 886 keV, allowed to put the newly-
discovered excited 0+ state at the more precise energy of
1058(2) keV. Based on DWBA calculations, it was con-
cluded that the ground state is comprised of (f7/2)

2 and
(p3/2)

2 intruder configurations and the excited 0+ state
could be largely described with the assumption of sd-
shell normal-order configurations, such as (d5/2)

2, how-
ever, with a small (p3/2)

2 intruder contribution neces-
sary (Wimmer et al., 2010). These findings support the
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picture of a deformed fp-shell intruder ground state and
an sd-shell dominated (spherical) first excited 0+ state.
The approximately equal cross sections for the formation
of the two 0+ states in (t, p) were used to infer signifi-
cant mixing between the two states. A measurement of
the electric monopole strength connecting the two state
remains a challenge for future experiments. The 0+2 ex-
citation energy of about 1 MeV was found significantly
below available model predictions at the time (Wimmer
et al., 2010). These properties of the 0+2 state of 32Mg
pose a formidable challenge for theory including beyond-
mean-field models (Péru and Martini, 2014; Rodŕıguez-
Guzmán et al., 2000).

Recently, shell-model calculations that allow for the
mixing of configurations that have 2, 4 and 6 neutrons
promoted across theN = 20 shell gap (SDPF-U-MIX) re-
produce the reported, low 0+2 energy and suggest a rather
unique character of this 0+ state (Caurier et al., 2014).
A ground-state neutron configuration of 9% 0p-0h, 54%
2p-2h, 35% 4p-4h, and 1% 6p-6h emerges and suggests a
mixture of deformed and superdeformed configurations.
The excited 0+ state is calculated to be comprised of
33% 0p-0h, 12% 2p-2h, 54% 4p-4h, and 1% 6p-6h neu-
tron particle-hole configurations, painting a rather com-
plex picture of 32Mg where the second 0+ state carries
significant spherical as well as superdeformed configura-
tions, rendering the simple concept of a deformed ground
state and a spherical excited 0+ as too simplistic. The
confirmation and further characterization of the very in-
teresting 0+2 state of 32Mg appears warranted to clarify
the important phenomenon of shape coexistence inside
the N = 20 IoI.

Seemingly contradictory conclusions to what was in-
ferred by Wimmer et al. (2010), termed the 32Mg puzzle,
were drawn from a simple two-level mixing model (For-
tune, 2011, 2012) and resolved recently using a three-level
mixing approach (Macchiavelli et al., 2016), in line with
a more complicated structure that has been suggested by
the shell-model calculations mentioned above.

7. Spectroscopy of the nuclear wave function through direct
reactions

Direct nuclear reactions have proven to be a vital tool
for the spectroscopy of the single-particle components in
the nuclear wave function, showing direct relevance to the
probing of the shell evolution. In a glancing collision of a
projectile and a target nucleus, one or a few nucleons are
transferred directly without formation of an intermediate
compound system.

The classic low-energy transfer reactions, that for sta-
ble target nuclei use a variety of light projectiles to probe
occupied single-particle levels and valence states (Mac-
farlane and French, 1960), e.g., the (d, p) neutron-
adding and the (d, 3He) proton-removing transfers, are

now employed at low-energy rare-isotope facilities in
inverse kinematics when low-emittance, high-intensity
rare-isotope beams are available (see (Burgunder et al.,
2014; Catford et al., 2010; Fernández-Domı́nguez et al.,
2011; Gaudefroy et al., 2006; Kanungo et al., 2010;
Wimmer et al., 2010) for examples from different facil-
ities). At intermediate beam energies (∼100 MeV/u),
thick-target γ-ray tagged one- and two-nucleon knock-
out reactions on 9Be or 12C targets have been devel-
oped into spectroscopic tools to study single-nucleon hole
states and correlations of two like nucleons in exotic nu-
clei (Bazin et al., 2003; Gade et al., 2008; Hansen and
Tostevin, 2003; Simpson and Tostevin, 2010; Simpson
et al., 2009; Tostevin et al., 2004; Yoneda et al., 2006).

By comparing cross sections with C and Pb targets,
it is also possible to extract Coulomb reaction cross sec-
tions, which are used to look into neutron shell structure
through the halo formation in 31Ne and 37Mg (Kobayashi
et al., 2014; Nakamura et al., 2009, 2014).

