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What are topological phases of matter? First, they are phases of matter at zero tem-
perature. Second, they have a non-zero energy gap for the excitations above the ground
state. Third, they are disordered liquids that seem have no feature. But those disor-
dered liquids actually can have rich patterns of many-body entanglement representing
new kinds of order. This paper will give a simple introduction and a brief survey of
topological phases of matter. We will first discuss topological phases that have topolog-
ical order (i.e. with long range entanglement). Then we will cover topological phases
that have no topological order (i.e. with only short-range entanglement).
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I. ORDERS AND SYMMETRIES

Condensed matter physics is a branch of science that
study various properties of all kinds of materials. Usu-
ally for each kind of materials, we need a different theory
(or model) to explain its properties. After seeing many
different type of theories/models for condensed matter
systems, a common theme among those theories start to
emerge. The common theme is the principle of emer-
gence, which states that the properties of a material are
mainly determined by how particles are organized in the
material. This is quite different from the point of view
that the properties of a material should be determined
by the components that form the material. In fact, all

the materials are made of same three components: elec-
trons, protons and neutrons. So we cannot use the rich-
ness of the components to understand the richness of the
materials. The various properties of different materials
originate from various ways in which the particles are
organized. The organizations of the particles are called
orders. Different orders lead to different phases of matter,
which in turn leads to different properties of materials.

Therefore, according to the principle of emergence, the
key to understand a material is to understand how elec-
trons, protons and neutrons are organized in the mate-
rial. Based on a deep insight into phase and phase transi-
tion, Landau (1937) developed a general theory of orders
as well as transitions between different phases of mat-
ter. He pointed out that the reason that different phases
(or orders) are different is because they have different
symmetries. A phase transition is simply a transition
that changes the symmetry. Introducing order param-
eters that transform non-trivially under the symmetry
transformations, Ginzburg and Landau (1950) developed
the standard theory for phases and phase transitions,
where different phases of matter are classified by a pair
of groups (GΨ ⊂ GH). Here GH is the symmetry group
of the system and GΨ the unbroken symmetry group of
the equilibrium state.

Landau’s theory is very successful. Using symmetry
and the related group theory, we can classify all of the
230 different kinds of crystals that can exist in three di-
mensions. By determining how symmetry changes across
a continuous phase transition, we can obtain the critical
properties of the phase transition. The symmetry break-
ing also provides the origin of many gapless excitations,
such as phonons, spin waves, etc., which determine the
low-energy properties of many systems (Goldstone, 1961;
Nambu, 1960). Many of the properties of those excita-
tions, including their gaplessness, are directly determined
by the symmetry.

As Landau’s symmetry-breaking theory has such a
broad and fundamental impact on our understanding of
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matter, it became a corner-stone of condensed matter
theory. The picture painted by Landau’s theory is so
satisfactory that one starts to have a feeling that we un-
derstand, at least in principle, all kinds of orders that
matter can have. One feels that we start to see the be-
ginning of the end of condensed matter theory.

II. NEW WORLD OF CONDENSED MATTER PHYSICS

However, through the researches in last 30 years, a dif-
ferent picture starts to emerge. It appears that what
we have seen is just the end of beginning. There is a
whole new world ahead of us waiting to be explored. A
peek into the new world is offered by the discovery of
fractional quantum Hall (FQH) effect (Tsui et al., 1982).
Another peek is offered by the discovery of high Tc su-
perconductors (Bednorz and Mueller, 1986). Both phe-
nomena are completely beyond the paradigm of Landau’s
symmetry breaking theory. Rapid and exciting develop-
ments in FQH effect and in high Tc superconductivity
resulted in many new ideas and new concepts. Looking
back at those new developments, it becomes more and
more clear that, in last 30 years, we were actually wit-
nessing an emergence of a new theme in condensed mat-
ter physics. The new theme is associated with new kinds
of orders, new states of matter and new class of mate-
rials beyond Landau’s symmetry breaking theory. This
is an exciting time for condensed matter physics. The
new paradigm may even have an impact in our under-
standing of fundamental questions of nature – the emer-
gence of elementary particles and the four fundamental
interactions, which leads to an unification of matter and
quantum information.1

The emergent new field of quantum-topological matter
has developed very fast. Many new terms are introduced,
but some of them can be very confusing:

Pt.1: Some Haldane phases are topological, while some
other Haldane phases are not topological. Al-
though, the Haldane phase for spin-1 chain is topo-
logical, it is actually a product state with no topo-
logical order.

Pt.2: Topological insulators and topological superconduc-
tors (i.e. with T 2 = (−)NF time-reversal symmetry
and weak interactions) has no topological order. It
is wrong to characterize topological insulators as
insulators with conducting surface.

1 See Foerster et al. (1980) and Baskaran and Anderson (1988)
for emergence of gauge interactions, Levin and Wen (2006b);
Wen (2002a, 2003) for unification of gauge interactions and Fermi
statistics, and Wen (2013b); You et al. (2014); and You and Xu
(2015) for emergence of chiral fermions.

Pt.3: What is the difference between quantum spin Hall
state and spin quantum Hall state? Are they topo-
logical insulator?

Pt.4: “SPT state” is the abbreviation for both symme-
try protected trivial state and symmetry protected
topological state. The two mean the same.

Pt.5: 3+1D textbook s-wave superconductors have no
topological order, while 3+1D real-life s-wave su-
perconductors have a Z2-topological order.

Pt.6: 2+1D p+ ip fermion paired state and integer quan-
tum Hall states (IQH) do not have any fractional-
ized topological excitations. Some people regard
them as long-range entangled (i.e. topologically or-
dered) while others regard them as short-range en-
tangled.

Pt.7: What are the difference between Chern insulator,
quantum anomalous Hall state, and integer quan-
tum Hall state? What are the difference between
fractionalized topological insulator and topological
order?

Pt.8: There is a very active search for Majorana fermions
with non-abelian statistics. But should Majorana
fermion be a fermion that carries Fermi statistics?
Is Majorana fermion the Bogoliubov quasiparticle
in a superconductor?

In this paper, we will clarify those notions.

III. TOPOLOGICALLY ORDERED PHASES

A. Chiral spin liquids and topological order

After the discovery of high Tc superconductors in 1986
by Bednorz and Mueller (1986), some theorists believed
that quantum spin liquids play a key role in understand-
ing high Tc superconductors (Anderson, 1987). This is
because spin liquid can leads to a so called spin-charge
separation: an electron disintegrates into two quasiparti-
cles – a spinon (spin-1/2 charge-0 ) and a holon (spin-0
charge-e). Since holon is not fermion, its condensation
can leads to superconductivity - a novel mechanism of
high Tc superconductors. Thus many people started to
construct and study various spin liquids.2

However, despite the success of Landau symmetry-
breaking theory in describing all kind of states, the theory
cannot explain and does not even allow the existence of
spin liquids (with odd number of electrons per unit cell).

2 See Affleck and Marston (1988); Affleck et al. (1988b); Baskaran
et al. (1987); Dagotto et al. (1988); and Rokhsar and Kivelson
(1988)
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This leads many theorists to doubt the very existence of
spin liquids. In early proposals of spin liquid, the spinons
are gapless and are confined at long distance by the emer-
gent gauge field (Baskaran and Anderson, 1988), adding
support to the opinion that the spin liquid is just a fiction
and does not actually exist.3

In 1987, Kalmeyer and Laughlin (1987) introduced a
special kind of spin liquids – chiral spin liquid – in an
attempt to explain high temperature superconductivity.
In contrast to many other proposed spin liquids at that
time, the chiral spin liquid was shown to have deconfined
spinons (as well as deconfined holons) and correspond to
a stable zero-temperature phase.4 At first, not believ-
ing Landau symmetry-breaking theory fails to describe
spin liquids, people still wanted to use symmetry break-
ing to characterize the chiral spin liquid. They identified
the chiral spin liquid as a state that breaks the time re-
versal and parity symmetries, but not the spin rotation
and translation symmetries (Wen et al., 1989). The chi-
ral spin liquid is also characterized by its perfect heat
conducting edge and quantized spin-Hall conductance.

However, Wen (1989) quickly realized that there are
many different chiral spin liquids (with different spinon
statistics and spin-Hall conductances) that have exactly
the same symmetry. So symmetry alone is not enough
to characterize different chiral spin liquids. This means
that the chiral spin liquids contain a new kind of order
that is beyond symmetry description . This new kind of
order was named topological order.

Just like any concepts in physics, the concept of topo-
logical order is also required to be defined via measur-
able quantities, which are called topological invari-
ants. The first discovered topological invariants (Wen,
1990b) that define topological order were (1) the robust
ground state degeneracy on torus and other closed space
manifolds (i.e. with no boundary), (2) the non-abelian
geometric phases (the modular matrices) of the degener-
ate ground states, (3) the chiral central charge c of the
edge states.5 It was conjectured that those macroscopic
topological invariants, or more generally, “the total gauge
structures (the Abelian one plus the non-Abelian one) on
the moduli spaces of the models defined on generic Rie-

3 Now we realized that even those gapless spin liquid can exist as
algebraic spin liquid without quasiparticles (Chung et al., 2001;
Fradkin et al., 2003; Hermele et al., 2004; Rantner and Wen,
2001, 2002; Senthil et al., 2004).

