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“Quantum sensing” describes the use of a quantum system, quantum properties or quan-
tum phenomena to perform a measurement of a physical quantity. Historical examples
of quantum sensors include magnetometers based on superconducting quantum interfer-
ence devices and atomic vapors, or atomic clocks. More recently, quantum sensing has
become a distinct and rapidly growing branch of research within the area of quantum
science and technology, with the most common platforms being spin qubits, trapped ions
and flux qubits. The field is expected to provide new opportunities – especially with
regard to high sensitivity and precision – in applied physics and other areas of science.
In this review, we provide an introduction to the basic principles, methods and concepts
of quantum sensing from the viewpoint of the interested experimentalist.
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I. INTRODUCTION

Can we find a promising real-world application of
quantum mechanics that exploit its most counterintuitive
properties? This question has intrigued physicists ever
since quantum theory development in the early twentieth
century. Today, quantum computers (Deutsch, 1985; Di-
Vincenzo, 2000) and quantum cryptography (Gisin et al.,
2002) are widely believed to be the most promising ones.

Interestingly, however, this belief might turn out to
be incomplete. In recent years a different class of ap-
plications has emerged that employs quantum mechan-
ical systems as sensors for various physical quantities
ranging from magnetic and electric fields, to time and
frequency, to rotations, to temperature and pressure.
“Quantum sensors” capitalize on the central weakness
of quantum systems – their strong sensitivity to external
disturbances. This trend in quantum technology is curi-
ously reminiscent of the history of semiconductors: here,
too, sensors – for instance light meters based on selenium
photocells (Weston, 1931) – have found commercial ap-
plications decades before computers.

Although quantum sensing as a distinct field of re-
search in quantum science and engineering is quite recent,
many concepts are well-known in the physics community
and have resulted from decades of developments in high-
resolution spectroscopy, especially in atomic physics and
magnetic resonance. Notable examples include atomic
clocks, atomic vapor magnetometers, and superconduct-
ing quantum interference devices. What can be consid-
ered as “new” is that quantum systems are increasingly
investigated at the single-atom level, that entanglement
is used as a resource for increasing the sensitivity, and
that quantum systems and quantum manipulations are
specifically designed and engineered for sensing purposes.

The focus of this review is on the key concepts and
methods of quantum sensing, with particular atten-
tion to practical aspects that emerge from non-ideal
experiments. As “quantum sensors” we will consider
mostly qubits – two-level quantum systems. Although an
overview over actual implementations of qubits is given,
the review will not cover any of those implementation in
specific detail. It will also not cover related fields includ-
ing atomic clocks or photon-based sensors. In addition,
theory will only be considered up to the point necessary
to introduce the key concepts of quantum sensing. The
motivation behind this review is to offer an introduction
to students and researchers new to the field, and to pro-
vide a basic reference for researchers already active in the
field.

Content

The review starts by suggesting some basic definitions
for “quantum sensing” and by noting the elementary cri-
teria for a quantum system to be useful as a quantum
sensor (Section II). The next section provides an overview
of the most important physical implementations (Section
III). The discussion then moves on to the core concepts
of quantum sensing, which include the basic measure-
ment protocol (Section IV) and the sensitivity of a quan-
tum sensor (Section V). Sections VI and VII cover the
important area of time-dependent signals and quantum
spectroscopy. The remaining sections introduce some ad-
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vanced quantum sensing techniques. These include adap-
tive methods developed to greatly enhance the dynamic
range of the sensor (Section VIII), and techniques that
involve multiple qubits (Sections IX and X). In partic-
ular, entanglement-enhanced sensing, quantum storage
and quantum error correction schemes are discussed. The
review then concludes with a brief outlook on possible fu-
ture developments (Section XI).

There have already been several reviews that covered
different aspects of quantum sensing. Excellent intro-
ductions into the field are the review (Budker and Ro-
malis, 2007) and book (Budker and Kimball, 2013) by
Budker, Romalis and Kimball on atomic vapor magne-
tometry, and the paper by Taylor et al., 2008, on mag-
netometry with nitrogen-vacancy centers in diamond.
Entanglement-assisted sensing, sometimes referred to as
“quantum metrology”, “quantum-enhanced sensing” or
“second generation quantum sensors” are covered by
Bollinger et al., 1996, Giovannetti et al., 2004, Giovan-
netti et al., 2006, and Giovannetti et al., 2011. In ad-
dition, many excellent reviews covering different imple-
mentations of quantum sensors are available; these will
be noted in Section III.

II. DEFINITIONS

A. Quantum sensing

“Quantum sensing” is typically used to describe one of
the following:

I. Use of a quantum object to measure a physical
quantity (classical or quantum). The quantum
object is characterized by quantized energy lev-
els. Specific examples include electronic, magnetic
or vibrational states of superconducting or spin
qubits, neutral atoms, or trapped ions.

II. Use of quantum coherence (i.e., wave-like spatial or
temporal superposition states) to measure a phys-
ical quantity.

III. Use of quantum entanglement to improve the sensi-
tivity or precision of a measurement, beyond what
is possible classically.

Of these three definitions, the first two are rather broad
and cover many physical systems. This even includes
some systems that are not strictly “quantum”. An exam-
ple is classical wave interference as it appears in optical or
mechanical systems (Faust et al., 2013; Novotny, 2010).
The third definition is more stringent and a truly “quan-
tum” definition. However, since quantum sensors accord-
ing to definitions I and II are often close to applications,
we will mostly focus on these definitions and discuss them
extensively in this review. While these types of sensors
might not exploit the full power of quantum mechanics,

FIG. 1 Basic features of a two-state quantum system. |0〉
is the lower energy state and |1〉 is the higher energy state.
Quantum sensing exploits changes in the transition frequency
ω0 or the transition rate Γ in response to an external signal
V .

as for type-III sensors, they already can provide several
advantages, most notably operation at nano-scales that
are not accessible to classical sensors.

Because type-III quantum sensor rely on entanglement,
more than one sensing qubit is required. A well-known
example is the use of maximally entangled states to reach
a Heisenberg-limited measurement. Type III quantum
sensors are discussed in Section X.

B. Quantum sensors

In analogy to the DiVincenzo criteria for quantum
computation (DiVincenzo, 2000), a set of four necessary
attributes can be listed for a quantum system to func-
tion as a quantum sensor. These attributes include three
original DiVincenzo criteria:

(1) The quantum system has discrete, resolvable en-
ergy levels. Specifically, we will assume it to be a
two-level system (or an ensemble of two-level sys-
tems) with a lower energy state |0〉 and an upper
energy state |1〉 that are separated by a transition
energy E = ~ω0 (see Fig. 1) 1.

(2) It must be possible to initialize the quantum system
into a well-known state and to read out its state.

(3) The quantum system can be coherently manip-
ulated, typically by time-dependent fields. This
condition is not strictly required for all proto-
cols; examples that fall outside of this criterion
are continuous-wave spectroscopy or relaxation rate
measurements.

The focus on two-level systems (1) is not a severe restric-
tion because many properties of more complex quantum
systems can be modeled through a qubit sensor (Gold-
stein et al., 2010). The fourth attribute is specific to
quantum sensing:

1 Note that this review uses ~ = 1 and expresses all energies in
units of angular frequency.
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(4) The quantum system interacts with a relevant
physical quantity V (t), like an electric or magnetic
field. The interaction is quantified by a coupling or
transduction parameter of the form γ = ∂qE/∂V q

which relates changes in the transition energy E
to changes in the external parameter V . In most
situations the coupling is either linear (q = 1) or
quadratic (q = 2). The interaction with V leads to
a shift of the quantum system’s energy levels or to
transitions between energy levels (see Fig. 1).

Experimental realizations of quantum sensors can be
compared by some key physical characteristics. One
characteristic is to what kind of external parameter(s)
the quantum sensor responds to. Charged systems,
like trapped ions, will be sensitive to electrical fields,
while spin-based systems will mainly respond to mag-
netic fields. Some quantum sensors may respond to sev-
eral physical parameters.

A second important characteristic is a quantum sen-
sor’s “intrinsic sensitivity”. On the one hand, a quan-
tum sensor is expected to provide a strong response to
wanted signals, while on the other hand, it should be
minimally affected by unwanted noise. Clearly, these are
conflicting requirements. In Section V, we will see that
the sensitivity scales as

sensitivity ∝ 1

γ
√
Tχ

, (1)

where γ is the above transduction parameter and Tχ is a
decoherence or relaxation time that reflects the immunity
of the quantum sensor against noise. In order to optimize
the sensitivity, γ should be large (for example, by choice
of an appropriate physical realization of the sensor) and
the decoherence time Tχ must be made as long as pos-
sible. Strategies to achieve the latter are discussed at
length in the later sections of this review.

III. EXAMPLES OF QUANTUM SENSORS

We now give an overview of the most important exper-
imental implementations of quantum sensors, following
the summary in Table I.

A. Neutral atoms as magnetic field sensors

Alkali atoms are suitable sensing qubits fulfilling the
above definitions (Kitching et al., 2011). Their ground
state spin - a coupled angular momentum of electron and
nuclear spin - can be both prepared and read out opti-
cally by the strong spin-selective optical dipole transition
linking their s-wave electronic ground state to the first
(p-wave) excited state.

1. Atomic vapors

In the simplest implementation, a thermal vapor of
atoms serves as a quantum sensor for magnetic fields
(Budker and Romalis, 2007; Kominis et al., 2003). Held
in a cell at or above room temperature, atoms are spin-
polarized by an optical pump beam. Magnetic field sens-
ing is based on the Zeeman effect due to a small external
field orthogonal to the initial atomic polarization. In a
classical picture, this field induces coherent precession of
the spin. Equivalently, in a quantum picture, it drives
spin transitions from the initial quantum state to a dis-
tinct state, which can be monitored by a probe beam, e.g.
via the optical Faraday effect. Despite their superficial
simplicity, these sensors achieve sensitivities in the range
of 100 aT/

√
Hz (Dang et al., 2010) and approach a theory

limit of < 10 aT/
√

Hz, placing them on par with Super-
conducting Quantum Interference Device (SQUIDs, see
below) as the most sensitive magnetometers to date. This
is owing to the surprising fact that relaxation and coher-
ence times of spins in atomic vapors can be pushed to
the second to minute range (Balabas et al., 2010). These
long relaxation and coherence times are achieved by coat-
ing cell walls to preserve the atomic spin upon collisions,
and by operating in the spin exchange relaxation-free
(“SERF”) regime of high atomic density and zero mag-
netic field. Somewhat counterintuitively, a high density
suppresses decoherence from atomic interactions, since
collisions occur so frequently that their effect averages
out, similar to motional narrowing of dipolar interactions
in nuclear magnetic resonance (Happer and Tang, 1973).
Vapor cells have been miniaturized to few mm3 small vol-
umes (Shah et al., 2007) and have been used to demon-
strate entanglement-enhanced sensing (Fernholz et al.,
2008; Wasilewski et al., 2010). The most advanced ap-
plication of vapor cells is arguably the detection of neural
activity (Jensen et al., 2016; Livanov et al., 1978), which
has found use in magnetoencephalography (Xia et al.,
2006). Vapor cells also promise complementary access
to high-energy physics, detecting anomalous dipole mo-
ments from coupling to exotic elementary particles and
background fields beyond the standard model (Pustelny
et al., 2013; Smiciklas et al., 2011; Swallows et al., 2013).

2. Cold atomic clouds

The advent of laser cooling in the 1980s spawned a rev-
olution in atomic sensing. The reduced velocity spread
of cold atoms enabled sensing with longer interrogation
times using spatially confined atoms, freely falling along
specific trajectories in vacuum or trapped.

Freely falling atoms have enabled the development
of atomic gravimeters (Kasevich and Chu, 1992; Peters
et al., 1999) and gyrometers (Gustavson et al., 1997,
2000). In these devices an atomic cloud measures ac-
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Implementation Qubit(s) Measured
quantity(ies)

Typical
frequency

Initalization Readout Typea

Neutral atoms

Atomic vapor Atomic spin Magnetic field,
Rotation,
Time/Frequency

DC–10 GHz Optical Optical II–III

Cold clouds Atomic spin Magnetic field,
Acceleration,
Time/Frequency

DC–10 GHz Optical Optical II–III

Trapped ion(s)

Long-lived Time/Frequency THz Optical Optical II-III

electronic state Rotation Optical Optical II

Vibrational mode Electric field, Force MHz Optical Optical II

Rydberg atoms

Rydberg states Electric field DC, GHz Optical Optical II-III

Solid state spins (ensembles)

NMR sensors Nuclear spins Magnetic field DC Thermal Pick-up coil II

NVb center ensembles Electron spins Magnetic field,
Electric field,
Temperature,
Pressure, Rotation

DC–GHz Optical Optical II

Solid state spins (single spins)

P donor in Si Electron spin Magnetic field DC–GHz Thermal Electrical II

Semiconductor
quantum dots

Electron spin Magnetic field,
Electric field

DC–GHz Electrical, Optical Electrical, Optical I–II

Single NVb center Electron spin Magnetic field,
Electric field,
Temperature,
Pressure, Rotation

DC–GHz Optical Optical II

Superconducting circuits

SQUIDc Supercurrent Magnetic field DC–10 GHz Thermal Electrical I–II

Flux qubit Circulating
currents

Magnetic field DC–10 GHz Thermal Electrical II

Charge qubit Charge
eigenstates

Electric field DC–10 GHz Thermal Electrical II

Elementary particles

Muon Muonic spin Magnetic field DC Radioactive decay Radioactive decay II

Neutron Nuclear spin Magnetic field,
Phonon density,
Gravity

DC Bragg scattering Bragg scattering II

Other sensors

SETd Charge
eigenstates

Electric field DC–100 MHz Thermal Electrical I

Optomechanics Phonons Force, Acceleration,
Mass, Magnetic
field, Voltage

kHz–GHz Thermal Optical I

Interferometer Photons, (Atoms,
Molecules)

Displacement,
Refractive Index

– II-III

TABLE I Experimental implementations of quantum sensors. aSensor type refers to the three definitions of quantum sensing
on page 3. b NV: nitrogen-vacancy; c SQUID: superconducting quantum interference device; dSET: single electron transistor.

celeration by sensing the spatial phase shift of a laser
beam along its freely falling trajectory.

Trapped atoms have been employed to detect and im-
age magnetic fields at the microscale, by replicating Lar-

mor precession spectroscopy on a trapped Bose-Einstein
condensate (Vengalattore et al., 2007) and by direct driv-
ing of spin-flip transitions by microwave currents (Ock-
eloen et al., 2013) or thermal radiofrequency noise in



6

samples (Fortagh et al., 2002; Jones et al., 2003). Sens-
ing with cold atoms has found application in solid state
physics by elucidating current transport in microscopic
conductors (Aigner et al., 2008).

Arguably the most advanced demonstrations of
entanglement-enhanced quantum sensing (“Definition
III”) have been implemented in trapped cold atoms and
vapor cells. Entanglement – in the form of spin squeez-
ing (Wineland et al., 1992) – has been produced by
optical non-destructive measurements of atomic popula-
tion (Appel et al., 2009; Bohnet et al., 2014; Cox et al.,
2016; Hosten et al., 2016a; Leroux et al., 2010a; Louchet-
Chauvet et al., 2010; Schleier-Smith et al., 2010b) and
atomic interactions (Esteve et al., 2008; Riedel et al.,
2010). It has improved the sensitivity of magnetome-
try devices beyond the shot noise limit (Ockeloen et al.,
2013; Sewell et al., 2012) and has increased their band-
width (Shah et al., 2010).

B. Trapped ions

Ions, trapped in vacuum by electric or magnetic fields,
have equally been explored as quantum sensors. The
most advanced applications employ the quantized mo-
tional levels as sensing qubits for electric fields and forces.
These levels are strongly coupled to the electric field by
dipole-allowed transitions and sufficiently (MHz) spaced
to be prepared by Raman cooling and read out by laser
spectroscopy. The sensor has a predicted sensitivity of
500 nV/m/

√
Hz or 1 yN/

√
Hz for the force acting on the

ion (Biercuk et al., 2010; Maiwald et al., 2009). Trapped
ions have been extensively used to study electric field
noise above surfaces (Brownnutt et al., 2015), which
could arise from charge fluctuations induced by adsor-
bents. Electrical field noise is a severe source of decoher-
ence for ion traps and superconducting quantum proces-
sors (Labaziewicz et al., 2008) and a key limiting factor in
ultrasensitive force microscopy (Kuehn et al., 2006; Tao
and Degen, 2015).

Independently, the ground state spin sublevels of ions
are magnetic-field-sensitive qubits analogous to neutral
atoms discussed above (Baumgart et al., 2016; Kotler
et al., 2011; Maiwald et al., 2009). Being an extremely
clean system, trapped ions have demonstrated sensi-
tivities down to 4.6 pT/

√
Hz (Baumgart et al., 2016)

and served as a testbed for advanced sensing proto-
cols such as dynamical decoupling (Biercuk et al., 2009;
Kotler et al., 2011) and entanglement-enhanced sensing
(Leibfried et al., 2004). Recently, trapped ions have
also been proposed as rotation sensors, via matter-wave
Sagnac interferometry (Campbell and Hamilton, 2017).
Their use in practical applications, however, has proven
difficult. Practically all sensing demonstrations have fo-
cused on single ions, which, in terms of absolute sen-
sitivity, cannot compete with ensemble sensors such as

atomic vapors. Their small size could compensate for
this downside in applications like microscopy, where high
spatial resolution is required. However, operation of ion
traps in close proximity to surfaces remains a major chal-
lenge. Recent work on large ion crystals (Arnold et al.,
2015; Bohnet et al., 2016; Drewsen, 2015) opens however
the potential for novel applications to precise clocks and
spectroscopy.

