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Abstract

Weyl and Dirac semimetals are three dimensional phases of matter with gapless

electronic excitations that are protected by topology and symmetry. As three di-

mensional analogs of graphene, they have generated much recent interest. Deep

connections exist with particle physics models of relativistic chiral fermions, and –

despite their gaplessness – to solid-state topological and Chern insulators. Their

characteristic electronic properties lead to protected surface states and novel re-

sponses to applied electric and magnetic fields. Here we review the theoretical

foundations of these phases, their proposed realizations in solid state systems, re-

cent experiments on candidate materials, as well as their relation to other states of

matter.
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I. INTRODUCTION

In 1928 P.A.M. Dirac proposed – in the first successful reconciliation of special relativ-

ity and quantum mechanics – his now eponymous Dirac equation (Dirac, 1928). Its form
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resulted from the constraints of relativity that space and time derivatives must appear in

the same order in the equations of motion, as well as constraints from the probabilistic

interpretation of the wave function that the equations of motion depend only on the first

derivative of time. Dirac’s solution used 4× 4 complex matrices that in their modern form

are referred to as gamma matrices and a four component wavefunction. The four compo-

nents allowed for both positive and negative charge solutions and up and down spin. This

epochal moment in theoretical physics – originating in these simple considerations – lead to

a new understanding of the concept of spin, predicted the existence of antimatter, and was

the invention of quantum field theory itself. A number of variations of the Dirac equation

quickly followed. In 1929, the mathematician Hermann Weyl proposed a simplified version

that described massless fermions with a definite chirality (or handedness) (Weyl, 1929). In

1937, Ettore Majorana found a modification using real numbers, which described a neutral

particle that was its own anti-particle (Elliott and Franz, 2015; Majorana, 1937). These

developments have found vast application in modern particle physics. The Dirac equation is

now the fundamental equation describing relativistic electrons and the Majorana equations

are a candidate to describe neutrinos. The Dirac equation is also a key concept leading to

topological phenomena such as zero modes and anomalies in quantum field theories. Unfor-

tunately in the nearly 90 intervening years no candidate Weyl fermions have been observed

as fundamental particles in high-energy particle physics experiments.

In condensed matter physics, where one is interested in energy scales much smaller than

the rest mass of the electron, it would appear at first blush that a non-relativistic description,

perhaps with minor corrections, would suffice and that Dirac physics would not play an im-

portant role. However, the propagation of even slow electrons through the periodic potential

of a crystal, leads to a dressing of the electronic states. In certain instances this results in an

effective low energy description that once again resembles the Dirac equation. Perhaps the

best known example of this phenomena is in graphene, where a linear in momentum disper-

sion relation is captured by the massless two dimensional Dirac equation. These 2D carbon

sheets provide a condensed-matter analogue of (2+1)-dimensional quantum electrodynamics

(QED) (Semenoff, 1984) and with the contemporary isolation of single layer graphene sheets

has resulted in a large body of work on their electronic properties (Geim, 2012; Neto et al.,

2009; Novoselov et al., 2005, 2004; Zhang et al., 2005). Recent work has found evidence

for Majorana bound states in 1D superconducting wires (Elliott and Franz, 2015; Mourik
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et al., 2012). In this review we will mainly be concerned with analogous physics in three

dimensional crystals with linearly dispersing fermionic excitations that are describe by the

massless 3D Weyl and Dirac equations. These solid state realizations offer a platform where

predictions made by relativistic theories can be tested, but at the same time entirely new

properties that only exist in a condensed matter context emerge, such as Fermi arc surface

states at the boundary of the material. Moreover, the fact that the strict symmetries of free

space do not necessarily hold in a lattice, means that new fermion types with no counterpart

in high-energy physics (Bradlyn et al., 2016; Soluyanov et al., 2015; Xu et al., 2015e), can

emerge (e.g. Type II Weyl, Spin-1 Weyl, Double Dirac etc.).

Let us further review of history of three dimensional Weyl equation (Weyl, 1929), its rela-

tion to Dirac and Majorana fermions, and their manifestation in condensed matter systems.

In 1929 shortly after Dirac wrote down his equation for the electron which involved these

complex 4× 4 matrices, Weyl pointed out a simplified relativistic equation utilizing just the

2 × 2 complex Pauli matrices σn. This simplification required the fermions to be massless.

Weyl fermions are associated with a chirality or handedness, and a pair of opposite chiral-

ity Weyl fermions can be combined to obtain a Dirac fermion. It had been believed that

neutrinos might be Weyl fermions. However with the discovery of a nonvanishing neutrino

mass (Kajita, 2016; McDonald, 2016), there are no fundamental particles currently believed

to be massless Weyl fermions. As mentioned above Majorana also found a modification of

the Dirac equation that used real numbers and described a neutral particle that was its own

anti-particle (Elliott and Franz, 2015; Majorana, 1937).

In a seemingly unrelated line of reasoning, the conditions under which degeneracies oc-

cur in electronic band structures, was investigated by Herring in 1937 (Herring, 1937). It

was noted that even in the absence of any symmetry one could obtain accidental two-fold

degeneracies of bands in a three dimensional solid. The dispersion in the vicinity of these

band touching points is generically linear and resembles the Weyl equation, modulo the

lack of strict Lorentz invariance. Remarkably several of the defining physical properties of

Weyl fermions, such as the so-called chiral anomaly, continue to hold in this nonrelativistic

condensed matter context. The chiral anomaly discussed by Adler-Bell-Jackiw (Adler, 1969;

Bell and Jackiw, 1969), is an example of a quantum anomaly which in its simplest incarna-

tion demonstrates that a single Weyl fermion coupled to an electromagnetic field results in

the nonconservation of electric charge. To evade this unphysical consequence, the net chiral-
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ity of a set of Weyl fermions must vanish in a lattice realization, an example of the fermion

doubling theorem. However, even in this setting the chiral anomaly can have a nontrivial

effects as pointed out in a prescient paper (Nielsen and Ninomiya, 1983), which cemented

the link between band touchings in three dimensional crystals and chiral fermions. These

band touchings of Herring were named “Weyl nodes” in (Wan et al., 2011). The electrody-

namic properties of these and other band touching points had been studied by Abrikosov

and Beneslavskii, 1971a.

Topological consequences of Weyl nodes began to be explored with the realization that

Berry curvature plays a key role in determining the Hall effect (Karplus and Luttinger, 1954;

Thouless et al., 1982), and the Weyl nodes are related to “diabolic points” discussed by Berry

as sources of Berry flux (Berry, 1985). The fact that diabolic points are monopoles of Berry

curvature and could influence the Hall effect in ferromagnets was emphasized in (Fang et al.,

2003; Nagaosa et al., 2010). In a different context, realizations of Weyl nodes in superfluids

and superconductors have been discussed (Murakami and Nagaosa, 2003; Volovik, 1987). In

particular Volovik (Volovik, 1987) pointed out that the A phase of superfluid He3 realizes

nodes in the pairing function leading to a realization of Weyl fermions.

The prediction and discovery of topological insulators (TIs) in two and three dimensions

(Bernevig et al., 2006; Chen et al., 2009; Fu and Kane, 2007; Fu et al., 2007; Haldane, 1988;

Hsieh et al., 2008; Kane and Mele, 2005; Moore and Balents, 2007; Roy, 2009; Xia et al.,

2009b; Zhang et al., 2009), has led to an explosion of activity in the study of topological

aspects of band structures (Hasan and Kane, 2010; Qi and Zhang, 2011). While initially

confined to the study of band insulators, where topological properties could be sharply

delineated due to the presence of an energy gap, interesting connections to gapless states

have begun to emerge. For one, the surfaces of topological insulators in 3D feature a gapless

Dirac dispersion, analogous to the two dimensional semimetal graphene, but with important

differences in the number of nodal points. The transition between topological and trivial

phases proceeds through a gapless state - for example a 3D topological to trivial insulator

transition, in the presence of both time reversal and inversion symmetry proceeds through

the 3D Dirac dispersion (Murakami, 2007). If inversion symmetry is lost, then the critical

point expands into a gapless phase with Weyl nodes, that migrate across the Brillouin zone

and annihilate with an opposite chirality partner, leading to the change in topology.

A direct manifestation of the topological aspects of Weyl fermions appeared with the
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realization that Weyl nodes lead to exotic surface states in the form of Fermi arcs (Wan

et al., 2011). The name ‘Weyl semimetal’ (WSM) was introduced to describe a phase where

the chemical potential is near the Weyl nodes and a potential realization of such a state in

a family of materials, the pyrochlore iridates, was proposed along with the prediction of a

special all-in, all-out magnetic ordering pattern (Wan et al., 2011). Subsequent proposed

realization of Weyl semimetals in magnetic systems include the spinel HgCr2Se4 (a double

Weyl) (Xu et al., 2011a), heterostructures of ferromagnets and topological insulators (Burkov

and Balents, 2011), and Hg1−x−yCdxMnyTe films (Bulmash et al., 2014). Although a clearcut

demonstration of a magnetic WSM remains outstanding, the search for inversion breaking

Weyl systems as envisaged in (Halász and Balents, 2012; Murakami, 2007) reached fruition

with the prediction and discovery of TaAs as a WSM (Huang et al., 2015a; Lv et al., 2015b,c;

Weng et al., 2015a; Xu et al., 2015b) (and other members in this material class (Xu et al.,

2016b, 2015a,c)), and the observation of Fermi arc surface states attached to the bulk Weyl

points.

For the case of 3D material systems described by the massless Dirac equation, the possi-

bility of stable four-fold degenerate Dirac points was raised by Abrikosov and Beneslavskii,

1971a and much more recently by Wang et al., 2012; Young et al., 2012. Unlike the case

of Weyl points, this degeneracy is not topologically protected since its net Chern number

is zero and residual momentum-conserving terms in the Hamiltonian can potentially mix

these terms and gap the electronic spectrum. However in particular situations this mix-

ing can be forbidden by space group symmetries in which case the nodes remain intact as

symmetry-protected degeneracies. For instance this can occur at a phase transition between

TI and non-TI phases in a crystal system that preserves inversion (Murakami, 2007; Mu-

rakami et al., 2007). However, as pointed out by Steinberg et al., 2014; Wang et al., 2012;

Young et al., 2012 a DSM can also appear as a robust electronic phase that is stable over a

range of Hamiltonian control parameters. Such systems are called Dirac semimetals (DSM).

A number of material realizations of such symmetry protected DSMs have been discovered

(Borisenko et al., 2014; Liu et al., 2014a,b; Neupane et al., 2014; Xu et al., 2015b).

There are a number of excellent reviews on related topics in this general area. Basic

concepts related to Weyl semimetals were reviewed in Turner et al., 2013 as well as in the

very clear set of lectures by Witten, 2015. Transport properties of Weyl semimetals were re-

viewed in (Hosur and Qi, 2013) and (Burkov, 2015a), while the extensive contributions of ab
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initio techniques to the discovery of topological materials (including Weyl and Dirac states)

were reviewed in Bansil et al., 2016; Weng et al., 2016a. Kharzeev, 2014 reviews connections

of Weyl fermions in solid-state physics to the chiral anomaly in quantum chromodynam-

ics. A number of other shorter reviews on specific aspects of topological semimetals have

appeared recently (Burkov, 2017, 2016; Hasan et al., 2017, 2015; Jia et al., 2016; Syzranov

and Radzihovsky, 2016; Šmejkal et al., 2017a; Witczak-Krempa et al., 2014; Yan and Felser,

2017) and connections to related systems like nodal superconductors have been reviewed

in Schnyder and Brydon, 2015; Vafek and Vishwanath, 2014; Wehling et al., 2014. In the

present review, we attempt to summarize the theoretical, materials, and experimental situ-

ation of 3D Dirac and Weyl semimetals with an emphasis on general features independent

of specific material systems. There have been many interesting developments in this area in

the last few years, in regards to the theoretical proposals, the development of new materials,

and the study of experimental phenomena. Although we have been attentive to matters of

priority, the experimental data we have chosen to include is not necessarily the first that

was shown to demonstrate some phenomenon, but is our estimation of that most illustrative

of an effect. Unfortunately even in the relatively well-defined scope of the current topic, the

literature is vast and we cannot hope to cover all work. Important omissions are regrettable

but inevitable.

II. PROPERTIES OF WEYL SEMIMETALS

A. Background

Here we first review two seemingly unrelated topics that originated in the early days of

quantum mechanics - the problem of level repulsion and accidental degeneracies and the

relativistic wave equations for fermions. We will see that these provide complementary

perspectives on Weyl semimetals and are unified by the identification of their topological

aspects. Towards this end we will review topological invariants of insulators in the third

part of this section.
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1. Accidental degeneracies

As a starting point, consider the basic question of when accidental degeneracies arise in an

energy spectrum (von Neuman and Wigner, 1929). We focus on a pair of energy levels and

ask if one can bring these levels into degeneracy by tuning Hamiltonian parameters. The en-

ergy levels (up to an overall constant) are determined by the most general 2×2 Hamiltonian:

H = f1σx + f2σy + f3σz, with an energy splitting between the levels ∆E = 2
√
f 2

1 + f 2
2 + f 2

3 .

In general in the absence of any symmetry, this cannot be accomplished by tuning just

one parameter; degeneracy requires tuning all three terms to give zero simultaneously. If

we focus on real Hamiltonians with time reversal symmetry, we can exclude the imaginary

Pauli matrix. Then, a pair of levels can be brought into coincidence typically by tuning two

parameters, since we can typically solve two equations εx = 0 and εz = 0 with two variables.

But in the absence of any such symmetry, we need to tune three independent parameters to

achieve a degeneracy. As mentioned above, these points of degeneracy in the extended two

or three parameter space are termed diabolic points and have been discussed in the context

of Berry’s phase (Berry, 1985) and not surprisingly will be associated with a topological

property as we discuss below.

2. Weyl and Dirac fermions

The Dirac equation in d spatial dimension and effective speed of light c = 1 is

(iγµ∂µ −m)ψ = 0 (1)

where µ = 0, 1 . . . , d label time and space dimensions, and the d + 1 gamma matrices

satisfy the anti-commutation relation {γµ, γν} = 0 for µ 6= ν and (γ0)2 = −(γi)2 = I, where

i = 1, . . . , d. I is the 2×2 unit matrix. The minimal sized matrices that satisfy this property

depend of course on the dimension, and are 2k+1×2k+1 dimensional matrices in both spatial

dimensions d = 2k + 1 and 2k + 2.

Weyl noticed that this equation can be further simplified in certain cases in odd spatial

dimensions (Weyl, 1929). For simplicity consider d = 1. Then one needs only two anti-

commuting matrices eg. the 2 × 2 Pauli matrices eg. γ0 = σz and γ1 = iσy. Therefore the

Dirac equation in 1 + 1 dimension involves a two component spinor and can be written as:

i∂tψ = (γ0γ1p+mγ0)ψ, where p = −i∂x. If one were describing a massless particle m = 0,
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this equation can be further simplified by simply picking eigenstates of the Hermitian matrix

γ5 = γ0γ1 = σx. If γ5ψ± = ±ψ±. One then has the 1D Weyl equation:

i∂tψ± = ±pψ± (2)

The resulting dispersion is simply E±(p) = ±p which denotes a right (left) moving par-

ticle, which are termed chiral or Weyl fermions. Analogous dispersions arise at the one

dimensional edge of an integer quantum Hall state, but are not allowed in an isolated one

dimensional system where chiral fermions must appear in opposite pairs. The fermion mass

term interconverts opposite chiralities. We will see that an analogous situation prevails in

3+1 dimensions and indeed the analogy with 1D fermions will be a theme that we will

repeatedly return to.

In any odd spatial dimension d = 2k + 1 one can form the Hermitian matrix γ5 =

ikγ0γ1 . . . γd. This is guaranteed to commute with the ‘velocity’ matrices γ0γi, which can

be simultaneously diagonalized along with the massless Dirac equation. At the same time it

differs from the identity matrix since it anticommutes with γ0. In even spatial dimensions,

the latter property no longer holds, since all the gamma matrices are utilized, and their

product is just the identity.

Let us now specialize to d = 3. The gamma matrices are, as Dirac found, now 4 × 4

matrices, and can be represented as γ0 = I⊗ τx, γi = σi⊗ iτy and γ5 = −I⊗ τz. Again, if we

identify chiral components: γ5ψ± = ±ψ±, where ψ± are effectively two component vectors,

we have for the massless Dirac equation:

i∂tψ± = H±ψ±

H± = ∓~p · ~σ (3)

Thus Weyl fermions propagate parallel (or antiparallel) to their spin, which defines their

chirality. We will see that a single chirality of Weyl fermions cannot be realized in 3D, but

momentum separated pairs can arise. These are the Weyl semimetals.

3. Topological invariants for band insulators

Band theory describes the electronic states within a crystal in terms of one particle Bloch

wave functions |un(k)〉 that are defined within the unit cell and are labelled by a crystal
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momentum k and band index n. The Berry phase of the Bloch wavefunctions within a single

band n is captured by the line integral of the Berry connectionAn(k) = −i〈un(k)|∇k|un(k)〉,

or equivalently the surface integral of the Berry flux: Fabn (k) = ∂kaAbn − ∂kbAan. For a two

dimensional insulator, the Berry flux for each isolated band Fxyn = Fn is effectively a single

component object, and the net Berry flux is quantized to integers values since:∫
d2k

2π
Fn(k) = Nn (4)

The quantized Hall conductance is obtained by summing over all occupied bands. In a

three dimensional crystal, the Berry flux behaves like a dual magnetic field εabcBc(k) =

Fab(k), switching the roles of position and momentum (with suppressed band index n). The

semiclassical equations of motion for an electron now take the following symmetric form

(Xiao et al., 2010a)

ṙ = v − ṗ× B (5)

ṗ = eE + eṙ×B (6)

where v is an appropriately defined renormalized band velocity and E, B are externally

applied electric and magnetic fields. Note, the Berry flux restores the symmetry r ↔ p of

these equations of motion, which is otherwise broken by the Lorentz force. However there

is an important difference between B and B. Unlike the physical magnetic field, the Berry

field B is allowed to have magnetic monopoles. We will see that these precisely correspond

to the Weyl points in the band structure.

B. Topological aspects of Weyl semimetals

In Weyl semimetals, the conduction and valence bands coincide in energy over some region

of the Brillouin zone. Furthermore, this band touching is stable at least to small variations of

parameters. A key input in determining conditions for such band touchings is the degeneracy

of bands, which in turn is determined by symmetry. If spin rotation symmetry is assumed,

e.g. by ignoring spin-orbit coupling, the bands are doubly degenerate. Alternatively, doubly

degenerate bands also arise if both time reversal T and inversion symmetry P (r → −r)

are simultaneously present or their combined PT symmetry is. Then, under the operation

T̃ = PT , crystal momenta are invariant and moreover T̃ 2 = −1, which ensures double
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degeneracy. On the other hand, if only T is present, bands are generally nondegenerate

since crystal momentum is reversed under its action. Only at the time-reversal invariant

momenta (TRIM) where k ≡ −k, is a Kramers degeneracy present. Similarly, if time

reversal is broken, and only inversion is present, the bands are typically nondegenerate.

As discussed above, the conditions for a pair of such nondegenerate bands to touch can

be captured by discussing just a pair of levels whose effective Hamiltonian can generically

be expanded as: H(k) = f0(k)I + f1(k)σx + f2(k)σy + f3(k)σz. To bring the bands in

coincidence we need to adjust all three coefficients f1 = f2 = f3 = 0 simultaneously, which,

by the arguments of the previous section requires that we have three independent variables,

i.e. that we are in three spatial dimensions. As we can then expect band touchings without

any special fine tuning, we can readily argue that the existence of Weyl nodes is stable to

small perturbations of Hamiltonian parameters. The location of the Weyl nodes can be

geometrically visualized as follows. We consider the real function f1(k) and ask where it

vanishes in momentum space; typically this will be a 2D surface that separates positive

and negative values of the function. If we demand a simultaneous zero of f2(k), f3(k), this

specifies the intersection of three independent surfaces, which will typically occur at a point.

Now, consider a perturbation that changes the functions fa by a small amount. This will

also move the zero surfaces, and their points of intersection by a small amount, but the

intersection will persist, just at a different crystal momentum. The Weyl nodes cannot be

removed by any small perturbation, and may only disappear by annihilation with another

Weyl node. Below, we will describe a topological perspective that makes this fact obvious.

Based on this reasoning it may appear that all we need to do to realize a WSM is to find

a 3D crystal with nondegenerate bands by breaking appropriate symmetries. While indeed

Weyl nodes are quite natural, typically one also imposes an additional requirement - that

they be close to the Fermi energy, so this also requires that we find candidates for which

f0(k) is nearly zero. We can further discuss the generic dispersion near the band touching

point, by expanding the Hamiltonian about k = δk + k0. This gives

H(k) ∼ f0(k0)I + v0 · δk I +
∑

a=x,y,z

va · δk σa (7)

where vµ = ∇kfµ(k)
∣∣
k=k0

(with µ = 0, . . . , 3) are effective velocities which are typically

nonvanishing in the absence of additional symmetries. Note, if we revert to the special limit

where v0 = 0 and va = v0â (a = 1, . . . 3), we obtain the Weyl equation (3). We therefore
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refer to these band touchings as Weyl nodes. While this makes a connection to Weyl fermions

with a fixed chirality (C = sign (vx · vy × vz)) it remains unclear why Weyl nodes should

come in opposite chirality pairs. To realize this we need a topological characterization of

Weyl nodes which is furnished by calculating the Berry flux on a surface surrounding the

Weyl point.

Furthermore, we can check that the Berry flux piercing any surface enclosing the point

k0 is exactly 2πC , where C is the chirality e.g. Weyl points are monopoles of Berry flux.

If we consider the sphere surrounding a Weyl point, and consider its 2D band structure,

it has a nonvanishing Chern number C = ±1. However, if we expand this surface so that

it covers the entire Brillouin zone, then by periodicity, it is actually equivalent to a point,

and must have net Chern number zero. Therefore, the net Chern number of all Weyl points

in the Brillouin zone must vanish. This can be seen from the Fig. 1 where we isolate

band touchings within the volumes Vi. The integral of ∇k · B(k) = 0 over this volume

vanishes, but can be expressed as an integral over the surfaces of the excluded volumes∑
i

∮
∂Vi
B(k) · dSk = −2π

∑
iCi which must vanish. In the continuum, one can define a

single Weyl node, since the momentum space is no longer compact. However, in lattice

model realizations of Weyl fermions the net chirality must vanish. This also shows that

Weyl nodes can only be eliminated by distortions to the Hamiltonian in a pairwise fashion

e.g. by annihilation with another Weyl node of opposite chirality. Note also, the Berry flux

must be an integer multiple of 2π which allows, for example, band touching with C = ±2,

which corresponds to “double Weyl” nodes, which do not have a linear dispersion in all

directions.

To build intuition and make the possibilities more explicit in the space of 4 × 4 Hamil-

tonians (Burkov et al., 2011), we can consider a simple continuum system with two orbitals

plus spin, which describes the cases of WSMs, “line node” semimetals1, as well as conven-

tional gapped magnetic semiconductors. Expanding around the Γ point, we consider a 4×4

1 As pointed out elsewhere (Burkov et al., 2011), this term is an oxymoron. Yet it persists.
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Hamiltonian matrix,

H = vτx(σ · k) +mτz + bσz + b′τzσx

=

mI + bσz + b′σx vσ · k

vσ · k −mI + bσz − b′σx

 , (8)

where k = (kx, ky, kz) is the momentum, and the τn’s are Pauli matrices for the pseudospin

orbital degrees of freedom. Here m is a mass parameter, and b and b′ are Zeeman fields that

physically can correspond to magnetic field in the z and x directions respectively. A number

of interesting and relevant cases can be obtained as a function of m, b, and b′. For b′ equal

to zero, one obtains the eigenvalues

εsµ(k) = s

√
m2 + b2 + v2k2 + µ2b

√
v2k2

z +m2, (9)

where k = |k|, and s = ±1 and µ = ±1. The spectrum for εsµ(0, ky, kz) is plotted in Fig.

2 for cases (a) m = b = 0, which corresponds to a Dirac semimetal composed of a pair of

degenerate linear bands, which touch at k = 0, (b) |m| > |b| describes a gapped magnetic

semiconductor, where the energy bands are gapped in the range |E| < |m| − |b|, and (c)

|b| > |m| that represents the WSM where the middle bands touch at a pair of isolated

point-nodes k = (0, 0,±
√
b2 −m2/v). Further plots from (Tabert and Carbotte, 2016) are

shown in Fig. 3 that reflects different regimes in the m and b parameter space.

For the case of m = b = 0, but b′ finite, one obtains the eigenvalues

εsµ(k) = s

√
v2k2

x +
[
v
√
k2
y + k2

z + µb′
]2

, (10)

where the zero-energy contour becomes a circle at kx = 0 and
√
k2
y + k2

z = b′/v as shown in

Fig. 2 (d). The spectrum is immediately gapped with kx away from 0.

Although idealized here as T breaking fields in this continuum model, b and b′ represent

only analogs of the symmetry breaking perturbations that may be encountered in lattices,

which may require different considerations. See for example Carter et al., 2012. It is also

important to note that in general it is impossible to apply laboratory magnetic fields large

enough to generate Zeeman splittings of the Weyl nodes that are substantial fractions of the

Brillouin zone. Therefore, the fields b and b′ above should be considered as effective internal

fields.

To gain further intuition into the physics, it is very instructive to consider a real space

model of a WSM. As a simplest realistic model for a T broken WSM Burkov and Balents,
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2011 considered a repeating structure of period d of normal insulators and TIs in which T

was broken through a Zeeman field. As shown in Fig. 4, one can model such system with

two different tunneling matrix elements for tunneling between surface states on the same

layer (∆S) and between surface states on neighboring layers (∆D). With no magnetism this

system shows a topological–normal band inversion transition as a function of the relative

strength of ∆S and ∆D. The multilayer is a bulk 3D TI when ∆D > ∆S and a normal

insulator for ∆D < ∆S. If the layers are magnetized giving a spin splitting b one finds a

WSM phase for values of ∆S near ∆D. The Weyl nodes are found at

k±z =
π

d
± 1

d
arccos

(∆2
S + ∆2

D − b2

2∆S∆D

)
. (11)

One can see that that as a function of ∆S, ∆D, and b the Weyl nodes move through the

Brillouin zone (BZ) and can annihilate at the BZ edge for a critical value of b giving a

fully magnetized state and as discussed below a quantized anomalous Hall conductivity. A

related construction is possible for P breaking WSMs (Halász and Balents, 2012). These

layered models not only suggest a possible route towards creating new WSM states but also

provide an alternate viewpoint on WSMs as a state of matter with a periodically inverted

and uninverted “local band gap”. With this perspective, aspects like the presence of Fermi

arcs and the anomalous Hall effect follow naturally. Related schemes for building up 3D

topological semimetals by stacking one dimensional primitives based on the Aubry-Andre-

Harper model have also been studied (Ganeshan and Das Sarma, 2015).

1. Weyl semimetals with broken T symmetry

The simplest setting to discuss a WSM is to assume broken time reversal symmetry,

but to preserve inversion. This allows for the minimal number of Weyl nodes, i.e. two

with opposite chirality. Inversion symmetry guarantees they are at the same energy and

furthermore provides a simple criterion to diagnose the existence of Weyl points based on

the parity eigenvalues at the time reversal invariant momenta (TRIMS).

Let us discuss this in the context of the following toy model. We envision a magnetically

ordered system so the bands have no spin degeneracy, but with a pair of orbitals on each

site of a simple cubic lattice. Further assume that the orbitals have opposite parity (e.g.

s, p orbitals), so τz, which is diagonal in the orbital basis, is required in the definition of
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inversion symmetry: H(k)→ τ zH(−k)τz. The Hamiltonian is

H(k) = tz(2− cos kxa− cos kya+ γ − cos kza)τz

+tx(sin kxa)τx + ty(sin kya)τy. (12)

For −1 < γ < 1 we have a pair of Weyl nodes at location ±k0 = (0, 0,±k0) where cos k0 = γ.

The low energy excitations are obtained by approximating H±(k) ≈ H(±k0 + q) where we

assume small |q| � k0. Then, H± =
∑

a v
±
a qaτa where v± = (tx, ty, tz sin k0).

Note, at the 8 TRIM momenta (nx, ny, nz)
π
a

where na = 0, 1, only the first term in the

Hamiltonian is active, and if γ > 1 the parity eigenvalues of all the TRIMs are the same and

the bands are not inverted. However, at γ = 0, the parity eigenvalue of the Γ point shows

the bands are inverted and it is readily shown that this immediately implies Weyl nodes,

i.e. an odd number of inverted parity eigenvalues is a diagnostic of Weyl physics (Hughes

et al., 2011; Turner et al., 2012; Wang et al., 2016h). At the same time let us compare the

Chern numbers Ω(kz) of two planes in momentum space kz = 0 and kz = π
a
. Then the

Chern number vanishes at Ω(kz = π
a
) = 0, but Ω(kz = 0) = 1. Starting at γ = −1, Weyl

nodes form at the BZ boundaries and move towards each other before annihilating at the

zone center at γ = 1. As γ → 1, the entire Brillouin zone is filled with unit Chern number

along the kz direction, and a three dimensional version of the integer quantum Hall state

is realized (Halperin, 1987). Therefore the WSM appears as a transitional state between a

trivial insulator and a TI.

When the chemical potential is at EF = 0, the Fermi surface consists solely of two points

±k0. On increasing EF , two nearly spherical Fermi surfaces appear around the Weyl points

and a metal exists. The Fermi surfaces are closed two dimensional manifolds within the

Brillouin zone. One can therefore define the total Berry flux penetrating each, which by

general arguments is required to be an integer, and in the present case is quantized to ±1,

which is a particular feature characteristic of a Weyl metal. When EF > E∗ = tz(1 − γ)

the Fermi surfaces merge through a Lifshitz transition and the net Chern number on a

Fermi surface vanishes. At this point, one would cease to call this phase a Weyl metal.

