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Recent experiments have demonstrated that light and matter can mix together to an
extreme degree, and previously uncharted regimes of light-matter interactions are cur-
rently being explored in a variety of settings. The so-called ultrastrong coupling (USC)
regime is established when the light-matter interaction energy is a comparable frac-
tion of the bare frequencies of the uncoupled systems. Furthermore, when the interac-
tion strengths become larger than the bare frequencies, the deep-strong coupling (DSC)
regime emerges. This article reviews advances in the field of the USC and DSC regimes,
in particular for light modes confined in cavities interacting with two-level systems. We
first provide an overview on the theoretical progress since the origins, from the semi-
classical Rabi model until recent developments of the quantum Rabi model. Next, we
describe key experimental results in a variety of quantum platforms, such as super-
conducting circuits, semiconductor quantum wells, and other hybrid quantum systems.
Finally, we highlight anticipated applications utilizing USC and DSC regimes, including
novel quantum optical phenomena, quantum simulation, and quantum computation.
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I. INTRODUCTION

The Rabi model (Rabi, 1936, 1937) arguably describes
the simplest class of light-matter interactions, namely,
the dipolar coupling between a two-level quantum sys-
tem (qubit) and a classical radiation field mode. This
semiclassical model has a fully quantum counterpart,
where the electromagnetic radiation is specified by a
single-mode quantum field, yielding the so-called quan-
tum Rabi model (QRM) (Braak, 2011). The QRM de-
scribes with accuracy the dynamical and static proper-
ties of a wide variety of physical systems, such as quan-
tum optics and solid state settings. Moreover, a vari-
ety of protocols in modern quantum information the-

ory (Nielsen and Chuang, 2004) employ the QRM as
a fundamental building block, with plausible applica-
tions in quantum technologies, including, e.g., univer-
sal two-qubit gates (Barends et al., 2014; Chow et al.,
2012; Schmidt-Kaler et al., 2003), nondestructive read-
out (Schuster et al., 2005), quantum state transfer (Ma-
jer et al., 2007; Richerme et al., 2014), ultrafast quan-
tum gates (Romero et al., 2012), quantum error correc-
tion (Córcoles et al., 2015; Kyaw et al., 2015b), and re-
mote entanglement generation (Campagne-Ibarcq et al.,
2018; Felicetti et al., 2014b; Ritter et al., 2012). In conse-
quence, the QRM is extremely important in both applied
and theoretical physics.

Historically, and for non-relativistic energies, light and
matter have been studied at the fundamental level us-
ing single atoms interacting with the electromagnetic
mode of an optical (Kimble, 1998) or a microwave cavity
(Raimond et al., 2001), a field known as cavity quan-
tum electrodynamics (cavity QED). The standard cav-
ity QED experiments are usually constrained to light-
matter couplings orders of magnitude smaller than the
natural frequencies of the noninteracting contributions.
Therefore, these experiments take place in the realm of
the well-known Jaynes-Cummings (JC) model (Jaynes
and Cummings, 1963), which can be obtained by per-
forming the rotating-wave approximation (RWA) on the
QRM (Braak, 2011). However, the exploration of cavity
QED physics in atomic systems could only be initiated
once the light-matter interaction strength was engineered
comparable (Meschede et al., 1985; Rempe et al., 1987)
or larger (Thompson et al., 1992) than all decay rates of
the system. This regime of coupling, known as the strong
coupling (SC) regime, is necessary to observe coherent
quantum dynamics between light and matter, leading
to the study of fundamental single atom-single photon
processes (Haroche, 2013), and, most importantly, devel-
oping the different architectures on which most existing
quantum computing technologies are based. Thus, the
JC model has represented a theoretical and experimen-
tal milestone in the history of light-matter interactions
and quantum optics.

During the past decade, a novel coupling regime of
the QRM has been theoretically investigated in which
the coupling strength is a sizable fraction of the nat-
ural frequencies of the noninteracting parts (Ballester
et al., 2012; Beaudoin et al., 2011; Bourassa et al., 2009;
Ciuti et al., 2005; DeLiberato et al., 2007; Pedernales
et al., 2015; Todorov et al., 2010a), and experimentally
achieved in several quantum systems (Anappara et al.,
2009; Braumüller et al., 2017; Chen et al., 2017; Forn-
Dı́az et al., 2010; Geiser et al., 2012; Goryachev et al.,
2014; Günter et al., 2009; Li et al., 2018b; Lv et al.,
2018; Muravev et al., 2011; Niemczyk et al., 2010; Scalari
et al., 2012; Schwartz et al., 2011; Todorov et al., 2010a;
Zhang et al., 2016a). In this ultrastrong coupling (USC)
regime, the RWA is not valid anymore, while the counter-
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FIG. 1 (Color online) Evolution in cavity QED of the highest value of g/ω, with ω the cavity frequency, as function of time
for different physical platforms. The dotted lines at g/ω ' 0.1 and g ' ω mark the beginning of the USC and DSC regimes,
respectively. References for the data, chronological: Atoms in Optical cavities: (Thompson et al., 1992), (Turchette et al.,
1995), (Hood et al., 1998), (Colombe et al., 2007) (Thompson et al., 2013), (Tiecke et al., 2014); Atoms in microwave cavities:
(Brune et al., 1994), (Brune et al., 1996), (Mâıtre et al., 1997), (Brune et al., 2008); Superconducting qubits: (Wallraff et al.,
2004), (Chiorescu et al., 2004), (Johansson et al., 2006), (Niemczyk et al., 2010), (Forn-Dı́az et al., 2010), (Baust et al., 2016),
(Yoshihara et al., 2017b); Quantum dots: (Reithmaier et al., 2004), (Reinhard et al., 2012), (Takamiya et al., 2013), (Kelaita
et al., 2017), (Mi et al., 2017), (Stockklauser et al., 2017); Exciton polaritons: (Weisbuch et al., 1992), (Bloch et al., 1998),
(Bellessa et al., 2004), (Wei et al., 2013), (Kéna-Cohen et al., 2013), (Gambino et al., 2014); Intersubband polaritons: (Dupont
et al., 2003), (Dupont et al., 2007), (Todorov et al., 2010a), (Delteil et al., 2012), (Askenazi et al., 2014); Electron cyclotron
resonance: (Muravev et al., 2011), (Scalari et al., 2012), (Maissen et al., 2014), (Bayer et al., 2017).

rotating terms produce novel, unexpected physical phe-
nomena (Ciuti et al., 2005) as well as applications in
quantum information (Felicetti et al., 2014b; Kyaw et al.,
2015b; Romero et al., 2012). In the regime in which the
counter-rotating terms can still be analyzed with per-
turbation theory (Anappara et al., 2009; Chen et al.,
2017; Forn-Dı́az et al., 2010; Geiser et al., 2012; Gory-
achev et al., 2014; Günter et al., 2009; Muravev et al.,
2011; Niemczyk et al., 2010; Scalari et al., 2012; Schwartz
et al., 2011; Todorov et al., 2010a; Zhang et al., 2016a),
the QRM can be described by the Bloch-Siegert (BS)
Hamiltonian (Beaudoin et al., 2011; Cohen-Tannoudji
et al., 1973; Klimov and Chumakov, 2009). On the
other hand, some experiments have recently reached the
non-perturbative USC regime (Bayer et al., 2017; Forn-
Dı́az et al., 2017; Maissen et al., 2014; Yoshihara et al.,
2017b), where the coupling strength exceeds the natu-
ral frequencies of the noninteracting parts, and the full-
fledged QRM has to be considered. Under these condi-

tions, a new regime of light-matter interaction emerges,
with absolutely different physics than the USC regime.
In this deep strong coupling (DSC) regime (Casanova
et al., 2010b), an approximate solution can reasonably
describe some aspects of the QRM. In fact, recently, the
DSC regime has been experimentally achieved with a su-
perconducting circuit (Yoshihara et al., 2017b) and in
a two-dimensional electron gas coupled with terahertz
metamaterial resonators (Bayer et al., 2017).

Figure 1 presents the evolution over time of the high-
est reported coupling strength g normalized to the fre-
quency of light of a confined mode ω, in all fields ex-
ploring light-matter interactions. Clearly, experimental
ultrastrong couplings are a recent advent over the past
decade, mostly as a consequence of the interdisciplinary
influence each area has had on the others. Figure 2 shows
the evolution over time of the parameter U , which we
propose as a novel figure of merit in the USC regime.
U corresponds to the geometric mean between reduced
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coupling g/ω and the cooperativity factor used in atomic
systems, C = 4g2/κγ, with κ and γ representing the
cavity and atomic losses, respectively. U is therefore a
measure of coherence in ultrastrongly coupled systems
and, as observed in experiments, when its value largely
exceeds unity U � 1 it is possible to access the exotic
physics of the USC regime without the blurring effects of
dissipation. Otherwise, one could enter the USC regime
without satisfying the usual definition of the strong cou-
pling regime, i.e., g > γ, κ (De Liberato, 2017). From
the data collected in Fig. 2, clearly the superconducting
qubits have entered well into the coherent USC regime,
while the electron cyclotron resonances just achieved this
new regime of physics (Li et al., 2018b).

This review presents a general overview of the theo-
retical and experimental progress in the USC and DSC
regimes of light-matter interaction. In the past decade,
experimental access to increasingly larger light-matter
coupling strengths in different fields has brought forward
USC and DSC regimes to the frontiers in quantum optics,
both from a theoretical as well as from an experimental
point of view. Moreover, beyond the fundamental inter-
est, it is becoming natural to consider the impact of USC
regimes in the context of the emerging interdisciplinary
aspects of quantum technologies.

The physics of the USC regimes is currently a very
active research field that is in constant transformation
and evolution. In particular, new lines of exploration of
USC involving a continuum of modes have already been
started (Forn-Dı́az et al., 2017; Magazzù et al., 2018;
Puertas-Martinez et al., 2018), enabling the exploration
of condensed matter models of relevant interest. Addi-
tionally, recent work in the two-photon quantum Rabi
model (Felicetti et al., 2018) represents a playground for
novel physics in nonlinear quantum optics. It is note-
worthy to mention that in this review we cover neither
open quantum systems nor multi-photon quantum Rabi
models, nor the impressive developments in the QRM
from a mathematical physics perspective (Braak, 2011;
Braak et al., 2016; Chen et al., 2012; Maciejewski et al.,
2014; Wakayama, 2013; Zhong et al., 2013). However,
we have tried to provide a connection to these grow-
ing areas of high theoretical and experimental interest.
The USC regimes of light-matter interaction will keep on
expanding at the frontier of quantum optics and quan-
tum physics. We envision that all related topics to USC
physics will remain a prominent field in the foreseeable
future. During the processing of this review, other arti-
cles have been published with overviews on the field of
USC (Frisk Kockum et al., 2019; Gu et al., 2017), again
demonstrating the impact this field has attained.

The contents of this review can be summarized as fol-
lows. Section II presents an overview of the different
light-matter interaction models. We follow a historical
approach along the lines of cavity QED and the recent
progress in the theory and experiments related to the

USC regimes. Section III reviews the most relevant ex-
periments having unveiled the physics related to the USC
and DSC regimes. In Sec. IV, the quantum simulations of
USC regimes are reviewed from a theoretical perspective.
Section V reviews a variety of potential applications of
USC regimes, from the point of view of quantum optics
and quantum computation. Finally, Sec. VI presents our
conclusions and outlook.

II. THE QUANTUM RABI MODEL

The Rabi model (Rabi, 1936) was introduced by Isidor
Rabi in 1936 to describe the semiclassical coupling of a
two-level atom with a classical monochromatic electro-
magnetic wave. In its fully quantized version, the model
is given by the Hamiltonian

ĤR = ~(Ω/2)σ̂z + ~ωâ†â+ ~gσ̂x
(
â+ â†

)
, (1)

which is nowadays known as the quantum Rabi model.
Here, Ω and ω are the frequencies of the atomic transi-
tion and the electromagnetic field, respectively, and g is
the light-matter coupling strength. σ̂x,z are Pauli ma-
trices describing the atomic spin, while â and â† are the
annihilation and creation operators of the bosonic field
mode, respectively.

Equation (1) describes the dipolar coupling between
a two-level atom, which could be a natural atom or an
effective two-level system engineered from a solid-state
device, and a quantized electromagnetic field mode. This
Hamiltonian appropriately describes a plethora of quan-
tum systems, several of which are laid out in Sec. III. Al-
ternative, equivalent forms of the quantum Rabi model
have been studied in the literature using gauge trans-
formations (Drummond, 1987; Stokes et al., 2017, 2012;
Stokes and Nazir, 2018a,b). We have omitted a constant
term ~ω/2 in Eq. (1) as it does not modify the physics
being discussed in this review.

In atomic systems, the achievable ratio g/ω between
the coupling strength and the bosonic field mode fre-
quency is orders of magnitude lower than unity [see (Kim-
ble, 2008) for an overview of the achievements in cavity
QED experiments]. One can easily understand the order

of magnitude of the dipole interaction energy ~g = −~d· ~E,
by expressing it as a function of system parameters (nor-

malized to cavity frequency), g/ω = |~d|(2~ε0Vmω)−1/2,

where ~d is the transition dipole moment between the rel-
evant atomic states of transition frequency ωA, ω = ωA
is the resonant frequency of the cavity, ε0 is the elec-
tric permittivity of vacuum, and Vm is the cavity mode
volume. A typical Fabry-Perot optical cavity such as
the ones used in experiments with cold atoms has mode
volumes on the order of Vm ∼ 10−15m3 (Rempe et al.,
1992). The dipole moment of Cesium and Rubidium,
which are heavy alkali atoms typically used in cavity
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FIG. 2 (Color online) Evolution in time in cavity QED of the highest value of the parameter U = (Cg/ω)1/2 for different
physical platforms from the same experimental points in Fig. 1. C = 4g2/κγ is the cooperativity, with κ and γ being the cavity
and qubit loss rates, respectively. U is an indicator of combined coupling strength and quantum coherence. References in
addition to those in Fig. 1: Quantum dots: (Faraon et al., 2008); Cyclotron resonance: (Zhang et al., 2016a), (Li et al., 2018b).

QED experiments, is on the order of |~d| ∼ 10−29C ·m.
For a cavity in resonance with Cesium at 351.7 THz,
this yields g/ω ∼ 10−7. The only parameter which can
be optimized further is the mode volume, Vm. The ef-
forts by several groups engineering increasingly smaller
mode volume cavities (Vahala, 2003) based on evanes-
cent fields near dielectric photonic micro- (Aoki et al.,
2006) and nanostructures (Tiecke et al., 2014), where Vm

scales as ∼ λ3, has brought g/ω down to 10−6, which is a
very large number for atomic systems but is still very far
to what has been achieved with solid-state devices (c.f.
Fig. 1).

Therefore, the QRM has been historically considered
for cavity QED systems (Raimond et al., 2001) in the so-
called Jaynes-Cummings (JC) regime (Jaynes and Cum-
mings, 1963), where one performs the rotating-wave ap-
proximation and neglects the terms â†σ̂+ and âσ̂−, which
contribute weakly to the dynamics when g/ω � 1.
These terms are also known as counter-rotating terms,
since the other two interacting terms, â†σ̂− and âσ̂+,
are stationary in the interaction picture, therefore co-
rotating with the uncoupled system Hamiltonian H0 ≡
~(Ω/2)σ̂z + ~ωâ†â. Here, σ̂+ and σ̂− are the raising and
lowering atomic operators, respectively. The JC Hamil-
tonian therefore looks

ĤJC = ~(Ω/2)σ̂z + ~ωâ†â+ ~g
(
σ̂+â+ σ̂−â

†) . (2)

The interaction term in the Hamiltonian ĤJC is of
exchange-type, leading to a conservation of the number
of excitations in the system. This implies that only states

with the same number of excitations interact, leading to
a full diagonalization of ĤJC in subspaces of n number of
excitations with JC doublets |±〉n as its eigenstates. By
contrast, Eq. (1) only contains a parity symmetry and
its exact diagonalization presents important difficulties
(see below) (Braak, 2011). The JC model has been a
cornerstone of quantum optics in the past 50 years. This
model has had a widespread use in a variety of physical
platforms, ranging from neutral atoms in optical and mi-
crowave cavities, trapped ions with quantized motion, to
superconducting qubits coupled to electromagnetic cav-
ities, transmission line resonators and nanomechanical
resonators. Recent implementations of small-scale quan-
tum processors use the physics from Eq. (2) as the basis
for the coherent quantum control of coupled quantum
systems (Córcoles et al., 2015).

In the regime where a detuning δ ≡ Ω − ω exists be-
tween the frequencies of the atom and the field mode, a
Schrieffer-Wolf transformation can be applied to Eq. (2)
if the dispersive condition is satisfied g/δ � 1, to become,
up to second order in g (Blais et al., 2004),

ĤAC/~ =
1

2

[
Ω +

g2

δ

]
σ̂z +

[
ω +

g2

δ
σ̂z

]
â†â. (3)

Equation (3) is known as the ac Stark Hamiltonian as
well as the dispersive Hamiltonian. The atom-photon in-
teraction is manifested in the non-radiative energy shifts
that atom and field mode exert on each other. A detec-
tion of the field frequency yields information about the
qubit state. This property is being widely exploited in
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quantum computing approaches, particularly with super-
conducting qubits (Schuster et al., 2005).

However, in the past decade, two novel regimes of
light-matter interaction have emerged, namely, the USC
regime, where 0.1 ≤ g/ω < 1, and the DSC regime,
where g/ω > 1. The lower limit g/ω = 0.1 has been
by now well-established as the regime where effects re-
lated to the counter-rotating terms become sizable and,
hence, observable. These new regimes exhibit a variety of
physics which are not easily detectable with lower light-
matter coupling strengths. In addition, one may take
advantage of such new phenomena for quantum informa-
tion applications as will be shown in Sec. V. Figure 3
displays the classification of different coupling regimes of
the QRM (Rossatto et al., 2017) as a function of g/ω and
for increasing energy eigenstates of Eq. (1).

FIG. 3 Classification of the different coupling regimes of
the quantum Rabi model (QRM). g0 in the figure corre-
sponds to g as defined in the main text. The leftmost re-
gion at lowest couplings stands for the perturbative ultra-
strong coupling (pUSC), which includes the Bloch-Siegert
Hamiltonian regime. For the lowest-energy eigenstates it
extends up to g/ω ∼ 0.4. The intermediate region sym-
bolizes the non-perturbative ultrastrong/ deep strong cou-
pling (npUSC/npDSC) regime. The color gradient around
the boundaries symbolizes the lack of an abrupt transition in
the physical properties of the QRM. The rightmost area is
the perturbative deep strong coupling regime pDSC, where
the qubit becomes a perturbation to the system (Rossatto
et al., 2017).

The USC regime 0.1 ≤ g/ω < 1 can be divided into
a perturbative region 0.1 . g/ω . 0.3 and a non-
perturbative region 0.3 . g/ω . 1 (Rossatto et al., 2017).
The perturbative region consists of a deviation from the
JC model that accepts an analytical treatment by con-
sidering the counter-rotating terms â†σ̂+ and âσ̂− as an
off-resonant driving field. Applying perturbation theory
to the quantum Rabi Hamiltonian [Eq. (1)] up to sec-
ond order on the perturbative parameter λ ≡ g/(Ω +ω),

yields the following Hamiltonian (Klimov and Chumakov,
2009),

ĤBS/~ =
1

2
(Ω + ωBS) σ̂z + (ω + ωBSσ̂z) â

†â

− ωBS

2
+ f(â†â)σ̂−â

† + σ̂+âf(â†â), (4)

where ωBS ≡ g2/(ω + Ω) is the Bloch-Siegert shift.
The coupling constant g is renormalized to f(â†â) ≡
−g[1 − â†âωBS/(ω + Ω)]. The additional terms appear-
ing in Eq. (4) compared to Eq. (2) are analogous to the
AC-Stark Hamiltonian [c.f. Eq. (3)], arising from hav-
ing treated the counter-rotating terms as an off-resonant
driving field. Equation (4) is known as the Bloch-Siegert
Hamiltonian, in analogy to the case of a strongly-driven
single spin (Bloch and Siegert, 1940).

The nonperturbative region 0.3 . g/ω . 1 departs
from the standard quantum optical treatment of light-
matter interaction. In this region, one has to resort
to the exact solution for arbitrary coupling (Braak,
2011). The JC model contains a conserved quantity
which corresponds to the total number of excitations,
Ĉ = â†â+ (1/2)(σ̂z + 1), leading to the solvability of the
model. In contrast to the approximations in Eqs. (2) and
(4), the energy eigenvalues in the nonperturbative region
are no longer given in closed form. The conservation of Ĉ
generates a continuous U(1) symmetry of the JC model
which in the nonperturbative region is broken down to a
discrete Z2 symmetry, usually called parity, due to the
presence of the counter-rotating terms âσ̂− + â†σ̂+ in
Eq. (1). This is further evidenced by noting that the
quantum Rabi Hamiltonian commutes with the parity

operator P̂ = σ̂ze
iπâ†â. This symmetry leads to a decom-

position of the state space into two subspaces and is still
sufficient to solve the model exactly (Braak, 2011), albeit
in a non-analytical form. However, the spectrum can be
analyzed qualitatively, leading to the unification of quasi-
exact crossing points (Judd, 1979; Kus and Lewenstein,
1986) and avoided crossings (see Fig. 3).

In the first-ever work coining the USC regime (Ciuti
et al., 2005), it was found that the ground state of an
ultrastrongly coupled system in the nonperturbative re-
gion consists of a squeezed vacuum. Later works (Ashhab
and Nori, 2010) explored further the ground state prop-
erties of the USC regime. In the ordinary vacuum, |g0〉,
in the zero- or weak-coupling regime, it is required that
σ̂−|g0〉 = â|g0〉 = 0. However, in the USC regime, the

ground state |̃g0〉 is an squeezed state, which contains a
finite number of cavity photons and atomic population.

Approximate solutions have been found to |̃g0〉 (valid in
the perturbative USC regime) (Beaudoin et al., 2011)

|̃g0〉 '
(

1− Λ2

2

)
|g0〉 − Λ|e1〉+ ξ

√
2|g2〉, (5)

where Λ ≡ ωBS/g, ξ = gΛ/2ω, explicitly showing qubit-
resonator excitations and a small degree of squeezing.
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At larger interaction strengths, the degree of squeezing
is enhanced (Ashhab and Nori, 2010). Further stud-
ies have looked into the possibility to release such a
squeezed photon field by modulating different system pa-
rameters (Ciuti and Carusotto, 2006; DeLiberato et al.,
2007, 2009).

As shown in Fig. 3, the nonperturbative USC regime
merges in a continuous manner with the nonperturbative
DSC regime. On the other hand, the perturbative DSC
regime represents the extreme coupling condition g/ω �
1. Here, the effective QRM Hamiltonian, in the spirit of
spin-dependent forces, can be solved analytically while
unitarily creating Schrödinger cat states.

In an important step to unveil the physics of the DSC
regime (Casanova et al., 2010b), new light was shed on
the structure of the QRM following an analysis based
on the symmetries of Eq. (1). As already mentioned
above, the quantum Rabi Hamiltonian contains a dis-
crete Z2 symmetry. This symmetry is characterized by

the parity operator P̂ = σ̂ze
iπâ†â, which can take values

±1 (Casanova et al., 2010b; Wolf et al., 2013). Therefore,
the total Hilbert space splits into two infinite-dimensional
invariant chains labeled by the parity eigenvalues

|g0〉 ↔ |e1〉 ↔ |g2〉 ↔ |e3〉 ↔ · · · (p = −1) ,

|e0〉 ↔ |g1〉 ↔ |e2〉 ↔ |g3〉 ↔ · · · (p = +1) .
(6)

The quantum Rabi Hamiltonian can be rewritten using
the parity operator P̂ and a composite bosonic mode b̂ ≡
σ̂xâ, as

ĤR = ~ωb̂†b̂+ ~g
(
b̂+ b̂†

)
− ~(Ω/2) (−1)

b̂†b̂
P̂ . (7)

In the slow qubit limit Ω → 0, ĤR →[
~ω
(
b̂† + g/ω

)(
b̂+ g/ω

)
− ~g2/ω

]
, which corre-

sponds to a simple harmonic oscillator displaced by
the ratio of the coupling with the frequency of the
cavity g/ω.

Figure 4 shows the time evolution of a state initially
prepared in the uncoupled vacuum |0, g〉. Since this state
is not an eigenstate of the quantum Rabi Hamiltonian,
the system evolves as a wave packet climbing up and
down the parity chains, displaying photon number wave
packet oscillations. When the qubit frequency is finite, it
effectively dephases the photon number oscillations which
decay in amplitude over time. Also, the temporal de-
velopment of qubit operators depends crucially on the
presence of parity chain mixing (Wolf et al., 2012).

The DSC regime requires a specific theoretical treat-
ment due to its distinctive character when compared to
USC physics, both in the discrete (Bayer et al., 2017;
Yoshihara et al., 2017b) and in the continuous mode ap-
proaches (Forn-Dı́az et al., 2017). In the latter, the de-
scription of a two-level system coupled to a continuum
of modes has been traditionally the domain of study of
the spin-boson model (Leggett et al., 1987; Weiss, 2008).

FIG. 4 (Color online) Dynamics of the deep strong coupling
(DSC) regime. (a) Photon statistics at different times of the
evolution for Ω = 0.5ω. When the qubit frequency Ω 6= 0,
the photon number wave packet suffers self-interference and
is distorted; (b) comparison of revival probability of the initial
state P+0b (t) = |〈g, 0a|ψ (t)〉| calculated for Ω = 0 (solid line)
and Ω = 0.5ω (dashed line). In the case Ω 6= 0, full collapses
and partial revivals are observed where the initial probability
is not completely restored, with a maximum value that dete-
riorates as time evolves. In all simulations the initial state is
|g, 0a〉 and g/ω = 2 (Casanova et al., 2010b).

Recent experiments have reached the nonperturbative in-
teraction regime (Forn-Dı́az et al., 2017; Magazzù et al.,
2018), where the qubit becomes dressed by the photonic
modes, resulting in a polariton with renormalized fre-
quency (Shi et al., 2018).

Within the QRM, in the regime where the coupling
strength dominates over any other term, the limit of spin-
dependent forces is expected. Such a limit was previously
studied in trapped ion systems in order to achieve faster
quantum computing operations, among other applica-
tions (Haljan et al., 2005; Solano et al., 2003). Finally,
it is noteworthy to mention another surprising limit of
the QRM when the mode frequency is negligible, giving
rise to the emergence of the 1+1 dimensional Dirac equa-
tion (Gerritsma et al., 2010; Lamata et al., 2007). This
connection was further explored in the literature (Ger-
ritsma et al., 2011) and may still produce important
analogies for quantum simulations of relativistic quantum
models encoded in nonrelativistic quantum systems (Ped-
ernales et al., 2018).

Note that in the USC regime, the complete cavity QED
Hamiltonian contains an additional term, the so-called
A2-term which represents the self-interaction energy of
the field. This term usually contains a part that looks like
(g2/ω)â†â, so it is usually neglected due to the smallness
of g/ω. In the USC regime, however, it has an impor-
tant role in most physical systems. A historical dispute
in the context of cavity QED has surrounded the dis-
cussions about the A2 term due to an initial prediction
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of a superradiant phase transition (Dicke, 1954; Hepp
and Lieb, 1973; Wang and Hioe, 1973) followed by a no-
go theorem (Rzażewski et al., 1975). More recently, the
dispute has surged back in discussing different quantum
systems such as superconducting qubits (Jaako et al.,
2016; Nataf and Ciuti, 2010; Viehmann et al., 2011) and
polaritons (Chirolli et al., 2012; Hagenmüller and Ciuti,
2012). Therefore, the study of the USC regime unavoid-
ably leads to the exploration of the influence of the A2

term in different physical systems, as was highlighted in a
recent theoretical work which also included direct dipole
interactions between the two-level systems (DeBernardis
et al., 2018). Other theoretical works considered super-
radiance in a system with a single (Ashhab, 2013) and
many (Ashhab and Semba, 2017; Bamba et al., 2016) su-
perconducting qubits in a cavity. Learning information
about this term would lead to profound insights in the
ultimate nature of light-matter interaction. Extensions
of the QRM considering the anisotropic Rabi model (Xie
et al., 2014) including discussions of the A2 term (Liu
et al., 2017) have also been investigated. In this modi-
fied QRM, the counter-rotating terms are assumed with a
different coupling strength gcr than the co-rotating terms
g.

In systems based on a dense electron gas, such as po-
laritons in semiconductor quantum wells (see Sec. III.B),
many identical electronic transitions are resonant with
a single cavity mode. In that limit, the material exci-
tation behaves as a bosonic quasi-particle, and a more
adequate description is provided by the Hopfield Hamil-
tonian (boson-boson coupling) (Hopfield, 1958), rather
than the QRM (spin-boson coupling). It has been theo-
retically demonstrated (Todorov and Sirtori, 2014) how
an electronic system can evolve from the quantum Rabi
Hamiltonian towards the Hopfield model, by changing
the number of electrons. In comparing the two mod-
els, the multiple polariton branches of the dressed states
in the QRM are progressively washed out, to leave only
two polariton branches as observed in experiments with
polaritons in semiconductor quantum wells. In describ-
ing such dense electron gas systems, alternative Hamil-
tonians were used in the literature in a different gauge
rather than the usual minimal coupling Hamiltonian were
the A2 term mentioned above appears. In the Coulomb
gauge and the dipole representation, the A2 term is re-
placed by a P 2 term. The resulting Hamiltonian was used
to study nonperturbative superradiant emission of collec-
tive excitations in a two-dimensional electron gas (Hup-
pert et al., 2016). These modified Hamiltonians capture
better the effects in condensed matter systems, such as
those described in Sec. III.B.

III. EXPERIMENTS IN THE USC AND DSC REGIMES

Ultrastrong coupling regimes have been the focus of
theoretical studies for many decades (Cohen-Tannoudji
et al., 1973; De Zela, 1997; Irish, 2007; Shirley, 1965). It
was not until late 2000’s that the first truly experimental
sightings of light-matter interactions in the USC regime
were realized (Anappara et al., 2007; Dupont et al., 2007;
Forn-Dı́az et al., 2010; Niemczyk et al., 2010). This
first round of experimental results triggered a period of
intense theoretical exploration. Therefore, the experi-
mental progress has marked the pace at which the field
has evolved. Coincidentally, the exploration of the USC
regime in several physical systems has taken place at
about the same period of time. In this section, we will
overview the most relevant of these fields, namely super-
conducting quantum circuits (Sec. III.A), semiconductor
quantum wells (Sec. III.B) and other hybrid quantum
systems (Sec. III.C).

A. Superconducting quantum circuits

Superconducting circuits in the quantum regime were
shown to be an excellent platform to study light-matter
interactions in the microwave regime of frequencies.
Early studies of qubit-resonator systems (Blais et al.,
2004; Wallraff et al., 2004) found that a superconduct-
ing qubit interacting with the mode of a microwave res-
onator follows the exact same physics as that of cavity
QED, with the qubit playing the role of an artificially
engineered atom and the resonator mode emulating the
cavity. By analogy, this platform of light-matter interac-
tions on a superconducting circuit was defined as circuit
QED.

The experimental exploration of ultrastrong interac-
tions in superconducting quantum circuits was initiated
in 2010, following several years of development of cir-
cuit QED (Gu et al., 2017). Early experiments in the
strong coupling regime used capacitive (Bishop et al.,
2008; Schuster et al., 2007), mutual geometric (Johansson
et al., 2006), and galvanic inductive couplings (Chiorescu
et al., 2004). The first two experiments reaching USC
regimes used galvanic couplings instead (Forn-Dı́az et al.,
2010; Niemczyk et al., 2010). Both experiments reported
clear evidence of deviations from the conventional model
used in quantum optics, the JC model introduced in
Sec. II (Jaynes and Cummings, 1963). The couplings
achieved are nowadays cast in the perturbative USC
regime (Rossatto et al., 2017). The experiments in 2010
were followed by several studies addressing distinct fea-
tures related to counter-rotating wave physics inherent to
the perturbative USC regime (Baust et al., 2016; Chen
et al., 2017; Forn-Dı́az et al., 2016). In 2016, two inde-
pendent experiments attained a qualitative jump in the
light-matter interaction strength, pushing the boundaries
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into the non-perturbative USC domain by using Joseph-
son junctions as coupling elements. These experiments
spanned both closed (Yoshihara et al., 2017b) and open
system settings (Forn-Dı́az et al., 2017) and entered the
DSC regime (Casanova et al., 2010b; Rossatto et al.,
2017). In parallel to the engineering of circuits show-
ing USC and DSC physics, novel techniques of digital
and analog quantum simulation using superconducting
circuits and trapped ions studied the QRM in these ex-
treme coupling regimes (Braumüller et al., 2017; Lang-
ford et al., 2017; Lv et al., 2018). Altogether, the year
2016 consolidated the field of research on USC regimes
in superconducting circuits both from a fundamental and
an applied point of view (Braak et al., 2016).

A summary of the milestones in coupling strength
achieved in experiments with superconducting quantum
circuits is reported in Table I.