At the high beam energies, typically exceeding
70 MeV/nucleon, a theoretical description (Tostevin,
1999) in the framework of eikonal trajectories and sud-
den approximation is applicable. Therefore, the model
dependence is limited as compared to the classical low-
energy transfer reactions, whose description involves the
Distorted Wave Born Approximation (DWBA) or higher-
order formalisms, that depend strongly on entrance- and
exit-channel optical model potentials (Kramer et al.,
1988), which have not been established yet for nuclei
with extreme neutron-to-proton ratios. It was shown
recently that low-energy transfer reactions and nucleon
removal reactions can be analyzed to give consistent re-
sults (Mutschler et al., 2016b). Both knockout and trans-
fer reactions have been used to track the descent of in-
truder states along isotopic chains approaching the IoI.
Two complementary examples are reviewed in the follow-
ing.

The onset of pf shell intruder configurations was
quantified along the Mg chain with γ-ray tagged one-
neutron removal measurements, 9Be(30Mg,29Mg+γ)X
and 9Be(32Mg,31Mg+γ)X, performed at NSCL (Terry
et al., 2008). From the shapes of the 29,31Mg parallel mo-
mentum distributions gated on the individual γ-ray tran-
sitions, the 1.095 and 1.431 MeV states in 29Mg and the
0.221 and 0.461 MeV levels in 31Mg were shown to be of
ℓ = 1 and ℓ = 3 orbital angular momentum, respectively,
identifying p3/2 and f7/2 single-neutron configurations
in the ground states of both 30Mg and 32Mg.From the
partial cross sections for the population of the negative-
parity states in the knockout residues, f7/2 and p3/2
spectroscopic factors were deduced. The resulting quan-
tification of the onset of f and p intruder configura-
tions in the ground states of 30Mg and 32Mg is seen
in Fig. 53: the neutron pf -shell strengths increase sig-
nificantly at N = 20, signaling a dramatic shift in the
nuclear structure of 32Mg as compared to 30Mg. The
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Figure 53 Spectroscopic factors from 9Be(32,30Mg,31,29Mg)X
knockout reactions to two negative-parity states of 32,30Mg.
Deduced spectroscopic factors are indicated by blue point
with error bar (Terry et al., 2008). Single-particle occupancies
obtained from SDPF-M shell model (Utsuno et al., 1999) are
represented by blanc histograms. Spectroscopic factors calcu-
lated with the EEdf1 interaction are shown by red histograms
(Tsunoda, 2018).

spectroscopic factors calculated with EEdf1 interaction
(Tsunoda, 2018; Tsunoda et al., 2017) show a good agree-
ment with experiment, when this calculation includes
a reduction factor of 0.75 that is inherent to knockout
reactions (Tostevin and Gade, 2014). The occupation
numbers obtained with the SDPF-M interaction (Utsuno
et al., 1999) were used in the analysis of (Terry et al.,
2008) as shown in Fig. 53, depicting a similar trend.
Compared to the SDPF-M interaction, the EEdf1 inter-
action gives a better description for the energy levels for
32,31Mg in Figs. 51 and 50, respectively, as well as for the
spectroscopic factors in Fig. 53. The latter illustrates the
amount of the excitations across the N=20 magic gap.
We stress that the shell evolution through this EEdf1
interaction (see Fig. 44) exhibits similarities to earlier
results shown in Figs. 46 and 47.

In the Ne isotopic chain, a γ-ray tagged neutron-
adding transfer reaction, d(26Ne,27Ne+γ)p, performed
at GANIL, identified for the first time the (neutron un-
bound) 7/2−1 state at 1.74(9) MeV in 27Ne (Brown et al.,
2012). The ℓ = 3 orbital angular momentum of the state
was concluded from the proton angular distribution in
comparison to ADWA transfer reaction calculations (see
Figure 54).

The 3/2− state could be identified at 0.765 MeV, con-
firming earlier work that could only restrict the orbital
angular momentum of this state to ℓ = 0, 1 (Terry et al.,
2006). The fact that the 7/2− state is higher in energy
than the 3/2− level presents a remarkable inversion from
the ordering closer to stability and disagrees with the se-
quence predicted by the SDPF-M Hamiltonian (Brown
et al., 2012). This result will serve as an important
benchmark for new effective shell-model Hamiltonians in
the region in their quest to describe the shell evolution
in and around the IoI.

Figure 54 Proton angular distribution for the new neutron-
unbound state discovered at 1.74 MeV in 27Ne. In comparison
to reaction theory, ℓ = 3 orbital angular momentum was as-
signed (Brown et al., 2012). Reprinted with permission from
Brown et al. (2012).

