
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Colloquium: Roper resonance: Toward a solution to the fifty
year puzzle

Volker D. Burkert and Craig D. Roberts
Rev. Mod. Phys. 91, 011003 — Published 14 March 2019

DOI: 10.1103/RevModPhys.91.011003

http://dx.doi.org/10.1103/RevModPhys.91.011003


Colloqium. Roper resonance: Toward a solution to the fifty year puzzle

Volker D. Burkert∗

Thomas Jefferson National Accelerator Facility,
Newport News, Virginia 23606,
USA

Craig D. Roberts†

Physics Division,
Argonne National Laboratory,
Argonne, Illinois 60439,
USA

(Dated: 20 November 2018)

Discovered in 1963, the Roper resonance appears to be an exact copy of the proton except

that its mass is 50% greater and it is unstable. These features of the Roper have been

very difficult to explain so that for half a century this lightest excited state of the proton

has defied understanding. The last decade has presented a new challenge, viz. precise

information on the proton-to-Roper electroproduction transition form factors. Reaching

to momentum transfer Q2 ≈ 4.5 GeV2, the data probe a domain within which hard

valence-quark degrees-of-freedom could be expected to determine form factor behavior.

An explanation of the Roper should combine an understanding of all these things. This

is a prodigious task, but a ten-year international collaborative effort, involving experi-

mentalists and theorists, has presented a candidate solution to the puzzle. Namely, the

observed Roper is at heart the proton’s first radial excitation, consisting of a dressed-

quark core augmented by a meson cloud that reduces the core mass by approximately

20% and materially alters its electroproduction form factors on Q2 < 2m2
N , where

mN is the proton’s mass. We describe the experimental developments which enabled

electroproduction data to be procured within a domain that is the purview of strong

quantum chromodynamics [QCD], thereby providing challenges and opportunities for

modern theory; and survey the developments in reaction models and QCD theory that

have enabled this picture of the Roper resonance to be drawn.
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I. INTRODUCTION

The hydrogen atom played a crucial role in the devel-
opment of the modern approach to fundamental interac-
tions; but it required more than merely knowledge of the
ground state to spur the breakthroughs. A chart of the
hydrogen atom spectrum, i.e. the excited states, was nec-
essary to validate the jump to quantum mechanics via the
Bohr model (Bohr, 1913); and discovery of the Lamb shift
between the 2S1/2 and 2P1/2 levels within that spec-
trum (Lamb and Retherford, 1947) was critical to forcing
the steps from the Dirac equation (Dirac, 1928) to quan-
tum electrodynamics [QED] (Feynman, 1966; Schwinger,
1982; Tomonaga, 1966).

The same has been true in the development of quantum
chromodynamics [QCD], the strong interaction piece of
the Standard Model of Particle Physics, which emerged
more than forty years ago from an array of distinct ideas
and discoveries (Marciano and Pagels, 1978, 1979). Ow-
ing to the existence of three readily-accessible “flavors”
of lighter quarks, the spectrum of ground-state strongly-
interacting particles (hadrons) revealed a great deal,
leading to the quark model (Gell-Mann, 1964; Zweig,
1964) with its wide range of successful predictions. How-
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ever, the first excited state of the proton did not fit the
standard picture. This state, the Roper resonance, was
discovered in 1963 (Adelman, 1964; Auvil et al., 1964;
Bareyre et al., 1964; Roper, 1964; Roper et al., 1965);
and its characteristics have been the source of great puz-
zlement since that time.

The Roper is the lightest excitation of the proton; and
the proton is arguably the most fundamental bound-state
in Nature, being simultaneously the first hadron and
the first nucleus discovered (Geiger and Marsden, 1909;
Rutherford, 1911), and seemingly absolutely stable (Tan-
abashi et al., 2018). The Roper is therefore a benchmark;
and no claim that the Standard Model is understood can
be sustained until a resolution is found to the mystery
that surrounds the nature of this first excited state of
the proton.

We begin, therefore, with a statement of the Roper’s
simplest characteristics: it is a J = 1/2 positive-
parity resonance with pole mass ≈ 1.37 GeV and width
≈ 0.18 GeV (Tanabashi et al., 2018). In the spec-
trum of nucleon-like states, i.e. baryons with isospin1

I = 1/2, the Roper resonance lies about 0.4 GeV above
the ground-state nucleon and 0.15 GeV below the first
J = 1/2 negative-parity state, which has roughly the
same width. Today, the levels in this spectrum are la-
belled thus: N(mass) JP . Hence, the ground-state nu-
cleon is denoted N(940) 1/2+, the Roper resonance as
N(1440) 1/2+, and the negative-parity state described
above is N(1535) 1/2−.

The search for an understanding of the Roper reso-
nance is the highest profile case in a long-running effort
to chart and explain the spectrum and interactions of
strong interaction bound states. The importance of this
effort has long been recognized. Indeed, baryons and
their resonances play a central role in the existence of
our universe and ourselves; and therefore (Isgur, 2000):
“. . . they must be at the center of any discussion of why
the world we actually experience has the character it does.
I am convinced that completing this chapter in the history
of science will be one of the most interesting and fruitful
areas of physics for at least the next thirty years.”

QCD, which should describe all hadrons and, ulti-
mately, the properties of every atomic nucleus, is the the-
ory of gluons (gauge fields) and quarks (matter fields). It
is conceptually simple and can be expressed compactly in
just one line, with two definitions (Wilczek, 2000); and
yet, nearly four decades after its formulation, we are still
seeking answers to such apparently simple questions as
what is the proton’s wave function and which, if any,

1 Isospin is a quantum number associated with strong-interaction

bound-states. Its value indicates the number of electric-charge

states that may be considered as (nearly) identical in the absence

of electroweak interactions, e.g. the neutron and proton form an

I = 1/2 multiplet and are collectively described as nucleons.

of the known baryons is the proton’s first radial excita-
tion. Numerous problems remain open because QCD is
fundamentally different from the Standard Model’s other
pieces: whilst a perturbation theory exists and is a power-
ful tool when used in connection with high-energy QCD
processes, it is essentially useless when it comes to de-
veloping an understanding of strong interaction bound
states built from light quarks.

The study of light-hadron properties is a problem in
strong-QCD [sQCD], viz. the body of experimental and
theoretical methods used to probe and map the infrared
domain of Standard Model physics. Here, emergent phe-
nomena, such as gluon and quark confinement and dy-
namical chiral symmetry breaking [DCSB], play the dom-
inant role in determining all observables of the theory.
The nature of sQCD, and its contemporary methods and
challenges will become apparent as we recount the his-
tory of the Roper resonance and the recent developments
which have enabled a coherent picture of this system to
emerge and, by analogy, of an array of related resonances.

II. CONSTITUENT QUARK MODEL EXPECTATIONS

Theoretical speculations on the nature of the Roper
resonance followed immediately upon its discovery. For
instance, it was emphasized that the enhancement ob-
served in experiment need not necessarily be identified
with a resonant state (Dalitz and Moorhouse, 1965); but
if it is a resonance, then it has structural similarities with
the ground-state nucleon (Moorhouse, 1966).

The Roper was found during a dramatic period in the
development of hadron physics, which saw the appear-
ance of “color” as a quantum number carried by “con-
stituent quarks” (Greenberg, 1964), the interpretation of
baryons as bound states of three such constituents (Gell-
Mann, 1964; Zweig, 1964), and the development of non-
relativistic quantum mechanical models with two-body
potentials between constituent quarks that were tuned to
describe the baryon spectrum as it was then known (Hey
and Kelly, 1983). Owing to their mathematical proper-
ties, harmonic oscillator potentials were favored as the
zeroth-order term in the associated Hamiltonian:

H0 = T + U0 , T =

3∑
i=1

p2
i

2Mi
, U0 =

3∑
i<j=1

1
2Kr

2
ij , (II.1)

where pi are the constituent-quark momenta, rij are
the associated two-body separations, and spin-dependent
interactions were treated as [perturbative] corrections.
The indices in Eq. (II.1) sample the baryon’s constituent-
quark flavors so that, e.g. in the proton, {1, 2, 3} ≡ {U =
Up, U = Up, D = Down}, and K is a common “spring
constant” for all the constituents. If one assumes that
all three constituent-quarks have the same mass, viz.
M1 = M2 = M3, then this Hamiltonian produces the
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FIG. 1 Blue solid lines: level ordering produced by the

Hamiltonian in Eq. (II.1). The (56′, 0+) level represents a su-

permultiplet that is completed by the states in the following

representations of SU(3) × O(3): (56, 2+), (20, 1+), (70, 2+),

(70, 0+). Green dashed lines and shaded bands: pole-mass

and width of the nucleon’s two lowest-lying J = 1/2 exci-

tations, determined in a wide ranging analysis of available

data (Kamano et al., 2013). For the purposes of this illustra-

tion, ~ω is chosen so that the proton-N(1535) 1/2− splitting

associates the N(1535) 1/2− state with the (70, 1−) super-

multiplet, as suggested in quantum mechanics by its spin and

parity.

level ordering in Fig. 1. [A similar ordering of these low-
lying levels is also obtained with linear two-body poten-
tials (Richard, 1992).]

