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Quantum resource theories (QRTs) offer a highly versatile and powerful framework for
studying different phenomena in quantum physics. From quantum entanglement to quan-
tum computation, resource theories can be used to quantify a desirable quantum effect, de-
velop new protocols for its detection, and identify processes that optimize its use for a given
application. Particularly, QRTs have revolutionized the way we think about familiar prop-
erties of physical systems like entanglement, elevating them from being just interesting fun-
damental phenomena to being useful in performing practical tasks. The basic methodology
of a general QRT involves partitioning all quantum states into two groups, one consisting of
free states and the other consisting of resource states. Accompanying the set of free states
is a collection of free quantum operations arising from natural restrictions placed on the
physical system, restrictions that force the free operations to act invariantly on the set of
free states. The QRT then studies what information processing tasks become possible using
the restricted operations. Despite the large degree of freedom in how one defines the free
states and free operations, unexpected similarities emerge among different QRTs in terms of
resource measures and resource convertibility. As a result, objects that appear quite distinct
on the surface, such as entanglement and quantum reference frames, appear to have great
similarity on a deeper structural level. In this article we review the general framework of a
quantum resource theory, focusing on common structural features, operational tasks, and re-
source measures. To illustrate these concepts, an overview is provided on some of the more
commonly studied QRTs in the literature.

CONTENTS

I. Introduction and Motivation 2

II. Notation and Preliminaries 4

III. The General Structure of Quantum Resource Theories 6
A. Definition of a Quantum Resource Theory (QRT) and

Tensor-Product Structures 7
B. Consistent QRTs for a given set of free operations 9
C. Consistent QRTs for a given set of free states 10

1. RNG, k-RNG, and Completely RNG Operations 10
2. Physically Implementable Operations 11
3. Other classes of free operations 12

∗ echitamb@illinois.edu
† gour@ucalgary.ca

D. Types of QRTs 13

1. Convex resource theories 13

2. Affine resource theories 14

3. QRTs with a resource-destroying map 15

4. Non-Convex resource theories 15

5. Resource Theories of Quantum Processes 16

IV. Examples of Specific Resource Theories 19

A. Convex Resource Theories 19

1. Entanglement 19

2. Quantum Reference Frames and Asymmetry 21

3. Quantum Thermodynamics 23

4. Quantum Coherence 25

5. Stabilizer Computation and “Magic” States 27

B. Resource Theories in Quantum Foundations 28

1. Bell Nonlocality 28

2. Contextuality 30

mailto:echitamb@illinois.edu
mailto:gour@ucalgary.ca


2

3. Incompatibility, Steering, and Projective
Simulability 31

C. Non-Convex Resource Theories 32
1. Non-Gaussianity 32
2. Non-Markovianity 33
3. Quantum Correlations 34

V. Resource-theoretic Tasks 35
A. Single-shot convertibility 35
B. Asymptotic Convertibility 35
C. Catalytic Convertibility 37
D. Convertibility preordering 37
E. Simulation of non-free operations 38
F. Erasing Resources 38

VI. Quantifying Resources 39
A. An Axiomatic Approach 39

1. Vanishing for Free States 39
2. Monotonicity 39
3. Convexity 40
4. Subadditivity 40
5. Asymptotic Continuity 41

B. General Distance-Based Constructions 41
C. Entropic measures 42
D. Geometric Measures 43
E. Witness-based measures 44

1. Trace Distance Measures 45
2. Robustness Measures 46
3. Resource-Rank Measures 47

VII. General Techniques, Mathematical Tools, and Results 47
A. Majorization theory 47

1. Majorization in Gambling 48
2. Majorization in Entanglement and Coherence

theories 49
3. Majorization and Statistical Comparisons 50
4. Majorization in Quantum Thermodynamics 51

B. Convex analysis, Semi-definite programming, and
duality theory 52

C. Smooth Entropies and the Generalized Stein’s Lemma 53

VIII. Outlook 55

References 56

I. INTRODUCTION AND MOTIVATION

Basic economic principles dictate that objects acquire
value when they cannot be easily obtained. From this
perspective, value is a property that emerges relative to
physical capabilities. A resource theory for a given sce-
nario extends this principle by categorizing actions in
terms of being either free or prohibited, and then an-
alyzing what can be accomplished using the allowable
operations. Certain objects cannot be generated in this
setting and they are considered to be a resource. For

example, a camper is forced to consider what types of
food can be prepared using a camping stove and non-
perishable ingredients. The ability to bake and refrig-
erate is prohibited, and any ingredient requiring, say, a
refrigerator is a resource for the camper.

In recent years, the resource theory perspective has
flourished within the quantum information community.
Instead of the resources being cooking ingredients for a
camper or fuel for an automobile driver, the resources
considered within quantum physics involve objects and
phenomena at the atomic and sub-atomic levels. Re-
source theories of this sort are called quantum resource
theories. It is quite natural to apply a resource-theoretic
outlook to the study of quantum systems since processes
like decoherence rapidly eliminate most quantum be-
havior of a system. Like an oil digger, one must exert
considerable experimental effort to witness and control
the subtle effects of quantum mechanics.

While the technical details will be covered in this re-
view article, the basic idea of a quantum resource theory
is to study quantum information processing under a re-
stricted set of physical operations. The permissible oper-
ations are called “free,” and because they do not encom-
pass all physical processes that quantum mechanics al-
lows, only certain physically realizable states of a quan-
tum system can be prepared. These accessible states are
likewise called “free,” and any state that is not free is
called a resource state. Thus a quantum resource the-
ory identifies every physical process as being either free
or prohibited, and similarly it classifies every quantum
state as being either free or a resource.

FIG. 1 In a quantum resource theory, the precious commod-
ity is some physical property or phenomenon that emerges ac-
cording to the principles of quantum mechanics. The paradig-
matic example is quantum entanglement.



3

The most celebrated example of a quantum resource
theory is the theory of entanglement. For two or more
quantum systems, entanglement can be characterized as
a resource when the allowed dynamics are local quan-
tum operations and classical communication (LOCC).
For example, as depicted in Fig. 2, Alice and Bob may
be working in their own quantum laboratory while be-
ing separated from each other by some large distance.
Due to current technological limitations, the only com-
munication channel connecting their laboratories is clas-
sical, such as a telephone. Hence Alice cannot directly
send quantum states to Bob and vice versa, and the
free operations in this resource theory consists of LOCC.
While the classical communication channel allows for
the preparation of classically correlated states between
the two laboratories, not every type of joint quantum
state can be realized for Alice and Bob’s systems using
LOCC. A state is said to be entangled, and therefore a re-
source, precisely when it cannot be generated using the
free operations of LOCC. For instance, if Alice and Bob
each control a single spin-1/2 quantum system, the sin-
glet state

√
1/2(|01〉 − |10〉) cannot be created by LOCC

and it is therefore called an entangled state.

Inspired by its success researchers have adopted the
resource theory framework within many other areas of
quantum information and physics. For example, asym-
metry and quantum reference frames, quantum ther-
modynamics, quantum coherence and superposition,
secret correlations in quantum and classical systems,
non-Gaussianity in bosonic systems, “magic states” in
stabilizer quantum computation, non-Markovianity in
multi-part quantum processes, nonlocality, and quan-
tum correlations have all been studied as resource theo-
ries. Even more foundational objects such as contextu-

FIG. 2 Quantum entanglement is a quantum resource in the
“distant-lab” scenario (Plenio and Virmani, 2007) where the
free operations are LOCC.

ality and Bell non-locality have been envisioned as re-
sources within quantum information theory.

There are multiple benefits to framing a given quan-
tum phenomenon in terms of a resource, and here we
highlight four of them.

1. Resource theories can be desirable from a practical
perspective as they often restrict attention to quan-
tum operations that reflect current experimental
capabilities. For example, one advantage of cap-
turing entanglement as a resource under LOCC is
that, relative to the challenges of faithfully trans-
mitting quantum systems across large distances,
classical communication is easy. Practically speak-
ing then, it is very reasonable to consider what
information processing tasks can be performed
when restricted to LOCC. More generally, a re-
source theory can be associated to any experiment
where the free operations are those that can be per-
formed within the experimental degrees of free-
dom inherent to the particular setup (e.g., rotation
of the inhomogeneous magnetic field in the Stern-
Gerlach experiment).

2. Resource theories provide the foundation to rigor-
ously compare the amount of resource held in dif-
ferent quantum states (or quantum channels). Op-
erationally speaking, one state possesses at least as
much resource as another if it is possible to trans-
form the former into the latter using the free op-
erations of the resource theory. This is simply be-
cause whatever tasks can be accomplished using
the transformed state can also be accomplished us-
ing the original one. By considering convertibility
under the free operations, a preordering is estab-
lished on the set of quantum states. With a re-
source theory, measures can also be constructed
so that it becomes possible to say “how much”
resource is in a given state. While the specific
numerical value of these measures can have var-
ious operational meanings such as transforma-
tion probability or conversion rate, all meaningful
measures of resource are monotonically decreas-
ing under the free operations of the resource the-
ory. This captures the intuitive notion that a re-
source is something precious and its value cannot
be freely increased.
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3. Resource theories enable a fine-grained analysis of
what fundamental processes and properties drive
a certain phenomenon. By placing restrictions
on the allowed operations, one can pin-point pre-
cisely the essential physical requirements for per-
forming some information-processing task. Quan-
tum teleportation provides a beautiful example
of how, when restricting to LOCC, entanglement
emerges as the essential ingredient for transmit-
ting quantum information from one physical lo-
cation to another. By decomposing a given task
in terms of free operations and resource consump-
tion, one can further consider resource trade-offs.
For certain tasks, it may be advantageous to ex-
pand the set of free operations in order to reduce
the overall consumption of resource.

4. By capturing a particular object of interest within
a quantum resource theory, it becomes possible
to identify structures and applications that are
common to resource theories in general. Prob-
lems that are challenging or not even recognized
when approached internally take on a new light
when approached externally, from the more gen-
eral resource-theoretic perspective. For example,
elegant solutions to the notoriously difficult prob-
lem of entanglement reversibility emerge when
drawing resource-theoretic connections to ther-
modynamics. As another example, new areas of
research in classical information theory open after
recognizing that certain features of quantum en-
tanglement can also be observed in the classical
setting of private and public correlations.

This article surveys the subject of quantum resource
theories. There are already a number of very nice re-
views on individual resource theories: entanglement
(Horodecki et al., 2009; Plenio and Virmani, 2007), quan-
tum reference frames and asymmetry (Bartlett et al.,
2007), quantum thermodynamics (Goold et al., 2016;
Gour et al., 2015b), coherence (Streltsov et al., 2017), non-
locality (Brunner et al., 2014), non-Gaussianity (Weed-
brook et al., 2012), non-Markovianity (Ángel Rivas et al.,
2014), and quantum correlations (Adesso et al., 2016;
Modi et al., 2012). The purpose of this article is to re-
view the plethora of features that unite all these theo-
ries together under a common resource-theoretic frame-
work, similar to the approach taken in Horodecki and

Oppenheim (2013b). Early in its development, quantum
entanglement was seen to possess many formal similar-
ities to thermodynamics (Horodecki et al., 2002, 1998b;
Popescu and Rohrlich, 1997), and connections between
different resource theories have been investigated ever
since (Anshu et al., 2017; Brandão and Gour, 2015; Gour,
2017; Horodecki and Oppenheim, 2013b; Liu et al., 2017;
Sparaciari et al., 2018). Many of the same mathematical
tools and techniques can be applied across a wide va-
riety of resource theories. Examples include majoriza-
tion theory, entropic quantities and their properties, re-
sults from convex analysis like the hyperplane separa-
tion theorem, and optimization techniques such as cone
programming. Furthermore, recently it was recognized
that a resource theory can be formulated as a symmet-
ric monoidal category (Coecke et al., 2016; Fritz, 2015).
This abstract formulation recognizes that the structure
of resource theories goes far beyond quantum physics
and has the potential to be useful in many other areas of
science. Here, however, we will focus only on resource
theories admitting the structure of quantum mechanics.

As one of its primary goals, this article outlines the
general framework for constructing a quantum resource
theory and discusses the typical questions that emerge
in its development. After describing the different ap-
proaches to answering these questions, the article pro-
vides a comparative review of the more well-known
resource theories. A broad overview of tasks, mea-
sures, and analytic techniques is then conducted over
the course of three sections. The article closes with an
overview of open problems and future research direc-
tions.

II. NOTATION AND PRELIMINARIES

Here we introduce the notation that will be used
throughout the paper, and we quickly review some of
the basic concepts in quantum information theory that
are relevant to quantum resource theories. More de-
tailed expositions of this introductory material can be
found in Nielsen and Chuang (2000); Watrous (2018);
and Wilde (2017). We will denote Hilbert spaces by
HA, HB, etc., where the superscripts indicate the phys-
ical systems associated with these Hilbert spaces. Com-
posite systems will be denoted by HAB, HABC, etc. In
some cases we will want to envision systems A, B, C,
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etc. as being held by generic agents Alice, Bob, Charlie,
etc., but an association with personal agents is not nec-
essary. The set of bounded operators acting on a Hilbert
space HA will be denoted by B(HA), or simply B(A).
Positive semi-definite operators in B(A) will be typi-
cally denoted by lowercase Greek letters (e.g. ρ, σ, ω),
and we write ρ > 0 to indicate that all eigenvalues are
non-negative. The set of quantum states (i.e., density
matrices) in B(A) consists of positive semi-definite ma-
trices with trace one, and it will be denoted by S(A).
Two common ways to quantify “how close” a given
state ρ is to another σ is the trace distance, given by
DTr(ρ, σ) = 1

2‖ρ − σ‖1 (where ‖X‖1 = Tr
√

X†X), and
the fidelity, given by F(ρ, σ) = ‖√ρ

√
σ‖1 (Uhlmann,

1976). The two can be related using the inequalities
(Fuchs and van de Graaf, 1999)

1− F(ρ, σ) 6 DTr(ρ, σ) 6
√

1− F(ρ, σ)2. (1)

Linear maps, or super-operators, that act on B(A) will
be denoted by capital Greek letters (e.g. Φ, Λ, Γ), and
the identity map will be denoted by idA : B(A)→ B(A).
The set of all bounded linear maps from B(A) to B(B)
will be denoted by B(HA → HB), or simply B(A→ B).
Linear maps that represent a physical evolution of a
(possibly open) system must take density matrices to
density matrices. We say that a linear map Φ : B(A) →
B(B) is positive if Φ(ρ) > 0 for all 0 6 ρ ∈ B(A),
k-positive if Φ ⊗ idC is positive with dim(HC) = k,
and completely positive (CP) if it is k-positive for all
k. It is known that if a linear map is k-positive with
k > dim(HA) then it is completely positive. A physical
evolution is therefore represented by a CP map. More-
over, since density matrices can only evolve to density
matrices, a physical evolution must preserve the trace.
Such completely positive trace-preserving (CPTP) maps
are called quantum channels. The set of all quantum chan-
nels in B(A→ B) will be denoted by Q(A→ B).

Quantum mechanics allows for stochastic processes
and quantum measurements. For measurements with a
discrete set of outcomes, a quantum state ρ is converted
to another quantum state σi with some probability pi.
The average post-measurement description of both the
classical measurement register and the quantum system
can be given by a quantum-classical (QC) state of the
form:

σQX = ∑
i

piσi ⊗ |i〉〈i|X . (2)

Therefore, the entire measurement can be modeled by a
deterministic process, Φ, converting ρ to σQX . The map
Φ in this case is a particular type of a quantum chan-
nel, often called a measurement map, that has the form
Φ(·) = ∑i Φi(·) ⊗ |i〉〈i|X , with each Φi being CP and
∑i Φi being trace-preserving. By appending the classi-
cal ancillary system X we can thereby consider trace-
preserving maps even when discussing stochastic pro-
cesses. Throughout this paper we will adopt the conven-
tion that HX denotes a (classical) system whose states
are always dephased in some a priori fixed orthonormal
basis {|i〉}i.

Any quantum channel has three important represen-
tations that are frequently used in the field of quantum
information science, and all three representations play a
crucial role in quantum resource theories as well. The
most physically intuitive one is related to the Stinspring
Dilation Theorem (Stinespring, 1955). In this represen-
tation, the evolution of an open quantum system A is
modeled by a unitary interaction UAE of the joint sys-
tem A with the environment (represented by system E).
When the environment is initially in some uncorrelated
state |0〉〈0|E, the reduced-state dynamics of system A is
described by the quantum channel

ρA 7→ Φ(ρA) = TrE′
[
UAE

(
ρA ⊗ |0〉〈0|E

)
U†AE

]
, (3)

where E′ need not be the same system E. It turns out that
for every CPTP map Φ, there exists such a unitary repre-
sentation UAE in which Eq. (3) holds for all ρA. This can
be interpreted as saying that every physical evolution is
essentially a unitary evolution on the joint system and
environment, and CPTP maps provide only an effective
description of the evolution due to the inaccessibility of
the environment’s degrees of freedom.

The second representation of a quantum channel is
known as the operator-sum representation. It states that
the action of any quantum channel Φ can be written
as Φ(ρA) = ∑j Kjρ

AK†
j , where {Kj}j is a set of com-

plex matrices (known as Kraus operators) satisfying
∑j K†

j Kj = IA, with IA being the identity in B(A). If
we relax the trace-preserving condition on Φ to be just
trace non-increasing, then the Kraus operators satisfy
∑j K†

j Kj 6 IA. Just as the unitary UAE in Eq. (3) is not
unique for each Φ, the set of Kraus operators {Kj}j is not
unique and is defined up to a unitary mixing (Nielsen
and Chuang, 2000). While the operator-sum representa-
tion at first seems very mathematical, translating phys-
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ical constraints into Kraus operator constraints is often
a very convenient way to characterize the allowed (i.e.,
free) operations of a QRT, such as in entanglement.

The last representation of a quantum channel that
we consider involves an isomorphism between bipar-
tite positive operators and CP maps. At first glance, the
mathematical structure of quantum channels appears to
be more complex than that of density matrices. How-
ever, the two objects are actually equivalent. To establish
this, we first let |φ+

dA
〉 = ∑dA

j=1 |j〉
A|j〉A′ denote a canoni-

cal unnormalized maximally entangled vector acting on
HA ⊗ HA′ , with HA ≈ HA′ . When the dimension of
the system is clear, we will omit the subscript dA. Then
consider the action of the CP (but not necessarily trace-
preserving) map Φ : B(A′)→ B(B) when acting on one
half of the maximally entangled vector |φ+〉AA′ . This
produces the bipartite operator

JAB
Φ := idA ⊗Φ(φ+), (4)

where φ+ = |φ+〉〈φ+|. The operator JAB
Φ is called the

Choi matrix of Φ, and when the context is clear, we will
omit the subscript Φ and simply write JAB or just J. Any
CP map Φ corresponds to such a bipartite positive semi-
definite operator JAB

Φ via Eq. (4), and conversely, any bi-
partite positive semi-definite operator JAB corresponds
to a CP map Φ given by

ΦJ(ρ) = TrA

[
JAB

(
ρT ⊗ IB

)]
, (5)

where ρT indicates the matrix transpose w.r.t. some
fixed basis of HA. If this basis is chosen to be the same
as that used in the definition of |φ+〉AA′ , then it is easy
to see that ΦJΦ = Φ. The relations in (4) and (5) there-
fore define an isomorphism between the set of CP maps
in B(A → B) and the set of bipartite positive semi-
definite operators in B(AB), typically called the Choi-
Jamiołkowski Isomorphism. If we further require Φ to
be trace-preserving (i.e., a quantum channel), then the
system A reduced operator in JAB

Φ of Eq. (4) is the iden-
tity, i.e., JA

Φ = IA. Conversely, if the reduced operator of
JAB is the identity in Eq. (5), then ΦJ will also be trace-
preserving. Thus, there is a bijection between the set of
quantum channels and the set of positive semi-definite
operators with the system-A marginal being the iden-
tity.

Each of the three representations above plays an im-
portant role in QRTs. As we will see, different repre-
sentations fit more naturally in the analysis of different

QRTs. Some, more physical QRTs, lend themselves best
to a unitary representation, while others, more math-
ematical in nature, allow for easier analysis using the
Choi representation.

We finally draw attention to a special class of CP maps
that act invariantly on the identity; i.e., Φ(I) = I. These
are called unital maps, and they are closely related to the
dual of a quantum channel. Namely, for every CP map
Φ ∈ B(A → B), its dual Φ† ∈ B(B → A) is the adjoint
map fixed by the Hilbert-Schmidt inner product; that is,
it is the unique map Φ† satisfying

Tr
(

XΦ†(Y)
)
= Tr (Φ(X)Y) (6)

for all hermitian X ∈ B(A) and hermitian Y ∈ B(B).
One can verify that a CP map Φ is trace-preserving if
and only if its dual Φ† is a unital CP map. To see this, it
is perhaps easiest to substitute the operator-sum repre-
sentation Φ(A) = ∑j Kj AK†

j directly into Eq. (6), which

reveals {K†
j } to be the Kraus operators of Φ†. In terms

of its Choi matrix, JAB
Φ† for a channel Φ has the prop-

erty that its system B reduced state is the identity; i.e.,
JB
Φ† = IB. Compare this to the condition JA

Φ = IA for
JAB
Φ mentioned above.

III. THE GENERAL STRUCTURE OF QUANTUM
RESOURCE THEORIES

As discussed in the introduction, the structure of re-
source theories goes far beyond quantum physics. For
example, the set of all shapes that can be generated by
a compass and a ruler could represent “free states” of
a resource theory, with the action of the compass and
ruler being the free operations. Therefore, in this re-
source theory, all the shapes that cannot be generated by
a compass and ruler are considered as resources1. How-
ever, the type of resource theories that we will consider
here focus on quantum phenomena such as entangle-
ment and coherence. Therefore, in what follows, QRTs
will be defined with respect to a given Hilbert space so
that the structure of quantum mechanics is prominent.

1 We credit Rob Spekkens for this simple example of a non-quantum
resource theory.
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A. Definition of a Quantum Resource Theory (QRT) and
Tensor-Product Structures

Already in the early stages of its development, it was
clear that quantum information is a theory of intercon-
versions among different resources (Bennetti, 2004; De-
vetak et al., 2008). These resources are diversely clas-
sified as classical or quantum, noisy or noiseless, and
static or dynamic. However, the term “resource the-
ory” appeared much later. Originally, it was coined
by Schumacher in 2003 (unpublished), and later in a
2008 paper on the resource theory of quantum reference
frames (Gour and Spekkens, 2008). The latter provided
one of the first explicit constructions of a QRT that is
different from entanglement theory, although the frame-
work for a QRT of information had already been inves-
tigated in a series of earlier papers (Horodecki et al.,
2003a, 2005b; Oppenheim et al., 2002). Since then, many
other resource theories have been developed, and a pre-
cise mathematical definition of a resource theory was
given in (Coecke et al., 2016; Fritz, 2015) as a symmet-
ric monoidal category. However, this definition involves
terms from category theory and goes beyond the scope
of this review. We therefore start with a mathemati-
cally less general definition of quantum resource the-
ories, yet probably more accessible to a reader with a
physics background. While in this paper we will con-
sider mostly finite-dimensional Hilbert spaces over the
complex field (in which case the Hilbert spaces will be
isomorphic to Cd for some integer d), the definition be-
low can also be applied to infinite-dimensional Hilbert
spaces.

Definition 1. Let O be a mapping that assigns to any
two input/output physical systems A and B, with cor-
responding Hilbert spaces HA and HB, a unique set
of CPTP operations O(A → B) ≡ O(HA → HB) ⊂
Q(A → B). Let F be the induced mapping F (H) :=
O(C→ H), whereH is an arbitrary Hilbert space. Then
the tuple R = (F ,O) is called a quantum resource theory
(QRT) if the following two conditions hold:

1. For any physical system A the set O(A) :=
O(A→ A) contains the identity map idA.

2. For any three physical systems A, B, and C, if Φ ∈
O(A → B) and Λ ∈ O(B → C) then Λ ◦ Φ ∈
O(A→ C).

In a QRT, the set F (H) ⊂ S(H) defines the set of
free states acting on H, and the elements belonging to
S(H) \ F (H) are called resource states or static resources.
Likewise the CPTP maps in O(A → B) are called free
operations and the CPTP maps that are not in O(A→ B)
are called dynamical resources.

As before, for Hilbert spacesHA,HB, etc., we will often
denote sets of free states and free operations in terms
of system labels, e.g., F (A) := F (HA), F (AB) :=
F (HA ⊗HB), O(A → B) := O(HA → HB), O(A) :=
O(HA → HA), etc.. With a slight abuse of terminol-
ogy, when the underlying Hilbert spaces are clear, we
will often refer to F as the free states and O the free op-
erations. Also, here and throughout the paper we use
the notation ⊂ to indicate a generic set inclusion, which
may or may not be strict.

The physical interpretation of Definition 1 is as fol-
lows. Consider a quantum system held by one agent
or distributed to a group of parties. A QRT mod-
els what the parties can physically accomplish given
some restrictions or constraints that result from techni-
cal/experimental limitations, the rules of some game, or
simply the laws of physics. What operations the agents
can still perform given these restrictions is mathemati-
cally described by O(A → B), which is typically much
smaller than the set of all quantum channels. The first
condition in Definition 1 simply says that the identity
map (i.e., doing nothing) is free, an obvious requirement
for any meaningful QRT. Condition two says that Λ ◦Φ
is free whenever Φ and Λ are both free. This ensures
that the operations belonging toO are indeed free in the
sense that they can be performed freely any number of
times and in any order. A consequence of condition two
is that the free operations cannot convert any state in F
to one not belonging to F . More formally,

For any two physical systems A and B, if
Φ ∈ O(A → B) and ρ ∈ F (A), then Φ(ρ) ∈
F (B).

This can be referred to as the golden rule of QRTs, and
it justifies the terminology of “resource” for states in
S(H) \ F (H).

In the literature, the free states and free operations are
typically presented on equal footing. However here we
identify the free operations as being more fundamental.
If free states are special objects that an experimenter can
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work with, then he/she must be able to prepare or ob-
tain them. Such an initial preparation is thus identified
by an operation in O(C → H). Nevertheless, note that
by keeping the set O(C → H) fixed, different QRTs can
be defined with the same set of free states. We will there-
fore treat the free states as its own component of a QRT,
even though they emerge from the definition of free op-
erations. Then unless otherwise stated, when we speak
of “free operations,” we will always mean maps acting
on input spaces having dimension at least two.

The golden rule of QRTs does not imply that resource
states fail to play a functional role in the theory. On
the contrary, if the agents/parties do happen to have ac-
cess to a resource state (perhaps prepared separately by
a third party), it could possibly be used to circumvent
(at least partially) the restrictions on the allowed opera-
tions. That is, for some σ 6∈ F (B), there may exist maps
Φ ∈ O(AB) and Λ 6∈ O(A) such that Φ(ρ⊗ σ) = Λ(ρ)

for all ρ ∈ S(A) (or perhaps just a subset of S(A)). In
this case, the state σ is literally functioning as a resource
for the simulation of an otherwise restricted operation
Λ (see Sections III.D.5 and V.E). The most celebrated ex-
ample of this is quantum teleportation in entanglement
theory (Bennett et al., 1993).

QRTs correspond to physical models. As such, Hilbert
spaces represent the state space of specific physical sys-
tems. Therefore, a mathematical isomorphism between
two Hilbert spaces, such as C2 ⊗ C2 ∼= C4, does not
necessarily translate into the same set of free states (or
free operations) for the two spaces. That is, F (C2 ⊗C2)

can be very different from F (C4) since the two Hilbert
spaces can represent different physical systems. For in-
stance, the space C2 ⊗C2 might represent two spatially
separated spin-1/2 particles, while C4 may correspond
to a single particle with four spin or energy levels. There-
fore, in the assignments ofF andO for a given QRT, one
must carefully consider what physical scenario the QRT
is attempting to model. On the other hand, a relabeling
of tensor-product spaces does not change the free states
and free operations of a QRT. That is, if HA is a Hilbert
space for system A andHB is a Hilbert space for system
B, then density matrices acting on HA ⊗ HB represent
the same physical states as density matrices acting on
HB ⊗HA.

While Definition 1 stipulates the minimal mathemat-
ical requirements of a QRT, in practice there are other

natural properties that one might desire in a QRT. The
most obvious of these can be collected together in what
will be referred to as a tensor-product structure.

