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Abstract

Conformal field theories have been long known to describe the fascinating

universal physics of scale invariant critical points. They describe continuous

phase transitions in fluids, magnets, and numerous other materials, while

at the same time sit at the heart of our modern understanding of quantum

field theory. For decades it has been a dream to study these intricate

strongly coupled theories nonperturbatively using symmetries and other

consistency conditions. This idea, called the conformal bootstrap, saw

some successes in two dimensions but it is only in the last ten years that it

has been fully realized in three, four, and other dimensions of interest. This

renaissance has been possible both due to significant analytical progress in

understanding how to set up the bootstrap equations and the development

of numerical techniques for finding or constraining their solutions. These

developments have led to a number of groundbreaking results, including

world record determinations of critical exponents and correlation function

coefficients in the Ising and O(N) models in three dimensions. This

article will review these exciting developments for newcomers to the

bootstrap, giving an introduction to conformal field theories and the

theory of conformal blocks, describing numerical techniques for the

bootstrap based on convex optimization, and summarizing in detail their

applications to fixed points in three and four dimensions with no or minimal

supersymmetry.
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I. INTRODUCTION

For most physical systems, the first step to qualitative understanding is to identify their
characteristic scales (length, energy, etc.), through which everything else can be expressed
via approximate dimensional analysis. However, there exist theories for which this familiar
approach does not work, and which are therefore harder to understand intuitively. These
are scale invariant theories, which by definition look the same at all distances and energies,
and hence do not possess any characteristic scales.

Scale invariant theories are important in physics, because they arise naturally in the
theory of critical phenomena. One experimental manifestation of scale invariance in critical
phenomena is critical opalescence, first observed near the critical point of CO2 by Andrews
(1869), and interpreted as a sign of density fluctuations occurring over many distance
scales by Smoluchowski (1908). The exact solution of the two-dimensional (2d) Ising
model by Onsager (1944) also made it possible to see the emergence of scale invariance
at the ferromagnet-paramagnet critical point. Nowadays it is understood that all critical
points are described by scale invariant theories. This has been incorporated into Wilson’s
renormalization group (RG) theory of phase transitions, introduced in Wilson and Kogut
(1974) and Wilson (1983), according to which continuous phase transitions are described by
the fixed points of RG flows, and are therefore scale invariant.

Formally, scale invariance is expressed as invariance under a rescaling (dilatation) of all
coordinates by a uniform factor x → λx. Another interesting class of transformations
of space are conformal transformations, defined as transformations preserving angles.
Thus conformal transformations are required to look locally at each point as a rotation
accompanied by a dilatation, although the rescaling factor can be x-dependent. Conformal
transformations have been studied by mathematicians since the 19th century (Monge, 1850).
They first entered into physics when Bateman (1910) and Cunningham (1910) showed that
Maxwell’s equations are conformally invariant (they are also trivially scale invariant because
of the masslessness of the photon).1

With conformal invariance being thus a natural extension of scale invariance, one may
wonder if scale invariant theories describing critical points in fact possess full conformal
invariance. That this should be the case was first conjectured by Polyakov (1970). Since then
several theoretical arguments have been given for why scale invariance should generically
imply conformal invariance.2 By now it is understood that most physically relevant scale
invariant theories are conformally invariant, and hence referred to as ‘Conformal Field
Theories’, or CFTs.

1 See Kastrup (2008) for the early history of conformal transformations.
2 See Polchinski (1988) and references therein, as well as the recent review by Nakayama (2015b). The

question is subtle because in fact rare examples of scale invariant and not conformally invariant theories

do exist (Riva and Cardy, 2005), although it is fully understood how they evade the general expectation.
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In addition to their role in the theory of critical phenomena, CFTs are also extremely
important for the study of quantum field theories (QFTs). For this discussion QFTs may
be Euclidean d-dimensional field theories, relevant for statistical physics, or field theories
in Lorentzian signature, which are relevant for high-energy physics and quantum condensed
matter.3 From the modern perspective, large classes of QFTs can be seen as RG flows which
emerge from one CFT (called the UV fixed point) at short distances and flow to either
another nontrivial CFT (called the IR fixed point) or a massive phase at long distances.4 In
this sense CFTs can be called signposts in the space of general QFTs. The quest to classify
and solve CFTs is a major goal of modern theoretical physics.

The study of CFTs was initiated in late 1960s, focusing mostly on formal properties
of these theories.5 This early work was done in general dimension d, where the group
of conformal transformations is finite dimensional, while it is infinite-dimensional in d = 2
where any holomorphic map gives rise to a conformal transformation. The importance of this
special case was realized by Belavin et al. (1984). Using the infinite-dimensional conformal
symmetry, they solved the 2d minimal models—an infinite sequence of CFTs describing the
critical points of the 2d Ising model and other lattice models such as the 3-state Potts model.

Of course many 2d models can be exactly solved directly on the lattice (Baxter, 1989),
starting with the above-mentioned Onsager solution of the 2d Ising model. The approach
of Belavin et al. (1984) was different in that it allowed for a solution of critical theories
using the constraints of conformal symmetry alone, with minimal or no microscopic input.
The crucial idea to find these solutions was the conformal bootstrap, first described by
Ferrara et al. (1973b) and Polyakov (1974). The conformal bootstrap combines conformal
invariance with the existence of the operator product expansion (OPE), another powerful
concept going back to Wilson (1969) and Kadanoff (1969). This leads to mathematical
consistency conditions on the CFT parameters, which were enough to solve the 2d minimal
models.

Following these developments, CFT has become an indispensable tool in the theory
of 2d critical phenomena.6 On the other hand, applications of the conformal bootstrap
in higher dimensions lagged behind. For example, 3d continuous phase transitions are
traditionally studied using the RG by starting from a microscopic action and looking for
a fixed point. Often the 3d fixed point of interest is strongly coupled, requiring one to
deform the theory artificially in order to do perturbation theory in a small parameter,
with the large-N expansion (see e.g. Moshe and Zinn-Justin (2003) for a review) and the
ε-expansion (Wilson and Fisher, 1972) being two prime examples. While these theoretical
approaches have undoubtedly scored some successes in describing the experimental data,
one may wonder what a fully nonperturbative approach such as the conformal bootstrap
has to say about this problem.

3 In this review the space dimension d will denote the total number of coordinate dimensions, including

time if one works in Lorentzian signature.
4 Some QFTs cannot be viewed as coming from a CFT in the UV, for example RG flows involving 3d gauge

fields.
5 We will not attempt here a full historical account. Early pioneering contributions included Mack and

Salam (1969), Polyakov (1970), Ferrara et al. (1971), Migdal (1971), Parisi (1972), Ferrara et al. (1972),

Ferrara et al. (1973b), Polyakov (1974), Ferrara et al. (1974b), Ferrara et al. (1975), Ferrara et al. (1974a),

Mack (1977c), and Dobrev et al. (1977).
6 Many excellent 2d CFT reviews include Cardy (1990), Ginsparg (1990), Di Francesco et al. (1997), and

Henkel (1999).
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A period of renewed interest in the conformal bootstrap started following Rattazzi et al.
(2008). This work proposed a numerical method, based on linear programming, which made
it possible to extract concrete predictions from the conformal bootstrap equations. The
method was applicable in higher dimensions (as well as in 2d). Also, an advantage of the
method was that rigorous predictions could be extracted without having to fully solve the
equations.7 Since then the method was greatly improved and many interesting results were
obtained, mostly for conformal field theories in 3d and 4d, but also in other dimensions.
One flagship result of this line of research is the world’s most precise determination of the
critical exponents of the critical 3d Ising model (see Kos et al. (2016) for the current world
record results). Our purpose is to review these developments, focusing on applications to
the most interesting 3d and 4d CFTs considered so far, as well as to give an overview of the
theoretical and numerical techniques which proved useful for these applications.

A. Outline

Due to the overwhelming number of results in various incarnations of the conformal
bootstrap, our review will necessarily be limited in scope. Let us briefly outline the topics
that we will cover. We begin in Sec. II with an informal overview of the conformal bootstrap.
Sec. III provides a concise introduction to the conformal field theory techniques that are
needed to set up the bootstrap in d dimensions. We follow in Sec. IV with an overview
of the various numerical methods that have been employed in studies of the bootstrap.
Secs. V and VI review results obtained from applying these methods to 3d and 4d CFTs.
Sec. VII reviews results obtained with the stronger assumptions of 4d N = 1 or 3d N = 2
superconformal symmetry. We comment on applications to nonunitary models in Sec. VIII.
Notably absent from our main review are CFTs in other dimensions (e.g., d = 2 or d > 4),
CFTs with extended supersymmetry, analytical progress in the bootstrap, logarithmic and
nonrelativstic CFTs, and other related topics. We finish with a brief overview of progress
in these related lines of research in Sec. IX and give some concluding words in Sec. X.

II. CONFORMAL BOOTSTRAP: INFORMAL OVERVIEW

In this section we will give a brief outline of the conformal bootstrap approach to critical
phenomena in d dimensions. We will be rather informal in this section, while in the
subsequent sections the same material will be treated in more depth and at a higher level
of rigor. For another short introduction to these matters, see Poland and Simmons-Duffin
(2016). For longer pedagogical introductions see Rychkov (2016b) and Simmons-Duffin
(2017b).

As a simple physical setup where these methods would be applicable, we can consider a
statistical physics system in d spatial dimensions which is (a) in thermodynamic equilibrium
and (b) at a temperature corresponding to a continuous phase transition (so that the
correlation length is infinite). Suppose that we are interested in equal-time correlation
functions of some local quantities characterizing this system:

〈O1(x1) . . .On(xn)〉 , (1)

7 Such full solutions in d > 2 are still beyond reach except in very special cases, see Sec. III.I.1.
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where xi are positions in Rd. For example, one can think of the 3d Ising model at the critical
point, with Oi(x) the local magnetization, local energy density, etc. In general, the Oi(x)
are called local operators.

We are interested in the behavior of the correlators (1) at distances large compared to
any microscopic (such as lattice) scale a. According to Wilson’s RG theory, continuous
phase transitions are fixed points of RG flows, which means that the long-distance behavior
of (1) will have scale invariance (as well as rotation and translation invariance). Using
scale invariance, we can formally extend the long-distance behavior of these correlators from
distances |xi−xj| � a to arbitrary short distances. In what follows we work in the so-defined
continuous limit theory, which is exactly scale invariant at all distances from 0 to ∞.8

As discussed in the introduction, we expect that the critical theory is also conformally
invariant (i.e., a CFT). This means that for any conformal transformation of d-dimensional
space x → x′ (see Sec. III.A for the definition), Eq. (1) is related to the same correlation
function evaluated at points x′1, . . . , x

′
n. This invariance property (or covariance) of correlation

functions is expressed as a transformation rule for local operators, in the next section
appearing in Eq. (16). For scalar operators, we have

O(x′) = Ω(x)−∆OO(x) , (2)

where Ω(x) = |∂x′/∂x|1/d is the x-dependent scale factor of the conformal transformation,
and ∆O is a fixed parameter characterizing the operator O, called its scaling dimension.9

Polyakov (1970) noticed that invariance under (2) strongly restricts two-point (2pt)
and three-point (3pt) correlation functions. The 2pt function is nonzero only for identical
operators and can be normalized to one:

〈Oi(x1)Oj(x2)〉 = δij|x1 − x2|−2∆i , (3)

while the 3pt function is fixed up to a numerical coefficient:

〈O1(x1)O2(x2)O3(x3)〉 =
λ123

|x12|h123|x13|h132|x23|h231
, (4)

where xij ≡ xi − xj and hijk ≡ ∆i + ∆j − ∆k. Similar equations hold for operators with
indices, see Sec. III.C.

The set of numerical parameters ∆i and λijk appearing in (3) and (4) is called the
CFT data. It turns out that the CFT data determine not only 2pt and 3pt functions,
but are also sufficient to compute all local observables in CFTs in flat space, by which we
mean all correlation functions of local operators, including four-point (4pt) and higher-order
correlation functions.10

8 However, in this paper we will not consider behavior of correlators at coincident points.
9 To be precise, such transformation rules hold for primary local operators, a subtlety which will not play

a role in this informal discussion.
10 It should be mentioned that CFTs also possess nonlocal observables in addition to the local ones, which are

not necessarily determined by the OPE data. For example, one can probe a CFT by extended operators,

such as boundaries or defects, or put it in a space of nontrivial geometry or topology. In this review we will

focus on the local observables, although the bootstrap philosophy can also be useful in the study of some

nonlocal observables; see Sec. V.B.6 for boundaries and defects and Sec. IX for the modular bootstrap.
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To see this, one uses the OPE, which says that we can replace the insertion of two nearby
local operators inside a correlation function by a series of single local operators:

Oi(x1)Oj(x2) =
∑

k

fijkOk(y) . (5)

The coefficients of the series fijk may and will depend on the relative positions of the
operators Oi, Oj, Ok, and on their quantum numbers. Crucially, however, these coefficients
are not supposed to depend on which other operators appear in the correlation function, as
long as they are sufficiently far away from x1, x2, y. The precise criterion in the CFT context
will be given in Eq. (7).

Notice the freedom in where we put operators appearing on the r.h.s. of the OPE: we
can choose y = 1

2
(x1 + x2), y = x1, or any other point nearby. Different choices of y can be

related by Taylor-expanding Ok, and thus can be compensated by changing the coefficients
of derivatives of Ok in the OPE. In what follows we will group the operator Ok together
with all its derivatives, formally thinking of fijk as infinite power series in ∂y.

There are two things that make OPE in conformal field theories more powerful than in
a generic QFT. Firstly, compatibility of the OPE with conformal invariance determines the
functions fijk up to a numerical prefactor, coinciding with the 3pt function coefficient λijk
(for this reason it is also called an OPE coefficient):

fijk(x1, x2, y, ∂y) = λijkf̂ijk(x1, x2, y, ∂y) . (6)

The reduced functions f̂ijk depend only on the operator dimensions ∆i,∆j,∆k, the spins
of these operators (which are kept implicit in this informal discussion), and on the space
dimension d.11

Secondly, the OPE in conformal theories has a finite radius of convergence, which is
determined by the distance to the next operator insertions. For example, in the correlator
of Eq. (8) given below, the OPE will converge if

|x1 − y|, |x2 − y| < min
i=3...n

|xi − y| , (7)

i.e. if there exists a sphere centered at y and separating x1, x2 from any other operator
insertion.

Because of these two reasons we can compute any correlation function recursively using
the OPE, provided that we know the CFT data. For example, suppose we want to compute
the n-point function

〈O1(x1)O2(x2)O3(x3) . . .On(xn)〉 . (8)

Applying the OPE to O1(x1)O2(x2), we reduce this correlator to a sum of correlators
containing n− 1 operators

〈Ok(y)O3(x3) . . .On(xn)〉 . (9)

Proceeding in this way, we will eventually get down to 2pt functions, which are determined
by the CFT data. The only parameters which will enter this computation are the operator
positions and quantum numbers, the CFT data, and the space dimension d.12

11 Note that here we are assuming the normalization in Eq. (3).
12 Notice that although the presented scheme solves the problem of computing n-point functions in principle,

it is not trivial to do in practice. For 4pt functions, the necessary techniques will be presented in Sec. III.F.
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Consider now the case of a 4pt function (Eq. (8) with n = 4) and compute it in two
different ways. The first way is to apply the OPE to the pairs of operators O1O2 and O3O4.
This reduces the 4pt function to an infinite sum of 2pt functions of operators which appear
in these OPEs. A second way is to apply the OPE to the pairs O1O4 and O2O3. Since we
are dealing with the same 4pt function, the two expansions must agree in their overlapping
regions of convergence. This crossing relation represents a consistency condition on the CFT
data and is illustrated in Fig. 1.

The main idea of the conformal bootstrap is that by imposing the crossing relation,
we should be able to significantly winnow down the set of all possible CFT data. In the
subsequent sections of this review, we will see how the crossing relation can be written in a
mathematically manageable form, and how numerical algorithms can be applied to extract
from it concrete constraints.

Ideally, if we impose crossing relations for all 4pt functions of the theory, we will be left
with the CFT data corresponding to the actually existing critical theories. In practice, it
has so far been possible to impose crossing relations on only a handful of 4pt functions at a
time. However, we will see that even this limited procedure produces nontrivial constraints,
which are in some cases surprisingly strong.

A. Universality and the role of microscopic input

A fundamental concept in the theory of critical phenomena is universality: all continuous
phase transitions can be grouped into universality classes which share the same critical
exponents. This is neatly explained in Wilson’s RG theory: two phase transitions will fall
into the same universality class if they are described by the same fixed point. On the other
hand, the conformal bootstrap provides a different perspective on the same phenomenon:
each universality class corresponds to a different CFT, with a different set of CFT data.

These two points of view are clearly complementary, and it is important to establish
the correspondence between them. Consider for example the critical exponents. In RG
theory they can be related to the eigenvalues λyi of the RG transformation linearized
around the fixed point, where λ > 1 is the RG rescaling factor. As is well known, these
eigenvalues are simply related to the scaling dimensions of the local operators: yi = d−∆i.
Thus, information about the critical exponents can be easily extracted from CFT data, and
agreement of their values between an RG fixed point and a CFT may give us confidence
that the two describe the same critical universality class.

There are however three more fundamental structural characteristics which can be used
to identify universality classes, even before considering the numerical values of critical
exponents. These characteristics may not be sufficient to uniquely classify the different
CFTs, but they will give us a convenient starting point.

1. The global (or internal) symmetry group. It can be discrete, as for the Z2 symmetry of
the Ising model, or continuous, as for the O(N) models. In RG studies, the global symmetry
group is specified by considering an RG flow in the space of microscopic theories described
by an action possessing a given symmetry. The global symmetry group for a CFT is the
same group G as for the corresponding RG fixed point, although it is specified in a different
way: by demanding that each local operator transform in an irreducible representation of G
and that OPE coefficients respect this symmetry structure.

We note in passing that unlike the global symmetry, the presence of a gauge symmetry
in a microscopic description does not manifest itself in the conformal bootstrap, because

9



physically observable local CFT operators are gauge invariant.13

2. The number of relevant singlet scalars. The number of scalar operators which are
relevant (i.e., have dimension ∆i < d) and transform as singlets under the global symmetry
determines whether the universality class has critical as opposed to multicritical behavior.
This will be discussed in more detail in Sec. V.A. Here it suffices to note that this number
is easy to identify from both the RG and CFT perspectives.

3. Unitarity. Unitarity is of course a required property when quantum mechanics is
involved, which is the case for theories of interest to high-energy physics and quantum
condensed matter. Many universality classes of interest to statistical physics also happen to
be unitary.14 Importantly, the existence of unitarity can be established at the microscopic
scale, and is then inherited by the RG fixed point. In the CFT description, unitarity is
imposed via lower bounds on the operator dimensions and reality constraints on the OPE
coefficients, see Sec. III.E.

Finally, let us comment on the OPE coefficients λijk. From the CFT point of view, they
are an integral part of the CFT data, on par with the scaling dimensions. In the conformal
bootstrap approach, the crossing relation involves both λijk and ∆i. In the examples below,
when we are able to determine the ∆i’s to some accuracy (as for the 3d Ising and the
O(N) models), we can typically determine the λijk’s to a comparable accuracy. This can be
contrasted with the RG approach, where the OPE coefficients do not appear to play such a
fundamental role, and they have received relatively little attention.

III. CONFORMAL FIELD THEORY TECHNIQUES IN d DIMENSIONS

In this section we review the theory techniques that form the backbone of the conformal
bootstrap. These include conformal symmetry, operators and their correlation functions,
unitarity and reflection positivity, conformal blocks, and the way they enter crossing relations
(also in the presence of global symmetries).

A. Conformal transformations

The content of this section is standard textbook material. We will only mention a few
fundamental results and set up our conventions. For more details see e.g. Rychkov (2016b)
and Simmons-Duffin (2017b).15

We consider CFTs in flat Euclidean or Lorentzian space with coordinates xµ and metric
ηµν .

16 Conformal transformations are diffeomorphisms x → x′ which locally look like a
rotation Λµ

ν(x) combined with a rescaling Ω(x) > 0 (also called a dilatation), which means
that the Jacobian takes the form

∂x′µ

∂xν
= Ω(x)Λµ

ν(x), ηρσΛρ
µ(x)Λσ

ν(x) = ηµν . (10)

13 Gauge symmetries can make themselves known more indirectly, through anomaly coefficients which show

up in the correlation functions of local operators or the existence of higher-form symmetries.
14 In statistical physics, the role of unitarity is played by its Euclidean counterpart called reflection positivity.
15 Other expository sources about CFTs in d > 2 dimensions containing material of interest to this review

are Ferrara et al. (1973a), Cardy (1987), Fradkin and Palchik (1996), Di Francesco et al. (1997), Qualls

(2015a), and and Osborn (2018).
16 Set ηµν → δµν if interested uniquely in the Euclidean signature.
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Alternatively, the same condition can be expressed by saying that the transformation
preserves angles, or that it leaves the metric invariant up to an overall factor.

In any dimension d > 3,17 the case of primary interest for this review, a theorem of
Liouville says that any conformal transformation can be obtained by composing 4 types of
basic transformations: translations and rotations (which by themselves form the Poincaré
group and have Ω = 1), dilatations x′µ = Ωxµ with Ω a constant, and inversions x′µ = xµ/x2

which have Ω(x) = 1/x2.18

The resulting conformal group is a Lie group of dimension (d+1)(d+2)/2. Its special role
in physics and mathematics is explained by the fact that it is actually the largest nontrivial
subgroup of diffeomorphisms of Rd.

The inversion belongs to the component of the conformal group which is disconnected
from the identity, but by composing an inversion, translation, and a second inversion we can
define special conformal transformations (SCTs), also called conformal boosts, given by

x′µ =
xµ − bµx2

1− 2x · b+ b2x2
, Ω(x) = 1− 2x · b+ b2x2 , (11)

where bµ ∈ Rd is an arbitrary constant vector.
The conformal algebra generators can be obtained by considering the infinitesimal

versions of the above-mentioned transformations. We denote by Mµν and Pµ the usual
Poincaré generators, D the dilatation generator, and Kµ the generators of SCTs. Their
nonzero commutation relations are19

[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ + ηνσMρµ − ηµσMρν ,

[Mµν , Pρ] = ηνρPµ − ηµρPν ,
[Mµν , Kρ] = ηνρKµ − ηµρKν , (12)

[D,Pµ] = Pµ ,

[D,Kµ] = −Kµ ,

[Kµ, Pν ] = 2ηµνD − 2Mµν .

In Euclidean signature, the conformal algebra is isomorphic to the algebra of SO(d +
1, 1).20 This is shown by the mapping

Jd+1µ = (Pµ −Kµ) /2 , Jd+2µ = (Pµ +Kµ) /2 , (13)

Jµν = Mµν , Jd+1 d+2 = D ,

which satisfies the SO(d+ 1, 1) commutation relations

[JAB,JCD] = (14)

ηBCJAD − ηACJBD + ηBDJCA − ηADJCB ,
where ηAB is the Lorentzian metric on Rd+1,1.

17 See footnote 3.
18 As is well known, the 2d case is special. The group of 2d conformal transformations is infinite dimensional,

since any holomorphic function f(z) with z = x1 + ix2 defines a conformal transformation, z′ = f(z).

This case has been subject to intense study (see footnote 6), and it will be mostly left out of this review

except for a few comments in Sec. IX.
19 We follow the conventions of Simmons-Duffin (2017b).
20 In Lorentzian signature it is SO(d, 2).
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B. Operators: primaries and descendants

Our main objects of study will be correlation functions of local operators. Conformal
symmetry places constraints on these correlators, expressed as covariance properties when
the operators are transformed in a certain way. Our goal here will be to present these
transformations, the form of which is determined by representation theory of the conformal
group.

Following Mack and Salam (1969), we can restrict to operators inserted at x = 0, since
the transformation properties at any other point can be obtained by applying a translation,

O(x) = ex
µPµO(0)e−x

µPµ , (15)

and the commutation relations of Eq. (12). Then, we only have to specify the action of
the stabilizer group of the origin, generated by Mµν , D, and Kµ. We will assume that
O(0)≡Oi

∆,r(0) forms a finite-dimensional irreducible representation (irrep) r of the rotation
group (with indices i), and is characterized by the dilatation eigenvalue ∆, called its scaling
dimension:

[
D,Oi

∆,r(0)
]

= ∆Oi
∆,r(0) ,

[
Mµν ,Oi

∆,r(0)
]

= (Rµν)
i
jOj

∆,r(0) . (16)

Here Rµν are generators of the representation r of SO(d) (or its double cover Spin(d) for
spinor representations).

According to the conformal algebra in Eq. (12), the generators Pµ and Kµ act as raising
and lowering operators for D, generating what we call the conformal multiplet of O. In
physically interesting theories the spectrum of the dilatation operator is real and bounded
from below,21 so the conformal multiplet must contain an operator of lowest dimension.
Without loss of generality we assume that O(0) is this lowest operator, so that

[
Kµ,Oi

∆,r(0)
]

= 0 . (17)

An operator satisfying this condition is called the primary operator of the conformal
multiplet.22 All other operators in the multiplet are called descendants and are obtained
from the primary by acting n > 1 times with Pµ, which means that they are simply its
derivatives.23

Eqs. (16) define the main quantum numbers characterizing the operator: its scaling
dimension ∆ and its irrep r under the rotation group. In practice it is important to know
the transformation rules of an operator O(x) under general infinitesimal or finite conformal
transformations and for any x. These rules can be determined uniquely from Eqs. (15,
16, 17). Infinitesimal transformations take the form of first-order differential operators, see
e.g. Rychkov (2016b, section 3.1.2). Here we will just give the explicit form for the finite
transformations in terms of the parameters of Eq. (10):

O′i∆,r(x′) = F i
jOj

∆,r(x) , F =
1

Ω(x)∆
R[Λµ

ν(x)] , (18)

21 As discussed in Sec. III.E, in unitary theories this property can be shown rigorously.
22 This is called a quasiprimary in the context of 2d CFTs.
23 Explicitly [Pµ,Oi

∆,r(x)] = ∂µOi
∆,r(x). Often n is called the level of the descendant.
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where R[Λµ
ν(x)] is the matrix representing the finite rotation Λµ

ν(x) in the representation
r.24 This equation generalizes Eq. (2) for scalar operators.25

The scaling dimensions of primary operators comprise the spectrum of the theory. In
d > 3, the spectrum is typically discrete.26 Discreteness of the spectrum follows e.g. from
the requirement of a well-defined thermal partition function (Simmons-Duffin, 2017b).

C. Correlation functions

Consider now a correlation function of n primaries:

Gi1...in(xi) = 〈Oi1
∆1r1

(x1) . . .Oin
∆nrn

(xn)〉 . (19)

For our purposes we will only need to work at non-coincident points, and will not be
concerned with possible delta-function-like “contact terms”, which play no role in the
numerical conformal bootstrap.

Eq. (18) implies that this correlator transforms covariantly under the conformal group.
Operationally, for any conformal transformation x→ x′, correlators at points x′j and xj are
related by

Gi1...in(x′j) = F (1)i1
j1 · · · F (n)in

jnGj1...jn(xj) . (20)

While covariance under translations, rotations, and dilatations is straightforward to understand,
it is less intuitive for SCTs, since they act nonlinearly on x.

One can classify the most general form of the correlator satisfying Eq. (20). This problem
has been addressed using different techniques over the years, starting with Polyakov (1970).27

Two modern efficient methods to obtain such results are the embedding formalism of Costa
et al. (2011b) reviewed in Appendix A, and the conformal frame approach described in
Sec. III.C.4, see Osborn and Petkou (1994) and Kravchuk and Simmons-Duffin (2018a).

We will now state results for the most frequently occurring cases n = 2, 3, 4. We will
focus on scalars O∆ as well as operators O∆,` transforming in the rank ` traceless symmetric
representation of SO(d). For the latter we will introduce an auxiliary polarization vector ζµ
and consider the contraction

O∆,`(x, ζ) = ζµ1 · · · ζµ`Oµ1...µ`
∆,` (x) . (21)

The components of the operator itself can be recovered by differentiating in ζ.28

24 If r is a spinorial representation then Λµν specifies R only up to a sign, and this sign has to be chosen

consistently for all operators in a correlator.
25 Although we write the l.h.s as O′ (as is customary), it is important to remember that O and O′ represent

the same operator.
26 The only exceptions known to us are discussed in Levy and Oz (2018). They are nonunitary.
27 General 3pt functions in 4d were first worked out in Mack (1977b).
28 This is called index free notation, see e.g. Dobrev et al. (1976) and Costa et al. (2011b). Often one imposes

ζ2 = 0, which sets to zero the “traces” in e.g. Eq. (22), but we will not do this here. Index free notation

can be generalized to mixed-symmetry tensors and fermions, see e.g. Giombi et al. (2013), Simmons-Duffin

(2014a), Li and Stergiou (2014), Costa and Hansen (2015), and Iliesiu et al. (2016a).
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1. 2pt functions

It follows from Eq. (20) that the 2pt function of two operators O∆1,r1 and O∆2,r2 vanishes

unless ∆1 = ∆2 and r1 = r†2.29 As a consequence, for every physical operator O∆,r, one can

identify an operator O†
∆,r† which transforms in the conjugate representation.30

Further, one can almost always work in a basis of operators such that O has a nonzero
2pt function only with O†, which is usually stated as “the 2pt function is diagonal”.31

For example, this is always possible in unitary theories. For operators in real SO(d)
representations r† = r, like traceless symmetric tensors, we can choose a real operator
basis so that O† = O.

Specializing to traceless symmetric tensors, the 2pt function takes the form32

〈O∆,`(x1, ζ1)O∆,`(x2, ζ2)〉 =
(Iµν(x12)ζµ1 ζ

ν
2 )` − traces

(x2
12)∆

,

Iµν(x) = ηµν − 2xµxν/x
2 , (22)

where xij ≡ xi − xj, and “traces” are terms proportional to ζ2
1 , ζ2

2 , which are uniquely
fixed by the tracelessness of O∆,`. This generalizes Eq. (3) for scalars. It is customary to
normalize such 2pt functions to unity, with exceptions being conserved currents and the
stress tensor, see Sec. III.H. The nontrivial part of the correlator is its numerator, which
specifies the dependence on the operator indices. We will refer to such numerators as “tensor
structures”.

If the CFT contains a global symmetry, operators are grouped into global symmetry
multiplets π. In this case Eq. (22) still applies to the individual components of the
multiplets, with obvious appropriate modifications.33 We will discuss the consequences
of global symmetries further in Sec. III.G.

2. 3pt functions

Next we turn to 3pt functions, focusing on the case where the first two operators are
scalars. Then it turns out that the third operator can only be a traceless symmetric tensor.

29 Here † means complex conjugation in Lorentzian signature, or taking the dual reflected representation in

Euclidean signature, where reflected means replacing generators R1ν by −R1ν . In 3d all representations

are real, so the requirement r1 = r†2 reduces to r1 = r2, while in 4d if r1 = (`, ¯̀) then r2 = (¯̀, `).
30 The precise action of Hermitian conjugation on Hilbert space operators depends on the signature and

choice of quantization surface. For a detailed discussion see Simmons-Duffin (2017b).
31 Examples of nonunitary conformal theories in which the 2pt functions cannot be so diagonalized occur in

logarithmic CFTs, see e.g. Hogervorst et al. (2017). We will not consider them in this review.
32 For the purposes of this review, it is sufficient to consider correlation functions in Euclidean signature.

Most equations can also be used in Lorentzian signature, provided that all points are spacelike separated.

For timelike separation one needs modifications, such as an iε prescription, which we will not discuss.
33 If π is a complex representation, then it is not convenient to use the real operator basis. The nonzero 2pt

function will then be between O and O† transforming in π̄.
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Generalizing Eq. (4) for three scalars, the 3pt function takes the form (Mack, 1977b)

〈O∆1(x1)O∆2(x2)O∆3,`(x3, ζ)〉 =

λ123 [(Zµ
123ζµ)` − traces]K3 , (23)

where K3 = K3(∆i, xi) is given by

K3 =
1

(x2
12)

h123+`
2 (x2

13)
h132−`

2 (x2
23)

h231−`
2

, (24)

hijk ≡ ∆i + ∆j − ∆k, and Zµ
123 =

xµ13

x2
13
− xµ23

x2
23

. This 3pt function is unique up to the overall

coefficient λ123. Notice that as defined,

λ123 = (−1)`λ213 , (25)

while if ` = 0 we can exchange any pair of fields and λ123 is fully symmetric. The
normalization of these coefficients is unambiguous, since the operators are assumed to be
unit-normalized according to Eq. (22). Together with the spectrum, the λ’s constitute the
CFT data, which distinguish one CFT from another, as discussed in Sec. II.

In unitary theories, the CFT data must satisfy a set of general well-understood constraints,
see Sec. III.E. Significantly more nontrivial constraints on the CFT data come from the
crossing relations to be discussed in Sec. III.I.

For operators in three general SO(d) representations, the 3pt functions take a form
more complicated than (23). They are also in general not unique, although for any three
representations there is at most a finite-dimensional space of allowed tensor structures. The
problem of their construction has been completely solved in the most physically important
cases of d = 3 (Costa et al., 2011b; Iliesiu et al., 2016a) and d = 4 (Elkhidir et al., 2015).
For general d there are partial results, e.g. Costa et al. (2011b) for 3pt functions of traceless
symmetric tensors, Costa et al. (2016a) for traceless mixed-symmetry tensors, and Kravchuk
and Simmons-Duffin (2018a) for a general approach to classifying the structures.

3. 4pt functions

Finally let us consider 4pt functions, which as mentioned in Sec. II play a fundamental
role in the conformal bootstrap. Focusing here on the case of scalars, the 4pt function must
take the general form

〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 = g(u, v)K4 . (26)

The factor K4 = K4(∆i, xi) is given by

K4 =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

24

x2
14

)∆12
2
(
x2

14

x2
13

)∆34
2

, (27)

where ∆ij ≡ ∆i −∆j. This factor by itself transforms under conformal transformations as
prescribed by Eq. (20). The remaining part of the correlator, g(u, v), must be a function
of two cross ratios u, v:

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, (28)
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which are invariant under all conformal transformations.
While no further information about g(u, v) can be obtained from conformal invariance

alone, it can in fact be computed in terms of the CFT data using additional tools such as
the OPE and conformal blocks. This will be discussed in Secs. III.D and III.F.

4. Conformal frames

Here we will give a more group theoretical intuition of the number of degrees of freedom
contained in a given correlator, and in particular of why conformal invariance fixes 2pt and
3pt functions up to a few constants, but allows arbitrariness in 4pt functions.

Given a set of n points, we can make use of conformal transformations to arrange them
in convenient configurations. For instance, given 3 arbitrary points we can find a conformal
transformation which maps them to x1,2,3 = 0, ê,∞, where ê is a fixed unit vector.

For 4 points, we can first find a conformal transformation fixing 3 of them as above, and
then rotate around the axis to put the fourth point into a fixed plane (we assume that d > 2).
The resulting configuration can be parametrized in Euclidean signature as (0 ≡ 0d−2)34

x1 = (0, 0,0) , x2 = (σ, τ,0) ,

x3 = (1, 0,0) , x4 = (∞, 0,0) . (29)

It is customary to define (see Fig. 2)

z = σ + iτ, z̄ = σ − iτ , (30)

which are complex conjugate variables if we are working in the Euclidean.35 The conformal
cross ratios can be expressed in terms of z, z̄ as

u = zz̄ , v = (1− z)(1− z̄) . (31)

A choice of points xi, as in Eq. (29), is called a conformal frame. It can be thought of as
a gauge fixing of most or all of the conformal symmetry. By construction, any coordinate
configuration can be reduced to the conformal frame form. Therefore, the knowledge of
a correlation function in the conformal frame is sufficient to reconstruct it at any other
point through its covariance properties (Osborn and Petkou, 1994). The functional forms
of 2pt and 3pt functions are fixed because their conformal frames do not contain any free
parameters. The 4pt conformal frame (29) has 2 real parameters, explaining the functional
freedom of the conformal 4pt function. See Sec. III.F.2 for another frequently used conformal
frame.

Conformal frames provide a way to construct conformal correlators which is sometimes
more convenient than the embedding formalism described in App. A. This method can also
be used to classify the allowed tensor structures. An important role is then played by the
stabilizer group, defined as the set of conformal transformations leaving the conformal frame
configuration invariant. It is SO(d−1) for 3pt functions and SO(d−2) for 4pt functions. One

34 We define O(∞) by taking the limit of |x4|2∆OO(x4) as x4 → ∞, which yields a finite value for the

correlation function.
35 Notice that we can analytically continue to the Lorentzian via τ → it, and then z and z̄ become

independent real variables, but this will not play a role in this review.
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classifies tensor structures invariant under the stabilizer group, and each of them lifts to an
independent conformally invariant tensor structure (Kravchuk and Simmons-Duffin, 2018a).
This method is particularly useful when dealing with 4pt functions of tensor operators: it
does not overcount tensor structures, which may happen in the embedding formalism unless
special care is taken.

D. Operator product expansion

Our point of view on the origin and the role of the Operator Product Expansion (OPE)
in CFT is the one pedagogically reviewed in Rychkov (2016b) and Simmons-Duffin (2017b).
Here we will present the main logic and set some conventions.

The key idea is that of radial quantization, which says that we can represent Euclidean
CFT correlation functions as scalar products of states 〈Ψout|Ψin〉 which live on a sphere of
radius R. The state |Ψin〉 is generated by operators in the interior of the sphere, while 〈Ψout|
by those in the exterior. Once we replace the interior operators by the state |Ψin〉, in a scale
invariant theory we can scale the radius of the sphere to zero. Thus any state |Ψin〉 can be
expanded in a basis of local operators inserted at the center of the sphere. This is called the
state-operator correspondence.

The OPE, written schematically in (5), is just the special case of the above when there
are two operators at points x1 and x2 inside the sphere centered at y. We also see the origin
of the OPE convergence criterion (7), since we need to have a separating sphere to start the
argument.36

As discussed in Sec. II, the next step is to group primaries and descendants in the OPE
and to impose the constraints of conformal invariance. This gives the “conformal OPE”:

O∆i
(x1)O∆j

(x2) =
∑

k

λijkf̂ijk(x1, x2, y, ∂y)O∆k
(y) . (32)

The differential operator f̂ijk is fixed by conformal invariance. It can be determined by

demanding that the conformal OPE reproduce the 3pt function 〈O∆i
(x1)O∆j

(x2)O†∆k
(x3)〉,

whose form is by itself fixed by conformal invariance up to the constants λijk.
Any SO(d) (or Spin(d)) index which the operators O∆i

may have are left implicit in
(32). Depending on their representations, there may be several allowed 3pt function tensor
structures, and then each structure comes with its own OPE coefficient and a corresponding
conformally-invariant differential operator f̂ijk. In the most frequently occurring case where
O∆i

and O∆j
are scalars and O∆k,` a spin-` traceless symmetric tensor there is just one OPE

coefficient.
While it is important to know that the conformal OPE exists and converges, it turns

out that in practice one rarely needs its full explicit form.37 For example, conformal block
computations can be organized in ways which avoid explicit knowledge of the full OPE, see
Sec. III.F. For this reason, one frequently writes only the “leading OPE”, i.e. the primary
term.

36 See Pappadopulo et al. (2012) for a detailed discussion of OPE convergence in CFT.
37 For some cases when the explicit conformal OPE has been worked out, see Ferrara et al. (1971), Ferrara

et al. (1973a), Mack (1977b), and Dolan and Osborn (2001a).
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For example, in the above-mentioned case of two scalars and a traceless symmetric tensor,
the leading OPE has the form (specializing to x1 = x, x2 = y = 0):

O∆i
(x)O∆j

(0) ⊃ λijk
xµ1 · · ·xµ`

(x2)(hijk+`)/2
Oµ1...µ`

∆k,`
(0) + . . . . (33)

This reproduces the leading asymptotics of the 3pt function (23) in the limit x→ 0 with x3

fixed, including the normalization, provided that the 2pt function of O∆k,` is unit-normalized
as in (22). Occasionally we will schematically write such a leading OPE as O∆i

× O∆j
⊃

O∆k,`, but the form (33) should always be understood.

As explained in Sec. II, any n-point function can be computed from the CFT data by
repeated application of the OPE. The 4pt function case, of primary importance for the
bootstrap, will be discussed in Sec. III.F.

E. Constraints from unitarity

Here we will review the notion of a unitary CFT, focusing on the constraints on CFT
data arising for such theories which make the bootstrap especially powerful.

Unitary CFTs can be considered both in Lorentzian and Euclidean signature. They are
characterized in the latter by a property called reflection positivity.38 On the other hand,
nonunitary CFTs are generally expected to make sense only in Euclidean signature. They
will be discussed briefly in Sec. VIII.

