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Machine learning encompasses a broad range of algorithms and modeling tools used for a vast array
of data processing tasks, which has entered most scientific disciplines in recent years. We review in
a selective way the recent research on the interface between machine learning and physical sciences.
This includes conceptual developments in machine learning (ML) motivated by physical insights,
applications of machine learning techniques to several domains in physics, and cross-fertilization
between the two fields. After giving basic notion of machine learning methods and principles, we
describe examples of how statistical physics is used to understand methods in ML. We then move
to describe applications of ML methods in particle physics and cosmology, quantum many body
physics, quantum computing, and chemical and material physics. We also highlight research and
development into novel computing architectures aimed at accelerating ML. In each of the sections
we describe recent successes as well as domain-specific methodology and challenges.
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I. INTRODUCTION

The past decade has seen a prodigious rise of machine-
learning (ML) based techniques, impacting many areas
in industry including autonomous driving, health-care, fi-
nance, manufacturing, energy harvesting, and more. ML
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is largely perceived as one of the main disruptive tech-
nologies of our ages, as much as computers have been
in the 1980’s and 1990’s. The general goal of ML is to
recognize patterns in data, which inform the way unseen
problems are treated. For example, in a highly complex
system such as a self-driving car, vast amounts of data
coming from sensors have to be turned into decisions of
how to control the car by a computer that has “learned”
to recognize the pattern of “danger”.

The success of ML in recent times has been marked
at first by significant improvements on some existing
technologies, for example in the field of image recogni-
tion. To a large extent, these advances constituted the
first demonstrations of the impact that ML methods can
have in specialized tasks. More recently, applications tra-
ditionally inaccessible to automated software have been
successfully enabled, in particular by deep learning tech-
nology. The demonstration of reinforcement learning
techniques in game playing, for example, has had a deep
impact in the perception that the whole field was moving
a step closer to what expected from a general artificial
intelligence.

In parallel to the rise of ML techniques in industrial ap-
plications, scientists have increasingly become interested
in the potential of ML for fundamental research, and
physics is no exception. To some extent, this is not too
surprising, since both ML and physics share some of their
methods as well as goals. The two disciplines are both
concerned about the process of gathering and analyzing
data to design models that can predict the behaviour of
complex systems. However, the fields prominently differ
in the way their fundamental goals are realized. On the
one hand, physicists want to understand the mechanisms
of Nature, and are proud of using their own knowledge,
intelligence and intuition to inform their models. On
the other hand, machine learning mostly does the oppo-
site: models are agnostic and the machine provides the
’intelligence’ by extracting it from data. Although of-
ten powerful, the resulting models are notoriously known
to be as opaque to our understanding as the data pat-
terns themselves. Machine learning tools in physics are
therefore welcomed enthusiastically by some, while being
eyed with suspicions by others. What is difficult to deny
is that they produce surprisingly good results in some
cases.

In this review, we attempt at providing a coherent se-
lected account of the diverse intersections of ML with
physics. Specifically, we look at an ample spectrum of
fields (ranging from statistical and quantum physics to
high energy and cosmology) where ML recently made a
prominent appearance, and discuss potential applications
and challenges of ‘intelligent’ data mining techniques in
the different contexts. We start this review with the field
of statistical physics in Section II where the interaction
with machine learning has a long history, drawing on
methods in physics to provide better understanding of
problems in machine learning. We then turn the wheel in
the other direction of using machine learning for physics.

Section III treats progress in the fields of high-energy
physics and cosmology, Section IV reviews how ML ideas
are helping to understand the mysteries of many-body
quantum systems, Section V briefly explore the promises
of machine learning within quantum computations, and
in Section VI we highlight some of the amazing advances
in computational chemistry and materials design due to
ML applications. In Section VII we discuss some ad-
vances in instrumentation leading potentially to hard-
ware adapted to perform machine learning tasks. We
conclude with an outlook in Section VIII.

A. Concepts in machine learning

For the purpose of this review we will briefly explain
some fundamental terms and concepts used in machine
learning. For further reading, we recommend a few re-
sources, some of which have been targeted especially for
a physics audience. For a historical overview of the
development of the field we recommend Refs. (LeCun
et al., 2015; Schmidhuber, 2014). An excellent recent
introduction to machine learning for physicists is Ref.
(Mehta et al., 2018), which includes notebooks with prac-
tical demonstrations. A very useful online resource is
Florian Marquardt’s course “Machine learning for physi-
cists”1. Useful textbooks written by machine learning
researchers are Christopher Bishop’s standard textbook
(Bishop, 2006), as well as (Goodfellow et al., 2016) which
focuses on the theory and foundations of deep learning
and covers many aspects of current-day research. A vari-
ety of online tutorials and lectures is useful to get a basic
overview and get started on the topic.

To learn about the theoretical progress made in statis-
tical physics of neural networks in the 1980s-1990s we rec-
ommend the rather accessible book Statistical Mechan-
ics of Learning (Engel and Van den Broeck, 2001). For
learning details of the replica method and its use in com-
puter science, information theory and machine learning
we would recommend the book of Nishimori (Nishimori,
2001). For the more recent statistical physics methodol-
ogy the textbook of Mézard and Montanari is an excellent
reference (Mézard and Montanari, 2009).

To get a basic idea of the type of problems that ma-
chine learning is able to tackle it is useful to defined three
large classes of learning problems: Supervised learning,
unsupervised learning and reinforcement learning. This
will also allow us to state the basic terminology, build-
ing basic equipment to expose some of the basic tools of
machine learning.

1 See https://machine-learning-for-physicists.org/.
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1. Supervised learning and neural networks

In supervised learning we are given a set of n samples
of data, let us denote one such sample Xµ ∈ Rp, with
µ = 1, . . . , n. To have something concrete in mind each
Xµ could be for instance a black-and-white photograph of
an animal, and p the number of pixels. For each sample
Xµ we are further given a label yµ ∈ Rd, most commonly
d = 1. The label could encode for instance the species
of the animal on the photograph. The goal of supervised
learning is to find a function f so that when a new sample
Xnew is presented without its label, then the output of the
function f(Xnew) approximates well the label. The data
set {Xµ, yµ}µ=1,...,n is called the training set. In order
to test the resulting function f one usually splits the
available data samples into the training set used to learn
the function and a test set to evaluate the performance.

Let us now describe the training procedure most com-
monly used to find a suitable function f . Most commonly
the function is expressed in terms of a set of parameters,
called weights w ∈ Rk, leading to fw. One then con-
structs a so-called loss function L[fw(Xµ), yµ] for each
sample µ, with the idea of this loss being small when
fw(Xµ) and yµ are close, and vice versa. The average of
the loss over the training set is then called the empirical
risk R(fw) =

∑n
µ=1 L[fw(Xµ), yµ]/n.

During the training procedure the weights w are being
adjusted in order to minimize the empirical risk. The
training error measures how well is such a minimization
achieved. A notion of error that is the most important
is the generalization error, related to the performance on
predicting labels ynew for data samples Xnew that were
not seen in the training set. In applications, it is com-
mon practice to build the test set by randomly picking a
fraction of the available data, and perform the training
using the remaining fraction as a training set. We note
that in a part of the literature the generalization error
is the difference between the performance of the test set
and the one on the training set.

The algorithms most commonly used to minimize the
empirical risk function over the weights are based on gra-
dient descent with respect to the weights w. This means
that the weights are iteratively adjusted in the direction
of the gradient of the empirical risk

wt+1 = wt − γ∇wR(fw). (1)

The rate γ at which this is performed is called the learn-
ing rate. A very commonly used and successful variant
of the gradient descent is the stochastic gradient descent
(SGD) where the full empirical risk function R is re-
placed by the contribution of just a few of the samples.
This subset of samples is called mini-batch and can be
as small as a single sample. In physics terms, the SGD
algorithm is often compared to the Langevin dynamics
at finite temperature. Langevin dynamics at zero tem-
perature is the gradient descent. Positive temperature
introduces a thermal noise that is in certain ways similar
to the noise arising in SGD, but different in others. There

are many variants of the SGD algorithm used in practice.
The initialization of the weights can change performance
in practice, as can the choice of the learning rate and a
variety of so-called regularization terms, such as weight
decay that is penalizing weights that tend to converge to
large absolute values. The choice of the right version of
the algorithm is important, there are many heuristic rules
of thumb, and certainly more theoretical insight into the
question would be desirable.

One typical example of a task in supervised learning
is classification, that is when the labels yµ take values
in a discrete set and the so-called accuracy is then mea-
sured as the fraction of times the learned function clas-
sifies the data point correctly. Another example is re-
gression where the goal is to learn a real-valued func-
tion, and the accuracy is typically measured in terms of
the mean-squared error between the true labels and their
learned estimates. Other examples would be sequence-
to-sequence learning where both the input and the label
are vectors of dimension larger than one.

There are many methods of supervised learning and
many variants of each. One of the most basic supervised
learning method is the widely known and used linear re-
gression, where the function fw(X) is parameterized in
the form fw(Xµ) = Xµw, with w ∈ Rp. When the data
live in high dimensional space and the number of samples
is not much larger than the dimension, it is indispensable
to use regularized form of linear regression called ridge
regression or Tikhonov regularization. The ridge regres-
sion is formally equivalent to assuming that the weights
w have a Gaussian prior. A generalized form of linear
regression, with parameterization fw(Xµ) = g(Xµw),
where g is some output channel function, is also often
used and its properties are described in section II.D.1.
Another popular way of regularization is based on sepa-
rating the example n a classification task so that they the
separate categories are divided by a clear gap that is as
wide as possible. This idea stands behind the definition
of so-called support vector machine method.

A rather powerful non-parametric generalization of the
ridge regression is kernel ridge regression. Kernel ridge
regression is closely related to Gaussian process regres-
sion. The support vector machine method is often com-
bined with a kernel method, and as such is still the state-
of-the-art method in many applications, especially when
the number of available samples is not very large.

Another classical supervised learning method is based
on so-called decision trees. The decision tree is used to
go from observations about a data sample (represented in
the branches) to conclusions about the item’s target value
(represented in the leaves). The best known application
of decision trees in physical science is in data analysis of
particle accelerators, as discussed in Sec. III.B.

The supervised learning method that stands behind
the machine learning revolution of the past decade are
multi-layer feed-forward neural networks (FFNN) also
sometimes called multi-layer perceptrons. This is also a
very relevant method for the purpose of this review and
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we shall describe it briefly here. In L-layer fully con-
nected neural networks the function fw(Xµ) is parame-
terized as follows

fw(Xµ) = g(L)(W (L) . . . g(2)(W (2)g(1)(W (1)Xµ))), (2)

where w = {W (1), . . . ,W (L)}i=1,...,L, and W (i) ∈
Rri×ri−1 with r0 = p and rL = d, are the matrices of
weights, and ri for 1 ≤ i ≤ L − 1 is called the width of
the i−th hidden layer. The functions g(i), 1 ≤ i ≤ L, are
the so-called activation functions, and act component-
wise on vectors. We note that the input in the activation
functions are often slightly more generic affine transforms
of the output of the previous layer that simply matrix
multiplications, including e.g. biases. The number of
layers L is called the network’s depth. Neural networks
with depth larger than some small integer are called deep
neural networks. Subsequently machine learning based
on deep neural networks is called deep learning.

The theory of neural networks tells us that without
hidden layers (L = 1, corresponding to the generalized
linear regression) the set of functions that can be ap-
proximated this way is very limited (Minsky and Papert,
1969). On the other hand already with one hidden layer,
L = 2, that is wide enough, i.e. r1 large enough, and
where the function g(1) is non-linear, a very general class
of functions can be well approximated in principle (Cy-
benko, 1989). These theories, however, do not tell us
what is the optimal set of parameters (the activation
functions, the widths of the layers and the depth) in or-
der for the learning of W (1), . . . ,W (L) to be tractable
efficiently. We know from empirical success of the past
decade that many tasks of interest are tractable with
deep neural network using the gradient descent or the
SGD algorithms. In deep neural networks the derivatives
with respect to the weights are computed using the chain
rule leading to the celebrated back-propagation algorithm
that takes care of efficiently scheduling the operations
required to compute all the gradients (Goodfellow et al.,
2016).

A very important and powerful variant of (deep) feed-
forward neural networks are the so-called convolutional
neural networks (Goodfellow et al., 2016) where the input
into each of the hidden units is obtained via a filter ap-
plied to a small part of the input space. The filter is then
shifted to different positions corresponding to different
hidden units. Convolutional neural networks implement
invariance to translation and are in particular suitable for
analysis of images. Compared to the fully connected neu-
ral networks each layer of convolutional neural network
has much smaller number of parameters, which is in prac-
tice advantageous for the learning algorithms. There are
many types and variances of convolutional neural net-
works, among them we will mention the Residual neural
networks (ResNets) use shortcuts to jump over some lay-
ers.

Next to feed-forward neural networks there are the so-
called recurrent neural networks (RNN) in which the out-
puts of units feeds back at the input in the next time step.

In RNNs the result is thus given by the set of weights,
but also by the whole temporal sequence of states. Due
to their intrinsically dynamical nature, RNN are particu-
larly suitable for learning for temporal data sets, such as
speech, language, and time series. Again there are many
types and variants on RNNs, but the ones that caused
the most excitement in the past decade are arguably the
long short-term memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997). LSTMs and their deep variants
are the state-of-the-art in tasks such as speech processing,
music compositions, and natural language processing.

2. Unsupervised learning and generative modelling

Unsupervised learning is a class of learning problems
where input data are obtained as in supervised learning,
but no labels are available. The goal of learning here
is to recover some underlying –and possibly non-trivial–
structure in the dataset. A typical example of unsuper-
vised learning is data clustering where data points are
assigned into groups in such a way that every group has
some common properties.

In unsupervised learning, one often seeks a probability
distribution that generates samples that are statistically
similar to the observed data samples, this is often referred
to as generative modelling. In some cases this probabil-
ity distribution is written in an explicit form and ex-
plicitly or implicitly parameterized. Generative models
internally contain latent variables as the source of ran-
domness. When the number of latent variables is much
smaller than the dimensionality of the data we speak
of dimensionality reduction. One path towards unsuper-
vised learning is to search values of the latent variables
that maximize the likelihood of the observed data.

In a range of applications the likelihood associated to
the observed data is not known or computing it is it-
self intractable. In such cases, some of the generative
models discussed below offer on alternative likelihood-
free path. In Section III.D we will also discuss the so-
called ABC method that is a type of likelihood-free in-
ference and turns out to be very useful in many contexts
arising in physical sciences.

Basic methods of unsupervised learning include prin-
cipal component analysis and its variants. We will cover
some theoretical insights into these method that were ob-
tained using physics in section II.C.1. A physically very
appealing methods for unsupervised learning are the so-
called Boltzmann machines (BM). A BM is basically an
inverse Ising model where the data samples are seen as
samples from a Boltzmann distribution of a pair-wise in-
teracting Ising model. The goal is to learn the values of
the interactions and magnetic fields so that the likelihood
(probability in the Boltzmann measure) of the observed
data is large. A restricted Boltzmann machine (RBM) is
a particular case of BM where two kinds of variables –
visible units, that see the input data, and hidden units,
interact through effective couplings. The interactions are
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in this case only between visible and hidden units and are
again adjusted in order for the likelihood of the observed
data to be large. Given the appealing interpretation in
terms of physical models, applications of BMs and RBMs
are widespread in several physics domains, as discussed
e.g. in section IV.A.

A very neat idea to perform unsupervised learning yet
being able to use all the methods and algorithms devel-
oped for supervised learning are auto-encoders. An au-
toencoder is a feed-forward neural network that has the
input data on the input, but also on the output. It aims
to reproduce the data while typically going trough a bot-
tleneck, in the sense that some of the intermediate layers
have very small width compared to the dimensionality
of the data. The idea is then that autoencoder is aim-
ing to find a succinct representation of the data that still
keeps the salient features of each of the samples. Varia-
tional autoencoders (VAE) (Kingma and Welling, 2013;
Rezende et al., 2014) combine variational inference and
autoencoders to provide a deep generative model for the
data, which can be trained in an unsupervised fashion.

A further approach to unsupervised learning worth
mentioning here, are adversarial generative networks
(GANs) (Goodfellow et al., 2014). GANs have attracted
substantial attentions in the past years, and constitute
another fruitful way to take advantage of the progresses
made for supervised learning to do unsupervised one.
GANs typical use two feed-forward neural networks, one
called the generator and another called the discrimina-
tor. The generator network is used to generate outputs
from random inputs, and is designed so that the out-
puts look like the observed samples. The discriminator
network is used to discriminate between true data sam-
ples and samples generated by the generator network.
The discriminator is aiming at best possible accuracy in
this classification task, whereas the generator network is
adjusted to make the accuracy of the discriminator the
smallest possible. GANs currently are the state-of-the
art system for many applications in image processing.

Other interesting methods to model distributions in-
clude normalizing flows and autoregressive models with
the advantage of having tractable likelihood so that they
can be trained via maximum likelihood (Larochelle and
Murray, 2011; Papamakarios et al., 2017; Uria et al.,
2016).

Hybrids between supervised learning and unsupervised
learning that are important in application include semi-
supervised learning where only some labels are available,
or active learning where labels can be acquired for a se-
lected set of data points at a certain cost.

3. Reinforcement learning

Reinforcement learning (Sutton and Barto, 2018) is an
area of machine learning where an (artificial) agent takes
actions in an environment with the goal of maximizing
a reward. The action changes the state of the environ-

ment in some way and the agent typically observes some
information about the state of the environment and the
corresponding reward. Based on those observations the
agent decides on the next action, refining the strategies of
which action to choose in order to maximize the result-
ing reward. This type of learning is designed for cases
where the only way to learn about the properties of the
environment is to interact with it. A key concept in rein-
forcement learning it the trade-off between exploitation
of good strategies found so far, and exploration in order
to find yet better strategies. We should also note that
reinforcement learning is intimately related to the field
of theory of control, especially optimal control theory.

One of the main types of reinforcement learning ap-
plied in many works is the so-called Q-learning. Q-
learning is based on a value matrix Q that assigns quality
of a given action when the environment is in a given state.
This value function Q is then iteratively refined. In re-
cent advanced applications of Q-learning the set of states
and action is so large that it is impossible to even store
the whole matrix Q. In those cases deep feed-forward
neural networks are used to represent the function in a
succinct manner. This gives rise to deep Q-learning.

Most well-known recent examples of the success of re-
inforcement learning is the computer program AlphaGo
and AlphaGo Zero that for a first time in history reached
super-human performance in the traditional board game
of Go. Another well known use of reinforcement learning
is locomotion of robots.

II. STATISTICAL PHYSICS

A. Historical note

While machine learning as a wide-spread tool for
physics research is a relatively new phenomenon, cross-
fertilization between the two disciplines dates back much
further. Especially statistical physicists made important
contributions to our theoretical understanding of learn-
ing (as the term “statistical” unmistakably suggests).

The connection between statistical mechanics and
learning theory started when statistical learning from ex-
amples took over the logic and rule based AI, in the mid
1980s. Two seminal papers marked this transformation,
Valiant’s theory of the learnable (Valiant, 1984), which
opened the way for rigorous statistical learning in AI,
and Hopfield’s neural network model of associative mem-
ory (Hopfield, 1982), which sparked the rich application
of concepts from spin glass theory to neural networks
models. This was marked by the memory capacity cal-
culation of the Hopfield model by Amit, Gutfreund, and
Sompolinsky (Amit et al., 1985) and following works. A
much tighter application to learning models was made
by the seminal work of Elizabeth Gardner who applied
the replica trick (Gardner, 1987, 1988) to calculate vol-
umes in the weights space for simple feed-forward neural
networks, for both supervised and unsupervised learning
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models.
Gardner’s method enabled to explicitly calculate learn-

ing curves, i.e. the typical training and generalization
errors as a function of the number of training examples,
for very specific one and two-layer neural networks (Györ-
gyi and Tishby, 1990; Seung et al., 1992a; Sompolinsky
et al., 1990). These analytic statistical physics calcula-
tions demonstrated that the learning dynamics can ex-
hibit much richer behavior than predicted by the worse-
case distribution free PAC bounds (PAC stands for prov-
ably approximately correct) (Valiant, 1984). In partic-
ular, learning can exhibit phase transitions from poor
to good generalization (Györgyi, 1990). This rich learn-
ing dynamics and curves can appear in many machine
learning problems, as was shown in various models, see
e.g. more recent review (Zdeborová and Krzakala, 2016).
The statistical physics of learning reached its peak in the
early 1990s, but had rather minor influence on machine-
learning practitioners and theorists, who were focused
on general input-distribution-independent generalization
bounds, characterized by e.g. the Vapnik-Chervonenkis
dimension or the Rademacher complexity of hypothesis
classes.

