
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Colloquium: Superheavy elements: Oganesson and beyond
S. A. Giuliani, Z. Matheson, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sadhukhan, B.

Schuetrumpf, N. Schunck, and P. Schwerdtfeger
Rev. Mod. Phys. 91, 011001 — Published 22 January 2019

DOI: 10.1103/RevModPhys.91.011001

http://dx.doi.org/10.1103/RevModPhys.91.011001


Superheavy elements: Oganesson and beyond

S. A. Giuliani, Z. Matheson, W. Nazarewicz, and E. Olsen

Department of Physics and Astronomy and FRIB Laboratory,

Michigan State University,

East Lansing,

Michigan 48824,

USA

P.-G. Reinhard

Institut für Theoretische Physik II,

Universität Erlangen-Nürnberg,

91058 Erlangen,

Germany

J. Sadhukhan

Variable Energy Cyclotron Centre,

Kolkata 700064

Homi Bhabha National Institute,

Mumbai 400094,

India

B. Schuetrumpf

GSI Helmholzzentrum für Schwerionenforschung,

64291 Darmstadt

Institut für Kernphysik,

Technische Universität Darmstadt,

64289 Darmstadt,

Germany

N. Schunck

Nuclear and Chemical Science Division,

Lawrence Livermore National Laboratory,

1



Livermore, California 94551,

USA

P. Schwerdtfeger

Centre for Theoretical Chemistry and Physics,

The New Zealand Institute for Advanced Study,

Massey University Auckland,

0632 Auckland,

New Zealand and

Centre for Advanced Study at the

Norwegian Academy of Science and Letters,

0271 Oslo,

Norway

(Dated: October 16, 2018)

Abstract

During the last decade, six new superheavy elements were added into the

seventh period of the periodic table, with the approval of their names and

symbols. This milestone was followed by proclaiming 2019 the International

Year of the Periodic Table of Chemical Elements by the United Nations

General Assembly. According to theory, due to their large atomic numbers,

the new arrivals are expected to be qualitatively and quantitatively different

from lighter species. The questions pertaining to superheavy atoms and

nuclei are in the forefront of research in nuclear and atomic physics, and

chemistry. This Colloquium offers a broad perspective on the field and

outlines future challenges.
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I. INTRODUCTION

In 2012 and 2016, six new synthetic elements with atomic numbers Z = 113 (Nh, niho-

nium), Z = 114 (Fl, flerovium), Z = 115 (Mc, moscovium), Z = 116 (Lv, livermorium),

Z = 117 (Ts, tennessine), and Z = 118 (Og, oganesson) joined the periodic table (Barber
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et al., 2011; Karol et al., 2016a,b). They were all produced by scientists in the period 1998-

2010 using heavy-ion fusion reactions. The road to their final confirmations took a dedicated

experimental effort worldwide. But how significant were these recent additions? And how

relevant is this to fundamental knowledge of nuclear and electronic shell structure? As we

argue in this Colloquium, there are strong indications that the atoms and nuclei at the

limits of mass and charge have the potential to transform and challenge our understanding

of atomic and nuclear physics, and chemistry.

The science drivers of superheavy element research are aligned with the overarching

questions that motivate much of nuclear and atomic science (NAS Report, 2012): How

did visible matter come into being and how does it evolve? How does subatomic matter

organize itself and what phenomena emerge? Are the fundamental interactions that are basic

to the structure of matter fully understood? The specific questions asked in the context of

superheavy elements are:

• Where do nuclei and elements come from? Can superheavy nuclei be produced in the

cosmos?

• How are superheavy nuclei and atoms made and organized? Do very long-lived super-

heavy nuclei exist in nature?

• What are the heaviest nuclei that can exist? Where does the periodic table of elements

end?

• How can superheavy nuclei and atoms be exploited to reveal the fundamental sym-

metries of nature? What is the interplay between strong and electromagnetic interac-

tions as the product of the fine-structure constant and atomic number approaches one

(αZ → 1)?

• What are the chemical and physical properties of superheavy atoms?

The term “superheavy” usually refers to transactinides – chemical elements with Z ≥ 104

(Hoffman et al., 2000; Seaborg and Loveland, 1990). All currently known superheavy nuclei

are radioactive; they have been synthesized in nuclear reactions by scientists. The current

superheavy territory consists of two disjoint areas. The lower superheavy region includes the

lighter isotopes of elements Z = 110 − 113, which were discovered during 1994-2004 in the
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so-called “cold fusion” reactions involving lead and bismuth targets irradiated by medium-

mass projectiles such as nickel and zinc (Hofmann and Münzenberg, 2000; Münzenberg and

Morita, 2015). The rapid drop in production cross section with Z for cold-fusion reactions (it

drops down to 0.02 picobarn for nihonium) suggested that a different approach to reach even

higher atomic numbers was needed. The new strategy has relied on “hot-fusion” reactions

with the rare 48Ca beam and actinide targets. Relatively large cross sections (in the range of

picobarns) associated with those reactions have enabled the discovery of over fifty isotopes of

new elements with Z = 114−118 during 1998-2010 (Oganessian et al., 2017; Oganessian and

Utyonkov, 2015a). These new isotopes form the upper superheavy region, which is currently

not connected to the lower superheavy region via known nuclear decay chains.

Theoretically, it had been concluded by the end of the 1960s (Myers and Swiatecki, 1966;

Nilsson et al., 1969; Nix, 1970; Sobiczewski et al., 1966), that the existence of the heaviest

nuclei with Z > 104 was primarily determined by shell effects due to the quantum-mechanical

motion of protons and neutrons inside the nucleus. These early calculations predicted the

nucleus with Z = 114, N = 184 to be the center of an island of long-lived superheavy

nuclei with lifetimes ranging from minutes to millions of years, and this is how the term

“island of stability” was coined (Myers and Swiatecki, 1966; Viola and Seaborg, 1966). This

suggestion stayed practically unchallenged until the late 1990s when more refined models,

based on realistic effective interactions, were applied to superheavy nuclei, and revised early

predictions.

The heaviest element studied chemically to date is flerovium. Its relatively long half-life,

1–2 s, enables chemical studies with several atoms/day, which marks the limit of chem-

istry today (Düllmann, 2017b; Türler et al., 2015). The nucleus 294Og, produced in Dubna

(Oganessian et al., 2006) with a ∼0.5 picobarn cross section, marks the current limit of

nuclear charge and mass. It decays to 290Lv by α-decay with a half-life of 0.58 ms (Brewer

et al., 2018), which is currently too short for “atom-at-a-time” chemical studies. As a result,

computing its electronic and nuclear structure is the only option currently available to study

such elements.

There have been a number of reviews on superheavy element research (Ćwiok et al., 2005;

Hofmann, 2015; Hofmann and Münzenberg, 2000; Möller and Nix, 1994; Oganessian et al.,

2017; Oganessian and Utyonkov, 2015a; Schädel, 2015) as well as more popular overviews

(Düllmann and Block, 2018; Nazarewicz, 2018; Oganessian and Rykaczewski, 2015). The
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purpose of this Colloquium is to offer a broad perspective on the field, focused on theoretical

expectations.

II. THE SUPERHEAVY TERRITORY

The superheavy nuclei occupy the upper region of the table of nuclides. As shown in

Fig. 1, the known superheavy nuclei lie on the left flank of the valley of beta stability.

Since those are all proton-rich systems, they can in principle decay by means of electron

capture (EC) or β+ decay, see, e.g., (Heßberger et al., 2016). So far, however, no weak

decay modes have been observed in the upper superheavy region. The main observed decay

modes are alpha decay and spontaneous fission (SF) (Oganessian et al., 2017; Oganessian

and Utyonkov, 2015a), and this is consistent with theoretical estimates (Ćwiok et al., 1996;

Heenen et al., 2015; Möller et al., 1997; Sheng et al., 2014).

As seen in Fig. 1, the territory of superheavy isotopes is vast and primarily unexplored,

except for a small proton-rich corner. The isotopic chain of Og is a case in point. According

to nuclear density functional theory (DFT) (Bender et al., 2003) based on realistic energy

density functionals (Agbemava et al., 2014; Erler et al., 2012a), about 100 isotopes of Og are

expected to exist, between N ≈ 170 (proton drip line) and N ≈ 270 (neutron drip line). The

center of the β-stability valley for Og is predicted at N ≈ 192 (Ćwiok et al., 1996; Heenen

et al., 2015; Möller et al., 1997; Sheng et al., 2014). Since, as discussed later, there are

currently no obvious ways to synthesize neutron-rich superheavy systems, all information

about those nuclei must come from theoretical modeling that involves huge extrapolations.

