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This Colloquium describes a new paradigm for creating strong quantum interactions of
light and matter by way of single atoms and photons in nanoscopic lattices. Beyond the
possibilities for quantitative improvements for familiar phenomena in atomic physics
and quantum optics, there is a growing research community that is exploring novel
quantum phases and phenomena that arise from atom-photon interactions in one and
two-dimensional nanophotonic lattices. Nanophotonic structures offer the intriguing
possibility to control atom-photon interactions by engineering the medium properties
through which they interact. An important aspect of these new research lines is that they
have only become possible by pushing the state-of-the-art capabilities in nanophotonic
device fabrication, and by the integration of these capabilities into the realm of ultracold
atoms. This article attempts to inform a broad physics community of the emerging
opportunities in this new field on both theoretical and experimental fronts. The research
is inherently multidisciplinary, spanning the fields of nanophotonics, atomic physics,
quantum optics, and condensed matter physics.
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I. INTRODUCTION

Achieving and controlling interactions between atoms
and photons at the quantum level has been a central
goal in the fields of atomic physics and quantum optics
for decades. Atomic systems have long provided a plat-
form to observe many fundamental quantum phenom-
ena, such as non-classical statistics of light emitted by
single atoms (Kimble et al., 1977) and reversible vac-
uum Rabi oscillations between a single atom and pho-
ton (Brune et al., 1996; Rempe et al., 1987; Thompson
et al., 1992). Such early examples of the capability to
observe and generate quantum effects gained new impor-
tance with the rise of fields such as quantum informa-
tion processing and quantum metrology, making already
well-studied atom-light interfaces a promising route to-
ward realization. There have been spectacular demon-
strations as diverse as single-photon switching (O‘Shea
et al., 2013; Shomroni et al., 2014) and basic quantum
networks (Ritter et al., 2012) using atoms coupled to
high-finesse optical cavities, and quantum memories for
light (Chou et al., 2007; Julsgaard et al., 2004; Liu et al.,
2001; Phillips et al., 2001) and entanglement-enhanced
magnetometry using atomic ensembles (Wasilewski et al.,
2010). Beyond these applications, the combination of
complex interactions that can occur in atom-light inter-
faces and the level of experimental control that can be
reached also makes these systems promising to investi-
gate new types of many-body phenomena, and opens up
interesting links with fields such as quantum information
theory and condensed matter. Active areas of interest
along these lines include self-organization of atoms due
to the interplay between atomic scattering of light and
optical forces (Baumann et al., 2010; Black et al., 2003;
Domokos and Ritsch, 2002; Gopalakrishnan et al., 2009),
the behavior of strongly interacting photon “gases” (Bi-
enias et al., 2014; Peyronel et al., 2012; Zeuthen et al.,
2017) and even the exploration of quantum information
scrambling (Swingle et al., 2016).

Historically, atom-light interfaces have consisted of
macroscopic, free-space setups. Despite many experi-
mental successes, there has also been an effort for over a
decade to migrate from free space to micro- and nanopho-
tonic platforms (Aoki et al., 2006; Goban et al., 2012,
2014; Nayak et al., 2007; O‘Shea et al., 2013; Shom-
roni et al., 2014; Thompson et al., 2013; Vetsch et al.,
2010; Volz et al., 2011), for a number of motivations.
For example, the ability to confine light to small di-
mensions directly increases the per-photon field inten-
sities and thus the interaction strengths with matter. At
the same time, using photonic systems fabricated from
state-of-the-art lithographic techniques provides a possi-
ble route toward robustness and scalability, perhaps even
eventually leading to atomic physics and quantum op-
tics on a chip. While experimental efforts began over a
decade ago, successes proved to be quite challenging. In

Figure 1 Overview. Recent developments in experimental
and theoretical techniques bring forth new atom-light inter-
faces (Sec. III) that can simultaneously achieve stable atom
trapping and strong atom-photon interactions beyond conven-
tional settings (Sec. II), and offer surprising new paradigms in
atomic physics, cavity QED, and waveguide QED (Sec. IV).
In this Colloquium we discuss these new possibilities, in-
cluding: hybrid atom trap and vacuum lattices (Sec. VI),
collective dissipation engineering (Sec. VII), chiral quantum
optics (Sec. VIII), and many-body physics with atom-atom
(Sec. IX), spin-motion (Sec. X), and photon-photon (Sec. XI)
interactions.

particular, the nature of fields confined in nanophotonic
systems, such as their polarization and dispersion rela-
tion, can be quite different than in free space. Thus, the
large atomic physics toolbox built up for free-space atom
loading, cooling, and trapping in general does not imme-
diately apply when it comes to confining atoms within
nanoscale regions of dielectric structures. The devel-
opment of elegant schemes, such as traps formed from
evanescent fields at two very different wavelengths or
from light reflected from dielectric interfaces, was criti-
cal to experimental progress. Promisingly, important fig-
ures of merit for atom-light interactions, such as optical
depth or cavity “cooperativity” factor, are now compet-
itive with or even exceed what is possible in free space
(Tiecke et al., 2014), representing a significant milestone
for the field.

While the original motivation of migrating to nanopho-
tonics largely centered on improving upon free-space ap-
proaches, the complexity of fields in nanophotonic sys-
tems also turns out to give rise to unanticipated op-
portunities. In particular, an increasing body of work
demonstrates the possibility to create fundamentally new
paradigms for quantum atom-light interactions, which
have no obvious prior analogue in free-space settings.
This provides new routes toward building exotic quantum
matter from atoms and photons, quantum simulation,
and the transfer and manipulation of quantum informa-
tion. For example, it has been shown that it is possible
to realize chiral interactions between atoms and light,
where atoms couple to photons (and thus to each other)
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in a directionally-dependent way, even if the system is
nominally mirror symmetric (Mitsch et al., 2014; Sayrin
et al., 2015b). It is also possible to realize atom-photon
bound states, where an atom is surrounded by a localized
photonic “cloud,” and which can serve as a mediator of
coherent long-range interactions between atoms.

Within this context, the goal of this Colloquium is
to provide an overview of the progress, challenges, and
new techniques involved in interfacing atomic physics and
nanophotonics, and of the potential opportunities made
possible by these emerging systems. We begin in Sec. II
by reviewing the various approaches in free space to ef-
ficiently couple atoms and photons, which later will en-
able a better understanding of nanophotonics-based ap-
proaches. An overview of nanophotonic systems and the
potential improvements in figures of merit over free space
are discussed in Sec. III. In Sec. IV, we introduce the
novel classes of paradigms that have emerged in recent
years to control and manipulate atom-light interactions
using nanophotonic systems, which can be roughly clas-
sified into three categories: the utilization of collective
dissipation, chiral atom-light interactions, and interac-
tions within a photonic “bandgap.” A more in-depth
look is provided in the remainder of the Colloquium. In
Sec. V, we introduce a theoretical formalism that en-
ables one to conveniently capture atom-photon interac-
tions in complex dielectric environments, while in Sec. VI
we describe different experimental techniques to create
and load atomic traps near dielectric nano-structures. In
the remaining sections, we return to the themes of col-
lective dissipation, chiral interactions, and physics within
a photonic bandgap, introducing the minimal theoreti-
cal models that characterize each situation and providing
simple examples of the applications and phenomena that
emerge.

As a final note, while we specifically focus on work
to interface neutral atoms with nanophotonic systems,
many of the conceptual paradigms that emerge to control
light-matter interactions can also be applied to other set-
tings. These include molecules (Faez et al., 2014; Hwang
et al., 2009), quantum dots and other solid-state emitters
coupled to nanophotonic systems (Lodahl et al., 2015),
and superconducting qubits coupled to devices in the mi-
crowave domain (Liu and Houck, 2017; Loo et al., 2013).
The general applicability of the paradigms presented here
should become apparent (e.g., via the simple effective
Hamiltonians governing them), while we refer readers to
the references cited immediately above to learn the de-
tails of these other non-atomic systems.

II. CONVENTIONAL STRONG ATOM-PHOTON
INTERACTIONS

Efficient interactions between atoms and light consti-
tute the key enabling mechanism for applications with
atomic systems, ranging from quantum information pro-

cessing to metrology to nonlinear optics (Chang et al.,
2014b). We begin by reviewing several important con-
cepts to achieve efficient interactions, and highlighting
some of the approaches used historically for atoms in free
space.

The simplest model for an atom, which already eluci-
dates the important physics, involves just two electronic
levels, a ground state |g〉 and excited state |e〉, which
are connected through an optical dipole transition. The
two-level nature implies that atoms can only emit and ab-
sorb single photons at a time, which has long been known
to yield interesting nonlinear optical effects such as self-
induced transparency (McCall and Hahn, 1969). Pio-
neering studies in fact showed that single-photon emis-
sion from an atom is intrinsically non-classical, both in its
intensity correlation statistics (“anti-bunching”) (Kimble
et al., 1977) and its photon number distributions (Short
and Mandel, 1983). Together with non-classical light
from atomic ensembles (Clauser, 1974; Freedman and
Clauser, 1972), these early experiments set the stage to
make atomic systems one of the preferred avenues to-
wards implementation of quantum information science.

One of the great incongruities, however, is that al-
though single atoms naturally produce quantum states
of light, getting a single atom and photon to interact
deterministically is very un-natural. An important pa-
rameter to characterize the interaction probability is the
resonant scattering cross section σsc of a single atom (see
Fig. 2a). Here, a weak incident laser beam, whose fre-
quency is tuned to be resonant with the atomic transition
ωeg (with corresponding wavelength λeg = 2πc/ωeg), is
focused with an area Aeff onto a single atom. The prob-
ability P that a photon in the beam is absorbed by the
atom and re-scattered into other directions in the parax-
ial approximation is P = σsc/Aeff. For an ideal two-level
system, σsc = 3λ2

eg/2π is the maximum allowed by the
unitarity limit, and only depends on the transition wave-
length of the atom but not its detailed microscopic prop-
erties (de Vries et al., 1998). The difficulty of achieving a
high probability of interaction lies in the fact that in free
space, the diffraction limit sets the lower limit of focusing
to Aeff & λ2

eg.
Given this fundamental observation, a number of ap-

proaches have been developed to increase P in free
space (Chang et al., 2014b):

(i) Tight focusing Following the analysis of Ref. (van
Enk and Kimble, 2001), pioneering efforts were made to
tightly trap single atoms and to focus free-space beams
onto them with high numerical aperture optics (Darquie
et al., 2005; Hetet et al., 2011; Tey et al., 2008), as shown
in Fig. 2a. It was observed that a single atom could
attenuate the transmission of near-resonant light by up
to P ∼ 10%.

(ii) Cavity QED The predominant approach has been
that of cavity quantum electrodynamics (QED), where
single atoms are positioned within two mirrors that form



4

(a) Tight focusing (b) Cavity QED

(c) Atomic ensembles (d) Rydberg Ensemble

Figure 2 Conventional approaches in quantum optics to
achieve strong atom-photon interactions. (a) Diffraction-
limited focusing of an optical beam onto a tightly trapped
atom, (b) cavity QED, where the interaction is enhanced by
a large number of photon round-trips, (c) atomic ensemble,
where a large atom number results in high probability of in-
teraction with a single photon, and (d) atomic ensemble of
Rydberg atoms.

a high-finesse optical cavity (Fig. 2b). Here, the proba-
bility of interaction is enhanced by the number of round
trips that the photon makes across the atom due to re-
flection off the mirrors. The resulting figure of merit,
C ∝ σscNtrips/Aeff, of course loses its meaning as a prob-
ability of interaction when C & 1, but as we show later,
this cavity “cooperativity” factor defines a rather univer-
sal parameter to characterize the efficacy of a cavity QED
system. It is also convenient to re-write Ntrips = c/κL
in terms of the cavity length L and decay rate κ, such
that C ∝ σscNtrips/Aeff ∝ Qλ3

eg/Veff. Here, Q = ωc/κ
is the quality factor of the cavity (we assume the cavity
resonance frequency ωc is comparable to ωeg), and Veff is
the cavity mode volume. Thus the desired ingredients for
efficient interaction are a long photon lifetime and high
degree of spatial confinement of light.

As cavity QED constitutes such an important
paradigm within atomic physics, we will present some
key theoretical aspects here, followed by a discussion of
experimental state-of-the-art. This will enable a more de-
tailed comparison with nanophotonics setups later. For
additional details on cavity QED, we refer to the thor-
ough reviews (Haroche and Raimond, 2006; Reiserer and
Rempe, 2015). The Jaynes-Cummings model (Jaynes
and Cummings, 1963) is a model Hamiltonian that de-
scribes the interaction of a single atom and photons oc-
cupying a single optical mode, and is given by

HJC = ~δJCσee + ~gJC cos kx(σega+ a†σge). (1)

Here the atomic opeators are defined as σαβ = |α〉〈β|
and δJC = ωeg − ωc is the frequency difference between

the cavity resonance and atomic transition. The cavity
mode is taken to be a standing wave, although in this
section we assume that the atomic position x satisfies
cos kx = 1, i.e. the atom sits at an anti-node. On res-
onance (δJC = 0), the Hamiltonian allows for an atom
to transition from its ground state to excited state by
absorbing a cavity photon, and to subsequently re-emit
it at a rate gJC (the so-called vacuum Rabi splitting).
In terms of microscopic parameters, gJC is related to the
atomic dipole matrix element ℘ = 〈e|d|g〉 and mode vol-
ume by gJC = ℘

√
ω/2ε0~Veff. In general, HJC conserves

the total number of excitations (atomic excitations plus
photons) and is thus easily diagonalizable.

One relevant limit is when the cavity detuning |δJC|
is large compared to gJC, in which case the atom and
photons nearly decouple. Then, for one total excitation,
one of the eigenstates is mostly an atomic excitation,
|ψ+〉 ≈ |e, 0〉− (gJC/δJC)|g, 1〉, with corresponding eigen-
value ω+ ≈ δJC + g2

JC/δJC. Here |n〉 denotes the Fock
state of n cavity photons. The excited state frequency
is shifted by an amount g2

JC/δJC compared to its bare
value, due to the dressing by a small amount (gJC/δJC)2

of photon population. For multiple atoms coupled to the
cavity at positions xi, this common virtual photon gives
rise to an effective “spin” interaction between atoms if the
photon is integrated out (Goldstein and Meystre, 1997),

HJC,eff =
∑
jl

g2
JC

δJC
cos kxj cos kxlσ

j
egσ

l
ge. (2)

This Hamiltonian describes the exchange of atomic exci-
tations and is infinite-range, as the photon mediating the
interaction resides equally between the two cavity mir-
rors and thus the physical separation between the atoms
is irrelevant (aside from the standing wave modulation).

Besides the ideal coherent evolution under HJC,eff, a
realistic system also exhibits two fundamental dissipa-
tion mechanisms (Fig. 2b). First, an excited atom can
spontaneously emit a photon into free space at a rate
Γ′, since the cavity is not closed. For realistic Fabry-
Perot cavities in the optical domain, the cavity mode
subtends a small fraction of the total solid angle into
which the atom can emit, and thus Γ′ is comparable to
the vacuum emission rate Γ0 = ω3

eg℘
2/(3πε0~c3). In ad-

dition, the cavity photon can decay at a rate κ. We now
provide an example of how the cooperativity emerges
as the figure of merit, when optimizing a desired pro-
cess in the presence of losses. In particular, we con-
sider two atoms coupled via HJC,eff, and investigate the
maximum spin exchange fidelity to the state |ge〉, as-
suming that the initial state is |eg〉. The time for ex-
change is given by τ ≈ πδJC/2g

2
JC, while the loss rate

is Γtot ≈ Γ′ + κ(gJC/δJC)2 (the weighted average of the
atomic and photonic population and their respective de-
cay rates). The total error probability E ≈ τΓtot during
the exchange can be minimized with respect to δJC to
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yield Emin = π/
√
C, where C ≡ g2

JC/κΓ′ is the single-
atom cooperativity. Since Γ′ ≈ Γ0, one can readily show
that C ∝ λ3

egQ/Veff, which confirms the validity of the
intuitive scattering cross-section argument presented ear-
lier.

In conventional Fabry-Perot cavities (Miller et al.,
2005; Reiserer and Rempe, 2015), it is possible to achieve
a cooperativity on the order of C ∼ 10-100. As cavities
in these experiments already support extremely high fi-
nesse of Ntrips > 105, in the past twenty years numerous
groups began exploring different types of cavities in order
to reduce the mode volume Veff. These included whisper-
ing gallery mode resonators (Aoki et al., 2006; O‘Shea
et al., 2013; Shomroni et al., 2014; Vernooy et al., 1998)
and fiber-based cavities (Colombe et al., 2007; Kato and
Aoki, 2015; Volz et al., 2011), which increased cooper-
ativities by an order of magnitude. These miniaturized
cavities also were an important stepping stone toward
nanophotonic systems.