It is evident in Fig. 1 that the natural level-ordering ob-
tained with such potential models has the first negative-
parity ∆L = 1 angular momentum excitation of the
ground state three-quark system – the N(1535) 1/2− –
at a lower energy than its first radial excitation. If the
Roper resonance, N(1440)1/2+, is identified with that ra-
dial excitation, whose quantum numbers it shares, then
there is immediately a serious conflict between exper-
iment and theory. However, this ignores the “pertur-
bations”, i.e. corrections to H0, which might describe
spin-spin, spin-orbit, and other kindred interactions, that
can eliminate the degeneracies in n ≥ 2 harmonic oscil-
lator supermultiplets. [There are no such degeneracies
in the n = 0, 1 supermultiplets.] It was subsequently
proved (Gromes and Stamatescu, 1976; Isgur and Karl,
1979) that given any anharmonic perturbation of the
form

∑
i<j U(rij), then at first-order in perturbation the-

ory the n = 2 supermultiplet is always split as depicted
in Fig. 2, where ∆ is a measure of the shape of the poten-
tial. In practice, there is always a value of ∆ for which the
(56′, 0+) [Roper] state is shifted below the N(1535) 1/2−.
Typically, however, the value is so large that one must
question the validity of first-order perturbation theory
(Isgur and Karl, 1979).

Notwithstanding such difficulties, at this time it was
not uncommon for practitioners to imagine that such

(56',0+)

(70,0+)
(56,2+)

(70,2+)

(20,1+)E0

E0-Δ

0.5 Δ

0.1 Δ

0.2 Δ

0.2 Δ

FIG. 2 If an arbitrary anharmonic potential, restricted only

insofar as it can be written as a sum of two-body terms, is

added to H0 in Eq. (II.1), then at first order in perturbation

theory the n = 2 harmonic oscillator supermultiplet is split

as indicated here. [E0 is roughly the original (56′, 0+) energy

and ∆ is a measure of the shape of the potential].

models were providing a realistic picture of the baryon
spectrum and, in fact, they were a “phenomenal phe-
nomenological success” (Hey and Kelly, 1983). Such con-
clusions were premature, as made clear by Sec. III herein
and also the vast array of novel experimental results from
the Belle, BaBar, BESIII and LHCb collaborations (Aaij
et al., 2015; Braaten, E., 2016; Shen, C.-P., 2016), which
reveal states that cannot be explained by quark models.

This period of enthusiasm coincided with the “discov-
ery” of QCD (Marciano and Pagels, 1978, 1979). Some of
its peculiar features had been exposed on the perturba-
tive domain (Gross, 2005; Politzer, 2005; Wilczek, 2005),
but the spectrum of bound-states it supported could not
then be determined. (It may still be said today that
the complete spectrum of bound states supported by real
QCD, i.e. in the presence of dynamical quarks with real-
istic values for their current masses, is unknown.)

In the absence of approaches with a direct QCD
connection, studies of quantum mechanical constituent
quark models [CQMs] continued. In relation with the
Roper resonance it was found that within a broad class
of phenomenological potentials, the negative-parity or-
bital excitation of the three-quark ground-state is always
lighter than the L = 0 radial excitation (Høgaasen and
Richard, 1983; Richard, 1992). This means that the or-
dering in Fig. 2 is an artifact of first-order perturbation
theory, which is unreliable when the leading correction is
comparable to the value of ~ω associated with H0; and,
moreover, that the ordering of the nucleon’s low-lying ex-
citations is incorrect in a wide array of such constituent-
quark models (Capstick and Roberts, 2000; Crede and
Roberts, 2013; Giannini and Santopinto, 2015).

The difficulty in providing a sound theoretical explana-
tion of the Roper resonance was now becoming apparent.
In fact, at this point it was considered plausible that the
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N(1440) 1/2+ might not actually be a state generated by
three valence quarks. It was also conjectured, e.g. that
the Roper might be a breathing mode of the ground-
state nucleon, if the latter is realized as a topological soli-
ton (Kaulfuss and Meissner, 1985; Mattis and Karliner,
1985); and the notion was also entertained that it may
be a hybrid, viz. a system with a material valence-gluon
component or, at least, that the Roper might contain a
substantial hybrid component (Barnes and Close, 1983;
Capstick and Page, 2002; Li et al., 1992).

The appearance of QCD refocused attention on some
prominent weaknesses in the formulation of CQMs. In
particular, their treatment of constituent-quark motion
within a hadron as nonrelativistic, when calculations
showed 〈pi〉 ∼Mi, where 〈pi〉 is the mean-momentum of
a bound constituent-quark; and the use of nonrelativis-
tic dynamics, e.g. the omission of calculable relativistic
corrections to the various potential terms, which would
normally become energy-dependent. Consequently, a rel-
ativized constituent-quark model was developed (God-
frey and Isgur, 1985) and applied to the baryon spec-
trum (Capstick and Isgur, 1986); but these improvements
did not change the ordering of the energy levels, i.e. the
low-lying excitations of the nucleon were still ordered
as depicted in Fig. 1. This remains true even within a
relativistic field theory framework that employs instan-
taneous interquark interactions to compute the baryon
spectrum (Löring et al., 2001); namely, a three-body term
expressing linear confinement of constituent-quarks and
a spin-flavor dependent two-body interaction to describe
spin-dependent mass splittings.

The QCD-inspired CQMs described above all assume
that interquark dynamics derives primarily from gluon-
related effects. An alternative is to suppose that the
hyperfine interaction between constituent-quarks is pro-
duced by exchange of the lightest pseudoscalar mesons
(Glozman and Riska, 1996), i.e. the pseudo–Nambu-
Goldstone modes: π-, K- and η-mesons, in which case
the hyperfine interaction is flavor-dependent, in contrast
to that inferred from one-gluon exchange. Using alge-
braic arguments, one may demonstrate that this sort of
Goldstone-boson-exchange (GBE) hyperfine interaction
produces more attraction in systems whose wave func-
tions possess higher spin-flavor symmetry. Such dynam-
ics can thus lead to an inversion of the excited state levels
depicted in Fig. 1, so that the Roper resonance, viewed as
the lowest radial excitation of a three constituent-quark
ground state, lies below the N(1535) 1/2−, the first or-
bital excitation of that system. This inversion of levels is
a positive feature of the model; and it hints that meson-
like correlations should play a role in positioning states
in the baryon spectrum. [Similar conclusions may be
drawn from analyses of unquenched CQMs (Julia-Diaz
and Riska, 2006).]

On the other hand, a GBE picture of baryon structure
can only be figurative, at best. All mesons are compos-

ite systems, with radii that are similar in magnitude to
those of baryons; and hence one-boson exchange between
constituent-quarks cannot be understood literally (Chen
et al., 2017). A deeper class of questions is relevant to all
such CQMs. Namely, in the era of QCD: can any con-
nection be drawn between that underlying theory and
the concept of a constituent quark; can the interactions
between the lightest quarks in nature veraciously be de-
scribed by a potential, of any kind; and notwithstanding
the challenges they face in describing the Roper reso-
nance, do their apparent successes in other areas yield
any sound insights into strong interaction phenomena?
At present, each practitioner has their own answers to
these questions. Our view is that CQMs continue to be
valuable part of the sQCD toolkit.

III. ROPER RESONANCE IN EXPERIMENT

A. Sparse Data

One source of the difficulty in understanding the Roper
resonance is the quality of the data that was available in
the previous millennium. Illustrated by Fig. 3, it was
poor owing to limitations in sensitivity to the channels
γp → π0p and ep → eπ0p that were typically employed
in analyses of the photo- and electrocoupling helicity am-
plitudes and transition form factors. Such data could
not reasonably be used to distinguish between competing
theoretical models of the Roper resonance. It was thus
evident, given that physics is an empirical science, that
a key to resolving the conundrum was more and better
data, i.e. to replace the limited data available in the pre-
vious millennium with a much larger set of high-precision
data. This was a strong motivation for a new experimen-
tal program at what is now known as the Thomas Jef-
ferson National Accelerator Facility [JLab], which began
operations in 1994 and was then called the Continuous
Electron Beam Accelerator Facility [CEBAF].

B. Electroproduction Kinematics

The data in Fig. 3 were obtained in single-pion photo-
and electroproduction processes: eN → eπN . The pro-
duction of a J = 1/2+ resonance in the intermediate
part of such reactions is described by an electromagnetic
current that is completely expressed by two form factors:

ūf (Pf )
[
γTµ F

∗
1 (Q2) +

1

mfi
σµνQνF

∗
2 (Q2)

]
ui(Pi) , (III.1)

where: ui, ūf are, respectively, Dirac spinors describing
the incoming/outgoing baryons, with four-momenta Pi,f
and masses mi,f so that P 2

i,f = −m2
i,f ; Q = Pf − Pi;

mfi = (mf + mi); and γT · Q = 0. In terms of these
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FIG. 3 Data on the transverse [left panel] and longitudi-

nal [right] Roper resonance photo- and electrocoupling helic-

ity amplitudes, Eqs. (III.2), as they were available in the last

millennium. Legend. Data: open [red] circle – 1998 estimate

of A1/2 at the photoproduction point (Caso et al., 1998) and

error bar [gray] – our assessment of the true uncertainty in

this value at that time; and solid squares and short-dashed

[cyan] curves – results from a fixed-t dispersion relation fit

(Gerhardt, 1980), where the error bars on the squares are our

estimate of the systematic uncertainty. Model results: long-

dashed [red] curves – non-relativistic quark model (Close and

Li, 1990; Koniuk and Isgur, 1980) [incompatible with then-

existing data]; dotted curve [purple, left panel] – relativized

quark model (Warns et al., 1990); and solid curve [green] –

model constructed assuming the Roper is a hybrid system,

constituted from three constituent-quarks plus a type of gluon

excitation (Li et al., 1992), wherewith the longitudinal ampli-

tude vanishes. Ordinate expressed in units of 10−3GeV −1/2.]

quantities, the helicity amplitudes in Fig. 3 are:

A 1
2
(Q2) = c(Q2)

[
F ∗1 (Q2) + F ∗2 (Q2)

]
, (III.2a)

S 1
2
(Q2) =

|q|√
2
c(Q2)

[
F ∗1 (Q2)

mfi

Q2
− F ∗2 (Q2)

mfi

]
, (III.2b)

with Q2
± = Q2 + (mf ±mi)

2, K = (m2
f −m2

i )/(2mf ),

c(Q2) =

[
αemπQ

2
−

mfmiK

] 1
2

, |q| =

√
Q2
−Q

2
+

2mf
, (III.3)

where |q| is the magnitude of the virtual-photon three-
momentum in the resonance rest-frame.

