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Small-angle neutron scattering (SANS) is one of the most important techniques for mi-
crostructure determination, being utilized in a wide range of scientific disciplines, such
as materials science, physics, chemistry, and biology. The reason for its great significance
is that conventional SANS is probably the only method capable of probing structural
inhomogeneities in the bulk of materials on a mesoscopic real-space length scale, from
roughly 1 − 300 nm. Moreover, the exploitation of the spin degree of freedom of the
neutron provides SANS with a unique sensitivity to study magnetism and magnetic ma-

terials at the nanoscale. As such, magnetic SANS ideally complements more real-space
and surface-sensitive magnetic imaging techniques, e.g., Lorentz transmission electron
microscopy, electron holography, magnetic force microscopy, Kerr microscopy, or spin-
polarized scanning tunneling microscopy. In this review article we summarize the recent
applications of the SANS method to study magnetism and magnetic materials. This
includes a wide range of materials classes, from nanomagnetic systems such as soft mag-
netic Fe-based nanocomposites, hard magnetic Nd−Fe−B-based permanent magnets,
magnetic steels, ferrofluids, nanoparticles, and magnetic oxides, to more fundamental
open issues in contemporary condensed matter physics such as skyrmion crystals, noncol-
linar magnetic structures in noncentrosymmetric compounds, magnetic/electronic phase
separation, and vortex lattices in type-II superconductors. Special attention is paid not
only to the vast variety of magnetic materials and problems where SANS has provided
direct insight, but also to the enormous progress made regarding the micromagnetic
simulation of magnetic neutron scattering.
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I. INTRODUCTION

Small-angle neutron scattering (SANS) is a particu-
larly powerful and unique technique, which allows to in-
vestigate microstructural (density and composition) as
well as magnetic inhomogeneities in the volume of mate-
rials and on a mesoscopic length scale between a few and
a few hundred nanometers. This is a size regime in which
many macroscopic material properties are realized. From
the historical point of view, experimental and theoretical
progress in the domain of small-angle scattering is closely
connected to the development of laboratory small-angle
x-ray scattering (SAXS) methods (Guinier and Fournet,
1955). Since SANS and its x-ray counterpart are well de-
veloped and widely acknowledged in diverse fields of sci-
ence, such as materials science, physics, chemistry, and
biology, there exists an enormous body of research litera-
ture. The standard references for nuclear (nonmagnetic)
SANS and SAXS are the well-known textbooks by Feigin
and Svergun, 1987; Gille, 2014; Glatter and Kratky, 1982;
Guinier and Fournet, 1955; and Svergun et al., 2013. For
a selection of reviews on various topics of small-angle
scattering, for instance, on polymers, disordered and
porous materials, colloidal systems, ferrofluids, magnetic
materials, superconductors, ceramics, biological struc-
tures, and precipitates in metallic alloys and compos-
ites, we refer to Allen, 2005; Avdeev and Aksenov, 2010;
Avdeev et al., 2015; Bates, 1988; Chen and Lin, 1987;
Chen et al., 1988; Eskildsen et al., 2011; Fitzsimmons
et al., 2004; Fratzl, 2003; Fritz and Glatter, 2006; Gerold
and Kostorz, 1978; Hammouda, 2010; Hayter, 1988; Hig-
gins and Stein, 1978; Hollamby, 2013; Jacrot, 1976; Kos-
torz, 1991, 2014; Laver, 2012; Martin and Hurd, 1987;
Melnichenko and Wignall, 2007; Michels, 2014; Michels
et al., 2014; Michels and Weissmüller, 2008; Page, 1988;
Pauw, 2013; Pedersen, 1997; Radlinski et al., 2004; Schel-
ten and Hendricks, 1978; Schmatz et al., 1974; Schmidt,
1991; Stuhrmann, 2004; Svergun and Koch, 2003; Thiya-
garajan, 2003; Wagner and Kohlbrecher, 2005; Wieden-
mann, 2002, 2010; and Wignall and Melnichenko, 2005.

Only with the advent of high-brilliance neutron sources
and the concomitant development of the first dedicated
SANS instruments (Ibel, 1976; Schmatz et al., 1974),
did it become possible to explore magnetism and su-
perconductivity on a mesoscopic length scale by means
of SANS. With magnetic SANS playing a pivotal role,
the rapidly evolving progress in the field of magnetism
and superconductivity (Bader, 2006; Bauer and Pflei-
derer, 2010; Brandt, 1995; Furrer and Waldmann, 2013;
Hellman et al., 2017; Nagaosa and Tokura, 2013; Nisoli
et al., 2013; Sellmyer and Skomski, 2006; Skomski, 2003)
is naturally accompanied by the quest to resolve ever
finer details of the magnetic microstructure. As such,
SANS ideally complements well-known and established
methods for characterizing and analyzing the static and
dynamic spin structure of nanomaterials, including neu-
tron diffraction and spectroscopy (Chatterji, 2006; Fur-
rer et al., 2009), Lorentz and Kerr microscopy (Hubert
and Schäfer, 1998), magnetic force microscopy (Koblis-
chka and Hartmann, 2003; Meyer et al., 2004), spin-
polarized scanning tunneling microscopy (Wiesendanger,
2016, 2009), or x-ray magnetic circular dichroism in com-
bination with photoelectron emission microscopy (Bauer,
2014; Cheng and Keavney, 2012; Locatelli and Bauer,
2008).

In this review article we provide a summary of the
recent applications of the SANS method to study mag-

netism and magnetic materials. This covers many of the
most important classes of magnetic materials and ad-
dresses a wide range of topics from fundamental questions
in condensed matter physics to applied materials science.
The review is organized as follows: Sec. II revisits the
basics of “classical” diffuse magnetic SANS, including a
summary of recent theoretical and experimental progress
regarding the spin structures of polycrystalline bulk fer-
romagnets and its relation to the conventional particle-
matrix approach. We provide a compilation of the var-
ious unpolarized, half-polarized, and polarized SANS
cross sections. Sections III and IV highlight the recent
discoveries concerning the investigation of Nd−Fe−B-
based permanent magnets and magnetic steels, whereas
Sec. V covers magnetic nanoparticles and ferrofluids. In
Sec. VI, we review the recent progress made in using
full-scale micromagnetic simulations for the understand-
ing of the fundamentals of magnetic SANS on multi-
phase systems. Section VII is concerned with the appli-
cation of the magnetic SANS method to study complex
magnetic systems which exhibit nanoscale magnetic in-
homogeneity. These include magnetically/electronically
phase-separated complex oxides and metal alloys, which
have recently been extensively studied with SANS. Sec-
tions VIII and IX summarize the state-of-the-art of SANS
research on skyrmion lattices, long-range noncollinear
magnetic structures, and vortex lattices in type-II su-
perconductors. Finally, Sec. X provides a brief summary
and gives an outlook on future developments and chal-
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lenges. In order to keep the sections self contained, each
chapter provides an introductionary paragraph for the
reader.

II. MAGNETIC SANS: BASICS

We begin this section with a description of a typical
SANS setup in Sec. II.A. In Sec. II.B the basic expres-
sions for the various unpolarized and spin-polarized elas-
tic SANS cross sections dΣ/dΩ will be displayed. We fo-
cus on the two most relevant scattering geometries which
have the applied magnetic field H0 either perpendicu-
lar or parallel to the wave vector k0 of the incoming
neutron beam. In the first Born approximation (Mes-
siah, 1990), the magnetic contribution to dΣ/dΩ is fully
determined by the three Cartesian Fourier components
M̃x,y,z(q) of the magnetization vector field Mx,y,z(r) of
the sample. Using the continuum theory of micromag-
netics (Sec. II.C), the functions M̃x,y,z(q) can be com-
puted for bulk ferromagnets in the small-misalignment
approximation, in this way providing closed-form expres-
sions for any desired dΣ/dΩ as a function of momentum-
transfer vector q, applied magnetic field, magnetic inter-
action parameters (exchange, anisotropy, magnetostat-
ics), and microstructural quantities such as particle size,
shape, and texture; selected experimental data will be
discussed in order to underline the theoretical approach.
Finally, Sec. II.D establishes the connection to the con-
ventional particle-matrix description of magnetic SANS,
which assumes homogeneously magnetized domains. It
is emphasized that the SANS cross sections which are
introduced in this section are the ones for diffuse mag-
netic SANS, while the well-known equations for elastic
magnetic Bragg diffraction, relevant for the discussion of
spiral magnetic structures, skyrmions, or vortex lattices
in superconductors, are introduced in Sec. VIII.

A. Description of the SANS Setup

Figure 1 depicts the typical SANS setup along with
schematics of the two most commonly used scattering ge-
ometries. By means of a mechanical velocity selector or
chopper-based time-of-flight methods the incoming wave-
length band (typically λ ∼ 3 − 30 Å) is selected from
a cold neutron beam [energy range: ∼ 0.1 − 10meV ∼
1 − 120K (Schober, 2014)], provided by a spallation or
a reactor source. The mean wavelength and wavelength
resolution can be tuned [∆λ/λ ∼ 1−30% (FWHM)], de-
pending on the rotational speed and tilting angle of the
selector or the duty cycle and frame overlap of the chop-
per system. In the evacuated pre-sample flight path a set
of apertures collimates the beam. A particular strength
of the SANS technique is that experiments can be con-
ducted under rather flexible sample environments (e.g.,

FIG. 1 Schematic of the SANS setup and of the two com-
monly employed scattering geometries in magnetic SANS
experiments. (a) k0 ⊥ H0; (b) k0 ‖ H0. The scatter-
ing vector q is defined as q = k1 − k0, where k0 and k1

are the wave vectors of the incident and scattered neutrons;
q = |q| = (4π/λ) sin(ψ/2) depends on the mean wavelength
λ of the neutrons and on the scattering angle ψ. The sym-
bols “P”, “F”, and “A” denote, respectively, the polarizer,
spin flipper, and analyzer, which are optional neutron opti-
cal devices. SD = sample-to-detector distance; r = radial
distance on the detector (measured from the beam center).
SANS usually assumes elastic scattering (k0 = k1 = 2π/λ),
and the component of q along the incident neutron beam [i.e.,
qx in (a) and qz in (b)] is neglected. The azimuthal angle
θ describes the angular anisotropy of the recorded scattering
pattern on a two-dimensional position-sensitive detector. The
applied magnetic field H0 is taken always parallel to ez, in
this way defining the longitudinal magnetization.

temperature, electric and magnetic field, pressure, neu-
tron polarization, time-resolved data acquisition). The
typical size of the irradiated area of sample is of the or-
der of 1 cm2.

Two-dimensional position-sensitive detector arrays,
moving along rails in an evacuated post-sample flight
path (sample-to-detector distance: ∼ 1 − 40m), count
the scattered neutrons during acquisition times ranging
between a few minutes and a few hours. The recorded
neutron counts (in each pixel element) are corrected for
detector dead time, dark current and efficiency, sample
transmission and background scattering and are normal-
ized to incident-beam flux. A solid-angle correction is ap-
plied to the data which corrects for the planar geometry
of the detector (Glinka et al., 1998; Karge et al., 2017).
The size of an individual pixel element of the detector is
typically . 10mm×10mm, so that the related resolution
effects become negligible. The scattering cross section of
the sample is obtained by comparing the corrected signal
to a reference sample (e.g., water, polystyrene, porous
silica, vanadium single crystal) of known cross section.
The data-reduction procedure provides the macroscopic
differential scattering cross section dΣ/dΩ of the sample
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in absolute units (typically cm−1) and as a function of
the magnitude and orientation of the momentum-transfer
or scattering vector q (see Fig. 1). In order to conve-
niently present the neutron data, one often carries out
a so-called azimuthal averaging procedure, whereby the
data at a constant magnitude of q are integrated within a
certain angular range (e.g., over 0 ≤ θ ≤ 2π); this yields
dΣ/dΩ as a function of |q| = q. The uncertainty in the
cross sections determined by this procedure is estimated
to be 5− 10% (Glinka et al., 1998; Rennie et al., 2013).

When ψ denotes the scattering angle [incident beam
k0 ‖ ex, see Fig. 1(a)], and the azimuthal angle θ is used
to specify the orientation of q on the two-dimensional
detector [with q = 2k0 sin(ψ/2)], the scattering vector is
found to be

q =




qx
qy
qz



 = q





− sin(ψ/2)
cos(ψ/2) sin θ
cos(ψ/2) cos θ



 = k0





cosψ − 1
sinψ sin θ
sinψ cos θ



 .

(1)

For small-angle scattering ψ . 5− 10◦, so that the mag-
nitude of the component of q along the incident-beam
direction, q sin(ψ/2), is much smaller than the other two
components. The three-dimensional scattering vector is
therefore approximated by a two-dimensional one. This
approximation, which violates the condition for elastic
scattering (k0 = k1), is valid for not too large scattering
angles, e.g., |qx|/q = sin(ψ/2) ∼= 4.4% for ψ = 5◦ and
the related error in the intensity is less than 1% (Fritz-
Popovski, 2015).

Since q = 4π
λ sin(ψ/2) ∼= 4π

λ sin
(
1
2 arctan

[
r

SD

])
, where

r ∼ 0.04 − 0.7m is the radial distance on the detector
(measured from the beam center), and SD ∼ 1 − 40m
denotes the sample-to-detector distance, we see that dif-
ferent momentum transfers can be accessed by varying
SD or the wavelength λ ∼ 3 − 30 Å. With conventional
SANS instruments it becomes thus possible to cover a q-
range of 0.01 nm−1 . q . 5 nm−1, which translates into
structure sizes of the order of 1−300 nm. The q-resolution
of a SANS instrument is mainly related to the wavelength
spread of the incident neutrons, the finite collimation of
the beam, and the detector resolution. Taking into ac-
count the former two contributions, it is readily verified
[using q = 4π

λ sin(ψ/2)] that the root-mean-square (rms)
uncertainty in q is given by

rms(q) =

√〈
(∆q)

2
〉

=

√

q2
(
∆λ

λ

)2

+

(
k20 −

1

4
q2
)
(∆ψ)2. (2)

The angular divergence ∆ψ of the beam can be de-
termined from the measured profile of the direct beam
(rms(q = 0) = k0∆ψ); typical values of ∆ψ are of the or-
der of 10−2 to 10−3 rad. Equation (2) demonstrates that

wavelength smearing dominates at large q, while angular-
resolution effects show up at small q. For studies which
describe the optimal instrument configuration, instru-
mental resolution (smearing) effects, the impact of grav-
itation, the data-reduction procedure, the performance
of SANS instruments, or the treatment of multiple scat-
tering see Allen and Berk, 1994; Barker and Pedersen,
1995; Chen and Lin, 1987; Dewhurst, 2008; Dewhurst
et al., 2016; Glinka et al., 1998; Kohlbrecher and Wag-
ner, 2000; May, 1994; Mazumder et al., 2001; Mildner
and Cubitt, 2012; Mühlbauer et al., 2016; Pedersen et al.,
1990; Saroun, 2007; and Schelten and Schmatz, 1980.

The neutrons incident on the sample may be polarized
by means of a (supermirror transmission) polarizer and
the initial neutron polarization can be reverted by 180◦

using a (radio-frequency) spin flipper (Bazhenov et al.,
1993; Keller et al., 2000) (see Fig. 1). In order to dis-
criminate the neutron spin state after interaction with
the sample, a 3He spin filter (Batz et al., 2005) acts as
neutron spin analyzer and, correspondingly, is installed
behind the sample (sometimes inside the detector hous-
ing). Magnetic guide fields of the order of 1mT serve
to maintain the polarization on the path between polar-
izer and 3He filter. Progress in the development of 3He
spin filters (Petoukhov et al., 2006) allows one to per-
form routinely uniaxial (also called longitudinal or one-
dimensional) neutron-polarization analysis on a SANS
instrument, for instance, at SANS-1 and KWS-1 at the
Heinz Maier-Leibnitz Zentrum, at D22 and D33 at the In-
stitut Laue-Langevin, or at NG3 and NG7 at the NIST
Center for Neutron Research. We emphasize that the
above described setup of supermirror transmission po-
larizer (P), rf spin flipper (F), and 3He spin analyzer
(A), represents the most commonly installed configura-
tion for uniaxial polarization analysis at SANS instru-
ments. There exist, of course, many other neutron in-
strumentation devices for polarizing neutron beams and
for turning the neutron-spin direction (Williams, 1988).

In uniaxial polarization analysis (Moon et al., 1969), it
becomes possible to measure four intensities that connect
two neutron-spin states. The externally applied magnetic
field at the sample position defines the quantization axis
for both incident and scattered polarization, whereby the
scattered neutron may undergo a spin-reversing event
due to the magnetic interaction with the sample. Fol-
lowing Moon et al., 1969, the four spin-resolved scat-
tering cross sections are the two non-spin-flip quanti-

ties dΣ++

dΩ and dΣ−−

dΩ and the two spin-flip cross sections
dΣ+−

dΩ and dΣ−+

dΩ . When the rf flipper is off (inactive), we
measure, depending on the spin state of the 3He filter,

the non-spin-flip or the spin-flip cross section dΣ++

dΩ or
dΣ+−

dΩ . Likewise, when the flipper is on, we either mea-

sure dΣ−−

dΩ or dΣ−+

dΩ . The corresponding expressions for
the cross sections are denoted as the POLARIS equations
(see Sec. II.B.4).
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SANS experiments with a polarized incident beam only
and no detection of the polarization of the scattered neu-
trons provide access to the half-polarized cross sections

(denoted SANSPOL) dΣ+

dΩ and dΣ−

dΩ , which combine non-
spin-flip and spin-flip scattering contributions. In partic-
ular (see Sec. II.B.3),

dΣ+

dΩ
=
dΣ++

dΩ
+
dΣ+−

dΩ
,

dΣ−

dΩ
=
dΣ−−

dΩ
+
dΣ−+

dΩ
. (3)

The difference between “spin-up” and “spin-down”
SANSPOL cross sections yields information on the
polarization-dependent nuclear-magnetic and chiral scat-
tering terms (see Sec. V.A). As demonstrated, e.g., in
Keller et al., 2000 on an Fe3O4 glass ceramic, this differ-
ence allows one to highlight weak magnetic contributions
relative to strong nuclear scattering (or vice versa). Fi-
nally, the unpolarized SANS cross section is obtained as
(see Sec. II.B.2)

dΣ

dΩ
=

1

2

(
dΣ+

dΩ
+
dΣ−

dΩ

)

=
1

2

(
dΣ++

dΩ
+
dΣ−−

dΩ
+
dΣ+−

dΩ
+
dΣ−+

dΩ

)
. (4)

We note that both the unpolarized as well as the half-
polarized cross sections can be measured directly (see
below). For more information on polarized neutron scat-
tering (and on spherical neutron polarimetry), we refer to
the classic papers by Blume, 1963; Brown, 2006; Halpern
and Johnson, 1939; Izyumov and Maleev, 1962; Maleev,
1961; Maleev et al., 1963; Marshall and Lowde, 1968;
Mezei, 1986; Moon et al., 1969; Okorokov et al., 1978;
Schärpf and Capellmann, 1993; Schweizer, 2006; Shull
et al., 1951; and Tasset, 1989 and to the textbooks by
Hicks, 1995; Lovesey, 1984; Squires, 1978; and Williams,
1988.
Although most of the magnetic SANS discussion in this

review article is treated within the elastic approxima-
tion, quasielastic/inelastic scattering contributions are
relevant for certain aspects of Sec. VII and Sec. VIII. We
refer to Grigoriev et al., 2015; Maleev, 1965; and Oko-
rokov et al., 1986 for a detailed discussion of inelastic
SANS.

B. SANS cross sections

1. General considerations

We restrict the attention to the two commonly used
scattering geometries with externally applied magnetic
field H0 either perpendicular [Fig. 1(a)] or parallel
[Fig. 1(b)] to the incoming neutron beam k0. We adopt
a Cartesian laboratory coordinate system with corre-
sponding unit vectors ex, ey, and ez; the field H0 is

assumed to be always parallel to ez. For the perpen-
dicular scattering geometry (k0 ⊥ H0), the angle θ on
the two-dimensional detector is then measured between
H0 and the momentum-transfer vector q ∼= {0, qy, qz} =
q{0, sin θ, cos θ}, whereas for k0 ‖ H0, θ is the angle be-
tween ex and q ∼= {qx, qy, 0} = q{cos θ, sin θ, 0}.
The discrete atomic structure of condensed matter is

generally of no relevance for SANS, such that the mag-
netization state of the sample can be represented by a
continuous magnetization vector field which is defined at
each position r inside the material.1 Magnetic SANS is
then a consequence of nanoscale variations in both the
orientation and/or magnitude of the magnetization.

M̃(q) =
{
M̃x(q), M̃y(q), M̃z(q)

}

=
1

(2π)3/2

+∞∫

−∞

+∞∫

−∞

+∞∫

−∞

M(r) e−iqr d3r (5)

represents the three-dimensional Fourier transform of the
magnetization

M(r) = {Mx(r),My(r),Mz(r)}

=
1

(2π)3/2

+∞∫

−∞

+∞∫

−∞

+∞∫

−∞

M̃(q) eiqr d3q, (6)

where i2 = −1, and q = {qx, qy, qz} is the wave vec-

tor. With H0 ‖ ez, M̃z denotes the longitudinal mag-

netization Fourier coefficient, whereas M̃x and M̃y are
the transversal components, giving rise to so-called spin-
misalignment scattering. For many magnetization config-
urations it turns out that the functions M̃x,y,z are real-
valued, but, for instance, for structures lacking space in-
version symmetry they may pick up an imaginary part
(Michels et al., 2016); complex-conjugated quantities are
marked by a superscript asterisks (∗). The nuclear
SANS cross section, which is due to nanoscale density
and/or compositional fluctuations, is characterized by

the Fourier transform Ñ(q) of the continuous scattering-
length density N(r).

For the understanding of magnetic neutron scattering,
the Halpern-Johnson or magnetic-interaction vector

Q = q̂×
(
q̂× M̃(q)

)
= q̂

(
q̂ · M̃(q)

)
− M̃(q), (7)

where q̂ is the unit scattering vector, is of utmost impor-
tance (Halpern and Johnson, 1939); it is a manifestation
of the dipolar origin of magnetic neutron scattering and it
emphasizes the fact that only the component of M which

1 The case of a smooth modulation of localized or itinerant spins
on top of a discrete atomic lattice is discussed in Sec. VIII.
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is perpendicular to q is relevant for magnetic scattering.2

For k0 ⊥ H0 and k0 ‖ H0, we obtain, respectively,

Q⊥ =





−M̃x

−M̃y cos
2 θ + M̃z sin θ cos θ

M̃y sin θ cos θ − M̃z sin
2 θ




, (8)

Q‖ =





−M̃x sin
2 θ + M̃y sin θ cos θ

M̃x sin θ cos θ − M̃y cos
2 θ

−M̃z




. (9)

By assuming perfect neutron optics and that the inci-
dent neutron polarization is along ez, i.e., P = ez, the
elastic non-spin-flip and spin-flip cross sections can be
formally written as (Moon et al., 1969)

dΣ±±

dΩ
∼ |Ñ |2 ±

(
ÑQ∗

z + Ñ∗Qz

)
+ |Qz|2, (10)

dΣ±∓

dΩ
∼ |Qx|2 + |Qy|2 ∓ i

(
QxQ

∗
y −Q∗

xQy

)
. (11)

Several comments are required (Blume, 1963): It is seen
that the transversal components Qx and Qy give rise to
spin-flip scattering, while the longitudinal component Qz

results in non-spin-flip scattering. We also note that the
nuclear coherent scattering, the nuclear incoherent scat-
tering which is due to isotope disorder, as well as 1/3 of
the nuclear-spin incoherent scattering are all non-spin-
flip scattering; the remaining 2/3 of the nuclear-spin in-
coherent scattering reverses the neutron spin, but, since
its magnitude is usually small relative to the coherent
magnetic and nuclear SANS of nonhydrogenated samples
relevant here (Stuhrmann, 2004) and since it only gives
rise to a constant q-independent scattering contribution,
we ignore it in the spin-resolved channels. Furthermore,
if we set θ = 0◦ in Eq. (8), which corresponds to the case

that q ‖ P, we see that Q⊥ = {−M̃x,−M̃y, 0}, so that
nuclear coherent and magnetic scattering are fully sepa-
rated. In the case k0 ‖ H0 [Eq. (9)], spin-flip scattering
probes only the transversal magnetization components
M̃x,y.
In the equations for the cross sections that follow, V

denotes the scattering volume, K = 8π3V −1b2H , where
bH = 2.70× 10−15mµ−1

B = 2.91× 108A−1m−1 is a con-
stant (with µB the Bohr magneton), which relates the
atomic magnetic moment µa to the atomic magnetic scat-
tering length bm (Moon et al., 1969):

bm =
γnr0
2

µa

µB
f(q) ∼= 2.70× 10−15m

µa

µB
f(q) ∼= bHµa,

2 We note that different symbols for the Halpern-Johnson vector
such as M⊥, Q⊥, S⊥, or q, as in the original paper by Halpern
and Johnson, 1939, can be found in the literature.

where γn = 1.913 denotes the neutron magnetic mo-
ment expressed in units of the nuclear magneton, r0 =
2.818 × 10−15m is the classical radius of the electron,
and f(q) is the normalized atomic magnetic form factor;
note that f ∼= 1 along the forward direction. By inserting
Eqs. (8) and (9) into the expressions for the non-spin-flip
and spin-flip cross sections, Eqs. (10) and (11), and by
noting the relations between the various cross sections,
Eqs. (3) and (4), one can conveniently express the SANS
cross sections in terms of the Cartesian Fourier compo-
nents M̃x,y,z of the magnetization. We use the follow-
ing abbreviations for the magnetic and nuclear-magnetic
interference terms (subscripts ⊥ and ‖ refer to the re-

spective scattering geometry): CTyz = M̃yM̃
∗
z + M̃∗

y M̃z,

CTxy = M̃xM̃
∗
y + M̃∗

xM̃y, CTÑM̃z
= ÑM̃∗

z + Ñ∗M̃z, and

CT
ÑM̃y

= ÑM̃∗
y + Ñ∗M̃y.

In actual SANSPOL and POLARIS experiments the
neutron optics do not work perfectly and polarization
corrections become necessary. The incident beam polar-
ization efficiency is denoted by P = I+/(I++I−), where
I± are, respectively, the number of neutrons with spins
aligned antiparallel and parallel with respect to H0 and
ǫ± is the efficiency of the spin flipper (ǫ+ = 0 for flipper
off and ǫ− = ǫ ∼= 1 for flipper on); note that P = 1/2
for an unpolarized beam. The half-polarized SANS cross
sections can be obtained directly and corrected for non-
ideal neutron polarization provided that the parameters
P and ǫ− are known from reference measurements. For
the spin-resolved (POLARIS) cross sections, it is neces-
sary to measure all four partial cross sections in order
to correct for spin leakage between the different chan-
nels (Wildes, 2006). Such corrections can for example
be accomplished by means of the BerSANS (Keiderling,
2002; Keiderling et al., 2008), Pol-Corr (Krycka et al.,
2012a), and GRASansP (Dewhurst, 2016) software tools.
The relevant expressions are as follows:

2. Unpolarized SANS

dΣ⊥

dΩ
= K

(
b−2
H |Ñ |2 + |M̃x|2 + |M̃y|2 cos2 θ

+|M̃z|2 sin2 θ − CTyz sin θ cos θ
)
. (12)

dΣ‖

dΩ
= K

(
b−2
H |Ñ |2 + |M̃x|2 sin2 θ + |M̃y|2 cos2 θ

+|M̃z|2 − CTxy sin θ cos θ
)
.(13)
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3. Half-polarized SANS (SANSPOL)

dΣ±
⊥

dΩ
= K

(
b−2
H |Ñ |2 + |M̃x|2 + |M̃y|2 cos2 θ

+|M̃z|2 sin2 θ − CTyz sin θ cos θ

+(2P − 1)(2ǫ± − 1)b−1
H CT

ÑM̃z
sin2 θ

−(2P − 1)(2ǫ± − 1)b−1
H CT

ÑM̃y
sin θ cos θ

+i(2P − 1)(2ǫ± − 1)χ
)
, (14)

where the chiral function χ is given by3

χ(q) =
(
M̃xM̃

∗
y − M̃∗

xM̃y

)
cos2 θ

−
(
M̃xM̃

∗
z − M̃∗

xM̃z

)
sin θ cos θ. (15)

dΣ±
‖

dΩ
= K

(
b−2
H |Ñ |2 + |M̃x|2 sin2 θ + |M̃y|2 cos2 θ

+|M̃z|2 − CTxy sin θ cos θ

+(2P − 1)(2ǫ± − 1)b−1
H CT

ÑM̃z

)
.(16)

Note that χ = 0 for k0 ‖ H0.

4. Polarized SANS (POLARIS)

dΣ±±
⊥

dΩ
= K

(
b−2
H |Ñ |2 + |M̃y|2 sin2 θ cos2 θ

+|M̃z|2 sin4 θ − CTyz sin
3 θ cos θ

∓b−1
H CT

ÑM̃z
sin2 θ ± b−1

H CT
ÑM̃y

sin θ cos θ
)
. (17)

dΣ±∓
⊥

dΩ
= K

(
|M̃x|2 + |M̃y|2 cos4 θ + |M̃z|2 sin2 θ cos2 θ

−CTyz sin θ cos3 θ ∓ iχ
)
.

(18)

dΣ±±
‖

dΩ
= K

(
b−2
H |Ñ |2 + |M̃z|2 ∓ b−1

H CT
ÑM̃z

)
. (19)

dΣ±∓
‖

dΩ
= K

(
|M̃x|2 sin2 θ + |M̃y|2 cos2 θ − CTxy sin θ cos θ

)
.

(20)

We reemphasize that the nuclear-spin incoherent scatter-
ing is ignored in the spin-flip cross sections.

3 We note that in the neutron-diffraction community the chiral
term is sometimes denoted with the symbol “C”.

C. Magnetic SANS theory

The above expressions for the SANS cross sections de-
pend on the Fourier components M̃x,y,z of the magneti-
zation. The main task is to derive expressions for these
functions based on a particular microstructural model.
In this section we briefly summarize the recent develop-
ments regarding the analytical computation of the cross
sections using the theory of micromagnetics (Honecker
and Michels, 2013; Metlov and Michels, 2015, 2016; Met-
tus and Michels, 2015; Michels et al., 2016). Micromag-
netics is a phenomenological continuum theory which
has been developed in order to compute the magnetiza-
tion vector fieldM of an arbitrarily-shaped ferromagnetic
body, provided that the applied magnetic field, the ge-
ometry of the ferromagnet, and the magnetic material’s
parameters are known (Aharoni, 1996; Brown Jr., 1963;
Kronmüller and Fähnle, 2003). The characteristic length
scale which is addressed by micromagnetic calculations
ranges between a few nanometers and a few hundreds of
nanometers—a size regime that overlaps with the reso-
lution range of the SANS technique. Pioneering work in
this direction was performed by Kronmüller et al., 1963
who calculated the magnetic SANS due to spin disorder
related to the strain fields of dislocations.
In an attempt to describe the magnetic SANS of a

polycrystalline magnetic material, Michels et al., 2016
have considered the magnetization response to a spatially
varying (local) saturation magnetization Ms = Ms(r)
and magnetic anisotropy field Hp = Hp(r). Spatial vari-
ations in Ms, e.g., at internal phase boundaries, give rise
to magnetostatic stray fields which in turn result in a
nanoscale magnetization nonuniformity (representing a
contrast for magnetic SANS). Likewise, the field Hp(r)
is a source of spin disorder, since it increases the magni-
tude of the transversal magnetization components. The
static equations of micromagnetics for the bulk can be
conveniently written as (Aharoni, 1996; Brown Jr., 1963;
Kronmüller and Fähnle, 2003)

M(r)×Heff(r) = 0. (21)

Equation (21) expresses the fact that at static equilib-
rium the torque on the magnetization M(r) due to an
effective magnetic field Heff(r) vanishes everywhere in-
side the material. The effective field,

Heff = H0 +Hd +Hp +Hex +HDM , (22)

is composed of a uniform applied magnetic field H0, the
magnetostatic field Hd(r), the magnetic anisotropy field
Hp(r), the exchange field Hex, and of the field HDM ,
which is due to the Dzyaloshinski-Moriya interaction
(DMI). In the approach-to-saturation regime, when the
sample consists of a single magnetic domain and small
spin deviations from the mean magnetization are consid-
ered (Mx ≪ Ms and My ≪ Ms; Ms ‖ ez), the balance-
of-torques equation can be linearized and a closed-form
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FIG. 2 (a)−(d) Contour plots of normalized dΣM/dΩ at applied magnetic fields as indicated (k0 ⊥ H0; H0 is horizontal);
the scattering of the saturated state has been subtracted. (e)−(f) Corresponding two-dimensional correlation functions c(y, z)
(= 2D Fourier transforms of dΣM (qy , qz)/dΩ). The DMI has not been taken into account. Image taken from Mettus and
Michels, 2015.
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FIG. 3 (a) Spike anisotropy observed in the total unpolarized
dΣ/dΩ of a sintered Nd−Fe−B-based permanent magnet in
the remanent state (k0 ⊥ H0). (b) dΣ/dΩ versus azimuthal
angle θ at q = 0.10 ± 0.02 nm−1. Data taken from Périgo
et al., 2014.

solution for the transversal Fourier components can be
found (Michels et al., 2016); these allow one to compute
any magnetic SANS cross section.

As an example, Fig. 2 displays for k0 ⊥ H0 and an un-
polarized beam the spin-misalignment SANS cross sec-
tion dΣM/dΩ arising due to transversal magnetization
components. The term spin-misalignment SANS cross
section refers to the cross section which remains at a
particular value of the applied magnetic field when the
total (nuclear and magnetic) dΣ/dΩ in the saturated
state is subtracted (compare Eq. (23) below). At the
largest fields [Fig. 2(c) and 2(d)], dΣM/dΩ exhibits max-
ima roughly along the diagonals of the detector—the
so-called “clover-leaf” anisotropy—previously observed
in the Fe-based two-phase alloy NANOPERM (com-

pare, e.g., Fig. 3 in Michels et al., 2006). The posi-
tion of the maxima in dΣM/dΩ depend on q and H0

(see also Fig. 11 in Michels et al., 2014). Reducing the
field [Fig. 2(a) and 2(b)], one observes an elongation of
the spin-misalignment scattering along the field direc-
tion, with a “flying-saucer-type” pattern taking over at
small q and H0. The sharp spike in Fig. 2(a) is due
to the magnetostatic interaction; it was first predicted
by Weissmüller et al., 1999 and experimentally observed
by Périgo et al., 2014 on a Nd−Fe−B-based permanent
magnet (see Fig. 3).

The corresponding two-dimensional correlation func-
tions c(y, z) are displayed in Fig. 2(e)−2(h) at the same
fields as dΣM/dΩ (Mettus and Michels, 2015). While
dΣM/dΩ at small fields [Fig. 2(a) and 2(b)] is enhanced
parallel to H0, the correlation function exhibits max-
ima in the direction perpendicular to H0; the range of
the correlations extends to several hundreds of nanome-
ters [Fig. 2(e) and 2(f)]. Increasing the field results in
the suppression of the correlations and at the largest
field dΣM/dΩ possesses a nearly fourfold anisotropy with
maxima along the detector diagonals and minima along
the horizontal and vertical axes [Fig. 2(d)], which trans-
late into the corresponding extrema in c(y, z) [Fig. 2(h)].
In nuclear SANS, negative values of the distance distri-
bution function p(r) are attributed to distances that con-
nect regions with opposite sign of the scattering-length
density contrast more frequently than regions with the
same sign (Glatter and Kratky, 1982). However, for mag-
netic SANS, such an easily accessible interpretation of
the correlation function of the spin-misalignment SANS



10

FIG. 4 Contour plots of the spin-flip difference cross section
−2iχ(q) at selected applied magnetic fields (k0 ⊥ H0). Image
taken from Michels et al., 2016.

cross section in terms of a specific magnetization dis-
tribution is not straightforward; this is mainly related
to the fact that c(y, z)—being the Fourier transform of
dΣM/dΩ—does not directly represent the correlations in
the magnetic microstructure (as does the autocorrelation
function), but also includes the magnetodipolar interac-
tion of the neutrons with the sample (via the trigono-
metric functions and the cross term in the cross section)
(Erokhin et al., 2015).

It has recently been suggested that the DMI is of rel-
evance for the magnetic SANS of materials containing
many lattice imperfections (Michels et al., 2016), e.g.,
due to the breaking of inversion symmetry at internal
interfaces, which may cause a chiral term, Eq. (15).
The defect-induced symmetry breaking can be charac-
terized from measurement of the spin-flip cross sections,

Eqs. (18), according to −2iχ(q) = dΣ+−

dΩ − dΣ−+

dΩ . Us-
ing the expressions for the Fourier components (Michels
et al., 2016), the function −2iχ(q) is plotted in Fig. 4. At
small fields, two extrema parallel and antiparallel to the
field axis are predicted [Fig. 4(a)], whereas at larger fields
additional maxima and minima appear approximately
along the detector diagonals [Fig. 4(b) and 4(c)]. The
strong field dependency of −2iχ(q,H0) may be employed
in order to experimentally determine the DM constant.
Note that −2iχ(q) describes an asymmetry arising in the
elastic SANS cross section due to the effect of the anti-
symmetric exchange interaction on the static magnetic
microstructure. We refer to Sec. VIII for further studies
which address the inelastic and critical scattering related
to the DM term.

