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Abstract

A recent rejuvenation of experimental and theoretical interest in the physics

of few-body systems has provided deep, fundamental insights into a broad

range of problems. Few-body physics is a cross-cutting discipline not re-

stricted to conventional subject areas such as nuclear physics or atomic or

molecular physics. To a large degree, the recent explosion of interest in this

subject has been sparked by dramatic enhancements of experimental capa-

bilities in ultracold atomic systems over the past decade, which now permit

atoms and molecules to be explored deep in the quantum mechanical limit

with controllable two-body interactions. This control, typically enabled by

magnetic or electromagnetically-dressed Fano-Feshbach resonances, allows

in particular access to the range of universal few-body physics, where two-

body scattering lengths far exceed all other length scales in the problem.

The Efimov effect, where 3 particles experiencing short-range interactions

can counterintuitively exhibit an infinite number of bound or quasi-bound

energy levels, is the most famous example of universality. Tremendous

progress in the field of universal Efimov physics has taken off, driven par-

ticularly by a combination of experimental and theoretical studies in the

past decade, and prior to the first observation in 2006, by an extensive set

of theoretical studies dating back to 1970. Because experimental observa-

tions of Efimov physics have usually relied on resonances or interference

phenomena in three-body recombination, this connects naturally with the

processes of molecule formation in a low temperature gas of atoms or nu-

cleons, and more generally with N-body recombination processes. Some

other topics not closely related to the Efimov effect are also reviewed

in this article, including confinement-induced resonances for explorations

of lower-dimensionality systems, and some chemically interesting systems

with longer-range forces such as the ion-atom-atom recombination problem.
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I. INTRODUCTION AND OVERVIEW

Spectacular recent breakthroughs for the three-body problem with near-resonant two-

body interaction, in both experiments and theories, have spawned this review of universal

few-body physics, which concentrates on systems with finite-range interactions. Vitaly Efi-

mov’s 1970 prediction (Efimov, 1970) that an infinite family of universal three-body states

should emerge when two or more two-body scattering lengths are sufficiently large in mag-

nitude first received partial experimental confirmation in 2006 by Rudi Grimm’s group in

Innsbruck (Kraemer et al., 2006). That development was quickly followed by many subse-

quent experiments (Barontini et al., 2009; Berninger et al., 2011, 2013; Bloom et al., 2013;

Dyke et al., 2013; Ferlaino et al., 2009a, 2008, 2011; Gross et al., 2009, 2010, 2011; Häfner

et al., 2017; Hu et al., 2014; Huang et al., 2014a, 2015, 2014b; Johansen et al., 2016; Knoop

et al., 2010, 2009; Kunitski et al., 2015; Lompe et al., 2010a; Machtey et al., 2012a,b; Maier

et al., 2015; Nakajima et al., 2010, 2011a; Ottenstein et al., 2008; Pires et al., 2014b; Pollack

et al., 2009; Roy et al., 2013; Tung et al., 2014; Ulmanis et al., 2016a,b; Wacker et al., 2016;

Wang et al., 2016; Wenz et al., 2009; Wild et al., 2012; Zaccanti et al., 2009; Zenesini et al.,

2013) bearing on various aspects of the Efimov effect and universality. See Fig. 1. This

class of phenomena is called universal because it can occur for systems with vastly different

energy and length scales. While it was originally predicted for few-nucleon systems such

as the triton, with energy scales of order 106 eV and distance scales of the order of 10−14

m, all of the convincing demonstrations to date have involved energy and distance scales of

order 10−12 eV and 10−7 m, respectively. Some of the few-body physics topics discussed here

have already been reviewed elsewhere, and the reader is recommended to explore a large

body of literature that can be found in (Baranov et al., 2012; Blume, 2012a; Braaten and

Hammer, 2006; Côté, 2016; Frederico et al., 2012; Jensen et al., 2004b; Naidon and Endo,

2016; Nielsen et al., 2001; Ohsaki and Nakamura, 1990; Petrov, 2012; Rittenhouse et al.,

2011b; Suzuki and Varga, 1998; Wang et al., 2013, 2015a; Yurovsky et al., 2008; Zinner and

Jensen, 2013).
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A. Systems with finite range interactions

It is reasonable to ask why finding a new family of resonances has generated such ex-

citement in few-body physics, excitement that has translated into an exponentially grow-

ing rate of citations for the 1970 Efimov paper during the past 15 years. In fact these

resonances are unique and counterintuitive. For every previously known example of a sys-

tem where infinitely many bound states or resonances exist that converge to a breakup

threshold, the forces were infinite in their extent. The best known example of this is of

course the asymptotically attractive Coulomb potential V (r)→ −1/r which has an energy

level formula En ∝ −1/n2, and a second example is the charge-dipole two-body potential

V (r)→ −(s2+1/4)/2r2 at r > r0 which has (for a system of units with reduced mass µ = 1)

an energy level formula En = E0 exp(−2πn/s). The presence of a finite versus infinite num-

ber of quantized levels below a threshold hinges on the convergence or non-convergence of

the zero-energy JWKB phase integral with Langer correction included. (Vol.II of (Morse

and Feshbach, 1953) presents a pedagogical derivation of the Langer correction needed for

accurate semiclassical calculations, e.g. when the independent coordinate domain is semi-

infinite or finite as is true for the radial coordinate in three-dimensional problems.) That

is, one can deduce the energy level formula relevant to a given two-body potential energy

function V (r) by evaluating the zero energy total phase φ =
∫∞
r0

√

−2µV (r)/~2 − 1
4r2
dr. If

this φ is infinite, then the number of converging energy levels will also be infinite, whereas if

φ is finite then their number is also finite. This type of analysis also applies to the recently

predicted “super-Efimov effect” (Gao et al., 2015; Gridnev, 2014; Moroz, 2014; Nishida

et al., 2013; Volosniev et al., 2014) which is likewise predicted to yield an infinite sequence

of bound (or resonant) levels for a system of three fermions in 2 dimensions,(see also (Efre-

mov et al., 2013)) with a density of states far smaller than in the original Efimov effect.

A common thread running through this story is the fact that hyperspherical coordinate

techniques played a key role in the early theoretical predictions of the Thomas and Efimov

effects in pre-1980 studies, and they have played an equally crucial role in showing later that

ultracold quantum gases should provide a powerful way to observe universal Efimov physics,

by linking the Efimov effect quantitatively to the loss process of three-body recombination.

Hyperspherical studies have shown unusual flexibility, as they have been used on the one
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(a)
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Figure 1 (Color online) Characterization of universal Efimov trimers in ultracold gases. Panel

(a) shows the universal trimer energy dependence on the inverse two-body scattering length, i.e.

a. In particular, the Efimov trimers cross the three-body continuum at a
(n)
− , where n =1 denotes

the Efimov ground state, n = 2 the first excited states, etc. Efimov states intersecting the atom-

dimer continuum are characterized by a
(n)
∗ for the positive two-body scattering length. Panel (b)

schemmatically illustrates a log-log plot of the recombination rates of three identical bosons at low

energies versus the inverse two-body scattering length a. Minima in 3-body recombination occur

at scattering length values denoted here as a
(n)
+ . The negative values of the atom-atom scattering

length marked a
(n)
− indicate positions of the maxima in L3 at ultracold temperatures, i.e. where

Efimov states intersect the atom-atom-atom three-body threshold.

hand with zero-range regularized pseudopotential interactions to obtain closed-form analyt-

ical results,(Efimov, 1970, 1971, 1973a, 1979; Kartavtsev and Macek, 2002; Macek, 1986,

2002; Macek et al., 2005; Mehta et al., 2008; Nielsen et al., 2001; Nielsen and Macek, 1999;

Watanabe and Komine, 1989) and on the other hand as the basis for quantitative numer-

ical solutions using finite-range analytical or numerical three-body Hamiltonians (D’Incao

and Esry, 2005; Esry and Greene, 2006; Esry et al., 1999, 1996a; Suno et al., 2002; Wang

et al., 2012a,d). This flexibility has led to a tremendous deepening of our understanding

of three-body recombination and atom-dimer elastic and inelastic scattering over the past

two decades, both the quantitative understanding and, equally important, qualitative and

semi-quantitative ways to understand the main reaction pathways which govern the corre-

sponding physical mechanisms. Despite this headway, there has not been a comprehensive
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review or monograph that has presented the full hyperspherical methodology, nor has there

been one that covered much of the connections with diverse areas of physics from nuclear

systems to cold atoms to exotic species and atomic electron states, and one of the goals of

the present review is to bridge this gap in the existing literature.

The concepts of the hyperspherical approach are of course far from being a new innovation

in few-body theoretical physics. They go back at least as far as the pioneering work of

Llewellen Hilleth Thomas,(Thomas, 1935) who realized that three nucleons whose ratio of

potential range to scattering length becomes arbitrarily small, r0/|a| → 0, must have a

ground state energy that “collapses” to E → −∞. The triton model considered by Thomas

is depicted in Fig.2. This was demonstrated by showing that the effective potential energy of

such a system, as a function of the hyperradius R (Thomas denoted this variable as s), has

the form −1/R2, a potential that exhibits the well-known “fall to the center” collapse of its

ground state energy, as is discussed in quantum mechanics textbooks (Landau and Lifshitz,

1997). Another early application of hyperspherical coordinates framework was developed by

Julian Schwinger’s student at Harvard, R. E. Clapp, in his PhD thesis work on the triton

binding energy (Clapp, 1949). Fock’s 1958 study of the analytical nature of the electronic

helium atom wavefunction at small hyperradii also utilized hyperspherical coordinates in a

fundamental way (Fock, 1958).

V(r
12
)

V(r
13
)

r
0

Figure 2 (Color online) Tritium nucleus model assumed by Thomas. The neutron-proton inter-

action is characterized by a finite-range potential V (rij), whose range is given by r0, but the

neutron-neutron interaction is neglected (which is known nowadays to be far from correct). See

text for details.

Some of the deepest insights into the nature of the three-body problem have emerged

from Macek’s adiabatic hyperspherical methodology (Macek, 1968). The latter consists of a
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comprehensive theoretical framework in which the Hamiltonian of the system is initially di-

agonalized at fixed values of the hyperradius R, yielding adiabatic curves which represent the

energies of the system as functions of R. These give an immediate, dynamics-based repre-

sentation of the available reaction pathways for any given system, and highlight the emerged

structure of the bound and quasi-bound states of the system as well as their excitation and

decay mechanisms (Fano, 1976, 1983; Lin, 1986, 1995). Coupling matrix elements can also

be computed which permit, as is shown in this review article, a systematic solution of the full

three-body Schrödinger equation to the accuracy desired for arbitrary bound state problems

as well as two-body inelastic and rearrangement collisions (A+BC), three-body collisions

(A+B+C), and photon-assisted collision processes (Fink and Zoller, 1985).

B. Coulomb Systems

The three-body problem in quantum mechanics with Coulomb interactions has generated

intense effort throughout the past century. Early in the days of the “old quantum theory”, it

was a major problem to understand the ground and excited states of the helium atom. With

Schrödinger’s wave mechanics, in combination with other tools such as the Ritz variational

method, it became possible by the 1930s to calculate properties of such low-lying states

in the three-body Coulomb problem to high precision. For higher excited states lying in

the two-body or three-body continua, however, progress was much slower. The ability to

nonperturbatively calculate the simple process of electron impact ionization of hydrogen at

low energies (< 1 eV) above the double escape threshold, for instance, did not emerge until

the 1990s (Bartlett et al., 2003; Kadyrov et al., 2009; Kato and Watanabe, 1995; McCurdy

et al., 1997; Robicheaux et al., 1997), although important theoretical work prior to that had

identified the unusual threshold behavior for two-electron escape (Fano, 1983; Greene and

Rau, 1982, 1983; Klar and Schlecht, 1976; Peterkop, 1971; Rau, 1984; Read, 1984; Selles

et al., 1987; Wannier, 1953; Watanabe, 1991). Analogous theoretical headway occurred over

that same period for other three-body observables, such as double photoionization of He

and H− (Meyer and Greene, 1994; Meyer et al., 1997; Robicheaux et al., 1997). Of course

long before the quantal version of the three-body problem became topical, the Newtonian

version with inverse square forces had acquired paramount importance and was singled out

by researchers such as Poincaré and Hilbert as a crucial bottleneck that had to be solved.
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Early efforts on systems with Coulomb interactions by Macek, Lin, and Fano demon-

strated that significant insights into the qualitative and semiquantitative nature of doubly-

excited states of He and H− emerge when an adiabatic hyperspherical approximation is

implemented (Fano, 1976; Lin, 1986; Lin and Morishita, 2000; Macek, 1968). Surprisingly

high doubly-excited states of two-electron atoms can be treated in the adiabatic scheme, as

seen for calculations of high states which yielded a simple interpretation of regularities seen

in photoabsorption (Domke et al., 1991; RAU, 1992; Sadeghpour and Greene, 1990; Tang

et al., 1992). Extensions to other atomic systems such as the alkaline earth atoms (Greene,

1981) and the negative ion of helium (Watanabe, 1982) were also developed, which showed

that nonadiabatic couplings often need to be incorporated in order for the results to be even

qualitatively useful (Christensen-Dalsgaard, 1984). The exploration of near-separability of

the two-electron wavefunction in alternative choices of coordinates, which yields nontrivial

insights in some cases, was reviewed by (Tanner et al., 2000).

Another arena where three-body Coulombic interactions have been subjected to intensive

study has been in the context of muon-catalyzed fusion (Hino and Macek, 1996). Interesting

studies of the dtµ reaction of importance for muon-catalyzed fusion were carried out, for

instance, using hyperspheroidal coordinates (Fukuda et al., 1990; Hara et al., 1988). An-

other hyperspheroidal coordinate application was to HD+ by Macek and Jerjian (Macek

and Jerjian, 1986) and by Hara et al. (Hara et al., 1989) Some of the most suitable systems

for an adiabatic representation in hyperspherical coordinates are those with two or more

equal mass particles, such as the ion formed from two electrons and one positron, i.e. the

positronium negative ion (Botero and Greene, 1985, 1986; Fabre de la Ripelle, 1993). Also,

not to be overlooked is the fact that this approach can be made quantitatively accurate,

in some cases with direct solution of the coupled hyperradial equations in the adiabatic

representation (Kadomtsev et al., 1987).

In fact the adiabatic representation has challenges as the system grows in complexity and

in the number of relevant coupled hyperradial equations, and for such systems the clever re-

casting as a set of diabatic equations, called the “slow-variable discretization” (SVD) method

proposed by Tolstikhin et al. (Tolstikhin et al., 1996), improves the efficiency enormously.

When propagation to very large hyperradii is required in order to obtain accurate scatter-

ing information, a hybrid method (Wang et al., 2011a) has proven to be quite efficient and

accurate, which uses SVD at small to intermediate hyperradii but solves the direct coupled
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adiabatic equations at very large hyperradii. One of the most recent applications of the

SVD hyperspherical treatment is an investigation of the famous Hoyle triple-α resonance

by (Suno et al., 2015).
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1/2
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Figure 3 Hyperspherical potential energy curves for the even-parity, zero angular momentum states

of the p̄pe system, showing the rich variety of collision channel pathways that exist in this system.

The states shown in the energy range displayed here are mostly of the type “anti-hydrogen plus

electron”. Note that the energy and hyperradius are displayed respectively here on an “effective

quantum number scale” ν ≡ (−mU(R))−1/2 with m the proton mass, and square root hyperradial

scale R1/2, reflecting the usual scaling in a Coulomb potential. For instance ν = 1 corresponds to

the energy of the ground 1s state of the hydrogenic p̄p state on this scale. Taken from (Esry and

Sadeghpour, 2003).

Other exotic examples of three-body Coulombic systems that have been studied include

the antiproton+hydrogen atom system, explored by (Esry and Sadeghpour, 2003), which

gives an idea of the prototypical hyperspherical potential curves that emerge from apply-

ing the adiabatic hyperspherical method to the p̄pe system, as is shown in Fig. 3. A huge

number of interacting channels are evident, which might initially seem hopelessly daunt-

ing in complexity. Closer inspection shows, however, that most of the curve crossings are

highly diabatic, and the diabatic potential curves are remarkably simple, suggesting ap-

proximately conserved quantum numbers. Further examples of such simplicity emerging for

a seemingly complex system will be demonstrated throughout the present review. Some
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exciting headway in treating four-body Coulomb systems has also occurred during the last

few decades, notably by Morishita, Lin, and collaborators, (D’Incao, 2003; Morishita and

Lin, 1998, 1999; Morishita et al., 1997) in a robust improvement over primitive early studies

(Clark and Greene, 1980; Greene and Clark, 1984). A small number of treatments have

extended adiabatic hyperspherical ideas to more than four particles, although they are still

at a relatively primitive state at this time (Blume and Greene, 2000; Bohn et al., 1998; Daily

and Greene, 2014; Ding and Greene, 2017; Kim and Zubarev, 2000; Kushibe et al., 2004;

Morishita and Lin, 2005; Rittenhouse et al., 2006; Rittenhouse and Greene, 2008; Sogo et al.,

2005). Fig. 4 shows an example of the lowest potential energy curves obtained by (Daily and

Greene, 2014) for a system of 3 electrons and 2 positrons. These potentials contain bound

states of the different symmetries of this 5-body system, and they also describe the lowest

energy scattering processes.

Figure 4 (Color online) The lowest several potential energy curves for zero angular momentum

and even total parity are shown versus hyperradius for a 5-body Coulomb system, consisting of

three electrons and two positrons. Denoting (S+, S−) the separate spin quantum numbers of the

positrons and the electrons, these potentials shown as dashed, dash-dotted, dash-dot-dotted, and

dotted lines correspond to (S+, S−) = (1, 12 ), (0,
1
2 ), (1,

3
2), (0,

3
2), respectively. The horizontal solid

lines ordered from lowest to highest indicate the asymptotic fragmentation threshold energies of

Ps2+e−, Ps+Ps−, and 2Ps+e−. Taken from (Daily and Greene, 2014).

Early interest in three-body continuum states in Coulombic systems was mainly triggered

by a desire to understand electron impact ionization of atoms, especially in the low energy

range, through phenomena such as the Wannier-Rau-Peterkop threshold law for that process

derived initially through entirely classical arguments (Wannier, 1953) and later confirmed
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through quantum mechanical and semiclassical arguments by (Peterkop, 1971, 1983; Rau,

1971). Experimental confirmations of this unusual irrational threshold law for a process

with both electrons escaping from a residual particle of positive charge Ze, namely σ ∝ Eγ

where γ = 1
4
[(100Z−9

4Z−1
)1/2−1], were measured for electron impact ionization of atomic helium

by (Cvejanovic and Read, 1974) and for two-electron photodetachment of H− (Donahue

et al., 1982)(both for z = 1, γ = 1.127...). Going beyond the double escape threshold law

proved to be highly challenging, with some of the first credible absolute cross sections from a

theoretical calculation, for the fundamental e + H→ e + e + p process, emerging first in the

numerical “convergent close-coupling” studies by (Bartlett et al., 2003; Bray and Stelbovics,

1993; Kadyrov et al., 2009), performed in ordinary independent electron coordinates. One

of the first studies that obtained competitively accurate results within a hyperspherical

coordinate framework was that of (Kato and Watanabe, 1995, 1997), and it was followed by a

subsequent detailed study by (Kazansky et al., 2003; Malegat, 2003, 2004; Selles et al., 2004).

Highly quantitative results are also now obtained for this two-electron escape process by

direct solution of the time-independent (McCurdy et al., 2004) or time-dependent (Pindzola

and Robicheaux, 1998; Pindzola et al., 2007) Schrödinger equation. Recent years have

seen extensive interest in the time-reversed process: three-body recombination. For a low-

temperature plasma consisting of electrons and protons, this is the reaction e + e + p →
H(nl) + e (Pohl et al., 2008; Robicheaux, 2007; Robicheaux et al., 2010) or its antimatter

analog with positrons and antiprotons; this mechanism underpins recent exciting progress

in the formation of antihydrogen (Andresen et al., 2010, 2011).

C. Chemical Physics

Another class of studies that has utilized a 3-body hyperspherical solution to solve a chal-

lenging problem in chemical physics is the dissociative recombination (DR) ofH+
3 (Kokoouline

and Greene, 2003; Kokoouline et al., 2001; Petrignani et al., 2011). To describe the DR

process where an electron collides with H+
3 and the final state dissociates into H2 + H

or H + H + H , the use of hyperspherical coordinates has both a practical computational

advantage and a qualitative conceptual advantage. For instance, the theory of DR is much

better understood for a diatomic target than for a polyatomic target, so the use of an adia-

batic hyperspherical representation of the nuclear positions ultimately maps polyatomic DR
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theory back in terms of more familiar diatomic DR theory. Those studies also showed that a

nontrivial rearrangement collision can be controlled by conical intersection dynamics, more

specifically in this case the Jahn-Teller effect. Part of that solution was a description of

the incident electron channels as well as the energetically-closed Rydberg channel pathways

using multichannel quantum defect techniques, which will not be discussed in detail here

but are summarized elsewhere in the literature (Kokoouline et al., 2011).

In chemical physics, some of the most impressive theoretical studies of few-atom reactive

scattering have been carried out using a hyperspherical coordinate framework. See for

instance an early treatment by (Kuppermann and Hipes, 1986) of H+H2 scattering. In

1985, experimentalists Neumark and coworkers perform a groundbreaking study(Neumark

et al., 1985) of the famous F+H2 → FH +H reaction, which required several years before

a converged theoretical treatment using hyperspherical coordinates in a variant of Macek’s

adiabatic representation - the diabatic-by-sector method - was developed by Launay and

coworkers (Launay and Dourneuf, 1990). Other studies of importance in hyperspherical

treatments of reactive scattering were developed by (Pack and Parker, 1987, 1989). However,

other studies of important rearrangement reactions were carried out using Jacobi or other

coordinates, such as the calculation by (Neuhauser et al., 1991), but our focus in this article

is primarily on methodologies that ultimately boil down to solving one or a coupled set

of one-dimensional hyperradial Schrödinger equations. A simple and popular method for

solving such coupled 1D differential equations is the log-derivative method (Johnson, 1973;

Manolopoulos et al., 1993), while a more advanced technique frequently utilized when there

are many close avoided crossings in the potential curves has been developed by (Tolstikhin

et al., 1996) and implemented in various studies such as (Wang et al., 2011a).

A handful of studies have even gone beyond three-atom processes and computed scat-

tering cross sections for reactions involving four-atoms using hyperspherical (Clary, 1991)

or other methods (Bohr et al., 2014). These studies can be viewed as solutions to the few-

body Schrödinger equation, starting from the Born-Oppenheimer potential energy surface

as a function of the internuclear coordinates. Of course a number of important reactive

systems have two or more fundamentally coupled potential surfaces, with or without conical

intersections, and these require further sophistication even in formulating the basic Born-

Oppenheimer Hamiltonian governing the coupled electronic and nuclear degrees of freedom.
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D. Fragmentation, recombination, and molecule formation

The general theory of nuclear reactions was formulated in hyperspherical coordinates in

a useful set of papers by (Delves, 1959, 1960), who showed that the usual unitary scattering

matrix can be defined in general by inspecting the asymptotic form of the flux-conserving

solution at large hyperradii. Hyperspherical coordinates were picked up by Smirnov and

others in the Soviet school of nuclear physics, and that work is reviewed in an extremely

practical and general article by (Smirnov and Shitikova, 1977). The work of that school

concentrated on the development of non-interacting solutions in the hyperangular degrees of

freedom, the so-called hyperspherical harmonics, including a graphical way to construct the

solutions, and the analog of fractional parentage coefficients to achieve their antisymmetriza-

tion when applied to several fermionic particles such as nucleons (Smirnov and Shitikova,

1977). This has been developed further in nuclear collision theory by (Barnea, 1999; Barnea

and Novoselsky, 1997) and by (Nielsen et al., 2001) More recently, a model treatment of

elastic nucleon scattering of the type A + A2 has shown that there is a significant benefit

from adopting adiabatic hyperspherical ideas in the calculation, particularly if the theory

is implemented using integral relations for the scattering amplitudes that are developed by

(Barletta and Kievsky, 2008, 2009; Barletta et al., 2009).

The variant of the three-body problem involving short-range forces, particularly relevant

in nuclear physics, has served as an independent but equally important testing ground for

theory. Whereas in ultracold atomic physics it is a recombination process such as A +B +

C → AB + C that is of greatest interest, which can form a diatomic molecule in a gas of

free atoms, in nuclear physics it is more typically the time reverse of recombination, i.e.

AB + C → A + B + C whose reaction rates and scattering amplitudes are of interest in

laboratory experiments and in astrophysical contexts. An early study by (Thomas, 1935)

showed that the range r0 of two-body nuclear forces cannot be made arbitrarily smaller than

the nucleon-nucleon scattering lengths ann(S = 0) = −18.9 fm, anp(S = 0) = −23.7 fm,

anp(S = 1) = 5.43 fm, because the three-nucleon ground state would become arbitrarily

deep and plummet all the way to −∞ in the limit r0 → 0, a behavior never observed

experimentally, of course, but which is now referred to as the “Thomas collapse” effect.

Interestingly, however, one sees that the scattering lengths are generally much larger in

magnitude than the known range r0 ∼ 1−2 fm of the nucleon-nucleon strong force. Another
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intriguing foray into the behavior of three particles interacting via short range forces came

decades later from Efimov, who predicted an effect that bears some connection with the

Thomas collapse effect: Efimov predicted that for a system of three particles having infinite

two-body scattering lengths, there must be an infinite number of 3-body bound levels that

become arbitrarily weak in their binding. Efimov’s work went on to predict that in the

limit where three equal mass particles have common interparticle scattering lengths a, the

number of such universal bound levels becomes finite and is truncated to the approximate

value N ≈ 1
π
ln(|a|/r0). These levels are called universal because they depend only on the

dimensionless ratio between the scattering length and the distance r0 beyond which the

two-body interactions are negligible, and in some cases an additional parameter is needed,

such as the “three-body parameter” discussed below in Sec. III.

The recombination process that occurs when three ultracold atoms collide, e.g. A +

A + A → A2 + A in a Bose-Einstein condensate, became a particularly important topic in

the field of degenerate quantum gases in the mid-1990s, when it was increasingly realized

that this was the dominant loss process in most experiments. The reason was that most of

the experimental ingenuity had been directed towards turning off inelastic two-body losses

by cleverly designing the quantum states of the trapped atoms. This left little possibility

to further turn off inelastic three-body losses, although the gases in real experiments were

usually sufficiently dilute that the quantum gas produced could be studied for reasonable

periods of time, usually from 0.1 - 100 s. The process of three-body recombination was stud-

ied in a perturbative treatment by Verhaar and collaborators for the case of spin-polarized

atomic hydrogen (de Goey et al., 1986); the rate coefficient for the process is only of order

10−38cm6/s, i.e. of extremely low probability because it requires a spin flip via magnetic

interactions. For more typical systems such as alkali atoms that recombine in an ultracold

gas, an application of the Verhaar approach (Moerdijk et al., 1996; Moerdijk and Verhaar,

1996) predicted that the recombination rate should scale overall as a2, i.e. as the square of

the atom-atom scattering length a.

In fact the growth of the recombination rate coefficient K3 with a was eventually shown

to be much faster than quadratic. The first promising step towards a deeper understanding

of three-body recombination emerged from a study by (Fedichev et al., 1996a) that predicted

that the true scaling of K3 should vary much more strongly with scattering length, as a4.

Sparked by growing interest throughout the ultracold science community in the need for
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a deeper understanding of three-body recombination, two nonperturbative treatments of

this process at large two-body scattering lengths were published in 1999, one by Nielsen

and Macek (Nielsen and Macek, 1999) and the other by Esry et al. (Esry et al., 1999).

While these 1999 Letters confirmed the (Fedichev et al., 1996b) prediction of an overall a4

scaling of the three-body recombination rate coefficient K3, they both found an additional

Stueckelberg interference modulation with the encouraging potential to cause destructive

interference at some very large values of a, potentially beneficial for experiments where loss

needs to be minimized. In addition, (Esry et al., 1999) predicted that an infinite number

of resonances should periodically enhance the recombination rate at large negative a, and

that these resonances are Efimov states that have become unbound and merged into the

three-body continuum. In the case of homonuclear three-body recombination, those “zero-

energy” resonances are predicted to have an approximate geometric scaling in the scattering

length, with each successive Efimov resonance occurring at a two-body scattering length

that is approximately eπ/s0 ≈ 22.7 times larger than the preceding one.

Following these initial predictions, subsequent theoretical studies extended and amplified

them, e.g. as reviewed with a focus on the hyperspherical coordinate point of view by

several articles (Greene, 2010; Nielsen et al., 2001; Rittenhouse et al., 2011b; Wang et al.,

2013, 2015a,a). Importantly, alternative treatments found largely similar conclusions using

methods such as effective field theory (Bedaque et al., 2000; Braaten and Hammer, 2001,

2003, 2006), a separable interaction application of effective field theory (Shepard, 2007), two

exactly solvable models (Gogolin et al., 2008; Macek et al., 2006; Mora et al., 2011) and

the treatment by (Köhler, 2002; Lee et al., 2007) that adopted the early theoretical nuclear

physics treatment of (Alt et al., 1967). All of these explorations added tremendously to

confidence in the theory community that the Efimov effect should be observable, despite the

dearth of experimental confirmation prior to 2006.

Then, however, this field received a tremendous injection of excitement in 2006 when re-

combination rate measurements for a Cs gas by Grimm’s Innsbruck group (Kraemer et al.,

2006) observed the aforementioned Efimov resonance in the three-body rate coefficient K3 at

a large negative scattering length, in agreement with the 1999 prediction (Esry et al., 1999).

That study provided the first experimental confirmation of the Efimov effect. The scattering

length dependence of measured recombination rates in that 2006 experiment closely resem-

bled the predicted shape (Esry et al., 1999) for a three-body Efimov resonance, but a skeptic
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might argue that observation of one resonance alone might not be convincing evidence of its

Efimov character. However, subsequent observations of three-body recombination in numer-

ous systems have solidified, confirmed, and extended that interpretation beyond any doubt.

The most dramatic signature has been observing multiple resonances, separated by the pre-

dicted Efimov factor of 22.7 in the scattering length, and multiple predicted interference

minima, separated by that same universal factor (Braaten and Hammer, 2006; Esry et al.,

1999; Greene, 2010; Nielsen and Macek, 1999).

