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Kernphysik (IKP-3), Jülich Center for Hadron Physics and JARA-HPC, D-52425 Jülich,
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Abstract

This review examines the tendency of light nuclei to exhibit clustering,

where correlations between nucleons results in the formation of precipitates,

typically α-particles. The observation of clustering dates to the earliest

days of the subject, where α-particles were the building blocks of some

nuclear models. The description of a nucleus in terms of clusters was

attractive in terms of simplifying the computationally challenging problem

through the reduction of the degrees of freedom. However, more recently it

has been possible to develop ab initio methods which seek to build nuclei

not from the clusters, but from the individual nuclei with full account of the

Pauli exclusion principle. This review links the development of the subject

from the assumption of preformed α-particles, through to the development

of models which demonstrate the appearance of clustering from the A-

nucleon wave-function with realistic but effective interactions, to finally

first principles approaches using interactions based on chiral effective field

theory and the symmetries of quantum chromodynamics. This places the

understanding of clustering as a cornerstone of the development of nuclear

theory as it attempts to develop a complete understanding of light nuclei

from the fundamental strong force.
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I. INTRODUCTION

Nuclear clustering describes the emergence of structures in nuclear physics whose prop-

erties resemble those of those of atomic molecules. In atomic systems there is a rich phe-

nomenology of different types of chemical bonds, complex rotational and vibrational excita-

tions, and intricate structural geometries. The potential for nuclear analogs is intriguing.

The attractive nucleon-nucleon interaction makes the highly-symmetric four nucleon sys-

tem 4He, the α-particle, enormously stable, with a binding energy in excess of other light

systems, and the large energy of the first quantum excitation makes the system difficult

to perturb. These characteristics led to an early assumption that the α-particle might

form a stable sub-unit within the nucleus. However, the underlying physics is made more

challenging by the democracy of particles involved in nuclear binding. Instead of heavy

ions surrounded by light electrons, the protons and neutrons have nearly equal masses, and

the clustering structures emerge from a delicate balance among repulsive short-range forces

and Pauli blocking effects, attractive medium-range nuclear forces, and long-range Coulomb

repulsion among protons.

Nevertheless, α-particle clustering is a reality in light nuclei. The clusterization has

allowed a description of nuclear properties in terms of the geometric arrangement of the

clusters, rotational properties of those structures and even the covalent exchange of va-

lence neutrons between the α-particle cores in an analogue of the covalently-bound atomic

molecular systems.

Early models of nuclear clustering assumed a geometric arrangement of the clusters with

a spectrum of excited states given by the dynamical symmetries. Later the models were

improved to include the effects of the Pauli exclusion principle via antisymmetrization of

the α-particle wave functions, acknowledging the bosonic description broke down at small

separations of the α-particles. However, the force between the α-particles was an effective

interaction and there was an explicit criticism of this approach that the α-particles were

assumed to pre-exist, which created a tension with those who preferred the single-particle

shell model approach.

This limitation was overcome through the development of techniques which modelled the

nucleus as an A-body system in which there was neither an assumption of a mean field

nor that the clusters pre-existed. Indeed, the mean field could be created from the averaged
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interaction of the nucleons and clustering was not assumed. In principle, this approach could

represent both single-particle shell structure and cluster correlations on an equal footing.

Remarkably, the clustering assumed in the geometric α-particle models could be derived

from these calculations.

Meanwhile, great strides had been made in developing realistic nucleon-nucleon interac-

tions, some based on governing principles such as effective field theory. With accompanying

advances in computational algorithms and hardware, one now has the chance to precisely de-

scribe both the structure of light nuclei and the emergence of clustering from first principles.

The present review explores these developments.

The key elements associated with the development of the field are as follows. The ex-

perimental study of nuclear clustering really began with Rutherford’s discovery by alpha

radiation (Rutherford, 1899) and the development of quantum mechanics. Gamow (Gamow,

1928) and, independently, Gurney and Condon (Gurney and Condon, 1928) described the

α-particle as undergoing quantum-mechanical tunneling from inside the decaying nucleus.

About a decade later, Wheeler (Wheeler, 1937a) developed the resonating group method

to describe α-clusters and other cluster groupings within nuclei, while allowing protons and

neutrons to maintain their fermionic quantum statistics. Afterwards came the work of Haf-

stad and Teller, which described even-even N = Z nuclei in terms of an α-particle model

with bonds connecting clusters (Hafstad and Teller, 1938). Following along the same lines,

Dennsion proposed a model of the low-lying states 16O in terms of four α-clusters at the

vertices of a regular tetrahedron (Dennison, 1940, 1954). At a more microscopic level, Mar-

genau used a Slater determinant wave function for α-clusters to compute an effective α-α

interaction (Margenau, 1941).

Some years later, Morinaga suggested that non-spherical and even linear chains of α-

clusters could describe some states of α-like nuclei (Morinaga, 1956). One of the candidates

for such a description was the second 0+ state of 12C postulated by Hoyle (Hoyle, 1954) as

responsible for enhancing the triple-α reaction in stars and experimentally observed soon

after (Cook et al., 1957). Concurrent with these theoretical developments, new experiments

provided high-quality data on elastic α-α scattering (Afzal et al., 1969; Heydenburg and

Temmer, 1956; Nilson et al., 1958). This is in turn led to the development of an effective

α-α interaction (Ali and Bodmer, 1966).

At around the same time, Brink used Margneau’s Slater determinant wave function for
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the α-cluster and the generator coordinate method to simplify calculations that were dif-

ficult in the more general formalism of the resonating group method (Brink, 1966a). The

equivalence of the generator coordinate method and resonating group method was later clar-

ified by Horiuchi (Horiuchi, 1970). On the topic of α-decays, Clark and Wang computed

the probability of α-clusters to form near the surface of heavy nuclei (Clark and Wang,

1966). Meanwhile Ikeda, Takigawa, and Horiuchi noticed that α-clustering appeared close

to α-decay thresholds, and these were denoted schematically with the so-called Ikeda di-

agrams (Ikeda et al., 1968). Following these same concepts, the study of clustering has

been extended to proton-rich and neutron-rich systems with nearby open thresholds. The

corresponding states are weakly-bound systems of clusters and excess neutrons or protons.

There have been a number of reviews on clustering in nuclei (Akaishi et al., 1986; Beck,

2010, 2012, 2014; Freer, 2007; Funaki et al., 2015; Horiuchi et al., 2012; von Oertzen et al.,

2006). The purpose of this review is to give a broad overview of the exciting developments

in the past few years. Due to space limitations, it is not possible to cover all areas of

research in depth. Nevertheless, we try to give a balanced view of the field as seen by a

team of practitioners covering a range of methods and expertise. In the review of theoretical

methods, we focus on microscopic clustering where clusters emerge from nucleonic degrees

of freedom. As the field is dynamic and evolving, several key issues are not resolved at

present, and there are disagreements among different methods. Furthermore, some of the

most interesting results will likely come in the near future. This is to be expected in a

growing field with important open questions and active research being pursued by many.

The review begins with an account of recent experimental results and future directions.

We then discuss several theoretical approaches, including the resonating group and generator

coordinate methods, antisymmetrized molecular dynamics, Tohsaki-Horiuchi-Schuck-Röpke

wave function and container model, no-core shell model methods, continuum quantum Monte

Carlo, and lattice effective field theory. We then conclude with a summary and outlook for

the future.
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II. RECENT EXPERIMENTAL RESULTS

A. Experimental observables

The experimental study of the role of clustering in nuclei dates back to the earliest

observations of α-decay of heavy nuclei. In the early models of nuclei, it was assumed by

many that the α-particle may play an important role, e.g. the paper by Hafstad and Teller

in 1938 (Hafstad and Teller, 1938) nicely describes the possible structures of nuclei such

as 8Be, 12C and 16O as constructed from α-particles. This early work also speculated on

the existence of molecular structures in light nuclei, where neutrons, or even neutron holes,

might be exchanged among α-particle cores. These basic ideas remain the drivers for much

of the present experimental program. The “modern” era of nuclear clustering was catalyzed

by the ideas of Morinaga in 1956, who had suggested that the 7.65 MeV Hoyle state in

12C, which had recently been experimentally measured, might be a linear arrangement of

3α-particles (Morinaga, 1956). The concept that linear chain structures might exist in nuclei

has stuck with the subject until the present and remains to be resolved. Experiment has

been substantially motivated by the desire to provide evidence for the types of structures

envisaged by Morinaga and those calculated by Brink using the Bloch-Brink Alpha Cluster

Model (Brink, 2008; Brink and Boeker, 1967). For example, in the case of 12C, the α-

cluster model finds two structures. The first is an equilateral triangular arrangement which

historically has been associated with the ground-state, and the second is a linear arrangement

(or chain).

The ability of experiments to elucidate the cluster structures of light and heavy nuclei

is determined by the range of experimental observables that may be extracted. From a

simplistic starting point, the moment of inertia of a rotating nucleus gives an insight into

the deformation which can be at least shown to be consistent with a cluster structure, even

if not direct evidence. If 8Be is used as an example, then the ground-state rotational band

has 0+, 2+ and 4+ states at 0, 3.06 and 11.35 MeV. The ratio of the 4+ to 2+ energy is

3.7, very close to that one would expect for a rotational nucleus, 3.33. The moment of

inertia that one extracts from Erot = J(J + 1)~2/2I is commensurate with that found in ab

initio Green’s function Monte Carlo (GFMC) calculations, which strongly reveal the cluster

structure (Wiringa et al., 2000). We discuss calculations using Green’s function Monte
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Carlo in subsection VII.B. As a simple guide, the value of ~2/2I associated with the 2+

state is 0.51 MeV, which even in a simple calculation yields a separation of two α-particles

by twice the α-particle radius. The observation of a series of states which lie on a rotational

sequence is not watertight evidence of either clustering or deformation. Here measurements

of electromagnetic transition strengths provide tests of the overlaps of initial and final-state

structures and the degree of collectivity. For the case of 8Be, a measurement of the B(E2)

transition strength from the 4+ to the 2+ state provides a consistent description with both

the rotational picture and the GFMC calculations (Datar et al., 2013).

However, and as noted above, this simplistic interpretation needs to be treated with care.

Firstly, all of the states in 8Be are unbound and hence are embedded in the continuum and

hence will have continuum contributions. Second, the widths of the states are significant (see

section II.B.1), and correspondingly the lifetimes short, and thus an understanding of what

collectivity means on such short timescales is unclear. Finally, many calculations use bound-

state approximations and hence cannot be completely accurate. There is an interesting

discussion of the meaning of rotational bands where the resonances are embedded in the

continuum, with a focus on 8Be by Garrido et al. (Garrido et al., 2013). The conclusion is

that rotational bands embedded in the continuum may still be a meaningful concept, but

that the continuum affects properties such as transition probabilities and hence here the

continuum needs to be treated carefully. This is particularly important for the comparison

with ab initio methods.

The width of a state reveals a significant amount of detail regarding the structure and

the decay. The greater the overlap of initial structure with the decay partition then the

shorter the lifetime and the greater the width. In the case of the 2+ excitation of 8Be, the

width is tabulated as 1.5 MeV. The decay width is also affected by the barrier through

which the decay must proceed, but if the Coulomb and centrifugal barriers are removed,

then the reduced width may be compared with the Wigner limit. This is the value the

reduced width should adopt if the α-particles are fully preformed. For this particular state,

it is found that the experimental width is very close to the Wigner limit, again indicating the

existence of the cluster structure (Cerny, 1974; Overway et al., 1981). A further signature,

not available to the decay of the example states in 8Be, is the measurement of the dominant

decay channel. States with strong cluster-like properties should preferentially decay by

cluster emission as opposed to proton or neutron decay, for example. In reactions, this
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structural similarity would be described in terms of a spectroscopic factor or an asymptotic

normalization coefficient (ANC).

In the following sections we explore many of the recent developments in the experimental

study of nuclear clustering. In many cases the recent work builds on significant historical

work. There are many review articles which describe the development of the subject and we

refer the reader to the following references: (Beck, 2010, 2012, 2014; Freer and Fynbo, 2014;

Freer and Merchant, 1997; Freer, 2007; von Oertzen et al., 2006).

B. Status of studies of light nuclei

1. Alpha-conjugate systems; N -alpha structures and chains

By far the most experimental attention has been devoted to the study of the cluster struc-

ture of α-conjugate nuclei. Here the challenges have been to first provide a deeper insight

into the nature of the cluster structures and ultimately to determine if the chain-states really

exist in light nuclei or not. The eventual aim is to determine experimental characteristics

such that they may be tested against ab initio or other microscopic calculations.

8Be

As already described, one of the best examples of the comparison between ab initio theory

and experiment, is the measurement of the gamma decay of the 4+ state in 8Be to the

2+ state (Datar et al., 2013). This was a tour-de-force where a gamma decay branch of

∼ 10−7 was observed. The experiment involved the use of a helium gas-jet target, and

the 4+ state was resonantly populated with a 4He beam. The emitted gamma-ray and the

subsequent emission of the two α-particles from the decay of the 2+ state were detected

in a triple coincidence. A cross section of 165(54) nb was observed which translated to a

B(E2) of 25 ± 8 e2fm4. This is remarkably close to the value most recently calculated in

the GFMC approach of 26.0± 0.6 e2fm4 (Datar et al., 2013) (see reference [16] in this paper

and (Wiringa et al., 2000)). These latter calculations had famously found the ground state

of 8Be to be highly clustered and predicted with significant precision the excitation energy

spectrum (Wiringa et al., 2000). Given that the B(E2) is sensitive to both the overlap of

the charge distribution and the collective behavior, such a result could be taken as evidence
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of both the cluster and collective behaviors. However, that being the case, this raises a

rather interesting conundrum.1 The widths of both the 2+ and 4+ states are large (1.5 and

3.5 MeV, respectively). From the uncertainty principle, these would correspond to lifetimes

of the order of 10−22 seconds. This is the transit time of a nucleon with the Fermi energy

to cross the nucleus. How is it possible for collective processes to develop and for rota-

tional behavior to occur given the apparent mismatch in timescales, and what do rotations

mean in such systems (Fossez et al., 2016)? It is therefore possible that what is observed

experimentally are simply patterns more generally linked to the underlying symmetry of a

dumbbell-like structure. When it comes to precisely describing the properties of such states

embedded in the continuum, the influence of the continuum on transition properties need

to be fully accounted for (Garrido et al., 2013), and it is vital that ab initio methods be

developed for such unbound systems.

12C ground-state and rotational band

Similar questions are pertinent for the next α-conjugate system, 12C. The effect of

the continuum on the rotational bands in 12C is discussed in Ref. (Garrido et al., 2016).

Here the transitions between states are found to be consistent with the rotational picture.

For 8Be all the states lie above the α-decay threshold and hence, by the definition for

the emergence of clustering developed by Ikeda, have the ingredients for the formation of

clusters (Ikeda et al., 1968). However, the ground state of 12C lies ∼ 7.3 MeV below the

decay threshold, and hence the cluster structure would be suppressed. However, as shown

in Fig. 1, antisymmetrized molecular dynamics (AMD) calculations indicate that states

above the decay threshold (Hoyle-band) clearly have a cluster structure, but even within

the ground state this component may not be insignificant (Kanada-En’yo, 2007). This is

supported by recent calculations using nuclear lattice simulations (Epelbaum et al., 2012).

We discuss AMD methods in some detail in section IV and lattice methods in section VIII.

The experimental B(E2) for the transition from the first 2+
1 state at 4.4 MeV to the ground

state has been determined to be 7.6 ± 0.4 e2fm4, which compares favourably with that

calculated within the AMD framework of 8.5 e2fm4 (Kanada-En’yo, 2007). The calculated

value for the transition from the 4+
1 state is similar with a value of 16 e2fm4. To date,

1 W. Nazarewicz, private communication at the 2015 Gordon Research Conference, New Hampshire, USA
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there is no experimental measurement, but this would in principle confirm if these states

are rotationally linked.

This raises the question whether it might be experimentally possible to observe the in-

trinsic cluster structure shown in the AMD calculations for the 12C ground state. One

possibility might be via ultra-relativistic 12C+208Pb collisions where differences between the

α-clustered and uniform 12C nucleus may be visible in quantities such as the triangular flow,

event-by-event fluctuations, or the correlations of the elliptic and triangular flows (Bro-

niowski and Ruiz Arriola, 2014). A similar approach, e.g. examination of the properties of

the fragmentation of 12C at high energy have been explored in (Artemenkov et al., 2017).

Another possibility is via α-particle knockout from the ground state. The measurement of

the 12C(p,pα) reaction using polarized beams found analyzing powers which were strongly

indicative of α-particles being preformed in the ground state (Mabiala et al., 2009). This

provides no information on any geometric arrangement or otherwise. Alternatively, it may

be possible to exploit the dynamical symmetries associated with the triangular arrangement

of the three α-particles. The early work of Hafstad and Teller (Hafstad and Teller, 1938)

paved the way for the more recent work of Bijker and Iachello (Bijker and Iachello, 2014).

The dynamical symmetries of the 3α-system correspond to a spinning top with a triangular

point symmetry (D3h). The rotational properties of these states are given by

EJ,K =
~2J(J + 1)

2IBe

− ~2K2

4IBe

, (2.1)

where IBe is the moment of inertia corresponding to two touching α-particles, which can

be determined from the 8Be ground-state rotational band (Hafstad and Teller, 1938). K is

the projection of the angular momentum onto the symmetry axis of the 3α system. One

would expect that there should be a number of rotational bands with different values of

K. For Kπ = 0+, the rotations will be around an axis which lies in the plane of the three

α-particles, generating a series of states 0+, 2+, 4+, . . . . These correspond to the rotation

of a 8Be nucleus, the rotation axis passing through the center of the third α-particle. The

next set of rotations corresponds to the rotation around an axis perpendicular to the plane

of the triangle, with each α-particle having one unit on angular momentum, thereby giving

L = 3 × 1~; Kπ = 3−. Rotations around this axis and those parallel to the plane combine

to give a series of states 3−, 4−, 5−, . . . .

The ground-state band described above, with 2+ and 4+ states at 4.4 and 14.1 MeV,
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FIG. 1 (Color online) (upper) Experimental energy spin systematics of states in 12C. Filled symbols

are strong assignments, open symbols are tentative assignments which are yet to be confirmed. The

squares correspond to the ground-state rotational band, 0+, 2+ and 4+. Triangles are the 3−, 4−

and 5− states. Circles are states associated with the Hoyle-band (0+, 2+ and 4+), and diamonds

are the 1− and 2− states. The various lines correspond to best fits to the rotational systematics.

(lower) Energy levels of the 0+, 2+, and 4+ states in 12C and matter density distributions obtained

by antisymmetrized molecular dynamics (AMD) with variation after projection using the MV1

force (Kanada-En’yo, 2007) (asterisk symbols) are compared with the experimental energy spectra

from Ref. (Ajzenberg-Selove, 1990; Freer et al., 2007, 2011; Itoh et al., 2011). The intrinsic density

distributions are shown together with percentages of the dominant component in the final wave

functions. The 4+2 state has dominantly the same intrinsic component as that of the 2+2 state.

The states with strong E2 transitions are connected by solid lines. Dashed lines correspond to the

tentative assignments of experimental levels in the upper panel.
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would correspond to the Kπ = 0+ rotational band. A candidate for the Kπ = 3− band

head is the 9.6 MeV 3− state. The 13.3 MeV state presently tentatively labelled with

Jπ = 2− in tabulations has recently been shown to almost certainly have Jπ = 4− (Freer

et al., 2007; Kirsebom et al., 2010). Moreover, the 3− state has been shown to have a

reduced α-width which indicates a cluster structure (Kokalova et al., 2013). The observation

of a candidate for a 5− state at 22.5 MeV (Marin-Lambarri et al., 2014), would appear

to complete the systematics and are also consistent with the AMD calculations (Kanada-

En’yo, 2007). Widths of the negative-parity states have not been calculated with AMD.

However, Uegaki’s 3αGCM calculations describe well the widths of the 3− at 9.64 MeV and

4− at 13.35 MeV (Uegaki et al., 1979). The former and the latter are dominated by the

8Be(0+) + α and 8Be(2+) + α partial decay widths. The width of the 5− may be dominated

by the 8Be(2+)+α partial decay width, but as yet there are no calculations to confirm this.

As with 8Be, the widths of the unbound states in 12C influence the possible collective

interpretation. The 14.1 MeV, 4+, state has a width of 270 keV and the 9.6 MeV 3− state

has a width of 46 keV, both of which may not affect the collective timescale. However, the

states associated with the Hoyle state (see below) have large widths of the order of MeV or

greater and a simple rotational picture may be an over simplification.

The Hoyle state and collective excitations

The Hoyle state in 12C is one of the best known states in nuclei given its rather crucial role

in the synthesis of carbon through the triple-α process. The recent review of this state (Freer

and Fynbo, 2014) provides a comprehensive description of its role in synthesis and its exper-

imental properties. Suffice to say, from an experimental perspective those properties have

been well characterized. On the other hand, its structure is less well understood.

The fact that no-core shell model calculations fail to reproduce the energy of the Hoyle

state (Navrátil et al., 2007, 2000b), without resorting to a significantly expanded harmonic

oscillator basis, indicates already that the structure lies beyond that described readily by

the shell model. The first ab initio calculation of the Hoyle state was performed only a few

years ago in Ref. (Epelbaum et al., 2011). These latter calculations were able to explicitly

capture the α-clusterization that appears in this state. The AMD calculations, Fig. 1,

indicate that the Hoyle state is an extended three α-system and that the associated 2+
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and 4+ excited states are not rigid, rotational, excitations and that a loose assembly of

α-particles, an α-gas, may be a better description. A similar conclusion was reached in the

fermionic molecular dynamics (FMD) calculations for the same states (Neff and Feldmeier,

2014). Here it was suggested that the 2+ and 4+ resonances might be considered as members

of a rotational band built on the 8Be ground state with the third α-particle orbiting around

the 8Be nucleus with relative orbital angular momentum 2 or 4, respectively. The origin of

nuclear clustering with relevance to the formation of the Hoyle state is also discussed by

Okolowicz et al. (Okolowicz et al., 2013).

It was observed by Barker and Treacy (Barker and Treacy, 1962) that in order to re-

produce the width of the Hoyle state, one has to use an unusually large radius: with a

radius of 1.6 fmA1/3, a width of 9.3 eV corresponds to a dimensionless reduced width,

θ2 = γλ
2MredR

2/~2, as large as 1.5. Hence, the width of the Hoyle state is very large;

this can only be understood if there is a large degree of α-clustering. The presence of this

cluster structure enhances the α-capture cross section. But its existence within the Gamow

window results in the overall capture cross section being boosted by a factor 108. Without

the precise location of this state the abundance of carbon-12 would be greatly reduced, and

thus it is intimately related to the existence of organic life. The rather deep question is

if this is a happy accident, or if there is some reason why states with strongly-developed

cluster structure should exist close to the corresponding decay thresholds (Epelbaum et al.,

2013b,a; Freer and Fynbo, 2014; Okolowicz et al., 2013).

