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Abstract

The ability to effectively control brain dynamics holds great promise for the

enhancement of cognitive function in humans, and the betterment of their

quality of life. Yet, successfully controlling dynamics in neural systems is

challenging, in part due to the immense complexity of the brain and the

large set of interactions that can drive any single change. While we have

gained some understanding of the control of single neurons, the control of

large-scale neural systems—networks of multiply interacting components—

remains poorly understood. Efforts to address this gap include the con-

struction of tools for the control of brain networks, mostly adapted from

control and dynamical systems theory. Informed by current opportunities

for practical intervention, these theoretical contributions provide models

that draw from a wide array of mathematical approaches. We present

recent developments for effective strategies of control in dynamic brain

networks, and we also describe potential mechanisms that underlie such

processes. We review efforts in the control of general neurophysiological

processes with implications for brain development and cognitive function,

as well as the control of altered neurophysiological processes in medical

contexts such as anesthesia administration, seizure suppression, and deep-

brain stimulation for Parkinson’s disease. We conclude with a forward-

looking discussion regarding how emerging results from network control—

especially approaches that deal with nonlinear dynamics or more realistic

trajectories for control transitions—could be used to directly address press-

ing questions in neuroscience.
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I. INTRODUCTION

The brain displays a wealth of complex dynamics across various spatial and temporal

scales (Betzel and Bassett, 2016; Kopell et al., 2014). From 302 neurons in the nematode

worm C. elegans (Bentley et al., 2016; Varier and Kaiser, 2011) to some 86 billion neurons

in the adult human (von Bartheld et al., 2016; Herculano-Houzel et al., 2007), the units

that drive brain function are large in their number but even more complicated in their in-

teractions. Far from the canonical models in statistical mechanics stemming from either

crystalline or random structure, the brain displays a heterogeneous pattern of interconnec-

tions (Bassett and Bullmore, 2016; Castellana and Bialek, 2014; Fraiman et al., 2009) that

fundamentally constrains the propagation of activity. Understanding these dynamics re-

mains of primary interest in the field of neurophysics (Gao and Ganguli, 2015; Scott, 1977).

An underlying assumption of these investigations is that such dynamics or observed neural

activity can contain structure that forms representations about incoming stimuli or underly-

ing neural processes. An emerging and increasingly tractable avenue for understanding the

mechanisms of these dynamics lies in the notion of control, or how to effectively guide neural

dynamics. How are brain dynamics controlled intrinsically in the awake, behaving animal?

Can we harness natural principles of control in neural systems to better guide therapeutic

interventions?

The increase in available experimental neurotechnologies (Chang, 2015; Nag and Thakor,

2016; Patil and Thakor, 2016), as well as more sophisticated computational tools (Glaser

and Kording, 2016; Marblestone et al., 2016) and theoretical models (Giusti et al., 2016),

has recently made it possible to tackle these questions from fundamentally new angles.

While at present there is no comprehensive theory of control in the brain that we can refer

to, the pursuit of such a theory remains critically important, having implications for our

understanding of healthy neurophysiological processes, and our ability to intervene when

those healthy processes go awry in neurological disease and psychiatric disorders (Bassett

and Khambhati, 2017; Chen et al., 2014; Johnson et al., 2013). Several recent models propose

new ways to control neural activity and neural rhythms, and further provide mechanistic

insights into the rules by which brain dynamics are (and can be) guided. Hence, it is timely

to discuss these emerging developments, and to seek to tie them together into a meaningful

theoretical field that can be used to tackle current open questions in neuroscience and
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medicine.

Motivated by recent progress in understanding brain function from the perspective of in-

teracting networks (Bassett and Bullmore, 2006, 2009; Bullmore and Sporns, 2012; Kaiser,

2011), we focus on systems-level control of either local neural circuits or whole-brain connec-

tomes (Fornito and Bullmore, 2015; Sporns et al., 2005). Here we use the term “network”

in the sense that is common in network science (Newman, 2010). A brain network is a

graph whose nodes represent units of the brain that perform a specific function, like vision

or audition (Bullmore and Bassett, 2011). At the large-scale, these units may be several

centimeters of tissue, while at the small scale, these units may be individual neurons. In

structural brain graphs, the edges can represent structural links such as fiber bundles at

the large scale (Bassett et al., 2011; Hagmann et al., 2008) or synapses at the small scale.

In functional brain graphs, the edges represent synchronized dynamics that form functional

links (Achard et al., 2006; Stam, 2004) between these units. While both structural and

functional links can be measured directly from structural and functional data, respectively,

extensive efforts have also sought to address the questions of (i) whether structural topology

can be inferred from functional traces (using, for example, structural equation modeling),

and (ii) whether functional traces can be inferred from structural linkage patterns (using, for

example, neural mass models). Throughout this exposition, we will assume that structural

links have been directly measured, rather than inferred.

The use of the network formalism to probe brain dynamics has a rich and pervasive

heritage in seminal work at the intersection between physics and neuroscience. One partic-

ularly impactful contribution was that of Hopfield, who successfully connected dynamical

processes to neural representations in an Ising model (Hopfield, 1982). States that min-

imized the energy function formed dynamical attractors and representations of memory.

This early contribution was extended and formalized by Amit et al. (1985) and Gardner

(1987), clearly demonstrating the power of interacting networks in the modeling of com-

plex neural processes. Here we expand the link between physics and neuroscience in the

context of the network formalism by focusing on the control of brain networks, enabling us

to build a theoretical understanding regarding biological processes and associated dynamics

that occur across spatially distributed neural systems. In addition, strategies for interven-

tion and control targets can be designed through modeling dynamics in networks of neurons

or brain regions. Should the reader instead be searching for an excellent treatment of var-
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ious control methods for single neurons or for ensembles of neurons, we direct them to the

recent textbook by Schiff (2012), and to references therein. For further details on emerging

control technologies in the brain—especially invasive electrical and optical stimulation at

rapid timescales (milliseconds or below)—and associated modelling approaches, please see

the recent review by Ritt and Ching (2015).

The remainder of this Colloquium is organized as follows. In Sec. II we draw inspira-

tion for understanding control of brain networks by considering how the brain itself enacts

intrinsic control. In particular, we briefly discuss important computational paradigms of

cognitive control, a basic ability that each of us has to control our neural activity and by ex-

tension our behavior. This discussion motivates the introduction of network control theory

in Sec. III, which offers a useful theoretical framework in which to probe control in brain

networks constructed from neuroimaging data. We next turn in Sec. IV to detailing a few

examples of how we can use network control theory, or its extensions, to understand healthy

brain function. In Sec. V, we describe the utility of network control in targeting interven-

tions when healthy brain function goes awry. We next turn in Sec. VI to modeling the

controlled versus uncontrolled trajectories of neural dynamics, and we close in Sec. VII by

outlining emerging frontiers at the intersection of dynamical systems theory, control theory,

and complex systems. Throughout, we keep neuroscience jargon to a minimum, although

some terminology specific to the technique or context remains unavoidable. Our goal is to

stimulate discussion through reviewing existing work (rather than presenting new data), in

order to encourage further work from physicists, control theorists, practitioners, and others

in this exciting and rapidly developing field.

II. HOW DOES THE BRAIN CONTROL ITSELF?

While there may be many ways of tackling the question of how to control brain dynamics,

arguably one of the simplest is to ask how the brain controls itself. Perhaps by understand-

ing intrinsic mechanisms of control in the brain, we could harness that knowledge to inform

therapeutic interventions for people with mental illness. In considering this idea, it is useful

to distinguish between external control, which is enacted on the system from the outside,

and internal control, which is a feature of the system itself. In the brain, internal control pro-

cesses include phenomena as conceptually diverse as homeostasis, which refers to processes
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that maintain equilibrium of dynamics (Nelson and Turrigiano, 2008; Nelson and Valakh,

2015), and cognitive control, which refers to processes that exert top-down influence to drive

the system between various dynamical states (Botvinick and Braver, 2015; Heatherton and

Wagner, 2011).

Here we focus on cognitive control because it is conceptually akin to the idea of extrinsic

control: driving dynamics from one type to another. What can we learn from cognitive con-

trol that might help us to develop a theory for external control? To answer that question, we

begin by turning to history. An early computational model that explained the production

of decisions based on a given set of inputs was the perceptron (Freund and Schapire, 1999;

Rosenblatt, 1958), a simple artificial neural network (Bishop, 1995; McCulloch and Pitts,

1943). The perceptron and associated notions were developed by proponents of connection-

ism (Medler, 1998), which suggests that cognition is an emergent process of interconnected

networks. The complexity of the connection architecture in these models was thought to

support a complexity of brain dynamics, such as the separation of parallel neural processes

and distributed neural representations propounded by the parallel distributed processing

(PDP) model (Rumelhart et al., 1986). The PDP model holds that cognitive processes can

be explained by activation flowing through networks that link nodes together. Every new

event changes the strength of connections among relevant units by altering the connection

weights.