As shown in Honecker et al., 2013, near magnetic sat-
uration and for a two-phase particle-matrix-type ferro-
magnet, the unpolarized dΣ/dΩ for k0 ⊥ H0 can be
evaluated by means of micromagnetic theory. As an ex-
ample, the azimuthally-averaged field-dependent SANS
cross section of a zero-magnetostriction nanocomposite
from the NANOPERM family of alloys along with the fits
to the micromagnetic theory is displayed in Fig. 5(a). It
is seen that the entire (q,H0)-dependence of dΣ/dΩ can
be excellently described by the micromagnetic prediction.
From a global fit of the entire data set to the micromag-
netic theory one obtains a value of A = 4.7±0.9 pJ/m for
the volume-averaged exchange-stiffness constant [com-

FIG. 5 (a) Azimuthally-averaged dΣ/dΩ of the two-phase al-
loy (Fe0.985Co0.015)90Zr7B3 at selected applied magnetic fields
(log-log scale). Field values (in mT) from bottom to top: 1270,
312, 103, 61, 33. Solid lines: fit to the micromagnetic theory.
The insets depicts the mean-square deviation between exper-
iment and fit, χ2/ν, as a function of the exchange-stiffness
constant A. (b) Best-fit results for the scattering function

of the anisotropy field SH ∝ |H̃p(q)|
2 and for the scattering

function of the longitudinal magnetization SM ∝ |M̃z(q)|
2.

dΣnuc/dΩ denotes the nuclear SANS (log-log scale). Image
taken from Honecker et al., 2013.

pare inset in Fig. 5(a)].
In addition to the exchange constant, the analysis pro-

vides the square magnitudes of the Fourier coefficients of
the magnetic anisotropy field SH ∝ |H̃p(q)|2 and of the

longitudinal magnetization SM ∝ |M̃z(q)|2 ∝ (∆M)2.
The obtained results for these functions are shown in
Fig. 5(b). It is immediately seen that over the dis-

played q-range |M̃z|2 is orders of magnitude larger than

|H̃p|2, suggesting that jumps ∆M in the magnetiza-
tion at internal interfaces are the dominating source
of spin disorder in these alloys. Numerical integra-
tion of SH(q) and SM (q) over the whole q-space, i.e.,
(2π2b2H)−1

∫∞

0
SH,Mq

2dq yields, respectively, the mean-
square anisotropy field 〈|Hp|2〉 and the mean-square lon-
gitudinal magnetization fluctuation 〈|Mz|2〉 (Honecker
et al., 2013). For the data shown in Fig. 5(b) we ob-
tain the following lower bounds: µ0〈|Hp|2〉1/2 ∼= 10mT
and µ0〈|Mz|2〉1/2 ∼= 50mT. This finding qualitatively
supports the notion of dominant spin-misalignment scat-
tering due to magnetostatic fluctuations.

D. Relation to conventional particle-matrix approach

Magnetic SANS of bulk magnetic materials (e.g.,
single-phase elemental ferromagnets, Nd−Fe−B-based
permanent magnets, or steels) is to a large extent de-
termined by long-range magnetization fluctuations due
to defect-related spin-misalignment. Away from mag-
netic saturation, all three magnetization Fourier compo-

nents M̃ = {M̃x, M̃y, M̃z} govern the magnetic SANS
cross sections, whereas in the saturated state, when M =
{0, 0,Mz =Ms(r)}, the cross sections are determined by
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nuclear SANS and by the Fourier transform M̃s(q) of the
spatially-dependent saturation magnetization Ms(r). It
is important to realize that the spin-misalignment SANS
cross section depends primarily on the magnetic interac-
tions (but also on the underlying grain microstructure),
while the SANS at saturation is entirely determined by
the geometry of the microstructure, in other words, |Ñ |2
and |M̃s|2 depend only on the size, shape, position of
particles, and on the scattering-length density contrast
of the particles relative to the matrix. For instance, for
the perpendicular and parallel scattering geometry, the
unpolarized cross sections at saturation reduce, respec-
tively, to

dΣsat
⊥

dΩ
= K

(
b−2
H |Ñ |2 + |M̃s|2 sin2 θ

)
, (23)

and

dΣsat
‖

dΩ
= K

(
b−2
H |Ñ |2 + |M̃s|2

)
. (24)

The magnetic structure factor of a saturated mi-
crostructure consisting of a distribution of i = 1, ..., Np

particles with saturation magnetization Mp
s,i in a ma-

trix of saturation magnetization Mm
s can be written as

(Schlömann, 1967)

|M̃s(q)|2 =
1

8π3

Np∑

i=1

Np∑

j=1

(Mm
s −Mp

s,i)(M
m
s −Mp

s,j)

× Vp,iVp,jFi(q)F
∗
j (q)e

−iq(ri−rj), (25)

where Vp,i, Fi, and ri represent, respectively, the parti-
cle volume, the form factor, and the position vector of
particle “i”. An analogous expression describes the cor-
responding nuclear SANS (see, e.g., Chen and Lin, 1987).
In the monodisperse and dilute limit, we have

|M̃s(q)|2 =
Np

8π3
(∆M)2V 2

p |F (q)|2, (26)

where ∆M =Mm
s −Mp

s . Inserting Eq. (26) into Eqs. (23)
and (24), the magnetic SANS cross section at saturation
(e.g., for k0 ⊥ H0) takes on the familiar form (Wieden-
mann, 2001)

dΣsat
⊥

dΩ
=
Np

V
∆η2mV

2
p |F (q)|2 sin2 θ, (27)

where ∆η2m = b2H(∆M)2 denotes the magnetic
scattering-length density contrast. Equation (27)
represents the well-known expression—embodying the
particle-matrix concept—which is employed in many
magnetic SANS investigations, even in situations where
the material under study is not fully saturated. As
the derivation has shown, Eq. (27) relies on the spe-

cial assumption of homogeneously magnetized domains
(Mx = My = 0), and for various reasons (see, e.g., the
discussion in Michels, 2014) Eq. (27) does not describe

the magnetic SANS of bulk ferromagnets (unless fully
saturated). However, as discussed in Sec. V, the mag-
netic SANS of nearly uniformly magnetized nanoparti-
cles may be described by means of the particle-matrix
approach by employing special profiles for the magnetic
scattering-length densities (Disch et al., 2012).
Analytical expressions for particle form factors |F (q)|2

have been derived for an extensive number of particle
shapes and there exist also a few closed-form results for
the structure factor (Feigin and Svergun, 1987; Glatter
and Kratky, 1982; Guinier and Fournet, 1955; Pedersen,
1997). We refer to the review article by Pedersen, 1997
for a detailed discussion of this topic. Likewise, several
software packages (Breßler et al., 2015; Butler et al., 2016;
Kline, 2006) provide collections of particle form factor
models (including particle-size distributions) and struc-
ture factors to analyze SANS data.
Before closing this section we would like to briefly in-

troduce two important limiting expressions for the scat-
tering curve, which allows one to obtain information
about the structure size and the internal particle surface
area. Generally, when there are two phases of uniform
scattering-length density and with discontinuous (sharp)
interfaces, the scattering in the limit of large q (much
larger than the inverse of the characteristic structure
scale) obeys (Ciccariello et al., 1988; Debye et al., 1957;
Debye and Bueche, 1949; Porod, 1982a)

dΣ

dΩ
(q) ∼= 2π(∆η)2

S

V
q−4, (28)

where S denotes the particle surface area. Equation (28)
is known as the Debye-Porod law, and it is valid not only
for single particles, but also for densely packed systems.
This expression for the high-q limit can be supplemented
by one for the scattering near the origin of recipro-
cal space, the so-called Guinier approximation (Guinier,
1994): when the scattering is from a set of noninterfering
discrete objects then, in the limit of low q < 1.3/Rg,

dΣ

dΩ
(q) ∼= dΣ

dΩ
(0)e−

q2R2
g

3 . (29)

For identical scatterers, Rg denotes the individual radius
of gyration. In fact, for dilute monodisperse systems,
the Guinier plot (ln(dΣ/dΩ) versus q2) should be a lin-
ear function, whose slope yields Rg. As pointed out by
Svergun and Koch, 2003, linearity of the Guinier plot
can be considered as a test of the sample homogeneity
and deviations indicate attractive or repulsive interparti-
cle interactions leading to interference effects (Rothwell,
1968). Furthermore, when the particle-size distribution
is nonuniform, R2

g needs to be replaced with the ratio of
moments of the size distribution (see Feigin and Svergun,
1987 and Kostorz, 1982 for details).
The Porod and Guinier laws have been derived for non-

magnetic particle-matrix-type assemblies in the context
of the early theoretical developments of the technique of
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small-angle x-ray scattering and their application to mag-
netic materials should be considered with special care.
They are certainly applicable to systems consisting of
saturated magnetic particles in a nonmagnetic matrix
or, likewise, to pores in a saturated matrix. On the
other hand, when the smoothly-varying magnetization
profiles of micromagnetics (Sec. VI) are at the origin of
the related magnetic scattering—implying the absence
of a sharp interface in the magnetic microstructure—the
asymptotic power-law behavior of the cross section differs
from the q−4-behavior [see, e.g., Fig. 7(b)], in agreement
with theoretical predictions and experimental observa-
tions (Mettus and Michels, 2015). This statement does
of course not preclude the existence of sharp interfaces
in the nuclear grain microstructure of a magnetic ma-
terial: there may well exist sharp particle-matrix inter-
faces, but the corresponding spin distribution which dec-
orates these interfaces and which gives rise to the mag-
netic SANS cross section might be continuous over the
defects.

III. ND−FE−B BASED PERMANENT MAGNETS

This section addresses the properties of Nd−Fe−B-
based permanent magnets as seen by magnetic SANS.
The major challenge in this field remains the under-
standing of how the details of the microstructure (e.g.,
average grain size and shape, distribution of Nd-rich
intergranular phases, crystallographic texture, interfa-
cial chemistry) correlate with the macroscopic magnetic
properties. In order to tackle this issue, a multiscale
characterization approach is generally adopted, which
comprises a suite of both experimental and theoret-
ical state-of-the-art methods including high-resolution
electron microscopy, electron backscattering diffraction,
three-dimensional atom-probe analysis, Lorentz and Kerr
microscopy, or atomistic and continuum micromagnetic
simulations (Gutfleisch et al., 2011; Hono and Sepehri-
Amin, 2012; Liu et al., 2013; Sepehri-Amin et al., 2015,
2013; Woodcock et al., 2012). The SANS technique has
made an important contribution here, since it provides—
quite uniquely—information on variations of both the
magnitude and orientation of the magnetization vector
on a nanometer length scale and from within the volume
of the material. We begin the discussion in this section by
introducing the concept of the correlation function of the
spin-misalignment SANS cross section and we then dis-
cuss selected SANS results obtained on Nd−Fe−B-based
nanocomposites and sintered magnets.

FIG. 6 Illustration of the meaning of the correlation length lC
of the spin misalignment. (left) Computed spin misalignment
(at µ0H0 = 0.6T) around a spherical pore (2R = 12 nm) in a
ferromagnetic iron matrix (two-dimensional cut out of a three-
dimensional simulation). Shown is the magnetization compo-
nent M⊥(r) perpendicular to H0 ‖ ez; thickness of arrows is
proportional to the magnitude of M⊥. Solid gray lines: mag-
netodipolar field distribution. The correlation length lC is a
measure for the size of the inhomogeneously magnetized re-
gion around the defect; lC consists of a field-independent con-
tribution R, which specifies the structural size of the defect,
and of a field-dependent exchange length lH , which trans-
mits the perturbation at the pore-matrix interface into the
surrounding crystal lattice. (right) Corresponding magneti-

zation Fourier components |M̃x(q)|
2 and |M̃y(q)|

2 projected
into the plane qx = 0. Bright colors correspond to “high”
values and dark colors to “low” values of the Fourier compo-
nents. Pixels in the corners of the images have q ∼= 0.4 nm−1.
Logarithmic color scale is used. Image taken from Erokhin
et al., 2015.

A. Correlation function of the spin-misalignment SANS

cross section

Using azimuthally-averaged data for the spin-
misalignment SANS cross section dΣM/dΩ it becomes
possible to compute the correlation function C(r) of
the spin-misalignment SANS cross section, according to
(Mettus and Michels, 2015)

C(r) ∼
∞∫

0

dΣM

dΩ
(q) j0(qr) q

2 dq, (30)

where j0(x) = sin(x)/x denotes the zeroth-order spheri-
cal Bessel function. By means of the extrapolated value
of the correlation function at the origin, C(r = 0), one
can determine the correlation length lC of the spin mis-
alignment. Figure 6 illustrates the meaning of lC , which
specifies the range over which perturbations in the spin
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structure around a lattice defect (e.g., pore, grain bound-
ary, dislocation, vacancy) are transmitted by the ex-
change interaction into the surrounding crystal lattice.
A convenient definition for lC is

C(r = lC) = C(0)e−1, (31)

which yields the exact correlation length for exponen-
tially decaying correlations. Note, however, that this
definition does not imply that the correlations do decay
exponentially. Equation (31) is merely a convenient way
to define a characteristic length which can be related to
the magnetic microstructure and which can be computed
model independently.
In several studies (Bick et al., 2013a; Honecker and

Michels, 2013; Michels, 2010; Michels et al., 2003; Michels
and Weissmüller, 2008) it was found that lC(Hi) data can
be well described by

lC(Hi) = R+

√
2A

µ0Ms (Hi +H⋆)
, (32)

where the field-independent parameter R is of the order
of the defect size and the second field-dependent term
on the right hand side represents a modified exchange
length lH of the field (see Eq. (33) for the definition
of lH). Equation (32) is a phenomenological prediction
based on micromagnetic theory, which embodies the con-
volution relationship between the magnetic anisotropy-
field microstructure Hp(r) and micromagnetic response
functions which decay with lH (Weissmüller et al., 1999,
2001). The “correlation length” R of the magnetic
anisotropy field appears to be the average size over which
the direction and/or magnitude of Hp changes. For
a statistically isotropic polycrystalline material, where
each crystallite is a single crystal with magnetocrystalline
anisotropy only, the parameter R is sensibly related to
the average crystallite size (Honecker and Michels, 2013;
Michels, 2010). The field H⋆ is expected to model the in-
fluence of the magnetodipolar interaction and of the mag-
netic anisotropy (Bick et al., 2013a). For soft magnetic
materials with low crystalline anisotropy and at large ap-
plied magnetic fields (when the magnetostatic interaction
may be negligible), one may ignore the field H⋆, so that
Eq. (32) simplifies to

lC(Hi) = R+ lH(Hi) = R +

√
2A

µ0MsHi
. (33)

The latter equation has been found to excellently de-
scribe the field-dependent spin-misalignment correlations
in nanocrystalline Co and Ni (Michels et al., 2003). By
contrast, for (uniaxial) hard magnets, the anisotropy field
HK = 2Ku/Ms, which for Nd2Fe14B single crystal is
about 8T at 300K (Woodcock et al., 2012), is expected
to cut down the size of spin inhomogeneities. Likewise,

jumps ∆M of the magnitude of the magnetization at
internal phase boundaries, which in Fe-based nanocom-
posites can be as large as 1.5T (Michels et al., 2006),
give rise to magnetic stray-field torques that produce
spin disorder in the surrounding magnetic phase (com-
pare Fig. 6); such kind of perturbations also decrease the
size of gradients in the magnetization (Honecker et al.,
2013). It is interesting to note that at Hi = 0 and for
H⋆ = HK = 2Ku/(µ0Ms), Eq. (32) reduces to

lC = R+

√
A

Ku
, (34)

where
√
A/Ku is the domain-wall parameter.

B. Selected results on Nd−Fe−B magnets

A chronological assessment of SANS studies on
Nd−Fe−B-based permanent magnets starts with the
early work of Fujii et al., 1987, who investigated the
role of domain walls and grain boundaries on the
magnetic microstructure of sintered Nd15Fe77B8 and
Nd15Fe76Al1B8. Despite of this pioneering approach of
using the SANS method for studying rare-earth-based in-
termetallic compounds, only recently (more precisely in
the last five years) has a deeper understanding of the ca-
pabilities (and limitations) of the SANS technique been
reached. It was Takeda et al., 2012 who continued with
SANS research on sintered Nd−Fe−B magnets by an-
alyzing the temperature dependence of SANS patterns,
with special attention to the correlation between the av-
erage structure and the coercivity. The effect of the
grain-boundary diffusion process on the magnetization-
reversal of isotropic sintered (Périgo et al., 2016) and hot-
deformed (textured) nanocrystalline (Saito et al., 2015;
Yano et al., 2014, 2012) Nd−Fe−B magnets has been
investigated.
We start by considering a melt-spun isotropic

Nd−Fe−B-based nanocomposite, which consists of hard
magnetic Nd2Fe14B particles (size: ∼ 22 nm) and Fe3B
crystallites (size: ∼ 29 nm) (Bick et al., 2013a,b). It is
important to mention that for this particular alloy the
difference ∆M in the saturation magnetizations of the
Nd2Fe14B phase and the Fe3B crystallites is rather small,
µ0∆M ∼= 0.01T (Schrefl et al., 1993). Consequently, the

related longitudinal magnetic SANS ∝ |M̃z|2 ∝ (∆M)2

is negligible as compared to the nuclear SANS |Ñ |2.
Figure 7(a) displays the total unpolarized dΣ/dΩ of

the Nd−Fe−B nanocomposite. A strong field depen-
dence between the largest applied field of 10T and the
coercive field of µ0Hc = −0.55T is observable. Since
nuclear SANS is field independent and since SANS due
to |M̃z|2 fluctuations is negligible (for this particular al-
loy), it is evident that the dominating contribution to
dΣ/dΩ is due to transversal spin misalignment. In or-
der to obtain the corresponding spin-misalignment SANS
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FIG. 7 (a) Azimuthally-averaged total SANS cross section
dΣ/dΩ of Nd2Fe14B/Fe3B as a function of momentum trans-
fer q and applied magnetic field H0 (T = 300K) (k0 ⊥ H0)
(log-log scale). Solid circles (•): applied-field values (in
Tesla) decrease from bottom to top: 10, 6, 1, −0.25, −0.55;
(�):−1T; (△):−3T. Inset: room-temperature magnetization
curve of Nd2Fe14B/Fe3B. (b) Applied-field dependence of the
spin-misalignment SANS cross section dΣM/dΩ of nanocrys-
talline Nd2Fe14B/Fe3B. Solid circles (•): field values (in Tesla)
decrease from bottom to top: 6, 1, −0.25, −0.55; (�): −1T;
(△): −3T. The dΣM/dΩ data displayed in (b) were obtained
by subtracting the 10T data shown in (a) from the dΣ/dΩ
at lower fields. Dashed line: dΣM/dΩ ∝ q−5.5. Image taken
from Bick et al., 2013a.

cross section [see Fig. 7(b)], the dΣ/dΩ at 10T was sub-
tracted from the dΣ/dΩ at lower fields. The resulting
dΣM/dΩ is of comparable magnitude as dΣ/dΩ, but pos-
sesses a strikingly different q-dependency. In particular,
the shoulder in dΣ/dΩ at about q = 0.2 nm−1 is absent in
dΣM/dΩ. Possible origins for the shoulder in dΣ/dΩ are
interparticle interferences and/or diffusion zones around
the particles, as discussed by Heinemann et al., 2000.
The different shapes of dΣ/dΩ and dΣM/dΩ are also re-
flected in different asymptotic power-law exponents n in
dΣM/dΩ ∝ q−n. While the spin-misalignment SANS is
characterized by power-law exponents which range be-
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FIG. 8 Field dependence of the correlation function C(r)
of the spin misalignment of nanocrystalline Nd2Fe14B/Fe3B
(log-linear scale). The field values follow the course of a hys-
teresis loop, starting from a large positive field and then re-
ducing the field to negative values (see insets). Dotted line
(extrapolating the 6T data to r = 0): C(r) = 4.58− 0.043 r2.
Image taken from Bick et al., 2013a.

tween n ∼ 5 − 6 at all fields investigated [see Fig. 7(b)],
the total unpolarized SANS reveals significantly lower
values for n, which approach the Porod value of n = 4 at
10T (Bick et al., 2013a).
Fourier transformation of the dΣM/dΩ data according

to Eq. (30) yields the correlation function C(r) of the
spin misalignment (see Fig. 8). The field-dependent cor-
relations in Fig. 8 do not decay exponentially, in agree-
ment with the absence of an n = 4 power-law exponent
in dΣM/dΩ. Furthermore, the C(r) seem to approach
the origin r = 0 with zero slope (compare dotted line in
Fig. 8), which is in agreement with the notion of magnetic
SANS from continuously varying magnetization profiles
and with the absence of a sharp interface in the mag-
netic microstructure (Porod, 1982a). For comparison, for
the example of a uniform sphere (of radius R) and with
a sharp interface, one finds the well-known expression
(valid for r ≤ 2R)

cs(r) = 1− 3r

4R
+

r3

16R3
, (35)

from which one can recognize that the first derivative of
cs(r) evaluated at r = 0 is related to the surface S of
the particle, c′s(0) = −3/(4R) = −S/(4V ). Such prop-
erties of the correlation function (derived for the nuclear
small-angle scattering of uniform particles) do not hold
for magnetic SANS of bulk ferromagnets.
The values of the correlation length lC [determined by

means of Eq. (31)] are plotted in panel (A) of Fig. 9 as
a function of the applied magnetic field, which is usually
the control parameter in magnetic SANS experiments.
For the Nd−Fe−B nanocomposite (with ∆M ∼= 0), we
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FIG. 9 (A) Applied-field dependence of the correlation
length lC of the spin misalignment of nanocrystalline
Nd2Fe14B/Fe3B. Solid line: fit of the data to Eq. (32), where
R = 10.9 nm and µ0H

⋆ = +0.60T are treated as ad-
justable parameters, and the quantities A = 12.5 pJ/m and
µ0Ms = 1.6T are held fixed. In addition to lC(H0)-data
obtained at the instrument Quokka (ANSTO), results ob-
tained at the SANS instruments KWS 1 (JCNS) and D11
(ILL) are also shown. Dashed horizontal line: average ra-
dius of the Nd2Fe14B particles (R = 11 nm). Dotted vertical
line: coercive field µ0Hc = −0.55T. Image taken from Bick
et al., 2013a. (B) Normalized correlation function C(r) of the
spin misalignment for a textured (hot-deformed) and isotropic
Nd2Fe14B/α-Fe nanocomposite in the remanent state. The
C(r) of the textured sample is computed by using dΣM/dΩ
averaged along the vertical and horizontal directions (±7.5◦

sector averages) as well as using the full circular (2π) average
of dΣM/dΩ; the C(r) of the isotropic sample is computed us-
ing the corresponding 2π-averaged dΣM/dΩ (see inset). Solid
horizontal line: C(r) = e−1. Data taken from Michels et al.,
2017.

expect that lC describes the spatial extent of magneti-
zation inhomogeneities, mainly within the soft magnetic
Fe3B grains, that are caused by the jump in the magnetic
materials parameters (exchange constant, direction and
magnitude of magnetic anisotropy) at the interface be-
tween the Nd2Fe14B particles and the surrounding Fe3B
crystallites. As can be seen in panel (A) of Fig. 9, lC ap-
proaches a constant value of about 12.5 nm at the largest
positive fields and increases with decreasing applied field
to take on a maximum value of about 18.5 nm at the ex-
perimental coercive field of µ0Hc = −0.55T. Further in-
crease of H0 towards more negative values results again
in a decrease of lC towards ∼ 12.5 nm. From the fit
of the lC(H0) data to Eq. (32) (solid line in panel (A)
of Fig. 9), we obtain R = 10.9 nm (close to the experi-
mental average grain radius of the Nd2Fe14B phase) and
µ0H

⋆ = +0.60T, which is close to the absolute value of
the experimental coercive field. At the remanent state,
the penetration depth of the spin disorder into the Fe3B
phase amounts to ∼ 5− 6 nm.

In a recent comparative study of the magnetic mi-
crostructure of textured and isotropic Nd2Fe14B/α-Fe
nanocomposites, evidence for a correlated crystallo-
graphic and spin texture was found (Michels et al.,
2017). Specifically, the analysis of the neutron data

suggested that the spin-misalignment scattering of the
textured sample—prepared via melt-spinning and sub-
sequent hot-deformation—is dominated by spin compo-
nents along one direction perpendicular to the easy c-
axis (pressing direction) of the Nd2Fe14B grains. This
anisotropy in the magnetization distribution is accom-
panied by the presence of a crystallographic texture
along these directions, as revealed by x-ray diffraction
synchrotron data. Panel (B) of Fig. 9 illustrates the
anisotropy of the correlations by depicting the correlation
function of the textured nanocomposite; the correlation
length along the horizontal (lC ∼= 42 nm) and vertical
(lC ∼= 53 nm) directions differ considerably, which indi-
cates differences in the magnetic interactions along these
directions. This conjecture is supported by electron-
microscopy and three-dimensional atom-probe tomogra-
phy work (Liu et al., 2014), which reports anisotropic
properties of the grain-boundary phase in hot-deformed
nanocrystalline Nd−Fe−B magnets.

Sintered Nd−Fe−B-based permanent magnets, pre-
pared via the powder metallurgical route, are presently
more important from the economic perspective. Here,
the research focus is to reduce the amount of heavy rare-
earth metals (Tb, Dy), which are added in order to guar-
antee the temperature stability of the magnet (Hc) at
the operating temperature of the device (e.g., ∼ 150 ◦C
for electromotor applications). In this context, the effect
of the grain-boundary diffusion process (GBDP) on the
bulk magnetic microstructure of Tb-doped Nd−Fe−B-
based sintered magnets has been studied by Périgo et al.,
2016 by means of magnetic-field-dependent unpolarized
SANS. In the GBDP (Sepehri-Amin et al., 2010), the
Nd−Fe−B magnet is exposed at elevated temperatures
to a fine powder or a vapor containing high-magnetic-
anisotropy-inducing heavy-rare-earth elements such as
Tb or Dy, which then diffuse (preferentially along liquid
grain boundaries) into the bulk of the material, in this
way locally increasing the coercivity. Compared to the
Tb-free sample, Périgo et al., 2016 observe in the GBDP
specimen a 15% reduced correlation length and a 16%
increased Hc (see Fig. 10). The origin of the reduced cor-
relation length is related to the increased local magnetic
anisotropy field of the Tb-enriched interfaces, which rep-
resent possible nucleation sites for reversed magnetic do-
mains: the presence of Tb results in less magnetic disor-
der near/across the grain boundaries. Qualitatively, this
finding agrees with the work of Saito et al., 2015 who
reported reduced spatial fluctuations of magnetic mo-
ments due to the GBDP in Nd-Cu-infiltrated Nd−Fe−B
nanocrystalline magnets.

SANS has also allowed the experimental observation
of magnetic poles (due to ∇·M 6= 0) existing in the bulk
of magnetic materials. The signature of the magneto-
static interaction is a characeristic spike or flying-saucer-
type pattern in dΣM/dΩ with sharp maxima for angles
θ = 0◦ and θ = 180◦. Such an angular anisotropy has
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FIG. 10 Effect of grain-boundary diffusion process (GBDP)
on the field dependence of the correlation length lC of the spin
misalignment of isotropic sintered Nd−Fe−B. Inset shows the
hysteresis loops of the as-received (AR) and GBDP samples.
Data taken from Périgo et al., 2015, 2016.

been predicted by Weissmüller et al., 1999 and experi-
mentally observed by Périgo et al., 2014 on an isotropic
Nd−Fe−B-based permanent magnet (see Fig. 3). The
spike anisotropy underlines the importance of the magne-
todipolar interaction for understanding magnetic SANS.
Future neutron work will address the role of the inter-

granular Nd-rich layers for the coercivity mechanism of
sintered magnets. Here, the combination of micromag-
netic simulations (see Sec. VI) with experimental SANS
data might provide important insights into the signature
of the grain boundaries in the magnetic SANS cross sec-
tion.

IV. MAGNETIC STEELS

This section aims to illustrate how magnetic SANS has
contributed to the fast paced development of steels for
applications under extreme conditions, such as those im-
posed by irradiation with fast neutrons (E > 1MeV).

A. New steels for application under extreme conditions

The advancement, innovative application, and societal
impact of steel have not ceased over the centuries. Cur-
rently, additional motivation for the development of new
steels arises, for example, from extreme requirements,
such as those imposed by nuclear fission (Zinkle and Was,
2013) and fusion (Knaster et al., 2016) environments. Re-
cent progress in computational alloy design indeed indi-
cates potential for the development of new steels.
The favorable property combinations of steels are

partly achieved by manipulating the solid-state transfor-
mation from the high-temperature face centered cubic
(fcc) phase. Microstructures formed as a result include
martensite and ferrite, which became eponyms for classes
of steels. These steels have a body-centered cubic (bcc)
lattice and exhibit ferromagnetism. It is also possible, for
instance by alloying with Ni, to stabilize the fcc phase to
below room temperature. The resulting austenitic steels
are paramagnetic and also experience wide application.
It is, however, the ferromagnetism of the former steels
that allows magnetic and nuclear scattering to be sepa-
rated and additional information to be gained. By con-
trast, the ferromagnetism of a sample is challenging for
transmission electron microscopy (TEM).
The application of SANS to ferromagnetic steels is

partly at variance with other applications of magnetic
SANS. Therefore, specific features of the approach will
be introduced in Sec. IV.B.
A first field of application discussed here is related

to low-alloy reactor pressure vessel (RPV) steels. His-
torically, mechanical testing of neutron-irradiated RPV
steels indicated advancing embrittlement, obviously an
issue of utmost significance for safe reactor operation.
While the dominant embrittlement mechanisms were
gradually understood (Odette and Lucas, 1998), special
long-term irradiation effects are currently of interest (Alt-
stadt et al., 2014). New insight on the nature and distri-
bution of irradiation-induced nanofeatures derived from
the application of magnetic SANS will be addressed in
Sec. IV.C.
Components of future fission reactors and fusion de-

vices will have to withstand more severe conditions, in-
cluding neutron exposures up to 200 displacements per
atom (dpa), a factor of 1000 more than RPV-typical ex-
posures. 8 − 18% Cr steels were found to be promising
candidates. The contributions of magnetic SANS to an
improved understanding of the Fe-Cr system and the irra-
diation behavior of advanced Cr steels will be considered
in Sec. IV.D.
Advanced oxide dispersion strengthened (ODS) steels

exhibit exceptional irradiation resistance due to a high
density of internal point defect sinks and traps, e.g., grain
boundaries and particle-matrix interfaces (Odette et al.,
2008). Information on the type and size distribution of
oxide nanoparticles gained from the application of mag-
netic SANS will be highlighted in Sec. IV.E.
Before entering into a detailed discussion of the classes

of steels introduced above, other contributions of mag-
netic SANS to the development of new steels should be
mentioned. These include ultra-high-strength steels com-
bining the intermetallic strengthening mechanisms asso-
ciated with maraging steels and alloy carbide strengthen-
ing (Delagnes et al., 2012; Eidenberger et al., 2011; Per-
rut et al., 2012; Zhang et al., 2011). The reported results
indicate that the complex precipitation processes require
the usage of combinations of complementary methods.
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B. Prerequisites

We consider a two-phase material consisting of a dilute
assembly of nanoparticles randomly dispersed in a ferro-
magnetic matrix. The basis for the separation of nuclear
(“nuc”) and magnetic (“mag”) SANS is the application
of a saturating magnetic field perpendicular to the unpo-
larized incident neutron beam (compare also Eq. (23) in
Sec. II.D).

dΣ

dΩ
(q, θ) =

dΣnuc

dΩ
(q) +

dΣmag

dΩ
(q) sin2 θ, (36)

where θ denotes the angle enclosed by the direction of
the applied field and the momentum transfer vector q

[for conditions of validity of Eq. (36), see Bischof et al.
(2007)]. The subsequent analysis procedure is similar
for magnetic and nuclear SANS; the scattering cross sec-
tions of a suitable reference sample or a background is
subtracted from the cross sections of the sample of in-
terest. An inverse problem is solved for the difference
scattering curve to obtain the size distribution of the ad-
ditional scatterers. For the case of neutron-irradiated
materials, the respective unirradiated sample is usually
taken as reference. The outcome then is the distribution
of irradiation-induced nanofeatures.
In order to calculate the size distribution in abso-

lute units, the contrast, i.e., the square of the magnetic,
Eq. (37), or nuclear, Eq. (38), difference scattering length
density between scatterer (“S”) and matrix (“Ma”) must
be known.

∆ηm = 〈ηm〉S − 〈ηm〉Ma

=
∑

i∈S

ni,S bm,i,S −
∑

i∈Ma

ni,Ma bm,i,Ma, (37)

∆ηn = 〈ηn〉S − 〈ηn〉Ma

=
∑

i∈S

ni,S bn,i −
∑

i∈Ma

ni,Ma bn,i. (38)

Here, ni, ηm,i, and ηn,i are the atomic density, magnetic,
and nuclear scattering length density of atomic species i,
respectively. Contrary to the nuclear scattering length,
the magnetic scattering length of an atom depends on the
local environment. We provide the scattering lengths of
Cr, Cu, Fe, Mn, and Ni in Table I for later reference.
The A-ratio was originally introduced as the ratio of

the scattering cross sections perpendicular and parallel to
the applied saturating magnetic field (Frisius and Buen-
emann, 1979):

A =
dΣ⊥/dΩ

dΣ‖/dΩ
= 1 +

dΣmag/dΩ

dΣnuc/dΩ
= 1 +

(∆ηm)2

(∆ηn)2
. (39)

In general, A is a function of q. As shown by Eq. (39),
if the magnetic and nuclear scatterers are the same ob-
jects, A can be expressed as the ratio of contrasts. Given
the matrix structure and composition, Eqs. (37) to (39)

i bm (fm) (∆ηm/nFe)
2 bn (fm) (∆ηn/nFe)

2

Cr (-3.5) (36) 3.635 34

Cu 0 36 7.718 3.0

Fe 6 0 9.450 0

Mn (1.9) (36) -3.73 173

Ni 1.6 19.4 10.3 0.72

TABLE I Magnetic and nuclear scattering lengths and re-
sulting contrast of coherent precipitates in bcc Fe (contrast
in multiples of the atom density nFe of bcc Fe, coherency
strains ignored). bm-values in parentheses correspond to sub-
stitutional impurities in Fe (Drittler et al., 1989). Magnetic
contrasts in parentheses are for nonmagnetic precipitates.

describe a relationship between a measurable quantity of
SANS and the structure and composition of the scatter-
ers. The problem of extracting the composition of the
scatterers from A is obviously underdetermined, except
for the simplest systems and for nonmagnetic scatterers
(magnetic holes). The contrast of magnetic holes is still
used with some profit in the case of magnetic scatterers.
Indeed, the volume fraction of scatterers obtained this
way is a lower bound for all possible volume fractions,
provided that 0 < 〈bm〉S < 2〈bm〉Ma.
A trial-and-error procedure to specify or narrow down

the composition in the case of nonmagnetic scatterers is
depicted in Fig. 11. As indicated therein by numbers 1
to 5, the procedure consists of the following steps: 1 -
Calculate the experimental A-ratio from the separated
magnetic and nuclear scattering. 2 - Calculate the size
distribution of precipitates from magnetic and nuclear
scattering and check consistency between both. 3 - Cal-
culate the total volume fraction f of scatterers in ab-
solute units from magnetic scattering (known contrast)
and in relative units from nuclear scattering (unknown
contrast). 4 - Assume a trial composition of the precip-
itates, calculate Ath, compare with Aexp (→ error). 5 -
Use the same trial composition of precipitates along with
f to calculate the needed bulk concentrations. Compare
with the bulk composition (→ error). Take into account
solubility limits if applicable. 6 - Update the trials and
iterate to reach self-consistency.
Alternatively, if the assumption of a dilute assembly

of scatterers is violated, the Porod invariant can be used
to calculate the volume fraction f of scatterers (Porod,
1982b):

∫ ∞

0

dΣmag,nuc

dΩ
q2dq = 2π2f(1− f)(∆ηm,n)

2. (40)

Equation (40) is applicable independent of the structure
of the two-phase medium and the degree of dilution of
the system. Care has to be exercised for the proper ex-
trapolation of the integrand.
Even at magnetic saturation, magnetic effects such as

spin misalignment may give rise to significant deviations



18

FIG. 11 Trial-and-error procedure to specify the composition
cprec of precipitates for the case of nonmagnetic precipitates in
ferromagnetic steels. Blue color indicates known or directly
derived quantities. Red color indicates trials to be checked
by way of comparison of both theoretical with experimental
A-ratio and calculated with experimental bulk composition.
The numbers refer to the sequence of steps (see main text).

from Eq. (36) (Weissmüller et al., 2001) questioning the
validity of the separation into magnetic and nuclear con-
tributions. Bischof et al. (2007) derived corrections and
analyzed a set of heat treatments of a martensitic steel to
conclude that spin-misalignment corrections are particu-
larly important for nuclear scattering in nanostructured
steels. This correction requires magnetic-field-dependent
SANS measurements.

