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Abstract

Optical forces on atoms irradiated with a single frequency of light have

been extensively studied for many years, both theoretically and experimen-

tally. The two-level atom model has been used to describe a wide range

of optical force phenomena and to exploit successfully a large range of ap-

plications. New areas of study were opened up when the multiple levels of

real atoms were considered. In contrast, using multi-frequency light on a

single atomic transition has not been studied as much, but using such light

also results in very significant differences in the optical forces. This paper

outlines the basic concepts of forces resulting from the use of two frequency

light (bichromatic force) and swept frequency light (adiabatic rapid pas-

sage force). Both of these forces derive from stimulated processes only, and

as a result can produce coherent exchange of momentum between atoms

and light. The consequences are impressively larger forces with comparably

larger velocity capture ranges, and even atom cooling without spontaneous

emission.
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I. INTRODUCTION

A. Overview of Optical Forces

Ever since the time of Kepler, and perhaps even earlier, there were ideas of radiation

pressure. Optical forces (light pressure) were derived by Maxwell who found that the force

on an object absorbing P watts of light is F = P/c, and on a reflecting object is simply

F = 2P/c. This result survived intact through the development of both relativity and

quantum optics because E = pc = h̄ω, where p is momentum and ω = 2πν is frequency.

Optical forces on macroscopic objects were demonstrated at the start of the 20th century

(Lebedev, 1901; Nichols and Hull, 1903), and on gases by (Lebedev, 1910). Light pressure

was studied in the 1908 Ph.D. thesis of Peter Debye on comet tails.

The use of electromagnetic radiation to exert forces on individual neutral atoms was

first demonstrated in 1933 (Frisch, 1933). The advent of stable, tunable lasers resulted in

dramatic advances since that early time (Picqué and Vialle, 1972; Schieder et al., 1972).

A good review is found in (Mulser, 1985) and in the Nobel Lecture of Phillips (Phillips,

1998). The possibility of using such optical forces for controlling the motion and position

of atoms was discussed in considerable detail in very many of the early papers of Ashkin

(Ashkin, 1970, 1978; Ashkin and Gordon, 1983). The first cooling experiments that made

a major change on the velocity distribution were done on trapped ions (Neuhauser et al.,

1978; Wineland et al., 1978), and later on neutral atoms (Phillips and Metcalf, 1982; Prodan

et al., 1982).

In all of these “traditional” laser cooling studies, the discussion has been limited to the

kinetic effects of a single frequency field on atomic motion. One consequence has been the

elucidation of certain limits of force magnitude and velocity capture range. In this paper, the

discussion is expanded to include the effects of multi-frequency light acting on a single atomic

transition (not a repumping field). The limitations discovered for single frequency light are

now substantially relaxed, resulting in immense forces and velocity capture ranges. Such

huge forces enable extremely short time scales for the desired kinetic changes. Moreover,

these forces are implemented by purely stimulated process - spontaneous emission (SpE) is

not involved. This may have important implications for optical forces on molecules where

SpE could result in their being removed from the process.
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There are two kinds of optical forces in a single frequency light field, one deriving from

absorption followed by SpE called the radiative force, and the other caused by absorption

followed by stimulated emission called the dipole force, usually derived from the spatial

dependence of the light shift (AC Stark shift, see Eq. 2). The boundary between these

can be indistinct, but the nature of the optical force that arises from these two different

processes is quite different. Both kinds have been amply studied and measured, and will be

discussed separately below.

For nearly resonant light (at low intensity), the dominant return to the ground state

following absorption is through SpE. SpE causes the state of the system to evolve from a

pure state into a mixed state, and so the density matrix is needed to describe it properly.

In the simplest case of the absorption of light from a laser beam, the momentum exchange

between the light field and the atoms results in the radiative force F = dp/dt = h̄kγp, where

k ≡ 2π/λ and λ is the optical wavelength, and γp is the excitation rate of the atoms. It

depends on the laser detuning from atomic resonance δ ≡ ω` − ωa, where ω` is the laser

frequency and ωa is the atomic resonance frequency (Metcalf and van der Straten, 1999).

At high intensity, where stimulated emission becomes important, γp saturates at γ/2

where γ ≡ 1/τ and τ is the excited state lifetime. Thus the maximum radiative force is

Frad ≡ h̄kγ/2. Moreover, it’s convenient to define the velocity capture range vc ≡ γ/k,

limited by the Doppler shifts over the velocity range of moving atoms that takes them out

of resonance. At high intensity, the absorption linewidth can be power broadened beyond γ

(Metcalf and van der Straten, 1999).

For larger detuning, the momentum exchange is usually facilitated by stimulated emission.

For a single plane wave there is no momentum exchange from an absorption-stimulated

emission cycle, but in the presence of multiple beams, absorption from one can be followed

by stimulated emission into the other. The momentum difference between these two (usually

embodied in the direction of their ~k-vectors) is imparted to the atoms, and constitutes the

dipole force.

This dipole force is more easily calculated from an energy picture than from a momentum

picture. It derives from the gradient of the light shift in an inhomogeneous light field such

as a standing wave, and is often found by direct solution of the Schrödinger equation for a

two-level atom in a single-frequency plane wave (van der Straten and Metcalf, 2016). The
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solution provides the position-dependent, light-shifted dressed state energies h̄Ω′ (see Eq. 2

below).

The optical forces used for laser cooling require special properties, and these were first

discussed in several references (Hänsch and Schawlow, 1975; Wineland and Dehmelt, 1975;

Wineland et al., 1978). The important criterion for a cooling force is a velocity depen-

dence that is finite over some velocity range but vanishes at other velocities. Thus atoms

accumulate in the region of velocity space where the force is zero or very small.

The mechanisms for the various cooling forces to vanish are completely different: in beam

slowing, the Doppler and Zeeman shifts combine to cause the atoms to drop out of resonance

(Phillips and Metcalf, 1982); in optical molasses, the two opposing forces just balance to

make zero net force on stationary atoms (Chu et al., 1985); in polarization gradient cooling,

the width of the atomic wave packet exceeds the optical wavelength within the standing

waves for velocities below the recoil velocity h̄k/M (Dalibard and Cohen-Tannoudji, 1989);

and with the bichromatic force, there are non-adiabatic processes that cause the average

force to vanish (Corder et al., 2015a,b; Yatsenko and Metcalf, 2004). Note that none of

these mechanisms arise directly from SpE processes.

For all schemes of cooling with the radiative force, both Frad and vc are limited by γ,

which is an inherent property of the atoms being cooled. But the dipole force results from the

sequence of absorption followed by stimulated emission using beams of different ~k-vectors,

so it is not limited by γ and can be � Frad. However, its velocity dependent part is usually

limited to ≤ Frad and the velocity capture range is limited to less than ±vc.

B. Introduction to Two-Level Atoms

The discussions to follow rely on a few basic principles of quantum mechanics that are

reviewed here for completeness and to establish the notation.

The possible states of a free atom are determined by the atomic Hamiltonian H0 whose

stationary eigenfunctions φn have eigenenergies En ≡ h̄ωn. Specifically, H0φn = Enφn.

Shining light on the atoms adds time-dependent terms to the Hamiltonian, denoted by

H′(t), and the result is that the stationary eigenstates are mixed.

Then the wave function is Ψ(t) =
∑
n cn(t)φne

−iωnt, and substitution into the Schrödinger
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equation, followed by some algebraic steps, results in

ċj(t) =
1

ih̄

∑
n

cn(t)H′jn(t)eiωjnt, (1)

where the matrix elements H′jn(t) ≡ 〈φj|H′(t)|φn〉, and the frequency ωjn ≡ ωj − ωn. The

usual textbook approach to Eq. 1 uses perturbation theory, an approximation of very

limited utility in this modern era of laser spectroscopy. It can be avoided because the very

narrow band excitation, characteristic of near-resonant laser light, can connect only two

states (Rabi, 1937) so the sum can be reduced to only two terms and the resulting coupled

differential equations can be solved directly (Allen and Eberly, 1987; Metcalf and van der

Straten, 1999; van der Straten and Metcalf, 2016).

This two-level description can be clarified by replacing the φn’s by |g〉 and |e〉, and by

implementing the electric dipole and the rotating wave approximations. It is convenient to

define the (complex) Rabi frequency that parametrises the coupling between the two states

as Ω ≡ 〈e|e~E · ~r|g〉/h̄. The eigenfunctions Ψ(t) of a two-level atom in a monochromatic field

are often described in terms of the “dressed states” of the atom (Cohen-Tannoudji et al.,

1977; van der Straten and Metcalf, 2016). The energy level diagram consists of the ordinary

atomic energies repeated for each value of the energy of the light field, and therefore vertically

displaced by h̄ω`, as shown schematically in Fig. 1. Attention is focused on the closely

spaced pairs of atomic states coupled by the laser light, consisting of one excited state

and one ground state, denoted by |e, n− 1〉 and |g, n〉 respectively, and now separated by

h̄δ = h̄ωeg ≡ h̄(ω` − ωa). In the presence of the coupling interaction, both |e, n− 1〉 and

|g, n〉 become mixtures of both |e〉 and |g〉.

The coupling interaction splits these eigenstates further apart by the “light shift” to

h̄Ω ′ =
h̄

2

[
δ ±

√
|Ω|2 + δ2

]
(2)

where Ω is the Rabi frequency for a single traveling wave beam. Combining two of them

makes a standing wave with Rabi frequency 2Ω at the antinodes. The shift of each dressed

state, h̄(Ω′ − |δ|)/2, is called the light shift. In a standing wave, these light shifts vary

from zero at the nodes to a maximum at the antinodes. The spatial variation of these

eigenenergies results in the dipole force, found from the gradient of this energy.

7



n-1
1 

n-1

2 

n-1

3 

n-1

4 

n-1

. 

n-1

. 

n-1

. 

n-1

. 

n-1

. 

n-1

. 

 n 

1 

 n 

2 

 n 

3 

 n 

4 

 n 

. 

 n 

. 

 n 

. 

 n 

. 

 n 

. 

 n 

. 

n+1

1 

n+1

2 

n+1

3 

n+1

4 

n+1

. 

n+1

. 

n+1

. 

n+1

. 

n+1

. 

n+1

. 

... ...

A
to

m
ic

 Q
ua

nt
um

 N
um

be
r

Laser Field Quantum Number
FIG. 1 Energy level diagram for the atom plus field Hamiltonian. Each vertical column has the

familiar atomic level scheme, but the columns are vertically displaced by h̄ω` because of the inclu-

sion of additional light energy of h̄ω` in each column. The nearly degenerate pairs are indicated.