Notably, the PDP model offers conceptual explanations for the processes characteristic

of cognitive control (Botvinick and Cohen, 2014). These ideas are built on the notion

that the development of control systems in the brain (Chai et al., 2017) can be seen as

responding to the structure of naturalistic tasks, and therefore that control can be defined

as the optimal parameterization of task processing. Within such a parameterization, two

specific features of cognitive control appear particularly critical: (i) its remarkable flexibility,

which supports diverse behaviors, and (ii) its clear constraints, which limit the number of

control-demanding behaviors that can be executed simultaneously. Addressing these two

features, models inspired by the PDP approach allow for cognitive control as instantiated

in processes of selection from competing inputs or adaptation based on reward (Fig. 1).

These and related computational models emphasize the role of specific brain areas in cog-

nitive control, including prefrontal cortex, anterior cingulate, parietal cortex, and brainstem.

Yet, studying any of these areas in isolation will likely provide an impoverished undestanding
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of the system’s function. Indeed, Eisenreich et al. (2016) argue that control in the brain is

not localized to small regions or modules, but is instead very broadly distributed, enabling

versatility in both information transfer and executive control. Such a distributed – and even

perhaps overlapping – network architecture can also offer usefully fuzzy boundaries between

controllers and processors (Eisenreich et al., 2016; Haykin and Fuster, 2014). How exactly

information is processed on these distributed systems remains an open question, but some

promising modeling approaches include those that use Bayesian inference, sparse-coding,

and information entropy to characterize control (Haykin and Fuster, 2014). Specifically,

a few recent efforts draw heavily from the idea of probabilistic reasoning to formulate a

model for risk control – posited to be an overarching function of the prefrontal cortex –

characterized by a closed-loop feedback structure describing executive attention.

To briefly summarize, previous computational models of cognitive control have included

the eclectic notions of neural networks, regional localization, distributed processing, and in-

formation theory. Collectively, these notions motivate the construction of a model or theory

that explicitly builds on the emerging capability to measure the brain’s true network struc-

ture to better understand control. In the next section, we will describe recent developments

in dynamical systems and control theory as applied to complex networks, whose application

to the brain may offer explanatory mechanisms of neural dynamics and provide insights into

the distributed nature of cognitive control.

III. NETWORK CONTROL THEORY

Conceptually, it is interesting to ask the question whether and to what degree cognitive

control (as defined by neuroscientists) is similar to network control (as defined by physicists,

mathematicians, and engineers). To address this interesting question, we must first define

what it is that we mean by network control. Controllability of a dynamical system refers to

the possibility of driving the current state of the system to a specific target state by means

of an external control input, see Kalman et al. (1963). Developments in engineering and

physics have recently extended these ideas to the control of networks, as we describe in more

detail below.
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A. Control of linear dynamics

We begin by describing a general framework for the control of linear dynamics on a

complex network. Consider a network represented by the directed graph G = (V , E), where

V and E are the vertex and edge sets, respectively. Let aij be the weight associated with

the edge (i, j) ∈ E , and define the weighted adjacency matrix of G as A = [aij], where

aij = 0 whenever (i, j) 6∈ E . We associate a real valued (state) with each node, collect the

node states into a vector (network state), and define the map x : N≥0 → Rn to describe the

evolution (network dynamics) of the network state over time. A simple way to begin is to

describe the network dynamics by a discrete time, linear, and time-invariant recursion

x(t+ 1) = Ax(t). (1)

Let a subset of nodes K = {k1, . . . , km} be independently controlled, and let

BK :=
[
ek1 · · · ekm

]
(2)

be the input matrix, where ei denotes the i-th canonical vector of dimension n. The network

with control nodes K reads as

x(t+ 1) = Ax(t) + BKuK(t), (3)

where uK : N≥0 → R is the control signal injected into the network via the nodes K (see

Fig. 2). The network (3) is controllable in T steps by the nodes K if, for every state xf ,

there exists a control input uK such that x(T ) = xf with x(0) = 0 (Kailath, 1980).

Controllability of this type of system can be ensured by different structural conditions

(Kailath, 1980; Reinschke, 1988). For instance, let CK,T be the controllability matrix defined

as

CK,T :=
[
BK ABK · · · AT−1BK

]
.

The network (3) is controllable in T steps by the nodes K if and only if CK,T is of full row

rank, where T is typically taken to be at least as large as the system size n.

B. Key driver nodes

Recent work from Liu et al. (2011) demonstrated that the analytical framework described

in the previous section could be used to study large, complex networks. In that study, the
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authors explored common patterns in a wide variety of networks from technology, biologi-

cal, and social systems. Under certain conditions in these weighted and directed networks,

the set of driver nodes capable of guiding the dynamics of the entire system could be di-

rectly estimated from the degree distribution. Since that study, others have shown that

under other conditions and in other networks, the degree distribution alone may not provide

enough information to adequately determine the set of driver nodes. Instead, that knowl-

edge regarding the network’s structure must be complemented with considerations of the

network’s dynamics, or reasonable approximations of those dynamics at each node (Cowan

et al., 2012).

In these studies, networks are allowed to contain real-valued weights on each edge. How-

ever, for some real-world networks, knowledge of the edge weights is uncertain. For such

scenarios, a complementary framework is provided by structural controllability which eval-

uates the controllability of binary networks (Kailath, 1980; Reinschke, 1988). By studying

the underlying “structure”, i.e. distinguishing merely between which edges are absent (zero)

versus present (non-zero), these methods allow the identification of minimal structures or

control points that allow for full controllability of the network. Recent efforts have extended

these ideas to large-scale systems, and to the problem of identifying the minimum number

of nodes that need to be driven in order to achieve structural controllability (Pequito et al.,

2016a).

In recent work, Pequito et al. (2016b) extended the notion of structural controllability to

situations in which edges evolve dynamically, and they identified the minimum number of

driven nodes for full controllability of the system. Their methods would appear particularly

relevant in situations like those observed in Khambhati et al. (2015), where dynamic func-

tional connectivity in epileptic patients was characterized by edges within seizure-generating

areas that were almost constant over time, whereas edges outside these areas in healthy tis-

sue exhibited higher variability over time. An important potential goal of control would then

be to steer function on these edges away from pathological regimes (Pequito et al., 2016b),

i.e. towards dynamics that demonstrate more edge weight variability.

While network control and structural controllability are particularly relevant concepts for

brain network control, many other key contributions have been made to the study of control

in complex networks, which lie outside the scope of this article. We wish to point interested

readers to the following reviews that focus entirely on network control tools. For a review of
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methods to identify control points to affect particular dynamics such as synchrony, see Chen

(2014). For more general background and detail on network control in complex systems,

the recent review by Liu and Barabási (2016) provides an excellent summary of the latest

developments.

C. Control energy and metrics

Another important area of work lies in the development of metrics that characterize

different control strategies for real networks. We define the controllability WK,T as

WK,T =
T−1∑
τ=0

AτBKB
T
K(AT)τ (4)

= CK,TC
T
K,T (5)

which has to be full rank for the network (3) with the set of network nodes K to be control-

lable, equivalent to the condition for the controllability matrix in Section III.A.

In practical applications, controllable networks featuring small Gramian eigenvalues can-

not be steered to certain states because the control energy is limited. This fact motivated

Pasqualetti et al. (2014) to propose certain control strategies and associated metrics based on

minimizing the control energy; these include average, modal, and boundary controllability.

To define these control metrics, we first let the network be controllable in T steps, and

let xf = x(T ) be the desired final state in time T , with ||xf ||2 = 1, where the subscript

denotes the Euclidean norm, i.e. ||v||2 :=
√
vTv. Following from Eq. 3, where uK is the

injected control signal, we can define the energy of the control input uK as

E(uK, T ) = ||uK||22,T =
T−1∑
τ=0

||uK(τ)||22, (6)

where T is the control horizon. The unique control input that steers the network state from

x(0) = 0 to x(T ) = xf with minimum energy is (Kailath, 1980)

u∗K(t) = BT
K(AT)T−t−1W−1

K,Txf (7)

with t ∈ {0, . . . , T − 1}. Then it can be seen that

E(uK∗ , T ) =
T−1∑
τ=0

||u∗K(τ)||22 = xT
fW

−1
K,Txf ≤ λ−1min(WK,T ), (8)
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where λmin is the smallest eigenvalue. Note that equality is achieved whenever xf is an

eigenvector of WK,T associated with λmin(WK,T ) (Pasqualetti et al., 2014).