This discussion highlights the importance of the Weyl nodes being sufficiently close to the

chemical potential as compared to E∗. Ideally, we would like the chemical potential to be

tuned to the location of the Weyl nodes just from stoichiometry, as occurs for ideal graphene.
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2. Weyl semimetals with broken P symmetry

If T is preserved then inversion symmetry must be broken to realize a WSM. A key

difference from the case of the T broken WSM is that the total number of Weyl points

must now be a multiple of four. This occurs since under time reversal a Weyl node at k0

is converted into a Weyl node at −k0 with the same chirality. Since the net chirality must

vanish, there must be another pair with the opposite chirality. Although potentially more

complicated with their greater number of nodes, such WSMs may be more experimentally

compatible as external fringe fields from a ferromagnet may be problematic for angle-resolved

photoemission spectroscopy’s (ARPES) momentum resolution. Additionally, without the

complications of magnetism in principle some properties of the system should be simpler

under strong magnetic field.

A useful perspective on T symmetric WSMs is to view them as the transition between a

3D topological insulator and a trivial insulator. When a 3D TI possesses both time reversal

symmetry and inversion there is a simple ‘parity’ criterion to diagnose its band topology (Fu

and Kane, 2007). To achieve a transition between topological and trivial states, Kramers

doublets with opposite parities must cross each other at one of the TRIMS. Since these pairs

of states have opposite parity eigenvalues, level repulsion is absent and they can be made to

cross by tuning just one parameter. At the transition point, a four fold degeneracy occurs at

the TRIM, leading generically to a Dirac dispersion. Hence the transition between a trivial

and topological insulator, in the presence of inversion, proceeds via a Dirac point. However,

on breaking inversion, the Kramers doublets at the TRIM points can no longer cross each

other while adjusting just a single tuning parameter. How then does the transition proceed?

The key observation is that the bands are now nondegenerate away from the TRIMs, and

by our previous counting, can be brought into coincidence by tuning the crystal momenta.

Tuning an additional parameter to drive the transition involves moving the Weyl nodes

towards each other and annihilating them as described by Murakami and Kuga, 2008. For

example when an inversion symmetry breaking staggered potential is applied to the Fu-

Kane-Mele model of the 3D TI, the transition between weak and strong TI becomes a WSM

phase. It has been recently argued that the band closing transition of a semiconductor

lacking inversion symmetry always proceeds through a gapless phase, consisting either of

Weyl points or nodal lines (Murakami et al., 2017).
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The velocity parameter v0 in Eq. 7 introduces an overall tilt of the Weyl cone. Such

a term is forbidden by Lorentz symmetry for the Weyl Hamiltonian in vacuum but it can

generically appear in a linearized long wavelength theory near an isolated twofold band

crossing in a crystal (Soluyanov et al., 2015; Wan et al., 2011). Small v0 simply induces a

crystal field anisotropy into the band dispersion near a Weyl point. However sufficiently large

v0 produces a qualitatively new momentum space geometry wherein the constant energy

surfaces are open rather than closed and the resulting electron and hole pocket contact at

a point as shown in Fig. 5. This new semimetallic phase has been termed a “Type II”

Weyl semimetal (or structured Weyl semimetal (Xu et al., 2015e)), in contrast to a “Type

I” semimetal with closed constant energy surfaces. Although Type I and Type II WSM’s

cannot be smoothly deformed into each other, they share electronic behavior that derive

from the presence of an isolated band contact point in their bulk spectra. Interestingly the

topological character of the Weyl point is still fully controlled by the last term in Eq. 7

and persists even for Type II Weyl semimetals. Thus Type II Weyl semimetals support

surface Fermi arcs that terminate on the surface projections of their band contact points

which are the signature of the topological nature of the semimetallic state. In addition to

arcs, McCormick et al., 2017 have shown that Type II WSMs support an additional class of

surface states they call “track states”. These are closed contours that are degenerate with

the arcs but do not share their topological properties. They can be generated when the

connectivity of Weyl nodes changes as one tunes the parameters in a system with multiple

sets of Weyl points.

Type II systems are also expected to support a variant of the chiral anomaly when

the magnetic field direction is well aligned with the tilt direction, have a density of states

different than the usual form, possess novel quantum oscillations due to momentum space

Klein tunneling, and and a modified anomalous Hall conductivity (O’Brien et al., 2016;

Soluyanov et al., 2015; Udagawa and Bergholtz, 2016; Zyuzin and Tiwari, 2016). It is

proposed that tilting of the cones has a strong effect on the transport Fano factor F (the

ratio of shot noise power and current) (Trescher et al., 2015). Type I and Type II nodes

of opposite chirality can be merged and annihilate. And it is likely that some materials

can undergo Type I to Type II transitions with doping or under pressure. Claims for a

Type II state have been made recently in MoTe2 (Deng et al., 2016; Huang et al., 2016a;

Jiang et al., 2017; Liang et al., 2016b; Tamai et al., 2016), WTe2 (Wang et al., 2016c),
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their alloy MoxW1−xTe2 (Belopolski et al., 2016a,b) and TaIrTe4 (Belopolski et al., 2016d;

Haubold et al., 2016; Koepernik et al., 2016), although the evidence in the case of WTe2 is

controversial as discussed below and in (Bruno et al., 2016).

C. Physical consequences of topology

We have seen that there are topological aspects of WSMs which is most simply stated

in terms of them being monopoles of Berry curvature. Here we will explore some of the

consequences of that topology. From experience with topological insulators and quantum

Hall states, we are used to two different manifestations of topology. The first is to look

for nontrivial surface states, and the second is to study the response to an applied electric

and/or magnetic field. We will follow these general guidelines in this case and will not be

disappointed. Indeed WSMs have special surface states called Fermi arcs and an unusual

response to electric and magnetic fields due to the above discussed chiral anomaly.

1. Fermi arc surface states

Surface states are usually associated with band insulators. Well-defined surface states

can exist within the bulk band gap and are typically exponentially localized near the surface.

How can we define surface states when the bulk is gapless, as in WSMs? For this we need

to further assume translational invariance, so we label surface states by crystal momenta

within the 2D surface Brillouin zone (sBZ). Then, we only require that there are regions of

the sBZ that are free of bulk states at the same energy. Indeed if we consider the idealized

limit of a pair of Weyl nodes at the chemical potential (EF = 0) at momenta ±k∗0 in the sBZ,

one can define surface states at the same energy at all momenta except at the projection of

the Weyl points onto the sBZ (Fig. 6 top left). At those two points, surface states can leak

into the bulk even at EF = 0 and are not well defined. If one considers other energies, the

momentum region occupied by bulk states grows as shown at the bottom of Fig. 6. The

presence of these bulk states allow for surface states that are impossible to realize in both

strictly 2D but also on the surface of any three dimensional insulator, where there is a finite

energy gap throughout the entire Brillouin Zone.

We can now discuss the nature of the surface states that arise in WSMs, which, at EF = 0
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are Fermi arcs that terminate at ±k∗0. These are a direct consequence of the fact that Weyl

nodes are sources and sinks of Berry flux. Hence, if we consider a pair of planes at kz = 0

and kz = π
a

in the model given in Eq. 12. Since they enclose a Weyl node, or Berry

monopole, there must be a difference in Berry flux piercing these two planes that accounts

for this source. Indeed, in model of Eq. 12 we see that kz = 0 (kz = π
a
) has Chern number

C = 1 (C = 0). In fact, any plane −k0 < kz < k0 will have Chern number C = 1, so each

of the of 2D Hamiltonians Hkz(kx, ky), represents a 2D Chern insulator. If we consider a

surface perpendicular to the x direction, we can still label states by kz, ky. The 2D Chern

insulators Hkz will each have a chiral edge mode that will disperse as ε ∼ vky near the Fermi

energy as shown also in Fig. 7c. In the simplest model, v is independent of kz as long as

it is between the Weyl nodes. The Fermi energy EF = 0 crosses these states at ky = 0 for

all −k0 < kz < k0, leading to a Fermi arc that ends at the Weyl node projections on the

sBZ, and in this particular model, is a straight line. An interesting alternative continuum

derivation of the Fermi arc surface states is contained in the lecture notes of Witten, 2015,

where boundary conditions are formulated to characterize scattering of Weyl electrons from

the boundary of the solid.

On changing the chemical potential away from the Weyl nodes, the Fermi arc is displaced

by virtue of its finite velocity. The surface states all disperse in the same direction, and

inherit the chiral property of the Chern insulator edge states. At the same time, the bulk

Fermi surface now encloses a nonvanishing volume, and their projection onto the sBZ is now

a pair of filled discs that encloses the Weyl node momenta. How are the Fermi arc surface

states attached to the projection of the bulk Fermi surface? In the top right of Fig. 6, a

plot of both surface (pink) and bulk bands projected to the sBZ is shown, and sections of

this dispersion at two energies resemble the two left figures at the bottom of Fig. 6. In a

conventional 2D electron dispersion traversing a band around a closed iso-energetic contour

in momentum space returns one to the starting momentum. In contrast, in a WSM system,

on following a closed contour around an end point of the Fermi arc one moves between

the valence and conduction bands. A useful analogy is to the Riemann surface generated

by a multi-valued function (Fang et al., 2016). Therefore, such a band structure, although

impossible in 2D, is allowed as a surface state since the surface states can be absorbed by

bulk bands on moving away from the Weyl nodes in energy.

In Haldane, 2014 it was argued that the Fermi arc surface states must be tangent to
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the bulk Fermi surfaces projected onto the sBZ. This follows from the fact that the surface

states must convert seamlessly into the bulk states as they approach their termination points.

Putting this differently, the evanescent depth of the surface state wavefunction grows until

at the point of projection onto the bulk states, the surface states merge with the bulk

states. They should inherit the velocity of the bulk states, which implies they must be

attached tangentially to the bulk Fermi surface projections as shown in Fig. 6. Surface

states calculated in the model of (Haldane, 2014) also show that Fermi arcs could continue to

exist above the Lifshitz transition, when the Fermi surfaces surrounding the two Weyl points

merge. However, Fermi arc surface states bridging disconnected Fermi surfaces imply that

they carry nontrivial Chern number. This suggests an experimental diagonstic to determine

the existence of a Weyl metal. Consider a closed k-space curve at constant energy in the

surface Brillouin zone, and determine the electronic states intersected by it. If an odd

number of surface states are encountered, and no bulk states, then one is required to have a

nontrivial Chern number on the bulk Fermi surface enclosed by the curve (Belopolski et al.,

2016c; Lv et al., 2015b) and hence we can define this as a “Weyl metal”. The surface states

intersected need to be counted in a sign sensitive fashion, with ±1 depending on whether

their velocity is along or opposite to the direction of traversal of the contour. This quantity

is related to the total Chern number of Fermi surfaces enclosed by the contour.

A useful alternate viewpoint on Fermi arc surface states is to imagine growing the three

dimensional bulk beginning with a thin slab. Initially, the opposite surfaces are close to one

another, and viewed as a 2D system, this should have a conventional closed Fermi surface.

As the separation between the opposite faces increases, opposite halves of the Fermi surface

migrate to opposite surfaces, leading to the Fermi arcs. This is analogous to obtaining a

single Dirac node on the surface of a topological insulator by starting with a pair of Dirac

nodes in 2D and gradually separating them to opposite surfaces (Wu et al., 2013). One

important distinction for the Fermi arc case is that the surface states must become extended

into the bulk at the termination point of the Fermi arc. One can utilize this viewpoint to

construct models of WSMs with any given surface Fermi arc dispersion as in Ref. (Hosur,

2012). A more mathematical perspective on Fermi arc surface states was described in Ref.

(Mathai and Thiang, 2017).

The most direct observation of Fermi arc surface states has been achieved through ARPES

and more recently scanning tunneling microscopy (STM) studies on the WSM candidate
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TaAs, which are reviewed below. Another standard probe of Fermi surfaces is quantum

oscillations, which can also be used to study Fermi arc surface states. However as the

corresponding theory involves both Fermi arcs and chiral Landau levels, stitched together

in a consistent fashion, we will discuss this below in a separate Section II.C.5.

2. The chiral anomaly

In a WSM with a pair of Weyl nodes of opposite chirality, the number of electrons in the

vicinity of each is modified in the presence of electric and magnetic fields via the equation

dn3D
R/L

dt
= ± e

2

h2
E ·B (13)

where we have inserted the superscript to remind us that we are dealing with 3D Weyl

fermions. Therefore, even in the presence of spatially uniform fields, which may be oriented

in an arbitrary direction relative to the separation of the Weyl nodes, the density of electrons

at an individual node is not conserved. In particular, this immediately tells us that a single

Weyl node, or any set with an unbalanced chirality, is problematic, since it will lead to

non-conservation of electric charge. However, if the chirality is balanced, as happens for any

lattice realization, the opposite Weyl nodes act as sources and sinks of electrons, leading to

nodal (or valley) polarizations, while preserving the total charge. To give some intuition for

how this arises, let us first consider the one dimensional analog (the chiral anomaly appears

in any odd spatial dimension). The number density at a pair of one dimensional Weyl nodes

will correspondingly obey:
d(n1D

R/L)

dt
= ± e

h
E (14)

This is readily derived from the semiclassical equation of motion which will accelerate elec-

trons along the field k̇ = eE/~. When this change of momentum equals the spacing between

momentum states 2π/L, an extra electron is added (removed) from the right moving (left

moving) Weyl point leading to the equation above. The key ingredient of course is the fact

that in a condensed matter context the left and right Weyl points are not really distinct

entities in a lattice model, rather they are connected beneath (and above) the Fermi level,

so one cannot clearly separate electrons associated with one group or the other, at arbitrar-

ily high energies. In fact the one dimensional chiral anomaly is an essential ingredient in

generating electrical conductivity. If we associate a scattering mechanism that relaxes any
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density imbalance between the two nodes with a rate 1/τa, then we can write the following

modified rate equation:
d(n1D

R − n1D
L )

dt
= 2

e

h
E − n1D

R − n1D
L

τa
(15)

In steady state this leads to a current: I = 2e2El/h, where the scattering length l = vF τa.

A very similar calculation can be applied to metals in 2D or 3D, where the different points

of the Fermi surface can be regarded as one dimensional chiral fermions propagating along

the local Fermi velocity, and the shift of the Fermi surface in an electric field being just the

manifestation of the 1D chiral anomaly. However, the three dimensional chiral anomaly is

rather distinct and requires the application of both electric and magnetic fields. A simple

way to understand the 3D chiral anomaly is to first consider the effect of the magnetic field

in the clean system, which leads to Landau levels that disperse only along the field direction.

The zeroth Landau can be shown to be chiral, i.e. it propagates only along or opposite to the

field direction, with reversed velocities at the two opposite chirality Weyl nodes. Consider a

single isotropic Weyl node with chirality C = ±1, that is minimally coupled to an external

magnetic field B = Bẑ.

HC = CvF (p− eA) · σ (16)

Labeling the conserved momentum along the field pB = p ·B , we can set this to zero, where

we recover the problem of a single 2D Dirac node in a field, which is known to have the

spectrum εn = vF ~
lB

sgn(n)
√
|n| . In particular the zeroth Landau level is at zero energy and

is polarized along the B̂ direction with eigenvalue of σ · B̂ being σB = +1. This corresponds,

for the case of graphene, to the sublattice-valley polarization of the zeroth Landau level.

However, in the present context it has the following remarkable consequence. Reintroducing

the dispersion along the field

Hn=0
C = CvFpBσB, (17)

we see that for polarizing the spin σB = +1 implies a one way propagation of electrons

along the magnetic field for C = +1 and the opposite propagation at the opposite Weyl

node (C = −1). The n 6= 0 Landau levels in contrast display a conventional dispersion as

shown in Fig. 7b. Therefore we can relate the problem of a WSM in 3D in a magnetic

field, to an effectively one dimensional problem where the electrons propagate purely along

the magnetic field lines, forming chiral one dimensional channels. Thus, we can utilize the

1D chiral anomaly formula Eq. 14 with the electric field applied along the magnetic field
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E = E · B̂. Finally we convert the result into a three dimensional density n3D
R/L = 1

An
1D
R/L,

utilizing the fact that the one dimensional channels have a cross sectional area occupied by a

magnetic flux quantum (A = φ0/B). This gives us the result advertised at the beginning of

this section Eq. 13, and previously identified in Ref. (Nielsen and Ninomiya, 1983). Before

we turn to experimental consequences of the chiral anomaly in the solid state context, let

us discuss a closely related effect - the Chiral Magnetic Effect (CME).

Consider a WSM which has an effective chemical potential difference (∆ε) between the

two Weyl nodes and a magnetic field applied in the direction connecting them (Chernodub

et al., 2014; Zyuzin and Burkov, 2012). A naive application of the above arguments would

suggest that there is a current along the magnetic field arising from the unequal occupation

of left and right moving chiral modes, giving a current of

jc =
e2

h2
B∆ε. (18)

If such a current exists, it cannot be an equilbrium dc transport current as no voltage is

applied. Moreover it also cannot be a magnetization current (jmag = ∇ ×M) since this

would imply the transverse components M⊥ ∝ A⊥ (Levitov et al., 1985). The latter violates

gauge invariance since it is a physical quantity that directly depends on the vector potential.

Indeed in any equilibrium situation the current must vanish when all contributions from filled

electronic states are taken into account (Kohn, 1964; Vazifeh and Franz, 2013b). However,

in a nonequilibrium setting the current can be nonvanishing. For instance, if an electric field

oscillates at a frequency ω that is faster than the internode relaxation rate, then a chemical

potential difference between nodes can be induced and an oscillating chiral current can occur

(Burkov, 2015a; Jian-Hui et al., 2013; Ma and Pesin, 2015; Zhong et al., 2016). Note that

there is a similar, but ultimately different effect that can occur in chiral metals in response

to time varying magnetic fields that has been called the gyrotropic magnetic effect (Ma and

Pesin, 2015; Zhong et al., 2016). It is governed by the intrinsic magnetic moment of the

Bloch states on the Fermi surface and is distinct from the CME.

A related nonequilibrium situation can occur when a density difference of electrons in the

two opposite Weyl nodes is created by the chiral anomaly that can pump charge between

nodes in the presence of parallel electric and magnetic fields. It leads to different effective

chemical potentials for the Weyl nodes that can lead to observable consequences of the

CME mentioned above (Aji, 2012; Burkov, 2015a; Son and Spivak, 2013). The density
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difference is determined by the balance between the chiral pumping and the rate of inter-

Weyl node scattering (1/τa), which results in a finite steady state density difference between

nodes proportional to E ·B. The natural assumption here is that intranode scattering is

much faster than the internode scattering. This gives an effective chiral chemical potential

difference between nodes, that when combined with the CME (Eq. 18), gives a chiral

current jc ∝ BE ·Bτa. This contribution to the dc effect can be seen to arise from what is

effectively two successive uses of the E ·B form, the first that establishes the chiral chemical

potential difference between nodes and the second that gives a current. The complete

expression is given below but this simplified treatment exemplifies some of the key features.

The magneto-conductivity tensor is quadratic in magnetic field δσab ∝ BaBb e.g. it has a

quadratic dependence on magnetic field that is anisotropic and maximal for transport along

the field direction. Thus, along the magnetic field direction the conductivity is modified

from its zero field value as (Burkov, 2015a; Son and Spivak, 2013)

σ(B) = σ0 +
e4B2τa

4π4g(εF )
. (19)

Therefore the magnetoconductivity is predicted to positive (and magnetoresistance nega-

tive). It is remarkable that this expression can be arrived at through both the quantum

limit calculation above and one done in the framework of semiclassical kinetics (Son and

Spivak, 2013) e.g. Landau levels are not required. Although such an effect has been proposed

to be used as a smoking gun signature of a WSM, as discussed below there are dominating

experimental artifacts that may obscure such a dependence. What is particularly diagnostic

of the effect is a strong dependence on intervalley scattering τa. A strongly disordered WSM

with mixing between opposite Weyl nodes should not exhibit any transport signature of an

isolated Weyl node - indeed in the limit of small τa the magnetoresistance is also small.

However, as the intervalley scattering time increases and the Weyl nature becomes more

pronounced, the chiral contribution will dominate and may lead to large negative magne-

toresistance. In addition to the experimental issues, one potential intrinsic complication is

that the chiral current can also be relaxed by reaching the surface where it can be converted

into electrons at the opposite Weyl node by sliding along the Fermi arc surface state. Indeed

as discussed by Ominato and Koshino, 2016 this is the origin of chiral current relaxation

in the absence of direct internode scattering, but leads to unusual scaling with system size.

However, the presence of any bulk scattering mechanism between opposite Weyl nodes will
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eventually dominate in the large volume limit since the Fermi arc relaxation mechanism

is a surface effect. Analogous phenomena in thermoelectric transport have also been pre-

dicted (Lucas et al., 2016; Lundgren et al., 2014; Spivak and Andreev, 2016) and explored

experimentally (Hirschberger et al., 2016b).

3. Anomalous Hall effect

The simplest manifestation of Weyl physics arises from the anomalous Hall effect (Yang

et al., 2011). Of course this requires explicit T breaking. However, we note that it may

also be excluded even in magnetic WSMs where, for example, cubic symmetry is preserved.

Consider the simplest example of a pair of Weyl nodes in a magnetic system, separated along

the z direction by a crystal wavevector q = 2k0ẑ, where we have directed the vector from

positive to negative chirality Weyl nodes. As discussed in Sec. II.C.1, in such a situation

one can view each kx, ky plane for −k0 < kz < k0 as a 2D Chern insulator. Each 2D

Chern insulators will have a chiral edge mode near the Fermi energy each contributing a

Hall conductance e2

h
as shown in Fig. 7c. Therefore the anomalous Hall effect is particularly

simple when the chemical potential is at the Weyl nodes and for generic positions of the pair

of Weyl nodes one has:

σab = εabc
e2

2πh
qc (20)

assuming q = 2k0ẑ, this reduces to σxy = e2

2πh
2k0. Note, q is only defined modulo reciprocal

lattice vectors G. This is physically related to the property that the Hall conductance

calculated by this formula are modulo quantized Hall conductances arising from filled bands

which may lead to three dimensional quantum Hall states (Halperin, 1987) which are also

characterized by a reciprocal lattice vector G. On moving the chemical potential away in

energy, it was argued that the change of anomalous Hall conductance can be small (Burkov,

2014) until the Fermi surfaces surrounding the opposite Weyl points merge (Fig. 7d). In a

crystal with cubic symmetry, where T breaking Weyl nodes may appear as proposed in the

pyrochlore iridates (Wan et al., 2011; Wang et al., 2017; Witczak-Krempa and Kim, 2012),

symmetry enforces vanishing of the anomalous Hall effect, due to the absence of a preferred

axis. However, on applying a uniaxial strain that lowers the symmetry, an anomalous Hall

signal should appear, proportional to the degree of symmetry breaking for small strain. This

26



was proposed as a probe of cubic magnetic Weyl semimetals in (Yang et al., 2011). Note

that, although newly appreciated, this may be a very common mechanism for generating

an anomalous Hall effect. Two Fermi pockets are predicted to surround isolated Weyl

points in bcc iron and are believed to give a major contribution to its anomalous Hall effect

(Gosálbez-Mart́ınez et al., 2015). It has also been appreciated that competing interactions

in these materials can stabilize other interesting magnetic states that generically support

AHE (Goswami et al., 2017a).

4. Axion electrodynamics of Weyl semimetals

Both CME and the anomalous Hall effect in WSMs can be represented compactly by

the addition of the so-called axion term to the electromagnetic Lagrangian (Goswami and

Tewari, 2013; Grushin, 2012; Son and Yamamoto, 2012; Vazifeh and Franz, 2013a; Zyuzin

and Burkov, 2012; Zyuzin et al., 2012). The action is

Sθ =
1

2π

e2

h

∫
dtdrθ(r, t)E ·B. (21)

This is similar to the formalism used in describing the electromagnetic response of topological

insulators (Essin et al., 2009; Qi et al., 2008; Wu et al., 2016). For TIs the effect is felt only

when there the spatial or temporal gradients of θ are are finite e.g. at surfaces where in the

presence of T breaking field it generates a half quantum Hall effect from a single surface. In

the present case the θ term has time and bulk position dependence and in its simplest form

it is

θ(r, t) = 2(k0 · r− b0t) (22)

where k0 is the position of the Weyl nodes and 2b0 is proportional to the chemical potential

difference between Weyl nodes. Unlike related terms in topological insulators, it leads ob-

servable effects in the bulk of the material. Minimizing the action in the standard fashion

(See SI of Wu et al., 2016 for example) leads to the following equations of motion for the

charge density and current. They are

ρ =
1

2π

e2

h
2k0 ·B, (23)

J =
1

2π

e2

h
(2k0 × E− 2b0B). (24)
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Eq. 23 and the first term in Eq. 24 represent the anomalous Hall effect that is expected

to occur in a Weyl semimetals with broken T and is equivalent to Eq. 20. The second

term in Eq. (24) describes the CME discussed above whereby a current is proportional

to the applied magnetic field B and is equivalent to Eq. 18 where the energy difference

∆ε = 2~b0. The existence of this CME term may present a conundrum as discussed above.

Such a term proportional to magnetic field with no voltage applied cannot represent an

equilibrium current. Generally Eq. 24 needs to be supplemented by an equation describing

the relaxation of the chiral charge (Burkov, 2017). However, Eq. 24 remains valid for

dynamics fast compared to the internode scattering time, while the CME vanishes in the dc

limit in equlibrium. There are a host of other – particularly optical – effects that have been

predicted on the basis of this physics (Cortijo, 2016a; Hosur and Qi, 2014; Kargarian et al.,

2015; Zhou et al., 2015). For a detailed discussion of the CME in both condensed matter

and particle physics contexts please see Burkov, 2017; Gynther et al., 2011.

5. Interplay between chiral anomaly and surface Fermi arcs

Quantum oscillation experiments, which involve measuring the variation of a physical

property such as magnetization or conductivity as a function of applied magnetic field, is a

sensitive probe of Fermi surface geometry. It is natural to expect that the unusual Fermi arc

surface states of Weyl semimetals will display nontrivial quantum oscillations signatures.

Indeed this expectation is consistent with recent theoretical studies (Gorbar et al., 2016;

Potter et al., 2014; Zhang et al., 2016b) described below, which predict a semiclassical

trajectory, “Weyl orbits”, that weave together surfaces and bulk states.

Consider the simplest T broken Weyl semimetal with a pair of Weyl nodes displaced by

k0 along the kx direction. Applying a magnetic field along the z direction as shown in Fig.

8, leads to Lorentz force acting on the surface electrons that makes them slide along the

Fermi arc. For a conventional Fermi surface, the cyclotron motion leads to a closed path

which can then be quantized leading to oscillations. However, in the case of Fermi arcs, the

electron at the tip of the arc has nowhere to go on the surface. Instead, we would expect

it to tunnel into the bulk. Indeed, studying the previously obtained bulk spectrum in the

presence of a magnetic field, the chiral Landau levels of Eq. 17 are precisely the bulk modes

that can absorb the electron and convey it to the bottom surface where it proceeds to rotate
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along the opposite Fermi arc and returns to the top surface along the oppositely propagating

chiral Landau level of the other Weyl node. These trajectories are the “Weyl orbits” and

to describe their properties let us assume for simplicity that we are in the quantum limit

for the bulk, so there is no contribution from bulk Fermi surfaces (which are anyway easily

distinguished from surface oscillations which only depend on the perpendicular component

of field). A numerically calculated quantum oscillation trace is shown in Fig. 8c, which

results from the surface-bulk hybrid orbit (Zhang et al., 2016b). The peaks in the quantum

oscillation occur at magnetic fields Bn set by the equation:

1

Bn

=
e

Sk

[
2π(n+ γ)ẑ · B̂ − Lz(k0 · B̂ +

2µ

v‖
)

]
(25)

where Sk is the area enclosed between the top and bottom surface Fermi arcs, and µ is the

chemical potential measured from the Weyl nodes. This is further simplified if the field is

parallel to the z axis, when we can write: B−1
n = 2πe

Sk
(n+ γ) + Φ[Lz], where the frequency of

quantum oscillation is set by Sk, with a thickness dependent phase offset Φ = −Lz 2µ
vz

. This is

simply the phase accumulated on traversing the bulk - indeed this expression can be obtained

most simply by considering the phase accumulated by the semiclassical trajectories described

above and quantizing it using the Bohr-Sommerfeld condition. While a simple estimate can

be made using energy-time quantization as in (Potter et al., 2014), the complete expression

above is obtained from a phase space quantization (Zhang et al., 2016b).

The unusual nature of these Weyl orbits is the fact that they behave both like surface

states (the oscillations depend on the vertical component of the magnetic field) while at

the same time the thickness dependence appears in the phase offset. Note, thus far we

have assumed a perfectly clean system - in the presence of impurities, scattering in the bulk

will lead to an exponential suppression of the quantum oscillation signal which will also be

thickness dependent. Different scattering processes can degrade the signal - in the weak field

limit scattering between the chiral Landau level mode and other nonchiral modes (as in Fig.

7b) can arise even from forward scattering. In the quantum limit, backscattering requires

scattering by the large wavevector k0, but even in the absence of such scattering, differing

disorder induced path lengths can lead to interference and contribute to suppression of the

quantum oscillation signal (Zhang et al., 2016b). Experimental investigation of Fermi arc

quantum oscillations are described in Section V.C.

The sensitivity of quantum oscillations to disorder stems from the requirement for co-
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herent electron motion over the periodic trajectory. On the other hand forward scattering

between Landau level modes does not affect the current which continues to propagate along

the same direction. This led to the prediction of effects (Baum et al., 2015) that depend on

the current pattern related to the semiclassical orbits, which can show robust and unusual

signatures as shown in Fig. 9a,b. For example, resonant transmission of electromagnetic

waves through the slab at frequencies determined by the intersurface cyclotron orbits are

predicted which are estimated to be in the microwave or THz range for experimentally rele-

vant parameters. Nonlocal dc transport that relies on the intersurface cyclotron orbits was

also proposed in the same work. A different approach to generating nonlocal voltage based

on the chiral anomaly appeared in (Parameswaran et al., 2014) (see Fig. 9c) and a pre-

liminary experimental report claiming to observe this effect has appeared in (Zhang et al.,

2017a) on the DSM system Cd3As2.