As far as atomic territory is concerned, the currently known superheavy elements belong

to the seventh period of the periodic table, with Og completing it (Reedijk, 2018). Og

belongs to Group 18, but – as we shall discuss in Sec. VII – strong relativistic effects make

it a very unusual addition to the periodic table. Can the table of nuclides and periodic table

of elements be further extended in charge and mass? This question will be addressed in

Sec. VIII, through various theoretical scenarios.
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III. PROTON AND NEUTRON DENSITIES AND SHELL STRUCTURE

Nucleonic density distributions and their moments contain key information on bulk prop-

erties of nuclei. However, direct experimental information on proton and neutron distribu-

tions and their moments in superheavy nuclei is nonexistent because of their very short

lifetimes. In this respect, experimental laser spectroscopy studies of nuclear charge radii

and quadrupole moments, recently extended to 252−254No (Z = 102), carry great promise

(Düllmann and Block, 2018; Raeder et al., 2018), see also (Backe et al., 2015; Ferrer et al.,

2017; Laatiaoui et al., 2016). However, we still have a long way to go to reach higher atomic

numbers in such studies. For the time being, the new data can be used to test the predictive

power of current nuclear models when it comes to charge radii in the actinide nuclei. This

is done for two different DFT models in Fig. 2. The results are encouraging as they show

that DFT predictions in the region of very heavy nuclei are reliable.

Figure 3 shows density profiles for three Og isotopes. An intriguing feature is the de-

pression of proton density in the nuclear interior. This effect, referred to as semi-bubble

distribution, is driven in superheavy nuclei by strong Coulomb repulsion and manifests itself

foremost in heavy nuclei above Pb (Z = 82). Speculations on such exotic nuclear structures

(bubbles, tori, rings) came up rather early in connection with superheavy nuclei, see, e.g.,

(Davies et al., 1972; Dechargé et al., 1999; Dietrich and Pomorski, 1998; Wong, 1973) and

(Schuetrumpf et al., 2017; Staszczak et al., 2017). The origin of such exotic geometries of

nuclear densities is the mismatch of ranges of two opposing forces: the short-range attrac-

tive nuclear interaction and the long-range Coulomb repulsion. This competition, known

as Coulomb frustration, is also known to produce a great variety of involved phases in

bulk nuclear matter, coined nuclear “pasta” (Bonche and Vautherin, 1981; Fattoyev et al.,

2017; Pethick and Ravenhall, 1995; Sonoda et al., 2008; Williams and Koonin, 1985). The

situation in finite superheavy systems is more subtle. The leading mechanism to release

Coulomb pressure is nuclear fission, see Sec. VI. Superheavy nuclei can be sufficiently long-

lived only by virtue of extra binding through shell effects, and this puts a stringent limit on

the existence of exotic geometries. The example considered in Fig. 3 is on the safe side in

this respect: semi-bubbles in 294,326Og represent stable configurations in spite of significant

quadrupole deformations. (It is interesting to note that the charge distributions of 252,254No

are expected to have appreciable central depressions (Raeder et al., 2018). The computed
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charge radii shown in Fig. 2 take this effect into account.) For discussion of shell effects

related to semi-bubble configurations, see (Afanasjev and Frauendorf, 2005).

As mentioned in the introduction, quantum shell stabilization is the basis for the existence

of superheavy systems. Early studies of shell structure in superheavy nuclei used empirical

shell model potentials (Mosel and Greiner, 1969; Myers and Swiatecki, 1966; Nilsson et al.,

1969; Nix, 1972; Sobiczewski et al., 1966, 1971), see (Ćwiok et al., 1996) for an overview.

These studies were focused on defining new “magic shell closures” beyond 208Pb. However,

as it was realized later through more microscopic studies, in which the Coulomb interaction

was treated self-consistently, the shell structure of superheavy nuclei differs significantly

from that of lighter species.

As discussed in, e.g., (Afanasjev and Frauendorf, 2005; Agbemava et al., 2015; Bender

et al., 2001, 1999; Berger et al., 2003; Ćwiok et al., 1996; Shi et al., 2014b), the general pattern

of single-particle energies undergoes significant changes in superheavy systems. Figure 4

shows the single-particle energies for the doubly-magic nucleus 132Sn and superheavy nuclei

302Og and 472164 predicted with the Skyrme-DFT models SV-min and UNEDF1. (It should

be emphasized that the details of shell structure in superheavy nuclei show strong model

dependence, general features are robust.) While for 132Sn the magic gaps are sizable, around

4 MeV, the neutron gap N = 184 for 302Og is about half that size. This is even more

pronounced for the proton spectra where well isolated shell gaps can hardly be found. First,

the level density of single-particle states is large; in fact it grows faster than expected from

oscillator scaling A1/3 (Agbemava et al., 2015). Consequently, small changes in theoretical

modeling can impact shell structure substantially. Second, the shell structure of superheavy

nuclei is influenced by Coulomb frustration and the concept of magic shell gaps fades away.

This phenomenon of shell diffusion has also been analyzed in (Jerabek et al., 2018) where

it was demonstrated that the nucleon localization functions of superheavy nuclei approach

the Fermi-gas limit in the valence region.

As seen in Fig. 4, high-j shells tend to cluster, which results in regions of quantum

stabilization. Actually, the presence of a central depression strongly affects high-j orbits

due to their large single-particle radii (Afanasjev and Frauendorf, 2005; Ćwiok et al., 1996;

Dechargé et al., 1999; Dechargé et al., 2003; Pei et al., 2005). The proton level scheme

for 302Og in Fig. 4 shows a few low-j states near the Fermi level, which inhibits strict

shell closure but still maintains a low level density (due to low multiplicities), hence large
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shell stabilization. On the other hand, the low-j intruders reduce the impact of the i13/2

state to drive bubble shapes. The situation looks extremely favorable for the hypothetical

superheavy nucleus 472164 where high-j states cluster around the Fermi level. Its proton

density shows a well developed semi-bubble with a central density coming down to 66% of

the maximum density (Schuetrumpf et al., 2017).

In spite of the fact that current self-consistent nuclear models do not have spectroscopic

quality when it comes to the description of known levels in heavy nuclei, most of those

models predict shell-stabilized regions at N ≈ 172 − 184 and Z ≈ 112 − 126 (Agbemava

et al., 2015; Bender et al., 2001, 1999; Ćwiok et al., 1996; Kruppa et al., 2000) as well as

around N = 258, N = 308, and N = 410 (Afanasjev et al., 2018b; Bender et al., 2001; Zhang

et al., 2005) (see also (Denisov, 2005; Ismail et al., 2016) for estimates based on empirical

average potentials).

The importance of Coulomb pressure increases with increasing system size. This favors

a reduction of nuclear density around the center and so may give way to exotic nuclear

topologies such as bubbles or toroids. Figure 5 illustrates the competition between various

configurations in the superheavy nucleus 780254526 (Nazarewicz et al., 2002) involving normal

profiles (similar to densities of stable nuclei), bubbles which have a void at the center, and

band-like toroids. In many cases, such exotic profiles are predicted to be energetically

competitive. However, their stability in superheavy nuclei remains an open question. Some

recent calculations suggest that many such forms are unstable against triaxial distortions

and fission (Afanasjev et al., 2018b; Brodziński and Skalski, 2013).

Although questions related to exotic configurations in Z � 120 systems may seem hardly

relevant from the perspective of laboratory experiments, they can gain relevance in the

exotic (neutron rich) atmosphere of stellar explosions or in neutron stars, where exotic

forms of nuclear matter are expected (Schuetrumpf et al., 2015). In any case, such massive

extrapolations require models which are well tested against information from the heaviest

nuclei which are experimentally accessible.

IV. COLLECTIVITY

There are numerous indications that many superheavy nuclei are deformed in their ground

states. Theoretical predictions of quadrupole deformations for the transfermium nuclei sum-
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marized in (Afanasjev and Abdurazakov, 2013; Heenen et al., 2015) are consistent with

quadrupole moment measurements recently extended to 252−254No (Raeder et al., 2018) and

observed large moments of inertia (Greenlees et al., 2012; Herzberg and Greenlees, 2008).

As discussed in Sec. V, energies of α particles emitted by superheavy nuclei are impacted by

deformation effects. For instance, the measured α-decay energies have provided confirmation

of the prolate-deformed subshell closure around N = 162− 164 predicted by theory (Cwiok

et al., 1983; Möller and Nix, 1994). The transition towards spherical shapes happens around

N = 184. In-between located is a transitional region of deformation-soft and triaxial nuclei,

exhibiting rich shape isomerism (Agbemava et al., 2015; Bürvenich et al., 1998; Ćwiok et al.,

2005; Heenen et al., 2015; Jachimowicz et al., 2017b; Prassa et al., 2012; Ren, 2002). The

softness of the potential energy surface (PES) generally grows with the level density at the

Fermi level, due to reduced shell effects. Consequently, as the level density increases with

increasing system size, deformation softness and shape coexistence become important issues

in superheavy nuclei. In addition to that rich deformation scenario, there is another type

of coexistence in deformed superheavy nuclei, related to K-isomerism (David et al., 2015;

Jachimowicz et al., 2015; Liu et al., 2014; Xu et al., 2004).

As a representative example, the PESs of Og isotopes are shown in Fig. 6. The upper

panel of the figure shows a two-dimensional PES in the triaxial quadrupole deformation

plane. There are two axial competing minima, prolate (γ = 0◦) and oblate (γ = 60◦)

separated by a triaxial barrier. The sequence of the axial PESs in the lower panel illustrates

the transition from a well deformed 290Og172, over the transitional 294Og176, to the spherical

302Og184. Increasing the neutron number further, the PESs again become extremely soft and

the barriers become so low that these isotopes are expected to have extremely short lifetimes.