Beyond the fact that the Hoyle state has a 3α-cluster structure, the nature of that

structure remains to be resolved. The AMD calculations in Fig. 1 indicate a dominance of

8Be+α configurations in a loose assembly such that the 2+ and 4+ excitations do not possess

a clear rotational behavior. The fermionic molecular dynamics (FMD) calculations of the

Hoyle state yield similar conclusions (Chernykh et al., 2007). An extension of these ideas is

that the state may be described by a gas/condensate of α-particles (Funaki et al., 2009). In

principle, it may be possible to gain an insight into the structure through the decay properties

of the state. In this instance there are two decay modes open; sequential and direct. In the

latter the system does not decay through the 8Be ground-state. An upper limit for non-

sequential α-decay of 4% was first determined in 1994 (Freer et al., 1994). Subsequently, a

measurement of the 40Ca + 12C reaction at 25 MeV/nucleon suggested that the branching

ratio was in fact higher at 7.5 ± 4%. This was challenged by further measurements where
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FIG. 2 (Color online) The calculated inelastic form factor for electron inelastic scattering from

the 0+1 ground state to the 0+2 excited state (Funaki et al., 2006a) for the BEC approach (red),

compared with the experimental data from Ref. (Horikawa et al., 1971; Nakada et al., 1971; Sick

and Mccarthy, 1970; Strehl and Schucan, 1968).

upper limits as low as 5×10−3 (95% C.L.) (Kirsebom et al., 2012; Manfredi et al., 2012) and

9(2)×10−3 has been put forward (Rana et al., 2013). This was improved to be 0.2% (Itoh

et al., 2014). These measurements have now reached a sensitivity at which the phase space

effects cease to be the dominant factor and it may be possible to probe the structure with

limits of 0.047% (Smith et al., 2017) and 0.043% (Dell’Aquila et al., 2017), compared with

the predicted phase space limit of 0.06% (Smith et al., 2017).

A second approach is to probe the charge distribution through electron inelastic scatter-

ing (Horikawa et al., 1971; Nakada et al., 1971; Sick and Mccarthy, 1970; Strehl and Schucan,

1968). In such measurements the transition form factor is determined, which probes the over-

lap of the ground state with the Hoyle state. To interpret such measurements a model is

required which can describe both the ground and excited states. Both the condensate (Fu-

naki et al., 2006a) and FMD descriptions (Chernykh et al., 2007) indicate that the Hoyle

state is associated with a radius larger than that of the ground state by a factor of 1.35

to 1.60 (depending on the model used to analyze the data), which would correspond to an

increase in volume by a factor of 2.5 to 4. Fig. 2 shows the calculated electron inelastic

scattering distribution for the condensate model (Funaki et al., 2006a).

A third approach to deduce the structure of the Hoyle state is to search for collective

16



12C(γ,α0)
8Be

FIG. 3 (Color online) (a) The measured E1 and E2 cross sections of the 12C(γ,α0)
8Be reaction.

(b) The measured E1-E2 relative phase angle (φ12) together with the phase angle calculated from

a two-resonance model (Zimmerman et al., 2013).

excitations, in particular the 2+ excitation. Inelastic scattering measurements (Freer et al.,

2009; Itoh et al., 2011; Zimmerman et al., 2011) were the first to provide evidence for such

an excitation. A common analysis of the evidence for a 2+ resonance from the proton- and

α-particle scattering data is given in Ref. (Freer et al., 2012a), and a discussion of the impact

of these measurements is given in Ref. (Fynbo and Freer, 2011). The 2+ lineshape, which is

found in the inelastic scattering measurements 12C(α, α′) and 12C(p, p′) (Freer et al., 2012a),

determined the properties to be Ex = 9.75(0.15) MeV with a width of 750(150) keV. The

existence of the 2+ resonance was confirmed by a measurement of the 12C(γ, 3α) reaction

at the HIγS facility (Zimmerman et al., 2013). The excitation function for these measure-

ments are shown in Fig. 3 and gives resonant parameters of Ex = 10.13(6) MeV and Γ =

2.1(3) MeV (Zimmerman, 2013).

These measurements have now been extended to higher energies and continue the ex-

pected trend for the 2+ excitation.2 If the state has a rotational behavior then there should

also be a 4+ state close to 14 MeV. There exists tentative evidence for such a state at

13.3 MeV, with a width of 1.7 MeV (Freer et al., 2011; Jyväskylä, 2013; Ogloblin et al.,

2 M. Gai, private communication
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2014). The existence of this latter state has yet to be definitively confirmed. It appears

to decay strongly to the 8Be ground state as opposed to the 2+ excited state, which might

provide an insight into the way the angular momentum is constructed, i.e., through the

orbiting of the α-particle around a 8Be(0+) core. Although much progress has been made in

terms of understanding the structure of 12C, the measurements are typically challenging and

often far from unambiguous. As such, the need for detailed spectroscopy continues. Here

the approach of the Aarhus group (Kirsebom et al., 2014) in measuring electromagnetic

properties points the way for those future studies. The p + 11B capture reaction is used

to resonantly populate states in 12C, and their decay after emitting an unobserved gamma

decay is recorded through the subsequent charged particle channel.

The Hoyle state, though extended, is not consistent with a linear chain structure arrange-

ment that would require the 2+ state to lie ∼ 1 MeV lower than observed experimentally.

Guidance from theory (Kanada-En’yo, 2007) suggests that the 10.3 MeV, 0+
3 state is the

best possibility. This state has a width of 3 MeV and a 2+ state corresponding to a linear

chain structure would be expected close to 11.5 MeV and would have a very large width. As

yet, such a state remains to be observed. Recently, the possibility of two 0+ states around

10 MeV was experimentally reported by Itoh et al. (Itoh et al., 2011) and supported by the

extended Tohsaki-Horiuchi-Schuck-Röpke (THSR) calculation (Funaki, 2015; Funaki et al.,

2015).

Figure 4 shows the compilation of theoretical spectra and transitions for 0+ and 2+ states

compared with the experimental data. Although there are many non- and semi-microscopic

3α calculations, we only show microscopic calculations with fully antisymmetrized wave

functions and nucleon-nucleon interactions. It is difficult to directly compare the reproduc-

tion quality of microscopic calculations with non-microscopic calculations where interactions

(or the Hamiltonian) are usually phenomenologically adjusted to fit the energy spectra of

12C. It should be also noted that we should not discuss ab initio calculations obtained from

the realistic nuclear forces on the same footing with the calculations using phenomenological

effective nuclear interactions. Details of the theoretical frameworks and interactions are ex-

plained in later sections. In the 3αRGM (Kamimura, 1981), extended THSR (Funaki, 2015;

Funaki et al., 2015), 3αGCM (Descouvemont and Baye, 1987; Suhara and Kanada-En’yo,

2015; Uegaki et al., 1979), and 3α+p3/2 (Suhara and Kanada-En’yo, 2015) calculations,

phenomenological effective nuclear interactions of the Volkov forces (Volkov, 1965) are used.
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The interaction parameters of the Volkov forces are tuned to reproduce α-α scattering,

though there are minor differences in the parameters among these calculations. The AMD

results (Kanada-En’yo, 1998a, 2007) are obtained by using the MV1 force(Ando et al., 1980),

which is a phenomenological effective nuclear interactions modified from the Volkov force

to describe the saturation properties, whereas the FMD+3α results (Chernykh et al., 2007)

are obtained based on the realistic Argonne V18 potential with phenomenological tuning.

For the NCSM (Navrátil et al., 2007) and nuclear lattice effective field theory (NLEFT)

(Epelbaum et al., 2012) calculations, the results obtained with the realistic NN and NNN

forces derived from the chiral effective theory are shown. In the no-core symplectic model

(NCSpM) calculation (Dreyfuss et al., 2013), a simplified effective Hamiltonian is used.

In general, the 3α calculations describe well the energy spectra of cluster states above the

3α threshold and the electron scattering form factors for the 0+
1 state and 0+

2 → 0+
1 transition,

but they are not sufficient in describing some properties of low-lying states such as the 0+
1 -2+

1

level spacing, E2 transition strength for 2+
1 → 0+

1 and 0+
2 → 2+

1 . Hybrid calculations of the

3α+p3/2 and FMD+3α models as well as the AMD can reasonably describe the ground band

properties and excited spectra for cluster states. The NCSM calculation fails to describe

the excited cluster states above threshold since those states are beyond the model space,

whereas the NCSpM, which contains higher shell configurations for cluster excitations, and

the NLEFT calculations describe cluster structures in excited states above the threshold.

The ab initio calculations (NCSpM and NLEFT) tend to much underestimate the size of

the ground state, and also give small values of the size and E0 matrix element for the Hoyle

state. The α-decay widths are calculated in the 3αRGM(Kamimura, 1981) and 3αGCM(D)

in Ref. (Descouvemont and Baye, 1987) by solving 8Be + α scattering, and evaluated in

the extended THSR (Funaki, 2015; Funaki et al., 2015), 3αGCM(U) in Ref. (Uegaki et al.,

1979), and AMD (Kanada-En’yo, 2007) within bound state approximations using reduced

width amplitudes. The available data for the α-decay widths are reproduced quantitatively

or qualitatively by theoretical calculations.

Though much progress has been made in understanding the structure of 12C, it is ap-

parent there is both need and scope for measurements to more precisely constrain the

properties of the states presented in Fig. 1. In particular, this requires the measurement of

electromagnetic transition rates where possible.
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FIG. 4 (Color online) Theoretical and experimental energy levels, E0 and E2 transitions, radii of

12C. The energy levels of 0+ and 2+ states are shown by solid and dashed lines, respectively. B(E2)

values (e2fm4) are shown by the corresponding arrows (cyan text and arrows). M(E0) values for

0+2 → 0+1 are shown by the arrows from 0+2 to 0+1 (purple text and arrows). Root-mean-square radii

of point-proton distribution in 0+ states are shown at the right side of the energy levels (black text).

Experimental data are from Refs. (Ajzenberg-Selove, 1990; Angeli and Marinova, 2013; Chernykh

et al., 2007; Itoh et al., 2011; Zimmerman et al., 2013). Theoretical results of the microscopic

3α models, 3αRGM(Kamimura, 1981), the extended THSR(Funaki, 2015; Funaki et al., 2015),

3αGCM(D) in Ref. (Descouvemont and Baye, 1987), 3αGCM(U) in Ref. (Uegaki et al., 1979), and

3αGCM(S) in Ref. (Suhara and Kanada-En’yo, 2015) are shown in the upper panel, and those of

the 3αGCM+p3/2 (Suhara and Kanada-En’yo, 2015), the FMD+3α (Chernykh et al., 2007), AMD

(Kanada-En’yo, 1998a, 2007), NCSM (Navrátil et al., 2007), NCSpM (Dreyfuss et al., 2013), and

NLEFT (Epelbaum et al., 2012) calculations are shown in the lower panel. For comparison, the

3αGCM+p3/2 results are shown also in the upper panel. The NLEFT energies have about 2 MeV

errors and can be improved in future work using new methods as described in Ref. (Lähde et al.,

2015a).
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States in 16O, dynamical symmetries and chains

One way of further testing our understanding of cluster correlations and the structure of

12C is through the extension of that understanding to 16O, which now is within the reach

of ab initio approaches, see e.g., Ref. (Epelbaum et al., 2014). Though much work has

been done in both experiment and theory for this nucleus, here we provide some historical

perspective first and then reflect on the most recent developments.

The work by Hafstad and Teller (Hafstad and Teller, 1938) indicates the collective prop-

erties of the 4α system should be described by the tetrahedral symmetry group, Td. Here

the characteristics are those of a spherical top, with equal moments of inertia and indepen-

dent of rotation axis. If one assumes the separation between the α-particles is that which is

associated with the 8Be ground state, IBe, then the rotational energies are given by

EJ = ~2
J(J + 1)

4IBe
. (2.2)

The rotation of the tetrahedral structure corresponds to the equivalent rotation of two 8Be

nuclei around their symmetry axis, and hence the 4IBe in the denominator. The symmetry

then dictates that all values of J are permitted except J = 1, 2 and 5; states with J = 0,

4 and 8 have even parity and J = 3, 7 and 11 have negative parity. A key feature of this

structure would be degenerate 6+ and 6− states. A similar conclusion can be found in the

recent work of Bijker and Iachello (Bijker and Iachello, 2014) as shown in Fig. 5, which was

triggered by related work performed using lattice simulations in Ref. (Epelbaum et al., 2014).

The algebraic cluster model of Bijker and Iachello (Bijker and Iachello, 2014) generates

energy eigenvalues and eigenvectors obtained by diagonalizing a finite-dimensional matrix,

rather than by solving a set of coupled differential equations in coordinate space (Bijker,

2015). The model then describes the relative motion of the clusters.

The potential similarity between the structural properties of 12C and 16O and the underly-

ing dynamical symmetries is compelling. However there are other models, e.g., the α-cluster

model (Bauhoff et al., 1984) that provide a good description of the energy spectrum of 16O

states. Hence, it is important to examine the decay properties. The experimentally observed

states at 6.130 MeV, 3−; 10.356 MeV, 4+ (Γ=26 keV); and 21.052 MeV, 6+ (Γ=205 keV)

have been linked in the work of Ref. (Bijker and Iachello, 2014) to the collective excita-

tions of the tetrahedral structure. These same calculations predicted states at 6.132, 10.220
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and 21.462 MeV and electromagnetic transition strengths B(E3) and B(E4) of 181 and

338 e2fm2L compared with experimental values of 205(10) and 378(133) e2fm2L. The com-

parison between experiment and theory is clearly compelling. The widths of the unbound

4+ and 6+ states are similar to those for the ground-state band in 12C. Nevertheless, caution

is required when interpreting transition rates for such states.

The alternative theoretical approach provided by the α-cluster model (ACM) calculations

of Bauhoff, Shultheis and Shultheis (Bauhoff et al., 1984) offer a different perspective. These

calculations identify a number of cluster structures, including a tetrahedral arrangement of

the four α-particles in the ground-state. In addition, a planar arrangement of α-particles is

found for the first excited 0+ state, which can be associated with a 12C+α structure. We note

the similarity to the lattice results from Ref. (Epelbaum et al., 2014). The main difference

between the ACM and algebraic cluster model (ACM’) of Ref. (Bijker and Iachello, 2014)

is evident in the assignment of the 10.356 MeV 4+ state to rotational bands. The ACM

assigns it to the planar rotational structure, whereas the ACM’ links it to the tetrahedral

ground-state.

The algebraic cluster model reproduces the B(E4) for the 10.356 MeV to ground state

transition, while the α-cluster model would place this state in a different band. This is clearly

contradictory. What is clear from measurements of the α-decay branching ratios for decay

to the 12C ground state and first excited states is that the states in the ACM planar band,

above the α-decay threshold, all have very similar decay properties. They predominantly

decay to the ground state (Tilley et al., 1993; Wheldon et al., 2011). Moreover there is also

a negative parity band built on the 7.12 MeV, 1− state with very similar decay properties.

This similar structure of this group of states conflicts with the tetrahedral interpretation

and indicates a collective excitation built around a 12C + α cluster structure where the

total angular momentum of the state is generated by the orbital motion of the α-particle

around the 12C core. These two different perspectives on the nature of the low-lying states

in 16O need to be resolved. Precision measurements of the complete electromagnetic decay

patterns are likely to be the way forward. Measurements of the ANCs of the states close to

the decay threshold in 16O have recently been reported (Avila et al., 2015). ANCs provide a

model-independent assessment of the cluster structure and as such are also a key ingredient

in refining the understanding of 16O as a test case for nuclear theory.

One of the longest-standing questions related to 16O is the existence of the 4α chain-state.
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FIG. 5 The calculated spectrum of 16O states assuming a Td dynamical symmetry, obtained using

the algebraic cluster model (Bijker and Iachello, 2014).

The 4α decay threshold is at 14.4 MeV and thus a chain state would exist close to or above

this energy. The 15.1 MeV 0+ state is a potential candidate, though the state has been

identified as the analogue of the Hoyle state (Funaki et al., 2009). The proximity of this

state to the decay threshold means that the 15.1 MeV state cannot decay strongly to the

4α final state. There are, however, a number of resonances that decay to the 8Be + 8Be or

12C(Hoyle) + α final-states. The pioneering measurements of Chevallier et al. (Chevallier

et al., 1967) revealed both the excitation energy and dominant angular momenta of the

16O resonances that decayed to 8Be + 8Be as populated in the 12C(4He,8Be)8Be reaction.

Remarkably, the energy-spin systematics of selected narrow resonances fell onto a J(J + 1)

trajectory with moment of inertia commensurate with a structure where the α-particles are

arranged in a linear fashion; an α-particle chain. This work was published in 1967 and

until the present has been held up as an example of extreme α-clustering. Confirmation of

such an exotic structure is clearly vital. There are a number of possible approaches. One

is to confirm the details of the excitation function, and the second is to search for higher

spin members of the 4 α-particle chain band. The band was only observed up to spin 6.

Subsequent measurements by Brochard et al. (Brochard et al., 1976) found no evidence for

the 8+ member. The measurements of Chevalier et al. have been revisited (Curtis et al.,

2013), as displayed in Fig. 6. The highly detailed excitation functions for the 12C(α,8Be)8Be
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FIG. 6 (Color online) Measurements of the 12C(4He,8Be)8Be reaction for θc.m. = 90◦ (Curtis et al.,

2013) data points. The dashed and dotted lines correspond to the measurements of Chevallier et

al. (Chevallier et al., 1967) and Brochard et al. (Brochard et al., 1976). See Ref. (Curtis et al.,

2013) for more details.

and 12C(α,12C[7.65 MeV])α reactions presented in Ref. (Curtis et al., 2013) show that the

original structure that was interpreted as resonances in the earlier work (Chevallier et al.,

1967) was more complex and that no evidence for an 8+ state could be identified. This

most recent study contained over 400 measurements at different energies, with significant

coverage of the angular distributions which should permit the components from resonances

and transfer-like processes to be disentangled. A measurement of 13C(α,8Be+8Be)n has

recently been published which provides some insight as to what are resonant features in the

12C + α excitation function (Curtis et al., 2016). With the existence of excitation functions

for 12C + α leading to 4α unbound final-states as well as bound states (Ames, 1982), there

is in principle sufficient data to perform a complete R-matrix analysis of the data to con-

strain states with enhanced 4α reduced decay widths. This is likely to be a key component

in constraining the structure of 16O above the 4α-decay threshold. Recent measurements

of α inelastic scattering populating 0+ states in this region also indicates the spectrum of

states may be more complicated than has been previously been concluded (Li K.C.W., 2017).
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FIG. 7 Illustration of the formation of molecular orbitals for neon isotopes from the valence orbitals

of neutrons around the cores of 16O and 4He (Kimura, 2007).

FIG. 8 (Color online) Rotational bands of 8Be, 9Be (left panel) and 10Be (right panel). The

excitation energies are plotted as a function of angular momentum J(J+1). The Coriolis decoupling

parameter, a, for the K = 1/2 band is indicated. From Ref. (Freer, 2007).

2. Molecular structures in neutron-rich nuclei

The idea that light nuclei might have a molecular structure where typically the valence

neutron is exchanged between α-particle cores has been explored extensively (Itagaki and

Okabe, 2000; von Oertzen, 1996a, 1997; Oertzen, 1997; Seya et al., 1981b). In essence, it

is possible to form linear combinations of the neutron wave function around the α-particle

cores and obtain, for example, two-centered molecules with delocalized neutrons in π and

σ-orbitals (Freer, 2007; von Oertzen et al., 2006). Here the single-center orbitals both have

p-type character. It is also possible to build more complex molecular structures with non-

identical cores, for example, in nuclei such as 21,22Ne (von Oertzen et al., 2006). This is

illustrated in Fig. 7 (Kimura and Horiuchi, 2004).

The simplest example of this molecular behavior is found in the rotational bands of 9Be.

The ground state band (Kπ = 3/2−) is well-understood in terms of its π-type characteristics.

The 1/2+ excited state at 1.68 MeV has a sequence of positive parity states (3/2+, 5/2+,

7/2+...) which may be connected to σ-type molecular structures, as shown in Fig. 8. These

two bands have spin and parity values consistent with molecular structures. Furthermore, as
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indicated in the figure, the moments of inertia extracted from the gradients of the bands are

similar to the moment of inertia found for 8Be, i.e., indicating the α-α core structure is largely

preserved. There are few ways to observe directly the ground state structure of the nucleus

9Be, however measurements of the decay correlations of 7Be and 6Li nuclei following the

interaction with a 9Be target showed strong and unexpected alignment. This was concluded

to be evidence for the π-type molecular structure of the 9Be ground-state (Charity et al.,

2015). The right hand panel of Fig. 8 shows the systematics of a negative parity band in 10Be.

Here this would correspond to a mixed π-σ configuration for the valence neutrons. Again

the deformation is found to be consistent with the molecular picture, though it is apparent

the moment of inertia has increased. Part of the origin of this effect is the proximity of

this band to the α-decay threshold, such that, as in the case of 12C, the cluster structure is

enhanced.

The most pronounced example of molecular behavior studied to date is that associated

with a series of states close to the α- and neutron-decay thresholds in 10Be. The 6.179 MeV,

0+
2 state has a suppressed gamma decay, with a lifetime of the order of 1 ps. This isomeric

behavior does not arise due to the lack of possible decay paths, but may be understood

in terms of the small overlap of its structure and that of the more compact lower energy,

3.36 MeV, 2+
1 state. This already signals an unusual structure, in analogy to the Hoyle

state in 12C. The excited state at 7.542 MeV, 2+
2 , is believed to be a collective excitation

of this state. This state lies above, but very close to, the α-decay threshold (7.409 MeV),

and thus its decay to this channel is strongly suppressed by the Coulomb and centrifugal

barriers. Nevertheless, the α-decay has been found to correspond to a very large reduced

width (Liendo et al., 2002), representative of the large degree of clusterization, although

there is disagreement in the absolute value (Milin et al., 2005). The 4+ member of the band

has been identified to lie at 10.15 MeV (Milin et al., 2005). An unambiguous measurement

of the spin and parity of the state was found in the resonant scattering of 6He + 4He (Freer

et al., 2006). This result has also been confirmed through a second resonant scattering

measurement performed at Notre Dame (Suzuki et al., 2013). If a collective model is applied,

the moment of inertia associated with the rotational band would indicate that the state

has a rather extreme deformation associated with the two valence neutrons occupying σ-like

orbitals, with a density maximum between the two α-particles which, via the Pauli exclusion

principle, forces an increased separation of the two α-particles. There are also indications
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from as yet unpublished measurements of a possible 6+ state at higher energy.3 Such a

structure would be the analogue of the 3α-chain state, but with two proton holes.

