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Adiabatic quantum computing (AQC) started as an approach to solving optimization
problems, and has evolved into an important universal alternative to the standard circuit
model of quantum computing, with deep connections to both classical and quantum
complexity theory and condensed matter physics. In this review we give an account of
most of the major theoretical developments in the field, while focusing on the closed-
system setting. The review is organized around a series of topics that are essential to
an understanding of the underlying principles of AQC, its algorithmic accomplishments
and limitations, and its scope in the more general setting of computational complexity
theory. We present several variants of the adiabatic theorem, the cornerstone of AQC,
and we give examples of explicit AQC algorithms that exhibit a quantum speedup. We
give an overview of several proofs of the universality of AQC and related Hamiltonian
quantum complexity theory. We finally devote considerable space to Stoquastic AQC,
the setting of most AQC work to date, where we discuss obstructions to success and
their possible resolutions.
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I. INTRODUCTION

Quantum computation (QC) originated with Benioff’s
proposals for quantum Turing machines (Benioff, 1980,
1982) and Feynman’s ideas for circumventing the diffi-
culty of simulating quantum mechanics by classical com-
puters (Feynman, 1982). This led to Deutsch’s proposal
for universal QC in terms of what has become the “stan-
dard” model: the circuit, or gate model of QC (Deutsch,
1989). Adiabatic quantum computation (AQC) is based
on an idea that is quite distinct from the circuit model.
Whereas in the latter a computation evolves in the en-
tire Hilbert space and is encoded into a series of unitary
quantum logic gates, in AQC the computation proceeds
from an initial Hamiltonian whose ground state is easy
to prepare, to a final Hamiltonian whose ground state
encodes the solution to the computational problem. The
adiabatic theorem guarantees that the system will track
the instantaneous ground state provided the Hamilto-
nian varies sufficiently slowly. It turns out that this ap-
proach to QC has deep connections to condensed matter
physics, computational complexity theory, and heuristic
algorithms.

In its first incarnation, the idea of encoding the solu-
tion to a computational problem in the ground state of a
quantum Hamiltonian appeared as early as 1988, in the
context of solving classical combinatorial optimization
problems, where it was called quantum stochastic opti-
mization (Apolloni et al., 1989).1 It was renamed quan-
tum annealing (QA) in (Apolloni et al., 1988) and rein-
vented several times (Amara et al., 1993; Finnila et al.,

1 Even though (Apolloni et al., 1989) was published in 1989, it
was submitted in 1988, before (Apolloni et al., 1988), which ref-
erenced it.
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1994; Kadowaki and Nishimori, 1998; Somorjai, 1991).2

These early papers emphasized that QA was to be under-
stood as an algorithm that exploits simulated quantum
(rather than thermal) fluctuations and tunneling, thus
providing a quantum-inspired version of simulated an-
nealing (SA) (Kirkpatrick et al., 1983). The first direct
comparison between QA and SA (Kadowaki and Nishi-
mori, 1998) suggested that QA can be more powerful.

A very different approach was taken via an experimen-
tal implementation of QA in a disordered quantum fer-
romagnet (Brooke et al., 1999, 2001). This provided the
impetus to reconsider QA from the perspective of quan-
tum computing, i.e., to consider a dedicated device that
solves optimization problems by exploiting quantum evo-
lution. Thus was born the idea of the quantum adiabatic
algorithm (QAA) (Farhi et al., 2001, 2000) [also referred
to as adiabatic quantum optimization (AQO) (Reichardt,
2004; Smelyanskiy et al., 2001)], wherein a physical quan-
tum computer solves a combinatorial optimization prob-
lem by evolving adiabatically in its ground state. The
term adiabatic quantum computation we shall use here
was introduced in (van Dam et al., 2001), though the
context was still optimization.3

Adiabatic quantum algorithms for optimization prob-
lems typically use “stoquastic” Hamiltonians, character-
ized by having only non-positive off-diagonal elements
in the computational basis. Adiabatic quantum compu-
tation with non-stoquastic Hamiltonians is as powerful
as the circuit model of quantum computation (Aharonov
et al., 2007). In other words, non-stoquastic AQC and
all other models for universal quantum computation can
simulate one another with at most polynomial resource
overhead. For this reason the contemporary use of the
term AQC typically refers to the general, non-stoquastic
setting, thus extending beyond optimization to any prob-
lem in the complexity class BQP (bounded error quan-
tum polynomial time) (Bernstein and Vazirani, 1993).
When discussing the case of stoquastic Hamiltonians we
will use the term “stoquastic AQC” (StoqAQC).4

For most of this review we essentially adopt the def-
inition of AQC from (Aharonov et al., 2007), as this
definition allows for the proof of the equivalence with
the circuit model, and is thus used to establish the uni-
versality of AQC. Interestingly, this proof builds on one

2 It was called “quasi-quantal method” in (Somorjai, 1991),
“imaginary-time algorithm” in (Amara et al., 1993), and quan-
tum annealing in (Finnila et al., 1994; Kadowaki and Nishimori,
1998). The latter term has become widely accepted.

3 The first documented use of the term “adiabatic quantum com-
putation” was in (Averin, 1998), but the context was an adiabatic
implementation of a quantum logic gate in the circuit model.

4 While both StoqAQC and the modern use of QA involve evo-
lutions with stoquastic Hamiltonians, we differentiate between
them in the following sense: we restrict StoqAQC purely to the
case of closed system evolutions, whereas QA refers to a (not
necessarily adiabatic) evolution in an open system.

of the first QC ideas due to Feynman, which was later
shown to allow a general purpose quantum computation
to be embedded in the ground state of a quantum system
(Feynman, 1985; Kitaev et al., 2000). A related ground
state embedding approach was independently pursued in
(Mizel et al., 2001, 2002), around the same time as the
original development of the QAA. To define AQC, we
first need the concept of a k-local Hamiltonian, which is
a Hermitian matrix H acting on the space of p-state par-
ticles that can be written as H =

∑r
i=1Hi where each Hi

acts non-trivially on at most k particles, i.e., Hi = h⊗ 11
where h is a Hamiltonian on at most k particles, and 11
denotes the identity operator.

Definition 1 (Adiabatic Quantum Computation). A k-
local adiabatic quantum computation is specified by two
k-local Hamiltonians, H0 and H1, acting on n p-state
particles, p ≥ 2. The ground state of H0 is unique and
is a product state. The output is a state that is ε-close
in `2-norm to the ground state of H1. Let s(t) : [0, tf ] 7→
[0, 1] (the “schedule”) and let tf be the smallest time such
that the final state of an adiabatic evolution generated by
H(s) = (1−s)H0 +sH1 for time tf is ε-close in `2-norm
to the ground state of H1.

Several comments are in order. (1) A uniqueness re-
quirement was imposed on the ground state of H1 in
(Aharonov et al., 2007), but this is not necessary. E.g.,
in the setting where H1 represents a classical optimiza-
tion problem, multiple final ground states do not pose a
problem as any of the final states represents a solution
to the optimization problem. (2) Sometimes it is bene-
ficial to consider adiabatic quantum computation in an
excited state (see, e.g., Sec. VI.C). (3) As already noted
in (Aharonov et al., 2007), it is useful to allow for more
general “paths” between H0 and H1, e.g., by introducing
an intermediate Hamiltonian that vanishes at s = 0, 1
(see, e.g., Sec. VII.E).

A crucial question that will occupy us throughout this
review is the cost of running an algorithm in AQC. In
the circuit model the cost is equated with the number of
gates, so one cost definition would be to the count the
number of gates needed to simulate the equivalent adia-
batic process. This cost definition presupposes that the
circuit model is fundamental, which may be unsatisfac-
tory. In AQC one might be tempted to just use the run-
time tf , but in order for this quantity to be meaningful it
is necessary to define an appropriate energy scale for the
Hamiltonian. In (Aharonov et al., 2007) the cost of the
adiabatic algorithm was defined to be the dimensionless
quantity

cost = tf max
s
‖H(s)‖ , (1)

in order to prevent the cost from being made arbitrar-
ily small by changing the time units, or distorting the
scaling of the algorithm by multiplying the Hamiltoni-
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ans by some size-dependent factor.5 From hereon we will
focus on the run-time tf , which should be compared to
the circuit depth of analogous circuit model algorithms,
whereas the full cost in Eq. (1) should be compared to
the circuit gate count.

The run-time tf of an adiabatic algorithm scales at
worst as 1/∆3, where ∆ is the minimum eigenvalue gap
between the ground state and the first excited state of
the Hamiltonian of the adiabatic algorithm (Jansen et al.,
2007). If the Hamiltonian is varied sufficiently smoothly,
one can improve this to O(1/∆2) up to a polylogarith-
mic factor in ∆ (Elgart and Hagedorn, 2012). While
these are useful sufficient conditions, they involve bound-
ing the minimum eigenvalue gap of a complicated many-
body Hamiltonian, a notoriously difficult problem. This
is one reason that AQC has generated so much interest
among physicists: it has a rich connection to well studied
problems in condensed matter physics. For example, be-
cause of the dependence of the run-time on the gap, the
performance of quantum adiabatic algorithms is strongly
influenced by the type of quantum phase transition the
same system would undergo in the thermodynamic limit
(Latorre and Orus, 2004).

Nevertheless, a number of examples are known where
the gap analysis can be carried out. For example, adia-
batic quantum computers can perform a process analo-
gous to Grover search (Grover, 1997), and thus provide
a quadratic speedup over the best possible classical algo-
rithm for the Grover search problem (Roland and Cerf,
2002). Other examples are known where the gap anal-
ysis can be used to demonstrate that AQC provides a
speedup over classical computation, including adiabatic
versions of some of the keystone algorithms of the cir-
cuit model. However, much more common is the sce-
nario where either the gap analysis reveals no speedup
over classical computation, or where a clear answer to the
speedup question is unavailable. In fact, least is known
about adiabatic quantum speedups in the original setting
of solving classical combinatorial optimization problems.
This remains an area of very active research, partly due
to the original (still unmaterialized) hope that the QAA
would deliver quantum speedups for NP-complete prob-
lems (Farhi et al., 2001), and partly due the availability
of commercial quantum annealing devices manufactured
by D-Wave Systems Inc. (Johnson et al., 2011), designed
to solve optimization problems using stoquastic Hamil-
tonians.

5 Unless stated otherwise, we shall always use ‖·‖ to denote the
operator norm for operators:

‖A‖ = sup {‖A|ψ〉‖ : |ψ〉 ∈ H with 〈ψ|ψ〉 = 1}

(i.e., the largest singular value of the operator A), and the Eu-
clidean vector norm for vectors. Which one is used will be clear
by context.

The goal of this article is to review the field of AQC
from its inception, with a focus on the closed system case.
That is, we omit the fascinating topic of AQC in open
systems coupled to an environment. This includes all
experimental work on AQC, and all work on quantum
error correction and suppression methods for AQC, as
these topics deserve a separate review (Albash and Lidar,
2017) and including them here would limit our ability to
do justice to the many years of work on AQC in closed
systems, an extremely rich topic with many elegant re-
sults. For the same reasons we also omit the blossom-
ing and closely related fields of holonomic QC (Zanardi
and Rasetti, 1999), topological QC (Nayak et al., 2008),
and adiabatic state preparation for quantum simulation
(Babbush et al., 2014b). To achieve our goal we orga-
nized this review around a series of topics that are essen-
tial to an understanding of the underlying principles of
AQC, its algorithmic accomplishments and limitations,
and its scope in the more general setting of computa-
tional complexity theory.

We begin by reviewing the adiabatic theorem in Sec. II.
The adiabatic theorem forms the backbone of AQC: it
provides a sufficient condition for the success of the com-
putation, and in doing so provides the run-time of a com-
putation in terms of the eigenvalue gap ∆ of the Hamilto-
nian and the Hamiltonian’s time-derivative. In fact there
is not one single adiabatic theorem, and we review a num-
ber of different variants that provide different run-time
requirements, under different smoothness and differentia-
bility assumptions about the Hamiltonian.

Next, we review in Sec. III the handful of explicit al-
gorithms for which AQC is known to give a speedup over
classical computation. The emphasis is on “explicit”,
since Sec. IV provides several proofs for the universal-
ity of AQC in terms of its ability to efficiently simulate
the circuit model, and vice versa. This means that every
quantum algorithm that provides a speedup in the cir-
cuit model [many of which are known (Jordan, 2016b)]
can in principle be implemented with up to polynomial
overhead in AQC. That the number of explicit AQC algo-
rithms is still small is therefore likely to be a reflection of
the relatively modest amount of effort that has gone into
establishing such results compared to the circuit model.
However, there is also a real difficulty, in that performing
the gap analysis in order to establish the actual scaling
(beyond the polynomial-time equivalence) is, as already
mentioned above, in many cases highly non-trivial. A
second non-trivial aspect of establishing a speedup by
AQC is that when such a speedup is polynomial, relying
on universality is insufficient, since the polynomial over-
head involved in implementing the transformation from
the circuit model to AQC can then swamp the speedup.
A good example is the case of Grover’s algorithm, where
a direct use of the equivalence to the circuit model would
not suffice; instead, what is required is a careful analy-
sis and choice of the adiabatic schedule s(t) in order to
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realize the quantum speedup.
In Sec. V we go beyond universality into Hamiltonian

quantum complexity theory. This is an active contem-
porary research area, that started with the introduc-
tion of the complexity class QMA (“quantum Merlin-
Arthur”) as the natural quantum generalization of the
classical complexity classes NP (non-deterministic poly-
nomial time) and MA (Kitaev et al., 2000). The theory of
QMA-completeness deals with decision problems that are
efficiently checkable using quantum computers. It turns
out that these decision problems can be formulated nat-
urally in terms of k-local Hamiltonians, of the same type
that appear in the proofs of the universality of AQC.
Thus universality and Hamiltonian quantum complexity
studies are often pursued hand-in-hand, and a reduction
of k as well as the dimensionality p of the particles ap-
pearing in these constructions is one of the main goals.
For example, we will see that already k = 2 and p = 2
leads to both universal AQC and QMA-complete Hamil-
tonians in 2D, while in 1D p > 2 is needed for both.6

We turn our attention to StoqAQC in Sec. VI. This
is the setting of the vast majority of AQC work to date.
The final Hamiltonian H1 is assumed to be a classical
Ising model Hamiltonian, typically (but not always) rep-
resenting a hard optimization problem such as a spin
glass. The initial Hamiltonian H0 is typically assumed to
be proportional to a transverse field, i.e.,

∑
i σ

x
i , whose

ground state is the uniform superposition state in the
computational basis. AQC with stoquastic Hamiltonians
is probably less powerful than universal quantum compu-
tation, but examples can be constructed which show that
it may nevertheless be more powerful than classical com-
putation. Moreover, if we relax the definition of AQC to
allow for computation using excited states, it turns out
that stoquastic Hamiltonians can even be QMA-complete
and support universal AQC. To do justice to this mixed
and complicated picture, we first review examples where
it is known that StoqAQC does not outperform classi-
cal computation (essentially because the eigenvalue gap
∆ decreases rapidly with problem size but classical algo-
rithms do not suffer a slowdown), then discuss examples
where StoqAQC offers a “limited” quantum speedup in
the sense that it outperforms classical simulated anneal-
ing but not necessarily other classical algorithms, and fi-
nally point out examples where it is currently not known
whether StoqAQC offers a quantum speedup, but one
might hope that it does. We also discuss the role of po-
tential quantum speedup mechanisms, in particular tun-
neling and entanglement.

The somewhat bleak picture regarding StoqAQC

6 We say that H is a dD (d-dimensional) Hamiltonian if the par-
ticles are arranged on a d-dimensional grid and the summands
of H couple only pairs of nearest neighbor particles. Note that
being dD implies that the Hamiltonian is 2-local.

should not necessarily be a cause for pessimism. Some
of the obstacles in the way of a quantum speedup can
be overcome or circumvented, as we discuss in Sec. VII.
In all cases this involves modifying some aspect of the
Hamiltonian, either by optimizing the schedule s(t), or by
adding certain terms to the Hamiltonian such that small
gaps are avoided. This can result in a non-stoquastic
Hamiltonian whose final ground state is the same as that
of the original Hamiltonian, with an exponentially small
gap (often corresponding to a first order quantum phase
transition) changing into a polynomially small gap (of-
ten corresponding to a second order phase transition).
Another type of modification is to give up adiabatic evo-
lution itself, and allow for diabatic transitions. While
this results in giving up the guarantee of convergence to
the ground state provided by the adiabatic theorem, it
can be a strategy that results in better run-time scaling
for the same Hamiltonian than an adiabatic one.

We conclude with an outlook and discussion of future
directions in Sec. VIII. Various technical details are pro-
vided in the Appendix.

II. ADIABATIC THEOREMS

The origins of the celebrated quantum adiabatic
approximation date back to Einstein’s “Adiabatenhy-
pothese”: “If a system be affected in a reversible adi-
abatic way, allowed motions are transformed into al-
lowed motions” (Einstein, 1914). Ehrenfest was the
first to appreciate the importance of adiabatic invari-
ance, guessing—before the advent of a complete quan-
tum theory— that quantum laws would only allow mo-
tions which are invariant under adiabatic perturbations
(Ehrenfest, 1916). The more familiar, modern version
of the adiabatic approximation was put forth by Born
and Fock already in 1928 for the case of discrete spec-
tra (Born and Fock, 1928), after the development of the
Born-Oppenheimer approximation for the separation of
electronic and nuclear degrees of freedom a year earlier
(Born and Oppenheimer, 1927). Kato put the approxi-
mation on a firm mathematical foundation in 1950 (Kato,
1950) and arguably proved the first quantum adiabatic
theorem.

The adiabatic approximation states, roughly, that for
a system initially prepared in an eigenstate (e.g., the
ground state) |ε0(0)〉 of a time-dependent Hamiltonian
H(t), the time evolution governed by the Schrödinger
equation

i
∂|ψ(t)〉
∂t

= H(t)|ψ(t)〉 (2)

(we set ~ ≡ 1 from now on) will approximately keep the
actual state |ψ(t)〉 of the system in the corresponding
instantaneous ground state (or other eigenstate) |ε0(t)〉
of H(t), provided that H(t) varies “sufficiently slowly”.



6

Quantifying the exact nature of this slow variation is the
subject of the Adiabatic Theorem (AT), which exists in
many variants. In this section we provide an overview
of these variants of the AT, emphasizing aspects that
are pertinent to AQC. We discuss the “folklore” adia-
batic condition, that the total evolution time tf should
be large on the timescale set by the square of the inverse
gap, and the question of how to ensure a high fidelity
between the actual state and the ground state. We then
discuss a variety of rigorous versions of the AT, empha-
sizing different assumptions and consequently different
performance guarantees. Throughout this discussion, it
is important to keep in mind that ultimately the AT pro-
vides only an upper bound on the evolution time required
to achieve a certain fidelity between the actual state and
the target eigenstate of H(t).

A. Approximate versions

Let |εj(t)〉 (j ∈ {0, 1, 2, . . .}) denote the instantaneous
eigenstate of H(t) with energy εj(t) such that εj(t) ≤
εj+1(t) ∀j, t, i.e., H(t)|εj(t)〉 = εj(t)|εj(t)〉 and j = 0
denotes the (possibly degenerate) ground state. Assume
that the initial state is |εj(0)〉.

The simplest as well as one of the oldest traditional ver-
sions of the adiabatic approximation states that a system
initialized in an eigenstate |εj(0)〉 will remain in the same
instantaneous eigenstate |εj(t)〉 for all t ∈ [0, tf ], where
tf denotes the final time, provided (Messiah, A., 1962):

max
t∈[0,tf ]

|〈εi|∂tεj〉|
|εi − εj |

= max
t∈[0,tf ]

|〈εi|∂tH|εj〉|
|εi − εj |2

� 1 ∀i 6= j .

(3)
This version has been critiqued (Du et al., 2008; Marzlin
and Sanders, 2004; Tong et al., 2005; Wu et al., 2008) on
the basis of arguments and examples involving a sepa-
rate, independent timescale. Indeed, if the Hamiltonian
includes an oscillatory driving term then the eigenstate
population will oscillate with a timescale determined by
this term, that is independent of tf , even if the adiabatic
criterion (3) is satisfied.7

A more careful statement of the adiabatic condi-
tion that excludes such additional timescales is thus re-
quired. The first step is to assume that the Hamilto-
nian Htf (t) in the Schrödinger equation ∂|ψtf (t)〉/∂t =
−iHtf (t)|ψtf (t)〉 can be written as Htf (stf ) = H(s),
where s ≡ t/tf ∈ [0, 1] is the dimensionless time, and

7 For example, it is easily checked that when H(t) = aσz +
b sin(ωt)σx, the adiabatic condition (3) reduces to |bω| � a2.
However, even if this condition is satisfied the population can os-
cillate between the two eigenstates: at resonance (when ω ≈ 2a)
the system undergoes Rabi oscillations with period π/|b|, a
timescale that is independent of tf .

H(s) is tf -independent. This includes the “interpo-
lating” Hamiltonians of the type often considered in
AQC, i.e., H(s) = A(s)H0 + B(s)H1 [where A(s) and
B(s) are monotonically decreasing and increasing, re-
spectively] and excludes cases with multiple timescales.8

The Schrödinger equation then becomes

1

tf

∂|ψtf (s)〉
∂s

= −iH(s)|ψtf (s)〉 , (4)

which is the starting point for all rigorous adiabatic the-
orems.

A more careful adiabatic condition subject to this for-
mulation is given by (Amin, 2009):

1

tf
max
s∈[0,1]

|〈εi(s)|∂sH(s)|εj(s)〉|
|εi(s)− εj(s)|2

� 1 ∀j 6= i . (5)

The conditions (3) and (5) give rise to the widely used
criterion that the total adiabatic evolution time should be
large on the timescale set by the minimum of the square
of the inverse spectral gap ∆ij(s) = εi(s)−εj(s). In most
cases one is interested in the ground state, so that ∆ij(s)
is replaced by

∆ ≡ min
s∈[0,1]

∆(s) = min
s∈[0,1]

ε1(s)− ε0(s) . (6)

However, arguments such as those leading to Eqs. (3) and
(5) are approximate, in the sense that they do not result
in strict inequalities and do not result in bounds on the
closeness between the actual time-evolved state and the
desired eigenstate. We discuss this next.

B. Rigorous versions

The first rigorous adiabatic condition is due to Kato
(Kato, 1950), and was followed by numerous alterna-
tive derivations and improvements giving tighter bounds
under various assumptions, e.g., (Ambainis and Regev,
2004; Avron and Elgart, 1999; Cheung et al., 2011; El-
gart and Hagedorn, 2012; Ge et al., 2015; Hagedorn and
Joye, 2002; Jansen et al., 2007; Lidar et al., 2009; Nen-
ciu, 1993; O’Hara and O’Leary, 2008; Reichardt, 2004;
Teufel, 2003). All these rigorous results are more severe
in the gap condition than the traditional criterion, and
they involve a power of the norm of time derivatives of the
Hamiltonian, rather than a transition matrix element.

We summarize a few of these results here, and refer
the reader to the original literature for their proofs. For
simplicity we always assume that the system is initialized

8 For example, a case such as H(t) = aσz + b sin(ωt)σx is now
excluded since after a change of variables we have H(s) = aσz +
b sin(ωtf s)σ

x and evidently H(s) still depends on tf .
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in its ground state and that the gap is the ground state
gap (6). We also assume that for all s ∈ [0, 1] the Hamil-
tonian H(s) has an eigenprojector P (s) with eigenenergy
ε0(s), and that the gap never vanishes, i.e., ∆ > 0.9 The
ground state, and hence the projector P (s), is allowed
to be (even infinitely) degenerate. P (s) represents the
“ideal” adiabatic evolution.

Let Ptf (s) = |ψtf (s)〉〈ψtf (s)|. This is the projector
onto the time-evolved solution of the Schrödinger equa-
tion, i.e., the “actual” state. Adiabatic theorems are
usually statements about the “instantaneous adiabatic
distance” ‖Ptf (s)−P (s)‖ between the projectors associ-
ated with the actual and ideal evolutions, or the “final-
time adiabatic distance” ‖Ptf (1) − P (1)‖. Typically,
adiabatic theorems give a bound of the form O(1/tf )
for the instantaneous case, and a bound of the form
O(1/tnf ) for any n ∈ N for the final-time case. After
squaring, these projector-distance bounds immediately
become bounds on the transition probability, defined as
|〈ψ⊥tf (s)|ψtf (s)〉|2, where |ψ⊥tf (s)〉 = Qtf (s)|ψtf (s)〉, with
Q = I − P .

1. Inverse cubic gap dependence with generic H(s)

Kato’s work on the perturbation theory of linear oper-
ators (Kato, 1950) introduced techniques based on resol-
vents and complex analysis that have been widely used
in subsequent work. Jansen, Ruskai, and Seiler (JRS)
proved several versions of the AT that build upon these
techniques (Jansen et al., 2007), and that rigorously es-
tablish the gap dependence of tf , without any strong
assumptions on the smoothness of H(s). Their essen-
tial assumption is that the spectrum of H(s) has a band
associated with the spectral projection P (s) which is sep-
arated by a non-vanishing gap ∆(s) from the rest. Here
we present one their theorems:

Theorem 1. Suppose that the spectrum of H(s) re-
stricted to P (s) consists of m(s) eigenvalues (each pos-
sibly degenerate, crossing permitted) separated by a gap
∆(s) = ε1(s) − ε0(s) > 0 from the rest of the spectrum
of H(s), and that H(s) is twice continuously differen-
tiable. Assume that H, H(1), and H(2) are bounded op-
erators, an assumption that is always fulfilled in finite-

9 There is a weaker form of the AT, where one does not require a
non-vanishing gap (Avron and Elgart, 1999). In this case, as in
Theorem 2, the estimate on the error term is o(1) as tf →∞.

dimensional spaces.10 Then for any s ∈ [0, 1],

∥∥Ptf (s)− P (s)
∥∥ ≤ m(0)

∥∥H(1)(0)
∥∥

tf∆2(0)
+
m(s)

∥∥H(1)(s)
∥∥

tf∆2(s)

+
1

tf

∫ s

0

(
m
∥∥H(2)

∥∥
∆2

+
7m
√
m
∥∥H(1)

∥∥2

∆3

)
dx (7)

The numerator depends on the norm of the first or
second time derivative of H(s), rather than the matrix
element that appears in the traditional versions of the
adiabatic condition.

Ignoring the m-dependence for simplicity, this result
shows that the adiabatic limit can be approached arbi-
trarily closely if (but not only if)

tf � max

{
max
s∈[0,1]

∥∥H(2)(s)
∥∥

∆2(s)
, max
s∈[0,1]

∥∥H(1)(s)
∥∥2

∆3(s)

}
. (8)

Similar techniques based on Kato’s approach can be
used to prove a rigorous adiabatic theorem for open quan-
tum systems, where the evolution is generated by a non-
Hermitian Liouvillian instead of a Hamiltonian (Venuti
et al., 2016).

2. Rigorous inverse gap squared

A version of the AT that yields a scaling of tf with
the inverse of the gap squared (up to a logarithmic cor-
rection) was given in (Elgart and Hagedorn, 2012). All
other rigorous AT versions to date have a worse gap de-
pendence (cubic or higher). The proof introduces as-
sumptions on H(s) that go beyond those of Theorem 1.
Namely, it is assumed that H(s) is bounded and infinitely
differentiable, and the higher derivatives cannot have a
magnitude that is too large, or more specifically, that
H(s) belongs to the Gevrey class Gα:

Definition 2 (Gevrey class). H(s) ∈ Gα if dH(s)/ds 6=
0 ∀s ∈ [0, 1] and there exist constants C,R > 0, such that
for all k ≥ 1,

max
s∈[0,1]

∥∥∥H(k)(s)
∥∥∥ ≤ CRkkαk . (9)

An example is H(s) = [1 − A(s)]H0 + A(s)H1, where
A(s) = c

∫ s
−∞ exp[−1/(x−x2)]dx if s ∈ (0, 1), and A(s) =

0 if s /∈ [0, 1]. The constant c is chosen so that A(1) = 1.
For this family

∥∥H(k)(s)
∥∥ =

∣∣A(k)(s)
∣∣ ‖H1−H0‖ ≤ Ck2k,

so that H(s) ∈ G2.
The AT due to (Elgart and Hagedorn, 2012) can now

be stated as follows:

10 We use the notation H(k)(s) ≡
(
∂
∂x

)k
H(x)|s throughout.
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Theorem 2. Assume that H(s) is bounded and belongs
to the Gevrey class Gα with α > 1, and that ∆ � h,
where h ≡ ‖H(0)‖ = ‖H(1)‖. If

tf ≥
K

∆2
| ln(∆/h)|6α (10)

for some ∆-independent constant K > 0 (with units of
energy), then the distance ‖Ptf (s) − P (s)‖ is o(1) ∀s ∈
[0, 1].

This result is remarkable in that it rigorously gives
an inverse gap squared dependence, which is essen-
tially tight due to existence of a lower bound of the
form tf = O(∆−2/| ln ∆|) for Hamiltonians satisfying
rankH(1) � dim(H) (Cao and Elgart, 2012). However,
the error bound is not tight, and we address this next.

3. Arbitrarily small error

Building on work originating with (Nenciu, 1993) [see
also (Hagedorn and Joye, 2002)], (Ge et al., 2015) proved
a version of the AT that results in an exponentially small
error bound in tf . The inverse gap dependence is cubic.

Assume for simplicity that ε0(s) = 0 and choose the
phase of |ε0(s)〉 so that 〈Ė0(s)|ε0(s)〉 = 0.

Theorem 3. Assume that all derivatives of the Hamilto-
nian H(s) vanish at s = 0, 1, and moreover that it satis-
fies the following Gevrey condition: there exist constants
C,R, α > 0 such that for all k ≥ 1,

max
s∈[0,1]

∥∥∥H(k)(s)
∥∥∥ ≤ CRk (k!)1+α

(k + 1)2
. (11)

Then the adiabatic error is bounded as

min
θ

∥∥|ψtf (1)〉 − eiθ|ε0(1)〉
∥∥ ≤ c1

C

∆
e
−
(
c2

∆3

C2 tf

) 1
1+α

(12)

where c1 = eR
(

8π2

3

)3

and c2 = 1
4eR2

(
3

4π2

)5
.

Thus, as long as tf � C2

∆3 , the adiabatic error is expo-
nentially small in tf .

The idea of using vanishing boundary derivatives dates
back at least to (Garrido, L. M. and Sancho, F. J., 1962).
It was also used in (Lidar et al., 2009) for a different
class of functions than the Gevrey class: functions that
are analytic in a strip of width 2γ in the complex time
plane and have a finite number V of vanishing boundary
derivatives, i.e., H(v)(0) = H(v)(1) = 0 ∀v ∈ [1, V ]. The
adiabatic error is then upper-bounded by (V +1)γ+1q−V

as along as tf ≥ q
γV maxs

∥∥∥H(1)
V (s)

∥∥∥
2

/∆3, where q > 1

is a parameter that can be optimized given knowledge

of
∥∥∥H(1)

V

∥∥∥. Thus, the adiabatic error can be made ar-

bitrarily small in the number of vanishing derivatives,

while the scaling of tf with V is encoded into
∥∥∥H(1)

V

∥∥∥.11

An example of a function whose first V derivatives van-
ish at the boundaries s = 0, 1 is the regularized β func-

tion A(s) =
∫ s
0
xV (1−x)V dx∫ 1

0
xV (1−x)V dx

(Rezakhani et al., 2010b). It

is possible to further reduce the error quadratically in
tf using an interference effect that arises from imposing
an additional boundary symmetry condition (Wiebe and
Babcock, 2012).

Note that an important difference between Theorems 2
and 3 is that the former applies for all times s ∈ [0, 1]
(“instantaneous AT”), while the latter applies only at the
final time s = 1 (“final-time AT”), which typically gives
rise to tighter error bounds.

Also note that Landau and Zener already showed that
the transition probability out of the ground state is
O(e−C∆2tf ) (C. Zener, 1932; Landau, L. D., 1932) [see
(Joye, 1994) for a rigorous proof for analytic Hamiltoni-
ans], thus combining an inverse gap square dependence
with an exponentially small error bound. However, this
result only holds for two-level systems.

4. Lower bound

Let H(s), with s ∈ [0, 1], be a given continuous Hamil-
tonian path and |ε(s)〉 the corresponding non-degenerate
eigenstate path (eigenpath). In the so-called black-box
model the only assumption is to be able to evolve with
H[s(t)] for some schedule s(t) (here s is allowed to be a
general function of t), without exploiting the unknown
structure of H(s). Define the path length L as:

L =

∫ 1

0

‖|ε̇(s)〉‖ ds , (13)

where dot denotes ∂s. Assuming, without loss of general-
ity, that the phase of |ε(s)〉 is chosen so that 〈ε(s)|ε̇(s)〉 =
0, L is the only natural length in projective Hilbert space
(up to irrelevant normalization factors).

It was shown in (Boixo and Somma, 2010) that there
is a lower bound on the time required to prepare |ε(1)〉
from |ε(0)〉 with bounded precision:

tf > O(L/∆) . (14)

Since an upper bound on L is maxs ‖Ḣ(s)‖/∆,12 one
obtains the estimate tf ∼ O(maxs ‖Ḣ(s)‖/∆2), reminis-
cent of the approximate versions of the adiabatic con-
dition [e.g., Eq. (5)]. The proof of the lower bound is

11 This corrects an omission in (Lidar et al., 2009), where the de-
pendence of

∥∥H(1)
∥∥ on V was ignored since the supremum of∥∥H(1)(s)

∥∥ was taken over s ∈ [0, 1] instead of over the region of
analyticity of H(s), as noted in (Ge et al., 2015).

12 See Appendix A.1 as well as Appendix G of (Boixo et al., 2009a).
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essentially based on the optimality of the Grover search
algorithm.

The lower bound is nearly achievable using a “digital”,
non-adiabatic method proposed in (Boixo et al., 2010),
that does not require path continuity or differentiability.
The time required scales as O[(L/∆) log(L/ε)], where ε is
a specified bound on the error of the output state |ε(1)〉.
L is the angular length of the path and is suitably defined
to generalize Eq. (13) to the non-differentiable case.

Armed with an arsenal of adiabatic theorems we are
now well equipped to start surveying AQC algorithms.

III. ALGORITHMS

In this section we review the algorithms which are
known to provide quantum speedups over classical al-
gorithms. However, to make the idea of a quantum
speedup precise we need to draw distinctions among dif-
ferent types of speedups, as several such types will arise
in the course of this review. Toward this end we adopt
a classification of quantum speedup types proposed in
(Rønnow et al., 2014). The classification is the following,
in decreasing order of strength.

• A “provable” quantum speedup is the case where
there exists a proof that no classical algorithm
can outperform a given quantum algorithm. The
best known example is Grover’s search algorithm
(Grover, 1997), which, in the query complexity set-
ting, exhibits a provable quadratic speedup over
the best possible classical algorithm (Bennett et al.,
1997).

• A “strong” quantum speedup was originally defined
in (Papageorgiou and Traub, 2013) by comparing
a quantum algorithm against the performance of
the best classical algorithm, whether such a clas-
sical algorithm is explicitly known or not. This
aims to capture computational complexity consid-
erations allowing for the existence of yet-to-be dis-
covered classical algorithms. Unfortunately, the
performance of the best possible classical algorithm
is unknown for many interesting problems (e.g., for
factoring).

• A “quantum speedup” (unqualified, without adjec-
tives) is a speedup against the best available classi-
cal algorithm [for example Shor’s polynomial time
factoring algorithm (Shor, 1994)]. Such a speedup
may be tentative, in the sense that a better classical
algorithm may eventually be found.

• Finally, a “limited quantum speedup” is a speedup
obtained when compared specifically with classical
algorithms that ‘correspond” to the quantum algo-
rithm in the sense that they implement the same
algorithmic approach, but on classical hardware.

This definition allows for the existence of other clas-
sical algorithms that are already better than the
quantum algorithm. The notion of a limited quan-
tum speedup will turn out to be particularly useful
in the context of StoqAQC.

A refinement of this classification geared at experimental
quantum annealing was given in (Mandrà et al., 2016).

Using this classification, this section collects most
of the adiabatic quantum algorithms known to give
a provable quantum speedup (Grover, Deutsch-Jozsa,
Bernstein-Vazirani, and glued trees), or just a quantum
speedup (PageRank).13

Many other adiabatic algorithms have been proposed,
and we review a large subset of these in Sec. VI. In a few
of these cases there is a limited quantum speedup against
classical simulated annealing, while in some cases there
are definitely faster classical algorithms.

A. Adiabatic Grover

The adiabatic Grover algorithm (Roland and Cerf,
2002) is perhaps the hallmark example of a provable
quantum speedup using AQC, so we review it in detail.
As in the circuit model Grover algorithm (Grover, 1997),
informally the objective is to find the marked item (or
possibly multiple marked items) in an unsorted database
of N items by accessing the database as few times as
possible. More formally, one is allowed to call a function
f : {0, 1}n 7→ {0, 1} (where N = 2n is the number of bit
strings) with the promise that f(m) = 1 and f(x) = 0
∀x 6= m, and the goal is to find the unknown index m in
the smallest number of calls. This is an oracular prob-
lem (Nielsen and Chuang, 2000), in that the algorithm
can make queries to an oracle that recognizes the marked
items. The oracle remains a black box, i.e., the details of
its implementation and its complexity are ignored. This
allows for an uncontroversial determination of the com-
plexity of the algorithm in terms of the number of queries
to the oracle.

For a classical algorithm, the only strategy is to query
the oracle until the marked item is found. Whether the
classical algorithm uses no memory, i.e., the algorithm
does not keep track of items that have already been
checked, or uses an exponential amount of memory to
store all the items that have been checked, the classical
algorithm will have an average number of queries that
scales linearly in N .

In the AQC algorithm we denote the marked item by
the binary representation of m. The oracle is defined in

13 The glued trees case is, strictly, not an adiabatic quantum algo-
rithm, since it explicitly makes use of excited states. Also, in the
PageRank case the evidence for a quantum speedup is numerical.
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terms of the final Hamiltonian H1 = 11 − |m〉〈m|, where
|m〉 is the marked state associated with the marked item.
In this representation, the binary representations give the
eigenvalues under σz, i.e., σz|0〉 = +|0〉 and σz|1〉 = −|1〉.
The marked state is the ground state of this Hamiltonian
with energy 0, and all other computational basis states
have energy 1.