Definition 2. A QRT R = (F ,O) is said to admit a
tensor-product structure if the following three conditions
hold:

1. The free operations are “completely free”: For any
three physical systems A, B, and C, if Φ ∈ O(A→
B) then idC ⊗Φ ∈ O(CA → CB), where idC is the
identity map on B(C).

2. Appending free states is a free operation: For any
given free state σ ∈ F (B), the CPTP map Φσ(ρ) :=
ρ⊗ σ is a free map, i.e., it belongs to O(A→ AB).

3. Discarding a system is a free operation: For any
Hilbert spaceH, the set O(H → R) is not empty.

Remark. Note that B(H → R) contains only one CPTP
map which is given by the trace. Therefore, the state-
ment that O(H, R) is not empty, is equivalent to the
statement that the trace of a system is a free map.

These conditions are highly intuitive and are to be ex-
pected in most physical models. The first says that a
free operation remains free when acting on just one part
of any joint system. Such maps are called “completely
free” analogous to the notion of “completely positive”
maps (see Section III.C.1). As a consequence of the first
condition, if Φ ∈ O(A → B) is free and Φ′ ∈ O(A′ →
B′) is free, then Φ⊗Φ′ must be free as well. This follows
from the fact that Φ ⊗ Φ′ =

(
idB ⊗Φ′

)
◦
(

Φ⊗ idA′
)

is a composition of two free operations. The second
and third conditions in Definition 2 state that append-
ing a free ancillary system and discarding a system are
both free. Both are very natural properties to suppose
of a QRT. In particular, the ability to append arbitrary
free states to any system reflects the situation where free
states are really free to generate.

The defining conditions of a tensor-product structure
are not completely independent, and they have several
interesting consequences. The first consequence is that
the partial trace Tr⊗id is a free operation, a fact that
follows immediately from the first and third proper-
ties in Definition 2. A second consequence is that ev-
ery replacement channel Φσ ∈ Q(A → B) of the form
Φσ(X) := Tr[X]σ, with a fixed σ ∈ F (B), is free (i.e., be-
longing to O(A → B)). This can be seen by combining
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the partial trace with the second property in Definition
2. In particular, if ρ and σ are two free states in a QRT
with tensor-product structure, then ρ can be converted
to σ by free operations, and vice versa. Finally, a third
consequence is that if both ρ ∈ F (A) and σ ∈ F (B)
are free, then ρ ⊗ σ ∈ F (AB). This property follows
from the previous consequence and the first condition
of Definition 2. The intuition behind this property is
that if ρ and σ are free to prepare separately, then their
joint state ρ⊗ σ is also free to prepare. This justifies the
terminology of tensor-product structure since it implies
that F (A)⊗F (B) ⊂ F (AB) for any two Hilbert spaces
HA and HB. Note that a partial converse of this inclu-
sion also holds in the sense that if ρAB ∈ F (AB), then its
marginals are also free; i.e., ρA ∈ F (A) and ρB ∈ F (B).
This holds in light of the above observation that the par-
tial trace is a free map.

Most of the physically motivated and previously
studied QRTs admit a tensor-product structure, such as
the QRTs of entanglement, coherence, asymmetry, and
athermality. However, there are less intuitive but still
important QRTs that do not possess a tensor-product
structure. For example, certain models of Bell nonlo-
cality do not admit such a structure and lead to exam-
ples of states ρ and σ that are free, even though ρ⊗ σ is
not (Palazuelos, 2012). In such cases, the QRT is said to
demonstrate a “super-activation” of resource.

B. Consistent QRTs for a given set of free operations

When attempting to model some quantum phe-
nomenon using a QRT, often physical constraints dictate
the appropriate choice for either the free states or more
generally the free operations. For example, in many
quantum information problems, multiple spatially sep-
arated parties share a composite quantum system and
LOCC emerges as the natural choice of free operations.
On the other hand, in the resource theory of coherence,
it is more natural to first turn to the free states and iden-
tify these as being the collection of density matrices that
are diagonal in some fixed basis. With either the free
states or free operations given, the other must then be
consistently specified so that the golden rule of QRTs is
satisfied. We now explore this specification in more de-
tail. As we will first see, when the free operations are
given, the choice of free states is often unique.

For a given Hilbert space, suppose that the free op-
erations of a physical system A are fixed by the physi-
cal constraints, and let us consider the structure of QRTs
that are consistent with these free operationsO(A). First
observe that the set O(A) imposes a preorder on the set
of density matrices S(A) (see Section V.D). That is, given

two arbitrary states ρ, σ ∈ S(A), we can write ρ
O−→ σ

if there exists a free operation Φ ∈ O(A) such that

σ = Φ(ρ). If both ρ
O−→ σ and σ

O−→ ρ we write ρ
O≈ σ.

Clearly, the relation O−→ is a preorder on S(A) since for

any ρ, σ, γ ∈ S(A), if ρ
O−→ σ and σ

O−→ γ then also

ρ
O−→ γ. For any set of operations O(A), we can then

define the associated minimal set of free states Fmin(A)

as follows:

Fmin(A) ≡
{

ρ : ∀σ ∈S(A) ∃Φ ∈ O(A)

such that ρ = Φ(σ)
}

. (7)

In other words, ρ ∈ Fmin(A) if it can be freely gen-
erated starting from any other state. For a QRT with
free operations O(A) and any non-empty set of free
states F (A) consistent with O(A), we must have that
Fmin(A) ⊂ F (A), a relationship expressing the sense
in which Fmin(A) is a “minimal” set. This is because if

σ ∈ F (A) and ρ ∈ Fmin(A), then by definition σ
O−→ ρ,

which means that ρ can be obtained from a free state by
a free operation; hence, ρ ∈ F (A).

Suppose further that the QRT has the property that
any two free states on the same space can be converted
from one to the other using the free operations. That

is, ρ, σ ∈ F (A) implies ρ
O≈ σ. When this condition

holds, then we must have that Fmin(A) = F (A). This
remarkable observation follows easily from the fact that
Fmin(A) ⊂ F (A), which by assumption means that

ρ
O−→ σ for any σ ∈ F (A) and any ρ ∈ Fmin(A). But

by the definition of Fmin(A), it holds that ω
O−→ ρ for

all ω ∈ S(A). Hence, we also have that σ ∈ Fmin(A)

since ω
O−→ σ, which establishes the equality Fmin(A) =

F (A).
In what type of QRTs can one free state always be con-

verted to any other using the free operations? Clearly
the property holds for any QRT that admits a tensor-
product structure. But more generally, it suffices for the
QRT to allow both discarding a system (i.e., “trash”) and
preparing any free state. Combining these yields a re-
placement channel Φσ(X) = Tr[X]σ for some free state
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σ, and thus the set of free states must be Fmin(A) for
these QRTs.

In conclusion, given a set of free operations O(A), if
one desires a QRT in which any two free states are freely
interconvertible and discarding systems is allowed, then
Fmin(A) is the only set of free states that is consistent
with the set O(A). This demonstrates clearly how any
natural physical constraint on the set of quantum pro-
cesses leads to a unique QRT.

C. Consistent QRTs for a given set of free states

As we discussed above, certain types of quantum
phenomena can be identified directly on the level of
states without involving constraints on quantum pro-
cesses. This is the case for coherence and some models
of Bell nonlocality. When characterizing such phenom-
ena within a QRT framework, the task then becomes
to identify sets of free operations that are consistent
with the given set of free states. Unlike the conclusion
reached in the previous section - that fixing the free op-
erations leads to a unique set of free states Fmin under
reasonable assumptions - here there exists much greater
freedom in choosing a consistent set of free operations
for a fixed set of free states, even for QRTs admitting a
tensor-product structure.

Often some physical consideration will motivate a
certain choice of free operations. But even in this case,
it is valuable to study different classes of free operations
for the same set of free states. This is because different
classes may have an easier or more elegant mathemati-
cal structure than the physically-motivated class of op-
erations. This is the case, for example, in entanglement
theory where LOCC is a notoriously difficult class of op-
erations to characterize. To avoid the technical difficul-
ties that arise when using these operations, much work
has been devoted to the study of entanglement theory
under larger and more analytically-friendly sets of oper-
ations such as separable operations, non-entangling op-
erations, and more (Chitambar et al., 2017; Pankowski
et al., 2013; Rains, 1997, 1999a; Vedral and Plenio, 1998).
All of these resource theories have in common that the
set of separable states is the set of free states. Study-
ing more powerful operations can lead to proving no-
go results for the weaker yet more natural choice of free
operations. Indeed, any quantum information task that

cannot be performed by the more powerful class can-
not be performed by the weaker one. In this subsection,
we survey different consistent sets of free operations in
general QRTs, highlighting their various physical moti-
vations and properties.

1. RNG, k-RNG, and Completely RNG Operations

Associated with any set of free states, there will al-
ways be a maximal set of operations that is allowed by
the definition of a QRT. This is the set of resource non-
generating operations which is defined as follows:

Definition 3. Let F be as in Definition 1. For any
two physical systems A and B, the set of resource non-
generating (RNG) operations Omax(A → B) consists of
all quantum channels Φ ∈ Q(A → B) having the prop-
erty that Φ(ρ) ∈ F (B) whenever ρ ∈ F (A).

Since the defining property of QRTs is that resource
states cannot be generated from free states, it is obvious
that if O is any other assignment of free operations that
is consistent with F , then it must be that O ⊂ Omax

(meaning O(A → B) ⊂ Omax(A → B) for any in-
put/output systems A and B). In this sense, Omax is
justified in being called the maximal assignment of oper-
ations for F .

One might wonder whether the maximal set of op-
erations Omax(A) is related to the minimal set of states
Fmin(A) given by Eq. (7). In fact, there is a connec-
tion based on the discussion following Eq. (7). From its
definition, the RNG operations Omax(A) for a given set
of free states F (A) can transform any free state to any
other. Therefore, by the conclusion of Section III.B, we
must have F (A) = Fmin(A), and it is the unique set of
free states that is consistent with Omax(A).

We can extend the notion of RNG maps to the setting
where HA and HB represent subsystems of some large
system. By Definition 1 of a QRT, the identity map is
considered free. Therefore, if Φ ∈ O(A → B) is a free
CPTP map, one would intuitively expect that idC ⊗ Φ
is also a free operation, where idC is the identity map
on B(C). Condition 1 of a tensor-product structure has
identified any free map Φ having this property as be-
ing “completely” free. Note that if Φ is not completely
free, then there exists a bipartite free state σCA ∈ F (CA)

such that idC ⊗ Φ(σCA) is not free. More generally, we
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can restrict the dimension of system C and see whether
idC ⊗ Φ is still resource non-generating. This leads to
the following family of operational classes defined for a
given set of free states.

Definition 4. Let F be as in Definition 1. A map Φ ∈
Omax(HA → HB) is k-resource non-generating (k-RNG)
if idk ⊗ Φ ∈ Omax(Ck ⊗ HA → Ck ⊗ HB). Moreover,
Φ is completely resource non-generating (CRNG) if it is k-
RNG for all k. We denote by Ok max(A → B) the set
of k-RNG operations, and by Oc max(A → B) the set of
CRNG operations.

This definition generalizes the concepts of k-positivity
and complete-positivity to QRTs. Particularly, if we take
the free set F (A) to be the set of all density matrices act-
ing on HA, then maps that are k-RNG and completely-
RNG are equivalent to maps that are k-positive and
completely positive, respectively. Moreover, the set of
k-RNG maps with k = 1 is simply the set of RNG maps,
and similar to k-positivity, it is known that if a CPTP
map in Q(A → B) is k-RNG with k > dA := dim(HA)

then it is completely RNG. We therefore have the follow-
ing inclusion relations:

RNG = 1-RNG ⊃ 2-RNG ⊃ · · · ⊃ dA-RNG = CRNG .

In some QRTs the inclusions above are all equalities
while in others they are all strict. For example, if the
free states F are separable states, then the set Oc max

is precisely the set of separable maps, while if the free
states are those with a positive partial transpose (PPT),
then Oc max is the set of (completely) PPT-preserving
maps (Rains, 1999b). In both these cases, the set Oc max

is strictly smaller than Omax. In contrast, for the QRT
of (speakable) coherence, the two sets of operations are
equivalent. Note that if a QRT R = (F ,O) admits a
tensor-product structure, then any CPTP map inO(A→
B) must be completely RNG.

2. Physically Implementable Operations

The use of CPTP maps and generalized measure-
ments in quantum information science is so common
that their physical implementations are often taken for
granted. As described in Section II, the Stinespring Di-
lation Theorem ensures that every CPTP map on sys-
tem A can be implemented by applying a unitary evo-
lution on joint system A + E, where E represents the

environment that has inaccessible degrees of freedom
and which is initially uncorrelated with A. True as this
may be, often the joint unitary identified in this theorem
may not be physically implementable under the phys-
ical constraints of the QRT. For example, in any QRT
with locality constraints (such as entanglement), joint
unitaries cannot be applied across the spatially sepa-
rated subsystems. This means that the only consistent
unitary dilations are those that factor into independent
dilations on each of the subsystems. If no resource is
drawn from the environment, the generated CPTP maps
would then likewise factor into a product of indepen-
dent maps. However, if classical communication is al-
lowed between the subsystems, then there will be free
CPTP maps not having this form. Does this mean that
operations like LOCC cannot be implemented in a way
that is consistent with the constraints of the QRT? If
quantum mechanics only permitted unitary evolution,
then this would indeed be the case. Yet standard quan-
tum mechanics also allows for projective measurements
as a distinct physical process, and this should be com-
bined with the application of a joint unitary on system
A + E when considering physical implementations.

From a QRT perspective, it is natural to suppose that
the free operations can be generated by a sequence
of unitary evolutions (possibly on composite systems),
projective measurements, and processing of the classi-
cal outcomes, where each element in the sequence is
itself a free action. In particular, the classical process-
ing would encompass classical communication between
subsystems, if this were allowed in the QRT. Without
such consistency, the QRT would identify certain maps
as being free with no way to physically implement these
processes using free operations (Chitambar and Gour,
2016b; Marvian and Spekkens, 2016). We formalize this
idea in the following definition.

Definition 5. Let R = (F ,O) be a QRT in which ap-
pending free states and discarding subsystems are free
operations. A CPTP map Φ ∈ O(A → B) is said to
be physically implementable if it can be decomposed into
a composition of CPTP maps each acting on QC states
according to

∑
i

piρi ⊗ |i〉〈i|X 7→ ∑
i,j,k

qk|i,j piΦj|i(ρi)⊗ |k〉〈k|X , (8)

where qk|i,j is a family of conditional probability distri-
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FIG. 3 A physically implementable CPTP map is one that
can be realized by a sequence of channels, each having the
form depicted in the figure. The four steps - (i) appending
ancilla state ωi, (ii) applying a unitary Ui, (iii) performing a
projective measurement, and (iv) classically post-processing
the measurement outcome - all must be free operations in the
QRT.

butions, and each CP map Φj|i has the form

Φj|i : B
(
HAi

)
→ B

(
HAj|i

)
Φj|i : ρ 7→ TrE′i

[
(IA′i ⊗ Pj|i)Ui (ρ⊗ γi)U†

i

]
, (9)

in which γE
i ∈ F (Ei) is a free state, Ui ∈ O(AiEi →

A′iE
′
i) is a free unitary, and {Pj|i}j constitutes a com-

plete set of orthonormal projectors for a free projective
measurement on system E′i . The resource theory R is
called physically implementable if all the free CPTP maps
are physically implementable.

In this definition, it is assumed that appending free
states and discarding subsystems are both free opera-
tions. This is to ensure that the CPTP maps of Eq. (8) are
indeed free.

In more detail, the transformation in Eq. (8) is gen-
erated as follows (see Fig. 3). Conditioned on a clas-
sical input i, which might represent the outcome of a
previous measurement, the experimenter introduces the
free state ωi on system Ei and applies a joint unitary Ui

across Ai and Ei. A projective measurement {Pj|i}j is
then performed on a subsystem E′i , which may be larger
or smaller than the original ancilla system Ei. At this
point in the process, the generated CPTP map has the
form ∑i,j Φj|i ⊗ |j〉〈j|X . The final step involves send-
ing the classical register through the classical channel
|j〉〈j| → ∑k pk|i,j|k〉〈k|. Doing so generates a CPTP map
described by Eq. (8).

For a given designation of free states F , it is possi-
ble to construct a unique physically implementable QRT
that admits a tensor-product structure. Simply define
the free operations to be any composition of (i) append-
ing arbitrary free states, (ii) discarding subsystems, (iii)

CRNG unitaries and projective measurements, and (iv)
all free classical post-processing maps. For the overall
input/output spaces HA/HB, we denote this set of op-
erations as Omin(A→ B). By design, (F ,Omin) is phys-
ically implementable and has tensor-product structure.
Moreover,Omin is the minimal set of free operations that
is consistent with F , when considering QRTs such that
all the isometries in Omax are completely free. The class
Omin fits into the hierarchy of operations as follows:

Omin ⊂ Oc max ⊂ Omax.

In a general resource theory, the set of CRNG unitaries
can be strictly smaller than the set of RNG unitaries and
strictly larger than the set of free unitaries. In several
theories such as the QRT of athermality, the set of free
operations is defined precisely as in Eq. (9). One starts
by identifying the set of free unitaries and then proceeds
with the definition of free operations as in (9) (in the
case of thermodynamics, there would be no projective
measurement). However, in general, since the set Omin

can be very small, this procedure often leads to a de-
generate QRT where it is almost always impossible to
convert one resource state to another using physically
implementable operations. This is the case in the QRT
of (speakable) coherence (see Section IV.A.4).

3. Other classes of free operations

Beyond those just discussed, there are many other
types of operations that one can consider for a given
set of free states. Here we describe three more that
have been explored in the literature. The first is the
class of dually resource non-generating operations, and it
has only been studied recently in QRTs. This set of op-
erations, denoted by Odual, consists of all RNG opera-
tions for which their dual is also RNG. More precisely,
Φ ∈ Odual if Φ ∈ Omax and for any free state ρ, the state
Φ†(ρ)/ Tr[Φ†(ρ)] is also free. Here we must normalize
the state since Φ† is not necessarily trace preserving.

By definition, dually RNG operations are a subset of
RNG, and in certain QRTs this inclusion is strict, with
dually RNG operations being a subset of even CRNG
operations. For example, in the QRT of (speakable) co-
herence RNG=CRNG whereas the set of dually RNG
operations coincides with the set of dephasing covari-
ant incoherent operations (Chitambar and Gour, 2016b;
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Marvian and Spekkens, 2016), which is a strict subset of
CRNG. In entanglement theory, on the other hand, all
separable maps are CRNG, and it is simple to see that
the dual of a separable map is also separable. In fact, the
set CRNG in this theory is precisely the set of separable
maps, and it can be shown to be a strict subset of the set
of dually non-entangling operations (Chitambar et al.,
2017). In general, dually RNG operations provide a bet-
ter approximation to the physically-motivated set of free
operations than the full set of RNG operations. Their
usefulness arises in QRTs where the problem of state in-
terconversion can be solved by semi-definite program-
ming (SDP) for RNG operations but not the physically-
motivated ones (this occurs, for example, in some mod-
els of coherence). In such QRTs, state interconversion
under the dually RNG operations can also be solved
with SDP, thereby providing a better approximation of
what is feasible using the physically-motivated free op-
erations.

The replacement channel Φ(X) = Tr[X]σ with σ ∈
F (A) is RNG. However, it is not necessarily dually
RNG. To see why, observe that its dual is given by
Φ†(Y) = Tr[Yσ]I. Therefore, the replacement channel
is dually-RNG if and only if the maximally mixed state
is considered free in the resource theory.

Another family of free operations is stochastically re-
source non-generating operations, which we denote by
Ostochastic. This set of operations has been used heav-
ily in the QRT of coherence (Baumgratz et al., 2014),
and it is defined in terms of a Kraus operator decom-
position. A CPTP map Φ ∈ O(A → B) belongs to
Ostochastic if there exists an operator-sum representation
Φ(·) = ∑j Kj(·)K†

j such that for any free state ρ ∈ F (A),
it holds that

KjρK†
j

Tr
[
KjρK†

j

] ∈ F (B) ∀j. (10)

That is, any element in this particular operator-sum
representation of Φ induces a resource non-generating
transformation. This is a much stronger requirement
than Φ being RNG, and often this strengthening makes
Ostochastic simpler to work with. Both LOCC and sep-
arable operations in entanglement theory are stochasti-
cally RNG. In terms of CPTP maps, stochastically RNG
operations can be modeled by appending a classical reg-
ister to each resource non-generating Kraus operator Kj

and summing over all outcomes, Φ(·) = ∑j Kj(·)K†
j ⊗

|j〉〈j|X . This CPTP map is sometimes called a “her-
alded” or “flagged” measurement since the outcome j
can always be recovered after applying Φ by measuring
the classical system X.

A final class of operations for a given set of free states
F actually violates the Golden Rule of QRTs. Neverthe-
less, as discussed in Section VII.C, these operations have
proven to be quite useful in the study of asymptotic re-
source convertibility. For a fixed ε > 0, the class of ε-
resource generating (ε-RG) operations is the set of CPTP
maps belonging to Q(A→ B) such that

sup
ρ∈F (A)

Rrob(Φ(ρ)) < ε, (11)

where Rrob(ω) = minσ∈S(H){s > 0 | ω+sσ
1+s ∈ F (H)} is

the resource robustness for ω ∈ S(H) (Brandão and Gour,
2015) (see also Section VI.E.2).

D. Types of QRTs

Definition 1 provides the general definition of a QRT,
and it imposes very little structure on the theory. We im-
mediately introduced the tensor-product structure since
it embodies a collection of highly natural properties that
are possessed by almost all QRTs studied in literature.
In this section we review other types of mathematical
structures that can arise in QRTs that are independent of
the tensor-product structure.

1. Convex resource theories

Convexity is a very convenient mathematical prop-
erty. A QRTR = (F ,O) is called convex if O(A→ B) is
convex for any choices of Hilbert spaces (i.e., pΦ + (1−
p)Λ ∈ O(A → B) for any Φ, Λ ∈ O(A → B), p ∈ [0, 1],
and arbitrary HA and HB). In our formulation of QRTs,
the free states F (H) = O(C→ H) are defined as a spe-
cial case of the free operations, and so convexity of the
free operations implies that the set of free states F (H)

is convex for everyH. The converse however is not true
in general: a convex set of free states does not imply a
convex set of free operations. On the other hand, if the
set of free states is convex, then any convex combination
of free operations is a RNG map. In particular, the set of
RNG maps is convex if and only if the set of free states
is convex.
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Many QRTs such as entanglement, coherence, asym-
metry, and athermality, are all convex. The very rich
mathematical tools from convex analysis can therefore
be applied to these resource theories. This is briefly dis-
cussed in Section VII.B.

There are subtleties in associating physical meaning
to the convexity of a QRT. It is often argued that con-
vex QRTs do not allow for the generation of resource
simply through the act of forgetting. Specifically, sup-
pose a free state ρi is prepared with probability pi, for
i = 1, · · · , n. Then, as the reasoning goes, forgetting
which state was prepared leads to the mixture ∑i piρi,
which should also be a free state. However, as pointed
out by Plenio and Virmani, this model for forgetting in-
formation is too simplistic (Plenio, 2005; Plenio and Vir-
mani, 2007). First, the described transformation of an
ensemble of states {ρi, pi}i to the mixed density ma-
trix pρ + (1− p)σ is not a CPTP map, and it therefore
lies outside the resource-theoretic framework described
here. But more importantly, “forgetting information” in-
volves discarding classical information, and this process
needs to be considered. A more precise model begins by
describing a probabilistic state preparation through the
introduction of some classical randomness ∑i pi|i〉〈i|X ,
which is a density matrix diagonal in the computational
basis {|i〉}i. State preparation maps are then performed,
conditioned on the classical system X. This leads to the
QC state ∑i piρ

A
i ⊗ |i〉〈i|X . The act of forgetting is then

modeled by discarding the classical system X, which
corresponds to the transformation

∑
i

piρ
A
i ⊗ |i〉〈i|X →∑

i
piρ

A
i (12)

(Plenio, 2005; Plenio and Virmani, 2007). Thus, if the
the classically “flagged” mixture ∑i piρ

A
i ⊗ |i〉〈i|X is

free, one naturally expects that the “unflagged” mixture
∑i piρ

A
i is also free. In this model, the intuition that “for-

getting should not generate quantum resource” is made
precise in the condition that “discarding classical infor-
mation does not generate a quantum resource.”

While every ensemble-to-mixture transformation

{ρi, pi}i →∑
i

piρi (13)

is resource non-generating if and only if the QRT is con-
vex, whether or not the transformation in Eq. (12) is re-
source non-generating has nothing to do with the QRT
being convex. Rather, it depends entirely on whether

discarding classical systems is a free operation in the
theory. Nevertheless, in most non-convex QRTs discard-
ing classical systems can indeed be resource generating,
which explains why non-convexity is often associated
with the phenomenon of “resource generation by for-
getting,” even though the precise model described here
is usually overlooked.

2. Affine resource theories

Many QRTs such as quantum thermodynamics, co-
herence, and asymmetry satisfy a stronger condition
than convexity, which can be described as the affine con-
dition. Recall that F (A) is convex if any convex com-
bination of free states σj ∈ F (A), i.e., ∑j tjσj, is itself
free. Here the numbers tj are all non-negative and sum
to one. In an affine combination of states, the non-
negativity condition on the coefficients is relaxed while
still requiring that ∑j tj = 1. As a result, affine combina-
tions of states are not necessarily positive semi-definite,
but their trace is still one.

A QRTR = (F ,O) is called affine if, for any two phys-
ical systems A and B, any CPTP map that can be writ-
ten as an affine combination of elements in O(A → B)
is itself in O(A → B). Like convexity, this definition
implies that the set of free states is closed under affine
combinations that result in a valid density matrix. That
is, if σ = ∑j tjσj ∈ S(A) with tj ∈ R and σj ∈ F (A),
then σ ∈ F (A). This property alone does not ensure
that the QRT is affine. However, the set of free states is
affine if and only if the set of RNG maps is affine, as well
as the set of dually-RNG operations. Finally, we remark
that the set of free operations is affine if and only if their
Choi matrices form an affine set.

In entanglement theory, every bipartite quantum state
(even an entangled one) can be written as an affine com-
bination of pure product states. Therefore, in this sense,
entanglement theory is maximally non-affine. On the
other hand, the sets of free states in the QRTs of quan-
tum thermodynamics, coherence, and asymmetry, are
all affine. In thermodynamics it is affine because there
is only one free state, namely, the Gibbs state, while in
the QRT of coherence it is affine because the free states
are all the diagonal states and any linear combination of
diagonal states is still diagonal.

As exemplified by entanglement theory, the affine
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condition is much stronger than convexity. Conse-
quently, certain mathematical tools used to study affine
QRTs cannot be applied to convex QRTs (Gour, 2017). If
a QRT has an affine free set of states, but non-affine free
operations, then one can replace the free operations with
an affine one (e.g. the set of RNG or dually-RNG) to ob-
tain a fully affine QRT. This can often provide a good
approximation to the original QRT.

3. QRTs with a resource-destroying map

While the structure of a general affine QRT is simpler
than a convex one, it can still be very rich and complex
thereby making certain information-theoretic tasks diffi-
cult to analyze. In fact, many of the highly studied QRTs
(such as quantum thermodynamics, coherence, asym-
metry) have an additional structure that is not captured
by the affine condition. These theories all possess what
is called a resource-destroying map (Liu et al., 2017).

Definition 6. Given a QRT R = (F ,O) and Hilbert
space H, a resource-destroying map is a (not necessarily
linear) map ∆ : B(H) → B(H) with the following two
properties:

1. It maps any free state ρ ∈ F (H) to itself; i.e.,
∆(ρ) = ρ.

2. It maps any (possibly not free) state ρ ∈ S(H) to a
free state; i.e., ∆(ρ) ∈ F (H).

From its definition, it is not clear that a resource-
destroying map exists for a given QRT. However,
for quantum correlations (specifically quantum dis-
cord), Liu et al. (2017) describe a non-linear resource-
destroying map and study some of its applications in
the QRT of quantum discord. They further show that
non-linearity is a necessary condition of a resource-
destroying map in any non-convex QRT, such as quan-
tum discord. In contrast, for the QRT of coherence,
a linear resource-destroying map indeed exists and
plays a central role in the theory. Namely, it is the
completely dephasing map which removes all the off-
diagonal terms from the input density matrix (with re-
spect to some fixed basis).