Valence neutrons in π- and σ-orbitals play an important role also in structure change of

the ground states along Be isotopes. Because of the lowering mechanism of the σ1/2-orbital

in a well-clusterized 2α system, the N = 8 shell gap vanishes in neutron-rich Be. As a result,

the ground states of 11Be and 12Be have σ-type molecular structures charactered by intruder

configurations with large deformation (enhanced clustering), as supported by experimental

observations such as Gamov-Teller and E2 transitions as well as the low-lying energy spectra

(Imai et al., 2009; Iwasaki et al., 2000a,b; Meharchand et al., 2012; Navin et al., 2000; Pain

et al., 2006; Shimoura et al., 2003; Suzuki and Otsuka, 1997). Contrary to the enhanced

clustering in 11Be and 12Be, the ground state of 10Be has the weak clustering because of

the attractive role of the π-orbital neutrons. The systematic change of cluster structures

along the Be isotope chain is reflected in the N dependence of charge radii, which have been

precisely determined by isotope shift measurements (Krieger et al., 2012; Nörtershäuser

et al., 2009). The charge radius is smallest at N = 6 for 10Be indicating a possible new

magic number at N = 6 instead of N = 8. This trend is described well by the weakening

and enhancement of the cluster structures in AMD and FMD calculations (Kanada-En’yo,

2015; Krieger et al., 2012).

The experimental efforts to extend the systematics from dimers to trimers has seen a

focus on trying to understand the systematics of three-centered molecules. Milin and von

Oertzen had performed some pioneering work which established a set of candidate bands

in 13C (Milin and von Oertzen, 2002) and 14C (von Oertzen et al., 2004). In the case of

13C the experimental situation remains unclear as the rotational systematics proposed in

Ref. (Milin and von Oertzen, 2002) are inconsistent with measurements of 9Be +α resonant

scattering (Freer et al., 2012b).4. There are other studies of the 13C system, e.g. (Rodrigues

et al., 2010; Soic et al., 2003), but these are inconclusive in terms of the molecular structure

of this nucleus. There have been a number of studies of 10Be + α resonant scattering which

populate resonances above the α-decay threshold (12 MeV) (Freer et al., 2014; Fritsch et al.,

2016; Yamaguchi et al., 2017). This is higher energy than the 0+ band head identified by von

Oertzen and co-workers (von Oertzen et al., 2004), 9.75 MeV, and as such resonances may

3 G. Rogachev, private communication
4 Also measurements from the Naples group, yet unpublished
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be associated with higher nodal cluster structures. Nevertheless, these latest measurements

provide some tentative evidence for linear chain structures in 14C, as the level spacing

and relative energies to the 10Be + α threshold of the observed states agree well with the

AMD prediction (Suhara and Kanada-En’yo, 2010a). However, it is clear that a definitive

conclusion has yet to be reached here.

3. Key measurements that constrain ab initio theory

Clustering reveals much about the nature of the force through which the constituent

components of the nucleus interact and the symmetries that result. This provides a crucial

connection with ab initio theory. The nuclear strong interaction is clearly complex and this

is revealed in the details of the unbound and bound light nuclei. The α-particle is one of the

most highly bound light nuclei with a very high-lying, ∼ 20 MeV, first excited state. And

here the array of correlations include not only n−n and p−p but also n−p to maximize the

binding energy. The tendency of other nuclei to optimize their own binding by generating

spatial and momentum correlations induces the formation of clusters. This is responsible

for clustering in α-conjugate nuclei, Borromean and molecular systems, alike.

Nuclei that display extreme or exotic behavior where the effects of the correlations are

maximal are an excellent test of theory. Good examples of this are the ground and excited

states of 8Be and the Hoyle state in 12C, which have both been described above. To be use-

ful in constraining theory and providing discrimination between approaches, high precision

measurements are often required. One of the best examples of this is the study of the T = 1

analogue states in 10Be, 10C and 10B∗.

Precision measurements of the lifetime of first 2+ state in 10C using the Doppler Shift

Attenuation Method deduced a lifetime of τ = 219 ±(7)stat ±(10)sys fs, corresponding to

a B(E2) of 8.8(3) e2fm4 (McCutchan et al., 2012a). Similar measurements of the same

transition in 10Be found a B(E2) of 9.2(3) e2fm4 (McCutchan et al., 2009). The ground and

2+ states of these nuclei are believed to possess a molecular structure where two valence

particles (2 neutrons or 2 protons) orbit the 2α-particle cores. These measurements were

compared with both the Green’s function Monte Carlo and no-core shell model (NCSM)

calculations. The reproduction of the experimental results, especially the GFMC calcula-

tions, was not satisfactory and showed significant sensitivity to the details of the 2– and
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FIG. 9 (Color online) Comparison between experimental B(E2) values and GFMC and NCSM

calculations using the AV18 potential with the IL7 three-nucleon interactions. The dashed lines

show the corresponding isospin-symmetric results. See Ref. (McCutchan et al., 2012a) for the full

details. The black square at 10B illustrates the experimental value of 6.1 e2fm4 (McCutchan et al.,

2012b).

3–body forces employed. A subsequent measurement of the B(E2) for the transition from

the J = 2, T = 1 state at 5.164 MeV to the J = 0, T = 1 state at 1.740 MeV in 10B found

a value of 6.1(22) e2fm4 (McCutchan et al., 2012b). This is much lower than the simple

average of the 10Be and 10C measurement, which may not simply be understood and stands

as an important test of ab initio theory.

This set of measurements is a fine example of the need for precision experimental data to

properly understand the nature of the strong interactions in light nuclei and the ability of

first principles approaches to reproduce experimental properties. This must be a significant

area of effort for experiment and theory over the next decade.

III. STRENGTHS AND CHALLENGES OF CURRENT THEORETICAL METH-

ODS

It is useful to briefly summarize the strengths and challenges of the various theoretical

approaches considered in this review. Many of the techniques we discuss are variational

methods using some prescribed ansatz for the nuclear wave function. These include an-

tisymmetrized molecular dynamics, fermionic molecular dynamics, the Tohsaki-Horiuchi-

Schuck-Röpke wave function and container model, and microscopic cluster models using the

resonating group or generator coordinate methods. These variational approaches often yield
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good agreement with experimental data as well as an intuitive picture of the underlying nu-

clear wave functions. The main challenges are to incorporate first principles nuclear forces

and remove systematic errors associated with the choice of variational basis states.

Some variational methods have also been combined with Monte Carlo techniques. Vari-

ational Monte Carlo uses stochastic sampling to compute overlap integrals. It is also often

used as a starting point for diffusion or Green’s function Monte Carlo simulations. These cal-

culations have used first principles nuclear forces, and the systematic errors can be estimated

by allowing unrestricted evolution of the quantum wave function. The major challenge for

these calculations is that the computational effort increases exponentially with the number

of particles. Another method called Monte Carlo shell model uses auxiliary-field Monte

Carlo to select optimized variational basis states. As with other variational methods, the

challenges are systematic errors due to the choice of basis states.

No-core shell model with continuum calculations start from first principles nuclear forces

described by chiral effective field theory and have shown impressive agreement for the con-

tinuum properties of light nuclei. Similar to Green’s function Monte Carlo, the challenge for

this method is the exponential scaling of effort when treating larger systems. The symmetry-

adapted no-core shell model provides some very promising ideas for mobilizing computational

resources in an efficient manner based on symmetries. Nevertheless difficulties remain in

reaching larger systems accurately with first principles nuclear forces.

Nuclear lattice effective field theory uses chiral effective field theory and lattice Monte

Carlo techniques to determining nuclear structure, scattering, and reactions. It has the

advantage of relatively mild scaling with system size and a common platform in which to

treat few-body and many-body systems at zero and nonzero temperature. However there is

the added difficulty of working on a lattice with broken rotational symmetry, and the lattice

spacing must be decreased to reduce systematic errors.

We also mention several other recent studies. In one recent work the states of 12C are

considered in a Skyrme model (Lau and Manton, 2014). While the calculations produce

good agreement with the measured experimental spectrum, the detailed connection to the

underlying nuclear forces is not yet fully realized. While the inadequacies of the shell model

in describing cluster structures have been known since the early years, the explanation of

nuclear clustering as an emergent collective phenomenon near open thresholds is provided

in Ref. (Okolowicz et al., 2013) by treating the nucleus as an open quantum system coupling
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through nearby continuum states.

IV. MICROSCOPIC CLUSTER MODELS AND ANTISYMMETRIZED MOLECU-

LAR DYNAMICS

Various cluster phenomena in stable nuclei have been theoretically investigated by using

microscopic cluster models such as resonating group methods (RGM) and generator coordi-

nate methods (GCM). In the progress of understanding the physics of unstable nuclei, cluster

models have been extended to deal with cluster structures with valence neutrons. Moreover,

more flexible methods such as antisymmetrized molecular dynamics (AMD) (Kanada-En’yo

and Horiuchi, 2001; Kanada-Enyo et al., 1995; Kanada-En’yo et al., 2012; Ono et al., 1992a;

Ono and Horiuchi, 2004; Ono et al., 1992b) and fermionic molecular dynamces (FMD) (Feld-

meier, 1990; Feldmeier et al., 1995; Feldmeier and Schnack, 2000; Neff and Feldmeier, 2004,

2003) have been developed which do not rely on the a priori assumption of existence of

clusters. The AMD and FMD wave functions are based not on cluster degrees of freedom

but on nucleon degrees of freedom. In this sense, these models are not cluster models. Nev-

ertheless, since they can express various kinds of cluster structures as well as shell-model

features, they are powerful approaches for the study of cluster features in general nuclei.

In this section we give a brief overview of cluster models, the AMD method, and their

extensions. Then we discuss some topics focusing on how these models describe coexistence

of cluster and mean-field aspects. It should be commented that the AMD and FMD methods

were originally developed in the time-dependent form for nuclear reaction studies. However,

we here explain the models for structure studies. For details of the AMD method for nuclear

structure and reaction studies, see Refs. (Kanada-En’yo and Horiuchi, 2001; Kanada-En’yo

et al., 2012; Kimura et al., 2016) and references therein.

A. Overview of microscopic cluster models

Since the 1960’s, microscopic cluster models have been applied to investigate cluster

phenomena such as nuclear scattering and cluster structures. In the early history, scattering

between light nuclei such as α + α scattering has been intensively studied with the RGM

(Tang et al., 1978; Wheeler, 1937a,b; Wildermuth and Kanellopoulos, 1958).
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Despite of the success of the RGM in microscopic description of relative motion between

composite particles, practical application of the RGM is limited in the light mass region

because of the computational costs of antisymmetrization in the treatment of the norm and

Hamiltonian kernels. We discuss some recent developments in subsection VI.B in ab initio

no-core shell model calculations.

Since 1970’s, owing to application of the GCM (Griffin and Wheeler, 1957; Hill and

Wheeler, 1953) using the Bloch-Brink cluster wave function (Brink, 1966b), further progress

of microscopic studies of cluster phenomena has been made for heavy mass and many-

cluster systems as well as unstable nuclei (Fujiwara et al., 1980). The RGM and GCM are

microscopic cluster models, in which antisymmetrization of all nucleons composing clusters

are fully taken into account, and the Hamiltonian is composed of nucleon kinetic energies

and nucleon-nucleon interactions based on nucleon degrees of freedom. Clusters are usually

written in terms of simple shell-model configurations with/without excitation, and the inter-

cluster motion is solved within the model wave functions.

The model wave function of the RGM for a single-channel case of two clusters C1 and C2

is given as

ΨRGM = A{φ(C1)φ(C2)χ(ξ)} , (4.3)

where A is the nucleon antisymmetrizer, φ(Ci) is the internal wave function of the Ci-cluster,

and ξ is the relative coordinate between the centers of mass of the clusters. The inter-cluster

wave function χ(ξ) is determined by solving the RGM equation derived from the projection

of the Schrödinger equation onto the RGM model space. Distortion of clusters and multi-

channel systems can be taken into account in the RGM by extending the single-channel to

coupled-channel problems.

To describe the inter-cluster motion with the GCM approach, Brink adopted the following

multi-center cluster wave function (called the Bloch-Brink cluster wave function) as a basis

wave function (Brink, 1966b),

ΦBB(S1, . . . ,Sk) = n0A{ψ(C1;S1) · · ·ψ(Ck;Sk)} , (4.4)

where the ith cluster (Ci) is localized around Si, and n0 is a normalization constant. The

wave function ψ(Ci;Si) for the ith cluster is written in terms of the harmonic oscillator shell-

model wave function located at Si. When the clusters are far from each other and feel weak

antisymmetrization effects between clusters, the parameter Si indicates the mean center
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position of the cluster, and hence, the spatial configuration of the parameters {S1, . . . ,Sk}

specifies the geometry of cluster structures. It means that the single Bloch-Brink cluster wave

function expresses a cluster wave function, in which centers of clusters are localized around

certain positions. In the small distance (|Si|) case that clusters largely overlap with each

other, the Bloch-Brink cluster wave function becomes a specific shell-model wave function

of the SU(3) shell model because of antisymmetrization of nucleons between clusters.

For the detailed description of inter-cluster motion, the superposition of the Bloch-Brink

wave functions is considered by adopting the cluster center parameters {S1, . . . ,Sk} as

generator coordinates in the GCM approach,

ΨGCM =

∫
dS1, . . . , dSkf(S1, . . . ,Sk)

×P Jπ
MKΦBB(S1, . . . ,Sk), (4.5)

where P Jπ
MK is the total-angular momentum and parity projection operator, and coefficients

f(S1, . . . ,Sk) are determined by solving the Hill-Wheeler equation (Hill and Wheeler, 1953).

In principle, the GCM with full model space of the basis Bloch-Brink wave functions is

equivalent to the RGM (Horiuchi, 1970). With the GCM approach it became possible to

practically calculate heavy mass systems and also many-cluster systems microscopically.

For scattering problems, the RGM can be applied rather straightforwardly because the

inter-cluster wave function is explicitly treated. On the other hand, in the application of

the GCM to scattering problems, it is necessary to connect the basis wave functions in the

internal region with continuum states in the asymptotic region at a chosen channel radius

(Descouvemont and Baye, 2010; Kamimura, 1977).

Based on the GCM, Bay and Descouvemont studied various low-energy reactions of as-

trophysical interest (Descouvemont and Baye, 2010). Following the progress in the physics

of unstable nuclei, the microscopic cluster approaches have been extended and applied to

study cluster structures of unstable nuclei. One of the main interests in the study of unstable

nuclei are properties of valence neutrons surrounding one core or two clusters in neutron-rich

nuclei. Microscopic three-body calculations for two valence neutrons around a core nucleus

have been achieved by many groups to investigate the neutron halo and two-neutron corre-

lation in drip-line nuclei such as 6He, 11Li, and 14Be (Arai et al., 1999; Descouvemont, 1995,

1997; Varga et al., 1994). Baye and Descouvemont have studied cluster features of the Be

isotopes using a GCM approach with the Bloch-Brink wave functions of two α-clusters and
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valence neutrons (Descouvemont, 2002). They have also applied the coupled-channel GCM

of 6He + 6He and 8He + α channels to study cluster structures of 12Be (Descouvemont and

Baye, 2001; Dufour et al., 2010).

Ito et al. have applied a more generalized approach of the coupled-channel GCM to

10Be and 12Be (Ito et al., 2008, 2004; Ito and Ikeda, 2014). The method is successful in

describing gradual changes of valence neutron configurations from strong-coupling clustering

with a molecular orbital structure to weak-coupling clustering in the asymptotic region with

the increase of the α-α distance. Varga and his collaborators have performed accurate

calculations for many cluster systems in unstable p-shell nuclei with the stochastic variational

method (SVM) (Arai et al., 2001; Varga and Suzuki, 1995; Varga et al., 1994, 1995). The

SVM is a microscopic cluster model with the RGM-type cluster wave function written as a

linear combination of stochastically chosen basis wave functions. Because of the stochastic

procedure in choosing the basis wave functions, it is a powerful approach to treat many

cluster systems. For instance, it has been applied to accurately solve four-cluster problems

in the study of unstable p-shell nuclei such as the 2α+ 2n system of 10Be (Arai, 2004; Arai

et al., 2001; Ogawa et al., 2000; Varga et al., 1995).

To understand cluster structures of low-lying states of neutron-rich Be isotopes, molecular

orbitals (MO) for surrounding neutrons around the 2α core were proposed (Itagaki and

Okabe, 2000; Ito and Ikeda, 2014; von Oertzen, 1996b; von Oertzen et al., 2006; Seya et al.,

1981a). Microscopic MO models (Okabe et al., 1977, 1978) have been developed and applied

to 10Be by Itagaki et al. (Itagaki and Okabe, 2000). The model is based on the GCM for

2α + 2n using a truncated model space. Neutron configurations are restricted to the MOs,

which are covalent bond orbitals written as linear combinations of p-orbits around each

α-cluster, whereas the α-α distance is treated as the generator coordinate. The molecular

orbital models have been also applied to neutron-rich C isotopes with the 3α core and valence

neutrons (Itagaki et al., 2001).

The relation of the cluster wave functions with shell model ones was described based

on the harmonic oscillator basis expansion and discussed from the SU(3) group symmetry

(Bayman and Bohr, 1958; Elliott, 1958a,b; Wildermuth and Kanellopoulos, 1958). The

concept has been followed by symmetry adopted models such as symplectic (no-core) shell

models (Draayer and Rosensteel, 1983; Dytrych et al., 2007; Rowe and Rosensteel, 1980;

Rowe and Wood, 2010) and algebraic cluster models (Bijker and Iachello, 2002; Cseh, 1992,
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FIG. 10 (Color online) 0+-projected energy surface on the Λ-D plane for 12C calculated by the

AQCM. The interaction and width parameters are same as those in Ref. (Suhara et al., 2013).

2014).

To describe competition between the cluster and jj-coupling shell model states, Itagaki et

al. extended the Bloch-Brink Alpha cluster model wave function by adding spin-dependent

imaginary parts to the cluster center parameters. This is essential for spin-orbit interactions

in the jj-coupling shell-model (Itagaki et al., 2005; Suhara et al., 2013). The model called

antisymmetrized quasi-cluster model (AQCM) can efficiently describe the smooth transition

from the α-cluster wave function to the jj-coupling shell model wave function in 12C with

the cluster breaking parameter Λ from Λ = 0 to Λ = 1 as shown in Fig. 10.

B. Antisymmetrized molecular dynamics method

The AMD method is an approach which treats nucleon degrees of freedom independently

without assuming any clusters. Nevertheless, the AMD can describe various cluster struc-

tures because the Bloch-Brink cluster wave functions for any cluster channels are contained

in the AMD model space.

An AMD wave function is given by a Slater determinant of single-nucleon Gaussian wave

functions,

ΦAMD(Z) =
1√
A!
A{ϕ1, ϕ2, ..., ϕA}, (4.6)

where the ith single-particle wave function ϕi is written by a product of spatial, spin, and
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isospin wave functions as

ϕi = φXi
χiτi, (4.7)

φXi
(r) =

(
2ν

π

)4/3

exp
{
−ν(r −Xi)

2
}
, (4.8)

χi =

(
1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4.9)

φXi
and χi are the spatial and spin functions, respectively, and τi is the isospin function fixed

to be up (proton) or down (neutron). The width parameter ν is fixed to be an optimized

value for each nucleus.

In the AMD wave function, the ith single-particle wave function is expressed by the

Gaussian wave packet localized around the position Xi. The Gaussian center positions Xi

and the intrinsic-spin orientations ξi for all nucleons are treated independently as variational

parameters which are determined by energy variation. It should be noted that the AMD

wave function can be interpreted as an extended version of the Bloch-Brink wave function

in a sense that all clusters are resolved completely to single nucleons. The AMD model

covers the Bloch-Brink cluster model space as well as the AQCM. Indeed, by choosing a

specific configuration of the Gaussian center positions {Xi}, the AMD wave function can

express the Bloch-Brink and AQCM wave functions. If a system favors a specific cluster

structure, that structure is automatically obtained in the AMD model space after energy

variation. The AMD wave function can also describe shell-model configurations because

of the antisymmetrization between nucleons. It means that formation and dissolution of

clusters are taken into account owing to the flexibility of the model wave function. This is

a great advantage superior to cluster models in description of both cluster and mean-field

features in the ground and excited states of exotic nuclei. As an extension of the AMD

wave function, triaxially-deformed Gaussian wave packets were proposed by Kimura et al.

instead of the spherical Gaussian wave packets (Kimura, 2004). The deformed base AMD is

efficient to describe the coexistence of deformed mean-field states and cluster states in sd-

and pf -shell nuclei. See Refs. (Kanada-En’yo et al., 2012; Kimura et al., 2016) and references

therein. It should be commented that deformed Gaussian wave packets have been proposed

in Ref. (Bauhoff et al., 1985) for the time-dependent cluster model (TDCM) (Caurier et al.,

1982; Drozdz et al., 1982).

For structure studies in the AMD framework, the energy variation is performed after
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parity projection. For the angular-momentum projection, the variation before the projection

(VBP) is performed in the simple AMD (Kanada-Enyo et al., 1995), whereas the variation

is performed after the projection (VAP) in the AMD+VAP method (Kanada-En’yo, 1998a).

For the description of excited states, the AMD wave functions obtained by the energy

variation are superposed. For instance, mixing of different basis AMD wave functions (mul-

ticonfiguration mixing) is usually done in the AMD+VAP method. In the AMD+GCM

method, many AMD wave functions are superposed by means of the GCM with constraint

parameters as generator coordinates. In the β- and βγ-constraint AMD (Kimura, 2004;

Suhara and Kanada-En’yo, 2010b), the energy variation is done under the constraints on

the deformation parameters β and (β, γ), respectively. In the d-constraint AMD (Taniguchi

et al., 2004), the constraint for the distance between two (or three) centers of subgroups is

adopted. After the energy variation with the constraints, the obtained AMD wave functions

are superposed with the GCM treatment. Namely, coefficients of wave functions are deter-

mined by solving the Hill-Wheeler equation, i.e., by diagonalizing the norm and Hamiltonian

matrices with respect to the adopted basis AMD wave functions. In the AMD+GCM, large

amplitude dynamics along the generator coordinates are microscopically taken into account.

