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For over 40 years, physicists have considered possible uses for neutrino detectors in
nuclear nonproliferation, arms control, and fissile materials security. Neutrinos are an
attractive fission signature because they readily pass through matter. The same property
makes neutrinos challenging to detect in systems that would be practical for nuclear secu-
rity applications. This colloquium presents a broad overview of several potential neutrino
applications, including the near-field monitoring of known reactors, far-field monitoring
of known or discovery of undeclared reactors, detection of reactor waste streams, and
detection of nuclear explosions. We conclude that recent detector advances have made
near-field monitoring feasible. Farther-field reactor detection and waste stream detec-
tion monitoring are possible in some cases with further research and development. Very
long-range reactor monitoring and nuclear explosion detection do not appear feasible for
the foreseeable future due to considerable physical and/or practical constraints.
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I. INTRODUCTION

The advent of nuclear weapons as the first practical
application of nuclear fission profoundly affected the dy-
namics of international relations. The destructive poten-
tial of nuclear weapons rendered conflicts in which they
could be used potentially catastrophic, with weapons
effects far surpassing those of conventional armaments.
The effects of nuclear weapons cannot be constrained to
the location where they are used, because of the sub-
sequent radioactive fallout and potential multi-year ef-
fects on the global climate. While the United States
and the USSR avoided using nuclear weapons throughout
the Cold War, both took part in an arms race that, at
its apex in 1986, resulted in a stockpile of an estimated
63,000 warheads (Kristensen and Norris, 2013). During
the Cold War and afterwards, nuclear weapons prolifer-
ated, the production of special nuclear materials contin-
ued, and nuclear knowledge spread across the globe, even
in states that did not have nuclear weapons – creating an-
other major risk, nuclear terrorism. Today we are faced
with nine countries having a total of nearly 15,000 nu-
clear weapons and there are additional countries at the
verge of or actively seeking a nuclear weapons capability
(Kristensen and Norris, 2017).

Recognition of these unique challenges led to major in-
ternational efforts to curb the testing and use of nuclear
technology for the purpose of nuclear warfare and to bol-
ster nuclear security. To gain more coherence and legit-
imacy, these efforts have been articulated through sev-
eral international treaties – most notably the Treaty on
the Non-proliferation of Nuclear Weapons (NPT), which
came into force in 1970. While the NPT provides an in-
stitutional and legal framework to curb proliferation, it
also requires the development and adoption of effective
technical measures for verification.

Applied antineutrino physics has the potential to pro-
vide novel verification technologies, especially with re-
gard to plutonium production and diversion. First we
give a brief summary of the current safeguards frame-
work. Next, we provide an overview of the current state
of knowledge and opportunities for future technical de-
velopments in the area of antineutrino detection for nu-
clear security, with a focus on four areas: monitoring of
fissile material production, discovery and exclusion of un-
declared reactors, monitoring of spent fuel and reprocess-

ing waste, and confirmation of nuclear explosions. For
each of these applications we discuss the current technical
means of verification and highlight additional capabilities
offered by antineutrino detection.

II. CURRENT SAFEGUARDS FRAMEWORK

The Treaty on the Non-Proliferation of Nuclear
Weapons (United Nations Office for Disarmament Af-
fairs, 1968) is the central pillar of the international le-
gal framework addressing the security challenges arising
from nuclear weapons. It has been in force since 1970 and
has 191 signatories, making it the most widely accepted
arms control and disarmament agreement to date.

The control of fissile materials1 is the central concern in
nuclear security, as already recognized in 1946 (Lilienthal
et al., 1946). Under the NPT, non-nuclear-weapon2 state
parties to the Treaty are required to declare their “source
of special fissionable material in all peaceful nuclear ac-
tivities,” which includes civilian nuclear power produc-
tion. To ensure proper accounting of this nuclear mate-
rial of proliferation concern, states conclude comprehen-
sive safeguards agreements or voluntary offer agreements
with the International Atomic Energy Agency (IAEA),
where fissile material production is monitored via inspec-
tions and accounting measures. All stages of the nuclear
fuel cycle are subject to IAEA safeguards; this includes:
uranium mining, uranium enrichment, fuel fabrication,
use in a reactor, spent nuclear fuel (SNF), and, where
applicable, reprocessing. There are currently 454 oper-
ating civilian nuclear power reactors in the world with
dozens more under construction (World Nuclear Associ-
ation, 2019), and thus monitoring of fissile material pro-
duction at known nuclear reactor facilities is a key chal-
lenge for the IAEA.

An additional challenge in verifying the NPT is con-
firming that a nation has declared all of its nuclear ma-
terial and activities. Such a task is hindered by the need
to continuously verify the absence of undeclared nuclear
reactors, materials, and weapons-relevant activities. The
detection of undeclared nuclear reactors has historically
been largely supported through national technical means,
which involves the collection and analysis of materials,
reactor emanations, and other information by individual
states to verify compliance with international agreements
(Stubbs and Drell, 2013).

Nuclear-related turmoil occurring at the end of the
Cold War, including the covert Iraqi nuclear weapons

1 Fissile materials are defined by their ability to sustain a nuclear
chain reaction with neutrons of thermal energy, e.g. 235U and
239Pu.

2 Non-nuclear-weapon states are defined as state parties to the
NPT that did not manufacture and explode a nuclear weapon or
other nuclear explosive device before 1 January 1967.
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program (Davis and Kay, 1992), the refusal of North
Korea to allow certain IAEA inspections (Hecker et al.,
2018), and uncertainty surrounding the status of South
Africa’s nuclear program (Stumpf, 1996), led the IAEA
and the international community to recognize that ex-
isting safeguards measures failed to provide a complete
picture of a state’s nuclear activities. In response, the
Model Additional Protocol (IAEA, 1998) was created to
supplement existing cooperative IAEA safeguards with
strengthened measures, designed to provide greater as-
surance for detection of undeclared nuclear materials and
activities. The measures include the incorporation of
satellite imagery and other open-source data, and access
to information was also increased, through an expanded
scope of reporting, declarations, and complementary ac-
cess to nuclear sites. The Model Additional Protocol
also emphasized a balancing need for non-intrusive mon-
itoring approaches. While the Model Additional Proto-
col has already significantly bolstered IAEA safeguards,
limitations remain—both procedural and technical—that
leave open the possibility that undeclared nuclear reac-
tors go undetected (Findlay, 2007).

The production of nuclear energy results in the gen-
eration of radioactive waste, including spent nuclear fuel
(SNF) that has been removed from the reactor core and
any waste materials that remain after the SNF has been
processed. Fission product decays are present in SNF and
reprocessed waste, though at a declining rate depending
upon the amount and age of the material in a storage fa-
cility or repository. The IAEA implements technical ver-
ification measures for the back-end of the nuclear fuel cy-
cle, including SNF storage, reprocessing, and long-term
disposition (Pushkarjov and Tkharev, 1986). NPT sig-
natory states are obligated to declare the uranium and
plutonium content of SNF and, currently, thousands of
significant quantities (SQs)3 of plutonium in SNF are un-
der IAEA safeguards. The majority of SNF is from light
water reactors (LWRs), but the fuel from heavy water-
moderated and gas-cooled graphite-moderated reactors
also contains plutonium, which may be particularly well
suited for nuclear weapons fabrication. The IAEA cur-
rently employs containment and surveillance to confirm
the presence of the fuel assemblies using, e.g. seals on the
reactor vessel while the fuel still in use and seals on dry
storage casks when the SNF is sent to permanent stor-
age. While these approaches may be satisfactory in some
scenarios, they require that the integrity of the items is
preserved – the so-called continuity of knowledge needs
to be maintained.

New international agreements may also shape the safe-
guards landscape, such as a proposed Fissile Material

3 The IAEA defines 1 significant quantity (1 SQ) of plutonium as
8 kg of total plutonium provided the 238Pu content is less than
80%.

Cutoff Treaty (FMCT) (Nuclear Threat Initiative, 2018).
In its most limited version, an FMCT would ban the
production of additional fissile materials—in practice,
highly-enriched uranium and separated plutonium—for
nuclear weapons. A significant number of countries
would support an expanded treaty that would include
the reduction of existing stocks of fissile materials avail-
able for nuclear weapons by placing agreed-upon quanti-
ties of non-safeguarded fissile materials not currently in
nuclear weapons under international safeguards. While
an FMCT has thus far failed to find political traction,
progress towards such an agreement would enhance the
need for robust technical means for SNF monitoring and
discovery.

Finally, the Comprehensive Test Ban Treaty (CTBT)
bans nuclear explosions on any scale (United Nations Of-
fice for Disarmament Affairs, 1996). The CTBT was
opened for signature in 1996 and will come into force
when 44 specified states that possessed nuclear reactors
as of certain dates in the 1990s have ratified it. Cur-
rently, eight of these states — China, the DPRK, Egypt,
India, Iran, Israel, Pakistan, and the United States —
have yet to ratify the treaty. Nonetheless, the CTBT has
created a near-universal global norm against nuclear ex-
plosion testing and international efforts are maintained
related to the nuclear explosion monitoring mission.

III. PHYSICS OF NEUTRINOS FROM FISSION
SOURCES

Nuclear reactors, nuclear explosions, and reactor waste
streams produce neutrinos by the same primary mech-
anism: nuclear beta decay. Detection approaches are
likewise related, although detection feasibility varies de-
pending on the source type and distance from source to
detector.

A. Neutrino production in fission sources

Neutrinos are produced not by fission itself but the
beta decay of fission fragments.4 Typically, one fission
produces two fragments. Each of these neutron-rich frag-
ments decays an average of three times. Each decay pro-
duces one electron antineutrino:5

A
ZN → A

Z+1N
′ + e− + ν̄e (1)

4 Beta decays following neutron capture on materials in a reac-
tor also contribute to the neutrino flux. The effect is small for
typical power reactors (Huber and Jaffke, 2016), but can be sig-
nificant for certain research reactor configurations (Ashenfelter
et al., 2019).