C. Rydberg atoms

Rydberg atoms – atoms in highly excited electronic
states – are remarkable quantum sensors for electric fields
for a similar reason as trapped ions: In a classical picture,
the loosely confined electron in a highly excited orbit is
easily displaced by electric fields. In a quantum picture,
its motional states are coupled by strong electric dipole
transitions and experience strong Stark shifts (Herrmann
et al., 1986; Osterwalder and Merkt, 1999). Preparation
and readout of states is possible by laser excitation and
spectroscopy.

As their most spectacular sensing application, Rydberg
atoms in vacuum have been employed as single-photon
detectors for microwave photons in a cryogenic cavity
in a series of experiments that has been highlighted by
the Nobel prize in Physics in 2012 (Gleyzes et al., 2007;
Haroche, 2013; Nogues et al., 1999). Their sensitivity
has recently been improved by employing Schrödinger
cat states to reach a level of 300nV/m/

√
Hz (Facon et al.,

2016).

Recently, Rydberg states have become accessible in
atomic vapour cells (Kübler et al., 2010). They have been
applied to sense weak electric fields, mostly in the GHz
frequency range (Fan et al., 2015; Sedlacek et al., 2012),
and have been suggested as a candidate for a primary
traceable standard of microwave power.

D. Atomic clocks

At first sight, atomic clocks – qubits with transitions
so insensitive that their level splitting can be regarded as
absolute and serve as a frequency reference – do not seem
to qualify as quantum sensors since this very definition
violates criterion (4). Their operation as clocks, however,
employs identical protocols as the operation of quantum
sensors, in order to repeatedly compare the qubit’s tran-
sition to the frequency of an unstable local oscillator and
subsequently lock the latter to the former. Therefore, an
atomic clock can be equally regarded as a quantum sen-
sor measuring and stabilizing the phase drift of a local
oscillator. Vice versa, quantum sensors discussed above
can be regarded as clocks that operate on purpose on
a bad, environment-sensitive clock transition in order to
measure external fields.
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Today’s most advanced atomic clocks employ optical
transitions in single ions (Huntemann et al., 2016) or
atomic clouds trapped in an optical lattice (Bloom et al.,
2014; Hinkley et al., 2013; Takamoto et al., 2005). Inter-
estingly, even entanglement-enhanced sensing has found
use in actual devices, since some advanced clocks employ
multi-qubit quantum logic gates for readout of highly sta-
ble but optically inactive clock ions (Rosenband et al.,
2008; Schmidt et al., 2005).

E. Solid state spins – Ensemble sensors

1. NMR ensemble sensors

Some of the earliest quantum sensors have been based
on ensembles of nuclear spins. Magnetic field sensors
have been built that infer field strength from their Lar-
mor precession, analogous to neutral atom magnetome-
ters described above (Kitching et al., 2011; Packard and
Varian, 1954; Waters and Francis, 1958). Initialization of
spins is achieved by thermalization in an externally ap-
plied field, readout by induction detection. Although the
sensitivity of these devices (10 pT/

√
Hz) (Lenz, 1990) is

inferior to their atomic counterparts, they have found
broad use in geology, archaeology and space missions
thanks to their simplicity and robustness. More recently,
NMR sensor probes have been developed for in-situ and
dynamical field mapping in clinical MRI systems (Zanche
et al., 2008).

Spin ensembles have equally served as gyroscopes
(Fang and Qin, 2012; Woodman et al., 1987), exploiting
the fact that Larmor precession occurs in an indepen-
dent frame of reference and therefore appears frequency-
shifted in a rotating laboratory frame. In the most ad-
vanced implementation, nuclear spin precession is read
out by an atomic magnetometer, which is equally used
for compensation of the Zeeman shift (Kornack et al.,
2005). These experiments reached a sensitivity of 5 ·
10−7 rad/s/

√
Hz, which is comparable to compact imple-

mentations of atomic interferometers and optical Sagnac
interferometers.

2. NV center ensembles

Much excitement has recently been sparked by ensem-
bles of nitrogen-vacancy centers (NV centers) – electronic
spin defects in diamond that can be optically initialized
and read out. Densely-doped diamond crystals promise
to deliver “frozen vapor cells” of spin ensembles that com-
bine the strong (electronic) magnetic moment and effi-
cient optical readout of atomic vapor cells with the high
spin densities achievable in the solid state. Although
these advantages are partially offset by a reduced coher-
ence time (T2 < 1 ms at room temperature, as compared
to T2 > 1 s for vapor cells), the predicted sensitivity

of diamond magnetometers (250 aT/
√

Hz/cm−3/2) (Tay-
lor et al., 2008) or gyroscopes (10−5 rad/s/

√
Hz/mm3/2)

(Ajoy and Cappellaro, 2012; Ledbetter et al., 2012) would
be competitive with their atomic counterparts.

Translation of this potential into actual devices re-
mains challenging, with two technical hurdles standing
out. First, efficient fluorescence detection of large NV
ensembles is difficult, while absorptive and dispersive
schemes are not easily implemented (Clevenson et al.,
2015; Jensen et al., 2014; Le Sage et al., 2012). Second,
spin coherence times are reduced 100−1000 times in high-
density ensembles owing to interaction of NV spins with
parasitic substitutional nitrogen spins incorporated dur-
ing high-density doping (Acosta et al., 2009). As a con-
sequence, even the most advanced devices are currently
limited to ∼ 1 pT/

√
Hz (Wolf et al., 2015) and operate

several orders of magnitude above the theory limit. As a
technically less demanding application, NV centers in a
magnetic field gradient have been employed as spectrum
analyzer for high frequency microwave signals (Chipaux
et al., 2015).

While large-scale sensing of homogeneous fields re-
mains a challenge, micrometer-sized ensembles of NV
centers have found application in imaging applications,
serving as detector pixels for microscopic mapping of
magnetic fields. Most prominently, this line of research
has enabled imaging of magnetic organelles in magne-
totactic bacteria (Le Sage et al., 2013) and microscopic
magnetic inclusions in meteorites (Fu et al., 2014), as well
as contrast-agent-based magnetic resonance microscopy
(Steinert et al., 2013).

F. Solid state spins - Single spin sensors

Readout of single spins in the solid state – a ma-
jor milestone on the road towards quantum comput-
ers – has been achieved both by electrical and opti-
cal schemes. Electrical readout has been demonstrated
with phosphorus dopants in silicon (Morello et al.,
2010) and electrostatically-defined semiconductor quan-
tum dots (Elzerman et al., 2004). Optical readout was
shown with single organic molecules (Wrachtrup et al.,
1993a,b), optically active quantum dots (Atature et al.,
2007; Kroutvar et al., 2004; Vamivakas et al., 2010), and
defect centers in crystalline materials including diamond
(Gruber et al., 1997) and silicon carbide (Christle et al.,
2015; Widmann et al., 2015). In addition, mechanical
detection of single paramagnetic defects in silica (Rugar
et al., 2004) and real-time monitoring of few-spin fluctu-
ations (Budakian et al., 2005) have been demonstrated.

Among all solid state spins, NV centers in diamond
have received by far the most attention for sensing pur-
poses. This is in part due to the convenient room-
temperature optical detection, and in part due to their
stability in very small crystals and nanostructures. The
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latter permits use of NV centers as sensors in high-
resolution scanning probe microscopy (Balasubramanian
et al., 2008; Chernobrod and Berman, 2005; Degen,
2008), as biomarkers within living organisms (Fu et al.,
2007), or as stationary probes close to the surface of dia-
mond sensor chips. Quantum sensing with NV centers
has been considered in several recent focused reviews
(Rondin et al., 2014; Schirhagl et al., 2014).

Single NV centers have been employed and/or pro-
posed as sensitive magnetometers (Balasubramanian
et al., 2008; Maze et al., 2008; Taylor et al., 2008), elec-
trometers (Dolde et al., 2011), pressure sensors (Doherty
et al., 2014) and thermometers (Hodges et al., 2013; Kuc-
sko et al., 2013; Neumann et al., 2013; Toyli et al., 2013),
using the Zeeman, Stark and temperature shifts of their
spin sublevels. The most advanced nano-sensing experi-
ments in terms of sensitivity have employed near-surface
NV centers in bulk diamond crystals. This approach has
enabled sensing of nanometer-sized voxels of nuclear or
electronic spins deposited on the diamond surface (De-
Vience et al., 2015; Loretz et al., 2014; Lovchinsky et al.,
2016; Mamin et al., 2013; Shi et al., 2015; Staudacher
et al., 2013; Sushkov et al., 2014b), of distant nuclear spin
clusters (Shi et al., 2014), and of 2D materials (Lovchin-
sky et al., 2017). Other applications included the study of
ballistic transport in the Johnson noise of nanoscale con-
ductors (Kolkowitz et al., 2015), phases and phase tran-
sitions of skyrmion materials (Dovzhenko et al., 2016;
Dussaux et al., 2016), as well as of spin waves (van der
Sar et al., 2015; Wolfe et al., 2014), and relaxation in
nanomagnets (Schafer-Nolte et al., 2014; Schmid-Lorch
et al., 2015).

Integration of NV centers into scanning probes has en-
abled imaging of magnetic fields with sub-100 nm resolu-
tion, with applications to nanoscale magnetic structures
and domains (Balasubramanian et al., 2008; Maletinsky
et al., 2012; Rondin et al., 2012), vortices and domain
walls (Rondin et al., 2013; Tetienne et al., 2014, 2015),
superconducting vortices (Pelliccione et al., 2016; Thiel
et al., 2016), and mapping of currents (Chang et al.,
2017).

NV centers in ∼10-nm-sized nanodiamonds have also
been inserted into living cells. They have been employed
for particle tracking (McGuinness et al., 2011) and in vivo
temperature measurements (Kucsko et al., 2013; Neu-
mann et al., 2013; Toyli et al., 2013) and could enable
real-time monitoring of metabolic processes.

G. Superconducting circuits

1. SQUIDs

The Superconducting Quantum Interference Device
(SQUIDs) is simultaneously one of the oldest and one
of the most sensitive type of magnetic sensor (Clarke

and Braginski, 2004; Fagaly, 2006; Jaklevic et al., 1965).
These devices – interferometers of superconducting con-
ductors – measure magnetic fields with a sensitivity down
to 10 aT/

√
Hz (Simmonds et al., 1979). Their sensing

mechanism is based on the Aharonov-Bohm phase im-
printed on the superconducting wave function by an en-
circled magnetic field, which is read out by a suitable
circuit of phase-sensitive Josephson junctions.

From a commercial perspective, SQUIDs can be con-
sidered the most advanced type of quantum sensor, with
applications ranging from materials characterization in
solid state physics to clinical magnetoencephalography
systems for measuring tiny (∼ 100 fT) stray fields of elec-
tric currents in the brain. In parallel to the development
of macroscopic (mm-cm) SQUID devices, miniaturization
has given birth to sub-micron sized “nanoSQUIDs” with
possible applications in nanoscale magnetic, current, and
thermal imaging (Halbertal et al., 2016; Vasyukov et al.,
2013). Note that because SQUIDs rely on spatial rather
than temporal coherence, they are more closely related to
optical interferometers than to the spin sensors discussed
above.

SQUIDs have been employed to process signals from
the DC up to the GHz range (Hatridge et al., 2011; Mck
et al., 2003), the upper limit being set by the Joseph-
son frequency. Conceptually similar circuits, dedicated
to amplification of GHz frequency signals, have been ex-
plored in great detail in the past decade (Bergeal et al.,
2010; Castellanos-Beltran et al., 2008; Ho Eom et al.,
2012; Macklin et al., 2015). Arguably the most widely
studied design is the Josephson parametric amplifier,
which has been pushed to a nearly quantum-limited input
noise level of only few photons and is now routinely used
for spectroscopic single shot readout of superconducting
qubits (Vijay et al., 2011).

2. Superconducting qubits

Temporal quantum superpositions of supercurrents or
charge eigenstates have become accessible in supercon-
ducting qubits (Clarke and Wilhelm, 2008; Martinis
et al., 2002; Nakamura et al., 1999; Vion et al., 2002;
Wallraff et al., 2004). Being associated with large mag-
netic and electric dipole moments, they are attractive
candidates for quantum sensing. Many of the estab-
lished quantum sensing protocols to be discussed in Sec-
tions IV–VII have been implemented with superconduct-
ing qubits. Specifically, noise in these devices has been
thoroughly studied from the sub-Hz to the GHz range,
using Ramsey interferometry (Yan et al., 2012; Yoshihara
et al., 2006), dynamical decoupling (Bylander et al., 2011;
Ithier et al., 2005; Nakamura et al., 2002; Yan et al., 2013;
Yoshihara et al., 2006), and T1 relaxometry (Astafiev
et al., 2004; Yoshihara et al., 2006). These studies have
been extended to discern charge from flux noise by choos-
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ing qubits with a predominant electric (charge qubit)
or magnetic (flux qubit) dipole moment, or by tuning
bias parameters in situ (Bialczak et al., 2007; Yan et al.,
2012). Operating qubits as magnetic field sensors, very
promising sensitivities (3.3 pT/

√
Hz for operation at 10

MHz) were demonstrated (Bal et al., 2012). Extending
these experiments to the study of extrinsic samples ap-
pears simultaneously attractive and technically challeng-
ing, since superconducting qubits have to be cooled to
temperatures of only few tens of millikelvin.

H. Elementary particle qubits

Interestingly, elementary particles have been employed
as quantum sensors long before the development of
atomic and solid state qubits. This somewhat paradox-
ical fact is owing to their straightforward initialization
and readout, as well as their targeted placement in rele-
vant samples by irradiation with a particle beam.

1. Muons

Muons are frequently described as close cousins of elec-
trons. Both particles are leptons, carry an elementary
charge and have a spin that can be employed for quantum
sensing. Sensing with muons has been termed “muon
spin rotation” (µSR). It employs antimuons (µ+) that
are deterministically produced by proton-proton colli-
sions, from decay of an intermediate positive pion by the
reaction π+ → µ+ + νµ. Here, parity violation of the
weak interaction automatically initializes the muon spin
to be collinear with the particle’s momentum. Readout
of the spin is straightforward by measuring the emis-
sion direction of positrons from the subsequent decay
µ+ → e+ + νe + νµ, which are preferably emitted along
the muon spin (Blundell, 1999; Brewer and Crowe, 1978).

Crucially, muons can be implanted into solid state sam-
ples and serve as local probes of their nanoscale envi-
ronment for their few microseconds long lifetime. Lar-
mor precession measurements have been used to infer
the intrinsic magnetic field of materials. Despite its ex-
otic nature, the technique of muon spin rotation (µSR)
has become and remained a workhorse tool of solid state
physics. In particular, it is a leading technique to mea-
sure the London penetration depth of superconductors
(Sonier et al., 2000).

2. Neutrons

Slow beams of thermal neutrons can be spin-polarized
by Bragg reflection on a suitable magnetic crystal. Spin
readout is feasible by a spin-sensitive Bragg analyzer and
subsequent detection. Spin rotations (single qubit gates)

are easily implemented by application of localized mag-
netic fields along parts of the neutron’s trajectory. As
a consequence, many early demonstrations of quantum
effects, such as the direct measurement of Berry’s phase
(Bitter and Dubbers, 1987), have employed neutrons.

Sensing with neutrons has been demonstrated in mul-
tiple ways. Larmor precession in the magnetic field of
samples has been employed for three-dimensional tomog-
raphy (Kardjilov et al., 2008). Neutron interferometry
has put limits on the strongly-coupled chameleon field
(Li et al., 2016). Ultracold neutrons have been employed
as a probe for gravity on small length scales in a series of
experiments termed ”qBounce”. These experiments ex-
ploit the fact that suitable materials perfectly reflect the
matter wave of sufficiently slow neutrons so that they
can be trapped above a bulk surface by the gravity of
earth as a “quantum bouncing ball” (Nesvizhevsky et al.,
2002). The eigenenergies of this anharmonic trap depend
on gravity and have been probed by quantum sensing
techniques (Jenke et al., 2014, 2011).

The most established technique, neutron spin echo,
can reveal materials properties by measuring small (down
to neV) energy losses of neutrons in inelastic scattering
events (Mezei, 1972). Here, the phase of the neutron
spin, coherently precessing in an external magnetic field,
serves as a clock to measure a neutron’s time of flight.
Inelastic scattering in a sample changes a neutron’s ve-
locity, resulting in a different time of flight to and from a
sample of interest. This difference is imprinted in the spin
phase by a suitable quantum sensing protocol, specifically
a Hahn echo sequence whose π pulse is synchronized with
passage through the sample.

I. Other sensors

In addition to the many implementations of quantum
sensors already discussed, three further systems deserved
special attention for their future potential or for their fun-
damental role in developing quantum sensing methodol-
ogy.

1. Single electron transistors

Single electron transistors (SET’s) sense electric fields
by measuring the tunneling current across a submicron
conducting island sandwiched between tunneling source
and drain contacts. In the “Coulomb blockade regime” of
sufficiently small (typically ≈ 100 nm) islands, tunneling
across the device is only allowed if charge eigenstates of
the island lie in the narrow energy window between the
Fermi level of source and drain contact. The energy of
these eigenstates is highly sensitive to even weak exter-
nal electric fields, resulting in a strongly field-dependent
tunneling current (Kastner, 1992; Schoelkopf, 1998; Yoo
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et al., 1997). SETs have been employed as scanning
probe sensors to image electric fields on the nanoscale,
shedding light on a variety of solid-state-phenomena such
as the fractional quantum Hall effect or electron-hole
puddles in graphene (Ilani et al., 2004; Martin et al.,
2008). In a complementary approach, charge sensing by
stationary SETs has enabled readout of optically inac-
cessible spin qubits such as phosphorus donors in silicon
(Morello et al., 2010) based on counting of electrons (By-
lander et al., 2005).

2. Optomechanics

Phonons – discrete quantized energy levels of vibration
– have recently become accessible at the “single-particle”
level in the field of optomechanics (Aspelmeyer et al.,
2014; O’Connell et al., 2010), which studies high-quality
mechanical oscillators that are strongly coupled to light.