1. Circuit considerations: qubit-resonator systems

The interaction between light and matter is fundamen-
tally manifested as a modification of a property of one
of the interacting subsystems due to the presence of the
other one. Consider a single atom placed in a dielectric.
The presence of the atom represents a sudden modifica-
tion of the medium through which light propagates. This
point-like discontinuity in the dielectric causes a modifi-
cation of the electromagnetic field distribution of pho-
tons, resulting in a net light-matter interaction. In the
case of circuits, superconducting qubits play the role of
effective artificial atoms. In analogy to natural atoms,
the presence of a qubit induces a strong change in the
impedance of the circuit through which microwave pho-
tons propagate, enabling qubit-photon interactions. The
interaction in this case may be capacitive or inductive,
depending on the circuit design, and generally will be
determined by the geometry of a coupling circuit ele-
ment, a capacitor or an inductor, respectively [Fig. 5(a)].
We define this type of couplings as external. Within the
strong coupling regime where the interaction strength g
dominates over qubit loss γ and cavity loss κ, the qubit-
photon interaction is perturbative with respect to the
cavity mode frequency ω, κ, γ � g � ω, leaving the
bare eigenstates of the interacting subsystems unmodi-
fied. The eigenstates of the total system will still consist
of superpositions of qubit and photon in a dressed-state
basis (Jaynes and Cummings, 1963). So far, it has been
possible to attain the perturbative USC regime with ex-
ternal couplings.

There exists an important difference between atomic
systems and superconducting circuits: superconducting
qubits are circuits themselves, allowing the possibility
to directly embed the artificial atom in the medium of
propagation of photons [Fig. 5(b)]. In this way, the two
coupled systems share more than just mutual geomet-

a)

b)

FIG. 5 (Color online) a) Circuit schematic of external cou-
pling, with a circuit element (center, red) which couples res-
onator (left, blue) and qubit (right, yellow). Capacitors or
inductors are examples of possible coupling elements. b) In-
ternal coupling where the qubit (right, yellow) and resonator
(blue, left) shunt each other and share internal degrees of
freedom.

ric elements of the circuit (capacitive and/or inductive)
which store the interaction energy, as is the case for ex-
ternal couplings [Fig. 5(a)]. As described later in this
section, circuit engineering permits sharing an actual in-
ternal degree of freedom between the artificial atom and
the resonator, which becomes the actual source of cou-
pling. We refer to this type of couplings as internal.
In such a scheme, the qubit degrees of freedom become
renormalized by the elements of the coupling resonator
circuit (Manucharyan et al., 2017), such that it is diffi-
cult to speak about separate qubit/resonator degrees of
freedom. With such a strong interaction, the natural ba-
sis of eigenstates of the qubit circuit is modified, both
for charge-type [Cooper pair box (CPB), and transmon
qubit] and flux-type qubits (flux qubit and fluxonium
qubit). This is the fundamental key point that permit-
ted attaining coupling strengths well above the excitation
frequencies of the interacting subsystems, i.e. the non-
perturbative USC/DSC regimes (Forn-Dı́az et al., 2017;
Yoshihara et al., 2017b).

Superconducting qubits are generally classified in two
types: flux-type and charge-type. The qubit-resonator
interaction can be of inductive (which includes galvanic
coupling) or capacitive nature. All types of supercon-
ducting qubits developed so far have been shown to cou-
ple with either type of interaction. Generally speaking,
the capacitive interaction is determined by the mutual
capacitance between the two coupled circuits. Similarly,
geometric inductive couplings are given by the mutual
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Reference Qubit Cavity Interaction γ/2π κ/2π g/2π ωr/2π g/ωr U Notes

type type type (MHz) (MHz) (MHz) (GHz) (%)

(Wallraff et al., 2004) CPB TL Capacitive 0.7 0.8 5.8 6.044 0.1 0.24 First strong coupling

(Chiorescu et al., 2004) FQ LE Galvanic, external 27 1.6 200 2.91 6.9 7.97 Resonator SQUID

(Johansson et al., 2006) FQ LE Galvanic, external 0.2 0.2 216 4.35 5 241 First vacuum oscillations

(Schuster et al., 2007) TR TL Capacitive 0.25 1.6 105 5.7 2 22.9 First transmon work

(Bishop et al., 2008) TR TL Capacitive 0.3 0.09 173.5 6.92 2.5 167

(Fedorov et al., 2010) FQ LE Galvanic, external 2.9 0.1 119.5 2.723 4.4 46.5

(Niemczyk et al., 2010) FQ TL Galvanic, external 2.5 < 2 636 5.357 12 98 First USC work

(Forn-Dı́az et al., 2010) FQ LE Galvanic, external < 10 10 810 8.13 10 25.6 Bloch-Siegert in USC

(Baust et al., 2016) FQ TL Galvanic, external ∼ 10 - 775 13.3 17.2 - Dressed mode coupling

(Chen et al., 2017) FQ TL Galvanic, external ∼ 1 - 306 3.143 9.7 -

(Yoshihara et al., 2017b) FQ LE Galvanic, internal ∼ 1 ∼ 1 7630 5.711 134 8819 First DSC work

(Yoshihara et al., 2017a) FQ LE Galvanic, internal ∼ 1 ∼ 1 5310 6.203 86 4913

(Bosman et al., 2017a) TR TL Capacitive 29.3 38 455 6.23 7.1 3.7

(Bosman et al., 2017b) TR TL Capacitive 3.1 < 0.1 897 4.268 19 739 First USC transmon

(Yoshihara et al., 2018) FQ LE Galvanic, internal ∼ 1 ∼ 1 7480 6335 118 16256

TABLE I Experimental observations of ultrastrong light-matter coupling in superconducting quantum circuits. CPB = Cooper
pair box. FQ = Flux qubit. TR = Transmon qubit. TL = Transmission line resonator. LE = lumped-element resonator. γ =
qubit decay rate. κ = photon decay rate. g = coupling strength. ωr = resonator frequency. U ≡

√
(g/ωr)(4g2/κγ) = geometric

mean between cooperativity and normalized coupling strength. SQUID = superconducting quantum interference device.

qubit-resonator inductance. Galvanic couplings are given
by the superconducting phase drop that is developed
across the shared mutual inductance between the two cir-
cuits (see Sec. III.A.3). It is possible to reach ultrastrong
couplings with both capacitive and galvanic interactions,
with quite different fundamental limits imposed for each
type, as detailed in the next subsections.

We emphasize that all formulae shown in this section
will be specific to a lumped-element resonator for which
there is no spatial dependence on the amplitude of the
electromagnetic field fluctuations, and only a single res-
onant mode exists. This is in contrast to distributed res-
onators made of a section of a transmission line. In the
latter, the presence of the qubit modifies the amplitude of
the resonator field at that location, leading to a decrease
of the interaction strength. This is due to the appear-
ance of additional coupling mechanisms. For example, a
flux qubit inductively coupled to a transmission line res-
onator develops a capacitive coupling at the expense of
the inductive interaction (Bourassa et al., 2012).

Each superconducting qubit is defined within a sub-
set of a larger Hilbert space of eigenstates of the whole
quantum circuit. A recent theoretical study considered
the complete circuit Hamiltonian of both flux-type and
charge-type superconducting qubits embedded in a res-
onator (Manucharyan et al., 2017). Deviations from the
QRM were evidenced but found not to alter the main
qualitative properties of the model, particularly for the
ground state. The conclusions of this study will be pre-
sented in Sec. III.A.3.

In the following subsections we explore the limits to ca-

pacitive and galvanic interactions. Mutual geometric in-
ductive couplings are less interesting as one requires very
large qubits, hundreds of µm long, to attain sufficiently
large mutual inductance. This in turn modifies the qubit
eigenstates and eventually reduces the qubit persistent
current so the coupling starts to decrease. Therefore,
in practice the largest attainable qubit-resonator inter-
action strength is lower than using galvanic interactions.

2. Capacitive couplings

Capacitive couplings have been widely used with
all types of superconducting qubits engineered so far
(Hofheinz et al., 2009; Inomata et al., 2012; Manucharyan
et al., 2009; Wallraff et al., 2004). This type of coupling is
proportional to the root mean square (r.m.s.) voltage V̂
in the ground state of the resonator mode with frequency
ωr and capacitance Cr

Vr.m.s. ≡ 〈0|V̂ 2|0〉1/2 =

√
~ωr
2Cr

= ωr

√
~Z
2
, (8)

which scales as
√
Z, where Z is the impedance of the res-

onator mode coupled to the qubit (Andersen and Blais,
2017; Devoret et al., 2007; Jaako et al., 2016). This scal-
ing already points to high-impedance resonators to reach
the USC regime.

The most common type of charge qubit is known as
the Cooper pair box (CPB). This qubit consists of a su-
perconducting island connected to a large reservoir by a
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Josephson junction. The island may be connected to an-
other circuit by additional capacitors, as shown in the
circuit in Fig. 6. The qubit junction capacitance Cq
may consist of the self-capacitance of the junction or a
shunt capacitor externally defined. The CPB Hamilto-
nian looks (Bouchiat et al., 1998)

ĤCPB = 4EC
∑
N∈Z

(N̂ −Next)
2|N〉〈N |

+ EJ
∑
N∈Z

(|N〉〈N + 1|+ h.c.). (9)

Here, N̂ is the Cooper pair number operator, and EC =
e2/2CΣ is the charging energy of the Cooper pair island of
total capacitance CΣ, which is equal to Cq+Cg in the cir-
cuit in Fig. 6. EJ is the Josephson energy of the junction
connecting the box to the reservoir. Next = CgVext/2e is
the charge externally induced on the island via the ca-
pacitor Cg. “h.c.” stands for Hermitian conjugate. When
the qubit is connected to a resonator, as in Fig. 6, the ex-
ternal voltage corresponds to the quantized voltage from
the resonator Vext = V̂r = Vr.m.s(â + â†) (Blais et al.,
2004). When writing out explicitly all terms in Eq. (9),
the cross term results in the interaction energy between
charge qubit and resonator,

Ĥint = −2eN̂
Cg
CΣ

Vr.m.s.(â+ â†). (10)

This expression is general and applies to all types of
charge-based qubits, such as the CPB and the transmon.
In Eq. (10), the factor 2eN̂ plays the role of the qubit
dipole moment. One can picture this dipole moment as
a charge 2e moving between the two plates of the capac-
itor where an external voltage V̂ext has been induced by
the external circuit (Devoret et al., 2007).

For a CPB in the charging regime, 4EC � EJ , and for
low enough temperatures EC � kBT that the system lies
in its ground state, the Cooper pair number operator may
be represented in the basis defined by the two states |0〉
and |1〉, representing excess Cooper pairs on the island.
Using the Pauli matrix representation, σ̂x = |N〉〈N+1|+
h.c., the Cooper pair number operator is now represented
as N̂ ' σ̂z. Equation (9) can be rewritten as ĤCPB =
−(Eel/2)σ̂z − (EJ/2)σ̂x, with Eel ≡ 4EC(1 − 2Ng). In
this charging regime, Eq. (10) has a modified form

ĤCPB
C = 2e

Cg
Cg + Cq

Vr.m.s.σ̂x(â+ â†). (11)

The equivalent of the qubit dipole moment here takes the
simple form |〈0|2eN̂CPB|1〉| = 2e.

If we now consider the limit EJ � EC , we enter the
transmon regime (Koch et al., 2007). In this regime, the
CPB Hamiltonian can be approximated by a harmonic
oscillator with some nonlinearity which introduces anhar-
monicity in the spectrum. Now, the analog of the dipole

moment of the qubit, calculated in the transmon ba-
sis, takes a different form, |〈0|2eN̂tr|1〉| = e(EJ/2EC)1/4,
leading to a modified interaction Hamiltonian

Ĥtr
C = e

Cg
Cg + Cq

(
EJ

2EC

)1/4

Vr.m.s.σ̂x(â+ â†). (12)

The coupling strength g in the last expression can be
re-written in a reduced form (Devoret et al., 2007)

gtr
C

ωr
=

1√
2π3

(
EJ

2EC

)1/4√
Z

Zvac

Cg
Cg + Cq

α1/2. (13)

Zvac =
√
µ0/ε0 ' 377 Ω is the vacuum impedance while

α ' 1/137 is the fine structure constant. Notice that
in conventional cavity QED experiments where a Ryd-
berg atom interacts with a photon, g/ω is proportional
to α3/2 (Devoret et al., 2007). The different scaling ob-
tained in circuit QED, α1/2, is related to the different
dimensionality of the dipole moment, being 3D for Ryd-
berg atoms and 1D for circuit QED. Equation (13) shows
the fundamental limitations for transmon qubits and ca-
pacitive couplings. It has been shown (Jaako et al., 2016)
that this type of coupling cannot reach the DSC regime
g/ωr > 1, as the coupling is bound by

gtr
C

ωr
=

Cg√
Cr(Cq + Cg) + Cg(Cg + Cq)

< 1, (14)

for exact qubit-photon resonance. The capacitances refer
to the circuit in Fig. 6. Typical circuit parameters limit
this quantity to gtr

C/ωr ≈ 0.01 for Z = 50 Ω.

Cg CqCr

FIG. 6 Circuit model of a charge qubit shunted with capaci-
tance Cq coupled with a capacitor Cg to a lumped resonator
of capacitance Cr. The cross corresponds to the circuit el-
ement of a Josephson junction. Lumped resonator (left) is
depicted in blue, charge qubit (right) in red. This model is
valid both for Cooper pair boxes as well as transmon qubits.

The same analysis for pure charge qubits (CPB) gives
a reduced coupling of

gCPB
C

ωr
=

√
2

π3

√
Z

Zvac

Cg
Cg + CJ

α1/2. (15)

Using a lumped-element resonator model, the reduced
coupling can be recast using circuit parameters in anal-
ogy to the transmon case (Jaako et al., 2016)

gCPB
C

ωr
=

2Cg√
Cr(Cq + Cg) + Cg(Cg + Cq)

√
EC
EJ

. (16)
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FIG. 7 (Color online) USC with capacitive coupling. (a) Device schematic of a tranmission line resonator capacitively coupled
to a transmon qubit. (b) Schematic of the vacuum gap capacitor shunting the qubit junctions. (c) Scanning electron micrograph
(SEM) of the device, showing the shunt capacitor that defines the resonator port. (d) SEM zoom-in of the qubit, displaying
the vacuum gap capacitor and the Josephson junctions.

Note that the frequency of a CPB is assumed here to
be ~ωq = EJ . Equation (16) shows that it is in princi-
ple possible to reach the DSC regime with a CPB with
EC � EJ . In practice, the limitation on charge qubit
lifetime makes this circuit implementation challenging.
The circuit parameters used so far in experiments involv-
ing CPBs and resonators (Wallraff et al., 2004) achieved
values of gCPB

C /ωr ≈ 0.01 with a resonator impedance
Z = 50 Ω.

We point out that the limits imposed by Eqs. (13)-(16)
are specific to the circuit1 shown in Fig. 6. However,
as will be shown in Sec. III.A.3, a charge qubit, either
transmon or CPB, shunted by an LC circuit presents
a charge-like interaction with a coupling strength which
can reach well into the g/ω > 1 regime (Manucharyan
et al., 2017).

The
√
Z scaling of the coupling in Eqs. (13) and (15) is

originated from the resonator voltage fluctuations Vr.m.s.,
favoring high-Z resonators. Employing high kinetic in-
ductance films or Josephson junction arrays (Andersen
and Blais, 2017; Masluk et al., 2012), impedances of sev-

eral kΩ would allow reaching the regime gCPB,tr
C ≈ ωr.

The first experiment reporting USC with a capacitive
coupling consisted of a superconducting transmon qubit
coupled to a transmission line resonator (Bosman et al.,
2017b). The strength of the coupling was attained by
implementing a vacuum gap parallel-plate geometry [see
Fig. 7] in which the qubit shunt capacitor was suspended
over the ground plane, enhancing in this way the ratio
of coupling capacitance Cg to total capacitance Cg + Cq
in Eq. (12). Being an effective drum 30 µm in diameter

1 Equations (14) and (16) are obtained from a modified but similar
circuit to that shown in Fig. 6 (Jaako et al., 2016).

suspended less than 1 µm over the resonator ground led
to a coupling capacitance nearly an order of magnitude
larger than planar capacitance designs. Combined with
a high-impedance superconducting transmission line res-
onator, an USC of up to g/ωr ∼ 0.19 was observed with
the fundamental resonator mode [Fig. 8(a)-(c)]. The high
resonator impedance was achieved by narrowing the cen-
ter line of the resonator and in this way reducing the
capacitance per unit length between the ground planes
and the center line. The spectrum of the transmon qubit
shown in Fig. 8(a) displayed dispersive effects from the
multiple modes of the resonator coupling to the qubit,
including qubit-mediated mode-mode interactions. Clear
deviations from the JC model were observed, reporting a
single-photon Bloch-Siegert shift of ωBS/2π = 62 MHz.

Despite Eq. (14) limiting the ratio gtr
C/ωr to lie below 1,

transmon-based devices approaching the DSC regime
may be demonstrated in the near future. One possible
avenue to reach that goal is to engineer the impedance of
the transmission line resonator to even higher values. In
a separate work (Puertas-Martinez et al., 2018), Puertas-
Mart́ınez et al. demonstrated a USC coupling strength
between a qubit and multiple modes of a SQUID ar-
ray acting as a high impedance transmission line. The
impedance of the array was measured to lie in the kilo-
ohm range. Even though the experiment was designed as
an open system -and therefore modeling the spin-boson
model rather than the QRM-, the scaling of the qubit-line
coupling followed closely that from Eq. (13). As already
mentioned above, another straightforward way to enter
the DSC regime with charge qubits is to directly shunt
the qubit by an LC resonator.
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FIG. 8 (Color online) Spectrum of the capacitively coupled transmon-resonator device in the USC regime. (a) Spectrum
displaying an avoided-level crossing. The green dashed line shows the JC model. The blue dashed lines show the uncoupled
qubit and resonator transitions. The red dashed line is the QRM for a multi-mode system. A Bloch-Siegert shift of 62 MHz
is clearly displayed as a deviation from JC model. b) Vacuum Rabi splitting. c) Zoom-in of the anticrossing area showing
additional avoided-level crossings of the qubit.

3. Galvanic couplings

Two systems are galvanically coupled when they share
a portion of their respective circuits. Here, we will distin-
guish two types of galvanic coupling based on the amount
of circuit shared: a) sharing a linear inductance and
b) embedding the qubit directly into the resonator cir-
cuit. The general picture is that the qubit and resonator
share a circuit element, the latter case being the entire
qubit itself. In both situations, the qubit-resonator cou-
pling is then given by the superconducting phase drop
across the shared circuit element ϕ̂, which itself is a new
degree of freedom of the circuit [Fig. 9]. For flux-type
qubits [Figs. 9(a), 9(b)], ϕ̂ can be represented in the
basis of eigenstates of the qubit, 〈i|ϕ̂|j〉, which relates
to the current running across the inductive element [see
Eq. (18)]. For charge-type qubits, an inductor in series
with the qubit junction may be shared with a resonator,
as shown in Fig. 9(c). Increasing the coupling strength in
this configuration will be at the expense of the qubit an-
harmonicity 2, since the linear inductance dilutes the ef-
fect of the Josephson junction and brings the qubit closer
to a linear oscillator. Therefore, it is not very favor-
able for reaching ultrastrong interaction strengths, and
we will not discuss this configuration further. In prac-
tice, this type of interaction has only been implemented
in coupled-qubit circuits (Chen et al., 2014b). The other
possibility 3 is to embed the qubit in the resonator circuit

2 See related literature for a more detailed calculation of the effects
of linear inductors in transmon qubits (Bourassa et al., 2012).

3 Here, we are only discussing transverse-type couplings. For both
flux-type and charge-type qubits, a longitudinal coupling can be

[Fig. 9(d)] where the coupling is to the charge degree of
freedom Q̂ on the island formed on one side of the qubit
junction.

Coupling to the phase ϕ̂ involves the r.m.s. current Î
in the ground state of the resonator mode with frequency
ω and inductance Lr

Ir.m.s. ≡ 〈0|Î2|0〉1/2 =

√
~ωr
2Lr

= ωr

√
~

2Z
. (17)

Clearly, in order to maximize the coupling strength, low
resonator impedance Z is desirable.

In what follows, we will use the three-junction flux
qubit (Mooij et al., 1999) to analyze the different types
of galvanic couplings. The description can be easily ex-
tended to the fluxonium (Manucharyan et al., 2009) and
other flux-type qubit circuits.

a. Linear inductance.- Here, we will only focus on flux-
type qubits, but the discussion can be extended to charge
qubits in the configuration shown in Fig. 9(c). The
circuit topology of a flux-type qubit consists of one or
more junctions interrupting a superconducting loop, a
section of which can be shared with a resonator circuit
[Fig. 9(a)]. The coupling element is then the shared lin-
ear inductor L, which adds a degree of freedom to the
circuit, the phase drop across it, ϕ̂L. In the perturba-
tive USC regime, which corresponds to the experiments

instead engineered by replacing one of the qubit junctions by a
SQUID loop and galvanically attaching a fraction of this loop to
a resonator circuit. We will not discuss longitudinal couplings in
this review.
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FIG. 9 (Color online) Circuit model for galvanic couplings.
a) Flux qubit sharing a section of its loop with a resonator.
The coupling element consists of a linear inductance. b) Flux
qubit embedded into the resonator loop. The coupling is given
by the phase across the shared junction. c) Charge qubit
sharing an inductance with a resonator. The coupling element
is given by the shared inductance. d) Charge qubit embedded
in the resonator loop. The coupling operator is related to the
charge Q̂ stored in the superconducting island shared between
qubit and resonator, highlighted by the dashed line. a) and
c) represent an external coupling element, while b) and d) are
internal couplings.

described in this subsection, the value of the coupling
inductance is typically small compared to the resonator
inductance Lr and the qubit loop inductance. There-
fore, ϕ̂L is frozen in its ground state and is treated as
a constant which becomes a perturbation to the qubit-
resonator system.4 Therefore, in this regime of small
coupling inductance, the coupling element does not mod-
ify the bare qubit/resonator spectra and is therefore an
external coupling as defined in Sec. III.A.1.

The inductance of a superconducting wire has a ge-
ometric as well as a kinetic origin. The inductance
from a Josephson junction may also be used as a lin-
ear inductor, provided that its critical current is much
larger than the current flowing through it. The ge-
ometric inductance is typically calculated from LG =
(µ0l/2π) [ln (2l/w + t) + 1/2]. Here, l, w, t are the wire
length, width, and thickness, respectively. The kinetic
inductance has the origin in the inertia of Cooper pairs.
In the dirty superconductor limit, it takes the form (Tin-
kham, 2004) LK = µ0λ

2
Ll/wt, where λL is the London

penetration depth, which for thin films can reach values
several times the bulk value. The kinetic inductance can
also be expressed as a function of the normal state resis-
tance of the wire Rn, LK = 0.14~Rn/kBTc, with Tc be-
ing the superconductor critical temperature. For a large,
unbiased Josephson junction, the inductance is given by

4 The linear coupling inductance in typical flux qubit loops a few
micrometers in size does not significantly contribute to the en-
ergy spectrum and is usually neglected.

LJ = Φ0/2πIC (Orlando and Delin, 1991), with IC be-
ing the junction critical current, and Φ0 = h/2e the flux
quantum. Irrespective of the type of coupling inductor,
the phase across it can be treated as a constant operator
with off-diagonal matrix elements which are directly cal-
culated in the qubit eigenbasis, 〈0|ϕ̂L|1〉 ' LIp(Φ0/2π).

Here, Ip ≡ 〈0|Î|1〉 is the persistent current in the qubit
loop. The interaction strength is in this case is given by
the magnetic dipolar energy, Hint = −~m · ~B, which for a
superconducting quantum circuit is re-written as

Ĥint = LIpIr.m.s.σ̂x(â+ â†), (18)

leading to the definition of the coupling strength g ≡
LIpIr.m.s./~. Here, L represents the sum of all linear
inductance contributions shared between qubit and res-
onator, including galvanic and mutual geometric induc-
tance.

An important remark needs to be made at this point
regarding flux qubits and their type of interactions to
resonators. The qubit Hamiltonian in the persistent cur-
rent basis looks ĤFQ/~ = −(∆/2)σx − (ε/2)σz, where
∆ is the tunnel coupling between the persistent cur-
rent states, and ~ε = 2Ip(Φext − Φ0/2) corresponds to
the magnetic energy proportional to the external mag-
netic flux, Φext. The effective magnetic dipole interaction
[Eq. (18)] written in the persistent current basis looks
Ĥint = ~gσz(a+ a†). In the diagonal basis of the qubits,
the interaction Hamiltonian is rotated in such a way that
both transverse ∼ σx as well as longitudinal ∼ σz inter-
actions exist

Ĥint = ~g
(
ε

ωq
σz −

∆

ωq
σx

)
(a+ a†), (19)

where ωq ≡
√

∆2 + ε2 is the qubit transition frequency.
However, as the flux qubit is normally operated in the
neighborhood of the symmetry point Φext = Φ0/2 where
ε = 0, the longitudinal contribution is normally ne-
glected.

The first two experiments demonstrating USC in su-
perconducting circuits used linear inductors as coupling
elements. In the first experiment (Niemczyk et al., 2010),
a flux qubit was coupled to a transmission line resonator
by means of the large inductance of a shared Josephson
junction operated in the linear regime [Fig. 10(a), 8(b),
8(d)-8(f)]. Figure 10(c) shows the spatial profile of the
lowest three resonator modes coupling to the qubit. The
measurement setup is shown in Fig. 10(g), where a vector
network analyzer (VNA) used to perform spectroscopy of
the system is directly connected to the input capacitor of
the resonator (shown in light blue), while the output ca-
pacitor couples to an amplifier chain before entering back
into the second port of the VNA. A signal generator is
combined with the VNA at the input line to perform
two-tone spectroscopy and extract in this way the whole
qubit spectrum. This experimental setup has become
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rather ubiquitous nowadays in circuit QED experiments.
The spectrum of the system showed clear signatures of
qubit-photon interactions in different modes of the res-
onator. The extracted qubit-resonator coupling rates to
the first three resonator modes were g0/2π = 314 MHz,
g1/2π = 636 MHz, and g2/2π = 568 MHz, respec-
tively. The maximum normalized coupling strength was
achieved by the second mode, i.e., g1/ω1 = 0.12. Devia-
tions from the JC model were clearly observed with the
appearance of avoided-level crossings corresponding to a
breakdown of the conservation of the number of excita-
tions. Due to the presence of the counter-rotating terms,
the states |e, 1, 0, 0〉 and |g, 0, 0, 1〉, which are degenerate
under the RWA, hybridize and result in visible avoided-
level crossings, as seen in Fig. 11.
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FIG. 10 (Color online) First experiment that reported break-
down of the rotating-wave approximation in a superconduct-
ing qubit circuit. (a) Optical image of the circuit; (b) scan-
ning electron micrograph (SEM) from coupling capacitor; (c)
resonator mode profiles coupling to the qubit; (d)-(f) SEM
images showing qubit circuit and qubit junctions; (g) circuit
schematic (Niemczyk et al., 2010).

In the second experiment (Forn-Dı́az et al., 2010), a
flux qubit was galvanically attached to a lumped-element
LC resonator, such that both systems were coupled by
the inductance of the shared wire [see Fig. 12(a)]. The
qubit spectrum showed a large avoided-level crossing
at the resonance point, yielding a coupling strength of
g/2π = 810 MHz for a resonator frequency of ωr/2π =
8.13 GHz. This resulted in a normalized coupling of
g/ωr = 0.1. Deviations from the RWA were identified
as a frequency shift in the resonator when the qubit
was flux-biased near its symmetry point Φ = Φ0/2
[Figs. 12(b), 12(c)]. At this bias point, the effective qubit-
resonator coupling is maximal. The frequency shift of
the resonator compared to the JC model, also known
as the Bloch-Siegert shift (Bloch and Siegert, 1940),
was attributed to the dispersive effect of the counter-
rotating terms, as explained in Sec. II. Its existence had
long been predicted (Cohen-Tannoudji et al., 1973; Za-

krzewski et al., 1991) and this experiment represented
its first observation. The maximum Bloch-Siegert shift
attained in this experiment was ωBS ≡ g2/(ωr + ωq) =
2π × 52 MHz.

The two experiments described above were performed
in the perturbative USC regime, defined when the nor-
malized coupling constant is 0.1 . g/ω . 0.3 (Rossatto
et al., 2017). The experiments achieved (Niemczyk et al.,
2010) g/ω = 0.12 and (Forn-Dı́az et al., 2010) g/ω =
0.10, respectively, satisfying the condition of perturba-
tive USC.

In later experiments, a two-resonator circuit was cou-
pled to a single flux qubit by sharing a section of the
qubit loop, several µm long (Baust et al., 2016). The
coupling strength observed was of g/ωr = 0.17, attained
using a collective mode between the two resonators.

Follow-up work on the Bloch-Siegert shift observation
experiment studied the energy-level transitions between
excited states as a function of coupling strength (Forn-
Dı́az et al., 2016). In the RWA regime, the excited states
of the JC model appear in doublets |n,±〉 for each pho-
ton number n. In circuit QED, the qubit is sometimes
driven via the resonator. With this indirect driving, a
selection rule exists under the RWA between eigenstates
of different manifolds |n,±〉 and |n ± 1,±〉. The obser-
vation of a transition between dressed states |1,−〉 and
|2,+〉 belonging to different manifolds was identified in
this work as another distinct feature of the USC regime.

In another experiment in the perturbative USC regime,
Chen et al. explored multi-photon red sidebands in an
experiment consisting of a flux qubit coupled to a trans-
mission line resonator (Chen et al., 2017). These higher-
order sidebands could only be unambiguously detected in
the USC regime, where the counter-rotating terms mod-
ify the selection rules. The largest coupling in this ex-
periment was attained between the flux qubit and the
fundamental mode of the resonator, reaching a value of
g/ω0 = 0.097.

b. Embedded qubit circuit.- Up to this point, the descrip-
tion of galvanic couplings as a perturbation of the qubit-
resonator system has been valid in the range 0 < g/ω .
0.1. Increasing the coupling strength towards the non-
perturbative regime would be analogous to considering
the phase drop of the inductive element ϕ̂L as a degree
of freedom shared between the qubit and resonator with
dynamics of its own. While in principle it should be
possible to increase the shared inductance and enter the
non-perturbative USC regime (Rossatto et al., 2017), in
practice this would result in a very large qubit geome-
try, hence susceptible to flux noise, and a decrease of the
persistent current in the qubit loop that would eventually
decrease the coupling strength.

The natural way to further enhance the interaction
strength is to share a junction of the qubit circuit with
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FIG. 11 (Color online) Observation of transitions which do not conserve the number of excitations in a flux qubit-resonator
spectrum. Plots display transmission through the circuit, with ωrf being the probe frequency. δΦx corresponds to the flux
applied to the qubit using an external coil. (a) Full circuit spectrum near second resonator mode frequency. Dashed lines fitting
the data correspond to the full Hamiltonian, the green vertical lines represent the case of no qubit-resonator coupling, while
the solid magenta line is the prediction of the Jaynes-Cummings (JC) model; (b) zoom-in near avoided qubit-resonator level
crossing; (c) avoided level crossings not included in the JC model. The presence of the counter-rotating wave terms introduce
hybridization between the indicated eigenstates that otherwise would not couple (Niemczyk et al., 2010).

the resonator [see Fig. 9(b)]. In other words, the qubit
needs to be embedded “in parallel” to the resonator. This
circuit will require full quantization in order to be prop-
erly described. In that case, the interaction term becomes
of dipole-type (Peropadre et al., 2013)

Ĥint =
∑

α=x,y,z

~gαG(â† + â)σ̂α. (20)

The coupling operators are here defined as

~gxG =

√
~ωr
2Lr
× Φ0

2π
〈0|ϕ̂|1〉, (21)

~gzG =

√
~ωr
2Lr
× 1

2

(
Φ0

2π

)
(〈1|ϕ̂|1〉 − 〈0|ϕ̂|0〉) . (22)

The prefactor
√
~ωr/2Lr corresponds to the r.m.s. of the

resonator current in its ground state, Eq. (17). The last
factors in Eqs. (21) and (22) correspond to the mag-
netic dipole moment and the net magnetic flux gener-
ated by the qubit, respectively. Near the qubit symme-
try point, where the qubit is usually operated to maxi-
mize quantum coherence, the net flux generated is null.
Therefore, we may neglect the coupling term gzG. Equa-
tion (21) includes the case of a shared linear inductor,
since in that case we can write the dipole moment as
(Φ0/2π)〈0|ϕ̂|1〉 ' LIp so that the coupling becomes
the mutual inductive energy LIpIr.m.s., as in Eq. (18).
Equation (21) can be recast as function of the resonator
impedance Z

gxG
ωr

=
1

8

√
Zvac

πZ
α−1/2〈0|ϕ̂|1〉. (23)

Notice the different scaling compared to Eqs. (13, 15). In
Eq. (23), the fine structure constant appears with a neg-
ative power, which is a consequence of coupling the flux
qubit to the fluctuations of the magnetic field generated
by the resonator (in fact, here the coupling is directly
to the current in the resonator). Comparing to Rydberg
atoms, atomic magnetic dipole couplings are typically an
order of magnitude smaller than electric dipole couplings,
and are therefore usually not considered.