1. Setup for the adiabatic quantum Grover algorithm

We use the initial Hamiltonian H0 = 11−|φ〉〈φ|, where
|φ〉 is the uniform superposition state,

|φ〉 =
1√
N

N−1∑

i=0

|i〉 = |+〉⊗n , (15)

where |±〉 = 1√
2
(|0〉 ± |1〉). We take the time-dependent

Hamiltonian to be an interpolation:

H(s) = [1−A(s)]H0 +A(s)H1 (16)

= [1−A(s)] (11− |φ〉〈φ|) +A(s)(11− |m〉〈m|) ,

where s = t/tf ∈ [0, 1] is the dimensionless time, tf is
the total computation time, and A(s) is a “schedule”
that can be optimized. For simplicity, we first consider
a linear annealing schedule: A(s) = s. Note that H1 is
n-local.

If the initial state is initialized in the ground state of
H(0), i.e., |ψ(0)〉 = |φ〉, then the evolution of the system
is restricted to a two-dimensional subspace, defined by
the span of |m〉 and |m⊥〉 = 1√

N−1

∑N−1
i6=m |i〉. In this

two-dimensional subspace H(s) can be written as:

[H(s)]|m〉,|m⊥〉 =
1

2
112×2−

∆(s)

2

(
cos θ(s) sin θ(s)
sin θ(s) − cos θ(s)

)
,

(17)
where:

∆(s) =

√
(1− 2s)2 +

4

N
s(1− s) , (18a)

cos θ(s) =
1

∆(s)

[
1− 2(1− s)

(
1− 1

N

)]
, (18b)

sin θ(s) =
2

∆(s)
(1− s) 1√

N

√
1− 1

N
. (18c)

The eigenvalues and eigenvectors in this subspace are
then given by:

ε0(s) =
1

2
(1−∆(s)) , ε1(s) =

1

2
(1 + ∆(s)) ,

(19a)

|ε0(s)〉 = cos
θ(s)

2
|m〉+ sin

θ(s)

2
|m⊥〉 , (19b)

|ε1(s)〉 = − sin
θ(s)

2
|m〉+ cos

θ(s)

2
|m⊥〉 . (19c)

The remaining N−2 eigenstates of H(s) have eigenvalue
1 throughout the evolution. The minimum gap occurs at
s = 1/2 and scales exponentially with n:

∆min = ∆(s = 1/2) =
1√
N

= 2−n/2 . (20)

(This can be viewed as a special case of Lemma 1 below.)

In our discussion of the adiabatic theorem we saw
that without special assumptions on s(t) except that
it is twice differentiable, the adiabatic condition is
inferred from Eq. (7), which requires setting tf �
2 maxs ‖∂sH(s)‖ /∆2(s)+

∫ 1

0
‖∂sH(s)‖2 /∆3(s)ds, where

we have accounted for the boundary conditions and used
the positivity of the integrand to extend the upper limit
to 1.14 Differentiating Eq. (17) yields

∂sH(s) =


 −

(
1− 1

N

)
1√
N

√
1− 1

N

1√
N

√
1− 1

N 1− 1
N


 , (21)

which has eigenvalues ±
√

1− 1
N , so that ‖∂sH‖ ≤

1. The other integrand in Eq. (7), involving∥∥∂2
sH(s)

∥∥ /∆2(s), vanishes after differentiating Eq. (21).
The ground state degeneracy m(s) = 1 throughout.

Since
∫ s

0
1/∆3(x)dx = N

2 −
N3/2(1−2s)

2
√
N(1−2s)2+4(1−s)s

, which is

a monotonically increasing function of s that approaches
N = ∆−2

min as s→ 1, the adiabatic condition becomes

tf � 2 max
s

1

∆2(s)
+

∫ 1

0

ds
1

∆3(s)
=

3

∆2
min

. (22)

This suggests the disappointing conclusion that the quan-
tum adiabatic algorithm scales in the same way as the
classical algorithm.

However, by imposing the adiabatic condition globally,
i.e., to the entire time interval tf , the evolution rate is
constrained throughout the whole computation, while the
gap only becomes small around s = 1/2. Thus, it makes
sense to use a schedule A(s) that adapts and slows down
near the minimum gap, but speeds up away from it (van
Dam et al., 2001; Roland and Cerf, 2002) [this is related
to the idea of rapid adiabatic passage, which has a long
history in nuclear magnetic resonance (Powles, 1958)].
By doing so the quadratic quantum speedup can be re-
covered, as we address next.

14 Whenever we use the� symbol we mean that the larger quantity
should be larger by some large multiplicative constant, such as
100.



11

2. Quadratic quantum speedup

Consider again the adiabatic condition (7), which we
can rewrite as:

tf � 2 max
s

‖∂sH(s)‖
∆2(s)

+

∫ 1

0

(∥∥∂2
sH
∥∥

∆2
+
‖∂sH‖2

∆3

)
ds ,

(23)
where now H and ∆ depend on a schedule A(s). Let us
now use the ansatz (Jansen et al., 2007; Roland and Cerf,
2002)

∂sA = c∆p[A(s)] , A(0) = 0 , p, c > 0 . (24)

This schedule slows down as the gap becomes smaller,
as desired. The normalization constant c =∫ 1

0
∆−p[A(s)]∂sAds =

∫ A(1)

A(0)
∆−p(u)du [using u = A(s)]

is chosen to ensure that A(1) = 1.
It follows that:

∫ 1

0

(∥∥∂2
sH[A(s)]

∥∥
∆2[A(s)]

+
‖∂sH[A(s)]‖2

∆3[A(s)]

)
ds

≤ 4c

∫ 1

0

∆p−3(u)du (25)

(the proof is given in Appendix A.2). Finally, the bound-

ary term in Eq. (23) yields 2 maxs
‖∂sH(s)‖

∆2(s) ≤ 4c∆p−2
min .

The case p = 2 serves to illustrate the main point.
In this case the boundary term is 4c and evaluating the
integrals yields

c =

∫ 1

0

∆−2(u)du =
N√
N − 1

tan−1
√
N − 1→ π

2

√
N

∫ 1

0

∆−1(u)du =
log
[ √

N−1
√
N+N−1√

N−1
√
N−(N−1)

]

2
√

N−1
N

→ log(2N)/2 ,

where the asymptotic expressions are for N � 1. Sub-
stituting this into Eq. (25) yields the adiabatic condition

tf � 2π
√
N [1 + log(2N)] , (26)

which is a sufficient condition for the smallness of the adi-
abatic error, and nearly recovers the quadratic speedup
expected from Grover’s algorithm.

The appearance of the logarithmic factor latter is ac-
tually an artifact of using bounds that are not tight.15

The quadratic speedup, i.e., the scaling of tf with
√
N ,

can be fully recovered by solving for the schedule from
Eq. (24) in the p = 2 case (Roland and Cerf, 2002). We

15 A detailed analysis of the adiabatic Grover algorithm along with
tighter error bounds than we have given here was presented in
(Rezakhani et al., 2010b).

first rewrite Eq. (24) in dimensional time units as ∂tA =
c′∆2[A(t)], with the boundary conditions A(0) = 0 and
A(tf ) = 1;. To solve this differential equation we rewrite

it as t =
∫ t

0
dt =

∫ A(t)

A(0)
dA/[c′∆2(A)]. After integration

we obtain

t =
N

2c′
√
N − 1

[
tan−1

(√
N − 1 (2A(t)− 1)

)

+ tan−1
√
N − 1

]
. (27)

Evaluating Eq. (27) at tf gives:

tf =
N

c′
√
N − 1

tan−1
√
N − 1→ π

2c′
√
N , (28)

which is the expected quadratic quantum speedup.
One may be tempted to conclude that tf can be made

arbitrarily small since so far c′ is arbitrary and can be
chosen to be large. However, the adiabatic error bound
(26) shows that this is not the case: while it is not tight,
it suggests that if tf scales as

√
N then c′ must scale

as 1/ log(2N) in order to keep the adiabatic error small.
Thus, the general conclusion is that increasing c′ results
in a larger adiabatic error.16

Inverting Eq. (27) for A(t) [or, equivalently, solving
Eq. (24) for p = 2] gives the locally optimized schedule

A(s) =
1

2
+

1

2
√
N − 1

tan
[
(2s− 1) tan−1

√
N − 1

]
,

(29)
where we replaced t/tf [with tf given by Eq. (28)] with
s. As expected, this schedule rises rapidly near s = 0, 1
and is nearly flat around s = 1/2, i.e., it slows down near
the minimum gap.

Since the choice in Eq. (24) is not unique, we may
wonder if there exists a schedule that gives an even better
scaling. Given that Grover’s algorithm is known to be
optimal in the circuit model setting (Bennett et al., 1997;
Zalka, 1999), this is, unsurprisingly, not the case, and
a general argument to that effect which applies to any
Hamiltonian quantum computation was given by (Farhi
and Gutmann, 1998). We review this argument in the
AQC setting, in Appendix B.

3. Multiple marked states

The present results generalize easily to the case where
we have M ≥ 1 marked states, for which Grover’s algo-
rithm is known to also give a quadratic speedup in the

16 Note that the scaling conclusion tf ∼
√
N reported in (Roland

and Cerf, 2002) is based on the interpretation of Eq. (24) as a
heuristic “local” adiabatic condition and does not constitute a
proof that the adiabatic error is small. The evidence that the
rigorous bound (26) is not tight and that tf ∼

√
N suffices to

achieve a small adiabatic error for the schedule (29) is numerical.
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circuit model (Biham et al., 1999; Boyer et al., 1998).
The final Hamiltonian can be written as:

H1 = 11−
∑

m∈M
|m〉〈m| , (30)

where M is the index set of the marked states. Let:

|m⊥〉 =
1√

N −M
∑

i/∈M
|i〉〈i| . (31)

Instead of evolving in a two-dimensional subspace, the
system evolves in a M +1 dimensional subspace spanned
by ({|m〉}m∈M, |m⊥〉), and instead of Eq. (17), the
Hamiltonian can be written in this basis as:

H(s) =




(1− s)
(
1− 1

N

)
− 1−s

N . . . −(1− s)
√
N−M
N

− 1−s
N (1− s)

(
1− 1

N

)
− 1−s

N . . . −(1− s)
√
N−M
N

...
. . .

...

−(1− s)
√
N−M
N −(1− s)

√
N−M
N . . . s+ (1− s)

(
1− N−M

N

)




. (32)

This Hamiltonian can be easily diagonalized, and one
finds that there are N −M − 1 eigenvalues equal to 1,
M − 1 eigenvalues equal to 1− s, and two eigenvalues

λ± =
1

2
± 1

2

√
(1− 2s)2 +

4M

N
s(1− s) , (33)

that determine the relevant minimum gap: ∆(s) =√
(1− 2s)2 + 4M

N s(1− s). Comparing the M = 1 case

Eq. (18a) and the present case, the only difference is the
change from 1/N to M/N . Therefore our discussion from
earlier goes through with only this modification.

In closing, we note that an experimentally realizable
version of the adiabatic Grover search algorithm using
a single bosonic particle placed in an optical lattice was
recently proposed in (Hen, 2016).

B. Adiabatic Deutsch-Jozsa algorithm

Given a function f : {0, 1}n 7→ {0, 1} which is promised
to be either constant or balanced [i.e., f(x) = 0 on half
the inputs and f(x) = 1 on the other half of the in-
puts], the Deutsch-Jozsa problem is to determine which
type the function is, and there exists a quantum circuit
model algorithm that solves the problem in a single f -
query (Deutsch and Jozsa, 1992). Classically, the prob-
lem requires 2n−1 + 1 f -queries in the worst case, since
it is possible that the first 2n−1 queries return a constant
answer, while the function is actually balanced. It is im-
portant to note that the quantum advantage requires a
deterministic setting, since the classical error probability
is exponentially small in the number of queries.

An adiabatic implementation of the Deutsch-Jozsa
algorithm using unitary interpolation was given in
(Sarandy and Lidar, 2005) and an implementation us-
ing a linear interpolation was given in (Wei and Ying,

2006). These algorithms match the speedup obtained in
the circuit model [for an earlier example where this is not
the case see (Das et al., 2002)], and we proceed to review
both. We note that, just like the adiabatic Grover’s al-
gorithm, the adiabatic Deutsch-Jozsa algorithm requires
n-local Hamiltonians. We also note that both the uni-
tary interpolation and linear interpolation strategies we
describe here are not unique to the Deutsch-Jozsa prob-
lem, and apply equally well to any depth-one quantum
circuit. Thus they should be viewed in this more general
context, and are used here with a specific algorithm for
illustrative purposes.

1. Unitary interpolation

The initial Hamiltonian is chosen such that its ground
state is the uniform superposition state |φ〉 [Eq. (15)]
and N = 2n, i.e., H(0) = ω

∑n
i=1 |−〉i〈−|, where ω

is the energy scale. The Deutsch-Jozsa problem can
be solved by a single computation of the function f
through the unitary transformation U |x〉 = (−1)f(x)|x〉
(x ∈ {0, 1}n) (Collins et al., 1998), so that in the {|x〉}
(computational) basis U is represented by the diagonal
matrix U = diag[(−1)f(0), ..., (−1)f(2n−1)]. An adia-
batic implementation requires a final Hamiltonian H(1)
such that its ground state is |ψ(1)〉 = U |ψ(0)〉. This
can be accomplished via a unitary transformation of
H(0), i.e., H(1) = UH(0)U†. Then the final Hamil-
tonian encodes the solution of the Deutsch problem in
its ground state, which can be extracted via a measure-
ment of the qubits in the {|+〉, |−〉} basis (note that
this is compatible with the definition of AQC, Def. 1,
which does not restrict the measurement basis). A suit-
able unitary interpolation between H(0) and H(1) can
be defined by H(s) = Ũ(s)H(0)Ũ†(s), where Ũ(s) =
exp

(
iπ2 sU

)
, for which Ũ(1) = iU . Since a unitary trans-
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formation of H(0) preserves its spectrum, it does not
change the ground state gap, which remains ω. The run-
time of the algorithm can be determined from the adia-
batic condition (8), and what remains is the numerator:∥∥H(1)(s)

∥∥ =
∥∥iπ2 [U,H(s)]

∥∥ ≤ π ‖H(0)‖ = π [and simi-

larly for
∥∥H(2)(s)

∥∥]. This yields tf � 1/ω. This result is
independent of n so the adiabatic run-time is O(1).

2. Linear interpolation

Unitary interpolations, introduced in (Siu, 2005), are
somewhat less standard. Therefore we also present the
standard linear interpolation method as an alternative.
Consider the usual initial Hamiltonian H0 = 11 − |φ〉〈φ|
over n qubits, where once again |φ〉 is the uniform su-
perposition state. Let the final Hamiltonian be H1 =
11− |ψ〉f 〈ψ|, where

|ψ〉f =
µf√
N/2

N/2−1∑

i=0

|2i〉+
1− µf√
N/2

N/2−1∑

i=0

|2i+ 1〉 , (34)

and where

µf =

∣∣∣∣∣∣
1

N

∑

x∈{0,1}n
(−1)f(x)

∣∣∣∣∣∣
. (35)

Clearly, µf = 1 or 0 if f is constant or balanced, respec-
tively. Therefore |ψ〉f is a uniform superposition over all
even (odd) index states if f is constant or balanced, re-
spectively, and a measurement of the ground state of H1

in the computational basis reveals whether f is constant
or balanced, depending on whether the observed state
belongs to the even or odd sector, respectively. However,
we note that one may object to the reasonableness of the
final Hamiltonian H1. Namely, preparing the state |ψ〉f
involves precomputing the quantity µf , which directly
encodes whether f is constant or balanced and so may
be thought to represent an oracle that is too powerful.17

Indeed, H1 in this construction is not of the standard
form

∑
x f(x)|x〉〈x|, wherein each oracle call f(x) corre-

sponds to a query about a single basis state |x〉. There-
fore, there is no classical analogue to this oracle in the
computational basis.

Setting this concern in the present version of the al-
gorithm due to (Wei and Ying, 2006) aside, it remains
to determine the adiabatic run-time for the adiabatic
Hamiltonian H(s) = (1 − s)H0 + sH1. The following
Lemma (Aharonov and Ta-Shma, 2003) comes in handy:

17 The only efficient way known to compute a quantity similar to µf
involves running the Deutsch-Jozsa algorithm in the gate model,
where 1

N

∑
x∈{0,1}n (−1)f(x), without the absolute value, ap-

pears as the amplitude of the state |0〉⊗n (Nielsen and Chuang,
2000).

Lemma 1. Let |α〉 and |β〉 be two states in some sub-
space of an N -dimensional Hilbert space H, and let Hα =
11−|α〉〈α|, Hβ = 11−|β〉〈β|. For any convex combination
Hη = (1−η)Hα+ηHβ, where η ∈ [0, 1], the ground state
gap ∆(Hη) ≥ |〈α|β〉|.
Proof. Expand |β〉 = a|α〉 + b|α⊥〉 where 〈α|α⊥〉 = 0,
and complete {|α〉, |α⊥〉} to an orthonormal basis for H.
Writing Hη in this basis yields

Hη =

(
η|b|2 ηab∗

ηa∗b η|a|2 + 1− η

)
⊕ 11(N−2)×(N−2) . (36)

The eigenvalues of this matrix are all 1 for the identity
matrix block and the difference between the eigenvalues
in the 2 × 2 block is ∆(Hη) =

√
1− 4η(1− η)|b|2. This

is minimized for η = 1/2, where it equals |a|.
Applying this lemma, we see that ∆[H(s)] ≥
|〈φ|ψf 〉| = 1/

√
2. Since

∥∥H(1)(s)
∥∥ = ‖H1 −H0‖ ≤ 2

and
∥∥H(2)(s)

∥∥ = 0, it follows from the adiabatic condi-
tion (8) that tf is independent of n, i.e., the adiabatic
run-time is O(1) as in the circuit model depth.

3. Interpretation

As mentioned above, a classical probabilistic algorithm
that simply submits random queries to the oracle will fail
with a probability that is exponentially small in the num-
ber of queries. One might thus be concerned that the adi-
abatic algorithms above are no better (Hen, 2014a), since
they are probabilistic, in the sense that there is a non-zero
probability of ending in an excited state. However, e.g.,
for the linear interpolation adiabatic algorithm reviewed
above, if an even (or odd) index state is measured, the
system is already guaranteed to be in the ground state, so
the corresponding constant (or balanced) result is guar-
anteed to be correct deterministically (with probability
1). An excited state outcome is always detectable and
corresponds to an “inconclusive” outcome, whereupon
the algorithm needs to be repeated until a ground state
is found. Moreover, an excited state outcome can (and
should) be made exponentially unlikely using a smooth
schedule as per Theorem 3. Thus, the adiabatic algo-
rithms above improve upon a classical probabilistic al-
gorithm in the following sense: In the adiabatic case,
to know with certainty that the function is constant or
balanced (an even or odd index measurement result) hap-
pens with probability p = 1−q where q ∼ e−tf , where the
run-time tf is independent of n. Therefore, the expected
number of runs r to certainty in the adiabatic case is

〈r〉 =

∞∑

r=1

pqr−1r =
1

1− q ≈ 1 + q ∼ 1 + e−tf . (37)

On the other hand, classically, to know with certainty
that the function is constant requires N = 2n/2 + 1 runs
or queries (all yielding identical outcomes).
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Finally, we note that there exists a non-adiabatic
Hamiltonian quantum algorithm that solves the Deutsch-
Jozsa problem in constant time with a deterministic guar-
antee of ending up with the right answer (i.e., in the
ground state) (Hen, 2014a). This algorithm is based on
finding a fine-tuned schedule s(t).

C. Adiabatic Bernstein-Vazirani algorithm

The Bernstein-Vazirani problem (Bernstein and Vazi-
rani, 1993) is to find an unknown binary string a ∈
{0, 1}n with as few queries as possible of the function
(or oracle)

fa(w) = w � a ∈ {0, 1} , (38)

where � denotes the bitwise inner product modulo 2,
and w ∈ {0, 1}n as well. In the quantum circuit model,
it can be shown that a can be determined with O(1)
queries (Bernstein and Vazirani, 1993) whereas classical
algorithms require n queries (the classical algorithm tries
all n w’s with a single 1 entry to identify each bit of a).
This is a polynomial quantum speedup.

Before presenting the adiabatic algorithm we point out
the following useful observation. For an initial state:

|Ψ(0)〉 =
∑

w∈{0,1}n
cw|w〉A⊗|ψw(0)〉B ,

∑

w∈{0,1}n
|cw|2 = 1

(39)
that undergoes an evolution according to the time-
dependent Hamiltonian of the form

H(s) =
∑

w∈{0,1}n
|w〉A〈w| ⊗Hw(s) , (40)

we have:

|Ψ(t)〉 =
∑

w∈{0,1}n
cw|w〉A ⊗ |ψw(t)〉B , (41)

where

|ψw(t)〉B = |ψtf ,w(s)〉B (42)

= Texp

[
−itf

∫ s

0

dσHw(σ)

]
|ψw(0)〉B ,

where Texp denotes the time-ordered exponential. To see
this, simply expand the formal solution:

|Ψ(t)〉 = Texp

[
−itf

∫ s

0

dσH(σ)

]
|Ψ(0)〉 = (43)

∑

w∈{0,1}n
cw|w〉A ⊗ Texp

[
−itf

∫ s

0

dσHw(σ)

]
|ψw(0)〉B .

Thus for each state |w〉 in subsystem A, there is an inde-
pendently evolving state in subsystem B. In particular,

note that adiabaticity in subsystem B does not depend
on the size of system A.

The adiabatic algorithm (Hen, 2014b) encodes the ac-
tion of fa(w) in a Hamiltonian acting on two subsystems
A and B comprising n qubits and 1 qubit respectively:

H1 =
∑

w∈{0,1}n
hw , (44a)

hw ≡ −
1

2
|w〉A〈w| ⊗

(
11B + (−1)fa(w)σzB

)
. (44b)

The initial Hamiltonian is chosen to be

H0 =
1

2
(11A ⊗ (11B − σxB))

=
1

2

∑

w∈{0,1}n
|w〉A〈w| ⊗ (11B − σxB) . (45)

Any state of the form

|Ψ(0)〉 =
∑

w∈{0,1}n
cw|w〉A ⊗ |+〉B (46)

is a ground state of H0, with eigenvalue 0. We assume
that the initial state is prepared as the uniform superpo-
sition state, i.e., cw = 2−n/2 ∀w.

The total Hamiltonian is thus given by:

H(s) = (1− s)H0 + sH1 =
∑

w∈{0,1}n
|w〉A〈w| ⊗Hw(s) ,

(47)

where

Hw(s) =
1− s

2
(11B − σxB)− s

2

(
11B + (−1)fa(w)σzB

)
.

(48)

The adiabatic algorithm proceeds, after preparation of
the initial state, by adiabatic evolution to the final state:

|Ψ(tf )〉 = (49)

1

2n/2

∑

w∈{0,1}n
|w〉A ⊗ exp

[
−itf

∫ 1

0

ε0,w(s)ds

]
|fa(w)〉B ,

where ε0,w(s) is the instantaneous ground-state energy
of Hw(s), and we have used the general argument from
Eqs. (39)-(42). Finally an x measurement on subsystem
B is performed. Since we can write

|fa(w)〉 =
1√
2

(
|+〉+ (−1)fa(w)|−〉

)
, (50)

the state collapses to either of the following states with
equal probability:

|Ψ+〉 =
1

2n/2

∑

w∈{0,1}n
|w〉A ⊗ |+〉B = |Ψ(0)〉 , (51a)

|Ψ−〉 =
1

2n/2

∑

w∈{0,1}n
|w〉A ⊗ (−1)fa(w)|−〉B . (51b)
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Note that since fa(w) counts the number of 1-agreements
between a and w, we can write:

∑

w∈{0,1}n
(−1)fa(w)|w〉A =

n−1⊗

k=0

(|0〉k + (−1)ak |1〉k)A ,

(52)
so that

|Ψ−〉 =
1

2n/2

n−1⊗

k=0

(|0〉k + (−1)ak |1〉k)A ⊗ |−〉B . (53)

If the measurement gives +1 [i.e., Eq. (51a)], then the
measured state is the initial state and no information is
gained and the process must be repeated. If the mea-
surement gives −1, the resulting state in the A subspace
encodes all the bits of a, since if the k-th qubit is in the
|+〉k state, then ak = 0 and if it is in the |−〉k state, then
ak = 1. The probability of failure after m tries is 2−m so
it is exponentially small and n-independent.

The run-time of the algorithm is also n-independent,
since H(s) [Eq. (47)] describes a sum of 2n non-
interacting single-qubit evolutions, each governed by a
gapped Hamiltonian of the form (48).

In conclusion, the adiabatic Bernstein Vazirani algo-
rithm finds the unknown binary string a in O(1) time,
matching the circuit model depth. Using a similar tech-
nique, (Hen, 2014b) presented a quantum adiabatic ver-
sion of Simon’s exponential-speedup period finding al-
gorithm (Simon, 1997) [a precursor to Shor’s factor-
ing algorithm (Shor, 1997)], again matching the circuit
model depth scaling. An important aspect of these
quantum adiabatic constructions is that they go beyond
the general-purpose (and hence suboptimal) polynomial-
equivalence prescription of universality proofs that map
circuit-based algorithms into quantum-adiabatic ones
(see Section IV). That equivalence does not necessar-
ily preserve a polynomial quantum speedup, whereas the
construction in (Hen, 2014b) discussed here does.

D. The glued trees problem

Consider two binary trees, each of depth n. Each
tree has

∑n
j=0 2j = 2n+1 − 1 vertices, for a total of

N = 2n+2 − 2 vertices, each labelled by a randomly cho-
sen 2n-bit string. The two trees are randomly glued as
shown in Fig. 1. More specifically, choose a leaf on the
left end at random and connect it to a leaf on the right
end chosen at random. Then connect the latter to a leaf
on the left chosen randomly among the remaining ones,
and so on, until every leaf on the left is connected to
two leaves on the right (and vice versa). This creates a
random cycle that alternates between the leaves of the
two trees. The problem is, starting from the left root,
to find a path to the right root in the smallest possible
number of steps, while traversing the tree as in a maze.

I.e., keeping a record of one’s moves is allowed, but at
any given vertex one can only see the adjacent vertices.
More formally, an oracle outputs the adjacent vertices
of a given input vertex (note that the roots of the trees
are the only vertices with adjacency two, so it is easy
to check if the right root was found). The problem is,
given the name of the left root and access to the oracle,
to find the name of the right root in the smallest number
of queries. Classical algorithms require at least a sub-
exponential in n number of oracle calls, but there exists
a polynomial-time quantum algorithm based on quan-
tum walks for solving this problem (Childs et al., 2003).
A polynomial-time quantum almost-adiabatic algorithm
was given in (Somma et al., 2012). The qualifier “almost”
is important: the algorithm is not adiabatic during the
entire evolution, since it explicitly requires a transition
from the ground state to the first excited state and back.
We now review the algorithm, which (so far) provides
the only example of a (sub-)exponential almost-adiabatic
quantum speedup.

Let us denote the bit-string corresponding to the first
root by a0 and the second root by aN−1. Define the
diagonal (in the computational basis) Hamiltonians

H0 = −|a0〉〈a0| , H1 = −|aN−1〉〈aN−1| , (54)

and the states

|cj〉 =
1√
Nj

∑

i∈j−th column

|ai〉 , (55)

which are a uniform superposition over the vertices in
the j-th column with Nj = 2j for 0 ≤ j ≤ n and Nj =
22n+1−j for n + 1 ≤ j ≤ 2n + 1. Note that |c0〉 = |a0〉
and |c2n+1〉 = |aN−1〉. Let us define the Hamiltonian A
associated with the oracle as having the following non-
zero matrix elements:

〈cj |A|cj+1〉 =

{ √
2 j = n

1 otherwise
(56)

We then pick as our interpolating Hamiltonian:

H(s) = (1− s)αH0 − s(1− s)A+ sαH1 (57)

where α ∈ (0, 1/2) is a constant (independent of n) and
s(t) is the schedule. Note that a unitary evolution ac-
cording to this Hamiltonian will keep a state within the
subspace spanned by {|cj〉} if the state is initially within
that subspace. Since the instantaneous ground state at
s = 0 (|a0〉) is in this subspace, it suffices to only consider
this subspace. Because of the form of the Hamiltonian,
the eigenvalue spectrum is symmetric about s = 1/2.

In this subspace, at s× = α/
√

2 (and by symmetry at
1 − s×), the energy gap between the ground state and
the first excited state closes exponentially in n. This
is depicted in Fig. 2, where s1, s2 represent the region
around s× and s3, s4 represent the region around 1− s×.
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j = 0 j = 1 . . . . . . j = n j = 2n + 1. . .. . .j = n + 1

FIG. 1 A glued tree with n = 4. The labeling j from Eq. (55)
is depicted on top of the tree.

In the regions s ∈ [0, s1), s ∈ [s2, s3), and s ∈ [s4, 1], the
energy gap between the ground state and first excited
state is lower-bounded by c/n3. The gap between the
first and second excited states is lower-bounded by c′/n3

throughout the evolution. Both c, c′ > 0.

The proposed evolution exploits the symmetry and gap
structure of the spectrum as follows. A schedule is chosen
that guarantees adiabaticity only if the energy gap scales
as 1/n3. Then, during s ∈ [0, s1), the desired evolution
is sufficiently adiabatic that it follows the instantaneous
ground state. During s ∈ [s1, s2), the evolution is non-
adiabatic (since the gap scales as 1/en) and a transition
to the first excited state occurs with high probability.
During s ∈ [s2, s3), the evolution is again sufficiently
adiabatic that it follows the instantaneous first excited
state. During s ∈ [s3, s4), the evolution is again non-
adiabatic and a transition from the first excited state
back to the ground state occurs with high probability.
During s ∈ [s4, 1], the evolution is again adiabatic and
follows the instantaneous ground state.

Since tf =
∫ 1

0
ds(ds/dt)−1 ∼ n6, we conclude that

|aN−1〉 can be found in polynomial time.

E. Adiabatic PageRank algorithm

We review the adiabatic quantum algorithm from
(Garnerone et al., 2012) that prepares a state contain-
ing the same ranking information as the PageRank vec-
tor. The latter is a central tool in data mining and in-
formation retrieval, at the heart of the success of the
Google search engine (Brin and Page, 1998). Using the
adiabatic algorithm, the extraction of the full PageRank
vector cannot, in general, be done more efficiently than
when using the best classical algorithms known. How-
ever, there are particular graph-topologies and specific
tasks of relevance in the use of search engines (such as
finding just the top-ranked entries) for which the quan-
tum algorithm, combined with other known quantum
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FIG. 2 The ground state (λ0(s), blue solid curve), first ex-
cited state (λ1(s), red dashed curve) and second excited state
(λ2(s) yellow dot-dashed curve) of the glued-trees Hamilto-
nian (57) for α = 1/

√
8 and n = 6. Inside the region [s1, s2]

and [s3, s4], the gap between the ground state and first excited
state ∆10 closes exponentially with n. In the region [s2, s3],
the gap between the ground state and first excited state ∆10

and the gap between the first excited state and second excited
state ∆21 are bounded by n−3. Similarly, in the region [s4, 1],
the gap between the ground state and first excited state ∆10

is bounded by n−3.

protocols, may provide a polynomial, or even exponen-
tial quantum speedup. Note that unlike the previous al-
gorithms we reviewed in this section, which all provided
a provable quantum speedup, the current algorithm pro-
vides a “regular” quantum speedup, in the sense that
it outperforms all currently known classical algorithms,
but better future classical algorithms have not been ruled
out.

1. Google matrix and PageRank

PageRank can be seen as the stationary distribution of
a random walker on the web-graph, which spends its time
on each page in proportion to the relative importance of
that page (Langville and Meyer, 2006).

To model this define the transition matrix P1 associ-
ated with the (directed) adjacency matrix A of the graph

P1(i, j) =

{
1/d(i) if (i, j) is an edge of A;
0 else,

(58)

where d(i) is the out-degree of the ith node.
The rows having zero matrix elements, corresponding

to dangling nodes, are replaced by the vector ~e/n whose
entries are all 1/n, where n is the number of pages or
nodes, i.e., the size of the web-graph. Call the resulting
(right) stochastic matrix P2. However, there could still
be subgraphs with in-links but no out-links. Thus one
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defines the “Google matrix” G as

G := αPT2 + (1− α)E, (59)

where E ≡ |~v〉〈~e|. The “personalization vector” ~v is a
probability distribution; the typical choice is ~v = ~e/n.
The parameter α ∈ (0, 1) is the probability that the
walker follows the link structure of the web-graph at each
step, rather than hop randomly between graph nodes ac-
cording to ~v (Google reportedly uses α = 0.85). By con-
struction, G is irreducible and aperiodic, and hence the
Perron-Frobenius theorem (Horn and Johnson, 2012),18

ensures the existence of a unique eigenvector with all pos-
itive entries associated to the maximal eigenvalue 1. This
eigenvector is precisely the PageRank ~p. Moreover, the
modulus of the second eigenvalue of G is upper-bounded
by α (Nussbaum, 2003). This is important for the conver-
gence of the power method, the standard computational
technique employed to evaluate ~p. It uses the fact that
for any probability vector ~p0

~p = lim
k→∞

Gk~p0. (60)

The power method computes ~p with accuracy ν in a time
O[sn log(1/ν)/ log(1/α)], where s is the sparsity of the
graph (maximum number of non-zero entries per row of
the adjacency matrix). The rate of convergence is deter-
mined by α.

2. Hamiltonian and gap

Consider the following non-local final Hamiltonian as-
sociated with a generic Google matrix G (in this subsec-
tion we use H and h for local and non-local Hamiltonians,
respectively):

h1 = h(G) ≡ (11−G)
†

(11−G) . (61)

Since h(G) is positive semi-definite, and 1 is the maxi-
mal eigenvalue of G associated with ~p, it follows that the
ground state of h(G) is given by |π〉 ≡ ~p/ ‖~p‖. The initial
Hamiltonian has a similar form, but it is associated with
the Google matrix Gc of the complete graph

h0 = h(Gc) ≡ (11−Gc)† (11−Gc) . (62)

The ground state of h0 is the uniform superposition state
|ψ(0)〉 =

∑n
j=1 |j〉/

√
n. The basis vectors |j〉 span the

n-dimensional Hilbert space of log2 n qubits The inter-
polating adiabatic Hamiltonian is

h(s) = (1− s)h0 + sh1. (63)

18 This theorem states that if all elements of a real symmetric
square matrix A are non-negative, then the largest eigenvalue
of A is real; furthermore, the components of the corresponding
eigenvector can be chosen to be all non-negative.

Equations (61)-(63) completely characterize the adia-
batic quantum PageRank algorithm, apart from the
schedule s(t).

By numerically simulating the dynamics generated by
h(s), (Garnerone et al., 2012) showed that for typical
random graph instances generated using the “preferential
attachment model” (Barabasi and Albert, 1999; Bollobás
et al., 2001) and “copying model” (Kleinberg et al., 1999)
(both of which yield sparse random graphs with small-
world and scale-free features), the typical run-time of the
adiabatic quantum PageRank algorithm scales as

tf ∼ (log log n)b−1(log n)b, (64)

where b > 0 is some small integer that depends on the
details of the graph parameters. The numerically com-
puted gap scales as (log n)−b, which (Garnerone et al.,
2012) found to be due to the power law distribution of
the out-degree nodes d(i).19

3. Speedup

We next discuss two tasks for which this adiabatic
quantum ranking algorithm offers a speedup.

The best currently known classical Markov Chain
Monte Carlo (MCMC) technique used to evaluate the
full PageRank vector requires a time (in the bulk syn-
chronous parallel computational model (Valiant, 1990))
which scales as O[log(n)] (Das Sarma et al., 2015). The
algorithm launches log n random walks from each node
of the graph in parallel (for a total of n log(n) walkers),
with each node communicating O[log(n)] bits of data to
each of its connected neighbors after each step. After
O[log(n)] steps, the total number of walkers that have
visited a node is used to estimate the PageRank of that
node. In the absence of synchronization costs [synchro-
nization and communication are known to be important
issues for networks with a large number of processors
(Awerbuch, 1985; Bisseling, 2004; Kumar et al., 2003;
Rauber and Rünger, 2010)], the classical cost can be
taken to be O[n log(n)2], i.e., the number of parallel pro-
cesses multiplied by the duration of each process.20

At the conclusion of the adiabatic evolution gener-
ated by the Hamiltonian in Eq. (63), the PageRank
vector ~p = {pi} is encoded into the quantum PageR-
ank state |π〉 =

∑n
i=1

√
πi|i〉 of a (log2 n)-qubit system,

where |i〉 denotes the i-th node in the graph G. The

19 The gap becomes too small for a quantum advantage, i.e., scales
as 1/poly(n), for graphs with only in-degree power-law distribu-
tion or when the out-degrees are equal to the in-degrees. This
was studied in more detail in (Frees et al., 2013).

20 This analysis improves upon the estimates of the classical cost
presented in (Garnerone et al., 2012), and accounts for the cri-
tique presented in (Moussa, 2013).
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probability of measuring node i is πi = p2
i / ‖~p‖2. One

can estimate πi by repeatedly sampling the expectation
value of the operator σzi in the final state. The num-
ber of measurements M needed to estimate πi is given
by the Chernoff-Hoeffding bound (Hoeffding, 1963), al-
lowing one to approximate πi with an additive error ei
and with M = poly(e−1

i ). A nontrivial approximation
requires ei ≤ pi and, these are typically O(1/n).

The fact that the amplitudes of the quantum PageR-
ank state are {√πi = pi/ ‖~p‖}, rather than {√pi}, is
a virtue: the number of samples needed to estimate the
rank πi with additive error ei ∼ πi scales as O[n2γi−1], so
the total quantum cost is O[n2γi−1polylog(n)].21 Thus,
for the combined task of state preparation and estima-
tion, there is a polynomial quantum speedup whenever
γi < 1, namely O[n2γi−1polylog(n)] vs. O[n polylog(n)];
simulations reported in (Garnerone et al., 2012) show
that this is indeed the case for the top-ranked log(n) en-
tries, and in applications one is most often interested in
the top entries. We emphasize that this holds in the av-
erage (not worst) case, and is not a provable speedup;
the evidence for the scaling is numerical, and it is un-
known whether a classical algorithm for the preparation
of π rather than ~p may give a similar scaling to the quan-
tum scaling, though if that is the case one could consider
quantum preparation of {π2

i /‖π‖2}, etc.