While preparation of phonon number states and their
coherent superpositions remains difficult, the devices
built to achieve these goals have shown great promise for
sensing applications. This is mainly due to the fact that
mechanical degrees of freedom strongly couple to nearly
all external fields, and that strong optical coupling en-
ables efficient actuation and readout of mechanical mo-
tion. Specifically, optomechanical sensors have been em-
ployed to detect minute forces (12 zN/

√
Hz, Moser et al.,

2013), acceleration (100 ng/
√

Hz, Cervantes et al., 2014
and Krause et al., 2012), masses (2 yg/

√
Hz, Chaste

et al., 2012), magnetic fields (200 pT/
√

Hz, Forstner
et al., 2014), spins (Degen et al., 2009; Rugar et al., 2004),
and voltage (5 pV/

√
Hz, Bagci et al., 2014). While these

demonstrations have remained at the level of classical
sensing in the sense of this review, their future exten-
sion to quantum-enhanced measurements appears most
promising.

3. Photons

While this review will not discuss quantum sensing
with photons, due to the breadth of the subject, several
fundamental paradigms have been pioneered with opti-
cal sensors including light squeezing and photonic quan-
tum correlations. These constitute examples of quantum-
enhanced sensing according to our “Definition III”.

Squeezing of light – the creation of partially-entangled
states with phase or amplitude fluctuations below those
of a classical coherent state of the light field – has been
proposed (Caves, 1981) and achieved (Slusher et al.,
1985) long before squeezing of spin ensembles (Hald et al.,
1999; Wineland et al., 1992). Vacuum squeezed states
have meanwhile been employed to improve the sensitivity
of gravitational wave detectors. In the GEO gravitational
wave detector, squeezing has enhanced the shot-noise

limited sensitivity by 3.5 dB (Ligo Collaboration”, 2011);
in a proof-of-principle experiment in the LIGO gravita-
tional wave detector, the injection of 10dB of squeezing
lowered the shot-noise in the interferometer output by ap-
proximately 2.15dB (28%)(Collaboration, 2013), equiva-
lent to an increase by more than 60% in the power stored
in the interferometer arm cavities. Further upgrades as-
sociated with Advanced LIGO could bring down the shot
noise by 6dB, via frequency dependent squeezing (Oelker
et al., 2016).

In addition, quantum correlations between photons
have proven to be a powerful resource for imaging. This
has been noted very early on in the famous Hanbury-
Brown-Twiss experiment, where bunching of photons is
employed to filter atmospheric aberrations and to per-
form “super-resolution” measurements of stellar diame-
ters smaller than the diffraction limit of the telescope
employed (Hanbury Brown and Twiss, 1956). While
this effect can still be accounted for classically, a recent
class of experiments has exploited non-classical correla-
tions to push the spatial resolution of microscopes be-
low the diffraction limit (Schwartz et al., 2013). Vice
versa, multi-photon correlations have been proposed and
employed to create light patterns below the diffraction
limit for superresolution lithography (Boto et al., 2000;
D’Angelo et al., 2001). They can equally improve im-
age contrast rather than resolution by a scheme known
as “quantum illumination” (Lloyd, 2008; Lopaeva et al.,
2013; Tan et al., 2008). Here, a beam of photons is em-
ployed to illuminate an object, reflected light being de-
tected as the imaging signal. Entangled twins of the illu-
mination photons are conserved at the source and com-
pared to reflected photons by a suitable joint measure-
ment. In this way, photons can be certified to be re-
flected light rather than noise, enhancing imaging con-
trast. In simpler schemes, intensity correlations between
entangled photons have been employed to boost contrast
in transmission microscopy of weakly absorbing objects
(Brida et al., 2010) and the reduced quantum fluctua-
tions of squeezed light have been used to improve optical
particle tracking (Taylor et al., 2013).

The most advanced demonstrations of entanglement-
enhanced sensing have been performed with single pho-
tons or carefully assembled few-photon Fock states. Most
prominently, these include Heisenberg-limited interfer-
ometers (Higgins et al., 2007; Holland and Burnett, 1993;
Mitchell et al., 2004; Nagata et al., 2007; Walther et al.,
2004). In these devices, entanglement between photons
or adaptive measurements are employed to push sensitiv-
ity beyond the 1/

√
N scaling of a classical interferometer

where N is the number of photons (see Section IX).
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IV. THE QUANTUM SENSING PROTOCOL

In this Section, we describe the basic methodology for
performing measurements with quantum sensors. Our
discussion will focus on a generic scheme where a mea-
surement consists of three elementary steps: the ini-
tialization of the quantum sensor, the interaction with
the signal of interest, and the readout of the final state.
Phase estimation (Kitaev, 1995; Shor, 1994) and param-
eter estimation (Braunstein and Caves, 1994; Braunstein
et al., 1996; Goldstein et al., 2010) techniques are then
used to reconstruct the physical quantity from a series
of measurements. Experimentally, the protocol is typi-
cally implemented as an interference measurement using
pump-probe spectroscopy, although other schemes are
possible. The key quantity is then the quantum phase
picked up by the quantum sensor due to the interac-
tion with the signal. The protocol can be optimized for
detecting weak signals or small signal changes with the
highest possible sensitivity and precision.

A. Quantum sensor Hamiltonian

For the following discussion, we will assume that the
quantum sensor can be described by the generic Hamil-
tonian

Ĥ(t) = Ĥ0 + ĤV (t) + Ĥcontrol(t) , (2)

where Ĥ0 is the internal Hamiltonian, ĤV (t) is
the Hamiltonian associated with a signal V (t), and
Ĥcontrol(t) is the control Hamiltonian. We will assume
that Ĥ0 is known and that Ĥcontrol(t) can be deliberately
chosen so as to manipulate or tune the sensor in a con-
trolled way. The goal of a quantum sensing experiment
is then to infer V (t) from the effect it has on the qubit
via its Hamiltonian ĤV (t), usually by a clever choice of
Ĥcontrol(t).

1. Internal Hamiltonian

Ĥ0 describes the internal Hamiltonian of the quantum
sensor in the absence of any signal. Typically, the inter-
nal Hamiltonian is static and defines the energy eigen-
states |0〉 and |1〉,

Ĥ0 = E0|0〉〈0|+ E1|1〉〈1| , (3)

where E0 and E1 are the eigenenergies and ω0 = E1−E0

is the transition energy between the states (~ = 1). Note
that the presence of an energy splitting ω0 6= 0 is not
necessary, but it represents the typical situation for most
implementations of quantum sensors. The qubit internal
Hamiltonian may contain additional interactions that are
specific to a quantum sensor, such as couplings to other

qubits. In addition, the internal Hamiltonian contains
time-dependent stochastic terms due to a classical envi-
ronment or interactions with a quantum bath that are
responsible for decoherence and relaxation.

2. Signal Hamiltonian

The signal Hamiltonian ĤV (t) represents the coupling
between the sensor qubit and a signal V (t) to be mea-
sured. When the signal is weak (which is assumed here)
ĤV (t) adds a small perturbation to Ĥ0. The signal
Hamiltonian can then be separated into two qualitatively
different contributions,

ĤV (t) = ĤV||(t) + ĤV⊥(t) , (4)

where ĤV|| is the parallel (commuting, secular) and

ĤV⊥ the transverse (non-commuting) component, respec-
tively. The two components can quite generally be cap-
tured by

ĤV||(t) = 1
2γV||(t) {|1〉〈1| − |0〉〈0|} ,

ĤV⊥(t) = 1
2γ
{
V⊥(t)|1〉〈0|+ V †⊥(t)|0〉〈1|

}
, (5)

where V||(t) and V⊥(t) are functions with the same units
of V (t). γ is the coupling or transduction parameter
of the qubit to the signal V (t). Examples of coupling
parameters include the Zeeman shift parameter (gyro-
magnetic ratio) of spins in a magnetic field, with units
of Hz/T, or the linear Stark shift parameter of electric
dipoles in an electric field, with units of Hz/(Vm−1). Al-
though the coupling is often linear, this is not required.
In particular, the coupling is quadratic for second-order
interactions (such as the quadratic Stark effect) or when
operating the quantum sensor in variance detection mode
(see Section IV.E.2).

The parallel and transverse components of a signal
have distinctly different effects on the quantum sensor.
A commuting perturbation ĤV|| leads to shifts of the en-
ergy levels and an associated change of the transition
frequency ω0. A non-commuting perturbation ĤV⊥ , by
contrast, can induce transitions between levels, manifest-
ing through an increased transition rate Γ. Most often,
this requires the signal to be time-dependent (resonant
with the transition) in order to have an appreciable effect
on the quantum sensor.

An important class of signals are vector signal ~V (t),
in particular those provided by electric or magnetic
fields. The interaction between a vector signal ~V (t) =
{Vx, Vy, Vz}(t) and a qubit can be described by the sig-
nal Hamiltonian

ĤV (t) = γ~V (t) · ~̂σ , (6)

where ~σ = {σx, σy, σz} is a vector of Pauli matrices. For
a vector signal, the two signal functions V||(t) and V⊥(t)
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are

V||(t) = Vz(t) ,

V⊥(t) = Vx(t) + iVy(t), (7)

where the z direction is defined by the qubit’s quantiza-
tion axis. The corresponding signal Hamiltonian is

ĤV (t) = γRe[V⊥(t)]σ̂x + γIm[V⊥(t)]σ̂y + γV||(t)σ̂z . (8)

3. Control Hamiltonian

For most quantum sensing protocols it is required to
manipulate the qubit either before, during, or after the
sensing process. This is achieved via a control Hamilto-
nian Ĥcontrol(t) that allows implementing a standard set
of quantum gates (Nielsen and Chuang, 2000). The most
common gates in quantum sensing include the Hadamard
gate and the Pauli-X and Y gates, or equivalently, a set of
π/2 and π rotations (pulses) around different axes. Ad-
vanced sensing schemes employing more than one sensor
qubit may further require conditional gates, especially
controlled-NOT gates to generate entanglement, Swap
gates to exploit memory qubits, and controlled phase
shifts in quantum phase estimation. Finally, the control
Hamiltonian can include control fields for systematically
tuning the transition frequency ω0. This capability is
frequently exploited in noise spectroscopy experiments.

B. The sensing protocol

Quantum sensing experiments typically follow a
generic sequence of sensor initialization, interaction with
the signal, sensor readout and signal estimation. This
sequence can be summarized in the following basic pro-
tocol, which is also sketched in Fig. 2:

1. The quantum sensor is initialized into a known ba-
sis state, for example |0〉.

2. The quantum sensor is transformed into the desired
initial sensing state |ψ0〉 = Ûa|0〉. The transforma-
tion can be carried out using a set of control pulses
represented by the propagator Ûa. In many cases,
|ψ0〉 is a superposition state.

3. The quantum sensor evolves under the Hamiltonian
Ĥ [Eq. (2)] for a time t. At the end of the sensing
period, the sensor is in the final sensing state

|ψ(t)〉 = ÛH(0, t)|ψ0〉 = c0|ψ0〉+ c1|ψ1〉 , (9)

where ÛH(0, t) is the propagator of Ĥ, |ψ1〉 is the
state orthogonal to |ψ0〉 and c0, c1 are complex co-
efficients.

1. Initialize

5. Project, Readout

3. Evolve for time 

4. Transform

2. Transform

6. Repeat and average

“0” with probability 
“1” with probability

7. Estimate signal

FIG. 2 Basic steps of the quantum sensing process.

4. The quantum sensor is transformed into a superpo-
sition of observable readout states |α〉 = Ûb|ψ(t)〉 =
c′0|0′〉 + c′1|1′〉. For simplicity we assume that the
initialization basis {|0〉, |1〉} and the readout basis
{|0′〉, |1′〉} are the same and that Ûb = Û†a , but this
is not required. Under these assumptions, the co-
efficients c′0 ≡ c0 and c′1 ≡ c1 represent the overlap
between the initial and final sensing states.

5. The final state of the quantum sensor is read
out. We assume that the readout is projective,
although more general positive-operator-valued-
measure (POVM) measurements may be possi-
ble (Nielsen and Chuang, 2000). The projective
readout is a Bernoulli process that yields an answer
“0” with probability 1− p′ and an answer “1” with
probability p′, where p′ = |c′1|2 ∝ p is proportional
to the measurable transition probability,

p = 1− |c0|2 = |c1|2 (10)

that the qubit changed its state during t. The bi-
nary answer is detected by the measurement appa-
ratus as a physical quantity x, for example, as a
voltage, current, photon count or polarization.

Steps 1-5 represent a single measurement cycle. Because
step 5 gives a binary answer, the measurement cycle
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needs to be repeated many times in order to gain a pre-
cise estimate for p:

6. Steps 1-5 are repeated and averaged over a large
number of cycles N to estimate p. The repetition
can be done by running the protocol sequentially
on the same quantum system, or in parallel by av-
eraging over an ensemble of N identical (and non-
interacting) quantum systems.

Step 6 only provides one value for the transition prob-
ability p. While a single value of p may sometimes be
sufficient to estimate a signal V , it is in many situations
convenient or required to record a set of values {pk}:

7. The transition probability p is measured as a func-
tion of time t or of a parameter of the control
Hamiltonian, and the desired signal V is inferred
from the data record {pk} using a suitable proce-
dure.

More generally, a set of measurements can be optimized
to efficiently extract a desired parameter from the signal
Hamiltonian (see Section VIII). Most protocols presented
in the following implicitly use such a strategy for gaining
information about the signal.

Although the above protocol is generic and simple, it is
sufficient to describe most sensing experiments. For ex-
ample, classical continuous-wave absorption and trans-
mission spectroscopy can be considered as an averaged
variety of this protocol. Also, the time evolution can
be replaced by a spatial evolution to describe a classical
interferometer.

To illustrate the protocol, we consider two elementary
examples, one for detecting a parallel signal V|| and one
for detecting a transverse signal V⊥. These examples will
serve as the basis for the more refined sequences discussed
in later Sections.

C. First example: Ramsey measurement

A first example is the measurement of the static en-
ergy splitting ω0 (or equivalently, a static perturbation
V||). The canonical approach for this measurement is a
Ramsey interferometry measurement (Lee et al., 2002;
Taylor et al., 2008):

1. The quantum sensor is initialized into |0〉.

2. Using a π/2 pulse, the quantum sensor is trans-
formed into the superposition state

|ψ0〉 = |+〉 ≡ 1√
2

(|0〉+ |1〉) . (11)

3. The superposition state evolves under the Hamilto-
nian Ĥ0 for a time t. The superposition state picks

up the relative phase φ = ω0t, and the state after
the evolution is

|ψ(t)〉 =
1√
2

(|0〉+ e−iω0t|1〉) , (12)

up to an overall phase factor.

4. Using a second π/2 pulse, the state |ψ(t)〉 is con-
verted back to the measurable state

|α〉 =
1

2
(1 + e−iω0t)|0〉+

1

2
(1− e−iω0t)|1〉 . (13)

5,6. The final state is read out. The transition proba-
bility is

p = 1− |〈0|α〉|2

= sin2(ω0t/2) =
1

2
[1− cos(ω0t)]. (14)

By recording p as a function of time t, an oscillatory
output (“Ramsey fringes”) is observed with a frequency
given by ω0. Thus, the Ramsey measurement can directly
provide a measurement of the energy splitting ω0.

D. Second example: Rabi measurement

A second elementary example is the measurement of
the transition matrix element |V⊥|:

1. The quantum sensor is initialized into |ψ0〉 = |0〉.

3. In the absence of the internal Hamiltonian, Ĥ0 = 0,
the evolution is given by ĤV⊥ = 1

2γV⊥σx = ω1σx,
where ω1 is the Rabi frequency. The state after
evolution is:

|ψ(t)〉 = |α〉 =
1

2
(1 + e−iω1t)|0〉+ 1

2
(1− e−iω1t)|1〉 . (15)

5,6. The final state is read out. The transition proba-
bility is:

p = 1− |〈0|α〉|2 = sin2(ω1t/2). (16)

In a general situation where Ĥ0 6= 0, the transi-
tion probability represents the solution to Rabi’s original
problem (Sakurai and Napolitano, 2011),

p =
ω2

1

ω2
1 + ω2

0

sin2

(√
ω2

1 + ω2
0 t

)
. (17)

Hence, only time-dependent signals with frequency ω ≈
ω0 affect the transition probability p, a condition known
as resonance. From this condition it is clear that a Rabi
measurement can provide information not only on the
magnitude V⊥, but also on the frequency ω of a signal
(Aiello et al., 2013; Fedder et al., 2011).
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FIG. 3 Transition probability p for a Ramsey experiment as
a function of the signal V picked up by the sensor. (a) Slope
detection: The quantum sensor is operated at the p0 = 0.5
bias point (filled red circle). A small change in the signal
δV leads to a linear change in the transition probability,
δp = δφ/2 = γδV t/2 (empty red circle). The uncertainty
σp in the measured transition probability, leads to an uncer-
tainty in the estimated signal, Vmin (grey shade). (b) Variance
detection: The quantum sensor is operated at the p0 = 0 bias
point (filled blue square). A small change in the signal δV
leads to a quadratic change, δp = δφ2/4 = γ2δV 2t2/4 (empty
blue square). The information on the sign of δV is lost. The
experimental readout error σp translates into an uncertainty
in the estimated signal, Vmin, according to the slope or cur-
vature of the Ramsey fringe (grey shade).

E. Slope and variance detection

A central objective of quantum sensing is the detection
of small signals. For this purpose, it is advantageous to
measure the deviation of the transition probability from
a well-chosen reference point p0, which we will refer to
as the bias point of the measurement, corresponding to
a known value of the external signal V0 or reached by
setting some additional parameters in the Hamiltonian
under the experimenter’s control. The quantity of in-
terest is then the difference δp = p − p0 between the
probability measured in the presence and absence of the
signal, respectively. Experimentally, the bias point can
be adjusted by several means, for example by adding a
small detuning to ω0 or by measuring the final state |ψ(t)〉
along different directions.