5 Following common usage, this review uses “neutrino” as a general
term for both neutrinos and antineutrinos.
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FIG. 1 An example of beta decay chain of fission fragments
resulting in the emission of eight neutrinos.

Thus, one fission leads to the emission of roughly six
neutrinos. Figure 1 illustrates this process.

Details of the neutrino flux vary according to the na-
ture of the fission source. Most importantly, the neutrino
flux depends on which nuclides undergo fission, while the
energy of the fission-inducing neutrons has a smaller im-
pact (Littlejohn et al., 2018). The dominant nuclides in
most reactors and explosions are 235U, 239Pu, 238U, and
241Pu. Neutrino emissions from these nuclides differ be-
cause the fission fragment yields differ. The left side of
Fig. 2 shows the fission fragment yields. As these distinct
populations of fission fragments decay toward stability,
they give rise to different emission rates and spectra of
neutrinos. The right side of Fig. 2 illustrates how the
neutrino flux measured via inverse beta decay, a com-
mon detection mechanism to be described in Sec. III.B,
varies between nuclides. Notably, 235U produces about
50% more detectable neutrinos per fission than 239Pu,
with a harder energy spectrum. The neutrino flux from
a single source often includes contributions from fission
of multiple nuclides. For example, in a reactor fueled
with low-enriched uranium (LEU), some neutrinos come
from fissions of 235U and some from fissions of 239Pu bred
in by neutron capture on 238U. The overall neutrino flux
is a function of the total fission rate, R(t), the fraction
of fissions occurring on the kth nuclide, αk(t), and the
neutrino flux from the kth fissioning nuclide, Sk(Eν , t),
where Eν is neutrino energy and t is time.

Neutrino emissions from a single source often change
over time. In a reactor, the timescale for significant
changes in R and αk (hours to days) is much longer
than most of the beta decay lifetimes (mostly less than a
minute). This means that the neutrino flux from a reac-

tor can be approximated by the equilibrium expression:

φequilν (Eν , t) = R(t)
∑
k

αk(t)Sk(Eν , t). (2)

Eq. (2) can also be rewritten in terms of the reactor ther-
mal power, Pth = R

∑
k αkEk, where Ek is the mean

energy per fission of the kth nuclide:

φequilν (Eν , t) =
Pth(t)∑
k αk(t)Ek

∑
k

αk(t)Sk(Eν , t). (3)

By contrast, in a nuclear explosion, all fissions occur
nearly instantaneously. The burst-like neutrino emission
from an explosion cannot be approximated by an equilib-
rium expression. Nonetheless, the general logic of Eq. (2)
holds: the neutrino flux from an explosion is a product of
the total number of fissions (proportional to the fission
yield of the explosion) and the sum of neutrino fluxes
from each fission fragment nuclide, weighted by the frac-
tion of fissions occurring on each nuclide.

Even in a reactor, some notable effects are not covered
by the equilibrium approximation of Eq. (2)–(3). One
such effect is the emission of neutrinos from nuclear fuel
after the reactor is shut down or after the fuel is removed.
This emission comes from the small fraction of fission
fragments that beta decay over long timescales. These
are the same decays responsible for the long-term gamma
and beta radioactivity of used nuclear fuel. The neutrino
rate from irradiated fuel, whether stored in casks or mod-
ified through chemical reprocessing, is much lower than
that from operating reactors, and the energy spectrum
from used fuel is also softer.

Table I compares the production of neutrinos in the
three sources we consider in this review: reactors, explo-
sions, and waste streams from reactors. Recall that the
basic production mechanism is the same for all sources,
namely the beta decay of fission fragments. The energy
dependence, time dependence, and relative intensity of
the neutrino flux vary among these three sources, with
implications for the practicality of applications. All of
these sources emit neutrinos isotropically. The fusion re-
actions most common in nuclear weapons and the reac-
tions under consideration for fusion power plants do not
produce neutrinos.

B. Basics of detecting fission neutrinos

Equations (2)-(3) hint at the information carried by
neutrino emissions from fission sources. To capture this
information, one must observe the neutrinos interacting
in a detector. Consider the generic case of detecting neu-
trinos some distance L from a fission source with neutrino
flux φν . Where the spatial extent of the source is small
compared to L, the number of detectable neutrino events
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FIG. 2 Left: Fission fragment yields from the four major nuclides in fission sources according to JEFF 3.3 (Nuclear Energy
Agency, 2017). Right: the detection cross section per fission for neutrinos from each of the four fissile isotopes, which is
obtained as the product of IBD cross section and the neutrino flux.

TABLE I Comparison of the three sources of neutrinos discussed in this review.

Source Main origin of ν̄e Time profile of ν̄e emission Energy of ν̄e emitted History of ν̄e from this source

Nuclear reactor
Beta decay of
fission fragments

Moderate, quasi-steady
state emission over days to
months

Up to ∼ 8 MeV
First detected 1956; millions of
interactions detected in many
subsequent experiments

Nuclear
explosion

Beta decay of
fission fragments

Intense burst over a few
seconds

Up to ∼ 8 MeV,
with higher energies
emitted earlier

No known detections of ν̄e from
this source

SNF and fuel
reprocessing
waste

Beta decay of
fission fragments
with long
lifetimes

Low-level emission that
exponentially decays over
many years

Up to ∼ 3 MeV

Likely detected in reactor ν̄e
experiments but so far
indistinguishable from reactor
signal and other backgrounds

Ndet is

Ndet(Eν , t) =
ε(Eν)

4πL2
φν(Eν , t)σ(Eν)NTPsurv(Eν , L).

(4)
In this expression, ε is the signal detection efficiency, σ is
the cross section for the interaction to which the detector
is sensitive, NT is the number of interaction targets in the
detector, and Psurv is the electron antineutrino survival
probability.

Soon after the neutrino was postulated, it was rec-
ognized that neutrino cross sections will be very small
and that the most likely reaction is inverse beta decay
(IBD) (Bethe and Peierls, 1934) with a cross section of
≈ 10−43 cm2. The target of this reaction is a free proton
(hydrogen nucleus):

ν̄e + p→ e+ + n. (5)

The threshold for this reaction is mn − mp + 2me '
1.8 MeV and the visible energy of the positron is given
by Evis = Eν − 1.8 MeV + 2 × 0.511 MeV, that is, there
is a one-to-one correspondence between detected energy
and the neutrino energy Eν (Vogel and Beacom, 1999).
The is correspondenc arises from kinematics: the energy
of the neutrino is carried by the positron and the mo-

mentum by the neutron, where the kinetic energy of the
neutron is indeed very small, on average about 50, keV.
As a consequence, energy reconstruction for the neu-
trino is straightforward but measuring its direction is
difficult. The positron will deposit its energy promptly
and the neutron will thermalize and then capture either
on hydrogen or a specifically added neutron-capture tar-
get like gadolinium or lithium; the neutron-capture ele-
ments have a high thermal neutron capture cross section.
This allows to exploit a delayed coincidence between the
prompt positron signal and the delayed neutron-capture
signal: both events happen close in time, 10−200µs, and
space, 5− 15 cm. The neutron capture signature can be
either emission of gamma rays, in the case of cadmium
or gadolinium, or alpha particles and tritons in the case
of lithium. These signatures together form the basis for
detector design since the discovery of neutrinos (Cowan
et al., 1956) and greatly suppress backgrounds from nat-
ural radioactivity and cosmic rays. Inverse beta decay on
other nuclei besides hydrogen is possible, but generally
the cross section is suppressed by nuclear matrix elements
and there are fewer targets per unit mass, making hydro-
gen by far the most practical choice. Suitable detector
mediums contain hydrogen and are transparent: organic
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scintillators and water. They both convert the ionization
signals of the positron and neutron capture into light by
either scintillation or Cerenkov radiation.

Interaction modes other than IBD exist: typically they
are less practical, but they can offer certain advantages.
In the case of neutrino-electron scattering,

ν̄ + e− → ν̄ + e− , (6)

the advantage is that the scattered electron direction
may be easier to reconstruct than the initial momenta of
IBD products. This may be useful for localizing a fission
source such as an undeclared reactor. Backgrounds are
often a challenge for this single reaction product (Hellfeld
et al., 2017). In the case of coherent elastic neutrino-
nucleus scattering (CEνNS),

ν̄ +N → ν̄ +N , (7)

one advantage is that the cross section is coherently en-
hanced by the contribution of all neutrons in the target
nucleus (Freedman, 1974). For a large nucleus such as
germanium or xenon, the enhancement is two orders of
magnitude over IBD per unit detector mass. Another
advantage is that CEνNS has no kinematic threshold,
so neutrinos below the IBD threshold of 1.8 MeV are in
principle observable. For CEνNS, the primary difficulties
are detecting the very low-energy nuclear recoil, typically
O(10− 100) eV, and suppressing background in this low-
energy range. Owing to these small recoil energies, this
reaction has been observed only recently (Akimov et al.,
2017), albeit using neutrinos from a pulsed source with
about 10 times higher average energy than reactor neu-
trinos.

The final component of Eq. (4) accounts for neutrino
flavor oscillation. This is the quantum mechanical phe-
nomenon that allows a neutrino created in one flavor
(electron, muon, or tau) to be detected as a different
flavor (Kajita, 2016; McDonald, 2016). Fission sources
produce only electron antineutrinos, and IBD is sensitive
only to this flavor. When electron antineutrinos prop-
agate, some of them become invisible to IBD detectors
as they oscillate into non-electron flavors; only the sur-
viving electron antineutrinos are observable. One upside
of oscillations is that Psurv has a nonlinear dependence
on L, the distance from source to detector. Thus os-
cillations can break certain degeneracies (Jocher et al.,
2013). The more essential upside is that neutrino oscil-
lations are a major focus of basic research. The presence
of oscillations in Eq. (4) has made reactors a key source
for fundamental physics experiments. These experiments
have played a critical role in developing technology that
may be used for neutrino applications.