D. Disorder effects on Weyl semimetals

In a WSM where all Weyl nodes are exactly at the chemical potential, and other bands

are removed in energy, the density of states vanishes. An interesting question is the evolution

of the density of states as the system is disordered. In the analogous problem of disordered

graphene in 2D, a finite density of states immediately appears even at weak disorder (Neto

et al., 2009). Analogous calculations for 3D semimetals show a vanishing density of states

persisting up to a finite value of disorder strength (Fradkin, 1986; Goswami and Chakravarty,

2011; Hosur et al., 2012; Pixley et al., 2016a) beyond which a metallic state is expected.

The critical properties of this interesting semimetal-metal transition have been discussed

in several recent works (Altland and Bagrets, 2016; Bera et al., 2016; Kobayashi et al.,

2014; Louvet et al., 2016; Pixley et al., 2015; Sbierski et al., 2015; Shapourian and Hughes,

2016; Syzranov et al., 2016b, 2015) which used different numerical and RG based analytical

approaches. For example, a relatively simple limit to study the problem was introduced

in (Louvet et al., 2016) by mapping the problem to a Gross-Neveu-Yukawa theory in 4-ε

dimensions which can be studied by conventional RG techniques and yields a continuous

transition between a disordered semimetal and a diffusive metal. On the other hand rare

events that are not accounted for in perturbative RG approaches can have a singular effect

by inducing a small density of states even at weak disorder (Nandkishore et al., 2014; Pixley
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et al., 2016b) that ultimately rounds off the transition at the longest scales. This implies

there is no sharp distinction between the semimetal and metallic regions, nevertheless there

is a wide range of length scales where the system is controlled by the previously discussed

critical point, before being eventually rounded off at the largest scales (Pixley et al., 2017) by

flow to the metallic fixed point. These issues have reviewed recently in Ref. (Syzranov and

Radzihovsky, 2016). It has been proposed that optical conductivity may be a useful probe

in studying the critical properties of the disorder-driven phase transition in Weyl semimetals

(Roy et al., 2016).

III. DIRAC SEMIMETALS IN THREE DIMENSIONS

As discussed above, Weyl points can occur in three dimensional materials only when either

time reversal or inversion symmetries are broken. When inversion symmetry is present

a Weyl node at k must be accompanied by a partner node at −k at the same energy

that carries the opposite topological charge (Burkov and Balents, 2011; Wan et al., 2011).

Conversely, time reversal symmetry requires that nodes at these momenta are time reversed

partners which carry the same topological charge (Halász and Balents, 2012). Since the net

topological charge enclosed within Brillouin is zero, this latter situation further requires the

existence of two additional compensating partner Weyl nodes (Halász and Balents, 2012;

Murakami, 2007). The presence of both inversion and time reversal symmetries excludes the

possibility of a two fold degeneracy at a Weyl point in the spectrum.

Nevertheless when both symmetries are present energetically degenerate Weyl nodes car-

rying opposite charges can be stabilized at the same crystal momentum. This produces

a composite point singularity hosting a fourfold degeneracy. This degeneracy is not topo-

logically protected since its net Chern number is zero and residual momentum-conserving

terms in the Hamiltonian projected into the degenerate subspace can potentially mix these

states and gap the electronic spectrum. However in special situations this mixing can be

forbidden by space group symmetries in which case the nodes remain intact as symmetry-

protected degeneracies. This is of fundamental interest since the stable merger of two low

energy Weyl nodes provides a solid state realization of the 3+1 dimensional Dirac vacuum

and materials that support this degeneracy are called Dirac semimetals (DSMs). This can

occur at a quantum critical point where a three dimensional Hamiltonian is parametrically

31



fine tuned to the bulk gap closure that separates conventional and Z2 topological insulating

states (Murakami, 2007; Murakami et al., 2007). These topological semimetals are some-

times described as “three dimensional graphenes” although this moniker is inappropriate

because unlike the situation in graphene (Kane and Mele, 2005) the Fermi surface point of

a DSM is a symmetry protected degeneracy in the presence of (possibly strong) spin-orbit

interactions. In graphene this degeneracy is removed by spin-orbit coupling and its gapped

phase is the prototype quantum spin Hall insulator (Kane and Mele, 2005).

One can demonstrate how this arises in a simple model (Fu et al., 2007) which analyzes

the spectrum of a spin-orbit coupled tight binding bands on the diamond lattice. In this

model one isotropic “s” orbital with two spin polarizations are assigned to each of two sites

in the primitive cell. The Hamiltonian for this system is

H = t
∑
〈ij〉,s

c†i,scj,s

+ i
λso

a2

∑
〈〈ij〉〉;s,s′

c†i,s

(
σ̂ · d(1)

ij × d
(2)
ij

)
cj,s′ (26)

with a scalar coupling strength t between nearest neighbor sites 〈i, j〉 and spin-orbit coupling

strength λso between second neighbor sites 〈〈i, j〉〉 bridged by successive nearest neighbor

hops along the bond vectors d
(1)
ij and d

(2)
ij coupled to operators σ̂ that act on the spin degree

of freedom. When t is isotropic (the same value on each nearest neighbor bond) the spectrum

supports a point of fourfold degeneracy at E = 0 at each of the three distinct X points

located on centers of the Brillouin zone faces. The fourfold degeneracy is lifted at linear

order in k producing a pair of doubly degenerate linear dispersing bands. Uniaxial strain

breaks the cubic symmetry and can gap this spectrum. For example, under a compressive

strain along a body diagonal the hopping amplitudes depend on the bond orientations t111 >

t11̄1̄ = t1̄11̄ = t1̄1̄1, which opens a gap at half filling to create a strong topological insulator.

In the complementary situation where tensile strain reduces t111 < t11̄1̄ the degeneracy is

again lifted but the gapped state is instead a weak topological insulator composed of weakly

coupled (111) bilayers in two dimensional quantum spin Hall states. A conventional insulator

can also be created near this state, although it is not perturbatively accessible from it since

this requires introducing a staggered on-site scalar potential exceeding the nonzero spin-orbit

scale λso.

32



Material realizations of a DSM at a quantum critical point occur in normal-topological

insulator transitions tuned by composition (Brahlek et al., 2012; Novak et al., 2015; Salehi

et al., 2016; Sato et al., 2011; Wu et al., 2013; Xu et al., 2011b; Zeljkovic et al., 2015) and

by strain (Young et al., 2011). However, a DSM can also appear as a robust electronic

phase that is stable over a range of Hamiltonian control parameters. There are at least two

different ways of accomplishing this. (Class I) One can exclude the possibility of mass terms

appearing in a band-inverted Bloch Hamiltonian H(k) for k lying along a symmetry axis

(Wang et al., 2012, 2013a). We refer to this as the “band inversion” mechanism. (Class II)

One can search for space groups that support small groups with four dimensional irreducible

representations (FDIR) at discrete high symmetry momenta kn. We refer to this as the

“symmetry enforced” mechanism (Steinberg et al., 2014; Young et al., 2012; Zaheer, 2014).

In the band inversion mechanism the Dirac semimetal is not truly a symmetry-protected

state since it actually contains a pair of Dirac points (DP) and one may continuously tune

parameters to un-invert the bands without changing the space group. This eliminates the

two DPs by their merger and pairwise annihilation. However, in the symmetry enforced

mechanism the appearance of the DP is an unavoidable consequence of the space group of

the material.2 We discuss these in more detail below.

A. Dirac semimetal from band inversion

The band inversion mechanism provides perhaps the most direct route to formation of a

Dirac semimetal. The energy eigenvalues in the n-th band are related by time reversal sym-

metry En,↑(k) = En,↓(−k) and by inversion symmetry En,σ(k) = En,σ(−k). The combined

operation of both symmetries requires that En,↑(k) = En,↓(k) so that each band remains

doubly degenerate locally at every k. A Dirac node can occur if two such branches undergo

an accidental band crossing at a point. Since the small group is trivial at a low symmetry k

point in the Brillouin zone, the intersection of a pair of doubly degenerate bands is generi-

cally prevented by an avoided crossing. However when k lies along a symmetry line, lattice

2 Gibson et al., 2015 mention a 3rd mechanism, whereby 2D graphene-like layers are stacked in such a

fashion as to give minimal 3D coupling and only small gaps. As even graphene itself has a small gap

due to SOC, irrespective of 3D couplings these systems will always have small gaps and are not strictly

speaking Dirac systems. Therefore such materials are not discussed in this review.
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symmetries intervene by constraining the possible interactions within this multiplet. For

example, if the crossing states transform according to different irreducible representations

of the group of the symmetry line their hybridization is prevented and a fourfold degeneracy

at this point of intersection is symmetry protected.

Fig. 10 illustrates how this situation can arise naturally near a band inversion transi-

tion. The uninverted (a) and inverted (b) band structures reverse the parities and band

curvatures of their k = 0 eigenstates. Generally, these states are allowed to mix at k 6= 0

as shown in panel (b) which produces an avoided crossing and fully gaps the state with a

“Mexican-hat” dispersion (b). However if these states transform along a symmetry direc-

tion according to different irreducible representations of the group of the symmetry line, the

spectrum retains a gap closure on the symmetry line as shown in Fig. 10(c). Note that this

mechanism generically produces pairs of fourfold degenerate points along this line. If one

tunes parameters to uninvert the bands these two Dirac points merge and annihilate and

the system reverts to a fully gapped state shown in panel (a). Generally Dirac systems very

sensitive to symmetry breaking terms. First-principles calculations show that even a 1%

compression in the y direction opens an approximately 6 meV energy gap in Na3Bi(Wang

et al., 2012).

The band inversion mechanism can be understood more quantitatively by adopting a four

state Hamiltonian for a system near a band inversion transition (Gao et al., 2016b; Yang

and Nagaosa, 2014)

H(k) =
∑
ij

aij(k)σi ⊗ τj (27)

where σ and τ are Pauli matrices that act in the spin and orbital spaces respectively. When

k lies along an n-fold symmetry axis the local Hamiltonian H(k) commutes with the n-fold

rotations Cn so one can work in a basis where the eigenstates are labelled by rotational

quantum numbers Jz. In this basis, and for a momentum kz along this symmetry line, the

Hamiltonian can be written as a sum of commuting terms

H(kz) = c0 + c1τ3 + c2σ3τ3 (28)

where cn(kz,m) are real functions of kz and a mass parameter m that describes the band

inversion. The gap in this model is ∆E = 2 min(|c1 ± c2|) and since its eigenvalues appear
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in degenerate pairs either c1 or c2 are automatically zero. The constraint ∆E = 0 then

defines a parametric curve in the (m, kz) plane on which the system is gapless and supports

a fourfold degeneracy. Any solution on this curve defines a Dirac semimetal that is stable

to small variations of the band inversion parameter m→ m+ δm.

Band inversion is predicted to be the mechanism for Dirac semimetal states in the

alkali pnictides A3B (where A = (Na,K,Rb) (Liu et al., 2014d; Wang et al., 2012) and

B = (As, Sb,Bi)) and in Cd3As2 (Liu et al., 2014c; Neupane et al., 2014; Wang et al., 2013b).

In both families of compounds the low energy physics is controlled by a single band inversion

occurring near the Γ-point of the Brillouin zone. The band structure in the prototypical

case of Na3Bi shown in Fig. 11 been calculated using density functional theory (Wang et al.,

2012). The results can be usefully mapped onto a four-state model in the form of Eq. 27

by studying the low momentum symmetry-allowed couplings between the four spin-orbitals

involved in the band inversion. Using the Γ point state vectors as a basis these orbitals can

be indexed by their parities and transformations under rotations about a symmetry axis.

For Na3Bi in space group P63/mmc (D4
6h) the low energy basis functions can be constructed

from bonding and antibonding combinations of the Na 2s and the crystal field split Bi 6p

orbitals. Crucially in this four component basis their transformations under rotations about

the c axis span four different Jz eigenvalues: {|S+
1
2

, 1/2〉, |P−3
2

, 3/2〉, |P−3
2

,−3/2〉, |S+
1
2

,−1/2〉}.

For momentum kz along the Γ− A symmetry line the states are split with a mass term

M(kz) = Mo −M1k
2
z (29)

where MoM1 > 0 describes a band inverted state. This reveals a pair of gap closure points

at kz = ±
√
Mo/M1 which are protected by the symmetry under c-axis rotations. For Na3Bi,

Mo ≈ −0.087 eV and M1 ≈ −10.64 eV · Å2 giving a pair of DP’s at momenta symmetrically

shifted with respect to the Γ point by kz = ±.090Å−1 which is approximately one quarter

of the way to the zone boundary at A (Wang et al., 2012). This DSM is a stable phase over

a range of Hamiltonian parameters that preserve the band inversion.

Similar physics occurs for the DSM in Cd3As2 (Borisenko et al., 2014; Liu et al., 2014c;

Wang et al., 2013b) although there the situation is further complicated by the presence of

1/4 Cd site vacancies which can be ordered at room temperature to form crystals with very

large unit cells. There is a type I structure, which is tetragonal with P42/nmc symmetry and

a type II structure, which is a body centered tetragonal crystal with I41/acd symmetry. The
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latter is energetically favored and is inversion symmetric. The vacancy ordering has been

imaged in Butler et al., 2017. Despite their enlarged unit cells both structures should feature

the same level inversion at the Γ point which reverses the conventional energy ordering of

the Γ6 and Γ7 states which reside mainly on the Cd 5s and As 4p states. The low energy

physics is again represented by a minimal four band model spanned by basis functions:

{|S 1
2
, 1/2〉, |P 3

2
, 3/2〉, |P 3

2
,−3/2〉, |S 1

2
,−1/2〉}. This inverted band structure supports two

fourfold-degenerate gap closures along the Γ− Z direction slightly displaced from the zone

center kz = ±kD ∼ ±.03 Å−1 with degeneracy protected by a C4 rotational symmetry about

the c axis3.

A related route to a DSM is the lifting of fourfold degeneracy on a Dirac line node by

spin-orbit coupling. This can occur in a space group that hosts a k-space curve on which

the bandstructure is fourfold degenerate in the absence of spin-orbit coupling. When a spin-

orbit potential is introduced these degeneracies are pairwise lifted at generic k points but

can persist where the nodal line intersects a symmetry axes. Cu3PdN in an antiperovskite

structure has been proposed as a material that exemplifies this type of multi Dirac material,

with three pairs of Dirac points appearing along three Cartesian symmetry directions in the

Brillouin zone (Yu et al., 2015). A similar multi-Dirac point bandstructure is predicted for

the Ca3PbO family of materials in a cubic inverse perovskite structure (Kariyado and Ogata,

2011). These Dirac points also rely on a band inversion and can be removed by “shrinking”

the parent nodal line to a point so that the Dirac points pairwise annihilate.

The space of candidate DSMs produced by band inversion is enlarged by considering

ternary compounds (Du et al., 2015; Gibson et al., 2015; Kariyado and Ogata, 2011; Sklyad-

neva et al., 2016; Weng et al., 2016a). In principle this allows one to develop criteria for

choosing chemically optimized DSMs. Key considerations are the orbital character of states

3 The precise crystal structure of Cd3As2 has been a matter of debate. It was believed that it had the non-

centrosymmetric I41cd structure proposed by Steigmann and Goodyear, 1968. However, recent single-

crystal X-ray diffraction studies (Ali et al., 2014) show that the structure possesses an inversion center

and is I41/acd. The locations of the Dirac nodes is difficult to predict reliably, since it depends on the

magnitude of a small band inversion which is sensitive to the calculated lattice constant as well as to

the type and degree of vacancy ordering on the cation sublattice (Aubin et al., 1977; Caron et al., 1977;

Plenkiewicz et al., 1984; Zhang et al., 2015). As an extreme example of this sensitivity, density functional

calculations for the putative Cd3As2 structure with no cation vacancies predicts a normal energy level

ordering and therefore no Dirac semimetallic state (Wang et al., 2013b).
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that permit a Dirac degeneracy along a symmetry line, a stoichiometry where the Dirac

states do not overlap the Fermi surface from other nontopological bands and the chemical

stability of the material. This has been illustrated in a survey of materials in the ZrBeSi

family which crystallize in the same space group as Na3Bi and exist in a family of materials

sufficiently large to allow a separation of candidate Dirac and non-Dirac phases (Du et al.,

2015; Gibson et al., 2015) based on cation electronegativity differences (Gibson et al., 2015).

Such materials considerations will be investigated in more detail below in Sec. IV.

The minimal models describing the Dirac point physics in these materials are similar in

their structure to the four band models frequently used to describe topological insulators

in 2D quantum wells (Bernevig et al., 2006) and in layered 3D materials in the Bi2Se3

family (Zhang et al., 2009). In those cases the minimal four band models also describe band

inversion in a manifold of spin-orbit and crystal field-split basis states of opposite parity.

Crucially, for the TIs this manifold is spanned by orbitals with Jz = ±1/2 only so that

pairs of states with common rotational eigenvalues are allowed to hybridize so when the

band structure is inverted the system remains fully gapped. By contrast for the DSM their

basis states carry different rotational eigenvalues and the degeneracy is symmetry protected.

Nonetheless in this latter case lowering of the symmetry by in-plane strain or by spatially

modulated potentials can mix states within the degenerate manifold and revert to a gapped

phase (Ortix et al., 2014; Yu et al., 2015). A related phenomenon can occur for thin films

with the rotational symmetry axis aligned with the surface normal which allows intervalley

scattering between partner DP’s at ±kz as found in calculations for thin films in the A3Bi

family (Narayan et al., 2014).

B. Symmetry-enforced Dirac semimetals

Although DSMs produced by the band inversion mechanism are generally stable to some

range of Hamiltonian parameters, the presence of such a state is not necessarily assured as

one may tune such a system through a band inversion transition and remove these Dirac

singularities without changing the symmetry of the Hamiltonian. One is therefore motivated

to ask whether space groups exist that require unremovable Dirac singularities in their band

structures and further whether the band filling in possible material realizations allow the

chemical potential to reside at or near these singular points. We refer to this class as
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“symmetry-enforced” Dirac semimetals. Space groups that allow such point degeneracies

have been studied (Michel and Zak, 1999) and identified for specific crystal structures both

with and without spin-orbit coupling in two (Damljanovic and Gajic, 2016; Young and

Kane, 2015) and in three dimensions (Mañes, 2012; Steinberg et al., 2014; Young et al.,

2012). Material realizations that also satisfy the band filling constraint have been proposed

(Gibson et al., 2015; Steinberg et al., 2014; Young and Kane, 2015; Young et al., 2012).

The search for candidate Hamiltonians satisfying the first requirement can be carried out

systematically by identifying three dimensional space groups G that contain four dimen-

sional irreducible representations (FDIR’s) in their small groups Gk at specified momenta

k. Interestingly this possibility can be excluded for any of the symmorphic space group in

three dimensions. In these space groups FDIR’s appear only in their double groups and then

only in the double groups for crystals with cubic symmetry. However for symmorphic lat-

tices with cubic symmetry a FDIR must reside on a threefold symmetry axis. The basis for

the FDIR can be indexed by quantum numbers spanning the set Jz = {±3/2,±1/2} which

in the presence of threefold symmetry requires a nonvanishing Berry’s flux through a closed

k space surface surrounding the point of degeneracy. Therefore a FDIR on a threefold axis

cannot describe the stable merger of two Weyl points with opposite handedness. Instead it

describes a merger of two Weyl points carrying the same topological charge, a situation that

has been dubbed a “multi-Weyl” semimetal (Fang et al., 2012).

The space of candidate momenta that can support FDIR’s is enlarged by considering the

nonsymmorphic space groups containing lattice symmetries such as glide planes and screw

axes which combine point operations Ri and nonprimitive translations τ i: gi = {Ri|τ i}.

The action of any such operation on a Bloch state ψk can be represented as the product of

a unitary operator Uk(Ri) acting in the state space and an overall phase factor due to the

displacement in the manner

{Ri|τ i}ψk = e−ik·τ iUk(Ri)ψk(r) (30)

Then the multiplication rule

{R1|τ i}{R2|τ 2} = {R1R2|R1τ 2 + τ 1} (31)

gives a product rule for the U ’s

Uk(R1R2) = ei(R
−1
1 k−k)·rUk(R1)Uk(R2) (32)
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If R1 and R2 are operations in the small group Gk then the shift of the wavevector is a recip-

rocal lattice vector: ∆k = R−1
1 k− k ∈ {G}. If the shift ∆k in Eq. 32 is nonzero it defines

a nontrivial factor system for a projective representation of Gk (Hamermesh, 1964). Note

that when ∆k = 0 the phase factor is unity and this reduces to the regular representation

of the small group. This occurs automatically at the zone center and also at generic low

symmetry points in the Brillouin zone. As noted above, the regular representations of space

groups admit FDIR’s only in the special case of the cubic groups with the FDIR occurring

along a threefold symmetry axis (Bradley and Cracknell, 1972), in which case they carry a

nonzero Berry’s flux and do not describe Dirac points. However on the faces of the Bril-

louin zone where ∆k ∈ {G} 6= 0 the factor system is nontrivial and identifies a projective

representation of Gk that can allow symmetry enforced FDIR’s. This possibility is thereby

excluded for any point in the interior of the Brillouin zone.

One concludes that a necessary condition for a symmetry-enforced DSM is the presence

of a nonsymmorphic space group, which hosts a small group Gkn at zone boundary points

kn that host FDIR’s. This is not a sufficient condition, since one needs to additionally

verify that the degeneracy is broken to linear order in momentum k− kn near the point of

degeneracy. To guarantee this, the symmetric Kronecker product of the FDIR with itself

must contain the vector representation of Gkn . Finally one needs to verify that the band

velocities are nonzero at the FDIR so that the valence and conduction branches are not

degenerate away from the FDIR.

A table of possible space groups and locations of their Brillouin zone boundary points

that host FDIR’s has been compiled by Zaheer, 2014. One finds that 99 of the 230 space

groups have double groups that satisfy the first two symmetry conditions. Approximately

one-third of these candidate FDIR’s are “false positives” because they lie along a threefold

symmetry axis and describe multi-Weyl points instead of Dirac points. Fig. 12 shows the

possible decompositions of an FDIR into linearly dispersing branches in the vicinity of the

degeneracy: (a) 4→ 2 + 2, (b) 4→ 1 + 1 + 1 + 1, (c,d) 4→ 2 + 1 + 1. Case (a) is the generic

dispersion of a fourfold Dirac point splitting into a pair of two fold degenerate branches

as required for T and P symmetric material. Case (b) occurs when the FDIR occurs in

a system that lacks inversion symmetry. Cases (c) and (d) are inversion broken spectra

that are distinguished by whether the band crossing occurs at a time reversal invariant

momentum (TRIM) kn [Case (d)] or not [Case (c)]. In the former situation, the FDIR
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occurs at a TRIM the spectrum must be an even function of k− kn and the single two fold

degenerate branch in the spectrum has zero velocity at the TRIM.

Material realizations of symmetry-enforced DSMs need to satisfy three design criteria:

(1) The lattice structure must be stable in one of the active nonsymmorphic space groups

that support FDIR’s on a zone boundary. (2) Ideally the Dirac points should be spectrally

isolated to avoid overlapping Fermi surfaces from other nontopological bands. (3) The sto-

ichiometry must give a band filling for which the Fermi energy is located at (or near) its

Dirac points. These considerations often conflict with each other. For example, the band

filling constraint (3) requires an even number of electrons per primitive cell but for a non-

symmorphic space group with sublattice symmetry this may translate into an odd number

of electrons per formula unit. This presents an example of a “filling enforced semimetal”

(Parameswaran, 2015; Parameswaran et al., 2013; Watanabe et al., 2015) where the zone

boundary degeneracy requires that electron count for a filled band actually results in a gap-

less state where the conduction and valence bands contact each other. This can conflict with

stability requirement (1) since such a structure can be susceptible to a symmetry lowering

reconstruction that that produces a gapped spectrum with completely filled bands. Note

that since three dimensional DSM’s have point Fermi surfaces they can be perturbatively

stable with respect to this kind of reconstruction. However one concludes that material

realizations of symmetry-enforced DSMs can generally involve interactions that can coax

elements into non-optimized oxidation states.

C. Classification of four band models for Dirac semimetals

A unified treatment of “band-inverted” and “symmetry enforced” DSMs can be developed

by studying the combined action of time reversal symmetry T , uniaxial rotational symmetry

Cn, and inversion symmetry P on a minimal four state Hamiltonian that couples two spin

and two orbital degrees of freedom (Gao et al., 2016b; Yang and Nagaosa, 2014). For this

purpose one examines the Hamiltonian of Eq. 27 which can be written explicitly

H(k) =
∑
ij

aij(k)σi ⊗ τj =

 h↑↑(k) h↑↓(k)

h↓↑(k) h↓↓(k)


(33)
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where hσ,σ′ are 2 × 2 matrix-valued operators expanded in the basis {τ} which act on the

orbital degrees of freedom. In this basis the time reversal operator Θ = iσyK where K is

complex conjugation. T symmetry and the use of Θ allows one to express H(k) as

H(k) =

 h↑↑(k) h↑↓(k)

−h∗↑↓(−k) h∗↑↑(−k)

 . (34)

Dirac points occur at accidental band crossings between pairs of two fold degenerate

branches in the spectrum of H(k). This is forbidden for a general wavector k but it can

occur along high symmetry lines or points. The presence of a n-fold uniaxial rotational

symmetry Cn along a symmetry line allows one to label the energy eigenstates by their

rotational eigenvalues Jz = {uA↑, uB↑, uA↓, uB↓}. Furthermore, inversion symmetry relates

H(−k) = PH(k)P−1. (35)

Here one can distinguish between two situations based on the allowed matrix representa-

tion of the parity operator P (Yang and Nagaosa, 2014). When P has a diagonal form

(±τ0,±τz), band crossings, if present, occur in pairs along the symmetry line. When P is

off-diagonal (±τx) inversion interchanges the orbital degrees of freedom and then a band

touching point is possible only at a (single) high symmetry point on a zone face along

the symmetry line. “Band inversion” DSMs (Class I) are members of the first class and

“symmetry-enforced” (Class II) DSMs are members of the second class. In the former case

one finds that rotational eigenvalues are paired in two fold-degenerate branches with the

combinations {uA↑, uA↓}, {uB↑, uB↓} while in the latter case they are exchanged and paired

{uA↑, uB↓}, {uB↑, uA↓}. These four eigenvalues are not independent. In both cases because

of T symmetry they occur in complex conjugate pairs (i.e. uA,↓ = u∗A,↑) and for the Class II

DSMs one has an additional constraint uB↑ = −uA↑. An accidental band crossing can occur

only if these groups contain no common eigenvalues, e.g.

Class I : {uA↑, uA↓} ∩ {uB↑, uB↓} = 0

Class II : {uA↑, uB↓} ∩ {uB↑, uA↓} = 0 (36)

This representation allows one to understand how the various properties of DSMs are

controlled by the type of rotational symmetry. Tables I and II catalog results obtained
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for both classes of DSMs, listed by their rotational symmetry about the z axis and their

matrix representations of P . For each entry the tables list the rotational eigenvalues (two

independent eigenvalues for Class I and one for Class II) and expressions from which the low

energy Hamiltonian near the Dirac point can be reconstructed. An important characteristic

of Class I DSMs is that they support quantized topological invariants despite being gapless

phases. Their kz = 0 plane is a time reversal invariant plane on which a 2D Z2 invariant

can be defined. When n is even (and greater than 2) it is also a mirror plane and a mirror

Chern number can also be defined. Table I for Class I DSMs lists the relevant topological

invariants e.g. the Z2 invariant ν2D on the kz = 0 plane for n = 3 and the mirror Chern

number nM for n = 4, 6.

For Class I DSMs, the Hamiltonian is an even function of kz along the symmetry axis

and the DP’s therefore appear in pairs symmetrically displaced about its center. This allows

one to continuously tune the locations of the band crossings as a function of Hamiltonian

control parameters. For example, in the band inversion mechanism in Section III.A the

inversion parameter m provides one such degree of freedom that can be used to shift or even

to pairwise eliminate these points of intersection.

Class I accidental band crossings cannot occur at all as protected degeneracies on a two

fold symmetry axis since the condition in Eq. 36 can not be satisfied. For higher rotational

symmetries Class I DSMs can exist and and in fact they can occur both for band inversions

between states of the same (P = ±τ0) and of opposite (P = ±τz) parities. These two

situations are not distinguished by the rotational eigenvalue criterion in Section III.A but

they can be physically distinguished by 2D topological invariants on their kz = 0 symmetry

planes which in turn determine the number of topologically protected surface modes that

appear on surfaces parallel to the z axis. The case of an inversion between states of opposite

parity is operative in the case of Na3Bi. Class I DSMs on a sixfold symmetry axis can also

support a more exotic bulk Dirac point (labelled “quadratic Dirac” in Table I) with linear

dispersion along the z axis but quadratic dispersion in the two transverse directions. These

can be regarded as the stable merger of “double Weyl” points that each carry Chern number

±2.

For Class II DSMs the Hamiltonian along the symmetry line is instead an odd function of

kz (Table II) and a single DP occurs at a TRIM. Since the possibility of a symmetry-enforced
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Class II Dirac point can be excluded at the Γ point4 Class II DP’s must be pinned to a zone

boundary face/edge/corner and cannot be eliminated without changing the lattice symmetry.

Note that a fourfold degeneracy at Γ that can occur at a band inversion transition is not

symmetry protected in this manner since it does not describe a stable phase, but requires

fine tuning parameters to a quantum critical point.

Class II DP’s are allowed for a TRIM on a two fold symmetry axis and in fact the

singularity predicted at the T point in the body centered orthorhombic BiZnSiO4 (space

group 74 (Imma)) is an just such an example (Steinberg et al., 2014). By contrast DP’s

for TRIMs on a threefold symmetry axis are forbidden since they cannot have a nonzero

Chern number. Interestingly, a Class II DSM with an FDIR on a sixfold axis can occur

with a linear Dirac node or a cubic Dirac node. The latter describes a stable merger of two

multi-Weyl nodes that carry Chern numbers ±3 (“triple-Weyl” points) (Ahn et al., 2016).

In this situation the low energy dispersion near the DP is linear in qz along the symmetry

axis and cubic in the two transverse directions with a sixfold symmetry around the rotation

axis.