Manucharyan et al. showed that for a fluxonium qubit
gxG/ωr yields an identical result (Manucharyan et al.,
2017). Using a linear inductance as coupler, the matrix
element of the phase operator is of order 〈0|ϕ̂|1〉 ≈ 10−2

(Baust et al., 2016; Chen et al., 2017; Forn-Dı́az et al.,
2010) so that Eq. (23) leads to gxG/ωr ≈ 0.1, just entering
the perturbative USC regime. Maximizing Eq. (21) may
be accomplished by sharing a qubit junction, as shown in
Fig. 9(b). In that case, 〈1|ϕ̂|0〉 ≈ 1, so gxG/ωr ' 2, which
lies well in the DSC regime. Increasing the coupling fur-
ther is possible by using low-impedance resonators.

Following the initial experiments in the perturbative
USC regime, a new wave of results was reported when two
experiments demonstrated DSC regimes both between a
flux qubit and a resonator (Yoshihara et al., 2017b) and
a transmission line in an open-space setting (Forn-Dı́az
et al., 2017). In both experiments, the qubit was embed-
ded in the resonator/transmission line circuit, with the
coupling element being a Josephson junction of the qubit
loop. Contrary to the first experiment reporting USC
(Niemczyk et al., 2010), the coupling junction was part
of the qubit internal dynamics, therefore corresponding
to an internal coupling as defined in Sec. III.A.3. The
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FIG. 12 (Color online) Observation of physics beyond the
rotating-wave approximation: the Bloch-Siegert shift. (a)
Circuit schematic and scanning electron micrograph images;
(b) spectrum near resonator frequency ωr/2π = 8.13 GHz as
function of magnetic flux in the qubit. The acquired signal
represents the magnetic flux sensed by the SQUID coupled to
the qubit; (c) resonator frequency shift with respect to the
prediction of the Jaynes-Cummings model, identified here as
the Bloch-Siegert shift. The horizontal dashed line is the pre-
diction from the Jaynes-Cummings model, the solid line is
the full Hamiltonian without approximations, and the dashed
line fitting the data is the approximated Hamiltonian in the
perturbative USC regime (Forn-Dı́az et al., 2010).

effective inductance stored in the junction enabled cou-

pling strengths all the way into the DSC regime.
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FIG. 13 (Color online) DSC regime circuitry of a supercon-
ducting flux qubit coupled to an LC resonator. (a) Circuit
schematic; (b) scanning electron micrograph of the device.
The large interdigitated finger capacitor occupies most of the
image. The probing transmission line can be seen to the right
of the image; (c) zoom-in of the qubit, with the 4-junction
SQUID coupler in the bottom arm (Yoshihara et al., 2017b).

The qubit-resonator experiment consisted of an LC
circuit galvanically coupled to a flux qubit by sharing
an array of four Josephson junctions in parallel, acting
as an effective SQUID, which allowed tuning of the in-
teraction strength (Peropadre et al., 2010); see Fig. 13.
The resonator was inductively coupled to a transmission
line to allow probing the system in transmission. In or-
der to enhance the coupling strength, a very large res-
onator capacitor was used to decrease its impedance Z =√
L/C and enhance in this way the ground-state cur-

rent fluctuations 〈I2
r.m.s.〉1/2 = ωr

√
~/2Z, as explained

in Sec. III.A.3. The spectrum of the system showed
energy-level transitions that agreed with the full QRM
(see Fig. 14). The coupling strengths reported spanned
the region 0.72 ≤ g/ωr ≤ 1.34, with coupling strength
values up to g/2π = 7.63 GHz. These remarkable re-
sults exceeded all previous reports of ultrastrong cou-
plings and entered the DSC regime g/ω > 1, where the
interaction operator starts to dominate the system spec-
trum and its dynamics (Casanova et al., 2010b). Given
the coupling strength achieved, the system ground state
should exhibit a large degree of qubit-resonator entan-
glement. These results from Yoshihara et al. represented
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FIG. 14 (Color online) DSC regime spectrum at different coupling strengths. (a)-(d) show the spectrum near the bare resonator
frequency. Signal represents transmission through resonator; (e)-(h) display the same spectra with fitted theory calculations
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range corresponding to the same coupling strengths in (a)-(d), where additional transitions are identified which confirm the
large size of the coupling strength of the system. Certain transitions vanish due to the symmetry of the system Hamiltonian.
The inset shows several transition matrix elements coinciding with resonances in the experiment (Yoshihara et al., 2017b).

the largest normalized atom-photon interaction strength
reported in any physical system to date. Within the same
work, the authors found a way to quantify the effect of the
so-called A2 term in their particular system. As alluded
to in Sec. II, a debate exists whether in circuit QED the
A2 term precludes the existence of a superradiant phase
transition in the system ground state. Based on the pa-
rameters extracted, the authors were able to demonstrate
that the A2 term in their set-up did not satisfy the con-
dition of the no-go theorem which led them to claim that
a superradiant state may exist.

In follow-up experiments, Yoshihara et al. demon-
strated insights into the energy spectrum of the QRM
to more accurately characterize the relative coupling
strength g/ωr of the system. By looking at higher-energy
level transitions, a method was developed to qualitatively

estimate the regime of coupling g/ωr in which the sys-
tem lies without the need for complex fits of the whole
spectrum (Yoshihara et al., 2017a). Using two-tone spec-
troscopy, they were able to map out the QRM spec-
trum up to six levels, finding excellent agreement with
Eq. (1) (Yoshihara et al., 2018) and demonstrating in
this way the validity of circuit QED implementations to
faithfully represent the QRM (Manucharyan et al., 2017).
The observations were consistent with remarkable Lamb
shifts of up to 90% of the bare qubit energy splitting, to-
gether with 1-photon and 2-photon Stark shifts of higher-
energy levels, which resulted in the inversion of the qubit
states as the interaction strength grows well into the DSC
regime, which they were able to demonstrate using de-
vices tunable over a wide range (Yoshihara et al., 2018).
This important work from the NICT group represents
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the first steps into the observation of novel DSC physics
in upcoming circuit QED experiments.

As discussed in Sec. II, the following natural step
would be to start exploring the dynamics of the QRM
in the nonperturbative regime, the coherence time of the
system (Nataf and Ciuti, 2011), its internal dynamics
(Casanova et al., 2010b) and possibly phase transitions
with multiple qubits involved (Jaako et al., 2016; Nataf
and Ciuti, 2010).

We turn now to galvanic couplings using charge qubits
embedded in the resonator circuit. In such a configura-
tion, the qubit couples directly to the charge operator
of the resonator. Recently (Manucharyan et al., 2017),
a circuit consisting of a charge qubit embedded in an
LC resonator circuit [Fig. 9(c)] was inspected, and the
following normalized coupling strength was obtained

gch
G

ω′r
=

Cr
Cq + Cr

〈0|Q̂|1〉
e

√
2π

Z ′r
Zvac

α1/2. (24)

Here, the resonator frequency is renormalized due to
the qubit capacitor Cq, ω

′
r = 1/

√
LrCp, with C−1

p =
C−1
r + C−1

q . The resonator impedance is also renormal-

ized as Z ′r =
√
Lr/Cp. 〈1|Q̂|0〉 is the qubit electric dipole

in units of the electron charge. For a Cooper pair box,
〈1|Q̂|0〉 ∼ 1. With sufficiently large resonator capaci-
tance, it is possible to reach the DSC regime gch

G /ω
′
r > 1

by employing very high-impedance resonators (Masluk
et al., 2012).

A different circuit configuration was analyzed by
Bourassa et al. (Bourassa et al., 2012). The circuit con-
sisted in galvanically attaching a charge qubit to a trans-
mission line resonator. For charge qubits in the transmon
regime EJ/EC � 1, the coupling to such a resonator was
calculated to be

gtr
G

ωr
=

1√
8π

(
EC

8(EJ + EL)

)1/4
√
Zvac

Z
α−1/2. (25)

In this expression, EL = (Φ0/2π)2/Lr corresponds to
the inductive energy of the resonator which dilutes the
anharmonicity of the transmon qubit and reduces the
effective maximum coupling. This inductive term was
omitted in the first analysis of this circuit (Devoret et al.,
2007). Given that the inductive energy of resonators is
usually much larger than the Josephson energy, achieving
the DSC regime gtr

G/ωr > 1 compromises the transmon
condition EJ � EC that is required to derive Eq. (25).
In addition, the presence of the qubit junction was shown
to reduce the resonator current, leading to a maximum
coupling of gtr

G/ωr ∼ 0.2 (Bourassa et al., 2012), which is
far from the DSC regime.

It is worth at this point to refer to the analysis car-
ried out by Manucharyan et al. (Manucharyan et al.,
2017). The authors considered the full quantum circuit
of both a fluxonium and a CPB qubit and compared
them to the QRM. It turns out that both flux-like and

charge-like qubits display a spectrum that resembles very
closely with that of the QRM. In particular, the two low-
est energy levels become nearly degenerate in the DSC
regime g/ωr > 1. Although a large number of bare qubit
states are involved in the qubit-resonator ground state,
the entanglement spectrum is dominated by the lowest
two eigenvalues even though the qubits are multi-level
systems. The analysis for flux-like qubits using many
of the circuit levels shows similar features to the QRM
even though the calculated low energy-level splittings dif-
fer quantitatively. By contrast, the CPB ultrastrongly
coupled to a resonator results in a much more faithful
reproduction of the energy-level spectrum of the QRM.
Manucharyan et al. interpreted the vacuum level de-
generacy as an environmental suppression of flux/charge
tunneling due to dressing of the qubit with low-/high-
impedance photons in the resonator. In flux-like qubits,
the flux tunneling suppression was understood as the
qubit circuit being shunted by the large resonator capac-
itor, which increases the effective qubit mass and sup-
presses quantum tunneling. In other words, the system
localizes itself in one of the two minima of the qubit po-
tential, suppressing in this way the qubit transition fre-
quency. The CPB ultrastrongly coupled to a resonator
has a less obvious circuit model interpretation since no
simple circuit elements represent the system at high cou-
pling values. The charge tunneling suppression was re-
lated to the manifestation of the dynamical Coulomb ef-
fect of transport in tunnel junctions connected to resis-
tive leads. In conclusion, Manucharyan et al. found the
description of the QRM by superconducting qubits to be
quite faithful, despite the presence of the multi-level spec-
trum. The CPB is the most suitable qubit despite the
fact that charge noise has so far hindered the exploration
of ultrastrong couplings, even though the USC features
may be robust against dissipation (De Liberato, 2017).

B. Semiconductor quantum wells

Semiconductor quantum wells (QWs) provide one of
the cleanest and most tunable solid-state environments
with quantum-engineered electronic and optical proper-
ties. In the context of cavity QED, microcavity-exciton-
polaritons in QWs have served as a model system for
highlighting and understanding the striking differences
between light-atom coupling and light-condensed-matter
coupling (Deng et al., 2010; Gibbs et al., 2011; Khitrova
et al., 1999; Weisbuch et al., 1992). However, the large
values of resonance frequency (typically in the near-
infrared or visible) and relatively small dipole moments
for interband transitions make it impractical to achieve
USC using exciton-polaritons (see, however, the cases
of microcavity exciton polaritons in organic semiconduc-
tors, carbon nanotubes, and two-dimensional materials
described in Sec. III.C.2).
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FIG. 15 (Color online) Semiconductor quantum well tran-
sitions. Two types of intraband transitions in semicon-
ductor quantum wells are shown that have been demon-
strated to exhibit USC: (a) intersubband polaritons and
(b) inter-Landau-level (or cyclotron) polaritons. In contrast
to interband transitions, which typically occur in the near-
infrared/visible range, these intraband transitions occur in
the midinfrared/THz range, with enormous dipole moments.
In (a), the lowest two subbands of opposite parity, with an
energy separation of ~ω12, within the conduction or valence
band are resonantly coupled with a light field (Elight) polar-
ized in the growth direction (TM-polarization), to form in-
tersubband polaritons. In (b), a magnetic field (BDC) applied
in the growth direction quantizes each subband into Landau
levels with an enery separation of ~ωc, where ωc = eBDC/m

∗

is the cyclotron frequency, e is the electronic charge, and m∗

is the effective mass; the highest occupied Landau level and
the lowest unoccupied Landau level are resonantly coupled
with a light field (Elight) polarized in the quantum well plane
(TE-polarization) to form inter-Landau-level polaritons.

Intraband transitions, such as intersubband transitions
(ISBTs) (Helm, 2000; Paiella, 2006) or inter-Landau-level
transitions (ILLTs) (colloquially known as cyclotron res-
onance, CR) (Hilton et al., 2012; Kono, 2001), are much
better candidates for realizing USC regimes in QWs.
Shown schematically in Fig. 15, they have small reso-
nance frequencies, typically in the midinfared (MIR) and
terahertz (THz) range, and enormous dipole moments
(10s of e-Å).

Theoretically, Liu was the first to propose and analyze
intersubband (ISB) polaritons in QWs (Liu, 1996, 1997).
He demonstrated that the vacuum Rabi splitting (VRS)
increases with the electron density as well as the num-
ber of QWs. Figure 16(a) shows calculated absorption
spectra, displaying ISB polaritons for QWs for different

v! j,k = !wj,k,xj,k,yj,k,zj,k"T !20"

satisfy the eigenvalues equation

Mkv! j,k = ! j,kv! j,k !21"

with ! j,k"0. The Bose commutation rule

#pj,k,pj!,k!
† $ = # j,j!#k,k! !22"

imposes the normalization condition

wj,k
* wj!,k + xj,k

* xj!,k − yj,k
* yj!,k − zj,k

* zj!,k = # j,j!. !23"

The Hopfield-like matrix for our system reads

Mk =%
!cav,k + 2Dk − i$R,k − 2Dk − i$R,k

i$R,k !12 − i$R,k 0

2Dk − i$R,k − !cav,k − 2Dk − i$R,k

− i$R,k 0 i$R,k − !12

& .

!24"

The four eigenvalues of Mk are '±!LP,k , ±!UP,k(. Under the
approximation Dk=$R,k

2 /!12 !i.e., all the oscillator strength
concentrated on the !12 transition", det Mk= !!cav,k!12"2, giv-
ing the simple relation

!LP,k!UP,k = !12!cav,k, !25"

i.e., the geometric mean of the energies of the two polariton
branches is equal to the geometric mean of the bare intersub-
band and cavity mode energies. The dependence of the exact
polariton eigenvalues as a function of $R,k /!12 is reported in
Fig. 3, for the resonant case !cav,k=!12.

A. Ordinary properties in the limit !R,k /"12™1

In the standard case $R,k /!12%1, the polariton operator
can be approximated as

pj,k ) wj,kak + xj,kbk, !26"

with *wj,k*2+ *xj,k*2)1. This means that the annihilation op-
erator for a polariton mode with in-plane wave vector k is
given by a linear superposition of the photon and intersub-
band excitation annihilation operators with the same in-plane
wave vector, whereas mixing with the creation operators
!represented by the coefficients yj,k and zj,k" is instead negli-
gible !see Fig. 4". In this limit, the geometric mean can be
approximated by the arithmetic mean and Eq. !25" can be
written in the more usual form:

!LP,k + !UP,k ) !cav,k + !12. !27"

For the specific resonant wave vector kres such that !cav,kres
=!12, the polariton eigenvalues are

!LP!UP",kres
) !12 & $R,kres

!28"

and the mixing fractions are *wLP,kres
*2)*xLP,kres

*2)1/2.

B. Ultrastrong coupling regime

When the ratio $R,k /!12 is not negligible compared to 1,
then the anomalous features due to the antiresonant terms of
the light-matter coupling becomes truly relevant.

In the resonant !cav,kres
=!12 case and under the approxi-

mation Dk=$R,k
2 /!12, the polariton frequencies are given by

!LP!UP",kres
= +!12

2 + !$R,kres
"2 & $R,kres

, !29"

which, as it is apparent in Fig. 3, corresponds to a strongly
asymmetric anticrossing as a function of $R,kres

/!12. This is

FIG. 3. Normalized polariton frequencies !LP,k /!12 and
!UP,k /!12 as a function of $R,k /!12 for Dk=$R,k

2 /!12. The calcu-
lation has been performed with !cav,k=!12. Note that for a given
microcavity system, $R,k /!12 can be tuned in situ by an electro-
static bias, which is able to change the density of the two-
dimensional electron gas.

FIG. 4. Mixing fractions for the lower polariton !LP" mode as a
function of $R,k /!12 #see Eq. !18" in the text$. The calculation has
been performed for the resonant case !cav,k=!12, as in the previous
figure. Panel !a": *wLP,k*2 !thin solid line", *xLP,k*2 !thick solid line".
Note that for $R,k /!12%1, *wLP,k*2)*xLP,k*2)1/2. Panel !b":
*yLP,k*2 !thin dashed line", *zLP,k*2 !thick dashed line". For
$R,k /!12%1, *yLP,k*2)*zLP,k*2)0. The upper polariton !UP" frac-
tions !not shown" are simply *wUP,k*2= *xLP,k*2, *xUP,k*2= *wLP,k*2,
*yUP,k*2= *zLP,k*2, *zUP,k*2= *yLP,k*2.
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If medium 3 is transparent @´3~v! is real# and the total
reflection condition is not reached for the barrier-medium 3
boundary ~q'3 is real!, it can be shown that the power trans-
mission coefficient of the MQW structure is given by34

Tp5
q'1´3
q'3´1

u t̃ pu2. ~50!

The optical absorption coefficient of the MQW structure is
then defined, from energy flux conservation, as

Ap512u r̃ pu22Tp . ~51!

In this paper, however, we are interested in the case where
light is totally reflected from the barrier-medium 3 interface
in order to enhance the electromagnetic interaction among
QW’s, and therefore Tp50.

III. NUMERICAL CALCULATIONS AND DISCUSSION

In this section we present various numerical calculations
of the optical intersubband absorption spectra of a
GaAs/Al0.33Ga0.67As MQW structure containing N identical
QW’s positioned between vacuum @´3~v!51.0# and a
GaAs/AlAs DBR followed by a GaAs prism. Experimen-
tally, the prism can be realized by cleaving the side faces of
the GaAs substrate. In our calculations the following mate-
rial parameters, which are appropriate for this structure, were
adopted. The barrier height is 256 meV, m*50.067m0 ,
´2~v!'10.0, ´1~v!'10.9, and ´4~v!'8.4.35 The static rela-
tive dielectric constant that enters the Poisson equation is
´r513.0. For each QW in the MQW structure, we assume
that only the well layer is uniformly doped. The well and
barrier widths in the MQW structure are taken to be 80 and
200 Å, respectively. The thicknesses of GaAs and AlAs lay-
ers forming the DBR are L151.289 mm and L452.342 mm.
Without special notification the sheet electron density is Ns
51.231012 cm22, \/t55.0 meV, and u555.0°. Note that,
when the angle of incidence is larger than 17.6°, the light is
totally reflected from the Al0.33Ga0.67As-vacuum interface for
our structure under consideration. In addition, we assume in
this paper that the MQW’s are always placed in the middle

of the cavity, i.e., a5b , although our theory is able to deal
with other geometries.
In Fig. 1 we show the optical-absorption spectra of the

MQW-embedded microcavity for different values of N and
for a fixed effective cavity length of L52.978 mm. In all
calculations the period number of the DBR is Nm55. It ap-
pears from Fig. 1 that, when a single QW (N51) is placed
inside the microcavity, the absorption spectrum of the struc-
ture has only one absorption peak in the frequency range
used in Fig. 1. This peak corresponds to the local-field-
shifted intersubband resonance.11,15 In this case, the coupling
between the intersubband mode and the cavity mode is in-
sufficiently strong, resulting in a noticeable splitting of the
absorption spectrum because a finite relaxation time of elec-
trons was taken into account in our calculations. At this
point, we would like to remind the reader that, if the line-
broadening effect and the conduction-band nonparabolicity
are neglected, the splitting of the intersubband mode and the
cavity mode should always exist.24 We have also checked
that, in the case where the electron relaxation time tends to

FIG. 1. Optical-absorption spectra of MQW’s inside the micro-
cavity for different QW numbers at a fixed cavity length of
L52.978 mm. The period number of the DBR is Nm55.

FIG. 2. The QW-number dependence of the Rabi splitting of the
intersubband absorption spectra of a MQW structure. In the calcu-
lation, a cavity length of L52.978 mm was used. The period num-
ber was taken to be Nm55.

FIG. 3. Optical-absorption spectra of a MQW structure having
35 QW’s for different values of the relaxation time, i.e., \/t53.0
~curve 1!, 6.0 ~curve 2!, and 9.0 meV ~curve 3!. The cavity length is
L52.978 mm, and the period number is Nm54.
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If medium 3 is transparent @´3~v! is real# and the total
reflection condition is not reached for the barrier-medium 3
boundary ~q'3 is real!, it can be shown that the power trans-
mission coefficient of the MQW structure is given by34

Tp5
q'1´3
q'3´1

u t̃ pu2. ~50!

The optical absorption coefficient of the MQW structure is
then defined, from energy flux conservation, as

Ap512u r̃ pu22Tp . ~51!

In this paper, however, we are interested in the case where
light is totally reflected from the barrier-medium 3 interface
in order to enhance the electromagnetic interaction among
QW’s, and therefore Tp50.

III. NUMERICAL CALCULATIONS AND DISCUSSION

In this section we present various numerical calculations
of the optical intersubband absorption spectra of a
GaAs/Al0.33Ga0.67As MQW structure containing N identical
QW’s positioned between vacuum @´3~v!51.0# and a
GaAs/AlAs DBR followed by a GaAs prism. Experimen-
tally, the prism can be realized by cleaving the side faces of
the GaAs substrate. In our calculations the following mate-
rial parameters, which are appropriate for this structure, were
adopted. The barrier height is 256 meV, m*50.067m0 ,
´2~v!'10.0, ´1~v!'10.9, and ´4~v!'8.4.35 The static rela-
tive dielectric constant that enters the Poisson equation is
´r513.0. For each QW in the MQW structure, we assume
that only the well layer is uniformly doped. The well and
barrier widths in the MQW structure are taken to be 80 and
200 Å, respectively. The thicknesses of GaAs and AlAs lay-
ers forming the DBR are L151.289 mm and L452.342 mm.
Without special notification the sheet electron density is Ns
51.231012 cm22, \/t55.0 meV, and u555.0°. Note that,
when the angle of incidence is larger than 17.6°, the light is
totally reflected from the Al0.33Ga0.67As-vacuum interface for
our structure under consideration. In addition, we assume in
this paper that the MQW’s are always placed in the middle

of the cavity, i.e., a5b , although our theory is able to deal
with other geometries.
In Fig. 1 we show the optical-absorption spectra of the

MQW-embedded microcavity for different values of N and
for a fixed effective cavity length of L52.978 mm. In all
calculations the period number of the DBR is Nm55. It ap-
pears from Fig. 1 that, when a single QW (N51) is placed
inside the microcavity, the absorption spectrum of the struc-
ture has only one absorption peak in the frequency range
used in Fig. 1. This peak corresponds to the local-field-
shifted intersubband resonance.11,15 In this case, the coupling
between the intersubband mode and the cavity mode is in-
sufficiently strong, resulting in a noticeable splitting of the
absorption spectrum because a finite relaxation time of elec-
trons was taken into account in our calculations. At this
point, we would like to remind the reader that, if the line-
broadening effect and the conduction-band nonparabolicity
are neglected, the splitting of the intersubband mode and the
cavity mode should always exist.24 We have also checked
that, in the case where the electron relaxation time tends to

FIG. 1. Optical-absorption spectra of MQW’s inside the micro-
cavity for different QW numbers at a fixed cavity length of
L52.978 mm. The period number of the DBR is Nm55.

FIG. 2. The QW-number dependence of the Rabi splitting of the
intersubband absorption spectra of a MQW structure. In the calcu-
lation, a cavity length of L52.978 mm was used. The period num-
ber was taken to be Nm55.

FIG. 3. Optical-absorption spectra of a MQW structure having
35 QW’s for different values of the relaxation time, i.e., \/t53.0
~curve 1!, 6.0 ~curve 2!, and 9.0 meV ~curve 3!. The cavity length is
L52.978 mm, and the period number is Nm54.
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sorption spectrum. This is illustrated in Fig. 4. In this figure
we show the absorption spectra of the MQW’s with N540
for different values of Nm . Again, a cavity length of
L52.978 mm was used in the calculations. We can clearly
see from Fig. 3 that Nm has a large influence on the magni-
tude of the absorption coefficient as well as on the contrast of
the Rabi splitting. However, it seems that the size of the
splitting is only slightly dependent of the period Nm . One
also notes from Fig. 3 that, when the number of the period is
large (Nm57), more absorption peaks appear in the spec-
trum. This result stems from the multiple reflection ~interfer-
ence effect! of the light among the multilayers inside the
DBR.32
Since the cavity resonance frequency is strongly depen-

dent of the cavity length and the angle of incidence, it is
expected that the Rabi splitting can be tuned by varying ei-
ther the cavity length or the angle of incidence in an appro-
priate range. ~To avoid the appearance of a new cavity mode
interacting with the intersubband mode, the cavity length and
the angle of incidence should not be changed too much.! In
Fig. 5 we show the optical-absorption spectra of our MQW
structure for different cavity lengths, ranging from L52.383
to 4.170 mm. In the calculations N525 and Nm53 were
employed. By a view of Fig. 5 one clearly sees that, as the
cavity length is changed, the positions of the two peaks in
the optical spectra are also varied. A summary of this change
is shown in Fig. 6. In this figure we display the peak posi-
tions of the coupled cavity-quantum-well modes ~solid lines
with points! as a function of the cavity length. For reference,
the intersubband resonance energy of the free-standing
MQW’s is also indicated in Fig. 6 by the dashed line. From
Fig. 6 one can clearly observe the characteristic anticrossing
splitting. Returning to Fig. 5, one notices that the absorption
line shape and the peak value are also strongly dependent on
the cavity length. This suggests that to characterize fully the
photon-mode–intersubband-excitation coupling, it is in gen-
eral necessary to analyze the absorption line shape in addi-
tion to the peak positions.
In Fig. 7 are shown the optical-absorption spectra of the

MQW structure as a function of the angle of incidence. In the

calculations N530, Nm53, and L52.978 mm were used. As
in Fig. 5, we see from Fig. 7 that varying the angle of inci-
dence also leads to an obvious change in the size of the
splitting and in the absorption spectrum.
Finally, let us discuss the influence of the sheet electron

concentration on the Rabi splitting of the absorption spec-
trum. To this end, we have calculated the absorption spectra
of the MQW’s for different values of Ns ranging from 0.5 to
2.531012 cm22. The other parameters employed in our cal-
culations are N530, Nm53, and L52.978 mm. Some of the
calculated absorption spectra are presented in Fig. 8. It is
interesting to notice from Fig. 8 that, with an increase in the
sheet electron density, the higher-energy peak is shifted up-
wards, whereas the lower-energy peak almost does not move.
This result should be expected, since the local-field-shifted
intersubband resonance energy of the free-standing QW’s is
shifted upward with increasing Ns ,11 whereas the cavity
resonance energy does not change. As a consequence, only
the higher-energy peak is noticeably shifted. In turn, the size
of the Rabi splitting increases with increasing the electron
density. This electron concentration dependence of the peak
separation is shown in Fig. 9. Also, one can see from Fig. 8
that the contrast of the splitting is strongly dependent of
Ns . The larger the sheet electron density is, the better the
contrast is. This indicates that a heavily doped MQW struc-
ture is more favorable to observe a large Rabi splitting.

IV. CONCLUSION

Using a combined transfer-matrix and Green’s-function
formalism in which nonlocal effects in the optical intersub-
band response of the MQW system and the conduction band
nonparabolicity effect are taken into account, we have de-
rived a rigorous expression for the intersubband optical ab-
sorption coefficient of a MQW structure inside an asymmet-
ric Fabry-Pérot microcavity that is formed from a DBR and a
light-total-reflection dielectric interface. As a numerical ex-
ample, we calculated the optical-absorption spectra of a
GaAs/Al0.33Ga0.67As MQW structure positioned between
vacuum and a GaAs/AlAs DBR. To enhance the intersub-
band interactions of our MQW system, we considered the

FIG. 8. Optical-absorption spectra of a MQW structure having
30 QW’s for different values of the sheet electron concentration ~in
units of 1012 cm22!, i.e., Ns50.5 ~curve 1!, 1.0 ~curve 2!, 1.5 ~curve
3!, and 2.0 ~curve 4!. The period number of the DBR is Nm53, and
the cavity length is L52.978 mm.

FIG. 9. The size of the Rabi splitting as a function of the sheet
electron density. The QW number is N530, the period number of
the DBR is Nm53, and the cavity length is L52.978 mm.
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sorption spectrum. This is illustrated in Fig. 4. In this figure
we show the absorption spectra of the MQW’s with N540
for different values of Nm . Again, a cavity length of
L52.978 mm was used in the calculations. We can clearly
see from Fig. 3 that Nm has a large influence on the magni-
tude of the absorption coefficient as well as on the contrast of
the Rabi splitting. However, it seems that the size of the
splitting is only slightly dependent of the period Nm . One
also notes from Fig. 3 that, when the number of the period is
large (Nm57), more absorption peaks appear in the spec-
trum. This result stems from the multiple reflection ~interfer-
ence effect! of the light among the multilayers inside the
DBR.32
Since the cavity resonance frequency is strongly depen-

dent of the cavity length and the angle of incidence, it is
expected that the Rabi splitting can be tuned by varying ei-
ther the cavity length or the angle of incidence in an appro-
priate range. ~To avoid the appearance of a new cavity mode
interacting with the intersubband mode, the cavity length and
the angle of incidence should not be changed too much.! In
Fig. 5 we show the optical-absorption spectra of our MQW
structure for different cavity lengths, ranging from L52.383
to 4.170 mm. In the calculations N525 and Nm53 were
employed. By a view of Fig. 5 one clearly sees that, as the
cavity length is changed, the positions of the two peaks in
the optical spectra are also varied. A summary of this change
is shown in Fig. 6. In this figure we display the peak posi-
tions of the coupled cavity-quantum-well modes ~solid lines
with points! as a function of the cavity length. For reference,
the intersubband resonance energy of the free-standing
MQW’s is also indicated in Fig. 6 by the dashed line. From
Fig. 6 one can clearly observe the characteristic anticrossing
splitting. Returning to Fig. 5, one notices that the absorption
line shape and the peak value are also strongly dependent on
the cavity length. This suggests that to characterize fully the
photon-mode–intersubband-excitation coupling, it is in gen-
eral necessary to analyze the absorption line shape in addi-
tion to the peak positions.
In Fig. 7 are shown the optical-absorption spectra of the

MQW structure as a function of the angle of incidence. In the

calculations N530, Nm53, and L52.978 mm were used. As
in Fig. 5, we see from Fig. 7 that varying the angle of inci-
dence also leads to an obvious change in the size of the
splitting and in the absorption spectrum.
Finally, let us discuss the influence of the sheet electron

concentration on the Rabi splitting of the absorption spec-
trum. To this end, we have calculated the absorption spectra
of the MQW’s for different values of Ns ranging from 0.5 to
2.531012 cm22. The other parameters employed in our cal-
culations are N530, Nm53, and L52.978 mm. Some of the
calculated absorption spectra are presented in Fig. 8. It is
interesting to notice from Fig. 8 that, with an increase in the
sheet electron density, the higher-energy peak is shifted up-
wards, whereas the lower-energy peak almost does not move.
This result should be expected, since the local-field-shifted
intersubband resonance energy of the free-standing QW’s is
shifted upward with increasing Ns ,11 whereas the cavity
resonance energy does not change. As a consequence, only
the higher-energy peak is noticeably shifted. In turn, the size
of the Rabi splitting increases with increasing the electron
density. This electron concentration dependence of the peak
separation is shown in Fig. 9. Also, one can see from Fig. 8
that the contrast of the splitting is strongly dependent of
Ns . The larger the sheet electron density is, the better the
contrast is. This indicates that a heavily doped MQW struc-
ture is more favorable to observe a large Rabi splitting.

IV. CONCLUSION

Using a combined transfer-matrix and Green’s-function
formalism in which nonlocal effects in the optical intersub-
band response of the MQW system and the conduction band
nonparabolicity effect are taken into account, we have de-
rived a rigorous expression for the intersubband optical ab-
sorption coefficient of a MQW structure inside an asymmet-
ric Fabry-Pérot microcavity that is formed from a DBR and a
light-total-reflection dielectric interface. As a numerical ex-
ample, we calculated the optical-absorption spectra of a
GaAs/Al0.33Ga0.67As MQW structure positioned between
vacuum and a GaAs/AlAs DBR. To enhance the intersub-
band interactions of our MQW system, we considered the

FIG. 8. Optical-absorption spectra of a MQW structure having
30 QW’s for different values of the sheet electron concentration ~in
units of 1012 cm22!, i.e., Ns50.5 ~curve 1!, 1.0 ~curve 2!, 1.5 ~curve
3!, and 2.0 ~curve 4!. The period number of the DBR is Nm53, and
the cavity length is L52.978 mm.