Although the AMD+GCM is useful for large amplitude collective motion, it is not effi-

cient to describe single-particle excitations on a mean-field state because the lowest state

is chosen in the energy variation procedure. To overcome this problem, the shifted basis

AMD (sAMD) (Chiba et al., 2016; Kanada-En’yo, 2016a,b) has been constructed to describe

small amplitude modes on top of the ground state; small shift of Gaussian center position

of each single-particle wave functions is prepared on the ground state AMD wave function

and all the shifted bases wave functions are superposed to describe linear combinations of

one-particle and one-hole (1p-1h) excitations. The method combined with the cluster GCM

was applied to monopole and dipole excitations in light nuclei and described coexistence of

low-energy cluster modes and high-energy giant resonances.

Since the basis AMD wave function is written by a Slater determinant of single-particle

wave functions, the simplest case of the single AMD wave function without projections can

be regarded as a Hartree-Fock approach simplified in the restricted model space. However,

because of the linear superpositions as well as the parity and angular momentum projections

of AMD wave functions, higher correlations beyond mean-field approaches are taken into

account even in the ground state in the AMD framework. As mentioned previously, the
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AMD model contains mean-field states as well as various cluster states in its model space

and therefore it is able to describe the coexistence of mean-field and cluster aspects in the

ground and excited states of nuclear systems.

C. Time-dependent antisymmetrized molecular dynamics method

The AMD wave function was originally used for nuclear reaction studies in a time-

dependent framework (Ono et al., 1992a; Ono and Horiuchi, 2004; Ono et al., 1992b). In the

time-dependent AMD, the spin functions χi are usually fixed to be χ↑ or χ↓, and time evolu-

tion of a system is described by the time-dependent Gaussian center positionsXi determined

by the time-dependent variational principle as

i~
∑
jρ

Ciσ,jρ
dXjρ

dt
=

∂

∂X∗iσ

〈ΦAMD(Z)|H|ΦAMD(Z)〉
〈ΦAMD(Z)|ΦAMD(Z)〉

Ciσ,jρ ≡
∂2

∂X∗iσ∂Xjρ

In〈ΦAMD(Z)|ΦAMD(Z)〉, (4.10)

where σ, ρ = x, y, z. The time-dependent AMD can be regarded as an extended version of

the TDCM (Bauhoff et al., 1985; Caurier et al., 1982; Drozdz et al., 1982) in the sense that

all clusters are resolved completely into single nucleons.

In applications of the AMD and extended versions to heavy-ion collisions, the stochastic

two-nucleon collision term is added to the equation of motion. The model successfully de-

scribed multifragmentations at intermediate energy. Feldmeier has proposed a wave function

quite similar to the AMD wave function for nuclear reactions and structure studies (Feld-

meier, 1990; Feldmeier et al., 1995; Feldmeier and Schnack, 2000) and named it fermionic

molecular dynamics (FMD). The model wave function of the FMD is also given by a Slater

determinant of single-nucleon Gaussian wave packets. The major difference in the wave

function between the FMD and AMD is that the width parameter ν can be independently

chosen for each nucleon as νi and treated as variational parameters in the FMD, whereas it

is common for all nucleons in the AMD. Instead, the diffusion and the deformation of wave

packets are stochastically incorporated in an extended version (AMD+Vlasov) for reaction

studies (Ono and Horiuchi, 1996).

In structure studies the flexible treatment of the width parameters in the FMD is effi-

cient, for example, for the neutron-halo structure of neutron-rich nuclei. The variation of

width parameters in the time-dependent FMD is also effective in description of the giant
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monopole resonance (Furuta et al., 2010), whereas the giant resonances are described with

superposition of shifted single-particle Gaussian wave packets in the sAMD framework.

D. Effective nuclear interactions

In the cluster model and the AMD calculations, phenomenological effective nuclear inter-

actions composed of the two-body central and spin-orbit (ls) forces are usually used. The

Hamiltonian consists of the kinetic energies, the effective nuclear interactions, and Coulomb

interaction as

H =
∑
i

ti − Tc.m. +
∑
i<j

vnuclearij +
∑
i<j

vCoulomb
ij ,

vnuclearij = vcentralij + vlsij , (4.11)

where the center-of-mass kinetic energy Tc.m. is subtracted. Note that the center-of-mass

motion can be easily separated from the wave functions in the cluster and AMD models

when a common width parameter is used. For the central forces of the effective nuclear

interactions, Gaussian finite-range interactions with and without the zero-range density-

dependent term (or the zero-range three-body term) are adopted in most cases. The central

forces are supplemented with the finite-range or zero-range ls forces.

For light mass nuclei, density-independent interactions such as the Minnesota (Thompson

et al., 1977b) and Volkov (Volkov, 1965) interactions are often used. The Minnesota force is

originally adjusted to fit the S-wave nucleon-nucleon scattering as well as scattering between

light nuclei. For the Volkov force, the standard parameter set reproduces α-α scattering. The

Volkov force can be adjusted to fit the S-wave nucleon-nucleon scattering lengths by tuning

parameters for the Bartlett and Heisenberg terms. In general, these density-independent

effective interactions cannot describe the saturation properties of nuclear matter and have an

overbinding problem in heavy mass nuclei. Therefore, interaction parameters are sometimes

readjusted to reproduce energies for the mass number region of interest, though the original

parameter sets reproduce the properties of nucleon-nucleon and α-α scattering.

To overcome the overbinding problem, the central forces with the zero-range density

dependent or zero-range three-body term are used for heavy mass nuclei. Examples are the

Gogny forces (Berger et al., 1991) and the Modified Volkov (MV) forces (Ando et al., 1980).

The central force of the Gogny forces consists of finite-range two-body terms and a zero-range
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density dependent term, whereas that of the MV forces contains a zero-range three-body

term instead of a zero-range density-dependent term. These interactions systematically

reproduce the binding energies over a wide mass number region. However, they cannot

quantitatively reproduce the scattering and structure properties of very light systems such

as the nucleon-nucleon and α-α scattering as well as the size of the α-particle.

There are many cluster model calculations for light nuclei using the Minnesota and Volkov

forces. In the AMD calculations for p-shell, sd-shell, and pf -shell nuclei, the Volkov, Modified

Volkov No.1 (MV1), and Gogny forces are used. As already mentioned, these interactions

used in the cluster model and AMD calculations are effective nuclear interactions that are

phenomenologically adjusted to properties of nuclear structures and/or scattering.

In the FMD calculations, effective nuclear interactions derived from the realistic nuclear

interactions are usually used with the unitary correlation operator method (UCOM), in

which the short-range and tensor correlations are taken into account in the interaction

operator of the Hamiltonian (Feldmeier et al., 1998; Neff and Feldmeier, 2003; Roth et al.,

2010). Therefore the FMD+UCOM calculation is a first principles method starting from

realistic nuclear interactions.

E. Description of cluster and mean-field aspects in AMD models

1. Cluster breaking effects on 3α structures in 12C

Despite the success of 3α-cluster models for many excited states 12C, microscopic 3α-

cluster models are not sufficient to describe the large level spacing between the 0+
1 and 2+

1

states because α-cluster breaking is not taken into account in the models. Moreover, it is

difficult to confirm the 3α cluster formation in the 12-nucleon dynamics because clusters are

a priori assumed in the models. These problems have been overcome by the AMD and FMD

models. In the AMD and FMD calculations for 12C (Chernykh et al., 2007; Kanada-En’yo,

1998a, 2007; Neff and Feldmeier, 2004), 3α-cluster structures are formed in the calculated

results without assuming the existence of α-clusters.

As mentioned previously, the model spaces of the AMD and FMD contain the Bloch-

Brink cluster wave functions and also cluster breaking configurations. In the 12C(0+
1 ), the

cluster breaking component, i.e., the p3/2 closed-shell component is significantly mixed in
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the dominant 3α cluster structure as seen in the compact intrinsic density distribution in

Fig. 1. Due to the mixing of the cluster breaking component, the band-head 12C(0+
1 ) gains

extra energy of the spin-orbit attraction resulting in stretching of the 0+-2+ level spacing

consistently with the experimental energy spectra. It is also the case in the FMD calculation

(see Fig. 4). The significant mixing of the cluster breaking component in 12C(0+
1 ) is clearly

indicated in the AQCM calculation in Fig. 10 by the finite value of the cluster breaking

parameter Λ at the energy minimum.

The cluster breaking component does not give drastic effects to excited 3α cluster states.

However, excited 0+ structures are more or less affected by the cluster breaking component

mixed in the 12C(0+
1 ) through the orthogonality, and therefore, quantitative differences can

be seen between model calculations with and without the cluster breaking. For example,

in the calculated energy spectra shown in Fig. 4, the AMD and FMD calculations show

a trend of the larger 0+
2 -2+

2 level spacing than that obtained by 3α calculations without

the cluster breaking, because the cluster breaking in the 12C(0+
1 ) induces the global energy

gain of excited 0+ states. Moreover, the AMD calculation shows the larger E2 strength for

2+
2 → 0+

3 than that for 2+
2 → 0+

2 , differently from the 3α calculations that give dominant

E2 strength for 2+
2 → 0+

2 . Suhara and Kanada-En’yo investigated the cluster breaking

effects on 3α cluster structures in 12C by explicitly adding the p3/2 closed-shell configuration

(cluster breaking component) into the 3α model space(Suhara and Kanada-En’yo, 2015).

Comparison of the results with and without the p3/2 configuration is shown in the right two

columns in the upper panel of Fig. 4. The figure shows increasing of the 2+
1 and 2+

2 energies

relative to the 0+
1 , 0+

2 , and 0+
3 ones, and also the inversion of the dominant E2 strengths

between 2+
2 → 0+

2 and 2+
2 → 0+

3 . It may indicates that the cluster breaking should not be

ignored for detailed discussions of band assignments in model calculations.

2. Cluster and mean-field modes in monopole excitations in 12C

In experimental and theoretical studies of nuclear clustering, isoscalar monopole (ISM)

and dipole (ISD) transitions are good probes to pin down cluster states (Chiba and Kimura,

2015; Funaki et al., 2006a; Kanada-En’yo, 2016b; Kawabata et al., 2007; Yamada et al.,

2012). Yamada et al. pointed out that two different modes of ISM excitations coexist in

16O(Yamada et al., 2012): one is the isoscalar giant monopole resonance (ISGMR) known to
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be the collective breathing mode, and the other is the low-energy ISM strengths for cluster

states. The low-energy ISM strengths were experimentally observed also for 12C (John et al.,

2003; Youngblood et al., 1998). A hybrid model of the shifted basis AMD (sAMD) and 3α-

GCM was applied to the ISM excitations in 12C and described the low-energy ISM strengths

for cluster modes separating from high-energy ISGMR strengths (Kanada-En’yo, 2016b).

The separation of the low-energy and high-energy parts of the ISM strengths qualitatively

agrees to the experimental data (see Figs. 11 (a) and (b)). As explained in the previous

section, the sAMD bases describe coherent 1p-1h excitations for the GMR, whereas the 3α-

GCM bases are essential for the large amplitude cluster modes which contribute to the low-

energy strengths. Figure 11 (e) shows the ISM strengths obtained only by the sAMD bases

without 3α configurations, and Figures 11 (c) and (d) show the ISM strengths calculated

using specific 3α configurations in addition to the sAMD bases. As clearly seen, the sAMD

describes only the high-energy ISM strengths for the ISGMR but fails to describe significant

low-energy ISM strengths. As 3α configurations are added to the sAMD bases, a peak

grows up and come down to the low-energy region (see Fig. 11 (c)). Then, the low-energy

peak finally splits into the 0+
2 and 0+

3 in the full sAMD+3αGCM calculation because of

the coupling of the radial motion with the rotational motion of clusters. Namely, the large

amplitude cluster motion is essential for the low-energy ISM strengths and the fragmentation

of the ISM strengths occurs by the coupling of the radial and rotational motions in the 3α

dynamics.

The lowering mechanism of the ISM strengths by the large amplitude cluster motion was

also demonstrated in the time-dependent FMD calculation by Furuta et al. (Furuta et al.,

2010). In applications of time-dependent approaches to nuclear excitations, the response

functions are calculated by the Fourier transform (frequency) of the time evolution of the

system. For the ISM excitations, the initial state is prepared by imposing an external field

(operator)
∑

i r
2
i to the ground state, and starting from the initial state the time evolution

of the system is solved with the time-dependent FMD. In the FMD framework, the single-

particle excitations are expressed by the time-dependent width parameters of single-nucleon

Gaussian wave packets, whereas the radial cluster motion is described by the time-dependent

Gaussian center positions. The Fourier transform of the root-mean-square radius shows two

modes with different frequencies corresponding to the width oscillation mode and the radial

cluster (inter-cluster) mode (see Fig. 12). They analyzed the dependence of frequencies of
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FIG. 11 (Color online) The energy weighted ISM strength distributions obtained by the

sAMD+3αGCM and those measured by (α, α′) scattering (John et al., 2003). The experimen-

tal E0 strength for the 0+2 measured by electron scattering (Chernykh et al., 2010) is also shown

in panel (b). (c) and (d) are those calculated with truncated model space of 3α configurations: (c)

calculation using 3α configurations at θ = π/2 and sAMD bases. (d) same as (c) but only compact

3α configurations with |Si| < 2 fm. (e) strengths obtained by the sAMD bases without the 3α

configurations. The figures (a) (b) (e) are from Ref. (Kanada-En’yo, 2016b).

two modes on the oscillation amplitude and found that the higher frequency for the width

mode, corresponding to the breathing mode, does not depend on the amplitude but the

lower peak frequency for the cluster mode significantly come down to lower energy as the

amplitude becomes larger. This result is consistent with the sAMD+3αGCM result discussed

previously, although the GMR mode is expressed by linear combination of shifted Gaussian
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FIG. 12 (Color online) (a) (b) Monopole excitations in 12C calculated with the time-dependent

FMD. Oscillation frequencies of he root-mean-square radius are plotted against the Fourier com-

ponent in the small amplitude limit in (a), and those are plotted as a function of the excitation

energy given by the initial amplitude in (b). (c) Sketches for width oscillation and inter-cluster

modes in the time-dependent FMD. (d) 0+ energy surface of 3α TSHR wave function on the B-b

plane (B is denoted by R0). (e) Sketches for b and B modes in the THSR. The figures (a) (b) are

from Ref. (Kanada-En’yo, 2016b) and (d) from Ref. (Tohsaki et al., 2001).

wave packets with a fixed width in the sAMD instead of the variational width in the FMD

wave function. Note that the quantization of excitation modes nor spin-parity projections

is performed in the sAMD+3αGCM but not in the TD-FMD. It should be remarked that

monopole vibration in 8Be have been investigated with with the TDCM of 2α which shows

similar features of the width oscillation and radial cluster modes (Drozdz et al., 1982).

It is also valuable to consider a link to the THSR wave function for two kinds of monopole

modes. In the THSR model, the width oscillation mode is expressed by the parameter b for

the α-cluster size, and the radial cluster mode is described by the parameter B for the α

distribution size as shown in Fig. 12(e). The 0+ energy surface on the B-b plane in Fig. 12(d)

shows the coexistence of two modes. The energy surface is very soft along the B mode and

it is steep along the b mode. It indicates that the origin of the low-energy ISM strengths

is the large amplitude cluster motion decoupled from the width (coherent single-particle

excitation) mode for the ISGMR.
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V. TOHSAKI-HORIUCHI-SCHUCK-RÖPKE WAVE FUNCTION AND CONTAINER

MODEL

A. Introduction

Cluster model studies in the 1970’s showed that the Hoyle state of 12C has a gas-like

structure of three α clusters which are weakly bound with predominantly S-wave correlations

among the α-particles (Horiuchi, 1974; Kamimura, 1981; Uegaki et al., 1977). The gas-like

structure of the Hoyle state was reconsidered in a new light in Ref. (Tohsaki et al., 2001).

In this paper it was proposed that the Hoyle state has a 3α-condensate-like structure, and

the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function was presented for the sake of

expressing the α-condensate-like structure. It was soon discovered (Funaki et al., 2003) that

the 3α THSR wave function was nearly identical to the 3α cluster-model wave functions

obtained in 1970’s, namely the 3α Brink-GCM (generator coordinate method) wave function

of Ref. (Uegaki et al., 1977) and the 3α RGM (resonating group method) wave function of

Ref. (Kamimura, 1981).

About 10 years later it was found that the THSR wave function for 16O + α clustering

in 20Ne was nearly identical to the Brink-GCM wave function for 16O + α clustering (Zhou

et al., 2013). This finding was striking since the 16O + α Brink-GCM wave functions with

spatially-localized 16O+α structures describe accurately the states of the so-called inversion-

doublet bands of 20Ne where the even parity and odd parity levels are split into two separate

bands. The THSR wave function was found to describe well the spatially-localized cluster

structures even though it was originally designed to describe gas-like delocalized cluster wave

functions. The fact that the THSR wave function can describe both localized and delocalized

clustering lead to the introduction of the container model of cluster dynamics (Zhou et al.,

2014a).

Here we discuss the THSR wave function and its history, starting from its initial intro-

duction to the container model of cluster dynamics (Funaki et al., 2015; Schuck et al., 2016;

Tohsaki et al., 2017). We explain some characteristics of the THSR wave function that might

appear contradictory, such as the nucleon-density distribution showing localized clustering

despite of the nonlocalized character of the THSR wave function and the equivalence of pro-

late and oblate THSR wave functions after angular momentum projection. The container
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model is deeply connected to the evolution of cluster structure, and we demonstrate this in

12C and 16O.

B. Alpha-condensate-like character of the Hoyle state

1. S-wave dominance of α-cluster motion in the Hoyle state

The Hoyle state, the second 0+ state of 12C, is located slightly above the 3α and 8Be(0+
1 ) +

α thresholds. The small excitation energy of this state, 7.66 MeV, is very difficult to explain

by the shell model. The decay width Γ of the Hoyle state is very small (8.7 eV) because the

energy is well below the Coulomb barrier. Assuming for the moment two subsystems in a

relative S wave, the R-matrix calculation of the width for gives

Γ = 2PL=0(a)γ2(a), (5.12)

where γ2(a) is the reduced width,

PL=0(a) = ka/(F 2
L=0(ka) +G2

L=0(ka)) (5.13)

is the Coulomb barrier penetrability, a is the channel radius, FL and GL are the regular and

irregular Coulomb functions, respectively, and k is the wave number. See Ref. (Descouve-

mont and Baye, 2010) for a review. The observed value γ2obs(a) for the Hoyle state is very

large. It is comparable to or larger than the Wigner-limit value γ2W (a) = 3~2/(2µa2) that

corresponds to an α cluster with uniform density at radial distances less than a. The very

large value of γ2obs(a) suggests that the structure of the Hoyle state is composed of an 8Be(0+
1 )

core and loosely attached α cluster in an S wave. This conclusion does not support the idea

of the 3α linear-chain structure proposed by Morinaga (Morinaga, 1956, 1966), since the

3α linear-chain structure would produce a reduced width γ2(a) that is significantly smaller

than γ2W (a) (Suzuki et al., 1972).

The S-wave dominance of the 8Be(0+
1 )-α relative wave function indicated by the observed

α-width was confirmed theoretically by solving the 3α problem by the use of 3α OCM

(orthogonality condition model) (Horiuchi, 1974). Since 8Be(0+
1 ) consists of two α clusters

weakly coupled in a relative S wave, the Hoyle state was concluded to have a weakly-coupled

3α structure in relative S waves with large spatial extent. It was therefore described as a gas-

like state of α clusters. A few years later, the results of the 3α OCM study were confirmed
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by fully microscopic 3α calculations by two groups, namely the 3α GCM calculation of

Ref. (Uegaki et al., 1977), and 3α RGM calculation of Ref. (Kamimura, 1981). These

calculations nicely reproduced not only the excitation energy of the Hoyle state but also

other experimental properties including the α-decay width, the inelastic electron-scattering

charge form factor, and E0 and E2 transition properties.

2. Equivalence of the 3α RGM/GCM wave function to a single 3α THSR wave function

More than 20 years after the 3α OCM, GCM, and RGM studies mentioned above, the

Hoyle state was reconsidered in a new light in Ref. (Tohsaki et al., 2001). The authors of

this paper proposed, for the description of the Hoyle state, the following new model wave

function ΨTHSR
3α called the THSR wave function. Let Φ(3α) be a simple product of three

α-cluster wave functions,

Φ(3α) = φ(α1)φ(α2)φ(α3). (5.14)

The THSR wave function has the form

ΨTHSR
3α (B)

= A{exp[− 2
B2 ( ~X2

1 + ~X2
2 + ~X2

3 )]Φ(3α)} (5.15)

= exp(−6~ξ23
B2 )A{exp(− 4~ξ21

3B2 −
~ξ22
B2 )Φ(3α)}, (5.16)

where ~Xi is the center of mass of cluster i and ~ξk are Jacobi coordinates defined as

~ξ1 = ~X1 − 1
2
( ~X2 + ~X3), (5.17)

~ξ2 = ~X2 − ~X3, (5.18)

~ξ3 = 1
3
( ~X1 + ~X2 + ~X3). (5.19)

With the center-of-mass dependence removed, the wave function has the form

Φ(3αTHSR) = CΨTHSR
3α (B)/ exp(−6ξ23

B2 ), (5.20)

where C is a normalization constant. As shown in Eq. (5.16), the THSR wave function

can be regarded as expressing the 8Be(0+
1 ) + α cluster structure, where a 8Be(0+

1 )-like

cluster A{exp(−~ξ22/B2)φ(α2)φ(α3)} and the α1 cluster couple via S-wave with inter-cluster

wave function exp[−4~ξ21/(3B
2)]. On the other hand, Eq. (5.15) shows that the THSR

wave function represents the state where three α-clusters occupy the same single 0S-orbit
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exp(−2 ~X2/B2), namely a 3α condensate state which is a finite-size counterpart of the

macroscopic α-particle condensation in infinite nuclear matter at low density (Röpke et al.,

1998). What the authors of Ref. (Tohsaki et al., 2001) proposed was that the 8Be(0+
1 ) + α

structure of the Hoyle state can be regarded as being a 3α condensate-like state. Further-

more one can in general expect the existence of an nα condensate-like state in the vicinity

of the nα threshold in 4n self-conjugate nuclei.

An important and striking fact is that both the 3α GCM wave function of Ref. (Uegaki

et al., 1977) and the 3α RGM wave function of Ref. (Kamimura, 1981) are each nearly

equivalent to a single 3α THSR wave function (Funaki et al., 2003):

|〈Φ(3αTHSR)|Φ(3αGCM/RCM)〉|2 ≈ 100%. (5.21)

Hence the 3α THSR wave functions reproduce the same Hoyle state experimental data well

described by the 3α RGM/GCM wave functions. We refer the reader to the recent review

in Ref. (Tohsaki et al., 2017) for applications of the THSR wave function to the Hoyle state

and discussions of electric transitions, α-condensation probabilities, and comparisons with

quantum Monte Carlo calculations.

