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Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an
important research area in superconductivity as they are manifest in a variety of phe-
nomena. and are therefore of great fundamental and practical importance. Indeed, the
underlying physics of SC fluctuations makes it possible to elucidate the fundamental
properties of the superconducting state.
The interest in SC fluctuation phenomena was further enhanced with the discovery of
cuprate high temperature superconductors (HTS). In these materials, superconducting
fluctuations appear over a wide range of temperatures due to the superconductors’ ex-
tremely short coherence lengths and low effective dimensionality of the electron systems.
These strong fluctuations lead to anomalous properties of the normal state in some HTS
materials. Within the framework of the phenomenological Ginzburg-Landau theory, and
more extensively, in the diagrammatic microscopic approach based on BCS theory, SC
fluctuations as well as other quantum contributions (weak localization, etc.), enabled
a new way to investigate and characterize disordered electron systems, granular met-
als, Josephson structures, artificial super-lattices, and others. The characteristic feature
of SC fluctuations is its strong dependence on temperature and magnetic field in the
vicinity of the superconducting phase transition. This dependence allows the separa-
tion of fluctuation effects from other contributions and provides information about the
microscopic parameters of a material; in particular, the critical temperature and the
zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to
the relaxation processes that break phase coherence and can be used as a versatile char-
acterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful
tool for studying the properties of superconducting systems on a quantitative level.
Here, we review the physics of SC fluctuations, commencing from a qualitative descrip-
tion of thermodynamic fluctuations close to the critical temperature and quantum fluc-
tuations at zero temperature in the vicinity of the second critical field. The analysis of
the latter allows us to present fluctuation formation as a fragmentation of the Abrikosov
lattice. The review highlights a series of experimental findings followed by microscopic
description and numerical analysis of the effects of fluctuations on numerous properties
of superconductors in the entire phase diagram and beyond the superconducting phase.
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TABLE I: List of symbols. When possible, the equation number, where
a symbol is defined is listed in the third column.

c speed of light (mostly set to one)

C(fl) fluctuation heat capacity
Cn(ε1, ε2) four-leg Cooperon (31)
d effective dimension of the FCP motion
de effective dimension of the electron

motion
D electron diffusion coefficient
Dg intragrain diffusion coefficient
DT intergrain diffusion coefficient
e electron unit charge
EF Fermi energy
ETh Thouless energy
Em(x, t, h) Auxiliary function inversely propor-

tional to the fluctuation propagator
(33)

F (fl) fluctuation correction to free energy (37)
G(p, ε) one electron Green’s function
geff effective BCS interaction
Gi(d) Ginzburg-Levanyuk number (28)

h dimensionless magnetic field, H/H̃c2(0)
~ Planck constant (mostly set to one)

h̃ reduced magnetic field, [H −
Hc2(0)]/Hc2(0)

Hc2(0) second critical field at zero temperature

H̃c2(0) second critical field extrapolated to
zero temperature from the GL region

I(fl) fluctuation correction to quasiparticle
tunneling current

jα electric current density
jmag density of persistent electric current in-

duced by magnetization gradient
kB Boltzmann constant (mostly set to one)
l electron mean free path

`H FCP magnetic length,
√

~c/(2eH)
`φ phase relaxation length, vFτφ
lT thermal length,

√
D/kBT

L(q,Ωk) fluctuation propagator (24)
L(p, p′, q) two-particle Green’s function (23)
m∗ effective mass of FCPs
me electron mass

m(qp) mass of quasiparticles
M(h, t) magnetization (50)
n(q) Bose–Einstein distribution (5)
N(d) FCP concentration in d dimensions (7)
N Nernst signal (74)
nF(E) Fermi distribution

N̂L,R particle number operator in left/right
electrode

pF Fermi momentum
Qαγ “electric current - electric current” re-

sponse operator

Q̃αγ “electric current - heat current” re-
sponse operator

RN tunnel junction resistance
R� sheet resistance
rL Larmor radius
s film thickness
S wire cross-section
T temperature
t dimensionless temperature, T/Tc0

Tc(H) superconducting critical temperature

TBCS
c mean field value of superconducting

critical temperature followed from BCS
theory

Tc0 superconducting critical tempera-
ture in zero field renormalized by
fluctuations

(1)

Tpk tunnel matrix element between states
p and k

vF electron Fermi velocity
v dimensionless voltage, 2 eV

∆BCS

V voltage
Vmax voltage determining the pseudogap

eVmax

(95)

W NMR relaxation rate
α GL parameter
βαβ thermoelectric tensor relating electric

current with temperature gradient

βαβM part of the thermoelectric tensor re-
lated to magnetization currents

γαβ thermoelectric tensor relating heat cur-
rent with electric field

γE exponential Euler-Mascheroni constant (40)
γφ phase-breaking parameter (55)
Γ tunneling rate
∆(r) superconducting order parameter
∆BCS order parameter at zero temperature

∆(fl)(r, t) fluctuation order parameter
∆q, ∆∗q Fourier components of the fluctuating

order parameter
∆Es binding energy of FCP close to Tc0

∆EQF binding energy of FCP close to Hc2(0)
δ phase-breaking parameter (60)
ε reduced temperature, [T − Tc0]/Tc0 (2)
εαβζ Levi-Civita symbol
ε(q) kinetic energy of FCP (6)
εn fermionic Matsubara frequency, (2n +

1)πkBT
θ(x) Heaviside step function
καβ heat conductivity tensor
λF electron Fermi length
λn(ε1, ε1) Cooperon (30)
µ chemical potential

µ(fl) chemical potential of FCP close to Tc0

µ(QF) chemical potential of FCP close to
Hc2(0)

µ(qp) chemical potential of quasiparticle
ν(d) Nernst coefficient (11)

ν(fl) fluctuation contribution to Nernst co-
efficient close to Tc0

ν(QF) fluctuation contribution to Nernst co-
efficient close to Hc2(0)

νe electron contribution to Nernst
coefficient

ρe one-electron density of states
ρL,R density of states of the left (right)

electrode
ξ superconducting coherence length (4)
ξcl,D coherence length for clean/dirty

systems
ξGL GL coherence length (3)
ξBCS BCS coherence length at zero

temperature
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ξQF characteristic size of QF (18)
Π(q,Ωk) polarization operator (25)

σ
(AL),(MT )...
xx different fluctuation corrections to lon-

gitudinal conductivity

σ
(AL),(MT )...
xy different fluctuation corrections to Hall

conductivity

σ
(fl)
xx total fluctuation correction to

conductivity
(55)

σ
(e)
xx Drude conductivity

δσ
(fl)
tun fluctuation correction to tunneling

conductivity
ς particle-hole asymmetry parameter
τ elastic scattering time
τcp Cooper pair rotation period (17)
τGL GL lifetime of FCP (1)
τtr transport scattering time
τφ phase-breaking time
τQF lifetime of FCP in QF regime (17)
τso spin-orbit scattering time
χ± dynamic spin susceptibility

χ(fl) fluctuation correction to magnetic
susceptibility

(38)

χL Landau diamagnetic susceptibility

ψ(x),ψ(n)(x) digamma, polygamma functions
ω frequency

ωc electron cyclotron frequency,
∣∣∣ eHmec

∣∣∣
ω

(qp)
c cyclotron frequency of quasiparticles,∣∣∣ eH

m(qp)c

∣∣∣
ΩH cyclotron frequency of FCP, 4DeH

c
ωD Debye frequency
Ωk bosonic Matsubara frequency of fluc-

tuation Cooper pair, 2πkBTk, (k =
0,±1,±2... )

ωn bosonic Matsubara frequency corre-
sponding to the external field, 2πkBTn,
(n = 0, 1, 2... )

TABLE II: List of acronyms

AL Aslamasov-Larkin
BCS Bardeen-Cooper-Schriefer
BEC Bose-Einstein condensation
DCR diffusion coefficient renormalization
BKT Berezinskii-Kosterlitz-Thouless
DOS density of states
FCP fluctuation Cooper pairs
fl fluctuations
GL Ginzburg-Landau
GM Giaever and Megerle
HTS high-Tc superconductors
ID (corrections due to) interaction in dif-

fusion channel
LBA low-bias anomaly
LD Lawrence-Doniach
LLL lowest Landau level
MT Maki-Thompson
(N+SF) normal state with SF
NE Nernst-Ettingshausen
NMR nuclear magnetic resonance

NQR nuclear quadrupole resonance
pg pseudogap
QF quantum fluctuations
qp quasi-particles
QPT quantum phase transition
SC superconductor/superconducting
SF superconducting fluctuations
STM/STS scanning tunneling

microscopy/spectroscopy
WL weak localization (corrections)
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“Natura non facit saltus”,
Gottfried Leibniz, New Essays (1704).

I. INTRODUCTION

“Happy families are all alike; every unhappy family is
unhappy in its own way.” is the famous beginning line
of Leo Tolstoy’s novel, “Anna Karenina”. About a hun-
dred years later, Vladimir Nabokov turned this line on
its head and opened his novel “Ada or Ardor: A Fam-
ily Chronicle” with “All happy families are more or less
dissimilar; all unhappy ones are more or less alike.” in
reference to Tolstoy.

We do not want to say whose assertion is more astute,
but can confidently assume that scientists, studying the
ramifications of superconducting fluctuations for nearly
half a century, are content with their discoveries. Neither
can we say whether electrons or Cooper pairs [’coupled’
electrons in superconductors (SC)] are happy or not, but
we know that while stable Cooper pairs in the supercon-
ducting state form a sort of condensate below the critical
temperature Tc0 – all conducting in the same way – the
behavior of fluctuating Cooper pairs (FCPs)1 beyond the
superconducting region is more complex and results in a
multitude of interesting physical phenomena.

These FCPs affect thermodynamic and transport prop-
erties of a metal, both directly and through changes
which they cause in the quasiparticle subsystem. The in-
vestigation of superconductivity through superconduct-
ing fluctuations (SF) provides valuable information about
the microscopic properties of the normal and supercon-
ducting state and details about the formation of the lat-
ter (Larkin and Varlamov, 2009). For example, direct
measurements of the second critical field Hc2(0) of some
high temperature superconductors is a challenging prob-
lem due to its extremely large predicted values, restrict-
ing their measurements to only a few available pulsed
high-field facilities. Yet, this important material prop-
erty can be extracted from the study of the fluctuation in-
duced Nernst signal above the critical temperature (Tafti
et al., 2014) at considerably lower field ranges.

The phenomenon of superconducting fluctuations
came into the focus of the superconductivity commu-
nity nearly half a century after the discovery of super-
conductivity. There were several reasons for this sus-

1 One has to distinguish the notion of FCP from that one of a “pre-
formed Cooper pair” appearing in some BEC-BCS scenarios of
high temperature superconductivity. While preformed Cooper
pairs are supposed to be equilibrium bosons composed of two
electrons due to their effective attraction in real space, a FCP is
a useful “image” of superconducting-type correlations occurring
in a Fermi-liquid of electrons in the normal phase of a supercon-
ductor.

pended interest. For example, the early samples were in-
homogeneous, resulting in substantial extrinsic broaden-
ing of the superconducting transition, which obfuscated
the manifestation of thermal fluctuations. Later, when
homogeneous bulk materials became available, the very
sharp superconducting transition of these clean materi-
als also concealed the fluctuation phenomena. The tem-
perature region over which the superconducting transi-
tion is smeared due to fluctuations is determined by the
so-called Ginzburg-Levanyuk number, Gi(3), (Ginzburg,
1960; Levanyuk, 1959). For a three-dimensional su-
perconductor, it has a typical value range of (10−14 −
10−6)Tc0 (depending on the concentration of impurities).

The search for superconductors with high critical pa-
rameters led scientists to the investigation of disordered
superconducting films and quasi-one-dimensional sys-
tems, where the transition from the resistive to the su-
perconducting state is smeared over a much wider tem-
perature interval: ∼ (10−2 − 10−3)Tc0 (Glover, 1967).
A careful analysis of the transition region in low di-
mensional systems resulted in the concurrent formu-
lation of the phenomenological theory of fluctuations
based on the Ginzburg-Landau theory (Schmidt, 1968,
1966) and the development of a diagrammatic micro-
scopic approach (Aslamasov and Larkin, 1968; Maki,
1968; Thompson, 1970). These advances explained the
experimental observations and opened a new field of in-
terdisciplinary research involving superconductivity and
the theory of phase transitions. Furthermore, close to
the critical temperature and in relatively weak magnetic
field regions of the phase diagram, both approaches es-
sentially led to the same conclusions regarding the effect
of FCPs on various superconducting properties.2

The fluctuation “boom” started with the investiga-
tion of corrections to the heat capacity (Suzuki and
Tsuboi, 1977; Tsuboi and Suzuki, 1977), the conductiv-
ity (Glover, 1967), the density of states (Abeles et al.,
1971; Cohen et al., 1969), and the emergence of collec-
tive modes in the superconducting phase (Carlson and
Goldman, 1973) close to Tc0. All of them were found
to be small everywhere beyond the immediate vicinity of
the transition. This relatively negligible effect of fluctu-
ations on the SC transition was found to be in striking
contrast to the properties of liquid 4He at the transition
to the superfluid state, where fluctuations smear the heat
capacity jump so strongly that the corresponding temper-
ature was called the λ-point. This discrepancy was ex-
plained by the large value of the Cooper pairs coherence
length with respect to inter-atomic distances: namely,

2 The microscopic approach yields additional contributions related
to the quantum interference and indirect effects of fluctuation
pairing on the properties of the quasiparticle subsystem. The
latter are generally less singular in the vicinity of the critical
temperature.
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Tc
BCS 0

FIG. 1 (Color online) Smearing of the superconducting tran-
sition by fluctuations (ε ≈ T/Tc0 − 1). The temperature de-
pendencies of the heat capacity of a superconducting grain
in the vicinity of the transition temperature in accordance to
the BCS theory (dashed line) and the one accounting for fluc-
tuations obtained in Ref. (Schmidt, 1966) (solid line). The
typical temperature scale for the change of the heat capacity
is given by Gi(0) Tc0.

the inverse ratio of these quantities constitutes a small
parameter to the theory of SF –the Ginzburg-Levanyuk
number– and determines the weakness of SF in conven-
tional superconductors.

In the vicinity of the superconducting transition tem-
perature, the thermodynamics of SF can be described
within the framework of the GL functional. Such descrip-
tion for small, effectively zero-dimensional, SC granules
was successfully considered by V. V. Schmidt (Schmidt,
1966). Here, the shape of the superconducting transition,
smeared by fluctuations, is essentially determined by the
fourth order term in the GL functional (see Fig. 1). Un-
fortunately, a functional integration over all modes of the
fluctuating order parameter in the partition function us-
ing the complete GL functional is an infeasible task for
higher dimensional (d = 1, 2, 3) superconductors. Yet,
beyond the immediate vicinity of the critical tempera-
ture, the leading fluctuation contribution to the heat ca-
pacity arises from low energy (long-wavelength) modes of
the fluctuating order parameter. Their scale is character-
ized by the so-called Ginzburg-Landau coherence length
ξGL(T ), which is much larger then the size of the “true”
Cooper pairs emerging in BCS theory. This fact en-
ables the GL functional to describe fluctuation effects
with the quadratic approximation, which allows for solv-
ing a wide range of problems. However, the description
of fluctuations in the immediate vicinity of the transition
(ε . Gi(d)) remains beyond the validity of this approxi-
mation and requires renormalization group approaches.

The situation is similar to the effect of fluctuations on
transport coefficients: they are mainly determined by low
energy/slow modes of the order parameter (Abrahams
et al., 1970; Aslamasov and Larkin, 1968; Maki, 1968;
Scalapino, 1970).

In the early 1970s, the only experimentally observed
characteristic exhibiting a long tail in its temperature de-

 0
 0  Tc0 T

H

 Hc2

 Hc1

Abrikosov 
lattice

Vortex
liquidMeissner state

Quantum
fluctuations

Thermal
fluctuations

crossover
region

FIG. 2 (Color online) Schematic phase diagram of type-II su-
perconductors, showing the domains of qualitatively different
physical behavior.

pendence was the magnetization, which extended Meiss-
ners diamagnetism far into the normal phase of supercon-
ductors. It considerably exceeded the values for the elec-
tron diamagnetism predicted by Langevin’s and Landau’s
theories over a wide range of temperatures. Moreover,
even at temperatures close to the transition difficulties
appeared in explaining the field dependence of the fluc-
tuation magnetization in high magnetic fields. For exam-
ple, it was quite clear that strong magnetic fields should
suppress fluctuations (and this was indeed observed ex-
perimentally), the GL approach – even in its nonlinear
version – failed to explain this behavior (Patton et al.,
1969; Prange, 1970; Skocpol and Tinkham, 1975). Fur-
thermore, in the zero- and one-dimensional cases, the
precursor of the Meissner signal as function of the mag-
netic field first increases (in absolute terms) linearly with
the field until it reaches a maximum, and finally de-
creases slowly to zero. In the two-dimensional case, it
saturates and in the 3D case it increases indefinitely, in
contrast to the experimental results and common sense.
The discrepancy between the then available theory and
experimental findings demonstrated the important role
of short-wavelength and dynamical fluctuation modes,
which involve energies much larger than those accessible
with the Ginzburg-Landau approach (Kurkijärvi et al.,
1972). The sharp contradiction between theory and ex-
periment in this case may be compared to the paradox
of the Rayleigh-Jeans catastrophe that led to Planck’s
theory.

Early results obtained first in the vicinity of the tran-
sition temperature Tc0 were generalized in the 1970s to
1980s to temperature ranges far from the transition (Alt-
shuler et al., 1983; Aslamasov and Varlamov, 1980; Asla-
mazov and Larkin, 1974; Bulaevskii, 1974; Larkin, 1980;
Maki, 1973) and to relatively high fields (Lopes dos San-
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tos and Abrahams, 1985). More recently, quantum fluc-
tuations (QF), appearing in SC at low temperatures
and fields close to the second critical field Hc2(0), have
been also considered (Beloborodov and Efetov, 1999; Be-
loborodov et al., 2000; Galitski and Larkin, 2001a). Fo-
cusing on the vicinity of the quantum phase transition
one obtains a qualitative picture of superconducting fluc-
tuations quite different from that in the GL region close
to Tc0. FCPs close to Hc2(0) should rather be seen
as rotating fluctuating vortices with cyclotron frequency
ΩH ∼ ∆BCS/~ and Larmor radius rL ∼ ξBCS than being
considered as long wavelength modes. Since the charac-
teristic coherence length of QFs and their lifetime con-
siderably exceed the corresponding size and period of ro-
tation of a single vortex (ξQF � rL, τQF � ~∆−1

BCS) in
this region, one can assume that they form a peculiar
dynamic state (Glatz et al., 2011b), which consists of
clusters of coherently rotating FCPs. These form some
kind of quantum liquid (see Fig. 2, top-left).

Finally, renewed interest in superconducting fluctua-
tions was triggered by the observation of a giant Nernst-
Ettingshausen signal over a wide range of temperatures
and magnetic fields in underdoped phases of high temper-
ature superconductors (Xu et al., 2000) and later also in
conventional superconductors above the critical temper-
ature (Pourret et al., 2006a) — now in their most general
manifestation, including the quantum regime. The origin
of the giant signal generated a lively discussion and was fi-
nally explained in Refs. (Levchenko et al., 2011; Michaeli
and Finkel’stein, 2009a; Serbyn et al., 2009; Ussishkin
et al., 2002). These papers outlined the profound re-
lationship between the fluctuation Nernst-Ettingshausen
signal, magnetization currents, and the dominant role of
these effects with respect to the other fluctuation entities.

In this review, we emphasize the general approach to
describe the fluctuation phenomena in the entire phase
diagram of a superconductor above the upper critical
field line Hc2(T ) and its importance for fluctuation spec-
troscopy. We concentrate mainly on the most interesting
case of a two-dimensional s−wave superconductor, re-
stricting the consideration to the representative limit of
a dirty superconductor (kBTc0τ � ~). Moving along the
Hc2(T ) line one can see how long-wavelength fluctuations
of the order parameter, due to the effect of increasing
magnetic field, gradually transform into fluctuation vor-
tices. The crossover between these two, very different,
pictures takes place where the FCP’s Larmor radius be-
comes of the order of its coherence length. At higher
fields and at lower temperatures the quantum nature of
fluctuations becomes more pronounced and the picture
starts to resemble an Abrikosov vortex lattice rather than
a set of Ginzburg-Landau long waves. Variations in the
character of the SFs, determine their contributions to the
thermodynamic and transport behavior of the supercon-
ductor.

In recent years, a microscopic approach emerged,

which accounts for short wavelength and dynamical SFs,
elucidating the challenging experimental findings of the
last decade over the entire phase diagram. Those include
the giant Nernst signal, the non-monotonous tempera-
ture behavior of conductivity above the phase transition
in disordered SC films, the pseudo-gap opening above the
transition line, the peculiarities of the nuclear magnetic
resonance relaxation above the Abrikosov vortex state,
and many more.

At this point a word of prudence is in order. The
theoretical starting point for the microscopic considera-
tions presented in this review is the BCS theory (Bardeen
et al., 1957a,b). In its original version it describes the
Cooper pair formation as a result of electron-phonon
interaction, which was broadly successful in explaining
properties of conventional superconductors. Yet, pre-
scinding from its physical nature, one can perceive the
BCS theory as a mean-field theory, and the underly-
ing origin of the interaction responsible for the Cooper
pair formation is not that important for its applicabil-
ity. One can replace the phonons mediating the electron-
electron interaction in the BCS Hamiltonian by other
collective bosonic excitations of the solid. For example,
this approach successfully describes the physics of super-
fluid 3He, where the role of intermediate bosons is played
by ferromagnetic paramagnons. Superconductivity medi-
ated by magnetic excitations has been proposed for vari-
ous organic and heavy fermion superconductors. The col-
lective bosonic degrees of freedom can mediate electron-
electron interaction either in spin or in charge channels.
The resulting interaction does not even need to be at-
tractive. Also the type of pairing symmetry is not im-
portant, as the BCS theory can be extended to p-, d- and
higher angular momenta pairing mechanisms (Chubukov
et al., 2008; Scalapino, 2012; Tsuei and Kirtley, 2000;
V.M. Loktev, 2015). In this language we can say that
fluctuations in the framework of the generic BCS scheme
describe thermodynamic and transport properties of su-
perconductors beyond the mean-field approximation.

With the discovery of high-temperature superconduc-
tors (HTS) a new field of research was generated - yet
a generally accepted mechanism of this phenomenon is
still not available. Underdoped cuprates show clear fea-
tures of electron state localization (Mott physics), such
that the BCS theory does not apply to them. HTS oxide
superconductors with low superconducting carrier den-
sity are characterized by a relatively small phase stiffness
and poor screening, both of which imply a significantly
larger role for phase fluctuations (Emery and Kivelson,
1995). However, SC properties of optimally doped and
overdoped cuprates can be described – at least to first
approximation – using models with moderately strong
electron-electron interaction. The fundamental proper-
ties of such systems are not qualitatively different from
BCS superconductors. For this reason, we will also ap-
ply the fluctuation spectroscopy approach to analyze the
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measurements on optimally and overdoped HTSs in ad-
dition to experimental results obtained for conventional
superconductors.

The review is organized as follows: In section II we
present the qualitative picture of fluctuation phenom-
ena in superconductors by demonstrating how the main
results can be obtained from the point of view of the
uncertainty principle and basic formulas of condensed
matter physics. In section III we report on the main
ideas and necessary mathematical elements of the mi-
croscopic description of SFs at arbitrary temperatures
and magnetic fields. The following sections are organized
in a common systematic way: we focus on one physi-
cal property of the superconductor at a time, briefly re-
view how it is calculated in the Matsubara diagrammatic
technique, present the general analytical expression for
the corresponding fluctuation contribution including its
asymptotic analysis, when possible present 3D visual-
ization obtained as a result of numerical calculation in
the entire phase diagram, and, finally, its comparison
with the available experimental data. We start this se-
quence of properties with the discussion of the fluctu-
ation diamagnetism (Sec. IV), followed by the fluctua-
tion conductivity (Sec. V), Hall conductivity (Sec. VI),
Nernst-Ettingshausen effect (Sec. VII), pseudogap and
low bias anomaly (Sec. VIII), and NMR relaxation rate
(Sec. IX). In section X we discuss some aspects of fluc-
tuation corrections in quasi-2D, two-band, clean, and
nanocrystalline superconductors. Finally, we summa-
rize the more technical aspects required for the numer-
ical evaluation of the complete expressions for fluctua-
tion corrections and numerical fluctuation spectroscopy
in section XI. The numerical codes needed to fit experi-
mental data and, as a result, to extract the fundamental
microscopic parameters of the superconducting systems
(fluctuation spectroscopy) are supplied as supplementary
materials. These codes were also used to produce the 3D
surface plots of fluctuation corrections presented in this
review.

II. QUALITATIVE PICTURE

A. Thermodynamic fluctuations in superconductors close
to Tc0

1. Rayleigh–Jeans waves rather than Boltzmann particles

The BCS theory (Bardeen et al., 1957a,b), being a
mean field approximation, only deals with thermally
equilibrated Cooper pairs, which form a Bose-Einstein
condensate. Any deviations from this mean-field model
can be considered fluctuations. For example, four-
particle interactions with the formation of one or two
non-equilibrium Cooper pairs, or vice versa, interactions
resulting in the decay of a Cooper pair belonging to the

 0
 0 Tc0 Tc

BCS

(<|Δ(r)|2>)1/2

T

SC

<|ΔBCS(r)|>

<|Δ(r)|>

FIG. 3 (Color online) The temperature dependence of the
averaged mean square value of the superconducting order pa-
rameter (solid, blue line). The dashed, green line corresponds
to the mean field BCS picture (〈|∆BCS(r)|〉 and becomes zero
at the point TBCS

c ). The thick red line describes the same
〈|∆(r)|〉 dependence, but with the fluctuation renormalized
transition temperature Tc0, which is lower that the mean field
value TBCS

c (see Ref (Larkin and Varlamov, 2009)). A finite
concentration of fluctuating Cooper pairs, without long-range
spatial coherence, exists in the normal phase of superconduc-
tor for any temperature above Tc0. Their lifetime increases
approaching the transition line from the normal state.

condensate into two quasiparticles are taken into account
in the fluctuation theory (Dinter, 1977; Kulik et al., 1981;
Varlamov and Dorin, 1986). Using the language of the
Ginzburg-Landau approach, one can say that the BCS
approximation corresponds to the saddle point solution of
the GL functional. The latter describes the equilibrium
distribution of the order parameter in a superconductor
and allows for the study of its properties in the mean-
field approximation. Yet, any other imaginable ∆(r) also
contributes to the partition function of a superconductor,
being weighted by means of the corresponding canonical
distribution.

Above the critical temperature of the superconducting
transition, Tc0, the conditions for the formation of per-
sistent Cooper pairs are not yet fulfilled. Nevertheless, in
accordance with the epigraph to this review, these kind
of objects appear even in the normal phase of supercon-
ductors as fluctuations before the system undergoes the
phase transition into the superconducting state. These
FCPs appear and decay, without forming a condensate.
The corresponding lifetime τGL, the so-called Ginzburg-
Landau time, can be estimated by utilizing the uncer-
tainty principle. Clearly, at the transition temperature,
an equilibrium superconducting condensate with infinite
lifetime emerges. Hence, for continuity reasons, τGL must
diverge to infinity when T → Tc0. Let us estimate the
binding energy of FCPs, ∆Es, using dimensionality argu-
ments: While the Fermi energy, the Debye temperature,
and the critical temperature can be expressed in units
of energy, the only quantity that vanishes at the critical
temperature is kB(T − Tc0). Assuming that the binding



9

energy of a FCP is proportional to this quantity, we im-
mediately see that τGL ∼ ~/∆Es becomes infinite at the
phase transition point. The microscopic theory confirms
this hypothesis and gives the exact coefficient:

τGL =
π~

8kB(T − Tc0)
. (1)

One can also estimate the characteristic “size” of a
FCP, ξGL, which is determined by the distance that two
electrons fly away from each other in a time τGL. In
the case of a dirty superconductor, the electron motion
is diffusive, with the diffusion coefficient D ∼ v2

Fτ (τ
is the electron scattering time) and ξD(T ) =

√
DτGL ∼

vF
√
ττGL

3. In the case of a clean superconductor, where
kBTτ � ~, impurity scattering no longer affects the
electron-electron correlations. In this case, the charac-
teristic time of the ballistic electron motion turns out
to be less than the electron-impurity scattering time τ ,
and is determined by the uncertainty principle, being ∼
~/kBT . It is this latter time that has to be used to es-
timate the effective FCP size: ξcl(T ) ∼ vF

√
~τGL/kBT .

In both cases, the coherence length grows as ε−1/2 when
approaching the critical temperature, where

ε ≡ ln
T

Tc0
≈ T − Tc0

Tc0
� 1 (2)

is the reduced temperature. In the GL region (close to,
but beyond the immediate vicinity of Tc0, i.e., Gi . ε�
1) we define the coherence length as

ξGL(ε) = ξ/
√
ε . (3)

Here ξ = ξcl,D,

ξ2 = −τ
2v2

F

de

[
ψ

(
1

2
+

1

4πTτ

)
−ψ

(
1

2

)
− 1

4πTτ
ψ
′
(

1

2

)]
,

(4)
where de = 1, 2, 3 is the effective dimension of the elec-
tron motion. 4 This expression was obtained for the first
time by Gor’kov (Gor’kov, 1960) as a result of a micro-
scopic calculation. It is important to note that it only

3 Strictly speaking, in the majority of expressions below τ has the
meaning of the electron transport scattering time τtr. Neverthe-
less, as is well known, in the case of isotropic scattering these
values coincide; so for the sake of simplicity we will use hereafter
the symbol τ .

4 By introduction of de we stress the difference between the effec-
tive dimensionality for FCPs, d, and electron motion. When we
talk about a 2D superconductor, we mean a superconducting film
of thickness s � ξ, or a strongly layered material with the in-
terlayer distance larger than the perpendicular coherence length.
This condition is less restrictive in the GL region, where the
requirement s � ξGL(ε) is sufficient for two-dimensional FCP
motion. Regarding the effective dimensionality of the electron
motion de, it is determined by the specifics of its spectrum or
confined electron diffusion due to sample geometry.

differs by a numerical coefficient from the BCS expression
for the coherence length at zero temperature ξBCS. We
see that the fluctuating order parameter ∆(fl)(r, t) varies
close to Tc0 on the relatively large scale ξGL(ε) � ξBCS,
see (3).

It is important to note that FCPs, strictly speaking,
cannot be considered as Landau quasiparticles. Indeed,
while the energy of a well-defined quasiparticle has to be
much larger than its inverse lifetime, the binding energy
∆Es for a FCP turns out to be of the same order, ~/τGL.
Yet, close to Tc0, they still can be treated as classical
objects, but in the sense of Rayleigh–Jeans waves rather
than Boltzmann particles. This means that in the general
Bose–Einstein distribution function only small energies
ε(q) � T (q is the momentum of the center of mass of
FCP) are involved, and the exponential function in the
Bose-Einstein distribution can be expanded:

n(q) =
1

exp(ε(q)/kBT )− 1
→ kBT

ε(q)
. (5)

For this reason, the more appropriate tool to study fluc-
tuation phenomena is the GL equation written for classi-
cal fields rather than the Boltzmann transport equation.