One necessary condition for the existence of a (lin-
ear) CPTP resource-destroying map is that the set of free
states F (H) be affine (Gour, 2017). This follows from

the simple observation that if σ = ∑j tjσj > 0 is an affine
combination of free states then ∆(σ) = ∑j tj∆(σj) =

∑j tjσj = σ, which implies that σ is free since the output
of a resource-destroying map is always free. However,
the affine condition alone is not sufficient to determine
if there exists a CPTP resource-destroying map. Partic-
ularly, there exists affine QRTs that do not have a CPTP
resource-destroying map. The full necessary and suf-
ficient conditions for the existence of a CPTP resource-
destroying map were derived in (Gour, 2017).

4. Non-Convex resource theories

While convexity is a mathematically convenient prop-
erty to have, there are many QRTs that are not convex.
For example, consider a bipartite quantum system con-
sisting of two subsystems A and B held by Alice and
Bob, respectively. If the parties cannot communicate
(not even classically) due to some constraint, then their
physical capabilities amount to applying local quantum
channels Φ and Λ, resulting in an overall CPTP map of
the form Φ ⊗ Λ. Therefore, in this scenario every al-
lowed operation is a tensor product of two CPTP maps,
and similarly every free state is a tensor-product state,
ρA ⊗ ρB. The sets of free states and free operations are
not convex, which makes this QRT mathematically dif-
ficult to study. The resources in this model are bipartite
states having either classical or quantum correlations.
It is therefore a QRT of total correlations, distinguished
from resource theories of quantum correlations, such as
discord.

There are other important non-convex QRTs. For ex-
ample, in quantum optics, Gaussian operations are rel-
atively easier to implement than non-Gaussian opera-
tions, and therefore one can construct a QRT in which
Gaussian states and Gaussian operations are free. This
QRT is neither convex nor finite-dimensional, making
results relatively difficult to obtain (see Section IV.C.1 for
recent progress).

One general strategy for studying a non-convex the-
ory is to enlarge the set of free states and free operations
by taking their convex hulls. Then the standard tech-
niques of convex analysis can be employed. In some
cases, like the QRT of total correlations, this relaxation
is too strong, and all states become free. On the other
hand, this strategy leads to non-trivial results in the
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Quantum	Resource	Theories	
					(e.g.	Non-Gaussianity)	

Convex	Resource	Theories	
						(e.g.	Entanglement)	

					Affine	Resource	Theories	
(e.g.	Real	Quantum	Mechanics)	

											Resource	Theories	
																								with		
	a	Resource	Destroying	Map	
(e.g.	Athermality,	Asymmetry		
			and	Quantum	Coherence)	

FIG. 4 An heuristic diagram of QRTs, classified according to
the properties of their set of free states. Non-Gaussianity is an
example of a QRT with non-convex set of free states. Entan-
glement theory is an example of a QRTs that is convex but not
affine. Real (vs complex) quantum mechanics (Hickey and
Gour, 2018) is an example of an affine QRT that does not have
a resource-destroying map, and athermality, asymmetry, and
coherence, are examples of QRTs with a resource-destroying
map.

QRT of non-Gaussianity (Lami et al., 2018; Zhuang et al.,
2018).

5. Resource Theories of Quantum Processes

So far we have discussed QRTs involving interconver-
sions among resource states. That is, the resources have
been identified as all states not belonging to the set of
free states F (A). However, quantum states are static ob-
jects, and not all resources are static in nature. To gen-
eralize the concept of resource, recall first that every re-
source state can be identified as a special type of CPTP
map Ψ : B(A) → B(B), in which B(A) = C. More gen-
erally, one then constructs a QRT in which the resources
are CPTP maps Ψ : B(A) → B(B) for different input
spaces B(A). We will say that Ψ is a dynamical resource
if dA = dim(HA) > 1.

Already in its early days, see e.g., (Bennetti, 2004;
Devetak et al., 2008; Devetak and Winter, 2004; Wilde,
2017), it was recognized that the whole field of quan-
tum information can be viewed as a theory of intercon-
versions among different resources, where the resources
can be classified as being static or dynamic, classical
or quantum, noisy or noiseless. This diverse classifica-
tion of resources leads to the very rich field of quantum

Shannon theory.
From this more general perspective in which re-

sources are not limited to quantum states, any QRT
must also specify what type of transformations a given
dynamical resource Ψ can undergo. To answer this
question, we first need to understand what is the most
general yet still physical transformation that a quan-
tum channel can undergo. To answer this question,
let B(A → B) be the space of all linear maps from
B(A) to B(B). The space B(A → B) is itself a (finite-
dimensional) Hilbert space with inner product given by

〈Φ, Ψ〉 := Tr
[
(JΦ)

† JΨ

]
,

for all linear maps Ψ, Φ : B(A) → B(B) having Choi
matrices JΦ and JΨ respectively. Similarly, let B(C → D)

to be the Hilbert space of all linear maps from B(C)
to B(D), and let Θ : B(A → B) → B(C → D) be
a linear map. Note that the spaces B(A → B) and
B(C → D) contain the subsets of all CPTP maps. There-
fore, if Θ represents a physical transformation, then we
must have Θ[Ψ] ∈ Q(C → D) if Ψ ∈ Q(A→ B). In this
case we say that Θ is positive. Moreover, Θ is said to be
completely positive if 1A′B′ ⊗Θ : B(A′ → B′)⊗B(A→
B) → B(A′ → B′)⊗ B(C → D) is positive for all sys-
tems A′ and B′. Here we used the symbol 1A′B′ to de-
note the identity map from B(A′ → B′) to itself. Since
transformations restricted to subsystems are physically
possible, we conclude that any physical transformation
Θ : B(A → B) → B(C → D) must be completely posi-
tive, and we call these objects superchannels.

In (Chiribella et al., 2008) it was shown that any super-
channel Θ : B(A → B) → B(C → D) can be realized as
follows. Denoting ΦC→D := Θ[ΨA→B] for an arbitrary
input ΨA→B, the action of Θ decomposes as

ΦC→D = ΓBE→D
post ◦

(
ΨA→B ⊗ idE

)
◦ ΓC→AE

pre (14)

where ΓC→AE
pre ∈ Q(C → AE) is a pre-processing CPTP

map, ΓBE→D
post ∈ Q(BE → D) is the post-processing

CPTP map, and system E corresponds to a possible side
channel (see Fig. (5)) 2.

Fig. (5) depicts the most general evolution that a quan-
tum channel Ψ can undergo. In general, the only re-
striction on the pre- and post-processing is that they

2 In fact, dim(E) can be taken to be no greater than dim(A) · dim(C),
and Γpre can also be taken to be an isometry.
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FIG. 5 Realization of a superchannel.

are quantum channels (i.e., CPTP maps). However, in
each QRT, the set of free channels consists of only a
subset of all CPTP maps. Hence, a dynamical resource
Ψ : Q(A → B) can be converted by free operations to
another dynamical resource Φ : Q(C → D) if and only
if there exists an auxiliary system E, a free pre-processing
map ΓC→AE

pre ∈ O(C → AE), and a free post-processing
map ΓBE→D

post ∈ O(BE → D) such that the relation (14)
holds. Note that we can view this interconversion as a
simulation of the quantum channel Φ with the dynamical
resource Ψ.

The free superchannels, acting on dynamical re-
sources as described above, cannot generate a resource
from a free channel. That is, from the definition of a
QRT, if Ψ ∈ O(A → B) then the map ΦC→D as given
in (14) with free pre- and post-processing is also a free
channel (i.e., Φ ∈ O(C → D)). However, in analogy
with RNG channels, the set of all RNG superchannels
(i.e., superchannels that do not generate a dynamical re-
source from a free resource) can, in general, be larger
than the set of free superchannels. One can therefore
define different types of free superchannels in analogy
with those defined in the previous sections; but to the
authors’ knowledge, this direction has not been studied
so far.

The above formalism of superchannels enables one to
consider the most general conversion of a resource chan-
nel ΨA→B into another channel ΦC→D. In the special
case that both dA = 1 and dC = 1, ΨA→B and ΦC→D

can be viewed as density matrices, and in this case the

free superchannel that achieves this transformation be-
comes equivalent to a free channel in O(B → D). An-
other interesting special case is that in which dA > 1
but dC = 1. That is, a dynamical resource (a quantum
channel) is used to generate a static resource (a quan-
tum state). Conversely, when dA = 1 but dC > 1, a
static resource is used to generate a dynamical resource.
Quantum teleportation is a perfect example of such an
interconversion (see Fig. 6).

FIG. 6 Quantum teleportation (Bennett et al., 1993). Single
(resp., double) line arrows corresponds to quantum (resp.,
classical) communication. The static resource, a maximally en-
tangled state, is converted to a dynamical resource via LOCC.

The resource ΨA→B can be classified into different
types. In (Devetak and Winter, 2004) a very useful no-
tation was introduced to account for the different types
of resources that are typically encountered in quantum
information. We follow that convention here in letting
the letter c denote classical systems, and q for quantum
ones. In addition, square brackets represent noiseless
resources while curly brackets indicate noisy ones. Fi-
nally, an arrow → is used to distinguish between a dy-
namical resource and a static resource. With these rules,
[q → q], for example, corresponds to an ideal qubit
channel ΨA→B = idA→B with dA = dB = 2. The symbol
[qq] stands for an ebit, i.e., a unit of a static noiseless re-
source consisting of a maximally entangled state of two
qubits. Similarly, [c → c] stands for a classical bit chan-
nel capable of transmitting perfectly one classical bit,
and [cc] corresponds to one bit of uniform shared ran-
domness. An arbitrary noisy quantum channel ΨA→B is
denoted by {q → q} and an arbitrary classical channel
by {c → c}. In addition, a preparation of a quantum
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system is denoted by {c → q} and a quantum measure-
ment by {q→ c}.

With these symbols, all the protocols in quantum
Shannon theory can be characterized as conversions be-
tween different resources (Wilde, 2017). For example,
the rate at which classical communication can be com-
municated reliably over a quantum channel is the supre-
mum ratio n

m such that

m{q→ q} >ε n[c→ c] ∀ε ∈ (0, 1]. (15)

This inequality is to be understood as meaning that m
uses of the channel {q → q} is able to simulate n uses
of the channel [c → c] with ε error (Devetak et al., 2008;
Devetak and Winter, 2004). A comprehensive table of
many different types of resource interconversions can be
found in (Devetak and Winter, 2004). From this perspec-
tive, the whole field of quantum Shannon theory can be
viewed as a resource theory. Continuing with the previ-
ous example, in the Holevo-Schumacher-Westmoreland
(HSW) Theorem (Holevo, 1998; Schumacher and West-
moreland, 1997), which identifies the optimal conver-
sion in Eq. (15), one assumes that the side channel E
in Fig. 5 is not allowed since only local operations are
free. That is, in the setting of the HSW theorem, one can
only apply coding (pre-processing) and decoding (post-
processing) to many copies of a channel ΨA→B, thereby
converting it to many copies of a classical bit channel
idX→Y (here X and Y stand for classical bit systems on
Alice and Bob’s sides, respectively).

Another good example to illustrate the usefulness of
this notation is quantum teleportation (Bennett et al.,
1993). In the process of teleportation, one ebit plus two
uses of a classical one-bit channel simulate a qubit chan-
nel (Fig. 6). In the resource calculus symbols, this can be
characterized as the inequality

[qq] + 2[c→ c] > [q→ q] , (16)

where here > indicates zero-error simulation. Note that
this is an inequality, rather than equality, since a single
use of a quantum channel cannot generate both a maxi-
mally entangled state and two uses of a classical channel.

For superdense coding, an ebit plus one use of a quan-
tum channel can be used to simulate two uses of a clas-
sical channel. This can be expressed as the resource in-
equality

[qq] + [q→ q] > 2[c→ c] . (17)

Note that if entanglement is not considered as a re-
source, that is, if the parties are supplied with unlim-
ited singlet states, then we can remove the ebit cost [qq]
in (16) and (17) and get that 2[c → c] > [q → q] for
teleportation and [q → q] > 2[c → c] for superdense
coding. This makes teleportation and superdense cod-
ing dual protocols of each other, and in this case we can
say that [q→ q] = 2[c→ c].

In almost all practical scenarios, however, entangle-
ment is an expensive resource that can be difficult to
generate over long distances because of its high sen-
sitivity to decoherence and noise. The question then
whether the protocols of teleportation and superdense
coding can be modified slightly to make them more
symmetric, in the sense that the two resource inequal-
ities of (16) and (17) become a single resource equality.
This is indeed possible if we replace 2[c→ c] in the RHS
of (17) with two uses of an isometry channel, denoted
by [q → qq] and known as the coherent bit (cobit) chan-
nel (Harrow, 2004; Wilde, 2017).

The cobit channel is given in terms of an isome-
try VA→AB, defined with respect to some fixed basis
{|x〉A}x=0,1 as:

V|x〉A = |x〉A|x〉B x = 0, 1

Hence, the unit resource [q→ qq] is highly nonlocal as it
can be used to generate an ebit (i.e., [qq]) from the state
|+〉A := (|0〉A + |1〉A)/

√
2. We therefore have

[q→ qq] > [qq] .

It is also straightforward to see that the cobit is more
resourceful than one use of a classical bit channel; i.e.,

[q→ qq] > [c→ c] .

In (Harrow, 2004) it was shown that

[qq] + [q→ q] = 2[q→ qq] .

That is, one ebit and one use of a qubit channel can be
used to simulate two cobit channels (a process known as
coherent superdense coding), and conversely, two cobit
channels can be used to simulate a qubit channel along
with one ebit (a process known as coherent teleporta-
tion). This result demonstrates that superdense coding
is not the most efficient protocol since it simulates only
two uses of a classical bit channel, whereas in coher-
ent superdense coding, two cobit channels are simulated
with the exact same resources.
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The above discussion reflects the perspective that all
of quantum (and classical) information theory can be
viewed as a theory of interconversions among different
types of resources. Moreover, it reveals how a resource-
theoretic framework can not only help determine if a
protocol is optimal, but it can also help to motivate novel
and innovative protocols. Most of the current litera-
ture has focused on QRT of states, and much less work
has been conducted on resource theories of quantum
processes. Nevertheless, among the QRTs of processes
are the recent works on Markovian evolution (Huelga
et al., 2012; Wakakuwa, 2017a), quantum memories (Ros-
set et al., 2017), incompatibility of quantum measure-
ments (Gour et al., 2018a), simulability of quantum mea-
surements (Guerini et al., 2017; Oszmaniec et al., 2017),
steering (Gallego and Aolita, 2015), quantum coherence
beyond states (Ben Dana et al., 2017), and the amortized
resource of a channel in a general QRT (Kaur and Wilde,
2018).

IV. EXAMPLES OF SPECIFIC RESOURCE THEORIES

A. Convex Resource Theories

1. Entanglement

The theory of quantum entanglement is an exem-
plar of a QRT. In this resource theory, the free opera-
tions capture the physical scenario where spatially sep-
arated parties freely exchange classical information, but
all quantum information is processed locally through
CPTP maps on the individual subsystems. The global
maps that can be implemented under this restriction
constitute the class of local operations and classical op-
erations (LOCC), and this represents the free operations
in the QRT of entanglement (Bennett et al., 1996a,b; Ve-
dral et al., 1997).

The general structure of an LOCC map is quite com-
plex. Every LOCC operation is built from an interactive
protocol in which each round of the protocol involves a
local measurement by one of the parties followed by a
global broadcast of the measurement outcome. By con-
catenating the Kraus operators for each round, it is then
not too difficult to see that every LOCC map Λ will have
the form

Λ(·) = ∑
k

(
⊗N

i=1MAi
k,i

)
(·)
(
⊗N

i=1MAi
k,i

)†
, (18)

where MAi
k,i acts on the Hilbert space of party Ai. In other

words, Λ has a Kraus operator decomposition in which
each Kraus operator is a tensor product (Bennett et al.,
1999; Donald et al., 2002). Structurally, LOCC is a phys-
ically implementable set of operations, and the dual of
every LOCC map also has the form of Eq. (18). How-
ever, LOCC is not a closed set of operations in the sense
that there exists a sequence of protocols, each increasing
in round number, that converge to a map which cannot
be implemented by either finite-round or unbounded-
round LOCC (Chitambar, 2011; Chitambar et al., 2012,
2014). Hence the number of interactive communication
rounds can also be seen as resource in the LOCC frame-
work, and the general topic of LOCC round complexity
is an active area of research (Chitambar and Hsieh, 2017;
Nathanson, 2013; Owari and Hayashi, 2008; Wakakuwa
et al., 2016).

Turning to the free states, one can easily identify
Fmin(H), the minimal set of free states for LOCC on
N-partite state space H =

⊗N
k=1HAk . From its defi-

nition in Eq. (7), this set consists of all density matri-
ces on H that can be generated from any other state us-
ing LOCC. Since LOCC involves local operations coor-
dinated by global classical communication, the transfor-
mation σA1···AN → ρA1···AN is achievable by LOCC for
any σA1···AN and any ρA1···AN of the form

ρA1···An =
n

∑
k=1

pkρA1
1,k ⊗ ρA2

2,k ⊗ · · · ⊗ ρAN
N,k, (19)

where ρ
Ai
i,k is an arbitrary state for party Ai. Indeed, the

parties can just discard the state σ and then locally gen-
erate their respective state according to a globally shared
probability distribution pk (Werner, 1989). Any state
having the form of Eq. (19) is called separable, and we
denote the set of separable states by SEP(H), where H
has a fixed tensor-product structure. Furthermore, from
Eq. (18), it can be directly seen that LOCC leaves SEP(H)

invariant; hence Fmin(H) = SEP(H). Any state not be-
longing to SEP(H) is called entangled.

The set SEP(H) is closed, a fact that follows from the
continuity of certain entanglement measures, such as
the entanglement of formation (Nielsen, 2000). Also,
since every convex combination of separable states is
again separable, entanglement theory is a convex QRT.
However, it is non-affine. In fact, it is maximally non-
affine in the sense that every state can be expressed
as an affine combination of free states. This can be
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seen by taking an Hermitian tensor product basis of
B(A1 A2 · · · AN) and then spectrally decomposing each
of the Hermitian operators into a linear combination of
eigenspace projectors.

Deciding membership of SEP(H) is a notoriously dif-
ficult problem. In fact, the problem is NP-Hard (Gharib-
ian, 2010; Gurvits, 2003). To cope with this difficulty, one
strategy involves relaxing the separability constraint to
encompass a more computationally manageable and ex-
perimentally verifiable set of states. Traditionally this
approach has consisted in identifying separability crite-
ria, which are necessary (but not) sufficient conditions
for a state to be separable (Horodecki et al., 2009). The
most famous separability criterion is positivity of the
partial transpose (PPT) (Peres, 1996), which says that
ρΓi > 0 for any separable state ρ, where Γi indicates a
partial transpose on system Ai. Satisfying the PPT crite-
rion is also sufficient for separability in 2⊗ 3 and 3⊗ 2
bipartite systems (Horodecki et al., 1996). In higher di-
mensions, PPT entangled states are known to exist and
are called “bound” entangled states since no pure-state
entanglement can be asymptotically distilled from them
(see Section V.B) (Horodecki et al., 1998a). One of the
most prominent open problems in entanglement the-
ory is determining whether the converse is true; i.e.,
whether non-PPT (NPT) bound entangled states exist.

The complexity of LOCC presents formidable chal-
lenges for understanding its precise operational capa-
bilities. For example, it is currently unknown how to
decide whether a given map Λ belongs to LOCC. While
having the form of Eq. (18) is a necessary condition for
LOCC maps, it is not sufficient. Any map having tensor-
product Kraus operators belongs to the class of separable
maps (Rains, 1997; Vedral et al., 1997), and LOCC rep-
resents a strict subset of the separable maps. Separable
maps that cannot be implemented by LOCC were origi-
nally described as demonstrating “nonlocality without
entanglement” (Bennett et al., 1999). This expression
is perhaps best understood from a QRT perspective.
For the set of separable states SEP(H), separable oper-
ations are precisely the class of completely RNG oper-
ations, Oc max(H) (Cirac et al., 2001). Therefore, “non-
locality without entanglement” in this context refers to
non-LOCC maps lacking the ability to generate entan-
glement, even when acting on one part of some larger
system.

One can move beyond separable maps to consider
other classes of free operations that are consistent with
the set of separable states. Even though LOCC is the
physically-motivated class of operations in the study of
entanglement, its operational power is sharply limited
when the number of parties exceeds two. Specifically,
for a generic state |ψ〉A1 A2···AN with N > 3, the set of
states into which it can transform using LOCC consti-
tutes a measure zero set in state space (Sauerwein et al.,
2017). Hence to obtain interesting QRTs, one needs to
consider free operations more powerful than LOCC.

Starting with the set Omax, the RNG or non-entangling
operations consist of all CPTP maps that map sepa-
rable states to separable states. Non-entangling op-
erations were first proposed by Harrow and Nielsen
(2003) in the study of quantum computation. Later,
Brandão and Plenio invoked such maps and their
asymptotic variant in the study of entanglement re-
versibility (Brandão and Plenio, 2008; Brandão and Ple-
nio, 2010). Non-asymptotic studies on the power of
general non-entangling maps have been conducted by
Brandão and Datta (2011) and Chitambar et al. (2017).
The simplest example of a bipartite non-entangling
quantum operation that has no LOCC implementation
is the SWAP operator F. Since F|α〉A|β〉B = |β〉A|α〉B

for any two states |α〉 and |β〉, the map is clearly non-
entangling. However, by considering F on subsystems
A and B in the unentangled state (|00〉 + |11〉)A′A ⊗
(|00〉 + |11〉)B′B/2, we see that entanglement is gener-
ated across the bipartite cut A′A : B′B. In fact, SWAP is
not even a 2-RNG operation.

Other types of relaxations on LOCC can be obtained
by considering the Choi matrix. In the study of multi-
partite QRTs, it is helpful to define the Choi matrix of
a map Λ : B(HA1 ⊗ · · · HAN ) → B(HA′1 ⊗ · · · HA′N ) in
terms of the underlying tensor product structure:

JΛ = idA1···Ak ⊗Λ[(φ+)A′1 A1 ⊗ · · · ⊗ (φ+)A′k Ak ] (20)

Because separable operations are completely RNG, the
Choi matrix of a CPTP map Λ is separable, and the con-
verse is also true (Cirac et al., 2001). Consequently, any
separability criterion on the set of density matrices can
be applied to the Choi matrix JΛ as a separable criterion
on the set of CPTP maps. For example, a condition of k-
symmetric extendibility has been integrated on the level
of maps to study entanglement distillation and quan-
tum communication (Kaur et al., 2018; Pankowski et al.,
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2013). Similarily, the use of entanglement witnesses on
the level of Choi matrices was recently investigated in
(Chitambar et al., 2017).

The operations most frequently employed beyond
LOCC are the so-called PPT operations. As originally
defined by Rains (1999a), a CPTP map is called PPT (or
completely PPT-preserving) if its Choi matrix is PPT for
any party Ai. This is equivalent to the condition that
Γi ◦Λ ◦ Γi is completely positive, where Γi is the partial
transpose map for party Ai. A strictly weaker condition
is that the map be PPT-preserving, i.e., Λ(ρ)Γi > 0 when-
ever ρΓi > 0. The distinction between these two op-
erational classes can be elegantly characterized by con-
sidering a QRT of NPT entanglement. Letting the free
states be all density matrices with positive partial trans-
pose, then the PPT-preserving maps correspond to the
set of RNG operations, while Rains’ original PPT maps
correspond to the set of completely RNG (cRNG) op-
erations (Horodecki, 2001; Matthews and Winter, 2008).
The QRT of NPT entanglement under completely PPT-
preserving operations has been studied in the litera-
ture (Audenaert et al., 2003; Ishizaka and Plenio, 2005;
Matthews and Winter, 2008; Wang and Duan, 2017), pri-
marily motivated by the insights it offers on the nature
of entanglement and the limitations of LOCC.

2. Quantum Reference Frames and Asymmetry

In Shannon theory, information is modeled as having
a fungible nature. Information can be encoded into any
degree of freedom of any physical system, and the infor-
mation content is independent of the choice of encoding.
For example, a simple yes/no message can be equiv-
alently transmitted through a 5/0-volt potential differ-
ence across a circuit element, or through a heads/tails
orientation of a coin. Information of this sort is called
speakable information, and it is characterized by its abil-
ity to be communicated verbally or through a string of
symbols.

On the other hand, there also exists non-fungible
types of information like a direction in space, the time of
some event, or the relative phase between two quantum
states in a superposition state. Information of this sort is
called unspeakable information since it cannot be commu-
nicated verbally without first having a shared coordi-
nate system, a synchronized clock, or a common phase

reference (Bartlett et al., 2007; Chiribella et al., 2012; Peres
and Scudo, 2002). For example, in the absence of, say, a
common gravitational field or stellar background, direc-
tional information can be transmitted between two par-
ties only through the exchange of some physical system
whose state represents the direction itself, such as a clas-
sical gyroscope.

Unspeakable information becomes speakable in the
presence of a reference frame (Bartlett et al., 2007), and
this applies to both classical and quantum information.
Furthermore, even though speakable information is fun-
gible, two or more parties must first establish how this
information is to be encoded/decoded in some physical
system, and this implicitly requires a common reference
frame. Thus, one always assumes a shared reference
frame in the background of any quantum information
processing task, and the absence of this greatly limits
what can be accomplished.

A lack or degradation of a shared reference frame is
therefore a natural constraint that often arises in the
physics of multiple systems. As such, it leads to a re-
source theory of reference frames. For simplicity, let us con-
sider two parties (Alice and Bob) who do not share a
reference frame, and we mathematically represent the
information about the frame by an element g of a com-
pact group G. For instance, g ∈ G could correspond to
a particular orientation in space, clock synchronization,
phase information, etc. Each element g ∈ G is repre-
sented by a unitary matrix Ug such that if ρ ∈ S(H)

is the density matrix assigned to some quantum system
relative to Alice’s reference frame, then

Ug(ρ) := UgρU†
g (21)

is the state of the same physical system as described in
Bob’s frame. On the other hand, since Alice lacks the
information of g, her description of Bob’s density matrix
is obtained by averaging over all the possible values of
g. Denoting by dg the uniform Haar measure over the
group G, this average can be expressed as:

G(ρ) :=
∫

dg Ug(ρ) .

The averaging CPTP map G is called the G-twirling
map. If the group G is finite then the integral is replaced
with a discrete sum over the |G| elements of the group;
i.e., G(ρ) = 1

|G| ∑
|G|
g=1 Ug(ρ). The lack of a shared ref-

erence frame hence imposes a restriction on what type
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of states Alice can prepare relative to Bob’s reference
frame. Specifically, she can only prepare states of the
form G(ρ), and these constitute the free states in the QRT
of reference frames,

F (H) := {G(ρ) : ρ ∈ S(H)} . (22)

The free states in this QRT have a very particular
structure. First, note that ρ ∈ F (H) if and only if it is
G-invariant, meaning that Ug(ρ) = ρ for all g. In par-
ticular, G(ρ) = ρ for all ρ ∈ F (H). Combining this
with the definition of F (H) implies that G-twirling is a
resource-destroying map (see subsection III.D.3). Addi-
tionally, one can characterize the above free states using
techniques from representation theory. This is accom-
plished by decomposing the underlying Hilbert spaceH
into its irreducible representations (irreps) of G (Bartlett
et al., 2007):

H = ∑
q
Hq ≡∑

q
Mq ⊗Nq

where q labels the irreps of G (with the sum over q being
a direct sum), andMq and Nq are the q-representation
space and the q-multiplicity space, respectively. Note
that Mq and Nq are virtual (mathematical) subspaces
which do not correspond to physical subsystems. With
this notation, any free state has the form

G(ρ) = ∑
q

∆Mq ⊗ idNq

(
ΠHq ρΠHq

)
, (23)

where ∆Mq is the completely decohering map in the
space Mq, idNq the identity map on the space Nq, and
ΠHq the projection ontoHq.