Average controllability identifies network nodes that, on average, can steer the system

into different states with little effort (i.e., input energy), see Fig. 3. The average control-

lability in a network—formally defined as Trace(W−1
K,T )—equals the average input energy

from a set of control nodes and over all possible target states (Marx et al., 2004; Shaker and

Tahavori, 2012). Instead, Trace(WK,T ) is often adopted as a measure of average controlla-

bility, motivated by the relation Trace(W−1
K,T ) ≥ N2/Trace(WK,T ) (Summers and Lygeros,

2014), and the fact that WK,T is close to singularity even for networks of small cardinality.

Note that the maximization of Trace(WK,T ) does not automatically ensure controllability.

However, independent tests to verify the controllability can be made using Eq. (4) and

were done for individual regions in brain networks (Gu et al., 2015) (and more generally in

Menara et al. (2017)). It should be noticed that Trace(WK,T ) encodes a well-defined control

metric, namely the energy of the network impulse response or, equivalently, the network H2

norm (Kailath, 1980). For practical computations, the limit of T → ∞ and A satisfying

Schur stability is used, as this permits a closed-form solution and easier analysis. Intuitively,

network nodes with high average controllability are most influential in the control of network

dynamics over all possible target states.

Modal controllability identifies network nodes that can push the network activity into

difficult-to-reach states, which are those that require substantial input energy. To quan-

tify modal controllability, we first note that the behavior of a dynamical system is fully

determined by the eigenvalues (modes) and eigenvectors of its system matrix. Regarding

controllability, the Popov-Belovich-Hautus test ensures that a system with matrix A is con-

trollable by an input matrix B if and only if all its modes are controllable or, equivalently,

if and only if there exists no left eigenvector of A orthogonal to the columns of B (Kailath,

1980). By extension from this PBH test, if the entry vij is small, then the j-th mode is poorly

controllable from node i. Hence Pasqualetti et al. (2014) define φi =
∑

j(1 − ξ2j (A))v2ij as

a scaled measure of the modal controllability of all N modes ξ0(A), . . . , ξN−1(A) from the

brain region i. Intuitively, network nodes with high modal controllability are able to con-

trol all of the dynamic modes of the network, and hence to drive the dynamics towards

hard-to-reach configurations.

Boundary controllability identifies network nodes that lie at the boundaries between net-
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work communities, beginning from communities at the largest scale and moving down across

consecutive hierarchical levels of community structure – and thus intuitively measures the

ability to control the integration and segregation of network modules. This metric depends

on the choice of a method for detecting boundary control points, for which an algorithm

is proposed in Pasqualetti et al. (2014). This algorithm can be altered as needed for the

physical system under study, e.g., to enhance the accuracy in estimating an initial partition

of the network into communities, and to sharpen or loosen the boundary point criteria.

Intuitively, network nodes with high boundary controllability are able to gate information

between different communities, across topological scales in the network.

Overall, these three metrics provide useful estimates for real systems especially when

considering dynamics over the whole network (Wu-Yan et al., 2018). Further work could be

done to investigate other scenarios such as dynamics in just parts of the network, or how

different patterns of community structure change the resulting controllability. These and

more general questions about the relationship between network topology and the resulting

dynamics remain open areas of study, which we discuss in more detail at the end of this

article.

D. Application to brain networks

To use these methods to answer questions in neuroscience, we must begin by constructing

networks based on our knowledge of brain connectivity. At the large scale, network nodes in

the brain are often defined based on regional differences in cellular architecture (Brodmann,

1909; Glasser et al., 2016) or local gradients in fine-scale functional connectivity (Power et al.,

2011; Yeo et al., 2011). Connectivity between these nodes can be estimated with emerging

neurotechnologies, which we illustrate with the following examples. In humans, one partic-

ularly powerful non-invasive probe of connectivity uses magnetic resonance imaging (MRI)

to infer structural pathways in the brain (Wedeen et al., 2012) by exploiting molecular res-

onances of water molecules as they diffuse along white-matter tracts (Basser et al., 1994;

Makris et al., 1997), see Fig. 4. By reconstructing the pathways that exist between brain

regions and by estimating the strengths of those pathways, a brain network (weighted, sym-

metric graph) is obtained where the network edges are given by the inter-regional connection

strengths (Bassett et al., 2011; Hagmann et al., 2008). Similar techniques can be used in
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rodents, cats, dogs, and non-human primates by way of a small-bore magnet (Duong, 2010).

Of course, tract-tracing techniques and other invasive methods are also a powerful way to

image structural pathways in non-human animals (Markov et al., 2011; Okano and Mitra,

2015).

Recently, Gu et al. (2015) applied network control theory to such whole-brain struc-

tural networks in humans. Using networks composed of between 83 and 1015 nodes, the

authors study the three controllability metrics of average, modal, and boundary controlla-

bility (Pasqualetti et al., 2014) discussed in the previous section. Their work and others will

be discussed in detail in the next section on understanding healthy brain function. While

these techniques have not yet been ubiquitously applied to non-human imaging (Badhwar

and Bagler, 2015; Tang et al., 2012), the mathematics is generalizable to any estimate of

structural connectivity in a neural system. Conceptually, this approach supports the gen-

eral study of the kinds of dynamics predicted by the constraints of structural connectivity,

particularly for the scenario in which a given brain region is acting as a control point for

the rest of the network. On a methodological note, the results were verified across a range

of network sizes. Although the connectivity studied is at a relatively coarse scale, it would

be interesting to complement these observations with studies at cellular resolutions.

An integral aspect of control theory is that of system observability, which examines how

measurable the system is to an observer. It is dual to system controllability; hence limits

on the observability of the system will naturally impair efforts to control the system. This

fact has important implications in neuroscience, where the lack of complete and constant

detection, especially in living, behaving systems, introduces nontrivial uncertainty in both

data and models. In non-invasive neuroimaging, systematic biases in data acquisition and

processing may hamper accurate predictions built from individual measurements, e.g. that

arise from the physical embedding of the brain (Morris et al., 2008; Yamada, 2009). Common

attempts to combat this possibility include verifying the reproducibility of results under a

variety of choices made in the estimation of anatomical connectivity and in the construction

of brain networks, for instance by comparing the results from multiple brain parcellations

or tractography procedures. In time-varying networks, it should be verified that any con-

clusions hold over several time window lengths, and a minimum length of window should

be chosen to ensure statistical signficance. Still, further work should be done to quantify

how systematic biases in data acquisition or system observability, such as the effects of the
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physical embedding of the brain, result in bounds on the possible control predictions.

IV. UNDERSTANDING HEALTHY BRAIN FUNCTION THROUGH CONTROL

THEORY

In this section, we explore the utility of network control theory for offering mechanisms of

cognitive control, providing explanations for individual differences in cognitive control across

people, and capturing the evolution of control as we grow from children to adults. We close

this section by discussing open questions in cognitive neuroscience that appear particularly

amenable to extensions of network control theory.

A. Network control as a partial mechanism for cognitive control

A simple question to ask about any theory is whether or not it offers predictions of

observed processes. One particularly straightforward and testable hypothesis is that the

common control strategies studied in control and dynamical systems theory are strategies

that the brain uses to control its own intrinsic dynamics. In a recent study, Gu et al. (2015)

addressed this hypothesis by first calculating the controllability strengths for each brain

region, and then by identifying the preferences of each brain region for different types of

control. The authors found that strong average controllers, strong modal controllers, and

strong boundary controllers were located in quite different areas of the brain, see Fig. 5.

Notably, the different sorts of controllers appeared to map on to the types of function

that each brain region is thought to perform. For example, strong average controllers were

disproportionately located in the default mode system, which is a spatially distributed set

of brain regions that are markedly active when a person is simply resting (Raichle, 2015).

This is particularly interesting because it suggests that areas of the brain that are active

in the “ground state” are also areas that are structurally predicted to optimally push the

system into many local easily-reachable states, close by on the underlying energy landscape.

Furthermore, strong modal controllers were disproportionately located in cognitive control

systems, including both the frontoparietal and cingulo-opercular systems. This is particu-

larly interesting because it suggests that the areas of the brain that are active during tasks

that demand high levels of cognitive control or task switching (Botvinick and Braver, 2015)
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are structurally predicted to optimally push the system into distant states, far away on the

underlying energy landscape. Lastly, strong boundary controllers were disproportionately

located in regions implicated in attention (Corbetta and Shulman, 2002), supporting their

predicted role in gating (Eldar et al., 2013; Womelsdorf and Everling, 2015) information

between network communities.