B. Theoretical puzzles in deep learning

Machine learning in the new millennium was marked
by much larger scale learning problems, in input/pattern
sizes which moved from hundreds to millions in di-
mensionality, in training data sizes, and in number of
adjustable parameters. This was dramatically demon-
strated by the return of large scale feed-forward neural
network models, with many more hidden layers, known
as deep neural networks. These deep neural networks
were essentially the same feed-forward convolution neu-
ral networks proposed already in the 80s. But some-
how with the much larger scale inputs and big and
clean training data (and a few more tricks and hacks),
these networks started to beat the state-of-the-art in
many different pattern recognition and other machine
learning competitions, from roughly 2010 and on. The
amazing performance of deep learning, trained with the
same old stochastic gradient descent (SGD) error-back-
propagation algorithm, took everyone by surprise.

One of the puzzles is that the existing learning theory
(based on the worst-case PAC-like generalization bounds)
is unable to explain this phenomenal success. The exist-
ing theory does not predict why deep networks, where
the number/dimension of adjustable parameters/weights
is way higher than the number of training samples, have
good generalization properties. This lack of theory was
coined in now a classical article (Zhang et al., 2016),
where the authors show numerically that state-of-the-art
neural networks used for classification are able to classify
perfectly randomly generated labels. In such a case exist-
ing learning theory does not provide any useful bound on
the generalization error. Yet in practice we observe good

generalization of the same deep neural networks when
trained on the true labels.

Continuing with the open question, we do not have
good understanding of which learning problems are com-
putationally tractable. This is particularly important
since from the point of view of computational complexity
theory, most of the learning problems we encounter are
NP-hard in the worst case. Another open question that
is central to current deep learning concern the choice of
hyper-parameters and architectures that is so far guided
by a lot of trial-and-error combined by impressive expe-
rience of the researchers. At the same time as applica-
tions of ML are spreading into many domains, the field
calls for more systematic and theory-based approaches.
In current deep-learning, basic questions such as what is
the minimal number of samples we need in order to be
able to learn a given task with a good precision is entirely
open.

At the same time the current literature on deep learn-
ing is flourishing with interesting numerical observations
and experiments that call for explanation. For a physics
audience the situation could perhaps be compared to the
state-of-the-art in fundamental small-scale physics just
before quantum mechanics was developed. The field was
full of unexplained experiments that were evading exist-
ing theoretical understanding. This clearly is the perfect
time for some of physics ideas to study neural networks
to resurrect and revisit some of the current questions and
directions in machine learning.

Given the long history of works done on neural net-
works in statistical physics, we will not aim at a complete
review of this direction of research. We will focus in a se-
lective way on recent contributions originating in physics
that, in our opinion, are having important impact in cur-
rent theory of learning and machine learning. For the
purpose of this review we are also putting aside a large
volume of work done in statistical physics on recurrent
neural networks with biological applications in mind.

C. Statistical physics of unsupervised learning

1. Contributions to understanding basic unsupervised methods

One of the most basic tools of unsupervised learning
across the sciences are methods based on low-rank de-
composition of the observed data matrix. Data cluster-
ing, principal component analysis (PCA), independent
component analysis (ICA), matrix completion, and other
methods are examples in this class.

In mathematical language the low-rank matrix decom-
position problem is stated as follows: We observe n sam-
ples of p-dimensional data xi ∈ Rp, i = 1, . . . , n. De-
noting X the n × p matrix of data, the idea underly-
ing low-rank decomposition methods assumes that X (or
some component-wise function of X) can be written as a
noisy version of a rank r matrix where r � p; r � n, i.e.
the rank is much lower that the dimensionality and the



8

number of samples, therefore the name low-rank. A par-
ticularly challenging, yet relevant and interesting regime,
is when the dimensionality p is comparable to the number
of samples n, and when the level of noise is large in such a
way that perfect estimation of the signal is not possible.
It turns out that the low-rank matrix estimation in the
high-dimensional noisy regime can be modelled as a sta-
tistical physics model of a spin glass with r-dimensional
vector variables and a special planted configuration to be
found.

Concretely, this model can be defined in the teacher-
student scenario in which the teacher generates r-
dimensional latent variables u∗i ∈ Rr, i = 1, . . . , n,
taken from a given probability distribution Pu(u∗i ), and
r-dimensional latent variables v∗j ∈ Rr, j = 1, . . . , p,
taken from a given probability distribution Pv(v∗i ). Then
the teacher generates components of the data matrix
X from some given conditional probability distribution
Pout(Xij |u∗i · v∗j ). The goal of the student is then to re-
cover the latent variables u∗ and v∗ as precisely as possi-
ble from the knowledge of X, and the distributions Pout,
Pu, Pv.

Spin glass theory can be used to obtain rather com-
plete understanding of this teacher-student model for
low-rank matrix estimation in the limit p, n → ∞,
n/p = α = Ω(1), r = Ω(1). One can compute with the
replica method what is the information-theoretically best
error in estimation of u∗, and v∗ the student can possibly
achieve, as done decades ago for some special choices of r,
Pout, Pu and Pv in (Barkai and Sompolinsky, 1994; Biehl
and Mietzner, 1993; Watkin and Nadal, 1994). The im-
portance of these early works in physics is acknowledged
in some of the landmark papers on the subject in statis-
tics, see e.g. (Johnstone and Lu, 2009). However, the
lack of mathematical rigor and limited understanding of
algorithmic tractability caused the impact of these works
in machine learning and statistics to remain limited.

A resurrection of interest in statistical physics ap-
proach to low-rank matrix decompositions came with the
study of the stochastic block model for detection of clus-
ters/communities in sparse networks. The problem of
community detection was studied heuristically and al-
gorithmically extensively in statistical physics, for a re-
view see (Fortunato, 2010). However, the exact solu-
tion and understanding of algorithmic limitations in the
stochastic block model came from the spin glass theory
in (Decelle et al., 2011a,b). These works computed (non-
rigorously) the asymptotically optimal performance and
delimited sharply regions of parameters where this per-
formance is reached by the belief propagation (BP) al-
gorithm (Yedidia et al., 2003). Second order phase tran-
sitions appearing in the model separate a phase where
clustering cannot be performed better than by random
guessing, from a region where it can be done efficiently
with BP. First order phase transitions and one of their
spinodal lines then separate regions where clustering is
impossible, possible but not doable with the BP algo-
rithm, and easy with the BP algorithm. Refs. (Decelle

et al., 2011a,b) also conjectured that when the BP algo-
rithm is not able to reach the optimal performance on
large instances of the model, then no other polynomial
algorithm will. These works attracted a large amount of
follow-up work in mathematics, statistics, machine learn-
ing and computer science communities.

The statistical physics understanding of the stochastic
block model and the conjecture about belief propagation
algorithm being optimal among all polynomial ones in-
spired the discovery of a new class of spectral algorithms
for sparse data (i.e. when the matrix X is sparse) (Krza-
kala et al., 2013b). Spectral algorithms are basic tools
in data analysis (Ng et al., 2002; Von Luxburg, 2007),
based on the singular value decomposition of the matrix
X or functions of X. Yet for sparse matrices X, the
spectrum is known to have leading singular values with
localized singular vectors unrelated to the latent underly-
ing structure. A more robust spectral method is obtained
by linearizing the belief propagation, thus obtaining a so-
called non-backtracking matrix (Krzakala et al., 2013b).
A variant on this spectral method based on algorithmic
interpretation of the Hessian of the Bethe free energy also
originated in physics (Saade et al., 2014).

This line of statistical-physics inspired research is
merging into the mainstream in statistics and machine
learning. This is largely thanks to recent progress in:
(a) our understanding of algorithmic limitations, due
to the analysis of approximate message passing (AMP)
algorithms (Bolthausen, 2014; Deshpande and Monta-
nari, 2014; Javanmard and Montanari, 2013; Matsushita
and Tanaka, 2013; Rangan and Fletcher, 2012) for low-
rank matrix estimation that is a generalization of the
Thouless-Anderson-Palmer equations (Thouless et al.,
1977) well known in the physics literature on spin glasses.
And (b) progress in proving many of the corresponding
results in a mathematically rigorous way. Some of the
influential papers in this direction (related to low-rank
matrix estimation) are (Barbier et al., 2016; Coja-Oghlan
et al., 2018; Deshpande and Montanari, 2014; Lelarge and
Miolane, 2016) for the proof of the replica formula for the
information-theoretically optimal performance.

2. Restricted Boltzmann machines

Boltzmann machines and in particular restricted Boltz-
mann machines are another method for unsupervised
learning often used in machine learning. As apparent
from the very name of the method, it had strong relation
with statistical physics. Indeed the Boltzmann machine
is often called the inverse Ising model in the physics lit-
erature and used extensively a range of area, for a re-
cent review on the physics of Boltzmann machines see
(Nguyen et al., 2017).

Concerning restricted Boltzmann machines, there are
number of studies in physics clarifying how these ma-
chines work and what structures can they learn. Model
of random restricted Boltzmann machine, where the
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weights are imposed to be random and sparse, and not
learned, is studied in (Cocco et al., 2018; Tubiana and
Monasson, 2017). Rather remarkably for a range of po-
tentials on the hidden unit this work unveiled that even
the single layer RBM is able to represent compositional
structure. Insights from this work were more recently
used to model protein families from their sequence infor-
mation (Tubiana et al., 2018).

Analytical study of the learning process in RBM, that
is most commonly done using the contrastive divergence
algorithm based on Gibbs sampling (Hinton, 2002), is
very challenging. First steps were studied in (Decelle
et al., 2017) at the beginning of the learning process
where the dynamics can be linearized. Another interest-
ing direction coming from statistical physics is to replace
the Gibbs sampling in the contrastive divergence training
algorithm by the Thouless-Anderson-Palmer equations
(Thouless et al., 1977). This has been done in (Gabrié
et al., 2015; Tramel et al., 2018) where such training was
shown to be competitive and applications of the approach
were discussed. RBM with random weights and their re-
lation to the Hopfield model was clarified in (Barra et al.,
2018; Mézard, 2017).

3. Modern unsupervised and generative modelling

The dawn of deep learning brought an exciting innova-
tions into unsupervised and generative-models learning.
A physics friendly overview of some classical and more
recent concepts is e.g. (Wang, 2018).

Auto-encoders with linear activation functions are
closely related to PCA. Variational autoencoders (VAE)
(Kingma and Welling, 2013; Rezende et al., 2014) are
variants much closer to a physicist mind set where the
autoencoder is represented via a graphical model, and in
trained using a prior on the latent variables and varia-
tional inference. VAE with a single hidden layer is closely
related to other widely used techniques in signal process-
ing such as dictionary learning and sparse coding. Dictio-
nary learning problem has been studied with statistical
physics techniques in (Kabashima et al., 2016; Krzakala
et al., 2013a; Sakata and Kabashima, 2013).

Generative adversarial networks (GANs) – a powerful
set of ideas emerged with the work of (Goodfellow et al.,
2014) aiming to generate samples (e.g. images of hotel
bedrooms) that are of the same type as those in the train-
ing set. Physics-inspired studies of GANs are starting to
appear, e.g. the work on a solvable model of GANs by
(Wang et al., 2018) is a intriguing generalization of the
earlier statistical physics works on online learning in per-
ceptrons.

We also want to point the readers attention to au-
toregressive generative models (Larochelle and Murray,
2011; Papamakarios et al., 2017; Uria et al., 2016). The
main interest in autoregressive models stems from the
fact that they are a family of explicit probabilistic mod-
els, for which direct and unbiased sampling is possible.

Applications of these models have been realized for both
statistical (Wu et al., 2018) and quantum physics prob-
lems (Sharir et al., 2019).

D. Statistical physics of supervised learning

1. Perceptron and GLMs

The arguably most basic method of supervised learn-
ing is linear regression where one aims to find a vector
of coefficients w so that its scalar product with the data
point Xiw corresponds to the observed predicate y. This
is most often solved by the least squares method where
||y − Xw||22 is minimized over w. In the Bayesian lan-
guage, the least squares method corresponds to assum-
ing Gaussian additive noise ξ so that yi = Xiw + ξi. In
high dimensional setting it is almost always indispensable
to use regularization of the weights. The most common
ridge regularization corresponds in the Bayesian inter-
pretation to Gaussian prior on the weights. This prob-
abilistic thinking can be generalized by assuming a gen-
eral prior PW (·) and a generic noise represented by a
conditional probability distribution Pout(yi|Xiw). The
resulting model is called generalized linear regression or
generalized linear model (GLM). Many other problems
of interest in data analysis and learning can be repre-
sented as GLM. For instance sparse regression simply
requires that PW has large weight on zero, for the per-
ceptron with threshold κ the output has a special form
Pout(y|z) = I(z > κ)δ(y − 1) + I(z ≤ κ)δ(y + 1). In the
language of neural networks, the GLM represents a single
layer (no hidden variables) fully connected feed-forward
network.

For generic noise/activation channel Pout traditional
theories in statistics are not readily applicable to the
regime of very limited data where both the dimension p
and the number of samples n grow large, while their ra-
tio n/p = α remains fixed. Basic questions such as: how
does the best achievable generalization error depend on
the number of samples, remain open. Yet this regime and
related questions are of great interest and understanding
them well in the setting of GLM seems to be a prereq-
uisite to understand more involved, e.g. deep learning,
methods.

Statistical physics approach can be used to obtain spe-
cific results on the high-dimensional GLM by considering
data to be random independent identically distributed
(iid) matrix and modelling the labels as being created
in the teacher-student setting. The teacher generates
a ground-truth vector of weights w so that wj ∼ Pw,
j = 1, . . . , p. The teacher then uses this vector and data
matrix X to produce labels y taken from Pout(yi|Xiw

∗).
The students then knows X, y, Pw and Pout and is sup-
posed to learn the rule the teacher uses, i.e. ideally
to learn the w∗. Already this setting with random in-
put data provides interesting insights into the algorith-
mic tractability of the problem as the number of samples
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changes.
This line of work was pioneered by Elisabeth Gard-

ner (Gardner and Derrida, 1989) and actively studied
in physics in the past for special cases of Pout and PW ,
see e.g. (Györgyi and Tishby, 1990; Seung et al., 1992a;
Sompolinsky et al., 1990). The replica method can be
used to compute the mutual information between X and
y in this teacher-student model, which is related to the
free energy in physics. One can then deduce the optimal
estimation error of the vector w∗, as well as the opti-
mal generalization error. A remarkable recent progress
was made in (Barbier et al., 2019) where it has been
proven that the replica method yields the correct results
for the GLM with random inputs for generic Pout and
PW . Combining these results with the analysis of the ap-
proximate message passing algorithms (Javanmard and
Montanari, 2013), one can deduce cases where the AMP
algorithm is able to reach the optimal performance and
regions where it is not. The AMP algorithm is conjec-
tured to be the best of all polynomial algorithm for this
case. The teacher-student model could thus be used by
practitioners to understand how far from optimality are
general purpose algorithms in cases where only very lim-
ited number of samples is available.

2. Physics results on multi-layer neural networks

Statistical physics analysis of learning and generaliza-
tion properties in deep neural networks is a challenging
task. Progress had been made in several complementary
directions.

One of the influential directions involved studies of lin-
ear deep neural networks. While linear neural networks
do not have the expressive power to represent generic
functions, the learning dynamics of the gradient descent
algorithm bears strong resemblance with the learning dy-
namics on non-linear networks. At the same time the dy-
namics of learning in deep linear neural networks can be
described via a closed form solution (Saxe et al., 2013).
The learning dynamics of linear neural networks is also
able to reproduce a range of facts about generalization
and over-fitting as observed numerically in non-linear
networks, see e.g. (Advani and Saxe, 2017).

Another special case that has been analyzed in great
detail is called the committee machine, for a review see
e.g. (Engel and Van den Broeck, 2001). Committee
machine is a fully-connected neural network learning a
teacher-rule on random input data with only the first
layer of weights being learned, while the subsequent ones
are fixed. The theory is restricted to the limit where
the number of hidden neurons k = O(1), while the di-
mensionality of the input p and the number of samples
n are both diverge, with n/p = α = O(1). Both the
stochastic gradient descent (aka online) learning (Saad
and Solla, 1995a,b) and the optimal batch-learning gener-
alization error can be analyzed in closed form in this case
(Schwarze, 1993). Recently the replica analysis of the op-

timal generalization properties has been established rig-
orously (Aubin et al., 2018). A key feature of the commit-
tee machine is that it displays the so-called specialization
phase transition. When the number of samples is small,
the optimal error is achieved by a weight-configuration
that is the same for every hidden unit, effectively im-
plementing simple regression. Only when the number
of hidden units exceeds the specialization threshold the
different hidden units learn different weights resulting in
improvement of the generalization error. Another inter-
esting observation about the committee machine is that
the hard phase where good generalization is achievable
information-theoretically but not tractably gets larger
as the number of hidden units grows. Committee ma-
chine was also used to analyzed the consequences of
over-parametrization in neural networks in (Goldt et al.,
2019a,b).

Another remarkable limit of two-layer neural networks
was analysed in a recent series of works (Mei et al., 2018;
Rotskoff and Vanden-Eijnden, 2018). In these works the
networks are analysed in the limit where the number of
hidden units is large, while the dimensionality of the in-
put is kept fixed. In this limit the weights interact only
weakly – leading to the term mean field – and their evo-
lution can be tracked via an ordinary differential equa-
tion analogous to those studied in glassy systems (Dean,
1996). A related, but different, treatment of the limit
when the hidden layers are large is based on lineariza-
tion of the dynamics around the initial condition leading
to relation with Gaussian processes and kernel methods,
see e.g. (Jacot et al., 2018; Lee et al., 2018)

3. Information Bottleneck

Information bottleneck (Tishby et al., 2000) is another
concept stemming in statistical physics that has been in-
fluential in the quest for understanding the theory be-
hind the success of deep learning. The theory of the in-
formation bottleneck for deep learning (Shwartz-Ziv and
Tishby, 2017; Tishby and Zaslavsky, 2015) aims to quan-
tify the notion that layers in a neural networks are trad-
ing off between keeping enough information about the
input so that the output labels can be predicted, while
forgetting as much of the unnecessary information as pos-
sible in order to keep the learned representation concise.

One of the interesting consequences of this informa-
tion theoretic analysis is that the traditional capacity, or
expressivity dimension of the network, such as the VC
dimension, is replaced by the exponent of the mutual in-
formation between the input and the compressed hid-
den layer representation. This implies that every bit of
representation compression is equivalent to doubling the
training data in its impact on the generalization error.

The analysis of (Shwartz-Ziv and Tishby, 2017) also
suggests that such representation compression is achieved
by Stochastic Gradient Descent (SGD) through diffusion
in the irrelevant dimensions of the problem. According to
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this, compression is achieved with any units nonlinearity
by reducing the SNR of the irrelevant dimensions, layer
by layer, through the diffusion of the weights. An intrigu-
ing prediction of this insight is that the time to converge
to good generalization scales like a negative power-law
of the number of layers. The theory also predicts a con-
nection between the hidden layers and the bifurcations,
or phase transitions, of the Information Bottleneck rep-
resentations.

While the mutual information of the internal represen-
tations is intrinsically hard to compute directly in large
neural networks, none of the above predictions depend
on explicit estimation of mutual information values.

A related line of work in statistical physics aims to pro-
vide reliable scalable approximations and models where
the mutual information is tractable. The mutual infor-
mation can be computed exactly in linear networks (Saxe
et al., 2018). It can be reliably approximated in models
of neural networks where after learning the matrices of
weights are close enough to rotationally invariant, this
is then exploited within the replica theory in order to
compute the desired mutual information (Gabrié et al.,
2018).

4. Landscapes and glassiness of deep learning

Training a deep neural network is usually done via
stochastic gradient descent (SGD) in the non-convex
landscape of a loss function. Statistical physics has long
experience in studies of complex energy landscapes and
and their relation to dynamical behaviour. Gradient de-
scent algorithms are closely related to the Langevin dy-
namics that is often considered in physics. Some physics-
inspired works (Choromanska et al., 2015) became pop-
ular but were somewhat naive in exploring this analogy.