Another context for useful applications is comparing
successive PageRanks, or more generally “q-sampling”
(Aharonov and Ta-Shma, 2003). Suppose one per-
turbs the web-graph. The adiabatic quantum algorithm
can provide, in time O[polylog(n)], the pre- and post-
perturbation states |π〉 and |π̃〉 as input to a quantum
circuit implementing the SWAP-test (Buhrman et al.,
2001). To obtain an estimate of the fidelity |〈π|π̃〉|2
one needs to measure an ancilla O(1) times, the num-
ber depending only on the desired precision. In contrast,
deciding whether two probability distributions are close
classically requires O[n2/3 log n] samples from each (Batu
et al., 2000). Whenever some relevant perturbation of the
previous quantum PageRank state is observed, one can
decide to run the classical algorithm again to update the
classical PageRank.

21 It was observed numerically in (Garnerone et al., 2012) that pi ∝
1/nγi , where γi ∈ (0.6, 1], and that ‖~p‖22 ∝ 1/n. Let ei denote
the additive error corresponding to πi = p2

i /‖~p‖22 ∼ np2
i . It

follows from the Chernoff-Hoeffding inequality that the number
of samples M(x) from the distribution x, where x = π = {πi}
(output of the quantum algorithm), required for a given, fixed
additive estimation error, is proportional to the inverse of the
additive error: M(π) ∼ 1/ei. Assuming ei ∼ πi, it follows that
M(π) ∼ 1/πi ∼ 1/(np2

i ) ∼ n2γi−1. The total cost required to
prepare the sample in the quantum case is O[polylog(n)].

IV. UNIVERSALITY OF AQC

What is the relation between the computational power
of the circuit model and the adiabatic model of quan-
tum computing? It turns out that they are equivalent,
up to polynomial overhead. It is well known that the
circuit model is universal for quantum computing, i.e.,
that there exist sets of gates acting on a constant num-
ber of qubits each that can efficiently simulate a quan-
tum Turing machine (Deutsch, 1985; Yao, 1993). A set
of gates is said to be universal for QC if any unitary op-
eration may be approximated to arbitrary accuracy by a
quantum circuit involving only those gates (Nielsen and
Chuang, 2000). The analog of such a set of gates in AQC
is a Hamiltonian. An operational definition of universal
AQC is thus to efficiently map any circuit to an adiabatic
computation using a sufficiently powerful Hamiltonian.
Formally:

Definition 3 (Universal Adiabatic Quantum Computa-
tion). A time-dependent Hamiltonian H(t), t ∈ [0, tf ], is
universal for AQC if, given an arbitrary quantum circuit
U operating on an arbitrary initial state |ψ〉 of n p-state
particles and having depth L, the ground state of H(tf )
is equal to U |ψ〉 with probability greater than ε > 0, the
number of particles H(t) operates on is poly(n) ∀t, and
tf = poly(n,L).

The stipulation that the ground state of H(tf ) is equal
to the final state at the end of the circuit ensures that
the circuit and the adiabatic computation have the same
output. We note that it is possible and useful to relax
the ground state requirement and replace it with another
eigenstate of H(t) (see, e.g., Sec. VI.C). The requirement
that the number of particles and time taken by the adi-
abatic computation are polynomial in n and L ensures
that the resources used do not blow up.

We begin, in Sec. IV.A, by showing that the circuit
model can efficiently simulate AQC. The real challenge
is to show the other direction, i.e., that AQC can ef-
ficiently simulate the circuit model, which is what we
devote the rest of this section to. Along the way, this
establishes the universality of AQC. We present several
proofs, starting in Sec. IV.B with a detailed review of
the history state construction of (Aharonov et al., 2007),
who showed in addition that six-state particles in two
dimensions suffice for universal adiabatic quantum com-
putation. This was improved in (Kempe et al., 2006), us-
ing perturbation-theory gadgets, who showed that qubits
can be used instead of six-state particles, and that adi-
abatic evolution with 2-local Hamiltonians is quantum
universal. A 2-local model of universal AQC in 2D, which
we review in Sec. IV.C, was proposed in (Mizel et al.,
2007), using fermions. Universal AQC using qubits on a
two-dimensional grid was accomplished in (Oliveira and
Terhal, 2008). Further simplifications of universal AQC
in 2D were presented in (Breuckmann and Terhal, 2014;
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Gosset et al., 2015; Lloyd and Terhal, 2016), using the
space-time circuit model, which we review in Sec. IV.D.
The ultimate reduction in spatial dimensionality was ac-
complished in (Aharonov et al., 2009), who showed that
universal AQC is possible with 1D 9-state particles, as
we review in Sec. IV.E. Finally, in Sec. IV.F we review
a construction that allows one to quadratically amplify
the gap of any Hamiltonian used in AQC (satisfying a
frustration-freeness property), though this requires the
computation to take place in an excited state.

A. The circuit model can efficiently simulate AQC

That the circuit model can efficiently simulate the adi-
abatic model is relatively straightforward and was first
shown in (Farhi et al., 2000). Assume for simplicity a
linear schedule, i.e., an AQC Hamiltonian of the form
H(t) = (1 − t

tf
)H0 + t

tf
H1. The evolution of a quan-

tum system generated by the time-dependent Hamilto-
nian H(t) is governed by the unitary operator:

U(tf , 0) = Texp

[
−i
∫ tf

0

dtH(t)

]
. (65)

If tf satisfies the condition for adiabaticity, U(tf , 0) will
map the ground state at t = 0 to the ground state at tf .
Therefore it suffices to show that the circuit model can
simulate U(tf , 0). To do so, we approximate the evolu-
tion by a product of unitaries involving time-independent
Hamiltonians H ′m ≡ H(m∆t):

U(tf , 0) 7→ U ′(tf , 0) =

M∏

m=1

U ′m =

M∏

m=1

e−i∆tH
′
m , (66)

where ∆t = tf/M . The error incurred by this approxi-
mation is (van Dam et al., 2001):

‖U(tf , 0)− U ′(tf , 0)‖ ∈ O
(√

tfpoly(n)/M

)
, (67)

where we used

‖H(t)−H ′dmt/tfe‖ ≤
1

M
‖H1 −H0‖ (68)

∈ O(poly(n)/M) .

We now wish to approximate each individual term in the
product in Eq. (66) using the Baker-Campbell-Hausdorff
formula (Klarsfeld and Oteo, 1989) by:

U ′m 7→ U ′′m = e
−i∆t

(
1−m∆t

tf

)
H0
e
−i∆tm∆t

tf
H1

, (69)

which incurs an error ‖eA+B−eAeB‖ ∈ O (‖AB‖) due to
the neglected leading order commutator term [A,B]/2,
i.e.,

‖U ′m − U ′′m‖ ∈ O
(
t2f
M2
‖H0H1‖

)
. (70)

Therefore, accounting for the M terms in the product
and observing that the error in Eq. (67) is subdominant,
the total error is (van Dam et al., 2001):

‖U(tf , 0)−
M∏

m=1

U ′′m‖ ∈ O
(
poly(n)t2f/M

)
. (71)

This means we can approximate U(tf , 0) with a product
of 2M unitaries provided that M scales as t2fpoly(n).

Depending on the form of H0 and H1, they may need
further decomposition in order to write the terms in
Eq. (69) in terms of few-qubit unitaries. E.g., for the
standard initial Hamiltonian H0 = −∑i σ

x
i , which is a

sum of commuting single qubit operators, we can write
e−i∆t(1−t/tf )H0/K as a product of n one-qubit unitaries.
Likewise, assuming that H1 is 2-local, we can write

e
−im∆t

tf
∆tH1/M

as a product of up to n2 two-qubit uni-
taries within the same order of approximation as Eq. (69).
Thus, U(tf , 0) can be approximated as a product of uni-
tary operators each of which acts on a few qubits. The
scaling of tf required for adiabatic evolution is inherited
by the number of few-qubit unitary operators in the as-
sociated circuit version of the algorithm.

A more efficient method was proposed in (Boixo
et al., 2009b), building upon the ideas explained in
Sec. II.B.4. This “eigenpath traversal by phase random-
ization” method applies the Hamiltonian H(tj) in piece-
wise continuous manner at random times tj . Each in-
terval [tj , tj+1] corresponds to a unitary e−iH(tj), which
then needs to be decomposed into one- and two-qubit
gates, as above. The randomization introduces an effec-
tive eigenstate decoupling in the Hamiltonian eigenba-
sis (similarly to the effect achieved by projections in the
Zeno effect), so that if the initial state is the ground state,
the evolution will follow the ground state throughout as
required for AQC. The algorithmic cost of this random-
ization method is defined as the average number of times
the unitaries are applied, and it can be shown that the
cost is O[L2/(ε∆)], where ε is the desired maximum error
of the final state compared to the target eigenstate, and L
is the path length [Eq. (13)]. Since L ≤ maxs ‖Ḣ(s)‖/∆
as we saw in Sec. II.B.4, the worst-case bound on the cost
is maxs ‖Ḣ(s)‖2/(ε∆3), up to logarithmic factors.

B. AQC can efficiently simulate the circuit model: history
state proof

The goal is, given an arbitrary n-qubit quantum cir-
cuit, to design an adiabatic computation whose final
ground state is the output of the quantum circuit de-
scribed by a sequence of L one or two-qubit unitary gates,
U1, U2, . . . UL. This adiabatic simulation of the circuit
should be efficient, i.e., it may incur at most polynomial
overhead in the circuit depth L. In this subsection we re-
view the proof presented in (Aharonov et al., 2007). This
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was the first complete proof of the universality of AQC,
and many of the ideas and techniques introduced therein
inspired subsequent proofs, remaining relevant today.

Let us assume that the n-qubit input to the circuit is
the |0 · · · 0〉 state. After the `-th gate, the state of the
quantum circuit is given by |α(`)〉. To proceed, we use
the “circuit-to-Hamiltonian” construction (Kitaev et al.,
2000), where the final Hamiltonian will have as its ground
state the entire history of the quantum computation.
This “history state” is given by:

|η〉 =
1√
L+ 1

L∑

`=0

|γ(`)〉 (72a)

|γ(`)〉 ≡ |α(`)〉 ⊗ |1`0L−`〉c (72b)

where |1`0L−`〉c denotes the “Feynman clock” (Feynman,
1985) register composed of L + 1 qubits. The notation
means that we have ` ones followed by L − ` zeros to
denote the time after the `-th gate. We wish to con-
struct a Hamiltonian Hinit with ground state |γ(0)〉 and
a Hamiltonian Hfinal with ground state |η〉. Let:

Hinit = Hc−init +Hinput +Hc (73a)

Hfinal =
1

2
Hcircuit +Hinput +Hc (73b)

Hcircuit =

L∑

`=1

H` . (73c)

The full time independent Hamiltonian H(s) is given
by (Aharonov et al., 2007):

H(s) = (1− s)Hinit + sHfinal (74)

= Hinput +Hc + (1− s)Hc−init +
s

2
Hcircuit .

The various terms are chosen so that the ground state
always has energy 0:

• Hc: This term should ensure that the clock’s state
is always of the form |1`0L−`〉c. Therefore, we en-
ergetically penalize any clock-basis state that has
the sequence 01:

Hc =

L−1∑

`=1

|0`1`+1〉c〈0`1`+1| (75)

where |0`1`+1〉c denotes a 0 on the `-th clock qubit
and 1 on the (`+1)-th clock qubit. Any illegal clock
state will have an energy ≥ 1. Any legal clock state
will have energy 0.

• Hc−init: Ensures that the initial clock state is |0L〉c.

Hc−init = |11〉c〈11| (76)

Note that we only need to specify the first clock
qubit to be in the zero state. For a legal clock
state, Eqs. (75) and (76) imply that the rest are in
the zero state as well.

• Hinput: Ensures that if the clock state is |0L〉, then
the computation qubits are in the |0n〉 state.

Hinput =

n∑

i=1

|1i〉〈1i| ⊗ |01〉c〈01| (77)

• H`: Ensures that the propagation from ` − 1 to `
corresponds to the application of U`.

H1 = 11⊗ |0102〉c〈0102| − U1|1102〉c〈0102|
− U†1 |0102〉c〈1102|+ 11⊗ |1102〉c〈1102| (78a)

H2≤`≤L−1 = 11⊗ |1`−10`0`+1〉c〈1`−10`0`+1|
− U`|1`−11`0`+1〉c〈1`−10`0`+1|
− U†` |1`−10`0`+1〉c〈1`−11`0`+1|
+ 11⊗ |1`−11`0`+1〉c〈1`−11`0`+1| (78b)

HL = 11⊗ |1L−10L〉c〈1L−10L|
− UL|1L−11L〉c〈1L−10L|
− U†1 |1L−10L〉〈1L−11L|
+ 11⊗ |1L−11L〉c〈1L−11L| (78c)

Note that the first and last terms leave the state
unchanged. The second term propagates the com-
putational state and clock register forward, while
the third term propagates the computational state
and clock register backward.

It turns out that the state |γ(0)〉 = |α(0)〉⊗ |0L〉 is the
ground state of Hinit with eigenvalue 0, and |η〉 is the
ground state of Hfinal with eigenvalue 0. Let S0 be the
subspace spanned by {|γ(`)〉}L`=0. The state |α(0)〉 is the
input to the circuit, so it can be taken to be the |0 · · · 0〉
state, i.e., the initial ground state is an easily prepared
state. Since the initial state |γ(0)〉 ∈ S0, the dynamics
generated by H(s) keep the state in S0. It turns out that
the ground state is unique for s ∈ [0, 1]. By mapping
the Hamiltonian within S0 to a stochastic matrix, it is
possible to find a polynomial lower bound on the gap
from the ground state within S0:

∆(HS0
) ≥ 1

4

(
1

6L

)2

. (79)

It is also possible to bound the global gap (i.e., not
restricted to the S0 subspace) as

∆(H) ≥ Ω(1/L3) . (80)

A measurement of the final state will find the final out-
come of the quantum circuit |γ(L)〉 with probability 1

L+1 .
This can be amplified by inserting identity operators at
the end of the circuit, hence causing the history state
to include a greater superposition of the final outcome
of the circuit. Together, these results show that there is
an efficient implementation of any given quantum circuit
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using the adiabatic algorithm with H(s). Here and else-
where “efficient” means up to polynomial overhead, i.e.,
where tf scales as a polynomial in L.

The proof techniques used to obtain these results are
instructive and of independent interest, so we review ad-
ditional technical details in Appendix C.

To conclude this section, we briefly mention addi-
tional results supporting the equivalence of the circuit
and adiabatic approach, in terms of state preparation.
In (Aharonov and Ta-Shma, 2003) it was shown (The-
orem 2) that any quantum state that can be efficiently
generated in the circuit model can also be efficiently gen-
erated by an adiabatic approach, and vice versa, for the
same initial state. The proof relies on two important lem-
mas, the “sparse Hamiltonian lemma” and the “jagged
adiabatic path” lemma. The former gives conditions un-
der which a Hamiltonian is efficiently simulatable in the
circuit model, and the latter provides conditions under
which a sequence of Hamiltonians, defining a path, can
have a non-negligible spectral gap.

C. Fermionic ground state quantum computation

A model of ground state quantum computation
(GSQC) using fermions was independently proposed in
(Mizel et al., 2001) [see also (Mizel, 2004; Mizel et al.,
2002) and (Mao, 2005a,b)] around the same time as AQC.
In GSQC, one executes a quantum circuit by producing
a ground state that spatially encodes the entire temporal
trajectory of the circuit, from input to output. It was
shown in (Mizel et al., 2007) how to adiabatically reach
the desired ground state, thus providing an alternative
to history state type constructions for universal AQC.
One of the differences between the GSQC and history
states constructions is that instead of relying on Feyn-
man “global clock particle” idea, particles are synchro-
nized locally (via CNOT gates), an idea that traces back
to (Margolus, 1990) and was later adopted in some of the
space-time circuit-to-Hamiltonian constructions (Breuck-
mann and Terhal, 2014).

Consider a quantum circuit with n qubits and depth
L. We associate 2(L + 1) fermionic modes with every

qubit q, via creation operators a†q,` and b†q,`, where ` =
0, . . . , L. One can view these 2n(L + 1) modes as the
state-space of n spin-1/2 fermions, where each fermion
can be localized at sites on a 1D (time)-line of length
L+ 1. To illustrate this with a concrete physical system,
imagine a two-dimensional array of quantum dots with
L+ 1 columns and two rows per qubit, corresponding to
the |0〉 and |1〉 basis states of that qubit. A total of n
electrons are placed in the array. The state of each qubit
determines the spin state of the corresponding electron,
which in term determines which of the two rows it is
in, while the clock of each qubit is represented by which
column the electron is in.

It is convenient to group creation operators into row
vectors C†q,` = (a†q,` b

†
q,`). Then for each single-qubit gate

U
(1)
q,` we introduce a term

H
(1)
q,` (s) =

(
C†q,` − sC

†
q,`−1(U

(1)
q,` )†

)(
Cq,` − sCq,`−1U

(1)
q,`

)

(81)
into the circuit Hamiltonian Hcircuit. The off-diagonal
terms represent hopping or tunneling of the q-th elec-

tron from site ` − 1 to ` (and v.v.), while U
(1)
q,` acts on

the electron’s spin. The diagonal terms C†q,`Cq,` and

C†q,`−1Cq,`−1 ensure that H
(1)
q,` ≥ 0. The parameter

s ∈ [0, 1] controls the interpolation from the initial, sim-
ple to prepare ground state at s = 0 when there is no
tunneling and every electron is frozen in place, to the

full realization of all the gates U
(1)
q,` when s = 1.

One can similarly define CNOT Hamiltonian terms be-
tween electrons or fermions, whose form can be found
in (Mizel et al., 2007) [see also (Breuckmann and Ter-
hal, 2014)]. These 2-local terms can be understood as a
sum of an identity and NOT term. For such two-qubit
gates, the fermions corresponding to the control and tar-
get qubits both tunnel forward or backward and the in-
ternal spin-state of the target fermion changes depending
on the internal state of the control fermion. An impor-
tant additional ingredient is the addition of a penalty
term that imposes an energy penalty on states in which
one qubit has gone through the CNOT gate without the
other. Instead of the Feynman clock used in the history
state construction, there are many local clocks, one per
qubit. The synchronization mechanism takes place via
the CNOT Hamiltonian. Moreover, the entire construc-
tion naturally involves only 2-local interactions between
fermions in 2D.

While the fermionic GSQC model proposed in (Mizel
et al., 2007) was shown there to be universal for AQC, its
gap analysis was incomplete.22 This was fixed in (Childs
et al., 2013), which proved the “Nullspace Projection
Lemma” that was implicitly assumed in (Mizel et al.,
2007). This lemma is interesting in its own right, so we
reproduce it here:

Lemma 2 (Nullspace Projection Lemma (Childs et al.,
2013)). Let ∆(A) denote the smallest nonzero eigenvalue
of the positive semidefinite operator A. Let H0 and H1

22 On p.4 of (Mizel et al., 2007) it was claimed that “〈Z|H|Z〉 ≥
EO(1/N2)” (N is L in our notation), implying a lower bound
on the spectral gap of the total Hamiltonian H. This claim
was based on (Mizel et al., 2002), but was in fact not proven
there. Here E is the energy scale of the CNOT terms, the total
Hamiltonian is H = H0 + H1, where H0 contains all of the
single qubit terms and H1 includes all of the CNOT terms, and
|Z〉 denotes the known ground state of H0. As pointed out in
(Breuckmann and Terhal, 2014), the missing step is essentially
to exclude zero-energy, invalid time-configurations.



22

be positive semidefinite and assume the nullspace S of H0

is non-empty. Also assume that ∆(H1|S) ≥ c > 0 and
∆(H0) ≥ d > 0. Then

∆(H0 +H1) ≥ cd

c+ d+ ‖H1‖
. (82)

As shown in (Breuckmann and Terhal, 2014), the
fermionic GSQC model can be unitarily mapped onto
the space-time circuit-to-Hamiltonian model for qubits
in 2D, where the gap analysis is more convenient. Using
the same mapping, (Breuckmann and Terhal, 2014) also
showed that the fermionic model of (Mizel et al., 2007) is
in fact QMA-complete. We thus proceed to discuss the
space-time model next.

D. Space-time Circuit-to-Hamiltonian Construction

Here we briefly review another construction that re-
alizes universal adiabatic quantum computation (Gosset
et al., 2015; Lloyd and Terhal, 2016). This builds on the
so-called space-time circuit-to-Hamiltonian construction
(Breuckmann and Terhal, 2014), which in turn is based
on the Hamiltonian computation construction of (Janz-
ing, 2007). We consider the 2n-qubit quantum circuit
with n2 two-qubit gates, arranged as shown in Fig. 3(a).
This form is sufficient for universal quantum computation
(Janzing, 2007). An equivalent representation of the cir-
cuit is given in Fig. 3(b), where the n2 gates are arranged
in a rotated n × n grid. Each plaquette p is associated
with a gate Up, of which the majority are identity gates.
Only a k × k subgrid of the n × n grid with k =

√
n/16

has non-identity gates, with the subgrid located as shown
in Fig. 3(c). This region is referred to as the interaction
region.

The circuit is mapped to a Hamiltonian H(λ), with
λ ∈ [0, 1]. The Hamiltonian describes the evolution of
particles that live on the edges of the rotated n×n grid.
The positions of the particles are given in terms of the
coordinates (t, w) ∈ {1, . . . , 2n}2 as shown in Fig. 3(b).
Each particle has two internal degrees of freedom in or-
der to encode the qubits of the circuit. Let at,s[w] de-
note the annihilation operator which annihilates a parti-
cle with internal state s ∈ {0, 1} on the edge (t, w). The

number operator is defined as nt,s[w] = a†t,s[w]at,s[w],
which counts the number of particles (which will be ei-
ther 0 or 1) at position (t, w) with state s. Let nt[w] =
nt,0[w] + nt,1[w].

We focus on configurations of particles that form con-
nected segments starting at the top and ending at the
bottom [an example is shown in Fig. 3(b)], referred to as
consistent connected string configurations. For a fixed w
(i.e., a horizontal line on the rotated grid), there is only
one occupied edge. We can describe such configurations
in terms of 2n bits, denoted by z. Specifically, let the
bit value 0 correspond to an edge going down and left
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FIG. 3 (a) A 2n = 8 qubit quantum circuit, where each grey
square (n2 = 16 in total) corresponds to a 2-qubit gate. (b)
An equivalent representation of the quantum circuit in (a) in
terms of a rotated grid. The red dashed line corresponds to an
allowed string configuration for the particles. (c) The circuit
is constrained such that the majority of the gates are identity
except in a k× k subgrid (shown in black), located such that
its left vertex is at the center of the rotated grid. A successful
computation requires the t position of the 2k particles with w
positions that cross the interaction region, to lie to the right
of the interaction region. See also Fig. 1 in (Gosset et al.,
2015).

and 1 correspond to an edge going down and right. The
Hamming weight of such configurations must be n, since
they start and end in the middle of the grid and so must
go left and right an equal number of times.

We are now ready to describe the Hamiltonian:

H(λ) = Hstring +Hcircuit(λ) +Hinput . (83)

• Hinput: This term ensures that the ground state has
the internal state of all particles set to s = 0 when the
string lies on the left-hand side of the grid by energet-
ically penalizing all states (on the left-hand side) with
s = 1. It is given by:

Hinput =

2n∑

w=1

∑

t≤n
nt,1[w] . (84)

• Hstring: This term ensures that the ground state is
in the subspace of connected strings. Consider a sin-
gle vertex v in the grid with incident edges labeled by
(t, w), (t + 1, w), (t, w + 1), (t + 1, w + 1). We can asso-
ciate a Hamiltonian Hv

string to each vertex,

Hv
string = nt[w] + nt+1[w] + nt[w + 1] + nt+1[w + 1]

−2 (nt[w] + nt+1[w]) (nt[w + 1] + nt+1[w + 1])

(85)

(for vertices at the boundary of the grid with two or
three incident edges, the definition of Hv

string needs to
be modified accordingly) such that Hstring =

∑
vH

v
string.

For connected string configurations, the energy due to
this Hamiltonian is zero, while disconnected strings with
L string segments have a higher energy 2L− 2.
• Hcircuit(λ) =

∑
pH

p
gate(λ)+

√
1− λ2Hinit: Define for

each plaquette p with borders given by the edges {(t, w),
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(t+ 1, w), (t, w + 1), (t+ 1, w + 1)}
Hp

gate(λ) = nt[w]nt[w+ 1] + nt+1[w]nt+1[w+ 1] +λHp
prop

(86)
where

Hp
prop = −

∑

α,β,γ,δ

(
〈β, δ|Up|α, γ〉a†t+1,βat,α[w]

×a†t+1,δ[w + 1]at,γ [w + 1]
)

+ h.c. (87)

The term Hp
prop allows for a pair of particles located on

the left (right) edges of a plaquette to hop together such
that they both are located on the right (left) edges of a
plaquette, with their internal states changed according
to Up (U†p). Note that this move preserves the connect-
edness of the string. Furthermore, the term

∑
pH

p
gate(0)

is minimized by a configuration lying either entirely on
the left border (corresponding to the bit string z = 0n1n)
or entirely on the right border (z = 1n0n), which in con-
junction with Hinit, given by

Hinit = nn+1[w = 1] + nn+1[w = 2n] , (88)

ensures that the ground state of H(0) is such that all
particles lie along the left boundary of the grid. Including
the effect of Hcircuit(0) and Hinput, the ground state of
H(0) is given by |02n〉|0n1n〉 with eigenvalue 1. This is
an easily prepared ground state.

It can be shown that the ground state of H(λ)
[Eq. (83)] along λ ∈ [0, 1] is unique and the energy gap
above the ground state is lower bounded by 1/poly(n) for
all λ ∈ [0, 1] [Theorem 1 in Ref. (Gosset et al., 2015)]. To
measure the output of the quantum circuit, we measure
the t position of the 2k particles for the w values that
cross the interaction region (recall that there will always
be one particle per horizontal w line). If we find that
all 2k particles lie to the right of the interaction region,
then their internal states must encode the output of the
quantum circuit. For the choice k =

√
n/16, this occurs

with a probability lower bounded by a positive constant.
Together, these properties allow for an efficient (up to
polynomial overhead) simulation of the quantum circuit
using the adiabatic algorithm generated by H(λ).

However, this implementation requires 4-body inter-
actions [see for example the product term in Eq. (85)].
In (Lloyd and Terhal, 2016), improvements to the above
construction were presented with only 2-local interac-
tions using a first order perturbation gadget and a
quadratic increase in the number of qubits from the orig-
inal quantum circuit. The use of only first order per-
turbation theory is particularly significant, since effec-
tive interactions obtained in k-th order degenerate per-
turbation theory with perturbative coupling g and gap
∆ of the unperturbed Hamiltonian scale in strength as
g(g/∆)k−1, leading to a correspondingly small gap of
the effective Hamiltonian. In addition, multiple uses of
higher-order perturbation theory can increase qubit over-
head and complexity.

E. Universal AQC in 1D with 9-state particles

The constructions of universal AQC we have reviewed
so far are all spatially two-dimensional (2D). It was un-
clear for some time whether universal AQC is possible in
1D, with some suggestive evidence to the contrary, such
as the impressive success of density matrix renormal-
ization group (DMRG) techniques in calculating ground
state energies and other properties of a variety of 1D
quantum systems (Schollwöck, 2005). Moreover, classical
1D systems are generally “easy”; e.g., a 1D restriction of
MAX-2-SAT with p-state variables can be solved by dy-
namic programming and hence is in the complexity class
P. In addition, the area law implies that 1D systems with
a constant spectral gap can be efficiently simulated clas-
sically (Hastings, 2009). All this implies that adiabatic
evolution with 1D Hamiltonians is not useful for univer-
sal QC unless certain conditions are met, in particular a
spectral gap that tends to zero.

This was accomplished in (Aharonov et al., 2009), who
proved that it is possible to perform universal AQC using
a 1D quantum system of 9-state particles. The striking
qualitative difference between the quantum and the clas-
sical 1D versions of the same problem seems surprising.
However, the k-local Hamiltonian problem allows for the
encoding of an extra dimension (time), by making the
ground state a superposition of states corresponding to
different times. This means that the correct analogue of
the quantum 1D local Hamiltonian problem is 2D classi-
cal MAX-k-SAT, which is NP-complete.

The proof presented in (Aharonov et al., 2009) builds
heavily on the history state construction reviewed in
Sec. IV.B. However, there are a couple of important dif-
ferences. As in the history state construction, the start-
ing point is a quantum circuit Ux acting on n qubits
(where x is the classical input to the function imple-
mented by the circuit in the universal AQC case). A
1D p-state Hamiltonian is designed which will verify cor-
rect propagation according to this circuit. Then this is
used as the final Hamiltonian for the adiabatic evolution.
The problem with directly realizing this in the 1D case
is that only the particles nearest to the clock would be
able to take advantage of it in order to check correct
propagation in time. To overcome this, the circuit Ux
is first modified into a new circuit Ũx with a distributed
clock. The history state construction relies on the ability
to copy qubits from one column to the next in order to
move to the next block of gates in the computation, so
a new strategy is needed in 1D. For the modified circuit
Ũx, the qubits are instead placed in a block of n adjacent
particles. One set of gates is performed, and then all of
the qubits are moved over n places to advance time in the
original circuit Ux. More states per particle are needed
to accomplish this than in the 2D case. The second main
new idea that is needed is related to ensuring that the
state of the system had a valid structure. In the 2D case
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local constraints were used to check that there are no two
qubit states in adjacent columns. However, using only lo-
cal constraints, there is no way to check that there are ex-
actly n qubit data states in an unknown location in a 1D
system, since there are only a constant number of local
rules available, which are therefore unable to count to an
arbitrarily large n. Instead, it is ensured that, under the
transition rules of the system, any invalid configurations
will evolve in polynomial time into a configuration which
can be detected as illegal by local rules. Thus, for every
state which is not a valid history state, either the prop-
agation is wrong, which implies an energy penalty due
to the propagation Hamiltonian, or the state evolves to
an illegal configuration which is locally detectable, which
implies an energy penalty due to the local check of illegal
configurations. For additional technical details required
to complete the proof see (Aharonov et al., 2009). A 20-
state translation-invariant modification of the construc-
tion from (Aharonov et al., 2009) for universal AQC in
1D was given in (Nagaj and Wocjan, 2008), improving
on a 56-state construction by (Janzing et al., 2008).

F. Adiabatic gap amplification

In all universality constructions the run-time of the
adiabatic simulation of a quantum circuit depends on
the inverse minimum gap of the simulating Hamiltonian.
Therefore it is of interest to develop a general technique
for amplifying this gap, as was done in (Somma and
Boixo, 2013).

Consider a Hamiltonian H with ground state |φ〉. The
goal is to construct a new Hamiltonian H ′ that has |φ〉
as an eigenstate (not necessarily the ground state) but
with a larger spectral gap. A quadratic spectral gap am-
plification is possible when H is frustration-free [see also
(Bravyi and Terhal, 2009)]:

Definition 4. A Hamiltonian H ∈ CN ×CN is frustra-
tion free if it can be written as a sum over positive semi-
definite operators: H =

∑L
k=1 akΠk, with ak ∈ [0, 1] and

L = polylog(N). Further, if |φ〉 is the ground state of H
then it is a ground state (i.e., zero eigenvector) of every
term in the decomposition of H, i.e., Πk|φ〉 = 0 ∀k.

In (Somma and Boixo, 2013) the Πk are taken to
be projectors. The quadratic amplification is optimal
for frustration-free Hamiltonians in a suitable black-box
model, and no spectral gap amplification is possible, in
general, if the frustration-free property is removed. An
important caveat is that the construction replaces ground
state evolution by evolution of a state that lies in the mid-
dle of the spectrum; thus it does not fit the strict defini-
tion of AQC (Def. 1). We will have another occasion to
relax the definition in the same sense, in Sec. VI.C.

We now review the construction in (Somma and Boixo,
2013) in some detail. To place it in context, note that the

universality results we reviewed thus far can be summa-
rized as follows: Any quantum circuit specified by uni-
tary gates U1, . . . , UQ can be simulated by an adiabatic
quantum evolution involving frustration-free Hamiltoni-
ans: H(s) =

∑L
k=1 ak(s)Πk(s). The ground state of the

final Hamiltonian H(1) has large overlap with the out-
put state of the quantum circuit. Moreover, L is poly-
nomial in Q, and Πk denotes nearest-neighbor, two-body
interactions between spins of corresponding many-body
systems in one- or two-dimensional lattices. The inverse
minimum gap of H(s) is polynomial in Q, and hence so
is the duration of the adiabatic simulation.

Now, consider a frustration-free Hamiltonian

H(s) =

L∑

k=1

akΠk(s) , (89)

where each Πk(s) is a projector for all s ∈ [0, 1], and is
a local operator. Denote the eigenvalues of this Hamil-
tonian by {λj}, where λ1 = 0 is the ground state energy.
Then, take the Hamiltonian

H̄(s) =

L∑

k=1

√
akΠk(s)⊗ (|k〉〈0|+ |0〉〈k|) , (90)

where |0〉 and |k〉 are ancilla registers defined over one
and log2(L) qubits, respectively. It can be shown that
H̄(s) has the desired properties, i.e., if |ψ(s)〉 was the
ground state of H, then |ψ(s)〉|10 · · · 0〉 is a (degener-
ate) zero-eigenvalue eigenstate of H̄ and the eigenvalues
of H̄(s) are {±

√
λj} [the proof is given in Appendix

B of (Somma and Boixo, 2013)]. Thus, the gap has
been quadratically amplified, and one can evolve with
H̄ to transform eigenstates to eigenstates and simulate
the original quantum circuit with a quadratic speedup
over the simulation involving H.

In general H̄(s) will be log2(L)-local due to the ap-
pearance of |k〉. To avoid these many-body interac-
tions one can represent |k〉 using a unary encoding, i.e.,
|k〉 7→ |0 . . . 010 . . . 0〉 (with 1 at the k-th position). In this
single-particle subspace the new Hamiltonian becomes

H̄(s) =

L∑

k=1

√
akΠk(s)⊗ (σ+

k σ
−
0 + σ−k σ

+
0 ) , (91)

where σ± = (σx ± iσy)/2 are Pauli raising and lowering
operators (similar to the idea used in the PageRank algo-
rithm, Sec. III.E.2). Note that since each Πk(s) interacts
with the same qubit 0 of the new register, if the original
H was geometrically local, then H̄ is not, i.e., it has a
central spin geometry.

One more issue that needs to be dealt with is the de-
generacy of the zero eigenvalue. To remove this degen-
eracy from contributions within the single-particle sub-
space one can add a penalty term 1

4

√
∆(11 +σz0) to H̄(s),
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which penalizes all states with qubit 0 in |0〉; the rele-
vant spectral gap in the single-particle subspace is then
still of order

√
∆. To remove additional degeneracy

from the many-particle subspaces one can add penal-
ties for states that belong to such subspaces. Adding
Z = (L − 2)11 −∑L

k=0 σ
z
k achieves this since it acts as a

penalty that grows with the Hamming weight a of states
in the a-particle subspace. Thus

H ′(s) =
1

L1/d

[
L∑

k=1

√
akΠk(s)⊗ (|k〉〈0|+ |0〉〈k|)

+
1

4

√
∆(11 + σz0)

]
+ Z , (92)

has |ψ0〉|10 · · · 0〉 as a unique eigenstate of eigenvalue 0,
and all other eigenvalues are at distance at least

√
∆/L1/d

if d ≥ 2.23 This is the desired quadratic gap amplification
result.

How far can gap amplification methods go? It was
shown in (Schaller, 2008) that for the one-dimensional
transverse-field quantum Ising model, and for the prepa-
ration of cluster states (Raussendorf and Briegel, 2001),
it is possible to use a series of straight-line interpolations
in order to generate a schedule along which the gap is
always greater than a constant independent of the sys-
tem size, thus avoiding the quantum phase transition.
However, there exists an efficient method to compute the
expectation values of local operators with efficiently com-
putable expectation values in the initial ground states
of 2D lattice Hamiltonians undergoing exact adiabatic
evolution, and this implies that adiabatic quantum al-
gorithms based on such local Hamiltonians, with unique
ground states, can be simulated efficiently if the spectral
gap does not scale with the system size (Osborne, 2007).

V. HAMILTONIAN QUANTUM COMPLEXITY THEORY
AND UNIVERSAL AQC

In this section we briefly review Hamiltonian quantum
complexity theory from the perspective of QMA com-
pleteness. This theory naturally incorporates decision
problems of the type that motivate AQC. Essentially, it
concerns a problem involving the ground state of a local
Hamiltonian, whose ground state energy is promised to
either be below a threshold a or above another thresh-
old b > a, and where b − a is polynomially small in the
system size. In some cases this problem is easy, and in
other cases it turns out to be so hard that we do not
hope to solve it even on a quantum computer. Charac-
terizing which types of local Hamiltonians fall into the
latter category is the subject of QMA-completeness.

23 The factor L1/d in Eq. (92) is introduced so that the eigenvalues
coming from the many-particle subspaces will not mix with the
eigenvalues of the single-particle subspace.

Hamiltonian quantum complexity theory is an ex-
tremely rich subject that is rapidly advancing and has
already been reviewed a number of times, so we will only
touch upon it and highlight some aspects that are rele-
vant to AQC. Perhaps the most direct connection is the
fact that 2-local Hamiltonians of a form that naturally
appears in AQC, are QMA-complete. Additionally, some
of the technical tools that played an important role in
QMA-completeness locality reductions, such as pertur-
bative gadgets, have also found great use in proofs of the
universality of AQC with different Hamiltonians.

The reviews (Aharonov and Naveh, 2002; Gharibian,
2013; Gharibian et al., 2015), are excellent resources for
additional perspectives and details on Hamiltonian quan-
tum complexity theory.

A. Background

1. Boolean Satisfiability Problem: k-SAT

Consider a Boolean formula Φ that depends on n lit-
erals xi ∈ {0, 1} (with 0 and 1 representing False and
True, respectively) or their negations. The problem is to
decide whether there exists an assignment of values to
the literals that satisfies the Boolean formula, i.e., such
that Φ = 1. If there exists such an assignment then the
formula is satisfiable, otherwise it is unsatisfiable.

The Boolean formula is typically written in conjunc-
tive normal form: it is written in terms of a conjunc-
tion (AND - ∧) of r clauses, where each clause contains
the disjunction (OR - ∨) of k literals (variables) or their
negation (NOT - ¬). A literal and its negation are often
referred to as positive and negative literals. The Boolean
formula is written as:

Φ = C1 ∧ C2 ∧ · · · ∧ Cr (93)

where Ci = xi1 ∨ xi2 · · · ∨ xik and xij is the j-th positive
or negative literal in the i-th clause, and ij ∈ [1, n]. The
question of Boolean satisfiability, or k-SAT, is whether
there exists a choice X = (x1, . . . , xn) such that Φ(X) =
1. Note that it only requiresO(kr) steps to check whether
X is a satisfying assignment, yet there are 2n possible
choices for X.