This study offers a possible mechanistic explanation for how the brain might move be-

tween cognitive states that depends fundamentally on white matter microstructure. The

work suggests that structural network differences between the default mode, cognitive con-

trol, and attentional control systems dictate their distinct roles in brain network function.

While the results need to be validated in other species and data sets, the broad trends in-

dicate the relevance of control theory for capturing canonical concepts in cognitive control.

B. Network control and cognitive performance

In the previous section, we reviewed evidence that notions from network control applied

to neuroimaging data can provide insight into the roles that brain regions may play in the

control of neural dynamics. Here we ask the more specific question of whether the brain in

one person (or animal) might be optimized for a different type of control than the brain in

another person (Kim et al., 2018). That is, can controllability metrics explain why cognitive

performance differs across individuals (Cornblath et al., 2018)?

While still a very open question, two recent studies suggest that indeed each brain displays

a different profile of control, and differences across people are correlated with differences in

their cognitive capacities. In one study in healthy adult humans, Medaglia et al. (2016)

compare the predictions from network control theory applied to individual brain images

to the performance of these same individuals on traditional cognitive control tasks. More

specifically, the authors calculate modal and boundary controllability (see III.C) on brain

networks obtained from diffusion imaging, and they also test the performance of subjects

in cognitive control tasks that measure the inhibition of behavior, the shifting of attention,

vigilance, and working memory capacity. The study reports key regional controllers in the

brain whose controllability strength is correlated with task performance measures across

individuals, thus providing a second line of evidence that network control may be a partial

mechanism for cognitive control in humans.
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Turning from adults to children, Tang et al. (2017) evaluated the controllability strength

of brain regions as well as more general cognitive performance (not specific to cognitive

control) in a community-based sample of healthy youth. The authors found that the rel-

ative strength of average controllers in subcortical versus cortical regions (which are the

earliest evolving and latest evolving brain areas, respectively) is an important predictor of

improved cognitive performance. This relationship held true even when accounting for dif-

ferences in age across the cohort, suggesting that it is a fundamental characteristic of human

brain structure and dynamics. A follow-up study further tied these differences to individual

differences in cognitive control specifically (Cornblath et al., 2018).

C. Evolution of network control in development

The identification of age-invariant relationships between controllability metrics and cog-

nitive function begs the question of whether controllability metrics of brain networks change

with age, either in their magnitude or in their spatial distribution. To address this question,

Tang et al. (2017) studied the controllability metrics of average controllability and modal

controllability in 882 healthy youth from 8 to 22 years of age, and quantified a single value

of controllability for a person as given by the average of controllability strengths across all

brain regions. This coarse-graining of the data enabled the authors to study how brain net-

works facilitate energetically easy transitions (average controllability) as well as energetically

costly ones (modal controllability).

They found that brain networks are highly optimized to support a diverse range of possible

dynamics (as compared with randomized versions of the networks) and that this range

of supported dynamics increases with age, see Fig. 6. Seeking to investigate structural

mechanisms that support these changes, the authors simulate network evolution with a set

of growth rules, to find that all brain networks – from child to adult – become increasingly

structured in a manner highly optimized for network control. These results suggest key

neurophysiological changes that may be occuring during development, driving the system

towards an increasing capability to traverse a larger surface of the energy landscape. It

would be interesting in the future to assess whether these metrics are altered in youth with

neuropsychiatric disorders, or whether they could be used to predict transition to psychosis.
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D. Open questions in control and cognition

It is important to note that linear models of neural dynamics (Fernández Galán, 2008;

Honey et al., 2009) for use in network control theory have both advantages and disadvan-

tages. Their advantage is that one has access to a wide array of theoretical observations

that can offer intuition about the system’s (controlled) dynamics, particularly around an

operating point (Gu et al., 2015). The disadvantage is that they cannot speak to neural

processes that transition from one dynamical regime (limit cycles, fixed points, attractors)

to another (Deco and Jirsa, 2012; Golos et al., 2015; Muldoon et al., 2016). In these cases,

developing additional methods for control of nonlinear systems may be necessary.

One simple scenario in which limit cycles – or transitions between them – may be par-

ticularly important for the processes of cognitive control is that of human decision-making

(Chand and Dhamala, 2016; Chand et al., 2016). For example, oscillatory activity in specific

brain regions has been linked to rational versus irrational decision-making in a task that

requires financial judgements (akin to gambling). Sacr et al. (2016) studied a group of hu-

man subjects in which multiple depth electrodes were implanted in deep brain structures as

a part of routine presurgical evaluation for medically refractory epilepsy. By recording the

local field potentials at each of these electrodes, the authors were able to monitor the activity

of neuronal ensembles in the precuneus and show that high-frequency activity (70-100 Hz)

increased when irrational decisions were made. Further, transitions between various mental

states such as rational or irrational decision making could be described using a state space

model of activity from these electrodes, illustrating the network aspect of concerted activity

between regions. This and similar studies in other areas of higher-order cognitive function

that depend upon synchronized oscillatory activity in neuronal ensembles (Bassett et al.,

2009; Kopell et al., 2000) suggest the possibility that control strategies could be devised that

use brain stimulation to alter the frequency of neuronal synchrony to modulate cognitive

processes. Such a possibility will depend on accurately extending linear control models to

nonlinear ones, isolating the dynamics relevant for the cognitive process of interest, and

localizing the region that is most impacted.

These studies cover a range of experimental probes from non-invasive neuroimaging to

implanted electrodes, and computational models from linear models to nonlinear models.

Together, they illustrate the breadth of scenarios in healthy cognitive function available for
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further investigation, and invite further work that identifies connections or common themes

within these studies.

V. TARGETING THERAPEUTIC INTERVENTIONS TO MAXIMIZE BENEFI-

CIAL OUTCOMES TO PATIENTS

In this section, we broaden our focus from linear models of network control in order to

more generally discuss emerging engineering approaches for the control of brain dynamics

in the context of clinical medicine. We separate our discussion into methods for modulating

consciousness via anesthesia administration, methods for ongoing monitoring and treatment

of Parkinson’s disease, methods for non-invasive stimulation, and methods for the control of

transient epileptic seizures. These topics are in no way meant to be comprehensive of the

field, but simply to highlight important directions of clinical relevance. Examples are chosen

based on their focus on distributed control and analysis over many brain regions, in view of

the system as an interacting whole, where network models are often explicitly employed.

A. Anesthesia titration

Anesthesia is used in medical institutions to modulate consciousness through drugs dur-

ing surgery, potentially by altering distributed circuitry (Crone et al., 2016). Accurately

titrating the levels of anesthetic for each person, and at each time point during the surgery,

is critically important for the comfort, health, and survival of the patient. Recent efforts

seek to optimize this titration using a closed-loop system (Ching et al., 2013), where the

challenge is to maintain a medically-induced coma by delivering propofol via an intravenous

catheter or pump. Using a computer to control this delivery system, precise amounts of

anesthetic can be chosen, administered, and adapted in a time-dependent manner, poten-

tially reducing the incidence of propofol overdose which is accompanied by debilitating side

effects.

Building on their earlier biophysical model, Ching et al. (2013) demonstrate the real-time

monitoring and control of the brain’s burst suppression state from the electroencephalogram

(see Fig. 7), which indicates a state of highly reduced electrical and metabolic activity (Ching

et al., 2012b) and allows tracking of the level of consciousness. This state is illustrated via

20



small model networks of two principal cell types (cortical pyramidal cells and inhibitory

interneurons). Control of this state can then be done using an on-line parameter estimation

procedure and proportional-integral controller. The technique has already been validated in

rodents, where it can be used to successfully monitor and control the burst suppression state.

Translating this work into humans will require more extensive computational estimation of

model parameters and empirical validation over periods of several hours.

B. Deep-brain stimulation for Parkinson’s disease

High-frequency deep brain stimulation (DBS), commonly used to treat Parkinson’s dis-

ease, is one of the oldest examples of successful dynamical manipulation of brain function to

alleviate clinical symptoms. Yet, it remains unclear exactly how and why it works so well.

Control and systems theory approaches are useful for modelling the underlying circuitry to

understand the mechanisms by which deep-brain stimulation affects behavioral phenotypes

(Santaniello et al., 2015; Tass et al., 1998; Wilson and Moehlis, 2016).