(iii) Atomic ensembles A third approach to increas-
ing the interaction probability of a photon with atomic
media is to use a large number of atoms Na, in which
case the resulting figure of merit is OD = (σsc/Aeff)Na.
This defines the “optical depth” of an atomic ensem-
ble, and characterizes the degree of exponential atten-
uation in transmitted intensity for a resonant incident
beam, T = exp(−OD). While exponential attenua-
tion (arising from scattering into other directions) is
not particularly useful, it can be shown that the opti-
cal depth still retains importance once the ensemble is
functionalized (Hammerer et al., 2010) (for example, by
using three-level atoms and implementing electromag-
netically induced transparency, discussed later). Even
when functionalized, however, an ensemble with high op-
tical depth, generally does not have the same power as
a high-cooperativity cavity. In particular, a single two-
level atom is intrinsically nonlinear and generates non-
classical states of light, and increasing the cooperativity
in cavity QED enables one to directly exploit this prop-
erty. However, increasing OD with many atoms typically
makes the system highly linear (as now up to ∼ Na pho-
tons are needed to saturate all the atoms). Thus, weak
light pulses interacting with atomic ensembles are usually
characterized by linear or Gaussian dynamics (Hammerer
et al., 2010). This regime in itself has many applications,
including quantum memories for light (Choi et al., 2008;
Fleischhauer and Lukin, 2000; Julsgaard et al., 2004; Liu
et al., 2001), spin squeezing (Kuzmich et al., 2000) or
probabilistic schemes for quantum information process-
ing (Chaneliere et al., 2005; Duan et al., 2001; Duan and
Monroe, 2008; Kuzmich et al., 2003). However, demon-
strated nonlinear interaction strengths thus far in atomic
ensembles (aside from Rydberg gases, described next)
are about two orders of magnitude below that needed
for single photons to interact (Bajcsy et al., 2009). It
should be noted that although a single atom can have a

reasonably large “optical depth” of OD ∼ 0.1 (Darquie
et al., 2005; Tey et al., 2008), this per-atom OD can-
not be extended to ensembles as a tightly focused beam
rapidly diverges in area (Baragiola et al., 2014; Qi et al.,
2016; Tanji-Suzuki et al., 2011). The challenge of achiev-
ing high atomic densities and long interaction lengths
typically limits free-space ensembles to optical depths of
OD . 102.

(iv) Rydberg gases As argued above, an atomic en-
semble typically enables efficient interactions with single
photons, at the cost of making the system highly lin-
ear. A remarkable approach to achieving strong nonlin-
ear interactions in ensembles has been pursued in recent
years (Lukin et al., 2001). The key idea is to utilize the ef-
ficient atom-light interactions to map single photons into
highly excited Rydberg levels of atoms (Saffman et al.,
2010), as illustrated in Fig. 2d (Firstenberg et al., 2016;
Murray and Pohl, 2016; Pritchard et al., 2013). Here,
photons in a probe beam near resonance with the |g〉-
|e〉 transition can be coherently absorbed into a Ryd-
berg state |r〉, through a two-photon transition mediated
by a strong classical pump beam Ω. The transfer of an
atom into the metastable state |r〉 suppresses the usual
strong absorption and re-scattering associated with two-
level atoms, and results in the process of “electromagnet-
ically induced transparency” (EIT) (Fleischhauer et al.,
2005). This process is only efficient if the sum of probe
and pump frequencies matches the transition energy from
|g〉 to |r〉. Once a Rydberg excitation is created, however,
it shifts the energy of the Rydberg level of nearby atoms
by an amount V (r) due to strong van der Waals interac-
tions. This shift prevents the resonance condition from
being matched for a second probe photon, within a cer-
tain Rydberg “blockade” radius rb. This second photon
effectively only sees a two-level medium of |g〉-|e〉, and
is strongly scattered. The resulting output state of the
probe beam can then exhibit non-classical correlations,
as it only contains single photons within a given spatial
region (Dudin and Kuzmich, 2012; Peyronel et al., 2012;
Pritchard et al., 2010). This Rydberg blockade has been
successfully used to realize effects such as single-photon
switching (Gorniaczyk et al., 2014; Tiarks et al., 2014).

III. A NEW WAY FORWARD: ATOMS AND
NANOPHOTONICS

In the previous section, we presented an overview of
the (mostly orthogonal) approaches toward achieving effi-
cient atom-photon interactions: tight focusing of beams,
multiple round trips, many atoms, and atom-atom in-
teractions, and we discussed some of the technical chal-
lenges faced in these various strategies. This background
facilitates a comparison with nanophotonic systems. In
this section, we begin by introducing some important
nanophotonic structures, such as nanofibers, photonic
crystal waveguides, and photonic crystal cavities. At
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Figure 3 (a) Schematic of a SiO2 nanofiber of radius rfiber =
250 nm, with atoms trapped approximately 230 nm from the
surface. Figure modified from Ref. (Vetsch et al., 2010). (b)
Dispersion relation of guided mode frequency f versus axial
wavevector k (in units of 2π/rfiber) for the nanofiber. For
sufficiently small fibers or low frequencies, all modes except
the HE11 mode are cut off. The transition frequencies asso-
ciated with the Cs D1 and D2 lines are also shown for refer-
ence. (c) Intensity distribution |E|2 (in arbitrary units) for
fundamental HE11 mode of nanofiber (Le Kien et al., 2004).
(d) (Left) Ratio of emission rate Γ1D into guided mode to
total emission Γtot of an atom trapped near a nanofiber of ra-
dius rfiber = 200 nm, as a function of dimensionless distance
r/rfiber. The curves correspond to different magnetic sublevels
of Cs. (Right) Same ratio, calculated as a function of fiber
radius (normalized by the resonant wavevector k0 = ωeg/c
in vacuum), for an atom on top of the fiber surface. From
Ref. (Le Kien et al., 2005).

a minimum, directly mapping existing paradigms (such
as cavity QED) onto such structures can result in sig-
nificantly improved figures of merit, due to factors such
as strong confinement of optical fields. We will discuss
the current and potential figures of merit associated with
nanophotonic structures here. Importantly, however, we
will also see that nanophotonic systems provide the op-
portunity to engineer the dispersion and modal proper-
ties of light, and the dimensionality in which atoms and
photons “see” each other. These considerations will be
important in later sections, when we discuss how one can
create new paradigms for atom-light interactions, which
have no prior analogue in atomic physics and quantum
optics.

A. Overview of nanophotonics

Perhaps the simplest nanophotonic structure, which
serves as a starting point to understand more complex
structures, is an optical nanofiber (Fig. 3a). In a ray op-
tics picture, a fiber guides light within a high refractive
index core, surrounded by a lower index cladding (in our

case vacuum), through total internal reflection. The dis-
persion relation of the guided mode frequency f versus
wavevector k along the propagation axis of a cylindri-
cal nanofiber of radius rfiber = 250 nm is illustrated in
Fig. 3b. For sufficiently small core radii, krfiber . 2,
the fiber only supports a single transverse spatial mode,
labeled by “HE11” in the figure, at a given frequency. In-
terestingly, there is no cutoff for small radius (in contrast
to a microwave waveguide (Jackson, 1999)). To respect
the diffraction limit of Aeff & λ2, a significant evanes-
cent field then forms outside the core, which can ex-
tend in the transverse direction far beyond the radial size
rfiber (Le Kien et al., 2004), as shown in Fig. 3c. As we
discuss later, this evanescent field provides a mechanism
to trap atoms in the vacuum region near the fiber, and
create high interaction probability between individual
atoms and resonant propagating photons guided within
the fiber.

The dispersion relation of a fiber is featureless over
very large bandwidths, indicating its ability to guide light
of very different wavelengths and with little distortion.
On the other hand, for many applications within clas-
sical optics it might be desirable to tailor the disper-
sion relation, for example, to realize frequency filters or
compact delay lines. One powerful way to modify the
dispersion relation of a translationally invariant fiber or
dielectric waveguide is to periodically modulate the di-
electric profile ε(r) along the propagation axis (such as
by sinusoidal variation of the structure width, as illus-
trated in Fig. 4a), thus realizing a “photonic crystal”
waveguide (PCW) (Joannopoulos et al., 2008). While a
single cycle of modulation behaves as a simple scatterer
for guided fields, the multiple interference in scattering
from a periodic array can behave in a much more complex
manner. In this case, Bloch’s theorem serves as a conve-
nient way to describe propagation through this periodic
“potential”. In particular, the dispersion relation ω(k) of
guided modes is characterized by a Bloch wavevector k
along the propagation axis (taking the values |k| ≤ π/a
in the first Brillouin zone) and set of bands (see Fig. 4b).
In analogy with electrons propagating through a periodic
crystal potential in solid-state systems, a characteristic
feature of band structure is the emergence of band gaps,
a frequency range over which no guided modes exist, due
to the strong constructive interference in reflection from
the periodic dielectric modulation. An interesting feature
of a guided band, as it approaches in frequency toward a
band edge, is that its group velocity vg = dω/dk can in
principle approach zero. This reduced propagation speed
arises due to multiple reflections that light makes, while
it maintains a net propagation direction.

Another structure of interest is a photonic crystal cav-
ity (PCC) (Fig. 5). Such a structure can be realized
by introducing a local defect into a PCW, for exam-
ple, by locally altering the size of the periodic modu-
lation of the waveguide as seen in Fig. 5b. This defect
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can seed a set of discrete cavity modes whose resonance
frequencies are situated within the bandgap of the sur-
rounding structure, thus spatially localizing the modes
around the defect. The associated mode volumes can
easily reach the diffraction limit, Veff . λ3. Thus, such a
platform has proven to be attractive in recent years for
achieving strong light-matter interactions in a number
of settings beyond atoms. For example, the structure in
Fig. 5b enables strong optomechanical coupling between
photons and a co-localized mechanical mode of the struc-
ture (Safavi-Naeini et al., 2011).

Finally, it should be mentioned that the concepts as-
sociated with the progression from nanofibers to pho-
tonic crystal waveguides to cavities also extend to two-
dimensional structures. In particular, a thin film dielec-
tric membrane supports a set of modes guided by total
internal reflection, and adding a dielectric modulation
such as a set of holes results in a photonic crystal struc-
ture described by a two-dimensional Bloch band struc-
ture (Joannopoulos et al., 2008; Painter et al., 1999).
Likewise, adding a defect to such a structure, such as by
omitting a set of holes over a finite region (see Fig. 5c),
results in a discrete cavity mode confined to this region
(Yoshie et al., 2004), whose mode volume can also be
diffraction limited. We now discuss the interface of atoms
with these various types of nanophotonic systems.

B. Optical nanofibers

While a substantial single-atom interaction probability
of P ∼ 0.1 is achievable using a tightly focused laser beam
and one trapped atom (Darquie et al., 2005; Hetet et al.,
2011; Tey et al., 2008), this technique does not extend
to many atoms due to the rapid divergence of the beam
waist under tight focusing. Researchers (Nayak et al.,
2007) thus began to explore techniques to maintain the
tight confinement of beams over long distances through
the use of optical nanofibers, and thereby potentially re-
alize significant optical depths in atomic ensembles using
relatively few atoms.

As illustrated in Fig. 3c, for a SiO2 nanofiber of radius
rfiber = 200 nm, a significant amount of the guided mode
intensity extends evanescently into the surrounding vac-
uum region. Due to the diffraction-limited mode area
Aeff ∼ λ2

eg, an atom within this evanescent tail can have
a large interaction probability with a single guided pho-
ton on resonance. Atom-light interactions in nanofibers
were first observed using untrapped atoms in an atomic
gas surrounding the nanofiber (Nayak et al., 2007). A
major breakthrough occurred when it was demonstrated
that approximately Na ∼ 103 atoms could be cooled into
lattice sites created by a two-color trap from a surround-
ing magneto-optical trap (MOT) (Vetsch et al., 2010),
which dramatically increased the number of atoms in-
teracting with the guided mode, as illustrated schemati-
cally in Fig. 3a (see Sec. VI for more details on trapping).
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Figure 4 The quasi-1D “alligator” photonic crystal waveguide
(APCW). (a) Schematic illustration of a section of the APCW
(Si3N4 dielectric) and its dimensions, with one atom trapped
per unit cell (green spheres). (b) Dispersion relation of fre-
quency ν versus wavevector kx (normalized by π/a, where
a is the lattice constant) for the lowest order TE and TM
modes (black and gray curves, respectively). A bandgap (red
shaded region) appears for the TE mode near the D1 and D2
transition frequencies of atomic Cs (dotted lines), in which
the TE field cannot propagate but evanescently decays. The
decay constant κx (normalized by a−1) is shown in red. From
Ref. (Hood et al., 2016). (c) Intensity profile |E|2 (in arbi-
trary units) for the TE mode at the lower band edge. (d)
Total spontaneous emission rate Γtot (both into free space
and guided modes), normalized by the vacuum rate Γ0, for a
single atom located at the center of a unit cell in the middle
of a APCW composed of Ncells = 150 unit cells. The dashed
vertical line indicates the frequency of the band edge.

Initial experiments observed optical depths per atom of
OD = 0.0064 (Vetsch et al., 2010) and OD = 0.08
(Goban et al., 2012). With Na ≈ {4000, 800} atoms
respectively trapped along the nanofiber in these exper-
iments, the overall optical depths were OD≈ {13, 66},
which compares favorably to typical cold-atom ensem-
bles in free space. The per-atom optical depth in these
experiments arise from the efficient emission rate Γ1D

into the guided modes compared to free space (Γ′), as
OD ≈ 2Γ1D/Γ

′ for Γ1D � Γ′ (Asenjo-Garcia et al.,
2017a). The theoretically calculated ratio of guided to
total emission (Le Kien et al., 2005), Γ1D/Γtot, is plot-
ted in Fig. 3d. The ratio is evaluated both as a function
of distance to the fiber (left panel), which clearly shows
the evanescent decay of the field away from the fiber
surface, and as a function of fiber radius (right panel),
which exhibits a maximum when the field confinement
Aeff is optimized. Beyond these proof-of-principle inter-
faces of atoms and nanofibers, some experiments have
proceeded recently to implement basic quantum coher-
ent phenomena, such as slow light and coherent photon
storage (Gouraud et al., 2015; Sayrin et al., 2015a; Solano
et al., 2017).
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C. 1D and 2D photonic crystal waveguides – PCWs

The ability to tailor the modal properties and disper-
sion relation of a PCW significantly beyond that of a
conventional waveguide also offers a greatly expanded
toolbox for controlling atom-light interactions. Recall
that single photons in a nanofiber interface are limited
to a single-atom optical depth of OD ∼ 0.1 on a sin-
gle pass. This coupling can be greatly enhanced by ex-
ploiting the reduced group velocity vg = dω/dk of PCW
guided modes near a band edge (John and Quang, 1994;
Lund-Hansen et al., 2008). As discussed earlier, this slow
group velocity arises as light reflects multiple times off the
dielectric modulation while it propagates. Thus, a pho-
ton effectively experiences an extended interaction time
with an atom relative to free-space, which is given by
the group index ng = c/vg for the PCW. The emis-
sion rate into the waveguide is subsequently enhanced
by an approximate factor Γ1D → ngΓ1D (with a corre-
sponding enhancement OD → ngOD while Γ1D . Γ′).
Such an enhancement, first seen experimentally with
quantum dot emitters (Arcari et al., 2014; Lund-Hansen
et al., 2008), becomes particularly interesting in the limit
that Γ1D � Γ′, such that free space coupling is negligi-
ble. This essentially realizes quantum electrodynamics in
propagating 1D channels, for which rich theoretical phe-
nomena have been predicted (Chang et al., 2007; Ramos
et al., 2014; Ringel et al., 2014; Shen and Fan, 2005) but
thus far largely lacks experimental realization.

In the context of atoms, the first experiments to ob-
serve enhanced emission associated with a band edge
used a so-called “alligator” photonic crystal waveguide
(APCWs), illustrated in Fig. 4a. The APCW consists
of two parallel, modulated silicon nitride (Si3N4) dielec-
tric waveguides, which are in close enough vicinity that
their modes interact and hybridize. The APCW is de-
signed such that the edge of a transverse electric (TE)-
like band aligns closely with the atomic transition fre-
quency of Cs. The guided mode intensity profile at the
band edge, shown in Fig. 4c, exhibits a high concentra-
tion between the two waveguides, and further increases
the interaction probability in the case that a single atom
can be localized there.

Single atoms have been trapped along such an APCW
structure and enhanced values with Γ1D/Γ

′ ≈ 1
achieved (Goban et al., 2015). For average atom num-
ber N̄A ≈ 3, superradiant emission has been observed
with rates in good agreement with predictions obtained
from numerical simulations. Some representative results
from these simulations, discussed further in Sec. V, are
shown in Fig. 4d. Here the predicted single-atom ratio of
Γtot/Γ0 = (Γ1D + Γ′)/Γ0 is plotted, as a function of de-
tuning from the band edge, for the actual finite system.
The general trend of enhancement for Γ1D near the band
edge is observed; however, the ideal (unlimited) enhance-
ment by ng = c/vg due to vg → 0 at the band edge of an

infinite structure is interrupted by a set of resonances as-
sociated with the finite length and imperfect impedance
matching at the ends. Improved trapping and design of
PCW’s could lead to values Γ1D/Γ

′ ∼ 102 (Zang et al.,
2016).

While much of quantum optics with atoms has fo-
cused on enhancing the interactions with preferred opti-
cal modes, PCWs offer the opportunity to simultaneously
engineer structures with suppressed emission Γ′ into un-
desired guided modes and free space. While such sup-
pression has been observed in atomic physics (Haroche
and Kleppner, 1989), the effect is negligible in conven-
tional optical cavities (e.g., spherical mirror Fabry-Perot
resonators) due to the small solid angle subtended by
the cavity mode (i.e. Γ′ deviates from the rate Γ0 of
an isolated atom by only a part in 105) (Miller et al.,
2005). However, due to their nanoscopic unit cells, PCWs
capture a large solid angle of atomic radiative emission.
Furthermore, the dielectric medium surrounding trapped
atoms can be engineered to have a bandgap at frequencies
around relevant atomic transitions, thereby suppressing
what would otherwise be free-space loss. Analogous ef-
fects have already been exploited in quantum dots cou-
pled to PCW’s (Arcari et al., 2014); here it is estimated
that the structure suppresses Γ′ by an order of magni-
tude and leads to record ratios of Γ1D/Γ

′ in the optical
domain.