Figure 55 (a) Evidence for a reduction of the 2p3/2-2p1/2 spin-

orbit splitting in the N = 21 isotonic chain at 35Si. For com-
parison, the spin-orbit splitting remains unchanged between
41Ca and 37S. Reprinted with permission from Burgunder
et al. (2014). (b) Change of the proton density along the
N = 20 isotone line from density functional theory (relativis-
tic mean-field with the DDME2 interaction). The vanishing
proton occupation of the s1/2 orbital leads to a central de-
pletion in the density that has been likened to a “bubble”
(Figure by O. Sorlin, J. P. Ebran).

8. More on direct reactions: Tracking single-particle strengths
to learn about the spin-orbit force

The spin-orbit splitting is a corner stone of the nuclear
shell model. Recent work using inverse-kinematics trans-
fer reactions (Burgunder et al., 2014) and one-proton
knockout reactions (Mutschler et al., 2016a) on the key
nucleus 34Si, located at the boundary of the island of
inversion, explored the signatures and evolution of the
spin-orbit splitting in neutron-rich nuclei.
At GANIL, the single-particle nature of states in 37S

and 35Si and the associated spectroscopic strengths were
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obtained for the first time by inverse-kinematics (d, p)
reactions (Burgunder et al., 2014). In comparison to re-
action theory, the proton angular distributions were mea-
sured (i) to assign ℓ values for the transferred neutrons
from their shape and (ii) to extract spectroscopic factors
from their absolute scale. By tracking the location of the
dominant 2p1/2 and 2p3/2 fragments, it was reported that
the spin-orbit splitting between the 2p3/2 and 2p1/2 neu-
tron orbits decreases by 25% in 35Si relative to the less
exotic isotone 37S, while almost no change was found for
the neutron 1f7/2 - 1f5/2 spin-orbit splitting (Figure 55
(a)) (Burgunder et al., 2014). We can understand this
feature as explained below. The major difference from
35Si to 37S is the occupancy of the proton 2s1/2 orbit,
which has a large effect on the 2p3/2-2p1/2 splitting due
to the 2b-LS force (see Sec. IV.F). On the other hand,
the 2s1/2 occupancy has a weak (vanishing) effect on the
1f7/2-1f5/2 splitting due to the 2b-LS (tensor) force (see
the third item of the remarks in Sec. IV.B.4).

Further studies on the neutron 2p3/2-2p1/2 splitting
of the same nuclei has been made recently (Kay et al.,
2017), where the change of this splitting was interpreted
in terms of loose binding effects. It, however, can be de-
scribed in terms of the monopole effect of the 2b-LS force,
as described in Supplemental Material Sec. S6. Further
studies are of great interest.

Electron scattering off stable nuclei demonstrated that
their central densities are saturated, as for a liquid drop,
for example. In rare isotopes at the extreme of isospin,
the possibility of a depleted central density, or a “bub-
ble” structure, has been discussed for more than 40 years.
If observed, it will be of much interest. In general, cen-
tral depletions will arise from the reduced occupation of
low-ℓ single-particle orbits, as exemplified in Fig. 55 (b)
for the N = 20 isotones 40Ca, 36S, and 34Si with cal-
culated proton density distributions from a relativistic
mean-field functional (DDME2). The central depletion
in the proton density for 34Si is attributed to a vanish-
ing occupancy of the proton 2s1/2 orbital. A one-proton
knockout measurement from a 34Si projectile beam at
NSCL, combined with in-beam γ-ray spectroscopy us-
ing GRETINA, revealed indeed that the proton 2s1/2
orbital in this nucleus is depleted, possibly leading to
a depleted central proton density or “bubble” inside of
neutron-rich 34Si, making this the best candidate for this
phenomenon to date (Mutschler et al., 2016a). In knock-
out reactions, the shape of the parallel momentum dis-
tributions of the knockout residues is sensitive to the ℓ-
value of the removed nucleon and the partial cross sec-
tions for the population of individual final states can be
used to extract spectroscopic factors in comparison to
reaction theory (Hansen and Tostevin, 2003). With this
approach, the cross section for the removal of an ℓ = 0
proton from 34Si was found to be only 10% of that for
the proton removal from 36S (Mutschler et al., 2016a,b).
Since the cross section for the removal of protons from an

orbit is proportional to the orbit’s proton occupancy, this
difference in cross section was interpreted as evidence for
a depleted 2s1/2 proton orbital in 34Si, in striking con-
trast to the same orbital being fully occupied in the 36S
isotone (Khan et al., 1985; Mutschler et al., 2016b).