For k = 3, the Boolean satisfiability problem, called
3-SAT, is NP-complete. Let us explain what this means.

2. NP, NP-complete, and NP-hard

Informally, problems in NP are those whose verification
can be done efficiently (e.g., checking whether a Boolean
formula is satisfied). An important conjecture, called the
Exponential Time Hypothesis (Impagliazzo and Paturi,
2001), states that there are problems in NP that take
exponentially long to solve.
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Formally, a decision problem Q is in NP if and only if
there is an efficient algorithm V , called the verifier, such
that for all inputs η (e.g., in the case of SAT, this would
be the clauses) of the problem:

• if Q(η) = 1, then there exists a witness X such that
V (η,X) = 1.

• if Q(η) = 0, then for all witnesses X we have
V (η,X) = 0.

In both cases, we typically take |X| = poly(|η|), where
|η| is the number of bits in the binary string associated
with the input η. The verifier is efficient in the sense that
its cost scales as poly(|X|). In SAT the witness X would
be our test assignment.

A decision problem Q is NP-complete if:

• Q is in NP

• Every problem in NP is reducible to Q in polyno-
mial time.

Here reducibility means that given a problem A in
NP and a problem B that is NP-complete, A can be
solved using a hypothetical polynomial-time algorithm
that solves for B. A commonly used reduction is
the polynomial-time many-one reduction (Karp, 1972),
whereby the inputs of A are mapped into the inputs to
B such that the output of B matches the output of A.
The hypothetical algorithm then solves B to get the an-
swer to A.

A decision problem Q is NP-hard if every problem in
NP is reducible to Q in polynomial time. (Note that
unlike the NP-complete case, Q does not need to be in
NP). Clearly, NP-complete ⊆ NP-hard.

3. The k-local Hamiltonian Problem

The history state construction of Sec. IV.B relies on
a 5-local Hamiltonian. Such a Hamiltonian belongs to
an important class of decision problems known as the
k-local Hamiltonian Problem, of which a complete com-
plexity classification was given in (Cubitt and Monta-
naro, 2016) subject to restrictions on the set of local
terms from which the Hamiltonian can be composed [see
also (Bravyi and Hastings, 2014)]. Recall that a k-local
Hamiltonian is a Hermitian matrix that acts non-trivially
on at most k p-state particles.

The k-local Hamiltonian Problem is defined on n
qubits, with the following input:

• A k-local Hamiltonian H =
∑r
i=1Hi with r =

poly(n). Each Hi is k-local and satisfies ‖Hi‖ =
poly(n) and its non-zero entries are specified by
poly(n) bits.

• Two real numbers a and b specified with poly(n)
bits of precision, such that

b− a > 1

poly(n)
. (94)

The output (0 or 1) answers the question: Is the smallest
eigenvalue of H smaller than a (output is 1), or are all
eigenvalues larger than b (output is 0)? We are promised
that the ground state eigenvalue cannot be between a
and b.24

We may map 3-SAT to the 3-local Hamiltonian Prob-
lem as follows. For every clause Ci (which involves three
literals), we can define a 3-local projector Hi onto all the
unsatisfying assignments of Ci. Because Hi is a projec-
tor, it has eigenvalues 0 and 1, where the 0 eigenvalue is
associated with satisfying assignments and the 1 eigen-
value with unsatisfying assignments. Therefore:

H|X〉 =

r∑

i=1

Hi|X〉 = q|X〉 (95)

where q is the number of unsatisfied assignments by X.
Thus 3-SAT is equivalent to the following 3-local Hamil-
tonian problem: is the smallest eigenvalue of H zero (the
3-SAT problem is satisfiable) or is it at least 1 (the 3-SAT
problem is unsatisfiable)?

4. Motivation for Adiabatic Quantum Computing

Adiabatic evolution seems well-suited to tackling the
k-local Hamiltonian problem. By initializing an n-
qubit system in an easily prepared ground state, we can
(in principle) evolve the system with a time-dependent
Hamiltonian whose end point is the k-local Hamiltonian.
If the evolution is adiabatic, then we are guaranteed to be
in the ground state of the k-local Hamiltonian with high
probability. By measuring the state of the system, we can
determine the energy eigenvalue of the state (which hope-
fully is the ground state energy) and hence determine
the answer to an NP-complete problem such as 3-SAT.
This motivated early work on the quantum adiabatic al-
gorithm (Farhi et al., 2001).

Another possibility is to try to use AQC as the verifier.
However, the quantum algorithm only gives us the answer
probabilistically, so we must first define a probabilistic
analog of NP and then a quantum version. These new
complexity classes are MA (Merlin-Arthur) and QMA
(quantum Merlin-Arthur) (Kitaev et al., 2000).

24 The quantity b− a is sometimes called the “promise gap” and is
distinct from the spectral gap.
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B. MA and QMA

Informally, MA can be thought of as a probabilistic
analog of NP, allowing for two-sided errors. Formally,
a decision problem Q is in MA iff there is an efficient
probabilistic verifier V such that for all inputs η of the
problem:

• if Q(η) = 1, then there exists a witness X such that
Pr(V (η,X) = 1) ≥ 2

3 (completeness).

• if Q(η) = 0, then for all witnesses X we have
Pr(V (η,X) = 1) ≤ 1

3 (soundness).

Again we take |X| = poly(|η|). MA is typically viewed as
an interaction between two parties, Merlin and Arthur.
Merlin provides Arthur with a witness X, on which
Arthur runs V . If Q(η) = 0, Merlin should never be
able to fool Arthur with a witness X into believing that
Q(η) = 1 with probability > 1/3.

Note that there is nothing special about the proba-
bilities (2/3, 1/3). We can generalize our description to
MA(c, s):

Claim 1. MA(c, c − 1/|η|g) ⊆ MA(2/3, 1/3) =MA(1 −
e−|η|

g

, e−|η|
g

), where g is a constant and c > 0 and c −
1/|η|g < 1.

The proof of this “amplification lemma” [see, e.g.,
(Goldreich, 2008; Marriott and Watrous, 2005; Nagaj
et al., 2009)] is interesting since it invokes the Chernoff
bound, a widely used tool. We thus present it in Ap-
pendix D for pedagogical interest.

The complexity class QMA can be viewed as the quan-
tum analogue of MA. Thus, QMA is informally the class
of problems that can be efficiently checked on a quan-
tum computer given a “witness” quantum state related
to the answer to the problem. Formally, define a quan-
tum verifier V (a quantum circuit) that takes η and a
quantum witness state |X〉 ∈ (C2)⊗poly(|η|) as inputs and
probabilistically outputs a binary number. The decision
problem Q is said to be in QMA if and only if there exists
an efficient (polynomial time) V for all inputs η of the
problem that satisfies:

• if Q(η) = 1, then there exists a witness |X〉 such
that Pr(V (η, |X〉) = 1) ≥ 2

3 (completeness).

• if Q(η) = 0, then for all witnesses |X〉 we have
Pr(V (η, |X〉) = 1) ≤ 1

3 (soundness).

The amplification lemma applies here as well. The def-
inition of QMA also allows V to have poly(|η|) ancilla
qubits each initialized in the |0〉 state (Gharibian et al.,
2015).

One can also define the class QCMA, which is similar
to QMA except that |X〉 is a classical state (Aharonov
and Naveh, 2002). Since the quantum verifier can force
Merlin to send him a classical witness by measuring the
witness before applying the quantum algorithm, we have:
MA ⊆ QCMA ⊆ QMA.

C. The general relation between QMA completeness and
universal AQC

The class of efficiently solvable problems on a quantum
computer is BQP, which consists of the class of decision
problems solvable by a uniform family of polynomial-
size quantum circuits with error probability bounded be-
low 1/2. Because of the polynomial equivalence between
AQC and the circuit model, BQP is also the class of effi-
ciently solvable problems on a universal adiabatic quan-
tum computer. Its classical analog is the class BPP,
and as expected BPP ⊆ BQP (Bernstein and Vazirani,
1997). In addition, BQP ⊆ QCMA (Aharonov and
Naveh, 2002). Another interesting characterization is
that BQP=QMAlog, where QMAlog is the same as QMA
except that the quantum proof has O(log |η|) qubits in-
stead of poly(|η|) (Marriott and Watrous, 2005).

This motivates the study of QMA, and in particular
QMA completeness, as a tool for understanding uni-
versality. Indeed, it is often the case that whenever
adiabatic universality can be proven for some class of
Hamiltonians, then the local Hamiltonian problem with
(roughly) the same class can be shown to be QMA-
complete and vice versa. Note, however, that there is no
formal implication from either of those problems to the
other (Aharonov et al., 2009). On the one hand, prov-
ing QMA-completeness is in general substantially harder
than achieving universal AQC, where we can choose the
initial state to be any easily-created state which will help
us solve the problem, so we can choose to work on any
convenient subspace which is invariant under the Hamil-
tonian. Indeed, in the history-state construction, we in-
troduce penalty terms to guard against illegal clock states
[recall Eq. (75)]. For QMA, the states we work with
are chosen adversarially from the full Hilbert space, and
we must be able to check, using only local Hamiltonian
terms, that they are of the correct (clock-state) form. On
the other hand, proving adiabatic universality involves
analyzing the spectral gap of the continuous sequence
of Hamiltonians over the entire duration of the compu-
tation, whereas QMA-completeness proofs are only con-
cerned with one Hamiltonian.

D. QMA-completeness of the k-local Hamiltonian problem
and universal AQC

To prove that a promise problem is QMA-complete,
one needs to prove that it is contained in QMA and that it
is QMA-hard. The k-local Hamiltonian Problem belongs
to QMA for any constant k, and in fact even for k =
O (log n) (Kitaev et al., 2000). For pedagogical proofs see
(Aharonov and Naveh, 2002; Gharibian, 2013; Gharibian
et al., 2015).

The first example of a QMA-hard problem was the k-
local Hamiltonian problem for k ≥ 5 (Kitaev et al., 2000),
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so that in particular the 5-local Hamiltonian problem is
QMA-complete. This was reduced to 3-local (Kempe and
Regev, 2003; Nagaj and Mozes, 2007) and then to 2-local
(Kempe et al., 2006). Note that the 1-local Hamiltonian
problem is in the complexity class P, since one can simply
optimize for each 1-local term independently. Various
simplifications of QMA-completeness for the 2-local case
followed. In order to describe these, we first need to
define a class of Hamiltonians:

H1 =
∑

(i,j)∈E
JxijXiXj + JyijYiYj + JzijZiZj

+
∑

i∈V
hxiXi + hyi Yi + hziZi , (96)

where V and E are the vertex and edge sets of a graph G =
(V, E), and all local fields {hαi } and couplings {Jαij} (α ∈
{x, y, z}) are real. The Heisenberg model corresponds to
Jxij = Jyij = Jzij , the XY model to Jxij = Jyij and Jzij = 0,
and the Ising model to Jxij = Jyij = 0. When Jαij < 0 (> 0)
the interaction between qubits i and j is ferromagnetic
(antiferromagnetic). When we write “fully” below we
mean that all interactions have the same sign. Unless
explicitly mentioned otherwise we assume that the local
fields are all zero.

Most of the simplifications of QMA-completeness are
special cases of Eq. (96):

• Geometrical locality: nearest-neighbor interactions
with G being a 2D square lattice (Oliveira and Ter-
hal, 2008) or a triangular lattice (Piddock and Mon-
tanaro, 2015).

• Simple interactions in 2D: ZZXX and ZX model
(Biamonte and Love, 2008) [defined in Eqs. (99)
and (100) below], fully ferromagnetic and fully an-
tiferromagnetic Heisenberg model with local fields
(Schuch and Verstraete, 2009), antiferromagnetic
Heisenberg and XY models without local fields
(Piddock and Montanaro, 2015).

• Interacting fermions in 2D and the space-time con-
struction (Breuckmann and Terhal, 2014).

• Multi-state particles in 1D (Aharonov et al., 2009;
Hallgren et al., 2013; Nagaj, 2008).

• Non-translationally invariant 1D systems (all two-
particle terms identical but position-dependent
one-particle terms) (Kay, 2008).

• Translationally invariant 1D systems for which
finding the ground state energy is complete for
QMAEXP

25 (Gottesman and Irani, 2013).

25 QMAEXP is the same as QMA but with exponential size (in the
input) witness and verification circuit, whereas both are polyno-
mial for QMA.

The 1D case is interesting since, as remarked in
Sec. IV.E, the 1D restriction of MAX-2-SAT with p-state
variables is in P, yet (Aharonov et al., 2009) showed that
for 12-state particles, the problem of approximating the
ground state energy of a 1D system is QMA-complete.
This result which was improved to 11-state particles in
(Nagaj, 2008), and then to 8-state particles in (Hallgren
et al., 2013), which also pointed out a small error in
(Aharonov et al., 2009) that could be fixed by using 13-
state particles. Whether and at which point a further
Hilbert space dimensionality reduction becomes impossi-
ble remains an interesting open problem.

The reduction from 5-local to 2-local is done using
perturbative gadgets (Biamonte and Love, 2008; Bravyi
et al., 2008a; Cao et al., 2015; Jordan and Farhi, 2008;
Kempe et al., 2006; Oliveira and Terhal, 2008). The goal
of the gadget is to approximate some target Hamiltonian
HT of n qubits (e.g., the 5-local Hamiltonian from the
history state construction at any time s) by a gadget
Hamiltonian HG acting on the same n qubits as well as
an additional poly(n) ancilla qubits. The gadget Hamil-
tonian is typically written as

HG = HA + λV , (97)

where HA is an unperturbed Hamiltonian (also called the
penalty Hamiltonian), acting only on the ancilla space,
and where λV is a perturbation that acts between the
qubits of HT and the ancilla qubits. Using perturbation
theory, which we review in Appendix E, one can show
that the lowest 2n eigenvalues of HG differ from those of
HT by at most ε and the corresponding eigenstates have
an overlap of at least 1− ε.

Completeness of the 2-local Hamiltonian problem
means that every problem in QMA is reducible to the 2-
local Hamiltonian decision problem in polynomial time.
Since this reduction involves perturbative gadgets that
preserve the spectrum of the original 5-local Hamiltonian,
this means that the 2-local Hamiltonian derived from the
5-local Hamiltonian appearing in the universality proof of
Sec. IV.B will also have an energy gap that is an inverse
polynomial in the circuit length, and that the computa-
tion remains in the ground subspace with illegal clock
states gapped away by the (now 2-local) penalty Hamil-
tonian. In the remainder of this subsection we briefly
discuss a particularly simple form of 2-local Hamiltoni-
ans that is universal for AQC.

The QMA completeness of general 2-local Hamiltoni-
ans can be extended to show that a more restricted set of
2-local Hamiltonians composed of real-valued sums of the
following pairwise products of Pauli matrices are QMA-
complete (Biamonte and Love, 2008):

{IX,XI, IZ, ZI, ZX,XZ,ZZ,XX} . (98)

The basic two steps to do this are: (1) Using the result
of (Bernstein and Vazirani, 1997) that any quantum cir-
cuit can be represented using real-valued unitary gates
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operating on real-valued wavefunctions in the proof of
the QMA-completeness of the 5-local Hamiltonian of the
previous subsection, the Hamiltonian terms are all real-
valued. This therefore extends QMA-completeness to 5-
local real Hamiltonians. (2) The same gadgets used in
(Kempe et al., 2006; Oliveira and Terhal, 2008) can be
used to reduce the locality from five to two.

This can be further simplified to show that “ZZXX”
Hamiltonians” that are linear combinations with real co-
efficients of only

{IX,XI, IZ, ZI, ZZ,XX} (99)

are QMA-complete. This is done by showing, using per-
turbation theory, that such Hamiltonians can be used
to approximate the σz ⊗ σx and σx ⊗ σz terms. Simi-
larly, perturbation theory can be used to show that “ZX”
Hamiltonians” that are linear combinations with real co-
efficients of only

{IX,XI, IZ, ZI, ZX,XZ} (100)

are QMA-complete (Biamonte and Love, 2008; Bravyi
and Hastings, 2014; Cubitt and Montanaro, 2016).

VI. STOQUASTIC ADIABATIC QUANTUM
COMPUTATION

In this section we focus on the special class of “sto-
quastic Hamiltonians” [originally introduced in (Bravyi
et al., 2008b)], that often arise in the context of quantum
optimization.

Definition 5 (Stoquastic Hamiltonian (Bravyi and Ter-
hal, 2009)). A Hamiltonian H is called stoquastic with
respect to a basis B iff H has real nonpositive off-diagonal
matrix elements in the basis B.

For example, a Hamiltonian is stoquastic in the com-
putational basis iff

〈x|H|x′〉 ≤ 0 ∀x, x′ ∈ {0, 1}n x 6= x′ . (101)

The computational basis is often singled out since it plays
the role of the basis in which the final Hamiltonian is
measured, which sometimes coincides with the basis in
which that Hamiltonian is diagonal. The term “stoquas-
tic” was introduced due to the similarity to stochastic
matrices, such as arise in the theory of classical Markov
chains.

Restricting to any basis still leaves some freedom
in the definition. For example, a Hamiltonian H =
−∑i σ

x
i + HZ , where HZ is diagonal in the computa-

tional basis, is clearly stoquastic. However, applying a
unitary transformation U =

∏
i σ

z
i to the Hamiltonian

gives H ′ =
∑
σxi +HZ , which according to Def. 5 is not

stoquastic in the computational basis. Applying a local

unitary basis transformation should not change the com-
plexity of the problem. Therefore, for clarity we fix the
basis such that the standard initial Hamiltonian always
carries a minus sign, i.e., −∑i σ

x
i . From this point for-

ward, we restrict our discussion of stoquasticity to the
standard computational basis. With this in mind, the
class of stoquastic Hamiltonians includes the fully ferro-
magnetic Heisenberg and XY models, and the quantum
transverse field Ising model [recall Eq. (96)].

Given the restriction of the Hamiltonian, one may ask
whether there is a complexity class for which the k-local
stoquastic Hamiltonian problem is complete. This led
to the introduction of the class StoqMA, for which the
k ≥ 2-local stoquastic Hamiltonian is StoqMA-complete
(Bravyi et al., 2006). This can be further refined to
the result that the transverse Ising model on degree-3
graphs is StoqMA-complete (Bravyi and Hastings, 2017).
Rather than give the formal (and rather involved) defini-
tion of StoqMA, we note that the only difference between
StoqMA and MA is that a stoquastic verifier in StoqMA
is allowed to do the final measurement in the {|+〉, |−〉}
basis, whereas a classical coherent verifier in MA can
only do a measurement in the standard {|0〉, |1〉} basis.26

Unlike MA and QMA, the threshold probabilities in Sto-
qMA have an inverse polynomial rather than constant
separation; this prevents amplification of the gap between
the threshold probabilities based on repeated measure-
ments with majority voting. Finally, it is known that
MA ⊆ StoqMA ⊆ QMA (Bravyi et al., 2006).

To capture the important class of problems that are
characterized by stoquastic evolution with the constraint
of adiabatic evolution, we first introduce the following
definition of a model of computation:

Definition 6 (StoqAQC). Stoquastic adiabatic quantum
computation (StoqAQC) is the special case of AQC (Def-
inition 1) restricted to k-local (k fixed) stoquastic Hamil-
tonians.

Because we defined StoqAQC as a special case of AQC,
the computation must proceed in the ground state. How-
ever, recall that the algorithm for the glued trees problem
(Sec. III.D) is not subject to this ground state restriction
and hence is not in StoqAQC. In Sec. VI.C we consider
another model of stoquastic computation that is not sub-
ject to the ground state restriction.

StoqAQC has generated considerable interest since ex-
perimental implementations of stoquastic Hamiltonians
are quite advanced (Bunyk et al., 2014; Weber et al.,
2017). To characterize its computational power, we in-
troduce a natural promise problem based on StoqAQC,

26 MA has an alternative quantum definition as a restricted version
of QMA in which the verifier is a coherent classical computer
(Bravyi et al., 2008b).
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and modeled after the k-local Hamiltonian problem:27

Definition 7 (StoqAQCEval). The StoqAQCEval prob-
lem is defined on n qubits, with the following input:

• a continuous family of (k ≥ 2)-local (k fixed) sto-
quastic Hamiltonians H(s) =

∑r
i=1Hi(s) with r =

poly(n) and parameterized by s ∈ [0, 1]. For all i
and all s, the non-zero entries of Hi(s) are spec-
ified by poly(n) bits of precision, and ‖Hi(s)‖ =
poly(n). The ground state energy gap ∆[H(s)] sat-
isfies ∆[H(s)] ≥ 1/poly(n) for all s.

• two real numbers a and b specified with poly(n) bits
of precision, and b− a > 1/poly(n).

The output (0 or 1) answers the question: Is the smallest
eigenvalue of H(s = 1) smaller than a (output is 1), or
are all eigenvalues larger than b (output is 0)? Just as in
the local Hamiltonian problem, we are promised that the
outcome that the ground state energy is between a and b
is not possible.

This allows us to (informally) define the complexity
class that captures StoqAQC:

Definition 8 (BStoqP). BStoqP is the set of problems
that are polynomial-time reducible to StoqAQCEval.

The StoqAQCEval problem is clearly in StoqMA, be-
cause the k ≥ 2-local stoquastic Hamiltonian prob-
lem is StoqMA-complete (Bravyi et al., 2006). Hence
BStoqP⊆StoqMA, as depicted in Fig. 4, which summa-
rizes the relations between many of the complexity classes
we have discussed.28 NP and MA are unlikely to be sub-
sets of BStoqP, since StoqAQC would not be expected
to solve NP-complete problems in polynomial time. The
tightest inclusion in a classical complexity class we know
of is in AM,29 since the latter includes StoqMA (Bravyi
et al., 2008b). It is clear that BPP⊆BStoqP, since 5-local
StoqAQCEval is BPP-hard (using a a classical reversible
circuit for universal AQC, with stoquastic gate terms and
a 5-local stoquastic clock Hamiltonian). Finally, we know
that BStoqP⊆BQP, since StoqEvalAQC is in BQP by us-
ing the same proof that the adiabatic model in general
can be simulated by the circuit model.

27 We are indebted to Elizabeth Crosson for her help in formulating
the StoqAQCEval problem, the BStoqP class, and working out
the relations of BStoqP to other complexity classes.

28 As far as we know the related term StoqP was informally intro-
duced by Stephen Jordan in a talk presented at the AQC 2016
conference (Jordan, 2016a), showing that StoqP is not equal to
BQP unless BQP is in the third level of the polynomial hierarchy.

29 Like MA, the class AM (Arthur Merlin) is a probabilistic gen-
eralization of NP. See https://complexityzoo.uwaterloo.ca/

Complexity_Zoo for definitions of the complexity classes men-
tioned here.
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BPP

BQP
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QMA

BStoqP

PostBPP

FIG. 4 Known relations between complexity classes relevant
for AQC. The BStoqP class defined here (Def. 8) lies in the
intersection StoqMA and BQP, and includes BPP.

A. Why it might be easy to simulate stoquastic
Hamiltonians

In this subsection we briefly summarize the
complexity-theoretic evidence obtained so far that
suggests that the StoqAQC setting is less powerful than
universal quantum computation. Let us start with a
lemma that characterizes the “classicality” of ground
states of stoquastic Hamiltonians.

Lemma 3. The ground state |ψ〉 of a stoquastic Hamil-
tonian H can always be expressed using only real nonneg-
ative amplitudes: |ψ〉 =

∑
x∈{0,1}n ax|x〉, where ax ≥ 0

∀x.

Proof. It follows directly from the stoquastic prop-
erty that the corresponding Gibbs density matrix ρ =
exp(−βH)/Tr[exp(−βH)] has non-negative matrix ele-
ments in the computational basis for any β > 0. In
particular, if H is stoquastic then for sufficiently small
β, 11 − βH has only non-negative matrix elements. The
largest eigenvalue of 11 − βH corresponds to the ground
state energy of H. Thus, by the Perron-Frobenius theo-
rem (reviewed in Sec. III.E.1) the ground state of H can
be chosen to have non-negative amplitudes.

Consequently, if the Hamiltonian is stoquastic, a clas-
sical probability distribution can be associated with the
ground state. This raises the question as to whether Sto-
qAQC is a model that is capable of quantum speedup
over classical algorithms. Following is the evidence re-
garding this question.

1. The ground state energy of the fully ferromagnetic
transverse field Ising model can be found to a given
additive error in polynomial time with a classical

https://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
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algorithm on any graph, with or without a trans-
verse magnetic field (Bravyi and Gosset, 2016).

2. In (Bravyi et al., 2008b) it was shown that for
any fixed k, stoquastic k-local Hamiltonian is con-
tained in the complexity class AM. Thus, unless
QMA⊆AM (which is believed to be unlikely), sto-
quastic k-local Hamiltonian is not QMA-complete.

3. It was also shown in (Bravyi et al., 2008b) that
gapped StoqAQC can be simulated in PostBPP,
the complexity class described by a polynomial-
time classical randomized computer with the ability
to post-select on some subset of the bits after the
algorithm is run.30 I.e., it suffices to call an oracle
for problems in PostBPP a polynomial number of
times to efficiently sample from the ground state of
a gapped stoquastic Hamiltonian.31

Suppose that StoqAQC could be used to perform
universal quantum computation. Since gapped Sto-
qAQC can be simulated in PostBPP, this would
imply that SampBQP ⊆ SampPostBPP.32 In other
words, this would imply that polynomial time
quantum algorithms can be simulated classically in
polynomial time using post-selection. This would
then imply that PostBPP=PostBQP which in turn
would collapse the polynomial hierarchy. Thus it is
unlikely that StoqAQC is universal for AQC.

4. In (Bravyi and Terhal, 2009) it was shown that adi-
abatic evolution along a path composed entirely
of stoquastic frustration-free Hamiltonians (recall
Definition 4) may be simulated by a sequence of
classical random walks, i.e., is contained in BPP.

With this evidence for the potential limitations of sto-
quastic Hamiltonians, one may wonder if they are worthy
of pursuit, either theoretically or experimentally. How-
ever, it is important to remember that the weakness of
stoquastic Hamiltonians arises when one assumes that
they generate an evolution that occurs in the ground

30 See also (Farhi and Harrow, 2016), where gapped StoqAQC was
called stoquastic gapped adiabatic evolution, QADI-SG.

31 PostBPP, also known as BPPpath, contains NP. For example,
consider the Grover problem with two registers, a bit-string x
for the input and a second register where f(x) is stored. Now if
we pick x at random and post-select on the second register being
1, we find a marked item. PostBPP is known to be contained in
the third level of the polynomial hierarchy (Han et al., 1993).

32 In sampling problems we are given an input x ∈ {0, 1}n, and the
goal is to sample (exactly or approximately) from some probabil-
ity distribution over poly(n)-bit strings. SampBQP and Samp-
PostBPP are the classes of sampling problems solvable on quan-
tum computers and probabilistic classical computers with post-
selection, respectively, to within ε error in total variation (or
trace-norm) distance, in time polynomial in n and 1/ε (Aaron-
son, 2010).

state. Indeed, we will see in Sec. VI.C that excited
state stoquastic evolution can be as powerful as universal
AQC. Moreover, in the next subsection we briefly review
counterexamples to the claim that stoquastic Hamiltoni-
ans are necessarily easy to simulate using heuristic clas-
sical algorithms.

B. Why it might be hard to simulate stoquastic
Hamiltonians

There does not exist a general theorem that rules out
a quantum speedup of StoqAQC over all possible classi-
cal algorithms. However, it is often stated that Monte
Carlo simulations of StoqAQC do not suffer from the
sign problem and will therefore simulate StoqAQC with-
out a slowdown. Specifically, the conjecture is that if the
Monte Carlo simulation starts at s = 0 in the equilibrium
state, and if s changes by a small amount ε from one step
to the next, where ε is polynomially small in the system
size n, the inverse temperature β and the spectral gap
∆, then the Monte Carlo simulation stays close to the
equilibrium state along the path. For sufficiently large
β, this would correspond to following the instantaneous
ground state. In this subsection we briefly review theo-
retical evidence that such a conjecture is not always true.
We focus on two of the most direct classical competitors
to StoqAQC: path integral quantum Monte Carlo (PI-
QMC), and diffusion quantum Monte Carlo (D-QMC).

1. Topological obstructions

In (Hastings and Freedman, 2013) examples were given
of StoqAQC with a polynomially small eigenvalue gap,
but where PI-QMC take exponential time to converge.
Loosely, the failure of convergence was due to topological
obstructions around which the worldlines (trajectories in
imaginary time) can get tangled.

The simplest of the examples can be understood in-
tuitively as follows. A sombrero-like potential is con-
structed for a single particle with a deep circular min-
imum of radius r. The worldline of the particle in PI-
QMC with closed boundary conditions is some closed
path that follows this circle in imaginary time. Because
of the depth of the potential at the minimum the distribu-
tion of trajectories has very small probability to include
any point with radius larger than r and it takes an ex-
ponential time in the winding number to transition from
one winding number sector to another. Therefore, if an
appropriate dimensionless combination of the radius r or
the mass of the particle is changed sufficiently fast then
PI-QMC fails to equilibrate. At the same time it can be
shown that for this example the gap closes polynomially
and so one expects that adiabatic evolution requires only
polynomial time to find the ground state.
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While this example uses winding numbers to construct
an annealing protocol for which PI-QMC takes expo-
nential time to equilibrate, PI-QMC can still find the
ground state. To observe a more dramatic effect where
not only equilibration is hampered but also the proba-
bility of finding the ground state is low, one can intro-
duce stronger topological effects and additionally exploit
the discrepancy between L1 and L2-normalized wave-
functions. This was first done in the “bouquet of cir-
cles” example introduced in (Hastings and Freedman,
2013), which shows that PI-QMC can fail to converge
even when using open boundary conditions. The exam-
ple was designed so that the majority of the amplitude
ψ lies within an expander graph, although the majority
of the probability |ψ|2 does not. Because the endpoints
of the wordlines are distributed according to ψ and not
|ψ|2, this effectively “pins” them to the expander graph.
This pinning means that even though the worldline is
in principle open, the worldline is nevertheless prevented
from changing its topological sector within the bouquet
of circles. This then causes failure of convergence.

A more general method using perturbative gadgets is
explained in (Hastings and Freedman, 2013), that allows
one to map between continuous variables and spins and
applies to all the examples given there.

2. Non-topological obstructions

Diffusion Monte Carlo algorithms should not be af-
fected by topological obstructions that depend on closed
boundary conditions, since they do not exhibit period-
icity in the imaginary time direction. Rather than use
topological obstructions, it is possible to rely entirely on
the discrepancy between L1 and L2-normalization to de-
sign examples where Monte Carlo methods have differ-
ing convergence from AQC. This discrepancy was used
in (Jarret et al., 2016) to ensure that the walkers in a
DQMC algorithm never “learn” about a potential well
that contains the solution, causing DQMC to take expo-
nential time to converge. Since the gap for the adiabatic
process is large, QA takes only polynomial time.

Let H(s) be some stoquastic Hamiltonian acting on a
Hilbert space whose basis states can be equated with the
vertices V of some graph. Let ψs(x) : V 7→ C denote the
ground state of H(s). Define probability distributions

p
(1)
s (x) = ψs(x)∑

y∈V ψs(y) and p
(2)
s (x) = ψ2

s(x). The stoquas-

ticity of H(s) ensures that ψs(x) ≥ 0, so that p
(1)
s (x) is

a valid probability distribution.

D-QMC algorithms perform random walks designed to
ensure that a population of random walkers converges to

p
(1)
s (x). However, in exponentially large Hilbert spaces

there can be vertices such that the distribution asso-
ciated with the L2-normalized wavefunction p

(2)
s (x) is

polynomial, but the distribution associated with the L1-

normalized wavefunction p
(1)
s (x) is exponentially small.

The idea behind the examples in (Jarret et al., 2016)
is to exploit this discrepancy to design polynomial-time
stoquastic adiabatic processes that the corresponding D-
QMC simulations will fail to efficiently simulate.

The main example given in (Jarret et al., 2016) is the
stoquastic Hamiltonian H(s) = 1

n [L + b(s)W ] − c(s)P ,
where L is the graph Laplacian of the n-bit hypercube,
W is the Hamming weight operator (i.e., W |x〉 = |x||x〉
where |x| is the Hamming weight of the bit-string x),
P = |0 · · · 0〉〈0 · · · 0|. In terms of Pauli matrices this
Hamiltonian can be written, up to an overall constant,
as

H(s) = − 1

n

n∑

j=1

(
Xj +

1

2
b(s)Zj

)
− c(s)P. (102)

The schedules b(s) and c(s) are:

b(s) =

{
2sb
b

c(s) =

{
0 s ∈ [0, 1/2)
(2s− 1)c s ∈ [1/2, 1]

.

(103)

For s ∈ [0, 1/2) this is a Hamiltonian of n non-interacting
qubits whose gap is easily seen to be 2

n

√
1 + (sb/2)2,

minimized at s = 0 where it equals 2/n. The ground
state is given by |ψ(θ)〉⊗n, where |ψ(θ)〉 = cos(θ/2)|0〉+
sin(θ/2)|1〉 and θ = tan−1[2/(sb)]. For s ∈ [1/2, 1] it can
be shown that the minimum gap is attained at s = 1/2,
where it equals 1/

√
2n+O(n−3/2). Thus the overall min-

imum gap is polynomial (2/n) and the StoqAQC pro-
cess converges to the ground state |0 · · · 0〉 in polynomial
time. By choosing b so that at s = 1 we have cos(θ/2) =
1−1/(4n), it is easy to show from the analysis of the non-
interacting problem that the probability of ending up in

the ground state is p
(2)
s=1(0 · · · 0) = cos2n(θs=1/2)→ e−1/2

in the limit n→∞.
On the other hand, for the non-interacting problem

(when s ∈ [0, 1/2)) the D-QMC process33 samples from

the distribution p
(1)
s (x) = sin(θ/2)|x| cos(θ/2)n−|x|/Zs,

where Zs =
∑
x∈{0,1}n sin(θ/2)|x| cos(θ/2)n−|x| =

[sin(θ/2) + cos(θ/2)]n, so that for large n we have Z1 ≈
(1 + 1/

√
2n)n → e

√
n/2 for the same choice of b. Thus,

for D-QMC the probability of being in the ground state

at s = 1/2 is p
(1)
s=1/2(0 · · · 0) = cosn(θs=1/2)/Zs=1 →

e−1/4e−
√
n/2. Since at s = 1/2 the random walkers that

diffuse in the D-QMC process have a probability to be

at the all-zeros string that is of order e−
√
n/2, with high

likelihood, no walkers will land on the all-zeros string un-
til the number of time-steps times the number of walkers

33 Here D-QMC refers to the “Substochastic Monte Carlo (SSMC)”
algorithm introduced in (Jarret et al., 2016).
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approaches e
√
n/2. Until this happens it is impossible for

the distribution of walkers to be affected by the change in
the potential at the all-zeros string that is occurring from
s = 1/2 to s = 1; no walkers have landed there, and the
D-QMC algorithm has therefore never queried the value
of the potential at that site. Only after allowing for this
exponential cost, and by appropriately choosing c, does
the D-QMC algorithm find the ground state with high
probability.34

C. QMA-complete problems and universal AQC using
stoquastic Hamiltonians with excited states

Our definition of StoqAQC (Definition 6) stipulates
that the computation must proceed in the ground state.
It turns out that if this condition is relaxed, computation
with stoquastic Hamiltonians is as powerful as AQC, i.e.,
it is universal. Here we review a construction by (Jordan
et al., 2010) of a 3-local stoquastic Hamiltonian that,
by allowing for excited state evolution, is both QMA-
complete and universal for AQC.

We start with the QMA-complete Hamiltonian intro-
duced in Sec. V.D, that can be written as:

HZZXX =
∑

i

diXi + hiZi +
∑

i≤j
JxijXiXj + JzijZiZj ,

(104)
where di, hi, J

x
ij and Jzij are arbitrary real coefficients.

The key idea is to eliminate the negative matrix elements
in each term. Toward this end the Hamiltonian is written
as:

HZZXX = −
∑

k

αkTk , (105)

where Tk ∈ {±Xi,±Zi,±XiXj ,±ZiZj} and such that
αk > 0. For an n-qubit system, the operators Tk are
represented by 2n × 2n symmetric matrices with entries
taking value +1,−1, 0. We use the regular representation
of the Z2 group to make the replacement

1→
(

1 0
0 1

)
, −1→

(
0 1
1 0

)
, 0→

(
0 0
0 0

)
(106)

in Tk to define a new operator T̃k. The matrix represen-
tation of T̃k is of size 2n+1× 2n+1, and since the original
Tk was either 1-local or 2-local acting on n qubits, we can
interpret T̃k as being 2-local or 3-local acting on n + 1
qubits. Note furthermore that Tk is such that it only
has one non-zero entry per row and column, hence with
the substitution in Eq. (106), the T̃k’s are permutation

34 For c = 2 one finds that p
(1)
s=1(0 · · · 0) = 1/2 +O(n−1/2).

matrices. We can write the following Hamiltonian acting
on n+ 1 qubits:

H̃ZZXX = −
∑

k

αkT̃k (107)

which is a linear combination of permutation matrices
with negative coefficients. This makes H̃ZZXX a (3-local)
stoquastic Hamiltonian. We can write it as:

H̃ZZXX = HZZXX ⊗|−〉〈−|+ H̄ZZXX ⊗|+〉〈+| , (108)

where H̄ZZXX = −∑k αk|Tk| and |Tk| is the entrywise
absolute value of Tk. To see why this is the case, first
consider a positive element (Tk)ij . Then:

−αk(Tk)ij⊗|−〉〈−|−αk(Tk)ij⊗|+〉〈+| = −αk(Tk)ij⊗ 11

corresponding to the first replacement in Eq. (106). For
a negative element, we have:

−αk(Tk)ij⊗|−〉〈−|+αk(Tk)ij⊗|+〉〈+| = −αk(Tk)ij⊗σx

corresponding to the second replacement in Eq. (106).
The spectrum of H̃ZZXX separates into two sectors L±.
The sector L− is spanned by |εj〉 ⊗ |−〉, where |εj〉 are
the eigenstates ofHZZXX , while the sector L+ is spanned
by |ε̄j〉 ⊗ |+〉, where |ε̄j〉 are the eigenstates of H̄ZZXX .
Because the Hamiltonian does not couple the two sectors
(there are no interactions that take the ancilla qubit from
|±〉 to |∓〉), a closed system evolution initialized in the
L− sector will remain in that sector.