The classification scheme presented in Table II applies to inversion symmetric lattices

where the matrix representation of the parity operator (P = ±τx) can be associated with

a sublattice exchange produced by a nonprimitive translation in a nonsymmorphic space

group. A related classification scheme can be developed in the case of an antiunitary rep-

resentation of the inversion operator (P = ±iτy) (Gao et al., 2016b) and gives the same

constraints on the rotational symmetries that can host a DSM. Note also that nonsymmor-

phic space groups can support FDIR’s on TRIMs where the sublattice exchange is generated

by a screw or glide plane symmetry in the space group (Yang et al., 2015a). Creation and an-

nihilation rules for Dirac points stabilized by rotational symmetries in both Class I and Class

II DSMs have been identified (Koshino et al., 2014). The ten-fold symmetry classification

of Hamiltonians based on their global time reversal, particle-hole and chiral symmetries can

be extended to treat gapless systems protected by reflection symmetry (Chiu and Schnyder,

2014).

4 FDIR’s occur only as projective representations of space groups which using Eq. 32 cannot occur at k = 0.
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D. Phenomena of Dirac semimetals

There are both similarities and differences in the phenomena exhibited in DSMs vs.

WSMs. Certain of these effects which depend on aspects like the 3D linear dispersion can

be imported directly to Dirac case. Other effects like that of surface states and tranport

features like the chiral anomaly need to be considered more carefully.

1. Fermi arcs in Dirac semimetals

As discussed above, the Fermi arc on the surface of a Weyl semimetal is a striking

manifestation of the topological singularities in its bulk band structure. These boundary

states connect the surface k-space projections of two bulk Weyl nodes of opposite handedness

and are unremovable from any surface where these bulk nodes do not project onto the same

surface momentum. The possibility of Fermi arcs at the surface of a Dirac semimetal is more

subtle because the analogous bulk node is fourfold degenerate and carries Chern number zero

so it is not similarly topologically protected. It can be regarded as the stable merger of two

compensated Weyl points that project to the same surface momentum. Nonetheless, as

detailed in Table I, the bulk Hamiltonian for a Class I DSM on the kz = 0 plane can support

a gapped 2D state with a nontrivial topology which requires boundary edge modes to occur

on this symmetry plane (Yang and Nagaosa, 2014). A key issue is therefore whether these

edge modes actually reside on open or closed constant energy contours. The former lines can

be combined to form double Fermi arcs, i.e. they are members of a doubled Weyl system

where pairs of protected surface modes connect the Weyl points embedded in partner Dirac

nodes (Wang et al., 2012, 2013b) as illustrated in Fig. 13(a). By contrast in the latter case

these branches are not tied to singularities in the bulk bandstructure and therefore can be

deformed and even collapsed to a point on the symmetry plane by a continuous change of

the Hamiltonian (Fig. 13(b,c)). ARPES measurements detect double Fermi arcs on side

surfaces of the prototypical Class I DSMs Na3Bi (Xu et al., 2015b) and Cd3As2 (Yi et al.,

2014) and have been interpreted as evidence for the former scenario. Theory further suggests

that measurement of ARPES intensities from these modes in a nonequilibrium state with

applied fields E ·B 6= 0 could be used in principle to visualize an induced chiral current in
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both the WSM or DSM states5 (Behrends et al., 2016).

Recent work has focused attention on the fragility Fermi arcs on the boundaries of DSMs

(Fang et al., 2016; Kargarian et al., 2016; Potter et al., 2014). The possibility of having

double Fermi arcs on a DSM that are pinned to its Dirac nodes is problematic because these

nodes are protected only by a bulk spatial (rotational) symmetry6. One may argue that close

to the contact point these surface modes penetrate deeply into the bulk so their properties

are controlled by the bulk symmetries. This suggests that the contact points, although not

topologically protected, may be perturbatively stable with respect to symmetry lowering

at the boundary (Potter et al., 2014). However this intuitive picture is not supported by

symmetry analysis within a four band model that allows for additional bulk perturbations

that anticommute with the DSM Hamiltonian and allow one to continuously deform the

Hamiltonians for kz Fermi-arc and non Fermi arc sectors into each other (Kargarian et al.,

2016). Thus the pinning of the topological band to the Dirac point is not symmetry protected

and the Fermi contour may dissociate from the underlying projected Dirac points (Fig. 13

(b-d)). In this interpretation the double Fermi arcs observed in Na3Bi (Xu et al., 2015b) and

Cd3As2 (Yi et al., 2014) are to be regarded as slightly displaced from the underlying Dirac

singularities possibly manifesting the smallness of the allowed residual mass term. Although

the surface Fermi line is unpinned from the projected Dirac points it cannot be removed

completely since the plane kz = 0 has a higher symmetry which requires an edge mode on

the symmetry plane. In principle the surface Fermi line can be shrunk down to a point on

this symmetry plane while maintaining all spatial symmetries and producing a new Dirac

cone in the surface spectrum. In material realizations where the chemical potential is not

aligned with the bulk Dirac points, the occupied bulk states project to a finite area disk on

the surface into which the surface mode can disappear (Fig. 13 (e,f)) preempting a possible

intersection with the Dirac point.

The topological stability (fragility) of Fermi arcs on a Weyl (Dirac) semimetals can also be

demonstrated by modeling their dispersions as helicoidal surfaces in the complex q̃ = qx+iqy

plane (Fang et al., 2016). This mapping takes its simplest form near a Weyl point with

5 Note that this proposal would require an ARPES setup for a sample immersed in a magnetic field, which

would destroy angular resolution.
6 This issue is entirely avoided in certain glide symmetry protected Dirac nodes which are compatible with

surfaces hosting Fermi arcs as discussed at the end of the section.
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topological charge ±1 where the energy dispersion on the surface can be mapped to the

phase of a holomorphic function of q̃

E(q̃) ∼ Im[log(q̃±1)]. (37)

A pair of compensated Weyl points is a “Weyl dipole” where a single Fermi arc is launched

and terminated on the two branch points of the function log[(q̃ − K̃+)/(q̃ − K̃−)]. A Dirac

point, regarded as a stable merger of two Weyl points produces double Fermi arcs corre-

sponding to the analogous mapping of the holomorphic function

E(q̃) ∼ Im[log(q̃ + q̃−1 ±
√

(q̃ − q̃−1)2)] (38)

Eq. 38 describes the phase evolution on a double helicoid (an overlapping heli-

coid/antihelicoid pair) and illustrates an essential fragility of the state. In the double helicoid

the two branches of Eq. 38 intersect on a line where they can be gapped out by symmetry

allowed momentum conserving terms in the Hamiltonian. For energies outside the gap the

system retains double Fermi arcs while inside the gap they disappear. The hybridization

of these branches on their line of intersection can be prevented in special two dimensional

space groups that support a glide reflection symmetry on the surface. This occurs in four

of the seventeen wallpaper groups which define the lattice systems that host unremovable

Fermi arcs for the DSM (Fang et al., 2016).

2. The chiral anomaly in Dirac semimetals

We have seen in Sec. II.C.2 that the defining properties of the chiral anomaly in WSMs

in transport require that the scattering rate between nodes of opposite chirality 1/τa is small

compared to the current relaxation rate, which determines the conductivity. In WSMs this

is achieved by separating Weyl nodes in momentum space so that they cannot be connected

by small momentum transfer scattering. However, in Dirac semimetals, opposite chiralities

coexist at the same crystal momentum, and are protected instead by symmetries involving

rotations and reflections. Thus the nodes of opposite chirality are now protected not by

translation symmetry, but by the very same point group elements that forbids Dirac mass

terms. It has been stated that in a magnetic field, the individual Weyl nodes composing a

Dirac point will be pulled apart in the Brillouin zone separating the nodes in momentum
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space. Although in principle one can make a distinction now between inter and intravalley

scattering, for typical physical parameters, this momentum separation is expected to be

very small due to the tremendous disparity in energy scales between Zeeman splitting and

a typical band dispersion. Instead if the relaxation is to be small between states of opposite

chirality at the same k0 in a DSM (Burkov, 2015b), this is presumably because scattering is

suppressed by the same symmetries that protect the Dirac node itself. Impurities can scatter

between these states and even spherically symmetric impurities induce some degree of mixing

(Parameswaran et al., 2014), but ab-initio and other studies of the role of impurities should

be further explored. If the g factors are large and bands weakly dispersing, or the effects

of a magnetic field are amplified by the presence of magnetic ions, a splitting of the bands

to make a Weyl state may lead to observable effects as discussed in the somewhat different

context of quadratic band touching systems (Cano et al., 2016; Hirschberger et al., 2016b)

Transport in Dirac semimetals with an approximately conserved spin are expected to

have additional consequences as discussed in Burkov and Kim, 2016 due to the DSM Z2

topological invariant discussed above that gives a Z2 topological charge. The expectation

is that such systems could have a spin current proportional to B, a spin Hall effect, and

inverse spin Hall effect. These effects may also influence the conventional chiral anomaly

to give a stronger angular dependence than E ·B and which has been proposed to be the

source of the observed deviations from the expected angular dependence.

IV. MATERIALS CONSIDERATIONS

Given the above theoretical considerations one may look for actual real materials that

exhibit WSM and DSM phases. In this regard, ab initio calculations have proven extremely

powerful in identifying real materials that exhibit not just these, but many topological phases

(Bansil et al., 2016). Still various more empirical materials science considerations can be

brought to bear in the search for these states of matter. At the most basic level, the design

considerations are similar to those for topological insulators. One is looking for materials

with the appropriate crystal structures, with the heavy elements and the required energetics

of the valence and conduction orbitals that give overlapping bands (in the case of WSM and

DSM) or bands gaps with inversion (in the case of topological insulators).

Generally the band gap’s magnitude and sign depends on both the atomic number (Z)
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(which changes the ordering of bands via spin-orbit coupling) and the electronegativity dif-

ference (∆En) of constituents. Small electronegativity difference tends to decrease band gaps

because for small ∆En, orbital overlap increases. Materials with strongly electronegative

atomic bonds are associated with wide bandgaps. Therefore Z/∆En is perhaps a good figure

of merit for band overlap between valence and conduction bands as large Z and small ∆En

increases the tendency for bands to be inverted. One can see the role of electronegativity

difference for instance in a comparison between Na3Sb and Na3Bi. Both have closed shell

configurations with six valence electrons, but the electronegativity of Bi is smaller than Sb,

which in part makes Na3Bi a DSM rather than a semiconductor like Na3Sb (Ettema and

de Groot, 2000). It is also beneficial (but not required) to have direct gaps at an odd number

of points in the Brillouin zone, such as at the L points in Bi1−xSbx (Fu and Kane, 2007), or

at the Γ point (particularly in inversion symmetric systems).

The general ideas are nicely illustrated in the XYZ half-Heusler class of compounds. These

are materials that may be described as a tetrahedral zinc blende-like YZ−n structure, the

charge of which is compensated by a slightly ionic X+n species, giving three interpenetrating

fcc lattices (Jung et al., 2000). For instance, the 8 valence electron compounds such as

LiMgN can be written as Li+ + (MgN)−. The (MgN)− forms a zinc blende lattice and is

isoelectronic to Si2. Due to their ternary nature, these materials are an extremely tunable

class of materials that show a vast array of interesting semi-conducting and semimetal (and

even superconducting (Goll et al., 2008)) behavior with broad applications potential (Casper

et al., 2012; Chen and Ren, 2013). Typically the least electronegative element (usually a

main group element, a transition metal, or a rare-earth) is listed first as X. The half-Heusler

phases generally crystallize in a non-centrosymmetric structure corresponding to the space

group F 4̄3m. Their band gaps can be tuned over a wide energy range by choosing different

XYZ combinations and have been proposed to host a variety of topological states (Al-Sawai

et al., 2010; Chadov et al., 2010; Lin et al., 2010; Xiao et al., 2010b).

In the LiYZ compounds, the calculated gap size is larger for compounds with a large Pauli

electronegativity difference of the Y and Z species (Kandpal et al., 2006). Similar trends are

seen in other series. Fig. 14 shows the calculated energy difference EΓ6 − EΓ8 (Es − Ep3/2)

between the s− and p− symmetry bands as a function of the average nuclear charge Z for

many different half-Heuslers. For Z ≈ 65 the bands are predicted to be inverted from the

conventional (e.g. CdTe and GaAs) ordering. Note that even with band inversion, a TI
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state is only formed in these materials by breaking the cubic symmetry of these compound

by e.g. putting them in a quantum-well structure, under strain, or in a film geometry.

Otherwise at charge neutrality the chemical potential sits inside the p3/2 manifold forming a

zero gap system with a quadratic band touching. Systems that could be tuned to precisely

the band inversion point (possibly by substitution and mixing variants on either side of the

inversion) are described by the Kane model, which can be related to the Dirac equation

(Kane, 1957; Orlita et al., 2014)7. Note that in these half-Heusler systems rare-earth metals

can be readily introduced as the f states of the rare-earth are strongly localized and do not

change the gross scheme of the electronic structure. Half-Heuslers with rare earths readily

show magnetic effects (Canfield et al., 1991). For instance, GdPtBi shows a Neel transition

around 9 K (Suzuki et al., 2016). With the quadratic band touching of the inverted system,

it is believed that GdPtBi can be tuned into a Weyl state under applied magnetic field

(Cano et al., 2016; Hirschberger et al., 2016a; Suzuki et al., 2016) (possible enhanced by the

effects of the Gd moments (Shekhar et al., 2016)).

A. Weyl semimetals

1. Non-centrosymmetric Weyl semimetals

Based on the above general ideas, one can set out some general design considerations when

considering materials that may exhibit a WSM phase. As discussed above, the appearance

of a WSM phase is possible only if the product of parity and time reversal is not a symmetry.

One wants a material that is close to a band inversion transition and which breaks either T

or P symmetry. However, unlike the case of some Dirac systems the existence of Weyl nodes

is accidental which can make a systematic search for them challenging. Moreover, because

the band touchings can occur at a generic momentum positions they can be over looked in

band structure calculations.

As discussed above, a particularly straightforward mechanism for creation of a WSM

phase occurs generically in the band inversion transition between a trivial and topological

insulator if the material’s space group breaks inversion symmetry (Murakami, 2007; Mu-

7 The Kane model was originally used to describe tetrahedrally bonded cubic semiconductors and describes

at the transition point linearly dispersing Dirac-like bands that are bisected by a quadratic band.
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rakami et al., 2017). On the approach to the band gap inversion transition, the material

becomes either a (i) Weyl semimetal or a (ii) nodal-line semimetal for an extended region

of parameter space, but there is no direct transition between the two insulating states. The

symmetry of the space group and the wavevector where the gap closes uniquely determine

which possibility occurs (Murakami et al., 2017). In case (i), the number of Weyl node pairs

produced at the band inversion ranges from one to six depending on symmetry. In (ii) (as

discussed below) the nodal line is protected by a mirror symmetry. Liu and Vanderbilt, 2014

proposed to realize a WSM in this fashion in LaBi1−xSbxTe3 and LuBi1−xSbxTe3 by doping

close to the band inversion transition for a range of dopings near x ∼ 38− 45%.

This inversion symmetry breaking mechanism may be seen nicely in the pressure tuned

transition in Pb1−xSnxTe. The inversion symmetry broken Pb-based rocksalts have been

identified as topological crystalline insulators with surface states protected by mirror sym-

metry (Ando and Fu, 2015). Pb1−xSnxTe has an insulator-to-metal transition at approxi-

mately 12 kbar that is believed to be a band closing transition occurring at the L points

of the Brillouin Zone. The metallic phase is stable until about 25 kbar and is reasonably

interpreted as an intermediate Weyl phase occurring between topological and trivial regimes

(Liang et al., 2016c).

A large number of materials that are WSMs through the inversion symmetry breaking

mechanism have recently been predicted and discovered. Huang et al., 2015a; Weng et al.,

2015a predicted that TaAs,TaP, NbAs and NbP are materials in the Type I class (as discussed

above) of WSM. Although such systems are predicted to have 24 Weyl points, this family

of materials are completely stoichiometric without any additional doping, external strain or

pressure needed to fine tune the state. Signatures of the Weyl state were seen by ARPES in

TaAs and related materials soon afterwards (Lv et al., 2015b,c; Xu et al., 2016b, 2015a,b,c;

Yang et al., 2015b). These experiments will be discussed in more detail below. Symmetry

provides a helpful route in organizing and understanding the origin of nodes in WSMs. There

are 24 Weyl nodes in the bandstructure of the TaAs class of compounds (Yan and Felser,

2017). The TaAs structure (Fig. 15) has two mirror planes Mx and My, T , and a (non-

symmorphic) C4 rotation symmetry. Considering for instance, a Weyl point at (kx,ky,kz)

with chirality C = 1. Each mirror operation taken by itself reverses the chirality and gives

Weyl points with C = −1 at (-kx,ky,kz) and (kx,-ky,kz). Performing two simultaneous mirror

operations gives a Weyl point at (-kx, -ky,kz) with C = 1. T preserves chirality and gives
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the four time reversed partners of these 4 Weyl points at (±kx,±ky,±kz). Finally these

eight Weyl points at (±kx,±ky,±kz) produce another eight partners at (±kx,±ky,±kz) when

considering the C4 rotation, which also maintains chirality. Band structure calculations

show that there are two groups of points, one (labeled W1) that is in either the kz = 0 plane

or on the BZ face (depending on the size of the nodal loop, see below) and the other at a

non-symmetric intermediate kz (labeled W2)8.

The Weyl points form through the interplay of mirror symmetries and SOC. As shown

Fig. 16, in the absence of SOC, the conduction and valence bands would intersect on 4

closed nodal lines in the kx = 0 and ky = 0 mirror planes. The addition of SOC gaps the

bands on the mirror planes, but creates degeneracies at points slightly displaced from the

planes.

With the above considerations one gets eight W1 Weyl points and sixteen W2 points.

Although all materials in this class have the same general band structure, their different

energetics, lattice constants, and SOC can lead to differences in their topological strutures.

For instance, compared to TaAs (Arnold et al., 2016a), in TaP (Arnold et al., 2016b; Xu

et al., 2016b) the bulk pairs of the W2 Weyl nodes, which are well-separated in momentum

space are located near the chemical potential while the poorly-separated ones W1 are 60

meV below the chemical potential and so are enclosed by a single Fermi surface. This

gives for the W1 points a Fermi Chern number (the net topological charge enclosed by a

Fermi surface) for TaP of zero in a manner shown in Fig. 17 (Xu et al., 2016b, 2015c).

There may also be differences in the kz position of W1 between the Nb and Ta compounds.

In some calculations (Belopolski et al., 2016c; Huang et al., 2015a; Lee et al., 2015), the

nodal loops of the Ta compounds are predicted to be smaller making them not extend from

one BZ to the next. This means that for the Ta compounds the W1 point should be on

the z axis BZ face (see Fig. 16), whereas for the Nb materials the W1 point is on the

kz = 0 plane (as in Fig. 15). Such an effect will result in a “chirality switching” of the W1

points in the BZ when comparing Ta and As compounds. Again, compare Figs. 15 and 16.

However, different calculations show different results in this regard (Huang et al., 2015a;

8 Note that the literature is inconsistent with regards to which sets of Weyl points in the TaAs class are

labeled W1 and which are labeled W2. We have chosen and used figures that has used the convention

that the poorly-separated points with kz = 0, 2π/c are labeled W1. In this regard, we have changed the

labeling of Fig. 17 from how it originally appeared in the literature to be consistent with this scheme.
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Weng et al., 2015a; Yan and Felser, 2017) and there is no resolution on this point. There

may be an extreme sensitivity to the lattice constants used. Moreover, note that although

ARPES has in general been very powerful in finding topological band structures, it may not

generally have the energy and momentum resolution to see make well defined statements

about chirality of Fermi surfaces. As discussed below, quantum oscillation experiments can

be very useful in this regard (Arnold et al., 2016a).

Despite these successes, the search for a more ideal family of WSM materials continues.

As noted, the 24 Weyl nodes in the TaAs family of compounds comes in two non-symmetry

equivalent sets (Weng et al., 2016a), which with their large number and possible energy

offsets give rise to potentially complicated transport and spectroscopic properties. Moreover,

in the TaAs material class, all Weyl physics occur in a narrow range of energies. This requires

careful material preparation to ensure the Fermi level falls in this range. In this regard, Weyl

semimetals with larger characteristic energy scales are desirable. There has been an ongoing

search for simpler Weyl semimetals with the minimum 4 Weyl nodes at the Fermi level for

inversion breaking systems that have preferably large momentum and energy separations

from other bands. It has been proposed that HgTe and half-Heusler compounds under

compressive strain will realize a near ideal Weyl semimetal with four pairs of Weyl nodes

(Ruan et al., 2016a) near the Fermi energy.

More recently, Type II WSMs which have strongly tilted Weyl cones have been proposed

to exist in the layered transition-metal dichalcogenides WTe2 (Soluyanov et al., 2015), MoTe2

(Sun et al., 2015a; Wang et al., 2016g) and their alloys MoxW1−xTe2 (Chang et al., 2016f).

Such materials are believed to have band structures very sensitive to strain and pressure,

which may make experimental identification difficult. Sun et al., 2015a predicted four pairs of

Weyl points in the kz = 0 plane. Calculations using only slightly smaller lattice parameters

showed that two pairs were annihilated by merging along the Γ − X line leaving only two

pairs of Weyl points (Sun et al., 2015a). Experiments on these materials will be discussed

below. There have also been proposals and experimental claims for Type II WSMs in LaAlGe

(Chang et al., 2016b; Xu et al., 2016c).
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2. Magnetic Weyl semimetals

An ongoing search has been for materials that are good examples of a WSM through the T

breaking mechanism. The first proposed WSM was of this class in the magnetic pyrochlores

A2Ir2O7 (Wan et al., 2011) (where A =Y or a rare earth element Eu, Nd, Sm, or Pr).

Ab initio (LDA+U) calculations predicted an ‘all-in, all-out’ (AIAO) magnetic structure,

which is an unusual Ising ordering that preserves cubic symmetry but breaks T . Depending

on the strength of correlations U , a Mott insulating phase with this magnetic structure or

Weyl semimetal phase with 24 Weyl nodes (all at the Fermi energy) were predicted (Wan

et al., 2011). The role of the chemical species A was related to the strength of correlations

(Yanagishima and Maeno, 2001), with larger ionic radii (such as A=Pr) implying weaker

correlations. An extra complication is that in addition to the electrons on the Ir sites, local

moments on the rare earth atoms order but at a lower temperature. In this regard the A=Y,

Eu are the simplest in not having f shell moments.

Experimentally, several pyrochlore iridates are observed to undergo magnetic ordering,

and experiments have now confirmed that the order is of the predicted AIAO form (Disseler,

2014; Donnerer et al., 2016; Guo et al., 2016; Sagayama et al., 2013). The magnetically or-

dered pyrochlores, such as A=Eu, Nd are seen, in clean samples, to be insulating at low tem-

peratures (Ishikawa et al., 2012; Tafti et al., 2012; Tian et al., 2016; Ueda et al., 2012, 2015b).

The metallic phase above the magnetic ordering temperature is expected have quadratic dou-

bly degenerate bands that touch at the Γ point (Kondo et al., 2015; Nakayama et al., 2016;

Witczak-Krempa and Kim, 2012), a state we term a Luttinger semimetal (Abrikosov and

Beneslavskii, 1971a; Moon et al., 2013). In A=Pr, which remains a nonmagnetic metal down

to low temperatures (Machida et al., 2010; Nakatsuji et al., 2006), a quadratic band touching

has been found recent experiments (Kondo et al., 2015) (See Sec. VI.C for further discussion

of the Luttiinger semimetal). No direct evidence for Weyl nodes has been found so far in

stoichiometric pyrochlore iridates. However, it is expected that a weak AIAO order imposed

on the Luttinger semimetal would lead to Weyl nodes that move through the BZ as the

order parameter increases, eventually annihilating leading to an insulating state. Given the

continuous magnetic ordering transition observed in the pyrochlore iridates, an intervening

Weyl phase should occur just below the ordering temperature. The temperatures involved

are relatively low, compared to the band structure scales, so one should still be able to dis-
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tinguish a Weyl semimetal band structure. This WSM remains to be found experimentally

(Nakayama et al., 2016) and some numerical studies indicate a direct first order transition

between metallic and insulating states (Shinaoka et al., 2015). Experimental evidence for

first-order-like behavior was reported in Ueda et al., 2015a. However, proximity of a Weyl

phase is indicated in other experiments including A=Eu under pressure (Tafti et al., 2012),

and alloying with Rhodium (that substitutes for Iridium) leads to a state where linear in

frequency optical conductivity is observed as expected in a WSM (Ueda et al., 2012). A

recent comparative study of optical conductivity of pyrochlore iridates with different A ions,

is contained in Ref. (Ueda et al., 2016). It has also been shown in mixed Nd-Pr materials

that the application of a [001] magnetic field decreases the resistivity and produces a unique

Hall response and for field parallel to [111] the resistivity exhibits saturation at a relatively

high value typical of a semimetal (Ueda et al., 2017). Due to uniaxial magnetic anisotropies

of these cubic materials, different field directions can drive different magnetically ordered

states (all-in all-out to 2-in 2-out for a [100] field and three-in three-out for [111]). The

observed resistivity changes have been interpreted as the emergence of different WSMs with

varying numbers of Weyl points and line nodes in respective spin configurations.

The only metallic member in the pyrochlore iridate, Pr2Ir2O7, is a semi-metallic cousin of

the quantum spin ice candidate Pr2Zr2O7 (Kimura et al., 2013) and is believed to have a low

temperature chiral spin liquid phase, where a spontaneous Hall effect is observed (Machida

et al., 2010) Its quadratic band touching has been proposed to convert to a magnetic Weyl

semimetal phase due to other unconventional broken symmetry states at low temperatures

such as spin ice-like (Goswami et al., 2017b) or quadrupolar order (Lee et al., 2013).

The presence of Weyl nodes in the bulk implies Fermi arc surface states not only on

surfaces, but also on magnetic domain walls across which the chirality of Weyl nodes switch.

The domain walls are therefore expected to be conducting - and it was argued in Yamaji

and Imada, 2014 that the metallic character of domain walls may survive even when the

Weyl nodes have annihilated to form a bulk insulator. Indeed such metallic domain wall

conduction was reported in A=Nd pyrochlore iridates (Fujita et al., 2016; Ma et al., 2015;

Ueda et al., 2014) indicating proximity to a Weyl semimetal.

In another family of materials, it was proposed that YbMnBi2 may be an example

(Borisenko et al., 2015; Chinotti et al., 2016) of a magnetic Weyl semimetal. Materials

in this AMnBi2 family are expected to host highly anisotropic Dirac dispersions with a
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finite gap at the Dirac point due to SOC from first principles DFT band calculations. Un-

fortunately, it appears that the canting of the magnetic moment (10◦) from the c axis that

is believed to be required to split the DSM degeneracies, does not exist (Chaudhuri et al.,

2016; Wang et al., 2016a). Thus YbMnBi2 is likely a DSM (perhaps with a small mass).

Recently, Chang et al., 2016e; Wang et al., 2016h proposed candidates for magnetic Weyl

semimetals based on the Co-based magnetic Heusler compounds XCo2Z (X=V,Zr,Ti,Nb,Hf,

Z=Si,Ge,Sn), VCo2Al and VCo2Ga. For spontaneous magnetization along the [110] direction

(confirmed by experiment) they predict only two Weyl nodes that are formed by bands of op-

posite C2 eigenvalues. Importantly, these nodes are predicted to be near the Fermi level and

separated by distances of order the BZ size. The antiferromagnetic half Heusler compounds

GdPtBi and NdPtBi have been predicted to be magnetic Weyl semimetals (Hirschberger

et al., 2016a; Shekhar et al., 2016; Suzuki et al., 2016) under applied magnetic field.

Of particular note is the recent work on Mn3Sn and Mn3Ge, which are antiferromagnets

(AFs) with a non-collinear 120-degree spin order that exhibit a large anomalous Hall con-

ductivity (Kiyohara et al., 2016; Nakatsuji et al., 2015). They have been predicted (Yang

et al., 2017; Zhang et al., 2017b) to be WSMs with several Weyl points as well as trivial

bands near the Fermi level. As discussed above, systems with a combined PT symmetry are

constrained to have doubly degenerate bands and therefore while PT symmetric AFs may

be DSMs, they cannot be WSMs. The Mn3Sn class is nonsymmorphic with either mirror

reflection My or inversion plus a half-lattice translation being a symmetry and hence like

all WSM AFs they break PT symmetry. Although there are similarities in the band struc-

tures of Mn3Sn and Mn3Ge, it is predicted that Mn3Sn has fewer Weyl points (3 families

of symmetry equivalent points vs. 9). Paradoxically this may be because its stronger SOC

leads to many of the Weyl points annihilating each other (Yang et al., 2017). In accord with

what is expected for WSMs with broken T , these systems show a large anomalous Hall effect

(Kübler and Felser, 2014; Yang et al., 2017; Zhang et al., 2017b) that is naturally explained

by the Berry phase mechanism in these systems. Note that despite the fact that these sys-

tems are believed to have a small net magnetic moment of 0.005 µB per unit cell, the small

moment has the effect of only moving the position of the Weyl nodes slightly from their

positions in the ideal AF structure. It is not believed to give an appreciable contribution to

the anomalous Hall effect. Also note that these materials exhibit their anomalous Hall effect

up to temperatures near Neel transition near 400 K (Kiyohara et al., 2016; Nakatsuji et al.,
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2015). This suggests that magnetic Weyl fermions can be available at room temperature and

beyond and this family of materials may be useful in spin-current conversion and domain

wall effects, which are a topical subject in the field of antiferromagnetic spintronics (Šmejkal

et al., 2017a).

With regards to predicting phases, Hughes et al., 2011; Turner et al., 2012; Wang et al.,

2016h give a particularly simple diagnostic to determine if an inversion symmetric system

with broken T hosts an odd number of pairs of Weyl nodes. One takes the product of the

inversion eigenvalue ζn(Ki) of all bands n below the Fermi level at all inversion symmetric

points Ki. ∏
~Ki=− ~Ki

∏
n bands with En(Ki)<Ef

ζn(Ki) (39)

If this number = −1 then an odd number of pairs of Weyl points must exist in the bulk. If

this number is 1 then it is not possible with only inversion symmetry to deduce if a nonzero

number of pairs exist.