Interesting insight on the relation between glassy dy-
namics and learning in deep neural networks is pre-
sented in (Baity-Jesi et al., 2018). In particular the role
of over-parameterization in making the landscape look
less glassy is highlighted and contrasted with the under-
parametrized networks.

Another intriguing line of work that relates learning in
neural networks to properties of landscapes is explored
in (Baldassi et al., 2016, 2015). This work is based on
realization that in the simple model of binary perceptron
learning dynamics ends in a part of the weight-space that
has many low-loss close-by configurations. It goes on
to suggest that learning favours these wide parts in the
space of weights, and argues that this might explain why
algorithms are attracted to wide local minima and why by
doing so their generalization properties improve. An in-
teresting spin-off of this theory is a variant of the stochas-
tic gradient descent algorithm suggested in (Chaudhari
et al., 2016).

E. Applications of ML in Statistical Physics

When a researcher in theoretical physics encounters
deep neural networks where the early layers are learn-
ing to represent the input data at a finer scale than the
later layers, she immediately thinks about renormaliza-
tion group as used in physics in order to extract macro-
scopic behaviour from microscopic rules. This analogy
was explored for instance in (Bény, 2013; Mehta and
Schwab, 2014). Analogies between renormalization group
and the principle component analysis were reported in
(Bradde and Bialek, 2017).

A natural idea is to use neural networks in order
to learn new renormalization schemes. First attempts
in this direction appeared in (Koch-Janusz and Ringel,
2018; Li and Wang, 2018). However, it remains to be
shown whether this can lead to new physical discoveries
in models that were not well understood previously.

Phase transitions are boundaries between different
phases of matter. They are usually determined using
order parameters. In some systems it is not a priori clear
how to determine the proper order parameter. A natu-
ral idea is that a neural networks may be able to learn
appropriate order parameters and locate the phase tran-
sition without a priori physical knowledge. This idea
was explored in (Carrasquilla and Melko, 2017; Morn-
ingstar and Melko, 2018; Tanaka and Tomiya, 2017a;
Van Nieuwenburg et al., 2017) in a range of models us-
ing configurations sampled uniformly from the model of
interest (obtained using Monte Carlo simulations) in dif-
ferent phases or at different temperatures and using su-
pervised learning in order to classify the configurations
to their phases. Extrapolating to configurations not used
in the training set plausibly leads to determination of the
phase transitions in the studied models. These general
guiding principles have been used in a large number of
applications to analyze both synthetic and experimental
data. Specific cases in the context of many-body quan-
tum physics are detailed in Section IV.C.

Detailed understanding of the limitations of these
methods in terms of identifying previously unknown or-
der parameters, as well as understanding whether they
can reliably distinguish between a true thermodynamic
phase transitions and a mere cross-over are yet to be
clarified. Experiments presented on the Ising model in
(Mehta et al., 2018) provide some preliminary thoughts
in that direction. Some underlying mechanisms are dis-
cussed in (Kashiwa et al., 2019). Kernel based learning
method for learning phases in frustrated magnetic mate-
rials that is more easily interpretable and able to identify
complex order parameters is introduced and studied in
(Greitemann et al., 2019; Liu et al., 2019).

Disordered and glassy solids where identifications of
the order parameter is particularly challenging were also
studied. In particular (Nussinov et al., 2016; Ronhovde
et al., 2011) use multi-scale network clustering meth-
ods to identify spatial and spatio-temporal structures in
glasses, (Cubuk et al., 2015) learn to identify structural
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flow defects, and (Schoenholz et al., 2017) argues to iden-
tify a parameter that captures the history dependence of
the disordered system.

In an ongoing effort to go beyond the limitations of
supervised learning to classify phases and identify phase
transitions, several direction towards unsupervised learn-
ing are begin explored. For instance, in (Wetzel, 2017)
for the Ising and XY model, in (Wang and Zhai, 2017,
2018) for frustrated spin systems. The work of (Mar-
tiniani et al., 2019) explores the direction of identifying
phases from simple compression of the underlying config-
urations.

Machine learning also provides exciting set of tools to
study, predict and control non-linear dynamical systems.
For instance (Pathak et al., 2018, 2017) used recurrent
neural networks called an echo state networks or reser-
voir computers (Jaeger and Haas, 2004) to predict the
trajectories of a chaotic dynamical system and of mod-
els used for weather prediction. The authors of (Reddy
et al., 2016, 2018) used reinforcement learning to teach
an autonomous glider to literally soar like a bird, using
thermals in the atmosphere.

F. Outlook and Challenges

The described methods of statistical physics are quite
powerful in dealing with high-dimensional data sets and
models. The largest difference between traditional learn-
ing theories and the theories coming from statistical
physics is that the later are often based on toy genera-
tive models of data. This leads to solvable models in the
sense that quantities of interest such as achievable errors
can be computed in a closed form, including constant
terms. This is in contrast with aims in the mainstream
learning theory that aims to provide worst case bounds
on error under general assumptions on the setting (data
structure, or architecture). These two approaches are
complementary and ideally will meet in the future once
we understand what are the key conditions under which
practical cases are close to worse cases, and what are the
right models of realistic data and functions.

The next challenge for the statistical physics approach
is to formulate and solve models that are in some kind of
universality class of the real settings of interest. Mean-
ing that they reproduce all important aspects of the be-
haviour that is observed in practical application of neural
networks. For this we need to model the input data no
longer as iid vectors, but for instance as outputs from
a generative neural network as in (Gabrié et al., 2018),
or as perceptual manifolds as in (Chung et al., 2018).
The teacher network that is producing the labels (in an
supervised setting) needs to model suitably the correla-
tion between the structure in the data and the label. We
need to find out how to analyze the (stochastic) gradient
descent algorithm and its relevant variants. Promising
works in this direction, that rely of the dynamic mean-
field theory of glasses are (Mannelli et al., 2018, 2019).

We need to generalize the existing methodology to multi-
layer networks with extensive width of hidden layers.

Going back to the direction of using machine learning
for physics, the full potential of ML in research of non-
linear dynamical systems and statistical physics is yet
to be uncovered. The above mentioned works certainly
provide an exciting appetizer.

III. PARTICLE PHYSICS AND COSMOLOGY

A diverse portfolio of on-going and planned experi-
ments is well poised to explore the universe from the
unimaginably small world of fundamental particles to the
awe inspiring scale of the universe. Experiments like the
Large Hadron Collider (LHC) and the Large Synoptic
Survey Telescope (LSST) deliver enormous amounts of
data to be compared to the predictions of specific the-
oretical models. Both areas have well established phys-
ical models that serve as null hypotheses: the standard
model of particle physics and ΛCDM cosmology, which
includes cold dark matter and a cosmological constant Λ.
Interestingly, most alternate hypotheses considered are
formulated in the same theoretical frameworks, namely
quantum field theory and general relativity. Despite such
sharp theoretical tools, the challenge is still daunting as
the expected deviations from the null are expected to be
incredibly tiny and revealing such subtle effects requires a
robust treatment of complex experimental apparatuses.
Complicating the statistical inference is that the most
high-fidelity predictions for the data do not come in the
from simple closed-form equations, but instead in com-
plex computer simulations.

Machine learning is making waves in particle physics
and cosmology as it offers a suit of techniques to confront
these challenges and a new perspective that motivates
bold new strategies. The excitement spans the theoreti-
cal and experimental aspects of these fields and includes
both applications with immediate impact as well as the
prospect of more transformational changes in the longer
term.

A. The role of the simulation

An important aspect of the use of machine learning
in particle physics and cosmology is the use of computer
simulations to generate samples of labeled training data
{Xµ, yµ}nµ=1. For example, when the target y refers to
a particle type, particular scattering process, or parame-
ter appearing in the fundamental theory, it can often be
specified directly in the simulation code so that the sim-
ulation directly samples X ∼ p(·|y). In other cases, the
simulation is not directly conditioned on y, but provides
samples (X,Z) ∼ p(·), where Z are latent variables that
describe what happened inside the simulation, but which
are not observable in an actual experiment. If the target
label can be computed from these latent variables via a
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function y(Z), then labeled training data {Xµ, y(Zµ)}nµ=1

can also be created from the simulation. The use of high-
fidelity simulations to generate labeled training data has
not only been the key to early successes of supervised
learning in these areas, but also the focus of research
addressing the shortcomings of this approach.

Particle physicists have developed a suite of high-
fidelity simulations that are hierarchically composed to
describe interactions across a huge range of length scales.
The components of these simulations include Feynman
diagrammatic perturbative expansion of quantum field
theory, phenomenological models for complex patterns
of radiation, and detailed models for interaction of par-
ticles with matter in the detector. While the resulting
simulation has high fidelity, the simulation itself has free
parameters to be tuned and number of residual uncer-
tainties in the simulation must be taken into account in
down-stream analysis tasks.

Similarly, cosmologists can simulate the evolution of
the universe at different length scales using general rel-
ativity and relevant non-gravitational effects of matter
and radiation that becomes increasingly important dur-
ing structure formation. There is a rich array of approxi-
mations that can be made in specific settings that provide
enormous speedups compared to the computationally ex-
pensive N -body simulations of billions of massive objects
that interact gravitationally, which become prohibitively
expensive once non-gravitational feedback effects are in-
cluded.

Cosmological simulations generally involve determin-
istic evolution of stochastic initial conditions due to pri-
mordial quantum fluctuations. The N -body simulations
are very expensive, so there are relatively few simula-
tions, but they cover a large space-time volume that is
statistically isotropic and homogeneous at large scales.
In contrast, particle physics simulations are stochastic
throughout from the initial high-energy scattering to the
low-energy interactions in the detector. Simulations for
high-energy collider experiments can run on commodity
hardware in a parallel manner, but the physics goals re-
quires enormous numbers of simulated collisions.

Because of the critical role of the simulation in these
fields, much of the recent research in machine learning is
related to simulation in one way or another. These goals
of these recent works are to:

• develop techniques that are more data efficient by
incorporating domain knowledge directly into the
machine learning models;

• incorporate the uncertainties in the simulation into
the training procedure;

• develop weakly supervised procedures that can be
applied to real data and do not rely on the simula-
tion;

• develop anomaly detection algorithms to find
anomalous features in the data without simulation
of a specific signal hypothesis;

• improve the tuning of the simulation, reweight or
adjust the simulated data to better match the real
data, or use machine learning to model residuals
between the simulation and the real data;

• learn fast neural network surrogates for the simula-
tion that can be used to quickly generate synthetic
data;

• develop approximate inference techniques that
make efficiently use of the simulation; and

• learn fast neural network surrogates that can be
used directly for statistical inference.

B. Classification and regression in particle physics

Machine learning techniques have been used for
decades in experimental particle physics to aid particle
identification and event selection, which can be seen as
classification tasks. Machine learning has also been used
for reconstruction, which can be seen as a regression
task. Supervised learning is used to train a predictive
model based on large number of labeled training samples
{Xµ, yµ}nµ=1, where X denotes the input data and y the
target label. In the case of particle identification, the in-
put features X characterize localized energy deposits in
the detector and the label y refers to one of a few particle
species (e.g. electron, photon, pion, etc.). In the recon-
struction task, the same type of sensor data X are used,
but the target label y refers to the energy or momen-
tum of the particle responsible for those energy deposits.
These algorithms are applied to the bulk data processing
of the LHC data.

Event selection, refers to the task of selecting a small
subset of the collisions that are most relevant for a tar-
geted analysis task. For instance, in the search for the
Higgs boson, supersymmetry, and dark matter data an-
alysts must select a small subset of the LHC data that
is consistent with the features of these hypothetical "sig-
nal" processes. Typically these event selection require-
ments are also satisfied by so-called "background" pro-
cesses that mimic the features of the signal either due
to experimental limitations or fundamental quantum me-
chanical effects. Searches in their simplest form reduce to
comparing the number of events in the data that satisfy
these requirements to the predictions of a background-
only null hypothesis and signal-plus-background alter-
nate hypothesis. Thus, the more effective the event selec-
tion requirements are at rejecting background processes
and accept signal processes, the more powerful the re-
sulting statistical analysis will be. Within high-energy
physics, machine learning classification techniques have
traditionally been referred to as multivariate analysis to
emphasize the contrast to traditional techniques based
on simple thresholding (or “cuts”) applied to carefully se-
lected or engineered features.
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In the 1990s and early 2000s simple feed-forward neu-
ral networks were commonly used for these tasks. Neu-
ral networks were largely displaced by Boosted Decision
Trees (BDTs) as the go-to for classification and regres-
sion tasks for more than a decade (Breiman et al., 1984;
Freund and Schapire, 1997; Roe et al., 2005). Starting
around 2014, techniques based on deep learning emerged
and were demonstrated to be significantly more powerful
in several applications (for a recent review of the history,
see Refs. (Guest et al., 2018; Radovic et al., 2018)).

Deep learning was first used for an event-selection task
targeting hypothesized particles from theories beyond the
standard model. It not only out-performed boosted deci-
sion trees, but also did not require engineered features to
achieve this impressive performance (Baldi et al., 2014).
In this proof-of-concept work, the network was a deep
multi-layer perceptron trained with a very large train-
ing set using a simplified detector setup. Shortly after,
the idea of a parametrized classifier was introduced in
which the concept of a binary classifier was extended to
a situation where the y = 1 signal hypothesis is lifted
to a composite hypothesis that is parameterized continu-
ously, for instance, in terms of the mass of a hypothesized
particle (Baldi et al., 2016b).

1. Jet Physics

The most copious interactions at hadron colliders such
as the LHC produce high energy quarks and gluons in
the final state. These quarks and gluons radiate more
quarks and gluons that eventually combine into color-
neutral composite particles due to the phenomena of con-
finement. The resulting collimated spray of mesons and
baryons that strike the detector is collectively referred to
as a jet. Developing a useful characterization of the struc-
ture of a jet that are theoretically robust and that can be
used to test the predictions of quantum chromodynam-
ics (QCD) has been an active area of particle physics
research for decades. Furthermore, many scenarios for
physics Beyond the Standard Model predict the produc-
tion of particles that decay into two or more jets. If
those unstable particles are produced with a large mo-
mentum, then the resulting jets are boosted such that
the jets overlap into a single fat jet with nontrivial sub-
structure. Classifying these boosted or fat jets from the
much more copiously produced jets from standard model
processes involving quarks and gluons is an area that can
significantly improve the physics reach of the LHC. More
generally, identifying the progenitor for a jet is a classifi-
cation task that is often referred to as jet tagging.

Shortly after the first applications of deep learning
for event selection, deep convolutional networks were
used for the purpose of jet tagging, where the low-level
detector data lends itself to an image-like representa-
tion (Baldi et al., 2016a; de Oliveira et al., 2016). While
machine learning techniques have been used within par-
ticle physics for decades, the practice has always been re-

stricted to input features X with a fixed dimensionality.
One challenge in jet physics is that the natural represen-
tation of the data is in terms of particles, and the number
of particles associated to a jet varies. The first applica-
tion of a recurrent neural network in particle physics was
in the context of flavor tagging (Guest et al., 2016). More
recently, there has been an explosion of research into the
use of different network architectures including recurrent
networks operating on sequences, trees, and graphs (see
Ref. (Larkoski et al., 2017) for a recent review for jet
physics). This includes hybrid approaches that leverage
domain knowledge in the design of the architecture. For
example, motivated by techniques in natural language
processing, recursive networks were designed that oper-
ate over tree-structures created from a class of jet clus-
tering algorithms (Louppe et al., 2017a). Similarly, net-
works have been developed motivated by invariance to
permutations on the particles presented to the network
and stability to details of the radiation pattern of parti-
cles, (Komiske et al., 2018b, 2019). Recently, compar-
isons of the different approaches for specific benchmark
problems have been organized (Kasieczka et al., 2019).

In addition to classification and regression, machine
learning techniques have been used for density estima-
tion and modeling smooth spectra where an analytical
form is not well motivated and the simulation has sig-
nificant uncertainties (Frate et al., 2017). The work also
allows one to model alternative signal hypotheses with a
diffuse prior instead of a specific concrete physical model.
More abstractly, the Gaussian process in this work is be-
ing used to model the intensity of inhomogeneous Pois-
son point process, which is a scenario that is found in
particle physics, astrophysics, and cosmology. One in-
teresting aspect of this line of work is that the Gaussian
process kernels can be constructed using compositional
rules that correspond clearly to the causal model physi-
cists intuitively use to describe the observation, which
aids in interpretability (Duvenaud et al., 2013).

2. Neutrino physics

Neutrinos interact very feebly with matter, thus the
experiments require large detector volumes to achieve
appreciable interaction rates. Different types of inter-
actions, whether they come from different species of neu-
trinos or background cosmic ray processes, leave different
patterns of localized energy deposits in the detector vol-
ume. The detector volume is homogeneous, which moti-
vates the use of convolutional neural networks.

The first application of a deep convolutional network
in the analysis of data from a particle physics experi-
ment was in the context of the NOνA experiment, which
uses scintillating mineral oil. Interactions in NOνA lead
to the production of light, which is imaged from two
different vantage points. NOνA developed a convolu-
tional network that simultaneously processed these two
images (Aurisano et al., 2016). Their network improves
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the efficiency (true positive rate) of selecting electron
neutrinos by 40% for the same purity. This network has
been used in searches for the appearance of electron neu-
trinos and for the hypothetical sterile neutrino.

Similarly, the MicroBooNE experiment detects neutri-
nos created at Fermilab. It uses 170 ton liquid-argon time
projection chamber. Charged particles ionize the liquid
argon and the ionization electrons drift through the vol-
ume to three wire planes. The resulting data is processed
and represented by a 33-megapixel image, which is domi-
nantly populated with noise and only very sparsely popu-
lated with legitimate energy deposits. The MicroBooNE
collaboration used a FasterRCNN (Ren et al., 2015) to
identify and localize neutrino interactions with bounding
boxes (Acciarri et al., 2017). This success is important
for future neutrino experiments based on liquid-argon
time projection chambers, such as the Deep Underground
Neutrino Experiment (DUNE).

In addition to the relatively low energy neutrinos pro-
duced at accelerator facilities, machine learning has also
been used to study high-energy neutrinos with the Ice-
Cube observatory located at the south pole. In partic-
ular, 3D convolutional and graph neural networks have
been applied to a signal classification problem. In the lat-
ter approach, the detector array is modeled as a graph,
where vertices are sensors and edges are a learned func-
tion of the sensors’ spatial coordinates. The graph neu-
ral network was found to outperform both a traditional-
physics-based method as well as classical 3D convolu-
tional neural network (Choma et al., 2018).

3. Robustness to systematic uncertainties

Experimental particle physicists are keenly aware that
the simulation, while incredibly accurate, is not perfect.
As a result, the community has developed a number of
strategies falling roughly in two broad classes. The first
involves incorporating the effect of mis-modeling when
the simulation is used for training. This involves either
propagating the underlying sources of uncertainty (e. g.
calibrations, detector response, the quark and gluon com-
position of the proton, and the impact of higher-order
corrections from perturbation theory, etc.) through the
simulation and analysis chain. For each of these sources
of uncertainty, a nuisance parameter ν is included, and
the resulting statistical model p(X|y, ν) is parameterized
by these nuisance parameters. In addition, the likeli-
hood function for the data is augmented with a term p(ν)
representing the uncertainty in these sources of uncer-
tainty, as in the case of a penalized maximum likelihood
analysis. In the context of machine learning, classifiers
and regressors are typically trained using data generated
from a nominal simulation ν = ν0, yielding a predictive
model f(X|ν0). Treating this predictive model as fixed,
it is possible to propagate the uncertainty in ν through
f(X|ν0) using the model p(X|y, ν)p(ν). However, the
down-stream statistical analysis based on this approach

is not optimal since the predictive model was not trained
taking into account the uncertainty on ν.

