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Life is characterized by a myriad of complex dynamic processes allowing organisms to
grow, reproduce, and evolve. Physical approaches for describing systems out of ther-
modynamic equilibrium have been increasingly applied to living systems, which often
exhibit phenomena not found in those traditionally studied in physics. Spectacular ad-
vances in experimentation during the last decade or two, for example, in microscopy,
single cell dynamics, in the reconstruction of sub- and multicellular systems outside of
living organisms, and in high throughput data acquisition have yielded an unprecedented
wealth of data on cell dynamics, genetic regulation, and organismal development. These
data have motivated the development and refinement of concepts and tools to dissect the
physical mechanisms underlying biological processes. Notably, landscape and flux the-
ory as well as active hydrodynamic gel theory have proven very useful in this endeavour.
Together with concepts and tools developed in other areas of nonequilibrium physics,
significant progress has been made in unraveling the principles underlying efficient en-
ergy transport in photosynthesis, cellular regulatory networks, cellular movements and
organization, embryonic development and cancer, neural network dynamics, population
dynamics and ecology, as well as ageing, immune responses and evolution. Here, we
review recent advances in nonequilibrium physics and survey their application to bio-
logical systems. We expect many of these results to be important cornerstones as the
field continues to build our understanding of life.
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I. INTRODUCTION

Life is never at equilibrium. The principle of detailed
balance defines an equilibrium system as one in which
transitions between two states occur on average at equal
rates in either direction. Typically, the dynamics of liv-
ing systems cannot be described in these terms because
they continuously exchange matter and energy with their
environment in a non-reversible fashion. Living systems
take up food that provides the building blocks necessary
for growth and proliferation. Food can supply the organ-
ism with energy; living systems may also absorb energy
from the environment in the form of light or heat. Be-
cause living systems continuously exchange matter and
energy with their environment, they cannot be described
as physical systems relaxing to equilibrium.
On subcellular scales, life seems to be governed exclu-

sively by physical laws (Schrodinger, 1944); explicitly, no
natural law unique to biology has been identified as be-
ing necessary to explain the dynamics of biomolecules.
Energy acquired from the environment drives enzymatic
reactions which favor specific molecular changes over oth-
ers. However, it is currently unclear how this specificity is
achieved. Furthermore, large-scale features of living sys-
tems such as cell migration and division, consciousness,
population organization, or evolution are poorly under-
stood in terms of the molecular components that make
up these systems. This stands in stark contrast to the
behavior of equilibrium statistical systems, which can be
understood in terms of their microscopic components. In
this review, we aim to present recent developments in
the field of nonequilibrium dynamics and thermodynam-
ics that provide routes toward answering these funda-
mental questions about living systems. Eventually, they
will prove instrumental for identifying features common
to a large variety of biological systems and elucidate how
mechanics and chemistry act in concert to shape life.
Because living systems regularly showcase phenomena

that defy purely molecular explanations, physical analy-
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sis is required. Simultaneously, living systems provide a
frontier of physical research that is as rewarding as the
study of the very small or the very large, with philosoph-
ical implications of similar depth. Even if topics such as
consciousness are not discussed, living systems provide a
plethora of phenomena that are alien to systems of inan-
imate matter such as spontaneous oscillations or flows.
Beyond the detailed description of isolated phenomena,
the physics of active matter (Marchetti et al., 2013a;
Wang, 2015) aims to develop a framework of concepts
and tools that is universally applicable to active, intrinsi-
cally nonequilibrium systems and nonliving, equilibrium
systems. In this context, matter is referred to as active
because it is intrinsically nonequilibrium. That is, in-
stead of being driven by an external field or gradient, the
constituents of active matter themselves are driven out
of equilibrium. For example, a molecule might undergo
conformational changes as a bound molecule of adenosine
triphosphate (ATP) loses a phosphate group through hy-
drolysis and the replacement of adenosine diphosphate
(ADP) by ATP restores the original conformation. In
presence of an excess of ATP, this will lead to a cycling
of the molecule between the two conformations.

To reach the aim of a universal framework, results from
various disciplines are exploited, notably nonlinear dy-
namics, nonequilibrium thermodynamics, and nonequi-
librium kinetics (Ao, 2008; Gardiner, 1983; Graham,
1989; Haken, 1987; Hu, 1995; Jackson, 1989; Jiang, 2003;
Marchetti et al., 2013a; Nicolis and Prigogine, 1977;
Qian, 2009; Sasai and Wolynes, 2003; Schnakenberg,
1976; Van Kampen, 2007; Wang, 2015; Wang et al.,
2008), as well as nonequilibrium thermodynamics (Ao,
2008; Assaf et al., 2011; Aurell and Sneppen, 2002; Feng
et al., 2010; Feng and Wang, 2011; Feng et al., 2014;
Freidlin and Wentzell, 1984; Gardiner, 1983; Gaspard,
1998; Ge and Qian, 2010; Haken, 1987; Hatano and Sasa,
2001; Jiang, 2003; Lv et al., 2014; Maier and Stein,
1997; Nicolas and Prigogine, 1989; Nicolis and Prigogine,
1977; Qian, 2009; Roma et al., 2005; Schnakenberg, 1976;
Schuss, 2010; Seifert, 2008; Van and Esposito, 2010;
Van Kampen, 2007; Walczak et al., 2005; Wang, 2015;
Wang et al., 2006a, 2010c; Zhang et al., 2012; Zhang and
Wang, 2014). In this endeavour it has proven particularly
useful to start with concepts from equilibrium physics. A
central concept is that of a potential or free energy land-
scape that describes the evolution of a physical system
towards equilibrium in terms of gradient descent towards
the landscape’s minima. This powerful picture has found
its way into many other disciplines, notably, into biology
(Fisher, 1930; Frauenfelder and Wolynes, 1994; Wadding-
ton, 1957; Wright, 1941) via “Waddington’s landscape.”
This landscape is used to illustrate the process of cell
differentiation, when a stem cell specializes to become a
liver cell, a brain cell, or some other kind of cell with a
specific function (Waddington, 1957). Similarly, “fitness
landscapes” are used to picture the course of evolution

towards more adapted species in response to some envi-
ronmental constraints(Fisher, 1930; Wright, 1941).

However, the concept of energy landscapes needs to
be generalized for nonequilibrium systems to explain the
phenomena such as limit cycles. One way to general-
ize the energy landscape of a system is to first consider
its stochastic form. Under very general conditions, the
probability distribution asymptotically reaches a steady
state even for systems out of equilibrium. Gradients in
the steady-state probability landscape drive the deter-
ministic ”mean field” dynamics onto one of the possible
attractors, for example, a limit-cycle orbit. Typically,
a second driving force results from a rotational flux that
arises from energy or material input into the system (Xu
et al., 2012). This flux drives dynamics such as limit-
cycle orbits within an attractor (Wang et al., 2008). Be-
cause these rotational fluxes arise from energy or material
being pumped into the system, behaviors such as limit-
cycle orbits are absent from equilibrium systems. Rota-
tional fluxes driven from sources external to the system
are thus tightly linked to entropy production and time-
reversal symmetry breaking.

A different generalization of energy landscapes arises
in the context of nonequilibrium thermodynamics that
is based on the rate of energy dissipation (de Groot and
Mazur, 1985). In this framework, one assumes spatially-
extended systems are locally at thermodynamic equi-
librium, but that these equilibria may differ at differ-
ent locations. In this way, a ”free energy landscape”
of ”spatially heterogeneous equilibria” can be defined.
Together with conservation laws and broken continu-
ous symmetries, this assumption allows for a system-
atic framework to analyze deviations from thermody-
namic equilibrium. For example, this approach yields
the Navier-Stokes equation for an isotropic system of a
single, conserved molecular species. Generalized hydro-
dynamics have notably been developed for active mat-
ter and applied to various biological systems (Marchetti
et al., 2013a). Both the stochastic system and the energy
dissipation approaches allow for the distinction between
driving forces resulting from thermodynamic equilibrium
relaxation and from environmental coupling (Marchetti
et al., 2013a; Wang, 2015).

In addition to their applications to biological systems,
these approaches are noteworthy because they raise im-
mediate physics questions. How do other equilibrium
concepts such as thermodynamic fluctuations, optimal
paths, kinetic rates, and the fluctuation-dissipation the-
orem generalize (Feng and Wang, 2011; Feng et al., 2014;
Wang et al., 2010c; Zhang et al., 2012)? The work of
Shannon (Sloane and Wyner, 1993) reveals a deep formal
connection between concepts from equilibrium physics
and information theory, though it is currently still not
very clear how this connection extends to nonequilibrium
systems. Furthermore, biological systems are often char-
acterized by their function, for example their ability to
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”make decisions” in response to stimuli. Can specific phe-
nomena and function be conceptualized and physically
quantified, particularly towards understanding popula-
tion dynamics?

Although physics has been applied to study biological
processes for a long time, its popularity for this applica-
tion is currently surging.Thanks to the sequencing of the
genomes of numerous model organisms, the molecular in-
ventory of many biological organisms of interest are now
well-known. Many proteins can be isolated and stud-
ied in reconstituted systems outside a cell, which allows
tests of physical hypotheses in controlled environments.
At the same time, proteins can be modified in a variety of
ways in living cells to tune biological processes. The ad-
dition of fluorescent protein tags to functional proteins
allows for researchers to probe their in-vivo behavior.
Continuously-advancing fluorescence imaging and elec-
tron microscope technology allows for the observation of
cellular activities in unprecedented detail. These devel-
opments together have led to enormous amounts of data
that wait to be analyzed, and new data are continuously
added. These experimental advances have a profound
impact on expanding the concepts and tools used for de-
scribing active matter.

In this review, we describe recent progress in the devel-
opment of concepts in nonequilibrium physics and their
application to biological systems. Since the topic is too
vast to be covered fully in the present text, we selected
topics that are the focus of current research and have
proven to be relevant for understanding vital processes
and are the ones these authors are familiar with. We
present a brief overview of the current status of concepts
from nonequilibrium physics, in which we highlight the
nonequilibrium potential and flux approach for dynam-
ics/thermodynamics and the hydrodynamics approach
for active matter. We then show how these concepts
have been applied to a broad range of biological systems.
Then, starting from molecular processes such as enzyme
reactions and energy transport, we cover cellular pro-
cesses. We move up in spatial scales from single-cell pro-
cesses to multi-cell ensemble behaviors, and then finally
to the species and ecological level. Single-cell behaviors
we cover are cell fate decision making, cell cycle, differen-
tiation and ageing. Cell ensembles behavior is explored
via neural networks, tumors and immunity. Finally, the
species and population levels are discussed in terms of
ecology, game theory and economy, and evolution. We
close with a brief summary and outlook of some current
and future directions of the nonequilibrium physics in
biology.

II. PHYSICAL CONCEPTS FOR DESCRIBING
NONEQUILIBRIUM SYSTEMS

In this section, we review some recently developed
physical concepts for describing nonequilibrium dynam-
ics. Special attention is being paid to the landscape and
flux theory, which generalizes the notion of potentials to
systems out of equilibrium. A more detailed review can
be found in (Wang, 2015).

A. Landscape and flux theory for nonequilibrium dynamics

1. Dynamical systems

Consider a dynamical system where a vector C de-
notes its variables such as concentrations, momentum,
or polar order.When the trajectory of C evolves deter-
ministically and depends only on its current state, the
dynamical equation reads

Ċ = F(C), (1)

where F(C) is a generalized driving force (Jackson, 1989).
This equation describes the evolution of a wide class of
systems, for example a series of damped Newtonian os-
cillators.

Exploration of these equations generally begins by
identifying the existence and local stability of fixed
points(Jackson, 1989). Global stability needs to be ad-
dressed separately, since connections among the steady
states are not always known from local analyses; see
Sect. II.A.4. For potential systems, the driving force can
be expressed as the gradient of a potential (or energy) U ,
F = −∇U , so their dynamic behaviors can be deduced
directly from the potential.

2. Nonequilibrium potentials and rotational curl fluxes as the
driving forces for dynamics

In general, the driving force cannot be expressed as
the gradient of a potential. In this case, it is helpful to
explore a stochastic version of the deterministic equation
given in (1). The noise term can account for all factors
not explicitly described by F and, if desired, one can
eventually take the zero-noise limit (Swain et al., 2002).
Stochastic trajectories are determined by the Langevin
equation

Ċ = F(C) + η(C, t). (2)

where η(C, t) represents a time-dependent stochastic
force. The fluctuation magnitude is measured by the
auto-correlation function, 〈η(C, t) · η(C, t′)〉 = 2DDδ(t−
t′), where D represents the fluctuation magnitude and
D is the diffusion matrix that describes fluctuation
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anisotropies (Van Kampen, 2007). Rather than being de-
scribed by individual trajectories which are now stochas-
tic and unpredictable, the system evolution is described
by a probability distribution P that evolves according to
a linear deterministic equation, the Fokker-Planck equa-
tion (Van Kampen, 2007)

∂tP (C, t) +∇ · J(C, t) = 0 (3)

where ∇· denotes the divergence in state space and prob-
ability conservation is guaranteed. The change of local
probability is from the net input. The probability flux J

is given by

J(C, t) = F(C)P (C, t)−∇ · [DDP (C, t)]. (4)

where the first term describes an advective flux from the
driving force and the next term captures the effects of
fluctuations.
Eventually, most systems reach a steady state P ss

where ∂tP
ss = 0. Consequently, the divergence of the

steady state flux vanishes. Potential systems at steady
state are in thermodynamic equilibrium; that is, the
probability flux vanishes such that detailed balance is
obeyed and the probability is given by the Boltzmann dis-
tribution. However, the steady state flux generally does
not vanish, though it must be purely rotational. The ex-
istence of a non-vanishing probability flux at steady state
indicates that detailed balance is broken and its magni-
tude can be used to measure the system’s distance from
thermodynamic equilibrium.
The driving force can be decomposed into a part that

is the negative gradient of a nonequilibrium potential
U (or landscape) and a part involving a rotational curl
flux (Wang et al., 2008). Explicitly,

F = −DD · ∇U +∇DD+ Jss/P ss (5)

Here, U is the negative logarithm of the steady state
probability, U = − lnP ss. Like its equilibrium ana-
log, the nonequilibrium potential landscape is linked to
steady state probability and provides a global quantifi-
cation of system behavior1. However, the nonequilib-
rium dynamics on the landscape also depends on the ro-
tational curl flux. If one visualizes equilibrium dynamics
as charged particles moving in an electric field, nonequi-
librium dynamics correspond to charged particles moving
in an electric and magnetic field. Note that in contrast
to the equilibrium landscape which is given a priori, the
nonequilibrium potential landscape is associated with the
steady state probability that emerges from stochastic dy-
namics. In turn, the rotational curl flux Jss is associated

1 Typically, the diffusion coefficient tensor DD is constant and
does not contribute to the driving force, though in general it
contributes to the potential landscape.

with the steady state probability flux from environmen-
tal coupling that allows for an exchange of matter, en-
ergy, or information (Xu et al., 2012; Zeng and Wang,
2017; Zhang and Wang, 2014). As it does not vanish, it
breaks time reversal symmetry and thus creates a time
arrow (Feng andWang, 2011; Li et al., 2011a;Wang et al.,
2010c). Furthermore, the rotational curl flux current ex-
tends through state space. Hence, unlike in equilibrium
systems, the steady state can typically not be described
fully by local properties.

There is some freedom in decomposing the driving
force into a potential gradient and a rotational curl flux,
as one can always add the curl of a vector field to the
nonequilibrium potential U . The choice made above is
somewhat natural as it leads to the equilibrium case when
the flux is zero, and is the closest analog when one wants
to describe the relaxation into steady state. It also allows
for a generalization of thermodynamics (Feng and Wang,
2011; Ge and Qian, 2010; Seifert, 2005; Van and Esposito,
2010) and of the fluctuation-dissipation relation (Feng
and Wang, 2011; Hatano and Sasa, 2001; Seifert, 2008).

There are several other ways of decomposing stochastic
dynamics.Some studies focus on finding nonequilibrium
potentials (Ao, 2004; Freidlin and Wentzell, 1984; Gra-
ham, 1989; Xing, 2010; Zhou et al., 2012) and their asso-
ciated analytical properties. Others emphasize the role
of nonequilibrium curl flux and the nonequilibrium land-
scape in determining system dynamics (Feng and Wang,
2011; Wang et al., 2008, 2010c; Zhang and Wang, 2014).
One approach aimed to find a new type of stochastic dy-
namics (Ao, 2004), although it may be challenging to
obtain numerical solutions. Furthermore, the general-
ity and uniqueness of this approach are still under dis-
cussion (Qian, 2014; Zhou and Li, 2016). Another ap-
proach, suggested in (Xing, 2010), uses a projection oper-
ator to decompose the driving force. A recently-proposed
decomposition approach assumed orthogonality between
the driving forces, which only works in the determinis-
tic limit (Zhou et al., 2012), reading similar conclusions
to those discussed earlier (Feng and Wang, 2011; Wang
et al., 2008, 2010c) in the zero fluctuation limit. The force
decomposition has been generalized from overdamped to
underdamped dynamics (Ge, 2014; Qian, 2014; Risken,
1989; Wu et al., 2018). Another method decomposed dis-
crete Markov chains into two parts: one that preserved
and another that broke detailed balance(Luo et al., 2017;
Qian and Hou, 1979; Schnakenberg, 1976; Zhang and
Wang, 2014; Zia and Schmittmann, 2007).

3. Thermodynamic origin of the rotational flux

The landscape and flux can be obtained as mentioned
above once specific dynamics are given, though this state-
ment is rather formal. To gain physical intuition, one
can search for the origin of rotational curl flux. For an
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open system, the flux originates from environmental en-
ergy input, which breaks detailed balance. In biology,
the energy that drives the system away from equilibrium
can be obtained from ATP hydrolysis. For example, the
phosphorylation and de-phosphorylation of ATP can pro-
vide an energy source for cellular functions, such as cell
growth and division. One can couple ATP hydrolysis
to specific protein reactions in molecular networks and
other cell systems to explicitly quantify the energy input
by the chemical potential (voltage) from the ATP/ADP
concentration ratio for driving the associated nonequilib-
rium dynamics (Qian, 2007; Xu et al., 2012). This volt-
age gives rise to the rotational curl flux. Alternatively,
one can phenomenologically couple ATP chemical poten-
tial to thermodynamic forces as in the theory of active
matter (Kruse et al., 2004; Marchetti et al., 2013a). The
quantitative connections from ATP that pump voltage
to the flux driving nonequilibrium dynamics and entropy
production/free energy cost have been studied in a few
examples (Xu et al., 2012).

4. Global stability and Lyapunov function for nonequilibrium
systems

The asymptotic dynamics and global stability of a sys-
tem can be quantified if it admits a Lyapunov function,
φ, that is monotonically decreasing along the trajecto-
ries except in steady state (Jackson, 1989). For a deter-
ministic system, a candidate Lyapunov function can be
obtained by calculating the nonequilibrium potential and
then taking the zero-noise limit. To see this, consider the
WKB ansatz up to leading order in D which solves the
Fokker-Planck equation (3), that is, P ∼ exp[−φ0/D],
where φ0 is the leading-order term of the nonequilibrium
potential. We thus arrive at the Hamilton-Jacobian equa-
tion (Hu, 1995; Xu et al., 2013, 2014a; Zhang et al., 2012)

F · ∇φ0 +∇φ0 · D · ∇φ0 = 0. (6)

This equation implies

dφ0
dt

= F · ∇φ0 = −∇φ0 · D · ∇φ0 ≤ 0 (7)

showing that the nonequilibrium potential is a candidate
Lyapunov function.

B. Discrete nonequilibrium dynamics

In a biological context, many systems are characterized
by discrete rather than continuous states. For example,
gene promoter sites are either occupied or not by tran-
scription factors, molecular motors have discrete binding
sites on a cytoskeletal filament, and populations comprise
a discrete number of individuals. We will now describe
how the approaches described above for continuous sys-
tems can be adapted to the discrete case.

1. The Master equation

For a Markovian process in discrete state space, the
analog of the Fokker-Planck equation determining the
dynamics of the probability distribution P is the Master
equation (Gardiner, 1983; Van Kampen, 2007):

dPi
dt

= −
∑

j

TijPi +
∑

j

TjiPj . (8)

where Pi is the probability of being in state i and Tij is
the transition rate from state i to state j. The master
equation reflects that the probability of being in state i
decreases through transitions from state i into any other
state j and increases through transitions from the other
states j into state i. Because a transition to state j from
state i is always balanced by a reduction in state i proba-
bility, the Master equation implies conservation of proba-
bility, d

∑

i Pi/dt = 0. Alternatively, we can write Eq. (8)
as

dP/dt = MTP (9)

with the transition rate matrix M given by Mij = Tij for
i 6= j and Mii = (−1)

∑

j Tij . One can solve the master
equation either directly or by simulating the stochastic
evolution of the system dynamics at long times to gain in-
formation about steady-state probability P ssi (Cao et al.,
2010; Gillespie, 1976; Krauth, 2006).
In steady state, the flux between two states i and j

is F ssij = TjiP
(ss)
j − TijP

(ss)
i . Detailed balance is sat-

isfied if F ssij = 0. In that case, the system is in equi-
librium and there is a potential Vi such that P ssi ∝
exp {−Vi} (Qian and Hou, 1979; Schnakenberg, 1976; Zia
and Schmittmann, 2007). However, dPi

dt = 0 only states
that the sum of all fluxes into and out of state i is zero;
that is,

∑

j F
ss
ij = 0, but F ssij is not necessarily zero.

2. Decomposition of the transition matrix

Similar to the flux component in continuous systems,
the transition rate matrix can be separated into one part
that preserves detailed-balance, D, and one that does
not, C. The part that preserves detailed balance is de-
fined by Dij = min{TijP

ss
i , TjiP

ss
j }/P ssi , for i 6= j and

Dii = (−1)
∑

jDij (Qian and Hou, 1979; Schnakenberg,
1976). The part that breaks detailed balance is defined
by Cij = max{TijP

ss
i − TjiP

ss
j , 0}/P ssi for i 6= j and

Cii = (−1)
∑

j Cij , and Dij = min{TijP
ss
i , TjiP

ss
j }/P ssi ,

for i 6= j (Qian and Hou, 1979; Schnakenberg, 1976).
One can see that M = C + D and DTPss = 0. Because
MTP = (C + D)TPss = 0, it follows that CTPss = 0 as
well. Whereas D preserves detailed balance, DijPi

ss =
DjiPj

ss, C captures the flux breaking detailed balance
and describes irreversible transitions, because CijPi

ss >
0 implies CjiPj

ss = 0 and vice versa.
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The steady state fluxes F ssij resulting from the detailed-
balance breaking part of the driving force C can be ex-
pressed in terms of fluxes along loops that connect a state
with itself, i→ j → k · · · → n→ i (Luo et al., 2017; Qian
and Hou, 1979; Schnakenberg, 1976; Zhang and Wang,
2014; Zia and Schmittmann, 2007). In equilibrium, the
flux along any loop is the same as for the corresponding
reversed loop so that the net flux is zero. The flux loops
provide additional information to the probability distri-
bution for describing the nonequilibrium dynamics of a
discrete system.

C. Nonequilibrium paths

An alternative formulation for the stochastic dynamic
equation (2) describes the dynamical process in terms of
a path integral summing over all possible paths DC(t)
from initial state Cinitial at t = 0 to final state Cfinal

at time t (Aurell and Sneppen, 2002; Feng et al., 2010,
2014; Feynman and Hibbs, 1965; Hunt and Ross, 1981; Li
and Wang, 2013, 2014b; Maier and Stein, 1997; Onsager
and Machlup, 1953; Roma et al., 2005; Wang et al., 2005,
2006b,c, 2010c, 2011; Wiener, 1964; Zhang and Wolynes,
2014; Zhang et al., 2013). That is,

P (Cfinal, t,Cinitial, 0) =

∫

DC(t) exp {−S [C(t)]} (10)

integrates over all possible paths between the initial state
Cinitial and final state Cfinal over time t. The action S
is the integral of the Langrangian along the path C(t);

that is, S [C(t)] =
∫ t

0 dt
′ L(C (t′)) . The Lagrangian L is

given by

L =
1

2
∇ ·F+

1

4D

(

Ċ− F
)

· D−1
(

Ċ− F
)

(11)

where the first term arises from the deterministic driv-
ing force and the second is a consequence of Gaussian
fluctuations η.

For a potential system with F = −DD · ∇U , the
cross product terms in the action, −1/2

∫

1
D

· F · Ċdt =
−1/2

∫

1
D

·F · dC, are independent of the path and thus
constant, such that they do not contribute to the opti-
mal path equation. However, for non-potential systems
they do contribute. In particular, the integral along a
loop does not vanish in this case, which is akin to the
Aharonov-Bohm effect in quantum mechanics and can be
used to classify the underlying topologies of nonequilib-
rium systems (Feng and Wang, 2011; Wang et al., 2010c).

Often, the integral in Eq. (10) is approximated well by
considering only the contribution of the path that min-
imizes the action, called the optimal path (Feng et al.,
2010, 2014; Li andWang, 2013, 2014b;Wang et al., 2010c,
2011; Zhang et al., 2013). The optimal path of a system

is determined by the Euler-Lagrange equation

d

dt

∂L

∂Ċ
−
∂L

∂C
= 0 (12)

Since the probabilities (10) can be used to determine the
nonequilibrium potential, optimal paths offer a possibil-
ity to reduce the computational effort for calculating the
landscape from exponential to polynomial (Wang et al.,
2010c).

An example of optimal paths connecting two steady
states is illustrated in Fig. 1. Due to the curl flux force,
optimal paths in general do not follow the landscape gra-
dient and do not pass the saddle point Ĉ between the
two states’ basins of attraction. The example illustrates
furthermore that optimal paths in non-potential systems
are irreversible.

FIG. 1 3D illustration of a nonequilibrium landscape and
nonequilibrium paths. The states C and C′ are attractors
of the system. The black lines indicate the optimal irre-
versible paths between them, with Ĉ′ denoting the maxima
along them. The white line shows the steepest descent gradi-
ent path going through the saddle point Ĉ. From (Feng et al.,
2014).

It is often very challenging to explicitly solve the Euler-
Lagrange equation (12). In practice, the action of each
path can be calculated by Monte Carlo methods and
the optimal path with minimum action can be obtained
through the Hamilton-Jacobi approach. This can reduce
the complexity of calculating the action from a multi-
dimensional integral to a one dimensional line integral
(Elber et al., 1999; Faccioli et al., 2006; Feng et al., 2010,
2014; Li and Wang, 2013, 2014b; Olender and Elber,
1996; Wang et al., 2010c, 2011; Zhang et al., 2013).
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D. Nonequilibrium transition state theory

In a stochastic equilibrium system, transitions occur
between states associated with landscape minima. The
state transfer between the minima follows an optimal
path and passes through a “transition state” that is as-
sociated with a saddle point of the potential. In the
limit of small fluctuations, Kramers calculated the rate
to be (Kramers, 1940)

r =
D

2πkbT

√

U ′′
min|U

′′
max| exp

[

−
∆U

kBT

]

. (13)

∆U is the potential difference between the initial and the
transition state, kBT is the thermal energy, and U ′′

min and
U ′′
max are the potential curvatures in the initial and the

transition state, respectively. The latter are associated
with the fluctuations around these states.
For nonequilibrium systems, the optimal paths do not

necessarily pass a saddle point unless the fluctuations ap-
proach zero. Therefore, the transition state or Kramer’s
rate theory needs to be modified (Feng et al., 2014; Frei-
dlin and Wentzell, 1984; Maier and Stein, 1997; Schuss,
2010). For small but finite fluctuations (Feng et al.,
2014), the rate is written as

r =
λu(Ĉ)

2π

√

detMfluct(C)

| detMfluct(Ĉ′)|
e−SHJ . (14)

where r is the transition rate from C to C′, SHJ is the
action along the optimal path, Mfluct is the Hessian of the
action, and λu is its unstable eigenvalue. Furthermore,
Ĉ′ denotes the point where the optimal path between C

and C′ crosses the line separating the two corresponding
basins of attraction, determined by D−1 · F = 0 along
the optimal path. Similar to the Kramers’ rate, the pref-

actor λu(Ĉ)
2π

√

detMfluct(C)

| detMfluct(Ĉ′)|
is associated with fluctuations

around C and Ĉ′. Note that Ĉ′ is different for transi-
tions from C to C′ and back, such that these rates do
not obey detailed balance.

E. Nonequilibrium thermodynamics

To develop nonequilibrium thermodynamics, the Shan-
non entropy is first defined. (Ao, 2008; Feng and Wang,
2011; Ge and Qian, 2010; Nicolis and Prigogine, 1977;
Schnakenberg, 1976; Van and Esposito, 2010;Wang et al.,
2006a; Zhang et al., 2012)

S = −

∫

P (C, t) lnP (C, t) dC (15)

The temporal evolution of the entropy can be decom-
posed into two parts:

Ṡ = Ṡt − Ṡe (16)

where

Ṡt =

∫

(J · (DD)−1 · J)
1

P
dC (17)

represents the entropy production rate or the rate at
which the total entropy of the system and the environ-
ment change, and

Ṡe =

∫

(J · (DD)−1 ·F′) dC (18)

is the entropy flow into or out of the system from the
environment. The entropy production rate Ṡt is directly
related to the nonequilibrium flux J and is always larger
than or equal to zero. In the expression of entropy flux
Ṡe, the effective force F′ is given by F′ = F − D∇ · D.
The entropy flux can be positive (reduction of system
entropy), which allows for the creation of order in the
system as can be observed for living systems. At steady
state, the entropy production rate is directly related to
the rotational curl steady state probability flux and is
equal to the entropy flux or heat dissipation.
Analogs of equilibrium thermodynamic quantities can

be defined. If U denotes again the nonequilibrium po-
tential U = − lnP ss, then the nonequilibrium potential
energy is given by U = D

∫

U(C)P (C, t) dC and the free
energy F by F = D

∫

P (C, t) ln (P (C, t)/P ss(C)) dC.
These quantities are related through F = U −DS. The
negative total entropy −St and the nonequilibrium free
energy F are Lyapunov functions for the evolution of the
probability P . Note that the nonequilibrium potential
energy and the nonequilibirum free energy, sometimes
called relative entropy, are defined in an analogous way
to the energy and free energy in equilibrium statistical
physics. The amplitude of fluctuations represented by
the scale factor D effectively plays the role of temper-
ature; in fact, the physical thermal energy could be in-
volved in D.
Another form of nonequilibrium thermodynamics re-

lates the underlying landscape and flux dynamics from
the nonequilibrium fluctuation dissipation relation by
evaluating the equal time correlation functions of the flux
velocity (Feng and Wang, 2011). The time derivative of
the free energy can be written as

Ḟ = D 〈v · ∇ ln [P/P ss]〉 , (19)

where 〈· · · 〉 denotes the average with respect to P and
v = J/P is the flux velocity. From this,

Ḟ =
〈

vss · D−1 · vss
〉

−
〈

v · D−1 · v
〉

(20)

≡ Q̇−DṠt, (21)

where Q̇ is the heat flowing out of the system. It fol-
lows that the rate of entropy production results from re-
laxation to the steady state along gradients of the rela-
tive potential, Ḟ , and from a constant exchange of heat
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that keeps the system out of equilibrium in steady state,
Q̇ (Feng and Wang, 2011; Ge and Qian, 2010; Seifert,
2005; Van and Esposito, 2010). Thus the nonequilib-
rium thermodynamics in this form states that total en-
tropy production is from both non-stationary relaxation
to the steady state and housekeeping for maintaining the
steady state (Feng and Wang, 2011; Ge and Qian, 2010).
At steady state, the entropy production rate is equal to
the housekeeping heat for maintaining the steady state.
Therefore, it is important to quantify entropy produc-
tion as the nonequilibrium thermodynamic (or dissipa-
tion) cost for maintaining the steady state.
After defining the generalized thermodynamic force as

X = (DD)−1 · F/P (22)

one obtains the entropy dissipation

Ṡe =

∫

J ·X dC. (23)

in terms of the nonequilibrium flux J andX. Considering
the individual components of the scalar product in the
integral, on can thus identify pairs of conjugated thermo-
dynamic forces and fluxes. They form the basis of phe-
nomenological, hydrodynamic descriptions of nonequlib-
rium systems, where the thermodynamic fluxes can be
expressed up to linear order in terms of the forces

J = LX. (24)

The matrix L respects the system symmetries by the
Curie principle and contains the phenomenological cou-
pling coefficients, which fulfill the Onsager reciprocal re-
lations (Onsager, 1931).
The above considerations can be also applied to dis-

crete systems. With the transition rate between state
i and j again given by Tij , the flux between them is
Fij = TjiPj − TijPi. We can also introduce the general-

ized thermodynamic potential Aij ≡ ln
(

TijPi

TjiPj

)

. For the

entropy S = −
∑

i Pi lnPi one then finds (Schnakenberg,
1976)

Ṡ =
∑

i,j

FijAij =
∑

i,j

TijPi ln

[

TijPi
TjiPj

]

. (25)

Similar to Eq. (23) the change in entropy is thus ex-
pressed as a sum of products of conjugated fluxes (Fij)
and forces (Aij).
Since changes of entropy are intimately related to the

existence of fluxes, the rate of entropy production or
change can be used as a measure for how far a system is
from equilibrium.