Two other interesting (and thus far unrealized) proposals that are mentioned above are

to create Weyl (and presumably Dirac states as well) states via growing heterostructures

of magnetically doped 3D TIs and normal insulators (Burkov and Balents, 2011), inversion

symmetry broken heterostructures (Halász and Balents, 2012), and superlattices of alter-

nating layers with odd and even parity orbitals (Das, 2013). There have also been proposals

to create a WSM in strained Hg1−x−yCdxMnyTe films (Bulmash et al., 2014). Here a small

applied field would align the Mn spins and if the system is Cd doped to be close to the band

inversion transition, the system is expected to result in a WSM with two Weyl points near

EF .

B. Dirac semimetals

With regards to DSMs, the most straightforward manifestation of this state will be found

at the phase boundary between a topological insulator and a trivial one when the crystal

structure preserves both inversion and T . The expectation is that the alloying of known

topological insulators with lighter elements by tuning spin orbit coupling or lattice constant

can cause the bulk bandgap to close and invert at a quantum critical point where the

topological class changes. This physics has been investigated in both the TlBiSe2−xSx (Sato
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et al., 2011; Souma et al., 2012; Xu et al., 2011b) and Bi2−xInxSe3 (Brahlek et al., 2012; Wu

et al., 2013), where evidence of topological phase transition as a function of x between two

phases have been found. In each of these cases, one end member of the series is a topological

insulator and the other is a trivial insulator.

Although such systems should in principle show all the physics of a DSM, as discussed

above, one would like to identify phases that don’t require (or are susceptible to) fine tuning.

Moreover, except for materials like SrSn2As2 (Gibson et al., 2015) and ZrTe5 (Li et al., 2016c;

Yuan et al., 2016a) which are materials believed to be exist naturally near the critical point

between TI and non-TI, all the above non-stochiometric systems may exhibit additional

effects due to disorder. For instance Bi2−xInxSe3 crystals appears to show a tendency for In

segregation in single crystal form (Liu and Vanderbilt, 2013), although thin films seem to be

largely free of such effect (Brahlek et al., 2012; Wu et al., 2013). However, as discussed in

Sec. III, the conditions for a stable 3D DSM as a phase are rather specific. In order to not

form a gap, it is essential that crossing bands belong to different irreducible representations

of the double group (Elliott, 1954) along a line of symmetry. Therefore all crystal structures

are not equally likely to host DSMs (Gibson et al., 2015). For example, in the tetragonal

group I4/mcm, the Hamiltonian at a general wavevector along the c axis has C2v symmetry.

As the C2v double group only has one irreducible representation, all states have the same

symmetry and so such tetragonal crystals cannot host a DSM. In contrast, in the tetragonal

space group P4/mmm, degeneracies along the c axis are protected by C4 symmetry and

a Dirac point is allowed. The c axes in canonical Dirac systems Cd3As2 (I41/acd) and

Na3Bi (P63/mmc) have C4 and C6 that support double groups with multiple irreducible

representations and hence a DSM is allowed. ARPES experiments have now confirmed both

Na3Bi (Liu et al., 2014b; Xu et al., 2015d) and Cd3As2 (Borisenko et al., 2014; Liu et al.,

2014a; Neupane et al., 2014) as DSMs. Due to the single irreducible representations of the

double groups in orthorhombic, monoclinic, or triclinic space groups Dirac semimetals are

not possible in such crystal systems.

However, as discussed above, except in the case of the symmetry enforced states, sym-

metry alone does not definitely predict the presence of a DP. Notably the same minimal

models that describe the Dirac point physics in these materials are used to describe topo-

logical insulators in layered materials in the Bi2Se3 family. In that case the c axis has a C3v

symmetry, but different symmetries are allowed for the bands. However for the TI the low
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energy bands have common eigenvalues under C3 rotations and an avoided crossing occurs

forming a topological insulator and not a DSM. Thus it is hard to make definitive state-

ments, but one wants to look for materials with heavy elements and the required overlap of

the valence and conduction bands that have hexagonal, rhombohedral, tetragonal, or cubic

symmetry.

Within a particular material class trends can be followed that allow one to predict the

presence of Dirac semimetals independent of explicit calculations. Fig. 18 (Gibson et al.,

2015) shows how the calculated electronic properties of ZrBeSi-type compounds change as a

function of the total atomic number (Z) divided by the Pauling electronegativity difference

(∆En). This is the figure of merit for band inversion discussed above. ZrBeSi-type com-

pounds have a hexagonal (P63/mmc) space group (the same as Na3Bi) with a very simple

crystal structure, with layers of BeSi hexagonal net separated by large cations. Similar to

the above discussed half-Heusler compounds, it is found empirically that once this Z/∆En

metric reaches a certain value, band structure calculations predict that these materials will

exhibit a Dirac cone in their band structure structure. Note that not all these materials are

equally good candidates as their near-EF density of states is predicted to vary widely due

to presence of other near-EF bands. An ideal DSM would have a near EF density of states

of zero.

As discussed in Section III.B a number of possibly competing conditions must be met in

order to achieve symmetry enforced DSMs in a real material. In addition to the symmetry

constraints, one must find compounds with an odd number of electrons per formula unit in

orbital states well isolated from other orbitals. Candidate DSM materials designed to satisfy

both the symmetry and the band filling requirements have been proposed for diamond lattice

structures (space group 227, Fd3m) (Young et al., 2012). This lattice supports a DSM at half

filling in the prototype s-state Hamiltonian of Eq. 26 which yields the spectrum shown in

Fig. 19(d). Materials that form in this crystal structure are typically sp bonded insulators

(e.g. C, Si, SiO2, etc.) where the related Dirac singularity occurs “buried” deep in the

occupied spectrum and the band edge valence states derive from bonding combinations of

the atomic p-orbitals. Theoretical searches for DSMs in this crystal structure have therefore

focused on strategies that decorate the lattice with species that serve the dual roles of (1)

boosting the bonding-antibonding splitting in the p-manifold to high energy displacing them

away from the Fermi energy and (2) selecting a stoichiometry that fills the topological band
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precisely to the Dirac point.

Hypothetical group-V oxides MO2, M = {As, Sb, Bi} in the β-crystobalite crystal struc-

ture where the O atoms occupy bridging sites between fourfold-coordinated M vertices satisfy

the above requirements as shown in (Fig. 19 (a-c)) (Young et al., 2012). The symmetry

enforced FDIR’s occur at the centers of the Brillouin zone faces at the three X points and

in BiO2 the enhanced spin-orbit scale protects its Dirac-like dispersion near the FDIR on an

experimentally useful energy scale ∼ 200 meV. Comparison of Fig. 19(c) and (d) show that

the band structure bears a striking resemblance to spectrum of the prototypical Hamiltonian

of Eq. 26. Total energy calculations show that the BiO2 is a locally stable structure although

it has a substantially higher energy than the denser oxide Bi2O4 in the cervantite structure

(Young et al., 2012). Related and possibly more stable forms of Bi-derived DSMs have also

been predicted for quarternary compounds in the family BiBSiO4 with B = {Zn, Ca, Mg}

in a distorted spinel structure (Steinberg et al., 2014). Here the Bi species occupy two sym-

metry related fourfold coordinated sites in the primitive cell as in the diamond lattice, but

the lattice breaks the symmetry of the spinel structure (space group 227) to form an or-

thorhombic body-centered lattice (space group 74 (Imma)). This lower symmetry removes

the fourfold degeneracy of the parent spinel lattice at two X points but it retains an FDIR

at a single zone boundary T point. Similar to the situation in BiO2 the spin-orbit scale

provided by Bi is robust and is expected to support Dirac physics on a scale of hundreds of

meV (Steinberg et al., 2014).

As noted above, the nonsymmorphic character of these DSMs generally leads to situations

with an odd number of electrons per formula unit and chemical species in unconventional

oxidation states. A possible work around has been to explore low dimensional donor-acceptor

structures where a desired band filling can be selected without compromising structural

stability. Instead of having odd number of electrons per atom, which tends to be either

chemically unstable or highly localized, one can use one electron per molecular orbital as

occurs in cluster compounds. Similar approaches have been made recently in attempts

to stabilize frustrated magnets and prevent Jahn-Teller instabilities and orbital ordering

(Sheckelton et al., 2012). For example the donor-acceptor family of materials AMo3X3

(A = {Na,K,Rb, In,Tl}, X = {Se,Te}) that exist in structures containing twisted stacks

of Mo3 clusters with a screw axis symmetry. Indeed the band structure features quasi-

one dimensional dispersive bands along the chain direction with symmetry-enforced zone
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boundary contact points (Michel and Zak, 1999) and a band filling that can can be selected

to some extent by the choice of the A site cation (Gibson et al., 2015). These are DSM

candidates, although their one dimensional character inevitably suppresses band velocities

in the transverse directions and may leave these materials susceptible to a transition to an

insulating state by a Peierls instability. Generalizations of these considerations relating to

electron filling and searches of materials’ databases in an efficient way has lead to candidate

Dirac semimetals (Chen et al., 2016a).

In particular, main group elements are not usually found in valence states with odd

numbers of electrons. Configurations such as Bi+4 are unstable. Transition metals are found

in odd valence states, however they are prone to various instabilities such as charge density

waves in NbSe2 and TaSe2. Moreover, they are typically found with a number of d orbitals

that are close to overlapping each other energetically. Ir+4 in the nonsymmorphic pyrochlore

lattice has a half-filled J1/2 orbital that is removed in energy from other d orbitals and

although it is proposed to be a DSM, it and many other odd electron numbered transition-

metal ions exhibit tendencies towards localized magnetism.

Another possibility to resolve the band filling problem in nonsymmorphic crystals is with

intermetallic compounds. One example is the nonsymmorphic paramagnetic metal Cr2B

(space group Fddd) that contains interlocking honeycomblike nets of Cr atoms related to

each other by glide planes. Band structure calculations reveal many bands crossing the

Fermi energy, with DPs expected to be present. It is believed that through B deficiency the

DP may be brought to EF (Gibson et al., 2015; Schoop et al., 2014). Through Hall effect

experiments on polycrystalline Cr2B it is believed that high mobility n-type carriers can be

resolved in transport experiments.

V. EXPERIMENTAL RESULTS

With the above theoretical and materials considerations, we can now turn to the con-

siderable experimental literature on WSM and DSM systems. Like other large material

classes, characterization has benefited from the application of a large number of different

experimental techniques. Each have their strengths or limitations in revealing aspects of the

underlying physics.
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A. Identifying Dirac and Weyl systems through their band structure

ARPES, STM, magneto-optical transport, and quantum oscillations have all proven to

be very useful in determining aspects of the band structures of these materials. In partic-

ular ARPES has emerged as a premier tool for experimentally identifying topological band

structures. Within the framework of certain accepted approximations, this technique mea-

sures the single particle spectral function as function of energy and momentum (Damascelli

et al., 2003). For the weakly interacting compounds that comprise most studied topological

materials, it gives a direct measure of the band structure. Due to momentum selection rules

in the photoexcitation process, the technique is best suited for 2D materials and has played

a central role in the identification of topological insulators surface states (Hasan and Kane,

2010) and in probing the physics of quasi-2D superconductors like cuprates (Damascelli

et al., 2003). Its use in 3D materials like most WSM or DSM systems requires more care,

as kz sensitivity is achieved by tuning the incident photon energy. but it has proved to be

equally useful in the identification of material realizations of these states of matter. It has

the constraint of being primarily a surface sensitive probe, but if surfaces have natural cleav-

age planes then in many circumstances experiments can be done that are reflective of the

bulk. In the case of topological materials spin-resolved measurements have been particularly

useful (Hasan and Kane, 2010).

The first relevant ARPES experiments were on the DSM systems Na3Bi (Liu et al., 2014b;

Xu et al., 2015d) and Cd3As2 (Borisenko et al., 2014; Liu et al., 2014a; Neupane et al., 2014).

Experiments on (100) oriented Na3Bi single crystals have shown a pair of linearly dispersing

three-dimensional Dirac points that are displaced from each other on the (001) line passing

through the Γ-point (Liu et al., 2014a). On the (100) surface, the two bulk Dirac nodes are

separated from each other in the (001) direction as shown in Fig. 20. At higher binding

energies, the two Dirac points were found to enlarge into hole-like contours, whereas the

two surface Fermi arcs shrank in an electron-like fashion. These observations were in accord

with the theoretical prediction (Wang et al., 2012). Fig. 21 shows ARPES spectra from the

(001) surface. The linear Dirac dispersion is clearly seen, but because the two bulk Dirac

nodes project onto the same point in the surface BZ the Fermi arc surface states discussed

in Sec. III.D.1 are not expected.

For Cd3As2 there have been discrepancies about the details of the bandstructure. It is
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believed that there are a pair of symmetry-protected 3D Dirac nodes near the Γ point, but

there have disagreements about location, size, anisotropy, and tilt of these bands. ARPES

studies imply cones extending over a few hundred meV (Borisenko et al., 2014; Neupane

et al., 2014) or even up to an eV (Liu et al., 2014a). However, STM has estimated Dirac

cones with energies an order-of-magnitude smaller (Jeon et al., 2014). Most recently the

magnetooptics measurements of Akrap et al., 2016 have demonstrated that the band struc-

ture likely includes two types of conical features, one a high energy scales, the second on the

small energy scale. The higher energy structure can be explained within the Kane model

that is widely applied to describe the band structure of cubic zinc-blende type semiconduc-

tors (Kane, 1957). At low energies this cone “splits” and Dirac fermions emerge that can

be described in the context of the ‘Bodnar’ model (Bodnar, 1977) that retains the stan-

dard Kane parameters (band gap Eg, interband matrix element P , and spin-orbit coupling

∆), while also introducing a crystal field splitting δ that in this case reflects the tetragonal

symmetry of Cd3As2.

Despite early predictions, good material realizations and experimental data for a WSM

were longer in coming. After the prediction (Huang et al., 2015a; Weng et al., 2015a), a

number of groups found evidence in TaAs for a WSM (Lv et al., 2015b,c; Xu et al., 2015b,

2016d; Yang et al., 2015b). Subsequently, similar evidence was found for other compounds in

this material class (Xu et al., 2016b, 2015a,c). Shown in Fig. 22, one can see representative

ARPES data for TaAs (Belopolski et al., 2016c). One can see the characteristic “lollipop”

and “bowtie” shaped FSs of the As terminated surface. The same general shapes are found

in all measured materials in the TaAs material class as shown in Figs. 23 and 25. Although

rough agreement of ARPES with band structure calculations has been taken as evidence

for a WSM, Belopolski et al., 2016c presented a set of conditions for the ARPES measured

surface state band structure to meet to establish the presence of a WSM. Some of the TaAs

class of materials may not rigorously meet this standard due to the energetic position of

the nodes in manner of Fig. 17. To establish a non-zero Chern number, one such condition

is to add up the signs of the Fermi velocities of all surface states around a closed loop in

the surface BZ in a momentum region where the bulk band structure is everywhere gapped,

assigning +1 for right movers and -1 for left movers. An odd sum, establishes the a Weyl

point. As shown in Fig. 22 for TaAs, one can consider two paths in momentum space that

are denoted as C and P . However, because two W2 nodes project onto the sBZ’s (001)
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surface, their projection will terminate two Fermi surface arcs. Therefore around loop C,

the expectation is that the net Chern number is +3, however it is experimentally observed

to be +2. This can be explained by considering the small separation between the W1 Weyl

points where the single Fermi surface arc is not resolved. However, around P , the path

encloses only the well-spaced Weyl points W2 and one finds a Chern number +2, consistent

with expectation of two W2 points projecting to the surface BZ. This establishes the WSM

state. However, one should take note of the extremely non-trivial shapes of the Fermi arcs

in these materials, and compare them to the prediction of the simple model Hamiltonians

of Sec. II.B, which have a Fermi arc that is a straight line connecting the projection of the

Weyl nodes onto the surface. This shows that although the WSM may be realized in such

systems, very careful analysis will generally have to be done to reveal the universal aspects

of the WSM state. Particular experiments may be more sensitive to particular complexities

of the band structure.

Although all materials in this class have the same general band structure, their different

spin-orbit coupling and other energetics can lead to differences in their topological properties.

One may also study the evolution of the electronic structure with increasing spin-orbit

coupling strength (Liu et al., 2016). As seen in the systematic comparison between three

members of the monopnictide family (NbP, TaP, TaAs) in Fig. 23, increasing SOC has the

effect of pushing the W2 Weyl points with opposite chirality away from the mirror plane.

As seen in Fig. 23e, the splitting of these Weyl points (∆K1) and the splitting of the band

dispersions (∆K2), which causes the splitting of the Fermi-arcs, also increases with the SOC

in the various compounds. Quantum oscillation experiments have also been important in

this regard as even aside from the any possible phase offsets discussed below (Sec. V.C.1),

angle-dependent quantum oscillations are a powerful tool to determine the FS topology in

such materials. They have been able to (in conjunction with band structure calculations)

establish fine details about the location of the Fermi energy with respect to the Weyl nodes

in the different materials and show for instance that despite having the same general band

structure but different size of SOCs, NbP (Klotz et al., 2016) and TaP (Arnold et al., 2016b)

have FSs that in-circle two Weyl nodes giving zero net chirality to these FSs sections, while

TaAs (Arnold et al., 2016a) has a Fermi energy close enough to both sets of Weyl points to

generate chiral particles at EF .

Like in the case for topological insulators with their well known “spin-momentum” lock-
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ing, spin textures are expected and observed (Fig. 24) for the FS arcs in the WSM case (Lv

et al., 2015a; Xu et al., 2016d). However unlike in the TI case, topological properties cannot

be inferred directly from the spin texture of the Fermi arcs. There is no model-free rela-

tionship between the chirality of the Weyl points and the Fermi arc spin texture, other than

those mandated by the crystal symmetry itself. For instance, in TaAs the Fermi arcs that

intersect the Γ− Y line have a mirror symmetryMx that constrain the spin to be in-plane

polarized. The total spin polarization is as large as 80% in TaAs (Xu et al., 2016d), which

can be compared to the total spin polarization of Bi2Se3 surface states is only about 40%

(Sánchez-Barriga et al., 2014). This is because in the Bi2Se3 case the spin textures of the p

orbitals interfere partially destructively, whereas in TaAs there is constructive interference.

Lv et al., 2015a (Fig. 24) demonstrated consistency between the spin texture and Weyl node

chirality as compared to their ARPES data, but it is important to note that the relation

between spin texture of surface states and the chirality of Weyl nodes was determined by

comparison to experiment in their calculation and not set independently as can be done in

TIs.9.

The inherent inversion symmetry breaking of the TaAs material class reveals itself in

an asymmetry in the photoemission spectra of the top and bottom surfaces as the spectra

from the (001) direction is different than the (001) direction (Souma et al., 2016; Sun et al.,

2015b). In the ARPES technique crystals are typically cleaved in vacuum to reveal a clean

surface. In the case of NbP, this cleaving occurs easier by breaking two Nb-P bonds per

unit cell instead of breaking four bonds, (Fig. 25) so the (001) surface is preferentially

Nb terminated and the (001) surface P terminated. As discussed above there exist two

kinds of Weyl points in this material class. Due to the fact that W2 nodes are located in

pairs at positive and negative kz, their projection onto either surface terminate two Fermi

arcs, whereas the projection of W1 terminates a single Fermi arc. These broad aspects are

9 We caution that in general great care must be brought to bear in the interpretation of spin resolved

photoemission data. Even in P and T symmetric systems that are ensured to have overall two-fold

spin degeneracy, pronounced spin polarizations can be observed in spin-ARPES. This arises from local

inversion symmetry breaking within the unit cell (Zhang et al., 2014). As photoemission is a strongly

surface sensitive technique it can preferentially samples a fraction of the unit cell giving the possibility of a

spin polarized signal in systems which do not have spin split bands (Bawden et al., 2016) or anomalous spin

textures that do reflect unit cell averages (Zhu et al., 2013). This effect interferes with a straightforward

interpretation of the spin-resolved ARPES data.
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independent of the surface termination. However the particular way in which the Fermi arcs

connect the projected Weyl points depends on the surface. These differences can be seen

directly in the photoemission spectra. As shown in Fig. 25 a number of FSs are seen. Fermi

surfaces S2, S8, and S9 are believed to be Fermi arcs, whereas S1, S3, S4, S6, and S7 from

trivial Fermi surfaces.

Scanning tunneling spectroscopy (STS) is a real space surface measurement technique

that measures the density of states as a function of position. However it can provide mo-

mentum space information through Fourier transform of the spatial dependence of impurity-

or boundary-induced states. Because it is directly sensitive to scattering it provides infor-

mation about pseudospin scattering constraints and chirality of quasiparticles even when

the pseudo-spin vector is not necessarily associated with the electron spin. A number of

measurements have reported signatures of scattering patterns consistent with Fermi arcs on

the surface Weyl semimetals such as TaAs (Batabyal et al., 2016; Chang et al., 2016d; Gyenis

et al., 2016; Inoue et al., 2016; Zheng et al., 2016). These measurements give evidence not

only for the particular spin dependent scattering function indicative of Weyl Fermi arcs, but

also the momentum dependent delocalization of the arc states into the bulk of the sample

that occur at their projection on the bulk Weyl nodes.

Finally, as mentioned above, it has been proposed that a Weyl state can emerges from

the touching of electron and hole pockets in a state that is distinct from the idealized Type

I Weyl semimetals with their point-like Fermi surface (Soluyanov et al., 2015). The Weyl

cone in this Type II semimetals is strongly tilted and as a function of chemical potential the

Fermi surface undergoes a Lifshitz transition. Although Type I and Type II WSM’s cannot

be smoothly deformed into each other, they share electronic behavior that originate in the

isolated band contact point in their bulk spectra. They are anticipated to have a number

of different properties including a variant of the chiral anomaly when the magnetic field is

well aligned with the tilt direction, have a density of states different than the usual form,

possess novel quantum oscillations due to momentum space Klein tunneling, and a modified

anomalous Hall conductivity (O’Brien et al., 2016; Soluyanov et al., 2015; Udagawa and

Bergholtz, 2016; Zyuzin and Tiwari, 2016). Evidence for a Type II state has been given in

MoTe2 (Deng et al., 2016; Huang et al., 2016a; Jiang et al., 2017; Liang et al., 2016b; Tamai

et al., 2016), the alloy MoxW1−xTe2 (Belopolski et al., 2016a,b) and TaIrTe4 (Belopolski

et al., 2016d; Haubold et al., 2016; Koepernik et al., 2016). Detection of the Type II state in
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the MoTe2 class of materials is challenging. Although evidence has been claimed for WTe2

in Wang et al., 2016c, it controversial. As emphasized by Bruno et al., 2016, although the

bulk band structure is very sensitive to small changes in lattice parameters that push the

material in and out of the Weyl state, the feature identified as surface “Fermi arcs” in WTe2

are largely independent of these changes, and is therefore trivial and cannot be used to

show the system is in the non-trivial phase. The predicted topological Fermi arcs in WTe2

are predicted to be too small to be observed experimentally. The situation is somewhat

more favorable (although still challenging) in MoTe2. There is again the same large trivial

Fermi arc-like feature, but also small arcs that have been observed, which are consistent

with being topological via band structure calculations (Deng et al., 2016; Jiang et al., 2017;

Tamai et al., 2016).

B. Semiclassical transport and optics

1. General considerations

As mentioned above, 3D Dirac and Weyl systems are predicted to have a number of

interesting semi-classical transport and optical effects that are diagnostic for this state of

matter (Burkov and Balents, 2011; Hosur et al., 2012) (Effects related to quantum transport

like the chiral anomaly are discussed below in Sec. V.C). With small modifications, most of

these results apply equally to Weyl and Dirac systems.

In the absence of impurities and interactions the free fermion result for the conductivity

in the low energy limit (where quadratic or higher order terms in the dispersion can be

neglected) that arises from interband transitions across the Weyl or Dirac node when the

chemical potential (EF ) is at the Weyl or Dirac point is

σ1(ω) = N
e2

12h

|ω|
vF

(40)

where vF is the Fermi velocity and N is number of nodes (Burkov and Balents, 2011; Hosur

et al., 2012; Hosur and Qi, 2013; Tabert et al., 2016; Wan et al., 2011). This prediction is

closely related to the prediction and observation in 2D Dirac system of single layer graphene

that for interband transitions that its optical conductance should be G1(ω) = e2

~ , giving a

frequency independent transmission that is quantized in terms of the fine structure constant
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α as T (ω) = 1 − πα (Ando et al., 2002; Kuzmenko et al., 2008; Nair et al., 2008). In

a 2D material like graphene the Kubo-Greenwood expression for the conductance from

interband transitions can be written (for the chemical potential at the Dirac point and

T=0) as G1(ω) = πe2

ω
|v(ω)|2D(ω) where v(ω) is the velocity matrix element between states

with energies ±~ω/2 and g(ω) is the 2D joint density of states. The universal conductance

arises because the Fermi velocity factors that come into the matrix element are canceled by

their inverse dependence in the density of states. In these 3D Dirac systems, another factor

of ω comes in in the density of states yielding Eq. 40.

Note that Eq. 40 implies a logarithmic divergence of the real part of the dielectric constant

through Kramers-Kronig considerations (Jenkins et al., 2016; Rosenstein and Lewkowicz,

2013). The corresponding imaginary conductivity is

σ2(ω) = − 2

π
N

e2

12h

|ω|
vF

log
2ΛvF
ω

. (41)

where Λ is a UV momentum cutoff.

Quite generally, in noninteracting electron systems consisting of two symmetric bands

that touch each other at the Fermi energy the optical conductivity generically has power-law

frequency dependence with exponent (d− 2)/z where d is the dimensionality of the system

and z is the power-law of the band dispersion (Bácsi and Virosztek, 2013). Such power-

law behavior is a consequence of the scale-free nature of such systems. It has been argued

(Fisher et al., 1991) that at a conventional continuous transition the optical conductivity

should scale as (d−z−2)/z. Due to their scale free nature one may regard Dirac systems as

intrinsically quantum critical with a dynamic exponent equal to the band dispersion power-

law. With the usual substitution for the effective dimensionality of a quantum critical system

deff = d+ z the generic power-law expression for the Dirac conductivity follows.

In the presence of impurities or interactions the expectation of Eq. 40 is modified. Im-

purities in the form of dopants can shift the chemical potential of the system away from

the Dirac point, leading to a Pauli-blocked edge at approximately 2EF below which Eq. 40

is not observed (Tabert et al., 2016). For finite scattering introduced by disorder one will

generally find a zero frequency peak which can give a finite dc conductance and additional

optical response. Its scaling form or even the existence of a metallic state at all in the limit

of EF → 0 is strongly dependent on the dimensionality, the power-law of the dispersion,

and the kind of scattering (screened, unscreened, short-ranged) that is being considered
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(Das Sarma and Hwang, 2015).

The effect of weak disorder scattering on the finite-frequency conductivity also depends

on whether ω � T or ω � T . Various theoretical approaches (Boltzmann, quantum Boltz-

mann, and Kubo) are generally in agreement with each other. Solving the linearized Boltz-

mann equation for short range disorder with the energy-dependent momentum relaxation

rate, the ω � T Drude-like peak in the optical conductivity has a temperature-dependent

spectral weight and width, the latter of which is predicted to scale as T2 with a temperature

independent dc limit of σdc =
e2v2F
3γh

(Burkov and Balents, 2011). In the low ω limit a very

unusual shape for the conductivity is predicted (Burkov et al., 2011), the real part of which

goes as

Reσ(ω) ≈ e2v2
F

3γh

(
1− 1

8

√
ωv3

Fh
3

2γT 2

)
. (42)

Note that this is a prediction for a temperature dependence to the elastic scattering, which

is again quite different from the usual case in metals and arises due to the strongly energy

dependent density of states in these systems. In the opposite ω � T limit the calculation

(Hosur et al., 2012) gives

Reσ(ω, T ) ≈ N
e2

12h

ω

vF

[
1− 16Nγω

15π2v3
F

+O
(
(ω/ωN)2)] . (43)

The leading term is independent of disorder, and is identical to the interband response for

the same system in the noninteracting, clean limit. These functional dependencies of the

various regimes for the optical conductivity are summarized in Fig. 26. Note that ω ∼ T

manifests itself as a crossover scale between the behavior of Eq. 42 and Eq. 43. Note that

strong disorder in a WSM may necessitate other considerations for the optical response(Roy

et al., 2016).

In the absence of umklapp scattering, electron-electron interactions have a small effect

on the optical conductivity of conventional metals as they conserve the total momentum

and hence the current. But in Dirac systems, due to particle-hole symmetry there can

be current carrying states with zero total momentum (Fritz et al., 2008; Goswami and

Chakravarty, 2011). This allows interactions to relax current with zero net momentum

transfer. A quantum Boltzmann calculation (Hosur et al., 2012) gives the expression for the

optical conductivity
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σ(ω, T ) = N
e2

h

(
kBT

~vF

)
1.8

−i ~ω
kBT

6.6 +Nα2 lnα−1
. (44)

Here v and α are the Fermi velocity and fine structure constant renormalized (logarithmi-

cally) to energy kBT . This expression assumes the low frequency limit ~ω
kBT
� α2. The dc

limit of this expression can be motivated in a relaxation time approximation via the fact that

the temperature dependent density of states goes like T 2 whereas on dimensional grounds

the transport lifetime is expected to go like 1/α2T . It is interesting to note the relative

temperature dependences of the Drude peak widths that go as T vs. T 2 in the interacting

vs. disordered cases respectively.

Lundgren et al., 2014 computed various thermal transport coefficients using the semi-

classical approach. With interactions they find that the longitudinal thermal conductivity

has a quadratic temperature dependence, in contrast to a linear dependence on the tem-

perature for either charged impurities or short-range disorder (similar to normal metals).