Finally, it is important to note that spin-polarized neu-
trons allow the sign of the product ∆ηm∆ηn to be deter-
mined. This is impossible using conventional SANS and,
therefore, may help to identify the type of scatterers in
some cases, as underpinned in Secs. IV.C and IV.D be-
low.

C. Fe-Cu alloys and reactor pressure vessel steels

Once the outstanding role of low levels of impurity Cu
on the irradiation embrittlement of RPV steels was em-
pirically recognized (Steele, 1975), both the investigation
of simple model systems, such as binary Fe-Cu alloys, and
the application of new techniques with nm-scale sensitiv-
ity, such as SANS, entered the scene. SANS studies of
the same model systems contributed to a deeper under-
standing of phase separation processes (Kampmann and
Wagner, 1986) and provided input for the emerging mul-
tiscale modeling approach to irradiation damage. The
utilization of Cu precipitation to replace carbide harden-
ing of steels (Fine et al., 2007), and the self-healing effect
of Cu precipitation on steels (He et al., 2010) raised re-
newed interest.

Kampmann and Wagner (1986) studied Cu precip-
itation in thermally-aged Fe1−xCux (x = 0.0138 and
0.0064). The observed Cu precipitates were concluded
to be nonmagnetic, which allowed the precipitate num-
ber density to be estimated in absolute units and mod-

FIG. 12 Effect of neutron flux (for equal neutron exposure
of 0.032 dpa) on the size distribution of irradiation-induced
CRPs for an RPV weld (0.22 wt% Cu, 1.1 wt% Mn, 1.1 wt%
Ni). The measured magnetic scattering is shown in the inset.
Low and high flux correspond to 0.087×10−9 dpa/s and 3.05×
10−9 dpa/s (11.6 years of irradiation), respectively. Data from
Bergner et al. (2008), nonmagnetic scatterers assumed. Size
of CRPs decreases, volume fraction is roughly constant.

els of the decomposition kinetics to be critically evalu-
ated. He et al. (2010) performed time-resolved SANS
on Fe1−xCux (x = 0.0098) during isothermal in situ ag-
ing at 550 ◦C in order to study Cu-segregation-assisted
self-healing of deformation-induced defects. Assuming
nonmagnetic precipitates at the measurement tempera-
ture, they derived the volume fractions of co-existing bcc,
9R, and fcc Cu precipitates as a function of aging time.
Schober et al. (2010) combined magnetic SANS and atom
probe tomography (APT) for thermally-aged Fe1−xCux
(x = 0.0099) in order to address the issue of the Fe frac-
tion in Cu precipitates, for which levels between 0% and
50% had been reported before.

Several SANS studies of neutron-irradiated Fe-Cu al-
loys were reported. Most notably, Miller et al. (2003) rec-
ognized that nuclear SANS fed with the contrast derived
from APT allows the Fe content of Cu precipitates to
be cross-checked without assumptions on the precipitate
magnetism. They found that, for irradiated Fe1−xCux
(x = 0.008), the alloy Cu content needed to reconcile
SANS with APT significantly exceeds the actual Cu con-
tent. Hence APT must have overestimated the Fe frac-
tion in the Cu precipitates. Very recently, Shu et al.

(2018), essentially based on temperature-dependent mag-
netic SANS, finally confirmed the presence of nonmag-
netic Cu precipitates containing little or no Fe in neutron-
irradiated and thermally-aged Fe1−xCux (x = 0.008).

Regarding RPV steels, early SANS studies revealed
irradiation-induced scatterers with a mean radius of ap-
proximately 1 nm for Cu impurity levels & 0.1 wt%. It is
now well understood that (i) coherent bcc Cu-rich pre-
cipitates (CRPs) are the dominant type of nanofeatures
formed as a result of neutron irradiation of Cu-bearing
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steels at reactor ambient temperatures, 270 − 300 ◦C.
CRPs may contain Mn, Ni, Si, Fe, and vacancies. (ii) Co-
herent or semicoherent Mn-Ni(-Si) precipitates (MNPs)
or their nonequilibrium precursors are the dominant type
of nanofeatures in low-Cu, Mn-Ni-alloyed RPV steels
(Odette, 1995). (iii) So-called matrix damage mainly
consisting of dislocation loops and sub-nm vacancy clus-
ters evolves slowly in all kinds of RPV steels. The con-
trast of the loops is too weak, and the vacancy clusters
are too small, to be efficiently detected by SANS.

Increasing neutron exposure (fluence) gives rise to an
increase of the volume fraction of CRPs at almost con-
stant size. The effect of neutron flux (fluence rate) on
the formation of CRPs is elucidated in Fig. 12. SANS,
even in combination with APT, is not capable of unam-
biguously clarifying the average composition of multicon-
stituent precipitates in RPV steels (Carter et al., 2001;
Hyde et al., 2014). Approaches aimed to isolate individ-
ual effects are crucial. Recent insight into the roles of
impurity Cu and alloying Mn and Ni derived from mag-
netic SANS is highlighted below.

Spin-polarized neutrons (Ulbricht, 2006) indicated
∆ηm∆ηn > 0 for the nanofeatures formed in a neutron-
irradiated RPV steel containing 0.2 wt% Cu and 0.8 wt%
Ni. This excludes the dominance of coherent Ni-clusters
(bn,Ni > bn,Fe) and supports CRPs instead (see Table I).

For two neutron-irradiated Fe-Mn-Ni(-Cu) model al-
loys containing 1.2 wt% Mn (both), 0.7 wt% Ni (both)
and 0.1 wt% Cu (second alloy only), A < 1.4 (the
value for voids) was observed for the lowest exposure of
0.051 dpa (Bergner et al., 2010). This indicates the dom-
inance of Mn (bn,Mn < 0, see Table I) in the early stage
of solute cluster formation. These clusters are presum-
ably related to the formation of “late blooming” MNPs
at high fluences (Odette, 1995). Applying a combination
of methods, Sprouster et al. (2016) confirmed that the
MNPs identified after high-fluence irradiations are well-
defined phases.

Böhmert et al. (2004) and Wagner et al. (2012) re-
ported pronounced linear correlations of the square root
of precipitate volume fraction and irradiation hardening
of RPV steels. The volume fractions were derived from
magnetic SANS assuming nonmagnetic scatterers for the
sets of RPV steels. This type of correlation is rational-
ized in the framework of the dispersed-barrier harden-
ing model, which considers the obstruction of dislocation
glide by randomly-dispersed irradiation-induced obsta-
cles, e.g., CRPs or MNPs.

D. Fe-Cr alloys and ferritic-martensitic Cr steels

As mentioned in Sec. IV.A, 8 − 18% Cr steels are
promising candidates for nuclear applications. The high-
temperature γ-phase field in the Fe-Cr system extends
to 11.9 wt% Cr. The martensitic transformation is only

available below this level. The microstructure of Cr steels
may be martensitic or ferritic depending on the cool-
ing rate (transformable or ferritic-martensitic steels). At
higher Cr contents, the steels are always ferritic (ferritic
stainless steels).
Cr contents in excess of the solubility limit of Cr in Fe

below 500 ◦C give rise to phase separation into Fe-rich α
and Cr-rich α′. The formation of α′ is responsible for the
so-called 475 ◦C embrittlement during thermal aging and
for the embrittlement during neutron irradiation of& 9%
Cr steels. α and α′ are both bcc with only minor differ-
ences of the lattice parameters. The wide miscibility gap
and small misfit strains make the Fe-Cr system particu-
larly attractive for the investigation of phase separation
by spinodal decomposition. SANS is well suited because
both magnetic and nuclear scattering lengths sufficiently
differ from Cr to Fe. Moreover, magnetic and nuclear
contrasts are of similar magnitude, contrary to Fe-Cu
with ∆ηm ≫ ∆ηn (see Table I).
SANS was applied to investigate spinodal decompo-

sition in Fe1−xCrx (typically x > 0.25) (Bley, 1992;
Katano and Iizumi, 1984; Ujihara and Osamura, 2000;
Vintaykin and Kolontsov, 1968; Xu et al., 2016). These
studies have in common that no external magnetic field
was applied to the samples; for a comment see LaSalle
and Schwartz (1986).
The determination of the solubility limit of Cr in α

below 500 ◦C (Fe solvus line of the Fe-Cr phase diagram)
is challenging because α-α′ phase separation via nucle-
ation and growth is extremely slow. Bonny et al. (2008)
concluded from reviewed experimental data that the
solvus line according to the standard phase diagram must
be shifted to higher Cr concentrations. Bergner et al.

(2009), using Eq. (40), derived the volume fraction of α′

from SANS experiments performed on industrial-purity
Fe1−xCrx (x = 0.125) neutron-irradiated at 300 ◦C and
found that a quasi-steady state of Cr precipitation had
been reached. The measured A-ratio, A = 2.05 ± 0.1,
was independent of q and agreed with the value for α′

particles, A = 2.1 (Mathon et al., 2003) (see Fig. 13). In
view of the technical importance, a strict estimation of
the solvus line requires additional attention.
Fe-Cr alloys also attracted interest as model systems

aiming to explore the irradiation behavior of Cr steels.
A set of neutron-irradiated Fe1−xCrx alloys (x = 0.025−
0.125) was characterized by means of magnetic SANS and
APT. The fraction of 41.5% Fe in α′ found by APT was
inconsistent with nuclear SANS (Bergner et al., 2013).
Further clarification is required.
Briggs et al. (2017) reported results of a combined

APT/SANS investigation of α′ precipitation in neutron-
irradiated Fe-Cr-Al alloys to conclude about the role of
Al. As pointed out by the authors, no magnetic field was
applied and the measured total scattering was assumed to
represent nuclear scattering, which gives rise to an over-
estimation of the volume fraction of α′. In retrospect, it
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FIG. 13 Effect of neutron exposure on A(q) for neutron-
irradiated Fe1−xCrx (x = 0.125). The measured magnetic
scattering is shown in the inset. The unirradiated reference
was subtracted before calculating A(q). Theoretical A-ratios
are indicated.

seems worthwile to quantify the degree of overestimation.
Indeed, the isotropic magnetic scattering in the demag-
netized state of the sample attains 2/3 of the magnetic
scattering contrast, compare also Eq. (45) (Hyde et al.,
2014).

Regarding Cr steels, Coppola et al. (1998) used
spin-polarized neutrons to investigate an unirradiated
10.5 wt% Cr steel austenitized at 1075 ◦C and quenched
in air. Negative values of the product ∆ηm∆ηn were
found for the size range 1 − 10 nm, which allowed the
dominant type of scatterers to be identified as Fe-rich
carbides as opposed to Cr-rich carbides.

Mathon et al. (2003) applied magnetic SANS to in-
vestigate a number of neutron-irradiated 7 − 12% Cr
steels. Calculation of the A-ratio required a number
of uncertainties related to the composition and mag-
netic scattering length densities of α and α′ be ad-
dressed. Mathon et al. (2003) proved that the calculated
A-ratio depends only weakly on these factors. Compar-
ison with the measured A-ratios allowed α′-phase parti-
cles to be identified as the dominant irradiation-induced
nanofeatures for all but the lowest Cr contents, 7.5 wt%
and 8.4 wt%. Moreover, irradiation-accelerated rather
than irradiation-induced precipitation of α′-phase parti-
cles was suggested. These results gave fresh impetus for
the reconsideration of the Fe solvus in the binary Fe-Cr
equilibrium phase diagram (see above).

E. Advanced oxide dispersion-strengthened steels

Advanced oxide dispersion-strengthened (ODS) Cr
steels, also referred to as nanostructured transformable
steels (< 12% Cr) or nanostructured ferritic alloys (>
12% Cr), are distinguished by their excellent radiation
resistance (Odette et al., 2008; Ukai and Fujiwara, 2002).
The standard fabrication route is based on powder metal-
lurgy including the steps of mechanical alloying by means
of high-energy ball milling of a prealloy powder blended
with typically 0.2 − 0.5 wt% yttria powder and consoli-
dation, mainly by means of hot isostatic pressing (HIP).

As oxide nanoparticles are typically nonmagnetic, the
volume fraction can be derived in absolute units from
magnetic SANS. The A-ratio is particularly useful to
check hypotheses on the type of oxides dominating in
macroscopic samples (see Fig. 11). The selection of a
suitable reference sample or baseline for SANS is an is-
sue: Y-free counterparts produced in parallel with ODS
steels (Alinger et al., 2004; Pareja et al., 2015) do not
only differ from the ODS samples with respect to the ab-
sence of Y-bearing oxides (intended difference), but also
with respect to other features, such as the presence of
Cr- and Ti-bearing oxides (side effect).

Magnetic SANS was applied to examine advanced ODS
steels across all development stages and production steps.
The effect of milling parameters on the size distribution
and type of oxide nanoparticles was addressed by inves-
tigating as-milled powders (Alinger et al., 2004; Mathon
et al., 2012) or consolidated samples with the consol-
idation parameters kept constant (Hilger et al., 2016).
Alinger et al. (2004) studied ODS alloys with the com-
position and processing parameters varied systematically
and found that both Y (in the form of added yttria pow-
der) and Ti (as constituent of the pre-alloy) are required
for a high number density of oxide nanoparticles to be
formed during HIP. Mathon et al. (2012), supplemented
by Hilger et al. (2016), tabulated A-ratios for different
kinds of Y-, Cr-, Ti-containing equilibrium and nonequi-
librium oxides in Fe-Cr alloys. The comparison of mea-
sured (2.0−2.8) and calculated A-ratios proved useful to
rule out a number of reported candidates for the dom-
inant type of nanoparticles, such as Y2O3 (A = 3.2).
It is worth noting that the measured A-ratio is a good
indicator of the particles’ Y:Ti ratio because of the differ-
ent nuclear scattering lengths of Y (bn = 7.75 fm) and Ti
(bn = −3.37 fm). However, the variation of the dominant
types of nanoparticles as a function of the processing pa-
rameters is still not exhaustively understood.

Wang et al. (2012) performed in situ annealing at con-
tinuously increasing temperatures up to 1400 ◦C in SANS
experiments on a 14% Cr nanostructured ferritic alloy.
No magnetic field was applied, raising questions on the
role of magnetic scattering. Nonetheless, the nanoclus-
ters were found to persist up to 1400 ◦C indicating un-
usual thermal stability. The robust measures of particle
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radius and volume fraction derived from SANS give rise
to pronounced correlations with hardness and yield stress
(Alinger et al., 2004; Zhong et al., 2016).

F. Summary on magnetic steels

Magnetic SANS has contributed significantly to the
understanding of the behavior of ferromagnetic RPV
steels, high-Cr steels, and advanced ODS steels in ex-
treme environments. It is the ferromagnetism that al-
lows magnetic and nuclear scattering to be separated, the
number density of scatterers to be estimated, and the
A-ratio as an indicator of composition to be exploited.
The possibility of Fe fractions in nm-sized precipitates
substantially in excess of equilibrium levels would im-
pede the derivation of volume fractions and number den-
sities from SANS results. However, such excess levels
seem to be generally unfounded. By contrast, it is sug-
gested to use SANS in combination with APT in order
to calibrate the Fe fraction in cases of doubt. A num-
ber of material-specific open issues have been identified
above. As material trends move towards nanostructured
steels, strict interpretation of SANS results increasingly
requires spin-misalignment scattering to be addressed.
Samples of complex shape or in situ treatments may pre-
vent magnetic saturation from being reached in SANS
experiments. Refined strategies to estimate volume frac-
tions and number densities under such circumstances are
desirable.

V. MAGNETIC NANOPARTICLES AND FERROFLUIDS

In this section we review the use of SANS for the
investigation of magnetic nanoparticles and ferrofluids.
Magnetic nanoparticles mostly consist of an inorganic
magnetic nanoparticle core surrounded by a nonmagnetic
stabilizing shell of either organic ligands, polymers, or
inorganic materials. Below the critical size limit, the
nanoparticle demagnetization energy is not sufficient to
compensate the domain-wall energy, resulting in a single-
domain state. Single-domain nanoparticles have different
magnetization relaxation characteristics than the bulk
material, leading to phenomena such as superparam-
agnetism, covered in detail in Bedanta and Kleemann,
2009. The distinct magnetization relaxation behavior of
nanoparticles gives rise to diverse applications, e.g., in
information technologies or medical applications such as
medical imaging and magnetic hyperthermia. Colloidal
dispersions of single-domain magnetic nanoparticles in a
carrier liquid (Bader, 2006; Pankhurst et al., 2003) are
referred to as ferrofluids and find application in high-
vacuum gears, seals, loudspeakers, sensors, etc (Joseph
and Mathew, 2014). Important parameters regarding
the preparation and application of ferrofluids include the

magnetic material of the nanoparticles and the stability
against precipitation.

The synthesis of magnetic nanoparticles can be car-
ried out by either top-down techniques (starting with
the bulk material) or bottom-up approaches (build-
ing up the material from atomic or molecular species)
(Joseph and Mathew, 2014; Lu et al., 2007; Park et al.,
2007; Xia et al., 2009), whereas the latter are gener-
ally preferred for enhanced sample homogeneity on the
nanoscale. Co-precipitation has been widely applied as a
large-scale bottom-up technique, at the expense of mod-
erate particle-size distribution. Large-scale synthesis of
monodisperse nanoparticles (e.g., ferrites) with defined
shape is nowadays routinely achieved by thermal decom-
position of metal oleates in the presence of organic sta-
bilizing ligands (Park et al., 2004, 2005). Stabilization
of the prepared nanoparticles in dispersion is important
in order to avoid aggregation and precipitation and de-
pends strongly on the nature of the carrier liquid (polar
or nonpolar) and the stabilizing approach (steric stabi-
lization using surfactants, polymers, or electrostatic sta-
bilization) (Joseph and Mathew, 2014).

Major challenges addressed by SANS include the in-

traparticle magnetization, i.e., the spatial magnetiza-
tion distribution within magnetic nanoparticles, and in-

terparticle structure formation, i.e., aggregate or su-
perstructure formation induced by dipolar interparti-
cle interactions. Moreover, SANS gives insight into
microstructural aspects of magnetohydrodynamics and
magnetoviscosity of ferrofluids.

We start the discussion in Sec. V.A by introducing the
relevant cross-section relations in the framework of the
particle-matrix approach. Sec. V.B will review the con-
tribution of magnetic SANS to the investigation of the in-
traparticle magnetic morphology, including the spatially-
resolved magnetization profile in nearly uniformly mag-
netized nanoparticles, whereas Sec. V.C will focus on the
application of magnetic SANS to the structure formation
in more concentrated ferrofluids. In Sec. V.D we will
summarize recent developments concerning the magnetic
structure of shape-anisotropic nanoparticles, such as ori-
ented nanowires in porous alumina matrices.

A. Particle-matrix approach

As already stated in Secs. I and II, magnetic SANS is
sensitive to a length scale relevant for magnetic nanopar-
ticles in a nonmagnetic matrix. The particle-matrix ap-
proach, consisting of nuclear and magnetic form-factor
contributions of the individual nanoparticles as well as a
structure factor describing potential interparticle inter-
actions, is therefore widely used to describe SANS data
from these systems.

To apply a form-factor model F (q, {R, . . .}), the differ-
ent averaging procedures to obtain a macroscopic cross
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section from the microscopic cross sections for individ-
ual particles are of particular importance. This intrinsic
property of SANS is connected to the limited size of the
coherence volume of the neutron in the beam (Felber
et al., 1998). A system of scatters in the particle-matrix
approach is called diluted, if the neutron coherence vol-
ume contains on the average only a single particle. If, on
the other side, one aims for the investigation of structure
formation that volume has to be large enough so that
the neutron can probe particle-particle interferences (see
Sec. V.C). To a great extent, and with some exceptions
(see, e.g., Grigoriev et al., 2010), this coherence volume
is defined by the instrument setup. Assuming a diluted
system of nanoparticles in a neutron beam with an aver-
age typical flux of the modern instruments of the order of
107 s−1cm−2, different neutrons will scatter on different
particles in a nonconstructive way. At the 2D detector
(Fig. 1), the sum of the squared amplitudes is then re-
lated to the count rate, and normalized by the scattering
volume and incident flux to obtain the macroscopic SANS
cross section.
In most experimental situations, the individual parti-

cles have slightly different properties, e.g., different radii,
and a global average over a particle-size distribution func-
tion ω(R) has to be part of the data-fitting procedure; in
other words, the sum of the squared amplitudes is often
substituted by an integral assuming ω(R) to be a con-
tinuous function, and the nuclear SANS cross section is
expressed as

dΣ

dΩ
=

∫
∆η2n|Fn(q, R)|2ω(R)dR, (41)

where ∆ηn denotes the nuclear scattering-length den-
sity (SLD) contrast between particle and matrix (gen-
erally assumed to be independent of R). For magnetic
SANS, described by a magnetic form factor Fm(q, R) and
the magnetic SLD contrast ∆ηm, a similar expression is
valid. As shown in Sec. II.D, the magnetic SLD con-
trast ∆ηm = ηm between magnetic particle and non-
magnetic matrix can be written as ηm = bHMs, where
bH = γnr0

2 µ−1
B and Ms is the saturation magnetization

(in A/m) of the particle. For single-domain (Stoner-
Wohlfarth) particles exhibiting stable ferromagnetism,
Eq. (41) has to be solved directly by employing a particu-
lar form-factor model (or even a structure factor); in case
of inhomogeneously magnetized nanoparticles the mag-
netization distribution has to be computed using micro-
magnetic theory and the SANS cross sections are given
by Eqs. (12)−(20).
In the following we will discuss how the magnetic

SANS cross section of superparamagnetic (SPM) or
pseudo-SPM particles in a nonmagnetic matrix can be
computed; here, an additional averaging procedure over
the orientation distribution p(ϕ) of the individual mag-
netic particle moment misaligned by the angle ϕ rela-
tive to the field direction becomes relevant. For a single-

domain particle, one can assume an orientation distribu-
tion based on the thermal and magnetic-energy compe-
tition. If dΩ = sinϕdϕdφ is the solid angle increment
in a polar system where the z-direction is given by the
external field H0, then the orientational average over ϕ
is described by the probability distribution

p(ϕ) ∝ exp
µ0H0MsVp cosϕ

kT
, (42)

where Ms is the saturation magnetization of the particle
with volume Vp. In this model a single neutron inter-
acts with the magnetization vector of the particle which
is lying on a cone with solid angle ω = (ϕ, φ) around the
external-field axis. Because the φ component is indepen-
dent from any external field, the distribution is random
and will not introduce any anisotropy. This is differ-
ent for the ϕ component; it directly reflects the influ-
ence of the external magnetic field (and temperature) via
Eq. (42), leading to a general scattering-intensity pattern
of the type

I(q) = A(q) +B(q) sin2 θ. (43)

In case of moderately polydisperse systems, the dou-
ble average

∫ ∫
ω(R)p(ϕ)dRdϕ can be divided in two

separate parts. If [. . .] denotes the directional average,
[x] =

∫
x(ϕ)p(ϕ)dϕ, it allows the analytical calculation

of all the contributions in Eqs. (12)−(20). The required
magnetization averages are:

[
M̃x

]
=
[
M̃y

]
= 0 and

[
M̃z

]
= FmL(β)

[
|M̃x|2

]
=
[
|M̃y|2

]
= F 2

m

L(β)

β
(44)

[
|M̃z|2

]
= F 2

m

(
1− 2

L(β)

β

)
,

so that the SANSPOL cross section in the k0 ⊥ H0 scat-
tering geometry [Eq. (14)] evaluates to (for details see,
e.g., Heinemann et al., 2004a; Heinemann and Wieden-
mann, 2003; Wiedenmann, 2001, 2005):

dΣ±
⊥

dΩ
=

∫
ω(R)dR

(
F 2
n + 2F 2

m

L(β)

β
+

{
F 2
m

(
1− 3

L(β)

β

)

+ (2P − 1)(2ǫ± − 1)FnFmL(β)
}
sin2 θ

)
(45)

where Fm and Fn are the magnetic and nuclear form fac-
tors, L(β) = coth(β)−1/β is the Langevin function with
β = µ0H0MsVp/(kT ), and θ is the angle between the
magnetic field and the q-vector. One can observe that
A(q) in Eq. (43) now contains not only the nuclear SANS
but also magnetic contributions; these originate from the
distribution of the magnetic moments around the exter-
nal field and decrease with increasing field (L(β)/β → 0
for β → ∞ and L(β)/β → 1/3 for β → 0). Magnetic field
(H0) or temperature (T ) variation change β and thereby
the fraction of A(q) and B(q) (Heinemann et al., 2004a;
Heinemann and Wiedenmann, 2003). For SANSPOL the
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FIG. 14 (A) Experimental SANS data of a Co-based fer-
rofluid. The black lines are the results of a simultaneous
fit of Eq. (46) for different external fields. The inset shows
the core-shell particle with confidence intervals for the core
radius (green-dashed line) and shell-thickness (pink dashed
line). (B) Fits of the cross term lead to dashed curves within
the full flipper on and off data. The missing intensity origi-
nates from nonmagnetic contributions and can be fitted sep-
arately. Image taken from Heinemann et al., 2004a.

B(q) part now also contains nuclear magnetic interfer-
ence contributions. This is not the case for unpolarized
SANS and can be used to improve the data analysis. If
the nuclear Fn(q, R) and magnetic Fm(q, R) form fac-
tors depend on the same particle-size distribution, the
particle-matrix approach from Eq. (45) leads to a simple
equation for the intensity differences [flipper on (ǫ− = ǫ)
minus flipper off (ǫ+ = 0)]:

dΣ−
⊥

dΩ
− dΣ+

⊥

dΩ
= 2(2P − 1)ǫ

×
∫
L(H0, R

3)Fn(R)Fm(R) sin2 θ ω(R)dR. (46)

In this cross term only particles with nuclear and mag-
netic contrast will contribute; this offers the possibility to
detect contributions of the magnetic scattering without
the influence of properties from purely nonmagnetic scat-
terers like e.g. micelles. For SANSPOL experiments, the
cross-term intensity Eq. (46) is proportional to L(β) and
to the magnetic contrast (included in Fm) which is as-
sumed to be field independent for single domain particles.
This allows a straightforward testing of the Langevin be-
havior by magnetic field variation experiments.

Figure 14, panel (A) displays field-dependent SANS
data obtained on a Co-based ferrofluid. The cross term
Eq. (46) was fitted under the constraint that all struc-
tural contributions like form factors are field indepen-
dent and the overall intensity scales with the magnetic
contrast via the Langevin function only. Taking the
Langevin behavior hypothesis as settled, one can apply a
Bayesian method to refine any structural model by mag-
netic contrast variation (Tatchev et al., 2004). An addi-
tional field will contribute to a better a posteriori infor-
mation about the model and can be used to reduce the
uncertainty levels for the model parameter. For clarity,

Fig. 14, panel (A) shows only two fields, but the model
was fitted with four different fields (including the satura-
tion field) for the final confidence intervals. In principle
this is already possible with unpolarized neutrons but as
one can see from Eq. (45), the nonsaturated parts give
rise to an isotropic contribution leading to bigger error
margins in the nuclear-magnetic scattering separation.
In case of a second population of nonmagnetic scatters
like micelles, it will become very demanding to separate
these contributions without the use of polarized neutrons.
By analyzing the cross term to separate the structural
properties from the magnetic contributions, it is possi-
ble to fit contributions from the additional nonmagnetic
parts (see Fig. 14, panel (B)).
With POLARIS (SANS with 1D polarization analy-

sis) one can go one step further by analyzing the spin-
flip only contributions from Eq. (18) in more detail. We
have shown that for pure superparamagnetic behavior
the resulting SANS cross section can be written as a sum
of two contributions, Eq. (43), where A(q) = 0 for the
I− − I+ term. Therefore, it becomes possible to ex-
tract A(q) and B(q) because of their known angular de-
pendence. Deviation from superparamagnetic behavior
based on a more complex internal spin structure of the
nanoparticles would lead to additional terms with differ-
ent angular dependence due to the occurence of coherent
scattering arising from transversal magnetization compo-
nentsMx andMy [compare, e.g., Eq. (18)]. Although this
could be observed already within the SANSPOL frame,
it would be very hard to extract these additional con-
tributions unambiguously. POLARIS, and in particular
the spin-flip term, opens the possibility to observe these
contributions. Using the same averaging procedure as in
Eq. (44), one obtains for the macroscopic spin-flip cross
section:

dΣ±∓
⊥

dΩ
∝
∫
dϕp(ϕ)

(
|M̃x|2 + |M̃y|2 cos4 θ+

+|M̃z|2 sin2 θ cos2 θ − 2M̃yM̃z sin θ cos
3 θ
)
. (47)

The Σ+−
⊥ part is identical to the Σ−+

⊥ part and contains
only magnetic contributions (see, e.g., Honecker et al.,
2010 and Wiedenmann, 2005). Depending on the model
chosen for the distribution of magnetic moments, not
necessarily following a Langevin behavior, one can try
to identify newly occurring anisotropic scattering pat-
terns (see, e.g., Krycka et al., 2010a,b, 2014, 2015, 2012b;
and Michels et al., 2015). In all cases a model-based fit-
ting of the full 2D detector pattern or full-fledged extrac-
tion of the different angle-dependent contributions, like
in SANSPOL, is preferable.
Moreover, it must be emphasized that all additional

corrections for the imperfect analyzers, flippers, and the
different transmissions for up and down neutrons have
to be taken into account very carefully to minimize spin
leakage (Wildes, 2006). Because the nuclear scattering
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can be dominating, even small leakages could lead to mis-
interpretation of the obtained data. Although in princi-
ple POLARIS allows one to unambiguously distinguish
between magnetic and nuclear coherent scattering, these
experimental complications make such experiments more
demanding and error vulnerable.

B. Intraparticle magnetization

The spin structure of magnetic nanoparticles can be
regarded as a superspin of coupled atomic spins within
the particle core. Depending on particle volume, mag-
netic anisotropy, and thermal energy, Néel relaxation of
the superspin is either blocked or dominant, giving rise
to superparamagnetism. The existence of a magnetically
dead or canted layer towards the particle surface has been
widely reported, mainly based on theory and observa-
tions from macroscopic magnetization (Coey, 1971; Ko-
dama and Berkowitz, 1999; Kodama et al., 1996). The
lower saturation magnetization than observed in the bulk
materials is generally attributed to such surface spin dis-
order (Curiale et al., 2009; Dutta et al., 2009; Kovács
et al., 2009), leading to the generally accepted model
of magnetic nanoparticles consisting of a superspin core
and a surface region of canted or disordered spins. In
contrast to spatially averaging and macroscopic integral
probes, magnetic SANS has the unique strength to dis-
entangle the spatial distribution of magnetization within
the nanoparticle by analysis of the nuclear and magnetic
particle sizes (indicating surface spin disorder) as well
as the magnetic SLD ηm (corresponding to the absolute
magnetization).

In a first approach, the magnetic form factor can be re-
garded similar or equal to the nuclear inorganic nanopar-
ticle core. In this case, the magnetic contrast obtained
by (polarized) SANS is beneficial for structural charac-
terization of magnetic nanoparticles in a nonmagnetic
matrix or stabilizing material such as an organic ligand
shell (Butter et al., 2004; Hoell et al., 2002), an inor-
ganic oxidized surface layer (Butter et al., 2004), or a
silica shell (Bonini et al., 2004, 2006, 2007). Avdeev and
Aksenov, 2010 established a modified basic functions ap-
proach that relies on a detailed contrast variation using
H and D-solvents. This approach allowed for a consistent
determination of the nuclear particle morphology for di-
lute polydisperse nanoparticle dispersions stabilized by
different fatty acids (Avdeev et al., 2007).

Heinemann and Wiedenmann further applied the ad-
ditional contrast variation provided by polarized SANS
to the structural characterization of magnetic nanoparti-
cles with a nonmagnetic ligand shell next to excess sur-
factant (forming nonmagnetic micelles) and larger aggre-
gates (composed of magnetic nanoparticles with nonmag-
netic surfactant) (Heinemann et al., 2004a,b; Wieden-
mann et al., 2006a; Wiedenmann, 2005). By analyz-

ing the radius of gyration of polydisperse maghemite
nanoparticles, Avdeev et al., 2009 report a difference
between the nuclear and magnetic radii of maghemite
nanoparticles in dilute dispersion which is attributed to
surface spin canting or disorder effects. Significant vari-
ation between nuclear and magnetic structures are at-
tributed to aggregates. The nuclear signal appears af-
fected by van der Waals interactions at small q, whereas
there is negligible dipolar magnetic interaction in the su-
perparamagnetic particle ensemble. In order to exclude
the influence of interparticle correlation, a decrease of
the particle number density in the magnetic fluids is sug-
gested (Nagornyi et al., 2010).

With the availability of nearly monodisperse nanopar-
ticles in large quantities, the discrimination of surface
spin disorder has been enabled with enhanced precision.
Using the POLARIS technique, Krycka et al., 2010a stud-
ied the 3D magnetization distribution in dense arrays
of 9 nm iron oxide nanoparticles. Assuming a field and
temperature-independent structure factor, the significant
difference of form factors inM‖ andM⊥ indicates surface
spin canting in a 1−1.5 nm-thick surface region. Further
analysis of the vectorial shell magnetization in M⊥/M‖

using a core-shell form factor model suggests an average
canting angle of 23 − 31◦ (at 1.2T and 300K) (Krycka
et al., 2014). The significant thickness of the canted sur-
face layer found in these studies is likely a result of dipolar
interactions in the dense nanoparticle arrays. The spatial
magnetization distribution in noninteracting nanoparti-
cles was investigated by Disch et al., 2012 in dilute dis-
persions of highly monodisperse maghemite nanoparti-
cles using SANSPOL; surface spin disorder was revealed
in a narrow surface layer that depends on the particle
shape and is slightly thicker for nanocubes (0.5 nm) than
for nanospheres (0.3 nm). More recently, Zàkutnà et al.
reported surface spin disorder in noninteracting ferrite
nanoparticles with a surface layer thickness of 0.3 nm in
saturation, increasing up to 0.7 nm with decreasing ap-
plied magnetic field (Zakutna, 2018).

In addition to surface spin disorder, polarized SANS
revealed an unexpectedly low magnetic scattering con-
trast in the particle core (Avdeev et al., 2009; Butter
et al., 2004; Disch et al., 2012). It is noteworthy that
the determination of the quantitative ηm does not rely
on calibration of the differential cross section to abso-
lute units, and thus cannot be mistaken for low particle-
number densities. Krycka et al., 2010b derive ηm relative
to the known nuclear SLD ηn from the ratio F 2

m/F
2
n ,

assuming a phenomenological structure factor in assem-
blies of iron oxide nanoparticles. The magnetic SLD ηm
is a quantitative measure of the magnetization. As an
example, Fig. 15 displays the field dependence of the
core ηm in maghemite nanocubes and nanospheres, re-
vealing a spontaneous magnetization of only 76% of the
bulk material, independent of the particle shape (Disch
et al., 2012). The low magnetization even in the particle
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FIG. 15 Field dependence of the magnetic SLD ηm in
the nanoparticle core of maghemite nanospheres (top) and
nanocubes (bottom) with fits of the Langevin behavior. In-
set: spatial magnetization distribution of the nanospheres
(SANS) compared to the macroscopic (VSM) and the theo-
retical bulk maghemite moments (dashed line: 300K). Image
taken from Disch et al., 2012.

core thus indicates spin disorder in the entire nanoparti-
cle, suggesting that the commonly observed lower macro-
scopic magnetization in nanoparticles as compared to the
bulk material is not solely related to surface spin disor-
der, but to a large extent a result of low magnetization
in the entire nanoparticle.

Given that SANS is sensitive to the continuous magne-
tization distribution on the nm scale, further character-
ization of the atomic-scale magnetization or spin disor-
der in magnetic nanoparticles requires the combination
with theory or different techniques. Combination of PO-
LARIS with an energy-balance model was reported for
the discussion of the average spin-canting angle, thereby
assuming, among others, a perfect magnetite Fe3O4 com-
position and spin-canting solely on the tetrahedral Fe
sites of the spinel structure (Krycka et al., 2014). The
study is under controversial debate for the different pre-
conditions assumed (Krycka et al., 2015; Michels et al.,
2015). Combining SANSPOL with nuclear-resonant x-
ray scattering, Herlitschke et al., 2016 recently demon-
strated a significant degree of spin disorder in 57Fe-
enriched maghemite nanoparticles that is related to a
deviation of about half of the iron atomic spins in both
tetrahedral and octahedral sites from perfect ferrimag-
netic order. Neutron diffraction is sensitive to the atomic
magnetic moments (Golosovsky et al., 2001), and, ap-
plied to maghemite nanoparticles, revealed a slightly
larger disorder on the octahedral Fe site (Yusuf et al.,
2006). Specifically for magnetite/maghemite nanoparti-
cles, the reduced magnetization has recently been asso-
ciated with antiphase boundaries as observed using HR-
TEM and diffraction techniques (Nedelkoski et al., 2017;
Wetterskog et al., 2013).

Enhancement of the magnetic properties of iron oxide
nanoparticles was achieved by the introduction of a sil-
ica shell, resulting in a significant increase of ηm and in a
decrease of the lower magnetized surface region as com-
pared to the noncoated particles (Lee et al., 2015). Simi-
larly, magnetic nanocrystals embedded in silicate glasses
were found to consist of a magnetic core with equal mag-
netic and nuclear size, surrounded by a nonmagnetic shell
(Raghuwanshi et al., 2014, 2015).