The dominant Roper decay is N(1440) → Nπ, where
the neutron+π+ (nπ+) channel is most prominent. It
also couples to the two-pion channel, being there most
conspicuous in N(1440) → p π+π−, where p labels the
proton. By design, the CEBAF Large Acceptance Spec-
trometer [CLAS] at JLab was ideally suited to measuring
both these reactions in the same experiment, simultane-
ously employing the polarized high-precision continuous-
wave electron beam at energies up to 6 GeV. This capa-

FIG. 4 Kinematics of π+ electroproduction from a proton.

bility provided the CLAS Collaboration with a consid-
erable advantage over earlier experiments because mea-
surements and extractions of Roper resonance observ-
ables could be based on the analysis of complete centre-
of-mass angular distributions and large energy range, and
cross-checked against each other in different channels.

A typical kinematics choice for the reaction ep→ enπ+

is depicted in Fig. 4: the incoming and outgoing electrons
define the scattering plane; the π+ and neutron momen-
tum vectors define the hadronic production plane, char-
acterised by polar angles θπ and θn; and φπ defines the
angle between the production plane and the electron scat-
tering plane. The differential cross-section is then:

d3σ

dEfdΩedΩ
=: Γ

dσ

dΩ
, (III.4)

where Γ is the virtual photon flux:

Γ =
αem

2π2Q2

(W 2 −m2
N )Ef

2mNEi

1

1− ε
. (III.5)

Here: αem is the fine structure constant and mN is the
nucleon mass; W is the invariant mass of the hadronic fi-
nal state; Q2 = −(ei−ef )2 is the photon virtuality, where
ei and ef are the four-momentum vectors of the initial
and final state electrons, respectively, and Ei and Ef are
their respective energies in the laboratory frame; ε is the
polarization factor of the virtual photon; and Ωe and Ω
are the electron and the pion solid angles. The unpolar-
ized differential hadronic cross-section has the following
φπ dependence:

dσ

dΩ
= σL+T + εσTT cos 2φπ +

√
2ε(1 + ε)σLT cosφπ ,

(III.6)
with the φπ-independent term defined as σL+T = σT +
εσL. As distinct from photoproduction, the virtual pho-
ton in electroproduction has both transverse and longitu-
dinal polarizations. Resolving the associated kinematic
dependences reveals additional information about the
production process, e.g. by measuring the φπ-dependence
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FIG. 5 Cross-section data. Q2 = 0.45 GeV2 (left panels) and

Q2 = 0.60 GeV2 (right panels); and γ∗p→ π0p (upper panels)

and γ∗p → π+n (lower panels). The curves are results of

global fits to this data using the UIM [solid] and DR [dashed]

approaches. [Details provided elsewhere (Aznauryan et al.,

2005). The ordinate unit is µb.]

of the cross-section in Eq. (III.6), one can isolate the
terms that describe transverse-transverse and transverse-
longitudinal interference.

C. Electroproduction Data at Low Q2

Experiments with CLAS began in 1998. Following
commissioning, the Collaboration took precise data cov-
ering a large mass range from pion threshold up to
W = 1.55 GeV, with nπ+ and p π0 final states at two
values of Q2, pursuing a primary goal of studying the
low-Q2 behavior of the proton-Roper transition. Analy-
sis of the data was a complex and time-consuming task.

Resonance electroexcitation amplitudes are extracted
from exclusive electroproduction data by employing phe-
nomenological reaction models capable of reproducing
the full set of observables measured in theNπ and pπ+π−

channels, subject to general reaction theory constraints,
such as analyticity and unitarity. When analysing nπ+,
pπ0, pη final states, the most frequently used approaches
are the Unitary Isobar Model (UIM) (Aznauryan, 2003;
Drechsel et al., 1999, 2007) and fixed-t dispersion rela-
tions (DRs) (Aznauryan et al., 2005). In both cases,
resonances are described by a relativistic Breit-Wigner
distribution involving an energy-dependent width. Nat-
urally, it is important to implement a good description of
the background contributions. With the UIM approach,
these are described explicitly through inclusion of s- and
t-channel meson exchange processes; whereas in the DR
method they are calculated directly from the s-channel

FIG. 6 First results from CLAS on the Roper helicity ampli-

tudes (Aznauryan et al., 2005) – solid squares. All curves are

results from various types of CQM: solid-bold and solid-thin

– results obtained using, respectively, relativistic and non-

relativistic versions (Capstick and Keister, 1995); dotted –

(Warns et al., 1990); dashed (Cano and Gonzalez, 1998); dot-

dashed, thin – quark-gluon hybrid model (Li et al., 1992); and

dot-dashed – (Tiator et al., 2004). Open circle in left panel –

Estimate at photoproduction point from Ref. (Eidelman et al.,

2004).

resonance terms using dispersion relations. The DR ap-
proach is tightly constrained, but the UIM method, in-
volving more fitting parameters, has greater flexibility.

Employing these schemes, the CLAS collaboration re-
leased an analysis of their low-Q2 data shortly after
the beginning of the new millennium (Aznauryan et al.,
2005). As illustrated by Fig. 5, both the UIM and DR
methods give very similar results; and the Collabora-
tion used the difference between them as an estimate of
systematic uncertainties in the model analysis. In this
way they obtained the helicity amplitudes displayed in
Fig. 6. The results contrast starkly with the pre-2000
data in Fig. 3: now the transverse amplitude shows a
clear zero-crossing near Q2 = 0.5 GeV2, the first time
this had been seen in any hadron form factor or transi-
tion amplitude; and the longitudinal amplitude is large
and positive. The power of precise, accurate data on
the transition form factors is also evident in Fig. 6: the
hybrid (constituent-quark plus gluon) Roper (Li et al.,
1992) and two other constituent-quark models (Tiator
et al., 2004; Warns et al., 1990) are eliminated.

The model most favored by the new data is arguably
that which describes the Roper as a radial excitation of
the nucleon’s quark-core dressed by a soft meson cloud
(Cano and Gonzalez, 1998), where a detailed explana-
tion of this “cloud” is presented in Sec. IV, although the
relativistic-CQM (Capstick and Keister, 1995) remains
viable. Both these calculations predict the zero in the
A1/2 amplitude, although it is achieved through different
mechanisms: the meson cloud is responsible in (Cano
and Gonzalez, 1998) and relativity plays a crucial role
in (Capstick and Keister, 1995). Furthermore, the pre-
dictions made by these two models disagree markedly
at larger Q2, i.e. on the domain within which any soft
meson-cloud component of a resonance should become
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FIG. 7 Lowest moment of the polar-angle dependence in

the Legendre expansion of the total cross-section σT+L for

the nπ+ and p π0 electroproduction final states, where the

solid [red] and dashed [blue] curves represent, respectively,

DR and UIM fits (Aznauryan et al., 2009). Evidently, whilst

the ∆(1232) is the most conspicuous feature at low-Q2 [left

panels], the Roper resonance becomes prominent in the nπ+

final state at large Q2, generating the broad shoulder centered

near W = 1.35 GeV [lower right panel]. N.B. The strong

peak at 1.5 GeV owes to two other resonances: N(1520) 3/2−,

N(1535) 1/2−.

invisible to the probe. This is correlated with the differ-
ing dynamical origins of the A1/2 zero in the two CQMs.
It was now clear that higher-Q2 data are necessary in
order to determine the nature of the Roper resonance.

D. Pushing electroproduction experiments to higher Q2

Using CLAS and the 6 GeV continuous-wave electron
beam at JLab, high-statistics data were subsequently col-
lected and analyzed, extending the kinematic range to
W = 2 GeV and Q2 = 4.5 GeV2 (Aznauryan and Burk-
ert, 2012a; Aznauryan et al., 2009, 2008; Mokeev et al.,
2012, 2016). The new experiments revealed some surpris-
ing aspects of the Roper electroproduction amplitudes,
overturning conclusions that might have been drawn from
the low-Q2 data alone. For example, as highlighted by
Fig. 7, whereas A1/2 is small in the low-Q2 range accessed
by the earlier CLAS data, because it is undergoing a sign
change at Q2 ≈ 0.5 GeV2, and hence the Roper is not
directly visible in the total cross-section, at high-Q2 this
resonance becomes very strong, even dominating over the
∆(1232) on Q2 > 2 GeV2 in the nπ+ final state.