4 Recently, chiral spin liquid was shown to exist in Heisenberg
model on Kagome lattice with J1-J2-J3 coupling (Gong et al.,
2015; He and Chen, 2015).

5 The central charge c of the edge states is related to a gravita-
tional response of the system described by a gravitational Chern-
Simons 3-form ω3: L = 2πc

24
ω3, where dω3 = p1 is the first Pon-

tryagin class (Abanov and Gromov, 2014; Bradlyn and Read,
2015; Gromov et al., 2015). c can be measured via the thermal

Hall conductivity KH = c
πk2B
6~ T (Kane and Fisher, 1997).

mann surfaces Σg completely characterize (or classify)
the topological orders in 1+2 dimensions” (Wen, 1990b).

Microscopically, topological order is a property of a
local quantum system whose total Hilbert space have a
tensor product decomposition Htot =

⊗
iHi, where Hi

is the Hilbert space on each site. Such a tensor product
decomposition is a part of the definition of a local system,
which also satisfies the condition of short-range interac-
tion between sites. Relative to such a tensor product
decomposition, a product state is defined to be a state
of the form |Ψ〉 =

⊗
i |Ψi〉, where |Ψi〉 ∈ Hi. In this

paper, only the tensor products of on-site states, |Ψi〉,
are called product states. With such a definition of local
quantum systems, topological order is defined to describe
gapped quantum-liquids6 that cannot be deformed into a
product state without gap-closing phase transitions. Such
quantum liquids are said to have long-range entan-
glement (Chen et al., 2010; Kitaev and Preskill, 2006;
Levin and Wen, 2006a). Long-range entanglement is the
microscopic origin of topological order. A gapped state
that can be deformed into a product state smoothly is
short-range entangled and has no topological order.
In particular, a product state has no topological order.

One may wonder: why do we need such a compli-
cated way to characterize topological order. Is the quan-
tized Hall conductance a more direct and simpler way
to characterize topological order, at least for quantum
Hall states (see Sec. III.B)? In fact, quantized Hall con-
ductance is due to a combined effect of U(1) symmetry
(i.e. particle-number conservation) and topological or-
der (i.e. long-range entanglement). If we break the U(1)
symmetry, quantum Hall states still have topological or-
der, even though the Hall conductance is no longer well
defined. How to characterize topological order in such a
situation? The above characterization based on ground
state degeneracy and non-abelian geometric phases does
not require symmetries and provides a complete charac-
terize of topological orders in 2-dimensions.

We like to mention that the term “topologi-
cal” in topological order and in topological insula-
tors/superconductors has totally different meanings. In
topological order, the term is motivated by the low en-
ergy effective theory of the chiral spin liquids, which is
a U(1) Chern-Simons theory – a topological quantum
field theory (Witten, 1989). Here, “topological” really
means long-range entangled, which is a property of many-
body wave functions. We may call it quantum topol-
ogy. While in topological insulators/superconductors,

6 Zeng and Wen (2015) and Swingle and McGreevy (2016) intro-
duced the notion of gapped quantum-liquids to describe a simple
kind of gapped states: the states that can enlarge themselves by
dissolving product states. Only gapped quantum-liquids have
quantum field theory descriptions at long distances. 3D gapped
states obtained by stacking 2D quantum Hall states and Haah
(2011) cubic code are examples of gapped non-quantum-liquids.
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the term corresponds to classical topology which is a
property of continuous manifold, related to the difference
between sphere and torus. The vortex in superfluid, the
Chern number, and the Z2 index in topological insula-
tors/superconductors belong to classical topology, which
represent a very different phenomenon. In fact, “topo-
logical” in topological insulators/superconductors really
means “symmetry protected” (see Sec. IV).

B. Quantum Hall states

However, soon after the proposal of chiral spin liq-
uid, experiments indicated that high-temperature super-
conductors do not break the time reversal and parity
symmetries and chiral spin liquids do not describe high-
temperature superconductors (Lawrence et al., 1992).
Thus the concept of topological order became a concept
with no experimental realization.

But long before the discovery of high Tc superconduc-
tors, Tsui et al. (1982) discovered FQH effect, such as
the filling fraction ν = 1/m Laughlin (1983) state

Ψν=1/m({zi}) =
∏

(zi − zj)m e−
1
4

∑
|zi|2 (1)

where zi = xi + iyi. People realized that the FQH
states are new states of matter. At first, influenced by
the previous success of Landau’s symmetry breaking the-
ory, people used order parameters and long range corre-
lations to describe the FQH states (Girvin and MacDon-
ald, 1987; Read, 1989; Zhang et al., 1989), which result
in the Ginzburg-Landau-Chern-Simons effective theory
of quantum Hall states. But in quantum Hall states,
there is no off-diagonal long range order in any local op-
erators, and thinking about it can mislead some people
to wrong directions, such as looking for Josephson effect
in quantum Hall states.

If we concentrate on physical measurable quantities,
we will see that all those different FQH states have ex-
actly the same symmetry and conclude that we cannot
use Landau symmetry-breaking theory and local order
parameters to describe different orders in FQH states.
In fact, just like chiral spin liquids, FQH states also con-
tain a new kind of orders beyond Landau’s symmetry
breaking theory. Different FQH states are also described
by different topological orders (Wen and Niu, 1990). The
better way to see the essence of FQH states is via topo-
logical invariants such as robust ground state degeneracy
and modular matrices, as well as the non-trivial edge
states (Halperin, 1982; Wen, 1990a). Thus the concept
of topological order does have experimental realizations
in FQH systems.

One of the most striking properties of FQH states is
their fractionalized excitations, that can carry fractional

statistics (Arovas et al., 1984; Halperin, 1984)7 and, if
particle number conserves, fractional charges (Laughlin,
1983; Tsui et al., 1982)8.

We know that a point-like excitation above the ground
state is something that can be trapped by a local change
of the Hamiltonian near a spatial point x. But some
times, the local change of the ground state near x can-
not be created by local operators. In this case, we refer
the corresponding local change of the ground state as a
topological excitations. It is those topological excita-
tions that can carry fractional statistics/charge.

We note that the presence of any topological excita-
tions imply a presence of topological order in the ground
state. But the reverse is not true, the absence of any
topological excitations may not imply the absence of
topological order in the ground state. In fact, the E8

bosonic state and the IQH states are states with topo-
logical order but no topological excitations.

Regarding to Pt.6 in Sec. II, some people define those
states with no topological excitations as short-range en-
tangled (Kitaev, 2011). However, since those states have
non-zero chiral central charges c for the edge states, they
cannot smoothly change to product state without phase
transition. Thus, they are topologically ordered states
distinct from the trivial product states. Those topolog-
ical orders with no topological excitations are called in-
vertible topological orders 9, and some people refer
them as long-rang entangled (Chen et al., 2010). Re-
garding to Pt.7, IQH state (von Klitzing et al., 1980),
Chern insulator (Hofstadter, 1976; Thouless et al., 1982),
quantum anomalous Hall state (Haldane, 1988), are just
different names for the same fermionic invertible topo-
logical order with integer chiral central charge c. Also,
fractionalized topological insulator is same as topological
order, but may have an additional time reversal symme-
try.

C. Non-abelian Quantum Hall states

In addition to the Laughlin states, more exotic non-
abelian FQH states were proposed in 1991 by two inde-
pendent works. Wen (1991b) pointed out that the FQH

7 The possibility of fractional statistics in 2+1D was pointed out by
Leinaas and Myrheim (1977) and Wilczek (1982). The relation
to braid group was discussed by Wu (1984).

8 Fractional charge has been directly observed via quantum shot
noise in tunneling current (de Picciotto et al., 1997)

9 For every invertible topological order C, there exist another topo-
logical order D – the inverse, such that stacking C and D on top
of each other give us a gapped state that have no topological
order, i.e. belong to the phase of product states.
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states described by wave functions

Ψν= n
m

({zi}) = [χn({zi})]m,
or Ψν= n

m+n
({zi}) = χ1({zi})[χn({zi})]m (2)

have topological excitations with non-abelian statis-
tics10 of type SU(n)m (which is denoted as A(n − 1)m
in https://www.math.ksu.edu/∼gerald/voas/) (Lan and
Wen, 2017). This result was obtained via the low en-
ergy SU(m)n effective Chern-Simons theory of the above
states, plus the level-rank duality. Here χn is the fermion
wave function of n-filled Landau levels. We note that the
ν = 1/3 Laughlin state is given by

Ψν=1/3({zi}) = [χ1({zi})]3. (3)

So [χn({zi})]m and χ1({zi})[χn({zi})]m are generaliza-
tions of the Laughlin state (Jain, 1991). They both have
non-trivial edge states described by U(1)×SU(n)m Kac-
Moody current algebra (Blok and Wen, 1992).