9. At the southern border: continuum and shell evolution

- cases with multi-nucleon transfer reaction -

On the nuclear chart, two protons south of the island-
of-inversion nucleus 30Ne lies 28O. The N = 20 nucleus
28O has been suspected to be unbound with respect to
neutron decay based on cross section or yield systemat-
ics established in its attempted production in the frag-
mentation of intermediate-energy 36S and 40Ar beams at
GANIL and RIKEN, respectively (Sakurai et al., 1999;
Tarasov et al., 1997). The neutron-rich oxygen isotopes
at the southern border of the island of inversion have been
a formidable testing ground for nuclear theory, where the
particularly visible feature is that 24O is the last bound
oxygen isotope, while the fluorine isotopes with just one
more proton exist out to at least mass number A = 31,
as sometimes called the “oxygen anomaly” in (Otsuka
et al., 2010a). Shell-model approaches (Otsuka et al.,
2010a; Tsukiyama et al., 2015; Volya and Zelevinsky,
2005), mean-field theory (Co’ et al., 2012; Erler et al.,
2012) and ab-initio type calculations (Bogner et al., 2014;
Cipollone et al., 2013; Duguet and Hagen, 2012; Hagen
et al., 2010, 2009; Simonis et al., 2016) have been made
in the quest for new physics in nuclei near driplines. The
incorporation of the continuum is an ongoing effort in the
development of many-body approaches.

The nucleus 26O is a unique three-body system since
it was found to be barely unbound, only able to de-
cay by two-neutron emission with an energy of less than
20 keV (Kondo et al., 2016). Two early measurements
at NSCL and GSI provided the first evidence for the
ground-state resonance of 26O at 150+50

−150 keV (Lun-
derberg et al., 2012) and 25±25 keV (Caesar et al.,
2013), respectively. In all measurements, the experi-
mental scheme was very similar. In kinematically com-
plete measurements, the energy of decaying resonances
was reconstructed in invariant mass spectroscopy from
the momentum vectors of the two emitted neutrons and
the residue in 24O+n+n. The highest-statistics mea-
surement yet was performed at RIBF/RIKEN with the
SAMURAI spectrometer (Kobayashi et al., 2013; Kondo
et al., 2016; Nakamura et al., 2017). From reconstruction
of the invariant mass, the ground state of 26O was found
at only 18±3(stat)±4(syst) keV above the two-neutron
decay threshold (Kondo et al., 2016). In addition, a can-
didate for the excited 2+1 state at 1.28+0.11

−0.08 MeV was
identified for the first time.

Regarding the shell evolution, one finds, in (Kondo
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Figure 56 Schematic pictures of the doorway state for (a)-(c)
E1 excitation and (d)-(f) a reaction induced by the removal of
a proton. Dashed lines indicate the neutron threshold. Red
filled circles indicate the neutron being discussed, while red
open circles are neutron holes. Blue circles are protons, and
crossed blue circles are absent after the initial impact of the
reaction. From (Tsukiyama et al., 2015).

et al., 2016), “The structure of 26O may be influenced
by shell evolution, nn correlations, and continuum ef-
fects.” It is, however, not trivial how and what “reso-
nance” states can be created in various transfer reactions
including those involving heavy ions. Using Fig. 56, we
shall explain schematically the relation between the shell
evolution and the neutron emission after such reactions:
panels (a)-(c) exhibit the doorway state in a (γ, n) pro-
cess, while panels (d)-(f) depict a similar doorway state
due to a sudden removal of a proton by a transfer reac-
tion. The removal of the proton lifts up neutron ESPEs
by the amount of its monopole effect (see panel (d)). If
this single-particle state is in the continuum, it becomes
a doorway state as shown in panel (e). Its wave func-
tion is the same as the corresponding state before the
reaction. The neutron in the doorway state goes away
through one of the continuum state, with the probability
given basically by the squared overlap between the door-
way state and such continuum states. The shape of the
energy spectrum is determined by this probability, with
the peak shifted by continuum couplings. Thus, the neu-
tron spectrum indicates the combined effect of the shell
evolution and the continuum (see details in (Tsukiyama
et al., 2015)). Although actual situations may contain
different details, the basic picture is expected to remain.
A possible long lifetime of the ground-state resonance

that would allow for the term of “two-neutron radioac-

tivity” is controversially discussed (Caesar et al., 2013;
Grigorenko et al., 2013; Kohley et al., 2013; Kondo et al.,
2016) and remains an interesting possibility for a new
phenomenon beyond the neutron dripline.