The final data set used in the global fit contained over
120 000 points in ep → e′nπ+ and ep → e′pπ0, measur-
ing differential cross-section, and polarized beam and po-
larized target asymmetries, covering the complete range
of azimuthal and polar angles, and W < 1.8 GeV and
Q2 < 4.5 GeV2. The Roper resonance transverse and lon-
gitudinal electroproduction helicity amplitudes obtained

FIG. 8 Transverse [upper panel] and longitudinal [lower]

Roper resonance electrocoupling helicity amplitudes. Legend:

circles [purple] – analysis of single-pion final states (Aznau-

ryan et al., 2009, 2008); triangles [green] – analysis of ep →
e′π+π−p′ (Mokeev et al., 2012, 2016); square [upper panel,

black] – CLAS Collaboration result at the photoproduction

point (Dugger et al., 2009) and triangle [black] – review of

particle properties global average of this value (Tanabashi

et al., 2018). Square [lower panel, black] – Q2 ' 0.1 GeV2

~ep→ e′~pπ0 measurement (Štajner et al., 2017).

from the complete analysis are displayed in Fig. 8. These
results confirm those obtained in earlier analyses of much
reduced data sets and significantly extend them. Impor-
tantly, the evident agreement between independent anal-
yses of single- and double-pion final states boosts confi-
dence in both. [N.B. New CLAS data on π+π−p elec-
troproduction (Isupov et al., 2017), with nine one-fold
differential cross-sections covering a final hadron invari-
ant mass range W ∈ [1.4, 2.0] GeV and Q2 ∈ [2, 5] GeV2,
will enable this agreement to be tested further.]

E. Roper Resonance: Current Experimental Status

It is appropriate here to summarize the modern
empirical status.

• The Roper [N(1440) 1/2+] is a four-star resonance
with pole mass ≈ 1.37 GeV and width ≈ 0.18 GeV
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(Tanabashi et al., 2018).

• Transverse helicity amplitude, A1/2(Q2):

– increases rapidly as Q2 increases from the real
photon point to Q2 ≈ 2 GeV2;

– changes sign at Q2 ≈ 0.5 GeV2;

– exhibits a maximum value at Q2 ≈ 2 GeV2,
attaining a magnitude which matches or ex-
ceeds that at the real photon point;

– decreases steadily toward zero with increasing
Q2 after reaching its maximum value.

• Longitudinal helicity amplitude, S1/2(Q2):

– maximal near the real photon point;

– decreases slowly as Q2 increases toward
1 GeV2;

– decreases more quickly on Q2 & 1 GeV2.

• Nπ and pπ+π− final states in electroproduction:
The non-resonant contributions to these two final
states are markedly dissimilar and hence very dif-
ferent analysis procedures are required to isolate
the resonant contributions. Notwithstanding this,
the results for the resonant contributions agree on
the domain of overlap, i.e. Q2 ∈ [0.25, 1.5] GeV2.

IV. DYNAMICAL COUPLED CHANNELS
CALCULATIONS

As highlighted in Sec. III, the last twenty years have
seen an explosion in the amount of available data on
the reactions γ(∗)N → πN and γ(∗)N → ππN , which
are particularly relevant to discussions of the Roper res-
onance. As the data accumulated, so grew an apprecia-
tion of the need for a sound theoretical analysis which
unified all its reliable elements. At the beginning of
2006, this culminated with establishment of the Excited
Baryon Analysis Center [EBAC] at JLab (Kamano and
Lee, 2012; Lee, 2007, 2013), whose primary goals were:
to perform a dynamical coupled-channels [DCC] analy-
sis of the world’s data on meson production reactions
from the nucleon in order to determine the meson-baryon
partial-wave amplitudes; and identify and characterise all
nucleon resonances that contribute to these reactions.

In contrast to partial wave analyses, which are model-
independent to some extent, but also, therefore, limited
in the amount of information they can provide about
resonance structure, modern DCC analyses are formu-
lated via a Hamiltonian approach to multichannel reac-
tions (Julia-Diaz et al., 2007; Kamano et al., 2010, 2013;
Rönchen et al., 2013; Suzuki et al., 2010). The Hamilto-
nian expresses model assumptions, e.g. statements about
the masses of bare/undressed baryons [in the sense of
particle versus quasi-particle] and the dominant meson-
baryon reaction channels that transform the bare baryon

into the observed quasi-particle. Naturally, such assump-
tions can be wrong. Equally: the models are flexible;
they can be falsified and thereby improved, given the
vast amount of existing data; and, used judiciously, they
can bridge the gap between data and QCD-connected
approaches to the computation of baryon properties.

The EBAC approach (Matsuyama et al., 2007; Sato
and Lee, 1996), for instance, describes meson-baryon
(MB) reactions involving the following channels: πN ,
ηN and ππN , the last of which has π∆, ρN and σN
resonant components. The excitation of the internal
structure of a given initial-state baryon (B) by a me-
son (M) to produce a bare nucleon resonance, N̄∗, is
implemented by an interaction vertex, ΓMB→N̄∗ . Impor-
tantly, the Hamiltonian also contains energy-independent
meson-exchange terms, vMB,M ′B′ , deduced from widely-
used meson-exchange models of πN and NN scattering.

In such an approach, the features of a given partial
wave amplitude may be connected with dressing of the
bare resonances included in the Hamiltonian (N̄∗), in
which case the resulting N∗ states are considered to be
true resonance excitations of the initial state baryon. On
the other hand, they can also be generated by attrac-
tion produced by the vMB,M ′B′ interaction and channel-
coupling effects, in which case they are commonly de-
scribed as “molecular states” so as to differentiate them
from true resonance excitations. The need to reliably
distinguish between these two different types of systems
in the solution of the coupled channels problem defined
by the model Hamiltonian requires that the form and
features of vMB,M ′B′ must be very carefully constrained
by, e.g. elastic scattering data, throughout the region of
relevance to the resonance production reactions.

Being aware of the challenges associated with under-
standing the Roper resonance, the EBAC collaboration
made a determined effort to produce a sound description
of the spectrum of baryon resonances with masses
below 2 GeV using their DCC model. Refining this
tool by developing an excellent description of 22 348
independent data points, representing the complete
array of partial waves, they arrived at some striking
conclusions (Julia-Diaz et al., 2007; Kamano et al., 2010;
Suzuki et al., 2010), illustrated in Fig. 9:

• From a bare state with mass 1.763 GeV, three dis-
tinct features appear in the P11 partial wave, as
described by Fig. 9. [We will subsequently return
to the interpretation of the bare state.]

• Of the three spectral features that emerge in this
channel, two are associated with the Roper reso-
nance. [This two-pole character of the Roper is
common to many analyses of the scattering data,
including one involving Roper himself (Arndt et al.,
1985) and more recent analyses of πN scattering
data (Arndt et al., 2006; Cutkosky and Wang, 1990;
Döring et al., 2009).]
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FIG. 9 Open circle [black]: mass of the bare Roper state

determined in the EBAC DCC analysis of πN scattering

(Julia-Diaz et al., 2007; Kamano et al., 2010; Suzuki et al.,

2010). This bare Roper state, with full spectral weight at

mass 1.763 GeV, splits and evolves following the inclusion of

meson-baryon final-state interactions, with the trajectories in

this complex-energy plane depicting the motion of the three,

distinct daughter poles as the magnitude of those interactions

is increased from zero to their full strength. The horizon-

tal dashed lines [black] mark the branch cuts associated with

all thresholds relevant to the solution of the DCC scatter-

ing problem in this channel. Filled star [green]: mass of the

dressed-quark core of the proton’s first radial excitation pre-

dicted by a three valence-quark Faddeev equation (Segovia

et al., 2015a).

• The third pole is located farther from the origin
[position C in Fig. 9] and might plausibly be asso-
ciated with the N(1710) 1/2+ state listed by the
Particle Data Group (Tanabashi et al., 2018).

[N.B. (i) The same EBAC DCC analysis identifies a
bare state with mass 1.800 GeV as the origin of the
N(1535) 1/2− and a bare state with mass 1.391 GeV as-
sociated with the ∆(1232) 3/2+ (Julia-Diaz et al., 2007).
(ii) Despite the seemingly large amount of independent
data used, the set is incomplete, e.g. polarized target in-
formation is lacking in some regions. It is conceivable
therefore that such bare masses might shift somewhat
with the acquisition of additional data. This cannot af-
fect the electroproduction form factors, however, because
they are independent of these pieces of the DCC models.]

The trajectories in Fig. 9 emphasize that the coupling
between channels, required to simultaneously describe all
partial waves, has an extraordinary effect with, e.g. nu-
merous spectral features in the P11 channel evolving from
a single bare state, expressed as a pole on the real axis,
through its coupling to the πN , ηN and ππN reaction
channels. Hence, no analysis of one partial wave in iso-
lation can reasonably be claimed to provide an under-
standing of such a complex array of emergent features.

FIG. 10 Illustrative collection of lQCD results for the mass

of the nucleon (lower band) and its lightest positive-parity ex-

citation as a function of m2
π, where mπ is the pion mass used

in the simulation. The results depicted were obtained with

different lattice formulations and varying methods for iden-

tifying the excited state, as described in the source material

(Alexandrou et al., 2015; Edwards et al., 2011; Engel et al.,

2013; Liu, 2017; Liu et al., 2014; Mahbub et al., 2012).

V. RELATIVISTIC QUANTUM FIELD THEORY

A. Lattice-regularized QCD

An introduction to the numerical simulation of lattice-
regularized QCD (lQCD) is provided elsewhere (Gat-
tringer and Lang, 2010); so here we simply note that this
method is a nonperturbative approach to solving QCD
in which the gluon and quark fields are quantized on a
discrete lattice of finite extent, whose intersections each
represent a point in spacetime (Wilson, 1974).