FIG. 9. The size of the Rabi splitting as a function of the sheet
electron density. The QW number is N530, the period number of
the DBR is Nm53, and the cavity length is L52.978 mm.
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FIG. 16 Theoretically predicted intersubband polaritons.
(a) Absorption spectra showing intersubband polaritons for
different numbers of QWs (1 to 50); (b) QW-number depen-
dence of the vacuum Rabi splitting; (c) absorption spectra for
intersubband polaritons for different electron densities: 0.5 ×
1012 cm2 (curve 1), 1.0 × 1012 cm2 (curve 2), 1.5 × 1012 cm2

(curve 3), and 2.0 × 1012 cm2 (curve 4); (d) electron density
dependence of the vacuum Rabi splitting; (e) calculated up-
per polariton (UP) and lower polariton (LP) frequencies as
a function of coupling strength, where ω12 is the transition
frequency. (a)–(d): Adapted from reference (Liu, 1997); (e)
adapted from reference (Ciuti et al., 2005).

numbers of QWs, while in Fig. 16(b) the QW-number
dependence of the vacuum Rabi splitting is calculated;
Figure 16(c) shows absorption spectra for different elec-
tron densities, while in Fig. 16(d) the electron density de-
pendence of the vacuum Rabi splitting is displayed (Liu,
1996, 1997). Unique electrically driven MIR emission de-
vices based on quantum cascade structures incorporat-
ing ISB polaritons have also been proposed (Colombelli
et al., 2005). In particular, it was predicted that in InP-
based multiple-QW structures a polariton splitting 2~g of
40 meV can be obtained for an ISBT at ~ω12 ≈ 130 meV,
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resonant with a cavity frequency ω, i.e., g/ω ≈ 0.15.
Ciuti et al. used a Bogoliubov transformation to diag-
onalize the full Hamiltonian and obtained the energies
of the upper polariton (UP) and lower polariton (LP)
branches (Ciuti et al., 2005). Figure 16(e) shows the cal-
culated UP and LP energies as a function of normalized
coupling strength, where ω12 is the ISBT frequency, for
zero detuning ω = ω12, demonstrating that USC is pos-
sible. Similarly, for inter-Landau-level (ILL) polaritons,
Hagenmüller et al. derived and diagonalized an effective
Hamiltonian describing the resonant excitation of a two-
dimensional electron gas (2DEG) by cavity photons in
the integer quantum Hall regime (Hagenmüller et al.,
2010). The dimensionless vacuum Rabi frequency in a
2DEG resonant with a cavity of frequency ω, g/ωc, was
shown to scale as

√
αNQWν. Here, ωc = eBDC/m

∗ is
the cyclotron frequency, BDC is the DC magnetic field
applied perpendicular to the 2DEG, e is the electronic
charge, m∗ is the effective mass, α is the fine struc-
ture constant, NQW is the number of QWs, and ν is the
Landau-level filling factor in each well. It was shown that
g/ωc > 1 could be achieved when ν � 1 with realistic
parameters of a high-mobility 2DEG.

Furthermore, as mentioned in Sec. II, Ciuti et al. pro-
vided much physical insight into the ground-state prop-
erties of ISB polaritons (Ciuti et al., 2005). They found
that the ground state consists of a two-mode squeezed
vacuum.

Various experimental schemes have been proposed
to experimentally probe these special properties of the
ground state of ISB polaritons in the USC regime. Ciuti
et al. specifically considered a system in which a cavity
photon mode was strongly coupled to an ISBT. They
showed that the system could be brought into the USC
regime, where correlated photon pairs can be gener-
ated, by tuning the quantum properties of the ground
state (Ciuti et al., 2005). The tuning could be achieved
by changing the Rabi frequency via an electrostatic gate.

Similarly, De Liberato et al. proposed to modulate the
vacuum Rabi frequency in time and calculated the spec-
tra expected for the emitted radiation (DeLiberato et al.,
2007). More recently, Stassi et al. described a three-level
system (|0〉, |1〉, |2〉) in which a spontaneous |1〉 → |0〉
transition was accompanied by the creation of real cav-
ity photons out of virtual photons resonant with the
|1〉 → |2〉 transition (Stassi et al., 2013). Finally, Ha-
genmüller has recently proposed an all-optical scheme for
observing the dynamical Casimir effect in a THz photonic
band gap using ILL polaritons (Hagenmüller, 2016).

These theoretical studies have stimulated much inter-
est in experimentally probing ultrastrong light-matter
coupling phenomena in semiconductor QWs.

The design and nature of photonic cavities used in the
context of semiconductor USC physics depend on, with
respect to the QW plane, whether the in-plane or out-
of-plane electric field component needs to be enhanced

to couple with the electronic excitations. ISBTs/ILLTs
couple with the out-of-plane/in-plane cavity electric field
component. Examples of typical cavities and their work-
ing principles are described below.

Intersubband polariton cavities:

i) A planar waveguide microcavity [Fig. 17(a)] con-
sists of, from bottom to top, an undoped GaAs
layer, an AlAs+n-doped GaAs cladding layer, a
QW layer, and a metal layer. Light is obliquely
incident onto the side of the waveguide, and is con-
fined through multiple reflections between the top
metal layer and the AlAs cladding layer. The pho-
tonic resonance leads to enhancement of the out-
of-plane electric field component around the metal
layer [Ez plotted with blue lines in Fig. 17(a)]. The
metal layer also serves as an electrical gate to tune
the electron density in the QW.

ii) A metal-dielectric-metal microcavity is shown in
the left panel in Fig. 17(b). It contains a QW
sandwiched between a planar metallic mirror and
a metallic rectangular strip grating. The grat-
ing defines a lateral photonic confinement while at
the same time ensures efficient coupling of incident
light into the double-metal regions. Both obliquely
incident (θ 6= 0) and normal incident (θ = 0) light
are able to excite the ISBT in the QW due to en-
hancement of Ez [right panel of Fig. 17(b)] in the
cavities.

iii) An inductor-capacitor resonator substitutes the top
metallic strip gating in a metal-dielectric-metal
cavity with a microstructure where a wire with fi-
nite inductance connects two circular capacitor el-
ements. The electric and magnetic field distribu-
tions at resonance are plotted in Fig. 17(c).

iv) A surface plasmon photonic crystal replaces the
bottom planar metallic mirror of a metal-dielectric-
metal cavity with a cladding semiconductor layer
[left panel of Fig. 17(d)]. The device can be consid-
ered as a 1D metallic photonic crystal, which folds
the modes guided by the cladding layer and the
QW into the first Brillouine zone. The full disper-
sion can be mapped out by recording light trans-
mittance at various incident angles [right panel of
Fig. 17(d)].

Landau polariton cavities:

i) Depending on the applied magnetic field strength
and electron effective mass, ILLTs of typical semi-
conductor QWs occur in the microwave or terahertz
frequency range. Resonators that are standard in
the microwave technology, like coplanar microres-
onators [Fig. 17(e)], and metallic patch resonators
[Fig. 17(f)] can be easily integrated with QWs to
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study the microwave dynamics of Landau polari-
tons.

ii) Metamaterial cavities are an array of metallic res-
onance microstructures, typically split-ring res-
onators (SRRs), that are patterned and evaporated
on top of the semiconductor capping layer of the
QW [left panel of Fig. 17(g)]. The resonance fre-
quencies and quality factors can be adjusted by
properly designing the structure within a unit cell.
In-plane electric fields [right panel of Fig. 17(g)] are
enhanced around the gaps of the SRRs.

iii) A photonic crystal cavity [left panel of Fig. 17(h)]
consists of a QW that is sandwiched by silicon
Bragg mirrors; each Bragg mirror consists of several
silicon wafers aligned parallel and at controllable
distances from each other. The in-plane electric
field at cavity resonance reaches maximum at the
position of the QW to ensure maximum coupling
strength.

1. Intersubband transitions

Experimentally, the first observation of polariton split-
ting of an ISBT was reported by Dini et al. in 2003 (Dini
et al., 2003). The dispersion of the ISB polaritons in
GaAs QWs was measured through angle-dependent re-
flectance measurements using a prism-like geometry, as
shown in Fig. 17(a). Figure 18 shows measured re-
flectance spectra at 10 K for TM-polarized waves for dif-
ferent incidence angles. Two dips are clearly displayed,
exhibiting anticrossing behavior with a splitting (2~g) of
14 meV as a function of incident angle. With an ISBT
resonance energy of ~ω12 = 142 meV, g/ω12 ∼ 0.05 at
zero detuning ω = ω12 was achieved even in this early
work. As a comparison, in the top-right inset of Fig. 18,
a TE reflectance spectrum is shown; only a single dip cor-
responding to the cavity mode is observed, as the ISBT
is dipole-forbidden for this polarization. In the top-left
inset, the energies of the UP and LP dips are plotted as a
function of incidence angle, highlighting the anticrossing
behavior.

This initial ISB polariton work (Dini et al., 2003) was
immediately followed by similar observations by Dupont
et al. (Dupont et al., 2003), who measured a bound-to-
quasibound transition in a QW-IR-photodetector struc-
ture through both reflection and photocurrent spec-
troscopy. Rabi splittings were demonstrated with g/ω12

values similar to those reported by Dini et al. Further-
more, by increasing the doping density, Dupont et al.
(Dupont et al., 2007) were able to observe a square-
root dependence of the VRS on the total electron den-
sity (NQWne). Here, NQW corresponds to the number of
QWs and ne is the density per well, i.e., 2g ∝

√
NQWne,

indicating that electrons in QWs interact cooperatively
as a single giant atom with cavity photons (Agarwal,
1984; Amsüss et al., 2011; Dicke, 1954; Kaluzny et al.,
1983; Tabuchi et al., 2014; Zhang et al., 2014b). A cou-
pling of g/ω12 = 0.17 at zero detuning ω = ω12 was
achieved at the highest electron density (Dupont et al.,
2007).

During the past decade, progressively higher values of
g/ω have been reported, as seen in Table II, due to the
diverse approaches used by different experimental groups.

In a simple approximation, for a parabolic band of
mass m∗, the g/ω12 ratio can be written as

g

ω12
∝ 1√

m∗ω12
. (26)

Therefore, one can immediately see that a lighter-mass
material can generally provide larger g/ω12 ratios for a
given ω12. Anappara et al. used QWs composed of InAs
(which has a bulk band-edge electron mass of 0.023m0,
as compared to 0.069m0 for electrons in GaAs) to achieve
g/ω12 = 0.14 at zero detuning ω = ω12 (Anappara
et al., 2007). Another guideline for increasing the g/ω12

ratio, hinted at by Eq. (26), is to increase the QW
width, which naturally decreases ω12. Todorov et al.
used 32-nm-wide GaAs QWs embedded inside a sub-
wavelength metal-dielectric-metal microcavity (Todorov
et al., 2010b) to demonstrate USC (g/ω = 0.11) in the
THz regime (Todorov et al., 2009). By further reduc-
ing the cavity volume with respect to the wavelength of
the mode, Vcav/λ

3
res, to 10−4, Todorov et al. achieved

g/ω = 0.24 (Todorov et al., 2010a).

As one increases the electron density and QW width,
more subbands are occupied, which, within a single-
particle picture, leads to multiple ISBT peaks due to
band nonparabolicity. However, Delteil et al. showed
that due to many-body interactions a single peak appears
(Delteil et al., 2012). Namely, cooperative Coulombic
coupling of dipolar oscillators with different frequencies
can induce mutual phase locking, lumping together all in-
dividual ISBTs into a single collective bright excitation
(multisubband plasmon resonance). Furthermore, Aske-
nazi et al. presented a model to describe the crossover
from the ISB plasmon to the multisubband plasmon and
then eventually to the so-called Berreman mode in the
classical limit as the QW width was increased (Askenazi
et al., 2014). In the Berreman mode limit, a record high
g/ω value of 0.37 was experimentally achieved. For a
recent review, see (Vasanelli et al., 2016).

One of the attractive features of ISB polaritons is their
controllability via external fields, which can lead to prac-
tical devices. Since the vacuum Rabi splitting 2g in a
collective system is proportional to

√
ne, controlling the

electron density ne in the QW controls 2g. An elec-
tric field applied perpendicular to the QW changes the
ground state ne through gating (Anappara et al., 2005),
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FIG. 17 (Color online) Assorted cavities used in semiconductor-based light-matter ultrastrong coupling experiments. (a) A pla-
nar waveguide cavity (Sapienza et al., 2008). (b) A metal-dielectric-metal cavity (Laurent et al., 2017). (c) An inductor-capacitor
resonator (Geiser et al., 2012). (d) A surface plasmon photonic crystal (Porer et al., 2012). (e) A coplanar microresonator
(Muravev et al., 2011). (f) A metallic patch resonator (Muravev et al., 2013). (g) A metamaterial cavity (Maissen et al., 2014).
(h) A photonic crystal cavity (Zhang et al., 2016a).
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Reference Transition Cavity dQW NQW ~γ ~κ ~g ~ω g/ω U Notes

type type (nm) (meV) (meV) (meV) (meV) (%)

(Dini et al., 2003) ISBT PWM 7.2 18 5 15 7 142 5 0.62

(Dupont et al., 2003) ISBT PWM 6.0 140 2.2 11 6 115 5 0.54 bound-to-quasibound

(Anappara et al., 2005) ISBT PWM 7.5 10 - - 7 135 5 - electrical control

(Anappara et al., 2006) ISBT PWM 7.2+14 9 - - 10.5 150 7 - coupled double QWs

(Anappara et al., 2007) ISBT PWM 13.7 10 - - 16.5 123 14 - InAs/AlSb QWs

(Dupont et al., 2007) ISBT PWM 7.5 160 6.9 12 21 123 17 1.9

(Sapienza et al., 2007) ISBT PWM QC 30 ∼10 - 8 163 5 - QC photovoltaic

(Sapienza et al., 2008) ISBT PWM QC 30 8 15 11 150 7 0.54 QC LED

(Todorov et al., 2009) ISBT MDM 32 15 2 3 1.6 14.4 11 0.44 first THz ISB polariton

(Anappara et al., 2009) ISBT PWM 6.5 70 12 ∼15 16.5 152 11 ∼0.82

(Günter et al., 2009) ISBT PWM 9 50 - - 10 113 9 - ultrafast buildup

(Geiser et al., 2010) ISBT ICR 95 8 3.3 0.8 1.9 13 14 0.88 parabolic QWs

(Todorov et al., 2010a) ISBT MDM 32 25 - - 2.8 12 24 - 0D polaritons

(Zanotto et al., 2010) ISBT SPPC 8.3 50 5 5 5.5 119 5 0.47

(Jouy et al., 2011) ISBT MDM 9 10 - - 11 107 10 -

(Geiser et al., 2012) ISBT ICR 72 8 - - 4.7 18 27 - parabolic QWs

(Porer et al., 2012) ISBT SPPC 8.3 50 - - 6.8 113 6 - ultrafast buildup

(Zanotto et al., 2012) ISBT SPPC 8.3 50 5.36 - 5.5 125 4 - ultrafast bleaching

(Delteil et al., 2012) ISBT MDM 18.5 5 - - 57 166 17 - multisubband plasmon

(Dietze et al., 2013) ISBT MMC 32 25 - 2.5 1.4 13 11 -

(Askenazi et al., 2014) ISBT MMC 148 1 7.5 - 43 118 37 - the Berreman mode

(Askenazi et al., 2017) ISBT MDM 148 18 - - 45 100 45 - thermal emission

(Laurent et al., 2017) ISBT MDM 5 18 77 17 53 403 13.1 1.06

(Muravev et al., 2011) ILLT CMR 30 1 0.02 0.02 0.025 0.058 46 1.64

(Scalari et al., 2012) ILLT MMC - 4 >0.5 >0.5 1.2 2.1 58 <3.66

(Muravev et al., 2013) ILLT MPR 20 1 - 0.002 0.01 0.05 25 -

(Maissen et al., 2014) ILLT MMC 20 4 ∼0.8 ∼0.2 1.11 1.28 87 ∼5.16 InAs/AlSb QWs

(Zhang et al., 2016a) ILLT PCC 30 1 <0.04 <0.04 0.18 1.5 12 >3.2 C = 4g2/(κγ) > 300

(Maissen et al., 2017) ILLT MMC - 1 >0.5 >0.5 0.46 1.98 23 <0.88

(Keller et al., 2017a) ILLT MMC 20 1 - - 0.49 0.86 57 - strained Ge QWs

(Bayer et al., 2017) ILLT MMC 25 6 - - 2.85 1.99 143 - g/ω > 1

(Li et al., 2018b) ILLT PCC 30 10 0.024 0.019 0.62 1.7 36 35.8 C = 4g2/(κγ) = 3513

(Paravicini-Bagliani et al., 2018) ILLT MMC 20 1 - ∼0.1 0.17 0.58 30 - magnetotransport

TABLE II Experimental observations of ultrastrong light-matter coupling in semiconductor quantum wells. dQW = QW width.
NQW = number of QWs or periods. ~γ = matter decay rate. ~κ = photon decay rate; cavity Q = ω/κ. ~g = coupling strength.
ω = ω12 for ISBT, and ω = ωc for ILLT. ISBT = intersubband transition. ILLT = inter-Landau-level transition (i.e., cyclotron
resonance). PWM = planar waveguide microcavity. MDM = metal-dielectric-metal microcavity. ICR = inductor-capacitor
(LC) resonator. SPPC = surface plasmon photonic crystal. CMR = coplaner microresonator. MMC = metamaterial cavity.
MPR = metallic patch resonator. PCC = photonic-crystal cavity. FPC = Fabry-Pérot cavity. QC = quantum cascade.
U ≡

√
(4g2/κγ)(g/ω) = geometric mean between cooperativity and normalized coupling.

or more quickly through resonant charge transfer via tun-
neling (Anappara et al., 2006). Figure 19(a) shows re-
flectance spectra for GaAs asymmetrically coupled QWs
at a fixed incidence angle at various bias voltages. At
zero bias voltage, all electrons are in the wider well, and
the spectrum shows a single peak due to the ISBT in the
wider well. As the bias voltage is increased, electrons
are increasingly transferred into the ground subband of

the narrower quantum well, resulting in the appearance
of ISB polaritons. As the bias is further increased, ne

increases in the narrow well and thus the vacuum Rabi
splitting increases (Anappara et al., 2006).

Ultrafast optical excitation can also be used to con-
trol ultrastrong light-matter coupling in ISB polaritons
– an ultrashort laser pulse can either enhance it (Günter
et al., 2009; Porer et al., 2012) or destroy it (Zanotto
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et al., 2012). For example, ultrafast buildup of ul-
trastrong light-matter coupling was demonstrated using
interband-pump/ISBT-probe measurements in undoped
QWs (Günter et al., 2009), as shown in Figures 19(b)-
(d). A multiple-QW sample was embedded into a pla-
nar waveguide structure based on total internal reflec-
tion. The band diagram shows how the |1〉 → |2〉 ISBT
is activated by a near-infrared control pulse, populating
level |1〉. Few-cycle TM-polarized multi-THz transients
guided through the prism-shaped substrate are reflected
from the waveguide to probe the ultrafast buildup of
light-matter coupling, as shown in Fig. 19(c). The blue
arrow shows the bare cavity resonance, whereas the red
arrows show the ISB LP and UP. Figure 19(d) plots THz
reflectance spectra measured for various fluences of the
control pulse at a fixed time delay. As the fluence in-
creases, ne increases, which in turn increases the VRS.

In order to obtain a more quantitative description of the
experimental data, we have performed a calculation of the
structure reflectance using the transfer-matrix formalism
[17]. In this approach every layer in the sample is char-
acterized by a 2! 2 matrix, which, through dielectric
constant and thickness, fully accounts for the propagation
of the electromagnetic wave across that layer. The optical
response of the complete structure is then simply ob-
tained by multiplying together the matrices correspond-
ing to all the individual layers. The contribution of the
intersubband transition within the 2DEGs has been con-
sidered by including in the dielectric permittivity " of the
quantum well layers an additional term in the form of a
collection of classical polarized Lorentz oscillators:

""!# $ "1 % Nse2f sin2!
m0"0Leff

1

"!2
0 &!2# & i"!

; (1)

in which "1 is the quantum well high-frequency dielec-
tric constant, Ns is the electronic sheet density, e the
electronic charge, f the oscillator strength of the inter-
subband transition, !h!0 its energy, m0 the electronic
mass, "0 the vacuum permittivity, and Leff an effective
QW thickness related to the confinement of the electronic
wave functions [12]. The damping " is a phenomenologi-
cal factor nominally equivalent to the transition FWHM.
The oscillator strength is related to the dipole matrix
element d between the envelope functions of the two
subbands: f $ "2m0= !h#!0d2. In our case a value d $
1:9 nm is computed using the proper orthonormalization
procedure outlined in [18]. This form of the susceptibility
obviously neglects the nonlocality of the 2DEG response;
the latter would in general alter the line shape of the
resonance and can introduce small corrections to its en-
ergy and strength. These are however minor effects,
clearly not identifiable with the present experimental
uncertainties.

In Fig. 3 we report the TM reflectance curves calcu-
lated in this way for various incidence angles. As one can
see, this simple linear-dispersion model reproduces re-
markably well the measured data and correctly describes
the anticrossing behavior and polariton splitting. This
should not be surprising in view of the known equivalence
of the semiclassical and quantum description of coupled
harmonic oscillators. Some discrepancy arises from the
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FIG. 3. TM reflectance of the sample as obtained at different
incidence angles using the simulation procedure described in
the text. The spectra are offset from each other for clarity. In
the inset we report a comparison between the experimental and
calculated spectrum at the resonance angle of 60:05'.
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FIG. 2. Reflectance of the microcavity sample for different
angles of incidence in TM polarization. The spectra were
collected at 10 K, with a resolution of 2 cm&1. The angle values
refer to ! at the substrate-cavity interface; dashed lines are just
a guide to the eye. The spectra are offset from each other for
clarity. The rapid oscillations in the high energy portion are due
to residual water vapor absorption in the purged FTIR system.
In the left inset the experimental points corresponding to the
energy position of the dips are reported. The solid lines are
fitted with a standard dipole oscillator dispersion. The right
inset contains a spectrum recorded under TE polarization; only
the dip of the cavity mode appears.
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FIG. 18 First experimental observation of intersubband po-
laritons. Reflectance spectra are shown for a GaAs quantum
well sample at 10 K for different angles of incidence for TM-
polarized light. The spectra are offset from each other for
clarity. Top-left inset: the dip position versus angle shows
a level anticrossing. Top-right inset: a spectrum recorded
for TE-polarized light, showing only a dip due to the cavity
mode (Dini et al., 2003).

culated by solving self-consistently the Schrödinger-Poisson
equations. The band profile and moduli squared of the wave
functions at different bias voltages are reported in Fig. 1. At
zero bias the intersubband transitions of the narrow and wide
quantum wells are at about 9 and 21 !m wavelengths, re-
spectively. The Fermi energy at 4 K was calculated to be
18 meV. At an electric field of about 51 kV/cm, the ground
subbands of the quantum wells are brought into resonance.
The barrier thickness between the wells was chosen to have
an energy splitting of the tunnel-coupled states of about
3 meV, small compared to the polariton linewidths.

The angle-resolved reflectance curves in transverse-
magnetic !TM" polarization at zero bias voltage are reported
in Fig. 2. By changing the angle of incidence, the cavity
mode is tuned over a wide range of energies. The curves are
offset for clarity. By depopulating the quantum well that is
electromagnetically coupled to the cavity mode, the reflec-
tance spectra exhibit a single peak, as expected.

The angle-resolved TM reflectance measurements at
4 K, with a bias voltage of 7 V !#100 kV/cm", are plotted
in Fig. 3. The cavity mode is tuned across the intersubband
transition energy by varying the angle of incidence. The two
dips corresponding to the coupled-cavity-intersubband
modes can be clearly identified. By increasing the angle, the
position of the dips is shifted with a typical anticrossing
behavior, manifesting the polariton dispersion. The vacuum
Rabi splitting is found to be 21 meV at the internal reso-
nance angle of 67.87°. The energy positions of the dips are
plotted in the inset as a function of internal angle to better
evidence the polariton anticrossing behavior.

Figure 4 depicts the low-temperature reflectance spectra
of the same sample at the resonance angle of 67.87° as a

function of bias voltage. At zero bias all the electrons are
localized in the reservoir well and the spectrum is single
peaked. As the bias voltage is raised, electrons are increas-
ingly transferred into the ground state of the narrow quantum
well, resulting in the formation of intersubband cavity polari-
tons. Since the vacuum Rabi splitting is proportional to the
square root of the electron density, the increase in bias volt-
age increases the splitting, corresponding to the transfer of
more and more electrons. The plot in the inset contains the
intersubband absorption measured using a 45° waveguide at
different bias voltages; in fact no cavity exists at this low
angle, which is lower than the critical angle for total internal
reflection. The intersubband absorption in the narrow well is
nearly zero at zero bias and increases by increasing the
!negative" bias, as expected.

Our results demonstrate the control of polariton coupling
via the tunneling between the ground states of asymmetric
coupled quantum wells. This study represents the realization
of a first building block towards the ultrafast modulation of
intersubband polariton coupling, which should allow the re-
lease of virtual correlated photon pairs from the polariton
vacuum.
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extremely non-equilibrium semiconductor systems24–26. Eigenmodes
of the cavity cause characteristic minima in the Fourier spectra of the
reflected transients. All experiments are performed under ambient
conditions.

Figure 2a shows that the magnitude of the light–matter coupling is
continuously tunable by means of the control fluence, W. The spectra
are recorded at a fixed delay, tD 5 20 ps, between the near-infrared
control and the multi-terahertz probe pulse. In equilibrium (W 5 0),
a single reflectance minimum at Bvc 5 113 meV (top curve, Fig. 2a)
attests to the sole resonance of the unexcited cavity, the bare photon
mode. With increasing fluence, the system traverses all three regimes
of light–matter interaction. Starting with weak coupling
(W # 0.03W0), VR already exceeds the widths (full-width at half-
maximum, ,5 meV) of intersubband and cavity resonances for
W . 0.05W0, and two strongly coupled cavity polariton branches
are discernible. Further increase of the fluence enhances the separa-
tion of the minima to 50 meV, corresponding to a fraction of 44% of
the bare photon frequency (Fig. 2b). As discussed in ref. 13, the
apparent mode separation is not identical to the vacuum Rabi split-
ting at the anticrossing point. Only a quantitative simulation of the

energy position of the polariton dips (Fig. 2b) allows for extraction of
VR. For a correct description of our data, the theory has to go beyond
the rotating-wave approximation14,15. We include anti-resonant
terms in the light–matter Hamiltonian that scale with the ratio
2VR/v12. These contributions describe the simultaneous creation
or annihilation of two excitations with opposite in-plane wavevectors
k and give rise to a two-mode squeezed quantum vacuum14,15. By
comparison with this theory, we determine that 2VR 5 0.18v12 for
our experiment. This value is comparable to the record achieved in
delta-doped structures13 and large enough for the signatures of ultra-
strong coupling to be observable14. The scheme is expected to be
scalable further by means of higher control fluences and a larger
number of quantum wells.

The central issue is to explore how rapidly ultrastrong coupling may
be activated. Figure 3 displays amplitude spectra recorded at various
delay times, tD (W 5 W0). For tD # 250 fs, the cavity resonance (blue
arrow, Fig. 3) shows a minimum amplitude reflectivity below 10%.
The control pulse induces dramatic reflectivity changes of order one,
on the femtosecond scale. The initial bare photon state is replaced by
two coupled polariton branches appearing simultaneously at energy
positions of 93 meV and 143 meV (red arrows, Fig. 3). Most notably,
the new resonances do not develop by gradual bifurcation of the bare
cavity mode as in Fig. 2a. By contrast, switching occurs discontin-
uously once the control pulse promotes electrons into subband j1æ.

Immediately following the femtosecond control, the photoexcited
charge carriers are in a highly non-equilibrium state which may
induce enhanced dephasing of the intersubband transition. A detailed
microscopic description of the switching dynamics should thus
account for both the quantum kinetic aspects as well as the dynamics
of the ultrastrong cavity–intersubband coupling. Notably, for the large
coupling strengths achieved in our experiment, we find that dephasing
arising from the non-equilibrium nature of the carrier distributions
appears to be less important than the dynamics of the cavity polariton
splitting. The instantaneous activation of light–matter interaction is
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Figure 1 | Femtosecond control of ultrastrong light–matter coupling. a, A
bare microcavity has minimal reflectance, R(v), at the photon resonance,
vc. b, After introduction of a resonant material excitation, cavity photons
(blue) are coherently absorbed and re-emitted at rate VR, giving rise to
anticrossing cavity polaritons. c, A multiple quantum well structure (MQW)
comprising 50 undoped GaAs wells (thickness, 9 nm) separated by
Al0.33Ga0.67As barriers (thickness, 30 nm) are embedded into a planar
waveguide structure based on total internal reflection at the
Al0.33Ga0.67As–air and AlAs–GaAs interfaces, respectively (magnified view).
The quantum wells are positioned at the field antinode. The sketched band
diagram (CB, conduction band; VB, valence band) shows how electronic
transitions between subbands | 1æ and | 2æ (level spacing, Bv12 5 113 meV)
are activated by near-infrared, 12-fs control pulses (photon energy, 1.55 eV;
vertical red beam) populating level | 1æ. Intersubband transitions may then
resonantly couple to TM-polarized mid-infrared cavity photons propagating
at h 5 65u. Few-cycle TM-polarized multi-terahertz transients guided
through the prism-shaped substrate are reflected from the waveguide to
probe the ultrafast build-up of light–matter coupling in the system. The
pulse front of the near-infrared control is tilted (dotted white circle in
control beam) to match the geometry of the phase planes of the probe.
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Figure 2 | Ultrawide optical tuning of light–matter interaction. a, Terahertz
reflectance spectra measured at room temperature (293 K) for various
fluences, W (vertically off-set), of the control pulse (tD 5 20 ps). Minima
indicate eigenmodes of the system. For W 5 0, only the bare photon mode is
observed, at Bvc 5 113 meV; both branches of the intersubband cavity
polaritons are discernible for W $ 0.05W0 (W0 5 0.1 mJ cm22). a.u., arbitrary
units. b, Asymmetric polariton splitting as a function of W: dots, experiment;
solid lines, simulation including anti-resonant light–matter interaction. For
W 5 W0, the polariton branches are observed with a relative energy distance
of 0.44Bv12 for a given angle, h 5 65u. This value corresponds to
2VR 5 0.18v12. We estimate the maximum electron density to be on the
order of 2 3 1012 cm22, consistent with the static doping concentrations of
ref. 13. The spectra are obtained by Fourier transformation of time-domain
data shown in Supplementary Fig. 1.
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qualitatively well described by the time dependence of the electron
distribution in subband j1æ, as discussed in ref. 14.

Although light–matter coupling is turned on within femtoseconds,
VR remains constant on the subsequent nanosecond scale set by the
recombination time of the electron–hole pairs. For practical device
applications, our scheme may be extended to sub-cycle switch-off: a
second infrared control pulse may, for example, promote photo-
generated electrons from subband j1æ into higher energy levels in

the conduction band, hence de-activating the intersubband transi-
tions non-adiabatically. In an alternative, pump–dump, scheme, a
pair of identical control pulses (each with pulse area p) may induce
strong interband population inversion in subband j1æ (switch-on of
coupling) followed by ultrafast depopulation through stimulated
interband emission (switch-off).

The extreme switching speed demonstrated in Fig. 3 entails unpre-
cedented non-adiabatic phenomena, most strikingly seen in the time
domain (Fig. 4). When a few-cycle probe transient (Fig. 4a) impinges
on the unexcited modulator, part of its energy is directly reflected from
the cavity surface. A second portion is evanescently coupled into the
resonator, prepares a coherent photon state, and is subsequently re-
emitted (Fig. 4b). This dynamics is encoded in the characteristic twin-
pulse structure of the reflected transient (Fig. 4c). The initial burst is
due to instantly reflected light whereas the second part results from re-
emission. A time-frequency analysis corroborates this scenario. At
each point, t, in time, we perform a numerical Fourier transform of
the transient in Fig. 4c in a narrow window (width, 100 fs) centred
about t. In this way, we map out the instantaneous spectral amplitude
E(t, v) as a function of time and photon energy (colour plot, Fig. 4c).
Filling of the cavity manifests itself in a reflectance minimum at
Bv 5 113 meV (t 5 50 fs), whereas subsequent cavity emission causes
a delayed spectral peak at the same frequency.

The most intriguing situation arises when we turn light–matter
coupling on while a coherent state of bare photons is still present
inside the cavity (Fig. 4d): the control pulse (vertical arrow, Fig. 4d)
abruptly alters VR during the free cavity decay (second burst of
reflected field). Notably, the emission of bare photons is interrupted
on a timescale shorter than half an oscillation cycle of light, which is a
compelling proof of non-adiabaticity. The subsequent field trace has
a characteristic two-mode beating (shown magnified in Fig. 4e; see
also Supplementary Fig. 1) and the corresponding spectra (colour
plot, Fig. 4d) display minima at energies of 93 meV and 143 meV
(indicated by the two diagonal arrows), which are hallmarks of the
two polariton branches. Thus, we do not only control the eigenstates
of the microcavity, but effectively convert a coherent photon popu-
lation into ultrastrongly coupled cavity polaritons beating at the
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first mirror of the cavity and (2) re-emission of coherent photon states inside
the cavity give rise to a characteristic twin-pulse shape. c, Time trace of the
experimentally determined terahertz field (black curve) reflected from the
unexcited cavity. The corresponding instantaneous amplitude spectrum,
E(t, v) (colour-coded background: red, low field amplitude; blue, high field
amplitude; see colour bar), is obtained as a function of photon energy and

time, t, by means of a wavelet transformation of the black curve. d, A 12-fs
control pulse arrives within the coherence window of the cavity mode (black
arrow). The reflected terahertz field (black curve) traces the non-adiabatic
switch-on of ultrastrong light–matter coupling: The control pulse abruptly
changes the exponential emission decay into a characteristic beating
signature, on a sub-cycle scale. The corresponding spectrum (background
colour plot) exhibits signatures of both polariton branches, at photon
energies of 93 meV and 143 meV (white arrows). e, Beating signature
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extremely non-equilibrium semiconductor systems24–26. Eigenmodes
of the cavity cause characteristic minima in the Fourier spectra of the
reflected transients. All experiments are performed under ambient
conditions.