1. Slope detection (linear detection)

The Ramsey interferometer is most sensitive to small
perturbations δV around V0 = ω0/γ when operated at
the point of maximum slope where p0 = 0.5, indicated
by the filled red dot in Fig. 3(a). This bias point is
reached when ω0t = kπ/2, with k = 1, 3, 5, .... Around
p0 = 0.5 , the transition probability is linear in δV and

t,

δp =
1

2
[1− cos(ω0t+ γδV t)]− 1

2

≈ ±1

2
γδV t, (18)

where the sign is determined by k.

Note that slope detection has a limited linear range
because phase wrapping occurs for |γδV t| > π/2. The
phase wrapping restricts the dynamic range of the quan-
tum sensor. Section VIII discusses adaptive sensing tech-
niques designed to extend the dynamic range.

2. Variance detection (quadratic detection)

If the magnitude of δV fluctuates between measure-
ments so that 〈δV 〉 = 0, readout at p0 = 0.5 will yield
no information about δV , since 〈p〉 ≈ p0 = 0.5. In this
situation, it is advantageous to detect the signal vari-
ance by biasing the measurement to a point of minimum
slope, ω0t = kπ, corresponding to the bias points p0 = 0
and p0 = 1 (filled blue square in Fig. 3(b)). If the in-
terferometer is tuned to p0 = 0, a signal with variance
〈δV 2〉 = V 2

rms gives rise to a mean transition probability
that is quadratic in Vrms and t (Meriles et al., 2010),

δp = p =

〈
1

2
[1− cos(ω0t+ γδV t)]

〉
≈ 1

4
γ2V 2

rmst
2. (19)

This relation holds for small γVrmst � 1. If the fluctua-
tion is Gaussian, the result can be extended to any large
value of γVrmst,

p =
1

2

[
1− exp(−γ2V 2

rmst
2/2)

]
. (20)

Variance detection is especially important for detecting
ac signals when their synchronization with the sensing
protocol is not possible (Section VI.C.4), or when the
signal represents a noise source (Section VII).

V. SENSITIVITY

The unprecedented level of sensitivity offered by many
quantum sensors has been a key driving force of the field.
In this section, we quantitatively define the sensitivity.
We start by discussing the main sources of noise that
enter a quantum sensing experiment, and derive expres-
sions for the signal-to-noise ratio (SNR) and the mini-
mum detectable signal, i.e., the signal magnitude that
yields unit SNR. This will lead us to a key quantity of
this paper: the sensitivity, vmin, defined as the minimum
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detectable signal per unit time. In particular, we will
find in Sec. V.B.2 that vmin is approximately

vmin ≈
√

2e

γC
√
Tχ

(21)

for slope detection and

vmin ≈
√

2e

γ
√
C 4

√
T 3
χ

(22)

for variance detection, where Tχ is the sensor’s coherence
time, C ≤ 1 is a dimensionless constant quantifying read-
out efficiency, and e is Euler’s number (see Eqs. 43 and
45). In the remainder of the section signal averaging and
the Allen variance are briefly discussed, and a formal def-
inition of sensitivity by the quantum Cramér-Rao bound
(QCRB) is given.

A. Noise

Experimental detection of the probability p will have a
non-zero error σp. This error translates into an error for
the signal estimate, which is determined by the slope or
curvature of the Ramsey fringe (see Fig. 3). In order to
calculate SNR and sensitivity, it is therefore important
to analyze the main sources of noise that enter σp.

1. Quantum projection noise

Quantum projection noise is the most fundamental
source of uncertainty in quantum sensing. The projective
readout during “Step 5” of the quantum sensing proto-
col (Section IV.B) does not directly yield the fractional
probability p ∈ [0...1], but one of the two values “0” or
“1” with probabilities 1 − p and p, respectively. In or-
der to precisely estimate p, the experiment is repeated N
times and the occurrences of “0” and “1” are binned into
a histogram (see Fig. 4(a)). The estimate for p is then

p =
N1

N
, (23)

where N1 is the number of measurements that gave a re-
sult of “1”. The uncertainty in p is given by the variance
of the binomial distribution (Itano et al., 1993),

σ2
p,quantum =

1

N
p(1− p) . (24)

The uncertainty in p therefore depends on the bias point
p0 of the measurement. For slope detection, where p0 =
0.5, the uncertainty is

σ2
p,quantum =

1

4N
for p0 = 0.5 (25)

Thus, the projective readout adds noise of order
1/(2
√
N) to the probability value p. For variance detec-

tion, where ideally p0 = 0, the projection noise would in
principle be arbitrarily low. In any realistic experiment,
however, decoherence will shift the fringe minimum to a
finite value of p (see below), where Eq. (25) holds up to
a constant factor.

2. Decoherence

A second source of error includes decoherence and re-
laxation during the sensing time t. Decoherence and re-
laxation cause random transitions between states or ran-
dom phase pick-up during coherent evolution of the qubit
(for more detail, see Section VII). The two processes lead
to a reduction of the observed probability δp with increas-
ing sensing time t,

δpobs(t) = δp(t)e−χ(t) , (26)

where δp(t) is the probability that would be measured in
the absence of decoherence (see Eqs. (18,19)). χ(t) is a
phenomenological decoherence function that depends on
the noise processes responsible for decoherence (see Sec-
tion VII.B.1). Although the underlying noise processes
may be very complex, χ(t) can often be approximated by
a simple power law,

χ(t) = (Γt)a , (27)

where Γ is a decay rate and typically a = 1...3. The
decay rate can be associated with a decay time Tχ = Γ−1

that equals the evolution time t where δpobs/δp = 1/e ≈
37%. The decay time Tχ, also known as the decoherence
time or relaxation time depending on the noise process,
is an important figure-of-merit of the qubit, as it sets the
maximum possible evolution time t available for sensing.

3. Errors due to initialization and qubit manipulations

Errors can also enter through the imperfect initializa-
tion or manipulations of the quantum sensor. An im-
perfect initialization leads to a similar reduction in the
observed probability δpobs as with decoherence,

δpobs = β δp , (28)

where β < 1 is a constant factor that describes the re-
duction of the observed δpobs as compared to the ideal
δp. Contrary to the case of decoherence, this reduction
does not depend on the sensing time t. Errors in qubit
manipulations can cause many effects, but will typically
also lead to a reduction of δp. A more general approach,
considering, e.g., faulty initialization through a density
matrix approach, will be briefly discussed in the context
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FIG. 4 Illustration of the sensor readout. N measurements
are performed producing {xj}j=1...N readings on the physical
measurement apparatus. The readings {xj} are then binned
into a histogram. (a) Ideal readout. Only two values are
observed in the histogram, x|0〉 and x|1〉, which correspond to
the qubit states |0〉 and |1〉. All {xj} can be assigned to “0”
or “1” with 100% fidelity. (b) Single shot readout. Most {xj}
can be assigned, but there is an overlap between histogram
peaks leading to a small error. (c) Averaged readout. {xj}
cannot be assigned. The ratio between “0” and “1” is given
by the relative position of the mean value x̄ and the error
is determined by the histogram standard deviation σx. R is
the ratio of readout and projection noise, and C is an overall
readout efficiency parameter that is explained in the text.

of quantum limits to sensitivity (see Sec. V.D). In addi-
tion, the observed probability is sometimes reduced by
the control sequence of the sensing protocol, for example
if there is no one-to-one mapping between the initializa-
tion, sensing and readout basis (“Step 2” and “Step 4”
in the protocol). Since β is a constant of time, we will
assume β = 1 in the following for reasons of simplicity.

4. Classical readout noise

A final source of error is the classical noise added dur-
ing the readout of the sensor. Two situations can be
distinguished, depending on whether the readout noise is
small or large compared to the projection noise. We will
denote them as the “single shot” and “averaged” readout
regimes, respectively. Due to the widespread inefficiency
of quantum state readout, classical readout noise is often
the dominating source of error.

a. Single shot readout In the “single shot” regime, classi-
cal noise added during the readout process is small. The
physical reading x produced by the measurement appa-
ratus will be very close to one of the two values x|0〉 and
x|1〉, which would have been obtained in the ideal case
for the qubit states |0〉 and |1〉, respectively. By binning
the physical readings xj of j = 1...N measurements into

a histogram, two peaks are observed centered at x|0〉 and
x|1〉, respectively (see Fig. 4(b)). However, compared to
the ideal situation (Fig. 4(a)), the histogram peaks are
broadened and there is a finite overlap of between the
tails of the peaks. To obtain an estimate for p, all xj are
assigned to either “0” or “1” based on a threshold value
xT chosen roughly midway between x|0〉 and x|1〉,

N0 = number of measurements xj < xT (29)

N1 = number of measurements xj > xT , (30)

where p = N1/N . Note that the choice of the threshold
is not trivial; in particular, for an unbiased measurement,
xT depends itself on the probability p.

Because of the overlap between histogram peaks, some
values xj will be assigned to the wrong state. The error
introduced due to wrong assignments is

σ2
p,readout =

1

N
[κ0(1− κ0)p+ κ1(1− κ1)(1− p)] , (31)

where κ0 and κ1 are the fraction of measurements that
are erroneously assigned. The actual values for κ0,1 de-
pend on the exact type of measurement noise and are de-
termined by the cumulative distribution function of the
two histogram peaks. Frequently, the peaks have an ap-
proximately Gaussian distribution, such that

κ0 ≈
1

2

[
1 + erf

( |x|0〉 − xT |
σx

)]
, (32)

and likewise for κ1, where erf(x) is the Gauss error func-
tion. Moreover, if κ ≡ κ0 ≈ κ1 � 1 are small and of
similar magnitude,

σ2
p,readout ≈

κ

N
. (33)

b. Averaged readout When the classical noise added dur-
ing the quantum state readout is large, only one peak
appears in the histogram and the xj can no longer be as-
signed to x|0〉 or x|1〉. The estimate for p is then simply
given by the mean value of x,

p =
x̄− x|0〉
x|1〉 − x|0〉

=
1

N

N∑
j=1

xj − x|0〉
x|1〉 − x|0〉

, (34)

where x̄ = 1
N

∑
xj is the mean of {xj}. The standard

error of p is

σ2
p,readout =

σ2
x

(x|1〉 − x|0〉)2
=
R2

4N
, (35)

where |x|1〉 − x|0〉| is the measurement contrast and

R ≡ σp,readout

σp,quantum
=

2
√
Nσx

|x|1〉 − x|0〉|
(36)
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is the ratio between classical readout noise and quantum
projection noise.

As an example, we consider the optical readout of an
atomic vapor magnetometer (Budker and Romalis, 2007)
or of NV centers in diamond (Taylor et al., 2008). For
this example, x|0〉 and x|1〉 denote the average numbers of
photons collected per readout for each state. The stan-
dard error is (under suitable experimental conditions)
dominated by shot noise, σx ≈

√
x̄. The readout noise

parameter becomes

R ≈ 2
√
x̄

|x|1〉 − x|0〉|
=

2
√

1− ε/2
ε
√
x|1〉

≈ 2

ε
√
x|1〉

, (37)

where ε = |1 − x|0〉/x|1〉| is a relative optical contrast
between the states, 0 < ε < 1, and the last equation
represents the approximation for ε� 1.

c. Total readout uncertainty The classical readout noise
σp,readout is often combined with the quantum projection
noise σp,quantum to obtain a total readout uncertainty,

σ2
p = σ2

p,quantum + σ2
p,readout

≈ (1 +R2)σ2
p,quantum ≈

σ2
p,quantum

C2
=

1

4C2N
, (38)

where C = 1/
√

1 +R2 ≈ 1/
√

1 + 4κ is an overall read-
out efficiency parameter (Taylor et al., 2008). C ≤ 1
describes the reduction of the signal-to-noise ratio com-
pared to an ideal readout (C = 1), see Fig. 4. We will in
the following use Eq. (38) to derive the SNR and mini-
mum detectable signal.

B. Sensitivity

1. Signal-to-noise ratio

The signal-to-noise ratio (SNR) for a quantum sensing
experiment can be defined as

SNR =
δpobs

σp
= δp(t) e−χ(t)2C

√
N , (39)

where δpobs is given by Eq. (26) and σp is given by Eq.
(38). To further specify the SNR, the change in prob-
ability δp can be related to the change in signal δV as
δp = δV q|∂qV p(t)| ∝ (γtδV )q, with q = 1 for slope de-
tection and q = 2 for variance detection (see Fig. 3).
In addition, the number of measurements N is equal to
T/(t + tm), where T is the total available measurement
time and tm is the extra time needed to initialize, manip-
ulate and readout the sensor. The updated SNR becomes

SNR = δV q|∂qV p(t)| e−χ(t)2C(tm)

√
T√

t+ tm
, (40)

where C(tm) is a function of tm because the readout ef-
ficiency often improves for longer readout times.

2. Minimum detectable signal and sensitivity

The sensitivity is defined as the minimum detectable
signal vmin that yields unit SNR for an integration time
of one second (T = 1 s),

vqmin =
eχ(t)
√
t+ tm

2C(tm)|∂qV p(t)|
∝ eχ(t)

√
t+ tm

2C(tm)γqtq
. (41)

Eq. (41) provides clear guidelines for maximizing the sen-
sitivity. First, the sensing time t should be made as long
as possible. However, because the decay function χ(t)
exponentially penalizes the sensitivity for t > Tχ, the
optimum sensing time is reached when t ≈ Tχ. Second,
the sensitivity can be optimized with respect to tm. In
particular, if C(tm) does improve as C ∝ √tm – which is
a typical situation when operating in the averaged read-
out regime – the optimum choice is tm ≈ t. Conversely, if
C is independent of tm – for example, because the sensor
is operated in the single-shot regime or because readout
resets the sensor – tm should be made as short as possible.
Finally, C can often be increased by optimizing the ex-
perimental implementation or using advanced quantum
schemes, such as quantum logic readout.

We now evaluate Eq. (41) for the most common ex-
perimental situations:

a. Slope detection For slope detection, p0 = 0.5 and
δp(t) ≈ 1

2γV t (Eq. 18). The sensitivity is

vmin =
eχ(t)
√
t+ tm

γC(tm)t
. (42)

Note that the units of sensitivity are then typically given
by the units of the signal V to be measured times Hz−1/2.
Assuming tm � t, we can find an exact optimum solution
with respect to t. Specifically, for a Ramsey measurement
with an exponential dephasing e−χ(t) = e−t/T

∗
2 , the op-

timum evolution time is t = T ∗2 /2 and

vmin =

√
2e

γC
√
T ∗2

for t =
1

2
T ∗2 . (43)

This corresponds to Eq. (21) highlighted in the introduc-
tion to this section.

b. Variance detection For variance detection, δp ≈
1
4γ

2V 2
rmst

2 (Eq. 19). The sensitivity is

vmin =

[
2eχ(t)

√
t+ tm

C(tm)γ2t2

]1/2

, (44)

In the limit of tm ≈ 0 and t ≈ Tχ, this expression simpli-
fies to

vmin =

√
2e

γ
√
C 4

√
T 3
χ

, (45)
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which corresponds to Eq. (22) highlighted in the intro-
duction of the section. Thus, variance detection profits
more from a long coherence time Tχ than slope detection
(but is, in turn, more vulnerable to decoherence). Al-
ternatively, for the detection of a noise spectral density
SV (ω), the transition probability is δp ≈ 1

2γ
2SV (ω)Tχ

(see Eqs. (84) and (98)) and

Svmin
(ω) ≈ e

γ2C
√
Tχ

. (46)

3. Signal integration

The above expressions for sensitivity all refer to the
minimum detectable signal per unit time. By integrating
the signal over longer measurement times T , the sensor
performance can be improved. According to Eq. (40),
the minimum detectable signal for an arbitrary time T is
V qmin(T ) = vqmin/

√
T . Therefore, the minimum detectable

signal for slope and variance detection, Eqs. (42) and
(45), respectively, scale as

Vmin(T ) = vminT
−1/2 for slope detection, (47)

Vmin(T ) = vminT
−1/4 for variance detection. (48)

The corresponding scaling for the spectral density is
SVmin

= Svmin
T−1/2. We notice that variance detection

improves only ∝ T 1/4 with the integration time, while
slope detection improves ∝ T 1/2. Hence, for weak signals
with long averaging times T � Tχ, variance detection is
typically much less sensitive than slope detection. As we
will discuss in Section VIII, adaptive sensing methods
can improve on these limits.

C. Allan variance

Sensors are typically also characterized by their sta-
bility over time. Indeed, while the sensitivity calcula-
tion suggests that one will always improve the minimum
detectable signal by simply extending the measurement
time, slow variations affecting the sensor might make this
not possible. These effects can be quantified by the Allan
variance (Allan, 1966) or its square root, the Allan devi-
ation. While the concept is based on a classical analysis
of the sensor output, it is still important for characteriz-
ing the performance of quantum sensors. In particular,
the Allan variance is typically reported to evaluate the
performance of quantum clocks (Hollberg et al., 2001;
Leroux et al., 2010b).

Assuming that the sensor is sampled over time at con-
stant intervals ts yielding the signal xj = x(tj) = x(jts),
the Allan variance is defined as

σ2
X(τ) =

1

2(N − 1)t2s

N−1∑
j=1

(xj+1 − xj)2 , (49)

where N is the number of samples xj . One is typically
interested in knowing how σ2

X varies with time, given
the recorded sensor outputs. To calculate σ2

X(t) one can
group the data in variable-sized bins and calculate the
Allan variance for each grouping. The Allan variance for
each grouping time t = mts can then be calculated as

σ2
X(mts) =

1

2(N − 2m)m2t2s

N−2m∑
j=1

(xj+m − xj)2. (50)

The Allan variance can also be used to reveal the perfor-
mance of a sensor beyond the standard quantum limit
(Leroux et al., 2010b), and its extension to and lim-
its in quantum metrology have been recently explored
(Chabuda et al., 2016).

D. Quantum Cramér Rao Bound for parameter estimation

The sensitivity of a quantum sensing experiment can
be more rigorously considered in the context of the
Cramér-Rao bound applied to parameter estimation.
Quantum parameter estimation aims at measuring the
value of a continuous parameter V that is encoded in the
state of a quantum system ρV , via, e.g., its interaction
with the external signal we want to characterize. The
estimation process consists of two steps: in a first step,
the state ρV is measured; in a second step, the estimate
of V is determined by data-processing the measurement
outcomes.