Nevertheless, the treatment of FCPs as particles often
turns out to be useful. In this approach, their energy
consists of the “binding energy” and the kinetic energy
of the center of mass motion:

ε(q) = kB(T − Tc0) +
q2

2m∗
, (6)

where m∗ is the effective mass of FCP.
The concentration of FCPs can be estimated by inte-

gration of the distribution function (5) over the momenta
in the range |q| ≤ ~ ξ−1 (corresponding to the conditions
ε(q)� T ):

N(d) =

∫
|q|.~/ξ

n (q)
ddq

(2π~)
d

=
m∗kBTc0

2π~2


2πξGL (ε) d = 1
ln (1/ε) d = 2

const− ξ−1
GL (ε) d = 3

. (7)

The physical three dimensional concentration for wires
and films can be related to (7) by Ñ(3) = N(d)s

d−3. 5 It
turns out to be divergent when approaching the transi-
tion in the 1D and 2D cases. Let us recall that these

5 We define the FCP concentration in d-dimensional space. This
means that it determines the number of pairs per volume in the
3D case, the number of pairs per unit square in the 2D case,
and the number of pairs per unit length in 1D. Since both wires
and films are actual objects in three dimensional space, we can
approximate the 3D concentration of FCPs, Ñ(3), by Ñ(3) =

N(1)/s
2 for wires, where s2 is the wire cross-section and Ñ(3) =

N(2)/s for films, where s is the thickness of the film, respectively.
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results were obtained in the long wave-length approxi-
mation (i.e., not too far from transition) and does not
account for the interaction of fluctuations (i.e. not too
close to Tc), which means Gi . ε� 1.

2. Manifestations of SF close to Tc

Using the above estimates for the lifetime, (1), coher-
ence length, (3)) & (4), and concentration of FCPs, (7),
we can evaluate their contribution to different physical
characteristics of a metal close to (but above) the transi-
tion to the superconducting state. For example, we can
quantify the smearing of jump of the heat capacity at the
transition. We start with the evaluation of the energy
density of FCPs in the Rayleigh–Jeans approximation,
(5):

E(FCP)

V
=

∫
ε(q)n(q)

ddq

(2π~)
d

≈ kBTc0

∫
|q|.~/ξ

ddq

(2π~)
d
∼ kBTc0

ξd
.

One can see that in this approximation this contribution
does not depend on ε and, hence, does not contribute to
the heat capacity. At this point we note that the forma-
tion of FCPs is accompanied by a depletion of the quasi-
particles subsystem, i.e., the concentration of the latter
is reduced by 2N(d), see (7). Therefore, the total energy

density of the system changes by E(fl) ∼ −2kBTN(d) with
related correction to heat capacity

C
(fl)
V =

(
dE(fl)

dT

)
V

∼ −2kB
dN(d)(ε)

dε
∼ kB

ξd
ε
d
2−2 .

Similarly, a qualitative understanding of the increase
in the diamagnetic susceptibility above the critical tem-
perature can be obtained from the well-known Langevin
expression for the atomic susceptibility (Kittel, 2012).
Identifying the concentration of FCPs with (7), their
mass with m∗, their charge with 2e, and the average
square rotation radius by ξ2

GL(ε), one finds

∆χ(fl) =−2e2

3c2
Ñ(3)

m∗
ξ2
GL(ε)→−e

2

c2
kBTc0

π~2s3−d ξ
4−d
GL (ε) . (8)

This expression is valid for d = 2, 3 (with logarithmic
accuracy in d = 2).

Analogously, one can evaluate the direct contribution
of FCPs to the conductivity (Aslamazov-Larkin para-
conductivity). It may be done by using the Drude for-
mula. It is important to remember that impurities do not
present obstacles for the FCP motion in an applied elec-
tric field. Indeed, the diffusive character of electron mo-
tion was already taken into account when we estimated
the size of FCPs. Its square ξ2 determines the inverse
effective mass m∗, i.e., its inertia. The motion of FCPs

FIG. 4 (Color online) Anomalous MT Cooper pairing. One
electron moves clockwise with momentum p, scattering at
impurity potentials (green Gaussian peaks), while interacting
with another electron with momentum−p on almost the same
path (counter-clockwise).

in an electric field has ballistic character and applying
the Drude formula, one should use for the lifetime τGL

rather than the elastic scattering time τ , 2e for the carrier
charge, m∗ for its mass, and N(d)(ε) for the concentration
of FCPs. Using (1) and (7) one finds:

σ(AL)
xx =

4Ñ(3)(ε)e
2τGL(ε)

m∗
∼ e2

~s3−d ξ
2−dε

d
2−2 . (9)

This contribution to conductivity of the normal phase
of a superconductor corresponds to the opening of a new
channel of charge transfer above Tc0 due to the formation
of FCPs.

Besides the direct FCP effect on the properties of a su-
perconductor in its normal phase, indirect manifestation
of SFs can be found due to their influence on the quasi-
particle subsystem. These have purely quantum nature
and, in contrast to paraconductivity, require microscopic
consideration.

The first of them is the Maki-Thompson (MT) con-
tribution (Maki, 1968; Thompson, 1970), which is rele-
vant for transport coefficients of dirty SCs near Tc, where
its singular temperature dependence is similar to that of
paraconductivity. The physical origin of the MT con-
tribution is a result of the fact that in a system with
impurities, an electron can move along a self-intersecting
trajectory during the process of diffusion and return to
its origin after some time. The interference of the wave-
functions of two electrons, moving along such trajecto-
ries in the opposite directions, leads to the decrease of
the Drude conductivity (this is the phenomenon of weak
localization (Abrikosov, 1988)). This quantum effect is
nothing else than the precursor of the metal–insulator
transition.

One can imagine that along such trajectory, two elec-
trons with opposite spins move simultaneously with op-
posite momenta, interacting with each other (see Fig. 4).
They can form some specific FCPs. Here one should note,
that the amplitude of the BCS interaction of electrons
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drastically increases when T → Tc0 (see Ref. (Bardeen
et al., 1957a,b)):

geff =
g

1− ρeg ln ωD

2πT

=
1

ln T
Tc

=
1

ε
,

where ωD is the Debye frequency and ρe is the one-
electron density of states. What is the reason for this in-
crease? One possible mechanism is electron-electron scat-
tering accompanied by the formation of virtual Cooper
pairs. The probability of such induced pair irradiation
(let us remember that Cooper pairs are Bose particles) is
proportional to their number in the final state, i.e. n(p)
(see Eq. (5)). For small momenta n(p) ∼ 1/ε.

During the diffusive motion of an electron, the volume

it explores grows as (Dt)d/2. During a time dt the elec-
tron covers the elementary volume λd−1

F vFdt. Hence the
probability to return to the initial point is (Abrikosov,
1988)

w ∼
∫ tmax

tmin

λd−1
F

(Dt)d/2
vFdt .

Since we are interested in fluctuation Cooper pairing of
electrons, the corresponding minimal time on such trajec-
tories is τGL. The upper limit of the integral is governed
by the phase-breaking time τϕ since for larger time in-
tervals the phase coherence, which is necessary for the
pair formation, is broken. As a result, the relative cor-
rection to conductivity due to such processes is equal to
the product of the self-intersecting trajectory probability

and the effective interaction constant: σ
(MT)
xx /σ = wgeff .

In the 2D case,

σ
(MT,an)
(2) ∼ e2

8ε~
ln

τϕ
τGL

.

One can see that the MT contribution is extremely sensi-
tive to the electron phase-breaking processes and to the
type of symmetry of orbital pairing; this is why it can
often be suppressed.

However, the AL and MT contributions, which are pos-
itive and singular in ε close to Tc0, do not capture the
full picture of fluctuation effects on conductivity. The
involvement of quasiparticles in the fluctuation pairing
results in the depletion of their density of states at the
Fermi level, i.e., in the opening of a pseudo-gap in the
one-electron spectrum and the consequent decrease of the
one-particle Drude-like conductivity. This indirect effect
of FCP formation is usually referred to as the density
of states (DOS) contribution and can be estimated using
the Drude formula with doubled concentration of FCPs
compared to the concentration of electrons missing at the
Fermi level:

σ
(DOS)
xx(2) ∼ −

2N(2)e
2τ

me
∼ −e

2

~
ln

1

ε
. (10)

FIG. 5 (Color online) Contours of constant fluctuation con-

ductivity [σ
(fl)
xx (t, h) is shown in units of e2/~]. The domi-

nant fluctuation contributions are indicated in bold-italic la-
bels (AL for Aslamazov-Larkin, MT for Maki-Thompson,
DOS for density of states, and DCR for diffusion coefficient
renormalization). The dashed line separates the domain of

quantum fluctuations (QF) [dark area of σ
(fl)
xx > 0] and one of

thermal fluctuations (TF). After Ref. (Glatz et al., 2011a).

It is seen that the DOS contribution has an opposite sign
compared to the AL and MT contributions. In the close
vicinity of Tc0 it does not compete with them, since it
has a weaker dependence on temperature (Larkin and
Varlamov, 2009). Let us point out the different roles
FCPs play in the cases of heat capacity and conductivity:
In the former their formation is very “cheap” in terms
of energy, and the main change in heat capacity of the
system is related to the removal of quasiparticles. In the
case of conductivity, the opening of a new channel for the
charge transfer due to the formation of FCPs dominates
over the changes in the one-particle conductivity.

Finally, a renormalization of the one-electron diffusion
coefficient (DCR) in the presence of fluctuation pairing
happens. Close to Tc0, this contribution is not singular
in ε:

σ(DCR)
xx ∼ e2

~
ln ln

1

Tc0τ
+O(ε) .

For this reason it was ignored until recently. A few years
ago it was shown in Refs. (Glatz et al., 2011a; Serbyn
et al., 2009) that the renormalization of the one-electron
diffusion coefficient becomes of primary importance rel-
atively far from Tc0, and at very low temperatures. Due

to the term σ
(DCR)
xx , the sign of the overall contribution

of fluctuations to the conductivity, σ
(fl)
xx(2), is changed in

a wide region of the phase diagram, especially close to
T = 0, in the region of quantum fluctuations (Glatz et al.,
2011a) (see Fig. 5, where regions with dominating fluctu-
ation contributions to magneto-conductivity are shown).

Special attention has been paid to the giant Nernst-
Ettingshausen effect observed in the pseudogap state of
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underdoped phases of high-temperature superconductors
(HTS) (Xu et al., 2000). After the observation in HTS, a
giant Nernst-Ettingshausen signal (three orders of magni-
tude larger than the value of the corresponding coefficient
in typical metals) was detected in a wide range of tem-
peratures in the conventional, disordered superconductor
NbxSi1−x (Pourret et al., 2006b). These groundbreak-
ing experiments have led to vivid experimental and the-
oretical activities in the last decade (Behnia and Aubin,
2016; Chang et al., 2012; Kavokin and Varlamov, 2015;
Levchenko et al., 2011; Michaeli and Finkel’stein, 2009a;
Serbyn et al., 2009; Ussishkin et al., 2002).

The origin of the giant contribution of fluctuations
to the thermomagnetic signal is closely related to gi-
ant fluctuations in the diamagnetic susceptibility occur-
ring in the normal phase of superconductors. It was
noticed half a century ago (Obraztsov, 1964) that non-
compensated magnetization currents, which appear in
non-homogeneously heated samples, can play a crucial
role for the correct calculation of the Nernst coefficient,
in particular, validating the third law of thermodynam-
ics.

In the case of measurements of the Nernst-
Ettingshausen coefficient with a high resistive voltmeter,
its thermodynamic part (without the contribution of
magnetization currents) can be related to the temper-
ature derivative of the chemical potential (Serbyn et al.,
2009; Varlamov and Kavokin, 2009)

ν
(th)
(d) =

σ(d)

N(d)ce2

(
dµ(d)

dT

)
. (11)

For the electron gas in a normal metal µ(T ) ≈ µ(0) −
πk2

BT
2/ [12µ(0)] and Eq. (11) leads to the known Sond-

heimer result (Sondheimer, 1948) for the case of electron
scattering on elastic impurities:

νe = − πτ

6mec

(
kBT

µ(0)

)
,

proportional to the small electron-hole asymmetry factor.

Alternatively, one could also try to use Eq. (11) with

the values σ
(AL)
xx(d)(ε) and N(d)(ε) found above. However,

one needs to clarify what the chemical potential of fluctu-
ating Cooper pairs, µ(fl), is, since it is known that in ther-
mal equilibrium, the chemical potential of a system with
variable number of particles is zero, like the textbook ex-
amples of photon or phonon gases. A näıve application of
this “theorem” to the FCP “gas” leads to the wrong con-
clusion that µ(fl) = 0. However, one needs to be careful
when dealing with Cooper pairs, since they do not form
an isolated system, but are rather only one subsystem
with the other being formed by fermionic quasiparticles,
which always have to be taken into account as well. In
a multicomponent system, the chemical potential of the
ith component, µi, is defined as the derivative of the free

energy with respect to the number of particles of the i-th
kind:

µi =
(
∂F (fl)/∂Ni

)
V,T,Nj

, (12)

provided the numbers of particles of all other species are
fixed, Nj 6=i = const. In deriving the condition for ther-
modynamic equilibrium, one should now take into ac-
count that the creation of a Cooper pair must be accom-
panied by removing two quasiparticles from the fermionic
subsystem. This leads to µ(fl) − 2µ(qp) = 0, where µ(qp)

is the chemical potential of quasiparticles. Therefore, the
equilibrium condition does not fix µ(fl), µ(qp) to zero, even
though the numbers of Cooper pairs and quasiparticles
are not conserved. The simplest way to estimate µ(fl) is
to identify it with the “binding energy” of FCPs, ∆Es,
taken with the opposite sign: µ(fl) = Tc0 − T .

A more consistent consideration performed in the
framework of the Ginzburg-Landau fluctuation theory
confirms this estimate. The fluctuation part of free en-
ergy close to Tc0 takes form (Larkin and Varlamov, 2009)

F
(fl)
(2) (ε) = − Tc0

4πξ2
ε ln

1

ε
. (13)

Similarly, the coefficient in Eq. (7) can be expressed in
terms of the correlation length, Eq. (4), due to the re-
lation between the coefficients of the Ginzburg-Landau
functional (see (Larkin and Varlamov, 2009)):

N
(fl)
(2) (ε) =

1

4πξ2
ln

1

ε
. (14)

Substituting these expressions to Eq. (12) one finds

µ
(fl)
(2) =

 ∂F
(fl)
(2)

∂N
(fl)
(2)


V,T

=
∂F

(fl)
(2) /∂ξ

∂N
(fl)
(2) /∂ξ

= −Tc0ε . (15)

Applying this formula to the subsystem of FCPs close
to Tc0 and identifying its conductivity with Eq. (9), one
finds the Nernst-Ettingshausen coefficient generated by
FCPs in weak fields close to Tc0:

ν
(th),(fl)
(2) = −

σ
(AL)
xx(2)

(2e)
2
N

(fl)
(2) c

= −τGL (ε)

m∗c
∼ −kBξ

2

c~
1

ε
, (16)

which dramatically exceeds Sondheimer’s value. These
strong fluctuation effects are a consequence of the ex-
tremely strong dependence of the chemical potential of
FCPs on temperature and the relatively small concentra-
tion of FCPs.

B. Quantum fluctuations in superconductor above Hc2(0)

1. Dynamic clustering of fluctuation Cooper pairs

The qualitative picture for SF in the quantum region,
at very low temperatures and close to Hc2(0), drasti-
cally differs from the Ginzburg-Landau one, valid close
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to Tc0. As we saw above, the latter can be described
in terms of a set of long-wavelength fluctuation modes
(with λ ∼ ξGL(T )� ξBCS) of the order parameter, with
characteristic lifetime τGL = π~/8kB (T − Tc0). In the
former, the order parameter oscillates on much smaller
scales, such that fluctuation modes with wave-lengths up
to ξBCS and frequencies up to ∆BCS/~ are excited.

Indeed, one can visualize the situation in this region
as rotating FCPs, analogously to Cooper pairs within
Abrikosov vortices, just a little bit below Hc2(0). The
period of Cooper pairs rotating in an Abrikosov vortex
in that region is τcp ∼ Ω−1

Hc2(0) ∼ ∆BCS (ΩH = 4DeH/c
is the cyclotron frequency of Cooper pairs) and the cor-
responding Larmor radius is rL ∼ ξBCS.

The microscopic theory (Galitski and Larkin, 2001a;
Glatz et al., 2011a) shows that close to Hc2(0) at zero
temperature SF are characterized by the lifetime

τQF ∼
∆−1

BCS

h̃
� τcp, h̃ = (H −Hc2(0))/Hc2(0), (17)

and by the spatial scale

ξQF

(
h̃
)
∼ ξBCS√

h̃
� ξBCS. (18)

One sees that the dependence of both these values on the
parameter governing the transition is completely sym-
metric to that of τGL(ε) and ξGL(ε): it is sufficient to
notice that ∆BCS ∼ kBTc0 and to replace the reduced
temperature ε by the reduced field h̃.

The strong inequalities obtained allow us to assume
that at zero temperature, slightly above Hc2(0), in the
normal phase of type II superconductor, the regions of su-
perconducting coherence are extended to distances much
larger than the size of an Abrikosov vortex and such “su-
perconducting puddles” remain coherent for times much
longer than τcp.

Eq. (17) can be also obtained from the uncertainty
principle. Indeed, the energy characterizing the prox-
imity to the quantum phase transition is ∆E = ~ΩH −
~ΩHc2(0) ∼ ∆BCSh̃ and it is this value that should be
used in the Heisenberg relation instead of kB(T − Tc0),
as was done in the vicinity of Tc0. The spatial coherence

scale ξQF

(
h̃
)

can be estimated from the value of τQF

analogously to the case close to Tc0. Indeed, two elec-
trons with given phase shift starting from the same point
get separated by the distance

ξQF

(
h̃
)
∼ (DτQF)

1/2 ∼ ξBCS/
√
h̃, ,

after time τQF

In order to clarify the physical meaning of τQF and
ξQF, we note that near the quantum phase transition
(QPT) at zero temperature, where H → Hc2(0), the fluc-
tuations of the order parameter ∆(fl)(r, t) become highly

FIG. 6 (Color online) Sketch of the cluster structure of fluc-
tuation Cooper pairs above the upper critical field. After
Ref. (Glatz et al., 2011b).

inhomogeneous, contrary to the situation near Tc0. In-
deed, slightly below Hc2(0) (but in the region where the
notion of vortices is still adequate), the spatial distribu-
tion of the order parameter reflects the existence of an
Abrikosov vortex lattice with average spacing

a(H) = ξBCS/
√
H/Hc2(0)→ ξBCS .

Therefore, one expects that close to and above Hc2(0) the
fluctuation order parameter ∆(fl)(r, t) also has a “vortex-
like” spatial structure varying on the scale of ξBCS. This
structure is preserved for the lifetime of the “supercon-
ducting puddle”, which is of the order τQF.

In the language of FCPs one can describe this situation
in the following way: A FCP at zero temperature and in
a magnetic field close to Hc2(0) rotates with the Lar-
mor radius rL ∼ ξBCS, which represents its effective size.
During time τQF two initially selected electrons partici-
pate in multiple fluctuating Cooper pairings, maintaining

their coherence. The coherence length ξQF

(
h̃
)
� ξBCS

is thus a characteristic size of a cluster of such coherently
rotating FCPs (which we called above “superconducting
puddle”), and τQF estimates the lifetime of such flickering
cluster. One can view the whole system as an ensemble
of flickering domains of coherently rotating FCPs, pre-
cursors of vortices (see Fig. 6).

Let us return to the scenario of “defragmentation” of
the Abrikosov lattice by fluctuations in view of the de-
scribed qualitative picture of SF in the regime of the
QPT. Approaching Hc2(0) from below, puddles of fluc-
tuating vortices, which are nothing other than FCPs ro-
tating in the magnetic field, are formed. Their char-

acteristic size is ξQF

(
|h̃|
)

, and they flicker with char-

acteristic time τQF

(
|h̃|
)

. At this stage supercurrents

still can flow through the sample until these puddles
do not break the last percolating superconducting chan-
nel. The magnetic field for this to happen deter-
mines the value of the second critical field renormalized
by QFs: H∗c2(0) = Hc2(0)

[
1− 2Gi(2) ln

(
1/Gi(2)

)]
(see

Ref. (Larkin and Varlamov, 2009)). Above this field, no
supercurrent can flow through the sample anymore – i.e.,
one reaches the normal state of a type-II superconductor.

Nevertheless, as demonstrated by our estimates above,
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the properties of the normal phase are also affected by
quantum fluctuations. The fragments of the Abrikosov
lattice can be still be observed in the normal phase as can
be demonstrated by the following Gedanken experiment :
Clusters of rotating FCPs (ex-vortices) of size ξQF with
some kind of the superconducting order should be found
in the background of the normal metal when one takes a
picture with exposure time shorter than τQF. When the
exposure time is chosen longer than τQF the picture is
smeared out and no traces of the Abrikosov vortex state
can be found. However, what kind of the order can be de-
tected there is still unclear. It would be very interesting
to identify these clusters as remains of the Abrikosov lat-
tice, but more probably is that this is some kind of FCP
quantum liquid. Indeed, the presence of structural disor-
der can result in the formation of a hexatic phase close
to H∗c2(0), where the translational invariance no longer
exists although it still conserves the orientational order
in the vortex positioning. (Halperin and Nelson, 1978;
Nelson and Halperin, 1979; Nelson and Kosterlitz, 1977)

2. Manifestation of QF above Hc2(0)

At zero temperature and fields above Hc2(0), the
systematics of fluctuation contributions to conductivity
change considerably compared to that close to Tc0. The
collision-free rotation of FCPs (let us recall, that they
do not “feel” the presence of elastic impurities, all infor-
mation related to electron scattering is already included
in the effective mass of the Cooper pairs) results in the
absence of a direct contribution to the transverse elec-
tric transport along the applied electric field (analogously
to the suppression of the one-electron conductivity in

strong magnetic fields (ωcτ � 1): σ
(e)
xx ∼ (ωcτ)−2, see

Ref. (Abrikosov, 1988)) and the AL contribution to δσ
(fl)
(2)

vanishes. The anomalous MT and DOS contributions be-
come zero as well but due to different reasons. Namely,
the former vanishes since magnetic fields as large as
Hc2(0) completely destroy the phase coherence, whereas
the latter disappears since the magnetic field suppresses
the fluctuation gap in the one-electron spectrum. There-
fore the effect of fluctuations on the conductivity at zero
temperature is reduced to the renormalization of the one-
electron diffusion coefficient. In this region FCPs occupy
the lowest Landau level, but all dynamic fluctuations in
the frequency interval from 0 to ∆BCS should be taken
into account:

σ(DCR)
xx ∼ − e2

∆BCS

∫ ∆BCS

0

dω

h̃+ ~ω
∆BCS

∼ −e
2

~
ln

1

h̃
. (19)

In terms of the above introduced characteristics τQF

and ξQF for QF, one can understand the meaning of the
QF contributions to different physical values in the vicin-
ity of Hc2(0) and derive others, which are essential in this

region. For example, one could estimate the direct contri-
bution of the FCPs to conductivity by merely replacing
τGL → τQF in the classic AL formula, which would give

σ
(AL)
∗ ∼

(
e2/~

)
τQF. Nevertheless, as we already noticed,

FCPs at zero temperature cannot drift along the elec-
tric field but only rotate around fixed centers. As tem-
perature deviates from zero, the FCP can change their
state due to the interaction with the thermal bath, i.e.,
hopping to an adjacent rotation trajectory along the ap-
plied electric field becomes possible. This means that
FCPs can participate in longitudinal charge transport as
well. This process can be mapped to the paraconductiv-
ity of a granular superconductors (Lerner et al., 2008) at
temperatures above Tc0, where the tunneling of FCPs be-
tween grains occurs in two steps: first one electron jumps,
then the second follows. The probability of each hopping
event is proportional to the inter-grain electron tunnel-
ing rate Γ. To conserve the superconducting coherence
between both events, the latter should occur in the FCP
lifetime τGL. The probability of FCP tunneling between
two grains is determined by the conditional probability
of two one-electron hopping events and is proportional to
WΓ = Γ2τGL. Returning to the situation of FCPs above
Hc2(0), one can identify the tunneling rate by the tem-
perature T , while τGL corresponds to τQF. In order to

get a final expression, σ
(AL)
∗ should be therefore multi-

plied by the probability factor WQF = T 2τQF of the FCP
hopping to a neighboring trajectory:

σ(AL)
xx ∼ e2

~

(
T

Tc0

)2
1

h̃2
.

In order to estimate the contribution of QF to the fluc-
tuation magnetic susceptibility of the SC in the vicinity
of Hc2(0), one can apply Langevin’s formula to a coher-
ent cluster of FCPs and, identify its average size with the
rotator radius; one finds

χ
(AL)
(2) =

e2NQF
(2)

c2m∗

〈
ξ2
QF

(
h̃
)〉
∼ e2∆BCS

c2
ξ2
BCS

h̃
, (20)

in complete agreement with the result of Ref. (Galitski
and Larkin, 2001a). Here it was assumed that the ratio
of the FCP concentration over its mass in the region of
quantum fluctuations is NQF

(2) /m
∗ ∼ ∆BCS — with loga-

rithmic accuracy and in analogy to Eq. (7).
Finally, one can reproduce the contribution of QF to

the Nernst coefficient. Close to Hc2(0), the chemical po-

tential of FCP can be written as µ(QF) = −∆BCS h̃ (in
analogy to that one close to Tc0). Its temperature deriva-
tive differs from zero due to the temperature dependence
of Hc2(T ):

dµ(QF)/dT ∼ dHc2(T )/dT ∼ −T/∆BCS . (21)

Using the relation between the latter and the Nernst co-
efficient, it is possible to reproduce one of the results of
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Ref. (Serbyn et al., 2009) (with accuracy up to the nu-
merical factor):

ν(QF) ∼ τQF

m∗c

(
dµ(QF)

dT

)
∼ −kBξ

2
BCS

c~

(
kBT

∆BCS

)
1

h̃
. (22)

III. BASIC ELEMENTS OF MICROSCOPIC
DESCRIPTION OF SF IN MAGNETIC FIELD

Let us begin by recalling the basic ideas of the micro-
scopic description of fluctuations in the normal phase of
a superconductor. For this purpose one can employ the
formalism of the Matsubara diagrammatic technique. In
the BCS theory, the electron–electron attraction leads
to the reconstruction of the ground state of the electron
system of a normal metal upon approaching the critical
temperature from above (T → Tc0 + 0). Formally, this
fact is manifest by the appearance of a pole in the two-
particle Green’s function

L(p, p′, q) = 〈Tτ [ψ̃p+q,σψ̃−p,−σψ̃
+
p′+q,σ′ ψ̃

+
−p′,−σ′ ]〉 , (23)

where ψ̃p+q,σ are electron field operators, Tτ is the time
ordering operator, and 4D vector notations for electron
momentum (or other quantum numbers) are used. The
two-particle Green’s function can be expressed in terms of
the vertex part (Abrikosov et al., 1965). It is this vertex
part of the electron–electron interaction in the Cooper
channel, L(q,Ωk), that is called the fluctuation propaga-
tor below.

The Dyson equation for L(q,Ωk), accounting for the
electron–electron attraction in the ladder approximation,
is represented graphically in Fig. 7. The solid lines de-
note the single-particle Green’s functions, wavy line cor-
responds to the fluctuation propagator. The equation
can be written analytically as

L−1(q,Ωk) = −g−1 + 〈〈Π(q,Ωk)〉〉imp , (24)

where the polarization operator Π(q,Ωk) is defined as
a loop of two single-particle Green’s functions in the
particle–particle channel6:

Π(q,Ωk) = T
∑
εn

∫
d3p

(2π)3
G(p + q, εn+k)G(−p, ε−n) .

(25)
Here Ωk = 2πT and εn = (2n + 1)πT are bosonic and
fermionic Matsubara frequencies, the symbol 〈〈...〉〉imp

denotes averaging over the position of impurities.
Let us emphasize that the two quantities, L (p, p′, q)

and L (q,Ωk), are closely connected to each other (Larkin
and Varlamov, 2009). Upon integration over the mo-
menta p and p′, the former becomes an average of the

6 In the following we use units with ~ = kB = c = 1.

= +

FIG. 7 (Color online) The Dyson equation for the fluctu-
ation propagator (wavy line) in the ladder approximation.
Solid lines represent one-electron Green’s functions, circles
represent the electron–electron interaction, and the triangle
corresponds to the Cooperon (see Fig. 8).

product of two Fourier components of the superconduct-
ing order parameter (Abrikosov et al., 1965):∫

dpdp′L (p, p′, q) =
1

g2

〈
∆q∆

∗
q

〉
. (26)

From the Dyson equation in the ladder approximation
for the two-particle Green’s function (23) – similar to
that one shown in Fig. 7 – it follows that the expression
in Eq. (26) can be written in terms of the polarization
operator Π and the quantity L:∫

dpdp′L (p, p′, q) = − Π

1− gΠ
=

Π

g
L . (27)

After analytic continuation to real frequencies, the fluc-
tuation propagator L(q, iΩ) coincides (up to a constant)
with the quantity defined by Eq. (26).

Below we consider a disordered 2D superconductor
characterized by the diffusion coefficient D = v2

Fτ/de,
placed in a perpendicular magnetic field H at tempera-
tures T > Tc(H). In order to be in the regime of Gaussian
superconducting fluctuations, i.e., to avoid the region of
critical fluctuations, the temperature must be above a
certain value, which for transport properties is deter-
mined by the condition T/Tc(H)−1�

√
Gi(2)(H). The

Ginzburg-Levanyuk number close to Tc0 has the form

Gi(2) =
7ζ(3)

32π3

1

ρeTc0ξ2
(2)

, (28)

with a slight dependence on the applied magnetic field
away from Tc0, see Ref. (Larkin and Varlamov, 2009).
Here ρe is the one-electron density of states. The
Ginzburg-Levanyuk parameter is of the order of (p2

Fls)
−1

on both ends of the line Hc2(T ), and can reach values
of up to 10−2. The constant ξ(2), already introduced
in Eq. (4), coincides with the BCS coherence length of
Cooper pairs at zero temperature, up to a numerical fac-
tor. In the case of a superconductor with impurities, it
is related to the electron diffusion coefficient: ξ2 = πD

8Tc0
.

We assume for the temperature T � min
{
τ−1, ωD

}
in order to stay both in the diffusive regime of electron
scattering and in the framework of the BCS model (τ is
the electron elastic scattering time at impurities). The
magnitude of the magnetic field is limited by two condi-
tions: (i) remain below the regime of Shubnikov-de Haas

oscillations, ΩHτ . 1⇐⇒ H . (Tc0τ)
−1
Hc2(0), and (ii)
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stay below the Clogston limit, H . (εFτ)Hc2(0), i.e.,

H/Hc2(0)� min
{

(Tc0τ)
−1
, εFτ

}
.