In machine learning literature, this situation is often
referred to as covariate shift between two domains rep-
resented by the training distribution ν0 and the target
distribution ν. Various techniques for domain adap-
tation exist to train classifiers that are robust to this
change, but they tend to be restricted to binary do-
mains ν ∈ {train, target}. To address this problem, an
adversarial training technique was developed that ex-
tends domain adaptation to domains parametrized by
ν ∈ Rq (Louppe et al., 2016). The adversarial ap-
proach encourages the network to learn a pivotal quan-
tity, where p(f(X)|y, ν) is independent of ν, or equiv-
alently p(f(X), ν|y) = p(f(X)|y)p(ν). This adversarial
approach has also been used in the context of algorithmic
fairness, where one desires to train a classifiers or regres-
sor that is independent of (or decorrelated with) spe-
cific continuous attributes or observable quantities. For
instance, in jet physics one often would like a jet tag-
ger that is independent of the jet invariant mass (Shim-
min et al., 2017). Previously, a different algorithm called
uboost was developed to achieve similar goals for boosted
decision trees (Rogozhnikov et al., 2015; Stevens and
Williams, 2013).

The second general strategy used within particle
physics to cope with systematic mis-modeling in the sim-
ulation is to avoid using the simulation for modeling the
distribution p(X|y). In what follows, let R denote an
index over various subsets of the data satisfying cor-
responding selection requirements. Various data-driven
strategies have been developed to relate distributions of
the data in control regions, p(X|y,R = 0), to distribu-
tions in regions of interest, p(X|y,R = 1). These rela-
tionships also involve the simulation, but the art of this
approach is to base those relationships on aspects of the
simulation that are considered robust. The simplest ex-
ample is estimating the distribution p(X|y,R = 1) for
a specific process y by identifying a subset of the data
R = 0 that is dominated by y and p(y|R = 0) ≈ 1. This
is an extreme situation that is limited in applicability.

Recently, weakly supervised techniques have been
developed that only involve identifying regions where
only the class proportions are known or assuming that
the relative probabilities p(y|R) are not linearly depen-
dent (Komiske et al., 2018a; Metodiev et al., 2017) . The
techniques also assume that the distributions p(X|y,R)
are independent of R, which is reasonable in some con-
texts and questionable in others. The approach has been
used to train jet taggers that discriminate between quarks
and gluons, which is an area where the fidelity of the
simulation is no longer adequate and the assumptions
for this method are reasonable. This weakly-supervised,
data-driven approach is a major development for machine
learning for particle physics, though it is limited to a sub-
set of problems. For example, this approach is not ap-
plicable if one of the target categories y corresponds to a
hypothetical particle that may not exist or be present in
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the data.

4. Triggering

Enormous amounts of data must be collected by col-
lider experiments such as the LHC, because the phenom-
ena being targeted are exceedingly rare. The bulk of the
collisions involve phenomena that have previously been
studied and characterized, and the data volume asso-
ciated with the full data stream is impractically large.
As a result, collider experiments use a real-time data-
reduction system referred to as a trigger. The trigger
makes the critical decision of which events to keep for
future analysis and which events to discard. The AT-
LAS and CMS experiments retain only about 1 out of
every 100,000 events. Machine learning techniques are
used to various degrees in these systems. Essentially, the
same particle identification (classification) tasks appears
in this context, though the computational demands and
performance in terms of false positives and negatives are
different in the real-time environment.

The LHCb experiment has been a leader in using ma-
chine learning techniques in the trigger. Roughly 70%
of the data selected by the LHC trigger is selected by
machine learning algorithms. Initially, the experiment
used a boosted decision tree for this purpose (Gligorov
and Williams, 2013), which was later replaced by the Ma-
trixNet algorithm developed by Yandex (Likhomanenko
et al., 2015).

The Trigger systems often use specialized hardware
and firmware, such as field-programmable gate arrays
(FPGAs). Recently, tools have been developed to
streamline the compilation of machine learning models
for FPGAs to target the requirements of these real-time
triggering systems (Duarte et al., 2018; Tsaris et al.,
2018).

5. Theoretical particle physics

While the bulk of machine learning in particle physics
and cosmology are focused on analysis of observational
data, there are also examples of using machine learning
as a tool in theoretical physics. For instance, machine
learning has been used to characterize the landscape of
string theories (Carifio et al., 2017), to identify the phase
transitions of quantum chromodynamics (QCD) (Pang
et al., 2018), and to study the the AdS/CFT correspon-
dence (Hashimoto et al., 2018a,b). Some of this work is
more closely connected to the use of machine learning as a
tool in condensed matter or many-body quantum physics.
Specifically, deep learning has been used in the context
of lattice QCD (LQCD). In an exploratory work in this
direction, deep neural networks were used to predict the
parameters in the QCD Lagrangian from lattice config-
urations (Shanahan et al., 2018). This is needed for a
number of multi-scale action-matching approaches, which

aim to improve the efficiency of the computationally in-
tensive LQCD calculations. This problem was setup as a
regression task, and one of the challenges is that there are
relatively few training examples. Additionally, machine
learning techniques are being used to reduce the auto-
correlation time in the Markov Chains (Albergo et al.,
2019; Tanaka and Tomiya, 2017b) In order to solve this
task with few training examples it is important to lever-
age the known space-time and local gauge symmetries
in the lattice data. Data augmentation is not a scalable
solution given the richness of the symmetries. Instead
the authors performed feature engineering that imposed
gauge symmetry and space-time translational invariance.
While this approach proved effective, it would be desir-
able to consider a richer class of networks, that are equiv-
ariant (or covariant) to the symmetries in the data (such
approaches are discussed in Sec. III.F). A continuation
of this work is being supported by the Argon Leadership
Computing Facility. The a new Intel-Cray system Au-
rora, will be capable of over 1 exaflops and specifically
is aiming at problems that combine traditional high per-
formance computing with modern machine learning tech-
niques.

C. Classification and regression in cosmology

1. Photometric Redshift

Due to the expansion of the universe the distant lu-
minous objects are redshifted, and the distance-redshift
relation is a fundamental component of observational cos-
mology. Very precise redshift estimates can be obtained
through spectroscopy; however, such spectroscopic sur-
veys are expensive and time consuming. Photometric
surveys based on broadband photometry or imaging in a
few color bands give a coarse approximation to the spec-
tral energy distribution. Photometric redshift refers to
the regression task of estimating redshifts from photo-
metric data. In this case, the ground truth training data
comes from precise spectroscopic surveys.

The traditional approaches to photometric redshift is
based on template fitting methods (Benítez, 2000; Bram-
mer et al., 2008; Feldmann et al., 2006). For more than
a decade cosmologists have also used machine learning
methods based on neural networks and boosted decision
trees for photometric redshift (Carrasco Kind and Brun-
ner, 2013; Collister and Lahav, 2004; Firth et al., 2003).
One interesting aspect of this body of work is the effort
that has been placed to go beyond a point estimate for
the redshift. Various approaches exist to determine the
uncertainty on the redshift estimate and to obtain a pos-
terior distribution.

While the training data are not generated from a sim-
ulation, there is still a concern that the distribution of
the training data may not be representative of the distri-
bution of data that the models will be applied to. This
type of covariate shift results from various selection ef-
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fects in the spectroscopic survey and subtleties in the
photometric surveys. The Dark Energy Survey consid-
ered a number of these approaches and established a
validation process to evaluate them critically (Bonnett
et al., 2016). Recently there has been work to use hi-
erarchical models to build in additional causal structure
in the models to be robust to these differences. In the
language of machine learning, these new models aid in
transfer learning and domain adaptation. The hierar-
chical models also aim to combine the interpretability of
traditional template fitting approaches and the flexibility
of the machine learning models (Leistedt et al., 2018).

2. Gravitational lens finding and parameter estimation

One of the most striking effects of general relativity
is gravitatioanl lensing, in which a massive foreground
object warps the image of a background object. Strong
gravitational lensing occurs, for example, when a mas-
sive foreground galaxy is nearly coincident on the sky
with a background source. These events are a powerful
probe of the dark matter distribution of massive galaxies
and can provide valuable cosmological constraints. How-
ever, these systems are rare, thus a scalable and reli-
able lens finding system is essential to cope with large
surveys such as LSST, Euclid, and WFIRST. Simple
feedfoward, convolutional and residual neural networks
(ResNets) have been applied to this supervised classi-
fication problem (Estrada et al., 2007; Lanusse et al.,
2018; Marshall et al., 2009). In this setting, the train-
ing data came from simulation using PICS (Pipeline for
Images of Cosmological Strong) lensing (Li et al., 2016)
for the strong lensing ray-tracing and LensPop (Collett,
2015) for mock LSST observing. Once identified, charac-
terizing the lensing object through maximum likelihood
estimation is a computationally intensive non-linear op-
timization task. Recently, convolutional networks have
been used to quickly estimate the parameters of the Sin-
gular Isothermal Ellipsoid density profile, commonly used
to model strong lensing systems (Hezaveh et al., 2017).

3. Other examples

In addition to the examples above, in which the ground
truth for an object is relatively unambiguous with a more
labor-intensive approach, cosmologists are also leveraging
machine learning to infer quantities that involve unob-
servable latent processes or the parameters of the funda-
mental cosmological model.

For example, 3D convolutional networks have been
trained to predict fundamental cosmological parameters
based on the dark matter spatial distribution (Ravan-
bakhsh et al., 2017) (see Fig. 1). In this proof-of-concept
work, the networks were trained using computationally
intensive N -body simulations for the evolution of dark
matter in the universe assuming specific values for the 10

parameters in the standard ΛCDM cosmology model. In
real applications of this technique to visible matter, one
would need to model the bias and variance of the visible
tracers with respect to the underlying dark matter distri-
bution. In order to close this gap, convolutional networks
have been trained to learn a fast mapping between the
dark matter and visible galaxies (Zhang et al., 2019), al-
lowing for a trade-off between simulation accuracy and
computational cost. One challenge of this work, which
is common to applications in solid state physics, lattice
field theory, and many body quantum systems, is that
the simulations are computationally expensive and thus
there are relatively few statistically independent realiza-
tions of the large simulations Xµ. As deep learning tends
to require large labeled training data-sets, various types
of subsampling and data augmentation approaches have
been explored to ameliorate the situation. An alternative
approach to subsampling is the so-called Backdrop, which
provides stochastic gradients of the loss function even on
individual samples by introducing a stochastic masking
in the backpropagation pipeline (Golkar and Cranmer,
2018).

Inference on the fundamental cosmological model also
appears in a classification setting. In particular, mod-
ified gravity models with massive neutrinos can mimic
the predictions for weak-lensing observables predicted by
the standard ΛCDM model. The degeneracies that exist
when restricting the Xµ to second-order statistics can be
broken by incorporating higher-order statistics or other
rich representations of the weak lensing signal. In par-
ticular, the authors of (Peel et al., 2018) constructed a
novel representation of the wavelet decomposition of the
weak lensing signal as input to a convolutional network.
The resulting approach was able to discriminate between
previously degenerate models with 83%–100% accuracy.

Deep learning has also been used to estimate the mass
of galaxy clusters, which are the largest gravitationally
bound structures in the universe and a powerful cosmo-
logical probe. Much of the mass of these galaxy clusters
comes in the form of dark matter, which is not directly
observable. Galaxy cluster masses can be estimated via
gravitational lensing, X-ray observations of the intra-
cluster medium, or through dynamical analysis of the
cluster’s galaxies. The first use of machine learning for
a dynamical cluster mass estimate was performed using
Support Distribution Machines (Póczos et al., 2012) on
a dark-matter-only simulation (Ntampaka et al., 2015,
2016). A number of non-neural network algorithms in-
cluding Gaussian process regression (kernel ridge regres-
sion), support vector machines, gradient boosted tree re-
gressors, and others have been applied to this problem
using the MACSIS simulations (Henson et al., 2016) for
training data. This simulation goes beyond the dark-
matter-only simulations and incorporates the impact of
various astrophysical processes and allows for the devel-
opment of a realistic processing pipeline that can be ap-
plied to observational data. The need for an accurate,
automated mass estimation pipeline is motivated by large
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Abstract
A grand challenge of the 21st century cosmol-
ogy is to accurately estimate the cosmological
parameters of our Universe. A major approach
in estimating the cosmological parameters is to
use the large scale matter distribution of the Uni-
verse. Galaxy surveys provide the means to map
out cosmic large-scale structure in three dimen-
sions. Information about galaxy locations is typ-
ically summarized in a “single” function of scale,
such as the galaxy correlation function or power-
spectrum. We show that it is possible to estimate
these cosmological parameters directly from the
distribution of matter. This paper presents the
application of deep 3D convolutional networks
to volumetric representation of dark-matter sim-
ulations as well as the results obtained using a
recently proposed distribution regression frame-
work, showing that machine learning techniques
are comparable to, and can sometimes outper-
form, maximum-likelihood point estimates using
“cosmological models”. This opens the way to
estimating the parameters of our Universe with
higher accuracy.

1. Introduction
The 21st century has brought us tools and methods to ob-
serve and analyze the Universe in far greater detail than
before, allowing us to deeply probe the fundamental prop-
erties of cosmology. We have a suite of cosmological ob-

Proceedings of the 33 rd International Conference on Machine
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Figure 1. Dark matter distribution in three cubes produced using
different sets of parameters. Each cube is divided into small sub-
cubes for training and prediction. Note that although cubes in
this figure are produced using very different cosmological param-
eters in our constrained sampled set, the effect is not visually dis-
cernible.

servations that allow us to make serious inroads to the un-
derstanding of our own universe, including the cosmic mi-
crowave background (CMB) (Planck Collaboration et al.,
2015; Hinshaw et al., 2013), supernovae (Perlmutter et al.,
1999; Riess et al., 1998) and the large scale structure of
galaxies and galaxy clusters (Cole et al., 2005; Anderson
et al., 2014; Parkinson et al., 2012). In particular, large
scale structure involves measuring the positions and other
properties of bright sources in great volumes of the sky.
The amount of information is overwhelming, and modern
methods in machine learning and statistics can play an in-
creasingly important role in modern cosmology. For ex-
ample, the common method to compare large scale struc-
ture observation and theory is to compare the compressed
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Figure 1 Dark matter distribution in three cubes produced using different sets of parameters. Each cube is divided into small
sub- cubes for training and prediction. Note that although cubes in this figure are produced using very different cosmological
parameters in our constrained sampled set, the effect is not visually discernible. Reproduced from (Ravanbakhsh et al., 2017).

surveys such as eBOSS, DESI, eROSITA, SPT-3G, Act-
Pol, and Euclid. The authors found that compared to
the traditional σ−M relation the predicted-to-true mass
ratio using machine learning techniques is reduced by a
factor of 4 (Armitage et al., 2019). Most recently, convo-
lutional neural networks have been used to mitigate sys-
tematics in the virial scaling relation, further improving
dynamical mass estimates (Ho et al., 2019). Convolu-
tional neural networks have also been used to estimate
cluster masses with synthetic (mock) X-ray observations
of galaxy clusters, where the authors find the scatter in
the predicted mass is reduced compared to traditional X-
ray luminosity based methods (Ntampaka et al., 2018).

D. Inverse Problems and Likelihood-free inference

As stressed repeatedly, both particle physics and cos-
mology are characterized by well motivated, high-fidelity
forward simulations. These forward simulations are ei-
ther intrinsically stochastic – as in the case of the proba-
bilistic decays and interactions found in particles physics
simulations – or they are deterministic – as in the case
of gravitational lensing or N-body gravitational simula-
tions. However, even deterministic physics simulators
usually are followed by a probabilistic description of the
observation based on Poisson counts or a model for in-
strumental noise. In both cases, one can consider the sim-
ulation as implicitly defining the distribution p(X,Z|y),
where X refers to the observed data, Z are unobserved
latent variables that take on random values inside the
simulation, and y are parameters of the forward model
such as coefficients in a Lagrangian or the 10 parameters
of ΛCDM cosmology. Many scientific tasks can be char-
acterized as inverse problems where one wishes to infer

Z or y from X = x. The simplest cases that we have
considered are classification where y takes on categorical
values and regression where y ∈ Rd. The point estimates
ŷ(X = x) and Ẑ(X = x) are useful, but in scientific ap-
plications we often require uncertainty on the estimate.

In many cases, the solution to the inverse problem is
ill-posed, in the sense that small changes in X lead to
large changes in the estimate. This implies the estimator
will have high variance. In some cases the forward model
is equivalent to a linear operator and the maximum like-
lihood estimate ŷMLE(X) or ẐMLE(X) can be expressed
as a matrix inversion. In that case, the instability of the
inverse is related to the matrix for the forward model
being poorly conditioned. While the maximum likeli-
hood estimate may be unbiased, it tends to be high vari-
ance. Penalized maximum likelihood, ridge regression
(Tikhonov regularization), and Gaussian process regres-
sion are closely related approaches to the bias-variance
trade-off.

Within particle physics, this type of problem is often
referred to as unfolding. In that case, one is often inter-
ested in the distribution of some kinematic property of
the collisions prior to the detector effects, and X repre-
sents a smeared version of this quantity after folding in
the detector effects. Similarly, estimating the parton den-
sity functions that describe quarks and gluons inside the
proton can be cast as an inverse problem of this sort (Ball
et al., 2015; Forte et al., 2002). Recently, both neural net-
works and Gaussian processes with more sophisticated,
physically inspired kernels have been applied to these
problems (Bozson et al., 2018; Frate et al., 2017). In the
context of cosmology, an example inverse problem is to
denoise the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO) time series to the underlying waveform
from a gravitational wave (Shen et al., 2019). Generative
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Adversarial Networks (GANs) have even been used in the
context of inverse problems where they were used to de-
noise and recover images of galaxies beyond naive decon-
volution limits (Schawinski et al., 2017). Another exam-
ple involves estimating the image of a background object
prior to being gravitationally lensed by a foreground ob-
ject. In this case, describing a physically motivated prior
for the background object is difficult. Recently, recurrent
inference machines (Putzky and Welling, 2017) have been
introduced as way to implicitly learn a prior for such in-
verse problems, and they have successfully been applied
to strong gravitational lensing (Morningstar et al., 2018,
2019).

A more ambitious approach to inverse problems in-
volves providing detailed probabilistic characterization of
y given X. In the frequentist paradigm one would aim to
characterize the likelihood function L(y) = p(X = x|y),
while in a Bayesian formalism one would wish to charac-
terize the posterior p(y|X = x) ∝ p(X = x|y)p(y). The
analogous situation happens for inference of latent vari-
ables Z given X. Both particle physics and cosmology
have well-developed approaches to statistical inference
based on detailed modeling of the likelihood, Markov
Chain Monte Carlo (MCMC) (Foreman-Mackey et al.,
2013), Hamiltonian Monte Carlo, and variational infer-
ence (Jain et al., 2018; Lang et al., 2016; Regier et al.,
2018). However, all of these approaches require that the
likelihood function is tractable.

1. Likelihood-free Inference

Somewhat surprisingly, the probability density, or like-
lihood, p(X = x|y) that is implicitly defined by the sim-
ulator is often intractable. Symbolically, the probability
density can be written p(X|y) =

∫
p(X,Z|y)dZ, where Z

are the latent variables of the simulation. The latent
space of state-of-the-art simulations is enormous and
highly structured, so this integral cannot be performed
analytically. In simulations of a single collision at the
LHC, Z may have hundreds of millions of components. In
practice, the simulations are often based on Monte Carlo
techniques and generate samples (Xµ, Zµ) ∼ p(X,Z|y)
from which the density can be estimated. The challenge
is that if X is high-dimensional it is difficult to accurately
estimate those densities. For example, naive histogram-
based approaches do not scale to high dimensions and
kernel density estimation techniques are only trustwor-
thy to around 5-dimensions. Adding to the challenge is
that the distributions have a large dynamic range, and
the interesting physics often sits in the tails of the distri-
butions.

The intractability of the likelihood implicitly defined
by the simulations is a foundational problem not only
for particle physics and cosmology, but many other areas
of science as well including epidemiology and phyloge-
netics. This has motivated the development of so-called
likelihood-free inference algorithms, which only require

the ability to generate samples from the simulation in
the forward mode.

One prominent technique, is Approximate Bayesian
Computation (ABC). In ABC one performs Bayesian in-
ference using MCMC or a rejection sampling approach
in which the likelihood is approximated by the proba-
bility p(ρ(X,x) < ε), where x is the observed data to
be conditioned on, ρ(x′, x) is some distance metric be-
tween x and the output of the simulator x′, and ε is
a tolerance parameter. As ε → 0, one recovers exact
Bayesian inference; however, the efficiency of the proce-
dure vanishes. One of the challenges for ABC, particu-
larly for high-dimensional x, is the specification of the
distance measure ρ(x′, x) that maintains reasonable ac-
ceptance efficiency without degrading the quality of the
inference (Beaumont et al., 2002; Marin et al., 2012; Mar-
joram et al., 2003; Sisson and Fan, 2011; Sisson et al.,
2007). This approach to estimating the likelihood is quite
similar to the traditional practice in particle physics of
using histograms or kernel density estimation to approx-
imate p̂(x|y) ≈ p(x|y). In both cases, domain knowledge
is required to identify useful summary in order to reduce
the dimensionality of the data. An interesting exten-
sion of the ABC technique utilizes universal probabilistic
programming. In particular, a technique known as infer-
ence compilation is a sophisticated form of importance
sampling in which a neural network controls the random
number generation in the probabilistic program to bias
the simulation to produce outputs x′ closer to the ob-
served x (Le et al., 2017).