Further progress in the application of magnetic SANS
to the study of intraparticle magnetization includes the
investigation of more complex magnetic morphologies
such as multidomain nanoparticles consisting of aggre-
gates of magnetic crystallites (Bender et al., 2017; Den-
nis et al., 2015), magnetic nanosponges (Bonini et al.,
2008), or antiferromagnetic nanoparticles with magnetic
shell arising from surface spin disorder (Manna et al.,
2012). For core-shell particle systems, magnetic SANS
allows one to access the different magnetic contributions
in core and shell (Ijiri et al., 2005), and the potential spin
disorder at core-shell interfaces.

C. Interparticle correlations

Interactions between magnetic nanoparticles typically
originate in magnetic dipole-dipole, steric, or van der
Waals interactions and can be induced by increased par-
ticle concentration or application of magnetic, electric,
or flow fields. As a result, the evolving structure fac-
tor indicates in the first approximation the attractive
and repulsive interparticle interactions, a scenario that
limits the single-particle scattering and therefore the
particle-matrix approach. Structures reported for dis-
persions of magnetic nanoparticles or ferrofluids range
from short-range ordered aggregates via chain-like struc-
tures to pseudocrystalline ordering in concentrated fer-
rofluids upon application of a magnetic field. For short-
range correlations, models such as hard-spheres or sticky
hard-spheres can be applied in combination with differ-
ent approaches for the structure factor S(q) along with
the form factor F (q). The I ∝ F 2(q)S(q) approach is
applied in many situations where a simple expression for
S(q) is plausible. If the characteristic properties of the
single nanoparticles give rise to pseudocrystalline order-
ing, even classical Bragg-scattering patterns including su-
perstructure reflections are observed on the 2D detector
(see Fig. 16). Here, the structural information (superlat-
tice symmetry) can be derived directly from the reflec-
tion positions, i.e., without complex fitting of a particular
structure factor.

Magnetic SANS has been widely applied to the inves-
tigation of structure formation and stabilization of fer-
rofluids. Avdeev et al., 2015 report the importance of
both carrier polarity and stabilization technique for the
stability of ferrofluids; the stability of sterically, electro-
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statically, and double-sterically stabilized ferrofluids has
been reviewed in detail. In general, the higher the surfac-
tant efficiency, the more stable is the system at surfactant
excess (Petrenko et al., 2016). Double-layer stabilization
enables the use of carrier media with high polarity such as
water for ferrofluids otherwise dispersed in nonpolar sol-
vents, however, at the expense of stability (Avdeev et al.,
2006). Attractive interparticle interactions, revealed in
sterically-stabilized nonpolar benzene-based ferrofluids,
can be directly related to the magnetoviscous properties.
In comparison, for moderately polar pentanol-based fer-
rofluids repulsive interparticle interactions are observed
without any magnetoviscous effect (MVE) (Avdeev and
Aksenov, 2010).

The MVE is related to an increased viscosity upon ap-
plication of a magnetic field as a result of interparticle
interactions in ferrofluids. Using magnetic RheoSANS,
Pop and Odenbach established the correlation between
the ferrofluid microstructure and the MVE as a result
of aggregate/chain formation in the ferrofluid, whereas
the macroscopically observed shear-thinning effect is in-
duced by breakage of these chains upon increased shear
rates (Pop et al., 2004; Pop and Odenbach, 2006). In the
context of structural relaxation of magnetic nanoparti-
cle aggregates, the potential of a rotating sample in a
static magnetic field instead of using a rotating mag-
netic field was demonstrated for the investigation of the
q-dependent diffusion time τq, applicable to relaxation
times of 3− 300ms (Wandersman et al., 2009). An anal-
ogous electroviscous effect was reported upon application
of DC or AC electric fields, where changes in the viscosity
were related to aggregate formation in transformer-oil-
based ferrofluids (Kurimský et al., 2017; Rajnak et al.,
2017, 2015).

Upon application of a magnetic field, strong anisotropy
of the Brownian motion in solution is observed, resulting
in a lowering of the concentration fluctuations along the
field, concomitantly expressed by an anisotropic struc-
ture factor of an otherwise fluid-like magnetic colloid
sample (Gazeau et al., 2002; Mériguet et al., 2006a,b).
Formation of chain-like structures that orient in the di-
rection of an applied magnetic field was observed for
magnetosomes (Hoell et al., 2004) as well as for cobalt
nanoparticles (Barrett et al., 2011). On a larger scale,
Jain et al., 2014 observed field-dependent chain forma-
tion of 160 nm ferrofluid emulsion droplets. Wieden-
mann et al., 2002 discussed the field- and concentration-
induced structure formation in cobalt ferrofluids in de-
tail; depending on the particle concentration, a transi-
tion of isolated particles (< 1 vol.%) to short-range or-
dered aggregates (5 vol.%) is observed. Upon application
of a magnetic field, a combination of chain-line struc-
tures and pseudocrystalline ordering is found (Heine-
mann et al., 2007; Wiedenmann et al., 2003; Wieden-
mann and Heinemann, 2005). A SANSPOL study of
colloidal magnetite nanoparticles illustrates how a larger

FIG. 16 SANS patterns of iron oxide nanoparticles in solu-
tion, exposed to external magnetic fields aligned vertically.
In (f), the calculated reflections of a face-centered cubic su-
perstructure are shown as white circles. Image taken from Fu
et al., 2016.

particle size leads to larger dipole-dipole interaction, re-
sulting in 2D nanoparticle sheets with hexagonal symme-
try (Klokkenburg et al., 2007). Recently, Fu et al., 2016
reported the field-induced self-organization of iron oxide
nanoparticles. The combined SANS and VSANS study
gives information on both the symmetry of the superlat-
tice and its extensions in large-scale oriented aggregates.
Whereas aggregate formation is already observed at a
very low field of 0.02T, a highly crystalline superlattice
emerges beyond 0.1T that is indexed according to a fcc
lattice with the nearest-neighbor direction [110] oriented
parallel to the applied field (see Fig. 16).

In a solid matrix, liquid-like short-range order of small
∼ 2 nm-sized Fe nanoparticles has been identified, re-
vealing ferromagnetic interparticle correlations at tem-
peratures below 100K (Bellouard et al., 1996). Field-
dependent SANS experiments show magnetic interpar-
ticle correlations in dense assemblies of Fe and Co
nanoparticles with different degree of structural order
(Farrell et al., 2006; Ijiri et al., 2005; Sachan et al.,
2008). Ridier et al., 2017 have recently revealed the
individual-collective crossover depending on the particle
size in dense assemblies of nanoparticles; the observation
of ferromagnetically correlated clusters of 4.8 nm par-
ticles, with a temperature-dependent magnetic correla-
tion length, is opposed to the superparamagnetic behav-
ior of larger 8.6 nm particles and was attributed to the
much larger surface anisotropy in the smaller nanopar-
ticles. Applied to granular perpendicular recording me-
dia, SANSPOL measurements provide both the magnetic
grain size, being smaller than the nuclear grain size, and
the interparticle correlation distance (Lister et al., 2009)
as well as the switching process upon magnetization re-
versal (Lister et al., 2010).
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D. Anisotropic nanostructures

The application of magnetic SANS has further been
expanded to anisometric magnetic nanoparticles such as
oriented nanowires. Magnetic nanowires are nowadays
routinely prepared using templated techniques with ei-
ther amorphous silica or anodized alumina matrices as
templates. The degree of alignment and order is tunable
from 2D powders of aligned nanowires with short-range
order towards crystalline arrangements with hexagonally-
packed nanowires. With typical dimensions of a few
tens of nm in cross section, such structures still fit in
the framework of nanomaterials (i.e., with two dimen-
sions smaller than ∼ 100 nm). Magnetization reversal
in aligned nanowire arrays has been studied using both
polarized and unpolarized SANS, and spin misalignment
is commonly observed (Grigoryeva et al., 2007; Grutter
et al., 2017; Günther et al., 2014; Maurer et al., 2014).
However, with a typical nanowire length approaching the
micrometer range and usually oriented parallel to the
neutron beam, arrays of magnetic nanowires act as a
grating, and strong multiple scattering has to be taken
into account depending on the nanowire length; this ef-
fect is discussed in depth in Grigoriev et al., 2010. Due
to their relatively large volume, nanowires exhibit sta-
ble ferromagnetic properties and are mostly multidomain
structures. The particle matrix approach is therefore not
applicable to nanowires; indeed, micromagnetic simula-
tions (Vivas et al., 2017) and experimental data (Günther
et al., 2014) demonstrate strong deviations from the
uniform-particle form-factor model.

VI. MICROMAGNETIC SIMULATIONS

In this section we report on the progress made recently
in the understanding of magnetic SANS data employing
full-scale micromagnetic simulations. These studies take
into account the full nonlinearity of Brown’s static equa-
tions of micromagnetics, in contrast to the analytical cal-
culations reviewed in Sec. II.C, which are limited to the
approach-to-saturation regime.

A. Novel micromagnetic simulation methodology for

modeling bulk magnetic materials

In polycrystalline bulk ferromagnets the sources of spin
disorder are related to lattice imperfections, e.g., point
defects, dislocations, or are directly associated with the
polycrystalline nature of these materials, e.g., to grain-
and phase boundaries, or pores. These microstructural
defects are accompanied by spatial variations of the ma-
terials parameters, for instance, the magnitude of the lo-
cal saturation magnetization, exchange constant, or vari-
ations in the magnitude and/or direction of the magnetic
anisotropy field. As a result, these features give rise to a

deviation of the magnetization from the perfectly aligned
state. Hence, they lead to spin misalignment and to an
ensuing strong magnetic SANS signal.

In this section we review a novel micromagnetic sim-
ulation methodology which takes site-dependent mag-
netic parameters (saturation magnetization, magnetic
anisotropy) and interactions (exchange and magne-
todipolar field) into account. This approach enables
studies of the magnetic microstructure of a wide range
of polycrystalline magnetic materials such as single-
phase nanocrystalline magnets, magnetic nanocompos-
ites, recording media, or magnetic particles in a nonmag-
netic matrix (Erokhin et al., 2012a,b, 2015; Löffler et al.,
2005; Michels et al., 2014; Ogrin et al., 2006; Saranu
et al., 2008; Zighem et al., 2013).

The majority of results which are discussed later on
were obtained on nanocomposites. We would like to em-
phasize that this class of materials is one of the most
complicated from the point of view of numerical simula-
tions. The main difficulty is that they consist of at least
two phases, and the boundaries between these phases
are complicated curved surfaces; a typical example is a
hard-soft nanocomposite consisting of magnetically hard
(i.e., having a large magnetocystalline anisotropy) crys-
tal grains surrounded by a magnetically soft matrix. In
order to perform accurate and efficient simulations of
multiphase nanocomposites, Erokhin et al., 2012a,b have
proposed a methodology which combines the advantages
of a flexible mesh generation with an effective calcula-
tion of the micromagnetic energy. Namely, the whole
mesh generation algorithm can be viewed (Michels et al.,
2014) as a method to discretize a sample into polyhedra
having nearly spherical shape. It allows the use of spheri-
cal dipole approximation—equivalent to the point dipole
approximation—for the evaluation of the magnetodipolar
interaction between the various finite elements.

In the micromagnetic simulations all four standard
contributions to the total magnetic free energy are taken
into account: energy in the external magnetic field, en-
ergy of the magnetocrystalline anisotropy, exchange-
stiffness and magnetodipolar interaction energies (the
antisymmetric Dzyaloshinski-Moriya interaction can also
be implemented). The system energy due to the presence
of an external magnetic field and the energy of the mag-
netocrystalline anisotropy (which can be uniaxial and/or
cubic) are calculated in the model in the standard way,
namely:

Eext = −
N∑

i=1

µi ·H, (48)

Eun
an = −

N∑

i=1

Kun
i ∆Vi (mi · ni)

2
, (49)
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FIG. 17 (a) Schematics of the two scattering geometries and of the microscopic structure of the nanocomposite sample with
simulation volume V = 250 × 600 × 600 nm3. Blue polyhedrons—Fe particles; yellow-orange-red polyhedrons—the matrix
phase. Image taken from Michels et al. (2014). (b) Examples of the spatial distribution of hard magnetic crystallites (soft
crystallites not shown) with different aspect ratios of corresponding ellipsoids of revolution. Image taken from Erokhin and
Berkov, 2017. (c) Core-shell microstructure used in the micromagnetic simulations of a Nd−Fe−B nanocomposite and example
of a polyhedron mesh element distribution in a single grain; blue (yellow) elements correspond to the core (shell), typical
mesh-element size is 2 nm.

Ecub
an =

N∑

i=1

Kcub
i ∆Vi

(
m2

i,x′m2
i,y′ +m2

i,y′m2
i,z′ +m2

i,x′m2
i,z′

)
,

(50)
where H is the external field, µi = µ(ri) and ∆Vi are the
magnetic moment and the volume of the i-th finite ele-
ment (polyhedron), and mi = µi/µi denotes the unit
magnetization vector. Both the anisotropy constants
Ki and the directions of the anisotropy axes ni can be
site-dependent, as required for a polycrystalline material.
The symbols mi,x′ etc. represent the components of the
unit magnetization vectors in the local coordinate system
that is attached to the cubic anisotropy axes. Higher-
order anisotropy contributions can be taken into account.

The evaluation of the exchange-energy contribution in
the model requires a much more sophisticated approach
than in the standard finite difference method (FDM), be-
cause the continuous integral version of this energy con-
tains magnetization gradients,

Eexch =

∫

V

A(r)
[
(∇mx)

2 + (∇my)
2 + (∇mz)

2
]
dV,

(51)
where A denotes the exchange-stiffness constant, and
V is the sample volume. Finding an approximation to
Eq. (51) for a disordered system based on some interpo-
lation procedure preserving the smooth behavior of mag-
netization components—required for the correct evalua-
tion of derivatives in Eq. (51)—is a highly complicated
task.

Berkov and Gorn, 2005 have chosen a completely dif-
ferent approach and developed an algorithm for the

exchange-energy evaluation based on the summation
of the nearest-neighbor contributions, widely used in
FDMs. The integral in Eq. (51) is approximated by the
following sum:

Eexch = −1

2

N∑

i=1

∑

j⊂n.n.(i)

2Aij∆V

a2
(mi ·mj) . (52)

Here, a is the cell size of a regular cubic grid (so that
the cell volume is ∆V = a3), Aij denotes the exchange-
stiffness constant between cells i and j, and the notation
j ⊂ n.n.(i) means that the inner summation is performed
over the nearest neighbors of the i-th cell only. We note in
passing that this Heisenberg-like expression is valid only
when the angles between neighboring moments are not
too large; as shown in Berkov and Gorn, 2005, neglecting
this condition can lead to unphysical results.
In the case of a disordered system, the following expres-

sion for the exchange-stiffness energy, which is analogous
to Eq. (52), has been proposed:

Eexch = −1

2

N∑

i=1

∑

j⊂n.n.(i)

2Aij∆V ij

∆r2ij
(mi ·mj) , (53)

where ∆V ij = (∆Vi + ∆Vj)/2, ∆rij is the distance be-
tween the centers of the i-th and the j-th finite elements
with volumes ∆Vi and ∆Vj , and Aij is the exchange con-
stant. This expression should be corrected taking into
account that the number of nearest neighbors for differ-
ent finite elements may be different. It is done by the
introduction of the correction factor 6/nav, where nav is
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the average number of nearest neighbors for the partic-
ular random realization of the disordered finite element
system. The accuracy of this simple correction method is
surprisingly good, as shown by tests presented in Erokhin
et al., 2012b and Michels et al., 2014.
The energy of the long-range magnetodipolar interac-

tion between magnetic moments and the corresponding
contribution to the total effective field are computed us-
ing the point-dipole approximation as

Edip = −1

2

N∑

i=1

µi

∑

j 6=i

3eij(eij · µj)− µj

∆r3ij
, (54)

i.e., magnetic moments of finite elements are treated as
point dipoles located at the polyhedra centers. This ap-
proximation is equivalent to the approximation of spher-
ical dipoles, i.e., it would be exact for spherical finite
elements. Hence, for the discretized system, this approx-
imation introduces some computational errors, because
the finite elements are polyhedra. However, these errors
are small, because the shape of these polyhedra is close to
spherical, due to the special algorithm employed for the
generation of the mesh. If necessary, these errors can be
significantly reduced further, taking into account higher
order terms in the multipole expansion.
The summation in Eq. (54) is performed by the

particle-mesh Ewald method. The specific implementa-
tion of the lattice-based Ewald method for the magne-
todipolar interaction for regular and disordered systems
of magnetic particles is described by Berkov and Gorn,
1998 and Gorn et al., 2007. The major advantage is the
possibility to use FFT for computing the long-range part
of the total magnetodipolar field.
For the minimization of the total magnetic energy,

obtained as the sum of all the contributions described
above, a highly optimized version of a gradient method
is used employing the dissipation part of the Landau-
Lifshitz equation of motion for magnetic moments
(Berkov, 2007; Landau and Lifshitz, 1935). For the ter-
mination of the energy minimization, the local torque cri-
terion is taken into account: the iteration process stops,
if the maximal torque acting on magnetic moments is
smaller than some prescribed value. This condition is
more appropriate than the alternative criterion of a suf-
ficiently small energy difference between two subsequent
steps.
The methodology described above was successfully em-

ployed (Erokhin et al., 2012a) for the explanation of
the nontrivial SANS cross section (so-called “clover-leaf”
pattern) observed in the Fe-based nanocrystalline alloy
NANOPERM (Suzuki and Herzer, 2006). This nanocom-
posite consists of magnetically hard grains (with a typi-
cal size of 12 nm) surrounded by a soft magnetic matrix.
Figure 17(a) demonstrates the “sample” used in micro-
magnetic simulations: each blue mesh element represents
a hard crystallite with a homogeneous magnetization

within it; warm colors mark mesh elements represent-
ing the soft phase. The approach permits the modeling
of a relative large sample volume (250× 600× 600 nm3),
providing a high statistical accuracy of simulation results.

Further development (Erokhin and Berkov, 2017) of
the simulation technique (Erokhin et al., 2012a,b; Michels
et al., 2014) was necessary to study the influence of the
nonspherical shape of hard grains [Fig. 17(b)] on the mag-
netic behavior of nanocomposites. In this case, hard crys-
tallites had to be discretized into smaller mesh elements,
because the spherical dipole approximation for the mag-
netodipolar field created by hard grains was insufficient
due to their nonspherical shape. Another example of the
geometrical flexibility of the methodology is the recent
micromagnetic modeling of a Nd−Fe−B nanocomposite,
where a core-shell particle model for the description of
20 nm-sized Nd−Fe−B grains (Erokhin et al., 2018) is
implemented. This model takes into account changes in
magnetic parameters of the Nd−Fe−B crystallites near
their surface, which may be imperfect due to the man-
ufacturing process. A typical core-shell microstructure
used in these simulations and a polyhedron mesh used
for the discretization of a grain are shown in Fig. 17(c).
In order to resolve the magnetization distribution inside
the shell, the mesh-element size has been set to 2 nm.

Several examples of micromagnetic simulation re-
sults for various structures—a nanocomposite of the
NANOPERM type, magnetic nanoparticles of different
sizes, core-shell structure of Nd−Fe−B—are collected in
Fig. 18. In particular, Fig. 18(a) displays the spatial
distribution of the magnetization component M⊥ per-
pendicular to the applied field around two Fe nanopar-
ticles in NANOPERM along with the magnetodipolar
field produced by these particles. Generally speaking,
the sources of the magnetodipolar field are regions with
a nonzero divergence of the magnetization (∇ ·M 6= 0).
For magnetic nanocomposites, the most prominent “mag-
netic volume charges” ρmag = −∇ · M are due to the
abrupt changes in the magnetic materials parameters at
the phase boundary between particles and matrix, e.g.,
variations in the magnetization or anisotropy constants.
Such jumps in the magnetic material parameters may
give rise to an inhomogeneous spin structure which dec-
orates each nanoparticle. Exactly this situation, for a
magnetization jump of ∆M = 1200 kA/m =̂ 1.5T at
the interface between the Fe particle and the amorphous
magnetic matrix in NANOPERM, can be observed in
Fig. 18(a), where correlations between the magnetodipo-
lar field and the magnetization distribution in the soft
phase can be clearly seen.

Another very important question in the development of
nanomaterials is the determination of the critical single-
domain size for magnetic nanoparticles of various shapes.
This parameter is crucial for the production of high-
performance permanent magnets based on these mate-
rials. The system of small-sized magnetic grains behaves
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(a)

(c)

(b)

FIG. 18 (a) Results of a micromagnetic simulation for the spin distribution around two selected Fe nanoparticles (blue circles),
which are assumed to be in a single-domain state. The external magnetic field H is applied horizontally in the plane. The
magnetization component M⊥ perpendicular to H is shown by red arrows; thickness of arrows is proportional to the magnitude
of M⊥. Blue lines visualize the magnetodipolar field. Image taken from Michels et al., 2014. (b) Dependence of the spin struc-
ture of a nanoparticle on the particle size represented by selected magnetization configurations of Fe particles with diameters
of D = 20 nm and D = 40 nm at an external field of −30Oe. (c) Simulated upper part of the hysteresis loop (green line) and
magnetization distribution (two-dimensional cuts out of three-dimensional distributions) at selected points on the hysteresis
curve (approach-to-saturation, remanence, coercivity) obtained in the core-shell model of a Nd−Fe−B nanocomposite. Contri-
butions to the hysteresis loops only from cores (blue dashed lines) and from shells (red dashed lines) are also shown as lower
parts of these loops.

like a system of Stoner-Wohlfarth particles (each having
a homogeneous magnetization), resulting in a high re-
manence and large coercivity of a nanocomposite. By
contrast, the vortex state formed inside larger particles
with sizes above the single-domain limit results in a very
small remanence and in a reduced coercive field (the mag-
netization distributions of both types are presented in
Fig. 18(b)).

Advancement of permanent-magnet materials requires
a clear physical understanding of the relation between
their microstructure and the macroscopic magnetic prop-
erties. To establish this relation for the core-shell model
of a Nd−Fe−B nanocomposite, we show in Fig. 18(c) the
magnetization distribution at selected points on the hys-
teresis curve (large positive field, remanence, coercivity).
It can be clearly seen that in high fields the shells exhibit
a larger magnetization projection in the field direction
than the cores, since the shell anisotropy constants are
reduced compared to the core regions. This situation
prevails down to the remanent state, where a qualita-
tively similar spin distribution is observed. However, at
negative fields the shells reverse their magnetization “eas-
ier” than the cores [compare, e.g., the dashed curves in
Fig. 18(c)], which again can be attributed to the reduced

anisotropy in the shell region. The most interesting fea-
ture of the presented hysteresis is the contradiction be-
tween a relatively low coercivity and a “hard” system
behavior at large positive fields, where the saturation is
not reached even at the applied field of 2T (we call it
the “hard-soft effect”). Erokhin et al., 2018 were able to
explain this effect by combining the core-shell model of
nanograins with the influence of a considerable volume
fraction of particles in a superparamagnetic state.

B. Simulation of magnetic neutron scattering: decrypting

SANS cross sections

This section discusses simulation results for the mag-
netic SANS cross sections of soft magnetic nanocompos-
ites. The most important advantage of numerical simu-
lations is the possibility to decrypt the magnetic SANS
cross sections, i.e., one can study the contribution of each
individual Fourier component of the magnetization distri-
bution separately. Also the twofold impact of the magne-
todipolar interaction can be disentangled, which provides
fundamental insights into magnetic SANS from polycrys-
talline materials (see below).
Since the focus is on magnetic spin-misalignment
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scattering, the nuclear SANS contribution was ignored
and the discussion was resticted to unpolarized neu-
trons. Note, however, that for polycrystalline texture-
free magnetic nanocomposites the nuclear SANS signal is
isotropic and independent of the applied magnetic field,
and its magnitude is generally small compared to the
spin-misalignment scattering discussed here (Michels and
Weissmüller, 2008).
In the following we show selected results for the un-

polarized magnetic SANS cross section dΣM/dΩ in the
perpendicular scattering geometry (compare Eq. (12) in
Sec. II.B). The functionsMx,y,z(r) are obtained from the
micromagnetic simulations; applying the Fourier trans-
formation and combining them into Eq. (12) (or another
one for a different scattering geometry), we derive the
simulated magnetic SANS cross section. In order to com-
pare the numerical results with experiment, it is neces-
sary to obtain the scattering cross section in the plane of
the detector. We apply three-dimensional Fourier trans-
formation to Mx,y,z(r) and use data on the plane (qy, qz)
at qx = 0, which corresponds to the standard SANS
setup, where qx is negligible in comparison to the other
two components.
Returning to the simulations of NANOPERM dis-

cussed above, we display in Fig. 19 projections of the
functions |M̃x|2, |M̃y|2, |M̃z|2, and of the cross term

CT = −(M̃yM̃
∗
z + M̃∗

y M̃z) present in Eq. (12) into the
detector plane at selected external field values. Also,
the field dependence of the magnetic SANS cross section
dΣM/dΩ is shown. This representation emphasizes the
power of the approach: by employing numerical micro-
magnetics for the computation of magnetic SANS cross
sections, it becomes possible to study the individual mag-
netization Fourier components and their contribution to
dΣM/dΩ. In particular, the approach of combining mi-
cromagnetic and SANS simulations complements exper-
iments, which provide a weighted sum of Fourier com-
ponents, a fact which often hampers the straightforward
interpretation of experimental SANS data. While it is
in principle possible to determine some Fourier coeffi-
cients separately, e.g., through the application of a sat-
urating magnetic field or by exploiting the neutron po-
larization degree of freedom via SANSPOL or POLARIS
methods (e.g., Honecker et al., 2010 and Wiedenmann,
2010), it is difficult to unambiguously determine a partic-
ular scattering contribution without “contamination” by
unwanted Fourier components. For instance, when the
applied field is not large enough to completely saturate
the sample, then the scattering of unpolarized neutrons
along the field direction does not represent the pure nu-
clear SANS, but contains also the magnetic SANS due to
the misaligned spins (Bischof et al., 2007).
Analyzing the individual contributions to the total

magnetic SANS cross section presented in Fig. 19, we
can see that |M̃z|2 is nearly isotropic (i.e., θ-independent)
over the whole ranges of the applied field and scattering

vectors. By contrast, at the smallest q and largest fields,
the Fourier coefficient |M̃y|2 reveals a pronounced angu-
lar anisotropy with maxima roughly along the diagonals
of the detector (the so-called “clover-leaf” anisotropy),

whereas at the smaller fields, the anisotropy of |M̃y|2 is
rather of the cos2 θ-type (i.e., elongated parallel to H).

At saturation (µ0H = 1.5T), both |M̃x|2 and |M̃y|2 are
relatively small and the main contribution to dΣM/dΩ is

due to the term |M̃z|2, which originates from nanoscale
jumps of the magnetization at phase boundaries. By
decreasing the field, the magnitude of the transversal
components increases as the spin misalignment on the
scale of tens of nanometers develops. The CT changes
its sign between the detector quadrants: it is positive for
0◦ < θ < 90◦, negative for 90◦ < θ < 180◦, and so
on. When the CT is multiplied by sin θ cos θ, the cor-
responding contribution to the total dΣM/dΩ becomes
positive for all angles θ. Therefore, and contrary to the
common assumption that the CT averages to zero for
statistically isotropic polycrystalline microstructures, the
CT appears to be of a special relevance in nanocompos-
ite magnets. Note that the symmetry of the CT repli-
cates the symmetry of the spin structure [compare the
4th column in Fig. 19 to Fig. 18(a)]. In the presence of
an applied magnetic field the stray-field distribution and
the associated magnetization configuration around each
nanoparticle are qualitatively similar (on the average),
thus giving rise to dipolar correlations which add up to
a positive-definite CT contribution to dΣM/dΩ.

The angular dependence of |M̃x|2 (Fig. 19) might give
the impression that this component is isotropic, but this
is the case only in the plane qx = 0. Figures 20(a) and
20(b) contain a three-dimensional picture of the Fourier
components derived from the spatial magnetization dis-
tribution. It turns out that |M̃x|2 is not only strongly
anisotropic at larger qx [Fig. 20(a)], but also exhibits the
“clover-leaf” pattern [Fig. 20(b)] in the plane (qx, qz). In-

deed, |M̃x|2(qx, qy, qz) and |M̃y|2(qx, qy, qz) coincide with
respect to the rotation around the qz-axis, because the
only symmetry breaking in the system is due to the ex-
ternal magnetic field.

The next important insight into the field-dependent
relation between the different contributions in Eq. (12)
can be deduced from the radially-averaged data shown
in Fig. 20(c). For the particular applied field of µ0H =

30mT used for this figure, the dominance of |M̃x|2 and

|M̃y|2 in the small q-range becomes evident, especially
when the logarithmic scale of the cross-section axis is
considered. By contrast, at larger q the influence of the
|M̃z|2 component on the resulting cross section clearly
prevails.

Figure 20(d) is a vivid illustration of the strong depen-
dence of magnetic SANS on the applied magnetic field.
In the small q-range, the difference between the cross sec-
tion at µ0H = 10mT and at saturation (1500mT) can
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FIG. 19 Results of micromagnetic simulations for the Fourier components of the magnetization. The images represent projec-

tions of the respective functions into the detector plane qx = 0 for k0 ⊥ H. Columns from left to right: |M̃x|
2, |M̃y |

2, |M̃z|
2,

CT = −(M̃yM̃
∗
z + M̃∗

y M̃z) and dΣM/dΩ. Pixels in the image corners correspond to q ∼= 1.8 nm−1. Logarithmic color scale is
used (color bars are in arbitrary units).

FIG. 20 (a) and (b) Two-dimensional cuts (shifted for a better visibility) of |M̃x|
2(qx, qy , qz). (c) Radially-averaged individual

scattering contributions to dΣM/dΩ as a function of the scattering vector q (k0 ⊥ H) (log-log scale): total dΣM/dΩ (black);

|M̃z|
2 sin2 θ (blue); CT (magenta); |M̃y |

2 cos2 θ (green); |M̃x|
2 (red). (d) Radially-averaged total magnetic SANS cross section

dΣM/dΩ as a function of the scattering vector q and for several applied magnetic fields H (see inset) (k0 ⊥ H) (log-log scale).
Materials parameters for NANOPERM were used.

be as large as two orders of magnitude. This observa-
tion demonstrates the tremendous sensitivity of SANS
in the study of magnetic materials; particulary, it has
a special importance for the investigation of magneti-
zation distributions of such an extremely magnetically
soft nanocomposite as NANOPERM, where the differ-
ence of total magnetizations at the above mentioned ap-
plied fields does not exceed 5%. The field-independent
local maximum at q ∼= 0.78 nm−1 corresponds to ∼ 8 nm
distance in the real space and agrees very well with the

size of the hard magnetic crystallites used in the model.

The finding that |M̃z|2 is nearly isotropic and that

|M̃y|2 = |M̃y|2(q, θ) strongly depends on the angle θ,
provides a straightforward explanation for the experi-
mental observation of the clover-leaf anisotropy in the
SANS cross section of the nanocrystalline two-phase al-
loy NANOPERM (Michels et al., 2006). The simula-
tion results for the difference cross section, i.e., where
the scattering at saturation (µ0H = 1.5T) has been
subtracted, agree semiquantitatively (up to an unknown
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FIG. 21 Comparison between simulated (upper row) and ex-
perimental (lower row) data for the difference cross section

∝ (|M̃x|
2 + |M̃y |

2 cos2 θ + CT sin θ cos θ) for various external
fields as indicated (k0 ⊥ H). Pixels in the image corners cor-
respond to q ∼= 0.64 nm−1. Logarithmic color scale is used.
Since experimental data were not obtained in absolute units,
their values are scaled by a constant factor for comparison
with simulated data. H is horizontal in the figure plane. Im-
age taken from Michels et al., 2014.

scaling factor) with the experimental data, as shown in
Fig. 21 (Erokhin et al., 2011, 2012b). Clover-leaf-type
anisotropies in dΣM/dΩ have also been reported for a
number of other materials, including precipitates in steels
(Bischof et al., 2007), nanocrystalline Gd (Döbrich et al.,
2012; Michels et al., 2008), and nanoporous Fe (Michels
et al., 2009).

As a final point, the impact of the magnetodipolar
interaction is discussed: the quantity of interest in an
elastic magnetic neutron scattering experiment, the dif-
ferential scattering cross section dΣM/dΩ, depends in a
twofold manner on this interaction. First, the interac-
tion of the magnetic moment of the neutron with the
sample’s magnetization results in dipolar selection rules
which are embodied, e.g., by the appearance of trigono-
metric functions in dΣM/dΩ [via the Halpern-Johnson
vector, Eq. (7)] (Squires, 1978). Second, the magne-
todipolar interaction between the magnetic moments in
the sample has a direct impact on its magnetization con-
figuration and therefore on the Fourier components of
the magnetization. The former determine the properties
of dΣM/dΩ and the latter the total magnetization (as
measured by magnetometry).

The corresponding difference can be clearly demon-
strated by comparing the results for the correlation
function of the spin-misalignment SANS cross section
(Döbrich et al., 2012; Mettus and Michels, 2015; Michels
et al., 2003; Weissmüller et al., 2004),

CM (y, z) ∼
∫
dΣM

dΩ
(qy, qz) e

iqr d2q, (55)

with the autocorrelation function CSM (r) of the mag-
netization component perpendicular to the applied field;

FIG. 22 Comparison between the normalized autocorrela-
tion function of the spin misalignment CSM (solid lines) and
the normalized correlation function of the spin-misalignment
SANS cross section CM (dashed lines) along different direc-
tions in the y-z detector plane (µ0H = 0.6T along z). The
right images show the corresponding combination of Fourier
components, projected into the detector plane: (autocorrela-

tion) |M̃x|
2+ |M̃y |

2; (SANS) |M̃x|
2+ |M̃y |

2 cos2 θ− (M̃yM̃
∗
z +

M̃∗
y M̃z) sin θ cos θ. Pixels in the image corners correspond to

q ∼= 0.4 nm−1. Logarithmic color scale is used. Image taken
from Erokhin et al., 2015.

the latter is defined as

CSM (r) ∼
∫

M⊥(x)M⊥(x + r) d3x (56)

and is not decorated by the dipolar interaction between
the neutrons and the sample magnetization. Using the
convolution theorem, Eq. (56) can be rewritten as

CSM (r) ∼
∫ (

|M̃x(q)|2 + |M̃y(q)|2
)
eiqr d3q. (57)

Both correlation functions, simulated for porous Fe, are
depicted at a field of µ0H = 0.6T in Fig. 22 along the
horizontal (z) and vertical (y) direction; see Fig. 6, which
depicts the spin structure around a spherical pore in
Fe. One recognizes the existence of anisotropic corre-
lations already for the autocorrelation function of the
spin misalignment (not influenced by the interaction be-
tween neutrons and magnetic moments), which may be
expected due to the long-range and anisotropic nature
of the magnetodipolar interaction. The difference be-
tween both directions is significant (in particular for
r ∼= 30−40 nm) with CSM along the vertical direction be-
ing exclusively positive, while CSM along the horizontal
direction intersects the r-axis at r ∼= 20 nm and possesses
a minimum at r ∼= 30 nm.
The existence of “anticorrelations” in CSM around

these particular r-values is a manifestation of the typ-
ical magnetization distribution M⊥(r) around a pore
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(see Fig. 6), which is due to the configuration of the
magnetodipolar field in the vicinity of such an inclu-
sion. Namely, the perpendicular magnetization compo-
nent changes its sign along the direction of the applied
field at a distance comparable with the pore diameter.
Of course, the zeros and global minima of the correlation
functions are dependent on the applied-field value.

Summarizing this section, we conclude that micromag-
netic modeling perfectly complements magnetic SANS in
decrypting the corresponding cross section by splitting
it into different components or by providing the real-
space magnetization distribution more appropriate for
the physical analysis. As mentioned above, magnetic
SANS and micromagnetic simulations allows the inves-
tigation of the properties of materials in bulk, therefore,
their powerful combination will provide fundamental in-
sights into the magnetism of nanocomposites.

VII. SANS AS A PROBE OF NANOSCALE MAGNETIC

INHOMOGENEITY IN COMPLEX MAGNETIC SYSTEMS

A. Magnetic inhomogeneity and magnetic phase separation

Sections III to IV focused on systems with explicit
chemical heterogeneity, or assemblies of nanoparticles.
There are, however, nominally chemically uniform ma-
terials that spontaneously nanostructure magnetically;
these are the focus of this section. A simple paradigm
in condensed matter physics is that materials with spa-
tial homogeneity in structure and chemistry can be ex-
pected to exhibit corresponding homogeneity in proper-
ties. The complex, chemically disordered materials in
many contemporary research fields stretch this paradigm
to its limits, however, in some cases violating it. One im-
portant example emerged from the study of perovskite
manganites that began in the mid-1990’s, stimulated by
the discovery of colossal magnetoresistance (CMR) (Coey
et al., 1999; Dagotto, 2002; Dagotto et al., 2001; Tokura
and Tomioka, 1999). Although these compounds were
studied 40 years earlier (Jonker and Van Santen, 1950),
their tendency to display large resistivity decreases in
applied magnetic fields was overlooked. Originally iden-
tified in systems such as mixed-valence La1−xSrxMnO3,
CMR was eventually demonstrated to reach MR ratios
of 1012 in just a few Tesla, justifying the term “colossal”
(Coey et al., 1999; Dagotto, 2002; Dagotto et al., 2001;
Tokura and Tomioka, 1999).