Because the spectrum in the L− sector is identical to
that of HZZXX , which is capable of universal adiabatic
quantum computation, then universal adiabatic quantum
computation can be performed in the L− sector. How-
ever, the lowest energy state in L− may not necessarily be
the ground state of H̃ZZXX . Therefore, this establishes
universal AQC using a stoquastic Hamiltonian only if we
do not restrict ourselves to the ground state of the Hamil-
tonian. Attempting to make the lowest energy state in
L− be the ground state requires introducing a sufficiently
large term proportional to 11⊗|+〉〈+| to the Hamiltonian
H̃ZZXX , but such a term would make the new Hamil-
tonian non-stoquastic since it would introduce positive
off-diagonal elements. Therefore this method does not
establish universal adiabatic quantum computation us-
ing the ground state of a stoquastic Hamiltonian.

D. Examples of slowdown by StoqAQC

It should not come as a surprise that AQC with an
arbitrary final Hamiltonian, which is essentially a black
box approach, does not guarantee quantum speedups. It
can be vulnerable to the same sorts of locality traps con-
fronted by heuristic classical algorithms such as simu-
lated annealing.
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A slowdown, or failure of AQC to provide a speedup,
is a scenario wherein a more efficient classical algorithm
is known. All the known examples that fall into this cat-
egory arise when the gap closes “too fast” in the problem
size. However, it is important to note that adiabatic the-
orems provide only upper bounds on run-time, not lower
bounds. Thus, e.g., an exponentially small gap does not
strictly imply an exponentially long run-time. The in-
verse gap is often treated as a proxy for run-time, but a
claim such as an equal scaling of the inverse gap and the
run-time does not hold as a general theorem.

With this caveat in mind, in this subsection we re-
view such “small-gap” examples in increasing order of
generality or difficulty of analysis, which all arise in the
StoqAQC context. However, we must first note another
important caveat. Namely, in some of the examples we
present numerical evidence that is based, in necessity, on
finite size calculations. One is then often tempted to ex-
trapolate to the asymptotic scaling such evidence might
imply. Of course, any such extrapolations based purely
on numerics are conjectures. For example, a claim of
exponential scaling can never be proven based on numer-
ics alone, as any finite set of data points can always be
perfectly fit by a polynomial of sufficiently high degree.
Nevertheless, numerics-driven conjectures about scaling
can be quite useful, especially if supported by other, an-
alytical arguments.

Subsequently, we shall see in Sec. VII that there are
various methods for circumventing slowdowns, e.g., via
the introduction of non-stoquastic terms.

1. Perturbed Hamming Weight Problems with Exponentially
Small Overlaps

The plain Hamming weight problem is described by

HHW(s) = (1− s)1

2

∑

i

(1− σxi ) + s
∑

x

|x||x〉〈x| . (109)

Its cost function is simply the Hamming weight |x| of
the binary bit-string x, which is trivially minimized at
x = 0n. Consider the following perturbation of the plain
Hamming weight problem (van Dam et al., 2001):

h(x) =

{
|x| if |x| < n
−1 if |x| = n

. (110)

This is a toy problem that is designed to be hard for
classical algorithms based on local search: its global op-
timum lies in a narrow basin, while there is a local op-
timum with a much larger basin. An algorithm such as
simulated annealing with single spin updates would re-
quire exponential time.

Let us write the corresponding StoqAQC Hamiltonian
to make the perturbation explicit:

H(s) = HHW(s)− s(n+ 1)|1n〉〈1n| , (111)

where |1n〉 is the all-one state. Denote the instanta-
neous eigenstates of HHW(s) by {|vi(s)〉} (v0 denotes the
ground state). Note that the overlap of the all-one-state
with the instantaneous ground state of the plain Ham-
ming Weight algorithm is always exponentially small:

〈1n|v0(s)〉 ≤ 1√
2n

. (112)

We will show that this fact causes the adiabatic algorithm
as defined in Eq. (111) to take exponential time because
it leads to an exponentially small gap.

Define a matrix A(s) with elements:

Aij = 〈vi(s)|H(s)|vj(s)〉 . (113)

Note that A(0) is diagonal and A00(0) = 0, equal to
the ground state eigenvalue. Also A(1) is diagonal, but
now A2n−1,2n−1(1) = −1 is equal to the ground state
eigenvalue. Define a matrix B in the same basis as:

Bij(s) =





A00(s) i = j = 0
0 i = 0, j > 0
0 i > 0, j = 0
Aij(s) otherwise

(114)

The matrix B always has A00 as an eigenvalue. By con-
struction, we know that at s = 1, the matrix B has −1
as its ground state eigenvalue (located in the 2n−1×2n−1

sub-matrix). Because the matrix transforms continu-
ously between these two extremes, there cannot be a
jump in the ground state eigenvalue, so there must be
a critical value of s, which we denote by sc, where B has
a vanishing gap.

The optimal matching distance between A and B ex-
presses how close their eigenvalue spectra are:

d(A,B) = min
π

max
1≤j≤2n

|λj − µπ(j)| , (115)

where π denotes a permutation. Since A and B are
Hermitian, this is upper-bounded by ‖A− B‖2 (Bhatia,
R., 1997). The matrix A − B only has non-zero entries
(A − B)0,j>0 = A0,j>0 and (A − B)j>0,0 = Aj>0,0 =
A∗0,j>0, with A0,j>0 = −s(n + 1)〈v1(s)|1n〉〈1n|vj(s)〉.
Therefore:

‖A−B‖2 = (116)

s(n+ 1)|〈v1(s)|1n〉|

√√√√
2n−1∑

j=1

〈1n|vj(s)〉〈vj(s)|1n〉

= s(n+ 1)|〈v1(s)|1n〉|
√

1− |〈1n|v0(s)〉|2

≤ s(n+ 1)|〈v1(s)|1n〉| ≤ s(n+ 1)√
2n

.

Thus, the gap of A [and hence of H(s)] is always upper-
bounded by the gap of B plus twice ‖A − B‖2. Since
at s = sc the gap of B is zero, it follows that the
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gap of H(sc) is ≤ sc(n + 1)/
√

2n−2 (van Dam et al.,
2001). Therefore, the exponentially small overlap be-
tween the unperturbed instantaneous ground state and
the perturbed final ground state results in the adiabatic
algorithm requiring exponential time to reach the final
ground state. Informally, this can also be viewed as the
inability of local quantum search (fluctuations induced
by the local initial Hamiltonian) to explore the entire
(non-local) energy landscape effectively.

2. 2-SAT on a Ring

In this subsection we review the “2-SAT on a Ring”
problem introduced in the seminal work (Farhi et al.,
2000), which launched the field of AQC. This example is
instructive because of its use of the Jordan-Wigner and
Fourier transformation techniques, and is also of histori-
cal interest. It also serves to illustrate that even a polyno-
mially small gap does not guarantee a quantum speedup.
We thus review it in detail.

Consider an n-bit SAT problem with n clauses. Each
clause only acts on adjacent bits, i.e., the clause Cj only
acts on bits j and j + 1, where we identify bit n + 1
with bit 1. Let each clause be of only two forms: “agree”
clauses where 00 and 11 are satisfying assignments, and
“disagree” clauses where 01 and 10 are satisfying assign-
ments. Since an odd number of satisfied disagree clauses
means that the first bit of the first disagree clause is the
opposite of the second bit of the last disagree clause, yet
bits 1 and n+1 must agree, there must be an even number
of disagree clauses in order for a satisfying assignment to
exist. The classical computational cost of finding a satis-
fying assignment is at most n: given the list of clauses, a
satisfying assignment is found (assuming an even number
of disagree clauses) simply by going around the ring and
satisfying each clause one at a time. Note that if {wi}ni=1

is a satisfying assignment then so is {¬wi}ni=1.
Let us now define the final Hamiltonian H1 =∑n
i=1HCi associated with the SAT problem, where each

clause is represented by:

HCi =
1

2

(
1− (−1)xiσzi σ

z
i+1

)
(117)

xi = 0 (1) if Ci is an agree (disagree) clause .

The ground states of HP are then given by |0〉1⊗ni=2 |wi〉i
and ⊗ni=1|¬wi〉i, where wi =

⊕i−1
j=1 xj (i ≥ 2 and addition

modulo 2). It is possible to gauge away all the disagree
clauses. To see this, let U be the unitary transformation
defined such that

U |zi〉 =

{
|¬zi〉 , if wi = 1
|zi〉 , if wj = 0

. (118)

Under this unitary transformation we have:

H ′1 = UH1U
† =

∑

i

1

2

(
11i − σzi σzi+1

)
, (119)

i.e., the new final Hamiltonian is a sum of just agree
clauses. Note that this unitary transformation requires
us to know the ground state, but H ′1 and H1 are isospec-
tral, so we can use it for convenience in our gap analysis.
The adiabatic computation procedure will be governed
by the following time-dependent Hamiltonian:

H(s) = (1− s)H0 + sH ′1 , 0 ≤ s ≤ 1 , (120)

with the initial Hamiltonian H0 =
∑
i 11i − σxi . We wish

to diagonalize H(s) in order to find its ground state gap.
First, define the negation operator G =

∏n
i=1 σ

x
i such

that:

G (⊗ni=1|zi〉) = ⊗ni=1|¬zi〉 , (121)

which clearly commutes with H(s). The uniform su-
perposition state, which is the ground state of H(0), is
invariant under G, i.e., it has eigenvalue +1 under G.
Therefore, the unitary dynamics will keep the state in
the sector with G = +1 if it starts in the ground state of
H(0). Therefore, let us write H(s) purely in the G = +1
sector. Second, define the Jordan-Wigner transformation

bj = σx1σ
x
2 . . . σ

x
j−1σ

−
j (122a)

b†j = σx1σ
x
2 . . . σ

x
j−1σ

+
j (122b)

where σ±j = 1
2

(
σzj ± iσyj

)
. These are fermionic operators

that satisfy:

{bj , bk} = 0 (amounts to
{
σ−j , σ

−
k

}
= 0) (123a)

{bj , b†k} = δjk (amounts to
{
σ−j , σ

+
k

}
= δjk) . (123b)

Note that

b†jbj =
1

2

(
11j − σxj

)
, j = 1, . . . , n (124a)

(
b†j − bj

)(
b†j+1 + bj+1

)
= σzjσ

z
j+1 , j = 1, . . . , n− 1

(124b)
(
b†n − bn

) (
b†1 + b1

)
= −Gσznσz1 . (124c)

In order to make Eqs. (124b) and (124c) consistent in the
G = +1 sector, we take bn+1 ≡ −b1. Using this, we have:

H(s)|G=+1 =

n∑

j=1

[
2(1− s)b†jbj (125)

+
s

2

(
11j −

(
b†j − bj

)(
b†j+1 + bj+1

))]

Third, since this Hamiltonian is invariant under transla-
tions j 7→ j + 1, define Fourier operators βp:

βp =
1√
n

n∑

j=1

eiπpj/nbj , p = ±1,±3, . . . ,±(n− 1) ,

(126)
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where for simplicity it is assumed that n is even. Equiv-
alently:

bj =
1√
n

∑

p=±1,...

e−iπpj/nβp , (127)

where we used the fact that
∑
p=±1,... e

iπp(j−j′)/n =
nδj,j′ . Furthermore, note that:

{β2a−1, β2b−1} =
1

n

∑

j,j′

eiπ((2a−1)j+(2b−1)j′)/n {bj , bj′}

= 0 (128a)
{
β2a−1, β

†
2b−1

}
=

1

n

∑

j,j′

eiπ((2a−1)j−(2b−1)j′)/n
{
bj , b

†
j′

}

=
1

n

n∑

j=1

e2πi(a−b)/n = δa,b (128b)

so the set {βp} comprises valid fermionic operators. Writ-
ing the Hamiltonian in terms of this set, we have:

H(s) =
∑

p=1,3,...

[
2(1− s)

(
β†pβp + β†−pβ−p

)

+ s
(

11− cos
(πp
n

)(
β†pβp − β−pβ†−p

)

+i sin
(πp
n

)(
β†−pβ

†
p − βpβ−p

))]
(129a)

≡
∑

p=1,3,...

Ap(s) (129b)

Now that H(s) has finally been written as sum of com-
muting operators ([Ap, Ap′ ] = 0 for p 6= p′), we can
diagonalize each summand separately. For a given p,
let us denote by |Ωp〉 the state that is annihilated by
βp and β−p, i.e., βp|Ωp〉 = β−p|Ωp〉 = 0. Note that
Ap(s = 0)|Ωp〉 = 0, so |Ωp〉 is the ground state of Ap
at s = 0 (recall that we already knew that the ground

state energy at s = 0 was zero). Let |Σp〉 = β†−pβ
†
p|Ωp〉.

Ap(s) keeps states in the subspace spanned by |Ωp〉 and
|Σp〉 in the same subspace; the initial state is in this sub-
space, so we can restrict our attention to it. Let us write
Ap(s) in the {|Ωp〉, |Σp〉} basis:

Ap(s) =

(
s+ s cos

(
πp
n

)
is sin

(
πp
n

)

−is sin
(
πp
n

)
4− 3s− s cos

(
πp
n

)
)
. (130)

Diagonalizing this, we find for the energies:

E±p (s) = 2−s±
[
(2− 3s)2 + 4s(1− s)(1− cos

(πp
n

)]1/2
.

(131)
The instantaneous ground state energy of H(s) is thus
given by

∑
p=1,3,...E

−
p (s). The first excited state energy

is given by E+
1 (s)+

∑
p=3,...E

−
p (s). The energy gap ∆(s)

is therefore given by:

∆(s) = E+
1 (s)− E−1 (s) (132)

= 2
[
(2− 3s)2 + 4s(1− s)(1− cos

(πp
n

)]1/2
.

The minimum occurs at s∗ =
2(2+cos πn )
5+4 cos πn

→ 2/3 as n →
∞. Therefore, the minimum gap is given by:

∆(s∗) = 4
∣∣∣sin π

n

∣∣∣ 1√
5 + 4 cos πn

→ 4π

3n
, (133)

which implies a polynomial run-time for the adiabatic al-
gorithm. As mentioned, the classical computational cost
of finding a satisfying assignment is at most n. There-
fore, despite the polynomially small gap in this example,
there is no quantum speedup. This illustrates that a Sto-
qAQC slowdown need not necessarily be associated with
an exponentially small gap.

3. Weighted 2-SAT on a chain with periodicity

We now discuss another problem, proposed in (Re-
ichardt, 2004), that combines 2-SAT with an exponential
slowdown of StoqAQC. It can thus be viewed as exhibit-
ing aspects of the two previous problems we discussed.

Consider a weighted 2-SAT problem on a chain with
“agree” clauses between bits i, i+ 1 for i = 1, . . . , N − 1
with weights:

Ji =

{
w if d ine is odd ,
1 if d ine is even

(134)

where n is the period and w > 1. As for the previous
2-SAT problem, we can map this to a spin-chain with
ferromagnetic couplings with strength given by Ji. The
adiabatic Hamiltonian is given by:

H(s) = −(1− s)
N∑

i=1

σxi − s
N−1∑

i=1

Jiσ
z
i σ

z
i+1 . (135)

This chain has coefficients that alternate between w and
1 in sectors of size n each, with the b+ 1 odd-numbered
sectors being “heavy” (Ji = w > 1), b even-numbered
sectors being “light” (Ji = 1), and where the total num-
ber of sectors is (N − 1)/n = 2b + 1. Since the chain is
ferromagnetic, the ground state of H(1) is trivially the
all-0 or all-1 computational-basis state. The problem is
thus classically easy and can be solved by inspection or
in time O(N) by a heuristic classical algorithm such as
simulated annealing, by simply traversing the chain and
updating one spin at a time.

Note that at s = 0 there is a unique ground state,
while as we just noted, at s = 1 the ground state is dou-
bly degenerate. Therefore, the relevant quantum ground
state gap ∆ is not the gap to the first excited state (since
at the end of the evolution, this merges with the ground
state), but to the second excited state.

It turns out this gap is exponentially small in the sec-
tor size n across a constant range s ∈ (1/(1 + w), 1/2).
Moreover, there are exponentially many (in

√
N) expo-

nentially small excitations above the ground state for
n ∼
√
N .
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More precisely, let µw = sw/(1 − s). Theorem 4 in
(Reichardt, 2004) states that:

1. For any fixed s > 1/(1 +w), i.e., µw < 1, H(s) has
one eigenvalue only O(µnw) above the ground state
energy. This means that the gap ∆ is exponentially
decreasing with the sector size n.

2. For s ∈ (1/(1+w), 1/(1+
√
w)] (i.e., again µw < 1),

H(s) has 2b+1 − 1 eigenvalues only O(bµnw) above
the ground state energy. This means that there are
exponentially many (in the number of odd sectors
b + 1) excited states, that likewise have an expo-
nentially small (in n) gap from the ground state.
Note that b = [(N − 1)/n+ 1]/2, so b ∼

√
N when

n ∼
√
N .

3. For s ∈ [1/(1+
√
w), 1/2), where µ1 = s/(1−s) > 1,

H(s) has 2b+1 − 1 eigenvalues O(bµ−n1 ) above the
ground state energy. This again means an expo-
nentially large number (in b) of excited states with
an exponentially small (in n) gap.

The proof uses a Jordan-Wigner transformation to diag-
onalize H(s), similarly to the technique in Sec. VI.D.2.
The spectral gaps of the 2N × 2N matrix H(s) are the
square roots of the eigenvalues of an N ×N symmetric,
tridiagonal matrix. The Sturm sequence of the principal
leading minors of this matrix is then analyzed to bound
the eigenvalue gaps of H(s).

Why might we expect this problem to be hard for the
adiabatic algorithm? Within any given light or heavy
sector, the problem (at fixed s) is that of a uniform trans-
verse field Ising chain. Consider the thermodynamic limit
N � 1, and also let n � 1. In this limit the transverse
field Ising chain encounters a phase transition separat-
ing the disordered phase and the ordered phase when
1− s = sJi (Sachdev, 2001), i.e., at s = 1/(1 + Ji). (The
boundary of the chain only adds O(1) energy, so it does
not impact this intuitive argument in the thermodynamic
limit.) This means that the heavy sectors encounter the
phase transition at s = 1

1+w whereas the light sectors
encounter the phase transition at s = 1/2, i.e., the light
sectors order after the heavy ones. At s = 1

1+w each
heavy sector orders in either the all-0 or all-1 state, and
different heavy sectors are separated by light sectors that
have not ordered yet. Since the initial Hamiltonian gen-
erates only local spin flips, the algorithm is likely to get
stuck in a local minimum with a domain wall in one or
more disordered sectors, if run for less than exponential
time in n. This mechanism in which large local regions
order before the whole is well-known in disordered, ge-
ometrically local optimization problems, giving rise to a
Griffiths phase (Fisher, 1995).

4. Topological slowdown in a dimer model or local Ising ladder

Another interesting example of a local spin model that
leads StoqAQC astray was given in (Laumann et al.,
2012). They showed that a translation invariant quasi-1D
transverse field Ising model with nearest-neighbor inter-
actions only, the ground state of which is readily found
by inspection, results in exponentially long run-times
for StoqAQC. The model can be understood as either
a dimer model on a two-leg ladder of even length L, or,
using a duality transformation, a two-leg frustrated Ising
ladder of the same length in a uniform magnetic field, the
ground states of which map onto the dimer states. The
frustrated Ising ladder Hamiltonian is:

H1 = −
∑

〈i,j〉
Jijσ

z
i σ

z
j −K

∑

i∈ upper

σzi +
1

2
U

∑

i∈ lower

σzi ,

(136)
where upper and lower refer to the legs of the ladder,
Jij = −K for the upper-leg couplings and Jij = K for
all other (lower-leg and rungs) couplings.

Quantum dynamics is introduced via a standard ini-
tial Hamiltonian −Γ(t)

∑
i σ

x
i , where Γ(0) � ‖H1‖ and

Γ(tf ) = 0. The dimer model exhibits a first order quan-
tum phase transition with an exponentially small gap
when K � U , which is inherited by the frustrated Ising
ladder model. Namely, the system prefers the sector with
exponentially many ground states, while any degeneracy-
lifting interaction favors another containing only O(1)
states. StoqAQC selects the wrong sector, tunneling out
of which becomes exponentially slow as Γ is reduced.

More specifically, for K � U , the Hilbert space is
spanned by an orthonormal basis of hardcore dimer cov-
erings (“perfect matchings”) of the ladder. These fall
into three sectors which are topological in that they are
not connected by any local rearrangement of the dimers.
The sectors are labeled by a winding number w, the dif-
ference between the number of dimers on the top and
bottom rows (on any fixed plaquette). The model as-
signs extensive energy ∝ L to every state in the w = 0
sector while leaving the two staggered states w = ±1 as
ground states with energy 0. On the other hand, at large
Γ (strong transverse field) the w = 0 sector is favored.
Intuitively, slowly turning the transverse field off by re-
ducing Γ does not help change the topological sector since
any off-diagonal term in the dimer Hilbert space involv-
ing only a finite number of rungs in the ladder leaves the
winding number w invariant. This is depicted in Fig. 5.
Numerical analysis of the Ising ladder confirms this pic-
ture by revealing that the gap is exponentially small in
L when K > U . The critical point is found to be at
Γc ≈ U/b+ U2/(4Kb3), where b ≈ 0.6 (from exact diag-
onalization numerics).
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FIG. 5 Energy spectrum of the dimer model on an even
length periodic ladder, with the dimer configurations illus-
trated. The w = ±1 states are at energy E = 0, while the
w = 0 sector splits into a band for Γ > 0. For sufficiently large
Γ, the w = 0 sector contains the ground state of the system.
An unavoided level crossing (first order quantum phase tran-
sition) occurs at Γ = Γc, which is responsible for the quantum
slowdown. From (Laumann et al., 2012).

5. Ferromagnetic Mean-field Models

The quantum ferromagnetic p-spin model is given by:

H = − 1

np−1

(
n∑

i=1

σzi

)p
− Γ

n∑

i=1

σxi . (137)

By inspection it is clear that when p is even, the ground
state at Γ = 0 is either of the two fully-aligned ferro-
magnetic states, while when p is odd, the unique ground
state at Γ = 0 is the fully-aligned spin-down state. As
Γ is tuned from a large value towards zero, the system
encounters a first-order phase transition for p > 2. This
can be readily shown by employing the Suzuki-Trotter de-
composition and the static approximation (Chayes et al.,
2008; Jörg et al., 2010a; Krzakala et al., 2008; Suzuki
et al., 2013) to calculate the partition function in the
large n limit:

Z =

∫
dm e−βnF (β,Γ,m) . (138)

Here β is the inverse temperature, m is the Hubbard-
Stratonovich field (Hubbard, 1959), and F is the free
energy density given by:

F = (p− 1)mp − 1

β
log
[
2 cosh

(
β
√

Γ2 + p2m2p−2
)]

.

(139)
The dominant contribution to F comes from the saddle-
point of the partition function Z, which provide consis-
tency equations for the field m:

m = pmp−1
tanh

(
β
√

Γ2 + p2m2(p−1)
)

√
Γ2 + p2m2(p−1)

. (140)

Solving this equation numerically for p > 2 reveals a
discontinuity in the value of m that minimizes the free
energy as Γ is tuned through the phase transition point.
At this critical point, the free energy exhibits a degener-
ate double-well potential, and an instantonic calculation
on this potential gives an exponentially small energy gap
with system size (Jörg et al., 2010a).

6. 3-Regular 3-XORSAT

All the problems we discussed so far were amenable
to a classical solution “by inspection” (i.e., the solution
is obvious from the form of the cost function). Some
problems were even easy for classical heuristic algorithms
performing local search. We now discuss a problem that
is non-trivial in this respect, i.e., classically only yields
in polynomial time to a tailored approach.

In 3-XORSAT, each clause involves three bits, and
there are M clauses and n bits in total. A clause is sat-
isfied if the sum of the three bits (mod 2) is a specified
value; it can be 0 or 1 depending on the clause. For 3-
regular 3-XORSAT, every bit is in exactly three clauses
and M = n. This problem is associated with a spin glass
phase but is “glassy without being hard to solve” (Franz
et al., 2001; Ricci-Tersenghi, 2010): the problem of find-
ing a satisfying assignment can be solved in polynomial
time using Gaussian elimination because the problem in-
volves only linear constraints (mod 2) (Haanpaa et al.,
2006).

A final Hamiltonian involving n spins can be be written
such that each satisfied clause gives energy 0 and each
unsatisfied clause gives energy 1:

H1 =

n∑

c=1

(
11− Jcσzi1,cσzi2,cσzi3,c

2

)
. (141)

Here the index (ik, c) denotes the three bits associated
with clause c, and Jc ∈ {±1} depending on whether the
clause is satisfied if the sum of its bits (mod 2) is 0 or
1. The StoqAQC Hamiltonian is then given, as usual, by
H(s) = −(1− s)∑n

i=1 σ
x
i + sH1. The median minimum

gap for random 3-regular 3-XORSAT has numerically
been shown to be exponentially small in the system size
up to n = 24 (Jörg et al., 2010b) and n = 40 (Farhi et al.,
2012) [both using the quantum cavity method (Krzakala
et al., 2008; Laumann et al., 2008) and QMC simula-
tions], with a first order quantum phase transition at
s = 1/2. Thus, the numerical evidence suggests that
StoqAQC takes exponential time to solve this problem.
The same is true for classical heuristic local search algo-
rithms such as WalkSAT (Guidetti and Young, 2011).

We note that since the Hamiltonian gap is not a ther-
modynamic quantity, one must be careful not to auto-
matically associate a first order quantum phase transition
with an exponentially small gap. While the examples pre-
sented in this review agree with this rule [for additional
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examples see (Bapst and Semerjian, 2012; Dusuel and Vi-
dal, 2005; Jörg et al., 2008, 2010a; Knysh and Smelyan-
skiy, 2006)], counterexamples wherein a first order quan-
tum phase transition is associated with a polynomially
small gap are known (Cabrera and Jullien, 1987; Lau-
mann et al., 2012, 2015; Tsuda et al., 2013).

7. Sherrington-Kirkpatrick and Two-Pattern Gaussian Hopfield
Models

The Sherrington-Kirkpatrick (SK) model, the proto-
typical spin glass model, is NP-hard, yet its quantum
transverse field Ising model version (Das et al., 2005; Ishii
and Yamamoto, 1985; Ray et al., 1989; Usadel, 1986)
exhibits a second order phase transition separating the
paramagnetic phase from the spin glass phase (Miller and
Huse, 1993; Ye et al., 1993). The model is defined via the
final Hamiltonian

H1 =
∑

i1<i2

Ji1i2σ
z
i1σ

z
i2 (142)

where the couplings Ji1i2 are zero-mean, i.i.d. random
variables (e.g., Gaussian, or bimodal, i.e., Ji1i2 = ±1)
and every spin is coupled to every other spin. The adia-
batic computation proceeds via

H(t) = H1 − Γ(t)

n∑

i=1

σxi , (143)

where Γ is adiabatically reduced to zero.
The polynomial closing of the gap at this phase transi-

tion appears promising for AQC. However, a spin glass is
dominated by a rough free energy landscape with many
local minima forming bottlenecks for classical heuristic
local-search algorithms (M. Mezard, G. Parisi and M.A.
Virasoro, 1987; Nishimori, 2001).

To gain insight into this phenomenon, and in particular
its impact on StoqAQC, (Knysh, 2016) studied another
fully connected model with a vanishing classical gap: the
Gaussian Hopfield model, defined generally via

Ji1i2···ip =
1

np−1

r∑

µ=1

ξ
(µ)
i1
· · · ξ(µ)

ip
(144)

(Hebb rule), where ξ
(µ)
i are zero-mean i.i.d. random vari-

ables of unit variance. By focusing on the analytically
more tractable Hopfield model, (Knysh, 2016) rigorously
analyzed for r = 2 (the two-pattern case) and p = 2
(two-local interactions) the properties of local minima
away from the global minimum.

The main insight gained from the theoretical analysis
of (Knysh, 2016) is that the complexity of the model is
not determined by the phase transition, but rather by the
existence of small-gap bottlenecks in the spin glass phase.
Namely, after the occurrence of the polynomially closing

gap associated with the second order phase transition
separating the paramagnetic and glass phases, there are
O(log n) additional gap minima in the spin glass phase
appearing in an approximate geometric progression, a
phenomenon that can be attributed to the self-similar
properties of the free energy landscape in a Γ interval
bounded by the appearance of the spin-glass phase. At
these bottlenecks, the gaps scale as a stretched exponen-

tial e−cΓ
3/4
m n3/4

, where Γm is the location of the m-th
minimum. This is illustrated in Fig. 6. Nevertheless
this means that StoqAQC suffers a (stretched) exponen-
tial slowdown, since the two pattern Gaussian Hopfield
model admits an efficient classical solution based on angle
sorting and exhaustive search, that scales as O[n log(n)]
(Knysh, 2016). Thus, this is another case where a Sto-
qAQC algorithm is too generic to exploit problem struc-
ture, and consequently a tailored classical algorithm has
exponentially better scaling.

O(1)

Γ

∆Γ ∼ 1

N2/3

O
(

1

N1/3

)

Γc

Γmin ∼ 1

N

∆Etunn ∼ e−cΓn
3/4

N3/4

O
(

1

N1/4

)

Γ1Γ2Γ3
0

∆E

FIG. 6 Illustration showing the gap behavior in the r = 2,
p = 2 Gaussian Hopfield model. The paramagetic-spin-glass
transition occurs at Γc, with Γ < Γc denoting the spin-glass
phase. The typical gap is denoted using big-O notation. The
spin-glass phase contains logn additional minima in the gap
(indicated by red arrows). Γmin corresponds to the lowest
energy scale of the classical Hamiltonian, which in this case
scales as 1/N , where N was used to represent the variable we
denote by n. From (Knysh, 2016).

E. StoqAQC algorithms with speedup over simulated
annealing

A substantial effort is underway to develop problems
that may exhibit a limited quantum speedup (recall the
classification given in Sec. III). One approach has been
to develop “tunneling gadgets”, i.e., small toy Hamilto-
nians that exhibit tunneling (Boixo et al., 2016), and
use these gadgets to construct larger problems (Denchev
et al., 2016). An alternative approach has been to de-
velop instances that are believed to exhibit “small-and-
thin” energy barriers in their classical energy landscape
(Katzgraber et al., 2015) in the hope that such barriers
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persist in the quantum energy landscape where tunnel-
ing occurs. These approaches have been used primar-
ily to assess the performance of the D-Wave devices and
are based on numerical analysis, which makes extrap-
olation and conclusions about asymptotic scaling rather
challenging (Brady and Dam, 2016; Mandrà et al., 2016).

In this subsection we consider several examples of Sto-
qAQC with demonstrable limited quantum speedups over
simulated annealing (SA). While none of the examples
are demonstrations of an unqualified quantum speedup,
these examples are illustrative in that they reveal impor-
tant qualitative differences between SA, where thermal
fluctuations are used to explore the energy landscape,
and StoqAQC, where quantum fluctuations are used to
explore a different energy landscape. Still, these limited
speedup results are based on a comparison with SA that
uses only single-spin updates. SA-like algorithms with
cluster-spin updates can be significantly more efficient
(Houdayer, J., 2001; Mandrà et al., 2016; Swendsen and
Wang, 1987; Wolff, 1989; Zhu et al., 2015; Zintchenko
et al., 2015), and their performance relative to StoqAQC
is largely an open question. The same is true for parallel
tempering (aka exchange Monte Carlo) (Earl and Deem,
2005; Hukushima and Nemoto, 1996; Katzgraber et al.,
2006; Marinari and Parisi, 1992; Swendsen and Wang,
1986).

1. Spike-like Perturbed Hamming Weight Problems

We start with a problem for which there is no (limited)
quantum speedup, in order to set up the more interesting
problems that follow. Consider a cost function f(x) to
be minimized with x ∈ {0, 1}n an n-bit string. The final
Hamiltonian can generically be written as:

H1 =
∑

x

f(x)|x〉〈x| . (145)

We first consider the cost function of the “plain” Ham-
ming weight problem:

f(x) = |x| (146)

where |x| denotes the Hamming weight of the n-bit string
x [as in Eq. (109)]. This problem is equivalent to a system
of n non-interacting spins in a global (longitudinal) field,
which is of course a trivial problem that can be solved in
time O(1), e.g., by parallelized SA running with a a single
thread for each spin. The scaling of the time needed by
the quantum algorithm is O(n1/2), and the full cost of the
quantum algorithm is O(n3/2) according to Eq. (1), since
it requires O(n) single-qubit terms in the Hamiltonian. A
fairer comparison is to an SA algorithm that is ignorant
of the structure of the problem. In this case one can show
that the cost for single-spin update SA with random spin
selection is lower bounded by O(n log n) (Muthukrishnan
et al., 2016).

Next we consider a more interesting problem, referred
to as the “spike”, first studied in (Farhi et al., 2002a).
The cost function is given by:

f(x) =

{
n if |x| = n/4
|x| otherwise

(147)

Since the barrier scales with n, we can expect that single-
spin-update SA will take exp(n) time to traverse the
barrier. However, it can be shown that the quantum
gap scales as Ω(n−1/2) (Farhi et al., 2002a; Kong and
Crosson, 2015), so the adiabatic algorithm only takes
polynomial time.

This type of “perturbed” Hamming weight problem
can be generalized, while still retaining an advantage over
single-spin-update SA. For cost functions of the form

f(x) =

{
|x|+ h(n) if l(n) < |x| < u(n)
|x| otherwise

(148)

satisfying h[(u− l)/
√
l] = o(1), the minimum gap of the

quantum algorithm is lower bounded by a constant (Re-
ichardt, 2004) [see Appendix A of Ref. (Muthukrishnan
et al., 2016) for a pedagogical review of the proof]. The
SA run-time, on the other hand, scales exponentially in
maxn h(n).

Similarly, consider barriers with width proportional to
nα and height proportional to nβ , i.e.

f(x) =

{
|x|+ nα if n

4 − 1
2n

β < |x| < n
4 + 1

2n
β

|x| otherwise
.

(149)
When α and β satisfy α + β ≥ 1/2, α < 1/2, and 2α +
β ≤ 1, the minimum gap scales polynomially as n1/2−α−β

(Brady and van Dam, 2016a,b), while the SA run-time
scales exponentially in nα.

2. Large plateaus

The above examples have relied on energy barriers in
the classical cost that scale with problem size to foil
single-spin-update SA. This agrees with the intuition
that a StoqAQC advantage over SA is associated with
tall and thin barriers (Das and Chakrabarti, 2008; Ray
et al., 1989). However, somewhat counterintuitively, it is
also possible to foil SA by having very large plateaus in
the classical cost function. Specifically, consider:

f(x) =

{
u− 1 if l < |x| < u
|x| otherwise

(150)

where l, u = O(1) [a special case of Eq. (148)]. SA with
single-spin-updates and random spin selection has run-
time O(nu−l−1), where u − l − 1 is the plateau width
(Muthukrishnan et al., 2016). This polynomial scaling
arises because the energy landscape provides no preferred
direction and SA then behaves as a random walker on the
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plateau. Numerical diagonalization shows that the quan-
tum minimum gap is constant and the adiabatic run-time
is only O(n1/2), where the scaling with n arises from
the numerator of the adiabatic condition (Muthukrish-
nan et al., 2016). Thus StoqAQC has polynomial limited
quantum speedup over SA in this case.

In (Muthukrishnan et al., 2016) it was shown that a di-
abatic evolution is more efficient than the adiabatic evo-
lution to solve these problems, and a similar efficiency is
achieved using classical spin-vector dynamics. There is
also a growing body of numerical (Brady and van Dam,
2016a; Crosson and Deng, 2014; Denchev et al., 2016;
Muthukrishnan et al., 2016) and analytical (Crosson and
Harrow, 2016; Isakov et al., 2016) research that shows
that quantum Monte Carlo methods exhibit similar or
even identical advantages over SA for many spike-like
perturbed Hamming weight problems. Thus, the sense
in which StoqAQC achieves a speedup over SA in these
examples truly deserves the adjective “limited”.

F. StoqAQC algorithms with undetermined speedup

In this subsection we focus on examples where it is
currently unknown whether there is a quantum speedup
or slowdown for StoqAQC.

1. Number partitioning

The number partitioning problem is a canonical NP-
complete problem (M.R. Garey and D.S. Johnson, 1979)
that is defined as follows: given a set of n positive num-
bers {ai}ni=1, the objective is to find a partition P of this
set that minimizes the partition residue E defined as:

E =

∣∣∣∣∣∣
∑

j∈P
aj −

∑

j /∈P
aj

∣∣∣∣∣∣
. (151)

The problem exhibits an easy-hard phase transition at
the critical value b/n = 1, where b is the number of
bits used to represent the set {ai} (Borgs et al., 2001;
Mertens, 1998). In the hard phase it roughly corresponds
to finding the minimum in a set of 2n numbers (Mertens,
2001). To translate it into Ising spin variables let sj = 1
when j ∈ P and sj = −1 otherwise, so that

E =

∣∣∣∣∣∣

n∑

j=1

ajsj

∣∣∣∣∣∣
, (152)

which can then be turned into a Mattis-like Ising Hamil-
tonian whose ground state is the minimizing partition:

H1 =

n∑

i,j=1

aiajsisj . (153)

The energy landscape of this final Hamiltonian is known
to be extremely rugged in the hard phase (Smelyanskiy
et al., 2002; Stadler et al., 2003), and the asymptotic be-
havior can already be seen for small sizes n. While SA
effectively requires the searching of all possible bit config-
urations with a run-time ∝ 20.98n (Stadler et al., 2003),
numerical simulations of StoqAQC exhibit a slightly bet-
ter run-time ∝ 20.8n (Denchev et al., 2016). State-of-the-
art classical algorithms have scalings as low as 20.291n

(Becker et al., 2011).

It should be noted that number partitioning is known
as the “easiest hard problem” (Hayes, 2002) due to the
existence of efficient approximation algorithms that ap-
ply in most (though of course not all) cases, e.g., a poly-
nomial time approximation algorithm known as the dif-
ferencing method (Karmarkar and Karp, 1982). It should
further be noted that if all the aj ’s are bounded by a
polynomial in n, then integer partitioning can be solved
in polynomial time by dynamic programming (Mertens,
2003). The NP-hardness of the number partitioning
problem requires input numbers of size exponentially
large in n or, after division by the maximal input number,
of exponentially high precision. This is problematic since
the {aj} are used as coupling coefficients in the adiabatic
Hamiltonian (153), and suggests that a different encod-
ing will be needed in order to allow AQC to meaningfully
address number partitioning.