In the most general case, the measurement can be de-
scribed by a positive-operator-valued measure (POVM)
M = {ENx } over the N copies of the quantum system.
The measurement yields the outcome x with conditional

probability pN (x|V ) = Tr[E
(N)
x ρ⊗NV ].

With some further data processing, we arrive at the
estimate v of the parameter V . The estimation uncer-
tainty can be described by the probability PN (v|V ) :=∑
x p

(N)
est (v|x)pN (x|V ), where p

(N)
est (v|x) is the probability

of estimating v from the measurement outcome x. We
can then define the estimation uncertainty as ∆VN :=√∑

v[v − V ]2PN (v|V ). Assuming that the estimation
procedure is asymptotically locally unbiased, ∆VN obeys
the so-called Cramér-Rao bound

∆VN ≥ 1/γ
√
FN (V ) , (51)

where

FN (V ) :=
∑
x

1

pN (x|V )

(
∂pN (x|V )

∂V

)2

=
∑
x

1

Tr[E
(N)
x ρ⊗nV ]

(
∂ Tr[E

(N)
x ρ⊗nV ]

∂V

)2 (52)

is the Fisher information associated with the given
POVM measurement (Braunstein and Caves, 1994).
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By optimizing Eq. (51) with respect to all possible
POVM’s, one obtains the quantum Cramér-Rao bound
(QCRB) (Braunstein, 1996; Braunstein and Caves, 1994;
Goldstein et al., 2010; Helstrom, 1967; Holevo, 1982;
Paris, 2009)

∆VN >
1

γ
√

maxM(N) [FN (V )]
>

1

γ
√
NF(ρV )

, (53)

where the upper bound of maxM(N) [FN (V )] is expressed
in terms of the quantum Fisher information F(ρV ), de-
fined as

F(ρV ) := Tr[R−1
ρV (∂V ρV )ρVR−1

ρV (∂V ρV )], (54)

with

R−1
ρ (A) :=

∑
j,k:λj+λk 6=0

2Ajk|j〉〈k|
λj + λk

(55)

being the symmetric logarithmic derivative written in the
basis that diagonalizes the state, ρV =

∑
j λj |j〉〈j|.

A simple case results when ρV is a pure state, obtained
from the evolution of the reference initial state |0〉 un-

der the signal Hamiltonian, |ψV 〉 = e−iĤV t|0〉. Then, the
QCRB is a simple uncertainty relation (Braunstein, 1996;
Braunstein and Caves, 1994; Helstrom, 1967; Holevo,
1982),

∆VN >
1

2γ
√
N ∆H

, (56)

where ∆H :=
√
〈H2〉 − 〈H〉2. We note that the scal-

ing of the QCRB with the number of copies, N−1/2, is a
consequence of the additivity of the quantum Fisher in-
formation for tensor states ρ⊗N . This is the well-known
standard quantum limit (SQL). To go beyond the SQL,
one then needs to use entangled states (see Section IX) –
in particular, simply using correlated POVMs is not suf-
ficient. Thus, to reach the QCRB, local measurements
and at most adaptive estimators are sufficient, without
the need for entanglement.

While the quantum Fisher information (and the
QCRB) provide the ultimate lower bound to the achiev-
able uncertainty for optimized quantum measurments,
the simpler Fisher information can be used to evaluate a
given measurement protocol, as achievable, e.g., within
experimental constraints.

Consider for example the sensing protocols described
in Section IV. For the Ramsey protocol, the quantum
sensor state after the interaction with the signal V is
given by

ρ11(V, t) =
1

2
ρ12(V, t) = − i

2
e−iγV te−χ(t) . (57)

Here, e−χ(t) describes decoherence and relaxation as dis-
cussed with Eq. (26). If we assume to perform a projec-
tive measurement in the σx basis, {|±〉} = { 1√

2
(|0〉±|1〉),

giving the outcome probabilities p(x±|V ) = 〈±|ρ(V )|±〉,
the Fisher information is

F =
∑
x

1

p(x|V )
[∂V p(x|V )]

2
=

t2 cos2(γV t)e−2χ

1− e−2χ sin2(γV t)
.

(58)
The Fisher information thus oscillates between its min-
imum, where γV t = (k + 1/2)π and F = 0, and its
optimum, where γV t = kπ and F = t2e−2χ. The uncer-
tainty in the estimate δV = 1/γ

√
NF therefore depends

on the sensing protocol bias point. In the optimum case
F corresponds to the quantum Fisher information and
we find the QCRB

∆VN =
1

γ
√
NF

=
eχ

γt
√
N

. (59)

Depending on the functional form of χ(t), we can further
find the optimal sensing time for a given total measure-
ment time. Note that if we remember thatN experiments
will take a time T = N(t + tm), and we add inefficiency
due to the sensor readout, we can recover the sensitivity
vmin of Eq. (42).

Similarly, we can analyze more general protocols, such
as variance detection of random fields, simultaneous es-
timation of multiple parameters (Baumgratz and Datta,
2016) or optimized protocols for signals growing over time
(Pang and Jordan, 2016).

VI. SENSING OF AC SIGNALS

So far we have implicitly assumed that signals are
static and deterministic. For many applications it is im-
portant to extend sensing to time-dependent signals. For
example, it may be required to detect the amplitude, fre-
quency or phase of an oscillating signal. More broadly,
one may be interested in knowing the waveform of a time-
varying parameter or reconstructing a frequency spec-
trum. A diverse set of quantum sensing methods has
been developed for this purpose that are summarized in
the following two sections.

Before discussing the various sensing protocols in more
detail, it is important to consider the type of information
that one intends to extract from a time-dependent signal
V (t). In this Section VI, we will assume that the signal
is composed of one or a few harmonic tones and our goal
will be to determine the signal’s amplitude, frequency,
phase or overall waveform. In the following Section VII,
we will discuss the measurement of stochastic signals with
the intent of reconstructing the noise spectrum or mea-
suring the noise power in a certain bandwidth.

A. Time-dependent signals

As measuring arbitrary time-dependent signals is a
complex task, we first focus on developing a basic set of
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FIG. 5 Pulse diagrams for DC and AC sensing sequences.
Narrow blocks represent π/2 pulses and wide blocks represent
π pulses, respectively. t is the total sensing time and τ is
the interpulse delay. (a) Ramsey sequence. (b) Spin-echo
sequence. (c) CP multipulse sequence. (d) PDD multipulse
sequence.

AC sensing protocols, assuming a single-tone AC signal
given by

V (t′) = Vpk cos(2πfact
′ + α) . (60)

This signal has three basic parameters, including the sig-
nal amplitude Vpk, the frequency fac and the relative
phase α. Our aim will be to measure one or several of
these parameters using suitable sensing protocols.

Signal detection can be extended to multi-tone signals
by summing over individual single-tone signals,

V (t′) =
∑
m

Vpk,m cos(2πfac,mt
′ + αm) , (61)

where Vpk,m, fac,m and αm are the individual amplitudes,
frequencies and phases of the tones, respectively.

B. Ramsey and Echo sequences

To illustrate the difference between DC and AC sens-
ing, we re-examine the Ramsey measurement from Sec-
tion IV.C. The corresponding pulse diagram is given in
Fig. 5(a). This protocol is ideally suited to measure
static shifts of the transition energy. But is it also capa-
ble of detecting dynamical variations? In order to answer
this question, one can inspect the phase φ accumulated
during the sensing time t due to either a static or a time-
dependent signal V (t),

φ =

∫ t

0

γV (t′) dt′ . (62)

For a static perturbation, the accumulated phase is sim-
ply φ = γV t. For a rapidly oscillating perturbation, by
contrast, phase accumulation is averaged over the sensing
time, and φ = γ〈V (t′)〉t ≈ 0. To answer our question, the
Ramsey sequence will only be sensitive to slowly varying
signals up to some cut-off frequency ≈ t−1.

Sensitivity to alternating signals can be restored by us-
ing time-reversal (“spin echo”) techniques (Hahn, 1950).
To illustrate this, we assume that the AC signal goes
through exactly one period of oscillation during the sens-
ing time t. The Ramsey phase φ due to this signal is zero
because the positive phase build-up during the first half
of t is exactly canceled by the negative phase build-up
during the second half of t. However, if the qubit is in-
verted at time t/2 using a π pulse (see Fig. 5(b)), the
time evolution of the second period is reversed, and the
accumulated phase is non-zero,

φ =

∫ t/2

0

γV (t′) dt′ −
∫ t

t/2

γV (t′) dt′ =
2

π
γVpkt cosα .

(63)

C. Multipulse sensing sequences

The spin echo technique can be extended to sequences
with many π pulses. These sequences are commonly re-
ferred to as multipulse sensing sequences or multipulse
control sequences, and allow for a detailed shaping of
the frequency response of the quantum sensor. To un-
derstand the AC characteristics of a multipulse sensing
sequence, we consider the phase accumulated for a gen-
eral sequence of n π pulses applied at times 0 < tj < t,
with j = 1...n. The accumulated phase is given by

φ =

∫ t

0

γV (t′)y(t′) dt′ , (64)

where y(t′) = ±1 is the modulation function of the se-
quence that changes sign whenever a π pulse is applied.
For a harmonic signal V (t′) = Vpk cos(2πfact

′ + α) the
phase is

φ =
γVpk

2πfac
[sin(α)− (−1)n sin(2πfact+ α)

+ 2

n∑
j=1

(−1)j sin(2πfactj + α)]

= γVpkt×W (fac, α) . (65)

This defines for any multipulse sequence a weighting func-
tion W (fac, α). For composite signals consisting of sev-
eral harmonics with different frequencies and amplitudes,
Eq. (61), the accumulated phase simply represents the
sum of individual tone amplitudes multiplied by the re-
spective weighting functions.

1. CP and PDD sequences

The simplest pulse sequences used for sensing have
been initially devised in nuclear magnetic resonance
(NMR) (Slichter, 1996) and have been further developed
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in the context of dynamical decoupling (DD) (Viola and
Lloyd, 1998). They are composed of n equally spaced
π-pulses with an interpulse duration τ . The most com-
mon types are Carr-Purcell (CP) pulse trains (Carr and
Purcell, 1954) (Fig. 5(c)) and periodic dynamical de-
coupling (PDD) sequences (Khodjasteh and Lidar, 2005)
(Fig. 5(d)).

For a basic CP sequence, tj = 2j−1
2 τ , and the weighting

function is (Hirose et al., 2012; Taylor et al., 2008)

WCP(fac, α) =
sin(πfacnτ)

πfacnτ
[1−sec(πfacτ)] cos(α+πfacnτ) .

(66)
Similarly, for a PDD sequence, tj = jτ and

WPDD(fac, α) =
sin(πfacnτ)

πfacnτ
tan(πfacτ) sin(α+πfacnτ) .

(67)
Because of the first (sinc) term, these weighting functions
resemble narrow-band filters around the center frequen-
cies fac = fk = k/(2τ), where k = 1, 3, 5, ... is the har-
monic order. In fact, they can be rigorously treated as
filter functions that filter the frequency spectrum of the
signal V (t) (see Section VII). For large pulse numbers n,
the sinc term becomes very peaked and the filter band-
width ∆f ≈ 1/(nτ) = 1/t (full width at half maximum)
becomes very narrow. The narrow-band filter character-
istics can be summed up as follows (see Fig. 5(c)),

fk = k/(2τ) center frequencies (68)

∆f ≈ 1/t = 1/(nτ) bandwidth (69)

WCP(α) =
2

πk
(−1)

k−1
2 cos(α)

WPDD(α) = − 2

πk
sin(α)

peak transmission (70)

The advantage of the CP an PDD sequences is that their
filter parameters can be easily tuned. In particular, the
pass-band frequency can be selected via the interpulse
delay τ , while the filter width can be adjusted via the
number of pulses n = t/τ (up to a maximum value of
n ≈ T2/τ). The resonance order k can also be used to
select the pass-band frequency, however, because k = 1
provides the strongest peak transmission, most reported
experiments used this resonance. The time response of
the transition probability is

p =
1

2
[1− cos (W (fac, α)γVpkt)]

=
1

2

[
1− cos

(
2γVpkt cosα

kπ

)]
, (71)

where the last expression represents the resonant case
(fac = k/2τ) for CP sequences.

2. Lock-in detection

The phase φ acquired during a CP or PDD sequence
depends on the relative phase difference α between the
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Rectified signal
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time t’
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FIG. 6 Modulation and weight functions of a CP multipulse
sequence. (a) CP multipulse sequence. (b) Signal V (t′), mod-
ulation function y(t′) and “rectified” signal V (t′)×y(t′). The
accumulated phase is represented by the area under the curve.

(c) Weight function W
2
(fac) associated with the modulation

function. k is the harmonic order of the filter resonance.

AC signal and the modulation function y(t). For a signal
that is in-phase with y(t), the maximum phase accumu-
lation occurs, while for an out-of-phase signal, φ = 0.

This behavior can be exploited to add further capa-
bilities to AC signal detection. Kotler et al., 2011, have
shown that both quadratures of a signal can be recov-
ered, allowing one to perform lock-in detection of the
signal. Furthermore, it is possible to correlate the phase
acquired during two subsequent multipulse sequences to
perform high-resolution spectroscopy of AC signals (see
Section VI.E).

3. Other types of multipulse sensing sequences

Many varieties of multipulse sequences have been con-
ceived with the aim of optimizing the basic CP design,
including improved robustness against pulse errors, bet-
ter decoupling performance, narrower spectral response
and sideband suppression, and avoidance of signal har-
monics.
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A systematic analysis of many common sequences has
been given by Cywinski et al., 2008. One favorite has
been the XY4, XY8 and XY16 series of sequences (Gul-
lion et al., 1990) owing to their high degree of pulse er-
ror compensation. A downside of XY type sequences
are signal harmonics (Loretz et al., 2015) and the side-
bands common to CP sequences with equidistant pulses.
Other recent efforts include sequences with non-equal
pulse spacing (Ajoy et al., 2017; Casanova et al., 2015;
Zhao et al., 2014) or sequences composed of alternat-
ing subsequences (Albrecht and Plenio, 2015). A Flo-
quet spectroscopy approach to multipulse sensing has
also been proposed (Lang et al., 2015).

4. AC signals with random phase

Often, the multipulse sequence cannot be synchronized
with the signal or the phase α cannot be controlled.
Then, incoherent averaging leads to phase cancellation,
〈φ〉 = 0. In this case, it is advantageous to measure the
variance of the phase 〈φ2〉 rather than its average 〈φ〉.
(Although such a signal technically represents a stochas-
tic signal, which will be considered in more detail in the
next section, it is more conveniently described here.)

For a signal with fixed amplitude but random phase,
the variance is

〈φ2〉 = γ2V 2
rmst

2W
2
(fac), (72)

where Vrms = Vpk/
√

2 is the rms amplitude of the sig-

nal and W
2
(fac) is the average over α = 0 . . . 2π of the

weighting functions,

W
2
(fac) =

1

2π

∫ 2π

0

W 2(fac, α) dα (73)

For the CP and PDD sequences, the averaged functions
are given by

W
2

CP(fac) =
sin2(πfacnτ)

2(πfacnτ)2
[1− sec (πfacτ)]

2
,

W
2

PDD(fac) =
sin2(πfacnτ)

2(πfacnτ)2
tan (πfacτ)

2
, (74)

and the peak transmission at fac = k/2τ is W
2

=
2/(kπ)2. The time response of the transition probability
is (Kotler et al., 2013)

p(t) =
1

2

[
1− J0

(√
2W (fac)γVrmst

)]
=

1

2

[
1− J0

(
2
√

2γVrmst

kπ

)]
(75)

where J0 is the Bessel function of the first kind and where
the second equation reflects the resonant case.
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FIG. 7 Transition probability p(t) as a function of phase ac-
cumulation time t. (a) Ramsey oscillation (Eq. 14). (b) AC
signal with fixed amplitude and optimum phase (Eq. 71). (c)
AC signal with fixed amplitude and random phase (Eq. 75).
(d) AC signal with random amplitude and random phase (Eq.
76). (e) Broadband noise with χ = Γt (Eq. 83).

5. AC signals with random phase and random amplitude

If the amplitude Vpk is not fixed, but slowly fluctuating
between different measurements, the variance 〈φ2〉 must
be integrated over the probability distribution of Vpk. A
particularly important situation is a Gaussian amplitude
fluctuation with an rms amplitude Vrms. In this case, the
resonant time response of the transition probability is

p(t) =
1

2

[
1− exp

(
−W

2
γ2V 2

rmst
2

2k2

)
I0

(
W

2
γ2V 2

rmst
2

2k2

)]
(76)

where I0 is the modified Bessel function of the first kind.

D. Waveform reconstruction

The detection of AC fields can be extended to the more
general task of sensing and reconstructing arbitrary time
dependent fields. A simple approach is to record the time
response p(t) under a specific sensing sequence, such as
a Ramsey sequence, and to reconstruct the phase φ(t)
and signal V (t) from the time trace (Balasubramanian
et al., 2009). This approach is, however, limited to the
bandwidth of the sequence and by readout deadtimes.

To more systematically reconstruct the time depen-
dence of an arbitrary signal, one may use a family of
pulse sequences that forms a basis for the signal. A
suitable basis are Walsh dynamical decoupling sequences
(Hayes et al., 2011), which apply a π pulse every time
the corresponding Walsh function (Walsh, 1923) flips
its sign. Under a control sequence with n π-pulses ap-
plied at the zero-crossings of the n-th Walsh function
y(t′) = wn(t′/t), the phase acquired after an acquisition
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period t is

φ(t) = γ

∫ t

0

V (t′)y(t′)dt′ = γVnt , (77)

which is proportional to the n-th Walsh coefficient Vn of
V (t′). By measuring N Walsh coefficients (by applying
N different sequences) one can reconstruct an N -point
functional approximation to the field V (t′) from the N -
th partial sum of the Walsh-Fourier series (Cooper et al.,
2014; Magesan et al., 2013b),

VN (t′) =

N−1∑
n=0

Vnwn(t′/t), (78)

which can be shown to satisfy limN→∞ VN (t′) = V (t′). A
similar result can be obtained using different basis func-
tions, such as Haar wavelets, as long as they can be easily
implemented experimentally (Xu et al., 2016).