From the mid-90’s it was gradually understood that
a feature of such materials, on both nano- and micro-
scopic scales, is inhomogeneity in quantities such as
conductance and magnetization, even in samples of
the highest structural/chemical quality (Dagotto, 2002;
Dagotto et al., 2001). Evidence for this was accumulated
from macroscopic measurements (e.g., magnetotrans-
port, magnetometry, heat capacity), spectroscopic signa-

FIG. 23 Images of electronic and magnetic inhomogeneity
in complex oxides. (a) Dark-field transmission electron mi-
croscope image of La0.25Pr0.38Ca0.38MnO3 at 20K using a
charge-ordered superlattice peak for contrast. The upper
dark region is a charge-disordered ferromagnetic metallic re-
gion, while the lower textured region is a charge-ordered in-
sulating region. Reproduced with permission from Cheong
et al., 2002. (b) Scanning tunneling spectroscopy images
of a La0.7Ca0.3MnO3 film just below its Curie temperature
in zero and 9T. The color scale depicts local conductance,
black being metallic, white insulating. Note the percolating
ferromagnetic metallic region in the 9T image. Reproduced
with permission from Fath et al., 1999. (c) Scanning tunnel-
ing spectroscopy of Bi2Sr2CaCu2O8+δ in the normal state at
93K. The color scale depicts local conductance. Note the
nanoscale heterogeneity. Reproduced with permission from
Pasupathy et al., 2008. (d) Finite temperature Monte Carlo
simulation from a random field Ising model designed to de-
scribe manganites. 100×100 sites are shown, black and white
corresponding, crudely, to ferromagnetic metal and nonferro-
magnetic insulator, respectively. Reproduced with permission
from Mayr et al., 2001.

tures of coexisting electronic/magnetic phases [e.g., from
nuclear magnetic resonance (NMR)], imaging with scan-
ning tunneling microscopy/spectroscopy (STM/STS),
magnetic force microscopy and TEM, and reciprocal
space methods such as neutron diffraction (ND) and
inelastic neutron spectroscopy (INS) (Dagotto, 2002;
Dagotto et al., 2001). Real space examples are provided
in Fig. 23(a) and (b). Classic cases include nanoscale
ferromagnetic metallic (FMM) clusters in a matrix of
paramagnetic insulator around the Curie temperature
(TC) in La0.7Ca0.3MnO3 [Fig. 23(b) (Fath et al., 1999)],
and microscale coexistence of FMM and charge- and
orbitally-ordered antiferromagnetic insulator (COOAFI)
phases in La0.5Ca0.5MnO3 and (La1−yPry)1−xCaxMnO3

[Fig. 23(a) (Cheong et al., 2002; Uehara et al., 1999)].
These competing phases derive from the competition be-
tween spin, charge, orbital, and lattice degrees of free-
dom, metallic phases being favored by double-exchange,
insulating ones by charge order (CO), orbital order (OO),
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and superexchange AF (Coey et al., 1999; Dagotto, 2002;
Dagotto et al., 2001; Tokura and Tomioka, 1999). This
competition was eventually understood in detail, the
global manganite phase diagram being mapped in the
plane of electronic bandwidth (ionic radius) vs. quenched
disorder (radius variance) (Tomioka and Tokura, 2004).
The spatial variation in electronic and magnetic prop-
erties was termed electronic or magnetic inhomogeneity,
or, as it often emerges from a uniform paramagnet on
cooling, electronic or magnetic phase separation. These
electronic inhomogeneities also occur in other oxides, in-
cluding cobaltites and cuprates [Fig. 23(c) (Pasupathy
et al., 2008)].

Great effort was expended on understanding the ori-
gin of this inhomogeneity, due to its role in CMR. Specifi-
cally, numerous studies concluded that CMR could be un-
derstood in terms of magnetic-field-induced coalescence
of FMM regions in a non-FMM matrix [e.g., Fig. 23(b)]
(Dagotto, 2002; Dagotto et al., 2001). Models based on
finite temperature double-exchange, or double-exchange
competing with a superexchange AF insulator, among
others, were shown capable of reproducing phase separa-
tion [e.g., Fig. 23(d) (Mayr et al., 2001)], even semiquan-
titatively reproducing the temperature (T ) and field (H)
dependence of the resistivity (Dagotto, 2002; Dagotto
et al., 2001). While subtleties remain, including two
forms of CMR (Tokura et al., 1996), and two forms
of phase separation [at nano- and microscales (compare
Fig. 23(a) and (b)], this explanation for CMR has become
widely accepted (Dagotto, 2002; Dagotto et al., 2001).
The role of disorder vs. purely electronically-driven phase
separation remains a challenge, however, as does the un-
derstanding of chemical/structural inhomogeneities ac-
companying and/or driving the magnetic/electronic in-
homogeneity.

Importantly, SANS played, and continues to play, an
important role in detecting and elucidating such mag-
netic inhomogeneity in complex oxides. The ability to
probe nano- and mesoscopic scales, the high sensitivity
to inhomogeneity, the magnetic sensitivity, and the pen-
etration capability make SANS a powerful probe of this
physics. Polarization, and measurement over a wide T -
range, further enable separation of magnetic and struc-
tural/chemical contrast. Methods and approaches orig-
inally honed on systems such as manganites have also
now been applied to other complex oxides, as well as
nonoxidic systems, including alloys. This section pro-
vides a summary of the application of SANS to the study
of short-range magnetic inhomogeneity in these complex
systems.

B. Complex magnetic oxides

As discussed above, complex oxides are systems in
which nano- and microscale magnetic inhomogeneities

are especially important. We thus begin with a re-
view of the use of SANS in the study of such materi-
als, first in manganites (Sec. VII.B.1), then in cobaltites
(Sec. VII.B.2).

1. Perovskite manganites

As discussed in Sec. II, the neutron scattering inten-
sity near q = 0 is inherently sensitive to long-range FM
order, often detected in elastic SANS via Porod scat-
tering from magnetic domains. Such scattering follows
Eq. (28), where ∆η arises due to magnetic contrast at
domain walls and the power 4 can be generalized to an
exponent n. This equation is valid for q ≫ 2π/D, where
D is the size of the scattering object. For an FM these ob-
jects can be nonmagnetic (e.g., grains, or other extended
defects), or magnetic (typically long-range FM-ordered
domains), q ≫ 2π/D often being satisfied even at the
lowest q due to the large magnetic domains. The case
n = 4 [i.e., dΣ/dΩ ∝ q−4, the “Porod Law”, Eq. (28)] is
particularly common, describing scattering from 3D ob-
jects with “smooth” surfaces (Willis and Carlile, 2009).
“Rough” or “wrinkled” surfaces result in n < 4, n = 3
marking the transition between surface and volume frac-
tals (Kreyssig et al., 2009). In FMs, nonmagnetic contri-
butions to Eq. (28) are often T -independent while mag-
netic ones are strongly T -dependent, making separation
of magnetic and nonmagnetic scattering facile, even with-
out polarization. An example is shown in Fig. 24(a) from
the manganite pyrochlore Tl2Mn2O7, where the low-q
scattering (which follows the n = 4 Porod Law) clearly
reflects the development of FM order, with TC ≈ 120 K
(Lynn et al., 1998).

At a higher q of 0.046 Å
−1

[Fig. 24(b)], Tl2Mn2O7 re-
veals a different T -dependence of the SANS intensity, re-
ferred to as critical scattering (Lynn et al., 1998). This
arises at a second-order FM transition due to quasi-
elastic scattering from spin waves as T → T−

C , and from
FM spin correlations as T → T+

C . The q-dependence can
often be described by a Lorentzian:

dΣ

dΩ
(q, T ) =

(
dΣL

dΩ

)
(T )

q2 + 1
ξ(T )2

, (58)

where (dΣL/dΩ) parametrizes the strength of Lorentzian
scattering, and ξ is the magnetic correlation length
(Furrer et al., 2009). This q-dependence results
from an Ornstein-Zernike spin correlation function, i.e.,
〈S(0), S(r)〉 ∝ e−r/ξ/r (Lovesey, 1984), which describes
Heisenberg FMs for instance. ξ(T ) is thus readily ob-
tained from SANS, Fig. 24(c) showing an example [again
in Tl2Mn2O7 (Lynn et al., 1998)] of the divergence of ξ
as T → T+

C . SANS data as a function of T in H = 0
thus provide a detailed picture of FM ordering, and were
widely used to study manganites.
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FIG. 24 Temperature dependence of (a) the q =

0.012 Å
−1

SANS intensity, (b) the q = 0.046 Å
−1

SANS inten-
sity, and (c) the magnetic correlation length, from polycrys-
talline Tl2Mn2O7. Reproduced with permission from Lynn
et al., 1998. Shown in (d) is the temperature dependence (nor-
malized to the Curie temperature) of the magnetic SANS in-
tensity in polycrystalline La2/3Ca1/3MnO3 (LCMO) in three
magnetic fields. Reproduced with permission from De Teresa
et al., 1997.

From around 1997, SANS was used in several stud-
ies of the evolution of FM spin correlations across TC in
compounds such as La1−xCaxMnO3. This was done at
x ≈ 1/3, where an insulator-metal transition occurs on
cooling, accompanied by CMR. As shown in Fig. 24(d),
De Teresa et al. found a critical-scattering-type peak

at q = 0.13 Å
−1

in La2/3Ca1/3MnO3, with T and H-
dependence reminiscent of CMR (De Teresa et al., 1997).
Magnetic intensity was detected from well above TC ,
decreasing rapidly below it. Above TC , Lorentzian fits

[Eq. (58)] were used to extract a ξ(T ) exhibiting a long
high T tail, saturating at 12 Å (i.e., 3 unit cells), and
increasing to 25 Å in µ0H = 5T. Similar data were
reported for Sm1−xSrxMnO3, (De Teresa et al., 2002).
Along with resistivity, susceptibility, and thermal expan-
sion, the SANS data on La2/3Ca1/3MnO3 were inter-
preted as evidence for an entity known as a magnetic
polaron. Such polarons, wherein doped carriers align
the spins of magnetic ions within their Bohr radii, were
originally developed for magnetic semiconductors (Coey
et al., 1999; Nagaev, 2001). The conclusion of polaron
formation was criticized by Viret et al., however, who
claimed that dΣ/dΩ in a La0.75Sr0.25MnO3 single crys-
tal was not well described by a Lorentzian, or by the
form factor for discrete objects such as magnetic polarons
(Viret et al., 1998). Viret et al. instead advanced a cor-
relation function of longer range than Ornstein-Zernike,
〈S(0), S(r)〉 ∝ e−r/ξ, yielding dΣ/dΩ ∝ ξ3/(1 + ξ2q2)2.
This was found to describe data above TC over a sub-
stantial q-range, yielding ξ(T ) similar to simpler metallic
FMs. Viret et al. thus argued for typical development of
magnetic coherence as T → T+

C , albeit with quantitative
differences due to double-exchange.

Further elucidation of magnetism near TC was achieved
by adding energy resolution. As discussed in Sec. II.A,
typical SANS measurements are not energy-resolved, in-
stead integrating over some window centered on energy
transfer ∆E = 0. With an instrument such as a triple-
axis spectrometer, however, energy resolution is added,
and the low-q intensity vs. ∆E spectra in FMs probe
spin waves. Performing such measurements at multiple
q provides the dispersion relation, from which the spin-
wave stiffness D can be extracted vs. T . While somewhat
different than typical INS, this approach proved expe-
dient in early studies of manganites where it revealed
an unconventional FM transition in La0.67Ca0.33MnO3.
Specifically, the FM order parameter and D(T ) were cut-
off in a first-order fashion as T → T−

C , associated with
the emergence of a “central peak” at E = 0 in the low-
q inelastic spectrum (Lynn et al., 1996). Measurements
on single crystals confirmed the first-order transition at
x = 0.3 (Adams et al., 2004). This situation was clar-
ified by ND and INS measurements on La1−xCaxMnO3

crystals around x = 0.3 (Adams et al., 2000; Dai et al.,
2000) [as well as layered manganites (Argyriou et al.,
2002; Vasiliu-Doloc et al., 1999)], which linked the cen-
tral peak to diffuse Huang scattering from nanoscale
lattice polarons, with short-range correlations. These
polarons, dubbed “Jahn-Teller polarons” (due to Jahn-
Teller-active Mn3+ ions), were found to generate scat-
tering with striking similarities to the T -dependence of
the resistivity, elucidating a subtle competition between
double-exchange and the lattice/charge/orbital degrees
of freedom (Adams et al., 2000; Argyriou et al., 2002;
Dai et al., 2000; Vasiliu-Doloc et al., 1999).

The above focused on high-x manganites, probing the
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FIG. 25 q-dependence of the elastic magnetic SANS cross sec-
tion from polycrystalline Ca1−xLaxMnO3 at (a) x = 0.02, (b)
x = 0.09, and (c) x = 0.95. The magnetic contribution was
isolated by subtracting high-temperature data, as illustrated
in the insets. Solid lines are fits to a model for a liquid-like dis-
tribution of nanoscopic magnetic clusters. Reproduced with
permission from Ling et al., 2003.

transition from insulating paramagnet to FMM on cool-
ing. Further insight was obtained from studying lightly-
doped manganites to understand how double-exchange
FMM emerges from superexchange AF at x = 0. SANS,
both conventional and when implemented with energy
resolution on triple-axis systems, played a vital role
here, revealing classic nanoscopic magnetic inhomogene-
ity. Well-studied systems include lightly hole-doped AF
LaMnO3 [i.e., La1−xCaxMnO3 (Biotteau et al., 2001;
Hennion et al., 1998)] and lightly electron-doped AF
CaMnO3 [i.e., Ca1−xLaxMnO3 (Ling et al., 2003)]. Il-
lustrative low-T elastic magnetic SANS cross section vs.

q plots are shown in Fig. 25 for electron- and hole-doped
polycrystalline Ca1−xLaxMnO3 (Ling et al., 2003). A

broad peak is evident at 0.20 Å
−1

, indicating nanoscale
magnetic clustering in the AF matrix, with well-defined
spatial extent. Single crystal measurements (Hennion
et al., 1998) showed this scattering to be isotropic, lead-
ing to the term magnetic “droplets”. Quantitative anal-

ysis was performed by fitting to the general formula [see
Sec. II.D, Eqs. (23)−(27)],

dΣ

dΩ
(q, T ) = npV

2
p ∆η

2F 2(q)S(q), (59)

where np and Vp are the number density and volume of
particles (in this case magnetic clusters), ∆η is the (mag-
netic) contrast between clusters and matrix, F (q) is the
cluster form factor, and S(q) is the (inter-cluster) struc-
ture factor. Several group’s data were well described by
this (e.g., solid lines in Fig. 25), using a spherical F (q),
and an S(q) for liquids (Biotteau et al., 2001; Hennion
et al., 1998; Ling et al., 2003). A liquid-like distribu-
tion of magnetic “droplets” in an AF matrix was thus
concluded, with diameters 10−17 Å and center-to-center
spacings 25−40 Å. Importantly, typical ∆η’s correspond
to magnetization contrast of only 0.7µB, indicating not
simple FM clusters, but rather differing AF canting an-
gles in the clusters and matrix (Hennion et al., 1998).
Both the magnetic SANS peak intensity and cluster di-
ameter increased with doping, low-q structure and longer
range FM eventually evolving, consistent with percola-
tion (Biotteau et al., 2001; Hennion et al., 1998; Ling
et al., 2003). Notably, the charge carrier to cluster ratios
extracted from x and np were large, ≈ 60, favoring clus-
ters/droplets over magnetic polarons. Several theoretical
works provided support for these magnetic cluster sizes.
Building on the theory discussed in Sec. VII.A, Kugel
et al., 2005 constructed a theory for manganites based
on a Kondo lattice model capturing competition between
Jahn-Teller and double-exchange. Electronic/magnetic
phase separation was found at most dopings, and the en-
ergy was minimized to determine the FMM cluster size,
accounting for long-range Coulomb interactions. The lat-
ter restrict phase separation to short length scales, ≈ 2
unit cells, in reasonable agreement with experiment.
Nanoscale magnetic phase separation was also probed

by SANS in other manganites, including Ca1−xBixMnO3

(Qin et al., 2008) and LaMnO3+δ (Ritter et al., 1997).
In the latter, the substantial (positive) δ values enable
a different approach to hole doping an AF manganite.
FM order develops by δ = 0.07 according to Ritter et al.,
but with unusual SANS features indicating ξ ≈ 100 Å,
even below TC . Yet another route to explore the ho-
mogeneity of the evolution of magnetism with compo-
sition in La1−xCaxMnO3 was realized via nonmagnetic
doping on the Mn site, thus suppressing long-range FM.
This was done in La2/3Ca1/3Mn1−yGayO3, SANS reveal-
ing that a transition from long-range FM order to short-
range FM correlations proceeds through an intermediate
region where the two coexist (De Teresa et al., 2005). At
y ≈ 0.1− 0.15, for example, long-range FM was found to
coexist with short-range order with ξ ≈ 50 Å.
Another example of the power of SANS in elucidat-

ing magnetic inhomogeneity in manganites comes from
Pr1−xCaxMnO3 at x ≈ 0.30. In this system the smaller
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FIG. 26 (a,b) Magnetic field dependence of the 30K mag-
netization and resistance of a Pr0.7Ca0.3MnO3 single crystal.
Reproduced with permission from Saurel et al., 2010. (c,d)
Schematic of the zero-field and in-field magnetic phase sep-
aration in the same compound. Gray signifies ferromagnetic
metallic, white antiferromagnetic insulating. Adapted from
Mercone et al., 2003. (e) Magnetic filaments obtained from
Monte Carlo simulations for the same compound; arrows illus-
trate magnetization directions. Reproduced with permission
from Viret et al., 2004.

A-site cation radius leads to weakened double-exchange,
typically viewed as resulting from reduced eg-derived
electronic bandwidth due to larger structural distor-
tions (Tomioka and Tokura, 2004). Instabilities such
as CO and AF thus compete with FM, a crossover
occurring around x = 0.27 (Dagotto, 2002; Dagotto
et al., 2001; Tokura and Tomioka, 1999). At x = 0.30,
Pr1−xCaxMnO3 thus exhibits a CO transition on cooling
(at ≈ 200K), followed by AF ordering (at ≈ 140K), the
insulating ground state nevertheless exhibiting nonneg-
ligible magnetization (Radaelli et al., 2001). This state
is remarkably sensitive to field, pressure, illumination,
etc., application of a few Tesla leading to a metamagnetic
transition to FM [Fig. 26(a)], with a sharp insulator-
metal transition and large CMR [Fig. 26(b)] (Saurel
et al., 2010). In a key step, Radaelli et al. established
that the magnetization in the zero-field-cooled, nominally
COAF state arises due to magnetic phase separation
(Radaelli et al., 2001). COAF and FMM domains were
found to coexist in polycrystals, with T andH-dependent
volume fractions, the notable feature being microscopic
length scales. Very different from La2/3Ca1/3MnO3, ND
revealed coexisting CO, AF, and FM, with peak widths
indicative of > 500 Å length scales, and large variations
in lattice parameters (Radaelli et al., 2001). This is there-
fore microscale phase separation, as in Fig. 23(a), as op-
posed to the nanoscale phenomenon in Fig. 23(b).

SANS was then applied extensively, primarily to sin-
gle crystals (Mercone et al., 2003; Saurel et al., 2006,
2007, 2010; Simon et al., 2002; Yaicle et al., 2003; Ya-
mada et al., 2001). Magnetic phase separation was es-
tablished from ≈ 10 nm to ≈ 1µm. One key observa-

tion in the x = 0.30 − 0.33 range was of a crossover
from the Porod form at low-q to a higher-q regime with
dΣ/dΩ ∝ q−2. This was recognized as indicating reduced
dimensionality, the first interpretation being rumpled 2D
sheets of inter-penetrating FM and AF. This “red cab-
bage” model is illustrated in Fig. 26(c,d); sheet thick-
nesses in the nm-range were reported (Mercone et al.,
2003; Simon et al., 2002; Yaicle et al., 2003). In 2004,
however, this picture was reevaluated by Viret et al.,
who detected, in a Pr0.67Ca0.33MnO3 single crystal, qn-
scattering, but with n consistently 1.6 to 1.7, i.e., ≈ 5/3
(Viret et al., 2004). Taking cues from the polymer lit-
erature, this was interpreted in terms of filamentary FM
chains, as in Fig. 26(e). This figure shows a Monte Carlo
simulation for a “hopping exchange” process, creating a
random-walk network of FM chains (Viret et al., 2004).
These competing models for Pr1−xCaxMnO3 were later
compared (Saurel et al., 2006), considering Lorentzian
fitting (De Teresa et al., 1997), “red cabbage” (Saurel
et al., 2006), self-avoiding chains (Viret et al., 2004), and
spherical FM regions described by a specific correlation
function. While the data can be fit with multiple models,
the extracted size scales were reassuringly similar.

SANS measurements have also been applied to the
H-dependence in Pr1−xCaxMnO3. The sin2 θ depen-
dence in qx-qy maps taken in finite H [see Sec. II.D,
Eqs. (23)−(27)] was probed in several works, and the
magnetic SANS tracked vs. H . A particularly clear view
was provided by Saurel et al., who used wide q-range
measurements to extract phase separation length scales
and the specific area of FM/AF interfaces as a function
of H (Saurel et al., 2010). The latter can be extracted
from Porod scattering ( Eq. (28)). This analysis provided
a simple picture for the manner in which the FM phase
fraction grows with H [see Fig. 26(c,d)], as well as the
resulting percolation and CMR [Fig. 26(b)], the length
scales spanning from nanometric to > 1µm (Saurel et al.,
2010). A special case of the H-dependent FM/AF phase
separation, where ultra-sharp H- and time-dependent
magnetization steps were observed (Mahendiran et al.,
2002), was also studied by SANS (Woodward et al.,
2004). Strain effects at FM/AF boundaries were invoked
to explain these avalanche phenomena.

The magnetic phase separation effects described above
in La1−xCaxMnO3 (at light doping and x ≈ 1/3) and
Pr1−xCaxMnO3 (at x ≈ 1/3) are significantly differ-
ent: The former, similar to La1−xSrxMnO3, involves
nanoscopic FMM clusters, with the CMR peaking at
the insulator-metal transition near TC , accompanied
by only subtle structural heterogeneity (Shibata et al.,
2002). In Pr1−xCaxMnO3, however, phase separation
occurs over longer scales, with clear structural differ-
ences between domains, often with sharp, percolative fea-
tures in CMR. In contrast to the models discussed in
Sec. VII.A, this longer-range magnetic/electronic phase
separation is discussed in terms of quenched disorder near
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a first-order phase transition between competing phases,
such as FMM and AFI (Dagotto, 2002; Dagotto et al.,
2001). This occurs near x = 0.50 in La1−xCaxMnO3

and x = 0.30 in Pr1−xCaxMnO3, and is tunable in
(La1−yPry)1−xCaxMnO3 (Dagotto, 2002; Dagotto et al.,
2001). The models predict emergence of clusters be-
low some temperature T ∗, with H-dependent competi-
tion giving CMR (Dagotto, 2002; Dagotto et al., 2001).
Models emphasizing elastic driving forces for phase sep-
aration have also been advanced (Ahn et al., 2004).
As a final comment on this issue of multiple types of
magnetic phase separation, we note that two distinct
forms of CMR are active in manganites, as highlighted in
(Nd1−ySmy)0.5Sr0.5MnO3 (Tokura et al., 1996). In that
work gradual H-dependence near the FM-to-paramagnet
transition was contrasted with sharp H effects at the
AF/FM boundary, as discussed by Dagotto, 2002.

Finally, we briefly note that SANS has also proven use-
ful in the study of multiferroic manganites. HoMnO3

crystals, for example, exhibit AF order simultaneously
with ferroelectric order below the Néel temperature of
72K, in addition to a spin reorientation transition at 40K
(Ueland et al., 2010). Strong magnetic Porod scattering
was found to develop below this reorientation tempera-
ture, with sensitivity to both magnetic and electric fields.
The scattering was interpreted in terms of uncompen-
sated magnetization at AF domain walls, the interaction
between ferroelectric and AF domains resulting in elec-
tric field sensitivity (Ueland et al., 2010).

2. Perovskite cobaltites

The discovery of CMR in the manganites stimulated
interest in other perovskites, one class being cobaltites.
Much like manganites, cobaltites have a long history
(Jonker and Van Santen, 1953), but were studied more
extensively since the 1990’s. This work focused on two
main issues: nanoscale magnetic phase separation, and
the additional spin-state degree of freedom. The lat-
ter refers to the fact that the spin state of Co ions in
cobaltites can vary with composition, pressure, H , T ,
etc. This is because the crystal field splitting between
t2g and eg states is unusually close to the Hund’s rule
exchange energy. In insulating undoped LaCoO3 for ex-
ample, the Co3+ ions adopt a low-spin t62ge

0
g (S = 0)

ground state, but with thermally-excited population of
finite spin states (simplistically the t52ge

1
g intermediate

spin state and t42ge
2
g high-spin state) by only 30K; for a

brief review see Imada et al., 1998. An insulator-metal
transition then takes place at higher T ≈ 500K (Rac-
cah and Goodenough, 1967). While much understanding
of this spin-state transition/crossover has been achieved,
the sequence of excited states has proven very difficult to
pin down (Asai et al., 1994; Haverkort et al., 2006; Ko-
rotin et al., 1996; Kozlenko et al., 2007; Lee and Harmon,

FIG. 27 q-dependence of the SANS cross section from single
crystal LaCoO3 at multiple temperatures. Inset: Magnetic
cross section, isolated by subtracting the 300K data; solid
lines are Guinier fits. Reproduced with permission from El-
Khatib et al., 2015.

2013; Noguchi et al., 2002; Podlesnyak et al., 2006; Ropka
and Radwanski, 2003). This is likely in part due to the
desire to describe excited states in terms of low, interme-
diate, and high spin-states, i.e., with “atomic” language
(Lee and Harmon, 2013), often also ignoring spin-orbit
coupling (Ropka and Radwanski, 2003).

Remarkably, SANS was first applied to study the spin-
state transition in LaCoO3 in 2015 (El-Khatib et al.,
2015). The T -dependence of dΣ/dΩ from a LaCoO3 sin-
gle crystal is reproduced in Fig. 27. At low-q, a steep
q-dependence is observed, with the intensity increasing
on cooling, while at high-q the cross section is practi-
cally q-independent (indicating a local origin), increas-
ing on warming. Considering the high-q component first,
this was shown to reflect the spin-state transition, be-
ing quasieleastic/inelastic scattering due to thermally-
excited paramagnetism. Specifically, earlier INS data
had shown thermal excitation of not only a broad inelas-
tic paramagnetic continuum around ∆E = 0, but also
a distinct 0.8meV excitation associated with the excited
spin-state manifold (Phelan et al., 2006b). Taking the
dynamic S(q, ω) from INS and performing an energy in-
tegral appropriate for SANS confirmed quantitative con-

sistency with the high-q (≈ 0.1 Å
−1

) SANS (El-Khatib
et al., 2015), a rare example of quantification of inelastic
magnetic SANS.

The low-q scattering in Fig. 27, on the other hand,
grows rapidly only below 60K, and the magnetic compo-
nent was thus isolated by subtracting high-T data (see
inset). The result is well fit by the Guinier form (see
Eq. (29) in Sec. II.D) as expected for the q → 0 behavior
of an assembly of scattering centers with radius of gy-
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ration Rg (Furrer et al., 2009; Willis and Carlile, 2009).
Rg is 140 Å at low T , increasing with T until this contri-
bution vanishes above 60K. Given the unusual Rg(T ),
the onset of scattering at 60K, and the observation of
Guinier scattering from objects with well-defined extent,
evidence for “spin excitons” or “spin-state polarons” was
concluded. Such objects were theoretically proposed
by multiple authors (Nagaev and Podel’shchikov, 1996;
Podlesnyak et al., 2008), who envisioned that doped elec-
trons or holes in LaCoO3 would stabilize finite-spin Co
ions in their vicinity, aligning those spins to form a mag-
netic polaron in a low spin matrix. Prior evidence for
these polarons had been derived from magnetometry and
muon spin spectroscopy (including collective ordering be-
low 60K) (Giblin et al., 2005), but this was the first
neutron-based detection. The scattering intensity could
be explained with oxygen deficiency in LaCoO3−δ of only
0.0005, the increase in Rg on warming being a classic sig-
nature of spin polarons (El-Khatib et al., 2015).

Returning to magnetic phase separation, doped

cobaltites were intensively studied from the 1990’s,
La1−xSrxCoO3 emerging as a classic example of a mag-
netically heterogeneous oxide. Pioneering work by Good-
enough had earlier established a crossover from insulat-
ing behavior to FMM around xc = 0.18, postulating
formation of superparamagnetic clusters e.g., (Señaŕıs-
Rodŕıguez and Goodenough, 1995). A series of studies
then gathered direct evidence of this (Wu and Leighton,
2003). Caciuffo et al. concluded x-dependent phase sepa-
ration into hole-rich FMM clusters in a hole-poor non-FM
insulating matrix, from electron microscopy, susceptibil-
ity, ND, and thermal expansion (Caciuffo et al., 1999b).
Kuhns et al. applied 59Co zero-field and in-field NMR to
polycrystalline La1−xSrxCoO3, separately detecting the
x-dependent FM and non-FM components (Kuhns et al.,
2003). In 2005, Wu et al. then applied SANS to poly-
crystals, coarsely spanning xc. Low-q Porod scattering
from long-range FM domains was separated from high-q
Lorentzian scattering from nanoscale FM correlations as
a function of x and T (Wu et al., 2005). This solidified the
picture of short-range (10− 30 Å) FM clusters at low x,
which increase in size and density as x is increased, per-
colating at xc. In the same work, a large, negative, hys-
teretic MR was discovered in low-x single crystals, arising
due to spin-dependent intercluster transport (Wu et al.,
2005), analogous to artificial systems such as Co-SiO2

granular films (Sankar et al., 2000). Using INS on sin-
gle crystals, Phelan et al. also detected these nanoscopic
FM “droplets”, which were confirmed isotropic (Phelan
et al., 2006b).

More detailed La1−xSrxCoO3 SANS studies of single
crystals at multiple x provided a complete picture (He
et al., 2009). As shown in Fig. 28(a-c), T -dependent
measurements provided a similar view to earlier work,
the low-q scattering [Fig. 28(a)] being of Porod type
from FM domains, with order-parameter T -dependence.
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FIG. 28 Temperature dependence of the SANS cross section

at (a) q = 0.007 Å
−1

and (b) q = 0.049 Å
−1

along with the
extracted magnetic correlation length (c), in single crystal
La1−xSrxCoO3 at various x. (d) and (e) show the 10K x-

dependence of the q = 0.007 Å
−1

and q = 0.049 Å
−1

cross
sections. Dashed lines are guides to the eye, and the right axis
in (e) shows the normalized intensity of the incommensurate
satellite peak from Phelan et al., 2006a. Reproduced with
permission from He et al., 2009.

The higher-q Lorentzian part [Fig. 28(b)] exhibits critical
scattering, which weakens and broadens with decreasing
x, resulting, below xc, in intensity growing monotoni-
cally on cooling. The extracted ξ(T ) [Fig. 28(c)] evolves
from divergence as T → T+

C at high x, to saturation

(at 10 − 30 Å) at low x. Plotting the low-q (0.007 Å
−1

)

and high-q (0.049 Å
−1

) cross sections vs. x at 10K pro-
duces Fig. 28(d,e). Considering high-q first [Fig. 28(d)],
the data show negligible long-range FM for x ≤ 0.15, as
expected. This intensity then turns on around percola-
tion (at xc = 0.17− 0.18) peaking just above this, before
leveling off above x = 0.22. Insight into the latter obser-
vation came from the high-q intensity [Fig. 28(e)], which
reveals two surprises. First, this signature of short-range
FM abruptly vanishes at x = 0.22, suggesting phase-
pure long-range FM above this doping. Magnetic phase
separation in La1−xSrxCoO3 crystals, unlike more dis-
ordered polycrystals (Kuhns et al., 2003), thus does not
pervade the entire phase diagram, but ends abruptly at
x = 0.22, the constant low-q scattering above this com-
ing from conventional FM domains. The second surprise
from the low-q SANS is that the scattering, which peaks
near percolation, also vanishes at low x, around 0.04.
This observation of a finite window for magnetic phase
separation in the highest quality La1−xSrxCoO3 was cor-
roborated by multiple techniques, including La NMR and
heat capacity, each in precise agreement on the lower and
upper doping limits of 0.04 and 0.22 (He et al., 2009;
Smith et al., 2008).

These observations were used by He et al. as the start-
ing point for statistical modeling showing that on the
scales of the observed ξ-values [Fig. 28(c)], local compo-
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sitional fluctuations are sufficient to explain the experi-
ments (He et al., 2009). With no adjustable parameters,
simulations were shown to predict start and end values
for the phase-separated regime of 0.04 and 0.21, in re-
markable agreement with experiment. The model also
reproduces key features of the x-dependent SANS cross
sections, as well as volume fractions of FMM and non-
FMM phases. This demonstrated that nanoscale mag-
netic inhomogeneity in La1−xSrxCoO3 can be explained
solely via local compositional fluctuations that must al-
ways be present in randomly doped solids on such short
scales, with no need to invoke electronic mechanisms.
Understanding to what extent similar local compositional
/structural inhomogeneities occur in other systems with
nanoscale magnetic inhomogeneity remains an open chal-
lenge.

One unresolved issue in La1−xSrxCoO3 arose from the
work of Phelan et al., who detected unanticipated incom-
mensurate scattering around the (001) FM Bragg peak
(Phelan et al., 2006a). The deduced spin superstructure
was found to have x- and T -dependent intensity and in-
commensurability, speculatively linked to spin-state po-
larons. As discussed above, these spin-state polarons
form around doped carriers in LaCoO3−δ. In the case
of La1−xSrxCoO3 they were shown to be octahedrally-
coordinated complexes from the q-dependence of a char-
acteristic 0.75meV excitation (Podlesnyak et al., 2008).
While the exact link between these polarons and incom-
mensurate magnetism remains unclear, Fig. 28(e) pro-
vides some insight by overlaying the incommensurate in-
tensity (Phelan et al., 2006a) with the high-q SANS cross
section (He et al., 2009). The comparison is striking,
indicating that the two forms of scattering probe the
same physics. Another open issue in La1−xSrxCoO3 is
the relationship between the spin-state polarons at light
doping, and the magnetic clusters at higher x. While
much remains to be learned about the distinguishing fea-
tures of these entities, as well as how one evolves into the
other, recent work took a first step. Specifically, INS and
magnetometry data were acquired vs. x, indicating “col-
lapse” of the spin-state polarons into magnetic clusters,
evidenced by a rapid drop in magnetization per doped
hole (Podlesnyak et al., 2011).

We note as an aside here that magnetic phase sep-
aration in La1−xSrxCoO3 also plays a role in het-
erostructures. A central problem in such systems is
the suppression of the FMM phase in ultrathin films.
This “dead layer” effect has been extensively studied in
La0.7Sr0.3MnO3 and La0.5Sr0.5CoO3 films, including in
the latter case with SANS. The crossover from FMM
to non-FM insulating phases below 70 Å thickness in
SrTiO3(001)/La0.5Sr0.5CoO3−δ, for example, was shown
to be driven by a decrease in effective doping, due to ac-
cumulation of interfacial oxygen vacancies (Torija et al.,
2011). In a novel mechanism, these vacancies play the
key role in strain relaxation, ordering into alternating

oxygen deficient/sufficient planes, similar to brownmil-
lerite Sr2Co2O5 (SrCoO2.5), to better lattice match the
substrate (Gazquez et al., 2013). TEM with electron en-
ergy loss spectroscopy showed that the effective doping
thereby falls to ≈ 0.22 at the interface with SrTiO3(001),
triggering magnetic phase separation. Exactly this was
detected by SANS in 650 Å-thick films. Scattering of the
form qn was observed at low-q, with n = 2.7 and order-
parameter shape (Torija et al., 2011). This derives from
long-range FM domains, the low n indicating domain wall
pinning at defects. At higher q, a weaker q-dependence
was found, the T -dependence revealing critical scatter-
ing, as expected, but on a background of additional in-
tensity not present in bulk. This short-range FM was in-
terpreted as arising from the interface, directly evidenc-
ing interface-induced magnetic phase separation as the
origin of the dead layer in La1−xSrxCoO3 films (Torija
et al., 2011). This represents one of the few applica-
tions of SANS to thin film oxides. While intensity-limited
(multiple films were stacked), this work demonstrates the
feasibility of SANS on complex oxide heterostructures,
which could expand in the future.