1. Crooks’ theorem and the Jarzynski relation

When applying thermodynamics to ”small” systems
where the number of molecules is on the order of 1010

or less, for example on the scale of individual cells (104),
fluctuations become significant. Consequently, it does
not suffice to consider meanfield thermodynamic quan-
tities; distributions must be considered. A number of
fluctuation theorems have been derived to relate these
distributions to entropy production in case some time-
dependent work process is applied to a system (S., 2012).
In particular, consider the change of the microstate C of
a system coupled to a heat bath at temperature T . The
change occurs along a path C(t) from C(0) = Cinitial

to C(τ) = Cfinal. Furthermore, let λ denote a time-
dependent system parameter. Then the distribution
P [C(t)|λ(t)] of the path and the corresponding distri-
bution for its reverse path C̄ fulfill (Crooks, 1998, 1999)

P [C(t)|λ(t)]

P
[

C̄(τ − t)|λ̄(τ − t)
] = exp[∆S] = exp[β(W −∆F )].

(26)

Here, ∆S and ∆F denote the differences in entropy and
free energy between the initial and the final equilibrium
state, whereas W is the work applied to the system and
β is inverse temperature. This has been verified experi-
mentally, for example, (Collin et al., 2005; Schuler et al.,
2005).

The fluctuation theorem implies the Jarzynski relation,
namely that the average exponential of the work per-
formed equals the exponential of the free energy change
Jarzynski1, Jarzynski2. Explicitly,

〈exp[−βW ]〉 = exp[−β∆F ]. (27)

This relation implies bounds on the possible paths along
which work is extracted from the system by reducing its
entropy. From a practical point of view it shows how to
measure free energy differences by driving the system in
arbitrary ways between two equilibrium states. This has
been applied experimentally to conformations of single
RNA molecules (Liphardt et al., 2002).

2. Fluctuation-dissipation theorem for intrinsic nonequilibrium
systems

The conventional fluctuation dissipation theorem, or
FDT, is important in linking the response of the system
upon perturbation to equilibrium fluctuations (Kubo,
1966). This is useful for experimental efforts in extract-
ing the equilibrium fluctuations of a system from its re-
sponse, or vice versa. For nonequilibrium systems with
broken detailed balance, a generalization of the FDT is
necessary (Cugliandolo et al., 1997; Feng and Wang,
2011; Prost et al., 2009; Seifert, 2005; Seifert and Speck,
2010). In the landscape and flux representation, it takes
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the form (Feng and Wang, 2011)

RΩ
i (t− t′) = −〈Ω(t)∂i ln[P

ss(x)]〉 (28)

= −
[

〈Ω(t)F̃k(t
′)D−1

ik (t′)〉+ 〈Ω(t)vssk (t′)D−1
ik (t′)〉

]

,

(29)

where Ω is an observable and R the response to a per-
turbation. Furthermore F̃i = Fi − ∂jDij is again the
generalized force and vss = Jss/P ss is the flux velocity.
The above expression reveals that there are two contri-

butions to the system’s response. The first term on the
right hand side of Eq. (29) is analogous to the expression
for equilibrium systems and results from correlations be-
tween observable Ω and their driving force. The second
term involves a correlation between the steady state flux
velocity and observable Ω, which breaks detailed balance.
Thus, this term is absent in equilibrium systems. The
general response therefore depends on both steady state
fluctuations and curl flux. Equation (29) can be used to
experimentally quantify the rotational curl flux by mea-
suring the difference between the response function and
the fluctuations around steady state.

F. Nonequilibrium information dynamics

1. Nonequilibrium information landscape and flux, mutual
information and entropy production

The physical states of systems and environments can
be encoded into bits of information. Information flow is
important for cellular signal transduction, development,
and brain information processing (Barato et al., 2013;
Barato and Seifert, 2014; Bialek, 2012; Levchenko and
Nemenman, 2014). Speed and accuracy are crucial for
biological information transfer and processing. However,
finding phenomena that facilitate fast, efficient, and ac-
curate biological information transfer and processing is
challenging. Information dynamics are often stochas-
tic; this can be characterized by probabilistic evolution
(Barato et al., 2013; Barato and Seifert, 2014; Hartich
et al., 2014; Horowitz and Esposito, 2014).
Information dynamics can be captured by communi-

cations among different subsystems enabling information
transfer (Sloane and Wyner, 1993). Stochastic informa-
tion dynamics can be quantified by the probabilistic mas-
ter equation including, for example, both the whole sys-
tem Z and its subsystems X and S. (Barato et al., 2013;
Barato and Seifert, 2014; Hartich et al., 2014; Horowitz
and Esposito, 2014; Zeng andWang, 2017). The nonequi-
librium information system can be globally quantified by
its steady state distribution and flux. Weights are as-
signed to each information state based on the landscape.
Both landscape and flux which quantifies the system’s
distance form equilibrium, determine the information dy-
namics.(Zeng and Wang, 2017). Shannon’s information

theory (Sloane and Wyner, 1993) gives a mutual infor-
mation measure for the capacity of the communications.
Explicitly, for a system Z, this is based on the Mutual

Information Rate (MIR) between its subsystems X and
S in steady state. The MIR is defined on the probabil-
ities of all possible time sequences. That is, it depends
on the probability of the whole system P (ZT ) and the
probabilities of the subsystems X and S given by P (XT )
and P (ST ). The MIR between X and S is explicitly

I(X,S) = lim
T→∞

1

n

∑

ZT

P (ZT ) log
P (ZT )

P (XT )P (ST )
. (30)

which measures the efficient bits of information that X
and S exchange with each other in unit time. When
I(X,S) = 0, no information is exchanged between X and
S and therefore the subsystems are independent of each
other. The general form of mutual information I(X,S)
can be decomposed into a time-reversible equilibrium
part ID(X,S) and time-irreversible nonequilibrium part
IB(X,S) directly related to the information flux. This
links communication capacity to the driving force of the
system’s information dynamics (Zeng and Wang, 2017).
While the time-reversible part ID(X,S) operates in both
directions without additional energy, the directional flow
of information exchange requires energy input and is re-
lated to the information flux Jz , one of the two driving
forces of the information dynamics. Furthermore, the
information communication capacity is associated with
the dissipation cost in maintaining it. The detailed bal-
ance breaking part of mutual information can be further
decomposed into the difference between entropy produc-
tion rate of the whole system and the individual subsys-
tems (Diana and Esposito, 2014; Zeng and Wang, 2017).
Namely,

IB(X,S) =
1

2
(EPRz − EPRx − EPRs) (31)

where, EPRz , EPRx, and EPRs represent the entropy
production rate of the whole system Z, and each subsys-
temX and S respectively. Physically, a system’s capacity
for irreversible mutual information exchange between its
subsystems is related to to the difference between entropy
production in the whole system and its subsystems. Ef-
ficient mutual information exchange requires an energy
input or dissipation cost, which can have direct impacts
on the Jarzynski relation and Crooks fluctuation theorem
when including information.

2. Fluctuations in information thermodynamics

Thermodynamic fluctuations can significantly alter
stochastic information systems. The generalized fluctua-
tion theorem involving information exchange character-
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ized by mutual information I is given as (Sagawa, 2013):

P [C(t)|λ(t)]

P
[

C̄(τ − t)|λ̄(τ − t)
] = exp[β(W −∆F ) + I] (32)

This states that the difference in statistical fluctuations
forward and backward in time leads to the entropy pro-
duction given by the difference between the work and the
free energy reduction from the mutual information. The
generalized Jarzinsky relation (Sagawa, 2013) reads:

〈exp [−βW − I]〉 = exp[−β∆F ]. (33)

These relations imply that the effect of information ex-
change acts as extra work or an effective free energy re-
duction.
Several studies were carried out on the informa-

tion and nonequilibrium optimization of biological sys-
tems. (Barato et al., 2013; Barato and Seifert, 2014;
Bialek, 2012; Levchenko and Nemenman, 2014; Press
et al., 2013). Topics examined include maximizing infor-
mation entropy or max caliber (Press et al., 2013); maxi-
mizing mutual information (Bialek, 2012; Levchenko and
Nemenman, 2014) for signal transduction and develop-
ment; uncertainty; sensing; and efficiency of information
processing (Barato et al., 2013; Barato and Seifert, 2014;
Becker et al., 2015; Lan et al., 2012; Ziv et al., 2007). We
expect more applications of the theoretical framework
here to the biological information processing.

G. Gauge fields, time reversal symmetry breaking and
underlying geometry for nonequilibrium systems

Symmetry is at the heart of many physical laws.
Continuous symmetries can be quantitatively described
through their associated gauge fields (Peskin and
Schroeder, 1995). However, gauge theory can also be ap-
plied to nonequilibrium probabilistic dynamics(Feng and
Wang, 2011; Polettini, 2012) . Indeed, the Fokker-Plank
equation describing probabilistic evolution can be rewrit-
ten as

∇tP (C, t) = ∇iDij(C)∇jP (C, t), (34)

where the covariant derivatives with respect to the sys-
tem observables and time are defined as

∇i = ∂i +Ai (35)

∇t = ∂t +At, (36)

where Ai = − 1
2D

−1
ij F̃j and At = DijAiAj − ∂i(DijAj)

form the components of an Abelian gauge field.
The components Ai introduce a curvature of the gauge

field internal space

Rij = 2(∂iAj − ∂jAi) = ∂i(D
−1
jk vk)− ∂j(D

−1
ik vk), (37)

where vss(C) = Jss(C)/Pss(C) is the steady state flux
velocity. In equilibrium, the steady state flux is zero and
the curvature vanishes, which corresponds to Rij = 0
and thus a flat internal space. Outside of thermody-
namic equilibrium, the rotational flux typically does not
vanish, therefore Rij 6= 0, which yields a curved internal
space (Feng and Wang, 2011). Curvature of this internal
space is a source of a global topological phase analogous
to the quantum Berry phase (Wang et al., 2008, 2010c).
The heat dissipated along a closed loop is given by (Feng
and Wang, 2011)

T∆sCm = −

∮

C

Ai(x)dxi = −
1

2

∫

Σ

dσijRij , (38)

where Σ is the surface spanned by the closed loop C and
dσij an area element of this surface.
The dissipated heat ∆sm in Eq. (38) is equal to the

entropy production at steady state. Through the fluc-
tuation theorem (Crooks, 1998, 1999), time irreversibil-
ity emerges when entropy production is non-zero, caused
by a flux that breaks detailed balance.(Feng and Wang,
2011; Wang et al., 2010c) Thus, systems with non-zero
curvature geometry break detailed balance, showcase the
emergence of the flux that explicitly breaks time-reversal
symmetry, and generate dissipation.

H. Multiple Landscapes, adiabaticity/non-adiabaticity and
curl flux

We have examined nonequilibrium processes with just
one underlying landscape. Often, systems have multi-
ple degrees of freedom coupled to each other. In these
cases, dividing systems into subsystems and examining
their intra- and inter-subsystem dynamics allow for prob-
ing the overall system dynamics. In equilibrium systems,
each subsystem can be described by a landscape and the
whole system is thus considered as multiple coupled land-
scapes. For example, both the intra-energy nuclear land-
scape and inter-energy electronic landscape motion de-
termine the dynamics of electron transfer(Marcus, 1964;
Morgan and Wolynes, 1987). In equilibrium systems,
the coupled landscape approach can be carried out be-
cause interaction potential landscapes are known a pri-

ori. These interaction landscapes are not a priori known
for nonequilibrium systems, so the conventional equilib-
rium approach must be extended.
For nonequilibrium systems, both strongly-coupled,

adiabatic dynamics and weakly-coupled, non-adiabatic
dynamics are important for overall system dynamics.
Adiabatic motion is characterized by significantly faster
inter-landscape motion while the opposite is true of non-
adiabatic motion. Multiple coupled landscapes can be
technically challenging to study and visualize because
intra-landscape dynamics are often described by contin-
uous variables, whereas inter-landscape dynamics and
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coupling are often described by discrete variables. One
possible solution is to write all discrete variables in a
continuous representation. While the states themselves
are discrete, their associated occupation probabilities are
continuous. By introducing those additional variables,
one can treat systems with coupled discrete and continu-
ous variables as coupled continuous variable systems with
extra degrees of freedom using path integrals. Through
mathematical transformation, the coupled landscape dy-
namics can be treated as the dynamics under a sin-
gle landscape with extended dimensions (Chen et al.,
2015a; Zhang et al., 2013). Using this strategy, a unified,
global quantification of nonequilibrium multi-landscape
dynamics, as determined by landscape gradient and curl
flux, can be represented on a single higher-dimensional
landscape; details can be found in (Chen et al., 2015a;
Zhang et al., 2013) Examples of possible applications for
this strategy include the study of molecular motors and
gene regulation (Chen et al., 2015a; Jülicher et al., 1997;
Zhang et al., 2013).

I. Organization principle of hierarchy and complexity of the
dynamical systems at different scales

Complex systems often involve spatial and time scales
characterized by different emergent phenomena and dy-
namics. For example, when we heat up the water for cof-
fee, in principle we can explore the microscopic molecular
dynamics and see how the water changes to vapor. How-
ever, it is not practical to follow the dynamics of all the
molecules involved. In addition, our observation of inter-
est is on a larger scale than individual molecules; we wish
to know if the water is boiling or not. The water’s state
is not determined by any single individual molecule, so it
is impossible to determine if the water is boiling or not
by examining a single molecule. The boiling behavior is
an emergent collective phenomena from the interactions
of many individual molecules at microscopic scales.

Large scale behavior emerging from microscopic scales
can be very different from small scale behavior. A phys-
ical picture and unified quantitative theory is crucial
for understanding this organization hierarchy and emer-
gent system complexity (Anderson, 1972; Frauenfelder
and Wolynes, 1994; Haken, 2000; Hopfield, 1994; Laugh-
lin et al., 2000; Prigogine and Stengers, 1984; Wolynes,
1996). Emergent behavior is explored using several cen-
tral concepts, namely, symmetry breaking, bifurcation,
phase transition, and emergent rare events. These con-
cepts were integrated to suggest a nonequilibrium land-
scape framework for mesocopic dynamics derived from
the fast, microscopic dynamics at a small scale; intra-
basin motions within each state at an intermediate scale;
and the slow inter-basin switching with the kinetic rates
exponentially dependent on the system size at a larger
scale (Qian et al., 2016). This nonequilibirum landscape

framework represents microscopic, fast dynamics as a
stochastic process and intermediate scale movements us-
ing nonlinear dynamics. Multiple attractors from larger
scales representing the behavior and function emerge
from the interactions of smaller scale systems.

Each inter-basin transition can be described as a dy-
namic symmetry-break which exhibits catastrophe and a
phase transition, breaking ergodicity (Qian et al., 2016),
as shown in Fig.2. The dynamics of a nonlinear meso-
scopic system at the intermediate scale is stochastic.
Therefore, the location and switching between basins
of attraction are both emergent phenomena. Stochas-
tic inter-basin dynamics provide the random element for
nonlinear dynamics at higher spatial and temporal scales.
In fact, the mesoscale landscape and flux emerges from
underlying microscale dynamics of the system. At the
mesoscopic scale, understanding emergent states in their
basins of attraction and how they switch is critical. For
example, the water liquid and vapor phase basin dynam-
ics are critical for understanding the boiling system be-
havior, though individual molecule motion is not as im-
portant. The hierarchical structures of protein dynam-
ics at different scales in terms of their associated en-
ergy landscapes have been experimentally demonstrated
(Frauenfelder and Wolynes, 1994). The nonequilibrium
landscape framework discussed here can help to capture
the hierarchical structure and emergent complexity of the
nonequilibrium biological system organization.

J. Spatial nonequilibrium systems

So far, we have discussed spatially homogeneous sys-
tems. However, spatially heterogeneous systems more ac-
curately represent biological phenomena such as organ-
ism development, motility, and cell structure. Another
example lies in the spatial organization of the neurons in
the brain, where the relevant dynamic quantities depend
on space (Bray, 2001; Dayan and Abbott, 2001; Getling,
1998; Jaeger et al., 2004; Marchetti et al., 2013a). The
dynamics and local stability of such systems have often
been studied using deterministic or stochastic partial dif-
ferential equations. The potential landscape and rota-
tional curl flux approach can be generalized to spatiotem-
poral nonequilibrium dynamics of such systems (Wu and
Wang, 2013a,b, 2014).

1. Landscape and flux decomposition

To identify and quantify the driving force for spatially
inhomogeneous nonequilibrium dynamical systems, we
first define the system’s dynamic variables. These quan-
tities are given by fields that depend on space and time,
denoted by ~φ(~x, t) with components φa(~x, t) representing
the different state variables and ~x denoting a point in
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FIG. 2 Illustration of organizational hierarchy and complexity at different scales (a) A schematic showing how rapid solvent-
macromolecule collisions, as a source of stochasticity and together with a multi-energy-well landscape, give rise to a kinetic jump
process for an individual macromolecule with multiple states (shown within the circle). (b) A level higher, many interacting
chemical individuals, each with multiple discrete states,

form mesoscopic nonlinear reaction systems. (from Ref. (Qian et al., 2016)).

space. The Langevin equation for these fields then reads

∂tφa(~x, t) = Fa[~x;φ] + ξa[~x, t; ~φ]. (39)

where ~F is the deterministic driving force and ~ξ is the
stochastic force, defined by

ξa[~x, t; ~φ] =
∑

b

∫

d3x′Gab[~x, ~x
′; ~φ]ζb(~x

′, t) (40)

where the random fields ζa obey

〈ζa(~x, t)〉 = 0 (41)

〈ζa(~x, t)ζb(~x
′, t′)〉 = δabδ

(3)(~x− ~x′)δ(t− t′) (42)

In the previous equation, G[~x, ~x′; ~φ] quantifies how the
stochastic force field varies in space and by system vari-
able. The stochastic fluctuation strength is characterized
by the diffusion tensor D with

Dab(x, x
′; [φ]) =

1

2

∑

s

∫

d3yGas[~x, ~y; ~φ]Gsb[~x
′, ~y; ~φ]

(43)

Consequently, 〈ξ[~x, t; ~φ]〉 = 0 and 〈ξ[~x, t; ~φ]ξ[~x′, t′; ~φ]〉 =
2D(x, x′; [φ])δ(t− t′).

The state of the system is given by a probability func-
tional P [~φ], which evolves in time according to a func-
tional Fokker-Planck equation. The rate of change of the
probability function can be derived from the principle
of probability conservation by noting that the functional
divergence of net probability flux is equal to the rate of
change of probability. Explicitly,

∂P [~φ]

∂t
= −

∑

a

∫

d3x
δ

δφa(~x)
Ja[~x; ~φ] (44)

where the flux field Ja[~x; ~φ] in turn can be split into two
contributions (Wu and Wang, 2013a,b, 2014)

Ja[~x; ~φ] = Fa[~x; ~φ]P [~φ]

−
∑

b

∫

d3x′
δ

δφb(~x′)

(

Dab[~x, ~x
′; ~φ]P [~φ]

)

(45)

In analogy with the spatially homogenous case, the driv-
ing force can be expressed in terms of the functional gra-
dient of a nonequilibrium potential field landscape and a
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rotational curl flux field (Wu and Wang, 2013a,b, 2014)

F̃a[~x; ~φ] = −
∑

b

∫

d3x′Dab[~x, ~x
′; ~φ]

δU [~φ]

δφb(~x′)
+
Jssa [~x; ~φ]

P ss[~φ]
.

(46)

where F̃a[~x; ~φ] = Fa[~x; ~φ]−
∑

b

∫

d3x′ δ
δφb(~x′)Dab[~x, ~x

′; ~φ].

The nonequilibrium potential landscape U is linked to
the steady state probability, U [~φ] = − lnP ss[~φ], whereas
the steady state probability flux field satisfies divergent
free condition

∑

a

∫

d3x
δ

δφa(~x)
Jssa [~x; ~φ] = 0. (47)

The Lyapunov functional can be used to quantify
the global stability of spatially-dependent nonequilibrium
dynamical systems. The functional is determined by the
intrinsic potential field in systems without fluctuations
and by the free energy landscape for systems with finite
fluctuations (Wu and Wang, 2013a,b, 2014). The free
energy functional decreases monotonically for spatially-
dependent stochastic systems because of the second law
of thermodynamics. Therefore, nonequilibrium thermo-
dynamics can be generalized from spatially homogeneous
to heterogeneous systems (Wu andWang, 2013a,b, 2014).

2. Generalized hydrodynamics

Entropy dissipation and entropy production can be ex-
pressed for spatially heterogeneous systems in a man-
ner similar to that used for homogenous systems. The
entropy production rate can be used to derive a phe-
nomenological description of the system’s dynamics by
assuming the system is close to thermodynamic equilib-
rium (de Groot and Mazur, 1985). This condition states
that each of the volume elements that the system com-
prisesis always in thermodynamic equilibrium. The equi-
libria may differ between different spatial elements such
that the exchange of energy and matter between adja-
cent volume elements leads to quasistatic changes of their
states. This approach is then limited to so-called hydro-
dynamic modes, which are characterized by a relaxation
time τ that increases with decreasing wave number q as
τ ∝ q−2 and arise from conservation laws or broken con-
tinuous symmetries.
Because the system is in local thermodynamic equi-

librium, the free energy F is defined by summing each
volume element’s free energy. For constant temperature
T , one can then express the entropy production rate as

Ṡt = −
1

T
Ḟ =

∫

d3x
∑

i

JiXi (48)

where the sum extends over all conjugated pairs of fluxes
and forces. Expressions for the fluxes can be obtained

by expanding them up to first order in the forces, sim-
ilar to Eq. (24), where the now phenomenological cou-
pling coefficients respect the Curie principle and the On-
sager relations. For simple fluids, this approach leads to
the Navier-Stokes equation, where the viscosities are the
phenomenological coupling coefficients. This approach
is therefore often called generalized hydrodynamics and
has been applied successfully to cellular processes; see
Sect. VI. For strongly nonequilibrium systems, the local
equilibrium assumption breaks down. A more general
approach such as landscape and flux field is required to
accurately describe the underlying nonequilibrium pro-
cesses.

3. A strong nonequilibrium spatial dynamical system:
turbulence

As a specific example of a spatially heterogeneous sys-
tem, consider the fluid dynamics of turbulent systems.
Typically, the Reynolds number can inform if the iner-
tial force dominates their viscous counterpart. For bi-
ological fluids, the Reynolds number is often low; how-
ever, they can still sometimes exhibit turbulent behav-
ior, e.g. in bacterial suspensions (Dombrowski et al.,
2004; Wensink et al., 2012). The nonequilibrium be-
havior of turbulence (Goldenfeld and Shih, 2017) can
be characterized through energy cascade (Falkovich and
Sreenivasan, 2006; Rose and Sulem, 1978). The notion
of a cascade intuitively captures the energy flow from
large to intermediate, then finally to small length scales
where energy is dissipated (Richardson, 1922), quanti-
fied by Kolmogorov’s scaling laws (Kolmogoroff, 1941a,b;
Kolmogorov, 1962; Landau and Lifshits, 1987). A quan-
tification of turbulence with an explicit detailed balance
breaking description (Wu et al., 2018) can help reveal
more insights into the nonequilibrium nature.
The potential landscape and flux field has been quanti-

fied through the stochastically forced Navier-Stokes equa-
tions that govern fully developed turbulence (Wu et al.,
2018)

∂tu = Πs(∇) · (−u · ∇u) + ν∆u+ fs (49)

where u denotes the flow velocity field and Πs(∇) ·
(−u · ∇u) = −u·∇u−∇p represents hydrostatic pressure
and convection. They constitute the deterministic driv-
ing force together with the viscous force ν∆u. Finally,
fs denotes the stochastic stirring force.
The probability functional evolves according to

∂tP [u] = −

∫

d3x
δ

u(~x)
· J[~x;u] (50)

by probability conservation. At steady state, the flux
field Jss satisfies the divergence-free condition and is
therefore a rotational curl flux. The flux field is deter-
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mined by a reversible, pressure-convective force, an irre-
versible viscous force with diffusion in state space, as well
as the stochastic stirring force as (Wu et al., 2018)

Jss(x)[u] = Jssrev[~x;u] + Jssirr[~x);u] (51)

The viscous force decomposition then becomes (Wu and
Wang, 2013b, 2014; Wu et al., 2018)

ν∆u = −

∫

dx′ Dss(x− x′) ·
δ

δu(x′)
Φ[u] +

Jssirr[~x);u]

P ss[~x;u]
(52)

where Φ[u] = − lnP ss[u] is the nonequilibrium poten-
tial landscape related to the steady-state probability (Wu
et al., 2018). This landscape and flux field perspective of
nonequilibrium dynamics applies to stochastic fluid sys-
tems with both low and high Reynolds numbers, such as
biological fluids and turbulent systems, respectively.
The energy transfer T associated with the energy cas-

cade is tightly related to the irreversible flux that breaks
detailed balance by(Wu et al., 2018)

T (k) = −R

{∫

u∗(k) · Jssirr(k)[u]δu

}

(53)

where R denotes the real part of the function. This re-
lation leads to the 4/5 scaling law for the third order
structure function in turbulence (Frisch, 1995; Wu et al.,
2018). It also leads to Komogorov’s 5/3 scaling law for
the second order structure function in turbulence under
the hypothesis of self similarity (Wu et al., 2018). The
driving force for stochastic fluid systems arises from the
underlying potential landscape field gradient and the curl
probability flux field for either physical/biological fluids
or turbulence. A non-zero irreversible probability flux
field indicates detailed balance breaking, which drives the
energy cascade flow.

K. Nonequilibrium quantum landscape and flux

1. Nonequilibrium Quantum Dynamics

Nonequilibrium quantum phenomena are important in
many branches of science, for example quantum trans-
port (Bernevig and Zhang, 2006; Gelbart et al., 1972;
Kuznetsov and Ulstrup, 1999; Laughlin, 1983; Lee et al.,
2007; Majumder et al., 2005; Zhang et al., 2005). Elec-
tron and energy transport within and between molecules,
e.g. in photosynthesis, has been explored intensively
through both experiment (Avinun-Kalish et al., 2005; Ho,
2002; Ohtani et al., 1988; Park et al., 2000; Reed et al.,
1997;Wu et al., 2004) and theory (Esposito and Galperin,
2009; Harbola et al., 2006; Tanimura, 2006). Unidirec-
tional flow in nonequilibrium ultrafast electron transfer
(Kao et al., 2012) was seen in recent experiments of ox-
idized photolyase photoreduction dynamics (Liu et al.,

2013). Furthermore, quantum effects in transports pro-
vide a test ground for nonequilibrium thermodynamics,
recently made possible in single molecule junctions (Ward
et al., 2008). The coherence, representing pure quan-
tum nature, contributes to the transport (Tanimura and
Wolynes, 1992) in addition to the populations. This was
seen for quantum coherent excitation (charge) transport
in light harvesting complexes and photosynthetic reac-
tion centers (Lee et al., 2007; Xu, 1992). Nonequilibrium
dynamics is also important for the development of quan-
tum devices (Nielsen and Chuang, 2000).

There are several theoretical approaches for quan-
tum transport, including momentum balance and fluc-
tuations in mesoscopic systems (Soree et al., 2002), the
fluctuation-dissipation theorem (Baeriswyl, 2005; Kubo,
1957) and nonequilibrium Green’s function method (Car-
oli et al., 1971; Combesco, 1971; Koentopp et al., 2008).
However, these formalisms can only be applied suc-
cessfully to systems near equilibrium. The quantum
master equation (QME) provides a possible alternative
for studying irreversible dynamics of quantum systems
coupled to environments (Breuer, 2002a; Haake, 1973;
Spohn, 1980) beyond the near equilibrium regime. This
approach has been applied to decoherence dynamics in
quantum optics (Carmichael, 2010; Scully and Zubairy,
1997a), chemical reactions, (Mukamel, 1999) and con-
densed matter systems (Weiss, 2012a).

In this section, we will illustrate an approach to
nonequilibrium quantum dynamics in terms of popu-
lation landscape, curl flux and coherence (Zhang and
Wang, 2014) by exploring energy transfer(Gruebele and
Wolynes, 2004; Leitner, 2010) and charge transport
(Chen and Tao, 2009; Ohmine and Saito, 1999; Shishir
et al., 2009; Zhu and Marcus, 2008) in biomolecules. En-
ergy transport is often coupled to two heat environments,
or bosonic baths, with different temperatures. For ex-
ample, the light harvesting complex is coupled to both
light, photonic baths and phononic baths induced by pro-
tein dynamics. Charge transport is often coupled to two
chemical environments, or fermionic baths, with different
chemical potentials. An example of this phenomenon is
found in electron transfer between two metals.

Starting from the original Hamiltonian coupled with
two environments, the corresponding quantum master
equation can be derived. From there, the popula-
tion landscape and curl flux can be uncovered to char-
acterize nonequilibrium quantum systems. The curl
flux provides a measure of detailed balance breaking
and time-irreversibility, important in quantum transport.
Nonequilibrium behavior from system-environment cou-
plingcan significantly enhance steady state coherence (Li
et al., 2015; Zhang and Wang, 2014), contrary to conven-
tional wisdom that suggests the opposite is true(Breuer,
2002b; Manzano et al., 2012). The relationships among
nonequilibriumness, curl flux, coherence, quantum trans-
port and the energy/charge transfer efficiency are dis-
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cussed in later sections.

2. Theory of nonequilibrium quantum dynamics in terms of
flux, coherence and population landscape

In this section, a landscape and flux theory is devel-
oped (Wang et al., 2008, 2011) for the nonequilibrium
quantum system (Zhang and Wang, 2014). The general
Hamiltonian of a quantum system interacting with M
environments can be written in the form

HS =
∑

n,m

Hnm|ψn〉〈ψm|+
M
∑

i=1

∑

k,σ

~ωkσa
(i)†
kσ a

(i)
kσ

Hint =
∑

i,〈n,m〉

∑

k,σ

g
nm(i)
kσ

(

|ψn〉〈ψm|a
(i)†
kσ + |ψm〉〈ψn|a

(i)
kσ

)

(54)

where 〈n,m〉 denotes that only the pairs of states n,m
with energies En < Em are considered. The first term
of H0 is the Hamiltonian of the system, the second term
describes the environmental Hamiltonian, and the term
Hint describes system-environmental coupling. Environ-
ments are often much larger in size than the system,
so one can assume there are no reactions from the sys-
tem back into the environment. Using this assumption,
the system dynamics are uncovered by averaging over
environments. This leads to themaster equation for re-
duced density matrix (Breuer, 2002a; Scully and Zubairy,
1997a; Zhang and Wang, 2014), given by

∂ρS
∂t

=
−1

~2
TrR

∫ ∞

0

ds
[

˜Hint(t),
[

H̃int(t− s), ρS(t)⊗ ρR(0)
]]

+O(g2)

(55)

The density matrix can be expanded in terms of cou-
pling strength between system and environments, ex-
plictly, ρ(t) = ρS(t) ⊗ ρR(0) + ρc(t). Under weak
coupling, the quantum master equation can be trun-
cated to second order, which gives the Redfield equa-
tion without secular approximation rather than the Lind-
blad equation. Written in Liouville space, this isρ̇S =
i
h̄
[ρS , HS ]−

1
2h̄2

D(ρS) where HS is the system Hamilto-
nian and D(ρS) is the dissipation operator from system-
bath coupling. The density matrix then forms the super
vector |ρ̇S〉 = M̂|ρS〉. By separating the ρc matrix on-
diagonal population elements from the off-diagonal co-
herence elements, the matrix M is written as

(

ρ̇p

ρ̇c

)

=

(

Mp Mpc

Mcp Mc

)(

ρp

ρc

)

(56)

where Mp denotes the transition matrix in population
space and Mc is the transition matrix in coherence space

(Zhang and Wang, 2014). The matrices Mpc and Mcp

denote coupling transition matrices between population
and coherence space.
At steady state, the coherence ρc can be substituted

as a function of population ρp into the master equation
(Zhang and Wang, 2014) to give a reduced population
quantum master equation for ρp

(

Mp −MpcM
−1
c Mcp

)

ρssp = 0 (57)

The transfer matrix, which determines the tempo-
ral evolution of the density matrix, can now defined as
Tmn = Ap

nn,mmρ
p
mm for m 6= n where Ap ≡ Mp −

MpcM
−1
c Mcp . For m = n, Tmn = 0. Because of

its role in determining the dynamics of the density ma-
trix, the transfer matrix is the driving force for stochas-
tic probability evolution. The transfer matrix can be
further decomposed into symmetric and anti-symmetric
parts, given by Tmn = Tmn+Tnm

2 + Tmn−Tnm

2 respectively.
One can see that symmetric part of the transfer matrix
Ap,S
nn,mm = Tmn+Tnm

2 /ρpmm satisfies the detailed balance

condition (Tmn+Tnm

2 /ρpmm)ρ
p
mm − (Tnm+Tmn

2 /ρpnn)ρ
p
nn =

0. Using similar methods, one can also check that the
anti-symmetric part of the transfer matrix Ap,A

nn,mm =
Tmn−Tnm

2 /ρpmm does not preserve the detailed balance;

(Tmn−Tnm

2 /ρpmm)ρ
p
mm − (Tnm−Tmn

2 /ρpnn)ρ
p
nn 6= 0, which

leads to a non-zero steady state flux. Therefore, the pop-
ulation quantum dynamics are determined by two driv-
ing forces. The first part is a symmetric force Ap,S

nn,mm =
Tmn+Tnm

2 /ρpmm that is determined by steady-state pop-
ulation landscape and preserves detailed balance. The
second part is the anti-symmetric part of the driving
force Ap,A

nn,mm = Tmn−Tnm

2 /ρpmm, which breaks detailed
balance (Zhang and Wang, 2014). Quantum flux can be
further decomposed into a sum of fluxes through vari-
ous loops in state space (Zhang and Wang, 2014, 2015a).
The quantum flux is thus a rotational curl. The relation-
ships among quantum coherence, transport, thermody-
namics, fluctuation-dissipation relations and even under-
lying geometry/topology will be explored in later sections
(Mehboudi et al., 2016; Zhang and Wang, 2014, 2015a,b,
2016).
Below we describe how the concepts developed in

Sect. II have been applied to specific biological systems
out of thermodynamic equilibrium on various length and
time scales.

