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This article reviews our current understanding of how the internal quark structure of a
nucleon bound in nuclei differs from that of a free nucleon. We focus on the interpre-
tation of measurements of the EMC effect for valence quarks, a reduction in the Deep
Inelastic Scattering (DIS) cross-section ratios for nuclei relative to deuterium, and its
possible connection to nucleon-nucleon Short-Range Correlations (SRC) in nuclei. Our
review and new analysis (involving the amplitudes of non-nucleonic configurations in
the nucleus) of the available experimental and theoretical evidence shows that there is
a phenomenological relation between the EMC effect and the effects of SRC that is not
an accident. The influence of strongly correlated neutron-proton pairs involving highly
virtual nucleons is responsible for both effects. These correlated pairs are temporary
high-density fluctuations in the nucleus in which the internal structure of the nucleons
is briefly modified. This conclusion needs to be solidified by the future experiments and
improved theoretical analyses that are discussed herein.
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I. Introduction - Short Range Correlations (SRC) and
Nuclear Dynamics

Nuclear physics is one of the oldest fields in modern
physics. Its history (Wong, 1998) separate from atomic
physics, can be said to start with the discovery of ra-
dioactivity in 1896 by Henri Becquerel. Fifteen years
later Rutherford used backward scattering of alpha par-
ticles to discover that the nucleus is a tiny object at the
heart of the atom. In 1932 Chadwick discovered a neu-
tral particle of about the same mass as the proton that
he called the neutron. This discovery allowed scientists
to understand that the binding energy accounted for less
than one percent of the nuclear mass. Thus it is natural
to say that the nucleus is made of neutrons and protons.
In 1935 Yukawa suggested a theory of the strong force to
explain how the nucleus holds together. In the Yukawa
interaction a virtual particle, later called a meson, medi-
ated a force between nucleons. This force explained why
nuclei did not fall apart due to proton repulsion, and
it also explained why the attractive strong force had a
shorter range than the electromagnetic proton repulsion.
Thus we may think of the stable nucleus as a tight ball of
neutrons and protons (collectively called nucleons), held
together by the strong nuclear force.

This basic picture has been studied for many years.
Early models treated heavy nuclei, which could contain
hundreds of nucleons, as classical liquid drops. The
liquid-drop model can reproduce many features of nu-
clei, including the general trend of binding energy with
respect to mass number, as well as nuclear fission.

The liquid drop idea cannot explain more detailed
properties of nuclei. Quantum-mechanical effects (which
can be described using the nuclear shell model developed
initially by Mayer (Mayer, 1950) and Jensen (Haxel et al.,

1949)) explained that nuclei with certain numbers of neu-
trons and protons (the magic numbers 2, 8, 20, 28, 50,
82, 126, ...) are particularly stable because their shells
are filled. Many studies were devoted to understanding
how the liquid drop model, with its collective features,
could be consistent with the shell model.

Detailed studies of nucleon-nucleon scattering indi-
cated that their interaction contains something like a
hard core, making the origin of the shell model even
more mysterious than its coexistence with the liquid drop
model. Brueckner and other early workers (see the ref-
erences in (Gomes et al., 1958)) showed that in the
nuclear medium, the large, short-ranged effects of the
strong nucleon-nucleon potential could be summed and
treated in terms of a smoother object, defined as a G ma-
trix. This idea allowed much of nuclear phenomena to be
understood (at least qualitatively) in terms of the fun-
damental nucleon-nucleon interaction. The nucleus was
made of nucleons, with the occasional evanescent meson
existing as it propagated from nucleon to nucleon.

After the single-particle shell model, the natural next
step in describing nuclei is including the effects of two-
nucleon correlations. The strong short-ranged nucleon-
nucleon force that is averaged to make the mean-field
G-matrix also causes a significant nucleon-nucleon corre-
lation function (see the Appendix for definitions). How-
ever, definitive experimental evidence for correlations
had to await two kinds of high-energy reactions (Frank-
furt and Strikman, 1981a). These are the inclusive (e, e′)
scattering at values of Bjorken xB > 1 (Egiyan et al.,
2003, 2006a; Fomin et al., 2012a) and exclusive reactions
that could isolate the effects of ground-state correlations
from the various two-body currents and final state in-
teractions that occur in nuclear reactions (Baghdasaryan
et al., 2010; Hen et al., 2014c; Korover et al., 2014; Makek
et al., 2016; Monaghan et al., 2014; Piasetzky et al., 2006;
Shneor et al., 2007; Subedi et al., 2008; Tang et al., 2003).

Meanwhile, deep inelastic scattering on nucleons led to
the discovery that the nucleons are made of quarks. How-
ever due to the small (≤ 1%) nuclear binding energy and
the idea of quark-gluon confinement, it was thought that
quarks had no explicit role in the nucleus and that there-
fore nuclei could still be described in terms of nucleons
and mesons. The simple and compelling nucleon/meson
picture of the nucleus was shaken to its core by the 1982
discovery by the European Muon Collaboration (Aubert
et al., 1983), of the non-trivial dependence of the per-
nucleon lepton deep inelastic scattering cross section on
the specific nuclear target. The EMC initially reported
incorrect results for xB < 0.15. As a result many refer
to the EMC effect as the reduction of the cross section
per nucleon in the region 0.2 < xB < 0.7. This reduction
has been observed many times and we use the term, ‘the
EMC effect’ to refer to this region. The observation of
this reduction, caused by the nucleus, showed that the
quarks have a small but definite role in the nucleus. We
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need to understand this.
There are a number of fundamental unanswered ques-

tions about nuclear physics.

1. Is the nucleus really made of nucleons and mesons
only?

2. How does the nucleus emerge from QCD, a theory
of quarks and gluons?

3. How does the partonic content of the nucleus differ
from that of N free neutrons plus Z free protons?

No one asked such questions before the discovery of the
EMC effect.

At first glance there appears to be little relation be-
tween nucleon-nucleon correlations and the EMC effect.
However, there is a strong phenomenological connection
between them (Weinstein et al., 2011) that occurs for
the valence quarks that carry large momentum and that
connection is the subject of this review. Indeed, the fun-
damental challenge for current explanations of the EMC
effect is to explain also the inclusive and exclusive high
momentum transfer reactions dominated by short ranged
correlations which take up about 20% of the wave func-
tion. The data suggest that the non-nucleonic admixture
in these correlations is at most about 10%, leading to a
2% non-nucleonic contribution. However, the EMC effect
is about 15%, so that one needs to find an enhancement
mechanism.

We now summarize our most important conclusions for
the benefit of the reader:

• there is much indirect and direct evidence for the
existence of nucleon-nucleon short-ranged correla-
tions (SRC),

– high energy (e, e′pN) and (p, 2pN) reactions
show that two-nucleon correlations exist in nu-
clei, dominate the high-momentum (k ≥ kF )
tail of the nuclear momentum distribution,
and are dominated, at certain nucleon mo-
menta, by np pairs, and

– high energy (e, e′) reactions at large values of
xB (the Bjorken scaling variable) show that all
nuclei have similar momentum distributions
at large momentum, consistent with the di-
rect observation that strongly-correlated two-
nucleon clusters exist in the nuclear ground
state,

– a consequence of the np-SRC dominance is the
possible inversion of the kinetic energy shar-
ing in nuclei with N > Z (i.e., that protons
might have more kinetic energy than neutrons
in neutron-rich nuclei).

– this leads to a dynamic model of nuclei where
SRC pairs are temporary large fluctuations in
the local nuclear density.

• conventional (non-quark) nuclear physics cannot
account for the EMC effect,

• models need to include nucleon modification to ac-
count for the EMC effect. These models can modify
the structure of either:

– predominantly mean-field nucleons, which are
modified by momentum-independent interac-
tions, or

– predominantly nucleons belonging to SRC
pairs, or

– both mean-field and SRC nucleons,

• there is a phenomenological connection between
the strength of the EMC effect and the probability
that a nucleon belongs to a two-nucleon SRC pair
(a2(A)). This connection has also been derived us-
ing two completely different theories, so that it is
no accident,

• in contrast to previous static models of the EMC
effect, the association with SRC implies that nucle-
ons are temporarily modified only when they briefly
fluctuate into an SRC pair,

• the influence of SRC pairs can account for the
EMC-SRC correlation because both effects are
driven by high virtuality nucleons (p2 6= M2),

• high-virtuality nucleons have an enhanced but still
small amplitude for non-nucleonic configurations.
Interference effects between nucleonic and non-
nucleonic components (linear in the amplitudes)
are responsible for the EMC effect,

• modified nucleons, by definition, must contain a
small fraction of baryons that are not nucleons.
Amplitudes for such baryons, with effects enhanced
in a coherent manner, exist in the short-ranged cor-
relations, and are the source of the EMC effect.

We aim to critically discuss the reasons for these con-
clusions and provide enough details for the reader to ap-
preciate the progress that has been made in recent years.
The remainder of this article describes the experimental
and theoretical evidence for the existence of two-nucleon
short range correlations and the properties thereof; the
theoretical and experimental facts regarding deep inelas-
tic scattering, nucleon structure functions and the EMC
effect; and, the need for nucleon modification to explain
the EMC effect. It will then present the unexpected cor-
relation between the strength of the EMC effect in a given
nucleus and the probability that a nucleon in that nucleus
belongs to an SRC pair. The ensuing discussion presents
theoretical ideas connecting SRC and EMC physics, and
explores the idea that the SRC-EMC correlation can be
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used to determine the structure function of a free neu-
tron. The final sections are concerned with other evi-
dence that the nuclear medium modifies the structure of
bound nucleons, and future directions for experimental
and theoretical research. The Appendix presents formal
definitions of the terms we use, and also explains some
equations used in the main text. Specific locations of the
various subjects are listed in the Table of Contents.

A. The challenge of describing nuclei

Nucleons bound in nuclei move under the influence of
the strong interaction as effected by short-ranged two and
three body potentials. Solving even the non-relativistic
A-body Schroedinger equation was initially an impossi-
bly daunting challenge, so that understanding the vast
array of relevant experimental data required the use of
models.

The nuclear shell model was one of the earliest and per-
haps most powerful models. In this model, each nucleon
moves independently in the average field produced by the
other nucleons. This shell model provides a reasonable
description of many nuclear properties and is the funda-
mental starting point for all efforts to provide a theory of
nuclei. Its explanation of the nuclear magic numbers is a
major accomplishment in the history of physics. Despite
this, early research involving collective degrees of free-
dom established that the single particle picture of nuclei
could not be complete. More generally, corrections to the
shell model can be classified broadly in terms of the rele-
vant distances needed to describe the various phenomena.
There are both long-ranged (∼ the size of the nucleus)
and short-ranged (∼ the size of the nucleon) phenomena.

The strong nucleon-nucleon force is known to bind
medium and heavy nuclei, all with about the same aver-
age central density of ρA = 0.16 nucleons/fm3. Thus, the

average distance between nucleons is about 1/ρ
1/3
A = 1.8

fm. The radius of a nucleon is about r = 0.86 fm, so
that most (but not all) of the time it does not overlap
in space with other nucleons. The nucleon has a volume
of V = 4

3πr
3 = 2.5 fm3 and a corresponding density of

ρN = 0.4 fm−3. Thus ρN/ρA = 2.5 and the maximum
nuclear density, even without nucleons overlapping, is 2.5
times the average nuclear density.

The fact that a nucleon has about 2.5 times larger den-
sity than the nuclear central density and that nucleons
move in the nucleus with about a quarter of the velocity
of light opens up the possibility of large local density fluc-
tuations. These also lead to large local momentum fluc-
tuations via the uncertainty principle. The strong short
range repulsive force between nucleons restrains the size
of these fluctuations, but since its range is smaller than a
fermi, the density and momentum fluctuations in nuclei
can still be quite large.

The diverse features described above indicate that un-

derstanding the broad range of nuclear phenomena re-
quires the use of many experimental tools. Since electro-
magnetic interactions are well-understood and presum-
ably simple, electron scattering has long been used as a
tool to investigate different aspects of nuclear structure.
We examine the use of electron scattering to probe the
validity of the single-particle shell model in the next sub-
section.

B. The need for short range correlations/Beyond the
nuclear shell model

1. Spectroscopic factors

Data from electro-induced proton knockout reactions
on nuclei, A(e, e′p), provided early evidence for the va-
lidity of the shell model (Frullani and Mougey, 1984).
These studies complemented the use of low-energy nu-
clear reactions, such as (d, p) and (p, pp). Later on, more
detailed studies using higher energy electron beams ex-
plored the limits of the validity of the shell model. We
next explain how this happened.

In the (e, e′p) reaction the electron knocks out a nu-
cleon so that an initial nuclear state |i〉 of A nucleons is
converted to a final nuclear state |f〉 of A − 1 nucleons.
The reaction can be analyzed in terms of spectroscopic
factors (Macfarlane and French, 1960), which are proba-
bilities that all but one of the nucleons willl find them-
selves in the final state. More formally, if one considers
a single-particle state of quantum numbers α, the spec-
troscopic factor Sα is given by the square of the overlap:
Sα = |〈f |bα|i〉|2, where bα destroys a nucleon. If the in-
dependent particle model were exact, then Sα would be
unity for each occupied state α. Thus measuring Sα is a
useful way to study the nuclear wave functions and the
limitations of the independent particle model.

In the Plane Wave Impulse Approximation (PWIA),
an electron transfers a single virtual photon with mo-
mentum q and energy ν (sometimes written ω) to a sin-
gle proton, then leaves the nucleus without reinteracting
and can thus be described by a plane wave (see Fig. 1).

In PWIA the cross section factorizes in the form (Kelly,
1996)

dσ

dνdΩedEmissdΩp
= KσepS(Emiss,pmiss) (1)

where K = Eppp/(2π)3 is a kinematical factor, Ep and
pp are the energy and momentum of the outgoing pro-
ton, σep is the electron cross section (De Forest, 1983a)
for scattering by a bound proton, and S is the spectral
function, the probability of finding a nucleon in the nu-
cleus with momentum pmiss and separation energy Emiss.
The missing momentum and missing energy are given by:

pmiss = q− pp
Emiss = ν − Tp − TA−1 (2)
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FIG. 1: The A(e, e′p) reaction in the Plane Wave
Impulse Approximation. A nucleus of four-momentum
PA emits a nucleon of four-momentum Pmiss that

absorbs a virtual photon of four-momentum q to make a
nucleon of four momentum Pmiss + q, with

(Pmiss + q)2 = M2, where M is the nucleon mass. The
blob represents the in-medium electromagnetic form

factors.

where Tp and TA−1 are the kinetic energies of the de-
tected proton and residual (undetected) A− 1 nucleus.

However, the knocked-out proton then interacts with
other nucleons as it leaves the nucleus; these final state
interaction (FSI) effects have been typically calculated
using either an optical model at low momenta (Kelly,
1996) or using the eikonal or Glauber approximations
at higher momenta (Ryckebusch et al., 2003; Sargsian
et al., 2005b). Calculations where the wave function of
the knocked-out proton are distorted by FSI are referred
to as distorted wave impulse approximation calculation
(DWIA). [Note that FSI effects mean that pmiss is no
longer equal to the initial momentum of the struck nu-
cleon.] In DWIA, the (e, e′p) cross section does not ex-
actly factorize as in the PWIA. However, factorization
is a good approximation at Q2 >> p2

miss and the cross
section is approximately proportional to a distorted spec-
tral function SD (Kelly, 1996). Neither PWIA nor DWIA
calculations conserve current because the initial and final
wave functions of the model calculations are not orthogo-
nal and because the effective NN interactions used in the
initial and final states are different. (Some models force
current conservation by arbitrarily modifying kinematic
variables such as qµ (De Forest, 1983b).) Relativisitic
DWIA models were developed by Van Orden and collab-
orators (Picklesimer and Van Orden, 1989; Picklesimer
et al., 1985) and later elaborated by (Udias et al., 1999a,
1993, 1995) and (Kelly and Wallace, 1994; Kelly, 1999).

Thus, (e, e′p) measurements should be sensitive to the

FIG. 2: (upper) The O(e, e′p) cross section plotted
versus missing energy at Q2 = 0.8 GeV2 and ν = 0.439

GeV for different angles, θpq, between the proton
spectrometer and q. The curve labelled DWIA is a
distorted wave impulse approximation calculation of
s-shell knockout; the other curves are calculations of

two-nucleon knockout including meson exchange
currents (MEC), delta production (IC), and central
and/or tensor correlations. Figure from (Liyanage

et al., 2001). (lower) The cross section plotted versus
missing momentum for the 1p1/2 and 1p3/2 states.

Figure from (Gao et al., 2000). The curves show DWIA
calculations. See (Fissum et al., 2004; Gao et al., 2000;

Liyanage et al., 2001) for details.
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FIG. 3: The fractional spectroscopic factors (the ratio
of measured cross sections to those calculated with the
Independent Particle Shell Model) for valence nucleon

knockout (e, e′p). Reproduced based on (Lapikas, 1993).

spectral function, i.e., to the momentum and energy dis-
tributions of nucleons in the nucleus. Fig. 2 shows the
16O(e, e′p) cross section at Q2 = 0.8 GeV2 and ν = 0.439
GeV plotted versus missing energy at several different
missing momenta and plotted versus missing momen-
tum for the two p-shell states. There are sharp peaks at
Emiss = 12 and 18 MeV, corresponding to proton knock-
out from the 1p1/2 and 1p3/2 shells, a broad peak at
Emiss ≈ 40 MeV corresponding to proton knockout from
the 1s shell (and other processes), and a long tail extend-
ing to large Emiss, especially at the largest missing mo-
menta. The momentum distribution calculations shown
in Fig. 2(lower) use an optical potential, a modern bound
state wave function, and an off-shell cross section σep and
fit only the magnitude (see Ref. (Gao et al., 2000) for
details). The calculations describe the data well, except
for the fact that the ratio of data to theory (the spectro-
scopic factor) is approximately 0.7. This means that the
experiment only measured 70% of the expected number
of p-shell protons.

This depletion of the spectroscopic factor was observed
over a wide range of the periodic table at relatively low
momentum transfer (see Fig. 3) for both valence nu-
cleon knockout using the (e, e′p) reaction (Lapikas, 1993)
and stripping using the (d,3 He) reaction (Kramer et al.,
2001). Only about 60–70% of the expected valence nu-
cleon strength was observed. The missing strength im-

plies the existence of collective effects (long range cor-
relations) and short range correlations in nuclei. The
spectroscopic factors and the size of the collective ef-
fects depend on momentum transfer (Frankfurt et al.,
2001; Lapikas et al., 2000). In addition, the spectroscopic
strength for valence proton knockout (e.g., 1p3/2 proton
knockout from C) is distributed over many states and
not all of these states are included when measuring the
spectroscopic factor. The results in Fig. 3) cannot be
directly related to the probability of short range correla-
tions in nuclei due to the effects of momentum transfer-
dependence, state-splitting, and collective effects. Our
focus will be on the short range correlations as observed
using high-momentum transfer probes.

In the DWIA independent particle shell model we
would expect that the spectroscopic factors are unity and
that there is little cross section at large Emiss. The fact
that spectroscopic factors are significantly less than unity
for all nuclei, and that there is significant cross section
at large missing energy indicates that this simple model
picture omits important physics. This is not surprising,
since the short-ranged nature of the strong nuclear forces
implies that nucleons must be influenced by nearby nucle-
ons. There is no fundamental one-body potential in the
nucleus, unlike the central one-body Coulomb potential
that binds electrons to form the structure of the atom.

Indeed, since the NN forces are short ranged, the fact
that the shell model approximation has any relevance
is somewhat surprising. In the early days of nuclear
physics, the fundamental question of nuclear physics was:
how does the very successful shell model of the nucleus
emerge in spite of the strong short-ranged interactions
between nucleons?

We next answer this fundamental question, then ex-
amine the consequences of the answer.

2. From the NN Interaction to the Shell Model and Beyond

How can the mean-field shell model arise from a
system made of nucleons interacting by strong short-
ranged forces? An answer to this question was pro-
vided early on by Brueckner & Goldstone, see the re-
view by Bethe (Bethe, 1971). The strong two-nucleon
interactions encoded by the potential V , constructed to
reproduce experimentally measured NN scattering ob-
servables and believed to include strong repulsion at short
distance and attraction at longer ranges, are summed to
form the T matrix of scattering theory and the G-matrix
for bound states. The operator G is obtained from T
by modifying the propagator of the Lippmann-Schwinger
equation to include the effects of the Pauli principle and
to use the appropriate self-consistent (single) nucleon en-
ergies. The G matrix is considerably weaker than V . For
example, even if the potential is infinitely strong, the
product VΨ of the potential with the wave function ob-
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tained from the chosen Hamiltonian would be finite and
well behaved. Schematically, one has GΦ = VΨ, where
Φ is the shell-model two-nucleon wave function. Calcula-
tions show that G is reasonably smooth and can be used
as input in higher-order calculations.

The theory proceeds by forming the nuclear mean field
U through the Hartree-Fock method employing the G-
matrix, and the first approximation to the wave function
is the anti-symmetrized product of single particle wave
functions engendered by U . However, the complete nu-
clear wave function is obtained in a perturbative hole-
line expansion that includes two-particle – two-hole exci-
tations and other excitations which incorporate correla-
tions. The presence of such correlations is demanded by
the theory.

Later work formulated a relativistic version of Brueck-
ner theory in which the Dirac equation replaces the
Schroedinger equation (Anastasio et al., 1983; Brock-
mann and Machleidt, 1984). There is also a light front
version (Miller and Machleidt, 1999a; Miller, 2000).

The Brueckner theory approach described above pre-
sumes that the two-nucleon potential contains strong
short-distance repulsion. Early attempts to construct
soft potentials (i.e., lacking the strong repulsion) that
also reproduce scattering data did not succeed in obtain-
ing interactions that could be used perturbatively to cal-
culate nuclear bound states (Bethe, 1971). This failure is
now known to be caused in large measure by the omission
of three-body forces. Relativistic G-matrix calculations
include important three-body forces (Anastasio et al.,
1983; Brockmann and Machleidt, 1984; Miller and Mach-
leidt, 1999a; Miller, 2000). There are also fundamental
three-nucleon forces, such as those involving an interme-
diate ∆ resonance. In addition to true three-body forces,
induced multi-nucleon forces occur as a result of using
unitary transformations to produce soft, two-nucleon in-
teractions (Bogner et al., 2010).

Much more has been learned since Bethe’s 1971 re-
view. (1) Our understanding of the connection through
symmetries between the NN interaction and the under-
lying theory of QCD is much improved. (2) Our ability
to make fundamental first-principles calculations of nu-
clear energies is also much improved. (3) However, it is
possible that improved treatments of nuclear energy lev-
els decrease our ability to understand the nuclear high-
momentum transfer interactions of interest in this review.
(4) We now know that 2nd order interactions of the NN
potential have a major effect on the density distribution
and the correlation function in all existing approaches.

(1) Chiral effective field theory provides a low-energy
version of QCD, guided by chiral symmetry, in which
one obtains the potential as an expansion in powers of
(Q/Λχ) where Q is a generic external momentum or the
pion mass, and Λχ is the chiral symmetry breaking scale
of about 1 GeV. Such approaches have the advantage of
being systematically improvable for low-energy observ-

ables. See for example the review (Bedaque and van
Kolck, 2002). In such theories the short distance interac-
tion can be treated as a contact interaction, modified by
the inclusion of a cut-off, and the longer ranged interac-
tions are accounted for by one and two pion (or more) ex-
change interactions (Machleidt and Entem, 2011). The
advantage gained is that different parts of the poten-
tial are divided between more easily understood long
ranged contributions and presumably unknown short-
ranged contributions.

(2) Modern first-principles calculations of nuclear spec-
tra have been applied to an ever increasing mass range.
One of the main tools is the use of soft potentials, which
do not connect low-relative momentum states to those of
high relative momentum. This greatly simplifies the cal-
culations by increasing the validity of perturbation the-
ory and other approximation techniques.

The softness (involving low momentum) or hardness
(involving higher momentum) of the potential is deter-
mined by the value of the cutoff see e.g. (Epelbaum et al.,
2009; Machleidt and Entem, 2011). Such potentials in-
troduce a cutoff in momentum space at fairly low values
of momenta. Typically, the momentum-space potential
obtained from Feynman diagrams, V (p,p′), is replaced:

V (p,p′)→ V (p,p′)e−( p
′

Λ )ne−( pΛ )n (3)

with p = |p|, p′ = |p′|, Λ ranges between 400 and 500
MeV and n ranges from 2 to 4. These are very strong cut-
offs in momentum that introduce significant non-locality
to the nucleon-nucleon interaction. This causes difficul-
ties in maintaining conservation of the electromagnetic
currents (Gross and Riska, 1987).

Another approach uses renormalization group methods
to generate a soft NN potential from a hard interaction
either by integrating out high momentum components
(in the case of Vlow−K), or by using the similarity renor-
malization group (Bogner et al., 2010). This potential is
perturbative in the sense that the Born series for scat-
tering converges. Furthermore, many-body perturbation
theory starting from a Hartree-Fock bound state can be
applied to the nuclear bound state problem.

(3) But there is another more general issue that arises
in trying to understand high momentum transfer nuclear
reactions. The ability to originate and predict the results
of experiments that probe short-ranged correlations (as
was done in (Frankfurt and Strikman, 1981a, 1988b)) de-
pends on the idea that the simple impulse approximation
is the best way to think about the relevant kinematics
and reaction physics. This simplicity may be lost if one
uses dynamics generated by the different intent of simpli-
fying nuclear spectroscopy. We explain. Let us suppose
that the renormalization group successfully eliminates
matrix elements of the nucleon-nucleon (or inter-nucleon)
potential connecting low and high relative momentum
states, leading to an accurate reproduction of nuclear
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binding energies and spectra. This procedure would also
lead to wave functions without high-momentum compo-
nents and truly short ranged-correlations. However, it
would be necessary to consistently transform all other
operators (Anderson et al., 2010; Neff et al., 2015) in or-
der to calculate observables. For high momentum trans-
fer reactions, the renormalization group changes a known
simple probe, described by a single-nucleon operator, into
a more complicated probe describable by unknown (in
practice) A-nucleon operators. This could prevent the
efficient analysis of any high momentum transfer experi-
ment. The same remark holds for chiral potentials. The
use of a cutoff, as in Eq. (3), leads to the violation of
current conservation in electromagnetic interactions un-
less the currents are modified substantially. For example,
one could use minimal substitution, which would intro-
duce terms involving several powers of the electromag-
netic potential Aµ. This means that the simplicity of us-
ing electromagnetic probes would be lost because of the
need to use very complicated operators to analyze exper-
iments. Again we reach the same conclusion: the use of
potentials with strong momentum-dependence is not op-
timum for the purpose of using high momentum transfer
electromagnetic processes to understand the short-range
structure of nuclei.

It is worthwhile to put comments (1)-(3) into a broader
perspective. The goal of EFT is to obtain results that
are independent of the chosen cutoff. In principle, this
can be done. In practice, one chooses a given scale
to simplify the problem at hand. The use of low mo-
mentum scales simplifies nuclear structure calculations,
but complicates the currents needed to understand high-
momentum transfer reactions. The use of one-body cur-
rents of the impulse approximation simplifies the un-
derstanding of high-momentum transfer nuclear reac-
tions, but involves NN potentials that do not have low-
momentum cutoffs. Bjorken scaling, (Bjorken, 1966) ob-
tained via the use of the simple currents of the non-
interacting quark model (impulse approximation) offers
a useful historical example. If Bjorken had been overly
concerned with issues of QCD evolution, Bjorken scal-
ing and the existence of quarks might never have been
discovered. Therefore, we take the experiment-based,
discovery-based view that we are using an implicit mo-
mentum scale at which the impulse approximation offers
a reasonable first approximation to the physics at hand
throughout this review.

(4) Second-order effects of the tensor term of the one-
pion exchange potential are common to all of these ap-
proaches, since the beginning (Bethe, 1971; Bogner et al.,
2005; Brown, 1967; Holt et al., 2013; Machleidt, 1989)
and through to the current days of effective field theory.
These effects are large enough to cause convergence diffi-
culties in the application of Brueckner theory (Vary et al.,
1973), and also cause challenges in defining the power
counting which defines any effective field theory (Be-

daque and van Kolck, 2002).
The effect of this on the relative s-wave function of two

nucleons in nuclei can be characterized by the effective
potential

V00 = VT
1

E −H0
QVT , (4)

where VT is the tensor potential, the subscript 00 in-
dicates an s-wave to s-wave matrix element, H0 is the
Hamiltonian in the absence of VT , and Q is a projection
operator taking the Pauli principle into account. The op-
erator V00 has a major effect on the density distribution
and correlation function (as discussed in the Appendix).
These effects occur in all existing approaches. A major
purpose of this review is to show that the influence of
the correlations induced by the tensor force is manifest
in high momentum transfer reactions.

To summarize, nuclear theorists have made tremen-
dous progress in understanding the connections between
NN potentials and QCD, as well as in calculating nu-
clear energies and states. High momentum transfer ex-
periments are easier to analyze using well-defined cur-
rent operators, rather than using transformed A-nucleon
operators with a renormalization-group-transformed po-
tential. These well-defined current operators can be used
if the effects of correlations are maintained in the nu-
clear wave function instead of being hidden in the current
operators through the use of the renormalization group
or very soft NN potentials. However, regardless of ap-
proach, the influence of the correlations induced by the
tensor force is manifest in all theoretical approaches to
date, and, as we shall see, is manifest in high momentum
transfer reactions.

3. Short-ranged two-nucleon clusters

As discussed in previous Sections, in the nucleus, nu-
cleons behave approximately as independent particles
in a mean field created by their average interaction
with the other nucleons. But occasionally (20 − 25%
in medium/heavy nuclei) two nucleons get close enough
to each other so that temporarily their singular short
range interaction cannot be well described by a mean
field approximation. These are the two nucleon
short-ranged correlations (2N-SRC), defined op-
erationally in experiments as having small center
of mass momentum and large relative momen-
tum. These pairs are predominantly neutron-proton
pairs. Colle et al. (Colle et al., 2015) show that it is pre-
dominantly nucleon-nucleon pairs in a nodeless relative-
S state of the mean-field that create these 2N-SRC. The
force between the nucleons in the pair is predominantly a
tensor force which creates a pair with the quantum num-
bers of the deuteron (S = 1, T = 0), a neutron-proton
system (Vanhalst et al., 2011).
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FIG. 4: The nucleon momentum distributions n0(k)
(dashed line) and n(k) (solid line) plotted versus

momentum in fm−1 for the deuteron, 4He, 12C and 56Fe.
Adapted from (Ciofi degli Atti and Simula, 1996a).

The two nucleons in 2N -SRC have a typical distance of
about 1 fm which means that their local density is a few
times higher than the average nuclear density. The rela-
tive momentum of the two nucleons in the pair can be a
few times the Fermi momentum, kF , which is large. SRC
of more than two nucleons probably also exist in nuclei,
and might have higher density than that of the 2N -SRC.
However their probability is expected to be significantly
smaller than the probability of 2N -SRC (Bethe, 1971).

The 2N -SRC are isospin-dependent fluctuations. For
example, the deuteron is the only bound two-nucleon sys-
tem. We know now that density fluctuations involving
one neutron and one proton occur more often than those
involving like-nucleons, see Sect. IIC. Therefore we ex-
amine the deuteron first.