As an example, consider the group G = U(1) that cor-
responds to an optical phase reference. In this case, the
unitary representation of G is given by Uθ = eiN̂θ , where
θ ∈ U(1) and N̂ is the total number operator. All the ir-
reps of U(1) are one-dimensional and can be labeled by
the eigenvalues of N̂ (i.e., nonnegative integers). In this
case, q = n ∈ N, and the action of G-twirling on a pure
state |ψ〉 = ∑n

√
pn|n〉 therefore produces the state:

G(|ψ〉〈ψ|) = ∑
n

pn|n〉〈n| . (24)

More generally, we can see from the forms of the free
states in Eqs. (23)–(24) that the lack of a shared reference
frame imposes a superselection rule on the type of states
that Alice can prepare. This superselection rule is man-
ifested by the fact that coherent superposition between

states in different irrep-subspaces Hq and Hq′ are not
possible. For example, with U(1) states in a coherent
superposition among eigenstates of the number opera-
tor are not free and cannot be prepared by Alice.

The set of free operations in the QRT of reference
frames can be defined in a way similar to the free states.
Consider an arbitrary density matrix σ ∈ S(H) of sys-
tem H described relative to Bob’s reference frame. Sup-
pose now that Alice performs a quantum operation on
this system, with the operation being described by the
CPTP map Φ : B(H) → B(H) relative to her frame.
How would this operation be described relative to Bob’s
frame? If he knows that their reference frames are re-
lated by an element g ∈ G, then U †

g (σ) is Alice’s descrip-
tion of the initial state and Φ(U †

g (σ)) is her description
of the final state. Hence the final state relative to Bob’s
system is given by Ug(Φ(U †

g (σ))), and his description of
Alice operation would be Ug ◦Φ ◦ U †

g . However, if Bob
does not know how their frames are related, he averages
over G, and the resulting CPTP map has the form∫

dg Ug ◦Φ ◦ U †
g . (25)

Alice and Bob will have a similar description of the
CPTP map Alice performs only if her operation has
this form. Quantum channels of this sort are called G-
covariant, and they constitute the free operations in the
QRT of reference frames. Similar to G-invariant states,
a quantum channel is G-covariant if and only if it com-
mutes with Ug for all g ∈ G. Therefore, the set of free op-
erations in the QRT of reference frames can be expressed
as

O(H) =
{

Φ ∈ CPTP : [Φ,Ug] = 0 ∀ g ∈ G
}

. (26)

where [Φ,Ug] := Φ ◦ Ug − Ug ◦ Φ (see Fig. 7 below).
Note also that Φ being G-covariant is equivalent to the
condition that Φ =

∫
dg Ug ◦ Φ ◦ U †

g . In (Gour and
Spekkens, 2008), it was shown that G-covariant opera-
tions can be expressed in terms of Kraus operators, each
being an irreducible tensor operator as defined in nu-
clear and atomic physics (see e.g. (Sakurai, 1994)).

To summarize, we found that in the QRT of reference
frames, the set of free states is the set of symmetric states
(i.e., those states that commute with Ug for all g ∈ G),
and the set of free operations is the set of symmetric op-
erations (i.e., those operations that commute with Ug for
all g ∈ G). Symmetric evolutions are very common in
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physics and can occur in different contexts, other than
those arising from the lack of a shared reference frame.
Therefore, the set of G-covariant operations defines a re-
source theory that has applications far beyond quantum
reference frames. It can therefore be described as a QRT
of asymmetry, since in any QRT for which O defines a
family of G-covariant operations, asymmetric states and
asymmetric operations are the resources of the theory.

So far we only considered G-covariant channels with
the same input and output dimensions. More gener-
ally, a quantum channel Φ : B(A) → B(B) is G-
covariant with respect to two (unitary) representations
of G, {UA

g }g∈G and {UB
g }g∈G, if

Φ ◦ UA
g = UB

g ◦Φ ∀g ∈ G.

See Fig. 7 for a heuristic depiction of G-covariant opera-
tions.

FIG. 7 Heuristic description of G-covariant operations. The
channel Φ is G-covariant if the blue and purple pathways com-
mute for all group elements.

The reformulation of symmetric dynamics in the con-
text of a resource theory has profound implications. For
example, quite often the dynamics of a system is so com-
plicated that a complete characterization of its evolution
becomes infeasible. Instead, by learning the symme-
tries of the Hamiltonian, one can gain partial informa-
tion about its dynamics. Here, one can invoke Noether’s
Theorem, which states that a differentiable symmetry of
the action of a physical system has a corresponding con-
servation law. However, Noether’s theorem is not appli-
cable to open systems, and it therefore does not capture
all the consequences of symmetric evolution of mixed
states. Recently, it was shown by Marvian and Spekkens
(2013, 2014a) that the QRT of asymmetry provides a sys-
tematic way to capture all the consequences of symmet-
ric evolution. The main idea is that the conserved quan-
tities of closed systems can be replaced with resource
monotones in open systems. These resource monotones
quantify the amount of asymmetry in a quantum state,

and they cannot increase under symmetric evolution
(see Section VI.A.2).

3. Quantum Thermodynamics

Thermodynamics and quantum mechanics represent
two pillars of physics, and connections between them
have been studied long before the advent of quantum
information science. However, recently quantum infor-
mation theory has shed new light on some of the most
fundamental questions in thermodynamics. For exam-
ple, by adopting a QRT perspective, the four Laws of
Thermodynamics can be stated more precisely, and the
relationships between them can be made more apparent
(Brandão et al., 2015a; Masanes and Oppenheim, 2017).
This is not surprising since the “golden rule” of QRTs
can be seen as expressing something akin to the Sec-
ond Law of Thermodynamics, and similar connections
between thermodynamics and the structure of general
QRTs can also be formulated (Sparaciari et al., 2018).

Within quantum thermodynamics, several different
QRTs have been studied, but almost all can be described
using a similar framework. The essential idea is to
identify free operations as those that conserve certain
extensive properties (such as energy, particle number,
volume, etc.) when a given system interacts with a
bath. Here we describe the resource theory of ather-
mality, which involves just energy conservation, but
its generalization to other conserved observables fol-
lows analogously (Gour et al., 2018b; Yunger Halpern,
2018; Yunger Halpern and Renes, 2016), including
non-commuting observables (Guryanova et al., 2016;
Halpern et al., 2016; Lostaglio et al., 2017). One be-
gins by characterizing a physical system not only by
its underlying Hilbert space H, but also by its Hamilto-
nian, since this corresponds to the property being con-
served. Hence a “state” in this QRT is represented by
a pair (ρ, H) consisting of a density matrix and a time-
independent Hamiltonian. For a heat bath held at some
fixed inverse temperature β = 1/(kBT), the free states
consist of those that are in thermal equilibrium with the
bath. That is, the free states F (H) are given by (γH , H),
where γH = e−βH/ Tr[e−βH ] is the thermal equilibrium
state (also called the Gibbs state) for the Hamiltonian
H. Below, a physical justification will be given for why
these objects are considered free.
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As first introduced by Janzing et al. (2000) and later
extended in Brandão et al. (2013) and Horodecki and
Oppenheim (2013a), the free operations in the QRT of
athermality consist of all physical dynamics that con-
serve total energy as the system exchanges heat with
the bath. Any such process is called a thermal opera-
tion, and it is constructed from three basic steps. Let
S denote the primary system and HS its Hamiltonian.
First, the experimenter introduces an ancilla system A
in free state (γHA , HA). Second, the primary and ancilla
systems can interact via some unitary U that commutes
with the total Hamiltonian, i.e., [U, Htot] = 0 where
Htot = HS ⊗ I + I⊗ HA. Third, a subsystem B is dis-
carded whose Hamiltonian enters the total Hamiltonian
collectively; i.e., Htot = HSA\B⊗ I+ I⊗HB, with SA \ B
denoting all subsystems other than B; note that B may
include part of the original system in addition to all or
just part of the ancilla system A. The composition of
these three steps yields a CPTP map Φ ∈ B(S→ SA \ B)
having the form

Φ(ρ) = TrB[U(ρ⊗ γHA)U
†]. (27)

By construction, the QRT of athermality is a phys-
ically implementable resource theory. In fact, having
physically implementable free operations is essential to
the overall objective of rigorously accounting for all dy-
namics in a system-bath exchange. As a result, a ther-
modynamic transformation (ρ, H) → (σ, H′) on a sys-
tem becomes possible if and only if there exists a map
having the form of Eq. (27) such that Φ(ρ) = σ and
H′ = Htot−HB. Whereas macroscopic state transforma-
tions via heat exchange are essentially governed by a de-
crease in free energy, in the quantum regime, more con-
straints dictate whether a given transformation is possi-
ble (Brandão et al., 2015a; Gour et al., 2018b; Horodecki
and Oppenheim, 2013a).

The free states in the QRT of athermality consist of
Gibbs states (γH , H), and there is strong operational jus-
tification for this. First, the Gibbs state is the unique
equilibrium state that a quantum system will evolve to
under weak coupling with the bath (Riera et al., 2012).
Second, if, in the implementation of a thermal operation,
one could freely introduce any other density operator
σ inequivalent to the Gibbs state of the ancilla system,
then the QRT would become trivial. More precisely, it
would be possible to freely generate any density matrix
ρ to arbitrary precision by consuming many copies of σ

(Brandão et al., 2015a; Yunger Halpern and Renes, 2016).
The final, and perhaps most compelling reason for con-
sidering the Gibbs state to be free involves work extrac-
tion and the notion of passivity. A thermodynamic state
(ρ, H) is called passive if Tr[UρU†H] > Tr[ρH] for all
unitaries U. Intuitively, if there exists some unitary for
which this relation does not hold, then there exists a pro-
cess in which energy can be drawn from the state to
perform work. For example, all states diagonal in the
energy eigenbasis with eigenvalues decreasing with en-
ergy are passive. A state ρ is called completely passive
if ρ⊗n is passive for any n. A classic result says that a
state is completely passive if and only if it is the Gibbs
state (Jennings, 2018; Lenard, 1978; Pusz and Woronow-
icz, 1978). Hence, the state (γH , H) is the unique state
from which work cannot be extracted, even after taking
multiple copies.

Returning to Eq. (27), it is straightforward to verify
that if the discarded system B is the original ancilla sys-
tem A, then every thermal operation acts invariantly on
the Gibbs state. That is,

γHS = Φ(γHS), (28)

and all maps having this property are called Gibbs-
preserving with respect to the Hamiltonian H. It is in-
teresting to compare thermal operations with the more
general class of Gibbs-preserving maps. In the case that
ρ and σ both commute with the Hamiltonian, if ρ can be
converted to σ by some Gibbs-preserving map, then it
can also be converted by thermal operations (Horodecki
and Oppenheim, 2013a; Janzing et al., 2000; Korzekwa,
2016). However, for the convertibility between gen-
eral states ρ and σ (i.e., those not commuting with the
Hamiltonian), Gibbs-preserving operations are strictly
more powerful (Faist et al., 2015b). The origin of this
difference can be understood by invoking principles
from the QRT of asymmetry. With a time-independent
Hamiltonian, states diagonal in the energy eigenbasis
are symmetric under time evolution. By introducing
the one-parameter group of time translations {Ut :=
e−iHt : t ∈ R},3 we see that [ρ, H] = 0 if and only if
Ut(ρ) = ρ for all t, where we have adopted the nota-
tion of Eq. (21). States with full time-translation symme-

3 Note this group is isomorphic to U(1) provided the energy levels of
H are evenly spaced.
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try are often called quasiclassical because, while having
discrete eigenvalues, they lack coherence between the
different energy eigenspaces. In addition, from Eq. (27)
(with the system A being discarded), it can be seen that
every thermal operation is time-translation covariant, i.e.,
[Φ,Ut] = 0 for all t (Lostaglio et al., 2015a). In contrast,
a general Gibbs-preserving map need not satisfy this
constraint. Unlike thermal operations, Gibbs-preserving
operations can break the time-translation symmetry of a
state, and this is precisely what is demonstrated in the
example of Faist et al. (2015b).

In summary, every thermal operation with the same
input/output system satisfies the two properties of be-
ing

(i) Gibbs-preserving: Φ(γH) = γH ;

(ii) Time-translation covariant; [Φ,Ut] = 0 for all t.

Maps satisfying these properties were identified as
Gibbs-preserving covariant (GPC) maps in Gour et al.
(2018b), and they represent a strictly larger class than
thermal operations. It was shown that GPC maps are
equivalent to the maps generated by so-called thermal
processes, which are more general physical processes
than the ones leading to thermal operations in Eq. (27)
Gour et al. (2018b). Nevertheless, it remains an open
problem whether there exists a state transformation ρ→
σ that is possible by a GPC but not by a thermal map.

A special type of QRT emerges when the Hamiltoni-
ans are required to have a fully degenerate spectrum.
For instance, a paramagnetic system in the absence of an
external magnetic field has complete degeneracy in its
energy. In this case, the Gibbs state of a d-dimensional
system is the completely mixed state I/d, and all uni-
taries commute with the total Hamiltonian. Every free
CPTP map then has the form

Φ(ρ) = TrB[U(ρ⊗ Id)U†], (29)

where U is an arbitrary unitary and B is an arbitrary
subsystem. Maps having this form are called noisy oper-
ations, and they were originally proposed by (Horodecki
et al., 2003a,b) as the free operations in the resource the-
ory of purity. The latter is also called the QRT of nonuni-
formity to better reflect the dimensional dependence in
the resourcefulness of pure states (Gour et al., 2015b).
The set of Gibbs-preserving maps here is precisely the
set of unital maps, and all operations are trivially time-
translation covariant. Haagerup and Musat (2011) have

shown that noisy operations form a strict subset of uni-
tal channels. Yet, the two operational classes have the
same conversion power since one density matrix can be
converted to another by noisy operations if and only
if the conversion can be achieved by a unital channel
(Gour et al., 2015b).

4. Quantum Coherence

For a given quantum system, consider some quan-
tum observable T with eigenvectors {|λn〉}n and eigen-
vales {λn}n. Quantum mechanics allows the system to
be prepared in a coherent superposition of eigenstates
|ψ〉 = cos θ|λi〉 + sin θ|λj〉, and there are two ways in
which such states can be viewed as a resource. The first
identifies a specific task in which |ψ〉 can assist in ac-
complishing the task, and the degree of its resourceful-
ness depends on the particular |λi〉 and |λj〉 forming the
superposition. For example, when λn = n ∈ N, the
state cos θ|0〉+ sin θ|1〉 can detect a phase shift of φ = π

induced by the unitary e−iφT while the state cos θ|0〉 +
sin θ|2〉 cannot (Marvian and Spekkens, 2014b, 2016).
The second interpretation deems |ψ〉 as a resource sim-
ply because it is a coherent superposition in the eigenba-
sis {|λn〉}n. From this perspective, the eigenvectors |λi〉
and |λj〉 of T appearing in the superposition are irrele-
vant, and the full nature of this resource is captured just
in the wave components cos θ and sin θ.

These two ways of characterizing |ψ〉 as a resource
reflects the broader distinction between speakable and
unspeakable information described in Section IV.A.2.
The QRT of unspeakable coherence is essentially a re-
source theory of asymmetry for translations generated
by some quantum observable (Marvian and Spekkens,
2014b, 2016; Marvian et al., 2016). Similar to the group of
time translations discussed in the previous section, for
an observable T, one defines the group of s-translations
{Us := e−iTs : s ∈ R}. A map is called a translationally-
covariant incoherent operation (TIO) if it is covariant un-
der the action of this group (i.e., [Φ,Us] = 0 for all s),
and likewise a quantum state is identified as free in this
QRT if it is invariant under the action of the group (i.e.,
[ρ,Us] = 0 for all s). Coherence here refers to nonzero
off-diagonal elements of a density matrix when it is ex-
pressed in an eigenbasis of T. This coherence is said to
be unspeakable since it is needed when establishing a
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phase reference for s-translations, information which is
unspeakable.

The second school of thought regards coherence as a
resource in the context of processing speakable informa-
tion. These are QRTs of speakable coherence, and most at-
tention in the literature has focused on coherence theo-
ries of this sort. Äberg (2006) first proposed a resource
theory of speakable coherence as an operational frame-
work for quantifying superposition in general mixed
states. For a given system, one begins by fixing a direct
sum decomposition of state space: H =

⊕
iHi. The set

of free states F (H) then consists of all those for which
ρ = ∑i PiρPi, where Pi is the projector onto Hi. The free
operations, as originally considered by Äberg, consists
of the maximal set Omax(H), i.e., the collection of all
resource non-generating operations. This is sometimes
called the set of maximal incoherent operations (MIO).

Note, the subspaces Hi in the direct sum decom-
position of H could correspond to the eigenspaces of
some observable T. Then this QRT would resemble
the theory of unspeakable coherence described above.
However, the key difference is that in Äberg’s theory,
the index i on the eigenspace Hi functions exclusively
as a label, having no connection to the resource con-
tent of the state. In contrast, the index is important
in the QRT of unspeakable coherence since coherence
across different eigenspaces of H carry different phys-
ical meaning when the encoded quantum information
is unspeakable. Hence, transformations of the form

1√
2
(|0〉+ |1〉) → 1√

2
(|0〉+ |2〉) are forbidden using TIO

but not by MIO.
A different QRT of speakable coherence was put forth

by Baumgratz et al. (2014), which has now become the
most frequently studied resource theory of coherence.
In the approach of Baumgratz et al., a complete or-
thonormal basis {|i〉}i is fixed for every Hilbert space.
This is called the incoherent basis, and a state is free (or
“incoherent”) if it is diagonal in this basis, a condition
that can be expressed as

ρ = ∆(ρ), (30)

where ∆(·) = ∑i |i〉〈i|(·)|i〉〈i| is the completely dephas-
ing map in the incoherent basis. The free states in this
QRT are thus defined in the same way as Äberg’s theory,
except that the direct sum decomposition of H consists
of one-dimensional subspaces. For the free operations,
Baumgratz et al. define the class of incoherent operations

(IO), which consists of all stochastically resource non-
generating operations. In other words, Φ is free if it can
be represented by Kraus operators {Kj}j such that for all
ρ

Kj∆(ρ)K†
j = ∆(KjρK†

j ) ∀j. (31)

It is not difficult to show that every Kraus operator
satisfying Eq. (31) has the form Kj = ∑k cj,k| f (k)〉〈k|,
where f is a function with domain and range being
the labels of the incoherent basis vectors. In particu-
lar, every coherence non-generating unitary belongs to
IO since it has the form U = ∑k eiφk |π(k)〉〈k|. Yadin
et al. (2016) used this latter observation to consider what
CPTP maps arise when such unitaries are used in a
Stinespring dilation, i.e.,

Φ(ρ) = ∑
j

TrE[(I⊗ Pj)U(ρS ⊗ γE)U†]⊗ |j〉〈j|X

= ∑
j

KjρK†
j ⊗ |j〉〈j|X , (32)

where γE is an arbitrary incoherent state, U is coherence
non-generating on systems SE, and the {Pj}j form an
arbitrary rank-one projective measurement on system
E. The Kraus operators Kj can be shown to have the
form Kj = ∑k cj,k|π(k)〉〈k|, where π is a permutation on
the labels of the incoherent basis vectors. These oper-
ations have been referred to as strictly incoherent opera-
tions (SIO) in Yadin et al. (2016), and they also received
prior consideration in (Winter and Yang, 2016) as a spe-
cial subclass of IO.

Notice in the description of an SIO operation, the pro-
jectors {Pj}j on the ancilla system might be coherence-
generating. Consequently, the resource theory of coher-
ence under SIO is not a physically implementable the-
ory, as defined in Section III.C.2. Starting from the set
of incoherent states, which consists of those satisfying
Eq. (30), the most general set of physical implementable
operations can be constructed. This is the set Omin, and
in (Chitambar and Gour, 2016b), it was shown that ev-
ery Φ ∈ Omin has a Kraus operator decomposition of
the form Kj = UjPj = ∑i eiφi |πj(i)〉〈i|Pj, where the Pj

are coherence non-generating projectors and the πj are
permutations. These physically implementable incoherent
operations (PIO) represent a highly restricted operational
class, and in terms of state convertibility, almost any two
pure states will not be interconvertible using PIO.
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If one discards the classical system X in Eq. (32), the
resulting map has the property that

Φ(∆(ρ)) = ∆(Φ(ρ)). (33)

Any CPTP satisfying this equality is called a dephas-
ing covariant incoherent operation (DIO). These opera-
tions were introduced independently in (Chitambar and
Gour, 2016b) and (Marvian and Spekkens, 2016). While
not being physically implementable, DIO does represent
a dually RNG set of operations, unlike IO. A number
of results have been established comparing the convert-
ibility of states using different classes of incoherent op-
erations (Chitambar and Gour, 2016a; Fang et al., 2018;
Regula et al., 2018; Zhao et al., 2018a,b).

Note that the set of incoherent states forms an affine
set of density matrices, and therefore the QRT is affine.
Indeed this already follows from the fact that the com-
pletely dephasing map ∆(·) is resource-destroying (see
Section III.D.3). All operational classes discussed above
can interconvert any two incoherent states, and they
therefore identifyFmin(H) as the set of incoherent states
acting on H. Other families of incoherent operations
have also been studied in the literature (de Vicente and
Streltsov, 2017), and connections with stabilizer opera-
tions have been considered (Mukhopadhyay et al., 2018).

5. Stabilizer Computation and “Magic” States

One of the most important questions in quantum in-
formation theory is to what extent quantum computers
offer advantages over their classical counterpart. Shor’s
algorithm provides one of the most celebrated examples
of how, in principle, a quantum computer can perform
a task exponentially faster than the best known classical
algorithms (Shor, 1997). This has motivated researchers
to try and identify the certain features of quantum me-
chanics that appear to enable its superior computational
capabilities. Such features become a resource for the
purposes of quantum computation.

To make this more precise, a resource-theoretic for-
malism can be adopted in which the free operations
are quantum-computational processes that can be effi-
ciently simulated using a classical computer. Interest-
ingly, the known results of such a resource theory de-
pend on whether the underlying dimension of the sys-
tem is even or odd. Nevertheless, the basic framework

is the same in both cases. For prime dimension d, one
first introduces the Heisenberg-Weyl operators

T(a1,a2)
=

iZa1 Xa2 for d = 2

e
−πia1a2

d Za1 Xa2 for odd d
(34)

for (a1, a2) ∈ Zd×Zd, where all arithmetic is done mod-
ulo d, and

X|j〉 = |j + 1〉 Z|j〉 = e
2πij

d |j〉. (35)

The T(a1,a2)
generalize the Pauli operators in d = 2 up

to a modification in the overall phase, and extending
to non-prime dimensions can be accomplished by tak-
ing tensor products of the T(a1,a2)

. The Clifford group Cd

consists of operators that, up to an overall phase, trans-
form the Tu among themselves by conjugation. In other
words, U is a Clifford operator on the d-dimensional
space if UTbU† = eiφTb′ for b, b′ ∈ Zd ×Zd and arbi-
trary φ. The family of d-dimensional stabilizer states are
defined as

F (Hd) = conv{U|0〉〈0|U† : U ∈ Cd}, (36)

where conv{·} indicates the convex hull of the set.
These are the free states in the theory. The free opera-
tions are called stabilizer operations, and they consist of
(i) preparing an ancilla in a stabilizer state, (ii) applying
a Clifford unitary, (iii) measuring in the computational
basis, and (iv) discarding subsystems (Veitch et al., 2014).
The QRT of stabilizer quantum computation for odd
dimensions has been developed in Veitch et al. (2012,
2014), while a multi-qubit treatment has been conducted
in Howard and Campbell (2017). The maximal QRT con-
sistent with stabilizer states has also recently been stud-
ied by Ahmadi et al. (2017).

Stabilizer operations provide a fault-tolerant scheme
for quantum computation (Gottesman, 1998b), thereby
making them an attractive candidate for implement-
ing scalable quantum computation. Unfortunately, the
Gottesman-Knill Theorem stipulates that any stabilzier
operation acting on pure stabilizer states can be effi-
ciently simulated using classical computers (Gottesman,
1998a). Thus, to attain a computational speed-up us-
ing quantum computers, some additional ingredient be-
yond stabilizer states and operations is needed. Per-
haps the cleanest approach involves simulating non-
stabilizer operations through stabilizer operations and
the consumption of non-stabilizer states. In fact, this
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technique is universal in that any non-stabilizer opera-
tion can be implemented in such a way, provided the
non-stabilizer states consumed belong to the class of so-
called magic states (Bravyi and Kitaev, 2005; Gottesman
and Chuang, 1999; Knill, 2005). For example, the non-
stabilizer qubit state cos(π/8)|0〉 + sin(π/8)|1〉 can be
used to realize the π/8 phase gate using stabilizer oper-
ations, which can then be subsequently used to perform
any single qubit gate with arbitrary precision (Nielsen
and Chuang, 2000).

In realistic implementations, an experimenter is faced
with noisy and non-ideal ancilla states. One of the most
important questions in this resource theory is whether a
general mixed state can be freely converted into a magic
state. In many-copy form, this is a problem of resource

transformation ρ⊗n O−→ε |φ〉〈φ|, where |φ〉 is a magic
state. This task has been coined magic state distillation
(Anwar et al., 2012; Bravyi and Kitaev, 2005; Campbell
and Browne, 2009; Reichardt, 2005), and it is an analog
to the task of ebit distillation in the QRT of entangle-
ment.

A natural question is whether all non-stabilizer states
can be distilled into magic states. For qubit states,
Campbell and Browne (2010) have shown that undis-
tillable resource states indeed exist if a finite limit is
placed on the number of copies consumed in the dis-
tillation protocol. For odd dimensions, Mari and Eisert
(2012) and Veitch et al. (2012) demonstrated a stronger
form of “bound” resource, in the sense that no magic
state can be distilled from certain non-stabilizer states
even in the asymptotic limit. The proof of this result in-
volves connecting the task of magic state distillation to
the discrete Wigner function of a quantum state (Gross,
2006; Wootters, 1987). It was shown by Veitch et al.
(2012) that the action of a stabilizer operation on any
state with a non-negative discrete Wigner function can
be efficiently simulated by a classical computer. Con-
sequently, magic states cannot be distilled from a state
if its discrete Wigner function is non-negative. Hence,
positivity of the discrete Wigner function is analogous to the
PPT distillability criterion in entanglement. The existence
of bound resource states in the QRT of magic states then
follows from the existence of non-stabilizer states with
a non-negative discrete Wigner function (Gross, 2006;
Veitch et al., 2012).

It remains an open problem whether, conversely, neg-

ativity of the discrete Wigner function is a sufficient
condition for magic state distillability (analogous to the
question of NPT bound entanglement). However, a
deep connection has been drawn between the QRT of
magic states and the QRT of contextuality (see Section
IV.B.2 for a description of the latter). Any state hav-
ing a negative discrete Wigner function can be used,
in principle, to demonstrate contextuality in some fam-
ily of stabilizer measurements (Howard et al., 2014). In
other words, a quantum state must have the capacity to
reveal contextual effects using the free operations if it
can generate universal quantum computation through
magic state distillation. This suggests that contextuality
may be a key resource that empowers quantum com-
puting. However, this cannot be the full story in qubits,
at least, since undistillable multiqubit states can never-
theless demonstrate contextuality (Howard et al., 2013;
Mermin, 1990).

B. Resource Theories in Quantum Foundations

QRTs can transform the way we think about previ-
ously well-studied properties of physical systems, even
those touching the foundations of quantum mechan-
ics. This includes Bell non-locality, contextuality, in-
compatibility of quantum measurements, steering, non-
projectiveness, and more. Here we provide a very suc-
cinct description of some of these properties, focusing
on how the set of free operations is defined in each of
the theories.

1. Bell Nonlocality

Perhaps one of the most profound discoveries in the
history of science is the incompatibility between quan-
tum mechanics and the intuitive notion of locality, as
first demonstrated by Bell in 1964 (Bell, 1964). Since
Bell’s discovery, there have been numerous studies on
the subject, and quantum nonlocality has emerged as a
genuine resource in quantum communication (Buhrman
et al., 2010) and cryptography (Ekert, 1991) tasks. A com-
prehensive review on its state of the art can be found in
a recent review by (Brunner et al., 2014).

