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Geometric frustration and the ice rule are two concepts that are intimately connected
and widespread across condensed matter. The first refers to the inability of a system
to satisfy competing interactions in the presence of spatial constraints. The second, in
its more general sense, represents a prescription for the minimization of the topological
charges in a constrained system. Both can lead to manifolds of high susceptibility and
non-trivial, constrained disorder where exotic behaviors can appear and even be designed
deliberately. In this Colloquium, we describe the emergence of geometric frustration and
the ice rule in soft condensed matter. This Review excludes the extensive developments
of mathematical physics within the field of geometric frustration, but rather focuses
on systems of confined micro- or mesoscopic particles that emerge as a novel paradigm
exhibiting spin degrees of freedom. In such systems, geometric frustration can be en-
gineered artificially by controlling the spatial topology and geometry of the lattice, the
position of the individual particle units, or their relative filling fraction. These capa-
bilities enable the creation of novel and exotic phases of matter, and also potentially
lead towards technological applications related to memory and logic devices that are
based on the motion of topological defects. We review the rapid progress in theory and
experiments and discuss the intimate physical connections with other frustrated systems
at different length scales.
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I. INTRODUCTION

Frustration in life emerges with the impossibility of
simultaneously satisfying a set of requirements. Frus-
tration in physics is not very different. A classical ex-
ample is that of three spins on the vertex of a triangle
that want to be antiferromagnetically aligned (Wannier,
1950). This requirement cannot be realized all around
the triangle, so at least two spins will display ferromag-
netic order and will generate one frustrated bond. More
generally, a geometrically frustrated system is one that is
subjected to local requirements that cannot be satisfied
collectively along certain loops in the system. The notion
is therefore intrinsically topological, i.e. invariant under
transformations that do not rip those frustrated loops,
and indeed it lends itself to abstract, elegant treatments
in term of Wilson loops and gauge symmetry, at least in
the case of spin systems (Fradkin et al., 1978). In real
systems, however, the local requirement is usually the
minimization of an energy as a pairwise interaction that
is in general geometry-dependent.

Frustration is essential for the understanding of a vari-
ety of real materials, such as spin glasses (Mydosh, 2014),
water ice (Bernal and Fowler, 1933; Pauling, 1935), spin
ices (Bramwell and Gingras, 2001; Harris et al., 1997;
Ramirez et al., 1999), and even systems at different
length scales such as granular materials (Richard et al.,
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2005), liquid crystals (Kamien and Selinger, 2001; Lopez-
Leon et al., 2011), filament bundles (Hall et al., 2016),
coupled lasers (Nixon et al., 2013) and many others (Gra-
son, 2016). There, it is often—but by no means always—
associated with slow relaxation, degeneracy, and zero
temperature entropy. Indeed, frustration implies com-
promise, and therefore produces various forms of so-
called constrained disorder, which are manifolds whose
disorder obeys some non trivial rules, either local or
global. The ice rule is an important example of a local
rule that constrains disorder and that can have global,
i.e. topological, implications.

Typically in an ensemble characterized by constrained
disorder, violations of local rules appear as localized ex-
citations of the low-energy states of the system. These
local rule violations control the collective dynamics. An
example, described further below, is provided by the
magnetic monopoles in spin ices (Castelnovo et al., 2008;
Ryzhkin, 2005), which are violations of an ice manifold.
Another example are the emergent topological charges
in certain artificial spin ices (Lao et al., 2018). These
concepts are of both practical interest, such as for the
measurement of currents of magnetic monopoles (Gib-
lin et al., 2011), and also of theoretical interest. Indeed,
we are accustomed to understanding topological defects
in terms of alterations of an underlying order, such as
misplaced books on a library shelf or dislocations in a
crystal, rather than in terms of disorder.

Manifolds of constrained disorder can be rich play-
grounds for new physics, and frustration is a fundamental
ingredient in the design of artificial systems that can gen-
erate novel exotic behaviors which are often not found in
natural materials (Heyderman and Stamps, 2013; Nisoli
et al., 2013; Wang et al., 2006). Artificial spin ice sys-
tems were first created by mimicking natural frustrated
geometries and by realizing celebrated models of statisti-
cal mechanics (Baxter, 1982; Lieb, 1967b) in settings that
allowed characterization at the constituent level, often in
real time. However, since artificial materials can be real-
ized in various geometries, a more recent effort (Morrison
et al., 2013; Nisoli et al., 2017) has advanced the design
of new systems generating a wide variety of new phe-
nomena, including dimensionality reduction, emergent
classical topological order, realizations of Pott’s models,
phase transitions, ice rule fragility, and quasi-crystal spin
ices (Barrows et al., 2019; Gilbert et al., 2014, 2016a;
Gliga et al., 2017; Lao et al., 2018; Libál et al., 2018;
Louis et al., 2018; Ma et al., 2016; Östman et al., 2017;
Perrin et al., 2016; Shi et al., 2018; Sklenar et al., 2019).
Furthermore, many of these ideas proved to be exportable
across different platforms, from nanomagnets to trapped
colloids, to liquid crystals, and to superconductors (Duz-
gun and Nisoli, 2019; Latimer et al., 2013; Libál et al.,
2009; Ortiz-Ambriz and Tierno, 2016; Wang et al., 2018).

II. THE ICE RULE

We start by briefly recalling the history of the ice
rule, and its appearance in magnetic systems either nat-
ural or lithographically fabricated. For a more extensive
treatment we refer the reader to available reviews and
commentaries on the subject: (Bramwell and Gingras,
2001; Gardner et al., 2010; Gilbert et al., 2016b; Heyder-
man and Stamps, 2013; Nisoli, 2018a; Nisoli et al., 2013;
Ramirez, 1994).

1. From water ice to spin ice

Many fundamental properties of water are still not
completely understood (Chaplin, 2006). One of water’s
early mysteries pertained to its residual entropy and was
solved by Linus Pauling in the 1930’s. Through a series
of carefully conducted calorimetric experiments, Giaque
and Ashley (Giauque and Ashley, 1933; Stout and Gi-
auque, 1936) had found that the entropy of ice at low
temperature was not zero. Pauling (Pauling, 1935) ex-
plained it via the ice rule of Bernal and Fowler (Bernal
and Fowler, 1933). In water ice each oxygen atom is
bound to four others via hydrogen atoms. Two of these
hydrogen atoms are close to the oxygen atom in cova-
lent bonds, and two are further away forming covalent
bonds with neighboring oxygens, Fig. 1(a), left. The
number of ways in which the hydrogen atoms can be ar-
ranged, Pauling showed, grows exponentially with the
number of oxygen atoms, leading to a non-zero entropy
per molecule. Ice-like systems received renewed interest
in the 1990’s with the discovery a class of magnetic sub-
stances which were named “spin ices” because their mag-
netic texture at low temperature presents a degenerate
low energy state with a residual entropy, consistent with
the ice rule model. These rare earth titanates, such as
Ho2Ti2O7 and Dy2Ti2O7, presented frustrated interac-
tions between the magnetic moments of their constituent
at low temperature. Their magnetic cations Ho3+ and
Dy3+ were known to carry a very large magnetic moment,
about ten times the Bohr magneton. At low tempera-
tures such moments could be regarded as binary, classi-
cal Ising spins constrained to point along the directions of
the lattice bonds forming the pyrochlore lattice, as shown
in Fig. 1(a), right. It was then noted (Harris et al., 1997)
and confirmed experimentally (Ramirez et al., 1999) that
the resulting ferromagnetic interaction favors the ice rule,
in which two spins point in each vertex and two out, in
analogy with the allocation of protons in the lattice of
water ice.
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FIG. 1 (a) Ice rule for the water ice Ih (left) and magnetic spin ice material (right). The first is characterized by oxygen atoms
sharing protons and located at the vertices of a diamond lattice. The spin ice has Ising-like moments pointing along the same
lattice, from Castelnovo et al. (2012). (b) A projection of the three-dimensional pyrochlore lattice onto a two-dimensional
plane gives rise to a square lattice, from Glaetzle et al. (2014). (c) Left: Magnetic force microscope image of an artificial spin
ice composed by a square lattice of permalloy islands with lattice spacing of 400nm. Right: corresponding spin orientations.
Bottom: vertex configurations with ice rule highlighted in the violet [gray] box. Image edited with permission from (Wang
et al., 2006).

2. Artificial spin ice systems

Between the late 1990’s and the early 2000’s, a mature
effort in the exploration of the magnetic state of nanodots
and nanoislands (Bader, 2006) focused on how to obtain
exotic magnetic textures and transitions. Meanwhile,
a different approach to exotic behavior involved rela-
tively simple elongated, single-domain, magnetic nanois-
lands, whose magnetization could be described by an
Ising pseudo-spin. In this case, complexity is introduced
via the mutual interaction of these nanoislands in order
to generate possibly interesting collective states of ex-
otic emergent behaviors (Heyderman and Stamps, 2013;
Libál et al., 2006; Nisoli et al., 2013; Tanaka et al., 2006;
Wang et al., 2006). This approach provided a twofold
advantage. First, characterization of the individual de-
grees of freedom in real space is possible via methods
such as Magnetic Force Microscopy (MFM), Photoelec-
tron emission microscopy (PEEM), Transmission Elec-
tron Microscopy (TEM), Surface Magneto-Optic Kerr
Effect (MOKE), and Lorentz Microscopy. Secondly, the
collective behavior of these systems is open to design.

The resulting so-called Artificial Spin Ices (ASI) could
mimic the behavior of spin ice rare earth pyrochlores—
hence the name—but at desirable temperature and field
ranges. In a certain geometry, ASI represents a plane pro-
jection of a pyrochlore material, as shown in Figs. 1(b,c).
Soon, a growing number of groups began using ASI to
investigate topological defects, the dynamics of mag-
netic charges, and spin fragmentation (Canals et al.,

2016; Ladak et al., 2011a,b, 2010; Mengotti et al., 2011;
Phatak et al., 2011; Pollard et al., 2012; Rougemaille
et al., 2011; Zeissler et al., 2013), as well as infor-
mation encoding (Wan, 2016; Lammert et al., 2010),
equilibrium and nonequilibrium thermodynamics (Bu-
drikis et al., 2013, 2011; Chioar et al., 2014a,a; Cuglian-
dolo, 2017; Ke et al., 2008; Lammert et al., 2012; Levis
et al., 2013; Morgan et al., 2011; Nisoli, 2012; Nisoli
et al., 2010, 2007), avalanches (Hügli et al., 2012; Shen
et al., 2011), direct realizations of the Ising system (Ar-
nalds et al., 2016; Chioar et al., 2016, 2014b; Nisoli,
2016; Zhang et al., 2012), magnetoresistance and the
Hall effect (Branford et al., 2012; Le et al., 2017), crit-
ical slowing down (Anghinolfi et al., 2015), disloca-
tions (Drisko et al., 2017), spin wave excitations (Gliga
et al., 2013), ratchet effects (Gliga et al., 2017), dimen-
sionality reduction (Gilbert et al., 2016a), classical topo-
logical states (Gilbert et al., 2014; Lao et al., 2018; Per-
rin et al., 2016), quasi-crystals (Barrows et al., 2019; Shi
et al., 2018), and memory effects (Gilbert et al., 2015;
Libál et al., 2012).