The lQCD approach has provided a spectrum of light
ground-state hadrons that agrees with experiment (Durr
et al., 2008), but numerous hurdles are encountered in
attempting to compute properties of resonance states in
this way (Briceno et al., 2017; Liu, 2017). In connec-
tion with the Roper, which in reality couples strongly to
many final-state interaction [FSI] channels, as indicated
in Fig. 9, these include the following: the challenges of
computing with a realistic pion mass and developing both
a fully-representative collection of interpolating fields and
a valid strategy for handling all contributing final-state
interaction channels, which incorporate the issue of en-
suring that the nucleon’s lowest excitations are properly
isolated from all higher excitations; and the problem of
veraciously expressing chiral symmetry and the pattern
by which it is broken in both the fermion action and the
algorithm used in performing the simulation.

Much needs to be learnt and implemented before these
problems are overcome, so the current status of lQCD
results for the Roper is unsettled. This is illustrated in
Fig. 10, which provides a snapshot of recent results for
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FIG. 11 Existing results for the Dirac [upper panel] and Pauli

[lower] proton-Roper transition form factors computed using

the methods of lQCD (Lin and Cohen, 2012) on anisotropic

lattices with pion masses [in GeV]: 0.39 [red squares], 0.45

[orange triangles], 0.875 [green circles]; and associated spatial

lengths of 3, 2.5, 2.5 fm. Open circles are empirical results

from the CLAS Collaboration (Aznauryan et al., 2009; Dugger

et al., 2009; Mokeev et al., 2012, 2016).

the masses of the nucleon and its lowest-mass positive-
parity excitation. In this image, almost all formulations
of the lQCD problem produce values that extrapolate [as
m2
π is taken toward its empirical value] to a Roper mass

of roughly 1.8 GeV, i.e. to a mass that is 0.4 GeV above
the real part of the empirical value, viz. 1.4 GeV. One
band, though, appears to extrapolate to somewhere near
this empirical value. Contrary to the other formulations,
the fermion action in that case (Liu et al., 2014) possesses
good chiral symmetry properties. Its proponents conjec-
ture (Liu, 2017) that this feature enables the simulation
to better incorporate aspects of the extensive dynami-
cal channel couplings which are known to be important
in explaining and understanding the spectral features of
πN scattering in the P11 channel (Julia-Diaz et al., 2007;
Kamano et al., 2010; Suzuki et al., 2010). This specula-
tion remains unproven, however.

As we have emphasized heretofore, computing a value
[even correct] for the Roper mass is insufficient to validate
a formulation of the Roper resonance problem and its so-
lution. An additional and far more stringent test is an ex-

planation of the pointwise behavior of the transition form
factors measured in electroproduction, Eq. (III.1). The
first such lQCD calculations, which used the quenched
truncation of the theory, are described in (Lin et al.,
2008). More recently, results were obtained with two
light quarks and one strange quark [Nf = 2 + 1] (Lin
and Cohen, 2012). They are depicted in Fig. 11. These
simulations identified the Roper resonance with the first
positive-parity excitation of the nucleon, whose com-
puted mass is roughly 1.8 GeV, and focused on the low-
Q2 domain. Significantly, compared with the quenched
results, the inclusion of Nf = 2 + 1 dynamical fermions
produces a sign change in F ∗2 , located in the same neigh-
borhood as that seen in experimental data. This differ-
ence between quenched and dynamical simulations once
again suggests that meson-baryon (MB) FSIs are a criti-
cal part of the long-wavelength structure of the Roper.

B. Insights from Continuum Analyses

An approach to developing a solution of QCD in the
continuum is provided by the Dyson-Schwinger equations
[DSEs] (Bashir et al., 2012; Chang et al., 2011; Eichmann
et al., 2016b; Horn and Roberts, 2016; Roberts, 2016;
Roberts and Williams, 1994), which define a symmetry-
preserving [and hence Poincaré covariant] framework
with a traceable connection to the QCD Lagrangian. The
challenge in this approach is the need to employ a trun-
cation in order to define a tractable bound-state prob-
lem. Much has been learnt in the past twenty years;
and one may now separate DSE predictions into three
classes: Class-A. model-independent statements about
QCD; Class-B. illustrations of such statements using
well-constrained model elements and possessing a trace-
able connection to QCD; Class-C. QCD-based analyses
whose elements have not been computed using a trunca-
tion that preserves a systematically-improvable connec-
tion with QCD.

The treatment of a baryon as a continuum three–
valence-body bound-state problem became possible fol-
lowing the formulation of a Poincaré-covariant Faddeev
equation (Burden et al., 1989; Cahill, 1989; Cahill et al.,
1989; Efimov et al., 1990; Reinhardt, 1990), which is de-
picted in Fig. 12. The ensuing years have seen studies
increase in breadth and sophistication. In order to under-
stand the current status, it is apt to begin by elucidating
the nature of the individual “bodies” whose interactions
are described by that Faddeev equation.

It is worth opening with an observation, viz. although
it is commonly thought that the Higgs boson is the origin
of mass, that is incorrect: it only gives mass to some very
simple particles, accounting for just 1-2% of the weight of
more complex entities, like atoms and molecules. Instead,
the vast bulk of visible mass is generated dynamically by
interactions in QCD (Wilczek, 2012). This remark is



11

FIG. 12 Poincaré covariant Faddeev equation: a homoge-

neous linear integral equation for the matrix-valued function

Ψ, being the Faddeev amplitude for a baryon of total momen-

tum P = pq + pd, which expresses the relative momentum

correlation between the dressed-quarks and -diquarks within

the baryon. The shaded rectangle demarcates the kernel of

the Faddeev equation: single line, dressed-quark propagator;

Γ, diquark correlation amplitude; and double line, diquark

propagator. Further details are provided in Sec. V.B.

readily substantiated by noting that the mass-scale for
the spectrum of strongly interacting matter is charac-
terized by the proton’s mass, mN ≈ 1 GeV ≈ 2000me,
where me is the electron mass. However, the only appar-
ent scale in chromodynamics is the current-quark mass.
This is the quantity generated by the Higgs boson; but,
empirically, the current-mass is more-than two orders-of-
magnitude smaller (Tanabashi et al., 2018). No amount
of “staring” at the Lagrangian for QCD can reveal the
source of that enormous amount of “missing mass”. Yet,
it must be there; and exposing the character of the Roper
resonance is critical to understanding the nature of strong
mass generation within the Standard Model.

One of the keys to resolving this conundrum is the phe-
nomenon of DCSB (Nambu, 2011), which can be exposed
in QCD by solving the quark gap equation, i.e. the DSE
for the dressed-quark Schwinger function (propagator)
(Roberts and Williams, 1994):

S(p) = Z(p2)/[iγ · p+M(p2)] , (V.1)

where M(p2) is the dressed-quark mass function.
Whether or not DCSB emerges in the Standard Model
is decided by the structure of the gap equation’s kernel.
Hence the basic question is: Just what form does that
kernel take? Owing to asymptotic freedom, the answer
is known on the perturbative domain A = {(p, q) | k2 =
(p − q)2 ' p2 ' q2 & 2 GeV2}. The question thus ac-
tually relates only to the infrared domain, which is a
complement of A , and so resides in sQCD.

The gap equation’s kernel is built from the QCD run-
ning coupling, dressed-gluon propagator and dressed-
gluon-quark vertex. The past two decades have revealed
much about these quantities; and the current state of
understanding can be traced from an array of sources
(Aguilar et al., 2016; Binosi et al., 2017a, 2015, 2017b;
Boucaud et al., 2012). Of particular interest is the fea-
ture that the gluon propagator saturates at infrared mo-
menta, i.e.

∆(k2 ' 0) = 1/m2
g, (V.2)
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FIG. 13 Solid [blue] curve: process-independent running-

coupling α̂PI(k
2) (Binosi et al., 2017b). The shaded [blue]

band bracketing this curve combines a 95% confidence-level

window based on existing lQCD results for the gluon two-

point function with an error of 10% in the continuum analysis

of relevant ghost-gluon dynamics. World data on the process-

dependent effective coupling αg1 , defined via the Bjorken sum

rule (Abe et al., 1995a,b,c, 1996, 1997a,b,c, 1998; Ackerstaff

et al., 1997, 1998; Adolph et al., 2016; Airapetian et al., 1998,

2003, 2007; Alekseev et al., 2010; Alexakhin et al., 2007; An-

thony et al., 1993, 1996, 1999a,b, 2000, 2003; Deur et al., 2007,

2008, 2014; Kim et al., 1998). The shaded [yellow] band on

k > 1 GeV represents αg1 obtained from the Bjorken sum by

using QCD evolution (Altarelli and Parisi, 1977; Dokshitzer,

1977; Gribov and Lipatov, 1972) to extrapolate high-k2 data

into the depicted region (Deur et al., 2007, 2008).

which entails that the long-range propagation charac-
teristics of gluons are dramatically affected by their
self-interactions. Importantly, one may associate a
renormalization-group-invariant gluon mass-scale with
this effect: m0 ≈ 0.5 GeV≈ mN/2 (Binosi et al., 2015,
2017b; Cyrol et al., 2016), and summarize a large body of
work, which began roughly thirty-five years ago (Corn-
wall, 1982), by stating that gluons, although acting as
massless degrees-of-freedom on the perturbative domain,
actually possess a running mass, whose value at infrared
momenta is characterised by m0.

The mathematical tools that have enabled theory to
arrive at this conclusion (Abbott, 1981, 1982; Binosi and
Papavassiliou, 2002, 2004, 2009; Cornwall, 1982; Corn-
wall and Papavassiliou, 1989; Pilaftsis, 1997) can also be
used to compute a process-independent running-coupling,
α̂PI(k

2) (Binosi et al., 2017b). Depicted as the solid [blue]
curve in Fig. 13, this is a new type of effective charge,
which is an analogue of the Gell-Mann–Low effective cou-
pling in QED (Gell-Mann and Low, 1954) because it is
completely determined by the gauge-boson propagator.
The result in Fig. 13 is a parameter-free Class-A predic-
tion, capitalizing on analyses of QCD’s gauge sector un-
dertaken using both continuum methods and numerical
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simulations of lQCD.