(Figure from (Metcalf and van der Straten, 1999).)

C. Energy and Entropy Exchange in Laser Cooling

The idea of “temperature” in laser cooling requires some careful discussion and dis-

claimers. In thermodynamics, temperature is carefully defined as a state variable for a

closed system in thermal equilibrium with a bath. In laser cooling this is clearly not the

case because a sample of atoms is always absorbing and scattering light so the system is not

closed. Thermal equilibrium, of course, requires that there be thermal contact, i.e., heat

exchange, with the environment. Thus a system may very well be in a steady-state situa-

tion, but certainly not in thermal equilibrium, so that the assignment of a thermodynamic

“temperature” is completely inappropriate. Nevertheless, it is convenient to use the label

of ‘temperature’ to describe an atomic sample whose average kinetic energy 〈Ek〉 satisfies
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3kBT/2 = 〈Ek〉, where kB is Boltzmann’s constant.

In laser cooling, only the outgoing light can remove the thermal energy from the atomic

sample. In Doppler molasses or atomic beam slowing, this is enabled because the incident

light is at a frequency ω` below atomic resonance ωa (in the laboratory frame) by δ < 0.

But the spontaneously emitted fluorescence has frequency ωf ≥ ω` for all emission directions

in the lab frame because of the Doppler shifts, thereby mediating a net energy transfer to

the light field. Thus the angular distribution of SpE mediates the energy removal via the

Doppler shifts. Even in more elaborate cooling techniques such as polarization gradient

cooling, ωf ≥ ω` by approximately the light shift difference between different ground state

sublevels.

Moreover, SpE is further required for energy dissipation in laser cooling with single-

frequency light because stimulated emission would always be at the frequency of the exciting

light in both the atomic and laboratory frames, and hence preclude energy exchange. Only

SpE, combined with the Doppler shift resulting from atomic motion, for example, can remove

more energy than was absorbed in the excitation, thereby allowing the energy exchange

required for cooling. Of course, in multi-frequency light, energy can be removed by purely

stimulated processes if absorption of the lower frequency light (i.e. red) is followed by

stimulated emission into the higher frequency field (blue).

Since laser cooling decreases the temperature of a sample of atoms, there is less disorder

and therefore less entropy. The thermodynamic definition of entropy depends on thermal

equilibrium. A statistical definition based on the Shannon or von Neumann formulas that in-

volve the number of distinguishable states accessible to the system was discussed in (Metcalf,

2008) and is used herein.

In the familiar case of single-frequency light, the 4π solid angle of the SpE provides so

very many states accessible to the system of [atoms+light] that it seems natural to assume

that the entropy loss of the cooled atoms is also mediated by this fluorescent light. But

extending this notion to the claim that SpE is therefore required for entropy dissipation

is not necessarily correct, and some examples have been explored in (Metcalf, 2008). Thus

multi-frequency light fields can enable both energy and entropy exchange with stimulated

processes only.
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II. TWO FREQUENCY LIGHT

A. Introduction

Optical forces have been demonstrated with single-frequency light using both radiative

and dipole forces. Descriptions of these forces were originally dominated by the model of

two-level atoms moving in a single-frequency laser field. The topics that could be described

with this primitive model included atomic beam slowing and cooling (Phillips and Metcalf,

1982; Prodan et al., 1982), optical molasses (Chu et al., 1985), optical dipole traps (Chu

et al., 1986), optical lattices (Salomon et al., 1987), band structure effects (Jessen et al.,

1992), and a host of others (Metcalf and van der Straten, 1999).

Soon after the earliest cooling experiments, it became clear that this simple two-level

atom view was inadequate, and that the multiple level structure of real atoms was necessary

to explain some experiments. Perhaps the most dramatic impact came from the discovery

of cooling below the Doppler temperature TD ≡ h̄γ/2kB (Lett et al., 1988). This could

be explained only by polarization gradient cooling in atoms with multiple ground state

sub-levels, possibly enabled by magnetic Zeeman mixing as in (Sheehy et al., 1990), which

is called Sisyphus cooling (Dalibard and Cohen-Tannoudji, 1989; Ungar et al., 1989). In

such sub-Doppler cooling of multi-level atoms, it is the dipole force, usually present in

multiple beams of single-frequency light such as standing waves, that acts on the atoms.

Still, the dissipation of energy and entropy is mediated by SpE, even when stimulated

emission dominates.

Inclusion of the multi-level structure of atoms in the discussion provided a description of

many more phenomena. In addition to the Sisyphus cooling discussed above, there is the

magneto-optical trap (multiple excited state levels) and velocity selective coherent popula-

tion trapping and Raman cooling (multiple ground state levels). Thus the extension from

two-level to multi-level atoms gave an unexpected richness to the topic of atomic motion in

optical fields. It seems natural to expect that a comparable multitude of new phenomena

would be found for the motion of atoms in multi-frequency fields, but this subject has not

received as much attention.

With multi-frequency light, the limitations imposed by γ have been overcome by both

the bichromatic force (Cashen and Metcalf, 2001; Söding et al., 1997; Yatsenko and Metcalf,

2004) and the adiabatic rapid passage force (Lu et al., 2005, 2007; Miao et al., 2007; Stack
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et al., 2011). Such multi-frequency light can produce optical forces on neutral atoms that

are significantly stronger and cover significantly larger spatial and velocity ranges than is

possible with single frequency light. These capabilities arise from the use of stimulated

emission to return excited atoms to their ground state. Such advantageous properties need

to be described in terms of both energy and momentum exchange between the atoms and

the light fields. The energy exchange derives from the frequency difference between the

absorbed and emitted light, and the enhanced momentum exchange derives from the short

time interval (� τ) between the absorption and emission steps.

Excitation and stimulated emission by monochromatic light can exchange at most the tiny

bit of energy associated with the atomic recoil, and this is usually balanced by the changing

light shift if atoms are moving through an inhomogeneous light field (e.g., a standing wave).

By contrast, the use of multi-frequency light can result in absorption of one frequency and

stimulated emission by another frequency (back to the original atomic state, not a Raman-

like transition). Then the atomic energy change is purely kinetic, given in Sec. II.C.2 as

twice the Doppler shift, and can easily be much larger than the recoil energy.

The momentum exchange between the atoms and the light cannot exceed ±2h̄k in a single

absorption-emission cycle, but it produces this large energy exchange because ∆Ek ∝ v, the

atomic velocity (see Sec. II.C.2 below). The force is so large because the time for these

momentum exchanges is so short compared to the excited state lifetime, as in the ordinary

radiative force. Thus the rapid cycling of stimulated emission enables the exchange of many

times 2h̄k during a single atomic lifetime τ .

B. Dipole Force Rectification

Although the non-saturable dipole force is a very attractive tool for manipulating atoms,

its practical utility is limited because its sign alternates on the wavelength scale so its

spatial average vanishes. The desire to extend its spatial range has produced two related

proposals that exploited two-frequency fields to provide spatial rectification of the dipole

force (Kazantsev and Krasnov, 1989; Voitsekhovich et al., 1988). These were among the

first applications of two-frequency light to optical forces.

The first attempt to extend the spatial range of the dipole force was the use of two
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frequencies (driving a single transition, not a repumper). One of these methods, rectification

of the dipole force, uses two standing waves of different frequencies, ω1 and ω2, with the light

from ω1 intense enough to provide a strong dipole force (Grimm et al., 1990). Then the light

shift from ω2, with very different parameters, can be used to spatially modulate the atomic

energy levels and hence the sign of the detuning of ω1, as shown by the dotted curve in Fig.

2a. This modulation reverses the sign of the light shift caused by ω1 with approximately

the same spatial period as the dipole force, and therefore the force is rectified (Fig. 2c).

For the parameters of Fig. 2, the two standing waves maintain their spatial phase relation

within π/20 over many thousands of wavelengths, much more than the λ/2 of the single

frequency dipole force. This scheme was subsequently demonstrated (Grimm et al., 1990;

Grove et al., 1995; Gupta et al., 1993; Voitsekhovich et al., 1989). However, ω1 and ω2

have to be fairly well specified, and therefore the rectification mechanism can tolerate only

small Doppler shifts, putting rather severe limits on the velocity range of this rectified force

(Grimm et al., 1990; Grove et al., 1995; Gupta et al., 1993; Voitsekhovich et al., 1989).

C. The Bichromatic Force

1. Origin of the Force

A second way to extend the spatial range of the dipole force uses an optical field having

two beams of equal intensities and large detunings (relative to γ). This bichromatic force

(BF) also provides a force much stronger than Frad as well as a velocity range much wider

than ±vc of Frad (Söding et al., 1997). The discussion here is limited to the special case of a

two-level system and two frequencies of light. Moreover, there has been important work on

multi-level systems (molecules) (Aldrich et al., 2016; Chieda and Eyler, 2011; Jayich et al.,

2014), as well as on the use of four frequencies (Galica et al., 2013). Another important

case is the use of two frequencies on a two-level system, but with two stages of deceleration

in tandem (Chieda and Eyler, 2011). Still another application is the use of four sequential

stages for atomic beam collimation (Partlow et al., 2004).

The BF to be discussed here is implemented with two overlapped standing waves equally

detuned from atomic resonance by ±δ, with |δ| � γ (see Fig. 3). Even in this simplest

case of multi-frequency light, the bottleneck imposed on Frad and vc by γ can be overcome
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because it produces coherent control of the momentum exchange between the light field and

the atoms. The magnitude of the BF, FB = 2h̄kδ/π for the optimum value of Ω, depends

on the experimentor’s choice of δ, Ω, and the spatial phase difference of the standing waves,

and not by atomic properties (see Eq. 4) (Söding et al., 1997; Yatsenko and Metcalf, 2004).

It has been demonstrated in Na (Nölle et al., 1996; Voitsekhovich et al., 1989), Cs (Söding

et al., 1997), Rb (Liebisch et al., 2012; Williams et al., 1999, 2000), and He (Cashen and

Metcalf, 2001, 2003).

FIG. 3: Detuning scheme for the

bichromatic force. The thickness of the

line labeled |e〉 represents the natural

width of the excited state γ, and |δ| � γ

as shown.