In the same year, Moore and Read (1991) proposed
that the FQH state described by Pfaffian wave function

Ψν=1/2 = Pf
[ 1

zi − zj

]
e−

1
4

∑
|zi|2

∏
(zi − zj)2. (4)

has excitations with non-abelian statistics of Ising-type
(or SU(2)2-type). Its edge states were studied numer-
ically (Wen, 1993) and were found to be described by
a c = 1 chiral-boson conformal field theory (CFT) plus
a c = 1/2 Majorana fermion CFT. Such a result about
the edge states supports the proposal that the Pfaffian
state is non-abelian, since the edge for abelian FQH
states always have integer chiral central charge c. Later,
the non-abelian statistics in Pfaffian wave function was
also confirmed by its low energy effective SO(5) level 1
Chern-Simons theory (Wen, 1999) (denoted as B21 in
https://www.math.ksu.edu/∼gerald/voas/), as well as a
plasma analogue calculation (Bonderson et al., 2011).

It is possible that the SU(2)2-type of non-abelian state
is realized by ν = 5/2 fractional quantum Hall samples
(Dolev et al., 2008; Radu et al., 2008; Willett et al., 1987).

D. Superconducting states (with dynamical
electromagnetism)

It is interesting to point out that long before the dis-
covery of FQH states, Onnes discovered superconductor
in 1911 (Onnes, 1911). The Ginzburg-Landau theory for

10 Wu (1984) has setup a general theory and braid group for quan-
tum statistics in two dimensions, and Goldin et al. (1985) pointed
out that such a setup contains non-abelian representations of
braid group, which correspond to non-abelian statistics. More
complete description of non-abelian statistics are given by Wit-
ten (1989) and Kitaev (2006).

FIG. 1 The strings in a spin-1/2 model. In the background
of up-spins, the down-spins form closed strings.

symmetry breaking phases is largely developed to explain
superconductivity. However, the superconducting order,
that motivates the Ginzburg-Landau theory for symme-
try breaking, itself is not a symmetry breaking order.
Superconducting order (in real life with dynamical U(1)
gauge field) is an order that is beyond Landau symmetry
breaking theory. Superconducting order (in real life) is
an topological order (or more precisely a Z2 topolog-
ical order or Z2 gauge theory) (Hansson et al., 2004;
Wen, 1991c). The real-life superconductor has string-like
topological excitation that can be trapped by modifying
Hamiltonian along a loop. Such a string-like topological
excitation is the hc

2e -flux loop, since the electromagnetic
U(1) gauge field is dynamical. The presence of string-like
topological excitation indicate the superconductor has a
topological order. The textbook superconductors usually
do not contain the dynamical U(1) gauge field, and do
not contain string-like topological excitation that can be
trapped by modifying Hamiltonian along a loop. This
explains Pt.5 in Sec. II.

It is quite amazing that the experimental discovery of
superconducting order did not lead to a theory of topo-
logical order. But instead, it led to a theory of symmetry
breaking order, that fails to describe superconducting or-
der itself.

E. Z2-spin liquid in 2+1D

Since chiral spin liquid breaks the time reversal sym-
metry, while high Tc superconductors do not break the
time reversal symmetry. So chiral spin liquid does not
appear in high Tc superconductors. This motivated peo-
ple to look for other spin liquids with deconfined spinons
and holons that do not break time reversal symmetry.
This leads to the theoretical discovery of 2+1D Z2-spin
liquid (Read and Sachdev, 1991; Wen, 1991a) described
by effective Z2 gauge theory (Kogut, 1979) (i.e. has a Z2-
topological order). The construction can be easily gener-
alized to obtain 3+1D Z2-spin liquid, which will have a
Z2 topological order identical to an s-wave superconduc-
tor discussed above. Later, an exact soluble toric code
model was constructed to realize the Z2 topological or-
der (Kitaev, 2003). Since then, the Z2-topological order
is also referred as “toric code”.

The Z2-spin liquid of spin-1/2 on Kagome lattice may
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FIG. 2 In string liquid, strings can move freely, including
reconnecting the strings.

be realized by Herbertsmithite(Helton et al., 2007), as
suggested by recent experiments by Fu et al. (2015) and
Han et al. (2016). The early numerical calculation of Yan
et al. (2011) suggested the spin-1/2 Heisenberg model on
Kagome lattice is gapped, but details of the results are
inconsistent with Z2-topological order, which led people
to suspect that the model is gapless. A more recent nu-
merical calculation suggests the model to have a Z2-spin
liquid ground state with long correlation length (10 unit
cell length) (Mei et al., 2017), while several other calcula-
tions suggest gapless U(1) spin liquid ground states (He
et al., 2016; Jiang et al., 2016; Liao et al., 2016). More
experimental and theoretical studies are needed to settle
the issue.

F. Quantum liquids of non-oriented strings

If we do not require spin rotation symmetry, one can
use string liquid to construct a state with Z2-topological
order (Kitaev, 2003). String liquids are long-range entan-
gled (hence topologically ordered). We will see how long-
range entanglement in topological order leads to frac-
tional statistics and topological degeneracy.

1. Local “dancing” rules in string liquids

Given a spin-1/2 system, if we pick a particular spin-up
spin-down configuration, we will get a product state. To
construct a highly entangled state, one may consider a
equal-weight superposition of all spin-up spin-down con-
figurations. But this does not work. We get a product
state with all spins in x-direction. So one idea to get
a highly entangled state is to a partial sum. For ex-
ample, we can view up-spins as background and lines of
down-spins as the strings (see Fig. 1). The simplest
topologically ordered state in such a spin-1/2 system
is given by the equal-weight superposition of all closed
strings:(Kitaev, 2003) |ΦZ2

〉 =
∑

all closed strings

∣∣ 〉
.

To obtain other topological orders, we may consider
a different superposition of strings. But those superpo-
sitions should all be determined by local rules, so that
there is a local Hamiltonian that can produce a given
superposition. What are those local rules that give rise
to the string liquid |ΦZ2〉 =

∑
all closed strings

∣∣ 〉
? The

first rule is that, in the ground state, the down-spins are
always connected with no open ends. To describe the

second rule, we need to introduce the amplitudes of close
strings in the ground state: Φ

( )
. The ground state

is given by ∑
all closed strings

Φ
( ) ∣∣ 〉

. (5)

Then the second rule relates the amplitudes of close
strings in the ground state as we change the strings lo-
cally:

Φ
( )

=Φ
( )

, Φ
( )

=Φ
( )

,

(6)

In other words, if we locally deform/reconnect the strings
as in Fig. 2, the amplitude (or the ground state wave
function) does not change.

The first rule tells us that the amplitude of a string
configuration only depend on the topology of the string
configuration. Starting from a single loop, using the local
deformation and the local reconnection in Fig. 2, we can
generate all closed string configurations with any number
of loops. So all those closed string configurations have the
same amplitude. Therefore, the local dancing rule fixes
the wave function to be the equal-weight superposition
of all closed strings:

|ΦZ2〉 =
∑

all closed strings

∣∣ 〉
. (7)

In other words, the local dancing rule fixes the global
dancing pattern.

If we choose another local dancing rule, then we will
get a different global dancing pattern that corresponds
to a different topological order. One of the new choices
is obtained by just modifying the sign in eqn. (6):

Φ
( )

=Φ
( )

, Φ
( )

=− Φ
( )

.

(8)

We note that each local reconnection operation changes
the number of loops by 1. Thus the new local dancing
rules gives rise to a wave function which has a form

|ΦSemi〉 =
∑

all closed strings

(−)Nloops
∣∣ 〉

, (9)

where Nloops is the number of loops. The wave func-
tion |ΦSemi〉 corresponds to a different global dance and
a different topological order.

2. Emergence of Fermi and fractional statistics

Why the two wave functions of non-oriented strings,
|ΦZ2
〉 and |ΦSemi〉 (see eqn. (7) and eqn. (9)), have topo-

logical orders? This is because the two wave functions



7

give rise to non-trivial topological properties. The two
wave functions correspond to different topological orders
since they give rise to different topological properties. In
this section, we will discuss two topological properties:
emergence of fractional statistics and, in next section,
topological degeneracy on torus.

The two topological states in two dimensions contain
only closed strings, which represent the ground states. If
the wave functions contain open strings (i.e. have non-
zero amplitudes for open string states), then the ends of
the open strings will correspond to point-like topological
excitations above the ground states. Although an open
string is an extended object, its middle part merge with
the strings already in the ground states and is unobserv-
able. Only its two ends carry energies and correspond to
two point-like particles.

We note that such a point-like particle from an end of
string cannot be created alone. Thus an end of string cor-
respond to a topological point defect, which may carry
fractional quantum numbers. This is because an open
string as a whole always carry non-fractionalized quan-
tum numbers. But an open string corresponds to two
topological point defects from the two ends. So we cannot
say that each end of string also carries non-fractionalized
quantum numbers. Some times, they do carry fraction-
alized quantum numbers.

Let us first consider the defects in the |ΦZ2
〉 state. To

understand the fractionalization, let us first consider the
spin of such a defect, to see if the spin is fractionalized
or not (Fidkowski et al., 2009). Note that, here the spin
is not the spin of the spin-1/2 that form our model. The
spin is the orbital angular momentum of an end. We use
different fonts to distinguish them. An end of string can
be represented by∣∣ 〉

def
=
∣∣ 〉+

∣∣ 〉
+
∣∣ 〉+ .... (10)

which is an equal-weight superposition of all string states
obtained from the deformations and the reconnections of

.