C. Localized vs. nonlocalized clustering

1. Shell-model limit of THSR wave function

Let b be the single-nucleon oscillator size parameter with which the 0s H.O. (harmonic

oscillator) orbit is expressed as

φ0s(~r) = (πb2)−3/4 exp(− ~r2

2b2
). (5.22)

When B = b, we have

exp(−2 ~X2

B2 )φ(α) ∝ det |(0s)4|. (5.23)

Therefore ΨTHSR
3α (B = b) = 0 by the Pauli exclusion principle. By expressing the normal-

ization constant of ΨTHSR
3α (B) with B > b as nTHSR

3α (B), one can prove the relation

lim
B→b

nTHSR
3α (B)ΨTHSR

3α (B)

= |(0s)4(0p)8; [444]L = 0〉, (5.24)
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where [444] refers to the spatial-symmetry Young diagram (Hutzelmeyer and Hackenbroich,

1970). This relation means that ΨTHSR
3α (B) for B close to b is close to the shell-model wave

function of the 12C ground state. So while the THSR wave function for large B is a gas-like

state of clusters, the THSR wave function with small B is a shell-model-like state.

In Ref. (Tohsaki et al., 2001), the ground and Hoyle states of 12C were obtained as

the lowest and second lowest energy states of the GCM equation with the basis function

ΨTHSR
3α (B), ∑

B

〈ΨTHSR
3α (B′)|(H − Ek)|ΨTHSR

3α (B)〉fk(B) = 0. (5.25)

The GCM wave functions of the ground and Hoyle states were found to have about 93%

and 98% squared overlaps with single THSR wave functions.

2. Inversion doublet bands of 20Ne and THSR wave function

In 20Ne the even-parity Kπ = 0+ rotational band upon the ground state and odd-parity

Kπ = 0− rotational band upon the Jπ = 1− state at 5.80 MeV constitute inversion-doublet

bands having the same intrinsic 16O + α cluster structure (Horiuchi and Ikeda, 1968). The

splitting between the even-parity and odd-parity bands can be understood as arising from

tunneling of the α through the 16O core to form the corresponding mirror configuration.

The empirical success of this description constitutes evidence of spatial localization of the

clusters. Much later it was discovered that the GCM/RGM wave functions describing the

inversion-doublet bands were found to be almost equivalent to a single 16O +α THSR wave

functions (Zhou et al., 2013, 2012),

|〈Φ(16O + α THSR)|Φ(16O + α GCM/RGM)〉|2 ≈ 100%, (5.26)

where the 16O + α THSR wave function has the form

ΦL(16O + α THSR)

= lim
| ~D|→0

PLA{e−
8(~r− ~D)2

5B2 φ(16O)φ(α)}, (5.27)

where

~r = ~XCM(16O)− ~XCM(α), (5.28)

and PL is the projection operator for angular momentum L.
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The relation in Eq. (5.27) casts doubt on the use of the energy curve for the Brink

wave function in determining the spatial localization of clusters. The 16O + α Brink wave

function A{exp[−8(~r− ~D)2/(5b2)]φ(16O)φ(α)} has the inter-cluster separation parameter ~D.

The optimum value of D = | ~D| is obtained from the minimum energy point of the energy

expectation value as a function of D. It was shown in Ref. (Zhou et al., 2013) that this

way of determining the inter-cluster distance is misleading because if one uses as the size

parameter of the inter-cluster motion not 8/(5b2) given by the Brink wave function but the

much smaller value 8/(5B2), the energy minimum point resides at D = 0.

3. Localized clustering from inter-cluster Pauli repulsion

FIG. 13 (Color online) Nucleon density distribution of the 16O + α intrinsic THSR wave function

of Eq. (5.27) for D = 0.6 fm. A large distance of about 3.6 fm between 16O and α clusters is seen.

The limit D → 0 appearing in Eq. (5.27) would seem to suggest that the distributions of

the 16O and α clusters are overlapping and therefore not localized. The resolution of this

apparent contradiction becomes clear after calculating the nucleon density distribution of

the 16O + α THSR wave function, as was performed in Ref. (Zhou et al., 2014a). In Fig. 13

we show the nucleon density distribution of the 16O + α intrinsic THSR wave function of

Eq. (5.27) for the small value D = 0.6 fm. We do not directly set D = 0 as this would force

the intrinsic THSR wave function to be symmetric under parity. We see in Fig. 13 that

there exists a large separation of about 3.6 fm between the 16O and α clusters. This spatial

localization of clusters is due to the nucleon antisymmetrizer A. The antisymmetrizer A

generates Pauli-forbidden states χF (~r) for the 16O-α relative motion which have the property

A{χF (~r)φ(16O)φ(α)} = 0, (5.29)
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where χF (~r) are H.O. eigenstates with Gaussian factor exp[−8~r2/(5b2)] and oscillator quanta

2n + L smaller than 8. Thus the probability for two clusters 16O and α to be very close

together is small. This is nothing more than Pauli repulsion.

We can say that the dynamics favors non-localized clustering but the constraints of an-

tisymmetrization make the system exhibit localized clustering in the intrinsic frame. While

this conclusion holds for two-cluster systems in general, the pairwise Pauli repulsion between

clusters generally does not produce static localization in the intrinsic frame for more than

two clusters. This is why a nonlocalized gas-like structure of three α clusters arises in the

Hoyle state even though a localized dumbbell-like structure appears in the 2α system.

FIG. 14 (Color online) Nucleon density distribution for a strongly prolate THSR wave function of

3αs.

If there are additional constraints, however, there can be localized clustering even in

systems with three or more clusters. An excited state can be viewed as the minimum energy

state under the requirement of orthogonality to all energy eigenstates at lower energies.

This requirement of orthogonality can constrain the possible deformations of the excited

state. Consider, for example, an excited state of the 3α system that is orthogonal to the

ground state, the Hoyle state, and also the next excited state above the Hoyle state. Suppose

furthermore that these constraints energetically favor a strongly prolate THSR wave function

of the form,

A

{
exp

[
−

3∑
k=1

[
2(X2

k+Y
2
k )

b2
+

2Z2
k

B2 ]

]
Φ(3α)

}
, (5.30)

where with B � b. The nucleon density distribution for this THSR wave function is shown in

Fig. 14 (Zhou et al., 2014a). We see three localized α clusters forming a linear-chain struc-

ture.
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4. Equivalence of prolate and oblate THSR wave functions after angular momentum projection

One unusual feature of THSR wave functions is that prolate and oblate wave functions

can become equivalent after angular momentum projection. Fig. 15 shows a contour map

of the squared overlaps between a prolate 0+ THSR wave function with 0+ THSR wave

functions with various deformations in 20Ne (Zhou et al., 2014a). The deformed THSR wave

function ΦNe of 20Ne has the formA[χ(~r)φ(α)φ(16O)] where χ(~r) is exp[−
∑

k=x,y,z(8/5B
2
k)r

2
k]

and B2
k = b2 + 2β2

k . We see in this figure that the prolate THSR wave function with βx =

βy = 0.9 fm, βz = 2.5 fm is almost 100 % equivalent to oblate THSR wave functions with

βx = βy ≈ 2.1 fm and βz between 0 and 1.2 fm after angular momentum projection onto

0+. The equivalence of prolate and oblate THSR wave functions after angular momentum

projection is true for all the spin-parity states of 20Ne.

FIG. 15 Contour map of the squared overlap between a 0+ wave function with βx = βy = 0.9 fm,

βz = 2.5 fm and 0+ wave functions with various deformations βx = βy and βz (Zhou et al., 2014a).

Numbers attached to the contour curves are squared overlap values.

Despite of this equivalence of prolate and oblate wave functions after angular momentum

projection, we can say that the 20Ne states expressed by the THSR wave functions all have

prolate deformation as the actual deformation. This conclusion is obtained from the fact

that the expectation values of the quadrupole moments of all the 20Ne states expressed by

THSR wave functions have negative sign. From the well-known formula

Q(J) = − J

2J + 3
·Q(intrinsic), (5.31)

we know that when the expectation value Q(J) of the quadrupole moment of the wave func-

tion with good spin J is negative, the quadrupole moment of the intrinsic state, Q(intrinsic),
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is positive and therefore prolate. The THSR wave function after angular momentum pro-

jection has the form ΦJ
Ne = A[χJ(~r)φ(α)φ(16O)] and we can prove that this type of wave

function ΦJ
Ne gives us the following formula for Q(J) (Zhou et al., 2014a):

Q(J) = − J

2J + 3

16

5
〈r2〉, (5.32)

where
16

5
〈r2〉 = 〈ΦJ

Ne|
20∑
j=1

(~rj − ~XCM)2|ΦJ
Ne〉 −R2(16O)−R2(α), (5.33)

and

R2(Ck) = 〈φ(Ck)|
∑
j∈Ck

(~rj − ~XCM(Ck))
2|φ(Ck)〉. (5.34)

This shows that Q(J) has negative value and explains why the calculated values of Q(J) by

THSR wave functions have all negative sign. Of course the negative sign of Q(J) by THSR

wave functions is in accordance with the prolate distribution of nucleon density shown in

Fig. 13.

The reason why prolate and oblate THSR wave functions are almost equivalent after

angular momentum projection is explained by the fact that the rotation-average of a prolate

THSR wave function is almost equivalent to an oblate THSR wave function. The rotation-

averaged wave function Φave(βx = βy, βz) generated from a prolate THSR wave function

Φprolate(βx = βy, βz) is defined as

Φave(βx = βy, βz)

=

(
1

2π

∫ 2π

0

dθeiθJx
)

Φprolate(βx = βy, βz). (5.35)

If we rotate a prolate THSR wave function around an axis (x axis) perpendicular to the

symmetry axis (z axis) of the prolate deformation and construct a wave function by taking

an average over this rotation, the density distribution of the rotation-average wave function

will be oblate (see Fig. 16). In the case of the 0+ state, when we construct the rotation-

average wave function from the prolate THSR wave function with (βx, βy, βz) = (0.9, 0.9,

2.5 fm) which gives the minimum energy for 0+, it is almost 100 % equivalent to the oblate

THSR wave function with (βx, βy, βz) = (0.9, 2.1, 2.1 fm).

Φoblate(βx = 0.9 fm, βy = βz = 2.1 fm)

≈ Φave(βx = βy = 0.9 fm, βz = 2.5 fm). (5.36)
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FIG. 16 (Color online) Rotation average of a prolate THSR wave function around an axis (x axis)

perpendicular to the symmetry axis (z axis) of the prolate deformation.

D. Container picture of cluster dynamics

The ground and Hoyle states in 12C are obtained as the eigenstates with lowest and

second lowest energies of Eq. (5.25). This equation is the GCM equation with respect to

the size parameter B of the THSR wave function. The excitation of the system is described

by the dynamics of the system size. This description is very different from the traditional

description of the system excitation by RGM/GCM equation, which treats the dynamics

of inter-cluster motion. In Ref. (Zhou et al., 2014a), this new description of the cluster

dynamics is called the container model of cluster dynamics. The container refers to the

self-consistent field with size B in which clusters are accomodated and make nonlocalized

motion.

The GCM equation with respect to the container size parameter B was also solved in the

4α system (Funaki et al., 2010). Table I shows the energy spectra of 0+ states obtained by

4α THSR-GCM. In this table, we show the enegy spectra of 0+ states obtained by 4α OCM

(Funaki et al., 2006b) together with experimental spectra. This 4α OCM study confirmed

the assignments by former 12C + α cluster model studies that the observed 0+
2 and 0+

3 states

are dominantly 12C(0+
1 ) + α (S wave) and 12C(2+

1 ) + α (D wave) configurations respectively.

On the other hand, the 4α OCM study newly assigned the dominant configurations for the

0+
4 and 0+

5 states to be 12C(0+
1 ) + α (higher nodal S wave) and 12C(1−1 ) + α (P wave)

respectively. What is interesting about this 4α OCM study is the assignment of the 4α

condensate-like structure to the observed 0+
6 state at 15.1 MeV excitation. The reason for

this assignment is that the reduced-width amplitude of the calculated 0+
6 state is large only

in the 12C(Hoyle) + α (S wave) channel (Funaki et al., 2006b). The good accordance of
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TABLE I Comparison of the 0+ energy spectra from experiments, 4α OCM calculation (Funaki

et al., 2006b), and 4α THSR calculation (Funaki et al., 2010). Energies E are measured in MeV

from the 4α threshold, and RMS radii Rrms are in fm.

4α THSR 4α OCM Exp.

E Rrms E Rrms E

0+1 −15.05 2.5 0+1 −14.37 2.7 −14.44

0+2 −4.7 3.1 0+2 −8.0 3.0 −8.39

0+3 −4.41 3.1 −2.39

0+3 1.03 4.2 0+4 −1.81 4.0 −0.84

0+5 −0.25 3.1 −0.43

0+4 3.04 6.1 0+6 2.08 5.6 0.66

the calculated decay width Γcal = 136 keV with the observed width Γexp = 166 keV for

this 0+
6 state gives high reliability to this OCM assignment. In Ref. (Yamada et al., 2012),

it is reported that the fine structures of the observed isoscalar monopole strength function

up to about 16 MeV in 16O are well reproduced by this 4α OCM. Compared to the OCM

calculation, the THSR-GCM calculation gives us only four 0+ states in the excitation-energy

region of obseved six 0+ states. However the fourth 0+ state of the THSR-GCM calculation

can be considered to correspond to the 0+
6 state of 4α OCM and hence to the observed 0+

6

state at 15.1 MeV excitation. It is because the reduced-width amplitude of the 0+
4 state

of the THSR-GCM calculation is markedly large only in the channel of 12C(Hoyle) + α

(S wave) (Funaki et al., 2010). Thus also in the case of the 4α system, the THSR-GCM

calculation describes the excitation of the system from the ground state to the 4α gas-like

excited state, although the description of the excitation to other states is incomplete. In

order to remedy the incompleteness of the description of Ref. (Funaki et al., 2010) we have

to extend the 4α THSR wave function so that the THSR wave function includes not the

single size parameter B but two or more B parameters. In the case of two B parameters, one

B is for the container containing three α clusters and the other B is for the container for the

relative motion between 3α system and fourth α cluster. In the next subsection we discuss

the extension of the THSR wave function so that it includes two or more B parameters.
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The GCM wave functions ΦTHSRGCM
λ of the obtained four 0+ states with λ = 1, 2, 3, 4

are found to have almost 100% squared overlaps with single orthogonalized THSR wave

functions Φ̂λ(β0) for a certain value of β0 satisfying B2 = b2 + 2β2
0 . Φ̂λ(β0) is defined by

Φ̂λ(β0) = NλPλ−1Φ
THSR
4α (β0) (5.37)

where

Pλ−1 = 1−
λ−1∑
k=1

|ΦTHSRGCM
k 〉〈ΦTHSRGCM

k |, (5.38)

for λ = 2, 3, 4. Here, Nλ is a normalization constant and P0 = 1. Since the orthogonalization

operator Pλ−1 expresses the necessary property which any excited state should satisfy, the

essential character of ΦTHSRGCM
λ is expressed by ΦTHSR

4α (β0). Thus, although ΦTHSRGCM
λ is

constructed by a linear combination of many 4α THSR wave functions, its essential character

is described by only a single 4α THSR wave function. The optimum values of β0 for four

0+
λ states are 1.2 fm, 2.5 fm, 4.0 fm, 6.5 fm, for λ = 1, 2, 3, 4, respectively, which means that

the system size becomes larger with increasing λ.

E. Extended THSR wave function and examples of its application

1. Breathing-like excitation of the Hoyle state

The container model of cluster dynamics uses the system size parameter as the generator

coordinate for clustering motion. In the case of 3α system, we can introduce size parameters

B1 and B2 for 2α and 3α containers as shown in Fig.17. The extended THSR wave function

for this double container system is given as (Zhou et al., 2014b)

ΦexTHSR
3α (B1, B2) = A

{
exp

(
−

~ξ21
B2

2
−

~ξ22
B2

1

)
Φ(3α)

}
. (5.39)

When B2
2 = (3/4)B2

1 , ΦexTHSR
3α (B1, B2) = ΦTHSR

3α (B1). As has been done in the traditional

THSR wave function, we can use deformed containers. In this case, we replace ~ξ21/B
2
2 by∑z

i=x ξ
2
1i/B

2
2i and also ~ξ22/B

2
1 by

∑z
i=x ξ

2
2i/B

2
1i.

The extended THSR wave function for 3α system has been applied to the studies of the

ground state (Zhou et al., 2014b) and the positive-parity excited states in 12C (Funaki, 2015;

Zhou et al., 2016). Refs. (Funaki, 2015) and (Zhou et al., 2016) supported the existence of

two 0+ states (0+
3 and 0+

4 ) around 10 MeV excitation energy above the Hoyle state (0+
2 ) which
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FIG. 17 (Color online) Size parameters B1 and B2 for 2α and 3α containers, respectively. B2
1 =

b2 + β21 and B2
2 =(3/4) b2 + β22 .

was proposed by the 3α OCM studies combined with the CSM (complex scaling mewthod)

in Refs. (Kurokawa and Katō, 2005; Ohtsubo et al., 2013). The 0+
4 state is the state whose

existence had been long known since 1970’s and this state is considered to have a bent-chain

structure of 3α which has a large component of 8Be(2+
1 ) + α (D wave) (Kanada-En’yo,

1998b; Neff and Feldmeier, 2004; Uegaki et al., 1977). On the other hand the 0+
3 state is

the state whose existence was newly proposed and which was suggested to be a breathing

excitation of the Hoyle state in Ref. (Kurokawa and Katō, 2005; Kurokawa and Kato, 2007).

The theoretical proposal of the existence of two 0+ states (0+
3 and 0+

4 ) around 10 MeV

excitation energy was soon supported experimentally by Itoh et al. (Itoh et al., 2013). In

Ref. (Itoh et al., 2013), it is reported that the observed broad 0+ state at 10 MeV consists

of two components. The lower 0+ state do α-decay to the ground state of 8Be only while the

higher 0+ state has a distinct peak at 10.8 MeV with a width of 0.4 MeV in the coincidence

spectrum for the first excited state of 8Be channel. These two 0+ states were considered

to have consistent properties predicted for a higher nodal state of the Hoyle state and a

linear-like 3α state, respectively.

Table II shows energies and rms radii of 0+
2 , 0+

3 , and 0+
4 states of 12C and monopole

transition values M(E0) between three 0+ states which are calculated by extended 3α THSR

wave functions (Funaki, 2015; Zhou et al., 2016). We see that the Hoyle state (0+
2 ) and other

two 0+ states have very large rms radii. The very large value of the calculated E0 strength

M(E0; 0+
3 → 0+

2 ) = 35 e fm2 or 47 e fm2 supports the idea to regard the 0+
3 state as a

breathing-like excited state of the Hoyle state 0+
2 . In Ref. (Funaki, 2015), the total width of

the 0+
4 state is calculated to be 0.7 MeV which is to be compared with the observed width

1.42 MeV. As for the 0+
3 state the calculated α width is 1.1 MeV which is rather close to

the observed width 1.45 MeV (Itoh et al., 2011).
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TABLE II Energies and rms radii of 0+2 , 0+3 , and 0+4 states of 12C and monopole transition values

M(E0) between three 0+ states which are calculated by extended THSR wave functions. Energies

(MeV) are measured from 3α threshold, radii are in fm, and M(E0) values are in e fm2. Cal. A

and Cal. B denote the results of Refs. (Funaki, 2015) and (Zhou et al., 2016), respectively.

Cal. A Cal. B

E(0+2 ) , Rrms(0
+
2 ) 0.23, 3.7 0,22, 3.9

E(0+3 ) , Rrms(0
+
3 ) 2.6, 4.7 1.7, 5.2

E(0+4 ) , Rrms(0
+
4 ) 3.9, 4.2 2.7, 4.0

M(E0, 0+2 → 0+1 ) 6.3-6.4 6.2

M(E0, 0+2 → 0+3 ) 34-37 47

M(E0, 0+2 → 0+4 ) 0.5-1.4 7.7

In Ref. (Zhou et al., 2016), two kinds of inter-cluster relative wave functions were anal-

ysed which are contained in the four 0+ states (0+
1 ∼ 0+

4 ) obtained by extended 3α container

model. The first-kind one is S-wave relative wave function between 8Be(0+
1 ) and the re-

maining α cluster and the second-kind one is S-wave relative wave function between two α

clusters after the integration over the ~ξ1 Jacobi coordinate by using single Gaussian weight.

It was found that both kinds of relative wave functions have one more node in the 0+
3 state

than in the Hoyle state. This result implies that 0+
3 state is the breathing-like excited state

of the Hoyle state. It is because the generating operator for the breathing excitation

OB =
12∑
i=1

(~ri − ~rCM)2 (5.40)

can be rewritten as

OB =
3∑

k=1

∑
i∈αk

(~ri − ~Xk)
2 + 8

3
~ξ21 + 2~ξ22 . (5.41)

2. Container evolution in 16O

The extended THSR wave function was applied recently to study the evolution of cluster

structure in 16O (Funaki, 2018). As in the 3α system in subsection V.E.1, two deformed

containers are adopted where the first container is for the 3α subsystem and the second
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container is for the relative motion between the 3α subsystem and the fourth α cluster.

Fig. 18 shows the energy spectrum obtained by the extended 4α THSR (denoted as eTHSR)

compared with the 4α OCM and experiment (Funaki, 2018). The fifth 0+ state (0+
5 ) by

eTHSR is just above the 4α threshold and the two size parameters of its eTHSR wave

function are nearly the same. This means that 4α clusters in this state are accomodated

approximately in a single container. Since the size parameters of this state are large, βx =

βy ≈ 5.6 fm, βz ≈ 2.0 fm, the 0+
5 state represents a Hoyle-analogue state in 16O.
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FIG. 18 Energy spectrum obtained by extended 4α THSR of Ref. (Funaki, 2018) which is compared

with those by 4α OCM and experiment.

The ground state (0+
1 ) has the smallest radius and its intrinsic shape is reported to be

terahedral. It is based on the calculated result that while the 3α sub-container has oblate

shape the container describing the relative motion between the 3α subsystem and the 4th α

cluster is of prolate shape. The calculated second 0+ state (0+
2 ) is reported to have 12C(0+

1 )

+ α (S wave) structure. The reason for this identification is that the size parameters of the

3α sub-container are close to those of the 3α container of the 12C ground state and are nearly

spherical. Also, the container describing the relative motion between the 3α subsystem and

the 4th α cluster is also nearly spherical but with a much larger radius. This structure

of the second 0+ state is in good accordance with previous cluster model studies (Funaki

et al., 2006b; Suzuki et al., 1972). Similarly, the structure of the calculated third 0+ state

(0+
3 ) is in good accordance with previous cluster model studies (Funaki et al., 2006b; Suzuki

et al., 1972); namely the 0+
3 state is reported to have 12C(2+

1 ) + α (D wave) structure. The

structure of the calculated fourth 0+ state (0+
IV ) is reported to have 12C(0+

1 ) + α (S wave)
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where the container describing the relative motion between the 3α subsystem and the 4th

α cluster is much larger than that of the second 0+ state.