A very useful view of the BF was given in (Grimm et al., 1994, 1996), and it is instructive

to examine the BF in this modified dressed atom picture because the light intensity is in

the appropriate domain. In single frequency light, the dressed states pairs (without light

shifts) are split by h̄δ as a result of the Rabi oscillations between the ground and excited

states (|g, n〉, |e, n− 1〉), as shown in Fig’s. 1 and 4a. However, the presence of the two

frequencies changes each pair of the familiar multiple doublets of dressed state eigenvalues

to a huge manifold of states separated by h̄δ, first described by (Grimm et al., 1994) and

extended by (Yatsenko and Metcalf, 2004) (see Fig. 4b).

Figure 4 shows how each component of a dressed state pair, formerly denoted by just a

single field quantum number |g, n〉 or |e, n− 1〉, now requires two field quantum numbers,

hence |g, b, r〉 where b and r are “blue” and “red”. Since the atoms that were excited by

one frequency can be returned to the ground state by stimulated emission from the other

frequency, thereby exchanging red light for blue (or vice versa), the result is in a new energy

state for the [atom + light] system. For example, if |g, b, r〉 is excited by red light to

|e, b, r − 1〉, it can be returned to the ground state |g, b+ 1, r − 1〉 by blue light as well as to

|g, b, r〉 by red light. Multiple such events produce a ladder of states from just a single pair
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of dressed states in single-frequency light as shown in Fig. 4b.

Each of the basis states in the ladder of Fig. 4b is connected to its two neighbors by off-

diagonal matrix elements Ωb(z) or Ωr(z) of the standing waves. The result is the Hamiltonian

matrix of Eq. 3 (truncated to 7× 7).

H = h̄×

3δ Ωr(z) 0 0 0 0 0

Ωr(z) 2δ Ωb(z) 0 0 0 0

0 Ωb(z) δ Ωr(z) 0 0 0

0 0 Ωr(z) 0 Ωb(z) 0 0

0 0 0 Ωb(z) −δ Ωr(z) 0

0 0 0 0 Ωr(z) −2δ Ωb(z)

0 0 0 0 0 Ωb(z) −3δ



. (3)

Diagonalizing this Hamiltonian matrix (expanded to 30×30) produces the oscillating eigen-

values of Fig. 5. These are periodic on the scale of λ/2 because of the standing waves whose

fields vary in space as shown at the bottom of Fig. 5.

Moreover, the interference of the two standing wave fields imposes a different periodicity

on the scale of πc/δ. With δ ∼ 108 s−1, this is typically ∼1 m and is very much larger than

the cm scale of most experiments. Therefore the spatial phase offset of the standing waves

is considered as a fixed experimental parameter, and constitutes a spatial extension of the

order of 1 m. In Fig. 5 the standing wave spatial offset is fixed at λ/8.

In this model, the BF arises from transitions of moving atoms among these manifolds at

the crossings between eigenstates that are indicated by the small circles labeled “A”. These

are exact crossings because they occur between states coupled by one field at the nodal

points of the other field (see vertical lines in Fig. 5). Thus moving atoms follow the path

indicated by the heavy curved arrow of Fig. 5, so that the average BF is

FB = −〈∆E〉
∆z

=
2h̄δ

λ/2
=

2h̄kδ

π
, (4)

and for |δ| � γ, FB � Frad.

To assure the desired exact crossings at the points labeled “A” in Fig. 5, there are two

constraints. One is vanishing of coupling to other states, and the other is that the light
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shifts must cause the dressed state eigenvalues to just meet as shown. These conditions are

connected via the relative spatial phase of the standing waves as discussed in (Yatsenko and

Metcalf, 2004).

For our choice of this spatial phase = λ/8 (see Fig. 5), the Rabi frequencies at the

standing wave antinodes must satisfy Ω =
√

3/2 δ. This result is readily derived from the

expression for Ω′ of Eq. 2 (Hua et al., 2016). At the points marked “A” in Fig. 5 where

there are nodes in one field, the other field has strength Ω/
√

2. But there are two fields that

add, so the Ω term under the radical in Eq. 2 should become 2|Ω|2. For the eigenvalues of

two manifolds to just touch, the dressed state energy h̄Ω′ of Eq. 2 needs to be h̄δ, which

yields Ω =
√

3/2 |δ|.

2. Velocity Dependence of the Bichromatic Force

As discussed in Sec. I.A, the force needed for cooling is required to be velocity dependent,

and unlike many other optical cooling forces, the BF does not vanish for atoms at rest. The

BF always eventually increases atomic speeds, and when these speeds approach v = vB ≡

δ/2k, the magnitude of the force diminishes because of Landau-Zener transitions between the

atomic dressed states (Yatsenko and Metcalf, 2004). These occur near anticrossings of the

type indicated by the vertical ellipse labeled “B” in Fig. 5, and thereafter the atomic speeds

remain approximately constant because these transitions repeat multiple times, reversing

the force each time. Thus the final velocity distribution will be peaked near vB and be

narrow enough to constitute cooling. Note that both FB and vB scale with the value of δ.

This “speed limit” can be understood classically by considering that the momentum

exchange caused by exchanging red and blue light between oppositely traveling beams is

∆p = ±2h̄k. For v � vr ≡ h̄k/M , the kinetic energy change is ∆Ek = Mv∆v = 2h̄kv.

Since the maximum available energy for this exchange is h̄δ, v is necessarily ≤ δ/2k. For

slower atoms, the process can occur in regions where the eigen-energies are closer together

than h̄δ, and these are plentiful as shown in Fig. 5. Thus the atoms and light field can

exchange energy, some of which is kinetic, and the difference is carried away by the light.

Atoms halfway to this speed limit are traveling at vB/2 = δ/4k. They traverse the

regions in Fig. 5 where the loci of the eigenfunctions are approximately horizontal in a time
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tt = d/v = (λ/8)(4k/δ), and spend about half their time in such regions. For Ω =
√

3/2 |δ|

this means Ωtt = a few, providing ample time for transitions that exchange red light for

blue, or vice versa, even with Doppler shifts as large as δ/4.

Since the BF covers a range of velocities vB � vc, Doppler compensation using a multi-

kilowatt Zeeman tuning magnet for example, is rendered unnecessary for slowing a thermal

beam. Thus the BF is a superb method for fast, short-distance, deceleration of thermal

atoms that minimizes atom loss, thereby making it a most useful and important tool.

Atoms initially within the velocity capture range ±vB experience an approximately con-

stant force FB, as is evident by following the trajectories of Fig. 5. They will be accelerated

to ±vB in a characteristic “cooling time”

tc =
∆p

F
=

2MvB
FB

=
π

4ωr
(5)

where ωr ≡ h̄k2/2M = Mv2r/(2h̄) is the recoil frequency. (Surprisingly, the cooling time

for all known optical cooling schemes is not related to τ , but depends only on ωr (Metcalf,

2008).) Even though the atoms have been accelerated to ±vB 6= 0, there is still cooling

because the final temperature is determined by the width of the velocity distribution. If this

distribution has been narrowed around vB, then the atomic sample has been cooled.

A careful simulation of the BF based on the optical Bloch equations (see below) has

elucidated many of its features (Hua et al., 2016). It uses a spread of initial velocities and

positions, and shows the temporal evolution of the velocity distribution under the influence

of the BF. The strong cooling capability is shown in Fig. 6.

D. Polychromatic Forces

The extension of the BF to include more frequencies was studied numerically in (Galica

et al., 2013). The paper begins with a careful examination elucidating new information

about the BF in the case where the beam intensities are unequal, but then goes on to

consider adding frequencies detuned at various harmonics of δ to produce a polychromatic

light field.

The outcomes of these studies are surprising. The parameters that produced the strongest

force used equal light intensities of Ω = δ in the first and third harmonics, thus making four
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frequencies ω` = ωa ± δ and ωa ± 3δ, (where δ ≡ ω` − ωa). Also, they found an optimum

phase offset of λ/12 in the presence of these frequencies instead of the λ/8 that produced

the optimum BF.

Optimum parameter choices showed that the magnitude of the four frequency force is

increased by nearly 50% over that of the BF, its velocity range is increased by nearly a

factor of 3, and its average excited-state fraction is reduced from 41% to 24% (important

for molecules, see Sec. V.D). Moreover, the total laser power for this four-frequency scheme

is larger by only a factor of 4/3, but would have required a factor of 9 to reach this velocity

range with the BF at detuning ±3δ. Finally, the imbalanced beam intensity study suggested

that the four-color force is more robust than the BF.

III. SWEPT FREQUENCY LIGHT

A. Introduction

The original model for the BF was based on the idea of π-pulses (Galica et al., 2013;

Söding et al., 1997; Voitsekhovich et al., 1988) but it has its shortcomings (see Sec. IV.C).

Inverting the population of a two level system with alternate, counterpropagating π-pulses

can exchange momentum between the atoms and the light field much more rapidly than the

limitation imposed by γ. Even for very short pulses that don’t overlap (Goepfert et al., 1997;

Nölle et al., 1996), the fidelity of inversion by π-pulses is very limited since their effectiveness

is dependent on the pulse “area” being quite precise (Allen and Eberly, 1987).

But this intuitive description led to a different idea for producing strong optical forces

that arises because π-pulses are not the only way to invert the population of a two-level

system. A technique called adiabatic rapid passage (ARP) was developed by the magnetic

resonance community in the 1930’s to do this, and it has been widely exploited since then. It

is very much more robust against variations in experimental parameters such as frequency

and intensity, and its application is not restricted to any region of the electromagnetic

spectrum (e.g., Ref’s. (Hulet and Kleppner, 1983; Rubbmark et al., 1981)). Its application

to optical frequencies was first reported in (Loy, 1974), and it has since been used to produce

very large optical forces on atoms because of its rapid momentum exchange capability (Lu

et al., 2005, 2007; Miao et al., 2007; Stack et al., 2011).
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ARP is particularly well described using parameters computed from the density matrix

elements in accordance with standard methods given in Ref’s. (Allen and Eberly, 1987;

Feynman et al., 1957; Metcalf and van der Straten, 1999; van der Straten and Metcalf,

2016). Solving the Schrödinger equation with a Hamiltonian that includes the interaction

between a two-level atom and the light field, along with the dipole and rotating wave ap-

proximations, produces eigenfunctions that can be written in terms of three real numbers,

usually designated by u, v, and w. The light field is also represented by three real numbers,

the real and imaginary parts of the Rabi frequency Ωr and Ωi, and the detuning δ (a complex

Rabi frequency simply allows for a phase).