The single-electron state in magnetic field in presence
of impurity scattering can be described by the Green’s
function written in the form of a series over Landau state
eigenfunctions ϕk

(
x− l2Hpy

)
:

G(x, x′, py, pz, εl) =
∑
k

ϕk(x− `2Hpy)ϕ∗k(x′ − `2Hpy)

iε̃l − ξ (k, pz)
,

(29)
where ε̃l = εl + 1

2τ signεl is the fermionic Matsubara fre-
quency, ξ(k, pz) = ωc(k+1/2)+ξz(pz) is the quasiparticle
energy at the corresponding Landau level (ωc is its cy-
clotron frequency), and ξz(pz) is its part related to the
motion along the direction of the magnetic field. The lat-
ter will be omitted in the discussion of the properties of
2D superconductors. For the energy-independent width
of the Landau levels, a closed expression for the Green’s
function can be obtained by a straightforward summation
over quantum numbers, or by using Schwinger’s proper
time method (see, for example, Ref. (Gusynin et al.,
1995)).

In addition to the appearance of the imaginary part
of the self-energy in the one-particle Green’s function,
see Eq. (29), the effect of coherent electron scattering
on impurities results in the renormalization of the vertex
part in the particle–particle channel. It is determined by
the Dyson equation in ladder approximation (see Fig. 8).

= +
(a)

(b)

= +

l l

C C

FIG. 8 (Color online) (a) Dyson equation for Cooperon, i.e.
the vertex that accounts for the result of averaging over elastic
impurity scattering of electrons in the ladder approximation.
Solid lines correspond to bare one-electron Green’s functions.
Dashed line is associated with an impurity correlator,

〈
U2
〉

=
1/ (2πρeτ). (b) Analogous Dyson equation for the four-leg
Cooperon in the ladder approximation.

The details of the derivations can be found in
Ref. (Larkin and Varlamov, 2009); here we only present
the results necessary for further discussions. The
Cooperon shown in Fig. 8 has the following form in Lan-
dau representation:

λn(ε1, ε2) =
τ−1θ(−ε1ε2)

|ε1 − ε2|+ ΩH(n+ 1/2) + τ−1
ϕ

, (30)

where n is the quantum number of the Landau state of
Cooper pairs , θ(x) is the Heavyside step-function, ε1 and
ε2 are the fermionic frequencies, and τϕ is the phase-
breaking time of electron scattering. In the process of
impurity averaging, one also encounters the correspond-
ing four-leg vertex, which differs from Eq. (30) only by
the factor

〈
U2
〉
:

Cn(ε1, ε2) =
1

2πρeτ

τ−1θ(−ε1ε2)

|ε1 − ε2|+ ΩH(n+ 1/2) + τ−1
ϕ

.

(31)
Finally, the expression for the fluctuation propagator in
this representation takes the form:

L−1
n (Ωk) = (32)

− ρe
[
ln

T

Tc0
+ ψ

(
1

2
+
|Ωk|+ ΩH(n+ 1

2 )

4πT

)
− ψ

(
1

2

)]
.

An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase dia-
gram of a superconductor above the line Hc2(T ) for mag-

netic fields H/Hc2(0)� min
{

(Tc0τ)
−1
, εFτ

}
, tempera-

tures T � min{τ−1, ωD}, frequencies |Ωk| � τ−1, and

Landau levels with n� (Tc0τ)
−1

.
In the following, it is convenient to use the dimension-

less temperature and magnetic field

t =
T

Tc0
, h =

H

H̃c2(0)
.

Since it is more convenient, the latter is normalized by
the value of the second critical field obtained by linear
extrapolation of its temperature dependence near Tc0:

H̃c2(0) =
Φ0

2πξ2
,

where Φ0 = π/e is the magnetic flux quantum. The

magnetic field H̃c2(0) is 8γE/π
2 = 1.45 times larger than

the true second critical field Hc2(0):

h =
H

H̃c2(0)
=

π2

8γE

H

Hc2(0)
= 0.69

H

Hc2(0)
.

In these dimensionless units, the fluctuation propaga-
tor (32) acquires the form

L−1
n (Ωk) = −ρeEn(t, h, |k|) .

The function

En(t, h, x)≡ ln t+ ψ

[
x+ 1

2
+

4h

π2t

(
n+

1

2

)]
− ψ

(
1

2

)
(33)

and its derivatives with respect to the argument x,

E(n)
n (t, h, x) ≡ ∂n

∂xn
En(t, h, x)

= 2−nψ(n)

[
1 + x

2
+

4h

π2t

(
n+

1

2

)]
, (34)
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II
I

III

IV
V
VI

VII
classical, strong fields

Gi
nzb

urg-Landau region

Gi
nzb

urg-Landau region

quantum

quantum-to-
classical

VIII

IX

1

0.69

h

t
superconducting

0

normal

0

domain t and h range description

I h = 0, ε� 1 zero field, near Tc0

II ε� h� 1 near Tc0, above the mirror re-
flected hc2-line

III h− hc2(t)� 1, ε� 1 near hc2-line

I – III h� 1, ε� 1 GL region

IV t� h̃ region of quantum fluctuations

V t2/ ln(1/t)� h̃� t� 1 quantum-to-classical

VI h̃� t2/ ln(1/t)� 1 classical, near hc2(t� 1)

VII h̃ . t� hc2(t) classical, strong fields

VIII ln t & 1, h� t high temperatures

IX h� max{1, t} high magnetic fields

FIG. 9 Left: Schematic representation of the regions of different behavior of superconducting fluctuations in the h-t diagram,
following Ref. (Glatz et al., 2011a). Right: Classification of domains in terms of different limits for t and h. Here ε ≡ ln t,

h̃ = (H −Hc2(T )) /Hc2(T );H > Hc2(T ).

plays an important role for the fluctuation contributions
discussed in the following sections, as well as its deriva-
tives with respect to the magnetic field:(
∂En
∂h

)
=

8

π2t

(
n+

1

2

)
E ′n ;

(
∂2En
∂h2

)
=

[
8

π2t

(
n+

1

2

)]2

E ′′n .

(35)
Throughout the review we present asymptotic expres-

sions of fluctuation contributions in nine different do-
mains of the phase diagram, shown and described in
Fig. 9. Domains I–III encompass the region of tem-
peratures close to Tc0 and fields h� 1, corresponding to
the regime of classical thermal fluctuations accessible in
the GL approach (with some restrictions for fluctuation
diamagnetism). The vicinity of the quantum phase tran-
sition at H = Hc2(0) is covered by the domains IV–VI:
quantum fluctuations in the domain IV gradually acquire
thermal nature in domain VI, despite the low tempera-
ture (t� 1). The crossover between the regimes of quan-
tum and classical fluctuations occurs in region V, where
h ∼ t. This part of the phase diagram can be described
microscopically in the approximation of the lowest Lan-
dau level for the FCP motion. This approach can be
extended along the line Hc2(T ) (domain VII). The high
temperature region VIII, Tc0 � T , having also relatively
weak fields, H � Hc2(0), accounts for short wave and
dynamic fluctuations. The same is true in the strong
magnetic field domain IX.

IV. FLUCTUATION DIAMAGNETISM

A. General expression for magnetic susceptibility

The qualitative estimate of the fluctuation diamagnetic
susceptibility in section II demonstrates that for 2D sys-
tems, even at high temperatures T � Tc0, it noticeably
exceeds the one-electron diamagnetic contribution (Asla-
mazov and Larkin, 1974; Bulaevskii, 1974; Maki, 1973).

In order to recognize the role of fluctuation diamag-
netism in the entire phase diagram of a superconductor
beyond the line Hc2(T ), let us start from the first order
fluctuation correction to the free energy per unit square,
graphically represented by the diagram shown in Fig. 10.
After integration over electronic momenta and summa-
tion over corresponding fermionic frequencies, it can be
written in the form (Galitski and Larkin, 2001a; Larkin
and Varlamov, 2009)

FIG. 10 (Color online) The first order fluctuation correction
to the free energy. The wavy line represents the fluctuation
propagator, solid lines with arrows are impurity averaged nor-
mal state Green’s functions.

F (fl)(H,T ) = −T
∑
Ωk

H

sΦ0

∑
m=0

lnL−1
m (Ωk) , (36)

where s is the film thickness. Eq. (36) can be rewritten in
dimensionless variables with accuracy up to an irrelevant
constant:

F (fl)(h, t) = − Tc0

2πsξ2
t
∑
Ωk

h
∑
m=0

ln Em(t, h, |k|) . (37)

The fluctuation part of the bulk magnetic susceptibil-
ity is determined by the negative second derivative of the
free energy with respect to magnetic field:
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χ(fl)(h, t) = −32e2ξ2Tc0

π3s

∑
Ωk

Mt∑
m=0

(
m+

1

2

)[
E ′m

Em(t, h, |k|)
+

4h

π2t

(
m+

1

2

)
E ′′mEm − (E ′m)

2

E2
m(t, h, |k|)

]
, (38)

with the cutoff Mt = 1/(tTc0τ).

B. Asymptotic analysis

We begin the analysis of the general Eq. (38) with the
limit of low temperatures, moving along the line Hc2(T )
from the point of the quantum phase transition (T = 0)
to higher temperatures, followed by the limits of high
temperatures and high fields away from the Hc2(T ) line.

1. Region close to the line Hc2(T ) (domains IV-VII)

In the case of low temperatures, t � hc2(t) =

Hc2(T )/H̃c2(0) one can use the lowest Landau level
(LLL) approximation, i.e., restrict the summation over
Landau levels in Eq. (38) by the lowest one with m = 0.

Along the line hc2(t), i.e. when h̃(t) � 1, the function
E0, Eq. (33), acquires the simple form

E0(t, h, |k|) = h̃(t) +
π2t|k|
4hc2(t)

. (39)

The limit of low temperatures, also allows to replace the
sum over Matsubara frequencies by an integral, which
was calculated in Ref. (Galitski and Larkin, 2001b):

χ(fl)(t, h)=
12χLl

s

(
8γE

π2

)2

h2
c2(t)

[
1

2γEt
ψ′

(
h̃

2γEt

)
− γEt

h̃2

]
,

(40)
where l = vFτ is the electron mean free path, and
χL = e2vF/12π2 is the absolute value of Landau dia-
magnetic susceptibility (γE = eγe , where γe is the Euler-
Mascheroni constant).

Using the asymptotic expression for the ψ-function,
one obtains the result for the fluctuation magnetic sus-
ceptibility close to Hc2(0), both in the regimes of quan-
tum and thermal fluctuations (domains IV and VI, re-
spectively):

χ(fl)(t, h) = 12χL

(
l

s

){ 1

h̃
, t� h̃ ,

γEt

h̃2
, h̃� t .

(41)

In the region of quantum fluctuations, χ(fl)(t� h) is tem-
perature independent and describes the diamagnetism
generated by clusters of rotating FCPs. Its positive sign
and strong dependence of h̃ indicates a rapid decrease
of this fluctuation effect as the distance from the critical
field increases. Let us stress that the microscopically ob-
tained Eq. (40) is in complete agreement with the above

FIG. 11 Magnetic susceptibility per gram of
TaS2(pyridine)1/2 as a function of temperature (Geballe
et al., 1971). χ⊥(χ‖) was measured with the applied field
perpendicular(parallel) to the layers. The points above 5K
were taken from several samples and field values between
1 and 8 kOe. No magnetic field dependence within exper-
imental errors (size of the dots) was observed. Reprinted
figure with permission from (Geballe et al., 1971). Copyright
(1971) by the American Physical Society.

evaluation of the contribution of quantum fluctuations to
the magnetic susceptibility, Eq. (8).

Taking the factor hc2(t) in Eq. (40) in account, allows
to obtain the diamagnetic susceptibility in domain VII:

χ(fl)(h̃� t . hc2(t)) =
3 · 29χLγ

3
E

π4
h2

c2(t)

(
l

s

)
t

h̃2
. (42)

One can see that the fluctuating contribution to mag-
netic susceptibility remains positive along the lineHc2(T )
and exceeds the conventional Landau diamagnetism in a
very large region of the phase diagram.

2. Limit of weak fields (domains I–III and VIII)

Moving along the line Hc2(T ) to the region of weak
fields, one finds that the summation over Landau levels
in the general formula for fluctuation diamagnetic sus-
ceptibility, Eq. (38), leads to a divergent result. The
problem can be resolved in the case of weak fields by
separating the magnetic field-dependent part of the free
energy from the temperature background (the meaning
of ‘weak fields’ depends on the domain of the phase dia-
gram under consideration). In order to do this, one can
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apply the Euler-Maclaurin formula

λ

∞∑
m=0

f

[
λ

(
m+

1

2

)]
=

λ

∫ ∞
− 1

2

f

[
λ

(
m+

1

2

)]
dm− λ2

24
[f ′(∞)− f ′(0)]

to Eq. (37), which gives

4h

π2t

∞∑
m=0

ln Em =

∫ ∞
0

ln Eξ dξ −
1

12

(
4h

π2t

)2 E ′0(t, 0, |k|)
E0(t, 0, |k|)

.

The first term does not dependent on magnetic field, and
one finds for the diamagnetic susceptibility in the approx-
imation of weak fields

χ(fl)(h, t) = −χL

(
l

s

)∑
Ωk

E ′0 (t, 0, |k|)
E0 (t, 0, |k|)

. (43)

a. Vicinity of Tc0 (domains I–III) In the case of temper-
atures close to Tc0 and small magnetic fields, h� ε� 1
(domain I of the phase diagram), the zero Matsubara fre-
quency in Eq. (43) gives the most singular contribution,
leading to the following asymptotic behavior:

χ(fl)(h� ε) = −π
2

4
χL

(
l

s

)
1

ε
. (44)

At higher magnetic fields, when h exceeds the reduced
temperature ε, Eq. (43) becomes no longer applicable.
Yet, the GL approach (Larkin and Varlamov, 2009), valid
in the vicinity of Tc0, allows to obtain an expression for
the fluctuation susceptibility applicable in the vicinity of
the critical temperature (domains I–III):

χ(fl)(ε, h� 1)=−3π2

4
χL

(
l

s

)
ε

h2

[
1− ε

2h
ψ′
(

1

2
+

ε

2h

)]
.

(45)
Its asymptotic expression in the weak-field domain I re-
produces Eq. (44). At higher fields, in domain II the
expansion of Eq. (45) gives

χ(fl)(ε� h� 1) = −3π2

4
χL

(
l

s

)
ε

h2
. (46)

Finally, in domain III one obtains

χ(fl)(ε+ h� 1) =
3π2

2
χL

(
l

s

)
h

(ε+ h)2
. (47)

One can see that the magnetic susceptibility changes its
sign between domains II and III as the line Hc2(T ) is
approached.

Eq. (47) can be rewritten as the function of the reduced

field h̃, which characterizes the distance from the line
hc2(t). Indeed, the value ε + h is nothing else, but the
reduced temperature ε(H) = (T − Tc(H))/Tc(H), with
respect to Tc(H). The latter can be expressed in terms of
the reduced field: ε(H) = h̃/hc2(t). It is therefore evident
that Eq. (47) at t ∼ hc2(t) (middle of the domain VII) is
in full agreement with Eq. (42), up to a numerical factor.
The latter was obtained in the LLL approximation, i.e.,
using a set of approximations very different from the GL
approach.

b. High temperatures (domain VIII) In the domain of
high temperatures, Tc0 � T � τ−1, one can replace
the summation over Matsubara frequencies by an inte-
gration. In the 2D case, the integration in Eq. (43) can
be performed exactly:

χ
(fl)
(2)(T,H) = −2χL

(
l

s

)(
ln ln

1

Tc0τ
− ln ln

T

Tc0

)
.

(48)
Here the weak double logarithmic ultraviolet divergence
of Eq. (43) was cut off by the applicability limit of the
dirty superconductor approximation, Ωk ∼ τ−1. This ex-
pression was first obtained by Maki and Bulaevski (Bu-
laevskii, 1974; Maki, 1973). The extremely slow de-
crease of the fluctuation diamagnetism explains the long
tales in the diamagnetic susceptibility observed in inter-
calated dichalcogenides TaS2 and NbSe2 in the early
1970s (Geballe et al., 1971; Morris and Coleman, 1973)
(see Fig. 11). The weak magnetic field limit is not restric-
tive here: H � Hc2(0) ln (T/Tc0). In the 3D case, the
ultraviolet divergence is even stronger, yet it can be elim-
inated by subtracting the corresponding quantity taken
at T ∼ Tc0. This yields

χ
(fl)
(3)(T ) = −2χL

√
Tτ

ln (T/Tc)
. (49)

3. Limit of very strong fields (domain IX)

The remaining region of very strong fields is the do-
main of dynamic and short-wavelength fluctuations. It
is beyond the limits of applicability of all three ap-
proximations used above: neither the GL approach nor
the LLL approximation, nor the Euler-Maclaurin weak-
field expansion is valid there. Following Maki and
Takayama (Maki and Takayama, 1971), Lev Bulaevskii,
Ref. (Bulaevskii, 1974), transformed the sum over Mat-
subara frequencies into the contour integral and then
applied the generalized Euler-Maclaurin transformation
for the summation over Landau levels valid for arbitrary
fields. As a result, he obtained the expression for fluctu-
ation magnetization in strong fields H > Hc2(0) at zero
temperature:
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M(h, T = 0) = −8γEe
2DHc2(0)

π4s
h

[
ln

ln 1
Tc0τ

ln
(

8γE
π2 h

) − 2

π

∫ ∞
0

dx
ln (1− e−πx)

[
ln
(

8γE
π2 h

)
+ 1

2 ln
(
1 + x2

)][
ln
(

8γE
π2 h

)
+ 1

2 ln (1 + x2)
]2

+ arctan2 x

]
. (50)

0

χ/χ
0

1 2 3 4 5
h

hc2

χ(fl)(h,t=10-4)

∂hM(h,T=0)

FIG. 12 (Color online) Fluctuation contribution to suscepti-
bility of a 2D impure superconductor at low temperatures as a
function of magnetic field above hc2. The solid, blue [darker]
line shows the behavior of Eq. (38) at t = 10−4, while the solid
orange [lighter] line the approximate expression at zero tem-
perature obtained from (50) as ∂hM(h, T = 0). Both curves
show similar asymptotic behavior in domains IV and IX. The
units of χ are arbitrary.

One can see that when magnetic field approaches Hc2(0),
the corresponding magnetic susceptibility is determined
by the first term in Eq. (50), it is positive, and repro-
duces the first line of Eq. (41), obtained in the LLL
approximation. Domain IX corresponds to the fields
Hc2(0) � H � (eDτ)−1, where lnh � 1. Here the
magnetic susceptibility changes its sign 7:

χ(fl)(h, 0) = −e
2D
π2s

[
ln ln

1

Tc0τ
− ln lnh

]
. (51)

A comparison of the susceptibilities obtained from Bu-
laevski’s approximation (50) and the full expression (38)
at very low temperatures is shown in Figure 12.

It is necessary to note that Maki et al. (Maki, 1973;
Maki and Takayama, 1971) already obtained the large,
weakly temperature dependent, divergent contribution
to the fluctuation magnetization in weak fields and they
identified it with zero-point oscillations of the FCPs. Bu-
laevskii demonstrated its occurrence at zero temperature
above the second critical field. The question whether
such oscillations exist, generated lively discussions in the
1970s; today their existence is commonly accepted, they
are quantum fluctuations which appear when the system
approaches the quantum phase transition.

The above consideration demonstrates that quantum
fluctuations give a noticeable contribution to the diamag-

7 With logarithmic accuracy we omitted the factor 8γE/π
2 = 1.45

under the logarithm in the high-field asymptotic expressions.

netism of two-dimensional impure superconductor placed
in perpendicular field in a very wide range of magnetic
fields and temperatures.

domain χ
(fl)

(2)/
(
χL

l
s

)
I−
III

− 3π2

4
ε
h2

[
1− ε

2h
ψ′
(

1
2

+ ε
2h

)]
= π2

4


− 1
ε
, I

− 3ε
h2 , II
6h

(ε+h)2
, III

IV−
VII

12
(

8γE
π2

)2
h2

c2(t)
[

1
2γEt

ψ′
(

h̃
2γEt

)
− γEt

h̃2

]
= 12


1

h̃
, IV

γEt

h̃2
, VI

0.252h2
c2(t) t

h̃2
, VII

VIII −2
(

ln ln 1
Tc0τ

− ln ln t
)

IX −2
(

ln ln 1
Tc0τ

− ln lnh
)

TABLE III Asymptotic expressions in the different domains,
shown in Fig. 9.

C. Fluctuation spectroscopy: analysis of the isothermal
magnetization curves

As an example of successful application of fluctuation
spectroscopy in characterization of specific superconduct-
ing systems, one can cite the Ref. (Bernardi et al., 2006),
in which the authors addressed a particular case of the
fluctuation contribution to the diamagnetic response of
an assembly of lead nano-particles of size d, smaller than
the coherence length, placed in an insulating matrix at
above the superconducting critical temperature.

For the fluctuation magnetization of an effectively 0D-
granule in the GL region, Gi(0) . ε, one can write the
expression valid for a wide range of magnetic fields, H �
Hc2(0) (Larkin and Varlamov, 2009):

M(0)(ε,H) = −6πTξ2

5Φ2
0d

H

(ε+ π2ξ2

10Φ2
0
H2d2)

. (52)

In accordance with Eq. (52), the fluctuation magnetiza-
tion turns out to be negative and linear in magnetic field
up to some crossover temperature-dependent upper criti-
cal field of the granule, Hc2(0)(ε) ∼ Φ0

dξ(ε) ∼
ξ
dHc2(0)

√
ε, at

which it reaches a minimum. At higher fields, Hc2(0)(ε) .
H � Hc2(0), the fluctuation magnetization of the 0D
granule is inversely proportional to the magnetic field.

In Fig. 13, we present isothermal magnetization curves
from Ref. (Lascialfari and Rigamonti, 2017). The average
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FIG. 13 (Color online) Magnetization curves above Tc(0) =
7.09±0.005◦K, for the Pb sample with average particles diam-
eters d = 75 nm. In panel (a) the experimental data are com-
pared to the theoretical curves obtained in the GL quadratic
approximation (see Eq. (52)). In the panel (b) the same ex-
perimental data are compared with the predictions done us-
ing the complete GL functional. Reprinted with permission
by author, see Ref. (Lascialfari and Rigamonti, 2017).

size of the particles, calculated based on the analysis of
the up-turn field, was found to be in excellent agreement
with direct experimental measurements. In the immedi-
ate vicinity of the transition, the authors have observed
a deviation of the experimental curves from the predic-
tions of the quadratic GL approximation. Yet, this data
(even the curve corresponding to T = 7.095K) turned
out to be in a good agreement with the curves of fluctua-
tion magnetization obtained using the complete GL func-
tional including the fourth order term (see Ref. (Larkin
and Varlamov, 2009)).

V. FLUCTUATION CONDUCTIVITY

A. General expression for fluctuation conductivity

In the standard Kubo formalism, the electric current
is related to the vector potential by means of the electro-

magnetic response operator:

jα = −
∫
Qαγ(r, r′, t, t′)Aγ(r′, t′)dr′dt′ . (53)

In the framework of the diagrammatic technique at finite
temperatures, the latter is graphically represented by a
loop diagram comprised of two electron Green’s functions
connected through electromagnetic vertices.

Taking fluctuation pairing into account, leads to a
renormalization of the Green’s functions and the vertices
by interactions in the Cooper channel (see Fig. 7), with
additional averaging over impurity positions. This results
in ten leading-order corrections to the electromagnetic re-
sponse operator shown in Fig. 14, each containing a small
parameter of the fluctuation theory (Ginzburg-Levanyuk
number, Eq. (28)) as a prefactor.

The fluctuation correction to conductivity is deter-
mined by the imaginary part of the sum of all these dia-
grams:

σ(fl)(T,H) = − lim
ω→0

ImQ(fl)(ω, T,H)

ω
. (54)
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FIG. 14 (Color online) Feynman diagrams for the leading-
order contributions to the electromagnetic response operator.
Wavy lines correspond to fluctuation propagators (Eq. (32)),
solid lines with arrows represent impurity-averaged normal
state electron Green’s functions, crossed circles are electric
field vertices, dashed lines with a circle represent additional
impurity renormalizations, and triangles and dotted rectan-
gles are impurity ladders accounting for the electron scat-
tering at impurities (Cooperons, see Eqs. (30), (31)). After
Ref. (Glatz et al., 2011a).

As mentioned above, the effect of SF on conductiv-
ity close to the superconducting critical temperature Tc0

is typically discussed in terms of three major contribu-
tions: the Aslamazov-Larkin (AL) process, correspond-
ing to the opening of a new channel for the charge trans-
fer (Aslamasov and Larkin, 1968), the anomalous Maki-
Thompson (MT) process, which describes single-particle
quantum interference at impurities in the presence of
SFs (Maki, 1968; Thompson, 1970), and the change of
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the single-particle DOS due to their involvement in the
pairing of FCPs (Dorin et al., 1993; Ioffe et al., 1993).
The AL and MT processes result in the appearance of
positive singular contributions to conductivity (diagrams
1 and 2 in Fig. 14). In contrast, the DOS process depletes
single-particle excitations at the Fermi level and leads to
a decrease of the Drude conductivity (diagrams 3–6 in
Fig. 14). The latter contribution is less singular in tem-
perature than the first two and can compete with them
only if the AL and MT processes are suppressed (for ex-
ample in the case of c-axis transport in layered supercon-
ductors). Diagrams 7–10 represents the renormalization
of the diffusion coefficient (DCR diagrams) due to the
presence of fluctuations, which are nonsingular close to
Tc0 in two and three dimensions.

These results were first obtained for the vicinity of Tc0

and later generalized to temperatures far from the transi-
tion, see Refs. (Altshuler et al., 1983; Aslamasov and Var-
lamov, 1980; Larkin, 1980)), and to high magnetic fields,
see Ref. (Lopes dos Santos and Abrahams, 1985). In 2D
superconductors the slowly (double-logarithmically) de-
creasing contributions described by diagrams 3–10 starts
to dominate far from the critical temperature (T � Tc0).
Later, the effect of quantum fluctuations on conductivity
was studied. In Refs. ((Beloborodov and Efetov, 1999;
Beloborodov et al., 2000)) it was found that in granular
superconductors at very low temperatures and close to
Hc2(0), the singular AL contribution decays as T 2, while
the fluctuation suppression of the quasiparticle DOS at
zero temperature results in a negative contribution to
conductivity, which grows logarithmically in magnitude
for H → Hc2(0). In subsection X.D, we come back to the

case of granular superconductors.

The effects of quantum fluctuations on the magneto-
conductivity of 2D superconductors, close to zero temper-
atures, were studied in Ref. (Galitski and Larkin, 2001a).
In this work, all ten diagrams shown in Fig. 14, were ana-
lyzed in lowest Landau level (LLL) approximation, which
is valid close to the critical line Hc2(T ). A nontrivial
non-monotonic temperature dependence of the fluctua-
tion conductivity at fields close to Hc2(0) was found and,
analogously to the situation in granular SCs close to zero
temperature, the fluctuation contribution is shown to be
negative, i.e., QFs increase resistivity, and not conduc-
tivity – in contrast to the behavior close to Tc0.

The problem of calculating the fluctuation conduc-
tivity of a disordered 2D superconductor placed in a
perpendicular magnetic field was revisited ten years
later in the frameworks of two different approaches in
Refs. (Glatz et al., 2011b) (Matsubara diagrammatic
technique) and (Tikhonov et al., 2012) (quantum trans-
port equation). In these papers exact calculations (with-
out the use of the LLL approximation) were performed
in first order of perturbation theory, valid in the entire
H-T phase diagram beyond the superconducting region,
i.e., for fields and temperature obeying H ≥ Hc2(T ) or,
equivalently, T ≥ Tc0(H)8.

The complete expression for the fluctuation correc-

tion to in-plane conductivity σ
(fl)
xx (T,H) of a disordered

2D SC in a perpendicular magnetic field that holds in
the T -H phase diagram beyond the line Hc2(T ) has the
form (Glatz et al., 2011a,b):

σ(fl)
xx (t, h) =

e2

π

Mt∑
m=0

(m+ 1)

∫ ∞
−∞

dx

sinh2 πx

{[
Re2 (Em − Em+1)− Im2 (Em − Em+1)

]
Im Em Im Em+1

|Em|2 |Em+1|2︸ ︷︷ ︸
σ
(AL)
xx +

− Re (Em − Em+1) Im (Em − Em+1) (Im Em Re Em+1 + Im Em+1 Re Em)

|Em|2 |Em+1|2

}
︸ ︷︷ ︸

+ σ
(AL)
xx

+
e2

π

(
h

t

) Mt∑
m=0

1

γφ + 2h
t (m+ 1/2)

∫ ∞
−∞

dx

sinh2 πx

Im2 Em
|Em|2︸ ︷︷ ︸

σ
(MT,an)
xx +σ

(MT,reg2)
xx

+
e2

π4

(
h

t

) Mt∑
m=0

∞∑
k=−∞

4E ′′m(t, h, |k|)
Em(t, h, |k|)︸ ︷︷ ︸

σ
(MT,reg1)
xx

+
4e2

π3

(
h

t

) Mt∑
m=0

∫ ∞
−∞

dx

sinh2 πx

Im Em Im E ′m
|Em|2︸ ︷︷ ︸

σ
(DOS)
xx

+
4e2

3π6

(
h

t

)2 Mt∑
m=0

(m+
1

2
)

∞∑
k=−∞

8E ′′′m (t, h, |k|)
Em(t, h, |k|)︸ ︷︷ ︸

σ
(7−10)
xx

. (55)

8 Obviously, the calculations were done within the model con- strains specified in section III and beyond the critical region.
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where γφ = π/(8Tc0τφ).
This complete expressions allows for a straightforward

numerical evaluation and to derive asymptotic expres-
sions in all its qualitatively different domains. A typical

example of the surface σ
(fl)
xx (T,H) is plotted in Fig. 15.

It demonstrates the important fact that the fluctuation
conductivity is positive only in the domain bound by the

lines Hc2(T ) and σ
(fl)
xx (T,H) = 0, and negative through-

out the rest of the phase diagram (see Fig. 5, showing

the domains of different overall signs of σ
(fl)
xx (T,H) and

contours of constant σ
(fl)
xx in the whole phase diagram).

Contrary to a common perception, the fluctuation correc-
tion to conductivity is only positive in weak fields. The

region in which σ
(fl)
xx is positive depends on the (positive)

anomalous MT contribution (i.e. on the value of the
phase-breaking time τφ). With increasing magnetic field,

the temperature interval where σ
(fl)
xx (T,H) > 0 shrinks

and vanishes close to Hc2(0). As a result, the fluctu-
ation conductivity exhibits a highly non-trivial behav-
ior at low temperatures. Near the QPT, the surface

σ
(fl)
xx (T,H) has a trough-shaped structure with a “sink”

at the point (H = Hc2(0), T = 0) and the dependence

σ
(fl)
xx (T,H = const) is non-monotonic. This feature is

also observed in experiments, which we review below.
Fig. 5 gives an overview of the entire phase diagram

where the leading fluctuation contributions to magneto-
conductivity are indicated. In particular near Tc0 the sin-
gular contributions (paraconductivity, anomalous MT,
and DOS) determine the overall behavior, while in the
QF region they become zero as ∼ T 2 (compare to
Refs. (Beloborodov and Efetov, 1999; Beloborodov et al.,
2000; Mineev and Sigrist, 2001)) and the leading contri-
bution comes from the sum of diagrams 7-10 and the
regular part of the MT diagram (Glatz et al., 2011a),
which are usually ignored. 9

B. Asymptotic analysis

Asymptotic expressions of Eq. (55) for fluctuation con-
ductivity throughout the entire h-t phase diagram are
summarized in table IV.