A further unexpected level of universality emerged from experimental studies with three-

atom recombination. The three-body parameter had been thought by virtually all theorists

to occur “randomly”, and to vary widely from system to system. The three-body parameter

can be viewed as setting the energy E0 of the lowest Efimov state at a =∞ (unitarity), or

alternatively, as the smallest scattering length a
(1)
− at which a zero-energy Efimov resonance

occurs and thus sets the location of all subsequent resonances through the universal scaling

formula, a
(n)
− = a

(1)
− e(n−1)π/s0 . The remarkable surprise was experimental evidence from the

Grimm group (Berninger et al., 2011) and several others (Dyke et al., 2013; Gross et al.,

2009, 2010, 2011; Roy et al., 2013; Wild et al., 2012) which showed that for homonuclear

three-body systems dominated by van der Waals (vdW) −C6r
−6 two-body interactions at

long range, an approximate van der Waals universality fixes a
(1)
− ≈ −10ℓvdW in terms of the

characteristic length ℓvdW ≡ [mC6/(16~
2)]1/4. As Fig. 5 shows, the three-body parameter is

fixed to within approximately 15% by this simple relation. Shortly after this experimental

evidence was published, a theoretical interpretation emerged from (Wang et al., 2012a)

which showed that a classical suppression of the two-body probability density whenever two-

particles approach to within r < ℓvdW produces an effective hyperradial barrier that restricts

three-body motion at R < 2ℓvdW and sets the three-body parameter. To clarify, there is a

classical suppression because the probability of a classical particle having local velocity v(r)

to exist in a region of width ∆r is proportional to ∆r/v(r), the time spent by the particle in

that region in each traversal. In the presence of an attractive van der Waals force, the velocity

increases suddenly and dramatically when the interparticle distance r decreases to less than

the van der Waals length, causing this probability density to plummet in such regions. The

existence of the hyperradial barrier was subsequently confirmed and extended in further

studies by (Naidon et al., 2014a,b, 2012) which stressed particularly that a key element of

this van der Waals universality is a change from a very floppy equilateral to a roughly linear
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geometry that occurs near R ≈ 2ℓvdW; the geometry change then triggers strong non-Born-

Oppenheimer repulsion and suppresses the three-body solution at all smaller hyperradii

in the relevant potential curve. An alternative toy model addressing the implications of

two-body van der Waals forces on the three-body approximate universality has also been

published as a preprint by (Chin, 2011). Other treatments aimed at this issue of three-body

parameter universality that start from a two-channel or narrow two-body resonance point

of view are presented in (Schmidt et al., 2012; Sørensen et al., 2012; Wang and Julienne,

2014).
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Figure 5 (Color online) Three-body parameter scaled by ℓvdW for three equal mass particles.

Specifically, this quantity is the value of the (negative) atom-atom scattering length at which the

first universal Efimov resonance is observable in a zero energy three-body recombination process.

The error bars have been calculated as the weighted mean of the experimental results reported in

Sec.III.

The case of heteronuclear universal Efimov physics appears to be significantly more com-

plicated, e.g. for the particularly interesting case of heavy-heavy-light (HHL) systems that

exhibit more favorable Efimov scaling than for the homonuclear three-body systems. But

a degree of van der Waals universality has been predicted in (Wang et al., 2012d) to still

be relevant for the “Efimov favored” HHL case. The complexity grows for these heteronu-

clear systems because more parameters control the universality, namely two van der Waals

lengths and a mass ratio, and the universal energy spectrum now depends on two scattering

lengths that are uncorrelated in general. Nevertheless, early experimental evidence from two

different experimental groups (Pires et al., 2014b; Tung et al., 2014; Ulmanis et al., 2016a)

suggests that this generalized van der Waals universality for HHL systems is at least ap-

proximately valid, but still deserves careful study in the future. A very recent experimental
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preprint (Johansen et al., 2016) suggests that for Efimov physics near a narrow two-body

Fano-Feshbach resonance in the 6Li-133Cs-133Cs system, the universal van der Waals theo-

retical predictions developed for Efimov physics in the HHL system near a broad two-body

resonance (Wang et al., 2012d) will require very substantial modifications, e.g. by imple-

menting a multichannel model for the two-body interaction Hamiltonian as in (Kartavtsev

and Macek, 2002; Mehta et al., 2008; Wang and Julienne, 2014). For light-light-heavy (LLH)

three-body systems, Ref. (Wang et al., 2012d) stresses that these are “Efimov-unfavored”,

and it is unlikely that a true Efimov state will be observable experimentally.

E. Recombination processes involving cluster resonances with more than three

particles

A detailed discussion of universal four-boson and five-boson energy levels and recombina-

tion resonances is given below in subsection III.G, but here we point out some of the basic

issues involved in describing cluster resonances in systems of N > 3 identical bosons having

short-range interactions. Most of these systems have a pairwise attractive long-range inter-

action and a strong short-range repulsion, as in the case N bosonic helium atoms. Simple

counting then shows that in the relative coordinate system the number of positive terms in

the kinetic energy operator is proportional to (N − 1) whereas the number of net attractive

terms in the pairwise potential energy is equal to N(N − 1)/2. Thus, one expects that if

one is in a negative region of the two-body scattering length a where 3 particles are not

quite attracted strongly enough to bind a universal trimer state, there could be a value of

the negative scattering length a = a−4B where 4 or more particles are able to bind. Simi-

larly, if one goes to a region where 4 particles are not quite strongly enough to be bound,

there should be a negative value of a = a−5B . One can explore this theoretically either by

varying the two-body potential strength to modify the scattering length,(Gattobigio et al.,

2012; Nicholson, 2012; von Stecher, 2010, 2011; Yamashita et al., 2010; Yan and Blume,

2015) or by artificially changing the particle mass in the calculations for a fixed two-body

potential, which also modifies the repulsive/attractive balance in the Hamiltonian (Hanna

and Blume, 2006). This concept has been studied in a number of studies,and some universal

aspects have already emerged. In particular, the most recent careful discussion by (Yan

and Blume, 2015) gives evidence that for general short-range two-body interactions, such as
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gaussians or other short-range potentials, the N -body cluster energies at unitarity a → ∞
are not uniquely specified since they depend on the type of “three-body regulator” imple-

mented. However, there does appear to be a quasi-universality that emerges in the case of

van der Waals two-body interactions: the cluster bound state energies at unitarity are then

approximately fixed in terms of the van der Waals length scale.

These and other developments will be addressed in the remainder of this review, including

a detailed description of the techniques, while stressing methods of interpretive analysis that

have been utilized to study these universal phenomena from a hyperspherical coordinate

perspective. A very recent treatment of universal 5-body bound states in a mass-imbalanced

fermionic system has been developed by (Bazak and Petrov, 2016) using alternative (integral

equation) techniques (Pricoupenko, 2011).

II. ADIABATIC HYPERSPHERICAL TREATMENT

A Schrödinger wave equation for N interacting particles, with masses mi moving in 3

dimensions per particle, becomes in the absence of external fields, a d = 3N −3 dimensional

partial differential equation (PDE) in the relative coordinate system. When expressed in

hyperspherical coordinates, a single scalar coordinate, the hyperradius R defined below, is

singled out for special treatment within an adiabatic formulation. It is possible in general to

formally transform the d−dimensional PDE, specifically the time-independent Schrödinger

equation ĤΨ = EΨ for any potential energy function dependent on the relative position

coordinates only, into an infinite set of ordinary coupled differential equations in a single

adiabatic coordinate R. Moreover, a conceptual advantage of hyperspherical coordinates

is that every possible fragmentation mode for any system of particles occurs in the limit

R→∞.

The basic equations of the adiabatic representation are simple to derive. First of all,

write the full time-independent Hamiltonian in the form

Ĥ = T̂R +HR=const, (1)

where the term HR=const depends on R only as a parameter and is a Hermitian partial

differential operator in all other (hyperangular) coordinates of the system plus spins, denoted
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collectively here as {̟}. Next, solve the eigenvalue equation at each value of R:

HR=constΦν(R;̟) = uν(R)Φν(R;̟). (2)

The exact eigenfunctions of the full Ĥ can now be expanded into the complete, orthonormal

set of eigenfunctions Φν(R;̟) with R-dependent coefficients FEν(R), as

ΨE(R;̟) = R−(d−1)/2
∑

ν

Φν(R;̟)FEν(R), (3)

giving an infinite set of coupled differential equations for the hyperradial functions:

(− ~
2

2µ

d2

dR2
+ Uν(R)−E)FEν(R) = −

∑

ν′

Ŵνν′FEν′(R), (4)

where µ is the N -body reduced mass and its explicit form is given in Eq. (9). Observe

that for a coordinate space with d dimensions, the hyperradial kinetic energy operator has

the form T̂R = − ~
2

2µ
1

Rd−1
∂
∂R
Rd−1 ∂

∂R
, and the rescaling of the radial function eliminates the

first-order derivative of FEν(R) on the left-hand side of Eq.(4). The rescaling also adds

what Fano called a “mock-centrifugal term” to uν(R), giving the full effective hyperradial

Born-Oppenheimer potential as

Uν(R) = uν(R) +
(d− 1)(d− 3)~2

8µR2
(5)

The coupling terms on the right-hand side of Eq.(4) which are responsible for nonadiabatic

coupling are given by:

Ŵνν′FEν′ = −
~
2

2µ
Qνν′(R)FEν′(R)−

~
2

µ
Pνν′(R)

dFEν′(R)

dR
. (6)

Here the two nonadiabatic coupling matrices are given byQνν′(R) ≡
〈〈

Φν(R;̟)
∣
∣
∣
∂2

∂R2

∣
∣
∣Φν′(R;̟)

〉〉(R)

and Pνν′(R) ≡
〈〈
Φν(R;̟)

∣
∣ ∂
∂R

∣
∣Φν′(R;̟)

〉〉(R)
where the double bracket notation signifies

an integral (and spin trace) only over the ̟ degrees of freedom. This set of coupled

equations is sometimes treated in the hyperradial Born-Oppenheimer approximation which

neglects the right-hand side of Eq. (4). In that approximation, the system moves along a

single potential energy curve with no possibility of changing from one potential to another,

and this approximation of course has no possibility of describing an inelastic collision. But

in some cases it can give a reasonable description of energy levels and scattering phase-

shifts, although in most cases a more accurate result is obtained by retaining (except near
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close avoided crossings) the diagonal terms of Eq. (4) which is usually referred to as the

hyperspherical adiabatic approximation.

While the hyperradial Born-Oppenheimer approximation, which considers only a single

term in the expansion for ΨE in Eq. (4), is often reasonable, a far richer set of phenomena

emerges when nonadiabatic coupling effects are incorporated, either by direct solution of

the coupled radial equations or else using semiclassical methods such as Landau-Zener-

Stückelberg or their improvements along the lines of (Nikitin, 1970; Zhu et al., 2001). This

in fact yields a quantitative description of phenomena such as three-body or four-body

recombination, and inelastic atom-dimer or dimer-dimer scattering.

The following development sketches one explicit version of this recasting of the Schrödinger

equation into hyperspherical coordinates for an N-particle system in 3 dimensions. Note that

a similar development for N 2D particles is presented by (Daily et al., 2015b), in the context

of the quantum Hall effect. One first transforms the N laboratory frame position vectors

{~ri} in terms of a suitable set of N − 1 mass-weighted relative Jacobi coordinate vectors

{~ρi}, plus the center of mass vector which is trivial and is therefore ignored throughout.

Extensive arbitrariness and flexibility exists for the choice of the Jacobi coordinate vectors,

but for definiteness, one simple choice is based on choosing the j−th Jacobi vector as the

(reduced-mass weighted) relative vector between particle (j + 1) and the center of mass of

the preceding group of particles 1 through j, i.e.:

~ρ1 =
√

µ12
µ
(~r2 − ~r1)

~ρ2 =
√

µ12,3
µ

(~r3 − m1~r1+m2~r2
m1+m2

)
(7)

... etc., where the N − 1 Jacobi reduced masses are

µ12 =
m1m2

m1 +m2
, µ12,3 =

(m1 +m2)m3

m1 +m2 +m3
, ...etc., (8)

and where the N -body reduced mass is

µ = (µ12µ12,3....)
1

N−1 . (9)

Alternative choices for the overall reduced mass µ are possible and are sometimes utilized,

but this choice in Eq.(9) is particularly desirable in many contexts because it preserves the

overall volume element. With these definitions, the nonrelativistic kinetic operator acquires

a simple form, namely

T̂ = − ~
2

2µ

N−1∑

j=1

~∇2
ρj
≡ − ~

2

2µ

d∑

i=1

∂2

∂x2i
(10)
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The Cartesian coordinates of all these Jacobi vectors can thus be collected into a single d-

dimensional relative vector x
¯
≡ {x1, x2, x3, ...xd}, and these can in turn be transformed into

hyperspherical coordinates by defining the hyperradius R as the radius of the d-dimensional

hypersphere:

R =
√

x21 + x22 + x23 + ...x2d. (11)

There are again many possible choices for the d − 1 hyperangles αk, but one simple gener-

alization of our usual spherical coordinates is implied by the chain(Avery, 1989):

xd = R cosαd−1

xd−1 = R sinαd−1 cosαd−2

xd−2 = R sinαd−1 sinαd−2 cosαd−3

...x2 = R
∏d−1

j=1 sinαj, and x1 = R
∏d−1

j=2 sinαj cosα1.

(12)

This easily generalizable choice of the hyperangles is sometimes referred to as the canonical

choice. The ranges spanned by these hyperangles are then

0 ≤ α1 ≤ 2π, 0 ≤ αi ≤ π, i = 2, ..., d− 1. (13)

Now, the nonrelativistic kinetic energy operator in hyperspherical coordinates can be

conveniently written as

T̂ = TR +
~
2
Λ

2

2µR2
, (14)

where TR = − ~
2

2µ
1

Rd−1
∂
∂R
Rd−1 ∂

∂R
, and where Λ2 is the isotropic Casimir operator for the group

O(d), (Cavagnero, 1984, 1986; Knirk, 1974; Smirnov and Shitikova, 1977) given explicitly

by

Λ
2 = −

∑

i>j

Λ2
ij, Λij = xi

∂

∂xj
− xj

∂

∂xi
.

The operator Λ
2 is often referred to as the square of the “grand angular momentum” op-

erator of the system. These equations now show how the physics of this d-dimensional

problem can be mapped exactly onto an adiabatic representation in the single coordinate R,

with potential energy curves Uν(R) and nonadiabatic coupling terms as in standard Born-

Oppenheimer theory. As is particularly stressed by (Fano, 1981b, 1983; Macek, 1968), and

as we document below, this approach yields tremendous insights in many physical systems.

Some examples of applying the adiabatic hyperspherical representation to systems with

many particles are summarized below in Sec.(IV). But before turning to examples, we show
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how far greater symmetry and simplicity emerge from a clever choice of the hyperangles for

three-particle systems, N = 3, by adopting a “body-fixed” coordinate system of the type

suggested by (Whitten and Smith, 1968). The particular variant described here adopts the

conventions specified by (Suno et al., 2002).

Usually we are interested in three-body systems that have exact separability in the relative

and center of mass coordinates, whereby the relative degrees of freedom can be described by

six coordinates, i.e. d = 6 is the full dimensionality of this space. Three of these coordinates

are conveniently chosen to be Euler angles {α, β, γ} that connect the body-fixed frame to

the space-fixed frame. Three remaining coordinates in this system are the hyperradius R

and two hyperangles θ and ϕ. Following Refs. (Johnson, 1983; Kendrick et al., 1999; Lepetit

et al., 1990; Whitten and Smith, 1968) with only minor modifications described in (Suno

et al., 2002), this begins from the mass-scaled Jacobi coordinates introduced above (Delves,

1960)

~ρ1 = (~r2 − ~r1)/∆, (15)

~ρ2 = ∆

[

~r3 −
m1~r1 +m2~r2
m1 +m2

]

, (16)

with

∆2 =
1

µ

m3(m1 +m2)

m1 +m2 +m3
(17)

and µ is the three-body reduced mass as was defined above, namely

µ2 =
m1m2m3

m1 +m2 +m3
. (18)

In this expression, particle i with mass mi has position ~ri. When the three particles have

identical mass m, the parameters simplify to ∆ = (4/3)
1
4 and µ = m/

√
3. And specializing

the above definition of the hyperradius R, it is given here by:

R2 = ρ21 + ρ22, 0 ≤ R <∞. (19)

The hyperangles θ and ϕ are determined by the four nonzero components of the two Jacobi

vectors in the body frame x− y plane by

(~ρ1)x = R cos(θ/2− π/4) sin(ϕ/2 + π/6),

(~ρ1)y = R sin(θ/2− π/4) cos(ϕ/2 + π/6),

(~ρ2)x = R cos(θ/2− π/4) cos(ϕ/2 + π/6),

(~ρ2)y = −R sin(θ/2− π/4) sin(ϕ/2 + π/6),

(20)
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where by definition ρ1z = 0 = ρ2z. For definiteness, note that the x, y, and z right-handed

coordinate system of the body-fixed frame is chosen such that the z axis is parallel to ~ρ1×~ρ2,
and the x axis is that with the smallest moment of inertia. The ranges of the hyperangles

are 0 ≤ θ ≤ π
2
and 0 ≤ ϕ < 2π (Kendrick et al., 1999). If the three equal mass particles

are in fact truly identical, then the hyperangle ϕ can be further restricted to the range

[0, 2π/3]. Note that in this case, the interaction potential is symmetric under the operation

ϕ→ π/3− ϕ. Then the bosonic or fermionic symmetry of the Schrödinger solutions under

exchange of any two particles is particularly simple to impose as a boundary condition in

these coordinates. The volume element for integrals over |Ψ|2 is equal to dV ≡ d̟R5dR =

2 sin 2θdθdϕdα sin βdβdγR5dR, and the Euler angle ranges are 0 ≤ α < 2π, 0 ≤ β < π,

0 ≤ γ < π. The full Schrödinger equation for the rescaled wavefunction ψE = R5/2Ψ

describing three identical particles now takes the form

(

− 1

2µ

∂2

∂R2
+

15

8µR2
+

Λ
2

2µR2
+ V (R, θ, ϕ)

)

ψE = EψE , (21)

In this expression, Λ2 is the squared “grand angular momentum operator” and is given by

(Kendrick et al., 1999; Lepetit et al., 1990)

Λ
2

2µR2
= T1 + T2 + T3, (22)

where

T1 = −
2

µR2 sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
, (23)

T2 =
1

µR2 sin2 θ

(

i
∂

∂ϕ
− cos θ

Lz
2

)2

, (24)

T3 =
L2
x

µR2(1− sin θ)
+

L2
y

µR2(1 + sin θ)
+

L2
z

2µR2
. (25)

The total orbital angular momentum operator in the body frame is denoted here as ~L =

{Lx, Ly, Lz}. For an interacting 3-body system, one frequently adopts a sum of two-body

potential energy functions for V (R, θ, ϕ), but some explorations are carried out with explicit

non-pairwise additive terms as well. That is, most explorations of universal physics have

used an approximate 3-particle V of the form:

V (R, θ, ϕ) = v(r12) + v(r23) + v(r31), (26)
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where rij are the interparticle distances. For three equal mass particles, these distances are

expressed in terms of the hyperspherical coordinates as

r12 = 3−1/4R[1 + sin θ sin(ϕ− π/6)]1/2,
r23 = 3−1/4R[1 + sin θ sin(ϕ− 5π/6)]1/2,

r31 = 3−1/4R[1 + sin θ sin(ϕ+ π/2)]1/2.

(27)

As was indicated above, the first step in implementing the adiabatic representation

is to solve the fixed-R adiabatic eigenvalue equation for a given symmetry LΠ to obtain

the fixed-R adiabatic eigenfunctions (Φν , sometimes referred to as channel functions) and

eigenvalues (potential energy curves Uν(R)). Here we adopt an abbreviated notation with

Ω ≡ (θ, ϕ, α, β, γ) and for some systems Ω includes spin degrees of freedom as well. For the

body-frame choice of hyperangles, it is simplest to expand the Euler angle dependence of

the Φν in terms of normalized Wigner D-functions, D̃L
MK(αβγ), i.e. as

ΦLΠν (R; Ω) =
∑

K

φKν(R; θ, ϕ)D̃
L
MK(αβγ). (28)

This representation guarantees that ΦLΠν is automatically an eigenfunction of ~L2, and it

is also an even (odd) eigenfunction of the parity operator Π̂ provided K is restricted to

even (odd) values respectively. A few more details of this body frame representation are

useful when using this representation to convert the 5-dimensional PDE Eq.(21) into a set of

coupled 2D PDEs in θ, ϕ only. In this body frame representation of angular momentum, the

raising and lowering operators are defined (owing to the anomalous commutation relations

of body-frame operators) as:

L± = Lx ∓ iLy, (29)

where

L±D̃
L
M,K(αβγ) =

√

(L∓K)(L±K + 1)D̃L
M,K±1(αβγ)

LzD̃
L
M,K(αβγ) = KD̃L

M,K(αβγ).

After inserting the above expressions, one obtains for each value of {L,M,Π} a finite

number of coupled 2D PDEs in θ, ϕ. The terms involving L2
x and L

2
y cause couplings between

components K and K ± 2. While these PDEs are for complex solutions, as written here, it

is possible to take linear combinations, e.g. φK(R; θ, ϕ)± φ−K(R; θ, ϕ) and reformulate the

PDEs in terms of real functions everywhere.
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A. Recombination cross sections and rate coefficients

It was proven by Delves that the hyperspherical representation preserves the usual desired

properties of continuum scattering solutions, such as flux conservation when the Hamiltonian

is Hermitian which ensures unitarity of the scattering matrix S and symmetry of the S-

matrix when the Hamiltonian is time-reversal invariant. One simple conceptual aspect

of Macek’s adiabatic hyperspherical representation involving potential energy curves and

nonadiabatic couplings is that the computation of the unitary S-matrix can utilize any of the

powerful techniques already developed for treating two-body inelastic scattering processes.

In other words, just as in standard multichannel scattering theory (Rodberg and Thaler,

1970) or multichannel quantum defect theory (Aymar et al., 1996; Burke et al., 1998; Fano,

1970; Gao, 2001; Greene and Jungen, 1985; Mies, 1984; Mies and Raoult, 2000; Ruzic et al.,

2013; Seaton, 1983), one simply propagates solutions of the coupled equations in Eq. (4)

out to large distances, fits to linear combination of energy-normalized regular and irregular

radial functions {fEν(R), gEν(R)} and in this manner obtain a real, symmetric reaction

matrix Kνν′(E) characterizing solutions from some large matching radius R0 out to infinity:

ΨEν′(R;̟) =
∑

ν

Φν(R;̟)

R(d−1)/2
(fEν(R)δνν′ − gEν(R)Kνν′) (30)

Then linear combinations of those solutions can be taken to enforce any appropriate bound-

ary conditions at R→∞ for the observable quantities of interest (Aymar et al., 1996; Fano

and Rau, 1986). The usual relations are obtained for quantities like S = (1+ iK)(1− iK)−1

with extra long range phase factors sometimes needed to satisfy outgoing-wave or incoming-

wave boundary conditions. (See, e.g. Sec.II of (Aymar et al., 1996).) Of particular interest

in the context of ultracold quantum gases is the three-body recombination rate coefficient

which was derived in (Esry et al., 1999). The relevant formula for three identical bosonic

particles which are in a thermal gas rather than a BEC, after correcting for a factor of 6

error in the formulas reported in that paper, is:

K3(E) =
~k

µ

192π2

k5
Σν′ν |Sν′,ν |2 (31)

Here k =
√

2µE/~2 and the sum includes all entrance three-body continuum channels

(A+A+A, ν) for the symmetry of interest, and over all final state two-body bound channels

(A2+A, ν ′). A few words are relevant to explain how this recombination rate coefficient is to
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be used in rate equations used to model this reaction in a cold gas. This quantity K3(E) is

the fundamental coefficient relevant to a single triad of particles in the gas. The coefficient

in the rate equations for disappearance of atoms or appearance of dimers is another rate

coefficient, L3, which is determined by the following points. If one imagines that there are

N atoms in a thermal gas volume V , then there are gN = N(N − 1)(N − 2)/3! ≈ N3/6

distinct triads of the type A+A+A in the system. If we define a density as n ≡ N/V , then

the rate equation for disappearance of atoms from a cold trapped gas is

dn

dt
= −L3n

3, (32)

where for a thermal trapped gas, L3 = 3K3
gN
N3 ≈ K3

2
. In this last equation, the leading factor

of 3 in the middle is the number of atoms lost in each recombination event, and the value 3

reflects the fact that for a typical trapped gas of atoms, a recombination event releases so

much kinetic energy that both the final dimer and the final atom following recombination will

be ejected, i.e. all three of the initially free atoms. If an unusually deep trap is implemented,

or if the binding energy of the dimer produced is far less than the trap depth, then that

factor of 3 would of course be changed to 2 since only the dimer would escape the atom

trap, though one should then also keep track of the energy deposited into the cloud by the

remaining hot atom. As is also well known, (Burt et al., 1997; Kagan et al., 1985; Söding

et al., 1999) if the initial atom cloud is in a pure BEC rather than a thermal gas, then the

preceding K3 needs to be reduced by a factor of 3!.

Some of the simplest and most important early predictions of the low energy recombina-

tion rate behavior include an expected a4 scaling (Fedichev et al., 1996b), which was later

seen to be modified in a nontrivial way that differs depending on whether the atom-atom

scattering length a is positive (Esry et al., 1999; Nielsen and Macek, 1999) or negative (Esry

et al., 1999). If a is large and positive, then there exists a weakly bound dimer state whose

energy is approximately −~2/ma2, and the recombination rate into that universal dimer

channel should have Stückelberg interference minima at scattering lengths a
(i)
+ whose spac-

ings should scale geometrically with the Efimov scaling parameter a
(i+1)
+ /a

(i)
+ = eπ/s0 ∼ 22.7.

If instead, a is negative, then this implies that there is no weakly-bound universal dimer,

and recombination can occur only into deeper nonuniversal dimer channels. On this side,

even though the attraction is not strong enough to bind two atoms together into a univer-

sal dimer, the Efimov effect can bind trimers at certain values of a
(i)
− < 0. Moreover, the
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successive values of a where a trimer can form at zero energy also obey the Efimov scaling,

a
(i+1)
− /a

(i)
− ∼ 22.7. While the first experiments (Berninger et al., 2011, 2013; Dyke et al.,

2013; Ferlaino et al., 2009a, 2008, 2011; Gross et al., 2009, 2010, 2011; Knoop et al., 2010,

2009; Machtey et al., 2012a,b; Pollack et al., 2009; Zaccanti et al., 2009; Zenesini et al.,

2013) were only able to observe a single Efimov resonance (i = 1) for homonuclear systems,

a recent impressive experiment by (Huang et al., 2014b) has observed the i = 1, 2 resonances

and confirmed their approximate ratio to be close to Efimov’s predicted value.

Much subsequent theory has treated the physics of recombination, and developed compact

analytical formulas within the framework of zero-range models and/or effective field theory,

which are particularly convenient for analyzing experimental data. See for instance the

following references (Braaten and Hammer, 2006; Gogolin et al., 2008; Macek et al., 2006;

Mora et al., 2011). A different direction of extending and generalizing recombination theory

has been the treatment of recombination processes for N > 3 particles. A generalization of

Eq.(31) presented above for recombination of N identical bosons into any number of bound

fragments is derived in (Mehta et al., 2009):

KN(E) = N !
~k

µ
(
2π

k
)d−1Γ(d/2)

2πd/2
Σµν |Sµ,ν |2. (33)

Here d is the number of dimensions in the relative coordinate space after eliminating the

trivial center-of-mass motion, i.e. for N particles in 3 dimensions, d = 3N − 3. This last

formula of course reduces to the above expression for K3 when N = 3.

III. THE BIRTH OF FEW-BODY PHYSICS: THE EFFECTS OF THOMAS AND

EFIMOV

A. The Thomas collapse

In the early days of nuclear physics, in 1935, a mere three years following the Chadwick

discovery of the neutron, L. H. Thomas published a seminal work about the structure of

the triton, 3H (Thomas, 1935). In particular, Thomas studied the existence of the triton

ground state obtained with different assumptions for the neutron-proton interaction, but

neglecting neutron-neutron interactions as it is depicted in Fig. 2. As a result, (Thomas,

1935) found that the neutron-neutron potential energy should have a repulsive character

at short range, and that the neutron-proton interaction cannot be confined to a distance
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very small compared with 1 fm. These findings constitute the very first exploration of few-

body physics with finite range forces, and they sparked the interest of many physicists in

different fields of physics, especially atomic physics and molecular physics in addition to

nuclear physics.

The key point of (Thomas, 1935) is that it is possible to account for nucleon-nucleon

(or atom-atom) interactions having an arbitrary scattering length a with many different

two-body interaction models. For a two-body model with arbitrarily short range r0 there

must be a corresponding potential depth of order ~
2/2mr20 in order to yield a value of a

that is independent of potential range and fixed at an experimentally measured value. For

instance, in a spherical square well model having depth V0 and range r0, the zero-energy

two-body scattering length for two equal mass particles of mass m and reduced mass m/2 is

equal to a = r0 − tan qr0/q, where q =
√

mV0/~2. As r0 is decreased to smaller and smaller

values, q must increase approximately in proportion to 1/r0 in order to maintain any given

fixed scattering length. Thomas then examined the nature of the three-body ground state

energy in this limit of decreasing potential range r0 but fixed two-body scattering length.

The qualitative argument is rather simple, namely that when a third particle is brought into

the system having equal scattering lengths a, this adds two new potential energy terms to

the Hamiltonian of the same depth and range, while only adding one new kinetic energy

term. As a result, the three-body system is shown by Thomas to have a ground state energy

that must be of order −~2/mr20, which becomes arbitrarily large and negative as r0 → 0.

B. Efimov physics and universality in ultracold gases

Efimov considered an analogous three-body problem which also involved two-body scat-

tering lengths a much larger in magnitude than the potential range, i.e. |a|/r0 >> 1, except

that Efimov visualized the two-body interaction range r0 to be fixed, and |a| → ∞.

Three identical particles with resonant two-body interaction will show an infinite series of

three-body bound states as predicted by Efimov (Efimov, 1970, 1971, 1973b) more than 40

years ago. This infinity of trimer states follows a discrete symmetry scaling, i.e., the energy

of the n-th and n + 1-th states are related through En+1 = λ2En, where for the particular

case of three identical bosons λ = eπ/s0 with s0 = 1.0062 (Braaten and Hammer, 2006;

Efimov, 1970; Ferlaino et al., 2011; Greene, 2010; Wang et al., 2013), and hence λ ≈ 22.7.
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Efimov introduced the universal theory of three-body collisions thinking in nuclear systems

as the preferable scenario for the quest of his predictions. However, the first experimental

evidence of the prediction of V. Efimov came from ultracold gases (Kraemer et al., 2006),

and this early evidence has triggered an explosive growth in research into few-body ultracold

physics.

In ultracold systems the exciting capability to tune two-body atomic scattering length,

using magnetic, optical or RF-induced Fano-Feshbach resonances (Chin et al., 2010; Hanna

et al., 2010; Inouye et al., 1998; Köhler et al., 2006; Owens et al., 2016; Tscherbul et al.,

2010). This tunability of ultracold system Hamiltonians makes them perfect candidates to

study few-body universality. However, the formation of universal trimers must be detected

and characterized in such systems. The most usual route to such detection is to measure

the three-body loss coefficient L3 as a function of the two-body scattering length a, as is

schematically shown in Fig.1. Specifically, the universal Efimov trimers cause an enhance-

ment of L3 at a given two-body negative scattering length a
(n)
− , and the Efimov physics

exhibits interference minima at values of the positive two-body scattering length a
(n)
+ , as

shown in Fig.1. Efimov states can also be studied by radiative or oscillatory field associa-

tion, as has been achieved in 6Li by (Lompe et al., 2010b; Nakajima et al., 2011b) and in

7Li by (Machtey et al., 2012b).