III. BIOMOLECULAR SYSTEMS AND EXPERIMENTAL
QUANTIFICATION OF FLUX

As the fundamental building blocks of living organ-
isms, biomolecules interact with each other to form com-
plex molecular structures and dynamics. Because many
biomolecular processes consume energy and exchange
matter, they are considered far from equilibrium. This
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holds notably for elementary biochemical reactions such
as non-Michaelis-Menten kinetics (English et al., 2006;
Min et al., 2006b); molecular dynamics in space and time
such as Min-protein oscillations for cell-division site se-
lection (Raskin and de Boer, 1999a); the organization
of cytoskeletal structures like the assembly of actin fil-
aments and microtubules (Fujiwara et al., 2007; Kuhn
and Pollard, 2005; Mitchison and Kirschner, 1984; Stew-
man and Ma, 2018); and complicated molecular machines
such as the bacterial flagellar rotation motor (Silverman
and Simon, 1974). We will use rhodamine oxidation,
cyanobacterial circadian rhythm, and energy transport
in the light harvesting complex as three examples to il-
lustrate nonequilibrium behavior occurring in molecular
systems.

A. Non-Michaelis-Menten enzyme kinetics

In living cells, almost all biochemical reactions are cat-
alyzed by enzymes that accelerate the conversion from
substrates to products. Typically, kinetic rate is as-
sumed to obey Michaelis-Mentin kinetics, the substrate
and substrate-enzyme complex are in equilibrium (En-
glish et al., 2006; Michaelis and Menten, 1913; Xie, 2013).
However, when energy enters or exits the system, the
enzyme kinetics can deviate from Michaelis-Menten be-
havior (Cao, 2011; Min et al., 2006a; Qian and Elson,
2002) because of a rotational curl flux that breaks de-
tailed balance (Liu and Wang, 2018). The landscape
and fluxes are determined theoretically as the driving
forces for nonequilibrium dynamics. Experimentally, the
nonequilibrium landscape can be acquired by measuring
the steady state distribution of the observables (Fang
et al., 2018; Jiang et al., 2017). Experimental quantifi-
cation of flux is more challenging but may be realized
by measuring the deviation from the Michaelis-Menten
kinetics (Liu and Wang, 2018).
The deviation from Michaelis-Menten kinetics can be

illustrated experimentally by the catalysis of dihydrorho-
damine 123 oxidation into fluorescent rhodamine 123 by
the enzyme horseradish peroxidase in presence of hydro-
gen peroxide (H2O2). It is possible to study this reaction
experimentally at the single molecule level because both
the substrate and enzyme do not fluoresce, whereas the
product does (Edman et al., 1999; Edman and Rigler,
2000; Hassler et al., 2007). Horseradish peroxidase has
two different conformations, both of which can bind the
substrate. The master equation corresponding to the ki-
netic scheme, Fig. 3(a), is given by (Liu and Wang, 2018)

Ṗ =





−sk1 − β α k1 + k3
β −sk2 − α k−2 + k4
k1s k2s −k−1 − k−2 − k3 − k4



P

(58)

where P is the vector (P1, P2, PES) of the probabilities

P1, P2, and PES for the enzyme to be in conformational
state 1, 2, or binding the substrate respectively.
The steady state probability flux is given by J =

βP ss1 − αP ss2 , where P ssi is the steady-state probability
for being in state i. The flux is zero and detailed balance
holds if

α

β
=
k−1k2 + k2k3
k−2k1 + k1k4

. (59)

in which case Michaelis-Menten kinetics emerges and

1

v
= C0 +

C1

[S]
, (60)

where v is the reaction rate and [S] the substrate con-
centration. C0 and C1 are constants that depend on the
molecular rates. The inverse of the Michaelis-Menten
rate is a linear function of the inverse of the substrate
concentration. If detailed balance is broken, the steady-
state probability flux is nonzero and the enzyme reaction
rate is

1

v
= C0 +

C1

[S]
+

C2

[S] + λ
(61)

which has an additional dependence on the substrate con-
centration containing the constants λ and C2. In this
case, the inverse reaction rate is no longer a linear func-
tion of the inverse substrate concentration and thus de-
viates from Mechalias-Menten kinetics. This behavior
is observed experimentally for rhodamine oxidation by
the horseradish peroxidase, shown in Fig. 3(b). Note
that the extra term C2

[S]+λ results from the presence of a

flux loop, but not directly from having more than one
conformational state of the enzyme. The deviation from
Michaelis-Menten kinetics is thus a consequence of break-
ing detailed balance, which in this case originates from
heat absorption by the reaction (Liu and Wang, 2018).
In more complex systems, each additional flux loop i con-
tributes an additional term Ci

[S]+λi
.

Exploiting the correlation function of the experimen-
tal fluorescence signals, the kinetic rate parameters are
obtained. Doing so quantifies the enzymatic rate and the
probability flux as a function of the substrate concentra-
tion (Liu and Wang, 2018) shown in Fig. 3 (b,c). Clearly,
the experimentally-observed inverse enzyme rate versus
inverse substrate deviates significantly from the conven-
tional Michaelis-Menten rate, which predicts a straight
line. The nonzero fluxes are quantified for different sub-
strate concentrations(Liu and Wang, 2018).
As discussed, a non-Michaelis-Menten rate can be

used to quantify the degree of detailed balance break-
ing through the corresponding rotational curl flux. The
flux breaking detailed balance can lead to non-Michaelis-
Menten enzyme kinetics, which is now quantified experi-
mentally as a major driving force for nonequilibrium dy-
namics (Liu and Wang, 2018) and landscape shape (Fang
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FIG. 3 Schematic of an enzyme reaction, non Michales-Menten kinetics and quantification of flux. (a): The simplest kinetic
scheme with two unbound enzyme states. E1 and E2 denote the conformational states of enzymes, ES denotes the intermediate
state of the enzyme reaction and P denotes product. α and β denote the conformation conversion rate. (b):Non-Michaelis
Menten (curved lines) versus Michaelis Menten enzyme kinetics (straight lines) with respect to rhodamine 123 concentrations
at different substrate concentrations. (c): Flux values with respect to rhodamine 123 concentrations at different substrate
concentrations. (from Ref. (Liu and Wang, 2018)).

et al., 2018; Jiang et al., 2017). It is important to note
that the breaking down of the detailed balance originates
from energy imbalance of the enzyme reaction because of
heat absorption(Liu and Wang, 2018).

B. Bacterial circadian rhythm

Circadian rhythms are biological processes that dis-
play sustainable oscillation of about 24 hours and al-
low organisms to anticipate predictable environmental
changes that occur daily. Typically, these processes are
generated through negative feedback regulation of so-
called clock genes at the level of transcription or trans-
lation (Gonze et al., 2002; King et al., 1997; Novk
and Tyson, 2008; Paijmans et al., 2016, 2017; van Zon
et al., 2007; Zwicker et al., 2010). Acircadian rhythm
of the cyanobacterium Synechococcus elongatus (Ishiura
et al., 1998; Wang et al., 2009) can emerge from the rel-
atively simple interaction of the proteins KaiA, KaiB,
and KaiC. Remarkably, after addition of ATP, a mixture
of these proteins in vitro generates circadian oscillations
with only a weak dependence on temperature (Nakajima
et al., 2005; Rust et al., 2007; Tomita et al., 2005). Of
the three proteins, KaiC is a hexameric enzyme that can
be phosphorylated at two of its amino acids: serine 431
(S431) and threonine 432 (T432). The enzyme can be in
four different states: fully unphosphorylated (U-KaiC);
partially phosphorylated either at S431 (S-KaiC) or at
T432 (T-KaiC); or fully phosphorylated at both S431
and T432 (ST-KaiC). Furthermore, KaiA promotes KaiC
phosphorylation, whereas KaiB antagonizes the activity
of KaiA, Fig. 4(a).
The phosphorylation state of KaiC changes cyclically;

KaiA promotes the transition from U-KaiC to T-KaiC
and then into ST-KaiC. Afterwards, KaiC transforms
into S-KaiC and finally into U-KaiC. The state ST-KaiC
is effectively long-lived because KaiA promotes changes

from S-KaiC back to ST-KaiC. Only when S-KaiC has
reached a threshold value does the rate of transition from
ST-KaiC to S-KaiC increase rapidly, because S-KaiC in-
hibits KaiA through KaiB. After S-KaiC has turned into
U-KaiC, KaiA is reactivated and a new cycle begins,
Fig. 4(b). Note, however, that the specific activation
of KaiB by S-KaiC and the role of KaiA in rephospho-
rylating S-KaiC and thus generating ST-KaiC remain to
be confirmed.
The nonequilibrium landscape of the KaiABC system

has the form of a Mexican hat; the nonequilibrium flux
drives the system along the hat’s valley, explaining the
stability of the oscillations. The entropy flow associated
with the nonequilibrium flux and force, which is ulti-
mately caused by ATP hydrolysis involved in the phos-
phorylation kinetics, provides the thermodynamic cost
for maintaining robust and coherent circadian oscillation.

C. Nonequilibrium quantum transports in biomolecules

Representative examples of quantum mechanical bi-
ological processes include photosynthetic energy ab-
sorption, olfaction, bird magnetoreception, and elec-
tron/proton transports in enzymes (Brookes, 2017). As
these processes involve the conversion of energy into
forms usable for chemical transformations, they are out
of equilibrium by nature.
To illustrate the nonequilibrium quantum dynamical

nature of these processes, we explore the landscape and
flux in two-site and two-level model systems (Zhang and
Wang, 2014) coupled with two temperature or two chemi-
cal potential environments where analytical solutions can
be obtained. Two-site and two-level systems have been
widely investigated in condensed matter physics, chem-
istry, quantum optics and information (Benjacob and
Gefen, 1985; Bennett, 1973; Deutsch, 1985; Landauer,
1961; Leggett et al., 1987; Nielsen and Chuang, 2000;
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FIG. 4 The KaiABC circadian system of the cyanobacterium Synechococcus elongatus. (a) Reaction network. Two-headed
arrows indicate transitions between phosphorylation states of KaiC, arrows emanating from KaiA indicate promotion and
inhibition of transitions, the arrow from S-KaiC to KaiA, suppression of KaiA activity by KaiB in presence of S-KaiC. (b)
Concentrations of phosphorylated KaiC as a function of time. From (Rust et al., 2007).

Onuchic and Wolynes, 1988; Palma et al., 1996; Preskill,
1998; Scully and Zubairy, 1997b; Unruh, 1995; Weiss,
2012b) to explore quantum dissipations and coherence.
The system dynamics are often assumed to be coupled
with a single environment. The steady state often be-
comes an equilibrium state with detailed balance and sig-
nificantly reduced or zero coherence. There are examples
of systems coupled to multiple environments, such as en-
ergy and charge transfer in photosynthesis (Garab, 1999;
Lee et al., 2007) and nano-quantum transport (Ferry and
Goodnick, 1997). For these systems, the final steady
state is often not an equilibrium state and quantum co-
herence is not necessarily zero at steady state (Li et al.,
2015; Zhang and Wang, 2014, 2015a,b, 2016). How the
distance of a system from equilibrium influences quantum
coherence and transport is a major challenge for photo-
synthesis in particular(Garab, 1999; Lee et al., 2007).

1. An analytical model for nonequilibrium quantum
energy/charge transfers in biomolecules

To address these issues, let us consider a two-site sys-
tem coupled with two environments. Each environment is
in equilibrium with a different temperature or chemical
potential environment and either obeys Bose or Fermi
statistics. The two-site system connected by tunneling
can be used to describe quantum transport, while the
temperature or chemical potential difference measures
the system’s distance from equilibrium as they set up
a nonequilibrium thermal or chemical battery or pump.
The transition matrix asymmetry, probability flux, co-
herence, and quantum transport efficiency can be quan-

tified by this same measure.The origin of the nonzero flux
can then be identified as the temperature or chemical po-
tential difference.
The two sites describe the transfer, while each level de-

scribes the ground state and the excitation shown in Fig.
5 (a) where the same ground state is shared between two
sites.After being excited from ground state, the molecu-
lar energy transfer is often from donor to acceptor sites.
For simplicity, one can assume the difference in excitation
energies of the two sites are small in the near-resonance
regime, ε2 − ε1 ≪ min(ε1, ε2).
The energy transport in biomolecules can be described

by the system interacting with two thermal environments
in different temperatures. The free and interaction parts
of the Hamiltonian are

HS = Eg|Ω〉〈Ω|+ ε1η
†
1η1 + ε2η

†
2η2 +∆(η†1η2 + η†2η1)

HR =
∑

k,p

~ωkpa
†
kpakp +

∑

q,s

~ωqsb
†
qsbqs

(62)

Hint =
∑

k,p

λkp

(

η†2akp + η2a
†
kp

)

+
∑

q,s

λqs

(

η†1bqs + η1b
†
qs

)

(63)
where |Ω〉 represents the ground state, while η and η†

represent the exciton annihilation and creation opera-
tors occupying the specific excited site (two sites) for
the system. Excitons are bosons that obey an anti-
commuting relationship within the site when constrained
to only two energy levels and a commuting relationship
between sites (Abramavicius et al., 2009). Both envi-
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(a) (b)

(c) (d)

T2(K) T2(K)

FIG. 5 Model for nonequilibrium transport, polarons and quantum transport efficiency. (a) Two-site, two-level quantum
transport coupled with the two environmental baths (b). Polarons formed from strong interactions of excitons and vibrons
lead to weak interactions with the environments and long time coherence. (c) Quantum transport efficiency represented by
the steady-state population on pigment B (energy transfer is from pigment A to pigment B) with respect to the temperature
of low-frequency fluctuations (low temperature here corresponding to high temperature difference between radiation bath and
protein bath); (d) Steady-state quantum coherence varies as a function of the temperature of low frequency fluctuations. In
(d) the purple and the blue lines denote the electronic (localized) coherence and excitonic (delocalized) coherence, respectively.
(from Ref. (Zhang and Wang, 2014) and Ref. (Zhang and Wang, 2016)

ronmental annihilation/creation operators, a and a† re-
spectively, and reservoir annihilation/creation operators,
b and b†, satisfy the Bose-Einstein commutation rela-
tions. That is, the environmental operators a and a†

follow [akp, a
†
k′p′ ] = δkk′δpp′ , [akp, ak′p′ ] = 0 and the

reservoir operators b and b† follow [bkp, b
†
k′p′ ] = δkk′δpp′ ,

[bkp, bk′p′ ] = 0. The operators a and b represent two envi-
ronmental baths in equilibrium at different temperatures,
obeying Bose statistics. Through coupling with the sys-
tem, environments with different temperatures push the
system away from equilibrium. The variable ∆ repre-
sents electronic coupling, or tunnelling strength, between
the two sites. Once the Hamiltonian is specified and the
rotating wave approximation is used, the procedures out-
lined in the previous section can be followed to trace out
the environments and derive the reduced system master
equation. That is, the Redfield equation without secular

approximation under Markovian approximation (Zhang
and Wang, 2014) is derived. The analytical expressions
for the elements in M are given in reference (Zhang and
Wang, 2014). For a system coupled to a Fermionic en-
vironment, one can follow a similar procedure and ob-
tain another reduced master equation (Zhang and Wang,
2014).

a. Curl quantum flux versus nonequilibriumness and tun-

nelling at steady state Following the procedure outlined
in the previous section, one can decompose the driving
force for the population evolution quantified by the ki-
netic transfer T -matrix into the following form (Zhang
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and Wang, 2014, 2015a)

T =





0 A11
ggρgg Agg

22ρ22
A11
ggρgg 0 A22

11ρ11
Agg

22ρ22 A22
11ρ11 0



+





0 0 Jq
Jq 0 0
0 Jq 0



 (64)

where the flux is Jq = A11
22ρ22 −A22

11ρ11. In Eq.(64) the
first part of the transfer matrix describes the equilibrium
under detailed balance and the second part represents
the circular flow called the ”curl nonequilibrium quan-
tum flux,” which is crucial for quantum transport. The
analytical expressions for quantum flux can be derived for
energy transport in bosonic and fermionic environments
(Zhang and Wang, 2014)

J b
q =

2Γ

~2

vb ∆2

~2ω2

1 + 4ub ∆2

~2ω2

, J f
q =

2Γ

~2

vf ∆2

~2ω2

1 + 4uf ∆2

~2ω2

(65)

where the forms of functions of u and v are given as

vb =

(

nT2

ε − nT1

ε

)

(n̄ε + 2)
(

1 + 2n̄ε + 3nT1

ε n
T2

ε

) [

1 + Γ2

~4ω2 (n̄ε + 2)
2
]

ub =
(n̄ε + 2) (3n̄ε + 2)

4
(

1 + 2n̄ε + 3nT1

ε n
T2

ε

) [

1 + Γ2

~4ω2 (n̄ε + 2)
2
]

vf =
(nµ2

ε − nµ1

ε ) (2− n̄ε)
[

1 + Γ2

~4ω2 (2− n̄ε)
2
]

(1− nµ1

ε n
µ2

ε )

uf =

(

1−
n̄2

ε

4

)

[

1 + Γ2

~4ω2 (2− n̄ε)
2
]

(1− nµ1

ε n
µ2

ε )

(66)

where n̄ε ≡ nT1

ε + nT2

ε or nµ1

ε + nµ2

ε and the f and b su-
perscripts represent fermionic and bosonic versions of the
functions respectively. The variable nTε = 1

e
ε

kT −1
is the

particle occupation for bosons with energy ε at temper-
ature T , while nµε = 1

e
ε−µ
kT −1

is the particle occupation

for fermions with energy ε at chemical potential µ and
temperature T .
The function v as the occupation difference provides

a measure for the effective voltage and detailed balance
breaking induced from environments. Therefore, the ef-
fective potential v is directly related to the temperature
difference of the bosonic baths or the chemical potential
difference of the fermionic baths. The function u is a
modulation factor for the flux and transport efficiency.
As seen when the temperature difference or chemical po-
tential difference is zero for the two baths, the effective
voltage is zero, the flux is zero and the detailed balance is
preserved. Therefore, v quantifies the degree of nonequi-
libriumness away from the equilibrium. The definition of
others are given in (Zhang and Wang, 2014). One sees
that the nonequilibrium quantum flux is governed by two
ingredients: the nonequilibriumness and tunnelling for
driving transport.

b. Enhancement of steady state coherence and entangle-

ment from nonequilibriumness From the reduced quan-
tum master equation, one can quantify the steady state
quantum flux and the coherence to uncover their rela-

tionship (Zhang and Wang, 2014): J
b(f)
q = 2∆

~
×|Imρ12|.

From this, one can conclude that at fixed tunneling
strength, the increase in nonequilibrium flux will lead
to a linear increase in steady state coherence. One can
also find

|Imρ12| =
Γv

~2ω

∆
~ω

1 + 4u ∆2

~2ω2

(67)

Steady state quantum coherence is promoted by the
nonequilibrium effective voltage from the difference in
two temperatures or chemical potentials of the environ-
ments at fixed tunneling, in contrast to the system cou-
pled to a single environment, often with decoherence
at equilibrium state. These two environments can cre-
ate nonequilibriumness for maintaining non-zero quan-
tum coherence, suggesting a possible application to quan-
tum information devices for keeping coherence through
nonequilibrium driving. (Zhang and Wang, 2014). On
the other hand, to describe quantum entanglement, a
quantum state must be described for the entire system.
In other words, the quantum state of each system com-
ponent such as a particle or quibit cannot be described
independently from the rest of the system.Entanglement
can be quantified by concurrence for low dimensional sys-
tems and negativity for high dimensional systems (K.,
1998; Zyczkowski et al., 1998). It has recently been
shown that steady state entanglement can be enhanced
by nonequilibriumness, characterized by a temperature
difference or chemical potential difference between en-
vironments (Eisler and Zimboras, 2005; Lambert et al.,
2007; Quiroga et al., 2007; Sinaysky et al., 2008; Wang
et al., 2018; Wu and Segal, 2011). It is worth mentioning
that the off-diagonal elements of the steady state density
matrix in the localized basis is zero when nonequilibrium
voltage, and therefore flux, is zero. This is even true when
we change to the eigenstate delocalized basis, though not
necessarily general for other systems because the coher-
ence is basis dependent. In either case, the steady state
coherence and entanglement can be enhanced by pushing
the system further from equilibrium. For the example of
spin chains, nonequilibriumness also enhances dynami-
cal coherence, entanglement, and fidelity (Zhang et al.,
2017). One way of understanding this is by considering
the global nature of the nonequilibrium flux spanning
the state space, leading to enhancement of the quantum
global nature characterized by coherence.

c. Quantum energy transfer efficiency at steady state En-
ergy transfer efficiency can be introduced in terms of the
steady state quantum flux (Zhang and Wang, 2014) so
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that η = Jq/(Jq +Agg
22ρ22). Then,

ηb =

(

nT2

ε − nT1

ε

)

∆2

~2ω2

nT2

ε

[

B (T1, T2, ω) + (n̄ε + 2) ∆2

~2ω2

]

ηf =
(nµ2

ε − nµ1

ε ) ∆2

~2ω2

nµ2

ε

[

F (µ1, µ2, T, ω) + (2− n̄ε)
∆2

~2ω2

]

(68)

where the definition of two functions B and F are given
in reference (Zhang and Wang, 2014). At fixed tunneling,
the environments characterized by temperature or chem-
ical potential difference enhance the transfer efficiency.
Tunneling also increases the efficiency. The transfer effi-
ciency is significantly higher for fermionic environments
due to Pauli exclusion principle. (Zhang andWang, 2014)

d. Dissipation and quantum thermodynamics at steady state

Heat dissipation through heat current and entropy pro-
duction rate (EPR) measures the thermodynamic cost
of transport. From the first and second laws of thermo-
dynamics with energy conservation and the positivity of
total entropy production in the nonequilibrium process,
one sees Q̇1 − Q̇2 = Ė and ˙Senv + Ṡ = ˙Stot. Q̇1 =
Tr[HSD

1(ρs)] and Q̇2 = Tr[HSD
2(ρs)] are the energy

flowing into the system from high-temperature and low-
temperature environments, respectively, and D1 and D2

are the dissipation operators from system-environment (1
and 2) coupling.(Werlang et al., 2014; Zhang and Wang,
2015a). Ṡ and ˙Stot are the rate of system entropy and to-
tal entropy production, respectively. Increasing nonequi-
librium voltage enhances heat current Q̇ and thermody-

namic cost via entropy production Ṡtot = − Q̇1

T1

+ Q̇2

T2

,
(Zhang and Wang, 2014, 2015a), closely related to the
presence of quantum curl flux for driving nonequilibrium
quantum dynamics.

2. Long time quantum coherence and efficient energy transport
of the light-harvesting complex

The light-harvesting complex is a protein complex that
increases the number of absorbed photons by the photo-
system of photosynthetic organisms through transferring
energy and electric charges efficiently to the photosyn-
thetic reaction center. Experiments suggest that this
process involves long-time quantum coherence at ambi-
ent temperatures (Garab, 1999; Lee et al., 2007). Great
efforts have been taken towards understanding the mech-
anism underlying efficient energy transfer by the light-
harvesting complex (Chen et al., 2013; Chin et al., 2013;
Dorfman et al., 2013; Jang, 2011; Novelli et al., 2015).
In energy transfer, electronic excitons are coupled with

molecular vibrational phonon environments. The two-
site model mentioned earlier can be generalized to the N -
site excitonic system (with Hsysext

) connected by tunnel-
ing coupled (with Hint) to the phonon (with Henvphonon

)

and the environment at room temperature and radiation
environment at a higher temperature ( with Henvrad

) by
the energy function H = Hsysext

+Henvrad
+Henvphonon

+
Hint (Zhang and Wang, 2016). Previous investigations
often assumed that the phonon environments fluctuate
much faster than the excitation system where the effect of
phonons can be averaged. However, recent studies show
that some discrete intramolecular vibrations have a life-
time similar to that of excitons (Christensson et al., 2012;
Kolli et al., 2011; Tiwari et al., 2013; Womick and Moran,
2011). Therefore, phonon dynamics can have a crucial
effect on energy transport when the energy quanta of vi-
brational modes are in resonance with energy splitting of
excitons (Chin et al., 2013; O’Reilly and Olaya-Castro,
2014; Plenio et al., 2013; Romero et al., 2014). The per-
sistence of quantum coherence originating from exciton-
phonon coupling has been observed in experiments (Nov-
elli et al., 2015).

The effects of quasi-resonant coupling between exci-
tons and phonons for the lifetime of quantum coher-
ence has been studied in an effective analytical the-
ory (Zhang and Wang, 2016). There, a general sce-
nario was investigated in which bare electrons/excitons
are surrounded by discrete and continuous vibrational
phonon modes and radiation environments. That is,
Henvphonon

= Henvphonondiscrete
+Henvphononcontinuous

.The
near resonant coupling between the electron/exciton sys-
tem and discrete phonon modes can lead to strong in-
teractions and the formation of polarons. In this case,
the discrete vibrational modes originally from the phonon
environments no longer weakly interact with the exciton
system. Instead, due to strong interactions with the exci-
tons they become part of the system in the form of com-
posite as polarons, while the remaining phonon modes
effectively become the new environments, along with the
radiation baths.

In more details this leads to the effective Hamiltonian
˜Heff = HS + Hph +Henvrad

+ Hint (Zhang and Wang,
2016). HS involves the renormalized exciton on-site en-
ergy, phonon mediated exciton-exciton interactions, the
electronic coupling renormalized by the discrete exciton-
vibrational interactions. Hph denotes the energy of the
remaining phonon environments. The discrete phonon
modes strongly interact with excitons and form polarons
characterized in the last term in HS . Hint describes the
coupling of the new composite polarons to the remaining
phonon modes.

Because of the off resonances between the residual vi-
brational modes and the energy splitting of excitons, the
resulting polarons are only weakly coupled to the re-
maining phonon environments (Chen et al., 2013; Chin
et al., 2013; Dorfman et al., 2013; Grover and Silbey,
1970; Jang, 2011; O’Reilly and Olaya-Castro, 2014; Ple-
nio et al., 2013; Romero et al., 2014; Zhang and Wang,
2016). The weak coupling of polarons to the remain-
ing phonon environment leads to less dissipation and can
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thus sustain quantum coherence significantly longer than
the bare excitons alone, shown in Fig. 5(b). However,
coherence alone can not guarantee efficient energy trans-
fer. For this, detailed balance must be broken from the
coupling of the light-harvesting complex to the nonequi-
librium environments; for example, a coupling of high-
temperature photons and low temperature vibrational
modes to the protein can funnel the path and subse-
quently facilitate the coherent and unidirectional energy
flow of excitations to the photosynthetic reaction center,
Fig. 5 (c) (d) (Zhang and Wang, 2016). While the long
time survival of dynamical coherence is dominated by
the suppression of exciton-environment interaction, the
nonequilibriumness is crucial for efficient energy trans-
fer (Fig. 5 (c)) and the steady state coherence (Fig. 5
(d)) (Harbola et al., 2006; Zhang and Wang, 2014, 2015c,
2016).

IV. GENE REGULATORY CIRCUIT MOTIFS AND
EXPERIMENTAL QUANTIFICATION OF LANDSCAPES

Genes encode for proteins, which provide the funda-
mental infrastructure for a functional cell. A certain
class of proteins called transcription factors feed back
on the expression of genes by binding to specific sites
on the DNA called promoters, thus altering the rate of
transcription. Specifically, ’activators’ increase the rate,
whereas ’repressors’ inhibit expression. Together, genes
and transcription factors form complex regulatory net-
works that have profound functional roles, for example,
in decision making, differentiation and development. In
addition to naturally existing networks, synthetic coun-
terparts are now routinely implanted into living cells.

A. Naturally existing circuit motifs: lambda phage and
bacteria competence

We use bacterial phage infection and natural compe-
tence as representative examples to highlight nonequilib-
rium behaviors of endogenous gene networks.

1. Landscape quantification of cell fates and their decision
making of lambda phage

Lamda phage is a bacterial virus that infects the
bacterium Escherichia coli (Balázsi and Collins, 2011;
Ptashne, 2004b). The infection process involves three
steps, including phage attachment to the bacterial cell
wall, injection of its DNA into the host, and execution of
its transcriptional circuitry, which then determines the
next step the system will undertake. Specifically, the
phage can either integrate its own DNA into the host
chromosome in a process referred to as the lysogenic
phase. Alternatively, the phage triggers the lytic cycle

of self-replication and assembly, eventually causing lysis
of the host.
The decision of the lambda phage to enter the lysogenic

or lytic cycle is enabled through an underlying switch
controlled by the two genes cI and cro. The two genes
encode the transcriptional repressor proteins CI and Cro
(Fig. 6a) (Ptashne, 2004b). In lysogeny, cI is expressed,
while in lysis, cro is expressed.
Together, mutual repression of the two genes through

transcriptional factor binding at a shared promoter con-
stitutes the core of this two-state switch, although there
are additional processes involved in viral decision making
(Oppenheim et al., 2005; Ptashne, 2004b).

The nonequilibrium landscape provides a profound
physical understanding of the lambda phage switch. The
landscape can be inferred from the steady-state protein
distribution, which can be obtained by simultaneous flu-
orescent labeling of several gene products and tracing the
expression of individual genes over time (Elowitz et al.,
2002; Yu et al., 2006). Note that due to the distinct
maturation times of different fluorescent labels, care has
to be taken to interpret these data. A co-localization
method was suggested to resolve the issue (Fang et al.,
2018; Pogliano et al., 2001), which is based on using the
same fluorescent labels for different genes, but in differ-
ent cellular locations.From the real time traces of the two
gene expression levels, one can obtain joint histograms
and therefore quantify the landscape directly from these
experiments. The possible cell fates can then identified
with the attractors of the landscape and the cell-fate
decision-making process can be quantified by investigat-
ing the transitions between the corresponding basins of
attraction (Balazsi et al., 2011; Fang et al., 2018; Li and
Wang, 2013, 2015; Wang et al., 2010b, 2011; Xu et al.,
2014b).