The majority of the above discussion of La1−xSrxCoO3

focused on the evolution in magnetism as x is varied at
low T . A complementary approach is to understand how
the FMM state evolves with T , as first studied with SANS
in Caciuffo et al., 1999a. In that work, the behavior
around TC in polycrystalline La0.7Sr0.3CoO3 revealed T -
dependent magnetic inhomogeneity. The SANS included
a strongly T -dependent Guinier component, indicating
an asymmetric peak in magnetic intensity and cluster
size (peaking at 15 Å) around TC . This was interpreted
as preformation of magnetic clusters that are eventually
subsumed by longer-range FM at low T . A somewhat
similar picture was concluded from SANS on polycrys-
talline La1−xSrxCoO3 at x = 0.20−0.50 (He et al., 2007).
As shown in Fig. 29(a-c), that work found critical scat-
tering, well described by Eq. (58). Interestingly, the de-
duced ξ(T ) exhibits well-defined onset temperatures for
FM spin correlations (Fig. 29(d-f) and insets), unlike the
typical power-law growth as T → T+

C . The susceptibility
also exhibits deviations from Curie-Weiss behavior at this
temperature, T ∗ ≈ 360K. These findings are reminiscent
of the Griffiths model, referring to a classic theoretical
treatment of randomly-diluted Ising FMs (Bray, 1987;
Griffiths, 1969). In that model, cooling below the undi-
luted TC results in a spatially-inhomogeneous clustered
phase, with nonanalytical behavior of thermodynamic
quantities. The applicability of this model to manganites
was quite intensively studied, several authors concluding
preformation of magnetic clusters in a manner consistent
with a Griffiths phase (Deisenhofer et al., 2005; Salamon
et al., 2002). In La1−xSrxCoO3, however, the specifics
were found quite different from Griffiths, including the
sign of the deviations from Curie-Weiss (He et al., 2007).
A well-defined onset temperature for FM clustering nev-
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FIG. 29 Temperature dependence of the q = 0.1 Å
−1

SANS
cross section (a-c) and magnetic correlation length (d-f) of
polycrystalline La1−xSrxCoO3 at x = 0.40, 0.30, and 0.20.
The insets in (d-f) are expanded views of the low correlation
length region, the arrows marking T ∗, where correlations turn
on. Reproduced with permission from He et al., 2007. (g)
Temperature dependence of the ferromagnetic Bragg intensity

(left axis), and q = 0.1 Å
−1

magnetic SANS intensity (right
axis) of polycrystalline Tb5Si2Ge2 at various magnetic fields.
Curie and Griffiths temperatures are marked with vertical
dashed lines. Reproduced with permission from Magen et al.,
2006).

ertheless occurs, and it remains to be clarified why var-
ious perovskite oxides behave differently with regard to
comparisons to the Griffiths model.

Finally, we briefly mention that SANS has also been
used as a probe of nanoscale magnetic order in other
cobaltites. Pr1−xSrxCoO3 is one example, primarily
because compositions around Pr0.5Sr0.5CoO3 display a
second magnetic transition below TC (Mahendiran and
Schiffer, 2003). This was eventually shown, with the as-
sistance of SANS, to signify a change in magnetocrys-
talline anisotropy, driven by an unusual isomorphic struc-
tural transition (Leighton et al., 2009). Further decreas-
ing the average cation radius leads to Pr1−xCaxCoO3. In

this material the suppression of the FMM phase leads to
acute competition with other instabilities, inducing com-
plex phase separation. Based in large part on SANS,
polycrystalline Pr0.7Ca0.3CoO3 was shown to separate
into short-range and long-range-ordered FM phases, with
different coercivities (El-Khatib et al., 2010). The cou-
pling between the two was then found to create a
hard/soft FM composite displaying exchange spring be-
havior. At higher x, Pr1−xCaxCoO3 was discovered to
exhibit an extraordinary first-order metal-insulator tran-
sition driven by a Pr valence transition. This effect was
first detected in Pr0.5Ca0.5CoO3 (Tsubouchi et al., 2002)
and later stabilized via Y substitution (Hejtmanek et al.,
2010). SANS has again been applied to these systems,
not only to probe the FM order in related compounds
[e.g., Nd1−xCaxCoO3 (Phelan et al., 2013)], but also to
understand the evolution of magnetism across the valence
transition (Phelan et al., 2014). The latter measure-
ments reveal striking inhomogeneity, complementary to
chemical/structural studies by TEM (Gulec et al., 2016).
These valence transitions remain an active research area
in cobaltites.

C. Complex magnetic alloys

As illustrated in other sections of this review (e.g.,
Sec. III on Nd−Fe−B and Sec. IV on steels), SANS has
a long history of applicability to magnetic alloy systems,
in addition to oxides. Along with the study of micro-
magnetics in alloys, phenomena such as spin-glass freez-
ing have been extensively studied with SANS. In terms
of nanoscale magnetic inhomogeneity, alloys exhibiting
reentrant spin-glass behavior are of particular interest.
In these materials, such as Pd-Fe-Mn, Cr-Fe, Au-Fe, Ni-
Mn, Fe3−xAlx, a-(Fe1−xMnx)75P16B6Al3, and a-Fe-Zr, a
paramagnet-to-FM transition on cooling is followed by a
transition to a spin-glass, i.e., from an ordered to a glassy
state (Aeppli et al., 1983; Garcia-Calderón et al., 2005;
Rhyne and Fish, 1985; Shapiro et al., 1980). SANS has
been used for decades to probe magnetic ordering and
correlation lengths in such alloys (Mettus et al., 2017),
which have proven challenging to understand. As dis-
cussed in a-Fe1−xZrx, nanoscale magnetic inhomogene-
ity is common to essentially all models, where FM order
coexists with spin-glass regions (Garcia-Calderón et al.,
2005). An important advance was made in 1983, when
SANS studies on a-(Fe1−xMnx)75P16B6Al3, were used
to develop a heuristic model for reentrant spin-glasses,
based on random-field effects in systems with coupled
FM and spin-glass order parameters (Aeppli et al., 1983).
The model emphasizes coupling between spin-glass and
FM networks, introducing a scattering function based on
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a sum of Lorentzian and Lorentzian-squared terms:

dΣ

dΩ
(q, T ) =

A(T )

q2 + ξ−2
A (T )

+
B(T )

(
q2 + ξ−2

B (T )
)2 , (60)

where A and ξA are defined as in Eq. (58), and B
and ξB result from the random-field, which creates fi-
nite FM regions. This function has been widely em-
ployed, although its general applicability is not entirely
clear (Garcia-Calderón et al., 2005). The similarity of
Eq. (60) to a power law (dΣ/dΩ ∝ q−n) in the experi-
mental q-range likely complicates this situation (Aeppli
et al., 1983). While there remain competing models in
materials such as Fe1−xZrx, involving finite AF and FM
clusters, long-range FM networks, random anisotropy
fields, noncollinear spin structures, and separately re-
sponding longitudinal and transverse spins, nanoscopic
magnetic inhomogeneity features prominently (Garcia-
Calderón et al., 2005).

Other examples of SANS elucidation of magnetic inho-
mogeneity in complex alloys arise in magnetocaloric in-
termetallics and transition metal/rare-earth alloys. One
example of the former is highlighted in Fig. 29(g), where
the T -dependence of the FM Bragg intensity (left axis)

and q = 0.1 Å
−1

SANS (right axis) are plotted for
Tb5Si2Ge2 (Magen et al., 2006). This compound is a
member of the series RE5(Si1−xGex)4 (RE = rare earth),
in which giant magnetocaloric effects occur. Interest-
ingly, as shown in Fig. 29(g), in Tb5Si2Ge2 the FM order-
ing at TC = 110K is preceded by the onset of magnetic
SANS at 200K. In the interval 110K < T < 200K, the
behavior of the susceptibility, dΣ/dΩ(q, T ), and ξ(T,H)
(from Lorentzian fitting) were shown consistent with the
Griffiths model (see Sec. VII.B.2 above). The 200K tem-
perature scale was identified with the TC of the Si-rich
Tb5(SixGe1−x)4 end-member, leading to an interpreta-
tion where the disorder results from structural/chemical
fluctuations (Magen et al., 2006). An example of the use
of SANS to elucidate magnetic inhomogeneity in corre-
lated electron systems is found in CeNi1−xCux, where
percolation from a cluster-glass to long-range FM order
was proposed (Marcano et al., 2007).

The remainder of this section focuses on a different
class of complex alloys that have recently been shown
to display magnetic phase separation. We refer here to
off-stoichiometric Heusler alloys. Full Heusler and half
Heusler alloys are simply ordered cubic alloys of the form
X2YZ and XYZ (Felser and Hirohata, 2015). Many such
alloys are magnetic, including numerous FMs, such as
Ni2MnSn. The latter has TC = 340K, the moment re-
siding primarily on Mn (Krenke et al., 2005). One of the
many contemporary research areas with these Heuslers
involves deliberate generation of nonstoichiometry by
substituting excess Mn for Sn, resulting in disordered
alloys such as Ni50Mn25+ySn25−y (Krenke et al., 2005).
The excess Mn creates Mn-Mn bonds, with strongly AF

character, thus generating tunable FM/AF phase com-
petition. These off-stoichiometric Heuslers often also ex-
hibit first-order martensitic phase transformations from
cubic to lower symmetry on cooling, with substantial im-
pact on magnetism (Bhatti et al., 2016, 2012; Krenke
et al., 2005). This results in ferroelasticity, multiferroic-
ity, shape memory behavior, magnetocaloric effects, etc.,
with potential applications in sensors, actuators, refrig-
eration, and energy conversion (Bhatti et al., 2016, 2012;
Krenke et al., 2005).

A central issue in such alloys is the magnitude of
the thermal hysteresis at the martensitic transformation.
Recent theory has had a dramatic impact in this re-
spect, identifying geometrical compatibility criteria be-
tween the austenite and martensite phases that mini-
mize hysteresis (Cui et al., 2006; Zhang et al., 2009).
Complex alloys such as Ni50Mn25+ySn25−y (Bhatti et al.,
2016, 2012) and Ni50Mn25+yIn25−y (Karaca et al., 2009)
thus emerged, possessing close-to-300K phase transfor-
mations, with sub-10K hysteresis. The phase diagram
of Ni50−xCoxMn40Sn10 is shown in Fig. 30(a) (Bhatti
et al., 2016). The martensitic phase transformation tem-
perature decreases gradually from 430 to 310K from
x = 0 to 10, before dropping by over 300K with 1%
additional Co. For x > 4, FM emerges in the austen-
site, the martensitic transformation inducing a first-
order transition from FM to non-FM on cooling. Com-
positions around Ni44Co6Mn40Sn10 thus exhibit a soft
FM austenite phase with high TC (430K), transform-
ing at just above ambient to non-FM martensite with
≈ 1000 emu/cm

3
magnetization change across only a 6K

hysteresis region (Bhatti et al., 2016).

Detailed magnetic studies of this and related alloys
reveal a number of unanticipated low-T features, in-
cluding substantial magnetization in the nominally non-
FM state, Langevin-like T and H-dependence, mag-
netic freezing transitions, and “intrinsic” exchange bias
(Cong et al., 2010, 2012; Wang et al., 2011). The
superparamagnet-like behavior led to various hypotheses
of magnetic clustering, recently verified by SANS (Bhatti
et al., 2012). Specifically, a study of Ni44Co6Mn40Sn10
revealed not only the typical low-q Porod and high-q
Lorentzian components associated with long-range FM
domains and short-range FM spin correlations, but also
a distinct peak at intermediate q. A T -dependent sum-
mary is provided in Fig. 30(b,c), where TC is marked

by the onset of FM domain scattering at q = 0.005 Å
−1

[Fig. 30(b)], as well as a critical scattering peak at q =

0.1 Å
−1

[Fig. 30(c)]. The weakly hysteretic FM to non-
FM transition at the martensitic transformation is also
clear below 400K, but with nonnegligible high-q scatter-
ing in the low-T , nominally non-FM phase. As shown
in the inset, this weak scattering reveals a clear phase
transition, associated with the intermediate q-peak. The
peak was interpreted as an S(q)-derived feature reflect-
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FIG. 30 (a) Phase diagram of Ni50−xCoxMn40Sn10, repro-
duced with permission from (Bhatti et al., 2016). TM , TC ,
TSP
B and TEB

B denote the martensitic phase transformation
temperature, Curie temperature, and superparamagnetic and
exchange bias blocking temperatures, respectively. P, F, AF,
and SP denote paramagnetic, ferromagnetic, antiferromag-
netic and superparamagnetic; “Aust.” and “Mart.” refer
to austenite and martensite. The top axis shows the valence
electron per atom ratio. (b) and (c) show the temperature de-
pendence of the SANS cross section from Ni44Co6Mn40Sn10 at

q = 0.005 Å
−1

and q = 0.1 Å
−1

, taken on cooling and heating.
The inset shows a close-up at low temperature. Reproduced
with permission from Bhatti et al., 2012.

ing a liquid-like distribution of FM clusters with center-
to-center spacing of 12 nm. Estimates of cluster diame-
ters from magnetization data result in ≈ 2 nm, provid-
ing a consistent interpretation, and the first direct con-
firmation of nanoscale magnetic clusters (Bhatti et al.,
2012). SANS peak widths further indicated correlation
lengths > 600 Å, evidencing strong inter-cluster interac-
tions (Cong et al., 2010; Wang et al., 2011). It should
be noted here that the blocking temperature in SANS

(Fig. 30(c), inset) is significantly larger than in magne-
tometry, due to the short time scales probed. The latter
issue also arose in 55Mn NMR measurements of the same
alloys (Yuan et al., 2015, 2016). These yielded consider-
able insight, including a complex interplay between the
nanoscale FM clusters and short-range AF order in the
martensitic matrix (Bhatti et al., 2016). Further work
will be required to understand the magnetism in these
multicomponent alloys, and to test ideas based on com-
positional fluctuations (Bhatti et al., 2016, 2012). SANS
appears well suited to these efforts.

VIII. SKYRMION LATTICES AND NONCOLLINEAR

SPIN STRUCTURES

The recent discovery of a magnetic skyrmion lattice
(SkL) in MnSi (Mühlbauer et al., 2009a) provided a show-
case for a new type of magnetic order, where magnetic
whirls exhibit particle like properties due to their non-
trivial topology. With SANS in a leading role, magnetic
skyrmions are observed in increasing number in a wide
range of material classes rendering their emergence as
generic phenomenon of materials which promote noncol-
linar chiral magnetic interactions. Together with the ease
of manipulations SkLs with ultra-low current densities,
their topological (and sometimes multiferroic) properties
ideally suit future data storage and logical devices.

This section provides an introduction into the variety
of competing or oscillatory interactions (cf. Sec. VIII.A.1)
including the Dzyaloshinskii-Moriya interaction (DMI)
(cf. Sec. VIII.A.2) that lead to the large zoo of non-
collinar spin structures. We then review the intrinsic
multiferroic properties of noncollinear spin structures (cf.
Sec. VIII.A.3) before we concentrate on their proper-
ties accessible by means of SANS (cf. Sec. VIII.A.5) and
the peculiarities of diffraction in SANS geometry (cf.
Sec. VIII.A.4). We finally summarize recent develop-
ments in the area of magnetic skyrmions (cf. Sec. VIII.B.1
and VIII.B.2).

A. Noncollinear magnetic structures

Spiral or noncollinear spin structures describe a large
variety of spin modulation which share rotation of the
magnetic moment or spin, whether localized or itiner-
ant, from one unit cell to the next by canting angle αr.
Such modulations can be described by a single propaga-
tion vector k, like, e.g., in helical, cycloidal, longitudinal-
conical or transverse-conical spin spirals. The superpo-
sition or mixture of multiple propagation vectors—even
with different moduli of k—leads to more complex tex-
tures like, e.g., helifan or skyrmionic structures with
potentially nontrivial topology. Note that the different
propagation vectors of multi-k structures exhibit a fixed
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phase relation with respect to each other while multido-
main single-k structures have no fixed phase relation.
Noncollinar spin structures exhibit a wide range of wave-
lengths from a few atomic layers to smooth rotations on
a scale of several thousand Å.

1. Frustrated and oscillating interactions

A large variety of noncollinear spin structures can be
caused by frustrated and oscillating interactions. Here,
we provide some typical examples, illustrating the differ-
ent coupling mechanisms. For further details we refer to
the book by Chatterji, 2006 and the review articles by
Coey, 1987; Freeman and Nakamura, 2004; and Kawa-
mura, 1998.

The interplay of FM or AF nearest neighbor interac-
tions and AF next-nearest neighbor coupling can lead to
a spin spiral ground state (Enz, 1961; Nagamiya et al.,
1962; Yoshimori, 1959a,b). A typical example for a Mott
insulator showing spiral spin structures is perovskite
TbMnO3 (Kimura et al., 2003). While this mechanism
is relevant for localized and itinerant electron materials,
long-range interactions of the electron gas are expected
to play an additional role for the latter. For itinerant
systems, the role of these interactions is reflected in the
structure of the electronic response. In the case the spin
susceptibility exhibits a maximum at a finite wavevector
k, this may result in the formation of a spin density wave
(SDW) or spin spiral with propagation vector k, respec-
tively. Moreover, a real space oscillatory RKKY interac-
tion (Kasuya, 1956; Ruderman and Kittel, 1954; Yosida,
1957) can be induced by a kink or a derivative singularity
(for a 2D/3D electron gas, respectively), leading to the
formation of noncollinear spin structures. Examples in-
clude the good metal FeAs (Segawa and Ando, 2009; Selte
and Kjekshus, 1973) and the rare-earth metal Ho, where
RKKY exchange between the localized 4f spins through
the conduction electrons leads to a variety of spiral phases
(Coqblin, 1977; Szary et al., 2016). In the strongly cor-
related f electron material CeRhIn5 the RKKY spiral
state is strongly coupled to the conduction electrons via
the Kondo effect (Fobes et al., 2018) generating emergent
electronic heterostructures. The spin fluctuations related
to the spiral state are believed to be closely tied to the
formation of textured superconductivity and electronic
nematic textures (Ronning et al., 2017).

Noncollinear spin structures can be also caused by
geometric frustration as e.g in the spinel Chromites
ZnCr2Se4 and CdCr2O4 (Chung et al., 2005; Murakawa
et al., 2008; Plumier, 1966; Siratori et al., 1980). Re-
cently, it was pointed out by Azhar and Mostovoy, 2017
that the FM state of systems showing double exchange is
generally unstable against the formation of noncollinear
spin structures. Typical examples are the cubic per-
ovskite compound SrFeO3 (Ishiwata et al., 2011) and

FIG. 31 (A): Schematic depiction a spin helix derived from
a FM (left) or AF (right) spin structure. Panels (B1) to
(B3) illustrate the transformation from real space to recip-
rocal space for a smooth texture (B1), a discrete atomic lat-
tice with lattice spacing a (B2), and a smooth incommen-
surate modulation on top of a discrete atomic lattice (B3)
where the width of the points corresponds to the color-code
of panel (B1).(C): SDW of multiferroic BiFeO3 (thin arrows),
that is caused by a slight canting of an otherwise AF cy-
cloidal spin spiral (thick arrows show the staggered moment
of the AF cycloidal structure). The canting leads to a small
FM SDW visible by polarized SANS (D). Panels (C) and (D)
from (Ramazanoglu et al., 2011).

MnAu2, actually one of the oldest spin spiral materi-
als known (Herpin and Meriel, 1961; Meyer and Taglang,
1956). It is argued that the spiral state is induced by
a competition of short-range AF and long-range interac-
tions induced by the polarization of the Au bands (Glas-
brenner et al., 2014).
In general, a large variety of spiral wavelengths are

found for frustrated and oscillatory interactions (Glas-
brenner et al., 2014). Furthermore, if chirality is present,
the samples show a mixture of left and right chiral do-
mains.

2. Dzyaloshinskii-Moriya interaction

For crystalline space groups lacking inversion symme-
try, the largest term of the anisotropic superexchange
that is linear in the spin-orbit coupling has the anti-
symmetric form HDM = D · (Si × Sj) denoted as DMI
(Dzyaloshinskii, 1958; Moriya, 1960). The DMI favors a
perpendicular rather than a FM or AF arrangement of
spins. D is a vector, which depends on the symmetry of
the magnetic exchange-path of the two involved spins. In
contrast to frustrated and oscillatory interactions, mag-
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netic structures involving the DMI can be conventiently
seen as the result of a hierarchy of energy scales with
symmetric exchange (FM or AF) J1 as leading contribu-
tion. Due to weaker spin-orbit coupling, the DMI term
leads to a small canting of the FM or AF parent struc-
ture, the local arrangement of spins is hence almost FM
or AF, as schematically indicated in panels (A) of Fig. 31.
The associated propagation vector k is given by D/J1,
leading to modulations that are long compared to typi-
cal interatomic distances, 100 Å to a few 1000 Å. Note,
that weak FM behavior induced by canting of spins due
to DMI should not be confused with weak itinerant FM,
which is characteristic of a small localized but a large
fluctuating moment (Lonzarich and Taillefer, 1985).

The spin structure (e.g., helix or cycloid) is fixed by the
interplay of magnetocrystalline anisotropies and the sign
and orientation of D, hence the crystallographic space
group. Zeeman coupling to the external magnetic field
can lead to a wealth of different spiral structures and
associated phase transitions, respectively. As the orien-
tation and sign of D is solely derived from the noncen-
trosymmetric crystallographic space group, chiral mag-
netic structures based on DMI show a single chirality or
handedness (Grigoriev et al., 2014) rather than statistical
mixtures of left and right-handed structures. However,
a noncentrosymmetric crystallographic space group not
necessarily implies a chiral magnetic structure. Note that
also surfaces and interfaces locally break inversion sym-
metry and hence allow for DMI terms.

A large body of work exits on the wealth of DMI heli-
magnets. To name a few prominent examples, Cr1/3NbS2
(Togawa et al., 2012), NdFe3(BO3)4 (Janoschek et al.,
2010) and CuB2O4 (Roessli et al., 2001) show helimag-
netic order which distorts to a soliton lattice. CsCuCl3
(Adachi et al., 1980) is a further classic helimagnetic ma-
terial that exhibits a DMI based spin helix. Noncen-
trosymmetric MnSi (P213), representative of the cubic
B20 family (an overview on the B20 series is given in Ta-
ble I in the review by Nagaosa and Tokura, 2013), and
tetragonal Ba2CuGe2O7 (P421m) serve as two further
examples where SANS was involved in key experiments.
The weak itinerant FM MnSi exhibits a spin helix, (Bak
and Jensen, 1980). Ba2CuGe2O7 (Zheludev et al., 1997a,
1996) shows an AF spin cycloid. A compact survey from
the neutron scattering view on noncollinear spin struc-
tures is given in the book by Chatterji, 2006; see also the
reviews by Freeman and Nakamura, 2004; Sandratskii,
1998; and Sandratskii and J., 1996 for further reading.
The recent impact of SANS on helical magnets and non-
collinear spin sttructures is reviewed in Sec. VIII.A.5.

3. Multiferroic properties of spiral magnets

The multiferroic/magnetoelectric properties of non-
collinear magnetic structures have lately gained remark-

able interest, recently reviewed by Kimura, 2007, Tokura
and Seki, 2010 and Kimura, 2012. A large wealth of mul-
tiferroic materials that exhibit spiral magnetic structures
exists. Using symmetry arguments, Mostovoy, 2006-02
showed that crystal structures without inversion sym-
metry generally allow a coupling of a uniform polariza-
tion P to an inhomogeneous magnetization M that is
linear in P and contains a gradient of M (Lifshitz invari-
ant). It is exactly this Lifshitz invariant which also allows
for the DMI, leading to a particularly strong coupling
of ferroelectric and spiral magnetic properties (Katsura
et al., 2005; Mostovoy, 2006-02; Sergienko and Dagotto,
2006). Within the DMI model, the antisymmetric inter-
action on the noncentrosymmetric bond causes a cant-
ing of spins which may generate uniform electric polar-
ization. Within the inverse DMI scenario, a canted ar-
rangement caused, e.g., by frustration, may displace the
ion in between the spin sites and generate a new DMI vec-
tor or local polarization. Typical examples include, e.g.,
hexagonal Ba0.5Sr1.5Zn2Fe12O22 (Kimura et al., 2005),
perovskite TbMnO3 (Kenzelmann et al., 2005) and re-
lated RMnO3 (R = Y, Ho, Er, Tm, Yb and Lu) (Fiebig
et al., 2000), the Kagomé lattice Ni3V2O8 (Lawes et al.,
2005) and the rhombohedral R3c perovskite BiFeO3 (Ra-
mazanoglu et al., 2011).

4. Noncollinear magnetism; diffraction in SANS geometry

Magnetic SANS ideally suits the wavelengths of non-
collinear spin structures of typically 30 − 1000 Å. How-
ever, in contrast to diffuse SANS, based on the definition
of a SLD which varies smoothly on an atomic scale (see
Sec. II.B), an approach based on magnetic single-crystal
diffraction is typically used for noncollinear spin struc-
tures (a detailed derivation is given in the textbooks by
Squires, 1978, Lovesey, 1984, and Furrer et al., 2009). We
start with the general cross section for elastic magnetic
neutron diffraction of unpolarized neutrons on a single-

crystalline sample with negligible mosaicity. Considering
only magnetic scattering, the cross section reads:

dΣ

dΩ
= (γnr0)

2e−W (q)f2(q)
∑

α,β

(
δα,β − qαqβ

q2

)

∑

l

eiq·l〈Ŝα
0 〉〈Ŝβ

l 〉 (61)

with the spin operators 〈Ŝα
0 〉, and α, β = x, y, z (γn =

1.913 and r0 = 2.818 fm). The dimensionless magnetic
form factor f(q) is the Fourier transform of the nor-
malized spin density associated with the magnetic ions
(not to be confused with the form factor used in the
classical, diffuse SANS theory), and e−W (q) denotes the
temperature-dependent Debye-Waller factor. The sum
over l embodies the integration over all unit cells of a
sample with l = Rj −Rj′ and atomic positions Rj.
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We assume the general form of a spin helix with prop-
agation vector k (corresponding to a wavelength k =
2π/λh) along the z-axis and spins lying in the x-y-plane.
The expectation values of the spin operators are given by

〈Ŝx
l 〉 = 〈Ŝ〉 cos(k · l), 〈Ŝy

l 〉 = 〈Ŝ〉 sin(k · l), 〈Ŝz
l 〉 = 0. (62)

Different choices of S and k may reproduce alternative
magnetic structures with different periodicities, including
multiple k and higher harmonics of k. Inserting Eq. (62)
into Eq. (61) finally leads to (Squires, 1978):

dΣ

dΩ
=
N

4

(2π)3

v0
(γnr0)

2e−W (q)f2(q)〈Ŝ〉2
(
1 + q2z/q

2
)

×
∑

τ

(δ(q+ k− τ ) + δ(q− k− τ )) .(63)

Bragg scattering occurs for q = τ ± k, where τ is a re-
ciprocal lattice vector of the crystal. Each nuclear Bragg
reflection is accompanied by a pair of two incommen-
surate satellite reflections at k = 2π/λh. As SANS is
capable of mapping reciprocal space in a limited region
around the forward direction τ = (000), incommensurate
reflections are seen directly at ±k. The transformation
from real to reciprocal space of a smooth modulation on
top of a Bravais lattice is illustrated in panels B1−B3 of
Fig. 31.
In contrast to diffuse SANS, incommensurate mag-

netic satellites represent Bragg reflections that are seen in
the SANS geometry, leading to important consequences:
Noncollinear magnetic structures may be generally seen
as a modulation on top of a FM or AF, depending on the
leading terms J1 in their Hamiltonian (see panel (A) of
Fig. 31). In the latter case, the rotation angle αr can be
rewritten as αr+π/2, the staggered AF magnetization is
used as order parameter. For AF spin spirals, incommen-
surate magnetic satellites appear in pairs centered around
the AF-Néel point (typically (π, π)). As the direct beam
(τ = (000)) corresponds to a FM zone center, only the
FM components of any noncollinear magnetic structure
are visible by SANS. A typical case is illustrated in pan-
els (C) and (D) of Fig. 31: A small canting of an other-
wise purely AF cycloidal spin structure of only 1◦ leads
to small FM correlations (corresponding to an amplitude
of the FM SDW of only 0.09µB/Fe). This causes a SANS
signal in ferroelectric BiFeO3 (Ramazanoglu et al., 2011).
As the magnetic form factor of the corresponding ions
f(q) ≈ 1 for small q around (0, 0, 0), SANS is very sen-
sitive to small FM modulations.
Typically dealing with single-crystal samples, the mag-

netic selection rules apply as for every other mag-
netic neutron diffraction experiment: Only components
of S perpendicular to q lead to a scattering signal [see
Eq.(63)].
Further consequences of diffraction in the SANS geom-

etry concern the coherence volume, which corresponds to
a flat ellipsoid with the shortest half-axis along the beam

direction for diffuse SANS, caused by the coarse wave-
length resolution ∆λ/λ (typically 10%) (Felber et al.,
1998). In perpendicular direction the coherence length is
mainly governed by the divergence of the neutron beam.
By contrast, Grigoriev et al., 2010 showed that the co-
herence volume of diffraction in the SANS geometry on
objects with a two-dimensionally ordered nanostructure
and a third nonperiodic dimension can go beyond the
Born approximation: The Bragg reflection at the sample
effectively acts as a neutron monochromator and leads
to exceptionally elongated coherence lengths along the
beam direction up to the µm regime. This is particularly
relevant for well ordered periodic structures, e.g., vor-
tex lattices (Yaron et al., 1994) or SkLs (Adams et al.,
2011). Vice versa, the coherence lengths of the magneti-
cally ordered state can be deduced from the inverse peak
widths of such diffraction peaks, ξ = 2π/∆q corrected
for instrumental resolution.

Similar to single-crystal diffraction, diffraction in the
SANS geometry requires the use of goniometers/rotation
stages to rotate the reciprocal lattice of single-crystal
samples through the Ewald sphere. Despite the Bragg
angles and associated rocking angles being small, helical
magnets, skyrmion lattices and also superconducting vor-
tex lattices can yield exceptionally sharp rocking curves
similar to the resolution limit of a SANS instrument at
full collimation, typically 0.1◦ (Adams et al., 2011). To
capture the full intensity of a Bragg peak, it is always

necessary to record the integrated intensity of a rocking
curve. As a further complication, the existence of strong
Bragg peaks may sometimes lead to a significant amount
of double scattering, which can be easily confused with
true higher harmonic terms at multiplies of k (Adams
et al., 2011). By means of Renninger scans (the sample
is rotated around the scattering vector Q (Shirane et al.,
2002) it is possible to discriminate true higher-order in-
tensity from double scattering.

As spiral magnets often exhibit intrinsic magnetic chi-
rality, the use of polarized neutrons, polarization anal-
ysis and even 3D polarimetry can be beneficial for the
unambiguous identification of magnetic structures and
the separation of magnetic and nuclear scattering. The
cross-sections for polarized neutron scattering on chiral
magnetic structures have been derived by Izyumov and
Maleev, 1962; Maleev, 1961; and Maleev et al., 1963 and
Blume, 1963. An introduction to 3D polarimetry is given
by Brown, 2006. The papers by Kindervater et al., 2014
and Janoschek et al., 2007 provide typical examples.

5. Properties of B20 spiral magnets as inferred from SANS

A large body of SANS studies has been performed
on the B20 family with MnSi (P213) as a drosophila
in many regards (the skyrmonic spin textures found
in these systems will be covered in section VIII.B.1
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FIG. 32 (A): Concentration-temperature phase diagram of
the isostructural series Fe1−xMnxSi to Fe1−yCoxSi. The ab-
breviations HMM, PMM and PMI denote helimagnetic metal,
PM metal and PM insulator, respectively (Manyala et al.,
2004)(B): Generic B20 phase diagram with an illustration of
the characteristic main phases. Reproduced with permission
from Markus Garst.

and VIII.B.2). While all B20 compounds share a generic
hierarchy of energy scales and the diagram as intro-
duced in Sec.VIII.A.2, their electronic properties, pitch
lengths and transition temperatures vary considerably; a
compact summary over the characteristic properties of
the B20 series is given by Nagaosa and Tokura, 2013
in Table I of their review article. It was pointed out
by Manyala et al., 2004 that the concentration series
Fe1−x,yMnxCoySi enables studying the continuous evo-
lution from a classic weak itinerant FM, to a metal-
lic paramagnet (PM), to a Kondo insulator and finally
a polarized itinerant magnetic metal. The correspond-
ing concentration-temperature phase diagram is given in
panel (A) of Fig. 32. Finally, isostructural Cu2OSeO3

is an insulator with multiferroic properties (Seki et al.,
2012c), where a ferrimagnetic arrangement of Cu4 tetra-
hedra with a total spin moment of S = 1 atoms takes
over the role of the magnetic ion (Bos et al., 2008; Seki
et al., 2012c).

The generic phase diagram representative of the B20
series is shown in Fig. 32, panels (B). Its archetypal ex-
ample, MnSi is a weak itinerant FM, with a magnetic
moment of 0.4µB per Mn atom and a fluctuating mo-
ment of 2.2µB (Lonzarich and Taillefer, 1985). In the
helical phase below TC = 29.5K and below Hc1 ≈ 0.1T,
a large body of SANS studies established a mono-chiral
helical order, e.g., by Grigoriev et al., 2007, 2006a,b,

2005; Hansen, 1977; Ishikawa and Arai, 1984; Ishikawa
et al., 1976; and Lebech et al., 1995 with a wavelength of
180 Å caused by DMI. The propagation vector k aligns
along the (111) directions due to second-order anisotropy
terms (Bak and Jensen, 1980). For increasing magnetic
fields k realigns in the direction of H, characteristic of
a spin flop transition and the helix deforms to a cone
phase (Ishikawa et al., 1976), until a fully field polar-
ized state is reached at the upper critical field Hc2. The
length of the pitch only weakly depends on temperature
or magnetic field. Bulk measurements, (e.g. by Bauer
and Pfleiderer, 2012) showed that due to demagnetizing
effects, phase coexistence and extended crossover regions
can be observed.

An extended region dominated by fluctuations is ob-
served around the transition to the PM phase below a tri-
critical point (Bauer et al., 2013), which has been studied
by means of SANS (Janoschek et al., 2013): As a conse-
quence of the small propagation vector k, magnetocrys-
talline anisotropies are less effective in fixing the orienta-
tion of the magnetic order. Depending on the crystalline
symmetry of the material, the energies of spiral magnetic
textures might then be almost degenerate for orientations
of k that belong to manifolds in momentum space, e.g.,
a sphere or a ring. It was proposed by Brazovskii, 1975
that such a manifold may qualitatively alter the nature
of a phase transition: Upon approaching the phase tran-
sition from high T , magnons soften on this manifold at
finite k, giving rise to a large phase space. The abun-
dance of fluctuations results a substantial magnetic en-
tropy. To avoid this entropy the phase transition is driven
to first-order. Based entirely on symmetry arguments,
this scenario was discussed in various contexts, e.g., for
weak crystallization (Brazovskii et al., 1987), liquid crys-
tals (Brazovskii and Dmitriev, 1975; Swift, 1976), diblock
copolymers (Bates et al., 1990; Leibler, 1980), and Bose-
Einstein condensates (Gopalakrishnan et al., 2009).

Recent SANS experiments by Janoschek et al., 2013
showed that such a scenario is realized in MnSi with
magnons softening on a sphere in k-space. Typical data
is shown in Fig. 33. Panel (A) shows the evolution from
sharp diffraction peaks associated to the helical domains
(T < TC), to a diffuse ring, representating a cut through
a sphere (T > TC). Panel (B) shows the temperature de-
pendence of the inverse correlation length κ as inferred
from SANS and measurements of the susceptibility. Sub-
sequently, it was demonstrated by means of susceptibil-
ity and SANS that other members of the B20 series like
Cu2OSeO3 (Živković et al., 2014) show similar behav-
ior. However, SANS and spin-echo studies by Bannen-
berg et al., 2017 on FeCo1−xSix revealed a more complex
behavior with a coexistence of fluctuations and helimag-
netic order over a broad temperature interval and long
relaxation times with a stretched exponential that per-
sists even under magnetic field.

In summary, these studies and related spin-echo mea-
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surements on MnSi (Pappas et al., 2009) essentially
demonstrate an important feature of noncollinear mag-
nets: The length scale of k, is still present in the char-
acteristic fluctuations of incommensurate spiral magnets
well above TC in the PM regime.

Similarly in the field-polarized FM state of a chiral spin
structure like MnSi, the spin wave dispersion is distinct
from a conventional FM. Due to the DMI, the spin wave
dispersion is centered at ±k instead of q = 0 (Kataoka,
1987). The antisymmetric interaction of polarized neu-
trons with the chiral spin structure of MnSi and related
materials has been used in a series of SANS experiments
by Grigoriev et al., 2015 and Siegfried et al., 2017 to
measure the spin-wave stiffness in the spirit of a simi-
lar approach made earlier for FM spin waves (see, e.g.,
Toperverg et al., 1993). This method is particularly help-
ful for materials like FeGe, were high-pressure synthesis
only allows the growth of tiny crystallites or powders
which do not allow the use of typical inelastic neutron
instruments like triple-axis spectrometers (see, e.g. Ku-
gler et al., 2015). Moreover, it benefits from the superior
resolution of SANS instruments at small k, which are oth-
erwise challenging to resolve. In the field-polarized states
of MnSi (Grigoriev et al., 2015) and FeGe (Siegfried et al.,
2017), SANS shows intensity in a circle, centered at ±k.
The radius or critical angle θc of the circle allows deduc-
ing the spin-wave stiffness. For this method, the mag-
netic field is aligned perpendicular to k0. Note that for
FM spin waves the magnetic field needs to be tilted with
respect to k0 as these do not show the inherent chirality
of helical magnets.