2. Exact Cover and its generalizations

We briefly review the adiabatic algorithm for Exact
Cover, which initiated and sparked the tremendous in-
terest in the power of AQC when it was first studied in
(Farhi et al., 2001). While the optimistic claim made
in that paper, that “the quantum adiabatic algorithm
worked well, providing evidence that quantum comput-
ers (if large ones can be built) may be able to outper-
form ordinary computers on hard sets of instances of
NP-complete problems” turned out to be premature, the
historical impact of this study was large, and it led to
the avalanche of work that forms the core of this review.

The Exact Cover 3 (EC3) problem is an NP-complete
problem that is a particular formulation of 3-SAT [re-
call Sec. V.A] whereby each clause C (composed of three
bits xC1 , xC2 , xC3 that are taken from the set of variables
{xi ∈ {0, 1}}ni=1) is satisfied if xC1

+xC2
+xC3

= 1. There
are only three satisfying assignments: (1,0,0), (0,1,0),
and (0,0,1). A 3-local Hamiltonian HC can be associ-
ated with each clause, that assigns an energy penalty to
the unsatisfying assignments (Farhi et al., 2001; Latorre
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and Orus, 2004):

HC =
1

8

[(
1 + σzC1

) (
1 + σzC2

) (
1 + σzC3

)

+
(
1− σzC1

) (
1− σzC2

) (
1− σzC3

)

+
(
1− σzC1

) (
1− σzC2

) (
1 + σzC3

)

+
(
1− σzC1

) (
1 + σzC2

) (
1− σzC3

)

+
(
1 + σzC1

) (
1− σzC2

) (
1− σzC3

)]
. (154)

A 2-local alternative is (Young et al., 2010):

HC =
1

4

(
σzC1

+ σzC2
+ σzC3

− 1
)2

. (155)

The final Hamiltonian is then given by H1 =
∑
C HC.

If the ground state energy is 0, then an assignment ex-
ists that satisfies all clauses. The adiabatic algorithm
is given as usual by H(s) = (1 − s)H0 + sH1, with
H0 =

∑n
i=1

1
2 (1− σxi ).

For instances with a unique satisfying assignment,
while the initial (small n) scaling of the typical mini-
mum gap (median) is consistent with polynomial (Farhi
et al., 2001; Latorre and Orus, 2004), the true (large n)
scaling is exponential and can be associated with a first
order phase transition (Young et al., 2008, 2010) occur-
ring at intermediate s = sc > 0. The fraction of instances
with this behavior increases with increasing problem size
(Young et al., 2010). This illustrates the perils of ex-
trapolating the asymptotic scaling from studies based on
small problem sizes.

A natural generalization of the Exact Cover problem
is to have the sum of K variables sum to 1 for a clause
to be satisfied, which defines the problem known as “1-
in-K SAT”. Another is to have the clause satisfied un-
less all the variables are equal, which defines the problem
“K-Not-All-Equal-SAT”. Both of these are NP-complete
and have been shown analytically to exhibit a first or-
der phase transition for sufficiently large K (Smelyanskiy
et al., 2004). Numerical results for locked 1-in-3 SAT and
locked 1-in-4 SAT — where “locked’ is the additional re-
quirement that every variable is in at least two clauses
and that one cannot get from one satisfying assignment
to another by flipping a single variable (Zdeborová and
Mézard, 2008a,b) — have been shown to exhibit an ex-
ponentially small gap at the satisfiability transition (Hen
and Young, 2011).

Since all these problems are NP-complete, there is
no polynomial-time classical algorithm known for their
worst-case instances. Using StoqAQC has, in all cases
that have been studied to date, resulted in exponentially
small gaps. Thus, whether these problems can be sped up
(even polynomially) is at this time still an open problem.

3. 3-Regular MAXCUT

For 3-regular MAXCUT, the problem is to find the
assignment that gives the maximum number of satisfied

clauses, where each bit appears in exactly three clauses.
Each clause involves only two bits and is satisfied if and
only if the sum of the two bits (mod 2) is 1. The number
of clauses is M = 3n/2. The final Hamiltonian can be
written as:

H1 =

3n/2∑

c=1

(
11 + σzi1,cσ

z
i2,c

2

)
, (156)

where the index (ik, c) denotes the two bits associated
with clause c. This model can also be viewed as an anti-
ferromagnet on a 3-regular random graph. Because the
random graph in general has loops of odd length, it is
not possible to satisfy all of the clauses. This problem is
NP hard.

For random instances of this problem, where there
is a doubly degenerate ground state (the smallest pos-
sible because of the Z2 symmetry) and with a speci-
fied energy of n/8, the standard adiabatic Hamiltonian
H(s) = −(1− s)∑n

i=1 σ
x
i + sH1 exhibits, for sufficiently

large sizes of up to n = 160, two minima in the energy
gap (Farhi et al., 2012) (see Fig. 7 for an example). The
first minimum, at s ≈ 0.36, is associated with a second-
order phase transition from paramagnetic to glassy, and
the gap closes polynomially with system size. The sec-
ond minimum occurs inside the spin-glass phase, with a
gap that closes exponentially (or possibly a stretched ex-
ponential). Therefore, while the first minimum does not
pose a problem for the adiabatic algorithm (although it
has been shown that the quantum algorithm with a linear
interpolating schedule does not pass through the associ-
ated glass phase transition faster than SA (Liu et al.,
2015)), the second minimum implies an exponential run-
time.
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FIG. 7 The gap to the first even excited state for an instance
of size n = 128, exhibiting two minima. The lower minimum
occurs well within the spin-glass phase, while the higher min-
imum is associated with the second order phase transition.
From (Farhi et al., 2012).
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4. Ramsey numbers

An adiabatic algorithm for the calculation of the Ram-
sey numbers R(k, l) was proposed in (Gaitan and Clark,
2012). R(k, l) is the smallest integer r such that every
graph on r or more vertices contains either a k-clique
or an l-independent set.35 Computing them by brute
force is doubly exponential in N = max{k, l} [note that
R(k, l) = R(l, k)] using graph coloring techniques, as fol-
lows: Try every one of the 2N(N−1)/2 colorings of the
edges of the complete graph KN with the colors blue and
red. For every coloring, check whether or not there is an
induced subgraph on k vertices with only blue edges, or
an induced subgraph on l vertices with only red edges.
If every coloring contains at least one of the desired sub-
graphs, we are done. Otherwise, increment N by 1 and
repeat. Except for certain special values of k and l, no
better algorithm is currently known.

The idea in (Gaitan and Clark, 2012) is to construct a
cost function h(G) for a graph G where

h(G) = C(G) + I(G) (157)

where C(G) counts the number of m-cliques in the graph
G and I(G) counts the number of l-independent sets
in the graph G. The cost h(G) equals zero only if
there does not exist an k-clique or an l-independent
set. This will only occur if R(k, l) > N . The algo-
rithm then proceeds as follows. By mapping h(G) over
KN to a final Hamiltonian H1, the adiabatic algorithm
H(s) = −(1−s)∑n

i=1 σ
x
i +sH1 is performed and the final

energy of the state is measured. If h(G) = 0, then N is
incremented by 1 and the experiment is repeated. This
process continues until the first occurrence of h(G) > 0,
in which case N = R(k, l). Thus the algorithm is essen-
tially an adiabatic version of the graph coloring method
described above. It is unknown whether its StoqAQC
version improves upon the classical brute force 2N(N−1)/2

scaling. The adiabatic quantum algorithm was simulated
in (Gaitan and Clark, 2012) and shown to correctly de-
termines the Ramsey numbers R(3, 3) and R(2, s) for
5 ≤ s ≤ 7. It was also shown there that Ramsey number
computation is in QMA.

An adiabatic algorithm for generalized Ramsey num-
bers (where the induced subgraphs are trees rather than
complete graphs) was presented in (Ranjbar et al., 2016).

35 A k-clique is a subset of k vertices such that every two distinct
vertices are adjacent. Equivalently, the subgraph induced by the
clique is a complete graph. An independent set is a subset of the
vertices no two of which are adjacent. R(k, l) can be phrased as
the “party problem”: What is the smallest number of guests one
can invite to a party such that there is always either a group of
k guests that all know each other, or a group of l guests, none of
whom know each other? Such a threshold number always exists
(Ramsey, 1930).

Whether this results in a quantum speedup is also un-
known. We also remark that Ising formulations for
many NP-complete and NP-hard problems, including all
of Karp’s 21 NP-complete problems (Karp, 1972), are
known (Lucas, 2014), but it is unknown whether they
are amenable to a quantum speedup.

5. Finding largest cliques in random graphs

The fastest algorithm known to date for the NP-hard
problem of finding a largest clique in a graph runs in time
O(20.249n) for a graph with n vertices (Robson, 2001).36

For random graphs, a super-polynomial time is required
to find cliques larger than log n using the Metropolis al-
gorithm, while the maximum clique is likely to be of
size very close to 2 log n (Jerrum, 1992). One of the
earliest papers on the quantum adiabatic algorithm was
concerned with the largest clique problem for random
graphs (Childs et al., 2002), though the algorithm pre-
sented there works for general graphs. The results were
numerical and showed, by fixing the desired success prob-
ability, that the median time required by the adiabatic
algorithm to find the largest clique in a random graph
are consistent with quadratic growth for graphs of up
to 18 vertices. These results on small graphs probably
do not capture the asymptotic behavior of the algorithm
(the coefficients grow rapidly and have alternating sign),
which is likely to be dominated by exponentially small
gaps [however, to the extent that these are due to per-
turbative crossings, they can be avoided by techniques
we discuss in Sec. VII.G, in particular as related to the
maximum independent set problem (Choi, 2011)].

6. Graph isomorphism

In the graph isomorphism problem, two N -vertex
graphs G and G′ are given, and the task is to determine
whether there exists a permutation of the vertices of G
such that it preserves the adjacency and transforms G to
G′, in which case the graphs are said to be isomorphic.
If and only if the graphs are isomorphic does there exist
a permutation matrix σ that satisfies

A′ = σAσT , (158)

where A and A′ are the adjacency matrices of G and
G′ respectively. An adiabatic algorithm to determine
whether a pair of graphs are isomorphic was first pro-
posed in (Hen and Young, 2012), mostly for strongly

36 As stated, this is actually an algorithm for the complementary
maximum independent set (MIS) problem, but this is sufficient
since MIS(G) = max-clique(Ḡ) for any graph G and its comple-
ment Ḡ, and the algorithm applies for arbitrary G.
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regular graphs, and generalized to arbitrary graphs in
(Gaitan and Clark, 2014), which also showed how to de-
termine the permutation(s) that connect a pair of iso-
morphic graphs, and the automorphism group of a given
graph. The final Hamiltonian formulated in (Gaitan and
Clark, 2014) is such that when the ground state energy
vanishes the graphs are isomorphic and the bit-string
s = (s0, . . . , sN−1) associated with the ground state gives
an N×N permutation matrix σ(s) to perform the trans-
formation:

σ(s)ij =

{
0 if sj > N − 1
δi,sj if 0 ≤ sj ≤ N − 1

. (159)

The computational complexity of these adiabatic algo-
rithm is currently unknown. However, a recent break-
through gave a quasipolynomial (exp[(log n)O(1)]) time
classical algorithm for graph isomorphism (Babai, 2015).
It seems unlikely that this can be improved upon by using
StoqAQC without deeply exploiting problem structure.

7. Machine learning

Quantum machine learning is currently an exciting
and rapidly moving frontier in the context of the cir-
cuit model (Lloyd et al., 2014; Rebentrost et al., 2014;
Wiebe et al., 2014), though it must be evaluated care-
fully (Aaronson, 2015). One StoqAQC approach is to find
a quantum version of the classical method of boosting,
wherein multiple weak classifiers (or features) are com-
bined to create a single strong classifier (Freund et al.,
1999; Meir, 2003). The task is to find the optimal set
of weights of the weak classifiers so as to minimize the
training error of the strong classifier on a training data
set. After this training step, the strong classifier is then
applied to a test data set. This optimization problem
can be mapped to a quadratic unconstrained binary op-
timization (QUBO) problem, which can then be trivially
turned into an Ising spin Hamiltonian suitable for adia-
batic quantum optimization, where the binary variables
represent the weights. This idea was implemented in
(Babbush et al., 2014a; Denchev et al., 2012; Neven et al.,
2008a, 2009, 2008b; Pudenz and Lidar, 2013), where the
ground states found by the adiabatic algorithm encode
the solution for the weights.

Another idea is to learn the weights of a Boltzmann
machine or, after the introduction of a hidden layer, a
reduced Boltzmann machine (Hinton et al., 2006). The
latter forms the basis for various modern methods of deep
learning. StoqAQC approaches for this problem were
developed in (Adachi and Henderson, 2015; Amin et al.,
2016; Benedetti et al., 2016)

Neither the classical nor the quantum computational
complexity is known in this case, but scaling of the so-
lution time with problem size is not the only relevant
criterion: classification accuracy on the test data set is

clearly another crucial metric. It is possible, though at
this point entirely speculative, that the quantum method
will lead to better classification performance. This can
come about in the case of ground state degeneracy, if
the weights are reconstructed via ground state solutions
and if quantum and classical heuristics for solving the
QUBO problem find different ground states (Azinović
et al., 2016; Mandrà et al., 2016; Matsuda et al., 2009).

G. Speedup mechanisms?

While the universality of AQC suggests that similar
speedup mechanisms are at play as in the circuit model
of quantum computing, the situation is less clear regard-
ing StoqAQC. Here we discuss two potential mechanisms,
tunneling and entanglement, that might be thought to
endow StoqAQC with an advantage over classical algo-
rithms.

1. The role of tunneling

It is often stated that an advantage of StoqAQC
over classical heuristic local-search algorithms is that the
quantum system has the ability to tunnel through en-
ergy barriers, which can provide an advantage over clas-
sical algorithms such as simulated annealing that only al-
low probabilistic hopping over the same barriers. Indeed,
such a qualitative picture motivated some of the early re-
search on quantum annealing [e.g., (Finnila et al., 1994)].
However, this statement requires a careful interpretation
as it has the potential to be misleading. Whereas only
the final cost function — which generates the energy
landscape that the classical random walker explores —
matters for the classical algorithm, this energy landscape
does not become relevant for the quantum evolution un-
til the end. Therefore, tunneling does not occur on the
energy landscape defined by the final cost function alone,
if it occurs at all. A different notion of tunneling is at
work, which we now explain.

The standard notion of tunneling from single-particle
quantum mechanics involves a semiclassical potential
where classically allowed and classically forbidden regions
can be defined. Starting from a many-body Hamiltonian,
there is no unique way to take the semiclassical limit.
Consider one such limit, based on the spin-coherent path
integral formalism (Klauder, 1979):

〈Ω(tf )|Texp[−i
∫ tf

0

dτH(τ)]|Ω(0)〉 =

∫
DΩ(t)e

i
~S[Ω(t)] ,

(160)
where the action S[Ω(t)] is given by:

S[Ω(t)] =

∫ tf

0

dt (i~〈Ω(t)|∂t|Ω(t)〉 − 〈Ω(t)|H(t)|Ω(t)〉) ,

(161)
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FIG. 8 Analysis of tunneling in the Grover problem. (a) The semiclassical potential for n = 20 at different dimensionless times
s. The arrows indicate the behavior of the local minima as s increases. There is a discrete jump in the position of the global
minimum at s = 1/2, where it changes from being at θ ≈ π/2 to θ ≈ 0, corresponding to a first order quantum phase transition.
(b) The behavior of the potential when the two minima are degenerate at s = 1/2. As n grows, both the barrier height grows
(and saturates at 1) and the curvature of the local minima grows. (c) The expectation value of the Hamming Weight operator
[defined in Eq. 167] of the instantaneous ground state as n grows. This is to be interpreted as the system requiring O(n) spins
to tunnel in order to follow the instantaneous ground state as the system crosses the minimum gap at s = 1/2.

and

|Ω〉 ≡ |θ, ϕ〉 (162)

≡ ⊗nj=1

[
cos(θj/2)|0〉j + eiϕj sin(θj/2)|1〉j

]
.

is the symmetric spin-coherent state (Arecchi et al.,
1972).

Despite the absence of a true kinetic term, we can iden-
tify the semiclassical potential as:

VSC({θj}, {ϕj}, t) = 〈Ω|H(t)|Ω〉 (163)

This form for VSC has been used (Boixo et al., 2016;
Farhi et al., 2002a; Muthukrishnan et al., 2016; Schaller
and Schützhold, 2010) to capture many of the rele-
vant features of StoqAQC problems endowed with qubit-
permutation symmetry; this symmetry often allows for
analytical and numerical progress.37

We illustrate this approach with the Grover Hamil-
tonian [Eq. (16)]. Recall that the final Hamiltonian is
H1 = 11− |m〉〈m|, where |m〉 is the marked state associ-
ated with the marked item. As a cost function, this is the
antithesis of the “tall and narrow” potential that is often
associated with a classical speedup: 〈x|H1|x〉 = 1− δx,m,
i.e., the potential is flat everywhere, except for a well of
constant depth at the marked state. Nevertheless, we
now show that following the instantaneous ground state
will involve the tunneling of O(n) qubits.

Without loss of generality we may assume that the
“marked” state is the all-zero bit string. Setting θj ≡ θ

37 Note that by using a product-state ansatz via the symmetric
spin-coherent state, the semiclassical approach implicitly takes
advantage of the bit-symmetry of the problem. This is inacces-
sible to an algorithm that has only black-box access to f , thus
limiting the generality of this approach.

and ϕj ≡ ϕ ∀j in Eq. (162), the Hamiltonian can be
written succinctly as:

H(s) = (1− s) (11− |Ω(π/2, 0)〉〈Ω(π/2, 0)|)
+s (11− |Ω(0, 0)〉〈Ω(0, 0)|) . (164)

The semiclassical potential for the Grover problem is
then:

VSC(θ, 0) = (1− s)
(

1− 1

2n
(1 + sin θ)

n

)

+s

(
1− 1

2n
(1 + cos θ)

n

)
. (165)

The locations of the two degenerate minima at s = 1/2
are given by the pair of transcendental equation:

1− cos θ + sin θ

1 + cos θ − sin θ
=

(
1 + sin θ

1 + cos θ

)n
, (166a)

1 + cos θ − sin θ

1− cos θ + sin θ
=

(
1 + cos θ

1 + sin θ

)n
, (166b)

which in the limit of n→∞ have solutions 0 and π/2 re-
spectively. This equation is invariant under θ → π/2−θ,
which corresponds to the two minima. Since the semi-
classical potential in Eq. (165) at s = 1/2 is also invariant
under θ → π/2−θ, the local minima have identical struc-
ture. Using the Hamming Weight operator defined as:

HW =
1

2

n∑

i=1

(11− σzi ) (167)

this potential suggests that in the large n limit, we can
expect that n/2 spins need to be flipped in order to move
from the θ ≈ π/2 minimum to the θ ≈ 0 minimum, i.e.,

〈Ω(π/2, 0)|HW|Ω(π/2, 0)〉−〈Ω(0, 0)|HW|Ω(0, 0)〉 = n/2 .
(168)
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The instantaneous ground state, as it passes through the
minimum gap at s = 1/2, indeed exhibits this behavior,
as shown in Fig. 8.

However, the more general role of tunneling in pro-
viding quantum speedups is not by any means evident.
This topic was studied in detail in (Muthukrishnan et al.,
2016), which showed that tunneling is neither necessary
nor sufficient for speedups in the class of perturbed Ham-
ming weight optimization problems with qubit permuta-
tion symmetry.

Our discussion here has been restricted to coherent
tunneling, and compelling arguments have been pre-
sented in (Andriyash and Amin, 2017; Boixo et al., 2016;
Denchev et al., 2016) that incoherent, thermally assisted
tunneling plays a computational role in quantum anneal-
ing. However, this mechanism is in the open-system set-
ting, which is outside the scope of this review. Moreover,
its role in (Boixo et al., 2016; Denchev et al., 2016) is lim-
ited to a prefactor, and does not translate into a scaling
advantage, i.e., it does not qualify as a speedup according
to the classification of (Rønnow et al., 2014).

2. The role of entanglement

The role that entanglement plays in quantum compu-
tation with pure states in the circuit model depends on
the entanglement measure used. On the one hand, it is
well known that for any circuit-model quantum algorithm
operating on pure states, the presence of multi-partite
entanglement quantified via the Schmidt-rank (with a
number of parties that increases unboundedly with in-
put size), is necessary if the quantum algorithm is to
offer an exponential speedup over classical computation
(Jozsa and Linden, 2003). On the other hand, universal
quantum computation can be achieved in the standard
pure-state circuit model while the entanglement entropy
(or any other suitably continuous entanglement measure)
of every bipartition is small in each step of the compu-
tation (Van den Nest, 2013). The corresponding role of
entanglement in the computational efficiency of AQC re-
mains an open question. Partly this is because the con-
nection between entanglement and spectral gaps is not
yet very well understood, and partly this is because even
if entanglement is present, its computational role in AQC
is unclear.

The area law asserts that for any subset S of particles,
the entanglement entropy between S and its complement
is bounded by the surface area of S rather than the trivial
bound of the volume of S. While generic quantum states
do not obey an area law (Hayden et al., 2006), and there
are 1D systems for which there is exponentially more en-
tanglement than suggested by the area law (Movassagh
and Shor, 2016), a sweeping conjecture in condensed mat-
ter physics is that in a gapped system the entanglement
spreads only over a finite length, which leads to area laws

for the entanglement entropy (Eisert et al., 2010).38 E.g.,
the area law for gapped 1D systems, proved in (Hastings,
2007), states that for the ground state, the entanglement
of any interval is upper bounded by a constant indepen-
dent of the size of the interval. While this leaves open the
question of the general dependence of the upper bound
on the spectral gap ∆, this means that the ground state
of such systems is accurately described by polynomial-
size matrix product states (MPSs) (Östlund and Rom-
mer, 1995; White, 1992; White and Noack, 1992). In
(Gottesman and Hastings, 2010) it was shown that for
certain 1D system the entanglement entropy in some re-
gions can be as high as poly(1/∆). This demonstrates
that the entanglement entropy can become large as the
gap becomes small. Two other important recent results
are the existence of a polynomial time algorithm for the
ground state of 1D gapped local Hamiltonians with con-
stant ground-state energy (Huang, 2014; Landau et al.,
2015), and the fact that 1D quantum many-body states
satisfying exponential decay of correlations always fulfill
an area law (Brandao and Horodecki, 2013).

However, the connection between entanglement en-
tropy and gaps is not nearly as clear in higher dimen-
sional systems, even though entanglement close to quan-
tum phase transitions is a well developed subject (Amico
et al., 2008; Osborne and Nielsen, 2002; Osterloh et al.,
2002; Vidal et al., 2003; Wu et al., 2004).

It is not surprising that entanglement is necessary for
the computation to succeed if the intermediate ground
states that the system must follow are entangled. This
was verified explicitly in (Bauer et al., 2015), where
the quantum state was represented by an MPS and
projected entangled-pair states (PEPS) (Verstraete and
Cirac, 2004; Verstraete et al., 2008). This work showed
that the probability of finding the ground state of an
Ising spin glass on either a planar or non-planar two-
dimensional graph increases with the amount of entan-
glement in the MPS state or PEPS state. Furthermore,
even a small amount of entanglement gives improved suc-
cess probability over a mean-field model. However, this
does not resolve the role entanglement plays in generat-
ing a speedup.

In an attempt to address this, the entanglement en-
tropy for the adiabatic Grover algorithm was studied,
and it was found to be bounded (≤ 1) throughout the
evolution (Orús and Latorre, 2004). This was also ob-
served numerically for systems with 10 qubits (Wen and
Qiu, 2008). In an effort to check whether more entangle-
ment may help the Grover speedup, (Wen et al., 2009)
considered adding an additional term to the Hamiltonian
to make the ground state more entangled, to reach an

38 Here “gapped” means O(1), whereas in AQC “gapped” usually
means O[1/poly(n)].
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O(1) scaling in a Grover search task. However, since it
is impossible to achieve a better-than-quadratic speedup
in the Grover search problem without introducing an ex-
plicit dependence on the marked state (Bennett et al.,
1997), this result is not conclusive in linking entangle-
ment with enhanced computational efficiency. Further-
more, a two-dimensional path for the Grover problem
using the quantum adiabatic brachistochrone approach
[see Sec. VII.B] that gives a higher success probability
for the same evolution time relative to the standard one-
dimensional path for the Grover problem, in fact has less
entanglement (negativity) (Rezakhani et al., 2009).

The entanglement entropy in the adiabatic algorithm
for the Exact Cover problem, where no speedup is known
(recall Sec. VI.F.2), scales linearly with problem size for
n ≤ 20 (Latorre and Orus, 2004; Orús and Latorre, 2004).

Further studies have also shown this lack of correlation
between performance and the amount of entanglement
entropy. In (Hauke et al., 2015) simulations of adiabatic
quantum optimization were performed of a trapped ion
Hamiltonian with n = 16 of the form:

H1 = J

n∑

i 6=j

σzi σ
z
j

|i− j| +
∑

i

hzi σ
z
i + V

n∑

i 6=j
σzi σ

z
j , (169)

with 100 disorder realizations of hzi . It was found that a
large entanglement entropy has little significance for the
success probability of the optimization task.

Overall, these results indicate that the connection be-
tween entanglement and algorithmic efficiency in AQC is
currently wide open and deserves further study.

VII. CIRCUMVENTING SLOWDOWN MECHANISMS
FOR AQC

In this section we collect several insights into mech-
anisms that explain slowdowns in the performance of
adiabatic algorithms. We also discuss mechanisms for
circumventing such slowdowns. Several important ideas
will be reviewed: avoiding the use certain initial and final
Hamiltonians, modifying the adiabatic schedule, avoid-
ing quantum phase transitions, and avoiding perturba-
tive energy level crossings.

A. Avoiding poor choices for the initial and final
Hamiltonians

We first show that if one chooses the initial Hamilto-
nian to be the one-dimensional projector onto the uni-
form superposition state |φ〉, and uses a linear inter-
polation, then an improvement beyond a Grover-like
quadratic speedup is impossible as long as the final
Hamiltonian H1 is diagonal in the computational basis.

Specifically, for an adiabatic algorithm of the form

H(t) =

(
1− t

tf

)
E (11− |φ〉〈φ|) +

t

tf
H1 , (170)

the run-time tf for measuring the ground state ofH1 with
probability p is lower bounded by [Theorem 1 of (Farhi
et al., 2008); see also (Žnidarič and Horvat, 2006)]:

tf ≥
2

E

(
1−

√
1− p

)√N

k
− 2

√
p

E
, (171)

where N = 2n and k is the degeneracy of the ground
state of H1. To see this, define an operator Vx for x =
0, . . . , N − 1 that is diagonal in the computational basis:

〈z|Vx|z〉 = e2πizx/N , (172)

and let |x〉 = Vx|φ〉 = 1√
N

∑N−1
z=0 e2πizx/N |z〉. Now define

the modified adiabatic algorithm:

Hx(t) =

(
1− t

tf

)
E (11− |x〉〈x|) +

t

tf
H1 . (173)

Note that |x = 0〉 = |φ〉 implies that H0(t) = H(t). For
each x, the final state is given by |ψx〉 = Ux(tf , 0)|x〉,
with success probability px = 〈ψx|P |ψx〉, where P is
the projector onto the ground subspace of H1. Using
Hx(t) = VxH0V

†
x , we have Ux(t, 0) = VxU0(t, 0)V †x , and

hence px = p, ∀x since Vx commutes with P . We should
already see a potential problem for having tf scale better

than
√
N , since if we were to run the algorithm backward,

we would find the state |x〉, which would be solving the
Grover problem (note that the initial Hamiltonian (173)
is the Grover Hamiltonian in a rotated basis).

Now define an evolution according to an x-independent
Hamiltonian:

HR(t) =

(
1− t

tf

)
E11 +

t

tf
H1 , (174)

and let |gx〉 = 1√
pP |ψx〉. Consider the difference in the

reverse-evolutions associated with HR(t) and Hx(t) from
|gx〉:

S(t) =
∑

x

‖
(
U†x(tf , t)− U†R(tf , t)

)
|gx〉‖2 . (175)

We can write |gx〉 =
√
p|ψx〉 +

√
1− p|ψ⊥x 〉, where |ψ⊥x 〉

is orthogonal to |ψx〉. Using U†x(tf , 0)|ψx〉 = |x〉 and

defining |Rx〉 = U†R(tf , 0)|gx〉, we have:

S(0) =
∑

x

‖√p|x〉+
√

1− p|x⊥〉 − |Rx〉‖2 (176a)

= 2N −
∑

x

[√
p〈x|Rx〉+

√
1− p〈x⊥|Rx〉+ c.c.

]

(176b)

≥ 2N − 2
√
p
∑

x

|〈x|Rx〉| − 2N
√

1− p . (176c)
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Since HR commutes with H1, the state |Rx〉 is an element
of the k-dimensional ground subspace of H1. Choosing
a basis {|Gi〉}ki=1 for this subspace, and writing |Rx〉 =∑k
i=1 αx,i|Gi〉, we have:

∑

x

|〈x|Rx〉| ≤
∑

x,i

|αx,i| · |〈x|Gi〉| (177)

≤
√∑

x,i

|αx,i|
∑

x′,i′

|〈x′|Gi′〉| =
√
Nk .

Therefore, we have:

S(0) ≥ 2N
(

1−
√

1− p
)
− 2
√
Nkp . (178)

In order to upper-bound S(0), we use S(tf ) − S(0) ≤∫ tf
0
| ddtS(t)|dt with S(tf ) = 0. The derivative can be

computed using the Schrödinger equation:

d

dt
S(t) = −i

∑

x

〈gx|Ux(tf , t) [Hx(t)−HR(t)]U†R(tf , t)|gx〉

+ c.c.

= −2=
∑

x

(
1− t

tf

)
E〈gx|Ux(tf , t)|x〉×

〈x|U†R(tf , t)|gx〉 . (179)

Thus:
∣∣∣∣
d

dt
S(t)

∣∣∣∣ ≤ 2E

(
1− t

tf

)∑

x

∣∣∣〈x|U†R(tf , t)|gx〉
∣∣∣

≤ 2E

(
1− t

tf

)√
Nk , (180)

where in the last line we used the same trick as in
Eq. (177). Therefore,

∫ tf
0
| ddtS(t)|dt ≤ Etf

√
Nk. Putting

the upper and lower bound for S(0) together, we have:

Etf
√
Nk ≥ 2N

(
1−

√
1− p

)
− 2
√
Nkp , (181)

which yields Eq. (171).
As an example of the relevance of this result, consider

the trivial case of n decoupled spins in a global mag-
netic field. For an initial Hamiltonian that reflects the
bit-structure of the problem, e.g., the standard H0 =
−∑i σ

x
i , the run-time of the adiabatic algorithm scales

as
√
n (see Sec. ??). If, however, we were to choose in-

stead the projector initial Hamiltonian, the result above
shows that we would find a dramatically poor scaling de-
spite the simplicity of the final Hamiltonian.

A similar result is found if all structure is removed from
the final Hamiltonian. Namely, if H1 =

∑
z h(z)|z〉〈z|,

we can define a permutation π over the N computational
basis states such that h[π](z) = h(π−1(z)). Assume that
the initial Hamiltonian is π-independent and that c(t)
satisfies |c(t)| ≤ 1. Then, for the permuted Hamiltonian

H1,π =
∑
z h(z)|π(z)〉〈π(z)|, one can show that if the

adiabatic algorithm

Hπ(t) = H0 + c(t)H1,π (182)

succeeds with probability p for a set of εN ! permutations,
then [Theorem 2 of (Farhi et al., 2008)]:

tf ≥
ε2p

16h∗
√
N − 1− ε

√
ε/2

4h∗
, (183)

where h∗ =
√∑

z h(z)2/N − 1. This result means that
no algorithm of the form of Eq. (182) can find the mini-
mum of H1,π with a constant probability for even a frac-

tion of all permutations if tf is o(
√
N).

The lesson from this analysis is what not to do when
designing quantum adiabatic algorithms: avoid choosing
the initial Hamiltonian to be the one-dimensional pro-
jector onto the uniform superposition state if a better-
than-quadratic speedup is hoped for, and avoid removing
structure from the final Hamiltonian.

B. Quantum Adiabatic Brachistochrone

Modifying the adiabatic schedule adaptively so that
it slows down as the gap decreases is an approach that
is essential for obtaining a quadratic speedup using the
adiabatic Grover algorithm [recall Sec. III.A]. Here we
discuss how such ideas, including the condition for the
locally optimized schedule [Eq. (24)] can be understood
as arising from a variational time-optimal strategy for de-
termining the interpolating Hamiltonian between H0 and
H1 (Rezakhani et al., 2009). By time-optimal, we mean
a strategy that gives rise to the shortest total evolution
time tf while guaranteeing that the final evolved state
|ψ(tf )〉 is close to the desired final ground state |ε0(tf )〉.
The success of the strategy is judged by the trade-off be-
tween tf and the fidelity F (tf ) = |〈ψ(tf )|ε0(tf )〉|2. We
first discuss this method generally and then show how it
applies to the adiabatic Grover case.

The interpolating Hamiltonian’s time-dependence
comes from a set of control parameters ~x(t) =(
x1(t), . . . , xM (t)

)
, i.e., H(t) = H[~x(t)]. We can param-

eterize ~x(t) in terms of a dimensionless time parameter
s(t) with s(0) = 0 and s(tf ) = 1, where v = ds

dt character-
izes the speed with of motion along the control trajectory
~x[s(t)]. The total evolution time is then given by:

tf =

∫ 1

0

ds

v(s)
. (184)

Motivated by the form of the adiabatic condition, let us
define the following Lagrangian

L[~x(s), ~̇x(s)] ≡ ‖∂sH(s)‖2HS

∆p(s)
(185)

=
∑

i,j

Tr (∂xiH(s)∂xjH(s))

∆p(s)
∂sx

i(s)∂sx
j(s)
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(p > 0), and adiabatic-time functional

T [~x(s)] =

∫ 1

0

dsL[~x(s), ~̇x(s)] , (186)

where ‖A‖HS ≡
√

Tr (A†A) is the Hilbert-Schmidt norm,
chosen to ensure analyticity (this choice is not unique,
but other choices may not induce a corresponding Rie-
mannian geometry). The time-optimal curve ~xQAB(s)
is the quantum adiabatic brachistochrone (QAB), and is
the solution of the variational equation δT [~x(s)]/δ~x(s) =
0.

Alternatively, the problem can be thought of in
geometrical terms. The integral in Eq. (186) is
of the form

∫
ds
∑
i,j gij(~x)∂sx

i∂sx
j , which defines a

reparametrization-invariant object. Therefore, using
results from differential geometry, the Euler-Lagrange
equations derived from extremizing Eq. (186) are sim-
ply the geodesic equations associated with the metric gij
appearing in L[~x(s), ~̇x(s)] = gij(~x)ẋiẋj (Einstein sum-
mation convention):

∂2
sx

k + Γkij∂sx
i∂sx

j = 0 , (187)

where Γkij = 1
2g
kl (∂jgli + ∂iglj − ∂lgij) are the Christof-

fel symbols (connection coefficients) and

gij(~x) =
Tr[∂iH(~x)∂jH(~x)]

∆p(~x)
. (188)

To find the variational time-optimal strategy associated
with minimizing Eq. (186), the procedure is thus as
follows: (a) solve Eq. (187) to find the optimal path
~xQAB(s); (b) compute the adiabatic error using the
Schrödinger equation along this optimal path (or multi-
parameter schedule). Note that to compute the metric
requires knowledge of the gap, or at least an estimate
thereof.

The optimal path is a geodesic in the parameter mani-
fold endowed with the Riemannian metric g. This metric
gives rise to a curvature tensor R, which can be com-
puted from the metric tensor and the connection us-
ing standard methods (Nakahara, M., 1990). Namely,
Γ ∼ g−1∂g ∼ ∆−1∂∆, and R ∼ ∂2g + gΓ2 ∼ ∆−p−2.
Thus, the smaller the gap, the higher the curvature.

Let us illustrate with a simple example. Consider the
following Hamiltonian with a single control parameter
x1(s):

H(s) =
(
1− x1(s)

)
P⊥a + x1(s)P⊥b , (189)

where we have defined the projector P⊥a = 11−|a〉〈a| and
similarly for P⊥b . This includes the Grover problem as
the special case where |a〉 is the uniform superposition
and |b〉 is the marked state. We can always find a state
|a⊥〉 such that |b〉 = α0|a〉 + α1|a⊥〉, where α0 = 〈a|b〉.
Therefore, the evolution according to H(s) occurs in a

two dimensional subspace spanned by |a〉 and |a⊥〉, and:

∂x1H(s) = −P⊥a + P⊥b (190a)

Tr (∂x1H(s)∂x1H(s)) = 2
(
1− |α0|2

)
(190b)

∆(s) =
√

1− 4 (1− |α0|2)x1(s)(1− x1(s)) (190c)

g11 =
2(1− |α0|2)

∆(s)3
. (190d)

The geodesic equation is then given by:

d2

ds2
x1(s) (191)

+
p
(
1− 2x1(s)

) (
1− |α0|2

)

1− 4x1(s) (1− x1(s)) (1− |α0|2)

(
d

ds
x1(s)

)2

= 0 .

In the case of p = 4, we can solve this equation ana-
lytically, and the solution with the boundary conditions
x1(0) = 1− x1(1) = 0 is given by:

x1(s) =
1

2
+

|α0|
2
√

1− |α0|2
tan

[
cos−1 (|α0|) (2s− 1)

]

(192)

(note that cos−1(|α0|) = tan−1

(√
1−|α0|2
|α0|

)
). Remark-

ably, this is equivalent to the expression we found for the
Grover problem [Eq. (29)] if we take α0 = 1/

√
N , despite

the different choice of norm and value of p. This shows
that the optimal schedule for the Grover problem has a
deep differential geometric origin.