C. Faddeev equations for three identical bosons: bound states

1. Hamiltonian and Faddeev operator equations

In the following three spinless and equal mass particles of bosonic character are considered

which interact via short range fields. Note that the notation introduced below for deriving

the Faddeev equations follows (Glöckle, 2012). Then the total Hamiltonian for three s-wave

interacting bosons obeys the following form:

H = H0 + V̂23 + V̂31 + V̂12, (34)

where H0 is the three-body kinetic operator, V̂ij indicates the short range potential between

the i−th and j−th particle. For simplicity the following notation is introduced V̂i ≡ V̂jk
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with cyclic permutation of (i, j, k). The three-body Schrödinger equation reads:

(H0 +
∑

i

V̂i)Ψ = EΨ (35)

where Ψ indicates the three-body wave function. Employing now the three-body non-

interaction Green’s function, i.e.Ĝ0 ≡ [E − H0]
−1, Eq. (35) can be recast to the following

form:

Ψ = Ĝ0

∑

i

V̂iΨ = Ĝ0V̂1Ψ
︸ ︷︷ ︸

ψ(1)

+ Ĝ0V̂2Ψ
︸ ︷︷ ︸

ψ(2)

+ Ĝ0V̂3Ψ
︸ ︷︷ ︸

ψ(3)

. (36)

where this holds as long as the Green’s function is free of poles. In our case this is valid since

we focus on the description of three-body bound states, i.e. the energy of any bound state is

negative while the zeroth-order Hamiltonian has only kinetic energy and is positive definite.

As Eq. (36) illustrates the total three-body wavefunction Ψ can be decomposed in three

components, namely Ψ =
∑

i ψ
(i) with i = 1 . . . 3 where each ψ(i) indicates the i-th Faddeev

component of the total three-body wavefunction Ψ. Physically, the i-th Faddeev component,

i.e.ψ(i) implies that the i−th particle is a spectator particle with respect to the interacting

pair (j, k). Employing this decomposition ansatz in Eq. (36) yields a system of three coupled

Faddeev equations which describe the bound state properties of the three-body system.









ψ(1)

ψ(2)

ψ(3)









= Ĝ0









0 t̂1 t̂1

t̂2 0 t̂2

t̂3 t̂3 0

















ψ(1)

ψ(2)

ψ(3)









(37)

where the term t̂i represents the two-body transition operator. More specifically, t̂i obeys

the following Lippmann-Schwinger equation:

t̂i = V̂i + V̂iĜ0t̂i, for i = (1, 2, 3) (38)

where the term Ĝ0 denotes the Green’s function of three non-interacting bosons. This

implies that the transition operator t̂i is considered as a two-body operator embedded in a

three-body Hilbert space.

The Faddeev equations in Eq. (37) can be decoupled by taking into account the exchange

symmetry between the three particles. Formally the exchange symmetry can be addressed

by a permutation operator Pij which permutes the i-th with the j− th particle. In addition,

the considered system consists of three identical bosons therefore the total wavefunction
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Ψ is symmetric. Due to this the exchange operator only permutes the particles in the

Faddeev components. By using the permutation operator, a pair of Faddeev components

(ψ(j), ψ(k)) can be expressed in terms of ψ(i) and vice versa. The ψ(i) component of the

Faddeev equations in Eq. (37) then takes the following form:

ψ(i) = Ĝ0t̂i(PijPjk + PikPjk)ψ
(i), for (i, j, k = 1, 2, 3), (39)

where the indices (i, j, k) form a cyclic permutation.

Eq. (39) represents the operator form of the Faddeev equations and in the following

Eq. (39) is expressed in momentum space. For completeness reasons in the following the

Jacobi coordinates and the corresponding momenta are briefly reviewed.

2. Faddeev equations in momentum representation

Consider that the motion of three bosonic particles with masses mi with i = 1 . . . 3

are described by the lab coordinates xi whereas their corresponding momentum is ki with

i = 1 . . . 3. Then in order to describe the relative motion of three particles the following

three sets of Jacobi coordinates are introduced:

ρi = xi −
mjxj +mkxk

mj +mk
and ri = xj − xk, (40)

where (i, j, k = 1, 2, 3) form a cyclic permutation and the Jacobi vector ri denotes the relative

distance between the j-th and k-th particles whereas the vectors ρi indicate the distance

of the i-th particle, i.e. the spectator particle, from the center of mass of the (j, k) pair of

atoms. Note that the coordinate of the center of mass of three particles obeys the simple

relation R =
∑3

i=1mixi/M where M =
∑3

i=1mi denotes the total mass of the system.

Similarly, for the Jacobi momenta we obtain the following relations:

qi =
mkkj −mjkk

mj +mk

and pi =
(mj +mk)ki −mi(kj + kk)

M
, (41)

where (i, j, k = 1, 2, 3) form a cyclic permutation, the qi denotes the relative momentum of

(j, k) pair and the pi indicates the momentum of the spectator particle relative to the center

of mass of (j, k) pair. The total momentum is given by the relation P =
∑3

i=1 ki.

According to these definitions the kinetic operator Ĥ0 in the momentum space takes the

following form

H0 =
P 2

2M
+

p2
i

2µ̄i
+

q2
i

2µi
, (42)
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where µi = (mjmk)/(mj + mk) is the reduced mass of the (j, k) pair particles and µ̄i =

mi(mj +mk)/M denotes the reduced mass of the spectator particle and the center of mass

of the (j, k) pair.

In the following is assumed that the collisions occur in the frame of the total center of

mass, this means P = 0. Therefore, the term P 2/(2M) can be removed from the total

Hamiltonian which then takes the form:

H ′ =
p2
i

2µ̄i
+

q2
i

2µi
+ Vi(ρi) + Vj(ri +

mj

mj +mk

ρi)

+ Vk(ri −
mk

mj +mk
ρi) (43)

Since the Jacobi coordinates and momenta are introduced, the reduced Faddeev equation

(see Eq. (39)) can be transformed into the momentum space. For this purpose a certain set

of Jacobi momenta is chosen, i.e.(p1, q1). This means that in this particular set of Jacobi

coordinates the particle 1 is the spectator of the pair (2,3). Upon introducing a complete

set of states |q1p1〉, Eq. (39) becomes

〈q1p1|ψ(1)〉 = G0(q1,p1)

∫
dq′

1

(2π)3
dp′

1

(2π)3
〈q1p1|t̂1|q′

1p
′
1〉

× 〈q′
1p

′
1|P12P23 + P13P23|ψ(1)〉 , (44)

where the three-body Green’s function in momentum space is given by the relationG0(q1,p1) =

[E − q21
2µ1
− p21

2µ̄1
]−1. Note that for the bound trimer spectrum the total energy E is negative;

thus in this case the G0 Green’s function is free of poles.

The matrix elements of the transition operator t̂1 in Eq. (44) can be evaluated with the

help of the corresponding Lippmann-Schwinger equation Eq. (38):

〈q1p1|t̂1|q′
1p

′
1〉 = δ(p1 − p′

1) 〈q1|t(E −
p21
2µ̄1

)|q′
1〉 , (45)

where the term t(E − p21
2µ̄1

) is the two-body transition amplitude embedded in the two-body

Hilbert space. This means that the transition amplitude obeys a two-body Lippmann-

Schwinger equation of the following form:

〈q1|t(ε)|q′
1〉 = 〈q1|V̂1|q′

1〉+
∫

dq′′
1

(2π)3
〈q1|V̂1|q′′

1〉×

×
[

ε− q′′21
2µ1

]−1

〈q′′
1 |t(ε)|q′

1〉 (46)

In addition the exchange operators in Eq. (44) for equal masses namely m1 = m2 = m3 =

m obey the following relation:
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〈q′
1p

′
1|P12P23 + P13P23|q′′

1p
′′
1〉 =

= δ(q′
1 +

3

4
p′′
1 +

q′′
1

2
)δ(p′

1 − q′′
1 +

p′′
1

2
)

+ δ(q′
1 −

3

4
p′′
1 +

q′′
1

2
)δ(p′

1 + q′′
1 +

p′′
1

2
).

(47)

By substituting the Eqs. (45,46) and (47) in the reduced Faddeev equation, namely

Eq. (44) we get the following expression:

〈q1p1|ψ(1)〉 =
(

E − q21
m
− 3p21

4m

)−1

×
∫

dp′
1

(2π)3

[

〈q1|t(E −
3p21
4m

)| − p′
1 −

p1

2
〉 〈p1 +

p′
1

2
;p′

1|ψ(1)〉

+ 〈q1|t(E −
3p21
4m

)|p′
1 +

p1

2
〉 〈−p1 −

p′
1

2
;p′

1|ψ(1)〉
]

.

(48)

3. Separable potential approximation: two-body transition elements and the reduced Faddeev

equation

In the following is considered that the two-body interactions can be modeled by a sepa-

rable potential, such as the Yamaguchi potential (Yamaguchi, 1954). This particular type

of potentials simplifies the Faddeev equations [see Eq (48)] into an one-dimensional integral

equation. Assume that the two particles interact via s-wave interactions only through the

following non-local potential:

〈q1|V̂1|q′
1〉 = −

λ

m
χ(q1)χ(q

′
1), (49)

where λ denotes the strength of the two-body interactions, m indicates the mass of the

particles and the χ(·) functions are the so called form factors. Typically, the χ-form factors

are chosen such that the potential V yields the same scattering length and effective range

correction as the real two body interactions. Note that since we are interested in three-body

bosonic collisions of neutral atoms in the following subsection we provide the form factors

χ which are derived from a van der Waals potential. This particular choice of form factor

incorporates in a transparent way the pairwise two-body interactions of the three neutral

atoms.
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After insertion of Eq. (46), the two-body transition matrix elements for the separable

potential in Eq. (49) obey

〈q1|t(ε)|q′
1〉 = −

λ

m
χ(q1)τ(ε)χ(q

′
1),

with τ−1(ε) = 1 +
λ

m

∫
dq1

(2π)3
|χ(q1)|2

ε− q21
m

. (50)

After specializing to states where the three particles have total angular momentum L = 0

and using the separable potential from Eq. (49), as well as the two-body transition matrix

elements from Eq. (50), the reduced Faddeev equation in Eq. (48) reads

〈q1p1|ψ(1)〉 = −2 λ
m

(

E − q21
m
− 3p21

4m

)−1

τ(E − 3p21
4m

)×

× χ(q1)

∫
dp′

1

(2π)3
χ(p′

1 +
p1

2
) 〈p1 +

p′
1

2
;p′

1|ψ(1)〉 .
(51)

This integral equation can be further simplified by employing the following ansatz for the

Faddeev component |ψ(1)〉:

〈q1p1|ψ(1)〉 =
(

E − q21
m
− 3p21

4m

)−1

χ(q1)F(p1), (52)

Substituting the ansatz of Eq. (52) in the reduced Faddeev equation, namely Eq. (50) an

integral equation for the amplitudes F is obtained where its arguments depend only on the

magnitude of the p1 vector states due to the s-wave character of the two-body interactions.

Under these considerations the integral equation of the amplitudes F reads

F(p1) = −2
λ

m
τ

(

E − 3p21
4m

)

×

×
∫

dp′
1

(2π)3
χ(|p′

1 +
p1

2
|)χ(|p1 +

p′

1

2
|)

E − p21
m
− p′21

m
− p1·p′

1

m

F(p′1),
(53)

where for a particular choice of χ−form factors the preceding equation is transformed into

a matrix equation. For a given s-wave scattering length and effective range parameters,

numerically the energy is varied in searching for roots of the corresponding determinantal

equation of Eq. (53).

Finally, it should be noted that replacement of the χ-form factor by χ(q1) → 1 in the

reduced Faddeev equation in Eq. (51) one obtains the Skorniakov-Ter-Martirosian equation

(Skorniakov and Ter-Martirosian, 1957) for three bosons colliding with zero-range s-wave

interactions. The following subsection focuses on deriving a separable potential which is

suitable for the two-body interactions of neutral atoms, i.e. van der Waals forces.
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D. Separable potentials for van der Waals pairwise interactions

In order to study the universal aspects of the three body spectrum of bosonic gases it

is necessary to focus on the two-body interactions which govern the collisional behavior of

ultracold gaseous matter. More specifically, it is well known that neutral bosonic atoms

at large separation distances experience an attractive van der Waals type of force which

asymptotically vanishes as ∼ −1/r6. Note that we ignore the Casimir-Polder modification

due to retardation,(Casimir and Polder, 1948) which modifies this at very long range but

is largely irrelevant to the energy scale of interest here. This particular type of interaction

potential imprints universal features onto the corresponding wavefunction (Flambaum et al.,

1999; Gao, 1998) which becomes manifested in the spectra of three interacting bosons.

Figure 6 (Color online) The two-body zero energy wavefunction φ(r) for the van der Waals potential

as a function of the scaled interparticle distance r
ℓvdW

, for an s-wave scattering length as = 50ℓvdW.

Note that ℓvdW denotes the van der Waals length scale defined in the text.

However, as was shown in the previous subsection, the Faddeev equations are best sim-

plified by using the separable potential approach. Thus it is of major interest to construct

a separable potential which encapsulates the main features of the van der Waals forces.

(Naidon et al., 2014a,b) show that such a potential can be derived simply by using the ana-

lytically known zero-energy wave function of two particles in the presence of van der Waals

potential (Flambaum et al., 1999). Namely, the zero-energy two-body wavefunction for van
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der Waals interaction is given by the following relation:

φ(r) = Γ

(
5

4

)√
r

ℓvdW
J 1

4

(

2
ℓ2vdW
r2

)

− ℓvdW
as

Γ

(
3

4

)√
r

ℓvdW
J− 1

4

(

2
ℓ2vdW
r2

)

,

(54)

where as is the s-wave scattering length, ℓvdW = 1
2
(mC6/~

2)1/4 is the van der Waals length

scale with C6 being the dispersion coefficient. The quantities Γ(·) and J± 1
4
(·) represent the

Gamma and Bessel functions respectively.

Fig. 6 depicts the wavefunction in Eq. (54) for an s-wave scattering length as = 50ℓvdW.

At short distances the two-body wavefunction oscillates fast enough which in essence reflects

the fact that the van der Waals potential contains many two-body bound states. At large

distances the wave function of Eq. (54) obtains the form φ(r) → 1 − r/as. It is evident

that a separable potential based on the above mentioned two-body wavefunction contains

the correct behavior of the two-body wavefunction as well as effective-range effects due to

the short-range oscillatory part of φ(r). The latter is of particular importance since (Naidon

et al., 2014a,b) demonstrate that the universality of the three body parameter of the Efimov

states relies exactly on the short-range oscillatory part of the two-body wavefunction. The

Yamaguchi potential from Eq. (49) is adopted, where the χ-function in the momentum space

is defined by:

χ(q1) = 1− q1
∫ ∞

0

dr

[

1− r

as
− φ(r)

]

sin(q1r), (55)

where φ(r) is the zero-energy two-body rescaled radial wavefunction (see Eq. (54)). Note

that the argument of the χ-form factor depends only on the magnitude of the vector q1 due

to the s-wave character of the wavefunction. The strength λ of the Yamaguchi potential is

determined by the following expression:

λ =

[

− 1

4πas
+

1

2π2

∫ ∞

0

dq1|χ(q1)|2
]−1

. (56)

Substitution of Eqs. (55) and (56) for the non-local interaction in Eq. (49) specifies a

separable potential which mimics a van der Waals interaction between two neutral atoms.

Namely, the van der Waals separable potential in the momentum space reads

〈q1|V1|q′
1〉 =

χ(q1)χ(q
′
1)

m
4πas
− m

2π2

∫∞
0
dq1|χ(q1)|2

. (57)

As an example, Fig. 7 illustrates the binding energies versus the s-wave scattering length,

as. The two-body dimer energies within the separable potential approximation, see Eq. (57),
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Figure 7 (Color online) The two-body binding energy as a function of the s-wave scattering length.

The orange curve refers to the universal dimer energy, the blue solid line indicates the the effective

range theory for van der Waals interactions, and the red dotted curve denotes the binding energy

within the separable potential approximation.

Figure 8 (Color online) The Efimov spectrum for the ground (blue line and dots) and the first

excited (orange line and dots) three-body state. The black dashed line is the universal dimer ener-

gies. The green dotted curve refers to the dimer binding energies calculated within the separable

van der Waals potential approach.

(red dotted line) are compared with the effective range theory of van der Waals interactions

given by (Flambaum et al., 1999) (blue solid line). The yellow solid line indicates the

universal dimer energies. Evidently, Fig. 7 depicts that the separable potential introduced

in Eq. (57) captures the essential two-body physics beyond the effective range approximation.
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E. The Efimov spectrum and its universal aspects

This subsection focuses on the impact of van der Waals forces on the Efimov spectrum

of three identical s-wave-interacting bosons, the typical situation for three ultracold atoms

but irrelevant for the few-nucleon problem. In particular, the reduced Faddeev equation in

Eq. (44) is numerically solved within the separable potential approximation. The separa-

ble potential is constructed according to the prescription given in the previous subsection.

Specifically, use of the potential in Eq. (57) ensures that it contains all the relevant zero-

energy information about the van der Waals potential. Under these considerations, Fig. 8

depicts the Efimov spectrum of three neutral atoms as a function of the s-wave scattering

length. In particular, the blue curve and dots indicate the ground Efimov trimer state. The

orange dots and curve denote the first excited state. The black dashed curve refers to the

universal dimer threshold, i.e., E = − ~
2

ma2s
, whereas the green dotted curve corresponds to

the two-body binding energies given for the potential in Eq. (57). Deeply in the regime

of unitarity, namely |as| → ∞, the trimer energies for the ground and first excited state

are E1 = 0.035338 ℓ−2
vdW and E2 = 6.6806 × 10−5 ℓ−2

vdW respectively, or in wave vectors we

have that κ1 = 0.1879 ℓ−1
vdW and κ2 = 0.00817 ℓ−1

vdW. For the first two κ wave vectors a

scaling factor is obtained which is equal to κ1/κ2 = 22.9988. The latter deviates from the

universal scaling law obtained within the zero-range approximation which is given by the

relation κZR1 /κZR2 = 22.6944. This discrepancy between the van der Waals approach and the

zero-range approximation can be attributed to the fact that the latter method completely

neglects effective range corrections. Specifically, the ground Efimov state is strongly influ-

enced by finite range effects in the two-body interaction potentials (Ji et al., 2015). Note

that the value obtained for κ0 is in reasonable agreement within 16% with the corresponding

calculation in (Wang et al., 2012a), which was based on a local position space van der Waals

interaction. More specifically, for a hard-core van der Waals potential tail (Wang et al.,

2012a) obtains the value κ0 = 0.226(2) ℓ−1
vdW at unitarity for the ground Efimov state.

Away from unitarity and for negative values of the scattering length, Fig. 8 shows

that the trimer states cross the three body threshold and become resonances in the 3

particle scattering continuum. In particular, the ground state crosses the threshold at

a
(1)
− = −10.849 ℓvdW, whereas the first excited Efimov trimer merges with the three-body

continuum at a
(2)
− = −169.199 ℓvdW. Note that the a

(1)
− for the ground Efimov state is in
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good agreement with the hyperspherical approach employed by Wang et al. (Wang et al.,

2012a). More specifically, (Wang et al., 2012a) for a hard-core van der Waals potential

tail obtains the value a
(1)
− = −9.73(3) ℓvdWfor the ground Efimov state. In addition, the

Naidon et al. model result agrees well with the corresponding experimental values, i.e.

a
(1)
− = −9.1 ℓvdW (Ferlaino et al., 2011). Remarkably, the separable potential model pre-

sented by (Naidon et al., 2014a,b) reproduces the universal features of the Efimov spectrum

without utilizing any auxiliary parameter of the type that is needed within the zero-range

approximation. Recall that the three-body spectrum for the Efimov effect is not bounded

from below in the zero-range approximation; thus an additional parameter (three-body pa-

rameter) is employed in order to define properly the “ground Efimov state”. In the van der

Waals separable potential model the auxiliary parameter becomes unnecessary due to the

fact that the potential itself describes not only the asymptotic behavior of the two-body

wavefunction but also its behavior at short distances which oscillates rapidly. Indeed, the

fast oscillations of the two-body wavefunction in regions of the three-body configuration

space where two particles approach each other translates into an effective repulsive hyper-

radial barrier, which in return suppresses the probability to find three bosons at distances

less than R ∼ 2 ℓvdW. This suppression effect was initially understood by (Wang et al.,

2012a) using the hyperspherical approach where the steep attraction of the van der Waals

forces leads to an effective three-body potential barrier at this somewhat surprisingly large

hyperradius.

In order to illustrate this point from the reduced Faddeev equation in Eq. (49) the three-

body wavefunction is first obtained in the momentum representation at a
(1)
− . Then following

a Fourier transformation the corresponding configuration space three-body wavefunction is

expressed in hyperspherical coordinates. After integrating the density over all the hyperan-

gles α, taking the square root and applying the hyperradius kinetic operator to the resulting

hyperradial wavefunction, an effective potential is obtained as a function of the hyperradius

R. This effective potential is compared with the corresponding adiabatic potential curve

which contains the diagonal correction from the diagonal nonadiabatic coupling term Q00.

Fig. 9 compares the resulting implied hyperradial potential curve from (Naidon et al., 2014b)

with the direct adiabatic hyperspherical solution from (Wang et al., 2012a), showing good

general agreement. The gray dotted curve illustrates the asymptotic −R−2 Efimov poten-

tial curve at unitarity for comparison. While the effective potential curve possesses some
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Figure 9 (Color online) The gray solid curve depicts the three-body Faddeev wavefunction in

arbitrary units within the separable potential approach as a function of the hyperradius. The

red dashed line corresponds to the hypersherical potential curve including the diagonal adiabatic

correction term Q00, while the gray dotted curve indicates the asymptotic Efimov potential curve

at unitarity. The black solid curve indicates the effective potential implied by the Faddeev equation

solution determined within the separable potential approximation. Adapted from (Naidon et al.,

2014b).

additional structure, (Naidon et al., 2014b) states that this structure is an artifact which

mainly arises from the oscillatory behavior of the Faddeev three-body wavefunction.

F. Efimov states in homonuclear systems

1. 6Li

Ultracold gases of fermionic 6Li have been the object of different studies about Efimov

physics and universality in three-body physics, e.g. by (Huckans et al., 2009; Lompe et al.,

2010a; Nakajima et al., 2010, 2011a; Ottenstein et al., 2008; Wenz et al., 2009; Williams

et al., 2009). It should be pointed out that it is a bit of a stretch to include the 6Li

system in our discussion of the Efimov effect for three identical bosonic atoms. Owing to

the fermionic nature of 6Li there is no s-wave scattering between atoms in identical spin

substates, but atoms in different substates do have an s-wave scattering length. The studies

just quoted have in fact considered atoms in three distinguishable substates, but unlike

the case of three identical bosons, the three interparticle scattering lengths are in general

different in the 6Li system. However, they are all large and negative and therefore the

system can be approximately mapped onto and compared with an Efimov system with three
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identical bosons in identical spin substates. In the following discussion, it should be kept in

mind that this mapping is an approximation. It is argued by (Wenz et al., 2009) that one

conjectured mapping, a definition of an effective “homonuclear” scattering length aave that

applies when all three interspecies scattering lengths are large and negative is:

a4ave ≡
1

3
(a212a

2
23 + a213a

2
23 + a212a

2
13). (58)

Nevertheless, quantities in Efimov physics such as the loss to deeply bound dimers and the

three body parameter should more rigorously be understood to depend in general on all three

separate scattering lengths for a fermionic atom such as 6Li, i.e. on a12, a23, a13. In general,

many of the experimental investigations have relied upon radio-frequency (RF) techniques

for the identification of Efimov trimers. These methods employ RF pulses to form different

Efimov states, which are detected as atom loss, thus leading to the characterization of their

binding energies (Lompe et al., 2010a; Nakajima et al., 2010, 2011a; Wenz et al., 2009). The

measured trimer energies show a clear dependence on the applied magnetic field close to

the two-body Feshbach resonances, which has been viewed as evidence for deviations from

Efimov’s universal three-body physics scenario . In particular, the geometric scaling factor

λ =22.7 is not observed between successive resonances, and this has been interpreted as a

magnetic field dependence of the three-body parameter.

The apparent non-universality of 6Li has been an open question in the last decade, leading

two different non-universal models beyond non-universal two-body interactions (Nakajima

et al., 2010). However, (Huang et al., 2014a) have shown that accounting for a realistic

two-body energy dependent scattering length and taking into account finite temperature

effects the three-body parameter for 6Li turns out to be a
(1)
− /ℓvdW = −7.11 ± 0.6 which is

very similar to the results obtained for identical bosons Table I and Table II. Moreover,

the geometric scaling factor shows a 10% deviation with respect to λ = 22.7; the universal

expected value.

2. 7Li

The Efimov physics in bosonic 7Li has been extensively studied through characterizations

of maxima and minima of the three-body loss coefficient (Dyke et al., 2013; Gross et al.,

2009, 2010, 2011; Machtey et al., 2012a; Pollack et al., 2009), as well as using radio-frequency
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fields to measure the binding energies of weakly bound trimers (Machtey et al., 2012b). In

particular, the Rice group identified the ground Efimov state for 7Li in the |mF = 1〉
hyperfine state as a resonance in the three-body loss coefficient for a < 0. An initial

suggestion in (Pollack et al., 2009) that they had also observed the first excited Efimov

resonance a
(2)
− was later attributed to a calibration error. The recalibration, published

in (Dyke et al., 2013), also corrected the position of the first Efimov resonance to a
(1)
− =

-252 ±10. Efimov physics was also observed on the a > 0 branch of the spectrum as the

expected minima in the three-body loss coefficient (Pollack et al., 2009), yielding a
(1)
+ = 89±

4 and a
(2)
+ = 1420 ± 100 when the recalibration of (Dyke et al., 2013) was applied. The ratio

a
(2)
+ /a

(1)
+ = 16±2 deviates appreciably from the expected universal ratio of 22.7,(Esry et al.,

1999; Nielsen and Macek, 1999) but this level of deviation for the first two Efimov features

is not unexpected, based on theoretical calculations.

mF a
(1)
+ (a0) −a(1)− (a0) |a(1)− |/ℓvdW

0 243 ± 35 264 ± 11 8.52 ± 0.35

+1 247 ± 12 268 ± 12 8.65 ± 0.39

Table I Fitting parameters to an universal theory obtained by measuring the three-body loss

coefficient in 7Li. Results taken from (Gross et al., 2010).

Similar results for the maxima of the three-body loss rate were obtained by Gross et

al. (Gross et al., 2009, 2010, 2011) for two different hyperfine states: |mF = 1〉 and |mF = 0〉
as shown in TableI. However different results for a

(1)
+ in comparison with (Pollack et al.,

2009) were obtained as displayed in Table I. This discrepancy for a
(1)
+ has been explained as

a distinct magnetic field-scattering length conversion through a different characterization of

the same Feshbach resonance (Gross et al., 2010). In Table I it is also observed the universal

character of the three-body parameter a
(1)
− in terms of the van der Waals length ℓvdW for 7Li-

7Li. In particular, the values obtained for a
(1)
− /ℓvdW are very similar to the values observed

in cesium (Berninger et al., 2011), rubidium(Wild et al., 2012) and potassium (Roy et al.,

2013).
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3. 39K

The study of Efimov states in bosonic 39K at ultracold temperatures has been developed

mainly by the LENS group (Roy et al., 2013; Zaccanti et al., 2009). In particular, the

study of (Roy et al., 2013) is a remarkable exploration of the a
(1)
− three-body parameter

universality, even including narrow Feshbach resonances. This study was carried out by

employing different spin states mF , as well as different Feshbach resonances in an ultracold

gas of 39K, some showing open-channel dominance while others are narrower closed-channel-

dominated resonances.

mF R∗(a0) sres −a(1)− (a0) |a(1)− |/ℓvdW T (nK)

0 22 2.8 640±100 10.0± 1.6 50±5

0 456 0.14 950±250 14.7± 3.9 330±30

0 556 0.11 950±150 14.7± 2.3 400±80

+1 22 2.8 690±40 10.7± 0.6 90±6

-1 23 2.6 830±140 12.9±2.2 120±10

-1 24 2.5 640±90 10.0±1.4 20±7

-1 59 1.1 730±120 11.3±1.9 40±5

Table II Experimental determined three-body parameter a− for different Feshbach resonances and

spin states mF in 39 K taken from (Roy et al., 2013). R∗ represents the intrinsic length scale

and associated with it, the resonance strength sres. The value for the three-body parameter as

a function of the van der Waals length ℓvdW = 64.49 a0 is also reported, as well as the initial

temperature T , which implies a saturation limit of the three-body recombination rate because the

S-matrix is unitary.

Resonances with a small resonance strength sres, (Chin et al., 2010) i.e., narrow res-

onances, have an intrinsic length scale R∗ = ~
2/(mabgδµ) (Chin et al., 2010), where abg

represents the background scattering length, m is the reduced mass and δµ is the change

in the magnetic moment between the initial and final states. In such a scenario was pre-

dicted that the Efimov physics would be dominated by the intrinsic length associated with

the resonance R∗, in particular, a
(1)
− = −12.90R∗ (Gogolin et al., 2008; Mora et al., 2011;

Petrov, 2004). However, the experimental work of (Roy et al., 2013) revealed a completely
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different behavior, as shown in Table II, where the three-body parameter |a(1)− |/ℓvdW ∼ 10,

which turns out to be very similar to the experimental and theoretical values for the case of

broad 2-body resonances (Berninger et al., 2011; Naidon et al., 2014a; Wang et al., 2012b),

i.e., |a(1)− |/ℓvdW = 9.5. This striking result implies that the intrinsic length scale associated

with a narrow resonance apparently plays no role in the determination of the three-body

parameter. Thus, for systems with long-range dominant van der Waals interactions, the

three-body parameter seems to be universal.

4. 85Rb

The study of Tan’s contact in an ultracold gas of 85Rb has been realized by (Wild et al.,

2012). In particular the two-body and three-body contact were determined, as well as the

three-body recombination rate constant, by varying the two-body scattering length in a

sweep of the magnetic field through a Feshbach resonance. The two-body contact is an

extensive thermodynamic magnitude proportional to the derivative of the internal energy

of the ultracold gas with respect to the scattering length (Combescot et al., 2009; Schakel,

2010; Tan, 2008a,b,c; Werner et al., 2009), i.e, C2 ∝ dE/da. The three-body contact C3

is defined in terms of the derivative of the internal energy with respect to the three-body

parameter C3 ∝ dE/da− (Braaten et al., 2011; Castin and Werner, 2011). 1

The measurements of the three-body recombination rate were performed in dilute, ultra-

cold, non-condensed clouds containing 1.5 × 105 atoms of 85Rb at a temperature T =80 nK.

Then the magnetic field was varied through a Feshbach resonance in order to explore the

region of negative scattering lengths. The obtained three-body recombination rate was fit-

ted to the expected form for the Efimov three-body rate (Braaten and Hammer, 2006),

obtaining a
(1)
− = -759 ± 6 a0. The utilized fitting function is only valid at T = 0, and hence

the fitting was realized for a < 1/kthermal, where kthermal =
√
2mkBT/~. The ratio between

the measured three-body parameter and the van der Waals length is a
(1)
− /ℓvdW = -9.24 ±

0.7 (Wild et al., 2012). This value is very similar to the reported values for 133Cs (Berninger

et al., 2011; Kraemer et al., 2006) and 7Li (Gross et al., 2009, 2010, 2011).