The container model and the extended THSR wave function describes the evolution of the

cluster structure from the ground state up to the 4α condensate-like state (Hoyle-analogue

state) through the various 12C + α structures and is therefore well-suited for studying the

evolution of cluster structure. In describing this evolution, we go from a single container to

several containers, a process called container evolution (Funaki, 2018).

3. Neutron-rich Be isotopes

Extended THSR wave functions have also been applied to neutron-rich nuclei. Since the

container describes valence neutrons will have size parameters different from the container

for the core part of the system, the use of the extended THSR wave function for neutron-rich

nuclei is quite natural. Here we report the works of Refs. (Lyu et al., 2015) and (Lyu et al.,

2016) which treat 9Be and 10Be, respectively.

In the case of 9Be, the valence-neutron wave function F (~r) in the extended THSR wave

function should have negative parity, and it is given by

Fn(~r) =

∫
d~R exp

(
−

z∑
k=x

R2
k

β2
k

)
exp(iφR) exp

[
− (~r−~R)2

2b2

]
. (5.42)

The phase factor exp(iφR) makes the parity of Fn(~r) negative. In Ref. (Lyu et al., 2015),

the ground rotational-band levels, 3/2−, 5/2−, 7/2−, were treated, and it was found that

the extended THSR wave functions of these levels have about 95 % squared overlaps with

the wave functions obtained by GCM calculation by using 2α + n three-body Brink wave

functions.

In the case of 10Be, the energy spectra of two rotational bands upon the ground state

and the 0+
2 state were calculated using single extended THSR wave functions and were

compared with those obtained by AMD calculations (Kobayashi and Kanada-Enyo, 2012;

Suhara and Kanada-Enyo, 2010). For the ground band, the extended THSR wave functions

where two valence neutrons occupy the orbit Fn(~r) were used. The modification of these

extended THSR wave functions were also made by introducing the distance parameter ~Rpair

between C.M. of 2α system and C.M. of 2n system. It was reported that both kinds of

extended THSR wave functions give very similar energy spectra compare to that of the
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AMD calculation (Kobayashi and Kanada-Enyo, 2012). For the excited band, the extended

THSR wave functions were constructed by accomodating two valence neutrons into the σ-

orbit type single-neutron orbit. The obtained energy spectrum is very similar to but a

little higher than the AMD energy spectra by Refs. (Kobayashi and Kanada-Enyo, 2012;

Suhara and Kanada-Enyo, 2010). The extended THSR wave function of the 0+
2 state is not

orthogonalized to that of the ground state, but the squared overlap between them is as small

as 1.4%. We see thus that the wave functions as simple as the single extended THSR wave

functions give very good results quite similar to AMD calculations.

VI. NO-CORE SHELL MODEL

In contrast with the traditional shell model approach which starts with an inert core of

nucleons filling a closed shell, the no-core shell model treats all nucleons as active. The

many-body basis states are the energy eigenstates of the spherical harmonic oscillator,

Hosc =
A∑
i=1

Hi, (6.43)

Hi = − ~2

2m
∇2
i +

1

2
mΩ2r2i , (6.44)

with some finite truncation imposed in the total oscillator excitation energy (Navrátil et al.,

2000a,b). Here m is the nucleon mass and Ω is the oscillator frequency. The truncation

of the basis in terms of the total sum of oscillator excitation energies allows for an exact

factorization of the wave function into separated center of mass and relative coordinate

degrees of freedom.

In these no-core shell model calculations the interactions among nucleons include a

nucleon-nucleon potential fitted to experimental nucleon-nucleon scattering data as well

as higher-nucleon interactions fited to few-nucleon observables. Some take the approach

of using a high-quality phenomenological potential (Wiringa et al., 1995), while others ap-

ply the organizational principles of chiral effective field theory to produce effective chiral

interactions for nucleons (Epelbaum et al., 2009; Machleidt and Entem, 2011).

The method has had many remarkable successes in recent years in describing nuclear

structure from first principles, e.g., (Barrett et al., 2013; Maris et al., 2009; Navrátil et al.,

2007; Roth et al., 2011). For the study of nuclear clustering, however, the no-core shell
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model in its basic form is typically not efficient in describing spatial correlations among

nucleons forming localized clusters.

A. Symmetry-adapted no-core shell model approaches

The symmetry-adapted no-core shell model overcomes the problem of efficiently describ-

ing clustering by making use of exact and dynamical symmetries of the spherical harmonic

oscillator Hamiltonian associated with collective mode excitations (Draayer et al., 2011;

Dreyfuss et al., 2016, 2013; Dytrych et al., 2013, 2007). We can rewrite the single-particle

spherical harmonic oscillator Hamiltonian in terms of the usual ladder operators,

Hi = ~Ω

[
c†x,icx,i + c†y,icy,i + c†z,icz,i +

3

2

]
. (6.45)

We see there is a U(3) symmetry group associated with unitary 3× 3 rotations of the x, y, z

quanta, and the component continuously connected to the identity forms an SU(3) symmetry

group (Elliott, 1958a,b). But the symmetry group can be expanded further by also allowing

SU(1,1) transformations of the form

cx,i → αcx,i + βc†x,i, (6.46)

c†x,i → α∗c†x,i + β∗cx,i, (6.47)

|α|2 − |β|2 = 1. (6.48)

The transformation can also be applied to cy,i, cz,i, and any set of real orthogonal linear

combinations of cx,i, cy,i, and cz,i, and thus we also have an SU(1, 1) ⊗ O(3) symmetry. It

can be shown that the full dynamical group of the spherical harmonic oscillator is the real

symplectic group Sp(6,R) for 6× 6 matrices (Rowe and Wood, 2010).

The symmetry-adapted no-core shell model uses the real symplectic group Sp(6,R) and

its subgroup SU(3) to generate linear combinations of spherical harmonic basis states which

form complete representations of the SU(3) subgroup for some selected quantum numbers

(λ, µ) of the Cartan subalgebra of SU(3). As the quantum numbers (λ, µ) correspond to

different deformation geometries, the problem of capturing the collective behavior induced

by clustering can be considerably more efficient in the symplectic basis. One of the future

challenges for the symmetry-adapted no-core shell model approach is to handle realistic

nuclear forces with significant terms breaking symplectic or SU(3) symmetry.
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A specific version of the symmetry-adapated no-core shell model called the no-core sym-

plectic model (NCSpM) was used to compute the low-lying even parity states of 12C (Drey-

fuss et al., 2013). The results for the rms matter radii and electric quadrupole moments are

shown in Table III (Dreyfuss et al., 2013). The NCSpM calculation gives a point matter rms

radius for the ground state in agreement with experiment. The calculation yields a point

matter radius of rrms = 2.93 fm for the Hoyle state, which is slightly larger than that of the

ground state. While this result is smaller than the results typically obtained in cluster model

calculations, it is close to a recent value deduced from experiment, 2.89(4) fm (Danilov et al.,

2009), and is similar to ab initio lattice EFT results at leading order, 2.4(2) fm (Epelbaum

et al., 2011).

The NCSpM calculations yield an electric quadrupole moment for the 2+
1 state in agree-

ment with the experimental value. Similarly, a positive quadrupole moment is found for the

4+
1 state, and the 0+

1 , 2+
1 , and 41 are consistent with a rotational band with an oblate struc-

ture. On the other hand, a large negative result is found for the 2+
2 state above the Hoyle

state and the same for the 4+ state above the Hoyle state. The results are consistent with

a rotational band associated with the Hoyle state with a substantial prolate deformation.

Such a prolate deformation has also been found in ab initio lattice EFT results (Epelbaum

et al., 2012, 2011).

We note that SU(3)-symmetry has been also used to study clustering in shell model

calculations with a core. The cluster-nucleon configuration interaction model is one such

approach (Volya and Tchuvil’sky, 2015). This method has recently been used to probe the

cluster structure of 20Ne resonances in elastic 16O +α scattering (Nauruzbayev et al., 2017).

B. Continuum no-core shell model approaches

Another way to incorporate clustering in the no-core shell model is to consider spherical

harmonic oscillator states corresponding to more than one center. This is done by com-

bining the no-core shell model formalism with the resonating group method (Fliessbach

and Walliser, 1982; Friedrich and Langanke, 1975; Thompson et al., 1977a). A review ar-

ticle summarizing recent developments can be found in Ref. (Navrátil et al., 2016). In the

following we discuss the case with two clusters.

Let the binary-cluster state of interest have total angular momentum J , parity π, and
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TABLE III NCSpM point rms matter radii and electric quadrupole moments for 12C compared to

experimental data. aRef. (Tanihata et al., 1985); bRef. (Danilov et al., 2009); cRef. (Ogloblin et al.,

2013); and dRef. (Ajzenberg-Selove, 1990). *Experimentally deduced, based on model-dependent

analyses of diffraction scattering.

matter radius (fm) Q (e fm2)

Expt. NCSpM Expt. NCSpM

0+gs 2.43(2)a 2.43(1)

0+2 (Hoyle) 2.89(4)b∗ 2.93(5)

0+3 N/A 2.78(4)

2+1 2.36(4)b∗ 2.42(1) +6(3)d +5.9(1)

2+ above 0+2 3.07(13)c∗ 2.93(5) N/A −21(1)

4+1 N/A 2.41(1) N/A +8.0(3)

4+ above 0+2 N/A 2.93(5) N/A −26(1)

isospin T . We start with binary-channel basis states of the form (Quaglioni et al., 2010)

|ΦJπT
νr 〉 =

[(
|A−aα1I

π1
1 T1〉 |aα2I

π2
2 T2〉

)(sT )
×Y` (r̂A−a,a)

](JπT ) δ(r − rA−a,a)
rrA−a,a

. (6.49)

Here |A−aα1I
π1
1 T1〉 and |aα2I

π2
2 T2〉 are the internal wave functions of the first and sec-

ond clusters, containing A−a and a nucleons respectively. They carry angular momentum

quantum numbers I1 and I2 which are coupled together to form spin s, and the clusters

have orbital angular momentum `. Their parity, isospin and additional quantum numbers

are written as πi, Ti, and αi, respectively, with i = 1, 2. The separation vector between the

cluster centers is

~rA−a,a = rA−a,ar̂A−a,a =
1

A− a

A−a∑
i=1

~ri −
1

a

A∑
j=A−a+1

~rj , (6.50)

where ~ri are the single-particle coordinates for i = 1, · · ·A. It is convenient to group all

relevant quantum numbers into a collective index ν = {A−aα1I
π1
1 T1; aα2I

π2
2 T2; s`}. In

order to enforce the correct fermionic statistics, one uses the inter-cluster antisymmetrizer,

Âν =

√
(A−a)!a!

A!

∑
P

sgn(P )P , (6.51)
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where the sum runs over all possible permutations P that can be carried out among nucleons,

and sgn(P ) is the sign of the permutation.

The the antisymmetrized basis states can be used to expand the many-body wave function

according to

|ΨJπT 〉 =
∑
ν

∫
dr r2

gJ
πT

ν (r)

r
Âν |ΦJπT

νr 〉 . (6.52)

The coefficient functions gJ
πT

ν (r) correspond to the relative-motion radial wave functions be-

tween the clusters. These unknown coefficient functions are solved by the non-local integral-

differential coupled-channel equations∑
ν

∫
dr r2

[
HJπT
ν′ν (r′, r)− EN JπT

ν′ν (r′, r)
] gJπTν (r)

r
= 0 , (6.53)

where E is the total energy in the center-of-mass frame, and the two integration kernels are

the Hamiltonian kernel,

HJπT
ν′ν (r′, r) =

〈
ΦJπT
ν′r′

∣∣ Âν′HÂν ∣∣ΦJπT
νr

〉
, (6.54)

and the norm kernel,

N JπT
ν′ν (r′, r) =

〈
ΦJπT
ν′r′

∣∣ Âν′Âν ∣∣ΦJπT
νr

〉
. (6.55)

The nontrivial norm kernel is the result of the non-orthogonality of the basis states (6.49).

Furthermore, the exchange terms in the antisymmetrizer give rise to non-local terms in the

two kernels.

This no-core shell model with resonating group formalism has been used very successfully

to calculate many elastic scattering processes and inelastic reactions involving light nuclei

(Navrátil and Quaglioni, 2012; Navrátil et al., 2010; Quaglioni and Navrátil, 2008). The

method has recently be improved further by also including basis states corresponding to

the regular no-core shell basis with the full A-body space in one cluster. This has the

advantage of encoding the short-range interactions between clusters more efficiently that

the resonating group method would otherwise. This approach, known as the no-core shell

model with continuum approach, has been used to describe two-body reactions (Dohet-

Eraly et al., 2016; Raimondi et al., 2016), unbound states (Baroni et al., 2013), and even

three-body reactions (Quaglioni et al., 2013). Quite recently there have also been no-core

shell model with continuum studies of the cluster structure of 6Li (Hupin et al., 2015) as an

α-cluster and deuteron and also of 6He (Romero-Redondo et al., 2016, 2014) in terms of an

α-cluster and two neutrons.
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In Fig. 19 we show results for the 6He wave function using no-core shell model with

continuum (Romero-Redondo et al., 2016). The horizontal axis is the separation between

the two halo neutrons, rnn, and the vertical axis is the separation between the alpha-particle

core and the center of mass of the two halo neutrons, rα,nn. The plots shows the dominance

of a di-neutron configuration where the two neutrons are about 2 fm apart and the α-particle

about 3 fm away. There is also a smaller contribution from a much smaller contribution

from a split configuration where the two neutrons are far from each other with the α-particle

situated in between.

FIG. 19 (Color online) Results for the 6He wave function using no-core shell model with contin-

uum (Romero-Redondo et al., 2016). The horizontal axis is the separation between the two halo

neutrons, rnn, and the vertical axis is the separation between the α-particle core and the center of

mass of the two halo neutrons, rα,nn. Adapted with permission from Ref. (Romero-Redondo et al.,

2016). Copyrighted by the American Physical Society.
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The no-core shell model with continuum can be viewed as one of several continuum

shell model methods with a long history (Mahaux and Weidenmüller, 1969). Some other

recent developments are the shell model embedded in the continuum (Okolowicz et al.,

2003), continuum shell model (Volya and Zelevinsky, 2005), and no-core Gamow shell model

(Papadimitriou et al., 2013).

One recent work with particular relevance for nuclear clustering is Ref. (Kravvaris and

Volya, 2017), which uses the no-core shell model and resonating group method for clusters

but also applies the harmonic oscillator expansion for the relative separation between clus-

ters. In this work they compute spectroscopic amplitudes for the low-lying even parity states

of 8Be, 10Be, 12C into open α-separation thresholds.

VII. CONTINUUM QUANTUM MONTE CARLO

A recent review on continuum Quantum Monte Carlo methods in nuclear physics has been

recently been published (Carlson et al., 2015). Here we give an overview of the methods and

studies which have been used to investigate clustering in nuclei.

A. Variational Monte Carlo

Variational Monte Carlo (VMC) relies on the variational principle that the energy of any

trial wave function will be greater than or equal to the ground state energy. We are of

course assuming only physical states antisymmetrized with respect to the exchange of all

identical fermions. The strategy is to start with some general functional form for the trial

wave function Ψ
{αi}
T which depends on some set of unknown parameters {αi}. One then

computes the energy expectation E
{αi}
T for the trial state

E
{αi}
T =

〈Ψ{αi}T |H|Ψ{αi}T 〉
〈Ψ{αi}T |Ψ{αi}T 〉

, (7.56)

and minimizes with respect to {αi}. Instead of minimizing the energy, one can also minimize

the expectation value of the variance operator (H − λI)2, which vanishes only when λ is an

exact energy eigenvalue.

Since the trial wave function is typically a function with many degrees of freedom, the in-

ner products in Eq. (7.56) are computed using Monte Carlo integration. If the interactions
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in H have a local structure in position space, then the required integration can be per-

formed quite simply by selecting points in the space of the particle coordinates, r1, r2, · · · ,

chosen according to the squared absolute value of the trial wave function, |Ψ{αi}T (r1, r2, · · · )|2

(Ceperley et al., 1977; McMillan, 1965). For each set of points, the expectation of H cor-

respond to the value of the function Ψ
{αi}∗
T HΨ

{αi}
T (r1, r2, · · · ). If one divides by the relative

probability of selecting the points r1, r2, · · · , then the value one records in the Monte Carlo

integration of this observable is HΨ
{αi}
T (r1, r2, · · · )/Ψ{αi}T (r1, r2, · · · ).

The quality of the variational Monte Carlo result depends entirely on the functional

form used for the trial wave function. Therefore it is important to incorporate particle

correlations into Ψ
{αi}
T . In variational Monte Carlo calculations of the structure of 16O

(Pieper et al., 1992), the trial wave function included non-central two-body and three-body

correlations acting on Slater determinants of S-wave and P -wave one-body wave functions.

The expectation values of operators were calculated using a cluster expansion for the spin-

and isospin-dependent terms up to four-body order. In many cases variational Monte Carlo

is also used to optimize the trial wave function serving as a starting point for other Monte

Carlo calculations such as diffusion or Green’s function Monte Carlo.

B. Diffusion or Green’s function Monte Carlo

Diffusion or Green’s function Monte Carlo (GFMC) starts with a trial wave function

|ΨT 〉 and uses Euclidean time evolution to extract the ground state wave function (Kalos,

1962). Originally diffusion Monte Carlo and Green’s function Monte Carlo referred to slightly

different algorithms. However in today’s usage, they refer to the same method. The ground

state wave function is obtained in the large time limit as

|Ψ0〉 ∝ lim
τ→∞

exp[−(H − λ)τ ]|ΨT 〉. (7.57)

The parameter λ is used to stabilize the normalization of the wave function and gives an

estimate of the ground state energy E0. A more direct calculation of the ground state energy

is given by the ratio

E0 = lim
τ→∞

〈ΨT |H exp[−(H − E0)τ ]|ΨT 〉
〈ΨT | exp[−(H − E0)τ ]|ΨT 〉

. (7.58)

When exponentiated over a short time step ∆τ , the kinetic energy term in H gives rise

to a diffusion process which is modeled as a random walk in the space of all possible particle
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coordinates. Meanwhile, the particle interactions result in an exponential growth or decay

for each possible spin and isospin channel.

One of the main computational challenges in GFMC is the sign oscillation problem as-

sociated with the exchange of identical fermions. These sign oscillations will render the

numerator and denominator to be vanishingly small in the limit of large time τ . For real-

valued wave functions the fixed-node approximation gives a remedy for this problem by

restricting the random walk in the space of particle coordinates to a region where the trial

wave function remains positive. For complex-valued wave functions as one finds in nuclear

physics, a generalization of the approach called the constrained path approximation is used

(Wiringa et al., 2000). In the constrained path approximation one restricts the random walk

to a region where the overlap of the propagated state with the trial wave function is positive

(Carlson et al., 2015).

GFMC has been used to compute the spectra of many light nuclei (Pieper et al., 2002;

Pieper and Wiringa, 2001; Wiringa et al., 2000). This includes a well-known study of the

α-cluster structure of the 8Be ground state (Wiringa et al., 2000). There have also been

also recent studies of the Hoyle state of 12C (Carlson et al., 2015) and its transitions to

the ground state. These calculations find a radius for the Hoyle state of more than 3.1 fm,

which is much larger than the ground state radius 2.43 fm. Fig. 20 shows that the density

distributions r2ρ(r) of the ground state (0+
1 ) and the Hoyle state (0+

2 ) of 12C (Carlson et al.,

2015). Similar results have been obtained using the THSR wave function (Tohsaki et al.,

2017).

In order to the improve the computational scaling of the diffusion Monte Carlo simulations

with the number of particles, one approach being pursued is introducing an auxiliary field to

rewrite the spin-dependent interactions in terms of one-body spin operators. This method

is called auxiliary-field diffusion Monte Carlo (Gandolfi et al., 2007; Gezerlis et al., 2013).

C. Monte Carlo shell model

The Monte Carlo Shell Model (MCSM) approach is a variational method which uses

uses auxiliary-field Monte Carlo simulations to determine a set of low-energy basis states

|φn〉 (Abe et al., 2012). In this discussion we focus on the no-core version of MCSM where

all nucleons are active. Each |φn〉 is a Slater determinant of deformed single-particle shell
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FIG. 20 (Color online) The density distributions r2ρ(r) of the ground state (0+1 ) and the Hoyle

state (0+2 ) of 12C (Carlson et al., 2015). The variational Monte Carlo results are indicated by ΨV

while Green’s function Monte Carlo results are labelled as GFMC. Adapted with permission from

Ref. (Carlson et al., 2015). Copyrighted by the American Physical Society.

model states. The resulting states are given good angular momentum and parity quantum

quantum numbers by explicit projection. In order to remove residual errors due to the basis

truncation, extrapolations are performed as a function of the energy variance (Shimizu et al.,

2012b, 2010). This method has been used to study the alpha-two-neutron cluster structure

of 6He, two-alpha structure of 8Be, and two-alpha-two-neutron structure of 10Be (Shimizu

et al., 2012a; Yoshida et al., 2013).

For the case with total angular momentum J = 0, the projected wave function is

|Ψ〉 = P J=0|Φ〉, |Φ〉 =
∑
n

fn|φn〉. (7.59)

The linear combination of the unprojected basis states, |Φ〉, cannot be considered as an

intrinsic state since the principal axis of each basis state, |φn〉, are not all aligned in the

same direction. This is fixed by performing a rotation R(Ωn) so that the quadrupole moment

is diagonalized, and Qzz ≥ Qyy ≥ Qxx so that the principal axis is aligned with the z-axis.

The intrinsic wave function |Φintr〉 is then defined as

|Φintr〉 ≡
∑
n

fnR(Ωn)|φn〉. (7.60)

In Fig. 21 we show the 8Be proton densities for |Φ〉 and |Φintr〉 (Shimizu et al., 2012a;

Yoshida et al., 2013). We show results for Nb = 100, 101, 102 basis states. Each density

distribution shows the the yz plane for intercepts x = 0 fm and x = 1 fm.
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FIG. 21 (Color online) the 8Be proton densities for |Φ〉 and |Φintr〉 (Shimizu et al., 2012a; Yoshida

et al., 2013). Results are shown for Nb = 100, 101, 102 basis states. Each density distribution shows

the yz plane for intercepts x = 0 fm and x = 1 fm. Adapted with permission from Ref. (Shimizu

et al., 2012a). Copyrighted by The Physical Society of Japan.