For the lambda phage switch, the underlying nonequi-
librium landscape of CI and Cro shows four distinct
states of (CI, Cro) with (high, low), (low, high), (high,
high) and (low, low) expression levels (Fang et al., 2018),
shown in Fig. 7a. The lysogenic and lytic cycles are as-
sociated with the (high, low) and the (low, high) states,
respectively. In a system when the effective binding and
unbinding rates of the transcription factors to the genes
are large compared to their synthesis and degradation
rates, in the so called adiabatic limit, one expects either
high levels of CI with low levels of Cro or vice versa.
The existence of two additional states is thus surpris-
ing (Little and Michalowski, 2010; Ptashne, 2004a). In a
system where the effective binding and unbinding rates
of the transcription factors to the genes are slower than
or comparable to their synthesis and degradation rates,
the system is in the non-adiabatic limit and thusall four
states of (high, low), (low, high), (high, high) and (low,
low) are expected from the effective weaker gene regula-
tions(Chen and Wang, 2016; Feng et al., 2011; Feng and
Wang, 2012; Hornos et al., 2005; Li and Wang, 2014b;
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Schultz et al., 2007b; Zhang et al., 2013).

The landscape obtained from the joint histogram of the
real time trace of CI and Cro contains additional infor-
mation that can be extracted by considering the basins
of attraction of the four states. Each basin has a dif-
ferent depth and width, and the barriers between each
basin also differ from each other, which implies distinct
transition rates between the various states, Fig. 7b. The
residence times of individual states and switching times
between states can be obtained from the experimental
real-time traces of the CI and Cro expression levels by
means of a hidden Markov model (Schliep et al., 2003).
Perhaps less obviously, one can also infer the processes
underlying switching. For example, switching from the
(low, high) to the (high, low) state occurs preferentially
via the (high, high) state rather than directly (Fang et al.,
2018; Schultz et al., 2007b).

The new method of co-localization enables experimen-
tal monitoring the real time traces of the CI and Cro
genes simultaneously. This leads to quantification of cell
fate decision-making processes in terms of the underlying
nonequilibrium landscape and nontrivial cell fate states
as well as associated switches in response to environmen-
tal and genetic influences on gene regulation.

2. Bacterial competence

The transition of Bacillus subtilis from a vegetative
state in which it reproduces asexually to a competent
state in which it can take up DNA from the extracel-
lular milieu is another example of a bacterium switch-
ing between two states (Grossman, 1995; Schultz et al.,
2007a). When facing nutrient limitation, B. subtilis cells
often develop into spores, whereas a small fraction of the
population is competent to use exogenous DNA as food
source or as genetic material for an enhanced mutation
rate and evolvability. In this case, however, making a de-
cision between different fates does not rely on a genetic
switch, but rather on an excitable network. The under-
lying competence regulatory circuit is centered around
ComK, a master regulator that activates the expression
of a set of competence genes (Fig. 6b) (Süel et al., 2006).
ComK activates its own production, whereas its degra-
dation is subject to the multi-component molecular com-
plex MecA. At the same time, ComK degradation is sup-
pressed by ComS, a peptide that competes with ComK
for the MecA complex. Additionally, there is an indirect
negative feedback between ComK and ComS.

Together, ComK, ComS, and the MecA complex form
an entangled regulatory network that involves both neg-
ative and positive feedback. That network can generate
excitable dynamics involving pulses of ComK produc-
tion and hence bacterial competence (Süel et al., 2006,
2007). Starting from a stochastic increase, the ComK
level is amplified by autoregulation and then quickly in-

creases to a maximal ComK expression, which leads to
the transition to competence. At the same time, a high
level of ComK causes the suppression of ComS produc-
tion, which, in turn, causes rapid ComK degradation by
the MecA complex and eventually termination of the
ComK pulse. Because of molecular noise in the sys-
tem, ComK excitation occurs continuously. A theoret-
ical model was suggested to account for the noise con-
trolled nonequilibrium transitions into and out of compe-
tence, with non-adiabaticity of comparable time scale of
binding/unbinding relative to the synthesis/degradation.
Taking non-adiabaticity into account allows the model to
better align withexperiments (Grossman, 1995; Schultz
et al., 2007a), which suggests again that non-adiabatic
fluctuations can be crucial for biological functions.

B. Synthetic regulatory circuit motifs: genetic switch and
oscillation, self regulator

With the advent of synthetic biology, a vast array of
engineered gene networks have been successfully created
since the year 2000. Examples include switches, oscil-
lators, communication modules, patterning devices and
others which are often out of equilibrium (Cameron et al.,
2014).

1. Genetic switches

The toggle switch constructed by Collins and col-
leagues (Gardner et al., 2000) is a simplified version of
the lambda phage switch discussed above. It consists of
two genes that encode transcriptional repressors and two
corresponding (or ‘cognate’) promoters. The genes and
promoters are arranged to allow the repressor encoded
from one gene to inhibit the expression of the other and
vice versa, thus creating a circuit of mutual inhibition
(Fig. 8a).

The mutual suppression topology of the network can,
in principle, generate bistability, a dynamic property that
enables the existence of two stable states of a system. In-
deed, the circuit remains stable in both a state of high
expression of one gene and low expression of the other
and a state with the inverse expression profile, Fig. 8a.
At the population level, the cells exhibit a bimodal dis-
tribution characteristic of a bistable system.

Two coupled negative feedback loops are topologically
equivalent to a single positive feedback loop (Qi et al.,
2013). Thus, the bistability demonstrated by the toggle
switch should be possible in a network involving a single,
self-activating gene. This idea was tested by creating
an autoregulatory circuit using the right operator site of
lambda phage and the cI gene (Fig. 8b) (Isaacs et al.,
2003).
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FIG. 6 Examples of natural gene regulatory networks. (a) The genetic switch between the lytic and the lysogenic life cycles of
the bacterial phage λ (Ptashne, 2004b). CI is expressed in the lysogenic cycle and Cro is expressed in the lytic cycle. (b) The
gene network underlying competence in Bacillus subtilis (Süel et al., 2006). ComK is a master regulator of competence; ComS
inhibits ComK degradation by the ClpP-ClpC-MecA complex.
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FIG. 7 Nonequilibrium landscape and switching times of Lambda Phage: (a) 2D histogram as the landscape of CI and Cro
production per 5 min. (b) Switching times between states of (Cro, CI)as (L,H),(L,L),(H,L),(H,H).(from Ref. (Fang et al.,
2018)).

2. Self repressor and experimental quantification of landscape

In extant gene regulatory networks, self-repression is
much more common than self-activation (Alon, 2007).
This motif can accelerate responses and increase the ro-
bustness of steady state expression level. In the adia-
batic case, when binding and unbinding of the repressor
are fast compared to its synthesis and degradation (Ack-
ers et al., 1982), the dynamic effect of regulatory binding
to and unbinding from the promoter averages out and a
landscape with a single basin of attraction emerges. In

contrast, if binding and unbinding are of the same or-
der or slower than synthesis and degradation, the gene
has some chance of being expressed despite the presence
of repressor proteins. In this case,states of high expres-
sion, in addition to the repressed low expression state,
can appear (Feng et al., 2011; Hornos et al., 2005). For a
bimodal distribution of the expression levels, one obtains
a nonequilibrium landscape with two basins of attrac-
tion (Jiang et al., 2017).

Experimentally, a self-repressing gene circuit based
on the Ptet promoter and its repressor TetR was de-
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FIG. 8 Examples of synthetic nonequilibrium gene networks. (a) Genetic toggle switch (Gardner et al., 2000). (b) Auto-
activation gene switch (Isaacs et al., 2003). (c) Repressive oscillator (Elowitz and Leibler, 2000). (d) A metabolic oscillator (Fung
et al., 2005). (e) A fast and robust gene oscillator (Stricker et al., 2008).

signed and implemented in E. coli (Nevozhay et al., 2009;
Ramos et al., 2005). Repressor binding can be controlled
by a so-called inducer, a molecule that binds to the re-
pressor to reduce its binding affinity. As a result, the
distributions of TetR expression change with the inducer
concentration, Fig. 9. With increasing inducer concen-
trations, the mean repressor concentration increases as
binding of the inducer effectively reduces the affinity of
the repressor for the promoter and the system eventu-
ally becomes nonadiabatic. For inducer concentrations

above a critical level, the experimental expression dis-
tribution becomes bimodal. The landscape can thus be
quantified as described above. The residence times in
each state and associated switching rates can be obtained
through real time trace analysis using a hidden Markov
chain model (Jiang et al., 2017).

The two typical TetR concentrations in the bimodal
case correspond to different cell fates. Through the real-
time traces of TetR concentrations, one can quantify the
landscape of cell fates and the associated decision making
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FIG. 9 Experimental expression distributions of the self-repressing gene circuit (MG::PR-8T) at different aTc concentrations
observed under a microscope. (from Ref. (Jiang et al., 2017)). The negative logarithm of the distribution quantifies the
landscape

(switching) speed between the fates (Jiang et al., 2017)
related to the life time of each state.

3. Genetic oscillators

Adding one more repressor to the toggle switch dis-
cussed above, such that cyclic chain of repressors Ri re-
presses Ri+1, alters the behavior significantly. Explicitly,
when R1 represses R2, R2 represses R3, and R3 represses
R1, a network called the repressilator is formed that can
generate spontaneous oscillations (Elowitz and Leibler,
2000) (Fig. 8c). Quantitative analysis of the system sug-
gests that in addition to sustained limit-cycle oscillation
shown in the above experiment, the circuit exhibits dif-
ferent dynamic modes, including damped oscillations and
bistability depending on parameter values. Indeed, the
latter two types of dynamics were observed in another
synthetic circuit implemented in E. coli (Atkinson et al.,
2003). Oscillations can be generated not only by syn-
thetic gene networks but also by metabolic networks. In
a study by Fung et al (Fung et al., 2005), an oscillatory

circuit called the metabolator was created by integrat-
ing cellular metabolism with transcriptional regulation
(Fig. 8d).

The above examples demonstrated that oscillation can
be generated using rationally designed circuits. However,
they all are subject to a common challenge - each lacks
circuit performance robustness. This difficulty was ad-
dressed by Stricker et al by creating a persistent genetic
oscillator (Stricker et al., 2008) (Fig. 8e) that involves an
activator gene araC and a repressor gene lacI that are co-
regulated by a hybrid promoter Plac/ara−1. The resulting
intertwined positive and negative feedback loops confer
the circuit robust oscillations (Feng et al., 2012). In ex-
periment, the circuit was found to oscillate over a wide
range of experimental conditions (Stricker et al., 2008).
Thus, it will be interesting to explore the relationship
between the circuit structure and the landscape/flux to-
pography underlying robust oscillations.
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V. GENE REGULATORY NETWORK: CELL CYCLE

The cell cycle encompasses key processes of life, from
growth and DNA replication to division (Morgan, 2007).
Many diseases involve cell cycle dysfunction; for example,
cancer cells grow faster and divide more frequently than
healthy cells (Weinberg, 2007). The eukaryotic cell cycle
consists of two coordinated phases of growth, interphase
and division (Morgan, 2007). The Interphase is distin-
guished further into a first gap phase, G1, during which
the cell accumulates mass; a synthesis phase, S, during
which the DNA is replicated; and a second gap phase,
G2, during which the cell continues to grow. During the
subsequent division or mitosis phase, M, the cell typically
divides into two daughter cells. Progression through the
cell cycle is tightly controlled by genetic networks (Chen
et al., 2004; Li and Wang, 2014a; Sveiczer et al., 2004;
Wang et al., 2010a). From a physics perspective, ge-
netic control of the cell cycle is naturally considered as
a limit cycle.This is indeed the case for the cell cycle of
embryonic frog cells (Ferrell Jr. et al., 2011). For yeast
and mammalian cells, several scenarios have been pro-
posed, including treating the cell cycle as a discrete at-
tractor (Li et al., 2004a), using bifurcations (Chen et al.,
2004; Sveiczer et al., 2004), and using the limit cycle ap-
proach (Grard and Goldbeter, 2009; Li and Wang, 2014a;
Lv et al., 2015; Wang et al., 2010a).

A. Embryonic cell cycle in frogs

As mentioned in Sec. III.B, limit cycle oscillations typ-
ically rely on a negative feedback loop. For the cell cycle
in embryonic cells of the African clawed frog Xenopus lae-
vis, the core negative feedback involves two genes. One of
them encodes for a cyclin, while the other codes for the
cyclin-dependent kinase Cdk1. Although the complete
network is rather involved, the essence of the network
can be captured by a two-component model (Tsai et al.,
2014; Yang and Ferrell, 2013), which can be cast into two
ordinary differential equations for the cyclin concentra-
tion Cyc and the Cdk1 concentration Cdk1, given by

d

dt
Cyc = ks − kdCyc (69)

d

dt
Cdk1 = ks + kcdc(Cyc− Cdk1)− (kWee1 + kd)Cdk1.

(70)

The first equation describes the synthesis and degrada-
tion of cyclin with respective rates ks and kd. Whereas
ks is constant, kd increases with increasing Cdk1 concen-
tration. The dependence is captured by a Hill function

kd = ad + bd
Cdk1n

Kn + Cdk1n
, (71)

where K is the value at which the Cdk1-dependent part
has reached half of its maximal value. The Hill exponent

n has a high value, which makes the dependence on Cdk1
ultrasensitive. Equation (70) describes activation and in-
activation of Cdk1. The rates kcdc and kWee1 depend on
Cdk1 in a sigmoidal fashion described by a Hill function
with proper values of K and n. These dependencies ef-
fectively account for the influence of other components
in the cell cycle network.

The ultrasensitive dependence of the rates on Cdk1
leads to a time delay in the effect of Cdk1 on degrada-
tion. Cyclin first accumulates, accompanied by a moder-
ate increase of Cdk1. After Cdk1 has passed a threshold,
its activation is dramatically increased, which leads to
a dramatic decrease in the amount of cyclin and simul-
taneously a dramatic deactivation of Cdk1, upon which
cyclin accumulates again.

As explained in Sec. II.A.2, one can characterize the
dynamics of Eqs. (69) and (70) in terms of a nonequi-
librium potential landscape and a rotational curl flux
(Zhang and Wang, 2018), Fig. 10. The landscape
presents two attractor basin valleys and two saddle points
with a narrow, stretched bottom basin valley. The
G0/G1 phase and S/G2 phase are quantified on each side
of the basin valley and the top basin valley quantifies the
M phase. The state s1 corresponds to a transition from
M to G0/G1 when a cell matures and division occurs.
The s2 transition state corresponds to the transition from
S/G2 to M, which can guarantee that DNA replication is
achieved before reaching the next phase M. These transi-
tion phases are associated with so-called ”check points”
that assure the cell is ready to enter the next phase of
the cycle. The system is periodically driven by rotational
curl flux from one basin of attraction to the other via s1
and s2. While the landscape guarantees stability of the
cell cycle path, the rotational curl flux guarantees the
stable flow. This gives a global, physical picture of the
cell cycle seen in several species (Li and Wang, 2014a;
Luo et al., 2017; Wang et al., 2010a; Zhang and Wang,
2018).

Note that the speed at which the cycle is traversed de-
pends on both the rotational curl flux and the transition
states; this speed, and thus the cell cycle itself, is greatly
accelerated for cancerous cells. The energy pump is the
origin of the flux and energy dissipation in terms of the
nutrition supply. To slow the cell cycle speed down for
treatment, one can thus either decrease the flux by lim-
iting the supply of nutrients or increase the barrier of
check points by adjusting the associated key regulators.

B. Origins of single cell life through replication by energy
pump

The cell cycle speed correlates quantitatively with en-
ergy dissipation (Li and Wang, 2014a; Wang et al., 2008;
Zhang and Wang, 2018) which, as mentioned earlier, is
directly related to the degree that detailed balance is
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FIG. 10 Nonequilibrium landscape U and flux (arrows) for the cell cycle dynamics (69) and (70) in 2D (a) and 3D (b). The
different phases of the cell cycle are indicated. From (Zhang and Wang, 2018).

broken. A faster progression through the cell cycle re-
quires more energy consumption, plus there is an en-
ergy threshold to overcome in forming a stable cell cy-
cle. Replication is a signature feature of living systems.
As seen here, replication cannot proceed without an en-
ergy pump. Therefore, a necessary condition for life to
begin is that an energy pump into the system must ex-
ist.The nonequilibriumness in thermodynamics and as-
sociated dynamics in terms of flux are thus required and
can be quantified for the origin of single cell life (Englan-
der, 2013; Li and Wang, 2014a; Wang et al., 2008; Zhang
and Wang, 2018). Life may begin from cycles. The com-
plexity of life may be built form multiplicative cycles and
their associations.

C. Cell cycle in fission yeast

The gene regulatory network controlling the fission
yeast cell cycle is complex and involves hundreds of
genes (Sveiczer et al., 2004). Even a simplified network
based on experimental studies still involves 10 key genes
(Davidich and Bornholdt, 2008), Fig. 11(a). This net-
work can be further simplified by reducing the states of
individual genes to two: on or off. Boolean networks are
particularly well-suited to explore the global dynamics
and wiring topology of networks (Han and Wang, 2007,
2008; Kauffman, 1969; Li et al., 2004b). The correspond-
ing boolean network for yeast cell cycle determination is
a discrete, dynamic system with 210 states.

In the presence of fluctuations, one can follow the mas-

ter equation for the stochastic evolutionary dynamics of
the fission yeast cell cycle. One can map out the land-
scape through the steady state solution of the corre-
sponding master equation (8), where the transition rates
Tij are eventually determined by the original gene regu-
latory network. The resulting landscape has the form of
a Mexican hat and the cell cycle path corresponds to the
valley of the hat, Fig. 11(c). The cell cycle path is sta-
ble when states on the path have much lower potentials
than those outside the path relative to the spectrum’s
standard deviation. This gap between potential mini-
mum and average of other states not on the cell cycle,
relative to variance, leads to a funneled potential land-
scape towards the cell cycle path and guarantees the sta-
bility, since states on oscillation path have much higher
weights than other states. However, this analysis cannot
guarantee directional flow for oscillations, Fig. 11 (c).

The steady state nonequilibrium probability flux pro-
vides a driving force in addition to the landscape gradient
for nonequilibrium networks. Flux can be obtained from
the steady state solution of the master equation based on
the underlying gene regulatory networks (Han and Wang,
2007, 2008; Luo et al., 2017). As mentioned previously,
the flux originates from the energy pump through nu-
trition supply. The nonequilibrium flux can be further
decomposed into flux loops (Luo et al., 2017); doing so
forms a nonequilibrium flux landscape. Fig. 11 (b) When
there is a distinct separation between the nonequilibrium
flux from the “native” biological cycle, Fig. 11, (b) and
the rest relative to variance, the cell cycle becomes the
dominant loop compared to the other possible loops, as
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in Fig. 11 (d). Therefore, a funneled nonequilibrium flux
landscape provides a physical mechanism to guarantee
stable cell cycle flow (Luo et al., 2017).

By performing a global sensitivity analysis on the to-
pography of the potential landscape and the flux loop
landscape upon changes of genes and their mutual regu-
lations, the identities of key genes and regulatory motifs
for the network are revealed. This provides a possible
way to control the cell cycle speed in the prevention or
treatment of cancer.

It is worthwhile to note that the described gene net-
work regulating cell cycle of Xenopus consists of two
genes, though the described fission yeast network is much
more complex and contains many more genes.This differ-
ence in the literature can be attributed to the fact that
yeast has been studied as a model organism for decades,
compared to Xenopus. Remarkably, similar cell cycle
mechanisms are found in both organisms.

VI. CELLULAR STRUCTURE AND DYNAMICS

In this section, we turn to processes of intracellular or-
ganization. After discussing nonequilibrium aggregation
and phase-separation phenomena, we focus on the cy-
toskeleton, the paradigmatic active gel that determines
cell mechanical properties and drives vital cellular pro-
cesses. Finally, we briefly address nonequilibrium aspects
of cell signalling. Although landscape and flux theory has
not been applied to cellular structure and dynamics due
to technical challenges, other approaches such as those
based on local thermal equilibrium, hydrodynamics, and
active particle dynamics (Marchetti et al., 2013a; Wang
and Wolynes, 2011) have been successfully applied to this
exciting research area, which we briefly review.

A. Nonequilibrium phase separation

In animal and plant cells, important functional sub-
units are segregated into compartments surrounded by
lipid bilayers. A plethora of proteins attach to and are
embedded in these fluid membranes and can arrange into
functional assemblies. In addition, there are important
functional three-dimensional cellular subunits that lack a
delimiting membrane. These structures can result from
phase separation, with continuous exchange of matter
and energy determining their size distributions and dy-
namics.

a. Lipid rafts There are two main equilibrium states of
multicomponent lipid bilayers; well mixed or one in which
the different kinds of lipids phase segregate into macro-
scopic domains of an extension that scales with the sys-
tem size. For membranes of living cells, however, there

is ample evidence for lipid microdomains of either var-
ied composition or a different liquid phase compared to
the environment. These microdomains are often called
“rafts”. Rafts have a comparatively small size of 10-
200 nm and a lifetime of several milliseconds (Pike, 2006).
At equilibrium, domains of this size should only exist in
the presence of long-distance interactions (Seul and An-
delman, 1995). A possible origin of such long-range inter-
actions relevant for cells is a coupling between membrane
curvature and lipid composition (Baumgart et al., 2003).
Indeed, mixtures of lipids with different intrinsic curva-
tures have been observed to segregate into small budding
domains (Baumgart et al., 2003). In mixtures of choles-
terol and lipids with high and low melting temperatures,
long-lived microdomains form, though these domains are
probably caused by kinetic arrest in the coarsening pro-
cess and are absent in the equilibrium state (Veatch and
Keller, 2003).

Lipid nanodomains can robustly form via nonequi-
librium processes, for example, in the presence pres-
ence of lipid exchange between the cytosol and the
membrane (Fan et al., 2008; Foret, 2005; Gheber and
Edidin, 1999; Turner et al., 2005) or of chemical reac-
tions (Glotzer et al., 1995; Huberman, 1976). Let φ be
the volume fraction of a lipid in a binary mixture with
constant total density n0. Then (Foret, 2005; Glotzer
et al., 1995; Huberman, 1976)

∂tφ = µ∇2 δF

δφ
−

1

τ

(

φ− φ̄
)

. (72)

Here, µ is an effective mobility and F the corresponding
free energy

F [φ] = n0kBT

∫

d2r

[

ξ20
2
(∇φ)

2
+ f (φ)

]

. (73)

For

f (φ) = φ ln φ+ (1− φ) ln (1− φ) + χφ (1− φ) (74)

the first term in Eq. (72) is the familiar Cahn-Hilliard
current. The parameter χ determines the strength of
lipid-lipid interactions and demixing occurs for χ > 2.
The second term describes relaxation to the stationary
density φ̄ with a characteristic time τ that is determined
by the rates of lipid integration into the membrane and
dissolution into the cytosol. For biologically relevant pa-
rameters, raft-like domains of sizes between 20 nm and
200 nm are formed for exchange times τ between 10−4 s
and 1 s. Importantly, the mobility of cytosolic lipids
is many orders of magnitude larger than for lipids in
membranes, such that the spatial distribution of cytosolic
lipids is essentially homogenous. In this way, dissociation
leads to efficient mixing, which prevents the formation of
macroscopic domains.
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FIG. 11 (a) Simplified gene regulatory network of the fission yeast cell cycle. Arrows indicate activation, repressive interactions
are indicated by −|. (b) Potential and flux landscapes. Each state is represented by a dot of a size representing their steady
state probability, together forming the potential landscape. The flux landscape is represented by the different flux loops. The
blue flux loop is the dominant one representing the biological oscillation path. (c) Potential landscape spectrum. The value of
the potential landscape of each state is represented by a horizontal line. (d) Flux spectrum for all flux loops. The flux along
each loop is represented by a horizontal line. In (c) and (d) the green lines correspond to the states and the flux loop of the
”native” biological oscillation cycle path. From (Luo et al., 2017).

b. Clusters of membrane-associated proteins Through the
preferential localization of proteins to specific lipids, the
existence of lipid rafts implies the existence of protein
clusters, for example protein coats during early phases of
endocytosis (Faini et al., 2013), receptors (Maddock and
Shapiro, 1993; Uhles et al., 2003), SNARE proteins (Low
et al., 2006), and proteins involved in signaling (Bonny
et al., 2016; Douglass and Vale, 2005; Fairn et al., 2011;
Goswami et al., 2008; Tian et al., 2007). Mechanisms

similar to those evoked to explain the formation of lipid
rafts have been considered in this context (Destainville,
2008; Sieber et al., 2007), Fig. 12(a,b).

Some of these clusters form at specific positions.
For example, receptor clusters in the rod-shaped bac-
terium Escherichia coli form at the cell ends (Mad-
dock and Shapiro, 1993). Similarly, Spo0J/Soj in the
likewise rod-shaped bacterium Bacillus subtillus local-
izes to the cell ends, although these proteins bind to
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FIG. 12 Examples of protein clusters on cell membranes. (a) Electron microscopy image illustrating K-ras nanoclusters. Scale
bar 50 nm. From (Prior et al., 2003). (b) Electron micrograph (top) and fluorescence image (bottom) of E. coli illustrating
clustering of chemoreceptor Tsr. From (Maddock and Shapiro, 1993). (c) Min-protein oscillations in E. coli. Numbers indicate
time in seconds. From (Raskin and de Boer, 1999b). (d) Spiral of MinD (green) and MinE (red) on a supported lipid bilayer.
Scale bar 50 µm. From (Loose et al., 2008).

DNA and not to membrane (Marston and Errington,
1999; Quisel et al., 1999). Cell polarity in budding yeast
Saccharomyces cerevisiae is established by localization
of Cdc42 (Fairn et al., 2011). Cues like membrane-
curvature or -composition and specific DNA sequences
might be involved in positioning these aggregates. How-

ever, in the presence of cooperative effects during at-
tachment, proteins can self-organize in clusters at spe-
cific locations by a Turing-like mechanism (Turing, 1952).
A simple example is when membrane binding is facili-
tated by molecules that are already bound there, while
detachment is spontaneous. The processes can be cap-
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tured by the following toy model (Wettmann et al., 2014),
where the distributions of cytosolic and membrane-bound
molecules, c and m, along an interval of length L evolve
according to

∂tc = ∂2xc−
(

1 +m2
)

c+ km (75)

∂tm = D∂2xm+
(

1 +m2
)

c− km (76)

with k being the detachment rate. For sufficiently small
values of the ratio D of membrane-bound and cytoso-
lic diffusion, the homogenous state can become unstable,
leading to a maximum of m at one end of the interval.
In a rod-shaped bacterium, this instability corresponds to
an accumulation of proteins at one cell end. An analysis
of the corresponding stochastic dynamics that accounts
for the randomness inherent in molecular reactions shows
that the lifetime of such clusters increases with molecule
number and thus cell size (Wettmann et al., 2014). Sim-
ilar observations had been made in detailed descriptions
of the Spo0J/Soj proteins (Doubrovinski and Howard,
2005).

c. Surface waves The total number of particles
∫

dx (c+m) is conserved by the above dynamics,
which presents an interesting twist to the original Turing
mechanism. Generally, one can expect the spontaneous
emergence of traveling waves in such systems (Kessler
and Levine, 2016). This phenomenon is exemplified
by the proteins MinD and MinE in the rod-shaped
bacterium Escherichia coli (Loose et al., 2011b). MinD
and MinE direct the protein MinC, which inhibits
assembly of the cell division machinery, to the vicinity of
the cell poles, thus localizing division in the cell center.
However, the Min proteins are not statically distributed
at the two cell ends, but rather shuttle periodically
between them with a period of about a minute (Raskin
and de Boer, 1999b), Fig. 12(c).
MinD is an ATPase that clusters on the membrane

after binding MinC by a mechanism that is still poorly
understood (Hu et al., 2002). At the membrane, it re-
cruits MinE which catalyzes ATP hydrolysis and drives
MinD off the membrane. In presence of suitable co-
operative effects during the formation of MinD clusters
on the membrane, the oscillatory behavior observed in

vivo can emerge spontaneously (Huang et al., 2003).
Although MinD binding to the membrane was exper-
imentally found to be cooperative, the molecular de-
tails are unknown. Currently, in most theoretical de-
scriptions of the Min-protein dynamics, a process simi-
lar to the cooperative binding present in Eqs. (75)-(76)
is assumed (Bonny et al., 2013; Huang et al., 2003),
but alternative mechanisms have been proposed, where
MinD forms complexes only after binding to the mem-
brane (Kruse, 2002; Petrášek and Schwille, 2015; Walsh
et al., 2015).

Physical studies of the mechanism generating the os-
cillatory patterns in vivo notably involved observing the
Min-protein dynamics in different geometries. Vary-
ing the cell length revealed transitions from a bistable
regime in short bacteria to standing and then to traveling
waves (Bonny et al., 2013). The wave dynamics could be
reconstituted in an open geometry in vitro on supported
lipid bilayers (Loose et al., 2008), Fig. 12(d). This al-
lowed for further molecular characterization of the Min-
protein dynamics (Loose et al., 2011a; Schweizer et al.,
2012). The in vitro approach has been extended to study
waves in confined geometries (Caspi and Dekker, 2016;
Zieske and Schwille, 2013). The patterns found in living
cells could be reproduced in this situation, further sup-
porting a common mechanism underlying the patterns in
bacteria and in reconstituted systems.

B. Adhesion domains

Cells adhere to other cells, a substrate, or the extra-
cellular matrix via transmembrane proteins like integrins
and cadherins (Schwarz and Safran, 2013). These form
initially submicrometer sized circular domains, which
then mature into larger complexes of up to 10 µm that
also involve cytoplasmic proteins, notably components of
the cytoskeleton. Through cytoskeletal coupling, adhe-
sion domains are subject to mechanical forces that are
necessary for maturation (Balaban et al., 2001). The
molecular mechanism involved in force sensing could no-
tably depend on a force-dependent lifetime of individual
adhesion bonds. In addition, there is a feedback from
the adhesion domains to the organization of the actin
cytoskeleton (Drees et al., 2005). Currently, there is no
general theory of force-dependent formation of adhesion
domains.

a. Membrane-less organelles In addition to membrane do-
mains, cells contain three-dimensional membrane-less
functional units. Originally suggested for so-called P
granules in the developing nematode Caenorhabditis el-

egans. Such functional units can be described as liq-
uid droplets that form through nucleation (Brangwynne
et al., 2009). P granules are asymmetrically distributed
in C. elegans embryos at the one-cell stage. After the
first cell division, the daughter cell, rich in P granules,
will eventually form a line of germ cells, whereas the
other daughter cell will give rise to a somatic cell line.
This asymmetric distribution is induced by a gradient
in the distribution of the protein Mex-5 that promotes
P-granule disassembly and thus effectively increases the
concentration at which P-granule components saturate.
The asymmetric state is out of equilbrium as droplets
continuously form in regions of low Mex-5 concentrations
and dissolve in regions of high Mex-5 concentrations (Lee
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et al., 2013). Diffusion then leads to a permanent net
droplet flux between the two regions and an oppositely
directed flux of P-granule components.

P granules are liquid-like droplets with a viscosity of
1 Pa·s, that is, 3 orders of magnitude higher than the
viscosity of water. These droplets have a surface tension
on the order of 1 µN/m, that is, 5 orders of magnitude
smaller than the air-water surface tension. These values
of viscosity and surface tension allow rapid droplet forma-
tion. Other compartments have been found to similarly
form liquid-like droplets (Brangwynne, 2011). Promi-
nent examples are centrosomes (Zwicker et al., 2014) that
serve as microtubule organizing centers and metaphase
spindles that arrange the chromosomes during division,
which can be described as liquid crystalline droplets (Re-
ber et al., 2013). In the nucleolus, a large subcompart-
ment of the nucleus in which ribosomes are created, sub-
domain structure has been ascribed to droplets of immis-
cible liquid-like phases (Feric et al., 2016).

Above the saturation threshold, P granules continue to
grow and fuse, which leads to Oswald ripening (Brang-
wynne et al., 2009). In contrast, the two centrosomes
present in cell division do not fuse, which indeed would be
detrimental to the segregation of the chromosomes. The
mechanism suppressing Oswald ripening in that case is
similar to that proposed for limiting the size of lipid rafts:
Constituents of the droplet continuously change between
two different states with different physical properties such
that in one state, the protein prefers the condensed phase,
whereas the other form is soluble in the cytoplasm. In
the case of centrosomes, this could be the case for spin-
dle defect protein-5 that assumes different conformations
depending on its phosphorylation state (Zwicker et al.,
2014). Several such “active droplets” can stably co-exist,
in which case they assume equal sizes (Zwicker et al.,
2014). This is important as centrosome size seems to di-
rectly control spindle lengthin C. elegans (Greenan et al.,
2010).

C. The cytoskeleton — an active material

The cytoskeleton is a network of filamentous protein
assemblies that interact with a plethora of proteins, reg-
ulating filament length, cross-linking filaments and gen-
erating active stresses. This structure is involved in vital
processes like cell division and migration and also de-
termines cellular mechanical properties. From a physical
point of view, the cytoskeleton is an active material, as its
constituents are kept out of thermodynamic equilibrium
by the hydrolysis of nucleoside triphosphates (NTP). We
will present first generic physical properties of cytoskele-
tal systems and then turn to two biological applications
that are of current interest, cell migration and the actin
cortex.