Extension to 2D PCWs can lead to strong atom-field
interactions and rich physics resulting from band struc-
ture engineering. For example, the aforementioned near-
unity quantum dot-PCW coupling efficiency was in fact
realized in a 1D line defect embedded in a 2D photonic
crystal (shown similarly in Fig. 3(c) but with an entire
line of missing air holes). Due to strong mode mixing
in line defects (Li et al., 2008; Notomi et al., 2001), it
has been experimentally demonstrated that a very flat
band resulting from an avoided band crossing can exhibit
extremely slow light propagation (vg ≈ c/300) (Vlasov
et al., 2005) with a broad bandwidth. This effect could in
principle be utilized to further improve upon the atom-
photon interaction probability P . Separately, it is has
been proposed and experimentally demonstrated that a
complete band gap for both TE and TM polarizations
can be engineered in a 2D PCW (Cassagne et al., 1996;
Takayama et al., 2005; Wang et al., 2001). Embedding an
atomic transition in a full photonic band gap could pro-
vide better suppression of the unwanted emission rate Γ′,
and enables the exploration of coherent atom-photon in-
teractions inside a band gap, as discussed in the following
Sections.

D. Nanophotonic Optical Cavities

As described in Sec. II, for more than a decade numer-
ous groups have been exploring alternatives to Fabry-
Perot cavities for efficient atom-light interactions, which
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(a)

(b) (c)

0.3 μm

Figure 5 Photonic crystal cavities. a) SEM image (upper
panel) and simulation of mode intensity (lower) of a defect
cavity defined in a one-dimensional photonic crystal beam.
On the left of the upper panel is a tapered nanofiber used for
coupling light into and out of the cavity. In Ref. (Thompson
et al., 2013), atoms were optically trapped nearby in the in-
terference fringe formed by reflecting a tightly focused beam
from the structure (inset). (b) An “optomechanical crystal”.
SEM image of a defect cavity in a one-dimensional photonic
crystal beam. The panel below shows a zoom-in of the defect
region, with a variation in the sizes of the holes. This defect
creates localized resonances both for photons and phonons,
as seen in the two bottom panels illustrating the cavity mode
intensity and acoustic “breathing” modes. From Ref. (Safavi-
Naeini et al., 2011). (c) Cavity mode defined in a 2D photonic
crystal membrane. In Ref. (Yoshie et al., 2004), the defect is
formed by the omission of three holes from the otherwise pe-
riodic structure.

would offer reduction in mode volumes Veff and a cor-
responding increase in vacuum Rabi splittings gJC and
cooperativities C (Aoki et al., 2006; O‘Shea et al., 2013;
Shomroni et al., 2014; Vernooy et al., 1998; Volz et al.,
2011). Parallel efforts also took place to integrate atom-
like solid-state emitters such as quantum dots with small
lithographically fabricated cavities (Pelton et al., 2002),
and photonic crystal cavities (PCCs) with diffraction-
limited mode volumes rapidly emerged as a leading ap-
proach (Badolato et al., 2005; Fushman et al., 2008;
Laucht et al., 2009; Yoshie et al., 2004). Quantum
dot-coupled cavities in GaAs now routinely reach Q >
104 (Laucht et al., 2009), while advances in design (Aka-
hane et al., 2005; Srinivasan and Painter, 2002) and
fabrication (Asano et al., 2006; Sekoguchi et al., 2014)
have now led to observations of Q ≈ 107 in bare silicon
PCC’s (Sekoguchi et al., 2014).
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Figure 6 Comparison of cooperativity factors C = g2
JC/κΓ′

for different cavity QED and atomic interfaces. With ini-
tial designs and reasonable Q ≈ 20, 000, a nanoscopic pho-
tonic crystal cavity (red diamond, (Tiecke et al., 2014)) and
APCW band gap atom-cavity (red star, (Hood et al., 2016))
have already achieved cooperativity parameters C > 1 that
are comparable with state-of-the-art macroscopic and micro-
scopic resonators, which include mirror Fabry-Perot cavities
(triangles, 1: (Miller et al., 2005); 2: (Sames et al., 2014)),
fiber-based cavities (circles, 1: (Colombe et al., 2007); 2:
(Kato and Aoki, 2015)), microtoroid, microsphere, and bottle
whispering-gallery mode resonators (squares, 1: (Aoki et al.,
2006); 2: (Shomroni et al., 2014); 3: (O‘Shea et al., 2013);
open squares: projections using intrinsic Q). Here, the dashed
lines mark constant quality factors Q = 104, 105, 106, 107, and
108, in increasing order. Blue stars mark projected improve-
ments by (1) improved trap loading to minimize the effective
mode area (Goban et al., 2015; Hung et al., 2013); (2) in-
creased quality factor to Q = 2×105 as well as 10-fold reduc-
tion in the band curvature to reduce effective mode volume
(Douglas et al., 2015; Zang et al., 2016); (3) further suppres-
sion of Γ′ (Gonzalez-Tudela et al., 2015a; Hung et al., 2013).

Projection of these parameters to atomic systems
would lead to unprecedented figures of merit compared
to Fabry-Perot cavities (see Fig. 6). For example, for
an atomic cesium transition, a well-designed cavity with
diffraction-limited mode volume Veff < λ3

eg would yield
a vacuum Rabi splitting of gJC/2π ∼ 10 GHz (Douglas
et al., 2015; Hung et al., 2013), leading to a coopera-
tivity of C ∼ 104 for a cavity of Q = 2 × 105. The
first experiments to interface single atoms with PCC’s de-
fined in Si3N4 beams were reported in Refs. (Thompson
et al., 2013; Tiecke et al., 2014). Here, single atoms were
trapped in tightly focused optical tweezers, and the beam
was subsequently steered over the PCC. Interference be-
tween the beam and its reflection yields a periodic inten-
sity modulation above the structure, and the atom can
be controllably loaded into the first fringe about 200 nm
above the device (Fig. 5a, also see more detailed dis-
cussion of trapping in Sec. VI). These initial structures
demonstrated values of gJC/2π ∼ 1 GHz (lower than the
maximum as the atom is trapped in the evanescent tail
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of the cavity field), and cavity dissipation-limited quality
factors of Q ∼ 105. The potential of PCC’s for cavity
QED is seen in the demonstration of a quantum phase
switch (Tiecke et al., 2014) just one year after initial
proof-of-principle coupling.

E. Imperfections

Thus far, our discussion on atom-photon interactions
in nanophotonics largely assumes “perfect” structures.
However, nanofibers, 1D and 2D PCWs, PC cavities, and
other structures push state-of-the-art on various fronts
of fabrication and characterization. The consequences of
imperfections can indeed influence the resulting atom-
photon interactions. Perhaps the most prominent and
universal effect that can arise is Anderson localization,
wherein scattering disorder can cause light that would be
guided in a perfectly periodic structure to become con-
fined over some characteristic “localization length” LA.
Anderson localization in PCWs has already been studied
extensively (Garcia et al., 2010; Mazoyer et al., 2009; Pat-
terson et al., 2009; Topolancik et al., 2007); we will not
repeat the rather technical details here. To minimize such
effects, it is certainly important that LA exceed the sys-
tem size, or any emergent length scale over which atoms
interact via photons. On the other hand Anderson local-
ization may also prove to be a feature of such systems
allowing the investigation of atom-photon interactions in
disordered environments. A more elaborate discussion of
Anderson localization relevant to atomic physics can be
found in Refs. (Douglas et al., 2015; Goban et al., 2014).

A second source of imperfection arises from defects
due to atomic adsorption on the surface of the nanopho-
tonic structure. There are two possible impacts. First,
it is known that surface-adsorbed alkali atoms act as
electric dipoles that generate electric field fluctuations,
potentially contributing to decoherence and heating of
trapped atoms near the surface (McGuirk et al., 2004).
However, for insulating dielectric materials such as sil-
ica and silicon-nitride that do not strip out the valence
electron from an adsorbed atom, only a small electric
dipole moment will be induced. Experimental results
in (McGuirk et al., 2004) suggests that a single adsorbed
atom generates an electric field < 0.2 µV/cm at a dis-
tance around 10 µm from a glass surface. Assuming a
point dipole source, this translates to an estimated elec-
tric field strength of ∼ 0.2 V /cm at a distance of 100 nm
from the surface, leading to an insignificant static dipole-
dipole energy shift < h × 2 mHz (due to one surface
adatom) on trapped atoms.

The second and perhaps the most prominent impact
due to surface adsorption is the modification of dielectric
properties, such as the effective refractive index. As the
number of adsorbed atoms increases, the photonic band
edge or a high-Q optical resonance can be shifted sig-

nificantly (Barclay et al., 2006). Surface adsorbate can
also induce optical loss and deteriorate the mode quality
(Ritter et al., 2015). A workaround is by constantly heat-
ing the nanostructure to remove surface-adsorbed atoms.
A more effective and permanent solution could be to
coat the nanostructure with an atomically thin protective
layer such as sapphire (Al2O3), which has been reported
to significantly increase the lifetime of a nanostructure
against surface adsorption (Ritter et al., 2016).

Beyond nanophotonic imperfections, non-ideal atomic
localization can also result in imperfect atom-photon in-
teractions. This is due to rapid variation in electric
field mode profile near a nanostructure (Figs. 3c and 4c).
Specifically, in-trap atomic thermal motion can cause Γ1D

(or gJC) to vary significantly (e.g., by a factor ∼ O(2)
in experiments with temperature ∼ 100 µK due to mo-
tion in the axial and transverse directions relative to the
nanostructure). Moreover, atomic thermal motion also
limits the coherence time. In a nanofiber, (Reitz et al.,
2013) reported that trap inhomogeneous broadening and
trap heating can reduce the coherence time T2 < 1 ms.
In order to remedy these imperfections, further cooling in
these tight traps may be necessary. Recently, it has been
demonstrated that the unique polarization characteris-
tics of tightly confined fields around an optical nanofiber
allow for the implementation of novel cooling mechanisms
that bring the motion of trapped atoms close to their
quantum ground states (Albrecht et al., 2016).

Moreover, several new paradigms require arrays of
trapped atoms at specific lattice constants. As we will
discuss in Sec. VII, the ideal lattice spacing can either
be realized by PCW band structure engineering (Hung
et al., 2013), or by using near-detuned traps (Corzo et al.,
2016) or structuring pulses (Sorensen et al., 2016) as
demonstrated in recent nanofiber experiments. A much
more stringent requirement, however, must be consid-
ered in Sec. IX, where for example, unit filling of lattice
sites is required to explore spin models. This imposes
greater experimental challenges since laser cooling fills
individual sites randomly with either 0 or 1 atoms due
to collisional blockade (Schlosser et al., 2001). A small
number of uniformly filled sites may be attainable us-
ing an auxiliary laser beam to modify in-trap collision
dynamics (Grünzweig et al., 2010; Lester et al., 2015).
To form a large atomic lattice, a moving “sorter” beam
(Barredo et al., 2016) or a reconfigurable tweezer ar-
ray (Endres et al., 2016) may be implemented as both
schemes have successfully achieved large defect-free lat-
tices in free space.

IV. A SURPRISING FUTURE FOR ATOM-PHOTON
PHYSICS

Having described how nanophotonic systems can
push the figures of merit associated with conventional
paradigms for atom-light interactions, we now devote the
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remainder of this Colloquium to how such systems can
realize new paradigms. These paradigms potentially pro-
vide novel routes toward applications such as manipula-
tion of quantum information, or toward creating exotic
many-body states of light and matter. In this section,
we aim to give a brief summary for more casual readers
of these possibilities and intuitive descriptions of the key
underlying physics. Subsequent sections will provide a
more rigorous discussion.

A major historical motivation for the migration to
nanofibers and photonic crystal waveguides is to gen-
erate a favorable collection efficiency of emission from
a single atom into the preferred guided modes over un-
wanted free-space emission. In recent years, it has been
recognized that with more atoms, one can take advan-
tage of this large, collective dissipation channel to gen-
erate and manipulate quantum coherence among atoms,
and interesting quantum optical states. An additional
tuning knob, which arises naturally in nanophotonic sys-
tems, is the ability to utilize the polarization of tightly
confined fields to realize chiral dissipation channels, in
which an atom emits preferentially in one direction even if
the nanophotonic device itself is mirror symmetric. The
classes of novel phenomena and applications that have
emerged based upon collective dissipation and “chiral”
quantum optics are introduced in Secs. IVA and B, re-
spectively. Perhaps counter-intuitively, novel paradigms
can also arise by turning off emission into a nanophotonic
structure. In particular, by aligning a transition within
the band gap of a photonic crystal, an excited atom can-
not emit a radiating photon, but still couples strongly to
the nanophotonic system via the formation of an atom-
photon bound state. The photonic part, unable to propa-
gate, then facilitates tunable and coherent long-range in-
teractions between atoms. Phenomena and applications
based upon this effect are discussed in Sec. IVC.

A. Quantum coherence in a strongly dissipative regime

The intuition behind collective dissipation can be qual-
itatively understood from Fig. 7a. In general, a photon
emitted from atom j acquires a phase factor eik0|zj−zl|

as it propagates to atom l, where k0 = k(ωeg) represents
the guided mode wavevector at the atomic resonant fre-
quency. In the special case that atoms are trapped with
lattice constant a equal to the guided mode wavelength
itself (i.e., a = 2π/k0), the phase factor between any
pair of atoms is e2iπq = 1 (where q is an integer). Thus,
incoming fields only couple to a single, symmetric and
superradiant collective mode of the atoms, whose emis-
sion rate into the fiber is enhanced as NaΓ1D, while the
emission rate of this mode to free space Γ′ remains that
of a single atom.

While collective enhancement is prevalently used in
atomic ensembles (Hammerer et al., 2010), this mani-
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Figure 7 (a) Atoms coupled to a PCW, with the atomic tran-
sition frequency ωeg lying within a band of guided modes.
Strong quantum coherence effects can emerge from collective
dissipation through the waveguide, particularly when atoms
are trapped at a spacing equal to integer multiples of half the
resonant guided wavelength π/k(ωeg), such that the phase

factor eik(ωeg)|zj−zl| = ±1 between any pair of atoms. (b)
Experimentally measured reflectance from an atomic ensem-
ble coupled to an optical nanofiber, when atoms are trapped
near the ideal spacing. The reflectance (red curve) and op-
tical depth (gray) are shown as a function of time. Both
quantities decrease in time due to a decrease in the num-
ber of atoms (number of atoms shown in the inset). From
Ref. (Corzo et al., 2016).

festation in a 1D waveguide has particularly interesting
consequences. For example, the negligible coupling to
free space, NΓ1D � Γ′, implies that the high interac-
tion probability with a resonant guided photon causes
it to be coherently reflected, rather than being scattered
into other directions. Ideally, the fraction of light that
is not reflected scales as ≈ 2Γ′/NaΓ1D, indicating that
the atomic array acts as a nearly perfect mirror (Chang
et al., 2012; Le Kien and Rauschenbeutel, 2014). This
effect has recently been observed in two different exper-
iments (Corzo et al., 2016; Sorensen et al., 2016). In
Ref. (Corzo et al., 2016), a near-resonant guided field is
used to trap atoms with a lattice constant near the ideal
condition. As shown in Fig. 7b, up to 75% reflectance
can be seen using merely Na ≈ 2000 atoms, which is
due to significantly higher OD per atom compared to
atomic Bragg mirrors in free space (Andre and Lukin,
2002; Deutsch et al., 1995); see for example Refs. (Ba-
jcsy et al., 2003; Birkl et al., 1995; Schilke et al., 2011).

This high reflectance and coupling to the superradi-
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Figure 8 (a) Interplay between direction of propagation and
polarization of the guided modes of an optical nanofiber, as
illustrated in Ref. (Petersen et al., 2014). A field propagating
in one direction can have near circular polarization of different
orientations on opposite sides of the fiber. The orientation of
circular polarization is reversed in the lab frame for fields
propagating in the opposite direction. (b) Measured (circles)
and predicted (bars) difference in right- and left-going emitted
intensity from different Zeeman levels mF ′ (|mF ′ | ≤ 5 for
atomic Cs), normalized by the total guided intensity. From
Ref. (Mitsch et al., 2014).

ant mode gain additional power with more sophisticated
protocols (Chang et al., 2012; Gonzalez-Tudela et al.,
2015b, 2017; Paulisch et al., 2016). For example, using
two atomic ensembles serving as separate “mirrors”, one
can implement cavity QED protocols, but where the mir-
rors themselves now have quantum functionality (Chang
et al., 2012). It is also possible to coherently manipulate
quantum information within the large space of “subradi-
ant” atomic modes that are decoupled from the waveg-
uide, and to subsequently map these states out efficiently
by transforming to the superradiant mode (Gonzalez-
Tudela et al., 2015b, 2017). Such schemes are discussed
in detail in Sec. VII.