The simplest nucleus, the deuteron, has spin S = 1,
isospin T = 0, and Jπ = 1+. The relevant quantity
for electron scattering is n(k) which is the probability of
finding a nucleon of momentum between k and k + dk.
This function is the sum of two terms, one arising from
the l = 0 (s-wave), and the other from the l = 2 (d-
wave). At momenta of interest for short range correlated
pairs (i.e., p significantly greater than pF ≈ 250 MeV/c,
where pF is the typical Fermi momentum for medium and
heavy nuclei), the otherwise-small d-wave becomes very
important. This is especially true at p ≈ 400 MeV/c
where there is a minimum in the s-wave. In the Argonne
V18 potential (Wiringa et al., 2014b) the d-wave compo-
nent is due to the tensor force. The combination of d-
and s-waves leads to a “broad shoulder” in the deuteron

FIG. 5: Scaled two-body distribution function ρA2,1(r)/A
(see Eq. (83)) for nuclei with A = 2, 3, 4. A correlation

hole is seen for all of these nuclei. The two sets of
curves are obtained with the AV18+UIX (left) and
N2LO (right) potentials. Figure reproduced based

on (Chen et al., 2016). The meaning of R0 is discussed
in the text.

momentum distribution, which extends from about 300
to 1400 MeV/c in the AV18 potential. See Sect. IX for
an explanation. This broad shoulder is also a dominant
feature in the tail of the single-nucleon momentum dis-
tributions computed with realistic internucleon interac-
tions, see Fig. 4, in particular with the AV18 potential
for A ≤ 12 (Wiringa et al., 2014b) and more effective ap-
proaches for heavier systems (Ciofi degli Atti and Simula,
1996b; Ryckebusch et al., 2015).

We can also consider the spatial wave function of the
nucleus. The short range part of the NN interaction
gives a correlation hole at small NN relative distances,
see Fig. 5. Precise definitions are given in Sect. IX. Cal-
culations with various bare realistic interactions show
that, apart from a normalization factor depending upon
the different number of pairs in different nuclei, the rela-
tive two-nucleon density ρrel(r) and its spin-isospin com-
ponents ρN1N2

ST (r) at r ≤ 1.5 fm exhibit similar correla-
tion holes, generated by the interplay of the short-range
repulsion and the intermediate-range tensor attraction of
the NN interaction, with the tensor force governing the
overshooting at r ' 1.0 fm. The correlation hole is uni-
versal, in that it is almost independent of the mass A of
the nucleus (C. Ciofi degli Atti, 2015). The depth of the
correlation hole depends on the short-distance behavior
of the potential. The value of R0 shown in Fig. 5 refers
to the cutoff on the short distance N2LO nucleon-nucleon
potential, as defined in (Gezerlis et al., 2014). A correla-
tion hole is seen to occur for R0 = 1 fm, but is much less
deep for R0 = 1.2 fm. The use of such a soft potential is
not suitable in the present experiment-based high-scale
context. Furthermore, this soft potential predicts erro-
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neous nucleon-nucleon phase shifts for the 3D1 partial
wave, and also for lab energies greater than 250 MeV.

In momentum space, the existence of this universal cor-
relation hole translates into nucleon momentum distribu-
tions nA(p) that are significant at large momentum (p ≥
pF ) and that are similar for all nuclei, nA(p) ∝ nd(p),
at these large momenta (Alvioli et al., 2013; Ciofi degli
Atti and Simula, 1996a; Frankfurt and Strikman, 1981a,
1988b). Frankfurt and Strikman realized that these could
be measured with hard probes (see Section II).

Ciofi degli Atti and Simula (Ciofi degli Atti and Sim-
ula, 1996a; Ciofi degli Atti et al., 1991b) used this sim-
ilarity to model the nucleon spectral function P (p, E)
(the joint probability to find a nucleon in a nucleus with
momentum p and removal energy E) for all nuclei

P (p, E) = 〈Ψ|b†(p)δ(E −H)b(p)Ψ〉, (5)

where |Ψ〉 represents the nuclear wave function and spin,
isospin and nuclear (A) labels are suppressed for simplic-
ity. The momentum density n(p) is given by

n(p) =

∫
dEP (p, E). (6)

These authors write

P (p, E) = P0(p, E) + P1(p, E) (7)

where the subscript zero refers to values of E correspond-
ing to low-lying intermediate excited states and the sub-
script one refers to high-lying continuum states that are
caused by the short-ranged correlations. Therefore one
also has n(p) = n0(p)+n1(p), where n1(p) is associated
with the high momentum caused by short-ranged corre-
lations. n0(p) is typically dominant for p < 250 MeV/c
or so and n1(p) becomes dominant for larger values. Fur-
thermore, n1(p) is almost independent of A at p > 400
MeV/c; they attribute this to NN correlations. See Fig.
4. It should be noted that for 3He Ref. (Ciofi degli Atti
et al., 1991b) showed that the proposed model spectral
function agrees with the one obtained by direct calcula-
tion.

SRC pairs are conventionally defined in momentum
space as a pair of nucleons with high relative momentum
and low center of mass (c.m.) momentum, where high
and low are relative to the Fermi momentum of medium
and heavy nuclei. Thus the most prominent effect of SRC
will be to populate high-momentum states in the nuclear
momentum distribution. As conventional mean-field the-
ories predict only a very small high-momentum tail, the
effect of SRCs there should be substantial. Formally, one
needs the two-nucleon momentum density, n(p1,p2) (see
Section IX), where ptot = p1 + p2 and prel = 1

2 (p1−p2)
are the center of mass and relative momenta of the two
nucleons. Studies of spectral functions show that at large
values of prel, the two-nucleon momentum density factor-
izes:

n(ptot,prel) = n(ptot)n(prel). (8)

A justification of this factorization is presented in
Sect. IX.

The coordinate-space correlation holes (Fig. 5) give
similar NN relative (prel) momentum distributions (at
large prel in all nuclei. Exact calculations with the AV18
potential for 4He, show that, at small ptot there is a min-
imum in prel for pp pairs at prel = 400 MeV/c. This is
because, at small ptot, the pp pair must be in a relative
s-state which has a minimum at prel = 400 MeV/c, just
like in deuterium. For np pairs, this minimum is filled in
by the d-wave caused by the short range pion-exchange
tensor force (Wiringa et al., 2014b).

Thus, the combination of the minimum in the s-wave
momentum distribution at p ≈ 400 MeV/c and the filling
in of this minimum by the d-wave pion-exchange tensor
force, leads to the expected dominance of np correlated
pairs over nn and pp pairs at 300 ≤ p ≤ 500 MeV/c.
This ratio of np to pp pairs should decrease at relative
momentum significantly greater than 400 MeV/c, the s-
wave minimum (as we will discuss Section II).

Short-range correlations in light nuclei have been
examined recently theoretically from several points of
view (Ciofi degli Atti, 2015; Feldmeier et al., 2011; Rios
et al., 2014; Ryckebusch et al., 2015; Vanhalst et al., 2011,
2012; Weiss et al., 2015; Wiringa et al., 2014a). One
consistent finding of such work is the dominance of np
deuteron-like pairs (ST = 10) over other pairs at high
momentum.

These facts described in this sub-section lead to an ef-
fective description of nuclei in momentum space as having
two important regions: (1) a mean-field region (k ≤ pF ),
which accounts for about 80% of the nucleons, where
the many-body dynamics result in single nucleons mov-
ing under the influence of an effective potential created
by the residual A− 1 system and (2) a high-momentum
region (p ≥ pF ), which accounts for about 20% of the
nucleons (but 70% of the kinetic energy (Benhar et al.,
1989; Polls et al., 1994)), where nucleons are predomi-
nantly in the form of pn-SRC pairs, having a very weak
interaction with the residual A − 2 system. As noted
above, it is possible to use unitary transformations to
derive a low-momentum effective interaction that weaken
the strong short-ranged correlations present in the origi-
nal interactions. However, the one and two body density
operators also need to be transformed. It is necessary to
include three or more body effects to obtain accurate re-
sults with these soft interactions (Feldmeier et al., 2011).
This approach complicates the analyses of experiments.

To summarize, the high momentum nucleons in nuclei
are mainly due to 2N-SRC and are therefore associated
with high density fluctuations in the nucleus. In what
follows (see Section III.D) we will examine the hypothesis
that these temporary high density/large momentum ‘hot
spots’ are the sites where the nucleon internal structure
is modified and the EMC effect is created. First, we
will present the experimental evidence for short range
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correlations.

II. Hard scattering and Short-Range Correlations

A. Hard Reactions

In optics the resolving power is the minimum distance
at which an imaging device can separate two closely
spaced objects. This is normally proportional to the
wavelength of the light. The smaller the wavelength, the
better the resolution.

We often scatter particles to try to resolve the internal
structure of a complex target. The sizes of the target and
its constituents define the required resolving power. For
example, to observe the nucleus of an atom one needs
a spacial resolution of about 10 fm, to observe nucleons
in nuclei one needs a resolution of about 1 fm, and to
observe the partonic structure of a nucleon one needs
sub-fermi resolution.

The spacial resolution of a scattering experiment is de-
termined by the de Broglie wave length (λ) of the probe
(scattering particle) and the momentum transfer of the
reaction (q). We define as ’hard’ a process that fulfills the
following conditions: λ� R and qR� 1, where R is the
size of the target or the structure to be studied. In prac-
tice, we shall see that the results of measurements can
be interpreted as observing a hard reaction even though
these kinematic conditions are not always rigorously met.

Another important lepton-scattering length scale is the
coherence length, or Ioffe length (Gribov et al., 1966;

Ioffe, 1969): lI = 2
MxB

≈ 0.4 fm
xB

, where xB = Q2

2Mν . Here

M is the nucleon mass, Q2 is the negative of the square of
the virtual exchanged photon four-momentum, and ν is
its energy. This length is the typical distance between the
absorption and re-emission of the virtual photon. This
length must be short enough to resolve the relevant inter-
nucleon distance scales of the order of a fermi. Thus, we
will focus on the region xB > 0.3 where valence quarks
are dominant and the sea is almost invisible.

In this paper we are dealing with two reactions and
the connection between them. Deep inelastic scattering
(DIS) attempts to resolve the partonic structure of nucle-
ons and quasielastic scattering (QE) attempts to resolve
the nucleonic structure of nuclei. These reactions have
different required resolutions and hence different kine-
matical conditions to achieve them.

For (e, e′) DIS reactions, which are typically mea-
sured as a function of xB = Q2/2Mν for xB < 1,
there are two important parameters, the 4-momentum
transfer squared of the virtual photon, Q2, and the in-
variant mass of the virtual photon plus struck nucleon,
W =

√
M2 + 2Mν −Q2. Since xB , Q

2, and W are all
functions of the same two variables, only two are indepen-
dent. For the inelastic scattering to be considered deep
(the “D” in DIS), experiments typically require W ≥ 2

GeV. This allows the experiments to be sensitive to the
internal structure of a proton or neutron and avoid the
influence of individual nucleon resonances, which cause
the cross section to fluctuate rapidly with W .

Early studies at the high energy facilities (SLAC and
CERN) measured DIS for 5 ≤ Q2 ≤ 50 GeV/c2 and
found that the ratios of DIS cross sections for 0.3 ≤ xB ≤
0.7 are largely independent of Q2 (Norton, 2003). The
newer JLab experiments used lower lepton energies (typ-
ically 4 − 5 GeV) and therefore lower Q2, 4 ≤ Q2 ≤ 6
GeV2 (Seely et al., 2009a). The higher-energy SLAC and
CERN measurements required W ≥ 2 GeV. However the
lower-energy JLab data required only W ≥ 1.4 GeV.

For inclusive (e, e′) QE scattering, there are again only
two independent kinematical variables, normally chosen
to be Q2 and xB . However, in addition to making sure
that the resolving power is sufficient, we also need to
optimize the kinematics to select scattering from high-
momentum nucleons in the nucleus and to reduce the
effects of non-single-nucleon currents. In order to resolve
nucleons in SRC pairs, measurements are typically made
at Q2 > 1.5 (GeV/c)2. Large (p > pF ) minimum ini-
tial momentum of the struck nucleon (assuming no final
state interactions) can be selected at Q2 > 1.5 (GeV/c)2

by choosing either xB ≥ 1.5 or xB ≤ 0.6 (see Section
II.C). xB ≥ 1 is preferred, so that the energy transfer is
smaller, inelastic processes (resonance production, meson
exchange currents [MEC] and isobar configurations [IC])
are suppressed, and the reaction is more sensitive to the
nuclear momentum distribution. Increasing Q2 further
suppresses MEC contributions. The inclusive QE scat-
tering data discussed in Section II.C were measured at
xB ≥ 1.5.

In exclusive and semi-exclusive reactions, (e, e′p) and
(e, e′pN), large initial nucleon momenta can be selected
directly and the xB restrictions can be relaxed (see Sec-
tion II.B).

B. Exclusive Scattering

The study of SRCs using exclusive reactions has a long
history that extends beyond the scope of this review.
Here we focus only on exclusive measurements performed
with high energy probes and large momentum transfer
(hard reactions). See (Kelly, 1996) and references therein
for a review of the older measurements. We use the term
exclusive to refer to measurements in which, in addition
to the scattered probe particle, two knocked-out nucleons
are measured in the final state.

In the context of SRC studies, exclusive reactions are
hard processes in which a probe scatters from one nu-
cleon in an SRC pair and all particles emitted in the
final state (e.g., the scattered probe and both nucleons
of the pair) are detected. The energy of the probe and
the momentum transfer must be large enough so that the
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probe interacts with a single, high-momentum (pi > pF )
nucleon in the pair. If the pair was at rest (pcm = 0) and
neither nucleon rescattered as it left the nucleus, then
the struck nucleon’s correlated partner would recoil with
momentum p2 = −pi. This back-to-back angular cor-
relation between the initial momentum of the knocked
out nucleon and the momentum of the recoil nucleon is
a clear experimental signature for exactly two nucleons
being involved in the interaction. We note that these re-
actions can be analyzed in terms of the decay function
introduced by (Frankfurt and Strikman, 1988b).

However, other reaction mechanisms can also involve
two nucleons, leaving the residual A−2 nucleus almost at
rest. The probe can scatter from one nucleon, which can
rescatter from a second (FSI), the probe can scatter from
a meson being exchanged between two nucleons (MEC),
or the probe can excite the first nucleon which can then
de-excite via interaction with a second nucleon (IC). Dis-
entangling these competing and interfering effects can be
difficult. It is important to realize that the effects of MEC
and IC are dramatically decreased by choosing kinemat-
ics with xB > 1 and with larger values of Q2. The effects
of FSI can also be dramatically decreased by (a) choos-
ing kinematics where the relative momentum of the two
final-state nucleons is large and (b) avoiding kinematics
where the opening angle between the two outgoing nu-
cleons is 70−90◦. (Non-relativistically, when one billiard
ball scatters from a second billiard ball at rest, the open-
ing angle in the final state is 90◦.)

The detection of the outgoing nucleons in exclusive re-
actions provides complementary information to the in-
clusive reactions discussed above below. By detecting
the struck nucleon at large pmiss and looking for the re-
coil partner nucleons, exclusive measurements can mea-
sure the fraction of high-momentum nucleons belonging
to SRC pairs. They can also extract information on the
SRC pair isospin structure and pcm distribution, as well
as their A and momentum dependence.

This additional information however comes at the price
of increased sensitivity to FSI. FSI can be generally split
into two main contributions: re-scattering between the
nucleons of the pair, and re-scattering between the nu-
cleons of the pair and the residual A− 2 system. Rescat-
tering between the nucleons of the pair will alter the
measured relative momentum but leave pcm unchanged.
Rescattering between the nucleons of the pair and the
residual A− 2 system will change the momentum of the
outgoing nucleons and “attenuate” them. The attenua-
tion of the nucleons as they traverse the nucleus is usually
referred to as the ’nuclear transparency’ and limits the
spatial region probed in the experiment to the outer part
of the nucleus. It can be calculated in the Glauber ap-
proximation (for large enough nucleon momentum). The
momentum changes also affect the measured kinematical
distributions. Here the use of high momentum trans-
fer, as required for hard reactions, also allows using the

Glauber approximation to calculate to the effects of FSI
and to select kinematics to minimize their effects, either
in the measured cross sections or the kinematical distri-
butions.

Specifically, at Q2 ≥ 1.5− 2 (GeV/c)2 and xB ≥ 1 (or
proton scattering experiments at |t|, |u|, |s| ≥ 2 GeV/c2)
Glauber calculations show that the outgoing nucleons
predominantly rescatter from each other and not from
the residual A − 2 system (Arrington et al., 2012b;
Ciofi degli Atti and Simula, 1996a; Frankfurt and Strik-
man, 1981a, 1988b; Frankfurt et al., 1993). This implies
that certain quantities such as the total pair momen-
tum, pcm, and pair isospin structure are insensitive to
rescattering while other quantities like the pair relative
momentum, prel, are very sensitive to rescattering and
thus cannot be reliably extracted from the experimental
data, see (Frankfurt et al., 1997; Shneor et al., 2007) for
details. The contribution of Meson Exchange Currents
(MEC) and Isobar Currents (IC) are also minimized at
high Q2 and xB ≥ 1.

The first exclusive hard two nucleon knockout exper-
iments, measuring the 12C(p, 2pn) and 12C(e, e′pN) re-
actions, were done at BNL and JLab, respectively (Pi-
asetzky et al., 2006; Shneor et al., 2007; Subedi et al.,
2008; Tang et al., 2003). These experiments scattered 5
- 9 GeV/c protons (BNL) and electrons (JLab) off high
initial momentum (300 ≤ pi ≤ 600 MeV/c) protons in
12C and looked for a correlated recoil nucleon emitted in
the direction of the missing momentum. The JLab exper-
iment measured both proton and neutron recoils, whereas
the BNL experiment only measured recoiling neutrons.
Both experiments measured at large momentum transfer
(Q2 ≈ 2 (GeV/c)2), which suppressed competing reac-
tion mechanisms and largely confined FSI to be between
the nucleons of the pair.

The main results of the 12C measurements are shown in
Figs. 6, 7 and 8. Figs. 6 and 7 show the angular correla-
tion between the momentum vector of the recoil nucleons
and the reconstructed initial momentum of the knocked-
out proton. For the BNL data, the angle is shown as a
function of the recoil neutron momentum. Two distinct
regions are visible: below the Fermi momentum where no
angular correlation is observed, and above the Fermi mo-
mentum where a clear back-to-back correlation is seen.
The width of the recoil nucleon opening angle distribu-
tion allowed extracting the pair c.m. motion; this motion
can be described by a Gaussian distribution in each direc-
tion, with σ = 143± 17 (BNL) and σ = 136± 20 (JLab).
These values are also in overall agreement with theo-
retical calculations (Ciofi degli Atti and Simula, 1996b;
Colle et al., 2014). The electron and proton reactions are
characterized by completely different operators and FSI
mechanisms; therefore the agreement of their c.m. mo-
mentum distributions validates the consistent treatment
of FSI in these measurements.

For example, for proton induced reactions the effec-
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FIG. 6: Distributions of the relative angle (γ) between
the reconstructed initial momentum of the knockout

proton and the recoil neutron. Results for 12C(p, 2pn)
events from BNL, shown as a function of the

momentum of the recoil neutron (a) and for events with
recoiling neutron momentum greater than (b) and less
than (c) kF = 225 MeV/c. Note the transition from an

isotropic distribution to a correlated one at about
kF = 225 MeV/c. Figures adapted from (Piasetzky

et al., 2006; Tang et al., 2003).

tive nuclear density is smaller than for electron induced
reactions due to absorption effects that prefers scatter-
ing from the edge of the nucleus. The overall agreement
between the results obtained using different high energy
hadronic and leptonic probes at very different momen-
tum transfer (2 GeV2 and 5 GeV2) strongly supports the
interpretation that in these reactions the projectiles in-
teract with one nucleon of the SRC. Note also that the
saturation of the recoil channels by neutron and protons
puts a strong limit on the admixture of non-nucleonic
degrees of freedom in SRCs.

Fig. 8 shows the extracted ratio of two nucleon knock-
out (proton-neutron and proton-proton) to single pro-

FIG. 7: Distributions of the relative angle (γ) between
the reconstructed initial momentum of the knockout

proton and the recoil nucleon. Results for 12C(e, e′pp)
events from JLab at kinematics corresponding to

scattering off ∼ 500 MeV/c initial momentum protons.
Figure from (Shneor et al., 2007).
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FIG. 8: The ratio of 12C(e, e′pN) double knockout
events to 12C(e, e′p) single knockout events, shown as a

function of the reconstructed initial (missing)
momentum of the knocked-out proton from the
12C(e, e′p) reaction. Triangles and circles mark

12C(e, e′pn)and 12C(e, e′pp) events, respectively. The
square shows the 12C(e, e′pp)/12C(e, e′pn) ratio. A clear
dominance of 12C(e, e′pn) events is observed, evidence
of the tensor nature of the nucleon-nucleon interaction

in the measured momentum range. The pie chart on the
right illustrates our understanding of the structure of
12C, composed of 80% mean-field nucleons and 20%
SRC pairs, where the latter is composed of ∼ 90%
np-SRC pairs and 5% pp and nn SRC pairs each.

Figure adapted from (Subedi et al., 2008).

ton knockout events and the ratio of proton-neutron to
proton-proton two-nucleon knockout events. The ratios
are all corrected for finite acceptance effects and shown as
a function of pmiss, the reconstructed initial momentum
of the knocked out protons for 300 ≤ pmiss ≤ 600 MeV/c.
The ratio of two nucleon knockout to single proton knock-
out is directly related to the fraction of high-momentum
protons that are in SRC pairs. As can be seen, within
statistical uncertainties of about 10%, all single nucleon
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FIG. 9: (color online) The distribution of the cosine of
the opening angle γ between pmiss and precoil for the

4He(e, e′pn) reaction. The solid curve is a simulation of
scattering off a moving pair with a c.m. momentum

distribution having a width of 100 MeV/c. The insets
show the missing-mass distributions. Figure reproduced

based on (Korover et al., 2014).
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FIG. 10: (color online) The measured pp to pn ratio as
function of the proton missing momentum (labelled q)
(Korover et al., 2014) compared to calculations of the
two-nucleon momentum distribution (Wiringa et al.,

2014b) integrated over various ranges of the c.m.
momentum from zero (bottom curve) to infinity (top
curve) (Weiss et al., 2016). The data is shown as a

function of the nucleon momentum and the calculations
are shown as a function of the pair relative momentum.
The two are equivalent for low c.m. momentumof the

pair but differ at large c.m. momentum. Figure adapted
from (Weiss et al., 2016)

knockout events at 300 ≤ pi ≤ 600 MeV/c were accompa-
nied by the emission of a recoil nucleon. The proton-to-
neutron recoil ratio was found to be approximately 1:10,
which corresponds to 20 times more np-SRC pairs than
pp-SRC pairs in 12C (Subedi et al., 2008). This observed
proton-neutron pair dominance was associated with the
dominance of the tensor part of the nucleon-nucleon in-
teraction at these initial moments (Sargsian et al., 2005a;
Schiavilla et al., 2007).

A follow-up measurement of 4He(e, e′pN) in similar
kinematics set out to better constrain the importance
of the tensor part of the NN interaction at short dis-
tance, and extend the experimental data to larger initial
momenta, 400 ≤ pi ≤ 800 MeV/c (Korover et al., 2014).
At these higher momenta, the scalar repulsive core of the
nucleon-nucleon interaction is expected to dominate over
the tensor part, increasing the fraction of pp-SRC pairs.
The 4He nucleus was chosen to further reduce FSI and
allow for comparisons with detailed ab-initio few-body
calculations. The results of this measurement are shown
in Figs. 9 and 10.

The two-nucleon opening angle distribution for 4He
(see Fig. 9) is very similar to that for C (see Fig. 7). The
reconstructed missing mass distribution peaks at small
missing mass for both pp- and np-SRC pair knockout.
As can be seen, there is a peak at back angle, associated
with a breakup of 4He into a SRC pair and a residual 2N
system with low excitation energy. As with the 12C mea-
surements, the width of the opening angle distribution
is due to the c.m. motion of the SRC pairs which was
found to be consistent with a Gaussian in each direction
with a width of 100± 20 MeV/c.

The extracted 4He pp/np SRC pairs ratio increases
with pmiss for pmiss > 400 MeV/c (see Fig. 10). The
measured ratios are consistent with ab-initio Variational
Monte Carlo (VMC) calculations of Ref. (Wiringa et al.,
2014b) integrated over c.m. momentum up to about 300
MeV/c, which is consistent with the measured width of
the c.m. momentum distribution. At higher c.m. mo-
mentum, the two body momentum distribution is dom-
inated by large contributions from un-correlated pairs
(Weiss et al., 2016). Similar results were also obtained
by different calculations (Alvioli et al., 2016; Ryckebusch
et al., 2015).

The importance of tensor correlations was further
shown by measurements of the pp to pn ratio in
3He(e, e′pp)n measured using the CLAS detector at JLab
(Baghdasaryan et al., 2010). They measured the relative
and total momentum distribution of pp and pn pairs in
3He by detecting events where the virtual photon was
absorbed on one nucleon and the other two (spectator)
nucleons were also detected. Fig. 11 shows the ratio
of pp to pn pairs in 3He as a function of the pair to-
tal (e.g., center-of-mass) momentum for two pair rela-
tive momentum ranges, 300 ≤ prel ≤ 500 MeV/c and
400 ≤ prel ≤ 600 MeV/c. The first range is centered at
the s-wave minimum at 400 MeV/c where the effects of
tensor correlations are expected to dominate; the second
is not. For prel centered at 400 MeV/c, the pp to pn ratio
is very small at ptot ≤ 100 MeV/c and consistent with
the 12C(e, e′pN) measurements discussed above. For prel
centered at 500 MeV/c, the pp to pn ratio at ptot ≤ 100
MeV/c is significantly larger, consistent with the ex-
pected decreased dominance of tensor correlated pairs
at this higher relative momentum. At large ptot, the pp
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FIG. 11: The ratio of pp to pn pairs in 3He(e, e′pp)n.
The solid and star points show the ratio for

300 ≤ prel ≤ 500 MeV/c and for 400 ≤ prel ≤ 600
MeV/c respectively, as a function of the total (e.g.,

center-of-mass) momentum of the pair. The pp/pn ratio
is much less than one for small ptot, increasing to the
pair counting ratio of 0.5 at large ptot. The ratio at

small ptot is about 0.1 for 300 ≤ prel ≤ 500 MeV/c, and
about 0.25 for 400 ≤ prel ≤ 600 MeV/c. The solid line

shows a calculation by Golak for 300 ≤ prel ≤ 500
MeV/c which neglects rescattering of the struck nucleon
but includes the reinteraction of the two nucleons in the
SRC pair. The dashed line (blue online) shows the 3He

momentum distribution integrated over the
experimental acceptances. From (Baghdasaryan et al.,

2010).

to pn ratio is 0.5, consistent with simple pair counting.
The points at 300 ≤ prel ≤ 500 MeV/c are consistent
with a calculation by Golak (Golak et al., 1995) which
neglects rescattering of the struck nucleon but includes
the reinteraction of the two nucleons in the SRC pair.

The combined results of the 3He, 4He and 12C measure-
ments indicate that for 300 ≤ pi ≤ 500 MeV/c, nucleons
are predominantly part of pn-SRC pairs as predicted by
dominance of the tensor part of the NN interaction at
short distances. At higher initial momentum, the contri-
bution of pp-SRC pairs seems to increase by a factor of 2
– 3, possibly due to larger contributions from the scalar
repulsive core of the NN interaction.

Encouraged by these results, the latest exclusive mea-
surements extended to medium and heavy nuclei (12C,
27Al, 56Fe, and 208Pb), where the persistence of np-SRC
dominance was still unproven (Hen et al., 2014d). In this
experiment, the A(e, e′pp) and A(e, e′p) reactions were
measured at similar kinematics to the previous 4He and
12C measurements, covering a reconstructed initial pro-
ton momentum range of 300 ≤ pi ≤ 600 MeV/c. The
analysis assumed that, in these nuclei, the reaction is still
dominated by scattering off SRC pairs and extracted the
relative fraction of np- and pp-SRC pairs. Fig. 12 shows
that SRC pairs are predominantly np-SRC pairs even in
heavy neutron rich nuclei.

FIG. 12: The relative fraction of np and pp SRC pairs
(excluding nn pairs) derived from A(e, e′p) and

A(e, e′pp) measurements on a range of nuclei. From
(Hen et al., 2014d).

C. Inclusive Scattering

Inclusive quasi-elastic electron scattering allows prob-
ing the momentum distribution of nucleons in the nu-
cleus. Elastic scattering from a nucleon at rest occurs at

fixed kinematics, ν = Q2

2M . This corresponds to xB = 1.
If all of the struck nucleons in a nucleus were at rest, the
cross section would show a pronounced narrow peak– the
quasi-elastic peak.

This peak is broadened by nucleon motion for elec-
tron scattering from bound nucleons. In order to study
nuclear momentum distributions, experiments typically
focus on the low energy transfer side of the QE peak,
or xB ≥ 1. In this case the initial momentum of the
struck nucleon must be in the opposite direction from
the momentum transfer so that the final momentum of
the struck nucleon pf = q + pmiss (in the absence of fi-
nal state interactions or FSI, prmmiss = prminit) is less
than the momentum transfer. As the energy transfer de-
creases, the final momentum of the struck nucleon must
decrease and therefore the minimum initial momentum
of the struck nucleon must increase.

The quasielastic inclusive electron scattering (e, e′)
cross section can be written in terms of a function F
that depends on (Q2, y) rather than (Q2, ν) (Day et al.,
1987b):

d2σ(q, ν)

dνdΩ
= F (y,Q2)(Zσp +Nσn)

q√
M2 + (y + q)2

(9)
where σp,n are the elastic electron scattering cross sec-
tions from a bound nucleon, the last term is the Jacobian
dy/dν, and y = y(Q2, ν) is the minimum momentum of
the struck nucleon (assuming that the residual A−1 sys-
tem is unexcited) (Arrington et al., 2012a; Day et al.,
1990).

Non-relativistically, y is the component of the struck
nucleon’s initial momentum (pmiss) in the direction of q.
The cross section at fixed y then includes an integral over
the perpendicular components of pmiss. Relativistically,
it is a little more complicated. y is determined from
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FIG. 13: The minimum momentum of the struck
nucleon in inclusive (e, e′) scattering as a function of
xB . The top panel shows the minimum momentum for
deuterium for a variety of momentum transfers and the

bottom panel shows the minimum momentum for a
variety of nuclei at Q2 = 2 GeV2. The residual A− 1
system is assumed to be in its ground state. Figure

from (Egiyan et al., 2003).

FIG. 14: Momentum distribution of the deuteron.
Points show the results extracted from the experimental

scaling function F (y) at four different momentum
transfers (Fomin et al., 2012a). Curves show the

calculated momentum distributions using three different
NN potentials Paris (Lacombe et al., 1981),
Nijmegen (Stoks et al., 1994b) and Argonne

V14 (Wiringa et al., 1995a). Figure from (Fomin et al.,
2012a), which uses k for momentum instead of p.

energy conservation, assuming no FSI and that the A−1
nucleus recoils with momentum y:

ν +MA = (M2 + (q + y)2)1/2 + (M2
A−1 + y2)1/2 .(10)

At the QE peak, ν = Q2/(2M), xB = 1, and y = 0. As
ν decreases, xB increases and y decreases. By selecting
xB or y (at fixed Q2), we can select the minimum initial
momentum of the struck nucleon (see Fig. 13). At large
enough Q2 the function F (y,Q2) scales and depends only
on y (Ciofi degli Atti et al., 1991a). The nucleon momen-
tum distribution, n(p = y), can be calculated from the
derivative of the scaling function, dF (y)/dy, at large Q2:

n(p) =
−1

2πp

dF (p)

dp
. (11)

Fig. 14 shows the deuteron momentum distribution de-
rived in this manner.