3. Ice rule and topology: conceptual themes

The ice-rule appears an innocuous enough concept, yet
it can be understood in most general terms and has pro-
found implications. Consider a lattice or even a directed
graph, with binary variables such as Ising spins on each
edge, impinging in vertices of various coordination z. The
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pyrochlore or square geometries introduced before can
serve as examples. Then we can define the topological
charge of a vertex of coordination z with n spins point-
ing toward as

q = 2n− z, (1)

which corresponds to the difference between the number
of spins pointing in and out. This notion is properly topo-
logical as it only depends on the topology of the graph.
Furthermore, given a spin configuration, any single spin
flip will alter the charge in two nearby vertices. Only
flipping proper loops of spins will preserve the charge
distribution.

In this language, the ice rule can be considered a pre-
scription for a local minimization of |q| at each vertex.
In practical systems this is typically (but not necessar-
ily) enforced by the nearest neighboring spin-spin interac-
tions. Any configuration of spins that locally minimizes
|q| is said to obey the ice rule, and the subset of the phase
space corresponding to such configurations is called an ice
manifold. For a lattice of uniform, even coordination, the
ice manifold is then characterized by zero charge q = 0
on each vertex. The first violation of the ice rule then
corresponds to charges q = ±2, called monopoles. Very
often–but not always– the ice manifold represents the
lowest energy of the system, and then the ground state
is degenerate and disordered, and has a residual entropy.
Importantly it cannot be “explored from within.” Any
single spin flip on an ice-rule configuration creates a pair
of monopoles of opposite charge ±2 (Castelnovo et al.,
2008; Ryzhkin, 2005), violating the ice rule. Only the co-
herent flipping of a loop of spins, properly chosen so that
they are all arranged head to tail, represents an “update”
that does not violate the ice rule.

The simplest, square version of such system has mo-
tivated theoretical research in applied mathematics for
half a century. In the 1960s, Lieb, Wu, Baxter, Rys,
and others began working on simplified, two-dimensional
models of mathematical physics, known as vertex mod-
els, that captured and also generalized the properties of
ice. In these models, different energies are assigned to
different vertex configurations on a square lattice, and
in many cases the models can be solved exactly, typically
via transfer matrix methods (Baxter, 1982; Lieb, 1967a,b;
Rys, 1963; Wu, 1969). The six-vertex model in particu-
lar (Lieb, 1967b) only admits ice rule obeying vertices on
a square lattice, and was meant to represent a solvable,
two-dimensional equivalent of water ice. As it forbids
monopoles, it is completely embedded into the ice mani-
fold and has strong topological properties. For instance,
if the degeneracy of the ice-manifold is lifted by an ener-
getics that selects the antiferromagnetic state, as in the
Rys F-model (Rys, 1963), then the corresponding order-
ing transition is infinitely continuous (Lieb, 1967a), and
with an order parameter, also infinitely continuous! (Bax-
ter, 1982).

Beside clarifying the topological nature of the ice rule,
these models were also often equivalent to other impor-
tant statistical mechanics systems, such as dimer cover
models, and thus initiated an independent theoretical
line of research in mathematical physics that has fur-
ther evolved in terms of loop representations to describe
topological effects at (and of) the boundaries. We will
not report here on this half a century long, very interest-
ing developments because it goes beyond the scope of this
Review. Indeed the interesting phenomenology in those
models arises from a topological structure—given by the
ice rule—that in simulations and experiments is always
violated. While it is true that such topological struc-
ture is present in the ground state, this does not imply
that it extrapolates fully to the low energy physics, which
is in fact generally a dynamics of topological defects.
In a sense, realistic spin ice systems are neither topo-
logically constrained nor unconstrained. They should
perhaps be called ”Topology Breaking” systems because
for any non-zero temperature, violations of the topolog-
ical constraints (the ice-rule) in form of monopoles sub-
stantially changes the physics. For a dramatic exam-
ple: while the antiferromagnetic ground state of artificial
square ice (Morgan et al., 2011; Nisoli et al., 2010; Porro
et al., 2013; Wang et al., 2006; Zhang et al., 2013) would
seem to be well described by the Rys F-model, the or-
dering transition of the latter is in the Kosterlitz Thou-
less class (Kosterlitz and Thouless, 1973; Lieb, 1967a),
whereas in “real” square ice the transition is simply sec-
ond order in the Ising class (Levis et al., 2013; Sendetskyi
et al., 2019; Wu, 1969) precisely because monopoles break
the topological constraint.

Thus in real spin ice systems it becomes less interesting
to eviscerate all the possible topological representations
of their idealized ice manifold. It is instead more interest-
ing to see how the topological properties of an ultimately
unreachable ground state affect the low-energy physics
as the system breaks those topological constraints. This
issue has been attacked via the concepts of spin frac-
tionalization into magnetic charges (Castelnovo et al.,
2008; Ryzhkin, 2005) and of spin fragmentation (Petit
et al., 2016) into a Coulomb (Henley, 2010b) and non-
Coulomb magnetization. For instance, in pyrochlore ice
the ice manifold can be considered as a classical topo-
logical phase of constrained disorder (Castelnovo et al.,
2012; Henley, 2010a,b). Such a phase is labeled not by an
order parameter, as an ordered phase would, but rather
by a fluctuating, solenoidal gauge field ~M(x), which can
be thought of as a coarse grain of the spin magnetization.
Then spin fractionalization implies that the low-energy
manifold can be described in terms of local violations of
its solenoidal nature, such that

~∇ · ~M(x) = 4π
∑
i

qxi
δ(x− xi). (2)

Thus, the ice manifold corresponds to q = 0 everywhere,
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and it is easy to show (Henley, 2010b) that it implies alge-
braic (specifically, dipolar) correlations in the reciprocal
space, and thus the observed pinch points in the struc-
ture factor of neutron scattering. While this ice phase is
critical, this is a purely mathematical abstraction since
no transition to the ice manifold exists, and at non-zero
temperature monopoles will always be present, however
sparsely, and provide a correlation length.

The low energy of the system remains however rem-
iniscent of the topological nature of its ground state.
Through spin fragmentation (Petit et al., 2016) it is pos-
sible to show that the low-energy ensemble can be decom-
posed into an ice-rule ensemble plus an crystal-charge en-
semble. In terms of the coarse grained magnetization this
merely corresponds to an Helmholtz decomposition of the
magnetization vector in the sum of a divergence free and
divergence full part. Because the two components are
uncoupled at the lowest order in the effective free energy,
dipolar correlations and pinch points survive at non-zero
temperature. Artificial realization of topological phases
was achieved in the Shakti geometry (Lao et al., 2018)
as well as in magnetic square ice (Möller and Moessner,
2006; Perrin et al., 2016) and rectangular (Loreto et al.,
2019; Ribeiro et al., 2017) ice. No equivalent phase has
yet been realized with colloids, though those magnetic
realization provide directions.

For vertices of odd coordination, the cancellation of
the charge in Eq. (1) is impossible and |q| is minimized
when q = ±1. Thus in a simple system of uniform, odd
coordination, such as the kagomé ice (Qi et al., 2008), the
ice manifold corresponds to ensembles of disordered spins
obeying a 2-in/1-out or 2-out/1-in ice-rule at each vertex.
Because there is no charge cancellation, such systems can
be regarded as disordered, neutral plasma of opposite
topological charges which, depending on realization, can
interact, leading to further phases within the ice mani-
fold (Chern et al., 2011, 2013a; Drisko et al., 2015; Libál
et al., 2018; Möller and Moessner, 2009; Zhang et al.,
2013), as we will show below in more detail.

Finally, systems of mixed coordination, say for instance
z = 3, 4 host both versions of the ice rule, 2-in/2-out on
z = 4 coordinated vertices and 2-in/1-out or 2-out/1 on
z = 3 vertices. Here is where the difference between mag-
netic and particle-based spin ice becomes more dramatic,
with the ice-rule breaking down in the latter, as we shall
see in Section IV.

III. THE ICE RULE IN SOFT (PARTICLE) SYSTEMS

1. Colloids as a model system

Colloidal particles represent a versatile model system
to explore collective phenomena in statistical physics and
condensed matter, due to their accessible length-scales
and to the presence of simple and tunable interactions

(Poon, 2004; Yethiraj and van Blaaderen, 2003). Col-
loidal systems have provided new insight into the glass
transition (Weeks, 2017), yielding phenomena (Schall
et al., 2007), and the motion of dislocations (Schall,
2004), and have been used to test numerous founda-
tions of both equilibrium (Thorneywork et al., 2017; Zahn
et al., 1999) and nonequilibrium statistical mechanics
(Martínez et al., 2016, 2017). One of the best exam-
ples of the use of colloids for both condensed matter
and statistical physics studies is in understanding order-
ing and commensuration effects on surfaces, where the
substrate can be one-dimensional (1D) (Bechinger et al.,
2001), two-dimensional (2D) (Bohlein et al., 2012; Brun-
ner and Bechinger, 2002; Mangold et al., 2003), quasiperi-
odic (Mikhael et al., 2008), or random (Deutschländer
et al., 2013). For colloids interacting with periodic 1D
surfaces, various effects such as transitions among liquid,
2D hexagonal solid, and smectic states appear as a func-
tion of increasing substrate strength (Bechinger et al.,
2001; Tierno, 2012; Tierno et al., 2008). The next level
of complexity is to consider colloids interacting with two
dimensional periodic arrays, such as an egg carton (Agra
et al., 2004; Bohlein et al., 2012; Mangold et al., 2003;
Reichhardt and Olson, 2002; Šarlah et al., 2005), muf-
fin tin (Bechinger et al., 2001), or more complex po-
tentials (Demirr̈s et al., 2013; Gunnarsson et al., 2005;
de las Heras et al., 2016; Loehr et al., 2016a; Massana-
Cid et al., 2019; Tierno, 2014; Tierno and Fischer, 2014;
Yellen et al., 2005). Such systems can mimic the order-
ing of atoms on 2D surfaces (Coppersmith et al., 1982),
vortices in type-II superconductors with nanostructured
pinning (Baert et al., 1995; Harada et al., 1996; Martín
et al., 1999), and vortices in Bose-Einstein condensates
(Tung et al., 2006) interacting with 2D optical trap ar-
rays. In this case, commensuration effects arise when
the number of colloids is an integer multiple of the num-
ber of potential minima, giving an integer filling factor
f , where at f = 1 each trap captures a single colloidal
particle. Experiments (Bechinger et al., 2001; Bohlein
et al., 2012) and theoretical studies (Agra et al., 2004;
Reichhardt and Olson, 2002; Šarlah et al., 2005) of col-
loids interacting with 2D substrates reveal a variety of
novel orderings, including commensurate colloidal molec-
ular crystals for f = 2, 3...N. When the system is away
from commensuration, such as just above f = 1.0, the ad-
ditional particles act like highly mobile kinks, and both
simulations and experiments for colloids on 2D arrays
have revealed the motion of these kinks under an ap-
plied drive (Bohlein et al., 2012; McDermott et al., 2013;
Vanossi et al., 2012). Other studies of colloids have fo-
cused on the Aubry transitions that occur as a function
of substrate strength (Brazda et al., 2018).

Since various substrates for colloidal particles can be
created readily, including systems in which a single trap
contains a double well potential (Babič and Bechinger,
2005), a natural question to ask is whether it is possible to
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(b)

(c) (d)

(a)

FIG. 2 (a) Schematic of the basic unit cell with four double
wells each filled by one colloid. (b-d) Images of a small por-
tion of the system for different electrostatic charges qe. Dark
circles: colloids; ellipses: traps. (b) A random vertex distri-
bution at qe = 0. (c) A long range ordered square ice ground
state at qe = 1.3. (d) A biased system at qe = 0.4 where a
drive of F dc = 0.02 has been applied at an angle of 45 degrees
from the x̂ axis, from Libál et al. (2006).

create a colloidal system containing effective spin degrees
of freedom. For colloids on regular 2D arrays, it was
shown that for integer f = 2 and higher, the colloids in
each trap act like dimers with a spin degree of freedom
that can be mapped to an Ising one, making it possible to
use colloids in periodic substrate arrays to model various
spin systems (Agra et al., 2004; Reichhardt and Olson,
2002; Šarlah et al., 2005).