The term ABC is often used synonymously with the
more general term likelihood-free inference; however,
there are a number of other approaches that involve
learning an approximate likelihood or likelihood ratio
that is used as a surrogate for the intractable likelihood
(ratio). For example, neural density estimation with
autoregressive models and normalizing flows (Larochelle
and Murray, 2011; Papamakarios et al., 2017; Rezende
and Mohamed, 2015) have been used for this purpose
and scale to higher dimensional data (Cranmer and
Louppe, 2016; Papamakarios et al., 2018). Alternatively,
training a classifier to discriminate between x ∼ p(x|y)
and x ∼ p(x|y′) can be used to estimate the likeli-
hood ratio r̂(x|y, y′) ≈ p(x|y)/p(x|y′), which can be
used for inference in either the frequentist or Bayesian
paradigm (Brehmer et al., 2018c; Cranmer et al., 2015;
Hermans et al., 2019).

2. Examples in particle physics

Thousands of published results within particle physics,
including the discovery of the Higgs boson, involve statis-
tical inference based on a surrogate likelihood p̂(x|y) con-
structed with density estimation techniques applied to
synthetic datasets generated from the simulation. These
typically are restricted to one- or two-dimensional sum-
mary statistics or no features at all other than the num-
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Figure 2 A schematic of machine learning based approaches to likelihood-free inference in which the simulation provides training
data for a neural network that is subsequently used as a surrogate for the intractable likelihood during inference. Reproduced
from (Brehmer et al., 2018b).

ber of events observed. While the term likelihood-free
inference is relatively new, it is core to the methodology
of experimental particle physics.

More recently, a suite of likelihood-free inference tech-
niques based on neural networks have been developed
and applied to models for physics beyond the stan-
dard model expressed in terms of effective field theory
(EFT) (Brehmer et al., 2018a,b). EFTs provide a sys-
tematic expansion of the theory around the standard
model that is parametrized by coefficients for quantum
mechanical operators, which play the role of y in this
setting. One interesting observation in this work is that
even though the likelihood and likelihood ratio are in-
tractable, the joint likelihood ratio r(x, z|y, y′) and the
joint score t(x, z|y) = ∇y log p(x, z|y) are tractable and
can be used to augment the training data (see Fig. 2)
and dramatically improve the sample efficiency of these
techniques (Brehmer et al., 2018c).

In addition, an inference compilation technique has
been applied to inference of a tau-lepton decay. This
proof-of-concept effort required developing probabilistic
programming protocol that can be integrated into exist-
ing domain-specific simulation codes such as SHERPA and
GEANT4 (Baydin et al., 2018; Casado et al., 2017). This
approach provides Bayesian inference on the latent vari-
ables p(Z|X = x) and deep interpretability as the pos-
terior corresponds to a distribution over complete stack-
traces of the simulation, allowing any aspect of the sim-
ulation to be inspected probabilistically.

Another technique for likelihood-free inference that
was motivated by the challenges of particle physics
is known as adversarial variational optimization
(AVO) (Louppe et al., 2017b). AVO parallels generative
adversarial networks, where the generative model is no
longer a neural network, but instead the domain-specific
simulation. Instead of optimizing the parameters of
the network, the goal is to optimize the parameters
of the simulation so that the generated data matches

the target data distribution. The main challenge is
that, unlike neural networks, most scientific simulators
are not differentiable. To get around this problem,
a variational optimization technique is used, which
provides a differentiable surrogate loss function. This
technique is being investigated for tuning the parameters
of the simulation, which is a computationally intensive
task in which Bayesian optimization has also recently
been used (Ilten et al., 2017).

3. Examples in Cosmology

Within Cosmology, early uses of ABC include con-
straining thick disk formation scenario of the Milky
Way (Robin et al., 2014) and inferences on rate of
morphological transformation of galaxies at high red-
shift (Cameron and Pettitt, 2012), which aimed to track
the Hubble parameter evolution from type Ia supernova
measurements. These experiences motivated the devel-
opment of tools such as CosmoABC to streamline the ap-
plication of the methodology in cosmological applica-
tions (Ishida et al., 2015).

More recently, likelihood-free inference methods based
on machine learning have also been developed motivated
by the experiences in cosmology. To confront the chal-
lenges of ABC for high-dimensional observations X, a
data compression strategy was developed that learns
summary statistics, that maximize the Fisher informa-
tion on the parameters (Alsing et al., 2018; Charnock
et al., 2018). The learned summary statistics approxi-
mate the sufficient statistics for the implicit likelihood in
a small neighborhood of some nominal or fiducial param-
eter value. This approach is closely connected to that
of (Brehmer et al., 2018c). Recently, these approaches
have been extended to learn summary statistics that are
robust to systematic uncertainties (Alsing and Wandelt,
2019).
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E. Generative Models

An active area in machine learning research involves
using unsupervised learning to train a generative model
to produce a distribution that matches some empirical
distribution. This includes generative adversarial net-
works (GANs) (Goodfellow et al., 2014), variational au-
toencoders (VAEs) (Kingma and Welling, 2013; Rezende
et al., 2014), autoregressive models, and models based
on normalizing flows (Larochelle and Murray, 2011; Pa-
pamakarios et al., 2017; Rezende and Mohamed, 2015).

Interestingly, the same issue that motivates likelihood-
free inference, the intractability of the density implicitly
defined by the simulator also appears in generative adver-
sarial networks (GANs). If the density of a GAN were
tractable, GANs would be trained via standard maxi-
mum likelihood, but because their density is intractable
a trick was needed. The trick is to introduce an adver-
sary – i.e. the discriminator network used to classify the
samples from the generative model and samples taken
from the target distribution. The discriminator is ef-
fectively estimating the likelihood ratio between the two
distributions, which provides a direct connections to the
approaches to likelihood-free inference based on classi-
fiers (Cranmer and Louppe, 2016).

Operationally, these models play a similar role as tra-
ditional scientific simulators, though traditional simula-
tion codes also provide a causal model for the underlying
data generation process grounded in physical principles.
However, traditional scientific simulators are often very
slow as the distributions of interest emerge from a low-
level microphysical description. For example, simulat-
ing collisions at the LHC involves atomic-level physics
of ionization and scintillation. Similarly, simulations in
cosmology involve gravitational interactions among enor-
mous numbers of massive objects and may also include
complex feedback processes that involve radiation, star
formation, etc. Therefore, learning a fast approximation
to these simulations is of great value.

Within particle physics early work in this direction
included GANs for energy deposits from particles in
calorimeters (Paganini et al., 2018a,b), which is being
studied by the ATLAS collaboration (ATLAS Collabora-
tion, 2018). In Cosmology, generative models have been
used to learn the simulation for cosmological structure
formation (Rodríguez et al., 2018). In an interesting hy-
brid approach, a deep neural network was used to predict
the non-linear structure formation of the universe from
as a residual from a fast physical simulation based on
linear perturbation theory (He et al., 2018).

In other cases, well-motivated simulations do not al-
ways exist or are impractical. Nevertheless, having a
generative model for such data can be valuable for the
purpose of calibration. An illustrative example in this di-
rection comes from (Ravanbakhsh et al., 2016), see Fig. 3.
The authors point out that the next generation of cos-
mological surveys for weak gravitational lensing rely on
accurate measurements of the apparent shapes of distant

galaxies. However, shape measurement methods require
a precise calibration to meet the accuracy requirements
of the science analysis. This calibration process is chal-
lenging as it requires large sets of high quality galaxy
images, which are expensive to collect. Therefore, the
GAN enables an implicit generalization of the paramet-
ric bootstrap.

F. Outlook and Challenges

While particle physics and cosmology have a long his-
tory in utilizing machine learning methods, the scope
of topics that machine learning is being applied to has
grown significantly. Machine learning is now seen as
a key strategy to confronting the challenges of the up-
graded High-Luminosity LHC (Albertsson et al., 2018;
Apollinari et al., 2015) and is influencing the strategies
for future experiments in both cosmology and particle
physics (Ntampaka et al., 2019). One area in particular
that has gathered a great deal of attention at the LHC
is the challenge of identifying the tracks left by charged
particles in high-luminostiy environments (Farrell et al.,
2018), which has been the focus of a recent kaggle chal-
lenge.

In almost all areas where machine learning is being ap-
plied to physics problems, there is a desire to incorporate
domain knowledge in the form of hierarchical structure,
compositional structure, geometrical structure, or sym-
metries that are known to exist in the data or the data-
generation process. Recently, there has been a spate of
work from the machine learning community in this direc-
tion (Bronstein et al., 2017; Cohen andWelling, 2016; Co-
hen et al., 2018; Cohen et al., 2019; Kondor, 2018; Kondor
et al., 2018; Kondor and Trivedi, 2018). These develop-
ments are being followed closely by physicists, and al-
ready being incorporated into contemporary research in
this area.

IV. MANY-BODY QUANTUM MATTER

The intrinsic probabilistic nature of quantum mechan-
ics makes physical systems in this realm an effectively
infinite source of big data, and a very appealing play-
ground for ML applications. Paradigmatic example of
this probabilistic nature is the measurement process in
quantum physics. Measuring the position r of an elec-
tron orbiting around the nucleus can only be approxi-
mately inferred from measurements. An infinitely pre-
cise classical measurement device can only be used to
record the outcome of a specific observation of the elec-
tron position. Ultimately, a complete characterization of
the measurement process is given by the wave function
Ψ(r), whose square modulus ultimately defines the prob-
ability P (r) = |Ψ(r)|2 of observing the electron at a given
position in space. While in the case of a single electron
both theoretical predictions and experimental inference
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Fig. 2: Samples from the GALAXY-ZOO dataset versus generated samples using conditional generative adversarial network of Section III.
Each synthetic image is a 128 ⇥ 128 colored image (here inverted) produced by conditioning on a set of features y 2 [0, 1]37. The pair of
observed and generated images in each column correspond to the same y value. For details on these crowd-sourced y features see Willett
et al. (2013). These instances are selected from the test-set and were unavailable to the model during the training.

images “conditioned” on statistics of interest such as the
brightness or size of the galaxy. This will allow us to syn-
thesize calibration datasets for specific galaxy populations,
with objects exhibiting realistic morphologies. In related works
in machine learning literature Regier et al. (2015b) use a
convex combination of smooth and spiral templates in an
(unconditioned) generative model of galaxy images and Regier
et al. (2015a) propose using VAE for this task.1

In the following, Section I gives a brief background on the
image generation for calibration and its significance for mod-
ern cosmology. We then review the current approaches to deep
conditional generative models and introduce new techniques
for our problem setting in Sections II and III. In Section IV we
assess the quality of the generated images by comparing the
conditional distributions of shape and morphology parameters
between simulated and real galaxies, and find good agreement.

I. WEAK GRAVITATIONAL LENSING

In the weak regime of gravitational lensing, the distortion of
background galaxy images can be modeled by an anisotropic
shear, noted �, whose amplitude and orientation depend on
the matter distribution between the observer and these distant
galaxies. This shear affects in particular the apparent ellipticity
of galaxies, denoted e. Measuring this weak lensing effect is
made possible under the assumption that background galaxies
are randomly oriented, so that the ensemble average of the
shapes would average to zero in the absence of lensing. Their
apparent ellipticity e can then be used as a noisy but unbiased
estimator of the shear field �: E[e] = �. The cosmological

1The current approach to address this problem in cosmology literature is
to fit analytic parametric light profiles (defined by size, intensity, ellipticity
and steepness parameters) to the observed galaxies, followed by a simple
modelling of the distribution of the fitted parameters as a function of a
quantity of interest, such as the galaxy brightness. This modelling usually
simply involves fitting a linear dependence of mean and standard deviation
of a Gaussian distribution – e.g., see Hoekstra et al. (2016); Appendix A.
However, simple parametric models of galaxy light profiles do not have
the complex morphologies needed for calibration task. The only currently
available alternative, if realistic galaxy morphologies are needed, is to use the
training set images themselves as the input of the simulation pipeline. This
involves subsampling the training set to match the distribution of size, redshift
and brightness of the target galaxy simulations, leaving only a relatively small
number of objects, reused several hundred times to simulate a large survey –
e.g., see Jarvis et al. (2016); Section 6.1.

analysis then involves computing auto- and cross-correlations
of the measured ellipticities for galaxies at different distances.
These correlation functions are compared to theoretical pre-
dictions in order to constrain cosmological models and shed
light on the nature of dark energy.

However, measuring galaxy ellipticities such that their
ensemble average (used for the cosmological analysis) is
unbiased is an extremely challenging task. Fig. 1 illustrates
the main steps involved in the acquisition of the science
images. The weakly sheared galaxy images undergo additional
distortions (essentially blurring) as they go through the at-
mosphere and telescope optics, before being acquired by the
imaging sensor which pixelates the noisy image. As this figure
illustrates, the cosmological shear is clearly a subdominant
effect in the final image and needs to be disentangled from
subsequent blurring by the atmosphere and telescope options.
This blurring, or Point Spread Function (PSF), can be directly
measured by using stars as point sources, as shown at the top
of Fig. 1.

Once the image is acquired, shape measurement algorithms
are used to estimate the ellipticity of the galaxy while correct-
ing for the PSF. However, despite the best efforts of the weak
lensing community for nearly two decades, all current state-
of-the-art shape measurement algorithms are still susceptible
to biases in the inferred shears. These measurement biases are
commonly modeled in terms of additive and multiplicative bias
parameters c and m defined as:

E[e] = (1 + m) � + c (1)

where � is the true shear. Depending on the shape measure-
ment method being used, m and c can depend on factors such
as the PSF size/shape, the level of noise in the images or,
more generally, intrinsic properties of the galaxy population
(like their size and ellipticity distributions, etc. ). Calibration of
these biases can be achieved using image simulations, closely
mimicking real observations for a given survey but using
galaxy images distorted with a known shear, thus allowing
the measurement of the bias parameters in Eq. (1).

Image simulation pipelines, such as the GalSim package
Rowe et al. (2015), use a forward modeling of the observa-
tions, reproducing all the steps of the image acquisition pro-

Figure 3 Samples from the GALAXY-ZOO dataset versus generated samples using conditional generative adversarial network.
Each synthetic image is a 128×128 colored image (here inverted) produced by conditioning on a set of features y ∈ [0, 1]37 .
The pair of observed and generated images in each column correspond to the same y value. Reproduced from (Ravanbakhsh
et al., 2016).

for P (r) are efficiently performed, the situation becomes
dramatically more complex in the case of many quantum
particles. For example, the probability of observing the
positions of N electrons P (r1, . . . rN ) is an intrinsically
high-dimensional function, that can seldom be exactly
determined for N much larger than a few tens. The expo-
nential hardness in estimating P (r1, . . . rN ) is itself a di-
rect consequence of estimating the complex-valued many-
body amplitudes Ψ(r1 . . . rN ) and is commonly referred
to as the quantum many-body problem. The quantum
many-body problem manifests itself in a variety of cases.
These most chiefly include the theoretical modeling and
simulation of complex quantum systems – most materi-
als and molecules – for which only approximate solutions
are often available. Other very important manifestations
of the quantum many-body problem include the under-
standing and analysis of experimental outcomes, espe-
cially in relation with complex phases of matter. In the
following, we discuss some of the ML applications focused
on alleviating some of the challenging theoretical and ex-
perimental problems posed by the quantum many-body
problem.

A. Neural-Network quantum states

Neural-network quantum states (NQS) are a represen-
tation of the many-body wave-function in terms of artifi-
cial neural networks (ANNs) (Carleo and Troyer, 2017).
A commonly adopted choice is to parameterize wave-
function amplitudes as a feed-forward neural network:

Ψ(r) = g(L)(W (L) . . . g(2)(W (2)g(1)(W (1)r))), (3)

with similar notation to what introduced in Eq. (2).
Early works have mostly concentrated on shallow net-

works, and most notably Restricted Boltzmann Machines
(RBM) (Smolensky, 1986). RBMs with hidden unit
in {±1} and without biases on the visible units for-
mally correspond to FFNNs of depth L = 2, and ac-
tivations g(1)(x) = log cosh(x), g(2)(x) = exp(x). An
important difference with respect to RBM applications

for unsupervised learning of probability distributions, is
that when used as NQS RBM states are typically taken
to have complex-valued weights (Carleo and Troyer,
2017). Deeper architectures have been consistently stud-
ied and introduced in more recent work, for example
NQS based on fully-connected, and convolutional deep
networks (Choo et al., 2018; Saito, 2018; Sharir et al.,
2019), see Fig. 4 for a schematic example. A motiva-
tion to use deep FFNN networks, apart from the prac-
tical success of deep learning in industrial applications,
also comes from more general theoretical arguments in
quantum physics. For example, it has been shown that
deep NQS can sustain entanglement more efficiently than
RBM states (Levine et al., 2019; Liu et al., 2017a). Other
extensions of the NQS representation concern representa-
tion of mixed states described by density matrices, rather
than pure wave-functions. In this context, it is possible
to define positive-definite RBM parametrizations of the
density matrix (Torlai and Melko, 2018).

One of the specific challenges emerging in the quan-
tum domain is imposing physical symmetries in the NQS
representations. In the case of a periodic arrangement
of matter, spatial symmetries can be imposed using con-
volutional architectures similar to what is used in im-
age classification tasks (Choo et al., 2018; Saito, 2018;
Sharir et al., 2019). Selecting high-energy states in differ-
ent symmetry sectors has also been demonstrated (Choo
et al., 2018). While spatial symmetries have analogous
counterparts in other ML applications, satisfying more
involved quantum symmetries often needs a deep rethink-
ing of ANN architectures. The most notable case in
this sense is the exchange symmetry. For bosons, this
amounts to imposing the wave-function to be permuta-
tionally invariant with respect to exchange of particle
indices. The Bose-Hubbard model has been adopted as a
benchmark for ANN bosonic architectures, with state-of-
the-art results having been obtained (Saito, 2017, 2018;
Saito and Kato, 2017; Teng, 2018). The most chal-
lenging symmetry is, however, certainly the fermionic
one. In this case, the NQS representation needs to en-
code the antisymmetry of the wave-function (exchang-
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Figure 4 (Top) Example of a shallow convolutional neural
network used to represent the many-body wave-function of a
system of spin 1/2 particles on a square lattice. (Bottom) Fil-
ters of a fully-connected convolutional RBM found in the vari-
ational learning of the ground-state of the two-dimensional
Heisenberg model, adapted from (Carleo and Troyer, 2017).

ing two particle positions, for example, leads to a minus
sign). In this case, different approaches have been ex-
plored, mostly expanding on existing variational ansatz
for fermions. A symmetric RBM wave-function correct-
ing an antisymmetric correlator part has been used to
study two-dimensional interacting lattice fermions (No-
mura et al., 2017). Other approaches have tackled the
fermionic symmetry problem using a backflow transfor-
mation of Slater determinants (Luo and Clark, 2018), or
directly working in first quantization (Han et al., 2018a).
The situation for fermions is certainly the most challeng-
ing for ML approaches at the moment, owing to the spe-
cific nature of the symmetry. On the applications side,
NQS representations have been used so-far along three
main different research lines.