Recent work has highlighted the network-level mechanisms of the diseased dynamics,

and the control necessary to treat them. For example, Santaniello et al. (2015) move from

localized functions to the relevant circuitry, positing that DBS increases the regularity of

firing patterns in the basal ganglia, thereby decreasing symptoms of Parkinson’s disease

(Chiken and Nambu, 2014). The authors suggest that high-frequency stimulation of 130 Hz

in DBS is effective because it is a resonant frequency of the overall cortico-basal ganglia-

thalamo-cortical loop. The authors explore the effects of different stimulation conditions

by simulating hundreds of biophysically realistic neurons from different regions of the cir-

cuitry that are thought to have very different functions. Their results suggest a loop-based

reinforcement model, where DBS proximally or distally does not individually account for

resulting pattern changes, but instead relies on a combined impact across the circuit. This

observation could inform the choice of stimulation frequency and location when using DBS

clinically (Johnson et al., 2013).

While identifying the resonant frequency of a critical circuit may provide a useful target

for control, other mechanisms may also exist, and it is possible that interventions targeting

more than one mechanism could be more effective than targeting one mechanism alone.

Other candidate mechanisms include coupling between peripheral tremor rhythms, and the
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phase locking of the activity of primary and secondary motor areas. For example, Tass et al.

(1998) propose two techniques to identify the relative phase locking between two MEG

signals, thereby detecting synchronization of neuronal activity and mapping its relationship

to peripheral tremors. Other attempts to uncover mechanisms include the investigation of

entrainment and desynchronization dynamics, both seen in populations of neurons, as a

result of DBS. Wilson and Moehlis (2016) study a population of model neurons and the

effects of stimulation, to observe underlying low-dimensional patterns that can illuminate

collective processes in spiking neurons. The simplicity of that particular model affords

theoretical insight into a potential mechanism that governs DBS.

Once the optimal mechanism(s) have been identified, a key goal is the use of control

theory to create a closed-loop system for more effective treament. Holt and Netoff (2014)

identify their goal for DBS as the suppression of pathological frequencies that occur during

Parkinson’s disease. They simulate the physiology of the basal ganglia using a network

model to create a mean-field description of the closed-loop system, which allows for the

tuning of stimulation parameters based on patient physiology. This setup provides signif-

icant advantages over the current method of trial-and-error tuning, which is based on the

clinician’s past experience. If such a model can be empirically validated, it would be an

important step towards improving the efficacy of DBS for patients with Parkinson’s disease.

C. Non-invasive transcranial stimulation

While such invasive monitoring and stimulation paradigms are not accessible to most

humans, other non-invasive methods of brain stimulation are becoming increasingly feasi-

ble. The most common is that of transcranial magnetic (electric) stimulation, which is the

application of a magnetic (electric) field through the scalp for a short period of time (Bikson

et al., 2016). While the effects of transcranial stimulation tend to be diffuse, they have

demonstrated utility in treating depression and other neurological and psychiatric disorders

(Kedzior et al., 2016). In healthy subjects, transcranial electric stimulation has been shown

to differentially affect endogenous versus exogenous attention in human subjects (Hopfinger

et al., 2017). These and similar effects can be understood to some degree by employing

computational models of oscillatory and state-dependent dynamics (Alagapan et al., 2016).

Computational work has also begun to directly bridge mathematical models of nonlinear
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neural dynamics with the predictions of network control theory in the context of such ex-

ogeneous stimulation (Muldoon et al., 2016). The tractability of computational studies

and the pervasive empirical use of non-invasive stimulation opens the possibility of building

mechanistic models that provide a deeper understanding of stimulation’s effects on the brain

(Johnson et al., 2013), and of the rules by which stimulation parameters and location can

be optimized to enhance brain function.

One study directly bridges mathematical models of nonlinear neural dynamics and the

predictions of network control theory in the context of such exogeneous stimulation. Mul-

doon et al. (2016) consider the effects of electrical stimulation to a specific brain region using

a model of nonlinear oscillators connected by a coupling matrix estimated from measured

diffusion imaging data (Fig. 4). By simulating dynamics in this network of Wilson-Cowan

oscillators, they can test for different regimes of desired functional outcomes supported by

the network—if the effects of stimulation remain focal or spread globally—and compare these

with the predictions from network control theory using the controllability metrics described

in III.C. Importantly, their results validate linear network control predictions over eight

subjects and more generally provide a model that can be used or tested in clinical settings,

in order to strengthen the connection between theory and clinical practice.

D. Seizure suppression in epilepsy

Both invasive and non-invasive stimulation methods have been considered for the treat-

ment of medically intractable epilepsy. This multiplicity of methods is due in part to the

difficulties inherent in localizing the regions involved in seizures: different brain regions can

play diverse roles in the production and propagation of epileptiform dynamics (Bartolomei

et al., 2017). Both types of interventions would seem to be preferable to the current clinical

practice of resecting large sections of neural tissue thought to cause the seizure, although of

course this statement is speculative (Stacey and Litt, 2008). Instead, stimulation may have

the potential to suppress seizures (Berényi et al., 2012; Ching et al., 2012a), particularly

if tailored to the underlying brain connectivity (Taylor et al., 2015), and/or its associated

dynamics (Khambhati et al., 2016). In a recent practical demonstration, work from the

group of Berényi et al. (2012) shows the efficacy of brain stimulation in seizure suppression,

in a rat model for epilepsy (see Fig. 8). Their application of transcranial electrical stimula-
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tion using a closed-loop system reduces seizure duration, on average, by 60%. These results

show great promise for the development of closed-loop stimulation that leaves other aspects

of brain function unaffected, and paves the way for the use of such therapies in humans.

For seizure suppression, some techniques appear to be effective for distributed control

and others appear to be effective for local control. Theoretical modelling of the former

case was done by Ching et al. (2012a), who employ a grid of stimulating electrodes that

act as actuators to help stem and direct the propagation of electrical activity. To model

mesoscale cortical dynamics, they use a network of Wilson-Cowan oscillators, with both

diffusive and synaptic coupling. By modelling the placement of several actuators, they

demonstrate the ability to limit pathological activity (the spreading of electrical activity

across a patch). By slowing the spread of activity, their method can be used in conjuction

with pharmacological agents, or allow time for other self-correcting mechanisms in the brain.

Naturally, their method would depend on how well the actuators contact and target the

underlying tissue, as well as on accurate monitoring of seizure activity and the ability to

control the system in real time. An alternative approach is put forth by Taylor et al. (2015),

whose model covers a larger spatial area and uses connectivity derived from patient MRI

to facilitate personalization of stimulation. A simple dynamical model describes regional

activity including epileptic spike wave dynamics, and a pseudospectral method generates

time-varying stimuli to halt simulated seizures.

When considering translating some of these techniques to the clinic, it is useful to con-

trast them with existing clinical procedures. Generally speaking, clinical interventions for

epilepsy can come in the form of (i) carefully modifying neural structure and dynamics,

(ii) entirely quieting dynamics over short periods of time, or (iii) removing tissue to ensure

silence over a lifetime. Khambhati et al. (2016) study methods to treat epilepsy via either

short term “lesioning” (meaning quieting dynamics using stimulation) or long term “resec-

tion” (actually surgically removing the tissue). They develop methods for the identification

of suitable lesion points, that affect the ability of the network to sustain synchronous activ-

ity associated with the occurence of a seizure (see Fig. 9). These inferences are based on

a measure of synchronizability of the network – the ratio of the largest and smallest eigen-

values of the graph Laplacian (Barahona and Pecora, 2002). Virtual resection of individual

brain regions in silico can pinpoint control regions that strongly synchronize or desynchro-

nize network dynamics, while revealing a principle of push-pull antagonism that provides a
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possible explanation for why seizures spread. Still, fully synchronized states only occur in

a subset of seizure types, and it is therefore very likely that different sorts of control will be

required for different sorts of seizure etiologies. Hence, the mapping from control type to

seizure type will need to be validated experimentally, and further work is needed to clarify

the translational applicability of this approach.

Considering the large variability of epileptic synods and seizures (focal and generalized),

these methods could add to the suite of possible interventions that include local control.

The range of models in this section illustrates many possible direct applications of control

theory to important medical questions, and the potential gains that could be made through

the successful control of aberrant dynamics. This possibility for clinical impact is perhaps

the most immediate motivation to study the control of brain dynamics, and we hope these

examples will encourage new efforts in these areas.

VI. CONTROL OF SPECIFIC NEURAL DYNAMICS OR PATHWAYS

The example contexts in clinical medicine that we discuss in the previous sections high-

light the great diversity of neural network dynamics in both health and disease. In this

section, we focus on two specific types of network dynamics for which simple mathematical

models can be studied, and for which control strategies can be examined analytically. The

first context is that of neural synchrony, or rhythmic oscillations of neural ensembles. The

second context is state transitions, where the activation profile of the brain moves from one

pattern to another. We conclude the section by describing a few empirical tools that can be

used to modulate these dynamics, and to test predictions from network control theory.