Under a 360◦ rotation, the end of string is changed to∣∣ 〉
def

, which is an equal weight superposition of all string

states obtained from the deformations and the reconnec-

tions of . Since
∣∣ 〉

def
and

∣∣ 〉
def

are always different,∣∣ 〉
def

is not an eigenstate of 360◦ rotation and does not

carry a definite spin.
To construct the eigenstates of 360◦ rotation, let us

make a 360◦ rotation to
∣∣ 〉

def
. To do that, we first

use the string reconnection move in Fig. 2, to show that∣∣ 〉
def

=
∣∣ 〉

def
. A 360◦ rotation on

∣∣ 〉
def

gives us
∣∣ 〉

def
.

We see that the 360◦ rotation exchanges
∣∣ 〉

def
and∣∣ 〉

def
. Thus the eigenstates of 360◦ rotation are given

(a) (b) (c) (d) (e)

FIG. 3 Deformation of strings and two reconnection moves,
plus an exchange of two ends of strings and a 360◦ rotation
of one of the end of string, change the configuration (a) back
to itself. Note that from (a) to (b) we exchange the two ends
of strings, and from (d) to (e) we rotate of one of the end
of string by 360◦. The combination of those moves do not
generate any phase.

by
∣∣ 〉

def
+
∣∣ 〉

def
with eigenvalue 1, and by

∣∣ 〉
def
−
∣∣ 〉

def

with eigenvalue −1. So the particle
∣∣ 〉

def
+
∣∣ 〉

def
has a

spin 0 (mod 1), and the particle
∣∣ 〉

def
−
∣∣ 〉

def
has a spin

1/2 (mod 1).
If one believes in the spin-statistics theorem, one may

guess that the particle
∣∣ 〉

def
+
∣∣ 〉

def
is a boson and the

particle
∣∣ 〉

def
−
∣∣ 〉

def
is a fermion. This guess is indeed

correct. Form Fig. 3, we see that we can use deformation
of strings and two reconnection moves to generate an
exchange of two ends of strings and a 360◦ rotation of
one of the end of string. Such operations allow us to
show that Fig. 3a and Fig. 3e have the same amplitude,
which means that an exchange of two ends of strings
followed by a 360◦ rotation of one of the end of string
do not generate any phase. This is nothing but the spin-
statistics theorem.

The emergence of Fermi statistics in the |ΦZ2
〉 state of

a purely bosonic spin-1/2 model indicates that the state
is a topologically ordered state. We also see that the

|ΦZ2
〉 state has a bosonic quasi-particle

∣∣ 〉
def

+
∣∣ 〉

def
,

and a fermionic quasi-particle
∣∣ 〉

def
−
∣∣ 〉

def
. The bound

state of the above two particles is a boson (not a fermion)
due to their mutual semion statistics. Such quasi-particle
content agrees exactly with the Z2 gauge theory which
also has three type of topological excitations, two bosons
and one fermion. In fact, the low energy effective theory
of the topologically ordered state |ΦZ2〉 is the Z2 gauge
theory and we will call |ΦZ2

〉 a Z2-topologically ordered
state (Read and Sachdev, 1991; Wen, 1991a).

Next, let us consider the defects in the |ΦSemi〉 state.
Now ∣∣ 〉

def
=
∣∣ 〉+

∣∣ 〉
−
∣∣ 〉+ .... (11)

and a similar expression for
∣∣ 〉

def
, due to a change of

the local rule for reconnecting the strings (see eqn. (8)).
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TABLE I Topologically ordered states with long range entanglement. Here 1B refers to 1-dimensional bosonic system,
2F 2-dimensional fermionic system, etc . The second column indicates the presence of fractionalized point-like excitations.
The third column indicates the presence of non-abelian statistics. The fourth column indicates whether the boundary must be
gapless, or can be gapped, or for some must be gapless and for others can be gapped.

Topological order Frac. exc. Non-ab. sta. Boundary Classification/comment

1F Majorana chain No Not any Maj. zero mode Z2 (Zf2 symm. breaking)

2B bosonic E8 state No No Gapless Invertible topological order

2B chiral spin liquid Semion No Gapless Spin quantum Hall state

2B Z2-spin liquid Fermion No Gapped Z2-gauge/toric-code

2B double-semion state Fermion No Gapped Z2-Dijkgraaf-Witten

2B string-net liquids Yes Yes Gapped Unitary fusion category

2F p+ ip fermion paired state No No Gapless Invertible topological order

2F integer quantum
Hall states

No No Gapless Z (invertible topological order)

2F Laughlin states
2F Halperin states

Yes No Gapped/gapless K-matrix (symmetric, integral)

2F χ1χ
2
2 state Yes SU(2)2 Gapless Cannot do universal TQC

2F χ3
2 state Yes SU(3)2 Gapless Can do universal TQC

2F Pfaffian state Yes SU(2)2 Gapless Cannot do universal TQC

2F Z3 parafermion state Yes SU(2)3 Gapless Can do universal TQC

2F string-net liquids Yes Yes Gapped Unitary super fusion category

3+1D superconductor Fermion Not any Gapped With dynamical U(1) gauge field

3B string-net liquids Fermion Not any Gapped Symmetric fusion category

3B Walker-Wang model Fermion Not any Gapped Pre-modular tensor category

3B all-boson topo. order Boson Not any Gapped Pointed fusion 2-category

Using the string reconnection move in Fig. 2, we find

that
∣∣ 〉

def
= −

∣∣ 〉
def

. So a 360◦ rotation, changes

(
∣∣ 〉

def
,
∣∣ 〉

def
) to (

∣∣ 〉
def
,−
∣∣ 〉

def
). We find that

∣∣ 〉
def

+

i
∣∣ 〉

def
is the eigenstate of the 360◦ rotation with eigen-

value − i , and
∣∣ 〉

def
− i

∣∣ 〉
def

is the other eigenstate

of the 360◦ rotation with eigenvalue i . So the parti-

cle
∣∣ 〉

def
+ i

∣∣ 〉
def

has a spin −1/4, and the particle∣∣ 〉
def
− i
∣∣ 〉

def
has a spin 1/4. The spin-statistics theo-

rem is still valid for |ΦSemi〉def state, as one can see form

Fig. 3. So, the particle
∣∣ 〉

def
+ i

∣∣ 〉
def

and particle∣∣ 〉
def
− i
∣∣ 〉

def
have fractional statistics with statistical

angles of semion: ±π/2. Thus the |ΦSemi〉 state contains

a topological order. We will call such a topological order
a double-semion topological order (Freedman et al.,
2004; Levin and Wen, 2005).

It is amazing to see that the long-range quantum en-
tanglement in string liquid can gives rise to fractional
spin and fractional statistics, even from a purely bosonic
model. Fractional spin and Fermi statistics are two of
most mysterious phenomena in natural. Now, we can
understand them as merely a phenomenon of long-range
quantum entanglement. They are no longer mysterious.

3. Topological degeneracy

The Z2-topological order has another important topo-
logical property: topological degeneracy (Read and
Chakraborty, 1989; Wen, 1991a). Topological degener-
acy is the ground state degeneracy of a gapped many-
body system that is robust against any local perturba-
tions as long as the system size is large (Wen and Niu,
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FIG. 4 On a torus, the closed string configurations can be
divided into four sectors, depending on even or odd number
of strings crossing the x- or y-axes.

1990). It implies the presence of topological order.

Topological degeneracy can be used as protected qubits
which allows us to perform topological quantum compu-
tation.(Kitaev, 2003) It is believed that the appearance
of topological degeneracy implies the topological order
(or long-range entanglement) in the ground state. Many-
body states with topological degeneracy are described by
topological quantum field theory at low energies.

The simplest topological degeneracy appears when we
put topologically ordered states on compact spaces with
no boundary. We can use the global entanglement pat-
tern to understand the topological degeneracy. We know
that the local rules determine the global entanglement
pattern. On a sphere, the local rules determine a unique
global entanglement pattern. So the ground state is non-
degenerate. However on other compact spaces, there can
be several global entanglement patterns that all satisfy
the same local rules. In this case, the ground state is
degenerate.

For the Z2-topological state on torus, the local rule re-
late the amplitudes of the string configurations that differ
by a string reconnection operation in Fig. 2. On a torus,
the closed string configurations can be divided into four
sectors (see Fig. 4), depending on even or odd number
of strings crossing the x- or y-axes. The string reconnec-
tion move only connect the string configurations among
each sector. So the superposition of the string configu-
rations in each sector represents a different many-body
wave functions. Since those many-body wave functions
are locally indistinguishable, they correspond to differ-
ent degenerate ground states. Therefore, the local rule
for the Z2-topological order gives rise to four fold degen-
erate ground state on torus.

Similarly, the double-semion topological order also
gives rise to four fold degenerate ground state on torus.