While topological features of PESs are robust, the barrier heights depend sensitively on both

model and parametrization. As a consequence, the predictions for fission lifetimes can differ

by many orders of magnitude, see (Agbemava et al., 2017; Brodziński and Skalski, 2013)

and Sec. VI. The span of predictions can be reduced by establishing connections with other

observables better accessible to experiment, see, e.g., (Reinhard, 2018).

Figure 7 shows the predicted energies of the low-lying 2+ collective states. The trend

confirms again what we have seen in Fig. 6. Namely, the spherical isotopes around N ≈ 184

show larger energies while the rather soft PESs farther from N = 184 yield significantly

lower 2+ excitations. Note that these excitation energies are rather low as compared to the
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2+ states in lighter nuclei. For more discussion of collective excited states in superheavy

nuclei, see (Baran and Staszczak, 2013; Mişicu et al., 2002; Sharipov and Ermamatov, 2005;

Sun et al., 2008).

Ground-state reflection-asymmetric shapes characterized by octupole deformations are

well known in light actinides around Z = 90, N = 132 (Butler and Nazarewicz, 1996). They

appear as a result of the ∆` = ∆j = 3 coupling between the proton 0i13/2 and 1f7/2 and

the neutron 0j15/2 and 1g9/2 shells. As shown in Fig. 8, the next regions of strong octupole

coupling are expected around N = 196 (0k17/2 and 1h11/2 neutron shells), Z = 96 (0i13/2 and

1f7/2 proton shells), and Z = 120 (0j15/2 and 1g9/2 proton shells) (Afanasjev et al., 2018a;

Agbemava and Afanasjev, 2017; Erler et al., 2012b; Möller et al., 2008, 1995; Warda and

Egido, 2012). However, since the energies of the octupole-driving shells show considerable

model dependence, boundaries and extensions of the predicted octupole deformed regions

of heavy actinides and superheavy nuclei differ in detail. As discussed in Sec. III, such a

situation is typical to superheavy nuclei due to the diffused shell structure (Bender et al.,

2001). In any case, reflection asymmetric ground-states are expected to appear in certain

regions of superheavy nuclei and can potentially impact their lifetimes (Erler et al., 2012b;

Jachimowicz et al., 2017b; Warda and Egido, 2012).

Nuclear structure observables strongly depend on the underlying shell structure. Unfor-

tunately, current empirical shell model potentials as well as self-consistent DFT models do

not produce robust, consistent explanations of the steadily-growing body of spectroscopic in-

formation on transactinides (Ackermann, 2015; Ackermann and Theisen, 2017; Gates et al.,

2015; Herzberg, 2016; Heßberger, 2016; Rudolph et al., 2015, 2013; Theisen et al., 2015).

This strong model dependence can be attributed to large single-particle level density and

the fact that theoretical input still lacks spectroscopic quality (Dobaczewski et al., 2015; Shi

et al., 2014a,b).

V. α DECAY

As discussed in Sec. II, the dominant decay modes of superheavy nuclei are α decay and

spontaneous fission. As a result, superheavy nuclei are often identified through α-decay

chain analysis (Hofmann and Münzenberg, 2000; Oganessian et al., 2006). Information on

the daughter decays comes from both experimental data and theoretical calculations of
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the energy of the emitted alpha particle, or Qα values. In order to properly tune future

experiments for the identification of new superheavy nuclei, theoretical predictions of Qα

values are essential.

Numerous calculations of Qα energies for superheavy nuclei have been performed with

microscopic-macroscopic and DFT methods, see, e.g., (Adamian et al., 2018; Agbemava

et al., 2015; Bender, 2000; Ćwiok et al., 2005; Ćwiok et al., 1999; Erler et al., 2012b; Gambhir

et al., 2005; Jachimowicz et al., 2014; Muntian et al., 2003; Tolokonnikov et al., 2017; Typel

and Brown, 2003; Wang et al., 2015; Warda and Egido, 2012); comparisons between the

results of these methods have also been carried out (Heenen et al., 2015; Sobiczewski and

Pomorski, 2007). Microscopic calculations of α-decay half-lives are demanding since the

α-spectroscopic (or preformation) factor is difficult to compute (Id Betan and Nazarewicz,

2012). The commonly-used strategy is to estimate the barrier penetrability by adjusting

a core+α potential to reproduce experimental Qα values, and estimate the reduced widths

from measured lifetimes in known nuclei. This approach has resulted in various empirical

formulas (Brown, 1992; Budaca et al., 2016; Chowdhury et al., 2008; Dong et al., 2011; Koura,

2012; Muntian et al., 2003; Parkhomenko and Sobiczewski, 2005; Royer and Zhang, 2008;

Santhosh and Nithya, 2018b; Viola and Seaborg, 1966) and models (Clark and Rudolph,

2018; Ward et al., 2015) for the α-decay half-life.

In general, predicted Qα values are fairly robust in the regions away from potential shell

closures (Heenen et al., 2015; Sobiczewski and Pomorski, 2007). This is illustrated in Fig. 9

for the α-decay chain of 294Og using several Skyrme-DFT models. For Fl and Lv, the results

are within the bounds of the EDFs, while the results for Og are all underestimated. Overall,

we observe a reasonable consistency between theoretical predictions. The increase in Qα

up to Cn followed by a sudden drop at Fl is explained by the abrupt shape transition from

prolate to oblate deformations (see Fig. 10) through the region of triaxial shapes around

N = 174 (Ćwiok et al., 2005), see Sec. IV for more discussion.

Figure 10 shows the Qα values and regions of quadrupole deformations (prolate, oblate,

spherical) of the even-even isotopes from Fm to Og predicted with the UNEDF2 model. The

shape transition from oblate to spherical shapes is due to the predicted region of spherical

shapes and enhanced shell-stability near N = 184 (Bender et al., 1999; Ćwiok et al., 1996;

Kruppa et al., 2000), see also Secs. III and IV. Also, the large gap in values between Hs

and Ds is due to the deformed neutron subshell closure around N = 164 (Cwiok et al.,
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1983; Möller and Nix, 1994). Given the large extrapolations in mass and charge involved,

the agreement between experiment and theory is very reasonable. In the future, machine

learning techniques relying on the statistical modeling of deviations between experiment and

predictions (Neufcourt et al., 2018) have the potential to improve the quality of theoretical

extrapolations of Qα values to unknown superheavy nuclei.

For α-decays involving odd-A, odd-odd nuclei, and isomeric states, half-lives can be sig-

nificantly increased due to hindrance associated with configuration changes between parent

and daughter nuclei (Ćwiok et al., 1999; Xu et al., 2004). Estimates of this hindrance can

be found in (Clark and Rudolph, 2018; Delion et al., 2007; Jachimowicz et al., 2018; Ward

et al., 2015). In this context, experimental studies of high-K isomers in deformed super-

heavy nuclei (Ackermann, 2015; Asai et al., 2015; David et al., 2015; Hofmann et al., 2001;

Robinson et al., 2011; Sulignano et al., 2012) are of great interest.

VI. FISSION

Although α-decay is the dominant decay mode for all superheavy nuclei which have been

observed through their associated α-decay chains, spontaneous fission (SF) often competes

with it and terminates the chain. For example, the observed isotopes for Fl and Ts undergo

SF after several α emissions (Khuyagbaatar et al., 2014; Utyonkov et al., 2018). Other,

more neutron-rich superheavy nuclei are predicted to decay directly via SF (Afanasjev et al.,

2018b; Giuliani et al., 2018; Staszczak et al., 2013) (see Fig. 11).

Accurate modeling of nuclear fission – a quantum-mechanical process involving large-

amplitude nuclear collective motion – poses enormous challenges to nuclear theory (Schunck

and Robledo, 2016). To give just two examples: spontaneous fission half-lives in heavy and

superheavy elements span a range of over 35 orders of magnitude (Krappe and Pomorski,

2012), while at the same time, tiny variations of a few percent of specific fission product

yields can have a dramatic impact in modeling critical assemblies in nuclear reactors (Gooden

et al., 2016). While the fission of actinide nuclei is, at least semi-quantitatively, relatively well

understood, superheavy nuclei offer specific challenges. Due to their large atomic numbers,

the fissility parameter x = ECoul./2Esurf. takes values greater than 1 in the superheavy region,

inner fission barriers are generally smaller than in actinides, and outer fission barriers are

expected to be low or nonexistent due to increasing Coulomb pressure. Consequently, the
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familiar picture of penetration through a double-humped fission barrier (Bjørnholm and

Lynn, 1980) undergoes serious revisions in the superheavy region. These revisions have an

impact on fission observables such as the SF lifetimes, the distribution of fission fragments,

and the characteristics of the fission spectrum (neutrons, γ, β, etc.).

Theoretical estimates of SF lifetimes for superheavy nuclei depend strongly on the com-

puted PESs (see also Sec. IV). A considerable effort has been devoted to systematic predic-

tions of PESs and their saddle points (fission barriers) in the superheavy region (Abusara

et al., 2012; Agbemava et al., 2017; Bürvenich et al., 2004; Bürvenich et al., 1998; Erler

et al., 2012b; Jachimowicz et al., 2015; Karatzikos et al., 2010; Kowal et al., 2010; Möller

et al., 2009; Pomorski et al., 2018; Prassa et al., 2012; Staszczak et al., 2013), including

structures of excited configurations in compound nuclei (Pei et al., 2009; Sheikh et al., 2009;

Zhu and Pei, 2017); see also (Baran et al., 2015; Heßberger, 2017; Reinhard, 2018) for recent

overviews.