The data in Fig. 13 represent empirical information
on αg1 , a process-dependent effective-charge (Grunberg,
1984) determined from the Bjorken sum rule., one of the
most basic constraints on our knowledge of nucleon spin
structure. Sound theoretical reasons underpin the almost
precise agreement between α̂PI and αg1 (Binosi et al.,
2017b), so that the Bjorken sum may be seen as a near di-
rect means by which to gain empirical insight into QCD’s
Gell-Mann–Low effective charge. Given the behavior of
the prediction in Fig. 13, it is evident that the coupling is
everywhere finite in QCD, i.e. there is no Landau pole,
and this theory possesses an infrared-stable fixed point.
Evidently, QCD is infrared finite owing to the dynamical
generation of a gluon mass scale.

As a unique process-independent effective charge, α̂PI

appears in every one of QCD’s dynamical equations of
motion, setting the interaction strength in all cases, in-
cluding the dressed-quark gap equation. It therefore
plays a crucial role in determining the fate of chiral sym-
metry.

The remaining element in the gap equation is the
dressed gluon-quark vertex, Γν . If this vertex were only
weakly modified from its tree-level form, γν , then, with
α̂PI in Fig. 13, chiral symmetry would be preserved in
Nature (Binosi et al., 2017a). It is not; and after nearly
forty years of studying Γν , with numerous contributions
that may be traced from an analysis of Abelian theories
(Ball and Chiu, 1980), continuum and lattice efforts have
revealed just how the vertex is dressed so that DCSB
is unavoidable. Namely, the smooth, infrared-finite cou-
pling depicted in Fig. 13 is strong enough to force nonzero
values for those terms in Γν which usually vanish in the
chiral limit. This seeds a powerful positive feedback chain
so that chiral symmetry is not only broken, but there is
a sense in which it is very difficult to keep the growth
of the dressed-quark mass function, M(p2), within phys-
ically reasonable bounds (Binosi et al., 2017a). Conse-
quently, the gap equation’s solution, Eq. (V.1), describes
a dressed-quark with a dynamically generated running
mass that is large in the infrared: M(p2 ' 0) ≈ 0.3 GeV,
as illustrated in Fig. 14.

It is dressed quarks characterized by the mass func-
tion in Fig. 14 that are the basic elements in the Fad-
deev equation depicted in Fig. 12. Solving this equation
in all allowed channels, one obtains the baryon spectrum
and simultaneously the amplitudes necessary to compute
transitions between ground- and excited-states. As high-
lighted elsewhere (Binosi et al., 2017a; Cloët et al., 2013),
this means that since quarks carry electric charge, ex-
periments involving electron scattering from hadrons can
probe the momentum dependence of this mass function
and also its collateral influences. Measurements at the
upgraded JLab facility will explore a region that is in-
dicated approximately by the shading in Fig. 14, i.e. the
domain of transition from strong- to perturbative-QCD.

FIG. 14 Dressed-quark mass function, M(p) in Eq. (V.1):

solid curves – gap equation results (Bhagwat et al., 2003;

Bhagwat and Tandy, 2006), “data” – numerical simulations

of lQCD (Bowman et al., 2005). The current-quark of pertur-

bative QCD evolves into a constituent-quark as its momentum

decreases. The constituent mass arises from a cloud of low-

momentum gluons attaching themselves to the current-quark.

This is DCSB, the nonperturbative effect that generates a

quark mass from nothing ; namely, it occurs even in the chiral

limit. Notably, the size of M(0) is a measure of the magnitude

of the QCD scale anomaly in n = 1-point Schwinger functions

(Roberts, 2017); and experiments on Q2 ∈ [0, 12] GeV2 at the

upgraded JLab facility will be sensitive to the momentum

dependence of M(p) within a domain that is here indicated

approximately by the shaded region.

Contemporary theory indicates that DCSB is responsi-
ble for more than 98% of the visible mass in the Universe
(Brodsky et al., 2015). Simultaneously, it ensures the
existence of nearly-massless pseudo–Nambu-Goldstone
modes [pions], each constituted from a valence-quark and
-antiquark whose individual Lagrangian current-quark
masses are < 1% of the proton mass (Maris et al., 1998).

Another important consequence of DCSB is less well
known. Namely, any interaction capable of creating
pseudo–Nambu-Goldstone modes as bound-states of a
light dressed-quark and -antiquark, and reproducing the
measured values of their leptonic decay constants, must
also generate strong colour-antitriplet correlations be-
tween any two dressed quarks contained within a nu-
cleon. Although a rigorous proof within QCD cannot
be claimed, this assertion is based upon an accumulated
body of evidence, gathered in two decades of studying
bound-state problems in hadron physics (Segovia et al.,
2015b). No realistic counter examples are known; and the
existence of such diquark correlations is also supported
by lQCD (Alexandrou et al., 2006; Babich et al., 2007).

The properties of such diquark correlations have been
charted. As color-carrying correlations, diquarks are con-
fined (Bender et al., 2002, 1996; Bhagwat et al., 2004).
Additionally, owing to properties of charge-conjugation,
a diquark with spin-parity JP may be viewed as a part-
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ner to the analogous J−P meson (Cahill et al., 1987).
It follows that the strongest diquark correlations are:
scalar isospin-zero, [ud]0+ ; and pseudovector, isospin-
one, {uu}1+ , {ud}1+ , {dd}1+ . Moreover, whilst no pole-
mass exists, the following mass-scales, which express the
strength and range of the correlation, may be associ-
ated with these diquarks (Alexandrou et al., 2006; Babich
et al., 2007; Cahill et al., 1987; Chen et al., 2018; Eich-
mann et al., 2016a; Lu et al., 2017; Maris, 2002) [in GeV]:

m[ud]0+
≈ 0.7− 0.8 , m{uu}1+ ≈ 0.9− 1.1 , (V.3)

with m{dd}1+ = m{ud}1+ = m{uu}1+ in the isospin sym-
metric limit. The nucleon contains both scalar-isoscalar
and pseudovector-isovector correlations: neither can be
ignored and their presence has many observable conse-
quences (Roberts et al., 2013a; Segovia et al., 2014a).

Realistic diquark correlations are also soft and inter-
acting. All carry charge, scatter electrons, and possess an
electromagnetic size which is similar to that of the analo-
gous mesonic system, e.g. (Eichmann et al., 2009; Maris,
2004; Roberts et al., 2011): r[ud]0+

& rπ, r{uu}1+ & rρ,
with r{uu}1+ > r[ud]0+

. As in the meson sector, these
scales are set by that associated with DCSB.

Importantly, these dynamical diquark correlations are
vastly different from the static, pointlike “diquarks”
which featured in early attempts (Lichtenberg and Tassie,
1967; Lichtenberg et al., 1968) to understand the baryon
spectrum and explain the so-called missing resonance
problem, viz. the fact that quark models predict many
more baryons states than were observed in the previous
millennium (Burkert and Lee, 2004). As we have stated,
modern diquarks are soft. They also enforce distinct in-
teraction patterns for the singly- and doubly-represented
valence-quarks within the proton (Roberts, 2016; Roberts
et al., 2013a; Segovia et al., 2014b; Segovia and Roberts,
2016). Nevertheless, the number of states in the spec-
trum of baryons obtained from the Faddeev equation
(Chen et al., 2018; Eichmann et al., 2016a; Lu et al.,
2017) is similar to that found in the three-constituent
quark model, just as it is in lQCD spectrum calculations
(Edwards et al., 2011). [Notably, modern data and re-
cent analyses have already reduced the number of missing
resonances (Anisovich et al., 2017; Burkert, 2012; Crede
and Roberts, 2013; Kamano et al., 2013; Mokeev et al.,
2016; Ripani et al., 2003).]

The existence of these tight correlations between two
dressed quarks is the key to transforming the three
valence-quark scattering problem into the simpler Fad-
deev equation problem illustrated in Fig. 12, without loss
of dynamical information (Eichmann et al., 2010; Segovia
et al., 2015b). The active kernel here describes bind-
ing within the baryon through diquark breakup and ref-
ormation, which is mediated by exchange of a dressed-
quark; and such a baryon is a compound system whose
properties and interactions are largely determined by the
quark+diquark structure evident in Fig. 12.

FIG. 15 Upper panel. Zeroth Chebyshev moment of all S-

wave components in the nucleon’s Faddeev wave function,

which is obtained from Ψ in Fig. 12, by reattaching the

dressed-quark and -diquark legs. Lower panel. Kindred func-

tions for the first JP = 1/2+ excited state. Legend: S1 is

associated with the baryon’s scalar diquark; the other two

curves are associated with the axial-vector diquark; and here

the normalization is chosen such that S1(0) = 1.