1. Representation theory

An active area of research concerns the general expres-
sive power of NQS, as also compared to other families of
variational states. Theoretical activity on the represen-
tation properties of NQS seeks to understand how large,
and how deep should be neural networks describing inter-
esting interacting quantum systems. In connection with
the first numerical results obtained with RBM states, the
entanglement has been soon identified as a possible can-
didate for the expressive power of NQS. RBM states for
example can efficiently support volume-law scaling (Deng
et al., 2017b), with a number of variational parameters
scaling only polynomially with system size. In this di-
rection, the language of tensor networks has been par-
ticularly helpful in clarifying some of the properties of
NQS (Chen et al., 2018b; Pastori et al., 2018). A fam-
ily of NQS based on RBM states has been shown to be
equivalent to a certain family of variational states known
as correlator-product-states (Clark, 2018; Glasser et al.,
2018a). The question of determining how large are the re-
spective classes of quantum states belonging to the NQS
form, Eq. (3) and to computationally efficient tensor

network is, however, still open. Exact representations of
several intriguing phases of matter, including topological
states and stabilizer codes (Deng et al., 2017a; Glasser
et al., 2018a; Huang and Moore, 2017; Kaubruegger et al.,
2018; Lu et al., 2018; Zheng et al., 2018), have also been
obtained in closed RBM form. Not surprisingly, given
its shallow depth, RBM architectures are also expected
to have limitations, on general grounds. Specifically, it is
not in general possible to write all possible physical states
in terms of compact RBM states (Gao and Duan, 2017).
In order to lift the intrinsic limitations of RBMs, and effi-
ciently describe a very large family of physical states, it is
necessary to introduce deep Boltzmann Machines (DBM)
with two hidden layers (Gao and Duan, 2017). Similar
network constructions have been introduced also as a pos-
sible theoretical framework, alternative to the standard
path-integral representation of quantum mechanics (Car-
leo et al., 2018).

2. Learning from data

Parallel to the activity on understanding the theoreti-
cal properties of NQS, a family of studies in this field is
concerned with the problem of understanding how hard
it is, in practice, to learn a quantum state from numerical
data. This can be realized using either synthetic data (for
example coming from numerical simulations) or directly
from experiments.

This line of research has been explored in the super-
vised learning setting, to understand how well NQS can
represent states that are not easily expressed (in closed
analytic form) as ANN. The goal is then to train a NQS
network |Ψ〉 to represent, as close as possible, a cer-
tain target state |Φ〉 whose amplitudes can be efficiently
computed. This approach has been successfully used to
learn ground-states of fermionic, frustrated, and bosonic
Hamiltonians (Cai and Liu, 2018). Those represent in-
teresting study cases, since the sign/phase structure of
the target wave-functions can pose a challenge to stan-
dard activation functions used in FFNN. Along the same
lines, supervised approaches have been proposed to learn
random matrix product states wave-functions both with
shallow NQS (Borin and Abanin, 2019), and with gener-
alized NQS including a computationally treatable DBM
form (Pastori et al., 2018). While in the latter case these
studies have revealed efficient strategies to perform the
learning, in the former case hardness in learning some
random MPS has been showed. At present, it is specu-
lated that this hardness originates from the entanglement
structure of the random MPS, however it is unclear if this
is related to the hardness of the NQS optimization land-
scape or to an intrinsic limitation of shallow NQS.

Besides supervised learning of given quantum states,
data-driven approaches with NQS have largely concen-
trated on unsupervised approaches. In this framework,
only measurements from some target state |Φ〉 or density
matrix are available, and the goal is to reconstruct the
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full state, in NQS form, using such measurements. In the
simplest setting, one is given a data set of M measure-
ments r(1) . . . r(M) distributed according to Born’s rule
prescription P (r) = |Φ(r)|2, where P (r) is to be recon-
structed. In cases when the wave-function is positive def-
inite, or when only measurements in a certain basis are
provided, reconstructing P (r) with standard unsuper-
vised learning approaches is enough to reconstruct all the
available information on the underlying quantum state Φ.
This approach for example has been demonstrated for
ground-states of stoquastic Hamiltonians (Torlai et al.,
2018) using RBM-based generative models. An approach
based on deep VAE generative models has also been
demonstrated in the case of a family of classically-hard
to sample from quantum states (Rocchetto et al., 2018),
for which the effect of network depth has been shown to
be beneficial for compression.

In the more general setting, the problem is to recon-
struct a general quantum state, either pure or mixed,
using measurements from more than a single basis of
quantum numbers. Those are especially necessary to re-
construct also the complex phases of the quantum state.
This problem corresponds to a well-known problem in
quantum information, known as quantum state tomog-
raphy, for which specific NQS approaches have been in-
troduced (Carrasquilla et al., 2019; Torlai et al., 2018;
Torlai and Melko, 2018). Those are discussed more in
detail, in the dedicated section V.A, also in connection
with other ML techniques used for this task.

3. Variational Learning

Finally, one of the main applications for the NQS
representations is in the context of variational approx-
imations for many-body quantum problems. The goal
of these approaches is, for example, to approximately
solve the Schrödinger equation using a NQS represen-
tation for the wave-function. In this case, the problem
of finding the ground state of a given quantum Hamilto-
nian H is formulated in variational terms as the prob-
lem of learning NQS weights W minimizing E(W ) =
〈Ψ(W )|H|Ψ(W )〉/〈Ψ(W )|Ψ(W )〉. This is achieved using
a learning scheme based on variational Monte Carlo opti-
mization (Carleo and Troyer, 2017). Within this family of
applications, no external data representative of the quan-
tum state is given, thus they typically demand a larger
computational burden than supervised and unsupervised
learning schemes for NQS.

Experiments on a variety of spin (Choo et al., 2018;
Deng et al., 2017a; Glasser et al., 2018a; Liang et al.,
2018), bosonic (Choo et al., 2018; Saito, 2017, 2018; Saito
and Kato, 2017), and fermionic (Han et al., 2018a; Luo
and Clark, 2018; Nomura et al., 2017) models have shown
that results competitive with existing state-of-the-art ap-
proaches can be obtained. In some cases, improvement
over existing variational results have been demonstrated,
most notably for two-dimensional lattice models (Carleo

and Troyer, 2017; Luo and Clark, 2018; Nomura et al.,
2017) and for topological phases of matter (Glasser et al.,
2018a; Kaubruegger et al., 2018).

Other NQS applications concern the solution of
the time-dependent Schrödinger equation (Carleo and
Troyer, 2017; Czischek et al., 2018; Fabiani and Mentink,
2019; Schmitt and Heyl, 2018). In these applications, one
uses the time-dependent variational principle of Dirac
and Frenkel (Dirac, 1930; Frenkel, 1934) to learn the opti-
mal time evolution of network weights. This can be suit-
ably generalized also to open dissipative quantum sys-
tems, for which a variational solution of the Lindblad
equation can be realized (Hartmann and Carleo, 2019;
Nagy and Savona, 2019; Vicentini et al., 2019; Yoshioka
and Hamazaki, 2019).

In the great majority of the variational applications
discussed here, the learning schemes used are typically
higher-order techniques than standard SGD approaches.
The stochastic reconfiguration (SR) approach (Becca and
Sorella, 2017; Sorella, 1998) and its generalization to the
time-dependent case (Carleo et al., 2012), have proven
particularly suitable to variational learning of NQS. The
SR scheme can be seen as a quantum analogous of the
natural-gradient method for learning probability distri-
butions (Amari, 1998), and builds on the intrinsic geome-
try associated with the neural-network parameters. More
recently, in an effort to use deeper and more expressive
networks than those initially adopted, learning schemes
building on first-order techniques have been more con-
sistently used (Kochkov and Clark, 2018; Sharir et al.,
2019). These constitute two different philosophy of ap-
proaching the same problem. On one hand, early appli-
cations focused on small networks learned with very ac-
curate but expensive training techniques. On the other
hand, later approaches have focused on deeper networks
and cheaper –but also less accurate– learning techniques.
Combining the two philosophy in a computationally effi-
cient way is one of the open challenges in the field.

B. Speed up many-body simulations

The use of ML methods in the realm of the quan-
tum many-body problems extends well beyond neural-
network representation of quantum states. A power-
ful technique to study interacting models are Quan-
tum Monte Carlo (QMC) approaches. These methods
stochastically compute properties of quantum systems
through mapping to an effective classical model, for ex-
ample by means of the path-integral representation. A
practical issue often resulting from these mappings is that
providing efficient sampling schemes of high-dimensional
spaces (path integrals, perturbation series, etc..) re-
quires a careful tuning, often problem-dependent. Devis-
ing general-purpose samplers for these representations is
therefore a particularly challenging problem. Unsuper-
vised ML methods can, however, be adopted as a tool
to speed-up Monte Carlo sampling for both classical and
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quantum applications. Several approaches in this direc-
tion have been proposed, and leverage the ability of un-
supervised learning to well approximate the target dis-
tribution being sampled from in the underlying Monte
Carlo scheme. Relatively simple energy-based generative
models have been used in early applications for classi-
cal systems (Huang and Wang, 2017; Liu et al., 2017b).
"Self-learning" Monte Carlo techniques have then been
generalized also to fermionic systems (Chen et al., 2018a;
Liu et al., 2017c; Nagai et al., 2017). Overall, it has been
found that such approaches are effective at reducing the
autocorrelation times, especially when compared to fami-
lies of less effective Markov Chain Monte Carlo with local
updates. More recently, state-of-the-art generative ML
models have been adopted to speed-up sampling in spe-
cific tasks. Notably, (Wu et al., 2018) have used deep au-
toregressive models that may enable a more efficient sam-
pling from hard classical problems, such as spin glasses.
The problem of finding efficient sampling schemes for the
underlying classical models is then transformed into the
problem of finding an efficient corresponding autoregres-
sive deep network representation. This approach has
also been generalized to the quantum cases in (Sharir
et al., 2019), where an autoregressive representation of
the wave-function is introduced. This representation is
automatically normalized and allows to bypass Markov
Chain Monte Carlo in the variational learning discussed
above.

While exact for a large family of bosonic and spin sys-
tems, QMC techniques typically incur in a severe sign
problem when dealing with several interesting fermionic
models, as well as frustrated spin Hamiltonians. In this
case, it is tempting to use ML approaches to attempt a di-
rect or indirect reduction of the sign problem. While only
in its first stages, this family of applications has been used
to infer information about fermionic phases through hid-
den information in the Green’s function (Broecker et al.,
2017b).

Similarly, ML techniques can help reduce the burden
of more subtle manifestations of the sign problem in dy-
namical properties of quantum models. In particular,
the problem of reconstructing spectral functions from
imaginary-time correlations in imaginary time is also a
field in which ML can be used as an alternative to tradi-
tional maximum-entropy techniques to perform analyti-
cal continuations of QMC data (Arsenault et al., 2017;
Fournier et al., 2018; Yoon et al., 2018).

C. Classifying many-body quantum phases

The challenge posed by the complexity of many-body
quantum states manifests itself in many other forms.
Specifically, several elusive phases of quantum matter are
often hard to characterize and pinpoint both in numeri-
cal simulations and in experiments. For this reason, ML
schemes to identify phases of matter have become partic-
ularly popular in the context of quantum phases. In the

following we review some of the specific applications to
the quantum domain, while a more general discussion on
identifying phases and phase transitions is to be found in
II.E.

1. Synthetic data

Following the early developments in phase classifi-
cations with supervised approaches (Carrasquilla and
Melko, 2017; Van Nieuwenburg et al., 2017; Wang, 2016),
many studies have since then focused on analyzing phases
of matter in synthetic data, mostly from simulations of
quantum systems. While we do not attempt here to pro-
vide an exhaustive review of the many studies appeared
in this direction, we highlight two large families of prob-
lems that have so-far largely served as benchmarks for
new ML tools in the field.

A first challenging test bench for phase classification
schemes is the case of quantum many-body localization.
This is an elusive phase of matter showing characteris-
tic fingerprints in the many-body wave-function itself,
but not necessarily emerging from more traditional or-
der parameters [see for example (Alet and Laflorencie,
2018) for a recent review on the topic]. First studies in
this direction have focused on training strategies aim-
ing at the Hamiltonian or entanglement spectra (Hsu
et al., 2018; Huembeli et al., 2018b; Schindler et al., 2017;
Venderley et al., 2018; Zhang et al., 2019). These works
have demonstrated the ability to very effectively learn
the MBL phase transition in relatively small systems ac-
cessible with exact diagonalization techniques. Other
studies have instead focused on identifying signatures
directly in experimentally relevant quantities, most no-
tably from the many-body dynamics of local quantities
(Doggen et al., 2018; van Nieuwenburg et al., 2018). The
latter schemes appear to be at present the most promis-
ing for applications to experiments, while the former have
been used as a tool to identify the existence of an unex-
pected phase in the presence of correlated disorder (Hsu
et al., 2018).

Another very challenging class of problems is found
when analyzing topological phases of matter. These are
largely considered a non-trivial test for ML schemes, be-
cause these phases are typically characterized by non-
local order parameters. In turn, these non-local order
parameters are hard to learn for popular classification
schemes used for images. This specific issue is already
present when analyzing classical models featuring topo-
logical phase transitions. For example, in the presence of
a BKT-type transition, learning schemes trained on raw
Monte Carlo configurations are not effective (Beach et al.,
2018; Hu et al., 2017). These problems can be circum-
vented devising training strategies using pre-engineered
features (Broecker et al., 2017a; Cristoforetti et al., 2017;
Wang and Zhai, 2017; Wetzel, 2017) instead of raw Monte
Carlo samples. These features typically rely on some im-
portant a-priori assumptions on the nature of the phase
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transition to be looked for, thus diminishing their effec-
tiveness when looking for new phases of matter. Deeper
in the quantum world, there has been research activity
along the direction of learning, in a supervised fashion,
topological invariants. Neural networks can be used for
example to classify families of non-interacting topological
Hamiltonians, using as an input their discretized coeffi-
cients, either in real (Ohtsuki and Ohtsuki, 2016, 2017) or
momentum space (Sun et al., 2018; Zhang et al., 2018c).
In these cases, it is found that neural networks are able
to reproduce the (already known beforehand) topological
invariants, such as winding numbers, Berry curvatures
and more. The context of strongly-correlated topologi-
cal matter is, to a large extent, more challenging than
the case of non-interacting band models. In this case,
a common approach is to define a set of carefully pre-
engineered features to be used on top of the raw data.
One well known example is the case of of the so-called
quantum loop topography (Zhang and Kim, 2017), trained
on local operators computed on single shots of sampled
wave-function walkers, as for example done in variational
Monte Carlo. It has been shown that this very specific
choice of local features is able to distinguish strongly in-
teracting fraction Chern insulators, and also Z2 quan-
tum spin liquids (Zhang et al., 2017). Similar efforts
have been realized to classify more exotic phases of mat-
ter, including magnetic skyrmion phases (Iakovlev et al.,
2018), and dynamical states in antiskyrmion dynamics
(Ritzmann et al., 2018).

Despite the progress seen so far along the many di-
rection described here, it is fair to say that topological
phases of matter, especially for interacting systems, con-
stitute one of the main challenges for phase classifica-
tion. While some good progress has already been made
(Huembeli et al., 2018a; Rodriguez-Nieva and Scheurer,
2018), future research will need to address the issue of
finding training schemes not relying on pre-selection of
data features.

2. Experimental data

Beyond extensive studies on data from numerical sim-
ulations, supervised schemes have found their way also as
a tool to analyze experimental data from quantum sys-
tems. In ultra-cold atoms experiments, supervised learn-
ing tools have been used to map out both the topological
phases of non-interacting particles, as well the onset of
Mott insulating phases in finite optical traps (Rem et al.,
2018). In this specific case, the phases where already
known and identifiable with other approaches. How-
ever, ML-based techniques combining a-priori theoretical
knowledge with experimental data hold the potential for
genuine scientific discovery.

For example, ML can enable scientific discovery in the
interesting cases when experimental data has to be at-
tributed to one of many available and equally likely a-
priory theoretical models, but the experimental informa-
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Figure 5 Example of machine learning approach to the classi-
fication of experimental images from scanning tunneling mi-
croscopy of high-temperature superconductors. Images are
classified according to the predictions of distinct types of pe-
riodic spatial modulations. Reproduced from (Zhang et al.,
2018d)

tion at hand is not easily interpreted. Typically inter-
esting cases emerge for example when the order param-
eter is a complex, and only implicitly known, non-linear
function of the experimental outcomes. In this situa-
tion, ML approaches can be used as a powerful tool to
effectively learn the underlying traits of a given theory,
and provide a possibly unbiased classification of experi-
mental data. This is the case for incommensurate phases
in high-temperature superconductors, for which scanning
tunneling microscopy images reveal complex patters that
are hard to decipher using conventional analysis tools.
Using supervised approaches in this context, recent work
(Zhang et al., 2018d) has shown that is possible to infer
the nature of spatial ordering in these systems, also see
Fig. 5.

A similar idea has been also used for another pro-
totypical interacting quantum systems of fermions, the
Hubbard model, as implemented in ultra-cold atoms ex-
periments in optical lattices. In this case the reference
models provide snapshots of the thermal density matrix
that can be pre-classified in a supervised learning fash-
ion. The outcome of this study (Bohrdt et al., 2018),
is that the experimental results are with good confidence
compatible with one of the theories proposed, in this case
a geometric string theory for charge carriers.

In the last two experimental applications described
above, the outcome of the supervised approaches are to a
large extent highly non-trivial, and hard to predict a pri-
ori on the basis of other information at hand. The inner
bias induced by the choice of the theories to be classified
is however one of the current limitations that these kind
of approaches face.
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D. Tensor networks for machine learning

The research topics reviewed so far are mainly con-
cerned with the use of ML ideas and tools to study prob-
lems in the realm of quantum many-body physics. Com-
plementary to this philosophy, an interesting research
direction in the field explores the inverse direction, in-
vestigating how ideas from quantum many-body physics
can inspire and devise new powerful ML tools. Central
to these developments are tensor-network representations
of many-body quantum states. These are very successful
variational families of many-body wave functions, nat-
urally emerging from low-entanglement representations
of quantum states (Verstraete et al., 2008). Tensor net-
works can serve both as a practical and a conceptual tool
for ML tasks, both in the supervised and in the unsuper-
vised setting.

These approaches build on the idea of providing
physics-inspired learning schemes and network structures
alternative to the more conventionally adopted stochastic
learning schemes and FFNN networks. For example, ma-
trix product state (MPS) representations, a work-horse
for the simulation of interacting one-dimensional quan-
tum systems (White, 1992), have been re-purposed to
perform classification tasks, (Liu et al., 2018; Novikov
et al., 2016; Stoudenmire and Schwab, 2016), and also
recently adopted as explicit generative models for un-
supervised learning (Han et al., 2018b; Stokes and Ter-
illa, 2019). It is worth mentioning that other related
high-order tensor decompositions, developed in the con-
text of applied mathematics have been used for ML pur-
poses (Acar and Yener, 2009; Anandkumar et al., 2014).
Tensor-train decompositions (Oseledets, 2011), formally
equivalent to MPS representations, have been introduced
in parallel as a tool to perform various machine learn-
ing tasks (Gorodetsky et al., 2019; Izmailov et al., 2017;
Novikov et al., 2016). Networks closely related to MPS
have also been explored for time-series modeling (Guo
et al., 2018).

In the effort of increasing the amount of entanglement
encoded in these low-rank tensor decompositions, recent
works have concentrated on tensor-network representa-
tions alternative to the MPS form. One notable exam-
ple is the use of tree tensor networks with a hierarchi-
cal structure (Hackbusch and Kühn, 2009; Shi et al.,
2006), which have been applied to classification (Liu
et al., 2017a; Stoudenmire, 2018) and generative mod-
eling (Cheng et al., 2019) tasks with good success. An-
other example is the use of entangled plaquette states
(Changlani et al., 2009; Gendiar and Nishino, 2002; Mez-
zacapo et al., 2009) and string bond states (Schuch et al.,
2008), both showing sizable improvements in classifica-
tion tasks over MPS states (Glasser et al., 2018b).

On the more theoretical side, the deep connection be-
tween tensor networks and complexity measures of quan-
tum many-body wave-functions, such as entanglement
entropy, can be used to understand, and possible inspire,
successful network designs for ML purposes. The tensor-

network formalism has proven powerful in interpreting
deep learning through the lens of renormalization group
concepts. Pioneering work in this direction has connected
MERA tensor network states (Vidal, 2007) to hierarchi-
cal Bayesian networks (Bény, 2013). In later analysis,
convolutional arithmetic circuits (Cohen et al., 2016),
a family of convolutional networks with product non-
linearities, have been introduced as a convenient model to
bridge tensor decompositions with FFNN architectures.
Beside their conceptual relevance, these connections can
help clarify the role of inductive bias in modern and com-
monly adopted neural networks (Levine et al., 2017).