2. Artificial colloidal ice: simulations

Motivated by these ideas, and influenced by the work
on magnetic ASI, Libál et al. proposed that 2D array
of double well traps for colloids could mimic a square
ASI (Libál et al., 2006). In this case the basic unit cell
consists of four double well traps arranged as shown in
Fig. 2(a), where f = 1 so that each trap captures a sin-
gle colloidal particle. The colloid-colloid interaction po-
tential is of Yukawa or screened Coulomb form, V (r) ∝
qe exp(−κr)/r, where qe is the electrostatic charge and
1/κ is the screening length.

The simulations for N charged colloids on a 2D array
of N traps are performed using 2D Brownian dynam-
ics (BD). The colloid dynamics are overdamped and the

Type Configuration Ei/EIII Type Configuration Ei/EIII

I 0000 0.001 IV 1001 7.02
II 0001 0.0214 V 1101 14.977
III 0101 1.0 VI 1111 29.913

TABLE I Normalized electrostatic energy Ei/EIII for each
vertex type. An example configuration for each vertex is
listed; 1 (0) indicates a colloid close to (far from) the ver-
tex, from Libál et al. (2006).

equation of motion for colloid i is:

η
dri
dt

= Fcc
i + FT

i + Fext
i + Fs

i (3)

where in rescaled units the damping constant is set
to η = 1.0 and a0 is used as the unit of distance
in the simulation. The colloid-colloid interaction force
is given by, Fcc

i = −F0

∑N
i 6=j ∇iV (rij) with V (rij) =

(1/rij) exp(−κrij)r̂ij . Here rij = |ri − rj |, r̂ij =
(ri − rj)/rij , ri(j) is the position of particle i(j), F0 =
q2e/(4πεε0), ε is the solvent dielectric constant, and κ =
4/a0 which is the typical screening length for charged
colloidal systems. These simulations neglect hydrody-
namic interactions between the colloids, which is a rea-
sonable assumption for charged particles in the low vol-
ume fraction limit or where the dynamics are domi-
nated by hopping events rather than large scale flows.
The effects of thermal noise are captured in the sim-
ulation via the force term FT , which represents ran-
dom Langevin kicks with the properties 〈FT

i 〉 = 0 and
〈FT

i (t)F
T
j (t

′)〉 = 2ηkBTδijδ(t − t′). Unless otherwise
mentioned, FT = |FT | = 0.

For charged colloidal systems, a bias can be applied
using an electric field in order to mimic the effect of an
external magnetic field in magnetic spin ice. In the simu-
lation model, this biasing field is represented by the term
Fext

i . If, for example, the field Fext
i = F dc(x̂+ ŷ) is used

to bias the colloids along a 45 degree angle from the x̂
axis, the ice state illustrated in Fig. 2(d) emerges.

In the absence of a substrate, charged colloids confined
to two dimensions will form a triangular lattice (Kusner
et al., 1994). For the traps in Fig. 2(a), there are two
equally favorable locations. The two resulting configu-
rations can be mapped to a spin degree of freedom in
which the spin is defined to point toward the end of the
trap occupied by the colloid. The lowest energy state for
the single unit cell shown in Fig. 2(a) has all the colloids
sitting at the end of the trap that is furthest from the
vertex, so that all of the effective spins point away from
the vertex. This minimizes the colloid-colloid interaction
energy. The highest energy state has all of the colloids
sitting close to the vertex, so that all of the effective spins
point toward the vertex. This corresponds to a doubly
charged monopole state.

As shown in Fig. 2(b), when many unit cells are as-
sembled into a lattice, it is not possible for all vertices
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to adopt their lowest energy configuration simultaneously
since the geometric arrangement competes with the sym-
metry of the pair interaction. If the electrostatic screen-
ing is very strong or the trapping sites are sufficiently
far enough apart, the colloids do not interact with each
other and the arrangement of the effective spins is ran-
dom, as illustrated in Fig. 2(b) where the populations of
the different possible vertex states matches with what is
expected for a purely thermal distribution. For strong
colloid-colloid interactions, the system forms the low-
est energy collective ground state, in which each vertex
has two colloids close to it and two colloids far from it,
equivalent to the ice-rule of the square ASI (2-in/2-out),
Fig. 2(c). If a biasing field is applied at 45◦ along the x̂
axis, the spin ice rule is still obeyed but the system forms
a biased state with high energy vertices which still obey
the ice rule, Fig. 2(d).

The system can be characterized according to the six
possible vertex types, whose energy is listed in Table I.
From the lowest to the highest energy, the vertex types
are: type I, with all four spins out to create a double
monopole; type II, with one spin in and three spins out
to create a monopole; type III, the spin ice rule obeying
state; type IV, the biased ice rule state; type V, with
three spins in and one spin out to create a monopole;
and type VI, with all four spins in to create a high en-
ergy double monopole. An immediate difference from the
magnetic version of square ASI is that in the colloidal ar-
tificial ice, the monopole states II and V, and the double
monopole states I and VI have different energies. This
becomes important in the mobility of the monopoles, and
is an indication of the fact that the particle based spin
ice system minimizes the global interaction energy rather
than the local vertex energy.

Using numerical simulations of this geometry, Libál
et al. (2006) examined the evolution of the vertex popu-
lations when passing from the weak to the strong inter-
acting limit. Figure 3(a) shows the fraction Ni/N of the
N vertices that are of type i as a function of colloidal
charge qe in a system with fixed κ and distance between
the traps. At qe = 0, the fractions of the vertex types
match what is expected in a non interacting system, while
as qe increases, type I and VI vertices disappear first fol-
lowed by type II and IV vertices, until for qe ≥ 2.0, only
the type III ice rule obeying vertices remain. Figure 3(b)
illustrates the fraction of vertex types as a function of the
distance d between the traps in a system with fixed qe
and κ. When d is small, the colloids are strongly coupled
and type III vertices dominate, while as d increases, the
vertex distribution gradually shifts back to the random
configuration. The results in Fig. 3(b) are very simi-
lar to the observations in the initial work on magnetic
ASI, where increasing the spacing between magnetic is-
lands produced a more random state (Wang et al., 2006).
In a system with fixed qe and d and changing screening
strength κ, shown in Fig. 3(c), the interaction between
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FIG. 3 ©: NI/N ; � : NII/N ; �: NIII/N ; N: NIV /N ; �:
NV /N ; •: NV I/N . (a) Ni/N vs qe at d = 3 and κ = 4.0. (b)
Ni/N vs d at qe = 1.3 and κ = 4.0. Inset: schematic spin
representation of the 6 vertex types. (c) Ni/N vs κ at d = 3
and qe = 1.0. (d) Ni/N vs qe for a biased system at d = 3,
κ = 4.0, and F dc = 0.02, from Libál et al. (2006).

the colloids is weak for strong screening and the vertex
distribution becomes random. A sample with fixed d and
κ at qe = 0.4 that is subjected to an additional biasing
drive F dc at 45 degrees from the x axis is initially in the
type IV biased state. As qe increases, Fig. 3(d) shows
that a transition occurs into the lower energy type III
square ice state. Libál et al. (2006) also found that a
transition from an ordered ice state to a disordered state
occurs as a function of increasing temperature. These
results indicate that a particle based artificial ice system
exhibit the same ice rule obeying states as nanomagnetic
ASIs, with the advantages of the mesoscopic character
of the particles which makes the microscopic degrees of
freedom readily accessible.

3. Experimental realization

The realization of a full optical system, following the
original proposition (Libál et al., 2006), remains a chal-
lenging task because (a) it would require a large opti-
cal power to generate enough double wells and (b) it is
difficult to finely tune DLVO based electrostatic interac-
tions between colloidal particles. An alternative realiza-
tion was demonstrated recently using a combination of
different techniques including soft-lithography, magnetic
manipulation, and optical tweezers (Ortiz-Ambriz and
Tierno, 2016). The experimental system, illustrated in
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FIG. 4 (a) Schematic of a colloidal ice on a square lattice.
Blue arrows in the particles are induced moments due to the
applied field B. Inset at the bottom shows a cross-section of
one double well obtained via confocal microscopy, from Loehr
et al. (2016b). (b) Microscope image of the experimental sys-
tem in the (x̂, ŷ) plane. Here, the arrows indicate the spin
associated with the particles, and the scale bar is 20µm. (c)
Fraction of vertices for square ice versus applied field. Ex-
perimental data are scattered points, continuous lines are nu-
merical simulations, adapted from Ortiz-Ambriz and Tierno
(2016).

Figs. 4(a,b), features interacting paramagnetic colloids
confined by gravity in lithographically generated topo-
graphic double wells. Each trap contains two deep wells
connected by a small central hill, and these indentations
are arranged in a regular lattice, such as the square ice
geometry illustrated in Fig. 4(a). Using optical tweezers,
each trap is filled with one paramagnetic colloid consist-
ing of a spherical polymer particle that is responsive to
magnetic fields. Repulsive and tunable interactions are
induced by applying an external magnetic field B = Bẑ,
perpendicular to the particle plane. The applied field in-
duces a dipole moment m = πd3χB/(6µ0) within the
particles, where d is the particle diameter, χ is the mag-
netic volume susceptibility, and µ0 is the permeability of
the medium (water). All particles interact through mag-
netic dipolar interactions, Pairs of particles (i, j) with
moments mi,j = mei,j and at distance r = |ri − rj |
interact through dipolar forces, with an interaction po-
tential given by, Ud(r) = ω

[
ei·ej

r3 − 3(ei·r)(ej ·r)
r5

]
, with

ω = µ0m
2/(4π). This potential is maximally attractive

(repulsive) for particles with magnetic moments parallel
(perpendicular) to r. In an unconstrained system, when
the applied field is perpendicular to the particle plane, Ud

reduces to an isotropic repulsion between parallel parti-
cles in the same plane, Ud(r) = ω/r3. The field amplitude
is chosen such that a confined particle, when subjected
to the dipolar force from a neighbor, can cross the cen-
tral hill with gravitational potential Ug, but never escape
from the bistable confinement (Uc), Ug < Ud < Uc, as
shown in the small inset in Fig. 4(a).

Following the original idea (Libál et al., 2006), one can
assign a vector to each particle pointing towards the well
occupied by the colloid, Fig. 4(b). This mapping makes it
possible to construct a set of vertex rules similar to ASIs.
However, in contrast to ASI whose islands have in-plane
dipole moments, the colloidal ice features out-of-plane
dipoles, and thus the energetic hierarchy is similar to
that found for repulsive electrostatic colloids. Within a
homogeneous lattice, collective interactions between the
particles oppose the local energetics and enforce the ice
rule for the colloidal system (Nisoli, 2014). Indeed, sys-
tematic measurements combined with Brownian dynam-
ics simulations confirm that, for high field amplitudes,
the colloidal ice follows the ice rule (Ortiz-Ambriz and
Tierno, 2016). The experiments were performed by set-
ting the system in a random configuration using optical
tweezers, turning on the magnetic interactions, and wait-
ing for the system to reach thermal equilibrium. The ini-
tial disordering process was necessary since, in contrast
to the original simulations (Libál et al., 2006), the mag-
netic colloids experience negligible thermal fluctuations
due to the relatively large particle size, d ∼ 10µm. The
disordering process can be considered as a way to cou-
ple the system with a virtual heat bath, while increasing
the strength of the pair interaction represents a cooling
procedure. Moreover, in analogy with ASIs, the particle-
based ice reaches a unique ground state (GS) filled by
type III vertices. The loss of degeneracy results from
the different particle distance at the vertex, which makes
the type III and type IV vertices energetically different.
The most energetically unfavorable vertices with three
(type V) or four (type VI) colloids in become topolog-
ically connected to the low energy type II and type I
vertices, reducing their occurrence at large B, as shown
in Fig. 4(c).