Unitary theories allow for quantization in a Hilbert space with a positive-definite norm. In
the quantization by planes normally used in Euclidean QFT, an “in” state |Ψ〉 is generated by
n local operators Oi inserted in the half-space x1 < 0, and an “out” state 〈Ψ| is generated

by reflected operators O†i , inserted at x1 > 0 at mirror-symmetric positions.39 Unitarity
implies that the norm 〈Ψ|Ψ〉 must be non-negative. This norm is just a 2n-point function
in a particular kinematic configuration, and its positivity is called (Osterwalder-Schrader)
reflection positivity.

Analogously, in the radial quantization usually used for CFTs, an “in” state |Ψ〉 is
generated by local operators Oi inserted at positions xi inside the unit sphere (i =

1, . . . , n), and a conjugate “out” state 〈Ψ| is generated by operators O†i inserted at
positions related by an inversion transformation x′i = xi/x

2. The norm 〈Ψ|Ψ〉, which is
just an inversion-symmetric 2n-point function, must be non-negative, a property we will
call “inversion positivity”.40 In CFTs, both forms of positivity are equivalent,41 and they
are both useful depending on circumstances.

38 We will often abuse terminology and refer to “reflection positivity” as “unitarity” in the context of

Euclidean CFTs or when the signature is ambiguous.
39 For reflected tensor operators, each tensor component is multiplied by a factor Θ = (−1)N⊥ where N⊥ is

the number of tensor indices perpendicular to the reflection plane.
40 If the Oi are not scalars, their indices at the inverted positions are contracted with the Iµν tensors defined

in Eq. (22), as in (Simmons-Duffin, 2017b, Eq. (110)).
41 By a conformal transformation, radial quantization may be mapped onto a “North-South quantization”,

relating “inversion positivity” to the usual reflection positivity (Rychkov, 2016b).
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1. Unitarity bounds

We already get a simple and powerful constraint by considering radial quantization states
|Ψ〉 produced by a local operator O acting at the origin. In this case the conjugate operator
is inserted at infinity. For a primary O we recover that its 2pt function must have positive
normalization and hence can be normalized to one as in (22). Additional constraints
arise from considering descendants of O. The conformal algebra computes the norms of
descendants as polynomials in the primary dimension ∆. Imposing that all descendants
have a non-negative norm gives a lower bound on ∆. This “unitarity bound” depends on
the representation r of SO(d) (or its double cover for spinor representations) in which the
primary transforms.42 43

In 3d, the representation r is labeled by a half-integer j, with j = ` for traceless symmetric
spin-` tensors. The unitarity bounds are

d = 3 : ∆ > 1/2 (scalar, j = 0) ,

∆ > 1 (smallest spinor, j = 1/2) , (34)

∆ > j + 1 (j > 1/2) .

In 4d, we can label the representation r by two integers (`, ¯̀), with traceless symmetric
spin-` tensors having ` = ¯̀.44 The unitarity bounds then read

d = 4 : ∆ > 1 (scalar, ` = ¯̀= 0) ,

∆ > 1
2
`+ 1 (` > 0, ¯̀= 0) , (35)

∆ > 1
2
(`+ ¯̀) + 2 (`¯̀ 6= 0) .

For the 5d and 6d unitarity bounds see Minwalla (1998). For some representations
occurring in all dimensions the unitarity bounds can be written in dimension-independent
form as follows:

∆ > 1
2
(d− 2) (scalar) ,

∆ > 1
2
(d− 1) (smallest spinor) , (36)

∆ > `+ d− 2 (traceless symmetric, spin ` > 1) .

42 Standard CFT references are Ferrara et al. (1974a), Mack (1977a), and Minwalla (1998). An early

physics reference is Evans (1967). In the mathematics literature, these bounds were derived by Jantzen

(1977), although the relevance of this work for physics was realized only recently (Penedones et al.,

2016; Yamazaki, 2016). See also Rychkov (2016b) and Simmons-Duffin (2017b) for a review. Unitarity

bounds can be equivalently derived by studying the positivity of the Fourier transform of the 2pt function

analytically continued to Lorentzian signature (the Wightman function), see Ferrara et al. (1974a), Mack

(1977a) (in the sufficiency part of the argument), as well as Grinstein et al. (2008) for a recent exposition

emphasizing physics.
43 In Lorentzian signature, operators satisfying the unitarity bounds correspond to the unitary

representations of the universal covering group of the Lorentzian conformal group SO(d, 2) having positive

energy. Notice that in Euclidean signature operators satisfying the unitarity bounds have no relation to the

representation of the Euclidean conformal group SO(d+1, 1) which are unitary in the usual mathematical

sense of the term. This is already clear from looking at the principal series unitary representations of

SO(d+ 1, 1) which have complex scaling dimensions d/2 + iR.
44 It is also common in the literature to label by half-integers j = `/2, j̄ = ¯̀/2.
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As a final comment, in physics literature the unitarity bounds are often derived by
imposing positivity of the descendant norms on the first (and the second, for scalars) level.
It is a nontrivial fact that no further constraints arise from higher levels. See Bourget and
Troost (2018, Tables 3 and 5) for a review of rigorous mathematical results for unitary
bounds in any d.

2. OPE coefficients

Unitarity also gives reality constraints on OPE coefficients of real operators. Consider
the 3pt function (23) between two scalars and a traceless symmetric tensor, assuming all
three operators are real. Then the 3pt function coefficient must be real:

λ123 ∈ R . (37)

To argue this, we can consider a 6pt function 〈O1O2(ΘO3)O3O2O1〉, with the operators
arranged mirror-symmetrically against a plane into two compact groups positioned a large
distance from each other (see Fig. 3). Here Θ is the reflection factor mentioned in footnote
39. Reflection positivity implies that this 6pt function should be real and positive.45 On the
other hand, by cluster decomposition this 6pt function is equal to the product of two distant
3pt functions, which is easily seen to be λ2

123 times a positive number. So (37) follows. We
stress that this conclusion holds for both even and odd `.46

It was important for the above argument that the tensor structure entering (23) was
parity invariant (i.e., it did not involve the ε-tensor). This argument can be generalized to
OPE coefficients for general 3pt tensor structures. The OPE coefficients of tensor structures
must be purely imaginary or real depending on whether they involve the ε-tensor or not.
One must similarly be careful with OPE coefficients involving spinors.

Consider now the 4pt function 〈O2O1O1O2〉 where O1 and O2 are real scalars and the
point configuration is reflection-symmetric or inversion-symmetric. This 4pt function should
be non-negative as a basic consequence of unitarity, and Eq. (37) implies that a more nuanced
statement is true: the individual contribution of every primary O to this 4pt function is
non-negative, see Eq. (43) below. This can be generalized to external operators in general
SO(d) (or Spin(d)) representations, including the case when there are multiple 3pt function
tensor structures.

To summarize, the unitarity bounds say that the CFT Hilbert space has a positive-definite
norm, and the OPE coefficient reality constraints say that the OPE preserves this positive-definite
structure. If the CFT data satisfies both of these constraints, we are guaranteed that the
CFT will be unitary. The bootstrap obtains further constraints on CFT data by combining
unitarity with crossing relations.

45 For this argument we are thus using the standard Osterwalder-Schrader reflection positivity and not the

“inversion-positivity”.
46 In essence we argued that the complex conjugate of a 3pt function is equal to the 3pt function of conjugate

fields at reflected positions. This (for general n-point functions) is sometimes taken as an additional axiom

for unitary theories, encoded by the equation O(τ,x)† = O†(−τ,x) valid in Euclidean quantization by

planes. Upon analytic continuation to Lorentzian signature, this leads to commutativity of operators at

spacelike separation, used to prove reality of OPE coefficients in Rattazzi et al. (2008). Our 6pt argument

shows that this axiom is not independent but follows from reflection positivity and cluster decomposition.
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3. Averaged null energy condition

In a QFT in Lorentzian signature, we can consider the integral of the stress tensor
component T++ along a light ray: the light-like direction x+ with all other coordinates
fixed to zero. The averaged null energy condition (ANEC) says that this light-ray operator
has a non-negative expectation value in any state:47

〈Φ|
∫ ∞

−∞
dx+ T++|Φ〉 > 0 . (38)

The ANEC should hold in any unitary QFT. Two general proofs of the ANEC were given
recently, one via quantum information (Faulkner et al., 2016), and one by causality (Hartman
et al., 2017).48 Specializing to CFTs, the causality argument makes it clear that the ANEC
is not an extra assumption but follows from other CFT axioms such as unitarity, the OPE,
and crossing relations for correlation functions involving Tµν .

49 Notice however that any
results following from the ANEC will require the existence of a local stress-tensor operator.

Choosing |Φ〉 in (38) to be generated by a local operator O acting on the vacuum, the
ANEC leads to positivity constraints on 3pt functions 〈OTµνO〉 called “conformal collider
bounds” (Hofman and Maldacena, 2008).50

Recently, Cordova and Diab (2018) used the ANEC to argue that primaries of high
chirality (large |` − ¯̀|) in unitary 4d CFTs should satisfy unitarity bounds stronger than
(35). From partial checks for ¯̀= 0, 1, they conjecture the general bound (assuming ` > ¯̀)

∆ > ` . (39)

If ¯̀ = 0 this becomes stronger than (35) for ` > 2 and for ` > ¯̀+ 4 otherwise. This can be
viewed as a CFT strengthening of the theorem of Weinberg and Witten (1980).

F. Conformal blocks

Conformal blocks are of capital importance for the bootstrap. Their theory was initiated
in 1970s (Ferrara et al., 1975, 1974b, 1972), with further advances in the early 2000s

47 Such conditions were first introduced in general relativity, with integration along a null geodesic, in

connection with singularity theorems and wormholes. Here we focus on the ANEC in flat space, first

discussed by Klinkhammer (1991).
48 See also Kravchuk and Simmons-Duffin (2018b) for a recent discussion of light-ray operators in Lorentzian

CFTs and an alternative proof of the ANEC.
49 This is also suggested by the fact that bounds following from the ANEC can be reproduced in the numerical

bootstrap, see Sec. V.F.
50 Conformal collider bounds in general dimensions for states created by the stress tensor or global symmetry

currents were obtained in Buchel et al. (2010) and Chowdhury et al. (2013). A proof of these bounds

independent from the ANEC was given in Hofman et al. (2016); see also Hartman et al. (2016a,b). Other

generalizations of these bounds have been explored in Li et al. (2016a), Komargodski et al. (2017a),

Chowdhury et al. (2017a), Cordova et al. (2017b), Meltzer and Perlmutter (2017), and Cordova and Diab

(2018). Sum rules involving the same coefficients were also recently presented in Witczak-Krempa (2015),

Chowdhury et al. (2017b), Chowdhury (2017), and Gillioz et al. (2017, 2018).
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(Dolan and Osborn, 2001a, 2004) which were crucial for the bootstrap revival. Recently
it experienced further rapid developments, and here we will review its current state.

Consider a 4pt function of four primary scalar operators φi(xi) with i = 1, . . . , 4 (see
Sec. III.F.7 for the general case of external operators with spin). As mentioned in Sec. II,
this 4pt function can be computed by applying the OPE of Eq. (5) to two pairs of fields.
For definiteness we fix here the pairing φ1(x1)φ2(x2) and φ3(x3)φ4(x4). This is referred to
as “the (12)-(34) OPE channel”, to distinguish it from other pairings which will play a role
when we discuss crossing. This gives an expansion

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
∑

O
λ12Oλ34OWO , (40)

where WO ≡WO(xi) are the conformal partial waves (CPWs) given by

WO = f̂12O(x1, x2, y, ∂y)f̂34O(x3, x4, y
′, ∂y′)〈O(y)O(y′)〉 . (41)

Since the 2pt function is diagonal, the summation is over the same operator O in both
OPEs. It follows from conformal invariance of the OPE that each CPW transforms under
the conformal transformations in the same way as the 4pt function itself, see e.g. Costa et al.
(2011a). It is then conventional to split off the factor K4 defined in Eq. (27), so that we
finally have

WO = g∆12,∆34

∆O,`O (u, v)K4 , (42)

where g∆12,∆34

∆O,`O (u, v) is called the conformal block.51 It represents the contribution of a
primary O and all of its descendants to the 4pt function. As shown, it depends on the
dimension and spin of the exchanged traceless symmetric primary O, and also on the
dimension differences ∆12, ∆34 of the external scalars.52 Comparing with Eq. (26), we
thus have:

g(u, v) =
∑

O
λ12Oλ34O g

∆12,∆34

∆O,`O (u, v) . (43)

Eqs. (40) and (43) are referred to as the CPW decomposition and the conformal block
decomposition.

Let us briefly discuss the regions of convergence of the considered expansions. If one
works in the z conformal frame of Eq. (29) in Euclidean signature, then Eq. (41) defining
the CPWs converges for |z| < 1, and the conformal block decomposition (43) is also seen to
converge in this region, at least if the theory is unitary (Pappadopulo et al., 2012). While
this is sufficient for many applications, a stronger convergence result can be established using
the ρ frame, see Sec. III.F.2 below.

The above definition of conformal blocks via the conformal OPE is important in principle.
In practice, there exist efficient approaches to compute the blocks which avoid needing
explicit knowledge of the conformal OPE.53 They will be described below.

51 We make a distinction between CPWs and conformal blocks following the conventions of Costa et al.

(2011a). In part of the literature these two terms are used interchangeably.
52 Sometimes we will omit the latter dependence, if it is clear from the context.
53 However, see Dolan and Osborn (2001a) and Fortin and Skiba (2016a,b) for direct constructions using

the conformal OPE.
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1. The Casimir equation

Let us consider the following alternative representation of CPWs. In radial quantization,
as mentioned in Sec. III.D, the above 4pt function is expressed as a scalar product of two
states

〈φ3(x3)φ4(x4)|φ1(x1)φ2(x2)〉 (44)

living on a sphere separating x1, x2 from x3, x4. The CPW then corresponds to inserting an
orthogonal projector P∆,` onto the conformal multiplet of O∆,`:

λ12Oλ34OWO = 〈φ3(x3)φ4(x4)|P∆,`|φ1(x1)φ2(x2)〉 . (45)

For future reference, the projector can be written as

P∆,` =
∑

α,β=O,PO,PPO,...
|α〉Gαβ〈β| , (46)

where Gαβ = 〈α|β〉 is the Gram matrix of the multiplet and Gαβ is its inverse.
Furthermore, consider the quadratic Casimir54

C2 =
1

2
JABJ BA , (47)

where JAB are the SO(d+ 1, 1) generators, Eq. (14). Insert this operator into Eq. (45) right
after P∆,`. The resulting expression can be computed in two ways. When we act with C2 on
the left we have

P∆,` C2 = C∆,`P∆,` , (48)

where C∆,` is the quadratic Casimir eigenvalue:

C∆,` = ∆(∆− d) + `(`+ d− 2) . (49)

On the other hand, the action of C2 on the right can be computed using the representation
of the conformal generators on primaries as first-order differential operators, mentioned
in Sec. III.B. We conclude that the CPW, and hence the conformal block, satisfies a
second-order partial differential equation.55 The actual form of this “Casimir equation”
is most conveniently found using the embedding formalism (Dolan and Osborn, 2004). In
the z, z̄ coordinates of Eq. (31) it takes the form

D g∆12,∆34

∆,` (z, z̄) = C∆,` g
∆12,∆34

∆,` (z, z̄) , (50)

where

D = Dz +Dz̄ + 2(d− 2)
zz̄

z − z̄ [(1− z)∂z − (1− z̄)∂z̄] ,

Dz = 2z2(1− z)∂2
z − (2 + ∆34 −∆12)z2∂z + ∆12∆34

2
z . (51)

54 The quartic Casimir operator C4 = 1
2JABJ BCJCDJDA has also proved useful in some conformal block

studies (Dolan and Osborn, 2011; Hogervorst et al., 2013) .
55 We followed the presentation in (Simmons-Duffin, 2017b, section 9.3). The same conclusion can be reached

using the OPE (Costa et al., 2011a).
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Moreover, the leading z, z̄ → 0 behavior of the conformal block can be easily determined
using the OPE, and this provides boundary conditions for Eq. (50). Considering the
x12, x34 → 0 limit in Eq. (42) and using Eqs. (22) and (33), one obtains56

g∆12,∆34

∆,` (z, z̄) ∼
z,z̄→0

Nd,` (zz̄)
∆
2 Geg`

(
z + z̄

2
√
zz̄

)
, (52)

where Geg`(x) is a Gegenbauer polynomial,

Geg`(x) = C
(d/2−1)
` (x) , (53)

and the normalization factor Nd,` is given by57

Nd,` =
`!

(−2)`(d/2− 1)`
. (54)

We warn the reader that many different normalization choices can be found in the literature.
Different conformal block normalizations correspond to different normalizations of OPE
coefficients as compared with the one in Eq. (33). In this review we will use the above
normalization unless mentioned otherwise. For the reader’s convenience, we have collected
some other frequently used normalizations in Table I.

By solving Eq. (50) one can find conformal blocks for even d (Dolan and Osborn, 2004).
They are expressed in terms of the basic function

kβ(x) = xβ/22F1

(
β −∆12

2
,
β + ∆34

2
, β;x

)
, (55)

which satisfies

Dxkβ(x) =
1

4
β(β − 2)kβ(x) , kβ(x) ∼

x→0
xβ/2 . (56)

In the simplest case of d = 2, we have D = Dz +Dz̄, so the conformal blocks factorize. They
take the form58

d = 2 : g∆12,∆34

∆,` (z, z̄) =
1

(−2)`(1 + δ`0)

× (k∆+`(z)k∆−`(z̄) + z ↔ z̄) . (57)

Results for higher even d can then be found using recursion relations relating blocks in d
and d+ 2 dimensions (Dolan and Osborn, 2004). The important case of d = 4 reads59

d = 4 : g∆12,∆34

∆,` (z, z̄) =
1

(−2)`

× zz̄

z − z̄ (k∆+`(z)k∆−`−2(z̄)− z ↔ z̄) . (58)

56 The limit is worked out carefully in e.g. Dolan and Osborn (2001b) or Costa et al. (2011a).
57 Here (a)n stands for the Pochhammer symbol.
58 A partial case of this result was first found in Ferrara et al. (1975) by another method. See also Osborn

(2012) for general conformal blocks in 2d. Notice that the 2d global conformal blocks discussed here

should be distinguished from the Virasoro conformal blocks.
59 This result was first found in Dolan and Osborn (2001b) by resumming the OPE expansion.
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In odd d, general closed-form solutions of the Casimir equation are so far unavailable.
Sometimes, one can get closed-form solutions along the “diagonal” z = z̄, as e.g. in d = 3
for all equal external dimensions (Rychkov and Yvernay, 2016, Eqs. (3.7-3.10)). Other
expressions along the diagonal, valid for any d, can be found in Hogervorst et al. (2013).
Using these results as a starting point, one can compute derivatives of conformal blocks
orthogonal to the diagonal using the Casimir equation, by the Cauchy-Kovalevskaya method,
see Sec. III.F.5. The knowledge of these derivatives is usually sufficient for numerical
conformal bootstrap applications. Other techniques used to access the conformal blocks
numerically will be discussed below.

Finally, let us mention that conformal blocks have simple transformation properties under
the interchange of external operators 1↔ 2 and 3↔ 4 (Dolan and Osborn, 2001b, 2011):

g∆12,∆34

∆,` (u/v, 1/v) = (−1)`v
∆34

2 g−∆12,∆34

∆,` (u, v)

= (−1)`v−
∆12

2 g∆12,−∆34

∆,` (u, v) . (59)

This follows from the symmetry of the OPE under the same interchange. As a check, the
explicit expressions in Eqs. (57-58) satisfy these relations.

2. Radial expansion for conformal blocks

While closed-form expressions for conformal blocks in general d are unknown, there exist
rapidly convergent power series expansions. Following Hogervorst and Rychkov (2013), we
will describe a particular conformal frame used to generate such expansions.

Starting from the conformal frame (29), we apply an additional conformal transformation
which keeps the four points in the same 2-plane but moves them into a configuration
symmetric around the origin as in Fig. 4. So the points x1 = −x2 are now on a circle
of radius r < 1, while x3 = −x4 lie on the unit circle.

Let us call n and n′ the unit vectors pointing to x2 and x3, and introduce the complex
radial coordinate (Pappadopulo et al., 2012)

ρ = reiθ , n · n′ = cos θ = η , (60)

which is related to the variable z in Eq. (30) via

ρ =
z

(1−
√

1− z)2
, z =

4ρ

(1 + ρ)2
.

See Hogervorst and Rychkov (2013) for why ρ is preferable to z for constructing rapidly
convergent power series expansions for conformal blocks.

In this configuration, the 4pt function is interpreted as a matrix element between two
radial quantization states: 〈φ3(1,n′)φ4(1,−n′)| and |φ1(r,−n)φ2(r,n)〉 = rD|φ1(1,−n)φ2(1,n)〉.
The factor rD, with D the dilatation generator, takes care of the radial dependence.60

Consider then the conformal partial wave given in Eq. (45). The conformal multiplet
of the operator O∆,` at level m contains descendants |∆ + m, j〉 of spin j varying from
max(0, `−m) to `+m. We need to know the matrix elements between these descendants and

60 D plays the role of the Hamiltonian operator in radial quantization and log r is time.
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the above in and out states. Leaving aside the overall normalization of these matrix elements,
their dependence on the unit vector n must be proportional to the traceless symmetric tensor
(nµ1 . . .nµj−traces). Contracting two such tensors for n and n′ gives, up to a constant factor,
the Gegenbauer polynomial Gegj(n · n′) from Eq. (53).

We conclude that the conformal block has a power series expansion of the form

g∆12,∆34

∆,` (u, v) = r∆

∞∑

m=0

rm
∑

j

w(m, j) Gegj(η) , (61)

where w(m, j) 6= 0 only for max(0, ` − m) 6 j 6 ` + m. Using unitarity, one can also
conclude that w(m, j) > 0 if ∆ is above the unitarity bound and ∆12 = −∆34.

Since z ∼ 4ρ at small z, the OPE limit (52) becomes

g∆12,∆34

∆,` (r, η) ∼
r→0
Nd,`(4r)∆Geg` (η) , (62)

which fixes w(0, `) = Nd,`4∆. To find higher w(m, j), one must determine the normalization
of the descendant matrix elements and not just their dependence on n,n′. While in principle
this can be done using conformal algebra, two more efficient techniques will be discussed
below.

The expansion (61) converges for |ρ| < 1, showing that conformal blocks are smooth
and real-analytic functions in this region.61 The conformal block decomposition (43) can
be similarly argued to converge for |ρ| < 1.62 In terms of the z coordinate, this covers the
whole complex plane minus the cut (1,+∞), improving the convergence result argued below
Eq. (43) using the z frame.

3. Recursion relation from the Casimir equation

The first method to find the coefficients w(m, j) is to substitute the expansion (61) into
the Casimir equation. This gives rise to recurrence relations, obtained in Hogervorst and
Rychkov (2013) and Costa et al. (2016b), which determine w(m, j) for m > 0 starting from
w(0, `).

Namely, defining the functions fm,j ≡ rmGegj(η), it is straightforward to show that
any of the operators {r, η, ∂r, ∂η} acting on these functions produces linear combinations of
fm±1,j±1. Similarly, the operator D in (50), when written in radial coordinates, maps fm,j
into a linear combination of fm+m̂,j+̂ functions with suitable shifts. Eq. (50) then gives rise
to a relation which can be economically written in the form (Costa et al., 2016b)

∑

(m̂,̂)∈S
c(m̂, ̂) w(m+ m̂, j + ̂) = 0 , (63)

where the set S = {(0, 0), (−1, 1), (−1,−1), . . .} contains 30 points, all of which but the first
have m̂ < 0. The coefficients c(m̂, ̂) are known functions of the variables ∆12, ∆34, ∆, `,
d, m, and j (Costa et al., 2016b, attached Mathematica notebook). Using Eq. (63), the
coefficient w(m, j) can then be recursively expressed in terms of w(m′, j) with m′ < m.

61 An exception occurs at the origin because of the r∆ factor.
62 This can be shown rigorously in unitary CFTs (Pappadopulo et al., 2012). While there are no general

results concerning the convergence of conformal block decomposition is nonunitary theories, it appears

reasonable to assume that it remains convergent in the same region.
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4. Recursion relation from analytic structure

The second method exploits the analytic structure in ∆ to obtain a recursion relation for
the conformal blocks. A similar approach was first applied by Zamolodchikov (1984, 1987)
to the 2d Virasoro conformal blocks, by considering them as meromorphic functions of the
central charge c or of the scaling dimension ∆. For conformal blocks of external scalars in
arbitrary d, this idea was introduced in Kos et al. (2014a,b). It was formalized and extended
to conformal blocks for external operators with spin in Penedones et al. (2016). Here we
will explain the external scalar case.

Eqs. (45), (46) provide a convenient starting point for discussing the analytic structure
of a conformal block as a function of the exchanged primary dimension ∆. When ∆ is above
the unitarity bound, the Gram matrix Gαβ(∆) is positive-definite and invertible. However
it turns out that for special values of ∆ = ∆∗A at or below the unitarity bounds, the Gram
matrix becomes degenerate, in the sense that some states are null (i.e. have zero norm). The
conformal block then develops a pole in ∆ −∆∗A. Here we will assume that there are only
simple poles, as is true for example in odd d, while for even d simple poles coalesce into
double ones, see below.

The crucial observation is that the residue of the pole is proportional to another conformal
block:

g∆12,∆34

∆,` (r, η) ∼ RA

∆−∆∗A
g∆12,∆34

∆A,`A
(r, η) . (64)

Namely, we identify the first descendant state Onull
A of O which becomes null when ∆→ ∆∗A.

Let ∆A = ∆∗A + nA be its dimension in this limit, and `A its spin. It can be shown that
Onull
A is annihilated by Kµ when ∆ → ∆∗A and so can be thought of as both a descendant

and a primary. Consider then a fictitious primary OA which has quantum numbers (∆A, `A)
and which is unit-normalized. It is the conformal block of such a primary, with standard
normalization (62), that appears in the residue.

To be more precise, consider the rate with which Onull
A becomes null as ∆→ ∆∗A:

〈Onull
A |Onull

A 〉 ∼ QA(∆−∆∗A) , (65)

with QA some constant. When Onull
A becomes null, all of its descendants become null too,

with the rate proportional to (65). Moreover, it can be shown that the Gram matrix in the
submultiplet consisting of these descendants is equal to (65) times the (non-singular) Gram
matrix of the multiplet of OA, up to corrections of higher order in ∆ −∆∗A. This explains
why the residue in (64) involves the whole conformal block of OA.63

The coefficient RA in (64) is a product of three factors:

RA = M
(L)
A Q−1

A M
(R)
A , (66)

where QA is defined in (65), while M
(L)
A and M

(R)
A come from the 3pt functions 〈φ3φ4|Onull

A 〉
and 〈Onull

A |φ1φ2〉.

63 The Casimir equation gives another argument for why the residue is a conformal block. Near the pole the

Casimir equation for the block reduces to the Casimir equation for the residue (Rychkov, 2016a). The

Casimir eigenvalue of the null descendant is the same as for the original block (since it’s a descendant):

C∆∗,` = C∆A,`A . Finally, the boundary condition at r → 0 is consistent with the residue being the

conformal block.
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Using information about the poles, we can now write a complete formula for the conformal
block. It is convenient to define the regularized conformal block h∆,` ≡ h∆12,∆34

∆,` by removing

a (4r)∆ prefactor:

g∆12,∆34

∆,` (r, η) = (4r)∆h∆,`(r, η) . (67)

The function h∆,` has the same poles in ∆ as g∆,`. Moreover it is a meromorphic function
of ∆, and is therefore fully characterized by its poles and the value at infinity:

h∆,`(r, η) = h∞,`(r, η)

+
∑

A

RA

∆−∆∗A
(4r)nA h∆∗A+nA,`A(r, η) . (68)

Detailed analysis shows that the poles occurring in this equation organize into one finite and
two infinite sequences:

A ∆∗A nA `A
In (n ∈ N) 1− `− n n `+ n

IIn (1 6 n 6 `) `+ d− 1− n n `− n
IIIn (n ∈ N) d

2
− n 2n `

(69)

Using this definition, it is easy to check that the residues of the poles themselves are
nonsingular (except in even dimensions, see below).

The h∞,` term and the constants RA are given by (Kos et al., 2014a; Penedones et al.,
2016)

h∞,`(r, η) =
(1−r2)

1− d2Nd,`Geg`(η)

(r2−2ηr+1)
1−∆12+∆34

2 (r2+2ηr+1)
1+∆12−∆34

2

,

RIn = −n(−2)n

(n!)2

(
∆12+1−n

2

)
n

(
∆34+1−n

2

)
n
,

RIIn = −n `!
(−2)n(n!)2(`−n)!

(d+`−n−2)n

( d2 +`−n)
n
( d2 +`−n−1)

n

(70)

×
(

∆12+1−n
2

)
n

(
∆34+1−n

2

)
n
,

RIIIn =
−n(−1)n( d2−n−1)

2n

(n!)2( d2 +`−n−1)
2n

( d2 +`−n)
2n

×
(

∆12− d2−`−n+2

2

)
n

(
∆12+ d

2
+`−n

2

)
n

×
(

∆34− d2−`−n+2

2

)
n

(
∆34+ d

2
+`−n

2

)
n
.

The key property of Eq. (68) is that each pole residue comes with a factor rnA . This
means that it can be used as a recursion relation to generate the regularized conformal
block as a power series in r. Indeed, suppose we want to compute h∆,l(r, η) up to O(rN).
We use Eq. (68) keeping all poles with nA 6 N , of which there are finitely many. The
residues of these poles themselves are needed up to smaller order O(rN−nA), so we get a
recursion relation. This is one of the most elegant and efficient currently known methods to
compute the conformal blocks outside of even d.

The described recursion relation is adequate for computing conformal blocks in odd
dimensions and also in generic d. It cannot be applied directly in even d, since some simple
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poles coalesce into double poles. This is not a problem, since even d conformal blocks are
known in closed form. Alternatively, one can apply the recursion relation ε away from an
even d, and take the limit ε→ 0 after the coefficients of the r expansion have been generated.
This gives the correct result because the conformal blocks vary analytically with d.

5. Rational approximation of conformal blocks and their derivatives

We will now describe how to construct rational approximations to conformal blocks and
their derivatives at a given point (r∗, η∗), which permit an efficient numerical evaluation
of these quantities as a function of ∆. This will play an important role in the numerical
techniques described in Sec. IV. Our focus will be on rational approximations to scalar
conformal blocks, but later in Sec. III.F.7 we will also describe how they can be extended
to blocks for external spinning operators.

A rational approximation for conformal block derivatives at a given point can be obtained
by combining the radial expansion (61) and the recursion relation (68). It can be expressed
in the form

∂mr ∂
n
η g∆,`(r∗, η∗) = (4r∗)

∆

(
Pmn
N (∆)

QN(∆)
+O(rN−m∗ )

)
. (71)

Here QN is a polynomial made by the product of poles given in Eq. (69) up to order N ,

QN(∆) =
∏

A=(I,II,III)n, n6N
(∆−∆∗A) , (72)

and Pmn
N (∆) is a polynomial with deg(Pmn

N ) 6 deg(QN) + m. The approximation can
be made arbitrarily precise by increasing N , at the expense of increasing the order of the
polynomials.

In numerical applications it is often desirable to keep the polynomial order relatively
small while maintaining a precise approximation. This can be accomplished using a trick
introduced in Kos et al. (2014b), where one discards some number of poles but compensates
by modifying the residues of the kept poles. For example, if one keeps n poles, one can
choose their new residues by demanding that the first n/2 ∆-derivatives match between the
old and new functions at both the unitarity bound and ∆ =∞.

An important property that will be exploited in Sec. IV is that the denominator QN(N)
is always positive in unitary theories. This follows from the fact that all the poles are at
values of ∆ below the unitarity bound.

The techniques introduced in the previous sections allow one to compute conformal blocks
either in closed form or as a power series in the variable r. Starting from these expressions
one can take a direct approach of first analytically computing the r expansion to order N ,
taking r, η derivatives of the resulting expression, and evaluating the result at the point r∗, η∗.
The result can then be recombined to the form in Eq. (71). Since the crossing relations will
be more simply written in z, z̄ coordinates, one then typically converts to z, z̄ derivatives at
the corresponding point z∗, z̄∗ using a suitable transformation matrix. This approach, while
somewhat inefficient at large N due to the need to compute the analytical dependence on η,
has been successfully used in the literature, almost always at the crossing symmetric point
z∗ = z̄∗ = 1/2 which corresponds to η∗ = 1, r∗ = 3− 2

√
2.

A somewhat more efficient algorithm is the following:
(i) Compute the r expansion to order N and take derivatives only along the radial direction
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η = 1 (z = z̄) using either the methods of Sections III.F.3 or III.F.4.64

(ii) Convert to z, z̄ derivatives along the diagonal z = z̄ using a suitable transformation
matrix.
(iii) Use the Casimir equation to recursively compute derivatives in the transverse direction.

Let us briefly discuss the last step, also called Cauchy-Kovalevskaya method. Consider the
Casimir differential equation, Eq. (50), and express it in the variables a = z+z̄,

√
b = (z−z̄).

The radial direction corresponds to b = 0. Moreover, since conformal blocks are symmetric in
z ↔ z̄, their power series expansion away from the z = z̄ line will contain only integer powers
of b. Let us denote the ∂ma ∂

n
b derivative of the conformal block evaluated at z = z̄ = 1/2 by

hm,n. From step (i) we know hm,0 for any m. Then, we can translate the Casimir equation
into a recursion relation for hm,n (with n > 0) in terms of hm,n with lower values of n. This
recursion relation was obtained in (El-Showk et al., 2012, Appendix C) for ∆12 = ∆34 = 0,
and generalized in (Behan, 2017a, Eq. (2.17)). It has the general structure:

hm,n =
∑

m′6m−1

m(. . .)hm′,n (73)

+
∑

m′6m+2

[(. . .)hm′,n−1 + (n− 1)(. . .)hm′,n−2] .

Since the Casimir equation is of second order, m′ can only take values up to m + 2. Also
the recursion relation for h0,n only involves hm′,n′ with n′ < n. Eq. (73) is then all that we
need to perform step (iii).

We conclude this section by mentioning a few software packages that implement the
above efficient algorithm. Their functionality for solving convex optimization problems will
be discussed in Sec. IV, so here we focus on how they compute conformal blocks.

A Mathematica notebook by Simmons-Duffin (2015b) can be used for general scalar
conformal blocks; at step (i) it implements the recursion relation from analytic structure
discussed in Sec. III.F.4. It also implements the trick of shifting pole residues described
above.

Another Mathematica notebook Paulos (2014a) can also be used for general scalar
conformal blocks. At step (i) it implements the recursion relation from the Casimir equation
discussed in Sec. III.F.3. This notebook accompanies the Julia package JuliBoots for
bootstrap computations using linear programming (Paulos, 2014b).

A Python package PyCFTBoot (Behan, 2017a) and a Sage package cboot (Ohtsuki, 2016)
contain integrated functions that compute general scalar conformal blocks derivatives using
the above procedure. These two packages are designed as frontends to the semidefinite
program solver SDPB (Simmons-Duffin, 2015a).

6. Shadow formalism

Next we will briefly review the shadow formalism, which was historically the very first
technique to access the conformal blocks (Ferrara et al., 1972), and it continues to play a
role conceptually and also in explicit computations.

64 In even dimensions one can start from the closed form expression of Sec. III.F.1 evaluated at η = 1, and

expand in r.
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Suppose we want to compute the conformal block g∆,` of a primary operator O∆,` in a

scalar 4pt function 〈φ1φ2φ3φ4〉. Consider a primary “shadow operator” Õd−∆,` which has
the same spin ` as O and dimension d−∆. We stress that this operator is fictitious, it does
not belong to the theory as a local operator, and in particular the fact that its dimension is
below the unitarity bound is of no concern.

The starting point of the shadow formalism is the following integral:

U∆,`(x1, x2, x3, x4) =

∫
ddx〈φ1(x1)φ2(x2)Oµ1...µ`

∆,` (x)〉

× 〈Õd−∆,`;µ1...µ`(x)φ3(x3)φ4(x4)〉 , (74)

where under the integral sign we have a product of the conformal scalar-scalar-(spin `) 3pt
functions in Eq. (23), with the spin-` operators having dimensions ∆ and d−∆.

The function U∆,` has two special properties. First, it conformally transforms in the same
way as the 4pt function 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉. This is because the product (operator
× shadow) transforms as a dimension d primary scalar, which compensates for the Jacobian
in the transformation of ddx. Consequently we can write

U∆,` = f∆,`(u, v)K4 , (75)

where K4 is as in Eq. (40) and f∆,`(u, v) is some function of u and v.
Second, it is straightforward to see that U∆,` is an eigenfunction of the Casimir operator

acting at x1, x2, with eigenvalue C∆,`. Since the latter property is also true for the CPW WO,
it is tempting to identify f∆,`(u, v) in (75) with the conformal block (up to a proportionality
factor). However, this is not quite true. The point is that the conformal blocks of the
operator and of its shadow satisfy the same Casimir equation, since their Casimir eigenvalues
coincide: C∆,` = Cd−∆,`. For this reason f∆,` is a linear combination of the block g∆,` and of
the shadow block gd−∆,`; see (Dolan and Osborn, 2011, Eq. (3.25)) for the precise relation.

From the practical viewpoint, the main advantage of the shadow formalism is that
the integrand in Eq. (74) is quite easy to write. The downside is that the resulting
conformal integrals are not always easy to evaluate, and that it is necessary to disentangle
the contribution of a proper conformal block from the shadow one.

Efficient ways to deal with these problems were proposed by Simmons-Duffin (2014a).
First of all, the integrals become much easier to evaluate when written using the embedding
formalism. Second, to separate the block from the shadow one uses that they transform
differently under a monodromy transformation

z → e2πiz, z̄ = fixed , (76)

g∆,`(z, z̄)→ e2π∆i g∆,`(z, z̄) . (77)

The wanted conformal block is isolated via a monodromy projector, implemented as a proper
choice of the integration contour in Eq. (74). This prescription allows one to extract integral
expressions for generic conformal blocks in arbitrary d. In some cases the conformal integrals
can be performed exactly, and the results match the known formulas from other techniques.

7. Spinning conformal blocks

Although in this review we will mostly deal with scalar 4pt functions, the bootstrap has
also been successfully applied to 4pt functions of operators with spin; e.g., see Secs. V.D for
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j = 1/2 spinors and V.F for ` = 1, 2 tensors in 3d. Here we will review the theory of the
associated conformal blocks, referred to as “spinning”, which present additional difficulties
compared to the blocks of external scalars.

As in the scalar case, spinning conformal blocks correspond to the contribution of an
entire conformal multiplet to a 4pt function. They are defined by the equation

〈O3O4|P∆,r|O1O2〉 = (78)

K4

n3∑

a=1

n′3∑

b=1

n4∑

c=1

λ
(a)

12O†λ
(b)
34OT

(c)
4 (xi, ζi)G

a,b
c,∆,r(∆i, ri, u, v).

Here, the external operators Oi = O∆i,ri(xi, ζi) are positioned at xi and have their indices
contracted with auxiliary polarization vectors (or spinors) ζi. They transform in some general
SO(d) (or Spin(d)) representations ri. On the other hand O∆,r is the exchanged operator

(and O†
∆,r† its conjugate, see the discussion in Sec. III.C.1), and P∆,r is the projector onto

its conformal multiplet similar to Eq. (46).
The prefactor K4 is as in Eq. (40); it captures the scaling properties of the 4pt function,

leaving everything else dimensionless. Eq. (78) also contains a sum over possible conformally

invariant 4pt tensor structures T
(c)
4 , and a double sum over possible 3pt function structures

〈O∆1,r1(x1, ζ1)O∆2,r2(x2, ζ2)O†
∆,r†(x3, ζ3)〉 = (79)

n3∑

a=1

λ
(a)

12O†T
(a)
3 (xi, ζi, {∆1, r1}, {∆2, r2}, {∆, r†}),

and similarly for n′3. Finally, the functions Ga,b
c,∆,r(∆i, ri, u, v) are the spinning conformal

blocks.
According to the above definition, when r is not a real representation, both Ga,b

c,∆,r and

Ga,b
c,∆,r† have to be considered and generally both these blocks are nonzero. We will see a 4d

example for r = (`, `+ p) below.
Spinning blocks can be computed by reducing them to “seed” blocks. Consider the

simplest case when the exchanged primary is a traceless symmetric spin `. To understand
the reduction to seeds, the key observation is that the 3pt tensor structures (79) can be
produced by differentiating the more elementary scalar-scalar-(spin `) 3pt functions (23).
Namely Costa et al. (2011a) showed that there exist “spinning-up” differential operators

D
(a)
r1,r2 , depending on xi and ζi, such that

T
(a)
3 (xi, ζi, {∆1, r1}, {∆2, r2}, {∆, r}) = (80)

D(a)
r1,r2

T3(xi, ζ3, {∆′1, 0}, {∆′2, 0}, {∆, r}),

for a suitable basis of 3pt structures and choice of ∆′i.
65 Notice that in the above expression

the third point is not affected. Therefore, in the definition (78), the differential operators

65 In a generic basis of 3pt structures, e.g. one that would be naturally constructed using the embedding

space or conformal frame formalisms, there would be a linear combination of terms like the r.h.s. with

different shifts.
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do not interfere with the sum over descendants in P∆,`. One concludes that the spinning
blocks can be obtained by differentiating the scalar blocks:

K4(∆i)

n4∑

c=1

T
(c)
4 (xi, ζi)G

a,b
c,∆,`(∆i, ri, u, v)

= D(a)
r1,r2

D(b)
r3,r4

K4(∆′i)g
∆′12,∆

′
34

∆,` (u, v) , (81)

where g
∆′12,∆

′
34

∆,` (u, v) is the scalar conformal block discussed at length in the previous sections,
referred to as a seed block in this situation.