E. Outlook and Challenges

Applications of ML to quantum many-body problems
have seen a fast-pace progress in the past few years,
touching a diverse selection of topics ranging from nu-
merical simulation to data analysis. The potential of ML
techniques has already surfaced in this context, already
showing improved performance with respect to existing
techniques on selected problems. To a large extent, how-
ever, the real power of ML techniques in this domain
has been only partially demonstrated, and several open
problems remain to be addressed.

In the context of variational studies with NQS, for ex-
ample, the origin of the empirical success obtained so
far with different kind of neural network quantum states
is not equally well understood as for other families of
variational states, like tensor networks. Key open chal-
lenges remain also with the representation and simulation
of fermionic systems, for which efficient neural-network
representation are still to be found.

Tensor-network representations for ML purposes, as
well as complex-valued networks like those used for NQS,
play an important role to bridge the field back to the
arena of computer science. Challenges for the future of
this research direction consist in effectively interfacing
with the computer-science community, while retaining
the interests and the generality of the physics tools.

For what concerns ML approaches to experimental
data, the field is largely still in its infancy, with only a
few applications having been demonstrated so far. This
is in stark contrast with other fields, such as High-Energy
and Astrophysics, in which ML approaches have matured
to a stage where they are often used as standard tools for
data analysis. Moving towards achieving the same goal
in the quantum domain demands closer collaborations
between the theoretical and experimental efforts, as well
as a deeper understanding of the specific problems where
ML can make a substantial difference.

Overall, given the relatively short time span in which
applications of ML approaches to many-body quantum
matter have emerged, there are however good reasons
to believe that these challenges will be energetically
addressed–and some of them solved– in the coming years.
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V. QUANTUM COMPUTING

Quantum computing uses quantum systems to process
information. In the most popular framework of gate-
based quantum computing (Nielsen and Chuang, 2002),
a quantum algorithm describes the evolution of an initial
state |ψ0〉 of a quantum system of n two-level systems
called qubits to a final state |ψf 〉 through discrete trans-
formations or quantum gates. The gates usually act only
on a small number of qubits, and the sequence of gates
defines the computation.

The intersection of machine learning and quantum
computing has become an active research area in the
last couple of years, and contains a variety of ways to
merge the two disciplines (see also (Dunjko and Briegel,
2018) for a review). Quantum machine learning asks how
quantum computers can enhance, speed up or innovate
machine learning (Biamonte et al., 2017; Ciliberto et al.,
2018; Schuld and Petruccione, 2018a) (see also Sections
VII and V). Quantum learning theory highlights theo-
retical aspects of learning under a quantum framework
(Arunachalam and de Wolf, 2017).

In this Section we are concerned with a third angle,
namely how machine learning can help us to build and
study quantum computers. This angle includes topics
ranging from the use of intelligent data mining methods
to find physical regimes in materials that can be used as
qubits (Kalantre et al., 2019), to the verification of quan-
tum devices (Agresti et al., 2019), learning the design of
quantum algorithms (Bang et al., 2014; Wecker et al.,
2016), facilitating classical simulations of quantum cir-
cuits (Jónsson et al., 2018), automated design on quan-
tum experiments (Krenn et al., 2016; Melnikov et al.,
2018), and learning to extract relevant information from
measurements (Seif et al., 2018).

We focus on three general problems related to quan-
tum computing which were targeted by a range of ML
methods: the problem of reconstructing en benchmark-
ing quantum states via measurements; the problem of
preparing a quantum state via quantum control ; the
problem of maintaining the information stored in the
state through quantum error correction. The first prob-
lem is known as quantum state tomography, and it is es-
pecially useful to understand and improve upon the lim-
itations of current quantum hardware. Quantum control
and quantum error corrections solve related problems,
however usually the former refers to hardware-related so-
lutions while the latter uses algorithmic solutions to the
problem of executing a computational protocol with a
quantum system.

Similar to the other disciplines in this review, machine
learning has shown promising results in all these areas,
and will in the longer run likely enter the toolbox of
quantum computing to be used side-by-side with other
well-established methods.

A. Quantum state tomography

The general goal of quantum state tomography (QST)
is to reconstruct the density matrix of an unknown quan-
tum state, through experimentally available measure-
ments. QST is a central tool in several fields of quantum
information and quantum technologies in general, where
it is often used as a way to assess the quality and the
limitations of the experimental platforms. The resources
needed to perform full QST are however extremely de-
manding, and the number of required measurements
scales exponentially with the number of qubits/quantum
degrees of freedom [see (Paris and Rehacek, 2004) for a
review on the topic, and (Haah et al., 2017; O’Donnell
and Wright, 2016) for a discussion on the hardness of
learning in state tomography].

ML tools have been identified already several years ago
as a tool to improve upon the cost of full QST, exploit-
ing some special structure in the density matrix. Com-
pressed sensing (Gross et al., 2010) is one prominent ap-
proach to the problem, allowing to reduce the number
of required measurements from d2 to O(rd log(d)2), for
a density matrix of rank r and dimension d. Success-
ful experimental realization of this technique has been
for example implemented for a six-photon state (Tóth
et al., 2010) or a seven-qubit system of trapped ions (Ri-
ofrío et al., 2017). On the methodology side, full QST
has more recently seen the development of deep learning
approaches. For example, using a supervised approach
based on neural networks having as an output the full
density matrix, and as an input possible measurement
outcomes (Xu and Xu, 2018). The problem of choosing
optimal measurement basis for QST has also been re-
cently addressed using a neural-network based approach
that optimizes the prior distribution on the target den-
sity matrix, using Bayes rule (Quek et al., 2018). In
general, while ML approaches to full QST can serve as
a viable tool to alleviate the measurement requirements,
they cannot however provide an improvement over the
intrinsic exponential scaling of QST.

The exponential barrier can be typically overcome only
in situations when the quantum state is assumed to have
some specific regularity properties. Tomography based
on tensor-network paremeterizations of the density ma-
trix has been an important first step in this direction,
allowing for tomography of large, low-entangled quan-
tum systems (Lanyon et al., 2017). ML approaches
to parameterization-based QST have emerged in recent
times as a viable alternative, especially for highly entan-
gled states. Specifically, assuming a NQS form (see Eq.
3 in the case of pure states) QST can be reformulated
as an unsupervised ML learning task. A scheme to re-
trieve the phase of the wave-function, in the case of pure
states, has been demonstrated in (Torlai et al., 2018). In
these applications, the complex phase of the many-body
wave-function is retrieved upon reconstruction of several
probability densities associated to the measurement pro-
cess in different basis. Overall, this approach has al-
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lowed to demonstrate QST of highly entangled states up
to about 100 qubits, unfeasible for full QST techniques.
This tomography approach can be suitably generalized to
the case of mixed states introducing parameterizations of
the density matrix based either on purified NQS (Torlai
and Melko, 2018) or on deep normalizing flows (Cran-
mer et al., 2019). The former approach has been also
demonstrated experimentally with Rydberg atoms (Tor-
lai et al., 2019). An interesting alternative to the NQS
representation for tomographic purposes has also been re-
cently suggested (Carrasquilla et al., 2019). This is based
on parameterizing the density matrix directly in terms
of positive-operator valued measure (POVM) operators.
This approach therefore has the important advantage of
directly learning the measurement process itself, and has
been demonstrated to scale well on rather large mixed
states. A possible inconvenient of this approach is that
the density matrix is only implicitly defined in terms of
generative models, as opposed to explicit parameteriza-
tions found in NQS-based approaches.

Other approaches to QST have explored the use of
quantum states parameterized as ground-states of local
Hamiltonians (Xin et al., 2018), or the intriguing pos-
sibility of bypassing QST to directly measure quantum
entanglement (Gray et al., 2018). Extensions to the more
complex problem of quantum process tomography are
also promising (Banchi et al., 2018), while the scalability
of ML-based approaches to larger systems still presents
challenges.

Finally, the problem of learning quantum states from
experimental measurements has also profound implica-
tions on the understanding of the complexity of quan-
tum systems. In this framework, the PAC learnabil-
ity of quantum states (Aaronson, 2007), experimen-
tally demonstrated in (Rocchetto et al., 2017), and
the ‘’shadow tomography” approach (Aaronson, 2017),
showed that even linearly sized training sets can pro-
vide sufficient information to succeed in certain quantum
learning tasks. These information-theoretic guarantees
come with computational restrictions and learning is ef-
ficient only for special classes of states (Rocchetto, 2018)

B. Controlling and preparing qubits

A central task of quantum control is the following:
Given an evolution U(θ) that depends on parameters
θ and maps an initial quantum state |ψ0〉 to |ψ(θ)〉 =
U(θ)|ψ0〉, which parameters θ∗ minimise the overlap or
distance between the prepared state and the target state,
|〈ψ(θ)|ψtarget〉|2? To facilitate analytic studies, the space
of possible control interventions is often discretized, so
that U(θ) = U(s1, . . . , sT ) becomes a sequence of steps
s1, . . . , sT . For example, a control field could be applied
at only two different strengths h1 and h2, and the goal
is to find an optimal strategy st ∈ {h1, h2}, t = 1, . . . , T
to bring the initial state as close as possible to the target
state using only these discrete actions.

This setup directly generalizes to a reinforcement
learning framework (Sutton and Barto, 2018), where an
agent picks “moves” from the list of allowed control inter-
ventions, such as the two field strengths applied to the
quantum state of a qubit. This framework has proven to
be competitive to state-of-the-art methods in various set-
tings, such as state preparation in non-integrable many-
body quantum systems of interacting qubits (Bukov
et al., 2018), or the use of strong periodic oscillations
to prepare so-called “Floquet-engineered” states (Bukov,
2018). A recent study comparing (deep) reinforcement
learning with traditional optimization methods such as
Stochastic Gradient Descent for the preparation of a sin-
gle qubit state shows that learning is of advantage if
the “action space” is naturally discretized and sufficiently
small (Zhang et al., 2019).

The picture becomes increasingly complex in slightly
more realistic settings, for example when the control is
noisy (Niu et al., 2018). In an interesting twist, the con-
trol problem has also been tackled by predicting future
noise using a recurrent neural network that analyses the
time series of past noise. Using the prediction, the an-
ticipated future noise can be corrected (Mavadia et al.,
2017).

An altogether different approach to state preparation
with machine learning tries to find optimal strategies for
evaporative cooling to create Bose-Einstein condensates
(Wigley et al., 2016). In this online optimization strat-
egy based on Bayesian optimization (Frazier, 2018; Jones
et al., 1998), a Gaussian process is used as a statistical
model that captures the relationship between the con-
trol parameters and the quality of the condensate. The
strategy discovered by the machine learning model al-
lows for a cooling protocol that uses 10 times fewer itera-
tions than pure optimization techniques. An interesting
feature is that - contrary to the common reputation of
machine learning - the Gaussian process allows to deter-
mine which control parameters are more important than
others.

Another angle is captured by approaches that ‘learn’
the sequence of optical instruments in order to pre-
pare highly entangled photonic quantum states (Mel-
nikov et al., 2018).

C. Error correction

One of the major challenges in building a universal
quantum computer is error correction. During any com-
putation, errors are introduced by physical imperfections
of the hardware. But while classical computers allow
for simple error correction based on duplicating infor-
mation, the no-cloning theorem of quantum mechanics
requires more complex solutions. The most well-known
proposal of surface codes prescribes to encode one “log-
ical qubit” into a topological state of several “physical
qubits”. Measurements on these physical qubits reveal a
“footprint” of the chain of error events called a syndrome.
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A decoder maps a syndrome to an error sequence, which,
once known, can be corrected by applying the same error
sequence again, and without affecting the logical qubits
that store the actual quantum information. Roughly
stated, the art of quantum error correction is therefore
to predict errors from a syndrome - a task that naturally
fits the framework of machine learning.

In the past few years, various models have been ap-
plied to quantum error correction, ranging from super-
vised to unsupervised and reinforcement learning. The
details of their application became increasingly complex.
One of the first proposals deploys a Boltzmann machine
trained by a data set of pairs (error, syndrome), which
specifies the probability p(error, syndrome), which can
be used to draw samples from the desired distribution
p(error|syndrome) (Torlai and Melko, 2017). This simple
recipe shows a performance for certain kinds of errors
comparable to common benchmarks. The relation be-
tween syndromes and errors can likewise be learned by a
feed-forward neural network (Krastanov and Jiang, 2017;
Maskara et al., 2019; Varsamopoulos et al., 2017). How-
ever, these strategies suffer from scalability issues, as the
space of possible decoders explodes and data acquisition
becomes an issue. More recently, neural networks have
been combined with the concept of renormalization group
to address this problem (Varsamopoulos et al., 2018),
and the significance of different hyper-parameters of the
neural network has been studied (Varsamopoulos et al.,
2019).

Besides scalability, an important problem in quantum
error correction is that the syndrome measurement pro-
cedure could also introduce an error, since it involves ap-
plying a small quantum circuit. This setting increases the
problem complexity but is essential for real applications.
Noise in the identification of errors can be mitigated by
doing repeated cycles of syndrome measurements. To
consider the additional time dimension, recurrent neu-
ral network architectures have been proposed (Baireuther
et al., 2018). Another avenue is to consider decoding as
a reinforcement learning problem (Sweke et al., 2018), in
which an agent can choose consecutive operations acting
on physical qubits (as opposed to logical qubits) to cor-
rect for a syndrome and gets rewarded if the sequence
corrected the error.

While much of machine learning for error correction
focuses on surface codes that represent a logical qubit by
physical qubits according to some set scheme, reinforce-
ment agents can also be set up agnostic of the code (one
could say they learn the code along with the decoding
strategy). This has been done for quantum memories,
a system in which quantum states are supposed to be
stored rather than manipulated (Nautrup et al., 2018),
as well as in a feedback control framework which protects
qubits against decoherence (Fösel et al., 2018). Finally,
beyond traditional reinforcement learning, novel strate-
gies such as projective simulation can be used to combat
noise (Tiersch et al., 2015).

As a summary, machine learning for quantum error

correction is a problem with several layers of complexity
that, for realistic applications, requires rather complex
learning frameworks. Nevertheless, it is a very natural
candidate for machine learning, and especially reinforce-
ment learning.

VI. CHEMISTRY AND MATERIALS

Machine learning approaches have been applied to pre-
dict the energies and properties of molecules and solids,
with the popularity of such applications increasing dra-
matically. The quantum nature of atomic interactions
makes energy evaluations computationally expensive, so
ML methods are particularly useful when many such
calculations are required. In recent years, the ever-
expanding applications of ML in chemistry and mate-
rials research include predicting the structures of related
molecules, calculating energy surfaces based on molecular
dynamics (MD) simulations, identifying structures that
have desired material properties, and creating machine-
learned density functionals. For these types of problems,
input descriptors must account for differences in atomic
environments in a compact way. Much of the current
work using ML for atomistic modeling is based on early
work describing the local atomic environment with sym-
metry functions for input into a atom-wise neural net-
work (Behler and Parrinello, 2007), representing atomic
potentials using Gaussian process regression methods
(Bartók et al., 2010), or using sorted interatomic dis-
tances weighted by the nuclear charge (the "Coulomb
matrix") as a molecular descriptor (Rupp et al., 2012).
Continuing development of suitable structural represen-
tations is reviewed by Behler (2016). A discussion of
ML for chemical systems in general, including learning
structure-property relationships, is found in the review
by Butler et al. (2018), with additional focus on data-
enabled theoretical chemistry reviewed by Rupp et al.
(2018). In the sections below, we present recent exam-
ples of ML applications in chemical physics.

A. Energies and forces based on atomic environments

One of the primary uses of ML in chemistry and mate-
rials research is to predict the relative energies for a series
of related systems, most typically to compare different
structures of the same atomic composition. These appli-
cations aim to determine the structure(s) most likely to
be observed experimentally or to identify molecules that
may be synthesizable as drug candidates. As examples
of supervised learning, these ML methods employ var-
ious quantum chemistry calculations to label molecular
representations (Xµ) with corresponding energies (yµ)to
generate the training (and test) data sets {Xµ, yµ}nµ=1.
For quantum chemistry applications, NN methods have
had great success in predicting the relative energies of a
wide range of systems, including constitutional isomers
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and non-equilibrium configurations of molecules, by using
many-body symmetry functions that describe the local
atomic neighborhood of each atom (Behler, 2016). Many
successes in this area have been derived from this type of
atom-wise decomposition of the molecular energy, with
each element represented using a separate NN (Behler
and Parrinello, 2007) (see Fig. 6(a)). For example, ANI-
1 is a deep NN potential successfully trained to return the
density functional theory (DFT) energies of any molecule
with up to 8 heavy atoms (H, C, N, O) (Smith et al.,
2017). In this work, atomic coordinates for the training
set were selected using normal mode sampling to include
some vibrational perturbations along with optimized ge-
ometries. Another example of a general NN for molec-
ular and atomic systems is the Deep Potential Molec-
ular Dynamics (DPMD) method specifically created to
run MD simulations after being trained on energies from
bulk simulations (Zhang et al., 2018a). Rather than sim-
ply include non-local interactions via the total energy of
a system, another approach was inspired by the many-
body expansion used in standard computational physics.
In this case adding layers to allow interactions between
atom-centered NNs improved the molecular energy pre-
dictions (Lubbers et al., 2018).

The examples above use translation- and rotation-
invariant representations of the atomic environments,
thanks to the incorporation of symmetry functions in
the NN input. For some applications, such as describ-
ing molecular reactions and materials phase transfor-
mations, atomic representations must also be continu-
ous and differentiable. The smooth overlap of atomic
positions (SOAP) kernels address all of these require-
ments by including a similarity metric between atomic
environments (Bartók et al., 2013). Recent work to pre-
serve symmetries in alternate molecular representations
addresses this problem in different ways. To capitalize on
known molecular symmetries for "Coulomb matrix" in-
puts, both bonding (rigid) and dynamic symmetries have
been incorporated to improve the coverage of training
data in the configurational space (Chmiela et al., 2018).
This work also includes forces in the training, allowing
for MD simulations at the level of coupled cluster calcu-
lations for small molecules, which would traditionally be
intractable. Molecular symmetries can also be learned,
as shown in determining local environment descriptors
that make use of continuous-filter convolutions to de-
scribe atomic interactions (Schütt et al., 2018). Further
development of atom environment descriptors that are
compact, unique, and differentiable will certainly facili-
tate new uses for ML models in the study of molecules
and materials.

However, machine learning has also been applied in
ways that are more closely integrated with conventional
approaches, so as to be more easily incorporated in exist-
ing codes. For example, atomic charge assignments com-
patible with classical force fields can be learned, without
the need to run a new quantum mechanical calculation
for each new molecule of interest (Sifain et al., 2018).

In addition, condensed phase simulations for molecular
species require accurate intra- and intermolecular poten-
tials, which can be difficult to parameterize. To this end,
local NN potentials can be combined with physically-
motivated long-range Coulomb and van der Waals contri-
butions to describe larger molecular systems (Yao et al.,
2018). Local ML descriptions can also be successfully
combined with many-body expansion methods to allow
application of ML potentials to larger systems, as demon-
strated for water clusters (Nguyen et al., 2018). Alterna-
tively, intermolecular interactions can be fitted to a set of
ML models trained on monomers to create a transferable
model for dimers and clusters (Bereau et al., 2018).

B. Potential and free energy surfaces

Machine learning methods are also employed to de-
scribe free energy surfaces. Rather than learning the po-
tential energy of each molecular conformation directly as
described above, an alternate approach is to learn the
free energy surface of a system as a function of collective
variables, such as global Steinhardt order parameters or
a local dihedral angle for a set of atoms. A compact
ML representation of a free energy surface (FES) using
a NN allows improved sampling of the high dimensional
space when calculating observables that depend on an
ensemble of conformers. For example, a learned FES can
be sampled to predict the isothermal compressibility of
solid xenon under pressure, or the expected NMR spin-
spin J couplings of a peptide (Schneider et al., 2017).
Small NN’s representing a FES can also be trained itera-
tively using data points generated by on-the-fly adaptive
sampling (Sidky and Whitmer, 2018). This promising
approach highlights the benefit of using a smooth repre-
sentation of the full configurational space when using the
ML models themselves to generate new training data.
As the use of machine-learned FES representations in-
creases, it will be important to determine the limit of
accuracy for small NN’s and how to use these models as
a starting point for larger networks or other ML archi-
tectures.