G. Table of some topological orders

In table I, we list some topological orders in bosonic
and fermionic systems in various dimensions. The sim-
plest one in the table is the 2+1D IQH states (von Kl-
itzing et al., 1980). Some entries in table I have not been
discussed above. In particular, the string-net liquids
for bosonic systems (Levin and Wen, 2005) and fermionic
systems (Bhardwaj et al., 2016; Gu et al., 2015) allow
us to obtain all 2+1D topological orders with gappable

boundary (Kitaev and Kong, 2012; Lan and Wen, 2014).
It reveals that 2+1D bosonic topological orders are classi-
fied by unitary fusion categories (Etingof et al., 2005),
while 2+1D fermionic topological orders are classified
by unitary super fusion categories. For more gen-
eral 2+1D bosonic topological orders, it was conjectured
(Wen, 1990b), and became more and more clear (Keski-
Vakkuri and Wen, 1993; Kitaev, 2006; Rowell et al., 2009;
Wen, 2016), that they are classified by the modular
matrices S, T (which encode unitary modular ten-
sor categories (MTC) (Moore and Seiberg, 1989)) plus
the chiral central charge c of the edge states. Physically,
the so called MTC can be viewed as a set of topologi-
cal excitations, together with the data that describes the
fusion and braiding of those excitations.

Many topological orders have fractionalized excitations
(see the second column of table I), some 2+1D topo-
logical orders even have non-abelian excitations (see the
third column of table I). In 1+1D fermion systems and
2+1D boson/fermion systems, there are even topological
orders that have no fractionalized excitations (the sec-
ond column with an “No” entry). Those topological or-
ders are called invertible topological orders (Freed, 2014;
Kapustin, 2014a; Kong and Wen, 2014), and their non-
trivialness is reflected in their non-trivial boundary states
which has a gravitational anomaly (Kong and Wen, 2014;
Wen, 2013a).

Regarding Pt.8 in Sec. II, we note that the fermions
are fractionalized topological excitations in bosonic sys-
tems. But they are local non-topological excitations in
fermionic systems. For example Majorana fermions
are local non-topological excitations in fermionic super-
conductor (with spin-orbital coupling and no dynam-
ical U(1) gauge field), since they are antiparticles of
themselves. Therefore, Majorana fermions are indeed
fermions with Fermi statistics. They are not particles
with non-abelian statistics. In fact, Majorana fermions
are the familiar Bogoliubov quasiparticles in supercon-
ductors which were discovered long time ago. So what
people are looking for, in the intensive experimental
search, is not the Majorana fermion first introduced by
Majorana, but instead Majorana zero mode, that can
appear, for example, at the end of an 1D p-wave super-
conductor (Kitaev, 2001), or at the center of a vortex in
a 2D p+ ip fermion paired state (Read and Green, 2000;
Senthil et al., 1999). Majorana zero mode is not Majo-
rana fermion. In fact, it is not even a particle. It is a
property of a particle, just like the mass is a property of
a particle. If the mobile particle carries a Majorana zero
mode, then the particle will have a non-abelian statistics
(Ivanov, 2001). So one should not mix Majorana zero
mode with Majorana fermion.

We also like to mention that the SU(2)2-type of non-
abelian statistics in the χ1χ

2
2 FQH state and the Pfaffian

state contain a non-abelian quasiparticle that carries an
Majorana zero mode. Such a particle has an internal
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degrees of freedom of half of a qubit (i.e. quantum di-
mension d =

√
2).11

Last, this paper only discusses topological phases at
zero temperature. Phases beyond Landau symmetry
breaking order also exist for T 6= 0, which are not re-
viewed here since they requires a different theoretical
framework.

IV. SPT STATES: NON-TRIVIAL SYMMETRIC
PRODUCT STATES

One expects gapped product states that have neither
symmetry breaking order nor topological order to be triv-
ial, in the sense that all those states belong to one single
phase. In this section, we will see that in fact those states
can belong to several different phases if there is a sym-
metry, and thus can be non-trivial.

A. Gapped integer-spin chain: Haldane phases

The ground state of the SO(3) symmetric anti-
ferromagnetic spin-1/2 Heisenberg chain

H =
∑
i

Si · Si+1 (12)

cannot break the SO(3) spin rotation symmetry due to
quantum fluctuations.(Mermin and Wagner, 1966) What
is the nature of this symmetric ground state? The Beth
ansatz approach, bosonization, and Lie-Schultz-Mattis
theorem (Lieb et al., 1961) all indicate the ground state of
spin-1/2 Heisenberg chain behaves almost like a sponta-
neous SO(3) symmetry breaking state: spin-spin correla-
tion has an slow algebraic decay (in contrast to exponen-
tial decay for a typical disordered system) and the chain
is gapless (as if having an Goldston mode (Goldstone,
1961)). This result led people to believe that all spin-S
chain are also gapless and have algebraic decaying spin-
spin correlation, since for S > 1/2, the spins have even
weaker quantum fluctuations than the spin-1/2 chain,

In 1983, Haldane considered spin fluctuations in 1+1D
space-time that have non-trivial “winding” number in
π2(S2). He realized that the spin configuration with
“winding” number ±1 has a phase factor −1 if the spin
is half-integer and a phase factor 1 if the spin is integer.
So the half-integer spin chain and integer spin chain may
have different dynamics. Haldane conjectured (Haldane,
1983) that the spin chain is gapped if the spin is integer,
despite it has weaker quantum fluctuations than spin-1/2
chain. If the spin is half-integer, then the spin chain is

11 An physical explanation of quantum dimension can be found in
Kitaev (2006) and Wen (2016).

Rep.

pRep.

spin−1/2 sitespin−singlet

τ
a b

d c

(a) (b)

T

T’

FIG. 5 (a) A tensor network representation of the partition
function Z = Tre−τH obtained from path integral for a 1+1D
quantum system. Each vertex is a rank-4 tensor Tabcd where
each leg corresponds to an index. The range of the index is
the dimension of the tensor T . The partition function Z is
obtained as a product of all tensors, with the common indices
on the edges linking two vertices summed over (which corre-
sponds to the path integral). We can combine four tensors
T to form a new tensor T ′ and obtain a new coarse-grained
tensor network that produces the same partition function Z.
After many coarse-graining iterations, we obtain a fixed-point
tensor T fix that characterizes a quantum phase. (b) The fixed-
point tensor of spin-1 Heisenberg chain has a corner-double-
line structure. It gives rise to the fixed-point wave function
of an ideal SO(3)-SPT state.

gapless. The gapped ground state of an integer spin chain
is called a Haldane phase. At that time, people believed
the Haldane phase to be a trivial disordered phase, just
like the product state formed by spin-0 on each site.

However, such an opinion was put in doubt by an exact
soluble integer spin chain. It was shown that, for the ex-
actly soluble model (Affleck et al., 1988a), the boundary
of the integer spin-S chain carries degenerate degrees of
freedom of spin-S/2. Since the gapless edge excitations
for 2+1D FQH states implies a bulk topological order,
people start to wonder that maybe the similar picture ap-
plies to one lower dimensions: the gapped 1+1D ground
states of integer spin chains also have topological orders
due to the gapless spin-S/2 boundary.

But this point of view seems incorrect. The gapless
boundary of a 2+1D chiral topological order is actually
a bulk property, since gaplessness is robust against any
modifications on the boundary. This is why the gap-
less boundary reflects a bulk topological order. However,
gapless spin-S/2 boundary of spin-S chain can be eas-
ily gapped by applying a Zeeman field at the boundary.
This seems to suggest that the gapped ground state of
integer spin chain to be trivial.

B. Haldane phases are topological only for odd-integer-spin

What is the nature of the Haldane phase for in-
teger spin-S chain? Topological or not topologi-
cal? This question bothered me for 15 years, un-
til we used tensor-entanglement-filtering renormalization
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(TEFR) approach (see Fig. 5a) to study spin-1 XXZ
chain (Gu and Wen, 2009):

H =
∑
i

JSi · Si+1 + U(Szi )2 (13)

Unlike density matrix renormalization group (DMRG)
approach (White, 1992), TEFR approach gives us a sim-
ple fixed-point tensor. We found that the fixed-point
tensor has a corner-double-line structure (with degener-
ate weights) when U ≈ 0 (see Fig. 5b), and the fixed-
point tensor becomes a dimension-1 trivial tensor when
U � J (see Fig. 5a where the indices of T are all equal
to 1).

The ground state for U � J is a product state of
|Szi = 0〉 which is consistent with trivial dimension-1
fixed-point tensor. The corner-double-line fixed-point
tensor for U = 0 corresponds to a fixed-point wave func-
tion that contains 4 states per site (increased from 3
states of spin-1, see Fig. 5b). The 4 states form the
3⊕ 1 dimensional representation of SO(3), which can be
viewed as two spin-1/2 representations (the projective
representations of SO(3))

3⊕ 1 = 2⊗ 2. (14)

In such a fixed-point wave function, the two spin-1/2’s
on neighboring sites form a spin singlet. The total fixed-
point wave function is the product state of those spin
singlets (see Fig. 5b). We discovered that, just like the
U � J limit, the spin-1 Haldane phase is also a short-
range entangled state equivalent to a product state. It is
not topological despite the fractionalized spin-1/2 bound-
ary.