4. Defect dynamics, grain boundaries, and logic gate

The experimental system provides a versatile approach
for probing the effect of disorder and topological defects
in frustrated lattices. The optical tweezers, which are
independent from the collective magnetic coupling, can
be used to manually add or remove particles from the
double wells. One method for creating an artificial de-
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FIG. 5 (a) Colormap showing the vertex charges for a line of
flipped particles connecting two q = ±2 defects. These defects
annihilate after t = 4.5 s due to the external field, applied at
t = 0 s. Image edited with permission from Loehr et al.
(2016b). (b) Microscope images showing a square ice state
prepared in its ground state of type IV (q = 0) vertices (left),
or in a metastable state with a grain boundary (right). The
square plaquettes can have a clockwise (orange [light gray]
arrows) or counterclockwise (yellow [white] arrows) chirality
(type IV vertices), or be achiral (green [gray] crosses). Scale
bars are 20µm for both cases. Image edited with permission
from Ortiz-Ambriz and Tierno (2016).

fect line is to start with the square ice GS (all type III
vertices) and flip particles in a sequence that produces a
double line of type IV vertices connecting two high energy
type II and V vertices. These defects can be described
within the framework of the “dumbbell” model (Castel-
novo et al., 2008). To each vertex one can associate an
effective topological “charge” q that quantifies the degree
of violation of the ice rule. As explained in Section II.1,
a spin pointing towards (away from) the vertex center
will have a positive (negative) charge qi, and the total
charge at each vertex i will be q =

∑
i qi. Thus, the

GS of the square lattice corresponds to q = 0 (type III),
whereas type II (V) vertices have a positive q = +2 (neg-
ative q = −2) charge, Fig. 5(a). Using this formalism, it
was shown that in a 3D spin ice and at low temperature,
topological defects interact only via a magnetic Coulomb

law, V (r) ∝ Q2/r, where Q is the topological charge and
r is the separation distance between the two monopoles.
However, numerical simulations demonstrated that for a
2D square ASI, such strings shrink due to an additional
line tension term (Mól et al., 2009) that results from the
missing degeneracy of this lattice at the single vertex
level. In the 2D case, the interaction potential between
two defects becomes V (l) = −Q/l + υl + c, where υ is
the line tension and c is a constant associated with the
creation of defect pairs (Silva et al., 2013). Direct mea-
surements of the average defect line length 〈l〉 showed
that the defects shrink following overdamped dynamics
described by

γ
dl

dt
= −∂V

∂l
= −Q

l2
− υ , (4)

where γ is a friction coefficient. Eq. 4 lacks the inertial
term that is present when describing the motion of topo-
logical defects in ASIs (Vedmedenko, 2016). This first
order nonlinear equation admits as solution the implicit
function,

t− t0 =
1

β

[
l0− l+

√
α
(
arctan

( r√
α

)
−arctan

( l0√
α

))]
,

(5)
where α = Q/υ is the ratio between the Coulombic
and line tension contributions. The solution describes
a monotonous shrinkage of the defect line starting from
l0 at t0, and was used to fit both the experiments and the
simulation data. Such analysis makes it possible to quan-
tify α = 0.0290±0.0014a2, where a = 29µm is the lattice
constant of the square system. This Coulombic charge is
one order of magnitude lower than the value calculated
for magnetic ASI (Mól et al., 2009), indicating that the
line tension contribution is enhanced in the colloidal ice.
Nevertheless, two topological charges that are bound by
a defect line in either ASIs or in the colloidal ice interact
with a similar Coulombic law.

The modeling of the magnetic colloids is similar to that
used for charged colloidal systems since the colloids are
confined in double well traps and experience a repulsive
pairwise interaction with each other. The colloid dynam-
ics is governed by an overdamped equation of motion
given by

1

µ

dri
dt

=

√
2

Ddt
kBTN [0, 1] + Fi

pp + Fi
s (6)

where D is the diffusion constant, µ is the mobility,
dt the time step, and N [0, 1] is a Gaussian distributed
random number with a mean of zero and a variance of
1. The first term is the thermal force. Magnetization
of the colloids in the z direction produces a repulsive
particle-particle interaction force Fpp(r) = Acr̂/r

4 with
Ac = 3 × 106χ2V 2B2/(πµ0) for colloids at a distance
r apart, where V = πd3/6 is the colloid volume. The
substrate force Fi

s traps the colloids in the double wells.
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FIG. 6 Proposal of a NOR gate using the colloidal ice. (a,b) System preparation: a force F1 creates a biased state (a), while
another force F2 < F1 reverses the spins only along two rows of particles that have smaller susceptibility (b). (c,d) Images
showing a 1 output obtained from two (0, 0) inputs. The defect propagation is induced by a field B applied perpendicular to
the plane, while an additional small force F3 applied along the diagonal of the ice lattice prevents the introduction of other
defects from the upper left corner. The final result shown in (d) is the 1 output. (e,f) Images showing a 0 output obtained
from (1, 0) input. In (e) the 1 input of the first row containing particles with high susceptibility is induced by an extra charge
coming from outside the region, from Loehr et al. (2016b).

Simulations of magnetic colloids have focused on a range
of parameters that matches what is used in the experi-
ments.

Since it is possible to tune the interaction forces be-
tween the particles by changing the applied field, it is in-
teresting to model the interaction between different types
of monopoles in a square ice for increasing field ampli-
tude. In the work of Loehr et al. (2016b) the magnetic
colloids in a square ice substrate were initialized in a GS
containing two monopole excitations of opposite charge
and separated by a distance d. These monopoles are
attracted and approach each other at a velocity that in-
creases with the applied magnetic field. At high fields,
the monopoles annihilate more rapidly through a nucle-
ation process in which additional monopoles appear and
break the defect string which extends between the origi-
nal two monopoles. This work also showed that different
monopole species move at different velocities, in contrast
to what would be expected for magnetic spin ice sys-
tems. By applying a periodic biasing field, the asymme-
try in the monopole mobilities can be exploited in order
to create a ratcheting motion of a defect line (Libál et al.,
2017).

It is also interesting to investigate grain boundaries
(GBs) in the colloidal ice. In general, GBs are ubiq-
uitous in condensed matter and they influence the per-
formance of a variety of systems including high Tc su-
perconductors (Graser et al., 2010), organic films (Riv-
nay et al., 2009), and direct-band gap semiconductors
(van der Zande et al., 2013). In the square colloidal
ice, as in ASIs, GBs emerge as defect lines that sepa-
rate unmatched regions of GS, Fig. 5(b). While GBs
have been observed in magnetic samples (Morgan et al.,
2011; Zhang et al., 2013), monitoring their formation and
dynamics remains a challenging task due to the small
length scales of the ASIs. In terms of plaquettes and
not vertices, the GS of the square ice is composed of a
checkboard pattern of loops with alternating chirality, in-
dicated by yellow [white] and orange [light gray] in the

left panel of Fig. 5(b). For the square ice this GS is
twofold degenerate, and a 90 degree rotation around a
vertex produces another GS. A domain wall, shown in
the right panel of Fig. 5(b), can be constructed by a line
of achiral cells that separate two incompatible regions of
GS. These are very stable defects because, in contrast to
a double line of type IV vertices, it is necessary to modify
all the vertices on one side of the domain wall to make
them compatible with the GS of the other side. This fea-
ture could be used to store binary information. By as-
signing a value of 0 (1) to a clockwise (counterclockwise)
chiral cell, it is possible to use a binary representation to
write information in the GS of a lattice of colloidal ice
or nanoscale ASI, and later erase the information using
a strong field which restores the full GS (Ortiz-Ambriz
and Tierno, 2016).

A major interest in nanoscale magnetism and ASIs is
the realization of logic circuits based on a dense array
of strongly magnetized elements. The particle-based ice
could provide a guideline for the realization of simple and
resettable logic ports based on magnetic dipolar interac-
tions. Figure 6 shows a proposal for a “NOR” gate, a
functionally complete port capable of generating all log-
ical functions (Bartee, 1991). The gate is based on a
metastable biased state, filled by high energy type IV
vertices, and it can be initialized and reset by an ex-
ternal force F ∼ (B · ∇B) applied along one diagonal,
F1 = F1(ŷ − x̂). In this system, the colloids in two hor-
izontal rows of traps have been replaced with particles
that have a higher magnetic susceptibility (pink arrows
in Fig. 6). A single particle in the upper left corner is
used to trigger the propagation of a defect line. Then
a second biasing force F2 is applied to flip only the two
chains containing high susceptibility particles. The in-
put of the gate is applied by switching the line of colloids
with higher susceptibility, such that a flipped line means
true (1) and an unflipped line means false (0). As shown
in Fig. 6(c-d), the defect starts to propagate under a per-
pendicular field B = Bẑ and is deflected by the flipped
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FIG. 7 Effective spin overlap qo vs biasing field Fext during
consecutive hysteresis loops averaged over ten disorder real-
izations for (a) a square ice sample with disorder strength
δ = 0.1 and (b) a kagomé ice sample with δ = 0.1. Outer
line: Saturated loop with Fmax = 2.0, including the initial
curve. Inner lines: Unsaturated loops with Fmax = 0.7, with
n increasing from bottom to top; the first few half loops are
labeled. Solid lines: clockwise loops; dashed lines: counter-
clockwise loops. In the kagomé ice, qo approaches 1 after only
a few cycles, while a much larger number of cycles are required
before qo ≈ 1 in the square ice, from Libál et al. (2012).

input lines. After propagation, the location of the charge
in the bottom row gives the output. If it is located in
the lower left corner, the output is (1). If either of the
two input lines are in a 1 state, the defect line will not
be deflected, and the topological charge will end up in a
different position, giving an output of (0).

5. Effect of disorder, doping, and system memory.

A general open question in frustrated systems is how
robust or fragile the frustrated states are in the pres-
ence of quenched disorder. Numerical simulations of
spatially extended samples with significant statistics can
shed light on this aspect. In the colloidal artificial ice,
one method of introducing quenched disorder is by ran-
domizing the energy of the barrier at the center of each
double well. In a square ice geometry subjected to a bi-
asing field, such randomness induces the formation of +1
or −1 monopoles in the background of biased ice rule
obeying vertices. Libál et al. (2012) studied the effect of
quenched disorder on a colloidal square artificial ice and
found that under simulated annealing, instead of a com-
pletely ordered state, the system formed a partially dis-
ordered configuration containing monopoles and biased
ice rule obeying vertices.

Under the application of a cyclic biasing drive, the
monopole defects begin to annihilate until the sample
reaches a reversible state in which the same effective
spin configuration appears during each biasing cycle, so

that the system exhibits what is known as return point
memory (Pierce et al., 2005). Libál et al. (2012) also
showed that the return point memory state is reached
much faster in a kagomé colloidal ice than in a square col-
loidal ice. In the kagomé ice, irreversibility is produced
by the motion of individual defects, which can be pinned
rapidly by the quenched disorder, whereas in the square
ice, the irreversible motion arises from the reconfigura-
tion of grain boundaries, and these extended objects re-
quire a longer time to find a pinned configuration.