We can extend the analysis to two control parameters
such that the time-dependent Hamiltonian is given by:

H(s) = x1(s)P⊥a + x2(s)P⊥b . (193)

The associated QAB (or geodesic) path can be found
numerically, and it turns out that it is not of the form
x2(s) = 1 − x1(s), i.e., it is different from the (Roland
and Cerf, 2002) path given by Eq. (192). The optimal
two-parameter path reduces the adiabatic error relative
to the latter [see Fig. 9(a)], but can of course not reduce
the (already optimal)

√
N scaling. The two-parameter

QAB also has lower curvature than the Roland-Cerf path
[see Fig. 9(b)], which implies that it follows a path with
a larger gap and less entanglement than the latter (Reza-
khani et al., 2009), as mentioned in Sec. VI.G.2.

The differential geometric approach to AQC was fur-
ther explored in (Rezakhani et al., 2010a), where its con-
nections to quantum phase transitions were elucidated,
within a unifying information-geometric framework. See
also (Zulkowski and DeWeese, 2015).

C. Modifying the initial Hamiltonian

Rather than modifying the adiabatic interpolation, one
may modify the initial Hamiltonian. Such a strategy was
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FIG. 9 (a) Final-time error δ(T ) =
√

1− F (T ) (T = Tf in
our notation) for the single-control (denoted RC for Roland-
Cerf) and two-parameter control (denoted geodesic2) geodesic
paths for the Grover problem with n = 6. Squares (cyan) in-
dicate where the two-parameter geodesic path outperforms
(i.e. has a lower error than) the single-parameter path; cir-
cles (red) correspond to the opposite case. (b) The curva-
ture tensor component R1212 for n = 3. The curves on the
curvature surface show the case of the standard linear inter-
polation x2 = 1 − x1 (denoted Crit.), the path followed by
the one-parameter geodesic (denoted RC), and the path fol-
lowed by the two-parameter geodesic (denoted QAB). From
(Rezakhani et al., 2009).

pursued in (Farhi et al., 2011) and tried on a particu-
lar set of 3-SAT instances, where the clauses are picked
randomly subject to satisfying two disparate planted so-
lutions and then penalizing one of them with a single
additional clause. This was done in order to generate in-
stances with an avoided crossing at the final time s = 1,
reproducing the type of obstacle to AQC envisioned in
(Altshuler et al., 2010).

It was then shown that in this case, by picking a ran-
dom initial Hamiltonian of the form

H0 =
1

2

n∑

i=1

ci (11− σxi ) , (194)

where ci is a random variable taking value 1/2 or 3/2 with
equal probability, it is possible to remove the small gap
encountered by the standard adiabatic algorithm with
high probability. Since this strategy does not rely on in-
formation about the specific instance, it appears to be
quite general. Therefore, if the algorithm is to be run on
a single instance of some optimization problem, the adi-
abatic algorithm should be run repeatedly with different

initial Hamiltonians (Farhi et al., 2011).
An alternative approach based on modifying the ini-

tial Hamiltonian, with a different goal, was proposed in
(Perdomo-Ortiz et al., 2011), whereby an initial guess
for the solution (a computational basis state) is used as
the initial state of the adiabatic algorithm. A Hamil-
tonian with this state as a ground state is used as the
initial Hamiltonian in order to ensure that the initial
state is the initial ground state of the system. Evolu-
tion to the final Hamiltonian then proceeds according to
a standard schedule. If the final state that is measured
is not the ground state of the final Hamiltonian (due to
non-adiabatic transitions), the algorithm can be repeated
with the measured state as the new initial state. Such
“warm start” repetitions of the algorithm exhibited im-
proved performance compared to the standard approach
for 3-SAT problems, although the results were limited to
relatively small system sizes of 6 and 7 qubits.

D. Modifying the final Hamiltonian

The same problem can be specified by two or more dif-
ferent final Hamiltonians, as we saw, e.g., in the case of
Exact Cover 3 (EC3), in terms of Eqs. (154) and (155).
It was claimed in (Altshuler et al., 2010) that adiabatic
quantum optimization fails for random instances of EC3
because of Anderson localization. The claim, which we
discuss in more detail in Sec. VII.G, was based on the
form given in Eq. (155). However, as argued in (Choi,
2011), it is possible to reformulate the final Hamiltonian
for EC3 such that the argument in (Altshuler et al., 2010)
may not apply. Namely, for any pair of binary variables
xCi , xCj in the same clause C, add a termDijxCixCj with
Dij > 0; this is permissible since in order for a clause
to be satisfied, exactly one variable must take value 1,
whereas the other two are 0. Numerical evidence for
up to 15 bits suggests that the addition of the new set
of arbitrary parameters Dij may avoid the Anderson lo-
calization issue (Choi, 2011). This example illustrates
a general principle, that it can be incorrect to conclude
from the failure of one specific choice of the final Hamil-
tonian that all quantum adiabatic algorithms fail for the
same problem.

E. Adding a catalyst Hamiltonian

We define a “catalyst” as a term that (1) vanishes at
the initial and final times, but is present at intermediate
times, (2) is a sum of local terms with the same qubit-
interaction graph as the final Hamiltonian H1, (3) does
not use any other information specific to the particular
instance.

Consider, e.g.:

H(s) = (1− s)H0 + s(1− s)HC + sH1 . (195)
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The specific form of HC is of course important, but even
a randomly chosen catalyst can help (Farhi et al., 2011,
2002b; Zeng et al., 2016). We illustrate how HC can
turn a slowdown (exponential run-time) into a success (at
worst polynomial run-time) for a specific problem with
a specific HC that is analytically tractable. Consider a
final Hamiltonian of the form

H1 =
∑

z

h(z)|z〉〈z| , (196)

where z denotes an n-bit string, and h(z) =∑
i<j<k h3(zi, zj , zk) with

h3(z1, z2, z3) =





0, z1 + z2 + z3 = 0
3, z1 + z2 + z3 = 1
1, z1 + z2 + z3 = 2
1, z1 + z2 + z3 = 3

. (197)

The all-zero bit string minimizes the final Hamiltonian
with energy 0.

The cost function h(z) is bit-permutation symmetric
and only depends on the Hamming weight |z|, which fa-
cilitates the analysis. Specifically (Farhi et al., 2002a):

h(z) =
3

2
|z| (n− |z|) (n− |z| − 1) +

1

2
|z| (|z| − 1) (n− |z|)

+
1

6
|z| (|z| − 1) (|z| − 2) . (198)

The final Hamiltonian can then be written in terms of
the total spin operators Sα = 1

2

∑n
i=1 σ

α
i by using the

mapping |z| 7→ n
2 − Sz. The initial Hamiltonian is taken

to be

H0 =
(n− 1)(n− 2)

2

(n
2

11− Sx
)
, (199)

[the unconventional normalization is to ensure that both
H1 and H0 scale similarly with n (Farhi et al., 2000)].
HC is taken to be identical for all combinations of three
bits in order to preserve the permutation symmetry:

HC = −2n (SxSz + SzSx) . (200)

Note that this catalyst is non-stoquastic. A useful way to
characterize the change due to the introduction of HC is
to study the semi-classical potential associated with the
Hamiltonian:

V (s, θ, ϕ) = 〈θ, ϕ|H(s)|θ, ϕ〉 , (201)

where |θ, ϕ〉 is the spin-coherent state defined in
Eq. (162). In the large n limit we have (Farhi et al.,
2002b):

lim
n→∞

V/(2/n)3 = 2(1− s)(1− sin θ cosϕ)

+
1

6
s
(
13 + 3 cos θ − 9 cos2 θ − 7 cos3 θ

)

−8s(1− s) cos θ sin θ cosϕ , (202)

where the three terms arise from the initial, final and
catalyst Hamiltonians, respectively. We display the be-
havior of this potential in Fig. 10. In the absence of HC,
there is a value of s where the potential has degenerate
minima, and the system must tunnel from the right well
to the left well in order to follow the global minimum.
This point is associated with an exponentially small gap
(Farhi et al., 2002a), i.e., the algorithm requires exponen-
tial time to follow the global minimum. However, in the
presence of HC the potential never exhibits such an ob-
stacle; there is always a single global minimum that the
system can follow from s = 0 to s = 1 with polynomial
run-time.

Using this method of introducing a catalyst Hamilto-
nian, improvements were generally observed on a large
number of MAX 2-SAT instances of size n = 20 (by di-
rectly solving the Schrödinger equation) (Crosson et al.,
2014). Both stoquastic and non-stoquastic HC were tried
and improved the success rate, but the difference between
stoquastic and non-stoquastic was not decisive.

A similar study was performed in (Hormozi et al.,
2016) on fully-connected Ising instances, H1 =∑n
i=1 hiσ

z
i +

∑n
i<j Jijσ

z
i σ

z
j , of size n ≤ 17, where the

Jij ’s and hi’s were picked from a continuous Gaussian
distribution with zero mean and unit variance. The au-
thors observed that a stoquastic catalyst generally im-
proves the performance of easy instances by boosting
the minimum gap and reducing the number of anticross-
ings. The fraction of instances affected tends to grow
with increasing problem size. This is in stark contrast to
non-stoquastic catalysts that tend to improve the per-
formance of the very hard instances, but the fraction
of improved instances remains constant with increasing
problem size. Furthermore, the gap does not generically
increase with the addition of this catalyst, and the num-
ber of anticrossings grows. This latter feature leads to
the increased success probability as population lost from
the ground state at one anticrossing can be recovered at
a later anticrossing.

F. Addition of non-stoquastic terms

The addition of non-stoquastic terms was already con-
sidered numerically in the previous subsection; here we
focus on analytical results obtained for certain mean field
models.

Quantum statistical-mechanical techniques (Trotter-
Suzuki decomposition, replica method under the replica-
symmetric ansatz, and the static approximation) were
used in (Nishimori, 2016; Seki and Nishimori, 2012, 2015;
Seoane and Nishimori, 2012) to analyze infinite-range
Ising models with ferromagnetic as well as random in-
teractions. These studies concluded that non-stoquastic
terms can sometimes modify first-order quantum phase
transitions (with an exponentially small gap) in the sto-
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FIG. 10 The diamonds represent the minima followed by a
polynomial run-time. In the case with HC, the potential can
follow the global minimum polynomial time. In the case with-
out HC, there is an s value where the potential has a degen-
erate minimum, and the algorithm cannot tunnel to the new
global minimum in polynomial time.

quastic Hamiltonian to second-order transitions (with a
polynomially small gap) in the modified, non-stoquastic
Hamiltonian.

The Hamiltonian is of the form

H(s, λ) = (1− s)H0 − s
(
λH

(p)
1,z + (1− λ)H

(k)
1,x

)
(203)

where H0 = −∑n
i=1 σ

x
i is a standard initial Hamiltonian,

and

H
(q)
1,α = n

(
1

n

n∑

i=1

σαi

)q
, α ∈ {x, z} , q ∈ {p, k} ,

(204)
where λ ∈ [0, 1] controls the strength of the non-

stoquastic term H
(k)
1,x , and both p and k are integers

≥ 2 that determine the locality of the model. The pa-
rameter λ is increased to 1 along with s, so that the
final Hamiltonian is the infinite-range p-body ferromag-

netic Ising model H(1, 1) = −H(p)
1,z . Also the r-pattern

Hopfield model was studied, where λH
(p)
1,z is replaced by

−∑1≤i1<···<ip≤n Ji1···ipσ
z
i1
· · ·σzip , where Ji1···ip is given

in Eq. (144), with ξip being ±1 with equal probability.

In the ferromagnetic case (Seki and Nishimori, 2012;
Seoane and Nishimori, 2012) showed that for p ≥ 4, a
two-local non-stoquastic XX term changes the first order
phase transition to a second order one, for an appropri-
ately chosen path in the (λ, s) plane, starting from (λ0, 0)
(with arbitrary λ0) and ending at (1, 1). The situation in
the Hopfield model case is identical to the ferromagnetic
case, for an extensive number of patterns r ∝ n. For a
fixed number of patterns p ≥ 5 is sufficient and p > 3 is
necessary in order to avoid first order phase transitions
(Seki and Nishimori, 2015).

G. Avoiding perturbative crossings

An important slowdown mechanism we already al-
luded to in Sec. VII.C is due to anti-crossings very close
to the end of the evolution, that can result in an ex-
tremely small minimum gap. These crossings are often
referred to as perturbative, because a perturbative ex-
pansion back in time from the final Hamiltonian [e.g.,
perturbation theory in Γ for Eq. (143)] yields perturbed
states that cross in energy very close to where the exact
eigenstates anti-cross, with a gap that is exponentially
small in the Hamming weight of the unperturbed crossing
states (Amin and Choi, 2009) [shown there in the context
of the weighted maximum independent set problem; see
also (Farhi et al., 2011; Foini et al., 2010)]. This prob-
lem of perturbative crossings was demonstrated for the
NP-complete Exact Cover problem [recall Sec. VI.F.2] in
(Altshuler et al., 2010), who related the mechanism of ex-
ponentially small spectral gaps to Anderson localization
of the eigenfunctions of H(s) in the space of the solu-
tions. They showed that the Hamming weight between
such states can be Θ(n), which is clearly problematic for
the adiabatic algorithm. It was also claimed in (Altshuler
et al., 2010) that these anti-crossings appear with high
probability as the transverse field goes to zero; however
the latter claim did not survive a more accurate anal-
ysis that took into account the extreme value statistics
of the energy levels: the exponential degeneracy of the
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ground state, which is a distinguishing feature of random
NP-complete problems with a discrete spectrum (such as
Exact Cover), dooms the proposed mechanism (Knysh,
2016; Knysh and Smelyanskiy, 2010).

Nevertheless, this does not rule out the occurrence of
exponentially small gaps close to the end of the evolu-
tion. Furthermore, it is plausible that the mechanism
for avoided level crossings presented in (Altshuler et al.,
2010) may not necessarily be restricted to the end of
the evolution, but may occur throughout a many-body-
localized phase (Laumann et al., 2015). In light of this we
now discuss a rather general way to circumvent such per-
turbative crossings, that differs from the random initial
Hamiltonian approach presented in Sec. VII.C.

Using the NP-hard maximum independent set prob-
lem, it was shown that this problem occurs only for one
particular implementation of the adiabatic algorithm,
and different choices can avoid the problem (Choi, 2010).
In fact, (Dickson and Amin, 2011) showed that there is
always some choice of the initial and final Hamiltonians
that avoids such perturbative crossings (note that this
does not include non-perturbative crossings). Further-
more, this choice can be made efficiently, i.e., in polyno-
mial time, space and energy (Dickson, 2011), as we now
summarize.

The idea of (Dickson, 2011) is to cause the ground
state to diverge from all other states by changing the
degeneracy of the spectrum of the final Hamiltonian, such
that the ground state is the most degenerate, the first
excited state less degenerate, up to the highest excited
state, which will be the least degenerate. Consider an
n-qubit Ising Hamiltonian of the form

H1 =
∑

i∈M
hiσ

z
i +

∑

{i,j}∈M
Jijσ

z
i σ

z
j , (205)

where hi, Jij ∈ {0,±1} and M specifies the non-zero
terms, of which there arem. In order to simplify the anal-
ysis, assume that there are no single bit-flip degenera-
cies, meaning that there are no degenerate states that are
Hamming distance 1 from each other. For each non-zero
hi term that the ground state satisfies, i.e., hiσ

z
i = −1,

add a ≥ 1 ancilla qubits with an interaction of the form:

Hh =

a∑

k=1

b (hiσ
z
i + 1)

(
σzik + 1

)
/2 , (206)

where {i1, . . . , ia} ∈ Mh. This term vanishes when the
term hi is satisfied, regardless of the orientation of the a
ancillas, whereas otherwise it gives an energy bn1, where
n1 is the number of ancillas pointing up. Note that when
the term is unsatisfied, when all ancilla spins point down
the energy cost is zero. This is important because we
do not want to change the energy of the ground state
configuration.

Similarly, for each (non-zero) Jij , also add a ancillas

with the following interaction term:

HJ =

a∑

k=1

(
Jijσ

z
i σ

z
j + 1

) (
σz(ij)k + 1

)
/2 , (207)

where {ij1, . . . , ija} ∈ MJ . This introduces 3-local
terms; it is possible to use 2-local terms to achieve the
same result at the expense of introducing an additional
ancilla for each term [see the Appendix of (Dickson, 2011)
for details].

The spectrum of the new Hamiltonian (with ma ad-
ditional ancilla qubits) is the original spectrum when all
ancilla qubits point down, and all the new energy states
correspond to flips of the ancilla qubits, with increased
energy. Note that this means that no new local minima
were introduced. Now consider the following adiabatic
algorithm Hamiltonian:

H = λH0 +H ′1 , H ′1 = H1 +Hh +HJ , (208)

with λ decreased from ∞ (proportional to abm suffices)
to 0, and where the initial Hamiltonian includes trans-
verse fields on the ancilla qubits:

H0 = −
∑

i∈M∪Mh∪MJ

σxi . (209)

Consider a non-degenerate classical state α with energy
Eα under the action of H1. It becomes degenerate under
the action of H ′1. Let |α〉 denote the uniform superpo-
sition over all these degenerate states with energy Eα.
Introducing λ > 0 breaks the degeneracy, and from first
order degenerate perturbation theory (see Appendix E.1)
the state |α〉 is the new lowest energy eigenstate within
the subspace spanned by the unperturbed degenerate
states with energy Eα. The correction to its energy is

E|α〉 = Eα + λE
(1)
|α〉 + . . . , where

Eα =− (# of terms in H ′1 satisfied by α)

+ (# of terms in H ′1 unsatisfied by α) (210)

=− 2(# of terms in H ′1 satisfied by α) +m

(recall that hi, Jij ∈ {0,±1}), and

E
(1)
|α〉 = 〈α|H0|α〉 (211)

= −a (# of terms in H ′1 satisfied by α)

=
a

2
(Eα −m) .

Note that in Eα the contribution is entirely due to H1,

while in E
(1)
|α〉 the contribution is entirely due to Hh+HJ .

Taking a = b = n2, it can be shown that higher order
corrections do not depend on a, and hence the first or-
der correction dominates the behavior. Therefore, it is
clear that a state |α〉 with a lower (final) energy than a
state |β〉 has a larger negative slope (first-order pertur-
bation energy correction). Therefore, the states |α〉 and
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|β〉 grow farther apart for λ > 0 according to first order
perturbation theory. This means that the perturbative
crossing is avoided.

This method works in general for the problem of find-
ing the ground state of an arbitrarily-connected Ising
model with local fields, and is fully stoquastic. Thus, all
NP-complete problems can be attacked using StoqAQC
without encountering perturbative crossings. Of course,
this does not prove that StoqAQC can solve NP-complete
problems in polynomial time. However, it does mean that
proving otherwise requires identifying some effect other
than perturbative crossings that unavoidably results in
exponentially long adiabatic run-times.

H. Evolving non-adiabatically

Our discussion so far has been restricted to adiabatic
evolutions, where the minimum gap controls the effi-
ciency of the quantum algorithm. However, as we have
seen with the glued-trees problem in Sec. III.D, the quan-
tum evolution can take advantage of the presence of
two avoided-level crossings (and their associated expo-
nentially small gaps) to leave and return to the ground
state with high probability in polynomial time, whereas
an adiabatic evolution would have required exponential
time. Setting aside the fascinating and intricate field of
open-system AQC where relaxation can play a beneficial
role in returning the computation to the ground state [the
subject of a separate review (Albash and Lidar, 2017)],
this is one among several cases where non-adiabatic, i.e.,
diabatic evolution enhances the performance of a quan-
tum algorithm based on Hamiltonian computation. An-
other example is (Crosson et al., 2014) [see also (Hor-
mozi et al., 2016)] where it was observed that evolving
rapidly (as well as starting from excited states) increased
the success probability on the hardest instances of ran-
domly generated n = 20 MAX-2-SAT instances with a
unique ground state. When evolving rapidly, population
leaks into the first excited state before the avoided-level
crossing and then returns to the ground state after the
avoided-level crossing. An instance of this behavior is
shown in Fig. 11.

A similar result was observed in (Muthukrishnan et al.,
2016) for a large class of Perturbed Hamming Weight
problems (recall Sec. VI.E.1), but with the difference
that the rapid evolution diabatically pushes population
to higher excited states and then returns to the ground
state through a series of avoided-level crossings, a phe-
nomenon called “diabatic cascade”.

These results raise the question of whether adiabatic
evolution is in fact the most efficient choice for running
a quantum adiabatic algorithm. After all, the goal is to
find the ground state once, with the highest probability
and in the shortest amount of time. Therefore, rather
than maximizing the probability by increasing the evolu-
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FIG. 11 Overlap squared of the evolved wavefunction |ψ(t)〉
and the instantaneous ground state |ψ0(t)〉 and first excited
state |ψ1(t)〉 for an instance of MAX-2-SAT with n = 20 and
with a total time T = 10. Because of the rapid evolution,
population leaks out of the ground state and hence the de-
crease in the ground state population. There is an avoided
level crossing at approximately t/T = 0.65, where the pop-
ulation between the ground state and first excited state are
effectively swapped. Therefore, if more substantial leaking
into the first excited state occurs, this will lead to an increase
in probability of finding the ground state at the end of the
evolution. From (Crosson et al., 2014).

tion time tf , we can instead use many rapid repetitions of
the algorithm to simultaneously shorten tf and increase
the success probability. Let pS(tf ) denote the single-run
success probability of the algorithm with evolution time
tf . The probability of failing to find the ground state
after R independent repetitions is (1−pS)R, so the prob-
ability of succeeding at least once is 1− (1− pS)R, which
we set equal to the desired probability pd. The trade-
off between success probability and run-time is there-
fore well captured by the time-to-solution (TTS) met-
ric, which measures the time required to find the ground
state at least once with probability pd (typically taken to
be 99%):

TTS(tf ) = tf
ln(1− pd)

ln[1− pS(tf )]
. (212)

Other metrics exist that quantify this tradeoff, e.g., with-
out insisting on finding the ground state (King et al.,
2015), or that make use of optimal stopping theory and
assign a cost to each run (Vinci and Lidar, 2016).

For pS . 1 (close to the adiabatic limit), only a single
(or few) repetitions of the algorithm are necessary and
the TTS scales linearly with tf . As tf is lowered, the
success probability typically decreases and more repeti-
tions are necessary, but the TTS may in fact be lower
because of the smaller tf value. The optimal tf for the
algorithm minimizes the TTS, and is defined as:

TTSopt = min
tf>0

TTS(tf ) . (213)
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Benchmarking of algorithms then proceeds as follows.
For a specific class of problem instances of varying sizes
n, TTSopt is calculated for each size n. The scaling of
the algorithm with n is then determined from the scaling
with n of TTSopt, as, e.g., in (Boixo et al., 2014).

One advantage of this approach is in obtaining a
limited quantum speedup. For example, the constant
gap perturbed Hamming weight oracular problems (Re-
ichardt, 2004) [Sec. VI.D.1] and the “spike” problem of
(Farhi et al., 2002a) [Sec. VI.E.1] with a polynomially
closing quantum gap, can be solved in O(1) time using
a classical algorithm. However, these problems exhibit a
limited quantum speedup in the sense that QA offers a
TTS that scales better than SA with single-spin updates
(Muthukrishnan et al., 2016).

VIII. OUTLOOK AND CHALLENGES

Adiabatic quantum computing has blossomed from a
speculative alternative approach for solving optimization
problems, to a formidable alternative to other universal
models of quantum computing, with deep connections
to both classical and quantum complexity theory, and
condensed matter physics.

In this review we have given an account of most of the
major theoretical developments in the field. Of course,
some omissions were inevitable. For example, a poten-
tially promising application of AQC is in quantum chem-
istry, where the calculation of molecular energies can
be formulated in terms of a second-quantized fermionic
Hamiltonian that is mapped, via a generalized Jordan-
Wigner transformation (Bravyi and Kitaev, 2002; P. Jor-
dan and E. Wigner, 1928), to a non-stoquastic qubit
Hamiltonian (Aspuru-Guzik et al., 2005; Seeley et al.,
2012). This mapping generates k-local interactions, but
perturbative gadgets can be used to reduce the problem
to only 2-local interactions (Babbush et al., 2014b). The
ground state of the mapped Hamiltonian can then be pre-
pared using adiabatic evolution followed by appropriate
measurements to determine the energy spectrum. How-
ever, the scaling of the minimum gap for such a prepara-
tion procedure is not known, and hence this is an exam-
ple of AQC with a non-stoquastic Hamiltonian for which
it is unknown whether a quantum speedup is possible.
A variety of other interesting AQC results with an un-
known speedup, and which we did not have the space
to review here in detail, can be found in (Behrman and
Steck, 2016; Cao et al., 2016; Chancellor, 2016; Dulny
and Kim, 2016; Durkin, 2016; Goto, 2016; Hashizume
et al., 2015; Inack and Pilati, 2015; Karimi and Rosen-
berg, 2016; Karimi and Ronagh, 2016; Kurihara et al.,
2014; Miyahara and Tsumura, 2016; O’Gorman et al.,
2015; Rajak and Chakrabarti, 2014; Raymond et al.,
2016; Rosenberg et al., 2016; Santra et al., 2016; Sato
et al., 2014).

Moreover, to make the review comprehensive and de-
tailed enough to be self-contained, we focused only on
the closed-system setting, thus completely ignoring the
important problem of AQC in open systems, with the
associated questions of error correction and fault toler-
ance. We also left out the experimental work on AQC and
quantum annealing. These important topics will be the
subject of a separate review (Albash and Lidar, 2017).

Due to the prominence of stoquastic Hamiltonians
in the body of work on AQC, we coined a new term,
StoqAQC, which is roughly what was meant when the
term “quantum adiabatic algorithm” was first intro-
duced. Correspondingly, we devoted a substantial part
of this review to StoqAQC, despite the fact that there
are indications that this model of computation may not
be more powerful than classical computing. Its promi-
nence is explained by the fact that it is easier to ana-
lyze than universal AQC, which requires non-stoquastic
terms, and by the fact that it is easier to implement ex-
perimentally [see, e.g., (Bunyk et al., 2014; Weber et al.,
2017)]. The relatively short history of AQC has wit-
nessed a fascinating battle of sorts between attempts to
show that StoqAQC fails to deliver quantum speedups,
and corresponding refutations by clever tweaks. To put
this and other results we have discussed in the proper
perspective, we conclude with a list of 10 key theoretical
challenges for the field of AQC:

1. Prove or disprove that StoqAQC is classically effi-
ciently simulatable.

2. Find an NP-hard optimization for which AQC gives
a quantum speedup in the worst case.

3. Find a class of non-oracular, physically realizable
optimization problems for which AQC gives a quan-
tum speedup.

4. Identify a subset of non-stoquastic Hamiltonians
for which ground state preparation can be done ef-
ficiently using adiabatic evolution.

5. Formulate every quantum algorithm that gives a
speedup in the circuit model natively as an AQC
algorithm (i.e., directly, without using perturbative
gadgets).

6. Find a problem that can be solved with a quantum
speedup using AQC, that was not previously known
from other models of quantum computing.

7. Give a way to decide whether adiabatic evolution
gives rise to a stronger or weaker speedup than non-
adiabatic (diabatic) evolution for a given problem.

8. Predict the optimal adiabatic schedule for a given
problem without a priori knowledge of the size
and/or position of its spectral gap.
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9. Prove or disprove that tunneling can generate a
(scaling, not prefactor) quantum speedup in AQC.

10. Establish the relation between entanglement and
quantum speedups using AQC.

Solving these problems will likely keep researchers busy
for years to come, require interdisciplinary collabora-
tions, and will significantly advance our understanding
of AQC. We hope that this review will catalyze new and
productive approaches, enhancing our repertoire of al-
gorithms that give rise to quantum speedups from the
unique perspective of AQC.
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Appendix A: Technical calculations

1. Upper bound on the adiabatic path length L

Right below Eq. (14) we claimed that an upper bound
on L is maxs ‖Ḣ(s)‖/∆. To see this differentiate the
eigenstate equation H|εa〉 = εa|εa〉 for the normalized
instantaneous eigenstate |εa〉 and inner-multiply by 〈εb|,
with b 6= a, to get (εa − εb)〈εb|ε̇a〉 = 〈εb|Ḣ|εa〉. Let
∆ba = εb − εa and ∆a = minb mins ∆ba(s). Using our
phase choice:

|ε̇a〉 =
∑

b

|εb〉〈εb|ε̇a〉 =
∑

b6=a
|εb〉〈εb|ε̇a〉

= −
∑

b6=a
|εb〉〈εb|Ḣ|εa〉/∆ba . (A1)

Thus

‖|ε̇a〉‖ ≤
1

∆a
‖
∑

b 6=a
|εb〉〈εb|Ḣ|εa〉‖

≤ 1

∆a
‖
∑

b 6=a
|εb〉〈εb|‖‖Ḣ|εa〉‖ ≤

1

∆a
‖Ḣ|‖ , (A2)

where in the last equality we used the definition of the
operator norm and the fact that

∑
b 6=a |εb〉〈εb| is a pro-

jector. Integration just multiplies by 1.

2. Proof of the inequality given in Eq. (25)

Note that

‖∂sH[A(s)]‖ = |∂sA| ‖H1 −H0‖ ≤ 2|∂sA| (A3a)
∥∥∂2

sH[A(s)]
∥∥ ≤ 2|∂2

sA| (A3b)

for the interpolating Hamiltonian (16). Also note that

∂2
sA(s) = cp∆p−1[A(s)]

d∆

dA
∂sA(s) (A4a)

= c2p
d∆

dA
∆2p−1[A(s)] . (A4b)

Thus:

∫ 1

0

(∥∥∂2
sH[A(s)]

∥∥
∆2[A(s)]

+
‖∂sH[A(s)]‖2

∆3[A(s)]

)
ds

≤ 2

∫ 1

0

( |∂2
sA|

∆2[A(s)]
+

2|∂sA|2
∆3[A(s)]

)
ds (A5a)

=

∫ 1

0

2c2
(
p
d∆

dA
+ 2

)
∆2p−3[A(s)]ds (A5b)

= 2c

∫ 1

0

(
p
d∆

du
+ 2

)
∆p−3(u)du (A5c)

= 4c

∫ 1

0

∆p−3(u)du , (A5d)
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where in line (A5c) we used the change of variables
u = A(s), so that ds = du/∂sA = du/[c∆p(u)], and

in line (A5d) we used B(p) ≡ 2c
∫ 1

0
∆p−3d∆ = 0,

since B(2) = 2c ln[∆(1)/∆(0)] = 0 and B(p 6= 2) =
2c
p−2

(
∆p−2(1)−∆p−2(0)

)
= 0, due to the boundary con-

ditions ∆(0) = ∆(1) = 1 [Eq. (18a)].

Appendix B: A lower bound for the adiabatic Grover search
problem

Here we show that there is no schedule that gives a
better scaling for the adiabatic Grover problem than the
one discussed in Sec. III.A.2, resulting in a quadratic
quantum speedup. The argument is due to (Roland and
Cerf, 2002), which in turn is based on the general Hamil-
tonian quantum computation argument by (Farhi and
Gutmann, 1998).

To show this, consider two different searches, one for
m and another for m′. We do not allow the schedule to
depend on m, i.e., the same schedule must apply to all
marked states. Let us denote the states for each at the
end of the algorithm by |ψm(tf )〉 and |ψm′(tf )〉. In order
to be able to distinguish if the search gave m or m′, we
must require that |ψm(tf )〉 and |ψm′(tf )〉 are sufficiently
different. Let us define the distance (or infidelity)

Dmm′(t) ≡ 1− |〈ψm(t)|ψm′(t)〉|2 , (B1)

[note that Dmm′(0) = Dmm(t) = 0] and demand that:

Dmm′(tf ) ≥ ε , m 6= m′ . (B2)

First, we have a lower bound on the sum:

∑

m,m′

Dmm′(tf ) =
∑

m6=m′
Dmm′(tf )

≥
∑

m6=m′
ε = N(N − 1)ε . (B3)

Next, let us find an upper bound on the sum. We
write the Hamiltonian (16) explicitly as H(t) = 11− [1−
A(t)]|φ〉〈φ| + H1m(t) where H1m(t) = −A(t)|m〉〈m|.39

Then:

d

dt
Dmm′(t) = 2= [〈ψm|(H1m −H1m′)|ψm′〉〈ψm′ |ψm〉]

≤ 2 |〈ψm|(H1m −H1m′)|ψm′〉〈ψm′ |ψm〉|
≤ 2|〈ψm|H1m|ψm′〉|+ 2|〈ψm|H1m′ |ψm′〉| .

(B4)

39 Optimality applies to arbitrary driving Hamiltonians. Hence the
lower bound holds more generally, and does in fact not require
the initial Hamiltonian to be a projector onto the uniform super-
position as we have done here for simplicity.

Let us now sum over all m and m′:
∑

m,m′

d

dt
Dmm′(t) ≤ 4

∑

m,m′

|〈ψm|H1m|ψm′〉| (B5)

≤ 4
∑

m,m′

‖H1m|ψm′〉‖‖|ψm〉‖ = 4
∑

m,m′

‖H1m|ψm′〉‖ ,

where we first used the fact that under the sum the
two terms in the last line of Eq. (B4) are identical, and
then we used the Cauchy-Schwartz inequality (|〈x|y〉| ≤
‖x‖‖y‖). Now we note that:
∑

m

‖H1m|ψm′〉‖2 =
∑

m

〈ψm′ |H1mH1m|ψm′〉 (B6)

= A2(t)
∑

m

〈ψm′ |m〉〈m|ψm′〉 = A2(t) ,

so that
(∑

m

‖H1m|ψm′〉‖
)2

= (~x · ~y)
2 ≤ (~x·~x)(~y ·~y) = NA2(t) ,

(B7)
where ~x = (‖H11|ψm′〉‖, ‖H12|ψm′〉‖, . . . , ‖H1N |ψm′〉‖)
and ~y = (1, 1, . . . , 1). Therefore, we have:

∑

m,m′

d

dt
Dmm′(t) ≤ 4

∑

m,m′

‖H1m|ψm′〉‖

≤ 4
∑

m′

√
NA(t) = 4N

√
NA(t) . (B8)

If we integrate both sides we have:

∑

m,m′

Dmm′(tf ) ≤ 4N
√
N

∫ tf

0

A(t)dt ≤ 4N
√
Ntf .

(B9)

Combining this with Eq. (B3), we have N(N − 1)ε ≤
4N
√
Ntf , and hence:

tf ≥
ε

4

N − 1√
N

, (B10)

so that the computation must last a minimum time of
O(
√
N) if the schedule is to be agnostic about the identity

of the marked state. Therefore, the solution using the
locally optimized schedule is asymptotically optimal.

Appendix C: Technical details for the proof of the
universality of AQC using the History State construction

We add details to the proof sketch given in Sec. IV.B.

1. |γ(0)〉 is the ground state of Hinit

Let us first check that |γ(0)〉 is the ground state of
Hinit with eigenvalue 0. Note that Hinit is a sum of pro-
jectors, so it is positive semi-definite. Therefore if we find
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a state with energy 0, then it is definitely a ground state.
The all-zero clock state is annihilated by Hc, Hinput, and
Hc−init, so we have Hinit|γ(0)〉 = 0, i.e., |γ(0)〉 is a ground
state of Hinput. We shall show later that it is a unique
ground state.

2. |η〉 is a ground state of Hfinal

Next we check that |η〉 is a ground state of Hfinal with
eigenvalue 0. First, we wish to show that Hfinal is positive
semi-definite. We already know that Hinput and Hc are
positive semi-definite, so we only need to show this to
be the case for the H`’s. This follows since it is easily
checked that H` = H†` = 1

2H
2
` , so that 〈X|H`|X〉 =

1
2 〈X|H

†
`H`|X〉 = 1

2‖H`|X〉‖2 ≥ 0. Thus H(s) is positive
semi-definite, since it is a sum of positive semi-definite
terms.

Let us now check that Hfinal annihilates |η〉. First, be-
cause |η〉 only involves legal clock states, it is annihilated
by Hc. Next,

Hinput|η〉 = Hinput
1√
L+ 1

|α(0)〉 ⊗ |0L〉c = 0 . (C1)

Finally, note that the only non-zero terms in
∑L
`=0H`|η〉

are of the form:

H`|α(`− 1)〉 ⊗ |1`−10L−`+1〉c = (C2a)

|α(`− 1)〉 ⊗ |1`−10L−`+1〉c − |α(`)〉 ⊗ |1`0L−`〉c
H`|α(`)〉 ⊗ |1`0L−`〉c = (C2b)

− |α(`− 1)〉 ⊗ |1`−10L−`+1〉c + |α(`)〉 ⊗ |1`0L−`〉c ,

which cancel. Therefore, |η〉 has eigenvalue 0 and is a
ground state of Hfinal.

3. Gap bound in the space spanned by {|γ(`)〉}L`=0

Let S0 be the space spanned by {|γ(`)〉}L`=0. Let us
show that H(s) acting on any state in S0 keeps it in this
subspace:

Hc|γ(`)〉 = 0 , (C3a)

Hinput|γ(`)〉 = 0 , (C3b)

Hc−init|γ(`)〉 =

{
0 , ` = 0
|γ(`)〉 , ` 6= 0

(C3c)

H`|γ(`′)〉 = δ`′,` (|γ(`− 1)〉 − |γ(`)〉)
+ δ`′,` (|γ(`)〉 − |γ(`− 1)〉) . (C3d)

Since the initial state |γ(0)〉 ∈ S0, the dynamics gener-
ated by H(s) keep the state in S0. Thus, it is sufficient
to bound the gap in this subspace. In the basis given by
{|γ(`)〉}L`=0, we can write an (L+1)× (L+1) matrix rep-
resentation of the Hamiltonian in the S0 subspace, which,

using Eq. (C3), is:

HS0(s) = (1− s)




0 0 0 . . .
0 1 0

1
. . .

1 0
1




(C4)

+s




1
2 − 1

2 0 0 . . . 0
− 1

2 1 − 1
2

0 − 1
2 1 − 1

2
...

. . .
. . .

. . .

− 1
2 1 − 1

2
0 − 1

2
1
2




.

a. Bound for s < 1/3

Let us first bound the gap for s < 1/3. The Ger-
schgorin circle theorem states (Gershgorin, 1931):
Let A be any matrix with entries aij. Consider the disk
Di (for 1 ≤ i ≤ n) in the complex plane defined as:

Di =
{
z
∣∣∣ |z − aii| ≤

∑
j 6=i |aij |

}
. Then the eigenvalues

of A are contained in ∪iDi and any connected component
of ∪iDi contains as many eigenvalues of A as the number
of disks that form the component.