1. Filaments

Cytoskeletal filaments fall into two classes, actin and
tubulin, which, respectively, form actin filaments and mi-
crotubules. These structures can bind nucleotides and
assume different states with different binding affinities
depending on the nucleotide bound. In addition, actin
filaments and microtubules are structurally polar assem-
blies. The structural polarity is expressed in different ex-
change kinetics at the two ends, which are commonly re-
ferred to the plus- and minus-ends, respectively, with ex-
change being more rapid at the plus-end (Fujiwara et al.,
2007; Kuhn and Pollard, 2005). In contrast, proteins
like vimentin or keratin form intermediate filaments that
seem to play a structural role and are assembled in a
one-state, non-polar fashion.

a. Filament length dynamics and treadmilling Coupling to
NTP-hydrolysis, in combination with structural polar-
ity, leads to assembly kinetics of actin filaments and
microtubules that are alien to other commonly stud-
ied polymers. In particular, during assembly there can
be an overshoot in the average filament length (Brooks
and Carlsson, 2008) or even oscillations in length (Car-
lier et al., 1987). Most spectacularly, polarity can also
lead to treadmilling, when filaments show net growth at
the plus- and net shortening at the minus-end (Margolis
and Wilson, 1978; Wegner, 1976). Observations of fila-
ment treadmilling have been reported in vivo (Rzadzin-
ska et al., 2004; Waterman-Storer and Salmon, 1997) and
in vitro (Carlier et al., 1997; Panda et al., 1999). Tread-
milling relies on the establishment of an NTP-gradient
along the assembling filament (Erlenkämper and Kruse,
2013); specifically, filament subunits with NTP bound
have a higher affinity to bind to other subunits than
NDP-bound subunits. In cells, hydrolysis of NTP bound
to a filament subunit is essentially irreversible, such that
the fraction of NDP-bound subunits increases towards
the minus-end. In this way, assembly occurs preferen-
tially at the plus end in the form of NTP-subunit at-
tachment, whereas detachment occurs preferentially at
the minus-end, where NDP-subunits leave the filament.
This gradient also implies an effective length dependence
of the depolymerization rate, which can lead to a finite
typical filament length (Erlenkämper and Kruse, 2013;
Mohapatra et al., 2016). Other mechanisms of length-
dependent assembly and disassembly rates exist that in-
volve proteins influencing the growth or shrinkage of cy-
toskeletal filaments (Mohapatra et al., 2016).

b. Nucleation promoting factors Filament assembly is di-
rectly utilized by cells for migration and to form protru-
sions. The polymerization of filaments anchored in a net-
work or to a substrate can generate forces onto an object
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either directly (Dogterom, 1997; Footer et al., 2007) or by
generating stresses in non-flat networks (Prost, 2002). To
see how stresses can arise from polymerization, note first
that filaments do not appear spontaneously for the condi-
tions present in cells. Instead, the emergence of filaments
requires factors that promote the formation of filament
nuclei, which can then grow either spontaneously or with
the help of elongation factors. Important factors pro-
moting the nucleation of actin filaments are complexes
of actin related proteins 2 and 3 (Arp2/3) and members
of the formin family. These are typically active only in
the vicinity of a membrane. As a consequence, actin
gels grow by adding material at the interface with a sur-
face which leads to mechanical stresses if the surface is
curved. These stresses are exploited, for example, by the
bacterium Listeria monocytogenes for propulsion in the
cytoplasm of a host cell (Prost, 2002).

The mechanisms underlying nucleation by the Arp2/3
complex and formins are different. The Arp2/3 com-
plex branches new filaments from existing filaments. This
process is used in particular to extend the leading edge
of cells crawling on a substrate as it provides new free
plus ends that can grow, whereas elongation of older
plus ends is dampened by capping proteins. The in-
terplay of Arp2/3 and capping proteins can lead to a
variety of force-velocity curves for the advancing lead-
ing edge (Carlsson, 2003; Schreiber and Stewart, 2010;
Weichsel and Schwarz, 2010).

Animal cells typically assemble a thin actin sheet below
their plasma membrane. Filaments in this actin cortex
nucleated by the Arp2/3 complex and formins form two
subpopulations that can be distinguished through their
different turnover rates (Fritzsche et al., 2013). Further-
more, formin nucleated filaments are typically 10 times
longer than Arp2/3-nucleated filaments (Fritzsche et al.,
2016), which in turn affects the gel’s mechanical prop-
erties (Bai et al., 2011; Fritzsche et al., 2016). The me-
chanical properties of actin gels in presence of filament
turnover are only beginning to be explored (Hiraiwa and
Salbreux, 2016).

2. Motors

a. Single molecular motors Cytoskeletal motor proteins
assure directed long-range transport in cells and generate
mechanical stresses in the cytoskeletal network. Mem-
bers of the myosin super family interact with actin fil-
aments, whereas kinesins and dyneins interact with mi-
crotubules. These interacting proteins are ATPases that
have various conformational states depending on the nu-
cleotide bound. Thermodynamics shows that for motor
proteins to move directionally, isotropy and detailed bal-
ance must be broken (Jülicher et al., 1997). Molecular
motors are characterized by their force-velocity relation
and their persistence. In many cases, the force-velocity

relation is well approximated by

v = v0

(

1−
f

fs

)

(77)

where v0 is the motor velocity in absence of a load, fs
the stall force at which the motor stops advancing, and
f the magnitude of the force opposing motor movement.
Although forces larger than the stall force should lead to
backward motion of the motor, in practice, this is rarely
observed; instead, the motor readily detaches.
The persistence is given by the average length a motor

walks along the filament before detachment, equal to the
ratio of the stepping to the detachment rates multiplied
by the size of a single step. The detachment rate depends
on the applied force and Kramers rate theory suggests

koff (f) = koff,0 exp

{

−
|f |a

kBT

}

(78)

where kBT is thermal energy and a a molecular length
scale. However, myosin motors show catch-bond behav-
ior, such that the detachment rate initially decreases with
increasing applied force (Guo and Guilford, 2006).

b. Many motors on a single filament Collective transport
phenomena are commonly studied using models in which
the filament is represented by a one-dimensional lattice
with N sites and motors by particles that occupy the
sites. In this representation, bound particles hop at spe-
cific rates to neighboring sites. Often steric interactions
between the motors are accounted for by an exclusion
principle such that each lattice site can be occupied by
one particle at most. If particles enter the lattice at one
end and leave it at the opposite end and if hops occur
only into one direction, one obtains the totally asym-
metric exclusion process (TASEP) (Derrida et al., 1993;
Schütz and Domany, 1993). Depending on the rates of
particle entry and exit at the boundaries, the process dis-
plays a low density, a high density, and a maximal current
phase (Krug, 1991), Fig. 13(a). Adding attachment and
detachment of particles in the bulk (Langmuir kinetics),
stable walls between high and low density domains can be
formed (Parmeggiani et al., 2003), Fig. 13(b). If diffusing
particles that cannot hop off the lattice at the ends are
added, the two species can segregate (Johann et al., 2014;
Pinkoviezky and Gov, 2017), Fig. 13(c). Similar segre-
gation phenomena have been observed in mixtures of ac-
tive and passive swimmers (McCandlish et al., 2012) and
might also be relevant for the segregation of transcribed
and not transcribed DNA in the cell nucleus (Grosberg
and Joanny, 2015).

c. Length regulation involving molecular motors Some
molecular motors are capable of removing subunits at
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FIG. 13 Collective behavior of motors on a single filament. (a) Totally asymmetric exclusion process. Top: illustration of
processes. Bottom: phase diagram. (b) Totally assymmetric exclusion process with Langmuir kinetics. Top: illustration of
processes. In addition to (a), empty sites anywhere along the lattice are occupied at rate ωa and particles can detach at rate ωD

anywhere from the lattice. Bottom: steady state density profiles revealing a domain boundary between low and high denisty
phases. From (Parmeggiani et al., 2003). (c) Exclusion process of two particles species. Top: illustration of processes. The
dynamics of circular particles as in (b), but without additional entry rate α and exit rate β at the ends. In addition, square
particles hop at the same rate to free neighboring sites, but cannot hop off at the lattice ends. For clarity, processes have been
distributed on two lattices. Bottom: Left: Space-time plot of the densities of square (red) and circle (white) particles. Right:
Steady state density profiles of square and circle particles. Form (Johann et al., 2014).
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filament ends (Desai et al., 1999; Hunter et al., 2003;
Varga et al., 2006). For example, Kinesin 8 attaches
anywhere along a microtubule and then moves towards
its plus end. In this way, a concentration gradient of
motors along the microtubule is established that leads
to an effective length-dependent depolymerization rate
at the plus end (Reese et al., 2011; Varga et al., 2006,
2009), which can be exploited to regulate the length of
microtubules (Johann et al., 2012; Melbinger et al., 2012;
Stewman and Ma, 2018). For actin cables, a similar
mechanism was proposed that, in contrast, depended on
a length-dependent assembly rate induced by molecular
motors (Mohapatra et al., 2015). In this way, molecular
motors provide specific realizations of a general strategy
to regulate the length of cytoskeletal filaments (Mohap-
atra et al., 2016).
Molecular motors are also involved in axonal length

sensing and regulation (Rishal et al., 2012). However,
the mechanism does not rely on gradients. Instead, it
has been proposed that motors moving towards the axon
tip transport a promoter of axon extension that at the
same time elicits the transport, in the opposite direction,
of a factor that inhibits further transport of the extension
promoter. This process can be captured by a system of
coupled delayed differential equations for the concentra-
tion uE of the extension promoter at the axon tip and uI
of the inhibitor (Karamched and Bressloff, 2015):

d

dt
uE(t) = I0 − γEuE(t)−WIf(uI(t− τ)) (79)

d

dt
uI(t) = −γIuI(t) +WEf(uE(t− τ)), (80)

where f is a sigmoidal function and τ is the time motors
of velocity v need to traverse the axon of length L, τ =
L/v. This system can generate an oscillation in uE with a
length-dependent period. This oscillating concentration
of uE can be transformed into a signal with a period-
and thus length-dependent mean concentration allowing
a nerve cell to sense and regulate its axon’s length via a
threshold mechanism (Bressloff and Karamched, 2015).

d. Bidirectional motion For directional transport in cells,
vesicles are typically bound to several motors. In this
case, the motors are mechanically coupled to each other
because pulling of one motor exerts a force on the other
motors and thereby changes their velocities as well as
their persistences. If a vesicle is bound to motors of
opposite directionality, bidirectional transport can oc-
cur (Grill et al., 2005; Mueller et al., 2008). Indeed, in a
situation where a vesicle is stalled due to motors of act-
ing antagonistically, a fluctuation that causes one motor
to detach leaves the other motors of the same direction-
ality carrying a higher load. This increases their detach-
ment rates and thus starts an avalanche of detachment
events of motors of one species. The vesicle will thus

move into one direction until again another stalled situ-
ation occurs. At the end of the stall period, the vesicle
can move in either direction. Whether this ”tug-of-war”
mechanism underlies cellular bidirectional transport is
still debated (Klein et al., 2014).

Bidirectional transport can also be observed for a sin-
gle motor type and in the absence of load-dependent de-
tachment rates (Badoual et al., 2002; Jülicher and Prost,
1995). Experimentally, such bidirectional motion has
been observed in gliding assays, where filaments move on
a substrate covered with motors (Riveline et al., 1998),
for non-directional motors (Endow and Higuchi, 2000),
and for non-polar bundles of actin filaments moving on a
carpet of myosin motors (Gilboa et al., 2009). The rate of
switching between the two directions of motion was cal-
culated along the lines presented in Sect. II.D (Guérin,
T et al., 2011).

e. Spontaneous motor oscillations In addition to the
chemical and genetic oscillators discussed above, cells can
also present mechanical oscillations that are not the re-
sult of an underlying chemical pulse generator. Many
cells possess filamentous protrusions called cilia or flag-
ella that periodically change their shape or produce trav-
eling waves. These include spermatozoa and algae that
have one or two flagella, in addition to Paramecia that
are covered by a dense carpet of cilia (Bray, 2001). The
periodic deformations of cilia propel these cells in fluid
environments. Strikingly, the main constituents of the
appendages, microtubules and associated molecular mo-
tors, have been found in reconstitution experiments to
spontaneously produce very similar patterns (Sanchez
et al., 2011).
Jülicher and Prost found early that ensembles of molec-

ular motors coupled to an elastic element can sponta-
neously develop oscillations (Jülicher and Prost, 1997).
They studied the case in which motors are rigidly bound
to a common backbone and switch between two internal
states. An alternative possibility is that the motors de-
tach from the filament in a force-dependent manner (Grill
et al., 2005). The oscillatory regimes are distinct, as was
shown in a model for ”soft” motors that comprises both
cases (Guerin et al., 2010). Spontaneous motor oscil-
lations have been found in muscle sarcomeres (Günther
and Kruse, 2007; Sato et al., 2013; Yasuda et al., 1996)
and could be essential for the beating of eukaryotic flag-
ella (Camalet and Jülicher, 2000).

3. Filament networks

a. Reconstituted filament networks Contraction of mus-
cle sarcomeres relies on a crystal arrangement of the
actin filaments that interdigitate with myosin filaments.
Upon activation of the motors, the actin filaments are
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drawn inwards, which results in contraction. Disordered
cytoskeletal networks can also generate net contractile
stresses (Szent-Györgyi, 1951). The dynamics of this
process has been studied in reconstituted systems of fila-
ments and motors (Backouche et al., 2006; Bendix et al.,
2008; Foster et al., 2015; Linsmeier et al., 2016; Schuppler
et al., 2016; Smith et al., 2007). In a disordered network,
contraction starts at the boundaries of a gel slab and then
propagates into the gel’s interior.

Reconstituted networks have also been shown to self-
organize into asters and vortices (Nedelec et al., 1997)
and spindle-like assemblies (Surrey et al., 2001). Min-
imal networks of two microtubules, molecular motors,
and passive crosslinkers showed that such molecules
provide a minimal module for generating stable over-
laps between antiparallel filaments as observed in spin-
dle midzones (Bieling et al., 2010; Lansky et al.,
2015). Mircotubule-organizing centers have been found
to position themselves in microfluidic chambers ei-
ther through polymerization-depolymerization (Faivre-
Moskalenko and Dogterom, 2002; Holy et al., 1997) or
through molecular motors at the chamber walls pulling
on the filaments (Laan et al., 2012).

A somewhat different approach is followed in gliding
assays, where filaments at high density move on sub-
strates covered with motors (Butt et al., 2010; Schaller
et al., 2010) and which are more akin to self-propelled
particles.

For investigating motor-filament systems, different the-
oretical approaches have been developed. Stochastic sim-
ulations aim to account for the various constituents in-
dividually (Dasanayake and Carlsson, 2013; Nedelec and
Foethke, 2007). Kinetic descriptions take a mean-field
approach and describe the system state in terms of den-
sities of the various components (Kruse and Jülicher,
2000, 2003; Liverpool and Marchetti, 2003). Finally,
phenomenological descriptions mostly neglect molecular
properties and focus on symmetries and conservation
laws (Kruse et al., 2004, 2005).

b. Kinetic descriptions of filament networks In the kinetic
approach and in the limit of a purely viscous system,
filaments are typically assumed to be rigid rods. The
state of the filament network can be captured by the
density c of filament plus-ends. This density depends on
the position r of the plus-end, the orientation û of the
filament with û pointing form the plus- to the minus end
and û2 = 1, and the filament length ℓ. For motors, it
is often appropriate to distinguish between the densities
mb of motors bound to filaments and mu of unbound
motors. The time evolution of the density is then given

by a continuity equation

∂tc+∇ · jtrans + û×∇û · jrot + ∂ℓjℓ = S (81)

∂tmb +∇ · jmot = R (82)

∂tmu −D∆mu = −R (83)

where jtrans is a translational current caused by the activ-
ity of molecular motors and filament assembly at the plus
end, jrot a rotational current that accounts for changes in
filament orientation, and jℓ a current describing the net
effect of filament assembly on the filament length. The
source term S accounts for filament degradation, whereas
filament nucleation is captured by a boundary condition
on jℓ at ℓ = 0. The current jmot describes the flux of
bound motors, D is the diffusion constant of unbound
motors, and the source term R describes the binding and
unbinding dynamics.
It can be useful to distinguish between different fil-

ament populations, for example, to account for micro-
tubules with shrinking and growing plus ends or for ki-
netic differences between filaments with capping proteins
bound or not(Stewman and Ma, 2018). In the simplest
case, filaments form a bundle and have a fixed length.
If the bundle is aligned with the x-axis, Eq. (81) can be
written as

∂tc(x,±ex) = −∂xj
± (84)

In the viscous limit, attention is typically restricted to
motor-mediated interactions between filament pairs. In
the case of a bundle, the current takes the form (Kruse
and Jülicher, 2003)

j±(x) =

∫ ℓ

−ℓ

dξ
[

v±±(ξ)c±(x+ ξ) + v±∓(ξ)c∓(x+ ξ)
]

c±(x)

(85)

where the motor-induced sliding velocities obey
v±±(ξ) = −v±±(−ξ) and v+−(ξ) = −v−+(−ξ) to
respect momentum conservation. In this case, the motor
density is assumed to be homogenous. A similar form
of the interaction kernel can be obtained from analogies
with collision terms used for granular materials (Aran-
son and Tsimring, 2005). Kinetic approaches have
also been used to describe (viso)elastic motor-filament
systems (Günther and Kruse, 2007; Lenz et al., 2012a;
Peter et al., 2008)
The kinetic approach has been used to study motor-

induced contraction of filament bundles (Kruse and
Jülicher, 2000) and the stability of isotropic filament so-
lutions (Liverpool and Marchetti, 2003). Instabilities rely
in both cases on interactions between filaments with ori-
entations û1 and û2 such that

û1 · û2 > 0. (86)

On a molecular level, such interactions rely on end ef-
fects, for example, on motors getting stuck at a filament
end (Nedelec et al., 1997) and also lead to the generation
of net mechanical stresses in isotropic networks.
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c. Mechanisms of stress generation In the kinematic
framework, mechanical stresses can be calculated by ana-
lyzing the momentum flux (Kruse and Jülicher, 2003). In
a homogenous filament bundle, antiparallel filaments do
not generate a net contractile stress as there are as many
contraction as extension events, Fig. 14(a). In skeletal
muscle, this problem is solved by the sarcomeric arrange-
ment of the actin filaments, Fig. 14(b). If motors stall
at the filament ends, then interactions between paral-
lel filaments generate a net stress, Fig. 14(c). Another
mechanism depends on nonlinear filament elasticity: as
filaments buckle more easily than they are stretched,
contraction is favoured over extension, generating a net
contractile stress (Lenz et al., 2012b), Fig. 14(d), and
filament buckling has indeed been observed in reconsti-
tuted actomyosin bundles (Thoresen et al., 2011). Other
mechanisms can be envisioned (Lenz, 2014): myosin mo-
tors are not point-like, but form themselves into minifil-
aments. If they prefer to be aligned with the filaments
they will generate net contractile stresses, as has been
found in stochastic simulations (Dasanayake et al., 2011;
Dasanayake and Carlsson, 2013). In similar simulations,
it was found that motors can also generate net exten-
sile stresses, because motors are more likely to link two
filaments that have a finite overlap and are so persis-
tent as to stay bound until they fully extend a filament
pair (Gao et al., 2015). Finally, filament treadmilling
can contribute to the generation of filament overlaps that
favour contraction (Oelz et al., 2015), Fig. 14(e), even in
absence of active crosslinkers (Zumdieck et al., 2007).

The above mechanisms rely essentially on account-
ing for local differences in motor distributions. In ad-
dition, the local organization of the filament network has
a significant impact on contractility (Ennomani et al.,
2016). In bundles, filaments could form bipolar struc-
tures, Fig. 14(f), for example, through motors linking fil-
ament plus ends, which would lead to contraction as was
proposed for contractile rings (Wollrab et al., 2016). In
higher dimensions these structures correspond to asters.

4. Hydrodynamics of motor-filament networks

a. Hydrodynamics of active polar gels Many interesting
features of motor-filament networks can be discussed
without referring to a specific molecular mechanism of
stress generation by using the formalism of generalized
hydrodynamics outlined in Sec. II.J.2 (de Groot and
Mazur, 1985). Within this approach, the cytoskeleton
is one instance of an active polar gel (Kruse et al., 2004,
2005). In this context, ”active” refers to the coupling of
mechanical stresses to a chemical reaction (ATP hydrol-
ysis), although the class of active matter is somewhat
broader (Marchetti et al., 2013b). Active polar gels are
defined on one hand by conserved quantities: the gel com-
ponents, momentum, and angular momentum. One typ-

ically assumes the system to be at constant temperature
such that energy is not conserved. On the other hand,
polar filaments can locally align to generate macroscopic
polar order, such that polarity provides an order param-
eter of a broken continuous symmetry.
The fluxes appearing in the conservation laws could be

obtained from microscopic descriptions, as in the kinetic
theories presented above. In the framework of nonequi-
librium thermodynamics, however, one uses phenomeno-
logical expressions. To this end, one first identifies the
pairs of conjugated generalized (thermodynamic) cur-
rents and generalized (thermodynamic) forces. An ex-
pression for the currents is then obtained by expanding
them in terms of the forces up to linear order.
In the simplest version, an active gel can be described

as an effective one-component fluid that is coupled to
the hydrolysis of ATP. If the densities nT , nD, and nP
of ATP and its hydrolysis products ADP and Pi, respec-
tively, are spatially homogenous, then the conservation
laws are (Kruse et al., 2004, 2005)

∂tρ+ ∂αρvα = 0 (87)

∂tgα + ∂βσ
tot
αβ = f ext

α (88)

ṅT = −ṅD = −ṅP = r (89)

where g = ρv denotes the momentum density and σtot

is the corresponding momentum flux density, equal to
the mechanical stress tensor. Externally applied forces
f ext provide possible momentum sources. Angular mo-
mentum has not been listed explicitly, which is appropri-
ate in the absence of torques not resultant from external
forces. In addition, there is a dynamic equation for the
evolution of the polarization field p. The part of the free
energy associated with distortions in the polar field, Fd,
is commonly taken to be

Fd =
1

2

∫

d3r
{

K1 (∇ · p)2 +K2 [p · (∇× p)]2 + (90)

K3 [p× (∇× p)]
2
}

(91)

where K1, K2, and K3 are the Frank elastic constants
for splay, twist, and bend, respectively.
The conjugated pairs of forces and fluxes are then

vαβ ↔ σdαβ , pα ↔ hα, and r ↔ ∆µ, where vαβ =
(∂αvβ + ∂βvα) /2 are the components of the rate of strain
tensor. Furthermore, σd is the deviatoric stress, h =
−δFd/δp the molecular field conjugate to the polariza-
tion, and ∆µ the difference between the chemical poten-
tials of ATP and its hydrolysis products.
The total stress has two parts, a hydrostatic part

σe, called the Erickson stress, and a deviatoric part.
The first part is the generalization of the hydrostatic
pressure to the case of a polar fluid (Ericksen, 1962),
and the second, deviatoric part such thatσtot

αβ = σdαβ −
1
2 (pαhβ − pβhα) + σeαβ , where σ

d is the symmetric part
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FIG. 14 Possible mechanism of net stress generation for rigid filament pairs. (a) Antiparallel filaments first contract then
expand implying no net stress. (b) Arrangements of actin filaments and motors in a muscle sarcomere leading to contractions
only. (c) If motors stall at the filament ends, net stresses are generated in parallel filament pairs. (d) The buckling of filaments
can break the symmetry between contraction and extension of antiparallel filaments. (e) Filament treadmilling leads to to
extended times of contractile overlaps. If these times exceed the time a motor is bound, net stresses are generated. (f) Biopolar
structures generate a structure that is reminiscent of the filament arrangement in a sarcomere.

of the deviatoric stress and − 1
2 (pαhβ − pβhα) its anti-

symmetric part. The constitutive equation for the sym-
metric part of the deviatory stress can be divided in three
components as

σdαβ = σvisc + σdist + σact (92)

where the viscous stress σvisc is that of a Stokesian fluid
with σvisc

αβ = 2ηvαβ and σdist is the stress resulting from
distortions in the polar field,

σdist
αβ =

ν

2
(pαhβ + pβhα) + ν̄1pγpγδαβ (93)

The expression for σdist is the same as for a nematic liquid
crystal, but with the polarization replaced by the director
field. Finally, the stress component σact resulting from
activity is

−σact
αβ = pαpβζ∆µ + ζ̄∆µδαβ + pγpγ ζ̃∆µδαβ . (94)

The equation for the evolution of the polarization vector
is

D

Dt
pα =

1

γ
hα + λ1pα∆µ− ν1pβvαβ − ν̄1vββ , (95)

which contains the active term λ1pα∆µ. Here, the co-
efficients ν1 and ν̄1 are imposed by the Onsager reci-
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procity relations. This hydrodynamic approach to ac-
tive gels has been generalized to elastic (Banerjee and
Marchetti, 2011) and to multicomponent viscoelastic ac-
tive polar gels (Callan-Jones and Jülicher, 2011; Günther
and Kruse, 2007; Joanny et al., 2007).

b. Spontaneous flows One of the most spectacular prop-
erties of polar active gels is their ability to spontaneously
generate flows. Beyond a critical activity, a station-
ary state with homogenous polar order will be unsta-
ble against small perturbations (Voituriez et al., 2007).
In this case, gradients in the polar order parameter will
develop, which in turn lead to a spontaneous flow. In
a Taylor-Couette geometry where the active gel is con-
fined in the interstitial space between two coaxial cylin-
ders, this flow can set the two cylinders into relative ro-
tational motion (Fürthauer et al., 2012). The result-
ing torque-rotational velocity relation can display re-
gions with multiple unstable branches and the coexis-
tence of states with rotations in the opposite direction.
For higher activities, secondary instabilities have been
reported that lead to the emergence of topological point
defects and possibly chaotic behavior (Neef and Kruse,
2014), Fig. 15(b), which has been observed in exten-
sile active nematics (Sanchez et al., 2012), Fig. 15(c).
These phenomena are reminiscent of the dynamics of
bacterial suspensions confined in circular domains (Lushi
et al., 2014; Wioland et al., 2013). Gradients in the po-
lar order parameter also generate flows around spiral de-
fects (Kruse et al., 2004), Fig. 15(a).

c. Topological defects Topological defects in the polar-
ization field readily develop in reconstituted filament-
motor systems (Keber et al., 2014; Sanchez et al., 2012).
Beyond a certain activity threshold, asters and vortices
that are stable defects in equilibrium give way to spirals
and spontaneously start to rotate (Kruse et al., 2004,
2005). Defects of topological charge ±1/2 in active ne-
matics form spontaneously, Fig. 15(d). Furthermore,
these defects can annihilate (Sanchez et al., 2012) and
can show oscillatory behavior when confined to a spher-
ical surface (Keber et al., 2014). The dynamics of top-
logical defects in active nematics has been studied nu-
merically (Giomi et al., 2013; Thampi et al., 2013) and
analytically (Pismen, 2013).

d. Spontaneous actin waves In a number of diverse adher-
ing cells, the actin cytoskeleton has been found to spon-
taneously represent waves. Actin polymerization waves,
first observed in Dictyostelium discoideum (Vicker,
2000), have now been seen in various cell types (Gerisch
et al., 2004; Weiner et al., 2007) and are often linked to
cell motility (Allard and Mogilner, 2013). Circular dorsal

ruffles, which are protrusions on the upper side of an ad-
hering cell and for which no function is currently known,
result from polymerization waves (Bernitt et al., 2015).
The basic underlying mechanism seems to be a negative
feedback between actin filaments and the activity of a nu-
cleation promoting factor (Carlsson, 2010; Doubrovinski
and Kruse, 2008; Weiner et al., 2007), which leads to a
dynamic that is reminiscent of excitable systems (Bernitt
and Döbereiner, 2017; Ryan et al., 2012; Whitelam et al.,
2009).
There are also spontaneous actin waves that depend

in an essential way on stresses generated by molecular
motors (Barnhart et al., 2011; Doebereiner et al., 2006;
Giannone et al., 2004). A generic mechanism for such
waves that results from the coupling of a regulator to
an active gel has been studied in (Bois et al., 2011;
Kumar et al., 2014). Similarly, they are generic prop-
erties of active elastic materials with stress-dependent
motor regulation (Günther and Kruse, 2007; Radszuweit
et al., 2013) or in the presence of turnover (Dierkes et al.,
2014). In combination with filament treadmilling, mo-
tors can also generate waves in actomyosin bundles (Oelz
and Mogilner, 2016; Torres et al., 2010; Wollrab et al.,
2016) as were observed in cytokinetic rings in fission
yeast (Wollrab et al., 2016). Lateral waves, observed
during the spreading of fibroblasts (Doebereiner et al.,
2006; Giannone et al., 2004), have been proposed to re-
sult from cytoskeleton-membrane interactions (Gholami
et al., 2012; Shlomovitz and Gov, 2007; Zimmermann
et al., 2010).

e. Cell migration Simply put, the motion of cells crawl-
ing on solid substrates comprises extension of a flat, veil-
like protrusion called lamella, its anchoring to the sub-
strate, release of surface attachments in the cell’s rear,
and forward locomotion of the cell body containing the
nucleus. Physical analysis has focused on specific as-
pects of this integrated process. Notably, the extension of
lamellae by actin polymerization was described in terms
of a ”Brownian ratchet” (Mogilner and Oster, 1996) or
through blebbing, a process that leads to the detach-
ment of the cell membrane from the actin network and its
bulging out due cytosolic pressure (Charras and Paluch,
2008). On this basis, the force-velocity relation of cell-
crawling has been analyzed (Carlsson, 2003; Schreiber
and Stewart, 2010; Weichsel and Schwarz, 2010). In
the frame of the substrate, actin flows from the leading
edge towards the cell body in a process called retrograde
flow. Hydrodynamic analysis of this phenomenon sug-
gests that it results form contractile activity of myosin
motors (Kruse et al., 2006). The combined effect of poly-
merization and contraction on the force-velocity relation
was studied in (Recho and Truskinovsky, 2013).
On the other hand, the experimental observation of

crawling cell fragments (Euteneuer and Schliwa, 1984;
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FIG. 15 Spontaneous flows in active polar gels. (a) Illustration of the spontaneous circular flow around a spiral point defect.
From (Kruse et al., 2004). (b) Flows around vortices in a ring. Arrows indicate the flow, colours the orientation angle ψ of
the polarization field with respect to the radial direction. From (Neef and Kruse, 2014). (c) Spontaneous flow field (arrows)
in a reconstituted system of microtubules and motor complexes. Scale bar: 80 µm. (d) Generation and separation of two
topological point defects of charges ±1/2 in the system (c). Scale bar: 20 µm. (c) and (d) from (Sanchez et al., 2012).



43

Malawista and Van Blaricom, 1987) suggested that the
actin cytoskeleton can autonomously generate cell mi-
gration. As a consequence, droplets of active gels were
analyzed. In this context, one has to deal with a dy-
namic boundary. Studies with sharp boundaries there-
fore focused on cytoskeletal dynamics in regions of fixed
shape (Whitfield et al., 2014) or on the stability of circu-
lar shapes (Callan-Jones et al., 2008), although full crawl-
ing was also considered (Doubrovinski and Kruse, 2011).
Alternatively, phase-field models have been used (Shao
et al., 2010; Ziebert et al., 2012).

A phase field is an auxiliary field that equals one in
the cell interior and zero outside. The dynamics of the
phase field ψ is given by (Shao et al., 2010; Ziebert et al.,
2012)

∂tψ = Dψ∆ψ +
δF

δψ
+ coupling terms (96)

Notably, the diffusion terms set the surface tension asso-
ciated with the phase-field boundary. The free energy F
is commonly taken to be quartic in the phase field such
that the derivative δF/δψ = κψ (1− ψ) (ψ − δ) is cu-
bic in ψ. Here, δ can be dynamically adjusted to main-
tain a constant cell volume δ = 1

2 + ǫ
(

d3rψ (r) − V0
)

,
where v0 is the target volume size (Ziebert et al., 2012).
The coupling terms describe the interaction of the phase
field with the actin cytoskeleton. This interaction is com-
monly described by −βp · ∇ψ, which confines the inter-
action to the “cell” boundary.