A. Synchrony of neural populations

1. Dynamical characteristics and clinical relevance

When considering the control of specific dynamics, a natural place to start in neural

systems is synchrony, which occurs when populations of neurons or brain regions exhibit

the same dynamics s(t), i.e. x1(t) = ... = xn(t) = s(t) (see Fig. 10a). In many organisms,

synchrony manifests as strong time-locked patterns, such as circadian rhythms and gait reg-

ularity. Moreover, the transition between synchrony and desynchrony has implications for
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treating epilepsy (Jirsa et al., 2014), Parkinson’s disease, or other pathological conditions.

Hence the propensity towards synchrony or the ease of transitioning in and out of a syn-

chronous state is of great interest – both in local neuronal ensembles (Davison et al., 2016;

Nabi and Moehlis, 2011) and in distributed whole-brain networks (Tang et al., 2017).

While this field is too large to do justice to in this small space, we highlight the work of

Nabi and Moehlis (2011) as an excellent example describing the process of desynchroniza-

tion in two models of coupled units (Kuramoto and a reduced phase Hodgkin-Huxley with

electrotonic coupling), through the dynamic programming of inputs to a single neuron in the

population. This work offers a possible mechanism for deep-brain stimulation in Parkinson’s

disease, where stimulation represents a single input that can affect desynchronization. Im-

portantly, the model includes global (all-to-all) coupling between neurons, and therefore the

use of more heterogeneous couplings that are characteristic of empirically measured brain

networks could be an interesting future direction.

While understanding desynchronization processes is critically important, another relevant

question pertains to the conditions under which synchrony can occur. While some efforts

seek to address this question through the analysis of Lyapunov functions (Davison et al.,

2016), the bounds are often of limited value as they are far from the regime in which we

expect neural dynamics to take place. Alternatively, transient regimes toward synchrony and

perturbative methods on synchronizability can be used to describe more realistic regimes.

2. Structural drivers of synchrony: Graph architecture and symmetries

One framework to study the perturbative stability of a synchronous state or transients

toward synchrony takes an explicitly structural approach. For instance, Pecora and Carroll

(1998) proposed the master stability function (MSF) to analyze the stability of this state on

a network of oscillators. A schematic of this function for a generic network of identical oscil-

lators is given in Fig. 10a. Within this framework, linear stability depends on the positive

eigenvalues {λi}, i = 1, ..., N − 1 of the graph Laplacian L defined by Lij = δij
∑

k Aik−Aij,

where A is the network adjacency matrix defined in III.A. More specifically, stability un-

der perturbations exists when this function is negative for all positive eigenvalues of the

Laplacian matrix.

Without a detailed specification of the properties of the dynamical units, a larger spread
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of Laplacian eigenvalues will typically make the system more difficult to synchronize than

a smaller spread. Therefore, one natural measure of global synchronizability is the inverse

variance 1/σ2({λi}), as proposed by Nishikawa and Motter (2010):

σ2 =

∑N−1
i=1 |λi − λ̄|2

d2(N − 1)
, where λ̄ :=

1

N − 1

N−1∑
i=1

λi (9)

and d := 1
N

∑
i

∑
j 6=iAij, the average coupling strength per node, which effectively normal-

izes the overall network strength.

Tang et al. (2017) used this metric of global synchronizability to study the brain net-

works of 882 typically developing youth from the ages of 8 to 22 years. They found that

brain networks that are more synchronizable tend to display lower average controllability

(Fig. 10b) as well as lower modal controllability. While no known relationship between syn-

chronizability and controllability exists, the correlation is intuitive in that it suggests that

individuals who are theoretically predicted to more easily transition into a variety of dynam-

ical states are less susceptible to having many regions locked in synchrony. Interestingly,

the relationship between synchronizability and controllability is partially explained by age:

synchronizability decreases as children age (inset of Fig. 10b). These results suggest that

as the brain matures, its network architecture supports a larger range of dynamics (from

nearby to distant states) perhaps necessary for the adult repertoire of cognitive functions,

and is less able to support globally synchronized states which are instead characteristic of

pathological conditions such as epilepsy.

The emergence of local patterns of synchronization can follow different paths depending

on the graph architecture, and hence suggest the existence of particular control strategies

that may enact the desired path. Gómez-Gardeñes et al. (2007) probe this dependence on the

network coupling strength and topology, as well as patterns in the transition to synchrony in

a network representing structural measurements from cat cerebral cortex (Gómez-Gardeñes

et al., 2010). Such considerations that move beyond the linear stability of the synchronized

state can provide insights into the design of real-world networks that often display small-

world topologies. The concept of basin stability that can describe nonlocal and nonlinear

systems is a powerful example, successfully describing features of neural networks such

as the macaque or cat cortex (Menck et al., 2013). The control of synchrony hence has

strong connections with nonlinear control, also exemplified when considering the role of

structural symmetries. Indeed, critical work from Whalen et al. (2015) demonstrates that
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symmetries and motifs in the network structure have a nontrivial impact on the potential

to control the system’s dynamics. Their work addressing three-node motifs (see Fig. 11)

explores the possibility of introducing a group-theoretic component to the existing algebra

of control theory. They conduct simulations of the motifs using biophysical neuronal models

characterized by nonlinear dynamics as described by the Fitzhugh-Nagumo equations, which

comprise a general representation of excitable neuronal membranes. They explore several

dynamical regimes including chaotic, pulsed limit-cycle, and constant input limit-cycle, to

see how different types of symmetries (such as rotational or mirror) affect the resulting

controllability. Further work is needed to determine whether these effects on controllability

generalize to scenarios in which the same 3-node motifs are embedded in a larger network, or

in which the model of dynamics is changed from a cellular-level model to a macro-scale model

of neuronal activity. In addition, other factors besides anatomical connectivity or network

coupling strength (such as local dynamics or neurotransmitter levels) could also contribute

to synchony and dynamics, and provide interesting directions for future investigation.

B. The cost of controlling specific trajectories

While the control metrics defined earlier (III.C) consider the cost of control, they nec-

essarily coarse-grain over many different state transitions: average controllability measures

the ability to move the system to (all) local states on the energy landscape, while modal

controllability measures the ability to move the system to (all) distant states on the energy

landscape. However, there are circumstances in real world networks – and particularly in

brain networks – in which we would like to understand how to move the system from a

specified initial state to a specified target state. In this general scenario, we might like to

be able to compare the shape of different trajectories within state space, thereby providing

intuitions regarding the feasibility of a specific transition and the accessibility of certain final

states.

In the context of the linear network system described earlier (Eq. 3), one proposed solution

to this problem considers the trajectory from an initial state x0 (one pattern of regional

activation) to a target state xT (another pattern of regional activation), see Fig. 12. Our

goal is to infer a control input function u(t) that minimizes the energy of the transition and
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the distance of the current state from the target (final) state:

min
u

∫ T

0

(
(xT − x(t))T (xT − x(t)) + ρu(t)Tu(t)

)
dt,

s.t. ẋ(t) = Ax(t) + Bu(t),

x(0) = x0,

x(T ) = xT ,

(10)

where T is the control horizon, ρ ∈ R>0, and (xT − x(t)) is the distance between the state

at time t and the target state.

Using this formulation, Gu et al. (2016) study the energy landscape of finite-time control

trajectories from the brain’s baseline activation state to states with heightened activity in

cortex devoted to vision, audition, and motor function. Interestingly, they observe that the

most efficient drivers of these transitions were nodes in the network (or regions of the brain)

with high communicability to the target state. Communicability examines the weighted

sum of walks of all lengths, i.e. Gij =
∑∞

k=0(
Ak

k!
)ij = (eA)ij in a binary network. The

generalization to weighted networks is Gw
ij = eA

′
ij , where A′ = D−

1
2AD−

1
2 and D is the

diagonal matrix with Dii =
∑

j Aij. Their results indicate the importance of long-distance

walks on the network for efficient control. Moreover, by studying changes in the energetic

impact of nodes on certain control actions, they also find that patients with mild traumatic

brain injury show a loss of specificity in the putative control processes that their brain

networks support. This work sheds light on the mechanisms that drive brain state transitions

in healthy cognition and their alteration following injury.