Return point memory can be quantified by examining
the overlap function qo which compares the effective spin
configurations from one cycle to the next at the same
biasing field,

qo(Fext) = N−1
N∑
i=1

Sn−1
i (Fext)S

(n)(Fext). (7)

Here Si is an effective spin equal to Si = 1 (Si = −1) if
the colloid is sitting in the right or top end of the trap
(left or bottom end), and n is the number of cycles that
the external force Fext is applied. When qo = 1.0, the
spin configuration is perfectly reversible and is exactly
the same during each biasing field cycle, while qo = −1.0
would indicate that the spin configuration is exactly the
opposite of its previous value. Fig. 7(a,b) shows qo versus
Fext for the square and the kagomé colloidal artificial ices
containing random disorder in the barrier heights imple-
mented using a Gaussian distribution of width δ. The
kagomé system is characterized by a modified version of
the ice rule with 2-in/1-out ot 1-in/2-out vertex types.
With repeated cycles of the biasing field, qo approaches
1.0, indicating the emergence of return point memory.
This process takes about n = 10 cycles in the square ice
but only n = 4 cycles in the kagomé ice. The steady
state arrangement of artificial spins is not ordered but
contains numerous defects; however, the same pattern
of defects appears after each biasing field cycle. Return
point memory effects have also been observed in ASI by
Gilbert et al. (2015). It would be interesting to under-
stand how these effects appear in many of the other pro-
posed ASI geometries (Morrison et al., 2013). Further
modeling work on kagomé and square colloidal artificial
ices that took into account the effects of temperature
showed that when biasing fields are present or when the
system is prepared in different metastable states, a se-
ries of structural transitions can occur, and that states
with monopole ordering appear (Olson Reichhardt et al.,
2012).

In ASI, each spin is constrained to point along the
axis of the magnetic nanoisland, although is possible to
remove entire islands. In particle based artificial ices,
it is possible to introduce doubly occupied sites, which
would be like having spins pointing in both directions on
the same nanoisland. Conversely, it is also possible to re-
move a particle to create a vacancy or dilution of the spin
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FIG. 8 Small portions of the square (left) and kagomé (right)
colloidal ice with double-well traps (open ellipses), colloids
in singly-occupied traps (filled black circles), and colloids in
doubly-occupied traps (filled red [gray] circles); at the top of
the figures are illustrated the different vertex type. (a-c) The
square ice system at a doping ratio of x = 0.0236. (a) At
T = 1.0, below melting, each doped site is screened by an N3
monopole. (b) At T = 5.0, some thermal wandering of the N3
sites can occur, and N1 states can form at the doped sites. (c)
At T = 12 the regions away from the doped sites remain in the
ground state while local melting occurs at and near the doped
sites. (e-g) The kagomé ice system at a doping of x = 0.095.
(e) At T = 1.0, below melting, the ground state absorbs the
doping charge without forming defects by increasing the ratio
of N2gs to N1gs vertices. (f) At T = 12.0, N3 monopoles form
in regions away from the doped sites. (g) At T = 15.0, N1
monopoles begin to appear, from Libál et al. (2015).

arrangement. Libál et al. (2015) considered the square
and kagomé geometries containing doubly occupied wells
where the system was initiated in a GS configuration and
then subjected to an increasing temperature. The effects
of the doping are very different in the two ice geome-
tries, as shown in Figure 8 where the doping ratio x is
held constant. For the square ice at low temperature,
N3 (three-in/one-out) vertices form around each doping
site in order to screen the doubly occupied wells. As
T increases, N1 defects and N2 biased defects begin to
appear near the doping sites. Thus in the square ice,
the doping sites act like weak spots or nucleation points
that generate increased hopping of the colloids in the
surrounding sites. In contrast, the kagomé ice GS can
readily absorb the doubly occupied sites without creat-
ing monopole states, as shown in Fig. 8(d) at low tem-
perature. This is because the kagomé GS consists of an
equal number of GS vertices N1gs and N2gs, and the sys-
tem can shift this balance so that there are slightly more
N2gs vertices, enabling it to incorporate the extra charge
of the doubly occupied sites while still remaining in a GS
configuration. As the temperature increases, the doped
sites in the kagomé lattice reduce rather than increase the
amount of hopping occurring in the neighboring vertices.

6. Kagomé ice and its inner phase

Kagomé systems have been the subject of intense re-
search in nanomagnetism because this simple geometry
provides a truly degenerate frustrated system (Qi et al.,
2008; Tanaka et al., 2006). The degeneracy arises at the
single vertex level, where the three spins have equal dis-
tances and interaction energies. The ice rule of this lat-
tice have associated a net topological charge, with q = +1
for 2-in/1-out and q = −1 for 1-in/2-out. Although the
kagomé ice does not have a well defined GS, it was shown
theoretically in ASIs that the long range tail of mag-
netic dipolar interactions can further reduce the entropy
and give rise to ordered phases. Specifically, multipole
expansion (Möller and Moessner, 2009) and numerical
simulations (Chern et al., 2011) predicted that lower-
ing the temperature should favor the transition from a
short range ordered phase (“ice I”) to a long range or-
dered state (“ice II”). In the latter case the spins on the
hexagons define chiral and achiral loops along the lat-
tice. Finally, the system can transition into a completely
ordered “spin solid”, or chiral phase, with chiral and achi-
ral loops alternating in a chessboard-like pattern. Direct
visualization of these exotic states with their associated
relaxation dynamics remains elusive. An indirect signa-
ture of the ice I phase has been reported based on magne-
totransport measurements of the Hall signal in a cooled
ASI sample (Branford et al., 2012). Further, the ice II
phase was visualised via MFM on a lattice of permal-
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FIG. 9 Results from numerical simulations of the kagomé
particle-based ice. Each double well trap (light gray) holds a
single paramagnetic colloid (dark gray dots). The hexagonal
plaquettes contain arrows indicating the plaquette chirality
direction or effective biasing field Fb for chiral and achiral
plaquettes, respectively. Dots indicate that no Fb value can
be assigned. (a) Paramagnetic phase at B = 0 mT. Large
disks with chiral arrows indicate qn = ±3 vertices with n = 3
and n = 0, respectively. (b) Charge-free phase at B = 13.2
mT containing only qn = ±1 vertices. (c) Partially charge
ordered phase at B = 24 mT with domains of charge and spin
ordered vertices and plaquettes. (d) Ferromagnetic phase at
B = 40 mT containing a grain boundary. The system contains
a second grain boundary with complementary chirality (not
shown), from Libál et al. (2018).

loy nanoislands heated above the Curie temperature of
the constituent material (Zhang et al., 2013). More re-
cently, low energy muon spectroscopy was used to probe
the existence of peaks in the muon relaxation rate that
can be identified with a critical temperature associated
with a phase transition that bridges such phases (Angh-
inolfi et al., 2015). Numerical simulations of the mag-
netic colloidal system in the kagomé ice geometry show
the emergence of different states as the colloid-colloid
interaction strength changes (Libál et al., 2018). For
weak interactions, the system is in a paramagnetic state,
as shown in Fig. 9(a). As the interaction strength in-
creases, the system first enters a state where the ice rule is
obeyed in an ensemble of disordered spins, as illustrated
in Fig. 9(b). This is followed by the appearance of the
topologically ordered charged state shown in Fig. 9(c),
and finally, in the limit of very strong interactions, a three
fold degenerate ferromagnetic state emerges as shown in
Fig. 9(d). Unlike the phases predicted and experimen-

FIG. 10 (a) Schematic diagram of the basic unit cell with
two triple well traps, each containing one colloidal particle;
(b) and (c) are snapshots of a small portion of the system.
The green [gray] triangles represent the traps and the dots
denote the particles. (b) Random distribution of particles at
high temperatures; (c) shows an example of a particle config-
uration that can be mapped to random fully packed loops in
the hexagonal lattice, as illustrated in (d); from Chern et al.
(2013b).

tally observed with ASI, the colloidal kagomé ice forms a
ferromagnetic state at high interaction strength. This
ferromagnetic state arises due to interactions between
non-nearest-neighbors, rather than simple vertex ener-
getics, and disappears when the interactions are short
ranged, explaining why it was not observed previously.

7. Other geometries

In addition to the square and kagomé artificial ices,
other types of frustrated systems have been realized with
microscale colloids. Chern et al. (2013b) proposed a
system of colloids interacting with a honeycomb array
of optical traps that contain three wells instead of two,
Fig. 10(a). This system is a realization of a fully packed
loop (FPL) model and Baxter’s three-coloring problem
(Baxter, 1970). As a function of temperature and inter-
action strength, a series of phases appear in the triple
well system, including a stripe state, stripes with sliding
symmetries, random packed loop states, and disordered
states containing broken loops. Figure 10(b) illustrates
the disordered state, while Fig. 10(c) and (d) show the
random FPL states.
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FIG. 11 (a) Magnetostatic energy landscape of a ferrite gar-
net film calculated under a static, perpendicular magnetic
field B = 3.6mT. The inset shows a 3D view of one triangu-
lar minimum. (b) Random FPL phase observed with a mono-
layer of paramagnetic colloids above the FGF after an anneal-
ing performed with a precessing magnetic field, from Tierno
(2016).

FPL models have been used to explain a broad class of
phenomena in magnetism, optics, and polymer physics
(Blöte and Nienhuis, 1994; Duplantier, 1998; Jaubert
et al., 2011; O’Holleran et al., 2008), but physical re-
alizations are rather scarce. An experimental realization
of the colloidal version has been achieved using a honey-
comb lattice of triangular shaped magnetic minima, as
shown in Fig. 11(a). The complex magnetic potential
arises when a uniaxial ferrite garnet film (FGF) is sub-
jected to a constant magnetic field Bz = Bẑ. The FGF
is composed of a triangular lattice of magnetic “bubbles,”
i.e., cylindrical ferromagnetic domains that are uniformly
magnetized (Tierno et al., 2007, 2009). Paramagnetic
colloids dispersed above this honeycomb magnetic lattice
self-assemble into interacting microscopic dimers. To an-
neal the lattice into its minimum energy state, the system
is subjected to a precessing magnetic field consisting of
a combination of the perpendicular field and an in-plane
rotating field Bxy ≡ Bxy[cos (ωt)x̂ − sin (ωt)ŷ]. The re-
sulting field B = Bz+Bxy performs a conical precession
around the ẑ axis with angular frequency ω, and sets
the dimers into rotational motion. Depending on the
field parameters, the resulting dimer arrangement can be
mapped to a long range striped phase or to a random
FPL state, as illustrated in Fig. 11(b). The mapping of
the dimers to the FPL model is achieved by using the
arrow representation originally introduced by Elser and
Zeng for the spin- 12 kagomé antiferromagnet (Elser and
Zeng, 1993). Since the dimer sits on one of the three
sides of a triangular minimum, an arrow can be defined
that points from the dimer center to the free corner of the
triangle. This is shown by a green dot with a blue line in
Fig. 11(b). FPLs arise when arrows forming closed loops
visit each lattice vertex only once.