The phase-field approach has been used to study spon-
taneous cell polarization (Shao et al., 2010; Ziebert et al.,
2012), the effects of adhesion (Shao et al., 2012; Ziebert
and Aranson, 2013), the migration of cells on micropat-
terns (Camley et al., 2013), and the effects of substrate
stiffness on migration (Löber et al., 2014; Ziebert and
Aranson, 2013). In these studies, the contractile stresses
generated by the actin network play an essential role.
Spontaneous polymerization waves can also orchestrate
the cytoskeleton to generate cell crawling (Doubrovinski
and Kruse, 2011; Weiner et al., 2007). These waves can
generate erratic motion through a deterministic mecha-
nism (Dreher et al., 2014).

As an alternative to adhesion-based motility, cells can
also move by “flowing and squeezing” (Laemmermann
et al., 2008). In this case, the cell does not establish
adhesion sites with a substrate; rather, the necessary en-
vironmental coupling can be obtained from pushing on
the environment (Hawkins et al., 2009). Furthermore,
spontaneous actin flows either in the bulk (Recho et al.,
2013; Tjhung et al., 2012; Whitfield et al., 2014) or be-
low the cell membrane (Hawkins et al., 2011) can gener-
ate migration. Similarly, asymmetric contraction of the
cytoskeletal network can push the cytosol to extend the
leading edge (Callan-Jones and Voituriez, 2013), which
is a behavior similar to blebbing.

f. Cortex instabilities In animal cells, the actin cytoskele-
ton forms a thin layer below the cell membrane known
as the actin cortex. This mesh determines cellular shape
and mechanical properties (Chalut and Paluch, 2016).
The actin cortex hosts vital structures like contractile
rings that, for example, cleave the cell during divi-
sion, play an important part in endocytosis, and con-
tribute to the formation of cellular protrusions. Its phys-
ical properties have been probed via atomic force mi-
croscopy (Matzke et al., 2001; Pesen and Hoh, 2005) and
laser ablation (Saha et al., 2016). The cortex thickness
has been measured at about 200nm (Clark et al., 2013),
which is much smaller than the length of many cortical
actin filaments (Fritzsche et al., 2016). By making an
analogy with pre-wetting, it was suggested that myosin
motors are cclultimately at the origin of the well-defined
actin cortex (Joanny et al., 2013).

Gradients and anisotropies in tension generate flows
of cortical actin (Mayer et al., 2010). These flows
can lead to formation of contractile rings (Salbreux
et al., 2009; Turlier et al., 2014) as well as an align-
ment of the filaments in the ring (Reymann et al.,
2016). Asymmetries in cortical tension make the con-
tractile ring position unstable and can lead to ring os-
cillations (Sedzinski et al., 2011). Oscillations have also
been observed for actomyosin rings (Paluch et al., 2005)
and of cellular shapes (Salbreux et al., 2007) in nondi-
viding cells. A framework for analyzing cortex-driven
shape changes has been formulated for active, elastic,
thin shells (Berthoumieux et al., 2014). In general, how-
ever, motion of actomyosin rings depend on ring contrac-
tility in addition to cortical flows (Behrndt et al., 2012).
Furthermore, cortical flows help to establish cell polar-
ity by transporting certain proteins from one cell end to
the other (Goehring et al., 2011). Remarkably, the acto-
myosin cortex in Caenorhabditis elegans embryos gener-
ates chiral torques, which generates counterrotating cor-
tical flows that are used to establish the left-right sym-
metry of the developing organism (Naganathan et al.,
2014). Finally, let us note that the contractility of thin
active gel layers, be it the actin cortex or a cell monolayer,
can generate instabilities that lead to three dimensional
shape changes (Hannezo et al., 2011; Ideses et al., 2018;
Shyer et al., 2017).

VII. NEURAL NETWORKS AND BRAIN FUNCTION

Understanding brain function is a grand goal for biol-
ogy. The brain consists of a tightly connected network of
billions of nerve cells called neurons (Dayan and Abbott,
2001). From a physical point of view, a nerve cell or an
individual neuron is an electrically excitable unit. For a
strong enough excitation above a threshold, the cell sends
out an electrochemical pulse referred to as an action po-
tential. This signal travels along the axon, which is a lin-
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ear extension of the nerve cell. The transport of an action
potential along an axon is quantitatively described by the
Hodgkin-Huxley model (Hodgkin and Huxley, 1952), the
essence of which is captured by the FitzHugh-Nagumo
model (FitzHugh, 1961; Nagumo et al., 1962). At the
end of the axon, the action potential can be transmit-
ted to other nerve cells that receive the signal in exten-
sions called dendrites. The coupling between an axon
and dendrites occurs through synapses that chemically
excite or de-excite the postsynaptic nerve cell by releas-
ing biomolecules called neurotransmitters.
The activity of the brain is represented by the electrical

activity of the whole neural network rather than that of
individual neurons. The brain function closely associated
with the activity is then determined by the underlying
neural networks (Abbott, 2008; Hopfield, 1982). There-
fore, one needs to explore the underlying neural network
dynamics for specific functions. The physical and quan-
titative understanding of global brain functions such as
learning and memory, decision making, and attention, as
well as associated nonequilibrium neural network dynam-
ics, are still challenging at present (Dayan and Abbott,
2001). We will quantify the nonequilibrium landscape
and flux and associated nonequilibrium thermodynamics
to explore these brain functions. For reviews of other as-
pects of dynamics of neural networks, see (Amit, 1989;
Dayan and Abbott, 2001).

A. Learning and memory

To theoretically study cerebral processes, certain neu-
ral networks have been introduced where in neuron dy-
namics can be simplified. The state of neuron i is given
by the continuous variable ui representing its electrical
potential and connects to another neuron j with strength
Tij . The state of neuron i changes due to the input from
other neurons, a leak of ions that will bring an unstim-
ulated neuron back to its resting potential ui = 0 and a
possible external input current Ii, such that

Ci
dui
dt

=
∑

j 6=i

Tijfj(uj)−
1

Ri
+ Ii, (97)

where Ci and Ri, respectively, denote the capacity and
resistance of neuron i and where fj is a monotonically
increasing sigmoidal function such that neuron i receives
input from neuron j only if the “activity” of the latter is
above a certain threshold. An important subclass of such
networks are Hopfield networks, for which the weights are
symmetric, Tij = Tji (Hopfield, 1982).
The attractors of such a network are often interpreted

as patterns stored within it.Given a certain distribution
of input currents Ii, the network should settle into an
attractor that associates this input with a previously
learned pattern, where “learning” refers to adjusting the
connection strengths Tij such that certain inputs yield

distinct activation patterns of the network. There are
several different learning algorithms, that is, dynamics
for the Tij that yield the desired network properties. In
the case of a symmetric network with Tij = Tji, the un-
derlying dynamics are determined by the gradient of a
potential energy (Hopfield, 1982) defined as

E = −
1

2

∑

i,j

Tijfi(ui)fj(uj) +
∑

i

1

Ri

∫ ui

0

ξf ′
i(ξ)dξ

+
∑

i

Iifi(ui) (98)

with dE/dt ≤ 0. Consequently, E is a Lyapunov function
of the system and will always settle in one of the steady
state attractors (Hopfield, 1982). Symmetric connections
imply an underlying neural network with behavior de-
termined by purely potential energy. Memory is stored
in the neural connection patterns forming the basins of
attractions on the landscape. Learning can then be un-
derstood as the way of retrieving information from the
initial queue near specific memory basins.
In the realistic neural networks of the brain, neural

connections are not symmetric, that is Tij 6= Tji so the
energy E, Eq. (98), is no longer a Lyapunov function.
Still, Equation (97) describes the neural network dynam-
ics, which now also depends on the nonequilibrium po-
tential landscape related to the steady state probability
distribution and steady state rotational curl probability
flux breaking the detailed balance. The rotational curl
flux of neural networks emerges when neural connections
are asymmetric (Yan et al., 2013). As a consequence,
continuous line attractors can emerge (Yan et al., 2013).
These attractors could provide a physical origin of asso-
ciations between memories by flux.

B. Cycling of sleep phases

Movement between neural network states can be shown
in an example connecting different phases during sleep,
where periods of rapid eye movement (REM) alter-
nate with non-REM periods (Mccarley and Massaquoi,
1986). The two phases are regulated by the interac-
tion of two neural populations. The main contribution
for the underlying circuit of REM sleep is an activation-
repression loop inferred from experimental studies (Mc-
carley and Massaquoi, 1986). The dynamics follow the
equation of motion dx

dt = aA(x)xS1(x) − bB(x)xy and
dy
dt = −cy + dxyS2(y) where x and y represent the ac-
tivities of REM-on and REM-off neural populations, re-
spectively. The constants a, b, c, d and the sigmoidal
functions A, B, S1, and S2, respectively, specify the in-
teraction strengths between the populations (Yan et al.,
2013). From a stochastic version of the equation of mo-
tion for x and y, one can obtain the Mexican hat-shaped
landscape as a continuous close line attractor from the
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steady state solution of the corresponding Fokker-Planck
equation. The rotational curl flux driving the REM sleep
flow can be directly derived from the force decomposition
as in Sect. II.A.2. In addition, limit cycle stability can
be assessed in terms of the landscape topography, that
is, the height of the Mexican hat potential’s center, and
the frequency of the REM/non-REM cycle as a func-
tion of the release of the neurotransmitters acetylcholine
and norepinephrine (Yan et al., 2013). It is shown that
the nonequilibrium rotational curl flux from asymmetri-
cal neural connections is crucial for generating the REM
sleep rhythm, while for symmetrical neural connections,
limit cycle oscillations cannot appear (Yan et al., 2013).

C. Brain decision making

One key aspect of cognition is decision making. Stud-
ies in monkeys have linked the process of decision making
to the neural activity of a specific area of the cerebral
cortex (Huk and Shadlen, 2005; Roitman and Shadlen,
2002; Shadlen and Newsome, 1996, 2001). In these exper-
iments, trained monkeys were presented for a few seconds
with a pattern of randomly arranged dots that moved
coherently in one direction against a background of ran-
domly appearing and disappearing stationary dots. Some
time after the patterns were switched off, the monkeys
were asked to make a decision about the average direc-
tion of motion of the dots.

a. The physics of decision making The neural network un-
derlying decision making in this motion discrimination
task consists of two populations of nerve cells compet-
ing with each other for selecting the leftward or right-
ward direction (Roitman and Shadlen, 2002; Shadlen and
Newsome, 2001; Wong et al., 2007; Wong and Wang,
2006). The two populations self-activate and at the same
time mutually inhibit each other. The sensory input cur-
rent Imotion,i into population i = 1, 2 depends on the
fraction of coherently moving dots or ‘coherence’ c as
Imotion,i = Î(1 ± c), where Î is the input in absence of
coherent motion and the plus and minus signs are respec-
tively used when the motion is in the preferred direction
of the population or opposite to it. The total input cur-
rents are then given by

Itot,1 = J11S1 − J12S2 + I0 + Imotion,1 (99)

Itot,2 = −J21S1 + J22S2 + I0 + Imotion,2. (100)

Here, I0 is the average background synaptic input, Jij the
synaptic coupling constants, and Si the average gating
variables. Their value is determined dynamically through

Ṡi = −
1

τS
Si + γ(1− Si)ri (101)

with characteristic times τS and γ, and where ri is the
firing rate of the neural population i. The firing rateis
essentially zero below a threshold value and then in-
creases almost linearly as a function of the total input
current (Roitman and Shadlen, 2002; Shadlen and New-
some, 2001; Wong et al., 2007; Wong and Wang, 2006).
Stochastic dynamics in the nonequilibrium landscape

unveil the physical mechanism behind decision mak-
ing (Yan et al., 2016), Fig. 16a. In the absence of a
stimulus, Î = 0, there are three stable attractors cor-
responding to the undecided state and the two decided
states. In the decided states, the populations has a high
activity, otherwise all activities are low. With increasing
stimulus, the stability of the undecided state decreases
until it eventually becomes unstable, such that only the
two decided states remain and the animal has to make a
decision, Fig. 16b. For non-coherent patterns, c = 0, the
decision is random, whereas for c 6= 0 it is biased towards
the correct decision because the basin of attraction of the
correct decided state grows while the that of the incor-
rect decided state shrinks. Furthermore, as the stimulus
is reduced, the barriers around the decided states still re-
main for some time, which endows the systems with some
memory for the decision made. Once an incorrect deci-
sion is made, it takes a much longer time to go over the
barrier to reach the incorrect basin. This explains why
there is a longer decision time for incorrect decisions than
for correct ones. These findings are in agreement with
the results from monkey experiments (Mazurek et al.,
2003; Roitman and Shadlen, 2002; Shadlen and New-
some, 2001; Wong et al., 2007; Wong and Wang, 2006).

b. Speed, accuracy and dissipation tradeoff in decision mak-

ing The process of decision making can be optimized
for several quantities, notably, accuracy, speed, and dis-
sipation. One can quantify the decision time by the cor-
responding mean first passage time from an undecided
state to a decided state. One can also quantify the perfor-
mance or accuracy of the neural network through a path
integral method (Wang et al., 2010c) by defining the ac-
curacy of the decision-making task as the ratio in prob-
abilities between the optimal correct path and the error
path. The dissipation in terms of entropy production is
directly related to the rotational curl flux. As stated pre-
viously, this measures the system’s distance from equilib-
rium and can therefore be quantified for decision-making
(Yan et al., 2016).
Let us now focus on the speed-accuracy-dissipation

tradeoff mechanism by varying input threshold. If speed
is the main focus of decision-making, there is an opti-
mal decision speed with almost minimum dissipation cost
and reasonable accuracy. However, higher accuracy re-
quires longer decision time, and thus a slower decision
speed. If accuracy is the major concern of the decision-
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FIG. 16 Nonequilibrium potential landscapes for brain decision making and mind changes (a)(b) Potential landscapes at the
zero coherence level for different stimulus inputs for decision making, µ0 = 0 and 30 Hz, respectively. c denotes undecided
state, and a and b denote decided states. (c)(d) Potential landscapes at the non-zero coherence level, where µ == 30 Hz
and the coherence c = 0.2 and 0.65, respectively. (e)(f) Potential landscapes with different large inputs for mind changes. at
zero coherence level. The strength of stimulus µ0 = 50 and 65 Hz respectively. (g)(h) The potential landscapes with different
large inputs for mind changes. at different coherence levels. (µ0 = 55) when coherence c′ = 0.02 and 0.12, respectively. In all
subgraphs, parameters a = 269.5, b = 108, and D = 3.6 × 10−7) (from Ref. (Yan et al., 2016)).

making, both the dissipation cost and decision time are
higher than optimum at the best accuracy, but there is
a suboptimal accuracy with optimal speed and dissipa-
tion cost. When dissipation cost is the main concern for
decision-making, the decision accuracy may not be the
best nor will the speed be the greatest with the smallest
dissipation cost. One sees that reasonable accuracy per-
formance can be reached with minimum dissipation cost
and fast decision time, though (Yan et al., 2016).

c. Mechanisms of mind changes Changes of mind occur
often in making decisions. In this scenario, the initial
choice can be altered. Decisions can be changed in two
cases. For an incoherent stimulus c = 0, the system will
settle in one of the two decided states as the strength of
the stimulus is increased Fig. 16(e). Upon a further in-
crease of the stimulus, a new attractor appears with high
activity in both populations and the system will even-
tually settle in this state, Fig. 16(f). As the stimulus is
again reduced, the high activity state disappears and the
system will eventually settle in one of the decided states.
However, this state will not necessarily match the origi-
nal one; the decision can be changed. The emergence of
a new attractor with increasing input strength has been
observed experimentally (Resulaj et al., 2009). Studies
suggested that the changes of mind might be due to the
unprocessed information before the first decision (Resu-
laj et al., 2009).
For coherent inputs with c > 0, the correct choice state

is more attractive and changes from an initial correct
choice are unlikely to occur. However, when the network
makes a wrong decision at the beginning, changes can
occur relatively easily. This is because although there is
a second chance (new center basin state) to make a deci-
sion due to large stimulus input, a network is still more
likely to be attracted to the stronger basin of attraction
for the correct choice, as shown in Fig. 16(g,h). This
observation is supported by experimental data showing
that the probability of changes to the wrong choice from
the correct one decreases monotonically with increasing
coherence (Albantakis et al., 2012; Albantakis and Deco,
2011; Resulaj et al., 2009). Therefore, the process of
changes of mind can be described in three steps: mak-
ing the initial decision, attraction to the new basin state,
and at last making a different decision. As seen above,
a change of mind can be understood through landscape
topography.

VIII. THE GENETIC BASIS OF ORGANISMAL
PROGRESSION

Two major processes transform the appearance and
capabilities of organisms during their lifetime: develop-
ment and ageing. Development is often accompanied by
morphogenesis, and D’Arcy Thompson’s seminal book
On Growth and Form (Thompson, 1941) emphasized the
need for physics in understanding morphogenesis early
on. We refer the reader to recent reviews on the physics
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of morphogenesis for a description of the current state of
this field (Lecuit and Lenne, 2007; Mirabet et al., 2011;
Sun and Jiang, 2011). We instead will focus on genetic
aspects of development and ageing that so far receive
less attention among physicists and present examples of
how nonequilibrium landscapes can help to deepen our
understanding of these processes.

A. Stem cell differentiation

Stem cells are undifferentiated cells capable of giving
rise to specialized cells. Although a fertilized egg has
the potential to develop into all the cell types of a body,
differentiation typically occurs in a sequence of several
steps, such that cells emerging at various stages of this
process become more and more specialized. In 1957,
Waddington suggested a pictorial way to visualize the
developmental process in terms of a ball rolling down
an increasingly fragmenting valley (Waddington, 1957).
Though intuitive, this picture lacks a physical foundation
and had noquantification. The Waddington landscape
has received recent attention among physicists and other
scientists for global quantification of development and re-
programming (Ashwin and Sasai, 2015; Chickarmane and
Peterson, 2008; Feng and Wang, 2012; Huang et al., 2009;
Jiang et al., 2008; Li and Wang, 2013, 2014b, 2015; Sasai
et al., 2013; Wang et al., 2010b, 2011; Xu et al., 2014b).

Biologists have long thought that differentiation was
irrevocable. This view was shattered after the identifi-
cation of the core genetic network underlying differenti-
ation. A typical core motif for these networks involves
two self activating genes mutually repressing each other
(Ashwin and Sasai, 2015; Chickarmane and Peterson,
2008; Feng and Wang, 2012; Huang et al., 2009; Jiang
et al., 2008; Li and Wang, 2013, 2014b, 2015; Sasai et al.,
2013; Wang et al., 2010b, 2011; Xu et al., 2014b). Some
examples include the PU.1-GATA1 gene pair, which di-
rects the differentiation of a common myeloid progenitor
(CMP) into either myeloid cell or erythroid cell in blood
cell formation; Oct4 and Cdx2 gene pair for the inner cell
mass/trophectoderm lineage decision; and Nanog and
Gata6 gene pair for segregation of primitive endoderm
and epiblast within the inner cell mass, Fig. 17a. Another
example involves the mutual regulations of the transcrip-
tion factors Oct-4 and NANOG (Chambers et al., 2007;
Kalmar et al., 2009; Takahashi and Yamanaka, 2006a).
Both activate themselves; NANOG also activates Oct-4,
whereas Oct-4 activates NANOG at low and suppresses
it at high levels. This network topology generates a bi-
modal distribution of NANOG expression (Kalmar et al.,
2009). Although the possibility of noise-induced tran-
sitions between the two principle states cannot be ex-
cluded, the existence of two subpopulations is rather
thought to result from excitable dynamics of the regu-
latory network (Kalmar et al., 2009). Remarkably, con-

trolled upregulation of NANOG leads to the reversal of
a differentiated cell into a pluripotent stem cell (e.g. em-
bryonic stem cells are pluripotent) (Takahashi and Ya-
manaka, 2006a), thus revoking the previous paradigm
that differentiated cells cannot return to the pluripo-
tent state. Waddington’s picture is unsuitable for de-
scribing this process; instead, nonequilibrium landscapes
and fluxes provide an appropriate framework for in-depth
analysis.
The dynamics of gene regulatory networks can be cap-

tured by

dXi

dt
= −KiXi +

∑

j

aijX
n
j

Sn +Xn
j

+
∑

j

bijS
n

Sn +Xn
j

. (102)

where Xi denotes the expression level of gene i, Ki repre-
sents the rate of degradation, and the next two terms are
for activation and repression respectively. The activation
strength of gene j on gene i is given by aij , whereas bij
quantifies the repression strength. If the expression of i
is independent of j, aij = bij = 0. The parameter S rep-
resents the “activation threshold” and n quantifies the
cooperativity of regulation (Li and Wang, 2013).
The dynamics underlying differentiation were studied

by analyzing Eq. (102) for a gene regulatory network mo-
tif of two self-activating and mutually repressing genes
(Ashwin and Sasai, 2015; Chickarmane and Peterson,
2008; Feng and Wang, 2012; Huang et al., 2009; Jiang
et al., 2008; Li and Wang, 2013, 2014b, 2015; Sasai et al.,
2013; Wang et al., 2010b, 2011; Xu et al., 2014b). As
discussed previously, this gene motif appears often in
stem cell differentiation and reprogramming (Xu et al.,
2014a). The cell starts from the stem cell state basin and
eventually transforms to differentiated state basins dur-
ing the developmental process. Here, the developmental
direction is dictated by the change of the effective self reg-
ulations, which was unspecified in the original Wadding-
ton picture (Waddington, 1957; Wang et al., 2011). The
differentiation process can be viewed as the evolution of
the landscapes along development. (Wang et al., 2011).
The effects of development and of external interven-

tions for dedifferentiation or reprogramming were cap-
tured by changing the interaction strengths aij and bij .
In this way bifurcations were generated that correspond
to the dedifferentiation process. The analysis showed
that the differentiation and reprogramming pathways are
typically irreversible, which is in contrast to Wadding-
ton’s picture, Fig. 17. A detailed understanding of these
pathways can guide the design of reprogramming path-
ways.
To this end, a more complete gene regulatory net-

work underlying a human stem-cell differentiation has
been explored that has resulted in optimal reprogram-
ming paths that are consistent with experiments (Li and
Wang, 2013). Furthermore, two attractors correspond-
ing to two different cell types can coexist, and the rate
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FIG. 17 Stem cell differentiation and cancer-development. (a) The wiring diagram of core gene regulatory motif of differentiation
and development. (b) The quantified Waddington developmental landscape and dominant transition paths for differentiation,
reprogramming and trans-differentiation paths. Sc denotes stem cell state while Sa and Sb denote differentiated cell states.
(c) The wiring diagram of the core gene regulatory motif of cancer and development. (d) The landscape and the dominant
transition paths between different cell states for cancer and development. (from Ref. (Li and Wang, 2015; Xu et al., 2014a)).

of noise or input-induced switches between them can be
quantified (Xu et al., 2014a). The paths between two
differentiated states may, but need not, pass through a
stem-cell like state (Wang et al., 2011; Xu et al., 2014b),
making the direct trans-differentiation possible. This is
quite important because reprogramming often encoun-
ters a cancer state (Takahashi and Yamanaka, 2006a).
These findings are particularly relevant in the context of
the heterogeneity of stem-cell differentiation due to envi-
ronmental and epigenetic influences (Ashwin and Sasai,
2015; Feng and Wang, 2012; Li and Wang, 2014b; Sasai
et al., 2013).

B. Ageing

Ageing has been thought of as an inevitable process
of continuous decay of physiological functions that even-
tually leads to death, but experiments on model organ-
isms show that ageing can be significantly delayed by
suitable genetic manipulations and in appropriate envi-
ronments (Gems and L., 2013; Kenyon, 2010; Kirkwood,
2005). This suggests that the ageing process is regulated
and programmed. Therefore, finding out the underlying
genetic regulations and environmental influences is vital,
though currently challenging. One can study ageing us-
ing C elegans as a model organism.

Based on experimental studies of pathways with an im-
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pact on ageing a network of 11 genes and miRNAs involv-
ing DAF-2, DAF-16, SKN-1, AAK-2, AAKG-4 genes,
TORC1, RSKS-1, PHA-4, HIF-1, miR-71 and miR-228
was established (Zhao and Wang, 2016), Fig. 18a. Its
dynamics are given by Eq. (102) with appropriate con-
nection strengths aij and bij . The nonequilibrium land-
scape displays two attractors. In the “ageing” state, ex-
pressions of genes with lifespan-limiting effects predom-
inate, whereas in the “rejuvenating” state, genes that
enhance the lifespan prevail, Fig. 18b. Since the ageing
state is more stable than the rejuvenating state, most
worms are expected to age “normally”; only a small frac-
tion have an extended lifespan. The network, though,
can switch between ageing and rejuvenation following
genetic or environmental interventions. On a molecu-
lar level, further analysis suggested that self-degradation
of lifespan-limiting and longevity-promoting genes leads
to an increased stability of the ageing and rejuvenation
states, respectively. This finding is consistent with exper-
iments (Apfeld et al., 2004; Kenyon et al., 1993; Kimura
et al., 1997; Lee et al., 2003; Samuelson et al., 2007) that
also suggest why the ageing state becomes more probable
with increasing lifetime. DAF-16 negatively regulates the
target of rapamycin complex 1 (TORC1), which plays an
important function in monitoring the metabolic state of
a cell and in regulating protein synthesis. This negative
regulation by DAF-16 has a dramatic effect on the lifes-
pan of C. elegans (Kenyon et al., 1993; Wolff and Dillin,
2006), possiblybecause of damage accumulation. Along
with a weakening of this connection, the dominant state
can switch from rejuvenation to ageing. When increas-
ing this negative regulation strength, the process reverts.
Moreover, ageing and rejuvenation switching paths can
be quantified, although they do not overlap much due to
the presence of nonequilibrium rotational curl flux. This
indicates, at least in principle, there is a possibility for
reverting the ageing process through interventions (such
as increasing the DAF-16 negative regulation to TORC1)
(Zhao and Wang, 2016). The first hint of such success is
from the stem cell reprogramming discussed earlier where
the differentiated cells can be turned back to iPS progen-
itor cells (Takahashi and Yamanaka, 2006b; Wang et al.,
2011).

Further analysis of the ageing and rejuvenation attrac-
tors suggests that self-degradation of lifespan-limiting
and longevity-promoting genes leads to an increased sta-
bility of the ageing and rejuvenation states, respectively,
which is consistent with experiments (Apfeld et al., 2004;
Kenyon et al., 1993; Kimura et al., 1997; Lee et al., 2003;
Samuelson et al., 2007).

Whereas the ’rejuvenation’ state in C. elegans rather
slows down or arrests ageing instead of reverting it, there
are a few organisms that can revert to earlier develop-
mental stages. Notably, the jellyfish Turritopsis dohrnii

has normal ageing process which proceeds from young
to old, though they can also change from the sexually

mature medusa stage, in which they live as individuals,
back to the sexually immature and colonial polyp stage
(Bavestrello et al., 1992; Piraino et al., 1996). This pro-
cess can be repeated as the old to young and young to
old oscillation continues. By performing this oscillation,
a jellyfish can live forever unless an accident, a preda-
tor, or a disease interrupts these cycles. The regulatory
network in Fig. 18a is capable of producing sustained
limit-cycle oscillations, where it switches periodically be-
tween ageing and rejuvenating phases (Zhao and Wang,
2016). Stability of the limit cycle path is guaranteed by
the Mexican hat-shaped landscape, while the nonequilib-
rium rotational curl flux guarantees the stability of the
oscillation flow and therefore the possibility of immor-
tality through the forever oscillations. If these oscillation
dynamics can emerge in more complex biological systems
such as animals or human, this will provide new per-
spectives to understand and control the aging process for
ourselves.

IX. CANCER

Cancer is a leading cause of death in human popula-
tions worldwide. In spite of decades of effort to under-
stand the mechanisms leading to cancer, many open ques-
tions remain (Weinberg, 2007). Through these decades
of work, several hallmarks of cancer have been identi-
fied (Hanahan and Weinberg, 2000, 2011) and are the
aim of anti-cancer strategies. The processes of tumor
growth, vasculation, and spreading during metastasis de-
pend strongly on physical properties. It is thus of no sur-
prise that physicists are heavily involved in understand-
ing cancer (Ramis-Conde et al., 2009; Welter et al., 2009;
Wirtz et al., 2011). Physical cancer treatments are still
routinely employed. Beyond this obvious connection be-
tween cancer and physics, nonequilibrium concepts can
be used to unravel the genetic and epigenetic conditions
for the development of tumors and to explore new strate-
gies for curing the disease (Welter and Rieger, 2013). Al-
though cancer is still mostly viewed as a disease caused
by mutations, there is growing evidence from a physical
perspective that the focus on genetics is too restrictive
and that environmental aspects have to be taken into
account (Ao et al., 2008; Bar-Yam et al., 2009; Basan
et al., 2009; Chen and Wang, 2016; Creixell et al., 2012;
Gatenby and Vincent, 2003; Huang et al., 2009; Kauff-
man, 1971; Li and Wang, 2014a,b, 2015; Lu et al., 2013,
2014b; Tian et al., 2013; Wang et al., 2007; Yu and Wang,
2016). Cancer can more usefully be thought of as a dis-
ease state of the whole gene network. Environmental
changes can lead to changes or imbalances in regulation
of genes in the network, some of which favor the cancer
state. This suggests that cancer treatment needs to tar-
get a collection of key genes and regulations. Several
questions related to this strategy remain unanswered.
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FIG. 18 Gene network and nonequilibrium landscape of ageing and rejuvenation. (a) The wiring diagram of the core gene
regulatory network of ageing of C. elegans. (b) Dynamical landscape of C. elegans aging process. The horizontal coordinates
denote the gene expression levels of DAF-16 and TORC1, the vertical coordinate denotes the regulation strength at which
DAF-16 inhibits TORC1 Rejuvenation and aging attractors are labeled as Rejuvenation and Ageing, and black lines denote
the optimal paths between the rejuvenation and aging attractors upon changes in regulation strengths. (from Ref. (Zhao and
Wang, 2016)).

How do we quantify the cancer state? Can cells or tissues
revert from a cancerous to a healthy state? How can we
identify key genes and regulators? In this section, it is
not our aim to give a comprehensive review of the physics
of cancer. Rather we highlight how nonequilibrium con-
cepts, notably, nonequilibrium landscapes and rotational
curl fluxes as well as the homeostatic pressure, have ad-
vanced our understanding of this devastating disease.

A. Quantifying the landscape of cancer

To illustrate the application of nonequilibrium land-
scapes to cancer, consider breast cancer for which a core
gene regulatory network consisting of 15 genes was con-
structed (Yu and Wang, 2016). This core network con-
sists of oncogenes BRCA1, MDM2, RAS, HER2; tu-
mor suppressor genes TP53, P21, RB; kinases CHEK1,
CHEK2, AKT1, CDK2, RAF, for cell cycle regulation;
the transcription factor E2F1; and ATM and ATR, im-
portant for early signal transduction through cell-cycle
checkpoints. The wiring diagram of the network is de-
scribed in (Yu and Wang, 2016), shown in Fig. 19 (a).

The dynamics of the gene regulatory network are cap-
tured by a type of equation similar to Eq. (102).

The landscape projected on the expression levels of
the oncogene BRCA1 and the transcription factor E2F1,
which is a marker for breast cancer, exhibits three attrac-

tors, Fig. 19b, corresponding to the normal, the cancer,
and a premalignant state. The respective gene expression
levels associated with the attractors are consistent with
experimental findings (Lu et al., 2013; Tian et al., 2013;
Yu and Wang, 2016). In comparison to the premalignant
state, the attractors of the normal and the cancer state
are much more stable, indicating the importance of de-
tecting the disease in early stages; whereas appropriate
treatment might be able to revert cells from the prema-
lignant to the normal state, the transition to the cancer
state is practically irreversible. The dominant pathways
of switching can be identified and used to quantify the
process of how the normal state changes to the cancer
state and vice versa.

Beyond these general statements, landscape analysis
can provide more specific information. For example,
changes in the expression of the central tumor suppres-
sor gene TP53 change the depths of and the barriers
between attractors. Notably, an increased repression
of TP53 facilitates the transition first to the prema-
lignant and then to the cancer state, which eventually
has the dominant basin of attraction (Yu and Wang,
2016). Global sensitivity analysis based on the barrier
heights allows one to identify key genes and regulations
for breast cancer formation and dysfunction. Four key
regulations (HER2⊣TP53, TP53→ATM, ATM→MDM2,
CDK2⊣BRCA1) and six key genes (HER2, TP53, ATM,
MDM2, BRCA1 and CDK2) are identified. These regu-
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FIG. 19 Gene network and nonequilibrium landscapes of cancer (a): Underlying gene regulatory network for breast cancer.
− > represents activation regulations while −| represents repression regulations. (b) The tristable landscape of the breast
cancer gene regulatory network. (c)(d)(e): Landscapes from fast to slow epigenetic regulations. (from Ref. (Chen and Wang,
2016; Yu and Wang, 2016)).

latory links could serve as the targets for network-based
drug discovery.