Then the system dynamics can be described in terms of two artificial vectors, the time-

dependent Bloch vector ~R ≡ (u, v, w) that represents the atomic state, and the “torque

vector” ~Ω ≡ (Ωr,Ωi, δ) that describes the light field. With these substitutions, the time-

dependent Schrödinger equation becomes (Feynman et al., 1957)

d~R

dt
= ~Ω× ~R. (6)

Under the influence of the light field, the Bloch vector ~R precesses about the torque vector ~Ω

with constant magnitude, so it can be represented as moving on the “Bloch sphere”, whose

two sets of overlapping coordinates are the atomic and the optical.

The representation of ~R on the Bloch sphere has the atomic ground state at the south

pole (w = −1), the excited state at the north pole (w = +1), and superposition states

anywhere else, with their phase represented by the longitude. For the representation of ~Ω,

strongly detuned light (|δ| � Ω) is directed through the poles and δ = 0 light is in the

equatorial plane. The relative phase of ~Ω is represented by the longitude on the sphere, and

is relevant when there are multiple light sources. With δ and Ω both nonzero, the torque

vector ~Ω points elsewhere. Although the magnitude of ~R is necessarily unity, the magnitude

of the torque vector is |~Ω| ≡
√

Ω2
r + Ω2

i + δ2 ≡
√

Ω2 + δ2, where Ω is the Rabi frequency.

(Note the similarity to Eq. 2.) If the light is pulsed or frequency swept, the components of

~Ω become time-dependent, thus ~Ω→ ~Ω(t).
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B. The ARP Process

The Bloch vector (geometric) description of the eigenfunctions allows a particularly

graphical interpretation of ARP. The process consists of sweeping the optical frequency

from one side of resonance to the other, so that the torque vector ~Ω(t) starts and ends

nearly along the polar axis, but sweeps through the equatorial plane at δ(t) = 0. The pro-

cess is more efficient if the start and end points of ~Ω(t) are closer to the polar axis, suggesting

that the light intensity should be modulated synchronously to be minimum at the extrema

of the frequency sweep (i.e., pulsed).

At the beginning of the frequency sweep, where the initial detuning δ(t = 0) ≡ δ0 is

much larger than Ω(t = 0), ~R executes small, rapid orbits near the south pole (atom in

the ground state). Then, as δ(t) approaches zero and Ω(t) reaches its maximum of Ω0, the

axis of these orbits slowly drifts up toward the equator. The sweep continues toward the

opposite detuning so that near the end of the sweep, where again δ(t) � Ω(t), ~R executes

small, rapid orbits near the north pole, and is finally left at the north pole (the atom is in

the excited state). The direction of the frequency sweep, namely the sign of δ̇(t), is of no

consequence (see Eq. 6) as long as ~Ω(t) is essentially polar at the ends of the sweep.

There are certain traditional constraints for this process to occur efficiently. First, |~Ω(t)|

must be large enough so that ~R makes very many precessions about ~Ω(t) during the sweep

time given by π/ωm, where ωm is the sweep rate. This means that |~Ω(t)| � ωm. For

a uniform frequency sweep, δ̇ = δ0ωm/π, where ±δ0 is the sweep range. This “adiabatic

following” of ~Ω(t) by ~R produces the “A” in ARP.

Second, the entire sweep must occur in a time short compared to the atomic excited state

lifetime to minimize the effects of SpE during the sweep, and thereby preserve coherence

between the atom and the radiation field. This requires ωm � γ, or δ̇ � δ0γ/π, and

constitutes the “rapid” condition in the name ARP. These are two conditions on the sweep

rate and on |~Ω(t)| that must be met independently, in addition to their combination |~Ω(t)| �

γ. Of course, when δ(t) is very small, this condition applies to Ω(t)

Finally, it is required that δ0 � Ω(t) at the extrema of the sweep so that the torque

vector ~Ω(t) is nearly polar at those points. This is readily achieved by pulsing the light

intensity. Thus δ0 and Ω0 are the highest frequencies in the system. All these conditions
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can be written together as

δ0 ∼ Ω0 � ωm � γ. (7)

The timing scheme for ARP-based absorption-stimulated emission cycles is illustrated in Fig.

7. A pulse of duration π/ωm from one direction (e.g., from the left) is represented by the

half-period sine wave in the upper trace, and its upward frequency sweep is represented by

the curve in the lower trace. A second pulse, incident from the opposite direction (e.g., from

the right), is represented by the second half-period sine wave, also with an upward frequency

sweep. Then there is a dead time of 2π/ωm for experimental reasons discussed below (Miao

et al., 2007). The sweeps of δ are both shown as from negative to positive values, but this is

not required, and sequential pulses can also be swept in opposite directions, thus producing

a sine-wave frequency modulation.

The trajectories of both ~Ω(t) and ~R are shown in Fig. 8a. Here ~Ω(t) sweeps in a smooth

arc from pole to pole (red curve), and ~R orbits closely around ~Ω(t) as it adiabatically

follows (black curve). Under these conditions ~R is efficiently moved from one pole to the

other, meaning that the population is inverted. A concomitant effect is the exchange of

momentum h̄k between the atom and the light field. Unlike the π-pulse method, this process

is very robust against optical frequency and amplitude variations, as well as the values of δ0

and Ω0. If the sweep is too fast, or if there are other violations of Eq. 7, the final position

of ~R at the end of the swept pulse may not be at the opposite pole, thus compromising the

adiabaticity of the process.

Figure 8b shows an orbit that is nearly as robust as that of Fig. 8a, but with parameters

that are well outside those of Eq. 7. Unlike the case for Fig. 8a, ~R and ~Ω(t) are nearly

orthogonal when they pass through the equatorial plane. The sweep of Fig. 8(b) is also

adiabatic, although in a different sense, and is more suitable as a source for optical forces

because it allows much faster absorption-stimulated emission cycles. This prediction from

(Lu et al., 2005) has been experimentally corroborated (Miao et al., 2007).

A simple model calculation of the magnitude of the ARP force begins by considering that

the momentum transfer in one half-cycle (two pulses) of ωm is 2h̄k. First, a frequency-swept

laser beam from one direction excites the atoms and transfers h̄k, and then another beam

from the opposite direction and whose sweep is delayed, drives them back to the ground

state and also transfers h̄k. Since the time for two swept pulses is 2π/ωm, the force is
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FARP ≡ 2h̄k/(2π/ωm) = h̄kωm/π.

However, to reduce the deleterious effects of SpE, there is an experimentally inserted delay

time with no light of 2π/ωm following each pulse pair, and thus the total time is 4π/ωm, as

shown in Fig. 7. This reduces the average force in this model to FARP/2 = h̄kωm/2π. Since

ωm can easily be many times γ, this force readily exceeds Frad.

In the course of modeling ARP, care must be taken to consider the phase of the light

fields. One consideration derives from the fact that ωm and the swept optical frequency are

not commensurate so that Ωr/Ωi is different for each pair of pulses (φpp in Fig. 7). This can

change the trajectory of ~R on the subsequent pulse. Also, if two different lasers are used to

produce the pulses from left and right in Fig. 7, then their relative phase φrel can also cause

trajectory changes.

C. A Dressed Atom Description of ARP

The familiar dressed atom description of a two-level atom in a nearly resonant light field

provides another insight into the ARP process. In Fig. 4a the light frequency ω` is below the

atomic resonance frequency ωa so that absorption into |e, n− 1〉 results in a higher energy

of the [atom + laser] system. By contrast, for ω` > ωa the state |e, n− 1〉 would lie below

the state |g, n〉. Thus the energy ordering of the dressed states in a single frequency light

field reverses with the sign of δ.

Now consider the plot of Eq. 2 shown in Fig. 9. At the boundary plane where Ω(t) = 0,

the state |g, n〉 lies above (below) |e, n− 1〉 for δ > 0 (δ < 0) as discussed above. For

Ω(t) 6= 0 the wavefunctions are mixtures, forming the familiar dressed states. The ARP

pulses cause atoms to follow a trajectory such as indicated by the heavy arrow: a sweep

from one extreme of δ to the opposite extreme that doesn’t change energy sheets inverts the

atomic system. In the case of Fig. 9, the sweep begins on the upper sheet with δ(t) = +δ0

and the atom in the ground state. It goes through resonance and on to δ(t) = −δ0 and the

atom ends up in the excited state.

Even for the case of frequency-swept cw light, as long as δ0 � Ω(t), the path followed in

Fig. 9 is a straight line parallel to the Ω = 0 plane, and the atomic energy levels go through

an anticrossing. If the sweep is slow enough, the energy sheet is not changed, and ARP still
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occurs. Faster sweeps could allow Landau-Zener (LZ) transitions between sheets and ARP

fails (see (Rubbmark et al., 1981)).

Making a significant change of atomic velocities would require very many such repetitive

sweeps that each exchange momentum h̄k, and so the probability for non-adiabatic transi-

tions must be kept very small for this to be successful. The probability of such unwanted

LZ transitions can be found from the small fraction of population on the “wrong” energy

sheet at the end of each sweep where Ω = 0 and the eigenstates are exactly the bare states.

The probability of such LZ transitions can become minuscule if the path maintains a

constant separation between the sheets. In one case of such a “circular sweep”, the time-

dependence of the Rabi frequency can be described by Ω(t) = Ω0 sinωmt and the frequency

sweep by δ(t) = δ0 cosωmt. The special case of Ω0 = δ0 has been studied in some detail

(Sawicki and Eberly, 1999). The consequence of this special case is that ~Ω(t) satisfies

d~Ω(t)

dt
= ~A× ~Ω(t) (8)

where ~A is an artificial constant vector so that |~Ω(t)| =
√
|Ω(t)|2 + δ(t)2 is constant. If the

LZ formula were used here, the probability of the non-adiabatic transition PNA = e−πη/2

would vanish because d|~Ω(t)|/dt = 0 (η ≡ |~Ω(t)|2/(d|~Ω(t)|/dt)). This expression for PNA

is asymptotically correct for large δ0 (δ0 � ωm), but the variations of PNA as obtained in

(Sawicki and Eberly, 1999) are lost.