However, non-topological does not mean trivial. We
find that, for spin-1 chain, the corner-double-line struc-
ture even appear for the follow generic Hamiltonian

H =
∑
i

[JSi · Si+1 + U(Szi )2] (15)

+
∑
i

BxS
x
i +BzS

z
i +B′x[Sxi (Szi+1)2 + Sxi+1(Szi )2]

when U,Bx,z, B
′
x ≈ 0. This suggests that the corner-

double-line structure is stable against any perturbations
with time reversal symmetry T ∗ (which is the usual time
reversal plus a 180◦ spin-Sy rotation) and spacial reflec-
tion symmetry12. On the other hand, the corner-double-
line structure can be destroyed by perturbations that
break those symmetries. This suggest that the spin-
1 Haldane phase, characterized by the corner-double-
line tensor (or the dimmerized fixed-point wave func-
tion) is a stable phase, distinct from the product state

12 In fact, the corner-double-line structure is stable against any per-
turbations with time reversal symmetry T ∗ or spacial reflection
symmetry (Pollmann et al., 2012).

of |Sz = 0〉’s, as long as we do not break those sym-
metries. We conclude that the Haldane phase of spin-
1 chain is non-trivial despite it is a product state that
does not spontaneously break any symmetry! This is
a new state of matter and we propose the concept of
symmetry protected trivial (SPT) order to describe
this new state of matter. SPT orders is characterized
by the corner-double-line fixed-point tensors with degen-
erate weights (or the dimmerized fixed-point wave func-
tion). Later, Pollmann et al. (2010) also showed that
SPT orders can be characterized via the entanglement
spectrum. It is interesting to see that even product states
without spontaneous symmetry breaking can be non-
trivial. However, the spin-1 Haldane phase at that time
has already been widely referred as a topological phase.
So we gave the term “SPT order” another representation
“symmetry protected topological order”13.

It is very important to regard SPT states as short-
range entangled, not topological (in the sense of orange-
vs.-donut). This correct way of thinking leads to a com-
plete classification of all 1D gapped interacting phases
(Chen et al., 2011a; Schuch et al., 2011), in terms of pro-
jective representations of the symmetry group(Pollmann
et al., 2010) one year later and the systematic group co-
homology theory of SPT phases in higher dimensions
two years later (Chen et al., 2013b). In particular,
the projective-representation classification of 1+1D SPT
phases indicates that only the odd-integer-spin Haldane
phases are the SO(3)-SPT phases, while the even-integer-
spin Haldane phases are not the SO(3)-SPT phase just
like the product state of spin-0’s (Pollmann et al., 2012).
So Haldane phases can be topological or non-topological
depending on the spin to be odd or even integer. This
explains the Pt.1 in Sec. II.

C. An Z2-SPT state in 2+1D

After realizing SPT states to be product states, it be-
comes easy to construct SPT states in any dimension.
We just need to write a product state in some compli-
cated form, and then try to find all the twisted way to
implement the symmetry.

First, we need to introduce the concept of on-site
symmetry, which is usually referred as global sym-
metry. Relative to the tensor product decomposition
Htot =

⊗
iHi of the total Hilbert space, a symmetry

transformation is on-site if it has a tensor product de-
composition U =

∏
i Ui, where Ui is the symmetry trans-

formation acting on Hi. The notion of on-site symmetry
is stressed in Chen et al. (2011a,c), which is a key to
understand SPT states.

13 After long debates, we eventually used the second less-accurate
representation in our paper.
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FIG. 6 The filled dots are qubits (or spin-1/2’s). A big
disk (with four dots inside) represents a site. The dash line
connecting dots 1, 2 represents the phase factor CZ12 in the
Z2 global symmetry transformation. In the Z2-SPT state, the
four spins in a plaquette (connected by solid lines that form
a square) is described by 1√

2
(| ↑↑↑↑〉+ | ↓↓↓↓〉).

The first lattice model that realizes (Chen et al., 2011c)
a 2+1D SPT state has four qubits (or spin-1/2 spins) on
each site (see Fig. 6). A complicated product state is
given by

|Ψ0〉 =
⊗

plaquette

1√
2

(| ↑↑↑↑〉+ | ↓↓↓↓〉) (16)

where 1√
2
(| ↑↑↑↑〉+ | ↓↓↓↓〉) is the wave function for the

four spins in the plaquette (see Fig. 6). Note that the
four spins in 1√

2
(| ↑↑↑↑〉 + | ↓↓↓↓〉) are on four different

sites.
One way to introduce a Z2 symmetry is to define the

transformation on each site to be the spin flipping:

UX = σx1σ
x
2σ

x
3σ

x
4 , U2

X = 1. (17)

Obviously, |Ψ0〉 is invariant under such a spin flipping Z2

transformation. But for such a Z2 symmetry, |Ψ0〉 is not
a SPT state.

There is another way to define Z2 symmetry (on each
site, see Fig. 6), but this time with a twist:

UCZX = UXUCZ , (18)

where the ±1 phase twist, UCZ , is a product of CZij that
acts on the two spins at i and j: CZij = −1 when acts
on | ↓↓〉 and CZij = 1 otherwise. More specifically

UCZ =
∏

j=1,2,3,4

CZj,j+1

=
∏

j=1,2,3,4

1 + σzj+1 + σzj − σzj+1σ
z
j

2
, (19)

where j = 5 is the same as j = 1. It is a non-trivial ex-
ercise but one can indeed check that U2

CZX = 1. |Ψ0〉 is
invariant under such a twisted spin flipping Z2 transfor-
mation since all the ±1 CZij factors cancel each other.

FIG. 7 A 2D lattice on a torus. A g ∈ G transformation is
performed on the sites in the shaded region. The g transfor-
mation changes the Hamiltonian term on the triangle (ijk)
across the boundary from Hijk to Hg

ijk.

FIG. 8 Three identical monodromy defects (three lower tri-
angles) from G = Z3 = {0, 1, 2} symmetry twist. The think
lines are 1-cuts, and the thick line is a 2-cut. The g-cuts
can be relocated by local Z3 transformations as in Fig. 7.
The single upper triangle can also be relocated by local Z3

transformations. Thus it is not a monodromy defect.

For the new Z2 symmetry, |Ψ0〉 is an SPT state (Chen
et al., 2011c). In fact, one can construct an exactly sol-
uble lattice Hamiltonian, which is symmetric under the
new symmetry and has |Ψ0〉 as its unique gapped group
state.

The above construction has been generalized to higher
dimensions and arbitrary compact symmetry group
via group cohomology theory: for each element in
Hd+1(G; R/Z), we can construct an d + 1D SPT state
protected by G-symmetry. But one thing remain un-
clear: how to see those constructed state to be a G-SPT
state?

D. Probing SPT orders

An SPT state is almost trivial. For example, all the
correlations are short ranged and featureless, as well as
all the bulk excitations are local excitations without frac-
tionalization. So, it is not easy to see the non-trivialness
of a SPT state. One way to reveal the non-trivialness is
to probe the boundary (Chen et al., 2011c):
The boundary of a SPT state cannot be gapped and non-
degenerate if the symmetry is not broken explicitly.
This because the effective symmetry on the low energy
boundary degrees of freedom must be non-on-site, and
the non-on-site property for the boundary theory exactly
corresponds to and classify the anomaly in global symme-
try (Wen, 2013a). This implies the boundary of a SPT
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TABLE II SPT states with short-range entanglement. Here 1B refers to 1-dimensional bosonic system, 2F 2-dimensional
fermionic system, etc . Also T represents the time reversal symmetry, which generates the group ZT2 for bosonic systems, and
ZT4 for electron systems. This is because T 2 = (−)NF is the fermion-number-parity operator for electron systems. The last
column describes the degenerate state at the end of 1D SPT phases, or other SPT-probes for higher dimensions.

SPT order Symm. Classification Chain-end/SPT-probe

1B spin-1 Haldane phase SO(3) H2(SO(3),R/Z) = Z2 Spin-1/2

1B spin-1 Haldane phase ZT2 H2(ZT2 ,R/Z) = Z2 Kramer doublet

1B symm. gapped phases G H2(G,R/Z) Proj. rep. of G

1F ins. w/ coplanar spin order Uf (1) o ZT2 Z2 Kramer doublet

1F topo. superconductor ZT4 Z2 charge-0 Kramer doublet

1F Gf -SPT phases Gf H2(Gf ,R/Z) Proj. rep. of Gf

2B Zn-SPT states Zn H3(Zn,R/Z) = Zn
Zn-dislocation has frac.

statistics/Zn-charge

2B SPT insulator U(1) H3(U(1),R/Z) = Z Even-int. Hall conductance

2B T -symm. SPT insulator U(1) o ZT2 H3(U(1) o ZT2 ,R/Z) = Z2 π-flux has Kramer doub.

2B spin quantum Hall states SO(3) H3(SO(3),R/Z) = Z Quantized spin Hall cond.