Figure 2a shows that the magnitude of the light–matter coupling is
continuously tunable by means of the control fluence, W. The spectra
are recorded at a fixed delay, tD 5 20 ps, between the near-infrared
control and the multi-terahertz probe pulse. In equilibrium (W 5 0),
a single reflectance minimum at Bvc 5 113 meV (top curve, Fig. 2a)
attests to the sole resonance of the unexcited cavity, the bare photon
mode. With increasing fluence, the system traverses all three regimes
of light–matter interaction. Starting with weak coupling
(W # 0.03W0), VR already exceeds the widths (full-width at half-
maximum, ,5 meV) of intersubband and cavity resonances for
W . 0.05W0, and two strongly coupled cavity polariton branches
are discernible. Further increase of the fluence enhances the separa-
tion of the minima to 50 meV, corresponding to a fraction of 44% of
the bare photon frequency (Fig. 2b). As discussed in ref. 13, the
apparent mode separation is not identical to the vacuum Rabi split-
ting at the anticrossing point. Only a quantitative simulation of the

energy position of the polariton dips (Fig. 2b) allows for extraction of
VR. For a correct description of our data, the theory has to go beyond
the rotating-wave approximation14,15. We include anti-resonant
terms in the light–matter Hamiltonian that scale with the ratio
2VR/v12. These contributions describe the simultaneous creation
or annihilation of two excitations with opposite in-plane wavevectors
k and give rise to a two-mode squeezed quantum vacuum14,15. By
comparison with this theory, we determine that 2VR 5 0.18v12 for
our experiment. This value is comparable to the record achieved in
delta-doped structures13 and large enough for the signatures of ultra-
strong coupling to be observable14. The scheme is expected to be
scalable further by means of higher control fluences and a larger
number of quantum wells.

The central issue is to explore how rapidly ultrastrong coupling may
be activated. Figure 3 displays amplitude spectra recorded at various
delay times, tD (W 5 W0). For tD # 250 fs, the cavity resonance (blue
arrow, Fig. 3) shows a minimum amplitude reflectivity below 10%.
The control pulse induces dramatic reflectivity changes of order one,
on the femtosecond scale. The initial bare photon state is replaced by
two coupled polariton branches appearing simultaneously at energy
positions of 93 meV and 143 meV (red arrows, Fig. 3). Most notably,
the new resonances do not develop by gradual bifurcation of the bare
cavity mode as in Fig. 2a. By contrast, switching occurs discontin-
uously once the control pulse promotes electrons into subband j1æ.

Immediately following the femtosecond control, the photoexcited
charge carriers are in a highly non-equilibrium state which may
induce enhanced dephasing of the intersubband transition. A detailed
microscopic description of the switching dynamics should thus
account for both the quantum kinetic aspects as well as the dynamics
of the ultrastrong cavity–intersubband coupling. Notably, for the large
coupling strengths achieved in our experiment, we find that dephasing
arising from the non-equilibrium nature of the carrier distributions
appears to be less important than the dynamics of the cavity polariton
splitting. The instantaneous activation of light–matter interaction is
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Figure 1 | Femtosecond control of ultrastrong light–matter coupling. a, A
bare microcavity has minimal reflectance, R(v), at the photon resonance,
vc. b, After introduction of a resonant material excitation, cavity photons
(blue) are coherently absorbed and re-emitted at rate VR, giving rise to
anticrossing cavity polaritons. c, A multiple quantum well structure (MQW)
comprising 50 undoped GaAs wells (thickness, 9 nm) separated by
Al0.33Ga0.67As barriers (thickness, 30 nm) are embedded into a planar
waveguide structure based on total internal reflection at the
Al0.33Ga0.67As–air and AlAs–GaAs interfaces, respectively (magnified view).
The quantum wells are positioned at the field antinode. The sketched band
diagram (CB, conduction band; VB, valence band) shows how electronic
transitions between subbands | 1æ and | 2æ (level spacing, Bv12 5 113 meV)
are activated by near-infrared, 12-fs control pulses (photon energy, 1.55 eV;
vertical red beam) populating level | 1æ. Intersubband transitions may then
resonantly couple to TM-polarized mid-infrared cavity photons propagating
at h 5 65u. Few-cycle TM-polarized multi-terahertz transients guided
through the prism-shaped substrate are reflected from the waveguide to
probe the ultrafast build-up of light–matter coupling in the system. The
pulse front of the near-infrared control is tilted (dotted white circle in
control beam) to match the geometry of the phase planes of the probe.
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Figure 2 | Ultrawide optical tuning of light–matter interaction. a, Terahertz
reflectance spectra measured at room temperature (293 K) for various
fluences, W (vertically off-set), of the control pulse (tD 5 20 ps). Minima
indicate eigenmodes of the system. For W 5 0, only the bare photon mode is
observed, at Bvc 5 113 meV; both branches of the intersubband cavity
polaritons are discernible for W $ 0.05W0 (W0 5 0.1 mJ cm22). a.u., arbitrary
units. b, Asymmetric polariton splitting as a function of W: dots, experiment;
solid lines, simulation including anti-resonant light–matter interaction. For
W 5 W0, the polariton branches are observed with a relative energy distance
of 0.44Bv12 for a given angle, h 5 65u. This value corresponds to
2VR 5 0.18v12. We estimate the maximum electron density to be on the
order of 2 3 1012 cm22, consistent with the static doping concentrations of
ref. 13. The spectra are obtained by Fourier transformation of time-domain
data shown in Supplementary Fig. 1.
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FIG. 19 (Color online) Switchable USC. (a) Reflectance spec-
tra for GaAs asymmetrically coupled quantum wells at various
bias voltages, showing field-tuned vacuum Rabi splitting. The
splitting increases with increasing voltage. Reproduced from
reference (Anappara et al., 2006); (b) setup used for ultrafast
control of ultrastrong light-matter coupling. A quantum well
structure embedded in a planar waveguide structure is acti-
vated by a near-infrared control pulse. Terahertz transients
probe the ultrafast build-up of light-matter coupling; (c) ul-
trafast switch-on of ISB polaritons. Spectra of the reflected
terahertz field are given for various delay times; (d) terahertz
reflectance spectra measured at 293 K for various fluences of
the control pulse (Günter et al., 2009).
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2. Inter-Landau-level transitions (cyclotron resonance)

Strong light-matter coupling has also been actively
studied using ILLTs (or cyclotron resonance CR) in
2DEGs formed in GaAs QWs (Bayer et al., 2017; Li et al.,
2018b; Maissen et al., 2017, 2014; Muravev et al., 2011,
2013; Scalari et al., 2013, 2012; Zhang et al., 2016a),
InAs QWs (Maissen et al., 2014), and on the surface
of liquid helium (Abdurakhimov et al., 2016). Muravev
et al. studied the USC of magnetoplasmon (also known
as “cyclotron-plasmon”) excitations with microwave pho-
ton modes in a coplanar microresonator (Muravev et al.,
2011) and a metallic patch resonator (Muravev et al.,
2013). The great advantage of the straightforward con-
tinuous magnetic-field tuning of polaritons over ISB po-
laritons was clearly demonstrated. High values of g/ω
close to 0.5 were achieved (Muravev et al., 2011) owing
to the large dipole moment of ILLTs.

Scalari et al. reported experiments showing USC of
2DEG CR with photons in a THz metamaterial cavity
consisting of an array of electronic split-ring resonators
shown in Fig. 20(a)-(b) (Scalari et al., 2012). The au-
thors obtained a g/ω value of 0.58 and showed poten-
tial scalability in frequency to extend to the microwave
spectral range, where control of the magnetotransport
properties of the 2DEG through light-matter coupling
would be possible. Furthermore, using similar split-ring
resonators in the complementary mode, Maissen et al.
obtained g/ω = 0.87, shown in Fig. 20(c)-(d). In addi-
tion, a blue-shift of both LP and UP was observed due
to the diamagnetic term of the interaction Hamiltonian.

In these CR studies of ultrastrong light-matter cou-
pling using metamaterial split-ring resonators, however,
the value of cooperativity C = 4g2/(γκ) remained small
due to ultrafast decoherence (large γ) and/or lossy cav-
ities (large κ). Recently, Zhang et al. have developed a
THz 1D photonic-crystal cavity (PCC), utilizing Si thin
slabs and air as the high and low index materials, re-
spectively [Fig. 21(a)]. The air-Si combination provided
a large index contrast and thus significantly reduced
the number of layers needed on each side of the cav-
ity (Chen et al., 2014a; Yee and Sherwin, 2009). A thin
2DEG film was transferred onto one surface of the central
layer, where the electric field maximum was located. Fig-
ure 21(b) shows an experimental transmission spectrum
measured for one of the empty cavities, demonstrating
an ultranarrow photonic mode (κ/2π ∼ 2.6 GHz). The
highest cavity quality-factor, Q, achieved in this scheme
was ∼103.

Using these high-Q PCCs, Zhang et al. simultane-
ously achieved small γ and small κ in ultrahigh-mobility
2DEGs in GaAs QWs in a magnetic field (Zhang et al.,
2016a); see Fig. 21(c). High cooperativity values C > 300
were achieved, with VRS leading to g/ω ∼ 0.1. With
these favorable parameters it was possible to observe
Rabi oscillations in the time domain. Zhang et al.
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TABLE III. The comparison of the normalized coupling ratio
for different resonators at constant filling factor ν reveals the strong
influence of the resonator geometry on the coupling strength. The
split-ring resonator outperforms the prediction for the Fabry-Perot
resonator by more than a factor 2.

Resonator "R

ωc
|ν=10.8

SRR 0.34
cSRR 0.27
Fabry-Perot [26] 0.15

is blue-shifted by 70 GHz compared to the empty resonator
[cf. Fig. 3(c)]. This upper polariton (UP) is bending upwards
as the resonant magnetic field B = 1.2 T is approached.
At 1 T, the lower polariton (LP) starts to deviate from the
cyclotron transition. The transmission dip evolving linear with
the magnetic field is stems from uncoupled areas of the 2DEG.

While the direct split-ring resonators show a reduced
transmittance at the polariton frequencies, the complementary
ones lead to transmission peaks as seen in Fig. 3(b) (note
the inverted color scale). In this sample, the anticrossing at
B = 1.2 T becomes clearly visible since uncoupled regions of
the 2DEG are blocked by the resonator. This filtering effect
allows us to observe the polaritons in more detail and eases the
interpretation of the spectra. In particular, one can observe the
fading of the polaritons as the light fraction of the polariton
varies. The LP appears only at B = 0.7 T. And, likewise,
the UP disappears continuously above 2.5 T. In Fig. 3(b), the
polaritonic gap $ω becomes visible. No states exist in the
frequency range between the cavity resonance frequencies at
zero and high magnetic fields. This gap is a feature of the
ultrastrong coupling regime [31] and will be further discussed
in Sec. V.

The normalized coupling rates are ("R/ωc)A = 0.34 and
("R/ωc)B = 0.27 for the direct and complementary versions.
The only difference in the two samples is the geometry and in
particular the gap forming the capacitor which is determining
the out-of-plane extent of the electric field. This difference
leads to an increased effective volume for the complementary
split-ring resonator and a reduced coupling strength according
to Eq. (7).

The potential of split-ring resonators for ultrastrong cou-
pling experiments becomes evident, when comparing the
measured coupling strengths to the prediction for a Fabry-
Perot resonator [26]. Both split-ring resonators (direct and
complementary) are clearly outperforming the Fabry-Perot
microcavity by up to more than a factor 2 (see Table III).

B. Scaling with nQW

Three samples with 1, 4, and 20 quantum wells allow us
to study the dependence of the coupling strength on nQW.
Figures 4(a) and 4(b) present the transmittance for the samples
B and C with 4 and 20 2DEGs, respectively. Most striking,
we observe for both samples an additional transmittance
maximum starting at a magnetic field of 1.5 T. This peak
is the LP of the λ/2 mode. It approaches the bare λ/2-mode
spectrum at high magnetic fields. The LP of the λ/2 mode and
the UP of the LC mode neither cross nor anticross. From this
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FIG. 4. (Color online) Transmittance through samples C (4
QWs) and D (20 QWs) are shown in (a) and (b), respectively. The
normalized coupling rates are ("R/ωc)C = 0.57 and ("R/ωc)D =
0.72. Solid lines are fits of the polariton dispersion [see Eq. (17)
in Ref. [26]) to the transmittance maxima ("R/ωc is the fitting
parameter).

behavior, we can deduce, in agreement with our simulations,
that both modes couple to independent bright modes of the
2DEGs. Otherwise, one would expect the UP of the LC mode
to evolve into the LP of the λ/2 mode, leading to a single
S-shaped curve.

Increasing the number of quantum wells from 4 to 20
leads only to an increase of the normalized coupling rate
from ("R/ωc)C = 0.57 to ("R/ωc)D = 0.72. However, from
Eq. (8), we would expect ("R/ωc)D = 1 for an exponentially
decaying mode shape. We performed FEM simulations to
analyze this differences. The in-gap electric field component
(e.g., Ex) at zero magnetic field, integrated over the com-
plementary split-ring resonator unit-cell plane at a specific
position z,

∫
|Ex(z)|dx dy, is plotted in Fig. 2(b). All curves

are normalized to 1. Without 2DEGs, the field is decaying ex-
ponentially away from the metal plane. Introducing one 2DEG
leads to a strong confinement of the electric field along the
growth direction at the quantum well position. With 20 2DEGs,
the field is spread over the whole heterostructure down to
z = −3 µm below which it decays with a similar exponential
dependence as for one 2DEG. The increase of the mode volume
might lead to the lower than expected coupling strength.

C. Scaling with ν

The filling factor ν = ρ2DEG
h
eB

at resonance [ωc(Bres) =
ωLC] can be increased by increasing the carrier density in the
2DEG or by lowering Bres. According to Eq. (1), a lower Bres
is achieved by lowering the effective mass m∗ or the resonator
frequency ωLC.
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FIG. 1. (Color online) (a) Schematic drawing of the experiment
depicts the polarization and wave vector of the probing THz pulse
and the sample with the complementary split-ring resonator surface
and a 2DEG. The static magnetic field is applied perpendicular to
the sample surface/growth direction (Faraday geometry). (b) The
ratio of the transmission coefficients t(Bres)/t(B = 0 T) for the
heterostructures without resonator show a minimum at the bare
cyclotron resonance frequency ωc [Bres is the resonant magnetic
field: ωc(Bres) = ωLC]. In panels (c) and (d), FEM simulations of
the direct and complementary split-ring resonator show the in-plane
electric field distribution Eplane =

√
|Ex |2 + |Ey |2 100 nm below the

semiconductor surface(color scale) and the current distribution in the
gold structure (red arrows). (e) Complementary split-ring resonators
show a complementary transmission spectrum compared to their
direct counterpart. The insets clarify the polarization of the electric
field for both cases (yellow: Au, black: GaAs). The simulation with
the conductivity of gold (ϵAu) fits well the measured transmittance.
FEM simulations predict a Nb-resonator frequency ωLC = 2π340
GHz. Panel (f) shows a cut along the dashed white line in panel (d).

II. SAMPLE CHARACTERISTICS

The samples are composed of an array of planar metal-
lic split-ring resonators deposited on top of molecular
beam epitaxy (MBE) grown heterostructures embedding two-
dimensional electron gases (2DEGs). Figure 1(a) shows a
schematic of the sample geometry. The z axis is perpendicular

TABLE I. Properties of the heterostructures embedding 2DEGs.
z(1) is the distance between the first quantum well and the surface,
$z is the distance between two quantum wells. The first three
heterostructures are grown with GaAs/Al0.3Ga0.7As, and E110913
is a InAs/AlSb quantum well.

Heterostructure nQW ρ (1011 cm−2) m∗

me
z1 $z (nm)

EV1452 1 3.2 0.07 −115
D091113 4 4.5 0.069 −154 182
D111118 20 4.5 0.069 −138 139
E110913 1 10 0.04 −20

to the sample surface with z = 0 µm at the top of the surface
of the heterostructure. The heterostructures are grown on
semi-insulating GaAs, either with the AlGaAs/GaAs or the
InAs/AlSb material system. Gold split-ring resonators are
defined by standard UV photolithography and lift off. The
200- to 250-nm-thick metal layer was deposited with an
electron beam evaporator. A frequency-downscaled resonator
was produced from a niobium film by e-beam lithography and
reactive ion etching [18].

A. Matter part

The cyclotron transition in the 2DEGs constitutes the
matter part for the ultrastrong coupling experiment. A static
magnetic field applied along the growth direction induces the
formation of Landau levels (which we index by n). The first
not completely filled Landau level is labeled by the filling
factor ν = ρ2DEG

h
eB

. Optical transitions are only allowed
between adjacent Landau levels, according to the selection
rule $n = ±1, with the cyclotron frequency

ωc = eB

m∗ . (1)

m∗ is the effective electron mass in the 2DEG.
Table I summarizes the properties of the heterostructures

which were used for the experiments reported in this paper. z(1)
indicates the distance from the first quantum well to the surface
of the heterostructure and $z the distance between subsequent
quantum wells. EV1452 consists of a triangular quantum
well at a GaAs/Al0.3Ga0.7As interface and the heterostructures
D091113 and D111118 consist of 30-nm-wide square quantum
wells. E110913 contains a 20-nm-wide InAs quantum well
with AlSb barriers. The effective electron mass in the InAs
quantum well, as resulting from our cyclotron measurements,
is m∗ = 0.04me, 40% lower than in the GaAs quantum well.

Transmission measurements on the bare heterostructures
without resonators are shown in Fig. 1(b). The ratio of
the transmitted electric fields at the resonant magnetic field
Bres [with ωc(Bres) = 500 GHz] and zero magnetic field
t(Bres)/t(B = 0 T) exhibits a transmittance minimum at
500 GHz as expected from the cyclotron transition. Both the
area and the width of the transmission dip increases with the
number of electrons in the sample. Additional measurements
at different values of the magnetic fields are reported in Fig. 7
in the Appendix for samples D111118 and E110913.

The linewidth of the cyclotron transition does not depend
significantly on the electron mobility µ for high mobility

205309-2

(a) (b) 

(c) 

(d) 

CURDIN MAISSEN et al. PHYSICAL REVIEW B 90, 205309 (2014)

0

0.2

0.4

0.6

0.8

1

4 2 0 -2 -4

-6

-4

-2

0

2

4

6

x
(µ

m
)

z (µm)

(f)

E

E

(e)

(c) (d)

Frequency (THz)

T
ra

n
sm

it
ta

n
ce

0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7 direct

compl

Au (FEM)
PEC (FEM)

k

H

E

2DEG

B

200 800400 600

Frequency (GHz)

|E
B

r
e

s
/
E

0
|

EV1452
D111118
D091113
E110913

1.0

0.8

0.6

0.7

0.9

1.1

0.5

(a) (b)

0

10

20

-20

-10

0 10 20-20 -10
x (µm)

y
(µ

m
)

0

10

20

-20

-10

0 10 20-20 -10
x (µm)

y
(µ

m
)

|E
x

+
E

y
| n

o
r

m

SRR cSRR

z

x

y

Nb (FEM)

FIG. 1. (Color online) (a) Schematic drawing of the experiment
depicts the polarization and wave vector of the probing THz pulse
and the sample with the complementary split-ring resonator surface
and a 2DEG. The static magnetic field is applied perpendicular to
the sample surface/growth direction (Faraday geometry). (b) The
ratio of the transmission coefficients t(Bres)/t(B = 0 T) for the
heterostructures without resonator show a minimum at the bare
cyclotron resonance frequency ωc [Bres is the resonant magnetic
field: ωc(Bres) = ωLC]. In panels (c) and (d), FEM simulations of
the direct and complementary split-ring resonator show the in-plane
electric field distribution Eplane =

√
|Ex |2 + |Ey |2 100 nm below the

semiconductor surface(color scale) and the current distribution in the
gold structure (red arrows). (e) Complementary split-ring resonators
show a complementary transmission spectrum compared to their
direct counterpart. The insets clarify the polarization of the electric
field for both cases (yellow: Au, black: GaAs). The simulation with
the conductivity of gold (ϵAu) fits well the measured transmittance.
FEM simulations predict a Nb-resonator frequency ωLC = 2π340
GHz. Panel (f) shows a cut along the dashed white line in panel (d).

II. SAMPLE CHARACTERISTICS

The samples are composed of an array of planar metal-
lic split-ring resonators deposited on top of molecular
beam epitaxy (MBE) grown heterostructures embedding two-
dimensional electron gases (2DEGs). Figure 1(a) shows a
schematic of the sample geometry. The z axis is perpendicular

TABLE I. Properties of the heterostructures embedding 2DEGs.
z(1) is the distance between the first quantum well and the surface,
$z is the distance between two quantum wells. The first three
heterostructures are grown with GaAs/Al0.3Ga0.7As, and E110913
is a InAs/AlSb quantum well.

Heterostructure nQW ρ (1011 cm−2) m∗

me
z1 $z (nm)

EV1452 1 3.2 0.07 −115
D091113 4 4.5 0.069 −154 182
D111118 20 4.5 0.069 −138 139
E110913 1 10 0.04 −20

to the sample surface with z = 0 µm at the top of the surface
of the heterostructure. The heterostructures are grown on
semi-insulating GaAs, either with the AlGaAs/GaAs or the
InAs/AlSb material system. Gold split-ring resonators are
defined by standard UV photolithography and lift off. The
200- to 250-nm-thick metal layer was deposited with an
electron beam evaporator. A frequency-downscaled resonator
was produced from a niobium film by e-beam lithography and
reactive ion etching [18].

A. Matter part

The cyclotron transition in the 2DEGs constitutes the
matter part for the ultrastrong coupling experiment. A static
magnetic field applied along the growth direction induces the
formation of Landau levels (which we index by n). The first
not completely filled Landau level is labeled by the filling
factor ν = ρ2DEG

h
eB

. Optical transitions are only allowed
between adjacent Landau levels, according to the selection
rule $n = ±1, with the cyclotron frequency

ωc = eB

m∗ . (1)

m∗ is the effective electron mass in the 2DEG.
Table I summarizes the properties of the heterostructures

which were used for the experiments reported in this paper. z(1)
indicates the distance from the first quantum well to the surface
of the heterostructure and $z the distance between subsequent
quantum wells. EV1452 consists of a triangular quantum
well at a GaAs/Al0.3Ga0.7As interface and the heterostructures
D091113 and D111118 consist of 30-nm-wide square quantum
wells. E110913 contains a 20-nm-wide InAs quantum well
with AlSb barriers. The effective electron mass in the InAs
quantum well, as resulting from our cyclotron measurements,
is m∗ = 0.04me, 40% lower than in the GaAs quantum well.

Transmission measurements on the bare heterostructures
without resonators are shown in Fig. 1(b). The ratio of
the transmitted electric fields at the resonant magnetic field
Bres [with ωc(Bres) = 500 GHz] and zero magnetic field
t(Bres)/t(B = 0 T) exhibits a transmittance minimum at
500 GHz as expected from the cyclotron transition. Both the
area and the width of the transmission dip increases with the
number of electrons in the sample. Additional measurements
at different values of the magnetic fields are reported in Fig. 7
in the Appendix for samples D111118 and E110913.

The linewidth of the cyclotron transition does not depend
significantly on the electron mobility µ for high mobility
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FIG. 20 (Color online) USC of normal-incidence THz radi-
ation with a GaAs 2DEG in a Landau-quantizing magnetic
field. (a) Experimental setup used to observed USC. An ar-
ray of metamaterial THz cavities is deposited on top of the
2DEG; (b) scanning electron microscopy picture displays a
single cavity unit. Adapted from reference (Scalari et al.,
2012); (c) and (d): Transmittance spectra at different mag-
netic fields showing anti-crossing behavior with a g/ω value
of 0.69 in (c) and 0.87 in (d) (Maissen et al., 2014).

showed that the influence of such USC extended even
to the region with detuning δ > ω. This effect could only
occur when g2/(ωκ) > 1, which in the experiment was
satisfied through a unique combination of strong light-
matter coupling, a small resonance frequency, and a high-
Q cavity. Furthermore, the expected

√
ne-dependence of

2g on the electron density (ne) was observed, signify-
ing the collective nature of light-matter coupling (Dicke,
1954). A value of g/ω = 0.12 was obtained with just
a single QW with a moderate ne (= 3 × 1011 cm−2).
Finally, Zhang et al. observed a significant suppression
of a previously identified superradiant decay of CR in
high-mobility 2DEGs (Zhang et al., 2014a) due to the
presence of the high-Q THz cavity. As a result, ultranar-
row polariton lines were observed, yielding an intrinsic
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CR linewidth as small as 5.6 GHz (or a CR decay time
of 57 ps) at 2 K.

More recently, through optimization of both electronic
and photonic components of a 2DEG-metamaterial sys-
tem, Bayer and coworkers (Bayer et al., 2017) have sig-
nificantly boosted the light-matter coupling strength, en-
tering the DSC regime. By tailoring the shape of the
vacuum mode in the cavity, they achieved a remark-
able g/ω = 1.43, the highest result reported to date
for semiconductor QWs. This achievement opens up
possibilities of studying vacuum radiation with cutting-
edge THz quantum detection techniques (Benea-Chelmus
et al., 2016; Riek et al., 2015, 2017). Keller et al. probed
USC at 300 GHz to less than 100 electrons located in
the last occupied Landau level of a high mobility two-
dimensional electron gas (Keller et al., 2017b). By using
hybrid dipole antenna-split ring resonator-based cavities
with extremely small effective mode volumes and surfaces
they achieved a normalized coupling ratio of g/ω = 0.36.
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Figure 1 | 1D terahertz photonic-crystal cavity (PCC) with a high-mobility 2DEG. a, Schematic diagram for cyclotron resonance involving two adjacent
Landau levels resonantly coupled with a terahertz cavity field. g: light–matter coupling constant,  : photon decay rate, and � : matter decay rate. b, 1D
terahertz PCC structure. Two silicon layers are placed on each side of the centre defect layer. The blue part is the transferred 2DEG thin film. c–e, Calculated
electric field amplitude distribution inside the cavity for the first, second, and third cavity modes, respectively. The 2DEG is located at the field maximum
for all three cavity modes. f, Experimental power transmittance spectrum for the cavity. Three sharp cavity modes are clearly resolved in the middle of each
stopband. g–i, Zoom-in spectra for the three cavity modes, together with Lorentzian fits. The FWHM (Q) values are 2.6 GHz (150), 5 GHz (243) and
3.8 GHz (532) for the first, second and third modes, respectively.

2g on the electron density (ne), signifying the collective nature of
light–matter coupling19,23–27. A value of g/!0 = 0.12 was obtained
with just a single QW with a moderate ne. Finally, the previously
identified superradiant decay of CR in high-mobility 2DEGs28 was
significantly suppressed by the presence of the high-Q terahertz
cavity. As a result, we observed ultranarrow polariton lines, yielding
an intrinsic CR linewidth as small as 5.6GHz (or a CR decay time
of 57 ps) at 2 K.

High-mobility GaAs 2DEG samples were studied using terahertz
time-domain magnetospectroscopy (see Supplementary Section 2).
The magnetic field quantized the density of states of the 2DEG
into Landau levels. As schematically shown in Fig. 1a, terahertz
cavity photons are coupled with the transition between adjacent
Landau levels, that is, CR. Figure 1b shows our 1D terahertz PCC
design, consisting of two layers of 50-µm-thick undoped Si wafers
on each side as a Bragg mirror. Thanks to the large contrast
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Figure 2 | Observation of collective light–matter coupling in a 2D electron gas in a terahertz photonic-crystal cavity. a, Anticrossing of cyclotron
resonance (CR) and the first cavity mode, exhibiting the lower-polariton (LP) and upper-polariton (UP) branches. The central peak due to the cavity mode
results from the CR-inactive circularly polarized component of the linearly polarized terahertz beam. Transmission spectra at di�erent magnetic fields are
vertically o�set for clarity. The magnetic field increases from 0.4 T (bottom) to 1.4 T (top). b, Vacuum Rabi oscillations in the time domain. CR is resonantly
coupled with the second cavity mode at 2.975 T. �Ey =Ey(+2.975 T)�Ey(�2.975 T) is the measured di�erence between the transmitted terahertz
waveforms taken at +2.975 T and �2.975 T in the y-polarization direction. The residual CR inactive cavity mode was removed by a numerical notch filter.
The beating nodes of the two polaritons are indicated by arrows. c, Frequency-domain spectrum of �Ey in b. d, Vacuum Rabi splitting observed for 2DEGs
with three di�erent electron densities. CR was resonant with the fundamental cavity mode. e, Square root of ne dependence of vacuum Rabi splitting,
evidencing the collective nature of light–matter coupling.

of refractive index between Si (3.42 in the terahertz range) and
vacuum, only a few layers of Si were required to achieve su�cient
cavity confinement of terahertz radiation with high Q values. A
substrate-removed 4.5-µm-thick GaAs 2DEG sample was placed on
the central ‘defect’ layer of the PCC, which was a 100-µm-thick Si

(sapphire) wafer in Cavity 1 (Cavity 2). Calculated electric field
distributions inside Cavity 1 are shown in Fig. 1c–e, for the first,
second and third cavity modes, respectively. The spatial overlap of
the 2DEG and the electric field maximum ensured the strongest
light–matter coupling.
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Figure 1 | 1D terahertz photonic-crystal cavity (PCC) with a high-mobility 2DEG. a, Schematic diagram for cyclotron resonance involving two adjacent
Landau levels resonantly coupled with a terahertz cavity field. g: light–matter coupling constant,  : photon decay rate, and � : matter decay rate. b, 1D
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stopband. g–i, Zoom-in spectra for the three cavity modes, together with Lorentzian fits. The FWHM (Q) values are 2.6 GHz (150), 5 GHz (243) and
3.8 GHz (532) for the first, second and third modes, respectively.

2g on the electron density (ne), signifying the collective nature of
light–matter coupling19,23–27. A value of g/!0 = 0.12 was obtained
with just a single QW with a moderate ne. Finally, the previously
identified superradiant decay of CR in high-mobility 2DEGs28 was
significantly suppressed by the presence of the high-Q terahertz
cavity. As a result, we observed ultranarrow polariton lines, yielding
an intrinsic CR linewidth as small as 5.6GHz (or a CR decay time
of 57 ps) at 2 K.

High-mobility GaAs 2DEG samples were studied using terahertz
time-domain magnetospectroscopy (see Supplementary Section 2).
The magnetic field quantized the density of states of the 2DEG
into Landau levels. As schematically shown in Fig. 1a, terahertz
cavity photons are coupled with the transition between adjacent
Landau levels, that is, CR. Figure 1b shows our 1D terahertz PCC
design, consisting of two layers of 50-µm-thick undoped Si wafers
on each side as a Bragg mirror. Thanks to the large contrast
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FIG. 21 (Color online) Observation of USC of cyclotron res-
onance (CR) of a 2DEG and high-Q THz cavity photons.
(a) 1D terahertz photonic-crystal cavity structure. Two sili-
con layers are placed on each side of the central defect layer.
The blue part is the transferred 2DEG thin film; (b) zoom-in
spectrum for the first cavity mode, together with a Lorentzian
fit with a full-width-at-half-maximum of 2.6 GHz; (c) anti-
crossing of CR and the first cavity mode, exhibiting the lower-
polariton (LP) and upper-polariton (UP) branches. The cen-
tral peak due to the cavity mode results from the CR-inactive
circularly polarized component of the linearly polarized tera-
hertz beam. Transmission spectra at different magnetic fields
are vertically offset for clarity. The magnetic field increases
from 0.4 T (bottom) to 1.4 T (top) (Zhang et al., 2016a).
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FIG. 22 (Color online) Distinction between the vacuum
Bloch-Siegert shift due to the counter-rotating terms (CRTs)
and the shift due to the A2 terms in the USC regime. Simu-
lated spectra a, with both the CRTs and the A2 terms (full
Hamiltonian), b, with the CRTs but without the A2 terms,
c, without the CRTs but with the A2 terms, and d, without
the CRTs and A2 terms. Each graph includes experimental
peak positions as open circles. Reproduced (adapted) with
permission from (Li et al., 2018b).

Effects of the extremely reduced cavity dimensions were
observed as the light-matter coupled system resulted bet-
ter described by an effective mass heavier than the un-
coupled one.

In later work, Keller et al. studied the USC of the CR
of a 2D hole gas in a strained germanium QW with THz
metasurface cavity photons (Keller et al., 2017a). They
observed a mode softening of the polariton branches, de-
viating from the Hopfield model successfully used in stud-
ies of GaAs QWs (Hagenmüller et al., 2010; Scalari et al.,
2012). At the largest coupling strength, the lower polari-
ton branch was observed to move towards zero frequency,
raising the exciting perspective of the Dicke superradiant
phase transition in equilibrium (Hepp and Lieb, 1973;
Wang and Hioe, 1973). The authors modeled this behav-
ior by effectively reducing the magnitude of the A2 term
in the Hamiltonian. The 2D hole gas exhibits heavy non-
parabolicity, strain and spin-orbit interaction, features
differing from the standard GaAs QWs; however, the-
oretical modeling of the observed deviation remains an
open quest.