D. An Alternative Model for ARP

A different view of ARP arises from considering the pulse pairs. If each pulse produces

an approximate inversion of the Bloch vector ~R, then a successive pair applied to a ground

state atom returns it to the region of the south pole of the Bloch sphere. This can be viewed

as a small rotation of the Bloch sphere instead of a rotation of the Bloch vector. If each

pulse pair returned ~R precisely to the south pole, the rotation axis would be polar. For the

non-ideal case, the axis is not polar and the rotation is finite, so ~R is slightly displaced from

the pole. A subsequent pulse pair would repeat the same rotation, and the locus of end

points of ~R would be a small circle near the south pole, as shown in Fig. 10.

This view is especially helpful for understanding the case of non-ideal pulses, or the

effect of a very large number of pulses. For a small number or for nearly ideal pulses,
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the trajectories are confined to a narrow band as shown in Fig. 4 of (Lu et al., 2005).

Deviations from this results in displacements of ~R to distant places on the sphere, and a

resulting weakening of the ARP force.

IV. PULSED LIGHT

A. Introduction

Any kind of pulsed light is necessarily composed of multiple frequencies, so optical forces

deriving from such light can be viewed as consequences of the non-monochromatic spec-

trum. These pulses can have a simple shape resulting in a symmetric spectrum, or a more

complicated shape with an almost arbitrary spectrum. The center frequency of the pulse

can be varied between sequential pulses, or even during the pulse (see Sec’s. III and IV.D

above). With both pulse envelope and spectrum available as additional degrees of freedom,

there is an immense range of variations.

B. Forces and Traps From Simple Pulses

The earliest discussion of optical forces produced by pulsed light was by (Kazantzev,

1974). The force depends upon the position-dependent arrival time (or relative optical phase)

of pulses in counterpropagating light beams. It is necessary for each of the pulses to be short

compared to their repetition times so that their positions are well-defined. Also, they need to

contain enough energy to be approximately π-pulses so that the atomic transitions induced

by them have high probability.

This idea was first experimentally tested by (Voitsekhovich et al., 1989) where an atomic

beam was deflected by directing it through the intra-cavity beam of a laser to enable suf-

ficiently high intensity. The laser was oscillating on two modes, and the phase difference

between them depended on the distance from the atoms to the cavity mirror. Although the

deflection, and consequently the force, was not large, it was clearly larger than Frad so it

unequivocally demonstrated that Kazantzev’s idea was correct.

The idea was further tested in the mid 1990’s by two more experimental demonstrations

using ps pulse trains from mode-locked lasers (Goepfert et al., 1997; Nölle et al., 1996).
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In both of these cases, the authors deflected and/or focused an atomic beam, and were

indeed able to demonstrate a force that was � Frad. In a later variation, there was a study

using only four discrete frequencies to produce pulses by Fourier synthesis, using appropriate

harmonics of bichromatic light fields (Galica et al., 2013).

The configuration of colliding pulse trains can also make an atom trap in one dimension.

Let z0 be one of the many spatial positions where the counterpropagating pulses exactly

overlap. For an atom located at z < z0, the pulse from the negative z side will always precede

its counterpropagating partner. Then that first pulse can excite the atom, transferring

momentum +h̄k, and the second one can induce stimulated emission, transferring another

+h̄k. For an atom located at z > z0, both momentum transfers are −h̄k because the

pulse order reverses. Where the pulses overlap at z = z0 the force vanishes because there

is essentially a pulsed standing wave with no temporal bias for excitation vs. stimulated

emission. Thus there is always a force toward z0, hence the arrangement constitutes a trap

in 1-D. As long as there is no SpE in the short interval between the pulses of a pair, the

force direction is preserved.

The “focussing” described in (Goepfert et al., 1997) is the result of the “1-D trap” acting

for a short time as the atoms passed through the light field (not actually a static trap). (This

process was re-discovered and described by (Freegarde et al., 1995) and carefully analyzed

by (Romanenko and Yatsenko, 2011).)

A similar situation applies for the case of the BF discussed in Sec. II.C.1. In this case, the

dominant direction of the force depends on the relative spatial phase of the standing waves

determined by the atom-mirror distance. The different force directions can be seen from

the upward and downward sloping possible trajectories of Fig. 5, but these actually apply

to different positions where one or the other dominates. Thus the system also constitutes a

1-D trap. This case was carefully analyzed in (Romanenko et al., 2016), and this paper also

provides a good review.

C. Π-Pulse Model of the Bichromatic Force

The early descriptions of the BF began with travelling waves carrying both frequencies,

thereby comprising modulated carrier waves, as shown in Fig. 11 (Söding et al., 1997).
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These were retroreflected to produce counterpropagating beams of quasi-pulses with the

optical carrier frequency. Their amplitudes and durations were chosen to satisfy the π-pulse

criterion, resulting in the “π-pulse model” (Söding et al., 1997). The time delay between

incident and reflected beams was chosen so that an incident “π-pulse” would excite an atom,

the counter-propagating one would de-excite it, and the process would impart momentum

2h̄k in a time that could be much shorter than τ , thereby producing a force much larger

than Frad. The model fell short because of the pulse overlaps, and has been replaced by the

dressed atom picture of Sec. II.C.1.

D. Pulsed Light for Adiabatic Rapid Passage

The Adiabatic Rapid Passage force discussed in Sec. III above also uses pulsed light, but

in a different way. The pulse is used to control the direction of the torque vector ~Ω as the

detuning is swept through δ = 0. At either end of the frequency sweep where δ is very large,

it’s desirable to have ~Ω be nearly polar so the magnitude of Ω should be very small or zero.

Pulsing the light during the frequency sweep can accomplish this.

V. OBSERVATION AND MEASUREMENT OF OPTICAL FORCES IN MULTI-

FREQUENCY LIGHT

The full potential of optical forces produced by multi-frequency light has yet to be realized

in the laboratory. There was an early experiment that demonstrated the existence of a two-

frequency force resulting from stimulated emission processes, but the results were limited

to simply observation (Voitsekhovich et al., 1989). There were also early experiments with

dipole force rectification that were limited in velocity (or kinetic energy) range as discussed

above (Grimm et al., 1990; Grove et al., 1995; Gupta et al., 1993).

In experiments modeled as π-pulse sequences that rapidly exchange momentum by in-

verting the atomic populations using counterpropagating pulsed beams, a few groups were

able to produce forces somewhat larger than Frad. In (Nölle et al., 1996) the authors de-

flected a beam of Na and found a force as large as 6× Frad with 440 ps pulses separated by

1 ns. In (Goepfert et al., 1997), the authors used ∼ 30 ps pulses on Cs and found a force
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≈ 3 × Frad. These measurements were in good agreement with the results calculated from

their model. Such short pulses have a bandwidth > 10 GHz, large enough to comprise the

multiple frequencies needed to satisfy the criteria discussed above. By contrast, both the

BF and the ARP force have shown much larger magnitudes and velocity capture ranges.

A. Bichromatic Force Experiments on Alkali Atoms

Apart from early demonstrations discussed above (Voitsekhovich et al., 1989), the first

use of the BF to show a huge force and velocity capture range, as well as a large spatial exten-

sion, was reported in (Söding et al., 1997). These authors aligned the counter-propagating,

bichromatic laser beams with the axis of a Cs atomic beam, using an oven whose back side

was transparent so the laser and atomic beams had the same axis.

The longitudinal velocimetry exploited the frequency dependence of the fluorescence from

an independent, tunable probe laser via the Doppler shifts. The interaction length was

limited by performing the velocity measurement only 10 cm beyond the exit aperture of the

Cs oven. The measured force was 10× larger than Frad ≡ h̄kγ/2, as expected from their

parameters, and it spanned a velocity range as large as 50× that of vc ≡ γ/k. Several careful

experimental tests confirmed that the observations agreed well with the π-pulse model of

the BF.

The next reported BF experiments were done in Rb, using a force transverse to an atomic

beam (Williams et al., 1999, 2000). With a transversely movable slit in the atomic beam to

determine the angle between it and the laser beams that produced the BF, these authors were

able to make a direct comparison between the observed and calculated velocity dependence

of the BF. As shown in Fig. 12, the data agreed very well with numerical calculations based

on the optical Bloch equations, using a program developed by (Söding et al., 1997).

The π-pulse condition is readily found to be Ω = πδ/4 and differs by ∼ 50% from the

dressed state value of Ω =
√

3/2 δ ≈ 1.22 δ (see Sec. II.C.2). The measurements and

calculations of panel (f) of Fig. 12 nearly correspond to this π-pulse condition, and clearly

show that it is not optimal. These results provide the justification for using the dressed

atom description of the BF. Panel (a) of Fig. 12 corresponds to Ω = 1.19 δ, just a bit below

the optimal dressed state value given above.
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B. Bichromatic Force Experiments on Helium

The large magnitude of the BF that derives from its rapid momentum exchange rate

makes it especially suitable for atoms lacking an easily accessible, excited state with a short

lifetime. Alkali atoms are readily slowed and trapped in a small cell directly from a thermal

vapor, but the slowing length for He using Frad is ∼ 2 m. Thus the BF seems especially

well-suited for manipulating He atoms.

The first BF experiments on the metastable 23S state of He (He*) reported observation of

a beam-deflecting force ≈ 11×Frad and a slowing force ≈ 10×Frad that reduced the atomic

velocities by ∼ 100 m/s ≈ 1100 × γ/k (Cashen and Metcalf, 2001). This was only ≈ 2/5

of the expected force based on the 45 γ detuning that was used, but many experimental

aspects were not optimized. These experiments were made possible by the technological

advances in optical amplitude and frequency modulation by the telecom industry that could

be exploited for driving the transition 23S1 → 23P1,2,3 of He* at λ = 1083 nm.

A subsequent paper reported 2-D collimation of a beam of He* with four separate stages

(Partlow et al., 2004), needed because the BF pushes in only a single direction (Söding et al.,

1997). Each of the four counterpropagating beam pairs was tuned to push left, right, up,

or down resulting in full collimation of the atomic beam. The four interaction regions were

each only 10 mm long, and the total collimation region spanned 50 mm along the beam

direction (see Fig. 13).

During the short collimation interval, the atomic sample could expand by only ≈ 500µm

about its original size, so that its spatial extent was essentially doubled. The transverse

velocity compression ratio of ∼ 12 represents a phase space compression of ∼ × 6 in each

dimension. This very bright beam was subsequently used for lithography (Allred et al., 2010;

Reeves, 2010) because the 20 eV internal energy of He* could be used to expose a resist, as

shown by the pioneering work of (Petra et al., 2004a,b).