We begin their discussion with domains I–III, corre-
sponding to the Ginzburg-Landau region of fluctuations

9 Here we note, that there is some controversy regarding the origin

of the logarithmic singularity in σ
(fl)
xx (t � h̃), see (Galitski and

Larkin, 2001a; Glatz et al., 2011a; Tikhonov et al., 2012). The
asymptotic expression for the fluctuation conductivity in the QF
region is the same in all three works. However, in Refs. (Galitski
and Larkin, 2001a; Tikhonov et al., 2012) all 10 diagrams of
Fig. 14 contribute to the logarithm, while Ref. (Glatz et al.,
2011a) states that the quantum phase transition in conductivity
is governed only by the sum of diagrams 7-10 and the regular part
of the MT diagram and all other contributions in this domain
cancel out.

close to Tc0 and in zero magnetic field (domain I). The
contribution of diagrams 7-10 was analyzed in Ref. (Glatz
et al., 2011a) and is also discussed here. It was usually ig-
nored in literature, since it does not diverge close to Tc0.
Nevertheless, its constant contribution ∼ ln ln (Tc0τ)

−1

is necessary for matching the GL results with the neigh-
boring domains VIII & IX. Domains II & III are still
described by the GL theory in weak magnetic fields and
Eq. (55) reproduces all asymptotic expressions found in
literature.

In the domain of quantum fluctuations (IV) (see
Fig. 5), the AL paraconductivity term (which is the lead-
ing, singular contribution close to Tc0) decays with de-
creasing temperature as T 2. The same happens with the
anomalous MT contribution, which in that domain is
equal to the AL contribution. Moreover, it is exactly
canceled by the negative contribution of the four DOS-
like diagrams 3-6:

σ(AL)
xx = σ(MT,an)

xx = −σ(DOS)
xx =

4e2γ2
Et

2

3π2h̃2
. (56)

The total fluctuation contribution to conductivity σ
(fl)
xx

in this important region (t � h̃) turns out to be neg-
ative and at zero temperature diverges logarithmically
when the magnetic field approaches Hc2(0). The non-
trivial fact following from Eq. (55) is that an increase of
temperature at a fixed magnetic field mainly results in a
further decrease of conductivity in this domain

σ(fl)
xx = − 2e2

3π2
ln

1

h̃
− 2γEe

2

3π2

t

h̃
+O

[(
t

h̃

)2
]
. (57)

Only at the boundary with domain V, when t ∼ h̃, the

fluctuation conductivity σ
(fl)
xx passes through a minimum

and starts to increase. Such non-monotonic behavior of
the conductivity close to Hc2(0) was observed multiple
times in experiments (Caprara et al., 2009; Gantmakher
et al., 2003; Jin et al., 2008; Leridon et al., 2007).

Domain V describes the transition regime between
quantum and classical fluctuations, while in domains VI–
VII, (along the line Hc2(T )) superconducting fluctua-
tions have already classical character and can be con-
sidered in a generalized TDGL scheme, see Ref. (Mineev
and Sigrist, 2001).

Finally, in the peripheral domains VIII-IX, the di-
rect positive contribution of fluctuation Cooper pairs
(AL) to conductivity decays faster than all the others:
∼ ln−3 (T/Tc0). We stress, that this result differs from
the evaluation of the AL paraconductivity far from the
transition of Ref. (Aslamasov and Varlamov, 1980), but is
in complete agreement with the high temperature asymp-
totic expression for the paraconductivity of a clean 2D
superconductor, see Ref. (Reggiani et al., 1991). This
agreement seems natural: FCP transport is insensitive
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FIG. 15 (Color online) Fluctuation correction to conductivity σ
(fl)
xx (t, h) as function of the reduced temperature t = T/Tc0 and

magnetic field h = 0.69H/Hc2(0) plotted as surface. The FC changes its sign along the thick red [black] line (σ
(fl)
xx (t, h) = 0).

The superconducting region is marked by “SC”. Here σ
(fl)
xx is plotted for constant τTc0 = 10−2 and τφTc0 = 10. (a) shows a

view at the quantum region at low temperatures, the inset a close-up of the trough with a few negative contour lines (cyan
[light gray]). (b) shows a view at the high temperature region.

domain σ
(fl)
xx

I−
III

e2

2ε

( ε

2h

)2 [
ψ

( 1

2
+

ε

2h

)
− ψ

( ε

2h

)
−
h

ε

]
︸ ︷︷ ︸

σ
(AL)
xx

+
e2

8

1

ε − γφ

[
ψ

( 1

2
+

ε

2h

)
− ψ

( 1

2
+
γφ

2h
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︸ ︷︷ ︸

σ
(MT,an)
xx

− 28ζ (3) e2

π4
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ψ

( 1

2h

)
− ψ

( 1

2
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ε

2h
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︸ ︷︷ ︸

σ
(MT,reg)
xx +σ

(DOS)
xx

+
e2

3π2
ln ln

1

Tc0τ︸ ︷︷ ︸
σ
(DCR)
xx

=


e2

16ε
+ e2

8(ε−γφ)
ln ε
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−O

[
ln
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1
ε
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+ e2

3π2 ln ln 1
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e2
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−O

[
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1
h
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+ e2

3π2 ln ln 1
Tc0τ
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e2

2h(ε+h)
+ e2

3π2 ln ln 1
Tc0τ
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IV−
VII


− 2e2

3π2 ln 1
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− 2γEe

2

3π2
t

h̃
+O
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h̃

)2
]
, IV

4γEe
2

3π2
t

h̃
, V

e2

6
t

h̃(t)
, VI− VII

VIII − 2e2

3π2

(
ln ln 1

Tc0τ
− ln ln t

)
+

0.05e2 ln π2

2γφ

ln2 + 0.12e2

ln3 t

IX − 2e2

3π2

(
ln ln 1
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t
h
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ln3 2h
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t
h

)2
TABLE IV Asymptotic expressions for the fluctuation corrections to conductivity in different domains of the phase diagram.

to impurity scattering. The anomalous MT contribu-
tion decays as ∼ ln γ−1

φ / ln−2 (T/Tc0), in complete agree-
ment with Refs. (Aslamasov and Varlamov, 1980; Larkin,
1980). The contribution of diagrams 3-6 also decays as
ln−2 (T/Tc0), but without the large factor ln γ−1

φ . Finally,
the regular MT contribution together with the ones from
diagrams 7-10 decay extremely slow, in fact double loga-
rithmically:

σ(DCR)
xx = − 2e2

3π2

(
ln ln

1

Tc0τ
− ln ln

T

Tc0

)
. (58)

Up to the numerical prefactor this expression coincides

with the results of Refs. (Altshuler et al., 1983; Asla-
masov and Varlamov, 1980).

C. Fluctuation spectroscopy: analysis of the conductivity

1. Manifestation of different contributions to conductivity

Eq. (55) provides a basis for a fluctuation spectroscopy
of superconductors. This means the extraction of mi-
croscopic parameters of a measured sample based on the

analysis of fluctuation corrections. In the case of σ
(fl)
xx
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one can extract four parameters; Tc0, Hc2(0), the elas-
tic scattering time τ , and the (temperature dependent)
phase-breaking time τφ(T ). In particular the critical tem-
perature Tc0 and critical field Hc2(0) can be determined
precisely as opposed to the often used rule “half width of
transition” for Tc0, while the elastic scattering time can
also be obtained from the normal state properties of the
superconductor. In case of phase-breaking time τφ(T ),
an analysis of the fluctuation correction is an invaluable
tool for the study of its temperature dependence.

In general, the total conductivity of the disordered
system is the sum of the bare Drude conductivity σ0,
corrections due to quantum interference of the electron
waves [weak localization (WL)] which impede the elec-
trons’ propagation, corrections from the interaction be-
tween particles with close momenta [diffusion channel
(ID)], and superconducting fluctuations:

σ = σ0 + σ(WL) + σ(ID) + σ(fl)
xx , (59)

where the fluctuation part itself consists of the contri-
butions from diagrams shown in Fig. 14. Drude con-
ductivity, ID & WL corrections are subtracted from the
measured conductivity, such that Eq. (55) can then be
used to fit the fluctuation corrections.
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FIG. 16 (Color online) Fluctuation conductivity contribu-
tions: AL, MT, DOS, DCR, and total (tot) for Tc0τ = 10−3

and Tc0τφ = 5. a) shows the temperature dependence at low
field h = 0.01, and b) the field dependence at low temperature
t = 0.01. After Ref. (Glatz et al., 2011a).

The exemplary surface of σ
(fl)
xx (T,H) presented in

Fig. 15 for Tc0τ = 10−2 and Tc0τφ = 10 shows that the
value of τφ determines the behavior of fluctuation cor-
rections only in the region of low fields. It is convenient
to analyze Fig. 15 side-by-side with Fig. 5 where contour

lines σ
(fl)
xx (T,H) = const throughout the phase diagram

are shown. It is interesting to note that the numerical
analysis of Eq. (55) shows that the logarithmic asymp-
totic Eq. (57) is valid only within an extremely narrow

field range h̃ . 10−6.

Fig. 16 shows detailed plots of two particular curves

of σ
(fl)
xx (T,H), which illustrate the different contributions

from diagram groups a)-d) of Fig. 14. These are curves
for Tc0τφ = 5 at lowest magnetic field h = 0.01 [in a)]
and temperature t = 0.01 [in b)]. Curve a) reproduces
the asymptotic expressions near Tc0 given in table IV,
and one can see that the contribution from diagrams 7-10
is negligible. However, in the quantum regime the latter
becomes the dominating contribution [see b)], rendering
the total fluctuation conductivity negative. It is only
canceled very close to the QPT by the MT contribution.

Despite Eq. (55) being a closed expression, its specific
evaluation in the most general case requires sophisticated
numerical summation and integration. We describe the
more technical aspect of fluctuation spectroscopy at the
end of this review in section XI.

2. Observation of fluctuation conductivity in experiments

The usefulness of the fluctuation spectroscopy ap-
proach was shown for several experimental systems. Be-
low, we review a few of them in some detail.

a. Indium oxide films In (Glatz et al., 2011a) resistivity
measurements of thin disordered indium oxide films, pre-
sented in Ref. (Steiner and Kapitulnik, 2005), were fitted
by Eq. (55). Figure 17 shows the low temperature data
for one sample (referred to as “Weak” in Ref. (Steiner
and Kapitulnik, 2005)) of a film with thickness 30nm,
transition temperature Tc0 = 3.35K, and critical mag-
netic field Bc2(0) = 13T. The resistivity was measured,
depending on magnetic field, for low temperature val-
ues T = 200, 300, 400, 500mK. The theoretical expres-

sion for σ
(fl)
xx is plotted using fitting parameter values

Bc2(0) = 13.7T, Tc0τφ = 5 ± 1, and the experimentally

found value of Tc0 = 3.35K. Overall, the fitted σ
(fl)
xx curves

show good agreement with the results of the measure-
ments.

As mentioned above, τφ usually depends on tempera-
ture, such that for a better fit one needs first to analyze
FC data at constant temperatures to extract τφ(T ) and
then fit temperature dependent data. This way one can
obtain precise values for the parameters Tc0, Hc2(0), and
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FIG. 17 (Color online) Comparison to resistivity measure-
ments in thin indium oxide films. The experimental data
was taken from Fig. 4a of (Steiner and Kapitulnik, 2005) for
the “Weak” sample with thickness 30nm, Tc0 = 3.35K, and
Bc2(0) = 13T. The resistivity R for temperatures 0.2, 0.3,
0.4, and 0.5K was fitted using (55) with the experimentally
found Tc0. For Bc2(0) a slightly larger value of 13.7T and
Tc0τφ = 5± 1 were used. After Ref. (Glatz et al., 2011a).

τφ(T ), which would be difficult to determine otherwise.
In many cases it is useful to choose the parameter

δ = π~/(8kBTτφ) (60)

as fitting parameter, since often τφ ∝ T−1, such that
δ becomes temperature independent. This parameter is
related to γφ in Eq. (55) by γφ = tδ.

b. Fluctuations in ultrathin TiN films A rather detailed
fluctuation spectroscopy study was presented in Ref. (Ba-
turina et al., 2012), showing how one can extract the real
BCS critical temperature from a measurement. In partic-
ular, it was demonstrated how an omission of the Maki-
Thompson contribution leads to incorrect values of Tc. In
that work, the conductivity measured in thin (≤ 5 nm)
TiN films was analyzed and we review this work here to
some depth.

In thin films, σ in Eq. (59) refers to the conductance
rather than to conductivity and the WL and ID correc-
tions can be written as:

σ(WL) + σ(ID) = σ00A ln [kBTτ/~] , (61)

with A = ap + A(ID). Here, σ00 = e2/(2π2~), a = 1 if
spin-orbit scattering is neglected (τϕ � τso) or a = −1/2
when scattering is relatively strong (τϕ � τso), p is the
exponent in the temperature dependence of the phase
coherence time τϕ ∝ T−p, and AID is a constant de-
pending on the Coulomb screening and which in all
cases remains of the order of unity (Finkelshtein, 1983).
At low temperatures where electron-electron scattering

0

0

0

0

0

FIG. 18 (Color online) (a) Temperature dependences of su-
perconducting fluctuation contributions to conductance [in
units of G00 = σ00 = e2/(2π2~)]. The curves for AL, DOS,
and DCR processes are universal functions of reduced temper-
ature t = T/Tc, the MT contribution is presented for δ = 0.01
and 0.05. The black solid lines are the sum of all SF contribu-
tions Eq. (55). The inset shows the same total SF contribution
on logarithmic scale. (b) Resistance vs. reduced temperature
(see details in the text). (c) The set of the curves Tmax/Tc

vs. δ for different coefficients A from Eq. (61). The circles
represent the measured Tmax, Tc, and δ obtained by fitting
the experimental data. After Ref. (Baturina et al., 2012).

dominates one gets p = 1 and at higher temperatures,
where the electron-phonon interaction becomes relevant,
p = 2. This is in agreement with experimental obser-
vations (Bergmann, 1984; Brenig et al., 1986; Bruynser-
aede et al., 1983; Gershenzon et al., 1983; Gordon and
Goldman, 1986; Gordon et al., 1984; Raffy et al., 1983;
Santhanam and Prober, 1984; Wu and Lin, 1994) where
1 ≤ p ≤ 2, with p = 1 at T < 10 K.

In Fig. 18c the ratio Tmax/Tc as function of δ (see
Eq. (60)) is plotted for three most common experimen-
tal situations where A = 3, 2 and 0.5, corresponding to
three sets of parameters (a, p,AID) in Eq. (61): (1,2,1),
(1,1,1), and (-1/2,1,1). It is noteworthy that the maxi-
mum lies in the domain where the SF are dominated by
the Maki-Thompson contribution and that the maximum
itself arises from the competition between the WL+ID
and MT processes. In general, Tmax/Tc vs. δ curves re-
late the quantity Tmax, which is the only characteristic
point in the R(T ) dependence, to the transition temper-
ature Tc and as such can serve as a set of calibrating
curves for an easy determination of Tc, since A can be
estimated from the analysis of the resistance behavior at
high temperatures.

In Figure 19a, the temperature dependences of the re-
sistance per square for four TiN films with different room
temperature resistances is shown and in panel b) the tem-
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0 0

FIG. 19 (Color online) (a) Resistance per square vs. temper-
ature for four different TiN film samples, labeled Sxx. Solid
lines: fits accounting for all corrections. Dashed lines (marked
as WL+ID): separate contribution of the sum of weak local-
ization and interaction in the diffusion channel to the resis-
tance of the samples S01 and S15. Dotted lines (SF): contri-
bution of superconducting fluctuations. (b) The same data
as in (a), but extended to room temperatures and re-plotted
as the dimensionless conductance (G/G00 = σ/σ00). The
semi-logarithmic scale representation reveals a logarithmic de-
crease of the conductance with temperature due to the WL
and ID effects. (c) Reduced conductance (R−1−R−1

N )−1/RAL

(R−1
AL = e2/(16~) and RN = Rmax) vs. T . The linear fit to the

AL expression (solid lines) are often used for the determina-
tion of Tc and generally gives incorrect (much too high) values
of the critical temperature, shown here for samples S03 and
S04 (marked by arrows). The correct values of Tc obtained
through fluctuation spectroscopy are framed and marked by
vertical bars. After Ref. (Baturina et al., 2012).

perature behavior of the conductance. Solid fitting lines
in Fig. 19a,b account for all quantum contributions.

The fitting captures all major features of the observed
dependences: their non-monotonic behavior, the position
and the height of Rmax, and the graduate decrease in
the resistance matching perfectly the experimental points
down to values R � Rmax (without any additional as-
sumptions about mesoscopic inhomogeneities (Caprara
et al., 2011; Ioffe and Larkin, 1981)). In this study three
fitting parameters, δ, A, and, Tc were used. It is note-
worthy that while varying δ and A significantly shifts the
temperature position and the value of Rmax, it does not
change the position of Tc noticeably. It demonstrates the

fact that σ
(fl)
xx does not depend on the pair-breaking pa-

rameter δ in the close vicinity of Tc (see inset to Fig. 18a
where the curves for different δ merge).

At this point it is instructive to review the approaches

for inferring Tc from the experimental data that were
frequently used in the past. From Fig 19c) one sees
that Tc lies at the “foot” of the R(T ) curve where
R(T ) ' (0.08÷ 0.13)Rmax. Therefore, the determination
of Tc as the temperature where R(T ) drops to 0.5RN (let
alone to 0.9RN ) significantly overestimates Tc. Another
frequently used procedure (Fiory et al., 1983) is based
on the assumption that the effect of quantum corrections
can be reduced to the AL term only, i.e., that the resis-
tance obeys the relation R−1 = R−1

N + R−1
AL/(T/Tc − 1),

where R−1
AL = e2/(16~) = 1.52 · 10−5 Ω−1. This implies

that a range of temperatures near Tc exists, where the
plot [(R−1 − R−1

N )−1/RAL] vs. T can be approximated
by a straight line with slope one. The intersection of
this line with the T -axis would have defined Tc. Utilizing
this approach for the data of the two samples plotted in
Fig. 19c, yields temperatures of the intersections marked
as Tc1. One sees, however, that this procedure gives also
too high values for the superconducting critical temper-
atures.

We remark that the used fluctuation spectroscopy
does not explain all features of the measured con-
ductance curves, e.g., possible effects of Berezinskii-
Kosterlitz-Thouless (BKT) physics (Beasley et al., 1979;
Halperin and Nelson, 1979) even above Tc0, glassy be-
havior (Feigel’man et al., 2010; Sacepe et al., 2011), or
spatial inhomogeneities in the films (Caprara et al., 2013)
are not taken into account. In fact, the BKT transition
was studied as well in Ref. (Baturina et al., 2012) and it
was shown that in the analyzed samples the BKT tran-
sition temperature follows the universal relation found
by Beasley, Mooij, and Orlando in Ref. (Beasley et al.,
1979). However, the effect of the BKT transition on cor-
rections to conductivity above Tc is negligible in this case.

In conclusion, Ref. (Baturina et al., 2012) shows that
the real microscopic parameters for thin superconducting
films obtained by fluctuation spectroscopy can be signif-
icantly different than qualitative estimations.

c. Transverse magneto-resistance above Hc2(0) Fluctua-
tion spectroscopy can also be used to analyze the trans-
verse magneto-resistance observed in the layered organic
superconductor κ-(BEDT-TTF)2X above Hc2(0) at low
temperatures (Kartsovnik et al., 1999; Pratt et al., 1993;
Zuo et al., 1999) and explain its non-monotonic behavior.
The motion of FCPs in z-direction in such a system has
hopping character and the quasiparticle spectrum can be
assumed to have the form of a corrugated cylinder. Close
to Tc0 the fluctuation magneto-conductivity tensor in this
model was already studied in detail in Ref. (Dorin et al.,
1993). In this work it was demonstrated that the trans-
verse paraconductivity in that case is suppressed by the
square of the small anisotropy parameter (ξz/ξx)

2
, while

the dependence on the reduced temperature ε is consider-
ably more singular than that of the in-plane paraconduc-
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s R

z,B κ-(BEDT-TTF)2Cu(NCS)2

FIG. 20 (Color online) Comparison to resistivity mea-
surements of the layered organic superconductor κ-(BEDT-
TTF)2Cu(NCS)2. The material has a transition temperature
of Tc0 ≈ 9.5K, Bc2(0) ≈ 1.57T, and τ = 1.7ps. This experi-
mental curve is taken at T = 1.7K and fitted by expression in
Eq. (63), which is in perfect agreement with the experiment.
The inset shows a sketch of the measurement setup. After
Ref. (Glatz et al., 2011a).

tivity. In terms of the Ginzburg-Landau FCP life-time
(1), it can be written as

σ(AL)
zz (ε) =

4e2ξ4
z

π2ξ2
xys

3
T 2

c0τ
2
GL(ε) , (62)

where s is the interlayer distance. In principle this result
could be obtained, even from the Drude formula applied
to the FCP charge transfer [see above, how Eq. (62) for

σ
(AL)
xx (ε) was obtained] combined with the above specula-

tions regarding the hopping of FCPs along z-axis (Lerner
et al., 2008). This general approach, which does not in-
volve the GL scheme, allows to map Eq. (62) on the case

of the QPT by just replacing τGL(ε)→ τQF

(
h̃
)

:

σ(AL)
zz

(
h̃
)

=
4e2ξ4

z

ξ2
xs

3
T 2

c0τ
2
QF

(
h̃
)

=
4e2ξ4

z

ξ2
xs

3

(γE

π

)2 1

h̃2
.

The negative contribution appearing from the diffu-
sion coefficient renormalization competes with the posi-

tive σ
(AL)
zz

(
h̃
)

. The only difference between the in-plane

[see Eqs. (57) & (58)] and z-axis components of this
one-particle contribution consists in the anisotropy factor〈
v2

z

〉
/v2

x = ξ2
z/ξ

2
x. As a result one gets:

σ(DCR)
zz = − 2e2

3π2s

ξ2
z

ξ2
x

ln
1

h̃

and the total fluctuation correction to the z-axis
magneto-conductivity at zero temperature above Hc2(0)

can be written as

σ(fl)
zz =

2e2ξ2
z

3π2ξ2
xs

[
1.94

(
ξz
s

)2
1

h̃2
− ln

1

h̃

]
. (63)

In Ref. (Glatz et al., 2011a), Eq. (63) was used for
the analysis of data taken from Ref. (Kartsovnik et al.,
1999) on the magneto-resistance of the layered organic
superconductor κ-(BEDT-TTF)2Cu(NCS)2 at tempera-
ture T = 1.7K, much below Tc0 ≈ 9.5K, but at mag-
netic fields above Bc2(0) ≈ 1.57T. In this measurement
the magnetic field and current were applied perpendicu-
lar to the layers. The experimental curve was fitted by

0.23
(

0.18/h̃2 + ln h̃
)

, see Fig. 20. For the material pa-

rameters of this compound, the author reports τ = 1.7ps,
ξz = 0.3 − 0.4 nm, and s = 1 nm. The fitting shown in
Fig. 20 corresponds to the ratio ξz/s = 0.32 and looks
rather convincing.

The discrepancy appearing between the theoretical and
experimental curves in the high field region, was at-
tributed to the large normal-state magneto-resistance, re-
flecting the specifics of the cyclotron orbits on the multi-
connected Fermi surface of the compound (due to the low
crystal symmetry it is quite difficult to fit).

VI. FLUCTUATION HALL CONDUCTIVITY

A. Fluctuation Hall effect and the special role of
particle-hole asymmetry

It is known that interacting electronic systems with
simple band structure do not exhibit the Hall effect with-
out impurity scattering (Aronov et al., 1995). So how
does the presence of superconducting fluctuations lead
to a non-zero Hall resistance?

The FCP contribution to the Hall effect was first men-
tioned in Ref. (Abrahams et al., 1971), where the ef-
fect of the magnetic field on fluctuations above Tc0 was
studied in the framework of the time-dependent GL the-
ory. The authors recognized that the non-zero fluctu-
ation correction to the Hall conductivity appears only
if an additional term proportional to frequency is in-
cluded in the non-stationary GL equation. They have
introduced an imaginary part of the diffusion coefficient
without going into a detailed discussion about its ori-
gin. Ullah and Dorsey (Ullah and Dorsey, 1991) extended
the phenomenological consideration of the effect of fluc-
tuations on the Hall conductivity for the wide range of
magnetic fields by applying the Hartree approximation.
They attributed the imaginary part, which is responsible
for particle-hole asymmetry, to the coefficient in front
of the time derivative in the time-dependent GL equa-
tion, which is mathematically equivalent to the approach
taken in Ref. (Abrahams et al., 1971). Later, Aronov
and Rapoport (Aronov and Rapoport, 1992) expressed
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the parameter characterizing particle-hole asymmetry of
superconducting fluctuations through the derivative of
the critical temperature with respect to the quasiparticle
chemical potential, ∂Tc0

∂µ at the Fermi level, without any
assumptions concerning the microscopic nature of super-
conductivity.

Simultaneously with Abrahams et al., Fukuyama and
coauthors (Fukuyama et al., 1971) approached the prob-
lem of the fluctuation Hall conductivity in the framework
of a microscopic theory. They found that the fluctuation
correction to σxy, like in the case of the intrinsic effect

in a normal metal, is proportional to ∂ρe
∂E

∣∣∣
E=µ

, i.e. it

differs from zero only when the electron-hole asymmetry
is taken into account.

Finally, Aronov et al. (Aronov et al., 1995) demon-
strated that, due to the requirement of the gauge invari-
ance of the time-dependent GL theory, the only form
in which the particle-hole asymmetry can manifest itself
in the fluctuation propagator (32) is through the appear-
ance of the term iΩk

π2
∂ lnTc0

∂µ side by side with the modulus

of the boson frequency |Ωk|.
In addition to the small particle-hole asymmetry fac-

tor, the fluctuation correction to the Hall conductivity
contains the small parameter Gi(d) related to the weak-
ness of superconducting fluctuations. This explains why
the first experimental evidence of the pronounced effect
of fluctuations on the Hall conductivity were reported
only when high-temperature superconductors came into
the focus of investigations (Artemenko et al., 1989; Forro
and Hamzić, 1989; Galffy and Zirngiebl, 1988; Hagen
et al., 1990; Iye et al., 1989). In these materials, the
Ginzburg-Levanyuk number can be as large as 10−2 due
to their effectively two-dimensional structure. Moreover,
the fluctuation Hall conductivity acquires a stronger
singularity upon approaching Tc0 (∝ ε−2 (Ullah and
Dorsey, 1991; Varlamov and Livanov, 1990) instead of
∝ ε−3/2 (Fukuyama et al., 1971) for 3D superconduc-
tors). As a result, the Hall resistance exhibits a distinct
deviation from the linear temperature dependence ex-
pected in the normal state, up to temperatures of about
2Tc0 (Graybeal et al., 1994; Hagen et al., 1993; Kokubo
et al., 2001; Lang et al., 1995; Liu et al., 1997; Paala-
nen et al., 1992; Samoilov, 1994; Smith et al., 1994). At
temperatures near Tc0, a sign reversal of the Hall con-
ductivity was observed.

Note, that the electron-hole asymmetry in the band
structure is not the only effect that can lead to the ap-
pearance of a nonzero fluctuation correction to Hall con-
ductivity. It has been shown (Angilella et al., 2003) that
its sign and the value can depend on the topological
structure of the Fermi surface. Evidence for a universal
behavior of the Hall conductivity as a function of doping,
which can change the topology of the Fermi surface, has
been reported in the cuprate superconductors (Nagaoka
et al., 1998).

B. Microscopic theory of fluctuation Hall effect

Formally, similar to the diagonal component of con-
ductivity, the fluctuation correction to the Hall conduc-
tivity is described by the same ten diagrams depicted in
Fig. 14, but with one of the vertices being ev̂y instead
of ev̂x. Historically, the AL process, corresponding to
an independent channel of charge transfer, was studied
themost, since it is the dominant contribution in the GL
regime, domains I–III near Tc0 (Abrahams et al., 1971;
Aronov and Rapoport, 1992; Fukuyama et al., 1971; In-
oue et al., 1979; Ullah and Dorsey, 1990, 1991; Varlamov
and Livanov, 1990).

First, we discuss of the physical meaning of the Hall
resistivity ρxy. In the case of only one type of carriers,
it depends on their concentration n and turns out to be
independent of the electron diffusion coefficient: ρxy =
H/(en). The fluctuation processes of MT and DCR types
contribute to the diffusion coefficient, so their expected
contribution to the Hall resistivity is zero. For the Hall
conductivity in a weak field one can write

σxy = ρxyσ
2
xx = ρxyσ

(n)2
xx + 2ρxyσ

(n)
xx σ

(fl)
xx

= σ(n)
xy

(
1 + 2

σ
(fl)
xx

σ
(n)
xx

)
. (64)

This means, the relative fluctuation correction to the Hall
conductivity is twice as large than the fluctuation correc-
tion to the diagonal component. This qualitative consid-
eration is confirmed by a direct calculation of the MT
diagram (Fukuyama et al., 1971).

A complete theory of the fluctuation Hall effect was re-
cently developed by Michaeli et al. (Michaeli et al., 2012).
In agreement with the statement of Ref. (Aronov et al.,
1995), the authors introduced the particle-hole asymme-
try parameter ς = − 1

2
∂ lnTc0

∂µ in the propagator of super-
conducting fluctuations as follows:

L̃−1
n (Ωk) = (65)

−ρe
[
ln

T

Tc0
+ψ

(
1

2
+
|Ωk|+ΩH(n+ 1

2 )

4πT

)
−ψ

(
1

2

)
+ςΩk

]
.

The fact that the term linear in Ωk appears outside the
argument of the polygamma-function is related to the
smallness of ς and the condition |Ωk| ≤ τ−1 which allows
to expand the ψ-function with respect to ςΩk and to
arrive at Eq. (65), which results in the total contribution
from the aforementioned ten diagrams being proportional
to ςΩH .

The authors of Ref. (Michaeli et al., 2012) support the
above qualitative statement and demonstrated that the
sum of the contributions of the two DOS diagrams, 5 and
6 in Fig. 14, the MT diagram and all DCR diagrams is
equal to zero for all H and T above the transition line
Hc2(T ) (their combined effect can be reduced to a renor-
malization of the diffusion coefficient). It is therefore
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sufficient to consider only the AL contribution and the
two remaining DOS contributions, 3 and 4.

Michaeli et al. also considered two usually disregarded
diagrams, shown in Fig. 21, which also contribute a
leading-order correction to the Hall conductivity. This
additional contribution is proportional to the cyclotron

frequency of quasiparticles, ω
(qp)
c . It turns to be dom-

inant at high temperatures T � Tc0. Note that the
correction to the diagonal component of fluctuation con-

ductivity σ
(fl)
xx from these two diagrams contains an addi-

tional small prefactor Tτ and does not contribute to the
leading order.

FIG. 21 (Color online) Two additional Feynman diagrams
giving leading-order contributions to the Hall conductivity.
The solid lines represent the electron Green’s function, wavy
lines the fluctuation propagator, and red [dark gray] trian-
gles electron scattering at impurities. In addition, the dotted
purple [gray] lines takes into account the flux enclosed by the
paths of all charged excitations. The x- and y-vertices are
maked by “+” and “x”, respectively. All other diagrams are
similar to the conductivity diagrams 14, but with different
vertices.