Another recent realization of a particle ice composed
by topographic double wells but in a different geometry
is the highly coordinated triangular lattice (z = 6) pre-

sented by Lee and Tierno (2018). Although not directly
inspired by the water or spin ice materials, the triangular
geometry reflects the spin disposition in several magnetic
materials with moments lying on weakly coupled parallel
planes (Dublenych, 2017; Nakatsuji et al., 2005). The tri-
angular order reflects the natural arrangement of repul-
sive particles in the absence of the substrate. However,
such ordering can be frustrated by the presence of the
central hill in the double wells. In this geometry, collec-
tive interactions between the particles lead to a unique
GS characterized by vertices with three colloids pointing
inward and three outwards, similar to what was predicted
for ASIs by Mól et al. (2012) and Rodrigues et al. (2013).
It was also found that the use of a bias force that magne-
tizes the system allows the GS to be accessed easily via
a structural, martensitic-like transition characterized by
the coherent sliding of one particle at each vertex.

IV. THE FRAGILE ICE MANIFOLD

1. Nature of the ice rule in colloidal ice

While the ASI and the particle-based ice have often
been considered as equivalent, their frustration and ener-
getics are fundamentally different. At the nearest neigh-
bor level, a vertex in the particle-based ice has a lowest
energy unfrustrated configuration in which all particles
are far from the vertex. Indeed the nearest neighbor en-
ergy of a magnetic spin ice vertex with n spins pointing
toward the vertex is proportional to the square of its
topological charge,

En ∝ q2n, (8)

thus favoring the ice rule, which minimizes the topo-
logical charge 1. In contrast, the energy of a vertex in
particle-based ice scales as

En ∝ n(n− 1), (9)

where n(n − 1) is the number of repulsive interactions
among n particles. This energy favors n = 0 and n = 1
states, which correspond to large negative charges ac-
cording to Eq. (1). In particular, the energies of the
particle-based ice vertices do not posses a Z2 symmetry.
Thus the local energetics actually work against the ice
rule. The ice rule in particle-based ice is only recovered
in the thermodynamic limit and its origin is collective:
not all vertices can simultaneously have all particles lo-
cated away from the vertex.

In a finite size particle-based ice system of uniform co-
ordination, the energy can be reduced by pushing parti-
cles onto the boundaries. The total charge in the bulk is

1 Here we neglect, for the sake of argument, the known geometric
effects that can lift the degeneracy.
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FIG. 12 Schematics showing that a colloidal ice, here in a
random configuration, can be decomposed into a spin ice and
a background exerting a geometric field, from Nisoli (2018b)

then bounded by the flow of the pseudo-spin field through
the boundary. Since the pseudo-spins have an absolute
value of one, the density of charge in the bulk scales at
least as the reciprocal of the length of the boundaries,
leading to an ice manifold in the thermodynamic limit.
In a system of multiple coordination, however, such as
z = 4, 3, we can consider the z = 3 vertices as an “inter-
nal boundary” onto which the z = 4 sub-lattice can push
topological charges. This would lead to the emergence
of negative charges on z = 4 vertices, in violation of the
ice rule. Note that this behavior, which has been pre-
dicted (Nisoli, 2014, 2018b) and verified numerically and
experimentally (Libál et al., 2018) points to an essential
difference in the origin of the ice rule in magnetic and
particle-based spin ices. The ice-rule in magnetic ice is
known to be robust against decimation (Morrison et al.,
2013), mixed coordination (Gilbert et al., 2014, 2016a),
and dislocations (Drisko et al., 2017), and is present even
in finite sized clusters (Li et al., 2010). In particle-based
ice, however, the local energy in Eq.(9) opposes the ice
rule, which is regained only as a collective compromise.
Other differences appear in the kinetics. For example,
when defect lines in square colloidal ice are driven with
a field, the two monopoles at the ends of each line have
different mobilities since, unlike the monopoles in mag-
netic spin ice, they have different energies (Libál et al.,
2017).

The similarities and differences of the magnetic and
particle-based ices can be quantified exactly. A mean
field approach provides useful quantitative predictions
that are fit well by experimental and numerical re-
sults (Libál et al., 2017; Nisoli, 2014). Starting with the
approximation of a gas of decorrelated vertices, a con-
straint must be introduced so that the total topological
charge is conserved. This takes the form of a Lagrange
multiplier φ that modifies the original vertex energies
from those in Eq. (9) to

Ẽn = En − qnφ. (10)

For a lattice of coordination z, the choice φ̄ ∼ (z − 1)
ensures conservation of topological charge, giving a spin-
ice-like effective energetics, Ẽn ∼ q2n, and therefore a
spin-ice behavior. Eq. (10) can be interpreted as follows:
the collective effect of the particle-sharing vertices can

= 

FIG. 13 Schematics showing that a particle-based ice ob-
tained by removing traps from a regular lattice is equivalent
to a spin ice stuffed with negative charges at the locations
of the missing traps. This leads to violations of the ice rule
through formation of positive topological charges (blue [gray]
circles), from Nisoli (2018b)

be subsumed into a emergent field φ, which modifies the
energetics of the individual vertex. Indeed, in a better ap-
proximation, one can allow the constraint-enforcing field
φ(x) = φ̄ + η(x) to fluctuate in space, since it mediates
an entropic interaction among the topological charges to
which it is coupled. This results in a familiar Debye
picture for purely entropic screening with a correlation
length ξ2 ∼ T/Q2 , where Q2 is the charge fluctuation of
the manifold. For instance, in a fully degenerate square
ice, Q2 = 0 in the ice manifold and thus the correlation
length is infinite, as mentioned in the section on the topo-
logical properties of the ice rule. In contrast, Q2 ≥ 1 in
kagomé ice since each vertex has a charge of at least ±1
and the ice phase is never critical.

Consider now a lattice of multiple coordination. It
is impossible to find a value of φ that can return a Z2

invariant, ice-like effective energetics in Eq. (10) for both
sublattices. One of the lattices must break the ice rule.
How this happens can be understood by a geometrically
intuitive, exact treatment (Nisoli, 2018b). The energy of
the system is given by

H =
∑
y 6=y′

ψ (|y − y′|) (11)

where ψ(r) is an isotropic repulsive interaction and y la-
bels the position of the particles in the traps. These po-
sitions represent a binary variable that we can represent
as — or —. Indeed Eq. 11 does not look like a spin
ice Hamiltonian. Then we can ascribe a positive charge
to the real particles and we can consider the empty
locations y− of the traps as virtual negative charges ,
which repel (attract) other negative (positive) charges.
We can fractionalize a trap on an edge x as

—– =
1

2
— +

1

2
— , (12)

i.e. a positive dumbbell — (a trap doubly occupied by
positive charges) plus a dipole of negative and positive
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FIG. 14 (a) A decimated colloidal square ice where the miss-
ing spins (particles) are denoted by crossed arrows. (b) Deci-
mation procedure for the square lattice that creates only ver-
tices of coordination z = 3 and z = 4, but not z = 2. This
process is equivalent to a partial dimer covering (red [gray]
dumbbells) of the edges. (c) Fraction of vertices nz4,q vs
decimation ratio η = Nz3/Nz4 for vertices with coordination
number z = 4 and at different value of topological charge q.
The experimental results (bullets) and numerical results (di-
amonds) are compared to theoretical predictions (solid lines),
adapted from Libál et al. (2018).

charges represented by a spin ~σ = — located in x, the
center of the trap. Then the energy in Eq. (11) can be
rewritten as

H =
1

2

∑
x6=x′

σi
xJii′ (x− x′)σi′

x′ −
∑
x

~σx · ~B(x). (13)

The first term is the interaction between dumbells and
is clearly a spin-ice Hamiltonian. Jii′ (x) is a tensor field
and the background field ~B mediates the interaction be-
tween dipoles and the positive dumbbells, both of which
can be reconstructed from the particle-particle repulsive
interaction ψ. Fig. 12 illustrates this decomposition. It
follows that a particle-based ice becomes equivalent to a
magnetic spin ice when the second term in Eq. (13) is
zero. That is certainly true if a lattice has point reflec-
tion symmetry in the middle points {x} of each edge, and
explains why the kagomé and square particle-based ices
follow the ice rule, as found previously numerically and
experimentally (Libál et al., 2006; Loehr et al., 2016b;
Ortiz-Ambriz and Tierno, 2016).

2. Decimated systems

The analogy between the colloidal ice and nanoscale
ASI does not hold in general for more complex geome-
tries. Imagine decimating a simple lattice such as the

kagomé lattice by removing some traps. This breaks the
reflection symmetry and the background field will per-
turb the spin ice energetics since the saturated dumb-
bells are replaced by negatively saturated ones at the
locations of the missing traps. As shown in Fig. (13), the
decimated system is equivalent to a spin ice stuffed with
negative charges. The charges polarize the dumbbells
close to the decimated vertices, breaking the ice rule. In
these geometries with mixed coordination z, the conser-
vation of the topological charge holds only at the global
level, not at the sub-lattice level.

In the case shown in Fig. 14(a), the square system
(z = 4) is decimated with optical tweezers to a lattice
of mixed coordination, z = 3, 4. The decimation pro-
cess is equivalent to a partial, random dimer covering of
the edges, as illustrated in Fig. 14(b). Randomly cho-
sen edges of the square lattice are covered by dimers un-
der the constraint that each vertex contains at most one
dimer. Removing an edge between two “dimerized” ver-
tices with z = 4 gives rise to only vertices of z = 3.
The process avoids formation of z = 2 vertices, and thus
simplifies the vertex hierarchy of the mixed coordination
system (Gilbert et al., 2014), although similar effects can
also be observed in the presence of z = 2 vertices.

Combined experiments and numerical simulations
show that in such geometry, the ice rules are sponta-
neously yet selectively violated via the formation of nega-
tive topological monopoles of charge q = 2 on the vertices
of high coordination z = 4. The low coordinated vertices
z = 3 still obey the ice rule (2-in/1-out or 2-out/1-in);
however, the relative ratio of q = 1 to q = 1 charges
changes in order to compensate the negative charges that
accumulate around the z = 4 vertices. Even in this situa-
tion, the total topological charge of a system of “dipoles”
remains zero.

A quantitative analysis of the experimental and theo-
retical results provides additional insight into the deci-
mation process. Figure 14(c) shows the relative fraction
of z = 4 vertices, nz4,q , versus the ratio between the two
vertex coordinations η = Nz3/Nz4 , grouped by topolog-
ical charge. The number of negative q = −2 charges
generated around the z = 4 vertices increases with in-
creasing η, quantifying the strength of the ice rule vio-
lation. Above a critical decimation threshold, the entire
system disorders due to the spontaneous appearance of
entropy-driven negative monopoles which induce topo-
logical charge transfer between the sublattices. As a re-
sult, the colloidal ice has a “fragile” low-energy mani-
fold that is produced by an energetic compromise be-
tween locally excited vertices. This is in contrast to mag-
netic ASI, which are structurally “robust” ices. These
observations prompt different exciting ideas. Since ice
rule fragility is associated with topological charge trans-
fer among sub-lattices, these new phenomena can be ex-
ploited for domain wall engineering, in which membranes
that are semipermeable to the topological charge of de-
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FIG. 15 Magnetostatic energy for N = 3L2 interacting par-
ticles with periodic boundary conditions for the chiral (red
[light gray] triangles) and ferromagnetic (blue [gray] circles)
phases of the kagomé ice (up to L = 144). Inset shows
schematics illustrating the two competing orders. Scattered
points are numerical calculations and continuous lines are
polynomial fits of the form E/J ∼ αN + βN1/2 + γ, where α
is the energy per spin in the thermodynamics limit and β and
γ are finite-size corrections, from Le Cunuder et al. (2019).

fects are structurally designed. These results also apply
to lattices of different coordination or to ASI systems of
nonzero residual entropy.