Spontaneous fission lifetimes of superheavy nuclei are typically calculated by estimating

the tunnelling probability through the multidimensional PES (Brack et al., 1972). While

there have been attempts to do this within the macroscopic-microscopic approach (Brack

et al., 1972; Gherghescu et al., 1999; Möller et al., 1989; Smolańczuk et al., 1995), a more

microscopic description based, e.g., on nuclear DFT, provides more consistency since all of

the ingredients for the calculations (PES and collective inertia tensor) are derived from a

single energy functional (Baran et al., 2011; Giuliani and Robledo, 2013). Such microscopic

calculations of SF lifetimes have become increasingly predictive in recent years (Erler et al.,

2012b; Sadhukhan et al., 2016; Schindzielorz et al., 2009; Staszczak et al., 2013; Warda and

Egido, 2012). In this context, the prediction of SF lifetimes depends upon several factors,

such as the nuclear zero-point energy, the number of collective coordinates considered, and

nuclear pairing (Giuliani et al., 2014; Reinhard, 2018; Rodrıguez-Guzmán and Robledo,

2017; Sadhukhan et al., 2014; Zhao et al., 2016).

Figure 11 shows a comprehensive theoretical survey of the dominant decay modes of

superheavy nuclei calculated within the Skyrme-DFT framework (Staszczak et al., 2013) (see

also (Erler et al., 2012b; Warda and Egido, 2012) for other results). A region of superheavy

isotopes with very short SF lifetimes is predicted in a corridor separating the upper and

lower region of superheavy nuclei. This is consistent with systematics of experimental SF

lifetimes (Oganessian and Utyonkov, 2015a), which show the minimum of SF lifetimes at
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282Cn.

Similar to the case of α-decay discussed in Sec. V, SF lifetimes are expected to be sub-

stantially increased in many-quasiparticle states of superheavy nuclei, such as levels of odd-A

nuclei or low-lying K-isomers, see (David et al., 2015; Jachimowicz et al., 2015; Liu et al.,

2014; Rodrıguez-Guzmán and Robledo, 2017; Xu et al., 2004). This opens an intriguing

possibility of existence of very long-lived isomers of superheavy isotopes.

An interesting, albeit yet experimentally unexplored, decay mode of superheavy nuclei

is cluster radioactivity. This phenomenon, first observed in 1984 (Rose and Jones, 1984) as

the emission of 14C from 223Ra, has since been confirmed in a number of heavy nuclei with

Z > 86, which decay by emitting light clusters between 14C and 34Si, as well as in superheavy

nuclei with Z ≤ 116 (Itkis et al., 2015; Kozulin et al., 2014). For superheavy nuclei with

Z ≥ 118, cluster radioactivity is expected to become competitive with alpha decay and

spontaneous fission (Poenaru and Gherghescu, 2018; Poenaru et al., 2011, 2012, 2013, 2015;

Santhosh and Nithya, 2018a; Zhang and Wang, 2018). Microscopically, cluster emission can

be considered as an extremely asymmetric fission, with the heavy fragment corresponding

to a nucleus in the neighborhood of the doubly-magic 208Pb (Warda and Robledo, 2011).

Nuclear DFT calculations (Warda and Robledo, 2011; Warda et al., 2018) of nuclei with

the same N/Z ratio as known cluster emitters clearly show a lowering of the cluster-decay

potential energy valley with respect to the fission valley as Z increases.

The nucleus 294Og is expected to be an excellent candidate for cluster radioactivity as the

emitted cluster is the magic nucleus 86Kr with N = 50, and consequently the asymmetric

channel is expected to be particularly favored (see Fig. 12) (Baran et al., 2015; Matheson

et al., 2018; Warda and Egido, 2012). The corresponding SF half-life is predicted to be

∼13 minutes (Staszczak et al., 2013). This should be compared with the measured α-decay

half-live of 580 µs (Brewer et al., 2018).

VII. CHEMISTRY AND RELATIVISTIC EFFECTS

It was long assumed that electrons in valence shells responsible for chemical properties

are not affected much by relativistic effects because valence electrons move rather slowly as

compared to the velocity of light (Dirac, 1929; Glashow, 1993), i.e., vval � c should hold

for all elements in the periodic table including the latest superheavy additions. While in a
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classical sense this is correct, quantum theory tells us that this simple picture is insufficient

and that even “slow moving” valence electrons have a substantial electron density close to

the nucleus where relativistic perturbation operators act. Low angular momentum wave

functions, such as s-orbitals, are therefore directly affected by these operators, and are

drawn inwards by their tails (the direct relativistic effect) resulting in an orbital contraction

and stabilization. In fact, it has been known since the 1970s that relativistic perturbation

operators act almost exclusively in the K-shell region (Dzuba et al., 1983; Schwarz et al.,

1989; Sobel’Man, 1972). This indicates that relativistic effects are intertwined throughout

the whole electron cloud and cannot be argued away only by energetic arguments. In the

following, we will address three important relativistic effects taking place in super-heavy

atoms.

The first relativistic effect is related to the 1s state and overall stability of the atom.

Relativistic quantum theory for fermions is fundamentally based on the Dirac equation. For

hydrogen-like atoms with a point-like nucleus, the discrete spectrum of the Dirac operator

is given by the Sommerfeld fine-structure formula:

Enk
mc2

=

1 +
(Zα)2[

n− k +
√
k2 − (Zα)2

]2


−1/2

, (1)

where k = j + 1
2
. The positive- and negative-energy continuum corresponds to E ≥ mc2

and E ≤ −mc2, respectively. We immediately see that for Z → 1/α the ground-state

energy E1,1 → 0. Beyond this limit, the lowest energy eigenvalue becomes imaginary (the

so-called 1s catastrophe). That is, the 1s level should be viewed as a resonance embedded

in the negative energy continuum. While this does not strictly hold for multi-electron

systems, the screening of the nuclear charge by all electrons in an atom is not sufficient and

will only slightly shift the Zc = 1/α ≈ 137 limit. While this caused some concern in the

relativistic electronic structure community more than 30 years ago, predicting that the Dirac

equation fails in the superheavy element region, it was pointed out early (Pomeranchuk and

Smorodinsky, 1945) that the finite size of the nucleus increases the value of critical nuclear

charge at which the catastrophe occurs to Zc = 169. In this case, however, for known

functional forms of the nuclear charge distribution, analytical eigenvalues are no longer

available (Andrae, 2000).

The second relativistic effect concerns contraction of outer shells. In addition to inter-
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pretational difficulties with the Dirac equation, it initially came as a surprise that the outer

ns-shells with higher principal quantum number n can undergo large relativistic contractions

when compared to the inner ns-shells with low n values (Desclaux and Pyykkö, 1976; Pitzer,

1979; Pyykkö and Desclaux, 1979) thus contradicting the original orthogonality argument

that the outer shells contract only because of the inner-shell contractions (Pyykkö, 1988).

However, these shell effects can be rather subtle and strongly dependent on the nuclear

charge Z, quantum numbers (n`j), and shell occupancies (Autschbach et al., 2002; Schwarz

et al., 1990).

Figure 13(a) demonstrates this nicely for the ratio qn`j = 〈r〉Rn`j/〈r〉NR
n`j of the relativis-

tic (R) to nonrelativistic (NR) 〈r〉n`j expectation values for the element Cn (Z = 112;

[Rn]5f 146d107s2 configuration). The rather large 7s valence shell contraction (stabilization)

shown in the figure makes Cn chemically more inert compared to the lighter congener Hg

(Eichler et al., 2008; Gaston et al., 2007; Pitzer, 1975; Steenbergen et al., 2017a), where

relativistic effects are known to be large; they are responsible for Hg being the only ele-

mental liquid metal at room temperature (Calvo et al., 2013; Steenbergen et al., 2017b).

Relativistic effects are also responsible for changing the ground-state configuration of Rg

(Z = 111) from 6d107s1 (2S1/2) to 6d97s2 (2D5/2) and halving its atomic size, making Rg as

small as copper in the same periodic group (Eliav et al., 1994).

The rather large ns-shell contractions/stabilizations observed for the Group 11 and 12

elements (compared for example to the Group 1 and 2 elements) originates from the occu-

pation of the lower-lying diffuse (n− 1)d-shell, which does not efficiently screen the nucleus,

thus increasing the effective nuclear charge Zeff experienced by the valence ns electrons.

Figure 13 clearly shows the predicted rather large valence 7s shell contraction in Cn com-

pared to the 8s shell contraction in element Z = 120. Moreover, direct shell contractions

(mainly the ns and np1/2 shells) lead to additional screening of the nucleus. which lowers the

effective nuclear charge Zeff and results in an expansion/destabilization of the more diffuse

higher angular momentum states such as the f, g- and d5/2 orbitals (known as the indirect

relativistic effect) (Pyykkö, 1988). The p3/2 and d3/2 orbitals may contract or expand de-

pending on the nuclear charge and shell occupancy. A more detailed discussion about these

subtle shell-structure effects can be found in (Autschbach et al., 2002).