C. Asymptotic analysis and comparison to experiments

1. Region close to the line Hc2(T )

In the vicinity of the superconducting phase transition
line at small enough magnetic fields, h � t, the leading
correction to σxy is produced by the AL diagram:

σ(fl)
xy (h, t)=

2e2ςTc0ρ(0)

π
sgn(h)t

∑
n

(n+1)

[
L̃n(0)−L̃n+1(0)

]3
[
L̃n+1(0)+L̃n(0)

]2 .
(66)

This correction is negative due to the fact that ς < 0 for
a superconducting film with three-dimensional electrons
and a simple electron spectrum, and has a non-monotonic

FIG. 22 (Color online) Experimental results for fluctuation
Hall conductivity in two samples of TaNx as a function of ap-
plied magnetic field for a range of temperatures near Tc(H).
The fitting is done in accordance with Eq. (66). Reprinted fig-
ure with permission from Ref. (Breznay et al., 2012). Copy-
right (2012) by the American Physical Society.

dependence on the applied magnetic field, reaching a
peak at h∗ = 1.3ε in the close vicinity of Tc0.

The experimental results of (Breznay et al., 2012) for
the fluctuation correction to the Hall conductivity in ul-
trathin disordered films of TaNx, calculated by subtract-
ing the normal (linear in magnetic field) component from
the total measured conductivity, are in excellent agree-
ment with a fitting based on the AL correction, Eq. (66),
which is dominant over a wide range of magnetic fields
and temperatures in a region around the transition, as
shown in Fig. (22).

In another recent experimental study (Breznay and
Kapitulnik, 2013), the authors have also observed a sig-
nificant fluctuation contribution to the Hall resistance
(less the normal linear contribution) at T > Tc(H). The
results indicate the existence of a peak Hall resistance
due to superconducting fluctuations observed at some
H∗ above the Hc(T ) line, see Fig. (23). This peak at
H∗, as a function of temperature above the transition,
starts to form at Tc0 and shifts towards larger fields until
at a temperatures ∼ T ∼ 2Tc0 the Hall effect from super-
conducting fluctuations becomes too weak and the peak
is smeared out.



31

0.08

6.0 K

5.0 K

4.2 K

4.0 K

3.5 K

3.0 K

2.8 K

2.6 K

R
xy

 (
)

0H (T)

FIG. 23 (Color online) Experimental results for fluctuation
Hall resistance in a TaN thin film as a function of applied
magnetic field for a range of temperatures above Tc(H) with
marked peak at H∗. The normal-state contribution has been
subtracted from Rxy. The curves are offset vertically for clar-
ity, and a vertical scale bar of 0.08Ω is indicated. Reprinted
figure with permission from Ref. (Breznay and Kapitulnik,
2013). Copyright (2013) by the American Physical Society.

2. Limit of weak fields

In the GL domains I–II, the sum over Landau lev-
els in Eq. (66) can be replaced by a continuous integral,
yielding the following complete correction to Hall con-
ductivity:

σ(fl)
xy =

ςΩHe
2

96

sgn(h)

(ε+ h)2
. (67)

Notice, that the divergence of the Hall conductivity near

Tc0, σ
(fl)
xy ∼ 1/(ε + h)2, is stronger than the one for the

contribution to longitudinal conductivity, σ
(fl)
xx ∼ 1/(ε +

h).
Close to the Hc2(0) line, in domain III, it is sufficient

to consider only the contribution of the lowest Landau
level, which yields:

σ(fl)
xy =

2ςTc0e
2

π

sgn(h)

ε+ h
. (68)

In the region of high temperatures and low fields, do-
main VIII, t � 1 � h, the contribution from the two
diagrams shown in Fig. 21 dominates over the AL and
DOS corrections, resulting in:

σ(fl)
xy =

ςω
(qp)
c e2

4π2
sgn(h)

[
ln ln

1

Tc0τ
− ln ln t

]
. (69)

3. Limit of strong fields

In the vicinity of Hc2(0), all of the above terms produce
comparable contributions to the Hall conductivity. In the
regime of classical fluctuations and classical-to-quantum
transition (domains V–VI), the complete correction takes
form

σ(fl)
xy =

2e2

π

sgn (h)

h̃

(
ςT − 21T

8εF

)
. (70)

Notice, that the first term in Eq. (70) is in full agreement
with Eq. (68), where 1/(ε+ h) in domain III turns into
1/h̃ in domain VI. The second term in Eq. (70) comes
from the anomalous MT contribution and does not con-
tribute to the leading-order correction at weak fields.

In the quantum regime (domain IV), the fluctuation
correction to Hall conductivity becomes:

σ(fl)
xy =

e2

2π2
sgn(h) ln h̃

(
2ςΩH

3
− ω(qp)

c τ

)
. (71)

The results for the different domains of the phase dia-
gram are summarized in Table V.

domain σ
(fl)
xy

I-II ςωHe
2

96
sgn(h)

(ε+h)2

III 2ςTc0e
2

π
sgn(h)
ε+h

IV e2

2π2 sgn(h) ln h̃
(

2ςΩH
3
− ω(qp)

c τ
)

V-VI 2e2

π
sgn (h)

h̃

(
ςT − 21T

8εF

)
VIII ςω

(qp)
c e2

4π2 sgn (h)
[
ln ln 1

Tc0τ
− ln ln t

]
TABLE V Asymptotic expressions for fluctuation corrections
to the Hall conductivity in different domains of the phase
diagram.

VII. FLUCTUATION NERNST-ETTINGSHAUSEN
EFFECT

A. General expression for the fluctuation
Nernst-Ettingshausen coefficient

The theoretical description of fluctuation contributions
to the thermoelectric and thermomagnetic coefficients
remains complex and controversial. Initially, the fluc-
tuation contribution to the Seebeck coefficient in 3D
superconductor was studied by Maki (Maki, 1973) in
the framework of the time dependent Ginzburg-Landau
equation, and it was found to be non-singular and negli-
gibly small. After the discovery of an anomaly in the
Seebeck coefficient behavior close to Tc in monocrys-
tals of YBa2Cu3O7−δ (Howson et al., 1990) the prob-
lem was revisited both phenomenologically (Ullah and
Dorsey, 1991) and microscopically (Reizer and Sergeev,
1994). Both papers confirmed Maki’s conclusion that
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ingly incompatible with the Hc2 values obtained from the
Nernst results.

The field profiles of ! and eN at 22 K are compared in
Fig. 19. As mentioned, the knee feature in ! occurs near
Hridge!5 T. However, the vortex signal remains quite large
above the knee, eventually decreasing to zero at the much
higher H!48 T. At 12 K, the knee feature in ! is much
broader, but it occurs at !20 T, still considerably below

48 T. The comparison emphasizes the fallacy of identifying
the saturation of ! with a depairing field scale. The conden-
sate amplitude remains robust up to considerably higher
fields. We argue that the knee feature instead reflects the
shrinking with increasing field of the length scale over which
phase stiffness holds. This loss occurs in the field interval
between Hm and the Hridge curve "dashed line in Fig. 13#. In
Bi-based cuprates this loss is quite gradual, whereas in
OP-OV YBCO and LSCO it is abrupt "Figs. 3 and 14, re-
spectively#. Further, above Hm, the dissipation climbs much
more rapidly than prescribed by the Bardeen-Stephen law.
This rapid increase implies a very weak damping viscosity "
and is known as the fast-vortex problem "Sec. XI#.

VIII. PHASE DIAGRAM, ONSET TEMPERATURE,
AND MAGNITUDE

In the phase diagram of the cuprates, superconductivity
occupies a dome-shaped region defined by the curve of Tc vs
x. The pseudogap temperature T* decreases monotonically
from the scale 300–350 K to terminate at the end point xp
"the Nernst experiments along with many experiments indi-
cate that xp!0.26, but other groups75 favor xp=0.19#. As
reported previously,20,24 in the phase diagram of LSCO, the
onset temperature of the Nernst signal Tonset falls between T*

and Tc. As x increases from 0.03, Tonset rises steeply to a
maximum value of 130 K at 0.10 and then falls more gradu-
ally to a value near zero at !0.27 "Fig. 20#.

We turn next to Tonset in bilayer Bi 2212. In Fig. 21,
we display the variation of Tonset in the five crystals investi-
gated to date. The hole density x is estimated from the

FIG. 18. Variation of the low-T upper critical field Hc2"0# esti-
mated at 4.2 K versus x in LSCO "solid squares#. The values are
estimated by extrapolation of eN

s to zero from measurements in H to
45 T. For comparison, we also plot Tonset "open circles# and Tc
"solid circles#. Lines are guides to the eye.

FIG. 19. Comparison of the field profiles of the flux-flow resis-
tivity ! and the Nernst signal eN measured on the same sample, an
overdoped crystal of LSCO "x=0.20# at T=22 and 12 K. Above
Hm, ! quickly approaches saturation to the resistivity value extrapo-
lated from above Tc "this occurs near Hridge defined by the peak in
eN#. However, eN decreases to zero at the depairing field Hc2 which
lies much higher "Hc2!45 T#.

FIG. 20. The phase diagram of LSCO showing the Nernst re-
gion between Tc and Tonset "numbers on the contour curves indicate
the value of the Nernst coefficient # in nV/KT#. The curve of Tonset
vs x has end points at x=0.03 and x=0.26 and peaks conspicuously
near 0.10. The dashed line is T* estimated from heat-capacity
measurements.

YAYU WANG, LU LI, AND N. P. ONG PHYSICAL REVIEW B 73, 024510 "2006#

024510-12

FIG. 24 The phase diagram of LSCO showing the Nernst
region between Tc and Tonset (numbers on the contour curves
indicate the value of the Nernst coefficient ν in nV/KT ). The
curve of Tonset vs. x has end points at x = 0.03 and x = 0.26
and peaks conspicuously near 0.10. The dashed line is T ∗

estimated from heat-capacity measurements. Reprinted figure
with permission from (Wang et al., 2006). Copyright (2006)
by the American Physical Society.

the fluctuation correction to the Seebeck coefficient is
proportional to the degree of particle-hole asymmetry.
Yet, the authors found that in the 2D case it loga-

rithmically depends on the closeness to Tc0: S
(fl)
(2) ∼

(T/EF) ln [Tc0/ (T − Tc0)].

The fluctuation Nernst-Ettingshausen (NE) effect was
initially studied in the framework of the GL approach
in Ref. (Ullah and Dorsey, 1991). The authors demon-
strated that the FCP contribution to the NE coefficient,
despite being very similar to the thermoelectric coeffi-
cient, does not contain the smallness induced by the
particle-hole asymmetry (T/EF) and close to the tran-
sition exhibits a much stronger temperature dependence:

ν
(fl)
(2) ∼ Tc0/ (T − Tc0).

The discovery of the giant Nernst signal in underdoped
phases of high temperature superconductor LSCO (Wang
et al., 2006; Xu et al., 2000), see Fig. 24, (with critical
temperatures around 30K) triggered great interest, both,
of theorists and experimentalists. The authors reported
an anomalously enhanced Nernst signal at temperatures
as high as 150K and attributed this phenomenon to the
specific physics of HTS. Since the NE effect in type
II superconductors below Tc is related to the entropy
transport by moving vortices they hypothesized the pres-

ence of strong phase fluctuations in the pseudogap phase.
Such fluctuations do not destroy the pseudogap but the
Meissner effect. Later this idea was supported theoreti-
cally by Refs. (Podolsky et al., 2007; Raghu et al., 2008;
Tan and Levin, 2004), while in Ref. (Hartnoll et al.,
2007) the anomalously large NE effect was attributed to
the proximity of the system to a quantum critical point.

Being inspired by the new experimental findings by
Ong’s group, Ussishikin et al. (Ussishkin, 2003; Ussishkin
and Sondhi, 2004; Ussishkin et al., 2002) revisited the
problem of the calculation of the NE coefficient in the
fluctuation regime. In these papers the authors, besides
reproducing the linear response theory results of Ref. (Ul-
lah and Dorsey, 1991), emphasized importance of the
fluctuation magnetization currents flowing in the sample
subject of applied magnetic field and gradient of tem-
perature. Taking into account their contribution to the
heat flow, they demonstrated that this results in a thrice
lower value of the NE coefficient compared to what was
predicted in the vicinity of Tc0 by Ullah and Dorsey (Ul-
lah and Dorsey, 1991).

Later, giant Nernst signals were also discovered in su-
perconducting films (Pourret et al., 2006a, 2007), which
are well-described by the usual BCS model. Therefore,
they provide an indication that superconducting fluctu-
ations are likely to be a key to understanding the under-
lying physics of the giant thermomagnetic response. Be-
low we will concentrate on the properties of conventional
type-II superconductor, abstaining from the specifics of
underdoped phases of HTS.

The complete microscopic analysis of the fluctuation
NE signal through the whole phase diagram was per-
formed by Serbyn et al. (Serbyn et al., 2009) in the frame-
work of the Matsubara diagrammatic technique, while
the quantum kinetic approach was developed by Michaeli
and Finkel’stein (Michaeli and Finkel’stein, 2009a,b). It
was shown in these papers that the role of magnetiza-
tion currents turns out to be even more important in the
regime of quantum fluctuations. Indeed, the restriction
of the straightforward calculus of the Kubo-like response
contribution to the heat flow (Mahan, 2013) results in the
violation of the third law of thermodynamics which can
only be rectified by taking into account the fluctuating
Meissner magnetization above Hc2(0).

1. Definition of the NE coefficient

Let us review the definition of transport coefficients
and consider a conductor placed in magnetic field H,
subjected to an applied temperature gradient ∇T . The
electric and heat transport currents in it are related to
the applied weak-enough electric field and temperature
gradient by means of the relations:

j
(e)
tr,α = σαδ(H)Eδ + βαδ(H)∇δT , (72)
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FIG. 25 (Color online) Schematic representation of the FCP
motion in a superconducting film subjected to a temperature
gradient along its x-axis. The concentration and size of FCPs
vary with temperature. The local magnetization parallel to
the external magnetic field varies along x-axis as well. The
spatial inhomogeneity of the magnetization leads to a trans-
formation of the FCP trajectories from circular to trochoidal,
which is why the magnetization currents appear. To compen-
sate these currents a voltage is induced in y-direction that
provides a sizable contribution to the fluctuation NE coeffi-
cient.

j
(h)
tr,α = γαδ(H)Eδ − καδ(H)∇δT , (73)

where βαβ(H), γαβ(H) and καβ(H) are thermoelectric-
ity and heat conductivity tensors (here we use two super-
scripts for tensors and subscripts for vector components).
Thermoelectric tensors βαβ and γαβ are connected by
the Onsager relation: γαβ(H) = −Tβαβ(−H). Let us
mention, that the validity of the Onsager relation follows
from the principle of the symmetry of transport coeffi-
cients, which is based on the invariance of the quantum
mechanical equations with respect to time-reversal.

The off-diagonal components of the tensor βαβ in the
absence of a magnetic field are equal to zero. If besides
a temperature gradient ∇T , also a magnetic field H is
applied to the sample, a potential difference V (NE) along
y axis appears. The circuit in this direction is supposed
to be broken. The corresponding open circuit conditions

are: ∇xT 6= 0, j
(h)
tr,x = j

(e)
tr,x = j

(e)
tr,y = 0, see Fig. 25. This,

so called Nernst-Ettingshausen (or Nernst) effect, 10 is
well pronounced in semiconductors but is usually small
in good metals. It is characterized by the NE coefficient

10 The Nernst-Ettingshausen effect is closely related to the Etting-
shausen effect, which is just the opposite: it consists in the ap-
pearance of a temperature gradient in a conductor placed in a
magnetic field, when an electric current is applied.

which can be expressed by means of the conductivity and
thermoelectric tensors 11:

ν =
Ey

(−∇xT )H
=

1

H

βxyσxx − βxxσxy

(σxx)2 + (σxy)2
. (74)

Usually, when the Hall component of conductivity σxy �
σxx, while both βxx and βxy are of the same order,
Eq. (74) relates directly the NE coefficient to the off-
diagonal component of the thermoelectric tensor

ν(T,H) = R�β
xy(T,H)/H , (75)

where R� = (σxx)
−1

is the sheet resistance of the film.
In the case under consideration, the validity of approxi-
mation (75) is even more justified, considering the excess
of the off-diagonal thermoelectricity compared to the di-
agonal one.

2. Onsager relations and magnetization currents

It is well known that the absence of free electron mag-
netism in the classical theory is explained by the compen-
sation of the total current created by the electrons mov-
ing along closed trajectories in the bulk of the sample by
the current of the electrons moving along the open “hop-
ping” trajectories close to its surface. In quantum theory
such a compensation does not occur (Teller, 1931) and
Landau diamagnetism (Landau, 1930) takes place. In the
middle of the 20th century a lively debate concerning the
fulfillment of reciprocal Onsager relations in metals and
semiconductors subjected to a magnetic field and gradi-
ent of temperature was taking place (see Ref. (Obraztsov,
1964) and references therein). Yu.N. Obraztsov demon-
strated that microscopic surface currents inducing elec-
tron magnetization can contribute considerably to the
density of the macroscopic current when a temperature
gradient is applied to the sample. Taking corresponding
contributions to the heat and electric currents flowing in
the system into account, restores the fulfillment of the
reciprocal Onsager relations and validity of the third low
of thermodynamics.

The contribution to the electric current can be easily
expressed using Ampere’s law as

jmag =
c

4π
∇×B ,

where B = H + 4πM, H is the spatially homogeneous
external magnetic field, M is the local value of magneti-
zation. In the presence of a temperature gradient ∇xT
one can express the magnetization current as (Obraztsov,
1964; Ussishkin et al., 2002)

jmag
y = −c (dMz/dT )∇xT ,

11 The Nernst signal is related to the NE coefficient through the
simple relation N = νH.
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and the thermoelectric tensor βαδ(H) in Eq. (72) acquires

besides its kinetic part β̃αδ(H) also a magnetization con-
tribution βαδM = εαβζcdMζ/dT :

βαδ(H) = β̃αδ(H) + εαβζc
dMζ

dT
(76)

with εαβζ being the Levi-Civita symbol. In the case of
NE geometry the above mentioned open circuit condi-

tion holds: j
(e)
tr,y = 0 and in full analogy to the classical

Hall effect, the magnetization current in y direction is
compensated by the current induced through the Nernst-
Ettingshausen voltage: ENE

y = R�j
mag
y .

The transport heat current (73) is also affected by
magnetization currents. In the presence of a magnetic

field, the measurable transport heat current j
(h)
tr differs

from the microscopic heat current j(h) by the circular

magnetization current j
(h)
M = cM × E, see (Larkin and

Varlamov, 2009). As a result, the thermoelectric ten-

sor γαδ relating j
(h)
tr with the applied electric field can be

found as the sum of the kinetic, γ̃αδ, and thermodynamic,
γαδM = εαδζcMζ/T contributions:

γαδ = γ̃αδ + εαδζcMζ/T . (77)

The reciprocal Onsager relations in this interpretation
acquire the form:

γ̃αδ(H)+εαδζ
cMζ(H)

T
=−T

[
β̃αδ(−H)+εαδζc

dMζ(−H)

dT

]
.

(78)
Hence, in order to find the NE coefficient (see Eq. (75))

one can calculate γ̃αδ(−H) instead of β̃αδ(H) and obtain

ν(T,H) = −R�
γ̃xy(H) + cMz(H)/T

TH
. (79)

This way turns out to be much more straight-forward
using the microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can

relate the electron heat current j
(h)
tr to the value of the

heat current operator averaged over quantum and ther-
mal states applied to the one-electron Green’s function.
Expansion of the latter in the electric field relates the ten-
sor γαδ(H) to the loop of two electron Green functions

separated by the heat and electromagnetic field vertexes
(analogously to the loop for electro-magnetic field oper-
ator for the conductivity tensor):

γ̃αδ = − lim
ω→0

ImQ̃Rαδ(−iω + 0)

ω
.

The electric – heat current correlation function Q̃αδ(ωk)
is calculated first at bosonic Matsubara frequencies ωk =
2πTk and then analytically continued to real frequencies.

FIG. 26 (Color online) The Aslamazov-Larkin (top) and dif-
fusion coefficient renormalization (DCR, bottom) diagrams
for the thermoelectric response γ̃xy. The DCR diagram has a
symmetric counterpart. The green and blue [light and dark
gray] circles correspond to the different heat and electric ver-
texes, the triangular and rectangular blocks represent impu-
rity interaction, and wavy lines denote the fluctuation prop-
agator. After Ref. (Glatz and Varlamov, 2017).

The fluctuation part of the electric – heat current cor-

relation function Q̃
(fl)
αδ (ωk) is graphically represented by

the same ten diagrams of Fig. 14, but taken with vertices
as in Fig. 26. These were analyzed in detail in Ref. (Ser-
byn et al., 2009). The authors found that in the case of
the NE effect, the Maki-Thompson contribution exactly
becomes zero. The contribution of the DOS diagrams
turns out to be less singular than that one corresponding
to the diagrams containing three Cooperons (DCR, see
Fig. 26). The positive Aslamazov-Larkin (AL) term dom-
inates in the GL region and competes with the negative
DCR contribution everywhere else. The fluctuation mag-
netization has been discussed above. Finally, the general
expression for the NE coefficient of 2D superconductors,
valid beyond the line Hc2(T ) takes form:
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ν(fl) =
β0R�
8H

[
η

Mt∑
m=0

(m+ 1)

∞∑
k=0

{(
3

Em
+

1

Em+1

)(
E ′m − E ′m+1

)
+ [η (2m+ 1) + k]

E ′′m
Em

+ [η(2m+ 3) + k]
E ′′m+1

Em+1

}
(80)

+4π2
Mt∑
m=0

(m+ 1)

∫ ∞
−∞

dx

sinh2 πx

{
η Im Em Im (Em + Em+1) + [η(m+ 1/2) Im Em + xRe Em] Im (Em+1 + ηE ′m − Em)

|Em|2

+
η Im Em+1 Im (Em + Em+1) + [η(m+ 3/2) Im Em+1 + xRe Em+1] Im

(
Em+1 + ηE ′m+1 − Em

)
|Em+1|2

+ 4x Im ln
Em
Em+1

−2
Im (Em + Em+1) (Im Em Im Em+1 + Re Em Re Em+1)

|Em+1|2|Em|2
[
η

(
m+

3

2

)
Im Em+1 − η

(
m+

1

2

)
Im Em + xRe (Em+1 − Em)

]}]
,

where η = 4h
π2t and β0 = kBe/π~ = 6.68 nA/K is the

quantum of thermoelectric conductance.

B. Asymptotic analysis

The effect of SF on the Nernst-Ettingshausen coeffi-
cient is demonstrated in Fig. 27, where a surface plot of
ν(fl)(T,H) according to Eq. (80) is shown. We start dis-
cussion with its asymptotic expressions, which are sum-
marized in table VI.

domain H
β0R�

ν(fl)

I
2eHξ2GL(T )

3c
= 2eHξ2

3c
1
ε

II 1− (ln 2)/2

III 1
ε+h

IV − 2γE
9

t

h̃

V ln t

h̃

VI
8γ2E

3
t2

h̃(t)

VII 1

h̃(t)

[
1 + 2hc2(t)

π2t

ψ′′( 1
2

+
2hc2(t)

π2t
)

ψ′( 1
2

+
2hc2(t)

π2t
)

]
VIII 4eξ2H

3π2c
1

t ln t

IX π2

48
t

h lnh

TABLE VI Asymptotic expressions for fluctuation correc-
tions to the NE coefficient in different domains of the phase
diagram.

Close to the critical temperature Tc0, where fluctua-
tions have thermal character (GL domains I-III), only
the AL contribution is essential, which takes magnetiza-
tion currents into account. In the limit of vanishingly
small magnetic fields h � ε (domain I), the numerical
factor in the coefficient of the NE signal slightly varies
in Refs. (Michaeli and Finkel’stein, 2009b; Reizer and
Sergeev, 1994; Serbyn et al., 2009; Ussishkin, 2003; Us-
sishkin et al., 2002). This difference between GL and mi-
croscopic approaches may signal, e.g. a problem with the
definition of the heat currents within the time-dependent
Ginzburg-Landau theory and diagrammatics. The ex-
act origin of this discrepancy presently remains unclear.
In the limit of relatively strong fields in the GL region

ε � h (domain II) and approaching the transition line
(H − Hc2(T ) � Hc2(T ) (domain III), the NE signal
diverges.

Next, we look at the low-temperature regime close to
the upper critical field Hc2(0) (domains IV–VI in Fig. 9).
Here the role of the magnetization term becomes cru-
cial: The cancellation of the 1/T -divergence by magne-
tization currents ensures that the third law of thermo-
dynamics holds, and the total NE coefficient remains fi-
nite in the T → 0 limit. In the purely quantum limit
of vanishing temperature and away from Hc2(0) (t� h̃,
domain IV), ν(fl) is negative, linear in temperature and
diverges as h̃−1 approaching the transition point. One
can see from table VI that it coincides with our quali-
tative estimation Eq. (22). This change of sign in the
thermoelectric response is similar to the negative fluc-
tuation conductivity close to the quantum phase tran-
sition in the vicinity of Hc2(0) found in Ref. (Galitski
and Larkin, 2001a) (compare inserts in Figs. 15 and 27).
The sign change is due to the DCR contribution, which
is larger than the positive AL term in this region. In
the quantum-to-classical crossover region, where H ap-
proaches Hc2(T ) but remains finite ( t2/ ln(1/t)� h̃� t,
domain V), the NE coefficient becomes positive and less
singular. Increasing the temperature one goes over into
the region of thermal fluctuations. Moving further along
the line Hc2(T )(h̃ � t2/ ln(1/t) (domain VI), one sees
that the NE signal grows. Eq. (80) allows for to study
the full classical region just above the transition line,
which covers a wide range of temperatures and magnetic
fields (h̃ � 1, domain VII). Close to Tc, the expres-
sion obtained matches that one valid in domain III (here
h̃(t) = ε + h), while in the limit T → 0 it matches the

asymptotic expression, provided that h̃� t2/ ln(1/t).

Finally, we address the “non-singular” domains VIII

and IX far from the transition line. In these limits,
the Kubo contribution γ̃xy diverges as [ln ln(1/Tc0τ) −
ln ln max(h, t)], with 1/τ playing the role of an ultra-
violet cutoff of the Cooperon modes. Remarkably, the
same divergence with opposite sign occurs in the magne-
tization contribution γxy

M . Hence, the total expression for
ν(fl) remains finite (see table VI). We see that even far
from the transition, the fluctuation Nernst signal can be
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FIG. 27 (Color online) The magnetic field and temperature dependence of the fluctuation part of the Nernst coefficient. (a)
shows a view from the h = 0 plane with ghost field line in green [light gray] indicating the maximum of Nernst coefficient for
constant t. (b) shows a view from the t = 0 plane with a zoom close to the quantum fluctuation region at h = hc2. The red
[dark gray] line indicates the contour where the Nernst coefficient becomes zero. After Ref. (Glatz and Varlamov, 2017).

comparable or even parametrically larger than the Fermi
liquid terms. In fact, it is conceivable that in some mate-
rials the Cooper channel contribution to thermal trans-
port dominates even in the absence of any superconduct-
ing transition (e.g., if it is “hidden” by another order).

C. Fluctuation spectroscopy: analysis of Nernst signal
measurements

As mentioned above, numerous experimental stud-
ies of the last two decades have revealed an anoma-
lously strong thermomagnetic signal, both, in the normal
state of high-temperature superconductors (HTS) (Ca-
pan et al., 2002; Li and Greene, 2007; Tafti et al., 2014;
Wang et al., 2006, 2002, 2001; Wen et al., 2003; Xu
et al., 2000, 2005) and conventional superconducting
films (Pourret et al., 2006a, 2007), see Fig. 28. In exper-
iments on La2−xSrxCuO4 HTS compounds, the Nernst-
Ettingshausen (NE) signal, N, exceeded the background
value a hundred times close to the superconducting tran-
sition and a sizable effect remained even up to 130 K,
well above the transition temperature, Tc0. Surpris-
ingly, in experiments on conventional superconductor
Nb0.15Si0.85 (Pourret et al., 2006a, 2007) the value of
the excess signal transcended the expected magnitude ac-
cording to the classical Sondheimer theory (Sondheimer,
1948) not by a hundred but a few thousand times. Such
observations were especially striking in view of the pre-
viously recorded data on the magnitude of the Seebeck
coefficient in the normal state of superconductors, un-
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Figure 1 Nernst signal from sample 1. a,b, The Nernst signal (N ) as a function of
magnetic field for temperatures ranging from 0.19 K to 5.8 K, for sample 1 with
Tc = 0.165 K as detected by its resistive transition. A finite Nernst signal is present
for T > Tc. With increasing temperature, this signal decreases in magnitude and
becomes more field linear. c, The Nernst coefficient, ν = N/B, for the same sample
as a function of magnetic field in a log–log scale. Note that, except for the lowest
temperatures, the Nernst coefficient is constant at low magnetic field.

the Hall angle (tan θ = RH/ρxx , where RH is the Hall coefficient
and ρxx is the longitudinal resistivity). As seen in Fig. 2, in the
entire range of our measurements, the Nernst coefficient, ν, is three
orders of magnitude larger than Stan θ. In a multi-band metal, the
contribution of carriers with different signs to Stan θ cancel out and
its overall value could become smaller than ν (ref. 17), but such a
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Figure 2 Nernst signal from sample 2. a,b, The temperature dependence of the
Nernst coefficient (a) and the resistivity (b). The Nernst coefficient, which exceeds
the measured value of S tan θ at 2 T multiplied by 2,000, cannot be attributed to the
normal-state quasi-particles. c, The evolution of the Nernst signal with temperature
in sample 2 on a semi-log plot. The thick grey curve marks the onset of
superconductivity. Note the evolution of the Nernst signal across the critical
temperature. The large Nernst signal below Tc is caused by vortex movement due to
the thermal gradient and the reduction of the signal at lower fields for T = 0.25 K is
due to vortex pinning in the low-temperature-low-field region of the (B,T ) plane.

possibility can be easily ruled out here. The hypothetical existence
of two very small Fermi surface pockets hosting carriers of opposite
sign with long mean-free-path seems implausible. The small value
of tan θ ≈ 2 × 10−5 simply reflects an extremely short electronic
mean-free-path (of the order of interatomic distance ∼0.25 nm)
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FIG. 28 (Color online) Nernst signal (labeled N in the figure,
N in the text) measured in a Nb0.15Si0.85 film as a function of
magnetic field for temperatures ranging from 0.19K to 5.8K,
for a sample with Tc = 0.165K (Pourret et al., 2006a). A
finite Nernst signal is present for T > Tc. With increasing
temperature, this signal decreases in magnitude and becomes
more linear in field. Reprinted by permission from Macmil-
lan Publishers Ltd: Nature Physics (Pourret et al., 2006a),
copyright (2006).

dergoing a weak singular decrease close to Tc0 but re-
maining on the same order of magnitude as in the nor-
mal phase (Howson et al., 1990; Lowe et al., 1993; Ri
et al., 1994). These and further similar experiments have
sparked the interest in thermomagnetic phenomena be-
yond the superconducting state.