Consider the cases i = 1, i = L + 1, and i 6= 1, L + 1
separately. Note that when s < 1/3:

[HS0
(s)]11 =

1

2
s <

1

6
,
∑

j 6=1

|a1j | =
1

2
s <

1

6
,

(C5a)

[HS0
(s)]L+1,L+1 = 1− 1

2
s > 5/6

∑

j 6=L+1

|aL+1,j | = s <
1

3
, (C5b)

[HS0(s)]ii = 1 , i 6= 1, L+ 1
∑

j 6=i
|a1j | =

1

2
s <

1

3
. (C5c)

Therefore, we can identify a disk D1 centered at z ≤ 1
6 on

the real line with radius ≤ 1
6 . The closest possible disk

to it which does not overlap it, is the disk DL+1 centered
at z ≥ 5/6 with a radius ≤ 1/3. Therefore, since no disks
intersect D1, it covers the smallest values on the real line,
and it follows that the ground state for s < 1/3 is unique.
Furthermore, we have learned that the minimum gap is a
constant of at least 1/6, since that is the closest distance
between D1 and DL+1. (This also proves that |γ(0)〉 is
the unique ground state at s = 0.)
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b. Bound for s ≥ 1/3

Now let s ≥ 1/3 and consider the matrix representa-
tion of G(s) ≡ 11−HS0

(s) in the same basis:

G(s) =




1− 1
2s

1
2s

1
2s 0 1

2s
. . .

. . .
. . .

0 1
2s

1
2s

1
2s




. (C6)

This matrix is Hermitian and has all non-negative real
entries for 0 < s ≤ 1. Note that increasing powers of
G(s) fill more of the matrix, and G(s)L+1 has all posi-
tive entries for 0 < s ≤ 1. We can thus invoke Perron’s
theorem:
Let G be a Hermitian matrix with real non-negative en-
tries. If there exists a finite k such that all entries of Gk

are positive, then G’s largest eigenvalue is positive and all
other eigenvalues are strictly smaller in absolute value.
The eigenvector corresponding to the largest eigenvalue
is unique, and all its entries are positive.

Therefore, by Perron’s theorem, G(s)’s largest eigen-
value µmust be positive, and the associated unique eigen-
vector ~α = (α1, . . . , αL+1) has αi > 0. Let us use this to
define a matrix P with entries Pij =

αj
µαi

Gij ≥ 0, such
that

∑

j

Pij =
1

µαi

∑

j

Gijαj = 1 , (C7)

where we used that ~α is an eigenvector of G with eigen-
value µ. Thus P is a stochastic matrix (it has only non-
negative entries and its rows sum to 1). Now note that if
(α1v1, . . . αL+1vL+1) is a left eigenvector of P with eigen-
value ν/µ, then (v1, . . . vL+1) is an eigenvector of G with
eigenvalue ν:

ν

µ
αjvj =

∑

i

αiviPij =
∑

i

vi
αj
µ
Gij =

αj
µ

∑

i

Gjivi

=⇒ νvj =
∑

i

Gjivi . (C8)

It is straightforward to check that the reverse also holds:
if (v1, . . . vL+1) is an eigenvector of G with eigenvalue ν,
then (α1v1, . . . αL+1vL+1) is a left eigenvector of P with
eigenvalue ν/µ. By taking ~v = ~α, which corresponds to
the largest eigenvalue (ν = µ) of G, it then follows that
~α2 =

(
α2

1, . . . α
2
L+1

)
is a left eigenvector of P with the

maximal eigenvalue 1. If we normalize ~α2, i.e., define

~Π =
1

Z

(
α2

1, . . . α
2
L+1

)
, Z =

∑

i

α2
i , (C9)

then ~Π is the limiting distribution of P , i.e., P ~Π = ~Π.
We can then relate the energy gap between the highest
and second highest eigenvalue (let us denote it by δ/µ) of

P to the energy gap between the ground state energy of
H (given by 1− µ = λ) and the first excited state (given
by 1− δ)

∆largest(P ) = 1− δ

µ
=
µ− δ
µ

=
∆(HS0

)

1− λ . (C10)

where “largest” denotes the gap from the largest eigen-
value of P to the next largest eigenvalue. We wish to
bound the gap of P and hence of H(s). Let us de-
fine a non-empty set B ⊆ {1, 2, . . . , L+ 1} satisfying∑
i∈B Πi ≤ 1

2 , where Πi are the entries of ~Π. Then the
conductance of P , ϕ(P ) is defined as:

ϕ(P ) = min
B

F (B)

Π(B)
, (C11)

where

F (B) =
∑

i∈B

∑

j /∈B
ΠiPij , (C12a)

Π(B) =
∑

i∈B
Πi . (C12b)

The Conductance bound (Sinclair and Jerrum, 1989)
then states that

∆largest(P ) ≥ 1

2
ϕ(P )2 . (C13)

To use the result of the Conductance bound, we would
like to show that the ground state of H(s) [and hence the
eigenstate associated with the largest eigenvalue of G(s)]
is monotone, i.e., that α1 ≥ α2 ≥ · · · ≥ αL+1 ≥ 0. The
case s = 0 is obvious, so consider s > 0. First note that
G(s) applied to a monotone vector generates a monotone
vector, i.e., G(s) preserves monotonicity. To see, this
consider G(s)~v = ~w with ~v monotone. The components
of ~w are given by:

w1 =

(
1− 1

2
s

)
v1 +

1

2
sv2 (C14a)

wk =
1

2
svk−1 +

1

2
svk+1 , 2 ≤ k ≤ L (C14b)

wL+1 =
1

2
svL +

1

2
svL+1 (C14c)

Therefore we have:

w1 − w2 = (1− s)v1 +
1

2
s (v2 − v3) (C15a)

wk − wk+1 =
1

2
s (v1 − v2 + v3 − v4) , 2 ≤ k ≤ L− 1

(C15b)

wL − wL+1 =
1

2
s (vL−1 − vL) , (C15c)

which clearly are all ≥ 0 by the monotonicity of ~v and
s ≤ 1. Therefore ~w is also monotone.
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Recall that G(s) is Hermitian, so it has an orthonormal

set of eigenvectors {|vi〉}L+1
i=1 with eigenvalues µi, where

|v1〉 = ~α and µ1 = µ.40 Because these eigenvectors form

a basis we can always find a set of coefficients {ci}L+1
i=1

such that:
∑

i

ci|vi〉 = (1, . . . , 1) = ~1 . (C16)

Then:
(

1

µ1
G(s)

)k∑

i

ci|vi〉 =
∑

i

(
µi
µ1

)k
ci|vi〉 (C17a)

=⇒
(

1

µ1
G(s)

)k
~1T =

∑

i

(
µi
µ1

)k
~1T . (C17b)

Using |µi| < µ1 by Perron’s theorem, we have from
Eq. (C17a) that:

lim
k→∞

(
1

µ1
G(s)

)k∑

i

ci|vi〉 = c1|v1〉 , (C18)

Since the quantities
(

1
µ1
G(s)

)k
(for k ≥ L + 1),

∑
i ci|vi〉 = ~1, and |v1〉 = ~α are all positive, it follows

that also c1 > 0. Since ~1 is monotone and G(s) preserves
monotonicity, we have finally established that |v1〉 = ~α is

monotone. This then implies that ~Π [Eq. (C9)] is mono-
tone.

We are ready to calculate the conductance ϕ(P ). First,

consider the case where the first index (of ~Π) is in the set
B, i.e., 1 ∈ B. Let k be the smallest index such that
k ∈ B but k + 1 /∈ B. (Note that from the form of P ,
only P11, Pj,j+1, PL+1,L+1 are nonzero.) Then we have
for F (B):

F (B) =
∑

i∈B,i6=k

∑

j /∈B
ΠiPij + ΠkPk,k+1 ≥ ΠkPk,k+1

= Πk

√
Πk+1

µ
√

Πk

[G(s)]k,k+1 =

√
ΠkΠk+1

1− λ [G(s)]k,k+1

≥ Πk+1

1− λ [G(s)]k,k+1 , (C19)

where the last inequality follows from the monotonicity
of ~Π. Because 0 < 1−λ ≤ 1, and [G(s)]k,k+1 = 1

2s ≥ 1/6
for s ≥ 1/3, it follows that:

F (B = {1, others, k}) ≥ Πk+1

6
. (C20)

Since by definition Π(B) ≤ 1/2, then Π(B̄) ≥ 1/2 where
B̄ is the complement of B, but since the largest possible

40 Note that we abuse notation and mix kets with standard vec-
tors here, and also do not use transpose notation to distinguish
column from row vectors.

size of B̄ is L (recall that 1 ∈ B), it follows that Π(B̄) ≤
LΠk+1, so that Πk+1 ≥ 1/(2L), and hence:

F (B = {1, others, k})
Π(B)

≥ 1

6L
. (C21)

Next consider the case where 1 /∈ B. Now let k be the
smallest index such that k /∈ B but k + 1 ∈ B. Then:

F (B) =
∑

i∈B,i6=k+1

∑

j /∈B
ΠiPij + Πk+1Pk+1,k (C22a)

≥ Πk+1Pk+1,k ≥
Πk+1

6
. (C22b)

In this case, since the maximum size of B is L but it
excludes the index 1, we have Π(B) ≤ LΠk+1, so that
F (B) ≥ Π(B)/(6L). Therefore, we again find the condi-
tion (C21). Thus, by the conductance bound [Eq. (C13)]:

∆(P ) =
∆(HS0)

1− λ ≥ 1

2

(
1

6L

)2

. (C23)

Now since λ is the ground state of HS0 , for any state in
|v〉 ∈ S0, we must have 〈v|HS0

|v〉 ≥ λ. In particular:

〈γ(0)|HS0 |γ(0)〉 =
1

2
s ≥ λ , (C24)

i.e., λ ≤ 1/2. This finally yields Eq. (79).

4. Gap bound in the entire Hilbert space

Let us now go a step further and show how the global
gap (i.e., not restricted to the S0 subspace) scales with
L. Let S denote the subspace spanned by all legal clock
states. The dimensions of this subspace will be dim(S) =
(L+ 1)2n, since we have L+ 1 legal clock states and 2n

computational states. H(s) acting on any state in S does
not generate any illegal clock states, so for any |v〉 ∈ S
we have H(s)|v〉 ∈ S. Similarly, for any state in the
orthogonal subspace S⊥, i.e., the subspace of illegal clock
states, for any state |v⊥〉 ∈ S⊥, we have H(s)|v⊥〉 ∈ S⊥.
Therefore, the eigenstates of H(s) below either to S or
to S⊥, and H(s) is block diagonal with blocks HS(s) and
HS⊥(s) that can be diagonalized independently.

Let us first restrict to HS⊥(s). Hc penalizes all illegal
clock states by at least one unit of energy and acts as the
identity on the computational qubits. Therefore, it shifts
the entire spectrum of S⊥ by at least one unit of energy.
Since the remaining terms are positive semi-definite, they
cannot lower the energy. Therefore, regardless of the
form of the ground state in the subspace, it has an energy
of at least one unit.

Let us now restrict to HS(s) and define:

|γj(`)〉 = |αj(`)〉 ⊗ |1`0L−`〉c , (C25)

where |αj(`)〉 is the state of the circuit at time ` had the
input state been given by the binary representation of j
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(e.g., if j = 4, the input configuration of the circuit would
have been |0n−3130201〉). Note that |γ0(`)〉 = |γ(`)〉.
Let Sj denote the space spanned by {|γj(`)〉}L`=0. Since
HS(s) cannot mix states with different j subindices (it
can only propagate forward or backward in `), HS(s)
is block diagonal in the subspaces Sj . Therefore, we
only need to find the minimum ground state energy of
HSj>0

(s) to determine the minimum gap from HS0
(s).

In order to determine the ground state energy of HSj ,
we notice that we can write:

HSj (s) = H0(s) +HSj ,input , j > 0 (C26)

where H0(s) has exactly the same spectral properties as
HS0

except in the Sj subspace. The reason for this de-
composition is because Hinput is zero in S0 and hence is
absent from HS0

(s). Note that:

HSj ,input|γj(`)〉 =

{
k|γj(0)〉, ` = 0
0 , ` > 0

(C27)

(recall that Hinput projects onto the 0 clock state, which
is why for ` > 0 we have zero.) Therefore, in the basis

{|γj(`)〉}L`=0, we can write the matrix representation of
HSj ,input as:

HSj ,input =




k 0
0

. . .

0 0


 , (C28)

where k ≥ 1 denotes the number of 1’s in the binary
representation of j > 0. In particular, note that it is di-
agonal in this basis. We now use the Geometrical Lemma
(Aharonov and Naveh, 2002; Kitaev et al., 2000):
Let H1 and H2 be two Hamiltonians with ground state
energies g1 and g2 respectively. Both Hamiltonians have
a ground state energy gap to the first excited state that
is larger than Λ. Let the angle between the two ground
subspaces be θ.41. Then the ground state energy (g0) of
H0 = H1 +H2 is at least g1 + g2 + Λ(1− cos θ).

Let H1 = H0 and H2 = HS1,input. We saw that the
ground state gap of H1 is Ω(1/L2) and that of H2 is
1, so we can take Λ = Ω(1/L2). The ground state en-
ergy of H2 is g2 = 0. Therefore, using the Geometrical
Lemma, we have g0 − g1 ≥ Λ(1 − cos θ). It remains to
bound the angle between the two ground spaces. From
Eq. (C28), it is clear that the (degenerate) ground state of

H2 can be written as a linear combination of {|γj(`)〉}L`=1,
whereas the (unique) ground state of H1 can be written

41 The angle θ is defined via cos θ = maxv1,v2 |〈v1|v2〉|, where |vi〉
belongs to space i.

as a monotone vector in {|γj(`)〉}L`=0. Therefore:

cos θ = max
{c`′}

∣∣∣∣∣
L∑

`=0

α`〈γj(`)|
L∑

`′=1

c`′ |γj(`′)〉
∣∣∣∣∣

= max
{c`′}

∣∣∣∣∣
L∑

`=1

α`c`〈γj(`)|γj(`)〉
∣∣∣∣∣ (C29)

≤ max
{c`′}

L∑

`=1

α` |c`| ≤
√

L

L+ 1
≤ 1− 1

2L
,

where we have used that ~α is monotone so that c` =

α`

√
L+1
L maximizes the sum. Therefore, the global

gap can be bounded from below by Ω(1/L3), which is
Eq. (80).

Appendix D: Proof of the Amplification Lemma (Claim 1)

To prove Claim 1, define a new verifier V ∗(η,X)
which amounts to repeating V (η,X) K times, where
K = poly(|η|) to keep the verifier efficient, and taking
a majority vote on the output, i.e., Pr(V ∗(η,X) = 1) =

Pr
(∑K

i=1 Vi > K/2
)

, where Vi ∈ {0, 1} is the random

number associated with the i-th run of V (η,X).
Now recall the multiplicative Chernoff bound:

Pr

(
K∑

i=1

Yi ≤ (1− β)Kp

)
≤ e−β2Kp/2 , 0 < β < 1

Pr

(
K∑

i=1

Yi ≥ (1 + β)Kp

)
≤ e−β2Kp/(2+β) , 0 < β ,

(D1)

for p = E(Y ) where Y ∈ {0, 1} is a random variable.
Consider first take the case where Q(η) = 1. In that
case, p ≥ 2/3. If we now pick β = 1 − 1/(2p) (i.e.,
1/4 ≤ β ≤ 1/2) in the Chernoff bound, then:

Pr

(
K∑

i=1

Vi >
K

2

)
= 1− Pr

(
K∑

i=1

Vi ≤
K

2

)
(D2)

≥ 1− e−
(p−1/2)2K

2p ≥ 1− e−
(2/3−1/2)2K

4/3 .

For the case where Q(η) = 0, p ≤ 1/3, take β = 1/(2p)−
1 > 0, so that:

Pr

(
K∑

i=1

Vi >
K

2

)
≤ Pr

(
K∑

i=1

Vi ≥
K

2

)
(D3)

≤ e−
(p−1/2)2K
p(p+1/2) ≤ e−

(1/3−1/2)2K
(1/3+1/2)/3 .

This shows that MA(2/3, 1/3) = MA(1 − e−|η|g , e−|η|g ),
since K = poly(|η|).

To show that MA(c, c − 1/|η|g) ⊆ MA(2/3,1/3), it is
sufficient to show that when Q(η) = 0 it is exponentially
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unlikely that Merlin is able to fool Arthur that Q(η) =
1. Therefore consider the probability of fooling Arthur,
i.e., Pr (V ∗(η,X) = 1) > c when Q(η) = 0. Take p =
Pr (V (η,X) = 1) = c− 1/|η|g. Then:

Pr (Arthur fooled) = Pr

(
K∑

i=1

Vi ≥ Kc
)

(D4)

= Pr

(
1

K

K∑

i=1

Vi ≥ p+ ε

)
,

where we take ε = 1/|η|g. Using the additive Chernoff
bound:

Pr

(
1

K

K∑

i=1

Yi ≥ p+ ε

)
≤ e−KD(p+ε‖p) , (D5)

where

D(x‖y) = x ln
x

y
+ (1− x) ln

1− x
1− y (D6)

is the Kullback-Leibler divergence. Expanding D(p +

ε‖p) = ε2

2p(1−p) +O(ε3), we see that if K = ε−2−ε, where

0 < ε � 1, then we can exponentially suppress the
probability that Arthur is fooled by Merlin while keeping
K = poly(|η|).

Appendix E: Perturbative Gadgets

In this section we review the subject of perturbative
gadgets, which have played an important role in the re-
duction of the locality of interactions in the proofs of
QMA completeness and the universality of AQC. These
tools are generally useful. Our discussion is based pri-
marily on (Jordan and Farhi, 2008) [see also (Bravyi
et al., 2008a)]. To set up the appropriate tools we first
briefly review degenerate perturbation theory.

1. Degenerate Perturbation Theory à la (Bloch, 1958)

Consider H = H0 + λV where H0 has a d-dimensional
degenerate ground subspace E0 with energy 0. Let
|ψ1〉, . . . |ψd〉 be the lowest d energy eigenstates of H with
energies E1, . . . , Ed, and let their span define the sub-
space E . The goal is to define a perturbative expansion
(in λ) for the effective Hamiltonian Heff of H, defined as:

Heff(H, d) =

d∑

j=1

Ej |ψj〉〈ψj | . (E1)

We will show that this expansion converges provided λ
satisfies

‖λV ‖ < γ/4 , (E2)

where γ is the gap to the first excited state of H0. We
first show how to construct this effective Hamiltonian in
terms of other, more convenient operators.

Let P0 be the projection onto E0, and define:

|αj〉 = P0|ψj〉 , j = 1, . . . , d . (E3)

For λ sufficiently small [this will amount to satisfying

Eq. (E2)], the states {|αj〉}dj=1 are linearly indepen-

dent since the states {|ψj〉}dj=1 are only slightly per-
turbed from the eigenstates of H0. Note that the states
{|αj〉}dj=1 are not necessarily orthogonal or normalized.
There exists an operator U such that:

U|αj〉 = |ψj〉 , j = 1, . . . , d (E4a)

U|φ〉 = 0 , ∀|φ〉 ∈ E⊥0 . (E4b)

This means that:

P0U|αj〉 = P0|ψj〉 = |αj〉
=⇒ P 2

0 U|αj〉 = P0U|αj〉 = P0|αj〉
=⇒ P0U = P0 . (E5)

Let Ũ be the operator satisfying:

Ũ |ψj〉 = |αj〉 , j = 1, . . . , d (E6a)

Ũ |φ〉 = 0 , ∀|φ〉 ∈ E⊥ . (E6b)

Note that Ũ is not the inverse of U because U is not
invertible on the entire Hilbert space. Also Ũ is not P0

because of Eq. (E6b) (it annihilates all states outside of
E). Note that:

UP0Ũ |ψj〉 = |ψj〉 . (E7)

Now define:

A = λP0V U . (E8)

Note that the states {|αj〉}di=1 are right eigenvectors of
A with eigenvalues E1, . . . , Ed respectively:

A|αj〉 = λP0V |ψj〉 = P0 (H0 + λV ) |ψj〉 = P0Ej |ψj〉
= Ej |αj〉 , (E9)

where we used that P0H0 = 0 because the eigenvalue of
the ground subspace of H0 is zero. The effective Hamil-
tonian associated with H can now be constructed using
U , Ũ ,A:

Heff(H, d) = UAŨ . (E10)

To see this note that:

UAŨ|φ〉 = 0 , ∀|φ〉 ∈ E⊥ (E11a)

UAŨ|ψj〉 = UA|αj〉 = EjU|αj〉 = Ej |ψj〉 , (E11b)
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which is identical to the action of Heff on a complete
set of vectors. The strategy is now to find a perturba-
tive expansion for U , construct A using Eq. (E8), find

{|αj〉}dj=1 and {Ej}dj=1 as, respectively, the right eigen-

vectors and eigenvalues of A, and apply U to |αj〉 to get
a perturbative expansion for |ψj〉.

It can be shown that the desired perturbative expan-
sion of U and A is given by:

U = P0 +

∞∑

m=1

Um (E12a)

A = P0V

∞∑

m=1

Um =

∞∑

m=1

Am , (E12b)

where

Um =
∑

`1≥1,`2≥0,...,`m≥0
`1+···+`m=m

`1+···+`p≥p, 1≤p≤m−1

(S`1λV ) (S`2λV ) . . . (S`mλV )P0 ,

(E13a)

S` =

{ 1
(−H0)`

(11− P0) , ` > 0

−P0 , ` = 0
. (E13b)

The series in Eq. (E12) converges for ‖λV ‖ < γ/4. To
see this note that:

‖U‖ = ‖U0 +

∞∑

m=1

Um‖ ≤ ‖U0‖+

∞∑

m=1

‖Um‖

≤ 1 +

∞∑

m=1

λm
∑′
‖S`1V S`2 . . . S`mV P0‖ (E14)

≤ 1 +

∞∑

m=1

λm
∑′
‖S`1‖ . . . ‖S`m‖‖V ‖ ,

where the sum
∑′

involves summing all the different ways
to add up to m while satisfying convexity, i.e., `1 + `2 +
. . . `p ≥ p. Because of the form of S` [Eq. (E13b)], we
have:

‖S`‖ =

(
1

E
(0)
1

)`
=

1

γ`
, (E15)

where E
(0)
1 is the energy of the first excited state of H0

(corresponds to the state that minimizes H0Q0 to calcu-
late the operator norm). Therefore, we have:

‖U‖ ≤ 1 +

∞∑

m=1

λm
∑′ ‖V ‖m

γm
. (E16)

The sum
∑′

is less than the number of ways to add up
to m using m non-negative integers, which is given by(

2m−1
m

)
. However, since

∑2m−1
j=0

(
2m−1
j

)
= 22m−1, it is

clear that
(

2m−1
m

)
≤ 22m−1. Therefore, we can upper

bound the sum with this value:

‖U‖ ≤ 1 +

∞∑

m=1

22m−1 ‖λV ‖m
γm

. (E17)

This series converges if the condition for λ in Eq. (E2) is
satisfied.

2. Perturbative Gadgets

For a k-local target Hamiltonian HT, the goal is to
construct a 2-local “gadget” Hamiltonian HG, whose low
energy spectrum (captured by an effective Hamiltonian
Heff) approximates the spectrum of HT. In order to do
so, we shall use the expression in Eq. (E10) for the effec-
tive Hamiltonian in terms of the operators U and A and
use their perturbative expansion from the previous sub-
section. We shall show that for our gadget Hamiltonian,
the perturbative expansion of the effective Hamiltonian
matches that of the target Hamiltonian.

The perturbative gadget we review here uses a strongly
bound set of ancillas, coupled to the target qubits via
weaker interactions, where the latter are treated as a
perturbation. HT is then generated in low order pertur-
bation theory of the combined system consisting of both
ancilla and target qubits. Such gadgets first appeared in
the proof of QMA-completeness of the 2-local Hamilto-
nian problem via a reduction from 3-local Hamiltonian,
where they were used to construct effective 3-body inter-
actions from 2-body ones (Kempe et al., 2006).

Let Hs denote a k-local term. For the i-th qubit in
Hs, we associate an arbitrary direction in R3 denoted by
n̂s,i. A general k-local target Hamiltonian acting on n
qubits can then be expressed as:

HT =

r∑

s=1

csHs , (E18)

with Hs = σs,1σs,2 . . . σs,k where σs,j = n̂s,j · ~σs,j . The
goal is to simulate HT using only 2-local interactions.
Toward this end, introduce k ancilla qubits for each Hs,
for a total of rk ancilla qubits. Define

HG = HA + λV =

r∑

s=1

HA
s + λ

r∑

s=1

Vs (E19a)

HA
s =

k∑

i<j

1

2
(11− Zs,iZs,j) (E19b)

Vs =

k∑

j=1

cs,jσs,j ⊗Xs,j (E19c)

cs,j =

{
cs , j = 1
1 , j 6= 1

, (E19d)

where Xs,j , Zs,j are the Pauli-(x, z) operators on the j-th
ancilla qubit of Hs. Note that the ground state of HA

s is
given by the span of

{
|01 . . . 0k〉As , |11 . . . 1k〉As

}
.

Consider the k-local ancilla operator Xs ≡ Xs,1 ⊗
Xs,2 ⊗ · · · ⊗Xs,k. This operator clearly commutes with
HG. Therefore HG and the set of operators {Xs}rs=1
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share a set of eigenstates. The operator Xs has eigen-
values ±1, each with degeneracy 2k−1 (to see this sim-
ply writeXs in the basis {|±〉s,1 ⊗ |±〉s,2 ⊗ · · · ⊗ |±〉s,k}).
Therefore, HG can be block diagonalized into 2r blocks,
where each block corresponds to a fixed Xs = ±1 for
s = 1, . . . , r with dimension 2n2r(k−1). Let HG

+ denote
the block with Xs = 1 ,∀s.

Note that since HG
+ will be used to approximate HG,

the system will need to be initialized to have Xs = 1 ,∀s.
The eigenstate of Xs with eigenvalue 1 is given by

|+〉s =
1√
2

(|01 . . . 0k〉s + |11 . . . 1k〉s) , (E20)

so the ancilla qubits must be initialized to be in the state⊗s
r=1 |+〉s.
We wish to show that the low energy spectrum of HG

+

approximates the spectrum of HT. Our task is to cal-
culate Heff(HG

+ , 2
n) [in the notation of Eq. (E1)] pertur-

batively to k-th order in λ. λV will perturb the ground
subspace of HA in two ways:

1. It shifts the energy of the entire subspace;

2. It splits the degeneracy of the ground subspace be-
ginning at k-th order in perturbation theory. It is
this splitting that will allow us to mimic the spec-
trum of HT.

We analyze the shift and splitting separately. To do this,
define:

H̃eff(H, d,∆) ≡ Heff(H, d)−∆Π , (E21)

where Π is the projection onto the space spanned by
{|Ej〉}dj=1. Note that the eigenstates of H̃eff and Heff

are identical, and the energy gaps between energy levels
are identical too.

Let us start with the case where r = 1, i.e., HT =
σ1σ2 . . . σk, so that HA =

∑k
i=1

∑k
j=i+1

1
2 (1− ZiZj),

and V =
∑k
j=1 σj ⊗ Xj . We first wish to construct A

[Eq. (E8)] for HG
+ . Note that HA has a ground state

of zero energy (corresponds to all qubits with Zi = 1 or
all qubits with Zi = −1), and the first excited state has
energy γ = k − 1 (let Z1 = −1, all the rest are +1).
Furthermore:

‖V ‖ = ‖
k∑

j=1

σj ⊗Xj‖ ≤
k∑

j=1

‖σj ⊗Xj‖ = k . (E22)

Therefore, by Eq. (E2), the perturbative expansion will
converge if λ < k−1

4k . Because of the form of A
[Eq. (E12b)], all Am terms are sandwiched between P0

operators. Thus, all non-zero terms in Amust take states
in E0 and return them to states in E0. Since we have re-
stricted to the X = ⊗ki=1Xi = +1 sector, E0 is restricted
to have the ancilla qubits in the |+〉 state [Eq. (E20)].
Therefore, we can write:

P0 = 11⊗ P+ , (E23)

where P+ is the projection onto the |+〉 ancilla state.

Each term in V =
∑k
j=1 σj ⊗Xj only flips a single an-

cilla qubit. Therefore, in order for A take a state out of
E0 and return it, the power of V must either flip all ancilla
qubits or flip some and return them back to their orig-
inal value. The former process (flipping all qubits) first
happens at k-th order in perturbation theory. The lat-
ter process (flipping and returning) can happen at lower
orders than k, but A is then proportional to P0 since
the product of V ’s effectively cancel. To see how this
works, consider A up to second order for k > 2. From
the perturbation expansion [Eq. (E12b)] we have:

A≤2 = λP0V P0 + λ2P0V S1V P0 , (E24)

but P0V P0 = 0 since V |+〉 is orthogonal to |+〉. On the
other hand, V P0 takes the system to a state with energy
k − 1 for HA, so S1V P0 = −V P0/(k − 1). Therefore:

A≤2 = − λ2

k − 1
P0V

2P0 . (E25)

Now note that:

V 2 =
∑

i

(σi ⊗Xi)
2

+
∑

i 6=j
(σi ⊗Xi) (σj ⊗Xj) . (E26)

The cross-terms are annihilated by P0 ·P0 since they take
the state out of E0. The diagonal term is proportional to
the identity on the ancilla qubits, so we have:

A≤2 = − λ2

k − 1
ΩP0 , (E27)

where Ω is an operator that depends on the particular
orientation of the σj ’s. This argument extends to order
k − 1 so that:

A≤k−1 =
∑

m even

λmΩmP0 . (E28)

At order k, something new happens. There are now cross-
term that involves all Xi’s once, i.e.,

λkP0 (σ1 ⊗X1)S1 (σ2 ⊗X2)S1 . . . S1 (σk ⊗Xk)P0 .

The S1 operator measures the successive change in energy
of the system to give an overall constant of:

(
− 1

k − 1

)(
− 1

2(k − 2)

)
. . . (− 1

(k − 1)1
)

=

k−1∏

j=1

(
− 1

j(k − j)

)
=

(−1)k−1

(k − 1)!2
. (E29)

Therefore, the cross-terms (of which there are k!, since
the operators can be multiplied in any order) then take
the form:

− (−λ)kk!

(k − 1)!2
P0 (σ1 . . . σk ⊗X)P0 . (E30)
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Thus:

A≤k = f(λ)P0 −
k(−λ)k

(k − 1)!
P0

(
HT ⊗X

)
P0 , (E31)

where f(λ) is some k-th order polynomial in λ, with co-
efficients that depend on HT. Using the form of Heff in
Eq. (E10), we have:

Heff(HG
− , 2

n) = f(λ)UP0Ũ (E32)

−U
(
k(−λ)k

(k − 1)!
P0

(
HT ⊗X

)
P0 +O(λk+1)

)
Ũ .

Recall that UP0Ũ |ψj〉 = |ψj〉 [Eq. E7] so UP0Ũ acts as
the identity in E so that the first term in Eq. (E32) can
be dropped. Furthermore, we can replace U and Ũ in the
second term by their λ0 counterpart since we are only
keeping terms to order k and the term in the parenthesis
is already of order k. Therefore:

H̃eff(HG
+ , 2

n, f(λ)) = − k(−λ)k

(k − 1)!
P0

(
HT ⊗X

)
P0

+O(λk+1) (E33)

= − k(−λ)k

(k − 1)!

(
HT ⊗ P+

)
+O(λk+1) .

This shows that the target Hamiltonian HT appears as
the leading order term in the effective Hamiltonian that
describes the 2n-Hilbert space of the n target qubits, al-
beit with a diminished magnitude of order λk/(k − 1)!.

Let us now consider the general r case, i.e., the Hamil-
tonian in Eq. (E18). We note that just as in the r = 1
case, HA again has an energy gap of k − 1. General-
izing from Eq. (E22), the perturbative expansion then
converges for:

λ <
k − 1

4‖V ‖ . (E34)

In the sector where Xs = +1, HA has the state ⊗rs=1|+〉s
as a ground state. Since HA acts as the identity on the
computational qubits, the ground state is 2n-fold degen-
erate.

In the perturbation expansion for A, products of V
again appear. Each Vs acts on a different ancilla register.
Therefore, at order k, cross-terms of different Vs’s cannot
flip all k ancilla qubits in a register, so they are annihi-
lated by P0 · P0. The only cross-terms that contribute
are k products of a given s where each ancilla qubit ap-
pears once. Therefore, the natural generalization of the
previous result is recovered, namely, Eq. (E33) continues
to hold with HT replaced by the sum over r terms as in
Eq. (E18), where again f(λ) is some polynomial in λ of
order k with coefficients that depend on csHs, and where
P+ is the projector onto ⊗s|+〉s.

Note that the convergence condition (E34) requires the
interaction term V to be stronger than the effective in-
teraction it generates, which scales as λk [as can be seen

from Eq. (E33)]. This may pose implementation diffi-
culties, since a practical device is likely to have only a
limited range of interaction strengths. Weaker gadgets
can be implemented that circumvent this problem, al-
beit at the cost of a larger overhead of ancillary qubits
(Cao and Nagaj, 2015). The idea is to replace strong
interactions by repetition of interactions with “classical”
ancillas. Additional gadgets simplifications and resource
reductions were proposed in (Cao et al., 2015).
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Žnidarič, M., and M. Horvat (2006), Physical Review A

73 (2), 022329.
Zulkowski, P. R., and M. R. DeWeese (2015), Physical Review

E 92 (3), 032113.

http://dx.doi.org/10.1103/PhysRevLett.70.4011
http://dx.doi.org/10.1103/PhysRevLett.70.4011
http://dx.doi.org/10.1103/PhysRevLett.101.170503
http://dx.doi.org/10.1103/PhysRevLett.101.170503
http://dx.doi.org/10.1103/PhysRevLett.104.020502
http://dx.doi.org/10.1103/PhysRevLett.104.020502
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.60.2746
http://dx.doi.org/ dx.doi.org/10.1016/S0375-9601(99)00803-8
http://dx.doi.org/ dx.doi.org/10.1016/S0375-9601(99)00803-8
http://stacks.iop.org/1742-5468/2008/i=12/a=P12004
http://stacks.iop.org/1742-5468/2008/i=12/a=P12004
http://dx.doi.org/10.1103/PhysRevLett.101.078702
http://dx.doi.org/10.1103/PhysRevLett.101.078702
http://stacks.iop.org/1751-8121/49/i=16/a=165305
http://stacks.iop.org/1751-8121/49/i=16/a=165305
http://dx.doi.org/10.1103/PhysRevLett.115.077201
http://dx.doi.org/10.1103/PhysRevLett.115.077201
http://link.aps.org/doi/10.1103/PhysRevB.91.024201
http://link.aps.org/doi/10.1103/PhysRevB.91.024201
http://link.aps.org/doi/10.1103/PhysRevA.73.022329
http://link.aps.org/doi/10.1103/PhysRevA.73.022329
http://link.aps.org/doi/10.1103/PhysRevE.92.032113
http://link.aps.org/doi/10.1103/PhysRevE.92.032113

	Adiabatic Quantum Computing
	Abstract
	Contents
	Introduction
	Adiabatic Theorems
	Approximate versions
	Rigorous versions
	Inverse cubic gap dependence with generic H(s)
	Rigorous inverse gap squared
	Arbitrarily small error
	Lower bound


	Algorithms
	Adiabatic Grover
	Setup for the adiabatic quantum Grover algorithm
	Quadratic quantum speedup
	Multiple marked states

	Adiabatic Deutsch-Jozsa algorithm
	Unitary interpolation
	Linear interpolation
	Interpretation

	Adiabatic Bernstein-Vazirani algorithm
	The glued trees problem
	Adiabatic PageRank algorithm
	Google matrix and PageRank
	Hamiltonian and gap
	Speedup


	Universality of AQC
	The circuit model can efficiently simulate AQC
	AQC can efficiently simulate the circuit model: history state proof
	Fermionic ground state quantum computation
	Space-time Circuit-to-Hamiltonian Construction
	Universal AQC in 1D with 9-state particles
	Adiabatic gap amplification

	Hamiltonian quantum complexity theory and universal AQC
	Background
	Boolean Satisfiability Problem: k-SAT
	NP, NP-complete, and NP-hard
	The k-local Hamiltonian Problem
	Motivation for Adiabatic Quantum Computing

	MA and QMA
	The general relation between QMA completeness and universal AQC
	QMA-completeness of the k-local Hamiltonian problem and universal AQC

	Stoquastic Adiabatic Quantum Computation
	Why it might be easy to simulate stoquastic Hamiltonians
	Why it might be hard to simulate stoquastic Hamiltonians
	Topological obstructions
	Non-topological obstructions

	QMA-complete problems and universal AQC using stoquastic Hamiltonians with excited states
	Examples of slowdown by StoqAQC
	Perturbed Hamming Weight Problems with Exponentially Small Overlaps
	2-SAT on a Ring
	Weighted 2-SAT on a chain with periodicity
	Topological slowdown in a dimer model or local Ising ladder
	Ferromagnetic Mean-field Models
	3-Regular 3-XORSAT
	Sherrington-Kirkpatrick and Two-Pattern Gaussian Hopfield Models

	StoqAQC algorithms with speedup over simulated annealing
	Spike-like Perturbed Hamming Weight Problems
	Large plateaus

	StoqAQC algorithms with undetermined speedup
	Number partitioning
	Exact Cover and its generalizations
	3-Regular MAXCUT
	Ramsey numbers
	Finding largest cliques in random graphs
	Graph isomorphism
	Machine learning

	Speedup mechanisms?
	The role of tunneling
	The role of entanglement


	Circumventing slowdown mechanisms for AQC
	Avoiding poor choices for the initial and final Hamiltonians
	Quantum Adiabatic Brachistochrone
	Modifying the initial Hamiltonian
	Modifying the final Hamiltonian
	Adding a catalyst Hamiltonian
	Addition of non-stoquastic terms
	Avoiding perturbative crossings
	Evolving non-adiabatically

	Outlook and Challenges
	Acknowledgments
	Technical calculations
	Upper bound on the adiabatic path length L
	Proof of the inequality given in Eq. (25)

	A lower bound for the adiabatic Grover search problem
	Technical details for the proof of the universality of AQC using the History State construction
	 | (0)"526930B  is the ground state of Hinit
	 | "526930B  is a ground state of Hfinal
	Gap bound in the space spanned by {  | ()"526930B  }=0L
	Bound for s < 1/3
	Bound for s 1/3

	Gap bound in the entire Hilbert space

	Proof of the Amplification Lemma (Claim 1)
	Perturbative Gadgets
	Degenerate Perturbation Theory à la Bloch1958329
	Perturbative Gadgets

	References