The original y-scaling model discussed here assumes a
that the residual A−1 nucleus is in a low-lying state. This
procedure neglects the possibly large excitation energy of
the residual nucleus, which is an important feature of the
spectral function. As a result, for scattering by a nucleon
in a SRC, the same internal momenta corresponds to a
very different values of y for different nuclei.

Another approach is to compare the momentum distri-
butions in different nuclei with reduced uncertainties by
taking ratios of cross sections. We write the momentum
density in terms of the light cone variable αtn for the
interacting nucleon belonging to the correlated pair,

αtn = 2− ν − q + 2M

2M
(1 +

√
1− 4M2/W 2). (12)

Using this variable, the cross section ratios do not de-
pend on Q2 in the kinematic range of the SLAC exper-
iments (Day et al., 1987a). The onset of the plateaus
discussed below occur for the same values of αtn but for
slightly different values of xB .

Then the ratios of cross sections can be expressed in
terms of the light-cone spectral function at large Q2 and
1.5 < xB < 2 as (Frankfurt et al., 1993):

σA1(xB , Q
2)

σA2
(xB , Q2)

=

∫
ρA1(αtn, pt)d

2pt∫
ρA2

(αtn, pt)d2pt
≈ nA(p)

nD(p)
. (13)

Thus this ratio of cross sections should be a function of
αtn only, which, since it is a function of (Q2, xB), is di-
rectly related to y, the minimum momentum of the struck
nucleon. The approximate equality shown in Eq. (13)
holds for 1.3 ≤ αtn ≤ 1.7 and p > pF . The second
approximate equality appearing in Eq. (13) is obtained

using the relation |p| ≈ M |1−αtn|√
αtn(2−αtn))

. Measured ra-

tios should be less sensitive to the influence of final state
interactions, as discussed below. Nevertheless, the accu-
racy of replacing cross section ratios by ratios of densities,
as shown in Eq. (13), needs to be studied further. Fur-
thermore, as yet there is no separate calculation of the
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FIG. 15: A cartoon of electron quasielastic scattering
from a nucleon in deuterium (left) and from a nucleon
in a SRC pair in a heavier nucleus (right). The labels
ΓNN and ΓA refer to the deuteron and nuclear vertex

functions respectively.

numerator term of Eq. (13), i.e., the basic nuclear cross
section for the (e, e′) reaction at large values of xB .

Physics at large values of xB. The next step is to
use the inclusive (e, e′) cross section to look for the effects
of SRC pairs in nuclei by choosing kinematics where mean
field nucleons cannot contribute to the reaction. This
is done by using xB > 1. Just as conservation of four-
momentum ensures that xB = 1 is the kinematic limit for
scattering from a single nucleon, xB = 2 is the kinematic
limit for scattering from a cluster of two nucleons and
xB = 3 is the kinematic limit for scattering from a three-
nucleon cluster.

As a result, we can expand the (e, e′) cross section into
pieces due to electrons scattering from nucleons in 2-, 3-
and more-nucleon SRC (Frankfurt and Strikman, 1981a,
1988b; Frankfurt et al., 1993)

σ(xB , Q
2) =

A∑

j=2

aj(A)σj(xB , Q
2), (14)

where σj(xB , Q
2) = 0 for xB > j and the {aj(A)} are

proportional to the probability of finding a nucleon in a
j-nucleon cluster. This is analogous to treating nuclear
structure in terms of independent nucleons, independent
nucleon pairs, etc. This expression is based on the lack
of interference between amplitudes arising from scatter-
ing by clusters of different nucleon number that occurs
because the important final states are different. Its im-
portance lies in the fact that in a given kinematic region
the ratio of cross sections can be used to determine in-
formation about short-ranged correlations.

If we consider only the a2 term, then we can write

a2(A) =
2

A

σA(xB , Q
2)

σd(xB , Q2)
. (15)

This approximation should be valid for 1.5 < xB ≤ 2.
The effect of neglecting clusters of three or more nucleons
has never been studied.

If the momentum distribution for |y| > pfermi is domi-
nated by nucleons in SRC pairs, then we expect that the

momentum distributions for nucleus A and for deuterium
should be almost identical. This similarity should show
up as a plateau in the per-nucleon cross section ratio of
the two nuclei. Fig. 15 shows a cartoon of this process.

The cross section ratio of nucleus A to deuterium or
to 3He has been measured at SLAC (Frankfurt et al.,
1993) and at Jefferson Lab (Egiyan et al., 2003, 2006a;
Fomin et al., 2012a). They have all observed a plateau
in the cross section ratio at Q2 > 1.4 GeV2 and from
1.5 ≤ xB ≤ 1.9. See Fig. 16. This corresponds to y ≥
pthresh = 275 ± 25 MeV/c, which is slightly larger than
the Fermi momentum in medium and heavy nuclei. The
value of Q2 is large enough to ensure that contributions
from uncorrelated nucleons (with momentum governed
by the size of the nucleus) are negligible.

However, in order to relate these observed plateaus
to the ratio of momentum distributions in the different
nuclei, we need to take into account the final state inter-
actions (FSI) of the nucleon with its correlated partner
and with the residual system. For Q2 > 1 GeV2 and
0.35 < ν < 1 GeV, the space-time physics (Frankfurt
et al., 2008, 1993) of the inclusive process tells us that
final state interaction effects occur predominantly within
the two-nucleon correlation. Such effects are indepen-
dent of the nuclear target, and should be small for large
values of ν. The relevant values of ν are large enough
so that final state interactions within the pair are not
very important (Frankfurt and Strikman, 1981a, 1988b).
Therefore, the effects of FSI will be approximately the
same for high momentum nucleons in deuterium and in
heavier nuclei and will predominantly cancel in the cross
section ratios.

Some measurements, e.g., (Egiyan et al., 2003, 2006a),
applied isoscalar corrections to the ratios of Eq. 15
(i.e., they corrected for the unequal electron-proton and
electron-neutron cross sections). Since the discovery of
pn-dominance in SRC pairs (see Section II.B), these cor-
rections are no longer applied (Fomin et al., 2012a).

The flatness of the cross section ratio plateau at Q2 >
1.4 GeV2 and from 1.5 ≤ xB ≤ 1.9, and its approxi-
mate independence of Q2 in this region where SRC ef-
fects dominate indicates the similarity of the momentum
distributions in the two nuclei for p > pthresh and the
validity of the expansion in Eq. 14. The onset of the
plateau at xB = 1.5 for Q2 > 1.4 GeV2 indicates that
the momentum distributions become similar at a thresh-
old momentum of pi = pthresh = 275±25 MeV/c (Egiyan
et al., 2003). The height of the plateau, a2(A), indicates
the relative probability that a nucleon in nucleus A has
high momentum (p > pthresh) relative to a nucleon in
deuterium.

In a naive model, this relative probability for a nucleon
to have high momentum equals the relative probability
that it belongs to an NN SRC pair. However, even if
all nucleons with p > pthresh belong to an NN SRC pair
as evident from the exclusive measurement (see Section
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FIG. 16: Inclusive per-nucleon cross section ratios of
(top) nuclei to 3He from (Egiyan et al., 2006a) at

1.4 < Q2 < 2.6 GeV2 and (bottom) nuclei to deuterium
at Q2 = 2.7 GeV2 (Fomin et al., 2012a). Figures

adapted from (Egiyan et al., 2006a) (top) and from
(Fomin et al., 2012a) (bottom).

II.B), we still need to consider the effects of pair motion.
The high momentum NN pair in the deuteron has cen-
ter of mass momentum pcm = 0. The non-zero center of
mass momentum distribution of the pair in heavier nu-
clei will smear the high-momentum tail of the nucleon
momentum distribution, increasing the cross section ra-
tio in the plateau region (Ciofi degli Atti et al., 1991b;

Fomin et al., 2012a; Vanhalst et al., 2012). This was
found to be about a 20% effect in Fe. Thus, while the
ratio of the proportion of high-momentum nucleons in
Cu to deuterium is a2(A) = 5.4 ± 0.1, the ratio of the
number of SRC NN pairs in Cu to deuterium (using the
Fe correction factor) is about 20% less, R2N = 4.3± 0.3
(Fomin et al., 2012a).

Multiplying the 4% probability for a nucleon in deu-
terium to have momentum p > pthresh by the measured
ratios in the plateau region (a2(A)), as indicated by
Eq. (13), gives us the probabilities for a nucleon to have
high momentum in 4He, C, Fe/Cu and Au to be 14%,
19%, 21% and 21% respectively (Fomin et al., 2012a;
Hen et al., 2012).

Thus, the existence of a plateau in the measured per-
nucleon cross section ratios of various nuclei to deuterium
or 3He at Q2 > 1.4 GeV2 and 1.5 ≤ xB ≤ 1.9 shows that
the momentum distributions of all nuclei at high momen-
tum are similar and are thus dominated by 2N-SRC, that
the threshold for “high momentum” is pthresh = 275±25
MeV/c, and that the probabilities for nucleons in nuclei
to have high momentum range from 4% in deuterium to
21% in heavy nuclei.

While the inclusive scattering cross section ratios of
carbon and iron to 3He measured by Egiyan are flat for
1.5 < xB < 2, the ratios of carbon, copper and gold to
deuterium measured by Fomin appear to slope upwards
slightly. This is not due to the choice of nucleus in the de-
nominator, since the ratio of 3He to deuterium measured
by Fomin is flat. This is also probably not due to c.m.
motion effects as these are simililar for 4He and 12C (Ko-
rover et al., 2014; Shneor et al., 2007; Tang et al., 2003),
which do show flat ratios, and are expected to be the
same for heavy nuclei (Ciofi degli Atti and Simula, 1996b;
Colle et al., 2014). This might be due to differences in
kinematics. The Egiyan data covers 1.4 < Q2 < 2.6
GeV2 (concentrated at the lower values), while the Fomin
data was taken at Q2 = 2.7 GeV2. At Q2 = 1.5 GeV2

and 1.5 ≤ xB ≤ 2, the minimum momentum of the struck
nucleon ranges from 250 to 500 MeV/c, covering the ex-
pected region of tensor force dominance. However, at
Q2 = 2.7 GeV2, the minimum momentum of the struck
nucleon ranges from 320 to 700 MeV/c, where central
correlations could become important. It would be useful
to measure the Q2 dependence of the cross section ratios
in future SRC measurements.

D. Universal Properties of Short Range Correlations in
Nuclei

The combined results from the exclusive and inclusive
measurements described in Sections II.B and II.C lead to
a universal picture of SRC pairs in nuclei. In the conven-
tional momentum space picture, the momentum distri-
bution for all nuclei and nuclear matter can be divided
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FIG. 17: A qualitative sketch of the dominant features
of the nucleon momentum distribution in nuclei. At
k < kF , the nucleon momentum is balanced by that of

the other A− 1 nucleons and can be described by mean
field models. At k > kF , the nucleon belongs to a

pn-SRC pair and its momentum is balanced by that of
one other nucleon.

into two regimes, above and below the Fermi-momentum
(see Fig. 17). The region below the Fermi momentum
accounts for about 80% of the nucleons in medium and
heavy nuclei (i.e., A ≥ 12) and can be described using
mean-field approximations. The region with momenta
greater than the Fermi momentum accounts for about
20–25% of the nucleons (see the pie chart in Fig. 8) and
is dominated by nucleons belonging to NN -SRC, pre-
dominantly pn-SRC.

The SRC dominance of the high-momentum tail im-
plies that the shape of the momentum distributions of all
nuclei at high momenta is determined by the short range
part of the fundamental NN interaction. The average
number of SRC pairs is determined by global prperties
of the nucleus.

The specific predominance of pn-SRC over pp- and
nn-SRC is largely associated with the large contribu-
tion of the tensor part of the NN interaction at short-
distances (Alvioli et al., 2008; Sargsian et al., 2005b; Schi-
avilla et al., 2007), implying that the high-momentum
distribution in heavier nuclei is approximately propor-
tional to the deuteron momentum distribution. Experi-
mental and theoretical studies of the latter show that, for
300 ≤ k ≤ 600 MeV/c, n(k) ∝ 1/k4 (Hen et al., 2015a).
This specific functional form follows directly from the
dominance of the tensor force acting in second order, see
Section IX.A for details.

The predominance of np-SRC pairs implies that, even
in asymmetric nuclei, the ratio of protons to neutrons
in SRC pairs will equal 1. This, in turn, implies that
in neutron rich nuclei, a larger fraction of the protons
will be in an SRC pair (Hen et al., 2014d; Sargsian,

2014a), i.e., that a minority nucleon (e.g., a proton) has
a higher probability of belonging to a high-momentum
SRC-pair than a majority nucleon (e.g., a neutron). This
effect should grow with the nuclear asymmetry and could
possibly invert the kinetic energy sharing such that the
minority nucleons move faster on average then the ma-
jority. This asymmetry could have wide ranging im-
plications for the NuTeV anomaly (Zeller et al., 2002,
2003) (see Sects III.D.1,VI.A.5), the nuclear symmetry
energy and neutron star structure and cooling rates (Hen
et al., 2016a, 2015c), neutrino-nucleus interactions (Ac-
ciarri et al., 2014; Weinstein et al., 2016) and more. The
study of the nuclear asymmetry dependence of the num-
ber of SRC pairs and their isospin structure is an im-
portant topic that could be studied in future high-energy
radioactive beam facilities.

III. Deep Inelastic Scattering (DIS) and the EMC effect

Basic models of nuclear physics describe the nucleus
as a collection of unmodified nucleons moving non-
relativistically under the influence of two-nucleon and
three-nucleon forces, which can be treated approximately
as a mean field. In such a picture, the partonic structure
functions of bound and free nucleons should be identi-
cal. Therefore, it was generally expected that, except for
nucleon motion effects, Deep Inelastic Scattering (DIS)
experiments which are sensitive to the partonic structure
of the nucleon would give the same result for all nuclei.

Instead, the measurements (Arneodo, 1994; Aubert
et al., 1983; Frankfurt et al., 2012; Geesaman et al., 1995;
Hen et al., 2013a; Malace et al., 2014; Norton, 2003;
Piller and Weise, 2000) show a reduction of the structure
function of nucleons bound in nuclei relative to nucleons
bound in deuterium in the valence quark region. We term
this reduction the EMC effect. Since its discovery, over
30 years ago, a large experimental and theoretical effort
has been put into understanding the origin of the effect.
While theorists have had no difficulty in creating models
that qualitatively reproduce nuclear DIS data by itself,
there is no generally accepted model. This is because the
models are either not consistent with or do not attempt
to explain other nuclear phenomena.

The nuclear deep inelastic scattering data also show a
reduction in the small xB region of the structure func-
tion, known as the shadowing region. The physics of
shadowing has been well-reviewed (Frankfurt et al., 2012)
recently, and is not a subject of the present review.

Section I.B showed that the nucleon-nucleon interac-
tion leads to the existence of Short-Range Correlated
(SRC) pairs in nuclei and Section II showed the evidence
for and our knowledge of the properties of these pairs.

This section will describe Deep Inelastic Scattering
and its relationship to nucleon parton distributions. The
EMC effect and the limitations of conventional nuclear
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physics to explain it will then be discussed. Section IV
will present the phenomenological relationship between
the number of SRC pairs in a nucleus and the strength
of the EMC effect and use that relationship to gain new
insight into the origin of the EMC effect.

A. DIS and nucleon structure functions

Electron loses energy and is scattered by some angle: two variables: ⌫, Q2

Large ⌫, Q2 scattering on elementary quark. Four-momentum conservation !

dynamics depend on x = Q2

2M⌫

x ratio of quark p+ to proton momentum P+ (P± ⌘ P 0 ± P 3)

Primer- Deep Inelastic 
Scattering- large 

4

e

P

Q

x P+

The EMC effect involves deep 
inelastic scattering from nuclei 

⌫, Q2

EMC= European Muon Collaboration
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Figure 19.4: The bands are x times the unpolarized parton distributions f(x)
(where f = uv, dv, u, d, s ≃ s̄, c = c̄, b = b̄, g) obtained in NNLO NNPDF2.3 global
analysis [45] at scales µ2 = 10 GeV2 and µ2 = 104 GeV2, with αs(M

2
Z) = 0.118.

The analogous results obtained in the NNLO MSTW analysis [43] can be found in
Ref. [62].

where we have used F
γ
2 = 2xF

γ
T + F

γ
L , not to be confused with F

γ
2 of Sec. 19.2. Complete

formulae are given, for example, in the comprehensive review of Ref. 80.

The hadronic photon structure function, F
γ
2 , evolves with increasing Q2 from

the ‘hadron-like’ behavior, calculable via the vector-meson-dominance model, to the
dominating ‘point-like’ behaviour, calculable in perturbative QCD. Due to the point-like
coupling, the logarithmic evolution of F

γ
2 with Q2 has a positive slope for all values of x,

see Fig. 19.15. The ‘loss’ of quarks at large x due to gluon radiation is over-compensated
by the ‘creation’ of quarks via the point-like γ → qq̄ coupling. The logarithmic evolution
was first predicted in the quark–parton model (γ∗γ → qq̄) [81,82], and then in QCD in
the limit of large Q2 [83]. The evolution is now known to NLO [84–86]. The NLO data
analyses to determine the parton densities of the photon can be found in [87–89].

19.5. Diffractive DIS (DDIS)

Some 10% of DIS events are diffractive, γ∗p → X + p, in which the slightly deflected
proton and the cluster X of outgoing hadrons are well-separated in rapidity. Besides
x and Q2, two extra variables are needed to describe a DDIS event: the fraction xIP

of the proton’s momentum transferred across the rapidity gap and t, the square of the
4-momentum transfer of the proton. The DDIS data [90,91] are usually analyzed using
two levels of factorization. First, the diffractive structure function FD

2 satisfies collinear
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FIG. 18: Deep inelastic scattering at large values of
Q2. A lepton (labelled ‘e’) scatters from a nucleon by

emitting a space-like virtual photon with
four-momentum q, which is absorbed on a single quark

with momentum fraction xBP
+. Only the outgoing

lepton is subsequently detected.

We begin with a brief description of deep inelastic scat-
tering on a nucleon. See one of the many texts for details,
e.g., (Close, 1979; Collins, 2013; Halzen and Martin,
1984; Roberts, 1994; Thomas and Weise, 2001). The lat-
est information is contained in the Particle Data Group
tables (Olive et al., 2014). The inclusive deep inelas-
tic scattering process, (e, e′), involves a lepton scattering
from a target, with only the final state lepton being de-
tected. If spin variables are not observed, the process
depends on only two variables, which are traditionally
chosen to be the electron energy loss ν and negative of
the four momentum transfer from the lepton to the tar-
get Q2 = q2 − ν2, see Fig. 18. At large enough values of
ν and Q2, conservation of momentum and energy leads
to the result that the dynamical information, can be en-
coded (at a given scale) in the structure functions q(xB),
which is interpreted as the fraction of the target momen-
tum carried by the struck quark.

Let’s see how this arises. Four-momentum conserva-
tion, the idea that the quark is briefly free after absorbing
the high-momentum photon, and ignoring the emissions
of gluons gives

(k + q)2 = m2
q (16)

where k is the four-momentum of a quark in the target,
and mq is the quark mass. Let the spatial momentum
of the photon lie in the negative z direction and using
the light-front momentum variables, e.g P± ≡ P 0 ± P 3,
where Pµ is the target four-momentum, we have q− =

ν +
√
ν2 +Q2 = ν + |q|, q+ = ν − |q|, q− � q+, so that

Eq. (16) can be re-written as

k+ =
Q2 − k2 − q+k− +m2

q

ν +
√
ν2 +Q2

. (17)

If the quark is on its mass shell (as is the case with light-
front wave functions) then k2 = m2

q. Furthermore, if the
quantity q+k− � Q2, the numerator becomes simply
Q2. Then one defines a dimensionless, Lorentz invariant
variable by dividing the resulting equation by P+, so that

k+

P+
≈ Q2

P+(ν +
√
ν2 +Q2)

≡ ξ, (18)

where ξ is the Nachtmann variable. We see that the
fraction of target momentum (plus-component) is sim-
ply ξ. This explains why deep inelastic scattering shows
the scaling phenomenon. The relevant dynamical vari-

able, k+

P+ , depends only on one specific combination of ν
and Q2. Note that this description is frame-independent.
One need not go to the infinite momentum frame to un-
derstand scaling or the parton model.

If one further takes the Bjorken limit (ν2 � Q2), then
k+

P+ = Q2

2Pµqµ
≡ xB . The dominant dependence on xB

is called Bjorken scaling, and its discovery, using hydro-
gen and deuteron targets (to obtain the neutron infor-
mation), was the primary evidence for the existence of
quarks within the nucleon.

Quarks are confined, so they are never on their mass
shell. The off-mass shell effects, however, decrease with
increasing values of Q2 and are regarded as “higher
twist”. Such effects could be important at Jefferson Lab
energies. Effects of final state interactions (which depend
on the kinematics of the probing beam) are not contained
in the light-front wave function (Cosyn et al., 2014).

Suppose the struck quark is confined in a nucleon of
four-momentum pµ that is bound within a nucleus of mo-
mentum Pµ. Then we have

k+

p+

p+

P+
= ξ. (19)

where a nucleus of momentum P+ contains a nucleon of
momentum of p+ which contains a quark of momentum
k+. This is the origin of the convolution model to be
discussed in Sect. III.C.1. Therefore, in order to calculate
deep inelastic scattering from nuclei we need to know the
nuclear wave function, expressed in light-front variables.

More formally, one derives the expression for the mo-
mentum distribution (the probability that a quark has
a given value of k+/P+), known as a quark distribution
function, by starting with the the square of the invariant
scattering amplitude. The important part of this ampli-
tude depends on the hadronic tensor Wµν , which is a ma-
trix element of a commutator of electromagnetic current
operators. After expanding in terms of the separation r
of the spatial variable of the two current operators, the
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momentum distribution (for a specific flavor of quark) is
given in the Bjorken scaling limit (in which the variable
Q2 is not explicit) by the Fourier transform (Thomas and
Weise, 2001)

q(ξ) =
1

2π

∫
dr− eiq

+r−〈P |ψ†+(r−)ψ+(0)|P 〉c, (20)

where |P 〉c is the proton wave function, the subscript c
denotes a connected matrix element, ψ is the quark field-
operator, the subscript + denotes multiplication by the
projection operator (1 + γ0γ3)/2, and r− is the minus-
component of the separation distance.

Parton distributions are needed for a wide variety of
applications in high-energy physics. q(xB , Q

2) has been
determined for various flavors and for a wide range of
values of x and Q2. Vast amounts of data are now cod-
ified as parton distributions, giving the probability as a
function of Q2 that a given flavor of quark carries a mo-
mentum fraction xB , see Fig. 19.

This sub-section is concerned with nucleon targets, but
(as mentioned above) we need to know how to evaluate
a nuclear version of Eq. (20),which would involve nuclear
wave functions expressed in terms of light front variables.
This difficulty has been handled (Frankfurt and Strik-
man, 1981b, 1988a; Smith and Miller, 2002),(Blunden
et al., 1999; Miller and Machleidt, 1999b; Miller, 2000;
Miller and Smith, 2002). One can implement light-front
coordinates using a simple transformation. This works
because the nucleus does not contain a significant NN̄
content.
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FIG. 19: The bands show xB times the unpolarized
parton distributions for the different parton flavors
{uv, dv, u, d, s = s̄, c = c̄, b = b̄, and g} obtained in

NNLO NNPDF2.3 global analysis (Ball et al., 2013), at
Q2 = 10 (GeV/c)2 and 104 (GeV/c)2, with

αs(M
2
Z) = 0.118. From the PDG (Olive et al., 2014).

Here x = xB .

B. The EMC effect

As stated, the discovery of Bjorken scaling was made
using hydrogen and deuterium targets. It occurred to
many experimentalists that MeV-scale nuclear effects
should be negligible at GeV-scale momentum and en-
ergy transfers and that therefore they could increase
their experimental statistics by using nuclear targets.
Surprisingly, the CERN European Muon Collaboration
(EMC) found that the per-nucleon (e, e′) cross section
ratio of iron to deuterium was not unity (Aubert et al.,
1983), see Fig. 20. This surprising result, now called the
EMC Effect, was confirmed by many groups, culminat-
ing with the high-precision electron and muon scattering
data from SLAC, Fermilab, NMC at CERN, and Jeffer-
son Lab (see Fig. 21). See one of the many EMC reviews
for details (Arneodo, 1994; Geesaman et al., 1995; Hen
et al., 2013a; Malace et al., 2014; Norton, 2003; Piller and
Weise, 2000).

FIG. 20: Image of the EMC data as it appeared in the
November 1982 issue of the CERN Courier. This image
nearly derailed the refereed publication (Aubert et al.,
1983), as the editor argued that the data had already

been published.

The conclusion from the combined experimental ev-
idence was that the effect had a universal shape, was
independent of the squared four momentum transfer Q2

starting from remarkably small values ofQ2 (see Fig. 22),
increased with nuclear mass number A, and increased
with the average nuclear density. An early study (Bick-
erstaff and Miller, 1986) of the Q2 dependence of nuclear
effects showed that the nuclear-binding and dynamical
rescaling models predict very little variation with Q2 over
the range from 4 to 104 GeV2.

One way to characterize the strength of the EMC effect
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FIG. 21: The per nucleon cross section ratio of various
nuclei to deuterium as measured at (top) SLAC (Gomez
et al., 1994) and (bottom) Jefferson Lab (Seely et al.,
2009a). The solid curves show the A-dependent fit to
the SLAC data (Gomez et al., 1994), while the dashed

curve is the SLAC fit to 12C. Figures from (Gomez
et al., 1994) (top) and (Seely et al., 2009a) (bottom).

FIG. 22: The Q2 dependence of the EMC ratio for iron
at various values of xB . From (Gomez et al., 1994).

FIG. 23: The slope of the EMC effect for
0.35 ≤ xB ≤ 0.7 plotted versus the average nuclear

density for various light nuclei as measured at Jefferson
Lab. From (Seely et al., 2009a).

is to measure the average slope of the cross section ratio
for 0.35 ≤ xB ≤ 0.7. Plotting this slope versus the av-
erage nuclear density for light nuclei (see Fig. 23) shows
that the EMC effect does not simply depend on average
density. Since 9Be can be described as a pair of tightly
bound alpha particles plus one additional neutron, it has
been suggested that the local density is more important
than the average density (Seely et al., 2009a). See an
early discussion in (Frankfurt and Strikman, 1981b).

The immediate parton model interpretation of the data
at high x is that the valence quarks of a nucleon bound
in a nucleus carry less momentum than those of free nu-
cleons. This notion seems uncontested, but determining
the underlying origin remained an elusive goal for a long
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FIG. 24: Deep inelastic scattering diagram. A virtual
photon, γ∗, of momentum q is absorbed on a quark of

momentum k contained in a nucleon of momentum p in
a nucleus of momentum P . The imaginary part of this

diagram corresponds to the hadronic tensor Wµν .
Figure adapted from (Miller and Smith, 2002).

time. The great number of models created to explain the
EMC effect caused one of us to write in 1988 (Miller,
1988) that “EMC means Everyone’s Model is Cool”.

C. Why Conventional nuclear physics cannot explain the
EMC effect

1. Nucleons only

One must first try to explain the EMC effect using only
the simple kinematic effects of binding energy and Fermi
motion without modifying the bound nucleon structure.
If the nucleon structure function is not modified and is
the same on and off the energy shell (nucleon-only hy-
pothesis) then evaluation of the diagram of Fig. 24 leads
to the simple convolution formula:

F2A(xA)

A
=

∫ A

xA

dyfN (y)F2N (xA/y), (21)

where P is the total four momentum of the nucleus, and

xA ≡
Q2A

2P · q =
xBAM

MA
. (22)

with M and MA as the free nucleon and nuclear masses,
respectively. xA can be thought of as a version of xB
corrected for the average nucleon binding energy. The
variable y = Ap+/P+ is the fraction of the nuclear mo-
mentum (per nucleon) carried by a single nucleon, and
fN (y) is the corresponding probability distribution. The
origin of the convolution formula can be understood us-
ing the simple terms of Sect. III.A. Suppose the struck
quark is confined in a nucleon (of four-momentum p) that
is bound within a nucleus of momentum P . Then from
Eq. (19) we have

ξ ≈ k+/P+ = (k+/p+)(p+/P+) = xA/y. (23)

This accounts for a nucleon in the nucleus of momentum
p+ that contains a quark of momentum k+. A proper

evaluation of deep inelastic scattering from nuclei there-
fore involves knowledge of the nuclear wave function, ex-
pressed in light-front variables.

There were many attempts to explain the EMC effect
without invoking medium modifications. We cite a few
of the references (Akulinichev and Shlomo, 1990; Benhar
et al., 1997, 1999; Benhar and Sick, 2012; Ciofi Degli Atti
and Liuti, 1989; Dieperink and Miller, 1991; Jung and
Miller, 1988, 1990; Marco et al., 1996), with others to be
found in the reviews.

The appeal of the nucleon-only idea can be understood
using a simple caricature of the probability that the nu-
cleon carries a momentum fraction y. The width of the
function fN (y) is determined by the Fermi momentum
divided by the nucleon mass, which is small. In the ab-
sence of interactions, fN (y) is peaked at y = 1. If the
average separation energy S ≡ εM (which for nuclear
matter can be as large as 70 MeV), (Benhar et al., 1997,
1999; Benhar and Sick, 2012; Dieperink and Miller, 1991)
then fN (y) is peaked at about y = 1− ε. Taking for sim-
plicity a zero width approximation

fN (y) = δ(y − (1− ε)), (24)

then the convolution formula (Eq. (21)) tells us that

F2A(xA)

A
≈ F2N

(
xA

1− ε

)
. (25)

As shown in Fig. 19 the structure function falls rapidly
with increasing xB , so that a slight increase in the ar-
gument leads to a significant decrease in the structure
function. In particular,

F2A(xA)

AF2N(xA)
≈ 1 + ε

F ′2N (xA)

F2N (xA)
≈ 1− γε, (26)

where we have assumed F2N (xB) ∼ (1 − xB)γ at large
xB with 3 ≤ γ ≤ 4.

Frankfurt and Strikman (Frankfurt and Strikman,
1987), using a more detailed calculation found that a
value of ε = 0.04 was sufficient to reproduce the early
EMC data. However, we will show that the ideas of
shifting the value of xA based on binding energy or sep-
aration energy considerations violates rigorous (Collins,
2013) baryon and momentum sum rules, and therefore
cannot be a viable explanation of the EMC effect. Con-
sider a nuclear model in which nucleons are the only de-
grees of freedom. There will be a conserved baryon cur-
rent and an energy-momentum tensor expressed in terms
of these constituents. This means that when expressed
in terms of the convolution approach of the previous sub-
section we must have the momentum sum rule:

∫
dyyfN (y) = 1, (27)

where the factor of y represents the momentum. The use
of Eq. (24) in Eq. (27) leads immediately to a substantial
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FIG. 5: Ratio functions for 16O, 40Ca and 208Pb showing data for Carbon, Calcium and Gold, respectively, from SLAC-E139
[30]. The nuclear matter calculation shows extrapolated data [32].

mesons carry a small amount of plus momentum [21] that vanishes as A → ∞. The closer to y = 1 the peak is in
Fig. 2, the less pronounced the minimum in Fig. 5, all else remaining constant. The second effect is due to M , which
reaches a minimum at 56Fe corresponding to a more pronounced minimum of the ratio function than for A < 56 or
A > 56, keeping the scalar meson contribution constant.