One of the reasons of this interest is that the mea-
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Finally, we address the regions VIII and IX far from the
transition line. In this limit, the Kubo contribution ~!xy di-
verges as ½ln lnð1=Tc"Þ $ ln ln maxðh; tÞ%, with 1=" play-
ing the role of the ultraviolet cutoff of the Cooperon
modes. Remarkably, the same divergence of the opposite
sign occurs in the magnetization contribution !xy

M . Hence,
!xy remains " independent:

!xy
VIII ¼ !0

eDH

6#cT lnðT=TcÞ
; ð1; hÞ ' t; (19)

!xy
IX ¼ !0

#cT

12eDH ln½H=Hc2ð0Þ%
; ð1; tÞ ' h: (20)

We see that even far from the transition the fluctuation
Nernst signal can be comparable or parametrically larger
than the Fermi liquid terms. In fact, it is conceivable that in
some materials the Cooper channel contribution to thermal
transport dominates even in the absence of any supercon-
ducting transition (e.g., if it is ‘‘hidden’’ by another order).

Plotted in Fig. 3 is a comparison between our theory and
the experimentally measured Nernst coefficient [9] for a
Nb0:15Si0:85 film of thickness d ¼ 12:5 nm. The dashed
line corresponds to the coefficient limH!0!

xy=H in a
wide range of temperatures up to 30Tc. We used the
diffusion coefficient D ¼ 0:087 cm2=s which is 60% of
that reported in Ref. [9] (with kFl( 1, the precise deter-
mination of D is questionable). Note that far from the
transition point ($> 2), the SC coherence length %ðTÞ
becomes shorter than d and 3D nature of diffusion mani-
fests itself. It can be described by substituting &n ! &n þ
Dð#p=dÞ2 and performing an additional summation over
p ¼ 0; 1; . . . in Eqs. (5)–(7). The resulting curve is shown
in Fig. 3 by the solid line.

In summary, we have developed a complete microscopic
theory of the fluctuation Nernst effect in a 2D supercon-
ductor. Our results provide a natural explanation for a large

Nernst signal observed in SC films [9,10] and probably
should be relevant to the cuprates. Another interesting
theoretical predictions is a slow decay of the transverse
thermoelectric response away from the transition line,
which is expected to persist well into the metallic phase.
We are grateful to H. Aubin, M. Feigel’man, and A.

Kavokin for useful discussions. M.N. S. acknowledges
support from Dynasty Foundation and hospitality of the
University Paris-Sud. V. G. acknowledges BU visitors pro-
gram’s hospitality. The work of M.N. S. and M.A. S. was
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Note added in proof.—In a very recent preprint [27], the

fluctuation Nernst effect has been analyzed within the
Keldysh formalism. Results of Ref. [27] qualitatively co-
incide with our results, differing in some numerical factors
of order 1 in several asymptotic regions.
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FIG. 3 (color online). Comparison with experiment. Circles:
experimental data for limH!0!

xy=H vs $ ¼ lnT=Tc obtained for
the 12.5-nm-thick Nb0:15Si0:85 film [9]. Dashed line: theoretical
prediction for the strictly 2D geometry. Solid line: theoretical
prediction for the real sample [9].
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FIG. 29 (Color online) Comparison with experiment. Cir-
cles: experimental data for the fluctuation part of the NE
coefficient vs. ε = lnT/Tc obtained for the 12.5-nm-thick
Nb0.15Si0.85 film (Pourret et al., 2006a). Dashed line: the-
oretical prediction for the strictly 2D geometry. Solid line:
theoretical prediction for the sample with 2D-3D crossover
taken into account. The only adjustable parameter in this fit
is the diffusion coefficient – here 0.087 cm2/s. After Ref. (Ser-
byn et al., 2009).

sured fluctuation effects exceed Sondheimer’s evaluation
of the normal phase quasiparticle contribution by orders
of magnitude. Close to the critical temperature and in
sufficiently weak magnetic fields the experimental find-
ings are in a good agreement – see Ref. (Behnia and
Aubin, 2016) – with results obtained in the simple GL
approximation (Ullah and Dorsey, 1991; Ussishkin et al.,
2002). Moreover, since the fluctuation Nernst signal can
be observed in a wide temperature range, one can com-
pare experimental data with the predictions of the micro-
scopic theory (Michaeli and Finkel’stein, 2009a; Serbyn
et al., 2009) in detail.

1. Giant Nernst signal in NbSi

In Fig. 29 a comparison between the theory of
Ref. (Serbyn et al., 2009) and the magnitude of the ex-
perimentally measured Nernst coefficient (Pourret et al.,
2006a) in weak fields is plotted for a Nb0.15Si0.85 film of
thickness d = 12.5 nm in a wide range of temperatures
up to 30Tc0. The dashed line corresponds to the theo-
retically calculated Nernst coefficient (Ref. (Serbyn et al.,
2009)). A diffusion coefficient of 0.087 cm2/s, which is
60% of that reported in Ref. (Pourret et al., 2006a) is
used for the fitting. Far from the transition temperature
(ε > 2), the superconducting coherence length ξ(T ) be-
comes shorter than d and the 3D nature of the diffusion
manifests itself. Taking this fact into account, noticeably
improves the fitting (see the solid line in Fig. 29).

In Fig. 30 an excellent agreement between the theory
of Ref. (Michaeli and Finkel’stein, 2009a) and the mea-
surements of the Nernst signal (performed on the same
Nb0.15Si0.85 film) as a function of the magnetic field is
demonstrated.

FIG. 30 (Color online) Comparison with experiment. The
Nernst signal (labeled α, N in the text) as function of the
magnetic field measured at T = 410mK. The black squares
correspond to the experimental data of Ref. (Pourret et al.,
2006a) while the solid line describes the theoretical result of
Ref. (Michaeli and Finkel’stein, 2009a). The arrow on the
phase diagram illustrates the direction of the measurement.
In the insert the low magnetic field data are fitted with the
theoretical curve. Reprinted by permission from IOP Publish-
ing: Europhysics Letter (Michaeli and Finkel’stein, 2009a),
Fig. 5, copyright (2009).

2. Analysis of the ghost critical field

The characteristic feature of the fluctuation Nernst sig-
nal is its non-monotonic behavior as a function of the
magnetic field. One can see from the first row of Ta-
ble VI that close to Tc0, the Nernst signal is propor-
tional to the magnetic field and quadratically dependent
on the GL coherence length. As long as the magnetic
field is relatively small, the effective size of FCPs re-
mains to be determined by ξGL(ε) and is fixed by temper-
ature. However, when the magnetic field increases and
consequently the magnetic length `H =

√
c/2eH of the

FCPs becomes comparable to ξGL(ε), the former gradu-
ally takes on the role of the characteristic size of FCP.
Such field-induced shrinking of the fluctuations charac-
teristic scale is well-known since the early studies of fluc-
tuating diamagnetism (Behnia and Aubin, 2016; Gollub
et al., 1973; Prange, 1970; Schmid, 1969; Skocpol and
Tinkham, 1975). As a result, the Nernst signal reaches
its maximum at some field H∗(T ) and decreases when
the magnetic field further increases.

Pourret et al. (Pourret et al., 2006a) were the first who
measured such isothermal curves (see Fig. 31) and also
determined the temperature dependence H∗(T ) for the
temperatures several times exceeding Tc0. They iden-
tified H∗(T ) with the field when `H =

√
c/(2eH∗) ∼

ξGL(ε) and, following Kapitulnik et al (Kapitulnik et al.,
1985), called the curve H∗(ε) as the “mirror field” (other
authors call it the “ghost critical field”; in the vicin-
ity of Tc0 it is indeed symmetrical to the line Hc2(ε)).
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FIG. 31 (Color online) Nernst signal (labeled N in the
plots, N in the text) (a) in the conventional superconductor
Nb0.15Si0.85 and (c) in the HTS Pr2−xCexCuO4 measured
above critical temperature (taken from the Refs. (Pourret
et al., 2006a; Tafti et al., 2014)) and the related tempera-
ture dependencies of the corresponding maxima, labeled H∗

(the “ghost critical field”) in panels (b) and (d), respectively.
Reprinted by permission from IOP Publishing: Reviews of
Progress in Physics (Behnia and Aubin, 2016), Fig. 7, copy-
right (2016).

Moreover, recalling that ε in the microscopic theory is
the asymptotic expression of the lnT/Tc0, the authors of
Ref. (Pourret et al., 2006a) extended their fitting also to
temperatures beyond the GL region.

The study of temperature dependence of H∗(T ) ac-
quired special significance for HTS compounds. Recently,
the authors of Ref. (Tafti et al., 2014; Yamashita et al.,
2015) have proposed using it for the precise determina-
tion of the second critical field Hc2(0), often unaccessible
for direct measurements because of its huge value. The
analysis of the experimental data obtained on the HTS
compound Pr2−xCexCuO4 led the authors of Ref. (Tafti
et al., 2014) to propose for the temperature dependence
of the “ghost critical field” a phenomenological expres-
sion:

H∗(T ) = Hc2(0) ln
T

Tc0
. (81)

The prefactor Hc2(0) was chosen as a single empirical
parameter that characterizes the strength of supercon-
ductivity. The authors stated that “the characteristic
field scale encoded in superconducting fluctuations above
Tc”, is equal to the field needed to kill superconductivity
at T = 0K. I.e. a straightforward empirical procedure for
measuring of the fundamental field scale for superconduc-
tivity from superconducting fluctuations above Tc0 was
proposed.

The complete expression, Eq. (80), unfortunately does
not allow one to extract the temperature dependence of
the ghost field, H∗(T ), analytically. Nevertheless, due
to its specific scaling form, the temperature dependence
of the magnetic field corresponding to the maximum of
the Nernst signal can be expressed in the very generic
way (Kavokin and Varlamov, 2015):

H∗(T ) = Hc2(0)

(
T

Tc0

)
ϕ

(
ln

T

Tc0

)
, (82)

where ϕ(x) is some smooth function which satisfies the
condition ϕ(0) = 0.

We note that Eq. (82) coincides with Eq. (81) only
in the particular case of ϕ(x) = x exp(−x). In the case
of any other analytical function ϕ(x), the magnetic field
corresponding to the maximum of the NE signal, H∗(T ),
would increase mainly linearly with the growth of tem-
perature.

Let us recall, that the heuristic justification of Eq. (81)
is based on the statement that the maximum in the NE
signal magnetic field dependence occurs where the FCP
size ξGL(T ) is of the order of its magnetic length `H∗ =

(c/2|e|H∗)1/2
. Close to the critical temperature, this in-

deed yields H∗ ∼ Hc2(0) (T − Tc0) /Tc0 ≈ Hc2(0) ln T
Tc0

.
Far from Tc0 the authors of (Pourret et al., 2006a; Tafti
et al., 2014; Yamashita et al., 2015) extend the GL ex-

pression as ξGL(T ) = ξBCS/
√

ln T
Tc0

, which brings them

to Eq. (81). We believe that this extension misses some
justification, and the microscopically obtained Eq. (80)
has to be investigated for its extrema.

However, it is possible to extract the ghost field from
Eq. (80) numerically. The result is shown in Fig. 32.
In addition to this numerically extracted curve, we plot-
ted scaled experimental data from Refs. (Chang et al.,
2012) on Eu-LSCO and from (Tafti et al., 2014) on doped
PCCO. The latter is in fact fitted better by the maximum
of Eq. (80) than the phenomenological curve (81) in its
lower temperature range. The former data set also shows
a rather linear behavior at higher temperatures with a
slope of 0.35.

VIII. FLUCTUATION PSEUDOGAP AND LOW BIAS
ANOMALY

A. Fluctuation depletion of the electron DOS

According to the microscopic BCS theory (Bardeen
et al., 1957a,b), the superconducting state is character-
ized by a gap in the quasiparticle spectrum centered
around the Fermi level, which vanishes along the tran-
sition line Hc2(T ). However, it was predicted as early as
in 1970 (Abrahams et al., 1970) that thermal fluctuations
result in a noticeable suppression of the DOS in a narrow
energy range around the Fermi level even in the normal
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FIG. 32 (Color online) Temperature dependence of the ghost
field scaled to Hc2 from experiments (’+’ and ’×’), numeri-
cally obtained from Eq. (80) (thick solid red [dark gray] line),
and ln(t) (thin gray line). The experimental data on Eu-
LSCO (+) is taken from (Chang et al., 2012) (Fig. 3b) and
the data on PCCO at doping level x = 0.17 (×) from (Tafti
et al., 2014) (Figure 10). The data on Eu-LSCO is also fitted
to a line through zero (slope 0.35) for comparison (dashed
line). After Ref. (Glatz and Varlamov, 2017).

state of a superconductor (see Fig. 33a). More specifi-
cally, in the case of a disordered thin film, the fluctua-
tion correction to the DOS assumes the form (Abrahams
et al., 1970):

δρ
(fl)
(2)(E, T )

ρe
=

4.6Gi(2)k
2
BT

2(
E− 1

2τ
−1
GL

)2
[
E− 1

2τ
−1
GL

E+ 1
2τ
−1
GL

− ln
E+ 1

2τ
−1
GL

τ−1
GL

]
,

(83)
where ρe is the electron density of states per one spin of a
normal metal at the Fermi level, Gi(2) = 1.3~2/(p2

Fls) is
Ginzburg-Levanyuk number for a 2D film of thickness s,
l is the electron mean free path, τGL is Ginzburg-Landau
time.

One can see that Eq. (83) is a sign-changing function
and its integral over the complete energy range must be
equal zero: ∫ ∞

0

δρ(fl)(E, T )dE = 0 . (84)

Expression (84) is merely the sum rule: superconducting
interaction cannot create new states, it just redistributes
the existing ones over the energy spectrum. In particu-

lar, a sharp dip (δρ
(fl)
(2)(0, ε) ∼ −Gi(2)ρe/ε

2) is formed at

the Fermi level, which is a precursor effect of the super-
conducting gap. At the same time, the electron states
corresponding to the fluctuation pairing move to higher
energies. Yet, it is clear that these pairings are restricted
to energies not much larger than ∆Es ∼ kB (T − Tc0),
where the maximum of Eq. (83) is formed (see Fig. 33a).

δρ (2)
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t=1.10
t=1.20
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1.0 1.0
E/Tc
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b)

4 2 2 4
eV/Tc

FIG. 33 (Color online) (a) Theoretical curves of the fluc-

tuation correction to the single particle DOS, δρ
(fl)

(2) , versus

energy, E, for 2D superconductors above critical tempera-
ture (t = T/Tc0 = 1.05, 1.1, 1.2). (b) The pseudogap in the
tunneling conductivity obtained by applying Eq. (86) to the
fluctuation correction (83). After Ref. (Glatz et al., 2014).

B. Fluctuation pseudogap in tunneling conductivity:
phenomenological approach

Tunneling spectroscopy is the tool of choice for inves-
tigating the quasiparticle spectrum. Therefore, the abil-
ity to analyze voltage-current characteristics obtained by
a superconducting electrode in the fluctuation regime
(N+SF) is of integral importance, as the domain is
key to revealing the microscopic mechanisms of high-
temperature superconductivity and the superconductor-
insulator transition.

Giaever and Megerle (Giaever and Megerle, 1961)
(GM) related the quasiparticle tunneling current to the
densities of electron states of the left and right electrodes,
and to the difference of the equilibrium distribution func-
tions in both of them:

I(fl)(V ) = − ~
eRNρL(0)ρR(0)

× (85)

∞∫
−∞

[nF(E + eV )− nF(E)] ρL(E + eV )ρR(E)dE

Here RN is the tunnel junction resistance, nF(E) is the
Fermi distribution function, and ρL,R is the energy de-
pendent density of states of the left (right) electrode, re-
spectively. Assuming the left electrode is a normal metal
with constant density of states ρL and the right electrode
is a thin superconducting film above its critical temper-
ature, one can write an explicit expression for the excess

tunneling conductivity in terms of δρ
(fl)
(2)(E, T ) and the

derivative of the Fermi function. Combining the latter
with the sum rule (84), one finds

δσ
(fl,GM)
tun (V )=

~
4TeRNρe

∫ ∞
−∞

tanh2 E+eV

2kBT
δρ

(fl)
(2)(E) dE

(86)
and arrives at the disappointing conclusion that the pre-
dicted strong and narrow singularity in the density of
states, Eq. (83), manifests itself in the observable tunnel-
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ing conductivity only as a wide (eV (pg) ∼ Tc0 ∼ ∆BCS in-
stead of ∆Es ∼ kB (T − Tc0)) and weak in the magnitude
(ln (kBTτGL/~) ∼ ln [Tc0/(T − Tc0)] instead of T 2

c0/(T −
Tc0)2) pseudogap structure, resembling that one in the
superconducting phase (Varlamov and Dorin, 1983) (see
Fig. 33b). The strong divergence of Eq. (83) at zero
energy in the process of integration in Eq. (86) is com-
pletely eliminated due to presence of tanh2 (E/2kBT ).
As a result, only a weakly singular dip as function of

temperature at zero voltage and two bumps of δσ
(fl)
tun(V )

are reminiscent of the proximity to the superconducting
transition.

This kind of pseudogap has been repeatedly ob-
served both in experiments with conventional (Belo-
golovskii et al., 1986; Sacépé et al., 2010) and high-
temperature (Jacobs et al., 2016) superconductors. How-
ever, in such non-trivial superconducting systems like
HTS materials or strongly disordered superconducting
films close to superconductor-insulator transition, multi-
ple other mechanisms of pseudogap formation are possi-
ble (Bennemann and Ketterson, 2008; Chen et al., 2005;
Palestini et al., 2012; Perali et al., 2002; Sacepe et al.,
2011).

C. General expression for the fluctuation tunneling
conductivity

The GM phenomenology accounts for the depletion of
single-electron DOS due to superconducting fluctuations,
but it is not sufficient to uncover quantum coherent ef-
fects similar to Andreev reflection of injected electrons
on a SF domain in a biased electrode. In order to do cor-
rectly describe such effects, one can employ the Matsub-
ara temperature Green function technique. This quanti-
tative theory was developed in Ref. (Glatz et al., 2014)
and is capable of adequately describing high resolution
STM/STS data side-by-side with the pseudogap, thus
uncovering subtle features of the tunneling spectra.

A low-transparency junction can be described by the
tunnel Hamiltonian

ĤT =
∑
p,k,σ

(
Tp,kâ

+
p,σ b̂k,σ + T ∗p,kb̂

+
k âp

)
, (87)

where â+
p,σ and b̂k,σ are the creation and annihilation op-

erators in the left and right electrodes, correspondingly.
The summations are performed over the electron states p,
k in the corresponding electrodes, and spin components
σ, Tp,k is the tunnel matrix element between states p
and k. The transparency of the barrier is determined by
the averaged value of |Tp,k|2. The tunneling current can
be identified as the time derivative of the particle number
operator in one of the electrodes, N̂L =

∑
p,σ â

+
p,σâp,σ,

averaged over the statistical ensemble:

I(fl)(V, T ) = e

〈
dN̂L

dt

〉
= − ie

~

〈[
N̂L, ĤT

]〉
. (88)

The procedure of ensemble averaging with the density
matrix is described in detail in Ref. (Richardson, 1997).
The tunneling current is then determined by the loop
(correlator) of two exact one-electron Green’s functions
GL and GR of the electrodes (Varlamov and Dorin, 1983):

K(ωk)= 4T
∑
εn

∑
q,p

|Tp,q|2GL (p, εn + ωk)GR (q, εn)

(89)
Here the summations are performed over all momenta
and fermionic frequencies εn = 2πT (n + 1/2). The ex-
ternal bosonic frequency, ωk = 2πTk (k = 0, 1, 2...), ac-
counts for the potential difference between the electrodes,
and the factor 4 is due to the summation over the spin
degrees of freedom. The current is then given by

I(fl)(V ) = −eImKR(ωk → −ieV ) , (90)

where the superscript “R” means that the correlator
K(ωk) is continued to the plane of complex voltages in
such a way that it remains an analytic function in the
upper complex half-plane.

The fluctuation correction to the tunneling current is
presented graphically by the diagram shown in Fig. 34b).
The details of its calculation are reported in Ref. (Glatz
et al., 2014), where the complete expression valid for ar-
bitrary temperatures, magnetic fields, and voltages was
derived:

I(fl)(t, h, vt) = − 2eTc0Sh

π3σnRN

Mt∑
m=0

∞∑
k=0

ImE ′m (k − ivt)
Em(k)

+
eTc0Sh

π3σnRN

Mt∑
m=0

{
ImE ′m (−ivt)
Em(0)

(91)

+ sinh
(π

2
vt

) ∞∫
−
−∞

dz
Re Em(iz) [Re E ′m (iz − ivt)− Re E ′m(iz)] + ImEm(iz) [ImE ′m (iz − ivt) + ImE ′m(iz)]

sinh(πz) sinh [π (z − vt/2)]
[
Re2Em(iz) + Im2Em(iz)

]
 ,

with the dimensionless voltage v = 2eV/∆BCS used in the parameter

vt = v/(2γEt) = eV/(πT ),
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FIG. 34 (Color online) a) Schematic STM setup of a N-I-(N+SF) tunnel experiment. a1) An injected electron pair (2e)
thermalizes in the electrode, which reduces the density of states due to superconducting fluctuations. a2) Andreev-like reflections
of injected electrons in the region of superconducting fluctuations. b) The (Matsubara) diagram describing the fluctuation
contribution to tunneling current. b1)+b2) Two contours in the plane of complex voltage describing both corresponding
tunneling processes shown in a1) and a2). c) Surface plot of the total tunneling conductivity, Eq. (91) depending on voltage
and temperature. The corresponding theoretical expression is valid throughout the whole phase diagram of temperature and
magnetic field with a wide pseudogap structure and narrow low-bias anomaly (LBA). c1) Pseudogap anomaly related to the
renormalization of the one-electron density of states due to superconducting fluctuations in the electrode. It directly corresponds
to the process pictured in a1) and contour b1). c2) LBA contribution of the tunneling conductivity due to process a2), resulting
from contour b2). After Ref. (Glatz et al., 2014).

∆BCS = πTc0/γE the value of the BCS gap, and cutoff
Mt = 1/(tTc0τ).

Notice, that the AL and MT fluctuation contributions,
which are essential for the majority of the phenomena
discussed in this review, only manifest themselves in sec-
ond order

(
∼ |Tp,k|4

)
in the barrier transparency (see

Ref. (Larkin and Varlamov, 2009)).

D. Fluctuation pseudogap: Asymptotic analysis

We start the analysis of Eq. (91) in the strong pair-
breaking regime, when its second term is suppressed and
the effect of fluctuations is manifested by the pseudo-gap
structure in tunnel conductivity, already discussed quali-
tatively in the framework of phenomenological approach.

1. Tunnel conductivity in weak magnetic filed

Close to Tc0, in domains I-III, in sufficiently weak
magnetic fields H � Hc2(0), the most singular term in
Eq. (91) arises from zero frequency bosonic mode k = 0.
The summation over Landau levels can be performed in
terms of polygamma-functions, ψ(n)(x), and one finds an
expression valid for any combination of ε and h� 1:

I(fl) (ε, h, vt) =− eTS

2π3σnRN

[
ln

1

2h
− ψ

(
1

2
+

ε

2h

)]
· Imψ′

(
1

2
(1− ivt)

)
. (92)

Eq. (92) reproduces the results of Refs. (Reizer, 1993;
Varlamov and Dorin, 1983). The corresponding contri-
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FIG. 35 (Color online) Various plots of the tunneling conductance for different cuts and points in the t−h plane. The cut lines
and points are indicated in the t−H phase diagram in the central panel. Points are labeled by the panel letter, lines by “L”
and panel letter subscript. a) Low temperature (t = 0.05) dependence of the conductivity as surface plot depending on voltage,
v, and magnetic field, h > hc2(0) = 0.69 [cut line La]. b) Zero-bias conductivity at fixed temperatures as function of ln(h) [cut
lines LLb]. c) t = 1.1 plot of the components (pseudo gap, “reg”, and LBA, “an”) of the tunneling conductivity [point c]. d)
Tunnel conductance for h = 0.7 at different temperatures depending on v [points d1-d4]. e) Zero-bias conductivity at fixed
magnetic field as function of ln(t) [cut lines LLe]. f) Conductivity as surface plot depending on voltage and closely following
the superconducting transition line in the t− h plane [cut line Lf ].g) Tunnel conductance for h = 0 at different temperatures
depending on v [points g1-g4]. h) Zero field (h = 0) dependence of the conductivity as surface plot depending on voltage, v,
and temperature, t > tc = 1 [cut line Lh] (the same parameters as used for column c) of Fig. 34). After Ref. (Glatz et al.,
2014).

bution to the tunneling conductance is

σ
(fl)
tun (ε, h, vt) =

Se2

4π4σnRN

[
ln

1

2h
− ψ

(
1

2
+

ε

2h

)]
· Reψ′′

(
1

2
(1− ivt)

)
, (93)

which gives the pseudogap structure in the limit of zero
field (domain I)

σ
(fl)
tun (ε, vt) =

Se2

4π4σnRN
ln

1

ε
Reψ′′

(
1

2
(1− ivt)

)
. (94)

A corresponding plot for the tunneling resistance is
shown in Fig. 38 for different values of ε. The value of the
pseudogap follows from the maximum of Eq. (94), which
appears for vt = 1. This gives

eVmax(ε, h = 0) = γE∆BCS(1 + ε) . (95)

Far from Tc0, in domain VIII, one can restrict the con-
sideration to the study of the temperature dependence of

the magnitude of the fluctuation contribution to the dif-
ferential conductivity at zero voltage. When T � Tc0

one can approximate the sums in Eq. (91) by integrals.
For the k-integration it was assumed that the main k-
dependence is due to the nominator and can it be omitted
in the argument of the ψ-function. Cutting off the dou-
ble logarithm divergence at the upper limit in the usual
way, one finds

σ
(fl)
tun(t� 1, vt = 0) = − Se2

4π2σnRN

(
ln ln

1

Tc0τ
− ln ln t

)
.

(96)
which is again in complete agreement with Ref. (Var-
lamov and Dorin, 1983). This double logarithmic behav-
ior in the wide range of temperatures up to 14Tc0 was
observed in Ref. (Sacépé et al., 2010).
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2. Vicinity of the line Hc2(t)

In the vicinity of the line Hc2(t), the LLL approxima-
tion, Eq. (39), for the E0(k) can be applied. It is valid
along the line Hc2(t) where t � hc2(t). The summation
in the first term of Eq. (91) can be performed using the
relation

∞∑
k=0

′
1

k + α

1

(k + β)2 + γ2
=

− 1

γ
Im

ψ (β + iγ)− ψ(α)

β + iγ − α
− 1

2α

1

β2 + γ2
,

which gives an expression for the regular part (first term
in Eq. (91)) of the fluctuation tunneling current valid for
low enough temperatures along the line hc2(t):

I(fl) [t� hc2 (t) , ṽt] = − 2eSTc0h

π3σnRN

ṽt
1 + ṽ2

t

{
ln
√

1 + ṽ2
t +

[
ln

(
4h

π2t

)
− ψ

(
4h

π2t
h̃

)]
− arctan ṽt

ṽt

}
. (97)

Here, we introduced the dimensionless voltage

ṽt =
V

V0

(
t, h̃
) .

The value

V0

(
t, h̃
)

=
∆BCS

2e

[
1 + 2γEt− h̃/hc2(t)

]
(98)

determines the voltage at which the differential conduc-
tivity crosses zero in the considered domain of the phase
diagram (see Fig. 35g,h) as we will see below.

Close to Hc2 (0), in the region of quantum fluctuations

t � h̃, the argument of the ψ-function in Eq. (97) be-

comes large despite the smallness of h̃, and the ψ-function
can therefore be approximated by its logarithmic asymp-
totic expression:

I(fl)
(
h̃, ṽt

)
= − e∆BCSS

4π2σnRN

ṽt
1 + ṽ2

t

ln

√
1 + ṽ2

t

h̃
.

The corresponding tunneling conductivity up to logarith-
mic accuracy is given by

σ
(fl)
tun

(
h̃, ṽt

)
=

dI

dV
≈

− e2S

2π2σn

1[
1− 8γEh̃/π2

] 1− ṽ2
t

(1 + ṽ2
t )

2 ln

√
1 + ṽ2

t

h̃
.

At zero temperature one just needs to replace ṽt by v
above. One sees that this expression has a pseudogap
structure similar to Eq. (94). The corresponding value of
the pseudogap gap close to Hc2 is given by

eVmax

(
t = 0, h = π2/(8γE)

)
=

√
3

2
∆BCS . (99)

Comparing this expression to Eq. (95), one notices that
the fluctuation pseudogap is determined by ∆BCS in both
cases, but the numerical coefficients depend on the shape
of the fluctuation correction of tunneling conductivity.

In the region of high fields H � Hc2 and low tem-
peratures, the sums in Eq. (91) can be approximated by
integrals, which gives for the value of the differential con-
ductivity at zero voltage:

σ
(fl)
tun (h� 1, v = 0) = − e2S

4π2σnRN

(
ln ln

1

Tc0τ
− ln lnh

)
.

One can see that this dependence is exactly the same as
that one in the case of high temperatures with reversed
roles of the reduced temperature and field.

E. Weak pairbreaking: low bias anomaly

The second term in Eq. (91) describes the anomalous
process of Andreev reflection of injected, energetically
non-relaxed electrons at a fluctuation-induced supercon-
ducting domain in the biased electrode, see Fig. 34 a2.
In order to participate in fluctuation Cooper pairing, the
injected electron “extracts” an electron-hole pair from
vacuum with momentum opposite to its own, and forms
a Cooper pair with the electron, while the remaining
hole returns along its previous trajectory (see Fig. 34a2).
This quantum coherent contribution cannot be accounted
for by the phenomenological method, but can only be
derived within the microscopic diagrammatic approach.
This anomalous tunneling process gives rise to an addi-
tional current, which, like the regular one, is proportional
to the first powers of the Ginzburg-Levanyuk number and
barrier transparency, and is cubic in voltage V near zero
bias. The additional current becomes relevant only suf-
ficiently close to the superconducting transition. As a
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result, a peculiar LBA appears near the superconducting
transition line Hc2(T ).

It turns out that the discussed LBA in the I-V charac-
teristics appears only in the case where the energy (or
phase) relaxation time τφ of an electron injected into
the explored electrode is long enough: Tc0τφ � ~/kB.
The shape of the LBA close to the critical tempera-
ture [~τ−1

φ . kB (T − Tc0) � kBTc0] for low voltages
eV . kB (T − Tc0), can be found analytically:

σ
(fl)
tun = − 7ζ(3)e2S

2π4~σnRN

[
ln

Tc0

T − Tc0
+

3τφ
8π~kB

(eV )2

(T − Tc0)

]
.

(100)
When kB (T − Tc0) decreases to the value ~τ−1

φ , the
growth of the LBA ceases. One can show that
close to the transition temperature Tc0, the dip
in the tunneling conductivity develops on the scale

eV
(th)
LBA ∼ ∆

1/2
BCS

√
~τ−1
φ (T − Tc0) /Tc0 � ∆BCS. At

zero temperature, close to the second critical field
Hc2(0), fluctuations acquire quantum nature and

the corresponding voltage scale becomes eV
(QF)
LBA ∼

∆
1/2
BCS

√
~τ−1
φ [H −Hc2(0)] /Hc2(0) � ∆BCS. From the

Eq. (100), one can see that the intensity of the LBA
is directly proportional to the energy relaxation length
`φ = vFτφ, which is in a complete agreement with the
physical picture of this non-trivial quantum coherence
effect presented above: the anomalous Cooper pair for-
mation only takes place in a volume of size S · `φ near
the contact area, where the injected electrons are non-
thermalized.