B. Cancer and Development

A hallmark of cancer is the abnormal growth of cells
(Hanahan and Weinberg, 2000, 2011). Development at
the cellular level often refers to the differentiation process
from primary stem cells (Waddington, 1957; Wang et al.,
2011). A hint of the possible connection between cancer
and differentiation lies in the fact that cancer often re-
grows after the radiation and chemo treatments (Marotta
and Polyak, 2009). The possibility of the existence of the
seeds for cancer in the form of cancer stem cells has been
explored recently (Lobo et al., 2007). To understand the
underlying mechanism of the cancer stem cell and the
relationship between cancer and development, one needs

to explore the underlying regulatory interactions among
genes.

There are intimate connections between gene regula-
tory networks for healthy tissue growth and tumor de-
velopment. For example, the tumor suppressor TP53
and its suppressor MDM2, as well as ZEB and OCT4,
play a role in differentiation. ZEB is known to be a ma-
jor player in the epithelial-to-mesenchymal transition, of-
ten linked to cancer metastasis and formation of CSCs.
The miRNA regulates both cancer and development and
therefore mediates the interactions between cancer and
developmental genes. The core gene regulatory motif for
cancer and development is illustrated in (Li and Wang,
2015) Fig. 17(c).

The dynamics of this core regulatory motif can be de-
scribed by Eq. (102). An analysis of the correspond-
ing nonequlibrium landscape reveals four attractors cor-
responding to the stem-cell, cancer stem-cell, healthy
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differentiated, and differentiated cancer states (Li and
Wang, 2015), Fig. 17(d). Normal differentiated state
emerges with high TP53 and low ZEB expressions, while
the differentiated cancer state emerges with low TP53
and low ZEB expressions. The stem cell state emerges
with high TP53 and high ZEB expressions, while the
cancer stem cell state emerges with low TP53 and high
ZEB expression. Based on the landscape topography, the
stem cell is most likely to transit into the normal differ-
entiated state from which it can move to the cancer cell
state. However, the stem cell can also change into a can-
cer stem cell, which then provides another route into the
cancer state. From the landscape analysis it was also
found that, consistent with experiment (Li and Wang,
2015; Lobo et al., 2007; Marotta and Polyak, 2009), the
cancer cell state re-emerges after eliminating all cancer
cells. Furthermore, it helped to identify in this network
motif the key elements responsible for generating new
cancer seeds. These findings can help suggest potential
strategies for regulating cancer stem cells as a novel and
robust anti-cancer therapy.

C. Cancer heterogeneity

Cancers are often heterogeneous. This is a critical is-
sue for radiation and chemotherapy, because a radiation
dose or single drug might not be able to kill all cancer re-
lated cells in a heterogeneous population (Marusyk et al.,
2012). Heterogeneity might be due to genetic differences
between the cells that result from mutations accumulat-
ing during cancer progression. Alternatively, and maybe
more importantly, intra-cellular heterogeneity might be
primarily caused by epigenetic modifications (Shackleton
et al., 2009). These are chemical modifications such as
methylation, applied to DNA and to accessory proteins
like histones. These modifications do not change genome
sequence but affect, for example, DNA organization and
transcription. Notably, they can lead to regulatory de-
lays. As a consequence, a larger variety of states can
emerge (Chen and Wang, 2016)

The idea of heterogeneity was illustrated by a core
gene motif of cancer with mutual repressions and self
activations. The genes produce proteins and proteins
regulate genes and determine whether the genes are
turned on or switched off. When the speed of genetic
regulation by proteins is fastcompared to their produc-
tion/degradation rate, then the proteins and genes are
inseparable and can be treated with the same identity.
Alternatively, when the genetic regulation speed is slow
compared with the protein production/degradation rate,
proteins and genes must be treated distinctly. It was
found (Chen and Wang, 2016) in Fig. 19 (c)(d)(e)
that when regulatory binding/unbinding is fast com-
pared to synthesis/degradation, that is, in the adia-
batic limit, three states quantified by the basins of at-

tractions emerge: the normal state, the cancer state,
and an intermediate premalignant state. When regula-
tory binding/unbinding is comparable to or even slower
than the synthesis/degrdation corresponding to the epi-
genetic case, that is, the nonadiabatic limit, heterogeni-
ety emerges with extra time scales involving histone re-
modification and DNA methylation. Both premalignant
and cancer state basins are surrounded by a significant
number of shallower and less stable state basins (Chen
and Wang, 2016). The interactions among genes are
made effectively weaker by epigenetics, illustrated in this
context by longer regulation time compared with pro-
tein synthesis/degradation. This weakening can lead to
fewer constraints and more freedom for each gene, which
in turn can lead to the emergence of more metastable
states in the regulatory landscape. By targeting epige-
netics and environments, an understanding and control
over cancer heterogeniety may be possible.

D. Homeostatic pressure

Primary tumors are rarely lethal, but cells can leave
a tumor and invade other parts of the organism. When
these cells leave the tumor and subsequently metastasize
they produce secondary tumors that can be much more
dangerous. Cancer cells that cause secondary tumors are
mainly transported by the blood stream. However, the
distribution of metastases is not fully determined by the
blood flow pattern, as the receiving tissue must in some
sense be compatible with the metastatic cell. This phe-
nomenon has been captured by the seed-and-soil hypoth-
esis (Weinberg, 2007).

This hypothesis can be conceptualized by homeostatic
pressure, which is a tissue-inherent quantity that de-
scribes the pressure exerted by an expanding tissue of
proliferating, growing, and dying cells (Basan et al.,
2009). A planar interface between two tissues of different
homeostatic pressures will move into the direction of the
tissue with the lower homeostatic pressure. For a spheri-
cal clump of cells, interfacial stresses are also considered.

If cell growth is independent of the size of the tissue,
then cell spheroids will expand in a surrounding tissue
only if they exceed a certain size (Basan et al., 2009).
Taking into account the stochastic nature of cell growth,
division, and death, the homeostatic pressure provides
a quantitative conceptualization of the seed-and-soil hy-
pothesis. To be useful for therapy, biochemical or im-
munological means of affecting the homeostatic pressure
need to be uncovered.

E. Cancer and immunity

Tumor cells express antigens and are thus prone to be
eliminated by the immune system (Hanahan and Wein-
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berg, 2011). This avenue is exploited by cancer im-
munotherapy, which has achieved spectacular results for
specific types of cancer. (Sabado and Bhardwaj, 2015)
However, cancer can manipulate the immune system.
This leads to two hallmarks of cancer immunity, avoiding
immune destruction and tumor promotion inflammation
(Hanahan and Weinberg, 2011). A profound understand-
ing of the relation between cancer and the immune sys-
tem remains elusive.

Theoretical studies of the complex interaction between
cancer and the immune system that take spatial aspects
into account are commonly based on active particles (Bel-
lomo and Delitala, 2008). Such descriptions can be fairly
comprehensive, but the large number of details that are
accounted for make a thoroughanalysis rather difficult
and often prohibit an understanding of the fundamen-
tal principles. In contrast, non-spatial ordinary differ-
ential equation models that describe tumor-host interac-
tions are generally simple enough to be comprehensively
analyzed (Eftimie et al., 2011; Pappalardo et al., 2014;
Wilkie and Hahnfeldt, 2013).

Cancer and immune cells can communicate and influ-
ence each other either through direct contact or via cy-
tokines, which are a small signaling molecules secreted by
cells, notably during an immune response. The dynam-
ics of the respective cell and cytokine concentrations can
be formulated in equations similar to Eq. (102) (Li and
Wang, 2017), with several essential modifications. The
degradation rate of a cell type depends on the concen-
tration of other cell types and of cytokines. While the
net regulation of cells by others take the additive form,
the net regulation of cytokine concentrations by others
take the multiplicative form. Similarly to gene regula-
tion networks, the proliferation of cells and the secretion
of cytokines can be either enhanced or diminished by the
presence of other cell types and cytokines. The concen-
tration dependencies of the various rates is given in terms
of Hill functions and the coupling coefficients encode for
the network structure.

The nonequilibrium landscape for a network consist-
ing of one cancer cell type, 12 immune cell types, and 13
types of cytokines has three attractors corresponding to
a healthy state and states of, respectively, low and high
tumor cell concentration (Li and Wang, 2017). In the
healthy state, both cancer and immunity cell concentra-
tions are low. Both low and high cancer states, the innate
immune response leads to an increased presence of natu-
ral killer cells, a type of white blood cells with the task
to destroy infected cells. On the other hand, in both low
and high cancer states, the adaptive immune response
leads to an increase of in the concentration of a kind of
white blood cells, namely CD8+ cells. However, their
concentration is higher for the state with lower concen-
tration of tumor cells, and lower for the state with higher
tumor cell concentration. (Li and Wang, 2017; Lu et al.,
2014a). This finding suggests that the adaptive immune

system is suppressed by cancer cells.

The interaction between cancer and the immune sys-
tem depends on the state of progression as the interac-
tions between different cells or cells and cytokines are
modified in the environment of a developing tumor. The
various effects of the immune system in different stages
of developing tumors is known as cancer immunoedit-
ing (Dunn et al., 2002). Correspondingly, the nonequili-
birum landscape attractors of the immune system-cancer
network change with changing interaction strengths and
several stages can be distinguished (Li and Wang, 2017),
Fig. 20b. In stage 1, only the healthy state attractor ex-
ists. It is controlled by the immune system and nascent
tumors are repressed, corresponding to the elimination
phase of cancer immunoediting. In stage 2 a low can-
cer expression state begins to emerge, and in stages 3
and 4 low and high cancer expression states emerge in
addition to the normal state. These three stages corre-
spond to the equilibrium phase of cancer immunoedit-
ing, which is the phase persisting the longest. In stages
5 and 6 only the low and high cancer expression states
remain, corresponding to the escape phase of cancer im-
munoediting, when the cancer has escaped the organism’s
immune response. Important immunotherapy targets are
predicted from the landscape approach through global
sensitivity analysis, including three types of immune cells
(mature dendritic, natural killer, and CD8+ T-cells) and
two types of cytokines (IL-10 and IL-12) (Li and Wang,
2017). The oscillation behavior of immune-cancer net-
work dynamics was also expected in some cases. (Li and
Wang, 2017)

X. POPULATION DYNAMICS AND ECOLOGY

Living organisms are highly social by nature and of-
ten coordinate with each other to generate collective be-
haviors in space and time. Studying the dynamics of
population and ecology provided some early examples of
nonequilibrium dynamics. In the following, we will high-
light some recent developments on microbial population
and ecology.

A. Populations of microorganisms

Population dynamics is typically studied through field
research; however, it often requires significant effort and
suffers from a lack of control over environmental condi-
tions. By contrast, microbial populations are much more
amenable to manipulation and quantification while still
possessingintricate dynamics. Thus, synthetic microbial
populations have been recently exploited as model sys-
tems to study population dynamics (Brenner et al., 2008;
Chuang et al., 2009; De Roy et al., 2014; Gore et al.,
2009; Großkopf and Soyer, 2014; Kong et al., 2018; Lu
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FIG. 20 Gene network and nonequilibrium landscape of cancer-immune system (a) A core cancer-immune cell-cell interaction
network. (b)Cancer-Immune landscapes at various stages of tumor development (from Ref. (Li and Wang, 2017)).

et al., 2007; Ozgen et al., 2018; Shou et al., 2007; Xavier,
2011). Microorganisms can establish coordination and
create collective behaviors among populations by secret-
ing and detecting chemicals. One common way to gen-
erate population behaviors is using quorum sensing, a
mechanism that enables cells to sense the density of their
peers and respond accordingly (Kong et al., 2014; Miller
and Bassler, 2001).

A gene network based on quorum sensing was designed
and implemented in E. coli to generate synchronous pop-
ulation oscillations (Danino et al., 2010). In this net-
work (Fig. 21a), expression of the genes luxI and aiiA is
controlled by the Plux promoter. The enzyme LuxI syn-
thesizes the quorum sensing molecule N-Acyl homoserine
lactone (AHL), which activates the Plux promoter after
binding to LuxR and, hence, promotes its own expres-
sion. In contrast, AiiA degrades AHL, which provides a
negative feedback on LuxI production. In each cell, such
a topology leads to the oscillation of Plux promoter ac-
tivity. Because AHL can diffuse from cells to their neigh-
bors,it couples individual cells and generates synchronous
oscillation of thousands of cells in a square region with
area 104 µm2 (Danino et al., 2010). The distance over
which the population synchronizes depends on the diffu-
sion constant of the quorum sensing molecule. Using a
similar approach in which H2O2 was used as a signaling
mechanism to overcome the slow diffusion obstacle for
long-range coupling, synchronized oscillations were ob-
served for several millions of bacteria across a distance
of 5 mm Fig. 21b) (Prindle et al., 2012).The same oscil-
lation mechanism that involves activation and repression

can also be realized through multiple strains (Chen et al.,
2015b) (Fig. 21c).
In addition to synthetic populations, natural organ-

isms exhibit remarkable collective behaviors that are far
from equilibrium. The formation of multicellular life
forms from unicellular microorganisms is a representa-
tive class of such processes (Claessen et al., 2014; Lyons
and Kolter, 2015). Multicellularity can arise from simple
cellular aggregation as a consequence of incomplete sep-
aration after cell division. Another way collective behav-
ior arises is through dynamic aggregation of previously
individual cells, which involves cellular communication
and differentiation, partitioning of tasks, and spatial or-
ganization. Well-studied examples of the latter route are
fruiting body formation of myxobacteria and of the slime
mold Dictyostelium disoideum (Muñoz-Dorado et al.,
2016; Zusman et al., 2007). In nutrient-limited condi-
tions, cells communicate through multiple modes of inter-
actions and self-organize into complex, three-dimensional
structures. Within the fruiting bodies, a subset of the
cells differentiate into non-reproductive cells, while the
remaining cells become reproductive spores.

B. Ecology

Populations are typically not isolated; instead, they
often compete and cooperate with populations of other
species in nature. This is a topic of ecology (Levin, 1981;
Levin and Segel, 1985; Murray, 1998; Touboul et al.,
2018a; Vandermeer and Goldberg, 2003). Predator-prey
systems have been of particular interest in this field since
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FIG. 21 Microbial oscillations at the population and multi-strain levels. (a) A gene circuit that enables synchronized oscillation
of individual bacterial colonies (Danino et al., 2010). (b) A gene circuit that synchronizes the oscillation of thousands of bacterial
colonies (Prindle et al., 2012) (c) A gene circuit that allows stable oscillations of two bacterial strains (Chen et al., 2015b).

the work of Lotka and Volterra (Lotka, 1925; Volterra,
1927). Their model showed that the systems can generate
various dynamics including sustained oscillations. Ob-
served in animal populations in nature (Murray, 1998),
such dynamics have been recently observed in popula-
tions of engineered bacteria that utilize quorum sensing
machineries (Fig. 22a) (Balagaddé et al., 2008). Exper-
iments in microchemostats confirmed distinct types of
population dynamics, namely coexistence, extinction and
oscillation. The underlying landscape for global descrip-
tion of the dynamics has also been quantified (Li et al.,
2011b; Xu et al., 2014a).

Beyond well-mixed cultures, microbial populations
have also been used to study spatial ecology. An exam-
ple is provided by a system of three E. coli strains that
populate a petri dish (Kerr et al., 2002). The ecosys-
tem consists of a strain producing the toxin colicin (C),
a strain sensitive to colicin (S), and a strain resistant to
it (R) (Fig. 22b). In this setting, strain C kills strain S
by releasing colicin, strain S in turn outgrows strain R
because it does not synthesize resistance proteins, and
strain R has a higher fitness than strain C as it does

not produce toxins. Together, these strains form a fit-
ness advantage loop, resembling an ecological version of
the rock-paper-scissors game. The corresponding exper-
iments showed that a single species rapidly dominates
in the well-mixed case while, on plates, the ecosystem
exhibited coexistence (Kerr et al., 2002).

C. Landscape and flux analysis of ecosystems

One of the central questions of ecology concerns the
coexistence of species. Under which conditions is this
possible? How many species can coexist in a given en-
vironment? This translates into the question of whether
or not an ecosystem is stable. The analysis of stabil-
ity against small perturbations is standard, and in some
cases Lyapunov functions have been found (Goh, 1976,
1977; Harrison, 1979; Hastings, 1978; Holling, 1965; Hsu,
1978; Levin, 1979, 1987; Levin and Segel, 1976; Lotka,
1925; Murdoch and Oaten, 1975; Touboul et al., 2018b;
Volterra, 1931). Both well mixed and spatial determin-
istic and stochastic ecological dynamics have been inten-
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FIG. 22 Microbial ecosystems. (a) A synthetic predator-prey system (Balagaddé et al., 2008). (b) A three-strain ecosystem
resembling a rock-paper-scissor game (Kerr et al., 2002).

sively investigated (Bassler et al., 2019; Biancalani et al.,
2015; Black and McKane, 2012; Butler and Goldenfeld,
2009; Levin, 1979, 1987; Levin and Segel, 1976; Reichen-
bach and Frey, 2008; Reichenbach et al., 2007; Shih et al.,
2016; Touboul et al., 2018b). A general way to assess the
global stability of states, however, is in demand. The the-
ory of nonequilibrium landscapes and fluxes is useful in
this context (Han and Wang, 2007; Lapidus et al., 2008;
Wang et al., 2006a, 2008; Xu et al., 2013, 2014a; Zhang
et al., 2012). Intrinsic nonequilibrium landscapes provide
Lyapunov functions for quantifying global stability of the
ecosystems (Xu et al., 2014a); we illustrate with few ex-
amples. In the following, C1 and C2 denote the sizes of
two populations.

a. Predator and prey Consider the following model for
a population of predators C1 and of prey C2 (Murray,
1998) (Fig. 23(a))

dC1

dt
= C1(1 − C1)−

aC1C2

C1 + d
(103)

dC2

dt
= bC2(1−

C2

C1
). (104)

In the absence of predators, the prey population evolves
according to the logistic growth model. The rate at which
predators feed on the prey is quantified by the parameter
a, and d denotes the prey population size at which prey
are consumed by the predators at their maximum rate.
The population of the predators also grow according to
the logistic growth model. The ratio of the birth rates
of both populations is b and the capacity of the system
for prey is C1. When the number of predators increases,
more prey will be eaten. The shortage of food will lead to

a population reduction for the predators. The prey pop-
ulation will then increase, which subsequently promotes
an increase of the predator population. This is the ori-
gin of the limit cycle found in predator-prey dynamics.
The nonequilibrium landscape has the shape of a Mexi-
can hat, Fig. 23(d), revealing an oscillatory state that is
globally stable, while the rotational curl flux enables the
stability of the oscillation flow (Xu et al., 2014a).

b. Cooperation and competition Cooperation and compe-
tition between two species can be described by (Bazykin,
1985) (Fig. 23(b)(c)):

dC1

dt
= C1(C1 − L1)(1− C1) + a1C1C2

1

α

dC2

dt
= C2(C2 − L2)(1− C2) + a2C1C2 (105)

The factors (Ci − Li), i = 1, 2, modifying the logistic
growth model assure that the population size does not
drop below Li when the other species is absent.The terms
proportional to C1C2 describe the interaction between
the two species, which is cooperative if a1, a2 > 0 and
competitive if a1, a2 < 0. The parameter α quantifies dif-
ferences in the growth rates of two species. Four different
steady states are possible: extinction (C1 = C2 = 0), mu-
tual exclusion (either C1 = 0 or C2 = 0), or coexistence
(C1 and C2 are nonzero). Through the corresponding
basins of attraction, the potential landscapes determine
which of these states is stable for a given set of parame-
ters, Fig. 23(e) (Xu et al., 2014a).
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FIG. 23 The schematic diagram for the ecological models and associated landscapes. (a)Predation model. (b)Competition
model. (c)Mutualism model. (d) Limit cycle attractor landscape for predation model. (e) Multiple attractors for competition
and cooperation models (from Ref. (Xu et al., 2014a)).

XI. EVOLUTION

Evolution is the essence of biology. After Darwin laid
out the principles of evolution by variation and natural
selection (Darwin, 1873), a significant fraction of sub-
sequent research has focused on quantifying evolution-
ary processes. Concerned with the process of adapta-
tion, Sewall Wright introduced the concept of an adap-
tive landscape for evolution (Ewens, 2004; Fisher, 1930;
Rice, 2004; Svirezhev and Passekov, 1990; Wright, 1941).
Adaptation, or “shifting-balance” in Wright’s terms, then
refers to reaching summits in this landscape by ran-
dom genetic drift from mutations and selection pressure.
Through these sources of adaptation, evolutionary dy-
namics will follow a gradient until an optimum is reached.
The parallels to energy minimization in physics are obvi-
ous. The virtues and shortcomings of the adaptive land-
scape metaphor are still debated (Pigliucci, 2008; Rice,
2004).

The central results of quantitative genetics is “Fisher’s
fundamental theorem”, which states that the rate of evo-
lution, quantified by the rate of change of average fitness,
is equal to the statistical variance of the population’s fit-
ness. Still, some critical issues remain. How general is
Wright and Fisher’s evolution theory? Can it explain
how evolution can continue indefinitely?

A key assumption in Wright and Fisher’s theory is
that selection force is independent of the relative pro-
portion that a gene variant, an “allele”, appears in a
population at a specific site or “locus” on the chromo-
some. In other words, the assumption is that the se-
lection driving force is independent of the interactions
among gene species, referred to as the allele frequency in-
dependent selection, or linkage equilibrium (LE) (Neher
and Shraiman, 2011). However, in general, trait selection
can have allele frequency dependence. This is apparent

in coevolution, where two or more species mutually affect
their evolution. In these situations, Wright and Fisher’s
theory breaks down. Furthermore, LE cannot explain
open-ended evolution that is clearly observed in bacterial
colonies that have been evolving under constant physical
and chemical conditions for tens of thousands of gener-
ations (Elena and Lenski, 2003). The theory also fails
to describe molecular evolution experiments, wherein a
molecular species constitutes the building blocks for a
new species, which in turn can form another molecular
species and so on (Worst et al., 2016).

The key to resolve above issues lies in the fact that the
adaptive landscape is not the only driving force for the
general evolutionary dynamics as Wright and Fisher the-
ory stated. In the following section we discuss how a gen-
eralization of the adaptive landscape to include nonequi-
librium fluxes as an additional driving force for gen-
eral evolutionary dynamics overcomes the restrictions of
Wright and Fisher’s assumptions. (Xu and Wang, 2017b;
Zhang et al., 2012).

A. Single-locus multi-allele evolution

Consider a single gene at a fixed position or locus on a
chromosome of a diploid organism such that each chro-
mosome is present in two (non-identical) copies. For each
locus there are several different DNA sequences present
in a population. The dynamics of the fractions xi of al-
lele Ai, i = 1, . . . , n in the population is determined by
its fitness wi. In an individual, the genotype AiAj has
the fitness wij , which depends on both alleles such that
wi =

∑n
j=1 wijxj . The population’s mean fitness is then

w̄ ≡
∑n

i,j=1 wijxixj . The probability P of having the
relative allele frequencies {xi}i=1,...,n evolves according
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to

∂tP = −∇ ·
[(

FS + FM
)

P −D∇ · (GP )
]

, (106)

where

FSi =
xi (xi − w̄)

w̄
(107)

describes the effects of natural selection and

FMi =
∑n

j=1
xjmji − xi

∑n

j=1
mij (108)

captures the effects of mutations with mij being the rate
of mutation from allele Aj to Ai. The diffusion term
accounts for genetic drift resultant from stochasticity of
the reproduction process (Kimura et al., 1997; Rice, 2004;
Svirezhev and Passekov, 1990). Here, Gij = xi(δij − xj)
and D = 1/(4Ne) with Ne being the effective population
size.
In the limit of small fluctuations, which occurs for a

large population size, D ≪ 1 or Ne ≫ 1, the landscape
satisfies to lowest order

(FS + FM ) · ∇φ0 +∇φ0 · G · ∇φ0 = 0 (109)

where φ0 is the leading order term in an expansion of
U in terms of D. This equation is the Hamilton-Jacobi
equation (6) and φ0 thus a Lyapunov function for the
dynamic system Eqs. (106)-(108).
In a case where the fitness of each genotype is indepen-

dent of the allele frequencies and in absence of mutations,
the steady state flux vanishes, Jss = 0, and the intrinsic
landscape φ0 is

φ0 = −
1

2
lnw̄ (110)

(Zhang et al., 2012). Furthermore, one can show that
dw̄/dt = F · ∇w̄ = −2w̄F · ∇φ0 = 2w̄∇φ0 · G · ∇φ0 ≥ 0
(Zhang et al., 2012). Consequently, the mean fitness is
a Lyapunov function of the dynamics and hence puts
Wright’s metaphor on solid ground.
In the general case, where the fitness can depend on

the allele frequencies, one finds FS+FM = −D∇·(GU)+
Jss/Pss, where U = − lnPss is the nonequilibrium land-
scape (Zhang et al., 2012) whileGij = Ci(δij−Cj) is from
the sampling feature of the genetic drift and D gives the
scale of the fluctuations. The driving force of evolution
can thus be decomposed into the gradient of the land-
scape associated with the steady state probability and
the steady state probability flux, which is typically differ-
ent from zero due to interactions between individuals and
hence allele-frequency dependent selection. Note that for
Jss 6= 0, the nonequilibrium landscape is no longer di-
rectly related to the fitness landscape. This decouples
the link between the fitness and evolutionary probabil-
ity. Consequently, states with lower mean fitness may
have a higher probability.

We now turn to Fisher’s fundamental theorem of nat-
ural selection (Fisher, 1930). Consider the adaptive rate
for evolutionary dynamics under selection and random
mating:

dφ0/dt = −∇φ0 ·D · ∇φ0 (111)

= −F ·D−1 ·F+V ·D−1 ·V.

where V is the steady state probability flux veloc-
ity defined as V = Jss/Pss. The diffusion matrix
D describes the sampling nature of the random mat-
ing. In fact, dφ0(G)/dt is related to the genetic vari-
ance: VA(w

(i))/(w̄(i))2 = 2 F(i) · (G−1)(i) · F(i), where

VA(w
(i)) = 2

∑ni

k=1 C
(i)
k (w

(i)
k − w̄(i))2 is the genetic vari-

ance (Zhang et al., 2012). One can see

dφ0(G)

dt
= −

1

2

VA(w)

w̄2
+V(G) ·G−1 ·V(G) (112)

Under frequency-independent selection, the intrinsic flux
velocity is zero V(D) = 0. In this case, detailed bal-
ance is preserved (equilibrium) and the intrinsic poten-
tial φ0 = −(1/2)lnw̄. This reduces to Fisher’s fun-
damental theorem of natural selection, that adaptation
rate is monotonic and only depends on genetic vari-
ance, dw̄/dt = VA(w)/w̄. As seen previously, Eq.(112)
works for the general evolution beyond equilibrium case,
with nonzero flux breaking the detailed balance. Thus,
Eq.(112) generalizes the Fisher’s fundamental theorem
of natural selection. The adaptive rate for general evo-
lution depends on both the genetic variance proposed
by Fisher and the intrinsic flux velocity V resulting from
the complex biotic interactions which breaks the detailed
balance, missing in the Fisher’s theorem. (Zhang et al.,
2012).
The new landscape and flux theory for evolution pro-

vides a natural explanation of coevolution with direct
implications for the Red Queen hypothesis of nonstop
evolution, even when reaching the optimum of an adap-
tive landscape (such as limit cycle). (Van Valen, 1973a;
Zhang et al., 2012) When reaching the evolutionary op-
tima once attracted to the oscillation path, evolution still
proceeds due to the rotational curl flux driving force orig-
inated from the biotic interactions. This gives the origin

of non-zero genetic variance 1
2
VA(w)
w̄2 = V(G)·G−1 ·V(G)

even at the evolution optima dφ0(G)
dt = 0. Therefore, nat-

ural selection can influence certain species to change their
allele frequencies and thus lead to genetic variance even
if the overall population reaches its optima (Zhang et al.,
2012).
Another generalized form of Fisher’s theorem was pro-

posed by Price (Price, 1972a, 1970, 1972b) consider-
ing various effects including mutations on the adapta-
tion rate dynamics beyond genetic variance. Replica-
tor mutator dynamics have also been suggested to study
evolutionary dynamics, including mutations (Allen and
Rosenbloom, 2012; Bladon et al., 2010; Nowak, 2004).
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B. Multi-locus multi-allele evolution

The interactions among genes are critical in under-
standing evolution. Loci representing the locations of
genes are not independent. In particular, recombina-
tion provides an additional way of changing alleles on
a chromosome, and the fitness of an allele might depend
on the genetic background, a phenomenon called epista-
sis. These interactions can lead to linkage disequilibrium.
They need to be considered in addition to the well known
selection, mutation, migration and random mating for
multi-locus multi-allele evolution.
Some models of multi-locus evolution were suggested

with certain limitations (Ewens, 2004; Rice, 2004;
Svirezhev and Passekov, 1990). For example, the adap-
tive landscape is not quantified in the most general evolu-
tion scenarios (Ewens, 2004; Neher and Shraiman, 2011;
Rice, 2004; Svirezhev and Passekov, 1990); only time de-
pendent adaptation was considered (Mustonen and Las-
sig, 2009, 2010). Certain adaptive landscape approaches
have not been directly applied to multi-locus evolution.
(Ao, 2006) In fact, Wright, Fisher and quasi-linkage equi-
librium (QLE) theories can only be applied to special
evolutionary scenarios.
For multi-locus multi-allele evolution, allele frequen-

cies alone do not have enough information for quantifying
genotype frequencies. Gamete frequencies can be used in-
stead at different loci in multi-locus-multi-allele evolution
(Ewens, 2004; Rice, 2004; Svirezhev and Passekov, 1990),
where “gamete” refers to the set of alleles at the L loci
under consideration, such that gamete i ≡ (i1, i2, . . . , iL)
has allele Ajij at locus j. One can derive the driving forces
of the evolution.
The gamete frequency xi evolves according to

dCi

dt
= FSi + FMi + FRi . (113)

Here, the first two terms describe the effects of natural
selection and of mutations similar to the single-locus case.
The effect of recombination is captured by the last term,
which reads

FRi = −
∑

Q

′
rQDi,Q, (114)

where the sum extends over all subsets of loci other
than the empty set or the full set of all L loci. Fur-
thermore, rQ is the rate of recombination for set Q and
Di,Q = Ci−CiQCiQ

the linkage disequilibrium coefficient
for locus group Q. Here, CiQ denotes the total frequency
of all gametes that are identical to i at the loci in Q
and CiQ

that of all gametes that are identical to i at all

loci not in Q. (Ewens, 2004; Rice, 2004; Svirezhev and
Passekov, 1990)
The evolution of gamete frequency under selection was

given as —cclin (Ewens, 2004; Rice, 2004; Svirezhev and

Passekov, 1990): FSi = Ci(wi −w) where wi denotes the
marginal fitness of the gamete i and the w denotes the
total fitness of all gametes in the L loci system. Evolu-
tion of gamete frequencies under mutation was also stud-
ied (Neher and Shraiman, 2011). One can take all these
driving forces together to study the evolution of gamete
frequencies.
The genetic variance of gamete fitness under selection

and recombination can be shown as (Ewens, 2004; Rice,
2004; Svirezhev and Passekov, 1990):

dw

∂t
= VA + VR (115)

VA = 2
∑

i Ci(wi − w)2 represents the total ga-
metic variance from natural selection and VR =
−2
∑

i

∑

Q,Q6=∅,L wirQDi,Q represents the epistatic ga-
metic variance from the linkage disequilibrium of the
loci (Ewens, 2004; Neher and Shraiman, 2011; Rice, 2004;
Svirezhev and Passekov, 1990). One can see that the
mean fitness increases as recombination decreases. The
generalized form of Fisher’s fundamental theorem pre-
sented here considers the additional contribution from
linkage disequilibrium due to recombination (Ewens,
2004; Neher and Shraiman, 2011; Rice, 2004; Svirezhev
and Passekov, 1990; Xu and Wang, 2017b).