The third principal relativistic effect comes from the fine-structure splitting (mainly spin-

orbit coupling) of orbitals with angular momentum ` > 0 (Pyykkö, 1988). For Og+, the
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2P3/2 − 2P 1/2 splitting is 10.1 eV at the Fock-space coupled-cluster level (Jerabek et al.,

2018), i.e., it is larger than most bond dissociation energies. The relativistic 7p3/2 ex-

pansion/destabilization (q7p3/2 = 1.052 for neutral Og) and the large relativistic 8s con-

taction/stabilization (q8s = 0.739 for Og in the 7p3
3/28s1 configuration) lead to a positive

electron affinity of 0.064 eV (with a sizeable QED correction of −0.006 eV) (Goidenko et al.,

2003), a novelty within Group 18 of noble gases. Spin-orbit effects make flerovium a closed

shell atom ([Rn]5f 146d107s2p2
1/2 configuration) with zero electron affinity (Borschevsky et al.,

2009), and chemically more inert compared to the lighter Group 14 elements (Pitzer, 1975).

The large p1/2/p3/2 separation for all shells in a superheavy element is also reflected in the

qnp values shown in Fig. 13.

A. Atomic and chemical properties of superheavy elements: experiment and theory

The chemistry of superheavy elements and the influence of relativistic effects have been

reviewed in, e.g., (Pershina, 2015; Schädel, 2006, 2015; Schwerdtfeger et al., 2015; Türler

and Pershina, 2013). In the following, we emphasize those chemical and physical properties

of the superheavy elements that are strongly influenced by relativistic shell-structure effects

leading to anomalies and often unexpected features when comparison is made to their lighter

congeners in the periodic table (Schwerdtfeger and Seth, 1998). So far, chemical experiments

at the atom-at-a-time scale have only been carried out for transactinides up to Hs (Nagame

et al., 2016; Türler and Pershina, 2013) and for Cn and Fl (Eichler et al., 2008, 2010;

Yakushev et al., 2014), which all have reasonably long-lived isotopes in the time range of

seconds.

Experimental studies giving direct information about the electronic shell structure are

only available up to the heaviest actinides including Fm, No, and Lr (Chhetri et al., 2017,

2018; Laatiaoui et al., 2016; Raeder et al., 2018; Sato et al., 2015; Sewtz et al., 2003).

However, optical lines of actinide atoms up to Es have been identified in the Visual Echelle

Spectrography of the main-sequence star HD 101065 (Przybylski’s star) (Gopka et al., 2008).

It may thus be speculated that the spectra of neutron-rich superheavy elements created in

neutron star mergers or supernovae can be observed (see Sec. IX). This requires accurate

theoretical predictions of atomic spectra for superheavy elements, which currently is a ma-

jor challenge for open-shell many-electron systems (Sewtz et al., 2003). In this context,
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large isotope shifts and hyperfine structure in electronic spectra of superheavy elements are

investigated in (Dzuba et al., 2017), comparing different isotopes measured in the labo-

ratory (which are neutron-poor) with those in interstellar space (which are mostly stable

and neutron-rich). The reach of laser spectroscopy measurements of isotope shifts and nu-

clear moments in the heaviest elements corresponds to 252−254No (Raeder et al., 2018). The

electronic spectrum of neutral Og was computed in (Lackenby et al., 2018).

Precision mass measurements of unstable atoms provide a direct measure of the nuclear

and electronic binding energy. Direct mass measurements of transfermium nuclei have been

carried out with the Penning trap mass spectrometer for 252−255No and 255,256Lr (Block

et al., 2010; Ramirez et al., 2012). Recently mass excesses of several transfermium nuclei

were obtained by means of time-of-flight mass spectrometry (Ito et al., 2018), which enabled

mass determination of heavier nuclei, up to 261Bh and 266Mt. The mass of an atom MA

can be decomposed into MA = Z(mp + me) + Nmn − (Bnuc + Bel)/c
2, where mp,me and

mn are, respectively, proton, electron, and neutron masses known to high precision, and

Bnuc and Bel are the nuclear and electronic binding energies. It is to be noted that the

electronic binding energy is not negligible for superheavy elements. For instance, for Og the

Dirac-Coulomb Hartree-Fock calculations predict Bel=1.487 MeV. At the nonrelativistic

level the electronic binding energy is significantly smaller, BNR
el = 1.260 MeV. The difference

of 0.227 MeV originates mostly from the inner shells close to the nucleus (Jerabek et al.,

2018). Interestingly, the electron density gets smeared out due to relativistic effects, making

the valence electron cloud of Og a Fermi-like gas as Fig. 14 illustrates.

Gas phase chromatographical set-ups can be easily coupled to accelerators and are ideal

to study the volatility of superheavy elements (Gäggeler, 2011). Most recent adsorption

studies of Cn and Fl on gold surfaces suggest that both elements bind weakly to the surface,

i.e., −∆Hads(Au) (in kJ/mol) = 98±3 (Hg) (Soverna et al., 2005), 52+4
−3 (Cn) (Eichler et al.,

2008), ≥48 (Fl) (Yakushev et al., 2014), and 20 (Rn) (Soverna et al., 2005). This is in

good agreement with the latest theoretical studies (Pershina, 2018; Pershina et al., 2009,

2008a,c; Rampino et al., 2015). From an empirical relationship between ∆Hads(Au) and

the cohesive energy of the bulk material Ecoh, one estimates Ecoh= 38+10
−12 kJ/mol for Cn

(Eichler et al., 2008). This agrees with the recent incremental relativistic coupled-cluster

theory (Steenbergen et al., 2017a), which yields Ecoh= 39.6 kJ/mol. Consequently, Cn is

predicted to be rather volatile (Pershina et al., 2010) with an expected melting point around
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that of Hg, but perhaps being still a liquid at standard conditions. For Fl only very few

atoms were identified on a gold surface, and the predictions are not yet accurate enough to

determine ∆Hads(Au). Recent solid-state calculations using relativistic density functional

theory predict Ecoh= 48.6 kJ/mol (Yakushev et al., 2014), in rather good agreement with

the experimental estimated value (Hermann et al., 2010). Thus one might speculate that Fl

is liquid at room temperature. The possibility of future adsorption experiments of Nh on

an inert surface has been explored theoretically (Pershina, 2016; Pershina et al., 2008b).

Relativistic effects can have a decisive influence on the stability of oxidation states. For

example, the relativistic 7s stabilization together with the indirect relativistic 6d5/2 desta-

bilization support efficient sd-mixing in chemical bonding, thus stabilizing higher oxidation

states in compounds of Rg (as high as the oxidation state +5 in RgF−
6 ) (Seth et al., 1998a),

Cn (oxidation state +4 like in CnF4) (Seth et al., 1997), and possibly also for Ds (Waber

and Averill, 1974). In contrast, the strong relativistic 7s stabilization diminishes sp mixing

in chemical bonding for the 7p block elements (known as the relativistic inert pair effect

(Schwerdtfeger et al., 1992)), and thus reduces the stability of high oxidation states in Nh

and Fl (and possibly in Mc as well) (Schwerdtfeger and Seth, 2002; Seth et al., 1998b, 1999).

In contrast to XeF6, which has been isolated and identified (Hoyer et al., 2006), the large

spin-orbit splitting between the 7p1/2 and 7p3/2 levels will most likely restrict the oxida-

tion state in Og to +4. Note that spin-orbit effects change the structure of OgF4 from the

expected D4h symmetry to Td (Nash and Bursten, 1999).

B. Bulk properties of superheavy elements

Thermodynamic properties of the bulk superheavy elements from Nh to Og have been

predicted empirically by extrapolation in (Bonchev and Kamenska, 1981), and for Ts and

Og in (Takahashi, 2002). From these it is expected that Fl and element 119 could be

either liquid or solid under normal conditions, and Og is a gas. On the other hand, based

on atomic polarizability arguments (Nash and Bursten, 1999) Og is likely to be solid at

room temperature. Indeed, Og is calculated to have a rather high dipole polarizability

(αd= 58.0 a.u.) as compared to the other rare gas elements, which increases dispersive

interactions (Jerabek et al., 2018). Methods are now available for the accurate determination

of bulk properties including phase transitions for the rare gas elements (Pahl et al., 2008;
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Schwerdtfeger, 2016; Schwerdtfeger and Hermann, 2009). For example, density functional

theory predicts solid state properties for the 6d metals from Lr to Rg (Gyanchandani and

Sikka, 2011). According to these calculations, the next nearest neighbor distance in the

solid is R(5d) < R(6d) for the elements within the same group of the periodic table; hence,

no evidence for strong relativistic effects are expected for this quantity in contrast to many

other chemical properties (Iliaš and Pershina, 2017; Pershina, 2002; Türler and Pershina,

2013; Wang et al., 2016). Recently, using parallel tempering Monte-Carlo simulations within

a many-body expansion for the atomic interaction potential (Smits et al., 2018), it was

possible to confirm the melting temperature of Tm = 202 K of 222Rn originally measured in

1909 (Gray and Ramsay, 1909). Preliminary simulations suggest Tm ≈ 320 K for Og (Smits

et al., 2018). For Cn and Fl, many-body effects in the interaction potential are so important

that melting simulations become prohibitively expensive (see recent successful simulations

for Hg (Steenbergen et al., 2017b)).