B. Chiral quantum optics

A second example of the surprising physics enabled by
nanofibers is chiral coupling between atoms and light.
For a recent review on this subject, see Ref. (Lodahl
et al., 2017). In particular, even if a nanofiber is mir-
ror symmetric, it has been experimentally demonstrated
that an excited atom can emit a photon into the waveg-
uide almost purely into just a single direction (Mitsch
et al., 2014).

This novel effect arises from the peculiar polarization

exhibited by tightly confined optical fields. Specifically,
while a plane wave is well-known to have a polarization
orthogonal to its wavevector (i.e. direction of propaga-
tion), a tightly focused beam must necessarily consist of
wavevectors that are not purely parallel to its net propa-
gation direction. The beam polarization can thus acquire
a component of the electric field along the direction of
propagation, which can have π/2 phase difference with
the transversely oriented components (Lin et al., 2013;
Petersen et al., 2014; Rodriguez-Fortuno et al., 2013). El-
liptically polarized light is thereby generated in a plane
containing the propagation direction and the transverse
field. As illustrated in Fig. 8a for a nanofiber (Petersen
et al., 2014), the polarization for the electric field exter-
nal to the fiber can be highly circular with opposite sense
of rotation on opposite sides of the nanofiber. Reversing
the propagation direction z → −z reverses the rotation
directions of the field on the two sides of the fiber. This
phenomenon is also known as spin-orbit coupling of light.

While the fields in nanofibers and other nanophotonic
waveguides satisfy time reversal invariance (for perme-
ability µ = 1), an atom trapped near these structures in
the presence of external magnetic fields can lead to vio-
lations of time reversal invariance for the composite sys-
tem of waveguide + atom. This means that reversing the
direction of propagation of the waveguide modes while
keeping the same state in the emitter, can lead to nonre-
ciprocal propagation in the forward/backward direction.
The first experimental observation of this effect was re-
ported in Ref. (Mitsch et al., 2014), where through a
combination of optical pumping and excitation with well-
defined polarization, atoms were effectively excited into
states of a given Zeeman level mF ′ . For maximum |mF ′ |,
the excited atom couples only to σ+ or σ− polarization,
and hence only emits light along +z or −z. Fig. 8b
shows the measured and predicted difference in right-
and left-going emitted intensity, normalized by the total
guided intensity, D = (|ER|2 − |EL|2)/(|ER|2 + |EL|2),
and demonstrates a degree of directionality of D ≈ 0.85
for the maximum |mF ′ | states (Mitsch et al., 2014).

The situation where many atoms are coupled to a chi-
ral waveguide, so that each atom only “sees” the emission
from other atoms situated to one side, also realizes an in-
teresting class of collective dissipative models, known as
a “cascaded” open system (Carmichael, 1993; Gardiner,
1993; Stannigel et al., 2012). Their natural realization
in nanophotonic systems has led to novel devices such
as nanophotonic optical isolators (Sayrin et al., 2015b).
Furthermore, it would allow for the generation of exotic
many-body states, provided that the emitted photons are
channeled almost completely into the waveguide (Ramos
et al., 2014), as discussed further in Sec. VIII.

While the probability of atomic emission into the
guided modes of nanofibers is small, Γ1D/Γ

′ <
0.1 (Mitsch et al., 2014), novel PCW designs coupled to
quantum dots have achieved both high yield Γ1D/Γ

′ � 1
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Figure 9 Quantum many-body physics for atomic transition
frequencies in a bandgap. a) Schematic illustration of excited
atom and associated photon bound state, with spatial extent
L. A second atom nearby in ground state g can be excited
by an ‘exchange’ interaction with the first atom. Inset Band
structure with atomic frequency ωeg within a bandgap, de-
tuned by ∆BE from the band edge. b) Measurements showing
the collectively enhanced emission rates N̄aΓ1D (green curve)
and coherent interaction strengths N̄aJ1D (blue curve) near a
band edge, both normalized by the vacuum emission rate Γ0.
For detunings ∆BE > 0, the atomic frequency lies within a
bandgap, which strongly suppresses emission into the waveg-
uide while coherent interactions persist. Here, N̄a ' 3 atoms
(Hood et al., 2016).

and directional β-factor βdir ≈ 98% (Sollner et al., 2015),
defined as βdir = max[ΓR,ΓL]/(ΓR + ΓL + Γ′). Non-
reciprocal photon transport using a Mach-Zehnder inter-
ferometer and chiral coupling with quantum dots has also
been proposed (Sollner et al., 2015).

Beyond these prospects for chiral quantum optics
within the dispersive bands of PCWs, we also direct
the reader to Sec. IX.A. There we review possibilities
for achieving full quantum control within the bandgap
of PCWs (as in the following subsection), including for
atom-atom interactions that violate time-reversal sym-
metry.

C. Quantum many-body physics for atomic spins in a
bandgap

The enhancement of emission into a preferred chan-
nel, Γ1D/Γ

′ � 1, is motivated by the quest to efficiently
map between atomic and photonic states. However, there
is another regime that has been theoretically considered

since the “invention” of photonic crystals, if largely over-
looked, which is the behavior of atoms when their tran-
sition frequency is situated within a band gap.

Clearly, in this case a single atom cannot emit a
propagating photon into the PCW. However, pioneer-
ing work in 1990 predicted that ideally, a stable “bound
state” could form between an excited atom and a pho-
ton, around the atomic position over a length scale
L (Fig. 9a) (John and Wang, 1990; Kurizki, 1990). These
ideas gained renewed interest in recent years, as it was
shown that the photonic component of these bound states
could enable tunable, long-range interactions between
atoms (Bay et al., 1997; Douglas et al., 2015; Gonzalez-
Tudela et al., 2015a; John and Quang, 1996; Lambropou-
los et al., 2000; Shahmoon and Kurizki, 2013). As illus-
trated in Fig. 9a, a second atom initially in its ground
state and positioned within the bound-state size of the
first excited atom can absorb the photon, thus realiz-
ing an effective spin exchange interaction |eg〉 → |ge〉
between internal states of the atoms. These coherent
interactions can dominate over dissipative mechanisms
provided that a high “cooperativity” is achieved (Dou-
glas et al., 2015; Gonzalez-Tudela et al., 2015a), anal-
ogous to the spin exchange interaction in cavity QED,
discussed in Sec. II. Compared to cavity QED, however,
PCW’s naturally enable interactions of a finite, tunable
range (whereas in cavity QED the interaction is natu-
rally infinite-range), and with a strength of interaction
potentially much greater, owing to the tight confinement
of the mediating photon.

An initial experiment to observe signatures of co-
herent many-body interactions within a band gap has
been described in Ref. (Hood et al., 2016). Using the
APCW structure discussed in Sec. III, the TE-like band
edge frequency (ωBE) was fine-tuned in-situ to place the
atomic transition frequency (ωeg) inside the band gap
(i.e., ∆BE = ωeg − ωBE > 0; see Fig. 9a). For the band-
edge detunings ∆BE used in the experiment, the bound
photon length L was much larger than the separation be-
tween atoms trapped along the APCW. The atomic spins
thus effectively interacted through a spin Hamiltonian
in the form of Eq. (2), with a uniform peak interaction
strength J1D. Inside the band gap, it was observed that
J1D persists even as the dissipative rate Γ1D is exponen-
tially suppressed versus ∆BE (Fig. 9b). A minimum ratio
of Γ1D/J1D = 0.05±0.17 was inferred, in good agreement
with theory (Asenjo-Garcia et al., 2017a). In this realiza-
tion, the free-space emission rate remains comparable to
the bandgap-mediated interaction strength, Γ′ ∼ N̄aJ1D.
Further enhancement of coherent atom-photon coupling
(Hood et al., 2016), or suppression on the emission rate
Γ′ (Hung et al., 2013; Lodahl et al., 2015), is required to
bring such systems into regimes dominated by coherent
quantum dynamics.

Taking advantage of the toolbox of quantum optics and
the flexible engineering of PCW’s, bandgap-mediated in-
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teractions allow rather general Hamiltonians of the form
H =

∑
j,l U(rj , rl)σ

(j)σ(l) to be realized (Douglas et al.,
2015; Gonzalez-Tudela et al., 2015a; Hung et al., 2016).
Here σ(j)σ(l) denotes some type of spin interaction (e.g.,
XX or Ising) between pairs of atoms j, l, while U(rj , rl)
denotes some interaction of a desired shape and range
mediated by the bound photon. The underlying physics
will be discussed in greater detail in Secs. IX. This
Hamiltonian potentially enables access to a broad range
of interesting phenomena. In particular, if the atomic po-
sitions are fixed in place, then H describes interactions
between spins that can potentially be long-range. On the
other hand, the positions ri could be treated as dynam-
ical variables, in which case H describes strong inter-
atomic potentials that depend on the internal atomic
state. Finally, the PCW enables efficient spin-photon in-
teractions, in that an incoming photon can interact with
the atomic internal states with high efficiency. Thus,
in total, aligning atomic transition frequencies within
bandgaps opens up multi-physics coupling between spins,
phonons (atomic motion), and photons. Some specific ex-
amples of novel phenomena will be discussed in Secs. X
and XI.

D. Coupled cavity arrays

One of the earliest sets of proposals to investigate novel
physics using atomic systems and nanophotonics involved
the potential for scaling to many atom-cavity systems
on a single chip. In particular, whereas a single cou-
pled atom-cavity system is described by the well-known
Jaynes-Cummings model, nanophotonics could in princi-
ple offer a way to realize a large array, where the cavities
are in close enough proximity that photons could “hop”
from one to another. Just as the experimental realization
of the Bose-Hubbard model with ultracold atoms in opti-
cal lattices (Greiner et al., 2002) stimulated intense the-
oretical and experimental activity with degenerate quan-
tum gases, the question emerged as to whether such a
“Jaynes-Cummings-Hubbard” model would be capable
of realizing phase transitions or other non-trivial many-
body phenomena involving photons (Angelakis et al.,
2007; Greentree et al., 2006; Hartmann et al., 2006). One
of the important subtleties of these photonic systems is
that they are inherently out-of-equilibrium, as they re-
quire external driving to populate with photons, making
theoretical efforts to study such systems correspondingly
rich and challenging. The field of many-body physics
with photons in coupled cavity arrays already constitutes
an active field with a number of thorough reviews (Caru-
sotto and Ciuti, 2013; Noh and Angelakis, 2017), and
we direct readers interested in this topic to them. Much
of this physics also extends to the microwave domain,
where for example recently a chain of 72 cavities cou-
pled to superconducting qubits was realized (Fitzpatrick

et al., 2017).

V. ATOM-LIGHT INTERACTIONS IN DIELECTRICS – A
GREEN’S FUNCTION-BASED APPROACH

Having qualitatively described some of the physics that
can be realized with atoms coupled to nanophotonic sys-
tems, we now turn to the important question of how
atom-light interactions in these complex optical struc-
tures can be rigorously and quantitatively described. De-
veloping fully quantized theories for atom-light interac-
tions in dielectric environments has been a historic open
problem in quantum optics. One general strategy re-
lies on finding normal mode decompositions for the field
and to subsequently quantize them (Bhat and Sipe, 2006;
Glauber and Lewenstein, 1991). This is particularly dif-
ficult, however, if the dielectric material itself has losses
and dispersion (Bhat and Sipe, 2006), or if the geometry
is too complex to solve explicitly for the modes. An alter-
native approach is to base the quantized description upon
the classical electromagnetic Green’s function (Agarwal,
1975), a technique formalized in recent years by Welsch
and co-workers (Buhmann and Welsch, 2007; Dung et al.,
2002; Gruner and Welsch, 1996; Knoll et al., 2000; Wubs
et al., 2004). We summarize the main features below,
as it has proven to be quite powerful for quantitatively
describing atom-nanophotonics interfaces.

Formally, the Green’s function represents the electric
field at point r due to a normalized dipole source at r′

and oscillating at frequency ω, and is the solution to

[(∇×∇×)−ε(r, ω)ω2/c2]Gαβ(r, r′, ω) = δ(r−r′)⊗I. (3)

Here ε(r, ω) is the dimensionless electric permittivity, al-
lowed to be position and frequency dependent. G is
a tensor quantity (α, β = x, y, z), with α denoting the
possible polarizations of the field at r and β the possi-
ble source orientations. We refer to Ref. (Buhmann and
Welsch, 2007) for details of how electrodynamics can be
quantized within a Green’s function language. However,
the essential idea is that in the transition from classical
to quantum theory, the sources (such as atoms and noise)
take on quantum properties, but the fields produced by
classical and quantum sources propagate in the same way
as they both obey Maxwell’s equations.

Thus, for a collection of two-level atoms, the quan-
tum field in the Heisenberg picture is intuitively given
by (Asenjo-Garcia et al., 2017a)

Ê(r, t) = Êin(r, t) + µ0ω
2
0

∑
j

G(r, rj , ωeg) · ℘σjge(t). (4)

This equation simply states that the total field is the sum
of the homogeneous solution (the “input”, defined absent
the atoms but including the dielectric) plus that radiated
by the atoms. Such input-output equations were first for-
mally developed within cavity QED (Gardiner and Col-
lett, 1985), allowing the quantum field exiting a cavity
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to be completely describable in terms of correlations of
the atoms and input field alone. Eq. (4) can be viewed
as a generalization to arbitrary dielectric environments.
Just as the calculation of a cavity output field now repre-
sents a textbook problem, the power of casting the field
generally in this form is that it enables well-developed
theoretical approaches to open systems, such as the quan-
tum regression theorem, to be directly applied (Gardiner
and Zoller, 2004). What remains then is to describe the
dynamics of atoms interacting via the fields. It can be
shown that integrating out the field (Eq. (4) results in an
effective master equation describing dipole-dipole inter-
actions, ρ̇ = −i[Hdd, ρ] + Ldd[ρ], where (Asenjo-Garcia
et al., 2017a; Knoll et al., 2000)

Hdd = −µ0ω
2
eg

∑
j,l

℘∗ · Re G(rj , rl, ωeg) · ℘σjegσlge,(5)

Ldd[ρ] =
∑
j,l

µ0ω
2
eg℘
∗ · Im G(rj , rl, ωeg) · ℘×(

2σjgeρσ
l
eg − σjegσlgeρ− ρσjegσlge

)
. (6)

The Hamiltonian Hdd describes the coherent exchange of
atomic excitations via photons, while Ldd describes spon-
taneous emission. The effective master equation takes an
identical form as its free-space counter part (Lehmberg,
1970). It should also be noted that the spontaneous emis-
sion term captures collective effects (Gross and Haroche,
1982), as it involves correlations σjegσ

l
ge between differ-

ent atoms (j 6= l). The dependence of the coherent
interactions and dissipation on the real and imaginary
parts of G has an elegant classical analogy, in that the
field components in and out of phase with an oscillat-
ing dipole store time-averaged energy and perform time-
averaged work, respectively. We refer to the combination
of Eqs. (4), (5), and (6) as the “spin model” of atom-light
interactions. We can also group the deterministic part of
the evolution (σjegσ

l
geρ and ρσjegσ

l
ge terms) of Ldd with

Hdd, such that ρ̇ = −i(H̃ddρ− ρH̃†dd), where H̃dd simply
contains the full Green’s function,

H̃dd = −µ0ω
2
eg

∑
j,l

℘∗ ·G(rj , rl, ωeg) · ℘σjegσlge. (7)

For notational convenience, we will often just deal with
H̃dd, with the understanding that the full dynamics in-
volves Eqs. (5) and (6), or alternatively, that evolution
under H̃dd must be supplemented with stochastic “quan-
tum jumps” to capture the final unaccounted term in
Ldd[ρ] (Carmichael, 1993).

The form of Eq. (5) has already appeared implicitly
in Sec. II, when we derived the dipole interactions in
a Fabry-Perot cavity via the Jaynes-Cummings model,
Eq. (2). Intuitively the Green’s function in a cavity
takes the spatial form G(rj , rl, ω) ∝ cos kxj cos kxl, as
both atoms must be positioned away from a node of the
standing wave in order to interact (the equivalence be-
tween the Jaynes-Cummings model and spin model is

described in detail in Ref. (Asenjo-Garcia et al., 2017a)).
One also sees from the case of the Jaynes-Cummings
model that the spin model is approximate. In partic-
ular, G in the spin model is only evaluated at a sin-
gle frequency ωeg, which assumes that the dispersion of
the dielectric surroundings within the bandwidth of the
atomic dynamics is negligible. Consequently, the field in
Eq. (4) depends instantaneously on the atomic proper-
ties. Within the context of cavity QED, one must then
avoid the strong coupling regime gJC > |δJC|, κ, where
the excited state population of a single atom can undergo
oscillations (whereas Eq. (6) predicts monotonic decay).
Nonetheless, the spin model is valid in a wide variety of
scenarios and provides a critical tool for understanding
atom-nanophotonics interfaces.

Various elements of the spin model have a long history
within atomic physics and quantum optics. For example,
in the case of a single atom at position r, the excited-
state spontaneous emission rate is given from Eq. (6)
by Γtot = 2µ0ω

2
eg℘
∗ · Im G(r, r, ωeg) · ℘. This has long

been used to calculate emission rates in simple geome-
tries where the Green’s function is exactly solvable, such
as near planar surfaces (Agarwal, 1975; Chance et al.,
1978) and cylindrical nanofibers (Klimov and Ducloy,
2004; Le Kien et al., 2005; Søndergaard and Tromborg,
2001), and is used to evaluate the emission rate near a
nanofiber in Fig. 3d. The Green’s function can be nu-
merically evaluated for more complex geometries. For
nanophotonic structures, one popular approach is finite-
difference time-domain (FDTD) (Sullivan, 2013). Here,
Maxwell’s equations are solved on a discrete grid of space
and time, and the Green’s function can be found by in-
serting a point-like source into the simulation. This is
a standard technique to evaluate the emission rate of
quantum dots and other quantum emitters coupled to
nanophotonic cavities and waveguides (Badolato et al.,
2005; Manga Rao and Hughes, 2007; Yao et al., 2010),
and was also used to evaluate the emission rates of atoms
near the APCW (Goban et al., 2015) and similar struc-
tures (Hung et al., 2013), as shown in Fig. 4d.