Similarly, Betzel et al. (2016) simulate control trajectories among states characterized by

the activation of various cognitive systems in the brain: systems devoted to visual, auditory,

motor, baseline, cognitive control, salience, and attention-related functions. The goal was

to compare energetic costs of these transition and to determine how this cost depends on

the number of controllers used. The authors identify the brain regions that contribute most

strongly to changes in energetic cost, and compare these with predictions from network

control theory. In particular, they identify a group of control regions that are located in

the rich club: a set of high-degree nodes that tend to also connect to one another (Colizza

et al., 2006). Notably, these rich-club hubs acting as control regions most altered energetic

outcomes when the brain’s rich club organization was destroyed by simulated lesioning, an

increasingly common model of neurodegenerative disease (Alstott et al., 2009).
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Within this modeling framework, a choice of which trajectories to be simulated has to be

made. Further work remains to identify the most useful trajectories for simulation that can

reveal actual brain dynamics, thereby increasing biophysical relevance.

C. Empirical tools for control of specific neural dynamics or pathways

In the previous few subsections, we outlined theoretical frameworks and computational

methods to model and interrogate the control of neural synchrony and brain state transitions.

In each of these cases, it is and will remain important to inform and validate theories and

models with empirical data, using experimental tools for control. Earlier in this report,

we highlighted several of these tools in the form of brain stimulation, which have proven

especially relevant for therapeutic interventions. However, in addition to these relatively

large-scale tools, that are already being linked to control theory, there also exist fine-scale

tools for the manipulation of single neuronal cell types (Lee et al., 2010), which could benefit

from additional theoretical work.

Arguably one of the most powerful recently-developed tools for the manipulation of single

cell types is optogenetics. Optogenetics offers millisecond-scale optical control of neural

activity in defined cell types during animal behavior (Grosenick et al., 2016). Its marked

precision, in some cases at single-cell resolution, allows the possibility to guide activity in

awake animals and provide a causal investigation of neural circuitry, see Fig. 13. While

mostly used in rodents, these techniques are increasingly being used in primates as well to

probe basic principles of neural function, and to test strategies for therapeutic interventions

such as the interruption of seizures; for further details we point readers to the recent review

by Grosenick et al. (2016).

Meanwhile, technologies for simultaneously recording cell activity and targeting stimula-

tion are constantly improving, and hence now allow the possibility for closed-loop control

in animals. The very specificity of the stimulation and the targeted cells, means that at

present specific design choices about intended outcomes have to be made. For instance,

the same stimulation that evokes gamma oscillations (> 60 Hz) at the circuit level using a

relatively slow opsin variant ChR2(H134R) cannot always reliably drive individual pyrami-

dal cells at such frequencies. Still, the ability to use such stimulation to direct behavior in

animals, suggests tremendous potential for closed-loop optogenetics to reveal mechanisms
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for cognition.

These examples demonstrate new insights obtained through the modelling and probing

of specific pathways and circuits in brain networks, and provide a controlled study of their

role and contribution to the overall function of the brain. Further work could investigate

how these pathways and circuits work in a concerted manner to affect cognitive function, as

well as underlying principles in the design and use of these circuits.

VII. EMERGING CONTROL METHODS WITH POTENTIAL UTILITY IN NEU-

ROSCIENCE

Many of these recently introduced theoretical frameworks to model the control of brain

activity rest on linear or simplified models of dynamics. While they already provide use-

ful conceptual insights and analytical descriptions for controlling neural activity, the large

repertoire of dynamics in the brain requires more flexible models to capture its complex-

ity. To close this review, we focus on two broad directions of advances in network control

theory that appear particularly relevant for addressing this gap. The first is the extension

of network control theory to describe a broader range of dynamical regimes – such as non-

linear dynamics or time-dependent control – or the study of control metrics to estimate

the feasibility of control trajectories. The second examines new approaches in network con-

trol theory that exploit specific properties of the problem to better achieve desired targets,

which may well differ based on the problem at hand. These include the use of perturbations,

stochasticity in the system, or aspects of the network topology, to design control strategies.

A. Broader control regimes

1. Nonlinear dynamics

Brain activity is highly nonlinear, which can be seen especially at the level of single

neurons or small groups of neurons. A recent analytical development that is mathematically

exact for a broad range of nonlinear dynamics is that of feedback vertex sets (FVS) (Fiedler

et al., 2013). It only requires a few conditions (e.g. continuous, dissipative, and decaying)

that are typically satisfied by many real systems. This formalism identifies the set of nodes

31



in a directed network that can control all the dynamics of the network and can steer it to the

desired trajectories. Open-loop control applied to the nodes of an FVS allow for switching

the dynamics of the whole system from one attractor to some other attractor.

Zañudo et al. (2017) provide an instructive discussion of the differences between struc-

tural controllability and control using FVS, as illustrated in Fig. 14. The authors use the

FVS formalism to study several real networks. By comparing its predictions to those of clas-

sical structural controllability, they identify the topological characteristics that underlie the

observed differences. In addition, they apply the FVS formalism to study dynamic models

of gene regulation, in which directed networks can be used to model gene interactions.

In cases where both the function and structure of the network are known, one can use sim-

plified dynamical models such as logical dynamics (on/off states similar to the Ising model)

to identify stable motifs that can control the dynamics of the network. Indeed, Zañudo and

Albert (2015) demonstrate that such an approach need only be applied transiently for the

network to reach and remain in the desired state. The authors illustrate this method using

a leukemia signaling network and a network for cell differentiation, giving rise to several

predicted interventions that are supported by experiments.

2. Time-dependent control

Given a possible lack of full information about the network, which is usually the case when

one is estimating a brain network from empirical data, it is possible to identify strategies

based on available data to define an uncertainty set containing all networks that are coherent

with empirical observations. Indeed, Han et al. (2015) propose a method to control the

spread of a viral epidemic, taking place in a directed contact network with unknown contact

rates. They assume that they have access to time series data describing the evolution of the

spreading process, and propose a data-driven optimization framework to find the optimal

allocation of protection resources. This method is illustrated using partial data about the

dynamics of a hypothetical epidemic outbreak over a finite period of time—paving the way

for inferring control strategies based on limited observational data over finite periods of time.

These or similar methods may be particularly relevant for the control of seizure spread in

the human brain given that the “resource” of brain stimulation is limited by the fact that

too much stimulation causes heating of the tissue and eventual cell death.
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Indeed, the question of cost and limited resources is futher investigated by Li et al. (2016),

who point out the possibility to take advantage of dynamically changing edges in a network to

inform time-dependent control strategies, that may actually reach controllability faster than

time-independent control strategies. This idea is based on the premise of energy savings in

such strategies, by exploiting the changing topology to avoid energetically costly directions.

For instance, they exert control towards the desired final state when the topology renders

the energy cost acceptable, and pause when the topology makes the cost prohibitive. While

suggestive of new designs for time-dependent control strategies that may prove more effective

than static strategies, further work is needed to examine their relevance and feasibility in

real neural systems.

3. Realistic control trajectories

Sun and Motter (2013) investigate the control of dynamical trajectories in practice and

what determines their energetics or feasibility. In particular, they point to the condition

number of the controllability Gramian (5) as crucial for understanding control in practice,

even if the corresponding Kalman’s controllability matrix is well conditioned. Furthermore,

they point out that numerical control fails even for linear systems if the Gramian is ill con-

ditioned, and that control trajectories are generally nonlocal in the phase space (see Fig.

15). Futher, they provide a condition for the numerical success rate of control strategies

that depends on the number of control inputs, which they term the numerical controllabil-

ity transition. Their work points towards additional criteria that would be relevant when

considering the practicality of various control strategies in real systems.

B. Exploiting system properties

1. Compensatory perturbations or noise

It is important to note that the study of control of brain network dynamics could also

benefit from other methods that target neither nodes nor edges but instead identify effective

parameters to design new strategies for control. The advantage of such approaches is their

applicability for realistic regimes including nonlinear dynamics or stochastic systems. One

such method proposed by Cornelius et al. (2013) uses compensatory perturbations to steer
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the system to desired states: that is, perturbations to state variables that bring the system to

the basin of attraction of the desired target state. The authors present methods to iteratively

identify such compensatory perturbations, through consideration of the physically admissible

perturbations, and through nonlinear optimization on this space of possible changes. Their

approach is effective in bringing the system to a desired target state even when this state

is not directly accessible, as they demonstrated through the mitigation of cascading failures

in a power grid and the identification of drug targets in a cancer signaling network.