Using a Gaussian parameterization of the plus momentum distribution and the experimental binding energy per
nucleon via the semi-empirical mass formula, we have modeled the dependence of the minimum of the ratio function,
R(x ≃ 0.72), on the number of nucleons in the nucleus in Fig. 6. The motivation for the use of Gaussian plus
momentum distributions is based on the expansion [5]

F2A(xA) = F2N (xA) + ϵxAF ′
2N (xA)

+γ[2xAF ′
2N (xA) + x2

AF ′′
2N (xA)] (5.5)

where ϵ ≡ 1 −
∫

dyyfN(y) (5.6)

γ ≡
∫

dy(y − 1)2fN (y) (5.7)

The Gaussian parameterization uses the peak location and width, ⟨y⟩ and (⟨y2⟩ − ⟨y⟩2)1/2 respectively, from the
relativistic Hartree calculations in Fig. 2, and is normalized to unity. This allows us to obtain a plus momentum
distribution for any A with minimal effort. We show the combined effect of scalar mesons and binding energy per
nucleon on the ratio function along with the effect of scalar mesons alone using a constant binding energy per nucleon
of −8.5 MeV independent of A. It can be seen that a changing M with A has the most effect for nuclei much larger
than Iron, but does not change the general trend that the minimum of the ratio function becomes less pronounced as A
increases due to the vanishing scalar meson contribution and the peak of the plus momentum distribution approaching
unity. This dependence of the binding effect on A is quite different, both in magnitude and shape, than the trend
in experimental data summarized in Ref. [32] which satisfies R(x ≃ 0.72) ∼ A−1/3, so that the minimum becomes
more pronounced as A increases. This fully demonstrates the inadequacy of conventional nucleon-meson dynamics to

FIG. 25: The measured EMC effect in gold (Gomez
et al., 1994) compared to a nucleons-only calculation of
the EMC effect in lead. From (Smith and Miller, 2002).

violation of the momentum sum rule:∫
dyyfN (y) = 1− ε. (28)

Frankfurt and Strikman (Frankfurt and Strikman, 1987)
also included an important relativistic correction known
as the ’flux factor’, which significantly reduces the effects
of nuclear binding.

Going beyond the zero width approximation only
makes this problem worse (Miller and Machleidt, 1999a).
The inclusion of the effects of short-ranged correlations
broadens the function fN (y) leading to a value of the
ratio that exceeds unity for small values of x, an effect
found earlier in (Dieperink and Miller, 1991). A viola-
tion of the sum rule by a few percent is actually a huge
violation, because the EMC effect itself is only a 10-15%
effect. Thus nucleon-only models are logically inconsis-
tent and therefore wrong, even if they can be arranged
to describe the data.

One might argue that sum rules can not be applied
directly to the data because of the need to incorporate
initial and final state interactions. Nevertheless, in using
the convolution formalism in the nucleon-only approxi-
mation one must use a light-front wave function of the
nucleus consistent with the conservation of baryon num-
ber and momentum, as discussed above. There is no way
to avoid the constraints imposed by the sum rules.

Indeed, the application of sum rules and simple rea-
soning shows that Eq. (21) leads to the result that the
nucleon-only hypothesis can not explain the EMC ef-
fect. Under the Hugenholz van Hove theorem (Hugen-
holtz and van Hove, 1958; Miller and Smith, 2002; Smith
and Miller, 2002) nuclear stability (pressure balance) im-
plies (in the rest frame) that P+ = P− = MA. But to an
excellent approximation P+ = A(MN − 8 MeV). Thus
an average nucleon has p+ = MN − 8 MeV. As carica-
tured in Eq. (24), the function fN (y) is narrowly peaked
because the Fermi momentum is much smaller than the
nucleon mass. This means that the value of y in the in-
tegral of Eq. (21) is constrained to be very near unity.

Thus F2A/A is well approximated by F2N and one gets
no substantial EMC effect this way (Miller and Smith,
2002; Smith and Miller, 2002). This is shown as the solid
curve in Fig. 25.

FIG. 26: The Drell-Yan process. A quark with
momentum fraction x1 from the incident proton

annihilates with an anti-quark from the nuclear target
with momentum fraction x2 to form a time-like virtual
photon which decays to a µ+µ− pair. Figure adapted

from (Bickerstaff et al., 1986).

2. Nucleons plus pions

Nucleons-only models fail, but it was natural to con-
sider the idea that the missing momentum ε of Eq. (28)
is carried by non-nucleonic degrees of freedom, e.g., pions
(Ericson and Thomas, 1983; Llewellyn Smith, 1983). In
this case,

P+ = P+
N + P+

π = MA. (29)

Many authors, see the reviews (Arneodo, 1994; Frankfurt
and Strikman, 1988b; Geesaman et al., 1995; Piller and
Weise, 2000) found that using P+

π /MA = 0.04 is suffi-
cient to account for the EMC effect. However, if nuclear
pions carry 4% of the nuclear momentum (in the rest
frame the plus component of momentum is the nuclear
mass) then there should be more nuclear sea quarks (i.e.,
both quarks and anti-quarks). This enhancement should
be observable in a nuclear Drell-Yan experiment (Bicker-
staff et al., 1984, 1986; Ericson and Thomas, 1984). The
idea, see Fig. 26, is that a quark from an incident proton
(defined by a large value of x1) annihilates an anti-quark
from the target nucleus (defined by a smaller value of
x2). A significant enhancement of pions would enhance
the anti-quarks and enhance the nuclear Drell-Yan re-
action. But no such enhancement was observed (Alde
et al., 1990) as shown in Fig. 27. This caused Bertsch et
al. (Bertsch et al., 1993) to announce “a crisis in nuclear
theory” because conventional theory does not work. This
statement is the verification of the title of this subsection.

The reader might ask at this stage, if the two-pion
exchange effects discussed in the Appendix and Sects. I
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FIG. 27: Drell-Yan experimental results (Alde et al.,
1990). Ratio of Drell-Yan cross sections as a function of

the momentum fraction x2 of a quark in the nucleus.
The version of the rescaling model shown in this figure
does not reproduce the nuclear deep inelastic scattering

data (Bickerstaff et al., 1985, 1986). Figure adapted
from (Alde et al., 1990).

& II lead to a significant pion content and an enhanced
sea in the nucleus. Explicit calculations show that the
pionic content associated with the tensor potential is very
small (Miller, 2014).

Subsequent work has confirmed that an intrinsic mod-
ification of the nucleon structure function is needed to
explain the EMC effect (Frankfurt and Strikman, 2012;
Hen et al., 2013a; Kulagin and Petti, 2010, 2014, 2006b).
This result had been expected for some time, as stated
explicitly “The change of the structure functions in nuclei
(EMC effect) gives direct evidence for the modification
of quark properties in the nuclear medium” (Walecka,
2005). The following sections discuss specific proposals
for such modifications.

D. Beyond Conventional Nuclear Physics: Nucleon
Modification

The failure of the nucleon-only or nucleon+pion mod-
els to explain the EMC and Drell-Yan data indicates that
the structure of a nucleon bound in a nucleus significantly

p

PA PA�1

q = (⌫,q)
p + q

e0

e

e0

FIG. 28: The A(e, e′p) reaction in the Plane Wave
Impulse Approximation. A nucleus of four-momentum
P emits a nucleon of four-momentum p that absorbs a
virtual photon of four-momentum q to make a nucleon
of four momentum p+ q, with (p+ q)2 = M2, where M
is the nucleon mass. The blob represents the in-medium

electromagnetic form factors.

differs from that of a free nucleon. The medium modifies
the nucleon.

This is not surprising, as there are evident simple ex-
amples. A free neutron undergoes β decay, so it can be
thought of as having a |pe−ν〉 component. When bound
in a stable nucleus, the neutron is stable. This “medium
modification” suppresses the |pe−ν〉 component. Addi-
tionally, in the (e, e′p) reaction shown in Fig. 28, four-
momentum conservation shows that the square of the
initial four-momentum of the struck nucleon, p, cannot
satisfy p2 = M2. Thus the form factor of a nucleon
bound in the nucleus cannot be the same as that for a
free nucleon; it is instead the amplitude for a transition
between a virtual nucleon of mass

√
p2 and a physical

nucleon of mass M .

Now we must ask: what is the origin of the medium
modification? This question is coupled to the broader
questions listed in Sect. I, and more deeply to the very
nature of confinement.

The parton model interpretation of the large-xB part
of the EMC effect is that the medium reduces the nu-
clear structure functions for large xB , so that there are
fewer high-momentum quarks in a nucleus than in free
space. This momentum reduction leads, via the uncer-
tainty principle, to the notion that quarks in nuclei are
confined in a larger volume than that of a free nucleon.

There are two general ways to realize this simple idea:
mean-field effects cause bound nucleons to be larger than
free ones, or nucleon-nucleon interactions at close range
cause nucleon structure to be modified, by including ei-
ther NN∗ configurations or 6-quark configurations that
are orthogonal to the two-nucleon wave functions. All
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FIG. 29: Evolution of nuclear physics from structureless
nucleons in the 1940s to independent 3-quark nucleons
in the 1970s to the modified nucleons of today, either

modified single-nucleons (left) or modified two-nucleon
configurations (right).

of the papers seeking to explain the EMC effect using
medium modification use one of the two ideas (that are
cartooned in Fig. 29).

Since only about 20% of nucleons belong to SRC pairs,
Fig. 17, five times more nucleons would be modified by
mean-field effects than by nucleon-nucleon interactions
at close range. Therefore, if nucleons are only modified
at short range, then the modifications needed to explain
the EMC effect would have to be five times larger than
if all nucleons were modified by mean-field effects.

A phenomenological assessment of this idea in which
the mean-field and SRC related origins of the EMC effect
were treated phenomenologically was made in Ref. (Hen
et al., 2013a). The separation of the spectral function
Eq. (7) into terms arising from low-lying excited states
P0 and higher-energy continuum states related to short-
ranged correlations, P1 was used. In the mean field
model, a nucleus-independent modification of F2 was in-
cluded in the contribution to the nucleon distribution
function, fN (y) Eq. (21) arising from P0. In the alternate
model a much larger nucleus-independent modification of
F2 was included in the contribution to fN (y) arising from
P1. Both approaches gave reasonably good descriptions
of the nuclear DIS data.

We next describe specific models associated with the
two different mechanisms.

1. Mean field

In mean-field models of nucleon modification, the in-
teraction between nucleons occurs by the exchange of
mesons between quarks confined in different nucleons.
Four general models of the quarks confined in the nu-
cleon have been used for this. The earliest model (quark
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FIG. 6: The EMC and polarized EMC effect in 7Li. The
empirical data is from Ref. [31].
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FIG. 7: The EMC and polarized EMC effect in 11B. The
empirical data is from Ref. [31].

where we find a polarized EMC effect roughly twice that
of the unpolarized case.

IV. CONCLUSION

Using a relativistic formalism, where the quarks in the
bound nucleons respond to the nuclear environment, we
calculated the quark distributions and structure func-
tions of 7Li, 11B, 15N and 27Al. For a spin-J target there
are 2J + 1 independent quark distributions or structure
functions in the Bjorken limit. For example, 27Al there-
fore has six structure functions, however we find that the
higher multipoles are suppressed relative to the leading
result by at least an order of magnitude.

We were readily able to describe the EMC effect in
these nuclei, and importantly obtained the correct A-
dependence. Although we do not show the results, we
also determined the EMC ratio for 12C, 16O and 28Si
and found results very similar to their A − 1 neighbours.
In Eq. (23) we define the polarized EMC ratio in nu-
clei. This ratio is such that in the extreme nonrelativis-
tic limit, with no medium modifications, it is unity. The
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FIG. 9: The EMC and polarized EMC effect in 27Al. The
empirical data is from Ref. [31].

results for the polarized EMC effect in nuclei corroborate
earlier nuclear matter [11, 32], light nuclei [33] and small
x [28] studies that found large medium modifications to
the spin structure function relative to the unpolarized
case. In particular, we find that the fraction of the spin
of the nucleon carried by the quarks is decreased in nuclei
(see Table II). If this result is confirmed experimentally,
it would give important insights into in-medium quark
dynamics and help quantify the role of quark degrees of
freedom in the nuclear environment.
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effect of Ref. (Cloet et al., 2006). Figure from (Cloet

et al., 2006).

meson coupling, QMC) used the MIT bag model to repre-
sent the three confined quarks in the proton (Guichon,
1988; Guichon et al., 1996; Stone et al., 2016). Later
work used the QMC model with more general confine-
ment mechanisms (Blunden and Miller, 1996), the co-
variant NJL model (Cloet et al., 2009a, 2006, 2016) and
the chiral quark soliton model (Diakonov et al., 1996;
Smith and Miller, 2003, 2004, 2005). In these models
the attraction needed to produce a bound state is gener-
ated by the exchange of scalar quantum numbers (either
by a scalar meson (Guichon, 1988; Guichon et al., 1996;
Stone et al., 2016) or by pairs of pions (Smith and Miller,
2003, 2004, 2005)) and the repulsion needed to obtain nu-
clear saturation is caused by exchange of vector mesons.
Within these mean field models the exchanged mesons
are treated as classical static fields, as such these mesons
do not interact with the photon probe.

We next explain two classes of models. The chiral
quark soliton model (CQSM) is based on the instanton-
dominated nature of the vacuum (Negele, 1999). The
coupling of quarks to vacuum instantons spontaneously
generates a constituent quark mass of about 400 MeV.
These quarks interact with pions through an effective
CQSM Lagrangian. This model reproduces nucleon
properties well, including structure functions which van-
ish at xB = 0 and 1 (Diakonov et al., 1996).

Nuclei are formed by collections of such nucleons ex-
changing scalar and vector mesons (Smith and Miller,
2003, 2004, 2005). Excellent saturation properties were
obtained. The dominant effect of the medium is a
slight broadening of the effective potential that binds the
quarks in the nucleon. The use of the medium modified
wave function to compute structure functions allows one
to account for the EMC effect, while still agreeing with
the Drell-Yan data. This indicates that the sea is not
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very modified.

The next model places an NJL-model nucleon in the
medium (NJLMM) which is a relativistic extension of the
earlier QMC including the effects of spontaneous symme-
try breaking. Here the external scalar field enhances the
lower component of the quark’s Dirac wave function by
about 15%. This model describes the EMC effect well
(see Fig. 30). It also predicts an enhancement of the
EMC Effect for spin structure functions (Cloet et al.,
2005b) in nuclei which could be measured at Jefferson
Lab (see Section VI.A.4).

The NJLMM predicts the effects of having different
numbers of neutrons N and protons Z. Cloet and
Thomas (Cloet et al., 2009a) explained that a neutron or
proton excess in nuclei leads to an isovector-vector mean-
field which, through its coupling to the quarks in a bound
nucleon, causes the quark distributions to be evaluated at
a shifted value of the Bjorken scaling variable (Detmold
et al., 2006; Mineo et al., 2004). In relativistic mean-field
models, the effect of a vector field is to shift the energy
and therefore the value of the plus component of mo-
mentum of the single particle state. The isovector-vector
mean field is represented by the ρ0, and in this work its
strength is chosen to reproduce the nuclear symmetry en-
ergy. In a nucleus like 56Fe or 208Pb where N > Z, the ρ0

field causes the u-quark to feel a small additional vector
attraction and the d-quark to feel additional repulsion.
This effect leads to a significant correction to the NuTeV
measurement of sin2 ΘW (Zeller et al., 2002, 2003). The
sign of this correction is largely model independent, and
it accounts for approximately two-thirds of the NuTeV
anomaly. Thus the NuTeV measurement provides fur-
ther evidence for the medium modification of the bound
nucleon wave function.

Both sets of mean field models predict modification of
nucleon electromagnetic form factors. The QMC model
predicts modifications to both GE and GM (Lu et al.,
1999), while the chiral quark soluton model only modifies
GE (Smith and Miller, 2004). Both models predict the
same ratio GE/GM . Note that electron-nucleus quasi-
elastic data was used (Sick, 1985) to put a limit of be-
tween 3 and 6% on the possible increase of the nucleon
radius in nuclear matter. None of the mean field models
discussed here violate this limit.

The QCD eigenstates of a free nucleon form a complete
set. Thus the medium modified nucleon can be regarded
as a superposition the nucleon and all of its excited states.

Despite the general success of mean-field models it
must be noted that none predicts significant extra high-
momentum strength in the nuclear momentum distribu-
tion. Therefore, it is very difficult to see how they could
reproduce the plateaus observed in the cross section ra-
tios at xB ≥ 1.5 seen in Section II.C.

1

... ...+ ✏

Schematic  
two-component 
nucleon model

FIG. 31: Two component nucleon model: normal-sized
component plus point-like configuration component.

2. Suppression of point-like configurations

We can also make a more general model of the nu-
cleon as a superposition of various configurations or
Fock states, each with a different quark-gluon structure.
Fig. 31 shows a two-component nucleon where one com-
ponent is “blob-like” (BLC) with the normal nucleon size
and the other is “point-like” (PLC). The BLC can be
thought of as an object that is similar to a nucleon. The
PLC is meant to represent a three-quark system of small
size that is responsible for the high-x behavior of the dis-
tribution function. The smaller the number of quarks,
the more likely one can carry a large momentum frac-
tion. Furthermore, because the PLC is smaller than the
BLC, the uncertainty principle tells one that quarks con-
fined in the PLC have higher momentum. The small-
sized configuration (with its small number of qq̄ pairs) is
very different than a low lying nucleon excitation.

When placed in a nucleus, the blob-like configura-
tion feels the regular nuclear attraction and its energy
decreases. The point-like-configuration feels far less
nuclear-attraction because the effects of gluons emit-
ted by small-sized configurations are cancelled in low-
momentum transfer processes. This effect is termed color
screening and has been verified in several different reac-
tions (Dutta et al., 2013; Frankfurt et al., 1994). The nu-
clear attraction increases the energy difference between
the BLCs and the PLCs, therefore reducing the PLC
probability (Frankfurt and Strikman, 1985). The PLC
is suppressed. Reducing the probability of PLCs in the
nucleus reduces the quark momenta, in agreement with
the EMC effect.

This idea was studied (Frank et al., 1996) using
a relativistic constituent quark model for the nu-
cleon (Schlumpf, 1992, 1993). A nucleon is placed in
the nucleus and therefore subject to a mean field that
vanishes for configurations in which the three quarks are
close together. The quark momentum distribution de-
creases for xB > 0.3, see Fig. 32. The effects of nucleon
motion are not included, so there is no rise for large values
of xB , and the dip at low values of xB would be removed
by such effects. This model gives only a 2.5 % enhance-
ment at xB = 0.5 because the enhancing effects of large
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FIG. 32: The ratio of F2 in the nucleus to the free F2

(the EMC ratio) in the point-like configuration
suppression model. From (Frank et al., 1996).

virtuality discussed below were not included. The PLC
model, being a modification at large values of xB , does
not contradict the nuclear Drell-Yan data, Sect. III.

The notion that different constituents of the nucleon
have different sizes and therefore different interaction
strengths is directly related to medium modifications of
all kinds. The main features of this idea can be under-
stood using a simple schematic two-component model of
the nucleon with a dominant normal-sized blob-like con-
stituent (denoted by B) and a very small point-like con-
stituent (denoted by P ). The Hamiltonian is given by
the matrix

H0 =

[
EB V
V EP

]
, (30)

where EP � EB . Because of the hard-interaction po-
tential, V , that connects the two components, the eigen-
states of H0 are |N〉 and |N∗〉 rather than |B〉 and |P 〉.
In lowest-order perturbation theory, the eigenstates are
given by

|N〉 = |B〉+ ε|P 〉, (31)

|N∗〉 = −ε|B〉+ |P 〉, (32)

with ε = V/(EB − EP ). We assume |V | � EP − EB , so
that the nucleon is mainly |B〉 and its excited state is
mainly |P 〉, and also take V > 0. We use the notation
|N∗〉 to denote the state that is mainly a PLC, but the
PLC, as discussed above, does not resemble a low-lying
baryon resonance.

Now suppose the nucleon is bound to a nucleus. The
nucleon feels an attractive nuclear potential H1 :

H1 =

[
U 0
0 0

]
(33)

to represent the idea that only the large-sized component
of the nucleon feels the influence of the nuclear attraction.
The treatment of the nuclear interaction, U , as a num-
ber is clearly a simplification. The interaction varies with

the relevant kinematics, and our model will include this
dependence explicitly. Our model is similar to the model
of (Frankfurt and Strikman, 1985), with the important
difference that the medium effects will enter as an ampli-
tude instead of as a probability. In (Frank et al., 1996)
the PLC is subject to a non-zero, but small, attractive
potential that fluctuates with the nucleon configurations.
The complete Hamiltonian H = H0 +H1 is now given by

H =

[
EB − |U | V

V EP

]
, (34)

in which the attractive nature of the nuclear binding po-
tential is emphasized. Then interactions with the nucleus
increase the energy difference between the BLC and the
PLC, which decreases the PLC probability.

The medium-modified nucleon and its excited state,
|N〉M and |N∗〉M , are now (using first-order perturbation
theory)

|N〉M = |B〉+ εM |P 〉 (35)

|N∗〉M = −εM |B〉+ |P 〉, (36)

where

εM =
V

EB − |U | − EP
= ε

EB − EP
EB − |U | − EP

(37)

so that the PLC probability in the medium is suppressed.
Both εM and ε are less than zero, so that εM − ε > 0.

The medium modified nucleon |N〉M may be expressed
in terms of the unmodified eigenstates |N〉, |N∗〉 as

|N〉M ≈ |N〉+ (εM − ε)|N∗〉. (38)

Within this model the medium-modified nucleon contains
a component that is an excited state of a free nucleon.
The amount of modification, εM − ε, which gives a devia-
tion of the EMC ratio from unity, is controlled by the po-
tential U . An initial pioneering qualitative description of
the EMC effect was obtained (Frankfurt and Strikman,
1985) (at xB = 0.5, where effects of Fermi motion are
small) using U = −40 MeV and EP − EB ∼ 500 MeV.
The present treatment instead calculates the effects of
the medium on the amplitude instead of the probability,
so that the effects are generally larger. We will explore
this further in Section IV.B.

The PLC suppression model also predicts changes to
the elastic electric and magnetic form factors GE,M . The
electromagnetic form factor in free-space is obtained as

F =
1

1 + ε2
(
〈B|J |B〉+ 2ε〈B|J |P 〉+ ε2〈P |J |P 〉

)
,(39)

where momentum and spin labels have been suppressed.
It is instructive to examine what to expect at both

high and low momentum transfer. At low momentum
transfer the first term dominates so that the spatial ex-
tent of the nucleon and its modification in the medium
are important. Frankfurt and Strikman (Frankfurt and
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FIG. 33: Medium modification of form factors. Figure
adapted with slight modifications. Adapted

from (Frank et al., 1996).

Strikman, 1985) estimated the value of 〈r2〉. Assuming
that only the blob-like configuration |B〉 contributes to
this long-ranged observable, one finds

〈r2〉 =
〈B|r2|B〉

1 + ε2
. (40)

In the medium the potential U acts, so the value of ε
is changed to εM . Since |εM | < |ε|, immersion of the
nucleon in the medium suppresses the point-like compo-
nents and increases 〈r2〉. The effect is of order ε(εM − ε),
which was estimated to be between 2 and 5%.

At high momentum transfer, the term 2ε〈B|J |P 〉 be-
comes dominant. Then the change in the form factor is
of order ε− εM , which is a larger effect.

The application of the PLC-suppression idea presented
in the present two-state model is schematic: it does not
distinguish between the electric, GE , and magnetic, GM ,
form factors.

A more detailed evaluation was included by (Frank
et al., 1996). Medium modifications of the proton form
factors were predicted as shown in Fig. 33. The impor-
tant modifications shown by the red arrow occur at larger
values of momentum transfer than currently accessible
experimentally. Fig 33 shows fairly significant effects,
greater than about 10% (consistent with our present
analysis) for the individual form factors. Experimentally
it is easier to measure the medium modifications of the
ratio GE/GM . The figure shows that since both GE and
GM are decreased, the change in the ratio GE/GM is
expected to be smaller.

In addition to the medium modifications, (Frank
et al., 1996) also predicted the more spectacular de-
crease (Gayou et al., 2002; Jones et al., 2000; Punjabi
et al., 2005) in the free-proton ratio GE/GM with in-
creasing values of Q2.

3. Six-quark bags and the EMC Effect

One of the earliest attempts to understand the EMC
effect (Bickerstaff et al., 1984; Carlson and Havens, 1983;
Jaffe, 1983) was to hypothesize that part of the time one

nucleon is part of a six-quark configuration (Pirner and
Vary, 1981) (who predicted the existence of plateaus in
(e, e′) cross section ratios) that is orthogonal to any two-
nucleon wave function. Because a six-quark configura-
tion is larger than a nucleon, the quarks are partially
deconfined. Larger confinement volumes are associated
with lower momenta, and therefore with a suppression
of the structure function. The idea was usually imple-
mented through the MIT bag model, or by guessing the
related structure functions. Several reviews discuss this
idea (Arneodo, 1994; Berger and Coester, 1987; Frank-
furt and Strikman, 1988b; Geesaman et al., 1995; Miller,
1984b; Mulders, 1990; Norton, 2003; Sloan et al., 1988).
It was relatively easy to use this idea to compute a wide
variety of nuclear phenomena (Guichon and Miller, 1984;
Koch and Miller, 1985; Miller, 1984a,b, 2014; Miller and
Kisslinger, 1983), but the calculation of each new observ-
able was accompanied by the need to incorporate an ad-
ditional free parameter. The use of 6-quark models that
describe nuclear DIS led to predictions of large effects
in the nuclear Drell-Yan process discussed in Sect. III.C,
but little modification was seen, Fig. 27, severely limiting
the applicability of six-quark bag models. In addition, in
some applications the necessary six-quark bag probabil-
ity needed to reproduce the EMC effect is so large as to
conflict with knowledge of nuclei (Farrar et al., 1988).

For a recent study of the possible influence of hidden-
color and short-ranged correlation effects at EIC energies,
see (Miller et al., 2016).

IV. The EMC - SRC Correlation

A. Experimental Overview

While there is no obvious connection between DIS scat-
tering from quarks in the nucleus at 0.3 ≤ xB ≤ 0.7 and
QE scattering from nucleons in the nucleus at 1.5 ≤ xB <
2, analysis of world data showed a remarkable correlation
(see Fig. 34) between the magnitude of the EMC effect
in nucleus A and the probability that a nucleon in that
nucleus is part of a 2N -SRC pair (Hen et al., 2012; We-
instein et al., 2011).

The strength of the EMC effect for nucleus A is char-
acterized as the slope of the ratio of the per-nucleon
deep inelastic electron scattering cross sections of nu-
cleus A relative to deuterium, dREMC/dx, in the region
0.35 ≥ xB ≤ 0.7 (Seely et al., 2009a). This slope is
proportional to the value of the cross section ratio at
xB ≈ 0.5, but is unaffected by overall normalization un-
certainties that merely raise or lower all of the data points
together. Table I shows data from the xA corrected EMC
data base of (Hen et al., 2013b) which used the EMC data
of (Gomez et al., 1994; Seely et al., 2009a).

The SRC scale factors were determined from the
isospin-corrected per-nucleon ratio of the inclusive (e, e′)
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TABLE I: A compilation of world data on SRC scaling factors, a2(A) and EMC slopes dREMC/dx. Columns 2
through 4 show the SRC scaling factors extracted from various measurements. Column 5 shows the SRC scale factor
prediction of (Weinstein et al., 2011) based on the EMC-SRC correlation. Column 6 shows the world average of the
EMC effect slope as compiled by (Weinstein et al., 2011), using the data of (Gomez et al., 1994; Seely et al., 2009a).

See text for details.

(Frankfurt et al., 1993) (Egiyan et al., 2006a) (Fomin et al., 2012a) (Weinstein et al., 2011) (Weinstein et al., 2011)

[excluding the CM EMC-SRC Prediction EMC Slope

Nucleus a2(A) a2(A) motion correction] a2(A) [dREMC/dx]

column # 2 3 4 5 6
3He 1.7± 0.3 1.97± 0.10 2.13± 0.04 −0.070± 0.029
4He 3.3± 0.5 3.80± 0.34 3.60± 0.10 −0.197± 0.026
9Be 3.91± 0.12 4.08± 0.60 −0.243± 0.023
12C 5.0± 0.5 4.75± 0.41 4.75± 0.16 −0.292± 0.023
56Fe(63Cu) 5.2± 0.9 5.58± 0.45 5.21± 0.20 −0.388± 0.032
197Au 4.8± 0.7 5.16± 0.22 6.19± 0.65 −0.409± 0.039

EMC-SRC slope 0.079± 0.006 0.084± 0.004
σ(n+p)
σd
|xB=0.7 1.032± 0.004 1.034± 0.004

χ2/ndf 0.7688/3 4.895/5

cross sections on nucleus A and 3He or deuterium.
Columns two through four of Table I show the SRC scale
factors measured by (Egiyan et al., 2006a; Fomin et al.,
2012a; Frankfurt et al., 1993). The large uncertainties
in the SRC ratios of (Frankfurt et al., 1993) are due
to extrapolating data from different experiments mea-
sured at different kinematics. The SRC ratios measured
by (Egiyan et al., 2006a) were used in the original EMC-
SRC analysis of (Weinstein et al., 2011). The later re-
sults of (Fomin et al., 2012a) include 63Cu rather than
56Fe; the SRC scaling factor of 63Cu is assumed to be
the same as that of 56Fe. The values of 9Be and 197Au in
the fifth column are those predicted by Ref. (Weinstein
et al., 2011) based on the measured EMC effect and the
linear EMC-SRC correlation. These predictions are in
remarkable agreement with the later results of (Fomin
et al., 2012a). Following (Hen et al., 2012), the (Fomin
et al., 2012a) results are shown without the center of mass
motion correction (i.e., including inelastic, radiative, and
coulomb corrections only). Applying the SRC-pair center
of mass motion correction decreases the ratios by 10% to
20%.

The EMC effect correlates imperfectly with other A-
dependent quantities (see (Arrington et al., 2012a; Seely
et al., 2009b) and references therein). In general, nu-
clei with A ≥ 4 fall on one straight line but deuterium
and 3He do not. This is true when the EMC effect is
plotted versus A, A−1/3, or the average nuclear separa-
tion energy. When plotting the EMC effect versus aver-
age nuclear density, 9Be is a clear outlier (see Fig. 23).
This indicates that the excellent correlation with the SRC
scale factor is not just a trivial byproduct of their mutual
A-dependence.

The correlation between the EMC effect and the SRC

scale factor is robust (Hen et al., 2012). It applies to
both SRC data sets of (Egiyan et al., 2006b) and (Fomin
et al., 2012b). The quality of the correlation also does
not depend on the corrections applied to the SRC data.
These corrections include isoscalar cross section correc-
tions, center-of-mass motion corrections, and isoscalar
pair-counting corrections. The isoscalar correction to the
SRC scale factors accounts for the different elementary
electron-neutron and electron-proton cross sections. This
has a negligible effect on the fit quality and the extracted
fit parameter. Fomin et al. did not apply this correction,
arguing that short range correlations are dominated by
np pairs. Fomin et al. also argued that the SRC scale fac-
tors measured the relative probability of finding a high-
momentum nucleon in nucleus A relative to deuterium
and that these scale factors needed to be corrected for
the center-of-mass (cm) motion of the pair in order to
determine the relative probability that a nucleon in nu-
cleus A belongs to an SRC pair. As shown in both (Hen
et al., 2012) and (Arrington et al., 2012a), including the
pair c.m. motion correction improves the EMC-SRC cor-
relation only slightly.