B. Neutron halo observed in exotic C isotopes and N=16
magic number

Halo nuclei have been identified through their greatly
enhanced interaction cross section measured in the bom-
bardment with a variety of targets. With the example
of the C isotopes, we discuss in the following the re-
lationship between halo formation and shell evolution.
The SFO-tls (Suzuki and Otsuka, 2008) Hamiltonian is
used, while the CK (Cohen and Kurath (1965)) and MK
(Millener and Kurath (1975)) Hamiltonians were em-
ployed earlier. The SFO-tls Hamiltonian is designed for
p-sd shell nuclei with the cross-shell tensor and 2b-LS
parts taken, respectively, from the VMU interaction (see
Sec.IV.C) and the M3Y 2b-LS interaction (see Secs. IV.F
and S5, so as to include shell-evolution effects in a man-
ner quantitatively similar to the results presented so far.
The sd-shell part is improved also by taking into account
the effects of three-body forces (see Secs. V.C and V.D).
Calculations with this Hamiltonian reproduce well the
shell evolution in the 15C-16N-17O isotones including the
5/2+-1/2+ inversion (see Sec. IV.F).

Figure 57 (a) depicts neutron ESPEs of C isotopes
obtained from the SFO-tls Hamiltonian in the filling
scheme. While the 2s1/2 orbit is below the 1d5/2 orbit in
12C, the 2s1/2 ESPE is raised through A=20, crossing the
1d5/2 orbit. This is because the neutron-neutron 1p1/2-
2s1/2 and 1d5/2-2s1/2 monopole interactions are both re-
pulsive, and push up the 2s1/2 orbit as neutrons occupy
the 1p1/2 and 1d5/2 orbits. This disappearance of the
gap at N=14 in C isotopes around A=16 was reported
in (Stanoiu et al., 2008). This shell evolution produces
the 1/2+ ground state in 15C, and the 3/2+ ground state
in 17C which is natural with dominant neutron 1d35/2 con-
figuration. The present irregular variation of the ground-
state spin can thus be understood. Figure 57 (a) indi-
cates that the N=16 magic gap appears around A=16. It
then disappears around A=20 because of the raise of the
2s1/2 orbit. Interestingly the 2s1/2 orbit becomes loosely
bound. Because this is an s orbit, a neutron halo occurs
in the 1/2+ ground state of 19C with the s11/2 d45/2 neu-

tron configuration, consistently with experiments (Ka-
nungo et al., 2016; Nakamura et al., 1999). This shows
how the shell evolution is related to the neutron halo
formation. We note that the 2s1/2 orbit is raised by a
repulsive effect simulating the three-body-force effect as
mentioned above. As the 20C ground state consists, to
a large extent, of the sub-shell closure of the d5/2 orbit
in the shell-model calculation (Suzuki et al., 2016), no
neutron halo is expected there.
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Figure 57 (a) ESPEs for neutron orbits in C isotopes ob-
tained with SFO-tls interaction, (b) ground-state energies of
C isotopes obtained with SFO-tls, SFO and WBP as well as
experimental data. In (a), the filling scheme is taken in the
order of 1p1/2, 1d5/2, 2s1/2 and 1d3/2, as this order represents
rather well the configurations of actual eigenstates. The ES-
PEs at their closures are connected. The N=16 (sub-)magic
gap is highlighted by the yellowish circle.

Figure 57 (a) indicates that the N=16 magic num-
ber appears again around A=22, which brings about an-
other interplay between the shell evolution and the neu-
tron halo. Figure 57 (b) shows the ground-state energies
of C isotopes relative to that of 12C for SFO-tls, SFO
andWBT (Warburton and Brown, 1992) Hamiltonians in
comparison to experiment. A repulsive neutron-neutron
monopole interaction contained in the SFO-tls interac-
tion pushes up the energy in the neutron-rich region, re-
producing the experimental data, similarly to O isotopes
discussed in Secs. V.C and V.D. Figure 57 (a) shows
that the 2s1/2 orbit is rather well bound with an ESPE
below -2 MeV at A=22 in the filling scheme, indicative
of a situation opposing a two-neutron halo. On the other
hand, Fig. 57 (b) displays that 22C is barely bound with
respect to 20C as far as the total binding energy is con-
cerned. The many-body correlations in 22C bring about
the formation of two-neutron halo, which is unlikely from
the viewpoint of the mean potential. The neutron halo
of 22C was reported experimentally in (Kobayashi et al.,
2012; Tanaka et al., 2010; Togano et al., 2016), while the-
oretical studies were performed with three-body models
(Horiuchi et al., 2006; Kucuk and Tostevin, 2014; Ya-
mashita et al., 2011). We report here a rather different
approach: The extended shell-model calculation is per-
formed not only by including usual shell-model correla-
tions but also by taking into account the interaction be-
tween the halo neutrons taken from the low-energy limit
of neutron-neutron scattering (Suzuki et al., 2016). Fig-
ure 58 depicts the radius of the two-neutron halo (∼6-7
fm) consistently with experiment (Togano et al., 2016);
the halo radius deduced from the matter radius (Togano
et al., 2016) appears to be 6.74+0.71