For kBT � EF , both Boltzmann transport (Lundgren et al., 2014) and Kubo formalism

(Tabert et al., 2016) calculations give a Lorenz number enhanced by interactions from the

Fermi liquid value. Lundgren et al., 2014 also considered the effect of electric and magnetic

fields on the thermoelectric coefficients. With the temperature gradient perpendicular to

the magnetic field the transverse thermal conductivity is linear in magnetic field and the

longitudinal thermal conductivity has a negative contribution that goes as the square of

the magnetic field. When the temperature gradient is in the direction of the magnetic field

there is an increasing quadratic magnetic field dependence for the longitudinal thermal con-

ductivity and zero transverse thermal conductivity. The presence of finite electric field is

predicted to not change these dependences as long as there is no internode scattering.

2. Experiments

The above predictions have been investigated in a number of WSM and DSM systems.

A number of experimental works have reported verification of Eq. 40 (Chen et al., 2015a;

Orlita et al., 2014; Sushkov et al., 2015; Timusk et al., 2013). ZrTe5 (Li et al., 2016c; Yuan

et al., 2016a) is a semi-metal with an extremely small and light ellipsoidal Fermi surface

that is centered in the bulk BZ. It is believed to be naturally tuned near a band inversion

transition. A linear optical conductivity consistent with Eq. 40 has been found (Chen et al.,
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2015a) over a range of 50 -1200 cm−1 (6 - 150 meV), albeit with a slope that is some 30

times higher than that expected from the velocities observed in ARPES. It may be that the

quasi-two dimensionality of this material is playing a role. Linearity over the large range

from 50 - 350 meV has also been observed in the zero gapped tuned Hg0.83Cd0.17Te (Orlita

et al., 2014). This system has been termed as Kane fermion system as its band structure

includes an additional nearly flat band contribution from a flat Γ8 band that lives between

the linearly dispersing bands at the Brillouin zone center. Much closer agreement between

the expected linearly increasing absorption and theory has been obtained in this system.

Akrap et al., 2016 demonstrated linear conductivity over a large energy range in Cd3As2,

but this was – as mentioned in Sec. V.A – sampling a region of the spectrum describable

by the – also conical – Kane dispersion and not a Dirac one. Elsewhere deviations from

linearity for Cd3As2 have been reported (Neubauer et al., 2016).

The Weyl semimetal state was first predicted to occur in the antiferromagnetic state of

the pyrochlore iridates (Wan et al., 2011). Sushkov et al., 2015 found that Eu2Ir2O7 has an

approximately linear frequency dependence of the optical conductivity down to 3 meV. Below

TN , the Drude spectral weight diminishes consistent with the reduced thermal excitations

of a Weyl semimetal. The data sets can be modeled, assuming a WSM, with 24 Weyl points

and an average Fermi velocity of vF = 4× 107 cm/s. A recent optical conductivity study on

several pyrochlore iridates (Ueda et al., 2016) however classifies this material as an insulator.

In TaAs, it is claimed (Xu et al., 2016a) that the low frequency Drude response exhibits a

T2 dependence to its width, although neither the strongly temperature dependent spectral

weight nor the unusual line shape of Eq. 42 was observed. TaAs also shows (Xu et al., 2016a)

a linear in frequency σ1 up to 1000 cm−1, which is reasonably associated with the interband

transitions associated with the four pairs (of 12) of W1 Weyl points and are predicted to be

only 2 meV above the Fermi energy (Fig. 27b).

It is important to keep in mind that the observability of many of the above predictions rely

on some idealities of the band structure that may or may not be present in real materials. For

instance it has been claimed that the lack of a threshold for Dirac cone interband transitions

at 2EF in the purported Dirac system Na3Bi is due to very large Dirac cone anisotropies

(Jenkins et al., 2016). Moreover, it is not clear that even if materials like YbMnBi2 are

T breaking Weyl semimetals it is possible to see linear in ω optical conductivity due to

certain nonidealities that are certainly present in their bandstructures and the presence
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of non-toplogical bands (Chaudhuri et al., 2016; Chinotti et al., 2016). Also note that

different regions of linear in ω absorption may be seen that correspond to different linear (or

otherwise) parts of the band structure as pointed out by Tabert and Carbotte, 2016 (Fig.

28). This appears to be the case in Cd3As2 where optics sees a linear in ω conductivity but

it is sampling the part of the spectrum that is described by the Kane dispersion, not the

lower energy Dirac disperpsion (Akrap et al., 2016).

A very interesting suggestion is that the linear conductivity seen in the optical response

of many quasicrystals compounds arises from the fact that these may be realizations of Weyl

semimetals (Timusk et al., 2013). For instance, in the AlCuFe system the conductivity rises

linearly with a slope of 5750 cm−1/eV. A comparison to Eq. 40 gives – with the assumption

that the Weyl points are located on the faces of the icosahedron gives with spin degeneracy

N = 40 – the reasonable estimate for the Fermi velocity of 4.3 × 107 cm/s. This idea of

WSM state hiding inside quasicrystals deserves further consideration.

Interaction effects may also reveal themselves in an interesting fashion in optical conduc-

tivity. Jenkins et al., 2016 observed the presence of side-band feature in the optical response

of the Dirac semi-metal candidate Na3Bi that they assign to a coupled quasiparticle-plasmon

excitation e.g. a plasmaron (Lundqvist, 1967) that has also been seen in the optical con-

ductivity of the massive Dirac semi-metal elemental bismuth (Armitage et al., 2010; Tediosi

et al., 2007). Such coupling is a form of electron-electron interaction, can cause mass renor-

malizations, and may be ubiquitous in slightly doped WSM and DSM systems.

C. Quantum mechanical effects in transport

1. Quantum oscillations

When one puts an electronic system in magnetic field, Landau level (LL) quantization

occurs and as field is ramped, the density of states at EF undergoes quantum oscillations

(QO) resulting in the variation of physical quantities as a function of 1/B. Measurements

of quantities like resistivity (e.g. Shubinikov- de Haas oscillations (SdH)) explicitly measure

the rate at which when the LLs are depopulated as the field is increased. The condition

for LL formation is given by a generalized Lifshitz-Onsager quantization expression AF
~
eB

=

2π(n + 1
2

+ β + δ) where AF is the cross-sectional area of the Fermi surface normal to the
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field and n is the Landau level index that depends inversely on B. δ is an additional phase

shift that results from three dimensional warpings of the Fermi surface that is 0 for a 2D

cylindrical FS and ±1/8 for a 3D FS (Murakawa et al., 2013; Shoenberg, 1984).

The additional phase shift β equals zero in conventional parabolic bands. However, it

was shown by Roth, 1966 that for arbitrary dispersions other values can occur, which can

be calculated with knowledge of the Bloch functions. Mikitik and Sharlai, 1999 showed

that the expressions of Roth, 1966 could be recast in a form such that β can be shown to

be equivalent to the Berry’s phase experienced by an electron as it travels around a closed

loop in momentum space (Mikitik and Sharlai, 1999). One of the distinguishing features of

Dirac electrons is this nontrivial Berry’s phase, which in principle can be revealed by QO

experiments.

Such Shubnikov-de Haas (SdH) oscillation experiments have been extensively in studies

of 2D materials like graphene (Novoselov et al., 2005; Zhang et al., 2005) and topological

insulator surface states (Analytis et al., 2010; Qu et al., 2010; Sacépé et al., 2011; Taskin

and Ando, 2011). For a 2D gapless Dirac system like graphene, the Dirac point plays the

role of an infinitely thin solenoid in momentum space with a fictitious effective magnetic

field, which is the Berry curvature. In related massive Dirac systems (for instance BN) the

Berry curvature is spread over a region in momentum space near the band minimum. The

effect is still felt in regions of zero Berry curvature through an effective vector potential –

the Berry connection (Xiao et al., 2007). Therefore a closed path that encircles a region of

net Berry curvature picks up a Berry’s phase that can be identified as β. In 3D, it is in a

similar sense that Weyl points can be considered as sources of Berry curvature as discussed

above.

In graphene (Zhang et al., 2005), one locates the peaks and valleys of the SdH oscillations

as a function of 1/B, and plots them against Landau index n in a “fan” diagram. In the

ideal case this results in straight lines, with a slope that is the SdH oscillation frequency

(which gives the FS area) and an intercept with the n axis that gives the Berry’s phase β

in units of π. In practice, curvature of the bands can lead to deviations from linearity. In

graphene, this is a minor effect, but obviously the intercept is most accurately quantified

if low LL indices are measured. For this high fields and low carrier densities are required.

Generally, the latter is more achievable in 2D systems, which can be gated.

In 3D materials, it is generally less straightforward to determine the Landau indices
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without a detailed analysis. First, generally densities are high enough that it is difficult to

access low LL indices. Second, many materials of interest have complex band structures

with both linear and quadratic dispersions in the relevant energy range. This is particularly

true in the complex band structures of real materials like WSM and DSM candidates. Non-

idealities in various models and the effect of gap opening terms (e.g. Zeeman fields) have

been discussed in Refs. (Wang et al., 2016b,b; Wright and McKenzie, 2013). It is only in

certain limits that the a clear picture can be obtained.

Wang et al., 2016b considered a simple model of a WSM in which one can explicitly tune

the relative contribution of linear (EA) and quadratic (EM) terms to the energy spectrrum.

The presence of a quadratic contribution arising in this fashion is more appropriate in

modeling quantum oscillations experiments than the continuum Dirac model considered in

Sec. II.B. A number of the complications pointed out above can be seen explicitly even in

this relatively simple band structure. From the numerical simulations shown in Fig. 29 for a

T breaking WSM, for the energy range where EA < EM the phase shift β is an very strong

function of EF . Moreover, even for small values of EF , the phase shift is a strong function of

the band parameters and is not simply related to the number of Weyl nodes encircled by a

FS contour. It is only in the EF → 0 and∞ limits does the numerical simulation recover the

simplest analytic results of β = −1/8 and −5/8 phase shifts for 3D linear or quadratic bands

respectively. The phase shift even becomes non-monotonic in the region where EF is near

the Lifshitz transition. Near the Lifshitz transition for EA ≈ EM pronounced “beats” could

be found in the spectra making the whole scheme break down altogether. Such simulations

show that quantum oscillation experiments described by even such a simple band structure

must be interpreted very carefully.

A number of additional complications associated with the measurements themselves need

to be addressed. As LLs form, the density of states at EF changes giving oscillations in vari-

ous quantities as a function of 1/B. In resistivity measurements it has been debated whether

one wants to fit minima or maxima in the resistivity. This depends on a number of issues,

including whether or not ρxx is greater or lesser than ρxy (Hu et al., 2016). It was argued

in Ref. (Wang et al., 2016b) that even for the longitudinal geometry the maximum resis-

tivity would be found when EF is near the Landau level edge due to the vanishing velocity

there and hence resistivity maximum should be used. Moreover, even more complications

arise in materials with multiple bands that cross EF . In addition to simply just complicat-

73



ing the oscillation pattern with additional backgrounds and oscillations, as LL depopulate

with increasing field, charges may move between bands to lower the total energy. This has

been documented long ago (Woollam, 1971) (and more recently (Schneider et al., 2009)) in

graphite where the relative movement of the Fermi energy between bands can be consider-

able as the quantum limit is approached giving oscillations that are not periodic in 1/B.

This obviously interferes with a straightforward extrapolation of 1/B to infinite field.

Despite all of this, quantum oscillation have been measured in various WSMs and DSMs,

and although the interpretation is challenging there is some evidence for non-trivial Berry’s

phase effects. See (Wright and McKenzie, 2013) or the SI of (Wang et al., 2016b) for a review

of experimentally observed phase offsets. Representative data for quantum oscillations in

a DSM can be seen in Fig. 30 for Cd3As2 The index plot can be linearly fitted for both

samples measured, giving intercepts of 0.56 and 0.58 giving evidence for a Berry phase’s

offset of order π (He et al., 2014). Similar data can be found elsewhere (Desrat et al., 2015;

Narayanan et al., 2015). Some evidence exists for a crossover to a trivial Berry phase regime

at higher field under high magnetic fields that are directed away from the 001 direction (Cao

et al., 2015). Such a field can cause a gap to form as it breaks the rotational symmetry that

protects the Dirac point (Wang et al., 2012). Evidence for a non-trivial phase also exists in

the quasi 2D system purported Dirac system ZrTe5 (Yuan et al., 2016a), although it is still

unclear if this system has small band gap and is in fact trivial (Zhang et al., 2017c). This

system is believed to be close to a band touching transition (Weng et al., 2014) and may be

very sensitive to materials preparation.

Interpretation of similar experiments on the TaAs class of materials are much more com-

plicated. For instance, de Haas-van Alphen measurements (Sergelius et al., 2016) on NbP

show signs of multiple bands some of which are Weyl FS candidates with low cyclotron

masses and a non-trivial Berry phase, and some of which are parabolic with a higher effec-

tive mass and close to trivial Berry phase. For fields applied in the [100] and [010] directions

the “β” band is identified as a Weyl FS with a non-trivial Berry phase’s offset of 0.48π. This

band was believed to come the W2 Weyl pocket. Howeiver, showing the complexity of the

interpretation of such experiments, an unidentified “θ” band with a Berry phase of 0.54π

was found from fields applied in the [001] direction. This feature is not straightforwardly

assigned to the W1 Weyl node as it is expected to be ∼ 60 meV below EF in a manner

shown in Fig. 17 showing the limitations inherent in using this technique for a definitive
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topological characterization in a multiband system. A number of other bands were found

with intercepts of less than 0.25 π that are likely deriving from conventional parabolic bands.

Similar results have been obtained using Shubnikov-de Haas oscillations (Hu et al., 2016).

The situations seems to be simpler in TaAs due to the more favorable positioning of EF ,

but even there there are three different types of Fermi surface pockets oscillations found

in magnetization, magnetic torque, and magnetoresistance measurements (Arnold et al.,

2016a). From a comparison to band structure calculations, two appear to be topologically

non-trivial electron pockets around the W1 and W2 points and one is a trivial hole pocket.

In principle magneto-optical experiments have the possibility of revealing the Berry’s

phase in semimetals (Illes et al., 2015; Malcolm and Nicol, 2015), but such experiments and

analysis have not been attempted in WSM or DSM candidates. They have given important

such information in graphene (Orlita and Potemski, 2010).

2. The chiral anomaly

As discussed in Sec. II, one of the much touted properties of the WSM and DSM systems

has been that of the chiral magnetoresistance effect (CME). This is an effect that derives from

a non-zero E ·B that can pump charges from one Weyl cone to the other through their band

structure connection below EF . The axial charge pumping creates an out-of-equilibrium

distribution of charges between the Weyl nodes. In steady state, the charge pumping is

relaxed via through internode scattering. The chiral anomaly in a WSM will lead to a

negative magnetoresistance when the magnetic field is parallel to the current. In contrast in

metals or conventional semiconductors, the longitudinal magnetoresistance (MR) is typically

weak, positive, and usually not very sensitive to the magnetic field direction. Therefore, a

negative longitudinal MR which depends on the relative orientation of E and B has been

regarded as the most prominent signature in transport of the existence of 3D Weyl points. A

strong negative angular longitudinal MR has been reported for TaAs, NbAs, TaP, NbP and

interpreted as this chiral magnetic effect (Du et al., 2016; Huang et al., 2015b; Shekhar et al.,

2015; Wang et al., 2016i; Yang et al., 2015c; Zhang et al., 2016a). Shown in Fig. 31 is some

representative data from Zhang et al., 2016a. Three principle regions are seen as a function

of the magnetic field. At fields close to zero, an initial sharp increase in the resistance is

seen. Although the low field MR has a shape that corresponds to the low temperature −
√
B
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contribution to the magnetoconductance of the weak-anti-localization effect expected in a

WSM (Lu and Shen, 2015), the fitted coefficient is far larger than expected. At intermediate

fields, the negative longitudinal MR is found.

At even higher fields, the longitudinal MR starts to increase again. These features were

found to be largely independent of the direction of the applied fields with respect to crystal-

lographic axes as long as E and B were co-aligned. As discussed in Sec. II.C.2, in the CME

the negative longitudinal MR can be fit with a contribution to the magnetoconductance

that goes as ∆σCME = NCWB
2, where N is the number of Weyl nodes and CW is the chiral

coefficient, the simplest form of which is e4τa
4π4~4E2

F )
(Burkov, 2015a; Son and Spivak, 2013).

Here τa is the internode relaxation time. As shown in Fig. 31 the fitted chiral coefficient was

found in Ref. Zhang et al., 2016a to have both a strong dependence on the relative angle

between E and B and on the sample’s Fermi energy.

Similar behavior has been seen in DSMs like Bi0.97Sb0.03 (Kim et al., 2013), Na3Bi (Xiong

et al., 2015), Cd3As2 (Feng et al., 2015; Li et al., 2015, 2016b; Liang et al., 2015; Zhang et al.,

2017a), and ZrTe5 (Li et al., 2016c), and the quadratic band touching system (Hirschberger

et al., 2016a). In these systems a magnetic field may create Weyl nodes and allows charge to

be pumped from one node to the other in a way that is forbidden in a DSM in zero field. As

discussed in Sec. III.D.2, unlike the WSM case, it is not the momentum difference between

nodes, but very same symmetry that protects the Dirac node that is expected to suppress

the intervalley scattering. In Fig. 32, we show some representative data on Na3Bi. One can

see the same characteristic strong dependence of a negative longitudinal MR signal on the

relative angle of E and B as in TaAs. It is interesting to note that this data does not have

the large positive longitudinal MR at low and high B characteristic of TaAs and its family

members.

Although such data has been extensively interpreted as evidence for the CME, it is not

clear that in most cases the materials are in a regime that the effect can be realized easily.

Firstly, in materials like TaP, it appears to be (Arnold et al., 2016b) that EF is such that

the electron and hole Fermi-surface pockets surrounding the W1 nodes contain a pair of

Weyl nodes and hence the total Berry flux through the Fermi surface is zero. Secondly, it

has been pointed out recently that many of these materials have a large enough transverse

magnetoresistance to have the effect corrupted by the classic “current jetting” phenomenon

in compensated semiconductors (Dos Reis et al., 2016; Yuan et al., 2016b) in which current
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becomes narrowly directed along the applied field due to a very large field induced trans-

verse resistance. Historically, the observed effect was known as “anomalous longitudinal

magnetoresistance” in materials like antimony and bismuth (Babiskin, 1957; Steele, 1955;

Yoshida, 1976), but was later shown to arise from current inhomogeneity inside the sam-

ple from large transverse magnetoresistance. It is a strong effect in materials that possess a

large field-induced anisotropy of the conductivity, such as almost compensated high-mobility

semimetals (Pippard, 1989). In compounds like bismuth the transverse MR can be larger

than as 107 at 4.2 K in 5 T (Alers and Webber, 1953) causing current to flow in the direc-

tion of the applied magnetic field and almost independent of the direction of E. Different

mechanisms can give rise to strong transverse MR, but all predict it to be enhanced in low

density systems. Classic two-band magnetotransport predicts a parabolic-field-dependent

magnetoresistance with a magnitude that is enhanced with increasing mobility. For exactly

compensated semiconductors, this classic transverse MR should not saturate. In another

mechanism, it was predicted Abrikosov, 1998 that a linear field dependence of the MR

is expected near a linear band touching when the magnetic field is beyond the quantum

limit. Spatial mobility fluctuation have been also predicted to cause linear MR anisotropy

(Parish and Littlewood, 2003). Also note that the possibility of similar phenomena have

been suggested for more generic 3D Fermi surface without the topology of a Weyl node in

the presence of parallel electric and magnetic fields (Andreev and Spivak, 2017; Goswami

et al., 2015). Moreover, it has been pointed out that even materials that have their chemi-

cal potential above the van Hove point in the Weyl band structure have a nontrivial Berry

curvature (despite there being no well defined chirality), which may give a quadratic in field

contribution to the magnetoconductivity (Cortijo, 2016a).

The possibility of current jetting deserves further discussion. For samples with a large

conductivity anisotropy A = σzz/σxx current flows predominantly in the high conductivity

direction. Large conductance anisotropies can occur in systems with large transverse MR,

such as compensated semi-metals (Pippard, 1989). It is known that for small contacts and

samples with a non-ideal aspect ratio, and for cases of a very strong anisotropy current

forms a “jet” between the contacts. This very non-uniform current distribution inside the

sample means that the experimentally measured potential difference between voltage con-

tacts placed between the current contacts is not proportional to the intrinsic resistance. The

inhomogeneous current distribution manifests itself in additional characteristics, such as a
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strong dependence of the inferred longitudinal MR on the position of the contacts and very

strong angular dependencies. Even negative total resistances can be observed if the mag-

netic field is not extremely well aligned with the current direction (Dos Reis et al., 2016).

Shown in Fig. 33 is a simulation for the potential distribution for different conductivity

anisotropies A, which may reflect strong transverse magnetoresistance from a magnetic field

in the ẑ direction (Dos Reis et al., 2016). A large MR anisotropy strongly distorts the

equipotential lines. Even for anisotropies as low as 10, the effect is visible in even this close

to ideal geometry with the l/w aspect ratio close to 5.

The TaAs material class has both extremely high mobility (∼ 105 cm2/V · sec ) and

large transverse magnetoresistance (∼ 80000%) at low temperature, (Huang et al., 2015b)

in all cases making it likely that current jetting dominates even for a large aspect ratio Hall

bar geometry. In the TaAs case, the negative MR disappeared as the field was rotated only

2◦ away from the current (Huang et al., 2015b). Moreover, the strong dependence of the

observed negative longitudinal MR on 1/EF from Fig. 31 is naturally explained in terms

of the strong transverse magnetoresistance of an almost compensated semiconductor being

projected into the longitudinal direction. Strong negative longitudinal MR has also been

inferred recently for non-WSM non-DSM systems like TaAs2 and NbAs2 (Luo et al., 2016;

Yuan et al., 2016b). Convincing evidence for current jetting in this material class has been

shown, that by simply putting voltage probes across the whole sample (Yuan et al., 2016b)

the effective negative MR could be made to disappear (Fig. 34). It is fair to say that at the

time of this writing there is no convincing evidence of the chiral anomaly in WSM systems.

All existing experiments appear to be entirely dominated by the current jetting effect.

Although the situation can be less severe in the DSMs with lower mobilities (µ ∼ 2, 600

cm2/V · sec in Na3Bi (Xiong et al., 2015), but still as high as 9 ×106 cm2/V · sec in Cd3As2

(Liang et al., 2015) ) and smaller transverse MRs (approximately 10 at 10 T in Na3Bi

(Xiong et al., 2015), but greater than 200 in ZrTe5 (Li et al., 2016c), and almost 1000 in

Cd3As2 (Liang et al., 2015) at approximately the same field) the anisotropy can still be

appreciable. Moreover some of the experiments performed on these materials have been

on samples with far less than the ideal shape that would minimize the effects of current

jetting. The evidence for current jetting in the quadratic band touching system GdPtBi

system is less definitive (the transverse MR is only of order 3) (Hirschberger et al., 2016a;

Shekhar et al., 2016; Suzuki et al., 2016) and some checks for inhomogeneous current have
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been performed (Hirschberger et al., 2016a). It was proposed (Shekhar et al., 2016) that the

mechanism for turning a quadratic band touching into a Weyl system in field was enhanced

by the role of Gd moments (even with the large g factor of 40 in GdPtBi, the Zeeman

scale is too small to split the nodes appreciably) as no such negative MR was seen in the

YPtBi system (Fig. 35). However, one must bear in mind that as this is a magnetic system

and possible alternative origins of the angular dependence is directional magnetoresistance.

In such a mechanism, the spin is assumed to follow the direction of the applied field and

spin-orbit coupling gives an anisotropy in the scattering rate when current is aligned along

or perpendicular to this direction (Van Gorkom et al., 2001).

To what extent can current jetting account for the negative longitudinal MR of DSMs and

quadratic band touching systems? This is an important open question for future investiga-

tion. Since current jetting can manifest even for small anisotropy ratios A when geometries

are non-ideal, further experiments are needed to clarify the origin of longitudinal MR. We

also note that in virtually ever experiment to date, the relative angular dependence is much

stronger than the E ·B form would suggest. Although there have been proposals about how

such deviations may arise intrinsically in a DSM (Burkov and Kim, 2016) (See Sec. III.D.2),

as an exceedingly strong angular dependence is the precise expectation from current jetting,

any deviations from cosθ need to be carefully considered.

Given all the above considerations, is it still possible to extract information about the

chiral magnetic effect? One must ensure current homogeneity inside the sample. As shown

in Fig. 34, one may improve the reliability of the measurement by using both voltage and

current probes that reach across the sample, but even then it can still challenging to get a

homogenous current. Even for uniformly applied silver paste contacts applied on the entire

end of the sample, current tends to enter where the local contact resistance is minimum.

In classic experiments on samples like potassium metal that have a very large transverse

magnetoresistance, Lass, 1970 used contacts made with liquid Hg that made an amalgamated

bond with a long skinny sample, but even there it was judged that the current distribution

inside was inhomogeneous. To do such measurements, one wants to use an ideal geometry

with large aspect ratio l/w. The resistance anisotropy can be viewed as an effective changing

of the aspect ratio by a factor of 1/
√
A (Pippard, 1989). Obviously anisotropy ratios of 103

in the WSM like TaAs puts severe constraints on sample geometries. And with conventional

aspect ratios of order 5, the effects of inhomogeneous current distribution can manifest even
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with the comparatively low anisotropies found in DSM systems. We believe these issues

make it hard to demonstrates conclusive signatures of the CME in the longitudinal MR for

high mobility systems. Other (non-contact) probes of “dc” transport are essential. In this

regard, the older classic literature may be a guide (Simpson, 1973).

One intriguing result that may be evidence for the chiral anomaly is the observation

of large magneto-optical Kerr effect in Cd3As2 crystals the size of which is dependent on

the applied in-plane E ·B. Even up to room temperature, Zhang et al., 2017a found that

the Kerr rotation followed an almost pure cosθ dependence of E ·B with a maximum Kerr

rotation of over 0.04◦. Putting aside its unexplained extremely large value (which is even

greater than that found in some ferromagnets (Xia et al., 2009a)) this result closely follows

the prediction of Hosur and Qi, 2014, in which coaligned electric and magnetic fields will

pump charge into one Weyl node from another, allowing the intrinsic gyrotropic coefficient

of a node to manifest, giving net optical activity.

3. Surface state transport

As discussed abvoe, the surface of WSM and DSM systems are expected to have unique

properties. Unfortunately, due to the inherently conducting nature of the bulk of these ma-

terials, surface transport signatures are hard to isolate. This is unlike the case of topological

insulators, where after sufficiently insulating bulk materials were grown, definitive surface

transport signatures soon followed (Analytis et al., 2010; Checkelsky et al., 2011; Wu et al.,

2016; Xu et al., 2014).

One of the most promising avenues to isolate the surface transport is through measure-

ments that take advantage of the hybridization between surface and bulk states. As discussed

in Sec. II.C.5, Potter et al., 2014 proposed a unique form of quantum oscillations in WSMs

that involves the hybrid motion of electrons through half an orbit on the surface via a Fermi

arc, transport through the bulk to the bottom surface, half an orbit on the other surface via

the other Fermi arc, and then transport back to the beginning of the arc on the top surface.

The relevant quantization condition is given in Eq. 25. The orbit is very different from the

typical closed path that electrons take on going around a conventional Fermi surface. Due

to phase factors accumulated in the propagation through the bulk (where no Lorentz force

is experienced) there is an explicit dependence to the observed signal on the thickness of the
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sample and/or the length of the classical trajectory.

Moll et al., 2016 investigated the possibilities of these unique orbits in Cd3As2 by per-

forming transport experiments on focused ion beam machined nanostructures of a variety of

shapes and size scales (∼150 nm). As discussed above, Cd3As2 is a DSM and to manifest this

physics requires the material functioning as two independent Weyl subsystems overlapping

in k-space. Experiments on these samples give evidence for these unconventional orbits in a

few different ways. When field is applied in the long direction of the sample, quantum oscil-

lations are exhibited, the frequency FB of which that are in good agreement with previous

measurements of bulk crystals (He et al., 2014). However, when the field is applied in the

thin direction of the sample, a second oscillation frequency FS = 61.5 T appears that can be

distinguished from the higher harmonics of the bulk. This higher frequency exhibits a dis-

tinct 1/cosθ variation with the angle of applied field that is emblematic of two-dimensional

Fermi surfaces. However the frequency spectrum of the additional quantum oscillations is

found to be strongly thickness dependent and is only observed in samples where the sample

thickness is shorter than the bulk mean-free-path showing the bulk plays an essential role

in the fashion anticipated.

Shown in Fig. 36a from Ref. (Moll et al., 2016) is a scanning electron microscope of two

devices made with triangular and rectangular cross sections. Both devices have a similar

cross-sectional area and circumference. As sketched in Fig. 36b, the expectation is that the

unconventional orbits for the two devices should be very different. In the data the rectangular

device clearly shows frequencies that reveal the presence of both unconventional orbit and

the conventional bulk one, the triangular device shows only the bulk frequency. Presumably

this occurs because in the triangular device, destructive interference results from the sum

of oscillations with a random phases, rendering the quantum oscillations unobservable in

experiment. However, given that Cd3As2 is a DSM, it would be important to reproduce this

experiment, particularly on a WSM material.

Evidence for surface state transport has also been inferred from transport measurements

on low carrier concentration Cd3As2 nanowires that have a large surface-to-volume ratio

(Wang et al., 2016f). When large enough field is applied along the length of the nanowire,

they find that the conductance oscillates as a function of magnetic flux with peaks at Φ =

(n + 1
2
)h
e

e.g. peaks at odd integers of h/2e with a period of h/e. The 1
2

is interpreted as

it is in the case of topological insulator nanoribbons (Peng et al., 2010) as indicative of a π
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Berry’s phase (Bardarson et al., 2010; Zhang and Vishwanath, 2010).

4. Non-linear probes

In addition to the considerable contribution that optical techniques in the limit of linear

response can make to the study of these systems, it appears that non-linear optical probes

may be able to give particular insight. Generally these effects such as high harmonic gen-

eration, photovoltaic effects, shift (dc) currents, and nonlinear Kerr rotations, are related

to the Berry connection and Berry curvature (Hosur, 2011; Moore and Orenstein, 2010).