This approach to the baryon bound-state problem has
been used to calculate a wide range of nucleon-related
observables (Chang et al., 2013; Eichmann et al., 2016b;
Roberts, 2015; Roberts et al., 2013a; Segovia et al.,
2014b; Segovia and Roberts, 2016; Wilson et al., 2012;
Xu et al., 2015). In particular, in the computation of
the mass and structure of the nucleon and its first radial
excitation (Segovia et al., 2015a). This Class-C analysis
begins by solving the Faddeev equation, to obtain the
masses and Poincaré-covariant wave functions for these
systems, taking each element of the equation to be as
specified in (Segovia et al., 2014b), which provides a suc-
cessful description of the properties of the nucleon and
∆-baryon. With those inputs, the masses are [in GeV]:

nucleon (N) = 1.18 , nucleon-excited (R) = 1.73 . (V.4)

These masses correspond to the locations of the two
lowest-magnitude JP = 1/2+ poles in the three dressed-
quark scattering problem. The associated residues are
the Faddeev wave functions, which depend upon (`2, ` ·
P ), where ` is the quark-diquark relative momentum and
P is the baryon’s total momentum. Figure 15 depicts the
zeroth Chebyshev moment of all S-wave components in
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that wave function, i.e. projections of the form

W (`2;P 2) =
2

π

∫ 1

−1

du
√

1− u2 W (`2, u;P 2) , (V.5)

where u = ` · P/
√
`2P 2. The appearance of a single zero

in S-wave components of the Faddeev wave function as-
sociated with the first excited state in the three dressed-
quark scattering problem indicates that this state is a
radial excitation (Höll et al., 2004; Qin et al., 2012; Ro-
jas et al., 2014). Notably, one may associate a four-vector
length-scale of 1/[0.4GeV] ≈ 0.5 fm with the location of
this zero. [Similar conclusions have been drawn using
lQCD (Roberts et al., 2013b).]

Consider now the masses in Eq. (V.4). As discussed
in connection with Fig. 9, the empirical values of the
pole locations for the first two states in the nucleon
channel are: 0.939 GeV for the nucleon; and two poles
for the Roper, 1.357 − i 0.076, 1.364 − i 0.105 GeV. At
first glance, these values appear unrelated to those in
Eq. (V.4). However, deeper consideration reveals (Eich-
mann et al., 2008, 2009) that the kernel in Fig. 12 omits
all those resonant contributions which may be associated
with the MB FSIs (meson-baryon final-state interactions)
that are resummed in dynamical coupled channels mod-
els (Döring, 2014; Julia-Diaz et al., 2007; Kamano et al.,
2010, 2013; Rönchen et al., 2013; Suzuki et al., 2010) in
order to transform a bare-baryon into the observed state.
The Faddeev equation analysed to produce the results
in Eq. (V.4) should therefore be understood as produc-
ing the dressed-quark core of the bound-state, not the
completely-dressed and hence observable object.

Clothing the nucleon’s dressed-quark core by including
resonant contributions to the kernel produces a physi-
cal nucleon whose mass is ≈ 0.2 GeV lower than that
of the core (Chang et al., 2009; Hecht et al., 2002; Ishii,
1998; Sanchis-Alepuz et al., 2014). Similarly, clothing the
∆-baryon’s core lowers its mass by ≈ 0.16 GeV (Julia-
Diaz et al., 2007). It is therefore no coincidence that
[in GeV] 1.18 − 0.2 = 0.98 ≈ 0.94, i.e. the nucleon
mass in Eq. (V.4) is 0.2 GeV greater than the empirical
value. A successful body of work on the baryon spec-
trum (Lu et al., 2017), and nucleon and ∆ elastic and
transition form factors (Roberts, 2015; Segovia et al.,
2014b; Segovia and Roberts, 2016) has been built upon
this assessment of the impact of omitting resonant con-
tributions and the magnitude of their effects. Hence,
a comparison between the empirical value of the Roper
resonance pole-position and the computed dressed-quark
core mass of the nucleon’s radial excitation is not the
critical test. Instead, it is that between the masses of
the quark core and the value determined for the meson-
undressed bare-Roper. This comparison is presented in
Table I. Evidently, as already displayed in Fig. 9, the
DCC bare-Roper mass agrees with the quark core results
obtained using both a QCD-kindred interaction (Segovia

TABLE I Quark core mass of the Roper resonance deter-

mined using different approaches. Row 1 is the value obtained

using EBAC’s DCC approach; and the remaining three rows

are separate DSE computations. (Masses listed in GeV.)

Approach Roper Quark Core Mass

DCC (Suzuki et al., 2010) 1.76

DSE (1) (Segovia et al., 2015a) 1.73

DSE (2) (Wilson et al., 2012) 1.72

DSE (3) (Lu et al., 2017) 1.82

et al., 2015a) and refined treatments of a vector⊗ vector
contact-interaction (Lu et al., 2017; Wilson et al., 2012).
[It is also commensurate with the value obtained in sim-
ulations of lQCD whose formulation and/or parameters
suppress MB FSIs, Fig. 10.] This is notable because all
these calculations are independent, with just one com-
mon feature, viz. an appreciation that observed hadrons
should realistically be built from a dressed-quark core
plus a meson-cloud.

The agreement in Table I is suggestive but not con-
clusive because the same mass is obtained from the Fad-
deev equation using vastly different basic interactions.
Plainly, the mass alone does not serve as a fine discrim-
inator between theoretical pictures of the nucleon’s first
radial excitation and its possible identification with the
Roper. Critical additional tests are imposed by requiring
that the theoretical picture combine a prediction of the
Roper’s mass with detailed descriptions of its structure
and how that structure is revealed in the momentum de-
pendence of the proton-Roper transition form factors. It
must also combine all this with a similarly complete pic-
ture of the proton, from which the Roper is produced.
As detailed in Sec. III, precise empirical information is
now available on the proton-Roper transition form fac-
tors, reaching momentum transfers Q2 ≈ 4.5 GeV2. At
such scales, these form factors probe a domain where-
upon hard dressed-quark degrees-of-freedom could be ex-
pected to determine their behavior. Finally, to increase
the level of confidence, one should impose an additional
test, requiring that the theoretical picture also explain
all related properties of the ∆+-baryon, which is typi-
cally viewed as the proton’s spin-flip excitation.

With wave functions for the participating states in
hand, computation of the transition form factors in
Eq. (III.1) is a straightforward numerical exercise. In any
computation of such form factors, one must first calcu-
late the analogous elastic form factors for the states in-
volved because the associated values of F1(Q2 = 0) fix
the normalization of the transition. These normaliza-
tions also reveal the diquark content of the bound-states
(Roberts et al., 2013a; Segovia et al., 2014b, 2015a) and
predict that the relative strength of scalar and axial-
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vector diquark correlations in the nucleon and its radial
excitation is the same, with PJ=0×0 = 62 %. However,
the result is sensitive to the quark-quark interaction so
this is a prediction that is tested by experiment. Charge
radii may also be computed from the elastic form factors,
with the result (Segovia et al., 2015a): rΨ

R+/rΨ
p = 1.8,

i.e. a quark-core radius for the radial excitation that
is 80% larger than that of the ground-state. In con-
trast, non-relativistic harmonic oscillator wave functions
yield a value of 1.5 for this ratio. The difference high-
lights the impact of orbital angular momentum and spin-
orbit repulsion, which is introduced by relativity into the
Poincaré-covariant Faddeev wave functions for the nu-
cleon and its radial excitation and increases the size of
both systems. The ratio of magnetic radii is 1.6.

The form factors predicted in (Segovia et al., 2015a) to
describe the transition between the proton and its first
radial excitation are depicted in Fig. 16. The Dirac tran-
sition form factor, F ∗1 , vanishes at x = Q2/m2

N = 0 ow-
ing to orthogonality between the proton and its radial
excitation. The calculation [gray band] agrees quantita-
tively in magnitude and qualitatively in trend with the
data on x & 2. Crucially, nothing was tuned to achieve
these results. Instead, the outcome owes fundamentally
to the QCD-derived momentum-dependence of the prop-
agators and vertices employed in the bound-state and
scattering problems. This point is further highlighted
by the contact-interaction result [red, dot-dashed]: with
momentum-independent masses and vertices, the predic-
tion disagrees both quantitatively and qualitatively with
the data. Experiment is evidently a sensitive tool with
which to chart the nature of the quark-quark interac-
tion and hence discriminate between competing theoret-
ical hypotheses; and it is plainly favouring an interaction
that produces a momentum-dependent quark mass of the
form in Fig. 14, which characterises QCD.

The mismatch on x . 2 between data and the predic-
tion in (Segovia et al., 2015a) is also revealing. As we
have emphasized, that calculation yields only those form
factor contributions generated by a rigorously-defined
dressed-quark core whereas meson-cloud contributions
are expected to be important on x . 2. Thus, the dif-
ference between the prediction and data may plausibly
be attributed to MB FSIs. One can estimate the size of
this correction by recognizing that the dressed-quark core
component of the baryon Faddeev amplitudes should be
renormalized by inclusion of meson-baryon “Fock-space”
components; and an array of analyses indicate that one
may conservatively represent this effect via a 20% reduc-
tion in strength for the quark-core component of the Fad-
deev amplitude (Aznauryan and Burkert, 2016; Bijker
and Santopinto, 2009; Cloët and Roberts, 2008; Eich-
mann et al., 2009). Naturally, since wave functions in
quantum field theory evolve with resolving scale (Efre-
mov and Radyushkin, 1980; Gao et al., 2017; Lepage
and Brodsky, 1979, 1980; Raya et al., 2016), the magni-

FIG. 16 Upper panel – F ∗1 as a function of x = Q2/m2
N .

Legend: Gray band within black curves – dressed-quark core

contribution with up-to 20% Faddeev amplitude renormal-

ization from MB FSIs, implemented according to Eq. (V.6a).

The transition form factor curve with smallest magnitude

at x = 1 has the maximum renormalization. Green band

within green dotted curves – inferred MB FSI contribution.