A further point addressed in the B20 series concerns
the coupling of crystalline and magnetic chirality. While
the absolute chirality of the crystalline structure of the
B20 monosilicides of Fe, Co and Mn is randomly governed
by crystal growth, the relative chirality of the helices with
respect to the crystal is given by the orientation and the
sign of D. The handedness of both the magnetic he-
lix and crystal can be addressed by means of polarized
SANS and single-crystal X-ray diffraction, respectively.
Measurements on concentration series of Mn1−xFexGe
(Grigoriev et al., 2013), Fe1−xCoxGe (Grigoriev et al.,
2014) and Fe1−xCoxSi (Siegfried et al., 2015) reveal a
breakdown of the helical order with vanishing k associ-
ated with a flip of relative chirality and reentrant FM
behavior at the critical concentration xc. Consequently,
opposite relative chirality is observed for opposite ends
of each concentration row. The microscopic reason for
the associated change of sign of the DMI is not resolved
unambiguously, although is has been discussed that a
competition of DMI and cubic anisotropy might play a
role. Recent ab-initio theoretical calculations by Koret-
sune et al., 2015 showed that the behavior of DMI can be
systematically understood in terms of the details of the
electronic band structure.

Besides a systematic tuning of pitch length, relative

(A)

(B)

FIG. 33 (A): Evolution of sharp diffraction peaks associated
to the helical domains, observed below TC , to a diffuse ring,
representative for a cut through a sphere for temperatures
above TC . (B): Characteristic temperature of the inverse cor-
relation length κ as inferred from SANS and measurements
of the susceptibility (Janoschek et al., 2013).

chirality, TC and electronic properties, concentration se-
ries of the B20 members allow for systematic studies of
quantum criticality and the effects of disorder. Bulk
measurements by Bauer et al., 2010 revealed a critical
concentration of xFec = 0.192 and xCo

c = 0.084 where
the transition temperature vanishes, for single crystals of
Mn1−xFexSi and Mn1−xCoxSi, respectively. The behav-
ior of both concentration series agrees on a normalized
doping scale x/xc, suggesting the existence of a putative
quantum-phase transition, dominated by FM quantum
fluctuations. Recent SANS measurements on polycrys-
talline Mn1−xFexGe by Altynbaev et al., 2016, and on
powders of Mn1−x(Co,Rh)xGe by Martin et al., 2017,
show a far more complex behavior, although the influ-
ence of crystalline quality remains unclear.

Alternative to doping, pressure serves as another tun-
ing parameter. The transition temperature of MnSi is
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suppressed until it reaches TC = 0 at pc = 15 kbar and
the phase transition thereby changes from second order
to weak first order at p⋆ = 12 kbar (Pfleiderer et al., 1995,
2007a). An extended region of non-Fermi-liquid behav-
ior emerges above pc (Doiron-Leyraud et al., 2003; Pflei-
derer et al., 2001; Schofield, 1999), characterized by an
unusual exponent of the electrical resistivity ρ(T ) ∝ Tα

with α = 3/2. SANS and neutron diffraction observed
a weak partial magnetic order (PO) above p⋆ (Pfleiderer
et al., 2007a,b, 2004), where the spontaneous formation
of a skyrmionic ground state at zero field was discussed
by Rößler et al., 2006. Recent measurements by Ritz
et al., 2013 connect the topological Hall signal and the
non-Fermi-liquid regime, suggesting the presence of dis-
ordered structures with nontrivial topology.

6. Properties of non-B20 spiral magnets as inferred from SANS

The noncentrosymmetric tetragonal AF Ba2CuGe2O7

(P421m) shows a long-range incommensurate, AF cy-
cloidal spin spiral due to DMI below TN ≈ 3.05K of
which a number of neutron scattering studies (see, e.g.,
Mühlbauer et al., 2012 and Zheludev et al., 1997b and
Refs. therein) and theoretical work (Bogdanov et al.,
2002; Chovan et al., 2013, 2002) have established a quite
complete understanding. However, it was predicted that
a second, sign alternating component of the DMI vector
pointing along the c-axis should give rise to incommensu-
rate weak FM behavior (Chovan et al., 2013, 2002) with
the same k. This prediction has been confirmed by SANS
(Mühlbauer et al., 2017). A silimar situation, observed in
the ferroelectric AF BiFeO3 has already been illustrated
in Sec. VIII.A.4. Here, polarization analysis was used in
addition to separate nuclear from magnetic scattering.

Ba2CuGe2O7 is also relevant in terms of a Brazovskii
scenario (Brazovskii, 1975), however, with reduced 2D
symmetry caused by the weak inter-plane coupling of
Ba2CuGe2O7: Due to crystallographic anisotropy, the
manifold of fluctuations is reduced to a ring in reciprocal
space. SANS and neutron diffraction have been used to
shed light on the interplay of Brazovskii and 2D physics
(Mühlbauer et al., 2017).

The ternary compound Pr5Ru3Al2 crystallizes in the
cubic noncentrosymmetric/nonmirrorsymmetric space
group I213, hence allowing for DMI. Indeed, a study
by Makino et al., 2016 on high quality powder samples
have indicated the existence of incommensurate peaks at
k ≈ (0.066, 0.066, 0.066) (r.l.u.) below TN = 3.8K, while
the FM transition found earlier was attributed to im-
purity phases. These incommensurate peaks have been
confirmed by means of SANS measurements (Okuyama
et al., 2017). Representation analysis was used to pro-
pose a helical spin structure of a composed moment of
the different Pr layers.

The rare-earth metal Ho shows various spiral magnetic

phases, generated by an oscillatory RKKY interaction of
the localized 4f -spins through the conduction electrons.
Between the Néel temperature TN = 132K and the Curie
point TC = 20K, an AF helical phase is found by neu-
tron diffraction for single-crystal samples. Below TC , an
additional FM component gives rise to a conical phase.
Upon increasing magnetic field, the spin structure shows
a series of transitions to a helifan(3/2), a helifan(2) and
finally a fan structure for field along the b-axis (Jensen
and Mackintosh, 1990; Kosugi et al., 2003). Helifan de-
notes a mixture of helix and fan each with different peri-
odicities. SANS experiments have been used to study the
influence of grain size on the spin structures of Ho and
related Tb (Michels et al., 2011; Szary et al., 2016). In
contrast to single-crystalline samples, Szary et al., 2016
find no evidence of the helifan structures in nanocrys-
talline Ho by means of field-dependent SANS. For coarse
grained samples, a streak pattern indicative of a long-
period magnetic structure is observed, correlated with
the vanishing of the helix for increasing field.

The members of the series RMn6X6, where R is a rare-
earth element and X is a metal with an unfilled p-shell
exhibit a hexagonal, layered structure and show a large
diversity of magnetic phases, generated by competition of
FM exchange between the X-X-X planes, AF coupling via
the R-X planes and finally RKKY exchange between the
next-nearest neighbor Mn planes. For YMn6Sn6, SANS
studies by Bykov et al., 2015 have found a helical or-
dering with k = 1.7 nm−1, that gives way to a state
with spatial FM fluctuations at zero wavevector in the
interval of 250− 360K and finally leads to a PM regime.
Since the system is strongly anisotropic with the mo-
ments confined in the (001) plane, the phase transition is
considered to be quasi two-dimensional. A qualitatively
similar behavior was observed by Altynbaev et al., 2016
in powder samples of B20 MnGe (crystallite size 1µm).
Here, a Gaussian peak at incommensurate 2 nm−1, asso-
ciated with static helical order, is continuously replaced
by a Lorentzian peak at the same k indicative of fluctu-
ations, for increasing temperature. At TN = 130K, the
Lorentzian contribution dominates. Both contributions
exist above TN and show exponentially activated behav-
ior. Well above TN , additional Gaussian correlations
are observed at lower q, attributed to static short-range
FM inhomogeneities. The phase transition observed for
MnGe is interpreted as a complex order-to-disorder tran-
sition, although the influence of the crystallite size re-
mains unclear.

The bond frustrated compound ZnCr2Se4 (cubic spinel
(Fd3m) structure) is magnetoelectric and shows a strong
spin-lattice coupling. An AF spiral with a screw an-
gle of 42◦ is observed below TN = 20K that goes along
with a structural transition to tetragonal symmetry (Fe-
lea et al., 2012 and Refs. therein). SANS (Cameron et al.,
2016) has been used to study the field dependence of the
multidomain spin spiral phase with particular focus on
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FIG. 34 Panels (A) and (B): Schematic depiction of a Néel-
type and a Bloch-type single skyrmion. A cut through a
single skyrmion yields the spin structure of a Néel and a
Bloch domain wall, respectively. Reproduced with permis-
sion from Markus Garst. Panel (C): Schematic depiction of a
skyrmion lattice with the hexagonal arrangement of skyrmion
lines through the sample (Milde et al., 2013).

a spin nematic phase, proposed at higher field (Felea
et al., 2012). A continuous change of magnetic struc-
ture is observed as a function of field and temperature
while a discontinuous jump of the spiral pitch indicates
the domain selection field. Most importantly, no signs of
long-range order have been found in the high-field spin-
nematic phase.

B. Magnetic skyrmions

1. The concept of skyrmions

The concept of skyrmions goes back to British physicist
Tony Skyrme (Skyrme, 1961a,b, 1962) and later contri-
butions by Adkins et al., 1983, who managed to show
that in the presence of nonlinear coupling, excitations
of continuous fields can assume particle-like character.
Skyrmionic states are characterized by a nontrivial topol-
ogy, wich can be conveniently classified by means of wind-
ing numbers (Manton and Sutcliffe, 2004). A nonzero,
integer winding number describes a topology that can-
not be smoothly distorted to a trivial state and, as a
consequence, leads to countable entities (e.g., a vortex
state in 2D). In turn, the topological properties are in-
timately connected to particle stability. Originally de-
veloped to explain the constituents of the nucleus, pro-
tons and neutrons, as topological excitations of a spinless

pion field, the concept of skyrmions has been used in dif-
ferent physical contexts. In condensed matter physics,
skyrmionic states have been described in quantum Hall
magnets (Sondhi et al., 1993) at finite magnetic field and
in topological insulators at zero field (Hsieh et al., 2008;
Konig et al., 2007). Recent reviews of the general con-
cept of skyrmions have been given by Brown and Rho,
2010 and Manton and Sutcliffe, 2004.

In their seminal studies Bogdanov and Hubert, 1994;
Bogdanov, 1995; Bogdanov and Rößler, 2001; and Bog-
danov and Yablonskii, 1989 predicted the stabilization
of magnetic vortices in FMs by Bloch domain walls and
in anisotropic noncentrosymmetric magnetic materials,
similar to superconducting vortices which are stabilized
by the negative energy of a normal to superconduct-
ing interface. If vortex states in bulk magnets have
a non-trivial winding density, they can be regarded as
skyrmions. Smectic, nematic, and hexatic forms of or-
der, akin to liquid crystals and multi-k structures have
been discussed for spin liquids or spin glasses found in
frustrated systems like e.g. Kagomé lattices or 3D Py-
rochlore AFs (Forgan et al., 1989; Lawler et al., 2008),
however, their topological properties have not been dis-
cussed in detail. A schematic depiction of the spin struc-
ture of a Néel-type and a Bloch-type single skyrmion are
shown in panels (A) and (B) of Fig. 34. Note that both
exhibit similar topological properties/winding numbers.
Panel (C) shows the arrangement of skyrmions to a SkL
with hexagonal symmetry.

The first experimental indication of magnetic
skyrmions in helimagnetic MnSi revealed magnetic
whirls, that arrange in a SkL (Mühlbauer et al., 2009a).
SANS established a well-ordered Bloch-type SkL phase
pocket (formerly denoted A-phase) at ≈ 0.2T, close to
TC in MnSi. A resolution limited hexagonal scattering
pattern akin to a superconducting vortex lattice, aligned
perpendicular to the magnetic field irrespective of the
crystal orientation (Mühlbauer et al., 2009a) is observed.
The spin structure is translationally invariant in the
direction of the magnetic field, leading to skyrmion
lines. A Ginzburg-Landau Ansatz based on a triple-k
state including Gaussian fluctuations in the spirit of an
order-by disorder mechanism qualitatively reproduced
the stable region of the SkL phase in the B, T -phase
diagram (panel (A) of Fig. 35) and showed that the
SkL state corresponds to the thermodynamic minimum.
Typical SANS data from MnSi are shown in panels (B)
and (C).

Characterized by a nonzero winding number of −1,
these whirls have skyrmionic character. Their topology
is distinct from the surrounding conical phase, leading
to particle-like characteristics of single skyrmions. Since
SANS does not couple directly to the topology of the SkL
state (single-k multi-domain vs. multi-k single-domain),
its topological properties have been probed by Hall mea-
surements by Neubauer et al., 2009. Besides the normal
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and anomalous Hall effect, an additional signal appears,
caused by the Berry phase which the moving conduc-
tion electrons acquire as their spin follows the nontriv-
ial topology of the SkL. Since then the topological Hall
effect has been established as a hallmark of nontrivial
skyrmionic structures (Ritz et al., 2013).

Further high resolution SANS experiments showed
an exceptionally long-range ordered SkL and were able
to prove the existence of weak, higher-order reflections
(i) indicative of the particle-like character of the SkL
(Adams et al., 2011) and (ii) the fixed phase relation of
the triple-k state. The pinning of the SkL to the crystal
lattice in the plane perpendicular to the field is given by
weak higher-order anisotropy terms, which have been ex-
amined in a series of SANS experiments (Adams, 2015)
including the use of uniaxial pressure (Chacon et al.,
2015). As for the helix state, the SkL state in MnSi
is only weakly affected by crystal anisotropies, which re-
flects in a essentially isotropic temperature-field phase di-
agram and the particular coupling of the SkL spin struc-
ture to the magnetic field.

Inspired by the observation of magnetic skyrmions in
MnSi and later in FeCo1−xSix (Mühlbauer et al., 2009a;
Münzer et al., 2010) by means of SANS, similar textures
with topological properties have been observed in increas-
ing number in various materials, including metals (Na-
gaosa and Tokura, 2013), semiconductors (Münzer et al.,
2010) and insulators (Adams et al., 2012), again with
SANS playing a pivotal role. The finding of skyrmions
beyond the B20 family (Bordacs et al., 2017; Kézsmárki
et al., 2015; Kurumaji et al., 2017; Nayak et al., 2017;
Tokunaga et al., 2015) and in particular their observa-
tion in thinned bulk samples (e.g., Yu et al., 2011), thin
magnetic films (Heinze et al., 2011) and nanostructured
patterns (Boulle et al., 2016) using real space methods
like MFM, spin polarized STM or LTEM have estab-
lished magnetic skyrmions as a generic phenomenon of
materials that support chiral interactions due to broken
inversion symmetry. A general review of the properties
of magnetic skyrmions has recently been given by Na-
gaosa and Tokura, 2013 and Bauer and Pfleiderer, 2010.
In analogy to superconducting vortex matter (Sec. IX),
a similarly large variety of skyrmion matter is expected.

Note that SANS is only able to access skyrmionic mat-
ter of bulk samples that shows at least short-range order,
e.g., SkLs, glasses or liquids. The observation of individ-
ual skyrmions and their particle-like character (in partic-
ular for surfaces and thin film samples) is possible by the
real space methods mentioned in the previous paragraph.

2. Skyrmions in spiral magnets seen by SANS

SANS studies by Jonietz et al., 2010 showed that spin
transfer torque effects allow for manipulation of the SkL
at ultra-low current densities of ≈ 106Am−2, facilitated

FIG. 35 Panel (A) shows the phase diagram of MnSi, cal-
culated by means of a Ginzburg-Landau Ansatz based on a
triple-k state. The inset shows the effect of Gaussian fluctua-
tions on lowering the free energy of the SkL phase. Panel (B)
and (C) show SANS data of the SkL in MnSi, for magnetic
field parallel to (110) (B) and for a random direction of the
magnetic field (C) (Mühlbauer et al., 2009a). Panel (D) shows
a SANS pattern of the SkL in ferroelectric Cu2OSeO3 with
magnetic field along the (100) axis (White et al., 2014). Note
the multiple domain state. Panel (E) shows SANS data of
the SkL in a single crystalline sample of Co8Zn8Mn4 with
magnetic field along (110) (Tokunaga et al., 2015).

by (i) the efficient decoupling of SkL and crystal lattice
due to the smooth texture and (ii) the efficient coupling
of the transport currents due to the topological proper-
ties of the SkL (Everschor et al., 2012). Complementary
to measurements of spin transfer torque, recent time-
resolved TISANE measurements with periodically oscil-
lating magnetic fields on MnSi (Mühlbauer et al., 2016)
consistently show a depinning transition of the SkL at a
critical oscillation amplitude. These measurements allow
to directly track the rigidity and pinning of the SkL also
for non-conducting samples.

The stabilization of SkL phases is a central point of
an increasing effort in experiment and theory: (i) Be-
sides stabilization by fluctuations as found for MnSi
(Mühlbauer et al., 2009a), Fe1−xCoxSi (Münzer et al.,
2010), FeGe (Yu et al., 2011), Cu2OSeO3 (Seki et al.,
2012b) and the β-Mn series (Tokunaga et al., 2015), sev-
eral studies using real space techniques revealed (ii) an
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increasing skyrmion phase with decreasing sample thick-
ness (Seki et al., 2012c; Yu et al., 2011, 2010). (iii) The
influence of crystalline anisotropy have been investigated
in several studies (Adams, 2015; Chacon et al., 2018).
β-Mn-type CoxZnyMnz (Karube et al., 2016) exhibits
a transition from a conventuional triangular lattice to
a metastable square SkL for low temperatures due to
magneto-crystalline anisotropy. (iv) The destabilization
of competing phases (Seki et al., 2012c; Yu et al., 2011,
2010), (v) strain (Fobes et al., 2017; Nii et al., 2015) and
(vi) terms induced by free surfaces (Rybakov et al., 2015)
and interface spin orbit effects (Heinze et al., 2011; Rom-
ming et al., 2013) play an important role, in particular
with decreasing sample thickness. Here, SANS, GISANS
and polarized neutron reflectometry (PNR) have been
used to study the possible formation of skyrmionic struc-
tures in B20 thin films: While such textures have been
claimed to exist in MnSi thin films (Karhu et al., 2012;
Meynell et al., 2017; Wilson et al., 2013), based on mag-
netization and PNR and SANS measurements, recent
GISANS studies (Wiedenmann et al., 2017) did not re-
veal any hints for SKL spin textures in thin epitaxial
films of MnSi.

As the SkL is topologically distinct from the sur-
rounding conical phase, a continuous transformation of a
conical state to a SkL is impossible, or is at least as-
sociated with a large energy barrier. In combination
with pinning induced by defects, this offers the study
of considerable metastable, out-of-equilibrium and hys-
teretic effects, which have been demonstrated by quench-
ing the SkL into long-lived metastable phases in various
compounds (Karube et al., 2016; Münzer et al., 2010;
Nakajima et al., 2017; Oike et al., 2016). The topo-
logical difference raises the generic question of the pro-
cess of skyrmion nucleation/decay at the borders of the
SkL phase pocket, where a first-order phase transition is
observed by bulk measurements (Bauer and Pfleiderer,
2012). SANS combined with real space MFM measure-
ments on FeCo1−xSix (Milde et al., 2013) showed that
skyrmions decay by means of a topological defect that
zips two neighboring skyrmions and propagates along
the skyrmion line. Interestingly, the topological defect
has the mathematical form of a monopole of emergent
flux. In line with bulk and neutron imaging measure-
ments (Bauer and Pfleiderer, 2012), geometry, demagne-
tization and edge effects play an important role (Müller
et al., 2016), suggesting that macroscopic phase coex-
istence is present and might have been underestimated
(Reimann et al., 2018).

SANS experiments by Seki et al., 2012b, Adams et al.,
2012 and White et al., 2012, 2014 and LTEM studies
by Seki et al., 2012c have established the existence of a
SkL in the multiferroic B20 insulator Cu2OSeO3. The
phase diagram shares some qualitative features of all
B20 compounds, although a (100) pinning of the heli-
cal order at zero field indicates that (i) the magnetocrys-

talline anisotropy terms are different and (ii) the differ-
ence of free energy for pinning along (100) and (110)
is very small. The different anisotropy terms reflect in
the orientation of the SkL, multi-domain states are typ-
ically seen for Cu2OSeO3 (Adams et al., 2012; White
et al., 2012) (see panel (D) of Fig. 35 for typical SANS
data). Morover, a second independent skyrmion phase
for H ‖ (100) at low temperature observed by means of
SANS in Cu2OSeO3 is attributed to a stabilization mech-
anism invoking cubic anisotropy terms (Chacon et al.,
2018).

The influence of the SkL to an electric field has been
investigated by White et al., 2012: For magnetic fields
along a (1, 1, 0) axis and electric field along (111) it
is possible to induce small rotations of the SkL around
the magnetic field axis. Consistent with symmetry argu-
ments (Seki et al., 2012a) the SkL state permits a polar
state for field along (1, 1, 0), namely P ‖ (001). Each
electric dipole associated to a single skyrmion hence is
inclined with respect to the field along E ‖ (111). The
coupling of P and E is made responsible for the rotation
of the SkL. It was found in a follow-up study (White
et al., 2014) that electrical fields in combination with
slight oscillations of the magnetic field amplitude helps
overcoming SkL pinning and leads to significantly larger
rotation angles.

Recently, SANS studies have revealed the existence of
SkL phases in an increasing number of non-B20 com-
pounds. β-Mn-type CoxZnyMnz , (x + y + z = 20),
crystallizes in the cubic, chiral P4132 space group. Ac-
cordingly, the ground state is a helical structure pro-
vided by DMI. SANS, magnetometry and LTEM mea-
surements by Tokunaga et al., 2015 in thin platelets and
small bulk samples have identified a Bloch-type SkL with
a phase diagram that shares great similarities to cu-
bic MnSi, although the transition temperature is much
higher ≈ 320K. Similar to MnSi, the SkL is stabilized by
an order-by-disorder mechanism.

A qualitatively different situation if found in polar
VOSe2O5 (space group C4v), GaV4S8 and GaV4Se8
(space group C3v) where the ground state is a cycloidal
spin arrangement. Correspondingly, SANS, atomic force
microscopy (AFM), electron spin resonance (ESR) and
magnetization measurements have identified a Néel-type
SkL in these materials (Bordacs et al., 2017; Kézsmárki
et al., 2015; Kurumaji et al., 2017). In stark contrast
to the cubic compounds, where weak anisotropies gov-
ern the orientation of the helical order and the SkL with
respect to the crystal lattice and the SkL is essentially
tied to the magnetic field as leading contribution, the
SkL state is confined to certain crystallographic planes
by crystal anisotropy for polar GaV4S8 (Kézsmárki et al.,
2015) and GaV4Se8 (Bordacs et al., 2017). Moreover, the
competing conical state is forbidden by the DMI pattern
in the polar Cvn class. Accordingly, the phase diagram
is qualitatively different, showing an extended region of
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stability of the SkL phase, although it is strongly depen-
dent on the crystallographic direction (Bordacs et al.,
2017; Kézsmárki et al., 2015). Antiskyrmion structures,
characterized by alternating Bloch and Néel spin rota-
tion following the boundary of the single skyrmion, have
been identified in the acentric tetragonal Heuslser com-
pound Mn1.4Pt0.9Pd0.1Sn with D2d symmetry by means
of LTEM (Nayak et al., 2017).

The emergence of skyrmionic textures in magnetically
frustrated centrosymmetric materials with high lattice
symmetry has recenty been in the focus of intense theo-
retical effort (Hayami et al., 2017; Leonov and Motovoy,
2015; Okubo et al., 2012; Wang et al., 2015). Without the
restrictions on the symmetry imposed by the DMI inter-
action, a large body of different helimagnetic structures
and multiple-q modulations, based on frustration effects,
remain to be investigated for their topological properties.
Due to lesser restrictions on symmetry, skyrmions with
topological charge 1 and 2 (Leonov and Motovoy, 2015),
skyrmion-antiskyrmion lattices (Okubo et al., 2012) and
3-D modulated structures (Wang et al., 2015) are pro-
posed. It is expected that neutron diffraction and SANS
will play a key role in their identification.

IX. VORTEX LATTICES IN SUPERCONDUCTORS

Superconductors are classified as type-I or type-II
depending on their response to an applied magnetic
field (Tinkham, 1996). Most superconducting materials,
and almost all that are technologically relevant, belongs
to the second category. Subjecting a type-II supercon-
ductor to a magnetic field will introduce vortices, each
carrying one quantum of magnetic flux Φ0 = h/2e =
2068 Tnm2 (Abrikosov, 1957; Huebener, 2001). The vor-
tices introduce singularities in the order parameter and
may be used as probes of the superconducting state in
the host material. Moreover, moving vortices give rise to
dissipation within the superconducting state, and the dy-
namical properties of vortex matter constitutes its own
important area of research (Blatter et al., 1994; Brandt,
1995).

A. Imaging the vortex lattice by neutron diffraction

Due to their mutual repulsion, vortices arrange them-
selves in an ordered vortex lattice (VL), as long as the
vortex-vortex interactions dominate external influences
such as pinning to impurities or thermal disordering. The
VL gives rise to a periodic magnetic field modulation and
may therefore be imaged by magnetic neutron scatter-
ing (de Gennes and Matricon, 1964), and the first ex-
perimental confirmation for the existence of vortices was
indeed made by observing neutron diffraction from the
VL in niobium (Cribier et al., 1964).

SANS studies of the VL can be considered as crys-
tallography of a two-dimensional system of lines (vor-
tices), providing information about the lattice structure
and correlations, as well as the internal structure of the
individual scatterers. While there are many similarities
between the VL and the skyrmion lattice discussed in
Sec.VIII, there are also important differences. Due to
flux quantization, the vortex density depends linearly on
the magnetic induction, B. For a square VL, the magni-
tude of the fundamental (first order) scattering vector is
given by

q0 = 2π

√
B

Φ0
. (64)

For a rhombic VL, i.e., oblique with equal side lengths
but an arbitrary opening angle 60◦ < β < 90◦ the
scattering vector is q = (sinβ)−1/2 q0, whereas a dis-
torted triangular (hexagonal) lattice (β < 60◦) will have
q = (2 tanβ/2)1/2 q0. From precise measurements of the
scattering vector magnitude, it is therefore possible to
determine the VL symmetry, or to provide a relation be-
tween B and the applied magnetic field µ0H .
The scattered intensity is directly related to the am-

plitude of the magnetic field modulation due to the vor-
tices, quantified by the VL form factor. The latter is
given by the Fourier transform of the two-dimensional
field modulation, F (q) =

∫
B(r) eiq·r dr. The form fac-

tor depends on the superconducting penetration depth
(λ) and coherence length (ξ), and measuring |F (q)| al-
low a determination of these characteristic length scales4.
This requires a measurement of the integrated scattered
intensity, obtained by rotating the relevant VL diffraction
peak through the Bragg condition in a rocking curve, as
discussed in Sec. VIII.A.4 for the skyrmion lattice. Nor-
malizing the integrated scattered intensity to the incident
neutron flux one obtains the VL reflectivity

R =
2πγ2nλ

2
nt

16Φ2
0q

|F (q)|2 , (65)

where t is the sample thickness, and λn is the neutron
wavelength (Christen et al., 1977; Kemoklidze, 1965).
With modern SANS instruments is is possible to mea-
sure |F (q)| as small as 0.1 − 0.2 mT, constituting tiny
“ripples” on top of the average magnetic induction.
Early neutron scattering studies of the VL were per-

formed using two-axis diffractometers (Cribier et al.,
1964; Schelten et al., 1974, 1971). Such measurements
were challenging due to the long VL periodicity ∼ 2π/q0,
exceeding tens of nanometers even for the largest avail-
able magnetic fields and leading to scattering angles< 1◦.

4 To avoid confusion with the London penetration depth λ, the
neutron wavelength is denoted as λn throughout this section.
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FIG. 36 SANS diffraction patterns showing (a) a square VL
in LuNi2B2C (Densmore et al., 2009) and (b) a rhombic VL
in YNi2B2C (Dewhurst et al., 2005).

This situation was improved using a double crystal ge-
ometry to separate the scattering due to the VL from the
direct (undiffracted) beam (Christen et al., 1985, 1980).
Still, only a few such studies were performed, mostly on
niobium where the small λ leads to scattering intensites
in excess of 10% of the incident beam. The develop-
ment of dedicated SANS instruments at cold neutron
sources changed this situation dramatically. By provid-
ing a higher incident flux and allowing the entire scatter-
ing plane to be imaged using a two-dimensional position
sensitive detector (Fig. 36), these have made SANS an
ideal tool for VL studies.
The emphasis in the following reflects the most studied

problems/materials and current directions for SANS VL
studies, but is not a comprehensive treatise. Shorter and
more focused reviews are available elsewhere (Eskildsen,
2011; Eskildsen et al., 2011).

B. Vortices as probes of superconducting materials

Information about the nature of the superconducting
state in the host material can be obtained from the VL
structure as well as the field and temperature dependence
of the scattered intensity.

1. VL symmetry and orientation

The equilibrium VL configuration is determined by the
vortex-vortex interaction, and in the ideal isotropic case
will have a triangular symmetry (Kleiner et al., 1964;
Matricon, 1964). However, the free energy difference
between the triangular and square symmetries is small
(2%), rendering the VL sensitive to an anisotropy of
the screening current plane perpendicular to the applied
field. Actual superconducting materials posses a hierar-
chy of anisotropies that will influence the VL symmetry
and/or orientation relative to the crystalline axes. This
often leads to degenerate VL orientations relative to the
crystalline host, and SANS diffraction patterns that in-
clude scattering from two or more domain orientations

as seen in Figs. 36(b), 41(a) and 44(c,d).

The simplest example of a nontriangular VL is found
in tetragonal superconductors with a fourfold basal plane
anisotropy and the applied field parallel to the c axis.
With increasing vortex density the contribution of the
anisotropy to the free energy becomes dominant, leading
to a sequence of VL transitions. A field-driven VL tran-
sition from a triangular to hexagonal symmetry was first
observed in the borocarbide magnetic superconductor
ErNi2B2C (Eskildsen et al., 1997; Paul et al., 1998; Yaron
et al., 1996; Yethiraj et al., 1997). Since then, similar
transitions have been observed in a range of materials, in-
cluding V3Si (Yethiraj et al., 1999), the high-temperature
cuprate YBa2Cu3O7 (Brown et al., 2004), and the heavy-
fermion CeCoIn5 (DeBeer-Schmitt et al., 2006). The
triangular-to-square transition is so ubiquitous that it is
more noteworthy when it is absent in a superconduc-
tor with a fourfold basal plane anisotropy (Gilardi et al.,
2004; Kawano-Furukawa et al., 2011; Morisaki-Ishii et al.,
2014; Riseman et al., 1998). More recently it was also
observed for the skyrmion lattice (Karube et al., 2016),
underscoring the similarities between the VL and SkL.

Theoretically, nonlocal corrections to the London
model describe a VL symmetry evolution driven by a
Fermi surface anisotropy (Kogan et al., 1997). The tran-
sition is characterized by two critical fields as shown in
Fig. 37(a). Here a rhombic (distorted triangular) VL
[Fig. 36(b)] undergoes a first-order reorientation tran-
sition at H1, followed by a continuous increase of the
opening angle towards a second-order transition at H2

above which a square VL [Fig. 36(a)] is observed. Fig-
ure 37(b) shows results of a detailed study of the VL
in YNi2B2C, where coexisting low- and high-field rhom-
bic phases are observed near the first order reorientation
transition (Dewhurst et al., 2005). At higher tempera-
tures the gap between H1 and H2 grows, consistent with
increased thermal fluctuations close to the upper criti-
cal field (Gurevich and Kogan, 2001). Separate studies
of doped samples showed that H2 depends sensitively on
the nonlocality range (Gammel et al., 1999).

An additional contribution to a fourfold anisotropy
may also come from the superconducting gap, e.g., in
materials with non s-wave pairing symmetry (Agter-
berg, 1998; Franz et al., 1997; Ichioka et al., 1999). In
YBa2Cu3O7 early SANS studies showed diffraction pat-
terns with a fourfold structure due to pinning to twin
boundaries (Forgan et al., 1990; Keimer et al., 1994;
Yethiraj et al., 1993b). More recent measurements on
de-twinned samples revealed a complex evolution of the
VL symmetry and orientation, Fig. 37(c) (White et al.,
2008, 2011, 2009). The presence of two, first-order reori-
entation transitions may naively be attributed to Fermi
surface and gap anisotropies separately. However, it has
proven difficult to deconvolute these two contributions
to the anisotropy (Leos et al., 2015), and a definitive
understanding of the VL symmetry in such cases is still
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FIG. 37 Density driven VL symmetry transition for H ‖ c in superconductors with a fourfold basal plane anisotropy. (a)
Equilibrium VL opening angle predicted from nonlocal corrections to London model (Kogan et al., 1997). (b) Measured
opening angle in YNi2B2C for different temperatures (Dewhurst et al., 2005). (c) Field dependence of the opening angle
(2 K) for the VL structures in YBa2Cu3O7 (White et al., 2011). Gray shading in (b) and (c) indicate where first-order VL
reorientation transitions are observed.

lacking.

Compared to the materials discussed above, the con-
ventional superconductor niobium exhibits a surprisingly
rich VL phase diagram. Soon after the first VL ob-
servation it was recognized that different configurations
could be expected for fields applied along different crys-
talline directions in this cubic material (Takanaka, 1971,
1973a,b). This was confirmed in pioneering experiments
carried out with fields along two-, four and sixfold sym-
metric axes (Christen et al., 1980; Schelten et al., 1974).
More recent studies found additional VL phases for fields
along the fourfold [100] axis which all break some crys-
tal symmetry, Fig. 38(a) (Laver et al., 2009, 2006). The
transition between the different VL configurations is at-
tributed to the combination of a pronounced Fermi sur-
face anisotropy, and the significant vortex core overlap
in niobium due to the low ratio between the penetra-
tion depth and coherence length, κ = λ/ξ (Adachi et al.,
2011; Laver et al., 2009). The low field square VL shown
in Fig. 38(a) is considered to be a property of the inter-
mediate mixed state discussed below (Mühlbauer et al.,
2009b). Finally, the square and scalene VL phases are not
oriented with a nearest neighbor direction along a crys-
talline high-symmetry direction, showing the presence of
higher-order anisotropy terms in the free energy. The
likely existence of VL phases that spontaneously break
the underlying crystal symmetry can also be understood
as a purely topological effect. Application of the so-
called “hairy ball” theorem to the case of niobium, as
the field is rotated between high-symmetry directions,
shows that VL discontinuities must exist, as illustrated
in Fig. 38(b) (Laver and Forgan, 2010). Compared to
individual skyrmions, each characterized by a non-zero
winding number, the topology here governs the behavior
of the collective VL. That said, the “hairy ball” theorem
also applies to the SkL.

The low κ for niobium leads to a local minimum in
the vortex-vortex interaction potential, giving rise to

an intermediate mixed state (IMS) at low fields where
flux free Meissner regions and VL regions coexist (As-
ton et al., 1971; Christen et al., 1977). In the IMS the
vortex separation, and hence q0, is independent of the ap-
plied field, as illustrated in Fig. 38(c). With increasing
H , the VL regions grow at the expense of the Meissner
ones until they fill the entire sample, after which q fol-
lows the

√
H-behavior given by Eq. (64). Upon cooling

through the superconducting transition, vortex clusters
with a constant periodicity were found to coexist with a
regular Abrikosov (or Shubnikov) VL phase, before the
latter vanishes at low temperature to produce the IMS
state (Pautrat and Brûlet, 2014). Due to its inherent
inhomogeneity, the IMS may be used as a model sys-
tem for domain nucleation and morphology. Recently,
this was studied using spatially-resolved SANS combined
with neutron grating interferometry, to obtain detailed
spatial information about the structure of the IMS do-
mains and how they expand, Fig. 38(c) (Reimann et al.,
2015).

2. Field and temperature dependence of the VL form factor

The simplest model for the VL form factor is pro-
vided by the local London theory. This relates the su-
percurrent density to the magnetic vector potential at
the same point via the penetration depth, extended by a
Gaussian cut-off to take into account the finite coherence
length (Eskildsen et al., 2011):

F (q) =
B

1 + q2λ2
e−cq2ξ2 . (66)

Here, c is a constant of order unity (Yaouanc et al., 1997).
In most cases qλ ≪ 1, and Eq. (66) predicts a form fac-
tor that decreases exponentially with increasing as with
q2 ∝ B. This is due to an increased core overlap result-
ing in a rapid reduction of the field modulation, even as
the number of vortices increase. More rigorous models
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FIG. 38 VL phases in niobium. (a) Phase diagram for applied fields along the fourfold [001] axis (Laver et al., 2009). (b) VL
structures observed as a function of field direction (Laver and Forgan, 2010). Isosceles half-unit cells are indicated by filled
triangles, and equilateral triangles are colored in red. Thick lines show sudden changes in the VL orientation. (c) Interme-
diate mixed phase indicated by a constant VL scattering vector below 120 mT at two different positions within the same
crystal (Reimann et al., 2015). Gray lines correspond to a vortex density ∝ H , Eq. (64).

based on the Ginzburg-Landau theory (Clem, 1975; Hao
et al., 1991), as well as numerical calculations carried out
within the Eilenberger formalism (Ichioka et al., 1999),
confirm the monotonic decrease of F (q) while yielding de-
viations from a pure exponential behavior. For strongly
type-II superconductors (λ/ξ ≫ 1) the extended London
and Ginzburg-Landau form factors agree at low fields.
Measuring F (q) at fields that are simultaneously small,
but still large enough to satisfy qλ ≫ 1, will therefore
allow an extrapolation to q = 0 and an estimate of the
penetration depth which is unaffected by vortex core ef-
fects.