The spin model has also been used to describe various
collective atomic phenomena, ranging from superradiant
decay (Araujo et al., 2016; Gross and Haroche, 1982) to
entanglement generation in photonic structures (Dzsot-
jan et al., 2010; Shahmoon and Kurizki, 2013). The idea
that field correlations are encoded in atomic correlations
also had been noticed early on, such as in the theory
of single-atom resonance fluorescence (Kimble and Man-
del, 1976) or the interference of two-atom emission at
close distances (Ficek and Swain, 2002). In later sections,
we show that properly combining these various elements
constitutes a powerful tool for qualitatively and quan-
titatively understanding atom-nanophotonics interfaces,
even at the many-body limit.
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VI. ATOM TRAPPING WITHIN DIELECTRIC
NANOSTRUCTURES

Before we present more details on surprising new
physics, in this Section, we take a necessary detour to dis-
cuss various schemes to trap array of cold atoms within
dielectric nanostructures. In Figs. 3a and 4a, we take
the artistic license of adding spheres to depict atoms
trapped near and interacting strongly with tightly con-
fined, guided fields. Critical to the successful integration
of cold atoms with nanophotonics, nevertheless, is the
development of new trapping techniques and generations
of nanophotonic structures that enable these “cartoons”
to become reality. These previous and ongoing efforts
are aimed at localizing atoms at precisely defined posi-
tions, where the atom-photon interactions are optimal.
As we will also discuss, one of the big challenges in cre-
ating stable traps is the impact of surface Casimir-Polder
force (Casimir and Polder, 1948). The Green’s function
formalism and numerical methods (both introduced in
Sec. V) actually allow us to compute precisely the poten-
tial resulting from Casimir-Polder interaction and even
design novel surface traps.

A. Overview of optical traps for nanophotonics

In conventional settings in atomic physics, atoms
are trapped using optical dipole forces (Grimm et al.,
2000). As with dielectric nanoparticles, atoms experi-
ence an effective potential due to a spatially inhomo-
geneous electromagnetic field of frequency ω given by
U(r) = −αR(ω)|E(r, ω)|2, where αR(ω) is the real part
of the (scalar) atomic polarizability (Grimm et al., 2000).
For a two-level system, αR(ω) is positive (negative) for
frequencies ω below (above) the transition frequency ωeg,
implying that the atom is attracted toward points of
maximum (minimum) intensity. In practice, the field
frequency is typically quite different from the resonant
frequency, to form a far-off resonant trap (FORT), which
suppresses the unwanted effect of motional heating from
the recoil momentum kicks associated with scattered
photons.

Successful trapping techniques involving nanophotonic
systems thus far have utilized two separate strategies.
The first employs interference between an external side-
illumination field ESI(r, ω) and the reflection of this field
from the dielectric, Er(r, ω). In this case, it is instruc-
tive to consider a dielectric half-space, with ESI a plane
wave that is normally incident on the dielectric surface
from vacuum. The total intensity in the vacuum space
is I(r) ∝ |ESI(r) + Er(r)|2, which has a field maxi-
mum at distance zA = λ0/4 from the dielectric surface,
with λ0 the vacuum wavelength of the side-illumination
beam. For “red” detuning ω < ωeg, atoms can be
trapped around this plane of maximum intensity at dis-

tance zA ∼ 200nm from the surface of the dielectric.

For a nanoscopic dielectric, the same strategy can be
employed, but now with Er(r, ω) calculated numerically
and in general varying rapidly around the dielectric sur-
face (Goban et al., 2015; Thompson et al., 2013). An
illustration of such a trap is shown in the inset of Fig.
5a, where a tightly focused beam is reflected from a pho-
tonic crystal cavity. In this case the distance to the
first interference anti-node may be fine-tuned by adjust-
ing the thickness of the illuminated nanostructure, there-
fore changing the optical phase of the reflected field Er
relative to ESI. Tuning the anti-node to zA <100 nm
from the surface becomes difficult because of the com-
plex near-field response of the dielectric surfaces and the
atom-surface Casimir-Polder interactions.

To date, cold atoms have been successfully loaded
into side-illumination traps either stochastically by direct
overlapping with a cloud of cold atoms in a magneto-
optical trap (MOT) (Goban et al., 2015), or determin-
istically by using the steering optical tweezer method
(Thompson et al., 2013) discussed in Sec. IIIB. Such a
method seems promising, in light of separate successful
efforts in recent years to load individual atoms into arrays
of optical tweezers in free space (Kim et al., 2016; Lester
et al., 2015; Muldoon et al., 2012; Nogrette et al., 2014),
and to even deterministically realize arrays without “de-
fect” vacancies (Barredo et al., 2016; Endres et al., 2016).
Adapting such techniques to the side-illumination scheme
could in principle enable ordered arrays of atoms to be
trapped near and coupled to nanophotonic structures.

A related solution for transport and trapping with
precise control of atomic localization near nanoscale di-
electrics is based upon an optical “conveyer” lattice
formed by two counter-propagating beams from oppo-
site sides of the dielectric, which are phase coherent but
offset in frequency. Atoms can then be coherently trans-
ported while trapped in the moving lattice. In this way it
becomes possible to place atoms into the vacuum spaces
of complex dielectric structures (Gonzalez-Tudela et al.,
2015a).

A second distinct strategy for atom trapping is to
use the spatially varying guided-mode fields of dielec-
tric structures themselves. For trapping external to a
waveguide, the evanescent components of one or more
guided modes can be combined to achieve stable optical
traps (Mabuchi and Kimble, 1994; Ovchinnikov et al.,
1991). The case of a cylindrical nanofiber is an important
example (Dowling and Gea-Banacloche, 1996; Le Kien
et al., 2004). Given that the evanescent field is maxi-
mum at the fiber surface, a guided mode that is red de-
tuned (ω < ωeg) attracts atoms toward the surface, while
a blue-detuned beam (ω > ωeg) repels atoms. As orig-
inally proposed in Refs. (Dowling and Gea-Banacloche,
1996; Le Kien et al., 2004) and realized in Refs. (Goban
et al., 2012; Vetsch et al., 2010), a stable trap near the
dielectric surface can then be created by a suitable com-
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bination of the two, provided that the two beams have
sufficiently different wavelengths that their spatial pro-
files are not identical.

Due to the relatively simple intensity profile of
nanofibers, in such a system optical traps via guided
modes necessarily must employ two frequencies, and lo-
calize atoms in evanescent tails that reduce the inter-
action probability with near-resonant guided photons.
Guided mode optical traps in more complex structures,
however, can provide superior dipole coupling between
trapped atoms and the electric fields of desired guided
modes that facilitate near-resonant atom-photon inter-
actions. Exploiting the design flexibility of PCWs (Hung
et al., 2013), for example, stable blue- (red-)detuned
FORTs in principle can be formed with just a single prop-
agating mode, whose electric field amplitude of its Bloch
wavefunction |ukx(r)| exhibits local minima (maxima)
in the vacuum space within the structure. Such guided
modes can be found in photonic bands, typically of high
order (Hung et al., 2013), with proper mirror symmetries
about the principal planes intersecting at the center of a
unit cell (the trap center) to offer transverse trapping.

PCW’s potentially offer other hybrid approaches to
trapping as well, which take advantage of their unique
designability. For example, it has been proposed that one
can combine a guided-mode FORT and Casimir-Polder
surface attraction to create stable traps in 3D (Goban
et al., 2014; Hung et al., 2013). This can be implemented
with fundamental guided modes in a simple PCW such
as the double-beam structure of Fig. 10a. Here, a blue-
detuned guided FORT provides a periodic set of points
with field intensity minima, and thus stable confinement
of atoms in the x-y plane of the structure (see Fig. 10b).
Cuts of the trapping potential through the trap center
along the x and y directions are shown in Figs. 10d,e.
However, the intensity profile from the trap center out
of the plane along z has a local maximum or is at best
homogeneous, preventing optical trapping in this direc-
tion. The trap becomes closed along this direction only
through the inclusion of the surface Casimir-Polder po-
tential, as shown in Figs. 10c,f. The calculation of these
potentials will be discussed in greater detail in the next
subsection. Qualitatively, however, as these forces at-
tract an atom in its ground state toward dielectric sur-
faces, an atom prefers to sit at z = 0 instead of far away
from the structure. Of course, this implies that Casimir-
Polder forces want to pull atoms away from the symme-
try plane y = 0 toward one of the dielectric beams, but
this effect can be overcome with sufficiently large optical
forces. In this particular structure, a modest optical in-
tensity of several mW-cm−2 is expected to create a deep
FORT with > 1 mK trap depth along the tightest con-
fining dimension. The Casimir-Polder potential, on the
other hand, limits the overall trap depth to ∼ 30 µK for
an atom located at the center of a g = 250 nm air gap
(Fig. 10a).
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Figure 10 A hybrid optical and Casimir-Polder trap in a
double-beam PCW. (a) Schematic illustration of the waveg-
uide structure. (b) Intensity profile of the blue-detuned
guided mode. Green spheres indicate location of trap min-
ima. (c) Casimir-Polder potential (top) and the total trap
potential (bottom) in the y-z plane. (d-f) Line cuts of the
Casimir-Polder potential (red solid), FORT (blue dashed),
and total potential (blue solid) through the trap center. Fig-
ure is adapted from (Hung et al., 2013).

One advantage of this approach is that additional
guided modes supported by the structure can exhibit lo-
cal electric field maxima near the trap center, which pro-
vides for an increase in interaction probability with near-
resonant photons. Trapped atoms in such a system can
observe an effective probe mode area as small as Aeff ∼
0.1λ2, which is unprecedented in other trapping meth-
ods and greatly increases the atom-photon interaction
probability. Finally, it should be mentioned that for all
of the optical trapping strategies discussed, the internal
and external degrees of freedom for trapped atoms can
be largely decoupled by using guided modes at ‘magic’
wavelengths for the transition of interest for atom-photon
interactions (Goban et al., 2012; Hung et al., 2013; Ye
et al., 2008).
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B. Casimir-Polder potentials

As made clear by Fig. 10, to localize atoms at sub-
micron distances away from structured dielectrics, it is
essential to include the effect of Casimir-Polder surface
interactions (Buhmann and Welsch, 2007; Casimir and
Polder, 1948) into trap calculations. Casimir-Polder in-
teractions arise from an atomic dipole interacting with
electromagnetic vacuum fluctuations near structured di-
electrics. For ground-state atoms, the Casimir-Polder
potential yields strong attraction toward a proximal di-
electric surface, and can weaken or completely open an
otherwise stable FORT potential. To provide a sense of
scales, one can consider an atom near a planar dielectric
surface, for which an approximate potential (Friedrich
et al., 2002; Shimizu, 2001) VCP(d) = −C4/d

3(d + λ)
can be used in place of full QED calculations (Agar-
wal, 1975; Buhmann and Welsch, 2007; Lifshitz, 1956).
Here d is the distance between an atom and the proximal
dielectric surface, C4 is the coefficient for the retarded
1/d4 long-range potential, and λ the effective atomic
transition wavelength divided by 2π, a distance below
which VCP transitions into 1/d3 dependence. For alkali
atoms such as rubidium or cesium near silica or silicon
nitride surfaces, C4/kB ∼ 5 nK·µm4 and λ ∼ 100 nm
(Bender et al., 2010; Friedrich et al., 2002; Stern et al.,
2011), resulting in a substantial potential energy varia-
tion ∆VCP ∼ −kB × 250 µK as d changes from 100 nm
to 50 nm.

For complex nano-geometries, analytical calculations
for VCP are largely unavailable. Various numerical tech-
niques based on a scattering Green’s tensor formal-
ism have been developed to compute Casimir-Polder in-
teractions with general structures; for recent reviews
see (Dalvit et al., 2011; Woods et al., 2016). Specifi-
cally, FDTD (McCauley et al., 2010; Rodriguez et al.,
2009) and boundary element (Reid et al., 2009) methods
have been implemented to compute atom-nanostructure
surface interactions (Hung et al., 2013).

For atomic ground states, the Casimir-Polder interac-
tion can be understood as an energy shift resulting from
counter-rotating terms in the full atom-field interaction
Hamiltonian, which allows for fluctuations involving the
simultaneous creation of a photon and transition to the
excited state. As this energy shift of the ground state
is position-dependent, it can also be interpreted as a
motional potential. Excited-state potentials can also be
calculated and utilized for atom trapping (Chang et al.,
2014a), but will not be discussed further here.

Utilizing the fluctuation-dissipation theorem and as-
suming that the temperature of the nanostructure is
much smaller than the atomic transition energies, kBT �
~ωj , the ground-state potential can be written as (Buh-

mann and Welsch, 2007)

VCP(r) = −µ0~
2π

Im

∫ ∞
0

dω ω2Tr {α(ω) ·Gsc(ω)} , (8)

where Gsc(ω) ≡ G(r, r, ω) −G0(r, r, ω) is the difference
between the full Green’s function at atomic position r
in the presence of the nanostructure, and the Green’s
function G0 in vacuum. The dynamic polarizability α in
Eq. (8) is defined as (Buhmann and Welsch, 2007)

α(ω) ≡ lim
ε→0

1

~
∑
j

2ωjd0jdj0
ω2
j − ω2 − iωε

, (9)

where ωj is the transition frequency from the ground
state to state j, and dj0 the corresponding transition
dipole moment. In Eq. (8), the integral over frequen-
cies directly reflects the fact that the virtual photon in-
volved in the process can have any frequency (in contrast
to the spontaneous emission rate, for example, where
the Green’s function is only evaluated at the atomic fre-
quency). Using the property that the Green’s function is
analytic, in analytical calculations it is often convenient
to transform Eq. (8) to an integral over imaginary fre-
quencies (Buhmann and Welsch, 2007), or to an integral
over a more general path in the complex plane in the case
of numerical calculations (Hung et al., 2013; Rodriguez
et al., 2009).

C. 2D vacuum lattices

Apart from representing obstacles to atom trapping
via the guided modes of PCW’s, Casimir-Polder interac-
tions between an atom and the dielectric environment
can be exploited to achieve novel capabilities beyond
those possible with either free-space or guided optical
fields. One example is the creation of 2D “vacuum lat-
tices”, where atoms are trapped with a lattice constant
much smaller than the free-space wavelength, d� λeg/2.
Ref. (Gonzalez-Tudela et al., 2015a) shows theoretically
that such vacuum lattices in the x, y plane parallel to the
surface of a 2D photonic crystal membrane can yield en-
ergy scales for quantum many-body physics (e.g., Bose-
Hubbard interactions) roughly two orders of magnitude
larger than a free-space optical lattice.

The spirit of the idea can already be seen in
Ref. (Contreras-Reyes et al., 2010), which calculated the
Casimir-Polder interaction of an atom positioned above
a 1D dielectric grating made of silicon, as illustrated in
Fig. 11a. The key idea is that a periodic modulation
n(x) of refractive index “writes” the same periodicity
VCP(x, z) into the potential. For a sufficiently close dis-
tance zA to the surface (chosen to be zA = 300 nm in
the calculation), the modulation in the potential can be
significant, as illustrated in Fig. 11b. Importantly, as the
periodicity is enforced by that of the underlying dielectric
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Figure 11 (a) Schematic of a Rb atom sitting at a fixed dis-
tance zA above a one-dimensional dielectric grating made of
silicon. (b) Calculation of Casimir-Polder potential in this ge-
ometry along the lateral x direction. The potential U(xA, zA)

is normalized by the value for a flat interface, U (0)(zA−a/2).
The dimensions taken for the calculation are a = 100 nm, and
d = 2s = 2zA = 6a. Figs. 11a,b taken from Ref. (Contreras-
Reyes et al., 2010). (c) Schematic of a GaP dielectric slab of
thickness W with dielectric posts of height h. (d) Cut along
y of the total potential (solid black) and side-illumination po-
tential (dotted blue) at zA = 32.5 nm, for the case of a 87Rb
atom. The chosen dimensions of the structure are d = 50
nm, R = 0.2d and W = h = 119 nm. Figs. 11c,d taken from
Ref. (Gonzalez-Tudela et al., 2015a).

modulation, it is not subject to a minimum “diffraction
limit”.

In the example above, the atomic distance zA to the
surface is fixed “by hand”, but a scheme for a full 3D trap
was proposed in Ref. (Gonzalez-Tudela et al., 2015a),
and is illustrated schematically in Fig. 11c. Here, a Rb
atom is trapped above a gallium phosphide (GaP) struc-
ture consisting of a 2D periodic array of cylindrical posts
in a deeply sub-wavelength regime with lattice constant
d = 50 nm. In analogy to the previous case, the 2D
dielectric modulation creates a 2D lattice arising from
the Casimir-Polder potential in the x-y plane. As the
potential attracts atoms toward the surface, a fixed dis-
tance zA is maintained by simultaneously illuminating
the structure with two counter-propagating side illumi-
nation beams, which provide a stabilizing optical force
along z. A cut of the total potential Vtot(x, y, zA) =
VCP(x, y, zA) + VSI(x, y, zA) along y is shown in Fig. 11d
at a trapping height of zA ≈ 32.5 nm, as is the optical
contribution alone. It can be seen that while the optical
potential itself is modulated due to scattering from the
periodic structure, its modulation depth is weak com-
pared to the dominant Casimir-Polder forces.