This EMC-SRC correlation gives new insight into the
origin of the EMC effect. As discussed in Sect. III, many
different explanations of the EMC effect have been pro-
posed since 1983. After accounting for the standard nu-
clear effects of binding energy and Fermi motion, expla-
nations for the EMC effect fall into two general cat-
egories, those that require modifications of mean-field
nucleons and those that require modifications of high-
momentum (large virtuality) nucleons.

The linear correlation between the strength of
the EMC effect and the SRC scale factors indi-
cates that possible modifications of nucleon struc-
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FIG. 34: The slope of the EMC effect (REMC, ratio of
nuclear to deuteron cross section) for 0.35 ≤ xA ≤ 0.7
plotted vs. a2(A), the SRC scale factor (the relative

probability that a nucleon belongs to an SRC NN pair)
for a variety of nuclei (Hen et al., 2013b). The fit

parameter, a = −0.070± 0.004 is the intercept of the
line constrained to pass through the deuteron (and is
therefore also the negative of the slope of that line).

From (Hen et al., 2013b).

ture occurs in nucleons belonging to SRC pairs.
This implies that the EMC effect, like short range
correlations, is a short-distance, high virtuality,
and high density phenomenon.

B. Theory Overview

1. High momentum nucleons and PLC suppression

Next we try to use the EMC-SRC correlation to better
understand the relationship between short-ranged corre-
lations measured in the A(e, e′) reaction and deep inelas-
tic scattering reactions. Both processes involve a probe
that strikes a nucleon of four-momentum p in the nucleus,
Fig. 28. It is natural to expect that the medium mod-
ification depends on the virtuality v(p, E) of the struck
nucleon (C. Ciofi degli Atti, L.L. Frankfurt, L.P. Kaptari
and M.I. Strikman, 2007):

v ≡ p2 −M2 = (PA − PA−1)2 −M2. (41)

In the (e, e′p) reaction in PWIA (see Fig. 28), the nu-
cleon initial momentum opposes the A − 1 recoil mo-
mentum p = −PA−1. Using the recoil mass M∗A−1 =
MA − M + E, where E > 0 represents the excitation

energy of the spectator nucleus (known as the removal
energy (Ciofi degli Atti and Simula, 1996a)), we find

v(p, E) =
(
MA −

√
(M∗A−1)2 + p2

)2

− p2 −M2(42)

which reduces to

v(p, E) ≈ −2M

(
A

A− 1

p2

2M
+ E

)
, (43)

in the non-relativistic limit. The magnitude of the vir-
tuality, v(p, E) increases with both the A− 1 excitation
energy and the initial momentum of the struck nucleon.

(C. Ciofi degli Atti, L.L. Frankfurt, L.P. Kaptari and
M.I. Strikman, 2007; Frankfurt and Strikman, 1985) ob-
tained a relation between the potential U of Section
III.D.2 and the virtuality v(p, E) by using the extension
of the Schroedinger equation to an operator form:

p2

2Mr
+ U = −E, (44)

where Mr = M(A− 1)/A, and U is the interaction that
both binds the nucleon to the nucleus and modifies its
structure. The simple idea behind this equation is that,
if the nucleon binding energy is fixed, then the NN in-
teraction energy, U , must become more negative as the
kinetic energy becomes more positive. In this work the
modification of nuclear properties was found to be pro-
portional to v(p, E) for moderate values of the virtuality.
It should be noted that the short ranged correlations give
a dominant contribution to the average nucleon virtual-
ity, which naturally leads to an approximate proportion-
ality of the EMC effect to a2.

Comparing this equation with Eq. (43) one finds

U =
v(p, E)

2Mr
, (45)

so that the modification of the nucleon due to the PLC
suppression is proportional to its virtuality. Potentially
large values of the virtuality greatly enhance the differ-
ence between εm and ε.

Now we need to understand how the structure function
changes in the medium. In principle one needs to calcu-
late the hadronic tensor Wµν and q(x) for the medium
modified nucleon of Eq. (38) by replacing the state |P 〉 in
Eq. (20) by the state |N〉M . To leading order, the change
in the structure function will be linear in εM − ε. The
hadronic part is an off-diagonal matrix element between a
free physical nucleon, |N〉 and a free physical state |N∗〉.
Thus the modification is the product of a coefficient that
depends on the medium and a term that is independent
of the medium.

These hadronic matrix elements have not yet been
calculated. Instead we adopt a phenomenological ap-
proach, based on the suppression of point-like configura-
tions (Frank et al., 1996; Frankfurt and Strikman, 1985)
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where the medium modified quark structure function is
given by the expression

qM (x) = q(x) + (εM − ε)f(x)q(x), (46)

with the suppression of point-like components manifest
by the condition df/dx < 0. so that the ratio of structure
functions is given by R(x) = qM (x)/q(x), so that

dR

dx
= (εM − ε)

df

dx
. (47)

This expression is only meaningful for xB < 0.7 where
Fermi motion effects can be ignored. Given that εM−ε >
0 (as discussed above), Eq. (47) shows that the slope of
the EMC ratio is negative, consistent with observations.

(Ciofi degli Atti et al., 2007) calculated the expected
size of the modification of Eq. (45) using the spectral
function P (p, E) of (Ciofi degli Atti and Simula, 1996b)
(as discussed in Section I.B.3). The average values of
the virtuality are quite large, as can be seen from Ta-
ble II. The average kinetic and removal energies in chan-
nel 1 (high excitation final states) are much larger than
the corresponding quantities in channel 0 (low excitation
final states) and the high momentum components are
linked to high removal energies (Ciofi degli Atti et al.,
1980). (Ciofi degli Atti et al., 2007) shows that these
values of the virtuality, for reasonable choices of EB and
EP , can account for the EMC effect at xB ≈ 0.5.

TABLE II: The virtualities (in MeV) for channels 0 and
1 (see Eq. (7)) and their sum (Ciofi degli Atti et al.,

2007).

A 〈v0(p, E)〉/2M 〈v1(p, E)〉/2M 〈v(p, E)〉/2M
3He -7.15 -27.44 -34.59
4He -26.82 -42.58 -69.40
12C -33.17 -49.11 -82.28
16O -31.40 -48.28 -79.68
40Ca -35.00 -49.54 -84.54
56Fe -31.66 -50.76 -82.44
208Pb -32.87 -59.33 -92.20

This shows that high-momentum nucleons in nuclei can
cause the EMC effect. Now we need to find a similar re-
lation between these high-momentum nucleons and the
plateaus observed at high xB in inclusive (e, e′) QE scat-
tering. We first review the kinematics. We assume that
the virtual photon is absorbed by one of the baryons con-
tained in an interacting system of two baryons M2 ≈Md.
The virtual photon hits a baryon of momentum p in a
‘deuteron’ of momentum P , and the second, spectator
baryon has momentum ps = P − p. The struck nucleon
has final momentum pf = p+ q. Let the plus-component
of p be given as aMd. The light-front fraction a is related
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FIG. 35: (color online) α solid, |U | dashed for Q2 = 2.7
GeV2 and p⊥ = 0. The quantity |U | is presented in

units of the nucleon mass M and is proportional to the
virtuality v(p, E) via Eq. (45)

to the Frankfurt-Strikman variable α by a = α M
Md

. Then

p−f =
p2
⊥ +M2

aMd + q+
> 0 (48)

p−s =
p2
⊥ +M2

(1− a)Md
> 0. (49)

In our convention q+ < 0 so that Eq. (48) tells us that
a > 0 and Eq. (49) tells us that a < 1. Conservation of
energy tells us that p+

f +p−f +p+
s +p−s = 2(Md+ν), which

leads to a quadratic equation for a:

(aMd + q+)(1− a)Md =
Md + q+

Md + q−
(p2
⊥ +M2). (50)

The condition that this equation for a has real roots leads
to limits on the value of p⊥.

Fig. (35) shows the results of a specific example using
Q2 = 2.7 GeV2 and p⊥ = 0. Solving Eq. (50) gives the
resulting values of α as a function of xB . We see that
α is considerably greater than one for 1.5 < xB < 1.8,
corresponding to the plateau region of Fig. 16. Using the
displayed values of α we can calculate v(p, E = p0):

v(p, p0) = p+p− − p2
⊥ −M2 (51)

where p+ = aMd, p
− =

M2+p2
⊥

aMd+q+ − q−.Then the use of

Eq. (45) gives the values shown in Fig. (35): Thus, for
1.5 < xB < 1.8, we have

270 MeV < |U | < 600 MeV. (52)

Such large values of |U | can only arise from hard inter-
actions of two nucleons, i.e., at short range.

Thus (e, e′) at high xB is associated with short-ranged
correlations. Next we relate the virtuality to the observed
plateaus in the cross section ratios. (Ciofi degli Atti and
Simula, 1996b) showed that, for large values of |p|:

nA(p) ≈ n(1)
A (p) ≈ a2(A)nD(p). (53)
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This relation is explained in Sect. IX.
To summarize: there is a consistent picture in which

short-ranged correlations are involved with significant
modification of the nuclear quark distribution function
by suppressing the point-like configurations. The key fea-
ture is that larger values of the nuclear excitation energy
E, associated with the short-ranged correlations, corre-
spond to larger values of virtuality and therefore to more
significant deformations of the nucleon. These very same
short-ranged correlations are also responsible for the va-
lidity of Eq. (53) for large values of momentum (where
the virtuality is large), which via the logic of (Frankfurt
and Strikman, 1981a, 1988a; Frankfurt et al., 1993) is re-
sponsible for the cross section ratio plateaus. The spec-
tral function P (p, E) contains the information necessary
to compute both the virtuality needed to understand the
DIS EMC effect and the momentum probability nA(p)
needed to understand the plateaus.

2. Effective Field Theory

It is not necessary that the suppression of point-like
configurations for off-shell nucleons be the sole origin of
the EMC effect. Indeed another dynamical idea could
also account for the experimental findings. For example,
the presence of non-nucleonic 6-quark clusters (Sect. III
D) in nuclei could be important. A more general ap-
proach, using effective field theory (EFT), which is not
specific as to the underlying mechanism of medium mod-
ification has been presented (Beane and Savage, 2005;
Chen and Detmold, 2005; Chen et al., 2016). The au-
thors (Chen et al., 2016) show that the empirical linear
relation between the magnitude of the EMC effect in deep
inelastic scattering on nuclei and the short range correla-
tion scaling factor a2 extracted from high-energy quasi-
elastic scattering at xB ≥ 1 is a natural consequence of
scale separation and derive the relationship using effec-
tive field theory.

Their EFT Analysis proceeds by studying the domi-
nant (leading-twist) parton distributions determined by
target matrix elements of bilocal light-cone operators.
Applying the operator product expansion, the Mellin mo-
ments of the parton distributions,

〈xnB〉A(Q) =

∫ A

−A
xnBqA(xB , Q)dxB , (54)

are determined by matrix elements of local operators.
Each of the QCD operators is matched to hadronic opera-
tors (Chen and Detmold, 2005). The relative importance
of the hadronic operators in a nuclear matrix element can
be systematically estimated from EFT power counting.
The nuclear matrix element is given by

〈xnB〉A(Q) = 〈xnB〉N (Q)
[
A+ αn(Λ, Q)〈A|(N†N)2|A〉Λ

]
,

(55)

where αn depends on Λ but not A and is completely
determined by the two-nucleon system. This relation is
valid for all n, so after an inverse Mellin transform, the
isoscalar PDFs satisfy

1

A
FA2 (xB , Q) = FN (xB , Q) + g2(A,Λ)f̃2(xB , Q,Λ),(56)

where

g2(A,Λ) =
1

A

〈
A|
(
N†N

)2 |A
〉

Λ
, (57)

and f2(xB , Q,Λ) is an unknown function independent of
A. This feature is similar to that of our Eq. (47). Indeed,
Equation (56) was also obtained phenomenologically in
Ref. (Frankfurt and Strikman, 1981a, 1988a) using the
impulse approximation. The equation Eq. (56) appears
also in (Hen et al., 2013a; Kulagin and Petti, 2010, 2014,
2006b). Note that g2 receives dominant contributions
from the single nucleon density.

The factorization scale of the PDF is µf = Q, while
Λ is the nuclear physics “ultraviolet” cut-off that sepa-
rates the high energy parton physics from lower energy
hadronic and nuclear effects. The two scales must be sig-
nificantly separated for the EFT description to be valid.

The second term on the right-hand side of Eq. (56) is
the nuclear modification of the structure function. The
shape of distortion, i.e., the xB dependence of f2, which
is due to physics above the scale Λ, is A independent
and hence universal among nuclei. The magnitude of
distortion, g2, which is due to physics below the scale Λ,
depends only on A and Λ.

At smaller values of Q2, the previous analysis was gen-
eralized to apply to the (e, e′) cross section at large xB ,
so that

σA/A = σN + g2(A,Λ)σ2(Λ), (58)

where the E0 (incident electron energy), xB and Q2 de-
pendence of σi is suppressed. With σN vanishing for
xB > 1, for both DIS and QE,

a2(A, xB > 1) =
g2(A,Λ)

g2(2,Λ)
. (59)

In principle, a2 could depend on E, xB and Q2. However
the EFT factorization shows that this dependence cancels
at this order yielding a plateau in a2 as observed exper-
imentally at 1.5 < xB < 2. (The influence of Fermi mo-
tion extends the contribution of the single nucleon PDF
to xB above 1, pushing the onset of the plateau to larger
values of xB .) The function a2 was also computed us-
ing the Green’s Function Monte Carlo method (Carlson
et al., 2015) and it agrees well with the data.

Eq. (56) and the definition R(A, xB) ≡ FA2 /(AF
N
2 ),

lead to the result that

dR(A, xB)

dxB
= C(xB) [a2(A)− 1] , (60)
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has a linear relation with a2, with C(xB) = g2(2)[f ′2F
N
2 −

f2F
N ′

2 ]/[FN2 + g2(2)f2]2 independent of A and Λ (here,
f ′ = df/dxB). This means that EFT naturally accounts
for the linear relation between the EMC slope and the
height of the plateau. However, the sign of the EMC
effect is not explained.

3. The Isovector EMC Effect

This SRC-related PLC suppression model also leads to
an explanation of the NuTeV anomaly (Sargsian, 2014c).
We have discussed the dominance of the pn SRCs, rel-
ative to the pp and nn correlations, for nuclear internal
momenta between 300 and 600 MeV/c, that is caused
by the effects of the tensor force. The pp and nn com-
ponents of the NN SRC are strongly suppressed since
they are dominated by the central NN potential with
relative L = 0. The resulting picture for nuclear mat-
ter consisting of protons and neutrons at densities in
which inter-nucleon distances are about 1.7 fm is rather
unique: it represents a system with suppressed pp and nn
but enhanced pn interactions. Using this idea Sargsian
(Sargsian, 2014b) predicted two new properties for the
nuclear momentum distributions for momenta between
the Fermi momentum and about 600 MeV/c. There is
an approximate equality of p- and n- momentum distri-
butions weighted by their relative fractions in the nucleus
xp = Z/A and xn = (A− Z)/Z :

xpn
A
p (p) ≈ xnnAn (p) (61)

with
∫
d3pnA(p) = 1. The probability of a proton being

in a high momentum NN SRC is inversely proportional
to its relative fraction, xp, and can be related to the
momentum distribution in the deuteron nD(p):

nAp (p) =
1

2xp
a2(A,N)nD(p) (62)

and similarly for neutrons. The main prediction of
Eq. (62) is that high momentum protons and neu-
trons became increasingly unbalanced as the ratio (N −
Z)/(N+Z) increases. Using this equation one can calcu-
late the fraction of the protons having momenta greater
than the Fermi momentum as

Pp(A,N) ≈ 1
2xp

a2(A,N)
∫
d3p nD(p)Θ(p− kF ),

(63)

and similarly for neutrons. For example in Iron, Pp =
23%, and Pn = 20%.

The energetic protons in neutron rich nuclei will result
also in the stronger nuclear modification of u-quarks as
compared to d-quarks and the effect grows with A. The
predicted effects also can be checked in parity violating
deep inelastic scattering off heavy nuclei (Cloet et al.,
2012; Souder, 2016) (see Section VI.A.5).

4. Summary

In summary, driven by the short-range correlations be-
tween two nucleons, the strong connection between the
EMC effect and the plateaus observed in (e, e′) scattering
at high xB is both a natural consequence of the impulse
approximation of scattering theory, and also of effective
field theory. In the impulse approximation the relevant
ratio is that of momentum-space densities; in the EFT
the relevant ratio is that of coordinate space densities.
Sect. IX shows that ratios of these are the same as long as
large values of momenta are used in the impulse approx-
imation and small values of relative distance are used in
the EFT. This means that the relation shown in Fig. 34 is
derived using two very different techniques. The fact that
using two different technical approaches, each driven by
short-range physics, leads to the same conclusion, gives
significant credence to the interpretation that the same
short-range physics accounts for both the EMC effect and
the QE cross section plateaus.

The underlying mechanism of the distortion of the nu-
cleon structure is not yet established, and could occur
from PLC suppression or from other mechanisms. Nev-
ertheless, it is very clear that the relation shown in Fig. 34
is no accident. There is a true underlying cause of the
EMC effect and the observed plateaus in ratios of (e, e′)
scattering cross sections.

C. Are the nucleons in the correlated pair really nucleons?

According to the logic presented here, most of the cor-
related pair consists of nucleons, but the part that is
responsible for the EMC effect consists of non-nucleonic
configurations. This conclusion is valid for both classes
of models of the EMC effect: the mean-field based or
SRC based. The non-nucleonic configurations could be a
medium modified single-nucleon, or NN∗ or N∗N∗ con-
figurations, or even more complex 6-quark configurations.

D. Determining the structure function of a free neutron

Determining the structure function of the neutron is
challenging because a free neutron target does not ex-
ist. Experimentalists have therefore used deuteron or
3He targets to extract the neutron structure. This im-
plies that our knowledge of the neutron structure func-
tion is intimately connected with medium effects in light
targets. As we shall see, medium effects in the deuteron
must be accounted for accurately if one hopes to correctly
understand the free neutron structure function.
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1. The Deuteron IMC Effect

The deuteron In Medium Correction (IMC) effect
refers to the difference between the DIS cross section for
the deuteron and the sum of the DIS cross sections for a
free proton and neutron (Frankfurt and Strikman, 1985;
Melnitchouk et al., 1994b). The term IMC was intro-
duced in Ref. (Weinstein et al., 2011) which showed that
one can use the EMC-SRC correlation as a phenomeno-
logical tool to constrain the deuteron IMC effect, and
thus extract the free neutron structure function. Fol-
lowing Weinstein et al. (Weinstein et al., 2011), we can
extrapolate the linear fit to the EMC-SRC correlation to
the limit of a2(A) → 0. This is the limit of no correla-
tions, which is equivalent to a free proton-neutron pair.
The intersection of this limit with the y-axis is there-
fore the IMC ratio of the free proton-neutron pair to the
deuteron.

The a2(A)→ 0 extrapolation to the y-axis of the EMC-
SRC correlation gives dREMC/dxa2(A)=0 = −0.070 ±
0.004. Since the EMC effect is linear for 0.3 ≤ xA ≤ 0.7
for all nuclei with A > 2, we assume that the EMC effect
is also linear in this region for the deuteron. This implies
that the EMC effect for the deutereon relative to a free
proton plus neutron can be written as:

σd
σp + σn

= 1− a(xB − b) for 0.3 ≤ xB ≤ 0.7,

where σd and σp are the measured DIS cross sections
for the deuteron and free proton, σn is the free neu-
tron DIS cross section that we want to extract, a =
|dREMC/dx|a2(A)=0 = 0.070 ± 0.004, and b = 0.34 ± 0.02
is the average value of xB where the EMC ratio is unity1.
This implies that σd/(σp + σn) decreases linearly from 1
to 0.97 as xB increases from 0.3 to 0.7. We can then use
this relationship to extract the free neutron cross section
in this xB range, as shown in the next section.

The uncertainty quoted above for the IMC slope is due
to the EMC and SRC data and to the fit. It does not
include any uncertainty due to corrections applied to the
EMC and SRC data. As stated above, if we include the
proposed correction for a2(A) due to the c.m. motion
of the correlated pair, then the fit parameter increases
by 25% and so does the free proton plus neutron EMC
effect. These effects are discussed in detail in (Hen et al.,
2012).

Following the prediction of the IMC effect, the BONuS
collaboration (Tkachenko et al., 2014) published their
experimental extraction of the IMC effect, measured at

1 The xA correction does not significantly change the slope, a ,
of the EMC-SRC correlation, and it increases the b parameter
by less than the uncertainty reported in Ref. (Weinstein et al.,
2011)
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FIG. 36: The deuteron IMC ratio
RdEMC = F d2 /(F

n
2 + F p2 ) as extracted from the BONuS

data. Total systematic uncertainties are shown as a
band arbitrarily positioned at 0.91 (blue). The yellow

band shows the CJ12 (Owens et al., 2013) limits
expected from their nuclear models. The black points
are the combined 4- and 5-GeV data, whereas the red
points are the 4-GeV data alone. The dashed blue line

shows the calculations of Ref. (Kulagin and Petti,
2006a). The solid line (black) is the fit to the black
points for 0.35 < xB < 0.7. From (Griffioen et al.,

2015).

Q2 > 1 GeV2 and W > 1.4 GeV, see Fig. 36 (Grif-
fioen et al., 2015). A linear fit for 0.35 < x < 0.7
yields dRdEMC/dx = −0.1 ± 0.05 where the uncertain-
ties comes from the fit. This result is consistent with
the IMC prediction of −0.07. For x < 0.5 the EMC
ratios RdEMC agree within uncertainties with those ob-
tained using more stringent cuts in W . The ratio for
xB > 0.5 continues the trend of the lower-xB data, with
a hint of the expected rise above xB = 0.7 as seen in
RAEMC for heavier nuclei, but these high-xB values are
more uncertain because there are fewer data points for
resonance averaging.

2. The Free Neutron Structure Function

If the structure function F2 is proportional to the DIS
cross section (i.e., if the ratio of the longitudinal to trans-
verse cross sections is the same for n, p and d [see discus-
sion in (Geesaman et al., 1995)]), then the free neutron
structure function, Fn2 (xB , Q

2), can also be deduced from
the measured deuteron and proton structure functions
and from the deuteron IMC effect:

Fn2 (xB , Q
2) =

2F d2 (xB , Q
2)− [1− a(xB − b)]F p2 (xB , Q

2)

[1− a(xB − b)]
(64)
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which leads to

Fn2 (xB , Q
2)

F p2 (xB , Q2)
=

2
Fd2 (xB ,Q

2)
Fp2 (xB ,Q2)

− [1− a(xB − b)]
[1− a(xB − b)]

. (65)

This is only valid for 0.35 ≤ xB ≤ 0.7.
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FIG. 37: The ratio of neutron to proton structure
functions, Fn2 (xB , Q

2)/F p2 (xB , Q
2) as extracted from

the measured deuteron and proton structure functions,
F d2 and F p2 . The filled symbols show Fn2 /F

p
2 extracted

by (Weinstein et al., 2011) from the deuteron In
Medium Correction (IMC) ratio and the world data for
F d2 /F

p
2 at Q2 = 12 GeV2 (Arrington et al., 2009). The

open symbols show Fn2 /F
p
2 extracted from the same

data correcting only for nucleon motion in deuterium
using a relativistic deuteron momentum density

(Arrington et al., 2009). From (Weinstein et al., 2011).

Fig. 37 shows the ratio of Fn2 /F
p
2 extracted by (Wein-

stein et al., 2011) using the IMC-based correction and the
Q2 = 12 GeV2 ratio F d2 /F

p
2 from Ref. (Arrington et al.,

2009). Note that the ratio F d2 /F
p
2 is Q2-independent

from 6 ≤ Q2 ≤ 20 GeV2 for 0.4 ≤ xB ≤ 0.7 (Arring-
ton et al., 2009). The dominant uncertainty in this ex-
traction is the uncertainty in the measured F p2 /F

d
2 . The

IMC-based correction increases the extracted free neu-
tron structure function (relative to that extracted using
the deuteron momentum density (Arrington et al., 2009))
by an amount that increases with xB . This is quali-
tatively similar to the recent extraction of (Cosyn and
Sargsian, 2016). Thus, the IMC-based Fn2 strongly fa-
vors model-based extractions of Fn2 that include nucleon
modification in the deuteron (Melnitchouk and Thomas,
1996a).

The IMC based extraction of Fn2 /F
p
2 , extrapolated in

the region of xB < 0.3, is compared in Fig. 38 to several
other experimental and phenomenological extractions of
this ratio. Also shown are several QCD predictions.
see (Holt, 2013; Roberts et al., 2013) for details.

FIG. 38: Fn2 /F
p
2 as a function of xB . Results from the

IMC and other phenomenological extractions are
compared to selected theoretical predictions.

From (Holt, 2013). See (Holt, 2013; Roberts et al.,
2013) for details.

3. The d/u ratio at large xB

The ratio of the neutron structure function, Fn2 , to the
proton structure function, F p2 , is particularly interesting
as it can be related, within the parton model, to the
ratio of the d-quark and u-quark distributions. The lat-
ter provides a unique opportunity for studying the flavor
and spin dynamics of quarks in the nucleon, with the d/u
quark distribution ratio in particular being very sensitive
to different mechanisms of spin-flavor symmetry break-
ing (Holt and Roberts, 2010; Melnitchouk and Thomas,
1996b).

Historically, proton DIS data placed strong constraints
on the u-quark distribution, while neutron structure
functions were used to constrain the d-quark distribu-
tion and form the d/u ratio. Specifically, the d/u ratio
in the valence quark dominance domain (i.e., at large xB
) was extracted from the Fn2 /F

p
2 structure function ratio

using:

Fn2 /F
p
2 = [1 + 4(dv/uv)]/[4 + (dv/uv)],

where the absence of free neutron targets meant that
the neutron structure function was not measured di-
rectly, but instead extracted from deuterium DIS data.
However, uncertainties in the nuclear corrections in the
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deuteron, such as those associated with nucleon off-
shell effects and the large-momentum components of the
deuteron wave function, give rise to significant uncertain-
ties in the resulting d/u ratio for xB & 0.5 (Accardi et al.,
2011).

To rectify the situation, Hen et al., (Hen et al., 2011a)
used the phenomenological IMC corrected extraction of
Fn2 /F

p
2 discussed above as an added constraint on the

extraction of the d/u ratio in the global analysis of the
CTEQ-JLab collaboration (Accardi et al., 2011).

New data on charged lepton and W boson asymme-
try measured at the Tevatron (Abazov et al., 2013, 2014,
2015) are sensitive to the large-xB d/u ratio with no nu-
clear uncertainties (Accardi et al., 2016).

Fig. 39 shows the d/u ratio at large-xB extracted from
a global QCD analysis using DIS data without (CJ11,
(Accardi et al., 2011)) and with (CJ11+IMC, (Hen et al.,
2011a)) the IMC constraint and using the new asymme-
try data with no nuclear corrections applied (CJ15, (Ac-
cardi et al., 2016) and CT14, (Dulat et al., 2016)). As can
be seen, while the various extractions somewhat differ at
large-xB , the IMC constraints and the new asymmetry
data both contrain the CJ11 analysis similarly.

To summarize, the use of the IMC-extracted neutron
structure function directly constrains the d-quark PDF
for x . 0.7, and indirectly for x → 1. We find the d/u
ratio in the limit x→ 1 to be 0.23±0.09 at the 90% con-
fidence level, in overall agreement with new extractions
using charged lepton and W boson asymmetry data and

FIG. 39: d/u ratio at Q2 = 12 GeV2 with the full
theoretical uncertainty from Ref. (Accardi et al., 2011)
(black) and with the IMC constraint at the 90% C. L.

(red) from (Hen et al., 2011a). Also shown for
comparison are recent extractions that do not include
nuclear correactions from the CJ15, (Accardi et al.,

2016) and CT14, (Dulat et al., 2016)) PDF extractions.

in agreement with the models of (Cloet et al., 2005a; Far-
rar and Jackson, 1975) which predict intermediate values
of d/u between the SU(6) symmetry and scalar diquark
dominance limits.

V. Existing searches for medium-modified electromagnetic
form factors

We have shown that the experimental and theoretical
evidence indicates that the structure of the nucleon is
modified by its immersion in a nucleus. The only mod-
els that account for the EMC effect, the plateaus of the
high xB (e,e’) reaction and the lack of a medium ef-
fect in the nuclear Drell-Yan data are those involving
short-ranged correlations. Nevertheless, the task of un-
derstanding the EMC and SRC effects is not complete.
The available models need to be improved (to be dis-
cussed in Sect. VI.B). We need models that are suffi-
ciently complete that they can explain both the EMC
effect, the nuclear Drell-Yan data and also predict and
account for new independent phenomena.

If the nuclear medium modifies the bound nucleon
structure functions (and thus their wave functions), then
it almost certainly will modify their electromagnetic form
factors. All of the medium modification models modifica-
tion of bound electromagnetic form factors, see Sect. III.
These effects could be manifest in quasi-elastic nucleon
knockout (e, e′N) cross sections and in the inclusive lon-
gitudinal A(e, e′) response. The influence of nucleon
modification on the nuclear elastic form factor can not
be detected because the distribution of nucleons in the
nucleus is imprecisely known.

This section will discuss the experimental evidence for
modification of bound nucleon form factors.