In 3d, traceless symmetric tensors exhaust all bosonic SO(d) representations, and
therefore all bosonic spinning blocks can be obtained from scalar seeds via (81).66 The
3d spinning-up operators were also extended to external spinors and exchanged spin ` by
Iliesiu et al. (2016a).

If a representation r does not couple to two scalars, its conformal block cannot be
reduced to the scalar seed using this method. One therefore needs more seed blocks for
such representations. As an example, consider the half-integer spin representations in 3d.
The simplest pair of external operators to which they couple are a scalar φ and a Majorana
fermion ψ. The corresponding conformal block 〈φ3ψ4|P∆,j|φ1ψ2〉 for half-integer j can be
taken as a seed. It was computed by Iliesiu et al. (2016b), using recursion relations as in
Sec. III.F.4, making the list of 3d seeds complete.

A similar discussion holds in 4d. In this case the complete set of seed blocks corresponds
to the representations r = (`, `+p) and (`+p, `) appearing in the 4pt function of two scalars,
one (p, 0) tensor, and one (0, p) tensor:

〈φ3(x3)O∆4,(0,p)(x4)|P∆,r|φ1(x1)O∆2,(p,0)(x2)〉 . (82)

All of these seeds were computed in closed form by Castedo Echeverri et al. (2016a), making
use of the shadow formalism from Sec. III.F.6.

Once the seeds are known, a relation analogous to (81) allows one to relate any conformal

block to a combination of seed blocks thorough a suitable set of spinning-up operators D
(a)
ri,rj .

The latter can be nicely written in the embedding formalism discussed in Appendix A or
one of its generalizations. The precise expressions can be found in Costa et al. (2011a) and
Iliesiu et al. (2016b) in 3d or Echeverri et al. (2015) in 4d. In 4d there is also available
a comprehensive Mathematica package CFTs4D (Cuomo et al., 2018) designed to facilitate
general spinning 4d conformal block computations. Spinors and spinor-tensor correlators in
aribtrary dimensions were instead studied in Isono (2017)

Let us mention briefly several other ideas which have proved useful when dealing with
spinning blocks. Karateev et al. (2018) introduced a more general class of “weight-shifting”
operators which act on correlation functions. In addition to reproducing the spinning-up
operators as a special case, they have a further interesting consequence: when acting on a
conformal block these operators can change the SO(d) (or Spin(d)) representation of the
exchanged state by utilizing the 6j symbols of the conformal group. Through repetitive use

66 Some explicitly worked out cases in 3d are for external operator pairs being (current)-(current) (Costa

et al., 2011a), scalar-(current or stress tensor) (Li et al., 2016a), and (stress tensor)-(stress tensor)

(Dymarsky et al., 2018).
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of these operators, it is possible to express any conformal block, including the seeds, in terms
of the scalar ones.67 These methods also lead to efficient derivations of various recursion
relations satisfied by the conformal blocks.

The Casimir recursion approach from Sec. III.F.3 was extended to arbitrary external
bosonic operators by Costa et al. (2016b). More recently, Kravchuk (2018) considered similar
expansions for arbitrary external operators, and related the recursion relation coefficients to
the 6j symbols of Spin(d− 1), which are known in closed form for arbitrary representations
in d = 3, 4, and for representations entering the seed blocks in arbitrary d. He also discusses
how to convert from the z to the ρ coordinate, as is needed for practical applications.

The pole expansion of Sec. III.F.4 has also been generalized to spinning conformal blocks
(Costa et al., 2016b; Penedones et al., 2016). Although no closed form expressions are known
for the analogues of h∞ and of the residues RA in Eq. (68), these ingredients can sometimes
be found by combining this approach with the spinning-up/weight-shifting operators, as in
Iliesiu et al. (2016b), Dymarsky et al. (2017), and Karateev et al. (2018). Commuting these
operators with the pole expansion sum, one obtains the expected pole expansion for spinning
conformal blocks. By truncating the pole expansion, rational approximations similar to those
considered in Sec. III.F.5 can then be constructed for each spinning block tensor structure.

Finally, the shadow block technique discussed in Sec. III.F.6 has been used to compute
the conformal blocks appearing in 4pt function of two scalars and two identical conserved
currents (Rejon-Barrera and Robbins, 2016).

G. Global symmetry

A majority of CFTs also possess a global symmetry group G, which acts on local operators
in a way that commutes with conformal transformations.68 The conformal multiplet is then
characterized by an additional label: an irreducible G representation π in which the primary
transforms. The cases of interest to physics are when G is a finite discrete group or compact
Lie group, or a product thereof.

The correlator of n primaries will then be as discussed in Sec. III.C, times an extra factor
which determines the dependence on indices in G-representations. This extra factor is a (π1⊗
· · · ⊗ πn)G tensor, i.e. a G-invariant tensor belonging to the tensor product representation.

By Schur’s lemma, the 2pt function can be nonzero only if π2 = π̄1 are conjugate
representations (or the same representation if self-conjugate), in which case its form is
uniquely determined. The three typical cases of a real, pseudoreal, or complex representation
are illustrated by the extra factors being δab for π1 = π2 a fundamental of SO(N), iεab for

π1 = π2 a fundamental of SU(2), and δb̄a for π1(π2) (anti)fundamentals of SU(N), N > 2.69

70

The 3pt function can be nonzero only if (π1 ⊗ π2 ⊗ π3)G is nonempty. This leads to
selection rules. For example, if π1 and π2 are fundamentals of SO(N), then π3 can be either

67 Explicit formulas expressing the seed blocks in 3d and 4d are provided in Karateev et al. (2018).
68 If the CFT arises as an IR fixed point of a gauge theory, we work only with gauge-invariant local operators.

So, as mentioned in Sec. II.A, the gauge group does not enter into our considerations.
69 The indices of global symmetry representations will be denoted either by a, b, . . . or i, j . . . depending on

the situation.
70 In unitary CFTs, complex representations π necessarily occur in conjugate pairs, so it’s natural to choose

an operator basis so that O, O† transform in π, π̄.
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a singlet or a rank-2 traceless symmetric or antisymmetric SO(N) tensor. The invariant
tensors corresponding to these three possibilities can be readily written down (Rattazzi
et al., 2011a).

Alternatively one can think in terms of the OPE: 〈Oπ1Oπ2Oπ3〉 is nonzero if O†π̄3
appears

in the OPE Oπ1 × Oπ2 . The global symmetry structure is given by the Clebsch-Gordan
coefficient for π̄3 in π1 ⊗ π2. Notice that the tensor product π1 ⊗ π2 may include several
copies of a given representation, in which case there may be several different invariant
tensors possible in the 3pt function. This is similar to how conformal tensor structures for
3pt functions of primaries are in general nonunique.

The 4pt functions are proportional to nonzero tensors appearing in (π1⊗π2⊗π3⊗π4)G. In
a CPW decomposition like Eq. (40), individual CPWs will be proportional to the invariant
4pt tensors obtained by contracting the 3pt tensors from (π1⊗π2⊗π)G and (π3⊗π4⊗ π̄)G,
where π is the exchanged representation. By basic group theory (decomposing π1 ⊗ π2 and
π3⊗π4 into irreducibles and applying Schur’s lemma), it’s easy to see that any 4pt invariant
tensor can be obtained in this way for an appropriate choice of π.

Another interesting possibility for additional symmetry is supersymmetry, in which case
the conformal group is enhanced to a superconformal group, primary operators are grouped
into supersymmetry multiplets, and conformal blocks are enhanced to superconformal
blocks. Later in Sec. VII we will describe in more detail some of the consequences of
superconformal symmetry for the bootstrap.

H. Conserved local currents

Next we will turn to the conserved currents associated with conformal or global symmetries.
Such currents are supposed to exist at the IR fixed points of RG flows starting from a
microscopic Lagrangian or from a lattice model with finite-range interactions.71

1. Stress tensor

In the axiomatic approach considered here, a local CFT is simply defined as a CFT having
a local conserved stress tensor operator Tµν . In the operator classification, Tµν is a traceless
symmetric spin-2 primary of scaling dimension d.72

In local CFTs, the conformal algebra generators (12) are obtained by integrating the stress
tensor against a vector field εJν (x), describing the corresponding infinitesimal conformal
transformation, over a surface Σ surrounding the origin. Thus we have

J = −
∫

Σ

dSµε
J
ν (x)T µν(x) , (83)

71 In a classical or weakly-coupled quantum local field theory, the existence of local conserved currents follows

from Noether’s theorem. We are not aware of a general Noether’s theorem for strongly-coupled theories

and lattice models. The existence of local conserved currents in these cases remains a physically-motivated

assumption, taken for granted in most of the literature. For an intuitive argument for the existence of a

local stress tensor using the RG, see (Cardy, 1996, section 11.3).
72 Conformal invariance allows one to consistently impose conservation of the stress tensor. In technical

language, the divergence of the dimension d traceless symmetric spin-2 primary is a null descendant and

can be set to zero.
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which is independent of the shape of Σ. See Simmons-Duffin (2017b) for a detailed review
of this way of introducing the conformal algebra.73 In particular, the dilatation generator
D is given by (83) with εDν = xν .

It is conventional to normalize the stress tensor via Eq. (83). Namely, inserting the above
surface operator in any correlator should have the effect of replacing the operator at the
origin by [J ,O(0)], assuming the other operators are outside of the region enclosed by Σ.
This constraint is called an (integrated) Ward identity.

A frequently occurring case is to consider the 3pt function 〈O(0)Tµν(x)O(y)〉 which by
the Ward identity should reduce to 〈[J ,O(0)]O(y)〉 after integration. Since [J ,O(0)] is
known, this provides constraints on the coefficients of various tensor structures in the 3pt
function.

These constraints should be imposed in addition to constraints from conservation of
Tµν . Vanishing of the divergence is automatic for 2pt functions, while in general it must
be imposed on 3pt functions containing Tµν , placing constraints on the allowed tensor
structures. Such constraints are not independent if the other operators are scalars, but
become nontrivial if they have spin, see Osborn and Petkou (1994) and Costa et al. (2011b).74

In particular, when O = φ is a scalar, there is just one tensor structure. Using the Ward
identity e.g. for J = D one fixes the OPE coefficient completely. In the notation of (23) we
have (Osborn and Petkou, 1994)

〈φ(x1)φ(x2)T (x3, ζ)〉 = λφφT [(Z123 · ζ)2 − 1
2
ζ2]K3 ,

λφφT = − d∆φ

(d− 1)Sd
, Sd =

2πd/2

Γ(d/2)
. (84)

It can also be shown that the stress tensor does not couple to two scalars of unequal
dimension, as the 3pt function structure (23) is then incompatible with conservation.

Since we normalize via Eq. (83), the stress tensor 2pt function will not be unit-normalized
but will contain a constant CT called the central charge:75

〈T (x1, ζ1)T (x2, ζ2)〉 =
CT
S2
d

(ζ1 · I · ζ2)2 − 1
d
ζ2

1ζ
2
2

(x2
12)d

. (85)

A similar convention will be set below for conserved spin-1 currents, while the rest of
primaries are kept unit-normalized.

73 However, it should be stressed that there are physically interesting theories which satisfy all CFT axioms

except for the existence of the local stress tensor. Examples include defect and boundary CFTs (see

Sec. V.B.6 and footnote 109), and critical points of models with long-range interactions, see e.g. Paulos

et al. (2016) and Behan et al. (2017a,b).
74 Some important cases are when O is a conserved spin-1 vector or the stress tensor itself. In both these

cases there are several tensor structures allowed by conformal invariance and conservation, and only one

independent Ward identity, see Osborn and Petkou (1994) and Dymarsky et al. (2018, 2017). Ward

identity constraints on 3pt functions 〈ψTψ̄〉 with ψ a fermion were studied in 3d by Iliesiu et al. (2016a)

and in 4d by Elkhidir and Karateev (2017). In these cases there are two independent tensor structures

allowed by conservation, and their coefficients can both be fixed by considering the Ward identity for D

as well as for Pµ or Mµν .
75 This corresponds to one of the central charge definitions in d = 2. Notice however that in d > 2, there is

no known analogue of the Virasoro algebra interpretation of the central charge.
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In the normalization Eqs. (84) and (85), the contribution of the stress tensor to 4pt
functions of scalars is given by:76

〈φ(x1)φ(x2)φ′(x3)φ′(x4)〉 ⊃ pd,2 g
0,0
d,2(u, v)K4 ,

pd,2 = λφφTλφ′φ′T
S2
d

CT
=

d2

(d− 1)2

∆φ∆φ′

CT
. (86)

As usual, the conformal block is normalized according to Eq. (52). This constraint can play
an important role in bootstrap analyses involving multiple 4pt functions, as it implies that
the stress tensor contributes to different 4pt functions in a correlated way.

While outside of 2d there is no analogue of the “c-theorem” (Zamolodchikov, 1986) for
CT ,77 the central charge typically scales with the number of degrees of freedom. This is
illustrated by the values of the central charge of a free theory containing nφ scalars, nψ
Dirac fermions, and nA gauge vectors (in 4d only), given by (Osborn and Petkou, 1994)

CT =
d

d− 1
nφ + 2bd/2c−1d nψ + 16 δd,4 nA . (87)

2. Global symmetry currents

The case of a continuous global symmetry in a local CFT is analogous. In this case there
are conserved spin-1 currents JAµ which transform in the adjoint representation of G and

have scaling dimension d − 1. Global symmetry generators are obtained by integrating JAµ
over a surface, which defines a normalization for the current and leads to Ward identities.

For concreteness, consider scalar operator φi with generators (TA)ji transforming in some
representations r of G as well as φ†j transforming in r̄. We assume that the scalar 2pt
function is unit-normalized, 〈φiφ†j〉 ∝ δji , as discussed in Sec. III.G. The generators of the
global symmetry transformations are then QA = −i

∫
Σ
dSµJAµ and the associated Ward

identity requires [QA, φi] = −(TA)jiφj. The 3pt function with JA is then fixed to be (Osborn
and Petkou, 1994; Poland and Simmons-Duffin, 2011)

〈φi(x1)φ†j(x2)JA(x3, ζ)〉 = − i

Sd
(TA)ji [Z123 · ζ]K3 . (88)

In this normalization one can define a current central charge CJ by

〈JA(x1, ζ1)JB(x2, ζ2)〉 = τAB
CJ
S2
d

ζ1 · I · ζ2

(x2
12)d−1

, (89)

where τAB = Tr
[
TATB

]
.

76 This is easy to find by rescaling Tµν to match the normalization in Eq. (22).
77 Instead, it is known that in 3d the sphere free energy satisfies an “F -theorem”, see Jafferis et al. (2011),

Klebanov et al. (2011), and Casini and Huerta (2012), while in 4d the a anomaly coefficient satisfies an

“a-theorem”, see Cardy (1988), Osborn (1989), Jack and Osborn (1990), Komargodski and Schwimmer

(2011), and Komargodski (2012).
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In the end, rescaling JAµ to match the normalization of Eq. (22), the contribution of a
spin-1 conserved current to the scalar 4pt function is

〈φi(x1)φ†j(x2)φk(x3)φ†l(x4)〉 ⊃ −T
jl
ik

CJ
gd−1,1(u, v)K4 ,

T jlik = (τ−1)AB(TA)ji (T
B)lk . (90)

Notice that τAB in (89), (TA)ji in (88), and T jlik are examples of 2pt, 3pt, and 4pt G-invariant
tensors as discussed in Sec. III.G.

For example, if φ is a complex scalar charged under a U(1) with charge 1, then T jlik =
T = 1. In the case in which φi is in the fundamental representation of SU(N) or SO(N)
(where r̄ = r) we have instead

T jlik = δliδ
j
k −

1

N
δji δ

l
k (G = SU(N)) , (91)

Tijkl =
1

2
(δilδkj − δikδjl) (G = SO(N)) . (92)

A note about normalization is in order: once the generators TA are chosen, the Ward
identity fixes the normalization of JA and determines CJ according to our definition. Clearly,
if we use a different generator normalization, then the value of CJ would be modified
accordingly. Moreover, once Eq. (88) is established, the Ward identity fixes the normalization
of any other generator in any other representation.

Finally, it should be mentioned that while free theories contain higher-spin conserved
currents, there exist no-go theorems showing that interacting CFTs in d > 3 dimensions
do not have conserved currents of spin ` > 3, see Maldacena and Zhiboedov (2013) and
Alba and Diab (2016). This can be thought of as a CFT analogue of the Coleman-Mandula
theorem for S-matrices.

I. Crossing relations

The main idea of the conformal bootstrap is to constrain CFT data by using the crossing
relations for 4pt functions, Fig. 1. Crossing relations are usually analyzed in the conformal
frame of Fig. 2. Consider the 4pt function of scalar operators in this frame and expand it
into conformal blocks in the (12)-(34) and in the (32)-(14) OPE channels, referred to as the
s- and t-channels. The two channels are obtained by interchanging points 1 and 3, which
transforms z → 1− z. Taking into account the value of the K4 factor in both channels, and
equating the two CPW decompositions, we get the crossing relation

∑

O
λ12Oλ34O

g∆12,∆34

∆O,`O (z, z̄)

(zz̄)
∆1+∆2

2

=
∑

O′
λ32O′λ14O′

g∆32,∆14

∆O′ ,`O′
(1− z, 1− z̄)

((1− z)(1− z̄))
∆3+∆2

2

. (93)

Here the sums run over the operatorsO andO′ which appear in the OPE in the two channels.
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One frequently occurring special case is a 4pt function of identical scalars 〈σσσσ〉. Then
the crossing relation simplifies because O = O′ and also because we get squares of the OPE
coefficients λσσO. It is customary to write it as

∑

O
λ2
σσOF

∆σ
∆O,`O(z, z̄) = 0 , (94)

where

F∆σ
∆,`(z, z̄) = ((1− z)(1− z̄))∆σg0,0

∆,`(z, z̄)

− (zz̄)∆σg0,0
∆,`(1− z, 1− z̄). (95)

Among the operators O which appear in (94), a special role is played by the identity
operator and (in local CFTs) by the stress tensor, because these are two operators of known
dimension whose OPE coefficients are nonzero. In particular the identity operator appears
with the coefficient λσσ1 = 1. By studying the z → 0 limit of the crossing relation, it’s easy
to show analytically that there should be infinitely many further operators with nonzero
λσσO (Rattazzi et al., 2008). We will see later on what can be learned about these operators
using numerical methods.

Going back to the general case (93), it is similarly convenient to rewrite it as follows (Kos
et al., 2014a). We introduce the functions

F ij,kl
±,∆,`(z, z̄) = ((1− z)(1− z̄))

∆k+∆j
2 g

∆ij ,∆kl

∆,` (z, z̄)

± (zz̄)
∆k+∆j

2 g
∆ij ,∆kl

∆,` (1− z, 1− z̄) , (96)

which are symmetric/antisymmetric under z → 1 − z, z̄ → 1 − z̄. We then take the sums
and differences of (93) with the same equation with z, z̄ replaced by 1− z, 1− z̄. Then (93)
is equivalent to the pair of equations:

∑

O
λ12Oλ34OF

12,34
∓,∆O,`O(z, z̄)

±
∑

O′
λ32O′λ14O′F

32,14
∓,∆O′ ,`O′ (z, z̄) = 0 . (97)

If all operators are equal, the lower sign case is trivial, and the upper sign reduces to the
single correlator crossing relation (94).

Crossing relations can be imposed at any point z, z̄ where both the s- and t-channels
converge. From the discussion in Sec. III.F.2, this is the plane of all complex z minus cuts
along (1,+∞) where the s-channel diverges and (−∞, 0) where the t-channel diverges. As
we will see in Sec. IV.A, the standard choice in numerical studies is to impose crossing in a
Taylor expansion around the point z = z̄ = 1/2, which is well inside this region.

There is also a third u-channel OPE (13)-(24). The u-channel is typically not considered
in the numerical bootstrap, because it is not convergent at z = z̄ = 1/2.78 For 4

78 Although it can be considered when crossing relations are analyzed around another point, e.g. u = v = 1

(Li, 2017).
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identical external scalars, the u-channel is automatically satisfied if the s-t channel crossing
relation holds (Poland and Simmons-Duffin, 2011). For nonidentical external operators,
the u-channel is important. To impose the u-channel crossing relation, one changes the
conformal frame by interchanging the positions of operators 1 and 2 (Rattazzi et al., 2011a).
The u-channel in the original frame becomes the t-channel in the new frame, and crossing
can be imposed around z = z̄ = 1/2. The s-channel CPW decomposition in the new frame
only differs by signs of all odd-spin terms because of (25).

In the case when the CFT has a global symmetry G, the crossing relations were formalized
in Rattazzi et al. (2011a). Consider a 4pt function of scalar operators transforming in
G representations πi. The exchanged operators Oπ then transform in representations π
appearing in the tensor product decompositions of πi⊗πj. Each term in the s- and t-channel
CPW decompositions comes multiplied with a tensor structure obtained by contracting two
3pt G-invariant tensors, as described in Sec. III.G. We can represent it by a vector ~Vπ
in the space of 4pt G-invariant tensors (π1 ⊗ π2 ⊗ π3 ⊗ π4)G. (Anti)symmetrizing under
z → 1− z, z̄ → 1− z̄, the crossing relation takes form (97), with every term multiplied by

the corresponding vector ~Vπ. It is thus a constraint in the space of vector functions. As an
explicit example, crossing relations of 4pt functions 〈φaφbφcφf〉 and 〈φaφ†bφcφ†f〉 for φa a
fundamental of SO(N) or SU(N) were found in Rattazzi et al. (2011a).

A similar vector structure arises when analyzing 4pt functions of operators with Lorentz

spin, with the conformally invariant 4pt tensors T
(c)
4 in (78) playing the role of the

G-invariant 4pt tensors in the case of global symmetry. General crossing relations involving
both global symmetry and Lorentz indices were formalized in Kos et al. (2014a).

1. Explicit solutions to crossing

Many nontrivial 2d CFTs have exact solutions (e.g. the minimal models), and the
conformal block decompositions of their 4pt functions provide explicit solutions to crossing
relations. Here we will discuss a few explicit solutions to crossing known in d > 2. Their
existence is important, even though as we will see they come from theories which are not
physically the most interesting ones. For example, it is common to check the numerical
algorithms against the known explicit solutions to exclude coding errors, before proceeding
to study more physically interesting solutions numerically.

Essentially all explicit solutions in d > 2 are provided by scale-invariant “gaussian
theories”, i.e. theories coming from a quadratic action written in terms of a fundamental
field and not having any massive parameter.79 The correlation functions of such theories
are generated by Wick’s theorem from the basic 2pt function of the fundamental field. The
simplest examples are the massless free scalar and massless free fermion theory, which are
conformally invariant in any d, and the free abelian gauge theory, conformally invariant in
d = 4. In 4d, explicit conformal block decompositions of 4pt scalar correlation functions
〈OOOO〉 in these theories (for O = φ, φ2, ψ̄ψ, F 2

µν) were obtained by Dolan and Osborn
(2001b).

79 The only exceptions known to us are the “fishnet theories” — nonunitary bi-scalar field theories integrable

in the large-N limit (Gürdoğan and Kazakov, 2016). Recently some conformally-invariant 4pt functions

and their conformal block decompositions were computed in such theories in 4d (Grabner et al., 2018),

and in their nonlocal generalizations to arbitrary d (Kazakov and Olivucci, 2018).
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Another class of gaussian theories are mean field theories (MFTs), also called generalized
free fields (Heemskerk et al., 2009), (El-Showk and Papadodimas, 2012, section 4). Correlation
functions in these theories have the same disconnected structure generated by Wick’s
theorem as in the above mentioned free theories. The only difference is that the scaling
dimension of the fundamental field, fixed to a particular value in free theories, becomes a free
parameter in MFT.80 For example, we can consider the MFT of a scalar field φ of arbitrary
dimension ∆φ. Such a MFT is unitary as long as ∆φ satisfies the unitarity bound, and
reduces to the free massless scalar for ∆φ = (d− 2)/2. Just like for the usual free theories,
the full space of operators in MFTs can be classified by considering normal-ordered products
of the fundamental field and its derivatives.81 For example there is an operator φ2 which
has dimension 2∆φ.

Although relatively trivial and nonlocal, MFTs satisfy most CFT axioms (except for for
the existence of a local stress tensor). As we will see below, they frequently fall inside regions
allowed by the bootstrap bounds, so it helps to be familiar with them. Explicit conformal
block decompositions of MFT 4pt functions containing scalars were obtained by Heemskerk
et al. (2009) for d = 2, 4 and by Fitzpatrick and Kaplan (2012) in general d.

IV. NUMERICAL METHODS

A. Convex optimization and linear programming

The CFT crossing relations describe a continuously infinite number of constraints on
the CFT data parametrized by the cross ratios. In order to study the crossing relations
numerically one must discretize this set of constraints. Starting with Rattazzi et al. (2008),
the common approach adopted in numerical studies is to Taylor expand the crossing relations
around a point in cross-ratio space, typically taken to be the symmetric configuration u =
v = 1/4 or equivalently z = z̄ = 1/2. If one takes derivatives only up to a certain order Λ,
then one obtains a finite set of constraints.

Before proceeding, let us highlight that a number of other choices could be made here,
e.g. evaluating the crossing equations at different values of the cross ratios, Taylor expanding
around other points, integrating the crossing equations, etc.82 Here we focus on the approach
of Taylor expanding around the symmetric configuration since it works well in practice and
is the most common approach in the literature. One justification for this choice of the
expansion point is that it makes both the direct and the crossed channel in the conformal
block expansion to converge maximally fast (Pappadopulo et al., 2012). However, it is by
no means obvious that it is the most efficient way to discretize the crossing relations.

In the case of a single 4pt function of identical scalars 〈σσσσ〉, the resulting constraints

80 This structure naturally emerges in large-N CFTs as a consequence of large-N factorization. This is

particularly transparent in CFTs with holographic duals, since MFT correlation functions are generated

by free massive fields in AdSd+1 and the arbitrary scaling dimension is determined by the mass.
81 The OPE φ×φ contains only operators of the schematic form φ(∂2)n∂`φ, which have spin ` and dimension

2∆φ + 2n+ `.
82 Some of these alternative ideas have been explored by Hogervorst and Rychkov (2013, section 4.2),

Castedo Echeverri et al. (2016b), Mazac (2017), Li (2017), and Mazac and Paulos (2018).
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take the form

0 =
∑

O
λ2
σσO ~F

∆σ
∆O,`O , (98)

where ~F∆σ
∆O,`O can be thought of as a vector with components

(
~F∆σ

∆O,`O

)mn
= ∂mz ∂

n
z̄ F

∆σ
∆O,`O(z, z̄)

∣∣
z=z̄=1/2

, (99)

where we take derivatives of the functions (95) and we keep components up to a cutoff
m+n 6 Λ.83 This computation will thus involve derivatives of conformal blocks up to some
finite order.

Computing the vectors ~F∆σ
∆,` constitutes a nontrivial preliminary step for analyzing

Eq. (98). This step is handled starting from one of the many exact or approximate
expressions for conformal blocks discussed in Sec. III.F. The state-of-the-art approach
is to use the rational approximation, see Sec. III.F.5, where available software packages are
also described. This approach gives rise to approximate expressions which reproduce ~F∆σ

∆,`

with any desired precision. These expressions can be efficiently evaluated “on the fly”, as
needed in the continuous simplex algorithm from Sec. IV.A.1. They can also be used as an
input to the semidefinite programming methods described in Sec. IV.B.

We now proceed to describe strategies on how to decide if Eq. (98) has solutions, i.e. if
there exists some choice of the exchanged CFT spectrum {∆O, `O} and OPE coefficients
λσσO which makes it satisfied. First, let us remark that Eq. (98) is a set of linear equations
in λ2

σσO. This is at the heart of both the linear programming approaches described in this
subsection as well as the extremal functional and truncation methods described below. In
particular, if one has a candidate CFT spectrum for operators appearing in σ × σ but does
not know the OPE coefficients, one can straightforwardly solve a linear algebra problem to
find the coefficients.

In unitary (or reflection positive) CFTs, Eq. (98) states that a sum of vectors must add
to zero with positive coefficients, due to λσσO necessarily being real. For some choices of the
CFT spectrum {∆O, `O} this is not possible, as illustrated in Fig. 5. When it is not possible
one can identify a separating plane α through the origin such that all vectors point to one
side of the plane.84

This observation forms the basis for the first numerical strategy of analyzing the crossing
relation (Rattazzi et al., 2008): input some assumption about the CFT spectrum (e.g., a gap
in the scalar spectrum with all other operators satisfying unitarity bounds) and numerically
search for a separating plane α. Equivalently we can say that we are applying a linear
functional

∑
mn αmn∂

m
z ∂

n
z̄ [·]

∣∣
z=z̄=1/2

to the crossing relations and checking if it is possible to

derive a contradiction. Concretely, one can look for a vector ~α such that the scalar product
is strictly positive on at least one operator whose OPE coefficient is nonzero (this may be
the identity, the stress tensor, or any other operator that we assume appears in the OPE):

~α · ~F∆σ
∆O∗ ,`O∗

> 0 , (100)

83 Since the functions (95) are odd under z → 1 − z, z̄ → 1 − z, only components with m + n odd lead to

nontrivial equations.
84 Some vectors may point in the plane but at least one must point outside of it.
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while it is nonnegative for all other {∆O, `O} allowed by our assumptions:

~α · ~F∆σ
∆O,`O > 0 . (101)

Each inequality ~α · ~F∆σ
∆O,`O > 0 identifies a half-space and their intersection carves out a

convex cone.
There is still one issue before the vector ~α can be searched for numerically – a priori

there are an infinite number of allowed vectors labeled by all {∆O, `O}. The first numerical
bootstrap studies85 employed a discretization approach: namely, they discretized the set
{∆O, `O} using some small spacing between allowed dimensions so that there are a finite
number of linear inequalities satisfied by a finite number of unknown coefficients ~α. Then the
problem becomes a standard linear programming problem and can be solved using standard
algorithms. These include simplex algorithms, where one moves from vertex to vertex on
the edge of the feasible region, or interior point algorithms, where one instead traverses
the interior of the feasible region. Software packages that have been used in the past for
this purpose are Mathematica, the GNU Linear Programming Kit (GLPK), and the IBM

ILOG CPLEX Optimizer. This discretization approach is currently considered to be obsolete,
although it retains pedagogical value. More efficient approaches avoiding discretization will
be discussed below.

One can slightly modify the problem in order to place bounds on OPE coefficients
(Caracciolo and Rychkov, 2010). By isolating one particular contribution O∗ and again
applying a functional ~α one rewrites the equation as

λ2
σσO∗~α · ~F∆σ

∆O∗ ,`O∗
= −~α · ~F∆σ

0,0 −
∑

O
λ2
σσO~α · ~F∆σ

∆O,`O . (102)

Then by imposing the normalization condition ~α · ~F∆σ
∆O∗ ,`O∗

= 1 and the positivity constraints

~α · ~F∆σ
∆O,`O > 0 one obtains the upper bound λ2

σσO∗ 6 −~α · ~F∆σ
0,0 . The strongest upper bound

is obtained by minimizing −~α · ~F∆σ
0,0 , which yields an optimization problem that can be

solved with linear programming algorithms, adopting the above-mentioned discretization
approach or other methods discussed below. Alternatively, one can also seek lower bounds
by instead imposing ~α · ~F∆σ

∆O,`O 6 0 and maximizing −~α · ~F∆σ
0,0 (Poland et al., 2012). However,

in general it is not possible to obtain lower bounds on OPE coefficients unless the operator
O∗ is isolated in the allowed spectrum, since one could always imagine that O∗ has a zero
OPE coefficient but operators infinitesimally close to it have nonzero coefficients.

1. Continuous primal simplex algorithm

Instead of looking for a vector ~α with the desired positivity properties, an alternate
strategy is to search directly for a set of vectors {~F∆σ

∆O,`O} appearing in Eq. (98), subject to

the positivity conditions λ2
σσO > 0. This search can be viewed as a “primal” formulation of

the linear program, whereas the search for ~α described above can be viewed as the related
“dual” problem. Note that in this formulation there are a continuously infinite number of

85 See Rattazzi et al. (2008), Rychkov and Vichi (2009), Caracciolo and Rychkov (2010), Poland and

Simmons-Duffin (2011), Rattazzi et al. (2011a,b), Vichi (2011, 2012), and El-Showk et al. (2012).
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possible vectors ~F∆σ
∆O,`O in the search space. El-Showk et al. (2014b) developed a modification

of Dantzig’s simplex algorithm in order to handle such a continuous search space.86 The
essential idea is to use Newton’s method at each step of the algorithm to identify a vector
to add, which is optimal over some continuous interval of scaling dimensions [∆min,∆max]
and discrete set of spins [0, `max]. For reasons explained in El-Showk et al. (2014b), it is
necessary to perform computations at a precision higher than machine precision. This
continuous simplex algorithm is one of two state-of-the art methods for the conformal
bootstrap, the other one being the semidefinite programming method described below. Three
implementations of this algorithm are available: a C++ code SIPSolver (Simmons-Duffin,
2014b) and a Python/Cython code (El-Showk and Rychkov, 2014) which were used for the
computations in (El-Showk et al., 2014b), as well as a Julia package JuliBootS (Paulos,
2014b).

B. Semidefinite programming

While the linear programming techniques described above are adequate for crossing
relations of single 4pt functions (possibly charged under some global symmetry), they are
more difficult to adapt for systems of crossing relations containing multiple operators. The
reason is that the resulting crossing relations for mixed correlators are no longer linear in the
positive squares of OPE coefficients.87 The same issue arises when considering 4pt functions
of spinning operators, where multiple 3pt function tensor structures exist. In these situations
one can phrase the optimization problem needed to obtain bounds using the language of
semidefinite programming rather than linear programming (Kos et al., 2014a).88

Another use of semidefinite programming (Poland et al., 2012) is to avoid needing to
discretize and impose a cutoff on the exchanged operator dimensions appearing in the
positivity constraints such as ~α · ~F∆O,`O > 0. We will describe both of these uses of
semidefinite programming, as well as how they can be combined, below.

In most applications to the bootstrap, it has proven necessary for numerical stability
to solve the semidefinite programs described below at a precision higher than machine
precision. The first numerical studies made use of the software SDPA-GMP (Nakata, 2010)
(a variant of SDPA (Yamashita et al., 2010)) for this purpose. The state-of-the-art is an
efficient software package SDPB, described in Simmons-Duffin (2015a), which improves on
the SDPA’s primal-dual interior point algorithm primarily by taking advantage of matrix
block structure and parallelization.89 In order to set up the problems so that they can be
solved by SDPB, recent studies have typically used either Mathematica notebooks, or the
interfaces PyCFTBoot (Behan, 2017a) or cboot (Ohtsuki, 2016).

86 Such linear programming problems are called ‘continuous’ or ‘semi-infinite’ (Reemtsen and Görner, 1998).
87 However, they can be made linear at the expense of introducing additional continuous

parameters (El-Showk and Paulos, 2018). This observation has not yet been implemented and it is

not known how it would perform in practice.
88 For a related problem of multiple internal symmetry coupling structures this was observed in Rattazzi

et al. (2011a).
89 Further development of SDPB is being carried out within the Simons Collaboration on the Nonperturbative

Bootstrap (http://bootstrapcollaboration.com/), and this package will likely remain at the forefront

of the numerical bootstrap studies in the coming years.
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1. Mixed correlators

We will illustrate the use of semidefinite programming for mixed correlators with a simple
example. Consider a system of 4pt functions containing two operators σ and ε, where σ is
odd under a Z2 symmetry and ε is even. The resulting system of crossing relations for
〈σσσσ〉, 〈σσεε〉, and 〈εεεε〉 takes the form (Kos et al., 2014a)

0 =
∑

O+

(
λσσO λεεO

)
~V+,∆,`

(
λσσO
λεεO

)
+
∑

O−
λ2
σεO~V−,∆,` , (103)

where the components of the vectors ~V±,∆,` run over 5 independent crossing relations,90

O± denote operators even/odd under Z2 symmetry, and each ~V+,∆,` is a 5-vector of 2 × 2
matrices:

~V−,∆,` =




0

0

F σε,σε
−,∆,`(z, z̄)

(−1)`F εσ,σε
−,∆,`(z, z̄)

−(−1)`F εσ,σε
+,∆,`(z, z̄)



,

~V+,∆,` =




(
F σσ,σσ
−,∆,` (z, z̄) 0

0 0

)

(
0 0

0 F εε,εε
−,∆,`(z, z̄)

)

(
0 0

0 0

)

(
0 1

2
F σσ,εε
−,∆,`(z, z̄)

1
2
F σσ,εε
−,∆,`(z, z̄) 0

)

(
0 1

2
F σσ,εε

+,∆,`(z, z̄)
1
2
F σσ,εε

+,∆,`(z, z̄) 0

)




. (104)

The appearing functions F ij,kl
±,∆,` are given in (96). One can then look for bounds by making

some assumption about the spectrum and searching for a functional ~α =
∑

mn ~αmn∂
m
z ∂

n
z̄ [·]

∣∣
z=z̄=1/2

satisfying the properties

(
1 1
)
~α · ~V+,0,0

(
1

1

)
> 0 ,

~α · ~V+,∆,` � 0 for all Z2-even operators with ` even,

~α · ~V−,∆,` > 0 for all Z2-odd operators. (105)

90 In this section we are using vector notation to describe the vector of crossing relations, rather than

derivatives.
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The novel feature is now that ~α · ~V+,∆,` � 0 must be a positive semidefinite 2 × 2 matrix,
which makes the search in Eq. (105) a semidefinite programming problem. Similar structure
appears for more general systems of mixed/spinning correlators, where if an exchanged
operator hasN OPE coefficients appearing in the system then the needed positivity condition
will be phrased in terms of positive semidefinite N ×N matrices.

2. Polynomial approximations

A different use of semidefinite programming, relevant for both single correlators or mixed
correlators, is to avoid any discretization of the exchanged operator dimensions (Poland
et al., 2012). We will first explain the idea for single correlators, where one imposes
inequalities of the form

∑

mn

αmn∂
m
z ∂

n
z̄ F

∆σ
∆,`(z, z̄)

∣∣
z=z̄=1/2

> 0 . (106)

Due to the pole expansion of the conformal blocks described in Sec. III.F.4, if one keeps
a finite number of poles, then by reorganizing h∆,` into a rational function of ∆, such
derivatives can be rewritten in the form (see Sec. III.F.5)

∂mz ∂
n
z̄ F

∆σ
∆,`(z, z̄)

∣∣
z=z̄=1/2

≈ χ`(∆)Pmn
` (∆) , (107)

where Pmn
` (∆) is a polynomial in ∆, and χ`(∆) is a positive function for all ∆ and ` satisfying

the unitarity bounds. The degree of the polynomial depends on the number of poles kept
in the expansion of the conformal block. Then one simply needs to impose the polynomial
inequalities

∑

mn

αmnP
mn
` (∆min

` + x) > 0 (108)

for all x > 0, where the minimum dimension at each spin ∆min
` depends on the assumptions

being made.
Such inequalities for polynomials can be rewritten in terms of positive semidefinite

matrices following a theorem of Hilbert (1888). The relevant theorem states that any
polynomial P (x) that is nonnegative on the interval [0,∞) can be written in the form

P (x) = a(x) + xb(x), (109)

where a(x) and b(x) are sums-of-squares of polynomials. Such sums-of-squares can in turn
always be expressed in the form

a(x) = Tr(AQd1(x)), b(x) = Tr(BQd2(x)) , (110)

where Qd(x) ≡ [x]d[x]Td is a matrix built out of the monomials [x]d = (1, x, . . . , xd)T , d1 =⌊
1
2

degP
⌋
, d2 =

⌊
1
2
(degP − 1)

⌋
, and A and B are some positive semidefinite matrices.