1. Cooling Without Spontaneous Emission

There is a long-standing and widely-held belief in the laser cooling community that the

randomness of SpE is the only way to dissipate the entropy lost by a vapor of atoms un-

dergoing laser cooling. Reference (Metcalf, 2008) has shown that SpE is not the only way

of removing the entropy, and that the laser fields themselves may be capable of absorbing
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it. There are many different kinds of entropy sinks when ground state atoms (pure state)

interact with multiple incoming laser beams (pure states) to form a mixed state, even with

purely stimulated processes (Metcalf, 2008). However, this notion requires that the light

field be included as part of the system, and not just as an external potential.

Reference (Metcalf, 2008) began by showing that energy conservation in ordinary laser

cooling requires that both the fluorescent light field and the laser light field be considered

as part of the system. It argued that doing so provided for energy conservation between the

light and both the atomic internal energy and its kinetic motion, as well as preservation of

unitarity of the system. Furthermore, it claimed that the entropy loss, usually dismissed

with vague references to SpE, can be described as merely an exchange between different

parts of the system so it does not violate the Liouville theorem. The system entropy is lost

when the light goes out and hits the walls, and these are not part of the system.

A subsequent paper described experiments designed to test this concept that used a time

comparable to the SpE cycle time, so that SpE played a negligible role (Corder et al., 2015b).

The authors chose the transition 23S↔ 33P in He* at λ =389 nm, whose cooling time given

in Eq. 5 is ≈ 380 ns, and did the experiment in ≈ 200 ns by restricting the atom-laser

interaction time. Since τ ≈ 106 ns, and the time averaged excited state population is ∼ 0.4

(Galica et al., 2013), the average SpE cycle time is ≈ 260 ns.

The experiment comprised transverse cooling of an atomic beam of He* using laser beams

that crossed the atomic beam just a few mm from the source aperture. The cooling was

manifest by the narrowed spatial distribution of the atoms at a detector 63 cm downstream

from this interaction region. The measurements were compromised by geometrical effects,

largely caused by the longitudinal velocity distribution of the atomic beam that was centered

at ≈ 1000 m/s but had a FWHM of ≈ 400 m/s. This 400 m/s range caused those atoms

with a given transverse velocity to be spread out at the detector by a distance corresponding

to a few m/s.

The data in Fig. 14 were taken with δ = 2π × 25 MHz, chosen because of intensity and

power considerations, and corresponding to a capture range vB ≈ ±4.9 m/s. There is a hole

where atoms are moved from the -6 to +2 m/s range, consistent with 2vB, and a bump where

they accumulate in the +2 to +11 m/s range, while those initially between 2 and 11 m/s

remain. (The initial zero of velocity is apparently at -2 m/s.) The small bump near v = −7
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m/s arises because a small fraction of the atoms enter the light field at a point in space and

a time when the force is actually in the opposite direction, and is well understood. Thus the

initial velocity range of interest, ∆vi ≈ 17 m/s, was reduced by ×2 to ∆vf as shown in Fig.

14 (see Sec. II.C.2), thereby reducing the temperature by ×4. In addition, the experiment

showed a net compression of occupied phase space volume because the spatial expansion of

the atomic sample was limited by the short interaction time to ∼ 5λ and the original sample

size was 500 µm > 103λ.

In spite of the geometrical limitations, the results shown are unequivocal. The separation

between the bump and the hole in Fig. 14 is ∼ 9 m/s ≈ 35vr, thereby eliminating the

radiative force from consideration. The experiments clearly demonstrated that cooling and

phase space compression of an atomic sample can be accomplished without SpE by using a

two-frequency laser field to accommodate energy and entropy removal.

The BF is the simplest extension from single-frequency forces, although there have been

studies of other forces from polychromatic fields (Galica et al., 2013; Stack et al., 2011) that

also derive from purely stimulated processes. Also, their velocity dependence that enables

cooling does not derive from SpE. Because multifrequency light can produce cooling without

SpE, there is enormous interest for many applications, including ultra-fast or ultra-compact

cooling and direct cooling of molecules.

2. Multi-Frequency Force

At first sight, the description of the BF in Sec. II.C.2 suggests that the velocity capture

range of vB = ±δ/2k is limited by only the accessible values of δ. The limitation arises

because of its relation with the optimum value of Ω =
√

3/2 δ, and the needed light intensity

therefore scales with δ2. Thus a wide velocity capture range for fast atoms such as He*

requires high optical power. This and other limits to the velocity capture range have been

carefully considered by (Chieda and Eyler, 2012). For example, these authors estimated the

effects of phase imperfections and intensity imbalances, as well as Doppler-induced frequency

shifts. These were found to have significant deleterious effects at large values of δ.

One way that (Chieda and Eyler, 2012) addressed the need for high power was by consid-

ering a two-stage, tandem pair of atomic beam slowing regions, each having smaller values
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of δ and Ω. Clearly tandem deceleration stages, each using δ and hence Ω =
√

3/2 δ, could

cover a velocity range 2δ/k and require two sets of beams of intensity ∝ 3δ2 By contrast, a

velocity capture range of 2δ/k in a single region would require an intensity ∝ 6δ2.

Another scheme tried in (Chieda and Eyler, 2012) to extend the velocity capture range

with limited optical power was to sweep the detuning in synchrony with the atomic velocities,

as the atoms were slowed by the BF. Thus the sweep could cover a large frequency range,

but the capture range at any instant, and the concomitant intensity requirements, were

considerably reduced. Figure 15 shows the measured slowing of a He* beam by 0.88 δ/k

with the ordinary BF, but 2.84 δ/k with the center frequency swept by 300 MHz, about 4 δ.

The loss of atoms is readily attributed to several experimental artifacts, but the basic features

of the measurements agree well with the simulation presented along with the experiments.

C. Adiabatic Rapid Passage (ARP) Experiments on Helium

In some sense, the ARP force is also a multifrequency force, just as in Sec. V.B.2 above,

but it is implemented quite differently. Instead of several discrete frequencies acting on the

atoms simultaneously or sequentially, a single laser field is both amplitude and frequency

modulated, as described in Sec. III.B. The spectrum of the light in Fig. 16 shows that the

light has multiple frequencies because it’s a chirped pulse, not a pure sine wave.

The pulses are characterized by their maximum values of the Rabi frequency Ω0 and the

range of the frequency sweep ±δ0 as shown in Fig’s. 7 and 9. The ARP force has been

calculated using Eq. 6 for various values of these parameters, and a force map is shown in

Fig. 17a.

The ARP force was measured using a well-collimated beam of He* atoms that emerges

from 0.5 mm aperture and is collimated by a vertical slit, 250 µm wide, 24 cm downstream.

Carefully tuned and modulated light beams cross the atomic beam perpendicularly to drive

the 23S1 → 23P2 transition at λ = 1083 nm. The atoms strike an MCP ∼ 36 cm downstream

whose output electrons are accelerated to a phosphor screen that is viewed by a CCD camera.

The ARP force deflects the atoms, and a typical image is shown in Fig. 18. The measured

force is extracted from the experimental geometry, and an experimental force map is shown
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in Fig. 17b.
FIG. 18: The bright vertical line is an

image of the collimating slit. The pro-

file of the atoms deflected to the right

in the indicated rectangle is analyzed to

find the average deflection for plotting in

Fig. 17b.

x

5 mm

D. Studies of Multifrequency Forces in Molecules

Laser cooling of molecules has attracted considerable interest for very many years. Ap-

plications of cold molecules include, but are not limited to, tests of fundamental symmetries

and forces, precision measurements, dynamics of complex systems, quantum information and

memory, many-body physics, and quantum chemistry. Molecules can have many properties

not found in atoms, especially their body-fixed electric dipole moments whose anisotropic

interactions have been the subject of many recent studies. A few years ago there were two

special journal issues with multiple discussions of such applications (Buzek et al., 2004; Carr

et al., 2015). The lead articles in these two issues are superb reviews of the field of cold

molecules (Carr et al., 2009; Doyle et al., 2004). More recently the field has been brought

up to date in a special issue of the Wiley journal ChemPhysChem (Doyle et al., 2016).

There are many ways of producing cold molecules, but laser cooling is generally not a good

choice. The velocity change from a single optical absorption-emission cycle is limited to a few

cm/s, and laser cooling becomes useful only by repeating such cycles about 104 times. This

requires that the return to the ground state brings the system back to the initial sublevel so

that the fixed frequency light field can cause another absorption. But unavoidable SpE into

the multiplicity of vibrational and rotational sublevels of molecules precludes such cycling

transitions. There have been a number of elaborate schemes to overcome such limitations

to cooling molecules, e.g. (Bahns et al., 1996; Jayich et al., 2014; Shuman et al., 2009;

Zhelyazkova et al., 2014), as well as several examples of trapping (Barry et al., 2014; Marx

et al., 2015; Weinstein et al., 1998). All of these schemes involve multiple repumping lasers

and thus are indeed complicated and expensive.

On the other hand, cold molecules have been produced by photoassociation and by Fes-
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hbach resonance combination of laser-cooled atomic samples (see (Fioretti et al., 1998; Lett

et al., 1993, 1995; Miller et al., 1993; Williams and Julienne, 1994) and the work of many

others), by deceleration of a molecular beam (Bethlem et al., 1999; Marx et al., 2015), by

buffer gas cooling (Doyle et al., 1995; Weinstein et al., 1998), by elaborate, multiple laser

schemes (Bahns et al., 1996; Jayich et al., 2014; Shuman et al., 2009; Zhelyazkova et al.,

2014), and by many other various protocols. (These cited articles are just a sample list

and not intended to be comprehensive.) The authors of (Doyle et al., 2004) wrote “There

are now at least nine different techniques used to produce cold molecules, a number that

increased from zero over the past eight years.”

The BF seems ideally suited to optical cooling of molecules because the effects of SpE,

that could populate the plethora of molecular ground state sublevels, can be much reduced.

This happens because the strength of the force allows for short experimental times, thereby

suppressing the effects of SpE (Corder et al., 2015a,b). One of the early studies of the BF

in molecules considered the simple case of CaF (Chieda and Eyler, 2011), and others have

followed (Aldrich et al., 2016; Hemmerling et al., 2016). CaF was chosen because it has an

easily accessible, quasi-cycling transition and because it has structural properties of special

interest for ultra-cold molecule studies. Reference (Aldrich et al., 2016) is a followup of

(Chieda and Eyler, 2011), and has a particulary extended and detailed study, as well as a

simulation of the BF in CaF.