VIII. BEYOND Z = 120: EXTENDED PERIODIC TABLE

The first attempt to extend the periodic table beyond element 120 goes back to (Mann,

1969; Mann and Waber, 1970). Soon afterwards it was pointed out (Fricke et al., 1971) that

beyond element 120 the 7d3/2, 8p1/2, 6f5/2 and 5g7/2 shells are expected to be filled more or less

simultaneously, making a clear placement in the periodic table difficult. They predicted the

filling of the 5g-shell to be complete at element 144, whereas a newer version of the periodic

table proposed by Pyykkö completes the g-shell filling at element 138 (Pyykkö, 2011; Pyykkö,

2016). Clearly, accurate multi-reference configuration interaction calculations are required to

determine the correct ground state of the elements beyond Z=120 (Lu et al., 1971). Accurate

Fock-space coupled-cluster calculations for the superheavy elements 121 and 122 (Eliav et al.,

2015) show that the ground states are 2P1/2(8s28p1/2) for element 121 and 8s27d3/28p1/2(J =

2) for element 122 (with the 8s28p2
1/2 state being close in energy with ∆E=0.185 eV).

Thus, according to (Eliav et al., 2015), the g-shell is not occupied up to Z = 122. In

earlier Hartree-Fock-Slater calculations, g-shell occupation starts at element 125 (Lu et al.,

1971; Mann, 1969; Mann and Waber, 1970). Note that for element 140 the ground-state

configuration could either be 8s28p27d16f 35g14 or 8s28p46f 15g15 according to (Indelicato

et al., 2011). Such calculations are already at the limit of available computer resources due

21



to the huge number of possible configurations involved. In spite of the difficulties of correctly

placing superheavy elements into the periodic table, a new periodic table was obtained in

(Pyykkö, 2011; Pyykkö, 2016) from average level multireference Dirac-Fock calculations with

successive occupation of electronic shells as shown in Fig. 15. The anomalies to the Madelung

rule (Wong, 1979) shown in the figure are due to the strong spin-orbit stabilization of the

8p1/2 and 9p1/2 shells.

Little is known about the chemistry of the elements beyond Z=120 (Fricke et al., 1971).

The Dirac-Coulomb DFT calculations for the hexafluorides of the elements 125-129 (Dognon

and Pyykkö, 2017) suggest g-level occupations for these compounds. However, besides the

relativistic expansion of the 5g orbitals (for 1402+ with a full g-shell one predicts q5g7/2 =

1.190 and q5g9/2 = 1.394), the g-electrons do not participate in the chemical bonding and

are therefore core-like, similar to the 4f -electrons in the lanthanide series.

A. At and beyond the critical nuclear charge

As discussed in Sec. VII, the current electronic shell structure predictions end at elements

with critical nuclear charge Zcrit ∼ 172− 173, where the lowest 1s level enters the negative

energy continuum (supercritical region) as predicted by a mean-field treatment of the Dirac

equation (Indelicato et al., 2011; Pomeranchuk and Smorodinsky, 1945; Schwerdtfeger et al.,

2015), see Fig. 16. In multi-electron systems, since the nucleus becomes screened by all the

electrons including those in higher (n`j) shells, Zcrit shifts to slightly larger values. In this

supercritical region, the small (lower) component of the Dirac spinor becomes appreciable

as shown in Fig. 17, and the terms “small” and “large” for the two Dirac components are

no longer valid. Near the critical nuclear charge, the single-particle approximation (e.g.,

Dirac-Coulomb-Hartree-Fock) breaks down and a proper treatment involves the full QED

Lagrangian. Moreover, in strong Coulomb fields, the Zα expansion used to treat QED

shifts for one-particle levels also breaks down (Soff et al., 1982). Nonetheless, effective

QED operators obtained at nuclear charges Z � 137 are usually continued into the highly

nonperturbative domain (Indelicato et al., 2011; Schwerdtfeger et al., 2015). It was noted

that QED corrections to the 1s level for Z ∼ 172 are rather small compared to 2mec
2 as

self-energy and vacuum-polarization contributions almost cancel out in such supercritical

fields (Soff et al., 1982).
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The extension of the periodic system into new areas has been investigated in (Greiner,

2008), who hypothesized that in the supercritical region with Z ∼ 172− 173, where the 1s

state becomes a resonance embedded in the negative-energy continuum of the Dirac equation,

spontaneous e+e− pair creation becomes possible because of vacuum fluctuations (Gershtein

and Zel’dovich, 1969; Pieper and Greiner, 1969; Reinhard et al., 1971). In a simple picture,

an electron from the Dirac sea occupies the 1s state leaving a hole in the sea, which escapes

as a positron while the electron’s charge remains near the source. In this process, energy

is conserved because the occupation of the 1s level frees up an energy of > 2mc2. One

can view this as the inverse pair annihilation, which is well described by ordinary Feynman

diagrams. From the energy-time uncertainty principle one can estimate that such a process

would happen on the time scale of ∼ 10−21 s. Since the 1s orbit is occupied by two electrons,

the inverse pair annihilation can happen twice. However, once the 1s state becomes doubly

occupied, the vacuum becomes stable due to the Pauli principle (Greiner, 2008; Müller-

Nehler and Soff, 1994; Reinhardt et al., 1981). We note that the e+e− pair creation process

has never been observed in a collision of atoms with high nuclear charges (Ahmad et al.,

1997, 1999), and may require collision experiments with fully stripped ions. The electron-

positron pair creation in low-energy collisions of heavy bare nuclei has been investigated

only recently (Maltsev et al., 2015).

It is currently unclear how to accurately treat single- or multi-electron systems beyond

Zcrit. However, there are no compelling arguments suggesting that Zcrit should determine

the end of the electronic shell stability and therefore the end of the periodic table, even

though Pyykkö’s analysis ends at Zcrit (Pyykkö, 2011).

B. Nuclear physics and the limits of the periodic table

The existence of elements with Z > 118 also depends on nuclear physics. For instance, as

the 1s density starts to accumulate around the nucleus in strong Coulomb fields (see Fig. 17),

the probability of electron capture increases. One might speculate that the most difficult

hurdle to the stabilization of the electronic 1s shell as one gets closer to Zcrit, and ultimately

the cause of the end of the superheavy elements, could be K-capture (Schwerdtfeger et al.,

2015).

Another important factor that needs to be considered is the huge difference between elec-
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tronic and nuclear timescales. According the report of the Transfermium Working Group

(Wapstra et al., 1991), in order to talk about a new element, the corresponding nuclide with

an atomic number Z must exist for at least 10−14 s, which is a reasonable estimate of the

time it takes a nucleus to acquire its outer electrons, bearers of the chemical properties.

Consequently, if for all isotopes of some superheavy element, including isomeric states (Hee-

nen et al., 2015; Jachimowicz et al., 2017a), nuclear lifetimes are shorter than 10−14 s, the

corresponding element does not exist. On the other hand, in order to define a nuclide, its

lifetime should be longer then the single-particle time scale Ts.p. ≈ 1.3·10−22 s (Goldanskii,

1966; Thoennessen, 2004) that corresponds to the time scale needed to create the nuclear

mean field. Consequently, there is no chemistry for nuclides with lifetimes between 10−14 s

and 10−22 s.

Unfortunately, reliable predictions of lifetimes of nuclei with Z > 118 are currently not

available, primarily due to difficulties related to the assessment of Coulomb frustration

effects on fission. Indeed, since it is difficult to say at present whether the exotic topologies

of nuclear density illustrated in, e.g., Fig. 5 can occur as long-lived (metastable) states, the

limits of nuclear mass and charge are presently unknown (Afanasjev et al., 2018b; Brodziński

and Skalski, 2013). It is thus possible that the periodic table will end well before reaching

Zcrit for purely nuclear reasons (Gambhir et al., 2015).

IX. COSMIC ORIGIN OF SUPERHEAVY NUCLEI

The heavy elements of Es and Fm were discovered in 1952 in the debris from the ther-

monuclear explosion conducted at Eniwetok Atoll in the Pacific Ocean. The fermium nucleus

was made through the capture of 17 neutrons by 238U followed by subsequent beta decays

(Ghiorso, 2003; Seaborg, 1959). In nature, a similar process known as the rapid neutron-

capture process (or r -process) is invoked in order to explain the existence of roughly half of

the nuclei heavier than iron, including all of the actinides (Burbidge et al., 1957; Cameron,

1957; Cowan et al., 1991). This nucleosynthesis process occurs in astrophysical scenario(s)

where the timescale for neutron capture is much shorter than the timescale for beta decay

(Arnould et al., 2007; Qian and Wasserburg, 2007). The recent observation of the electro-

magnetic transient associated with the GW170807 neutron star merger (Abbott et al., 2017;

Pian et al., 2017) confirmed that material with high opacities can be produced during such
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events, suggesting neutron star mergers as primary candidate sites for hosting the r -process

(Davies et al., 1994; Eichler et al., 1989; Lattimer and Schramm, 1974, 1976; Symbalisty and

Schramm, 1982). Numerical simulations show that high neutron densities can be achieved

in the dynamical ejecta of this astrophysical scenario (Bauswein et al., 2013; Goriely et al.,

2011; Kasen et al., 2017; Korobkin et al., 2012; Radice et al., 2016; Rosswog et al., 1999;

Sekiguchi et al., 2015) and in the accretion disk formed after the merging of two neutron

stars (Fernández et al., 2018; Siegel and Metzger, 2017a,b). These high neutron densities al-

low the seed nuclei that are present in the environment to undergo multiple neutron captures

before beta decaying, leading to the synthesis of neutron-rich nuclei (see also (Freiburghaus

et al., 1999; Goriely, 2015; Lippuner and Roberts, 2015; Mendoza-Temis et al., 2015; Thiele-

mann et al., 2017)). The termination of the r -process path is determined by the region

of the nuclear chart where fission is the dominant decay mode and where the fragments

produced cycle the material to lower mass regions (Beun et al., 2008; Panov et al., 2005).