2B T -symm. SPT spin liquid ZT2 × SO(3) H3(ZT2 × SO(3),R/Z) = Z2

2B G-SPT states G H3(G,R/Z)

2F quantum spin Hall states Uf (1)× Uf (1) Z Spin-charge Hall cond.

2F topological insulator [Uf (1) o ZT4 ]/Z2 Z2
π-flux carries

charge-0 Kramer doublet

2F topo. superconductor ZT4 Z2
π-flux carries

charge-even Kramer doub.

2F Gf -SPT states Gf without T
Chiral central charge c = 0

modular extensions of sRep(Gf )

3B T -symm. SPT states ZT2 H4(ZT2 ,R/Z)⊕ Z2 = Z2
2

3B T -symm. SPT insulator U(1) o ZT2 H4(U(1) o ZT2 ,R/Z)⊕ Z2 = Z3
2 A monople is a fermion

3B T -symm. SPT spin liquid ZT2 × SO(3) H4(ZT2 × SO(3),R/Z)⊕ Z2 = Z4
2

3B G-SPT states G without T H4(G,R/Z)

3B G-SPT states G with T H4(G,R/Z)⊕ Z2

3F topological insulator [Uf (1) o ZT4 ]/Z2 Z2
A monople carries
half-integer charge

3F topo. superconductor ZT4 Z16

state to be either symmetry breaking, gapless, and/or
topologically ordered.

Another way to detect the non-trivialness of a SPT
state is to twist the symmetry and measure the ground
state response under the twisted symmetry (Levin and
Gu, 2012). To understand how to twist the symme-
try, let us assume that a 2D lattice Hamiltonian for a
SPT state with symmetry G to have a form (see Fig. 7)
H =

∑
(ijk)Hijk, where

∑
(ijk) sums over all the trian-

gles (ijk) in Fig. 7 and Hijk acts on the states on site-i,
site-j, and site-k. H and Hijk are invariant under the
global G transformations.

Let us perform a local g ∈ G transformation which only
acts on the sites in the shaded region in Fig. 7. Such a
local transformation will change H to H̃. However, only
the Hamiltonian terms on the triangles (ijk) across the
boundary of the shaded region are changed from Hijk to
Hg
ijk. Since the G transformation is an unitary transfor-

mation, H and H̃ have the same energy spectrum. In
other words the boundary (called the g-cut) in Fig. 7
(described by Hg

ijk’s) does not cost any energy.

Now let us consider a Hamiltonian on a lattice with
some g-cuts (see Fig. 8) H̃ =

∑
(ijk)

′
Hijk +

∑g-cut
(ijk) H

g
ijk,
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where
∑′

(ijk) sums over the triangles not on the cut and∑g-cut
(ijk) sums over the triangles that are divided into dis-

connected pieces by the g-cut. The triangles at the ends
of the cut have no Hamiltonian terms. We note that the
cut carries no energy. Only the ends of cut cost energies.
So the Fig. 8 corresponds to three monodromy defects.
If the g is a generator of G, then the end of g-cut will be
called elementary monodromy defect. We like to point
out that dislocation in a crystal is an example of mon-
odromy defect of translation symmetry. It has been used
to detect SPT phases protected by translation symmetry
(the so called weak topological phases) (Ran et al., 2009;
Slager et al., 2014; Teo and Kane, 2010). We also like
to point out that the above procedure to obtain H̃ is ac-
tually the “gauging” of the G symmetry (Levin and Gu,
2012). H̃ is a gauged Hamiltonian that contain three G
vortices at the ends of the cut.

Using the above monodromy defects, we can detect the
Zn-SPT order (Wen, 2017):
n identical elementary monodromy defects in a 2+1D
Zn-SPT state on a torus always carry a total Zn-charge
m, if the Zn SPT state is described by the mth cocycle in
H3(Zn,R/Z).
The total Zn-charge of n identical monodromy defects
allows us to completely characterize the 2+1D Zn SPT
states. Another way to probe the Zn-SPT order is to use
the statistics of the monodromy defects (Levin and Gu,
2012):
The statistical angle θM of an elementary monodromy de-
fect satisfies mod( θM2π ,

1
n ) = m

n2 for a Zn-SPT state char-
acterized by m ∈ H3(Zn,R/Z) = Zn.

This way of probing an SPT state is like using the
modular extensions of Rep(G) to probe the G-SPT order
(Lan et al., 2016, 2017b). (The so called modular exten-
sion can be viewed as including all the monodromy de-
fects and considering their statistics.) It has been shown
that the modular extensions of Rep(G) one-to-one cor-
respond to the elements in H3(G,R/Z) (Drinfeld et al.,
2007; Lan et al., 2016). So the modular extensions can
fully characterize H3(G,R/Z). In other words, measur-
ing the abelian and/or non-abelian statistics among the
monodromy defects and the local excitations described
by Rep(G), allows us to fully detect the G-SPT order
in 2+1D for any unitary symmetry G. The similar idea
also applies to 3+1D SPT states (Lan et al., 2017a; Wang
and Levin, 2014). If the symmetry group contain U(1),
one can also use the U(1) monopoles to probe the 3+1D
SPT states (Metlitski et al., 2013; Wen, 2014; Ye and
Wen, 2014). A systematic discussion to probe all SPT
orders in any dimensions can be found in Hung and Wen
(2014).

E. Table of some SPT states

In table II, we list bosonic/fermionic SPT states for
various symmetries and in various dimensions. For
bosonic SPT states with on-site symmetry G, a par-
tial classification was first given by the group cohomol-
ogy of the symmetry group Hd+1(G,R/Z) where d is
the space dimension (Chen et al., 2013b). Later, it
was pointed out the group cohomology description is
incomplete when d = 3 and when G contains time re-
versal symmetry (Vishwanath and Senthil, 2013; Wang
and Senthil, 2013). Then, it was realized that bosonic
SPT states can all be classified by generalized group co-
homology Hd+1(G × SO∞,R/Z)/Γ. This implies that
in 1+1D and 2+1D, bosonic SPT states are classified
by H2(G,R/Z) and H3(G,R/Z) respectively. In 3+1D,
bosonic SPT states are classified by H4(G,R/Z) if the
on-site symmetry G does not contain time reversal, and
by H4(G, (R/Z)T ) ⊕ Z2 if G contains time reversal. Re-
cent work also generalizes the cohomology classification
of bosonic SPT states to translation and point-group
symmetries (Hermele and Chen, 2016; Hsieh et al., 2014;
Lake, 2016; Song et al., 2017; Thorngren and Else, 2016;
You and Xu, 2014).

For non-interacting fermionic SPT states (Bernevig
et al., 2006; Fu et al., 2007; Kane and Mele, 2005b; Moore
and Balents, 2007; Qi et al., 2008; Roy, 2006), there is
a related classification of non-interacting gapped states
based on K-theory(Kitaev, 2009) or nonlinear σ-model
of disordered fermions (Schnyder et al., 2008) (see Ta-
bles III and IV). But such a classification does not ap-
ply to interacting fermions. For interacting fermionic
SPT states (Wang et al., 2014; Wang and Senthil, 2014),
there is a systematic understanding based on group su-
per cohomology theory (Gaiotto and Kapustin, 2015; Gu
and Wen, 2014; Kapustin and Thorngren, 2017; Wang
and Gu, 2017), if the total symmetry group has a form

Gf = Gb × Zf2 . Here Zf2 is the fermion-number-parity
symmetry which is always present for fermion systems.
Recently, a complete classification for all 2+1D fermionic
SPT states was found for generic on-site symmetry Gf

which does not contain time reversal (Lan et al., 2016):
2+1D fermionic SPT phases are classified by the modular
extensions of sRep(Gf ). Here sRep(Gf ) is the symmetric
fusion category formed representations of Gf where the
representations with non-trivial Zf2 action are fermions.
Last, we would like to mention that, in addition to the
cohomological and categorical approach, there is also a
cobordism approach for bosonic/fermionic SPT states,
which can lead a classifying result for all dimensions
and for some simple symmetries (Kapustin, 2014a,b; Ka-
pustin et al., 2015).

Regarding to Pt.3 in Sec. II, quantum spin Hall effect
refers to quantized transverse Sz-spin current induced by
force acting on electric charges (i.e. a quantized mixed-
electro-spin Hall conductance) (Bernevig and Zhang,
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TABLE III Classification of the gapped phases of noninteracting fermions in d-dimensional space, for some symmetries.
The space of the gapped states is given by Cp+d mod 2, where p depends on the symmetry group. The distinct phases are given
by π0(Cp+d mod 2). “0” means that only trivial phase exist. Z means that nontrivial phases are labeled by nonzero integers

and the trivial phase is labeled by 0. Uf (1) means that the π rotation is (−)NF . Zf4 is generated by C satisfying C2 = (−)NF .
Adapted from Wen (2011).