1 Usually C3 is defined in terms of the so-called three-body interaction parameter k∗ (Braaten et al.,

2011; Castin and Werner, 2011), which is related to the three-body parameter by the equation: a
(1)
− =

(−1.56± 5)/k∗. (Braaten and Hammer, 2006).
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5. 133Cs

The first experimental evidence of the Efimov effect was observed in an ultracold gas of

133Cs (Kraemer et al., 2006) by tuning the Cs-Cs scattering length of through a Feshbach

resonance, and measuring the enhancement and decreases of the three-body loss coefficient

for negative and positive scattering lengths, respectively. At the same time, this pioneering

work readily showed the possibility of using ultracold physics in order to explore universal

physics in few-body physics.(Esry and Greene, 2006)

Bres(G) |a(1)− |/ℓvdW η−

7.56±0.17 8.63 ± 0.22 0.10±0.03

553.30±0.4 10.19 ± 0.57 0.12±0.01

554.71±0.80 9.48 ± 0.79 0.19±0.02

853.07±0.56 9.45 ± 0.28 0.08±0.01

Table III Experimentally determined three-body parameter a− for different Feshbach taken from

(Berninger et al., 2011). The position of the Feshbach resonances employed are denoted by Bres,

the three-body parameter as a function of the van der Waals length (ℓvdW = 101 a0) is reported,

and finally η− is a nonuniversal quantity that reflects decay into deeply bound diatomic states

(Wenz et al., 2009).

A few years after the observation of Efimov states in ultracold systems, Berninger et

al. (Berninger et al., 2011) employed four different Feshbach resonances to study variations

of the three-body parameter in an ultracold sample of 133Cs. For these four observed Efimov

resonances shown in Table III, the ratio of the three-body parameter a
(1)
− to the van der

Waals length ℓvdW is approximately equal for all the Feshbach resonances analyzed in the

experiment, to within only about %15 variations. More recently, Huang et al. (Huang et al.,

2014a) have realized an exhaustive experimental work on the negative scattering length

branch of the two-body interaction in Cs, confirming the universality of the Efimov scaling

by seeing for the first time two successive Efimov resonances in a homonuclear system.

Note, however, that more than one previous experiment has observed the expected Efimov

scaling between two successive destructive interference Stückelberg minima a
(n)
+ ; it should be

remembered that this behavior of three-body recombination at positive scattering lengths
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is a non-resonant manifestation of universal Efimov physics.

G. Four-body and five-body bound states and recombination resonances

Normally one views 3-body recombination as a comparatively rare process in a dilute,

ultracold gas. Typical Bose-Einstein condensates, for instance, can have lifetimes of the order

of many seconds. Thus it may come as a surprise that higher order processes involving even

more than 3 atoms simultaneously colliding in 3D can have even higher inelastic collision

rates in some regimes of scattering length and density. There are theoretical predictions

of this resonant N -body recombination in (Blume, 2012b; Blume and Yan, 2014; Mehta

et al., 2009; Rittenhouse et al., 2011a; von Stecher et al., 2009; Wang and Esry, 2009; Wang

et al., 2012c; Yan and Blume, 2015), and a few experimental observations (Dyke et al.,

2013; Ferlaino et al., 2009b; Pollack et al., 2009; Ulmanis et al., 2016a; Zenesini et al., 2013).

While these usually cause difficulty for applications of interest with quantum degenerate

gases or optical lattices, they can be especially interesting and informative to study in their

own right, especially from a few-body point of view.

The 4-body problem has challenged theorists for many years (Lazauskas and Carbonell,

2006) and is still of fundamental importance and interest. Extensive attention has been

devoted to the question of whether there is an Efimov effect for four or more particles. For

four or more identical particles, an early theoretical study by (Amado and Greenwood,

1973) concluded: “Hence the remarkable Efimov effect seems even more remarkably to

be a property of the three-body system only.” Later, however, a treatment by (Kröger

and Perne, 1980) based on a separable potential model concluded that in certain parameter

ranges there is an Efimov effect for four bosons. To add to this apparent discrepancy between

the preceding two references mentioned, the possible existence of an Efimov effect in a 3D

four-body system with three heavy particles and one light particle was treated theoretically

by (Adhikari and Fonseca, 1981) and later by (Naus and Tjon, 1987), reaching opposite

conclusions (no and yes, respectively). A subsequent study by (Adhikari et al., 1995)

suggests that an additional short-range length (or high-momentum) scale is required for

each successively larger number N of particles, in order to pin down the energy even of

low-lying states. Another treatment by (Yamashita et al., 2006) concluded that four-body

bound states can exist in the universal regime of large atom-atom scattering lengths, but
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they will normally not be fixed in energy by 2-body and 3-body physics alone, and will

require an independent 4-body parameter. This conclusion was supported by a later study

as well, namely (Hadizadeh et al., 2011).

Based on 4-identical boson bound state calculations using low-energy effective field the-

ory, it was conjectured by (Hammer and Platter, 2007; Platter et al., 2004) that there should

be two 4-boson bound states at unitarity lying at energies between each successive pair of

Efimov trimer energies. These studies suggested, in apparent disagreement with (Yamashita

et al., 2006), that the energies are largely fixed by the three-body parameter, and at least to

a good approximation, this would mean that no additional 4-body parameter is needed. A

4-body hyperspherical calculation was carried out (von Stecher et al., 2009) that was based

on the use of correlated Gaussian basis functions(Suzuki and Varga, 1998) adapted to the

adiabatic hyperspherical representation(Daily and Greene, 2014; Mitroy et al., 2013; Rak-

shit and Blume, 2012; von Stecher and Greene, 2009). Using that method, (D’Incao et al.,

2009b; Mehta et al., 2009; von Stecher et al., 2009; Wang and Esry, 2009) gave supporting ev-

idence to that conjecture, and advanced the theory to the point where detailed predictions

could be made of 4-body recombination rate coefficients and resonance positions. In the

universal limit, for instance, theory predicted (von Stecher et al., 2009) that the two-body

scattering lengths where 4-boson resonances would be observable as zero energy recombi-

nation resonances, should be at the following values of the boson-boson scattering length:

a−4B,1 ≈ 0.43
(1)
− and at a−4B,2 ≈ 0.9a

(1)
− . These have since been confirmed in experimental

studies (Ferlaino et al., 2009a) of homonuclear recombination processes involving four or

more free bosonic atoms, although (von Stecher et al., 2009) pointed out that there was

already some evidence for a four body process in (Kraemer et al., 2006). Exciting theo-

retical progress in developing a highly quantitative theoretical treatment was subsequently

reported for four-body resonances and recombination by (Deltuva, 2010, 2011, 2012), in a

momentum-space treatment based on a separable two-body interaction, a treatment that

does not utilize hyperspherical coordinates. One interesting aspect of those theoretical and

experimental efforts is the suggested implication that no additional 4-body parameter is

needed to fix the universal behavior of four interacting identical bosons, as it appears to

be fixed once the 3-body parameter is known. The extent to which this remains true for

interactions of much shorter range than van der Waals potentials remains an active topic of

investigation.
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Figure 10 (Color online) (a)Schematic hyperspherical potential curve relevant to five-boson recom-

bination when the two-body scattering length is negative, a < 0. The curve has also labeled the

WKBJ phases φ in the two classically allowed regions or R as well as the tunneling exponent that

characterizes the region of negative incident kinetic energy. The inset shows energy levels for this

five-boson system in a spherically symmetric harmonic trap, which has avoided crossings between

inner and outer region states, whose strengths enable an estimate of the tunneling exponent γ

that is important in obtaining the 5-body recombination rate. Panel (b) shows the experimental

atom loss in a Cs gas versus the inverse two-body scattering length, rescaled by a characteristic

wavenumber κ of the order of 2/ℓvdW. Panel (c) shows the energies of trimer, tetramer, and pen-

tamer states and the points where they merge into the zero-energy continuum. Panels (d) and (e)

display the measured loss rate coefficients versus a in units of Bohr radii, compared with theory

that includes either 4-body recombination only L4,eff (d) or else 5-body recombination only L5,eff

(e). Taken from (Zenesini et al., 2013).

These developments in turn spawn a fundamental question: Are the universal properties

also fixed for 5, 6, 7, and even more bosonic particles once the three-body parameter is

known? If the answer is yes, this is a crucial point that can greatly simplify the development

of realistic many-body theories for interacting bosons. A number of studies (Blume and
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Greene, 2000; Gattobigio et al., 2012; von Stecher, 2010, 2011; Yamashita et al., 2010)

bear directly on this question. In particular, (von Stecher, 2011) predicts that a universal

resonance of 5 identical bosons should occur at zero energy when the two-body scattering

length is equal to a−5B,1 ≈ (0.65 ± 0.01)a−4B,1. That prediction was tested and confirmed

experimentally by the Innsbruck group(Zenesini et al., 2013); this study also compared

a detailed theoretical and experimental estimate of the direct 5-body recombination rate,

apparently the first time a direct (i.e. non-stepwise) recombination process could be observed

experimentally and computed theoretically. While this is suggestive of a general universality

for all N-boson systems, very recent work by (Yan and Blume, 2015) suggests that this may

apply only to systems whose long-range two-body interaction is dominated by van der Waals

interactions, as shorter range interacting systems apparently exhibit extensive variability in

their N-boson binding energies at unitarity.(Yamashita et al., 2010)

Following the prediction in (von Stecher, 2010, 2011), the possible existence of a universal

5-body recombination resonance was tested and confirmed in (Zenesini et al., 2013). Fig.10

shows the comparison between theory and experiment, in a region that includes both a

universal 4-body resonance and a universal 5-body resonance. These predictions of universal

resonances observable in N -body recombination have been extended in some impressive

recent calculations to even larger numbers of identical bosons by (Gattobigio et al., 2011,

2012).

H. Efimov states in heteronuclear mass-imbalanced systems

The existence of an infinite series of three-body bound states for resonant two-body inter-

action, as predicted by Efimov (Efimov, 1970), is not only present for homonuclear systems,

as such universal three-body bound states should appear as well for heteronuclear systems

(D’Incao and Esry, 2006a,b; Efimov, 1973a, 1979; Helfrich et al., 2010; Mikkelsen et al.,

2015; Petrov and Werner, 2015; Wang et al., 2012d, 2015b). In particular, in heteronu-

clear systems the mass-imbalanced nature of the three-body system preserves but modifies

in an interesting way the discrete symmetry scaling characteristic of Efimov states, i.e.,

a
(n)
− = λa

(n−1)
− , and hence preserving the universality of the three-body bound states. Most

importantly, it influences the scaling factor λ, which depends on the masses of the three

particles involved. In particular, λ gets smaller as the mass imbalance of the HHL system
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increases, which has sparked the study of highly mass-imbalanced systems as the best pos-

sible scenario for studying multiple excited Efimov states, and hence exploring as deeply

and unambiguously as possible the universal characteristics of such states. To date, het-

eronuclear Efimov states have been searched for in 41K-87Rb-87Rb (Barontini et al., 2009;

Wacker et al., 2016), 39K-87Rb-87Rb (Wacker et al., 2016), 40K-87Rb-87Rb (Bloom et al.,

2013), 7Li-87Rb-87Rb (Maier et al., 2015) and 6Li-133Cs-133Cs (Johansen et al., 2016; Tung

et al., 2014; Ulmanis et al., 2016a, 2015, 2016b).

The study of three-body losses in an ultracold mixture 41K-87Rb performed by the LENS

group led to the first claimed observation of heteronuclear Efimov states, specifically for 41K-

87Rb-87Rb and 41K-41K-87Rb (Barontini et al., 2009). In particular, a three-body parameter

a
(1)
− = -246 ± 14 a0 was claimed to be observed for K-Rb-Rb. However, this claimed

observation of an Efimov resonance has been questioned in the literature, in part because

it is so far from the expected theoretical range for this system. Owing to the positive

value of the Rb-Rb scattering length a ∼ 100 a0, the first Efimov resonance is expected

to occur in K-Rb-Rb at around a
(1)
− (K-Rb) ≤ -30,000 a0. In a very recent follow-up by

the Aarhus experimental group, they find that there is a two-body p-wave feature in the

vicinity of the LENS group’s claimed Efimov resonance 41K-87Rb-87Rb, which adds to doubts

about the classification of that loss feature which doesn’t fit universal expectations for the

3-body system. (Ulmanis et al., 2016a; Wang et al., 2012d) Similarly, the K-K-Rb system

is “Efimov-unfavored (LLH)” since it has two lighter and one heavier atom, and its first

Efimov resonance has been predicted to occur only for a
(1)
− (K − Rb) ≤ −106 a.u. Other

experiments on potassium mixtures with 87Rb with either the fermionic isotope 40K (Bloom

et al., 2013) or the bosonic isotope 39K (Wacker et al., 2016) have failed to observe Efimov

resonances at a reasonable value of the K−Rb scattering length, results which are more

consistent with theoretical expectations. In particular, the JILA group (Bloom et al., 2013)

studied an ultracold Bose-Fermi mixture 40K-87Rb, in which only 40K-87Rb-87Rb supports

Efimov resonances because 40K-40K-87Rb is suppressed by spin statistics. The JILA group

measured the three-body recombination rate with the aim of testing whether they could

observe approximately the same Efimov resonant position as had been seen for 41K-87Rb-

87Rb by (Barontini et al., 2009). This expectation was of course fueled by the assumption

of universality of the three-body parameter (Wang et al., 2012d). However, no trace of any

Efimov resonances was observed at the expected two-body scattering length (Bloom et al.,

53



2013), consistent with our current theoretical understanding (Ulmanis et al., 2016a; Wang

et al., 2012d).

Very recently an Efimov resonance for 7Li-87Rb-87Rb was reported, (Maier et al., 2015)

as a consequence of a first exploration of the negative Li-Rb scattering length in an ultracold

mixture of bosonic Li and 87Rb. The observed resonance is found at a
(1)
− =-1870 ± 121 a0 in

at least approximate agreement with the universal Efimov expectation (Wang et al., 2012d),

and it should be stressed that it is vital to include in the analysis the correct heavy-heavy

scattering length (Maier et al., 2015). Note that with current experimental capabilities it

is extremely difficult to reliably create and control atom-atom scattering lengths beyond

about 10, 000 a0. in absolute magnitude. Only one experiment to date, a heroic effort by

the Innsbruck group in a homonuclear Cs gas (Huang et al., 2014a), has been able to measure

Efimov physics at a scattering length as large and negative as −22, 000 a0.

n a
(n)
− (a0) λ a

(n)
− (a0) λ

1 -311 ± 3 -323 ± 8

2 -1710 ± 70 5.48 ± 0.28 -1635 ± 60 5.1 ± 0.2

3 -8540 ± 2700 5.00 ± 1.8 -7850 ± 1100 4.8 ± 0.7

Table IV Experimental Efimov resonances for 6Li-133Cs-133Cs, with the Li-Cs scattering lengths

denoted here as a
(n)
− . For the spin states utilized in these experiments, the background Cs-Cs

scattering length in this region of magnetic field near 843G is approximately in the range−1600a0 <

aCsCs < −1000a0. The maxima of the three-body loss rate occur at the indicated valuen a
(n)
− , where

n stand for the ordering of the different associated Efimov states. The three-body parameter is

denoted here as a
(1)
− . The discrete symmetry scaling factor for two successive Efimov states is

denoted by λ. The Heidelberg group results of (Ulmanis et al., 2015) are shown in the second and

third columns, the results of Chicago group (Tung et al., 2014) in the fourth and fifth columns.

Note that the Heidelberg group also suggests a re-calibration of the Chicago group’s data in Table

2 of (Ulmanis et al., 2015), but those results are not shown here.

The most convincing tests of universal Efimov scaling are for the highly mass imbalanced

case of 6Li-133Cs-133Cs, studied independently by the Heidelberg (Häfner et al., 2017; Pires

et al., 2014b; Ulmanis et al., 2016a, 2015, 2016b) and Chicago groups (Johansen et al., 2016;

Tung et al., 2014). Theoretically, the universal Efimov scaling factor for this system should
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be λ = 4.88 (D’Incao and Esry, 2006a; Wang et al., 2012d), which enables experiments to

observe and characterize multiple resonances in a single Efimov series for the first time. As

in many other approaches to Efimov physics with ultracold atoms, Chicago and Heidelberg

groups use a magnetic Fano−Feshbach resonance for Li-Cs to vary the two-body scattering

length. The results for the observed Efimov resonances, characterized by analysis of the

maxima in the three-body loss coefficient, are shown in Table IV, where the three-body

parameter reported by the Chicago and Heidelberg groups can be seen to agree approxi-

mately, to within the error bars. Another interesting difference probed in the experiments

by (Ulmanis et al., 2016a) is the contrasting value of the first Efimov resonance depending

on the sign of the Cs-Cs scattering length. For instance, when the Cs-Cs scattering length

is large and negative as in the cases reported in Table IV, the first resonance occurs at a

Li-Cs scattering length value equal to a
(1)
− ≈ −320a.u.. But for a different range of magnetic

fields where the Cs-Cs scattering length is positive [a(Cs− Cs) ≈ 200a0], the first resonance

occurs at a
(1)
− ≈ −2000a.u. As is argued in (Ulmanis et al., 2016a), this major difference

can be understood qualitatively already in the zero-range theory, without invoking van der

Waals interactions, although a full model including van der Waals finite-range interactions

is needed to make the description quantitatively accurate. These experiments are of course

extremely difficult, and we stress the importance of developing highly accurate two-body

scattering models before undertaking the analysis of departures from expected universal

behavior.

The prediction of Efimov and the universality of the three-body physics (Efimov, 1970,

1971)is strictly true in the case of two-body resonant interactions and assuming T = 0, since

no consideration was given to the kinetic energy of the three-body system. A few studies

have carried out the appropriate Boltzmann average needed to derive finite temperature

predictions of the three-body recombination rate, as in (Petrov and Werner, 2015; Rem

et al., 2013). Thus, in realistic systems one would expect some deviations from Efimov’s

prediction. However, the experimental observations seem to indicate that most of the Efimov

states are accurately universal.
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I. Efimov and universal bound states for fermionic systems

It is well known that there is no Efimov effect for homonuclear trimers composed of

identical fermions in a single intrinsic spin substate. This is easy to understand because

the requirement of antisymmetry adds nodes to the spatial wavefunction and this raises the

kinetic energy of the trimer internal degrees of freedom substantially. For a system of two

heavy fermions of mass M in the same spin state and a lighter distinguishable particle of

mass m, the nodal constraint of antisymmetry is weaker and some interesting predictions

for this case have been presented by (Kartavtsev and Malykh, 2007, 2014). The Efimov

effect emerges for this FFX system with divergent F+X scattering length, provided the mass

ratio is sufficiently large, namely M/m > 13.607. For smaller mass ratios than this critical

ratio just mentioned, one observes one or two universal states, usually denoted “Kartavtsev-

Malykh universal trimers”, but there is no true Efimov effect and the number of energy levels

remains finite. Some level perturbations that can affect these universal trimer states have

been identified by (Safavi-Naini et al., 2013). For a detailed recent treatment that revises

some of the above conclusions for the range of mass ratios M/m < 13.607, see (Kartavtsev

and Malykh, 2016).

The possibility of a four-particle Efimov effect is another intriguing prediction by (Castin

et al., 2010), with 3 heavier identical fermions of mass M and one lighter distinguishable

particle of mass m. Specifically, they predict that only in the tiny mass ratio range 13.384 <

M/m < 13.607 should one be able to observe the infinite number of energy levels converging

geometrically to zero binding that characterizes Efimov physics. A very recent preprint from

(Bazak and Petrov, 2016) predicts a pure five-body Efimov effect, for a system of 4 heavy

identical fermions and 1 distinguishable particle, again in a small range between 13.279 ±
.002 < M/m < 13.384, based on a stochastic solution of the generalized Skorniakov-Ter-

Martirosian (STM) equation (Pricoupenko, 2011), based on techniques analogous to diffusion

Monte Carlo methods. The study of (Bazak and Petrov, 2016) also predicts mass ratios

where one expects universal five-body states in regimes where no true Efimov effect exists,

and a conjecture that the 5+1 hexamer and higher particle numbers will be qualitatively

different rather than simply continuing the trend, a conjecture certainly deserving to be

explored. This study agrees and improves on the accuracy of a prediction by (Blume,

2012b) that a universal 3+1 tetramer should exist at a mass ratio around M/m ≥ 9.5, with
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the new and improved computed ratio equal to M/m ≥ 8.862± 1.

J. Naturally occurring Efimov physics in the helium trimer

The study of helium clusters– their aggregation, formation and collision dynamics – has

been an active research topic in chemical physics, in particular in the field of molecular

beams (Campargue, 2001). Molecular beam experiments rely on the supersonic expansion

of a chosen gas in vacuum, which induces the cooling of the different molecular degrees of

freedom as the gas expands in the chamber. This cooling mechanism is due to inelastic

collisions involving electronic, rotational and vibrational degrees of freedom, and hence it

strongly depends on the inelastic cross sections as well as the number of collisions through

the density of the gas (Montero and Pérez-Rı́os, 2014; Zhdanov, 2002; Zucrow and Hoffman,

1976). The diluteness of the gas as it moves away from the nozzle can be controlled by

the initial conditions of the expansion: temperature, pressure and mass flow, through the

conservation of enthalpy and mass flow of the fluid. Therefore, any property or process

related with the dynamics of the gas, such as cluster formation, could be controlled to some

degree in those experiments. Using such methods, Schöllokopf and Toennies (Schöllkopf

and Toennies, 1994, 1996) experimentally observed the helium dimer and the ground state

of helium trimer.

Although the ground state 4He3 was observed two decades ago, the first excited state

of 4He3, which has Efimov character, was not observed until very recently (Kunitski et al.,

2015). Fig. 11 summarizes both the key theoretical and experimental results for the system.

This remarkably challenging experiment was performed by joining the technology of molecu-

lar beam experiments, atom interferometry, and modern ionization and detection techniques.

In particular, a very well controlled nozzle conditions leaded to a supersonic expansion of

He, where He trimers were selected by means of matter-wave diffraction through a grating.

Then, all three atoms of the trimer are ionized by means of a strong ultrashort pulse, leading

to the subsequent Coulomb explosion of the trimer compounds. The momenta of the ions

after the Coulomb explosion were detected by cold target recoil ion momentum spectroscopy

(COLTRIMS) (Jagutzki, 2002; Ullrich, 2003), which allowed in an analysis the reconstruc-

tion of the initial probability distribution of the trimer atom positions, and thereby allowing

a deduction of the trimer binding energy. In this way, Kunitski et al. (Kunitski et al., 2015)
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Figure 11 (Color online) (a) Adiabatic Jπ = 0+ hyperspherical potential curves, with the two

bound state energies predicted for this symmetry drawn into the potentials. The higher energy

of the two, which has an energy so small that it appears to coincide with E=0, was predicted to

be an observable Efimov state. From (Suno and Esry, 2008). (b) Experimentally measured pair

distribution functions of the two helium trimer bound states, with a theory comparison for the

more diffuse state that is concluded to be an Efimov state. This measurement used laser ioniza-

tion followed by Coulomb explosion of the three resulting ions, with detection in a COLTRIMS

apparatus. From (Kunitski et al., 2015). Reprinted with permission from AAAS.

studied the formation of two different He trimer states as functions of the pressure in the

nozzle, leading to the first observation of the excited state of 4He3.

The findings of Kunitski et al. (Kunitski et al., 2015) revealed the geometry of the the

ground state and first excited state of helium trimer. In particular, for the ground trimer

state it was observed a unimodal radial distribution for the atom-atom distance in the

trimer, in relation with the expected equilateral geometry. However, for the first excited

trimer state the radial distribution function shows a bimodal character, thus resembling an

isosceles triangular geometry. These results demonstrate the Efimov character of the first

excited state of helium trimer. In particular, the obtained binding energy is 2.60 ± 0.2

mK in very good agreement with some of the most recent theoretical predictions (Hiyama

and Kamimura, 2012; Kunitski et al., 2015), however the bimodal radial distribution clearly

deviates from what it is expected from the universal Efimov predictions for resonant two-

body interaction at unitarity, which is not surprising in view of the finite value of the He-He

scattering length (Blume et al., 2000, 2014).

The most recent hyperspherical coordinate calculations of the helium trimer properties

in the electronic ground state appear to be those of (Suno and Esry, 2008). Their Jπ = 0+

58



adiabatic potential energy curves obtained with an up to date potential surface, which

includes three-body as well as realistic retarded two-body potential terms, are shown in

Fig. 11. The energies drawn into the lowest potential curve are the two computed bound

state energies, namely -130.86 mK and -2.5882 mK. The more weakly bound of these is the

one expected to have significant Efimov state character, and it is in fact so weakly bound

that its energy is indistinguishable from E = 0 on the scale of Fig. 11.

IV. FEW-BODY PERSPECTIVES ON MANY-BODY SYSTEMS

There are multiple ways in which few-body physics is useful for understanding, interpret-

ing, and predicting new many-body phenomena. The most obvious is through the develop-

ment of detailed theoretical understanding of the microscopic processes involving two, three,

four, or some cases even a handful more particles within a gas or lattice array of particles.

The detailed studies described above, and other review articles (Chin et al., 2010; Köhler

et al., 2006; Wang et al., 2013, 2015a) have focused largely on two-body phenomena such

as Fano-Feshbach resonances, and on the three-body phenomena that arise such as Efimov

resonances in three-body recombination and related behavior such as Stückelberg interfer-

ence minima. The initially surprising experimental result (Cubizolles et al., 2003; Regal

et al., 2004a; Strecker et al., 2003) that huge universal fermionic dimers have remarkably

small losses despite their huge size was understood in an important theoretical treatment by

(Petrov et al., 2005a,b). This played a key role in stimulating experiments in the BCS-BEC

crossover problem and in triggering explorations of other phenomena in unitary Fermi gases.

Fig. 12 shows a later theoretical treatment of the two-component four-fermion system in hy-

perspherical coordinates, including the computed dimer-dimer scattering information. For

instance, it has now become possible to map out an extremely accurate equation of state

for unitary Fermi gases (Chevy et al., 2011; Ku et al., 2012).

Another way few-body theories have provided some useful perspectives on Bose-Einstein

condensates and degenerate Fermi gases has simply been through applying the few-body

toolkit and ideas - such as adiabatic hyperspherical potential curves - to the many-particle

system directly. In some cases this is done by treating only a modest number of particles

accurately, while in other cases the many-particle limit is examined but at a relatively crude

level of approximation to estimate the many-particle potential energy curves.
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(a)

Figure 12 (Color online) (a) Adiabatic Jπ = 0+ four-fermion hyperspherical potential curves taken

from (von Stecher and Greene, 2009), for two spin-up and two spin-down identical fermions with a

large positive interspecies scattering length, i.e. on the BEC side of the BCS-BEC crossover prob-

lem. The dashed horizontal lines mark the fragmentation thresholds, the lowest of which represents

the dissociation of two bound universal dimers (FF ′ + FF ′), the next highest representing one

bound dimer plus two free atoms (FF ′ + F + F ′), and the highest which denotes the threshold

energy E = 0 for complete four-body dissociation. Using these adiabatic potential energy curves

and the nonadiabatic couplings, the elastic and inelastic collision properties could be computed for

this system. (b) Taken from (D’Incao et al., 2009a) are the computed elastic ardd and inelastic aidd

scattering lengths for collisions between two universal dimers, i.e. in an FF’+FF’ collision, shown

in units of the two-body scattering length a(F + F ′) as a function of energy measured in units of

the dimer binding energy. Note the smallness of the inelastic (imaginary) scattering length, first

understood theoretically by (Petrov et al., 2005a,b), which was crucial for understanding why the

two-component Fermi gas has minimal losses close to unitarity(Cubizolles et al., 2003; Regal et al.,

2004a; Strecker et al., 2003). These low losses were crucial in enabling the BCS-BEC crossover

experiments to be successful and create long-lived quantum gases.

Few-body physics also produces insight into systems of trapped atoms through the use

of the idea of an artificially strong trap. The premise here is that frequently in a trapped

quantum gas with thousands or even millions of atoms, the physical trap frequency might

only be of order 10 Hz and determines only a largely irrelevant energy scale for the system.

More relevant by far are the typical scale of interparticle interactions and the average kinetic

energy or temperature, reflected in the separation of atoms ∆r. The physical content of this

separation length scale is sometimes referred to as the “Fermi wavenumber” kF = 2π/∆r
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even when the gas consists of some or even all bosonic particles. Then one can gain insight

by treating only 2, 3, or 4 particles in an unphysical artificially tight “theoretical trap”

designed to have a high frequency with particle separation ∆r comparable to the ∆r in

the actual many-particle system. An example where this strategy enables a simple inter-

pretation (Borca et al., 2003). of a complicated many-body problem is the famous “atom-

molecule” coherent oscillations or quantum beats observed in an 85Rb experiment(Donley

et al., 2002), depicted in Fig. 13.

A. Polaron physics attacked from a few-body viewpoint

When a slow electron moves inside a bulk material such as a polar crystal or helium

liquid, it attracts other particles from the bulk and the entity behaves as a quasi-particle,

as described in highly-cited early studies by (Feynman, 1955; Fröhlich, 1954). Such a

quasi-particle was denoted a polaron, and this term has been generalized to describe a more

general situation in which an interaction-dressed minority particle moves in the field of

other particles in a medium. An active field of research to this day, polarons have attracted

extensive attention from experimental (Michaud and Sanche, 1987) as well as theoretical

studies (Basak and Cohen, 1979; Fano and Stephens, 1986; Stephens and Fano, 1988) in

condensed-matter physics. In recent years polaron physics has become a topic of great

interest in the ultracold atomic physics community, owing to the promise of great control

and observability. The few-body side of polaron physics has two major areas of interest.

One aspect is to discern the details of a single quasi-particle in the many-body environment

and the more advanced topic of interactions among 2, 3, or 4 quasi-particles, i.e. the effect

of a many-body bosonic or fermionic bath of particles on the interactions, energy levels,

and recombination of the quasi-particles. (Bellotti et al., 2016) The second area that has

received extensive attention is the behavior of few-body analogues of a polaronic system,

with small numbers of minority and majority particles, such as the HHL and HHHL and

related problems discussed elsewhere in this review.

Polarons have received attention in ultracold atom experiments and theory over the past

decade or so by (Astrakharchik and Pitaevskii, 2004; Bei-Bing and Shao-Long, 2009; Brud-

erer et al., 2008; Catani et al., 2012; Cucchietti and Timmermans, 2006; Grusdt et al., 2015;

Kalas and Blume, 2006; Kohstall et al., 2012; Koschorreck et al., 2012; Levinsen et al., 2015;
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Figure 13 (a) Two-body s-wave energy levels in 85Rb are shown as a function of magnetic field

near the 155 G Fano-Feshbach resonance that was used by (Donley et al., 2002) to study quantum

beats between atomic states of a quantum degenerate Rb gas and molecular states. (b) Calculated

quantum beats reflecting interference between one pathway where a given pair of atoms remained

atomic and another pathway where that pair of atoms was bound into a long-range universal dimer

for a delay time T . These two-body calculations use an artificially tight trap (ω′ = 2π kHz whose

peak density approximately equals the density of 17,100 atoms trapped in the actual experiment

whose geometric mean trapping frequency was ω = 2π × 12 Hz. Taken from (Borca et al., 2003).
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Li and Das Sarma, 2014; Rath and Schmidt, 2013; Scelle et al., 2013; Schirotzek et al., 2009;

Spethmann et al., 2012; Tempere et al., 2009) and very recently, as in (Hu et al., 2016;

Jørgensen et al., 2016). Some work has considered an impurity with internal degrees of free-

dom called an “angulon” which is a quasi-particle consisting of a rotating impurity dressed

by the quantal many-body environment (Lemeshko, 2017; Schmidt and Lemeshko, 2016).