F. Epilogue of the theoretical analysis

Graphical representations of the full fluctuation con-
tribution to tunneling conductivity as a function of mag-
netic field, temperature and voltage are presented in
Figs. 34c&35. One can see that as external parameter
values depart from the transition line, the amplitude of
the LBA rapidly decays.

Remarkably, both complimentary physical processes
shown in panels a1 and a2 of Fig. 34 are straightforwardly
expressed in terms of a graphic mathematical language:
the calculation of the diagram of Fig. 34b is reduced to
the evaluation of the integrals of the electron Green func-
tions in the linked electrodes along two contours in the
complex frequency plane shown in panels b1 and b2 of
Fig. 34, respectively. The upper contour corresponds to
the conventional GM tunneling, while the lower one de-
scribes the contribution due to Andreev reflection from
superconducting fluctuations. Accordingly, the fluctua-
tion part of the tunneling conductance shown in Fig. 34c
exhibits both, the pseudogap anomaly due to fluctuation
depletion of the one-electron DOS (Fig. 34c1) coming
from the integration over the contour of Fig. 34b1, and

Andreev reflection induced LBA (Fig. 34c2), arising from
the integration over the contour of the panel b2.

One should remark that the latter contribution is zero
at zero bias voltage [see Fig. 35c]. An important feature
of this novel Andreev process is that it appears in the
lowest (first) order approximation with respect to tun-
neling barrier transparency. Its additional smallness, re-
lated to the strength of fluctuations Gi, can be noticeably
compensated by the presence of a small factor (T − Tc0)
in denominator of the second term of Eq. (100), which
makes the effect strongly temperature dependent close to
the transition point.

The LBA, which appears already in first order of
the transparency, differs qualitatively from the well
known Andreev conductance of a superconducting micro-
constriction (Blonder et al., 1982). This occurs below the
transition temperature and rapidly disappears when go-
ing from the metallic towards the tunneling regime. The
reason for this discrepancy is that the fluctuation-induced
superconducting regions in the biased electrode are not
separated by any barrier from the surrounding normal
phase and thus the process of Andreev reflection does
not involve any additional tunneling process.

Fig. 35 shows the plots of fluctuation contributions
to the tunneling conductivity for different parts of the
temperature-magnetic field phase diagram of the super-
conducting film. The central panel – the h-t phase di-
agram – depicts the parameter combinations or ranges
for the 2D graphs or 3D surface plots arranged around
it in panels a) - h). In accordance with the above the-
oretical speculations the strength of the singularity in
the low-voltage behavior of the tunneling conductance
smears out when moving away from the transition line
(panels a-d and g, h). We point out that the LBA is most
pronounced roughly halfway between the ‘endpoints’ of
the transition line (see panel f).

G. Fluctuation spectroscopy: analysis of experiments

There have been impressive developments in scan-
ning tunneling microscopy (STM) and scanning tunnel-
ing spectroscopy (STS) studies of superconductivity trig-
gered by investigations of the pseudogap state and vortex
state in high-temperature cuprates (Micklitz and Nor-
man, 2009; Scherpelz et al., 2013), observations of the
pseudogap in 2D disordered films of conventional super-
conductors (Sacépé et al., 2010), investigations of the
superconductor-insulator transition (Sacépé et al., 2008),
measurements of the tunneling conductivity close to the
superconducting transition in intrinsic Josephson junc-
tions in slightly overdoped Bi2−yPbySr2CaCu2O crystals
(see Ref. (Jacobs et al., 2016; Krasnov et al., 2011)), and
many others.
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The enhanced electron–electron interactions manifest them-
selves not only in the observed suppression of Tc in TiN films but,  
further, also in the insulating trend in the resistance. This is  
illustrated in Figure 1b in which, in order to stress that in TiN  
films the distinct insulating behaviour is clearly seen even at room 
temperature, we have plotted the inverse resistance 1/R as function 
of temperature.

Pseudogap in the DOS. The most direct access to the gap in the  
electronic excitation spectrum is offered by scanning tunnelling 
microscope (STM) probe measuring tunnelling conductance G.  
The DOS, ( ), is found as a function of the single-electron  
excitation energy (relative to the Fermi level),  = E − EF, and of  
the temperature T by recording the differential conductance 
G(V) = dI/dV of the tunnelling junction between the STM tip and 
the sample versus its voltage bias V. The tunnelling conductance 
relates to ( ) by   
 

G V T T f V( , ) ( , )[ ( / )( )],d eT
   

where fT is the Fermi distribution function at temperature T (ref. 5).
We probed the tunnelling conductance of superconducting 

films TiN1, TiN2 and TiN3, with a STM cooled down in a dilu-
tion refrigerator. Importantly, the transport measurements of the 
resistance of films TiN1, TiN2 and TiN3, shown in Figure 1, and 
STM, displayed in Figure 2, were carried out during the same run. 
At the lowest temperatures, all three samples display a gap centred at  
the Fermi level, corresponding to zero bias, V = 0, and two peaks 
at the edges of the gap, in accordance with the Bardeen–Cooper– 
Schrieffer theory of conventional s-wave superconductivity1, as 
observed in our previous work22. On increasing temperature, the gap 
gets shallower and coherence peaks are depressed. However, up to 
the maximal temperatures achievable in our experiments, the sup-
pression in the DOS remains substantial. Moreover, while approach-
ing the critical disorder strength at which the disorder-driven SIT 
occurs, both the depth of the pseudogap and the temperature range 
in which it exists, show the trend to increase. Remarkably, the pro-
nounced pseudogap persists up to 6.3 K, the highest temperature 
achieved in the experiment, which is ~14Tc for the TiN3 sample. 
At variance, in a 100-nm-thick TiN film, which is well within  
the three-dimensional domain with respect to superconducting 
properties, a flat metallic DOS is restored exactly at Tc (see ref. 23).

Superconductivity-related origin of the pseudogap. To uncover 
the nature of the observed pseudogap, we juxtapose the direct 
STM observations of the DOS with the results of our parallel 
measurements of the transport conductance. Figure 1b shows the 
T-dependence of the dimensionless conductance g = (h/e2R) in a 
semi-logarithmic scale. In all samples, it decreases logarithmically 

(1)(1)

on cooling from room temperature down to ~10 K, as expected 
for two-dimensional disordered metals described by the standard  
theory of quantum corrections to conductivity. This behaviour 
reflects that predominating contributions stem from quantum 
interference effects, namely, weak localization, and electron– 
electron interaction24–26. In the superconducting samples, the 
noticeable deviation from the logarithmic dependence takes place 
on approaching Tc (see Methods). The main contribution to the 
conductance upturn comes from SFs (ref. 27). Their role is twofold:  
to organize Cooper pairs, the part of the electronic states should be 
borrowed from the normal metal, leading to a suppression of the 
metallic DOS. It results in an insulating trend in the temperature 
dependence of the resistance, which, thus, grows on decreasing tem-
perature. At the same time, fluctuation-induced Cooper pairs short 
circuit electronic conductivity, and, as the SFs become developed 
enough, this shunting effect disguises the suppressing of the DOS.

A corresponding temperature evolution of the SF-induced  
suppression of DOS and the resulting change in the tunnelling  
conductance has been discussed by Varlamov and Dorin28 within 
the framework of the perturbation theory of SFs27 and is described 
by the ‘double-log’ temperature dependence: 

G
G

V Gi( , ) ln ,0 2

where  = ln(T/Tc) is the reduced temperature. To relate the observed 
pseudogap to SFs, we inspect the measured temperature evolution 
of the differential tunnelling conductance at zero bias. As shown 
in Figure 3a, the raw data follow equation (2) with the high accu-
racy over a wide range of reduced temperature, , and the slopes of 

G(V = 0, ) versus ln  dependences increase with disorder, that is, 
with R. It is noteworthy that the plots do not contain any adjusting 
parameter: the value of Tc is independently derived from the trans-
port measurements data (see Methods and Supplementary Fig. S1). 
At the same time, G(V = 0, ) versus ln  dependence offers an inde-
pendent method for determining Tc. Indeed, the slightest change in 
Tc eliminates the linear dependence of G(V = 0, ) on ln , as seen 
in Figure 3b. This dependence holds over a wide temperature range 
only when correct, within the 50 mK accuracy, critical temperature, 
Tc, is chosen, evidencing a remarkable consistency between the  
local spectroscopic measurements and the macroscopic transport 
data, irrespective of the spatial fluctuation of the gap amplitude 
observed in ref. 22 (see Fig. 3c,d). However, it must be noted that 
the maximum energy differences in gap values observed at very low 
temperature are only of a few tens of microelectron volts. At higher 
temperature, in the pseudogap state, these energy differences are 
likely to be washed out and, in any case, are beyond the energetic 
resolution of tunnelling spectroscopy, owing to the large thermal 
smearing.

(2)(2)
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Figure 2 | Pseudogap in the density of states. Three-dimensional plots of the tunnelling conductance G(V, T/Tc) normalized by the conductance 
measured at high voltage and low temperature as a function of bias voltage and normalized temperature T/Tc for superconducting films TiN1 (a), TiN2 (b)  
and TiN3 (c). Black lines mark the spectra measured at T/Tc = 1, 1.5, 2 and 3, illustrating that the pseudogap state grows more pronounced and extends 
over a wider temperature range as the disorder increases. The suppression of the density of states of the TiN3 sample remains visible up to T = 14Tc.

FIG. 36 (Color online) Pseudogap in the density of
states. Three-dimensional plot of the tunneling conductance
G(V, T/Tc) normalized by the conductance measured at high
voltage and low temperature as a function of bias voltage and
normalized temperature T/Tc for a superconducting TiN film.
Black lines mark the spectra measured at T/Tc = 1, 1.5, 2
and 3, illustrating that the pseudogap state grows more pro-
nounced and extends over a wider temperature range as the
disorder increases. The suppression of the density of states of
the TiN3 sample remains visible up to T = 14Tc. Reprinted
by permission from Macmillan Publishers Ltd: Nature Com-
munications (Sacépé et al., 2010), copyright (2010).

1. Observation of the fluctuation pseudogap

In the inset of Fig. 38, the result of measurements of
the differential resistance in a Al-I-Sn tunnel junction at
temperatures slightly above the critical temperature of
the Sn electrode is presented. This experiment was con-
ducted (Belogolovskii et al., 1986) to check the proposed
theory (Varlamov and Dorin, 1983), plotted as the main
graphs in Fig. 38. The nonlinear differential resistance
was measured at low voltages, which allowed the obser-
vation of the fine structure of the zero-bias anomaly. It
is worth mentioning that the experimentally measured
positions of the minima are eV ≈ ±3Tc, while the the-
oretical prediction following from (92) is eV = ±πTc.
Similar results on an aluminum film with two regions of
different superconducting transition temperatures were
reported in Ref. (Park et al., 1995). Observations of
pseudogap anomalies in tunneling experiments at tem-
peratures above Tc were reported in (Cucolo et al., 1999;
Matsuda et al., 1999; Renner et al., 1998; Suzuki et al.,
1998; Tao et al., 1997; Watanabe et al., 1997, 2000) using
a variety of experimental techniques.

The pseudogap in the density of states of a supercon-
ducting TiN3 film was thoroughly measured in a wide
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FIG. 37 (Color online) (a) Tunneling curves above Tc at H =
10 T for Bi-2212 crystal. (b) Low-bias parts of the curves
for the Bi-2212 crystal. The zero-bias maximum which below
Tc the authors attribute to an interlayer Josephson current
remains also above the critical temperature. (c) Temperature
dependencies of the superconducting peak voltage for Bi-2212
crystal. (d) Amplitudes of the SC peak, and the LBA. Figure
printed with permission by V.M. Krasnov. Compare to Figure
2 of Ref. (Jacobs et al., 2016).

range of temperatures above Tc0 in Ref. (Sacépé et al.,
2010). The authors observed how the pseudogap state
becomes more pronounced and extends over a wider tem-
perature range when increasing the disorder. The sup-
pression of the density of states of the TiN3 sample re-
mains noticeable up to T = 14Tc0. The temperature
dependence of the minimum of the tunnel conductivity
was found to be well described by the double logarithmic
behavior described in Eq. (96), which indicates that its
origin can be attributed to SF.

A pseudogap, attributed to SFs, was also observed
in slightly overdoped high-temperature superconduc-
tors (Jacobs et al., 2016). The experimental data pre-
sented in this work (see Fig. 37(c)) confirms the predic-
tion of a linear temperature dependence of the pseudo-
gap (Varlamov and Dorin, 1983), see Eq. (95).

2. Observation of the low bias anomaly

At the same time, the LBA gives rise to a new fluctua-
tion spectroscopy tool for determining microscopic mate-
rial parameters, including the energy relaxation time τφ,
the critical temperature Tc0, and magnetic field Hc2(0),
by measuring the tunneling conductance and fitting the
experimental data with the complete expression for the
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FIG. 38 (Color online) Theoretical prediction for the
fluctuation-induced pseudogap structure in the tunnel-
junction resistance [see Eq. (92)] as a function of dimen-
sionless voltage v for different reduced temperatures ε =
0.05, 0.08, 0.12. The insert shows a fit to experimentally ob-
served differential resistance as a function of voltage in an Al–
I–Sn junction (RN = 1149.4Ω) just above the transition tem-
perature (Tc = 3.88K) at two different temperatures T = 3.92
(red) and T = 3.93 (dashed green) (experimental data used
for the fitting from (Belogolovskii et al., 1986)).

fluctuation tunneling current, Eq. (91). Remarkably, all
the information about these parameters is encoded in
merely the distance between the LBA dips and the height
of the central peak in the conductivity curve. An obser-
vation of the described LBA in a dc experiment is in-
dicative of the appearance of fluctuation Cooper pairs
during the time of the experiment at the point below the
STM tip. Recent tunneling current measurements of N-I-
S junctions indeed indicate the presence of the LBA (Ja-
cobs et al., 2016) (see Fig. 37(b)). Since the characteris-
tic lifetime of fluctuation Cooper pairs is ~/kB (T − Tc),
a time-resolved STM measurement utilizing ac currents
with frequencies in the range of 1-10 GHz promises to
make it possible – in principle – to “visualize” them di-
rectly in real time.

IX. EFFECT OF FLUCTUATIONS ON THE NMR
RELAXATION RATE

A. General expression for the fluctuation NMR relaxation
rate

Nuclear magnetic resonance (NMR) spin-lattice relax-
ation occurs through the interaction of nuclei with low-
frequency excitations (Slichter, 1990). It is an important
process for studying dynamics of nuclei in novel mate-
rials (Rigamonti et al., 1998). In the vortex phase of
type-II superconductors at low temperatures, localized
superconducting regions of size ξBCS separate magnetic
flux lines, provided the applied magnetic field is below
Hc2, but well above Hc1. In the vortex phase the spin-
lattice relaxation is mainly due to low-energy intra- and
inter-vortex excitations, which are possibly connected by

a spin diffusion process (Slichter, 1990). Flux line dif-
fusion can be an additional relaxation mechanism in the
vortex liquid phase, see Ref. (Corti et al., 1996) and ref-
erences therein.

The effect of superconducting fluctuations on the NMR
relaxation rate was studied in many works (Carretta
et al., 1996; Mitrović et al., 1999, 2002; Eschrig et al.,
1999; Gorny et al., 1999; Heym, 1992; Kuboki and
Fukuyama, 1989; Maniv and Alexander, 1977; Mosconi
et al., 2000; Prando et al., 2011; Randeria and Varlamov,
1994). It can be observed in a wide range of tempera-
tures and magnetic fields beyond the second critical field
line Hc2(T ) It is well-known that the density of quasi-
particle excitations, which enters quadratically into the
NMR relaxation rate W , is suppressed by SFs (Abra-
hams et al., 1970; Di Castro et al., 1990). However, a
second mechanism of how fluctuations affect spin-lattice
relaxation exists. This relaxation process is of quantum
nature and consists in fluctuation “self-pairing” of an
electron on a self-intersecting trajectory after a spin-flip
scattering event on a nucleus (Glatz et al., 2015; Kuboki
and Fukuyama, 1989; Larkin and Varlamov, 2009; Maniv
and Alexander, 1977), see Fig. 39. This process of Maki-
Thompson (MT) type represents a new channel of NMR
relaxation and leads to an increase of the relaxation rate
W . Note, that the effect of this relaxation process is of
opposite sign than that of the DOS contribution.

As described in Section II, a dynamic state with clus-
ters of coherently rotating FCP is formed above the
Hc2(T ) line at low temperatures. Therefore, it is im-
portant to analyze the effect of this fluctuation analogue
of the vortex state on the magnetic field dependence of
the relaxation rate near Hc2(T ). In Ref. (Lascialfari
et al., 2005) the authors studied the 11B NMR relax-
ation rates in a single crystal of superconducting YNi2B2

(Tc0 = 15.3K). They observed an anomalous peak in
W (H) at low enough temperatures (2K and 4K) in fields
close to Hc2(T ), which was tentatively attributed to
quantum fluctuations of magnetic flux lines. Below we
review the effects of superconducting fluctuations, both
of thermal and quantum nature, on the NMR relaxation
mechanisms.

The NMR relaxation rate W is determined by the
imaginary part of the static limit of the dynamic spin
susceptibility integrated over all momenta:

W = T lim
ω→0

A

ω
Im

∫
(dk)χR+−(k,−iω) , (101)

where, A is a positive constant involving the gyromag-
netic ratio, and χR±(k, ω) = χ±(k, ων → −iω + 0+) is the
dynamic spin susceptibility, calculated as

χ±(k, ων)=

∫ 1/T

0

dτ̃eiων τ̃
〈
T̂τ̃

(
Ŝ+(k, τ̃)Ŝ−(−k, 0)

)〉
.

(102)
Here Ŝ± are the spin raising and lowering operators, τ̃
is the imaginary time, ων = 2πTν (ν = 0, 1, 2...) are
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FIG. 39 (Color online) The MT spin-lattice relaxation mecha-
nism is due to self-pairing of electrons on self-intersecting tra-
jectories involving a spin-flip scatterings on the investigated
nucleus (cyan [light gray]). Initially, an electron moves along
the trajectory p (clockwise), due to several impurity scatter-
ing events (green, Gaussian potential peaks) it returns to the
departure point. As a result of the electron’s interaction with
the nucleus, its spin and momentum flip and it returns along
almost the same trajectory −p (counter-clockwise). During
this process, the electron effectively interacts with itself in
the past, which is only possible due to “fast” motion of the
electron along its trajectory, and the retarded character of
electron-phonon interaction.

bosonic Matsubara frequencies corresponding to the ex-
ternal field, and the angle brackets denote thermal and
impurity averaging in the usual way.

For noninteracting electrons, χ
(0)
± (k, ων) is determined

by the usual loop diagram with the Ŝ±(k, τ̃) operators
playing the role of external vertices (electron interaction
with the external field), leading to the well-known Kor-
ringa law: W0 = 4πATρ2

e.
The first-order fluctuation correction to χ± in dirty

superconductors at magnetic fields H > Hc2(T ) can be
calculated as the standard loop of two Green’s functions
“dressed”(see Fig. 40) with a fluctuation propagator (32)
and impurity vertices (30–31). Fig. 40 shows the dia-
grams for fluctuation corrections to spin susceptibility.
Two diagrams in the panel (a) represent the effect of
fluctuations on the single-particle self-energy, leading to a
decrease in corresponding DOS at the Fermi level. Conse-
quently, in accordance with the Korringa law, SFs reduce
the relaxation rate W with respect to its normal value.
This opens a type of fluctuation spin-gap on approach of
the transition line Hc2(T ) from the normal phase.

The diagrams in the panel (b) contain four-leg
Cooperon impurity blocks, which account for the cor-
rections to the NMR relaxation rate due to DCR pro-
cesses. Analogous contribution is a dominant correction
to fluctuation conductivity in the regime of quantum fluc-
tuations (Glatz et al., 2011a). However, in the case of
spin susceptibility, these contributions are strongly sup-
pressed due to the additional integration over external
momenta(Randeria and Varlamov, 1994), which makes
them proportional to the square of the small Ginzburg-

S+ S- S+ S- 

S+ S- S+ S- 

(a) 

(b) 

(c) 

DOS 

DCR 

S+ S- 

MT 

FIG. 40 (Color online) Spin susceptibility diagrams. The
solid lines correspond to free electron Green’s functions, wavy
lines to the fluctuation propagator, dashed triangles and rect-
angles represent electron scattering at impurities. The two
diagrams (a) correspond to the DOS correction, the diagrams
(b) represent the renormalization of the diffusion coefficient
(DCR), and the diagram (c) corresponds to the MT process.
After Ref. (Glatz et al., 2015).

Levanyuk number.
The MT process shown in Fig. 40(c) has one important

difference from the corresponding diagram for conductiv-
ity. Because of the particular spin assignments on the
free electron Green’s function, the MT diagram for spin
susceptibility is a non-planar graph containing a single
fermion loop. Yet, the MT diagram for conductivity is
a planar graph with two fermion loops, see Ref. (Larkin
and Varlamov, 2009). Since the number of loops deter-
mines the sign of the fluctuation correction (Abrikosov
et al., 1965), the contribution of the MT diagram to spin
susceptibility bears the opposite sign to that for conduc-
tivity (Kuboki and Fukuyama, 1989). Therefore, MT
spin-lattice relaxation processes result in an increase of
W with respect to the Korringa value.

The sign of the MT contribution is not the only dif-
ference between the first order corrections to fluctuation
conductivity and spin susceptibility. Due to the presence
of the spin-flip operators Ŝ±(k, τ̃) as external vertices in
the diagram for spin susceptibility, the Aslamazov-Larkin
process is completely absent from the corrections to the
NMR relaxation rate. It is impossible to consistently
assign spin labels to the central fermion lines for spin–
singlet pairing (Maniv and Alexander, 1977).

When collecting the DOS and MT contributions in one
expression and normalizing the result by the normal Ko-
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rringa relaxation rate in metals, one finds (Glatz et al., 2015) the following expression for W (fl) valid in the whole
phase diagram (with the restrictions discussed above):

W (fl)(t, h)

W0
=

Gi(2)

7ζ(3)

(
h

t

) M∑
m=0

[ ∞∑
k=−∞

8E ′′m(t, h, |k|)
Em(t, h, |k|)

+ 4π

∫ ∞
−∞

dz

sinh2(πz)

Im E ′m(t, h, iz) Im Em(t, h, iz)

Re2Em(t, h, iz) + Im2Em(t, h, iz)

+
π

γφ/π2 + η(m+ 1/2)

∞∫
−∞

dz

sinh2(πz)

Im2Em(t, h, iz)

Re2Em(t, h, iz) + Im2Em(t, h, iz)

 . (103)

B. Asymptotic analysis

1. Vicinity of Tc0 (domains I-III)

First, we present the limiting behavior of W (fl) in the thermal and quantum regimes in Eq. (103). Close to Tc0 and
for magnetic fields not too high (h� 1) but arbitrary with respect to reduced temperature ε = (T − Tc0) /Tc0 � 1
and phase-breaking rate γφ � 1, one obtains:

W (fl)(ε, h� 1)

W0
= −3Gi(2)

{[
ln

1

h
− ψ

(
ε

2h
+

1

2

)]
− π4

168ζ(3)

1

ε− γφ

[
ψ

(
ε

2h
+

1

2

)
− ψ

(
γφ
2h

+
1

2

)]}
. (104)

As with fluctuation corrections to conductivity dis-
cussed in Section V, one can split the limiting cases into
nine domains, according to Fig. 9. In the limit of weak
field near Tc0, h � ε � 1 (domain I), the first term in
the corresponding correction (see Table VII) reproduces
the zero-field result from Refs. (Heym, 1992; Kuboki and
Fukuyama, 1989; Maniv and Alexander, 1977; Rande-
ria and Varlamov, 1994), while the second term pro-
vides the magnetic field dependence first calculated in
Ref. (Mosconi et al., 2000). One can see that the MT
contribution dominates when the pair-breaking is weak,
i.e., in weak fields SFs increase the NMR relaxation rate.

As the phase-breaking grows, the role of the first term
in domain I of table VII weakens, and the contribution
of fluctuations can change sign. The MT trajectories
shorten, and the negative contribution of superconduct-
ing fluctuations due to the suppression of the quasipar-
ticle DOS becomes the dominant one. Since γφ . 1, the
effect of magnetic field on W (fl) is always negative.

In the case 1� h� max {ε, γφ}, domain II, the MT
contribution dominates (Mosconi et al., 2000): here, in-
trinsic pair-breaking is weak while the effect of the mag-
netic field on the motion of Cooper pairs is not yet strong
enough.

2. Region close to the line Hc2(T ) (domains IV – VII)

Next, we discuss the domain of the phase diagram
above the second critical field at relatively low temper-
atures, where fluctuations manifest themselves in the
form of vortex clusters. The general formula (103) al-
lows one to obtain explicit analytical expressions. For
instance, the main contribution along the line Hc2(T ),
where t� hc2(t), comes from the lowest Landau level
of the FCP motion. Performing the summation over
bosonic frequencies and the integration in Eq. (103), one
finds

W (fl)(t� hc2(t))

W0
= −

4π2Gi(2)

7ζ(3)

ln
1

h̃
+

2h̃γφ
π2

ψ′(4hc2(t)h̃

π2t

)
− π2t

4hc2(t)h̃
− 1

2

(
π2t

4hc2(t)h̃

)2
 . (105)

In domain IV, the regime of quantum fluctuations is
realized at very low temperatures, t� h̃, and just above
Hc2(0). Quantum fluctuations suppress the NMR re-
laxation due to decrease of the quasiparticle density of

states. At higher temperatures, h̃� t� hc2(t), super-
conducting fluctuations become thermal in nature, while
the DOS suppression of the NMR relaxation remains
dominant.
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domain δW (fl)/W0

I 3Gi(2)

[
π4

168ζ(3)
1

ε−γφ
ln ε

γφ
− ln 1

ε

]
−Gi(2)

h2

2ε2

[
π4

168ζ(3)

γφ+ε

γ2
φ
− 1

]
II 3Gi(2)

[
π6

672ζ(3)
1
h
− ln 1

h

]
III 3Gi(2)

{
π4

168ζ(3)
2h

(ε+h)(γφ+h)
− ln 1

h

}
I−
III

Eq. (104)

IV − 4π2Gi(2)
7ζ(3)

[
ln 1

h̃
+

π4t3γφ

192h3
c2(0)h̃2

]
V − 4π2Gi(2)

7ζ(3)
ln 1

h̃

VI-VII − 4π2Gi(2)
7ζ(3)

[
ln 1

h̃(t)
+

π2t2γφ

16h2
c2(t)h̃(t)

]
IV−
VII

Eq. (105)

VIII − 2π2Gi(2)
7ζ(3)

[
ln ln 1

Tc0τ
− ln ln t

]
IX − 2π2Gi(2)

7ζ(3)

[
ln ln 1

Tc0τ
− ln lnh

]
TABLE VII Asymptotic expressions for the total relative correction to the NMR relaxation rate in different domains, see
Fig. 9. The first column gives the domain according to that figure and is determined by the t & h regions given in Fig. 9.

FIG. 41 (Color online) The temperature and magnetic field

dependence of the relaxation rate W (fl) in the case of very
weak pair-breaking γφ = 0.003. The thick isoline (red [dark
gray]) represents a zero relaxation rate, while the dashed iso-
lines correspond to relaxation rate values of −1 and −2. The
mesh-line t∗ (red [dark gray]) marks the critical temperature
for γφ → 0, while the light (cyan [light gray]) contour line in-

dicates the value of W (fl) at hc2(t∗) (−3.04). After Ref. (Glatz
et al., 2015).

Fig. 41 presents the results of numerical analysis based
on Eq. (103) for different pair-breaking rates γφ. For
small enough pair-breaking, superconducting fluctua-
tions result in the increase of the NMR relaxation rate
in a large domain of the phase diagram. Increasing the
pair-breaking leads to the suppression of the MT contri-
bution, and for γφ ∼ 1 the effect of quasiparticle DOS
suppression on W (fl) dominates in the entire phase dia-
gram.

Note, that even in the absence of pair-breaking,
γφ → 0, the MT relaxation process is suppressed by
strong magnetic fields below some crossover temperature
T ∗0 , at which point the fluctuation correction W (fl) be-
comes negative. In the case of a 2D superconductor,
T ∗0 ≈ 0.6Tc0. This results in an opening of a fluctuation
spin gap in the magnetic field dependence of W at strong
magnetic fields, H & Hc2(T ∗0 ).

Above the crossover temperature T ∗0 , the field depen-
dence of W (fl) shows a non-monotonic behavior as a
result of the two competing contributions, see Fig. 41.
The total correction is positive (for not too strong pair-
breaking γφ) close to the line hc2(t); it then decreases
rapidly reaching a minimum negative value at some in-
termediate distance from hc2(t) before increasing up to
zero when sufficiently far from the superconducting re-
gion.

Below the crossover temperature, the total correction
increases monotonically as a function of magnetic field.
For t� hc2(t), both in the regime of quantum and ther-
mal fluctuations, the numerical analysis is in full agree-
ment with the asymptotic expressions, see Table VII,
confirming the negative sign of the total correction.
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3. Suppression of the fluctuation contribution to the NMR rate
beyond the GL region

The analysis based on Eq. (103) in the entire tem-
perature range along Hc2(T ) allows to identify the tem-
perature T ∗(γϕ) at which the DOS and MT relaxation
mechanisms fully compensate each other, such that the
fluctuation correction W (fl) completely vanishes (in the
leading order of perturbation theory). The asymptotic
crossover temperature T ∗0 is then defined as T ∗(0), i.e.
the temperature below which the negative DOS contri-
bution always dominates, regardless of the values of γϕ
and h.

C. Fluctuation spectroscopy: analysis of the NMR
relaxation rate

At the end of the 1990s and into the 2000s an deep con-
troversy related to the magnetic field dependence of the
fluctuation contribution to W existed. The theory pre-
dicts, as in the case with magneto-conductivity, that the
positive MT contribution is suppressed by magnetic field,
while the magnetic-field-dependent part of the negative
DOS contribution grows with increasing magnetic field.
However, in contrast to the magneto-conductivity, which
can be measured extremely precisely, the NMR relax-
ation rate experiments are much more sophisticated. The
result of the competition between these field-dependent
corrections to W depends on a number of parameters
(γϕ, τ). The results were found to be qualitatively dif-
ferent in experiments on HTS materials performed by
various groups. The reason for this discussion were
the absence of a strong positive AL contribution, pos-
sible d-pairing, killing the MT contribution (Kuboki and
Fukuyama, 1989), small magnitude of the sum of MT
and DOS effects even in the case of s-pairing, lack of the
precise values of γϕ, τ leading to contradicting theoreti-
cal predictions (Carretta et al., 1996; Eschrig et al., 1999;
Mosconi et al., 2000; Randeria and Varlamov, 1994), and
the difference in the quality of samples and experimental
methods were the reason of this discussion (Brinkmann,
1995; Carretta et al., 2000, 1996; Mitrović et al., 1999;
Gorny et al., 1999; Larkin and Varlamov, 2009; Zheng
et al., 1999, 2000; Zimmermann et al., 1991).