With this rewriting, one needs to search for coefficients αmn and positive semidefinite
matrices A`, B` � 0 such that
∑

mn

αmnP
mn
` (∆min

` + x) =

Tr(A`Qd1(x)) + xTr(B`Qd2(x)). (111)
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In practice one must also impose a cutoff on the set of included spins 0 6 ` 6 `max. This
search, combined with a normalization condition such as ~α · ~F∆σ

0,0 = 1, is now in the form of
a semidefinite programming problem.

As explained in detail in Kos et al. (2014a), this idea can also be applied to systems
of mixed or spinning correlators where exchanged operators have multiple OPE coefficients
appearing in the system. In those cases, after truncating the conformal block pole expansions
one imposes constraints of the form

∑

mn

~αmn ·



~P

(11;mn)
` (∆) . . . ~P

(1N ;mn)
` (∆)

...
. . .

...
~P

(N1;mn)
` (∆) . . . ~P

(NN ;mn)
` (∆)


 � 0 (112)

for ∆ > ∆min
` .

Again there is a theorem that such positive semidefinite matrix polynomials can always be
written as sums-of-squares of matrix polynomials. A consequence, worked out in Kos et al.
(2014a), is that each entry can be written as

∑

mn

~αmn · ~P (ij;mn)
` (∆min

` + x) =

Tr(Aij` Qd1(x)) + xTr(Bij
` Qd2(x)) (113)

in terms of positive semidefinite matrices Aij` , B
ij
` � 0, and the problem is again phrased as

a semidefinite programming problem.

C. Bounds and allowed regions

The algorithms described in the previous sections can be used to establish if a given
point in the space of CFT data, parametrized by the dimensions of external operators
and by assumptions on the exchanged spectrum, belongs to the region allowed by crossing
and unitarity. Since the exchanged spectrum contains infinitely many operators, there are
infinitely many assumptions one can test. The art of the numerical bootstrap is to choose
an interesting assumption, and then to delineate as precisely as possible the allowed region
corresponding to this assumption.

As we will see in the next sections, one of the most frequently asked questions is the
following: given an OPE O ×O, derive an upper bound ∆max on the dimension of the first
operator appearing in this OPE having specified transformation properties under SO(d) (and
eventually under a global symmetry G),91 assuming e.g. that other operator dimensions are

91 In particular, the existence of a bound with ∆max < ∞ provides a proof that such an operator exists.

See Rattazzi et al. (2008) and (Simmons-Duffin, 2017b, section 10.5) for intuitive explanations involving

some numerics of why such bounds should exist at all, and Hogervorst and Rychkov (2013) and (Rychkov,

2016b, section 4.3.3) for an approximate analytic argument. At present, while the existence of bounds

can sometimes be understood via such simple means, their actual values can only be precisely computed

using the powerful numerical techniques described in the previous sections. Only in a handful of cases,

e.g. Mazac (2017) and Mazac and Paulos (2018), have the best possible bounds been proven analytically.
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allowed to take any values allowed by unitarity. One can answer this question, for instance,
as a function of ∆O. This defines an allowed region with a boundary ∆max(∆O). Similarly,
when one obtains an upper (or lower) bound on an OPE coefficient as discussed in Sec. IV.A,
this represents the boundary of an allowed region. These boundaries give us a view into the
intricate underlying geometry of the space of CFT data allowed by crossing and unitarity.

D. Spectrum extraction

A point in the allowed region (see Sec. IV.C) is specified by external operator dimensions
and by a handful of other numbers characterizing the assumptions, such as gaps on the
exchanged operator spectrum. Once we ascertained that a point belongs to the allowed
region, in some cases it is important to be able to go one step further and to extract an
explicit solution to crossing, i.e. the whole spectrum of exchanged operator dimensions and
their OPE coefficients. The precise way of doing this depends on which algorithm one uses.
An important point is that we expect this solution to be non-unique inside the allowed
region, but it should generically become unique on its boundary (see below).

The spectrum extraction is simplest in the primal simplex method, Sec. IV.A.1. In this
case the spectrum is encoded directly in the set of basic vectors and is available in each step
of the algorithm.

In the dual formulation of the linear programming method, one does not have access
to the spectrum strictly inside the allowed region. However, one can extract a solution to
crossing symmetry from the limiting functional when one approaches a boundary of this
region, by extremizing either an operator dimension or OPE coefficient. This is called the
extremal functional method, introduced in Poland and Simmons-Duffin (2011) and El-Showk
and Paulos (2013).

Namely, when approaching the boundary from the disallowed region, the system is on
the verge of no longer allowing a separating plane, and the vector on which we require strict
positivity is degenerating into the plane. In the case of a single crossing relation where
we have imposed strict positivity on the identity operator, as we approach a dimension
boundary we can find a vector ~α such that ~α · ~F∆σ

0,0 → 0, together with the sum rule

0 =
∑

O
λ2
σσO~α · ~F∆σ

∆O,`O , (114)

where ~α · ~F∆σ
∆O,`O > 0 for all other possible (non-identity) operators in the spectrum. One

obtains a similar condition from the OPE coefficient bound in Eq. (102) if one sets the OPE

coefficient to its extremal value λ2
σσO∗ = −~α · ~F∆σ

0,0 .
In fact, it is easy to see that in order for these sums to hold along the boundary of the

allowed region, it is necessary for either λ2
σσO to be zero or for ~α · ~F∆σ

∆O,`O to be zero. Thus,

the zeroes of ~α · ~F∆σ
∆O,`O tell us the scaling dimensions and spins at which the OPE coefficients

are allowed to be nonzero. The resulting extremal spectrum is generically unique (El-Showk
and Paulos, 2013).

In the above-mentioned primal simplex method, the extremal spectrum is reached from
within the allowed region, and is encoded in the set of basic vectors that remain after
the algorithm terminates. That this should agree with the dual approach via extremal
functionals is guaranteed by the strong duality of linear programs.
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The extremal functional method for extracting the spectrum is also applicable when using
semidefinite programming. In this case the extremal functional is constructed in the dual
formulation.92 Once the extremal spectrum is known, it is straightforward to reconstruct
the OPE coefficients of the exchanged operators by either directly solving the bootstrap
equations after inputting the extremal spectrum or extracting them from the primal solution
of the primal-dual algorithm. Simmons-Duffin (2017c) gives a precise algorithm for doing
this using functionals output by SDPB, realized in a Python code (Simmons-Duffin, 2016a).

An important open question is to understand which CFTs are described by spectra which
are extremal with respect to some extremization condition. As we will see in subsequent
sections, empirically this seems to be the case for a variety of interesting CFTs including
the 3d Ising and O(N) models. Although it is not currently understood why it should be
so, some speculations are given in Sec. V.B.3.

1. Flow method

An interesting idea was proposed in El-Showk and Paulos (2018), where given one
extremal solution one can efficiently “flow” along the boundary to reconstruct nearby
extremal solutions. The idea is to perturb the extremal spectrum and then impose that
the perturbed spectrum is also extremal using (114) as well as the tangency conditions

~α ·
(
∂∆O

~F∆σ
∆O,`O

)
. By linearizing perturbations of these conditions, the search for a nearby

extremal spectrum (or a more precise extremal spectrum) can be efficiently solved using
Newton’s method. This approach then avoids the use of convex optimization after the
initial step of finding an initial extremal solution, and can also be used to flow to nonunitary
extremal solutions. This idea was shown to work well in d = 1 in El-Showk and Paulos
(2018) and Paulos et al. (2017).93 It appears very promising and it needs to be further
explored and extended, especially into higher dimensions.

E. Truncation method

Finally we wish to turn to an idea introduced by Gliozzi (2013) and explored in a
variety of works,94 which we will call the truncation method. The basic idea is to truncate
the bootstrap equations to a finite number of operators {∆σ,OI} with N unknown scaling
dimensions. After normalizing by the identity contribution f∆σ

∆OI ,`OI
(z, z̄) ≡ F∆σ

∆OI ,`OI
(z, z̄)/

(
−F∆σ

0,0 (z, z̄)
)
,

92 It is not understood at present how to formulate an algorithm to extract the extremal spectrum along

a dimension bound directly from the allowed region in the context of semidefinite programming. The

currently used procedure is to sit in the interior of the space allowed by scaling dimension bounds and

extremize an OPE coefficient to find an extremal functional.
93 The code is implemented as a separate module of JuliBoots (Paulos, 2014b), available on request from

its author.
94 See Gliozzi and Rago (2014), Gliozzi et al. (2015), Gliozzi (2016), Esterlis et al. (2016), Hikami (2017a,b,

2018), Li (2017, 2018a), and LeClair and Squires (2018).
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let us write the crossing equations as

∑

OI
λ2
σσOIf

∆σ
∆OI ,`OI

= 1,

∑

OI
λ2
σσOI

~f∆σ
∆OI ,`OI

= 0. (115)

Here the first equation containing f∆σ
∆OI ,`OI

≡ f∆σ
∆OI ,`OI

(1/2, 1/2) is viewed as an “inhomogeneous”

equation containing the identity contribution on the right-hand side, and the second

“homogeneous” equation contains the vector of derivatives
(
~f∆σ
∆OI ,`OI

)mn
= ∂mz ∂

n
z̄ f

∆σ
∆OI ,`OI

(z, z̄)
∣∣
z=z̄=1/2

.

If one keeps M derivatives with M > N then the system becomes over-constrained, and
only has solutions if all of the minors of order N of the linear system vanish,

detAi = 0, Ai ⊂ A =
[(
~f∆σ
∆OI ,`OI

)mn]
N×M

. (116)

Here the “rows” of A would run over different choices of N derivatives mn and the
“columns” run over the N unknown scaling dimensions. Note that the set of unknown
scaling dimensions will include the external dimension ∆σ in addition to the OI , but
may exclude exchanged operators of known dimension, such as the stress tensor of known
dimension ∆T = d. The general strategy is to solve the determinant conditions Eq. (116) to
obtain an approximate spectrum of scaling dimensions, and then use the system in Eq. (115),
including the inhomogeneous equation, in order to fix the OPE coefficients.

A big advantage of the truncation approach over the linear and semidefinite programming
approaches of the previous sections is that it does not require unitarity, i.e. it works equally
well for any sign of the OPE coefficients. For example, the idea has been successfully applied
to the nonunitary Lee-Yang model, as well as to bulk-boundary bootstrap problems where
there is no positivity in the coefficients. Another advantage is that it is relatively simple to
implement, and the idea can be explored e.g. using fairly simple Mathematica notebooks.

On the other hand, we also see several disadvantages with this approach in its current
incarnation. One is that the resulting spectrum can have a strong sensitivity to the set of
included operators (e.g., the choices of spins) and to the set of derivatives included. It is
also very difficult to assign reliable errors to the spectrum output from the method.95 Thus,
it would be desirable to find ways to make the approach more systematic with errors under
control. Some steps in this direction were recently taken in Li (2017). Applications to the
boundary bootstrap also seem to be less sensitive to these issues (Gliozzi, 2016; Gliozzi et al.,
2015).

Another issue is that simple implementations of numerical studies of the nonlinear
determinant conditions (116), such as using the iterative Newton method implemented in
Mathematica’s FindRoot function, do not scale very well with increasing the number of
operators and the method likely needs a more efficient numerical implementation in order
to push beyond ∼ 10 operators.96

95 Comparison with the rigorous results obtained using the linear and semidefinite programming methods,

when possible, shows that the published truncation method errors are often underestimated.
96 One can view the flow method described in Sec. IV.D.1 as a kind of more efficient implementation where

additional extremality conditions have been added.
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Notice that since we are truncating the spectrum, we cannot generally expect to find
exact solutions of Eq. (116). On the other hand, the set of determinant conditions is in fact
redundant because of the Plücker relations satisfied by the minors of a matrix, see Hikami
(2017b). A cleaner numerical formulation can be obtained by replacing Eq. (116) with the
problem of minimizing the smallest singular value of the matrix A (Esterlis et al., 2016;
LeClair and Squires, 2018).

Finally, similarly to the extremal spectra methods above, it is not clear which CFT
spectra are “truncable” in the sense that they can be found with this approach.

V. APPLICATIONS IN d = 3

In this section we turn to applications of the numerical bootstrap techniques to CFTs in
d = 3 dimensions. Our discussion is organized as follows. We start in Sec. V.A by presenting
a general bound on critical vs. multicritical behavior in unitary 3d CFTs. In the following
Secs. V.B and V.C we discuss bootstrap bounds which can be derived under the assumption
of a Z2 or O(N) global symmetry. Applications to the most famous 3d CFTs realizing these
symmetries—the critical 3d Ising and O(N) models—will be emphasized.

In Sec. V.D we describe bounds on CFTs with fermionic operators, such as the IR fixed
point of the Gross-Neveu-Yukawa models. In Sec. V.E we discuss what the bootstrap
currently has to say about CFTs realizable as IR fixed points of 3d QED coupled to
matter. In Sec. V.F we discuss recent bootstrap studies which implement crossing symmetry
constraints on 4pt functions of stress tensors and conserved currents. These results are very
general as they apply to any local 3d CFT. Finally, in Sec. V.G we highlight some targets
that may be interesting to look at in future numerical bootstrap studies.

While most of the results will be phrased in a way which is highly model independent
and in the language of conformal field theory, we hope that we can emphasize the physical
interpretation of the various assumptions that are being made. All of the results summarized
in this section have been obtained under the assumption of unitarity. Nonunitary CFTs,
which can be studied e.g. using the truncation method, are discussed separately in Sec. VIII.

Finally, let us remind the reader that all of the numerical results that we summarize
have been obtained using a variety of methods for numerically computing conformal blocks,
with different choices of tolerance parameters in linear/semidefinite programs, with different
choices of the cutoff Λ on the number of derivatives applied to the crossing relation, etc.
To keep our discussion readable, we will in most cases suppress these details, which can be
found described in the original studies.

A. Bounds on critical vs multicritical behavior

As discussed in Sec. II.A, two basic structural characteristics of any CFT are the global
symmetry group G and the number of relevant scalar operators S which are singlets under
G. For this discussion we will view discrete spacetime symmetries such as the spatial parity
P , if preserved, as a part of G.

The importance of the number S becomes clear when we try to reach the CFT as an IR
fixed point of an RG flow starting from a microscopic description, which for this discussion
we will assume has the full symmetry G. Later in Sec. V.E.3 we will comment on the
situation of emergent symmetries which are not present in the microscopic description.
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It follows from basic RG theory that the RG flow can reach the IR fixed point without
any fine tuning if and only if S = 0. We will call such CFTs “self-organized” by loose
analogy with what happens in self-organized criticality (Bak et al., 1987). Examples include
QED3 and QCD4 in the conformal window, to be discussed in Secs. V.E and VI.C.

On the other hand, if relevant singlet scalars are present (S > 0), then reaching the
fixed point requires fine-tuning S parameters in the microscopic Lagrangian. A common
case is when S = 1, as is realized for the critical Ising model and O(N) models discussed
below. Then we say that we have a critical point. Finally, the case S > 1 is classified as a
multicritical point.97

The simplest example of a 3d multicritical point is the free scalar field φ. It has a Z2

global symmetry acting as φ→ −φ, with two relevant singlet scalars, φ2 and φ4, of dimension
1 and 2 respectively. A third singlet scalar φ6 has dimension exactly 3 and is marginal (it
is actually marginally irrelevant). This CFT describes a tricritical 3d Ising model. Many
nontrivial multicritical fixed points can be realized in systems of multiple interacting scalar
fields.

Suppose that we know that we have a critical point, but not a multicritical point, i.e. that
there is one and only one singlet scalar, call it O0. The OPE of O0 with itself has the
schematic form

O0 ×O0 ∼ 1 + λO0 + λ′O′0 + . . . (117)

where since O0 is a singlet it can appear on the r.h.s., we denote the next singlet scalar as
O′0, and . . . stands for all other operators. In this setup, Nakayama and Ohtsuki (2016) used
the numerical bootstrap to derive an upper bound on the dimension of O′0 as a function of
dimension of O0, shown in Fig. 6. From this plot, the requirement ∆O′0 > 3 translates into
the lower bound

∆O0 > 1.044 for any critical 3d CFT. (118)

In terms of the critical exponent ν = 1/(3−∆O0), this means that ν > 0.511 for any critical
(but not multicritical) 3d fixed point described by a unitary CFT.

Among all critical 3d fixed points that we know of, the lowest ∆O0 ≈ 1.41 is realized in
the critical Ising model, see below. This satisfies the above general bound (118) by a large
margin.

97 In microscopic realizations which do not have the full symmetry G, one must tune a number of parameters

equal to the number of relevant singlets under the microscopic symmetry.
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B. Z2 global symmetry

1. General results

We are not aware of any unitary 3d CFTs which do not possess any global symmetry.98

Actually, most 3d CFTs have continuous global symmetries. Here we will start by
considering the effect of having a discrete Z2,99 which may be a full symmetry as for
the 3d Ising model, or a subgroup of a larger group.100

In the CFT context, a Z2 symmetry imposes selection rules on the possible operators
appearing in different OPE channels. Let us take a Z2-odd scalar operator σ and consider
the σ × σ OPE. It can only contain Z2-even operators:

σ × σ ∼ 1 + λσσεε+ λσσTT
µν + . . . . (119)

Here, 1 is the identity operator, ε is the leading Z2-even scalar, T µν is the stress-energy
tensor, and so on. In particular, unlike in (117), σ does not appear in the OPE.

In this setup, we would like to ask what is the maximal allowed value of ∆ε. A
numerical bootstrap analysis of the 4pt function function 〈σσσσ〉 (via linear or semidefinite
programming) produces an upper bound on ∆ε as a function of ∆σ, shown in Fig. 7.101

The point {1/2, 1} corresponds to the theory of a free massless scalar while the point
∼ {0.518, 1.413}, sitting near a discontinuity in the boundary, corresponds to the critical
3d Ising model which we discuss further below. Other theories that live in the interior of
this region are the critical O(N) models (see Sec. V.C), where we can identify σ with a
component of the O(N) fundamental φi and ε with a component of the O(N) symmetric
tensor tij, as well as the line of mean field theory CFTs with ∆ε = 2∆σ (see Sec. III.I.1).

A particularly physically interesting class of Z2-symmetric CFTs are those with only one
relevant Z2-even operator (i.e., they have S = 1). If the microscopic realization of the theory
preserves the Z2 symmetry, then this condition ensures that only one parameter must be
tuned in order to reach the critical point. This allowed region in {∆σ,∆ε} space was also
computed in El-Showk et al. (2012) from the 〈σσσσ〉 correlator, assuming that all scalars
aside from the contribution at ∆ε are irrelevant. This region is shown in Fig. 8, with the
assumption having the effect of carving into the allowed region from both the left and from
the bottom.

98 The Lee-Yang model has no global symmetry but is nonunitary, see Sec. VIII. In any CFT with a global

symmetry G, the singlet sector is closed under OPE. From the bootstrap point of view the singlet sector

can be studied in isolation, results of Sec. V.A being an example, and would appear as a perfectly consistent

CFT with no global symmetry. Dealing only with local operators, we do not consider this construction

as defining a complete CFT, as the singlet sector can in principle be extended back by including the

other sectors (although it is not known how to decide in practice whether such an extension is possible

by looking at the correlators of the singlet sector).
99 The bounds described in this section will also hold if the Z2 is taken to be a parity or time-reversal

symmetry.
100 Another physically important discrete symmetry is cubic symmetry, see Sec. V.C.4 and footnote 116.
101 Nakayama and Ohtsuki (2016) observed empirically that the bounds in Figs. 6 and 7 coincide. A priori

one may have expected a stronger bound in Fig. 7 due to the extra constraint of not allowing σ in the

r.h.s. of the OPE.

53



Another general result from this 4pt function is a lower bound on the central charge CT
shown in Fig. 9, obtained by computing an upper bound on the coefficient λσσT ∝ ∆σ√

CT
(see

Sec. III.H and Eq. (86)). As ∆σ → 1/2, the lower bound on CT approaches the free scalar
value, while near the critical 3d Ising dimension ∆σ ∼ 0.518, the lower bound on CT is seen
to have a minimum. This particular bound was computed with the mild assumption ∆ε > 1,
so it is applicable to any theory living in the allowed region seen in Fig. 7.

Before we move on to discussing what can be learned from systems of several 4pt functions,
we would like to highlight that upper bounds on the leading unknown scaling dimension in
other channels can also be computed and are often quite strong. For example, an upper
bound on the leading unknown spin-2 dimension ∆T ′ (the first Z2-even spin-2 operator after
the stress tensor) is shown in Fig. 10, and an upper bound on the leading spin-4 dimension
∆C is shown in Fig. 11. The bound on ∆T ′ shows a sharp jump near the critical 3d Ising
value, while no such transition is seen in the bound on ∆C (which is close to being saturated
by MFT: ∆C = 2∆σ + 4). The jump in ∆T ′ shows that it is possible for the low-dimension
spin-2 operator present in the spectrum for ∆σ & 0.52 to decouple at smaller values of ∆σ.
We discuss operator decoupling phenomena further in Sec. V.B.3 .

Next one can ask what is the effect of adding constraints from other 4pt functions. So far
the main system that has been studied in the literature is {〈σσσσ〉, 〈σσεε〉, 〈εεεε〉}, though
other systems may also prove interesting. An advantage of including the correlator 〈σσεε〉
is that it allows one to probe the Z2-odd operators appearing in the OPE:

σ × ε ∼ λσεσσ + λσεσ′σ
′ + . . . . (120)

In Kos et al. (2014a) it was found that with no assumptions this system leads to an allowed
region identical to Fig. 7, while by inputting the assumption of a single relevant Z2-odd
operator (i.e., ∆σ′ > 3) it leads to the allowed region shown in Fig. 12. In this plot one
can see a detached “island” containing the critical Ising model as well as a “bulk” region
further to the right. This “bulk” region has so far not been systematically explored in the
literature: it would be very interesting to understand what other CFTs lie inside of it.

In Fig. 13 we also show the difference between assuming ∆ε′ > 3, ∆σ′ > 3, and both
assumptions simultaneously. One can see that the assumption of a gap in the Z2-odd
spectrum is primarily responsible for creating the detached region. In the next section we
describe the connection to the critical Ising model in more detail, as well as the techniques
and additional inputs that can be used to make this detached island as small as possible.

2. Critical Ising model

Perhaps the most well-known 3d CFT is the critical 3d Ising model. The study of this
model has a long history (Domb, 1974), in part because it describes critical behavior in
uniaxial magnets, liquid-vapor transitions, binary fluid mixtures, the quark-gluon plasma,
and more (Pelissetto and Vicari, 2002). While these applications are predominantly for
systems in three spatial dimensions at finite temperature, described by a 3d Euclidean
CFT, the critical Ising model can also be realized as a Lorentzian (2+1)d quantum critical
point (Fradkin and Susskind, 1978; Henkel, 1984). Here we work in the Euclidean signature;
the Lorentzian version is obtainable by Wick rotation and has the same set of CFT data.

In its original formulation as a model of ferromagnetism, the 3d Ising model is described
using a set of spins si = ±1 on a cubic lattice in R3 with nearest neighbor interactions, with
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partition function

Z =
∑

{si}
exp
(
−J
∑

〈ij〉
sisj

)
. (121)

At a critical value of the coupling J , the model becomes a nontrivial CFT at long distances.
Notice that the lattice model has a manifest Z2 symmetry under which si → −si. This
symmetry is inherited by the CFT, which contains local operators that are either even or
odd under its Z2 global symmetry.

Another microscopic realization is in terms of a continuous scalar field theory in 3
dimensions, with action

S =

∫
d3x

(
1

2
(∂σ)2 +

1

2
m2σ2 +

1

4!
λσ4

)
, (122)

which also has a Z2 symmetry under which σ → −σ. Because both m2 and λ describe
relevant couplings, this theory is described by a free scalar at short distances but has
nontrivial behavior at long distances. At a critical value of the dimensionless ratio m2/λ2

the long-distance behavior is described by a CFT, which is the same as for the above lattice
model.

From the conformal bootstrap perspective, the Ising CFT has a Z2 global symmetry,
one relevant Z2-odd scalar operator σ, and one relevant Z2-even scalar operator ε. This is
evident from experimental realizations, where Z2-preserving microscopic realizations require
one tuning (e.g., tuning the temperature in uniaxial magnets) and Z2-breaking microscopic
realizations require two tunings (e.g., tuning both temperature and pressure in liquid-vapor
transitions).102 Note that the assumption that the only relevant scaling dimensions are ∆σ

and ∆ε is the same assumption that went into producing the dark blue detached region of
Fig. 13.

Kos et al. (2016) pursued a numerical analysis of the mixed-correlator bootstrap system
containing σ and ε to high derivative order. In addition, they studied the impact of
scanning over different possible values of the ratio λεεε/λσσε. This scan effectively inputs the
information that there is a single operator in the OPE occurring at the scaling dimension
∆ε, whereas the plot of Fig. 13 allowed for the possibility of multiple degenerate operator
contributions at the dimension ∆ε.

103 This led to the three-dimensional allowed region shown
in Fig. 14 and its projection to the {∆σ,∆ε} plane shown in Fig. 15. In addition, for each
point in this region the magnitude of the leading OPE coefficients were also bounded, with
the result shown in Fig. 16. These world-record numerical determinations are summarized
below in Table. II.

Finally let us mention that recent studies of the conformal bootstrap for stress-tensor
4pt functions have also made contact with the 3d Ising model. In particular, after inputting
known values of the leading parity-even spectrum, Dymarsky et al. (2018) gave a new bound
on the leading parity-odd Z2-even scalar, ∆odd < 11.2, and constrained the independent

102 The existence of Z2-breaking liquid-vapor experimental realizations, allowing one to get Z2 as an emergent

symmetry and predict the total number of relevant scalars, is a nice feature of the Ising model which does

not have analogues for the O(N) models.
103 More precisely, the scan inputs that the outer product of OPE coefficients (λσσε λεεε) ⊗ (λσσε λεεε)

appearing in Eq. (103) at dimension ∆ε is a rank 1 matrix, rather than the more generic rank 2 possibility

which occurs if there are degenerate contributions.
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coefficient in the stress-tensor 3pt function (parametrized by the variable θ) to be in the
range 0.01 < θ < 0.05 if ∆odd > 3 and in a tighter range 0.01 < θ < 0.018− 0.019 if ∆odd is
close to saturating its bound. We will discuss these constraints in more detail in Sec. V.F.

3. Spectrum extraction and rearrangement

We have seen in the previous section the remarkable precision with which the leading
scaling dimensions of the critical 3d Ising model can be determined. This raises the
immediate question of how well we can extract other operator dimensions and OPE
coefficients in the spectrum using bootstrap methods (specifically the strategies described
in Sec. IV.D)

Even prior to the mixed-correlator studies mentioned above, El-Showk et al. (2014b)
extracted the spectrum using the primal simplex method strategy, from a solution to crossing
for the 〈σσσσ〉 correlator which minimizes the central charge CT . For example, Fig. 17 shows
the scalar operators in the extracted spectrum as a function of ∆σ near the 3d Ising model. A
fascinating feature of these plots is the bifurcation of operators that occurs at the Ising value
of ∆σ, which can be interpreted as a decoupling of one of the operators in the spectrum. This
“spectrum rearrangement” phenomenon has yet to be fully understood, but speculatively it
could be connected to the nonperturbative equations of motion (i.e., the 3d analogue of the
relation σ∂2σ ∼ σ4 at the Wilson-Fisher fixed point) or a higher-dimensional extension of
the null state conditions in the 2d Ising CFT (see also Sec. V.B.4).104

On the other hand, spectrum extraction using the extremal functional method was
applied to the critical 3d Ising model by Komargodski and Simmons-Duffin (2017) and
Simmons-Duffin (2017c). In the latter work, for a set of 20 trial points distributed within
the island of Fig. 14, CT -minimization was performed and the zeros of the extremal functional
were found. While some zeros jump significantly when moving from point to point, many
of them are found to be present in all families with tiny variations. About a hundred such
“stable zeros” were identified, and are believed to represent operators which truly exist in
the 3d Ising CFT, providing a remarkable view of the spectrum of this theory. The subset of
stable operators with dimensions ∆ 6 8, and their OPE coefficients, are shown in Table II.

This approach, while not fully rigorous, is intuitively justified as a means to extend the
reach of rigorous analysis which produced the island in Fig. 14. The errors on stable operator
dimensions and OPE coefficients are assigned as standard deviations in the set of trial points.
Although these errors are not rigorous, as opposed to rigorous errors implied by Figs. 14,
15, and 16, we believe that they represent realistic estimates. In future studies the error
estimates can be further checked by enlarging the set of trial points and by extremizing
multiple quantities as opposed to just CT .

Results of this approach for the leading towers of low-twist operators (of increasing spin)

104 The 2d analogue of Fig. 7 also displays a sharp kink exactly at the location of the 2d Ising model (Rychkov

and Vichi, 2009), at which the corresponding extremal solution displays a decoupling of states expected

from the null state conditions (El-Showk et al., 2014b). The upper bound to the right of the kink can

be interpreted as a one-parameter family of unitary 4pt functions which for a discrete sequence of ∆σ’s

reduce to the 4pt function of the φ1,2 operator in the higher unitary minimal models, see Liendo et al.

(2013) and Behan (2017b). While these higher minimal models exhibit further null state conditions, they

are not visible in this 4pt function, and hence do not lead to kinks in this bound.
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have also been tested against the analytical bootstrap computations in the lightcone limit105

which yield analytical expressions for the large-spin asymptotics. In Fig. 18, the data
points extracted from the extremal functional approach show the leading twist (τ = ∆− `)
trajectory in the Z2-even sector as a function of h̄ = ` + τ/2, while the curve shows the
analytical computation, displaying excellent agreement with the data even down to small
spins. Similar good agreement was also found with the extracted OPE coefficients and
subleading trajectories, as well as in the Z2-odd sector.

We also report here the prediction for the central charge from the above CT -minimization
over the 20 points in the island (Simmons-Duffin, 2017a):

CIsing
T /C free boson

T = 0.9465389(12) , (123)

improving the previous CT -minimization determination by El-Showk et al. (2014b).106

4. Why kink? Why island?

One may be wondering why the 3d Ising model happens to live at a kink in Fig. 7.
Plausibly, this has to do with the minimality of the spectrum of exchanged operators required
to satisfy the crossing relation. In the interior of the allowed region in Fig. 7, the solution
to crossing is not unique. When working numerically, a typical solution contains as many
operators as the number of derivatives at z = z̄ = 1/2 one is keeping in (98), (99). On
the other hand, when one approaches the boundary of the allowed region in Fig. 7, the
nature of the solution changes in that the operators first organize into pairs with nearby
dimensions, and the pairs then merge into single operators at the boundary (El-Showk et al.,
2014b). Thus the extremal solutions to crossing are quite economical, containing many fewer
operators than the interior solutions, roughly by a half.107

Further reduction of the spectrum occurs at the kink. When one approaches the kink
moving along the boundary, squared OPE coefficients of certain operators tend to zero.
Further analytic continuation of the solution beyond the kink would be inconsistent with
unitarity. Thus two different solution branches meet at the kink (El-Showk et al., 2014b),
and the spectrum exhibits rearrangement phenomena mentioned in Sec. V.B.3.

To summarize, that the 3d Ising model lives at a kink suggests that it is a CFT with a
particularly minimal spectrum of operators. If this idea can be made precise, perhaps it can
pave the way to an exact solution.

Leaving the kink aside, let us discuss the island. It is perhaps not surprising that
considering crossing for several 4pt functions the allowed region shrinks compared to what

105 See Fitzpatrick et al. (2013), Komargodski and Zhiboedov (2013), Alday and Zhiboedov (2017), and

Simmons-Duffin (2017c).
106 One can also extract CT from Table II using λσσT ∝ ∆σ/

√
CT . While consistent with (123), this would

have a larger error, because the errors on λσσT and ∆σ are correlated.
107 It is a bit more than half because doubling never occurs for operators which remain at the unitarity bound,

such as the stress tensor (if present in the extremal solution), and for operators which saturate the gaps

that one is imposing. In general, whether doubling occurs in the bulk of the spectrum depends on how

many second-order zeros the extremal functional has. If there are too many zeros, then for some of them,

called “singles” in El-Showk and Paulos (2018), doubling will not occur. See also Sec. IV.D.1 for the flow

method which uses such considerations to move along the boundary of the allowed region.
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was allowed when considering just one 4pt function. It is however altogether unexpected
and remarkable that considering only three 4pt functions, plus a physically motivated and
robust108 assumption of only two relevant operators, allows one to produce the tiny island
shown in Figs. 12 and 15.

It is not currently understood why this happens. Would the island continue to shrink
indefinitely with increasing the number of included derivatives? Or would it stabilize,
requiring one to add further correlators to fully fix the CFT? More generally, is it sufficient
to include only 4pt functions of relevant operators or are external irrelevant operators also
needed to have a unique solution? These are fascinating questions for the future.

We will see many kinks and islands in the subsequent sections of this review, about which
similar considerations can be made.

5. Nongaussianity

Since the leading spectrum and OPE coefficients of the critical 3d Ising model are now
known to a high degree of precision, it is possible to reconstruct the full 4pt function 〈σσσσ〉
over a wide range of cross ratios. One can then probe the question of how much this 4pt
function deviates from the “gaussian”, i.e. fully disconnected, form 〈σσσσ〉 = 〈σσ〉〈σσ〉 +
perms. This question is also motived by the fact that the Ising model contains higher-spin
operators with dimensions that deviate by a small amount from those of higher-spin currents,
see Fig. 18. The first two of these operators are the Z2-even spin-4 and spin-6 operators in
Table II, of dimension close to 5 and 7 respectively.

Rychkov et al. (2017) probed this question quantitatively using bootstrap data to

reconstruct the ratio Q(z, z̄) = g(z,z̄)
1+(zz̄)∆σ+(zz̄/(1−z)(1−z̄))∆σ in the critical 3d Ising model,

where the denominator corresponds to the “gaussian” expectation. A plot of this deviation
over a fundamental domain in the complex z plane is shown in Fig. 19. They found e.g.
that Q < 0.75 over a wide range of cross-ratio space and that it attains a minimum value of
Qmin ≈ 0.683. Thus, any attempt to explain the small anomalous dimensions of higher-spin
operators must account for this significant nongaussianity.

6. Boundary and defect bootstrap, nontrivial geometries, off-criticality

It is also interesting to study the physics of defects in the 3d Ising model. These include
both co-dimension one defects (e.g., flat 2d boundaries or interfaces) and co-dimension two
defects (i.e., 1d line defects).109 Here we would like to highlight for the reader some recent
numerical bootstrap studies of such defects.

Bootstrap constraints in the 3d Ising model in the presence of a flat 2d boundary were
first studied using linear programming techniques in Liendo et al. (2013), where a number

108 Islands can be also produced for the Ising and other CFTs using a single 4pt function and reasonable

assumptions about gaps in the spin-1 and spin-2 operator spectrum (Li and Su, 2017a). The robustness

of these results (i.e. their independence of the numerical values of the assumed gaps in a certain range)

needs further investigation.
109 See Gadde (2016), Billò et al. (2016), Lauria et al. (2017), Fukuda et al. (2018), Rastelli and Zhou

(2017), Herzog and Huang (2017), Herzog et al. (2018), and Lemos et al. (2017a) for some recent general

discussions of defects in CFT.
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of rigorous bounds were placed on the scaling dimensions and OPE coefficients of boundary
operators for different choices of boundary conditions, corresponding to the “special” and
“extraordinary” transitions, assuming positivity of the bulk channel expansion coefficients.
Estimates of the leading boundary data using the truncation method were also computed by
Gliozzi et al. (2015) and Gliozzi (2016), where precise estimates applicable to the boundary
condition of the “ordinary” transition could also be made.

Studies have also been performed of the Z2 twist line defect in the 3d Ising model,
constructed on the lattice by reversing the Ising coupling on a semi-infinite half-plane. The
1d boundary of this half-plane then yields the twist line defect, which can also be defined
in terms of its simple monodromy properties. Local operators living on this defect were
studied using both Monte Carlo techniques (Billò et al., 2013) and numerical bootstrap
(linear programming) techniques (Gaiotto et al., 2014), with excellent agreement.

A related line of inquiry is to study CFTs such as the critical 3d Ising model on nontrivial
geometries, the nontrivial case being manifolds not globally conformally equivalent to infinite
flat space.110 This is motivated in part by the search for a higher-dimensional analogue of
modular invariance. One concrete realization has been to study the 3d Ising model on real
projective space (Nakayama, 2016c). In this case the unknown coefficients in one-point
functions of scalar primary operators 〈O〉 ∝ AO enter into a variant of the bootstrap
equations called the cross-cap bootstrap equations. Numerical truncation studies of the
cross-cap bootstrap equations in this work have yielded new nontrivial predictions, e.g.
Aε = 0.667(2) and Aε′ = 0.896(5) in the critical 3d Ising model on real projective space.
Another interesting geometry is S1 ×Rd−1, which corresponds to putting the CFT at finite
temperature. This was studied for the 3d Ising model and other higher-dimensional CFTs
in Iliesiu et al. (2018a). Gobeil et al. (2018) also discussed a generalization of the conformal
block concept relevant for this geometry.

Let us finally mention an interesting study (Caselle et al., 2016) which combined the
knowledge of the 3d Ising model CFT data acquired by the bootstrap with conformal
perturbation theory. They achieved a remarkable agreement with the experimental data
describing the 2pt function 〈σσ〉 off criticality, i.e. at temperatures slightly different from the
critical temperature, which corresponds to perturbing the CFT by a

∫
d3x ε(x) perturbation.

C. O(N) global symmetry

Most known unitary 3d CFTs have a continuous global symmetry, and we now turn
to such CFTs. We will focus on bootstrap results obtained by assuming O(N) as a full
symmetry or as a subgroup.111

1. General results

As discussed in Sec. III.G, correlation functions of CFT operators that are in irreducible
representations of the global symmetryG can be organized using group theory and decomposed

110 CFT correlation functions on manifolds conformally equivalent to flat space, such as the sphere Sd or the

“cylinder” Sd−1 × R, can be obtained from the flat space correlators via a Weyl transformation.
111 All bounds in this section are applicable also under a weaker assumption of SO(N) global symmetry, see

(Kos et al., 2015b, section 2.1.1).

59



into different G-invariant tensor structures. Sec. III.I explained how these structures enter
the crossing relations. The first numerical analyses of the resulting equations occurred in the
context of 4d CFTs,112 but the group theoretic structure is d-independent. The bootstrap
for O(N) symmetry in 3d was investigated by Kos et al. (2014b, 2015b, 2016) and Nakayama
and Ohtsuki (2014b).

We will start our analysis assuming that the CFT contains an operator φ ≡ (φa)
N
a=1 in

the fundamental representation of O(N), of dimension ∆φ. Mimicking the discussion in
Sec. V.B.1, we would like to learn about the operators in the OPE φa×φb. By group theory,
operators of even spin ` in this OPE will transform as O(N) singlets or symmetric traceless
tensors of rank 2, while odd-spin operators will transform in the rank-2 antisymmetric
representation.

From the crossing relations for the 4pt function of φ one can put upper bounds on the
dimensions of various operators. For the lowest dimension scalars (` = 0) in the singlet
(s) and symmetric traceless tensor (t) sector, these bounds are shown in Figs. 20, 21 as a
function of ∆φ for various values of N . The “kinks” in these bounds will be interpreted in
the next section.

The φ × φ OPE also contains two interesting operators of spin ` > 1: the stress tensor
T and the conserved current J . Using the bootstrap one can put lower bounds on their
two-point function coefficients CT and CJ (defined in Sec. III.H) given in Figs. 22, 23. This
is done by bounding from above the OPE coefficients λφφT ∝ ∆φ/

√
CT and λφφJ ∝ 1/

√
CJ

(see Eqs. (86, 90)).
Let’s discuss the monotonicity of these bounds with N . Since O(N + 1) ⊃ O(N), the

bounds on CT , CJ , and on ∆t should get stronger with increasing N , and indeed they do
(notice that CT is plotted divided by N). Although it may seem counterintuitive that the
∆s bound gets weaker with N , there is no contradiction. The point is that the symmetric
traceless tensor of O(N + 1) contains a singlet s̃ when decomposed with respect to O(N).
Therefore the only constraint is that the O(N) singlet bound should be weaker than the
O(N + 1) symmetric traceless bound, which is satisfied by inspection.

Notice also that the scaling of the CT , CJ bounds with N close to ∆φ = 1/2 is consistent
with the fact that in the theory of N free scalars, CT grows linearly with N while CJ is
constant.