An advantage of these methods is that they provide
protection of the sensor against dephasing, while extract-
ing the desired information. In addition, they can be
combined with compressive sensing techniques (Candés
et al., 2006; Magesan et al., 2013a; Puentes et al., 2014)
to reduce the number of acquisition needed to reconstruct
the time-dependent signal. The ultimate metrology lim-
its in waveform reconstruction have also been studied
(Tsang et al., 2011).

E. Frequency estimation

An important capability in AC signal detection is the
precise estimation of frequencies. In quantum sensing,
most frequency estimation schemes are based on dynam-
ical decoupling sequences. These are discussed in the
following. Fundamental limits of frequency estimation
based on the quantum Fisher information have been con-
sidered by Pang and Jordan, 2016.

1. Dynamical decoupling spectroscopy

A simple approach for determining a signal’s frequency
is to measure the response to pulse sequences with dif-
ferent pulse spacings τ . This is equivalent to stepping
the frequency of a lock-in amplifier across a signal. The
spectral resolution of dynamical decoupling spectroscopy
is determined by the bandwidth of the weighting function
W (fac, τ), which is given by ∆f ≈ 1/t (see Eq. (69)).
Because t can only be made as long as the decoherence
time T2, the spectral resolution is limited to ∆f ≈ 1/T2.
The precision of the frequency estimation, which also de-
pends on the signal-to-noise ratio, is directly proportional
to ∆f .

multipulse
sequence

V(t’)

(b)

(a)

(c)

time t’

t1

ta ta

Init Readout

ta

tsInit Readout

FIG. 8 Correlation spectroscopy. (a) AC signal V (t′). (b)
Correlation sequence. Two multipulse sequences are inter-
rupted by an incremented delay time t1. Because the mul-
tipulse sequences are phase sensitive, the total phase accu-
mulated after the second multipulse sequence oscillates with
fact1. The maximum t1 is limited by the relaxation time
T1, rather than the typically short decoherence time T2. (c)
Continouous sampling. The signal is periodically probed in
intervals of the sampling time ts. The frequency can be esti-
mated from a sample record of arbitrary duration, permitting
an arbitrarily fine frequency resolution.

2. Correlation sequences

Several schemes have been proposed and demonstrated
to further narrow the bandwidth and to perform high
resolution spectroscopy. All of them rely on correlation-
type measurements where the outcomes of subsequent
sensing periods are correlated.

A first method is illustrated in Fig. 8(a) in combina-
tion with multipulse detection. The multipulse sequence
is subdivided into two equal sensing periods of duration
ta = t/2 that are separated by an incremented free evo-
lution period t1. Since the multipulse sequence is phase
sensitive, constructive or destructive phase build-up oc-
curs between the two sequences depending on whether
the free evolution period t1 is a half multiple or full mul-
tiple of the AC signal period Tac = 1/fac. The final
transition probability therefore oscillates with t1 as

p(t1) =
1

2
{1− sin[Φ cos(α)] sin[Φ cos(α+ 2πfact1)]}

≈ 1

2

{
1− Φ2 cos(α) cos(α+ 2πfact1)

}
(79)

where Φ = γVpkt/(kπ) is the maximum phase that can
be accumulated during either of the two multipulse se-
quences. The second equation is for small signals where
sin Φ ≈ Φ. For signals with random phase, Eq. (79)
can be integrated over α and the transition probability
simplifies to

p(t1) ≈ 1

2

{
1− Φ2

2
cos(2πfact1)

}
(80)
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Since the qubit is parked in |0〉 and |1〉 during the free
evolution period, relaxation is no longer governed by
T2, but by the typically much longer T1 relaxation time
(Laraoui and Meriles, 2013). In this way, a Fourier-
limited spectral resolution of ∆f ∼ 1/T1 is possible.
The resolution can be further enhanced by long-lived
auxiliary memory qubits (see Section X) and resolution
improvements by two-to-three orders of magnitude over
dynamical decoupling spectroscopy have been demon-
strated (Pfender et al., 2016; Rosskopf et al., 2016; Zaiser
et al., 2016). The correlation protocol was further shown
to eliminate several other shortcomings of multipulse
sequences, including signal ambiguities resulting from
the multiple frequency windows and spectral selectivity
(Boss et al., 2016).

3. Continuous sampling

A second approach is the continuous sampling of a
signal, illustrated in Fig. 8(b). The output signal can
then be Fourier transformed to extract the undersam-
pled frequency of the original signal. Because continuous
sampling no longer relies on quantum state lifetimes, the
Fourier-limited resolution can be extended to arbitrary
values and is only limited by total experiment duration T ,
and ultimately the control hardware. The original signal
frequency can then be reconstructed from the undersam-
pled data record using compressive sampling techniques
(Nader et al., 2011). Continuous sampling has recently
led to the demonstration of µHz spectral resolution (Boss
et al., 2017; Jelezko et al., 2017).

VII. NOISE SPECTROSCOPY

In this Section, we discuss methods for reconstruct-
ing the frequency spectrum of stochastic signals, a task
commonly referred to as noise spectroscopy. Noise spec-
troscopy is an important tool in quantum sensing, as it
can provide much insight into both external signals and
the intrinsic noise of the quantum sensor. In particular,
good knowledge of the noise spectrum can help the adop-
tion of suitable sensing protocols (like dynamical decou-
pling or quantum error correction schemes) to maximize
the sensitivity of the quantum sensor.

Noise spectroscopy relies on the systematic analysis
of decoherence and relaxation under different control se-
quences. This review will focus on two complementary
frameworks for extracting noise spectra. A first concept
is that of “filter functions”, where the phase pick-up due
to stochastic signals is analyzed under different dynam-
ical decoupling sequences. The second concept, known
as “relaxometry”, has its origins in the field of magnetic
resonance spectroscopy and is closely related to Fermi’s
golden rule.

A. Noise processes

For the following analysis we will assume that the
stochastic signal V (t) is Gaussian. Such noise can be
described by simple noise models, like a semi-classical
Gaussian noise or the Gaussian spin-boson bath. In ad-
dition, we will assume that the autocorrelation function
of V (t),

GV (t) = 〈V (t′ + t)V (t′)〉 , (81)

decays on a time scale tc that is shorter than the sensing
time t, such that successive averaging measurements are
not correlated. The noise can then be represented by a
power spectral density (Biercuk et al., 2011),

SV (ω) =

∫ ∞
−∞

e−iωtGV (t) dt , (82)

that has no sharp features within the bandwidth ∆f ≈
1/t of the sensor. The aim of a noise spectroscopy exper-
iment is to reconstruct SV (ω) as a function of ω over a
frequency range of interest.

Although this Section focuses on Gaussian noise with
tc . t, the analysis can be extended to other noise mod-
els and correlated noise. When tc � t, the frequency
and amplitude of V (t) are essentially fixed during one
sensing period and the formalism of AC sensing can be
applied (see Section VI.C). A rigorous derivation for all
ranges of tc, but especially tc ≈ t is given by Cum-
mings, 1962. More complex noise models, such as 1/f
noise with no well-defined tc, or models that require a
cumulant expansion beyond a first order approximation
on the noise strength can also be considered (Ban et al.,
2009; Bergli and Faoro, 2007). Finally, open-loop con-
trol protocols have been introduced (Barnes et al., 2016;
Cywiński, 2014; Norris et al., 2016; Paz-Silva and Viola,
2014) to characterize stationary, non-Gaussian dephas-
ing.

B. Decoherence, dynamical decoupling and filter functions

There have been many proposals for examining deco-
herence under different control sequences to investigate
noise spectra (Almog et al., 2011; Faoro and Viola, 2004;
Young and Whaley, 2012; Yuge et al., 2011). In particu-
lar, dynamical decoupling sequences based on multipulse
protocols (Section VI.C) provide a systematic means for
filtering environmental noise (Álvarez and Suter, 2011;
Biercuk et al., 2011; Kotler et al., 2011). These have
been implemented in many physical systems (Bar-Gill
et al., 2012; Bylander et al., 2011; Dial et al., 2013; Kotler
et al., 2013; Muhonen et al., 2014; Romach et al., 2015;
Yan et al., 2012, 2013; Yoshihara et al., 2014). A brief in-
troduction to the method of filter functions is presented
in the following.



25

1. Decoherence function χ(t)

Under the assumption of a Gaussian, stationary noise,
the loss of coherence can be captured by an exponential
decay of the transition probability with time t,

p(t) =
1

2

(
1− e−χ(t)

)
. (83)

where χ(t) is the associated decay function or decoher-
ence function that was already discussed in the context
of sensitivity (Section V). Quite generally, χ(t) can be
identified with an rms phase accumulated during time t,

χ(t) =
1

2
φ2

rms . (84)

according to the expression for variance detection, Eq.
(20).

Depending on the type of noise present, the decoher-
ence function shows a different dependence on t. For
white noise, the dephasing is Markovian and χ(t) = Γt,
where Γ is the decay rate. For Lorentzian noise cen-
tered at zero frequency the decoherence function is χ(t) =
(Γt)3. For a generic 1/f -like decay, where the noise falls
of ∝ ωa (with a around unity), the decoherence function
is χ(t) = (Γt)a+1 (Cywinski et al., 2008; Medford et al.,
2012) with a logarithmic correction depending on the ra-
tio of total measurement time and evolution time (Dial
et al., 2013). Sometimes, decoherence may even need to
be described by several decay constants associated with
several competing processes. A thorough discussion of
decoherence is presented in the recent review by Suter
and Álvarez, 2016.

2. Filter function Y (ω)

The decoherence function χ(t) can be analyzed un-
der the effect of different control sequences. Assuming
the control sequence has a modulation function y(t) (see
Section VI.C), the decay function is determined by the
correlation integral (Biercuk et al., 2011; de Sousa, 2009)

χ(t) =
1

2

∫ t

0

dt′
∫ t

0

dt′′ y(t′)y(t′′)γ2GV (t′ − t′′) , (85)

where GV (t) is the autocorrelation function of V (t)
(Eq. 81). In the frequency domain the decay function
can be expressed as

χ(t) =
2

π

∫ ∞
0

γ2SV (ω)|Y (ω)|2dω , (86)

where |Y (ω)|2 is the so-called filter function of y(t), de-
fined by the finite-time Fourier transform

Y (ω) =

∫ t

0

y(t′)eiωt
′
dt′ . (87)

(Note that this definition differs by a factor of ω2 from
the one by Biercuk et al., 2011). Thus, the filter func-
tion plays the role of a transfer function, and the decay
of coherence is captured by the overlap with the noise
spectrum SV (ω).

To illustrate the concept of filter functions we recon-
sider the canonical example of a Ramsey sensing se-
quence. Here, the filter function is

|Y (ω)|2 =
sin2(ωt/2)

ω2
. (88)

The decoherence function χ(t) then describes the “free-
induction decay”,

χ(t) =
2

π

∫ ∞
0

γ2SV (ω)
sin2(ωt/2)

ω2
dω ≈ 1

2
γ2SV (0)t ,

(89)
where the last equation is valid for a spectrum that is flat
around ω . π/t. The Ramsey sequence hence acts as a
simple sinc filter for the noise spectrum SV (ω), centered
at zero frequency and with a lowpass cut-off frequency of
approximately π/t.

3. Dynamical decoupling

To perform a systematic spectral analysis of SV (ω),
one can examine decoherence under various dynamical
decoupling sequences. Specifically, we inspect the fil-
ter functions of periodic modulation functions ync,τc(t),
where a basic building block y1(t) of duration τc is re-
peated nc times. The filter function of ync,τc(t) is given
by

Ync,τc(ω) = Y1,τc(ω)

nc−1∑
k=0

eiτck

= Y1,τc(ω)e−i(nc−1)ωτc/2
sin(ncωτc/2)

sin(ωτc/2)
, (90)

where Y1,τc(ω) is the filter function of the basic building
block. For large cycle numbers, Ync,τc(ω) presents sharp
peaks at multiples of the inverse cycle time τ−1

c , and it
can be approximated by a series of δ functions.

Two specific examples of periodic modulation func-
tions include the CP and PDD sequences considered in
Section VI.C, where τc = 2τ and nc = n/2. The filter
function for large pulse numbers n is

|Yn,τ |2 ≈
∑
k

2π

(kπ)2
sinc[(ω − ωk)t/2]2

≈
∑
k

2π

(kπ)2
tδ(ω − ωk) (91)

where ωk = 2π×k/(2τ) are resonances with k = 1, 3, 5, ...
(note that these expression are equivalent to the filters
Eq. (74) found for random phase signals).
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The decay function can then be expressed by a simple
sum of different spectral density components,

χ(t) =
2

π

∫ ∞
0

γ2SV (ω)
∑
k

2π

(kπ)2
tδ(ω − ωk) dω

=
4t

π2

∑
k

γ2SV (ωk)

k2
(92)

This result provides a simple strategy for reconstruct-
ing the noise spectrum. By sweeping the time τ between
pulses the spectrum can be probed at various frequen-
cies. Since the filter function is dominated by the first
harmonic (k = 1) the frequency corresponding to a cer-
tain τ is 1/(2τ). For a more detailed analysis the contri-
butions from higher harmonics as well as the exact shape
of the filter functions has to be taken into account. The
spectrum can then be recovered by spectral decomposi-
tion (Álvarez and Suter, 2011; Bar-Gill et al., 2012).

The filter analysis can be extended to more general
dynamical decoupling sequences. In particular, Zhao
et al., 2014, consider periodic sequences with more com-
plex building blocks, and Cywinski et al., 2008, consider
aperiodic sequences like the UDD sequence.

C. Relaxometry

An alternative framework for analyzing relaxation and
doherence has been developed in the field of magnetic
resonance spectroscopy, and is commonly referred to as
“relaxometry” (Abragam, 1961). The concept has later
been extended to the context of qubits (Schoelkopf et al.,
2003). The aim of relaxometry is to connect the spectral
density SV (ω) of a noise signal V (t) to the relaxation
rate Γ in first-order kinetics, χ(t) = Γt. Relaxometry
is based on first-order perturbation theory and Fermi’s
golden rule. The basic assumptions are that the noise
process is approximately Markovian and that the noise
strength is weak, such that first-order perturbation the-
ory is valid. Relaxometry has found many applications in
magnetic resonance and other fields, especially for map-
ping high-frequency noise based on T1 relaxation time
measurements (Kimmich and Anoardo, 2004).

1. Basic theory of relaxometry

To derive a quantitative relationship between the de-
cay rate Γ and a noise signal V (t), we briefly revisit the
elementary formalism of relaxometry (Abragam, 1961).
In a first step, V (t) can be expanded into Fourier com-
ponents,

V (t) =
1

2π

∫ ∞
−∞

dω
{
V (ω)e−iωt + V †(ω)eiωt

}
(93)

where V (ω) = V †(−ω). Next, we calculate the proba-
bility amplitude c1 that a certain frequency component
V (ω) causes a transition between two orthogonal sensing
states |ψ0〉 and |ψ1〉 during the sensing time t. Since the
perturbation is weak, perturbation theory can be applied.
The probability amplitude c1 in first order perturbation
theory is

c1(t) = −i
∫ t

0

dt′ 〈ψ1|ĤV (ω)|ψ0〉ei(ω01−ω)t′

= −i〈ψ1|ĤV (ω)|ψ0〉
ei(ω01−ω)t − 1

i(ω01 − ω)
(94)

where ĤV (ω) is the Hamiltonian associated with V (ω)
and ω01 is the transition energy between states |ψ0〉 and
|ψ1〉. The transition probability is

|c1(t)|2 = |〈ψ1|ĤV (ω)|ψ0〉|2
(

sin[(ω01 − ω)t/2]

(ω01 − ω)/2

)2

≈ 2π|〈ψ1|ĤV (ω)|ψ0〉|2tδ(ω01 − ω) (95)

where the second equation reflects that for large t, the
sinc function approaches a δ function peaked at ω01. The
associated transition rate is

∂|c1(t)|2
∂t

≈ 2π|〈ψ1|ĤV (ω)|ψ0〉|2δ(ω01 − ω) . (96)

This is Fermi’s golden rule expressed for a two-level sys-
tem that is coupled to a radiation field with a continuous
frequency spectrum (Sakurai and Napolitano, 2011).

The above transition rate is due to a single frequency
component of ĤV (ω). To obtain the overall transition
rate Γ, Eq. (96) must be integrated over all frequencies,

Γ =
1

π

∫ ∞
0

dω 2π|〈ψ1|ĤV (ω)|ψ0〉|2δ(ω01 − ω)

= 2|〈ψ1|ĤV (ω01)|ψ0〉|2

= 2γ2SV01(ω01) · |〈ψ1|σV /2|ψ0〉|2 (97)

where in the last equation, SV01
is the spectral density

of the component(s) of V (t) than can drive transitions
between |ψ0〉 and |ψ1〉, multiplied by a transition matrix
element |〈ψ1|σV /2|ψ0〉|2 of order unity that represents
the operator part of ĤV = V (t)σV /2 (see Eq. 5).