A. Polarization transfer in the (~e, e′~p) reaction

Polarization transfer in the H(~e, e′~p) reaction was used
to measure the ratio of the free proton electromagnetic
form factors GE/GM with much smaller systematic un-
certainties than previous methods (Perdrisat et al.,
2007). This technique was then applied to measure the
ratio of bound proton electromagnetic form factors us-
ing the quasielastic A(~e, e′~p) reaction (Dieterich et al.,
2001; Malace et al., 2011; Paolone et al., 2010; Strauch
et al., 2003; Strauch, 2012). The ratio of the longitudi-
nal and transverse polarization transfers is proportional
to the ratio of GE/GM for the free proton, P ′x/P

′
z ∝

GE/GM (Perdrisat et al., 2007). For a bound proton,
one must also correct for the effects of meson exchange
currents, isobar configurations, and especially final state
interactions. After using a model to correct for these
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Figure 4: 4He(~e, e0~p)3H polarization-transfer double ratio R as a function
of Q2 from Mainz [33] and Je↵erson Lab experiments E93-049 [32] (open
symbols) and E03-104 [34] (filled circles). The data are compared to calcu-
lations from the Madrid group [38–40], using the cc1 (lower set of curves)
and cc2 (upper set of curves) current operators, and Schiavilla et al. [37]
as in Fig. 3. Not shown are a relativistic Glauber model calculation by the
Ghent group [41] and results from Laget [26] which give both a value of
R ⇡ 1.

cc1 yields the largest prediction for Py in absolute value and describes the
data well; possibly hinting at the importance of the lower spinor compo-
nents in this relativistic calculation; see [40]. We note that these RDWIA
calculations provide also good descriptions of, e.g., the induced polariza-
tions as measured at Bates in the 12C(e,e0~p) reaction [40, 47] and of ATL

in 16O(e, e0p) as previously measured at JLab [48]. While the polarization-
transfer observables are expected to be sensitive to possible nucleon medium
modifications, results of the RDWIA calculation including medium-modified
form factors show only some small e↵ect on the induced polarization. The
data are also compared with the results of a calculation from Schiavilla et
al. [37] (shaded band). That model uses variational wave functions for
the bound three- and four-nucleon systems, non-relativistic MEC and free
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Figure 3: 4He(e, e0~p)3H induced polarization data from Je↵erson Lab exper-
iment E93-049 [32] along with results from experiment E03-104 [36]. The
data are compared to calculations from Schiavilla et al. [37] and the Madrid
group [38–40] using the cc1 (lower set of curves) and cc2 (upper set of curves)
current operators. In-medium form factors from the QMC [6] (solid curve)
and CQS [10] (dashed curve) models were used in two of the Madrid calcu-
lations. Note that the comparison is made for missing momentum pm ⇡ 0
and that the experimental data have been corrected for the spectrometer
acceptance for this comparison.

were taken during E03-104 to study these and help significantly reduce sys-
tematic uncertainties in the extraction of Py. The data are compared with
results of a relativistic distorted-wave impulse approximation (RDWIA) cal-
culation by the Madrid group [38–40]. In this model FSI are incorporated
using an updated version of the RLF relativistic optical potentials [42, 43]
that distort the final nucleon wave function; the MRW optical potential of
[44], used in [34], does not yield an as good description of Py as the modi-
fied RLF potential shown here. Charge-exchange terms are not taken into
account in the Madrid RDWIA calculation; preliminary studies show, how-
ever, that they are of small e↵ect in this model [45]. Calculations are shown
for choices of cc1 and cc2 current operators as defined in [46]. The choice

6

FIG. 40: The measured 4He(~e, e′~p)3H
polarization-transfer double ratio R (upper panel) and
induced polarization Py (lower panel) as a function of
Q2: open symbols: (Dieterich et al., 2001; Strauch
et al., 2003) and filled circles: (Malace et al., 2011;

Paolone et al., 2010). The data are compared to DWIA
calculations from (Schiavilla et al., 2005) (updated in

2010) using unmodified form factors and from the
Madrid group (Caballero et al., 1998; Udias et al.,

1999b; Udias and Vignote, 2000) using the cc1 (lower
set of curves) and cc2 (upper set of curves) off-shell
current operators in combination with unmodified

(black dashed line), QMC modified (red solid line) and
CQS modified (red dashed line) in medium form

factors. See text for details. From (Strauch, 2012).

effects, the polarization double ratio

R ≡
(
P ′x
P ′z

)

A

/

(
P ′x
P ′z

)

1H

(66)

should be sensitive to medium modification of the form
factor ratio. The induced polarization Py (measured
in the (e, e′~p) reaction) should be more sensitive to fi-
nal state interactions and much less sensitive to medium
modification effects.

Fig. 40 shows the 4He(~e, e′~p)3H double ratio R and
the induced polarization, Py, measured at small values of
missing momentum (pmiss < 150 MeV/c) over a range of
Q2. Relativistic distorted-wave-impulse approximation
(rDWIA) calculations by the Madrid group (Caballero
et al., 1998; Udias et al., 1999b; Udias and Vignote,

2000) can only explain the data if they include medium-
modified form factors. They calculated the induced po-
larization and the polarization transfer ratio using the
unmodified but offshell cc1 and cc2 (De Forest, 1983b)
current operators and the optical potentials of (Horowitz,
1985; Murdock and Horowitz, 1987) to account for final
state interactions. No charge exchange effects (photon
knocks out neutron, which undergoes a charge exchange
reaction) were included. This unmodified calculation
agreed with the induced polarization data when using
the cc1 current operator. However, good agreement with
the measured value of R was only achieved by including
either the QMC (Lu et al., 1999) or CQS (Smith and
Miller, 2004) medium modified form factors.

Schiavilla et al. (Schiavilla et al., 2005) calculated Py
and R using DWIA. They computed the final state in-
teractions using an optical potential that includes both
spin-independent and spin-dependent charge exchange
terms. However, they updated their calculation in 2010
with new parameters. While their calculation describes
both Py and R without medium modified form factors,
its significance is decreased because they did not follow
the standard procedure (Austern, 1970) of independently
constraining the parameters of the optical potential they
used to describe the final state interactions. Thus our
view is that the results of the nuclear polarization exper-
iments strongly indicate that medium effects do influence
electromagnetic form factors. We eagerly await new ex-
periments with improved precision and at larger values of
pmiss which would confirm or rule out this interpretation.

Experiments performed at the Mainz Microtron
(MAMI) using the A1 beam-line (Yaron et al., 2016)
measured the polarization transfer ratio R for deuterium
and 12C at lower Q2 (Q2 = 0.175 and 0.4 GeV2) but
higher virtuality than at Jefferson Lab. For deuterium,
the ratio R decreases significantly with virtuality and is
consistent with that previously measured on 4He. This
indicates that the effect in nuclei is due to the virtuality
of the knocked-out proton and not due to the average
nuclear density. The deuteron calculations (Arenhovel
et al., 2005) predict this decrease and associate most of
it with FSI (Yaron et al., 2016). The ≈ 10% differences
between the data and calculations may indicate the need
for in-medium modifications. The carbon data is still
under analysis. Other double polarization experiments
were not sensitive to the effects of nucleon modification
(Mayer et al., 2017; Mihovilovic et al., 2014; Passchier
et al., 2002).

Jefferson Lab experiment E12-11-002 will measure
polarization-transfer observables as a function of virtu-
ality for both 4He and 2H and will measure the proton
recoil polarization at Q2 = 1.8 GeV2 to help us better
understand the effects of medium modifications and FSI.
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B. Polarization transfer in the (~e, e′~n) reaction

A complementary experiment would be the mea-
surement of polarization transfer to the neutron in
quasielastic scattering in the (~e, e′~n) reaction. Cloët
et al. (Cloet et al., 2009c) studied possible in-medium
changes of the bound neutron electromagnetic form-
factor ratio with respect to the free ratio, the superratio
(G∗E/G

∗
M ) / (GE/GM ). At small values of Q2 this super-

ratio depends on the in-medium modifications of the neu-
tron magnetic moment and the effective electric and mag-
netic radii. The superratio of the neutron is dominated
by the expected increase of the electric charge radius
in the nuclear medium and is found to be greater than
one. In contrast, the proton superratio is predicted to be
smaller than one. A comparison of high-precision mea-
surements of the reactions 2H(~e, e′~n)p and 4He(~e, e′~n)3H
would test these predictions.

However, a major drawback to nuclear polarization
transfer measurements, no matter whether the proton or
neutron is detected, is that medium modifications that
affect both GE and GM will cancel in the ratio. See
Fig. 33, for example.

C. The (e, e′) reaction and the Coulomb Sum Rule (CSR)

This sum rule (De Forest and Walecka, 1966; McVoy
and Van Hove, 1962) states that the integral of the
A(e, e′) longitudinal response function at fixed momen-
tum transfer over all energy transfers should equal the
total charge of the nucleus, Z. The first CSR experiment
(Altemus et al., 1980) observed that the sum rule was
“quenched”, i.e., they measured less than Z. This indi-
cated that the cross section for scattering from a bound
nucleon was significantly less than the free cross section.
Thus, (Cloet et al., 2016) say that the first hints of QCD
effects in nuclei came from quasielastic electron scattering
on nuclear targets (Altemus et al., 1980; Meziani et al.,
1984; Noble, 1981). However, later work cast doubt on
this result.

The (e, e′) inclusive cross section can be written as

d2σ

dΩdν
=σMott

[
Q4

|q|4RL(ν, |q|)

+

(
Q2

2|q|2 + tan2 θ

2

)
RT (ν, |q|)

] (67)

where σMott is the Mott cross section, RL and RT are
the longitudinal and transverse response functions, and
θ is the electron scattering angle. In the non-relativistic
limit of the impulse approximation (Bertozzi et al., 1972;
De Forest and Walecka, 1966) one has

RL(ω,q) = 〈A|
Z∑

i=1

eiq·riδ(ω −H)

Z∑

j=1

e−iq·ri |A〉G2
E(q2),

where H is the nuclear Hamiltonian, the ground state
energy is taken as 0, and for simplicity we assume that
neutrons do not contribute. The non-relativistic formula-
tion is only valid when q2 ≈ Q2. Since RL is proportional
to the square of GE , its sensitivity to medium effects is
greater than that of the polarization transfer measure-
ments.

The Coulomb sum is the integral over all values of ν
(including the inaccessible time-like regime where ν >
|q|):

RL(q)

G2
E(q2)

=

∫
dνRL(ν,q)

G2
E(q2)

= 〈A|
Z∑

i,j=1

eiq·(ri−rj)|A〉.

(68)

Splitting Eq. (68) into terms with i = j and i 6= j we get:

RL(q)

G2
E(q2)

= Z + Z(Z − 1)

∫
d3rd3r′eiq·(r−r

′)ρ2(r, r′),

(69)

where ρ2 is the two proton density function, see Eq. (80).
At large enough momentum transfer the second term
vanishes as 1/q4, so that one finds the CSR:

lim
Q2→∞

RL(q)

G2
E(q2)

= Z. (70)

Since electron scattering cannot measure the cross sec-
tion in the time-like region, the Coulomb sum is properly
defined (Cloet et al., 2016) as an integral over ν from en-
ergies just above the elastic peak to |q|:

SL(|q|) =

∫ |q|

ν+

dν
RL(ν, |q|)

Z G2
Ep(Q

2) +N G2
En(Q2)

. (71)

The quantity SL can be correctly be compared with the
results obtained from electron scattering.

The initial motivation to measure the Coulomb Sum
Rule (De Forest and Walecka, 1966) was to learn about
ρ2. However, the recent focus has been to learn about
nucleon medium modification at large values of the mo-
mentum transfer where the effect of ρ2 is negligible.

(Cloet et al., 2016) discuss the interesting history of
the theory. Calculations (Horikawa and Bentz, 2005;
Saito et al., 1999), in which the internal structural prop-
erties of bound nucleons are self-consistently modified
by the nuclear medium unsurprisingly predict significant
quenching of the CSR. However, calculations that assume
an unmodified nucleon electromagnetic current (Carlson
et al., 2002; Do Dang et al., 1987; Kim et al., 2006; Mi-
haila and Heisenberg, 2000), including the state-of-the-
art Green function Monte Carlo (GFMC) result for 12C
from Ref. (Lovato et al., 2013, 2016), find modest or no
quenching of the CSR. Most recently (Cloet et al., 2016)
used an NJL model in the medium to find a dramatic re-
duction of the Coulomb sum rule for |q & 0.5 GeV, driven
by changes to the bound-proton Dirac form factor.
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The experimental status of the CSR has been unclear.
The initial measurements found quenching of the CSR for
12C, 40Ca and 56Fe (Altemus et al., 1980; Meziani et al.,
1984). However, a reanalysis of these data (Jourdan,
1995, 1996), utilizing an alternative prescription for the
Coulomb corrections, concluded that there is no quench-
ing. The analysis of the Coulomb corrections in those
works was later challenged (Aste et al., 2005; Aste, 2008;
Wallace and Tjon, 2008). These papers support the con-
clusion that quenching of the CSR occurs as reported in
Ref. (Morgenstern and Meziani, 2001). New results at
high momentum transfer and on a variety of nuclear tar-
gets from Jefferson Lab Experiment E05-110 (Choi et al.,
2005) are eagerly anticipated. Verification or disproof of
the CSR quenching should reveal critical aspects of nu-
cleon modification in nuclei.

VI. Future directions in nuclear deep inelastic scattering
and detecting short-ranged correlations

A. Experiment

There are several different experimental approaches to
understanding the EMC-SRC correlation and the ori-
gin of the EMC effect. The most promising approach
is to directly test the EMC-SRC correlation by measur-
ing the change in bound nucleon structure function with
nucleon momentum using tagged structure function mea-
surements.

The second approach is to test other predictions of
models of the EMC effect by measuring other quanti-
ties related to nucleon modification, including the bound
ratio of electric to magnetic elastic form factors using po-
larization transfer A(~e, e′~p) and the Coulomb Sum Rule.

Lastly, we can learn more about SRC and about the
EMC effect individually in several ways. The first way
is to extend EMC and SRC inclusive measurements to
more nuclei over a wider range of momentum transfer.
We can also extend semi-exclusive and exclusive SRC
measurements in a similar manner to abteined more de-
tailed information, especially about the potential isospin
dependence of the EMC effect, SRCs, and their correla-
tions. We can select the nucleons we study by measuring
the polarized EMC effect and we can measure the isospin
dependence of the EMC effect in asymmetric nuclei by
measuring parity violating deep inelastic scattering.

1. Tagged Structure function Measurements

The EMC Effect is measured in inclusive (e, e′) DIS
from a nucleon in a nucleus. In order to learn more about
the DIS reaction, we can “tag” the reaction by detecting
a recoiling nuclear fragment in coincidence with the scat-
tered electron. By choosing the nuclear fragment and
kinematics wisely, we can restrict the initial state of the

struck nucleon (the nucleon that absorbed the virtual
photon), and thereby learn more about the microscopic
origin of the EMC effect.

The simplest example for such a process is DIS on the
deuteron. If we can detect a recoil nucleon with mo-
mentum p that did not interact in the DIS reaction and
did not have a final state interaction (i.e., a spectator),
then we know that the struck nucleon had initial momen-
tum −p. We can then measure the DIS cross section for
scattering from a nucleon in the nucleus as a function of
its initial momentum. This will allow us to extract F2

and hence the quark distributions. In particular F2 can
be measured as a function of virtuality. This experiment
thus provides an opportunity to test the importance of
the effects of virtuality that are discussed above.

This was initially studied with 5.7 GeV electrons inci-
dent on deuterium, measuring the scattered electron and
the recoil proton with the CLAS spectrometer (Klimenko
et al., 2006). While this measurement did not have the
kinematic reach to unambiguously measure a change in
the nucleon structure function, they did show that pro-
tons emitted at large angles, θpq > 120◦ (where θpq is
the angle between the proton and the virtual photon),
were predominantly spectators. Later theoretical works
support this observation (Cosyn and Sargsian, 2011; Palli
et al., 2009).

In practice, experiments will measure the ratio of cross
sections at fixed recoil momentum and different values of
x′B where

x′B =
Q2

2pµqµ
=

Q2

2[(Md − ES)ν + pS · q]

is the value of xB in the frame of the struck nucleon,
Md is the deuteron mass, and ES and pS are the energy
and momentum of the spectator nucleon. This data will
be used to extract (Hen et al., 2014b, 2011b)

F bound2 (x′hiB , q
2
1 ,pS)

F free2 (xhiB , Q
2
1)

=

σDIS(x′hiB , Q
2
1,pS)

σDIS(x′lowB , Q2
2,pS)

· σ
free
DIS (xlowB , Q2

2)

σfreeDIS (xhiB , Q
2
1)
·RFSI (72)

where σfreeDIS is the free-nucleon DIS cross section, RFSI
is a correction factor for the effects of final state interac-
tions, xlowB ≈ 0.3 where the EMC effect is very small (i.e.,

where the EMC ratio is very close to 1), and x′hiB > 0.45.
By measuring the ratio of the bound to free nucleon

structure functions as a function of spectator momentum
(i.e., of nucleon initial momentum), these experiments
will answer the crucial question of which nucleons are
modified and to what extent. Little momentum de-
pendence would imply that the mean-field nucleons are
modified and large momentum dependence would imply
that SRC nucleons are modified.
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(a) Bound proton structure via d(e, e′nrecoil)X scattering

(b) Bound neutron structure via d(e, e′precoil)X
scattering

FIG. 41: The expected results from future Jefferson Lab
tagged DIS measurements (Hen et al., 2014b, 2011b).
The dashed line is obtained from the color screening

model (Frankfurt and Strikman, 1985), the dotted line
is from the color delocalization model (Close et al.,

1983), and dot-dashed the off-shell model (Melnitchouk
et al., 1994a). From (Hen et al., 2014b, 2011b)

There are two approved Jefferson Lab experiments
to measure this reaction. Experiment E12-11-107 (Hen
et al., 2011b) will measure neutron modification by de-
tecting the scattered electrons in the Hall C magnetic
spectrometers and the spectator protons in a set of GEM
detectors and scintillators covering scattering angles from
about 80◦ to 170◦. The expected results are shown in
Fig. 41b. Experiment E12-11-003A (Hen et al., 2014b)
will measure proton modification by detecting the scat-
tered electrons in the CLAS12 forward detector and the
spectator neutrons in a large scintillator array covering

scattering angles from 160◦ to 170◦. The expected results
are shown in Fig. 41a.

A second category of experiments consists of measuring
the tagged EMC ratio. We can “tag” different reaction
mechanisms by detecting either a spectator nucleon or a
recoil A− 1 nucleus. The main idea is that the electron
scatters from a quark in one nucleon. If that nucleon
belongs to an SRC NN pair, then its partner nucleon
will leave the nucleus. If that nucleon does not belong
to an NN SRC pair, then the A − 1 nucleus is much
more likely to recoil intact. In either case, we will need
to fully account for FSI effects proper interpertation
the reasults of such measurements requires full
understanding of many-body FSI effects that, to
the best of our knowlege, so far were only studied for the
deuteron. Instead of the inclusive cross section ratio, the
tagged EMC ratio is

R =
σA(e, e′pS)/A

σd(e, e′pS)/2

integrated over spectator momenta and angles. Typi-
cally, backward angles, θpq > 120◦, are chosen to mini-
mize FSI.

If the spectator is a proton and has momentum greater
than 300 MeV/c, then it almost certainly is expected
to belonged to an np SRC pair. If nucleon modifica-
tion is due to nucleons belonging to SRC pairs, then nu-
cleon modifcation should be the same in deuterium and
in the heavier nucleus and therefore the tagged EMC ra-
tio should be independent of xB and should be equal to
a2(A), the relative probability of finding a nucleon in an
SRC pair in nucleus A relative to d.

The biggest Large uncertainty in interpretting these
tagged EMC measurements is stems from the possibil-
ity that the fragments of the struck nucleon will break up
another SRC pair as they exit the nucleus, significantly
increasing the number of backward nucleons. This ef-
fect should be smaller for light nuclei. An addi-
tional A larger complication arises from the nuclear
spectral function that associated high-momentum nu-
cleons with large excitation energies that will be dis-
tributed to the different fragments and need to be
taken into account.

If the measured spectator is an A − 1 nucleus, then
the struck nucleon almost certainly did not belong to an
SRC pair. Assuming one can overcome the above com-
plications, comparing the tagged EMC ratio for 4He with
spectator (proton+deuteron) and or with spectator 3He,
can give further insight as to whether nucleon modifica-
tion depends on the struck nucleon momentum or on the
struck nucleon SRC pairing.
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FIG. 42: Phase-space of nuclei considered for future
EMC/SRC measurements at Jefferson Lab as a function
of their proton (Z) and neutron (N) numbers. The two

inserts focus on the light and medium mass nuclei
refims. For light nuclei one can systematicaly study a
series of symmetric nucli and the detailed effect of the
addition of one neutorn (proton). For medium mass
nuclei the horizontal and vertical bands mark nuclei

with similar numebr of protons (neutrons) and a varing
number of neutrons (protons) allowing to study the

effect of nuclear asymmetry.

2. Inclusive EMC and SRC Measurements

The inclusive EMC and SRC measurements described
in sections III and II were performed on a limited number
of nuclei and, in the case of SRC measurements and the
JLab EMC measurements, in a limited kinematic range.
Therefore, it is natural to extend both EMC and SRC
measurements to additional nuclei over a wider kinemat-
ical range.

Fig. 42 shows nuclei that can or will be measured at
Jefferson Lab as a function of their proton (Z) and neu-
tron (N) numbers. A wise selection of nuclei allows
for a systematical experimental study of SRC and the
EMC effect for fixed nuclear asymmetry as a function of
mass number and for fixed mass number as a function
of asymmetry. The planned Jefferson Lab measurements
(Arrington and Day, 2006; Arrington et al., 2010; Pe-
tratos et al., 2010; Solvignon-Slifer and Arrington, 2011)
will systematically measure both the size of the EMC ef-
fect and the height of the SRC plateau over many nuclei
from 3He and 3H to 208Pb, covering a wide range of mass
numbers and nuclear asymmetries (N/Z). Measurements
with unstable nuclei at other laboratories could signifi-
cantly extend the available range of nuclear asymmetry.

Light and heavy nuclei can exhibit significantly differ-

ent nuclear effects. Medium and heavy nuclei (A ≥ 10)
exhibit properties of nuclear saturation and can be rela-
tively well described using effective theories for strongly
interacting many-body Fermi systems. However, light
nuclei span a wide range of nuclear densities and asym-
metries, with some nuclei exhibiting a rich cluster-like
substructure.

In the case of the EMC effect, special care should be
given to “standard” nuclear structure effects that do af-
fect the DIS cross-section ratio and can therefore po-
tentially mimic an isospin dependent. Therefore, any
measurement of the ratio of the EMC effect in isospin
asymmetric nuclei (e.g. 3He/3H, 48Ca/40Ca etc.) should
be compared to a calculation of standard nuclear effects
that take into account differences in the proton and neu-
tron momentum distributions and pairing probabilities.
These can be studies indirectly by inclusive QE (e,e’)
reactions or directly using semi-inclusive and exclusive
(e,e’N) and (e,e’pN) reactions. In the case of light nuclei
ab-initio few-body calculations can also provide relevant
information.

An additional advantage of light-nuclei studies is the
ability to compare the experimental results with detailed
ab-initio nuclear structure calculations. Assuming reac-
tion mechanisms such as FSI, MEC and others are under
control, such comparisons of experiment and theory can
offer significant insight into the underlying microscopic
physics. For heavy nuclei, such ab-initio calculations of
short-range nuclear structure are still limited, but rapid
progress is being made (Carlson et al., 2015; Hagen et al.,
2015; Wiringa et al., 2014b).

In addition to extending the range of nuclei measured,
it is also important to extend the measured Q2 range.
This is especially important for SRC studies where the
minimum initial momentum depends strongly on Q2 (see
Fig. 13). The SRC cross section ratios of (Egiyan et al.,
2003) were measured at 1.4 ≤ Q2 ≤ 2.6 GeV2 with
most of the data at Q2 < 2 GeV2 (see Fig. 16a).
They observed flat plateaus in the cross section ratio for
1.5 ≤ xB ≤ 1.9, which corresponds to 250 ≤ pmin ≤ 500
MeV/c which is where we expect tensor correlations to
dominate. By contrast, the SRC cross section ratios of
(Fomin et al., 2012a) which were measured at Q2 = 2.7
GeV2 exhibit “plateaus” that are not quite as flat, espe-
cially for heavier nuclei (see Fig. 16a). At Q2 = 2.7GeV2,
1.5 ≤ xB ≤ 1.9 corresponds to 325 ≤ pmin ≤ 700 MeV/c,
which extends beyond the tensor correlations region into
the central correlations region. Measuring the Q2 de-
pendence of the SRC plateaus will help us quantitatively
relate the experimental results to detailed ab-initio nu-
clear structure calculations - a needed comparison that
was not done to date.

The Q2-dependence of the EMC effect has been stud-
ied over a wide kinematical regime. However, there are
still several intriguing questions about higher twist effects
that should be studied systematically. The Jefferson Lab
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6 GeV EMC effect measurements included data with in-
variant mass, W > 1.4 GeV, a region that is dominated
by resonance production rather than DIS. The fact that
the measured EMC ratios agreed with the SLAC data,
measured at higher W , showed that resonance contri-
butions largely cancel in the A/d ratio. By covering a
broader kinematic range, the future 12 GeV measure-
ments will help quantify this issue. A review of the pos-
sibility of studying the large xB at the lHC is presented
in (Freese et al., 2015).

3. Semi-Inclusive and Exclusive SRC Measurements

In the context of the EMC effect, the interpretation of
planed future experiments in isospin asymmetric nuclei
(e.g. 3He/3H, 48Ca/40Ca) requires understanding the
differences in the proton and neutron momentum distri-
butions and SRC pairing probabilities, as these enter into
the baseline calculation of “standard” nuclear effects and
EMC models calculations, that are to be compared with
the experimental data.

The required information about high momentum nu-
cleons and SRC in nuclei can be obtained by scattering an
electron or other probe from a nucleus and detecting one
or more of the ejected nucleons. A(e, e′p) experiments
can measure the amounts of high momentum nucleons in
different nuclei and how that changes with nuclear isospin
asymmetry.

The fact that the A(e, e′p) reaction is mainly sensitive
to the protons in nuclei whereas the (e, e′) reaction is sen-
sitive to all nucleons in nuclei make their measurements
complementary and crucial to allow for a detailed study
of the dependence of SRC effects on the nuclear asym-
metry. While more challenging to perform, A(e,e’n) mea-
surements can complement the other reactions and yield
additional information on the role of protons and neu-
trons in asymmetric nuclei.

One Jefferson Lab experiment (Hen et al., 2014a) will
measure 3H and 3He(e, e′p) as a function of pmiss in kine-
matics where FSI are small in order to determine the ra-
tio of the 3He and 3H momentum distributions. In the
naive SRC picture, this ratio should be two at low pmiss
because there are twice as many protons in 3He as in 3H
and it should decrease to one at high pmiss because there
are two pn pairs each in 3He and 3H.

Similar experiments in medium mass nuclei could mea-
sure how the number of high momentum protons changes
as you add eight neutrons from 40Ca to 48Ca and by
adding six more protons from 48Ca to 54Fe (Hen et al.,
2016b). Ongoing Jefferson-Lab CLAS data-mining anal-
ysis of A(e,e’n) and A(e,e’p) scattering off 12C, 27Al,56Fe
and 208Pb is expected to provide new insight into isospin
asymmetry effects on SRCs.

We can gain more information about SRC pairing in
nuclei by knocking out a high-initial momentum nucleon

and detecting its correlated partner, either with electron
or proton probes, A(e, e′pN) or A(p, 2pN). By extend-
ing the range of missing momentum we can study the
transition from tensor dominance (at 300 ≤ pmiss ≤ 500
MeV/c) to the scalar repulsive core (at higher pmiss).
By focusing on lower pmiss, we can map the transition
fro the mean-field to the SRC-dominated domain (the nu-
clear “Migdal jump”). By extending the A-dependence
of SRC pair abundancies and properties we can learn
about SRC-pair quantum numbers and provide data for
a quantitative theory of SRCs.

4. Polarized EMC Measurements

Motivated by open questions about the EMC effect and
the “proton spin crisis”, Jefferson Lab will perform the
first measurement of the spin-dependent EMC effect uti-
lizing CLAS12 in Hall B with 11 GeV polarized electrons
and polarized targets (Kuhn and Brooks, 2014). They
will determine the ratio of the double-spin asymmetries
in 7Li (using 7LiD) in which a highly polarized proton
is embedded in the nuclear medium, and on the proton
(using 6LiH). The double spin asymmetry is measured as

A‖ =
dσ ↓⇑ −dσ ↑⇑
dσ ↓⇑ +dσ ↑⇑

and is approximately equal to the ratio of polarized to
unpolarized structure functions: g

7Li
1 /F

7Li
1 . Many sys-

tematic uncertainties will cancel in the asymmetries and
in the ratios of asymmetries. Together with the unpo-
larized structure function (also to be measured at Jef-

ferson Lab), they will also extract g
7Li
1 and, using a so-

phisticated modern wave function model, extract the in-

medium proton spin structure function function g
p‖7Li
1

for a proton bound in 7Li. They will cover a kinematic
range of 1 < Q2 < 15 GeV2 and 0.06 < xB < 0.8.

Mean field models of nucleon modification predict
stronger effects than in the unpolarized structure func-
tions. On the other hand, since nucleons in tensor corre-
lations tend to have opposite spin to the overall nuclear
spin, the EMC effect could be minimal or even in the op-
posite direction. These data will provide new constraints
on models for the EMC effect, some of which predict
that medium modifications of quark distributions depend
strongly on the quark helicities (see Fig. 43).

5. Parity Violating Deep Inelastic Scattering

There is some evidence that u- and d-quark distribu-
tions are modified differently in asymmetric nuclei. The-
oretically, since protons move faster than neutrons in
neutron-rich nuclei, if nucleon modification depends on
nucleon virtuality (as in the PLC model), then we expect
protons, with 2 u- and 1 d-quarks, to be more modified
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FIG. 43: The expected results of the polarized EMC
effect measurement at Jefferson Lab. The ratio of the

parallel double spin asymmetry A‖ for 7 ~Li(~e, e′) to
~p(~e, e′), normalized by multiplying it with the “naive”

unpolarized structure function ratio for 7Li over
hydrogen, plotted vs xB . The models are NNM (naive

nuclear model with no fermi motion, dashed line), SNM
(standard nuclear model with fermi motion and

kinematical binding energy effects, upper solid line at
low-x), QMC (Quark-Meson Coupling model, bottom
solid line at low-x), and MSS (x-rescaling (Fanchiotti
et al., 2014), mid solid line at low-x). Figure adapted

from (Kuhn and Brooks, 2014).

than neutrons.

Experimentally, the NuTeV experiment compared neu-
trino and anti-neutrino DIS off an Iron target and ex-
tracted a value of the Weinberg mixing angle that differs
from the standard model by about 3σ (Zeller et al., 2002,
2003). While this led to much excitement and attempts
to relate it to physics beyond the standard model, re-
cently it was shown that an isospin dependent EMC ef-
fect that affects protons more than neutrons could resolve
the anomaly (Cloet et al., 2009b).

A measurement of parity violation in A(e, e′) DIS
would directly measure the d − u difference as a func-
tion of xB (Riordan et al., 2016). The difference in the
left-right asymmetry for helicity +1 and −1 electrons is
proportional to the product of the photon and Z am-
plitudes divided by the square of the photon amplitude.
This asymmetry will be 102 to 103 parts per million for
DIS scattering from a heavy nucleus:

APV ≈ −
GFQ

2

4
√

2πα

[
a1(x) +

1− (1− y)2

1 + (1− y)2
a3(x)

]

where y = 1−E/E′, and a1 and a2 depend on the quark

distributions. In the symmetric nucleus limit

a1 '
9

5
− 4 sin2 θW −

12

25

u+
A − d+

A

u+
A + d+

A

+ . . .

where uA refers to all the up quarks in the nucleus and
the superscript + refers to the sum of the quark and
anti-quark distributions. Thus the parity violating asym-
metry is sensitive to the difference between the u and d
quark distributions in the nucleus.

B. Theory

The review of the theory presented here shows that
there is a strong connection between the cause of the
EMC effect and the short-ranged correlations that cause
the high xB plateau in (e,e’) scattering on nuclei. Never-
theless, there are gaps in almost every part of the theory,
from the initial state wave function, to the modification
of nucleon structure, to the need to include the effects of
final state interactions. We therefore present an outline
of the necessary improvements.

The EMC effect is a modification of nucleon struc-
ture functions. Obtaining an understanding of this ef-
fect therefore requires a working understanding of the
valence sector of the free nucleon wave function, so that
the effects of the medium on the relevant components
can be correctly included. Lattice calculations, e.g., (Ji,
2013; Lin et al., 2015), and the Dyson-Schwinger ap-
proach (Cloet and Roberts, 2014) are making progress
on computing free nucleon parton distributions. It also
would be necessary to build nucleon models that are eas-
ily related to the output of these Euclidean-space theo-
ries, e.g. (Burkardt et al., 1997; Hobbs et al., 2016). A
twenty-first century calculation of medium modifications
cannot be made without inputs from such models.