3. Discrete versus continuum models

The interactions between the pseudospins in the col-
loidal ice are given by a generalized dipolar interaction
constructed from the effective interaction V (r) between
pairs of colloids (which in the case of magnetic colloids is
V ∼ r−3). This implies that colloids with different repul-
sive interactions exhibit different phases within their ice
manifold, and in particular, that electrically charged col-
loids are expected to more faithfully reproduce the phases
of magnetic spin ices. Inspired by these results, in a theo-
retical study, Le Cunuder et al. investigated the energet-
ics and phase transitions that occur in the kagomé geome-
try by varying the temperature rather than increasing the
interaction strength. Numerical calculations of the total
magnetostatic energy for a system containing N particles
showed that the chiral state (“spin solid”) always has a
lower energy than the ferromagnetic one, a result which
is robust regardless of the system size, Fig. 14(c). This
calculation was performed by assuming that the particles
are fixed at the bottom of each trap, without considering
any relative displacement.

The apparent discrepancy between the analytic re-

sults and those obtained in the simulations and exper-
iments described above was resolved by performing two
types of Monte Carlo simulations (Le Cunuder et al.,
2019). In the first, discrete model, particles are only
allowed to jump from one side of the bistable traps to
the other, while in the second, continuous model, par-
ticles are allowed to make these same jumps and also
to move continuously around the lowest point of the
bistable traps. While the discrete simulations reproduced
the well-known phase structure of the dipolar spin ice,
the continuous Monte Carlo simulations showed a sin-
gle phase transition from charge disorder directly to the
ferromagnetic state. Furthermore, using the continuous
model, it was shown that by modifying the strength of
the traps, the GS of the particle-based ice can be changed
from the chiral ordering to the ferromagnetic one.

3. Future directions in particle ice

The experimental realization of particle ice represents
a starting point for exploring the novel physics that
emerges from the mesoscopic character of the particles.
A variety of avenues for future research are now available.

Relaxation and dynamics: Apart from the an-
nihilation of simple defects, the kinetic mechanisms
behind the relaxation dynamics of the particle ice
remain largely unexplored. Since direct visualization
of the dynamics is possible in colloidal ice, correlation
functions for relatively long times can be extracted
from the particle positions, and rearrangement events
(spin flips) can be identified as the system ages from a
metastable state. An interesting question is whether the
colloidal ice could exhibit glassy behavior and kinetic
arrest. The presence of disorder in the system, such
as an inhomogeneous distribution of the hills within
the double wells, or induced decimation, may make
the energy landscape more rugged and induce glassy
behavior. There have been reports of evidence of
glassiness in frustrated systems from both theoretical
models and experiments. For example, a spin glass
phase was predicted to occur for a decimated square ice
in an ASI (Sen and Moessner, 2015), and experiments
with buckled colloidal monolayers (Zhou et al., 2017)
showed evidence of dynamical arrest.

Thermalization effects: Using smaller particles
with large thermal fluctuations would allow spontaneous
particle switching within the double wells, a feature
that is currently absent in the experimental system.
This platform could be used to explore thermalisation
effects in the colloidal ice. Such an investigation could
be performed by using optical tweezers to prepare a
square or kagomé ice lattice in the lowest energy state
while keeping the particle-particle interaction strength
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high. Subsequently lowering the magnetic field would
then favor thermal disordering starting from the GS and
make it possible to determine the lifetime, fraction, and
dynamics of the emerging, thermally induced “Dirac”
strings.

Complex geometries: The lithographic approach
imposes no limit on the type of two-dimensional struc-
tures that can be engineered. While most of the works
on particle based artificial ices have focused on square or
kagomé lattices, numerous other geometries that have
been proposed for ASI (Morrison et al., 2013) could
also be realized in particle based systems. Since the
particle ice system minimizes the global energy rather
than the local vertex energy, it often exhibits fragility
(Libál et al., 2018), so it is likely that these systems
could have very different behaviors than their ASI
counterparts. In addition, aperiodic structures or even
disordered lattices with hyperuniform properties can
easily be designed and implemented with the colloidal ice.

Annealing procedures: Frustrated systems can
easily be trapped in a metastable state when the
material or sample is cooled to reach the GS. Different
annealing protocols have been developed to date, such
as thermalisation during sample growth (Morgan et al.,
2011) or above the Curie temperature of the constituent
material (Zhang et al., 2013), and rotational demagneti-
zation (Ke et al., 2008; Nisoli et al., 2007; Wang et al.,
2018). However, most of the theoretically predicted
ordered phases in highly frustrated systems are still far
from being realised since these techniques do not allow
for direct system visualization during annealing, making
it impossible to monitor in situ how close or far from
the GS the system is as a function of time. The colloidal
ice could provide a way to directly follow the annealing
process in-situ. The current realization relies on static
fields; however, it would be possible to introduce a
time dependent field that spins the particles in order
to induce tunable anisotropic or even time-averaged
attractive in-plane interactions.

Three dimensions: A major effort of the frustrated
magnetism community is devoted to the realization of
a 3D artificial version of the pyrochlore lattice, such
as by using magnetic wires or nanobars oriented at
determined angles in order to replicate the tetragonal
order (Fernández-Pacheco et al., 2017). Recently, an
alternative approach to this goal has been proposed
(Mistonov et al., 2013) based on the realization of an
inverted colloidal opal filled with cobalt via electro-
chemical crystallization. This opal was obtained using
the colloidal crystal template technique, which is a
well-established method in material science (Zakhidov
et al., 1998), based on replicating the long-range order
of an assembled colloidal crystal in a solid matrix.

Although this type of approach may restrict the lattice
geometry (Chern et al., 2014), or lead to artifacts due
to domain wall pinning within the magnetic network, it
represents a rather simple, fast and versatile method of
obtaining a highly ordered 3D porous structure. Future
attempts at the realization of a 3D colloidal ice system
may exploit similar self-assembly techniques. On the
other hand, progress in optical manipulation has made
it possible to create 3D optical traps for colloids (Grier
and Roichman, 2006), and thus it should be possible to
create new types of fully 3D spin ice geometries using
optically confined colloids. In principle, such geometries
could be used to model water ice more accurately, or
possibly as a method for realizing deconfined phases.

V. OTHER PARTICLE BASED FRUSTRATED SYSTEMS

Frustrated configurations have also been realized for
colloidal systems in the absence of a substrate (Han et al.,
2008). For example, when colloids confined to a 2D plane
are allowed to buckle into the third dimension, as shown
in Fig. 16, frustration emerges since upward and down-
ward buckling are equal energy states. In the triangu-
lar lattice naturally formed by the colloids, the buckling
process produces a structure similar to an antiferromag-
netic Ising model on a triangular lattice (Shokef et al.,
2013), and interesting disordered and stripelike patterns
appear. While the original Ising antiferromagnet at low
temperature features extensive entropy (Wannier, 1950,
1973), the buckled system displays subextensive one,
which points towards the presence of glassy dynamics
and kinetic arrest. Indeed glassiness in such system has
been recently reported (Zhou et al., 2017), with other
features as the emergence of an order by disorder transi-
tion (Leoni and Shokef, 2017; Shokef et al., 2011). Other
colloidal systems that can exhibit frustration effects in-
clude either particles with complex shapes (Brown et al.,
2000), or isotropic ones deposited above deformed sur-
faces (Bausch et al., 2003; Soni et al., 2018). In the first
case, the frustration can be tuned by designing different
shapes which compete with the confinement and impede
crystallization, often producing a disordered state (Zhao
and Mason, 2009, 2015). Tuning the shape of the confin-
ing surface may also lead to frustration effects between
isotropically repulsive colloids. The surface topology will
induce the formation of lattice defects as disclinations,
releasing energetic stresses arising form the packing on
the curved confinement (Guerra et al., 2018; Irvine and
Vitelli, 2012; Nelson, 2002).

On a macroscopic scale, geometric frustration has been
addressed by arranging classical bar magnets. One signif-
icant case is shown in Fig. 17 where an ensemble of inter-
acting millimeter-size magnets is arranged into a kagomé
lattice. The unit base of the system are ferromagnetic
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FIG. 16 (a) Three spins on a triangular plaquette cannot si-
multaneously satisfy all antiferromagnetic interactions. (b)
For colloids confined between walls separated by a distance of
the order 1.5 sphere diameters (side view), particles move
to opposite walls in order to maximize their free volume.
(c, d) Ising-like GS configurations in which each triangular
plaquette has two satisfied bonds and one frustrated bond.
(c) Zigzag stripes generated by stacking rows of alternating
up/down particles with random sideways shifts, where all par-
ticles have exactly 2 frustrated neighbors. (d) Particles in dis-
ordered configurations have 0, 1, 2 or 3 frustrated neighbors
(red [gray] hexagons). (e) Microscope image of a buckled
system where bright (dark) particles are close to the upper
(lower) plane. (f) Corresponding labyrinth patterns with the
frustrated up–up (down–down) bonds draw in red [light gray]
(green [gray]), adapted with permission from Han et al. (2008)

rods attached to planar rational units which allows only
out of plane angular motion (polar angle α) but not in
plane one (the angle θ is fixed). The initial state of the
system was prepared by polarizing these ”macroscopic
spins” along the perpendicular plane (ẑ) via a strong
static field. Switching off the field induces a relatively
fast (∼ 2s) reorganization process, and the magnets sta-
bilized into a equilibrium pattern filled by vertices with
2-in/1-out and 1-in/2-out. The rotors relaxation process
occurred in three steps; namely a relatively fast inertial
reorientation where the rotors break the axial symmetry,
than a sequence of dissipative librations followed by a fi-
nal damped oscillations which leads to a nearest neighbor
spin correlation 〈si · sj〉 = 1/3. The authors also showed
the exciting possibility to extend the system towards 3D,
by stacking different plates composed by the rotors in a
tetrahedral-like configuration. Such demonstration man-

FIG. 17 (a) Three magnetic rotors composed by macroscopic
ferromagnetic rods arranged at θ = 120◦ with respect to each
other. (b) Macosopic honeycomb lattice of rotors (inset shows
the corresponding Fourier transform). Reprinted with permis-
sion from Mellado et al. (2012).

ifests the ubiquitous character of geometric frustration,
which transcends length scale.

Numerous other condensed matter systems can be de-
scribed as an assembly of particles with repulsive pair-
wise interactions. Examples include vortices in type-II
superconductors (Libál et al., 2009), ions (Pyka et al.,
2013), dusty plasmas (Morfill and Ivlev, 2009), skyrmions
(Ma et al., 2016), and Wigner crystals (Reichhardt et al.,
2001). Any of these systems, when coupled to the correct
substrate geometry, could exhibit effective spin degrees
of freedom and ice rule.