−0.48 fm, which is well
below the value obtained for such a small separation en-
ergy by the usual simple relation (halo radius>10 fm for
S2n <0.3 MeV) (Suzuki et al., 2016). Thus, the combi-
nation of shell evolution and dynamical correlations can
give a proper description of this unusual formation of a
two-neutron halo. It is of interest that the ground-state

Figure 58 RMS radius of the halo neutron as a function of
two-neutron separation energy, S2n. Blue dashed line and
filled circle indicate the result obtained with the core of the
closed-shell 20C, while red solid line and filled circle the result
with the core of the correlated 20C. The result obtained from
WS potential (Sn=S2n/2) without vnn is shown by the black
dotted line. The range of S2n obtained from (ENSDF, 2017)
is shown by green thin vertical lines. Green arrows denote
values discussed in (Kobayashi et al., 2012). From Suzuki
et al. (2016).

neutron halo seems to occur in 19C as a single-particle
phenomena and in 22C as a result of correlations.
As Z becomes smaller, below Z=6, the neutron 1p1/2

orbit is raised due to weakened attraction with the pro-
ton 1p3/2 orbit, and approaches the 2s1/2 orbit. This
shell evolution leads to the vanishing of the shell closure
at N=8 and the SO magic number N=6 becomes rein-
forced (see Fig. 2). The decrease of the gap between the
1p1/2 and 2s1/2 orbits enhances large admixture of sd-
shell components in the ground states of nuclei such as
12Be as well as in the dripline nucleus 11Li.

C. Shell evolution examined by (e,e’p) experiment.

The electron scattering enables us to carry out a
model-independent analysis of obtained data, and there-
fore provides us with an excellent and unique tool to see
the nuclear structure, apart from the limitation due to
low cross sections and the limited applicability only to
stable nuclei at present. Among various types of experi-
ments, the (e,e’p) experiment is a superb method to in-
vestigate proton single-particle properties including the
shell structure. Figure 59 shows, in the upper panels, the
distribution of the proton-hole strengths with respect to
the 48Ca nucleus measured with the 48Ca(e, e′p)47K re-
action (Kramer et al., 2001). In the same figure, the
measured distribution is compared to shell-model calcu-
lations using the SDPF-MU interaction, with (left lower
panel) and without (right lower panel) the tensor force.
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Figure 59 Distribution of proton hole strengths in 48Ca com-
pared between the (e, e′p) data (Kramer et al., 2001) and
shell-model calculations with the SDPF-MU interaction. The
left and right panels show the calculations with and without
the cross-shell tensor force, respectively. The calculated over-
all spectroscopic factors are quenched by 0.7. From Utsuno
et al. (2012a).

The sd-pf cross-shell part of the SDPF-MU interaction is
the VMU interaction with which many theoretical analy-
ses have been carried as mentioned earlier in this article,
and contains the same tensor force as is used through-
out this article. Figure 59 exhibits that calculations by
the SDPF-MU interaction with the tensor force repro-
duce quite well the measurement for both energies and
strengths. The proton 1d5/2-1d3/2 splitting is calculated
to be 5.1 MeV with the SDPF-MU interaction. Once the
tensor part of the interaction is switched off, the 1d5/2
strengths are shifted to higher energies by the absence
of the mechanism shown in Fig. 17. Note that the hole
energy goes up when the corresponding orbit is lowered.

The spin-orbit splitting in 40Ca is estimated to be
∼ 6.7 MeV on the basis of the centroid energy using
the (d,3He) reaction data (Doll et al., 1976), where the
1d5/2 strengths are highly fragmented in the Ex > 5 MeV
region. A precise measurement for 40Ca similarly to the
one for 48Ca is of much interest. See Sorlin and Porquet
(2008) for details of deducing proton-hole energies in the
K isotopes from the (d,3He) data.

D. Other cases in heavy nuclei

Some of other relevant studies on heavier nuclei are
worked out in the Supplemental Material Sec. S7 (Fe-
derman and Pittel, 1977; Federman et al., 1979, 1984;
Goodman, 1977; Kay et al., 2008, 2011; Ogawa et al.,
1978; Pittel et al., 1993; Santamaria et al., 2015; Schiffer

et al., 2013; Zeldes et al., 1983).