Figure 39(a) shows the measured form factor for the
primary VL reflection in LuNi2B2C (Densmore et al.,
2009). For this material |F (q)| is best described by the
London model (full line) rather than the more sophisti-
cated models (dashed lines). In addition to the deter-
mination of λ from the q = 0 extrapolation as discussed
above, an estimate of the coherence length may be ob-
tained from the slope of ln |F (q)| versus µ0H . Here a
c = 1

2 is commonly used in Eq. (66), which is found to
yield reasonable values for ξ. This is further justified by
a quantitative comparison to numerical results (Ichioka
et al., 1999), which suggests an appropriate value of
0.44 at low temperatures (Bowell, 2008; Eskildsen et al.,
2011). In cases where more than the primary VL reflec-
tion can be measured, a more detailed analysis of the
form factor is possible, including comparison to complex
models as for Sr2RuO4 (Kealey et al., 2000). In mate-
rials such as LuNi2B2C where it is possible to measure
a large number of higher-order VL reflections as shown
in Fig. 36(a), the real space field distribution may be
obtained by B(r) =

∑
F (qhk) e

iqhk·r and shown in the
inset to Fig. 39(a).

A deviation from the conventional field dependence oc-
curs in materials with a strong coupling between the
applied field and the quasiparticle spins. This was

FIG. 39 Field dependence of the VL form factor in (a)
LuNi2B2C (Densmore et al., 2009) and (b) CeCoIn5 (White
et al., 2010). The inset in (a) show the real space field recon-
struction.

first reported for TmNi2B2C (DeBeer-Schmitt et al.,
2007) and later observed in a more extreme form in
CeCoIn5 (Bianchi et al., 2008; White et al., 2010). Re-
sults for the latter are shown in Fig. 39(b). At all temper-
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atures, the form factor initially increases before reaching
a maximum and then decreasing on approaching the up-
per critical field, Hc2. Below 500 mK F (q) remains finite
up to Hc2 above which it vanishes abruptly, consistent
with the first-order nature of the superconducting tran-
sition in CeCoIn5 at low temperatures. The unusual field
dependence of F (q) is due to a strong exchange coupling
of the conduction electrons and the TmNi2B2C or Ce-
CoIn sublattice moments (Ichioka et al., 2007). The en-
hanced Pauli paramagnetic effects lead to a polarization
of the unpaired quasiparticle spins in the vortex cores
and a spatially varying paramagnetic moment, providing
an additional contribution to the field variation in the
mixed state. Approaching Hc2, the paramagnetic de-
pairing causes the vortex cores to expand, making them
more isotropic. For H ‖ c this suppresses the fourfold
anisotropy in the screening current plane, leading to a
re-entrance of the the square VL phase (Bianchi et al.,
2008; Das et al., 2012a; Eskildsen et al., 1998)
The temperature dependence of the VL form factor

reflects the structure of the superconducting gap, ∆.
Specifically, F (q) is proportional to the superfluid density
ρs ∝ λ−2 given by

ρs(t) = 1− 1

4πt

∫ 2π

0

∫ ∞

0

cosh−2

(√
ε2 +∆2(t, φ)

2t

)
dφ dε,

(67)
where t = T/TC is the normalized temperature (Eskild-
sen et al., 2011; Prozorov and Giannetta, 2006). Here,
TC is the superconducting critical temperature and the
gap is in units of kB TC . The latter can be sepa-
rated into temperature- and momentum-dependent parts
∆(t, φ) = ∆0(t)∆k(φ). The T -dependence is given by the
weak coupling expression

∆0(t) = ∆0(0) tanh

(
π

∆0(0)

√
1

t
− 1

)
, (68)

where ∆0(0) is the zero-temperature amplitude (Gross
et al., 1986). With increasing temperature F (q decreases
due to thermal excitation of quasiparticles across the gap,
and eventually vanishes at TC . For t . 1

3 the tempera-
ture dependence is dominated by the lowest values of
the gap. If ∆k(φ) is large over the whole Fermi surface,
few quasiparticles are excited and the scattered intensity
I ∝ |F (q)|2 is nearly constant, Fig. 40(b). In contrast, for
a nodal gap the intensity will vary with temperature even
as t → 0, in a manner that depends on the location and
dispersion of the nodes. The coherence length changes
little for t ≪ 1 and is often ignored in the temperature
dependence, although it would be straightforward to in-
clude since within the BCS theory ξ ∝ ∆0(t)

−1.
Figure 40(a) shows the VL scattered intensity as a

function of temperature in the iron-based superconduc-
tor KFe2As2 (Kawano-Furukawa et al., 2011). Here, the
intensity has a strong T -dependence down to the lowest

FIG. 40 Temperature dependence of the VL peak intensity
in KFe2As2 (Kawano-Furukawa et al., 2011). (b)-(d) show
different fits to the original data (a). The difference between
a full and nodal gap is illustrated in (b).

measured temperatures, indicating a range of gaps that
extend down to zero or near-zero values. The best fit to
the data is from a single nodal gap coupled with nonlocal
effects shown in Fig. 40(c) or to a three-gap model with
a small lowest ∆, Fig. 40(d) (Kawano-Furukawa et al.,
2011). The nonlocal corrections become important for
nodal gaps where the London assumption of a vanish-
ing ratio of ξ/λ breaks down. From the temperature
dependence alone it is not possible to discriminate be-
tween the two scenarios, but, as shall be discussed later,
there is strong evidence for multiband superconductiv-
ity in KFe2As2. Similar studies were recently used to
provide information about the nodal structure of the un-
conventional superconductor UPt3 (Gannon et al., 2015).
Here measurements with different directions of the ap-
plied field were compared to models of both the location
and dispersion of the gap nodes.

3. Complex order parameters, multigap superconductivity and
Pauli limiting

The ability to probe within the mixed (vortex) state
allows VL SANS measurements to extract subtle features
about the superconducting state.

With three distinct superconducting phases (denoted
A, B and C) the heavy-fermion UPt3 is a paradigm for
unconventional superconductivity (Joynt and Taillefer,
2002). This material has a hexagonal crystal structure
but, within the E2u model, a nodal gap with a fourfold
symmetry in the superconducting A and C phases. The
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lower rotational symmetry of the gap gives rise to a rota-
tion of the triangular VL, Fig. 41(a) (Huxley et al., 2000).
These measurements focused on the A phase which exists
at low fields in a narrow temperature range just below
TC . SANS studies of UPt3 are challenging due to the
large penetration depth, and measurements within the
A phase itself are not feasible due to the further loss
of intensity when approaching TC . Instead, a quench-
ing technique was applied, where an equilibrium VL is
obtained by a field oscillation at TQ and then cooled to
the lower measurement temperature. For UPt3 thermal
effects are sufficiently weak that the VL remains in the
configuration obtained at the quench temperature, TQ.
The diffraction patterns in Fig. 41(a) show how trian-
gular VL domains, oriented with Bragg peaks along the
crystalline a axis at low temperature, rotate by ±15◦ as
the A phase is approached. This allowed a determination
of the A phase nodal structure, with antinodes along the
a and a∗ crystalline axes (Champel and Mineev, 2001;
Huxley et al., 2000).

Rotating the applied field away from the principal
axis in a uniaxial superconductor introduces a twofold
anisotropy, causing a distortion of the VL and Bragg
peaks that lie on an ellipse rather than a circle, as shown
in the inset to Fig. 41(b) (Campbell et al., 1988; Das
et al., 2012c; Gammel et al., 1994; Keimer et al., 1993;
Yethiraj et al., 1993a). The VL anisotropy ΓVL is given
by the major-to-minor axis ratio, and due to flux quan-
tization it is sufficient to measure the location of the VL
Bragg peaks along the minor ellipse axis (Kuhn et al.,
2017; Rastovski et al., 2013a). For fields parallel to the
basal plane ΓVL = Γac. Here, Γac mainly reflects the
anisotropy of the Fermi velocity in the ac plane, and
in general one expects Γac = λc/λab (Kawano-Furukawa
et al., 2013). Even in cases where measurements with
an exact in-plane field are not possible, Γac can be ob-
tained by extrapolation. The ability to measure Γac is
especially useful in materials where this is not equal to
the upper critical field anisotropy because Hc2 is Pauli
limited along one or more crystalline directions.

In materials where the superconductivity resides on
multiple Fermi surface sheets with different anisotropy
one often finds a field and/or temperature dependence
of Γac. This was first reported for MgB2 and attributed
to a more rapid suppression of the superconductivity on
the Fermi surface sheets with the smaller gap (Cubitt
et al., 2003). Figure 41(b) shows measurements of ΓVL

in KFe2As2 for two different angles close to the basal
plane (Kuhn et al., 2016). This shows a clear field depen-
dence, indicative of multigap superconductivity in this
material. Moreover, ΓVL exceeds the upper critical field
anisotropy of ∼ 3.3 and thus shows Pauli limiting for
in-plane fields.

In highly anisotropic superconductors spin-flip scat-
tering, due to the transverse VL field modulation, can
greatly exceed the non-spin-flip scattering usually used to

image the VL (Amano et al., 2014; Kealey et al., 2001;
Kuhn et al., 2016; Thiemann et al., 1989). Since the
spin flip scattering vanishes for fields within the basal
plane, this also allows a precise in situ alignment of the
magnetic field. The spin flip scattering was utilized in
SANS studies of the anisotropy in Sr2RuO4 which would
otherwise not have been possible, Fig. 41(c) (Nakai and
Machida, 2015; Rastovski et al., 2013a). This found a
Γac ∼ 60, greatly exceeding that of the upper critical
field (20) indicating Pauli limiting similar to the situa-
tion in KFe2As2. This raises questions concerning the
order parameter in Sr2RuO4 which is considered to be
a p-wave superconductor with equal-spin pairing where
Pauli limiting is not expected to occur (Maeno et al.,
2012).

C. Vortex matter studies

While the repulsive vortex-vortex interaction favors
the formation of a well-ordered VL, thermal effects
and/or pinning to imperfections can lead to disorder-
ing. The balance between these competing factors de-
termines both the structural and dynamic properties of
vortex matter which is interesting in its own right, and as
a model system for the behavior of soft matter in general.

1. Structural properties and correlations

Obtaining an ordered VL with a well-defined diffrac-
tion pattern often requires “annealing” to remove disor-
der that may have been frozen in during a field cooling
procedure. In materials with weak pinning this can be
achieved by applying a transport current (Pautrat et al.,
2005; Yaron et al., 1994, 1995) or by a damped, small-
amplitude AC field to “shake” the vortices into their equi-
librium positions (Levett et al., 2002). In contrast, it is
often not possible to achieve an ordered VL in super-
conductors with strong pinning, and a shaking can even
lead to a further disordering of the VL. This is seen in
members of the iron-based superconductors where a ring
of scattering from a VL powder is observed (Eskildsen
et al., 2009; Inosov et al., 2010a,b).

For a well-ordered VL the correlation lengths are de-
termined from SANS, being inversely proportional to the
width of the Bragg reflections in reciprocal space (Yaron
et al., 1995). A measure of the longitudinal correla-
tion length (vortex “straightness”) is obtained from rock-
ing curves (RC) of the scattered intensity as the VL
peaks are rotated through the Bragg condition, shown
in Fig. 43(b,c). While the poor resolution in the detector
plane makes it difficult to determine the positional order
directly, this can be estimated from the RC width, as the
longitudinal, translational and orientational correlation
lengths are related by the VL elastic constants (Brandt,
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FIG. 41 Probing complex superconducting states. (a) Diffraction patterns in UPt3 for H ‖ c, “grown” at 190mT and TQ and
quenched to the measurement temperature (100− 150mK) (Huxley et al., 2000). (b) VL anisotropy as a function of magnetic
fields applied close to the basal plane in KFe2As2 (Kuhn et al., 2016). The insert show a schematic of VL Bragg reflections
lying on an ellipse with major-to-minor axis ratio, ΓVL. (c) VL anisotropy versus field angle in Sr2RuO4 consistent with a
superconducting anisotropy, Γac = 58.5 ± 2.3 (Rastovski et al., 2013a).

FIG. 42 Structural properties of the VL. (a) Positional cor-
relation (Raz) length for (K,Ba)BiO3 and BiSrCaCuO (Klein
et al., 2001). The horizontal dotted line is where Raz becomes
larger than the experimental resolution. (b) VL positions in a
Reverse Monte Carlo ensemble based on SANS measurements
in niobium (Laver et al., 2008). Colors denote the magnitude
(lightness) and direction (hue) of the in-plane displacement.

1995).

A fundamental question is the exact structural char-
acteristics of a dislocation free VL. For any amount of
disorder the positional order will decay over some char-
acteristic length scale, where the vortex displacement be-
comes of the order of the VL spacing. In the so-called
Bragg glass model, where the VL is treated as an elas-
tic manifold, the positional order has a weak, power-law
decay, giving rise to rocking curves with a decreasing
amplitude but no broadening (Cubitt et al., 1993; Klein
et al., 2001). This is supported by the measurements in
Fig. 42 (a) showing a decay positional correlation, i.e. of
the integrated intensity multiplied by q/|F (q)|2, which,
from Eq. (65), is expected to be constant. More recent
SANS measurements used a transverse magnetic field,
where the RC width probes the positional order, coupled
with a reverse Monte Carlo analysis of the data (Laver
et al., 2008). This found some evidence for a Bragg glass
at large length scales, but also a fracturing shown in
Fig. 42(b) which leads to RC broadening. Subsequent

studies using a time-of-flight approach to SANS yielded
consistent results (Pautrat et al., 2012).

2. Relating structural and dynamic properties

Vortex matter exhibits a rich and complex dynamic be-
havior (Blatter et al., 1994; Brandt, 1995). This includes
an increased de-pinning critical current in a region below
the upper critical field, known as the peak effect (PE),
and VL melting, where SANS can provide complemen-
tary structural information. The first report of VL melt-
ing observed by SANS was in the high-temperature su-
perconductor Bi2.15Sr1.95CaCuO8+x, where an abruptly
vanishing intensity was observed at temperatures much
less than TC (Cubitt et al., 1993). Reports of melting,
based on the observation of a VL disordering, were also
made for niobium where effects of thermal fluctuations
are expected to be weak. However, subsequent mea-
surements on ultrapure samples contradicted these find-
ings, revealing an ordered VL in very close proximity to
Hc2 (Bowell et al., 2010; Forgan et al., 2002). The differ-
ence may be attributed to differences in sample quality,
demonstrating the challenge in eliminating extrinsic ef-
fects.
In the case of the PE, the increase in the critical cur-

rent is commonly associated with a softening of the VL
and an ensuing order-disorder transition, which better al-
lows it to conform with the pinning landscape (Gammel
et al., 1998; Joumard et al., 1999). As already discussed,
energy barriers may trap the VL in disordered metastable
configurations when cooling from the normal state in a
constant field. In addition to a transport current or an
AC field, an ordering of the VL can in some cases be
achieved by a simple thermal cycling (Daniilidis et al.,
2007; Marziali Bermudez et al., 2017). Conversely, the
application of a field oscillation will introduce an edge
“contamination” of the VL at surfaces where vortices en-
ter and leave the sample (Hanson et al., 2011). While
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FIG. 43 Peak effect in NbSe2 (Marziali Bermudez et al.,
2015). (a) Linear ac susceptibility in the vicinity of the PE
for different field histories. (b) Rocking curve after a field
cooling procedure. (c) RCs after “shaking” the VL at two
different temperature below the PE and with widths that are
resolution limited.

associating the PE with a bulk order-disorder transition
is widely accepted, this is not universal. This is due to
some observations of an ordered VL above the PE (Pau-
trat et al., 2009, 2007) and studies which indicate that
this is caused by surface rather than bulk pinning (Pau-
trat et al., 2012). Here, one should note that few SANS
measurements are performed under the same exact condi-
tions (transport currents, AC fields) as those used to de-
termine the PE. This emphasizes the need for simultane-
ous transport measurements when drawing connections
between the structural and dynamic properties of vortex
matter. Recent measurements combined SANS with in

situ linear ac susceptibility measurements as shown in
Fig. 43 (Marziali Bermudez et al., 2015). These studies
explored the behavior in the complex transitional region
adjacent to the PE, where pinning can both decrease or
increase by the application of transport currents or AC
magnetic fields.

3. Ordered, nonequilibrium VL phases

A final example of complex vortex matter behavior
is the recent discovery of well-ordered, metastable VL
phases (Das et al., 2012b). In MgB2 the triangular VL
undergoes a 30◦ continuous rotation transition, similar
to the one observed in UPt3 and shown in Fig. 41(a),
but here attributed to a Fermi surface anisotropy cou-
pled with the two-gap nature of the superconducting
state (Cubitt et al., 2003; Hirano et al., 2013). The
diffraction patterns in Fig. 44 show examples of two of the
phases in this material: A VL aligned with Bragg peaks
along the crystalline a axis (F phase), and rotated away
from a resulting in two degenerate domain orientations
(L phase). Cooling or warming across the equilibrium

FIG. 44 Metastable VL phases in MgB2 (Das et al., 2012b).
Cooling or heating across the F-L phase transition leaves the
VL in a metastable configuration (a,d). The ground state VL
(b,c) is obtained by applying a damped field oscillation.

F-L phase transition leaves the VL in robust metastable
states, and an external perturbation such as a field oscil-
lation is required to drive it to the ground state, as shown
in Fig. 44. The metastability is notably not due to pin-
ning (Rastovski et al., 2013b), but represents a novel col-
lective vortex phenomenon most likely stabilized by VL
domain boundaries. More recently, a similar phenomena
was observed for skyrmion lattices where different phases
could be stabilized depending on the temperature- and
field-history (Makino et al., 2017). Looking ahead, the
VL in MgB2 could possibly be used as a model system
for nonequilibrium phase transitions.

X. CONCLUDING REMARKS

We have presented recent applications of magnetic
SANS to study a wide range of magnetic materials, such
as soft magnetic Fe-based nanocomposites, hard mag-
netic Nd−Fe−B-based permanent magnets, magnetic
steels, nanoparticles and ferrofluids, magnetic oxides and
complex alloys, skyrmion lattices (SkL), spiral magnetic
structures, and vortex lattices (VL) in type-II supercon-
ductors. The final paragraphs are devoted to a brief dis-
cussion of future developments, related to scientific grand
challenges, theoretical and simulation work, as well as to
SANS instrumentation.
Whilst for bulk ferromagnets the theoretical frame-

work of magnetic SANS has recently been developed
(Metlov and Michels, 2015, 2016; Mettus and Michels,
2015; Michels, 2014; Michels et al., 2016; Michels and
Weissmüller, 2008), the theoretical description of mag-
netic SANS for magnetic nanoparticles in a nonmagnetic
matrix is still in its infancy. This comprises the de-
scription of spin arrangements in particles beyond the
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single-domain (supermoment) approximation and inter-
particle correlations in dense interacting particle systems.
Future research will therefore concentrate on the ana-
lytical and/or numerical micromagnetic computation of
the magnetic SANS cross section of a dispersion of mag-
netic nanoparticles in a nonmagnetic matrix—the clas-
sical prototypical sample microstructure in many mag-
netic SANS experiments. There is ample theoretical
(e.g., Berger et al., 2008; Gatel et al., 2015; and Vivas
et al., 2017) as well as experimental (e.g., Disch et al.,
2012; Günther et al., 2014; and Krycka et al., 2014) evi-
dence that nanosized magnetic particles are not homoge-
neously magnetized, and the question thus arises whether
the standard expression for the cross section, Eq. (23), is
still adequate to describe magnetic SANS. Intraparticle
spin disorder may be due to the interplay between dif-
ferent magnetic interactions such as surface anisotropy
and dipolar interaction, deviations from ellipsoidal par-
ticle geometry, or to the presence of crystal defects and
antiphase boundaries (Nedelkoski et al., 2017). Hetero-
geneous particles offer an additional degree of freedom
to tailor magnetic properties; for instance, in multiphase
core/shell particles, the spin structure may show varying
magnetic properties between phases (e.g., AFM core/FM
shell). For nanoparticles, boundary conditions for the
magnetization at internal and particle-matrix interfaces
have to be taken into account, a task which, from the mi-
cromagnetic point of view, severely complicates the prob-
lem. Nucleation theory (Aharoni, 1996) may provide a
guideline for attacking this problem.

For hard magnetic materials, magnetic SANS has al-
lowed a novel perspective where a qualitative examina-
tion has been complemented by a semi-quantitative anal-
ysis. Although fundamental topics are expected to be
further explored, applied research will keep gaining mo-
mentum. SANS data suggested that the grain-boundary
phase in sintered Nd−Fe−B-based magnets is the main
source of spin misalignment within the hard magnetic
phase, and whose dimensions correlate with the defect
size as observed by SANS. In fact, SANS is still ex-
pected to be the only technique to monitor the bulk of the
(magnetic) microstructure, relating coercivity and defect
dimensions in sintered magnets. Similarly, Nd−Fe−B
nanocomposites will increasingly rely on SANS with the
aim to address simultaneously composition, processing
conditions, and magnetic properties. Future activities in
the topic will embrace other engineering magnetic materi-
als, likely with emphasis on Sm-Co compounds (possibly
using Sm isotope(s) due to its large neutron absorption)
in view of their importance for high-temperature applica-
tions combined with a microstructure that resembles the
one of Nd−Fe−B counterparts; besides, the magnetic mi-
crostructure of ferrites, Alnico, or manganese compounds
have not yet been studied using SANS.

SANS investigations on steels take advantage of a per-
fect correspondence between the size scale most relevant

for the mechanical properties of advanced steels and the
sensitivity range of SANS. The reported applications of
magnetic SANS in the field of ferromagnetic steels indi-
cate the need of an improved understanding of the mag-
netic properties of nanofeatures such as oxide nanoparti-
cles or irradiation-induced solute atom clusters. This will
be achieved by refining models of magnetism in complex
systems at the nm-scale and by using SANS to calibrate
the models. The consideration of both magnetic and nu-
clear SANS is critical for the separation of magnetic and
morphological aspects of the nanofeatures and may re-
quire magnetic-field-dependent SANS measurements.

Numerical micromagnetic computations can take into
account the full nonlinearity of Brown’s static equations
of micromagnetics and, indeed, have provided fundamen-
tal insights into magnetic SANS. A particular advantage
of micromagnetic simulations resides in their flexibility
regarding microstructure variations (particle-size distri-
bution, texture, magnetic materials parameters, etc.); it
is also rather straightforward to “switch on” and “off”
certain magnetic interactions in the simulations and to
test in this way their impact on the neutron scattering. In
view of the continuously increasing power of modern com-
puters, a further understanding of magnetic neutron scat-
tering may also be expected from the development of effi-
cient micromagnetic algorithms, so that true macroscopic
samples, with dimensions of the order of several microns,
can be simulated. In general, we believe that the com-
bination of experimental scattering data with large-scale
numerical computations will become more and more im-
portant. Future simulation work addresses the inclusion
of nuclear scattering into the micromagnetic approach,
which would allow for the computation of polarization-
dependent nuclear-magnetic interference terms, yielding
a more complete description of the SANS cross section.

Concerning the study of complex systems, it is clear
that SANS has played, and continues to play, an im-
portant role in the elucidation of nano and microscale
magnetic inhomogeneity in complex materials systems.
SANS is in fact ideally suited to obtaining bulk-averaged
information on magnetic inhomogeneity in such materi-
als, and has played a key role in the realization that mag-
netic and electronic inhomogeneity is widespread across
numerous materials classes. Future application of the
technique to new materials where such issues are emerg-
ing will hopefully take place, including topological mag-
netic materials, doped magnetic Mott insulators, heavy
fermion systems, or strong spin-orbit oxides such as iri-
dates.

The indentification of further compounds with
skyrmionic structures and the diverse mechanisms of
their stabilization, often connected to topological decay
and emergence is expected to be of high relavance for
SANS. Not only the manipulation of SkL phases, but
also of noncollinear magnetic structures, by means of
electrical currents and fields, microwave radiation, and
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resulting nonequilibrium physics will be a focus of re-
search, in line with their application in future logical or
storage devices; here, multiferroic properties are of par-
ticular interest. Apart from SANS, skyrmionic structures
in thin films and nanostructured patterns will continue
to be of high importance. Despite intense theoretical ef-
fort (e.g., Barker and Tretiakov, 2016; Göbel et al., 2017;
and Zhang et al., 2016), the experimental proof for AF
skyrmion states is still lacking. Here, key complications
are (i) the unambiguous detection of topological proper-
ties by means of Hall measurements, which are impos-
sible in the mostly insulating compounds. In particular,
recent theoretical work indicates that AF skyrmions only
show a topological spin Hall effect (Barker and Tretiakov,
2016). (ii) The high momentum transfer of AF-based
SkL structures imposes severe limitations to diffraction
measurements, in particular for SANS. Also the search
for skyrmions in magnetically frustrated centrosymmet-
ric materials with high lattice symmetry has recenty been
in the focus of intense theoretical effort (Hayami et al.,
2017; Leonov and Motovoy, 2015; Okubo et al., 2012;
Wang et al., 2015). Here, experimental proof is still
scarce.

While SANS has been highly successful for VL studies,
important unresolved scientific problems remain, which
will require further developments of the technique before
they can be addressed. Prominent examples include the
prospects for direct imaging of exotic vortex phases, such
a multiply-quantized vortices in bulk superconductors
or the inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov
state. Such phases often exist in narrow regions of the
phase diagram which may be difficult to reach experi-
mentally, suffer from weak scattering from the VL, or be
complicated by the need for an unconventional scattering
geometry. Attempts to resolve these exotic states may
require or be aided by a combination of SANS with tech-
niques that allow an in situ tuning of the superconduct-
ing state itself. Importantly, this must extend beyond
electric currents and DC or AC magnetic fields, which
typically only affect the VL. Of particular interest are the
prospects of performing VL studies under uniaxial strain
or hydrostatic pressure. Studies of vortex matter have
recently been advanced by the use of stroboscopic SANS
or TISANE which allow kinematic studies (Mühlbauer
et al., 2011) (see paragraph below). These techniques
hold great potential as time resolution continues to im-
prove. In addition, spatially-resolved SANS studies of
e.g. VL domain formation may be feasible, demonstrated
recently by scattering from as few as 106 − 107 vortices
(Louden et al., 2018).

Recent progress in SANS instrumentation regard-
ing time-resolved data-acquisition procedures (TISANE)
(Gähler and Golub, 1984; Wiedenmann et al., 2006b) and
the integration of spin-echo techniques (MIEZE) opens
up the way to kinetic studies and quasi-elastic energy
resolution. The chopper-based TISANE technique repre-

sents an improvement of conventional stroboscopic time-
resolved SANS, which is limited by the neutron time-
of-flight spread resulting from the wavelength distribu-
tion of the incident neutrons to about 300Hz time res-
olution (Wiedenmann et al., 2011). TISANE allows one
to probe magnetism up to the µs regime, which permits
the investigation of magnetization dynamics of anisomet-
ric nanoparticles in oscillating magnetic fields (Bender
et al., 2015; Wiedenmann et al., 2008), the dynamics
of vortex (Mühlbauer et al., 2011) and sykrmion lat-
tices (Mühlbauer et al., 2016), or systems out of equi-
librium. Regarding theoretical work, the analytical and
numerical extension of the present static micromagnetic
approach to include magnetization dynamics (Landau-
Lifshitz-Gilbert equation) represents a major challenge.

In contrast to kinetic studies of driven dynamics with
stroboscopic techniques such as TISANE, the spin-echo
variant MIEZE (Gähler et al., 1992; Hank et al., 1997)
allows the combination of the superior q-resolution of
SANS and the extreme energy resolution of spin echo,
in particular allowing for (ferro)magnetic samples and
samples in magnetic fields. MIEZE will open the path-
ways to study entirely new physics, e.g., FM fluctuations
at phase transitions, quantum phase transitions and frus-
trated spin liquids, or the melting of SkL and vortex lat-
tices (e.g., Haslbeck et al., 2018; Kindervater et al., 2017;
and Martin, 2018).

In view of the upcoming SANS instrumentation at
the European Spallation Source (ESS) (Jaksch et al.,
2014), it will become possible to study ever smaller sam-
ples at extreme environments (temperature, field, pres-
sure). In terms of neutron flux at ESS, the SANS
instrument SKADI is estimated to provide a flux of
≈ 5 × 108 cm−2s−1 at 8m collimation, which is about
a factor of five larger than the one of the currently best-
performing instrument in the world, the D22 at the ILL
(Jaksch, 2018; Jaksch et al., 2014). Moreover, the in-
creased dynamical range will facilitate in situ and in

operando measurements of irreversible or kinetic pro-
cesses.
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C Johansson (2017), “Structural and magnetic properties
of multi-core nanoparticles analysed using a generalised nu-
merical inversion method,” Sci. Rep. 7, 45990.

Bender, P, A. Günther, D. Honecker, A. Wiedenmann,
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Göbel, Börge, Alexander Mook, Jürgen Henk, and Ingrid
Mertig (2017), “Antiferromagnetic skyrmion crystals: Gen-
eration, topological Hall, and topological spin Hall effect,”
Phys. Rev. B 96, 060406.

Golosovsky, I V, I. Mirebeau, G. André, D. A. Kurdyukov,
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Périgo, E A, E. P. Gilbert, K. L. Metlov, and A. Michels
(2014), “Experimental observation of magnetic poles inside
bulk magnets via q 6= 0 fourier modes of magnetostatic
field,” New. J. Phys. 16, 123031.
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Rößler, U K, A. N. Bogdanov, and C. Pfleiderer (2006),
“Spontaneous skyrmion ground states in magnetic metals,”
Nature 442, 797–801.

Rothwell, W S (1968), “Small-Angle X-Ray Scattering from
Glassy Carbon,” J. Appl. Phys. 39, 1840–1845.

Ruderman, M A, and C. Kittel (1954), “Indirect Exchange
Coupling of Nuclear Magnetic Moments by Conduction
Electrons,” Phys. Rev. 96 (1), 99.



81

Rybakov, Filipp N, Aleksandr B. Borisov, Stefan Blügel, and
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Erné, and J. Kohlbrecher (2008), “Low-temperature dy-
namics of magnetic colloids studied by time-resolved small-
angle neutron scattering,” Phys. Rev. B 77, 184417.

Wiedenmann, Albrecht (2005), “Polarized SANS for probing
magnetic nanostructures,” Phys. B 356, 246–253.

Wiedenmann, Albrecht, and André Heinemann (2005),
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Yaouanc, A, P. Dalmas de Réotier, and E. H. Brandt (1997),
“Effect of the vortex core on the magnetic field in hard
superconductors,” Phys. Rev. B 55, 11107–11110.

Yaron, U, P. L. Gammel, D. A. Huse, R. N. Kleiman,
C. S. Oglesby, E. Bucher, B. Batlogg, D. J. Bishop,
K. Mortensen, K. Clausen, C. A. Bolle, and F. de la Cruz
(1994), “Neutron Diffraction Studies of Flowing and Pinned
Magnetic Flux Lattices in 2H –NbSe2,” Phys. Rev. Lett. 73,
2748–2751.

Yaron, U, P. L. Gammel, D. A. Huse, R. N. Kleiman,
C. S. Oglesby, E. Bucher, B. Batlogg, D. J. Bishop,
K. Mortensen, and K. N. Clausen (1995), “Structural evi-
dence for a two-step process in the depinning of the super-
conducting flux-line lattice,” Nature 376, 753–755.

Yaron, U, P. L. Gammel, A. P. Ramirez, D. A. Huse,
D. J. Bishop, A. I. Goldman, C. Stassis, P. C. Can-
field, K. Mortensen, and M. R. Eskildsen (1996), “Mi-



85

croscopic coexistence of magnetism and superconductivity
in ErNi2B2C,” Nature 382, 236–238.

Yethiraj, M, D. K. Christen, D. McK. Paul, P. Miranovic, and
J. R. Thompson (1999), “Flux lattice symmetry in V3Si:
Nonlocal effects in a high-κ superconductor,” Phys. Rev.
Lett. 82, 5112–5115.

Yethiraj, M, H. A. Mook, G. D.Wignall, R. Cubitt, E. M. For-
gan, S. L. Lee, D. McK. Paul, and T. Armstrong (1993a),
“Anisotropic vortex lattice in YBa2Cu3O7,” Phys. Rev.
Lett. 71 (18), 3019–3022.

Yethiraj, M, H. A. Mook, G. D. Wignall, R. Cubitt, E. M.
Forgan, D. McK. Paul, and T. Armstrong (1993b), “Small-
angle neutron scattering study of flux line lattices in
twinned YBa2Cu3O7,” Phys. Rev. Lett. 70 (6), 857–860.

Yethiraj, M, D. McK. Paul, C. V. Tomy, and E. M. For-
gan (1997), “Neutron scattering study of the flux lattice in
YNi2B2C,” Phys. Rev. Lett. 78, 4849–4852.

Yoshimori, Akio (1959a), “A New Type of Antiferromagnetic
Structure in the Rutile Type Crystal,” Journal of the Phys-
ical Society of Japan 14 (6), 807–821.

Yoshimori, Akio (1959b), “La structure des substances mag-
netiques,” Journal of the Physics and Chemistry of Solids
11 (3–4), 303–309.

Yosida, K (1957), “Magnetic Properties of Cu-Mn Alloys,”
Phys. Rev. 106 (5), 893–898.

Yu, X Z, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang,
S. Ishiwata, Y. Matsui, and Y. Tokura (2011), “Near room-
temperature formation of a skyrmion crstal in thin-films of
the helimagnet FeGe,” Nature Materials 10, 106–109.

Yu, X Z, Y. Onose, N. Kanazawa, J. H. Park, J. H. han,
Y. Matsui, N. Nagaosa, and Y. Tokura (2010), “Real-space
observation of a two-dimensional skyrmion crystal,” Nature
465, 901–904.

Yuan, S, P. L. Kuhns, A. P. Reyes, J. S. Brooks, M. J. R.
Hoch, V. Srivastava, R. D. James, S. El-Khatib, and
C. Leighton (2015), “Magnetically nanostructured state in
a Ni-Mn-Sn shape-memory alloy,” Phys. Rev. B 91, 214421.

Yuan, S, P. L. Kuhns, A. P. Reyes, J. S. Brooks, M. J. R.
Hoch, V. Srivastava, R. D. James, and C. Leighton (2016),
“Phase separation and superparamagnetism in the marten-
sitic phase of Ni50−xCoxMn40Sn10,” Phys. Rev. B 93,

094425.
Yusuf, S M, J. M. De Teresa, M. D. Mukadam, J. Kohlbrecher,

M. R. Ibarra, J. Arbiol, P. Sharma, and S. K. Kulshreshtha
(2006), “Experimental study of the structural and magnetic
properties of γ-Fe2O3 nanoparticles,” Phys. Rev. B 74 (22),
224428.

Zakutna, D (2018), unpublished.
Zhang, X, Y. Zhou, and M. Ezawa (2016), “Antiferromag-

netic Skyrmion: Stability, Creation and Manipulation,”
Sci. Rep. 6, 24795.

Zhang, Z, R. D. James, and S. Müller (2009), “Energy bar-
riers and hysteresis in martensitic phase transformations,”
Acta Mater. 57 (15), 4332–4352.

Zhang, Z W, C. T. Liu, X.-L. Wang, K. C. Littrell, M. K.
Miller, K. An, and B. A. Chin (2011), “From embryos to
precipitates: A study of nucleation and growth in a multi-
component ferritic steel,” Phys. Rev. B 84, 174114.

Zheludev, A, S. Maslov, G. Shirane, Y. Sasago, N. Koide,
K. Uchinokura, D. A. Tennant, and S. E. Nagler (1997a),
“Square-lattice spiral magnet Ba2CuGe2O7 in an in-plane
magnetic field,” Phys. Rev. B 56 (21), 14006–14012.

Zheludev, A, G. Shirane, Y. Sasago, N. Kiode, and
K. Uchinokura (1996), “Spiral phase and spin waves in

the quasi-two-dimensional antiferromagnet Ba2CuGe2O7,”
Phys. Rev. B 54 (21), 15163–15170.

Zheludev, A, G. Shirane, Y. Sasago, N. Koide, and K. Uchi-
nokura (1997b), “Spiral order in Ba2CuGe2O7,” Physica B
234, 546 – 548.

Zhong, S Y, V. Klosek, Y. de Carlan, and M. H. Mathon
(2016), “Modeling of structural hardening in oxide disper-
sion strengthened (ODS) ferritic alloys,” J. Mater. Sci. 51,
2540–2549.

Zighem, F, F. Ott, T. Maurer, G. Chaboussant, J.-Y. Pique-
mal, and G. Viau (2013), “Numerical calculation of mag-
netic form factors of complex shape nanoparticles coupled
with micromagnetic simulations,” Phys. Procedia 42, 66–
73.

Zinkle, S J, and G. S. Was (2013), “Materials challenges in
nuclear energy,” Acta Mater. 61 (3), 735–758.