Neutrinos interact only via the weak force, and thus,
neutrino cross sections are very small in absolute terms.
Consequently, neutrino detection requires careful control
and reduction of potential background sources. Com-
mon strategies are: selection of radio-clean construction

materials; use of engineered shielding against neutrons
and gamma rays; locating the experiment underground;
particle identification; spatial segmentation. For a more
detailed discussion, which is beyond our scope, see for
instance (Bowden et al., 2012).

C. Information content of fission neutrino signals

The information contained in fission neutrino signals
is described by Eqs. (2)–(4): substituting Eq. (3) into
Eq. (4), and suppressing the energy and time dependence
for simplicity, yields

Ndet =

(
εNTσ

4π

)(
Pe→X(L)

L2

)
Pth∑
k αkEk

∑
k

αkSk. (8)

The first factor in parentheses contains parameters which
the detector operator can determine. The last parameter,
Sk, is also fairly well known for the major nuclides, when
fissioned by thermal neutrons.

In this context it is necessary to point out that re-
actor antineutrino fluxes have been subject of intense
scrutiny since 2011, when two new evaluations were
conducted (Huber, 2011; Mueller et al., 2011) that up-
corrected the resulting IBD rates by approximately 6%.
This in turn gave rise to the to the so-called reactor an-
tineutrino anomaly (RAA) (Mention et al., 2011): all
past measurements, which had been interpreted as being
in agreement with prior flux predictions, now indicated
a significant rate deficit relative to those more modern
updates. One possible solution could be the existence of
a fourth, so-called sterile neutrino, which triggered con-
siderable experimental activity (Abazajian et al., 2012)
and to date remains a viable possibility (Dentler et al.,
2018). The RAA and other discrepancies in prediction
and measurements of the neutrino spectrum are under
active study, for a review see (Hayes and Vogel, 2016),
and it is clear that for applications these issues need to
be resolved by experimental measurement. Therefore,
calibrating reactor antineutrino fluxes from a range of
different reactors at different stages in their fuel cycle
is a mandatory, and entirely feasible, ingredient for this
application. As an example consider the recent measure-
ment of the neutrino yield spectrum from uranium-235
and plutonium-239 by the Daya Bay collaboration (Adey
et al., 2019).

The other factors depend on information which the
detector operator may not know: the distance L to the
reactor (unknown if, for example, the reactor is hidden),
the reactor power level Pth, and the fission fractions αk
inside the reactor core. Evidently, by observing neutrino
emissions from the reactor, one can possibly infer a com-
bination of:

• How far away the reactor is;

• What power level the reactor is operating at; and
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• What the reactor is burning for fuel.

These pieces of information can be in principle distin-
guished using the time and energy dependence of the ob-
served neutrino flux. Furthermore, one or more of the
above source characteristics may be constrained by non-
neutrino data or by declared reactor operating histories.
In this case, a combined analysis of neutrino and non-
neutrino data could further disentangle the components
above. The assumption is that for deployments under co-
operative safeguards the distance to the reactor is known
at the percent-level.

In a similar manner, the neutrino signal from a nu-
clear explosion carries information about how far away
the explosion occurred, how much fission yield the explo-
sion contained, and which nuclide was used as a nuclear
explosive. Neutrino emissions from SNF carry some in-
formation about the fuel location and time elapsed since
the fuel has been discharged from the reactor. However,
as we describe in Secs. V-VIII, collecting this information
is more practical near reactors than from waste streams
or explosions. To give context for those comparisons,
Sec. IV describes the history of neutrino detection at fis-
sion sources.

IV. HISTORY OF FISSION NEUTRINO DETECTION

A. Fundamental physics: first detection and neutrino
oscillation experiments

The first detection of a neutrino of any kind occurred
at a nuclear reactor. In the 1950s, a team led by Freder-
ick Reines and Clyde Cowan observed neutrino emission
from a plutonium production reactor at the US Atomic
Energy Agency (now Department of Energy) Savannah
River site (Cowan et al., 1956). The Cowan-Reines de-
tector was small (<0.5 ton), but its use of organic scintil-
lator, doping, and segmentation established design prin-
ciples that remain in use 60 years later. Over five mil-
lion neutrinos have now been detected at nuclear reactors
around the world. Physicists, including Reines, consid-
ered making basic physics measurements using nuclear
weapon tests as a source (Reines, 1995). To date, how-
ever, no neutrinos from nuclear explosions have been ob-
served. Neutrinos from SNF make some contribution to
data sets collected at nuclear power plants, but that com-
ponent is not statistically distinguishable from the much
larger contribution from operating reactors. Reactors re-
main the only fission source from which neutrinos have
been conclusively detected.

As the brightest neutrino sources on Earth, nuclear
reactors have attracted particle physicists over many
decades for dozens of fundamental studies. Early experi-
ments used ton-scale detectors located within a few tens
of meters of reactor cores. Efforts searching for evidence
of neutrino oscillation were mounted in the 1970s through

the 1990s in the USA (Greenwood et al., 1996; Reines
et al., 1980; Riley et al., 1999), France (Cavaignac et al.,
1984; Declais et al., 1995; Kwon et al., 1981), Switzer-
land (Zacek et al., 1986) and the USSR (Kuvshinnikov
et al., 1991; Vidyakin et al., 1994). In the late 1990s, the
Chooz (Apollonio et al., 1999) and Palo Verde (Boehm
et al., 2001) experiments extended the baseline for re-
actor neutrino oscillation searches to ≈ 1 km using de-
tectors of 10 ton scale. In the early 2000s, the Kam-
LAND experiment in Japan used a kiloton-scale liquid
scintillator (LS) detector to observe neutrinos from nu-
clear reactors over 100 km away (Eguchi et al., 2003).
The energy-dependent deficit of electron antineutrinos
seen by KamLAND, a consequence of flavor oscillations,
helped to establish that neutrinos have mass. More re-
cently, LS detectors on the 10 ton scale have made pre-
cision oscillation measurements at distances in the range
of 400− 1900 m from nuclear power plants in China (An
et al., 2012), Korea (Ahn et al., 2012), and France (Abe
et al., 2012). Beyond measuring fundamental neutrino
parameters, these recent experiments provided stringent
tests of the reactor neutrino emission models by perform-
ing high precision energy spectrum measurements.

The fundamental physics experiments described above
laid the foundation for possible reactor monitoring appli-
cations using neutrino emissions. They provide detection
capability demonstrations at standoff distances spanning
the near field and far field, while also developing an un-
derstanding of reactors as a neutrino source and the im-
portant background mechanisms that limit sensitivity.

B. Application-oriented experiments

That reactor neutrinos could be useful for nuclear se-
curity, was recognized in 1978 by L. Mikaelyan and A.
Borovoi (Borovoi and Mikaelyan, 1978; Mikaelyan, 1978).
Several demonstrations of the reactor monitoring concept
have been performed in the very near-field range, 7−25 m
from reactors. Pioneering work was undertaken in the
1980s at the Rovno power plant in the former Soviet
Union (Klimov et al., 1994). This demonstration used
a 0.5-ton, Gd-doped LS (GdLS) detector deployed in a
below-ground gallery about 20 m from the reactor core.
This high-efficiency detector recorded almost 1000 neu-
trino interactions per day with a signal-to-background
(S:B) ratio considerably greater than unity. Over several
years, this group demonstrated rapid determination of re-
actor on/off state transitions, tracking of reactor power
levels, and measurements of the change in neutrino rate
and spectrum due to fuel evolution (burnup), see Fig. 3.

The next effort to focus on reactor monitoring was
based at the San Onofre Nuclear Generating Station
(SONGS) in the United States. Beginning in the early
2000s, physicists from the Lawrence Livermore and San-
dia National Laboratories constructed and deployed sev-



8

eral neutrino detectors. The goal was to demonstrate
that simple designs could operate unattended for long pe-
riods, collecting neutrino data suitable for reactor mon-
itoring. The 0.6-ton, GdLS SONGS1 detector was de-
ployed in a below-ground gallery about 20 m from the
reactor (Bowden et al., 2007). The device was cali-
brated automatically and maintained stable operation
from 2003 till 2008. The simple design yielded a modest
efficiency, with about 500 IBD events recorded per day.
Analysis of the SONGS1 data set produced monitoring
demonstrations similar to those achieved at Rovno: reac-
tor state (Bernstein et al., 2008; Bowden, 2008), reactor
power (Bernstein et al., 2008), and the rate change due
to fuel burnup (Bowden et al., 2009) (Fig. 3). This group
also developed a more optimized homogeneous GdLS de-
tector design (Classen et al., 2015) with improved detec-
tion efficiency and energy resolution.

The Nucifer collaboration (Boireau et al., 2016), based
in France, performed a monitoring demonstration at the
70 MWth OSIRIS research reactor. The aim was to de-
velop a detection system suitable for operation within
a research reactor building. Considerable effort went
into the certification process that allowed the detector
to operate within 7 m of a reactor core. The design was
based on 0.8 tons of GdLS in a single vessel. Significant
shielding was required to suppress reactor-correlated γ-
ray backgrounds. At the relatively modest overburden of
12 mwe6, the use of PSD7capable GdLS was important
for suppression of cosmogenic correlated neutron back-
grounds. Recording almost 300 IBD interactions per day
with S:B = 1:4, Nucifer was able to follow the operation
state and power level of the OSIRIS reactor.

Subsequent efforts addressed the desire to operate de-
tectors on the earth’s surface without cosmic-ray atten-
uating overburden, since this enables deployment in a
much broader range of locations. Particle type identi-
fication and interaction localization capabilities are key
design features that have been developed to address the
much greater background encountered at the earth’s sur-
face. Examples of such techniques include segmentation,
which provides position resolution roughly equivalent to
the segment pitch in compact detectors, and neutron cap-
ture identification based on event topology and/or incor-
poration of 6Li, which yields a tightly localized signal
upon neutron capture. The event localization capabil-
ity provided by segmentation allows selections based on
spatial correlations, in addition to the timing correla-
tion supplied by the IBD reaction. For example, use

6 mwe is short for meter water equivalent and allows to express
overburden independent of the specific rock/soil composition.