The ARP force is also very well-suited for molecules, again because its strength allows a

short interaction time. In (Jayich et al., 2014) there is a detailed study of ARP in SrH. This

was chosen because it has a strong optical transition out of the ground state that is readily

accessible by a Ti:Sapphire laser and is also nearly cycling. The authors have done a careful

study of the energy level structure as well as a Monte-Carlo simulation of the process.

A third example is found in (Dai et al., 2015; Yang et al., 2017) where the topic is BF-

slowing of MgF. Like the other molecules, MgF was chosen for optical accessibility and a

nearly-closed transition. Their calculations and model includes very small level splittings

such as fine and hyperfine structure as well as Zeeman degeneracies. Their numerical calcu-

lations proceed by integrating the time-dependence of the density matrix for a large number

of internal levels. A simplified version is also presented.

There are surely other examples but these three chosen cases are representative. They
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illustrate the complexity of the problem as well as what can be done to address it. Experi-

ments are under way in several different laboratories.

VI. SUMMARY AND CONCLUSIONS

Multi-frequency light can produce optical forces on neutral atoms that are considerably

stronger and cover considerably larger spatial and velocity ranges than is possible with single

frequency light. Such capabilities are enabled by using stimulated emission to return excited

atoms to their ground state. The force is so large because the time for the rapid cycling

produced by stimulated emission can be very short compared to the excited state lifetime.

This allows the exchange of many times 2h̄k during a single atomic lifetime, in contrast to

the ordinary radiative force. The energy exchange of each cycle can be very large because

atoms can absorb one frequency and undergo stimulated emission of a different frequency.

A wide range of successful tests of the models presented in Sec’s. II, III, and IV are

described in Sec. V. The models are well-corroborated qualitatively, and in many instances

quantitatively as well. These include dipole force rectification, bichromatic force, multi-

frequency force, cooling without SpE, adiabatic rapid passage force, application to “open”

systems such as molecules, etc. These tests have been performed on many alkali atoms, He,

MgF, and perhaps others.

Further applications and the full potential of multi-frequency light to produce forces on

atoms and molecules have yet to be realized in the laboratory. In the case of Rb and Cs,

cold, dense samples can be extracted from room temperature vapors, but for other atoms

whose room-temperature vapor pressures are too low, the compact apparatus enabled by

the strength of the forces seems very attractive (atoms on a chip and other configurations).

Using such forces on molecules provides great appeal because the losses resulting from SpE

to the multitude of ground state sublevels can be significantly reduced. There will surely

be new results from experiments currently underway in many laboratories throughout the

world.

I wish to thank Martin G. Cohen for many helpful suggestions.
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Freegarde, T., J. Walz, and T. Hänsch (1995), Optics Communications 117 (3), 262.

Frisch, R. (1933), Zeit. f. Phys. 86 (30), 42.

Galica, S. E., L. Aldridge, and E. E. Eyler (2013), Phys. Rev. A 88, 043418.

Goepfert, A., I. Bloch, D. Haubrich, F. Lison, R. Schütze, R. Wynands, and D. Meschede (1997),

Phys. Rev. A 56, R3354.

Grimm, R., Y. Ovchinnikov, A. Sidorov, and V. Letokhov (1990), Phys. Rev. Lett. 65 (12), 1415.
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FIG. 2 Scheme for the rectification of the dipole force. The solid curve in (a) shows the light shift

of the ground state of a two level atom in the standing wave of field 1, Ω1 = 40γ and δ = 3γ.

Note that it is not sinusoidal because Ω � δ (Metcalf and van der Straten, 1999). The dotted

curve shows the spatial variation of the detuning caused by the smaller light shift of field 2 that

has δ2 = 50γ and Ω2 = 200γ. Part (b) shows the gradient of the curve in (a), corresponding to

the force on a ground state atom from field 1. Part (c) shows the total rectified force on the atoms

because the sign of the detuning reverses appropriately. Simply taking minus the gradient of the

curve in (a) is not appropriate because the atom spends considerable time in the excited state

whose light shift is opposite, so it is necessary to calculate < F >= −tr(ρ∇H). Thus choosing

the relative spatial phase of these standing waves carefully results in a rectification of the force.

(Figure from (Metcalf and van der Straten, 1999).)
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(a) (b) 

FIG. 4 Part (a) shows the familiar dressed state pairs of an atom in a single frequency light field

at ω`, detuned below atomic resonance, ωa (δ < 0). Interaction with the light field of quantum

number n mixes these bare states |e, n− 1〉 and |g, n〉 to form new states split by h̄ωds (not shown)

found from Eq. 2. Part (b) shows that with two frequencies, and hence two field quantum numbers

r and b, there arises a ladder of energy states both up and down from each original dressed state

pair (Fig. adapted from (Yatsenko and Metcalf, 2004)).
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FIG. 5 The eigenvalues of the two-frequency dressed state system separated by h̄δ where the two

fields have equal strength but spatial phase offset of λ/8, along with a typical path followed by

an atom moving to the right. The light field comprises bichromatic standing waves so that the

intensities vary with position. The right choice of parameters produces exact crossings at points

(A) because one of the standing wave fields has a node. Moving atoms can make Landau-Zener

transitions and cross from one energy manifold to another, as shown by the heavy arrow, thereby

exchanging optical potential energy for kinetic energy (Figure from (Corder et al., 2015b)).
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FIG. 6 This shows a simulation of the time evolution of the velocity space density of an ensemble

of atoms that started with a uniform array of initial velocities (Hua et al., 2016). Here δ = 15γ

and there is a strong accumulation of atoms at speed −vc = −7.5 γ/k. Behind this high ridge is

a deep valley of width ∼ 15γ/k ≈ 35vr where the atoms began. This simulation was done for the

23S → 33P transition in He at λ = 389 nm where ωr ≈ 330 kHz so that tc ≈ 380 ns. Even at

t = tc/2 ≈ 190 ns there is evidence of substantial cooling. (Figure from (Hua et al., 2016).)
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FIG. 7 The upper portion shows two pulse pairs with a gap between them. The gap is for

experimental reasons and the phase notations will be discussed later. The lower part shows the

frequency sweeps, and in this case they are both upward. However, they can be reversed or even

in opposite directions. (Figure from (Stack et al., 2011))
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(a) (b)

FIG. 8 Part (a) shows the arc of a smoothly swept ~Ω(t) as the detuning varies from one side of

resonance to the other (red curve - smooth) using δ0 = 30ωm and Ω0 = 50ωm. It begins at one

pole where Ω(0)� δ(0) = δ0 so that ~Ω(0) is nearly polar, arcs toward the equator where δ(t) = 0

and Ω(t) = Ω0, and finishes at the other pole at the end of the pulse where Ω(t) is again very small.

Here ~R (black curve) makes many precession cycles and stays close to ~Ω(t) during the sweep. Part

(b) has δ0 = 1.10ωm and Ω0 = 1.61ωm to show an unusual case where the trajectory of ~R is a

simple arc along a meridian that is ∼ 90◦ away from the path of ~Ω(t) so that ~R also goes from pole

to pole (Figure adapted from Ref’s. (Miao et al., 2007; Stack et al., 2011)).
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FIG. 9 A plot of Eq. 2. The |g, n〉 and the |e, n− 1〉 dressed states comprise two separated energy

sheets except at their conical intersection at the origin. Their upper (lower) state is ground at

Ω = 0 for δ > 0 (δ < 0). The indicated path is a possible trajectory for ARP. (Fig. from (Lu et al.,

2005))
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FIG. 10 Plots showing calculated values of ~R on the Bloch sphere as viewed from the South pole.

Each set of points lies on a circle whose radius and center depend on the sweep parameters. These

parameters are (δ0/ωm,Ω0/ωm) = (a) - (2.4, 1.8), (b) - (3, 4.4), (c) - (7, 7), and (d) - (14, 18).

The points appear to be not evenly spaced (e.g., part (a)) because the rotation angle is large and

more than one full rotation is shown. (Fig. from (Lu et al., 2005))

.
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LASER FIELD OF BICHROMATIC BEAM  
Modulated carrier at average frequency 

aω
δ

π                     Frequency = 

Amplitude chosen for  - pulses 
inverts the atomic population  

(this returns in an important way) 

/ <<   >>  

L = c/ ~ 1 m 

The -pulse condition is R    = /4 
  s  22

R /
 2 ~ ( / )2  using 22/16 ~ 1 

FIG. 11 Counter-propagating beams, each carrying two frequencies. The frequencies are equally

displaced from ωa, the atomic frequency, so that the carrier is on resonance. The beat between

these frequencies produces the “pulses” that are used in the π-pulse model of the BF.
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FIG. 12 Each panel shows the velocity dependence of the bichromatic force calculated for a relative

spatial phase offset of 5% larger than λ/8 (95o) by direct numerical integration of the OBEs

(dotted line), the calculated values convolved with the experimental resolution (solid line), and the

measured values (data points). These measurements and calculations were done with δ = 2π × 55

MHz = 9.1γ. The different values of Ω/δ were set using a half-wave plate and polarizer combination,

starting with 1.19 in (a), 1.13 in (b), 1.07 in (c), 0.98 in (d), 0.88 in (e), and 0.76 in (f). The

calculated and experimental plots have vertical scales different by the factor 0.83 in all panels.

(Fig. from (Williams et al., 1999).)
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FIG. 13 Profile of the collimated He* beam. Atoms could be captured from 180 mrad (2 ×

FWHM) into this 7.5 mrad FWHM peak. The intensity was nearly 1010 atoms/s-mm2 and the

brightness was 1016 atoms/s-sr-mm2. The BF detuning was 2π× 60 MHz. (Figure from (Partlow

et al., 2004).)
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FIG. 14 Plot of the atomic distribution measured 63 cm downstream from the interaction region

after an average cooling time of 220 ns. The Rabi frequency was Ω = 2π× 36 MHz, a compromise

between two optimum values (see Ref. (Corder et al., 2015a)). There is a large background from

the He* source so the raw data here shows a change of only a few percent. The velocity smearing

caused by the width of the longitudinal velocity distribution is a few m/s, but it affects only the

deflected atoms. It does not affect the width of the “hole” because there are no atoms there.

(Figure adapted from Ref. (Corder et al., 2015b).)
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time. Frequency modulation of the two lasers is accomplished
using a manufacturer-supplied model DL-MOD interface in
one laser and a homemade copy in the other. The modulation
is produced by a field-effect transistor (FET) connected in
parallel with the laser diode. A voltage ramp applied to the
FET gate causes a portion of the laser diode current to be
diverted to ground, changing the laser output frequency.