Once the relevant minima have been identified on a
FES, the next challenge is to understand the processes
that take a system from one basin to another. For ex-
ample, developing a Markov state model to describe con-
formational changes requires dimensionality reduction to
translate molecular coordinates into the global reaction
coordinate space. To this end, the power of deep learn-
ing with time-lagged autoencoder methods has been har-
nessed to identify slowly changing collective variables in
peptide folding examples (Wehmeyer and Noé, 2018). A
variational NN-based approach has also been used to
identify important kinetic processes during protein fold-
ing simulations and provides a framework for unifying
coordinate transformations and FES surface exploration
(Mardt et al., 2018). A promising alternate approach
is to use ML to sample conformational distributions di-
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Figure 6 Several representations are currently used to describe molecular systems in ML models, including (a) atomic coordi-
nates, with symmetry functions encoding local bonding environments, as inputs to element-based neural networks (Reproduced
from (Gastegger et al., 2017)) and (b) nuclear potentials approximated by a sum of Gaussian functions as inputs kernel ridge
regression models for electron densities (Modified from (Brockherde et al., 2017)).

rectly. Boltzmann generators can sample the equilib-
rium distribution of a collective variable space and sub-
sequently provide a set of states that represent the dis-
tribution of states on the FES (Noé et al., 2019).

Furthermore, the long history of finding relationships
between minima on complex energy landscapes may also
be useful as we learn to understand why ML models ex-
hibit such general success. Relationships between the
methods and ideas currently used to describe molecular
systems and the corresponding are reviewed in (Ballard
et al., 2017). Going forward, the many tools developed
by physicists to explore and quantify features on energy
landscapes may be helpful in creating new algorithms to
efficiently optimize model weights during training. (See
also the related discussion in Sec. II.D.4.) This area of
interdisciplinary research promises to yield methods that
will be useful in both machine learning and physics fields.

C. Materials properties

Using learned interatomic potentials based on local en-
vironments has also afforded improvement in the calcula-
tion of materials properties. Matching experimental data
typically requires sampling from the ensemble of possible
configurations, which comes at a considerable cost when
using large simulation cells and conventional methods.
Recently, the structure and material properties of amor-
phous silicon were predicted using molecular dynamics
(MD) with a ML potential trained on density functional
theory (DFT) calculations for only small simulation cells
(Deringer et al., 2018). Related applications of using ML
potentials to model the phase change between crystalline
and amorphous regions of materials such as GeTe and
amorphous carbon are reviewed by Sosso et al. (2018).
Generating a computationally-tractable potential that is
sufficiently accurate to describe phase changes and the
relative energies of defects on both an atomistic and ma-
terial scale is quite difficult, however the recent success
for silicon properties indicates that ML methods are up
to the challenge (Bartók et al., 2018).

Ideally, experimental measurements could also be in-
corporated in data-driven ML methods that aim to pre-

dict material properties. However, reported results are
too often limited to high-performance materials with no
counter examples for the training process. In addition,
noisy data is coupled with a lack of precise structural in-
formation needed for input into the ML model. For for
organic molecular crystals, these challenges were over-
come for predictions of NMR chemical shifts, which are
very sensitive to local environments, by using a Gaussian
process regression framework trained on DFT-calculated
values of known structures (Paruzzo et al., 2018). Match-
ing calculated values with experimental results prior to
training the ML model enabled the validation of a pre-
dicted pharmaceutical crystal structure.

Other intriguing directions include identification of
structurally similar materials via clustering and using
convex hull construction to determine which of the many
predicted structures should be most stable under certain
thermodynamic constraints (Anelli et al., 2018). Using
kernel-PCA descriptors for the construction of the con-
vex hull has been applied to identify crystalline ice phases
and was shown to cluster thousands structures which dif-
fer only by proton disorder or stacking faults (Engel et al.,
2018) (see Fig. 7). Machine-learned methods based on a
combination of supervised and unsupervised techniques
certainly promises to be a fruitful research area in the
future. In particular, it remains an exciting challenge to
identify, predict, or even suggest materials that exhibit a
particular desired property.

D. Electron densities for density functional theory

In many of the examples above, density functional the-
ory calculations have been used as the source of training
data. It is fitting that machine learning is also playing a
role in creating new density functionals. Machine learn-
ing is a natural choice for situations such as DFT where
we do not have knowledge of the functional form of an
exact solution. The benefit of this approach to identify-
ing a density functional was illustrated by approximating
the kinetic energy functional of an electron distribution
in a 1D potential well (Snyder et al., 2012). For use in
standard Kohn-Sham based DFT codes, the derivative of



33

Figure 7 Clustering thousands of possible ice structures based on machine-learned descriptors identifies observed forms and
groups similar structures together. Reproduced from (Engel et al., 2018).

the ML functional must also be used to find the appro-
priate ground state electron distribution. Using kernel
ridge regression without further modification can lead to
noisy derivatives, but projecting the resulting energies
back onto the learned space using PCA resolves this is-
sue (Li et al., 2015). A NN-based approach to learning
the exchange-correlation potential has also been demon-
strated for 1D systems (Nagai et al., 2018). In this case,
the ML method makes direct use of the derivatives gen-
erated during the NN training steps.

It is also possible to bypass the functional derivative
entirely by using ML to generate the appropriate ground
state electron density that corresponds to a nuclear po-
tential (Brockherde et al., 2017), as shown in Fig. 6(b).
Furthermore, this work demonstrated that the energy of
a molecular system can also be learned with electron den-
sities as an input, enabling reactive MD simulations of
proton transfer events based on DFT energies. Intrigu-
ingly, an approximate electron density, such as a sum of
densities from isolated atoms, has also been successfully
employed as the input for predicting molecular energies

(Eickenberg et al., 2018). A related approach for peri-
odic crystalline solids used local electron densities from
an embedded atom method to train Bayesian ML mod-
els to return total system energies (Schmidt et al., 2018).
Since the total energy is an extensive property, a scalable
NN model based on summation of local electron densities
has also been developed to run large DFT-based simula-
tions for 2D porous graphene sheets (Mills et al., 2019).
With these successes, it has become clear that given den-
sity functional, machine learning offers new ways to learn
both the electron density and the corresponding system
energy.

Many human-based approaches to improving the ap-
proximate functionals in use today rely on imposing
physically-motivated constraints. So far, including these
types of restrictions on ML-based methods has met with
only partial success. For example, requiring that a ML
functional fulfill more than one constraint, such as a
scaling law and size-consistency, improves overall per-
formance in a system-dependent manner (Hollingsworth
et al., 2018). Obtaining accurate derivatives, particu-
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larly for molecules with conformational changes, is still
an open question for physics-informed ML functionals
and potentials that have not been explicitly trained with
this goal (Bereau et al., 2018; Snyder et al., 2012).

E. Data set generation

As for other applications of machine learning, com-
parison of various methods requires standardized data
sets. For quantum chemistry, these include the 134,000
molecules in the QM9 data set (Ramakrishnan et al.,
2014) and the COMP6 benchmark data set composed of
randomly-sampled subsets of other small molecule and
peptide data sets, with each entry optimized using the
same computational method (Smith et al., 2018).

In chemistry and materials research, computational
data are often expensive to generate, so selection of train-
ing data points must be carefully considered. The in-
put and output representations also inform the choice
of data. Inspection of ML-predicted molecular energies
for most of the QM9 data set showed the importance
of choosing input data structures that convey conformer
changes (Faber et al., 2017). In addition, dense sampling
of the chemical composition space is not always neces-
sary. For example, the initial ANI training set of 20 mil-
lion molecules could be replaced with 5.5 million train-
ing points selected using an active learning method that
added poorly predicted molecular examples from each
training cycle (Smith et al., 2018). Alternate sampling
approaches can also be used to more efficiently build up
a training set. These range from active learning meth-
ods that estimate errors from multiple NN evaluations for
new molecules(Gastegger et al., 2017) to generating new
atomic configurations based on MD simulations using a
previously-generated model (Zhang et al., 2018b). Inter-
esting, statistical-physics-based, insight into theoretical
aspects of such active learning was presented in (Seung
et al., 1992b).

Further work in this area is needed to identify the
atomic compositions and configurations that are most
important to differentiating candidate structures. While
NN’s have been shown to generate accurate energies, the
amount of data required to prevent over-fitting can be
prohibitively expensive in many cases. For specific tasks,
such as predicting the anharmonic contributions to vi-
brational frequencies of the small molecule formaldehye,
Gaussian process methods were more accurate, and used
fewer points than a NN, although these points need to be
selected more carefully (Kamath et al., 2018). Balancing
the computational cost of data generation, ease of model
training, and model evaluation time continues to be an
important consideration when choosing the appropriate
ML method for each application.

F. Outlook and Challenges

Going forward, ML models will benefit from includ-
ing methods and practices developed for other problems
in physics. While some of these ideas are already being
explored, such as exploiting input data symmetries for
molecular configurations, there are still many opportu-
nities to improve model training efficiency and regular-
ization. Some of the more promising (and challenging)
areas include applying methods for exploration of high-
dimensional landscapes for parameter/hyper-parameter
optimization and identifying how to include boundary
behaviors or scaling laws in ML architectures and/or in-
put data formats. To connect more directly to exper-
imental data, future physics-based ML methods should
account for uncertainties and/or errors from calculations
and measured properties to avoid over-fitting and im-
prove transferability of the models.

VII. AI ACCELERATION WITH CLASSICAL AND
QUANTUM HARDWARE

There are areas where physics can contribute to ma-
chine learning by other means than tools for theoretical
investigations and domain-specific problems. Novel hard-
ware platforms may help with expensive information pro-
cessing pipelines and extend the number crunching facil-
ities of CPUs and GPUs. Such hardware-helpers are also
known as “AI accelerators”, and physics research has to
offer a variety of devices that could potentially enhance
machine learning.

A. Beyond von Neumann architectures

When we speak of computers, we usually think of uni-
versal digital computers based on electrical circuits and
Boolean logic. This is the so-called "von Neumann"
paradigm of modern computing. But any physical sys-
tem can be interpreted as a way to process information,
namely by mapping the input parameters of the experi-
mental setup to measurement results, the output. This
way of thinking is close to the idea of analog comput-
ing, which has been – or so it seems (Ambs, 2010; Lund-
berg, 2005) – dwarfed by its digital cousin for all but
very few applications. In the context of machine learn-
ing however, where low-precision computations have to
be executed over and over, analog and special-purpose
computing devices have found a new surge of interest.
The hardware can be used to emulate a full model, such
as neural-network inspired chips (Ambrogio et al., 2018),
or it can outsource only a subroutine of a computation,
as done by Field-Programmable Gate Arrays (FPGAs)
and Application-Specific Integrated Circuits (ASICs) for
fast linear algebra computations (Jouppi et al., 2017;
Markidis et al., 2018).

In the following, we present selected examples from
various research directions that investigate how hardware
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platforms from physics labs, such as optics, nanophoton-
ics and quantum computers, can become novel kinds of
AI accelerators.

B. Neural networks running on light

Processing information with optics is a natural and ap-
pealing alternative - or at least complement - to all-silicon
computers: it is fast, it can be made massively parallel,
and requires very low power consumption. Optical inter-
connects are already widespread, to carry information on
short or long distances, but light interference properties
also can be leveraged in order to provide more advanced
processing. In the case of machine learning there is one
more perk. Some of the standard building blocks in op-
tics labs have a striking resemblance with the way infor-
mation is processed with neural networks (Killoran et al.,
2018; Lin et al., 2018; Shen et al., 2017), an insight that is
by no means new (Lu et al., 1989). An example for both
large bulk optics experiments and on-chip nanophoton-
ics are networks of interferometers. Interferometers are
passive optical elements made up of beam splitters and
phase shifters (Clements et al., 2016; Reck et al., 1994).
If we consider the amplitudes of light modes as an incom-
ing signal, the interferometer effectively applies a unitary
transformation to the input (see Figure 8 left). Ampli-
fying or damping the amplitudes can be understood as
applying a diagonal matrix. Consequently, by means of
a singular value decomposition, an amplifier sandwiched
by two interferometers implements an arbitrary matrix
multiplication on the data encoded into the optical am-
plitudes. Adding a non-linear operation – which is usu-
ally the hardest to precisely control in the lab – can turn
the device into an emulator of a standard neural network
layer (Lin et al., 2018; Shen et al., 2017), but at the speed
of light.

An interesting question to ask is: what if we use quan-
tum instead of classical light? For example, imagine the
information is now encoded in the quadratures of the elec-
tromagnetic field. The quadratures are - much like po-
sition and momentum of a quantum particle - two non-
commuting operators that describe light as a quantum
system. We now have to exchange the setup to quantum
optics components such as squeezers and displacers, and
get a neural network encoded in the quantum properties
of light (Killoran et al., 2018). But there is more: Using
multiple layers, and choosing the ‘nonlinear operation’
as a “non-Gaussian” component (such as an optical “Kerr
non-linearity” which is admittedly still an experimental
challenge), the optical setup becomes a universal quan-
tum computer. As such, it can run any computations a
quantum computer can perform - a true quantum neural
network. There are other variations of quantum opti-
cal neural nets, for example when information is encoded
into discrete rather than continuous-variable properties
of light (Steinbrecher et al., 2018). Investigations into
what these quantum devices mean for machine learning,

for example whether there are patterns in data that can
be easier recognized, have just begun.

C. Revealing features in data

One does not have to implement a full machine learn-
ing model on the physical hardware, but can outsource
single components. An example which we will highlight
as a second application is data preprocessing or feature
extraction. This includes mapping data to another space
where it is either compressed or ‘blown up’, in both cases
revealing its features for machine learning algorithms.

One approach to data compression or expansion with
physical devices leverages the very statistical nature of
many machine learning algorithms. Multiple light scat-
tering can generate the very high-dimensional random-
ness needed for so-called random embeddings (see Figure
8 top right). In a nutshell, the multiplication of a set
of vectors by the same random matrix is approximately
distance-preserving (Johnson and Lindenstrauss, 1984).
This can be used for dimensionality reduction, i.e., data
compression, in the spirit of compressed sensing (Donoho,
2006) or for efficient nearest neighbor search with local-
ity sensitive hashing. This can also be used for dimen-
sionality expansion, where in the limit of large dimen-
sion it approximates a well-defined kernel (Saade et al.,
2016). Such devices can be built in free-space optics,
with coherent laser sources, commercial light modulators
and CMOS sensors, and a well-chosen scattering material
(see Fig.8 2a). Machine learning applications range from
transfer learning for deep neural networks, time series
analysis - with a feedback loop implementing so-called
echo-state networks (Dong et al., 2018), or change-point
detection (Keriven et al., 2018). For large-dimensional
data, these devices already outperform CPUs or GPUs
both in speed and power consumption.

D. Quantum-enhanced machine learning

A fair amount of effort in the field of quantum machine
learning, a field that investigates intersections of quan-
tum information and intelligent data mining (Biamonte
et al., 2017; Schuld and Petruccione, 2018b), goes into
applications of near-term quantum hardware for learn-
ing tasks (Perdomo-Ortiz et al., 2017). These so-called
Noisy Intermediate-Scale Quantum or ‘NISQ’ devices are
not only hoped to enhance machine learning applications
in terms of speed, but may lead to entirely new algo-
rithms inspired by quantum physics. We have already
mentioned one such example above, a quantum neural
network that can emulate a classical neural net, but go
beyond. This model falls into a larger class of varia-
tional or parametrized quantum machine learning algo-
rithms (McClean et al., 2016; Mitarai et al., 2018). The
idea is to make the quantum algorithm, and thereby the
device implementing the quantum computing operations,
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Figure 8 Illustrations of the methods discussed in the text. 1. Optical components such as interferometers and amplifiers
can emulate a neural network that layer-wise maps an input x to ϕ(Wx) where W is a learnable weight matrix and ϕ a
nonlinear activation. Using quantum optics components such as displacement and squeezing, one can encode information into
quantum properties of light and turn the neural net into a universal quantum computer. 2. Random embedding with an Optical
Processing Unit. Data is encoded into the laser beam through a spatial light modulator (here, a DMD), after which a diffusive
medium generates the random features. 3. A quantum computer can be used to compute distances between data points, or
“quantum kernels”. The first part of the quantum algorithm uses routines Sx, Sx′ to embed the data in Hilbert space, while
the second part reveals the inner product of the embedded vectors. This kernel can be further processed in standard kernel
methods such as support vector machines.

depend on parameters θ that can be trained with data.
Measurements on the “trained device” represent new out-
puts, such as artificially generated data samples of a gen-
erative model, or classifications of a supervised classifier.

Another idea of how to use quantum computers to en-
hance learning is inspired by kernel methods (Hofmann
et al., 2008) (see Figure 8 bottom right). By associating
the parameters of a quantum algorithm with an input
data sample x, one effectively embeds x into a quan-
tum state |ψ(x)〉 described by a vector in Hilbert space
(Havlicek et al., 2018; Schuld and Killoran, 2018). A
simple interference routine can measure overlaps between
two quantum states prepared in this way. An overlap is
an inner product of vectors in Hilbert space, which in
the machine literature is known as a kernel, a distance
measure between two data points. As a result, quantum
computers can compute rather exotic kernels that may
be classically intractable, and it is an active area of re-
search to find interesting quantum kernels for machine
learning tasks.

Beyond quantum kernels and variational circuits,
quantum machine learning presents many other ideas
that use quantum hardware as AI accelerators, for exam-
ple as a sampler for training and inference in graphical
models (Adachi and Henderson, 2015; Benedetti et al.,
2017), or for linear algebra computations (Lloyd et al.,

2014)2. Another interesting branch of research investi-
gates how quantum devices can directly analyze the data
produced by quantum experiments, without making the
detour of measurements (Cong et al., 2018). In all these
explorations, a major challenge is the still severe limita-
tions in current-day NISQ devices which reduce numer-
ical experiments on the hardware to proof-of-principle
demonstrations, while theoretical analysis remains noto-
riously difficult in machine learning.

E. Outlook and Challenges

The above examples demonstrate a way of how physics
research can contribute to machine learning, namely by
investigating new hardware platforms to execute tiresome
computations. While standard von Neumann technolo-
gies struggle to keep pace with Moore’s law, this opens a
number of opportunities for novel computing paradigms.
In their simplest embodiment, these take the form of
specialized accelerator devices, plugged onto standard

2 Many quantum machine learning algorithms based on linear al-
gebra acceleration have recently been shown to make unfounded
claims of exponential speedups (Tang, 2018), when compared
against classical algorithms for analysing low-rank datasets with
strong sampling access. However, they are still interesting in this
context where even constant speedups make a difference.
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servers and accessed through custom APIs. Future re-
search focuses on the scaling-up of such hardware capabil-
ities, hardware-inspired innovation to machine learning,
and adapted programming languages as well as compil-
ers for the optimized distribution of computing tasks on
these hybrid servers.

VIII. CONCLUSIONS AND OUTLOOK

A number of overarching themes become apparent af-
ter reviewing the ways in which machine learning is used
in or has enhanced the different disciplines of physics.
First of all, it is clear that the interest in machine learn-
ing techniques suddenly surged in recent years. This is
true even in areas such as statistical physics and high-
energy physics where the connection to machine learning
techniques has a long history. We are seeing the research
move from an exploratory efforts on toy models towards
the use of real experimental data. We are also seeing an
evolution in the understanding and limitations of these
approaches and situations in which the performance can
be justified theoretically. A healthy and critical engage-
ment with the potential power and limitations of ma-
chine learning includes an analysis of where these meth-
ods break and what they are distinctly not good at.

Physicist are notoriously hungry for very detailed un-
derstanding of why and when their methods work. As
machine learning is incorporated into the physicist’s tool-
box, it is reasonable to expect that physicist may shed
light on some of the notoriously difficult questions ma-
chine learning is facing. Specifically, physicists are al-
ready contributing to issues of interpretability, tech-
niques to validate or guarantee the results, and princi-
ple ways to chose the various parameters of the neural
networks architectures.

One direction in which the physics community has
much to learn from the machine learning community is
the culture and practice of sharing code and developing
carefully-crafted, high-quality benchmark datasets. Fur-
thermore, physics would do well to emulate the practices
of developing user-friendly and portable implementations
of the key methods, ideally with the involvement of pro-
fessional software engineers.

The picture that emerges from the level of activity and
the enthusiasm surrounding the first success stories is
that the interaction between machine learning and the
physical sciences is merely in its infancy, and we can an-
ticipate more exciting results stemming from this inter-
play between machine learning and the physical sciences.
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