7 PSD stands for pulse shape discrimination, which allows to dis-
tinguish particles based on their mean energy loss per traveled
distance, dE/dx. Particles with a high dE/dx tend to produce
a broader light emission pulse than particles with small dE/dx,
like beta rays (Brooks, 1959).

FIG. 3 (Top) Measurement of fuel burnup at Rovno. The
detected reactor antineutrino rate decreases over an observa-
tion period of 300 days as production and burning of 239Pu
reduces the emitted antineutrino flux, figure from (Klimov
et al., 1994). (Bottom) Observation of reactor start-up at
SONGS. The correlated event rate tracks the change in re-
actor power at start-up, where the events measured at zero
power are due to background, figure from (Bowden, 2008).

of event location information to require a spatial coin-
cidence between the prompt and delayed components of
an IBD event candidate is effective at suppressing ran-
dom temporal coincidences of singles backgrounds. The
spatial pattern (topology) of energy depositions within
the prompt and delayed components themselves can also
be of use. Examples include attempts to preferentially se-
lect deposition patterns corresponding to IBD positrons
(primary positron ionization energy loss and the Comp-
ton scattering of the resulting 511 keV annihilation γ-
rays) and neutron captures on Gd (Compton scattering
of multiple MeV-scale γ-rays).

The PANDA project (Kuroda et al., 2012; Oguri et al.,
2014) realized several generations of detectors based on
an heterogeneous arrangement of plastic scintillator (PS)
and Gd coated sheets. Operation of the PANDA-360 pro-
totype at a reactor in Japan without overburden provided
a low significance hint of reactor state determination with
S:B of less than 1:15 (Oguri et al., 2014). Similar ap-
proaches have been pursued by groups in India (Mulmule
et al., 2018) and the United Kingdom (Carroll et al.,
2018).

The group responsible for SONGS1 developed an ap-
proach that provides a distinct neutron capture identifi-
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cation signal using 6LiZnS neutron capture screens (Kiff
et al., 2011). When layered between segmented PS bars,
highly localized neutron captures on 6Li could be iden-
tified via the slow ZnS scintillation time constant us-
ing PSD. This approach strongly suppresses background
events due to spallation processes that produce multi-
ple neutrons that can enter a detector and be captured
with a time correlation structure similar to IBD (Bow-
den et al., 2012) that are difficult to identify in detec-
tors that use Gd or other γ-ray emitting neutron cap-
ture agents, while also reducing accidental coincidence
backgrounds. A small prototype deployed in a 20 ft ISO
shipping container at SONGS without overburden did
not have sufficient sensitivity to observe neutrinos, but
did demonstrate powerful background reduction (Reyna
et al., 2012). The use of wavelength shifting (WLS)
materials to efficiently transport 6LiZnS scintillation to
photo-sensors at the edges of a heterogeneous detector
arrangement, first developed for neutron scattering ex-
periments (van Eijk et al., 2004), is an important element
of this approach.

As discussed in Sec. VI, demonstrations of far-field ca-
pabilities beyond ten kilometers or so require kiloton-
scale detectors, with target masses increasing to the
megaton scale beyond ∼ 100−200 kilometers. The first
dedicated far-field demonstration of reactor monitoring
has been initiated by the US-UK WATCHMAN collabo-
ration (Askins et al., 2015). WATCHMAN is an acronym
for the WATer CHerenkov Monitor of ANtineutrinos, a
Gd-doped water Cerenkov detector with a fiducial mass
of 1000 tons, located in an underground site 25 km from
a dual-reactor complex in the UK. The WATCHMAN
collaboration currently plans for start of data-taking op-
erations in approximately 2025.

C. Return to fundamental physics with near-field reactor
observations

In recent years, searches for new physics in the neutrino
sector have brought basic science attention back to near-
field reactor observations. In 2011, recalculations of reac-
tor neutrino fluxes were found to be significantly higher
than the ensemble of observations (Huber, 2011; Mention
et al., 2011; Mueller et al., 2011). Among other possibili-
ties, this discrepancy could be explained by the existence
of a sterile neutrino, a neutral fermion with even weaker
couplings to matter than the Standard Model neutrinos
or by deficiencies in the nuclear data and methods used to
predict the reactor antineutrino flux. Indeed, the discrep-
ancy between recent precision energy spectrum measure-
ments (An et al., 2016b; Choi et al., 2016) and prediction,
most prominent near 5 MeV, is a strong indication that
such deficiencies exist.

A wide variety of detector designs have been proposed
to test the sterile neutrino hypothesis. Many of these de-

tectors must operate at or near the surface with limited
cosmic ray attenuating overburden due to the configura-
tion of the host reactor facilities, and are designed to pro-
vide good energy resolution, detection efficiency, and/or
background rejection. Here we detail some effort of par-
ticular relevance to reactor monitoring applications.

The NEOS experiment (Ko et al., 2017) operates in
a below-ground location similar to SONGS1. Using a
1 ton GdLS target and PSD for background suppression,
a signal-to-background of 20 and event rate of ∼2000
IBD interactions per day are achieved. In the context of
near-field reactor monitoring, this device provides high
statistics for rapid determination of reactor status, power
level, and measurement of the reactor antineutrino en-
ergy spectrum. NEOS represents an excellent example
of what can be achieved using a modern GdLS mate-
rial in a location with 20 mwe or more overburden. The
STEREO (Almazn et al., 2018) and Neutrino-4 (Serebrov
et al., 2019) experiments have also successfully performed
reactor antineutrino measurements at research reactors
using GdLS target material. In both cases, modest over-
burden of order 10 mwe was available. DANSS (Alekseev
et al., 2018) has also achieved a high reactor antineutrino
counting rate using a heterogeneous detector composed
of PS bars and Gd coated sheets. Operating in a loca-
tion beneath a power reactor core, DANSS enjoys high
antineutrino flux and ∼ 50 mwe overburden, providing
sufficient sensitivity to observe small flux variations due
to reactor operations (Alekseev et al., 2019).

The PROSPECT experiment (Ashenfelter et al., 2016)
has made a significant advance by performing the first
demonstration of on-surface reactor antineutrino detec-
tion with S:B ∼ 1 (Fig. 4), this being achieved at a
research reactor facility with less than 1 mwe overbur-
den (Ashenfelter et al., 2018a). This result can now serve
as a benchmark for reactor monitoring use cases involving
on-surface detector deployment, e.g. (Carr et al., 2019).
The PROSPECT detector design incorporates multiple
capabilities that combine to efficiently reject cosmogenic
backgrounds. The use of 4 tons of PSD capable 6Li-doped
LS (LiLS) provides fast neutron and neutron capture
identification, while a 2D segmented geometry (14.5 cm
pitch) provides event localization and topology. An em-
phasis on efficient, uniform light collection results in very
good energy resolution for an organic scintillator detec-
tor (Ashenfelter et al., 2018b), which has been utilized in
a measurement of the 235U reactor antineutrino energy
spectrum (Ashenfelter et al., 2019). Initial background
predictions for PROSPECT (Ashenfelter et al., 2016) are
in good agreement with the data reported in (Ashenfelter
et al., 2018a), including observation of spectral features
due to multiple neutron and neutron inelastic processes.

Several other approaches focus on more finely-grained
segmentation than PROSPECT. SoLid was among the
first near-field reactor efforts to propose and realize finer-
grained three-dimensional segmentation as a background
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FIG. 4 On-surface measurement of reactor operational state
by PROSPECT with less than 1 mwe of overburden. Green
(gray) shaded periods correspond to full power operation of
the host reactor, with the correlated event excess relative to
reactor off periods being due to detection of reactor antineu-
trinos, figure from (Ashenfelter et al., 2018a).

rejection strategy (Abreu et al., 2018a,b). This detection
concept combines 6LiZnS neutron capture sheets, 5 cm
cubes of PS, and WLS optical fibers, providing 3D topo-
logical information and neutron capture identification.
SoLid has collected reactor data and analysis is ongoing
to determine the extent to which event topology informa-
tion obtained from relatively fine grained 3-D segmenta-
tion can be used to reject fast neutron backgrounds in a
ton-scale detector. The goal is to identify positron-like
event topologies including spatially isolated depositions
from 511 keV annihilation gamma rays.

NuLat uses a light collection arrangement known as
the Raghavan Optical Lattice (ROL) to obtain fine-
grained 3-D segmentation (also ∼ 5 cm pitch) and effi-
cient light collection (Lane et al., 2015). The use of ho-
mogeneous 6Li-doped materials in combination with the
ROL promises access to all proposed particle ID meth-
ods simultaneously – fast neutron recoil PSD, neutron
capture PSD, and fine-grained topological information –
and therefore should have excellent background rejection.
The current availability and optical performance of 6Li
doped PSD-capable plastic scintillators has limited the
extent to which the concept has been demonstrated to
date.

Inspired by the SoLid, SNL/LLNL, and NuLat seg-
mented efforts, CHANDLER uses 6LiZnS screens, wave-
length shifting plastic scintillator, and an ROL to pro-
vide fine grained topology information, a distinct neu-
tron capture tag and good optical collection and energy
resolution compared to SoLid. In contrast to NuLat, the
CHANDLER concept can be realized with materials that
are readily available from commercial vendors. As with
SoLid, the ability to identify and reject background is
based on event topology information obtained from rel-
atively fine grained segmentation in combination with a
distinct neutron capture tag. CHANDLER reports IBD
detection including the spectrum from several months
operation without overburden at a 2900 MWth pressur-

ized water reactor using an 80 kg miniCHANDLER pro-
totype (Haghighat et al., 2018). CHANDLER is among
the efforts to have demonstrated a main advantage of
solid plastic detectors: the miniCHANLDER prototype
is mounted inside a road-legal trailer, it can be driven
to the deployment site and data taking can start within
hours of deployment.