The trap depth of this 2D vacuum lattice can be dy-
namically tuned over a wide range by adjusting the verti-
cal trap position zA. The trap depth Vd and frequencies

ωt for Fig. 11d are {Vd,xy, Vd,z}/2π ≈ {3.5, 20.8} MHz
and {ωt,xy, ωt,z}/2π ≈ {1.7, 4.2} MHz. In the x, y plane,
the trapping depth is ≈ 15ER, which guarantees the pos-
sibility of having localized Wannier modes in the lattice.
The side-illumination FORT alone would produce a trap
depth of ≈ 3ER, which does not lead to localization in a
unit cell. The associated photon scattering rate for the
chosen parameters is approximately ≈ 2π × 10 Hz.

VII. COLLECTIVE DISSIPATION

In the remaining sections, we return in more detail
to the novel paradigms for atom-light interactions intro-
duced in Sec. IV, beginning here with the manipulation
of atomic and quantum optical states via collective dis-
sipation. The key idea is that if a single atom has a
significant probability of emitting a photon into a waveg-
uide, then the one-dimensional character of the photonic
field guarantees that another atom has a large proba-
bility of interacting with the same photon. This quasi-
deterministic emission and reabsorption can occur mul-
tiple times leading to collective dissipation that can be
exploited to obtain interesting many-body states and to
trigger multi-photon emission, as we will see below.

A. Effective description

Let us first consider the simplest paradigm, in which
atoms are coupled symmetrically to left- and right-going
modes of a broadband 1D waveguide. In such a 1D sys-
tem and neglecting retardation, a source at z′ simply
emits a plane wave, G(z, z′) ∝ eik(ω)|z−z′|, which fol-
lowing Eq. (7) motivates the following effective Hamilto-
nian (Chang et al., 2012; Dzsotjan et al., 2010; Gonzalez-
Tudela et al., 2011; Lalumiere et al., 2013):

H̃1D = −i(Γ1D/2)
∑
j,l

eik0|zj−zl|σjegσ
l
ge − i(Γ′/2)

∑
j

σjee.

(10)
Here k0 = k(ωeg) represents the propagation wavevec-

tor at the atomic resonance frequency. In addition to
the atomic interaction mediated by waveguide photons,
we have added a phenomenological independent emission
rate Γ′ of excited atoms into free space. This provides a
minimal “toy model” to realistically describe 1D atom-
light interfaces, in which the Purcell factor or branching
ratio P1D = Γ1D/Γ

′ can be considered as the main figure
of merit of the system. To connect to an actual specific
system, the precise value of P1D and the validity of Eq. 10
can be established by a full numerical or analytical cal-
culation of the Green’s function. It is important to note
that coupling to radiative waveguide fields results in an
intrinsically dissipative Hamiltonian H̃1D. For example,
for a single atom, H̃1D = −(i/2)(Γ1D + Γ′)σee is purely
anti-Hermitian, and describes excited-state spontaneous
emission at a total rate Γ1D + Γ′.
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As pointed out in Sec. IVA, choosing the atomic po-
sitions in waveguide QED such that the propagation
phase φij between any two atoms located at zi, zj satisfies
φij = |zi − zj |k0 = 2πq with integer q, results in a high
probability for photon interaction. In this case, guided
mode photons couple to a single collective atomic mode
with rate NaΓ1D, while atoms emit to free space still with
an individual rate Γ′. This situation is described by the
effective Hamiltonian

H̃1D ≡ H̃Dicke = −iNaΓ1D

2
SegSge − i

Γ′

2

∑
j

σjee , (11)

where Sαβ = 1√
Na

∑
j σ

j
αβ denote collective spin oper-

ators. This scenario realizes what is commonly known
as the pure Dicke model (Dicke, 1954), a paradigmatic
model in quantum optics whose main effects, i.e., super-
and sub-radiance (Gross and Haroche, 1982), have re-
mained elusive experimentally in free space due to the
complication of additional coherent dipole-dipole inter-
actions in that setting. Waveguide QED allows to elim-
inate such detrimental dipole-dipole interactions by pre-
cisely positioning the atoms, and furthermore, ensures
that the super-radiant emission goes into the preferred
guided modes, as opposed to free space.

The fact that a single collective and super-radiant
atomic mode couples to the waveguide leads to an in-
teresting linear optical response. In particular, since
an incoming guided field only couples to the collective
state Sge, and because this state couples with increas-
ing efficiency into the waveguide (at a rate NaΓ1D ver-
sus Γ′ into free space) with increasing Na, the system
becomes increasingly one-dimensional in its response to
light. Specifically, a near-resonant photon is unlikely to
be scattered into free space but is instead coherently re-
flected. Using the input-output equation (4), it can be
shown that on resonance, the fraction of intensity re-
flected is given by (NaΓ1D)2/(NaΓ1D + Γ′)2.

This system also reveals interesting characteristics be-
yond its linear response (i.e. the single-excitation mani-
fold). An important characteristic of the Dicke model is
that all symmetric states of N atoms containing m exci-
tations (the so-called Dicke states |Em〉 ∝ sym{|g〉N−m⊗
|e〉m}) decay with an enhanced rate due to the presence
of the other atoms, namely ΓEm ≈ mN for m � N ,
which is the limit of interest here. On the other hand,
the states satisfying Sge|Ψ〉 = 0 are dark (subradiant)
with respect to the collective dissipation induced by the
waveguide, and comprise the so-called decoherence-free
subspace (Lidar et al., 1998; Zanardi and Rasetti, 1997),
and have lifetimes limited only by residual free-space
emission Γ′. Intuitively, these states are odd with respect
to permutation of particles, which causes emission into
the waveguide to cancel. For example, for N = 2 there
is only a single dark state with one excitation, given by
(|eg〉 − |ge〉) /

√
2.

...
N atoms

(b)

Source Target

(a)

(b)

Figure 12 (a) Schematic of two two-level atoms coupled to
a waveguide and individually addressed by lasers Ω1,2. The
single-atom level structure consists of atomic ground and ex-
cited states |g, e〉, where |e〉 decays into the waveguide and
free space with rates Γ1D and Γ′, respectively. (b) Scheme
for quantum state engineering: one single atom is separated
several wavelengths apart such that it can be individually ad-
dressed with respect to an atomic ensemble of N atoms that
is collectively driven.

B. Dynamics within decoherence free subspaces

These subradiant states cannot be directly probed by
the waveguide modes because they are decoupled from
them. However, when a weak perturbation provided
by an external laser is applied to the system (with a
corresponding Hamiltonian ||HL|| � Γ1D), the collec-
tive dissipation of the waveguide projects the dynam-
ics from HL into the decoherence free-subspaces due to
the so-called Quantum Zeno effect (Beige et al., 2000b;
Facchi and Pascazio, 2002; Misra and Sudarshan, 1977).
This effect gives rise to an effective Hamiltonian HL,eff =
PDFSHLPDFS that connects to first order in ||HL||/Γ1D

only the states within the decoherence-free subspaces and
which allows one to obtain interesting many-body states
without being affected by the collective dissipation of the
waveguide.

To illustrate how we can move within decoherence free
subspaces exploiting quantum Zeno dynamics, we start
with a very simple example as depicted in Fig. 12a. Let us
consider two two-level atoms strongly coupled to a waveg-
uide in the Dicke regime. In this case, the effect of the
interaction of the waveguide is to renormalize the decay
rates of the different states. Namely, the symmetric com-
bination of excitations |ee〉 and |+〉 = (|eg〉 + |ge〉)/

√
2

experience an enhanced decay of 2Γ1D, whereas the an-
tisymmetric one |−〉 = (|eg〉 − |ge〉)/

√
2 and obviously

|gg〉 are decoupled from the waveguide. Hence, when we
address the two atoms with lasers with Rabi frequen-
cies |Ω1,2| � 2Γ1D, all the population in states coupled
to the waveguide will quickly decay into |gg〉. The dy-
namics is thus projected only into the decoherence free
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states giving rise to a unitary dynamics within this sub-

space: HL,eff ≈
(

Ω1−Ω2√
2
|gg〉〈−|+ h.c.

)
. By choosing an

appropriate pulse timing/amplitude for the locally ap-
plied lasers, one can prepare the entangled state |−〉 from
an unentangled one |gg〉. Notice that by performing a
local phase change, one can execute the transformation
|−〉 → |+〉, which subsequently triggers the emission of a
single photon into the waveguide, |+〉 → |gg〉|1wg〉. The
same argument holds for Na > 2 with the advantage that
the dimension of the decoherence free subspaces grows
exponentially with Na and allows one to have subradi-
ant states with more than one excitation. For example,
with Na = 4 six subradiant states emerge, three sharing
a single excitation and three with two excitations. Using
these states one can encode two logical qubits and define
a universal set of quantum gates to build more complex
states (Paulisch et al., 2016), which can be used to trigger
the emission of two-photon states.

An intriguing question is whether this idea can be ex-
tended with increasing Na, to move around in a dark-
state subspace and finally generate an arbitrary pho-
ton Fock state or superposition of Fock states. Using
only two-level systems, the complexity of the Hilbert
space makes it difficult to go to large number of exci-
tation/photons. Fortunately, the possibility of having
several metastable states and optical transitions allows
one to define a set of states where this can be readily
accomplished. In particular, we now consider a Λ level
structure as depicted in Fig. 12b in which one optical
transition |e〉 ↔ |g〉 couples to the waveguide with rate
Γ1D, whereas the other one |e〉 ↔ |s〉 couples to a classical
field with Rabi frequency Ωn.

Consider the superposition state |ψm〉 =
∑m
p=0 dp|Sp〉

for Na atoms sharing up to m excitations, where the
metastable states |Sm〉 ∝ sym{|g〉Na−m|s〉m}. It can
be shown that |ψm〉 can be efficiently mapped to multi-
photon states (Gonzalez-Tudela et al., 2015b; Porras and
Cirac, 2008) by performing a fast π-pulse with Ωn � Γ1D

such that |Sm〉 → |Em〉 → (A†k0)m|m〉 ⊗ |g〉Na , where
|Em〉 are the Dicke states defined in the previous sub-
section. This state rapidly decays to the atomic state
|g〉Na , while simultaneously emitting a single-mode pho-
ton pulse described by Ak0 into the waveguide, with a
very favorable error scaling as ∝ 1/(NaP1D) due to su-
perradiant effects.

Of course, the generation of the entangled atomic state
|Sm〉 with a fixed excitation number m is difficult in con-
ventional settings because an atomic ensemble with many
atoms behaves like a linear system. However, it was
shown in Ref. (Gonzalez-Tudela et al., 2015b) that one
can exploit atom-waveguide QED characteristics to gen-
erate |Sm〉 by using a configuration as shown in Fig. 12b.
Here, a source atom is placed far from the atomic target
ensemble in which we want to generate |Sm〉. Although
remotely located, the source atom is still strongly cou-

pled to the same waveguide mode as the target ensem-
ble. Starting with the source atom in |s〉, and the atomic

ensemble in |g〉Na , one can exploit Quantum Zeno Dy-
namics to transfer the spin excitation |s〉 collectively to
the target ensemble only using subradiant states. By re-
initializing the source atom and repeating this process M
times, one can indeed obtain any arbitrary superposition∑M
m=0 dm|Sm〉 in the ensemble, which can be reversibly

mapped to photons to generate an arbitrary superposi-
tion in the output photon field.

For completeness, let us mention that in both the two-
level and the Λ configurations, there are two main sources
of errors, which arise from the decay of subradiant states
to free-space through Γ′ and from the small populations
of superradiant states (which scale with ∝ |Ω|2/Γ1D).
These two sources give rise to an error in photon state
generation ∝ 1/

√
P1D, similar to other quantum informa-

tion protocols in cavity QED (Beige et al., 2000a). By
using extra auxiliary atoms and heralding measurements
exploiting the high-collection efficiency of the waveguide
photons, one can improve considerably the error scaling
(e.g., error ∝ 1/(NaP1D)) at the expense of making the
process probabilistic (Gonzalez-Tudela et al., 2017).

VIII. SPIN-ORBIT COUPLING OF LIGHT

While the previous “toy-model” description of an
atom-waveguide setup through H̃1D is reasonable for
many situations, it neglects the vector nature of the elec-
tromagnetic field and thus the unique polarization prop-
erties that tightly guided modes can have. As we dis-
cussed in Secs. III and VI, the local polarization of the
fields of nanostructures can become connected to the di-
rection of propagation of light, leading to chiral light-
matter interactions (see Ref. (Lodahl et al., 2017) for a
review on the subject). With appropriate design, it then
becomes possible to tailor separately the atomic emission
into right/left-propagating modes.

A. Effective description for a chiral setup

A minimal description for chiral coupling assumes that
an optical transition |g〉-|e〉 of a single atom emits into
the left/right-propagating modes at rates ΓL/R, respec-
tively. The guided modes in each direction can be adia-
batically eliminated, leading to a cascaded quantum sys-
tem (Carmichael, 1993; Gardiner, 1993; Pichler et al.,
2015) whose effective Hamiltonians H̃L/R describe dy-
namics in which atoms only interact with atoms to the
right/left (Pichler et al., 2015; Ramos et al., 2014):

H̃L/R = −i
ΓL/R

2

∑
j>l/j<l

(
eik0|zj−zl|σjegσ

l
ge − h.c.

)
−iΓ

′

2

∑
j

σjee.

(12)
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Again, we have added a phenomenological independent
decay rate Γ′ to describe free-space emission. One can de-
fine two figures of merit, βL/R = ΓL/R/ (ΓL + ΓR + Γ′),
which characterize the amount of left/right emission com-
pared to the total one. In the extreme case where
βR/L = 1 (and βL/R = 0), the atoms only “see” the rest
of the atoms on their right/left, due to the ordering j > l
or j < l appearing in the sum of Eq. (12). The bidirec-
tional situation is recovered by setting ΓR = ΓL = Γ1D/2.

B. Non-reciprocal photon transport

In the bidirectional situation described in Sec. VII, a
photon propagating in the left/right direction will scatter
in the same way with an atom independent of the direc-
tion of propagation, e.g., it will be perfectly reflected in
the case Γ′ = 0. In the chiral configuration, even for
Γ′ = 0, the right/left transmission/reflection coefficients
are given by:

tR/L = 1− 2βR/L , (13)

rR/L = −2
√
βRβL , (14)

and thus, the system can exhibit an asymmetric op-
tical response if βR 6= βL, without the need of us-
ing magneto-optical materials. This asymmetry was
exploited in Ref. (Sayrin et al., 2015b) for an opti-
cal nanofiber to achieve non-reciprocal photon transport
with both atomic ensembles and single atoms with a V-
type level structure. The idea is to use a magnetic field
such that one optical transition couples resonantly with
right-moving photons with, e.g., right circular polariza-
tion, while making off-resonant linear and left-circularly
polarized atomic transitions, as shown in the inset in
Fig. 8b. Hence, when a photon propagates right (left)
there is a strong (weak) interaction with the emitter, en-
abling a demonstration of βR/βL = 11.5 for the optical
transition of interest. In order to increase the probability
of interaction, the authors use either an atomic ensemble
with N ≈ 27 atoms or a whispering-gallery mode res-
onator, being able to obtain experimental isolations of
7.8 dB and 9.1 dB, respectively, while maintaining high
forward transmission.

In (Sayrin et al., 2015b), a “blocked” photon is scat-
tered away incoherently. While this functions as a clas-
sical optical isolator, for quantum applications it would
instead be desirable to realize a unitary non-reciprocal
device, which preserves the quantum properties of the
input and output channels. Such a scheme has been pro-
posed in Ref. (Sollner et al., 2015). Here, a single quan-
tum emitter is placed into one arm of an interferometer,
with then a π-shift associated with chiral transmission
used to route photons coherently depending on their di-
rection of propagation. This would enable one to create
coherent superpositions of having been routed or not.