The bichromatic frequencies are generated for each laser
separately using single-passed AOMs driven at an rf frequency
2δ. For each laser, the zero- and first-order components are
recombined using a 50% beam splitter to form the bichromatic
beam. The beat-note phase is controlled by locking the rf phase
between a pair of homemade frequency synthesizer boards that
drive the two AOMs. The microcontroller-based synthesizers
share a common 10-MHz clock, and a small offset current is
added to one of the PLL charge pump outputs to control the
phase shift as described in Refs. [34,35].

We found that the rf phase was much less stable than
expected because of microphonic motion of the lasers relative
to the AOMs, which causes phase variations because of
the short acoustic wavelength of the sound waves in the
modulators. A feedback loop was added to provide additional
phase stabilization by monitoring the relative rf phase of the
optical beat notes using an Analog Devices AD8032 phase
detector. By using this phase measurement as an error signal
in the PLL phase-lock circuit, the rms phase jitter was reduced
to approximately 4◦. However, frequent large phase excursions
of up to ±28◦ could not be corrected and reduced the effective
magnitude of the BCF. A better solution might be to utilize
a single AOM for both lasers, and this change is planned for
future work.

Our initial experiments were constrained to a very modest
BCF detuning of 74γ because of the limited optical power
available from the DL100 diode lasers, which provided about
40 mW in each bichromatic beam pair after accounting for
losses in the optics. For the same reason, the beams were
focused to a top-hat radius of 440 μm that was somewhat
smaller than the atomic beam, limiting the fraction of atoms
that could be slowed. This situation could be greatly improved
by the addition of a medium-power optical amplifier, such as
a tapered laser amplifier diode.

C. Results and analysis

The measured He* velocity distributions for chirped BCF
slowing using a detuning of 74γ and chirp magnitudes up to
300 MHz are shown in Fig. 7. We selected a relatively high
initial velocity range centered at 800 m/s only because our
present velocity measurement scheme is unsuitable for atoms
slowed below 350 m/s, as described in Sec. III A. The results
show the predicted increase in slowing with chirp magnitude,
indicating that the chirped BCF profile remains resonant with
a fraction of the atoms while they are slowed.

An analysis of these chirp results is shown in Table II,
in which the measurements of slowing and velocity range
are defined in Sec. III B. A detuning of only δ = 74γ with
a 300-MHz frequency chirp provides a measured slowing of
210γ /k or 370 m/s, the largest amount of slowing reported
in any BCF experiment to date. This is more than twice the
slowing measured for a static detuning of δ = 185γ as reported

FIG. 7. (Color online) Experimentally observed velocity profiles
for frequency-chirped BCF slowing with δ = 74γ , �r = √

3/2 δ, and
φ = π/2. The four panels show chirp ramps of 0 MHz, 100 MHz in
30 μs, 200 MHz in 40 μs, and 300 MHz in 50 μs.

in Table I. The laser irradiance requirements are lower by
nearly a factor of 10 than what would be required for a static
slower with the same velocity range, even if the problems
outlined in Sec. III C could be overcome.

The optimal experimental chirp ramp durations are found
to increase from about 30 to 50 μs as the chirp magnitude
increases from 100 to 300 MHz. As mentioned previously, the
Monte Carlo model described in Sec. IV A yields results in
good agreement if the bichromatic force magnitude is reduced
by a factor of 2 from its ideal value. This reduction could easily
be caused by experimental imperfections such as rf phase jitter
and imperfect Gaussian beam profiles.

The full velocity profiles predicted by these model cal-
culations are shown in Fig. 8. Again the agreement with
experiment is good. The most probable velocity of the slowed

FIG. 8. (Color online) Chirped BCF Monte Carlo model output
after reducing BCF magnitude, using the same experimental param-
eters used to obtain the results in Fig. 7.
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FET gate causes a portion of the laser diode current to be
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2δ. For each laser, the zero- and first-order components are
recombined using a 50% beam splitter to form the bichromatic
beam. The beat-note phase is controlled by locking the rf phase
between a pair of homemade frequency synthesizer boards that
drive the two AOMs. The microcontroller-based synthesizers
share a common 10-MHz clock, and a small offset current is
added to one of the PLL charge pump outputs to control the
phase shift as described in Refs. [34,35].

We found that the rf phase was much less stable than
expected because of microphonic motion of the lasers relative
to the AOMs, which causes phase variations because of
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available from the DL100 diode lasers, which provided about
40 mW in each bichromatic beam pair after accounting for
losses in the optics. For the same reason, the beams were
focused to a top-hat radius of 440 μm that was somewhat
smaller than the atomic beam, limiting the fraction of atoms
that could be slowed. This situation could be greatly improved
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a tapered laser amplifier diode.
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The measured He* velocity distributions for chirped BCF
slowing using a detuning of 74γ and chirp magnitudes up to
300 MHz are shown in Fig. 7. We selected a relatively high
initial velocity range centered at 800 m/s only because our
present velocity measurement scheme is unsuitable for atoms
slowed below 350 m/s, as described in Sec. III A. The results
show the predicted increase in slowing with chirp magnitude,
indicating that the chirped BCF profile remains resonant with
a fraction of the atoms while they are slowed.

An analysis of these chirp results is shown in Table II,
in which the measurements of slowing and velocity range
are defined in Sec. III B. A detuning of only δ = 74γ with
a 300-MHz frequency chirp provides a measured slowing of
210γ /k or 370 m/s, the largest amount of slowing reported
in any BCF experiment to date. This is more than twice the
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in Table I. The laser irradiance requirements are lower by
nearly a factor of 10 than what would be required for a static
slower with the same velocity range, even if the problems
outlined in Sec. III C could be overcome.

The optimal experimental chirp ramp durations are found
to increase from about 30 to 50 μs as the chirp magnitude
increases from 100 to 300 MHz. As mentioned previously, the
Monte Carlo model described in Sec. IV A yields results in
good agreement if the bichromatic force magnitude is reduced
by a factor of 2 from its ideal value. This reduction could easily
be caused by experimental imperfections such as rf phase jitter
and imperfect Gaussian beam profiles.

The full velocity profiles predicted by these model cal-
culations are shown in Fig. 8. Again the agreement with
experiment is good. The most probable velocity of the slowed
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time. Frequency modulation of the two lasers is accomplished
using a manufacturer-supplied model DL-MOD interface in
one laser and a homemade copy in the other. The modulation
is produced by a field-effect transistor (FET) connected in
parallel with the laser diode. A voltage ramp applied to the
FET gate causes a portion of the laser diode current to be
diverted to ground, changing the laser output frequency.

The bichromatic frequencies are generated for each laser
separately using single-passed AOMs driven at an rf frequency
2δ. For each laser, the zero- and first-order components are
recombined using a 50% beam splitter to form the bichromatic
beam. The beat-note phase is controlled by locking the rf phase
between a pair of homemade frequency synthesizer boards that
drive the two AOMs. The microcontroller-based synthesizers
share a common 10-MHz clock, and a small offset current is
added to one of the PLL charge pump outputs to control the
phase shift as described in Refs. [34,35].
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expected because of microphonic motion of the lasers relative
to the AOMs, which causes phase variations because of
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modulators. A feedback loop was added to provide additional
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magnitude of the BCF. A better solution might be to utilize
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available from the DL100 diode lasers, which provided about
40 mW in each bichromatic beam pair after accounting for
losses in the optics. For the same reason, the beams were
focused to a top-hat radius of 440 μm that was somewhat
smaller than the atomic beam, limiting the fraction of atoms
that could be slowed. This situation could be greatly improved
by the addition of a medium-power optical amplifier, such as
a tapered laser amplifier diode.
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slowing using a detuning of 74γ and chirp magnitudes up to
300 MHz are shown in Fig. 7. We selected a relatively high
initial velocity range centered at 800 m/s only because our
present velocity measurement scheme is unsuitable for atoms
slowed below 350 m/s, as described in Sec. III A. The results
show the predicted increase in slowing with chirp magnitude,
indicating that the chirped BCF profile remains resonant with
a fraction of the atoms while they are slowed.

An analysis of these chirp results is shown in Table II,
in which the measurements of slowing and velocity range
are defined in Sec. III B. A detuning of only δ = 74γ with
a 300-MHz frequency chirp provides a measured slowing of
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in Table I. The laser irradiance requirements are lower by
nearly a factor of 10 than what would be required for a static
slower with the same velocity range, even if the problems
outlined in Sec. III C could be overcome.

The optimal experimental chirp ramp durations are found
to increase from about 30 to 50 μs as the chirp magnitude
increases from 100 to 300 MHz. As mentioned previously, the
Monte Carlo model described in Sec. IV A yields results in
good agreement if the bichromatic force magnitude is reduced
by a factor of 2 from its ideal value. This reduction could easily
be caused by experimental imperfections such as rf phase jitter
and imperfect Gaussian beam profiles.

The full velocity profiles predicted by these model cal-
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experiment is good. The most probable velocity of the slowed

FIG. 8. (Color online) Chirped BCF Monte Carlo model output
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eters used to obtain the results in Fig. 7.
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FIG. 15 Observed slowing of a He* beam with chirped light using the BF with δ = 74γ and

Ω =
√

3/2 δ. The left panel shows the result with no chirp (fixed δ), and the right panel shows the

result of chirping the center frequency by 300 MHz. The velocity range is very much larger in the

latter case. The dotted curve shows the original velocity distribution, the red curve near it shows

the change one, and the blue curve (lowest one) is their difference. (Figure adapted from (Chieda

and Eyler, 2012).)

(a) (b) 

FIG. 16 Part (a) shows the frequency spectrum of the amplitude-modulated light with no phase

modulation and part (b) shows the frequency spectrum of the light with both phase and amplitude

modulation (note the difference in scales). (Figure adapted from (Miao et al., 2007)).
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FIG. 17 Part (a) shows the dependence of the ARP force on the peak Rabi frequency Ω0 and the

range of the frequency sweep ±δ0, calculated from the solutions of Eq. 6, and using the Ehrenfest

theorem (see (Lu et al., 2005)). Part (b) shows the results of measuring the ARP force over a similar

region of parameter space as part (a). The agreement in the strength of the force is qualitatively

good, and quantitatively acceptable except for a numerical factor slightly larger than 2. (Figure

from (Miao et al., 2007).)
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