A resource theory of nonlocality can be formulated
on different levels, and we begin by describing the
most abstract, which is characterized entirely in terms
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of classical channels. We focus just on bipartite sys-
tems, but its generalization to multipartite systems is
straightforward. Consider all possible classical chan-
nels p(a, b|x, y) from input set X × Y to output set
A × B. One can then construct a static resource the-
ory in which states are bipartite probability distributions
p(x, y) and the allowed operations belong to some re-
stricted set of channels. A particular class of channels
are those that are generated by local channels pA(a|x, λ)

and pB(b|y, λ) for Alice and Bob, which are conditioned
on some shared variable λ (see Fig. 8 (b)). When aver-
aging over λ with some probability density function qλ,
the resulting channel is given by

p(a, b|x, y) =
∫

dλpA(a|x, λ)pB(b|y, λ)qλ. (37)

Channels of this form constitute the class of classical lo-
cal operations and shared randomness (LOSR). How-
ever, these operators are too powerful to define a static
resource theory: any probability distribution p(x, y)
can be converted into any other p(a, b) by a suitable
LOSR channel. To obtain a nontrivial theory, one must
move a level higher and consider the dynamical re-
source theory of non-LOSR processes. Applying the
general discussion of Section III.D.5, the induced re-
source theory here is a resource theory of nonlocality,
and it involves the conversion of one bipartite chan-
nel p(a, b|x, y) (or “box”) into another p(a′, b′|x′, y′) by
LOSR superchannels (Barrett, 2007; Gallego et al., 2012;
Jones and Masanes, 2005; de Vicente, 2014). The free
boxes in this theory are those satisfying Eq. (37), and
the allowed conversions are built using three ingredi-
ents: pre-LOSR, post-LOSR, and local side channels (see
Fig. 9 and compare with the general construction of a
free superchannel in Fig. 5 with free pre- and post- pro-
cessing).

The abstract resource theory of nonlocal boxes can be
connected to a fully quantum resource theory of non-
locality by studying the boxes generated through local
quantum measurements. Consider a bipartite quantum
state ρAB ∈ S(AB), and suppose Alice and Bob perform
one out of several possible POVMs on their respective
subsystems. Letting ΘA

x = {Ma|x}a denote the POVM
elements for Alice’s x-POVM and ΘB

y = {Nb|y}b the
POVM elements for Bob’s y-POVM, the probability of
outcome (a, b) given measurement choice (x, y) is com-

FIG. 8 Resource theory of Bell nonlocality.

puted using Born’s rule:

p(a, b|x, y) = Tr
[
ρAB

(
Ma|x ⊗ Nb|y

)]
. (38)

It is immediately straightforward to verify that separa-
ble states, i.e., states of the form ρAB = ∑λ qλσA

λ ⊗ ωB
λ ,

can only generate boxes having the structure of Eq. (37),
although determining the minimum amount of shared
randomness needed to simulate the quantum statistics
can still be non-trivial (Jebaratnam et al., 2017). Any state
whose local measurements have outcomes that can al-
ways be described in the form of Eq. (37) are called Bell
local and said to admit a local hidden-variable model
(Augusiak et al., 2014).

FIG. 9 Free superchannels.

One very natural class of free operations in a QRT of
Bell nonlocality consists of quantum LOSR maps. These
are bipartite CPTP maps of the form

∫
λ dλqλΦA

λ (·) ⊗
ΨB

λ(·). It is easy to see that such operations act invari-
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antly on the set of Bell-local density matrices. Thus,
a QRT of nonlocality can be defined in which the free
states are all Bell local. In such a theory, a state ρ is a
quantum static resource if and only if it can be converted
into a dynamical classical resource via Eq. (38). Other
approaches can be taken, however, such as the semi-
quantum theory of (Buscemi, 2012), which identifies a
state as being a static nonlocal resource if it can be con-
verted into a dynamic quantum-classical resource. Even
more generally, one could consider the dynamic nonlo-
cal resource of quantum channels themselves, which is
manipulated under LOSR superchannels.

The relationship between entanglement and Bell non-
locality is subtle. In (Werner, 1989), it was shown that
there exist bipartite entangled states that cannot gener-
ate a nonlocal box by local measurements. Historically
this gave the first indication that entanglement and non-
locality may be inequivalent resources, and the precise
relationship between the two is still an area of active re-
search (A. A. Méthot, 2007; Lipinska et al., 2018). An-
other topic of ongoing investigation involves the activa-
tion of nonlocality. It was shown by Palazuelos (2012)
that there exist bipartite quantum states ρ and σ such
that each one of them cannot be converted into a non-
local box, but when combined together, the joint state
ρ ⊗ σ can generate a nonlocal box. This phenomenon
occurs in some other QRTs as well, and it is known as
resource activation since the nonlocality of ρ is activated
by the state σ and vice versa. In some cases, it is even
possible to activate the nonlocality of ρ with the same
state ρ or several copies of it, in which case it is called
super-activation.

2. Contextuality

Bell nonlocality can be seen as a specific manifesta-
tion of contextuality in quantum mechanics. In general,
contextuality refers to the certain way in which a state
is prepared, a transformation arises, or a measurement
is performed (Spekkens, 2005). Here we focus just on
measurement contextuality.

We begin by reviewing the notion of measurement in-
compatibility in quantum mechanics, and this discus-
sion will be relevant to the QRTs described in the next
section as well. A family of POVMs is called compatible
if its elements can be generated from a single “mother”

POVM (Guerini et al., 2017). More precisely, a collection
of POVMs {Θx}n

x=1 with Θx = {Eax |x}ax is compatible
if there exists a single POVM {Fλ}λ such that

Eax |x = ∑
λ

p(ax|x, λ)Fλ ∀ax, x, (39)

where p(ax|λ, x) is some classical conditional probabil-
ity distribution. For an arbitrary state ρ, Eq. (39) im-
mediately yields a joint distribution for the measure-
ment outcomes a = (a1, a2, · · · , an) of the POVMs
(Θ1, Θ2, · · · , Θn) given by

p(a|ρ) := ∑
λ

n

∏
x=1

p(ax|x, λ)Tr[Fλρ] = Tr[Gaρ], (40)

where Ga := ∑λ ∏n
x=1 p(ax|x, λ)Fλ defines the elements

of a multi-valued POVM Θ = {Ga}a. Note that
Eax |x = ∑y 6=x ∑ay Ga. Thus, the single POVM Θ is able
to simultaneously measure all of the Θx, and the Θx

are therefore described as being “jointly measurable”
(Heinosaari et al., 2008; Kraus, 1983; Lahti, 2003). We
use the terms compatible and jointly measurable inter-
changeably.

Returning to contextuality, suppose that Θ is a POVM
belonging to two different families of jointly measurable
POVMs,M1 andM2. We say that each of these families
constitutes a context for measuring Θ. This can be under-
stood from Eq. (39), which shows M1 and M2 arising
from two different “mother” POVMs, each one generat-
ing a different way, or context, for measuring Θ.

This notion of contextuality can be used to distinguish
and rule out certain hidden-variable theories of quan-
tum mechanics. LetM = (Θ1, Θ2, · · · ) be an arbitrary
family of POVMs for some quantum system. A noncon-
textual classical model forM on state ρ is a probability
distribution fρ(a) over all sequences a = (a1, a2, · · · , )
of outcomes for the POVMs inM. To be consistent with
the predictions of quantum mechanics, the model must
have the correct marginals for any subset of jointly mea-
surable POVMs. That is, if M′ ⊂ M is one family of
jointly measurable POVMs, i.e., one context, then

Tr[Ga′ρ] = ∑
ai 6∈a′

fρ(a1, a2, · · · ), (41)

where a′ is any sequence of outcomes inM′, the oper-
ator Ga′ is a POVM element for outcomes a′ as defined
above, and the sum is over all outcomes for POVMs not
in M′. The model is called noncontextual because for
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every POVM in M, the state ρ is assigned an outcome
distribution with no regard to contexts. Hence in such a
model, the measurement outcomes for any POVM only
depend on the state ρ and not on the way the measure-
ment is carried out.

The famous Bell-Kochen-Specker theorem shows that
a full description of quantum mechanics cannot be at-
tained by a noncontextual hidden-variable theory (Bell,
1966; Kochen and Specker, 1967). In other words,
there exist families of POVMs M that require context-
dependent hidden-variable models to accurately match
the predictions of quantum mechanics. Since context-
dependent effects are purely a quantum phenomenon,
it is possible to consider quantifying the amount of non-
contextuality in a quantum measurement scenario, as
a numerical signature of nonclassicality (Fagundes and
Kleinmann, 2017; Grudka et al., 2014; Kleinmann et al.,
2011; Svozil, 2012).

Additionally, steps have been taken to develop a re-
source theory of contextuality (Abramsky et al., 2017;
Amaral et al., 2018; Horodecki et al., 2015). In this re-
source theory, one first fixes a collection of POVMs
M. A state is then a family of probability distributions
{p(a′|M′)}M′ called a “box,” with a distribution de-
fined for every jointly measurable subset M′ ⊂ M.
A consistency condition requires that if two contexts
M′

1 and M′
2 share a common POVM, then p(a′1|M′

1)

and p(a′2|M′
2) must have the same reduced distribu-

tions for this POVM (Amaral et al., 2018; Horodecki et al.,
2015). Free states, called noncontextual boxes, are boxes
in which p(a′|M′) is a marginal distribution of a single
distribution p(a|M) for every jointly measurable subset
M′ ⊂ M. Regarding free operations, Horodecki et al.
(2015) have proposed all consistency-preserving trans-
formations of boxes that act invariantly on the set of
noncontextual boxes, i.e., the set Omax. A more opera-
tional approach has been taken by Amaral et al. (2018),
which involves modifying the formalism slightly to al-
low for composing, or “wiring,” of boxes. Then the free
operations are described analogously to Fig. 9 in the re-
source theory of nonlocality. Namely, free operations are
built by composing pre- and post- noncontextual boxes
with a classical side channel extending from the latter to
the former.

It is interesting to observe that within this resource-
theoretic framework, Bell nonlocality can be character-

ized as a special case of contextuality (Horodecki et al.,
2015). Consider again the local POVMs ΘA

x and ΘB
y

leading to Eq. (37) for a given state ρ. By the local-
ity constraint, Mx,y := (ΘA

x , ΘB
y ) is a jointly measur-

able pair for every (x, y). It can then be seen that
{p(a, b|Mx,y)}x,y forms a noncontextual box if and only
if p(a, b|x, y) is an LOSR channel (i.e., satisfying Eq. (38))
(Abramsky et al., 2017; Fine, 1982). Consequently, a state
ρ is Bell local if and only if it generates noncontextual
boxes under any family of local POVMs.

3. Incompatibility, Steering, and Projective Simulability

Measurement incompatibility, as described in detail
above, is a property of quantum mechanics that has
been intensely studied since the early days of the sub-
ject. This highly nonclassical feature can be character-
ized in terms of a quantum resource theory. The main
objects in this QRT are sets of quantum measurements.
Formally, these can be characterized in terms of a spe-
cial type of quantum channel, called a multimeter (Gour
et al., 2018a; Pusey, 2015), which has one classical in-
put (the setting variable) that determines which mea-
surement to perform, one quantum input upon which
the measurement is performed, and one classical output
corresponding to the measurement outcome. The no-
tion of multimeter can be further generalized to include
a quantum output of the measurements. In this case, the
device is called a multi-instrument (see Fig. 10a). Note
that if we trace out the quantum output, then a multi-
instrument reduces to a multi-meter, and if we remove
the quantum input, then the device reduces to a multi-
source.

FIG. 10 (a) Multi-instrument: Quantum input/output in pur-
ple (double-line) and classical input/output in black (single
line) (b) Free (compatible) multi-instrument
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In Fig. 10b a free (i.e., compatible) multi-instrument
is depicted, which is a single quantum instrument that
simulates several instruments. Note that a compati-
ble multi-instrument has the property that the quantum
output is independent of the setting variable. This is
a property belonging to a more general class of multi-
instruments called semicausal (Beckman et al., 2001;
Eggeling et al., 2002; Piani et al., 2006), and these can al-
ways be realized by replacing the classical communica-
tion and classical processing in Fig. 10b with quantum
communication and quantum processing.

With the above definition of free operations, the
QRT of incompatibility of quantum instruments is well-
defined. Since this is a resource theory of quan-
tum processes, one resource (i.e., incompatible multi-
instrument) can simulate another by a free superchannel
as depicted in Fig. 5, where the pre- and post- process-
ing are compatible multi-instruments (see more details
in (Gour et al., 2018a)).

The QRT of compatibility also captures the notion of
steering as a special case, and it can therefore be used to
define the QRT of steering (Gallego and Aolita, 2015).
Steering is a process by which a bipartite quantum state
ρAB is used to remotely prepare an ensemble of quan-
tum states in system B, by performing local measure-
ments on system A (Cavalcanti and Skrzypczyk, 2017;
Jones et al., 2007; Wiseman et al., 2007). The objects
in this resource theory are called “assemblages,” which
are equivalent to multi-sources in the terminology used
here (i.e., devices with classical input and both classical
and quantum outputs). That is, an assemblage has the
form {p(a|x), σa|x}a∈A,x∈X with {p(a|x), σa|x}a∈A being
an ensemble of quantum states for every x ∈ X . An as-
semblage is called unsteerable if it admits a local hidden-
state model:

p(a|x)σa|x = ∑
λ

p(a|x, λ)ρλqλ ∀a, x, (42)

and these are the free objects in the QRT of steering.
From Fig. 10b it can be seen that unsteerable assem-
blages are precisely compatible multi-sources. More-
over, the forward classical communication in semicausal
multi-sources corresponds to the allowed one-way com-
munication from Bob to Alice in the steering scenario.
Hence, the QRT of steering is equivalent to the QRT of
incompatible (semicausal) multi-sources.

One can think of other types of resources that are asso-

ciated with quantum measurements. One such example
is the degree in which a general quantum measurement
or POVM differs from a projective von-Neumann mea-
surement. Since generalized quantum measurements
and POVMs provide only an effective description of the
measurement process, it is natural to ask how difficult it
is to physically implement them, as in Section III.C.2.
Any implementation will involve projective measure-
ments acting on a larger Hilbert space (a joint system
+ ancillary space). As joint projective measurements
can be more challenging to realize, it is natural to con-
sider a QRT in which such measurements are forbidden;
this gives rise to a resource theory of joint measureabil-
ity (Guerini et al., 2017; Oszmaniec et al., 2017). In this
model, the free operations are projective measurements
assisted with classical processing and mixing. Simula-
bility of one POVM (or generalized measurement) from
another can be obtained as in Fig. 5 with the pre- and
post-processing being the free operations.

C. Non-Convex Resource Theories

1. Non-Gaussianity

The QRT of non-Gaussianity, like entanglement, is an-
other example of a resource theory that arises from nat-
ural constraints on the set of free operations. Gaus-
sian states and Gaussian operations (including Gaus-
sian measurements) are relatively easy to realize in
experiments using lasers, phase-sensitive and phase
insensitive optical amplifiers, and spontaneous para-
metric down conversion (Braunstein and van Loock,
2005). Consequently, Gaussian quantum information
has been developed (Serafini, 2017; Weedbrook et al.,
2012), demonstrating that many quantum informa-
tion processing tasks, such as QKD, can be imple-
mented with only Gaussian states and Gaussian oper-
ations. Analogous to entanglement-breaking channels,
the structure of nonclassicality-breaking Gaussian chan-
nels has also been investigated (Ivan et al., 2013; Sabap-
athy, 2015). Despite the success of Gaussian quantum
information, it was also realized that many other im-
portant tasks such as entanglement distillation, quan-
tum error correction, optimal cloning and more (see
e.g. (Lami et al., 2018; Takagi and Zhuang, 2018; Zhuang
et al., 2018) and references therein) require non-Gaussian
resources to be implemented. All this provides a strong
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motivation to develop a resource theory in which the
free operations and free states are given in terms of
Gaussian states and Gaussian operations. The QRT of
non-Gaussianity is different in two aspects from the
QRTs we discussed above. First, it deals with contin-
uous variable systems which are described by infinite-
dimensional Hilbert spaces, and second, the sets of
Gaussian states and Gaussian operations are not convex.
To overcome the challenge of non-convexity, one typi-
cally enlarges the set of free states and free operations
to be the convex hull of Gaussian states and Gaussian
operations (Albarelli et al., 2018; Lami et al., 2018; Takagi
and Zhuang, 2018; Zhuang et al., 2018).

Some techniques from QRTs have been adopted to
quantify non-Gaussianity, such as measures based on
the relative entropy (Genoni and Paris, 2010; Genoni
et al., 2008; Marian and Marian, 2013), and very recently
more systematic methods has been explored (Albarelli
et al., 2018; Lami et al., 2018; Takagi and Zhuang, 2018;
Zhuang et al., 2018). For example, in (Albarelli et al.,
2018) a state-based approach has been developed, where
both quantum non-Gaussianity and the Wigner nega-
tivity have been identified as resources, depending on
whether one chooses the set of free states to be the con-
vex hull of Gaussian states or the set of states with pos-
itive Wigner function. Unlike entanglement theory, it
was shown in (Albarelli et al., 2018) that there is no
maximal resource state in this QRT. Non-Gaussian states
have also been shown to be resource states for universal
quantum computation (Takagi and Zhuang, 2018), and
in (Zhuang et al., 2018) the entanglement-assisted non-
Gaussianity generating power have been defined and
proved to be a monotone under Gaussian operations.

In (Lami et al., 2018), a broad resource-theoretic frame-
work has been developed that encompasses Gaussian
quantum information. Interestingly, it was shown that
in all these models there are fundamental constraints on
state manipulations, leading to a remarkable conclusion
that no Gaussian quantum resource can be distilled with
free Gaussian operations. Despite all of the very recent
activities on the QRT of non-Gaussianity, there is much
more room for development, and the theory is undoubt-
edly still in its infancy.

2. Non-Markovianity

Two markedly different resource theories of quantum
non-Markovianity have been proposed in the literature.
We first recall the notion of Markovianity in the classical
setting. Three random variables XYZ with joint distri-
bution pXYZ form a (short) Markov chain, denoted by
X−Y− Z, if

I(X : Z|Y) = 0, (43)

where I(X : Z|Y) = I(X : YZ)− I(X : Y). Equivalently,
the conditional distributions pZ|X=x(z) := pZX(z,x)

pX(x) sat-
isfy

pZ|X=x(z) = ∑
y

pZ|Y=y(z)pY|X=x(y). (44)

Eq. (43) can be interpreted as a static condition on the
variables XYZ, while Eq. (44) can be interpreted as a dy-
namic condition on the induced transition matrices pZ|Y
and pY|X . These two sides of the same classical coin lead
to two different generalizations of quantum Markovian-
ity.

The first approach follows Eq. (44) and involves clas-
sifying a quantum dynamical process as being either
Markovian or non-Markovian. In general, a time-
parametrized evolution for a quantum system is repre-
sented by a family of trace-preserving dynamical maps
{Φ(t2,t1)

: τ > t2 > t1 > 0}, with each map charac-
terizing how the system transforms over time interval
[t1, t2]. Note that this encompasses the notion of “pro-
cess” discussed in Section III.D.5, with the latter cap-
turing a particular “snapshot” in some family of dy-
namical CP maps (Wolf et al., 2008). An evolution is
called Markovian if its dynamical maps are CP and sat-
isfy the composition law Φt3,t1 = Φt3,t2 ◦ Φt2,t1 (Ángel
Rivas et al., 2014; Rivas et al., 2010). Markovian processes
are non-convex in the sense that the CPTP map λΦt2,t1 +

(1−λ)Φ′t2,t1
need not arise within some Markovian evo-

lution even if Φt2,t1 and Φ′t2,t1
do. Nevertheless, in the

resource-theoretic spirit, several (non-convex) measures
have been constructed to quantify the degree in which a
particular quantum evolution is non-Markovian (Bhat-
tacharya et al., 2018; Breuer et al., 2009; Hall et al., 2014;
Chruściński et al., 2011; Ángel Rivas et al., 2014; Wolf
et al., 2008).

The second type of resource theory follows Eq. (43)
and characterizes quantum non-Markovianity in terms
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of tripartite static resources, i.e., tripartite quantum
states ρABE. A quantum Markov state refers to any state
ρABE whose conditional quantum mutual information
vanishes. That is, I(A : B|E)ρ = 0, where

I(A : B|E)ρ := S(AE)ρ + S(BE)ρ − S(ABE)ρ − S(E)ρ

with S(X)ρ denoting the von Neumann entropy of sys-
tems X in state ρ. Non-Markov states have been shown
to provide a resource for the tasks of quantum state re-
distribution (Devetak and Yard, 2008), secure commu-
nication by a one-time conditional pad (Sharma et al.,
2017), and state deconstruction (Berta et al., 2018). The
conditional quantum mutual information of a state is
also closely related to how well it allows for reconstruc-
tion from its bipartite reduced states (Brandão et al.,
2015b; Fawzi and Renner, 2015). Note that I(A :
B|E)ρ = 0 when the strong subadditivity bound is tight
(Lieb and Ruskai, 1973), and the structure of such states
has been determined by Hayden et al. (2004). A QRT
has recently been proposed by Wakakuwa et al. (2017)
in which Markov states are free and the free opera-
tions consist of LOCC between Alice and Bob, reversible
quantum operations by Eve, and quantum communica-
tion from Alice and Bob to Eve. Any combination of
such actions leaves the set of Markov states invariant.
Moreover, these are natural operations to consider in
cryptographic settings, such as the one-time pad, where
Eve is an unwanted eavesdropper. In fact, a full resource
theory of secrecy involving two (or more) honest parties
and one adversary can be constructed along these lines
(Horodecki et al., 2005a). Classically, such a resource
theory studies the processing of tripartite distributions
pXYZ under local (classical) operations and public com-
munication (LOPC) (Christandl et al., 2007; Collins and
Popescu, 2002). A number of remarkable results have
been obtained revealing analogous structures between
quantum entanglement under LOCC and classical se-
crecy under LOPC (Chitambar et al., 2015; Chitambar
and Hsieh, 2017; Collins and Popescu, 2002; Gisin et al.,
2002; Oppenheim et al., 2008; Renner and Wolf, 2003).

3. Quantum Correlations

Traditionally, the term “quantum correlations” has
been used in reference to the quantum entanglement in
a multipartite quantum state. However, as the subject of

quantum information theory matured, quantum corre-
lations became recognized as an arguably broader con-
cept than just entanglement. There are a variety of ways
to quantify quantum correlations (Adesso et al., 2016;
Horodecki and Oppenheim, 2013b; Modi et al., 2012), in-
cluding those that measure the correlated dynamics in
the evolution of a multi-part quantum system (Postler
et al., 2018; Ángel Rivas and Müller, 2015). Here we just
focus on bipartite quantum discord (Ollivier and Zurek,
2001) and its associated resource theory. As originally
defined as Ollivier and Zurek (2001) (see also (Zurek,
2000)), the quantum discord from Bob to Alice is defined
by

J(A|B)ρ = I(A : B)ρ −max
{PB

i }i

I(A : X)ρ′ , (45)

where I(A : B)ρ is the quantum mutual information
in ρ, the maximization is taken over all projective mea-
surements on Bob’s side, and ρ′ = ∑i TrB(I

A ⊗ PB
i ρ)⊗

|i〉〈i|B is a QC state. From Eq. (45), the discord J(A|B)
can be interpreted as the correlations that remain when
the classical correlations in ρ are subtracted from its
total correlations (Henderson and Vedral, 2001). An
overview of different operational interpretations of dis-
cord can be found in Berta et al. (2018); Modi et al. (2012);
and Streltsov (2015).

In a QRT of discord, the free states are characterized
by the condition J(A|B)ρ = 0 and are said to be clas-
sically correlated. It is not difficult to show that ρ has
vanishing discord if and only if it is a QC state ρ =

∑i piρ
A
i ⊗ |ei〉〈ei|B, where {|ei〉}i is any orthonormal ba-

sis for Bob’s system (Datta, 2008; Hayashi, 2006; Ollivier
and Zurek, 2001). An alternative characterization can
be given by considering isometries of the form UB→BC :
|ei〉B → |ei〉B|ei〉C applied to a given state ρAB. It can
be shown (Datta and Madhok, 2017) that ρAB has van-
ishing discord if and only if there exists such an isome-
try for which ρ̂ABC = (I⊗U)ρAB(I⊗U)† is a Markov
state conditioned on system B. In other words, we must
have I(A : C|B)ρ̂ = 0 (see Section IV.C.2). As for the
free operations, it is obvious that any local CP map on
Alice’s side is resource non-generating. On the other
hand, Bob’s actions must be restricted, and Hu et al.
(2012) have shown that a CPTP map on Bob’s side is re-
source non-generating if and only if it is commutativity-
preserving; i.e., [Φ(η), Φ(ζ)] = 0 whenever [η, ζ] = 0.
Other classes of free operations for discord have also re-
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cently been considered in Liu et al. (2017).

V. RESOURCE-THEORETIC TASKS

In all QRTs, the same basic information-theoretic tasks
can be studied, and often techniques used to solve a
problem in one QRT can be applied to solve the anal-
ogous problem in another. Here we review the most
well-studied tasks in QRTs and highlight their general
features.

A. Single-shot convertibility

The most basic problem studied in any QRT is the
conversion of one resource state to another using the
free operations of the theory. For any ρ ∈ S(A) and
σ ∈ S(B), the question is whether there exists a CPTP
map Φ ∈ O(A → B) such that Φ(ρ) = σ. If such a map
exists, then we will write

ρ
O−→ σ. (46)

Unfortunately, the task of exact state transformation is
usually too strict. That is, in most interesting QRTs, it
will generally not be possible to perfectly transform one
given state to another using the free operations, or vice-
versa. Furthermore, from an experimental perspective,
exact transformations are artificial since any physical
implementation will deviate from the theoretical ideal.

These considerations have motivated several varia-
tions to the problem of exact resource transformation.
The first involves relaxing the condition that the trans-
formation ρ → σ be achieved deterministically. In-
stead, one only seeks a “flagged” CPTP map Φ(·) =

∑j Φj(·)⊗ |j〉〈j|X that is free and such that Φj(ρ)/pj = σ

for some j with pj = Tr[Φj(ρ)] 6= 0. Starting with ρ, one
then freely obtains σ with probability pj by performing
Φ and then measuring classical system X. If such a map
exists, σ is said to be obtained from ρ by a stochastic or
probabilistic transformation, and we will denote this re-
lationship by

ρ
SO−→ σ. (47)

Note the only requirement in Eq. (47) is that ρ be freely
transformed to σ with some nonzero probability, regard-
less of how small this may happen to be. A more general
yet typically more difficult question is to compute the

greatest probability of transforming one state to another
using the free operations. That is, for a given σ one can
consider the problem of determining the value

P(max)
ρ (σ) := sup

Φ0

{
Tr[Φ0(ρ)]

∣∣∣∣ Φ0(ρ)

Tr[Φ0(ρ)]
= σ

}
, (48)

where the supremum is taken over all CP maps Φ0 such
that Φ(·) = Φ0(·) ⊗ |0〉〈0|X + Φ1(·) ⊗ |1〉〈1|X is a free
CPTP map for some CP map Φ1. Interest in stochas-
tic convertibility first arose in the study of entanglement
distillation where it was observed that every bipartite
weakly entangled state can be transformed into a max-
imally entangled state with nonzero probability, a pro-
cess sometimes called the Procrustean method (Bennett
et al., 1996a). But the idea of stochastic transformations
applies to all QRTs in which classically “flagged” CPTP
maps are free.

A second variation involves relaxing perfect fidelity
in the target state. One allows for an ε-ball or an “ε-
smoothing” around σ and deems the transformation a
success if ρ is transformed to any state within that ball.
More precisely, one first defines the set of density matri-
ces Bε(σ) = {σ′ : F(σ, σ′) > 1− ε} and then writes

ρ
O−→ε σ (49)

if ρ
O−→ σ′ for some σ′ ∈ Bε(σ). Transformations

like Eq. (49) are the primary focus in one-shot informa-
tion theories, and they are operationally linked to the
“smooth” entropic quantities (see Section VII.C). The
single-shot transformations of Eqns. (46)–(49) are osten-
sibly different from the many-copy or asymptotic trans-
formations that are traditionally considered in informa-
tion theory, and which we discuss next.

B. Asymptotic Convertibility

Even after relaxing the demand of exact transforma-
tion to allow for stochastic or approximate outcomes,
most pairs of states in a typical QRT will still not be in-
terconvertible. Another approach is to abandon the one-
shot scenario and consider transforming multiple copies
of the same state. The object of interest now becomes
the optimal rate of input to output states that is achiev-
able using the free operations. More precisely, a rate R is
said to be achievable in transforming ρ to σ if for every
R′ < R and every ε ∈ (0, 1], there exists an integer n
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sufficiently large so that

ρ⊗n O−→ε σ⊗bnR′c. (50)

The optimal rate is then denoted as R(ρ → σ) =

sup{R | such that R is achievable under O}.
Computing R(ρ → σ) for arbitrary states is usually a

formidable task. Nevertheless, there are some general
properties of R(ρ → σ) that can be observed. Trivially
if the QRT allows for the preparation of free states, then
R(ρ → σ) = +∞ for any free state σ. Likewise, one
would expect that R(ρ → σ) = 0 for any free state ρ

and any resource state σ. However, some care is needed
because a nonzero asymptotic rate in this case would not
automatically violate the Golden Rule of QRTs. On the
other hand, if (for any dimension) the set of free states
is closed and discarding subsystems is RNG, then it is
easy to show that indeed R(ρ → σ) = 0 for ρ ∈ F and
σ 6∈ F .