VII. SUMMARY

This article presents a review of the structure of exotic
nuclei mainly from the viewpoint of the shell evolution
driven by nuclear forces. While shell evolution implies
changes of the shell/magic structure, such changes, in
particular, substantial and/or systematic ones, were not
expected several decades ago. In fact, the shell/magic
structure proposed by Mayer and Jensen was shown to
be extremely successful in the description of the struc-
ture of nuclei. A few exceptional cases of notable changes
were known, with their example mentioned in Sec. II and
Sec. III.G. Certain changes of the shell structure have
gradually been noticed and some empirical analyses were
made, as reviewed, for instance, in (Grawe, 2004; Sor-
lin and Porquet, 2008, 2013). However, over the past
two decades, many cases of substantial and systematic
changes of the shell/magic structure have been clarified
with underlying theoretical mechanisms and experimen-
tal data thanks mostly to Rare-Isotope (RI) beam ex-
periments. Among the various outcomes and phenom-
ena, particularly visible ones are the identification of new
magic numbers (16, 32, 34, ...) and the recognition of
dimished traditional magic numbers (8, 20, 28, ...), oc-
curring in certain regions of the Segré (nuclear) chart.
Thus, the shell evolution turned out to be a distinctive
phenomenon, visible particularly in exotic nuclei.

The shell evolution is driven by the monopole interac-
tion, which is a component of the nuclear force in nuclei.
The monopole interaction has been discussed in various
ways since 1964 (Sec. III.E), and we review, throughout
this article, its underlying mechanism and its appearance
in a variety of physics phenomena.

After a brief survey of earlier works in Secs. I and
II, we start with a possible definition of the monopole
interaction in Sec. III, which is applicable for closed-
shell and open-shell nuclei. In the case of atomic nu-
clei, rotational invariance is imposed as a symmetry con-
straint, and this symmetry produces degeneracy with re-
spect to the magnetic substates of each single-particle or-
bit. The “monopole” interaction then arises for a given
two-body interaction from this degeneracy: the motion
of two interacting particles in given single-particle or-
bits j and j′ can take various two-body quantum states.
The monopole matrix element is an average with respect
to them (Sec. III). The effective single-particle energy
(ESPE) is obtained by combining this monopole inter-
action and a given configuration (an occupation pattern
over all single-particle orbits) (Sec. III.D). The ESPEs
are operators, but can be c-numbers if the configuration
is fixed. The ESPEs calculated for a typical configuration
provide us with a clear and simple perspective of nuclear
structure, for example, as neutrons are added to a spe-
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cific orbit in an isotopic chain. While the definition or
meaning of the ESPE might look different among differ-
ent formulations, they are shown to be consist (Sec. III.E,
Sec. III.F).
The monopole interactions of the central, tensor, 2-

body spin-orbit and three-nucleon forces produce differ-
ent characteristic features in the variations of the ESPEs
(i.e., shell evolution) as illustrated in Secs. IV and V.
The tensor and 2-body spin-orbit forces provide unique
and notable effects because of their spin dependences
(Sec. IV). Many of the underlying properties of these
many-body effects were clarified rather recently both the-
oretically and experimentally, although these forces have
been known for several decades. Because of the renor-
malization persistency, the monopole effect of the tensor
force can be evaluated in a simple way (Sec. V.A).
The central force basically senses similarities of radial

single-particle wave functions (Sec. IV.A), and produces
important contributions; in many of the cases of shell
evolution, the central and tensor forces work coherently
with similar magnitudes. For instance, this coherence is
directly related to the appearance of the N=34 magic
number, (Sec. IV.D.4) as well as the shell structure on
top of the 100Sn closed shell (Sec. IV.D.2), for which ex-
tensive experimental studies are ongoing. Some aspects
of central-force effects have been discussed since its early
days (Secs. IV.A and IV.D). A wide variety of mean-
field approaches, non-relativistic and relativistic, have
been proposed for the description of the shell structure
including various functionals for the tensor-force effects
(Sec. IV.E).
Modern ab initio approaches are expected to derive

effective NN interaction from the QCD level (Sec. V),
including three-nucleon-force effects. The monopole ef-
fect from the three-nucleon forces has been shown to be
crucial for nuclear binding, including the dripline of the
oxygen isotopes (Sec. V).
The shell evolution was evaluated in many analyses

presented in this review in terms of the VMU interaction
and the 2-body spin-orbit force in the M3Y interaction.
These are given in simple analytic forms, and provide us
with a consistent assessment in a unified way. Although
these interactions can be improved for fine details, we
focused on overall trends.
Further studies on the effective NN interactions, in-

cluding those of the origin in the three-nucleon forces,
are on-going with various approaches, but definitely more
studies are needed, to develop and deepen the physics
of exotic nuclei up to driplines. The shell evolution is
expected to play a major role as it reflects an average
property.
The effects of the shell evolution in actual nuclei have

been examined and explored experimentally as discussed
in Sec. VI and other parts. The usage of a variety of ex-
perimental probes, from the γ-ray spectroscopy to trans-
fer reactions to electron scattering, are demonstrated in