C. Evolution adaptive landscape and flux under different
evolution scenarios

The nonequilibrium landscape and flux theory can be
applied to the general case of multi-locus multi-allele evo-
lution after a suitable generalization of Eq. (106), which
also includes recombination force FRi and others such as
epistasis. We discuss the results in various evolutionary
scenarios listed below.

a. Absence of recombination (rQ = 0) and mutations (m = 0)

Under non-epistatic selection and genetic drift from ran-
dom mating in the population of a multi-locus-multi-
allele system, the Hardy-Weinberg principle and link-
age equilibrium is achieved (Ewens, 2004; Rice, 2004;
Svirezhev and Passekov, 1990; Xu and Wang, 2017b):
all gamete frequencies are the products of the frequen-
cies of the constituting alleles. This reduces effectively
to one locus multi-allele evolutionary dynamics (Zhang
et al., 2012). For allele frequency independent selection,
the Wright and Fisher theory works. For allele frequency
dependent selection, the Wright and Fisher theory breaks
down. The evolutionary dynamics are no longer deter-
mined by the adaptive landscape alone, but also by the
curl flux due to the biotic interactions. The Red Queen
hypothesis can be explained by the presence of curl flux
driving the evolution and giving the genetic variations at
optimal adaptation (Zhang et al., 2012).
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b. Presence of recombination (rQ > 0), absence of epistasis

(ǫij = 0) and mutations (m = 0) When the fitness ma-
trix is additive without epistasis, Wright’s fitness land-
scape concept and the generalized Fisher’s fundamen-
tal theorem can still be applied (Ewens, 2004; Neher
and Shraiman, 2011; Rice, 2004; Svirezhev and Passekov,
1990). The mean fitness never decreases because the ad-
ditive form of fitness leads to VR = 0. However, this does
not necessarily mean that the rotational curl flux van-
ishes. In fact, the curl of the recombination force from
gamete frequency evolution ∇× (G−1 ·FR) can be non-
zero. Therefore, for recombination rQ > 0 and epistatic
selection ǫij = 0, evolutionary adaptive dynamics are de-
termined by the gradient potential or the mean fitness,
as well as the non-zero flux (Xu and Wang, 2017b).

c. Presence of recombination (rQ > 0) and epistatic selection

(ǫij 6= 0), absence of mutations (m = 0) When both re-
combination and non-zero epistasis effects (non-additive
fitness matrix) are present for evolution, the dynamics
becomes intrinsically nonequilibrium (Akin, 1982; Hast-
ings, 1981). Even under gamete/allele frequency inde-
pendent selection, with recombination rQ > 0 and epis-
tasis ǫij 6= 0, the dynamics are determined by the gradi-
ent of the evolution landscape and non-zero flux, which
breaks detailed balance (Xu and Wang, 2017b). Recom-
bination and epistasis can contribute to the breakdown
of the detailed balance which leads to the breakdown of
the Wright and Fisher theory for evolution.

d. Presence of mutations (m 6= 0) In multi-locus-
multi-allele evolution, mutations are often frequency-
dependent. Therefore, the mutation can also lead
to nonequilibrium behavior, giving another source for
breaking detailed balance (Xu and Wang, 2017b).

e. Quasi-linkage equilibrium (rQ ≫ 0, m = 0, ǫij = 0) If
selection is weak such that adaption is much smaller
than recombination, the linkage disequilibrium exponen-
tially decreases due to recombination. A state called
quasi-linkage equilibrium (QLE) emerges (Rice, 2004).
QLE is a good approximation for multi-locus evolution at
high recombination rates and in the absence of epistasis.
When the system relaxes to QLE (Neher and Shraiman,
2011; Rice, 2004), a generalized Fisher’s law holds ap-
proximately. The dynamics can then be simplified as de-
pending on allele frequency rather than gamete frequency
(Nagylaki, 1993; Nagylaki et al., 1999). The landscape
and flux theory works beyond these restrictions of weak
selections and the QLE (Xu and Wang, 2017b). It is
important to note that in general, mean fitness and opti-
mal probability of the state do not coincide. As a result,
adaptive fitness should be quantified by the potential

landscape rather than mean fitness, since the landscape
directly reflects the probability of the state. Further-
more, evolutionary dynamics are determined by both the
landscape gradient and rotational curl flux breaking the
detailed balance originated from the recombination, mu-
tation, epistasis, or gamete/allele frequency dependent
selection (Xu and Wang, 2017b).

f. Red Queen Hypothesis Fisher’s and Wright’s analysis
imply that evolution will eventually come to a halt when
the maximum fitness is reached. This does not need to
be the case as can be illustrated by the coevolution of
a predator and a prey species (Dieckmann et al., 1995;
Vermeij, 1994). Assume that the predator captures prey
by running faster and by being able to spot them against
the background. Improving the speed and the ability to
spot the prey increases the predator’s fitness. As a result,
the prey species will evolve its speed and camouflage to
survive. Inversely, if the prey improves these traits, the
predator will evolve in response to run faster and to spot
the prey better. Such a competition causes an ‘arms
race’ between the two species, which can lead to sustained
oscillations of the species’ genotype frequencies.
This evolutionary process represents a case of the Red

Queen hypothesis (Van Valen, 1973a), which explains the
persistence of sexual reproduction and recombination.
Namely, it provides an accelerated evolution rate of a
species and hence allows it to outcompete its predators
and parasites. In fact, the hypothesis has been experi-
mentally supported by a number of coevolution examples
such as plant-pathogen systems (Clay and Kover, 1996)
and parasite-fish ecosystems (Lively et al., 1990).
While the Red Queen hypothesis challenges Wright

and Fisher’s adaptive landscape theory of evolu-
tion(Fisher, 1930; Wright, 1941), the associated co-
evolution scenario fits naturally into the picture of
nonequilibrium landscape and flux theory. It allows for
evolution to continue even if the physical environment
is invariant or the landscape reaches the optimum (Xu
and Wang, 2017b; Zhang et al., 2012). The origin of
such continuing evolution was suggested to be the rota-
tional curl flux breaking the detailed balance as a result
of gamete/allele frequency dependent selection, muta-
tion, recombination, or epistasis (Xu and Wang, 2017b;
Zhang et al., 2012). Another possible cause of open-
ended evolution was suggested by molecular evolution ex-
periments (Worst et al., 2016), which can be interpreted
as that the evolution of a species suddenly opens the pos-
sibility of evolving new traits and thus occupation of a
new ecological niche. The time dependent landscape was
also suggested for explaining Red Queen hypothesis for
part of the system, such as predator or prey(Van Valen,
1973b; Zliobaite et al., 2017). For the whole predator-
prey system, the evolutionary landscape can still be time
independent.
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D. Evolutionary game theory

Evolutionary game theory provides a framework for
exploring the origin of a large variety of human and an-
imal behaviors (Maynard and Price, 1973; Nowak, 2004;
Sandholm, 2009). Originally, game theory focused on the
study of cooperative and competitive strategies adopted
from rational decision-makers. Evolution game theory
was born by applying game theory to evolutionary bi-
ology and population dynamics for exploring the strate-
gic interactions among large populations of agents (Hof-
bauer, 2011; Sandholm, 2009). Using game theory can
assist in understanding a variety of human and animal
behaviors (Maynard and Price, 1973; Nowak, 2004; Sand-
holm, 2009). In evolutionary biology, one important
question is how cooperators can survive when they can be
taken advantage of by ”cheaters.” Experimental efforts
in yeast (Gore et al., 2009) showed that cooperators can
survive even in the presence of cheaters, and their interac-
tions are through a feedback loop. The evolutionary con-
sequences of the cooperative inactivation of antibiotics
by bacteria has recently been explored experimentally
(Artemova1 et al., 2015; Yurtsev et al., 2013). In a game
designed to model cooperative trade-offs, each player re-
ceives a particular payoff depending on the actions cho-
sen by their peers. Repeated games wherein players have
several subsequent encounters can reach steady states or
limit cycles (Cason and Friedman, 2003; Hofbauer, 2011;
Sandholm, 2009). For example, in the classic Prisoner’s
Dilemma, two players can choose either to cooperate or
not. They both receive a reward R as payoff if they co-
operate, and a punishment P if both do not cooperate.
However, in the case where just one player chooses to
cooperate, she receives a temptation payoff T while the
other player gets a “sucker” payoff S . The various payoffs
satisfy T > R > P > S to reflect the intuitive notions
associated with the game.
In repeated games, where players have several subse-

quent encounters, different strategies can be defined. In
the example of the Prisoner’s Dilemma, one could choose
either to always cooperate or not. A player can also play
‘tit-for-tat’, where the player cooperates on the first en-
counter, then choose to cooperate or defect on any other
encounter based on the action of the other player in the
previous encounter. This strategy requires a memory and
thus has some cost. The payoff matrix conveniently sum-
marizes the results of encounters of players with various
strategies. Let Ci denote the fraction of players with
strategy i and Aij the payoff for a player employing strat-
egy i upon an encounter with a player using strategy j.
Then AC gives the average payoff for each strategy. In
the example

A =





P P T

P − c R − c R − c

S R R



 . (116)

Stationary distributions of strategies for non-
cooperative games like the Prisoner’s Dilemma, in which
nobody can gain by changing only her strategy are called
Nash equilibria (Nowak, 2004). Characterizing such
“optimal” solutions is an important task of game theory.
The local stability of Nash equilibria has been studied
and for very simple models Lyapunov functions have
been found to characterize global stability (Sandholm,
2009). In general, though, it remains at present a
challenging task.
Evolutionary games are repeated games where the av-

erage payoffs determine the fitness of a strategy. Explic-
itly, the time evolution of the fractions Ci follows the rule
that population Ci grows if their average payoff is above
the mean and shrinks in the opposite case. Mutations
are implemented through rates of switching from one to
an alternative strategy. The dynamics can be written as

dCi
dt

=
∑

j

Cifi(C)Qij − Cif̄ . (117)

where fi =
∑

j AijCj is the average payoff (or fitness)

of population i and f̄ = C · AC the mean population
payoff (or fitness) (Allen and Rosenbloom, 2012; Bladon
et al., 2010; Nowak, 2004). For a uniform mutation rate
µ, Qii = 1− 2µ and Qij = µ if i 6= j.
For the Prisoner’s Dilemma and starting with a ran-

dom initial distribution of strategies, at first the defectors
will typically win. Then, however, a small population of
tit-for-tat players will invade the game and replace the
defectors. In certain regions of parameter space, subse-
quently, cooperators will take over, which in turn will be
replaced by defectors and so on. This cycle has been in-
terpreted to mimic oscillations between war and peace in
animal or even human species (Nowak, 2004).
The nonequilibrium landscape for the above game re-

veals that, for a small cost c of the tit-for-tat strategy,
the cooperator strategy is the most stable one and has
the largest basin of attraction (Xu and Wang, 2017a),
Fig. 24. As the cost c increases, the basin of the non-
cooperator state increases and a mixed strategy state ap-
pears. In this case, the payoff for defectors increases, the
defector state gains stability and, eventually, becomes
the most stable state. Similarly, increasing the reward
R or the punishment P favors the cooperative state. A
Lyapunov function can be found quantifying the global
stability of the system dynamics (Xu and Wang, 2017a).
In this way, cooperative behavior can emerge in popu-
lations of selfish individuals. Similarly, competing traits
can coevolve in species.

XII. NONEQUILIBRIUM ECONOMY

Although typically not considered to be a biological
field, economics reflects biological activities at human
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FIG. 24 The nonequilibrium landscapes for game theory of repeated prisoner’s dilemma for different cost c. (a) Monostable
peace state where Tit-for-tat strategy dominates at small cost c = 0.1. (b)(c)(d)(e) Limit cycle oscillations between peace
state with tit-for-tat strategy and war state with all-defect strategy at c = 0.2, c = 0.22, c = 0.24 and c = 0.25. (f). As
cost increases and monostable war state with all-defect strategy at large cost (c = 0.35) emerges. (from Ref. (Xu and Wang,
2017a)).

scales. An important aspect of economics is the bal-
ance between supply and demand (Marshall, 1890; Wal-
ras, 1874). Traditionally, the focus has been on eco-
nomic equilibrium, when supply and demand are bal-
anced, but this approach cannot explain economic cycles
of growth and stagnation or decline, let alone economic
crises (Fisher, 1933; Goodwin, 1967; Keen, 1994, 2001;
Keynes, 1936; Marx, 1887; Minsky, 1977; Schumpeter,
1934). Thus, nonequilibrium economic theory is neces-
sary. Furthermore, the driving forces of economy need to
be identified and quantified (Zhang and Wang, 2017).

In conventional economics, supply and demand are of-
ten assumed to be monotonic with respect to price un-
der a complete competition market or close to equilib-
rium condition economy (Marshall, 1890). As a result,
only one equilibrium emerges. The economic dynam-
ics are then described by the shift of this equilibrium
point. However, nonequilibrium economic behavior such
as inflation, under-employment, and overproduction are
present (Keen, 1994, 2001; Keynes, 1936). This will of-
ten lead to non-monotonic relationship of demand and
supply with respect to the price (Beckmann and Ryder,

1969; Marshall, 1890; Mascolell, 1986). As a result, mul-
tiple stable states and even limit cycles can emerge. The
competition and monopoly/oligopoly model provides a
good example to illustrate this (Zhang and Wang, 2017).
Experience tells us that the price of a good increases

if the demand exceeds the available supply and that the
production of a good increases with the price of the good,
but decreases with the available supply (Beckmann and
Ryder, 1969; Marshall, 1890; Mascolell, 1986). This leads
to the following dynamic system for the price P and the
quantity Q of a good

dP

dt
= F (P )−Q (118)

dQ

dt
= P − C(Q). (119)

Here, F (P ) describes the demand of the good as a func-
tion of its current price and C(Q) is the marginal cost
of producing the good, that is, the cost of producing one
additional unit. For convenience, P and Q can take on
any real value. Positive values are obtained after an ap-
propriate shift of the origin.
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Specific choices of the demand and cost functions are
F = (−1 + a)P + c and C(Q) = (d + bQ2)Q, where
a < 1 and b ≥ 0 (Zhang and Wang, 2017). The de-
mand is monotonically decreasing with increasing price,
but the cost function presents a nonlinear dependence on
the quantity of the good, which can be non-monotonic.
Typically, the cost for producing another unit decreases
with the amount units produced. The case that produc-
tion cost increases with the supply is encountered, for ex-
ample, when income effect becomes significant (storage
costs are often encountered in industries and agricultural
productions). Due to the nonlinearity of the cost func-
tion, two stable steady states can appear if a < 0. One
of them corresponds to the case when customers buy the
commodity at a low price due to a rich supply of prod-
ucts. The other corresponds to a monopoly/oligopoly,
where customers will still purchase it even at a higher
price. When 0 < a < 1, limit cycles can emerge with
coherent oscillations between competition and monopoly.
As the demand slope changes, the market can switch from
monopoly to competition or vice versa. The resulting
underlying bistable landscape topography through bar-
rier height between monopoly and competition basins can
be used to quantify the stability and switching of these
states. For limit cycle dynamics, the resulting Mexican
hat shaped landscapes guarantees the stability of the os-
cillation path, while the rotational curl flux drives the
oscillation flow between the monopoly and competition
(Zhang and Wang, 2017).

The stability of these states can be determined by the
nonequilibrium landscape (Zhang and Wang, 2017), as
shown in Fig. 25. It changes as the demand curve is
shifted. When the demand curve shifts to the right over
certain value, the basin of attraction of the competition
state becomes deeper and more prominent relative to the
monopoly state. Eventually, only a competition state
survives, as shown in Fig. 25 (a). The model then returns
to the conventional supply and demand model where only
one equilibrium state typically appears. When demand
increases, more sellers join the production for goods,
more competitors form a more competitive environment
leading to bistability shown in Fig. 25 (b). When de-
mand decreases, more sellers leave the commodity mar-
ket. This leads to a less competitive environment with
monopoly/oligopoly shown in Fig. 25 (c).

The driving force of nonequilibrium economy is deter-
mined by both landscape and curl flux (Zhang and Wang,
2017). While the landscape topography provides the
quantifications and stability of economic states, the flux
representing the nonequilibriumness can help to shape
the dynamics. Furthermore, the flux leads to certain
unstable states, but helps to maintain the stable flow
among states. The global sensitivity analysis based on
landscape and flux can be used to identify elements key
to economic stability. (Zhang and Wang, 2017). Further-
more, due to the presence of flux, new states can emerge

in the nonequilibrium economy beyond the single equilib-
rium state assumed in the conventional equilibrium eco-
nomic theory. For example, a monopoly/oligopoly state
or limit cycle can emerge from the competition state, or
vice versa. This discussion is quite general and can be
applied to other nonequilibrium economical studies.

XIII. OUTLOOK

As we have seen, the landscape and flux theory as well
as generalized hydrodynamics provide frameworks for
studying large classes of systems that are out of thermo-
dynamic equilibrium. Notably, these concepts provide in-
sight into the physical foundations of biological processes,
ranging from efficient electron transport in biomolecules
to cellular dynamics and tissue development. Beyond
these scales, they apply to the dynamics of populations
and whole ecosystems, including the behavior of human
societies as well as biological evolution. Although not
limited to such cases, the landscape and flux theory is
particularly suited for describing systems with a finite
number of degrees of freedom, whereas generalized hy-
drodynamics provides a particularly powerful approach
to collective phenomena in spatially extended systems.
Our review can only give a glimpse of successful appli-
cations to biological processes and we expect many more
fundamental insights into the phenomenon of life.

In particular, further physical analysis should shed
light on the question of what separates living systems
from other physical (or chemical) systems out of ther-
modynamic equilibrium. Beyond physical aspects, liv-
ing beings and their assemblies are often associated with
qualities such as function, information processing, or con-
sciousness. How can currently extant as well as future
physical concepts be linked to these functions? For exam-
ple, how do organizational principles of nonequilibrium
systems constrain and guide the evolution of functions
that provide ever better fits of a species to its environ-
ment? How does the unfolding of genetic information
during the development of organisms depend on general
laws governing dynamics out of thermodynamic equilib-
rium? There is an already fruitful connection between
the theory of information and that of statistical physics.
It seems safe to speculate that the links between these
two fields will further tighten and lead to new insights
into the efficiency, speed and energy cost of information
processing. We expect that the study of cell signal trans-
duction, neural networks in the brain, and organisms
will play a leading role in this endeavor (Bialek, 2012;
Levchenko and Nemenman, 2014; Press et al., 2013; Yan
et al., 2016; Zeng and Wang, 2017) that has only just
begun.

Molecular biology, which owes a large deal to physics,
provides us with a rather detailed picture of the molec-
ular inventory. This inventory contains a daunting set
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FIG. 25 Nonequilibrium landscapes and shifted demand curves (purple lines) in a bistable economic model for the quantity
Q and the price P of a commodity, from (Zhang and Wang, 2017). (a) The left shifted (decreased) demand curve and
monopoly state dominant landscape. (b) The middle located demand curve and monopoly/competition bi-stable state coexisting
landscape. (c) The right shifted (increased) demand curve and competition state dominant landscape. From (Zhang and Wang,
2017).

of a large variety of highly complex molecular machines,
some of which have been characterized individually in
awesome detail. On the other hand, although there is
already much known about biological processes on larger
scales, much of it remains to be described. Recent years
have seen striking progress in experimental techniques,
which allow us now to follow the embryonic development
of organisms or the dynamics of bird flocks in great detail,
and further advances can be expected. The situation is
thus somewhat opposite to that in the 19th century, when
the molecular properties of materials were essentially un-
known, whereas their macroscopic properties could be
measured. In spite of this difference, the question of how
to bridge the gap between the microscopic dynamics and
the macroscopic thermodynamics/function across spatial
and temporal scales attracts researchers of biological sys-
tems now as much as condensed matter physicists were
to these problems in the 20th century. Some progress has
been made in understanding the macromolecular organi-
zation such as genome folding, transcription and trans-
lation machines, and molecular motors (Tokuda et al.,
2012; Zhang and Wolynes, 2015). Also, efficient methods
for large-scale simulations of cellular networks and the
whole cell at various temporal and spatial scales are being
developed (Roberts et al., 2011). Time will tell whether
computer simulations will be the golden path towards an
understanding of the relation between the microscopic
and the macroscopic behavior of a biological system. In
any case, new ideas and concepts are probably needed to
reach this goal.

On the other hand, new experimental methods and
techniques need to be developed to investigate the mech-
anism and function of biological objects. For example,
to study the dynamics of cells and cellular networks, in

vivo measurements of the kinetic rates are crucial and
necessary. Experimental explorations are not only im-
portant to quantify the deviation from equilibrium and
the role of nonequilibriumness for the function of a bio-
logical system. They are also crucial for probing and ver-
ifying fundamental laws of nonequilibrium physics such
as landscape and flux, as well as thermodynamic cost and
dissipation in the context of single molecule enzyme dy-
namics, single molecular motors, the regulation dynamics
of gene motifs, cell cycle, and spatial organization of the
cells, and of brain function. Furthermore, low through-
put and high throughput data from experiments can help
us to pin down the underlying mechanisms and nonequi-
librium physics for the subject of interests, for example,
single cell data for understanding function and diseases
and connectome from understanding the brain function.
From these studies, new biological functional phases or
new forms of active matter as a result of the nonequilib-
riumness and environmental changes can be uncovered.
This may provide opportunities to design functions even
beyond living world.

Nonequilibrium physics will be important for biologi-
cal applications such as enzyme dynamics, metabolism,
gene regulations, structure, function and dynamics of
cells, physiology, cancer, differentiation and develop-
ment, immune, ageing and other human diseases, evo-
lution/ecology, sociology, human networks, economics,
even perhaps psychology and politics, to name but a few.

With the ever increasing possibilities to manipulate
and interrogate biological systems, a vast playground lies
at our feet. It has the potential to produce gargantuan
amounts of data that will dwarf the already enormous
sets currently produced every day. Without a concep-
tual framework guiding experiments, the sheer quantity
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of the data risks to severely obstruct our advances in un-
derstanding Life. The physics of nonequilibrium systems
will play a crucial role in this quest, aiding design of fu-
ture experiments and providing a guide for data analysis.
The concepts presented in this review are just a begin-
ning.
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Badoual, M., Jülicher, F., Prost, J., May 2002. Bidirectional
cooperative motion of molecular motors. Proc Natl Acad
Sci USA 99 (10), 6696–6701.

Baeriswyl, D.and Degiorgi, L., 2005. Strongly Interaction in
Low Dimensions. Springer, Berlin.

Bai, M., Missel, A., Levine, A., Klug, W., May 2011. On the
role of the filament length distribution in the mechanics of
semiflexible networks. Acta Biomaterialia 7 (5), 2109–2118.

Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P.,
Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky,
A., Addadi, L., Geiger, B., May 2001. Force and focal ad-
hesion assembly: a close relationship studied using elastic
micropatterned substrates. Nat Cell Biol 3 (5), 466–472.
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Ennomani, H., Letort, G., Guérin, C., Martiel, J., Cao, W.,
Nedelec, F., De la Cruz, E., Thery, M., Blanchoin, L., 2016.
Architecture and Connectivity Govern Actin Network Con-
tractility. Curr Biol 26 (5), 616–626.

Ericksen, J. L., 1962. Hydrostatic theory of liquid crystals.
Arch. Rational Mech. Anal. 9 (1), 371–378.

Erlenkämper, C., Kruse, K., 2013. Treadmilling and length
distributions of active polar filaments. The Journal of chem-
ical physics 139 (16), 164907–12.

Esposito, M., Galperin, M., 2009. Transport in molecular
states language: Generalized quantum master equation ap-
proach. Phys Rev B 79 (20).

Euteneuer, U., Schliwa, M., Jul. 1984. Persistent, directional
motility of cells and cytoplasmic fragments in the absence
of microtubules. Nature 310 (5972), 58–61.

Ewens, W., 2004. Mathematical Population Genetics 1. The-
oretical Introduction. Springer.

Faccioli, P., Sega, M., Pederiva, F., Orland, H., 2006. Domi-
nant pathways in protein folding. Phys. Rev. Lett. 97 (10),
108101.

Faini, M., Beck, R., Wieland, F. T., Briggs, J. A. G., Jun.
2013. Vesicle coats: structure, function, and general prin-
ciples of assembly. Trends in cell biology 23 (6), 279–288.

Fairn, G., Hermansson, M., Somerharju, P., Grinstein, S.,
Oct. 2011. Phosphatidylserine is polarized and required for
proper Cdc42 localization and for development of cell po-
larity. Nat Cell Biol 13 (12), 1424–1430.

Faivre-Moskalenko, C., Dogterom, M., 2002. Dynamics of mi-
crotubule asters in microfabricated chambers: The role of



69

catastrophes. Proc Natl Acad Sci USA 99 (26), 16788–
16793.

Falkovich, G., Sreenivasan, K., 2006. Lessons from hydrody-
namic turbulence. Phys Today 59 (4), 43–49.

Fan, J., Sammalkorpi, M., Haataja, M., Apr. 2008. Domain
Formation in the Plasma Membrane: Roles of Nonequilib-
rium Lipid Transport and Membrane Proteins. Phys. Rev.
Lett. 100 (17), 178102.

Fang, X., Liu, Q., Bohrer, C., Hensel, Z., Han, W., Wang,
J., Xiao, J., 2018. Cell fate potentials and switching kinet-
ics uncovered in a classic bistable genetic switch. Nature
Communications 9, 2787.

Feng, H., Han, B., Wang, J., 2010. Dominant kinetic paths
of complex systems: Gene networks. J Phys Chem Lett
1 (12), 1836–1840.

Feng, H., Han, B., Wang, J., 2011. Adiabatic and non-
adiabatic non-equilibrium stochastic dynamics of single
regulating genes. J. Phys. Chem. B 115 (5), 1254–1261.

Feng, H., Han, B., Wang, J., 2012. Landscape and global
stability of nonadiabatic and adiabatic oscillations in a gene
network. Biophys. J. 102 (5), 1001–1010.

Feng, H., Wang, J., 2011. Potential and flux decomposition
for dynamical systems and non-equilibrium thermodynam-
ics: Curvature, gauge field, and generalized fluctuation-
dissipation theorem. J. Chem. Phys. 135 (23), 234511.

Feng, H., Wang, J., 2012. A new mechanism of stem cell dif-
ferentiation through slow binding/unbinding of regulators
to genes. Sci. Rep. 2, 550.

Feng, H., Zhang, K., Wang, J., 2014. Non-equilibrium transi-
tion state rate theory. Chem Sci 5 (10), 3761–3769.

Feric, M., Vaidya, N., Harmon, T., Mitrea, D., Zhu, L.,
Richardson, T., Kriwacki, R., Pappu, R., Brangwynne, C.,
2016. Coexisting Liquid Phases Underlie Nucleolar Sub-
compartments. Cell 165 (7), 1686–1697.

Ferrell Jr., J. E., Tsai, T. Y.-C., Yang, Q., 2011. Modeling
the Cell Cycle: Why Do Certain Circuits Oscillate? Cell
144, 874–885.

Ferry, D. K., Goodnick, S. M., 1997. Transport in Nanostruc-
tures. Cambrdige University Press.

Feynman, R. P., Hibbs, A. R., 1965. Quantum Mechanics and
Path Integrals. McGraw-Hill, New York.

Fisher, I., 1933. The debt-deflation theory of great depres-
sions. Econometrica 1 (4), 337–357.

Fisher, R., 1930. The genetical theory of natural selection.
Oxford University Press, Oxford.

FitzHugh, R., 1961. Impulses and physiological states in
theoretical models of nerve membrane. Biophysical J. 1,
445C466.

Footer, M., Kerssemakers, J. W. J., Theriot, J., Dogterom,
M., Feb. 2007. Direct measurement of force generation by
actin filament polymerization using an optical trap. Proc
Natl Acad Sci USA 104 (7), 2181–2186.

Foret, L., Aug. 2005. A simple mechanism of raft formation
in two-component fluid membranes. Europhys Lett 71 (3),
508–514.

Foster, P., Fürthauer, S., Shelley, M., Needleman, D., 2015.
Active contraction of microtubule networks. Elife 4.

Frauenfelder, H., Wolynes, P., 1994. Biomolecules - where
the physics of complexity and simplicity meet. Phys To-
day 47 (2), 58–64.

Freidlin, M., Wentzell, A., 1984. Random Perturbations of
Dynamical Systems. Springer, New York/Berlin.

Frisch, U., 1995. Turbulence: The Legacy of A. N. Kol-
mogorov. New York: Cambridge University Press.

Fritzsche, M., Erlenkämper, C., Moeendarbary, E., Charras,
G., Kruse, K., Apr. 2016. Actin kinetics shapes cortical
network structure and mechanics. Sci Adv 2 (4), e1501337.

Fritzsche, M., Lewalle, A., Duke, T., Kruse, K., Charras, G.,
Mar. 2013. Analysis of turnover dynamics of the submem-
branous actin cortex. Molecular Biology of the Cell 24 (6),
757–767.

Fujiwara, I., Vavylonis, D., Pollard, T., May 2007. Polymer-
ization kinetics of ADP- and ADP-Pi-actin determined by
fluorescence microscopy. Proc Natl Acad Sci USA 104 (21),
8827–8832.

Fung, E., Wong, W. W., Suen, J., Bulter, T., Lee, S., Liao,
J., 2005. A synthetic gene–metabolic oscillator. Nature
435 (7038), 118–122.

Fürthauer, S., Neef, M., Grill, S. W., Kruse, K., Jülicher, F.,
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Kruse, K., Joanny, J. F., Jülicher, F., Prost, J., Jun. 2006.
Contractility and retrograde flow in lamellipodium motion.
Physical Biology 3 (2), 130–137.
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Sep. 2010. Anisotropies in cortical tension reveal the phys-
ical basis of polarizing cortical flows. Nature 467 (7315),
617–621.

Maynard, S., Price, G. R., 1973. The logic of animal conflict.
Nature 246 (5427), 15–18.

Mazurek, M., Roitman, J., Ditterich, J., Shadlen, M., 2003.
A role for neural integrators in perceptual decision making.
Cereb Cortex 13 (11), 1257–1269.

McCandlish, S. R., Baskaran, A., Hagan, M., 2012. Sponta-
neous segregation of self-propelled particles with different
motilities . Soft Matter 8 (8), 2527–2534.

Mccarley, R. W., Massaquoi, S. G., 1986. A limit cycle mathe-
matical model of the rem sleep oscillator system. American
Journal of Physiology 251 (2), 1011–1029.

Mehboudi, M., Sanpera, A., Parrondo, J. M. R., 2016.
Fluctuation-dissipation theorem for non-equilibrium quan-
tum systems. Epl 115 (2), 20004.

Melbinger, A., Reese, L., Frey, E., 2012. Microtubule Length
Regulation by Molecular Motors. Phys. Rev. Lett. 108 (25),
258104.

Michaelis, L., Menten, M., 1913. Die kinetik der invertin-
wirkung. Biochem Z. 49, 333–369.

Miller, M., Bassler, B., 2001. Quorum sensing in bacteria.
Annual Reviews in Microbiology 55 (1), 165–199.

Min, W., Gopich, I., English, B., Kou, S., Xie, X., Szabo, A.,
2006a. When does the michaelis-menten equation hold for
fluctuating enzymes? J. Phys. Chem. B 110 (41), 20093–
20097.

Min, W., Gopich, I., English, B., Kou, S., Xie, X. S., Szabo,
A., 2006b. When does the michaelis- menten equation hold
for fluctuating enzymes? The Journal of Physical Chem-
istry B 110 (41), 20093–20097.

Minsky, H. P., 1977. The financial instability hypothesis: An
interpretation of keynes and an alternative to ”standard”
theory. Challenge 20 (1), 20–27.

Mirabet, V., Das, P., Boudaoud, A., Hamant, O., 2011. The
Role of Mechanical Forces in Plant Morphogenesis. Annu.
Rev. Plant Biol. 62, 365–385.

Mitchison, T., Kirschner, M., 1984. Dynamic instability of
microtubule growth. nature 312 (5991), 237–242.

Mogilner, A., Oster, G., Dec. 1996. Cell motility driven by
actin polymerization. Biophys J 71 (6), 3030–3045.

Mohapatra, L., Goode, B., Jelenkovic, P., Phillips, R., Kon-
dev, J., Jul. 2016. Design Principles of Length Control of
Cytoskeletal Structures. Annu Rev Biophys 45 (1), 85–116.

Mohapatra, L., Goode, B., Kondev, J., Jun. 2015. Antenna
Mechanism of Length Control of Actin Cables. PLoS Com-
put Biol 11 (6).

Morgan, D. O., 2007. Cell Cycle: Principles and Controls.
OUP/New Science Press.



75

Morgan, J., Wolynes, P., 1987. Adiabaticity of electron-
transfer at an electrode. J Phys Chem-Us 91 (4), 874–883.

Mueller, M., Klumpp, S., Lipowsky, R., 2008. Tug-of-war as
a cooperative mechanism for bidirectional cargo transport
by molecular motors. Proc Natl Acad Sci USA 105 (12),
4609–4614.

Mukamel, S., 1999. Principles of Nonlinear Optical Spec-
troscopy. Oxford University Press, New York.
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Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M., Elowitz, M.,
2006. An excitable gene regulatory circuit induces transient
cellular differentiation. Nature 440 (7083), 545–550.
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