2. Critical O(N) model

The most famous 3d CFT with O(N) symmetry is the critical point of the O(N)
lattice model, which is the generalization of Eq. (121) to N -component spins satisfying
the constraint |~s| = 1. This CFT is also known as the Wilson-Fisher fixed point, being an
IR fixed point of the O(N) symmetric scalar field theory with quartic interaction (Wilson
and Fisher, 1972). For any integer N this 3d CFT is unitary, given that the microscopic
realizations are unitary.113

112 See Poland and Simmons-Duffin (2011), Rattazzi et al. (2011a), Vichi (2012), and Poland et al. (2012).
113 Sometimes one discusses analytic continuation of O(N) models to noninteger N . These analytic

continuations are nonunitary (Maldacena and Zhiboedov, 2013), and fall outside the range of validity

of the linear/semidefinite methods. Although such attempts were made (Shimada and Hikami, 2016), we

would advise caution. Here we will only consider integer N > 2. We will discuss nonunitary CFTs in

Sec. VIII.
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It’s natural to ask where the critical O(N) models lie in the parameter space of
O(N) symmetric CFTs allowed by the general bounds from the previous section. In the
Wilson-Fisher description, φa is the fundamental scalar field appearing in the Lagrangian,
s = φ2, and t is the traceless part of φaφb. Dimensions of these fields have been previously
estimated using RG methods (in particular the ε-expansion and the large N expansion),
Monte Carlo studies, and experiments. Comparing the s and t bounds and these prior
determinations, marked with crosses in Figs. 20, 21, one is led to conjecture that the critical
O(N) models correspond to the “kinks”. Similar kink-like features are visible in the lower
bounds on CJ and CT . In the latter case the kinks can be made sharper by imposing that
the S operator saturate the gap, see Fig. 5 in Kos et al. (2014b). This conjecture can be
used to extract values of the φ, s, t dimensions and of CT , given in Table 3 of Kos et al.
(2014b).

We will now discuss how to isolate the critical O(N) models without relying on the
kink conjecture. The idea is to exploit the crucial physical feature of these CFTs — that
they possess robust gaps in the operator spectrum. The singlet scalar s corresponds to the
temperature deformation of the critical point and is relevant. The next singlet scalar, s′,
must necessarily be irrelevant (otherwise the critical point would be multicritical), implying
the gap ∆s′ > 3 in the singlet scalar sector. We also expect a gap in the fundamental
representation scalar sector. The order parameter φa belongs to this sector and is relevant,
while most likely the next fundamental scalar is irrelevant: ∆φ′ > 3. This can be also
deduced using the Wilson-Fisher description, using a nonrigorous but suggestive equation
of motion argument (Kos et al., 2015b).

Kos et al. (2015b) studied bootstrap constraints for the system of three correlators
{〈φaφbφcφd〉, 〈φaφbss〉, 〈ssss〉}. Imposing the assumptions ∆s′ > 3, ∆φ′ > 3, they found
small allowed regions (“islands”) shown in Fig. 24. Improved versions of these islands for
O(2) and O(3), discussed in the next sections, were subsequently obtained in Kos et al.
(2016). It’s important to stress that, like in Fig. 12 for the Ising model, there are disconnected
allowed regions outside the shown part of the parameter space; see e.g. Fig. 25 below for the
O(2) case. These regions are practically unexplored and they might contain other interesting
CFTs.

3. O(2) global symmetry

We finally wish to discuss separately specific values of N , starting with O(2) ⊃ U(1).
There are many physically interesting 3d CFTs possessing O(2) or U(1) symmetry. The
most famous of these is the critical O(N) model for N = 2, also known as the critical
XY model. It describes, in particular, the Curie point of easy-plane ferromagnets, and of
easy-plane antiferromagnets on bipartite lattices. Here the O(2) symmetry arises as the
symmetry of local magnetic moment interactions.

Another frequent appearance of U(1) symmetry in condensed matter physics is as particle
number conservation. The most famous such U(1) transition is the superfluid transition in
4He. Another example is the superfluid-insulator quantum phase transition in the (2+1)d
Bose-Hubbard model at integer particle density (Fisher et al., 1989). Both these transitions
are also described by the critical O(2) model.

A wide class of CFTs with U(1) global symmetry are IR fixed points of theories which
at the microscopic level contain U(1) gauge fields coupled to fermion or scalar matter. The
global U(1) symmetry in these theories is topological in origin, and the local operators
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charged under it are monopoles of the gauge field. These CFTs often appear in condensed
matter applications; they will be discussed in more detail in Sec. V.E.

Here we discuss general constraints from the multiple correlator bootstrap for U(1)
symmetric CFTs, which have been pursued further than in the general O(N) case discussed
above.

Operators in U(1) theories are classified by their U(1) charge, with s, φ, t of the previous
section114 having charge 0, 1, 2. Imposing the constraints that there is a unique relevant
charge 1 and a unique relevant charge 0 scalar, one gets the allowed region shown in dark
blue in Fig. 25. Notice that this region consists of a detached island to which the critical
O(2) model belongs, and a further region on the right, similar to Fig. 12 for the Ising model.

The island containing the critical O(2) model has been studied more accurately in Kos
et al. (2016) by increasing the derivative order and performing a scan over the OPE coefficient
ratio λsss/λφφs. This led to the improved constraints shown in Fig. 26. The resulting
dimensions and OPE coefficients are given in Table III.

In the same table we give the determinations of ∆t and CJ obtained in Kos et al. (2015b)
by scanning over the allowed island in the {∆φ,∆s} plane, under the respective assumptions
that ∆t′ > 3 and ∆J ′ > 3.115

These results are compatible but somewhat less precise in the case of ∆φ, ∆s, ∆t than
other available determinations by lattice and RG methods, see Kos et al. (2015b, 2016) for
references. In particular, a further increase in precision is required to resolve the discrepancy
between the experimental and theoretical determinations of ∆s shown in Fig. 26. This is
an important problem for the future. On the other hand, the bootstrap is currently the
only source of information about the OPE coefficients λφφs and λsss. The central charge CJ
is related to the zero-temperature (or high-frequency) conductivity of the quantum critical
points described by the critical O(2) model. Although not yet experimentally measured,
this parameter has been extensively studied theoretically and numerically in the condensed
matter literature. As discussed in Kos et al. (2015b), the bootstrap currently provides the
best determination of CJ .

4. O(3) global symmetry

We will now specialize to the case of O(3) global symmetry, focusing on the most famous
such CFT which is the critical O(3) model. Apart from describing the critical point of
isotropic ferromagnets, the same CFT also describes the (2 + 1)d quantum critical point in
coupled dimer antiferromagnets, see Sachdev (2004) and references therein.

The bootstrap analysis of this theory mimics the U(1) case from the previous section.
Under the assumption that φa and s are the only two relevant scalars transforming in the
fundamental and trivial representation of O(3), Kos et al. (2016) found an island allowed
by the bootstrap constraints, shown in Fig. 27. The bootstrap determinations of the scaling

114 Instead of vectors and tensors of O(2) here we use, as is customary, complex fields charged under U(1) ⊂
O(2). In the bootstrap studies we describe the distinction between U(1) = SO(2) and O(2) is unimportant,

so the constraints will apply to either symmetry (see footnote 111).
115 As before, we denote by prime the subleading operator with the same quantum numbers. So t′ is the next

traceless symmetric scalar after t, and J ′ is the next vector after the conserved current Jµ, transforming

in the antisymmetric SO(N) representation.
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dimensions and OPE coefficients following from this analysis are given in Table III. As for the
U(1) case, the scaling dimension determinations are compatible but somewhat less precise
than the best available Monte Carlo and RG results.

One long-standing question about the critical O(3) model concerns its stability with
respect to perturbations which may potentially lead to two different CFTs, the so-called
cubic and biconical fixed points, which have symmetries B3 = S3 o (Z2)3 and O(2) × Z2

respectively. These perturbations take the form KijklΦijkl, where Φ is a scalar operator
transforming in the rank-4 symmetric traceless representation of O(3), and K is a constant
tensor breaking O(3) to one or the other subgroup. RG calculations indicate that the
O(3) fixed point is unstable while the cubic and biconical fixed points are stable, with the
correction to scaling critical exponents ωO(3) = −0.013(6) and ωB3 = 0.010(4) or 0.015(2)
according to two calculations; see (Pelissetto and Vicari, 2002, sections 11.3, 11.7) and
references therein. This would imply that ∆Φ = 3 +ωO(3) is very weakly relevant. From the
bootstrap point of view, Φ appears in the OPE t× t, and its dimension could be determined
by an analysis involving correlators of t. This is an interesting problem for the future.116

Let us mention another 3d CFT with anO(3) global symmetry — the critical Gross-Neveu-Heisenberg
(GNH) model (Herbut et al., 2009), realized as the IR fixed point of a microscopic Lagrangian
with Yukawa and quartic couplings

gΨ̄σiφiΨ + λ(φ2
i )

2 , (124)

where φi is a three-component scalar order parameter, and Ψ is a two-component multiplet
of massless Dirac fermions. This CFT is believed to describe the continuum limit of the
Hubbard model on the honeycomb and π-flux lattices (Sachdev, 2010). While clearly distinct
from the critical O(3) model, the scalar sector of this theory would be subject to the general
O(3) bounds shown in Figs. 20-23. However the expected value of ∆φ ≈ 0.85 (Parisen Toldin
et al., 2015, Eq. (25)) puts it outside of the region explored so far. The fermionic sector of
this theory could be constrained by methods from the next section.

D. CFTs with fermion operators

1. Models

The preceding sections discussed constraints from crossing relations for 4pt functions of
scalar operators. Many 3d or (2+1)d CFTs of theoretical and experimental interest also
contain fermionic operators, and here we will discuss what the bootstrap has so far been
able to say about them.

Perhaps the simplest example is the family of CFTs described by the Gross-Neveu model

116 Preliminary investigations of the 〈tttt〉 bootstrap have produced bounds that still allow Φ to be

irrelevant (Kos et al., 2015a; Nakayama and Ohtsuki, 2016). See also Rong and Su (2017) and Stergiou

(2018) for recent bootstrap studies of 3d CFTs assuming cubic and related discrete symmetries. The

latter finds evidence that there may be two different critical 3d theories with cubic symmetry, one of

which is related to the physics of magnets, while the other may describe structural phase transitions in

perovskites.
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at criticality (Gross and Neveu, 1974).117 While the critical theory is often described as
the UV fixed point in a theory of fermions with 4-fermi interactions L ∼ (ψ̄ψ)2, a better
nonperturbative definition is as an IR fixed point in a theory with a scalar field coupled to
fermions via Yukawa interactions. The latter Gross-Neveu-Yukawa (GNY) model contains
a scalar φ and N Majorana fermions ψi:

LGNY =
1

2

N∑

i=1

ψ̄i(/∂ + gφ)ψi +
1

2
∂µφ∂µφ+

1

2
m2φ2 + λφ4 . (125)

This model has an O(N) symmetry rotating the fermions. A fixed point can be established
perturbatively at large N in a 1/N expansion, see e.g. Gracey (1992, 1994) and Derkachov
et al. (1993). This model has also been studied extensively from the perspective of the
ε-expansion, with recent results by Fei et al. (2016); Mihaila et al. (2017); and Zerf et al.
(2017).

An interesting special case is N = 1 (a single Majorana fermion coupled to a real scalar).
It is expected (Fei et al., 2016) that this model may contain a fixed point with N = 1
supersymmetry. This supersymmetric fixed point has been proposed to described a critical
point on the boundary of topological superconductors (Grover et al., 2014).

There are variations of this model containing multiple scalar order parameters. One
notable example is the N = 2 supersymmetric critical Wess-Zumino model, containing a
complex scalar related to a 3d Dirac fermion by supersymmetry.118 This theory has been
proposed to describe a critical point on the surface of topological insulators (Grover et al.,
2014; Ponte and Lee, 2014), and a superconducting critical point in (2+1)d Dirac semimetals
with an attractive Hubbard interaction (Li et al., 2017c). Another important example is the
Gross-Neveu-Heisenberg model, described in Sec. V.C.4.

2. General results

We first discuss general results following from the existence of fermionic operators.
Specialized bounds where the critical GNY and other models are featured more prominently
will be discussed below.

A bootstrap analysis of 4pt functions of identical Majorana fermions 〈ψψψψ〉 was
performed in Iliesiu et al. (2016a) and extended to 4pt functions 〈ψiψjψkψl〉 containing
fermions that are vectors under an O(N) symmetry in Iliesiu et al. (2018b). These studies
both assumed a general (2+1)d CFT with parity symmetry. Tensor structures and conformal
blocks for 4pt functions were derived using a spinorial embedding-space formalism also
developed in Iliesiu et al. (2016a), similar in logic to the vectorial embedding space reviewed
in Appendix A.

117 This model and its variations are frequently invoked to describe quantum phase transitions in condensed

matter systems with emergent Lorentz symmetry in (2+1)d. Some examples of its applications include

models for phase transitions in graphene (Herbut, 2006; Herbut et al., 2009), the Hubbard model

on the honeycomb and π-flux lattice (Parisen Toldin et al., 2015), models of time-reversal symmetry

breaking in d-wave superconductors (Vojta, 2003; Vojta et al., 2000), and models of 3-dimensional gapless

semiconductors (Herbut and Janssen, 2014; Moon et al., 2013).
118 We will describe some of the implications of supersymmetry and a bootstrap analysis connecting to this

model later in Sec. VII.

64



In Fig. 28 we show general upper bounds on the leading parity-odd and parity-even scalars
in the ψ × ψ OPE, called σ and ε respectively. The bound on σ is nearly saturated by the
MFT line ∆σ = 2∆ψ, at least at small values of ∆σ. As ∆ψ → 1 the bound approaches
the free theory value ∆σ = 2, where we can identify σ = ψ̄ψ. On the other hand, there
is an abrupt discontinuity in the bound around ∆ψ ∼ 1.27 occurring when ∆σ approaches
3. This jump also coincides with a kink in the bound on ∆ε. The interpretation of these
features is currently an open question – it is tempting to speculate that a CFT may live at
the top of the jump in the bound on ∆σ and in the kink in the bound on ∆ε but no concrete
candidate CFTs have yet been identified. If it exists, this CFT would appear to have an
unusual property of not possessing any relevant scalar deformations.119

In Fig. 29 we also show the general lower bounds on the central charge CT (normalized to
its value in the theory of a free Majorana fermion), obtained by bounding the coefficient of
the stress-tensor conformal block. These lower bounds approach the free values as ∆ψ → 1
and disappear completely for ∆ψ & 1.47. In the case of O(N) symmetry they can be seen to
grow linearly with N and are compatible with values computed in the 1/N expansion of the
GNY model. Generalizations to the current central charge CJ for fermions charged under
O(N) symmetry were also computed in Iliesiu et al. (2018b).

3. Gross-Neveu-Yukawa models

In the critical GNY model at large N , ψi has dimension 1 + 4/(3π2N) + . . ., while
the leading parity-odd scalars in the ψi × ψj OPE are the O(N) singlet φ with dimension
1− 32/(3π2N) + . . . and the O(N) symmetric tensor ψ̄iψj with dimension 2 + 32/(3π2N) +
. . . (Iliesiu et al., 2018b, Table 1). The accumulation point (∆ψ,∆σ)→ (1, 1) sits well in the
interior of Fig. 28(a), but by imposing a gap until the second parity-odd scalar, ∆σ′ > 2 + δ
for different positive values of δ, we have the possibility of obtaining an allowed region that
rules out critical GNY models with N sufficiently large.

This is realized in Fig. 30, where the effect of gaps ranging from ∆σ′ > 2.01 to ∆σ′ > 2.9
are shown. At very small values of δ the lower bounds of the allowed regions possess a kink
whose location matches very well to the large-N GNY model prediction. At larger values of
δ, the precise map between δ and N is not known but it is plausible that the kinks continue
to match to the GNY model even at small values of N . However, starting around ∆σ′ > 2.3,
a second lower feature also appears in these curves, where they all intersect and have an
additional kink at a point near (1.08, .565).

This structure of an “upper” and “lower” kink can be seen clearly in Fig. 31, specialized
to the case ∆σ′ > 3. In fact, in this case the line ∆ψ = ∆σ + 1/2 expected for theories with
supersymmetry comes very close to (but just misses) the upper kink. Thus, it is tempting
to conjecture that the N = 1 supersymmetric Gross-Neveu-Yukawa model, see Sec. V.D.1,
may sit in this feature and has ∆σ′ slightly smaller than 3. This picture seems consistent
with estimate ∆σ ≈ 0.59 from a Padé-extrapolation of the ε-expansion (Fei et al., 2016), as
well as with the rigorous lower bound ∆σ > 0.565 (Bashkirov, 2013), which follows using
another supersymmetric relation ∆ε = ∆σ + 1 together with the bootstrap bound in Fig. 7,

119 Hypothetical theories with this property were recently named “dead-end” CFTs by Nakayama (2015a).

They should be distinguished from “self-organized” CFTs which do not have any relevant singlet scalars

as defined in Sec. V.A.
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applicable with parity playing the role of a Z2 symmetry.120 An additional speculation is
that the lower feature may coincide with a non-supersymmetric fixed point, called GNY∗ in
Iliesiu et al. (2018b), which is seen in the ε-expansion as a nonunitary fixed point at large
N , but whose fate at small N and ε→ 1 is not known.

Additional evidence for this picture comes from the generalization of the bounds to O(N)
symmetry (Iliesiu et al., 2018b), where one can place independent bounds on different O(N)
representations. In Fig. 32 we show computed bounds on the leading singlet dimension ∆σ,
assuming that the next singlet is irrelevant, ∆σ′ > 3. These bounds also show both an
upper and lower kink, which appear not too far from the ε-expansion estimates for the GNY
and GNY∗ models. In Fig. 33 we also highlight the bounds on the leading O(N) symmetric
tensor σT , which display mysterious and unexplained jumps when ∆σT reaches marginality
and at smaller values of ∆ψi show a series of kinks which match to the large-N GNY models.
Understanding the mechanism behind these jumps is an important open problem, which may
be related to the spectrum rearrangement phenomena from Sec. V.B.3.

E. QED3

Continuing our survey of physically important 3d CFTs, another class of theories are
those defined by coupling 3d gauge or Chern-Simons fields to matter. One of the simplest
examples is 3d quantum electrodynamics (QED3), containing a U(1) gauge field coupled to
Nf 2-component massless Dirac fermions ψi. This theory is known to flow to a nontrivial
CFT at large Nf , which can be studied in the 1/Nf expansion (Appelquist et al., 1988;
Nash, 1989). There has been a longstanding question of whether there is a critical value
of Nf below which the theory undergoes spontaneous breaking of the SU(Nf ) global
symmetry. Numerous estimates of the critical value of Nf have been made over the years,
see e.g. (Gukov, 2017, Table 5).

It would be very interesting to shed light on these theories and the question of the
conformal window using bootstrap techniques. One starting point would be to study the
bootstrap for 4pt functions of the gauge-invariant fermion bilinears ψ̄iψj.

121 Basic bootstrap
bounds on scalar 4pt functions, of the type discussed in Secs. V.B, V.C, would apply to this
operator, but it is not a priori clear how to isolate QED3 as compared to other theories with
similar scalar operators such as QCD3. However, this is an under-explored direction and in
future studies it may be useful to combine the bootstrap for SU(Nf ) adjoints and singlets
with additional gap assumptions and bootstrap constraints for other operators.

1. Monopole bootstrap for QED3

An alternate approach, pursued in Chester and Pufu (2016) and Chester et al. (2017),
is to focus on monopole operators. When dealing with a compact U(1) gauge field, these

120 Further progress on this CFT was made very recently in Rong and Su (2018) and Atanasov et al. (2018),

where it was understood how to obtain an island in the scalar mixed-correlator bootstrap around ∆σ =

0.584444(30). In these studies in addition to relations between scaling dimensions it is important to

incorporate nontrivial 3d N = 1 superconformal blocks.
121 Because of gauge symmetry, a single fermion field is unphysical in QED3 and it would not be legitimate

to consider its 4pt functions, unlike in GNY models in Sec. V.D where ψ was physical.
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operators create topologically nontrivial configurations of the gauge field having magnetic
flux emerging from a spacetime point.122 Such operators are charged under a topological
U(1)T global symmetry with symmetry current JµT = 1

8π
εµνρFνρ. Taking the monopole

operators to have charge q ∈ Z/2, the scalar monopoles transform in representations
of SU(Nf ) corresponding to fully rectangular Young diagrams with Nf/2 rows and 2|q|
columns (Dyer et al., 2013). Thus, the lightest scalar monopoles M I

±1/2 are expected to be

in SU(Nf ) representations with Nf/2 fully antisymmetric indices.123

The bootstrap for 4pt functions of M I
±1/2 was studied in Chester and Pufu (2016) for

Nf = 2, 4, 6, where they focused on placing bounds on the dimension of the second monopole
operator ∆M1 , making various assumptions about gaps in the uncharged (q = 0) sector.
These bounds are shown in Figs. 34, 35, where for Nf = 4, 6 they can be compared with the
large Nf estimate (black cross). Intriguingly, there is a kink-like discontinuity in the bound
which comes close to the large Nf estimate for certain values of the gap in the uncharged
sector for operators in the same SU(Nf ) representation. By increasing the gap above M1,
the allowed region could also be turned into a peninsula around the kink. Similar bounds
for the lightest spinning monopoles in the case Nf = 4, along with a comparison to the large
Nf predictions, were presented in Chester et al. (2017).

While these results are not definitive, they seem promising and show that the bootstrap
for QED3 has a reasonable chance to be successful, perhaps after a few more ingredients
are added. Some possible directions would be to consider a multiple correlator bootstrap
involving M±1/2, M±1, and/or ψ̄iψ

j. It may also be fruitful to combine these with constraints
from 4pt functions containing the U(1)T current, the SU(Nf ) current, or the stress tensor.

2. Bosonic QED3 and deconfined quantum critical points

Finally we would like to review the rich physics of bosonic QED3, where some bootstrap
insights have recently been obtained. Bosonic QED3 is obtained by coupling the U(1) gauge
field to N complex scalars φi with an SU(N) invariant potential m2|φ|2 + λ(|φ|2)2. This is
also known as the N -component abelian Higgs model, and is believed to flow to a CFT for
large enough N . Unlike for fermions, the boson mass term preserves all the symmetries and
has to be fine-tuned to reach the fixed point.

This model has been much discussed in the condensed matter literature as the “non-compact
CPN−1 model” (NCCPN−1) in connection with the phenomenon of “deconfined criticality”
(Senthil et al., 2004). To briefly review this connection, the physical systems of interest
are certain quantum antiferromagnets in (2 + 1) dimensions, which have a quantum phase
transition between Néel and Valence-Bond-Solid (VBS) phases.124 The transition can be
described by the O(3) nonlinear sigma model (NLSM) for the Néel order parameter, modified
by the inclusion of Berry phase effects which suppress topological defects (hedgehogs), which
will play an important role below.

The O(3) NLSM can be written as the CP1 model, which has two complex vectors z =
(z1, z2) subject to the constraint |z1|2 + |z2|2 = 1 and a U(1) gauge invariance z ∼ eiφz. This

122 Thus they could also be called instantons, but the common terminology refers to them as monopoles.
123 Monopoles with spin transform in other nontrivial flavor representations, see Chester et al. (2017).
124 The absence of a disordered phase in such transitions can be understood using ‘t Hooft anomalies, see

Komargodski et al. (2017b). This perspective also gives insight into the rich physics of interfaces in these

theories (Komargodski et al., 2018).

67



explains the emergence of the gauge field. Replacing the constraint by a quartic potential,
and adding a Maxwell kinetic term for the gauge field (expected to be generated by the RG
flow), one obtains bosonic QED3 with N = 2.

In the language of QED3, the above-mentioned topological defects are the monopole
operators of quantized charge, similar to the ones in Sec. V.E.1. Of course the dimensions
of monopole operators differ in bosonic and fermionic QED. Also here we will normalize the
topological charge to be integer q ∈ Z.

If a monopole of charge q appears in the action, it breaks the global topological U(1)T
symmetry to the Zq subgroup. Microscopic descriptions of quantum antiferromagnets may
realize a discrete subgroup of U(1)T at the lattice level. On cubic lattices, a Zq0 with q0 = 4
is preserved, while for the hexagonal and rectangular lattices we have q0 = 3 and q0 = 2. The
Zq0 symmetry is also visible in the VBS phase where it permutes the vacua. This microscopic
symmetry means that only monopoles with charges multiple of q0 appear. Monopoles with
different charges have their fugacity killed by the above-mentioned Berry phases (Read and
Sachdev, 1990).

In light of the above discussion, the analysis of the critical behavior of QED3 can be
split into two parts. First, does bosonic QED3, with all monopoles suppressed, have a fixed
point? If the answer is yes, then one can ask: can this fixed point be reached provided that
one allows monopoles with charges in multiples of q0? For this to happen, the monopole of
charge q0 has to be irrelevant.

One can study these questions analytically at large N : one finds a fixed point and
computes the critical exponents in the 1/N expansion.125 At small N one resorts to Monte
Carlo simulations. The bootstrap at present cannot by itself resolve the question of the
fixed point existence. However, it can provide valuable consistency checks on the other
studies. Suppose that a certain Monte Carlo simulation is done on a lattice preserving a Zq0
subgroup, finds a second order phase transition, and measures the scaling dimensions ∆q of
monopole operators Mq for a subset of charges q (we denote by M0 the relevant singlet scalar
driving the transition). We have the following OPE algebra in the scalar sector, omitting
the OPE coefficients (M−q = M †

q ):

Mq ×Mq′ ∼ δq+q′1 +Mq+q′ + . . . . (126)

By the above discussion, the operator Mq0 has to be irrelevant, as well as the higher charge
monopoles. We can use the bootstrap to study the consistency of this algebra given the
measured operator dimensions.

3. Aside: constraints on symmetry enhancement

What we just presented is an instance of a more general question: under which conditions
can the global symmetry of the fixed point G be larger than the microscopically realized
symmetry H? The case of interest for the previous section is G = U(1) and H = Zq0 . For
the symmetry enhancement to happen, operators which break G to H must be irrelevant.
The bootstrap is a powerful tool to study whether this irrelevance assumption is consistent
with conformal symmetry and with other information which may be available about the
fixed point. We will see further applications of this philosophy in Secs. VI.B and VI.C.

125 See Murthy and Sachdev (1990), Kaul and Sachdev (2008), Metlitski et al. (2008), and Dyer et al. (2015)
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We will now describe bootstrap constraints on the symmetry enhancement from Zq0 to
U(1) derived by Nakayama and Ohtsuki (2016). Enhancement from Z2 requires that M2 is
irrelevant. Since M1×M1 ∼M2, one can bound ∆2 given ∆1, by studying the 4pt function
〈M1M

†
1M1M

†
1〉. The resulting bound is given in Fig. 36. Imposing ∆2 > 3, one gets a

necessary condition ∆1 > 1.08 for enhancement from Z2 to U(1).
The same plot in Fig. 36 can be used to derive rough necessary conditions on the

enhancement from Z4 to U(1). Indeed, the bound applies also to M2 × M2 ∼ M4. If
M4 is irrelevant, then we must have ∆2 > 1.08, which in turn implies ∆1 > 0.504.

To study enhancement from Z3, one analyzes simultaneously three 4pt functions 〈M1M
†
1M1M

†
1〉,

〈M1M
†
1M2M

†
2〉, 〈M2M

†
2M2M

†
2〉. It is reasonable to assume that M4 is irrelevant (as would

be the case if M3 is irrelevant and ∆q is monotonic in q), and to impose ∆0 > 1.044
(which follows from an assumption that the fixed point is critical and not multicritical, see
Sec. V.A). Under these assumptions, the upper bound on ∆3 as a function of {∆1,∆2} is
shown in Fig. 37. From this bound, irrelevance of M3 requires ∆1 > 0.585.

4. Back to deconfined criticality: is the transition second order?

The necessary conditions described in the previous section have been compared with
available Monte Carlo and large N data on the Néel-VBS transition which claim to see a
second-order transition and measure some critical exponents. For square and hexagonal
lattices, there is nice consistency, as for rectangular lattices for N 6 4 and N > 6, while
some N = 5 simulations are inconsistent with the bootstrap. The conclusion is that there
must either be an error in the N = 5 Monte-Carlo measurement or in the assumption that
the transition is second-order. See Nakayama and Ohtsuki (2016) for this survey and for
further details.

It should be emphasized that while the bootstrap results may point out an inconsistency
in Monte Carlo simulations, they cannot, at present, validate them and prove that the phase
transition is indeed second order. It is still possible that even in the above cases when there
is a nice agreement between Monte Carlo results and the bootstrap necessary conditions,
the transition is still very weakly first order and not second order.

Let us focus on the case N = 2 which presents a controversy. Large-scale Monte Carlo
simulations for N = 2 were performed in Nahum et al. (2015a), using a loop model on a
cubic lattice which is in the same universality class as NCCP1 and has monopole suppression
up to q0 = 4, and going up to very large lattices of linear size up to L = 640.126 While they
have not seen signs of a finite correlation length or a conventional first order transition, and
observed scaling behavior of correlation functions at distances 1 � r � L, they have seen
scaling violation for observables at larger distances r ∼ L, inconsistent with a conventional
second order transition.

So, is the transition second order or weakly first order? Assuming a second order
transition, Nahum et al. (2015a) extracted the scaling dimension of the monopole operator
∆1 = 0.625(15), which is consistent with the bootstrap condition ∆1 > 0.504 necessary for
the enhancement from Z4 to U(1). However there is an extra piece of information which
allows one to set up an even more stringent bootstrap test: further symmetry enhancement

126 See also Harada et al. (2013) and Sreejith et al. (2018) for simulations of other microscopic models in the

same universality class.
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at the transition from SO(3)×U(1) to SO(5). Here SO(3) acts on the Néel order parameter
Na = z†σaz. Empirically, the scaling dimension ofN is very close to ∆1 (Nahum et al., 2015a)
and, moreover, the joint probability distribution of (N,M1) is very close to the spherical
one after a rescaling (Nahum et al., 2015b), which can be explained if N and M1 belong to
a vector multiplet Φ of SO(5) of dimension ∆Φ = ∆1.

In this description, the relevant scalar which drives the transition is a component of
the symmetric traceless tensor (roughly ΦAΦB − trace).127 For the SO(5) enhancement to
happen, any other scalar which breaks SO(5) back to SO(3)× U(1) must be irrelevant. In
addition, the SO(5) singlet S (roughly ΦAΦA) must be irrelevant for the transition to be
second order, since otherwise the fixed point will not be reached. See Wang et al. (2017) for
further discussion. Given the dimension ∆Φ = ∆1 as above, it is straightforward to compute
an upper bound on the dimension of S which occurs in the OPE Φ × Φ. This is the same
bound as for N = 5 in Fig. 21 except the plot has to be extended to larger ∆Φ. Nakayama
and Ohtsuki (2016) and Simmons-Duffin (2016b) performed this analysis and report that
∆S > 3 is excluded for ∆Φ as above. In fact ∆S > 3 requires ∆Φ > 0.76 (Nakayama, 2016a).

To summarize, the bootstrap excludes a second-order phase transition described by
a unitary 3d CFT with symmetry enhanced to SO(5) and the order parameter scaling
dimension taking the above value suggested by the Monte Carlo simulations. In our opinion,
the most compelling interpretation of available data is a weakly first-order transition due to
walking RG behavior which ensues when the RG flow has no fixed points for a real value
of the coupling but two complex conjugate fixed points with small imaginary parts. This
is the same mechanism as for the weakly first-order transition in the 2d Potts model with
Q & 4. As discussed in Nahum et al. (2015a), this scenario may resolve the observed scaling
violations at distances r ∼ L. It can also accommodate the enhancement to SO(5) (Wang
et al., 2017). In this scenario, there is no unitary 3d CFT (the complex fixed points being
nonunitary), and the bootstrap bounds do not apply, resolving the contradiction.

Finally, let us note that a similar analysis can constrain another scenario outlined in
Wang et al. (2017), in which a variant called the easy-plane NCCP1 model is conjectured
to have a fixed point with enhanced O(4) symmetry and be dual to Nf = 2 fermionic
QED3. In this scenario, the conjectured fixed point cannot contain any fully O(4)-invariant
scalar perturbations. However, recent Monte Carlo simulations (Qin et al., 2017) point to
a dimension for the O(4) vector order parameter ∆Φ = 0.565(15) which seems incompatible
with the bootstrap bound assuming irrelevance of the O(4) singlet (Fig. 20 extended further
to the right), which requires ∆Φ > 0.868 (Poland, 2017). In the future it will be interesting
to further study the fate of these models using both bootstrap and Monte Carlo data.

F. Current and stress-tensor bootstrap

In the previous sections we discussed results following from 4pt functions of scalars and
fermions. Here we wish to discuss interesting results which have recently been obtained
from 4pt functions of tensor operators, specifically of conserved currents and stress tensors.
Namely, a number of numerical bounds on scaling dimensions and OPE coefficients from such
correlators in parity-preserving 3d CFTs were recently computed in Dymarsky et al. (2017)
and Dymarsky et al. (2018), building on important analytical developments for spinning

127 Nahum et al. (2015b) measured its scaling dimension to be ∼ 1.5.
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correlators, as reviewed in Sec. III.F.7.128 Such studies are well-motivated because they
probe the general space of local CFTs, and may even lead to the discovery of new theories.

A concrete application of these constraints is to study bounds on current and stress-tensor
3pt function coefficients under various assumptions. These coefficients are known to
satisfy various analytical bounds following from the averaged null energy condition (see
Sec. III.E.3), as was originally argued in the context of conformal collider physics in Hofman
and Maldacena (2008), with 3d bounds worked out in Buchel et al. (2010) and Chowdhury
et al. (2013). One application of the numerical bootstrap is to study how the conformal
collider bounds change as a function of gaps. Another application is to determine these
coefficients in various CFTs, e.g. the critical 3d Ising and O(N) models. These studies
also allow one to probe parity-odd operators in the spectrum which have previously been
inaccessible from the perspective of scalar 4pt functions (although they could be accessed
from the fermionic correlators in Sec. V.D).

In Fig. 38 we show general lower bounds on the central charge (in units of the free boson
central charge CB) from the bootstrap applied to 〈TTTT 〉, as a function of the independent
parity-preserving 〈TTT 〉 3pt function coefficient which is parametrized by the variable θ.129

In this notation the conformal collider bound is 0 6 θ 6 π/2, where a free scalar has θ = 0
and free Majorana fermion has θ = π/2. It can be readily seen that the numerical bootstrap
is able to reproduce this constraint in addition to giving general lower bounds on CT . A
similar set of bounds from the 〈JJJJ〉 bootstrap is shown in Fig. 39, where in this plot
CT is normalized to the central charge of a free complex scalar C free

T and the independent
parity-preserving 〈JJT 〉 coupling is parametrized by γ, where the conformal collider bound
is given by − 1

12
6 γ 6 1

12
. In this case the free complex scalar has γ = − 1

12
while the free

Dirac fermion has γ = 1
12

.
As mentioned above, the advantage of the numerical bootstrap is that it can readily probe

how constraints on these couplings depend on gaps in the spectrum. For example, in Fig. 40
we show how the lower bound on CT as a function of θ in the 〈TTTT 〉 bootstrap varies as
one increases the gap in the parity-odd scalar sector ∆odd from 2 to 8. It can be seen that
increasing the parity-odd gap forbids the “fermion” end of the range for θ but allows the
“scalar” end. This is consistent with the fact that the free scalar has a very large parity odd
gap ∆odd = 11, while the free Majorana fermion has a small gap ∆odd = 2.

Similarly, imposing a parity-even gap forbids the “scalar” end. In Fig. 41 we illustrate this
by showing what happens when the leading parity-even scalar is irrelevant, corresponding to
“self-organized” CFTs (see Sec. V.A). This lower central charge bound applies for instance to
fermionic QED3 in the conformal window from Sec. V.E, with Nf even for parity invariance.

Furthermore, imposing gaps on both parity-even and parity-odd scalars forces one to live
with intermediate values of θ, at least for moderately small values of the central charge.
These and other bounds with different gap assumptions (including upper bounds on CT for
gaps excluding large-N theories) can be found in Dymarsky et al. (2018).

128 See also Dymarsky (2015) for a discussion about the general properties of these correlation functions.
129 In fact, Figs. 38 and 39 should also apply to parity-violating theories since all needed conformal blocks

have been included (e.g., contributions from parity-violating 〈TTT 〉 or 〈JJT 〉 couplings are accounted for

by allowing parity-odd spin-2 contributions at the unitarity bound). This also holds for bounds where

identical gaps have been imposed in a given parity-even and parity-odd sector simultaneously (e.g., Figs. 45

along the diagonal). Stronger bounds may hold in parity-violating theories after adding crossing relations

from parity-violating 4pt structures and assuming nonzero values of parity-violating coefficients.
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A similar story holds for bounds from the 〈JJJJ〉 bootstrap, where Fig. 42 shows how
the lower bound on CT changes when either parity-even or parity-odd scalars are irrelevant
(dashed blue lines), or when both are irrelevant (solid blue line). These bounds are consistent
with the gaps for a free complex scalar (∆+

0 = 2, ∆−0 = 7) and free Dirac fermion (∆+
0 = 4,

∆−0 = 2). Similar bounds with different gap assumptions can be found in Dymarsky et al.
(2017). In the future, by generalizing this analysis to SU(Nf ) (or SU(Nf ) × U(1)) global
symmetry one may be able to place interesting bounds on the fermionic QED3 central charge
using the same argument as the one based on Fig. 41.

It is interesting to ask if one can use these general bootstrap constraints to determine θ or
γ in some CFTs of interest, e.g. the Ising or O(2) models. In the case of the Ising model, it is
a plausible assumption (e.g., from the ε-expansion) that its leading parity-odd (but Z2-even)
operator has a very large dimension as in the free scalar theory. Using known parity-even
data the 〈TTTT 〉 bootstrap yields an upper bound ∆Ising

odd < 11.2, and one can obtain small
closed regions in the {θ, CT} plane that are consistent with the known Ising central charge,
Eq. (123). These regions, shown in Fig. 43, yield the determination 0.01 < θ < 0.018−0.019
if ∆odd is close to saturating its bound. Note that if one makes the weaker assumption of
irrelevance ∆odd > 3, then there is still a reasonably tight range 0.01 < θ < 0.05 consistent
with CIsing

T .
In the case of the 〈JJJJ〉 bootstrap, one can similarly try to determine γ for the O(2)

model. In this case after inputting the known dimension of the leading O(2) parity-even
singlet, irrelevance of the second O(2) parity-even singlet, and the plausible parity-odd gaps
∆−0 > 5 and ∆−` > ` + 2, Fig. 44 yields the range −0.0824 < γ < −0.0494. Based on
a linear extrapolation, Dymarsky et al. (2017) also estimated the more restrictive range
−0.080 < γ < −0.061. A negative value of γ in the O(2) model also appears to be favored
by the results of quantum Monte Carlo simulations (Katz et al., 2014). In future work it
will be interesting to find ways to improve these determinations, extend them to other O(N)
models, and perhaps connect the smallness of the deviations of θ and γ from their free values
to the existence of approximate higher-spin currents in these theories.

Finally, in Fig. 45 we show a more global picture of the allowed region of parity-odd and
parity-even scalar gaps from both the 〈TTTT 〉 and 〈JJJJ〉 bootstrap, making no additional
assumptions. These regions satisfy a number of consistency checks, e.g. being consistent
with known gaps in free theories, MFTs, and critical O(N) models. They additionally
show fairly sharp features near the scaling dimensions in the Ising and O(2) models. It
will be interesting to improve these maps in future studies and identify the locations of
other CFTs of interest. The lower “scalar exclusion” regions of these plots are ruled out
from 4pt functions of the leading parity-odd scalar (assuming the parity-even scalar appears
in both OPEs as would be generically expected), an example of how the scalar and the
stress-tensor/current bootstraps can yield complementary information.

There are a number of directions for future work, which include considering mixed
systems containing stress tensors/currents together with scalars, studying the implications
of parity violation (see footnote 129), studying in more detail the conditions for large N and
holographic theories, and generalizing these studies to other dimensions. Recent progress on
how to compute spinning conformal blocks in 4d and in general dimensions130 should make
these analyses tractable in the future outside of 3d. Current and stress-tensor multiplets can
also be considered in superconformal theories, where the bootstrap analysis can be simplified

130 See Sections III.C.2 and III.F.7 for a summary.
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using the fact that they reside in multiplets with operators of lower spin.131

G. Future targets

In this section we will collect some additional 3d models which in our opinion represent
interesting future targets for the bootstrap.

1. Multifield Landau-Ginzburg models

There exists rich phenomenology of fixed points arising from Lagrangians with multiple
scalar fields transforming under product group symmetries, e.g. SO(n) × SO(m). One
can consider Lagrangians involving two coupled scalar multiplets, one transforming in the
fundamental of SO(n) and another of SO(m). Alternatively, one can consider a field
transforming in the bifundamental of SO(n)×SO(m). Such Lagrangians have been invoked
to describe phase transitions in many physical systems; see Vicari (2007) for further details.