Most recently, Li et al. reported the vacuum Bloch-
Siegert shift, which is induced by the coupling of matter
with the counter-rotating component of the vacuum fluc-
tuation field in a cavity (Li et al., 2018b), as explained
in Sec. II; see, e.g., Eq. (4). Using an ultrahigh-mobility
2DEG in a high-Q THz cavity in a magnetic field, they
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created Landau polaritons with an ultrahigh cooperativ-
ity (C = 3513), which exhibited a vacuum Bloch-Siegert
shift up to 40 GHz. They found that the probe polar-
ization plays a critical role in exploring USC physics in
this ultrahigh-cooperativity system. The resonant co-
rotating coupling of electrons with CR-active (CRA) cir-
cularly polarized radiation leads to the extensively stud-
ied VRS. Conversely, the counter-rotating coupling of
electrons with the CR-inactive (CRI) mode leads to the
time-reversed partner of the VRS, i.e., the vacuum Bloch-
Siegert shift.

Li et al. theoretically simulated polariton spectra to ex-
plain their data while selectively removing the counter-
rotating terms (CRTs) and the A2 terms from the full
Hamiltonian, as shown in Figs. 22a-d together with ex-
perimental data. From the perfect agreement between
experiment and theory shown in Fig. 4a, deviations ap-
pear when either the CRTs or the A2 terms are removed.
By comparing Figs. 22a and b, one can confirm that the
A2 terms produce an overall blue-shift for both polari-
ton branches and the CRI mode. On the other hand,
through comparison of Figs. 4a and c, one can confirm
that the CRTs only affect the CRI mode, producing the
vacuum Bloch-Siegert shift. It is important to note that
one of the goals of cavity QED studies using semicon-
ductor QWs –or condensed matter systems in general– is
to search for cooperative effects and new ground states.
To this aim, adaptation of quantum optical concepts and
tools in condensed matter physics is an emerging sub-
ject of research (Cong et al., 2016; Li et al., 2018a),
where Hamiltonians traditionally used in atomic quan-
tum optics must be modified through the incorporation
of many-body effects and dispersions of collective excita-
tions (Dicke, 1954; Hopfield, 1958).

One peculiar aspect of ultrastrong light-matter cou-
pling in a cavity is the conspicuous absence of a strong
external light field in the problem. In other words, no
strong field is needed to induce strong-field physics. Mat-
ter placed inside a cavity nonperturbatively couples with
the vacuum fluctuation field of the cavity to form polari-
tons with VRS comparable to the original matter and
photon energies. This is a highly unusual situation for
a nonlinear optical process, which would ordinarily in-
crease with increasing strength of an applied light field.
This aspect of USC in a cavity allows one to study USC
in unusual ways, sometimes even without using light. For
example, electronic transport properties, such as the elec-
trical conductivity and Hall coefficient, are expected to
be affected by the presence of USC in a quantum Hall sys-
tem (Bartolo and Ciuti, 2018; Hagenmüller et al., 2010).
The conductivity of a molecular crystal inside a cavity
has indeed been observed to be enhanced by strong cou-
pling with a plasmonic mode (Orgiu et al., 2015), and a
general theoretical treatment of charge transport in the
USC regime has recently been formulated (Hagenmüller
et al., 2017, 2018). Most recently, Paravicini-Bagliani

et al. (Paravicini-Bagliani et al., 2018) demonstrated the
crucial role played by the matter component of polari-
tons in the USC regime through magnetotransport mea-
surements on a 2DEG embedded in a metamaterial cav-
ity. They showed that the DC resistivity of the 2DEG
is substantially modified by the USC to the cavity pho-
tons without external irradiation. This observation is
consistent with recent theoretical predictions of vacuum-
induced modifications of resistivity. (Bartolo and Ciuti,
2018; Hagenmüller et al., 2010; Hagenmüller et al., 2017,
2018).

C. Hybrid quantum systems

In Sec. III.A and III.B, we presented the main achieve-
ments in experimental USC regimes in the fields of super-
conducting quantum circuits and semiconductor quan-
tum wells, respectively. This section reviews quantum
systems of hybrid nature where ultrastrong couplings
have also been demonstrated. In these systems, the mag-
nitude of the coupling originates from a collective degree
of freedom which is the result of an ensemble of individ-
ual systems coupling to the same cavity mode. In such a
configuration, a typical scaling of

√
N is obtained (Dicke,

1954; Yamamoto and Imamoğlu, 1999), with N being the
number of systems participating in the collective degree
of freedom. The same scaling is found for intraband tran-
sitions in semiconductor QWs (see Sec. III.B).

In particular, the systems described in this section
consist of molecular aggregates in optical microcavities,
microcavity exciton polaritons in unconventional semi-
conductors with large binding energies and oscillator
strengths, and magnons in magnetic materials coupled
to the magnetic field of a microwave cavity. These
cases combine quantum systems of very distinct nature,
and therefore fall into the category of hybrid systems.
Technically speaking, the previous section on conven-
tional III-V semiconducting quantum wells already pre-
sented hybrid quantum systems, i.e., intersubband po-
laritons (Sec. III.B.1) and inter-Landau-level polaritons
(Sec. III.B.2). This section therefore covers topics of po-
laritons in ultrastrong coupling regimes in systems other
than traditional semiconductor quantum wells.

1. Molecules in optical cavities

The influence of cavity modes on the radiative proper-
ties of quantum emitters such as molecules has been the
object of study since the early works of Purcell (Purcell,
1946). In more recent times, the strong coupling regime
was reached with ensembles of molecules coupling to a
single mode of an optical microcavity (Holmes and For-
rest, 2004; Lidzey et al., 1998). A key element to maxi-
mize the coupling strength was the discovery of molecules
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with a large enough electric dipole coupling to the electric
field of the cavity mode.

The electric dipole energy of interaction between an
ensemble of molecules and a cavity mode can be calcu-
lated from (George et al., 2015)

~g = d

√
~ω

2ε0Vm
. (27)

Here, d is the total electric dipole moment of the molec-
ular ensemble and is therefore proportional to

√
N ,

d = d0

√
N with d0 being the electric dipole of a single

molecule. ε0 is the vacuum permittivity, and Vm is the
cavity mode volume. The square root factor in Eq. (27)
corresponds to the r.m.s. electric field in the ground state
of the cavity mode.

The first demonstration of a molecular ensemble ultra-
strongly coupled to a single mode of a microcavity was
carried out by Schwarz et al. (Schwartz et al., 2011). The
experiment consisted of a PMMA (polymethyl methacry-
late) matrix sputtered on both sides by a thin Ag layer in
a Fabry-Pérot configuration, resulting in a low-Q cavity.
The PMMA matrix was filled with photochromic spiropy-
ran (SPI) molecules (10, 30-dihydro-10, 30, 30-trimethyl-
6-nitrospiro[2H-1-benzopyran-2, 20-(2H)-indole]). These
molecules can undergo photoisomerization between a
transparent SPI form and a colored merocyanine (MC)
form. Schwarz et al. observed that molecules in the SPI
form were not coupling to the cavity mode. As shown
in Fig. 23, upon ultraviolet illumination, a transition be-
tween SPI and MC forms was induced, the latter having
a strong dipolar coupling to the cavity mode. This was
observed as a large mode-splitting in the cavity trans-
mission, indicating strong coupling. With longer illumi-
nation, more molecules transitioned and the value of ~g
reached up to 357 meV, being 16.2% of the cavity reso-
nance and well in the USC regime. In later work (George
et al., 2015), other molecules, such as TDBC, BDAB, and
fluorescenin, were observed to yield g/ω values of 13, 24,
and 27% of the cavity resonance, respectively.

In a more recent study, the vibrational dipolar strength
of a molecular liquid was also shown to simultaneously ul-
trastrongly couple to several modes of a Fabry-Pérot cav-
ity in the infrared (George et al., 2016). The molecules
chosen for the study were iron pentacarbonyl (Fe(CO)5)
and carbon disulphide (CS2), both showing very strong
oscillator strength, which was key to the successful at-
tainment of large coupling strengths to the cavity modes.
This work may be important in molecular chemistry
as vibrational strong coupling could be used to control
chemical reactions given the role played by vibrations in
the process.

Finally, it is also worth mentioning that in a recent
study strong coupling (g/κ ∼ 0.2) was achieved in a sin-
gle molecule level (Benz et al., 2016). Benz and coworkers
demonstarted that individual molecules can be trapped
inside the gap of a plasmonic nanoassembly that localizes

FIG. 23 (Color online) USC achieved with a molecular en-
semble in a Fabry-Pérot cavity. By shining ultraviolet (UV)
light the molecules change from Spiropyran (SP) to Merocya-
nine (MC) form. The latter displays a large dipole moment
which couples to the cavity electromagnetic field all the way
up to the USC regime. (a) Cavity absorption spectrum; (b)
cavity transmission spectroscopy with no UV illumination;
(c) cavity transmission for varying exposure times. Traces
are offset for clarity. Mode splitting increases as the UV light
exposes the molecules and closes back with infrared radiation
that returns the molecules into the SP state demonstrating
the reversibility of the process (Schwartz et al., 2011).

light to volumes well below 1 nm3 (“picocavities”). Such
extreme optical confinement yielded a factor of 106 en-
hancement of optomechanical coupling between the pico-
cavity field and vibrations of individual molecular bonds.

2. Microcavity exciton polaritons

As described in Section III.B, microcavity exciton po-
laritons (MEPs) in semiconductor QWs have long been
studied as a model system for investigations of solid-
state cavity QED phenomena (Deng et al., 2010; Gibbs
et al., 2011; Khitrova et al., 1999; Skolnick et al., 1998;
Weisbuch et al., 1992). However, MEPs based on Wan-
nier excitons in inorganic semiconductors, such as GaAs
QWs, have remained in the strong coupling regime, typ-
ically with g/ω < 10−2, far from the USC and DSC
regimes. Wannier excitons in other traditional inorganic
semiconductors with larger exciton binding energies (and
thus larger band gaps, effective masses, and oscillator
strengths) than GaAs, including GaN, CdTe, and ZnO,
have been utilized to achieve larger values of g/ω up to
∼0.02; see Table III.

Frenkel excitons (i.e., excitons with Bohr radii of
the same order as the size of the unit cell) in or-
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Reference Material Exciton Temperature 2~g ~ω g/ω Notes

type (meV) (eV) (%)

(Weisbuch et al., 1992) GaAs Wannier 20 K 5 1.58 0.2 QWs

(Bloch et al., 1998) GaAs Wannier 77 K 19 1.62 1.2 QWs

(Deng et al., 2002) GaAs Wannier 4 K 15 1.61 0.46 QWs

(Bellessa et al., 2004) J aggregates Frenkel RT 180 2.1 4.3 Plasmon-exciton coupling

(Kasprzak et al., 2006) CdTe Wannier 5 K 26 1.68 0.77 QWs

(van Vugt et al., 2006) ZnO Wannier RT 100 3.3 1.5 Nanowires

(Christmann et al., 2008) GaN Wannier RT 50 3.64 0.7 QWs

(Guillet et al., 2011) ZnO Wannier 120 K 130 3.36 1.9 Bulk

(Wei et al., 2013) J aggregates Frenkel RT 400 2.27 8.8

(Kéna-Cohen et al., 2013) TDAF Frenkel RT 1000 3.534 14

(Gambino et al., 2014) Squaraine Frenkel RT 1120 2.07 27

(Liu et al., 2015) MoS2 Wannier RT 46 1.87 1.2

(Flatten et al., 2016) WS2 Wannier RT 70 2 1.75

(Liu et al., 2016) MoS2 Wannier 77 K 116 1.87 3 Plasmon-exciton coupling

(Graf et al., 2016) SWCNTs Wannier RT 110 1.24 4.4 (6,5)-enriched

(Brodbeck et al., 2017) GaAs Wannier 20 K 17.4 1.61 1.1 QWs, g/Ry∗ = 0.64

(Gao et al., 2018) SWCNTs Wannier RT 329 1.24 13.3 (6,5)-enriched & aligned

TABLE III Experimental observations of strong and ultrastrong light-exciton coupling in various microcavity exciton polariton
systems. QW = quantum well. ~g = coupling strength. 2~g = vacuum Rabi splitting. ~ω = exciton resonance photon energy.
Ry∗ = exciton binding energy. SWCNTs = single-wall carbon nanotubes. TDAF = 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-
yl]-9,9-di(4-methylphenyl)fluorene. RT = room temperature, 300 K.

ganic semiconductors (Lidzey et al., 1998) possess large
binding energies and oscillator strengths and have dis-
played larger VRS than Wannier-exciton-based MEPs,
reporting generally larger values of g/ω, as shown in
Table III. In particular, two groups observed giant
VRSs, on the order of 1 eV, in Fabry-Pérot microcavi-
ties filled with 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-
yl]-9,9-di(4-methylphenyl)fluorene (Kéna-Cohen et al.,
2013) and squaraine (Gambino et al., 2014), respectively.
Representative spectra are shown in Fig. 24. The corre-
sponding g/ω values are 0.14 and 0.27, respectively, in-
dicating that these systems are in the UCS regime.

Moreover, nanomaterials with large binding energy
Wannier excitons have recently emerged, including atom-
ically thin transition metal dichalcogenide layers (Flatten
et al., 2016; Liu et al., 2016, 2015) and single-wall carbon
nanotubes (SWCNTs) (Graf et al., 2017, 2016). These
novel materials provide a platform for studying strong-
coupling physics under extreme quantum confinement.
In particular, one-dimensional (1D) excitons in SWCNTs
have enormous oscillator strengths, revealing a very large
VRS exceeding 100 meV in microcavity devices contain-
ing a film of single-chirality SWCNTs (Graf et al., 2016);
the VRS showed a g ∝

√
N behavior, where N is the

number of dipoles (i.e., excitons in the present case), ev-
idencing cooperative enhancement of light-matter cou-
pling (Dicke, 1954; Zhang et al., 2016a), as shown in
Fig. 25(a). Furthermore, Graf and coworkers have re-
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ABSTRACT: Exciton-polaritons are bosonic quasiparticles that
arise from the normal mode splitting of photons in a microcavity
and excitons in a semiconductor material. One of the most
intriguing extensions of such a light−matter interaction is the so-
called ultrastrong coupling regime. It is achieved when the Rabi
frequency (ΩR, the energy exchange rate between the emitter and
the resonant photonic mode) reaches a considerable fraction of
the emitter transition frequency, ω0. Here, we report a Rabi
energy splitting (2ℏΩR) of 1.12 eV and record values of the
coupling ratio (2ΩR/ω0) up to 0.6-fold the material band gap in
organic semiconductor microcavities and up to 0.5-fold in
monolithic heterostructure organic light-emitting diodes working
at room temperature. Furthermore, we show that with such a large
coupling strength it is possible to undress the exciton homogeneous linewidth from its inhomogeneous broadening, which allows
for an unprecedented narrow emission line (below the cavity finesse) for such organic LEDs. The latter can be exploited for the
realization of novel monochromatic sources and near-IR organic emitting devices.
KEYWORDS: polaritons, light−matter interactions, Rabi splitting, ultrastrong coupling, organic microcavities,
organic light-emitting diodes

Light−matter interaction in the strong coupling (SC)
regime is a reversible process in which a dipole, optically

coupled with a resonator, absorbs and reemits a photon before
losses take place. The rate at which this exchange occurs is
called vacuum Rabi frequency (ΩR). Under such a regime new
hybrid light−matter states, called polaritons, are formed, which
are the result of the splitting of the two normal modes of the
system. These bosonic quasi-particles, a mixture of excitons and
photons, are particularly interesting for their very low mass,
easy optical control, and the possibility to show Bose−Einstein
condensation1,2 at high temperatures.3 Polaritons have also
shown very intriguing superfluid related phenomena4,5 and
quantized hydrodynamics effects6,7 and could be exploited for
the realization of all-optical circuits8 and photonic quantum
devices.9 Recently a new regime of cavity quantum electro-
dynamics (cavity-QED), where the vacuum Rabi frequency
becomes an appreciable fraction of the unperturbed frequency
of the system, has been experimentally reached.10 In this so-
called ultrastrong coupling (USC)11,12 regime the routinely
invoked rotating wave approximation (RWA) is no longer

applicable, and the antiresonant terms significantly change the
standard cavity-QED scenarios.13−18

A key parameter that gives an indication of the effective
coupling strength is the normalized coupling factor g = 2ℏΩR/
ℏω0, where 2ℏΩR is the Rabi energy splitting, i.e., the minimum
energy difference between the two new hybrid states, and ℏω0
is the material transition energy. When the Rabi energy is a
significant fraction of the material transition energy, i.e., g is
larger than 20%, the USC features start to manifest.15 To this
purpose it is needed to minimize ω0 or maximize ΩR. In the
first case, it is possible to use small energy band gap materials,
such as in the THz spectral region.10,19,20 Recently remarkable
couplings have been obtained but at very low working
temperatures,10,20 which is a concern for the development of
cost-effective photonic devices. Another way to increase the
coupling, given that ΩR is proportional to ( f N/V)1/2, is to act
on the dipole oscillator strength f, the number of dipoles
coupled to the cavity N, or the photonic modal volume V.
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LP branch and their subsequent relaxation via the LP photon 
component. Despite the structured emission of the bare TDAF 
PL, the polariton PL always exhibits a clear maximum at the 
bottom of the LP branch suggesting some form of non-radiative 
relaxation. [  25  ]  The counts have been normalized by the absorbed 
pump fl uence and it can be seen that the maximum intensity is 
comparable for both cavities despite the signifi cantly different 
detunings between the bare exciton and photon components of 
the cavities. Because the pump energy is matched to that of the 
reservoir, no PL is observed from the upper polariton branch. 
Indeed, scattering into this branch would require the absorp-
tion of phonons with energy much greater than  k b T , which are 
negligibly populated at room temperature.  

 The dispersion relations extracted from the minima in refl ec-
tivity for angles    θ     ≥  15°, and from the maxima in PL for angles 
   θ     <  15°, are plotted together as squares in  Figure    5   for both 
polariton polarizations. The solid lines correspond to a least-
squares fi t to the full Hopfi eld Hamiltonian. [  14  ]  A Rabi splitting, 
!!   ∼  1 eV, is evident, which to our knowledge, is the largest in 
absolute value observed to date.   

  3   .  Theory 

  3.1   .  Ultrastrong Coupling 

 In quantum theory, the strong coupling Hamiltonian can be 
written in terms of the photon and exciton creation operators 
with in-plane wavevector   q  , where  a  q    †  creates a cavity photon at 
frequency   ω  cav  ( q ) and  B  q    †  creates an exciton at frequency   ω  ex (q) :

 

Ĥ0 = !
∑

q

Tex (q ) B†
q Bq + Tcav (q) a†

q aq

−i! (q)/2 B†
q aq − a†

q Bq
)  (1) 

     
where the constant terms have been lumped into the ground 
state energy. This Hamiltonian is easily diagonalized by intro-
ducing polariton operators which are a linear combination of 
the exciton and photon operators. It has the Jaynes-Cummings 
form with the important exception that it contains no anharmo-
nicity due to the presence of  N  bosonic exciton states, where  N  
is the total number of molecules. In this case, the ground state 
remains the exciton and photon vacuum, but the resulting exci-
tations are polaritons. The rotating wave approximation, valid 
if  Ω   <    ω  ex  ,  ω  cav  , is implicit in this form of the Hamiltonian. The 
full Hamiltonian, however, includes anti-resonant interaction 
terms as well as a contribution from  A 2   containing both types 
of terms: [  12–15  ] 

 

Ĥanti = !
∑

q

i! (q )
2

(
aq B−q − a†

q B†
−q

)

 
(2)

      

 
ĤA2 = !

∑

q

Dq

(
a†

q aq + aq a†
q + aq a−q + a†

q a†
−q

)

 (3)      
where D (q ) = !2

/
4 Tex   quantifi es the contribution arising 

from the magnetic vector potential. The full Hamiltonian 
including these terms was diagonalized by Hopfi eld and 

      Figure 3.  Angle-resolved refl ectivity spectra for the 67 nm thick cavity 
measured using TM (a) and TE (b) polarized light shown in increments 
of 10°. For each increment, the absolute spectra have been shifted down 
(up) by 2% for TE (TM) polarized light. The calculated refl ectivity using 
the measured anisotropic refractive index of TDAF is shown in (c) and (d) 
for TM and TE polarized light, respectively. As expected, linear dispersion 
theory correctly predicts both the position and depth of the polaritonic 
resonances. 

      Figure 4.  Contour plots of the angle-resolved PL for the 67 nm (a,b) and 
78 nm (c,d) thick microcavities. In both cases, the TE (a,c) and TM (b,d) 
polarized emission was measured. Note that the ordinate axis has been 
rescaled, as compared to Figure  2 , to emphasize the dispersion. The 
observed peak positions are in excellent agreement with those obtained 
from refl ectivity. The counts have been normalized to the absorbed pump 
power and are shown, for both detunings, to be comparable. In all cases, 
the strongest signal is observed from the bottom of the LP branch, 
despite the structured nature of the bare TDAF PL. 

thereby avoiding any complications associated with bimo-
lecular annihilation. At this wavelength, corresponding to 3.5 
eV photon energy, the exciton reservoir is directly populated. 
The observed PL corresponds to excitons scattered into the 

Adv. Optical Mater. 2013, 1, 827–833

(a) (b)

FIG. 24 (Color online) Observation of giant vacuum Rabi
splitting (∼1 eV) in microcavity exciton polariton systems
based on Frenkel-type excitons. (a) Angle-resolved reflec-
tivity spectra for a 67-nm-thick cavity containing a thin
film of 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-
methylphenyl)fluorene measured using TM (upper panel) and
TE (lower panel) polarized light. Reproduced (adapted) with
permission from (Kéna-Cohen et al., 2013). (b) Contour
plots of angle-resolved transmission spectra for a 140-nm-
thick microcavity entirely filled with squaraine. Reproduced
(adapted) with permission from (Gambino et al., 2014).

cently demonstrated electrical pumping and tuning of
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exciton polaritons in SWCNTs (Graf et al., 2017), mak-
ing impressive progress toward creating polaritonic de-
vices (Sanvitto and Kena-Cohen, 2016).

Most recently, Gao et al. have developed a unique ar-
chitecture in which 1D excitons in an aligned SWCNT
film interact with cavity photons in two distinct man-
ners (Gao et al., 2018). The system reveals ultrastrong
coupling (VRS up to 329 meV) for probe light with po-
larization parallel to the nanotube axis, whereas VRS
is absent for perpendicular polarization. Between these
two extreme situations, the coupling strength is contin-
uously tunable through facile polarization rotation; see
Fig. 25(b). Figure 25(c) shows complete mapping of po-
lariton dispersions, which demonstrates the existence of
exceptional points (EPs), spectral singularities that lie
at the border of crossing and anticrossing; the points
bounded by a pair of EPs formed two equienergy arcs
in momentum space, onto which the upper and lower
polariton branches coalesced. This unique system with
on-demand USC can be used for exploring exotic topo-
logical properties (Yuen-Zhou et al., 2014, 2016) and ex-
ploring applications in quantum technologies. Similar to
(Graf et al., 2016), the VRS exhibited cooperative en-
hancement, proportional to the square root of the film
thickness, as shown in Figs. 25(d) and (e). Figure 25(d)
shows transmittance spectra for the three samples with
different thicknesses; the VRS for the thickest sample is
329 ± 5 meV, corresponding to g/ω = 0.13, the highest
value for MEPs based on Wannier excitons.

3. Magnons in microwave cavities

In recent years, a new platform of coherent light-matter
interaction has been developed by combining magnetic
fields from cavity photons and spin waves in magnetic
materials (Huebl et al., 2013; Tabuchi et al., 2014; Zhang
et al., 2014b). This quantum hybrid system consists in
microwave photons residing in a resonant cavity, which
interact with a spin wave in a ferro- (ferri-) magnetic ma-
terial, as shown in Fig. 26(a). At the fundamental level,
a microwave photon interacts with a quantum of exci-
tation of such a spin wave, known as a magnon. This
emerging platform of quantum magnonics is designed
for strong magnon-photon interactions for applications
in quantum information such as frequency conversion,
quantum memories and quantum communication (Zhang
et al., 2016b).

The prototypical system used in these experiments is
the ferrimagnetic insulator yttrium iron garnet Y3Fe5O8

(YIG). This material exhibits spin waves with the largest
quality factors among all magnetic materials explored so
far, which explains why it is the most widely used. YIG
is often employed in spherical form, with its fundamental
mode being the Kittel mode in which all spins oscillate
collectively in phase.

The coupling strength g between the Kittel and cavity
modes is proportional to the square root of the number of
participating spins, g = g0

√
N , where g0 is the coupling

strength of a single Bohr magneton to a cavity photon.
The r.m.s. magnetic field generated in the cavity in its
ground state is given by 〈B̂2〉1/2 =

√
µ0~ω/2Vc, with ω

being the cavity frequency, Vc the mode volume occupied
by the cavity mode and µ0 the vacuum permeability. The
single-spin coupling strength is calculated to be (Tabuchi
et al., 2014; Zhang et al., 2014b)

g0/2π = η
γ

2π

√
~ωµ0

2Vc
. (28)

Here, η ≤ 1 describes the spatial overlap and polarization
matching conditions between the microwave field and the
magnon mode (Zhang et al., 2014b). γ = 2π×28 GHz/T
is the electron gyromagnetic ratio.

In the first demonstration of strong coupling between
magnons and photons (Tabuchi et al., 2014), a collec-
tive coupling strength in the range of 100s of MHz was
observed using a cavity of 10.7 GHz resonant to a fer-
romagnetic resonance mode. The

√
N scaling was fur-

ther demonstrated by using spheres of different volume
(and therefore of larger number of spins). In a paral-
lel experiment (Zhang et al., 2014b), real-time magnon-
photon oscillations were observed at room temperature
(see Fig. 26(b)-(d)). The same authors studied the scal-
ing properties of the coupling constant [Eq. (28)] to max-
imize the interaction strength [see Fig. 26(e)-(f)]. By
using a smaller cavity to enhance its frequency and a
larger sphere containing more spins, a coupling rate of
g/2π = 2.5 GHz was attained, being g/ω = 0.067 of the
magnon resonance frequency resonant with a cavity of
ω/2π = 37.5 GHz. Therefore, the system is approaching
the perturbative USC regime, being the only result so far
in this field reaching such a high coupling strength.

IV. QUANTUM SIMULATIONS

The previous section gave an overview of the most rel-
evant work in all experimental platforms studying ultra-
strong light-matter interactions. Besides the remarkable
couplings achieved in superconducting quantum circuits
(see Sec. III.A), these platforms have also been used to
explore quantum simulations (Georgescu et al., 2014).
With a quantum simulator, all regimes of coupling be-
tween a qubit and a resonator can be implemented in a
fully tunable and efficient manner. In this respect, some
proposals were put forward in the literature using su-
perconducting circuits, which include the analog quan-
tum simulation of the quantum Rabi model (Ballester
et al., 2012; Felicetti et al., 2015b; Hwang et al., 2015;
Pedernales et al., 2015; Puebla et al., 2017), Dirac equa-
tion physics (Pedernales et al., 2013), the digital-analog
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FIG. 25 (Color online) Single-wall carbon nanotube microcavity exciton polaritons exhibiting ultrastrong coupling. (a) Angle-
resolved reflectivity and photoluminescence spectra for (6,5) SWCNT microcavity excitons polaritons with increasing nanotube
concentrations (from top to bottom) and increasing cavity thickness and detuning from (left to right). Reproduced (adapted)
with permission from (Graf et al., 2016). (b) Transmittance spectra for a cavity containing aligned (6,5) SWCNTs at zero
detuning for various polarization angles from 0◦ to 90◦. (c) Continuous mapping of the dispersion surfaces of the upper polartion
(UP) and lower polartion (LP) for the device in (b). EP: exceptional points. (d) Transmittance spectra for parallel polarization
at zero detuning for devices containing aligned SWCNT films of different thicknesses. The device containing a 64-nm-thick
aligned SWCNT film demonstrates the largest VRS of 329 meV. (e) VRS for parallel polarization at zero detuning versus the

square root of the film thickness, demonstrating the
√
N -fold enhancement of collective light-matter coupling. Reproduced

(adapted) with permission from (Gao et al., 2018).

quantum simulation of the quantum Rabi model (Mez- zacapo et al., 2014), and Dicke physics (Lamata, 2017;
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FIG. 26 (Color online) Strong coupling between magnons and
photons at room temperature. (a) Image of a microwave cav-
ity used in the experiment with an yttrium-iron-garnet (YIG)
sphere positioned near a side wall. Simulations show the mag-
netic field profile of the mode coupling to the magnons in
the YIG sphere. The cavity is designed to yield maximum
magnetic field amplitude at the position of the sphere; (b)
avoided-level crossing observed at room temperature, indicat-
ing strong magnon-photon interactions. The signal displays
reflection off the cavity port; (c) real-time, resonant magnon-
photon dynamics being driven by an externally applied mi-
crowave field; (d) cross section of trace indicated in (c); (e)
scaling of coupling strength as function of cavity mode fre-
quency. The star indicates a device in the USC regime; (f)
spectrum of device exhibiting USC (Zhang et al., 2014b).

Mezzacapo et al., 2014), as well as bosonic modes in
USC regime (Fedortchenko et al., 2017). In this section,
we give an overview of several of these proposals. Ex-
perimental realizations of the analog (Braumüller et al.,
2017; Lv et al., 2018) and the digital-analog quantum
simulation of the quantum Rabi model (Langford et al.,
2017) have recently been carried out, as well as the USC
regime of bosonic modes (Marković et al., 2018). In ad-
dition, an experimental realization of a classical simula-
tion of the quantum Rabi model was performed in pho-
tonic chips (Crespi et al., 2012). Moreover, an analysis
of the quantum simulation of the Dicke model with cav-
ity QED was put forward (Dimer et al., 2007; Grimsmo

and Parkins, 2013), and an early experiment on Dicke
physics in this platform was performed (Baumann et al.,
2010). We want to point out that sections IV.A to IV.C
analyze quantum simulations of USC and DSC models,
while Sec. IV.D deals with analog quantum simulations
employing devices already in the USC and DSC regimes.

In Fig. 27, we summarize the different regimes of the
QRM that are reproduced by an analog or a digital-
analog quantum simulator, following Pedernales et al.
(Pedernales et al., 2015).
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FIG. 27 (Color online) Different parameter regimes of the
quantum Rabi model (QRM). Here, g is the light-matter
coupling strength, ωR represents the resonator frequency,
and ωR0 the qubit energy splitting, according to the QRM.
(1) Jaynes-Cummings (JC) regime: g � {|ωR|, |ωR0 |} and
|ωR−ωR0 | � |ωR+ωR0 |. (2) Anti-JC regime: g � {|ωR|, |ωR0 |}
and |ωR − ωR0 | � |ωR + ωR0 |. (3) Two-fold dispersive regime:
g < {|ωR|, |ωR0 |, |ωR − ωR0 |, |ωR + ωR0 |}. (4) USC regime:
|ωR| < 10g, (5) DSC regime: |ωR| < g, (6) Decoupling
regime: |ωR0 | � g � |ωR|. (7) The intermediate regime
(|ωR0 | ∼ g � |ωR|) is still open to analysis. The (red)
vertical central line corresponds to the regime of the Dirac
equation. Colours indicate the different regimes of the QRM,
colour degradation denotes transitions between different re-
gions (Pedernales et al., 2015).

A. Analog quantum simulation of the quantum Rabi model

1. Quantum Rabi model with superconducting circuits and the
Jaynes-Cummings model

The first analog quantum simulation of the USC/DSC
dynamics was put forward by Ballester et al. (Ballester
et al., 2012). The proposed simulator consists of a super-



34

conducting qubit coupled to a cavity mode in the strong
coupling regime, with a two-tone orthogonal drive ap-
plied to the qubit. It was shown through analytical cal-
culations and numerics that the method can access all
regimes of light-matter coupling, including USC (0.1 .
g/ω . 1, with g/ω the ratio of the coupling strength
over the resonator frequency) and DSC (Casanova et al.,
2010b) (g/ω & 1). This scheme allows one to re-
alize an analog quantum simulator for a wide range
of light-matter coupling regimes (Braak, 2011) in plat-
forms where those regimes are unattainable from first
principles. This includes, among others, the simula-
tion of Dirac equation physics, the Dicke/spin-boson
models, the Kondo model, and the Jahn-Teller instabil-
ity (Meaney et al., 2010). We will use the language of
circuit QED (Blais et al., 2004) to describe the method,
although it can also be implemented in microwave cavity
QED (Solano et al., 2003).

Let us consider a physical system consisting of a super-
conducting qubit strongly coupled to a transmission line
microwave resonator. Working at the qubit degeneracy
point, the Hamiltonian reads (Blais et al., 2007)

Ĥ =
~Ω

2
σ̂z + ~ωâ†â− ~gσ̂x(â+ â†), (29)

where Ω is the qubit frequency, ω is the photon frequency,
and g denotes the coupling strength. Moreover, â and
â† stand for the annihilation and creation operators for
the field mode of the photon, while σ̂x = σ̂+ + σ̂− =
|e〉〈g| + |g〉〈e|, σ̂z = |e〉〈e| − |g〉〈g|, where |g〉 , |e〉 de-
note ground and excited states of the superconducting
qubit, respectively. One can apply the rotating-wave ap-
proximation (RWA) in a typical circuit QED implemen-
tation to further simplify this Hamiltonian. More specif-
ically (Zueco et al., 2009), if {|ω − Ω|, g} � ω + Ω, then
it can be expressed as

Ĥ =
~Ω

2
σ̂z + ~ωâ†â− ~g(σ̂+â+ σ̂−â

†), (30)

which is formally equivalent to the well-known Jaynes-
Cummings model (JC) of cavity QED. By performing
the RWA, one is neglecting counter-rotating terms σ̂−â
and σ̂+â

†, producing in this way a Hamiltonian [Eq. (30)]
where the number of excitations is conserved.