V. APPLICATIONS TO KNOWN REACTORS: FISSILE
MATERIAL PRODUCTION MONITORING

A. Existing approaches

The IAEA implements a variety of technical measures
to verify a state is in compliance with its safeguards
agreements. Safeguards are primarily designed to de-
tect the diversion of nuclear material from declared fa-
cilities, undeclared processing or production of nuclear
materials at declared facilities, and undeclared facilities
processing or producing nuclear material. The IAEA im-
plements safeguards using a combination of nuclear ma-
terial accountancy, nondestructive and destructive mea-
surements, and containment and surveillance.

Measurements of nuclear material confirm the declared
mass and composition of the material, typically by em-
ploying nondestructive measurements, e.g., measuring
the weight of a uranium sample using a scale, and
measuring its isotopic composition using gamma spec-
troscopy. Destructive measurements are employed when
necessary, e.g., measuring the isotopic composition of a
solution of dissolved irradiated fuel using mass spectrom-
etry. Measurements also verify the declared operation of
a process, e.g., by measuring the flow rate of UF6 in a gas
centrifuge plant. Furthermore, environmental sampling
at pre-designated locations within declared facilities is
frequently applied to detect the presence of undeclared
materials or declared materials in anomalous locations,
which can be indicative of diversion, undeclared process-
ing. Wide-area sampling, i.e. outside of declared facil-
ities, is permitted under the Additional Protocol to un-
cover undeclared facilities, however it is not approved as
a routine inspection tool and usually reserved for cases
where a specific concern exists.

Finally, containment and surveillance are the key tech-
nologies to detect undeclared access to and/or movement
of nuclear material. Containment is implemented using
tamper-indicating seals applied to nuclear material con-
tainers and process controls; attempts to access or move
the nuclear material, or change the operation of a pro-
cess, would be detected if the integrity of seals were com-
promised. Surveillance is primarily implemented using
cameras to observe material balance areas and process
controls. Currently, most safeguards surveillance systems
do not provide real-time remote monitoring; however, the
IAEA is working to transition its surveillance systems to
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provide real-time remote monitoring of many facilities in
the near future.

The declared burnup of spent fuel is primarily veri-
fied using accountancy of the fresh and irradiated fuel
and nondestructive analysis of the fresh and irradiated
fuel. Nondestructive analysis of the fresh fuel serves to
verify its declared mass and enrichment, which is accom-
plished by relatively simple weight and gamma spectro-
scopic measurements. However, nondestructive analysis
of the irradiated fuel does not yield a direct measure-
ment of the fuel’s isotopic composition, including the
fuel’s residual uranium content and the plutonium bred
in the fuel during irradiation, because gamma and neu-
tron emissions by fission products in the fuel mask radia-
tion emissions from the uranium and plutonium isotopes.

Radiation measurements of SNF are used to confirm
that it is consistent with the declared initial enrichment,
burnup and cooling time. The most widely used tech-
nique, is based on measuring the Cerenkov radiation ema-
nating from SNF within the water of the spent fuel pond.
This is accomplished using the so-called Cerenkov View-
ing Device (CVD) (Chen and Lewis, 2001), which essen-
tially just confirms that the SNF is present and exceeds
a certain level of overall radioactivity. The advantages of
the CVD are that it is fast, it does not require fuel move-
ment and does not get into contact with the pool wa-
ter. The fission and/or activation product content of the
fuel can be measured using gamma spectroscopy and/or
neutron coincidence counting, but these techniques are
rarely employed (IAEA, 2011). Except in the case of a
few research reactors, typically with a thermal power in
excess of 25 MW, safeguards do not implement real-time
monitoring of reactor operations. For those exceptional
reactors power is measured by using the advanced ther-
mohydraulic power monitor (Zendel et al., 2011), where
the flow rate of coolant and temperature rise across the
reactor are measured. For SNF in dry storage the default
technologies are tamper indicating seals and surveillance.
The majority of nuclear reactors has a significant amount
of fertile material, i.e. material that under neutron-
irradiation can become fissile, present in the reactor core;
in power reactors uranium-238 is the most important of
those. As a consequence, these reactors produce some
fissile material, notably plutonium-239, during operation.
The amount and quality of plutonium produced is a func-
tion of the total burn-up and the initial fuel enrichment
and composition: for a typical 3 GWth pressurized wa-
ter reactor a plutonium production rate of 100–200 kg
per year is not unusual. Therefore, verifying burn-up,
enrichment and fuel composition is an important part of
safeguards. In particular, a willful mis-declaration of any
of those quantities would allow for the production of ex-
cess plutonium (or a more weapons-usable grade) or to
overstate the amount of plutonium which is consumed.
The latter is critical for international agreements to re-
duce the stockpile of fissile material.

Real-time remote monitoring of nuclear reactor oper-
ations has been demonstrated using satellite and aerial
imagery of heat signatures emanating from the reactor.
The reactor’s thermal output, either in terms of its in-
jection of hot water into a reservoir, or its emission of
warm air from its cooling towers, can reveal the on/off
state of the reactor, and can be correlated to the reactor’s
operating power (Garrett et al., 2010; Lee and Garrett,
2015). At shorter ranges (e.g., hundreds of meters), sky
shine (gammas scattering in the air above a reactor con-
tainment building) can also reveal the on/off state of the
reactor (Wahl et al., 2014).

B. Neutrino-based approaches

Section III.C contains a description of how neutrino
emissions carry information about reactor power levels
and fuel contents. This information, collected in real
time, could complement existing reactor monitoring tech-
niques. The basic neutrino observables are neutrino rate,
neutrino energy spectrum, and time evolution of neutrino
spectrum and rate. These observables in turn allow, at
least in principle, to measure the fission rates, fI(t), and
thus, also reactor power. The rate at which the fission
rate, fI(t), changes with time is indicative of the initial
fuel enrichment. All neutrino observations are measur-
ing the neutrino emission from the entire reactor core
and thus any inferred quantity always represents a core
average. That is, neutrino-based technology provides a
form of bulk accountancy, whereas current procedures
are mostly providing item accountancy. In the context
of some advanced reactor designs, like molten salt re-
actors, item accountancy will not be possible, providing
additional motivation for neutrino-based approaches.

Reactors with a high neutron flux density will produce
more fissions per unit mass of the fissile nuclide. This
relationship connects neutrino measurements to the core
fissile inventory. Smaller reactors contain less plutonium
and thus it is easier to achieve an absolute goal like detec-
tion of 1 SQ. This indicates that commercial, multi-GW
light water moderated reactors are a challenging target
for neutrino safeguards relative to the IAEA goals. How-
ever, even for those reactors, neutrino safeguards can pro-
vide a 1–2% core-wide plutonium inventory, which ex-
ceeds the accuracy of any other practical approach; a
capability which would become relevant in the context
of the FMCT. On the other hand, for typical plutonium
production reactors, research reactors, and small modu-
lar reactors neutrinos can meet the IAEA goals both in
terms of quantity and timeliness of the result.

One case put forward is the so-called Nth-month sce-
nario: The reactor in question is a heavy-water mod-
erated, natural uranium fueled 40 MWth reactor, which
produces about 10 kg of weapons-grade plutonium per
full power equivalent year. Assume the reactor is running
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FIG. 5 Shown is the 1σ accuracy for the determination of the
plutonium content of the reactor as a function of time in the
reactor cycle. The data taking period is 90 days each. Dashed
error bars indicate the accuracy from a fit to the plutonium
fission rate fPu, whereas the solid error bars show the result
of a fit constrained by a burn-up model. The blue (dark) line
indicates operation without refueling and the orange (light)
line indicates operation with a refueling after 270 days. Figure
and caption from (Christensen et al., 2014).

at nominal power and that there is full safeguards access
for N-1 months. In the Nth month, there is a reactor shut-
down followed by a lapse in safeguards access. In month
N+1 reactor operation and safeguards access resume, i.e.
the inspectors are confronted with a closed reactor core
and a running reactor. Furthermore, if we take N = 10,
then the core just prior to shutdown would contain 8 kg
weapons-grade plutonium. This is a specific example for
a loss of continuity of knowledge (CoK) incident. Loss of
CoK incidents have been reported and in particular seem
to occur in states which are new to or reentering into the
safeguards regime. Conventional means of safeguards are
largely based on item accountancy and very few actual
measurements are ever performed, so CoK is one of the
central pillars. Experience shows that recovery of CoK
in a reactor setting is very difficult, and would be ex-
pensive and highly intrusive, see e.g. (Christensen et al.,
2015). In Fig. 5 the plutonium mass sensitivity obtained
by a neutrino measurement for the Nth-month scenario
is shown.

A 90-day post-shutdown measurement provides a plu-
tonium inventory with an accuracy of 1.2 kg or the ques-
tion of whether the core has been swapped can be an-
swered with 90% confidence within 7 days. This example
is based on a 5 ton detector at 20 m standoff. It is impor-
tant to note, that despite Fig. 5 showing data for all 4
measurement periods, the conclusion about the core state
really is obtained in each 90 day period independently of
any other 90 day period. In this scenario, neutrino mea-
surements allow restoration of the CoK in a short period
of time and in an entirely non-intrusive manner.

In the above example the assumption was that the re-
actor would be running at nominal power, but also in
the case of the reactor remaining shut down, there are
usable neutrino signatures. These residual signatures
arise from 4 fission fragment nuclides which have half-
lives between 100 days to 28 years. As a result, a reactor
core emits neutrinos even after shutdown. For a time
after shutdown between 30 and 90 days, there are 1-2
events per day stemming from the afterglow. Detection
of such a low event rate requires a detector with excep-
tional background suppression, but given such a detector
these events could be used to infer the presence of an
irradiated core with a certain minimum burnup.