To date the explorations have concentrated on the behavior of a single impurity in a BEC or

DFG, but a future few-body topic that is still in its infancy will be the study of interactions

among two or more impurities dressed by the many-body environment. An initial foray

along those lines by (Naidon, 2016) treats two-body polaron-polaron interactions. We refer

the reader to the excellent recent review of this subject in (Naidon and Endo, 2016) and

references therein.

B. Bose-Einstein condensates viewed in hyperspherical coordinates

In the Russian nuclear physics literature, a technique evolved during the 1960s and 1970s

to treat the many-nucleon problem, which was referred to as “K-harmonic” theory. This

treatment was based on a particularly simple approximation formulated in hyperspherical

coordinates. The basic idea was to find the lowest grand angular momentum state, the “K-

harmonic” |KQ >. This eigenfunction of hyperangular kinetic energy and various symmetry

operators is usually an appropriately antisymmetrized linear combination of hyperspherical

harmonics; they are constrained to obey the symmetries of the system such as the Pauli

exclusion principle, definite parity, and so on. This approximation then uses this single

harmonic to describe the hyperangular wavefunction of the system. When this technique

is applied to the description of a single component BEC, it is particularly simple because

the K-harmonic for this system is simply the state of vanishing grand angular momentum,

K = 0, which is a constant in the hyperangular space of any N -particle system. While

the resulting wavefunction is not sufficiently realistic to describe the true short-range inter-

actions that occur whenever any two particles approach each other, the use of the Fermi

pseudopotential in the many-body Hamiltonian implies that the average energy of interac-

tion can be approximately represented perturbatively.(Bohn et al., 1998) In our terminology

today, we can view this as approximating the lowest adiabatic hyperangular eigenfunction

as this K-harmonic, after which perturbation theory can be applied to the interparticle
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interaction term in the Hamiltonian to determine the approximate ground state potential

energy curve for the many particle system, namely, U0(R). See Fig. 14. This treatment

does a reasonable job of predicting the approximate maximum number of atoms that can

exist in a harmonic trap when the scattering length is negative, beyond which the system

undergoes a macroscopic collapse often referred to as the “Bosenova” (Bradley et al., 1997;

Donley et al., 2001). More recently, the hyperspherical BEC theory has been extended via

a renormalization technique to treat properties of the quantum degenerate Bose gas in the

unitary limit a→∞ by (Ding and Greene, 2017).
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Figure 14 (a) Adiabatic hyperspherical potential curves for an attractive BEC, a noninteracting

BEC, and a repulsively interacting BEC. (b) Excitation energy calculated for an attractive (a < 0

BEC) in the hyperspherical adiabatic theory, compared with the random phase approximation

which is essentially identical to Bogoliubov theory. Adapted from (Bohn et al., 1998).

Since that simple study of (Bohn et al., 1998), other studies have considered improvements

of the hyperspherical BEC treatment, including generalizations to asymmetrical traps and

attempts to better include the two-body correlation physics beyond the simplest mean-field

approximations.(Kim and Zubarev, 2002; Kushibe et al., 2004; Sorensen et al., 2004; Watson

and McKinney, 1999)

C. The unitary Bose gas

Based on what has been learned from studies of dilute Bose gas recombination theory and

experiments, one expects it to be impossible to create a long-lived Bose-Einstein condensate

in the unitary limit where a → ∞. This conclusion is based on the fact that three-body

losses are seen to scale with the scattering length overall as a4, aside from quantum resonance
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and interference factors. Nevertheless this is a fascinating limit, in part because it can test

whether the recombination loss rates continue to scale as a4 all the way to a → ∞ and

in part because the many-body behavior implied by the Gross-Pitaevskii equation looks so

qualitatively different for large negative (infinitely attractive and immediate collapse) versus

large positive scattering lengths (infinitely strong repulsion).

These questions have long been of theoretical interest, e.g. (Cowell et al., 2002; Lee and

Lee, 2010; Radzihovsky et al., 2008), and recently they have begun to receive experimental

attention. One way to deal with the transient nature of any short-lived quantum gas is to

perform the experiment as a “quench”, i.e. begin with a BEC at small positive scattering

length and then suddenly ramp to the range of unitarity, a → ∞. A recent experiment at

JILA by (Makotyn et al., 2014) very quickly stimulated extensive theoretical work (Ancilotto

et al., 2015; Corson and Bohn, 2016; Ding and Greene, 2017; Hudson et al., 2014; Jiang et al.,

2014, 2016; Kira, 2015; Laurent et al., 2014; Piatecki and Krauth, 2014; Rancon and Levin,

2014; Sykes et al., 2014; Yin and Radzihovsky, 2016) to understand their main observations,

which were the following. (i) The a4 scaling of three-body loss is no longer applicable at very

large scattering lengths, i.e. when na3 >> 1 where n is the density. To understand this,

Ref.(Makotyn et al., 2014) defines a characteristic wavenumber of the system (analogous to

the Fermi wavenumber) as K ≡ (6π2n)1/3, which is comparable to the inverse of the average

interparticle spacing. The authors propose that in any formula involving the scattering

length a, it should be viewed as saturating at a constant value of the order of 1/K as

soon as you reach the regime Ka ≈ 1. In other words, as soon as a→ ∞, it is no longer a

relevant length scale in the system, and the premise is that the interparticle spacing becomes

the largest relevant scale instead. (ii) The momentum distribution of the atom cloud was

measured as a function of time after the jump to unitarity, and it settled down to a quasi-

stable distribution, which was the target of various many-body and few-body theory efforts

to try to understand.

One of the main items of interest in this system, from a few-body physics perspective,

is the saturation of losses at a value far smaller than would be expected from the zero-

temperature a4 scaling. An estimate(Sykes et al., 2014) has been made of the three-body

rate coefficient L3 ≈ 3 × 10−23 cm6/sec is reasonably close (around half as large as) the

measured value in the JILA experiment of (Makotyn et al., 2014). This theoretical estimate

is made using the few-body “artificial trap model” which considers only 3 atoms but places
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them in an artificially tight trap such that the atom density approximately matches the

experimental average density, which was 〈n〉 = 5.5(3) × 1012 cm−3. As is discussed in

greater detail in (Sykes et al., 2014), one obtains somewhat poorer quantitative agreement

but still the correct order of magnitude for the loss rate at unitarity by replacing the value

of a in the universal 3-body loss rate formulas by 1/K as defined above in terms of the

average density in the gas. Other experimental studies of the unitary Bose gas that have

focused on the three-body loss rate include (Eismann et al., 2016; Fletcher et al., 2013; Rem

et al., 2013). And another intriguing “universality limit” where the scattering length is no

longer a relevant length scale is the opposite limit a ≈ 0, recently explored experimentally

with some phenomenological conjectures in (Shotan et al., 2014).

D. Two-component Fermi gases and the BCS-BEC crossover problem

One fascinating type of dilute quantum gas experiment consists of distinguishable

fermions, either in two or more spin substates or else composed of two or more types

of distinguishable particles. This system received extensive attention from many theory

(e.g. (Hu et al., 2007, 2006; Hui et al., 2004; Yan and Blume, 2016; Yin and Blume, 2015))

and experimental groups,(DeMarco and Jin, 1999; Houbiers et al., 1997; Ketterle and Zwier-

lein, 2008; Ku et al., 2012; Schunck et al., 2005; Zwierlein et al., 2006, 2004) with particularly

keen interest in the community around a decade ago. Conceptually, one typically starts

the experiment by forming a two-component degenerate Fermi gas without interactions, i.e.

with vanishing scattering length between the two component atoms. Interactions between

like fermions can usually be ignored, unless one is close to a p− wave Fano-Feshbach reso-

nance. Now one increases the attraction by making the scattering length a between unlike

atoms small and negative, i.e. −1 << kfa < 0. This is the regime usually referred to as

the Bardeen-Cooper-Schrieffer (BCS) region, because the weak attraction tends to cause

pairing. These BCS-type pairs are sometimes referred to as “pre-formed pairs” because the

pairing occurs before the attraction is strong enough to form true isolated dimer bound

states. Of course true molecular bound states can be formed only after the attraction has

increased beyond kfa < −1, to infinite a and then a is large and positive which allows true

universal dimers to form with binding energy 1
2µa2

. At that point, when the gas has large

and positive a, the quantum gas has experienced a “crossover” from a degenerate Fermi
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gas to a BEC of weakly-bound molecules (Sá de Melo et al., 1993). Remarkably, such a

system allows an exploration of either Fermi or Bose quantum statistics depending on the

range of scattering lengths chosen experimentally. An impressive series of experiments has

observed precisely these phenomena (Greiner et al., 2003; Loftus et al., 2002; Regal et al.,

2005, 2004b), and this crossover physics has been reviewed by (Regal and Jin, 2007).

Of course the single-component Fermi gas is also of interest, with all fermionic atoms in

the same intrinsic spin state. Owing to the absence of s-wave collisions in such systems, the

cross sections for two-body elastic collisions that are needed for thermalization of the gas are

generally quite small at ultracold temperatures. Use of a p-wave Fano-Feshbach resonance

can enhance the cross sections, although two-body losses also usually grow in the vicinity

of such resonances (Regal et al., 2003). A two-component Fermi gas has its three-body

recombination losses suppressed since the low temperature behavior of the rate coefficient is

linear in the temperature T , in contrast to a gas of bosons or of 3 distinguishable particles

which have a constant low-temperature 3-body recombination rate. A spin-polarized gas

of fermions, on the other hand, has an even stronger suppression of the low-temperature

recombination rate, which varies as T 2. This might be expected to give very long-lived Fermi

gases when fully polarized, but near a p-wave Fano-Feshbach resonance in spin-polarized 40K

(the point where the p-wave scattering volume Vp →∞), the recombination coefficient has

been measured (Regal et al., 2003) and calculated (Suno et al., 2003a,b), and found to

approach within an appreciable fraction of the unitarity limit for the atom loss rate at total

relative energy E:

Kmax
3 =

~
5

m3

144
√
3π2

E2
. (59)

In addition to an explosion of effort to understand the many-body physics of the BCS-

BEC crossover problem, there has also been extensive fruitful effort directed towards under-

standing this system from a few-body point of view. See in particular (Akkineni et al., 2007;

Alhassid et al., 2008; Bulgac et al., 2006; Chang and Bertsch, 2007; Kestner and Duan, 2007;

Werner and Castin, 2006; Zinner et al., 2009). And in fact one limit of the many-body prob-

lem, the “high energy limit” can be accurately treated using the virial or cluster expansion.

Exciting progress in computing virial coefficients for three particles (Castin and Werner,

2013; Liu et al., 2009) and for four particles (Yan and Blume, 2016) has been contributed

in landmark theoretical papers during the past decade, as well as tested in a few impressive
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experiments. (Nascimbene et al., 2010)

E. A step beyond independent particles: the Tan Contact

The standard methods used in most many-body calculations usually start with a mean-

field wavefunction ansatz, in some cases going one step farther to the level of Bogoliubov

theory or, what is essentially equivalent, the random phase approximation (Esry, 1997;

Fetter and Walecka, 2003). These approximations have a demonstrated track record of

describing gross global properties of many body systems, for properties such as chemical

potentials, total energies, and excitation frequencies (Dalfovo et al., 1999; Giorgini et al.,

2008). One thing that should be kept in mind about such treatments is that they are based on

ridiculously inaccurate cartoon-level wavefunctions of the many-body system at interparticle

distances less than the van der Waals length. However, the behavior over larger distances

of order of the long de Broglie wavelengths in the system, it turns out to be reasonable. To

understand the flaws in the full many-body wavefunction ansatz used to derive the Gross-

Pitaevskii equation, the workhorse equation of Bose-Einstein condensation theory, recall

that it is a product of independent orbitals ψ, i.e. Ψ(−→r1 ,−→r2 , ....−→rN ) = ψ(−→r1 )ψ(−→r2 )...ψ(−→rN).
Why is this a patently absurd hypothesis? Because it says that each particle’s probability

amplitude is independent of the instantaneous positions of all other particles; but in reality,

there simply must be, in the “true” wavefunction of the system, a two-body character (at the

very least) when the distance between any two particles of the gas gets comparable to the

interaction length scale in the potential energy function between those particles (the van der

Waals length in the case of isotropic atoms). For two 87Rb atoms in spin-stretched magnetic

substates, for instance, the zero-energy wavefunction of any two approaching atoms in the

Rb BEC must have the 39 nodes as the interparticle distance is varied which are guaranteed

to be there by Levinson’s theorem,(Rodberg and Thaler, 1970; Taylor, 1972) since the Rb

dimer has 39 triplet bound states in the L = 0 orbital partial wave. (For an ultracold atomic

gas, higher partial wave physics is normally suppressed by the centrifugal barrier, so we will

focus only on the s-wave physics in this discussion.) This behavior is often incorporated

into Monte Carlo(MC) calculations by using a “Jastrow-type” variational trial function (or

a guiding function in the case of diffusion MC), which includes a product of all zero energy

two-body pair wavefunctions (Carlson et al., 2015; Dalfovo et al., 1999; Giorgini et al., 2008).
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To see why the cartoon-level approximation gives such a good description of many proper-

ties, consider the zero-range Fermi pseudopotential representation of the interaction between

two low energy particles, i.e. V (−→rij) = 2πaij~2

µij
δ(−→r ij), where aij is the scattering length be-

tween particles i and j and µij is their reduced mass. In the important paper by(Fermi,

1934), he proved that this potential gives an accurate interaction energy of two particles

with finite range potentials in the zero energy limit, even when highly inaccurate zeroth-

order wavefunctions are utilized; this rescues many-body predictions of energies and other

gross properties of the many-body system. The success of this “rescue” is documented by

(Holzmann and Castin, 1999) who demonstrate that the behaviors over large distance scales

of mean field and Bogoliubov wavefunctions are quite reasonable, even though their Hamil-

tonian does not contain the large number of two-body bound states whose presence would

cause rapid, short-range oscillations in any “exact” wavefunction of all alkali metal atoms

in a many-body gas.

Nevertheless, some properties of the many-body system go beyond those global properties

that are well described by a separable wavefunction ansatz and its crude improvements at

the next level of approximation. One such property identified by Shina Tan in a ground-

breaking series of papers (Tan, 2008a,b,c) is the “high energy” limit of the pair correlation

function. This Tan contact parameter has now been measured for a Fermi gas (Sagi et al.,

2013, 2012) as well as for a BEC(Wild et al., 2012), and those experiments have confirmed

the basis two-body physics on which Tan’s ideas are based. In brief, one way of looking

at the Tan contact is to acknowledge that there will be a range of distances, as two zero-

energy particles begin to approach each other at smaller and smaller distances rij , where

the wavefunction must be proportional to:

Ψ ∝ 1

aij
− 1

rij
(60)

In a sense the physics of the Tan contact is just the tip of the iceberg, because at higher

momenta one begins to probe the full momentum space wavefunction of two-body subsys-

tems, which have a complicated structure that in general depends on the detailed nature

of their short range interactions. For instance, in a gas of Rb or K atoms, one can expect

that the momentum space wavefunction above kvdW ∼ 1/ℓvdW or at energies above a few

MHz should exhibit deviations from the contact prediction based on the scattering length

alone. Experimental measurements to date appear to be mostly in the 10-100 kHz regime.
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Nevertheless, there a wide energy range, high compared to many body excitation frequencies

but low compared to van der Waals energy scales, where Tan’s contact and scattering length

two-body physics controls the major departure of the atomic quantum gas from a descrip-

tion in terms of non-interacting independent particle wavefunctions (Blume and Daily, 2009;

Braaten et al., 2010; Braaten and Platter, 2009; Corson and Bohn, 2016; Hudson et al., 2014;

Sykes et al., 2014; Yan and Blume, 2013; Yin and Radzihovsky, 2016; Yin and Blume, 2015).

F. Towards many-body theory with realistic interactions

If a mean field separable wavefunction ansatz is attempted in a variational calculation

that uses realistic atom-atom interactions, the results are disastrous and the total energy is

overestimated by many orders of magnitude (Esry and Greene, 1999). Basically, the mean-

field wavefunction is unable to make the wavefunction negligibly small at small distances

where the atom-atom potential is hugely repulsive. An exact solution of the Schrödinger

equation would of course make the wavefunctions exponentially small in such classically

forbidden regions, something that no independent particle wavefunction is “smart enough” to

accomplish. Quantum Monte Carlo calculations, however, are able to solve for ground states

of many particle systems and they are smart enough to make the wavefunctions exponentially

small in regions of strong repulsion. For instance, some of the best calculations of helium

cluster energies have been obtained using diffusion Monte Carlo calculations (Blume and

Greene, 2002; Lewerenz, 1997). Obtaining excited state information from Monte Carlo

calculations is notoriously difficult and limited, however, which makes the technique difficult

to use for determining scattering properties.

One hybrid theory that has shown promise combines Monte Carlo and adiabatic hyper-

spherical ideas (Blume and Greene, 2000). The basic idea is to carry out a diffusion Monte

Carlo calculation to find the energy of the system at a fixed hyperradius. By repeating

the calculation for many different hyperradii, one maps out the ground state potential en-

ergy curve of the system. Then, within the adiabatic approximation that neglects coupling

to higher potential curves, at least elastic scattering and a class of excited bound state

properties can be computed. That approach has been used to compute hyperspherical po-

tential curves (including diagonal adiabatic correction terms) for clusters of up to N = 10

4He atoms, as is shown in Fig. 15, and observable properties such as binding energies and
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atom-cluster scattering lengths. There appear to be no competing calculations to date of

the atom-cluster scattering lengths, for instance, beyond about N = 6 helium atoms, al-

though excellent progress has been achieved up to N = 6, and in some cases beyond, by

using Gaussian wavefunctions in combination with a Hamiltonian based on soft-core model

potentials.

Figure 15 Lowest energy adiabatic hyperspherical potential curves for N 4He atoms with N =

3 − 10. These potential curves are for total angular momentum L = 0. They were computed in

a hybrid hyperspherical-diffusion Monte Carlo method. Based on these potentials, approximate

scattering lengths were computed, for instance a(He9+He)=67 a0. Note that the potential curve

for HeN converges asymptotically to the ground state energy of the HeN−1 cluster. Reproduced

from (Blume and Greene, 2000), with the permission of AIP Publishing.

V. ULTRACOLD ATOMS IN LOW DIMENSIONAL TRAPS

The experimental realization of Bose-Einstein condensation in a dilute gas of alkali-atoms

in 1995 (Anderson et al., 1995; Bradley et al., 1995; Davis et al., 1995) enables the investi-

gation of pure quantum systems that lie at the interface among atomic, molecular, quantum

optical physics and many-body physics. A key breakthrough emerging from the control

of ultracold gaseous matter is the capability to tune interatomic interactions in strength

and sign by means of magnetic or optical Fano-Feshbach resonances (Chin et al., 2010; In-

ouye et al., 1998; Köhler et al., 2006). Nowadays, this has triggered the next generation of

quantum technologies that allow experimental creation and manipulation of low-dimensional

ultracold gases (Bloch et al., 2008; Bongs and Sengstock, 2004; Cazalilla et al., 2011; Gi-
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amarchi, 2004; Imambekov et al., 2012; Kolomeisky and Straley, 1996; Lewenstein et al.,

2012, 2007; Lieb et al., 2004; McKay and DeMarco, 2011) of bosonic or fermionic or mixed

symmetry (Giorgini et al., 2008).

Degenerate ultracold atomic gases of reduced dimensionality then serve as a vehicle for

experimental realizations and theoretical investigations of exotic quantum phases such as

the Tonks-Girardeau gas (TG) (Girardeau, 1960; Tonks, 1936). The TG many-body phase

consists of a one-dimensional gas of impenetrable bosons with infinite pairwise repulsion. A

fundamental property of the TG gas is that it can be viewed as displaying a fermionization

of the bosons. In this context, fermionization indicates that the infinite repulsion of the

bosons creates a node when any two particles touch, so that the squared wavefunction of

the infinitely repelling bosons coincides with that of a noninteracting fermionic gas. When

the repulsive 1D interaction coefficient is cranked up beyond the pole and onto the side

representing infinite attraction, the bosonic ensemble experiences a metastable many-body

state, namely the “super Tonks-Girardeau” gas phase (Astrakharchik et al., 2005). Clearly

the strength and the sign of interactions play an essential role in creating and probing these

exotic many-body phases. It is therefore crucial to study in detail the collisional processes

as modified by external confining potentials. Indeed, in these particular low-dimensional

two-body systems, the confinement generates significant modifications to the colliding pair

scattering properties. Existing theoretical studies on bosonic collisions show that resonant

scattering can be induced by the confinement, yielding the so-called confinement-induced

resonance (CIR) effect (Dunjko et al., 2011a; Yurovsky et al., 2008). A CIR occurs when

the length scale of the confinement becomes comparable to the s-wave scattering length

of the colliding bosons and it produces a divergence in the 1D coupling coefficient that is

interpreted as a Fano-Feshbach-like resonance. The additional control of low dimensional

gaseous matter by varying the confinement frequency led to the experimental creation of the

TG gas (Kinoshita et al., 2004; Paredes et al., 2004) and the Super-TG gas (Haller et al.,

2009) in cigar-shaped traps.

Evidently, the deepening understanding of collision physics in the low-dimensional ul-

tracold gases translates into an ability to manipulate and even to design new many-body

phases by means of the external confinement.
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A. Confinement-induced resonances: an interlude

Early seminal work by (Demkov and Drukarev, 1966) treated the motion of an electron in

the presence of a uniform magnetic field as well as a zero-range potential. That study showed

that the motion of the charged particle is bounded in the presence of the magnetic and zero-

range potentials whereas in the magnetic free case the zero-range potential can not bind the

electron. Another physical system which exhibits similar effects is the negative-ion photode-

tachment in a uniform magnetic field (Blumberg et al., 1979; Clark, 1983; Crawford, 1988;

Greene, 1987; Grozdanov, 1995; Larson and Stoneman, 1985; Robicheaux et al., 2015) where

in this particular case the electron-atom interaction is treated as a short-range potential.

Note that all these cases are half-collisions, in the sense that they arise in photofragmenta-

tion processes, and only involve an escape to infinity, whereas a full collision involves both

an incoming wave and an outgoing wave.

In the realm of ultracold atomic physics, (Olshanii, 1998) showed in his seminal work

that boson-boson collisions in an axially symmetric waveguide relies on virtually identical

mathematics as the system treated by Demkov and Drukarev, except with the trapping

potential playing the role of the transverse diamagnetic confinement caused by the mag-

netic field. More specifically, Olshanii showed that the confinement not only can create a

new bound state, but it can also nontrivially enhance the resonant two-body collision am-

plitude. In many cases the reduced-dimensional bound state is not strictly new, but can

be viewed as having been shifted from its position in the 3D or 2D system. For this rea-

son, the term “confinement-induced resonance” is often used synonymously with the term

“confinement-shifted resonance”. The following briefly summarizes the two-body scattering

and its modification under the influence of the trapping potential and highlights the physical

implications.

1. Two-body collisions in a cigar-shaped trap

Two bosonic particles in the presence of a quasi-1D waveguide have s-wave collisions that

can be modeled using a Fermi-Huang regularized pseudopotential. The waveguide constrains

the motion of the particles transversely, they propagate freely in the longitudinal direction.

The quadratic nature of the trapping potential allows separation of the Schrödinger equation
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into center-of-mass and relative degrees of freedom. The relative coordinate Hamiltonian

describes the relevant collisional physics, which in cylindrical coordinates reads

H = − ~
2

2µ
∇2

r + Vsh(r) +
1

2
µω2

⊥ρ
2, (61)

where µ is the reduced mass of the two bosons, ω⊥ is the frequency of the confining po-

tential. As usual, ρ denotes the radial polar coordinate and Vsh is the 3D Fermi-Huang

pseudopotential operator, defined by:

Vsh(r)Ψ =
2π~2as(E)

µ
δ(r)

d

dr
(rΨ), (62)

where as indicates the s-wave scattering length, δ(r) denotes the three dimensional delta

function and the quantity d
dr
(r· ) is the regularization operator. Note that the s-wave

scattering length in Eq. 62 depends on the relative collision energy E in the pseudopotential,

although in the ultracold limit this energy dependence is often negligible.

The waveguide symmetry implies that the transverse degrees of freedom in the scattering

solutions can be expanded in terms of two-dimensional harmonic oscillator eigenstates in

the potential 1
2
µω2

⊥ρ
2 and the transverse part of the Laplacian in the Hamiltonian H (see

Eq. 61). The corresponding transverse eigenenergies are given by Enm = ~ω⊥(n+ |m|+ 1),

with n = 2nρ = 0, 2, 4, ... being the quantum number associated with the nodes of the

wave function in the ρ-direction and m the azimuthal angular momentum. This relative

Hamiltonian H possesses azimuthal symmetry, so m is a good quantum throughout all the

configuration space. Here we concentrate on the case m = 0.

Remarkably, the prescription given in (Demkov and Drukarev, 1966) to regularize a di-

vergent sum that arises in the derivation involves a very similar mathematical analysis as

was used in the CIR treatment of (Olshanii, 1998) that results in a Hurwitz zeta function

that is well-defined.

This means that the system interacts strongly at a finite value of the 3D scattering

length, whereas in the absence of the confinement the two bosons exhibit a comparatively

weak interaction. This particular phenomenon is the so-called confinement-induced reso-

nance (CIR). The main feature of this effect is that the corresponding resonance condition,

as(E)/a⊥ = −1/c1, can be met either by tuning the trapping frequency or by adjusting the

scattering length via a Fano-Feshbach resonance, where a⊥ =
√

µω⊥/~.

The treatment by (Olshanii, 1998) showed that the full Hamiltonian in Eq. (61) can be

mapped onto an effective one-dimensional Hamiltonian with a delta function interaction
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Figure 16 (Color online) The one-dimensional coupling strength g1D (in units of ~2

µa⊥
) as a function

of the ratio as(E)/a⊥. The orange solid line corresponds to the analytical expression given in

Eq. (63). The black dots correspond to full numerical calculations where the two-body interactions

are modeled via a 6-10 potential. The red star denotes the position of the confinement-induced

resonance.

between the two bosons, of strength g1D.

Heff = −
~
2

2µ

d2

dz2
+ g1Dδ(z), g1D =

~
2

µa⊥

2as(E)

a⊥ + c1as(E)
, (63)

where the constant c1 is given by

c1(k) = ζ

(
1

2
, 1− 1

4
(ka⊥)

2

)

, (64)

with ζ(·, ·) the Hurwitz zeta function and for ka⊥ ≪ 1 we have the value c1 ≈ −1.46035.
Here k is the wavenumber associated with the total colliding energy E.

This effective two-body interaction derived from first principles can be utilized directly in

a many-body Hamiltonian, which permits an exploration of the underlying physics associated

with the Tonks-Girardeau gas. The effective Hamiltonian based on the coupling strength

g1D encapsulates all the relevant scattering information in the full Hamiltonian as well as

the non-trivial modifications due to the trap. More specifically, as the ratio as(E)/a⊥ tends

to −1/c1 the quantity g1D →∞. This particular feature is depicted in Fig.16 by the vertical

dotted line where the position of the CIR is indicated by the red star. In Fig. 16 the coupling

constant g1D is shown as a function of the ratio as(E)/a⊥. The black dots correspond to the

full numerical solution of the Hamiltonian given in Eq. (61) where the two body interactions
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are modeled by a 6-10 potential, i.e. V (r) = C10/r
10−C6/r

6. The orange solid line denotes

the analytical result of the coupling constant g1D given in Eq. (63) which agrees accurately

with the numerical solution. Furthermore, Fig. 16 shows that as the ratio as(E)/a⊥ tends

to infinity the coupling constant tends asymptotically to a weakly attractive limit in the

effective 1D potential energy. The resonant 3D free-space two body interactions, on either

the repulsive or attractive side, are modified into weakly attractive 1D forces due to the

trapping geometry. This attractive force in the waveguide is determined solely by the c1(k)

constant and the oscillator length a⊥. Indeed, for as(E)/a⊥ → ∞ the coupling strength is

g1D → ~
2

2µa⊥c1
.
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Figure 17 (Color online) An illustration of the physical origin of confinement-induced resonances.

Bound state energies in units of ~ω⊥, i.e.E/~ω⊥ are depicted versus the ratio a⊥/as. The red dotted

lines indicate the energy levels of the unperturbed two-dimensional harmonic oscillator, which act

here as channel threshold energies. The black star denotes the position of the confinement-induced

resonance relevant in the ultracold limit. The black dashed curve illustrates the s-wave bound

state in the absence of the trapping potential. The solid orange curve corresponds to the molecular

confinement-induced resonance. The blue curve is the CIR bound state energy supported by all

the closed channels.

Qualitatively, the CIR can be viewed as a bound state supported by all the closed channels

whose energy coincides with the lowest channel threshold, as in a usual Fano-Feshbach

resonance (Bergeman et al., 2003). This multichannel bound state produces only a single

pole in the reactance operator, i.e. the tangent of the 1D even z-parity phase shift. To follow

up on this idea, one can obtain the binding energies of the closed channel supported bound

state from the following transcendental equation, and its solution is the CIR resonance
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condition:
a⊥
as

= −ζ(1
2
,
3

2
− Er

2~ω⊥
), (65)

where ζ(·, ·) is the Hurwitz zeta function. Note that the appropriate value of Er in the

ultracold limit are in the range of few tens of kHz. On the other hand, the theoretical treat-

ment suggests that at energies below the threshold of the open channel confinement-induced

molecular states might be supported. Eq.(66) is derived by requiring all the scattering chan-

nels to be closed yielding a wavefunction that vanishes asymptotically. In this case the

molecular confinement-induced energies obey the following transcendental equation:

a⊥
as

= −
√

2~ω⊥
~ω⊥ − Er

− ζ(1
2
,
3

2
− Er

2~ω⊥
). (66)

Fig. 17 illustrates the relations in Eqs. (65) and (66), where the corresponding closed

channel bound state (blue solid curve) and molecular CIR state (orange solid curve) energies

are given as a function of the ratio a⊥/as. The red dashed lines indicate the two dimensional

harmonic oscillator eigenenergies in the absence of short range interactions, i.e. the values

E(1) = ~ω⊥ and E(2) = 3~ω⊥. The black dashed curve corresponds to the energy of an s-wave

molecular pair in the absence of confining trap, i.e. Efree/~ω⊥ = − a2
⊥

2a2s
. We observe that

the closed channel bound state (blue solid curve) tends to 3~ω⊥ as the ratio a⊥/as → −∞,

i.e.in the absence of short range interaction. As the ratio a⊥/as approaches the value −c1 =
1.46035 the bound state from the closed channels becomes degenerate with the threshold

of the open channel, E(1) = ~ω⊥ (see black star in Fig.17), and not coincidentally, the CIR

resonance occurs at a⊥/as = −c1 = 1.46035. Note that at a⊥/as > 1.46035 and for energies

less than E(1) the depicted blue line does not have any physical significance and it is just

an analytic continuation of Eq.(65). In this energy regime all the channels should be closed

and Eq. (65) refers to the case where the system possess a single open channel.