For instance, it can be shown that the second harmonic generation (SHG) signal can be

related to the shift vector R, which is a gauge-invariant length formed from the momen-

tum derivative of the phase of the velocity matrix element and the difference in the Berry

connection (Morimoto and Nagaosa, 2016). It has been predicted (Morimoto et al., 2016;

Wu et al., 2016) that transitions that arise near Weyl nodes between bands with nearly

linear dispersion should give a near universal prediction in the low ω limit for the non-linear

susceptibility as

χ(2) =
g(ω) < v2R >

2iω3ε0
(45)

With the density of states g(ω) proportional to ω2, the SHG signal is predicted to diverge

as 1/ω. Although this result is reminiscent of the ω dependence of the optical conductivity

discussed in Sec. V.B.1, the 1/ω divergence is a unique signatures for inversion-breaking

WSMs in particular because it vanishes in DSMs. However, similar to the case of the linear

in ω conductivity, the SHG divergence will be cutoff by disorder and nonzero Fermi energy

in real materials. Recently Wu et al., 2016 have found a giant, anisotropic χ(2) at 800 nm

(1.55 eV) in TaAs, TaP, and NbAs, which may be related to this effect. In the spectral range

measured, the effect is of order 7000 pm/V , which is an order magnitude larger than in GaAs,

which is the material with the next largest coefficient. In the future it will be important

to probe SHG and the shift current at even lower frequency to look for the dependence of

ω. Other effects have been proposed such as a nonlinear Hall effect arising from an effective

dipole moment of the Berry curvature in momentum space (Sodemann and Fu, 2015) and a

photoinduced anomalous Hall effect(Chan et al., 2016) for WSMs and photogalvanic effects

(Cortijo, 2016b) in DSMs.
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In DSM systems there is no direct photocurrent without driving electric field (Shao and

Yang, 2015), but because of the chiral nature of the Dirac material and their spin selective

transitions the photoconductivity is anisotropic for polarized radiation. Chan et al., 2017

propose that inversion symmetry breaking WSMs with tilted Weyl cones (Type II most

effectively) and doped away from the Weyl point, will be efficient generators of photocur-

rent and can be used as low frequency IR detectors. Such a photocurrent has recently

been demonstrated via the circular photogalvanic effect (CPGE) (Xie et al., 2017) in TaAs.

The CPGE is the part of a photocurrent that switches its direction with changes to the

handedness of incident circular polarization. It can be shown (Moore and Orenstein, 2010)

to be sensitive to the anomalous velocity derived by Karplus and Luttinger (Karplus and

Luttinger, 1954) that was later interpreted as a Berry-phase effect (Jungwirth et al., 2002;

Sundaram and Niu, 1999). Xie et al., 2017 also pointed out that such experiments can also

measure uniquely the distribution of Weyl fermion chirality in the BZ.

A very interesting proposal of de Juan et al., 2017 is that of a quantized response also

in the circular photogalvanic effect (CPGE) in WSMs that posses no mirror planes. The

CPGE usually depends on non-universal material details. de Juan et al., 2017; Morimoto

et al., 2016 predict that in Weyl semimetals and three-dimensional Rashba materials without

inversion and mirror symmetries, that the trace of the CPGE is quantized (modulo multi-

band effects that were argued to be small) in units of the fundamental physical constants.

It is proposed that the currents obey the relation

1

2

[
dj�
dt
− dj	

dt

]
= C

2πe3

h2cε0
I (46)

where C is the integer-valued topological charge of Weyl point and I is the applied intensity.

Alternatively, the right hand side of the equation can be expressed as C 4παe
h
I where α is the

fine-structure constant. In this expression, the currents for left and right circular polarization

are perpendicular to the polarization plane. Alternatively the quantity [jsat
	 − jsat

� ] may be

measured if the relaxation time τ is sufficiently long and known independently. An attractive

property of this response is that it is related to the chiral charge on a single node. The total

node chirality in the BZ must of course be zero, however this does not prevent a CPGE.

In an P breaking material with no mirror planes, the Weyl nodes of opposite chirality

do not need to be at the same energy. One node can be Pauli blocked rendering it inert

and giving a quantized response for some finite range in frequencies. The proposed double
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Weyl system SrSi2 (Huang et al., 2016b) that has no mirror planes (unlike TaAs) may be a

good candidate for this effect. Its predicted magnitude is well within the range of current

experiments. Using the universal coefficient e3

~2cε0 = 22.2 A
W ·ps , de Juan et al., 2017 predict

for τ ∼ 1 ps a steady state photocurrent of ∼ 2 nA
W/cm2 , which is approximately 100 times that

found in the topological insulator films (Okada et al., 2016). Recently, an anomalous CPGE

voltage was found in TaAs (Sun et al., 2016) due to a photoinduced radial spin current.

This CPGE voltage is proportional to the helicity of the incident light and the behavior can

be interpreted as the transfer of the angular momentum from photons into the rotational

motion of electrons.

It has also been appreciated that the low energy linear dispersion of WSM’s and DSM’s

make them potentially useful for plasmonic applications particularly in the retarded (low

frequency) limit (Hofmann et al., 2015; Hofmann and Das Sarma, 2015, 2016; Zhou et al.,

2015). T broken Weyl phases can support nonreciprocal one-way surface plasmon polaritons

(Hofmann and Das Sarma, 2016; Zyuzin and Zyuzin, 2015).

VI. RELATED STATES OF MATTER

The electronic WSM and DSM states of matter discussed here provide inspiration and

source for analogies for related realizations in other physical systems. There may be Weyl

or Dirac-like states of matter that do not have have electrons as their fundamental degrees

of freedom (for instance photons (Khanikaev et al., 2013), phonons (Rocklin et al., 2016;

Xiao et al., 2015; Yang and Zhang, 2016), or magnons (Li et al., 2016a; Mook et al., 2016)).

Or WSM and DSM systems may serve as platforms for phenomena like new forms of su-

perconductivity (Li and Haldane, 2015; Meng and Balents, 2012; Yang et al., 2014). It is

also the case that some aspects of DSM and WSMs were anticipated in essential aspects

of exotic superconductors or superfluids (Schnyder and Brydon, 2015; Volovik, 1987, 2003)

and important connections can be made here. Moreover the stable band touchings found in

WSMs and DSMs are just two of the possibilities for interesting semimetal states of matter.

Here we discuss some of these related states in detail.
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A. Topological Line Nodes

In addition to Weyl and Dirac nodes, other zero gap semimetal possibilities exist. In

Weyl and Dirac semimetals bands touch at points in the 3D BZ. If the band touchings occur

along lines in the 3D BZ, these states are termed topological nodal line semimetals (Burkov

et al., 2011) and are reviewed in (Fang et al., 2016). Nodal line semimetals are expected to

have particular transport properties including a number of different conduction regimes as

a function of temperature, doping, and impurity concentration that arises from a Coulomb

interaction that falls as 1/r2 over a large range in r and a weak-localization correction with

a strongly anisotropic dependence on magnetic field (Syzranov and Skinner, 2016). They

may have been observed in ZrSiS (Neupane et al., 2016; Schoop et al., 2016), PbTaSe2 (Bian

et al., 2016a), HfSiS (Takane et al., 2016), and TlTaSe2 (Bian et al., 2016b) via ARPES.

Below we discuss some basic aspects of these systems. First, we note that typically the band

touching lines are not expected to be at the same energy so the Fermi surface itself is not

expected to be a line in the 3D BZ, but rather a collection of 2D surfaces. Under what

conditions can line nodes appear? There are two distinct scenarios - depending on whether

we neglect or include spin-orbit coupling.

1. Nodal lines in the absence of spin-orbit coupling

In the absence of spin orbit coupling (or in the limit where it is small), the spin SU(2)

symmetry is retained and we can effectively ignore this degeneracy of the bands. If in

addition we have both time reversal and inversion symmetry P , the combined action T̃ = T P

leaves the crystal momentum unchanged and acts like a local time reversal symmetry in the

BZ. Furthermore, we can set T 2 = +1 since we ignore the spin degree of freedom. With

the same symmetries it is known that the 2D graphene Dirac nodes cannot be gapped,

suggesting that it is a 2D topological semimetal. By extension, we should expect a line node

in 3D with these symmetries. Indeed as discussed in (Fang et al., 2015) there is a Z2 index

associated with loops in the BZ that encircle line nodes. This ensures the stability of the

line nodes and also implies that graphene is a topological semimetal. Surprisingly, there is

a second Z2 invariant associated with surfaces in momentum space, much like that used to

characterize Weyl nodes (Fang et al., 2015).
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To understand these in a unified fashion, let us revisit the procedure to identify topological

semimetals, using Weyl semimetals as an example. We first choose a sub-manifold in the

d-dimensional BZ that has dimension d′ < d, where there is a band gap. We can then

treat the band structure on this sub-manifold like that of a gapped insulator and use the

classification scheme for band insulators summarized in Table III. For the case of Weyl

semimetals, d = 3; d′ = 2 and the absence of symmetry puts us in class A. The existence

of an integer Z classification of d′ = 2 insulators by Chern number, implies that if there

is a nontrivial Chern number on the surface it leads to Weyl semimetals with point nodes.

Extending this to other situations with symmetry, requires the symmetry to be present for

any choice of submanifold. The combination T̃ = T P fixes the crystal momentum, and one

may then expect semimetals with this symmetry to be classified by the class AI for which

T̃ 2 = +1. However, unlike regular time reversal, the crystal momentum remains invariant

under this effective time reversal, which does not allow us to read off the answer directly from

the table. However, one can make the following adjustment - we can interpret the momentum

as a real space coordinate which would naturally be left invariant under time reversal. Then,

following (Teo and Kane, 2010), who considered space dependent band structures H(k, r) to

account for topological defects, the space coordinates can be treated as ‘negative’ dimensions.

This is meaningful because of the periodicity in dimension of the classification shown in Table

III. Therefore, nodal lines in 3D can be captured by considering a d′ = 1 submanifolds,

which can be classified according to −1 + 8 = 7 dimensional topological insulators in class

AI. This has a Z2 classification consistent with the more direct calculation of (Fang et al.,

2015; Morimoto and Furusaki, 2014). However, we also notice that a Z2 index for the 6

dimensional insulator corresponds to a d′ = 2 submanifold. Indeed, there is an additional

invariant for nodal lines in 3D that does not allow us to simply shrink a nodal line to zero

(Fang et al., 2015). As with Weyl nodes, these nodal ‘monopoles’ must come in pairs to give

net zero charge in the BZ.

Materials candidates in this class of nodal semimetals necessarily involve light elements

for which the spin orbit interaction is expected to be weak. In graphene, this is believed to

be the case, and some of the early proposals of 3D line node semimetals also involved carbon

based structures (Chen et al., 2015b; Weng et al., 2015b), models based on generalized 3D

honeycomb networks in the absence of spin orbit coupling (Ezawa, 2016). Other proposals

include a new form of Ca3P2 (Xie et al., 2015). A review of materials candidates is contained

86



in (Fang et al., 2016; Yu et al., 2016).

2. Nodal lines in spin-orbit coupled crystals

When spin-orbit interactions are included, the combination of inversion and time reversal

alone are insufficient to protect nodal lines. Instead one necessarily requires a glide or twofold

screw symmetry which can protect a double nodal line, where two sets of doubly degenerate

bands cross each other. When two orthogonal glides are simultaneously present, such nodal

line band touchings are symmetry enforced (Chen et al., 2016b). An example of such a

nodal line semimetal is furnished by SrIrO3 (Chen et al., 2016b; Fang et al., 2015).

Generally, topological semimetals are expected to be accompanied by surface states like

Fermi arcs in the case of Weyl semimetals. An additional requirement here is that the

surfaces preserve the symmetries that protect the semimetal dispersion. In general the nodal

lines band touchings are not all at the same energy. However, if particle-hole symmetry were

additionally present, which would pin the entire nodal line at the same energy, the associated

‘drumhead’ surface states involve a flat band over the surface BZ enclosed by the projection

of the nodal line. In the absence of this additional symmetry, one may still discern nearly

flat surface bands (Burkov et al., 2011). However, in superconductors with nodal lines, the

additional symmetry is indeed present as we discuss below.

In ether case, when the bulk system is doped so that the Fermi surface surrounds the nodal

line its Fermi surface may be susceptible to various interaction driven instabilities. This

problem was studied by Nandkishore (Nandkishore, 2016) who suggested that the leading

instability on a toroidal Fermi surface in the particle-particle channel would lead to a fully

gapped T -breaking chiral superconductor. At lower density, instabilities in the particle hole

channel lead to gapless states that can break either mirror or rotational symmetries (Sur

and Nandkishore, 2016).

B. Relation to nodal superconductors and superfluids

While there has been much recent effort dedicated to studying and realizing topological

superconductors, with a full gap in the bulk and gapless modes at the edge, there is of course

extensive history of work on nodal superconductors and superfluids, where the energy gap
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closes at points or lines in the BZ (Hu, 1994; Leggett, 1975; Volovik, 2003). These can then

be understood in the framework of topological semimetals, albeit with additional symmetries

arising from the superconducting nature of the gap. This can lead to protected states at the

boundary that are precisely at zero energy. Here we will focus on a few examples that are

physically relevant, a more general discussion can be found in the reviews (Schnyder and

Brydon, 2015).

Superfluid He-3 at milliKelvin temperatures forms a paired superfluid. While at ambient

pressure a fully gapped topological superfluid is realized (the B-phase), at higher pressures

a different ‘A’ phase obtains, and is believed to be described by the Anderson-Brinkman-

Morel order parameter. This pairing spontaneously breaks time reversal symmetry and

leads to a pair of nodal points where the gap vanishes (Leggett, 1975). Qualitatively it may

be understood as a px + ipy superfluid where spin up fermions pair (spins being defined

along the z axis) with the same pairing function between spin down fermions. At the north

and south pole of the Fermi surface where px = 0, py = 0 and pz = ±pF , the pairing

function vanishes and leads to opposite Weyl nodes. These are the superconducting analog

of Weyl nodes; their relation to chiral fermions was investigated in (Volovik, 1987, 2003).

Here the role of charge conservation is played by spin rotation invariance about the z axis,

which is respected by the pairing function. A direct consequence is the presence of Fermi

arc surface states at the boundaries of the superfluid, as in Weyl semimetals, which will

be pinned at zero energy (Heikkilä et al., 2011). Other nodal superconductors can realize

line nodes in the 3D BZ, and realize zero energy Andreev bound states at the surface BZ

momenta that lie within the projections of these line nodes (Schnyder and Ryu, 2011). Non-

centrosymmetric superconductors such as CePt3Si (Bauer et al., 2004) have been proposed

as candidate material realizing this physics (Schnyder and Brydon, 2015). In a 2D system,

the equivalent is a point node in the gap. The best known example of this is the d-wave

spin singlet superconducting gap of the cuprates. Here too there is a topological origin for

the gap protection which leads to zero energy modes (Hu, 1994; Wang and Lee, 2012) along

certain edges that have been reported to have been observed in several tunneling experiments

(Walsh, 1992).

A related set of questions involve the properties of Weyl semimetals in the presence of

superconductivity. For magnetic Weyl semimetals, the single Fermi arc surface state splits

into a pair of chiral Majorana modes, which are attached to different gapless bulk nodes,
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which can be moved independently of one another (Meng and Balents, 2012). Turning to

pairing in T symmetric Weyl semimetals, time reversal invariant pairing is expected to gap

the nodes but could potentially lead directly to topological superconductivity as discussed

in (Hosur et al., 2014; Li and Haldane, 2015; Qi et al., 2010). For a Weyl metal with Fermi

surface Chern numbers Ci (the Fermi surfaces being labeled with the index i) and time

reversal symmetric superconducting pairing gaps ∆i on the different Fermi surfaces, the

resulting topological superconductor is labelled by an integer topological index ν which can

be expressed as

ν =
1

2

∑
i

Cisign(∆i), (47)

thus for the minimal situation of four Weyl nodes, if the pairing changes sign between the

pair with Ci = 1 and the pair with Ci = −1, this leads to a topological superconductor with

ν = 2.

The interesting case of pairing between Fermi surfaces surrounding nodes of opposite

Chern number was discussed in Ref. (Li and Haldane, 2015). In this case, the complex-valued

gap function cannot be globally well-defined over the entire Fermi surface; its distribution

exhibits non-zero total vorticity and hence, the gap function must have nodes. However the

pairing symmetry cannot be described by the usual spherical harmonic functions (or their

lattice analogs) since these describe regular functions over the Fermi surface. It determines

a novel topological class characterized by monopole charge rather than the usual uncon-

ventional nodal superconductivity which is typically characterized by angular momentum

quantum numbers. Notably, this monopole superconductivity is determined by the normal

state topology alone, rather than any particular pairing mechanism and thus should be very

robust. Although pairing in T broken superconductors takes special consideration, if it ex-

ists in a T broken WSM (even through conventional electron-phonon mechanisms or via a

proximity effect) a nodal structure is mandated.

C. Quadratic band touchings and the Luttinger semimetal

One can generally understand the physics of linear Weyl and Dirac semimetals within

the framework of weakly interacting fermion theories. In contrast one expects a number of

important interaction effects to intervene in 3D quadratic band touching (QBT) systems.

Such effects are expected to be more pronounced that in linear band crossing systems due
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to the scaling of the density of states with energy and thus QBT systems are expected to be

strongly interacting. Seminal work by Abrikosov and Beneslavskii showed that in the vicinity

of the band edge, quadratic band touching systems are always strongly interacting and that

at energies well below the exciton scale ( 2µe4

ε2∞~2 ) the single particle concept is inapplicable

(Abrikosov and Beneslavskii, 1971a,b). Here µ is the reduced mass of the conduction-

valence band system and ε∞ is a background dielectric constant. This was a remarkable

demonstration almost fifty years ago of a non-Fermi liquid conductor. Taking advantage of

the inherent scale-free criticality in such a system and using an ε-expansion about 4 spatial

dimensions, Abrikosov derived scaling relations (Abrikosov, 1974) and the forms for various

observables. More recently Moon et al., 2013 argue that for the 3D case the Coulomb

interactions may stabilize a new stable non-Fermi liquid phase, rather than driving the

system to an instability. They show that it can be understood as a balance of the screening

of Coulomb interactions by electron-hole pairs and mass enhancement of the quasiparticles

dressed by the same virtual pairs. However, a number of other effects are possible. Even

more recently, it has been argued that in 3D and for the single band touching found in known

materials that the quadratic band touchings are unstable at low energies to opening a gapped

nematic (Herbut and Janssen, 2014; Janssen and Herbut, 2015) or T breaking phase (Lai

et al., 2014). A nematic phase has not been observed in experiment, although possibly

relevant magnetic phases are observed in iridate pyrochlores (Matsuhira et al., 2007). It has

also been argued that because short-range correlated disorder scales identically to Coulomb

interactions at tree level, and dominates them in a one-loop RG analysis, the Abrikosov and

Beneslavskii phase is unstable to disorder and may result ultimately in a localized phase

(Nandkishore and Parameswaran, 2017).

In the absence of these low temperature phase transitions, quadratic contact points be-

tween bands can be protected – as they are in the 3D massless Dirac case – by point group

and time reversal (T ) symmetries that enforce a particular degeneracy. Their valence and

conduction bands belong to the same irreducible representation of the symmetry groups and

the 4 fold degeneracy at the touching point cannot not be removed unless the symmetries

are broken. This is the case in well known materials such as α-Sn and HgTe. Of course,

these materials have been of recent interest also due to the fact that they are near a topo-

logical band inversion transition that can be accessed under uniaxial strain or in a thin film

geometry. In their fully symmetric cubic state they posses a quadratic band touching (QBT)
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at the zone center. In the non-interacting, disorder free, case these systems can be described

in a minimal band structure by the Luttinger Hamiltonian for inverted gap semiconductors

(Luttinger, 1956) and so we term this phase with a stable QBT a Luttinger semimetal.

Although in principle the strong interactions proposed by Abrikosov, 1974 should exist in

the classic HgTe and α-Sn systems, such effects were never observed. One expectation is that

due to virtual excitations across the band touching the dielectric constant can become greatly

enhanced. Broad bands decrease the overall scale of the interaction effects and residual

doping giving a finite chemical potential EF was sufficient to cutoff the divergences associated

with these zero energy transitions. In classic QBT systems like α-Sn and HgTe the dielectric

enhancement was relatively modest (ε̃ ∼ 3.5 and 7 respectively) (Grynberg et al., 1974;

Wagner and Ewald, 1971). It has recently been shown by ARPES (Kondo et al., 2015) that

the pyrochlore oxide Pr2Ir2O7 (Balicas et al., 2011; Machida et al., 2007; Tokiwa et al., 2014)

possesses a QBT (Fig. 37). The QBT is believed to be formed between J = 3/2 bands in the

same fashion as the classic systems. The effective mass of the conduction band was found to

be approximately 6.3 me, which is almost 300 times that of α-Sn (Wagner and Ewald, 1971).

Larger mass enhances the relative role of interaction and opens the possibility of probing

the strongly interacting regime. Recent optics work on Pr2Ir2O7 shows that the dielectric

constant in this material becomes of order 200 at low temperatures demonstrating that this

material is in the strongly interacting regime (Cheng et al., 2017). Recent magnetotransport

measurements show that the purported quadratic band touching system GdPtBi has a mass

of about 1.8 me and an EF of about 3.1 meV (Hirschberger et al., 2016a), which may also

put this material in the strongly interacting regime.

Quadratic band touching points that are not topologically protected are generically un-

stable to cubic symmetry or T breaking perturbations and in this regard these systems can

be viewed as “parent” states to a number of topological phases (Cano et al., 2016; Moon

et al., 2013). For example uniaxial strain induces a gapped 3D TI phase as observed in HgTe

(Brüne et al., 2011). Applied magnetic field allows non-degenerate bands to cross along the

applied field direction and for fields in the (001) direction, give a pair of double Weyl points,

with linear dispersion along the applied field direction axis and quadratic dispersion normal

to it (Moon et al., 2013). These Weyl points correspond to ±2 monopoles in momentum

space. Although the quadratic dispersion normal to the field is due to symmetry, the touch-

ing itself is protected by topology in the standard Weyl fashion. The low frequency optical
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response of topologically protected double and triple Weyl nodes has been calculated (Ahn

et al., 2016) and reveals power law scaling in the parallel and perpendicular components

of the low frequency conductivity that can be used to distinguish these states from linear

WSMs. Note that creating a double WSM with a magnetic field in this manner is a fine

tuned situation. Fields tipped away from the (001) direction will cause the double Weyl

point to split into two single Weyl points. The consequences of this anisotropy on Landau

quantization of the spectrum in strong magnetic fields has also been considered (Li et al.,

2016d). An analogous route to realizing Weyl semimetals by straining HgTe was discussed

in Ref. (Ruan et al., 2016a).

D. Kramers-Weyl nodes and “New” Fermions

As discussed above, WSMs are robust against small perturbations that preserve transla-

tional invariance. However, one may destroy the semimetal state by changing Hamiltonian

parameters (such as SOC) to uninvert their bands, as in all previously known WSM states,

band inversion is an essential feature for system’s realization. When tuning the SOC, Weyl

nodes may move and eventually pairwise annihilate to drive the system into a gapped trivial

phase, while preserving all symmetries. In contrast, in T -symmetric chiral crystals, Weyl

nodes based on Kramers doublets can be locked at time reversal invariant points in the BZ,

which makes them stable against annihilation with opposite Weyl nodes. Space groups in

which such “Kramers Weyl fermions” could appear were analyzed in (Chang et al., 2016a)

and density functional theory calculations were employed to identify materials candidates

such as Ag3BO3. However, the splitting between bands arising from breaking of inversion

symmetry is typically weak. As a result, although Fermi surfaces with Chern number are

expected, they will typically occur in opposite Chern number pairs, closely separated in

momentum. Characteristics associated with the Fermi surface Chern number are then ob-

servable only if impurity induced mixing between the two Fermi surfaces can be neglected.

One may ask what are other degenerate band touchings protected by crystal symmetry

are allowed in addition to the ones discussed in this article (Weyl, Dirac, nodal line, double

Weyl, quadratic)? Bradlyn et al., 2016 show that in condensed matter systems, the usual

field theoretic categorizations of the three kinds of fermions of free space (Majorana, Weyl,

and Dirac) is incomplete and that there are more possibilities that are stabilized by crys-
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tal symmetries e.g. “New” fermions. It was shown that in the presence of TR the only

possibilities are 2, 3, 4, 6, and 8 fold degenerate band touchings. These phases are stabi-

lized as a consequence of non-symmorphic symmetries. It has also been shown recently that

three-fold degeneracies can also be stabilized by rotation and mirror symmetries (Chang

et al., 2016c; Weng et al., 2016b; Zhu et al., 2016) even in symmorphic structures as well.

In the non-symmorphic case the band touching appears at a high-symmetry point and in

the symmorphic case it is pinned to a high symmetry line that it can move along by tuning

a Hamiltonian parameter. These three-component fermions are intermediate between two

component WSMs and four component DSMs and should have properties that are different

from either in their surface and transport features. These states are important in the general

framework of WSM and DSM phases as in some cases they can be seen as an intermediate

phase separating Dirac and Weyl semimetals in materials with a C3v-symmetric line.

One may regard three-fold crossings as Spin-1 Weyl points as their Hamiltonian at low

energies has form of H = k · S where instead of the Spin-1/2 Dirac matrices one has the

Spin-1 S matrices. Such degeneracies give a natural generalization of “conventional” Weyl

fermions. To leading order these Spin-1 Weyl points are formed by two linearly dispersing

bands bisected by a flat band. If one computes the Berry curvature in a fashion discussed

in Sec. II, one finds monopoles of charge ± 2 as compared to the usual Weyl case of ±

1. There has been recent claim to have observed such triply degenerate points in MoP (Lv

et al., 2016). In related space groups the combination of TR and inversion results in a 6 fold

degenerate Spin-1 Dirac system that is two copies of a Spin-1 Weyl systems with opposite

chirality pinned on top of each other. These can be seen as three-fold degeneracies that

are doubled by the presence of TR symmetry. These are a symmetry protected version

of the 6 fold degenerate Kane fermions that are expected at the fine tuned point of the

band inversion transition in Hg1−xCdxTe (Orlita et al., 2014). Ab initio calculations have

been carried out and a number of different materials realizations have been made (Bradlyn

et al., 2016). In keeping with this general picture, earlier Wieder et al., 2016 proposed the

existence of “double-Dirac” semimetals with an 8-fold degenerate touching in crystals with

a non-symmorphic space groups. This double Dirac semimetal can be gapped into a trivial

or topological insulator by applying strain. It is important to note that all these analyses

have only been carried out for non-magnetic groups. In principle the inclusion of broken T

makes the possibilities even richer.
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E. Possible realizations in non-electronic systems

Motivated by the incredible interest in topological states for electronic systems, a rapidly

emerging area is the realization of topological states for photonic systems (Hafezi et al.,

2013; Haldane and Raghu, 2008; Khanikaev et al., 2013; Lu et al., 2014; Rechtsman et al.,

2013; Umucalılar and Carusotto, 2011; Wang et al., 2009). To make a WSM-like system, Lu

et al., 2015 fabricated a precise array of holes into several ceramic layers, which they stacked

together in a interpenetrating double gyroid structure to make a 3D photonic crystal with

broken inversion symmetry. This structure is predicted to host the electromagnetic analog

of Type I Weyl nodes, which can be accessed by tuning the frequency of incident microwaves

to the frequency where the Weyl node occurs. Lu et al., 2015 performed angle-resolved mi-

crowave transmission measurements and showed that the bulk showed two linear dispersing

bands touching at four isolated points in the three-dimensional BZ, indicating the obser-

vation of Weyl points. Using a 3D structure consisting of laser-written waveguides, Noh

et al., 2017 have observed photonic type-II Weyl points at optical frequencies, in a 3D pho-

tonic crystal structure consisting of evanescently-coupled waveguides. There are proposals

for realizing Dirac dispersions in hyperbolic photonic (Narimanov, 2015) and metamaterial

crystals (Xiao et al., 2016) and nonsymmorphic (Wang et al., 2016e) and other photonic

crystals (Wang et al., 2016d). In general there is interest in studying Weyl and Dirac points

in photonic systems as they may potentially be used for large-volume single-mode lasing

(Bravo-Abad et al., 2012).

In a homogeneously magnetized plasma, the cyclotron frequency can exceeds the plasma

frequency, which results in crossing points between the helical propagating mode at the

plasma frequency and the longitudinal plasmon mode. These crossing points in the momen-

tum space are Weyl points with a finite Berry curvature and can in principle give non-trivial

topological features (Gao et al., 2016a). Such a system is expected to have electromagnetic

effects in reflection with no analog in electronic systems.

There have also been proposals to realize topological semimetals systems in ultracold

atoms in optical lattices (Dubček et al., 2015; Jiang, 2012; Li and Sarma, 2015; Sun et al.,

2012). One would use laser-assisted tunneling to engineer the complex tunneling parameters

between lattice sites. For instance, Syzranov et al., 2016a propose that Weyl-like dispersions

can emerge in 3D arrays of dipolar particles in the presence of a weak magnetic field due to
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dipole interaction induced transitions between internal angular-momentum J = 0 and J = 1

states. Of particular interest here is that although the single particle properties of such a

system would be expected to be the same as electronic Weyl systems, their many-particle

properties are expected to be different, opening up the possibilities for new functionalities

and applications beyond those accessible with solid-state systems.

In acoustic system, it has been proposed that inversion symmetry breaking through struc-

turally engineering interlayer couplings can generate an effective gauge field (Xiao et al.,

2015). In 2D this can give an acoustic analog of the topological Haldane model (Haldane,

1988). In 3D these acoustic systems possess topological Weyl points and are thus realization

of the Weyl Hamiltonian in sound waves.