The band demarcates the range of uncertainty arising from

0 → 20% renormalization of the dressed-quark core. Blue

dashed curve – least-squares fit to the data on x ∈ (0, 5).

Red dot-dashed curve – contact interaction result (Wilson

et al., 2012). Brown long-dashed curve, LF CQM result re-

constructed from the helicity amplitudes in (Aznauryan and

Burkert, 2016) using Eqs. (III.2). Lower panel – F ∗2 (x) with

same legend. Data: circles [blue] (Aznauryan et al., 2009);

triangle [gold] (Dugger et al., 2009); squares [purple] (Mo-

keev et al., 2012, 2016); and star [green] (Tanabashi et al.,

2018).

tude of this effect is not fixed. Instead IMB = IMB(Q2),
where Q2 measures the resolving scale of any probe and
IMB(Q2)→ 0+ monotonically with increasing Q2. More-
over, form factors in QCD possess power-law behaviour,
so it is appropriate to renormalize the dressed-quark core
contributions via the estimate

Fcore(Q2)→ [1− IMB(Q2)]Fcore(Q2) , (V.6a)

IMB(Q2) = [1− 0.82]/[1 +Q2/Λ2
MB ] , (V.6b)

with ΛMB = 1 GeV marking the midpoint of the tran-
sition between the strong and perturbative domains of
QCD as measured by the behaviour of the dressed-
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quark mass-function in Fig. 14. Following this procedure
(Roberts and Segovia, 2016), one arrives at the estimate
of MB FSI contributions depicted in Fig. 16.

The lower panel of Fig. 16 depicts the Pauli form factor,
F ∗2 . All observations made regarding F ∗1 also apply here,
including those concerning the inferred meson-cloud con-
tributions. Importantly, the existence of a zero in F ∗2 is
not influenced by meson-cloud effects, although its pre-
cise location is.

This is an opportune moment to review the picture
of the Roper resonance that is painted by constituent
quark models. Figure 6 emphasized the importance of
relativity in reproducing a zero in F ∗2 , which generates
the zero in A1/2; and the discussion in this subsection has
highlighted that the natural degrees-of-freedom to em-
ploy when studying measurable form factors are strongly-
dressed quasi-particles (and correlations between them).
It is interesting, therefore, that constituent quark mod-
els, formulated using light-front quantization (LF CQMs)
and incorporating aspects of the QCD dressing explained
herein, have been used with success to describe features
of the nucleon-Roper transition (Aznauryan and Burk-
ert, 2012b, 2016; Cardarelli et al., 1997). In these mod-
els, the dressing effects are implemented phenomenolog-
ically, i.e. via parametrizations chosen in order to se-
cure a good fit to certain data; and they do not prop-
erly comply with QCD constraints at large momenta,
e.g. using constituent-quark electromagnetic form fac-
tors that fall too quickly with increasing momentum
transfer (Cardarelli et al., 1997) or a dressed-quark mass
function that falls too slowly (Aznauryan and Burkert,
2012b). Notwithstanding these limitations, the outcomes
expressed are qualitatively significant. This is also il-
lustrated in Fig. 16, which reveals a striking similar-
ity between the DSE prediction for the dressed quark-
core components of the transition form factors and those
computed using a LF CQM that incorporates a run-
ning quark mass [dotted, brown curve] (Aznauryan and
Burkert, 2016). The parameters of the LF CQM model
were adjusted by fitting nucleon elastic form factors on
Q2 ∈ [0, 16] GeV2, allowing room for MB FSIs and es-
timating their impact. Qualitatively, therefore, despite
fundamental differences in formulation, both the DSE
and LF CQM approaches arrive at the same conclusion
regarding the nature of the proton-Roper transition form
factors: whilst MB FSIs contribute materially on x . 2,
a dressed-quark core is exposed and probed on x & 2.

It should be emphasized here that were the Roper a
purely molecular meson-baryon system, in the sense de-
fined in Sec. IV, then the transition form factors would
express an overlap between an initial state proton, which
certainly possesses a dressed-quark core, and a far more
diffuse system. In such circumstances, F ∗1,2 would be
much softer than anything that could be produced by
a final state with a material dressed-quark core. How-
ever, Fig. 16 reveals that the extracted transition form

factors are hard, being explained by scattering from a
three-valence-quark system on x & 2. In addition, as
described in Sec. III, one now has experimental results
on Nπ and π+π−p electroproduction off protons in 21
Q2 bins, covering the range [0.2, 4.5] GeV2; and they are
uniformly described by a unique Roper resonance mass,
and total and partial hadronic decay widths that are
Q2-independent. Together, these observations render a
purely molecular hypothesis untenable.

Finally, given the scope of agreement between experi-
ment and theory in Fig. 16, one should apply a final test,
viz. does the same perspective also deliver a consistent de-
scription of the nucleon and ∆-baryon elastic form factors
and the nucleon-∆ transition? An affirmative answer is
supported by an array of results (Roberts, 2015, 2018;
Segovia et al., 2014b; Segovia and Roberts, 2016).

VI. CONCLUSION

After more than fifty years, a coherent picture connect-
ing the Roper resonance with the nucleon’s first radial
excitation has become visible. Completing this portrait
only became possible following the acquisition and analy-
sis of a vast amount of high-precision nucleon-resonance
electroproduction data with single- and double-pion fi-
nal states on a large kinematic domain of energy and
momentum-transfer, development of a sophisticated dy-
namical reaction theory capable of simultaneously de-
scribing all partial waves extracted from available, re-
liable data, formulation and wide-ranging application of
a Poincaré covariant approach to the continuum bound
state problem in relativistic quantum field theory that
expresses diverse local and global impacts of DCSB in
QCD, and the refinement of constituent quark models so
that they, too, qualitatively incorporate these aspects of
strong QCD. In this picture:

• The Roper resonance is, at heart, the first radial
excitation of the nucleon.

• It consists of a well-defined dressed-quark core,
which plays a role in determining the system’s prop-
erties at all length-scales, but exerts a dominant in-
fluence on probes with Q2 & m2

N , where mN is the
nucleon mass;

• The core is augmented by a meson cloud, which
both reduces the Roper’s core mass by ≈ 20%,
thereby solving the mass problem that was such a
puzzle in constituent-quark model treatments, and,
at low-Q2, contributes an amount to the electropro-
duction transition form factors that is comparable
in magnitude with that of the dressed-quark core,
but vanishes rapidly as Q2 is increased beyond m2

N .

These fifty years of experience with the Roper reso-
nance have delivered lessons that cannot be emphasized
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too strongly. Namely, in attempting to predict and ex-
plain the QCD spectrum, one must: fully consider the im-
pact of meson-baryon final-state interactions (MB FSIs),
and the couplings between channels and states that they
generate; and look beyond merely locating the poles in
the S-matrix, which themselves reveal little structural
information, to also consider the Q2-dependences of the
residues, which serve as a penetrating scale-dependent
probe of resonance composition.

Moreover, the Roper resonance is not unusual. Indeed,
in essence, the picture drawn here is also applicable to
the ∆-baryon; and an accumulating body of experiment
and theory indicates that almost all baryon resonances
can be viewed the same way, viz. as systems possessing
a three-body dressed-quark bound-state core that is sup-
plemented by a meson cloud, whose importance varies
from state to state and whose observable manifestations
disappear rapidly as the resolving power of the probe is
increased. In this connection, it is important to highlight
that CLAS12 at the newly upgraded JLab will be capa-
ble of determining the electrocouplings of most promi-
nent nucleon resonances at unprecedented photon virtu-
alities: Q2 ∈ [6, 12] GeV2 (Carman et al., 2014; Gothe
et al., 2009). Consequently, the associated experimen-
tal program will be a powerful means of validating the
perspective described herein.

Assuming the picture we’ve drawn is correct, then
CLAS12 will deliver empirical information that can ad-
dress a wide range of issues that are critical to our under-
standing of strong interactions (Burkert, 2018), e.g.: is
there an environment sensitivity of DCSB; and are quark-
quark correlations an essential element in the structure
of all baryons? As reviewed herein, existing experiment-
theory feedback suggests that there is no environment
sensitivity for the nucleon, ∆-baryon and Roper reso-
nance: DCSB in these systems is expressed in ways that
can readily be predicted once its manifestation is under-
stood in the pion, and this includes the generation of
diquark correlations with the same character in each of
these baryons. Resonances in other channels, however,
may contain additional diquark correlations, with differ-
ent quantum numbers, and potentially be influenced in
new ways by MB FSIs. Therefore, these channels, and
higher excitations, open new windows on sQCD and its
emergent phenomena whose vistas must be explored and
mapped if the most difficult part of the Standard Model
is finally to be solved.
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Bhagwat, M. S., A. Höll, A. Krassnigg, C. D. Roberts, and

P. C. Tandy, 2004, Phys. Rev. C 70, 035205.

Bhagwat, M. S., M. A. Pichowsky, C. D. Roberts, and P. C.

Tandy, 2003, Phys. Rev. C 68, 015203.

Bhagwat, M. S., and P. C. Tandy, 2006, AIP Conf. Proc. 842,

225.

Bijker, R., and E. Santopinto, 2009, Phys. Rev. C 80, 065210.

Binosi, D., L. Chang, J. Papavassiliou, S.-X. Qin, and C. D.

Roberts, 2017a, Phys. Rev. D 95, 031501(R).

Binosi, D., L. Chang, J. Papavassiliou, and C. D. Roberts,

2015, Phys. Lett. B 742, 183.

Binosi, D., C. Mezrag, J. Papavassiliou, C. D. Roberts, and
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