This analysis illustrates that the CIR has the character of a Fano-Feshbach resonance,

where the collective bound state attached to all the closed channels lies in the low-energy

continuum of the open channel. In addition, the confinement-induced molecular state (see

orange solid line) exists regardless the strength of the short range interactions. This is a

manifestation of the impact of the confinement since in free space collisions the bosonic pair

forms a weakly bound state only for positive values of the s-wave scattering length. On

the positive side of the abscissa in Fig. 17 as the ratio a⊥/as increases we observe that the
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energy of free space weakly bound molecule (black dashed line) coincides with the energy

of the confinement-induced molecular state (orange solid line). This occurs at these values

of scattering length since the two-body potential is deep enough forcing the wavefunction

to vanish before the trapping potential becomes important. Therefore, in this limit the

confinement-induced molecular state behaves as a free space bound state. Note that similar

behavior is observed in the paper by (Demkov and Drukarev, 1966).
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Figure 18 (Color online) Confinement-induced (black squares and lines) and Feshbach (blue line

and circles) molecules. The solid lines correspond to the theoretical predictions whereas the cir-

cles and squares indicate the experimental measurements. The vertical dashed line indicates the

position of the Feshbach resonance. Taken from (Moritz et al., 2005).

An experiment by (Moritz et al., 2005) considered a Fermi gas of 40K atoms in the

presence of harmonic confinement. The 40K atoms are prepared in two hyperfine states

|F = 9/2, mF = −9/2〉 and |F = 9/2, mF = −7/2〉. Note that the third hyperfine |F = 9/2, mF = −5/2〉
is not populated initially. The mutual interactions are tuned via a Feshbach resonance whose

position is located at B = 202.1G and its zero-crossing is at B = 210G. Thereafter, by em-

ploying radio-frequency spectroscopy confinement-induced molecules are generated and their

binding energy is measured as a function of the scattering length and the confinement fre-

quency. In Fig. 18 the binding energies of the confinement-induced (black solid line and

squares) and the Feshbach (blue solid line and circles) molecule are depicted as a function

of the magnetic field. The solid lines denote the theoretical predictions of (Dickerscheid

and Stoof, 2005) whereas the scattered data are the experimental measurements. The blue

dashed line indicates the position of the Feshbach resonance where a Feshbach molecule
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(blue line and circles) is only formed on the positive side of the resonance whereas no

measurement occurs on the negative side. On the other hand, in the case of confinement-

induced molecule (black line and squares) we observe that there is always a bound state

regardless the sign of the s-wave interactions. This is in accordance with the theoretical

predictions. In addition, we may note that the intersection point of the black line with the

blue dashed line, i.e.at the position of infinite scattering length, the binding energy acquires

its universal value, i.e., EB ≈ 0.6~ω⊥. At this universal value the binding energy of the

confinement-induced molecules depends solely on the strength of the confinement. Note

that the strength of the confinement in (Moritz et al., 2005) is tuned by changing the lattice

depth V0. Fig. 19 depicts the binding energy of the confinement-induced molecule as a

function of the confinement strength in units of recoil energy Er. The black solid line refers

to theoretical calculations and the scatter data indicate the radio-frequency measurements.

Both theory (Dickerscheid and Stoof, 2005) and experiment show sufficient agreement. The

minor disagreements between theory and experiment in Figs. 18 and 19 associated with the

effective range corrections which are not included as was pointed out by(Peng et al., 2012)
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Figure 19 The binding energy of the confinement-induced molecules as a function of the lattice

depth V0 in recoil units (Er). The spectra are measured very close to the Feshbach resonance at

magnetic field B = 202G. The black solid line indicates the corresponding theoretical calculations.

Taken from (Moritz et al., 2005).

In the above mentioned analysis of s-wave confinement induced resonances it is evident

that zero-range approximations are employed. This means that the short-range part of the

Hamiltonian is treated in essence as a single channel. In experiments, however, (see Fig. 18)

the main toolkit to tune the interactions or the s-wave scattering length are the Feshbach
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resonances. This particular aspect implies that the short-range part must be treated as a two-

channel model in order to obtain a direct comparison with the corresponding experimental

advances. Towards this pathway a tremendous amount of theoretical effort is focused in order

to incorporate adequately the two-channel nature of Feshbach resonances in the confinement-

induced physics (Kristensen and Pricoupenko, 2015; Peng et al., 2012; Saeidian et al., 2012;

Yurovsky, 2005, 2006). All these works pointed out the importance of the effective range

corrections particularly on the calculation of the binding energy of confinement-induced

molecules. In addition, it was shown that the effective range corrections become more

important for narrow Feshbach resonances. Note that similar conclusions were drawn also

for fermionic species in harmonic waveguides (Saeidian et al., 2015).

Another aspect which was excluded from Refs. (Bergeman et al., 2003; Demkov and

Drukarev, 1966; Olshanii, 1998) is that the total colliding energy is sufficient for the pair

atoms such that no excitation will occur before and after the collision. Lifting this constraint,

i.e., going beyond the single mode regime (Heß et al., 2015; Moore et al., 2004; Saeidian

et al., 2008) predicted numerically (Saeidian et al., 2008) and analytically (Heß et al., 2015;

Moore et al., 2004) the emergent inelastic confinement-induced resonances for bosonic and

fermionic exchange symmetries. In particular,(Heß et al., 2015) considered also the higher

partial wave interactions going beyond s- and p-wave interactions and obtained universal

expressions for the position of all the inelastic confinement-induced resonances.

A study by (Kim et al., 2006) studied distinguishable particle collisions in the presence of

a harmonic waveguide which yield the effect of dual confinement-induced resonances. This

type of resonances correspond to total transmission due to the destructive interference of s-

and p- partial waves. The importance of high partial waves on bosonic or fermionic systems

in a cigar shaped trap were considered by (Giannakeas et al., 2012). Due to the anisotropy of

the trap all the partial waves associated with either bosonic or fermionic exchange symmetry

are coupled yielding in this manner coupled ℓ-wave confinement-induced resonances. The

analysis of this particular system is based on the idea of the local frame transformation. This

framework was employed for highlighting the underlining physics of fermionic collisions in

matter waveguides by (Granger and Blume, 2004) avoiding the complications of zero-range

and two-channel models. The following focuses on a system of spin-polarized fermions in the

presence of cigar-shaped traps and the underlying details of the local frame transformation

theory.
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2. Fermions in a cigar-shaped trap

It is also of extensive experimental and theoretical interest to explore near-degenerate

fermionic gases in low dimensional traps, which requires a detailed understanding of

confinement-induced resonances between identical fermions. In (Granger and Blume, 2004),

a scattering theory was developed to describe collisions between identical spin-polarized

fermions in the presence of an axially symmetric harmonic trap. Owing to the Pauli exclu-

sion principle, ultracold fermions interact in 3D with p-wave interactions instead of s-wave

that was considered in the previous subsection. The p-wave theory requires somewhat

different considerations, which we therefore consider in this subsection from the general

viewpoint of the K-matrix theory; this highlights the behavior imposed on spin-polarized

fermionic ensembles by the transverse trapping potential.

Again, the relative Hamiltonian for two spin-polarized fermions expressed in cylindrical

coordinates has the same form as in given in Eq. (61). In contrast with the previous s-wave

treatment, the spherically symmetric two-body interaction is not modeled by a pseudopo-

tential. Instead the formulation works directly with the short-range phase shift caused by

the spherical symmetric two-body atomic interaction. In the following, azimuthal symmetry

is assumed and our analysis is restricted to only m = 0.

In practice the length scales associated with the two potential terms in Hamiltonian

H are well separated, with r0 of the short range potential typically orders of magnitude

smaller than the waveguide potential oscillator length in a typical ultracold experiment,

a⊥ =
√

~/(µω⊥). At small interparticle distance r << a⊥, the orbital angular momentum

is approximately conserved and therefore the two fermions experience a free-space collision

with total colliding energy E = ~
2k2/(2µ). As usual, µ denotes the two-body reduced

mass. In this case the ℓ′-th linearly independent energy eigenstate expressed in spherical

coordinates has the following form at r0 << r << a⊥:

Ψℓ′(r) =
∑

ℓ

Fℓ(r, θ)δℓℓ′ −Gℓ(r, θ)K
3D
ℓℓ′ , (67)

where Fℓ(r, θ) (Gℓ(r, θ)) is the energy normalized regular (irregular) solution expressed in

terms of spherical Bessel jℓ(r) (spherical Neumann nℓ(r)) functions multiplied by the cor-

responding spherical harmonic Yℓ,m=0(θ, φ). The summation is performed over all odd ℓ

angular momentum due the Pauli exclusion principle. The quantity K3D
ℓℓ′ represents the
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elements of the reaction matrix K3D in three-dimensions. This K-matrix incorporates all

the scattering information due to the short-range potential Vsh(r), and for a spherically

symmetric potential it is diagonal, but for anisotropic interactions such as the dipole-dipole

type it could acquire off-diagonal elements in other contexts (Giannakeas et al., 2013).

At large distances the waveguide geometry prevails and imposes cylindrical symmetry on

the wave function, and the total collision energy gets apportioned between the transversal

and longitudinal degrees of freedom. The energy can be expressed at |z| > r0 as E =

~ω⊥(2n+ |m|+1)+~
2q2n/(2µ), where the term ~ω⊥(2n+ |m|+1) refers to the energy of the

transversal part of the Hamiltonian and qn is the channel momentum, i.e.is the momentum

of the particles in the z direction. In this region the n′-th linearly-independent scattering

wave function at energy E can be expressed in cylindrical coordinates as:

Ψn′(r) =
∑

n

fn(z, ρ)δnn′ − gn(z, ρ)K1D
nn′ , (68)

where the quantity K1D
nn′ represents the elements of the quasi-1D reaction matrix K1D and

where (fn(z, ρ), gn(z, ρ)) are the energy normalized (regular, irregular) standing wave so-

lutions solely in the presence of the trap. The specific form of the regular and irregular

solutions which obey the Pauli exclusion principle have odd z-parity for m = 0 and are

given by:

(
fn(z, ρ)

gn(z, ρ)

)

= (2π2qn)
−1/2Φn(ρ)







(
sin qnz

− z
|z| cos qnz

)

(69)

where Φn(ρ) are them = 0 eigenfunctions of the two-dimensional harmonic oscillator and the

z-dependence describes motion in the unbounded coordinate. For collisions of spin-polarized

fermions the factor z/|z| corresponds to the anti-symmetrization operator.

From the Hamiltonian H in Eq. (61) it is evident that the corresponding Schrödinger

equation is non-separable over all the configuration space. However, as mentioned above

there are two distinct subspaces where the resulting Schrödinger equation is separable and

where all the relevant scattering information can be expressed in terms of reaction matrices,

namely K3D [see Eq. (67)] and K1D [see Eq. (68)]. The main idea is to define a frame

transformation which will permit to express the K1D reaction matrix in terms of the short

range K3D. Intuitively, the frame transformation U permits us to propagate outwards to

the asymptotic region the information of the collisional events occurred close to the origin.
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An unusual property of this frame transformation is that it is not unitary. This arises

due to the fact that the solutions given in Eq. (67) and Eq. (68) obey different Schrödinger

equations. However, since Hamiltonian H in Eq. (61) possesses length scale separation

implying the existence of an intermediate region where both potentials are negligible. This

means that in this subspace Eqs. (67) and (68) approximately satisfy the same Schrödinger

equation, i.e.the Helmholtz equation. Therefore, in this Helmholtz region one employs locally

the above mentioned frame transformation. The concept of the local frame transformation

was introduced by (Fano, 1981a; Harmin, 1982a,b) and extended by (Giannakeas et al.,

2016; Granger and Blume, 2004; Greene, 1987; Robicheaux et al., 2015; Wong et al., 1988;

Zhang and Greene, 2013).

The local frame transformation is derived by matching the energy normalized regular

solutions fn(r) and Fℓ(r) on a surface σ at a finite distance r0 < r < a⊥ inside the Helmholtz

region. Formally, for r < a⊥ U obeys the relation

fn(r) =
∑

ℓ

Fℓ(r)U
T
ℓn, with UT

ℓn = 〈〈Fℓ|fn〉〉 , for r < a⊥, (70)

where UT denotes the transpose of the frame transformation matrix U , the symbol 〈〈·|·〉〉
indicates that the solutions Fℓ and fn are integrated only over the solid angle Ω = (θ, φ).

Note that the matrix elements U are independent of the distance r. This occurs since the

matching of the regular solutions takes place in the Helmholtz region where both solution

possess same r dependence. In addition, since the set of solutions in Eqs. (67) and (68) are

real standing-wave solutions, the matrix U is real.

It was pointed out by (Fano, 1981a) that the irregular parts of Eqs. (67) and (68) can

be interconnected by matching in the Helmholtz region the corresponding principal value

Green’s functions, written in the different coordinate systems. Formally, the irregular solu-

tions obey:

gn(r) =
∑

ℓ

Gℓ(r)[U
−1]ℓn, for r < a⊥. (71)

After inserting Eqs. (70) and (71) into the scattering wave function Ψ(r) in Eq. (67), the

K1D matrix is seen to be expressed in terms of the short range K3D compactly as

K1D = UK3DUT , (72)

where the short range K3D includes all the odd partial waves for the spin-polarized fermions.

Also, the K1D matrix depends on the total collision energy E.
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The K1D matrix contains information about the asymptotically open- and closed-channel

components of the wavefunctions. To describe the closed-channel components, solutions

given in Eq. (68) can be analytically continued by setting the channel momentum qn to

be qn → i|qn|, in the usual spirit of quantum defect theory. Then one can derive the

local frame transformation U which possesses the same functional form as for the open

channels. Note that the local frame transformation U in the open channels only for p-

wave interactions obeys the relation Uℓ=1n =
√
2

a⊥

√
3
kqn
Pℓ=1(

qn
k
) where Pℓ(·) indicates the ℓ-th

Legendre polynomial. This yields the same expression for K1D shown in Eq. (72). The

only drawback from these manipulations is that the resulting K1D matrix corresponds to a

scattering solution which does not (yet) obey the proper boundary conditions asymptotically.

This is because the closed channel parts of the wave function given in Eq. (68) contains

exponentially growing pieces at |z| → ∞. One sees readily after substituting qn → i|qn| that
the regular and irregular solutions in Eq. (69) for the closed channel components have both

exponentially decaying and growing pieces. Therefore, in order to enforce the physically

accepted asymptotic boundary conditions in Eq. (68) concepts from multichannel quantum

defect theory are employed (Aymar et al., 1996).

Initially, the scattering wave function in Eq. (68) is separated into open (“o“) and closed

(”c“) channels. Then, linear combinations are chosen by demanding that the exponentially

growing pieces in the closed channels are canceled. Formally, we have the following relation

for the wave function:

(
Ψoo Ψoc

Ψco Ψcc

)(
Boo

Bco

)

=

[(
fo 0

0 fc

)

−
(
go 0

0 gc

)

(
K1D
oo K1D

oc

K1D
co K1D

cc

)](
Boo

Bco

)

,

where the matrices Boo and Bco denote the linear combination coefficients. By eliminating

the closed channels the linear combination coefficients acquire the values

Boo = 1 and Bco =

(
fc
gc
−K1D

cc

)−1

K1D
co , (73)

where the term fc/gc
|z|→∞−−−−→ −i1.
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The physical wave function, which involves only open channels asymptotically since the

closed-channel components decay exponentially, acquires the following form at |z| → ∞:

Ψphys = fo − go[K1D
oo + iK1D

oc (1− iK1D
cc )−1K1D

co ]. (74)

Here the effects of the closed channels on the open channel scattering are included in the

corresponding physical K-matrix, given by:

K1D, phys
oo ≡ K1D

oo + iK1D
oc (1− iK1D

cc )−1K1D
co . (75)

The resonances of the collision complex appear as poles of the K1D, phys
oo matrix. More

specifically, the K1D, phys
oo exhibits resonant features at zero eigenvalues of the matrix (1 −

iK1D
cc ). Therefore, this argument can be recast into the form of a determinantal equation:

det(1− iK1D
cc ) = 0. (76)

Note that despite the appearance of the imaginary unit i in the preceding equations,

all of these physical wavefunctions and reaction matrices are real. When all channels are

closed, the roots of Eq. (76) yield the bound state energies. When one or more channels are

energetically open, the roots of the above closed-channel determinant approximately identify

the real parts of resonance energies. Eq. (76) shows why a confinement-induced resonance

can be viewed as a Fano-Feshbach type of resonance.

Consider next the situation where the two fermions collide in the single mode regime,

meaning that the relative collision energy lies between the lowest two transverse thresholds.

In addition, these ultracold spin-polarized fermions interact at short distances via p-wave

interactions only. Phase shifts associated with higher 3D partial waves are entirely neglected.

Accordingly, the determinantal equation has one nonzero root, and the K1D, phys
oo matrix

takes the following form:

K1D, phys
oo = K1D

oo + iK1D
oc

(
1+

i

1− iγK
1D
cc

)−1
K1D
co (77)

where γ = Tr(K1D
cc,ℓ). Note that the Tr(K

1D
cc,ℓ) is an infinite sum which formally diverges and

in order to obtain a meaningful answer an auxiliary regularization scheme is employed. In

the particular case a Riemann zeta function regularization scheme is used. Note that such

techniques are totally avoided in the generalized form of the local frame transformation
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theory (Giannakeas et al., 2016; Robicheaux et al., 2015). In addition, Eq. (77) is further

simplified by substituting (K3D)ℓ′ℓ′′ = tan δℓ=1(E)δℓ′,1δℓ′′,1, i.e. using the fact that only p-

wave phase shifts δℓ=1(E) are non-zero. Next, in Eq. (77) we substitute the corresponding

local frame transformation for the closed channels only Uℓ=1n =
√
2

a⊥

√
3

ik|qn|Pℓ=1(
i|qn|
k
) where

Pℓ(·) indicates the ℓ-th Legendre polynomial. Eq.(77) now reads

K1D, phys
oo = −6Vp

a3⊥
q0a⊥

[

1− 12
Vp
a3⊥
ζ(−1

2
,
3

2
− E

2~ω⊥
)

]−1

, (78)

where the terms inside the square brackets provide the resonance condition for the position

of the p-wave confinement-induced resonances. The term Vp denotes the energy-dependent

3D scattering volume which is defined by Vp(E) = − tan δℓ=1(E)/k
3 (k =

√

2µE/~2).

The quantity of greatest experimental relevance is the effective interaction strength be-

tween two 1D spin-polarized fermions which contains the corresponding p-wave confinement-

induced physics. As was shown in (Girardeau and Olshanii, 2004; Kanjilal and Blume, 2004;

Pricoupenko, 2008) this effective 1D interaction is related to the corresponding K-matrix

[see Eq. (78)] according to the following relation:

g−1D = −~
2a⊥
µq0

K1D, phys
oo . (79)

This coefficient controls the strength of effective zero-range pseudopotential that is relevant

for describing the interaction of identical fermions in 1D in both few-body and many-body

contexts, namely:

V pseudo(z) = g−1D

←−
d

dz
δ(z)

−→
d

dz
. (80)

The left (or right) arrow indicates that the derivative operator acts on the bra (or ket)

respectively. In the idealized limit of a zero-range potential, this pseudopotential produces

a discontinuous wavefunction that obeys the required antisymmetry of the identical fermion

wavefunction. This might seem problematical since one normally requires wavefunctions in

Schrödinger wave mechanics to be continuous, but it can be accommodated theoretically as

is discussed, for instance, by (Cheon and Shigehara, 1999).

Fig.20 illustrates the dependence of the effective coupling constant g−1D as a function of

the Vp/a
3
⊥ in the low-energy regime. The two fermions interact strongly at the position of

p-wave confinement-induced resonance (see the red star in Fig.20) whereas in the limit of

Vp/a
3
⊥ → 0 the corresponding effective interaction vanishes. Interestingly, for strong p-wave
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Figure 20 (Color online) The low-energy effective interaction g−1D for two spin-polarized fermions

in the presence of a harmonic confinement as a function of Vp/a
3
⊥. Red star denotes the position

of the p-wave confinement-induced resonance.

interactions, i.e. Vp/a
3
⊥ → ±∞ the spin-polarized fermions experience a weak attraction due

the transversal harmonic confinement. The location of this divergent interaction strength is

called the p-wave confinement-induced resonance, and it occurs where the scattering volume

of the p-wave phase shift is finite and satisfies the resonance condition, namely Vp/a
3
⊥ =

[12ζ(−1/2, 3/2−E/(2~ω⊥))]
−1.

Figure 21 (Color online) Schematic illustration of the alignment of the spins with respect to pancake

and cigar-shaped traps (a) in a pancake configuration all the spin alignments are permitted. (b)

and (c) refer to cigar-shaped traps where in (b) [(c)] only the |m| = 1 (m = 0) spin configuration

of the p-wave interactions is allowed. Taken from (Günter et al., 2005).

Apparently, the theoretical scope of confinement-induced resonances is addressed mainly
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to the elastic collisional aspects of particles with either bosonic or fermionic exchange sym-

metry. However, in the experimental advances of (Günter et al., 2005; Haller et al., 2010;

Lamporesi et al., 2010; Sala et al., 2013) the confinement-induced physics is probed via

atom loss measurements which inherently are inelastic scattering processes. These pro-

cesses mainly emerge due to mechanisms, such as three-body recombination, coupling of the

two-body center-of-mass and relative degrees of freedom, spin-flips etc. Theoretically, the

few-body collisions in the presence of external confinement are investigated by (Blume, 2014;

Gharashi et al., 2012; Mora et al., 2005a, 2004, 2005b) addressing the three and four-body

aspects of the confinement-induced physics where a detailed discussion can be found in the

excellent review by (Blume, 2012a).

(Günter et al., 2005) experimentally investigated p-wave collisions of spin-polarized

fermions in the presence of cigar-shaped and pancake traps. The degenerate gas constitutes

of fermionic 40K atoms where their mutual interactions are tuned by means of a p-wave

Feshbach resonance at 198 G which possesses a double peaked feature. As was shown by

(Ticknor et al., 2004) et al the doublet structure of a p-wave magnetic Feshbach resonance is

associated with the different projections of the orbital angular momentum, i.e.|m| = 1 and

m = 0 for ℓ = 1 and it occurs due to the magnetic dipole-dipole interactions. (Günter et al.,

2005) et al. showed that this feature yields particular signatures also in low-dimensional ar-

rangements. Qualitatively the impact of the double-peaked Feshbach resonance is depicted

in Fig.21 where three configurations are considered for pancake and cigar-shaped traps. In

particular, panel (a) corresponds in a pancake trap where all the projection alignments,

i.e.|m| = 1 and m = 0, are considered. In Fig.21(b) a cigar-shaped trap is considered whose

longitudinal direction is perpendicular to the magnetic field. This implies that the |m| = 1

configuration of the p-wave Feshbach resonance mainly contributes in the scattering process

whereas collisional events associated with m = 0 component of the Feshbach resonance are

suppressed. Finally, in Fig.21(c) the quasi-one dimensional trap is aligned with the magnetic

field, whereby the m = 0 component dominates the p-wave collisions.

By measuring the atom loss signal the impact of the multiplet Feshbach resonance is

illustrated in Fig.22 for five different trap configurations. In particular Fig.22 considers (a)

a three dimensional optical trap where the double-peaked feature of the p-wave resonance

stands out. In Fig.22(b), the potassium atoms are confined in a pancake-shaped trap and

the two components of the Feshbach resonance prevail where a confinement induced shift is
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Figure 22 (Color online) Atom loss measurements for 40K atoms around a multiplet p-wave Fesh-

bach resonance for (a) three dimensional dipole trap, (b) a two-dimensional pancake trap, (c) [(d)]

a quasi-one dimensional cigar-shaped trap whose longitudinal direction is perpendicular (parallel)

to the magnetic field, (e) a three-dimensional optical lattice. Taken from (Günter et al., 2005).

observed with respect to the measurements of panel (a) is observed. In Fig.22(c) the Fermi

gas is confined in a quasi-one dimensional trap with its longitudinal direction positioned per-

pendicular to the magnetic field. In contrast to panels (a) and (b) of Fig.22, only the |m| = 1

component of p-wave resonance is pronounced whereas the trapping potential induces a shift

with respect to the corresponding resonance in Fig.22(a). Similarly, in Fig.22(d) the Fermi

gas is confined in a cigar-shaped trap with the longitudinal direction being aligned with

the magnetic field. In this case, solely the |m| = 0 component of the Feshbach resonance

contributes appreciably, and it is shifted towards larger values of field strength with respect

to the corresponding measurements of Fig.22(a) verifying in this manner the theoretical

predictions of (Granger and Blume, 2004). Finally, a tight three-dimensional optical lat-
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tice is considered in Fig.22(e) where no pronounced losses are observed since the atoms are

effectively confined in “zero” dimensions and asymptotic scattering states are restricted.

From a theoretical viewpoint, (Peng et al., 2014) considered fermionic collisions around

a p-wave Feshbach resonance in the presence of quasi-two-and quasi-one-dimensional traps.

In particular, (Peng et al., 2014) takes into account the multiplet structure of the p-wave

Feshbach resonance and study within a zero-range model the impact of the relative orienta-

tion of the magnetic field with the trapping potentials on the collisional processes. In this

manner, the experimentally, i.e.(Günter et al., 2005), observed spin alignment-dependent

confinement-induced resonances for spin-polarized fermions were also verified theoretically

by (Peng et al., 2014).

B. Confinement-induced resonances: delving deeper

The above discussion has only considered quasi-one dimensional harmonic type of con-

finement for producing confinement-induced resonances. The rapid technological advances

in laser trapping techniques have opened a new avenue that enables ultracold atoms to be

confined in arbitrary geometries. From a theoretical viewpoint, this requires extensions of

the boundaries of our understanding of confinement-induced physics to include more general

types of trapping potentials. Many of the generalizations discussed in the present subsection

have been reviewed in (Blume, 2012a; Zinner, 2012)

In this direction, (Idziaszek and Calarco, 2006; Petrov et al., 2000a; Petrov and Shlyap-

nikov, 2001; Pricoupenko, 2008) considered ultracold collisions in the presence of quasi-two

dimensional traps. In particular, (Petrov and Shlyapnikov, 2001) within the zero range ap-

proximation studied bosonic collisions in pancake-shaped traps. The pancake trap modifies

the properties of 3D binary collisions yielding two-dimensional confinement-induced reso-

nances. This particular type of resonance also fulfills a Fano-Feshbach scenario as do the

quasi-one-dimensional resonances. However, due to the pancake geometry a confinement-

induced resonance occurs when the two-body potential is not sufficiently deep to produce

a true 3D universal bound state, i.e. where the corresponding free space scattering length

is negative. Again, this differs from the quasi-one-dimensional confinement-induced res-

onances in the low energy limit, which occur at positive values of the s-wave scattering

length. The theoretical predictions of (Petrov and Shlyapnikov, 2001) were experimentally
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confirmed by (Fröhlich et al., 2011). (Fröhlich et al., 2011) explored the collisional aspects of

a two-component Fermi gas in a pancake trap around a free space Fano-Feshbach resonance.

By employing radio-frequency spectroscopic techniques measured molecule formation on the

negative side of Fano-Feshbach resonance.

(Idziaszek and Calarco, 2005; Peng et al., 2010) studied confinement-induced resonances

in the presence of an anisotropic waveguide, using a pseudopotential model of the two-body

collisions. The anisotropy is induced by considering a transverse harmonic potential in the

x − y plane, with different frequencies in the x and y directions. Theory suggests that the

system in this type of geometry possesses only one confinement-induced resonance, whose

position can be tuned by adjusting the confining frequency aspect ratio (Peng et al., 2010).

Moreover, similar conclusions emerged from (Zhang and Zhang, 2011) which considered a

two-channel model for the short-range 3D interaction. The simple fact that an anisotropic

harmonic waveguide should exhibits only one confinement-induced resonance was not con-

firmed by the experiment of (Haller et al., 2010). More specifically, (Haller et al., 2010)

conducted experiments on Cs atoms confined in quasi-one-to-quasi-two dimensional traps.

In the regime of anisotropic traps through atom loss measurements the corresponding ob-

servations showed signatures of two confinement-induced resonances.

The double peak feature was theoretically resolved by proposing two possible loss mecha-

nisms. One was associated with multichannel inelastic processes (Melezhik and Schmelcher,

2011) and the second one was related to the mere fact that trapping potential in the (Haller

et al., 2010) exhibit an anharmonicity (Peng et al., 2011; Sala et al., 2012). The anharmonic-

ity of trap induces a coupling between the center-of-mass and relative degrees of freedom of

the colliding pair. This coupling enables the two particles to form a molecule without requir-

ing a third particle since the binding energy can be distributed to the center of mass degrees

of freedom. After implementing these considerations in the theory, two confinement-induced

resonances do indeed emerge which confirm the experimental observations of (Haller et al.,

2010). More recently, in order to pinpoint the physical origin of the double confinement-

induced resonances, (Sala et al., 2013) considered experiments with 6Li atoms in an anhar-

monic waveguide. More specifically, in that experiment, the trapping potential was loaded

with only two 6Li atoms in the ground state of the external potential. Therefore, three-body

effects as well as multichannel inelastic multichannel effects were excluded (Melezhik and

Schmelcher, 2011). In this manner, it a double peak structure was observed in atom loss
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measurements which are attributed to two confinement-induced resonances.

Dealing with ultracold collisions in arbitrarily-shaped transversal potentials (Robicheaux

et al., 2015; Zhang and Greene, 2013) developed theories based on local frame transforma-

tion theory, which can predict a broader class of confinement-induced resonances. These

theoretical treatments also include two-body collisions beyond s or p-wave character. In

addition, (Robicheaux et al., 2015) using ideas related to the Schwinger variational principle

provide infinity-free calculations of scattering observables based on physical grounds, and

avoids the need for additional regularization schemes which have been previously utilized in

the pseudopotential approaches of (Granger and Blume, 2004; Olshanii, 1998; Petrov and

Shlyapnikov, 2001). However, in the treatments of (Robicheaux et al., 2015; Zhang and

Greene, 2013) the center of mass is coupled with the relative degrees of freedom for particles

of finite mass, so they have thus far only been applied in the limit of an infinitely massive

particle which is struck by a much lighter one. (Peano et al., 2005) considered the coupling

of the center of mass in an arbitrary transversal potential, using the Green’s function for-

malism to solve the corresponding Schrödinger equation directly in the laboratory frame.

Apart from arbitrary quasi-one-dimensional potentials, (Peano et al., 2005) considered also

the case of two-component ultracold gases in harmonic traps where atoms have different

polarizabilities; they therefore experience different harmonic oscillator confining frequencies

which results in coupled center-of-mass and relative degrees of freedom. In both cases,

(Peano et al., 2005) theoretically predicted that the corresponding scattering observables

should exhibit more than one resonant feature associated with the confinement-induced

resonances. Similarly, (Kim et al., 2005) developed a theory yielding only qualitative pre-

dictions since the Hilbert space associated with the closed channel physics was not taken

into account. This aspect, however was taken into account by (Melezhik and Schmelcher,

2009) which predicted confinement-induced resonant molecular formation.