VII. CONCLUDING REMARKS

Going forward there are many possible interesting avenues in the field of WSMs and

DSMs. First and foremost, we still need to find a truly ideal WSM realization e.g. the

“graphene” of WSMs. One would like to find a material in which all Weyl nodes are sym-

metry related and close to EF with a large momentum separation and no non-topological

bands near in energy. Indeed, these are properties of the graphene band structure that have

proved useful in isolating the Dirac node physics in 2D. Further, one may require a small

number of Weyl nodes, for example just the minimal pair of opposite chirality nodes allowed

for magnetic WSMs. Although proposals for such systems exist (Ruan et al., 2016b; Wang

et al., 2016h), all known realizations fall short of this ideal. As discussed above, there have

been recent attempts to optimize the screening of materials candidates focusing on promis-

ing space groups, supplemented with a filling condition which constrains chemical formulas

(Chen et al., 2016a; Gibson et al., 2015). These directions combined with traditional mate-

rials searches, particularly in magnetically ordered systems which may host magnetic WSMs

will hopefully lead to materials that can accurately be termed ‘3D graphene’. It is interesting

in this context, to note how common topological band touchings are. First principles calcu-

lations have shown that even bcc iron appears to have many such band touchings (some deep

in the bandstructure) of the Weyl, double Weyl, and nodal loop variety (Gosálbez-Mart́ınez

et al., 2015). Two Fermi pockets surround isolated Weyl points and are likely to give a major

contribution to its anomalous Hall effect. Furthermore we note that while there has been
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rapid theoretical development in classifying topological semimetal phases, and identifying

materials candidates, the equally important work of characterizing them by identifying their

signature properties and distinct phenomenology awaits a similar degree of development.

The analysis of topological semimetals discussed in this review has been developed using

the band theoretic language of free fermion theories on the lattice. A conceptual frontier is

to expand this to better understand the role of interactions. Treated at the mean field level,

interactions are important in driving states that violates T . This was a key feature in the

early development of this subject and in the pyrochlore iridates where the interaction scale is

comparable to the spin-orbit scale (Wan et al., 2011; Witczak-Krempa and Kim, 2012) this

leads to a rich mean-field phase diagram featuring topological insulating and semimetallic

phases with transitions driven by the type of magnetic order. Yet one recognizes that for

interacting systems at strong coupling, other gapped ground states are possible that, while

lacking a simple band theoretic representation, may nonetheless admit a useful topological

classification. A proof of principle is the demonstration of fermion fractionalization in toy

models of two dimensional fractional topological insulators (Levin and Stern, 2009). The

investigation of similar effects in 3D systems even at the level of model Hamiltonians is in

its infancy. The evolution of toy models into theories of real materials and their ultimate

material realizations poses an outstanding challenge to modern condensed matter science.

There may also be applications potential for these system. For instance, it has been

recently proposed that one may utilize topological electronic states to enhance catalytic ac-

tivity. In this regard, it was shown that the combination of topological surface states and

large room temperature carrier mobility (both of which originate from bulk bands of the

WSM and DSM) may be a recipe for high activity hydrogen evolution reaction catalysts and

may be used in solar energy harvesting to produce hydrogen from water (Rajamathi et al.,

2016). In the device domain, it has been proposed that WSMs in thin film form can be used

to build a spin-filter transistor with a controllable spin polarized current. A loop device

made of 2D WSM with inserted controllable flux to control the polarized current has been

demonstrated (Shi et al., 2015). The device has good on/off ratios with controllable chem-

ical potential induced by liquid ion gate. Other possibilities for spintronics exist (Šmejkal

et al., 2017a). For instance, it has been predicted that in an antiferromagnet DSM, charges

can be controlled by the spin-orbit torque reorientation of the Néel vector (Šmejkal et al.,

2017b). Valley degrees of freedoms in WSMs also open up further possibilities for chiral and
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valleytronics applications in 3D systems (Kharzeev and Yee, 2013; Schaibley et al., 2016).

These systems have a unique coupling to electromagnetic radiation that can be exploited.

For instance, it has been proposed that inversion symmetry breaking WSMs with tilted Weyl

cones will be efficient generators of photocurrent and may be used as IR detectors (Chan

et al., 2017). And we have noted above the WSM systems TaAs, TaP and NbAs have the

largest ever recorded SHG χ(2) coefficient (Wu et al., 2017). In the photonic Weyl systems

discussed above, the number of optical modes has an unusual scaling with the volume of the

photonic crystal, which may allow for the construction of large-volume single-mode lasers.

One of the remarkable and continuing themes in physics is that concepts and mathemat-

ical structures are repeated in different contexts across vastly different length scales. The

realization of real three dimensional materials described by the Weyl and Dirac equations

is a extraordinary part of this particular story that began with Dirac’s intellectual leap al-

most ninety years ago. Whether nature chooses to repeat itself on this occasion with the

realization of Weyl fermions as fundamental particles of the vacuum of free space is a open

question. However, in the meantime we can continue to marvel at the – thus far virtu-

ally limitless – possibilities and rich phenomena that the different “vacuums” of solid state

systems provide.
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Brüne, C., C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X.

Shen, S. C. Zhang, and L. W. Molenkamp, 2011, Phys. Rev. Lett. 106, 126803.

Bruno, F. Y., A. Tamai, Q. Wu, I. Cucchi, C. Barreteau, A. De La Torre, S. M. Walker, S. Riccò,
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Excluded Volumes Vi

FIG. 1 Net chirality of Weyl nodes must be zero, which is a consequence of the fact that the net

Berry flux integrated over the Brillouin Zone (a closed volume) must vanish.
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FIG. 2 (left to right) Energy spectra of εsµ(0, py, pz) for the Dirac semimetal (m = b = b′ = 0),

magnetic semiconductor (m = 1, b = 0.5, b′ = 0), Weyl semimetal (m = 0.5, b = 1, b′ = 0), and line

node semimetal (m = 0, b = 0, b′ = 1) for the Hamiltonian Eq. 8. From (Koshino and Hizbullah,

2016).
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FIG. 3 (left) Band structure from Eq. 8 for values of m/b for the s = + and µ = ± bands for

increasing m/b in the WSM phase. For finite m the µ = + band is gapped, while µ = − contains

two Weyl nodes. (center) The s = + and µ = − band near the phase transition at m/b = 1. (right)

Phase diagram of Eq. 8. At m/b < 1, the system is a WSM, while m/b > 1, a gapped semimetal

exists. Along b = 0, a degenerate massive DSM is observed. At m = b = 0, massless degenerate

Dirac fermions exist. From (Tabert and Carbotte, 2016).
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FIG. 4 Cartoon of a heterostructure model of a Weyl semimetal of topological and normal insula-

tors. Doped magnetic impurities are shown by arrows. d is the real space periodicity of the lattice.

∆S and ∆D are tunneling between topological surface states on the same topological insulator

layer and between different layers respectively. From (Burkov, 2015a).
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FIG. 5 Left: Conventional Type I Weyl point with point-like Fermi surface. Right: Type II Weyl

point is the touching point between electron and hole pockets. Red and blue (highlighted) iso-

energy contours (red and blue) denote the Fermi surface coming from electron and hole pockets

with chemical potential tuned to the touching point.

127



FIG. 6 (top left) Chern number, Weyl points and surface Fermi arcs. (top right) Connection of

surface states to bulk Weyl points. (bottom) Evolution of Fermi arc with chemical potential in

a particular microscopic model on raising the chemical potential from the nodal energy (E = 0).

Fermi arcs are tangent to the bulk Fermi surface projections, and may persist even after they merge

into a trivial bulk Fermi surface. From (Balents, 2011; Haldane, 2014; Wan et al., 2011).
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FIG. 7 (a) Opposite Weyl nodes in a T-breaking WSM in the absence of fields. (b) Spectrum

in a magnetic field along the ‘z’ axis displaying Landau levels that disperse along the field. The

zeroth Landau levels are chiral. In addition, an electric field along ‘z’ generates valley imbalance.

(c) Anomalous Hall effect from chiral Fermi arc surface states whose magnitude is determined by

the Weyl node separation in momentum space, when the chemical potential is at the Weyl nodes.

(d) On moving the chemical potential away from the Weyl nodes, the anomalous Hall conductivity

changes but only marginally in the model considered in (Burkov, 2014) up to the chemical potential

when the Fermi surfaces enclosing the two Weyl points merge.

129



FIG. 8 Weyl semimetal slab in an applied magnetic field. (a) Weyl cyclotron orbits depicted in

hybrid real space (z) and momentum space (kx, ky). Electrons slide along the surface Fermi arcs

and are absorbed by the chiral bulk Landau level which propagates them to the opposite surface

from (Potter et al., 2014). Numerically calculated (b) wave function of Weyl orbits, showing their

hybrid surface-bulk character and (c) quantum oscillations in density of states from Weyl orbits.

130



(a) (b)

(c)

FIG. 9 Theoretical proposals of nonlocal transport in WSMs. Weyl cyclotron orbits lead to (a) a

voltage difference on the lower pair of contacts when current is injected between contacts on the top

surface and (b) resonances in transmission of electromagnetic waves at frequencies controlled by

the magnetic field from Ref. (Baum et al., 2015) (c) An alternate proposal for nonlocal transport

utilizing the choral anomaly. A source-drain current Isd is injected into a WSM slab of thickness

d via tunneling contacts of thickness Lg. In the presence of a local generation magnetic field Bg,

a valley imbalance ∆µ is created via the chiral anomaly and diffuses a distance L � d away. If a

‘detection’ field Bd is applied, the valley imbalance can be converted into a potential difference Vnl

between top and bottom contacts of size Ld. From Ref. (Parameswaran et al., 2014).
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FIG. 10 Development of a Dirac semimetal in an inverted band structure. The band inversion

transition reverses the parities (±) of the k = 0 eigenstates in the uninverted (a) and inverted

(b) level orderings. In (b) the inverted bands are two fold degenerate and undergo an avoided

crossing at k 6= 0 which gaps the spectrum. In (c) the mixing is forbidden along a symmetry line

by the different rotational symmetries of the intersecting bands. This leaves two points each with

a fourfold point degeneracies at k = ±kD along the symmetry line that is lifted to linear order

in k − kD. Uninverting the bands produces a pairwise annihilation of the Dirac points and the

system reverts to the conventional insulating state as shown in (a).
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FIG. 11 Formation of a Dirac semimetal by the band inversion mechanism in Na3Bi. Band struc-

ture calculations without (left) and with (right) spin-orbit coupling both show a band inversion

transition at the zone center illustrated by tracking the Na(3s) character of the eigenstates (red

(bold) circles). An expanded view of the dispersion along the Γ − A direction (inset) shows the

symmetry-protected intersection of two two fold degenerate branches with distinct Jz rotational

eigenvalues at a Dirac point along the symmetry axis. (Adapted from Wang et al., 2012.)
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FIG. 12 Possible linear dispersions of energy (vertical) versus momentum (horizontal) near a

symmetry-enforced Dirac point at the zone boundary of a lattice with a nonsymmorphic space

group. In (a) the FDIR occurs at a TRIM and the fourfold degeneracy is lifted to form two two

fold degenerate branches (bold). In (b) inversion symmetry is absent and four linearly dispersing

branches merge at a FDIR. In (c) and (d) the degeneracy of the FDIR is lifted to form a two fold

degenerate and two nondegenerate branches. In (c) the FDIR does not occur at a TRIM while in

(d) the two fold degenerate branch has zero slope indicating quadratic dispersion the FDIR occurs

at a TRIM. Adapted from Young et al., 2012.
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FIG. 13 Fermi arcs on the surface of DSMs. (a) A schematic of a DSM showing Dirac nodes

along the kz axis in the bulk BZ and double Fermi arcs on the surface BZs. Note that surfaces

perpendicular to the z axis have no arcs. A 2D slice of the bulk BZ perpendicular to the kz axis is

shown as a green (shaded) plane, which projects to the green (dashed) line on the surface BZ. (b-d).

A symmetry allowed mass term at the surface admits backscattering between these branches at

the contact point which dissociates the surface band from the projected Dirac point. These surface

branches can be deformed but not removed from the time reversal symmetric plane at kz = 0. If

the chemical potential is not aligned with the bulk Dirac points the surface Fermi arcs disappear

by merging with the bulk continuum (e,f). Adapted from Kargarian et al., 2016.
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FIG. 14 (Left) Calculated band gaps as a function of the average nuclear charge < Z > for

various half-Heusler phases. (Right) Schematic band ordering of normal and inverted bands in

cubic semiconductors. From Ref. (Müchler et al., 2012).
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FIG. 15 (a) Crystal structure (space group I41md, No. 109) of the non-centrosymmetric lattice

in the TaAs-family of compounds. It is a body-centered tetragonal structure consisting of inter-

penetrating Ta and As sublattices, where the two are shifted by (a/2, a/2,∼ c/12). For TaAs the

lattice constants are a = 3.437 Å and c = 11.656 Å. (b) The first Brillouin zone showing twelve

pairs of Weyl points. The red and blue spheres (identified by arrows in black and white) represent

the Weyl points with C = ±1 chirality. Note that this pattern of node chiralities may represent the

situation more appropriate for the Nb compounds (Belopolski et al., 2016c; Huang et al., 2015a;

Lee et al., 2015). See discussion in text below. From (Yan and Felser, 2017).
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FIG. 16 Nodal structure of TaAs. Without SOC, the conduction and valence bands would intersect

on indicated 4 closed nodal lines on the kx = 0 (online: red) and ky = 0 (on line: blue) mirror

planes. SOC has the effect of gapping the bands on the mirror planes, but giving nodes slightly

displaced from the planes. Black and white denote chiralities of the nodes. From Ref. (Hasan

et al., 2015).
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FIG. 17 Energy dispersions for W1 and W2. a.) For TaAs the Fermi surfaces enclose single

chiral Weyl nodes and the Fermi Chern numbers (CFS) are ±1. b.) For TaP, one Fermi surface

is believed to enclose two W1 Weyl nodes with opposite chirality and hence the CFS is zero. (Xu

et al., 2016b). Note that the labeling of W1 and W2 in this figure has been changed with respect

to how it appeared originally in the literature so as to make it consistent with the convention used

elsewhere in the literature and in the text.
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FIG. 18 The electronic phase diagram of the ZrBeSi family, showing the calculated density of states

at EF as a function of the total Z (atomic number) divided by the electronegativity difference

between the large cation (e.g. Ba+2) and the average of the anionic honeycomb sublattice (e.g.

Ag+1Bi−3). The squares (online: orange) represent compounds having a calculated Dirac cone

and circles (on line: red) represent compounds with none. Calculations were performed with a

Perdew-Burke-Ernzerhof parameterization of the generalized gradient approximation functional.

From Ref. (Gibson et al., 2015).
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FIG. 19 Band structures of (a) AsO2, (b) SbO2, (c) BiO2 in the β-crystobalite structure and (d)

the Hamiltonian of Eq. 26 for spin-orbit coupled s-states on the diamond lattice. All the spectra

feature a symmetry enforced Dirac point in an FDIR at the zone boundary X point. From Ref.

(Young et al., 2012).
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FIG. 20 (a) Fermi surface map of the Na3Bi sample on (100) surface at photon energy 55 eV. BDP1

and BDP2 denote the two bulk Dirac points. (b) Constant energy ARPES spectra as a function

of binding energy. (c) ARPES dispersion cuts α, β, and γ as defined in (b). (d) Schematic Fermi

surface of Na3Bi. The red (shaded) areas and the orange (gray) lines represent the bulk and surface

states, respectively. (e) Calculated band structure along cut α (γ) and β. Adapted from (Xu et al.,

2015d).
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FIG. 21 ARPES spectra near the Γ point on the (001) surface. (e) Fermi surface mapping. (f)

Photoemission spectra measured along the seven momentum cuts labeled as red lines 1 to 7 in panel

(e). The red (gray) dashed lines are curves fitted to the Dirac dispersion expectation. (g) 3D view

of the evolution of Fermi surface and constant energy contours at different binding energies. The

red (gray) lines are the guide to the eye. Displayed images are second derivatives of the original

data with respect to energy. Adapted from Ref. (Liang et al., 2016a).
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FIG. 22 Top left) Fermi surface of TaAs ARPES, at incident photon energy hν = 90eV, on the

(001) surface of TaAs. Top Right) Again FS of TaAs but with Weyl points indicated and BZ

marked. Two paths in momentum space are denoted as C and P. Bottom right) Measured ARPES

spectral function along C, with chiralities of edge modes marked by the arrows. The net Chern

number appears to be +2, inconsistent with the expectation (Two W2 nodes project to the surface).

This can be explained by considering the small separation between the W1 Weyl points. Bottom

left) Measured ARPES spectral function along P. The path encloses only the well-spaced Weyl

points and one finds a Chern number +2, consistent with expectation. From (Belopolski et al.,

2016c).
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FIG. 23 Schematic showing the projection of a pair of Weyl points on the (001) surface BZ and

the Fermi arc (grey curves) connecting them for materials with increasing SOC strength. (ii-iv) A

comparison of the calculated (left) and ARPES measurement (right) of the spoon-like FSs. The

red and blue dots denote the chirality of Weyl points. b-d. ARPES measurements of the spoon-like

FS (i) and band dispersions (ii, iii) for NbP, TaP and TaAs, respectively. The positions of the band

dispersions presented in (ii, iii) are indicated by the red dotted lines in (i). e. Summary of the

extracted ∆K1 and ∆K2 (from b-d) from the three compounds, plotted against a rough measure

of the strength of SOC. ∆K1 and ∆K2 represent the separation between the Weyl points and

Fermi arcs, respectively. From (Liu et al., 2016).
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FIG. 24 (a) Spin-integrated FS map near Γ − Y recorded with a spin-resolved ARPES system

for TaAs. The red (gray) arrows indicate the direction of measured in-plane spin polarizations of

the Fermi arc b2 at C4. (b) Corresponding theoretical spin texture of surface states. Red and

yellow dashed circles indicate the Weyl nodes W1 inferred to have negative and positive chirality,

respectively. From (Lv et al., 2015a).
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FIG. 25 (a) (Left) Crystal structure of NbP that has two different surfaces. Right: Schematics

of the experimental ARPES momentum space mapping near the X point for the Nb- and P-

terminated surfaces. The bulk Weyl nodes (W1 and W2) projections are illustrated by circles.

(b) A comparison of experimental FS between Nb-terminated (blue, cdntral horizontal loop) and

P-terminated (red, central vertical loop) surfaces. Projection of Weyl nodes W2 at the intersection

of FSs for opposite surfaces is shown by filled circles, whereas other intersections are shown by open

circles. Weyl nodes W1 are indicated with diamonds. Fermi surfaces S2, S8, and S9 are believed

to be Fermi arcs, whereas S1, S3, S4, S6, and S7 from trivial Fermi surfaces. From (Souma et al.,

2016).
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FIG. 26 Conductivity calculated within the linearized Boltzmann formalism of a single Weyl node

with disorder, in units of e2v2
F /hγ as a function of frequency at different temperatures. Frequencies

and temperatures are in units of ω0 = 2πv3
F /γ. One can see that the functional dependence changes

at ω ∼ T (given by the thin black line). Note that at the highest temperature plotted deviations

from the temperature independent dc result are found. From (Hosur et al., 2012).
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FIG. 27 (Top) The optical conductivity of ZrTe5 at 8 K at frequencies below 1200 cm−1. The

red (dotted) line is the linear fitting of σ1(ω). From Ref. (Chen et al., 2015a). (Bottom) Optical

conductivity for TaAs at 5 K. The blue (steep) and black (shallow) solid lines through the data are

linear guides to the eye. The blue (steep) line show the Weyl part of the spectrum, while the black

(shallow)line comes from higher energy non-Weyl states. The inset shows the spectral weight as

a function of frequency at 5 K (red solid curve), which follows an ω2 behavior (blue dashed line).

From (Xu et al., 2016a).
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FIG. 28 Interband optical conductivity from the Weyl semi-metal to gapped semi-metal phase

transition. Here m is a Dirac mass parameter m, and b is an intrinsic Zeeman-field like parameter.

The Hamiltonian is the same as appears in Eq. 8. From Ref. (Tabert and Carbotte, 2016).
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FIG. 29 The quantum oscillation phase shift β (labeled φ and given in units of 1
8) vs. EF for

different relative strengths of linear (EA) and quadratic (EM = 0.05 eV) terms in the energy

spectra. See (Wang et al., 2016b) for details of the model. The curves break because β cannot be

fit in the parameter range where beats form. The insets indicate the location of Fermi energy with

respect to the model band structure. The vertical dashed line marks the Lifshitz transition where

the system goes from two Weyl pockets to a single larger one (Wang et al., 2016b).
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FIG. 30 (top) The oscillatory component of the resistance Rxx of Cd3As2 as a function of 1/B

extracted from Rxx. A smooth background has been subtracted. (bottom) Landau index n plotted

against 1/B. The closed circles denote the integer index (Rxx valley), and the open circles indicate

the half integer index (Rxx peak) for two different samples. The index plot can be linearly fitted for

both samples measured, giving intercepts of 0.56 and 0.58. Adapted from Ref. (He et al., 2014).
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FIG. 31 (Top) Inferred longitudinal MR for TaAs samples at 2K for E and B in the a crys-

tallographic direction. The green curve is a fit to the longitudinal MR data in the semiclassical

regime based on a chiral anomaly model. (bottom left) Chemical potential dependence of the chiral

coefficient CW . (bottom right) Angular dependence of the chiral coefficient CW . Adapted from

(Zhang et al., 2016a).
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FIG. 32 (left) Inferred magnetoresistance of Na3Bi when B lies in the x−z plane at an angle θ with

respect to E that points in the x direction. Plotted as function of field for different angles. (right)

Magneto-conductance plotted as a function of angle for different fields. Adapted from (Xiong et al.,

2015).
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FIG. 33 Simulated potential distribution for different conductivity anisotropies A = σzz/σxx and

an geometry of 0.4× 0.3× 2.0 mm3 (w × t× l). The lines are contour lines of the equipotentials.

The increased MR anisotropy strongly distorts the equipotential lines. From Ref. (Dos Reis et al.,

2016).
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FIG. 34 Demonstration of the current jetting effect in the non-WSM or DSM system TaAs2. (a)

Measured apparent longitudinal MR for when the contacts are not fully crossing the sample. (b)

The same sample but for contacts placed such that fully cross the sample. From Ref. (Yuan et al.,

2016b).
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FIG. 35 Angular dependence of magnetoresistance of GdPtBi and YPtBi. Adapted from (Shekhar

et al., 2016).
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FIG. 36 a.) Scanning electron microscope image of triangular and rectangular devices used to

observe hybrid surface-bulk quantum oscillations. The rectangular sample is 0.8 µm wide, 3.2 µm

tall and 5 µm long. The other device features an equilateral triangular cross-section with a base of

a = 2.7 µm. Both devices have a similar cross-sectional area and circumference of the cross-section.

The crystallographic direction perpendicular to the surface of the rectangular device is [102] and

[010] parallel to the surface. b.) Sketch of the hybrid surface-bulk Weyl orbits for rectangular

and triangular cross-sections. c.) Frequency spectrum of the triangular and rectangular samples,

for field orientations perpendicular to each of the surfaces (0◦ for the rectangle and 60◦ for the

triangle). From Ref. (Moll et al., 2016).
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FIG. 37 (Left) ARPES measured dispersion curves along the kx direction measured at photon

energies of 7, 8, 9 and 10 eV. (The corresponding momentum cuts are indicated by the colored

lines on the right figure). The dispersion curve obtained by the band calculations is superimposed

(grey curve). The data close to EF is fitted by a parabolic function shown as the light-blue

(dotted) curve. The estimated effective mass at the Γ point is 6.3 free electron masses. (Right)

The calculated band dispersion in the kx − k111 sheet. The ARPES data from the left panel are

overlayed. From (Kondo et al., 2015).
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FIG. 38 a) Gyroids can be fabricated by drilling holes along x, y, z directions. Shown is a bcc unit

cell in which a single gyroid structure can be approximated by drilling holes. b) The double-gyroid

structure is made by stacking layers along the [101] direction. The structure is made with two

inversion counterparts interpenetrating each other. Inversion symmetry is broken by reducing the

vertical connections to the thin cylinders for the red (first and third) gyroids. c) Shown on the

left is the assembled structure. A magnified view from top is shown on the right with a centimeter

ruler in the background. From (Lu et al., 2015).
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Cn |P | (uA,↑, uB,↑) f(k±, kz) g(k±, kz) 2D topological invariant HDirac(q)

C2 τz − − − − Not allowed

C2 τ0 − − − − Not allowed

C3 τz (eiπ, ei
π
3 ) βk+ γk− ν2D = 1 Linear Dirac

C3 τ0 (eiπ, ei
π
3 ) βkzk+ + γk2

− ηkzk− + ξk2
+ ν2D = 0 Linear Dirac

C4 τz (ei
3π
4 , ei

π
4 ) ηk+ βkzk

2
+ + γkzk

2
− nM = ±1 Linear Dirac

C4 τ0 (ei
3π
4 , ei

π
4 ) ηkzk+ βk2

+ + γk2
− nM = 2sgn(|β| − |γ|) Linear Dirac

C6 τz (ei
π
2 , ei

π
6 ) βk+ γkzk

2
+ nM = ±1 Linear Dirac

C6 τ0 (ei
π
2 , ei

π
6 ) βkzk+ γk2

+ nM = ±2 Linear Dirac

C6 τz (ei
5π
6 , ei

π
2 ) βk+ γkzk

2
− nM = ±1 Linear Dirac

C6 τ0 (ei
5π
6 , ei

π
2 ) βkzk+ γk2

− nM = ±2 Linear Dirac

C6 τz (ei
5π
6 , ei

π
6 ) ηkzk

2
+ βk3

+ + γk3
− nM = 3sgn(|β| − |γ|) Quadratic Dirac

C6 τ0 (ei
5π
6 , ei

π
6 ) ηk2

+ βkzk
3
+ + γkzk

3
− nM = ±2 Quadratic Dirac

TABLE I Classification table for Class I 3D Dirac semimetals. Classification table for

3D topological Dirac semimetals obtained by an accidental band crossing in systems having Cn

rotational symmetry with respect to the z axis (adapted from Yang and Nagaosa, 2014). Here

Cn = diag[uA,↑, uB,↑, uA,↓ = u∗A,↑, uB,↓ = u∗B,↑] and β, γ, η, ξ are complex numbers. For compact

presentation, uA,↑ and uB,↑ are arranged in a way that 0 < arg(uB,↑) < arg(uA,↑) ≤ π. ν2D (nM )

indicates the 2D Z2 invariant (mirror Chern number) defined on the kz = 0 plane. (nM = ν2D

mod 2.) The 2 × 2 Hamiltonian h↑↑(k) = f(k)τ+ + f∗(k)τ− + a5(k)τz. In the case of h↑↓(k),

h↑↓(k) = g(k)τx when P = ±τz while h↑↓(k) = g(k)τy when P = ±τ0. The leading order

terms of f(k) and g(k) are shown in the table. HDirac(q) describes the effective Hamiltonian

near the bulk Dirac point, which is either HDirac(q) = υxqxΓ1 + υyqyΓ2 + υzqzΓ3 (linear Dirac)

or HDirac(q) = υx(q2
x − q2

y)Γ1 + 2υyqxqyΓ2 + υzqzΓ3 (quadratic Dirac) where Γ1,2,3 are mutually

anticommuting 4 × 4 gamma matrices and υx,y,z are real constants. Here the momentum q is

measured with respect to the bulk Dirac point.
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Cn |P | uA,↑ f(k±, kz) gz(k±, kz) HDirac(q)

C2 τx ei
π
2 kzF

(1)
1 (kx,y)− iF (1)

2 (kx,y) αkx + βky Linear Dirac

C3 τx − − − Not allowed

C4 τx e±i
π
4 F

(2)
1 (kx,y)− ikzF (2)

2 (kx,y) αk±

C6 τx e±i
π
6 kzF

(3)
1 (kx,y) + iF

(3)
2 (kx,y) αk± Linear Dirac

C6 τx ei
3π
6 kzF

(3)
1 (kx,y) + iF

(3)
2 (kx,y) F

(3)
3 (kx,y) + iF

(3)
4 (kx,y) cubic Dirac

TABLE II Classification table for Class II 3D Dirac semimetals. Classification table for

3D topological Dirac semimetals in systems having Cn rotational symmetry with respect to the z

axis when P = ±τx (adapted from (Yang and Nagaosa, 2014). In this Dirac SM phase, the location

of the 3D Dirac point is fixed either at the center or the edge of the rotation axis, i.e., at a TRIM on

the rotation axis. Here Cn = diag[uA,↑, uB,↑, uA,↓, uB,↓] = diag[uA,↑,−uA,↑, u∗A,↑,−u∗A,↑] and α, β are

complex numbers. For compact presentation, arg(uA,↑) is fixed to be −π
2 ≤ arg(uA,↑) ≤ π

2 . But the

same result holds even if arg(uA,↑) is shifted by π. The real functions F (1,2,3) are given by F
(1)
i=1,2 =

c
(1)
i kx + d

(1)
i ky, F

(2)
i=1,2 = c

(2)
i (k2

x + k2
y) + d

(2)
i kxky, F

(3)
i=1,2,3,4 = c

(3)
i (k3

+ + k3
−) + id

(3)
i (k3

+ − k3
−) where

c
(1,2,3)
i and d

(1,2,3)
i are real constants. The 2× 2 Hamiltonian h↑↑(k) = f(k)τ+ + f∗(k)τ−+ a1(k)τz

where a1(k) = υkz with a real constant υ, and h↑↓(k) = gz(k)τz. The leading order terms

of f(k) and gz(k) are shown in the table. HDirac(q) describes the effective Hamiltonian near

the bulk Dirac point, which is either HDirac(q) = υxqxΓ1 + υyqyΓ2 + υzqzΓ3 (Linear Dirac) or

HDirac(q) = υx(q3
+ + q3

−)Γ1 + iυy(q
3
+ − q3

−)Γ2 + υzqzΓ3 (cubic Dirac) where the momentum q is

measured with respect to the bulk Dirac point with q± = qx ± iqy. Here Γ1,2,3 are mutually

anticommuting 4× 4 gamma matrices and υx,y,z are real constants.
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Symmetry d

AZ T Ξ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE III Periodic table of topological insulators and superconductors. The 10 symmetry classes

are labeled using the notation of Altland and Zirnbauer (1997) (AZ) and are specified by presence

or absence of T symmetry, Ξ particle-hole symmetry and Π = T Ξ chiral symmetry. Here ±1 and

0 denotes the presence and absence of symmetry, with ±1 specifying the value of T 2 and Ξ2. As

a function of symmetry and space dimensionality, d, the topological classifications (Z, Z2 and 0)

show a regular pattern that repeats when d→ d+ 8. From (Ryu et al., 2010). Colored entries are

referred to in the text.
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