VIII. NUCLEAR LATTICE EFFECTIVE FIELD THEORY

A. Chiral effective field theory on a lattice

The basic idea of Nuclear Lattice Effective Field Theory (NLEFT) is to merge the success-

ful chiral EFT for nuclear forces pioneered by Weinberg (Weinberg, 1990, 1991) with lattice

Monte Carlo methods, that allow for numerically exact solutions of the nuclear A-body

problem. First, the ingredients to construct the chiral nuclear EFT are briefly discussed.

The EFT is formulated in terms of the asymptotically observed states, the nucleons and

the pions, the latter being the Goldstone bosons of the spontaneously broken chiral symme-

try of QCD. The basic idea of the Weinberg approach is to use chiral perturbation theory

to construct the potential between two, three and four nucleons. The various contribu-

tions are organized according to the power counting based on the small parameter Q, with

Q ∈ {p/Λ,Mπ/Λ}. Here, p denotes some soft external momentum, Mπ the pion mass and Λ

the hard scale that accounts for all physics integrated out. Usually, this scale is set by the

appearance of the first resonance, like the f0(500) in pion-pion scattering or the ∆(1232) in

pion-nucleon scattering. For the nuclear force problem, the leading order (LO) contributions

are of order O(Q0), comprising the leading one-pion exchange and two local four-nucleon

contact interactions without derivatives. At next-to-leading order (NLO), O(Q2), one has
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FIG. 22 (Color online) Possible configurations of four nucleons on the lattice (here shown in a

two-dimensional sketch).

the leading two-pion exchange (TPE) interactions and seven further four-nucleon terms with

two derivatives (for on-shell scattering) as well as two isospin symmetry-breaking terms that

account for the dominant strong interaction difference between the proton-proton, proton-

neutron and neutron-neutron systems. Finally, at next-to-next-lo-leading order (N2LO),

O(Q3), that is the accuracy to which most NLEFT calculations have been carried out so

far, one has further TPE corrections proportional to the dimension-two low-energy constants

(LECs) ci of the effective pion-nucleon Lagrangian that can be precisely determined from

the dispersive Roy-Steiner equation analysis of pion-nucleon scattering (Hoferichter et al.,

2015). At this order, three-nucleon forces start to contribute. These fall in three topolo-

gies. The two-pion exchange diagram is entirely given in terms of the LECs c1,2,4. The

one-pion exchange coupling to a four-nucleon term and the local six nucleon contact term

are parametrized by the LECs D and E, respectively. These are commonly determined from

the triton binding energy and the axial-vector current contribution to triton decay (Gazit

et al., 2009). For further details, we refer the reader to the reviews (Epelbaum et al., 2009;

Machleidt and Entem, 2011).

In the lattice formulation, Euclidean space-time is given by a finite hypercubic volume,

with L the length in any of the spatial directions and Lt the extension in the temporal

direction. Further, the lattice is defined by a minimal spatial distance a, the lattice spacing,

and similarly by at in the temporal direction. In most calculations discussed in what follows,

a coarse spatial lattice with a = 1/(100 MeV) = 1.97 fm was used, while at is chosen to be

at = 1/(150 MeV) = 1.32 fm. One important feature of the finite lattice spacing is the UV

finiteness of the theory, as the largest possible momentum is given by pmax = π/a ' 314 MeV.

Thus, the interaction is very soft and therefore most higher order corrections, including also

the Coulomb effects, can be treated in perturbation theory. Another advantage of this

approach is the fact that all possible configurations of nucleons are sampled, as depicted in

Fig. 22. This gives a first hint that the phenomenon of clustering indeed will arise quite
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naturally in this approach. In the actual calculations, the interactions between the nucleons

are described in terms of auxiliary fields, which makes the approach particularly suited for

highly parallel computation. In essence, each nucleon evolves in time from the starting at

t = ti up to the final time tf . The value of tf has to be large enough so that the asymptotic

behavior of any observable for the A-nucleon state can be extracted. For further details,

we refer to the detailed description of the LO chiral EFT interactions on the lattice in

Ref. (Borasoy et al., 2007a). See also the review in Ref. (Lee, 2009). Another important

aspect to be discussed shortly is the approximate Wigner SU(4) symmetry of the nuclear

interactions (Wigner, 1937), which rests upon the observation that combined spin-isospin

rotations of the nucleon four-vector (p ↑, p ↓, n ↑, n ↓) leave the nuclear forces in the S-

wave approximately invariant. This symmetry is broken by the OPE and the Coulomb

interaction, but rather well respected by the four-nucleon short-range operators (Mehen

et al., 1999). Most importantly, in case of an exact Wigner symmetry, nuclei with spin and

isospin zero do not show any sign oscillations (Chen et al., 2004), which make finite density

lattice simulations so difficult. This approximate symmetry can therefore be used as an

inexpensive filter in the actual simulations. For further work on understanding the Wigner

symmetry within QCD and its consequences, see e.g. Refs. (Beane et al., 2013; Calle Cordon

and Ruiz Arriola, 2008; Lee, 2004). We will come back to this issue in subsection VIII.B.

Before continuing, let us define what we mean by ab initio calculation in this context.

The various parameters appearing in the lattice approach, like the LECs and the smearing

parameters as defined below, are determined in fits to properties of few-particle systems

like phase shifts and binding energies. Here, few means less or equal four. The properties

of nuclei with larger atomic number can then be predicted without to a precision that is

given by the accuracy of the underlying chiral EFT Hamiltonian. Note that recently it has

been found that fitting also to the low-energy α-α S-wave phase shifts for determining the

pertinent LECs provides some advantage in controlling higher-body interactions in larger

systems.

B. Lattice formalism

To calculate the energy or any other static observable, we need an initial wave function

for the nucleus under consideration, |Ψin
A(ti)〉. Such a state can on one hand be chosen as
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a Slater-determinant states composed of delocalized standing waves in the periodic cube

with A nucleons, and on the other hand as localized α-cluster trial states (or any other

type of cluster state). Such localized states have been used in the investigations of 12C and

16O (Epelbaum et al., 2012, 2014, 2011). These can be used to check the calculations with

the delocalized initial states, but also allow to assess the spatial structure of the nuclei.

It has to be understood that these states are always prepared with a given total angular

momentum J and parity π, that is a fixed Jπ. Note that the rotational symmetry breaking

due to the lattice will be discussed later. The central object of NLEFT is the Euclidean-time

projection amplitude

ZA(t) ≡ 〈ΨA(t′)| exp(−HLOt)|ΨA(t′)〉, (8.61)

that allows to compute the “transient energy” EA(t) = −∂[lnZA(t)]/∂t. Here HLO is the

leading-order Hamiltonian. In the infinite time limit, this gives the ground-state energy, as

all excited states have a larger energy and thus fall off faster. Note that a filter based on

Wigner’s SU(4) symmetry is used to suppress the sign oscillations, with that the initial state

is evolved from ti to some time t′, as detailed in Ref. (Borasoy et al., 2007a). In fact, by

now this method has been considerably improved by the so-called “triangulation” procedure

introduced in Ref. (Lähde et al., 2014) which allows to significantly reduce the error related

with the Euclidean time extrapolation. For example, using this method, the ground state

energies of 12C and 16O can be calculated with an absolute uncertainty of ±200 keV. A more

detailed discussion of this method and the associated uncertainties is given in Ref. (Lähde

et al., 2015a).

In order to compute the low-lying excited states of a given nucleus, the Euclidean time

projection method is extended to a multi-channel calculation. Take the 12C nucleus as an

example (Epelbaum et al., 2011). Here, one e.g. applies the exponential operator exp(−Ht)

to 24 single-nucleon standing waves in the periodic cube. From these standing waves one

then builds initial states consisting of 6 protons and 6 neutrons each and extracts four

orthogonal energy levels with the desired quantum properties. All four have even parity and

total momentum equal to zero. As it is well known, the lattice discretization of space and

periodic boundaries reduce the full rotational group to a cubic subgroup, so that only 90-

degree rotations along axes are exact symmetries. This complicates the identification of spin

states. However, the degeneracy or non-degeneracy of energy levels for Jz = 0 and Jz = 2

allows one to distinguish between spin-0 and spin-2 states. This method can be refined
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FIG. 23 (Color online) Lattice results for the 12C spectrum at leading order (LO). Panel I shows

the results using initial states A, B and ∆, each of which approaches the ground state energy.

Panel II shows the results using initial states C, D and Λ. These trace out an intermediate plateau

at an energy ' 7 MeV above the ground state. Here, A − D are configurations that start with

delocalized nucleons, where as ∆ refers to a compact triangle, while Λ denotes an obstuse triangular

configuration. For details, see Ref. (Epelbaum et al., 2012).

by not only using delocalized standing waves but also initial cluster states, which can be

generated either from four nucleons that after some time self-assemble to give α-clusters or

with α-clusters that are formed by Gaussian wave packets and can be arranged in certain

geometrical configurations, see Ref. (Epelbaum et al., 2012). As shown in Fig. 23, various

configurations that corresponds to Jπ = 0+ indeed lead to the ground state (left panel) or

the first excited 0+ Hoyle state about 7 MeV above the ground state.

We have already noted that the proximity of the Hoyle state energy to the triple-α

threshold is important for the production of carbon in the universe. As with any near-

threshold state, this very low-energy scale is well-separated from other energy scales, and

this separation of scales forms the basis for halo effective field theory (Bedaque et al., 2003;

Bertulani et al., 2002; Higa et al., 2008).

One interesting theoretical question is whether this proximity of the Hoyle state to the

triple-α threshold is a generic feature of quantum chromodynamics or is something needs

to be fine-tuned. The quark mass dependence of the Hoyle state energy has also been

studied using lattice simulations (Epelbaum et al., 2013b,a) in connection with the anthropic

principle, the production of carbon and oxygen, and the fine-tuning the parameters of nature

(Beane and Savage, 2003a,b; Bedaque et al., 2011; Berengut et al., 2013; Epelbaum et al.,

2002, 2003; Meißner, 2015).

Next, two-particle scattering has to be discussed. It is not only an important ingredient
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to fix the LECs of the effective Lagrangian but can also be used to investigate the nuclear

dynamics encoded in nuclear reactions. The most known and used method is due to Lüscher,

who showed that the energy shift of an interacting two-particle system in a finite volume

can be related to the continuum phase shift at the same energy (Lüscher, 1986, 1991). This

method has by now been extended to cope with higher partial waves, partial-wave mixing,

multi-channel scattering, boosted frames and all possible types of boundary conditions, see

e.g. Refs. (Bernard et al., 2008; Bour et al., 2011; Briceno et al., 2013; Göckeler et al.,

2012; He et al., 2005; König et al., 2011, 2012; Lage et al., 2009; Li et al., 2014; Li and

Liu, 2013; Li and Wu, 2015; Liu et al., 2006; Luu and Savage, 2011). However, for the

case of nucleon-nucleon scattering, which involves higher energies, spin-orbit coupling and

partial-wave mixing, the method is less accurate than at low momenta. A more robust

approach that makes use of the non-relativistic character of the nuclear problem is the so-

called spherical wall approach, formulated as early as in Ref. (Carlson et al., 1984) but

reinvented for the lattice formulation used here in Ref. (Borasoy et al., 2007b). Here, one

imposes a hard spherical wall boundary on the relative separation between the two particles

at some radius RW. In that way, copies of the interactions produced by the periodic lattice

are removed and from the solution of the Schrödinger equation for spherical standing waves

at r = RW, one can easily recover the phase shift for a given partial wave. Mixing of the

partial waves caused by spin-orbit coupling is also easily dealt with. This method has been

improved significantly in Ref. (Lu et al., 2016). First, so-called radial position states for a

given partial wave are constructed according to

|r〉`,`z =
∑
~r′

Y`,`z(r̂
′) δr,|~r ′| |~r ′〉 , (8.62)

with Y`,`z spherical harmonics with angular momentum quantum numbers `, `z, and r is to

be restricted to be less than half the box size L/2. Angular momentum is not conserved on

the lattice. However the amount rotational invariance breaking decreases with increasing

radial distance, and we can use spherical harmonics to dial the corresponding partial waves.

This projection allows one to construct the so-called radial lattice Hamiltonian. Second,

one introduces auxiliary potentials in the region before the spherical wall. By tuning the

depth of this potential, one can dial the scattering energy. In case of partial-wave mixing,

this potential has to be chosen such that time-reversal symmetry is broken. This allows

to extract phase shifts and scattering angles with superior precision to what could be done
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before. For details, the reader should consult Ref. (Lu et al., 2016).

The aforementioned SU(4) symmetry can be further utilized to suppress the sign oscil-

lations in the auxiliary-field Monte Carlo calculations. The underlying idea is to smoothly

connect the LO lattice Hamiltonian with an SU(4)-symmetric counterpart, that does not

suffer from any sign oscillations. In that way, one can construct a one-parameter family

of Hamiltonians, H(d) = dHLO + (1 − d)HSU(4). For d = 1, one obviously recovers the

microscopic chiral Hamiltonian. One can then perform simulations for various values of d

and thus H(d) and extrapolate to the limit d = 1. This method is called symmetry-sign

extrapolation (SSE), and is discussed in detail in Ref. (Lähde et al., 2015b). In contrast

to techniques introduced earlier in shell model Monte Carlo calculations (Alhassid et al.,

1994; Koonin et al., 1997), the sign oscillations in the lattice approach are quadratic in the

interfering interaction effects and thus the growth of the sign problem is weaker. Therefore,

it is believed that the SSE will become a valuable tool in studying the physics of neutron-rich

and proton-rich nuclei.

Another important issue in such a lattice approach is smearing, which means that the

interactions are not strictly point-like but distributed over some lattice sites. This method

is very common in lattice QCD to enhance the strength of a given quark source, see e.g.

Refs. (Allton et al., 1993; Daniel et al., 1992; Edwards et al., 2008; Güsken, 1990; Hasenfratz

et al., 2007; Morningstar and Peardon, 2004) for some groundbreaking work. In NLEFT,

smearing is done for various reasons. First, the four-nucleon interaction terms are smeared

with a Gaussian-type function, whose parameter is fixed from the averaged nucleon-nucleon

S-wave effective ranges. As discussed in detail in Ref. (Borasoy et al., 2007a), this type of

smearing is required to avoid overbinding due to the configurations with four nucleons on

one lattice site, cf. Fig. 22. This has the added value that the important effective range

corrections are treated non-perturbatively rather than perturbatively, i.e. some important

higher-order corrections are also resummed. Second, a novel type of non-local smearing

was introduced in Ref. (Elhatisari et al., 2016b). For that, one considers non-local nucleon
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annihilation (creation) operators and two-nucleon densities, such as

aNL(n) = a(n) + sNL

∑
〈n′ n〉

a(n′) ,

a
(†)
NL(n) = a(†)(n) + sNL

∑
〈n′ n〉

a(†)(n′) ,

ρNL(n) = a†NL(n)aNL(n) , (8.63)

where the three-vector n denotes a lattice site, and
∑
〈n′ n〉 denotes the sum over nearest-

neighbor lattice sites of n, so that |n′ − n| = a. The smearing parameter sNL is to be

determined together with the other parameters and LECs as discussed later. This non-local

smearing offers the possibility of considering non-local interactions on the lattice, besides

the pion exchanges, as discussed in subsection VIII.D.3.

Another issue to be addressed is the lattice spacing dependence. In contrast to lattice

QCD, in NLEFT one does not perform the continuum limit a → 0 as we are dealing

with an effective field theory, that only makes sense below some hard (breakdown) scale

Λ. Physically, one can understand this very intuitively, the EFT is not appropriate to

resolve the inner structure of the nucleon, given e.g. by the proton charge radius of about

0.85 fm. Therefore, one expects that the calculations within NLEFT are invariant under

variations of a between 1 and 2 fm, provided that the LECs are properly readjusted. This

expectation is indeed borne out by explicit calculations. In Ref. (Klein et al., 2015) it was

shown within the pionless as well as the pionful LO EFT that the S-wave phase shifts and

the deuteron binding energy can be reproduced for 0.5 . a . 2.0 fm. This has recently been

sharpened by studying the neutron-proton interactions to NNLO for lattice spacings from

1 . . . 2 fm (Alarcón et al., 2017). Presently, larger systems are systematically investigated to

establish this a-independence in general.

Finally, we mention that simple α-cluster models have been used in Refs. (Lu et al., 2014,

2015) to gain a deeper understanding of the effects of the rotational symmetry breaking on

the lattice and to develop methods to overcome this. It was demonstrated in Ref. (Lu et al.,

2014) that lattice spacing errors are closely related to the commensurability of the lattice

with the intrinsic length scales of the system and that rotational symmetry breaking effects

can be significantly reduced by using improved lattice actions. In particular, the physical

energy levels are accurately reproduced by the weighted average of a given spin multiplets.

Further, in Ref. (Lu et al., 2015) the matrix elements of multipole moment operators were
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studied. It could be shown that the physical reduced matrix element is well reproduced

by averaging over all possible orientations of the quantum state, and this is expressed as a

sum of matrix elements weighted by the corresponding Clebsch-Gordan coefficients. These

methods will become important when more detailed investigations of the electromagnetic

structure of nuclei within NLEFT will be performed.

C. Adiabatic projection method

To study reactions and inelastic processes on the lattice, one makes use of the so-called

“Adiabatic Projection Method” (APM). The APM has been developed in Refs. (Pine et al.,

2013; Rupak and Lee, 2013) and further refined in Refs. (Elhatisari and Lee, 2014; Elhatisari

et al., 2016a; Rokash et al., 2015). From the set-up, it is similar to the recent studies

combining the resonating group method with the no-core-shell-model, see e.g. Refs. (Navrátil

and Quaglioni, 2012; Navrátil et al., 2010; Quaglioni and Navrátil, 2008; Romero-Redondo

et al., 2014). Within the APM, the cluster-cluster scattering problem on the lattice is

evaluated in a two-step procedure. First, one uses Euclidean time projection to determine

an adiabatic Hamiltonian for the participating clusters. Strictly speaking, for finite temporal

lattice spacing, an adiabatic transfer matrix rather than the Hamiltonian is constructed, but

the method is essentially the same, and for simplicity, the Hamiltonian formulation will be

discussed here. In the second step, this adiabatic Hamiltonian is then used to calculate the

pertinent phase shifts. The biggest advantage of the APM is that the computational time

appears to scale with the number of interacting constituents, tCPU ∼ (A1 + A2)
2, with Ai

the number of nucleons in cluster i, while more conventional approaches exhibit a factorial

or even exponential scaling with increasing atomic number.

Consider an L3 periodic lattice and a set of two-cluster states |~R〉 labeled by their separa-

tion vector ~R, as illustrated in Fig. 24. In general, there are spin and flavor indices for these

states, but we suppress writing the indices for notational simplicity. Also, it is favorable to

perform a radial projection as given in Eq. (8.62). However, the exact form of these two-

cluster states is not important except that they are localized so that for large separations they

factorize as a tensor product of two individual clusters, |~R〉 =
∑

~r |~r+ ~R〉1⊗|~r〉2. These states

are propagated in Euclidean time to form dressed cluster states, |~R〉τ = exp(−Hτ)|~R〉. An

important consequence of this evolution in Euclidean time with the microscopic Hamiltonian
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FIG. 24 (Color online) An initial state formed of two clusters |~R〉. The two clusters are separated

by the displacement vector ~R.

is the fact that deformations and polarizations of the interacting clusters are incorporated

automatically. Also, in this way one projects onto the space of low-energy scattering states

in the finite volume, so that in the limit of large Euclidean time, these dressed cluster

states span the low-energy subspace of two-cluster continuum states. Next, matrix ele-

ments of the microscopic Hamiltonian with respect to the dressed cluster states are formed,

[Hτ ]~R,~R′ = τ 〈~R|H|~R′〉τ . However, since the dressed cluster states |~R〉τ are, in general, not

orthogonal, one needs to construct the norm matrix Nτ , [Nτ ]~R,~R′ = τ 〈~R|~R′〉τ , so that the

Hermitian adiabatic Hamiltonian can be readily calculated

[Ha
τ ]~R,~R′ =

∑
~R′′, ~R′′′

[
N−1/2τ

]
~R,~R′′

[
Hτ

]
~R′′, ~R′′′

[
N−1/2τ

]
~R′′′, ~R′ . (8.64)

In the limit of large τ , the spectrum of Ha
τ exactly reproduces the low-energy finite volume

spectrum of the microscopic Hamiltonian H. From this adiabatic Hamiltonian, elastic phase

shifts can be calculated using the methods discussed above. Inelastic processes can also be

dealt within this scheme by just adding additional channels, see Ref. (Pine et al., 2013) for

details. One remark is in order. Since one is working in Euclidean time, the time evolution

operator acts indeed as a diffusion operator. The precise definition of the asymptotic states

must therefore account for this, and in fact one can define an asymptotic radius Rε as the

radius such that for |~R| > Rε the amount of overlap between the cluster wave packets

is less than ε (Rokash et al., 2015). Consequently, in the asymptotic region |~R| > Rε,

the dressed clusters are widely separated and interact only through long range forces such

as the Coulomb interaction. For cases where there are no long range interactions, the

scattering states of the adiabatic Hamiltonian are given by a superposition of Bessel functions

in the asymptotic region. For the case with Coulomb interactions, the scattering states

of the adiabatic Hamiltonian in the asymptotic region correspond to a superposition of
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copy 

FIG. 25 (Color online) A sketch of the lattices for the cluster-cluster calculations in the overlapping

and the non-interacting regions. Rin is the largest radial distance that is free of systematic errors

due to the periodic boundary in the cubic box with volume L′3. Rw indicates the radius of the

spherical wall discussed in section VIII.B.

Coulomb wave functions. The latter case is schematically shown in Fig. 25. A much refined

version of the adiabatic Hamiltonian based on an improved radial “binning” was given

in Ref. (Elhatisari et al., 2016a). Thus, large-scale numerical computations of nucleus-

nucleus scattering and reactions using Monte Carlo methods are possible. We will discuss

the archetypical process of elastic α-α scattering in subsection VIII.D.2.