The fundamental question of whether superheavy nuclei can be produced in nature is thus

intrinsically related to determining which neutron-rich nuclei are stable against fission.

During the initial phase of the r -process, the main competing decays are neutron captures,

beta decays and, for fissioning nuclei, neutron-induced fission (Mart́ınez-Pinedo et al., 2007;

Panov, 2016, 2018; Panov and Thielemann, 2004). As long as neutron captures dominate

over neutron-induced fission, the r -process path can proceed towards heavier and more

neutron-rich regions of the nuclear chart, but as soon as it enters in a region of low fission

barriers, the fragments formed in fission are cycled back (Beun et al., 2008). Since the

excitation energy of a nucleus after capturing a low-energy neutron is roughly given by the

neutron separation energy, the competition between neutron captures and fission barriers is

roughly driven by the difference between the height of the fission barrier and the neutron

separation energy Bf−Sn (Panov et al., 2010). Several systematic calculations of the fission

properties of r -process nuclei showed that close to the neutron drip line, fission barriers tend

to increase with increasing neutron number, leading to positive values of Bf − Sn (Giuliani

et al., 2018; Möller et al., 2015; Petermann et al., 2012). This suggests that the production

of heavier nuclei could be enhanced if the r -process path proceeds closer to the neutron

drip line, where neutron-induced fission is hindered. While superheavy nuclei produced

in the r process are expected to be short-lived, they may impact the observed r -process

abundances and electromagnetic transients produced by the radioactive decay of r -process
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nuclei (kilonova) (Wanajo, 2018; Wu et al., 2018; Zhu et al., 2018).

Because of the competition between neutron capture, neutron-induced fission, and beta

decay, the neutron number N = 184 may play a major role in determining the production

of superheavy nuclei (Mart́ınez-Pinedo et al., 2007). Indeed, as discussed in Sec. IV, most

nuclear models predict the region of increased shell stability around N = 184. Consequently,

the neutron separation energy sharply drops for N > 184; this pushes the material towards

nuclei with higher proton number (Z ∼ 100), where several nuclear structure models predict

nuclei with rather low fission barriers (Baran et al., 2015; Erler et al., 2012b; Giuliani et al.,

2018; Goriely, 2015; Möller et al., 2015). As shown in Fig. 18, low fission barriers could

prevent the production of nuclei beyond N = 184 due to neutron-induced fission.

In spite of the general lowering of fission barriers above N = 184, some r -process simu-

lations show that for a particular combination of nuclear masses and fission barriers, nuclei

with Z ≥ 104 could be produced during the first seconds of the r -process (Petermann

et al., 2012). In this case, other fission channels that could prevent the formation of super-

heavy nuclei are beta-delayed fission and spontaneous fission (Erler et al., 2012b; Korneev

and Panov, 2011; Mumpower et al., 2018; Panov et al., 2013; Thielemann et al., 1983b).

The beta-delayed fission channel is powered by the large Qβ value of neutron-rich nuclei,

which can populate the daughter nuclei at excitation energies close to the fission barrier

(Mumpower et al., 2018; Thielemann et al., 1983a). Moreover, a region of vanishing fission

barriers is predicted around Z/N ≈ 104/188 where spontaneous fission becomes the dom-

inant decay channel (Erler et al., 2012b; Giuliani et al., 2018). This region seems to cross

the beta-decay path of superheavy nuclei produced during the r -process, thus blocking their

decays towards stability.

The successful synthesis of superheavy nuclei in the laboratory revived the question of

whether these nuclei can be found in nature. There have been searches for traces of su-

perheavy elements in astrophysical data, including galactic cosmic rays, meteorites, and

terrestrial ores (Donnelly et al., 2012; Ter-Akopian and Dmitriev, 2015). In galactic cosmic

ray studies, the most conclusive results were obtained by extracting olivine crystals from

pallasite meteorites and analyzing the deposited nuclear tracks (Perelygin et al., 2003a,b;

Polukhina, 2012). A recent study from the OLIMPIYA experiment claimed that three

tracks belonging to superheavy nuclei with charge number 119+10
−6 have been found in me-

teorite olivine crystals (Alekseev et al., 2017), but this result has not yet been confirmed
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by independent studies. In another development, the search for superheavy elements in

terrestrial and extraterrestrial samples was carried out with accelerator mass spectrometry

techniques (Dellinger et al., 2011; Korschinek and Kutschera, 2015) but the outcome of those

investigations has been negative so far. In short, in spite of numerous efforts, no definitive

proof of existence of superheavy nuclei in nature has been found (Ter-Akopian and Dmitriev,

2015).

X. PERSPECTIVES AND EXPECTATIONS

There is an exciting world beyond oganesson; major expansions of the nuclear chart and

periodic table are on the horizon. In the short term, the search for the new elements Z = 119

and 120 will be carried out in several laboratories (Düllmann, 2016, 2017a; Heßberger and

Ackermann, 2017; Hofmann et al., 2016; Roberto and Rykaczewski, 2018). The reactions

considered involve beams of 44Ca, 50Ti, 51V, 54Cr, 58Fe, and 64Ni (Adamian et al., 2018;

Düllmann, 2016; Hofmann, 2015; Hofmann et al., 2016; Li et al., 2018; Liu and Bao, 2013;

Nasirov et al., 2011; Wang et al., 2012; Zagrebaev and Greiner, 2015; Zhu et al., 2014), and

actinide targets (Roberto et al., 2015; Roberto and Rykaczewski, 2018).

Since the lower and upper superheavy regions are still disjointed experimentally, i.e., they

are not connected by known decays, the Z and A assignments of superheavy nuclei produced

in hot-fusion reactions rely on indirect techniques. Another short-term goal is, therefore, to

connect these two superheavy regions to provide a direct mass/charge identification. This

can be achieved through, e.g., X-ray spectroscopy (Ackermann, 2015; Rudolph et al., 2013)

and direct mass measurements (Gates, 2016; Gregorich, 2016). Recently, the first direct

measurements of the mass numbers of 288Mc and 284Nh were carried out at Berkeley (Gates

et al., 2018), confirming the previous (indirect) mass-number assignments.

The excursion towards the N = 184 region of longer-lived superheavies is the longer-

term goal. Current experimental lifetimes are indicative of increasing stability for Z > 110

when adding neutrons. But to get closer to N = 184 is not going to be easy. To find the

optimal production methods, systematic fusion reaction studies are being carried out (Hinde

et al., 2017; Itkis et al., 2015; Khuyagbaatar et al., 2018; Loveland, 2016). One proposed

route involves an enriched 251Cf target and 58Fe beam (Rykaczewski et al., 2016). Reactions

using multi-nucleon transfer and radioactive neutron-rich beams are also being considered
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(Karpov et al., 2018; Loveland, 2007; Schädel, 2016; Zagrebaev and Greiner, 2008). Here, the

challenge for theory is to develop predictive models of superheavy nuclei production, capable

of guiding future experimental searches (Giardina et al., 2018; Zagrebaev and Greiner, 2015).

Another major challenge will be in atomic structure calculations at the accuracy of a few

wave numbers including accurate values for transition dipole moments. Here, sophisticated

electron correlation frameworks including quantum electrodynamic effects are required to

correctly predict the dense valence-electron spectrum of superheavy elements, required for

future experimental atom-at-a-time studies (Sewtz et al., 2003) in, e.g., cold traps. While

such an accuracy has been already achieved for closed-shell atoms or for few-valence electron

systems (Eliav et al., 2015; Pašteka et al., 2017; Schwerdtfeger et al., 2015), and even for

small closed-shell molecules with lighter atoms (Owens et al., 2018, 2015), this is not yet

the case for complex multi-electron, open-shell systems where a very large multi-reference

and configuration-interaction space within a relativistic and QED framework is required to

correctly describe both static and dynamic electron correlation effects. Such calculations will

give a deep insight into the electronic shell structure with the correct predition of ground-

state symmetry (configuration) for the superheavy elements beyond oganesson, and into the

regime of the critical nuclear charge Zcrit. The correct description of the elements beyond

Zcrit involves the treatment of resonance states, which are well established for the positive

energy continuum (Fossez et al., 2016; Jagau et al., 2015).