When studying these fixed points using the RG, a recurrent feature is that many of
them do not exist in the 4− ε expansion and have to be studied directly in 3d. Since such
computations lack a manifestly small expansion parameter, there seems to be no consensus
about the existence of these fixed points. So this appears to be a perfect target for a
nonperturbative approach like the bootstrap. Some preliminary bootstrap studies of 3d
CFTs with SO(n)× SO(m) were carried out in Nakayama and Ohtsuki (2014a, 2015), but
in our opinion more work is needed before firm conclusions can be drawn.

2. Projective space models

An interesting 3d lattice model is the CPn model, where microscopic lattice variables
belong to CPn and have ferromagnetic interactions preserving the symmetry (see below
for the antiferromagnetic case). Recall that CPn can be realized by starting with (n +
1)-dimensional complex vectors z = (z1, . . . , zn+1) and imposing the constraint z† · z = 1,
preserved up to the equivalence z ∼ eiφz. A simple lattice Hamiltonian is

H = −J
∑

〈ij〉
|z†i · zj|2 , (127)

with J > 0 in the considered ferromagnetic case. The physics of this model is influenced by
defects (hedgehogs), which are possible because π2(CP n) = Z. Here we consider the CPn

model with defects allowed. It should be distinguished from the “non-compact CPn model”
which results when defects are suppressed, see Sec. V.E.2.

The CP1 model is equivalent to the O(3) model, with the order parameter Na = z†σaz,
and it has a second-order phase transition described by the same CFT.

The CP2 model has an internal symmetry SU(3) (modulo global issues), with traceless
hermitian matrix Qab = zaz̄b− δab as an order parameter. The Landau-Ginzburg description

131 However to do this requires knowledge of the superconformal blocks. Some studies where this has been

pursued are mentioned in Sections VII and IX.
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contains a cubic invariant Tr(Q3) and would suggest a first-order transition, but Monte
Carlo simulations (Nahum et al., 2013) indicate that the phase transition is continuous.
This is similar to what happens for the 3-state Potts model in 2d and can be explained as
an effect of fluctuations. Monte Carlo results for the critical exponents are η = 0.23(2) and
ν = 0.536(13), translating into the dimensions of Q and of the relevant singlet scalar. Can
this model be isolated using the numerical bootstrap?

One can also consider antiferromagnetic projective space models, taking J < 0 in
the above Hamiltonian. Antiferromagnetic CPn models (Delfino et al., 2015) don’t give
rise to new universality classes.132 On the other hand, a new class is observed for the
antiferromagnetic RP4 model (Pelissetto et al., 2018), and it could constitute a target for
the bootstrap.133

3. Nonabelian gauge and Chern-Simons matter theories

While we have focused our attention on QED3, there is a whole landscape of 3d gauge
theories coupled to various types of matter. An interesting case is QCD3 with a simple
gauge group G coupled to Nf fundamental fermions. Such theories may for example play
a role in the physics of cuprate superconductors (Chowdhury and Sachdev, 2014, 2015). A
fixed point can be established and the properties studied at large Nf (Appelquist and Nash,
1990). For example, in Dyer et al. (2013) a systematic study of monopole operators in such
theories was performed, allowing for estimates of the bottom of the conformal window for
different choices of G by imposing irrelevance of the monopole operators (Dyer et al., 2013,
Table 4). QCD3 coupled to both fermions and scalars was also proposed to describe the
critical point of the ‘orthogonal semi-metal’ (OSM) confinement transition in Gazit et al.
(2018), with critical exponents extracted in quantum Monte Carlo simulations. It would be
very interesting to understand how to isolate these theories using bootstrap techniques and
test these estimates.

Another natural set of targets consists of Chern-Simons gauge fields coupled to matter.
Such theories are known to have conformal fixed points and sit in an intricate web of
dualities.134 Some possible experimental realizations of these theories as transitions between

132 The ACP1 model on a cubic lattice is equivalent to the ferromagnetic model and, as the latter, has a phase

transition in the O(3) universality class. For higher n there is no equivalence between the antiferromagnetic

and ferromagnetic models. The ACP2 model has a second-order transition which belongs to the O(8)

universality class (and so is different from CP2). For still higher n the transition is first order.
133 The RPn models are versions of O(n) models with a gauged Z2 symmetry. Their second-order phase

transitions for n = 2, 3 belong to the O(2) and O(5) classes respectively, but the n = 4 class is mysterious.
134 See for example Aharony (2016), Aharony et al. (2017b), Seiberg et al. (2016), Hsin and Seiberg (2016),

Benini et al. (2017), and Gomis et al. (2017). Duality means that two different microscopic descriptions

lead to the same IR CFT (perhaps after tuning some parameters). Why should dualities exist? One

reason may be the paucity of CFTs. If so, some dualities may perhaps be explained by the bootstrap,

providing evidence that there is a single CFT satisfying certain constraints (symmetry, the number of

relevant operators, etc). Then any microscopic theory satisfying these constraints should flow to this CFT

at criticality. In this sense, the results of Section V.C.3 provide an explanation for the particle-vortex

duality of the Abelian Higgs model, originally proposed by Peskin (1978) and Dasgupta and Halperin

(1981).
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fractional quantum Hall states were proposed in Lee et al. (2018). A hallmark of these
theories is the existence of parity-violation; it would be interesting to see if they can be
found after introducing parity-violating couplings into the bootstrap. Monopole operators
in these theories were also recently studied in Chester et al. (2017) and would constitute
natural targets for the bootstrap.

4. Other models

Another theory briefly mentioned in Sec. V.C.4 is the Gross-Neveu-Heisenberg (GNH)
model, a variant of the GN models with a 3-component scalar order parameter. For a
pedagogical review of the model, its applications, and its connection to the lattice Hubbard
model, see Sachdev (2010). This constitutes another interesting target for the bootstrap.

A 3d CFT with SU(4) global symmetry and an order parameter in the symmetric tensor
representation was considered in Basile et al. (2005, 2006). It was proposed to describe a
continuous chiral phase transition in 4d SU(N) gauge theory coupled to Nf = 2 massless
quarks in the adjoint representation at finite temperature. The existence of this CFT
and some information about critical exponents was found using RG methods; it would
be interesting to explore it using the bootstrap.

VI. APPLICATIONS IN d = 4

In this section we now turn to numerical bootstrap applications in unitary 4d CFTs.
We first present general constraints in Sec. VI.A, and then discuss more specific physical
applications. In Sec. VI.B we review applications to high energy physics beyond the
Standard Model. Applications to 4d conformal gauge theories will be discussed in Sec. VI.C.
Supersymmetric 4d CFTs will be presented in the next section.

A. General results

This section will follow the same logic as Secs. V.B.1 and V.C.1 devoted to 3d CFTs.
Historically however the very first attempt to study crossing relations using numerical
techniques focused on 4d CFTs. This analysis, pioneered in Rattazzi et al. (2008) and
then refined in Rychkov and Vichi (2009), was spurred by high energy physics motivations
which will be reviewed in Sec. VI.B. But first let us discuss general conformal bootstrap
results for 4d CFTs with various global symmetries.

Consider first the simple case of a 4d CFT containing a scalar operator φ with dimension
∆φ. We further assume that it is charged under a global symmetry (e.g., a Z2 symmetry)
so that the OPE φ × φ does not contain φ. Then it is interesting to ask how high can one
push the dimension of the first scalar operator in this OPE. It is also interesting to ask how
large the OPE coefficient of the stress tensor λφφT ∝ ∆φ/

√
CT is allowed to be (Poland and

Simmons-Duffin, 2011; Rattazzi et al., 2011b), which translates into a lower bound on the
central charge CT . The best bounds to date were computed in Poland et al. (2012) and
are shown in Fig. 46.135 When ∆φ approaches the unitarity bound, both bounds approach

135 The bound on CT can be somewhat strengthened by incorporating the assumption that φ is the lowest
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the free theory value for ∆φ2 and CT . This is consistent with the fact that a scalar with
dimension (d− 2)/2 satisfies ∂2φ = 0 whenever inserted in a correlation function, and must
therefore be a free scalar.

Analogous bounds have been obtained for CFTs assuming various continuous global
symmetries. Poland et al. (2012) studied the 4pt functions of a scalar φ transforming in the
fundamental representation of SO(N) or SU(N), deriving an upper bound on the dimension
of the lowest singlet scalar in the OPEs φi × φj (or φ†i × φj in the case of SU(N)), as well
as a lower bound on the central charge, shown in Fig. 47.136 As expected, the bounds scale
with N , the size of the fundamental representation, at least when the dimension of the
external scalar approaches the free value. It should be possible to extend this analysis to
obtain upper bounds on the dimensions of operators transforming in other representations.
For scalars in the symmetric traceless representation of SO(4) this was done in Poland et al.
(2012).

It is also possible to place upper bounds on the OPE coefficients of conserved vectors
of dimension 3 in the OPE of φ with its conjugate. This class of operators includes the
conserved currents of the considered global symmetry G = SO(N) or SU(N), transforming
in the adjoint representation of G. Upper bounds on their OPE coefficients translate into
the lower bounds on the central charges CJ . These bounds are shown in Fig. 48. Once again
the SU(N/2) bounds coincide with SO(N) ones (Caracciolo et al., 2014). For ∆φ close to
the free value, these bounds smoothly approach the free SO(N) value.

In addition, for G = SU(N) the OPE φ†i × φj may also contain conserved currents of
some other global symmetry which may exist in the theory, which are singlets under G.
The lower bound on their inverse-square OPE coefficient is given in Fig. 49. Close to the
free theory dimension, these bounds approach the value corresponding to the theory of N
massless complex scalar fields, whose full symmetry SO(2N) is indeed larger that SU(N).

Additionally, Caracciolo et al. (2014) derived lower bounds on CJ in the presence of a
gap in the scalar singlet sector, as well as for extended global symmetries SO(N)× SO(M)
and SO(N)× SU(M).

Unlike in 3d, most of the 4d bounds computed so far do not display any prominent kink or
other dramatic feature, suggesting that existing 4d CFTs may lie inside the allowed regions
and not on the boundary. Note however that some unexplained features are visible in the
CJ lower bounds in (48), as well as in the bounds on supersymmetric CFTs discussed in
Sec. VII.

The bounds discussed in this section have been obtained by studying a 4pt function
〈φiφjφkφl〉 or 〈φiφ†jφkφ†l〉, where φi is a single primary operator or a global symmetry
multiplet of primary operators. As far as we are aware, a systematic study of numerical
bootstrap constraints from mixed correlators in 4d CFTs has not yet been performed outside
of the supersymmetric context (Lemos and Liendo, 2016a; Li et al., 2017b). It will be
important to do so in the future, and to study the impact on such bounds of assuming only
a limited set of relevant operators.

dimension scalar, as in Rattazzi et al. (2011b).
136 Numerics indicate that SU(N) and SO(2N) singlet and central charge bounds coincide (Poland et al.,

2012). A priori, because SU(N) ⊂ SO(2N), and because only singlets give rise to singlets when

representations are reduced, these SO(2N) bounds must be at least as strong as for SU(N), but the

exact coincidence is unexpected and remains unexplained.
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B. Applications to the hierarchy problem

Next we will review some bootstrap results which shed light on the attempts to alleviate
the hierarchy problem of the Standard Model (SM) of particle physics, which historically
was one of the motivations for the development of the numerical bootstrap in 4d.

For the purposes of our discussion, the hierarchy problem can be briefly summarized as
follows. The SM is certainly not the complete description of fundamental interactions, as it
doesn’t account for dark matter, baryogenesis, neutrino masses, and gravity. Instead it can
be regarded as an effective description, valid at least up to the electroweak scale, where it has
been extensively tested, including at the ongoing Large Hadron Collider (LHC) experiments.
According to the effective field theory paradigm, the leading effects in this description are
captured by the relevant and marginal operators, while all higher-dimensional operators
correspond to subleading effects and are suppressed by powers of the electroweak scale
(ΛIR ∼ 100 GeV) over the scale of new physics (ΛUV). The incredible success of the SM in
precisely describing all phenomena observed so far is elegantly explained by simply pushing
the scale of new physics to high values. In particular, electroweak precision tests and more
importantly bounds from flavor physics (in particular from K-K̄ mixing) generically require
ΛUV & 105 TeV.

This simple assumption creates however a tension (called the hierarchy problem) with the
other energy scale in the theory, namely the scale associated with the only relevant operator
present in the SM—the Higgs mass term H†H. Indeed, whenever a relevant deformation
exists, it is generically expected to be generated at the fundamental scale with order one
strength, unless some symmetry prevents this from happening. The contrary is usually
considered an unnatural tuning of the model, similarly to how, in condensed matter systems,
one typically needs to adjust a control parameter to approach a critical point.

The quest for a solution to the hierarchy problem has been and remains an important
goal in theoretical high energy physics. Strategies for solving it can be broadly divided in
two categories: the first makes use of an additional symmetry that prevents the Higgs mass
term from appearing, and then slightly breaks it in order to generate a scale parametrically
smaller than ΛUV. The second strategy instead removes altogether the dangerous relevant
deformation by increasing the scaling dimension of the Higgs mass term. An example of the
first strategy is low-energy supersymmetry, while the second one is realized in technicolor,
which replaces the Higgs field with a fermion bilinear operator, of scaling dimension close
to three.

While technicolor solves the hierarchy problem by making the Higgs mass term irrelevant,
it also raises the SM Yukawa operator dimensions from 4 to 6. To generate heavy quark
masses of needed size, these operators need to originate at an energy scale not much above
ΛIR. This leads to a tension with flavor observables, due to four-fermion operators expected
to originate at about the same scale unless yet additional structure is added. To elegantly
solve this problem, Luty and Okui (2006) proposed the “conformal technicolor” scenario, in
which the Higgs field has a scaling dimension close to the free value, while the Higgs mass
term is close to marginality or irrelevant.

More precisely, to realize this scenario one would need a unitary CFT which contains a
scalar operator H replacing the SM Higgs field. To preserve the SM custodial symmetry,
the CFT must have an SO(4) global symmetry, with H transforming in the fundamental.
The scaling dimension requirements are as follows: ∆H has to be close to 1, while ∆S & 4,
where S is the first scalar SO(4)-singlet operator in the OPE H†×H, playing the role of the

77



Higgs mass term in this setup. Given the scaling dimension requirements, this hypothetical
CFT must necessarily be strongly coupled, while its coupling to the rest of the SM (gauge
fields and fermions) can be treated as a small perturbation.

The 4d numerical bootstrap grew out from the attempts to show that the most optimistic
requirements ∆H → 1, ∆S > 4 are impossible to realize. A proof of this theorem about
unitary 4d CFTs is visible in the upper bound on ∆S provided by the N = 4 curve in Fig. 47,
which approaches 2 for ∆H → 1.

It is phenomenologically acceptable to have ∆H slightly deviate from 1 without violating
flavor constraints, and to allow ∆S somewhat below 4 at the price of some moderate
tuning (Luty and Okui, 2006; Rattazzi et al., 2008; Rychkov, 2011). Although this freedom
helps to alleviate bootstrap constraints, some tension remains. Fig. 50 from Poland et al.
(2012) shows the regions of {∆H ,∆S} allowed under different degrees of tuning and different
assumptions about the structure of the flavor sector. The conclusion is that compatibility
with the bootstrap bound can be achieved only under optimistic flavor assumptions and
with a moderate tuning.

An additional phenomenological constraint on conformal technicolor comes from the
existence of the Higgs boson particle. While a SM-like Higgs boson may appear in conformal
technicolor as a resonance of the strong dynamics at the electroweak scale associated with
breaking of conformal invariance (Luty and Okui, 2006), it is expected to be somewhat
heavier than the experimentally observed value 125 GeV, and to have some deviations
in its coupling to the top quark, which were not seen so far. This further reduces the
likelihood that the conformal technicolor scenario is realized in nature. Still, the above
analysis, performed prior to the Higgs boson discovery, remains a beautiful example of how
theoretical investigations can lead to first-principles constraints on strongly coupled scenarios
for particle physics beyond the SM.

C. Constraints on the QCD4 conformal window

Perhaps the most famous class of unitary 4d CFTs are the IR fixed points of asymptotically
free nonabelian gauge theories coupled to massless fermions, often referred to as Banks-Zaks
fixed points (Banks and Zaks, 1982) though they were first considered by Caswell (1974)
and Belavin and Migdal (1974). Depending on the number of fermion representations N , this
IR conformal behavior is realized in an interval of N called the “conformal window”. These
CFTs are of great interest theoretically, and historically have also been discussed because
of their relation to walking technicolor models of electroweak symmetry breaking.137 Close
to the upper end of the conformal window these theories can be studied perturbatively, see
e.g. Ryttov and Shrock (2017). They have also been studied actively using lattice Monte
Carlo techniques; see Nogradi and Patella (2016) and Svetitsky (2018) for recent reviews.

Here we will describe what the bootstrap so far has to say about these CFTs. For
concreteness we will give our discussion for a QCD-like theory with N massless Dirac
fermions in the fundamental representation (�) of an SU(Nc) gauge group, with Nc > 3,

137 Walking behavior is expected to be realized for N just below the lower end of the conformal

window (Kaplan et al., 2009), but detailed discussion of this physics is beyond our scope. See Gorbenko

et al. (2018a,b) for a recent CFT perspective and Appelquist et al. (2017, 2018) for a recent lattice

perspective using effective field theory.
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though the results will also apply to the case Nc = 2. The global symmetry G of this theory
is

G = U(1)V ×H , H = SU(N)L × SU(N)R , (128)

where H rotates left and right Weyl components ψL and ψR of the fermions separately, while
the vectorial U(1)V rotates them simultaneously; its axial counterpart is instead anomalous.
The theory also preserves P and C, which interchange left and right fermions.

If an IR fixed point is reached, the above global symmetry remains unbroken. This implies
that all operators of the would-be CFT must organize in irreducible representation of G.
We will be interested in particular in gauge-invariant scalar operators (“mesons”) which are
fermion bilinears:

Φk̄
i = ψ̄k̄LψRi, (129)

which transform in � × � under H. The mesons are not charged under the U(1)V , which
will play no role below. Parity maps Φ into its complex conjugate Φ̄. The scaling dimension
of Φ is an interesting observable, often expressed in terms of the anomalous dimension
γΦ = 3 −∆Φ. See Giedt (2016) for a review of lattice measurements of γΦ. The bootstrap
will give lower bounds on ∆Φ, translating into upper bounds on γΦ.

Nakayama (2016b) carried out a bootstrap analysis of the 4pt function 〈ΦΦΦ̄Φ̄〉 using
the global symmetry H.138 Of particular interest is an upper bound on the dimension of the
lowest scalar in the OPE Φ×Φ̄ which is a singlet under H, shown in Fig. 51 for N = 8. Such
scalars are parity even, with an example being Tr[FµνF

µν ], where Fµν is the Yang-Mills field
strength.139 A necessary condition for reaching a fixed point is that all such scalars must
be irrelevant. Indeed, the Banks-Zaks fixed point is an example of a “self-organized” CFT
in the terminology of Sec. V.A. Using this crucial observation and the bound in Fig. 51, we
conclude that if N = 8 belongs to the conformal window, then necessarily

∆Φ > 1.21 (N = 8) . (130)

For N = 16 the analogous bound is ∆Φ > 1.71 (Nakayama, 2016b), and for other N the
bounds can be derived analogously but have not been published.

Nakayama (2016b) also derived, under the same assumptions, upper bounds on the
lowest scalars in Φ × Φ̄ which transform as TT or AA under H, where T/A stands for
the symmetric/antisymmetric traceless tensor representation. See Fig. 52 for the bound at
N = 8. By an idea of Iha et al. (2016),140 such bounds constrain possible global symmetry
enhancements, in parallel with Sec. V.E.3. Namely, imagine that we are trying to reach the
CFT describing the Banks-Zaks fixed point in an RG flow from a microscopic description
which at short distances preserves only a subgroup H ′ of H, as well as parity. For example,
this would be true for lattice studies with Wilson or domain wall fermions, which only realize
the diagonal subgroup

H ′Wilson = SU(N)V , (131)

138 In his notation Φ was a bifundamental of H under a different (but equivalent) convention for the

transformation of left-handed fermions.
139 On the other hand, the instanton density operator Tr[Fµν F̃

µν ] is parity odd and does not appear in the

OPE Φ × Φ̄. We note in passing that this operator is also expected to be irrelevant, since at the fixed

point it becomes a descendant of the anomalous axial current: ∂µJAµ ∼ Tr[Fµν F̃
µν ].

140 See also Hasenfratz et al. (2017, 2018) for a lattice perspective.
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as in Ishikawa et al. (2014, 2015). A second example is furnished by staggered fermions,
another lattice fermion realization commonly used to study the QCD4 conformal window.
Being defined for N a multiple of 4, these preserve microscopically a subgroup

H ′staggered = SU(N/4)× SU(N/4) . (132)

Observing the Banks-Zaks fixed point in a lattice Monte Carlo simulation using a fermion
realization with a reduced symmetry implies a symmetry enhancement. For this to be
possible, all parity-even scalar operators which are singlets under H ′ (but not necessarily
under H) must be irrelevant. Since the TT and AA representations of H contain a singlet
when reduced under either Eqs. (131) or (132), we obtain a necessary condition that the
TT and AA scalars must be irrelevant in both cases. So, from the TT bound in Fig. 52,
enhancement from H ′Wilson or H ′staggered requires

Wilson or staggered ⇒ ∆Φ > 1.69 (N = 8) . (133)

Compared to Nakayama (2016b), the earlier analysis of symmetry enhancement bounds
for lattice QCD by Iha et al. (2016) did not use the full symmetry H but only the vectorial
subgroup SU(N)V , grouping the operators (129) into the irreducible representations of
SU(N)V × P ,

S =
∑N

j=1 ψ̄
j̄ψj , S k̄i = ψ̄k̄ψi −

1

N
δk̄i S , (134)

φ =
∑N

j=1 ψ̄
j̄γ5ψj , φk̄i = ψ̄k̄γ5ψi −

1

N
δk̄i φ ,

which transform as singlets or adjoints under SU(N)V , and have P = ±. This simplifies the
analysis, as the system of crossing relations for representations of SU(N)V is easier than for
the full H. Of course, by not using the full symmetry one loses information, although this
can be partially remedied by imposing by hand the constraint that all operators in Eq. (134)
have the same dimension.

In this setup Iha et al. (2016) could extract bounds from the symmetry enhancement for
staggered fermions (but not for Wilson fermions). To do this they analyzed the 4pt function

of the adjoint pseudoscalar φk̄i for N = 8, 12, 16. They derived upper bounds on the lowest
dimension scalar in the φ×φ OPE transforming in the representation [N−1, N−1, 1, 1]141 of
SU(N)V . They argued that symmetry enhancement requires that this scalar be irrelevant.

To illustrate this more clearly, using results of Lee and Sharpe (1999) they identified
explicitly some four-fermion operators which are singlets under (132) and which have nonzero
overlap with [N − 1, N − 1, 1, 1] when the symmetry is reduced to SU(N)V . The resulting
necessary condition for staggered fermion enhancement is:

Staggered ⇒ ∆Φ > 1.67, 1.71, 1.71 (N = 8, 12, 16) . (135)

That for N = 8 this bound is somewhat weaker than Eq. (133) is explained partly by not
using the full symmetry, and partly by working at a lower derivative order.

It should be mentioned that most studies of the QCD conformal window by lattice Monte
Carlo or RG methods point to rather small anomalous dimensions γΦ. Hence the above

141 The notation gives a list of the number of boxes in each successive column of the Young tableau.
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bootstrap bounds on ∆Φ are probably not optimal. Finding better bootstrap constraints
on the QCD conformal window is an interesting open problem. Some possibilities to
make further progress are to pursue mixed correlator studies, to include global symmetry
currents and the stress-tensor in the bootstrap (whose 3pt functions contain known anomaly
coefficients), and/or to study baryon operators.

VII. APPLICATIONS TO SUPERCONFORMAL THEORIES

Conformal symmetry admits a supersymmetric extension into a superalgebra containing
the standard anticommuting supercharges {Q, Q̄} ∼ P as well as R-symmetry generators
and the anticommuting analog of SCTs {S, S̄} ∼ K (called special superconformal transformations).
Superconformal field theories (SCFTs) are extraordinarily rich, and have been studied
intensively from many viewpoints. In the last decades the zoo of known theories has
grown in size: new constructions have been made, including many Lagrangian models, but
remarkably also many theories that appear to admit no such description have been found.
Also, a great number of strongly coupled SCFTs are known to exist, in different dimensions
and with different number of supercharges, some of which can be understood using field
theory or holographic dualities.

SCFTs represent an important playground to test our understanding of CFTs and the
effectiveness of bootstrap techniques. The presence of supersymmetry allows one to exactly
compute some interesting CFT data, even in a strongly interacting regime, which in turn
can be compared with bootstrap predictions.

From the point of view of the conformal bootstrap, supersymmetry has essentially three
consequences: 1) relating the OPE coefficients and dimensions of operators belonging to the
same supersymmetric multiplet, creating superconformal blocks; 2) acting as a selection rule
for the operators entering a given OPE and imposing stronger constraints from unitarity;
3) fixing the dimensions of certain short multiplets. By virtue of these constraints, crossing
symmetry is expected to be more effective in SCFTs.

A. Theories with 4d N = 1 supersymmetry

Before discussing the numerical bootstrap results, let us spend a few words on the
structure of representations of the superconformal algebra. For concreteness we will give
this discussion for SCFTs with 4d N = 1 supersymmetry.142 Superconformal primary
operators (annihilated by the special superconformal generators S, S̄) are labelled by four
numbers (q, q̄, `, ¯̀), where `, ¯̀ are the usual Lorentz quantum numbers and q, q̄ are related
to the scaling dimension ∆ and R−charge of the superconformal primary operator:

∆ = q + q̄ R =
2

3
(q − q̄) . (136)

142 For similar results in other dimensions or with extended supersymmetry see Minwalla (1998) and the

summary of recent progress in Sec. IX. Many results described here can also be treated in a uniform way

across dimensions for algebras with the same number of supercharges, see Bobev et al. (2015a).
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Unitarity bounds on these operators were worked out by Flato and Fronsdal (1984)
and Dobrev and Petkova (1985), taking the form

q > 1

2
`+ 1 , q̄ > 1

2
¯̀+ 1 (`¯̀ 6= 0) ,

q > 1

2
`+ 1 (q̄ = ¯̀= 0) , (137)

q̄ > 1

2
¯̀+ 1 (q = ` = 0) .

The second and third lines in the above expression identify chiral (Φα1....α`) or antichiral
(Φ̄α̇1....α̇¯̀) operators, which are annihilated by the supercharge Q̄ or Q, respectively.

Finally, we would like to mention a few theoretical results for superconformal blocks
present in the literature, focusing on those relevant for the 4dN = 1 bootstrap. Superconformal
blocks for correlation function of scalar superconformal primaries can be expressed in terms
of finite linear combinations of ordinary scalar conformal blocks with suitable dimensions
and spin; however, computing these coefficients can be a challenging task. The work of
Poland and Simmons-Duffin (2011) and Vichi (2012) obtained the superconformal blocks
for 4pt functions of a scalar chiral supermultiplet Φ. Shortly after, Fortin et al. (2011)
computed superconformal blocks for 4pt functions of the multiplet associated to global
symmetry conserved currents, whose lowest component is again a scalar field.143 A similar
analysis applicable to 4pt functions of R-current multiplets (containing the stress tensor)
was also recently carried out in Manenti et al. (2018). The general approach in these works
was to classify the possible 3-point functions in superspace using the formalism of Osborn
(1999) and then expand in the Grassmann variables θi to compute relations between OPE
coefficients of conformal primaries. In this approach one must also carefully compute the
norm of each conformal primary in the multiplet.144

The work of Fitzpatrick et al. (2014a) developed alternate techniques based on either
solving the super-Casimir equation or writing the blocks as superconformal integrals using a
super-embedding formalism. The latter approach was employed in Khandker et al. (2014) to
find the blocks appearing in the more general correlation function 〈Φ1Φ̄2Ψ1Ψ̄2〉, where Φi and
Ψi are scalar superconformal primary operators with arbitrary dimension and R-charge,145

with the restriction that the exchanged operator is neutral under R-symmetry. This analysis
was later extended in Li and Su (2016) to the more general case of four distinct scalar
superconformal primary operators with arbitrary scaling dimensions and R-charges, with no
restriction on the exchanged operators besides those imposed by superconformal symmetry.
However, this analysis was missing a particular class of superconformal blocks, associated
to exchanged primaries in representations of the Lorentz group with ` 6= ¯̀. In this case the
corresponding superconformal primary does not enter the OPE of the external operators,
but some of its superconformal descendants do. This issue was fixed in Li et al. (2017b).

143 Some incorrect coefficients and missing blocks were later pointed out in Berkooz et al. (2014) and Khandker

et al. (2014).
144 Such norms were worked out for general multiplets in Li and Stergiou (2014).
145 The first and second pair have the same conformal weights q, q̄, hence the notation.
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1. Bounds without global symmetries

Now we will summarize numerical results for correlation functions involving scalar chiral
superfields. The first numerical studies, starting with Poland and Simmons-Duffin (2011)
and improved in Vichi (2012) and Poland et al. (2012), focused on 4pt functions containing a
single scalar chiral supermultiplet 〈ΦΦ̄ΦΦ̄〉. Crossing symmetry for this correlation function
involves two OPE channels. Because of the chirality conditions, the Φ×Φ̄ OPE only receives
contributions from traceless symmetric tensor superconformal primaries together with their
QQ̄ and Q2Q̄2 superdescendants, giving rise to the superconformal blocks described above.
The Φ×Φ OPE on the other hand is more subtle and can receive three different contributions:
1) the chiral superfield Φ2; 2) Q̄ descendants of semi-short multiplets; 3) Q̄2 descendants of
generic (long) multiplets. As a result, this channel allows conformal blocks of even spin ` = ¯̀

at either the protected dimensions ∆ = 2∆Φ + ` or at unprotected dimensions satisfying the
unitarity bound ∆ > |2∆Φ − 3|+ `+ 3.

In Fig. 53 we show an upper bound on the dimension of the first real scalar supermultiplet
R entering the OPE Φ × Φ̄. A first important consequence of this result is that in any
perturbative SCFT, the combination 2∆Φ − ∆R must be positive (or very suppressed) to
satisfy the bound. Secondly, one can observe a minor kink-like feature on the boundary of
the allowed region. The same feature appears in the lower bound on the central charge,
Fig 54, and it also coincides with the minimal value of ∆Φ consistent with the absence of
the chiral operator Φ2, as shown in the bottom panel of Fig 53.

In light of this, it is tempting to conjecture the existence of a “minimal SCFT” that
realizes the chiral ring relation Φ2 = 0 and saturates these bounds. This conjecture has
been seriously addressed by Poland and Stergiou (2015) and Li et al. (2017b), who studied
the properties of this hypothetical theory. Notice that the minimal value of ∆Φ consistent
with the chiral ring assumption, let us call it ∆mSCFT

Φ , represents an extremal solution, and
it is therefore uniquely determined. In addition, to coincide with the kinks it should agree
with the solution obtained from maximizing the dimension of the first neutral unprotected
operator and the solution obtained from minimizing the central charge, at the same value
of ∆Φ.

Fig 54 (a) shows that the two extremization procedures generically lead to two different
solutions, except at ∆mSCFT

Φ . This confirms our expectation of a unique solution coinciding
with the kinks. Furthermore, by inputting a gap between the stress-tensor multiplet (whose
lowest component is the spin-1 U(1)R current) and the next spin-1 supermultiplet, one is
able to extract an upper bound on the central charge. While this bound is gap-dependent at
generic ∆Φ, it almost coincides with the lower bound at ∆mSCFT

Φ , as shown in Fig 54 (b). By
extrapolating these results at large Λ, Poland and Stergiou (2015) obtained the prediction
∆mSCFT

Φ ≈ 1.428, c ≈ 0.111, perhaps consistent with ∆mSCFT
Φ = 10/7, c = 1/9.

Recently a few theories have been proposed as mSCFT candidates (Buican and Nishinaka,
2016; Xie and Yonekura, 2016), which implement the chiral ring condition Φ2 = 0; however,
they don’t quite match the bootstrap predictions presented here. In particular the central
charge is much larger than 1/9.

It is also worth noticing that, in any solution saturating the dimension bound of Fig. 53,
the chiral operator Φ is not charged under any global symmetry. If it was, in fact, the
solution would contain a spin-1 conserved current, which in N = 1 SUSY happens to be the
superdescendant of a dimension-2 real scalar which would appear in the Φ× Φ̄ OPE.

To conclude this section, let us mention that the work of Li et al. (2017b) also performed
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a bootstrap study of a system of mixed correlators involving a scalar chiral superfield Φ and
a long real scalar superfied R, identified with the first scalar operator appearing in the Φ×Φ̄
OPE. Unlike in 3d, this analysis didn’t seem to allow one to easily isolate a closed region.
A preliminary inspection of the extremal solution doesn’t reveal any obvious low-lying
operators decoupling from the spectrum, but rather it involves a rearrangement of higher
dimensional operators (Stergiou, 2017). It will be interesting to study this rearrangement
further and understand how to robustly isolate the conjectured mSCFT in future work.

2. Bounds with global symmetries

As mentioned in the previous section, conserved currents of global symmetries jaµ sit in
real supermultiplets J a whose lowest component is a dimension-2 scalar Ja. In addition, the
multiplet satisfies the conservation condition D2J a = D̄2J a = 0. Bootstrapping correlation
functions of the scalars Ja allows one access to the space of local SCFTs with a given global
symmetry. Hence, due to supersymmetry, one can apply the same machinery encountered
so far, with no need to deal with spinning conformal blocks.

Bounds on OPE coefficients of SU(N) currents were explored in Berkooz et al. (2014) and
dimension bounds (and coefficient bounds assuming gaps) from single 4pt functions 〈JJJJ〉
were explored in Li et al. (2017b). The latter work also studied the case of mixed correlators
involving J and a chiral field Φ charged under the global symmetry. Note that this charge
necessarily differs from the R-symmetry, which instead is part of the conformal algebra: the
conserved current associated with the latter is the lowest component of the Ferrara-Zumino
multiplet which contains the stress-tensor and supercurrents.

A key result, shown in Fig. 55, shows that any local SCFT with a continuous global
symmetry must contain a real scalar multiplet O with dimension ∆O 6 5.246. The same
figure also shows upper bounds on the OPE coefficient associated to J itself as well as the
one associated to the stress tensor multiplet, denoted as V . Interestingly, both bounds on
cJ and cV show plateaus for small values of the gap in the scalar sector. These are perhaps
consistent with the existence of SCFT solutions shaping the bounds. On the other hand, the
values extracted from Fig. 55 are much smaller then the limits one obtains by inspecting the
correlation functions of chiral superfields. For instance, the relation between cV and Fig. 54
is c2

V = 1/(90c), making the bound on the central charge very weak.146

An alternative method to study SCFTs with global symmetries is to consider external
scalar operators in nontrivial representations of the symmetry. An important target is
to make contact with supersymmetric QCD theories, e.g. supersymmetric gauge theories

with gauge group SU(Nc) and Nf flavors of quarks Qi, Q
j̄
, with Nf in the conformal

window 3Nc/2 6 Nf 6 3Nc (Seiberg, 1995). The simplest gauge-invariant operators are

the mesons M j̄
i = QiQ

j̄
, which transform as bi-fundamentals of SU(Nf )L × SU(Nf )R and

have dimension ∆M = 3(1−Nc/Nf ). Due to supersymmetry, both the central charge and
current central charge can be exactly computed due to their relation to anomaly coefficients.

A partial bootstrap analysis applicable to meson 4pt functions was performed in Poland
et al. (2012), which considered chiral scalar multiplets transforming in the fundamental
representation of SU(N) and obtained bounds on the OPE coefficients associated to

146 The OPE coefficient bounds obtained in Berkooz et al. (2014) for SU(N) current 4pt functions were also

relatively weak.
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conserved currents transforming in both the singlet and the adjoint representations of
SU(N). As can be seen in Fig. 56, these bounds are still somewhat far from the exact
results of SQCD, most likely because this study didn’t utilize the full symmetry. It will be
very interesting in future work to extend these analyses of chiral 4pt functions to use the
whole SQCD global symmetry, together with mixed correlators containing the SU(Nf )L/R
current multiplets and/or the stress-tensor multiplet.

B. Theories with 3d N = 2 supersymmetry

Another interesting set of targets for the conformal bootstrap are the zoo of 3d CFTs with
N = 1 or N = 2 supersymmetry. We made initial contact with the former in Sec. V.D.3,
where there were no constraints from supersymmetry used other than relations between
scaling dimensions (see however footnote 120). The superconformal representation theory of
the latter has a similar structure to that of 4d N = 1 SCFTs; for details see Minwalla (1998)
and Bobev et al. (2015a). Perhaps the simplest such theory is the N = 2 supersymmetric
Wess-Zumino model described in Sec. V.D.1. This CFT can be thought of as the IR fixed
point of a theory of a single chiral superfield Φ = φ + ψθ + Fθ2 and superpotential W =
λΦ3. The fixed point has a U(1)R symmetry under which Φ has charge 2/3, implying
exact dimensions for the complex scalar φ and the Dirac fermion ψ: ∆φ = qφ = 2/3,
∆ψ = ∆φ + 1/2 = 7/6.

Applying the numerical bootstrap to the 4pt function 〈ΦΦ̄ΦΦ̄〉 and incorporating the
unitarity bounds and superconformal blocks of N = 2 superconformal symmetry, Bobev
et al. (2015a,b) and Li and Su (2017a) studied general bounds on the dimension of the leading
unprotected scalar operator ΦΦ̄, with the basic result shown in Fig. 57. Curiously, the
resulting bound has three distinct features, the first of which occurs at a scaling dimension
∆Φ ' 2/3. This gives a sharp upper bound ∆ΦΦ̄ < 1.91 for the N = 2 supersymmetric
Wess-Zumino model and a plausible conjecture that the model saturates the optimal version
of this bound. Further analysis of the extremal spectrum of this kink can be found in Bobev
et al. (2015a,b), while Li and Su (2017a) found that an isolated island around {∆Φ,∆ΦΦ̄} =
{0.6678(13), 1.903(10)} could be obtained by assuming a modest gap in the spectrum of
spin-1 superconformal primaries ∆J ′ > 3.5.

The middle kink occurs near ∆Φ = 3/4, and coincides with a kinematic threshold beyond
which superconformal descendants of anti-chiral operators Q2Ψ̄ can no longer appear in the
Φ×Φ OPE. It is not yet clear if any CFT sits at this kink. The right-most kink, occurring
near ∆Φ ∼ .86, also still lacks a clear interpretation, but seems to interpolate to the kink
in the 4d N = 1 bounds discussed above. Notably, the extremal spectrum of this kink
seems to satisfy the chiral ring relation Φ2 = 0 (Bobev et al., 2015a) and an island around
the point can also be isolated using a set of gap assumptions (Li and Su, 2017a), making
it a plausible candidate for a new CFT. Finally let us mention that this analysis was also
extended to 3d N = 2 supersymmetric CFTs with O(N) global symmetry by Chester et al.
(2016a,b), who found similar features at each value of N . A related 3d N = 2 theory with
multiple interacting chiral superfields and a conformal manifold was also recently studied
using bootstrap methods in Baggio et al. (2018).
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VIII. APPLICATIONS TO NONUNITARY MODELS

The great majority of numerical conformal bootstrap applications considered to date
have concerned unitary CFTs. This limitation was mainly due to the fact that the main two
rigorous numerical bootstrap methods, linear programming and semidefinite programming
(Sec. IV) require positivity of the squares of OPE coefficients or positive-definiteness of the
matrices made of their pairwise products, which only hold in unitary theories. Nevertheless
there have been some promising attempts to apply conformal bootstrap methods to
nonunitary theories, which we wish to briefly describe here.

One naturally occurring class of nonunitary CFTs are theories analytically continued
from integer to noninteger space dimensions d, the prime example being the Wilson-Fisher
family of fixed points in 2 6 d < 4. It was only understood very recently that these CFTs
are nonunitary for noninteger d.147

Fortunately, the violation of unitarity in these theories seems to be rather mild, as
the negative-norm operators have rather high dimension (Hogervorst et al., 2016). So
it is believed that the standard linear and semidefinite programming methods, while
non-rigorous in this context, should still give reasonable results. This explains the success
of El-Showk et al. (2014a) who found good agreement between the numerical bootstrap and
the ε-expansion in the whole range 2 6 d < 4 using the 4pt function 〈σσσσ〉 and analytically
continuing conformal blocks to noninteger d. Similarly, Behan (2017a) generalized to
noninteger d the multiple-correlator analysis leading to the 3d Ising model island in Fig. 13.
A related successful study by Bobev et al. (2015a) analyzed the analytic continuation
to 2 6 d 6 4 of theories with 4 supercharges, which for d = 3 reduces to the N = 2
Wess-Zumino model from Sec. VII.B.148

Leaving aside the physical interpretation, the Z2-invariant Wilson-Fisher fixed points
can actually be analytically continued even below d = 2 and perhaps all the way to
d = 1+ (Holovatch, 1993). Interestingly, the analytic continuation seems to no longer be
reproduced by the linear programming bootstrap in d < 2, likely because violations of
unitarity are stronger in this case than for d > 2 (Golden and Paulos, 2015). This serves as
a warning to keep in mind when applying the linear and semidefinite methods to nonunitary
theories.