A fundamental problem in any QRT is to compare the
two directions of asymptotic convertibility for a given
pair of states. How does R(ρ → σ) compare to R(σ →
ρ)? States ρ and σ are said to be (weakly) reversible in
a QRT if R(ρ → σ)R(σ → ρ) = 1. Roughly speaking,
reversibility in this sense means that the transformation
cycle ρ → σ → ρ returns one copy of ρ for each starting
copy of ρ, in the asymptotic limit. For the definition of
optimal convertibility rate, it follows that R(ρ → ω) >

R(ρ → σ)R(σ → ω) for any three states (Horodecki
et al., 2003c). Consequently, if ρ and σ are reversible,
and σ and ω are also reversible, then we must have that
ρ and ω are reversible.

Reversibility thus establishes an equivalence class on
the set of all density matrices such that two states belong
to the same family if and only if they are asymptotic re-
versible under the free operations of the QRT. A canon-
ical representative τ0 can be identified for each equiv-
alence class, and to compute R(ρ → σ) for any two
states in the class, it suffices to determine R(ρ → τ0)

for all ρ in the class. For example, in bipartite entan-
glement theory, the maximally entangled state |Φ+〉 =√

1/2(|00〉 + |11〉) is the natural choice for a class rep-
resentative, and all pure states belong to the same re-
versibility class as |Φ+〉 (Bennett et al., 1996a). In this
case, the quantity R(ρ → |Φ+〉〈Φ+|) is called the dis-
tillable entanglement of ρ (Bennett et al., 1996b), while
R(|Φ+〉〈Φ+| → ρ) is called the entanglement cost of ρ

(Hayden et al., 2001).

In most QRTs, Brandão and Gour (2015) have shown
that all resource states become asymptotically reversible
using operations that are asymptotically resource non-
generating for the set of free states, and the optimal
rate of convertibility is determined by R∞

rel, the regu-
larized relative entropy of resource (see Section VII.C).
Using strictly weaker classes of operations, reversibility
between any two states was also shown to hold in the
QRTs of purity (Horodecki et al., 2003b) and coherence
(Chitambar, 2018).

However, in most QRTs, different reversibility classes
will exist and R(ρ → σ)R(σ → ρ) < 1 for states be-
longing to different classes. In this case, the states ρ

and σ demonstrate resource irreversibility and the cy-
cle ρ → σ → ρ incurs nonzero loss per initial copy of
ρ. The strongest manifestation of irreversibility arises
when R(ρ → σ) > 0 but R(σ → ρ) = 0 for some
resource state σ. This has been observed most promi-
nently in the QRT of entanglement, a phenomenon
known as bound entanglement (Horodecki et al., 1998a).
A bound entangled state ρ is characterized by the con-
ditions that R(|Φ+〉〈Φ+| → ρ) ∈ (0,+∞) and R(ρ →
|Φ+〉〈Φ+|) = 0. An analog to bound entanglement has
also been discovered in the resource theories of thermo-
dynamics (Lostaglio et al., 2015a), “magic state” quan-
tum computation (Veitch et al., 2012), speakable (de Vi-
cente and Streltsov, 2017; Zhao et al., 2018b) and un-
speakable (Marvian, 2018) coherence, and even multi-
partite secret key (Acı́n et al., 2004).

There is a stronger form of asymptotic reversibility
that is not defined in terms of transformation rates.
Again, consider the transformation cycle ρ → σ → ρ,
but instead of just demanding that one copy of ρ re-
turns for every initial copy, one demands that the out-
put of the cycle have arbitrarily close fidelity to the in-
put. While second-order losses can be ignored when just
focusing on rates, they become largely important when
considering transformation fidelities. A precise defini-
tion for this stronger form of resource reversibility has
been proposed by Kumagai and Hayashi (2013) for the
specific case of entanglement. Under the stronger def-
inition of reversibility, non-maximally entangled pure
states can no longer be reversibly transformed into
|Φ+〉.
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C. Catalytic Convertibility

In a chemical process, a reaction catalyst is a substance
whose presence makes the process possible while re-
maining unaltered at the end of the process. This effect
can be incorporated within the framework of QRTs. A
state ω is called a resource catalyst for the transformation
of ρ to σ if

ρ 6 O−→ σ but ρ⊗ω
O−→ σ⊗ω. (51)

If ρ can be transformed into σ using some catalysis state,

then we will write ρ
cO−→ σ.

The fact that catalysts exist in QRTs is not obvious.
However, it was discovered by Jonathan and Plenio
that entanglement transformations allow for catalysts
(Jonathan and Plenio, 1999a), and since then nearly all
QRTs have been found to demonstrate catalytic phe-
nomena. Analyzing catalyst-assisted transformations
has been particularly illuminating in the QRT of quan-
tum thermodynamics where a family of free energies
have been shown to characterize convertibility from one
state to another, thereby generalizing the second law of
thermodynamics (Brandão et al., 2015a).

Like the single-shot problem of Eq. (46), variations
to the question of exact catalytic convertibility can also
be considered. Stochastic catalytic transformations re-

fer to pairs of states ρ and σ such that ρ 6 SO−→ σ but

ρ⊗ ω
SO−→ σ⊗ ω for some ω (Chen et al., 2010). A more

general question is whether catalysts can increase the
optimal success probability of a stochastic transforma-
tion. In other words, does there exist an ω such that

P(max)
ρ⊗ω (σ⊗ω) > P(max)

ρ (σ), (52)

where P(max) is defined in Eq. (48) (Feng et al., 2005)?
It is also possible to consider ε approximations in the

catalytic transformation, i.e., ρ ⊗ ω
O−→ε σ ⊗ ω. Here,

one can further stipulate that the output be an exact ten-
sor product state with σ obtained on the primary system
and all the error in the final state occuring on the catal-
ysis system. Error in this case represents non-cyclic be-
havior for the catalysis, and often a more operationally-
based measure of this acyclicity is better to use than just
the fidelity between initial and final state (Brandão et al.,
2015a). If one allows for ε error to occur across both the
primary and the catalysis systems, then the problem of-
ten becomes trivial. This is because of a powerful phe-
nomenon known as resource embezzlement, which refers

to a family of states {ωn}n such that for any σ ∈ S(H)

and any ε > 0,

ωn
O−→ε σ⊗ωn (53)

for all n sufficiently large. Entanglement embezzlement
was first discovered by (van Dam and Hayden, 2003),
and it has found important applications in, for example,
proving the Quantum Reverse Shannon Theorem (Ben-
nett et al., 2014; Berta et al., 2011). Outside of entangle-
ment, resource embezzlement or variations to this idea
have also been demonstrated in the QRTs of thermody-
namics (Brandão et al., 2015a; Gour et al., 2015b) and co-
herence (Åberg, 2014).

D. Convertibility preordering

The convertibility tasks described in the past three
sections establish various preorderings of state space.
Recall that for a general set S, a preorder is a binary re-
lation ≺ satisfying the properties of (i) reflexivity: a ≺ a
for all a ∈ S, and (ii) transitivity: a ≺ b and b ≺ c im-

plies a ≺ c for all a, b, c ∈ S. Clearly the relations O−→,
SO−→, and cO−→ form preorders. Approximate convertibil-

ity fails to be transitive in general, but if ρ
O−→ε σ, and

σ
O−→ε ω, then ρ

O−→2ε ω. Optimal rates of asymptotic
convertibility also induce a preorder on state space, the
details of such can be found in Bennett et al. (2000).

One advantage of studying preorders in a QRT is that
it allows for a comparison of resources without first hav-
ing to specify any sort of resource measure. If ρ→ σ un-
der any of the aforementioned orders, then ρ has no less
resource than σ in a truly operational sense. However,
comparing resources in this manner is limited since typ-
ically state convertibility will not form a total order on
the set of density matrices, whether the convertibility is
considered to be exact, asymptotic, or even with small ε

error.
There are two extremes that can arise in a convertibil-

ity preorder for a given QRT. The first occurs when most
if not all pairs of states fail to be ordered, i.e., one can-
not be transformed into any other. This is the case in the
QRT of multipartite entanglement under LOCC (Sauer-
wein et al., 2017). The other extreme is when any state
can be converted into any other. In this case the free op-
erations are so powerful that all preorders collapse, and
all states are essentially equivalent. Both extremes are
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uninteresting to study from a QRT perspective. An an-
alytically rich QRT is one where the preorders are not
trivial and resource hierarchies can be established for a
wide range of physically relevant states.

E. Simulation of non-free operations

One of the most important tasks in any QRT is over-
coming the operational limitations intrinsic to the defi-
nition of the resource theory. Given that the QRT only
allows certain physical operations, how can the exper-
imenter transcend this restriction and perform essen-
tially non-free operations? This question is especially
important because often the operational constraints in
a QRT reflect practical challenges that would not arise
in ideal experimental setups. In general, it is possible
for non-free operations to be simulated by free opera-
tions at the cost of consuming a resource state. More
precisely, we say ΦResource 6∈ O(A→ B) is simulated by
ΦFree ∈ O(AC → B) and ν 6∈ F (C) if

ΦResource(ρ) = ΦFree(ρ⊗ ν) (54)

for all ρ ∈ S(A). Such channels were referred to as
ν-freely-simulable channels in Kaur and Wilde (2018).
This equation can be seen simply as the conversion of a
static resource ν into the dynamic resource ΦResource (see
Section III.D.5).

For a given QRT, a natural question is whether all
CPTP maps Φ ∈ O(A → B) can be simulated in such
a manner. If not, what is the largest set of channels that
can be simulated? Furthermore, for those channels that
can be simulated, what is the minimal amount of re-
source needed? Note that the task of channel simulation
generalizes the task of catalytic convertibility.

Quantum teleportation describes one of the most im-
portant examples of such a simulation, where general
bipartite CPTP maps can be simulated using shared en-
tanglement (Bennett et al., 1993, 1996b; Horodecki et al.,
1999). A similar result holds for coherence (Chitambar
and Hsieh, 2016). As another example, the underlying
motivation for the QRT of magic states lies in the fact
that magic states generate universal computation when
consumed by stabilizer operations (Bravyi and Kitaev,
2005; Gottesman and Chuang, 1999; Knill, 2005). Fi-
nally, in the QRT of asymmetry, the state ω in Eq. (54)
could represent a shared reference frame, or more gen-
erally one that breaks the underlying symmetry, thereby

allowing for the simulation of asymmetric transforma-
tions (Bartlett et al., 2007).

F. Erasing Resources

In Section III.D.3 resource-destroying maps were dis-
cussed, and the existence of such maps was shown to
be intimately linked to the overall structure of the par-
ticular QRT. Although not all QRTs possess resource-
destroying maps, the general task of erasing resource
can be studied in any QRT. By understanding the op-
erational requirements to erase the resource in a given
state, a fundamental connection is drawn between dy-
namic physical processes and the static resource held in
the state. This idea has its origins in Landauer’s princi-
ple, which identifies the amount of information stored in
a computer system as being proportional to the amount
of work needed to reset (i.e., erase) the system into some
fixed initial configuration (Landauer, 1961).

Landauer’s principle can be extended to the erasing
of resource in a general QRT having minimal structure.
Suppose maps of the form

ρ 7→
N

∑
i=1

piUiρU†
i ⊗ |i〉〈i|X (55)

are allowed, where the Ui are free unitaries. If discard-
ing classical information is also permitted (as in Section
III.D.1), then Eq. (55) could be continued to obtain the
CPTP map Φ(·) = ∑N

i=1 piUi(·)U†
i . Even though this

process is deemed free by the QRT, Landauer’s princi-
ple still associates a thermodynamical cost with the step
of discarding classical information. In the many-copy
limit, the rate of physical work required to erase the clas-
sical memory is given by the entropy of the distribution
pi. For a given resource ρ, one can minimize the entropy
over all such channels such that ∑N

i=1 piUi(ρ)U†
i is a free

state. This then captures the asymptotic minimal work-
cost to erase the resource in ρ via such a protocol. The
minimum number of random unitaries needed to erase
the resource in a given state (i.e., N in the above sum)
also provides a more conservative and often asymp-
totically tight measure of erasure cost (Groisman et al.,
2005).

One can also consider the task of erasing resources us-
ing catalysis. Building on the work of Majenz et al. (2017)
involving catalytic decoupling, Anshu et al. (2017) have
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recently shown that in convex QRTs admitting a tensor
product structure, R∞

rel quantifies the optimal asymp-
totic rate of erasing resource using free unitaries and
catalysis, where R∞

rel is the regularized relative entropy
of resource (see Section VI.C). Roughly speaking this
means that for any R > R∞

rel, there exists free unitaries
Ui and a probability distribution pi such that

Φ(ρ⊗n ⊗ω) =
2nR

∑
i=1

piUi
(
ρ⊗n ⊗ω

)
U†

i ≈ σ⊗ω, (56)

where σ is a free state. Specific cases of this task
have been investigated in the QRTs of entanglement
(Groisman et al., 2005), coherence (Singh et al., 2015),
non-Markovianity (Wakakuwa et al., 2017), asymmetry
(Wakakuwa, 2017b), and more generally in scenarios in-
volving state deconstruction (Berta et al., 2018; Majenz
et al., 2017). One-shot variations of the problem have
also been proposed and extensively studied in (Anshu
et al., 2017; Berta and Majenz, 2017; Majenz et al., 2017).

VI. QUANTIFYING RESOURCES

One of the most useful aspects of a QRT is that it
generates precise and operationally meaningful ways to
quantify a given physical resource. Dedicated studies
on the broad characterization and computation of re-
source measures in a general QRT have been conducted
(Bromley et al., 2018; Liu et al., 2017; Regula, 2018).
Here we review a variety of resource measures that can
be introduced in any QRT. We first begin with an ax-
iomatic approach which involves identifying some nec-
essary and desirable properties that any resource mea-
sure should satisfy. After that, we review different fami-
lies of specific resource measures that can be used in the
study of general QRTs.

A. An Axiomatic Approach

In its definition, a QRT is defined for any Hilbert space
H. Therefore, a true resource measure should be able to
quantify the resource of a density operator acting on any
space; that is, we should consider non-negative func-
tions of the form f : ∪HS(H) → R>0. However, in
practice one may be satisfied with restricting the do-
main of a measure and focusing on just a single input
space H. The additional structure required of f to be

a resource measure can be cast in axiomatic form. Be-
low we state five axioms for a resource measure. Lest
this approach be too restrictive, we distinguish the first
two axioms (vanishing for free states and monotonicity)
as being essential, while the others (convexity, subaddi-
tivity and subextensivity, and asymptotic continuity) as
being convenient and non-essential.

1. Vanishing for Free States

The first and most obvious axiom of a resource mea-
sure is that for a given system A

ρ ∈ F (A) ⇒ f (ρ) = 0. (57)

This condition makes the statement “no resource” quan-
titatively precise. Intuitively it may be tempting to re-
quire that the converse of Eq. (57) also holds. This prop-
erty is called faithfulness, and a general function f is
called resource faithful if f (ρ) = 0 implies that ρ is
free. However, it may be that for a given task, certain
resource states provide no operational advantage over
free states. Such states should then be assigned zero re-
source by any measure that quantifies the utility of a
state for performing the given task. For example, the
distillable entanglement is an important measure of en-
tanglement that vanishes for all bound entangled states.
Thus, while faithfulness is intuitively appealing, it is not
required for a resource measure.

2. Monotonicity

A more fundamental property of any resource mea-
sure is that its value cannot be increased using free oper-
ations. This is called monotonicity, and it can be seen as
encompassing the Golden Rule of QRTs. A non-negative
function f : ∪HS(H) → R>0 is called a resource mono-
tone if, for any Φ ∈ O(A → B) and ρ ∈ S(A), it holds
that

f (ρ) > f (Φ(ρ)). (58)

For QRTs in which any two free states are interconvert-
ible, such as those admitting a tensor product structure,
monotonicity immediately implies that f (ρ) = f (σ)
whenever ρ and σ are free. Thus, the axiom of vanish-
ing for free states can always be satisfied by shifting the
function f so that f (ρ) = f (σ) = 0.
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Quantum measurements represented in the form of
QC maps Φ(·) = ∑i Φi(·)⊗ |i〉〈i|X are not permitted in
every resource theory, quantum thermodynamics being
one such example. However, in QRTs like entanglement
and magic states, measurements are physically allowed,
and they represent an important component of the the-
ory. We are thus typically interested in the behavior of
a resource monotone when evaluated on QC states. We
say that such a function f is convex linear on QC states
if

f

(
∑

i
piσi ⊗ |i〉〈i|

)
= ∑

i
pi f (σi ⊗ |i〉〈i|) (59)

for every QC state σQX = ∑i piσi ⊗ |i〉〈i|. For exam-
ple, the von Neumann entropy and all Schatten p-norms
have this property. If f is convex linear on QC states,
then monotonicity obviously implies

f (ρ) > ∑
i

pi f (σi ⊗ |i〉〈i|) . (60)

Equation (60) says that the function is non-increasing on
average under any “flagged-outcome” quantum mea-
surement. In many QRTs appending or discarding clas-
sical flags is a free operation; i.e., ρ ↔ ρ ⊗ |i〉〈i|X is al-
lowed for any orthonormal set of vectors {|i〉}i. For such
QRTs, all monotones must satisfy f (ρi) = f (ρi ⊗ |i〉〈i|).
Then from Eq. (60) it follows that

f (ρ) > ∑
i

pi f (σi), (61)

where ρ 7→ ∑i Φi(ρ)⊗ |i〉〈i| is any free QC measurement
map, σi = Φi(ρ)/pi, and pi = Tr[Φi(ρ)]. This prop-
erty is sometimes referred to as strong monotonicity (Vi-
dal, 2000). An intuitive justification for requiring strong
monotonicity is to prevent f from increasing on aver-
age when the experimenter can post-select or “flag” the
multiple outcomes of a quantum measurement. How-
ever, Eq. (61) does not precisely reflect this justification
since the full description of a post-measurement quan-
tum system with measurement outcome i is the QC state
σi ⊗ |i〉〈i|X . When including the measurement outcome,
the statement of f being non-increasing on average is
Eq. (60), which always holds when f satisfies Eq. (58)
and demonstrates convex linearity on QC states.

Every nonnegative monotone satisfying Eq. (61) can
be used to derive an upper bound on the stochastic con-
vertibility of transforming one state ρ into another σ us-

ing the free operations. For any stochastic transforma-
tion on ρ generating outcomes ρx, Eq. (61) immediately
implies that f (ρ)

f (ρx)
> px. Hence one obtains

Pmax
ρ (σ) 6

f (ρ)
f (σ)

, (62)

with Pmax
ρ (σ) defined in Eq. (48). In fact, Pmax

ρ (σ) is itself
a resource monotone (Vidal, 2000).

3. Convexity

Convexity of a resource measure says that

f (∑
i

piρi) 6 ∑
i

pi f (ρi) (63)

for any collection of density matrices ρi and associated
probability distribution pi. This is a very desirable prop-
erty to have from a mathematical perspective when it
comes to computing the value of some function for a
given state (Girard et al., 2014; Regula, 2018). A physical
interpretation often associated with convex measures
is that mixing states never increases the amount of re-
source. However, since mixing in this sense describes a
process of discarding information, care is needed when
relating convexity to the physical process of mixing
states (see Section III.D.1).

4. Subadditivity

A function f : ∪HS(H)→ R is called subadditive if

f (ρ⊗ σ) 6 f (ρ) + f (σ) (64)

for all ρ, σ. While subadditvity is a natural property to
suppose of a resource measure, Eq. (64) will not hold for
all measures in a general QRT. In particular, for any QRT
admitting superactivion, such as nonlocality (Palazue-
los, 2012) and quantum channel capacities (Cubitt et al.,
2011; Smith and Yard, 2008), all faithful resource mea-
sures will not be subadditive.

The function f is called additive when equality holds
in Eq. (64) for all states. This is a strong property
that most resource measures will not possess. How-
ever, a procedure known as regularization allows for
the general construction of functions that are additive
on multiple copies of the same state. For a function
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f : ∪HS(H) → R, its regularized version is defined
by

f ∞(ρ) = lim
n→∞

1
n

f (ρ⊗n), (65)

provided the limit exists. One sufficient condition for
the existence of this limit is a weaker form of subaddi-
tivity given by f (ρ⊗(m+n)) 6 f (ρ⊗m) + f (ρ⊗n) for all ρ

and m, n (Donald et al., 2002). By definition, f ∞(ρ⊗n) =

n f ∞(ρ), and furthermore, if f is a resource monotone
then so will be f ∞.

5. Asymptotic Continuity

Continuity of measure is a reasonable property to ex-
pect for any resource measure having physical meaning.
If one state can be obtained from another through subtle
perturbation, then one would naturally anticipate their
resource content to be very similar. Of course, the range
of a resource measure should grow as the system dimen-
sion increases, and thus relative to the dimension, two
states can have similar resource content while their ab-
solute difference in resource measure is proportional to
the dimension. Asymptotic continuity is a notion of con-
tinuity that considers convergence relative to the dimen-
sion. More precisely, a function f is said to be asymptot-
ically continuous if

| f (ρ)− f (σ)| 6 Kε log[dim(H)] + c(ε) (66)

for all states ρ and σ having support on H, where K is
some constant, ε = 1

2‖ρ − σ‖1, and c(ε) is any func-
tion converging to zero as ε → 0 (Synak-Radtke and
Horodecki, 2006). For example, the von Neumann en-
tropy S is an asymptotic continuous function, as re-
vealed by the Fannes-Audenaert Inequality

|S(ρ)− S(σ)| 6 ε log[dim(H)− 1] + h(ε),

where h(x) = −x log x− (1− x) log(1− x) (Audenaert,
2007; Fannes, 1973). Asymptotic continuity plays a cru-
cial role in the analysis of asymptotic state convertibility.
As we discuss in Section VII.C, the regularized version
of all asymptotically continuous measures coincides on
states in the same reversibility class.

The regularization of an asymptotically continuous
monotone can be used to bound the rate of any asymp-
totic transformation. Suppose that f is an asymptoti-
cally continuous monotone with regularization f ∞, and

consider the asymptotic convertibility of ρ into σ. If
R is an achievable rate, then for any δ > 0, there ex-

ists some n such that ρ⊗n O−→ σn with F(σn, σ⊗bnRc) >

1− δ. In terms of the trace distance, this means 1
2‖σn −

σ⊗bnRc‖ <
√

2δ. Then

f (ρ⊗n) > f (σn)

> f (σ⊗bnRc)− K′
√

δnR log d− c(δ), (67)

where the first inequality follows from monotonicity
and the second from asymptotic continuity, with d being
the dimension of supp(σ). To obtain the regularizations,
we divide both sides by n and take the limit. Noting
that limn→∞

1
n f (σ⊗bnRc) > limbnRc→∞

R
bnRc f (σ⊗bnRc),

we have f ∞(ρ) > R f ∞(σ)−O(
√

δ). Since this holds for
all δ > 0 and any achievable rate R, the optimal asymp-
totic rate of conversion is bounded as (Horodecki et al.,
2002)

R(ρ→ σ) 6
f ∞(ρ)

f ∞(σ)
. (68)

This can be seen as the asymptotic version of Eq. (62).

B. General Distance-Based Constructions

We now describe a general recipe for constructing
measures in a general QRT. The idea is to quantify the
amount of resource in a quantum state by “how far”
it is from the set of free states. There are many well-
defined measures that satisfy the mathematical require-
ments of distance between two positive operators in
Hilbert space. However from a physical perspective,
the property of monotonicity offers a more useful foun-
dation for quantifying distance than standard metric
space approaches. A function d : S(H ⊗ H) → R>0

is said to be contractive under CTPP maps Φ if d(ρ, σ) >

d(Φ(ρ), Φ(σ)) for arbitrary ρ and σ. If d is such a func-
tion, then one can define for any QRT the resource mea-
sure

Rd(ρ) = inf
σ∈F (H)

d(ρ, σ). (69)

This is easily shown to be a resource monotone by the
following argument. Let ρ ∈ S(A) be a density matrix,
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and Φ ∈ O(A→ B) a free operation. Then,

Rd(Φ(ρ)) = inf
τ∈F (B)

d(Φ(ρ), τ)

6 inf
σ∈F (A)

d(Φ(ρ), Φ(σ))

6 inf
σ∈F (A)

d(ρ, σ) = Rd(ρ) . (70)

Under this construction strong monotonicity is not guar-
anteed to be satisfied, but for the measures considered
below this will indeed be the case. In general,Rd is sub-
additive, and it will be a convex measure for all con-
vex QRTs. We describe in the next few sections spe-
cific resource measures that are constructed using the
approach described here.

C. Entropic measures

The starting point for most entropic measures is some
quantum generalization of the relative Rényi entropies
from classical information theory (Rényi, 1961). Two
well-studied generalizations are the (quantum) relative
Rényi entropies (Petz, 1986), defined by

Dα(ρ‖σ) =

+∞ if α 6∈ (0, 1) ∧ supp(ρ) 6⊂ supp(σ)
1

α−1 log(Tr ρασ1−α) otherwise

(71)

for all α ∈ [0,+∞) \ {1}, and the quantum Rényi diver-
gences (Müller-Lennert et al., 2013) or sandwiched Rényi
entropies (Wilde et al., 2014), defined by

D̃α(ρ‖σ) =

+∞ if α 6∈ (0, 1) ∧ supp(ρ) 6⊂ supp(σ)
1

α−1 log(Tr[(σ
1−α
2α ρσ

1−α
2α )α]) otherwise

(72)

for all α ∈ (0,+∞) \ {1}. Both families of entropies have
found applications in quantum information theory, par-
ticularly in quantum hypothesis testing (Hayashi and
Tomamichel, 2016; Mosonyi and Hiai, 2011; Mosonyi
and Ogawa, 2015), and various strong converse proofs
(Cooney et al., 2016; König and Wehner, 2009; Leditzky
et al., 2016; Wilde et al., 2014). Of special interest are cer-
tain limiting cases of Dα(ρ‖σ) and D̃α(ρ‖σ). For states
ρ, σ with supp(ρ) ⊂ supp(σ), we have

D0(ρ‖σ) = − log Tr(Πρσ) (73)

lim
α→1

Dα(ρ‖σ)→ S(ρ‖σ) := −Tr[ρ(log σ− log ρ)] (74)

where Πρ is the projector onto supp(ρ) and S(ρ‖σ) is
the quantum relative entropy (Vedral, 2002). Similarly,
we have

lim
α→1

D̃α(ρ‖σ)→ S(ρ‖σ) (75)

lim
α→∞

D̃α(ρ‖σ)→ Dmax(ρ‖σ) := inf{λ | ρ 6 2λσ}, (76)

where Dmax(ρ‖σ) is called the max-relative entropy
(Datta, 2009b). Henceforth we will use the definitions
D1(ρ‖σ) = D̃1(ρ‖σ) := S(ρ‖σ) and D̃∞(ρ‖σ) :=
Dmax(ρ‖σ).

The relative Rényi entropy serves as building block
for a number of other useful entropic quantities. For ex-
ample, if ρ is a state whose support is contained in a d-
dimensional subspace H, then the Rényi entropy of the
eigenvalues of ρ can be obtained by taking σ = IH:

Sα(ρ) := −Dα(ρ‖IH) =
−1

α− 1
log(Tr ρα). (77)

As described in Section VII.A.2, the quantities Sα(ρ)

determine catalytic convertibility of states in many re-
source theories. For special choices of α we have

Hmin(ρ) = −Dmax(ρ‖IH) = − log ‖ρ‖∞,

S(ρ) = −D1(ρ‖IH) + log d = −Tr[ρ log(ρ)],

Hmax(ρ) = −D0(ρ‖IH) = log rank[ρ]

(78)

where ‖ρ‖∞ is the largest eigenvalue of ρ.
For operational purposes, one crucial property of the

Rényi relative entropies is that they are contractive un-
der CPTP maps for certain ranges of α, i.e., Dα(ρ‖σ) >

Dα(Φ(ρ)‖Φ(σ)) for any CPTP map Φ and all states ρ

and σ. This is also sometimes referred to as a data-
processing inequality. For the range α ∈ [0, 2], the quan-
tum relative Rényi entropy is monotonic under CPTP
maps (Petz, 1986), similarly the quantum Rényi diver-
gence behaves monotonically for α ∈ [1/2, ∞] (Beigi,
2013; Frank and Lieb, 2013; Wilde, 2018). It also holds
that Dα(ρ‖σ) = 0 if and only if ρ = σ, and likewise for
the equality D̃α(ρ‖σ) = 0.