One of the first proposals for such particle-based ar-
tificial ices involved vortices in type-II superconductors
(Libál et al., 2009), where considerable progress has al-
ready been made in creating various types of pinning ar-
rays to control the vortex ordering. In the vortex system,
a series of double well traps can be fabricated by placing
two pinning sites very close together, as illustrated in the
top panels of Fig. 18. When the sample is nanostructured
in this fashion, the thinner parts of the superconductor
have lower vortex condensation energy, and the vortex
will preferentially sit at the highest points of the dou-
ble well traps. For Np double well traps, the number of
vortices Nv is directly proportional to the magnetic field,
so that when Nv/Np = 1/2, the system is equivalent
to the colloidal square ice at half filling. Particle based
modeling of vortices in pinning arrays is performed us-
ing similar techniques as those described for the colloidal
systems; however, the pairwise interaction between the
vortices is a modified Bessel function for vortices in a
bulk superconductor, and has a ln(r) form in thin film su-
perconductors. Many superconducting samples contain a
significant amount of intrinsic random disorder, so Libál
et al. (2009) explore the effects of additional quenched
disorder on the GS in a square ice pinning arrangement
at Nv/Np = 1/2, Fig. 18. As the disorder strength δ
increases, an increasing number of non-ice rule obeying
vertices appear in the GS in the form of grain boundaries,
but individual monopoles that are not associated with a
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FIG. 18 Top panels: Schematic of the nanostructured pin-
ning site configurations producing ice states. Double-lobed
objects: pins; open mesh objects: vortices. Left: Square ice
ground state. Right: One possible biased ground state of the
kagomé ice system (Libál et al., 2009). Grain boundary im-
ages in square ice samples for increasing disorder strength δ.
Dots: ground state nin = 2 ice-rule obeying vertices; filled
black circles: ice-rule defects; white circles: non-ice-rule de-
fects. (a) δ = 0. (b) δ = 0.1. (c) δ = 0.5. (d) δ = 1.0. Images
from Libál et al. (2009).

grain boundary do not begin to appear until δ ≥ 0.5. The
appearance of defects arranged in grain boundaries was
subsequently observed experimentally in a square ASI
(Morgan et al., 2011).

The superconducting vortex configurations can be ob-
served directly using imaging techniques, but it is also
possible to probe the stability of the vortex configura-
tions by applying a current in order to depin the vor-
tices. When the vortex arrangement is highly ordered,
the depinning threshold or critical current Ic is higher
than when the vortices are disordered. Latimer et al.
(Latimer et al., 2013) studied the critical currents of su-
perconductors with square ice geometries in experiments.
They find a series of peaks in the critical current Ic as
a function of vortex density. When the temperature is
lowered, a prominent critical current peak appears at
Nv/Np = 1/2, as shown in Fig. 19 for Ic versus H/H1,

FIG. 19 The critical current of the vortex artificial square ice
sample, normalized by the zero magnetic field critical current
Ic(0), as a function of the magnetic field H at T = 4.8 K
(red circles) and T = 4.9 K (black squares). Top inset shows
the results obtained at T = 4.72 K. The zero magnetic field
critical currents are: Ic(0) = 802 µA at T = 4.72 K, Ic(0) =
613 µA at T = 4.8 K, and Ic(0) = 335 µA at T = 4.9 K.
The lower inset shows contour plots of the simulated local
magnetic field h for the half matching field, which shows the
ground state vortex configuration at T = 4.8K. White circles
indicate the positions of vortex-free holes and the dashed red
square shows the unit cell of the simulation area. Reprinted
with permission from Latimer et al. (2013).

where H1 is the first matching field. The inset shows a
simulation of the flux configuration at the f = 1/2 filling
where the square ice rule obeying state is highlighted.
For H/H1 > 1.0, the vortices start to become doubly
quantized, and another peak in the critical current ap-
pears at H/H1 = 3/2, which again corresponds to an ice
rule obeying GS.

In a series of experiments, Trastoy et al. (2014, 2015)
examined spin ice pinning arrays for the high temper-
ature superconductor YBCO, where thermal effects are
important. They found that changes in resistance cor-
respond to vortex configurations that are dominated by
a geometrically frustrated energy landscape that favors
ice like ordering and frustration, and they find a series of
peaks in the transport response similar to what is found
in ordered square pinning lattice arrangements.

For vortices in a kagomé pinning arrangement, various
ordered and disordered arrangements have been observed
in imaging experiments, and it has been argued that the
long-range vortex-vortex interactions are insufficient to
lift the degeneracy of the different vortex configurations
in the strong pinning sites (Xue et al., 2017). As the
magnetic field is increased, additional vortices become
trapped in the interstitial regions surrounding the pinned
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FIG. 20 Simulated distributions of flux quanta under type I,
II and III magnetic-charge orders and various flux-quantum
densities. Solid black lines indicate Voronoi diagrams clari-
fying the flux-quantum ordering. One repeating unit struc-
ture in each of the crystallized flux-quantum lattices is high-
lighted in yellow. The disordered flux quanta under the type
I magnetic-charge configuration at B/Bφ�=�1 originate from
geometric frustration with very high degeneracy. Reprinted
with permission from the authors Wang et al. (2018).

vortices, which could be a step toward the realization of
a stuffed artificial spin ice (Xue et al., 2018). Imaging
experiments for vortex configurations on the kagomé ice
(Wang et al., 2018) showed the predicted kagomé ice rule
obeying states (Libál et al., 2009) both at H/H1 = 1/2,
as expected, and also at the higher field of H/H1 = 3/2,
where the additional vortices occupy the interstitial re-
gions between pinning sites. Interestingly, the ice rule
state at H/H1 = 3/2 is even more ordered than the state
at H/H1 = 1/2, suggesting that the interstitial vortices
may play a role in annealing defects in the ice GS.

Wang et al. (Wan, 2016) examined vortex ordering
and dynamics on a switchable artificial spin ice array
that was motivated by the realization of a magnetic
rewritable artificial spin ice (Ge et al., 2018). In this
system, frustration effects can be switched on or off by
changing the magnetic charge ordering of the underlying
reconfigurable magnetic ice substrate. Different magnetic
charge orderings can produce disordered or frustrated
vortex configurations, as well as non-frustrated config-
urations that produce ordered vortex crystals, as illus-
trated in Fig. 20 for different possible ordered states at
B/Bφ = 1.0 and the f = 2.0 filling. Here types I, II and
III correspond to different magnetic charge ordered states
of the magnetic substrate (Wang et al., 2018). Other
work on vortex states with rewritable magnetic ice sub-
strates showed that the different patterns can be switched
with an applied current (Ge et al., 2018).

Square and kagomé spin ice geometries have also been

proposed for skyrmions in magnetic dot arrays, where the
dots are arranged such that the skyrmion can sit on either
side of the dot. A recent work demonstrated that, when
the skyrmions are strongly localized or particle like, the
behavior of the system is very similar to what is observed
in both superconducting vortex and colloidal artificial
ices (Ma et al., 2016). When the magnetic field is varied,
however, the skyrmions can become elongated and fill
the entire dot, destroying the frustration, so the system
can exhibit a transition from an ice rule obeying state to
square or triangular ordered states (Ma et al., 2016).

VI. OUTLOOK

In this section we provide further general directions
that cover different disciplines across condensed matter
systems not limited to particle based systems.

Stuffed Spin Ice: In particle based artificial ices,
additional particles can be placed in the spaces between
the traps of the substrate as well as within the traps
themselves. These interstitial particles could potentially
modify the ice rule for the particles that are sitting in
the trap sites. One study has already provided evidence
that the interstitial particles can actually enhance the
ordering of the ice state (Xue et al., 2018). It would
also be interesting to explore the dynamics of interstitial
particles for different ice substrate configurations. For
example, an ordered square ice background might pro-
duce increased or decreased diffusion of the interstitial
particles compared to a degenerate GS ice background.

Driven Dynamics: In ASI the spin degrees of
freedom are permanently localized on the magnetic
nanoisland. In contrast, in particle based artificial
ices it is possible for the particles to hop from one ice
substrate trap to another, making it possible to explore
the dynamics of a frustrated system compared to that of
a non-frustrated one. Protocols that could be considered
include sliding dynamics under a dc drive, shaken
dynamics under external forces, or simply applying a
drive to only one side of the sample but not to the other.
This would be equivalent to subjecting a portion of an
ASI to a magnetic field while the other portion of the
sample experiences no field.

Dynamic Substrates: If optical traps are used
to create the ice substrate, than a new type of dynamics
involving the traps themselves could be implemented.
For example, the trap could be flashed on and off, or the
orientation of the double well potential could be rotated.
Such protocols could provide new methods to reduce
frustration effects. Alternatively, it may be possible to
induce new types of frustration effects using dynamical
protocols that bring repulsive particles together. Such
protocols would create local high energy states, but due
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to the frustration, there may not be an easy direction in
which one of the particles could move away in order to
reduce the interaction energy. In particle based systems,
dynamic protocols could be introduced readily by using
dynamic traps (Bhebhe et al., 2018; Curtis et al., 2002).

Frustrated Active Matter Systems: Active
matter composed of self-propelled particles is a rapidly
growing research field, with an explosion in the exper-
imental realization of artificially self-propelled colloids
(Bechinger et al., 2016). An interesting area for future
exploration is frustrated systems on lattices where
the fluctuations are active rather than thermal. Some
studies have already shown the organization of active
matter into vortex states (Beppu et al., 2017) and
vortex lattices (Nishiguchi et al., 2018; Wioland et al.,
2016), and it would be possible to arrange these vortices
into a frustrated configuration. Additionally, if active
and passive particles are mixed together, a frustrated
ice geometry might reduce the diffusion of the active
particles, while an ordered ice state could produce
flow paths for the active particles. Other systems such
as coupled gyroscopes or spinners could be placed in
frustrated geometries which could lead to interesting
dynamics (Nash et al., 2015).

Deformable Substrates: In most of the ASI studied
to date, the substrate or confinement is fixed and cannot
react to the forces exerted on it by the particles. In
soft matter systems there are many ways to create a
substrate that could react and be deformed elastically. If
this reaction is introduced into an ASI system, it could
lead to new methods for reducing frustration effects.
In addition, excitations such as monopoles could create
additional long range strain fields in the soft substrate
that could be attractive or repulsive for other monopoles,
leading to emergent effects such as excitons and polarons.

Nonlocal Frustration Effects: Numerous exper-
iments have shown that large numbers of colloids can be
addressed individually in optical feedback experiments
(Lavergne et al., 2019). Thus, another route for studying
frustrated systems would be to introduce non-local
effects in which the forces experienced by particles in
one part of the system are correlated with the positions
of other particles that are far away. This would make it
possible to test whether phase transitions can be induced
by increasing the strength of the nonlocal interactions,
to study the effects of small world versus random
interactions, and to determine whether nonlocal effects
change the nonequilibrium properties of the frustrated
state. It would also be possible to engineer nonlocal
frustration effects in which a reduction of frustration at
one location in the system increases the frustration at a
distant point, and to study how the system would relief
such effects.

Continuous Spin Directions: Another avenue
in 2D soft mater systems is to allow the effective spin
degree of freedom to point along multiple directions or
have some freedom to move in the third dimension in
order to create a frustrated Potts model, Heisenberg like
spin models, and/or XY models.

Nondissipative Dynamics: In the particle based
models considered so far, the motion of the particles is
overdamped. It is, however, possible to realize particle
ices in which nondissipative effects are important, such
as in underdamped systems including dusty plasmas,
trapped ion crystals, or even milimetric magnets on 3D
printed substrates. The inertial effects could produce
phononic excitations, and it would be possible to study
the difference in the phonon modes for crystalline
versus degenerate or frustrated ice states, as well as the
propagation of solitons or shock waves.

Functionalized Colloids for Frustrated Ge-
ometries: There are many examples of functionalized
colloidal systems in which the interactions between the
colloids can be tailored to be anisotropic (Glotzer and
Solomon, 2007), reconfigurable (Ortiz et al., 2014), or
patchy (Bianchi et al., 2011), or even to mimic chemical
bonds (Wang et al., 2012). Using such systems, it would
be possible to create 2D or 3D colloidal assemblies that
naturally exhibit frustration, or even a colloidal system
that mimics the structure of water ice (Pauling, 1935).

Quantum Effects: A final potential avenue would be
to place cold atoms or cold ions on trap arrays arranged
in an ice structure. This system could be realized
at a size scale and temperatures for which quantum
effects could become important (Glaetzle et al., 2015;
Mazurenko et al., 2017).
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