As described in Sec. IV.E, the truncation method should in principle be more suitable for
analyzing nonunitary theories. Gliozzi (2013) and Gliozzi and Rago (2014)149 successfully
applied the truncation method to the Lee-Yang CFT, which is a nonunitary CFT describing
the IR fixed point of the φ3 scalar theory in 2 6 d < 6 dimensions (Fisher, 1978). Truncating
the φ× φ OPE to the identity operator, φ itself, the stress tensor, and two more operators,
estimates of ∆φ were obtained in good agreement with RG and lattice predictions, and with
the exact solution available for d = 2.

147 See Hogervorst et al. (2015, 2016) for the original observation and Di Pietro and Stamou (2018) for further

work.
148 See also Chester et al. (2016a,b, 2015b) and Pang et al. (2016) for related studies.
149 See also Hikami (2017b). Other nonunitary models of interest to statistical physics tackled by the

truncation method include the self-avoiding walk, branched polymers, random field Ising model, and

percolation (Hikami, 2017a, 2018; LeClair and Squires, 2018). The analytic continuation of the O(N)

model to noninteger N was also studied using the linear programming method by Shimada and Hikami

(2016), but the unitarity violation effects may not be sufficiently small to allow this (see footnote 113).
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Finally we mention that bootstrap methods can also be straightforwardly applied to
nonunitary CFTs if a reasonable conjecture for the spectrum is available, as happens in
the case of 2d percolation (Picco et al., 2016). In this special situation, one simply solves
crossing relations for the squares of OPE coefficients, with no restriction on sign.

IX. OTHER APPLICATIONS

We would like to finish our review by briefly describing some of the many related topics
that we have not been able to cover. Many of these topics have also seen significant recent
progress and would merit their own reviews. We hope that we can at a minimum give the
reader some useful entry points into the literature.

A traditional approach to learning about CFTs has been to use perturbation theory,
often in the context of ε-expansions or 1/N -expansions. There is an older literature about
using bootstrap-like techniques to reproduce 1/N expansions, see e.g. Lang and Ruhl (1992)
and Petkou (1996), involving setting up self-consistency equations using a sum over dressed
Feynman diagrams sometimes called a “skeleton expansion.” More recently, there have
been a number of recent works which use more modern analytical bootstrap techniques to
study perturbative expansions, e.g. studying bootstrap equations in a 1/N expansion,150

using conformal invariance and the appearance of null states to reproduce ε-expansions,151

and using a formulation of the bootstrap in Mellin space152 to reproduce ε and large-N
expansions by reviving an old idea by Polyakov (1974) to make crossing symmetry manifest
and impose unitarity.153

A related analytical approach has been to study bootstrap equations in various Lorentzian
limits. One such limit is the lightcone limit developed in Fitzpatrick et al. (2013) and
Komargodski and Zhiboedov (2013), which has allowed for a systematic study of CFT data
in a large spin expansion154 or with slightly-broken higher spin symmetry in the works
Alday and Zhiboedov (2016) and Alday (2017b). Another limit where recent progress has
been made is the Regge limit.155 Both of these limits can be connected to constraints from

150 See Heemskerk et al. (2009), Heemskerk and Sully (2010), Alday et al. (2015b), and Aharony et al. (2017a).
151 See Rychkov and Tan (2015), Basu and Krishnan (2015), Ghosh et al. (2016), Raju (2016), Roumpedakis

(2016), Gliozzi et al. (2017a,b), Gliozzi (2018), and Liendo (2017).
152 The Mellin transformation of CFT correlation functions was introduced by Mack (2009), Penedones (2011),

Paulos (2011), and Fitzpatrick et al. (2011), and developed in many subsequent works. While it is not

yet known if and how it can be used for the numerical bootstrap, this formalism can be used to study

many related questions. E.g., recently Sleight and Taronna (2017, 2018b) constructed spinning CPWs in

Mellin space for external traceless symmetric tensors in general d (see Sec. III.F.7 for the discussion in

real space).
153 See Sen and Sinha (2016), Gopakumar et al. (2017a,b), Dey et al. (2017), Dey et al. (2018), and Dey and

Kaviraj (2018).
154 See Fitzpatrick et al. (2014b), Kaviraj et al. (2015a,b), Alday et al. (2015a), Alday and Zhiboedov (2017),

Li et al. (2016a,b), Dey et al. (2016), Hofman et al. (2016), Alday and Bissi (2017), Alday (2017a),

Simmons-Duffin (2017c), Dey et al. (2018), van Loon (2018), Elkhidir and Karateev (2017), and Henriksson

and van Loon (2018).
155 See Li et al. (2017a), Costa et al. (2017), Meltzer and Perlmutter (2017), Alday et al. (2017), and Kulaxizi

et al. (2017), which built on earlier work developing conformal Regge theory in Brower et al. (2007),

Cornalba et al. (2007a,b,c), Cornalba (2007), and Costa et al. (2012).
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Lorentzian causality, where nontrivial bounds and sum rules can be derived,156 yielding new
arguments for the conformal collider bounds of Hofman and Maldacena (2008), Buchel et al.
(2010), and Chowdhury et al. (2013), as well as the more stringent constraints of Camanho
et al. (2016) in holographic theories. Finally we should mention the recent development of
a powerful Lorentzian inversion formula157 as well as related work on higher-dimensional
crossing kernels,158 which are another promising route for further analytical progress.

The conformal bootstrap in two dimensions has a long history, for example the seminal
applications to rational CFTs in Belavin et al. (1984).159 The modern numerical bootstrap
has been re-applied to 2d CFTs in a number of works.160 A related direction is the modular
bootstrap, which sets up consistency conditions arising from modular invariance. A number
of recent studies161 have also looked at these constraints using modern numerical bootstrap
techniques. A proper summary of these results and related analytical progress in the context
of both the history of the 2d bootstrap and holography would merit its own review; see
e.g. Yin (2017).

One can also study the conformal bootstrap in more than four dimensions or with
extended supersymmetry. One application of the numerical bootstrap has e.g. been to
the 6d (2, 0) SCFT (Beem et al., 2016b), interesting in part because of its non-Lagrangian
nature and ability to teach us about new dualities. Another application in d > 4 has been
to probe the existence of O(N) vector models in 5d.162 Progress has also been made placing
constraints on a variety of other 5d and 6d SCFTs,163 4d N = 2 and N = 3 SCFTs,164 4d
N = 4 supersymmetric Yang-Mills theory,165 and 3d N = 8 SCFTs (Chester et al., 2014)
including ones inspired by M-theory (Agmon et al., 2017b). Related analytical progress at
solving sub-sectors of SCFTs with extended supersymmetry was also made in Beem et al.

156 See Hartman et al. (2016a,b), Hofman et al. (2016), Hartman et al. (2017), and Afkhami-Jeddi et al.

(2017a,b).
157 See Caron-Huot (2017), Simmons-Duffin et al. (2017), Cardona (2018), Kravchuk and Simmons-Duffin

(2018b), and Cardona and Sen (2018).
158 See Gadde (2017), Hogervorst and van Rees (2017), Hogervorst (2017), Karateev et al. (2018), Sleight

and Taronna (2018a,b), and Liu et al. (2018).
159 See also Knizhnik and Zamolodchikov (1984), Gepner and Witten (1986), and Bouwknegt and Schoutens

(1993).
160 See Rattazzi et al. (2008), Rychkov and Vichi (2009), Vichi (2011), Liendo et al. (2013), El-Showk and

Paulos (2013), Gliozzi (2013), Gliozzi and Rago (2014), El-Showk et al. (2014b), Bobev et al. (2015a),

Lin et al. (2017a), Esterlis et al. (2016), Lin et al. (2017b), Collier et al. (2017), Chen et al. (2017b), Li

(2017, 2018a), Behan (2017b), and Cornagliotto et al. (2017).
161 See Hellerman (2011), Hellerman and Schmidt-Colinet (2011), Friedan and Keller (2013), Qualls and

Shapere (2014), Hartman et al. (2014), Keller and Maloney (2015), Qualls (2015b,c), Chang and Lin

(2016), Kim et al. (2016), Benjamin et al. (2016), Collier et al. (2017, 2016), Keller et al. (2017), Cho

et al. (2017), Cardy et al. (2017), Apolo (2017), Bae et al. (2017), Dyer et al. (2018), and Anous et al.

(2018).
162 See Nakayama and Ohtsuki (2014b), Bae and Rey (2014), Chester et al. (2015b), and Li and Su (2017b).
163 See Pang et al. (2016), Nakayama (2017), Chang et al. (2018), and Chang and Lin (2017).
164 See Beem et al. (2016a), Lemos and Liendo (2016a), Lemos et al. (2017b), and Cornagliotto et al. (2018,

2017).
165 See Beem et al. (2013), Alday and Bissi (2014, 2015), Beem et al. (2017b), and Liendo and Meneghelli

(2017).
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(2015a,c); and Chester et al. (2015a) and used in a number of follow-up studies.166

Work on the superconformal bootstrap (particularly with extended supersymmetry) is
not possible without analytical computations of superconformal blocks, which have been
developed in a number of works using both superembedding space methods and by solving
the superconformal Casimir equation.167

Another intriguing line of research is the development of a direct relation between
conformal blocks and the wave-functions of integrable Hamiltonians.168 Finally, while we
cannot review here all of the interesting developments in the AdS/CFT correspondence, it
is worth mentioning that there has been an abundance of activity in connecting both global
blocks169 and semi-classical Virasoro blocks170 to geodesics in AdS and bulk semi-classical
physics.

All of the conformal bootstrap constraints and numerical bounds we have considered
in this review have applied to either Euclidean CFT or relativistic Lorentzian CFT. It is
also of great interest to learn about nonrelativistic conformal field theories due to their
many experimental realizations, e.g. to ultracold atomic gases near the unitary limit.
While nonrelativistic conformal symmetries are inherently less constraining, some important
theoretical groundwork on correlation functions and the OPE has been laid for systems
governed by the nonrelativistic Schrödinger algebra,171 which is a necessary precursor to
any bootstrap analysis.

Another interesting situation that we have not discussed are systems governed by
logarithmic CFTs, a class of nonunitary CFTs describing e.g. models of percolation,
self-avoiding random walks, and systems with quenched disorder. While such theories
have been considered for a long time in two dimensions (see Creutzig and Ridout (2013)

166 See Beem et al. (2016a, 2015b), Lemos and Peelaers (2015), Liendo et al. (2017, 2016), Lemos and Liendo

(2016b), Nishinaka and Tachikawa (2016), Xie et al. (2016), Beem et al. (2017a), Dedushenko et al.

(2018b), Song (2017), Creutzig (2017), Fredrickson et al. (2018), Cordova et al. (2017a), Agmon et al.

(2017a), Beem and Rastelli (2017), Pan and Peelaers (2018), Fluder and Song (2017), and Dedushenko

et al. (2018a).
167 See Dolan and Osborn (2002, 2006); and Dolan et al. (2004), Poland and Simmons-Duffin (2011), Fortin

et al. (2011), Goldberger et al. (2013, 2012), Khandker and Li (2012), Fitzpatrick et al. (2014a), Khandker

et al. (2014), Li and Stergiou (2014), Beem et al. (2016a), Liendo et al. (2016), Bobev et al. (2015a), Beem

et al. (2016b), Bissi and Lukowski (2016), Doobary and Heslop (2015), Lemos et al. (2017b), Ramrez

(2016), Li and Su (2016), Cornagliotto et al. (2017), Bobev et al. (2017), Li et al. (2017b), Chang and

Lin (2017), Li (2018b), and Rong and Su (2018).
168 See Isachenkov and Schomerus (2016), Schomerus et al. (2017), Chen and Qualls (2017), Schomerus and

Sobko (2018), and Isachenkov and Schomerus (2017).
169 See Hijano et al. (2016), Nishida and Tamaoka (2017), Bhatta et al. (2016), Dyer et al. (2017), Castro

et al. (2017), Sleight and Taronna (2017), Chen et al. (2017a), and Tamaoka (2017).
170 See Fitzpatrick et al. (2014b), Hijano et al. (2015a,b), Fitzpatrick et al. (2015, 2016b), Alkalaev and

Belavin (2015, 2016a,c), Fitzpatrick and Kaplan (2016), Banerjee et al. (2016), Besken et al. (2016),

Fitzpatrick et al. (2016a), Alkalaev and Belavin (2016b), Maloney et al. (2017), Alkalaev (2016), Hulk

et al. (2017), Alkalaev et al. (2017), Fitzpatrick et al. (2017), Fitzpatrick and Kaplan (2017), Belavin and

Geiko (2017), Kraus et al. (2017), Alkalaev and Belavin (2017), Chen et al. (2017b), and Lencsés and

Novaes (2017).
171 See Nishida and Son (2007), Golkar and Son (2014), Goldberger et al. (2015), Gubler et al. (2015), and

Pal (2018).

89



for a review), logarithmic CFTs in higher dimensions have received less attention. A
general theoretical analysis of correlation functions in such theories was recently developed
in Hogervorst et al. (2017), building on earlier work (Ghezelbash and Karimipour, 1997).
Attempts to apply direct numerical bootstrap to such theories have been mentioned in
Sec. VIII.172 Let us also mention the study Komargodski and Simmons-Duffin (2017) of the
Ising model with quenched disorder which made extensive use of bootstrap data to develop
an approach based on conformal perturbation theory.

X. OUTLOOK

The conformal bootstrap is still in its infancy and there remains much low-hanging fruit
to pick along with many important open questions. For instance, can we use the bootstrap
to fully classify the space of critical CFTs with a given symmetry, placing universality on
a rigorous footing? Can the bootstrap solve the conformal windows of QED3 and QCD4?
Can it be used as a discovery tool to find new, perhaps non-Lagrangian, CFTs? Is there
an analytical understanding of the kinks in numerical bounds or why certain CFTs such
as the 3d Ising model live in them? Which CFTs can be found using extremal spectrum
or truncation methods? And is there a fruitful way to incorporate developments in the
analytical bootstrap with rigorous numerical methods?

For newcomers to the numerical bootstrap who want to quickly get started, after
learning CFT basics we recommend becoming familiar with the available software tools,173

particularly SDPB which is under active development, along with one of the efficient methods
to compute conformal blocks in the dimension of interest as described in Sec. III.F. Then one
can start reproducing numerical bounds and thinking about how they can be generalized to
say something new about situations of physical interest. For this purpose it is also helpful
to get used to restating the physical properties of critical systems using symmetries and the
spectrum of scaling dimensions, so questions can be sharply rephrased in the language of
the bootstrap. Good luck!
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Appendix A: Embedding formalism

As we saw in Sec. III.A, the conformal group is isomorphic to SO(d+1, 1). This suggests
that we can avoid complications due to the SCTs acting nonlinearly on Rd by embedding
this space into Rd+1,1 where the whole conformal group will act linearly. This main idea of
the embedding formalism (also called the projective null cone formalism) goes back to Dirac
(1936). Here we will only review the main logic and a few fundamental results, see Costa
et al. (2011b) for details and Rychkov (2016b) for a pedagogical introduction.

We denote points in the “embedding space” Rd+1,1 by PA, and use the lightcone
coordinates:

PA = (P+, P−, P µ), P± = P d+2 ± P d+1,

P 2 = P µPµ − P+P− . (A1)

In this space we consider the “null cone” defined by the equation P 2 = 0. The physical
space Rd is identified with the “Poincaré section” of the cone given by the equation:

PA = (1, x2, xµ) , xµ ∈ Rd . (A2)

This identification is natural because, as is easy to check, the flat Minkowski metric in Rd+1,1

induces a flat d-dimensional metric on the Poincaré section.
SO(d + 1, 1) acts naturally on the null rays forming the null cone, and this defines an

action on the Poincaré section by picking the intersection point. One can verify that this
action realizes a conformal transformation of Rd.

Similarly, operators in d dimensions can be lifted to the embedding space. Focusing
on traceless symmetric tensors, Oµ1...µ`

∆,` (x) is promoted to a traceless symmetric tensor

ÔA1...A`
∆,` (P ), transforming linearly under SO(d + 1, 1). The latter operator is required to

be homogeneous of degree −∆:

ÔA1...A`
∆,` (λP ) = λ−∆ÔA1...A`

∆,` (P ) . (A3)

The relation between the two operators is obtained by the projection

Oµ1...µ`
∆,` (x) =

∂PA1

∂xµ1

· · · ∂PA`
∂xµ`

ÔA1...A`
∆,` (P ) , (A4)

where P is restricted to the Poincaré section so that ∂PA
∂xµ

= (0, 2xµ, δ
α
µ) . This is consistent

with the symmetric traceless condition. Notice as well that two embedding space tensors
which differ by anything proportional to PA project to the same physical space tensor,
because PA∂PA/∂xµ = 0. This is sometimes referred to as “gauge freedom”, and it ensures
that both representations have the same number of physical components.

The main advantage of this formalism is that the embedding space operators transform
linearly under the conformal group. Thus, the problem of classifying correlation functions
in embedding space is reduced to finding covariant tensors of SO(d+ 1, 1). In the index free
notation, this is equivalent to constructing invariant polynomials depending on the position
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vectors PA and the polarization vectors ZA, with the correct homogeneity properties (A3).
For traceless tensors it is enough to work with null polarization vectors Z2 = 0. Due to the
above mentioned “gauge freedom”, it is also enough to restrict to transverse polarizations:
Z · P = 0. In these conventions, all correlation functions can be built of the basic building
blocks (Costa et al., 2011b)

Hij ≡
(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)

(Pi · Pj)
,

Vi,jk ≡
(Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)√

−2(Pi · Pj)(Pi · Pk)(Pj · Pk)
. (A5)

In particular we have (Pij ≡ −2Pi · Pj)

〈Ô∆,`(P1, Z1)Ô∆,`(P2, Z2)〉 =
(H12)`

P∆
12

, (A6)

〈Ô∆1(P1)Ô∆2(P2)Ô∆3(P3, Z3)〉 = (A7)

λ123
(V3,12)`

P h123+`
12 P h132−`

13 P h231−`
23

.

Projecting to Rd gives Eqs. (22) and (23).
Operators transforming in other SO(d) representations can also be lifted to the embedding

space, see e.g. Costa and Hansen (2015) for mixed-symmetry tensors. One can also construct
other types of embedding spaces which may be more convenient for dealing with fermions,
for supersymmetric CFTs, or in specific d.174
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FIG. 1 Crossing relation for the 4pt function 〈O1O2O3O4〉.
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FIG. 2 (Color online) Conformal frame defining the z coordinate. Figure from (Hogervorst and

Rychkov, 2013).
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FIG. 3 Positivity of this 6pt function implies reality of the 3pt function coefficient λ123, see the

text.
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FIG. 4 (Color online) Conformal frame defining the radial coordinate. Figure from (Hogervorst

and Rychkov, 2013).

F
∆σ

∆1,ℓ1
F

∆σ

∆1,ℓ1

F
∆σ

∆2,ℓ2
F

∆σ

∆2,ℓ2
F

∆σ

∆3,ℓ3F
∆σ

∆3,ℓ3
.

.

.

.

.

.

Yes No

α

FIG. 5 Left: A case where vectors can sum to zero with positive coefficients. Right: A case where

vectors cannot sum to zero with positive coefficients and there exists a separating plane α such

that all vectors point on one side of the plane. Figure from Poland and Simmons-Duffin (2016).

8

reference �0 �1 �2 �3 �4

JQ (honeycomb) [23] 1.46 1.0(1) > 3 > 3
JQ (rectangular) [23] 1.15 0.85(10) > 3 > 3 > 3

JQ [48] 1.0(1) > 3
large N [47] 1.00 2.43 4.18 6.21

TABLE V. Scaling dimensions of monopole operators in non-
compact CP N�1 model (N = 5).

large N evaluation of the scaling dimensions of charge
q monopole operators. For charge one monopoloe opera-
tor, we have

�1 = 0.1246N + 0.3815 + O(1/N) . (B3)

They have also computed the scaling dimensions of
higher charged monopole operators, which are shown in
the above tables in this appendix. The �0 was also com-
puted [20] in the leading 1/N expansion as

�0 = 2 � 48

⇡2N
+ O(1/N2) . (B4)

However, the 1/N expansion on this exponent seems less
reliable, so we have not shown the values in the tables.

We note that the scaling dimensions of monopole oper-
ators have been studied also in U(1) gauge theory coupled
with charged fermions in 2 + 1 dimensions. The study
is relevant for a certain algebraic spin liquid with possi-
ble concrete realizations in nature (e.g. Herbertsmithite)
[50, 51]. The recent analysis of the monopole operators in
the fermionic case includes the one from 1/N expansions
[52], ✏ expansions [53] as well as the conformal bootstrap
analysis [54].

Finally, we summarize the properties of so-called
collinear fixed point of O(4) ⇥ U(1) invariant WLG the-
ory that is relevant for the QCD chiral phase transition.
The e↵ective action is

S =

Z
d3x

✓
Tr
�
@µ�

†@µ�
�

+ (m2 � m2
cr)Tr�†�

+ g1(Tr�†�)2 + g2Tr(�†�)2
◆

. (B5)

Note that the matrix valued field � is not charged under
the vector-like microscopic U(1)V baryon symmetry, so
when we talk about the e↵ective WLG model throughout
our work, we always ignore the U(1)V baryon symmetry.

In table VI, which uses the O(m) ⇥ O(n) notation
for the flavor symmetry, the (conventionally normalized)
U(1)A = O(n = 2) charge q = 4 operator det� ⇠
✏ij✏īj̄ ̄ī i ̄j̄ j we are interested in corresponds to ST
sector. To avoid a possible confusion, we note that the
Z2 symmetry discussed in the main text acts on det� as
�1, so we used the notation �1 = �ST (despite the con-
ventional U(1)A assignment). In particular, we did not
talk about another Z2 symmetry � ! �� that is micro-
scopically non-anomalous and we assume in the e↵ective

WLG action. This Z2 symmetry has nothing to do with
the non-trivial Z2 symmetry proposed in [17–19], which
we have discussed in the main text.

�� �SS �ST �TS �TT �AA

bootstrap 0.558(4) 1.52(5) 0.82(2) 1.045(3) 1.26(1) 1.70(6)

MS 0.56(3) 1.68(17) 1.0(3) 1.10(15) 1.35(10) 1.9(1)
MZM 0.56(1) 1.59(14) 0.95(15) 1.25(10) 1.34(5) 1.90(15)

TABLE VI. The scaling dimensions of operators for the O(4)⇥
O(2) collinear fixed point from [8, 15, 55, 56].

Appendix C: Bounds on �0
0

In this appendix, we show a necessary condition on �0

for a unitary CFT to contain only one relevant scalar
operator that is neutral under any global symmetries.
Let O0 be the lowest such operator with its OPE having
the form

O0 ⇥ O0 ⇠ O0 + O0
0 + · · · ,

where O0
0 is the other scalar operator with the second

lowest scaling dimension �0
0.

FIG. 3. Bounds on the scaling dimensions of the second-lowest
neutral scalar operator as a function of �0.

We can study the consistency of the four-point func-
tion hO0O0O0O0i with the crossing symmetry by using
the numerical conformal bootstrap program to derive the
upper bound on �0

0. Compared to the Z2-odd scalar
four-point function studied in [3][5], the only di↵erence is
that we have to additionally require the non-negativity
of the linear functional acting on the conformal block
coming from O0 itself. Although the bounds on �0

0 with
O0 appearing in the OPE could be weaker than those
without O0, we found that these two bounds actually
coincide (Fig. 3). From this plot we obtain the neces-
sary condition �0 > 1.044 (equivalently, ⌫ > 0.511) for

FIG. 6 (Color online) Upper bound on the dimension of the second singlet scalar O′0 as a function

of the dimension of the first O0 (Nakayama and Ohtsuki, 2016, Supplementary Material).
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FIG. 7 (Color online) Upper bound on ∆ε as a function of ∆σ in 3d CFTs (El-Showk et al., 2012).
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FIG. 8 (Color online) Allowed region in the {∆σ,∆ε} plane under the assumption that ε is the

only relevant scalar (El-Showk et al., 2012).
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FIG. 9 (Color online) Lower bound on the central charge as a function of ∆σ (El-Showk et al.,

2012).
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FIG. 10 (Color online) Upper bound on the dimension ∆T ′ of the first Z2-even spin-2 operator

after the stress tensor, as a function of ∆σ (El-Showk et al., 2012).
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FIG. 11 (Color online) Upper bound on the dimension of the leading Z2-even spin-4 operator

(El-Showk et al., 2012).

allowed region with ∆σ′ ≥ 3 (nmax = 6)
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Figure 2: Allowed region of (∆σ,∆ϵ) in a Z2-symmetric CFT3 where ∆σ′ ≥ 3 (only one
Z2-odd scalar is relevant). This bound uses crossing symmetry and unitarity for ⟨σσσσ⟩,
⟨σσϵϵ⟩, and ⟨ϵϵϵϵ⟩, with nmax = 6 (105-dimensional functional), νmax = 8. The 3D Ising point
is indicated with black crosshairs. The gap in the Z2-odd sector is responsible for creating a
small closed region around the Ising point.

The allowed region around the Ising point shrinks further when we increase the value
of nmax. Finding the allowed region at nmax = 10 (N = 275) is computationally intensive,
so we tested only the grid of 700 points shown in figure 5. The disallowed points in the
figure were excluded by assuming both ∆σ′ ≥ 3 and ∆ϵ′ ≥ 3. On the same plot, we also
show the nmax = 14 single-correlator bound on ∆ϵ computed in [22] using a very different
optimization algorithm. The final allowed region is the intersection of the region below the
nmax = 14 curve and the region indicated by our allowed multiple correlator points.

Since the point corresponding to the 3D Ising model must lie somewhere in the allowed
region, we can think of the allowed region as a rigorous prediction of the Ising model
dimensions, giving ∆σ = 1/2 + η/2 = 0.51820(14) and ∆ϵ = 3 − 1/ν = 1.4127(11). In
figure 6 we compare our rigorous bound with the best-to-date predictions using Monte
Carlo simulations [35] and the c-minimization conjecture [22]. Although our result has un-
certainties greater than c-minimization by a factor of ∼10 and Monte-Carlo determinations
by a factor of ∼3, they still determine ∆σ and ∆ϵ with 0.03% and 0.08% relative uncertainty,
respectively. Increasing nmax further could potentially lead to even better determinations of
∆σ and ∆ϵ. Indeed, the single correlator bound at nmax = 14 passing through the allowed
region in figure 5 indicates that the nmax = 10 allowed region is not yet optimal. At this
point, it is not even clear whether continually increasing nmax might lead to a finite allowed

25

FIG. 12 (Color online) Allowed region following from the analysis of three 4pt functions assuming

∆σ′ > 3 with no assumption on ∆ε′ (Kos et al., 2014a).
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allowed region with various gaps in ∆ϵ′, ∆σ′ (nmax = 6)
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∆ϵ
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1.3

1.4

1.5

Single Correlator ∆ϵ′ ≥ 3

Figure 3: Allowed regions in a Z2-symmetric CFT3, assuming various gaps in the scalar
spectrum. The dashed line is an upper bound on ∆ϵ using crossing symmetry and unitarity
of ⟨σσσσ⟩, with no assumptions about gaps, at nmax = 6. The black dotted line is the same
bound with nmax = 10. The light blue shaded region assumes a gap ∆ϵ′ ≥ 3 in the Z2-even
sector. The medium blue shaded region assumes a gap ∆σ′ ≥ 3 in the Z2-odd sector, and uses
crossing symmetry for the system of correlators ⟨σσσσ⟩, ⟨σσϵϵ⟩, ⟨ϵϵϵϵ⟩ (same as figure 2). The
dark blue region assumes both ∆σ′ ,∆ϵ′ ≥ 3, and uses the system of multiple correlators. All
bounds other than the black dotted line are computed with nmax = 6, νmax = 8 (21 components
for single correlator bounds, 105 components for multiple correlator bounds). The 3D Ising
point is indicated with black crosshairs.

region or a single isolated point.

We note that in our determinations we did not assume the c-minimization conjecture or
anything similar. The only assumption besides unitarity and conformal symmetry was the
existence of a Z2 symmetry and the assumption that σ and ϵ are the only relevant scalars.
It is therefore encouraging that the two methods are in such good agreement.

6 Discussion

In this work we have elucidated the power of mixed correlators in the context of the 3D
conformal bootstrap. While the simplest upper bound on the leading Z2-even operator
dimension ∆ϵ does not differ from the single correlator bootstrap, mild assumptions about
the number of relevant operators give rise to very tight constraints on the allowed values of

26

FIG. 13 (Color online) This plot assumes ∆ε′ > 3 (light blue), ∆σ′ > 3 (medium blue), or both

gaps simultaneously (dark blue). Figure from (Kos et al., 2014a).
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FIG. 14 (Color online) Allowed region in the {∆σ,∆ε, λεεε/λσσε} space obtained in Kos et al.

(2016).
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FIG. 15 (Color online) Projection of the 3d region in Fig. 14 on the {∆σ,∆ε} plane and its

comparison with a Monte Carlo prediction for the same quantities (Kos et al., 2016).
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FIG. 16 (Color online) Variation of λεεε and λσσε within the allowed region in Fig. 14 (Kos et al.,

2016).
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FIG. 17 (Color online) The spectrum of Z2-even scalar operators appearing in the solution to

crossing minimizing CT near ∆σ corresponding to the 3d Ising model (El-Showk et al., 2014b).

Line 1 corresponds to the ε operator and shows little variation on the scale of this plot. All other

lines exhibit the spectrum rearrangement phenomenon.
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FIG. 18 (Color online) Comparison of the extremal functional spectrum with the analytic

bootstrap (Simmons-Duffin, 2017c); see the text.
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FIG. 19 (Color online) The nongaussianity ratio Q in the critical 3d Ising model (Rychkov et al.,

2017).
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Figure 2: Upper bounds on the dimension of the lowest dimension singlet S in the φ × φ
OPE, where φ transforms as a vector under an O(N) global symmetry group. Here, we
show N = 1, 2, 3, 4, 5, 6, 10, 20. The blue error bars represent the best available analytical and
Monte Carlo determinations of the operator dimensions (∆φ,∆S) in the O(N) vector models
for N = 1, 2, 3, 4, 5, 6 (with N = 1 being the 3D Ising Model). The black crosses show the
predictions in Eq. (4.1) from the large-N expansion for N = 10, 20, ..., 100. In this expansion,
∆φ has been determined to three-loop order, while ∆S is at two-loop order. The dashed line
interpolates the large-N prediction for N ∈ (4,∞).

singlet scalar operators have dimension greater than ∆S, all symmetric tensor scalars have
dimension greater than 1, and the dimensions of all the other operators are constrained
only by the unitarity conditions. Note that due to the assumption on symmetric tensor
scalars this is not the most general bound. However, we found that this mild assumption
improves numerical stability while not significantly affecting the bound on ∆S – moreover
the assumption is certainly satisfied for O(N) vector models, as can be seen from previous
determinations of the operator dimensions (see Table 2).

The boundaries for the allowed values of ∆S as a function of ∆φ are shown in Fig. 2.
These bounds are determined by a bisection search in ∆S to within 10−3. The parameter
k of section 2.3, controlling the number of derivatives in the functional α, is set to k = 10
everywhere. For a given N , only the values of ∆S below the corresponding solid line are
allowed.

In Fig. 2 we see that the bounds on ∆S grow monotonically from ∆S = 1 at ∆φ = 0.5, the
point corresponding to the non-interacting theory. At a certain value of ∆φ, each boundary
line exhibits a change in the slope. This type of behavior was already discussed for the Ising

12

FIG. 20 (Color online) Upper bound on the dimension of s (Kos et al., 2014b).
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Figure 3: Upper bounds on the dimension of the lowest dimension symmetric tensor T in
the φ × φ OPE, where φ transforms as a vector under an O(N) global symmetry group, for
N = 2, 3, 4, 5, 6, 10, 20. We additionally assume that the lowest dimension singlet S has ∆S ≥
1. The blue error bars represent the best available analytical and Monte Carlo determinations
of the operator dimensions (∆φ,∆T ) in the O(N) vector models for N = 2, 3, 4, 5. Note
in particular that previous predictions for the O(5) model are essentially ruled out by our
bounds. The black crosses show the predictions in Eq. (4.1) from the large-N expansion for
N = 10, 20, ..., 100. The dashed line interpolates the large-N prediction for N ∈ (4,∞).

where cfree = D/(D − 1) is the central charge of a free scalar field. We can find an
upper bound on this OPE coefficient as follows. Rewrite the sum rule (2.8), separating
the contribution of the stress tensor:

λ2
S,3,2VS,3,2 = −Vunit −

∑

O≠Tµν

λ2
OVO. (4.5)

Applying a functional α such that α(VO) ≥ 0 for all operators in the spectrum other than
unit operator and normalized so that α(VS,3,2) = 1, Eq. (4.5) then yields the inequality

λ2
S,3,2 ≤ −α(Vunit). (4.6)

Finding the functional α that minimizes −α(Vunit) then gives the strongest upper bound on
the OPE coefficient. By Eq. (4.4) this implies a lower bound on the central charge.

The most general bound would be obtained by making no assumptions about the op-
erator spectrum, except that they obey unitarity conditions. However, we can obtain
a somewhat stronger bound by making additional assumptions about the spectrum. In

14

FIG. 21 (Color online) Upper bound on the dimension of t (Kos et al., 2014b).

∆φ

c/Ncfree

Ising

O(10)

O(20)

O(2)

O(3)

O(4)
O(5)
O(6)

O(N) Central Charge Bounds

0.505 0.5150.51 0.5250.52 0.5350.530.5

1.025

1

0.875

0.925

0.95

0.975

0.9

Figure 4: Lower bounds on the central charge for theories containing a scalar φ transforming
as a vector under O(N). We additionally assume that ∆S ,∆T ≥ 1. The black crosses show
the predictions in Eq. (4.1) from the large-N expansion for N = 10, 20, ..., 100. The dashed
line shows the asymptotic behavior of the central charge as a function of ∆φ as N → ∞.

particular, we can assume there are gaps in the spectrum of singlet and symmetric tensor
operators, as long as they are consistent with the results of previous subsections. Here we
will assume mild gaps, ∆S ≥ 1 and ∆T ≥ 1. This assumption on the operator dimension
spectrum is not too stringent; for example, we know from previous determinations that
O(N) vector models satisfy these conditions, see Table 2.

The central charge bound as a function of the scalar dimension ∆φ is shown in Fig. 4.
The central charge approximately scales linearly with N (exactly in the non-interacting
theory), so we have plotted c scaled to Ncfree. At low values of ∆φ, all of the bounds
approach the same asymptote. The slope of the asymptote is −10/3, which is the same
curve that one obtains in the N → ∞ limit from Eqs. (4.1) and (4.2); i.e. the O(N) vector
model points will lie on that line for large values of N .

To obtain stronger bounds on the central charge we can introduce larger gaps in the
operator spectrum. In the plots of Fig. 5 we assumed that the gap in the singlet scalar
spectrum saturates the bound obtained in subsection 4.1, while the gap in the symmetric
tensor scalar spectrum is kept at ∆T ≥ 1. At low values of ∆φ, the bounds again approach
the same asymptote and in general don’t differ too much from the bounds in the Fig. 4.
However, here the bounds exhibit a change in the slope at certain value of ∆φ. At larger
values of ∆φ the bounds are much stronger than the ones in Fig. 4. For large N values the
change in the slope occurs at the O(N) vector model points. At smaller N the change in the

15

FIG. 22 (Color online) Lower bound on CT computed under the assumption ∆s,∆t > 1 (Kos

et al., 2014b).
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Figure 3: Cc
J,T (∆φ)/Cfree

J,T for d = 5 O(N) symmetric CFTs with
N = 2, 3, 5, 10. The solid lines are the lower bounds of the cur-
rent central charge while the dashed lines are those of the energy-
momentum tensor central charge with the corresponding colors.

we would like to find: we know that the available spec-
tra for the critical O(N) vector models (either from the
other sectors of the conformal bootstrap or from the other
methods) satisfy ∆S,T ≥ 1, so it should make the bound
stronger without excluding them.

In our conformal bootstrap approach to the critical
O(N) vector models in d = 5 dimension for smaller N ,
however, we have less knowledge of the operator contents
of the CFTs we are looking for, nor there seems no other
bootstrap sectors that give the prediction of the spectra (as
far as we have tried). Therefore, a priori, we do not know
what kind of extra assumptions make the bound stronger
without excluding the non-trivial CFTs. For an exper-
iment, we have derived the lower bounds of the current
central charge in the O(2) symmetric CFTs with the as-
sumptions ∆S,T ≥ ∆0 for spin 0 intermediate states by
changing ∆0, whose results are shown in Figure 4. The
bound is rather stable against shifting ∆0 from 1.5 to 1.65
and then starts to move. However such a behavior does not
immediately imply that there is an actual CFT at the ob-
served minimum saturating the lower bounds for ∆0 = 1.5
or 1.65 with a spin 0 intermediate state whose conformal
dimension is ∆S,T < 1.8 . To see what is happening, we
will compare the situations in d = 3 dimension in the next
section.

4. Current central charge bounds in d = 3

In order to better understand the situations in d = 5
dimension, we have performed the similar analysis of the
lower bounds of the current central charge in d = 3 dimen-
sion for O(N) symmetric CFTs. In particular, we would
like to address the question if the local minima of the lower
bounds of the current central charge can be associated with
the critical O(N) vector models.

To keep the story in parallel with that in d = 5 di-
mension, we have first derived the lower bounds from the
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Figure 4: Cc
J (∆φ)/Cfree

J for d = 5 O(2) symmetric CFTs
obtained by assuming ∆S,T ≥ ∆0 with ∆0 running over
1.5, 1.65, 1.8, 2, 2.2, 2.4, 2.6.

conformal bootstrap program without assuming any addi-
tional conditions for the spectra of the intermediate states
other than the unitarity bound (which is 1/2 for spin 0
operators in d = 3 dimension). For sufficiently large N ,
Figure 5 shows that the lower bounds of the current cen-
tral charge possess the local minima as in d = 5 dimension,
and their locations in the large N limit coincide with the
large N predictions of ∆φ of the critical O(N) vector mod-
els (2). However, for smaller N , we see that the location of
the minimum begins to deviate from the ∆φ predicted in
the other sectors of the conformal bootstrap (e.g. S or T
sector) in [12]. Furthermore, for N < 9, the minimum of
the lower bound of the current central charge disappears.
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Figure 5: Cc
J (∆φ)/Cfree

J for d = 3 O(N) symmetric CFTs with N =
2, 3, 5, 9, 10, 20, 40. The bounds are completely general – i.e. no
assumption other than the unitarity bound is made. The dots are
the large N predictions of (∆φ, CJ ) for N = 40, 20, 10 critical vector
models from the left.

For comparison we note that the location of the local min-
imum of the lower bound of the energy-momentum tensor
central charge for N > 1, if any, does not coincide with
either the ∆φ predicted from the kinks in the S and T
sectors or the minimum of the lower bound of the current
central charge we obtained (see FIG 4 of [12])1. In [14], the

4

FIG. 23 (Color online) Lower bound on CJ (Nakayama and Ohtsuki, 2014b).

this work will be able to do so in the near future. More generally, the results of this work
give us hope that the same techniques can be used to to solve other interesting strongly-
coupled CFTs, such as the 3d Gross-Neveu models, 3d Chern-Simons and gauge theories
coupled to matter, 4d QCD in the conformal window, N = 4 supersymmetric Yang-Mills
theory, and more.

The structure of this paper is as follows. In section 2, we summarize the crossing
symmetry conditions arising from systems of correlators in 3d CFTs with O(N) symmetry,
and discuss how to study them with semidefinite programming. In section 3, we describe
our results and in section 4 we discuss several directions for future work. Details of our
implementation are given in appendix A. An exploration of the role of the leading symmetric
tensor is given in appendix B.

0.505 0.510 0.515 0.520 0.525 0.530
!Φ
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1.8

2.0
!s

The O!N" archipelago

Ising

O!2"
O!3"
O!4"

O!20"

Figure 1: Allowed regions for operator dimensions in 3d CFTs with an O(N) global symmetry
and exactly one relevant scalar φi in the vector representation and one relevant scalar s in
the singlet representation of O(N), for N = 1, 2, 3, 4, 20. The case N = 1, corresponding to
the 3d Ising model, is from [51]. The allowed regions for N = 2, 3, 4, 20 were computed with
Λ = 35, where Λ (defined in appendix A) is related to the number of derivatives of the crossing
equation used. Each region is roughly triangular, with an upper-left vertex that corresponds
to the kinks in previous bounds [15]. Further allowed regions may exist outside the range of
this plot; we leave their exploration to future work.