A first attempt to reveal the role of the SF in the NMR-
NQR (nuclear quadrupole resonance) spin lattice relax-
ation rate was carried out by Carretta et al. (Carretta
et al., 1996). Since the AL fluctuation correction is zero
(for s-wave superconductors), the idea was to focus on
the magnetic field dependency on MT and DOS contri-
butions to the relaxation rate. 63Cu NQR (i.e. with zero
external magnetic field) measurements of W in YBCO
were compared to the corresponding ones in the presence
of an external magnetic field. The positive MT contribu-
tion to W near Tc0 was correctly assumed to be strongly

FIG. 42 63Cu relaxation rates 2W (0) in zero field from the
NQR relaxation and 2W (H) in a field of 5.9 T (from NMR
relaxation of the −1/2→ 1/2 line) in the oriented powders of
YBa2Cu3O7−δ, with Tc0(0) = 90.5K and Tc(H) = 87.5K. The
relaxation rates, normalized with respect to W (H) = W (0)
for temperatures well above Tc, are reported in the inset as a
function of T/Tc. After Ref. (Carretta et al., 1996).

quenched by the field, while the negative DOS term was
expected to be more robust. A small dip with respect
to the Korringa behavior on approaching Tc0 from above
was observed (see Fig. 42). The studies carried out sub-
sequently by other authors did not confirm the DOS dip,
at least not of comparable strength. The role of impuri-
ties or defects was suspected to affect the results. Some
clarification was provided by the detailed estimate of the
effect of external magnetic field on the DOS contribu-
tion (Mosconi et al., 2000). Other NMR-NQR studies
were carried out for 17O NMR measurements (Mitrović
et al., 1999).

Taking into account a non-zero frequency of an a.c.
field, the effect of amplitude fluctuations in clean super-
conductors was considered in (Fay et al., 2001). The re-
sults obtained in the limit of zero frequency correspond
to that of (Randeria and Varlamov, 1994) in the clean
case. Moreover, the authors of (Fay et al., 2001) took
the effect of BKT vortex–antivortex fluctuations on the
relaxation rate into account.

X. FURTHER DEVELOPMENTS OF FLUCTUATION
SPECTROSCOPY

In this review, we focused on a unique approach for the
description of the fluctuation phenomena in conventional,
dirty 2D superconductors, valid in the wide range of tem-
peratures and magnetic fields beyond the line Hc2(T ),
including the domains of thermal and quantum fluctua-
tions, and the crossover between them. It allows one to
study the effect of fluctuations on thermodynamic and
transport characteristics of a superconductor both ana-
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lytically and numerically. This approach helps to visual-
ize it in the form of 3D surfaces spanning the entire t−h
parameter space above the superconducting transition,
and to extract from the experimental data such impor-
tant characteristics as the critical temperature, second
critical field, phase-breaking time, etc. In this section we
discuss several extensions of the above approach.

A. Extension of fluctuation spectroscopy on quasi-two
dimensional superconductors

First, we present an extension of the presented ap-
proach to quasi-two dimensional layered superconduc-
tors by taking the transverse motion of FCPs into ac-
count. Close to Tc0, properties of a quasi-two dimen-
sional superconductor can be described well in the frame-
work of the phenomenological Lawrence-Doniach (LD)
model (Lawrence and Doniach, 1971), which provides a
generalization of the Ginzburg-Landau functional. In the
case of a magnetic field applied perpendicular to the cou-
pled superconducting layers, it takes the form:

F (LD)[Ψ] =
∑
l

∫
d2r

[
αTc0ε |Ψl|2+

b

2
|Ψl|4

+
1

4m

∣∣(∇‖−2ieA‖
)
|Ψl

∣∣2+J |Ψl+1 −Ψl|2
]
.

Here Ψl is the order parameter of the l-th superconduct-
ing layer, and the phenomenological constant J is pro-
portional to the energy of the Josephson coupling be-
tween two adjacent planes. The gauge with Az = 0 is
chosen. In the immediate vicinity of Tc0, the LD func-
tional reduces to the GL one with the effective mass
M =

(
4J s2

)−1
along the z-direction. One can relate the

value of J to the coherence length along the z-direction,
or, more conveniently, with the parameter characteriz-
ing the degree of three-dimensionality of the system,
r = 4ξ2

z/s
2: J = αTc0r/2, see Ref. (Larkin and Var-

lamov, 2009).
This generalization can also be done in the mi-

croscopic approach by accounting for transver-
sal motion in the propagator and Cooperons:
ΩH

(
n+ 1

2

)
→ ΩH

(
n+ 1

2

)
+ J

2 (1− cos qzs) and per-
forming an additional integration over transverse
momenta in the final equations. This procedure was
performed in Ref. (Glatz et al., 2015) in order to fit the
experimental data of Ref. (Lascialfari et al., 2005). It
allowed to study the evolution of the crossover tempera-
ture T ∗(r) as a function of the effective dimensionality
of the sample.

B. Fluctuations in two-band superconductors

The specifics of underdoped cuprates attracted the in-
terest to consider fluctuations in these materials in terms

of an effective two-gap model (Perali et al., 2000). The
latter was motivated by the strong anisotropy of the band
dispersion and introduced two weakly coupled bands, in
order to preserve a substantial distinction between the su-
perconducting order parameter in different regions of the
momentum space. This approach allows for different fluc-
tuation regimes for pairings in different k-space regions.
The strongly bound pairs forming at high temperature T ∗

can experience large fluctuations until the system is sta-
bilized by the coupling with less bound, BCS-like states,
leading to a coherent superconducting state at Tc0 < T ∗.
The temperatures Tc0 and T ∗ merge around or above op-
timum doping. Such a model shares similarities with the
fermion-boson models for cuprates (Geshkenbein et al.,
1997; Ranninger et al., 1995), to which it reduces in the
strong-coupling limit. Important conclusion of Ref. (Per-
ali et al., 2000) was that in the case of two very different
but interacting bands, the effective Ginzburg-Levanyuk
number, mainly determined by the large band, remains
small. As a result, the system is stabilized with respect
to fluctuations, allowing for a coherent superconducting
phase.

Since the discovery of superconductivity in MgB2 (see
the review (Xi, 2008)), the properties of multi-band su-
perconductors returned to the spotlight of attention af-
ter half a century of oblivion (Moskalenko, 1959; Suhl
et al., 1959). Further discovery of multi-band high-
temperature superconductivity in iron-based materials
gave even stronger boost to this field, see the experimen-
tal (Johnston, 2010; Paglione and Greene, 2010; Stewart,
2011) and theoretical (Chubukov, 2012; Hirschfeld et al.,
2011) reviews.

Superconducting properties of magnesium diboride are
strongly influenced by multi-band effects. Among the
anomalies found in MgB2 was the unusually narrow tem-
perature range of applicability of the standard Ginzburg-
Landau theory (Komendová et al., 2011; Koshelev and
Golubov, 2004; Koshelev et al., 2005). The Cooper pairs
of different kinds, formed by electrons of π-band and
by electrons of σ-band respectively, behave themselves
as the unique condensate only very close to Tc0. Due
to the large difference in the c-axis coherence lengths
of σ and π bands, the condensates of different kinds
split already at temperatures parametrically close to Tc0:
|T −Tc0)|/Tc0) & ξ2

σz/ξ
2
πz+Sπσ � 1 (here Sπσ � 1 is the

relative inter-band interaction constant). Evidently, this
particularity should manifest itself in fluctuation proper-
ties.

The theory generalizing the microscopic theory of fluc-
tuations to a two-band superconductor and deriving
the related nonlocal GL functional was developed in
Ref. (Koshelev et al., 2005). It was strongly focused
on the application to magnesium diboride, in which the
main differences between the bands are the strength of
intra-band coupling constants and the values of the c-
axis coherence length. In result, the very early manifes-
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tation of the short wavelength fluctuations in the π band
(where superconducting interaction is weaker) was pre-
dicted. The predictions of the theory have not been con-
firmed experimentally, see Ref. (Ferrando et al., 2007),
likely because fluctuations in magnesium diboride are
extremely weak. The Ginzburg-Levanyuk number for
clean MgB2 can be estimated as Gi(3) ≈ 1.5× 10−6 (see
Ref. (Koshelev et al., 2005)).

In contrast, the iron pnictides are multi-band semimet-
als and, as a consequence, are characterized by fairly
strong fluctuations. Depending on the compound, the
estimates for the Ginzburg-Levanyuk number range from
3× 10−5 to 5× 10−3, see Ref. (Koshelev and Varlamov,
2014). It is likely that behavior of superconducting fluc-
tuations in iron-based superconductors at sufficiently low
temperatures is influenced by multi-band effects. Un-
fortunately, the partial coherence lengths for different
bands are not known in present. However, multi-band
effects are noticeable in the fluctuation properties of
FeSe0.5Te0.5 (Klein et al., 2010; Serafin et al., 2010).

The study of short wavelength and dynamic fluc-
tuations in the vicinity of the upper critical field
line for a two-band superconductor was performed in
Ref. (Koshelev and Varlamov, 2014). As mentioned
above, multi-band effects are more pronounced when the
bands have significantly different coherence lengths. The
transition to the superconducting state is mainly deter-
mined by the properties of the rigid condensate of the
“strong” band, while the “weak” band with a large coher-
ence length of the Cooper pairs causes the non-locality
in fluctuation behavior and break down of the simple
Ginzburg-Landau picture. Usually, the effect of a mag-
netic field on fluctuations becomes essential when the
magnetic length `H reaches the value of the fluctuation
Cooper pair size. Since the coherence lengths of differ-
ent bands together with the gaps in the multiple-band
superconductor can differ strongly, one can expect that
short wavelength fluctuation modes in them will be ex-
cited at very different fields, like it was found in the tem-
perature dependencies of paraconductivity and fluctua-
tion heat capacity for MgB2 (Koshelev et al., 2005). As
expected, the multi-band electronic structure does not
change the functional forms of dominating divergences of
the fluctuating corrections when the magnetic field ap-
proaches the upper critical field. The temperature de-
pendence of the coefficients, however, is modified. Non-
trivial consequence of the developed theory consists in
the fact that the large in-plane coherence length sets the
field scale at which the upper critical field has an upward
curvature (see Fig. 43). The authors also observed that
the apparent transport transition displaces to lower tem-
peratures with respect to the thermodynamic transition.
Even though this effect exists already in the single-band
case at sufficiently high fields, it may be strongly en-
hanced in multi-band materials.

C. Fluctuations in clean superconductors in strong fields

In the limit of a clean superconductor, when the elec-
tron mean free path considerably exceeds the BCS co-
herence length (Tc0τ � 1), Eqs. (30)–(32) for Cooperons
and fluctuation propagator, obtained in the diffusion ap-
proximation for the electron motion, are no longer appli-
cable. Moreover, it is known that in the ultra-clean case,
when the electron mean free path considerably exceeds
the coherence length of FCPs, ξGL(ε), the DOS and MT
contributions cancel each other, see Ref. (Livanov et al.,
2000).

The AL contribution for the case of a clean 2D super-
conductor in the absence of a magnetic field was analyzed
in a wide range of temperatures in Ref. (Reggiani et al.,
1991). The authors demonstrated that in the tempera-

ture dependence of σ
(AL)
(2) = e2

~ f(ln t) the low tempera-

ture (ln t � 1) asymptotic f(x) = x−1/16 is replaced at
high temperatures (ln t � 1) by f(x) = 0.12x−3. This
statement was checked experimentally multiple times
and it was found, that the high-temperature regime al-
ready starts at an argument value of x = 0.25, see
Refs. (Caprara et al., 2005; Cimberle et al., 1997).

The compensation of the MT, DOS and DCR contri-
butions in a clean superconductor occurs at the level of
the Green’s function blocks, i.e., before the integration
over FCP momentum, or, more generally, the summa-
tion over its quantum numbers. This suggests that in
the clean limit, the AL diagram is the only remaining
one, even in the case of a strong magnetic field (Galit-
ski and Larkin, 2001a). This is why in order to study
the effect of fluctuations on physical properties of a clean
superconductor in entire phase diagram, the required el-
ements of the Feynman diagrams have to be found for
arbitrary temperatures and in presence of the magnetic
field, while taking into account their nonlocal structure.

The role of the magnetic field here in two-fold. First,
the superconducting transition itself is governed by the
magnetic field. The other effect are the De Haas-van
Alphen (in thermodynamic properties) and Shubnikov–
de Haas oscillations (in transport coefficients) due to the
quantization of the energy levels. However, if ωcτ � 1
and T � ωc ∼ T 2

c0/EF, the oscillation terms are expo-
nentially small and can be neglected.

The method for the analysis of fluctuation effects in
the clean case, requiring to deal with non-local opera-
tors, is based on the Helfand-Werthamer theory. In the
seminal paper (Helfand and Werthamer, 1966), Helfand
and Werthamer evaluated the matrix element λ0 for the
Cooperon in a magnetic field, which determines the upper
critical field Hc2(T ). They proved the following mathe-
matical statement, which is referred to as the Helfand-
Werthamer theorem. Let us consider an operator O and
suppose that its kernel in coordinate representation has
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FIG. 43 (Color online) Field dependences for fluctuation region for (a) single-band and (b) two-band superconductors. HGi ≡
H̃c2(0)Gi(3) is the typical value of magnetic field, Gi(3)(H) is the width of fluctuation region. After Ref. (Koshelev and Varlamov,
2014).

the following form:

O (r, r′) = Õ (r− r′) exp

(
−2ie

∫ r′

r

A(s)ds

)
. (106)

Then, the operator can be written as

Ô =

∫
Õ(r) exp (−irπ̂) ddr ,

where π̂ = [p̂− 2ieA(r)] is the kinetic momentum, which
can be expressed in terms of creation and annihilation op-
erators in Landau representation. One can see that all
the operators involved in the above calculations satisfy
the Helfand-Werthamer theorem. Namely, the particle-
particle bubbles, current vertex, and the four Green func-
tion blocks of the AL diagram in coordinate representa-
tion can be written as a product of a function of the co-
ordinate difference and the gauge factor. Magnetic field
effects can be treated semiclassically, which means that
the factor Õ (r− r′) in Eq. (106) can be considered in
zero field.

A corresponding approach was realized in Refs. (Gal-
itski and Larkin, 2001a; Kurkijärvi et al., 1972) in the
studies of fluctuation diamagnetism and conductivity in
clean superconductors.

D. Fluctuation spectroscopy of artificial nanosolids

Nanosolids are artificially designed arrays of nanocrys-
tals composed of tiny crystals ranging in size from 2
to 100 nanometers (they are also called granular sys-
tems). Due to the electron confinement effect, nanocrys-
tals can be viewed as quantum dots and the behav-
ior of their physical properties lie in between that of

molecules and bulk materials. The study of trans-
port properties of granular metals has gained signifi-
cant attention (Beloborodov et al., 2007; Goldman and
Markovic̀, 1998) since the groundbreaking experiments
on the superconductor-insulator transition in granular
samples (Haviland et al., 1989). Altering the nanocrys-
tal composition and size allows modifying bulk material
properties, in particular enabling the study of the inter-
play between electron correlations and mesoscopic effects
of disorder.

A clear experimental signature of granularity in su-
perconducting system was given in (Lerner et al., 2008).
Nanosolids are characterized by the following two one-
electron transport mechanisms: the intragrain diffusion
(with diffusion coefficient Dg) and the intergrain tunnel-
ing (with effective diffusion coefficient DT = Γa2, where
Γ is the electron tunneling rate between nano-grains
and a is the average grain size). Typically, Dg � DT

and these two mechanisms result in the appearance of
two different Ginzburg-Landau lengths. The first one,
ξGL,g(ε) = (Dg/Tc0ε)

1/2, is a result of intragrain pairing,
while the second, ξGL,T(ε) = (DT/Tc0ε)

1/2 corresponds
to pairing across (intergrain) grains. As as consequence,
there are three distinct temperature regimes in the vicin-
ity of the critical temperature. In the first one, far from
Tc0, where ε > Dga

−2T−1
c0 = ETh/Tc0 (ETh is the Thou-

less energy), the pairing has intergrain nature. In this
region the FCPs of each grain are independent and their
motion has 3D character, corresponding to a critical ex-
ponent of the paraconductivity of −1/2. When temper-
ature approaches Tc0 and ξGL,g(ε) becomes larger than
the grain size, while ξGL,T(ε) remains smaller, the pair-
ing still has the intergrain nature, but the size of FCPs in
this temperature range (Γ/Tc0 � ε� ETh/Tc0) exceeds
the grain diameter. Here, each grain acts as its own zero-
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FIG. 44 (Color online) Fluctuation spectroscopy of a 564nm
thick BNCD film. (a) A fit to the high temperature region
reveals a T0.5 dependence, and allows extraction of the value
of normal conductance. (b) Tc is defined as the point at
which the conductance diverges, depicted as vertical line. (c)
Fluctuation conductance as a function of reduced temperature
ε. Figure reprinted from Ref. (Klemencic et al., 2017) (Fig.
3) with permission by authors (2017).

dimensional (0D) superconductor for which the paracon-
ductivity is expected to be proportional ε−2. However, an
intergrain FCP transport requires two electrons to hop
within one GL lifetime τGL ∼ ε−1 such that the AL con-
tribution in a quasi-0D array of grains should in fact be
∼ ε−3. Finally, in the immediate vicinity of the critical
temperature, ε � Γ/Tc0, the coherence length ξGL,T(ε)
exceeds the grain size and the pairing involves electrons
of different grains such that the system becomes becomes
effectively 3D and the critical exponent of the paracon-
ductivity is −1/2, the same as in region ETh/Tc0 < ε.
This qualitative picture was supported by the rigorous
calculations in Ref. (Lerner et al., 2008). Another type of
dimensional double-crossover of fluctuation conductivity
as function of temperature was predicted for multilayer
superconducting films in Ref. (Varlamov and Yu, 1991).

Very recently the authors of Ref. (Klemencic et al.,
2017) presented measurements for the resistance versus
temperature in a series of boron-doped nanocrystalline
diamond (BNCD) films with different grain sizes, var-
ied by changing the film thickness. Upon extracting the
fluctuation conductivity near to the critical temperature,
they indeed observed three distinct scaling regions (3D
intragrain, quasi-0D, and 3D intergrain, see Fig. 44), con-
firming the prediction of Ref. (Lerner et al., 2008). The
location of the crossovers between these scaling regions
allowed them to determine the tunneling energy and the

Thouless energy for each film.

The tunneling energy, or Γ, is an energy associated
with the transfer of carriers across grain boundaries.
Therefore, it does not depend much on the morphology
of the grains and is almost invariant between different
film. In work (Klemencic et al., 2017), Γ was extracted
from the 3D to quasi-0D crossover for all samples and the
authors found a value of Γ = 4.2± 2.0µeV. On the other
hand, the Thouless energy should be proportional to the
inverse square of the mean grain size with proportional-
ity factor being the intragrain diffusion coefficient. Using
this relation they found a value of Dg = 11.5± 5.7cm2/s.

Overall, this experimental work is another example of
fluctuation spectroscopy, which allows to extract infor-
mation about the granular structure in nanosolids from
the observation of dimensional crossovers in the fluctua-
tion regime. The authors conclude that this is a remark-
ably simple yet valuable tool for the characterization of
microscopic properties of nanocrystalline superconduc-
tors.

E. Fluctuation spectroscopy of inhomogeneous films:
pseudogap and confinement

In this review, we considered fluctuations as devia-
tions of the superconducting order parameter from its
mean field solution and their effect on various transport
properties of SCs. I.e., we remained in the framework
of the fermionic scenario of superconductivity relating
the SC transition temperature to the appearance of a
supercurrent as response to an applied vector potential.
Or, in other words, one identifies Tc0 with the tempera-
ture at which a stable condensate of Cooper pairs with
〈∆(r, t)〉 6= 0 appears.

The role of a weak disorder on the properties of SCs
in the framework of the BCS theory was elucidated a
long time ago in the seminal papers of Anderson (Ander-
son, 1959), and Abrikosov and Gor’kov (Abrikosov and
Gor’kov, 1959a,b). It was demonstrated that in the case
of SCs with isotropic spectrum and s-type pairing, which
contain a not too high concentration of elastic impurities
(the electronic mean free path is supposed to be much
larger than the inter-atomic distance), the so-called An-
derson theorem is valid. The latter states that in first
approximation the presence of impurities does not effect
the thermodynamic properties of SCs.

Later, as the focus of attention shifted towards the
study of properties of disordered and low-dimensional su-
perconductors, this traditional understanding of the role
of impurities become subject of revisions. Remaining in
the fermionic paradigm of superconductivity, Finkel’stein
demonstrated (Finkel’shtein, 1987) that the delay in
screening of the Coulomb interaction in a disordered two-
dimensional SC leads to a decrease of the effective elec-
tron attraction and, as result, a suppression of Cooper
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pair formation when the electronic mean free path be-
comes of the order of the inter-atomic distance.

Nowadays, the so-called bosonic scenario is discussed
in which strong disorder may destroy the phenomenon of
superconductivity by means of localization of unbroken
Cooper pairs, giving rise to a specific normal pseudogap
state. The way in which superconductivity is destroyed
in such systems is still debated. A numerical approach
to study the properties of uniformly disordered super-
conductors (Bouadim et al., 2011) suggested that there
is a continuous crossover (Trivedi et al., 2012) from the
weak disorder limit, where the system has a rather homo-
geneous fermionic character, to the strong disorder limit,
where characteristic inhomogeneities appear in the super-
conducting order parameter. The latter has an emergent
bosonic nature and is characterized by a single-particle
gap, which persists on the insulating side of the transi-
tion.
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FIG. 45 (a) Extracted square paraconductance for three dif-
ferent, relatively thick samples B2 (Tc0 = 7.1K, pluses), C1

(Tc0 = 9.4K, crosses), and F0 (Tc0 = 9.0K, asterisks) as a
function of the reduced temperature ε = ln(T/Tc0). The
agreement with the Aslamasov-Larkin prediction for a 2D sys-
tem (cyan solid line) is excellent, without any adjustable pa-
rameter. (b) Extracted square paraconductance for the thin-
ner samples Y0 (Tc0 = 4.3K, open circles), X0 (Tc0 = 3.8K,
open squares), A2 (Tc0 = 4.5K, open diamonds), and A4

(Tc0 = 2.4K, open triangles). The pink solid line corresponds
to σ = 0.03e2/(ε2). The expected AL 2D square paraconduc-
tance is also shown (thick cyan [light gray] solid line). (c)
Map displaying the superconducting gap inhomogeneities at
300mK. Adapted figure from Ref. Carbillet et al., 2016 with
permission by authors.

Recent experiments on ultrathin NbN films seem to
find indications of an intermediate regime between such
fermionic and bosonic scenarios, where Cooper pairs start
to localize, while still keeping their character of pairs of
Fermions. By combining transport and nanoscale stud-
ies of superconducting ultrathin NbN films, it was found
in Ref. (Carbillet et al., 2016) that nanoscopic inhomo-
geneities emerge when the film thickness is reduced. For
the thinnest films, scanning tunneling spectroscopy at
low temperature unveils inhomogeneities in the super-
conducting properties, of typical size Li, that are not
directly correlated to any structural inhomogeneity and
that are found to persist above the critical temperature
in the form of a pseudogap [Fig. 45(c)]. Remarkably
enough, while the thickest films display a purely two-
dimensional behavior of SFs above the critical tempera-
ture [Fig. 45(a)], the paraconductivity in the pseudogap
regime of the thinnest samples demonstrates SFs of the
order parameter which formally corresponds to a zero-
dimensional (0D) regime [Fig. 45(b)]. This 0D behav-
ior eventually crosses over to 2D paraconductivity when
Tc0 is approached. Such behavior was ascribed by the
authors to an anomalous slowing-down of the diffusion
process at long/intermediate wave vectors.

When ∆σ is converted into the measured paraconduc-
tance per square by means of the length scale lsg, which
represents the size of the 0D supergrain (sg) fluctuating
domains, one obtains (analogously to subsection X.D)

σ
(AL)
0D =

(
ξ

lsg

)2
πe2

4~ε2
.

Deducing ξ ∼ 5.5± 0.5 nm from the critical field Hc2, it
is possible to extract the value of lsg from the paracon-
ductivity data. One finds, e.g., lsg = 28 nm for samples
A2 (Tc0 = 4.5K) and X0 (Tc0 = 3.8K), lsg = 35 nm
for sample Y0 (Tc0 = 4.3K), and lsg = 40nm for sample
A4 (Tc0 = 2.4K). These values of lsg are in quantitative
agreement with the typical domain size Li/2 ∼ 50nm
extracted from STS data at 300mK and at 4.2K for sam-
ple X0 (Tc0 = 3.8K). This means that it is the length
Li/2 ∼ lsg instead of the real grain size dg � lsg sets the
scale for the 0D fluctuating domains. Such situation re-
mains until the temperature approaches Tc0 so close that
the coherence length ξGL(ε) becomes larger than Li and
the 2D behavior is recovered.

This scenario leads to a “temporary confinement” of
SFs, which allows to explain the paradoxical simultane-
ous presence of a pseudogap and 0D amplitude fluctua-
tions of the order parameter (if the pseudogap indicates
simple localization of bosonic pairs, only phase fluctua-
tions would be expected).
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XI. NUMERICAL FLUCTUATION SPECTROSCOPY

In order to utilize the complete expressions for fluc-

tuation corrections of conductivity σ
(fl)
xx (t, h) (Eq. (55)),

NMR relaxation rate W (fl) (Eq. (103)), Nernst coefficient
ν(fl) (Eq. (80)), or tunneling current Iqp (Eq. (91)) to ana-
lyze experimental data, an efficient and accurate method
to evaluate those expressions numerically is needed. Here
we review the numerical methods used for their evalua-
tion with examples – we avoid discussing the actual im-
plementation or technical programming issues, like paral-
lelization (which is straight-forward for the problem dis-
cussed here). As supplementary information we provide
a C++ implementation for the evaluation of all the fluc-
tuation corrections mentioned above.

A first important ingredient for all expressions is an
efficient and accurate algorithm for the evaluation of the
real and complex poly-Gamma functions ψ(n)(z). The
former is readily available in standard numerical toolk-
its like GSL (Gough, 2009), but a complex version is
a bit more difficult to find and we refer the interested
reader to Ref. (Zhang and Jin, 1996). Another compli-
cation of most evaluations is that the summation cut-off
parameter Mt can reach extremely large values at low
temperatures [experimental values (Tc0τ)

−1
exp for materi-

als near the superconductor-insulator transition can be
on the order 106], which slows the numerical procedure
down significantly. The latter difficulty can be partially
overcome by evaluation of the slowly divergent tails of
the m-sums, in e.g. Eq. (55), as integrals. Here, we
should also note that for fitting purposes one does not
need to choose actual, often extremely small, experimen-
tal values (Tc0τ)exp. To save CPU time, one can assume
the value (Tc0τ)num of this parameter to be much larger
than (Tc0τ)exp (but still much less than Tc0τφ). After
the evaluation of the complete expression, the result can

then be shifted by ln ln
(Tc0τ)num

(Tc0τ)exp
, which approximates the

summands not evaluated explicitly Nevertheless, the nu-
merical task remains challenging: e.g., for the surface
plot in Fig. 15 we evaluated 106 values for δσ with the
modest assumption (Tc0τ)num = 0.01, yet it still took
three months of single core CPU time (in 2011) for its
calculation.

The (convergent) integral contributions (typically z-
integrations) are least difficult to calculate and can be
straight-forwardly evaluated using a suitable quadrature
scheme. It was found that the Gauss-Legendre 5-point
method was efficient and accurate, allowing also the in-
tegration of integrable poles or principle values. In prac-
tice, due to the presence of the sinh−2(πz) term in the
integrand, we can restrict the integration support to
z ∈ [−5, 5]. Outside this interval the integrand is smaller
than the numerical accuracy of double precision floating
point numbers. Sums over Landau-levels are calculated
up to the cutoff Mt = (tTc0τ)−1 explicitly.

In contrast, summations over k are more involved and
only slowly converging (or not converging at all as in the
case for the susceptibility χ(fl) (Eq. (38), where the cutoff
for Matsubara frequencies has to be taken into account).
For the numerical summation of the k-sum we separate
the k = 0 term and sum from k = 1 to kmax (with co-
efficiet 2, due to symmetry) which is determined by the
arguments of the ψ(n) functions being equal to Ω = 1000.
For k ≥ kmax we transform the sum into an integral and
use only the asymptotic expressions for the poly-Gamma
functions as the difference to the exact expression is again
below the floating point accuracy. Then the integration
variable is inverted and we have a finite integral for the
remaining part of the sum. In the case when the k-sum
is not converging, this integral was two non-zero finite
limits.

Exemplary, we show the transformation of the k-sum
appearing in the NMR contribution, Eq. (103), to a suit-
able form for numerical evaluation (Glatz et al., 2015):

S(MT)
m ≡

∞∑
k=−∞

E ′′m (t, h, |k|)
Em (t, h, |k|)

and write

S(MT)
m $

[
kmax−1∑
k=0

(2− δ0,k) + 2

∫ ∞
kmax

dk

]
E ′′m (t, h, |k|)
Em (t, h, |k|)

≡ S(MT)(s)
m + S(MT)(i)

m

with

kmax = max

{
2Ω−

⌊
4h

π2t
(2m+ 1)

⌋
, 1

}
.

Here we use $ to indicate “equal” in floating point pre-
cision.

The sum part S
(MT)(s)
m is calculated straightforwardly,

which leaves the calculation of the “rest-integral” S
MT(i)
m :

S(MT)(i)
m =

1

2

∞∫
kmax

dk
ψ′′
(

1+k
2 + xm

)
ln t− ψ

(
1
2

)
+ ψ

(
1+k

2 + xm
)

$−1

2

∞∫
kmax

dk

(
1+k

2 + xm
)−2

ln t− ψ
(

1
2

)
− ln(2) + ln (1 + k + 2xm)

where we used the asymptotic behavior of the poly-

Gamma functions with xm ≡ 2h
t

(2m+1)
π2 .

A convenient substitution is

1

z
=

8

π2
+

(1 + k)t

h (m+ 1/2)
=

8

π2xm

[
xm +

1 + k

2

]
,

dz

z2
= − t

h (m+ 1/2)
dk = − 4

π2

dk

xm
,

zmax =
π2

4

(
2 +

1 + kmax

xm

)−1

.
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Therefore,

S(MT)(i)
m =

π2

8

0∫
zmax

dz

z2

xm

(
8z

π2xm

)2

ln (tπ2xm/4)− ψ
(

1
2

)
− ln(2)− ln(z)

= − 8

π2xm

zmax∫
0

dz
1

Am − ln z

= − 2t

h (m+ 1/2)

zmax∫
0

dz
1

Am − ln z

with Am ≡ ln [h (m+ 1/2)]− ψ
(

1
2

)
− ln(2).

This integral is integrable and calculated by the Gauss-
Legendre 5-point method (which avoids the singular
point at z = 0) with only a few support points in the
small interval 0 to zmax (125 support points are sufficient
to reach floating point precision).

Overall this yields a highly accurate numerical value
of the k-sums.

In the quasi-two-dimensional case the additional finite
q-integral is calculated by the Gauss-Legendre 5-point
method using 25 support points, which is sufficient to
obtain high accuracy.

The k-summations for all other fluctuation corrections
can be treated in a similar fashion.
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