For the same reactor and detector combinations, a dif-
ferent fueling scheme was examined. Assume this reactor,
at the same power, was converted to run on 3.5% enriched
uranium fuel using a light water moderator (Willig et al.,
2012). Such a scheme would greatly reduce plutonium
production and extend the fuel cycle. The key to the neu-
trino measurement in this case is that the fission rates fI
change significantly faster in a natural uranium fueled re-
actor than they do in an enriched core. A measurement
of those fission rate changes, called differential burnup
analysis, allows to distinguish the two fueling schemes
within about 180 days (Christensen et al., 2014).

Burnup also can be determined through a continuous
neutrino measurement of reactor power. The evolution
of the total count rate distinguishes different fuel load-
ings in a light water reactor: in a LEU core the rate is
expected to decline with time, whereas in a mixed oxide
(MOX) core the rate increase or stays nearly constant.
The rate-based approach has been studied in (Bernstein
et al., 2018) based on highly detailed reactor physics sim-
ulations for various MOX fueling schemes. A spectral
neutrino measurement allows determination of the fission
rates fI and thus direct confirmation of the isotopic com-
position and changes thereof which are expected for a cer-
tain burnup (Jaffke and Huber, 2017). The corollary to
those studies is, that neutrino monitoring can distinguish
MOX from LEU and mixed cores and provide an indica-
tion whether reactor-grade or weapons-grade plutonium
is put into the reactor. Neutrino measurements also can
provide assurance that disposition goals in terms of total
burnup and isotopic degradation of weapons-grade plu-
tonium have been met.

Disposition of plutonium in fast breeder reactors has
been proposed and in a broader context, there are fuel cy-
cles, like a thorium-based one, where fast breeders are an
integral part. A breeder reactor is a type of reactor which
produces more fissile material than it consumes and typ-
ically is based on the use of fast neutrons. Breeder re-
actors use driver fuel to generate neutrons and breeding
blankets made of fertile material, e.g. natural uranium or
thorium. Due to their use of fast neutrons they can use
pure or nearly pure plutonium as driver fuel, whereas
in a thermal reactor only relatively limited amounts of
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plutonium can be added to the uranium fuel, so-called
mixed oxide (MOX) fuel. A breeder reactor ran without
a blanket of fertile material would be a net user of fissile
material and if the driver fuel were made of plutonium,
significant quantities of plutonium can be consumed and
thus destroyed. Safeguarding breeder reactors is compli-
cated by the variable breeding ratio resulting from the
presence/absence of a breeding blanket of fertile mate-
rial. Assessing the presence of a blanket is hard because
there are relatively few fissions that occur in the blanket,
yet, at the same time it is placed right next to a vigor-
ously fissioning core. Effectively, the core fissions drown
out any radiation signatures from the blanket. However,
there is a unique neutrino signature from breeding:

238U + n −→239 U
β−

−→ 239Np
β−

−→ 239Pu , (9)

where the two beta decays have short half-lives of
24 m and 2.4 d and endpoint energies of 1.26 MeV and
0.72 MeV, respectively. Similar signatures exist in a
thorium-based fuel cycle. The resulting antineutrinos
are below IBD threshold and hence invisible to the usual
neutrino detectors. It may be possible to detect them
in CEνNS detectors. A detailed study has been per-
formed (Cogswell and Huber, 2016) and the authors
found that detectors of moderate size, several tens of kilo-
grams, could reliably detect the presence of a breeding
blanket at a standoff of 25 m.

VI. APPLICATIONS TO UNDECLARED REACTORS:
REACTOR DISCOVERY AND EXCLUSION

A. Existing approaches

Historically, there are numerous cases of reactor con-
struction and operation being discovered by intelligence-
gathering (Richelson, 2007). Technological approaches to
discovery or exclusion of reactors have been more limited.
Technological methods that may be useful for remote
monitoring and discovery of reactors include thermal and
visible wavelength satellite or aerial surveillance, and
monitoring of xenon, krypton and other radio-nuclides
in the atmosphere far from their point of origin.

Roughly speaking, a reactor fissions a kilogram of ma-
terial per GW-day of heat produced. The heat generated
by fission can be rejected into the air via cooling tow-
ers or into a lake, river, or the ocean via cooling water.
These thermal signatures can in principle be detected
from space or airborne thermal-infrared cameras (Hafe-
meister, 1989), or in the winter, by surface ice melting
downstream from a reactor cooling water outlet. Satel-
lite surveillance can observe construction activities, and
in the case of thermal imagery, it can provide a rough
estimate of power output for some reactor designs. Dis-
advantages of this approach are the need for cueing in-
formation, that is extraneous information sources that

enable the satellite surveillance to focus the search on a
specific area due to its limited field of view, the depen-
dence on weather, the qualitative nature of the power
estimates, and susceptibility to masking or dissipation of
the thermal signature.

Noble gases and other radioactive gases from fission are
created in operating reactors. These can escape through
cracks in the outer layers of fuel rods, and they may ulti-
mately be released to the atmosphere. The detectability
of noble gases released from reactors depends on the in-
tegrity of the fuel and cladding, pathways within the re-
actor complex to the atmosphere, and the weather condi-
tions along the path from the reactor to the radio-nuclide
detection apparatus (Saey, 2007). This approach to re-
actor discovery can also suffer from confounding signals
arising from radio-nuclide release from other nuclear fa-
cilities, such as reprocessing plants or radioisotope pro-
duction facilities.

Given the relatively limited set of tools available
for remote reactor discovery, exclusion and monitoring,
antineutrino-based methods offer unique features that
may be of use in current or future monitoring regimes.

B. Neutrino-based approaches

Neutrino-based techniques offer significant advantages:
persistence; the ability to detect or exclude reactor activ-
ity in a wide geographical region without external cueing
information; insensitivity to weather, shielding and other
environmental factors; the potential to place constraints
on, or directly measure, the operational status and total
thermal power of the reactor, and thereby estimate the
maximum possible rate of plutonium production in the
discovered reactor.

As standoff distances increase from the near-field
regime, the event rate that can be practically achieved
drops, even in large detectors, from tens or hundreds of
events per day to a few events per day, week or month.
Timely direct measurement of fissile content becomes dif-
ficult or impossible, simply due to the small event sam-
ples obtainable in reasonable integration times. Still, it
may be possible to discover, or exclude the existence
of, undeclared reactors in regions surrounding the de-
tector location. In addition, constraints can be placed
on the total power output of a known reactor, or a set of
known reactors, over periods of months, providing an up-
per bound on fissile material production. If backgrounds
are sufficiently well understood through simulation and
calibration, the existence of an undeclared reactor can in
principle be discovered by looking for a signal above the
known background. If backgrounds must be measured in
place, then only a sufficiently large change in the reactor
power can be observed, manifested as a deviation from a
stable background.

Prediction of backgrounds is a significant challenge for
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these types of experients. Ambient radioactivity lev-
els from the detection medium, detector materials and
surrounding rock must be measured and incorporated
into simulations. As a result, screening campaigns for
all construction materials are a common practice for un-
derground particle detectors. Modeling is more complex
for muogenic backgrounds, including neutrons and long-
lived radionuclides. A widely used model for muogenic
neutron backgrounds is that of Mei and Hime (Mei and
Hime, 2006), while muon tranport codes such as MUSIC
and MUSUN (Kudryavtsev, 2009) are used to propagate
muons to great depths underground and study angular
dependence.

Aside from questions of modeling backgrounds, there
are several limitations on neutrino-based approaches:
the smallness of the IBD cross-section; backgrounds of
real antineutrinos from the hundreds of existing civilian
power reactors worldwide; and persistence of cosmic-ray
induced backgrounds, which for large detectors can only
be reduced by underground deployment.

We use a 50 MWth reactor as a ’standard candle’, this
power being roughly typical of the scale of plutonium
production reactors. Excluding the presence of such a
reactor within one year with 95% confidence at 1,000 km
standoff requires a 335 kiloton fiducial mass water-based
detector. This mass estimate assumes a 100% effi-
cient detector above an antineutrino energy threshold
of 3.26 MeV (imposed to remove geoantineutrino back-
grounds, as described below), no observed events, and
a Poisson-distributed background consistent with zero.
With these assumptions, the 335 kiloton detector would
have been 95% likely to have observed greater than zero
events with 3 signal events expected on average. Clearly,
the smallness of the IBD cross section is a challenge.

Constraints imposed by other backgrounds further in-
crease the detector size or dwell time. In order of in-
creasing standoff one needs to deal with different types of
background. Up to 20 km the dominant backgrounds are
accidentals from local radioactivity, fast neutrons, and
long-lived muogenic radio-nuclides. These can be con-
trolled by locating the detector underground and by care-
ful material selection. Additional research is needed to
determine the degree to which these backgrounds can be
suppressed in 100 kiloton and larger detectors and studies
of achievable sensitivities have been performed (Lasserre
et al., 2010).

At larger standoffs, geo-neutrinos stemming from ura-
nium and thorium decays in the earth (Bellini et al., 2013;
Krauss et al., 1984) become non-negligible. Since their
energies do not exceed 3.26 MeV an energy cut on the
reconstructed positron spectrum can remove this back-
ground, though in many detectors, upward fluctuations
of the apparent reconstructed energy can contaminate
the signal region.