4

FIG. 24 (Color online) The O(N) archipelago (Kos et al., 2015b).
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Figure 2: Allowed region for (∆φ,∆s) in 3d CFTs with O(2) symmetry. The light blue
region makes no additional assumptions and was computed in [15] using the correlator ⟨φφφφ⟩
at Λ = 19. The medium blue region was computed from the system of correlators ⟨φφφφ⟩,
⟨φφss⟩, ⟨ssss⟩ at Λ = 19, and assumes ∆φ and ∆s are the only relevant dimensions in the
vector and singlet scalar channels at which contributions appear. The dark blue region is
computed similarly, but additionally assumes the OPE coefficient relation λφφs = λφsφ. This
latter assumption leads to a small closed region in the vicinity of the red cross, which represents
the Monte Carlo estimate for the position of the O(2) model from [56].

12

FIG. 25 (Color online) Allowed regions in the parameter space of O(2) or U(1) symmetric

CFTs (Kos et al., 2015b). The strongest constraint (dark blue) has been obtained from the analysis

of three correlators {〈φφφφ〉, 〈φφss〉, 〈ssss〉}, assuming that s, φ are the only two relevant scalars

of charge 0, 1, and imposing the OPE coefficient relation λφφs = λφsφ.
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O(2): Scaling Dimensions
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He 1σ
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Figure 5: Allowed islands from the mixed correlator bootstrap for N = 2 after scanning
over the OPE coe�cient ratio �sss/���s and projecting to the (��,�s) plane (blue regions).
Here we assumed that � and s are the only relevant operators in their O(N) representations.
These islands are computed at ⇤ = 19, 27, 35. The green rectangle shows the Monte Carlo
determination from [17], while the horizontal lines show the 1� (solid) and 3� (dashed)
confidence intervals from experiment [16].

Our determination of �✏✏✏ is consistent with the estimate 1.45 ± 0.3 obtained via Monte
Carlo methods in [21].4 An application of �✏✏✏ is in calculating the properties of the 3d Ising
model in the presence of quenched disorder in the interaction strength of neighboring spins
[23].

In figure 2 we show similar islands for the leading vector and singlet operators in the
O(2) and O(3) models, all computed at ⇤ = 35. We show the zoom in of these regions as
well as the regions at ⇤ = 19, 27 in figures 5 and 6. Once the angle ✓N has been computed
at ⇤ = 35, we determine the OPE coe�cients (���s, �sss) by bounding the magnitude �s at
⇤ = 27. The final error in the OPE coe�cients comes mostly from the angle, which is why
we use a lower value of ⇤ for the magnitude.

4We disagree slightly with the determination in [22].

10

FIG. 26 (Color online) Allowed islands in the mixed correlator analysis of O(2) or U(1) symmetric

CFTs after performing a scan over the OPE coefficient ratio λsss/λφφs (Kos et al., 2016).
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FIG. 27 (Color online) The O(3) analogue of Fig. 26 (Kos et al., 2016).

(a)

129



(b)

FIG. 28 (Color online) Upper bounds on the dimension of (a) the first parity-odd scalar σ and

(b) the first parity-even scalar ε in the OPE ψ×ψ, as a function of ∆ψ (Iliesiu et al., 2016a). Here

ψ is a Majorana fermion primary operator in a 3d parity-invariant unitary CFT.

(a)
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FIG. 29 (Color online) Lower bounds on CT as a function of ∆ψ, where ψ is (a) Majorana fermion

or (b) a multiplet of Majorana fermions in the fundamental representation of an O(N) global

symmetry group (Iliesiu et al., 2018b, 2016a).
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FIG. 30 (Color online) Effect of imposing a gap until the second pseudoscalar σ′ on the parameter

space of 3d parity-invariant CFTs (Iliesiu et al., 2016a).
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FIG. 31 (Color online) Effect of imposing that there is only one relevant pseudoscalar, ∆σ′ > 3,

in 3d parity-invariant CFTs (Iliesiu et al., 2016a).
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FIG. 32 (Color online) Effect of imposing a gap ∆σ′ > 3 in the singlet pseudoscalar sector of

O(N)-symmetric fermionic CFTs (Iliesiu et al., 2018b). The kinks at low N may perhaps be

identified with the GNY and GNY∗ CFTs.
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FIG. 33 (Color online) Upper bounds on the dimension of the symmetric traceless pseudoscalar σT
in the OPE ψi×ψj in O(N)-symmetric fermionic CFTs (Iliesiu et al., 2018b). Notice the mysterious

jumps in the wide view of the bounds (a) when they cross marginality. (b) gives a zoom on the

small ∆ψ region, where the bounds exhibit kinks, in agreement with the GNY dimensions at large

N .
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FIG. 34 (Color online) Bounds on ∆M1 in terms of ∆M1/2
in d = 3 for Nf = 2, 6 (a,b) with

various assumptions on the gaps in the uncharged sector in the same SU(Nf ) representation as

M1 (Chester and Pufu, 2016).

135



××

0.8 1.0 1.2 1.4
ΔM1/2

1

2

3

4

5

ΔM1

N = 4, Δ2 ≥ .5, 2,...,4

(a)

1.030 1.035 1.040 1.045 1.050 1.055
ΔM1/22.2

2.3

2.4

2.5

2.6

2.7

2.8

ΔM1

N = 4, Δ2 ≥ 3, ΔM '1 ≥ ΔM1 , 2.8, 3, 3.5

(b)

FIG. 35 (Color online) (a) is the analogue of Fig. 34 for Nf = 4. (b) starts from the ∆2 > 3 case

of (a), and shows that placing an additional gap ∆M ′1
above ∆M1 turns the kink into a peninsula

(Chester and Pufu, 2016).
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FIG. 36 (Color online) The 3d upper bound on ∆2 as a function of ∆1 (Nakayama and Ohtsuki,

2016). It may be possible to improve this bound if ∆0 is known. The same bound applies to

M2 ×M2 ∼M4.
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2

mal invariance in scale invariant field theory, so the scale
invariance most likely implies conformal invariance. See
e.g. [12] for a review on this argument.

Once conformal invariance is assumed, we may study
the consistency of four-point functions that results in
the conformal bootstrap equations. In our case, we
are interested in the consistency of four-point functions

hOqO
†
qOq0O†

q0i of U(1) charge q local scalar operators
Oq, whose scaling dimension is denoted by �q, with the
crossing equations and unitarity, whose idea was first de-
veloped in four dimensional CFTs in [13]. By mapping
the crossing equations in unitary CFTs to a semi-definite
problem, numerical optimization yields a bound on the
scaling dimension of the operators that appear in the op-
erator product expansion (OPE) e.g. Oq ⇥ Oq0 ⇠ Oq+q0 .
See Appendix A for the details of our implementation.

Let us begin with emerging U(1) symmetry from Z2.
The upper bound on �2 as a function of �1 in U(1) sym-
metric CFTs is straightforwardly obtained as in [6] by

studying hO1O
†
1O1O

†
1i. The plot in Fig.1 shows the nec-

essary condition �1 > 1.08 for the symmetry enhance-
ment as the bound when �2 can be larger than 3, at
which point O2 may become irrelevant. In other words,
when �1 < 1.08, O2 is always relevant and symmetry
enhancement does not occur.

FIG. 1. The upper bound on the scaling dimension �c
2 of the

lowest dimensional charge two scalar operator appearing in
O1 ⇥ O1 OPE as a function of �1. The same bound applies
to O2 ⇥ O2 ⇠ O4.

For the Z3 enhancement, we study the simultaneous

consistency of three four-point functions hO1O
†
1O1O

†
1i,

hO1O
†
1O2O

†
2i and hO2O

†
2O2O

†
2i from the mixed correla-

tor conformal bootstrap analysis [10, 14]. In order to
make the bound relevant for us, we make two additional
assumptions: (1) all the charge four operators are ir-
relevant (2) all the charge neutral operators (above the
identity) have scaling dimension larger than 1.044. The
latter assumption is motivated from our setup because
it is easy to numerically prove it by using the conformal
bootstrap analysis that if there exists a neutral scalar op-
erator with scaling dimension less than 1.044, there also
exists another neutral scalar operator whose scaling di-
mension is less than 3 (see Appendix C for details). How-

ever, in all of our applications, there is only one neutral
scalar operator that must be tuned, so the assumption is
justifiable.

FIG. 2. Upper Bounds on the scaling dimension of the lowest
dimensional charge three scalar operator appearing in O1⇥O2

OPE as a function of �1 and �2. The jump in the bounds
appears as soon as they touch the value 3. Note that 1.08 <
�2 < �c

2(�1) must hold from the assumption that all the
charge four operators are irrelevant and the bound in Fig.1.

Fig.2 shows the bound on �3 as a function of �1 and
�2. When �1 � 0.585, there exists an allowed region of
�2 where �3 can be irrelevant. As soon as the bound on
�3 touches 3, it shows a conspicuous jump that is similar
to the one observed in the fermionic conformal bootstrap
analysis [11]. Without knowing the value of �2, the plot
shows that the necessary condition is �1 > 0.580. See
Appendix D for two-dimensional projections of the plot.

In the similar manner, we can study the bound on
�4 for the Z4 enhancement. We obtain the simplest

bound by studying hO1O
†
1O1O

†
1i and hO2O

†
2O2O

†
2i in-

dependently, which immediately gives �1 > 0.504 (see
Fig.1). The study of the simultaneous consistency of

three four-point functions hO1O
†
1O1O

†
1i, hO1O

†
1O2O

†
2i

and hO2O
†
2O2O

†
2i gives a stronger bound in principle, but

in practice, without introducing further assumptions, it
does not improve much.

III. APPLICATIONS

A. Chiral phase transition in QCD

The order of chiral phase transition in finite tempera-
ture QCD has been controversial over many years with-
out reaching a consensus. In the WLG paradigm, we may
translate the problem into (non-)existence of RG fixed
point in a certain three-dimensional WLG model whose

FIG. 37 (Color online) An upper bound on ∆3 as a function of {∆1,∆2} under the assumptions

that ∆0 > 1.044, ∆4 > 3 (Nakayama and Ohtsuki, 2016). It follows from Fig. 36 that the range of

∆2 is restricted by the latter assumption from below, and, for fixed ∆1, from above.
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FIG. 38 (Color online) Bounds on CT as a function of the 〈TTT 〉 3pt function parameter

θ (Dymarsky et al., 2018).
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FIG. 39 (Color online) Bounds on CT as a function of the 〈JJT 〉 3pt function parameter

γ (Dymarsky et al., 2017).
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FIG. 40 (Color online) Bounds on CT as a function of the 〈TTT 〉 3pt function parameter θ for

different values of the parity-odd scalar gap ∆odd (Dymarsky et al., 2018).
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Figure 3: A lower bound on CT as a function of ✓ in 3d CFTs with no relevant parity-even
scalars.

lower bounds on CT . Indeed, we find a series of islands (figure 6), which finally exclude the
free-boson theory when �odd & 11.20 A common corner point of these islands is very close
to the CT value of the 3d Ising CFT. We return to this point in section 4.6, where we will
see that further imposing known gaps in the 3d Ising CFT slightly reduces this apparent
upper bound on ✓Ising.

Finally, note that these bounds imply that any CFT with a large parity-odd gap must
have a stress-tensor 3-point function close to the bosonic one, with ✓ < .023.

4.3.3 Scalar gaps in both sectors

In figure 7, we show a bound on the space of true “dead-end” CFT’s, i.e. theories with no
parity-preserving or parity-breaking relevant deformations. We see from this plot that such
theories must have CT & 2. In addition, for a given CT , ✓ is constrained to lie towards the
middle of the range [0, ⇡/2].

For each of the parity-even and parity-odd sectors, we have seen that there exists a
maximal gap beyond which no CFT can exist (figures 4 and 6). In figure 8, we show the
full space of allowed gaps in the both sectors. Along the axes, this plot reproduces the gaps
at which the islands disappear in figures 4 and 6. The full bound shows several interesting

20The lightest parity-odd scalar in the theory of a single free boson is the dimension-11 scalar
✏µ⌫⇢�(@↵@�1

@�2
@µ�)(@↵@⌫�)(@�1@�2@⇢�) + desc.

26
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FIG. 41 (Color online) Bounds on CT as a function of the 〈TTT 〉 3pt function parameter θ

assuming that the leading parity-even scalar is irrelevant (Dymarsky et al., 2018).
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FIG. 42 (Color online) Bounds on CT as a function of the 〈JJT 〉 3pt function parameter γ with

no assumptions (lower solid curve), parity-odd scalars irrelevant (lower dashed curve), parity-even

scalars irrelevant (upper dashed curve), and all scalars irrelevant (upper solid curve) (Dymarsky

et al., 2017).
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FIG. 43 (Color online) Bounds on CT as a function of the 〈TTT 〉 3pt function parameter θ with

gap assumptions plausible for the Ising model (Dymarsky et al., 2018).
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FIG. 44 (Color online) Bounds on CT as a function of the 〈JJT 〉 3pt function parameter γ with

gap assumptions plausible for the critical O(2) model (Dymarsky et al., 2017).
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FIG. 45 (Color online) Allowed region for parity-even and parity-odd scalar gaps from (a) 〈TTTT 〉
bootstrap (Dymarsky et al., 2018) and (b) 〈JJJJ〉 bootstrap (Dymarsky et al., 2017).
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Figure 2: An upper bound on the dimension of φ2, the lowest dimension scalar appearing in φ× φ.
Curves for k = 2, . . . , 11 are shown, with the k = 11 bound being the strongest.

SU(N) turn out to be identical to those for singlets of SO(2N). Hence, we will present all
SU and SO singlet bounds together, with even values of N standing for both SO(N) and
SU(N/2).

Previous attempts to compute bounds for theories with global symmetries have been
somewhat hindered by the need to optimize over very high-dimensional spaces. Since the
vectorial sum rule Eq. (2.14) has three components, a given k corresponds to

k(k + 1)

2
× 3 (3.2)

different linear functionals. The linear programming methods implemented so far are essen-
tially limited to a search space dimension that is not much larger than ∼ 50, or k ∼ 5 for
SO(N). Worse, SU(N) vectorial sum rules have six components, making them even harder
to explore. However, our semidefinite programming algorithm appears to have few problems
with large search spaces, and we will present most of our bounds up to k = 11, regardless of
the type of global symmetry group.

As an example, figure 3 shows a bound on the lowest dimension singlet in theories with
an SU(2) or SO(4) global symmetry.9 This bound is particularly interesting for conformal

9Note that to compute the SO(4) bound, we have only used the triple sum rule of Eq. (2.14). It
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Lower bound on c for a real scalar
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Figure 13: A lower bound on the central charge of a theory containing a scalar φ of dimension

d. The dashed line indicates the value cfree = 1/120, corresponding to the central charge of a free

scalar. Here we show bounds for the values k = 2, . . . , 11.

symmetry, and d is related to the masses of bulk fields. Our bound then says that theories
with sufficiently light bulk excitations cannot have a gravitational scale that is arbitrarily
small. Moreover, if those fields transform as fundamentals under the bulk SO(N) or SU(N/2)
gauge group (and correspond to operators with d ∼ 1), then the Planck scale must scale at
least linearly with N .

It would be fascinating to identify CFTs that live close to these bounds, particularly
in the large N limit. Unfortunately, in gauge theories believed to flow to conformal fixed
points that also posses an SO(N) or SU(N/2) global symmetry, the central charge typically
scales as N2, at least near d ∼ 1. The reason is that conformality forces the size of the global
symmetry to scale proportionally to the size of the gauge group, and gauge degrees of freedom
live in adjoint representations of the gauge group which have O(N2) components. We will
see examples of this in the next subsection, where we extend the bounds to superconformal
theories in which c is explicitly calculable.

37

(b)

FIG. 46 (Color online) (a) Upper bound on the dimension of the first scalar in the φ × φ OPE

as a function of ∆φ in 4d unitary CFTs; (b) lower bound on the central charge CT , computed by

maximizing the OPE coefficient λφφT (Poland et al., 2012).
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with lowest dimension among a more restricted class of operators, and consequently can be
weaker.

d

∆0

Upper bound on dim(|φ|2) for SO(N) or SU(N/2), N = 2, . . . , 14
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Figure 4: An upper bound on the dimension of |φ|2, the lowest dimension singlet scalar appearing
in φT × φ (or φ† × φ), where φ transforms in the fundamental representation of an SO(N) global
symmetry or an SU(N/2) global symmetry (when N ≥ 4 is even). Curves are shown for N =
2, . . . , 14, with N = 2 being the strongest bound.

3.2.1 Implications for Conformal Technicolor

Let us briefly discuss some phenomenological implications of the bounds presented in figures 3
and 4. A more detailed discussion of these implications will also appear in [65], and our
analysis draws heavily on the previous discussions of [7–10, 49, 54, 55], as well as the recent
talk of [66].

Arguably the most interesting operator dimension in the Standard Model is dim(H†H),
the dimension of the Higgs mass operator, where H transforms as a bifundamental under
SU(2)L × U(1)Y ⊂ SU(2)L × SU(2)R. In a weakly-coupled theory with a scalar Higgs,
this dimension is approximately 2, which leads to the hierarchy problem and its associated
puzzles.

The idea of increasing dim(H†H) to ameliorate the hierarchy problem is an old one.
In traditional Technicolor models, the role of the Higgs is played by a fermion condensate

22

(a)

Lower bounds on c for SO(N) or SU(N/2), N = 2, . . . , 14
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Figure 14: A lower bound on the central charge of a theory containing a scalar φi of dimension d
transforming as a fundamental of an SO(N) or SU(N/2) global symmetry, for N = 2, . . . , 14. In
this plot cfree = 1/120, corresponding to the central charge of a free scalar. Here we have taken
k = 11.

5.2 Superconformal Theories

In N = 1 SCFTs, the stress tensor is a superconformal descendant of the spin-1 U(1)R

current, T ∼ (QQJR)ℓ+1, as in Eq. (2.25). Applying Eq. (2.26) to (5.2), we see that Jµ
R has

an OPE coefficient of λ2
R = d2

72c
, appearing as an S+ operator in the superconformal sum

rules of Eqs. (2.31) and (2.33). Since a free chiral superfield contains both a complex scalar
and a Weyl fermion, it gives a contribution of cchiral = 2 × 1

120
+ 1

40
= 1

24
.

In figure 15 we show the results of our semidefinite programming algorithm for obtaining
bounds on the central charge of any theory containing a chiral scalar Φ. We give the results
for k = 2, . . . , 11, where all of the curves for k > 3 drop sharply very close to d ∼ 1 and
go just below the free value. The k = 11 curve significantly improves upon SCFT central
charge bounds previously obtained in [52, 55]. Note that the sharpness of the drop (reaching
within 1% of the free chiral value closer than d ∼ 1.0000002) is strong evidence that the free
theory is an isolated solution to the crossing relations. This is intuitive from the perspective
of constructing perturbations of the free theory — all such perturbations leading to an
interacting SCFT require additional matter, which increases the central charge. In order to

38

(b)

FIG. 47 (Color online) (a) Upper bounds on the singlet scalar dimension in SO(N) and SU(N)

symmetric 4d CFTs, as a function of ∆φ in the fundamental; (b) lower bounds on CT in the same

theories (Poland et al., 2012).
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Now that we have an intuition for the free values of κ and κeff , we are ready to present
numerical bounds in several classes of theories. In figure 18, we show a lower bound on the
two-point function coefficient κ for a CFT with an SO(N) global symmetry forN = 2, . . . , 14.
As expected, when d → 1, all of the bounds drop sharply to the free SO(N) value κ = 1/6.
The bounds get stronger as N increases, while as d varies away from 1, they first become
stronger and then weaken.

d

κ

Lower bounds on κ for SO(N) adjoint currents, N = 2, . . . , 14
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Figure 18: A lower bound on the two-point function coefficient 〈JA
µ JB

ν 〉 ∝ κTr(TATB) of the SO(N)
adjoint current appearing in φ × φ, where φ transforms in the fundamental of an SO(N) global
symmetry group, for N = 2, . . . , 14. All curves smoothly approach the free SO(N) value κ = 1/6.
Here we have taken k = 11.

As a second example, in figure 19 we consider the case of an SU(N) global symmetry
and present lower bounds on κeff for a singlet current. Our expectation that the constraints
scale almost linearly with N (when d is close to 1) is confirmed. Thus, this quantity serves
as a rough measure of the number of degrees of freedom in the theory transforming under
the symmetry, at least near d = 1. One the other hand, the linear scaling disappears as d
increases.

6.2 Superconformal Theories

Let us generalize the above bounds to theories with N = 1 supersymmetry, where currents
are descendants of scalar superconformal primaries of dimension 2. Consider four-point

44

FIG. 48 (Color online) Lower bound on CJ in SO(N)-symmetric unitary 4d CFTs as a function

of the dimension of a scalar in the fundamental (Poland et al., 2012). SU(N/2) adjoint currents

satisfy the same bound (Caracciolo et al., 2014).
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Lower bounds on κeff for SU(N) singlet currents, N = 2, . . . , 14
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Figure 19: A lower bound on the effective two-point function coefficient κeff = 1/6λ2
J of SU(N)

singlet currents appearing in φi × φȷ†, where φi transforms in the fundamental of an SU(N) global
symmetry group, for N = 2, . . . , 14. All curves interpolate continuously to the free values Nκfree

where κfree = 1/3, and in this plot we have taken k = 11.

functions ⟨ΦiΦ
ȷ†ΦkΦ

l†⟩ of chiral and anti-chiral operators transforming under an SU(N)
global symmetry. SU(N) adjoint currents give a superconformal block contribution

x2d
12x

2d
34⟨ΦiΦ

ȷ†ΦkΦ
l†⟩ ∼ 1

κ
Tr(T AT B)−1(T A)ȷ

i(T
B)l

k G2,0, (6.11)

while SU(N) singlet currents give an effective superconformal block contribution

x2d
12x

2d
34⟨ΦiΦ

ȷ†ΦkΦ
l†⟩ ∼ 1

κeff
δȷ
iδ

l
kG2,0. (6.12)

In figure 20, we show bounds on κ for adjoint currents appearing in Φi × Φȷ†, for SCFTs
with an SU(N) global symmetry and N = 2, . . . , 14. These bounds again increase strongly
with N , growing as a roughly affine function. For d ! 1.5, κ must be substantially higher
than its free value, with the bound dropping sharply to the contribution of a free chiral
superfield κchiral = 1 near d = 1. Consequently, the free theory appears to be isolated in
the space of SCFTs with an SU(N) flavor symmetry. This accords with our intuition from
theories with a Lagrangian description. To couple a free SU(N) fundamental to a nontrivial
interacting sector (and thus raise its dimension away from d = 1), we need additional matter
which must itself transform under SU(N).
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FIG. 49 (Color online) Lower bound on the inverse square OPE coefficient of a singlet

current in SU(N)-symmetric unitary 4d CFTs as a function of dimension of a scalar in the

fundamental (Poland et al., 2012).
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Figure 5: Viable regions for conformal technicolor models in the flavor-generic (red) and flavor-
optimistic (cross-hatched green) cases are shown superimposed with our bound (blue, excluding the
gray-shaded region). Regions for c(ΛUV) = 1, 0.1, and 0.01 are shown in successively lighter shades
of each color, with the largest region corresponding to c(ΛUV) = 0.01 in each case. Flavor-generic
models are ruled out.

does not apply in a simple way to operators in theories with SU(2) symmetries, because
there is no coincidence between SU(N) and SO(2N) bounds for non-singlets.

3.4 Superconformal Theories

Now let us turn to bounding operator dimensions in superconformal theories, using the sum
rule Eq. (2.31). A bound on dim(Φ†Φ) in terms of dim(Φ) was first obtained in [52] using
only the middle row of Eq. (2.31). In [55], it was shown that the bound could be improved by
incorporating the other rows, and linear programming calculations were given up to k = 4.
In figure 7, we present a new version of these bounds for k up to 11, corresponding to a
198-dimensional search space.

Several interesting new features emerge at large k. Most strikingly, the bound appears to
be tangent to the factorization line ∆0 = 2d near d = 1. Figure 8 shows a higher-resolution
plot for small values of d, which displays this behavior more clearly. An approximate fit to

25

FIG. 50 (Color online) Viable regions in the {∆H ,∆S} plane for conformal technicolor models in

the flavor-generic (red) and flavor-optimistic (cross-hatched green) cases, superimposed with the

SO(4) bound. Regions for no tuning, 10%, and 1% tuning are shown in successively lighter shades

of each color, with the largest region corresponding to 1% tuning in each case. Flavor-generic

models are ruled out (Poland et al., 2012).
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Figure 1: Bounds on the scaling dimension of operators in the singlet representation.

of the scalar operators in the adjoint representation of the SU(Nf )V symmetry. Due

to the above mentioned symmetry enhancement, the bound on scaling dimension of the

singlet operator which they could have computed must be identical to the bound on the

scaling dimensions of the singlet operator appearing in the OPE of the scalar operators in

the fundamental (vector) representation in SO(63) symmetric CFTs. We have explicitly

checked this numerically with the same search space dimension (i.e. same ⇤), which

directly shows that our bound is slightly weaker than theirs.

Now, we are going to study the bound on the scaling dimensions of operators in the

symmetric traceless ⇥ symmetric traceless representation and anti-symmetric ⇥ anti-

symmetric representation because these include singlet scalar operators in the SU(Nf )V ,

so one may not be able to exclude the corresponding deformations from the e↵ective

action without fine-tuning if we use the regularization that only preserves the SU(Nf )V

symmetry (such as Wilson fermions or domain wall fermions). Therefore these operators

become dangerously irrelevant if the scaling dimensions become less than four.

The resulting bound on the scaling dimensions can be found in Fig 2 and Fig 3.

Our result shows that in order to avoid these dangerously irrelevant operators, we need

�� > 1.69 or �m < 1.31 from the bound for the symmetric traceless ⇥ symmetric traceless

representation in Fig 2, which is stronger than the one from the anti-symmetric ⇥ anti-

symmetric representation.

6

FIG. 51 (Color online) Upper bound on the dimension of the first singlet operator appearing in

the OPE Φ× Φ̄ for N = 8, as a function of ∆Φ (Nakayama, 2016b).
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Figure 2: Bounds on the scaling dimension of operators in the symmetric traceless ⇥
symmetric traceless representation.
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Figure 3: Bounds on the scaling dimension of operators in the anti-symmetric ⇥ anti-

symmetric representation.
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Figure 3: Bounds on the scaling dimension of operators in the anti-symmetric ⇥ anti-

symmetric representation.

7

FIG. 52 (Color online) Upper bounds on the dimensions of the first TT and AA operators

appearing in the OPE Φ× Φ̄ for N = 8, as a function of ∆Φ (Nakayama, 2016b).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
2

3

4

∆R
= 2∆φ

∆φ

∆R

(a)

151



1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

1

2

3

��

��2

Fig. 2: Lower and upper bounds on the OPE coe�cient of the operator �2 in the � ⇥ � OPE.

The vertical dotted line is at �� = 1.407 and the horizontal dashed line is at the free theory value

��2 =
p

2. The shaded area is excluded. Here we use ⇤ = 21.
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Fig. 3: Upper bound on the OPE coe�cient of an operator �̄� with dimension �
(bound)

�̄�
as a

function of the dimension of �. Here we do not assume that �̄� is the scalar with the lowest

dimension in the OPE �̄⇥ �. The shaded area is excluded. In this plot we use ⇤ = 21.

required to be in the spectrum at this point.

Note that for su�ciently small �� the bound excludes the line that would correspond to a

generalized free theory with �V = 2��+1. This is natural, as our assumption that �2 is absent is
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(b)

FIG. 53 (Color online) (a) Upper bound on the dimension of the operatorR as a function of ∆Φ (Li

et al., 2017b; Poland et al., 2012). The shaded area is excluded. The dashed line at ∆R = 2∆Φ

corresponds to generalized free theories. (b) Lower and upper bounds on the OPE coefficient of

the chiral operator Φ2 entering the Φ×Φ OPE. The vertical dotted line is at ∆Φ = 1.407 and the

horizontal dashed line is at the free theory value λΦΦΦ2 ≡ λ2
φ =
√

2 (Poland and Stergiou, 2015).
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Fig. 7: Lower and upper bounds on the central charge as a function of the dimension of �,

with the assumption that there is no �2 operator and all vector operators but the first one

obey �Vother
� 4.1 (thick upper bound line). The thinner upper bound lines correspond to

�Vother
� 3.1, 3.3, 3.5, 3.7, 3.9, 4 (from left to right). The shaded area is excluded. In this plot we

use ⇤ = 21.

1.404 1.406 1.408 1.41 1.412 1.414 1.416 1.418
0.07

0.08

0.09

0.1

��

c

Fig. 8: Lower and upper bounds on the central charge as a function of the dimension of �, with

the assumptions that there is no �2 operator and that all vector operators but the first one obey

�Vother
� 4.1. The shaded area is excluded. Here we use ⇤ = 21 for the bounds. The green points

are allowed points closest to the corresponding lower bound for ⇤ = 21, 23, . . . , 35 (from left to

right).

conjecture.2 It is also possible that �� is converging to the rational value ��(1) = 10/7.

We finish with some preliminary explorations of the higher spectrum. In Fig. 10 we show the

2If this conjecture is true, the bounds of [24] would then imply that 1
18

 a  1
6
.

7

(b)

FIG. 54 (Color online) (a) Lower bound on the central charge as a function of ∆Φ assuming

that ∆R is consistent with the unitarity bound (thin line) or it saturates the upper bound in

Fig. 53 (thick line). The shaded area is excluded (Li et al., 2017b). (b) Lower and upper bounds

on the central charge as a function of ∆Φ, with the assumption that there is no Φ2 operator.

The upper bounds correspond to different gaps until the second spin-1 superconformal primary

∆`=1 > 3.1, 3.3, 3.5, 3.7, 3.9, 4, 4.1 (from left to right). The shaded area is excluded (Poland and

Stergiou, 2015).

7. Bounds in theories with global symmetries

7.1. Using the crossing relation from hJJJJi

Bootstrap bounds arising from the four-point function hJ(x1)J(x2)J(x3)J(x4)i were obtained

recently in [12]. In fact, [12] considered the more complicated nonabelian case. Here we will

consider just the Abelian case, where J carries no adjoint index, and obtain some further bounds

that have not appeared before.

Since the dimension of J is fixed by symmetry, no external operator dimension can be used

as a free parameter. For the plots in this section we will instead use the dimension of the first

unprotected operator O in the J ⇥ J OPE as the parameter in the horizontal axis. Note that

there is an upper bound to how large that dimension can get, and so our plots will not extend

past that bound. This bound is found here by looking at the value for which the square of the

plotted OPE coe�cient turns negative.

First, we obtain an upper bound on the OPE coe�cient of J in the J ⇥ J OPE. The bound

is shown in Fig. 7. It contains a plateau that eventually breaks down, leading to a violation

of unitarity past �O = 5.246. This is a reflection of the fact that the dimension of the first

unprotected scalar in the J ⇥J OPE cannot be larger than �O = 5.246 consistently with unitarity.

The J ⇥ J OPE also contains contributions arising from the dimension-three vector multiplet

2 2.5 3 3.5 4 4.5 5 5.5
0

2

4

6

�O

cJ

Fig.7: Upper bound on the OPE coe�cient of J in the J ⇥J OPE as a function of the dimension

of the first unprotected scalar in the J ⇥ J OPE. The region to the right of the dotted vertical

line at �O = 5.246 is not allowed. In this plot we use ⇤ = 29.

that contains the stress-energy tensor. We can obtain a bound on the OPE coe�cient cV of these

contributions; see Fig. 8. A lower bound on the central charge c can then be derived from these

results, since c2
V = 1

90c in our conventions. Close to the origin we get c & 0.00064, a bound much

weaker than that in Fig. 2.

23

(a)
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2 2.5 3 3.5 4 4.5 5 5.5
0

2

4

�O

cV

Fig. 8: Upper bound on the OPE coe�cient of the contributions to the J ⇥ J OPE arising from

the leading vector superconformal primary V as a function of the dimension of the first unprotected

scalar in the J ⇥ J OPE. The region to the right of the dotted vertical line at �O = 5.246 is not

allowed. In this plot we use ⇤ = 29.

The bounds in Figs. 7 and 8 were obtained using ⇤ = 29.7 We can also obtain bounds for other

values of ⇤. We do this here letting O saturate its unitarity bound, i.e. choosing �O = 2. The

plots are shown in Fig. 9. As ⇤ gets larger we see observe an approximately linear distribution of

the bounds, which we then fit and extrapolate to the origin. The fits are given by

c
(fit)
J = 3.311 +

39.412

⇤
, c

(fit)
V = 2.256 +

56.279

⇤
. (7.1)

The limit ⇤ ! 1 gives us an estimate of the converged optimal bound that can be obtained.
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Fig. 9: The upper bounds on cJ and cV with �O = 2 as functions of the inverse cuto↵ 1/⇤, and

linear extrapolations of the six points closest to the origin.

7For lower values of ⇤, e.g. ⇤ = 21, we do not find an upper bound on �O, i.e. c2
J and c2

V never turn negative.

The upper bounds for cJ and cV in those cases converge to values that do not change with �O no matter how large

�O becomes.

24

(b)

FIG. 55 (Color online) Upper bounds on the OPE coefficients cO ≡ 2−`/2λJJO appearing in the

J × J OPE arising from (a) J itself or (b) the stress-tensor supermultiplet V , as a function of the

dimension of the first unprotected scalar O in the J×J OPE. The region to the right of the dotted

vertical line at ∆O = 5.246 is not allowed (Li et al., 2017b).

d
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Lower bounds on κeff for SUSY SU(N) singlet currents and comparison to SQCD
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Figure 22: A lower bound on the effective two-point function coefficient κeff = 1/λ2
J of SU(N)

singlet currents appearing in Φi × Φȷ†, where Φi is a chiral scalar transforming in the fundamental
of an SU(N) global symmetry group, for N = 2, . . . , 14. Here we have taken k = 10. We have also
plotted points corresponding to SQCD theories with various values of Nf and Nc. The lines below
each point indicate the distance to the corresponding bound. Many SQCD theories lie within an
O(1) factor from our bounds.

In figure 22 we compare this value of κeff for several SQCD theories to our singlet current
bounds from figure 21. For many values of Nf and Nc, our bound comes within an O(1)
factor of the SQCD value, with the smallest separation at small dimensions d ∼ 1. We
expect our bound to become stronger with the added information of SU(Nf)R symmetry,
perhaps resulting in a hybrid of figures 21 and 20. It will be interesting to compare SQCD
to these new bounds, and understand more about the structure of four-point functions in
this important theory.

7 Conclusions

Let us briefly summarize our main results. In this work we explored bounds on operator
dimensions and OPE coefficients in 4D CFTs and N = 1 SCFTs, building on the previous
studies performed in [49–55]. These bounds can be viewed as the initial stages of a concrete
implementation of a 4D conformal bootstrap program. Here we focused on bounds in the
presence of SO(N) and SU(N/2) global symmetries, which had previously shown themselves
to be more difficult (but not impossible [55]) to obtain using algorithms based on linear

48

FIG. 56 (Color online) Lower bounds on the effective 2pt function coefficient κeff = 1/λ2
ΦΦJ

of SU(N) singlet currents appearing in Φ × Φ̄, where Φ is a chiral scalar of dimension d in

the fundamental of SU(N), for N = 2, . . . , 14. The bounds are normalized to the value κchiral

corresponding to a free chiral superfield. Each dot connected to a bound corresponds to the exact

value in an SQCD theory with the same symmetry (Poland et al., 2012).
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FIG. 57 (Color online) Bound on the dimension of the first unprotected scalar ΦΦ̄ in the Φ × Φ̄

OPE in 3d SCFTs with N = 2 supersymmetry (Bobev et al., 2015b).

where we use light cone coordinates

PA =
�
P+, P�, P a

�
, (2.2)

with metric given by4

P · P ⌘ ⌘AB PAPB = �P+P� + �ab P aP b . (2.3)

Here and below, we use capital letters to denote embedding space (Md+2) quantities and
lower case letters to denote physical space (Rd) quantities.

P
+P

−

Figure 1: Light cone in the embedding space; light rays are in one-to-one correspondence
with physical space points. The Poincaré section of the cone is also shown.

Now, a linear SO(d+1, 1) transformation of Md+2 will map null rays into null rays, and
via Eq. (2.1) this defines a map of the physical space Rd into itself, which turns out to be
a conformal transformation in the usual sense. Moreover, every conformal transformation
can be realized this way [14].

Next we should establish the correspondence between fields on Rd and Md+2, which is
done as follows. Consider a field FA1...Al

(P ), a tensor of SO(d + 1, 1), with the following
properties:

1. Defined on the cone P 2 = 0.

2. Homogeneous of degree ��: FA1...Al
(�P ) = ���FA1...Al

(P ), � > 0.

3. Symmetric and traceless.

4. Transverse: (P · F )A2...Al
⌘ PAFAA2...Al

= 0.

4Here �ab ! ⌘ab when Wick-rotating to the Minkowski spacetime signature.

4

FIG. 58 (Color online) The lightcone in the embedding space; light rays are in one-to-one

correspondence with points of Rd. The Poincaré section of the cone is also shown. Figure from

Costa et al. (2011b).
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TABLES

Nd,` Reference

`!
(−2)`(d/2−1)`

Dolan and Osborn (2001b, 2004),

Rattazzi et al. (2008),

Penedones et al. (2016), this

review

`!
(d−2)`

Dolan and Osborn (2011),

Hogervorst and Rychkov (2013),

El-Showk et al. (2012, 2014b),

Costa et al. (2016b),

JuliBoots (Paulos, 2014b), cboot

(Ohtsuki, 2016)

(−1)``!
4∆(d/2−1)`

Kos et al. (2014a, 2015b, 2016), Li

et al. (2017b)

PyCFTBoot (Behan, 2017a)

`!
(d/2−1)`

Poland et al. (2012), Poland and

Stergiou (2015)

`!
4∆(d−2)`

Kos et al. (2014b)

Mathematica notebook

(Simmons-Duffin, 2015b)

(−1)``!
(d/2−1)`

Simmons-Duffin (2017c)

TABLE I Summary of various conformal block normalizations Nd,`, Eqs. (52, 62), used in the

literature.

O Z2 ` ∆ fσσO fεεO
ε + 0 1.412625(10) 1.0518537(41) 1.532435(19)

ε′ + 0 3.82968(23) 0.053012(55) 1.5360(16)

+ 0 6.8956(43) 0.0007338(31) 0.1279(17)

+ 0 7.2535(51) 0.000162(12) 0.1874(31)

Tµν + 2 3 0.32613776(45) 0.8891471(40)

T ′µν + 2 5.50915(44) 0.0105745(42) 0.69023(49)

+ 2 7.0758(58) 0.0004773(62) 0.21882(73)

Cµνρσ + 4 5.022665(28) 0.069076(43) 0.24792(20)

+ 4 6.42065(64) 0.0019552(12) −0.110247(54)

+ 4 7.38568(28) 0.00237745(44) 0.22975(10)

+ 6 7.028488(16) 0.0157416(41) 0.066136(36)

O Z2 ` ∆ fσεO -

σ − 0 0.5181489(10) 1.0518537(41)

σ′ − 0 5.2906(11) 0.057235(20)

− 2 4.180305(18) 0.38915941(81)
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− 2 6.9873(53) 0.017413(73)

− 3 4.63804(88) 0.1385(34)

− 4 6.112674(19) 0.1077052(16)

− 5 6.709778(27) 0.04191549(88)

TABLE II Stable operators in the critical 3d Ising model with dimensions ∆ 6 8 (Simmons-Duffin,

2017c). Conventional names are shown in the leftmost column when available. Errors in bold are

rigorous. All other errors are non-rigorous but, in our opinion, realistic. See Eq. (123) for the

central charge prediction from the same study. Because we have chosen a different conformal block

normalization convention, the OPE coefficients are related to our convention by λijO = 2`/2fijO
(see Table I).

O(2) O(3)

∆φ 0.51926(32) 0.51928(62)

∆s 1.5117(25) 1.5957(55)

λsss/λφφs 1.205(9) 0.953(25)

λφφs 0.68726(65) 0.5244(11)

λsss 0.8286(60) 0.499(12)

∆t 1.2357(33) 1.210(6)

CJ/C
free
J 0.9050(16) 0.9065(27)

TABLE III Bootstrap results for the operator dimensions and OPE coefficients in the critical

O(2) and O(3) models (see Secs. V.C.3, V.C.4).
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