(Massignan and Castin, 2006) and (Nishida and Tan, 2008, 2010, 2011) focused on mixed-

dimension collisions in ultracold gases, under the assumption that different atomic species

experience move in different numbers of spatial dimensions, such as when a 3D gas of atoms

interacts with either different atoms or the same atoms in different internal states that are

trapped in an optical lattice. Again, for this mixed-dimension system the center of mass

and relative degrees of freedom are inherently coupled. The concept of mixed dimensional-

ity arises from the fact that in a mixture of ultracold gas different particles, i.e. A and B
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species, experience different confinement frequencies. The confinement frequencies depend

on each atom’s polarizability and the laser frequency. Therefore, by adjusting the laser

frequency at a zero of polarizability of one atomic species, i.e.A atoms, only the B atoms

will experience the trapping potential. The proposed technique of (LeBlanc and Thywissen,

2007; Massignan and Castin, 2006) for species-selective dipole potentials was first realized by

(Catani et al., 2009). (Nishida and Tan, 2010) studied this idea by considering one atomic

species, e.g. A atoms, to be totally unconfined, i.e. they move in three dimensions, while

the B atoms are trapped in a tight spherical trap (a “zero dimension” configuration), or a

cigar-shaped (quasi-one-dimensional configuration) trapping potential, or a pancake-shaped

trap (quasi-two dimensional configuration). In addition, particles A and B are assumed to

collide at small distances with s-wave interactions only. This gives rise to an infinite series

of a particular type of confinement-induced resonances which possess high orbital angular

momentum character despite the fact that the two-body collisions are dominated by s-wave

interactions. (Massignan and Castin, 2006) This effect emerges from the combination of pure

s-wave interactions and the fact that the two-body collisions take place in mixed-dimensions

which couples the angular momenta of the A and B atomic species. The theoretical predic-

tions (Nishida and Tan, 2008, 2010) have apparently been observed by (Lamporesi et al.,

2010), who created a mixed-dimensional confinement of two ultracold atomic species, namely

41K and 87Rb. The 41K atoms are trapped in two-dimensions whereas the 87Rb atoms move in

three-dimensions, which is achieved by implementing species-selective dipole trapping tech-

niques (Catani et al., 2009; LeBlanc and Thywissen, 2007; Massignan and Castin, 2006). In

this mixed-dimensional configuration (Lamporesi et al., 2010) observed up to five resonances

by measuring 3-body losses, in good agreement with theoretical resonance positions.

Pair collisions within a three-dimensional optical lattice were theoretically investigated

by (Cui et al., 2010; Fedichev et al., 2004). (Fedichev et al., 2004) utilized the tight-binding

framework and assumed that the range of the two-body interactions is far smaller than the

lattice spacing, i.e. d, and the size of the ground state in a lattice side, i.e. ℓ0. Also the

curvature within the lattice sites is approximated as a harmonic oscillator, which permits a

decoupling of the center of mass and relative degrees of freedom. Furthermore, in the tight

binding model (Fedichev et al., 2004) assumed that the effective mass of the particles is large

enough such that the size of the ground state within the lattice site is small compared to

the lattice spacing whereas effects arising from higher Bloch bands were excluded. Based on
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these considerations (Fedichev et al., 2004) predicted a confinement-induced resonance that

occurs at negative values of the s-wave scattering length. The resonance condition simply

reads as ∼ ℓ∗, where ℓ∗ = ℓ0
√
D0/(4 ln 2), with D0 the tunneling amplitude to neighboring

lattice sides in the lowest Bloch band. (Köhl et al., 2005) conducted experiments on a

degenerate Fermi gas in the presence of a three-dimensional optical lattice. They observed

that the Feshbach resonance within the optical lattice exhibits an additional shift from the

corresponding Feshbach resonance in the absence of the external potential, which verified the

theoretical predictions of (Fedichev et al., 2004). (Cui et al., 2010) extended the theoretical

studies of (Fedichev et al., 2004) and quantitatively described Bloch wave scattering at

different lattice depths. Also, higher Bloch bands are taken into account as well as intraband

effects which occur in the lowest Bloch band. (Cui et al., 2010) showed that in the case of

true molecular states and at moderate lattice depths the higher Bloch bands effects play

crucial role since their neglect overestimates binding energies.

C. Synthetic spin-orbit coupled systems

Experimental and theoretical efforts on the confinement-induced physics in low di-

mensional systems consider a regime where the two-body interactions are short-ranged

and isotropic. Lifting the latter constraint permits us to generalize the concept of the

confinement-induced resonances in physical systems which are mainly governed by anisotropic

binary interactions.

The experimental realization of spin-orbit coupled Bose-Einstein condensates opens new

avenues to explore the collisional aspects of such exotic systems. Developments in this

rapidly evolving field have been reviewed by (Williams et al., 2012; Zhai, 2015). For example,

in free space collisions, spin-orbit coupling yields a mixed-partial wave scattering process

that alters the corresponding Wigner threshold law (Cui, 2012; Duan et al., 2013; Wang and

Greene, 2015). (Zhang et al., 2012; Zhang and Zhang, 2013; Zhang et al., 2014) studied the

impact of reduced dimensionality on these physical systems in the presence of quasi-one and

quasi-two dimensional traps.

In particular, (Zhang et al., 2014) considers resonant collisions of spin-orbit coupled cold

atoms with Raman coupling in the presence of an axially symmetric harmonic waveguide.

As a first order approximation, effects due to the coupling of the center-of-mass and relative
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degrees of freedom are neglected by considering the case of zero center-of-mass momen-

tum. Then the relative Hamiltonian, apart from the kinetic energy, two-body and con-

finement potential terms, possesses two additional terms: (i) The spin-orbit coupling term

HSOC = γk
m
(σx2 − σx1 ) and (ii) Raman coupling term HRaman = Ω

2
(σz2 + σz1). σ

i
1,2 with i = x, z

represents the spin Pauli matrices for each particle, k indicates the relative kinetic energy,

m is the atom’s mass. Ω represents the strength of the two-photon Raman coupling and

γ = 2π~ sin(θ/2)/λ indicates the spin-orbit coupling constant where λ is the Raman laser

wavelength and θ denotes the angle between the lasers.

Both spin-orbit and Raman coupling influence inherently the position of the resulting

confinement-induced resonance. A confinement-induced resonance always exists regardless

the sign of the s-wave scattering length only in the case where the Raman coupling strength

is less than spin-orbit coupling strength, i.e.Ω < 2γ. For strong Raman coupling, i.e.Ω≫ 2γ

the position of the confinement-induced resonance occurs only at smaller values of the ratio

as/a⊥, namely as/a⊥ ∼ 1/
√
2Ω. This provides in essence an extra means to manipulate the

position of a CIR without the need of a Fano-Feshbach resonance to tune the magnitude

of the 3D scattering length. Note that similar findings were reported also by (Zhang and

Zhang, 2013).

D. Confined dipoles and dynamical CIR

Collisions of magnetic dipolar atoms or of polar molecules pose another physical system

whose two-body interactions are inherently anisotropic. The concept of confinement-induced

resonances for anisotropic two-body interactions has been considered both for quasi-two and

quasi-one dimensional waveguide geometries. Such dipolar systems hold particular interest

in the many-body realm for their potential to create novel new topological phases of matter,

in addition to quantum information applications. (Baranov, 2008; Baranov et al., 2012)

In a numerical study, (Hanna et al., 2012) explored the impact of a pancake geometry on

nonreactive polar molecules where despite the fact that the confining potential yield broader

resonances than in the absence of a trap, the location of resonances are extremely sensitive

to the dipole moment strength.

Apart from pancake geometries, the concept of dipolar confinement-induced resonances is

also investigated in harmonic waveguides, i.e. in quasi-one dimensional traps (Bartolo et al.,
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2013; Giannakeas et al., 2013; Sinha and Santos, 2007) where the dipoles are aligned by an

external field in a head-to-tail configuration. In particular, (Giannakeas et al., 2013; Shi and

Yi, 2014) apply the local frame transformation theory and the pseudopotential techniques,

respectively, showed the existence of a broad class of dipolar confinement-induced resonances

which are characterized by mixed orbital angular momentum character due to the dipole-

dipole interactions and the confinement.

Moreover, for s-wave dominated dipolar confinement-induced resonances their position

depends linearly on the ratio of the length scale of dipolar forces over the trapping length

scale, i.e.∼ ld
a⊥
. Note that (ld, a⊥) = (µd2/~2,

√

~/µω⊥) where µ indicating the reduced

mass of the dipolar, d is the corresponding dipole moment and ω⊥ indicates the confinement

frequency. This linear dependence of position of the dipolar confinement-induced resonances

on the ratio ld
a⊥

means that the collisional properties of dipoles in the presence of a confine-

ment can be controlled by adjusting the strength of an external field and confining potential

frequency in a regime accessible by the experimental advances.

Furthermore, (Shi and Yi, 2014) showed that by tilting the relative orientation of the ex-

ternal electric field with respect to the longitudinal axis of the harmonic waveguide provides

additional means to refine the tuning of dipolar confinement-induced resonance positions.

(Simoni et al., 2015) studied the case of reactive polar molecules in cigar-shaped traps. In

more detail (Simoni et al., 2015) numerically studied the impact of the reduced dimension-

ality on elastic, inelastic and reaction rates of collision of the reactive molecules in terms of

the collisional energy and the strength of the dipole moments. The full four-body calcula-

tions are simplified by employing an asymptotic effective two-body model at large distances

where the reactions are suppressed (Micheli et al., 2010). The reaction physics is introduced

through a WKB-type boundary conditions at short distances that accounts for atom ex-

change phenomena. By varying the angle of an external electric field with respect to the

longitudinal direction of the trap, i.e.trap axis, it is observed that the reaction rate is greatly

suppressed for angles normal to the trap’s axis. For the case of a bosonic KRb molecule

the reaction rate can only be efficiently suppressed under strong confinement without yield-

ing any significant advantages over the reaction rate suppression in quasi-two dimensional

trapping geometries.

Photon-assisted confinement-induced resonances arise when there is a dynamical mech-

anism to enhance resonant collisions in the presence of a waveguide. (Leyton et al., 2014)
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consider s-wave binary collisions in the presence of an RF driven harmonic waveguide whose

confining frequency modulation permits the separation of the center of mass degrees freedom.

The resulting time-dependent Schrödinger equation is solved within a zero-range approxi-

mation, i.e. using a Bethe-Peierls boundary condition at the origin of the relative degrees

of freedom. The RF modulation of the transversal frequency permits to the two counter-

propagating atoms to perform a transition from the continuum state to the confinement-

induced molecular state by emitting one or multiple photons. This dynamical mechanism of

photon-assisted confinement-induced resonances can result into a series of resonant features

for a given number of photons.

E. Inelastic few-body collisions in 1D

An intriguing implication of the exact integrability of the 1D Schrödinger equation for N

equal mass particles that experience zero-range two-body potentials, and the existence of an

analytically known solution due to (McGuire, 1964), is that there are no inelastic collisions.

One way to understand this is that every time two particles collide, the final state of the two

particles in momentum space is kinematically identical to the initial state, since transmission

and reflection are indistinguishable. While the absence of all inelasticity including three-

body recombination for this system is straightforwardly clear, given the exact solution of

(McGuire, 1964), it is far from obvious how the inelasticity turns out to vanish when studied

in the adiabatic hyperspherical representation. One way all inelasticity would vanish for a

system would be if the hyperradial degree of freedom in the Schrödinger equation turns

out to be exactly separable, because in that case all nonadiabatic coupling matrices would

vanish. It is not that simple, however, in the case of identical 1D bosons with zero-range

interactions, because the nonadiabatic coupling matrices are nonzero. Hence, the different

adiabatic hyperspherical channels are coupled, at least locally. This issue was explored by

(Mehta and Shepard, 2005), which numerically solved the coupled hyperradial equations

that describe atom-dimer scattering.

Later, three-body recombination was calculated in this 1D identical boson system for

both the zero range potential case and for a finite-range potential by (Mehta et al., 2007),

again using the adiabatic hyperspherical representation. That study confirmed as well that

there is no inelasticity, i.e. vanishing three-body recombination rate coefficient. In the
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hyperspherical representation, the recombination rate and the rates of all other inelastic

processes vanish because there is complete destructive interference in the zero-range limit.

For a 1D potential of finite range L, however, the study showed how the recombination

rate increases for nonzero L > 0. The near-threshold behavior of the recombination rate

is of interest for 1D and quasi-1D experiments, and it was demonstrated in (Mehta et al.,

2007) that three identical particles have the same threshold behavior K1D
3 ∝ k7 regardless

of whether the particles are spin polarized fermions or bosons. For three identical bosons

in particular, this study shows more concretely that in strict 1D, K1D
3 = C(L)(~k/µ)(ka)6,

where k is the 1D wavenumber and a is the 1D two-body scattering length. Experimental

evidence is quite limited in this topic, but the results measured to date, e.g. by (Tolra

et al., 2004) appear not to have reached a regime very close to the strict 1D results, and are

probably better viewed as probes of the crossover regime between 1D and 3D or between

1D and 2D.

F. 2D, quasi-2D systems, and the super-Efimov effect

Two-dimensional systems in both few-body and many-body physics exhibit rich and fas-

cinating behavior, involving logarithmic dependences of nearly all quantities that depend on

distance and energy. In many-particle condensed-matter systems, prototypical phenomena

that have generated extensive interest include the Berezinskii-Kosterlitz-Thouless(BKT)-

transitionm (Berezinskii, 1971; Kosterlitz and Thouless, 1973; Thouless et al., 1982) relat-

ing to the formation and binding of 2D vortices, and of course the fractional quantum Hall

effect (Stormer et al., 1999). Underlying the theoretical description of striking many-body

phenomena in 2D are the effective two-body and three-body interactions that are modified

when a three-dimensional gas is squeezed into a pancake-shaped trap geometry.

The modification of the 3D atom-atom scattering information into an effective 2D inter-

action has been addressed by many authors, e.g. (Kanjilal and Blume, 2006; Wódkiewicz,

1991), with a more comprehensive list of references in (Dunjko et al., 2011b). Implications

of 2D confinement for three-body recombination and for the formation of many-body phases

were treated by (Petrov et al., 2000b), for a gas consisting of particles with finite-range inter-

actions. The three-body problem in 2D for short-range interactions has more recently been

examined in a hyperspherical coordinate framework by (D’Incao et al., 2015; D’Incao and
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Esry, 2014), including a nonperturbative study of 3-body recombination in that geometry.

Two-body dipole-interacting particles in a 2D or quasi-2D gas are treated by many publi-

cations, two of which are (D’Incao and Greene, 2011; Kanjilal et al., 2007). The intriguing

many-body phenomena that arise in dipolar systems have received extensive theoretical and

experimental attention, as has been reviewed in (Baranov, 2008; Baranov et al., 2012).

One class of few-body treatments in two dimensions relates to fractional quantum Hall

droplets having modest numbers of particles, typically from 3-10 electrons, or in the ultracold

physics context, atoms or polar molecules. A few such explorations in recent years can be

found in (Daily et al., 2015b; Rittenhouse et al., 2016; Wooten et al., 2017), which are just

a sampling of the work that followed the famous work by (Laughlin, 1983) on three 2D

electrons in a perpendicular magnetic field. A degenerate perturbation theory treatment of

semiconductor quantum dots in a strong magnetic field, which has numerous cases that can

serve as useful benchmark calculations for comparison with few-body theory, can be found

in (Jeon et al., 2007).

A provocative few-body prediction in recent years has been the super-Efimov effect, which

deals with bound states of 3 p-wave interacting fermions in 2D. (Gao et al., 2015; Gridnev,

2014; Moroz, 2014; Nishida et al., 2013; Volosniev et al., 2014) The interactions are assumed

in the derivation of this effect to have a finite range, and each interacting pair in the trimer

is assumed to have a zero-energy bound state in the symmetry with |Lz| = 1, also referred

to as a resonant p-wave interaction. The resulting trimer energy level formula predicted in

this case takes the double-exponential form: En ∝ exp[−2e3πn/4+θ] where θ is a nonuniversal

constant defined modulo 3π/4.Because the size of these super-Efimov states grows so rapidly

with n, and also the successive binding energies shrink dramatically as n increases, these

will be challenging to observe experimentally. Whereas the successive energy levels in the

ordinary homonuclear Efimov effect are less bound by a factor of 515, the corresponding

ratio in the super-Efimov effect exceeds 109. More promising than the homonuclear systems

are heavy-heavy-light heteronuclear trimers, whose super-Efimov states can display a more

favorable scaling, (Moroz, 2014) as is also the case in the ordinary Efimov effect for heteronu-

clear trimers. Another exploration of heavy-heavy-light trimers in 2D with resonant p-wave

interactions is based on the conventional Born-Oppenheimer approximation (Efremov et al.,

2013).

Recently, a theoretical treatment by (Nishida, 2017) has introduced the “semi-super

99



Efimov effect”. This is in a system of four bosons in 2D, which exhibit a different scaling

possible for an infinite pattern of energy levels and state sizes, in a scenario where the

three-boson interactions are resonant but the two-body interactions are negligible. In the

semi-super Efimov case, the state sizes are predicted to scale with the integer quantum

number n > 0 in proportion to exp[(πn)2/27].

The theory of the quasi-2D homonuclear three-boson problem has been treated in detail

by (Levinsen et al., 2014; Yamashita et al., 2015). This topic is also sometimes referred

to as the “crossover” from 3D to 2D. This study demonstrated how the finite number of

universal 3-body states in 2D, where there is no true Efimov effect, (Bruch and Tjon, 1979;

Nielsen et al., 2001; Nishida and Tan, 2011) connect with true Efimov states in 3D as one

varies the degree of confinement in the transverse dimension. Three fermions in 2D are

also treated theoretically in (Ngampruetikorn et al., 2013), by solving the Skorniakov-Ter-

Martirosian(STM) integral equation (Skorniakov and Ter-Martirosian, 1957).

VI. FEW-BODY PHYSICS IN NUCLEAR AND CHEMICAL SYSTEMS

In previous sections, the current state of the art of few-body ultracold atomic physics

has been presented, with an extended discussion of universality in three-body and four-body

physics. However, the domain of few-body physics clearly extends beyond atomic systems,

reaching many different branches of physics such as chemistry or nuclear or particle physics,

among others. Indeed, few-body physics was born in nuclear physics motivated by the

seminal paper of (Thomas, 1935), as pointed out above.

The premise of long de Broglie wavelength effective field theory is that for the low energy

physics of a few- or many-body system below a certain characteristic energy scale, the

behavior of the system should not be sensitive to the details of the Hamiltonian at distances

much less than λ. Indeed, the physics behind such behavior is closely related with the

concept of renormalization group theory (Wilson, 1971, 1983; Wilson and Kogut, 1974)

One of the best pedagogical introductions to the strategy of systematically building in the

correct long wavelength physics has been presented by (Lepage, 1989, 1997) in the context

of nonrelativistic Schrödinger quantum mechanics. In fact, the concept of effective field

theory was spawned by the seminal work of Weinberg that attempted to understand the role

of pion-exchange in nuclear forces (Weinberg, 1979, 1990, 1991). Example applications to
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Efimov physics and related few-body systems have been developed in detail by (Braaten and

Hammer, 2006). Other studies that utilize model two-body and three-body Hamiltonians

that produce key information such as the low energy two-body scattering length and effective

range are making use of the spirit of low energy effective field theories even when they

proceed via more direct solution of the few-body Schrödinger equation. We note as well

that trions, excitons, and biexcitons occur as few-body problems in semiconductor physics,

as is discussed, e.g. by (Patton et al., 2003).

This section is devoted to the study of major developments in few-body physics relevant

for nuclear physics and chemistry. The few-body physics in chemical sciences will be pre-

sented in two guises: first, few-body physics based on classical trajectory calculations in

hyperspherical coordinates involving neutrals and charged particles. Second, a full quantum

mechanical treatment revealing the underlying universality of three-body collisions involving

charged particles.

A. Hyperspherical methods in nuclear physics

The adiabatic hyperspherical technique has been introduced in previous sections of the

present review, with examples of its methodology and applications in the field of atomic and

molecular collisions. Reiterating, the basic idea behind this method is to reduce a complex

multidimensional problem into set of coupled second-order ordinary differential equations

in a single variable. The same idea can of course be applied in a field with tremendously

different energy and length scales: nuclear physics, where the nature of the nucleon-nucleon

and related interactions exhibit all the complexities of the strong nuclear force. For instance,

both exotic nuclear systems and the three-nucleon problem, to name two classes of problems,

have been studied using the adiabatic hyperspherical representation.

In nuclear physics the adiabatic hyperspherical technique follows the same scheme as is

presented above in this review: the first step involves solution of the hyperangular equation

where the hyperradius R is treated as a parameter, thereby giving hyperspherical potential

energy curves and couplings. Then, these are employed to solve a set of coupled ordinary

differential equations in the radial coordinate. With this strategy one can tackle the few-

or many-nucleon interaction problem at different levels of sophistication. For instance, the

cosmologically important reaction of three alpha particles to form 12C via the intermedi-
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ate Hoyle state has been treated within the coupled-channel adiabatic representation by

(Alvarez-Rodriguez et al., 2007, 2008; Suno et al., 2015). The calculation of hyperspherical

potential curves and couplings by (Suno et al., 2015) was based on a binary α− α model

Hamiltonian that accurately describes the 8Be resonance state, and a three-body term was

chosen to represent some experimentally-known properties of 12C such as some particular

energy levels. The final calculation gives a good energy and width in agreement with experi-

mental values for the Jπn = 0+2 Hoyle resonance state. The relevant adiabatic hyperspherical

potential curves are shown in Fig. 23.
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Figure 23 (Color online) Adiabatic hyperspherical potential curves computed for the triple-α sys-

tem for the Jπ = 0+ symmetry which contains the famous Hoyle resonance thought to be important

in nucleosynthesis. Inset: the adiabatic potential curves at large hyper-radius. Taken from (Suno

et al., 2015).

Note that when this technique is applied to few-nucleon systems, one must keep in mind

the distinctively different nature of the nucleon-nucleon forces compared to the atom-atom

interactions. This difference comes from the fact that nuclear collisions can be understood

to first order as resulting from the exchange of virtual pions between nucleons. In this sense,

pions (π) can be viewed as the quanta of the nuclear force, and since they represent a massive

scalar field their influence is associated with a Yukawa potential e−mπr/4πr (Weinberg,

1991). Indeed, the nucleon-nucleon potential can be modeled using an effective field theory

based on the exchange of pions. This exchange leads to new and complicated interaction

terms in the nucleon-nucleon potential, among them, the tensor interaction reads

V (rij) = Vt(rij)(τi · τj)
[

3
(σi · rij)(σj · rij)

r2ij
− σi · σj

]

, (81)
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where σi and τi represent the nuclear spin and isospin of nucleon i, respectively. For a more

detailed modern view of the nucleon-nucleon forces, including pion-less theories and chiral

effective field theory, we recommend Ref.(Epelbaum et al., 2009).

The very complicated nature of the nucleon-nucleon interaction does not prevent the

success of the adiabatic hyperspherical technique in nuclear physics, indeed hyperspherical

coordinates were applied in the context of nuclear physics by (Delves, 1960) and (Smith,

1960) to study three-body nuclear systems (Fang and Tomusiak, 1977; Levinger, 1974; Val-

liers et al., 1976; Verma and Sural, 1979). Those studies, however, did not implement the

adiabatic formulation and thus could not benefit from its insights and accelerated conver-

gence. Hyperspherical methods were also applied to exotic nuclei, such as the hypertriton,

and complex nuclei by including realistic nucleon-nucleon potentials (Clare and Levinger,

1985; Verma and Sural, 1979, 1982). The potential employed included the tensor interac-

tion and many other components of the nucleon-nucleon force. In general, many theorists

preferred to work with a set of coupled integral equations instead of coupled differential

equations, which can be regarded as a procedure different from the adiabatic hyperspherical

machinery most frequently adopted in atomic physics. More recently, however, the adiabatic

hyperspherical approach has been employed to compute the triton bound state energy (Daily

et al., 2015a) in a convergence exploration, using realistic nucleon-nucleon potentials with

a three-body force as well. Other systems that have been considered include exotic species

such as kaonic clusters involving three and four particles (Kezerashvili et al., 2015).

B. Universality in nuclear systems

As discussed above, the nuclear forces are fundamentally different from the interactions in

the context of ultracold atomic physics, since they derive from the electromagnetic interac-

tion. Therefore, due to the very strong and short-ranged nature of the nuclear interactions,

some aspects of universality can be expected to differ in nuclear systems compared with

atomic and molecular species. In particular, some nuclear systems form halo nuclei (Cobis

et al., 1998; Jensen et al., 2004a; Tanihata, 1996; Zhukov, 1993), which is a nuclear bound

state formed by a tightly bound core and one or two valence nucleons. These valence nucle-

ons are characterized to have a very small binding energy in comparison with the binding

energy of the core nucleons, which is reflected in a highly extended bound state wave func-
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tion. For this reason, halo nuclei exhibit very large radii compared to the core radius. The

most familiar example of a halo nucleus is the deuteron, with an average neutron-proton

separation of 3.1 fm that is three times larger than both the size of its component nucle-

ons and the range of their interaction potential (both ≈ 1fm). While halos also exist in

atomic and molecular physics, they are far more prevalent in nuclear systems, with many

studies even in large or medium-sized nuclei. See for instance (Hove et al., 2014, 2016)

and references therein. In fact Efimov physics can be relevant to describing aspects of the

wavefunction of a medium-sized nucleus like 62Ca with two outlying nucleons, (Hagen et al.,

2013). Nevertheless this type of system exemplifies the Efimov-unfavored scenario with two

light particles and one heavier particle that is discussed in (Wang et al., 2012d); based

on the arguments presented there, it is unlikely that a “true Efimov state” exists in such

systems.

Halo nuclei with two valence nucleons represent a good playground for three-body physics,

since these nuclear systems are potential candidates to exhibit some properties associated

with Efimov physics despite being Efimov-unfavored. These nuclides are found in the bottom

of the neutron drip line: the line that describes the boundary beyond which the neutron-rich

nuclides are unstable. Among the different kinds of two nucleon halo nuclei, the Borromean 2

halo nuclei have received special attention since these have a three-body bound state, despite

the fact that none of the two-body subsystems is bound. The most studied Borromean

halo nuclei to date have been 6He and 11Li (Tanihata, 1996; Zhukov, 1993). A schematic

representation of one such nucleus is shown in the inset of Fig. 24, concretely for 6He. In

this case, the core is an α particle and the two valence nucleons are neutrons.

On the other hand, three-body bound states in some nuclear systems show a universal

behavior: a correlation between the dimer-nucleon scattering length and the nucleon trimer

binding energy, which is known as the Phillips line (Phillips, 1968). This correlation is

independent of the model employed for the calculations: such as a two-body contact inter-

action, three-body interaction terms, and it should also be present regardless of the method

employed, i.e. an effective field theory approach, adiabatic hyperspherical treatment, or low

energy Faddeev equations. Fig. 24 presents a Phillips plot for the triton including different

2 The term Borromean is associated with the coat of arms of the house of Borromeo family in the north of

Italy, which consists in three interlayer rings. In particular, the symbol appears in the left escutcheon of

the coat of arms. However, a similar symbol involving three triangles was already used in Norse mythology

around the 7th century.
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Figure 24 (Color online) Phillips plot for the triton energy ET as a function of the doublet nd

scattering length a2nd. The red dots stand for different theoretical calculations based on different

kinds of two-body and three-body interactions (Benayoun et al., 1981; Fedorov and Jensen, 2002;

Friar et al., 1984), whereas the blue square represents the experimental result. For a more detailed

presentation of the Phillips plot for the triton, see the work of Efimov and Tkachenko (Efimov

and Tkachenko, 1988). Inset: schematic representation of a halo nuclei with two valence nucleons,

namely 6He.

theoretical results as well as the experimental data. This figure exhibits a linear correlation

between the triton binding energy and the doublet neutron-deuteron scattering length a2nd.

However, other kinds of correlation may occur in different three-body nuclear bound states,

see e.g. the work of Fedorov and Jensen (Fedorov and Jensen, 2002).

At least two halo nuclei have been seen as potential candidates to exhibit Efimov univer-

sality. However, the universality can only be claimed convincingly if the different excited

state of the three-body system follow the predicted scaling law by Efimov, and those are

not experimentally accessible by any currently existing capabilities. For instance in the case

of 6He, which is also Borromean, it has been proven that a p-wave resonance exists in the

J = 3/2 channel of n − α scattering which explains the nature of the three-body bound

state. However, in the 1990’s (Fedorov et al., 1994) and (Amorim et al., 1997) explored the

Efimov character of several halo nuclei, assuming that the ground state is also an Efimov

state. Their study suggested that 20C is the only halo nucleus candidate that has appreciable

Efimov state character, other than the triton.

Apart from normal nuclei, namely those that appear in the table of nuclides, there other
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hypernuclei contain strange quarks, and are the so-called strange nuclei. Some of these

are classified as halo nuclei, and among them the simplest case is the hypertriton 3
ΛH: a

three-body bound state formed by a neutron, a proton and the Λ0. The Λ0 is the lightest

Λ hyperon, a neutrally charged baryon similar to a neutron but slightly heavier, and its

quark structure is uds; it has strangeness -1. The total binding energy of 3
ΛH is ≈ 2.4

MeV (Fujiwara et al., 2008), whereas its breakup energy is ∼ 0.14 MeV (Fujiwara et al.,

2008), which is very small in comparison with the binding energy of the deuteron 2.22

MeV, and hence it can be considered as a two-nucleon halo nucleus. Indeed, it has been

extensively studied (Cobis et al., 1997; Fedorov and Jensen, 2002; Gongleton, 1992). All of

these studies suffer, however, from needing better experimental information concerning the

n-Λ scattering length, so these works might be considered as qualitative or semi-quantitative

approaches to the Efimov nature of the hypertriton. Nevertheless, new data coming from

ALICE and STAR may help to understand better the nature of the n-Λ interaction, as well

as to yield more accurate measurements of the lifetime of 3
ΛH (ALICE Collaboration, 2016;

STAR Collaboration, 2010; Zhu, 2013). On the other hand, a good understanding of the

hyperon-nucleon interaction is needed for a proper understanding of high-density matter

systems, such as neutron stars (Lattimer and Prakash, 2004; Lonardoni et al., 2014; Vidaña,

2013; Weber et al., 2007).

In nuclear systems, universal properties in the four-body sector can be identified. The

clearest example is the case of the Tjon line (Tjon, 1975): a correlation between the binding

energy of the α particle and the triton binding energy that persists across nearly all nucleon

interaction models; in particular, this correlation is approximately linear. The origin of the

Tjon correlation can be explained as an approximate independence of the four-body energy

level spectrum on any four-body parameter. In other words, the Tjon analysis suggests

that there is no need for a four-body parameter for the renormalization at leading order in

the four-body sector (Platter et al., 2005, 2004), for energy levels in the universal regime.

However, higher order corrections break the expected correlation leading to a band with some

scatter depending on the short range physics, instead of a simple, well-defined line (Nogga

et al., 2000).
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C. Few-body physics and universality in chemistry

Traditionally the term few-body physics has been employed in nuclear physics, and sub-

sequently it became adopted in the context of atomic physics, especially in ultracold atomic

systems (Burt et al., 1997; de Goey et al., 1986; Esry et al., 1999; Fedichev et al., 1996a;

Hess et al., 1983, 1984; Suno et al., 2003a; Weber et al., 2003). However, in chemical physics

it has not be the case, even though chemical physics studies hinge on our understanding of

few-body physics. And of course a deep understanding of fundamental processes in chemical

physics is frequently needed in other fields of physics and chemistry, notably in astrophysics,

such as the three-body recombination of hydrogen in stellar formation(Flower and Harris,

2007; Forrey, 2013); in theoretical chemistry: transport coefficients in gases(Hirschfelder

et al., 1954; Köhl and Schaefer, 1983; Mason and Monchick, 1962; McCourt et al., 1991;

Montero and Pérez-Rı́os, 2014; Snider, 1960; Wang-Chang et al., 1964), reactive and non-

reactive scattering(Child, 1974; Levine and Bernstein, 1987; Shui, 1972; Truhlar and Muck-

erman, 1975) and three-body recombination(Ermolova et al., 2014; Mansbach and Keck,

1969; Robicheaux, 2006), dissociative recombination of H+
3 (Kokoouline and Greene, 2003;

Kokoouline et al., 2001; Petrignani et al., 2011); plasma physics(Zhdanov, 2002); and in

cold chemistry(Hall and Willitsch, 2012; Härter and Denschlag, 2014; Härter et al., 2012;

Härter et al., 2013; Krükow et al., 2016; Willitsch, 2012; Willitsch et al., 2008). Some of

these characteristic and fundamental processes in chemical physics will be reviewed from a

few-body perspective in the present section, in particular, those involving three-body pro-

cesses, such as three-body recombination and dissociative recombination. Special emphasis

will be given to universality in three-body recombination processes which are relevant to

hybrid trap experiments.