On the chemical side, experimental studies of Cn and Fl have illuminated the impor-

tance of relativistic effects on the properties of superheavy atoms, thus making the search

for chemistry beyond the standard periodic table the major science driver. Here fully rela-

tivistic quantum calculations, including QED effects, will continue providing guidance and

stimulation for future atom-at-a-time experiments. The accurate simulation of the chemistry

of superheavy elements in solution, gas-phase and the bulk, or adsorbed on surfaces, with

both density functional and wave-function-based methods, using relativistic pseudopotential

theory including QED (Hangele et al., 2012, 2013; Schwerdtfeger, 2011), will remain a major

challenge for the chemistry (well) beyond the standard periodic table (Schwerdtfeger et al.,

2015; Türler and Pershina, 2013).

Concerning atom-at-a-time chemistry, the future will see new chemical compounds being

formed for the transactinide elements up to Og and possibly beyond. For example, there are

currently worldwide efforts to study the carbonyls of Sg and beyond (Even et al., 2014, 2015;
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Iliaš and Pershina, 2017; Malli, 2015) and many other transactinides. Another difficult task

on the horizon is to synthesize more neutron-rich, longer-lived isotopes of known superheavy

elements with Z = 110 − 118, with the goals of moving closer to N = 184 and enabling

chemical studies. The discovery of new elements beyond Og will add the eighth period to

the periodic table.

The field of superheavy element research puts nuclear and atomic theory to the test.

There are strong theoretical suggestions that superheavy atoms and nuclei differ from lighter

species because of their large charges and masses. The presence of large electrostatic forces

gives rise to strong Coulomb frustration effects in the nuclear system and huge relativis-

tic effects in the atomic system; both present unusual challenges for many-body theory.

Will next-generation hyperfine studies help to pin-down the presence of exotic topologies?

Since theories of superheavy nuclei heavily rely on extrapolations, it is essential to provide

uncertainty quantification on predictions. To constrain nuclear models in the superheavy

region, new high-quality data on bulk properties and spectroscopy of superheavy systems

are required. High-quality experimental data have been accumulated on global properties of

superheavy nuclei and their spectroscopy (Ackermann, 2015; Ackermann and Theisen, 2017;

Herzberg, 2016; Heßberger, 2016; Rudolph et al., 2015, 2013; Theisen et al., 2015).

Whether superheavy nuclei can be produced during the r -process nucleosynthesis, and

whether the observed elemental abundances contain unambiguous information on the role

of superheavy elements, can only be addressed through systematic reaction network calcu-

lations. On the nuclear physics side, such calculations require a consistent set of nuclear

reaction rates, binding energies, beta- and gamma-decay decay rates, fission rates, and fis-

sion fragment distributions, as well as a consistent treatment of weak interactions (Horowitz

et al., 2018). From an experimental point of view, further constraints will be provided by the

data on neutron-rich rare isotopes from next-generation radioactive ion beam facilities. This

new experimental information is expected to significantly reduce the uncertainties arising

from the prediction of nuclear properties of some of the r -process nuclei (Horowitz et al.,

2018; Langanke and Schatz, 2013; National Research Council, 2007; Surman and Mumpower,

2018). Unfortunately, very heavy, neutron-rich nuclei that are key for our understanding

of fission in the r -process are likely to remain out of experimental reach in the foreseeable

future. Consequently, the progress in this area will heavily rely on high-fidelity theoretical

simulations.
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The long term prospects in the unexplored regions of mass and charge are fascinating.

They include the exploration of the region of long-lived superheavy nuclei around N = 184;

the bold expansion of the chart of the nuclides; pinning down the presence of voids and

other exotic topologies of nucleonic densities due to Coulomb frustration; delineating the

role of superheavy nuclei in nucleosynthesis; and carrying out atomic and chemistry studies

in the regime governed by huge relativistic effects. The outstanding discovery potential has

greatly motivated worldwide development of new facilities and novel experimental tools.

New-generation, high-current stable-beam accelerators will enable new discoveries at the

picobarn level. The dedicated facilities in Dubna (Dmitriev et al., 2016) and RIKEN (Haba,

2016) will substantially increase the production of superheavy species for physics and chem-

istry. Other major players in different areas of superheavy nuclei research include GSI/FAIR

in Germany (Münzenberg, 2015; Münzenberg et al., 2017), ORNL (Roberto et al., 2015;

Roberto and Rykaczewski, 2018) and Berkeley (Gates, 2016; Gates et al., 2015, 2018) in the

USA, GANIL in France (Ackermann and Theisen, 2017; Theisen, 2017), and several other

major laboratories worldwide (Back, 2017; Hinde et al., 2017; Yang et al., 2013; Zhang et al.,

2012)

The scientific expedition continues into the uncharted regions of atomic number and

nuclear mass. It was launched the 1960s, fueled by the dream of the island of stability

inhabited by very long-lived superheavy species. While this idea has been revised, present-

day scientific drivers are, arguably, far more exciting. The prospects for discoveries in the

interdisciplinary field of superheavy nuclei and atoms, on the intersection of nuclear physics,

atomic physics, chemistry, and astrophysics, are outstanding.
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Möller, P, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, and S. Åberg (2009),
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The upper inset shows the details of the superheavy region (Z > 104 and N > 160). The isotopes

synthesized in heavy-ion fusion reactions are indicated (Oganessian et al., 2017; Oganessian and

Utyonkov, 2015a) together with the anticipated valley of β-stability (Ćwiok et al., 1996; Heenen

et al., 2015; Möller et al., 1997; Sheng et al., 2014). The lower inset marks the placement of the

recently named six superheavy elements in the periodic table. The element oganesson completes
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FIG. 4 Proton (top) and neutron (bottom) Hartree-Fock single-particle energies relative to the

Fermi level εF predicted with the Skyrme-DFT models SV-min and UNEDF1 for 132Sn (left),

302Og (middle), and 472164 (right). The line thickness is proportional to the orbital’s degeneracy

2j + 1 and the numbers indicate shell-model occupations. While the details of shell structure in

superheavy nuclei show strong model dependence, general features are robust.
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FIG. 5 Coexisting configurations associated with different density distributions calculated in the

SLy6 Skyrme-DFT model for the hypothetical superheavy nucleus 780254526. Three topologies

are considered: normal nuclear densities similar to those found in stable nuclei, bubble nuclei

distinguished by a substantial dip at the center, and band configurations out of a thin band of

nuclear matter wound up to a torus. The contour plots of the total densities are given in the

boxes, arrows connect the profile with the corresponding point on the energy surface, and colors

help further to relate the topologies. All contours are axially symmetric (around the z axis) and the

equi-density lines in the contour plots lie at 0.01, 0.03, 0.06, 0.09, 0.12, and 0.15 (nucleons/fm3).

Adapted from (Nazarewicz et al., 2002).
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FIG. 6 Top: Triaxial PES in the Q20-Q22-plane for 290Og obtained with the SLy4 Skyrme-DFT

model. (Adapted from (Ćwiok et al., 2005).) Bottom: Axial PESs for selected Og isotopes obtained

with the Skyrme functionals SLy4, SV-min, and UNEDF1. All models predict very similar PES

topology.
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FIG. 7 Excitation energies of the 2+ collective state computed for the three parametrizations as

in Fig. 6 with the method from (Klüpfel et al., 2008).
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FIG. 8 Nuclei with ground-state octupole deformations predicted with different models. Adapted

from (Agbemava and Afanasjev, 2017).
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FIG. 9 Qα values along the α-decay chain of 294Og computed in nuclear DFT with different

energy density functionals. Experimental and empirical extrapolated values (Wang et al., 2017)

are marked by stars. In 286Fl, α decay competes with fission and the latter takes over in 282Cn

(Brewer et al., 2018); hence, direct experimental information on Qα values is not available below

282Cn.
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FIG. 11 Dominant decay modes for even-even superheavy elements in the range 108 ≤ Z ≤

126, 148 ≤ N ≤ 188 predicted with the Skyrme-DFT model SkM∗. Spontaneous fission half-lives

were computed using the semiclassical approximation while α-decay half-lives were estimated using

the Viola-Seaborg formula (Viola and Seaborg, 1966). The contours show the predicted half-lives

in logarithmic scale. Adapted from (Staszczak et al., 2013).
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FIG. 12 Potential energy surface of 294Og in the (Q20, Q30) coordinates calculated in nuclear DFT

using the functionals UNEDF1HFB and D1S, taken from (Matheson et al., 2018). Two SF pathways

are indicated: nearly-symmetric (symm) and strongly asymmetric corresponding to cluster decay

(cluster).
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FIG. 15 Successive shell filling (according to (Pyykkö, 2011; Pyykkö, 2016)) up to the heaviest

noble gas element with Z = 172 according to the Madelung rule. The anomalies in expected shell

filling are highlighted in blue and result from strong relativistic stabilization effects of the p1/2

shells at high atomic numbers.
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Extrapolations into the negative-energy continuum region are marked by dashed lines. Adapted

from (Schwerdtfeger et al., 2015).
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FIG. 18 Dominant decay channels as a function of proton and neutron number predicted in the

BCPM-DFT model for typical conditions (T = 0.9 GK, nn = 1028 cm−3) of the r process in neutron

star mergers: spontaneous fission, neutron capture, neutron-induced α emission, neutron-induced

fission, and neutron-induced two-neutron emission. α decay is not competitive at the astrophysical

conditions assumed. Adapted from (Giuliani et al., 2018).
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