The calculation of deep inelastic scattering from nuclei
needs to be improved in several different ways. For ex-
ample, the calculations using the PLC-suppression model
have been made mainly for xB = 0.5 (C. Ciofi degli Atti,
L.L. Frankfurt, L.P. Kaptari and M.I. Strikman, 2007),
where effects of Fermi motion nearly vanish. To under-
stand the EMC ratios discussed above it is necessary to
be able to make accurate calculations for a range of val-
ues of 0.3 ≤ xB ≤ 0.7. So far this has been done (Freese
et al., 2015) by assuming that no medium modification
occurs for xB < 0.45 and linearly interpolating the region
between 0.45 < xB < 0.65. Calculations need to han-
dle finite-sized nuclei without resorting to infinite nuclear
matter calculations using a local density approximation.
Such a program would require computation of nuclear
spectral functions for finite-sized nuclei. This would in-
volve intensive numerical work, so it would be important
to present such spectral functions in an easily accessible
manner.
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We have seen that only models with medium modifi-
cation arising from short-ranged effects can handle both
the EMC effect and high xB (e, e′) scattering. How-
ever models in which the medium modification is driven
by mean-field effects give an excellent description of the
EMC effect, see e.g. (Cloet et al., 2009a, 2005b, 2006).
It would not be realistic to think that the ultimate accu-
rate description would make use of only one of the two
possible ideas. Therefore it is important to build models
of medium modifications of nucleon wave functions that
includes both mean-field effects and the effects of cor-
relations. The necessary model of nuclei would need to
be consistent with nuclear saturation properties, include
non-nucleonic degrees of freedom and have those rela-
tivistic effects needed to compute nuclear deep inelastic
scattering cross sections.

Many treatments of final state interactions for exclu-
sive reactions (e.g., (e, e′p) and (e, e′pN)) use complex
optical potentials, which automatically violate current
conservation. To fully understand spectroscopic factors
and nucleon-nucleon correlations it is necessary to ensure
that the reaction theory models conserve current. We
also need to better understand electromagnetic current
operators in models of the nucleon-nucleon interactions
that employ low-momentum cutoffs.

There is a need to understand higher twist effects in
nuclei, so we can understand why the EMC ratios mea-
sured at JLab are nearly the same as those measured at
much higher energies at SLAC and CERN.

In addition to improving our understanding of the the-
oretical underpinnings of the causes of the EMC-SRC
correlation, it is necessary to explore the implications of
the EMC-SRC correlations and of pn dominance in SRC.
The possible inversion of the kinetic energy sharing in
asymmetric nuclei could significantly affect several sub-
fields of physics. In astrophysics the nuclear symmetry
energy is of fundamental importance. It describes the
change in energy of a nuclear system when a proton is
replaced by a neutron. np-SRC dramatically reduce the
kinetic part of the symmetry energy (Hen et al., 2015c)
and work is ongoing to understand other effects. Addi-
tional implications of SRCs on nuclear systems include
the nuclear response to neutrino scattering (Fields et al.,
2013; Fiorentini et al., 2013), cooling rates of neutron
stars, contact interactions in Fermi systems (Frankfurt
et al., 2008; Hen et al., 2015a) and more. While the dis-
cussion of these effects extends beyond the scope of this
review, they are extensively discussed in the literature.

VII. The way we think it is and the ways to check

This article has focused on explaining two seemingly
unrelated phenomena: lepton-nucleus deep inelastic scat-
tering (DIS) and quasi-elastic (QE) electron-nucleus scat-
tering at large values of xB , and their surprising relation.

DIS from a nucleus is very different than DIS from a col-
lection of free nucleons; this is the EMC effect which is
parameterized in terms of the slope of the EMC ratio, R,
of bound to “free” cross sections. This slope cannot be
explained unless the internal quark structure of a bound
nucleon differs from that of a free nucleon.

Quasi-elastic scattering, in which a nucleon is knocked
out of the nucleus intact, reveals plateaus in the cross
section ratios of nuclei to deuterium at large values of
xB that correspond to scattering from short range cor-
related (SRC) two-nucleon pairs. Different experiments
show that the slope of the EMC effect is linearly pro-
portional to the height of the plateaus! Further studies
showed that the two-nucleon pairs consist of a neutron
and a proton.

A review of the available experimental and theoreti-
cal evidence shows that the relation between the EMC
slope, dR/dxB , and the SRC plateau height is no ac-
cident. There is an underlying cause of both effects:
the influence of strongly correlated neutron-proton pairs.
These correlated pairs are temporary high-density fluc-
tuations in the nucleus in which the internal structure of
the nucleons is briefly modified. This conclusion needs to
be quantified by future experiments and improved theo-
retical analyses that are discussed in this article.

The connection between the EMC effect and nucleon-
nucleon correlations is very profound. Although the bind-
ing energy of a nucleon is less than a percent of its mass,
the fact that the nucleon is made of quarks and gluons
is manifest in two distinct sets of phenomena, via ex-
periments that have been repeated several times. The
direct influence of the quark presence in nuclei is now
established.

This presence is a subtle effect as it must be, given
the generally small deviation of R from unity, and does
not arise via the usual low-energy, low momentum trans-
fer nuclear physics observables: binding energy, spec-
tra, radii, electroweak transition rates, etc. Nonetheless,
the quark presence cannot be denied. We expect that a
deeper understanding of the EMC/SRC connection will
ultimately lead to an improved understanding of the na-
ture of confinement of light quarks.

The Jefferson-Lab 12GeV program includes a series
of approved experiments targeted at improving our un-
derstanding of the EMC effect, SRCs and their connec-
tion. The forthcoming results of these experiments are
expected to shad new light on the origin of the EMC ef-
fect and provide stringent constraints on current of future
theoretical calculations.
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IX. Appendix

A. Understanding the np relative wave function

The aim of this Appendix is to provide a qualtitative
explanation that the momentum space wave function of
the deuteron, a very weakly bound system, has a sig-
nificant high momentum k tail. Indeed one sees an ap-
proximate k−4 behavior of the deuteron density for large
values of k. This tail persists in nuclei because of short
ranged correlations between nucleons.

A 1/k4 density comes from 1/k2 in the wave function
which can be obtained if the nucleon-nucleon interaction
is a delta function in coordinate space, as occurs in lead-
ing order EFT or in the effective range expansion behav-
ior. Such approximations are valid only at very small
values of momentum 1/re � k � 1/a, where there is
approximate scale invariance, where a is the scattering
length of about 5 fm and re is the effective range of about
2 fm. The 1/k2 behavior of the wave function emerges at
large values of k due to the second-order effects of the of
the one pion exchange (OPE) contribution to the tensor
potential VT . The Schoedinger equation for the spin-one
two-nucleon system, which involves S and D state com-
ponents, can be expressed as an equation involving the S
state only by using (−B −H0)|ΨD〉 = VT |ΨS〉, where B
is the binding energy of the system and H0 is the Hamil-
tonian excluding the tensor potential. Thus one obtains
an effective S−state potential: V00 = VT (−B−H0)−1VT ,
Eq. (4), where VT connects the S and D states. The in-
termediate Hamiltonian H0 is dominated by the effects of
the centrifugal barrier and can be approximated by the
kinetic energy operator (Brown and Jackson, 1976). This
second-order term is large because it contains an isospin
factor (τ1 · τ2)2 = 9, and because S2

12 = 8 − 2S12. Eval-
uation of the S-state potential, neglecting the small ef-
fects of the central potential in the intermediate D-state,
yields

V00(k, k′) ≈ −M 32f4

µ4π2

∫
p2dp

MB + p2
I02(k, p)I20(p, k′),

(73)
where M is the nucleon mass, f2 ≈ 0.08 is the square
of the πN coupling constant, µ is the pion mass, and
ILL′ are partial wave projections of the OPEP extensor
interaction in momentum space. These are evaluated in

(Haftel and Tabakin, 1970)

I02(p, k) = I20(p, k) =
k2Q2(z) + p2Q0(z)

2pk
−Q1(z),

(74)

with z ≡ (p2 + k2 + µ2)/(2pk), and Qi are Legendre
functions of the second kind in the conventions of that
reference. The result, Eq. (73) corrects errors in (Hen
et al., 2015b). The errors do not affect the qualitative
statements made in the cited paper, as we now demon-
strate.

We use Eq. (73) to estimate quantities of interest.
We note the asymptotic property: limp→∞ I02(p, k) =
1− (k2 + µ2)/p2 + · · · . Thus the integrand of Eq. (73) is
dominated by large values of p and diverges unless there
is a cutoff. This means that V00(k′, k) is approximately a
constant, independent of k and k′. This is the signature
of a short ranged interaction. We expose this feature in
more detail by assuming that for the important regions
of the integral appearing in Eq. (73) by treating the vari-
ables k, k′ as small compared to the cutoff momentum.

Then I02(0, p) ≈ p2

p2+µ2 , and

V00(k, k′) ≈ −M 32f4

µ4π2

∫ M

0

p2dp

MB + p2

(
p2

p2 + µ2

)2

(1+· · · ),
(75)

where we have cut off the linearly divergent integral for

momenta p > M and · · · represents terms of O(k
2+k′2

M2 ).
All realistic models of the NN interaction employ some
sort of a cutoff, and a mass scale of the nucleon mass
is typical of one-boson exchange potentials (Machleidt,
1989; Machleidt et al., 1987). Thus V00(k, k′) is ap-
proximately independent of its momentum arguments,
the hallmark of short-ranged interactions. The use of
Eq. (75) provides an approximate upper limit.

The resulting asymptotic 1/k4 dependence of the
square of the wave function can be seen by using the
Lippmann-Schwinger equation in the form

〈k|ψS〉 ≈ 〈k|(−B −H0)−1
∫
d3k′V00(k, k′)〈k′|ψS〉(76)

≈ −V00(0,0)

B+ k2

M

∫
d3k′ψS(k′) = −V00(0,0)

B+ k2

M

(2π)3/2ψS(r = 0)

where the subscript S refers to the S−state and the inte-
gral over all momenta, k′ leads to a proportionality to the
coordinate-space wave function at the origin. In terms of
the usual S-state radial wave function u(r) we have

ψS(r = 0) = lim
r→0

u(r)

r

1√
4π
. (77)

Using known wave functions, we find limr→0
u(r)
r =

(0.0267, 0.0584, 0.0792) fm−3/2 for the Nijmegen,
Reid93 (Stoks et al., 1994a), and Argonne V18 (Wiringa
et al., 1995b) potentials respectively. The result Eq. (75)
shows the 1/k2 dependence of the wave function, with



47

overall strength determined by the detailed potential
models. The density is the square of the wave function
∼ 1/k4 with an overall strength varying by a factor of 9,
depending on the potential used. Thus we find a high
momentum 1/k4 behavior far beyond the validity of the
effective range approximation. Potentials without this
high-momentum density either have a very weak tensor
force or a cutoff at low momenta.

We may check the rough validity of these findings by
computing the D state probability, PD:

PD = 〈ψs|VT 1
(B+H0)2VT |ψS〉

≈ 32f4

µ4π2 (2π)3ψ2(r = 0)
∫M

0
p2dp

(B+ p2

M )2

(
p2

p2+µ2

)2

(78)

We evaluate PD using u(r = 0) for each of the Nijmegen,
Reid93 (Stoks et al., 1994a), and Argonne V18 (Wiringa
et al., 1995b) potentials respectively. Numerical evalua-
tion of Eq. (78) equation yields PD = (2, 10, 18) % for
the three potentials repsectively. The actual value for
all of these potentials is about PD = 6%. These results
show that qualitative treatment here is adequate only for
rough estimates that maintain the qualitative idea that
the iterated effects of OPEP produce the 1/k4 behavior
of the deuteron density. The results of this sub-section
depend on the chosen scale (M here). Choosing a suf-
ficiently softer scale would modify the high-momentum
dependence of the wave function.A detailed comparison
of the momentum dependence of known deuteron wave
functions is presented in (Hen et al., 2015b).

Results similar that the relevant interaction matrix
element is approximately independent of its momen-
tum arguments have been obtained previously. Mosel’s
group (Konrad et al., 2005; Lehr et al., 2000, 2002) as-
sumed this independence and used it to help to clarify
the basic, fundamental origins of the nucleon spectral
functions and the high-momentum tails. Using a con-
stant interaction matrix element, along with the Fermi-
gas model, and solving the relevant Dyson equation gave
high-momentum tails with a density ∼ 1/k4, and spec-
tral functions essentially identical to those of more de-
tailed computations.

B. Basic terminology

We define some basic terms. The probability to find a
nucleon at a coordinate x (where this notation includes
spatial position, nucleon spin and isospin) is given by

ρ(x) =
1

A
〈Ψ|

A∑

i=1

δ(x− xi)|Ψ〉, (79)

where |Ψ〉 is the relevant nuclear wave function. The
quantity ρ(x) is known as the density. The normalization
is
∫
dxρ(x) = 1, where the integral includes a sum over

nucleon spin and isospin.

The two-body density in coordinate space is given by

ρ(2)(x,y) =
1

A(A− 1)
〈Ψ|

∑

i 6=j
δ(x− xi)δ(y − yj)|Ψ〉.

(80)

The integral of the two-body density over x yields the
density ρ(y). The correlation function C(x,y) is the de-
viation of the two-body density from the mean field ap-
proximation:

C(x,y) = ρ(2)(x,y)− ρ(x)ρ(y). (81)

The quantity C(x,y) vanishes if the wave function |Ψ〉
can be represented as a product of single-nucleon wave
functions. Furthermore the stated normalization condi-
tions lead to the result

∫
dxC(x,y) = 0,

∫
dyC(x,y) = 0. (82)

It is useful to also define the probability ρ2,1(r) that if a
nucleon is at a given position, another one is separated
by a distance r.

ρ2,1(r) ≡ 1
4πr2A 〈Ψ|

∑
i 6=j δ(r − |ri − rj |)Ψ〉

=
∫
d3Rρ2(R + r/2,R− r/2). (83)

where R is the center of mass position of the two-nucleon
system.

The same kind of analysis can be done in momen-
tum space. Evaluation of ρ(x) requires the square of
the coordinate-space representation of |Ψ〉, while that of
n(k) requires the momentum-space representation of the
same wave function. The probability for a nucleon to
have a momentum k is given by

n(k) = 1
A 〈Ψ|

∑A
i=1 δ(k− ki)|Ψ〉. (84)

It is convenient to define a two-body density n2(K,κ)
in momentum space, which gives the probability of two
nucleons having a total momentum of K and a relative
momentum κ:

n2(K,κ) =
1

A(A−1) 〈Ψ|
∑
i 6=j δ(K/2 + κ− ki)δ(K/2− κ− kj)|Ψ〉

(85)

Experimentalists defined a correlation as existing if the
system has κ� K, with κ > kF and K < kF .

It is also useful to consider the integrated quantity:

n2,1(κ) ≡
∫
d3Kn2(K,κ)

= 2
A(A−1) 〈Ψ|

∑
i6=j δ(ki − kj − 2κ)|Ψ〉, (86)

which is the momentum space version of Eq. (83).
A specific model for the two-nucleon density is used

in the analysis of the data relevant to this review. For
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small relative distances r one writes the two-nucleon wave
function Ψ(R, r) in the following form

Ψ(R, r) = FA(R)ψD(r), r << RA, (87)

where RA is the radius of the nucleus, and the often used
assumption is that at short distances all relative wave
functions are the same as that of the deuteron D. In this
model

ρA2,1(r) =

∫
d3RF 2

A(R)ψ2
D(r) ≡ a2(A)ψ2

D(r), r � RA

(88)

In momentum space

Ψ̃(K,k) = F̃A(K)ψ̃D(k), k � 1/RA (89)

where the tilde denotes Fourier transform and the mo-
mentum variables are canonically conjugate to R and r.
The one-body density nA(k1) is given by

nA(k1) =
∫
d3k2

∣∣∣Ψ̃(K,k)
∣∣∣
2

=
∫
d3PF̃A

2
(P )

∣∣∣ψ̃D(k1 −P/2)
∣∣∣
2

(90)

≈
∫
d3PF̃A

2
(P )

∣∣∣ψ̃D(k1)
∣∣∣
2

= a2(A)
∣∣∣ψ̃D(k1)

∣∣∣
2

, (91)

where k1 � 1/RA is assumed and the relation in terms
of a2(A) is an example of Parceval’s theorem.

The next step is to relate the quantities nA(k1) and
ρ2,1(r). The use of Eq. (88)and Eq. (91) leads immedi-
ately to the result

a2(A) =
ρA2,1(r)

rD2,1(r)
=
nA(k)

nD(k)
, (r � RA, k > 1/RA).(92)

The early workers (Frankfurt et al., 1993) used the ratio
of momentum-space densities, and recent workers (Chen
et al., 2016) use the coordinate space version, but both
are the same in the leading-order approximation of each
approach.

C. Why center-of-mass and relative coordinates factorize

We provide a qualitative explanation of the factoriza-
tion inherent in Eq. (87). Start with the non-relativistic
nuclear Hamiltonian with only two-nucleon forces, and
consider infinite nuclear matter. The basic assumption
is the independent pair approximation. The idea is that
the average separation between nucleons d = 1.7 fm, so
that when one of the nucleons of the pair makes a close
encounter with a third particle the collision occurs under
conditions such that the original pair had no interactions
at all (Gomes et al., 1958). This idea was formally cod-
ified by Bethe and co-workers (Bethe, 1971), such that

the results of the independent pair approximation appear
as the first term in the hole-line expansion.

We explain how this works. Consider two-nucleons in
nuclear matter, which interact independently of the other
nucleons (except for the influence of the Pauli principle).
The two-nucleon Hamiltionian, h, is given by

h = h0 + h1 (93)

h0 = P 2

4M , h1 = p2

M +Qv, (94)

where P is the center-of-mass momentum operator, p is
the relative momentum operator, v is the two-nucleon
potential, and Q is an operator that projects both nu-
cleon momenta to be greater than the Fermi momentum,
kF . Since the two-nucleon Hamiltonian is a sum of two
terms, h = h0 + h1, that commute the solution to the
Schroednger equation, h|ψ〉 = E|ψ〉, is a product:

ψ(R, r) = FA(R)χ(r) (95)

where

h0F (R) = EcmFA(R), h1χ(r) = εχ(r), E = Ecm + ε

(96)

with

ψ(R, r) = eiK·Rχ(r), (97)

where we suppress notations regarding spin and isospin
to simplify the discussion. In general the function χ(r)
contains all values of angular momentum and has both
short ranged and long-ranged aspects. The essence of
Eq. (87) is that for small values of |r| all relative wave
functions look like the deuteron wave function:

lim
r�d

χ(r) = γψD(r), (98)

where γ represents the probability amplitude that the
wave function χ corresponds to the deuteron quantum
numbers.

It is necessary to introduce a single-particle, mean-field
operator U to extend this idea to finite-sized nuclei. In
that case, Eq. (97) is often replaced (see e.g. (Haxton
et al., 1980) by

ψ(R, r) =
∑
αβ Cαβφα(r1)φβ(r2)χ(r), (99)

where φα,β are solutions of the single-particle equation,
Cαβ are coefficients computed using the shell model. The
single-particles vary over the size of the nucleus, while the
variations of χ(r)−1 occur over the range of the nucleon-
nucleon interaction. If the size of the nucleus is much
larger than this range Eq. (95) remains true. In these ap-
plications the Miller-Spencer correlation function (Miller
and Spencer, 1976) has often been used to represent χ(r).
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and Vicente Vento (2014), “Medium effects in dis from po-
larized nuclear targets,” The European Physical Journal A
50 (7), 1–5.

Farrar, Glennys R, and Darrell R. Jackson (1975), “Pion and
nucleon structure functions near x = 1,” Phys. Rev. Lett.
35, 1416–1419.

Farrar, Glennys R, Huan Liu, Leonid L. Frankfurt, and
Mark I. Strikman (1988), “Transparency in nuclear
quasiexclusive processes with large momentum transfer,”
Phys. Rev. Lett. 61, 686–689.

Feldmeier, H, W. Horiuchi, T. Neff, and Y. Suzuki (2011),
“Universality of short-range nucleon-nucleon correlations,”
Phys. Rev. C84, 054003, arXiv:1107.4956 [nucl-th].

Fields, L, et al. (MINERvA Collaboration) (2013), “Measure-
ment of muon antineutrino quasielastic scattering on a hy-
drocarbon target at Eν ∼ 3.5 GeV,” Phys. Rev. Lett. 111,
022501.

Fiorentini, G A, et al. (MINERvA Collaboration) (2013),
Phys. Rev. Lett. 111, 022501.

Fissum, KG, et al. (Jefferson Lab Hall A Collaboration)
(2004), “The Dynamics of the quasielastic O-16(e, e-prime
p) reaction at Q**2 = 0.8 (GeV/c)**2,” Phys.Rev. C70,
034606, arXiv:nucl-ex/0401021 [nucl-ex].

Fomin, N, et al. (2012a), “New measurements of high-
momentum nucleons and short-range structures in nuclei,”
Phys. Rev. Lett. 108, 092502.

Fomin, N, et al. (2012b), “New measurements of high-
momentum nucleons and short-range structures in nuclei,”
Phys. Rev. Lett. 108, 092502.

Frank, M R, B. K. Jennings, and G. A. Miller (1996), “The
Role of color neutrality in nuclear physics: Modifications
of nucleonic wave functions,” Phys. Rev. C54, 920–935,
arXiv:nucl-th/9509030 [nucl-th].

Frankfurt, L, V. Guzey, and M. Strikman (2012), “Leading
Twist Nuclear Shadowing Phenomena in Hard Processes
with Nuclei,” Phys. Rept. 512, 255–393, arXiv:1106.2091
[hep-ph].



52

Frankfurt, L, M. Strikman, and M. Zhalov (2001), “Single
particle strength restoration and nuclear transparency in
high Q**2 exclusive (e, e-prime p) reactions,” Phys. Lett.
B503, 73–80, arXiv:hep-ph/0011088 [hep-ph].

Frankfurt, L L, G. A. Miller, and M. Strikman (1994),
“The Geometrical color optics of coherent high-energy pro-
cesses,” Ann. Rev. Nucl. Part. Sci. 44, 501–560, arXiv:hep-
ph/9407274 [hep-ph].

Frankfurt, L L, M. M. Sargsian, and M. I. Strikman (1997),
“Feynman graphs and Gribov-Glauber approach to high-
energy knockout processes,” Phys. Rev. C56, 1124–1137,
arXiv:nucl-th/9603018 [nucl-th].

Frankfurt, L L, and M. I. Strikman (1981a), “High-energy
phenomena, short-range nuclear structure and qcd,” Phys.
Rep. 76 (4), 215.

Frankfurt, L L, and M. I. Strikman (1981b), “High-Energy
Phenomena, Short Range Nuclear Structure and QCD,”
Phys. Rept. 76, 215–347.

Frankfurt, L L, and M. I. Strikman (1985), “Point-
like CONFIGURATIONS IN HADRONS AND NUCLEI
AND DEEP INELASTIC REACTIONS WITH LEP-
TONS: EMC AND EMC LIKE EFFECTS,” Nucl. Phys.
B250, 143–176.

Frankfurt, L L, and M. I. Strikman (1987), “On the Normal-
ization of Nucleus Spectral Function and the EMC Effect,”
Phys. Lett. B183, 254.

Frankfurt, L L, and M. I. Strikman (1988a), “Hard Nuclear
Processes and Microscopic Nuclear Structure,” Phys. Rept.
160, 235–427.

Frankfurt, Leonid, Misak Sargsian, and Mark Strikman
(2008), “Recent observation of short range nucleon corre-
lations in nuclei and their implications for the structure of
nuclei and neutron stars,” Int. J. Mod. Phys. A23, 2991–
3055, arXiv:0806.4412 [nucl-th].

Frankfurt, Leonid, and Mark Strikman (1988b), “Hard nu-
clear processes and microscopic nuclear structure,” Phys.
Rep. 160 (5-6), 235 – 427.

Frankfurt, Leonid, and Mark Strikman (2012), “QCD and
QED dynamics in the EMC effect,” Int. J. Mod. Phys. E21,
1230002, arXiv:1203.5278 [hep-ph].

Frankfurt, LL, M.I. Strikman, D.B. Day, and M. Sargsyan
(1993), “Evidence for short-range correlations from high q2
(e,e’) reactions,” Phys. Rev. C 48, 2451.

Freese, Adam J, Misak M. Sargsian, and Mark I. Strikman
(2015), “Probing superfast quarks in nuclei through dijet
production at the LHC,” Eur. Phys. J. C75 (11), 534,
arXiv:1411.6605 [hep-ph].

Frullani, S, and J. Mougey (1984), “Single particle properties
of nuclei through (e, e′p) reactions,” Adv. Nucl. Phys. 14,
1.

Gao, J, et al. (2000), “Dynamical relativistic effects in
quasielastic 1p-shell proton knockout from 16o,” Phys. Rev.
Lett. 84, 3265.

Gayou, O, et al. (Jefferson Lab Hall A) (2002), “Measure-
ment of G(Ep) / G(Mp) in polarized-e p —¿ e polarized-
p to Q**2 = 5.6-GeV**2,” Phys. Rev. Lett. 88, 092301,
arXiv:nucl-ex/0111010 [nucl-ex].

Geesaman, DF, K. Saito, and A.W. Thomas (1995), “The
Nuclear EMC Effect,” Ann. Rev. Nucl. and Part. Sci. 45,
337.

Gezerlis, A, I. Tews, E. Epelbaum, M. Freunek, S. Gan-
dolfi, K. Hebeler, A. Nogga, and A. Schwenk (2014), “Lo-
cal chiral effective field theory interactions and quantum
Monte Carlo applications,” Phys. Rev. C90 (5), 054323,

arXiv:1406.0454 [nucl-th].
Golak, J, H. Kamada, H. Witala, W. Glockle, and S. Ishikawa

(1995), “Electron induced pd and ppn breakup of 3he
with full inclusion of final-state interactions,” Phys. Rev.
C 51 (4), 1638–1647.

Gomes, L C, J. D. Walecka, and V. F. Weisskopf (1958),
“Properties of nuclear matter,” Annals Phys. 3, 241–274.

Gomez, J, et al. (1994), “Measurement of the a dependence of
deep-inelastic electron scattering,” Phys. Rev. D 49, 4348.

Gribov, V N, B. L. Ioffe, and I. Ya. Pomeranchuk (1966),
“What is the range of interactions at high-energies,” Sov.
J. Nucl. Phys. 2, 549, [Yad. Fiz.2,768(1965)].

Griffioen, K A, et al. (2015), “Measurement of the EMC
Effect in the Deuteron,” Phys. Rev. C92 (1), 015211,
arXiv:1506.00871 [hep-ph].

Gross, Franz, and D. O. Riska (1987), “Current Conservation
and Interaction Currents in Relativistic Meson Theories,”
Phys. Rev. C36, 1928.

Guichon, Pierre A M (1988), “A Possible Quark Mechanism
for the Saturation of Nuclear Matter,” Phys. Lett. B200,
235–240.

Guichon, Pierre A M, and Gerald A. Miller (1984), “Quarks
and the Deuteron Asymptotic D State,” Phys. Lett. B134,
15–20.

Guichon, Pierre A M, Koichi Saito, Evgenii N. Rodionov,
and Anthony William Thomas (1996), “The Role of nu-
cleon structure in finite nuclei,” Nucl. Phys. A601, 349–
379, arXiv:nucl-th/9509034 [nucl-th].

Haftel, Michael I, and Frank Tabakin (1970), “NU-
CLEAR SATURATION AND THE SMOOTHNESS
OF NUCLEON-NUCLEON POTENTIALS,” Nucl. Phys.
A158, 1–42.

Hagen, G, et al. (2015), “Neutron and weak-charge distribu-
tions of the 48Ca nucleus,” Nature Phys. 12 (2), 186–190,
arXiv:1509.07169 [nucl-th].

Halzen, F, and Alan D. Martin (1984), QUARKS AND LEP-
TONS: AN INTRODUCTORY COURSE IN MODERN
PARTICLE PHYSICS (Wiley, New York).

Haxel, Otto, J. Hans D. Jensen, and Hans E. Suess (1949),
“On the ”magic numbers” in nuclear structure,” Phys. Rev.
75, 1766–1766.

Haxton, W C, B. F. Gibson, and E. M. Henley (1980), “PAR-
ITY NONCONSERVATION IN F-18, F-19, AND NE-21,”
Phys. Rev. Lett. 45, 1677–1681.

Hen, O, A. Accardi, W. Melnitchouk, and E. Piaset-
zky (2011a), “Constraints on the large-x d/u ratio from
electron-nucleus scattering at x > 1,” Phys. Rev. D 84,
117501.

Hen, O, E. Piasetzky, and L. B. Weinstein (2012), “New data
strengthen the connection between short range correlations
and the emc effect,” Phys. Rev. C 85, 047301.

Hen, O, A. W. Steiner, E. Piasetzky, and L. B. Weinstein
(2016a), “Analysis of Neutron Stars Observations Using a
Correlated Fermi Gas Model,” arXiv:1608.00487 [nucl-ex].

Hen, O, L. B. Weinstein, S. Gilad, and W. Boeglin (2014a),
“Proton and Neutron Momentum Distributions in A =
3 Asymmetric Nuclei, Jefferson Lab Experiment E12-14-
011,” arXiv:1410.4451 [nucl-ex].

Hen, O, L. B. Weinstein, E. Piasetzky, G. A. Miller, M. M.
Sargsian, and Y. Sagi (2015a), “Correlated fermions in nu-
clei and ultracold atomic gases,” Phys. Rev. C 92, 045205.

Hen, O, L. B. Weinstein, E. Piasetzky, G. A. Miller, M. M.
Sargsian, and Y. Sagi (2015b), “Correlated fermions in
nuclei and ultracold atomic gases,” Phys. Rev. C92 (4),



53

045205, arXiv:1407.8175 [nucl-ex].
Hen, O, L.B. Weinstein, E. Cohen, and D.W. Higinbotham

(2016b), “The CaFe Experiment: Short-Range Pairing
Mechanisms in Heavy Nuclei, Jefferson Lab Proposal E12-
16-004,”.

Hen, O, L.B. Weinstein, E.I. Piasetzky, and H. Hakobyan
(2014b), “In Medium Proton Structure Functions, SRC,
and the EMC effect, Jefferson Lab experiment E12-11-
003A,”.

Hen, O, L.B. Weinstein, S.A. Wood, and S. Gilad (2011b),
“In Medium Nucleon Structure Functions, SRC, and the
EMC effect, Jefferson Lab experiment E12-11-107,”.

Hen, O, et al. (2013a), Int. J. Mod. Phys. E 22, 133017.
Hen, O, et al. (CLAS Collaboration) (2014c), Science 346,

614.
Hen, O, et al. (2014d), “Momentum sharing in imbalanced

Fermi systems,” Science 346, 614–617, arXiv:1412.0138
[nucl-ex].

Hen, Or, D. W. Higinbotham, Gerald A. Miller, Eli Piasetzky,
and Lawrence B. Weinstein (2013b), “The EMC Effect and
High Momentum Nucleons in Nuclei,” Int. J. Mod. Phys.
E22, 1330017, arXiv:1304.2813 [nucl-th].

Hen, Or, Bao-An Li, Wen-Jun Guo, L. B. Weinstein, and Eli
Piasetzky (2015c), “Symmetry energy of nucleonic matter
with tensor correlations,” Phys. Rev. C 91, 025803.

Hobbs, T J, Mary Alberg, and Gerald A. Miller (2016),
“A Euclidean bridge to the relativistic constituent quark
model,” arXiv:1608.07319 [nucl-th].