The Hamiltonian in Eq. (30) will be the basis for our
derivations. Consider now two classical microwave fields
driving the superconducting qubit. Adding the drivings
to Eq. (30) results in the following Hamiltonian

Ĥ =
~Ω

2
σ̂z + ~ωâ†â− ~g(σ̂+â+ σ̂−â

†)

−~Ω1(eiω1tσ̂−+e−iω1tσ̂+)−~Ω2(eiω2tσ̂−+e−iω2tσ̂+),
(31)

where ωj and Ωj denote the frequency and amplitude
of the jth driving. We point out that the orthogonal

drivings interact with the qubit in a similar manner as the
microwave resonator field. To obtain Eq. (31), we have
assumed a RWA not only applied to the qubit-resonator
coupling term, but also to the orthogonal drivings.

We then write Eq. (31) in a frame rotating with the
first driving frequency ω1, namely,

ĤL1 = ~
Ω− ω1

2
σ̂z + ~(ω − ω1)â†â

− ~g(σ̂+â+ σ̂−â
†)− ~Ω1(σ̂− + σ̂+)

− ~Ω2(ei(ω2−ω1)tσ̂− + e−i(ω2−ω1)tσ̂+). (32)

This transformation permits mapping the original first
driving Hamiltonian into a time independent one ĤL1

0 =
−~Ω1(σ̂− + σ̂+), while leaving the number of excitations
unperturbed. We consider this term to be the most
sizeable and treat the rest perturbatively by transform-
ing into a rotating frame with respect to ĤL1

0 , ĤI(t) =

eiĤ
L1
0 t/~

(
ĤL1 − ĤL1

0

)
e−iĤ

L1
0 t/~. By employing the ro-

tated qubit basis |±〉 = (|g〉 ± |e〉) /
√

2, we obtain

ĤI(t) = −~Ω− ω1

2

(
e−i2Ω1t |+〉〈−|+ h.c.

)
+ ~(ω − ω1)â†â− ~g

2
({|+〉〈+| − |−〉〈−|

+e−i2Ω1t |+〉〈−| − ei2Ω1t |−〉〈+|
}
â+ h.c.

)
− ~Ω2

2

({
|+〉〈+| − |−〉〈−| − e−i2Ω1t |+〉〈−|

+ei2Ω1t |−〉〈+|
}
ei(ω2−ω1)t + h.c.

)
. (33)

The external driving parameters can be tuned in such a
way that ω1−ω2 = 2Ω1, allowing us to select the resonant
terms in the time-dependent Hamiltonian. Therefore, if
the first driving Ω1 is relatively strong, one can approx-
imate the above expression by an effective Hamiltonian
which is time independent as

Ĥeff = ~(ω − ω1)â†â+
~Ω2

2
σ̂z −

~g
2
σ̂x
(
â+ â†

)
.(34)

Notice the similarity between the original Hamiltonian
(29) and Eq. (34). Even though the coupling g is fixed in
Eq. (34), one can still tailor the relative size of the rest of
parameters by tuning frequencies and amplitudes of the
drivings. If one can reach Ω2 ∼ (ω−ω1) ∼ g/2, the orig-
inal system dynamics will emulate those of a qubit cou-
pled to a bosonic mode with a relative coupling strength
beyond the SC regime, reaching the USC/DSC regimes.
The coupling strength attained with the effective Hamil-
tonian (34) can be estimated by the ratio geff/ωeff , where
geff ≡ g/2 and ωeff ≡ ω − ω1.

2. Quantum Rabi model in the Brillouin zone with ultracold
atoms

In the following, we present a technique to implement
a quantum simulation of the QRM for unprecedented val-



35

ues of the coupling strength using a system of cold atoms
freely moving in a periodic lattice. An effective two-level
quantum system of frequency Ω can be simulated by the
occupation of lattice Bloch-bands, while a single bosonic
mode is implemented with the oscillations of the atom
in a harmonic optical trap of frequency ω that confines
atoms within the lattice. We will see that highly non-
trivial dynamics may be feasibly implemented within the
validity region of this quantum simulation.

At sufficiently low density, the dynamics of the neutral
atoms loaded in an optical lattice can be described by

the single particle Hamiltonian Ĥ = p̂2

2m + V
2 cos (4k0x̂) +

mω2

2 x̂2, where p̂ = −i~ ∂
∂x , m is the mass of the atom,

ω the frequency of the harmonic trap, while V and 4k0

are the depth and wave vector of the periodic poten-
tial. Using the Bloch functions, we can identify a dis-
crete quantum number, the band index nb, and a con-
tinuous variable, the atomic quasi-momentum q. Fixing
our attention to the bands with the two lowest nb, the
Hamiltonian can be recast into

Ĥ =
1

2m

(
q2 + 4~k0q 0

0 q2 − 4~k0q

)
+
V

4

(
0 1

1 0

)

− mω2~2

2

∂2

∂q2

(
1 0

0 1

)
.

(35)

By analogy to the usual QRM, Ĥ = ~ωâ†â + ~Ω
2 σz +

i~gσx
(
â† − â

)
, we define an effective qubit energy spac-

ing Ω ≡ V
2~ and an effective light-matter interaction

g ≡ 2k0

√
~ω
2m .

The value of the effective coupling strength is intrin-
sically linked to the trap frequency g ∼ √ω, and since
the trap frequency is low (typically kilohertz in actual
experiments) the ratio g/ω is tunable only over a range
of extremely high values, g/ω ∼ 10. However, the tun-
ability of the ratio g/Ω allows us to explore a large region
of parameters at the transition between resonant and dis-
persive qubit-oscillator regimes. Indeed, the value of Ω
can be made large enough such that the qubit free Hamil-
tonian becomes the dominant term, or small enough to
make its energy contribution negligible.

Given that only very high values of the ratio g/ω are
accessible, the RWA can never be applied and the model
cannot be implemented in the JC limit. Interesting dy-
namics at the crossover between the dispersive and reso-
nant DSC regimes can be observed for values of param-
eters unattainable so far with available implementations
of the QRM. However, the analogy with the QRM breaks
down when the value of the simulated momentum exceeds
the borders of the first Brillouin zone. When this is the
case, the model represents a generalization of the QRM
in periodic phase space.

Both the momentum (and correspondingly the state
of σ̂x), and the atomic cloud position can in principle be

measured with absorption imaging techniques. For the
former, standard time-of-flight imaging may be used, as
performed by simultaneously deactivating both the lat-
tice beams and the dipole trapping potential and then
detecting the atoms in the far field after a given free ex-
pansion time. While the reconstruction in this way is
possible with high precision, achieving the required spa-
tial resolution for an in situ position detection of the
oscillation is experimentally challenging. Fig. 28 shows
experimentally accessible quantities like the distribution
P(p) = |〈p|ψ(t)〉|2 of the atomic physical momentum p̂,
for different evolution times. The momentum distribu-
tion can be experimentally obtained using time-of-flight
measurements, and gives a clear picture of the system
dynamics during the quantum simulation of the QRM.
The cloud is initialised in the momentum eigenstate,
|q = 0〉|nb = 0〉. When the periodic lattice strength
V is large enough, the dynamics are dominated by the
coupling between |nb = 0〉 and |nb = 1〉. This case cor-
responds to the dispersive DSC regime. Otherwise, the
dynamics are dominated by the harmonic potential, and
the evolution resembles the QRM in the DSC regime.

An alternative implementation of the QRM with cold
atoms has been proposed using atomic Zeeman states
and vibrational modes of a trapping atomic potential.
The coupling is mediated by a suitable fictitious mag-
netic field pattern and allows accessing a wide parameter
regime of the QRM (Schneeweiss et al., 2018).

FIG. 28 (Color online) Quantum Rabi model using ultra-cold
atoms. The figure shows the distribution P(p) = |〈p|ψ(t)〉|2
of the atomic physical momentum p̂, for different evolution
times. ω0 corresponds to ω of the main text. For the dis-
persive DSC regime (upper panel), the parameters are given
by g/ω = 7.7 and g/Ω = 0.43. In this case, the initial wave-
function is transformed back and forth between two distri-
butions centered around the states |p = ±2~k0〉. For the
resonant DSC regime (lower panel), g/ω = 10 and ω = Ω. In
this case, the system is continuously displaced in momentum
space up to a maximum value of the momentum (Felicetti
et al., 2017).
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B. Analog quantum simulation of Dirac physics

There exist strong connections between the QRM and
the Dirac equation (Lamata et al., 2007; Pedernales et al.,
2013). Therefore, simulating the physics of the Dirac
equation is important to connect to physics of the USC
and DSC regimes. We review here a particular method
employing superconducting quantum circuits. We want
to point out some crucial differences with regards to pre-
vious implementations of the Dirac equation Klein para-
dox in other quantum platforms, particularly ion traps
(Gerritsma et al., 2010). Using the method described
here, the dynamics of a spin-1/2 relativistic particle are
emulated by two interacting degrees of freedom from two
different subsystems, namely, a standing wave in a trans-
mission line resonator and a superconducting qubit, none
of them representing real motion. The position and mo-
mentum of the simulated Dirac particle are codified in
the field quadratures. Contrary to the ion trap simu-
lator (Gerritsma et al., 2010), this approach paves the
way for combining cavity fields with quantum propagat-
ing microwaves (Bozyigit et al., 2011; Eichler et al., 2011;
Menzel et al., 2010) in complex quantum network archi-
tectures (Leib et al., 2012).

In the protocol described here one requires a su-
perconducting qubit, e.g., a flux qubit (Paauw et al.,
2009), working at its degeneracy point strongly cou-
pled to an electromagnetic field mode of a transmission
line resonator. The interaction between the two sys-
tems can be described by the JC Hamiltonian (Blais
et al., 2007; Jaynes and Cummings, 1963; Wallraff et al.,
2004). Additionally, we consider three classical external
microwave drivings, two of them transversal to the res-
onator (Ballester et al., 2012) which will only couple to
the qubit, and the third drive coupled longitudinally to
the resonator. The Hamiltonian of the system reads

Ĥ =
~Ω

2
σ̂z + ~ωâ†â− ~g

(
σ̂+â+ σ̂−â

†)
− ~Ω1

(
ei(ωt+ϕ)σ̂− + e−i(ωt+ϕ)σ̂+

)
− ~λ

(
ei(νt+ϕ)σ̂−

+ e−i(νt+ϕ)σ̂+

)
+ ~ξ

(
eiωtâ+ e−iωtâ†

)
, (36)

where σ̂y = i(σ̂− − σ̂+) = i(|g〉〈e| − |e〉〈g|) and σ̂z =
|e〉〈e| − |g〉〈g|, with |g〉, |e〉 denoting the ground and ex-
cited qubit states, respectively. Here, ~ω and ~Ω corre-
spond to photon and qubit uncoupled energies, whereas
g stands for the qubit-photon coupling strength. The
two orthogonal microwave drivings have amplitudes Ω1,
λ, phase ϕ, and frequencies ω and ν. Additionally, the
longitudinal driving has amplitude ξ and frequency ω.
Notice that two of the drivings are chosen to be resonant
with the resonator mode. We also assume that Ω = ω,
i.e. the qubit and the resonator are on resonance as well.

This protocol is based on two transformations. First,
the Hamiltonian in Eq. (36) can be transformed into the

rotating frame with respect to the resonator frequency ω

ĤL1 = −~g
(
σ̂+â+ σ̂−â

†)
− ~Ω1

(
eiϕσ̂− + e−iϕσ̂+

)
+ ~ξ

(
â+ â†

)
− ~λ

(
ei[(ν−ω)t+ϕ]σ̂− + e−i[(ν−ω)t+ϕ]σ̂+

)
. (37)

Secondly, the Hamiltonian obtained is transformed
into another frame rotating with respect to the Hamilto-
nian ĤL1

0 = −~Ω1

(
eiϕσ̂− + e−iϕσ̂+

)
,

ĤI = −~g
2

({
|+〉〈+| − |−〉〈−|+ e−i2Ω1t |+〉〈−|

− ei2Ω1t |−〉〈+|
}
eiϕâ+ h.c.

)
− ~λ

2

({
|+〉〈+| − |−〉〈−| − e−i2Ω1t |+〉〈−|

+ei2Ω1t |−〉〈+|
}
ei(ν−ω)t + h.c.

)
+ ~ξ

(
â+ â†

)
, (38)

where we considered the rotated qubit basis |±〉 =(
|g〉 ± e−iϕ |e〉

)
/
√

2. We now assume ω − ν = 2Ω1 to
simplify the calculation, and also assume the first driv-
ing amplitude Ω1 to be large when compared to the other
Rabi frequencies in Eq. (38). Therefore, we can apply the
RWA, which produces the Hamiltonian

Ĥeff =
~λ
2
σ̂z +

~g√
2
σ̂yp̂+ ~ξ

√
2 x̂, (39)

where ϕ = π/2 and we have made use of the elec-
tromagnetic field quadratures, i.e. x̂ = (â + â†)/

√
2,

p̂ = −i(â − â†)/
√

2, obeying the commutation relation
[x̂, p̂] = i. Note that Ω1 is not present in the effective
Hamiltonian Eq. (39). This is a consequence of deriving
the Hamiltonian in a rotating frame with Ω1 acting as a
large frequency in the strong driving parameter regime.

The Schrödinger dynamics of Eq. (39) are analogous to
those of the 1+1 Dirac equation, where the parameters
~g/
√

2 and ~λ/2 simulate, respectively, the speed of light
and the particle mass. Moreover, we also have an exter-
nal potential Φ = ~ξ

√
2 x̂ which is linear in the particle

position. The simulated dynamics allow one to cover a
wide range of physical regimes within this quantum simu-
lation. We would like to point out that, for fixed coupling
constant g, the simulated mass grows linearly with the
amplitude of the weak driving λ, while the strength of
the potential can be adjusted with the longitudinal driv-
ing amplitude ξ. This is in contrast with respect to the
trapped ion implementation, where one needs a second
ion to simulate the external potential (Casanova et al.,
2010a; Gerritsma et al., 2011). In the case of a massless
particle, λ = 0 and ν = 0, such that ω = 2Ω1 in Eq. (38).

In the superconducting quantum circuit implementa-
tion, the analysis of relativistic quantum features, such as
Zitterbewegung or Klein paradox, should be carried out
by a phase-space description of the electromagnetic field
in the transmission line resonator. The initial quantum
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state of the bosonic degree of freedom of the simulated
Dirac particle may be represented by a wave-packet with
average position 〈x̂0〉 and average momentum 〈p̂0〉,

ψ(x) = π−1/4 exp {i〈p̂0〉x} exp

{
− (x− 〈x̂0〉)2

2

}
.(40)

The wave packet is analogous to the x−quadrature rep-
resentation of an electromagnetic field coherent state∣∣∣ 〈x̂0〉+i〈p̂0〉√

2

〉
= D̂

(
〈x̂0〉+i〈p̂0〉√

2

)
|0〉, where |0〉 is the vacuum

state of the bosonic field, and D̂(α) = exp
{
αâ† − α∗â

}
is the displacement operator.

C. Digital-analog quantum simulation of the quantum Rabi
and Dicke models

The previous two subsections IV.A and IV.B described
analog simulations of different physical models. We will
now review the digital-analog quantum simulation of the
quantum Rabi and Dicke models implemented in a circuit
quantum electrodynamics platform. The simulation em-
ploys only JC dynamics and local interactions (Lamata,
2017; Mezzacapo et al., 2014). We describe how the
rotating and counter-rotating Hamiltonians of the cor-
responding evolution can be straightforwardly imple-
mented using digital techniques. By interleaving the dy-
namics of rotating and counter-rotating Hamiltonians,
the evolution of the quantum Rabi and Dicke models can
be implemented in all parameter regimes of light-matter
coupling. At the end of this section, we illustrate how a
Dirac equation evolution can be achieved in the limit of
negligible mode frequency.

We begin by assuming a generic circuit quantum elec-
trodynamics platform composed of a superconducting
qubit coupled to a transmission line microwave resonator.
This scenario is described by the Hamiltonian (Blais
et al., 2007)

Ĥ = ~ωrâ†â+
~ωq
2
σ̂z + ~g(â†σ̂− + âσ̂+), (41)

where ωr, ωq are, respectively, the resonator and qubit
transition frequencies, g is the qubit-cavity coupling
strength, â† is the creation bosonic operator for the cavity
mode, and σ̂+, σ̂− are raising and lowering spin operators
acting on the qubit.

Let us take a look at the Hamiltonian of the QRM

ĤR = ~ωRr â†â+
~ωRq

2
σ̂z + ~gRσ̂x(â† + â). (42)

It turns out that its evolution can be codified in a super-
conducting qubit platform with available JC interactions
[Eq. (41)] by a digital decomposition. Let us express

!q

!r

!̃

time

1 12
!1

q !1
q!2

q !⇡
q!⇡

q

FIG. 29 (Color online) Frequency diagram of the digital-
analog implementation of the quantum Rabi Hamiltonian. A
superconducting qubit of frequency ωq interacts with a mi-
crowave resonator with transition frequency ωr. The evolu-
tion with Ĥ1,2 in Eqs. (43), (44) are implemented, respec-
tively, with a Jaynes-Cummings interaction (step 1), and
other Jaynes-Cummings dynamics with a different detuning,
interspersed with π pulses (step 2), to transform the second
Jaynes-Cummings evolution onto an anti-Jaynes-Cummings
interaction (Mezzacapo et al., 2014).

Eq. (42) as the sum of two parts, ĤR = Ĥ1 + Ĥ2, with

Ĥ1 =
~ωRr

2
â†â+

~ω1
q

2
σ̂z + ~g(â†σ̂− + âσ̂+), (43)

Ĥ2 =
~ωRr

2
â†â− ~ω2

q

2
σ̂z + ~g(â†σ̂+ + âσ̂−), (44)

where we have considered the qubit frequency in the two
terms in such a way that ω1

q − ω2
q = ωRq . The dynamics

arising from the two Hamiltonians in Eqs. (43), (44) can
be implemented in a standard circuit quantum electro-
dynamics platform that includes the possibility of fast
detuning of the qubit frequency, see Fig. 29. Beginning
with the qubit-resonator Hamiltonian in Eq. (41), we
can transform into a frame which rotates at frequency
ω̃, where an effective interaction Hamiltonian results

H̃ = ~∆̃râ
†â+ ~∆̃qσ̂z + ~g(â†σ̂− + âσ̂+), (45)

with ∆̃r = (ωr − ω̃) and ∆̃q = (ωq − ω̃) /2. Accordingly,

Eq. (45) coincides with Ĥ1 after redefinition of the co-
efficients. The counter-rotating Hamiltonian Ĥ2 can be

realized by local qubit drivings to ˆ̃H, employing a differ-
ent detuning for the qubit frequency,

e−iπσ̂x/2H̃eiπσ̂x/2 = ~∆̃râ
†â− ~∆̃qσ̂z + ~g(â†σ̂+ + âσ̂−).

(46)
By choosing different qubit-resonator detunings in the
two steps, ∆̃1

q and ∆̃2
q, the quantum Rabi Hamiltonian

[Eq. (42)] is simulated by a digital expansion (Lloyd,
1996) by interleaving the different interactions.

In the protocol described here, customary quasi-
resonant JC dynamics with different qubit frequencies are
combined with single-qubit drivings to perform standard
qubit rotations (Blais et al., 2007). This sequence is re-
peated following the digital quantum simulation scheme
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in order to achieve a better fidelity of the quantum Rabi
dynamics.

Note the existence of a direct relationship between
the effective system parameters and the real circuit vari-
ables. The simulated bosonic mode frequency is related
to the resonator detuning ωRr = 2∆̃r, while the effec-
tive two-level system frequency is connected to the qubit
frequency considering the two steps, ωRq /2 = ∆̃1

q − ∆̃2
q.

Finally, the qubit-resonator coupling strength is the same
in both cases, gR = g.

This digital-analog quantum simulation was carried
out in a circuit QED experiment (Langford et al., 2017).

D. Quantum simulation with ultrastrong couplings

In this section, we analyze analog quantum simula-
tor devices in the USC and DSC regimes which are used
to study complex phenomena occurring in real systems,
such as biologically relevant molecular complexes. This
should not be confused with Sec. IV.A.1, dealing with
quantum simulations of models in USC and DSC regimes
employing superconducting quantum simulators in the
strong coupling regime.

1. Jahn-Teller transitions in molecules

Jahn-Teller models describe the interaction of local-
ized electronic states with vibrational modes in crystals
or in molecules (Bersuker and Berskuker, 2006). Certain
molecules contain a degeneracy in their ground state due
to their molecular configuration. A spontaneous symme-
try breaking of the geometry of the molecule, a process
known as a Jahn-Teller transition, results in one favorable
stable configuration, becoming the absolute ground state
of the system. Interesting molecular systems undergoing
a Jahn-Teller transition exist, e.g. fullerene. Therefore,
simulating such quantum systems is very attractive.

In a pioneering work (Hines et al., 2004), a connection
was made between a class of Jahn-Teller Hamiltonians
and a qubit coupled to an oscillator in the USC regime.
This initial work was followed by several extensions into
other classes of Jahn-Teller models and how to efficiently
simulate them using superconducting quantum circuits
(Dereli et al., 2012; Meaney et al., 2010).

Following the original work (Hines et al., 2004; Larson,
2008), the most general Hamiltonian of a E × ε Jahn-
Teller model implemented in a cavity QED setting using a
single two-level system coupled to two degenerate modes
of a cavity has the form

Ĥε×E/~ = ωc(â
†â+ b̂†b̂) +

Ωq
2
σ̂z+

λ[(â† + â)(σ̂+e
−iθ + σ̂−e

iθ)+

(b̂† + b̂)(σ̂+e
−iφ + σ̂−e

iφ)]. (47)

Here, ωc is the frequency of the two cavity modes. θ
and φ represent different phases of the mode field inter-
acting with the two-level system. λ is the interaction
strength between the two-level system and each cavity
mode. This Hamiltonian has a very strong resemblance
to the QRM [Eq. (1)], where the only difference is the

presence of the second mode b̂. The Jahn-Teller tran-
sition occurs for values of the qubit-oscillator coupling
strengths which correspond to the DSC regime. Such
a regime has recently been attained unambiguously in
a superconducting circuit (Yoshihara et al., 2017b), as
detailed in Sec. III.A. The ε × E Jahn-Teller model is
the simplest of its kind. More complex models, and thus
more realistic, contain several oscillator modes, with a
hopping interaction between those modes. The simplest
of such multi-mode models is the E×(β1+β2) Jahn-Teller
model, also known as Herzberg-Teller model. Work by
Dereli et al. (Dereli et al., 2012) studied the behavior of
two coupled modes interacting with the same qubit. Its
implementation in a superconducting circuit is presented
in Fig. 30. The Hamiltonian of such a system can be
expressed as

Ĥ(β1+β2)×E/~ =
Ωq
2
σ̂z + Ω1â

†
1â1 + Ω2â

†
2â2+[

g1(â1 + â†1) + g2(â2 + â†2)
]
σ̂x + J(â†1â2 + â†2â1), (48)

where J is the mode-mode coupling energy representing
the hopping rate of phonons in the simulated system. gi
are the qubit-mode interaction strength coefficients, rep-
resenting the coupling of a molecular transition to each
of the two vibrational modes of the simulated molecule.
This type of Hamiltonian can be realized using the tech-
nology of superconducting quantum circuits. This simple
Hamiltonian already contains the physics of real systems
of interest such as the two-phonon modes in C6H6

± and
the two phonon-modes of Fe2+ in ZnS.

More complex Jahn-Teller models involve the interac-
tion of a qubit to several bosonic modes. A possible can-
didate to perform an analog simulation would correspond
to a qubit ultrastrongly coupled to a coplanar waveguide
resonator supporting a collection of modes. By reduc-
ing the fundamental mode frequency of the resonator
the qubit can simultaneously interact to many modes.
Experiments have already been performed using super-
conducting qubit circuits where such a configuration has
been engineered (Puertas-Martinez et al., 2018; Sundare-
san et al., 2015).

Irrespective of the simulated type of Jahn-Teller model,
it is crucial to attain ultrastrong couplings between the
two-level system, or qubit, and the bosonic modes in-
volved in order to perform a faithful analog simulation of
the actual molecular system.
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a)

b)

FIG. 30 Circuit schematic to produce the Jahn-Teller E ×
(β1 + β2) model. (a) Circuit diagram of a flux qubit galvan-
ically coupled to two lumped-element resonators, which are
capacitively coupled to each other. (b) Circuit representation
with the capacitors being interdigitated-finger style (Dereli
et al., 2012). The magenta sections represent the qubit
Josephson junctions.

2. Energy transfer in photosynthetic complexes

The transfer of energy in light-haversting systems has
been a subject of intense study in the last decade. The
observation of excitonic quantum oscillations in molec-
ular complexes as a result of light absorption triggered
the birth of a field known now as quantum biology (Engel
et al., 2007; Lambert et al., 2012).

Biological systems are inherently complex and particu-
larly hard to describe quantitatively, especially consider-
ing the fact that key biological processes, in this case
the transfer of energy within the molecular complex,
are heavily influenced by the environmental fluctuations
and the finite temperature. Therefore, a quantum sim-
ulator that aims at simulating such relevant processes
needs to include the environmental degrees of freedom.
As measured in spectroscopic experiments (Wendling
et al., 2000), molecular complexes consist of several nodes
which are coupled to each other in a particular network
configuration. The most popular of light-harvesting com-
plexes, the Fenna-Matthews-Olson (FMO) complex, con-
tains seven nodes, and the interaction between nodes is in
fact ultrastrong. In addition, the correlation time of the
bath is found to be of comparable order as the internal
dynamics of the molecule. In other words, the system is
heavily non-Markovian. The strong effect of the environ-
ment is due to an USC of the nodes within the molecular
complex to its environmental degrees of freedom, most
likely phonons in the case of FMO.

An analog quantum simulator must then consist of
qubits playing the role of the FMO nodes which couple to

each other ultrastrongly, with some of the qubits ultra-
strongly coupled to the environment. Ultrastrong qubit-
qubit interactions are relatively easy to obtain using su-
perconducting circuits (Majer et al., 2005), while ultra-
strong qubit-bath interactions have just recently been
achieved in experiments using superconducting qubits in
transmission lines (Forn-Dı́az et al., 2017). A theoretical
proposal of such a quantum simulator was already put
forward (Mostame et al., 2012) using superconducting
flux qubits. Figure 31 shows a schematic of the qubit
network proposed to mimick that of the actual FMO
complex, along with a circuit representation of the qubit-
environment coupling. The interaction to the flux qubit
is longitudinal to simulate ultrastrong dephasing.

a)

b)

FIG. 31 a) Experimental layout for simulating the exciton
dynamics and ENAQT in the FMO complex (Mostame et al.,
2012). The different nodes Qi represent eight qubits emulat-
ing the FMO nodes and their connections. The green node
Q8 is the receiver of the photon excitation, blue nodes are
intermediate paths of the exciton, and node Q3 is the final
one where the energy is delivered and couples to the rest of
the molecule, labelled as “Sink”. b) Circuit schematic repre-
sentation of a single qubit coupled to an ohmic environment.
In this circuit, the coupling is longitudinal with respect to
the qubit, simulating in this way ultrastrong dephasing. The
environment can be simulated by a linear chain of LCR res-
onators, as in this figure, or by using a transmission line, as
demonstrated experimentally (Forn-Dı́az et al., 2017).

Two recent experiments (Gorman et al., 2018;
Potočnik et al., 2018) have reproduced certain aspects
of the basic physics believed to occur in light-harvesting
complexes. Potocnik et al. studied the interplay of quan-
tum interference and environmental fluctuations to lead
to a maximal energy transfer in a system of three super-
conducting qubits. The qubits were directly coupled to
each other and subject to different types of environmen-
tal noise. The authors found a maximal efficiency of en-
ergy transfer when the qubits were experiencing coherent
excitation and Lorentzian noise, conditions which mimic
the phononic environment found in molecular complexes
such as FMO. Gorman et al. used a system of two ions
in a linear trap, one of which was coupled to one of its
vibrational modes, playing the role of the phononic en-
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vironment in an actual light-harvesting complex. By ap-
plication of external laser beams, the authors simulated
the regime where the relative energy splitting between
the ions, their interaction strength and the interaction
to the environment were of the same order. This regime
mimics a realistic environment in a molecular complex
such as FMO. The authors observed clear signatures of
environment-assisted energy transfer between ions, sup-
porting the idea that this process does play an important
role in the actual energy transfer of real photosynthetic
molecular complexes.

Scaling up the system size of these experiments with
more qubits and more realistic parameters, some of which
require entering the USC regime, may lead to actual
quantum simulations of biological complexes and quan-
tum chemistry.

V. PHYSICS OF THE ULTRASTRONG COUPLING
REGIME

In this section, we will review some of the intrinsic
physics occurring in the USC regime, and what kind
applications have been proposed for ultrastrongly cou-
pled systems. First, we will present several instances in
which novel quantum optical phenomena are possible in
the USC regime and how they could be useful for quan-
tum information processing purposes. We will continue
with an important application in quantum computing as
is the generation of ultrafast quantum gates. The section
will close with a description of how dissipative systems
must be treated in the USC regime.

A. Quantum optics

The achievement of ultrastrong couplings in any phys-
ical platform opens up the possibility to study counter-
intuitive phenomena appearing in the Rabi model which
is not present in the more familiar JC model (Felicetti
et al., 2014a; Garziano et al., 2015a, 2014; Ma and Law,
2015; Ridolfo et al., 2012; Stassi et al., 2013). Beyond the
instances described in this subsection, concepts appear-
ing in other branches of physics are also being studied in
the USC regime, such as symmetry breaking and Higgs
mechanism (Garziano et al., 2014) and approaches relat-
ing to Feynman diagrams (Stefano et al., 2017).

1. Two atoms excited by a single photon

A particular instance is the case of a photon which
excites two atoms at the same time in a reversible man-
ner (Garziano et al., 2016). In a generalised version of
the Rabi model, two two-level atoms interact with a sin-
gle mode of a cavity (see also Eq. (19)), given by the

Hamiltonian

Ĥ =
~Ω

2

∑
i

σ̂(i)
z + ~ωâ†â

+ ~g
(
â+ â†

)∑
i

[
cos (θ)σ̂(i)

x + sin (θ)σ̂(i)
z

]
. (49)

As shown in Fig. 32 and Fig. 33, a mixing exists in third-
order perturbation theory between states |g, g, 1〉 and
|e, e, 0〉 due to the counter-rotating terms. At the res-
onance point where the frequency of the cavity is twice
the frequency of each atom, the effective Hamiltonian is
given by Ĥeff = −~Ωeff (|e, e, 0〉〈g, g, 1|+ h.c.), where the
maximum coupling is achieved when

Ωeff

Ω

∣∣∣∣
θ=cos−1

√
2/3

=
16

9
√

2

( g
Ω

)3

. (50)

Analogous work (Kockum et al., 2017a) studied the fre-
quency conversion in a system of two cavities coupled
to the same atom in the USC regime. Moreover, it has
been shown (Kockum et al., 2017b) that other processes
similar to the ones described in this section find interest-
ing applications for nonlinear optics. Also, an analogous
process to the one just described (Stassi et al., 2017) can
result in a single photon exciting multiple atoms. Fur-
thermore, processes that do not conserve the excitation
number can also be used for generating entanglement be-
tween photons (Macŕı et al., 2018).

FIG. 32 (Color online) Multi-atom excitation with a single
photon. As a result of USC physics, two or more atoms in an
optical cavity can absorb a single photon. The figure shows a
sketch of the process giving the main contribution to the effec-
tive coupling between the bare states |g, g, 1〉 and |e, e, 0〉, via
intermediate virtual transitions. The coupling λ corresponds
to g in the main text. The initial state |g, g, 1〉 transitions to
virtual intermediate excited states which would not conserve
the total energy. At the end of the process, the final state
|e, e, 0〉 is excited, preserving the total system energy. Here,
the processes which do not conserve the excitation number are
represented by an arrowed dashed line. Each path includes
three virtual transitions involving out-of-resonance intermedi-
ate states. The figure displays only the process that gives the
main contribution to the effective coupling between the bare
states |g, g, 1〉 and |e, e, 0〉. Higher-order processes, depending
on the atom-field interaction strength, can also contribute.
The transition matrix elements are also shown (Garziano
et al., 2016).
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FIG. 33 (Color online) (a) Frequency differences ωi,o =
ωi − ωo for the lowest energy eigenstates of Eq. (49) as a
function of the resonator frequency ωc/ωq. ωc and ωq cor-
respond to ω and Ω of the main text, respectively. Starting
from the lowest excited states of the spectrum, a large anti-
crossing around ωc/ωq = 1 can be observed, corresponding
to the standard vacuum Rabi splitting. Here, we consider a
normalized coupling rate g/ωq = 0.1 between the resonator
and each of the two qubits. The particular case θ = π/6
is shown. The arrows indicate the ordinary vacuum Rabi
splitting arising from the coupling between the states |g, g, 1〉
and (|g, e, 0〉 + |e, g, 0〉)/

√
2; (b) enlarged view of the spec-

tral region delimited by a square in (a), where the third and
fourth levels display an apparent crossing. The enlarged view
shows a clear avoided-level crossing. The level splitting origi-
nates from the hybridization of the states |g, g, 1〉 and |e, e, 0〉
due to the presence of counterrotating terms in the system
Hamiltonian. The resulting states are well approximated by
(|g, g, 1〉 ± |e, e, 0〉)/

√
2. This splitting is not present in the

RWA, where the coherent coupling between states of different
number of excitations is not allowed (Garziano et al., 2016).