The last equation (97) is an extremely simple, yet pow-
erful and quantitative relationship: the transition rate
equals the spectral density of the noise evaluated at the
transition frequency, multiplied by a matrix element of
order unity (Abragam, 1961; Schoelkopf et al., 2003).
The expression can also be interpreted in terms of the rms
phase φrms. According to Eq. (84), φ2

rms = 2χ(t) = 2Γt,
which in turn yields (setting |〈ψ1|σV /2|ψ0〉|2 = 1

4 )

φ2
rms = γ2SV01(ω01)t . (98)

The rms phase thus corresponds to the noise integrated
over an equivalent noise bandwidth of 1/(2πt).
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Method Sensing states
{|ψ0〉, |ψ1〉}

Sensitive to V|| at
frequency

Sensitive to V⊥ at
frequency

Frequency tunable via

Ramsey {|+〉, |−〉} 0 —a —
Spin echo {|+〉, |−〉} 1/t —a —
Dynamical decoupling {|+〉, |−〉} πk/τ , with k = 1, 3, .. —a Pulse spacing τ , resonance order k
T1 relaxometry {|0〉, |1〉} — ω0 Static control field
Dressed states (resonant) {|+〉, |−〉} ω1 —a Drive field amplitude ω1

Dressed states (off-resonant) {|+〉, |−〉} ωeff ≈ ∆ω —a Detuning ∆ω

TABLE II Summary of noise spectroscopy methods. |±〉 = (|0〉 ± |1〉)/
√

2. aalso affected by T1 relaxation.

The relation between the transition rate Γ and the
spectral density can be further specified for vector signals
~V . In this case the transition rate represents the sum of
the three vector components of Vj , where j = x, y, z,

Γ = 2
∑

j=x,y,z

|〈ψ1|ĤVj
(ωj)|ψ0〉|2

= 2
∑

j=x,y,z

γ2SVj (ωj)|〈ψ1|σ̂j |ψ0〉|2 (99)

where SVj
(ωj) is the spectral density of Vj , ωj is a transi-

tion frequency that reflects the energy exchange required
for changing the state, and σ̂j are Pauli matrices. Note
that if {|ψ0〉, |ψ1〉} are coherent superposition states, Vx
and Vy represent the components of V⊥ that are in-phase
and out-of-phase with the coherence, rather than the
static components of the vector signal ~V .

Relaxation rates can be measured between any set
of sensing states {|ψ0〉, |ψ1〉}, including superposition
states. This gives rise to a great variety of possible re-
laxometry measurements. For example, the method can
be used to probe different vector components Vj(t) (or
commuting and non-commuting signals V||(t) and V⊥(t),
respectively) based on the selection of sensing states.
Moreover, different sensing states typically have vastly
different transition energies, providing a means to cover
a wide frequency spectrum. If multiple sensing qubits are
available, the relaxation of higher-order quantum transi-
tions can be measured, which gives additional freedom to
probe different symmetries of the Hamiltonian.

An overview of the most important relaxometry pro-
tocols is given in Table II and Fig. 9. They are briefly
discussed in the following.

2. T1 relaxometry

T1 relaxometry probes the transition rate between
states |0〉 and |1〉. This is the canonical example of en-
ergy relaxation. Experimentally, the transition rate is
measured by initializing the sensor into |0〉 at time t′ = 0
and inspecting p = |〈1|α〉|2 at time t′ = t without any
further manipulation of the quantum system (see Fig.

t

t

t

Init

(a)

(b)

(c)

Readout

Init  Readout

Init  Readout

FIG. 9 Common relaxometry protocols. (a) T1 relaxometry.
(b) T ∗2 relaxometry. (c) Dressed state relaxometry. Narrow
black boxes represent π/2 pulses and the grey box in (c) rep-
resents a resonant or off-resonant drive field.

9(a)). The transition rate is

(T1)−1 =
1

2
γ2SV⊥(ω0) , (100)

where T1 is the associated relaxation time and SV⊥ =
SVx

+ SVy
. Thus, T1 relaxometry is only sensitive to the

transverse component of ~V . Because T1 can be very long,
very high sensitivities are in principle possible, assum-
ing that the resonance is not skewed by low-frequency
noise. By tuning the energy splitting ω0 between |0〉
and |1〉, for example through the application of a static
control field, a frequency spectrum of SV⊥(ω) can be
recorded (Kimmich and Anoardo, 2004). For this reason
and because it is experimentally simple, T1 relaxometry
has found many applications. For example, single-spin
probes have been used to detect the presence of mag-
netic ions (Steinert et al., 2013), spin waves in magnetic
films (van der Sar et al., 2015), high-frequency magnetic
fluctuations near surfaces (Myers et al., 2014; Romach
et al., 2015; Rosskopf et al., 2014), and single molecules
(Sushkov et al., 2014a). T1 relaxometry has also been ap-
plied to perform spectroscopy of electronic and nuclear
spins (Hall et al., 2016). In addition, considerable effort
has been invested in mapping the noise spectrum near
superconducting flux qubits by combining several relax-
ometry methods (Bialczak et al., 2007; Bylander et al.,
2011; Lanting et al., 2009; Yan et al., 2013).
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1 GHz1 MHz1 kHzDC

Electronic spins, superconducting qubits

1 MHz1 kHz1 HzDC

Nuclear spins, trapped ions (vibrational)

Dressed states (off-resonant)

T1 relaxometry

Ramsey

Multipulse

Hahn echo

Dressed states

FIG. 10 Typical spectral range of noise spectroscopy proto-
cols. Scales refer to the quantum sensors discussed in Section
III.

3. T ∗2 and T2 relaxometry

T ∗2 relaxometry probes the transition rate between the
superposition states |±〉 = (|0〉 ± e−iω0t|1〉)/

√
2. This

corresponds to the free induction decay observed in a
Ramsey experiment (Fig. 9(b)). The associated dephas-
ing time T ∗2 is given by

(T ∗2 )−1 =
1

4
γ2SV⊥(ω0) +

1

2
γ2SV||(0) , (101)

where SV|| = SVz
(see also Eq. (89)). The transverse SV⊥

term in Eq. (101) involves a “bit flip” and the parallel
SV|| term involves a “phase flip”. Because a phase flip
does not require energy, the spectral density is probed
at zero frequency. Since SV (ω) is often dominated by
low-frequency noise, SV||(0) is typically much larger than
SV⊥(ω0) and the high-frequency contribution can often
be neglected. Note that Eq. (101) is exact only when
the spectrum SV||(ω) is flat up to ω ∼ π/t.
T ∗2 relaxometry can be extended to include dephasing

under dynamical decoupling sequences. The relevant re-
laxation time is then usually denoted by T2 rather than
T ∗2 . Dephasing under dynamical decoupling is more rig-
orously described by using filter functions (see Section
VII.B.2).

4. Dressed state methods

Relaxation can also be analyzed in the presence of a
resonant drive field. This method is known as “spin lock-
ing” in magnetic resonance (Slichter, 1996). Due to the
presence of the resonant field the degeneracy between |±〉
is lifted and the states are separated by the energy ~ω1,
where ω1 � ω0 is the Rabi frequency of the drive field. A

phase flip therefore is no longer energy conserving. The
associated relaxation time T1ρ is given by

(T1ρ)
−1 ≈ 1

4
γ2SV⊥(ω0) +

1

2
γ2SV||(ω1) (102)

By systematically varying the Rabi frequency ω1, the
spectrum SV||(ω1) can be recorded (Loretz et al., 2013;
Yan et al., 2013). Because ω1 � ω0, dressed states pro-
vide useful means for covering the medium frequency
range of the spectrum (see Fig. 10). In addition, since
dressed state relaxometry does not require sweeping a
static control field for adjusting the probe frequency, it
is more versatile than standard T1 relaxometry.

Dressed state methods can be extended to include off-
resonant drive fields. Specifically, if the drive field is de-
tuned by ∆ω from ω0, relaxation is governed by a modi-
fied relaxation time

(T1ρ)
−1 ≈ γ2 1

4

[
1 +

∆ω2

ω2
eff

]
SV⊥(ω0) +

1

2

ω2
1

ω2
eff

γ2SV||(ωeff) ,

(103)

where ωeff =
√
ω2

1 + ∆ω2 is the effective Rabi frequency.
A detuning therefore increases the accessible spectral
range towards higher frequencies. For a very large detun-
ing the effective frequency becomes similar to the detun-
ing ωeff ≈ ∆ω, and the drive field only enters as a scaling
factor for the spectral density. Detuned drive fields have
been used to map the 1/f noise spectrum of transmon
qubits up to the GHz range (Slichter et al., 2012).

VIII. DYNAMIC RANGE AND ADAPTIVE SENSING

“Adaptive sensing” refers to a class of techniques ad-
dressing the intrinsic problem of limited dynamic range
in quantum sensing: The basic quantum sensing protocol
cannot simultaneously achieve high sensitivity and mea-
sure signals over a large amplitude range.

The origin of this problem lies in the limited range of
values for the probability p, which must fall between 0
and 1. For the example of a Ramsey measurement, p os-
cillates with the signal amplitude V and phase wrapping
occurs once γV t exceeds ±π/2, where t is the sensing
time. Given a measured transition probability p, there is
an infinite number of possible signal amplitudes V that
can correspond to this value of p (see top row of Fig. 11).
A unique assignment hence requires a priori knowledge
– that V lies within ±π/(2γt), or within half a Ramsey
fringe, of an expected signal amplitude. This defines a
maximum allowed signal range,

Vmax =
π

γt
. (104)

The sensitivity of the measurement, on the other hand,
is proportional to the slope of the Ramsey fringe and
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reaches its optimum when t ≈ T ∗2 . The smallest de-
tectable signal is approximately Vmin ≈ 2/(γC

√
T ∗2 T ),

where T is the total measurement time and C the read-
out efficiency parameter (see Eqs. 43 and 47). The dy-
namic range is then given by the maximum allowed signal
divided by the minimum detectable signal,

DR =
Vmax

Vmin
=
πC
√
T

2
√
T ∗2
∝
√
T . (105)

Hence, the basic measurement protocol can be applied
only to small changes of a quantity around a fixed known
value, frequently zero. The protocol does not apply to the
problem of determining the value of a large and a priori
unknown quantity. Moreover, the dynamic range only
improves with the square root of the total measurement
time T .

A. Phase estimation protocols

Interestingly, a family of advanced sensing techniques
can efficiently address this problem and achieve a dy-
namic range that scales close to DR ∝ T . This scaling is
sometimes referred to as another instance of the Heisen-
berg limit, because it can be regarded as a 1/T scaling of
sensitivity at a fixed Vmax. The central idea is to combine
measurements with different sensing times t such that the
least sensitive measurement with the highest Vmax yields
a coarse estimate of the quantity of interest, which is sub-
sequently refined by more sensitive measurements (Fig.
11).

In the following we discuss protocols that use ex-
ponentially growing sensing times tm = 2mt0, where
m = 0, 1, . . . ,M and t0 is the smallest time element (see
Fig. 11). Although other scheduling is possible, this
choice allows for an intuitive interpretation: subsequent
measurements estimate subsequent digits of a binary ex-
pansion of the signal. The maximum allowed signal is
then set by the shortest sensing time, Vmax = π/(γt0),
while the smallest detectable signal is determined by the
longest sensing time, Vmin ≈ 2/(γC

√
tMT ). Because

T ∝ tM due to the exponentially growing interrogation
times, the dynamic range of the improved protocol scales
as

DR ∝
√
tMT

t0
∝ T . (106)

This scaling is obvious from an order-of-magnitude esti-
mate: adding an additional measurement step increases
both precision and measurement duration t by a factor
of two, such that precision scales linearly with total ac-
quisition time T . We will now discuss three specific im-
plementations of this idea.
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FIG. 11 High dynamic range sensing. A series of measure-
ments with different interrogation times t is combined to es-
timate a signal of interest. The shortest measurement (low-
est line) has the largest allowed signal Vmax and provides a
coarse estimate of the quantity, which is subsequently refined
by longer and more sensitive measurements. Although the
p(V ) measured in a sensitive measurement (top line) can cor-
respond to many possible signal values, the coarse estimates
allow one to extract a unique signal value V .

1. Quantum phase estimation

All three protocols can be considered variations of the
phase estimation scheme depicted in Fig. 12(a). The
scheme was originally put forward by Shor, 1994, in the
seminal proposal of a quantum algorithm for prime fac-
torization and has been interpreted by Kitaev, 1995, as
a phase estimation algorithm.

The original formulation applies to the problem of find-
ing the phase φ of the eigenvalue e2πiφ of a unitary opera-
tor Û , given a corresponding eigenvector |ψ〉. This prob-
lem can be generalized to estimating the phase shift φ im-
parted by passage through an interferometer or exposure
to an external field. The algorithm employs a register of
N auxiliary qubits (N = 3 in Fig. 12) and prepares them
into a digital representation |φ〉 = |φ1〉 |φ2〉 . . . |φM 〉 of a

binary expansion of φ =
∑M
m=1 φm2−m by a sequence of

three processing steps:

1. State preparation: All qubits are prepared in a co-
herent superposition state |+〉 = (|0〉+ |1〉)/

√
2 by

an initial Hadamard gate. The resulting state of
the full register can then be written as

1√
2M

2M−1∑
j=0

|j〉M (107)

where |j〉M denotes the register state in binary ex-
pansion |0〉M = |00 . . . 0〉, |1〉M = |00 . . . 1〉, |2〉M =
|00 . . . 10〉, etc.
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(a) Quantum phase estimation

(b) Adaptive

(c) Non-adaptive (Bayesian)

FIG. 12 Phase estimation algorithms. (a) Quantum phase estimation by the inverse Quantum Fourier transform, as it is
employed in prime factorization algorithms (Kitaev, 1995; Shor, 1994). (b) Adaptive phase estimation. Here, the quantum
Fourier transform is replaced by measurement and classical feedback. Bits are measured in ascending order, substracting the
lower digits from measurements of higher digits by phase gates that are controlled by previous measurement results. (C)
Non-adaptive phase estimation. Measurements of all digits are fed into a Bayesian estimation algorithm to estimate the most
likely value of the phase. H represents a Hadamard gate, R(Φ) a Z-rotation by the angle Φ, and U the propagator for one
time element t0. The box labeled by “x” represents a readout.

2. Phase encoding: The phase of each qubit is
tagged with a multiple of the unknown phase
φ. Specifically, qubit m is placed in state
(|0〉 + e2πi2mφ |1〉)/

√
2. Technically, this can be

implemented by exploiting the back-action of a
controlled-Û2m

-gate that is acting on the eigenvec-
tor ψ conditional on the state of qubit m. Since ψ
is an eigenvector of Û j for arbitrary j, this action
transforms the joint qubit-eigenvector state as

1√
2
(|0〉+ |1〉)⊗ |ψ〉

→ 1√
2
(|0〉+ e2πi2mφ |1〉)⊗ |ψ〉 (108)

Here, the back-action on the control qubit m cre-
ates the required phase tag. The state of the full
register evolves to

1√
2M

2M−1∑
j=0

e2πiφj/2M |j〉 (109)

In quantum sensing, phase tagging by back-action
is replaced by the exposure of each qubit to an ex-
ternal field for a time 2mt0 (or passage through an
interferometer of length 2ml0).

3. Quantum Fourier Transform: In a last step, an in-
verse quantum Fourier transform (QFT) (Nielsen
and Chuang, 2000) is applied to the qubits. This
algorithm can be implemented with polynomial ef-
fort (i.e., using O(M2) control gates). The QFT
recovers the phase φ from the Fourier series (109)
and places the register in state

|φ〉 = |φ1〉 |φ2〉 . . . |φM 〉 . (110)

A measurement of the register directly yields a dig-
ital representation of the phase φ. To provide an
estimate of φ with 2−M accuracy, 2M applications
of the phase shift Û are required. Hence, the al-
gorithm scales linearly with the number of applica-
tions of Û which in turn is proportional to the total
measurement time T .

Quantum phase estimation is the core component of
Shor’s algorithm, where it is used to compute discrete
logarithms with polynomial time effort (Shor, 1994).

2. Adaptive phase estimation

While quantum phase estimation based on the QFT
can be performed with polynomial time effort, the al-
gorithm requires two-qubit gates, which are difficult to
implement experimentally, and the creation of fragile en-
tangled states. This limitation can be circumvented by
an adaptive measurement scheme that reads the qubits
sequentially, feeding back the classical measurement re-
sult into the quantum circuit (Griffiths and Niu, 1996).
The scheme is illustrated in Fig. 12(b).

The key idea of adaptive phase estimation is to first
measure the least significant bit of φ, represented by the
lowest qubit in Fig. 12(b). In the measurement of the
next significant bit, this value is subtracted from the ap-
plied phase. The subtraction can be implemented by
classical unitary rotations conditioned on the measure-
ment result, for example by controlled R(π/j) gates as
shown in Fig. 12(b). This procedure is then repeated in
ascending order of the bits. The QFT is thus replaced by



31

measurement and classical feedback, which can be per-
formed using a single qubit sensor.

In practical implementations (Higgins et al., 2007), the
measurement of each digit is repeated multiple times or
performed on multiple parallel qubits. This is possible
because the controlled-U gate does not change the eigen-
vector ψ, so that it can be re-used as often as required.
The Heisenberg limit can only be reached if the number
of resources (qubits or repetitions) spent on each bit are
carefully optimized (Berry et al., 2009; Cappellaro, 2012;
Said et al., 2011). Clearly, most resources should be al-
located to the most significant bit, because errors at this
stage are most detrimental to sensitivity. The implemen-
tation by Bonato, C. et al., 2016, for example, scaled the
number of resources Nm linearly according to

Nm = G+ F (M − 1−m). (111)

with typical values of G = 5 and F = 2.

3. Non-adaptive phase estimation

Efficient quantum phase estimation can also be imple-
mented without adaptive feedback, with the advantage
of technical simplicity (Higgins et al., 2009). A set of
measurements {xj}j=1...N (where N > M) is used to
separately determine each unitary phase 2mφ with a set
of fixed, classical phase shifts before each readout. This
set of measurements still contains all the information re-
quired to extract φ, which can be motivated by the fol-
lowing arguments: given a redundant set of phases, a
post-processing algorithm can mimic the adaptive algo-
rithm by postselecting those results that have been mea-
sured using the phase most closely resembling the cor-
rect adaptive choice. From a spectroscopic point of view,
measurements with different phases correspond to Ram-
sey fringes with different quadratures. Hence, at least
one qubit of every digit will perform its measurement
on the slope of a Ramsey fringe, allowing for a precise
measurement of 2mφ regardless of its value.