Sec VI with a focus on the Island of Inversion.
The lowering of intruder states containing particle-hole

excitations across a magic gap is a dominant phenomenon
in the island of inversion or in the shape coexistence in
general (also Secs. I and II), and has naturally strong
connections to the shell evolution. Various experimental
probes clarify different aspects of it.
The interplay of the shell evolution with the contin-

uum physics and weakly bound states, etc, is mentioned
in Sec VI.A.9. This subject is being developed, with great
interest both theoretically and experimentally, and will
be a major trend in the forth-coming studies. In those
states, substantial changes may appear in the effective in-
teraction, single-particle wave function, etc., and the field
continues to devise innovative experimental approaches
to investigate them. After all, it is of much interest how
the shell evolution changes/persists at the dripline as well
as for loosely bound states.
As the shell evolution will keep unveiling static and

dynamic features of exotic nuclei not expected within
the conventional view, there will be intriguing, diverse
and glorious frontiers emerging in many ways in nuclear
structure physics. Such frontiers do include heavy nu-
clei eventually up to the nuclei of superheavy elements,
where improvements to predictive power will also con-
tribute. Furthermore, such changes in the understanding
and properties of exotic nuclei may impact also other
disciplines of science, for instance, astrophysics and as-
tronomy, and nuclear engineering, as neutron-rich exotic
nuclei are intermediate products in explosive stellar pro-
cesses and nuclear reactors.

VIII. ACKNOWLEDGMENTS

Useful discussions with Drs. J.P. Schiffer, B. Kay, A.
Poves, F. Nowacki, H. Grawe, M. Gorska and P. Ring
are acknowledged. T.O. thanks Drs. Y. Tsunoda and J.
Menendez for valuable discussions on the monopole inter-
action, and Dr. T. Miyagi for his great contributions to
the overview of ab-initio approaches. T.O. is grateful also
to Drs. M. Honma, R. Fujimoto, T. Matsuo, D. Abe and
K. Tsukiyama, and Profs. Y. Akaishi and A. Schwenk for
many relevant productive collaborations. He acknowl-
edges Dr. N. Tsunoda for private communications and a
related figure besides fruitful collaborations. This work
was supported in part by the HPCI Strategic Program
(The origin of matter and the universe) and “Priority Is-
sue on Post-K computer” (Elucidation of the Fundamen-
tal Laws and Evolution of the Universe) from MEXT and
JICFuS (hp140210, hp150224, hp160211,hp170230), and
is a part of the RIKEN-CNS joint research project on
large-scale nuclear-structure calculations. T.O. acknowl-
edges support in part by the Grant-in-Aids for Scientific



53

Research (A) 20244022 of the JSPS. A.G. acknowledges
support from the US National Science Foundation un-
der Grant No. PHY-1102511 and PHY-1565546 (NSCL).
T.S. acknowledges support in part by the Grant-in-Aids
for Scientific Research under Grant No. JP15K05090
of the JSPS. Y.U. acknowledges support in part by the
Grant-in-Aids for Scientific Research under Grant No.
JP15K05094 of the JSPS.

REFERENCES

Alder, K., A. Bohr, T. Huus, B. Mottelson, and A. Winther
(1956), Rev. Mod. Phys. 28, 432.

Anguiano, M., G. Co’, V. De Donno, and A. M. Lallena
(2011), Phys. Rev. C 83, 064306.

Anguiano, M., M. Grasso, G. Co’, V. De Donno, and A. M.
Lallena (2012), Phys. Rev. C 86, 054302.

Audi, G., M. Wang, A. Wapstra, F. Kondev, M. MacCormick,
X. Xu, and B. Pfeiffer (2012), Chinese Physics C 36 (12),
1287.

Bansal, R. K., and J. B. French (1964), Phys. Lett. 11, 145.
Baranger, M. (1970), Nucl. Phys. A 149, 225.
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Wimmer, K., T. Kröll, R. Krücken, V. Bildstein,
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