At standoffs of hundred kilometer or more, reactor an-
tineutrino backgrounds become a limiting factor. These

Distance [km] 10 20 50 100 200

Low background 1×0.08 1×0.4 10×1 100×1 1000×0.8
Medium backgr. 1×0.1 1×0.7 100×0.7 1000×1
High background 1×0.3 5×1 1000×0.9

TABLE II For three representative reactor antineutrino back-
ground levels, this table shows the detector fiducial mass
in kilotons and dwell time in years required to achieve 3 σ
sensitivity to the presence of a 50 MWth reactor. The
three background categories correspond to the actual reactor
and geo-neutrino backgrounds at the existing Andes, Baksan
and Frejus underground laboratories (Barna and Dye, 2015),
with 170, 2,080 and 28,000 background events per year and
100 kiloton detector mass. The data is formatted as mass
[kt]×dwell time [years]. Blank cells indicate that the dwell
time is greater than 1 year, or the detector mass is greater
than 1 megaton. Neutrino oscillations are accounted for and
an energy cut to largely remove geo-neutrinos is applied.

backgrounds are the greatest concern in monitoring con-
texts, since they cannot be removed except by recon-
structing the direction of the incident antineutrino, which
is challenging to accomplish for IBD events. Less well
measured but potentially also important are IBD-like
events induced by high energy atmospheric neutrinos and
antineutrinos, including both charged and neutral cur-
rent channels on oxygen (Langanke et al., 1996). For
the largest detectors contemplated in this article, at the
megaton scale, the as-yet-unmeasured but long-predicted
diffuse supernova antineutrinos may become a limiting
background (Beacom, 2010).

The summed background contributions from all of the
world’s reactors at any point on Earth can be estimated
to a precision of about 5% (Barna and Dye, 2015; Usman
et al., 2015). This integrated background contribution
varies by a factor of about 30 from the Northern to South-
ern hemisphere, ranging from a high of 2000 to a low of
∼65 events per 100 kiloton of water per year (Lasserre
et al., 2010). This background is irreducible, unless
event-by-event measurements of the neutrino direction
become possible. Therefore, the limit in sensitivity is
set by the global reactor neutrino background, where we
distinguish regions with low, medium and high reactor
neutrino background, respectively, as shown in Table II.
The conclusion from this simple exercise is that stand-
off distances beyond 200 km will require event-by-event
measurements of the neutrino direction (Jocher et al.,
2013).

C. Technology options

Water Cerenkov and scintillation detectors are the only
viable target media for the construction of large-scale
(kiloton and above) antineutrino detectors implied by
Table II. Within tens of kilometers, few-kiloton detec-
tors suffice to achieve basic monitoring goals, e.g. Kam-
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LAND (Eguchi et al., 2003) and JUNO (An et al., 2016a),
and these could be based on liquid scintillator. To build
the larger, 100 kiloton or megaton size, detectors for use
in the far-field, water-based technologies appear promis-
ing. The 50 kiloton Super-Kamiokande water Cerenkov
detector has already demonstrated sensitivity to MeV-
scale (solar) neutrinos (Renshaw et al., 2014). However,
in pure water detectors, neutrino and antineutrino are
indistinguishable. This greatly complicates the detection
of antineutrinos, because the neutrino/antineutrino sig-
nal consists only of a single flash of light induced by the
neutrino or antineutrino. For that signal, backgrounds
consist of the full gamut of sources that can induce MeV-
scale single events, including gamma-rays from radioac-
tive contaminants in the target medium and detector
materials, cosmogenic muons and neutrons, and muo-
genic radionuclides. Solar and other neutrinos are also
of course a background to antineutrinos in such detec-
tors. Conversely, if the neutron from IBD interactions
(see Eq. 5) can be tagged efficiently, the presence of this
signal in close time coincidence with that induced by the
positron permits suppression of backgrounds by 3 orders
of magnitude or more compared to a search for a single
MeV-scale energy deposition.

To break the degeneracy of antineutrino and neutrino,
and permit efficient and unambiguous detection of MeV-
scale antineutrinos, researchers have proposed to add
gadolinium to water (Beacom and Vagins, 2004; Bern-
stein et al., 2001), at roughly the part per thousand level
by weight. Gadolinium, an efficient neutron-capture ele-
ment, greatly improves the efficiency for detection of the
final state neutron in the IBD process.

A 200-ton engineering demonstration of gadolinium-
doped water technology has been achieved by the
EGADS group (Xu, 2016). The experiment demon-
strated the compatibility of standard materials with
gadolinium-doped water, and showed that the effective
attenuation length of Cerenkov light in gadolinium-doped
water remained high, a key consideration for the con-
struction of large-scale detectors. In part based on
this research, the Super-Kamiokande collaboration an-
nounced (Nature, 2019) that it would add gadolinium
to the detector, primarily in an effort to detect diffuse
supernova antineutrinos.

In 2018, the dedicated WATCHMAN experiment was
launched (NYT, 2018) to investigate the viability and
scalability of gadolinium-doped water as a tool for reactor
antineutrino detection in nonproliferation contexts. It
will be constructed in the Boulby mine in Northern Eng-
land, and will measure neutrinos emitted by the Hartle-
pool nuclear reactor complex, 25 kilometers distant.

In order to breach the 200 kilometer limit for remote
sensitivity implied by Table II, directional reconstruc-
tion methods on an event-by-event basis will be needed
for reactor antineutrinos. In the IBD reaction the mo-
mentum of the neutrino is carried by the neutron and

hence the neutron momentum would need to be recon-
structed, a daunting task in a megaton-scale detector. In
the neutrino-electron scattering reaction, the scattered
electron carries the momentum of the neutrino, but the
expected event rate per unit mass for hydrogenous tar-
gets is approximately 5 times lower than for IBD (Dye,
2017).

In spite of the difficulties, the high value of direc-
tional reconstruction for background suppression moti-
vates continued investigations in this area. Examples of
directional concepts for IBD and neutrino-electron scat-
tering respectively are found in (Safdi and Suerfu, 2015)
and (Hellfeld et al., 2017).

VII. APPLICATIONS TO SPENT FUEL AND
REPROCESSING WASTE: DISCOVERY AND
MONITORING

A. Existing approaches

At present, compliance with safeguards agreements is
based on observations made before a storage cask or un-
derground repository is closed and relies upon the in-
tegrity of seals and remotely monitored cameras to verify
that these closed volumes were not opened between in-
spector visits. However, seals can be opened and closed
without detection (Johnston et al., 1983) and cameras
can be unplugged or blocked, intentionally or inadver-
tently. It therefore would be desirable to verify that the
situation inside a sealed container or repository is as ex-
pected without having to open it.

It is challenging to verify the plutonium content of
SNF using nondestructive measurements. IAEA SNF
safeguards therefore employ radiation measurements to
confirm that specific characteristics (termed attributes)
of the fuel are consistent with the declared initial enrich-
ment, cooling time and burnup. These radiation mea-
surements are typically confined to take place during wet
storage in a fuel pond and are performed using a com-
bination of gamma spectroscopy, gross neutron count-
ing, neutron coincidence counting, and Cerenkov imag-
ing, where the latter is the most commonly used. In
principle, this combination allows to confirm gamma and
neutron emissions expected from characteristic nuclides
and Cerenkov light indicating that all individual fuel rods
in the assembly are present, see also Sec. V.A.

B. Neutrino-based approaches

Dry storage of some form is the final destination for
almost all SNF. The bulk of SNF is currently in wet stor-
age, but in the aftermath of the Fukushima Daichi nu-
clear accident the associated safety ramifications became
all too obvious (NAS, 2016). These safety concerns com-
bined with eventual decommissioning of nuclear power
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plants will lead to a significant increase of the amount and
fraction of all SNF in dry storage, see for instance (GAO,
2014). For the verification of SNF in dry-cask storage fa-
cilities, neutrino monitoring could be an option if the cost
were affordable within the IAEA budget. SNF and repro-
cessing waste (RW) are intensely radioactive and the bulk
of nuclear decays occurs via beta decay, thus, both con-
stitute neutrino sources. For neutrino detection based on
IBD, however, only neutrinos above the IBD threshold of
1.8 MeV are visible. Sargent’s rule states that beta decay
rates are proportional to Q5, where Q is the endpoint en-
ergy in the neutrino spectrum; thus beta emitters with
an endpoint above the IBD threshold tend to be very
short-lived. One year after discharge from reactor, all
detectable neutrinos stem from only 3 pairs of nuclides:
90Sr/Y, 144Ce/Pr and 106Ru/Rh. The reason they ap-
pear in pairs is related to Sargent’s rule: the first decay
in the pair is a low-energy, and hence relatively long-lived
decay, whereas the second decay is of higher energy and
therefore short-lived. For source material older than a
few years, only the 90Sr/Y decay chain, with a half-life
of about 29 years, is relevant. This also implies that for
any SNF/RW produced to date, only about 2.6 half-lives
have elapsed, and this emission is still at 16% of its origi-
nal value. Fortunately, 90Sr has a high cumulative fission
yield8 of 1–5%. In reprocessing, 90Sr will end up in the
waste stream and thus RW is a significant neutrino source
for long periods of time.

In most countries, the bulk of SNF produced in com-
mercial nuclear power plants eventually ends up in dry
storage casks. The rate of neutrino events per ton
of fiducial detector mass and per metric ton of ura-
nium (MTU) of source mass is, assuming a burnup of
45 GW d MTU−1 (Brdar et al., 2017)

Nν = 5.17 yr−1 ton−1 MTU−1 × (10 m/L)2 , (10)

where L is the distance between the source and the de-
tector (both treated as point-like). Typically, these stor-
age facilities are close to an operating nuclear reactor
complex and thus there will an irreducible background
of neutrinos coming from the reactor. This size of this
background can be accurately measured in the same neu-
trino detector used for the SNF signal; due to the high
energy of the reactor neutrinos as compared to the SNF
neutrinos the two components can be disentangled and
only the statistical uncertainty from background subtrac-
tion remains. In (Brdar et al., 2017), a real existing dry
storage facility is taken as an example and it is found
that a change of inventory by as little as 3% can be de-
tected with exposures in the range of 20–80 ton years at a

8 Cumulative fission yield is the sum of the number of atoms per
fission produced directly by the fission and those arising from
decays of other fission products.

stand-off of up to 50 m. In this analysis the assumption
is made that cosmogenic and other non-neutrino back-
grounds can be reduced to negligible levels.