Holt, Jeremy W, Norbert Kaiser, and Wolfram Weise (2013),
“Nuclear chiral dynamics and thermodynamics,” Prog.
Part. Nucl. Phys. 73, 35–83, arXiv:1304.6350 [nucl-th].

Holt, Roy J (2013), “Large x physics: recent results and future
plans,” in Proceedings, 43rd International Symposium on
Multiparticle Dynamics (ISMD 13), arXiv:1311.1527 [nucl-
ex].

Holt, Roy J, and Craig D. Roberts (2010), “Nucleon and pion
distribution functions in the valence region,” Rev. Mod.
Phys. 82, 2991–3044.

Horikawa, T, and W. Bentz (2005), “Medium modifications of
nucleon electromagnetic form-factors,” Nucl. Phys. A762,
102–128, arXiv:nucl-th/0506021 [nucl-th].

Horowitz, C J (1985), “Relativistic Love-Franey model: Co-
variant representation of the NN interaction for N-nucleus
scattering,” Phys. Rev. C31, 1340–1348.

Hugenholtz, N M, and L. van Hove (1958), “A theorem on
the single particle energy in a Fermi gas with interaction,”
Physica 24, 363–376.

Ioffe, B L (1969), “Space-time picture of photon and neu-
trino scattering and electroproduction cross-section asymp-
totics,” Phys. Lett. B30, 123–125.

Jaffe, R L (1983), “Quark Distributions in Nuclei,” Phys. Rev.
Lett. 50, 228.

Ji, Xiangdong (2013), “Parton Physics on a Euclidean Lat-
tice,” Phys. Rev. Lett. 110, 262002, arXiv:1305.1539 [hep-
ph].

Jones, M K, et al. (Jefferson Lab Hall A) (2000), “G(E(p)) /
G(M(p)) ratio by polarization transfer in polarized e p —¿
e polarized p,” Phys. Rev. Lett. 84, 1398–1402, arXiv:nucl-
ex/9910005 [nucl-ex].

Jourdan, J (1995), “Longitudinal response functions: The
Coulomb sum revisited,” Phys. Lett. B353, 189–195.

Jourdan, J (1996), “Quasielastic response functions: The
Coulomb sum revisited,” Nucl. Phys. A603, 117–160.

Jung, H, and G. A. Miller (1988), “NUCLEONIC CONTRI-

BUTION TO LEPTON NUCLEUS DEEP INELASTIC
SCATTERING,” Phys. Lett. B200, 351–356.

Jung, H, and G. A. Miller (1990), “Pionic contributions
to deep inelastic nuclear structure functions,” Phys. Rev.
C41, 659–664.

Kelly, J J, and Stephen J. Wallace (1994), “Comparison be-
tween relativistic and nonrelativistic models of the nucleon-
nucleon effective interaction. 1: Normal parity isoscalar
transitions,” Phys. Rev. C49, 1315–1336.

Kelly, James J (1999), “Effects of spinor distortion and

density-dependent form factors upon quasifree 16O(
→
e , e

′ →
p

),”.
Kelly, JJ (1996), “Nucleon knockout by intermediate energy

electrons,” Adv. Nucl. Phys. 23, 75.
Kim, K S, B. G. Yu, and M. K. Cheoun (2006), “Coulomb

sum rule in quasielastic region,” Phys. Rev. C74, 067601,
arXiv:nucl-th/0611067 [nucl-th].

Klimenko, A V, et al. (CLAS Collaboration) (2006), “Electron
scattering from high-momentum neutrons in deuterium,”
Phys. Rev. C 73 (3), 035212.

Koch, V, and G. A. Miller (1985), “SIX QUARK CLUSTER
EFFECTS AND BINDING ENERGY DIFFERENCES
BETWEEN MIRROR NUCLEI,” Phys. Rev. C31, 602–
612, [Erratum: Phys. Rev.C32,1106(1985)].

Konrad, P, H. Lenske, and U. Mosel (2005), “Short range
correlations and spectral functions in asymmetric nuclear
matter,” Nuclear Physics A 756 (1-2), 192–212, cited By
8.

Korover, I, N. Muangma, O. Hen, et al. (2014), “Probing the
Repulsive Core of the Nucleon-Nucleon Interaction via the
4He(e,e’pN) Triple-Coincidence Reaction,” Phys.Rev.Lett.
113, 022501, arXiv:1401.6138 [nucl-ex].

Kramer, GJ, H.P. Blok, and L. Lapikas (2001), “A consis-
tent analysis of (e,ep) and (d,3he) experiments,” Nuclear
Physics A 679 (3), 267 – 286.

Kuhn, SE, and W.K. Brooks (2014), “Jefferson lab exper-
iment e12-14-001: The emc effect in spin structure func-
tions,”.

Kulagin, S A, and R. Petti (2010), “Structure functions for
light nuclei,” Phys. Rev. C 82, 054614.

Kulagin, S A, and R. Petti (2014), “Nuclear parton distri-
butions and the Drell-Yan process,” Phys. Rev. C90 (4),
045204, arXiv:1405.2529 [hep-ph].

Kulagin, SA, and R. Petti (2006a), “Global study of nuclear
structure functions,” Nuclear Physics A 765 (1), 126 – 187.

Kulagin, Sergey A, and R. Petti (2006b), “Global study of
nuclear structure functions,” Nucl. Phys. A765, 126–187,
arXiv:hep-ph/0412425 [hep-ph].

Lacombe, M, B. Loiseau, R.Vinh Mau, J. Ct, P. Pirs, and
R. de Tourreil (1981), “Parametrization of the deuteron
wave function of the paris nn potential,” Physics Letters B
101 (3), 139 – 140.

Lapikas, L (1993), “Quasi-elastic electron scattering off nu-
clei,” Nuclear Physics A 553, 297 – 308.

Lapikas, Louk, G. van der Steenhoven, L. Frankfurt, M. Strik-
man, and M. Zhalov (2000), “The Transparency of C-12 for
protons,” Phys. Rev. C61, 064325, arXiv:nucl-ex/9905009
[nucl-ex].

Lehr, J, M. Effenberger, H. Lenske, S. Leupold, and U. Mosel
(2000), “Transport theoretical approach to the nucleon
spectral function in nuclear matter,” Physics Letters B
483 (13), 324 – 330.

Lehr, J, H. Lenske, S. Leupold, and U. Mosel (2002), “Nu-



54

clear matter spectral functions by transport theory,” Nucl.
Phys. A 703, 393.

Lin, Huey-Wen, Jiunn-Wei Chen, Saul D. Cohen, and Xiang-
dong Ji (2015), “Flavor Structure of the Nucleon Sea from
Lattice QCD,” Phys. Rev. D91, 054510, arXiv:1402.1462
[hep-ph].

Liyanage, N, et al. (The Jefferson Lab Hall A Collaboration)

(2001), “Dynamics of the 16o(e, e
′
p) reaction at high miss-

ing energies,” Phys. Rev. Lett. 86, 5670–5674.
Llewellyn Smith, C H (1983), “A Possible Explanation of the

Difference Between the Structure Functions of Iron and
Deuterium,” Phys. Lett. B128, 107–111.

Lovato, A, S. Gandolfi, Ralph Butler, J. Carlson, Ewing
Lusk, Steven C. Pieper, and R. Schiavilla (2013), “Charge
Form Factor and Sum Rules of Electromagnetic Response
Functions in 12C,” Phys. Rev. Lett. 111 (9), 092501,
arXiv:1305.6959 [nucl-th].

Lovato, A, S. Gandolfi, J. Carlson, Steven C. Pieper, and
R. Schiavilla (2016), “Electromagnetic response of 12C: a
first-principles calculation,” arXiv:1605.00248 [nucl-th].

Lu, Ding-Hui, Kazuo Tsushima, Anthony William Thomas,
Anthony Gordon Williams, and K. Saito (1999), “Electro-
magnetic form-factors of the bound nucleon,” Phys. Rev.
C60, 068201, arXiv:nucl-th/9807074 [nucl-th].

Macfarlane, M H, and J. B. French (1960), “Stripping reac-
tions and the structure of light and intermediate nuclei,”
Rev. Mod. Phys. 32, 567–691.

Machleidt, R (1989), “The Meson theory of nuclear forces and
nuclear structure,” Adv. Nucl. Phys. 19, 189–376.

Machleidt, R, and D.R. Entem (2011), “Chiral effective field
theory and nuclear forces,” Physics Reports 503 (1), 1 –
75.

Machleidt, R, K. Holinde, and C. Elster (1987), “The Bonn
Meson Exchange Model for the Nucleon Nucleon Interac-
tion,” Phys. Rept. 149, 1–89.

Makek, M, et al. (2016), “Differential cross section mea-
surement of the12C(e,epp)10Beg.s. reaction,” Eur. Phys. J.
A52 (9), 298.

Malace, S P, et al. (2011), “A precise extraction of the induced
polarization in the 4He(e,e’p)3H reaction,” Phys. Rev. Lett.
106, 052501, arXiv:1011.4483 [nucl-ex].

Malace, Simona, David Gaskell, Douglas W. Higinbotham,
and Ian C. Clot (2014), “The challenge of the emc effect:
Existing data and future directions,” International Journal
of Modern Physics E 23 (08), 1430013.

Marco, E, E. Oset, and P. Fernandez de Cordoba (1996),
“Mesonic and binding contributions to the EMC effect in a
relativistic many body approach,” Nucl. Phys. A611, 484–
513, arXiv:nucl-th/9510060 [nucl-th].

Mayer, M, et al. (CLAS) (2017), “Beam-target double-
spin asymmetry in quasielastic electron scattering off
the deuteron with CLAS,” Phys. Rev. C95 (2), 024005,
arXiv:1610.06109 [nucl-ex].

Mayer, Maria Goeppert (1950), “Nuclear configurations in
the spin-orbit coupling model. i. empirical evidence,” Phys.
Rev. 78, 16–21.

McVoy, K W, and L. Van Hove (1962), “Inelastic Electron-
Nucleus Scattering and Nucleon-Nucleon Correlations,”
Phys. Rev. 125, 1034–1043.

Melnitchouk, W, Andreas W. Schreiber, and An-
thony William Thomas (1994a), “Deep inelastic scatter-
ing from off-shell nucleons,” Phys. Rev. D49, 1183–1198,
arXiv:nucl-th/9311008 [nucl-th].

Melnitchouk, W, Andreas W. Schreiber, and An-
thony William Thomas (1994b), “Relativistic deuteron
structure function,” Phys. Lett. B335, 11–16, arXiv:nucl-
th/9407007 [nucl-th].

Melnitchouk, W, and A. W. Thomas (1996a), Phys. Lett. B
377, 11.

Melnitchouk, W, and A.W. Thomas (1996b), “Neutron pro-
ton structure function ratio at large x,” Physics Letters B
377 (1), 11 – 17.

Meziani, Z E, et al. (1984), “Coulomb Sum Rule for Ca-40,
Ca-48, and Fe-56 for —q (Vector)— ¡= 550-MeV/c,” Phys.
Rev. Lett. 52, 2130–2133.

Mihaila, Bogdan, and Jochen Heisenberg (2000), “Micro-
scopic calculation of the inclusive electron scattering struc-
ture function in O-16,” Phys. Rev. Lett. 84, 1403–1406,
arXiv:nucl-th/9910007 [nucl-th].

Mihovilovic, M, et al. (Jefferson Lab Hall A) (2014),
“Measurement of double-polarization asymmetries in the
quasielastic 3 ~He(~e, e′d) process,” Phys. Rev. Lett. 113 (23),
232505, arXiv:1409.2253 [nucl-ex].

Miller, G A (1984a), “SIX QUARK CLUSTER COMPO-
NENTS OF NUCLEAR WAVE FUNCTIONS AND THE
PION NUCLEUS DOUBLE CHARGE EXCHANGE RE-
ACTION,” Phys. Rev. Lett. 53, 2008–2011.

Miller, G A, and R. Machleidt (1999a), “Infinite nuclear mat-
ter on the light front: Nucleon-nucleon correlations,” Phys.
Rev. C60, 035202, arXiv:nucl-th/9903080 [nucl-th].

Miller, G A, and R. Machleidt (1999b), “Light front theory
of nuclear matter,” Phys. Lett. B455, 19–24, arXiv:nucl-
th/9811050 [nucl-th].

Miller, Gerald A (1984b), “Building the Nucleus From
Quarks: The Cloudy Bag Model and the Quark Description
of the Nucleon-nucleon Wave Function,” Int. Rev. Nucl.
Phys. 1, 189–323.

Miller, Gerald A (1988), “NUCLEAR WAVE FUNCTIONS
IN DEEP INELASTIC SCATTERING AND DRELL-
YAN PROCESSES,” in Workshop on Nuclear and Particle
Physics on the Light Cone Los Alamos, New Mexico, July
18-22, 1988, pp. 0042–64.

Miller, Gerald A (2000), “Light front quantization: A Tech-
nique for relativistic and realistic nuclear physics,” Prog.
Part. Nucl. Phys. 45, 83–155, arXiv:nucl-th/0002059 [nucl-
th].

Miller, Gerald A (2014), “Pionic and Hidden-Color, Six-
Quark Contributions to the Deuteron b1 Structure Func-
tion,” Phys. Rev. C89 (4), 045203, arXiv:1311.4561 [nucl-
th].

Miller, Gerald A, and Leonard S. Kisslinger (1983), “Quark
Contributions to the pp↔ dπ+ Reaction,” Phys. Rev. C27,
1669.

Miller, Gerald A, Matthew D. Sievert, and Raju Venu-
gopalan (2016), “Probing short-range nucleon-nucleon in-
teractions with an Electron-Ion Collider,” Phys. Rev.
C93 (4), 045202, arXiv:1512.03111 [nucl-th].

Miller, Gerald A, and Jason Robert Smith (2002), “Return of
the EMC effect,” Phys. Rev. C65, 015211, [Erratum: Phys.
Rev.C66,049903(2002)], arXiv:nucl-th/0107026 [nucl-th].

Miller, Gerald A, and James E. Spencer (1976), “A Survey
of Pion Charge-Exchange Reactions with Nuclei,” Annals
Phys. 100, 562.

Mineo, H, Wolfgang Bentz, N. Ishii, Anthony William
Thomas, and K. Yazaki (2004), “Quark distributions in
nuclear matter and the EMC effect,” Nucl. Phys. A735,
482–514, arXiv:nucl-th/0312097 [nucl-th].



55

Monaghan, P, et al. (2014), “Measurement of the
12C(e, e′p)11B two-body breakup reaction at high missing
momentum,” J. Phys. G41, 105109, arXiv:1301.7027 [nucl-
ex].

Morgenstern, J, and Z. E. Meziani (2001), “Is the Coulomb
sum rule violated in nuclei?” Phys. Lett. B515, 269–275,
arXiv:nucl-ex/0105016 [nucl-ex].

Mulders, P J (1990), “Modifications of Nucleons in Nuclei
and Other Consequences of the Quark Substructure,” Phys.
Rept. 185, 83–169.

Murdock, D P, and C. J. Horowitz (1987), “Microscopic Rel-
ativistic Description of Proton - Nucleus Scattering,” Phys.
Rev. C35, 1442–1462.

Neff, Thomas, Hans Feldmeier, and Wataru Horiuchi (2015),
“Short-range correlations in nuclei with similarity renor-
malization group transformations,” Phys. Rev. C92 (2),
024003, arXiv:1506.02237 [nucl-th].

Negele, John W (1999), “Instantons, the QCD vacuum,
and hadronic physics,” Lattice Field Theory. Proceedings:
16th International Symposium, Lattice ’98, Boulder, USA,
Jul 13-18, 1998, Nucl. Phys. Proc. Suppl. 73, 92–104,
arXiv:hep-lat/9810053 [hep-lat].

Noble, J V (1981), “Modification of the nucleon’s properties
in nuclear matter,” Phys. Rev. Lett. 46, 412–415.

Norton, P R (2003), Rep. Prog. Phys. 66, 1253.
Olive, K A, et al. (Particle Data Group) (2014), “Review of

Particle Physics,” Chin. Phys. C38, 090001.
Owens, J F, A. Accardi, and W. Melnitchouk (2013), “Global

parton distributions with nuclear and finite-Q2 correc-
tions,” Phys. Rev. D 87, 094012.

Palli, V, C. Ciofi degli Atti, L. P. Kaptari, C. B. Mezzetti,
and M. Alvioli (2009), “Slow Proton Production in Semi-
Inclusive Deep Inelastic Scattering off Deuteron and Com-
plex Nuclei: Hadronization and Final State Interaction Ef-
fects,” Phys. Rev. C80, 054610, arXiv:0911.1377 [nucl-th].

Paolone, M, et al. (2010), “Polarization Transfer in the
4He(e,e’p)3H Reaction at Q2 = 0.8 and 1.3 (GeV/c)2,”
Phys. Rev. Lett. 105, 072001, arXiv:1002.2188 [nucl-ex].

Passchier, I, et al. (2002), “Spin momentum correlations
in quasielastic electron scattering from deuterium,” Phys.
Rev. Lett. 88, 102302, arXiv:nucl-ex/0109015 [nucl-ex].

Perdrisat, C F, V. Punjabi, and M. Vanderhaeghen (2007),
“Nucleon Electromagnetic Form Factors,” Prog. Part.
Nucl. Phys. 59, 694–764, arXiv:hep-ph/0612014 [hep-ph].

Petratos, GG, J. Gomez, R.J. Holt, and R.D. Ransome
(2010), “MeAsurement of the F2n/F2p, d/u RAtios and
A=3 EMC Effect in Deep Inelastic Electron Scattering Off
the Tritium and Helium MirrOr Nuclei, Jefferson Lab Ex-
periment E12-10-103,”.

Piasetzky, E, M. Sargsian, L. Frankfurt, M. Strikman, and
J. W. Watson (2006), “Evidence for the strong dominance
of proton-neutron correlations in nuclei,” Phys. Rev. Lett.
97, 162504, arXiv:nucl-th/0604012 [nucl-th].

Picklesimer, A, and J.W. Van Orden (1989), Phys. Rev. C
40, 290.

Picklesimer, A, J.W. Van Orden, and S.J. Wallace (1985),
Phys. Rev. C 32, 1312.

Piller, Gunther, and Wolfram Weise (2000), “Nuclear deep in-
elastic lepton scattering and coherence phenomena,” Phys.
Rept. 330, 1–94, arXiv:hep-ph/9908230 [hep-ph].

Pirner, Hans J, and James P. Vary (1981), “Deep Inelas-
tic electron Scattering and the Quark Structure of He-3,”
Phys. Rev. Lett. 46, 1376–1379.

Polls, A, A. Ramos, J. Ventura, S. Amari, and W. H. Dickhoff

(1994), “Energy weighted sum rules for spectral functions
in nuclear matter,” Phys. Rev. C49, 3050–3054.

Punjabi, V, et al. (2005), “Proton elastic form-factor ratios to
Q**2 = 3.5-GeV**2 by polarization transfer,” Phys. Rev.
C71, 055202, [Erratum: Phys. Rev.C71,069902(2005)],
arXiv:nucl-ex/0501018 [nucl-ex].

Riordan, S, R. Beminiwattha, and A. Arrington (2016), “”the
emc pvdis experiment, a constraint on isovector-dependent
nuclear modification effects using parity-violating deep in-
elastic scattering, proposal pr12-16-006”,”.

Rios, A, A. Polls, and W. H. Dickhoff (2014), “Density and
isospin asymmetry dependence of high-momentum compo-
nents,” Phys. Rev. C89 (4), 044303, arXiv:1312.7307 [nucl-
th].

Roberts, Craig D, Roy J. Holt, and Sebastian M. Schmidt
(2013), “Nucleon spin structure at very high-x,” Phys. Lett.
B727, 249–254, arXiv:1308.1236 [nucl-th].

Roberts, R G (1994), The Structure of the proton: Deep in-
elastic scattering (Cambridge University Press).

Ryckebusch, J, D. Debruyne, P. Lava, S. Janssen,
B. Van Overmeire, and T. Van Cauteren (2003), “Rel-
ativistic formulation of Glauber theory for A(e, e-prime
p) reactions,” Nucl. Phys. A728, 226–250, arXiv:nucl-
th/0305066 [nucl-th].

Ryckebusch, Jan, Maarten Vanhalst, and Wim Cosyn (2015),
“Stylized features of single-nucleon momentum distribu-
tions,” Journal of Physics G: Nuclear and Particle Physics
42 (5), 055104.

Saito, K, Kazuo Tsushima, and Anthony William Thomas
(1999), “Effect of nucleon structure variation on the lon-
gitudinal response function,” Phys. Lett. B465, 27–35,
arXiv:nucl-th/9904055 [nucl-th].

Sargsian, M M, T. V. Abrahamyan, M. I. Strikman, and
L. L. Frankfurt (2005a), “Exclusive electro-disintegration
of He-3 at high Q2. II. Decay function formalism,” Phys.
Rev. C71, 044615, arXiv:nucl-th/0501018 [nucl-th].

Sargsian, M M, T. V. Abrahamyan, M. I. Strikman, and L. L.
Frankfurt (2005b), “Exclusive electrodisintegration of he3
at high q2. ii. decay function formalism,” Phys. Rev. C
71 (4), 044615.

Sargsian, Misak M (2014a), “New properties of the high-
momentum distribution of nucleons in asymmetric nuclei,”
Phys. Rev. C 89, 034305.

Sargsian, Misak M (2014b), “New properties of the high-
momentum distribution of nucleons in asymmetric nuclei,”
Phys. Rev. C89 (3), 034305, arXiv:1210.3280 [nucl-th].

Sargsian, Misak M (2014c), “Protons in High Density Neutron
Matter,” Proceedings, 2nd International Symposium on the
Modern Physics of Compact Stars and Relativistic Gravity:
Yerevan, Armenia, September 18-21, 2013, J. Phys. Conf.
Ser. 496, 012007, arXiv:1312.2263 [nucl-th].

Schiavilla, R, O. Benhar, A. Kievsky, L. E. Marcucci, and
M. Viviani (2005), “Polarization transfer in He-4(polarized-
e, e-prime polarized-p) H-3: Is the ratio G(Ep) / G(Mp)
modified in medium?” Phys. Rev. Lett. 94, 072303,
arXiv:nucl-th/0412020 [nucl-th].

Schiavilla, R, R. B. Wiringa, Steven C. Pieper, and J. Carlson
(2007), “Tensor forces and the ground-state structure of
nuclei,” Physical Review Letters 98 (13), 132501.

Schlumpf, Felix (1992), Relativistic constituent quark
model for baryons, Ph.D. thesis (Zurich U.), arXiv:hep-
ph/9211255 [hep-ph].

Schlumpf, Felix (1993), “Relativistic constituent quark model
of electroweak properties of baryons,” Phys. Rev. D47,



56

4114, [Erratum: Phys. Rev.D49,6246(1994)], arXiv:hep-
ph/9212250 [hep-ph].

Seely, J, et al. (2009a), “New measurements of the european
muon collaboration effect in very light nuclei,” Phys. Rev.
Lett. 103, 202301.

Seely, J, et al. (2009b), “New measurements of the european
muon collaboration effect in very light nuclei,” Phys. Rev.
Lett. 103, 202301.

Shneor, R, et al. (2007), “Investigation of proton-proton
short-range correlations via the 12c(e, e′pp) reaction,” Phys.
Rev. Lett. 99 (7), 072501.

Sick, I (1985), “How Much Do Nucleons Change in Nuclei?”
Nucl. Phys. A434 ( 1985) 677C-684C, Nucl. Phys. A434,
677C–684C.

Sloan, T, R. Voss, and G. Smadja (1988), “The Quark Struc-
ture of the Nucleon from the CERN Muon Experiments,”
Phys. Rept. 162, 45–167.

Smith, Jason Robert, and Gerald A. Miller (2002), “Return
of the EMC effect: Finite nuclei,” Phys. Rev. C65, 055206,
arXiv:nucl-th/0202016 [nucl-th].

Smith, Jason Robert, and Gerald A. Miller (2003), “Chi-
ral solitons in nuclei: Saturation, EMC effect and Drell-
Yan experiments,” Phys. Rev. Lett. 91, 212301, [Erratum:
Phys. Rev. Lett.98,099902(2007)], arXiv:nucl-th/0308048
[nucl-th].

Smith, Jason Robert, and Gerald A. Miller (2004), “Chi-
ral solitons in nuclei: Electromagnetic form-factors,” Phys.
Rev. C70, 065205, arXiv:nucl-th/0407093 [nucl-th].

Smith, Jason Robert, and Gerald A. Miller (2005), “Polarized
quark distributions in nuclear matter,” Phys. Rev. C72,
022203, arXiv:nucl-th/0505048 [nucl-th].

Solvignon-Slifer, P, and J. Arrington (2011), “Precision mea-
surement of the isospin dependence in the 2N and 3N short
range correlation region, Jefferson Lab Experiment E12-11-
112,”.

Souder, P A (2016), “Parity Violation in Deep Inelastic Scat-
tering with the SoLID Spectrometer at JLab,” Proceed-
ings, 21st International Symposium on Spin Physics (SPIN
2014): Beijing, China, October 20-24, 2014, Int. J. Mod.
Phys. Conf. Ser. 40, 1660077.

Stoks, V G J, R. A. M. Klomp, C. P. F. Terheggen, and
J. J. de Swart (1994a), “Construction of high quality N N
potential models,” Phys. Rev. C49, 2950–2962, arXiv:nucl-
th/9406039 [nucl-th].

Stoks, V G J, R. A. M. Klomp, C. P. F. Terheggen, and
J. J. de Swart (1994b), “Construction of high-quality nn
potential models,” Phys. Rev. C 49, 2950–2962.

Stone, J R, P. A. M. Guichon, P. G. Reinhard, and
A. W. Thomas (2016), “Finite Nuclei in the Quark-
Meson Coupling Model,” Phys. Rev. Lett. 116 (9), 092501,
arXiv:1601.08131 [nucl-th].

Strauch, S, et al. (Jefferson Lab E93-049) (2003), “Polariza-
tion transfer in the He-4 (polarized-e, e-prime polarized-p)
H-3 reaction up to Q**2 = 2.6-(GeV/c)**2,” Phys. Rev.
Lett. 91, 052301, arXiv:nucl-ex/0211022 [nucl-ex].

Strauch, Steffen (2012), “Hadron medium modifications,”
Proceedings, Resonance Workshop at UT Austin on
Hadronic resonance production in heavy ion and elemen-
tary collisions, EPJ Web Conf. 36, 00016.

Subedi, R, et al. (2008), “Probing Cold Dense Nuclear Mat-
ter,” Science 320, 1476–1478, arXiv:0908.1514 [nucl-ex].

Tang, A, et al. (2003), “n-p short-range correlations from
(p,2p+n) measurements,” Phys. Rev. Lett. 90, 042301.

Thomas, Anthony William, and Wolfram Weise (2001), The

Structure of the Nucleon.
Tkachenko, S, et al. (CLAS Collaboration) (2014), “Measure-

ment of the structure function of the nearly free neutron

using spectator tagging in inelastic 2H(e,e
′
ps)x scattering

with clas,” Phys. Rev. C 89, 045206.
Udias, J M, J. A. Caballero, E. Moya de Guerra, J. E. Amaro,

and T. W. Donnelly (1999a), “Quasielastic scattering from
relativistic bound nucleons: Transverse-longitudinal re-
sponse,” Phys. Rev. Lett. 83, 5451–5454.

Udias, J M, J. A. Caballero, E. Moya de Guerra, Jose Enrique
Amaro, and T. W. Donnelly (1999b), “Quasielastic scatter-
ing from relativistic bound nucleons: Transverse longitudi-
nal response,” Phys. Rev. Lett. 83, 5451–5454, arXiv:nucl-
th/9905030 [nucl-th].

Udias, J M, and Javier R. Vignote (2000), “Relativistic nu-
clear structure effects in (e,e-prime polarized-p),” Phys.
Rev. C62, 034302, arXiv:nucl-th/0007047 [nucl-th].

Udias, JM, et al. (1993), Phys. Rev. C 48, 2731.
Udias, JM, et al. (1995), Phys. Rev. C 51, 3246.
Vanhalst, Maarten, Wim Cosyn, and Jan Ryckebusch (2011),

“Counting the amount of correlated pairs in a nucleus,”
Phys. Rev. C84, 031302, arXiv:1105.1038 [nucl-th].

Vanhalst, Maarten, Jan Ryckebusch, and Wim Cosyn (2012),
“Quantifying short-range correlations in nuclei,” Phys.
Rev. C 86, 044619.

Vary, J P, P. U. Sauer, and C. W. Wong (1973), “Conver-
gence Rate of Intermediate-State Summations in the Effec-
tive Shell-Model Interaction,” Phys. Rev. C7, 1776–1785.

Walecka, J D (2005), Electron scattering for nuclear and nu-
cleon structure (Cambridge University Press).

Wallace, S J, and J. A. Tjon (2008), “Coulomb corrections
in quasi-elastic scattering: Tests of the effective-momentum
approximation,” Phys. Rev. C78, 044604, arXiv:0808.2029
[nucl-th].

Weinstein, L B, O. Hen, and E. Piasetzky (2016), “Ham-
mer events, neutrino energies, and nucleon-nucleon correla-
tions,” Phys. Rev. C94 (4), 045501, arXiv:1604.02482 [hep-
ex].

Weinstein, L B, E. Piasetzky, D. W. Higinbotham, J. Gomez,
O. Hen, and R. Shneor (2011), “Short range correlations
and the emc effect,” Phys. Rev. Lett. 106 (5), 052301.

Weiss, R, R. Cruz-Torres, N. Barnea, E. Piasetzky, and
O. Hen (2016), “The nuclear contacts and short range cor-
relations in nuclei,” arXiv:1612.00923 [nucl-th].

Weiss, Ronen, Betzalel Bazak, and Nir Barnea (2015), “Gen-
eralized nuclear contacts and momentum distributions,”
Phys. Rev. C92 (5), 054311, arXiv:1503.07047 [nucl-th].

Wiringa, R B, R. Schiavilla, Steven C. Pieper, and J. Carl-
son (2014a), “Nucleon and nucleon-pair momentum distri-
butions in A ≤ 12 nuclei,” Phys. Rev. C89 (2), 024305,
arXiv:1309.3794 [nucl-th].

Wiringa, R B, R. Schiavilla, Steven C. Pieper, and J. Carl-
son (2014b), “Nucleon and nucleon-pair momentum distri-
butions in a ≤ 12,” Phys. Rev. C 89, 024305.

Wiringa, R B, V. G. J. Stoks, and R. Schiavilla (1995a), “Ac-
curate nucleon-nucleon potential with charge-independence
breaking,” Phys. Rev. C 51, 38–51.

Wiringa, Robert B, V. G. J. Stoks, and R. Schiavilla (1995b),
“An Accurate nucleon-nucleon potential with charge inde-
pendence breaking,” Phys. Rev. C51, 38–51, arXiv:nucl-
th/9408016 [nucl-th].

Wong, S S M (1998), Introductory nuclear physics.
Yaron, I, et al. (A1) (2016), “Polarization-transfer measure-



57

ment to a large-virtuality bound proton in the deuteron,”
arXiv:1602.06104 [nucl-ex].

Zeller, G P, et al. (2002), “Precise determination of elec-
troweak parameters in neutrino-nucleon scattering,” Phys.
Rev. Lett. 88, 091802.

Zeller, G P, et al. (2003), “Erratum: Precise determination
of electroweak parameters in neutrino-nucleon scattering
[phys. rev. lett. 88 , 091802 (2002)],” Phys. Rev. Lett. 90,
239902.