Another such method identifies interventions that can reshape the topography of the

underlying quasipotential in a desired way (Wells et al., 2015). This is achieved by de-

termining the minimum action paths—those followed by the likely noise-induced transition

trajectories—and the corresponding transition rates between all pairs of stable states. By

optimizing these transition rates, the authors effectively alter quasipotential barriers be-

tween different stable states, which could be achieved biologically through, for example, a

genome editing approach. This proposal exploits the response of biological systems to noise

to induce a desired cell state, and thereby to predict and control noise-induced switching in

genetic networks. While this method is demonstrated on models of cell differentiation, it is

potentially useful for control in other classes of noisy complex networks.

2. Network topology

Finally, understanding control in brain networks could benefit greatly from a better un-

derstanding of which topological features and symmetries determine the controllability of a

network. Recent work on this front has been pioneered by Bianchin et al. (2015), who study

the controllability degree of complex networks as a function of the network diameter and

the weights. By examining the energy required by a group of nodes to control the network

to a desired state, the authors find that networks with a long diameter and anisotropic

weights are easier to control than networks with a short diameter or isotropic weights. Here

weights are defined to be isotropic if they allow a (control) signal to propagate equally in

all directions, and to be anisotropic otherwise.

Separately, Ruths and Ruths (2014) discuss control profiles in real networks, by iden-

tifying topological features of the network (such as sources and sinks) that correlate with

control properties. Building on these ideas, Campbell et al. (2015) show that the number
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of source and sink nodes, the form of the in- and out-degree distributions, and local com-

plexity (e.g., cycles) shape the control profile in empirical networks. Other work by Pósfai

et al. (2013) examines the effects of clustering, modularity, and degree correlations on the

minimal number of driver nodes required to control a network (similar to the problem posed

by Liu et al. (2011)). They find that under certain conditions, only degree correlations have

a discernible effect.

Lastly, DeVille and Lerman (2015) investigate analytical relationships between network

modularity or symmetries, and the resulting dynamics. They show that continuous time

network dynamics can be decomposed into collections of interacting local control systems

— and that a class of maps called graph fibrations give rise to conjugate dynamical systems.

Their work provides a robust mathematical formalism to generalize existing understanding

such as the relationship between symmetries and synchrony, through the broad notion of

modularity.

VIII. CONCLUSION

We have discussed many new developments in the exciting field of controlling brain

network dynamics and more importantly, attempted to highlight some of the many remaining

open questions. This is an exciting time that has seen rapid theoretical and technological

progress in methods of brain network control, or innovations that could be useful for brain

network control. By outlining the potential in this young and emerging field, we hope to

entice new practioners and further efforts towards this important goal of controlling brain

network dynamics, that has great implications for the bettering of our health and cognitive

function.
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FIG. 1 Model for adaptive cognitive control showing distinct mechanisms between

different brain regions. Schematic of a neural network connecting the prefrontal cortex, which

executes much of the “top-down” control actions, to other brain regions. Another part of the

brain – the anterior cingulate cortex – serves as a conflict monitoring mechanism that modulates

the activity of control representations. Meanwhile, an adaptive gating mechanism regulates the

updating of control representations in prefrontal cortex through dopaminergic (DA) projections

from the ventral tegmental area (VTA), that can also be facilitated through reinforcement learning

(red asterisk). From Botvinick and Cohen (2014).
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FIG. 2 Controlling a simple network. This small network can be controlled by an input vector

uK = (u1(t), u2(t))
T (left), allowing us to move the network within the state space, from its initial

state to some desired final state (right). From Liu et al. (2011).
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FIG. 3 Energetic costs of controllabilitry metrics. Pasqualetti et al. (2014) propose realistic

control strategies that include the energetic costs of control (8). Average controllability describes

transitions nearby on an energy landscape, while modal controllability describes transitions distant

on this landscape.
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FIG. 4 Construction of a human brain structural network. (a) Diffusion imaging measures

the direction of water diffusion in the human brain. (b) From these data, white matter streamlines

can be reconstructed that connect brain regions. (c) An adjacency matrix representation of the

structural connectivity: entries denote the estimated strength of white matter connectivity between

brain regions. (d) The resulting brain network where nodes are brain regions, and where edges are

the connection strengths between them.
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FIG. 5 Cognitive control hubs are differentially located across cognitive systems. (a)

Hubs of average controllability are preferentially located in the default mode system. (b) Hubs of

modal controllability are predominantly located in cognitive control systems, including both the

frontoparietal and cingulo-opercular systems. (c) Hubs of boundary controllability are distributed

throughout all systems, with the two predominant systems being ventral and dorsal attention

systems (Gu et al., 2015).
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FIG. 6 Controllability metrics are positively correlated with age, with older youth

displaying greater average and modal controllability than younger youth. Each data

point represents the average strength of controllability metrics calculated on the brain network of

a single individual, in a cohort of 882 healthy youth from ages 8 to 22 years. Brain networks were

found to be optimized to support energetically easy transitions (average controllability) as well

as energetically costly ones (modal controllability). There is a significant correlation between age

and the ability to support this diverse range of dynamics: see inset or color (online) that denotes

the age of the subjects. Note that modal controllability being a weighted sum of normalized

eigenvectors is always capped at 1, hence its smaller range as compared to average controllability

is not meaningful; rather, the relative differences between the values are meaningful here. From

(Tang et al., 2017).
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FIG. 7 Burst suppression phenomenology. (a) A typical recording of burst suppression from

a human subject anesthetized with propofol – a type of general anesthesia. The bursts manifest

concurrently across the scalp (here, shown for left and right frontal electrodes). (b) Spectrogram

for a frontal electrode during deep, but not burst-suppression, general anesthesia. (c) At a deeper

level of general anesthesia, burst suppression is achieved (the spectrogram clearly displays epochs

of quiescence). From Ching et al. (2012b).
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FIG. 8 Closed-loop stimulation for seizure suppression in a rat. Recordings from channels

a, b and c in the cortex are filtered for spike detection, where signals exceeding the predetermined

amplitude threshold are detected. These thresholded signals are used to trigger transcranial electric

stimulation, which is applied through the scalp. From Berényi et al. (2012).

FIG. 9 Schematics of patient electrophysiology and epileptic model. Left: Intracranial

electrophysiology of patients with neocortical epilepsy. Each sensor (red dot) can be treated as

a node within a functional network that uses magnitude squared coherence between sensors as

network edges. Right: A model of the epileptic network, comprised of a seizure-generating system

and a hypothesized regulatory system that controls the spread of pathologic seizure activity. From

(Khambhati et al., 2016).
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FIG. 10 Synchronizability of structural brain networks and a negative correlation with

age. (a) Schematic of a master stability function (MSF) for a generic network of oscillators, which

gives the perturbative stability of a globally synchronous state (Pecora and Carroll, 1998). Such a

state is stable when the MSF is negative for all positive eigenvalues of the graph Laplacian, hence the

inverse spread of the Laplacian eigenvalues 1/σ2({λi}) provides an estimate of synchronizability (or

stability under synchrony), see Nishikawa and Motter (2010). (b) Synchronizability in structural

brain networks estimated from diffusion imaging in a large cohort of 882 youth is found to be

anti-correlated with mean average controllability, as well as with age (see inset, or color online).

From (Tang et al., 2017).

FIG. 11 Motif structures that occur within networks. The motif structures studied by

Whalen et al. (2015), through simulations of nonlinear biophysical neuronal models and their

resulting controllability.
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FIG. 12 Example trajectory through state space. With external input (control signals), the

system at state x0 is driven into the desired target state xT ; without input the system’s passive

dynamics leads to another state xT where random brain regions are more active than others. From

(Betzel et al., 2016).
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FIG. 13 Setup for optogenetic control in a rat. Left : Fiber photometry setup showing light

path for fluorescence excitation and emission through a single 400 micron fiber optic implanted in

the ventral tegmental area (VTA). Right : Recombinase-dependent viral targeting of GCaMP5 to

VTA dopamine neurons. From Grosenick et al. (2016).

FIG. 14 Comparison between structural controllability and control using feedback ver-

tex sets. (a) In structural controllability, the objective is to drive the network from an arbitrary

initial state to any desired final state by acting on the network with an external signal u(t). The

dynamics are considered to be well-approximated by linear dynamics. (b) In feedback vertex set

control the objective is to drive the network from an arbitrary initial state to any desired dynamical

attractor (e.g., a fixed point) by overriding the state of certain nodes. From Zañudo et al. (2017).
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FIG. 15 Two-dimensional example of nonlocal trajectories. Example system ẋ1 = x1 +

u1(t), ẋ2 = x1, where the curves indicate minimal-energy control trajectories for the given initial

state (open symbol) and target states (solid symbols). Background arrows indicate the vector field

in the absence of control. From Sun and Motter (2013).
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