C. Many-body entangled steady-states

Instead of probing the atomic system through few-
photon scattering, an interesting alternative consists
of driving the emitters with classical fields (Ficek and
Tanas, 2002), such as external fields transverse to the
waveguide or through the waveguide with an auxiliary
(non-chiral) guided mode. In that case, one might ex-
pect interesting steady states to emerge resulting from
the interplay between the chiral collective dissipation and
driving. The driving is described by an additional Hamil-
tonian:

H̃S +Hlas =
∑
j

δjσ
j
ee +

∑
j

Ωj
(
σjeg + σjge

)
(15)

where δj = ωeg − ωL is the detuning between the atomic
and laser frequencies. For a bidirectional waveguide,
steady-state entanglement was predicted by driving the
atoms resonantly, δj = 0 (Gonzalez-Tudela et al., 2011;
Gonzalez-Tudela and Porras, 2013). However, the result-
ing state was mixed and therefore not maximally entan-
gled. Recently, in a series of works (Pichler et al., 2015;
Ramos et al., 2014) it has been shown that chiral light-
matter couplings, together with suitable optical detuning
patterns {δj} can give rise to pure many-body entangled
states. To provide a simple illustration of this effect, we
consider just two atoms and choose Ω1 = Ω2 ≡ Ω and
δ1 = −δ2 ≡ δ. In the idealized limit where Γ′ = 0, it
can readily be verified that there exists a dark state |D〉,
which is an eigenstate of the total (non-Hermitian) effec-
tive Hamiltonian with zero decay rate into the waveguide.
This state is given by

|D〉 =
1√

1 + |α|2
(|gg〉+ α|−〉) , (16)

where |−〉 is a singlet state of the two atoms. Be-
ing the unique dark state, the system is deterministi-
cally driven to |D〉 as the steady state. The parameter
α = −2

√
2Ω/ (2δ + i(ΓR − ΓL)) gives the singlet fraction

and can be controlled either through the laser amplitude
and/or detuning. The situation for systems N > 2 is
more intricate as different non-equivalent dark states may
appear. On the one hand, there is a trivial generalization
of the N = 2 case in which the atoms form singlets in
pairs. However, by choosing the detuning pattern appro-
priately, k-particle entangled states can emerge, which
cannot be obtained using only bidirectional waveguides.

IX. BANDGAP PHYSICS

In Secs. VII and VIII we described the prospects for
utilizing collective dissipation, associated with large and
possibly directional emission rates into a waveguide, to
realize interesting quantum states of matter and light.
On the other hand, it would be highly desirable to realize
purely coherent dynamics as well, with a strength that
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is large relative to the emission rate Γ′ into free space,
but where dissipation due to emission of photons into
the waveguide is switched off. It is helpful to recognize
that this dissipation results from the continuum of guided
modes at the atomic resonance frequency, and thus, a
tantalizing “fix” is to shift the atomic frequency away
from the propagating modes of a PCW band edge, and
into the band gap. We now discuss this scenario in this
section.

Theoretical investigations of atom-light interactions
within a band gap began not long after the “discov-
ery” of photonic crystals (Bay et al., 1997; John and
Wang, 1990, 1991; Kurizki, 1990; Lambropoulos et al.,
2000). Formally, the typical approach was to consider
a hypothetical set of photon modes k (an index for
wavevector, for example) described by annihilation op-
erators âk, which couples to an atom at position r,
Hband = ~

∑
k ωka

†
kak+~ωegσee+~

∑
k(ake

ik·rσeg+h.c.).
If one chooses a simple gapped dispersion relation, such
as ω(k) = ωBE

(
1− α(k/kb)

2
)

(where ωBE < ωge, so that
the atomic frequency lies within the band gap), then
the single-excitation manifold is exactly solvable. One
of the surprising features is the emergence of an eigen-
state |ψb〉 = cos θ|e, 0〉+sin θ|g, 1〉 that is a superposition
of an excited atom and a photon localized around the
atomic position, i.e. an atom-photon bound state (John
and Wang, 1990) (Fig. 9a). Qualitatively, the dressing
of an excited atom by a localized photon enables this
excitation to “hop” to nearby atoms, thus realizing an
effective spin exchange interaction. The corresponding
effective Hamiltonian for the atoms would then be purely
coherent and dissipation-free, as already noted in many
works (Bay et al., 1997; John and Wang, 1991; Kurizki,
1990; Lambropoulos et al., 2000; Shahmoon and Kurizki,
2013).

As these works considered highly idealized dispersion
relations, it was not possible to account for “real” sys-
tems, which not only see the gapped guided modes of
the PCW but free space modes as well (and thus a dis-
sipation Γ′). The effects of free-space emission, photon
decay, band structure, and electric field profiles for re-
alistic PCWs in 1D and 2D were added to such simple
models in Refs. (Douglas et al., 2015; Gonzalez-Tudela
et al., 2015a). Significantly, it was shown that for 1D
waveguides, an intuitive, effective model could achieve
good quantitative agreement with numerical simulations
of the full Green’s function (Douglas et al., 2015).

We thus present the effective model here, which is al-
ready suggested by the form of the eigenstate |ψb〉. In
particular, this eigenstate looks identical in form to one
of the dressed eigenstates |ψ+〉 of the Jaynes-Cummings
model (see Sec. II). This mapping can in fact be made
formal – the photon confined around the atom has the
same functionality as the mode of an actual cavity. The
effective vacuum Rabi splitting gJC is identical to that
of a real cavity whose mode volume is the same as the

bound photon size, Veff = AeffL, where Aeff and L are
the transverse mode area associated with the PCW and
the bound state length (Fig. 9a), respectively. The effec-
tive atom-cavity detuning δJC = 2∆BE = 2(ωeg−ωBE) is
twice the detuning between the atomic frequency and the
band edge. The length L itself is in principle tunable, as
it is dictated by the detuning from the band edge and the
band curvature, L =

√
αωBE/(k2

b∆BE). Thus, for exam-
ple, a more localized photon arises with larger detuning
∆BE or flatter bands.

Utilizing this mapping to cavity QED, one can then
immediately conclude that an effective spin interaction
like Eq. (2) is possible using the PCW, except that now
the spatial range reflects the shape of the localized pho-
tonic cloud:

Hbg = (~g2
JC/δJC)

∑
j,l

e−|zj−zl|/Lu(zj)u(zl)σ
j
egσ

l
ge. (17)

Here the exponential envelope results from the localiza-
tion of the bound photon, while u(z) is a periodic func-
tion associated with the shape of the Bloch modes around
the band edge (in generic structures, u(z) = cos kz has
the same sinusoidal modulation as a Fabry-Perot cavity,
see Fig. 4c). Alternatively, in the language of the spin
model this interaction arises from the Green’s function
G(z, z′) ∝ e−|z−z′|/L in the bandgap.

Finally, the cavity QED mapping enables one to qual-
itatively understand the role of dissipation. As in our
analysis of two atoms in the Jaynes-Cummings model,
two atoms interacting via a band gap would be able
to exchange a spin excitation with a minimum error of
E ∝ 1/

√
C, where C = λ3

egQ/Veff depends on the quality
factor of the localized photon and its confinement. One
can explicitly separate out the photon length dependence,
C = Cλ(λeg/L), where Cλ represents the cooperativity
for a photon confined to a length L = λeg. The qual-
ity factor Q of the bound photon, defined as the ratio of
its frequency and decay rate Q = ωeg/κ, is limited by
absorption and scattering from defects in the PCW and
thus far has not been directly measured. However, one
would intuitively expect a similar decay rate κ as can
be achieved in an actual photonic crystal cavity made
from the same material and fabrication processes. The
projected cooperativities of Cλ ∼ 104 point to the poten-
tial to realize coherent interactions with hightly tunable
range, which is not readily achievable using other inter-
action mechanisms.

The same concepts discussed for one-dimensional
PCW’s also extend to two-dimensional structures with
atomic transition frequencies in a band gap. Assuming
an isotropic dispersion around the edge of the band, the
resulting envelope of the atom-atom interactions scales
as (Gonzalez-Tudela et al., 2015a) f2D(zj , zl) ∝ K0(|zj −
zl|/L), K0(x) being the Hankel function. This function
in turn scales as K0(x) ∼ e−x/

√
x and log(1/x) when

x � 1 and x � 1, respectively. The overall coupling
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strength gJC is again set by the effective mode volume,
which now scales as Veff = L2Leff . Here L is the linear ex-
tent of the photon bound state in the 2D plane, while Leff

represents the out-of-plane confinement length. Likewise,
the mode volume also dictates the effective cooperativ-
ity. In 2D one obtains a scaling of C2D = Cλ(λ/L)2, such
that C2D ≥ 100 over an interaction length of L . 10λeg.
However, as the interaction extends now over a plane, the
number of atoms that could be coupled while maintaining
such C2D will be similar as for the 1D case.

A. Designing bandgap interactions with the atomic physics
toolbox

The natural form of the bandgap-mediated interactions
between atoms is to decay exponentially with atomic sep-
aration. In the thermodynamic limit, as the system size
approaches infinity, these interactions are designated as
short-ranged. However, in practice the decay length can
be on the same scale as the length of the PCW itself,
and can thus effectively appear long-ranged. Long-range
interacting spin systems have been of great interest re-
cently. For example, quantum correlations propagate at
a distinctly different speed in the presence of long-range
interactions, i.e., for power law decay 1/rα with α smaller
than the system dimensionality (Gong et al., 2014; Hauke
and Tagliacozzo, 2013; Jurcevic et al., 2014; Richerme
et al., 2014; Schachenmayer et al., 2013). One limita-
tion to investigations of such physics within the context
of photonic crystals is that for two-level systems, the
type of spin interaction (of exchange type) is fixed, as
is the interaction range L for a given structure design,
unless the structure itself exhibits some dynamic tun-
ability (for example, via piezoeletric strain (Wong et al.,
2004) or optomechanical forces (Rosenberg et al., 2009)).
In addition, a typical excited state Γ′ decays on a scale
that would make measurements difficult. We discuss how
these issues can be circumvented using the toolbox of
atomic physics.

1. Dynamically shaping interactions with Raman lasers

One possible approach is to exploit multi-level atomic
structure. For example, dynamical control of the cou-
plings can be achieved by using an atomic Λ transition as
depicted in Fig. 13a, where the excited state apart from
being coupled through the waveguide to |g〉, is driven off-
resonantly with detuning δL by a Raman laser with Rabi
frequency Ω from another auxiliary metastable state, |s〉
(Douglas et al., 2015; Gonzalez-Tudela et al., 2015a).
When |δL| � |Ω|, the excited state can be adiabatically
eliminated giving rise to an XY interaction between the

(a)

(b)

Atom

GM

Atomj l

Figure 13 Dynamical control of atom-atom interactions using
a Λ atomic level scheme. The transition |g〉-|e〉 is coupled to
the modes of the PCW, while the transition |s〉-|e〉 is driven
off-resonantly (detuning δL) by an external laser Ω. Atoms
j and l may then exchange excitations in level s via the il-
lustrated two-photon processes. When this exchange occurs
within the bandgap, the detuning ∆L from the band edge
(blue curve) tunes the range of the effective spin-exchange in-
teraction. Furthermore, for full control of atom-atom interac-
tions, arbitrary long-range spin exchange interaction between
atoms j and l may be engineered. In particular, a relative
shift of the s level of atom l by ∆jl matched by a sideband

of the Raman laser Ω̃ (shown in gray), selectively creates an
interaction between these two atoms. b) By engineering the
interactions (red arrows mark nearest neighbor interactions)
between the atoms at each end of a finite linear chain using
this full control technique, the system can be mapped to a
chain with periodic boundary conditions.

effective spin system defined by {|g〉, |s〉}, i.e.,

HXY = ~
ḡ2
JC

∆L

N∑
j,l

σjsgσ
l
gsf(zj , zl). (18)

The coupling strength is reduced by the Raman factor
ḡJC = gJC

Ω
δL

, while the virtual excited state popula-

tion scales as (Ω/δL)2, thereby leading to the same co-
operativity as in the two-level case. Importantly, the
effective detuning ∆L = ωeg − δL − ωBE (see Fig. 13)
from the band edge can be dynamically changed by ad-
justing the frequency of the Raman laser. This configu-
ration has considerable advantages: i) the spin systems
are defined in metastable states and are therefore long-
lived; ii) the interaction can be turned on/off at will via
a time-dependent Ω(t), which is very useful to freeze the
dynamics at a certain time for measurement; and iii) the
interaction range L ∝ 1/

√
∆L may be dynamically tuned

for a fixed nanostructure such that one does not have to
rely completely on nanoengineering.

Moreover, it was shown in (Douglas et al., 2015) that
if several Raman lasers are used with different detunings,
the interaction obtained between them is a combination
of exponentials with different lengths as the adiabatic
elimination of fields is additive, such that f(zj , zl) =
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β e
−|zj−zl|/Lβ ∼ 1/|zj − zl|α can mimick power law de-

cays over a finite-size system. It is also possible to realize
other types of spin interactions, such as Ising, by using
different laser configurations or level structures (Douglas
et al., 2015; Gonzalez-Tudela et al., 2015a).

2. Full control of spin interactions

Beyond the functional forms derived from the multi-
level control schemes above, it is possible using magnetic
fields to fully control the spin interactions. As illustrated
in Fig. 13a, by applying a magnetic-field gradient, rel-
ative, spatially dependent shifts ∆jl of the metastable
state s are created between atoms j and l (Hung et al.,
2016). Spin interactions can then be engineered selec-
tively between pairs of atoms by introducing sidebands
in the Raman control laser Ω that match these shifts. It
is thereby possible to engineer a Hamiltonian with pair-
wise tunable, long-range spin interactions

HXY,full = ~
∑
j,l

Jjlσ
j
sgσ

l
gs , (19)

where the amplitude and phase of the coupling am-
plitudes Jjl are determined by external fields Ω(t) =∑
α

Ω̃αe
iωαt. Through a global rotation of the spin basis,

pair-wise ZZ interactions can also be engineered strobo-
scopically.

This highly tunable platform opens a number of av-
enues for exploration. For example, full control of spin
interactions allows for the investigation of frustrated
magnetism with long-range interactions or the engineer-
ing of periodic boundary conditions, e.g., to realize the
Haldane-Shastry spin chain as shown in Fig. 13b. Simi-
lar to the Raman-addressing schemes already developed
in cold atoms and trapped ions (Aidelsburger et al.,
2013; Bermudez et al., 2011; Jaksch and Zoller, 2003;
Kolovsky, 2011; Miyake et al., 2013), here the interac-
tion coefficients Jjl can also acquire a complex phase,
Jjl = |Jjl|eiφjl , by properly arranging the propagation
phases of the Raman sidebands. This allows the engineer-
ing of geometric phases in the spin model that mimic the
effect of strong magnetic fields acting on charged parti-
cles, thereby breaking time-reversal symmetry and induc-
ing non-trivial topological phases (Hung et al., 2016). A
principal manifestation of such topological phases is the
existence of edge states that support directional trans-
port and are robust against disorder (Lu et al., 2014,
2016). In the optical domain, topological edge states
have been observed in a number of linear photonic sys-
tems (absent atoms) such as helical waveguides (Rechts-
man et al., 2013) and coupled resonator arrays (Hafezi
et al., 2013). Using the tools above potentially provides
a route toward interacting quantum topological photonic
systems.

B. Perspective: multi-physics coupling

Overall, aligning atomic transition frequencies in PhC
band gaps leads to coherent Hamiltonians of the gen-
eral form Hbg ∼ ~

∑
jl f(zj , zl)σ

jσl, while highly sup-
pressing the effects of unwanted dissipation mechanisms.
The sum of possibilities encoded in Hbg is rich, going be-
yond the exploration of long-range interacting spin sys-
tems described above. For example, the atomic positions
may also be treated as dynamical variables, in which
case f(zj , zl) represents a mechanical potential, and Hbg

a system where the inter-atomic forces depend on their
spin correlations. The associated forces can be very large
compared to typical external traps, since they are derived
from the vacuum-Rabi splitting gJC associated with pho-
tons confined to the nanoscale. Finally, these nanopho-
tonic interfaces are also able to achieve efficient photon-
atom coupling. PhC’s then potentially enable one to
broadly explore novel quantum systems where atomic in-
ternal states (spins), motion (phonons), and photons are
all strongly and coherently coupled. With these new pos-
sibilities in mind, in the following two sections we discuss
some ways in which this multi-physics coupling can man-
ifest itself.

X. SPINS AND MOTION: SEMICLASSICAL AND
QUANTUM SELF-ORGANIZATION

In this section, we describe how strongly correlated
states of spin and motion arise when the positions
of the atoms in the bandgap interaction Hamiltonian
(e.g. Eq. (18)) are treated as dynamical variables rather
than being fixed. This builds upon an already rich
body of work investigating “self-organization” of atoms,
where the interplay between the scattering of light, the
forces exerted, and the atomic positions are treated self-
consistently.

Early pioneering work on self-organization investigated
the case of atoms in a high-finesse cavity (Black et al.,
2003; Domokos and Ritsch, 2002), where atoms are
driven by an external pump field propagating orthogo-
nally to the cavity axis. Qualitatively, the atoms pref-
erentially scatter photons from the pump into the cav-
ity mode. This in turn builds up a standing-wave in-
tensity whose force pushes atoms toward the anti-nodes,
and further enhances the atom-cavity coupling. Surpris-
ingly, the steady-state configuration is one in which a
spontaneously broken symmetry emerges, as atoms will
organize into every other anti-node. The origin of this
effect is that the external pump drives atoms with the
same phase, and that the cavity emission from dipoles
in every other anti-node would constructively interfere,
while emission from every anti-node would destructively
interfere. Self-organization is also possible in other con-
figurations, such as in a cavity where the pump field it-
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self forms a standing wave, resulting in a Dicke quantum
phase transition (Baumann et al., 2010), multimode cav-
ities (Gopalakrishnan et al., 2009), or in one-dimensional
waveguides (Chang et al., 2013).

In previously considered systems, the spin degree of
freedom is only treated classically, with the coherence
operator σge being approximated as a number such that
the response of atoms to light is formally identical to
that of a classical oscillating dipole. This can be justified
on a number of grounds, for example, if the atoms are
only weakly driven such that they mostly remain in the
ground state, or if dissipation is sufficiently strong that
spin correlations cannot build up. However, by using
PCW’s with atomic transitions in the bandgap, it is pos-
sible for coherent spin interactions to strongly dominate
over dissipation. If the atomic positions are dynamical
variables, it might then be possible that a quantum self-
organization can emerge, in which the stable spatial pat-
terns of atoms, and the forces “binding” these patterns
together, are due to entanglement in the spins. This also
represents a highly exotic situation compared to typical
materials, where the energy scales of crystallization and
spin physics are completely different.