Three-body processes can be viewed as a chemical reaction that converts three free atoms

(or molecules or other particles) into diatomic molecules in the absence of external fields,

i.e. the reaction A + A + A → A2 + A. One of the very first theoretical treatments of this

reaction was developed by Keck (Keck, 1960, 1967) using a variational principle following

a very early approach proposed by Wigner (Wigner, 1937). In particular, an upper bound

for the three-body recombination rate was computed by dividing Regions of phase-space

by a trial surface that acts as the boundary between reactants and products; this is now

denoted the phase-space theory of reaction rates. Almost in parallel, Smith developed a more
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microscopic treatment for three-body recombination (Smith, 1962), and later (Shui et al.,

1970) extended the previous theory of Keck, applying this theory to the recombination of

nitrogen (Shui et al., 1970). An application to the recombination of hydrogen (Shui, 1972,

1973) found fair agreement with the fairly crude early experiments.

The phase-space theory of reaction rates was introduced by Keck (Keck, 1960) and an

alternative was presented by Smith (Smith, 1962). Next, the mathematical foundations of

a recent approach to calculation of classical three-body recombination rates are presented,

after which applications to different systems involving neutrals as well as charged particles

will be reviewed. Classical trajectory calculations in hyperspherical approach have been

employed to derive different classical Newtonian threshold laws, which are reviewed here,

with special emphasis on their universality. The quantum nature of few-body physics in

chemical systems will be considered at the end, where the recombination of hydrogen atoms

and the dissociative recombination of H+
3 are covered, as fundamental benchmark systems

in chemical physics.

1. General classical treatment of few-body collisions

Classically, a two-body collision is envisioned as one particle with a definite momentum

moving towards a scattering center. The cross section is defined as an effective area on

the plane perpendicular to the initial momentum of the incoming particle which contains

the scattering center (Levine and Bernstein, 1987). In classical mechanics, the scattering

cross section is determined in terms of the scattering probability for a given value of the

impact parameter b. Recall that b is defined as the component of the position vector which

is perpendicular to the momentum vector of the incoming particle at infinite distance.

The concept of a two-body collision cross section is readily generalized to an arbitrary

number (n) of dimensions. In particular, the cross section is defined as the effective scattering

area of the n−1 hyperplane perpendicular to the initial momentum of the incoming particle,

for a given impact parameter b and initial momentum P0

σprocess(P0) =

∫

℘process(b,P0)d
n−1b. (82)

Here, the opacity function, ℘process(b,P0) is the probability that a trajectory with partic-

ular initial conditions leads to the collisional process under investigation, e.g., an inelastic
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collision, or formation of a particular product, etc.

3-d space

 N particles

 1 particle 

(3N-3)-d space

Figure 25 (Color online) Schematic representation of a general classical treatment of few-body

collisions. The method is based on the mapping of the degrees of freedom of the system at hand

into a problem involving a single effective particle moving in higher dimensional space, in particular

the dimension (n) is equal to the number of independent relative coordinates of the system.

The classical dynamics of few-body system can be obtained by recasting the degrees

of freedom of the system at hand d as a two-body collision in a d-dimensional space, as

shown in Fig. (25). This figure represents the usual case where the center of mass motion is

decoupled from the relative motion of the interacting particles. In this picture the three-body

recombination cross section is written

σrec(P0) =

∫
℘rec(b,P0)dΩ

6
P0
dΩ5

bb
4db

∫
dΩ6

P0

, (83)

where the quantity dΩ6
P0

represents the differential element associated with the hyperangles

of the initial momentum P0. In Eq.(83) the averaging over the degrees of freedom associ-

ated with the initial momentum is shown explicitly, whereby the final average cross section

depends only on the energy.

2. Classical trajectory calculations in hyperspherical coordinates

The classical Hamiltonian for three particles with masses m1, m2 and m3 moving in a

given potential energy landscape V (r1, r2, r3) is

H =
p2
1

2m1
+

p2
2

2m2
+

p2
3

2m3
+ V (r1, r2, r3), (84)
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where pi and ri represent the momentum and the vector position of the ith particle, respec-

tively. This Hamiltonian can be recast in terms of the Jacobi coordinates (ρ1,ρ2), depicted

in Fig.(26) As in (Karplus et al., 1965)

H =
P 2

1

2m12

+
P 2

2

2m3,12

+
P 2

CM

2M
+ V (ρ1,ρ2). (85)

Here 1
m12

= 1
m1

+ 1
m2

; 1
m3,12

= 1
m3

+ 1
m1+m2

; V (ρ1,ρ2) is the potential energy in terms of the

relative Jacobi coordinates with the CM momentum a separated constant of motion. P1,

P2 and PCM represent the canonical momenta conjugate to ρ1, ρ2 and ρCM , respectively.

Finally, the relative Hamiltonian is

H =
P 2

1

2m12

+
P 2

2

2m3,12

+ V (ρ1,ρ2). (86)

For three particles, the Hamilton equations of motion can be expressed in terms of Jacobi

coordinates and momenta as follows:

dρi,α
dt

=
∂H

∂Pi,α
, (87a)

dPi,α
dt

= − ∂H

∂ρi,α
, (87b)

where i = 1, 2 and α = x, y, z label the Cartesian coordinates of each Jacobi vector. Upon

adopting the representation of Smith (Smith, 1962), a 6D position vector is constructed from

the two mass-weighted Jacobi vectors as

ρ =





√
m12

µ
ρ1

√
m3,12

µ
ρ2



 , (88)

where µ =
√

m1m2m3

M
. On the other hand, an equivalent 6D vector position can be expressed

in terms of the bare Jacobi vectors as (Pérez-Rı́os et al., 2014)

ρbare =




ρ1

ρ2



 . (89)

Similarly the canonical momenta are given by
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P =




P1

P2



 (90)

and

Pbare =





√
µ
m12

P1
√

µ
m3,12

P2



 , (91)

respectively. It can be shown that the relation between the coordinates (ρ,P ) and

(ρbare,Pbare) defines a canonical transformation(Landau and Lifshitz, 1976; Maslov and

Fedoriuk, 1981; Whittaker, 1937), and hence both sets of coordinates will describe the same

phase-space volume. In other words, the scattering observables will be the same for either

of these sets of coordinates, as one would expect. The 6D position vector ρ or ρbare links

the three-body problem in 3D and the single particle problem in 6D, as is schematically

presented in Fig.(26).

ρ
1

ρ
2

Initial Conditions

P
0 b ρ

1

ρ
2

ρ=

ρ
1

ρ
2

ρ=

Cross section

dρ
i,α

!ρ
i,α

!H

dt !P
i,α

dP
i,α

=

dt
=

!H

6-D space

I

II

III

Figure 26 (Color online) Schematic representation of the method developed for treating three-body

collisions. We start with the description of the initial conditions in the 6-D space associated to the

three-body problem at hand. Then, as indicated in Step I, the initial conditions are transformed into

the coordinates associated with the three-body problem in the usual 3D space. Step II represents

the solution of the Hamilton’s equations of motion in the 3D space. Finally, by means of step III,

the results are transformed back into the 6D space, where the cross section is calculated.
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In the present approach the mass-weighted 6D vector position ρ will be employed, in a

minor difference from the conventions utilized in Ref. (Pérez-Rı́os et al., 2014). Then the

Hamiltonian is

H =
P 2

2µ
+ V (ρ). (92)

Now that the position and the momentum vectors have been defined in this 6D space, the

concept of impact parameter as the projection of the position vector onto a hyperplane

perpendicular to the initial momentum is clear. We now implement hyperspherical coordi-

nates for the representation of the 6D vectors. In particular, it is convenient to implement

Avery’s definition of the hyperangles (Avery, 1989) is chosen, where all the vectors can be

represented by means of their magnitude r and five different hyperangles (αi, i = 1, 2, 3, 4, 5)

as

r =
















rx1

rx2

rx3

rx4

rx5

rx6
















=
















r sinα1 sinα2 sinα3 sinα4 sinα5

r cosα1 sinα2 sinα3 sinα4 sinα5

r cosα2 sinα3 sinα4 sinα5

r cosα3 sinα4 sinα5

r cosα4 sinα5

r cosα5
















. (93)

Here the ranges of each angle are 0 ≤ α1 ≤ 2π, 0 ≤ αi ≤ π, i = 2, 3, 4, 5. In particular,

choosing the 3D z axis parallel to P2, expresses the initial momentum P0 as

P0 =
















P0 sinα
P
1 sinαP2 sinαP5

P0 cosα
P
1 sinαP2 sinαP5

P0 cosα
P
2 sinαP5

0

0

P0 cosα
P
5
















, (94)

where 0 ≤ αP1 ≤ 2π, 0 ≤ αP2 ≤ π and 0 ≤ αP5 ≤ π.

The impact parameter represents the components of the initial vector position of the

system in the hyperplane perpendicular to the initial momentum of the incoming particle,
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as was introduced previously. Let us define b̃ as the impact parameter when the 6D vector

position is ρ:

b̃ =
















b̃ sinαb̃1 sinα
b̃
2 sinα

b̃
3 sinα

b̃
4

b̃ cosαb̃1 sinα
b̃
2 sinα

b̃
3 sinα

b̃
4

b̃ cosαb̃2 sinα
b̃
3 sinα

b̃
4

b̃ cosαb̃3 sinα
b̃
4

b̃ cosαb̃4

0
















, (95)

where 0 ≤ αb̃1 ≤ 2π, 0 ≤ αb̃i ≤ π, i = 2, 3, 4. Thus, b̃ is a mass-weighted version of the bare

impact parameter b. These two impact parameters are related by d5b̃ = (m3
12m

3
3,12/µ

6)1/2d5b,

and hence the classical cross section is given by

σprocess(P ) =

∫
℘process(b̃,P )dΩ6

PdΩ
5
b̃
b̃4db̃

(
m3

12m
3
3,12

µ6

)1/2 ∫
dΩ6

P

, (96)

where a normalization mass factor emerges as a consequence of the mass-weighted character

of the 6D vector position.

He

He

He

Rb

Rb

Rb+

Ba+
Rb

Rb

(a)

(b)

(c)

Figure 27 (Color online) Classical trajectories for three-body collisions at a relative collision energy

E = kBTin with Tin = 1 mK (The Boltzmann constant kB will usually be omitted in quoting

energies in the following.). Classical trajectories associated with a three-body recombination event

He + He + He → He2 + He with b = 97 a0 , panel (a); b = 1000 a0 for Rb + Rb + Rb+ → Rb+2

+ Rb in panel (b); and Rb + Rb + Ba+ → Rb-Ba+ + Rb with b = 1000 a0 in panel(c).
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The initial vector position |ρ0| = R is chosen in the asymptotic region where the interac-

tion potential is negligible, thus the initial momentum satisfies E = P 2
0 /2µ, where E is the

incident collision kinetic energy. The hyperangles αPi with i = 1, 2, 5, and the impact param-

eter hyperangles αb̃j with j = 1, 2, 3, 4, are randomly generated subject to the constrained

magnitude of the impact parameter |b̃|. The random distribution of those angles must of

course be chosen consistent with their appropriate probability density function (Pérez-Rı́os

et al., 2014). Exploiting the orthogonality of the initial momentum P0 and the impact

parameter b̃, the initial vector position is written as

ρ0 = b̃−
√

R2 − b̃2
P0

P0. (97)

Eq. (97) generates ρ0 from R, b̃ and P0. For a given set of initial conditions ρ0, R, P0 and

b̃, the information is transformed into the usual 3D space by means of Eqs.(88) and (90),

where Hamilton’s classical equations of motion are numerically integrated up to a certain

final time (Pérez-Rı́os et al., 2014; Press et al., 1986). Then the coordinates are mapped

back into the 6D space, and the classical three-body cross section is calculated by means of

Eq.(96). This protocol is schematically presented in Fig. (26).

The present approach has been applied to neutral three-body recombination (Pérez-

Rı́os et al., 2014) and also to neutral-neutral-ion three-body recombination (Pérez-Rı́os and

Greene, 2015). Fig.(27) exhibits different trajectories associated with recombination events

in several atomic systems: He + He + He in panel (a), Rb + Rb + Rb+ in panel(b) and Rb

+ Rb + Ba+ in panel (c). These trajectories have been obtained by assuming a pair-wise

potential V (r1, r2, r3) = v(r12) + v(r23) + v(r31), where rij are the interparticle distances.

In particular, for the helium atom-atom interaction the potential of Aziz et al., designated

HFD-B3-FCI1(Aziz et al., 1995) has been employed. The 3Σ potential of (Strauss et al.,

2010) for Rb-Rb is employed, and no spin-flip transitions are allowed in the theoretical model.

The ion-atom interactions are described by the model potential −αd(1−(rm/r)2)/2r4, where
αd denotes the static dipole polarizability of Rb, which is taken as αd = 320 a.u., and rm

represents the position of the minimum of the potential. For Rb+-Rb, rm is taken from the

quantum chemistry calculations of (Jraij et al., 2003), and the information needed for Ba+-

Rb is adapted from (Krych et al., 2011). For details about the numerical solution method,

Monte Carlo sampling and convergence see Refs. (Pérez-Rı́os and Greene, 2015; Pérez-Rı́os

et al., 2014).
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3. Classical three-body recombination for neutrals and ion-neutral-neutral systems

The hyperspherical classical trajectory method (Pérez-Rı́os and Greene, 2015; Pérez-Rı́os

et al., 2014) has been applied to the recombination of three neutrals and to the ion-neutral-

neutral recombination process. For a given collision energy Ek = P 2
0 /2µ, the average classical

three-body cross section is given by

σrec(P0) =

∫
℘rec(b,P0)dΩ

6
P0
dΩ5

b b̃
4db

∫
ddΩ5

bΩ
6
P0

, (98)

where dΩ5
b and dΩ6

P0
stand for the differential elements in the hyperangles associated with

the impact parameter b and the initial momentum P0, respectively. ℘rec(b,P ) represents the

opacity function or reaction probability for three-body recombination, that is, the probability

that the reactants transform into the products of interest for a given set of initial conditions

and impact parameter. Generally, such a probability shows a stereochemical dependence,

but the hyperangular degrees of freedom can be averaged out, leading to

℘rec(b, P0) =

∫
℘rec(b,P0)dΩ

6
P0
dΩ5

b
∫
dΩ6

P0

. (99)

This integral is evaluated by Monte Carlo sampling Over the different initial conditions

and impact parameters. The sampling is performed by means of the probability distribution

function in each degree of freedom, which can be laborious but is trivially parallelizable. The

solution for ℘rec(b, P0) in Eq. (99) implies the maximum impact parameter that can produce

a recombination process for a fixed P0, denoted as bmax(P0). In other words, ℘rec(b, P0) = 0

for b > bmax(P0). Finally, the three-body recombination cross section can be expressed as

σrec(P0) = Ω5
b

∫ bmax(P0)

0

℘rec(b, P0)b
4db, (100)

where Ω5
b = 8π2/3 is the total integrated hyperangular solid angle associated with b for a

collision of 3 particles in 3D. This integral is evaluated by means of Monte Carlo importance

sampling (Shui, 1972). Next, the energy-dependent three-body rate constant is defined as

k3(P0) =
P0

µ
σrec(P0). (101)

The results for the He-He-He classical three-body recombination rate are shown in

Fig.(28). The quantum mechanical results shown in Fig. (28) were obtained using the R-
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Figure 28 (Color online) Energy dependence of the three-body recombination rate of helium atoms

in (cm6/s), i.e. He + He +He → He2 + He. Classical trajectory results following the classical

treatment in 6D by means of hyperspherical coordinates; red points. The same results but restricted

to total angular momentum J = |ρ1 × P1 + ρ2 × P2| = 0 shown as the blue circles. The quantum

calculation for a fixed angular momentum and parity Jπ = 0+ is plotted as the solid line. The

quantal results show a convergence within better than about 15 % for E = 1000 K regarding the

number of channels included and the parameters employed in the calculations.

matrix method to solve the coupled hyperradial equations in the adiabatic hyperspherical

representation (Esry et al., 1996b; Lin, 1995; Wang et al., 2011a) to obtain the scattering

matrix (Aymar et al., 1996). Fig. (28) shows that classical trajectory results for J = 0 are

in reasonably good agreement with the quantal results at collision energies ∼ 1 K, which

is the same order of magnitude as the van der Waals energy: this serves approximately as

the transition energy between ultracold physics and thermal physics, as was pointed out in

Ref. (Pérez-Rı́os et al., 2014).

The same classical approach has been applied to the study of ion-neutral-neutral three

body recombination at cold temperatures (Krükow et al., 2016; Pérez-Rı́os and Greene,

2015), which is important in ion-neutral hybrid trap experiments. Indeed three-body re-

combination reaction is the main loss mechanism for certain ionic species immersed in an

ultracold high density neutral cloud(Härter and Denschlag, 2014; Härter et al., 2012; Härter

et al., 2013; Krükow et al., 2016). In particular, 87Rb+ - 87Rb - 87Rb and 138Ba+ - 87Rb

- 87Rb were studied following the hyperspherical classical approach for collision energies

ranging from 100µK up to 10 mK, and the results are shown in Fig.(29).
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Figure 29 (color online) Three-body recombination cross section (in a50) as a function of the collision

energy (in K). Panel (a) 87Rb+ - 87Rb - 87Rb ; the circles represent the numerical results by means

of CTC whereas the dashed line stands for the power-law fit of the points . Panel (b) 138Ba+ -

87Rb - 87Rb ; red circles represent the numerical results by means of CTC, the black circles denote

the results using FCTC (see text for details), the dashed line stands for the fit of the obtained

CTC results. In both panels, the solid magenta line represents the prediction based on the derived

classical threshold law. The fitting function assumed for both systems is σ(Ek) = γEβ
k . Figure

adapted with minor changes from (Pérez-Rı́os and Greene, 2015), with the permission of AIP

Publishing.

The classical trajectory results presented in panels (a) and (b) of Fig.(29) have been

obtained by restricting one of the hyperangles associated with the momentum, guaranteeing

that 95 % of the collision energy goes along the vector joining the ion and the center of mass

of the neutrals. This dynamical constraint is a consequence of the typical experimental con-

ditions: the energy of the ion is typically orders of magnitude higher than the energy of the

neutrals (Härter and Denschlag, 2014; Willitsch, 2012; Willitsch et al., 2008) because of the

trapped ion micromotion. As for the trajectories shown in Fig.(27), the same assumptions

about the potential energy landscape and the same potentials were employed. In panels (a)

and (b) of Fig.(29), the three-body recombination rate versus collision energy shows a power

law dependence. The physics behind this numerical observation, including its derivation,

was explained in Ref.(Pérez-Rı́os and Greene, 2015), and is summarized below.
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4. Classical threshold law for three-body recombination: universality in cold chemistry

In quantum mechanics the existence of threshold laws for elastic and inelastic collisions

are familiar: the well-known Wigner threshold laws. These threshold laws represent the gen-

eral trend of the cross section for different processes (here, elastic and inelastic collisions) as

functions of the collision energy. Analogously, there are also classical threshold laws, such

as the famous Langevin cross section (Langevin, 1905) which establishes the behavior of the

cross section at low collision energies for two-body ion-neutral collisions. Several years after

that, Wannier found the classical threshold law for three-body collisions involving charged

particles (Wannier, 1953), implementing a different approach than Langevin developed. In-

terestingly, in the case of three mixed-charge particles, e.g. two negative electrons escaping

from a positive ion, the exponent in the energy-dependent rate constant is an irrational

number which has been experimentally confirmed by measuring the double photoionization

of He (Kossmann et al., 1988; Van der Wiel, 1972). The unusual threshold law exponent

1.127... was also verified experimentally for the escape of two electrons from a singly-charged

positive ion, as was discussed above in Sec.I (Cvejanovic and Read, 1974; Donahue et al.,

1982). More recently, the classical threshold law for three-body recombination involving

neutrals with dominant long range van der Waals attraction, as well as for two neutrals

and a single ion, have been obtained (Pérez-Rı́os and Greene, 2015; Pérez-Rı́os et al., 2014)

following a classical capture model (Levine and Bernstein, 1987).

At low collision energies the scattering properties are mainly dominated by the long-

range tail of the two-body interaction, which here are represented as V (R)→ −Cs/Rs, with

s > 2. We define the maximum impact parameter b̃max as the distance where the interaction

potential is equal to the collision energy, i.e.

E =
Cs

b̃smax

. (102)

This denotes the distance where the motion of the colliding particles starts to deviate from

the rectilinear uniform trajectory. This distance is the equivalent to the classical capture

radius employed for the derivation of the Langevin cross section (Langevin, 1905; Levine

and Bernstein, 1987), but assuming V (R) = −αd/2R4 in that case. In analogy with the

classical capture model, it is assumed that all the trajectories with b̃ ≤ b̃max will lead to

a three-body recombination event, which of course is likely to be an overestimate. The
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three-body recombination cross section can then be expressed as the following (by virtue of

Eq. (98) )

σrec(Ek) =

(
m3

12m
2
3,12

µ5

)−1/2
8π2

3

∫ b̃max(Ek)

0

b̃4db̃

∝ b̃5max(Ek). (103)

Eqs. (102), (103), after incorporating the relationship between momentum and energy

(P ∝ E
1/2
k ), yield

k3(Ek) ∝ E
1/2
k

1

E
5/s
k

= E
s−10
2s

k . (104)

Thus, the neutral three-body recombination rate constant at low collision energies should

vary with energy in proportion to k3(Ek) ∝ E
1/3
k (Pérez-Rı́os et al., 2014). Fig. (28) displays

a numerical calculation of the three-body recombination rate coefficient for helium, showing

that at low collision energies k3(Ek) follows a power law dependence as a function of Ek.

A fit of the classical trajectory results to the functional form (k3(Ek) = aEb
k) gives the

dashed-purple line. The fitting parameters obtained are a=(5.89±3.145 × 10−31) cm6/s and

b = −0.26±0.07, which is consistent with the predicted k3(Ek) ∝ E
−1/3
k behavior (Pérez-Rı́os

et al., 2014).

The preceding derivation has assumed that all of the two-body interactions share identical

long-range behavior, but an important case to consider is when different particle pairs have

different interactions. This case has been explored in the context of determining the thresh-

old law for ion-neutral-neutral three-body recombination (Pérez-Rı́os and Greene, 2015).

For that system, the two neutral atoms interact through a long-range van der Waals poten-

tial V (R) = −C6/R
6, whereas the two ion-neutral interaction is dominated by the charge

induced dipole interaction V (R) = −αd/2R4. A classical capture model can be employed in

analogy to the neutral three-body recombination derivation , but in this case the capture

radius is given by

E =
αd

b̃42max

. (105)

Here it has been assumed that the longer-range attractive ion-neutral interaction dominates

over the neutral-neutral interaction. Plugging Eq. (105) into Eq.(103) the threshold behavior
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of the ion-neutral-neutral three-body recombination cross section is obtained as (Pérez-Rı́os

and Greene, 2015):

σ(Ek) ∝ E
−5/4
k , (106)

and the associated rate constant reads as

k3(Ek) ∝ E
−3/4
k . (107)

Fig. (29) presents the numerical results for ion-neutral-neutral three-body recombination

computed classically at low collision energies, as the points in both panes of the figure. Also

shown is the threshold law given by Eq. (106) as the magenta solid line. Power law fits of

the numerical results are represented by the dashed lines, and the fitting parameters are

shown in Table I. Fig. (29) is a numerical confirmation of the predicted threshold law. And

the fitted exponents in Table I confirm the validity of the derived classical threshold law.

Table V Classical threshold law for the three-body recombination (TBR) cross section. A power

law dependence of the TBR cross section as a function of the collision energy is assumed and used

as a fitting function for the classical trajectory calculations (CTC) numerical results presented in

Fig. (29). The errors quoted for the fitting parameters are associated with a confidence interval of

95 %. Table adapted from Ref. (Pérez-Rı́os and Greene, 2015)

System γ (a50) β (dimensionless)

87Rb+ - 87Rb - 87Rb (7.94 ± 2.72) 1011 -1.178 ± 0.068

138Ba+ - 87Rb - 87Rb (3.57 ± 0.07) 1011 -1.269 ± 0.132

Classical threshold law -1.25

Ion-neutral-neutral collisions play an important role in hybrid trap experiments where a

high density of neutrals are in presence of a single ion or several of them (Härter and Den-

schlag, 2014; Härter et al., 2012; Härter et al., 2013; Krükow et al., 2016), and hence hybrid

trap experiments may elucidate the nature of ion-neutral-neutral three-body recombination.

Indeed, very recently the three-body recombination rate for 138Ba+ - 87Rb - 87Rb has been

experimentally studied (Krükow et al., 2016), and the results of the experimental three-

body recombination rate as a function of the micromotion energy EfMM is shown as solid

symbols in Fig. (30). In the same figure the open symbols stand for the classical trajectory
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results computed using hyperspherical coordinates (Pérez-Rı́os et al., 2014). The theoreti-

cal three-body recombination rate constant presented in Fig. (30) is calculated by using the

realistic energy distribution of the ion by means of a Monte Carlo simulation (Krükow et al.,

2016). Fig. (30) show a good agreement between the classical trajectory calculations in and

the experimental results, confirming on one hand the validity of the classical Newtonian

treatment in cold chemistry, and on the other hand, supporting the classical threshold law,

Eq. (107). Apart from the confirmation of the threshold law, this also has important impli-

cations in the chemistry that occurs after a three-body recombination event in a hybrid trap

experiment, since the classical results suggest that the dominant product channel will be

the formation of shallow molecular ions (Krükow et al., 2016; Pérez-Rı́os and Greene, 2015).

In fact our estimates suggest that classical mechanics should give a reasonable description

of the three-body recombination process for Ba+-Rb-Rb down to energies of the order of

100-200nK.

Figure 30 (Color online) The three-body recombination rate for 138Ba+ - 87Rb - 87Rb is presented

as a function of the controlled micromotion energy. The experimental values are represented by

full circles, whereas the theoretical prediction based on classical trajectory calculations are shown

as the open circles. Figure adapted from Ref. (Krükow et al., 2016).

VII. CONCLUSIONS

This article reviews developments in only a modest subset of the many extremely vig-

orous and dynamic topics in the field of few-body physics. Anyone interested in exploring

the multi-faceted aspects of this field and its interconnections with nuclear physics, chemical

physics, and ultracold atomic and molecular physics is encouraged to explore the broader lit-

erature, and a good start would be the following set of review articles: (Baranov et al., 2012;

Blume, 2012a; Braaten and Hammer, 2006; Frederico et al., 2012; Jensen et al., 2004b; Lin,
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1995; Naidon and Endo, 2016; Nielsen et al., 2001; Petrov, 2012; Rittenhouse et al., 2011b;

Sadeghpour et al., 2000; Wang et al., 2013, 2015a; Zinner and Jensen, 2013). The ability to

control interparticle interactions through Fano-Feshbach resonances or confinement-induced

resonances continues to trigger novel experimental efforts, and theoretical progress on many

fronts continues to be rapid as well. This field promises to continue stimulating new surprises

in few-body and many-body physics in the years ahead. Here is one wish list for desirable

development of improved understanding in several areas:

• (1) Further insights into the extent of universality for heavy-heavy-light systems with

short-range interactions, including the role of van der Waals forces and the dependence

on all parameters including the mass ratio.

• (2) Detailed theory and experiment to map out the universality of three-particle sys-

tems with all masses different, including of course the possible role of van der Waals

universality.

• (3) Determination of N -body cluster states and recombination rates for both homonu-

clear and heteronuclear systems, with N > 3. There is a large parameter space to

explore here, just for N = 4, for instance.

• (4) Controlled applications of external electromagnetic field dressing of the few-body

systems to suppress or enhance inelastic processes. Progress in this area could poten-

tially lead to the formation of a long-lived degenerate Bose gas at infinite two-body

scattering length, currently limited by three-body recombination processes.

• (5) Further development of experiments and theory for mixed-dimension few-body

systems.

• (6) Experimental observation of log-periodic energy dependence of three-body recom-

bination, which has been predicted to be visible for very large scattering lengths.

• (7) In the BCS-BEC crossover problem with a Fermi gas having more than two spin

components, it will be interesting to see whether macroscopic collapse of the gas is

possible when the interaction scattering lengths are negative, as was predicted by

(Blume et al., 2008; Rittenhouse and Greene, 2008).
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• (8) The three-body and four-body systems with strong electric and/or magnetic dipolar

interactions has received some theoretical attention(Wang et al., 2011b,c) but little in

the way of experimental tests to date, and in view of extensive current interest in

polar molecule quantum gases, or strong magnetic dipolar atomic condensates and

Fermi gases, far more work is needed from both perspectives.(Baranov et al., 2012;

Kotochigova, 2014; Wang et al., 2015a; Zinner and Jensen, 2013)

• (9) It should be kept in mind that an accurate description of the two-body scattering

length dependence of few-body phenomena hinges critically on having an accurate de-

scription of the atom-atom scattering lengths as functions of static and/or oscillating

electromagnetic fields. Theory has improved to the point where a number of alternative

techniques can provide this data, when developed in conjunction with experiments,

including full close-coupling calculations (CC) (Berninger et al., 2013), the asymptotic

bound state model (ABM )(Tiecke et al., 2010), and variants of multichannel quantum

defect theory (MQDT) with or without the additional frame transformation approx-

imation (MQDT-FT) (Burke et al., 1998; Gao, 2008; Ruzic et al., 2013). Ref.(Pires

et al., 2014a) and references therein provide comparisons of these different treatments,

with application to the recently important heteronuclear system 6Li−133Cs. While

these theoretical descriptions have been generally successful, extensions and improve-

ments are still desirable in order to gain the fullest possible control of the two-body

physics underlying all of the few-body physics addressed in this review.

• (10) Further insights are also desired for systems such as the few-body version of the

fractional quantum Hall problem, both in condensed matter systems and in ultra-

cold atomic systems. Initial studies by (Daily et al., 2015b; Rittenhouse et al., 2016;

Wooten et al., 2016) into that subject from the adiabatic hyperspherical perspective

suggest that the corresponding 2D N -particle Schrödinger equation nearly separates

in the hyperradial degree of freedom, both for bosons and fermions, as can be deduced

from potential energy curves in those references. Moreover, some of the intriguing

degeneracy patterns observed in that problem are deserving of further exploration.
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Schöllkopf, W, and J. P. Toennies (1994), “Nondestructive mass selection of small van-der-Waals

clusters,” Science 266, 1345–1348.

160
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