2. Ancilla qubit spectroscopy

Given the extreme parameters required to reach the
USC regime, there is an intrinsic difficulty in performing
direct spectroscopic measurements of the system as well
as observing its dynamics. By contrast, several propos-
als were put forward to use a second qubit, known as
an ancilla qubit, coupled to the USC system to extract
some of its properties (Felicetti et al., 2015a; Garziano
et al., 2014; Lolli et al., 2015). In a separate proposal
of a qubit-cavity system in the USC regime (Andersen
and Blais, 2017), higher order modes of the cavity were
suggested as an ancillary system to extract information
of the cavity mode which is ultrastrongly coupled to the
qubit via the cross-Kerr interaction which exists between
any pair of modes due to the nonlinearity induced by the
qubit. In all cases, the ancilla-system coupling strength is
in the strong coupling regime. In this configuration, the
spectrum of the ancilla qubit/cavity contains information

on the eigenstates of the USC system. Therefore, the an-
cillary system can be used as a probe of the many prop-
erties of the otherwise inaccessible ultrastrongly coupled
system. There exist other proposals for non-demolition
detection of USC ground-state properties, e.g., measur-
ing the virtual radiation pressure exerted by the photons
in the ground state on a mechanical mirror in an opto-
mechanical system (Cirio et al., 2017).

In the particular configuration studied by Lolli et al.
(Lolli et al., 2015), the Hamiltonian that describes the
dynamics of the system is given by

Ĥ = ĤS+
Ωan

2
σ̂(an)
z +gan(â+ â†)σ̂(an)

x +Ωd cos (ωdt)σ̂
(an)
x ,

(51)
where Ωan is the natural frequency of the ancillary qubit,
gan is the coupling of the ancilla qubit to a single mode
of the cavity, Ωd and ωd characterize the periodic driv-
ing of the ancilla qubit with a classical field, and ĤS
is the Hamiltonian of the ultrastrongly coupled system
[Eq. (1)] the ancilla qubit is probing. In the particu-
lar work of Lolli et al., the ultrastrongly coupled system
consists of a single cavity mode coupled to an ensemble
of identical two-level systems with a collective coupling
well in the USC regime. Several instances were studied
corresponding to the Dicke, Tavis-Cummings (Tavis and
Cummings, 1968), and Hopfield (Hopfield, 1958) models,
whose respective Hamiltonians are

ĤDicke = ωâ†â+ ΩĴz +
g√
N

(
â+ â†

) (
Ĵ+ + Ĵ−

)
,

ĤTC = ωâ†â+ ΩĴz +
g√
N

(
âĴ+ + â†Ĵ−

)
,

ĤHopfield = ĤDicke +
g2

Ω

(
â+ â†

)2
.

(52)

ω is the frequency of the single mode cavity, Ω corre-
sponds to the transition frequency of the N identical
two-level atoms, λ describes the collective coupling, and

the collective operators are given by Ĵz = 1
2

∑
i σ̂

(i)
z and

Ĵ± =
∑
i σ̂

(i)
± .

All three models are shown in Fig. 34. Due to the
ancilla-system coupling, a measurable Lamb shift in the
frequency of the ancillary qubit appears. Up to second
order in perturbation theory in gan, this shift can be an-
alytically calculated to be

δωan ∼ g2
an

(
1

ωan − ω
+

1

ωan + ω

)
〈
(
â+ â†

)2〉
+ g2

an

(
1

(ωan − ω)
2 −

1

(ωan + ω)
2

)
〈V̂ (S)〉,

(53)

where V̂ (Dicke) = gN−1/2
(
â+ â†

)
Ĵx, V̂ (TC) =

gN−1/2
(
â†Ĵ− + âĴ+

)
and V̂ (Hopfield) = V̂ (Dicke) +

2g2Ω−1
(
â+ â†

)2
. As is explicit from the equations, the

shift depends on the ground state photon population
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FIG. 34 (Color online) Ancilla qubit spectroscopy of ultra-
strongly coupled systems. The top, middle, and bottom
panels correspond to Eq. (51) with the system S being the
Dicke, Tavis-Cummings, and Hopfield models, respectively
[Eq. (52)]. ωc and λ correspond to ω and g of the main text,
respectively. Considering the ancilla qubit as the measure-
ment qubit M , for finite gM the coupling between S and M
creates a mixing between states of the form |ψS〉 ⊗ |ψM 〉 and
the driving induces transitions from the ground state |GS+M 〉
to excited states. Therefore, the relevant excited states |l〉 are

those having the largest values of |〈GS+M |σ̂(M)
x |l〉|2. The re-

sults show that, due to the off-resonant coupling, there is only
one dominant spectroscopically active level (black thick solid
line), which has a strong overlap with the state |GS〉 ⊗ | ↑〉.
Left panels: excitation energies for the three considered sys-
tems S versus the coupling λ between the boson field and
the N atoms. Right panels: Lamb shift of the ancillary qubit
transition as function of the coupling λ/ωc of the coupled sys-
tem S under consideration. The red-dashed lines in the right
panels depict the shift predicted by the analytic calculation.
The agreement between the numerical diagonalization results
and the analytical formula [Eq.(53)] is excellent in the consid-
ered range of values for λ/ωc, except for points where there
are avoided crossings with other levels (Lolli et al., 2015).

〈â†â〉, on the anomalous expectation value 〈â†2 + â2〉,
and on the correlations between the cavity and the N
two-level systems. Figure 34 shows the Lamb shift for
the three discussed models.

3. Optomechanics in the USC regime

Solid-state nanoelectromechanical resonators have
been considered as a mediator of the interactions between
qubits (Sornborger et al., 2004). Ultrastrongly coupled
optomechanical setups have been proposed to prepare
quantum states of motion (Garziano et al., 2015b). In
the same scenario, NOON states are another type of
quantum states which can be obtained as a consequence
of ultrastrong interactions (Macŕı et al., 2016). It has
been shown that the preparation of NOON states in ul-
trastrongly coupled optomechanical systems is possible
following a completely controlled and deterministic pro-
cedure. The setup consists of two identical, optically
coupled optomechanical systems which can be modeled
by the photonic modes of the optical cavities and the
phononic modes from the mechanical oscillators (see the
description of the setup in Fig. 35). The dynamics of
each independent optomechanical subsystem are charac-
terized by the Hamiltonian

Ĥ(i)
0 = ~ωRâ†i âi + ~ωM b̂†i b̂i + ~gM â†i âi

(
b̂i + b̂†i

)
, (54)

in the local Fock basis |ni,mi〉, where the integers ni and
mi represent the number of photons and vibrational exci-
tations in the i-th optomechanical system. The prepara-
tion of mechanical entangled NOON states requires two
interacting optical cavities with an interaction Hamilto-

nian ĤI = ~gR
(
â†1â2 + â1â

†
2

)
. Starting in the ground

state of the system that contains no photons or phonons
in either system, one of the optical resonators is ex-
cited with an external π-pulse resonant with the tran-
sition |01, 01; 02, 02〉 ↔ |11,m1; 02, 02〉. Then, the system
freely evolves with the interaction Hamiltonian under-
going Rabi oscillations. The time-dependent quantum
state is then given by: |Ψ(t)〉 = cos (gRt)|11,m1; 02, 02〉−
i sin (gRt)|01, 01; 12,m2〉. A second resonant pulse with
the transition |1i,mi〉 ↔ |0i, Ni〉 will produce the desired
NOON state,

|Ψ〉 = α|01, N1; 02, 02〉 − iβ|01, 01; 02, N2〉. (55)

It is noteworthy to mention that further developments
and applications of the USC and DSC regimes to coupled
mechanical systems are expected, given that the physi-
cal conditions are not necessarily equivalent to those of
coupled electromagnetic oscillators (Sudhir et al., 2012).

Other work in ultrastrongly coupled oscillator systems,
including optomechanics, have investigated the influence
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FIG. 35 (Color online) Optomechanical USC. Two identi-
cal coupled opto-mechanical systems, with frequency ωM , are
parametrically coupled with a single-mode optical resonator
or cavity, which can be driven by external optical pulses with
specific central frequencies. One cavity mirror can be added
to the end of both the opto-mechanical systems for optical
readout (Macŕı et al., 2016).

of A2 terms and their possible detection in a real exper-
iment (Rossi et al., 2017; Tufarelli et al., 2015). A re-
cent coupled oscillator experiment in a superconducting
circuit (Fedortchenko et al., 2017) observed simultaneous
single-mode and two-mode squeezing of the radiated field
below vacuum fluctuations (Marković et al., 2018).

B. Quantum computation

Being able to tune the coupling strength in a light-
matter system from strong to the ultrastrong regime al-
lows one to observe and propose new strategies and pro-
tocols in quantum information processing, such as re-
mote entanglement applications (Leroux et al., 2018; Qin
et al., 2018). In this section, we discuss the possibility to
achieve ultrafast quantum computation, protected qubits
to store quantum information and to manipulate and pre-
pare a desired quantum state.

1. Ultrafast quantum computation

Ultrafast two-qubit gates have been considered as one
potential application (Kyaw et al., 2015a,b; Wang et al.,
2016, 2012) of the USC regime in quantum computa-
tion (Romero et al., 2012). In the original proposal
(Romero et al., 2012), a two-qubit Hamiltonian was con-
sidered

Ĥ =
∑
i

~Ωi
2
σ̂(i)
z + ~ωâ†â−

∑
i

~giσ̂(i)
z

(
â+ â†

)
, (56)

with switchable longitudinal couplings gi (see the cir-
cuit diagram of the experimental proposal in Fig. 36).
Based on a four-step sequential displacement of the cav-
ity D̂ (βσ̂z) = exp

[(
βâ† − β∗â

)
σ̂z
]
, using D̂ (α) D̂ (β) =

eiIm(αβ∗)D̂ (α+ β), the two-qubit gate was shown to be

proportional to a CPHASE quantum gate

Û ∝ exp
[
4i
g1g2

ω2
sin (ωt1)σ̂(1)

z σ̂(2)
z

]
, (57)

where the fidelity of the gate can reach 99% in the
nanosecond time scale for realistic circuit QED technol-
ogy.

This protocol relies on being able to switch fluxes in
the qubit local bias lines faster than the coupling rate
g, which implies sub-nanosecond pulses. Implementing
these short pulses comes at a technological cost. First,
the entire system bandwidth should be able to transmit
the pulses without distortion which would slow down the
fast edge. Second, pulse generators able to synthesize pi-
cosecond pulses do exist, albeit at a cost which would not
easily lead to controlling a large number of qubits. Fur-
ther technological developments of fast pulse generators
are necessary before this technology can be implemented
in a scalable way, beyond a two-qubit proof-of-principle.

FIG. 36 (Color online) Ultrafast two-qubit gates. The fig-
ure shows the circuit schematic to realize ultrafast two-qubit
controlled phase gates between two flux qubits galvanically
coupled to a single-mode transmission line resonator. The
bottom image shows a six Josephson-junction circuit coupled
galvanically to a resonator. The flux qubit is defined by three
Josephson junctions in the upper loop threaded by external
flux Φ1. Two additional loops allow a tunable and switchable
qubit-resonator coupling by controlling fluxes Φ2,Φ3. The
coupling is defined by the phase drop ∆ψ across the shared
junction (Romero et al., 2012).

2. Protected qubits

Another important example where the USC regime
may become relevant in quantum computation is in the
encoding of protected qubits (Nataf and Ciuti, 2011).
Nataf and Ciuti considered the case of multiple qubits
coupled to the same resonator mode

Ĥ/~ = ωâ†â+
Ω

2

∑
j

σ̂(j)
z + i

g√
N

(
â− â†

)∑
j

σ̂(j)
x . (58)
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Here, N is the total number of qubits coupled to the
resonator. It turns out that when the collective coupling
of all qubits reaches very large values, the two quasi-
degenerated lowest states of the Hamiltonian become

|ΨG〉 ∼
1√
2

[
|α〉c|+〉⊗N + (−1)

N | − α〉c|−〉⊗N
]
,

|ΨE〉 ∼
1√
2

[
|α〉c|+〉⊗N − (−1)

N | − α〉c|−〉⊗N
]
,

(59)

with |±〉 being eigenstates of σ̂x. Both these states are
weakly coupled to each other as they belong to a dif-
ferent parity chain (Casanova et al., 2010b). This dou-
blet {|ΨG〉, |ΨE〉} therefore forms a robust qubit, with
an energy difference δ ∼ Ω exp

(
−2g2ω−2N

)
. The anal-

ysis of the coherence times is shown in Fig. 37. Clearly,
for increasing coupling strengths, and also for increasing
number of qubits, the decoherence rate decreases yield-
ing a more protected qubit, up to a certain value of the
coupling where the decoherence rate saturates. In a dif-
ferent work, a proposal by Stassi et al. (Stassi and Nori,
2018) analysed a protected quantum memory in the DSC
regime.

FIG. 37 (Color online) Protected quantum computation in
the USC regime. Ω0 and ωeg correspond to g and Ω of the
main text, respectively. To investigate the robustness of the
coherence between the two quasi-degenerate vacua |ΨG〉 and
|ΨE〉, the authors study the non-unitary dynamics of the ini-
tially prepared pure state |Ψ0〉 = cos θ|ΨE〉+ sin θeiφ|ΨG〉 in
the presence of anisotropic qubit dissipation rates Γy, Γz �
Γx and for several cavity loss rates. The simulations proved
that the coherence time increased while increasing the nor-
malized vacuum Rabi frequency g/Ω. In fact, the coherence
time was exponentially enhanced before reaching a saturation
value. Left-hand panel: Coherence time versus the normal-
ized vacuum Rabi frequency for one atom. Inset: Number
of photons plotted versus the normalized vacuum Rabi fre-
quency. Top right-hand panel: Coherence time for N = 1, 2,
and 3 atoms. Bottom right-hand panel: Maximum coherence
time as a function of the number of atoms (Nataf and Ciuti,
2011).

3. State preparation: Qubit-resonator entangled states

The eigenstates of a system in the USC regime re-
sult in many-body qubit-resonator entangled quantum
states (Ashhab and Nori, 2010; Felicetti et al., 2015a;
Garziano et al., 2016). Certain quantum information pro-
cessing protocols may require the generation of this type
of states, an example being cat-state-based quantum er-
ror correction (Ofek et al., 2016). For instance, a paradig-
matic multipartite entangled state, the N -qubit GHZ
state, results from a system of superconducting qubits
coupled to a transmission line resonator (Wang et al.,
2010). In this system, the Hamiltonian in the interaction

picture reads ĤI(t) = ~g
∑
i

(
â†eiωt + âe−iωt

)
σ̂

(i)
x . For

particular periods Tn = 2πn/ω commensurate with the
cavity frequency ω, the time evolution operator in the
Schrödinger picture takes the form

Û(Tn) ∝ exp

−iθ(n)
∑
i 6=j

σ̂(i)
x σ̂(j)

x

, (60)

with θ(n) = g2/ω22πn. Hence, starting from a product

state |Ψ(0)〉 = ⊗Ni=1|−〉
(i)
z , where σ̂

(i)
z |−〉(i)z = −|−〉(i)z ,

the system evolves into a GHZ state of the form

|Ψ(Tmin)〉 =
1√
2

(
⊗Ni=1|−〉(i)z + eiπ(N+1)/2 ⊗Ni=1 |+〉(i)z

)
,

(61)
for the minimum preparation time given by Tmin =
πω/8g2 (Wang et al., 2010).

C. Dissipation in the ultrastrong coupling regime

Dissipation, decay or decoherence rates are natural
scales that appear in various platforms of quantum in-
formation processing due to the coupling of qubits to
any external degrees of freedom. The first study of dis-
sipation in the USC regime (DeLiberato et al., 2009)
used the second-order time-convolutionless projection op-
erator method (TCPOM). In later work, an equivalent
method was found by projecting the master equation in
the dressed-state basis (Beaudoin et al., 2011). Using ei-
ther technique, modifications of the standard quantum
optics master equation were obtained which do not dis-
play unphysical effects when the USC regime is reached.

Here, we follow the master equation projection method
(Beaudoin et al., 2011) to obtain a suitable description of
the system dynamics in the dissipative QRM, valid in the
Bloch-Siegert regime (perturbative USC). The standard
(Lindblad) form of the master equation at zero temper-
ature T = 0 looks

dρ̂

dt
= −i[Ĥ, ρ̂] + Lρ̂, (62)
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where ρ̂ is the density matrix of the whole system. The
Lindbladian L in the standard form is defined as

Lρ̂ = κD[â]ρ̂+ γgeD[σ̂−]ρ̂+
γφ
2
D[σ̂z]ρ̂. (63)

Here, κ, γge, γφ are the cavity decay, qubit decay and
qubit dephasing rates, respectively. The superoperator
D[Ô] is defined as D[Ô]ρ̂ = 1

2 (2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂).
Equation (62) assumes that the ground state of the qubit
|g〉 + the vacuum of the cavity |0〉 is the ground state
of the whole system, |g0〉. However, in the QRM the
ground state is a superposition of different states of both
subsystems, it is a superposition of multiple photon num-
ber states entangled with the qubit states (see Sec. II).
Therefore, the master equation needs to be modified in
such a way that it damps any initial state towards the ac-

tual ground state |̃g0〉. In Fig. 38 it is possible to observe
the detrimental effect of not using the proper form of
the master equation, which results in a fictitious heating
rate.

FIG. 38 Excess in the mean photon number due to relax-
ation in the steady state of the ultrastrongly coupled qubit-
resonator system (Beaudoin et al., 2011). Initially, the system

is in its true ground state |̃g0〉, but, under the standard master
equation Eq. (62), relaxation unphysically excites the system
even at T = 0. The black line, which corresponds to the left
axis, represents the number of additional photons introduced
in steady state by dissipation. The red dots, associated to the
right axis, designate one minus the fidelity of the Rabi ground

state |̃g0〉 to the vacuum state |g0〉. The parameters used are
Ω/2π = ω/2π = 6 GHz, κ/2π = γ/2π = 0.1 MHz and no
pure dephasing. κ and γ are the resonator and qubit energy
damping rates, respectively. Inset: mean photon number as
a function of time for the system starting in its ground state
with g/2π = 2 GHz. In both the main plot and the inset,
the blue dashed line indicates results for the fidelity and the
photon number as obtained with the master equation given
by the Lindbladian in Eq. (64).

To obtain a master equation that takes into account
the actual eigenvalues of the QRM, we first move to
the frame that diagonalizes the quantum Rabi Hamil-
tonian [Eq. (1)] for both the system and the system-bath
Hamiltonians. Under experimentally reasonable approx-
imations5, the correct form of the Lindbladian at zero

5 Neglecting high-frequency terms, the resulting expressions in-

temperature T = 0 reads

LQRM◦ = D

∑
j

Φj |j〉〈j|

 ◦+
∑
j,k 6=j

Γjkφ D[|j〉〈k|]◦

+
∑
j,k>j

(Γjkκ + Γjkγ )D[|j〉〈k|] ◦ . (64)

|k〉 and |j〉 are eigenstates of the QRM. The circle ◦ rep-
resents the operator on which the Lindbladian is acting
on. The first two terms in Eq. (64) are the contributions
from the bath that caused only dephasing in the stan-
dard master equation [last term in Eq. (63)]. Here, this
σ̂z bath causes dephasing in the eigenstate basis with

Φj =

√
γφ(0)

2
σjjz , (65)

where γφ(ω) is the dephasing rate corresponding to noise
at frequency ω due to the noise spectral density. σjkz =
〈j|σ̂z|k〉. The fact that σ̂z is not diagonal in the system
eigenbasis causes undesired transitions at rate

Γjkφ =
γφ(∆jk)

2
|σjkz |2. (66)

This noise will only be significant if the power spectral
density of dephasing noise at frequency ∆jk is signifi-
cant. This is the case away from the sweet spot in super-
conducting qubits. The longitudinal noise along σz may
stimulate transitions between the QRM eigenstates |j〉,
leading to dephasing-induced generation of photons and
qubit excitations, a phenomenon linked to the dynamical
Casimir effect.

The last two terms in Eq. (64) are the contributions
from the resonator and qubit own baths that caused re-
laxation in the standard master equation. These baths
now cause transitions between eigenstates at rates

Γjkκ = κ(∆jk)|Xjk|2, (67)

Γjkγ = γ(∆jk)|σjkx |2, (68)

where

Xjk = 〈j|X̂|k〉, (69)

σjkx = 〈j|σ̂x|k〉. (70)

The rates κ(ω) and γ(ω) are proportional to noise spec-
tra from the resonator and qubit baths, respectively. X̂
is the cavity quadrature X̂ = â† + â. The Lindbladian

volve transitions |j〉 ↔ |k〉 between eigenstates at a rate that de-
pends on the noise spectral density at frequency ∆kj = ωk −ωj .
If their line width is small enough, these transitions can be
treated as due to independent baths. As a result, these indepen-
dent baths can each be treated in the Markov approximation.
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in Eq. (64) correctly predicts the system evolution of the
QRM under the presence of dissipation and dephasing
baths. This is illustrated by the dashed blue line in
Fig. 38. The new decay rates have specific selection rules
due to the parity of the eigenstates in the quantum Rabi
Hamiltonian. A direct consequence of the modification of
the emission rates is the appearance of an asymmetry in
the vacuum Rabi splitting when qubit and resonator are
resonant. The spectrum of the system could be used in
this way to probe dephasing noise (Beaudoin et al., 2011).
A more general treatment has been used to describe open
systems in the USC regime at finite temperatures (Set-
tineri et al., 2018).

With the corrected version of the master equation,
it was demonstrated (DeLiberato et al., 2009) that
a harmonic modulation of the qubit-cavity interaction
strength in the USC regime with a functional form

g(t) = g0 + ∆g sin(ωmodt), (71)

produces extracavity radiation originated from the spon-
taneous emission of virtual photons existing in the
ground state of an ultrastrongly coupled system. Cal-
culating the emitted radiation employing the standard
master equation [Eq. (62)] instead produces the unphysi-
cal picture of generating radiation even when the drive is
very far from the cavity resonance, which clearly violates
energy conservation rules (see Figure 39).

FIG. 39 (Color online) Extracavity photon emission rate Rem

(in units of ω0, the cavity frequency) for a resonant qubit-
cavity system as a function of the modulation frequency,
ωmod, for a modulation amplitude of the vacuum Rabi fre-
quency ∆g/γ = 0.1, where γ is the qubit and cavity emission
rate. For comparison, the dashed line shows the extracavity
emission rate γcavNin where Nin is the steady-state intracav-
ity photon number, that would be predicted by the Marko-
vian approximation: note the unphysical prediction of a finite
value of the emission even far from resonance. The inset shows
the dependence of the photon emission rate on the modula-
tion amplitude, calculated both numerically and analytically
(DeLiberato et al., 2009).

An important aspect related to dissipation that has

just recently been addressed (De Liberato, 2017) is the
impact of the decay rates on the number of photons in the
ground state of a system in the USC regime. The ground
state in an ultrastrongly coupled qubit-cavity system is
composed of hybridised qubit-cavity states which lead to
a non-zero value of the expectation value of the photon
number operator, defined as6 N̂ = 〈â†â〉. It is then cru-
cial to understand what is the impact of the qubit and
cavity decay rates on the population of photons in the
USC ground state. The result is a bit surprising, as it
turns out that the USC effects are only quantitatively
affected by losses. Thus, USC phenomena such as ex-
tracavity emission may be observed in systems with very
high losses, even when the usual condition of strong cou-
pling is not satisfied, γ > g.

Another quantum optical phenomenon in open quan-
tum systems that is modified in the USC regime is pho-
ton blockade (Ridolfo et al., 2012). In the strong cou-
pling condition where the RWA applies, the temporal
photon-photon correlation function shows an oscillatory
behaviour with a frequency given by the Rabi frequency
of the externally applied drive. Instead, in the USC
regime the frequency is given by the ultra-strong emitter-
photon coupling which can be traced back to the presence
of two-photon cascade decays induced by counterrotating
interaction terms. In order to reach these conclusions, a
generalized version of the input-output relations had to
be extended to the USC regime. The result is the follow-
ing relation

âout(t) = âin(t)− i εc√
8π2~ε0v

˙̂
P+. (72)

Here, εc is a coupling parameter to the environment, ε0
describes the dielectric properties of the output waveg-

uide, and v is the phase velocity. Crucially,
˙̂
P+ is not pro-

portional to the intracavity field â as is usual in quantum

optics. Its explicit form is
˙̂
P+ = −i∑j,k>j ∆kjPjk|j〉〈k|,

where ∆jk = ωj − ωk, and Pjk = 〈j|P̂ |k〉, with P̂ =
−iP0(â − â†). Here, |j〉 are the QRM eigenstates. Note
that P+|0〉 = 0, while a|0〉 6= 0. This redefinition of the
input-output relations has a direct impact on the output
photon number flux, which otherwise would show a finite
value even without an externally applied drive.

Finally, a novel topic that has emerged is that of dis-
crete time crystals, which are out-of-equilibrium dynam-
ical phases recently proposed and observed. The anal-
ysis of these systems in the context of open dissipative

6 We would like to remind the reader that the photon number
operator N̂ as defined in traditional quantum optics textbooks
is not a good quantum number in the USC regime, as it does
not commute with the Quantum Rabi Hamiltonian [ĤR, N̂ ] 6= 0.
The consequence is a non-stationary value of the population of
photon-number states of the cavity, as shown in (Casanova et al.,
2010b).
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regimes has also been carried out in terms of the open
Dicke model (Gong et al., 2018).

VI. CONCLUSIONS AND OUTLOOK

The interaction between light and matter can be con-
sidered as the essential dialogue that describes and ex-
plains most fundamental phenomena in nature, emerg-
ing rather late in the history of physics out of step-
wise developments in mechanics and optics. With the
arrival of atomic physics in the 20th century, after the
success of electromagnetism at the end of the 19th cen-
tury, light-matter models were proposed to account for
quantum effects observed in the laboratory, giving rise
to the (semiclassical) Rabi model. Along these lines,
a final key improvement had to be performed with the
quantization of light to produce the full-fledged quan-
tum Rabi model. This review article aims at producing a
biased overview of light-matter interactions where the ul-
trastrong and deep strong coupling regimes are necessary
for describing the interplay between models and experi-
mental observations. Somehow, we needed the advent of
advanced tools in quantum control of atoms and photons,
in the wide frame of quantum technologies at the begin-
ning of this 21st century, to produce key experimental
results and their corresponding theoretical descriptions
in the USC and DSC regimes. Exploring these novel
extreme coupling strengths between quantized light and
quantized matter is a fundamental task of high scientific
relevance, which required conceptual and experimental
improvements during the last decade. As frequently hap-
pens in the interplay between science and technology, the
discovered USC and DSC phenomena may find a variety
of applications in quantum simulations, quantum sens-
ing, quantum communication, and quantum computing.
Accelerating quantum dynamics should also inspire novel
protocols in scalable quantum processing. We believe the
study of USC and DSC regimes is still in its infancy and
that most advanced discoveries and applications are still
waiting to be discovered.
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H. Ritsch, J. Schmiedmayer, and J. Majer (2011), Phys.
Rev. Lett. 107, 060502.

Anappara, A. A., D. Barate, A. Tredicucci, J. Devenson,
R. Teissier, and A. Baranov (2007), Solid St. Commun.
142, 311.

Anappara, A. A., S. De Liberato, A. Tredicucci, C. Ciuti,
G. Biasiol, L. Sorba, and F. Beltram (2009), Phys. Rev. B
79, 201303(R).

Anappara, A. A., A. Tredicucci, F. Beltram, G. Biasiol, and
L. Sorba (2006), Appl. Phys. Lett. 89, 171109.

Anappara, A. A., A. Tredicucci, G. Biasiol, and L. Sorba
(2005), Appl. Phys. Lett. 87, 051105.

Andersen, C. K., and A. Blais (2017), New J. Phys. 19,
023022.

Aoki, T., B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins,
T. J. Kippenberg, K. J. Vahala, and H. J. Kimble (2006),
Nature 443 (7112), 671.

Ashhab, S. (2013), Phys. Rev. A 87, 013826.
Ashhab, S., and F. Nori (2010), Phys. Rev. A 81, 042311.
Ashhab, S., and K. Semba (2017), Phys. Rev. A 95, 053833.
Askenazi, B., A. Vasanelli, A. Delteil, Y. Todorov, L. C. An-

dreani, G. Beaudoin, I. Sagnes, and C. Sirtori (2014), New
J. Phys. 16, 043029.

Askenazi, B., A. Vasanelli, Y. Todorov, E. Sakat, J.-J. Gref-
fet, G. Beaudoin, I. Sagnes, and C. Sirtori (2017), ACS
Photonics 4 (10), 2550.

Ballester, D., G. Romero, J. J. Garćıa-Ripoll, F. Deppe, and
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Kéna-Cohen, S., S. A. Maier, and D. D. C. Bradley (2013),
Adv. Opt. Mater. 1, 827.

Khitrova, G., H. M. Gibbs, F. Jahnke, M. Kira, and S. W.
Koch (1999), Rev. Mod. Phys. 71, 1591.

Kimble, H. J. (2008), Nature 453, 1023.
Klimov, A. B., and S. M. Chumakov (2009), A Group-

Theoretical Approach to Quantum Optics (Wiley-VCH).
Koch, J., T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,

J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf (2007), Phys. Rev. A 76, 042319.

Kockum, A. F., V. Macr̀ı, L. Garziano, S. Savasta, and
F. Nori (2017a), Scientific Reports 7, 5313.

Kockum, A. F., A. Miranowicz, V. Macr̀ı, S. Savasta, and
F. Nori (2017b), Phys. Rev. A 95, 063849.

Kono, J. (2001), in Methods in Materials Research, edited
by E. N. Kaufmann, R. Abbaschian, A. Bocarsly, C.-L.

Chien, D. Dollimore, B. Doyle, A. Goldman, R. Gronsky,
S. Pearton, and J. Sanchez, Chap. 9b.2 (John Wiley &
Sons, New York).

Kus, M., and M. Lewenstein (1986), J. Phys. A 19, 305.
Kyaw, T. H., S. Felicetti, G. Romero, E. Solano, and L. C.

Kwek (2015a), Sci. Rep. 5, 8621.
Kyaw, T. H., D. A. Herrera-Mart́ı, E. Solano, G. Romero,

and L.-C. Kwek (2015b), Phys. Rev. B 91, 064503.
Lamata, L. (2017), Sci. Rep. 7, 43768.
Lamata, L., J. León, T. Schätz, and E. Solano (2007), Phys.

Rev. Lett. 98, 253005.
Lambert, N., Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen,

and F. Nori (2012), Nature Physics 9, 10.
Langford, N. K., R. Sagastizabal, M. Kounalakis, C. Dickel,

A. Bruno, F. Luthi, D. J. Thoen, A. Endo, and L. DiCarlo
(2017), Nat. Commun. 8, 1715.

Larson, J. (2008), Physical Review A 78 (3), 033833.
Laurent, T., J.-M. Manceau, E. Monroy, C. B. Lim, S. Ren-

nesson, F. Semond, F. H. Julien, and R. Colombelli (2017),
Applied Physics Letters 110 (13), 131102.

Leggett, A. J., S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,
A. Garg, and W. Zwerger (1987), Reviews of Modern
Physics 59 (1), 1.

Leib, M., F. Deppe, A. Marx, R. Gross, and M. J. Hartmann
(2012), New J. Phys. 14, 075024.

Leroux, C., L. C. G. Govia, and A. A. Clerk (2018), Phys.
Rev. Lett. 120, 093602.

Li, X., M. Bamba, N. Yuan, Q. Zhang, Y. Zhao, M. Xiang,
K. Xu, Z. Jin, W. Ren, G. Ma, S. Cao, D. Turchinovich,
and J. Kono (2018a), Science 361 (6404), 794.

Li, X., M. Bamba, Q. Zhang, S. Fallahi, G. C. Gardner,
W. Gao, M. Lou, K. Yoshioka, M. J. Manfra, and J. Kono
(2018b), Nat. Photon. 12, 342.

Lidzey, D. G., D. D. C. Bradley, M. S. Skolnick, T. Virgili,
S. Walker, and D. M. Whittaker (1998), Nature 395, 53.

Liu, A. (1996), J. Appl. Phys. 80, 1928.
Liu, A. (1997), Phys. Rev. B 55, 7101.
Liu, M., S. Chesi, Z.-J. Ying, X. Chen, H.-G. Luo, and H.-Q.

Lin (2017), Phys. Rev. Lett. 119, 220601.
Liu, W., B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. C.

Johnson, and R. Agarwal (2016), Nano Lett. 16, 1262.
Liu, X., T. Galfsky, Z. Sun, F. Xia, E.-c. Lin, Y.-H. Lee,
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