Given these properties, one then obtains a whole fam-
ily of resource measures for any QRT (F ,O). These are
functions Rα and R̃α whose values on any ρ ∈ S(H)

are given by

Rα(ρ) : = inf
σ∈F (H)

Dα(ρ‖σ) for α ∈ [0, 2], (79)

R̃α(ρ) : = inf
σ∈F (H)

D̃α(ρ‖σ) for α ∈ [1/2, ∞]. (80)
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In particular, we define

Rmax(ρ) : = R̃∞(ρ) = inf
σ∈F (H)

{λ | ρ 6 2λσ}. (81)

Note that whenever the set of free states F (H) is closed,
each infimum is attained by some free state σ. These are
true resource measures since R̃α(ρ) = 0 and R̃α(ρ) = 0
if and only if ρ ∈ F (H). Monotonicity under any
free CPTP map Φ follows from the data-processing in-
equality and the discussion of Section VI.B. Further-
more, Rα and R̃α demonstrate strong monotonicity for
α ∈ [1, 2]. To see this, consider any free transforma-
tion ρ → Φ(ρ) = ∑i piρi ⊗ |i〉〈i| and suppose for sim-
plicity that F (H) is closed. Then there exists some
∑i qiσi ⊗ |i〉〈i| ∈ F (H⊗HX) attaining the minimum in
the definition of Rα(Φ(ρ)). Monotonicity or Rα then im-
plies

Rα(ρ) > Dα

(
∑

i
piρi ⊗ |i〉〈i|

∣∣∣∣∣∣∣∣∑
i

qiσi ⊗ |i〉〈i|
)

=
1

α− 1
log

(
∑

i
pα

i q1−α
i Tr[ρα

i σ1−α
i ]

)

>
1

α− 1 ∑
i

pi log
(
(qi/pi)

1−α Tr[ρα
i σ1−α

i ]
)

> ∑
i

piRα(ρi), (82)

where the concavity of logarithm function has been used
for α > 1, and the last inequality follows from the fact
that −∑i pi log(qi/pi) is nonnegative as it is the relative
entropy of the distributions (pi)i and (qi)i. An anal-
ogous argument holds for R̃α. It is also easy to see
that these measures are subadditive and subextensive in
general, and they are convex for all convex QRTs.

For example, in the QRT of thermodynamics the
Gibbs state γH is the unique free state for a given
Hamiltonian and bath temperature. The quantities
Rα(ρ) = Dα(ρ‖γH) andRα(ρ) = D̃α(ρ‖γH) are then re-
source measures, and their monotonicity represents an
α-family of second laws of thermodynamics (Brandão
et al., 2015a).

The most important entropic measure emerges when
α = 1, and it is called the relative entropy of resource, de-
noted as

Rrel(ρ) = inf
σ∈F (H)

S(ρ‖σ) (83)

for ρ ∈ S(H). It can be shown that Rrel is asymptoti-
cally continuous in any convex QRT for which the max-
imally mixed state is free (Donald and Horodecki, 1999;

Synak-Radtke and Horodecki, 2006) (see also (Winter,
2016)). As mentioned above, the regularization of Rrel

is the key quantifier in most asymptotic resource tasks
such as the asymptotic convertibility and erasing re-
sources (see also VII.C).

One can also consider a relative entropy-type measure
by switching the roles of ρ and σ (Eisert et al., 2003; Ve-
dral and Plenio, 1998). That is, the function

R′rel(ρ) = inf
σ∈F (H)

S(σ‖ρ) (84)

provides a resource measure that vanishes on free states
and behaves monotonically under free operations. In
addition, R′rel has the relatively rare feature of being an
additive function in QRTs admitting a tensor product
structure. This follows from the equality

S(σAB‖ρA ⊗ ρB) = −Tr[σAB log(ρ1 ⊗ ρ2)]− S(σAB)

= S(σA‖ρA) + S(σB‖ρB) + I(A : B)σ.

This is minimized by taking σAB = σA ⊗ σB. In QRTs
with a tensor product structure, σA ⊗ σB is free when-
ever σAB is free. Hence, additivity holds: R′rel(ρ

A ⊗
ρB) = R′rel(ρ

A) +R′rel(ρ
B). Unfortunately, despite hav-

ing these nice properties, R′rel is usually not convenient
to use as a resource measure. If, for example, the set
of free states contains full rank states, then R′rel(ρ) will
diverge for all states ρ not of full rank.

D. Geometric Measures

The relative entropies are not proper metrics in the
mathematical sense since they, for example, fail to sat-
isfy the triangle inequality. One resource measure de-
rived from a true metric is the trace distance of resource,
defined as

RTr(ρ) = inf
σ∈F (H)

DTr(ρ, σ) = inf
σ∈F (H)

1
2
‖ρ− σ‖1 (85)

for any ρ ∈ S(H). Since ‖ · ‖1 is contractive under CPTP
maps, it automatically holds that RTr(ρ) > RTr(Φ(ρ))

for any free channel Φ.
The trace distance of resource has an appealing op-

erational meaning in terms of state distinguishability.
Namely, for a system prepared in one of two states ρ0

and ρ1 with respective probabilities p0 and p1, the mini-
mum error in guessing the correctly prepared state after
measuring the system is given by 1

2 −
1
2‖p0ρ0 − p1ρ1‖1
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(Helstrom, 1969; Holevo, 1973). When guessing be-
tween the equiprobable state preparation of ρ or some
free state in the QRT, the quantity 1

2 −
1
2RTr(ρ) repre-

sents the minimum-error probability over all the free
states, provided the QRT is convex (Gutoski and Wa-
trous, 2005).

Another example of a metric used in quantum in-
formation theory is the Bures metric, DB(ρ, σ) =√

2
√

1− F(ρ, σ). Using it, the Bures distance of resource
measure can be defined

RB(ρ) = inf
σ∈F (H)

DB(ρ, σ). (86)

Both RTr and RB are called geometric measures be-
cause they are built from a true metric. Historically
however, the first type of geometric measure studied
was for pure states in entanglement theory, and it in-
volves minimizing F(ρ, σ)2 directly (Barnum and Lin-
den, 2001; Shimony, 1995). This is typically referred to
as the geometric measure of entanglement, and we gen-
eralize it to a measure on pure states in an arbitrary QRT
as

RG(|ψ〉) = inf
σ∈F (H)

(1− F(|ψ〉〈ψ|, σ)2) =
1
4
RB(|ψ〉)4.

(87)

If F (H) is a convex set whose extreme points are pure
states, then this infimum is always attained by a pure
state. Entanglement theory is one such QRT where this
is the case, and thus in entanglement theory RG(|ψ〉) is
essentially given by the largest overlap that |ψ〉 has with
a product state. Such a quantity has wide applications
in quantum information theory, such as quantifying per-
formance in LOCC state discrimination (Markham et al.,
2007) and quantum algorithms (Biham et al., 2002; Gross
et al., 2009)

There are two ways to extend RG defined in Eq. (87)
to be a resource measure for mixed states as well (Chen
et al., 2014). The first and most obvious does not change
the functional form at all, and one simply defines

RG(ρ) = inf
σ∈F (H)

(1− F(ρ, σ)2) (88)

for ρ ∈ S(H). As an interesting observation, the α =

1/2 case of R̃α(ρ) in Eq. (80) reduces to a quantity quite
similar toRG(ρ). One sees from Eq. (72) that

D̃1/2(ρ‖σ) = −2 log Tr
√√

σρ
√

σ = − log F(ρ, σ)2.
(89)

Minimizing both sides over all free states σ yields

RG(ρ) = 1− 2−R̃1/2(ρ). (90)

Monotonicity of R̃1/2 then implies F(Φ(ρ), Φ(σ)) >

F(ρ, σ) for any CPTP map Φ.
The second approach to obtaining a mixed-state mea-

sure from Eq. (87) uses a standard technique in entangle-
ment theory known as convex-roof extension (Uhlmann,
2010; Wei and Goldbart, 2003). For any arbitrary mixed
state, its extended geometric measure is defined by

R′G(ρ) = inf
{|φi〉,pi}

∑
i

piRG(|φi〉), (91)

where the infimum is taken over all pure-state ensem-
bles such that ρ = ∑i pi|ψi〉〈ψi|. Remarkably, if the QRT
has the property that its free states are the convex hull of
some set of pure states, then the two proposed geomet-
ric measures of resource coincide (Streltsov et al., 2010);
i.e.,

RG(ρ) = R′G(ρ). (92)

A consequence of this equality is that RG(ρ) necessar-
ily satisfies strong monotonicity sinceR′G is built from a
pure-state function RG that satisfies strong monotonic-
ity under pure-state transformations (Vidal, 2000).

Even though RG has a relatively convenient mathe-
matical form, it lacks an operational interpretation like
the minimum error guessing probability associated with
RTr. However, RG is still useful in deriving bounds for
the latter since from Eq. (1) we immediately have

1−
√

1−RG(ρ) 6 RTr(ρ) 6
√
RG(ρ). (93)

E. Witness-based measures

The next family of measures we consider relies on the
idea of resource witnessing. In a general QRT, a witness
for the particular resource is a quantum observable W ∈
B(H) such that∃σ 6∈ F (H) : Tr[Wσ] < 0

∀ρ ∈ F (H) : Tr[Wρ] > 0.
(94)

If W satisfies these two conditions, then it is said to “wit-
ness” the resource content of σ. For convex closed QRTs,
the separating hyperplane theorem assures that every
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resource state possesses at least one observable that wit-
nesses it (Barvinok, 2002). Consequently, in such QRTs
witnesses themselves can be used to fully characterize
the free states.

The theory of witnesses is very appealing from an ex-
perimental perspective. If multiple copies of a quan-
tum system are prepared in the same unknown state, the
presence of a quantum resource can be detected when-
ever a resource witness yields a negative average mea-
surement value. In entanglement theory, the study of
entanglement witnesses is a mature research area (Chru-
ciski and Sarbicki, 2014), with a number of experimental
applications already developed (Gühne and Tóth, 2009).
In the QRT of Bell nonlocality, the so-called Bell oper-
ators serve as resource witnesses, and the experimen-
tal implementation of these witnesses in a “loophole”
free manner has been a long quest that only recently be-
came completed (Giustina et al., 2015; Hensen et al., 2015;
Shalm et al., 2015).

Beyond distinguishing resource states from free ones,
witnesses can also be used for the construction of re-
source measures. This approach was originally taken by
Brandão (2005) in the context of entanglement, but it has
recently been expanded by Regula (2018) to encompass
general convex resource theories. While we encourage
the reader to consult the latter for a detailed mathemat-
ical development of the subject, here we just review the
basic framework and describe the more well-known ap-
plications.

For a collection of hermitian operators C(H) ⊂
Herm(H), we let C∗(H) ⊂ Herm(H) denote its dual
cone, i.e.,

C∗(H) := {X : Tr[XY] > 0, ∀Y ∈ C(H)}.

For a given QRT (F ,O) and any Hilbert space H, let
C(H) be a collection of hermitian operators that is closed
under the adjoint of every free CPTP map; more pre-
cisely, for spaces H and H′ it holds that Φ∗(X) ∈ C(H)

whenever X ∈ C(H′) and Φ ∈ O(H → H′). Then for
ρ ∈ S(H) we define the function

RCW(ρ) = sup{−Tr[Xρ] : X ∈ F ∗(H) ∩ C(H)}. (95)

By definition, RCW(ρ) = 0 for all ρ ∈ F (H), and mono-
tonicity is easy to verify. First note that F ∗(H) itself is
closed under the adjoint of every free map, which fol-
lows from the observation that if 0 6 Tr[Xρ] for all free

states ρ, then under any RNG map Φ, we likewise have
0 6 Tr[XΦ(ρ)] = Tr[Φ∗(X)ρ]. Monotonicity of RCW is
then a consequence of the inequality

−Tr[XΦ(ρ)] = −Tr[Φ∗(X)ρ] 6 RCW(ρ),

since Φ∗(X) ∈ F ∗(H) ∩ C(H). In any QRT with tensor
product structure, one can see that F ∗(H) is also closed
under processing of classical flags; i.e., ∑i Xi ⊗ |i〉〈i|X ∈
F ∗(H⊗HX) if and only if Xi ∈ F ∗(H) for all i. If the
set C(H) also has this property, then the constructed re-
source measure RCW(ρ) is convex linear on QC states.
Consequently, the monotonicty

RC
W(ρ) > ∑

i
piRC

W(ρi) (96)

holds for any free transformation ρ→ ∑i piρi ⊗ |i〉〈i|.
As an example, for any real numbers m < n, the set
C = {X : −mI 6 X 6 nI} is closed under the adjoint
of every CPTP map (Brandão, 2005). Indeed, if nI > X,
then 0 6 Φ∗(nI− X) = nI−Φ∗(X), where the inequal-
ity follows from Φ being CP and the equality follows
from Φ being trace preserving, which implies Φ∗ is uni-
tal. A similar argument holds for the operator X + mI,
and therefore we see that RC

W is a resource measure for
any choice of m and n (Regula et al., 2018).

In many cases of interest, the chosen set C is a cone in
the space of hermitian matrices. That is, C is such that
∑i ciXi ∈ C whenever Xi ∈ C and ci > 0. From its defini-
tion, F ∗ is also a cone, and thus the value RCW(ρ) repre-
sents a conic optimization problem (Boyd and Vanden-
berghe, 2004). Every conic optimization problem has
a dual representation obtained by the introduction of
Lagrange multipliers. If C is convex with F ∗ ∩ C hav-
ing a nonempty interior, then strong duality holds, and
we are assured that the dual-optimal solution is equal
to RCW(ρ). In what follows, we consider three resource
measures built using the dual formulation ofRCW under
different choices of C.

1. Trace Distance Measures

Building from the example in the previous section,
consider the specific choice of m = n = 1 so that
C = {X : −I 6 X 6 I}. The dual optimization problem
of Eq. (95) is given by

inf
R,S>0

ω∈F+(H)

{Tr[R + S] : ρ−ω = R− S},
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where F+(H) = F ∗∗(H) := {λσ : σ ∈ F (H), λ >

0}. It is well-known that this minimization problem is
equivalent to minimizing the trace distance between ρ

and the set F+(H). Since strong duality holds for all
non-trivial QRTs in this case, we therefore have

R+
Tr(ρ) := inf

ω∈F+(H)
‖ρ−ω‖1. (97)

We will refer to this as the modified trace distance of re-
source, as it has been given such a name in the study of
quantum coherence (Yu et al., 2016).

One advantage of considering the modified trace
distance of resource rather than the standard RTr of
Eq. (85) is that the former satisfies strong monotonic-
ity while the latter does not. To see where the dis-
tinction arises, consider a multi-outcome free operation
Φ(·) = ∑i Φi(·)⊗ |i〉〈i|X . For an input state ρ ∈ B(HS),
its post-measurement trace distance of resource is given
by

RTr(Φ(ρ)) = inf
ω∈F (H⊗HX)

∣∣∣∣∣
∣∣∣∣∣∑i
Ei(ρ)⊗ |i〉〈i|X −ωSX

∣∣∣∣∣
∣∣∣∣∣
1

,

where ωSX is a QC state of the form ωSX = ∑i qiωi ⊗
|i〉〈i|X for quantum states ωi. Then writing ρi =

Ei(ρ)/pi and pi = Tr[Ei(ρ)], we have

RTr(Φ(ρ)) = ∑
i

pi inf
qiωi∈F+(H)

∑i qi=1

∣∣∣∣∣∣∣∣ρi −
qi
pi

ωi

∣∣∣∣∣∣∣∣
1

. (98)

In general the terms in the sum on the RHS will differ
from RTr(ρi). On the other hand, if the normalization
condition ∑i qi = 1 is removed from the infimum in
Eq. (98), then the RHS becomes ∑i piR+

Tr(ρi). Hence, we
can conclude that the modified trace distance demon-
strates convex linearity on QC states and therefore also
strong monotonicity,

R+
Tr(ρ) > ∑

i
piR+

Tr(ρi). (99)

While strong monotonicity of RTr is known to hold in
coherence and entanglement theories for special cases
(Eisert et al., 2003; Rana et al., 2016), explicit counterex-
amples can be found (Yu et al., 2016).

2. Robustness Measures

One appealing way to quantify the resource content
of a quantum state is by its resilience to hold resource

when mixed with some other state. Let T (H) be any set
of quantum states, and for a given state ρ consider mix-
tures of the form ω = λρ + (1− λ)σ with σ ∈ T (H). If
F (H) ∩ T (H) 6= ∅, there always exists a λ such that ω

is a free state for some choice of σ ∈ T (H). The smallest
such λ having this property quantifies a resource robust-
ness of ρ against mixtures from T (H).

For many interesting choices of T (H), this notion of
robustness can be captured using the framework of re-
source witnesses. Specifically, suppose that the set

C(H) = I− T ∗ = {X : I− X ∈ T ∗(H)}

is closed under the adjoint action of every free map. The
dual of Eq. (95) is readily found to be

inf
ω∈F+(H)

{Tr[ω]− 1 : ω− ρ ∈ T+(H)},

where T+(H) is the conic hull of T (H). If there exists an
ω ∈ T+(H) so that ρ + ω lies in the interior of F+(H),
then strong duality holds. In this case, we can rewrite
the previous equation in a more standard form, which
represents the resource robustness of ρ against T ,

RTrob(ρ) := inf
γ∈T (H)

{
s :

ρ + sγ

1 + s
∈ F (H)

}
. (100)

Different robustness measures are obtained for differ-
ent choices of T . For example, if T = F , then one
obtains the resource absolute robustness (Vidal and Tar-
rach, 1999), which quantifies the minimum fraction that
a given state ρ must be mixed with a free state so that
their convex combination is free. An analogous measure
has been studied in the QRT of “magic states” (Howard
and Campbell, 2017). The other extreme involves taking
T to be the set of all density matrices. This is called the
resource global robustness (Harrow and Nielsen, 2003),
and it is written as

Rrob(ρ) = inf
γ∈S(H)

{
s :

ρ + sγ

1 + s
∈ F (H)

}
. (101)

Beyond its study in entanglement theory, the global
robustness has recently been investigated in the QRTs
of coherence and asymmetry (Napoli et al., 2016; Pi-
ani et al., 2016). In addition, the global robustness
plays an important role in the study of general asymp-
totic resource reversibility since it is used to define the
class of asymptotically-RNG transformations (Brandão
and Gour, 2015; Brandão and Plenio, 2008) (see Section
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VII.C). A thoughtful comparison between Eq. (101) and
Eq. (81) shows that

Rmax(ρ) = log(1 +Rrob(ρ)) (102)

(Datta, 2009a). The RHS is sometimes referred to as the
log-robustness.

A third type of robustness commonly considered is
the resource random robustness of ρ, and it is defined by
taking T (H) = { 1

d I}, where d = dim[H] (Vidal and Tar-
rach, 1999). Assuming the maximally mixed state is free,
this quantity essentially measures how much “white
noise” must be mixed with ρ before it becomes a free
state. Alternatively, it can be characterized as the mini-
mal depolarizing parameter λ that removes all resource
content from ρ when its sent through the completely de-
polarizing channel Φλ(ρ) = (1− λ)ρ + λ 1

d I. However,
unlike the absolute and global robustness measures, the
resource random robustness is not a monotone in gen-
eral (Harrow and Nielsen, 2003). For the choice of T (H)

taken here, it holds that C(H) = {X : Tr[X] 6 d}. Con-
sequently, it follows that the resource random robust-
ness is a monotone in any QRT for which every free map
has an adjoint that is trace-non-increasing on the set of
hermitian operators. For example, the random robust-
ness is a monotone if the free CPTP maps are unital, a
fact which also directly follows from the definition of
random robustness.

3. Resource-Rank Measures

We introduce one final family of witness-based mea-
sures that extends the general construction described
above. Suppose that F (H) possesses a collection of
rank-one free states {| fi〉〈 fi|}i such that the vectors
{| fi〉}i form a basis for H. Then one can define the re-
source rank of an arbitrary pure state |φ〉 as

Rrk(|φ〉) = inf{r : |φ〉 =
r

∑
i=1

ci| fi〉, the | fi〉 are free}.

(103)
The rank is then extended to mixed states using the pre-
scription of Eq. (91),

Rrk(ρ) = inf
{|φi〉,pi}

∑
i

piRrk(|φi〉), (104)

where the infimum is taken over all pure-state decom-
positions of ρ. The most well-known example of Rrk

is in entanglement theory where it is referred to as the
Schmidt rank or Schmidt number of a bipartite state
(Terhal and Horodecki, 2000). In multipartite entangle-
ment theory, the Schmidt rank generalizes to the so-
called tensor rank (Chitambar et al., 2008), and it can
be used certify the presence of genuine multipartite en-
tanglement (Eisert and Briegel, 2001). Outside of en-
tanglement, the coherence rank has been used to quan-
tify and experimentally measure multilevel coherence
(Ringbauer et al., 2018). Additionally, in the resource
theory of “magic states,” the stabilizer rank of magic
states has been related to their classical simulation costs
(Bravyi et al., 2016).

If we let Sk(H) denote the set of states on space H
with resource rank no greater than k, then Sk(H) forms a
convex set. Thus, there exist observables W which, anal-
ogous to Eq. (94), witness a resource rank greater than
k (Regula, 2018; Sanpera et al., 2001; Shahandeh et al.,
2014). That is, Tr[Wσ] < 0 for some σ 6∈ Sk(H) yet
Tr[Wρ] > 0 for all ρ ∈ Sk(H). Note that these witnesses
depend just on the structure of the free states in the re-
source theory. To promote Rrk(ρ) to a genuine resource
measure, it must be shown to be a monotone under the
free operations. In the resource theories of entanglement
and magic states, the resource rank is a monotone under
LOCC and stabilizer operations, respectively. For coher-
ence, the coherence rank has been shown to be a mono-
tone under IO (Baumgratz et al., 2014) but not DIO (Yue
and Chitambar, 2018). Operationally, the resource ranks
have been shown to quantify one-shot resource costs in
entanglement (Buscemi and Datta, 2011) and coherence
theories (Zhao et al., 2018a).

VII. GENERAL TECHNIQUES, MATHEMATICAL TOOLS,
AND RESULTS

A. Majorization theory

We saw earlier that the set of free operations induces

a preorder. Specifically, we write ρ
O−→ σ if there exists

a free operation Φ ∈ O such that σ = Φ(ρ). In gen-

eral, determining if ρ
O−→ σ can be a difficult task. More-

over, even if the solution is computationally feasible, it is

still possible that the preorder O−→ has no simple elegant
characterization. Remarkably, for pure bipartite entan-

glement the pre-order O−→ has a simple characterization
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known as majorization.

Majorization theory is a topic in matrix analysis with
several textbooks written on the subject; see e.g. (Mar-
shall et al., 2011) and (Bhatia, 1996). It has many ap-
plications in different areas of science, from mathemat-
ics to economy and statistics, and more recently quan-
tum physics. Nielsen’s discovery (Nielsen, 1999) of
the role that majorization plays in entanglement the-
ory has been extended to other resource theories using
generalizations of majorization. These include thermo-
majorization (Horodecki and Oppenheim, 2013a), con-
ditional majorization (Gour et al., 2015a), relative ma-
jorization and sub-relative majorization (Renes, 2016),
matrix majorization (Dahl, 1999), and quantum ma-
jorization (Gour et al., 2018b). Before introducing the
mathematical definitions, we start with a simple exam-
ple to gain some intuition behind the definition of ma-
jorization.

1. Majorization in Gambling

Consider the following three gambling games. In
each game a player is given the choice between one
of two biased dice. The first has probability vector
p = (1/16, 1/2, 1/8, 1/16, 1/4, 0)T for the distribu-
tion of symbols (outcomes) x ∈ {1, 2, 3, 4, 5, 6}, while
the second is described by probability vector q =

(1/12, 1/3, 1/3, 1/4, 0, 0)T . In the first game, the player
rolls her die, and she wins if she correctly guesses its
outcome. In the second game she can guess two out-
comes, and in the third she can guess three outcomes.
Which die should the player choose in each of these
games to maximize her winning probability?

Clearly, in the first game the answer is the first die
since if she bets on outcome 2 she will have a 1/2 chance
to win the game, whereas with the second die the high-
est probability of correctly guessing is 1/3. In the sec-
ond game, the player should also choose the first die
since if she gambles on the outcomes 2 and 5 she will
have a probability 1/2 + 1/4 = 3/4 to win, whereas
with the second die the maximum probability that she
can win is 1/3 + 1/3 = 2/3 < 3/4. However, for the
third game, the second die has a higher probability to
win since 1/3 + 1/3 + 1/4 = 11/12, which is greater
than 1/2 + 1/4 + 1/8 = 7/8. Therefore, the best die to
choose in this scenario depends on the game.

In general, if the player can guess k symbols, she
should choose a die with probability vector p =

(p1, ..., p6)
T over a die with probability vector q =

(q1, ..., q6)
T if and only if the following condition holds:

k

∑
x=1

p↓x >
k

∑
x=1

q↓x , (105)

where the symbol ↓ stands for the rearrangement of the
elements of p in a non-increasing order; i.e., p↓1 > p↓2 >

... > p↓6 . If the above relation holds for all k = 1, ..., 5
then the player should choose the p-die over the q-die
to maximize her chances of winning every such game.
When Eq. (105) is satisfied for all k, we say that the prob-
ability vector p majorizes the probability vector q, and
we write q ≺ p or p � q. This definition extends to
arbitrary probability distributions p, q ∈ Rn

>0; that is,
p � q if and only if Eq. (105) holds for all k = 1, ..., n
with equality for k = n.

Majorization is a preorder. Moreover, if both p ≺ q
and q ≺ p then p and q are related by a permutation
matrix. Therefore, up to permutations, the majorization
relation ≺ can be viewed as a partial order. It is sim-
ple to check that any d-dimensional probability vector p
satisfies

(1/d, ..., 1/d)T ≺ p ≺ (1, 0, ..., 0)T

This relationship lends itself to the interpretation that
majorization measures how spread-out a probability
distribution is over its possible events. This idea will
be further clarified in what follows.

Consider again the p-die and suppose that the player
can permute (relabel) its symbols before guessing an
outcome. Such a relabeling corresponds to a permuta-
tion of the probability vector p. Denoting this permuta-
tion by π, the relabeled die has probability distribution
πp. Clearly, such relabeling will not change her proba-
bility of winning any of the games described above. Ad-
ditionally, suppose she flips an unbiased coin, and if it
lands “heads” she does nothing, while she relabels the
die according to the permutation π if it lands “tails”. If
she forgets the outcome of the coin flipping, the proba-
bility of the die from her perspective becomes:

q =
1
2

p +
1
2

πp .

Since “forgetting” information clearly cannot increase
the winning probability, we conclude that any die with
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corresponding probability q has a smaller winning
probability than a die with corresponding probability p.
This process of relabeling and forgetting is called random
relabeling; see e.g. (Friedland et al., 2013). The relation
between p and q can be expressed as q = Dp, where
D = 1

2 I + 1
2 π is a convex combination of the identity

matrix and the permutation matrix π. More generally,
we conclude that if q = Dp, where D is any convex com-
bination of permutation matrices, then the q-die has a
smaller winning probability than then the p-die.

Birkhoff’s theorem from matrix analysis states that
a matrix D can be expressed as a convex combination
of permutation matrices if and only if it is a doubly
stochastic matrix (i.e., a matrix whose entries are non-
negative and each row and column sums to one). More-
over, a fundamental theorem of majorization states that
q ≺ p if and only if q = Dp for some doubly stochastic
matrix D (Bhatia, 1996).