Eventually, most nations plan to store SNF in long-
term geological repositories. Given the large amount of
SNF at such a site, 104−105 MTU, the resulting neutrino
signal will be large, tens of events per year and ton at kilo-
meter scale standoff. In particular, after closure of the
repository, neutrinos will be the only detectable radiation
signature. Following the analysis in (Brdar et al., 2017),
however, the total large amount of SNF makes it diffi-
cult to be sensitive to quantities of interest either in the
context of non-proliferation or safety of the repository:
even the loss of 1 cask with a few MTU, in either case,
would be significant, but this is far less than 1% of the
inventory. Effectively the remaining 99.x% of SNF blinds
the neutrino detector. This situation would improve, if
directional neutrino detection in large detectors, 100s or
1000s of tons, became available, which potentially could
be achieved by liquid argon time projection chambers, as
discussed in Sec. VI.C.

Industrial-scale reprocessing results in significant
quantities of liquid, highly radioactive wastes. Histori-
cally, for the nuclear weapons programs of the US and
USSR, these wastes have been stored in underground
tank farms and their corrosion presents a major problem
due to the risk of ground water contamination (Jaraysi
et al., 2006; Rockhold et al., 2012). Given that 90Sr is
extracted into the aqueous phase in the PUREX pro-
cess, these RW tanks also contain large quantities of 90Sr
and thus are the source of detectable neutrino emissions.
In (Brdar et al., 2017) a study of a tank farm based on an
existing site (Jaraysi et al., 2006), shows that a 80-year-
ton exposure can measure the 90Sr content of a given
tank at the 20% level. Equivalently, for a known quan-
tity of reprocessed fuel this allows an age determination
of in the range of 44-54 years for a true age of 50 years.
This capability could be useful in clarifying the history
of a plutonium-based weapons program.

In the previous example, the location of the RW was
known but the quantity was not. The logical extension is
the case where also the location is not known precisely.
This situation could arise naturally when undeclared re-
processing is suspected and the goal is obtain a rough
estimate of the possibly extracted amount of plutonium.
Such a scenario was encountered by the IAEA in 1992
in dealing with North Korea: isotopic analysis of sam-
ples taken during inspection indicated three reprocessing
campaigns, whereas the initial declaration stated a single
reprocessing campaign. The use of a neutrino detector
specifically for this case has been subject of a detailed
study (Christensen et al., 2015): a complete reactor core
of the 5 MWe reactor corresponds to about 8 kg of plu-
tonium if fully reprocessed. The resulting RW can be
detected at a standoff of 25 m with an exposure as little
as 1–2 ton years and at a standoff of 100 m with an expo-
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sure in the 50–200 ton year range. The large increase in
required exposure is due the background from the operat-
ing reactor nearby; otherwise, required exposure simply
would increase as the square of the standoff.

VIII. APPLICATIONS TO NUCLEAR EXPLOSIONS:
FISSION CONFIRMATION AND YIELD ESTIMATION

A. Existing approaches

The CTBT verification regime relies in part on
the International Monitoring System (IMS), a
global network of facilities to detect nuclear explo-
sions. Seismic (Kværna and Ringdal, 2013), hydro-
acoustic (Lawrence, 1999), infrasound (Green and
Bowers, 2010), and radio-nuclide verification (Schoepp-
ner, 2017) technologies comprise the IMS and are
distributed across 337 stations and laboratories to moni-
tor for nuclear explosions conducted on Earth (CTBTO,
2018). Currently, the most sensitive means for de-
tecting underground nuclear explosions are seismic,
which can detect and identify explosions down to or
below a yield of about 1 kiloton worldwide. At low
yields, if radioactive gases do not leak out in detectable
quantities, it is theoretically possible that an explosion
could be claimed to be conventional (although mining
explosions are typically ripple-fired blasts, which are
seismically distinguishable from a nuclear explosion). A
nuclear explosion under the ocean would be detectable
via hydroacoustic waves and in the atmosphere by
the characteristic double pulse of light and radioactive
fallout. In space, detection satellites monitor for a pulse
of X-rays (National Research Council, 2012).

B. Neutrino-based approaches

For a WATCHMAN-sized Gd-doped water detector,
103 m3 fiducial volume, detection of antineutrinos in co-
incidence with seismic events could in theory provide un-
ambiguous signatures of a kiloton fission explosion out to
a few km and a 250 kiloton explosion out to a few tens
of km. The largest proposed detector, with a fiducial
volume of ∼ 200,000 m3 could detect a 1 kiloton fission
explosion at a distance of about 20 km (Carr et al., 2018).
With fiducial volumes on the order of 108 m3 detectors
of this type would be able to detect 1 kiloton fission ex-
plosions at a distance of 1000 km or a 100 kiloton fission
explosion at a distance of 10,000 km, providing global
coverage.

IX. SUMMARY & OUTLOOK

The pursuit of practical roles for neutrinos, especially
in nuclear security, goes back at least 40 years. In those

four decades, our understanding of fundamental neutrino
properties has improved considerably, and neutrino emis-
sions from fission sources have been more precisely char-
acterized. Multiple detection channels have come into
use, and the IBD channel has become a workhorse for
fundamental science. As we have highlighted, neutrinos
were first detected at a reactor producing plutonium for
nuclear weapons. In this sense, the science of neutrinos
and the wider uses of nuclear fission technology have long
shared a link.

Any successful application of neutrinos will reconcile
their unique advantage as a fission signature – the ability
to pass through large amounts of matter – with the flip
side of that property, the difficulty of identifying these
particles in significant numbers in a realistic detector.
This central constraint favors applications in which the
flux of neutrinos is high. Of the three fission sources con-
sidered here, operating reactors have the highest time-
averaged flux on timescales relevant for security prob-
lems, hours to months, at distances reasonable for obser-
vation, several meters to hundreds of kilometers.

For this reason, reactors are the most promising tar-
get for neutrino applications in the near term. As we
have outlined, neutrinos may be useful for two different
regimes of reactor monitoring. The first case is near-
field monitoring, . 1 km standoff, of known reactors.
In near-field scenarios, few-ton-scale scintillator detec-
tors with linear dimensions of several meters can detect
on/off transitions, track power levels, meet IAEA stan-
dards for spotting plutonium diversion, and meaningfully
track plutonium disposition. Detector technologies pro-
viding the requisite energy resolution and background re-
jection have been recently demonstrated. With modest
further investment, these technologies could be deployed
as a real-time, less invasive complement to existing reac-
tor verification techniques.

A second and more ambitious application for reac-
tor neutrinos is discovery of hidden, undeclared reactors.
This capacity would be most valuable when the sensi-
tive range of the detector covers distances of several hun-
dred kilometers or more, extending over wide territories
and possibly national boundaries. That aspiration calls
for detectors as large as the multi-megaton scale with
100 m or larger in linear dimensions. While the engi-
neering challenges and costs of megaton-scale detectors
are formidable, systems on this scale are under active
development for basic science. However, the background
stemming from known civilian nuclear reactors presents a
major obstacle and only event-by-event measurement of
the neutrino direction can overcome this limitation. On
the other hand, for the distance range from 10’s to 100’s
of kilometers, the key enabling technologies for suitably
large detectors are well developed: in the next decade,
the WATCHMAN program expects to demonstrate re-
actor discovery capabilities in a 1 kiloton fiducial mass
detector at a distance of 25 km (Askins et al., 2015).
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While the other stages in the nuclear fuel cycle of-
fer opportunities for neutrino monitoring, they present
considerably more challenging detection problems than
operating reactors. The emission rates and energies of
neutrinos emitted from SNF and reprocessing waste are
lower than from reactors. Still, ton-scale scintillator de-
tectors offer rare capabilities for verifying the contents of
sealed spent fuel casks and identifying well-concealed re-
processing waste. The burst of neutrinos following an un-
derground nuclear weapon test could help formally iden-
tify its fission nature when combined with seismic data.
However, even megaton-scale detectors could surveil only
a limited geographic region and would minimally enhance
the strong forensic power of the existing explosion mon-
itoring network.

This review focused on mature technologies, namely
detectors for IBD, which has now been observed over
five million times in basic science experiments at nuclear
reactors. Technologies continuing to emerge from basic
science, such as detectors for CEνNS, may eventually cre-
ate new application options. CEνNS offers the possibil-
ity of detecting neutrino from breeding reactions, which
are below IBD threshold, and may allow for smaller ac-
tive detector masses. CEνNS has been observed for the
first time in 2017 (Akimov et al., 2017) with neutrinos
from a spallation neutron source, yet no confirmed de-
tection of reactor neutrino via this reaction exists. The
first definitive measurement of CEνNS from the reac-
tor neutrino signal will likely first be accomplished with
ionization-based detectors. However, such detectors suf-
fer an impractical limit on their minimum size, essen-
tially imposed by the relatively large amount of energy,
10 − 20 eV, needed to create a single ionization event.
To realize practical detectors that are smaller than IBD
detectors at a given standoff, very low-threshold, (e.g.
phonon-sensitive) CEνNS detectors will need to be de-
veloped, then scaled to useful sizes. Directionality and
spectroscopy via the CEνN channel are even more dif-
ficult to achieve. As a result, CEνNS-based approaches
are unlikely to compete with IBD-based monitoring for a
decade or longer. Note, in the case of IBD it took more
than 60 years from a first detection to detectors which
are capable of a safeguards mission.

Over several decades, physicists have conceived many
ideas for using fission neutrinos in nuclear security. Some
ideas remain in the realm of pen and paper, constrained
by basic physical and practical considerations. For other
concepts, demonstrated technology is catching up with
real opportunities. The unique safeguards capabilities
provided by near-field monitors, in particular the ability
to recover lost continuity of knowledge, make a first ap-
plication more likely in cases where there is a lack of a
well-established history of safeguards and mutual trust.
This seems to favor applications within the verification
provisions of bi- or multi-lateral agreements between na-
tions, instead of a regular safeguards agreement between

a nation and the IAEA. In this context, also cost would
be much less of a concern. For near-field reactor moni-
toring in particular, technology now exists to support the
first on-the-ground applications.
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