A simple example of such an effect can already be seen
with just two atoms. Here, we will consider the Ra-
man scheme discussed in Sec. IX.A.1, where the bandgap
interactions are used to facilitate coherent interactions
within a ground-state manifold. This is necessary as
for typical atomic excited states, both the interaction
strength and emission rates are much larger than frequen-
cies associated with motion. Using the Raman scheme
it becomes possible to tune the interaction strengths to
become comparable to motional scales, while incoherent
loss rates become substantially smaller.

In a generic PCW, the spatial dependence of the inter-
action for frequencies within the bandgap is f(zj , zl) =
e−|zj−zl|/L cos kzj cos kzl, resulting from the combination
of the standing-wave structure of the Bloch mode and an
exponential envelope for the two-point Green’s function.
Supposing that the atoms can be treated as point parti-
cles for now, one can consider adding an external trap-
ping potential VT = V0

∑
j sin2 kT zj , where kT = k/2 is

chosen for conceptual simplicity to trap atoms at every
other node of the APCW interaction, as illustrated in
Fig. 14a. This nominally results in zero interaction en-
ergy if atoms were to remain at the nodes. However, for
two atoms, the spin part of the interaction in Eq. (18),

σ
(1)
sg σ

(2)
gs +h.c., has extremal eigenvalues of ±1 for the en-

tangled triplet and singlet states, |±〉 = (|sg〉±|gs〉)/
√

2),
respectively. Thus, the interaction energy can always be-
come negative, if each atom were to displace in one direc-
tion away from the nodes (left (L) or right (R)) and form
an appropriate entangled state, as shown in Fig. 14a.
Without the exponential dependence of f(zj , zl), four
possible combinations would be degenerate in energy.
However, the exponential most favors the two atoms be-

(a)

(b)
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Spin interaction strength
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Figure 14 (a) Trapping scheme to explore spin-motion cou-
pling. The atoms (green) are trapped by an external potential
(blue) at every second node of the Bloch function (red) of the
PCW. (b) Considering a pair of atoms, interactions mediated
by the photonic bandgap lead the atoms to have lower en-
ergy if they displace from the nodes of the Bloch function
(to the left |L〉 or right |R〉) and form either a spin triplet
(|+〉) or singlet (|−〉). Without the exponential decay of the
bandgap interactions the four possible configurations shown
here would be degenerate. The exponential dependence of
the bandgap interactions causes the state |RL,+〉 to be the
lowest-energy configuration. (c) Many-body phase diagram.
For weak bandgap interactions, the atomic wavepackets are
centered around the minimum of the external trapping poten-
tial, and the spins exhibit an anti-feromagnetic Néel ordering.
For larger interaction strengths, a spontaneously broken sym-
metry emerges where consecutive pairs of atoms form spatial
dimers, while the internal spin state of the pair exhibits a
large spin triplet fraction.

coming closer together in space, such that they form
a spatial “dimer” |RL〉, which is associated with spin
triplet |+〉. This effect is reminiscent of the spin-Peierls
model (Peierls, 1955) in condensed matter physics, a
simple one-dimensional model where a lattice instability
arises due to spin-phonon coupling.

The interesting behavior seen at the level of two atoms
naturally motivates an exploration of the many-body
phase diagram, with one trapped atom per node. One
limiting case, which has been investigated analytically
and numerically (Manzoni et al., 2017b), consists of an
interaction range L that is sufficiently small that the
nearest-neighbor approximation can be made. The mo-
tional degree of freedom is also treated quantum mechan-
ically, projected into the two lowest bands of the external
potential (for a deep lattice, the Wannier functions asso-
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ciated with these bands resemble the ground and first
excited states of a harmonic oscillator potential, super-
positions of which enable an atomic wavepacket to be
displaced to the left or right of the center of the trap).

The resulting phase diagram is qualitatively illustrated
in Fig. 14b. For sufficiently large bandgap interaction
strength, the many-body ground state is gapped and un-
dergoes a spontaneous symmetry breaking, with pairs of
atoms forming spatial dimers, and the reduced two-atom
density matrix exhibiting large overlap with the triplet
|+〉 spin state (as might be anticipated from the two-atom
example). Interestingly, for low interaction strength,
the spins do not become non-interacting, as would be
expected from classical point particles that sit exactly
at the nodes of the PCW. Instead, the quantum zero-
point motion enables spin interactions mediated by vir-
tual excitation and annihilation of phonons, and yields a
ground state of anti-ferromagnetic or Néel spin ordering.
Ref. (Manzoni et al., 2017b) also considered the presence
of an external magnetic field, which was found to yield
additional exotic phases, including a gapped phase where
atoms form spatial trimers accompanied by a fractional
magnetization, and a “spin-motion fluid” phase where
spin excitations and phonons form composite particles.

While the previous analysis focused on very specific
parameter regimes, spin-motion coupling is expected to
be an important effect in many settings. This is due to
the combination of wavelength-scale spatial variations in
the PCW-mediated interactions f(zj , zl), and interaction
strengths that can greatly exceed external trapping po-
tentials, which yield strong spin-dependent forces. This
mechanism has hardly been explored and should serve as
a rich topic for future investigation.

XI. QUANTUM DIELECTRICS: PHOTON-PHOTON
INTERACTIONS

We now discuss a different example of multi-physics
coupling, wherein the bandgap-mediated spin interac-
tions in a PCW can effectively result in interactions be-
tween propagating photons. A similar effect can already
occur in light propagation through a Rydberg ensemble,
as discussed in Sec. II, and which has produced beautiful
demonstrations of highly nonlinear effects such as pho-
ton blockade. In that case, large non-local interactions
between atoms excited to high-lying Rydberg levels map
to strong interactions between the photons. In free space,
the necessity to access high-lying Rydberg states is due
to the combination of lifetime and interaction range that
such states provide. PCW’s offer a complementary ap-
proach, where by engineering the dispersion of light itself,
even a normal atomic excited state has the required range
of interactions and ratio of interaction strength to decay
rate.

At first sight, bandgap-mediated interactions may not

seem ideal for creating interactions between propagat-
ing photons, as photons cannot propagate in a bandgap.
However, this problem is avoided by exploiting the multi-
mode nature of realistic PCW’s. For example, the
APCW supports transverse magnetic (TM) and trans-
verse electric (TE) modes as shown in Fig. 4(b), where
the band gaps for the different modes occur over different
frequency ranges. A photon with frequency in the propa-
gating band of the TM mode, and near-resonant with an
atomic transition frequency, can then be launched into
the PCW and efficiently mapped into a spin excitation.
This excitation can at the same time interact coherently
via the bandgap of the TE mode with other photon-spin
polaritons. The novelty of this system can already be
seen in the limit of infinite-range interactions, as would
be produced in conventional cavity QED. Such a system
then effectively represents an atomic ensemble simulta-
neously coupled to a nanofiber (the TM mode) and cav-
ity (TE), which is a very difficult hybrid system to create
in conventional settings.

By engineering the range and type of bandgap inter-
action as described in Section IX.A, the propagation of
photons in the TM mode is affected in diverse ways.
For example, in the case of two-level atoms with tran-
sition |g〉-|e〉 coupled resonantly to the probe, interac-
tions of the form Σj 6=lf(zj , zl)σ

j
eeσ

l
ee mean that excita-

tion of atom j via the absorption of a single photon shifts
the transition frequency of atoms l in the vicinity by an
amount f(zj , zl). Note that through the dependence of
f(zj , zl) ∼ cos kzj cos kzl on the Bloch functions, atoms
could be shifted in an alternating manner after the excita-
tion of atom j, leading to an effective period doubling and
a new effective band structure seen by subsequent pho-
tons (Albrecht et al., 2017). Alternatively, interactions
of the form Σj 6=lf(zj , zl)σ

j
egσ

l
ge lead to anharmonicity in

the excitation structure of the atomic ensemble, and for
strong interactions the medium can act like a giant two-
level system (Munro et al., 2017).

Before discussing a specific example in more detail,
it is worthwhile to discuss techniques of solving for the
dynamics of strongly interacting photons. Treating the
propagating quantum field explicitly, and its interaction
with atoms, represents an open, non-equilibrium quan-
tum field theory, whose general solution is unknown. The
spin model formalism described in Sec. V, specifically
Eqs. (4)-(6), provide a promising alternative, through
the realization that the field is not an independent de-
gree of freedom (see Eq. (4)), but rather its properties
are encoded in the dynamics of a finite (but possibly
large) number of atomic spins evolving under Eqs. (5)
and (6). Furthermore, reducing the problem to a sys-
tem of spins potentially allows an extensive toolbox of
condensed matter techniques to be applied to the photon
propagation problem, where for example using matrix
product states (Schollwock, 2011) one can access the dy-
namics of the many-body photon state (Manzoni et al.,
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2017a).

For the case at hand, light propagation in a 1D waveg-
uide with band-gap mediated interactions can be mod-
eled using a collection of spins evolving under effective
Hamiltonian Hspin = H̃1D + Hatom + Hpump + Hbg.

Here H̃1D, given by Eq. (10), models the coupling of
atoms to the TM mode, Hbg is the bandgap interac-
tion, Hatom is the Hamiltonian of the bare atoms and
Hpump describes the coupling of the atoms to input
light. Often in experiments the input probe light is a
coherent state and this coupling can be described by

Hpump = −~Ei(t)
√

Γ1D

2

∑
j(σ

j
ege

ikpzj + σjgee
−ikpzj ), for

input pulse envelope Ei(t) (Mollow, 1975). Once the
spin dynamics are solved by evolving the system ac-
cording to Hspin (along with the associated dissipative
terms), the output field Eo(z, t) = Ei(z, t) + εi(z, t) +

i
√

Γ1D

2

∑N
j=1 σ

j
ge(t)e

ikp(z−zj) is fully determined by the

coherent input (classical part Ei and vacuum fluctuations
εi) and the atomic coherence σjge. The calculation of out-

put intensity I = 〈E†oEo〉 or higher order correlation func-
tions such as g(2) then reduces to evaluation of atomic
correlation functions.

In the spin model, the nature of Hatom is not con-
strained, and it can be used for example to study light
propagation in ensembles of atoms in the electromagneti-
cally induced transparency (EIT) configuration discussed
in Sec. II (see Fig. 2d). In that figure, for atoms with
three internal levels |g〉 − |e〉 − |r〉, EIT is modified by
the presence of strong Rydberg interactions between the
r-levels. In the PCW case, instead of a Rydberg level,
one use a meta-stable state |s〉 as the third level (see inset
of Fig. 15a), and engineer a dispersive interaction similar
to Rydberg states using a bandgap, Σj 6=lf(zj , zl)σ

j
ssσ

l
ss

(Douglas et al., 2016; Shahmoon et al., 2016). Given
the extra tunability of atom-atom interactions mediated
by nano-photonic interfaces, combining them with EIT
potentially allows for a more diverse range of non-linear
effects to be realized than with Rydberg atoms where
the spatial dependence of the interaction is fixed by the
Rydberg state.

The simplest example of a situation that cannot read-
ily be achieved using (short-range) Rydberg interactions
is a spatially uniform interaction across the atomic en-
semble, f(zj , zl) = U (Caneva et al., 2015; Douglas et al.,
2016). In this case the transmission of single photons is
unaffected by the interaction, where an individual pho-
ton entering the medium sees the normal EIT response
of atom shown in Fig. 15(a). In particular, perfect trans-
parency results when the difference in frequencies be-
tween the probe and control fields matches the frequency
difference between the states g and s. However, the pres-
ence of one polariton in the medium shifts the s levels of
the atoms (Fig. 15(b)), and hence the EIT transparency
condition for a second photon that enters. New EIT res-

-2 -1 0 1 2
0

0.5

1

-2 -1 0 1 2
0

0.5

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

∆p/γ

∆p/γ∆p/γ

(a)

(c)

(b)

I1
I2

|e〉

|g〉 |s〉

|e〉

|g〉 |s〉

Figure 15 (a) Imaginary part of the linear susceptibility (in
arbitrary units) of an atom in the EIT configuration, as a
function of input probe detuning ∆p = ωp − ωeg. The imag-
inary part of the susceptibility is zero at zero detuning, in-
dicating zero absorption of a continuous probe. Inset: the
level structure of EIT, showing a probe field (red) on the
|g〉-|e〉 transition and a control field on the |s〉-|e〉 transition.
(b) A shift of the level s (inset) leads to a shifted atomic re-
sponse where zero absorption is now achieved at a detuning
∆p 6= 0. (c) In a PCW, the shift of level s can occur via inter-
actions with other atoms in level s. These interaction-induced
shifts create new transparencies for different components of
the input probe. Here we see the single-photon transmis-
sion I1 is unaffected by the shift, while the two-photon trans-
parency is shifted to the right as a result of uniform interac-
tions U = 0.5Γ. Transmission is shown for an input coher-
ent state and normalized by the input single photon and two
photon intensities for control Rabi frequency Ω = 1.9Γ and
an ensemble optical depth of 400.

onances then become available in the system, where two
or more polaritons can propagate together if their com-
bined detunings from the bare EIT resonance compen-
sate for the shift resulting from the interaction. This
behavior is shown in Fig. 15(c), where it is seen that
the peak in the spectrum for the simulated transmitted
intensity I = 〈E†oEo〉 of a weak continuous input field
occurs at a different detuning than the peak in the two-
photon “intensity” I2 = 〈E†oE†oEoEo〉. More generally, for
spatially dependent interactions these “correlated trans-
parency windows” also depend on the position of the po-
lartitons in the atomic ensemble. For example, by design-
ing the interaction between the atoms to have a minimum
at a finite atomic separation d, the two-photon transpar-
ent state takes the form of a photon molecule, where two
photons propagate through the system separated by d
(Douglas et al., 2016).

Going beyond a few photons, the many-body behavior
of photons propagating in PCW systems is expected to
display rich phenomena. A first step has been made in
this direction, by a perturbative treatment that reveals
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weak crystal-like correlations in the many-body excita-
tions of the photons (Shahmoon et al., 2016). Developing
a more general understanding of the dynamics of strongly
interacting photons, in PCW’s and in other platforms, is
challenging and constitutes one of the exciting frontiers
of quantum optics (Noh and Angelakis, 2017).

XII. OUTLOOK

In this Colloquium, we described some of the ma-
jor new paradigms for controlling atom-light interactions
within nanophotonic systems, and their potential toward
applications and realizing novel many-body phenomena.
These possibilities are made possible by a combination of
advances in nanophotonics design and fabrication, atomic
trapping techniques, and theory of quantum light-matter
interactions. A number of impressive proof-of-principle
experiments already demonstrate the power of these in-
terfaces. We have also tried to highlight the room for
further technical and technological advances, which will
help to turn the interface of atoms and nanophotonics
into a mature field.

As an outlook, we speculate that ideas born within
this field might also find impact in and infuse with other
fields. For example, the possibility to realize chiral atom-
light interactions (Mitsch et al., 2014) already has stim-
ulated investigations of many-body behavior in exotic
chiral open systems (Lodahl et al., 2017). The abil-
ity to tailor atom-light interactions using photonic crys-
tals and dispersion engineering will likely be useful in
other settings, such as “circuit QED” with superconduct-
ing qubits or in quantum optomechanical networks. In
the case of circuit QED, for example, coupling of single
qubits to waveguides (open transmission lines) can rou-
tinely reach ratios of Γ1D/Γ

′ ∼ 102 (Loo et al., 2013),
and recently a single qubit has also been coupled to a
microwave “photonic crystal” consisting of fourteen unit
cells (Liu and Houck, 2017). There has also been exten-
sive work recently to realize topological effects in systems
such as arrays of photonic resonators (Hafezi et al., 2013)
or of optomechanical elements defined in photonic crys-
tals (Peano et al., 2015). While these effects thus far are
classical, adding atoms would be a natural way to bring
such systems into the quantum regime.

An additional intriguing possibility is that the theo-
retical tools developed to treat atom-light interactions in
complex dielectric environments (Secs. V) might find use
in much more general settings. In particular, Eqs. (4)
and (7) imply that atom-light interactions are formally
encoded in the solution to an interacting open spin sys-
tem. This in turn invites a separate set of techniques
and insight, originating from the condensed matter com-
munity, to interpret atomic effects. For example, the
dynamics of one-dimensional spin systems can be nu-
merically simulated using matrix product states (Scholl-
wock, 2011), providing a route toward near-exact solu-

tions for photon propagation that go beyond previous
perturbative or low-photon treatments (Manzoni et al.,
2017a; Sanchez-Burillo et al., 2014). Separately, using
this formalism, it has been shown that an ordered ar-
ray of atoms (Barredo et al., 2016; Endres et al., 2016)
in free space can by itself be a photonic crystal, sup-
porting guided modes that do not spontaneously emit
away energy (Asenjo-Garcia et al., 2017b; Shahmoon
et al., 2017; Sutherland and Robicheaux, 2016; Zoubi and
Ritsch, 2010). Taken together, this body of theoretical
and experimental progress, and of potential connections
to other fields, certainly points to an unexpected and
much richer future for atoms and nanophotonics, as com-
pared to when efforts first began in this field.
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