D. Results

1. Alpha-cluster nuclei

In Refs. (Epelbaum et al., 2012, 2011) the even-parity spectrum and structure of 12C was

calculated. The underlying Hamiltonian was given at NNLO precision, which includes the

first contributions of the three-nucleon force (3NF). The 11 LECs related to the nucleon-

nucleon interactions were fixed from the S- and P -wave np phase shifts as well from the

pp and nn scattering lengths. The two LECs related to the 3NF were fixed from the triton

binding energy and the weak axial-vector current. With that, the binding energy of 4He

is −28.3(6) MeV, in agreement with the empirical value. The next α-type nucleus, 8Be, is

bound with −55(2) MeV, compared to the empirical value of −56.5 MeV, which is above the

2α threshold, i.e. 8Be is unbound in nature. Nevertheless, 8Be is long-lived, so given the
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16O 20Ne 24Mg 28Si

LO −147.3(5) −199.7(9) −255(2) −330(3)

NNLO −138.8(5) −184.3(9) −232(2) −308(3)

NNLO* −131.3(5) −165.9(9) −198(2) −233(3)

Exp. −127.62 −160.64 −198.26 −236.54

TABLE IV Ground state energies for α-cluster nuclei above 12C. Shown are the results at LO

and NNLO. NNLO* denotes the force supplied with a four-nucleon interaction. The experimental

values are also given. Units are MeV.

accuracy of the NNLO calculation, this agreement is satisfactory. The resulting even-parity

spectrum of 12C is shown in the NLEFT results presented in Fig. 4. The uncertainties

on the energy levels have been considerably reduced to what was quoted in the original

papers (Epelbaum et al., 2012, 2011), the ground state can now be calculated with an

uncertainty of about 200 keV, and similar errors are expected for the excited states. Most

importantly, the clustering arises very naturally, as already discussed in subsection VIII.B.

Also, by using initial cluster-type states, one can map out the most important contributions

for a state of given energy, spin and parity. We find that the ground and the first excited 2+

state of 12C are mostly given by a compact triangular configuration of three alphas, while

the Hoyle state and the second 2+ receive a large contribution from the so-called “bent-arm”

configuration (obtuse triangle). This is an indication that the second 2+ state is indeed a

rotational excitation of the Hoyle state. However, one has to be aware that such “pictorials”

of the wave function are resolution-dependent, that means for a finer lattice spacing one will

be able to resolve these structures in more detail. The charge radii, quadrupole moments

and electromagnetic transitions among the low-lying even-parity states of 12C have also been

calculated at LO. These results tend to be on the low side of the experimental values. This

can be traced back to the fact that at LO, the charge radius comes out about 10% too small.

If one scales the corresponding moments and transition elements with appropriate powers

of r(0+
1 )exp/r(0+

1 )LO, the agreement is quite satisfactory. Of course, this needs to be backed

up in the future by higher order calculations of these observables.

Before elaborating on the structure of heavier nuclei, it is important to scrutinize the

NNLO forces. This was done in Ref. (Lähde et al., 2014), where is was shown that for

α-cluster nuclei beyond A = 12 an overbinding appears, that grows with atomic number, cf.
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Table IV. This has also been observed in other ab initio approaches using soft interactions,

see e.g. Refs. (Hagen et al., 2012; Jurgenson et al., 2013; Roth et al., 2011)5. In Ref. (Lähde

et al., 2014) this problem was overcome by adding an effective repulsive four-nucleon force,

whose strength was determined from the ground state energy of 24Mg. As one can see from

Table IV, including this, one achieves a very good description of the ground state energies of

all α-cluster nuclei up to 28Si. Another method to overcome this deficiency will be discussed

in subsection VIII.D.3.

The even-parity spectrum and structure of 16O has discussed in Ref. (Epelbaum et al.,

2014). The ground state has Jπ = 0+ and its energy is within 3% of the empirical value,

cf. Table IV. One finds a second 0+ state at −123(2) MeV and the first 2+ state at the

same energy. This is consistent with the empirical values, E(0+
2 ) = −121.57 MeV and

E(2+
1 ) = −120.70 MeV. By measuring four-nucleon correlations, one finds that the dominant

cluster configuration on the lattice is the tetrahedron, see Fig. 26 (left), while the excited

states have a strong overlap with the planar-type configurations also shown in Fig. 26 (right).

This implies that the first 2+ state is a rotational excitation of the first excited 0+.

As in the case of 12C, the charge radius of the ground state comes out too small, we get

r(0+
1 )LO = 2.3(1) fm, while the empirical value is 2.710(15) fm. This again is due to the

overbinding at LO. If one rescales as described above, one find that the predictions for the

E2 and E0 transitions are in good agreement with the experimental values. In particular,

NLEFT is able to explain the empirical value of B(E2, 2+
1 → 0+

2 ), which is ' 30 times larger

than the Weisskopf single-particle shell model estimate. This provides further confirmation

of the interpretation of the 2+
1 state as a rotational excitation of the 0+

2 state. Again,

more detailed higher calculations of the electromagnetic response of 16O within NLEFT are

needed.

2. Ab initio alpha-alpha scattering

Although there has been impressive progress in ab initio calculations of nuclear scatter-

ing and reactions in the last years, see e.g. Refs. (Hagen and Michel, 2012; Navrátil and

Quaglioni, 2012; Navrátil et al., 2010; Nollett et al., 2007; Orlandini et al., 2014), the afore-

5 We note that the NNLOsat interaction in Ref. (Ekström et al., 2015) is a soft interaction that does not

overbind medium-mass nuclei, and thus there are other aspects of the interactions that also come into

play.
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FIG. 26 (Color online) Schematic illustration of the α-cluster initial states with tetrahedral and

planar configurations.

mentioned computational limits did so far not allow to consider astrophysically relevant

reactions like elastic α-α, α-12C or 12C-12C scattering. A major step forward done in this

directions was reported in Ref. (Elhatisari et al., 2015). There, the first ab initio calculation

of α-α scattering based on chiral EFT and using the lattice formulation was discussed. It

is based on the same NNLO chiral Hamiltonian that was used for the analysis of 12C and

16O, that means all parameters have been determined before. Using the APM, the S- and

D-wave scattering phase shifts could be calculated as shown in Fig. 27. For more details on

the actual computations, see Ref. (Elhatisari et al., 2015). In the chiral counting employed,

the Coulomb interactions only appear at NLO, therefore the LO curves deviate significantly

from the data. However, already at NLO one finds a good description of the S-wave and a

fair description for the D-wave. While the NNLO corrections in the S-wave are very small,

these corrections bring the D-wave close to the data, although there is still some room for

improvement. The observed energy of the S-wave resonance is 0.09184 MeV above thresh-

old. For the lattice results, the ground state is found at 0.79(9) MeV below threshold at

LO, and 0.11(1) MeV below threshold at both NLO and NNLO. The D-wave resonance is

located at ER = 2.92(18) MeV and Γ = 1.34(50) MeV (Afzal et al., 1969), but there is

some model-dependence as discussed in Ref. (Elhatisari et al., 2015). In NLEFT, one finds

at NNLO ER = 3.27(12) MeV and Γ = 2.09(16) MeV. This calculation can be considered

a benchmark for ab initio calculations of nuclear scattering processes. Clearly, it needs
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to be refined by going to higher orders and also working with finer lattices. However, ar-

guably the most significant finding of this investigation is the fact that the computing time

scales approximately quadratically with the number of nucleons involved. Therefore, the

computation of the “holy grail” of nuclear astrophysics (Fowler, 1984), namely the reaction

α +12 C→16 O + γ at stellar energies, is in reach.

3. Nuclear binding near a quantum phase transition

We had already seen that the NNLO forces overbind in larger nuclei, so higher order

calculations will be needed and eventually higher-body forces might be required. In Ref. (El-

hatisari et al., 2016b) two ideas were combined to give further insight into how nuclei are

formed and what role α-clustering plays. First, the non-local smearing already discussed in

subsection VIII.B was utilized to construct two new LO interactions, motivated by the hope

that the smearing would further suppress the sign oscillations. Second, it was speculated

that determining the LECs from fitting also to data from nucleus-nucleus scattering might

make the troublesome higher order corrections small. To quantify these ideas, two differ-

ent LO interactions were constructed. More precisely, interaction A consists of non-local

short-range interactions and one-pion exchange, supplemented by the Coulomb interaction.

Interaction B has in addition local short-distance interactions. Second, while interaction A

was entirely determined by a fit to np scattering data and the deuteron binding energy,

interaction B was in addition tuned to the S-wave α-α phase shifts. The resulting ground

state energies for 3H, 3He, 4He and α-cluster nuclei are given in Table V. While the results

up to 8Be are similar, interaction A fails to describe the heavier nuclei, quite in contrast

to interaction B, which gives an amazingly good description. From this one concludes that

α-α scattering is quite sensitive to the degree of locality of the nucleon-nucleon lattice inter-

actions. This can be understood from the compactness of the α-particle wave function, as

explained in more detail in Ref. (Elhatisari et al., 2016b). From Table V one further reads

off that in the absence of Coulomb interactions, the binding energy for a nucleus made of

N α-particles is exactly N times the α energy for interaction A, that is it describes a Bose-

condensed gas of particles. These observations allows one to draw interesting conclusions

about the many-body limit. As usual, the Coulomb interactions are switched off. Then, one

can define a one-parameter family of interactions via Vλ = (1−λ)VA +λVB. While the prop-
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FIG. 27 (Color online) Top panel: S-wave phase shifts for α-α scattering at LO, NLO and NNLO.

In the inset, the calculation based on an EFT with point-like α-particles is shown (Higa et al.,

2008). Top panel: D-wave phase shifts at LO, NLO and NNLO . The experimental data are from

Refs. (Afzal et al., 1969; Heydenburg and Temmer, 1956; Nilson et al., 1958).
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Nucleus A (LO) B (LO) A (LO + C) B (LO + C)

3H −7.82(5) −7.78(12) −7.82(5) −7.78(12)

3He −7.82(5) −7.78(12) −7.08(5) −7.09(12)

4He −29.36(4) −29.19(6) −28.62(4) −28.45(6)

8Be −58.61(14) −59.73(6) −56.51(14) −57.29(7)

12C −88.2(3) −95.0(5) −84.0(3) −89.9(5)

16O −117.5(6) −135.4(7) −110.5(6) −126.0(7)

20Ne −148(1) −178(1) −137(1) −164(1)

TABLE V Ground state energies of various nuclei for interactions A and B. Shown are results for

LO and LO + C(oulomb). All energies are in units of MeV.

erties of the two, three, and four nucleon systems vary only slightly with λ, the many-body

ground state of Vλ undergoes a quantum phase transition from a Bose-condensed gas to a

nuclear liquid. The corresponding zero temperature phase diagram is sketched in Fig. 28.

The phase transition occurs when the α-α S-wave scattering length aαα crosses zero, and

the Bose gas collapses due to the attractive interactions (Kagan et al., 1998; Stoof, 1994).

At slightly larger λ, finite α-type nuclei also become bound, starting with the largest nuclei

first. The last α-like nucleus to be bound is 8Be in the so-called unitarity limit |aαα| = ∞.

Superimposed on the phase diagram, the α-like nuclear ground state energies EA for A nu-

cleons up to A = 20 relative to the corresponding multi-alpha threshold EαA/4 are also

depicted. This shows that varying λ, one can move any α-cluster state up and down with

respect to the α separation thresholds. This can be used as a new window to view the

structure of these exotic nuclear states. In particular, this allows to continuously connect

the Hoyle state wave function without Coulomb interactions to a universal Efimov trimer

(Braaten and Hammer, 2006; Efimov, 1971; Kraemer et al., 2006).

Another interesting system is the second 0+ state of 16O , which should be continuously

connected to a universal Efimov tetramer (Hammer and Platter, 2007; Kraemer et al., 2006;

von Stecher et al., 2009). In summary, the main findings of this work are that the α-α

interaction is a key control parameter which determines whether the ground state of a many-

nucleon system is a Bose-condensed gas of α-particles or a nuclear liquid. The proximity

of this first-order quantum phase transition may explain why seemingly similar nuclear
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interactions can produce very different results in ab initio nuclear structure calculations.

These conclusions need to be solidified by more detailed higher order calculations. Similar

results have been found in Ref. (Ebran et al., 2012, 2013, 2014a, 2015, 2014b) using density

functional methods.

One might ask what the dependence on λ means for future nuclear structure calculations

for heavier systems using chiral effective field theory? It suggests that the order-by-order

convergence of chiral effective field theory might benefit from some optimization of the

forces and regulators used in the chiral interactions. This need for optimization may not be

visible in few-nucleon observables until very high-orders in chiral effective field theory. But

the dependence on λ appears as a leading-order effect in the framework of cluster effective

field theory for two low-energy α-particles. This suggests that some acceleration of the

convergence of chiral effective field theory in heavier systems might be possible by making

links to cluster effective field theory.

4. Clustering in neutron-rich nuclei

In addition to the discussion of the quantum phase transition, another development in

Ref. (Elhatisari et al., 2016b) was the use of non-local interactions to reduce sign oscillations

in the lattice Monte Carlo simulations. This idea was utilized in Ref. (Elhatisari et al.,

2017) to perform lattice simulations of neutron-rich nuclei. While this work only considered

interactions at leading order in chiral effective field theory, the ground state energies of

the hydrogen, helium, beryllium, carbon, and oxygen isotopes could be reproduced with an

accuracy of 0.7 MeV per nucleon or less with only three adjustable parameters.

In Ref. (Elhatisari et al., 2017) a new model-independent method was also introduced

for measuring clustering in nuclei using localized three- and four-nucleon operators. Let

ρ(n) be the total nucleon density operator on lattice site n. ρ3 is defined as the expectation

value of : ρ3(n)/3! : summed over n, where the :: symbols denote normal-ordering where all

annihilation operators are moved to the right and all creation operators are moved to the

left. Similarly ρ4 is defined as the expectation value of : ρ4(n)/4! : summed over n.

Although the expectation values ρ3 and ρ4 depend on the manner in which short-distance

physics is regularized, the leading part of this dependence is an overall factor which does not
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Alpha gas	 Nuclear liquid	

FIG. 28 (Color online) Zero-temperature phase diagram as a function of the parameter λ in the

strong interaction Vλ = (1− λ)VA + λVB. A first-order quantum phase transition from a Bose gas

to nuclear liquid at the point appears where the scattering length aαα crosses zero. This is very

close to the value λ = 0. Also shown are the α-like nuclear ground state energies EA for A nucleons

up to A = 20 relative to the corresponding multi-alpha threshold EαA/4. The last α-like nucleus

to be bound is 8Be at the unitarity point where |aαα| = ∞. This unitarity point is very close to

the value λ = 1.

depend on the nucleus being considered. So if ρ3,α and ρ4,α are the corresponding values for

the α-particle, then the ratios ρ3/ρ3,α and ρ4/ρ4,α are free from short-distance divergences

and are model-independent quantities up to contributions from higher-dimensional operators

in an operator product expansion. In Ref. (Elhatisari et al., 2017) the quantities ρ3/ρ3,α and

ρ4/ρ4,α were computed and used the quantify the amount of α-clustering in the helium,

beryllium, carbon, and oxygen isotopes in a model-independent manner. It was observed

that these ratios ρ3/ρ3,α and ρ4/ρ4,α could be used to probe the shape of the α-clusters as

well as the amount of quantum entanglement of nucleons from different α-clusters.

89



Another development in Ref. (Elhatisari et al., 2017) was the determination of α-cluster

correlations in the carbon isotopes 12C, 14C, and 16C by measuring density correlations

among the three spin-up protons. This approach relies on the fact that, on average, there is

only one spin-up proton within each α-cluster. The similarities among the 12C, 14C, and 16C

α-cluster geometries suggest that there should be α-cluster states in 14C and 16C that are

analogs of the α-cluster states in 12C. For example, the bound 0+
2 state at 6.59 MeV above

the ground state of 14C could be a bound-state analog to the Hoyle state resonance in 12C.

IX. SUMMARY AND OUTLOOK

We have presented a review on the current status and understanding of microscopic clus-

tering in nuclei. We began with a history of the field and then discussed recent experimental

results on α-conjugate nuclei, molecular structures in neutron-rich nuclei, and constraints

for ab initio theory. There has been impressive progress in recent years clarifying cluster-

ing phenomena in 8,9,10Be, 10,12,13,14C, 16O, and several other nuclei. However, many more

precision measurements are needed, and these will provide vital benchmarks for first princi-

ples calculations. In addition to rotational bands, form factors, electromagnetic transition

strengths, decays, and reaction cross sections, model-independent assessments of clustering

such as ANCs are also very useful in making connections to ab initio theory.

There are also new opportunities for discovery in exploring clustering phenomena over

a wide range of nuclear systems, from light to heavy nuclei and from the proton drip line

to the neutron drip line. One of the fundamental questions of the field is understanding

how prevalent nuclear clustering is across the nuclear chart. This includes systems where

clustering is more subtly expressed and mixed with other effects such as particle-hole ex-

citations. Having a large empirical database of nuclear phenomena will shed light on the

control parameters for nuclear cluster formation and stability.

On the theoretical side we have discussed methods used to study microscopic cluster-

ing. We reviewed the resonating group and generator coordinate methods, antisymmetrized

molecular dynamics, fermionic molecular dynamics, Tohsaki-Horiuchi-Schuck-Röpke wave

function and container model, no-core shell model, continuum quantum Monte Carlo, lat-

tice effective field theory, and several approaches to clustering in heavier systems.

While there have been many significant advances in the past decade, the field of micro-
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scopic nuclear clustering theory is now just entering the era of precision calculations. The

future holds many opportunities for improvement in theory, methods or algorithms, and

analysis. With the rapid growth of ab initio nuclear theory in the past few years, one great

challenge for the field is to describe nuclear clustering from first principles with controlled

systematic errors. This is no easy task as recent studies have found that the interactions

between nuclear clusters are very sensitive to details of the nuclear forces.

One area where all theoretical groups may choose to invest time and effort is on error

quantification and the systematic reduction of errors. One question relevant to all groups

is how results on nuclear clustering depend on the microscopic nuclear forces utilized. The

follow-up question is how this difference can be systematically reduced by including the

relevant missing physics. For lattice calculations another important question is to estimate

and reduce the size of lattice discretization errors. For methods based on finite basis trun-

cation or variational parameter optimization, a key question is the residual dependence on

the choice of truncated space or variational ansatz. For continuum quantum Monte Carlo,

the analogous question would be the dependence on wave function constraints and the trial

wave function.

In addition to reproducing observed experimental data, another challenge for theoreti-

cal calculations is to compute model-independent observables that provide a quantitative

measure of clustering and also serve as standard benchmarks for all different theoretical

approaches. We have already mentioned ANCs for shallow bound states, but other model-

independent observables could also be computed and defined for resonances as well.

We hope that our review captures some of the excitement of the growing and vibrant

field of nuclear clustering. With many open questions and challenges still remaining, we

anticipate fascinating new chapters to be written in the coming years.
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Chen, Jiunn-Wei, Dean Lee, and Thomas Schäfer (2004), “Inequalities for Light Nuclei in the

Wigner Symmetry Limit,” Phys. Rev. Lett. 93, 242302, nucl-th/0408043.

Chernykh, M, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter (2007), “Structure of

the Hoyle State in C-12,” Phys. Rev. Lett. 98, 032501.

Chernykh, M, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter (2010), “Pair de-

cay width of the Hoyle state and carbon production in stars,” Phys. Rev. Lett. 105, 022501,

arXiv:1004.3877 [nucl-ex].

Chevallier, P, F. Scheibling, G. Goldring, I. Plesser, and M. W. Sachs (1967), “Breakup of O-16

into Be-8 + Be-8,” Phys. Rev. 160, 827–834.

Chiba, Y, and M. Kimura (2015), “Cluster states and isoscalar monopole transitions of 24Mg,”

Phys. Rev. C91 (6), 061302, arXiv:1502.06325 [nucl-th].

Chiba, Y, M. Kimura, and Y. Taniguchi (2016), “Isoscalar dipole transition as a probe for asym-

metric clustering,” Phys. Rev. C93 (3), 034319, arXiv:1512.08214 [nucl-th].

Clark, J W, and T.-P. Wang (1966), “Theory of alpha matter,” Ann. Phys. 40, 127.

Cook, C, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen (1957), Phys. Rev. 107, 508.

Cseh, J (1992), “Semimicroscopic algebraic description of nuclear cluster states. Vibron model

coupled to the SU(3) shell model,” Phys. Lett. B281, 173–177.

96



Cseh, J (2014), “On the intersection of the shell, collective and cluster models of atomic nuclei I:

Multi-shell excitations,” arXiv:1404.3500 [nucl-th].

Curtis, N, et al. (2013), “Investigation of the 4-alpha linear chain state in 16O,” Phys. Rev. C88 (6),

064309.

Curtis, N, et al. (2016), “Be8+Be8 and C12+ breakup states in O16 populated via the C13(He4,4)n

reaction,” Phys. Rev. C94 (3), 034313.

Daniel, David, Rajan Gupta, Gregory W. Kilcup, Apoorva Patel, and Stephen R. Sharpe (1992),

“Phenomenology with Wilson fermions using smeared sources,” Phys. Rev. D46, 3130–3145,

arXiv:hep-lat/9204011 [hep-lat].

Danilov, A N, T. L. Belyaeva, A. S. Demyanova, S. A. Goncharov, and A. A Ogloblin (2009),

“Determination of nuclear radii for unstable states in C-12 with diffraction inelastic scattering,”

Phys. Rev. C80, 054603.

Datar, V M, et al. (2013), “Electromagnetic Transition from the 4+ to 2+ Resonance in Be8 Mea-

sured via the Radiative Capture in He4+He4,” Phys. Rev. Lett. 111 (6), 062502, arXiv:1305.1094

[nucl-ex].

Dell’Aquila, D, et al. (2017), “High-precision probe of the fully sequential decay width of the Hoyle

state in 12C,” Phys. Rev. Lett. 119, 132501.

Dennison, David M (1940), “Excited States of the O-16 Nucleus,” Phys. Rev. 57, 454.

Dennison, David M (1954), “Energy Levels of the O-16 Nucleus,” Phys. Rev. 96, 378–380.

Descouvemont, P (1995), “Halo structure of Be-14 in a microscopic Be-12 + n+n cluster model,”

Phys. Rev. C52, 704–710.

Descouvemont, P (1997), “Simultaneous study of the 11 Li and 10 Li nuclei in a microscopc cluster

model,” Nucl. Phys. A626, 647–668.

Descouvemont, P (2002), “Microscopic study of α clustering in the 9,10,11 Be isotopes,” Nucl.

Phys. A699, 463–478.

Descouvemont, P, and D. Baye (1987), “Microscopic theory of the Be-8 (alpha, gamma) C-12

reaction in a three-cluster model,” Phys. Rev. C36, 54–59.

Descouvemont, P, and D. Baye (2001), “12 Be molecular states in a microscopic cluster model,”

Phys. Lett. B505, 71–74.

Descouvemont, P, and D. Baye (2010), “The R-matrix theory,” Rept. Prog. Phys. 73, 036301,

arXiv:1001.0678 [nucl-th].

97
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