2. Majorization in Entanglement and Coherence theories

In entanglement theory, any pure bipartite state is
equivalent up to a local unitary operation on a state of
the form (known as the Schmidt form):

|ψ〉AB =
d

∑
x=1

√
px|x〉A|x〉B , (106)

where px > 0 and ∑d
x=1 px = 1. Since local unitary oper-

ations are reversible, all bipartite states with the Schmidt
probability vector p = (p1, ..., pd)

T possess the same en-
tanglement (Vidal, 2000). Nielsen’s majorization theo-
rem (Nielsen, 1999) states that a bipartite pure state with
a corresponding Schmidt vector p can be converted by
LOCC to another pure bipartite state q if and only if
p ≺ q.

One can use the definition of majorization in (105) to
define d-entanglement monotones for the state in (106):

Ek(|ψ〉) :=
d

∑
x=k

p↓x k ∈ {1, ..., d}.

With this definition, Nielsen’s majorization theorem can
be expressed as:

|ψ〉 LOCC−−−→ |φ〉 ⇐⇒ Ek(|ψ〉) > Ek(|φ〉) ∀k

Therefore, the functions Ek, known as Vidal’s mono-
tones (Vidal, 2000) (also called Ky-Fan norms), quantify

the entanglement of bipartite pure states. They form a
complete set in the sense that if Ek(|ψ〉) > Ek(|φ〉) for all
k, then any other entanglement monotone (or measure),
E, must satisfy E(|ψ〉) > E(|φ〉). The Vidal monotones
play an important role also in non-deterministic LOCC
transformations (Jonathan and Plenio, 1999b), and in
particular they provide the maximum probability with
which it is possible to convert |ψ〉 to |φ〉 by LOCC (Vi-
dal, 1999):

P(max)
|ψ〉 (|φ〉) = min

k

Ek(|ψ〉)
Ek(|φ〉)

where the minimum is over all k ∈ {1, ..., d}.
The majorization criterion for entanglement transfor-

mation implies the existence of entanglement catalysis.
To see this, consider for example (Jonathan and Plenio,
1999a) the two bipartite entangled states with probabil-
ity vectors

p = (2/5, 2/5, 1/10, 1/10),T q = (1/2, 1/4, 1/4, 0)T .

Note that q 6≺ p since 2/5 < 1/2 but also p 6≺ q
since 2/5 + 2/5 > 1/2 + 1/4. We say in this case
that the two probability distributions are incomparable.
Consider another entangled state with Schmidt vector
r = (3/5, 2/5)T . It is straightforward to check that

p⊗ r ≺ q⊗ r ,

even though p 6≺ q. That is, the pure bipartite state with
Schmidt vector r acts as a catalyst in a very similar way
as it happens in chemical reactions.

The example above demonstrates that catalyst-
assisted LOCC (CLOCC) transformations are more
powerful than LOCC alone. Following the notation of

Section V.C, we write |ψ〉 cLOCC−−−−→ |φ〉 if there exists a fi-
nite dimensional catalyst state |χ〉 such that

|ψ〉 ⊗ |χ〉 LOCC−−−→ |φ〉 ⊗ |χ〉 . (107)

An important question then follows: given two bipartite
states |ψ〉 and |φ〉, under what conditions does there ex-

ist a catalyst such that |ψAB〉 cLOCC−−−−→ |φAB〉? Note that if
there exists a catalyst |χA′B′〉 such that (107) holds, then
any measure of entanglement that is additive under ten-
sor product satisfies

E(ψ⊗ χ) = E(ψ) + E(χ) > E(φ⊗ χ) = E(φ) + E(χ) .
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Hence,

|ψ〉 cLOCC−−−−→ |φ〉 ⇒ E(ψ) > E(φ)

for any additive measure of entanglement E. Remark-
ably, the converse is also true! In two independent
works by Turgut (2007) and Klimesh (2007), it was
shown that

|ψAB〉 cLOCC−−−−→ |φAB〉 ⇐⇒ Eα(ψ) > Eα(φ) ∀α ∈ R

(108)
where Eα(ψ) is the α-Renyi entropy of entanglement ex-
tended for all real α and defined by:

Eα(|ψ〉AB) := sign(α)Sα(ρ) =
sign(α)
1− α

log Tr [ρα] ,

where ρ = TrB |ψ〉〈ψ|AB is the reduced density matrix of
|ψ〉.

Nearly all of these majorization results in entangle-
ment theory can be translated into analogous statements
in the QRT of quantum coherence. For a pure state
|ψ〉 = ∑i=1

√
pieiφi |i〉 in a d-dimensional system with in-

coherent basis {|i〉}d
i=1, the probability amplitudes p =

(p1, · · · , pd)
T play the role of the Schmidt coefficients.

Under the classes of strictly incoherent operations (SIO)
and the more general incoherent operations (IO), a
transformation |ψ〉 → |φ〉 is possible if and only if p ≺
q, where p and q are the probability amplitudes of |ψ〉
and |φ〉 respectively (Winter and Yang, 2016; Zhu et al.,
2017). The phenomenon of catalytic coherence convert-
ibility is also possible, with the necessary and sufficient
conditions being given by Eq. (108) and the obvious re-
placement Eα(ψ) → Cα(ψ) := sign(α) 1

1−α log ∑d
i=1 pα

i
(Bu et al., 2016).

3. Majorization and Statistical Comparisons

Consider two random variables with probability dis-
tributions p and q, respectively. For concreteness imag-
ine, as before, that these distributions represent two bi-
ased dice. However, the game is now different. The
player is given one of the two die, and her goal is to de-
termine if it is the p-die or the q-die. Clearly if she can
roll the die many times, then by the law of large num-
bers, she can infer its underling probability distribution
and successfully guess which one she was given. How-
ever, if she can only roll a finite number of times, there

is a chance that she will make an error in her identifica-
tion guess. Intuitively, the smaller this error, the more
distinguishable are p and q. In fact, one could quan-
tify the distinguishability between p and q as the opti-
mal probability that the player correctly guesses which
die she holds after a fixed number of rolls. This is the
problem of hypothesis testing, and its quantum version
is discussed in Section VII.C. Other distance measures
between p and q could also be chosen to quantify the
distinguishability of the two distributions.

In statistical comparisons, we are interested in adopt-
ing a resource-theoretic perspective and measuring dis-
tinguishability in an operational way. Specifically, we
say that a pair of distributions (p, q) is more distin-
guishable than another pair of distributions (p′, q′) if
there exists a column stochastic matrix M such that

p′ = Mp and q′ = Mq .

To make the connection with resource theories, interpret
(p, q) and (p′, q′) as two states and M as a free opera-
tion. The rationale for defining distinguishability in this
way is as follows: if Alice is tampering with her die and
changing its probability distribution (e.g., replacing the
symbols of her dice at random) then this alone cannot
improve her ability to distinguish between the original
two distributions. More generally, the matrix M repre-
sents a classical channel converting, respectively, the in-
put distributions p and q to the output distributions p′

and q′. In this case we write

(p′, q′) ≺r (p, q) , (109)

and we say the (p, q) relatively majorizes (p′, q′). Note
that relative majorization is a generalization of majoriza-
tion. Indeed, suppose that all vectors involved are of the
same dimension and suppose q = q′ = e := 1

d (1, ..., 1)T .
In this case we have

(p′, q′) ≺r (p, q) ⇐⇒ p′ ≺ p ,

since the condition q′ = Mq is equivalent to e = Me,
which implies that the column stochastic matrix M is in
fact doubly stochastic.

Originally, the preorder defined above was called d-
majorization in the case where q = q′ = d is some fixed
vector d (Arthur F. Veinott, 1971). Here we follow the
terminology of Renes (2016), who identified Eq. (109)
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as relative majorization since all relative entropy func-
tions, such as all the quantum Rényi divergences, be-
have monotonically under this preorder. In this sense,
relative majorization is the fined-grained version of the
relative entropy.

Relative majorization has a very simple characteriza-
tion in terms of testing regions (Renes, 2016), which can
represent Neyman-Pearson hypothesis testing (Cover
and Thomas, 2006). The testing region of a pair of d-
dimensional probability vectors p and q (see Fig. 11), is
a region on the plane that is defined by:

T (p, q) :=
{
(t · p, t · q) ∈ R2

∣∣∣ 0 6 t 6 e ; t ∈ Rd
}

where the inequalities 0 6 t 6 e are entrywise; i.e., the
components of t are between 0 and 1. Such a vector t can
be viewed as a “test” since t and e − t correspond to a
binary-outcome experiment.

Any testing region contains both the origin (0, 0) and
the point (1, 1). Moreover, for any test vector t, the vec-
tor e− t is also a test. Hence, if a point (x, y) is in the test-
ing region of the pair (p, q) so is the point (1− x, 1− y).
This in turn implies that a testing region is completely
specified by its upper (or lower) boundary. The up-
per boundary is known in the literature (see e.g. (Gour
et al., 2015b)) as the Lorenz curve of the pair (p, q) (see
Fig. 11).

FIG. 11 Testing Region of a pair (p, q).

It can be shown that a pair of probability distribu-
tions (p, q) relatively majorizes another pair (p′, q′) if
and only if the testing region of (p′, q′) is inside the test-
ing region of (p, q) (see Fig. 12). That is,

(p′, q′) ≺r (p, q) ⇐⇒ T (p′, q′) ⊂ T (p, q) .

This remarkable result was already proven by Blackwell
in 1953 (Blackwell, 1953). However, Blackwell’s proof
was not direct, and a more direct proof was given later
by Ruch et al. (1980). A different proof can also be found
in (Dahl, 1999), where the testing regions are viewed as
zonotopes. Since testing regions are specified by their
Lorenz curves, the result above can be expressed as fol-
lows: (p′, q′) ≺r (p, q) if and only if the Lorenz curve of
(p′, q′) is never above the Lorenz curve of (p, q).

FIG. 12 Inclusion of two testing regions.

4. Majorization in Quantum Thermodynamics

As discussed in Section IV.A.3, the set of free oper-
ations in the resource theory of athermality are ther-
mal operations. A strictly larger class of operations are
those that preserve the Gibbs state: E(γH) = γH . In
the quasiclassical case, where states are diagonal in the
energy eigenbasis, the conversion of a state ρ to σ is pos-
sible by thermal operations if and only if it is possible
by Gibbs-preserving operations (Horodecki and Oppen-
heim, 2013a; Janzing et al., 2000; Korzekwa, 2016). To
phrase this as a majorization condition, let p, q, and g
be the vectors consisting of the diagonal components of
ρ, σ, and γH , respectively. Then in the quasiclassical set-
ting, ρ can be converted to σ by thermal operations if
and only if there exists a column stochastic matrix M
such that:

q = Mp and g = Mg.

The above equation is precisely the condition

(q, g) ≺r (p, g).

When the condition above holds we say that p thermo-
majorizes q. The characterization of relative majoriza-
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tion in terms of testing regions immediately applies to
thermomajorization. In particular, p thermomajorizes
q if and only if the Lorenz curve of p (with respect to
the Gibbs state g) is never below the Lorenz curve of q
(Horodecki and Oppenheim, 2013a).

Thermomajorization (which is equivalent to d-
majorization of (Arthur F. Veinott, 1971)) has several
alternative characterizations. One of them can be ex-
pressed as (Alberti and Uhlmann, 1980):

‖p− tg‖1 > ‖q− tg‖1 ∀ t > 0 ,

where ‖x‖1 := ∑j |xj| is the `1-norm. Alberti and
Uhlmann (1980) demonstrated that this characterization
has a quantum analog in the case of qubits. Specifi-
cally, given two pairs of qubit density matrices (ρ1, ρ2)

and (σ1, σ2), it was shown that there exists a quantum
channel such that σj = E(ρj) for j = 1, 2 if and only if

‖ρ1 − tρ2‖1 > ‖σ1 − tσ2‖1 ∀ t > 0 ,

where ‖ · ‖1 is the trace norm. Taking ρ2 = σ2 = γH

we obtain necessary and sufficient conditions for the
existence of a Gibbs-preserving channel that converts
the qubit ρ1 to σ1 (Buscemi and Gour, 2017). How-
ever, this result only holds for two-dimensional sys-
tems and already in three dimensions there are counter-
examples (Chefles et al., 2004) (i.e., states that satisfy the
above inequality even though they cannot be converted
by Gibbs-preserving operations).

In the fully quantum case with states not necessar-
ily diagonal in the energy eigenbasis, deciding whether
ρ can be transformed into σ is a more complex issue.
While the convertibility equivalence between thermal
operations and Gibbs-preserving maps no longer holds,
one can additionally require the latter to have time-
translation covariance in order to obtain a better ap-
proximation of thermal operations (Gour et al., 2018b;
Lostaglio et al., 2015b) (see also Section IV.A.3). It is
currently unknown whether the convertibility power
of Gibbs-preserving, time-translation covariant maps is
strictly greater than the convertibility power of ther-
mal operations. This problem is important to the field
of quantum thermodynamics since the former is much
simpler to characterize mathematically than thermal op-
erations. Particularly, it was demonstrated in Gour et al.
(2018b) that the problem of converting one general state
to another by a Gibbs-preserving and time-translation

covariant operation can be solved efficiently and algo-
rithmically using semi-definite programming (SDP). It
was shown by employing a generalization of relative
majorization which is called quantum majorization.

Quantum majorization is a preorder among bipartite
states in S(HA ⊗ HB) having the same marginal state
on system A. We say the ρAB quantum majorizes σAB

with respect to a group G, and denote it by

σAB ≺G
q ρAB ,

if and only if there exists a G-covariant channel E such
that

σAB = idA ⊗ E(ρAB) .

To see how quantum majorization is related to thermo-
dynamics, take both ρAB and σAB to be the following
states:

ρAB =
1
2
|0〉〈0| ⊗ ρ1 +

1
2
|1〉〈1| ⊗ γH ,

σAB =
1
2
|0〉〈0| ⊗ ρ2 +

1
2
|1〉〈1| ⊗ γH .

With this choice we see that σAB ≺G
q ρAB if and only if

ρ1 can be converted to ρ2 by Gibbs-preserving and time-
translation symmetric operations. Hence, since quan-
tum majorization can be determined by an SDP so can
the conversion of ρ1 to ρ2. Other variants of majorization
and their applications in thermodynamics can be found
in Egloff et al. (2015) and Faist et al. (2015a).

B. Convex analysis, Semi-definite programming, and
duality theory

Convex analysis plays an important role in many ar-
eas of science (see e.g. (Barvinok, 2002; Boyd and Van-
denberghe, 2004)), so it is not surprising that many of
its tools are intensively employed in quantum informa-
tion. To see its application specifically to resource theo-
ries, we will consider here a convex resource theory R
with a convex set of free states F , and a convex set of
free operations O.

Recall we observed in Section VI.E that if the set of
free states is both convex and closed, then ρ ∈ F (H) if
and only if

min
W∈F ∗(H)

Tr[Wρ] > 0 . (110)
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This problem is known as the weak membership prob-
lem (Gurvits, 2003) for the convex set F (H).

In some QRTs the optimization problem above is rel-
atively easy, like the resource theory of coherence, and
it can be solved using standard techniques in semi-
definite programming. For other QRTs, like entan-
glement theory, the problem above is computationally
hard (Gharibian, 2010; Gurvits, 2003) (particularly, the
computational time is believed to grow exponentially
with the dimension of H). In such cases, the condition
that W ∈ F ∗ does not have a simple form.

One approach (see e.g. (Pérez-Garcı̀a, 2004) in entan-
glement theory) is to allow for an ε error, and then in-
tersect F ∗(H) with an ε-net, which is a finite set such
that every state is at most a distance ε from some state
in the set, as measured by the trace distance. Using an ε-
net, one can replace the minimization of W in Eq. (110)
with one having a finite number of constraints on W,
namely Tr[Wσj] > 0, where σj is the jth element in the
ε-net. This approach can be very useful in small di-
mensions (Pérez-Garcı̀a, 2004) as it provides a way to
determine if a state is free or not by using standard
techniques from semi-definite programming. Remark-
ably, it was shown by (Brandão et al., 2011), that if one
replaces the trace distance with an operationally moti-
vated distance, based on the so-called one-way LOCC
norm (Matthews et al., 2009), it is possible to construct
a quasi-polynomial-time algorithm for solving the weak
membership problem for the set of separable bipartite
quantum states.

Convex analysis is also very useful for the study of
single-shot state transformations. For a given QRT, de-
note the set of all free Choi matrices by

C(A→ B) :=
{

JAB
Φ

∣∣∣ Φ ∈ O(A→ B)
}

where JAB
Φ is the Choi matrix of the channel Φ. Since

we assume here that O is convex we get that also the
set C is convex. Now consider the problem of deciding
whether one quantum state ρ ∈ S(A) can be converted
into another σ ∈ S(B) by free operations. That is, we
want to know if there exists Φ ∈ O such that σ = Φ(ρ).
In the Choi picture, the question becomes if there exists
a state JAB ∈ C such that

σ = TrA

[
JAB(ρT ⊗ IB)

]
.

By multiplying both sides of the equation above by
some matrix X ∈ B(HB) and taking the trace, one can

express the equation above in the form:

Tr
[

JAB
(

ρT ⊗ X− Tr[σX]

dA
IAB

)]
= 0 ,

where we used the property that JA = IA. The equation
above has to hold for all X, but since it is linear in X,

we just need to check that it holds for all X ∈ {Xj}
d2

B
j=1,

where Xj are some basis elements of B(B). If we assume
again that C is convex and closed (so that C∗∗ = C∗) we
conclude that ρ can be converted to σ by free operations
if and only if there exists a matrix JAB with marginal
JA = IA that satisfy the following two conditions:

Tr
[

JAB
(

ρT ⊗ Xj −
Tr[σXj]

dA
IAB

)]
= 0 ∀j = 1, ..., d2

B

Tr[JABW] > 0 ∀W ∈ C∗ .

The problem above, similar to the weak membership
problem (110), is a feasibility problem in (conic) linear
programming. In some QRTs (e.g. affine QRTs (Gour,
2017), QRTs of asymmetry and thermodynamics (Gour
et al., 2018b)), the condition that W ∈ C∗ can be ex-
pressed as an SDP problem, and in this case determining

whether ρ
O−→ σ can be solved efficiently and algorithmi-

cally by SDP. In other QRTs, the problem can be much
harder.

C. Smooth Entropies and the Generalized Stein’s Lemma

In the imperfect one-shot scenario, the goal is to trans-
form an initial state ρ into some target state σ within
an ε-error. A fundamental technique in the study of
this problem involves the “smoothing” of some func-
tion over a small subset of density matrices. The gen-
eral use of ε-smoothing in quantum information theory
was pioneered by Renner (2005), originally for applica-
tion in quantum key distribution (QKD) (see Cachin and
Maurer (1997) for classical origins). Since then it has
been used prominently in quantum hypothesis testing
and other studies of one-shot quantum Shannon theory
(Datta and Hsieh, 2013; Datta et al., 2013a,b; Konig et al.,
2009; Matthews and Wehner, 2014; Radhakrishnan et al.,
2016; Renes and Renner, 2011; Renner and König, 2005;
Tomamichel, 2012; Tomamichel et al., 2010; Tomamichel
and Hayashi, 2013; Wang and Renner, 2012; Wang et al.,
2017). Here we review two smooth entropic quantities
and describe their application in terms of single-shot re-
source formation and distillation. This will set the stage
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for the asymptotic reversibility result based on quantum
hypothesis testing and the Generalized Stein Lemma.

We begin with the quantityRmax, which is defined in
Eq. (81) as

Rmax(ρ) = inf
σ∈F (H)

{λ | ρ 6 2λσ}. (111)

As noted in Section VI.E.2, this is equivalent to the log-
robustness of resource. For ε ∈ (0, 1], a smoothed ver-
sion ofRmax is given by

Rε
max(ρ) = inf

ρ̂AB∈Bε(ρAB)
Rmax(ρ̂) (112)

where Bε(ρ) = {σ : F(ρ, σ) > 1 − ε}. Essentially,
Rε

max(ρ) finds the smallest value of Rmax(ρ) within
an ε-ball centered at ρ. In the QRT of entanglement,
Rε

max quantifies the one-shot catalytic entanglement cost
under δ-resource generating operations (Brandão and
Datta, 2011). In the QRT of coherence, the relaxations
of catalytic convertibility and δ-resource generating op-
erations can be dropped, as Rε

max provides the one-
shot (non-catalytic) coherence cost of a given state using
(strictly) resource non-generating operations (Zhu et al.,
2017).

The second smooth entropic quantity we discuss is
based on the problem of quantum hypothesis testing. In
quantum hypothesis testing, the goal is to distinguish
one state ρ, called the null hypothesis, from another σ,
called the alternative hypothesis (Hiai and Petz, 1991;
Ogawa and Nagaoka, 2000). Typically one attempts to
minimize the identification error when the system is in
state σ, given some threshold in the identification error
when the system is in state ρ. In more detail, one consid-
ers a two-outcome POVM {M, I− M} with associated
error probabilities

α(M) = Tr[(I−M)ρ]

β(M) = Tr[Mσ].

Then for any ε > 0, the problem asks to compute the
smallest possible value of β(M) under the constraint
that α(M) 6 ε. This can be phrased as an entropic quan-
tity known as the hypothesis testing relative entropy, which
is defined as

Dε
H(ρ‖σ) = sup

06M6I
α(M)6ε

− log β(M). (113)

This quantity, which involves an “operator smooth-
ing” (Buscemi and Datta, 2010), provides the appro-
priate one-shot quantifier for many other information-
theoretic tasks (Dupuis et al., 2013; Matthews and
Wehner, 2014; Tomamichel and Hayashi, 2013; Wang
and Renner, 2012). Note that Dε

H(ρ‖σ) is expressed as
a semi-definite optimization, and it can therefore be ef-
ficiently computed.

For a QRT with a compact convex set of free states, we
can introduce the resource measure

Rε
H(ρ) = inf

σ∈F (H)
Dε

H(ρ‖σ)

= sup
06M6I

Tr[(I−M)ρ]6ε

inf
σ∈F (H)

− log Tr[Mσ], (114)

where the minimax theorem has been applied to switch
the order of extrema. For entanglement theory, this
quantity corresponds to the one-shot distillable entan-
glement under maximal operations, i.e., the largest R

such that ρAB Omax−−−→ε φ+
2R (Brandão and Datta, 2011).

For coherence, an analogous result holds in terms of
distillable coherence provided the allowable set of σ

is enlarged slightly (Regula et al., 2018). The quantity
Rε

H(ρ) also has application in quantum thermodynam-
ics. Note that in thermodynamics, the Gibbs state γH is
the unique free state for a given thermodynamic system,
and so we have the reduction

Rε
H(ρ) = sup

06M6I
Tr[(I−M)ρ]6ε

− log Tr[MγH ]. (115)

Yunger Halpern and Renes (2016) have shown this
to, roughly speaking, quantify both the one-shot ex-
tractable work of a thermodynamical state, as well as
the one-shot work cost of forming it.

A more traditional version of hypothesis testing is in
the asymptotic setting where the two hypotheses are
presented in many-copy form, ρ⊗n and σ⊗n. For any
ε ∈ (0, 1), the asymptotic rate of Dε

H is given precisely
by the relative entropy:

lim
n→∞

1
n

Dε
H(ρ

⊗n‖σ⊗n) = S(ρ‖σ). (116)

This is known as the quantum Stein’s Lemma, and its
proof was given by Hiai and Petz (1991) and Ogawa and
Nagaoka (2000). This result is quite appealing since any
task quantified by Dε

H in the single-shot level can then
be quantified by the relative entropy in the many-copy
setting.
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To apply the results and techniques of quantum
hypothesis testing to quantum resource theories, one
needs to generalize the problem. One such scheme in-
volves a scenario in which either the null hypothesis ρ

or a set S of alternative hypotheses is possible. The goal
then is to distinguish ρ from the states belonging to S.
In the context of quantum resource theories, it is typical
to let S = F (H) be the set of free states. Brandão and
Plenio (2010) have proven a generalization of the quan-
tum Stein’s Lemma that holds for most well-structured
sets of free states. Specifically, suppose that F (H) has
the properties of being

1. Closed and convex,
2. Closed under tensor products,
3. Closed under the partial trace,
4. Closed under permutation of spatially separated

subsystems.
Note that the free states in any QRT having tensor prod-
uct structure will satisfy these conditions. The general-
ized quantum Stein’s Lemma ensures that

lim
n→∞

1
n
Rε

min(ρ
⊗n) = R∞

rel(ρ) (117)

for any ε ∈ (0, 1) (Brandão and Datta, 2011), and fur-
thermore, Brandão and Plenio (2010) were able to also
show that

lim
ε→0

lim
n→∞

1
n
Rε

max(ρ
⊗n) = R∞

rel(ρ). (118)

In subsequent work, Brandão and Gour (2015) explicitly
connected Eqs. (117) and (118) to the problem of asymp-
totic resource convertibility under asymptotically resource
non-generating (RNG) operations. This involves transfor-

mations of the form ρ⊗n On−→ε σ⊗bnR′c, where On is the
class of εn-resource generating operations (see Section
III.C.3) such that limn→∞ εn = 0. If the free states in a
QRT satisfy the four properties listed above, then the re-
sult of (Brandão and Gour, 2015) says that any two states
ρ and σ are reversible under asymptotically-RNG trans-
formations, with a rate given by the ratio of the regular-
ized relative entropies of resource. That is,

R(ρ→ σ) =
R∞

rel(ρ)

R∞
rel(σ)

, (119)

provided that R∞
rel(ρ),R

∞
rel(σ) ∈ (0, ∞). Note, the re-

striction thatR∞
rel be nonzero and finite is more than just

a mathematical detail. Physically relevant QRTs, such
as the QRT of asymmetry, have free states which satisfy

the four necessary properties, and yet R∞
rel(ρ) = 0 for

all resource states (Gour et al., 2009). In this case, the
results of (Brandão and Gour, 2015) cannot be directly
applied. Nevertheless, when R∞

rel is nonzero and finite,
Eq. (119) along with the arguments of Gour et al. (2009)
and Horodecki et al. (2002) imply that

R∞
rel(ρ)

R∞
rel(σ)

=
f ∞(ρ)

f ∞(σ)
, (120)

where f ∞ is the regularized versions of any asymptot-
ically continuous function for which f ∞(ρ), f ∞(σ) ∈
(0, ∞). This says that the regularized version of all
asymptotically continuous resource measures are equiv-
alent up to an overall proportionality factor. Thus, the
regularized relative entropy of resource can be inter-
preted as the unique measure of resource for the task
of asymptotic convertibility.

VIII. OUTLOOK

A common theme in physics is the unification of theo-
ries and models that at first glance may seem completely
unrelated. Most notable in this regard is the success-
ful unification of the three non-gravitational forces in
nature. Such an amalgamation not only leads to new
discoveries, but it also has the potential to profoundly
change the way we perceive the world around us. With
the advent of quantum information science, many seem-
ingly unrelated properties of physical systems, such as
entanglement, asymmetry, and athermality, have now
become recognized as resources. This recognition is pro-
found as it allows them to be unified under the same
roof of quantum resource theories. Entanglement, ather-
mality, and asymmetry, are no longer regarded as just in-
teresting physical properties of a quantum system, but
they now emerge as resources that can be utilized and
manipulated to execute a variety of remarkable tasks,
such as quantum teleportation.

This review article began with a precise definition of
quantum resource theories and then considered general
structural features of different QRTs. As discussed in
Section III.D.5, all QRTs in quantum information the-
ory can be viewed as a resource theory of processes. For
example, in Section IV.B.3 we discussed how the phe-
nomenon of quantum steering can be cast as a resource
theory of incompatible (semicausal) multi-sources, just
one specific type of quantum process. More work is



56

needed in the future to better understand unifications
like this for other QRTs.

Section IV has provided a summary of specific QRTs
that reflect recent and ongoing developments in the
field. We hope this choice of examples sparks the
reader’s interest on new topics or motivates the con-
struction of novel QRTs. Unfortunately, since the sub-
ject of QRTs spans a large range of topics, we could
not cover all resource theories previously studied in the
literature. Notable omissions include the resource the-
ory of knowledge (Kraemer and del Rio, 2016; del Rio
et al., 2015), imaginarity (Hickey and Gour, 2018), su-
perposition (Theurer et al., 2017), and others. Moreover,
this review did not discuss the characterization of re-
source theories as symmetric monoidal categories (Co-
ecke et al., 2016; Fritz, 2015). This category theory ap-
proach to QRTs can be useful when considering other
models beyond quantum physics, such as the frame-
work of generalized probabilistic theories, or when in-
corporating resource theories in other fields of science.
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