Symm. group Cp|for d=0 class p\d 0 1 2 3 4 5 6 7 example

Uf (1)

Zf4

U(l+m)
U(l)×U(m)

× Z A 0 Z 0 Z 0 Z 0 Z 0
(Chern)
insulator

supercond.
with collinear

spin order

Uf (1)× ZT2

Zf4 × ZT2
U(n) AIII 1 0 Z 0 Z 0 Z 0 Z

supercond. w/ real pairing
and Sz conserving

spin-orbital coupling

TABLE IV Classification of gapped phases of noninteracting fermions in d spatial dimensions, for some symmetries.
The space of the gapped states is Rp−d mod 8, where p depends on the symmetry. The phases are classified by π0(Rp−d mod 8).

Z2 means that there is one nontrivial and one trivial phases labeled by 1 and 0. Note that
Uf (1)oZT

4 ×Z
f
4

Z2
2

is the symmetry group

generated by time reversal T , charge conjugation c→ iσyc† and charge conservation. Adapted from Wen (2011).

Symm.
group

Uf (1) o ZT
2 ZT

2 × Z
f
2

Zf
2

Z2 × Zf
2

ZT
4

ZT
4 × Z2

[Uf (1) o ZT
4 ]/Z2

[Zf
4 o ZT

4 ]/Z2

Uf (1)oZT
4 ×Z

f
4

Z2
2

SUf (2) SUf (2)×ZT
4

Z2

Rp|for d=0
O(l+m)

O(l)×O(m)
× Z O(n) O(2n)

U(n)
U(2n)
Sp(n)

Sp(l+m)
Sp(l)×Sp(m)

× Z Sp(n) Sp(n)
U(n)

U(n)
O(n)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7
class AI BDI D DIII AII CII C CI
d = 0 Z Z2 Z2 0 Z 0 0 0
d = 1 0 Z Z2 Z2 0 Z 0 0
d = 2 0 0 Z Z2 Z2 0 Z 0
d = 3 0 0 0 Z Z2 Z2 0 Z
d = 4 Z 0 0 0 Z Z2 Z2 0
d = 5 0 Z 0 0 0 Z Z2 Z2

d = 6 Z2 0 Z 0 0 0 Z Z2

d = 7 Z2 Z2 0 Z 0 0 0 Z

Example
insulator

w/ coplanar
spin order

supercond.
w/ coplanar
spin order

supercond.
supercond.

w/ time
reversal

insulator
w/ time
reversal

insulator
w/ time

reversal and
intersublattice

hopping

spin
singlet

supercond.

spin
singlet

supercond.
w/ time
reversal

2006; Kane and Mele, 2005b), while spin quantum Hall
effect refer to quantized transverse Sz-spin current in-
duced by force acting on “Sz-charge” (i.e. a quantized
spin-Hall conductance). They have a vanishing charge-
Hall and thermo-Hall conductances. Under such defini-
tions, the quantum spin Hall states (Bernevig and Zhang,
2006; Kane and Mele, 2005a) and topological insulators
in 2+1D (Kane and Mele, 2005b) (both appear in ta-
ble II) are different fermionic SPT states. They even
have different symmetries: quantum spin Hall states have
[U↑(1) × U↓(1)]f symmetry, while topological insulators
[Uf (1) o ZT4 ]/Z2 symmetry14.

Even though topological insulator arises from the stud-

14 The superscript f means that the U(1) groups contain Zf2 as
a subgroup. U↑,↓(1) is the symmetry of ↑, ↓-spin conservation,

and Uf (1) is the symmetry of charge conservation. ZT4 is the
group generated by time reversal transformation T , that satis-
fies T 2 = (−)NF and (−)NF is the fermion-number-parity. Af-
ter the discovery of the Z2-topological invariant and the 2+1D
topological insulator (Kane and Mele, 2005b), quantum spin Hall
state, some times, was also defined as 2+1D topological insula-

ies of quantum spin Hall effect, it is incorrect to think
topological insulator to be due to quantum spin Hall
effect. In particular, Kane and Mele (2005b), in “Z2

Topological Order and the Quantum Spin Hall Effect”,
concluded that even without quantum spin Hall effect, an
insulator can still be non-trivial. This led to the notion of
topological insulator. This is a very surprising discovery
which started the very active field of topological insula-
tor. Despite the term “Topological Order” in the title,
the topological insulator is a short-range entangled SPT
state. It has no topological order as introduced by Wen
(1990b) and Wen and Niu (1990), which involves long-
range entanglement. This explains the Pt.2 in Sec. II.
Kane and Mele (2005b) only deal with non-interacting
fermions in 2+1D. Soon, it was shown that the 2+1D
topological insulator is stable against weak interactions
(Wu et al., 2006; Xu and Moore, 2006).

tor. Such a quantum spin Hall state has no quantum spin Hall
effect nor spin quantum Hall effect, since even the Sz current is
not conserved.
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With regard to the second part of Pt.2, many popular
articles characterize topological insulator as an insulator
with conducting surface. Such a characterization is in-
correct, since both trivial insulator and topological insu-
lator can some times have conducting surfaces, and other
times have insulating surfaces (for interacting electrons)
(Chen et al., 2013a; Wang et al., 2013). Maybe it is more
correct to say “topological insulator is an insulator with
conducting surface when electrons interact weakly”. But
even when electrons interact weakly, both trivial insu-
lator and topological insulator can have conducting sur-
faces. We need to measure the surface Fermi surface to be
sure (Hsieh et al., 2008), but it does not work for 2+1D
topological insulator. So a more accurate characteriza-
tion of 2+1D topological insulator is that the charge-0
time-reversal symmetric π-flux must be a Kramer dou-
blet (Qi and Zhang, 2008; Ran et al., 2008).

V. TOWARDS A CLASSIFICATION OF ALL GAPPED
PHASES

Only for a few times in history, we have completely
classified some large class of matter states. The first time
is the classification of all spontaneous symmetry breaking
orders, which can be classified by a pair of groups:

(GΨ ⊂ GH), (20)

where GH is the symmetry group of the system and GΨ,
a subgroup of GH , is the symmetry group of the ground
state. This includes the classification of all 230 crystal
orders in 3-dimensions.

The second time is the classification of all gapped 1-
dimensional quantum states: gapped 1-dimensional quan-
tum states with on-site symmetry GH can be classified by
a triple:(Chen et al., 2011a; Schuch et al., 2011)

[GΨ ⊂ GH ; pRep(GΨ)], (21)

where pRep(GΨ) is a projective representation of GΨ.
The third time is the classification of all gapped quan-

tum phases in 2+1D. Since early on, it was conjectured
that that all 2+1D bosonic topological orders (without
symmetry) are classified by S, T modular matrices (plus
other gauge connections) (Wen, 1990b), or more pre-
cisely by a pair (Kitaev, 2006; Rowell et al., 2009; Wen,
2016):

(MTC, c), (22)

where MTC is a unitary modular tensor category and c
is the chiral central charge c of the edge states. Recently,
the above result is generalized to fermion systems: 2+1D
fermionic topological orders are classified by a triple:(Lan
et al., 2016)

[sRep(Zf2 ) ⊂ BFC; c], (23)

where sRep(Zf2 ) is the symmetric fusion category
(SFC) formed by the representations of the fermion-

number-parity symmetry Zf2 where the non-trivial rep-
resentation is assigned Fermi statistics, and BFC is a
unitary braided fusion category.

For quantum systems with symmetry, we have the
following result: all 2+1D gapped bosonic phases with
a finite unitary on-site symmetry GH , are classified by
(Barkeshli et al., 2014; Lan et al., 2016)

[GΨ ⊂ GH ; Rep(GΨ) ⊂ BFC ⊂ MTC; c], (24)

where Rep(GΨ) is the SFC formed by the representa-
tions of GΨ where all representations are assigned Bose
statistics, and MTC is a minimal modular extension
of the BFC. The above classification include symme-
try breaking orders, SPT orders, topological orders, and
symmetry-enriched topological orders (SET) described
by projective symmetry group (Wen, 2002b). SET or-
ders of time-reversal/reflection symmetry are classified
by Barkeshli et al. (2016). Some more discussions on SET
orders can be found in (Chang et al., 2015; Hung and
Wan, 2013; Hung and Wen, 2013; Lu and Vishwanath,
2013; Mesaros and Ran, 2013; Xu, 2013).

We have a similar result for fermion systems: all 2+1D
gapped fermionic phases with unitary finite on-site sym-
metry GfH are classified by (Lan et al., 2016)

[GfΨ ⊂ G
f
H ; sRep(GfΨ) ⊂ BFC ⊂ MTC; c], (25)

where sRep(GfΨ) is the SFC formed by the represen-

tations of GfΨ where some representations are assigned
Fermi statistics. But we are still struggling to obtain a
systematic theory of topological order in 3+1D, 28 years
after the introduction of the concept.

Those results imply that the long-range entanglement
in 2+1D is described by an unfamiliar mathematics –
tensor category theory. This is the mathematics for
the quantum topology, and it is the quantum topol-
ogy (instead of classical topology) that forms the math-
ematical foundation of topological order (i.e. long-range
entanglement). This explains the title of this paper
“quantum-topological phases of matter”, which really
means “highly-entangled phases of matter”.

I would like to thank Cenke Xu and Xiao-Liang Qi for
many comments. This research was supported by NSF
Grant No. DMR-1506475 and NSFC 11274192.
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