The phase φ can be recovered by Bayesian estimation.
Every measurement xj = ±1 provides information about
φ, which is described by the a posteriori probability

p(φ|xj), (112)

the probability that the observed outcome xj stems from
a phase φ. This probability is related to the inverse con-
ditional probability p(xl|φ) – the excitation probability
describing Ramsey fringes – by Bayes’ theorem. The joint
probability distribution of all measurements is obtained
from the product

p(φ) ∝
∏
j

p(φ|xj) , (113)

from which the most likely value of φ is picked as the
final result (Nusran et al., 2012; Waldherr et al., 2012).

Here, too, acquisition time scales with the significance of
the bit measured to achieve the Heisenberg limit.

4. Comparison of phase estimation protocols

All of the above variants of phase estimation achieve
a DR ∝ T scaling of the dynamic range. They differ,
however, by a constant offset. Adaptive estimation is
slower than quantum phase estimation by the QFT since
it trades spatial resources (entanglement) into temporal
resources (measurement time). Bayesian estimation in
turn is slower than adaptive estimation due to additional
redundant measurements.

Experimentally, Bayesian estimation is usually simple
to implement because no real-time feedback is needed
and the phase estimation can be performed a posteriori.
Adaptive estimation is technically more demanding since
real-time feedback is involved, which often requires dedi-
cated hardware (such as field-programmable gate arrays
or a central processing unit) for the fast decision making.
Quantum phase estimation by the QFT, finally, requires
many entangled qubits.

B. Experimental realizations

The proposals of Shor (Shor, 1994), Kitaev (Kitaev,
1995) and Griffiths (Griffiths and Niu, 1996) were fol-
lowed by a decade where research towards Heisenberg-
limited measurements has focused mostly on the use of
entangled states, such as the N00N state (see Section
IX). These states promise Heisenberg scaling in the spa-
tial dimension (number of qubits) rather than time (Gio-
vannetti et al., 2004, 2006; Lee et al., 2002) and have
been studied extensively for both spin qubits (Bollinger
et al., 1996; Jones et al., 2009; Leibfried et al., 2004, 2005)
and photons (Edamatsu et al., 2002; Fonseca et al., 1999;
Mitchell et al., 2004; Nagata et al., 2007; Walther et al.,
2004; Xiang, G. Y. et al., 2011).

Heisenberg scaling in the temporal dimension has
shifted into focus with an experiment published in 2007,
where adaptive phase estimation was employed in a
single-photon interferometer (Higgins et al., 2007). The
experiment has subsequently been extended to a non-
adaptive version (Higgins et al., 2009). Shortly after,
both variants have been translated into protocols for
spin-based quantum sensing (Said et al., 2011). Mean-
while, high-dynamic-range protocols have been demon-
strated on NV centers in diamond using both non-
adaptive implementations (Nusran et al., 2012; Waldherr
et al., 2012) and an adaptive protocol based on quantum
feedback (Bonato, C. et al., 2016). As a final remark,
we note that a similar performance – 1/T scaling and an
increased dynamic range – may be achieved by weak mea-
surement protocols, which continuously track the evolu-
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tion of the phase over the sensing sequence (Kohlhaas
et al., 2015; Shiga and Takeuchi, 2012). Weak measure-
ments have been more generally proposed to enhance
sensing protocols (), but their ultimate usefulness is still
under debate ().

IX. ENSEMBLE SENSING

Up to this point, we have mainly focused on single
qubit sensors. In the following two sections, quantum
sensors consisting of more than one qubit will be dis-
cussed. The use of multiple qubits opens up many ad-
ditional possibilities that cannot be implemented on a
single qubit sensor.

This section considers ensemble sensors where many
(usually identical) qubits are operated in parallel. Apart
from an obvious gain in readout sensitivity, multiple
qubits allow for the implementation of second-generation
quantum techniques, including entanglement and state
squeezing, which provide a true “quantum” advan-
tage that cannot be realized with classical sensors.
Entanglement-enhanced sensing has been pioneered with
atomic systems, especially atomic clocks (Giovannetti
et al., 2004; Leibfried et al., 2004). In parallel, state
squeezing is routinely applied in optical systems, such as
optical interferometers (Ligo Collaboration”, 2011).

A. Ensemble sensing

Before discussing entanglement-enhanced sensing tech-
niques, we briefly consider the simple parallel operation
of M identical single-qubit quantum sensors. This imple-
mentation is used, for example, in atomic vapor magne-
tometers (Budker and Romalis, 2007) or solid-state spin
ensembles (Wolf et al., 2015). The use of M qubits ac-
celerates the measurement by a factor of M , because the
basic quantum sensing cycle (Steps 1-5 of the protocol,
Fig. 2) can now be operated in parallel rather than se-
quentially. Equivalently, M parallel qubits can improve
the sensitivity by

√
M per unit time.

This scaling is equivalent to the situation where M
classical sensors are operated in parallel. The scaling
can be seen as arising from the projection noise asso-
ciated with measuring the quantum system, where it is
often called the Standard Quantum Limit (SQL) (Bra-
ginskii and Vorontsov, 1975; Giovannetti et al., 2004) or
shot noise limit. In practice, it is sometimes difficult to
achieve a

√
M scaling because instrumental stability is

more critical for ensemble sensors (Wolf et al., 2015).

For ensemble sensors such as atomic vapor magnetome-
ters or spin arrays, the quantity of interest is more likely
the number density of qubits, rather than the absolute
number of qubits M . That is, how many qubits can
be packed into a certain volume without deteriorating
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FIG. 13 Left: Ramsey scheme. Right: entangled Ramsey
scheme for Heisenberg-limited sensitivity

the sensitivity of each qubit. The sensitivity is then ex-
pressed per unit volume (∝ meters−3/2). The maximum
density of qubits is limited by internal interactions be-
tween the qubits. Optimal densities have been calculated
both for atomic vapor magnetometers (Budker and Ro-
malis, 2007) and ensembles of NV centers (Taylor et al.,
2008; Wolf et al., 2015).

B. Heisenberg limit

The standard quantum limit can be overcome by us-
ing quantum-enhanced sensing strategies to reach a more
fundamental limit where the uncertainty σp (Eq. ( 25))
scales as 1/M . This limit is also known as the Heisen-
berg limit. Achieving the Heisenberg limit requires reduc-
ing the variance of a chosen quantum observable at the
expenses of the uncertainty of a conjugated observable.
This in turn requires preparing the quantum sensors in
an entangled state. In particular, squeezed states (Caves,
1981; Kitagawa and Ueda, 1993; Wineland et al., 1992)
have been proposed early on to achieve the Heisenberg
limit and thanks to experimental advances have recently
shown exceptional sensitivity (Hosten et al., 2016a).

The fundamental limits of sensitivity (quantum
metrology) and strategies to achieve them have been dis-
cussed in many reviews (Giovannetti et al., 2004, 2006,
2011; Paris, 2009; Wiseman and Milburn, 2009) and they
will not be the subject of our review. In the following,
we will focus on the most important states and methods
that have been used for entanglement-enhanced sensing.

C. Entangled states

1. GHZ and N00N states

To understand the benefits that an entangled state can
bring to quantum sensing, the simplest example is given
by Greenberger-Horne-Zeilinger (GHZ) states. The sens-
ing scheme is similar to a Ramsey protocol, however, if M
qubit probes are available, the preparation and readout
pulses are replaced by entangling operations (Fig. 13).

We can thus replace the procedure in Sec. IV.C with
the following:

1. The quantum sensors are initialized into |0〉⊗ |0〉⊗
...⊗ |0〉 ⊗ |0〉 ≡ |00 . . . 0〉.
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2. Using entangling gates, the quantum sensors are
brought into the GHZ state |ψ0〉 = (|00 . . . 0〉 +
|11 . . . 1〉)/

√
2.

3. The superposition state evolves under the Hamilto-
nian Ĥ0 for a time t. The superposition state picks
up an enhanced phase φ = Mω0t, and the state
after the evolution is

|ψ(t)〉 =
1√
2

(|00 . . . 0〉+ eiMω0t |11 . . . 1〉) , (114)

4. Using the inverse entangling gates, the state |ψ(t)〉
is converted back to an observable state, e.g. |α〉 =
[ 1
2 (eiMω0t + 1) |01〉+ 1

2 (eiMω0t− 1) |11〉] |0 . . . 0〉2,M .

5,6. The final state is read out (only the first quantum
probe needs to be measured in the case above). The
transition probability is

p = 1− |〈0|α〉|2

=
1

2
[1− cos(Mω0t)] = sin2(Mω0t/2). (115)

Comparing this result with what obtained in Sec. IV.C,
we see that the oscillation frequency of the signal is en-
hanced by a factor M by preparing a GHZ state, while
the shot noise is unchanged, since we still measure only
one qubit. This allows using an M -times shorter inter-
rogation time or achieving an improvement of the sen-
sitivity (calculated from the QCRB) by a factor

√
M .

While for M uncorrelated quantum probes the QCRB of
Eq. (59) becomes

∆VN,M =
1

γ
√
NF

=
eχ

γt
√
M N

, (116)

for the GHZ state, the Fisher information reflects the
state entanglement to give

∆VN,GHZ =
1

γ
√
NFGHZ

=
eχ

γMt
√
N

(117)

Heisenberg-limited sensitivity with a GHZ state was
demonstrated using three entangled Be ions (Leibfried
et al., 2004).

Unfortunately, the
√
M advantage in sensitivity is usu-

ally compensated by the GHZ state’s increased decoher-
ence rate (Huelga et al., 1997), which is an issue common
to most entangled states. Assuming, for example, that
each probe is subjected to uncorrelated dephasing noise,
the rate of decoherence of the GHZ state is M time faster
than for a product state. Then, the interrogation time
also needs to be reduced by a factor M and no net advan-
tage in sensitivity can be obtained. This has led to the
quest for different entangled states that could be more
resilient to decoherence.

Similar to GHZ states, N00N states have been con-
ceived to improve interferometry (Lee et al., 2002). They

were first introduced by Yurke, 1986, in the context
of neutron Mach-Zender interferometry as the fermionic
“response” to the squeezed states proposed by Caves,
1981, for Heisenberg metrology. Using an M -particle in-
terferometer, one can prepare an entangled Fock state,

|ψN00N 〉 = (|M〉a |0〉b + |0〉a |M〉b)/
√

2 , (118)

where |N〉a indicates the N-particle Fock state in spatial
mode a. Already for small M , it is possible to show
sensitivity beyond the standard quantum limit (Kuzmich
and Mandel, 1998). If the phase is applied only to mode
a of the interferometer, the phase accumulated is then

|ψN00N 〉= (eiMφa |M〉 a |0〉 b+ |0〉 a |M〉 b)/
√

2 , (119)

that is, M times larger than for a one-photon state. Ex-
perimental progress has allowed to reach “high N00N”
(with M > 2) states (Mitchell et al., 2004; Monz et al.,
2011; Walther et al., 2004) by using strong nonlinearities
or measurement and feed-forward. They have been used
not only for sensing but also for enhanced lithography
(Boto et al., 2000). Still, “N00N” states are very fragile
(Bohmann et al., 2015) and they are afflicted by a small
dynamic range.

2. Squeezing

Squeezed states are promising for quantum-limited
sensing as they can reach sensitivity beyond the stan-
dard quantum limit. Squeezed states of light have been
introduced by Caves, 1981, as a mean to reduce noise in
interferometry experiments. One of the most impressive
application of squeezed states of light (Ligo Collabora-
tion”, 2011; Schnabel et al., 2010; Walls, 1983) has been
the sensitivity enhancement of the LIGO gravitational
wave detector (Collaboration, 2013), obtained by inject-
ing vacuum squeezed states in the interferometer.

Squeezing has also been extended to fermionic degrees
of freedom (spin squeezing, Kitagawa and Ueda, 1993)
to reduce the uncertainty in spectroscopy measurements
of ensemble of qubit probes. The Heisenberg uncertainty
principle bounds the minimum error achievable in the
measurement of two conjugate variables. While for typ-
ical states the uncertainty in the two observables is on
the same order, it is possible to redistribute the fluc-
tuations in the two conjugate observables. Squeezed
states are then characterized by a reduced uncertainty
in one observable at the expense of another observable.
Thus, these states can help improving the sensitivity of
quantum interferometry, as demonstrated by Wineland
et al., 1992,Wineland et al., 1994. Similar to GHZ and
N00N states, a key ingredient to this sensitivity en-
hancement is entanglement (Sørensen and Mølmer, 2001;
Wang and Sanders, 2003). However, the description of
squeezed states is simplified by the use of a single collec-
tive angular-momentum variable.
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The degree of spin squeezing can be measured by
several parameters. For example, from the commuta-
tion relationship for the collective angular momentum,
∆Jα∆Jβ ≥ |〈Jγ〉|, one can naturally define a squeezing
parameter

ξ = ∆Jα/
√
|〈Jγ〉/2 , (120)

with ξ < 1 for squeezed states. To quantify the advan-
tage of squeezed states in sensing, it is advantageous to
directly relate squeezing to the improved sensitivity. This
may be done by considering the ratio of the uncertainties
on the acquired phase for the squeezed state ∆φsq and
for the uncorrelated state ∆φ0 in, e.g., a Ramsey mea-
surement. The metrology squeezing parameter, proposed
by Wineland et al., 1992, is then

ξR =

∣∣∣∣ |∆φ|sq|∆φ|0

∣∣∣∣ =

√
N∆Jy(0)

|〈Jz(0)〉| . (121)

Early demonstrations of spin squeezing were obtained
by entangling trapped ions via their shared motional
modes (Meyer et al., 2001), using repulsive interactions
in a Bose-Einstein condensate (Esteve et al., 2008), or
partial projection by measurement (Appel et al., 2009).
More recently, atom-light interactions in high-quality
cavities have enabled squeezing of large ensembles atoms
(Bohnet et al., 2014; Cox et al., 2016; Gross et al.,
2010; Hosten et al., 2016a; Leroux et al., 2010a; Louchet-
Chauvet et al., 2010; Schleier-Smith et al., 2010a) that
can perform as atomic clocks beyond the standard quan-
tum limit. Spin squeezing can be also implemented in
qubit systems (Auccaise et al., 2015; Bennett et al., 2013;
Cappellaro and Lukin, 2009; Sinha et al., 2003) following
the original proposal by Kitagawa and Ueda, 1993.

In this context, a simple quantum sensing scheme, fol-
lowing the procedure in Sec. IV.C, could be constructed
by replacing step 2 with the preparation of a squeezed
state, so that |ψ0〉 is a squeezed state. The state is pre-
pared by evolving a reference (ground) state |0〉 under a
squeezing Hamiltonanian, such as the one-axis H1 = χJ2

z

or two-axis H1 = χ(J2
x − J2

y ) squeezing Hamiltonians.
Then, during the free evolution (step 3) an enhanced
phase can be acquired, similar to what happens for en-
tangled states. The most common sensing protocols
with squeezed states forgo step 4, and directly measure
the population difference between the state |0〉 and |1〉.
However, imperfections in this measurement limits the
sensitivity, since achieving the Heisenberg limit requires
single-particle state detection. While this is difficult to
obtain for large qubit numbers, recent advances show
great promise (Hume et al., 2013; Zhang et al., 2012)
(see also next section on alternative detection methods).
A different strategy is to follow more closely the sensing
protocol for entangled states, and refocus the squeezing
(reintroducing step 4) before readout (Davis et al., 2016).

3. Parity measurements

A challenge in achieving the full potential of multi-
qubit enhanced metrology is the widespread inefficiency
of quantum state readout. Metrology schemes often re-
quire single qubit readout or the measurement of com-
plex, many-body observables. In both cases, coupling of
the quantum system to the detection apparatus is inef-
ficient, often because strong coupling would destroy the
very quantum state used in the metrology task.

To reveal the properties of entangled states and to take
advantage of their enhanced sensitivities, an efficient ob-
servable is the parity of the state. The parity observable
was first introduced in the context of ion qubits (Bollinger
et al., 1996; Leibfried et al., 2004) and it referred to the
excited or ground state populations of the ions. The
parity has become widely adopted for the readout of
N00N states, where the parity measures the even/odd
number of photons in a state (Gerry and Mimih, 2010).
Photon parity measurements are as well used in quan-
tum metrology with squeezed states. While the simplest
method for parity detection would be via single pho-
ton counting, and recent advances in superconducting
single photon detectors approach the required efficiency
(Natarajan et al., 2012), photon numbers could also be
measured with single-photon resolution using quantum
non-demolition (QND) techniques (Imoto et al., 1985)
that exploit nonlinear optical interactions. Until recently,
parity detection for atomic ensembles containing more
than a few particles was out of reach. However, recent
breakthroughs in spatially resolved (Bakr et al., 2009)
and cavity-based atom detection (Hosten et al., 2016b;
Schleier-Smith et al., 2010b) enabled atom counting in
mesoscopic ensembles containing M & 100 atoms.

4. Other types of entanglement

The key difficulty with using entangled states for sens-
ing is that they are less robust against noise. Thus, the
advantage in sensitivity is compensated by a concurrent
reduction in coherence time. In particular, it has been
demonstrated that for frequency estimation, any non-
zero value of uncorrelated dephasing noise cancels the
advantage of the maximally entangled state over a classi-
cally correlated state (Huelga et al., 1997). An analogous
result can be proven for magnetometry (Auzinsh et al.,
2004).

Despite this limitation, non-maximally entangled
states can provide an advantage over product states
(Shaji and Caves, 2007; Ulam-Orgikh and Kitagawa,
2001). Optimal states for quantum interferometry in the
presence of photon loss can, for example, be found by
numerical searches (Huver et al., 2008; Lee et al., 2009).

Single-mode states have also been considered as a more
robust alternative to two-mode states. Examples include
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pure Gaussian states in the presence of phase diffusion
(Genoni et al., 2011), mixed Gaussian states in the pres-
ence of loss (Aspachs et al., 2009) and single-mode vari-
ants of two-mode states (Maccone and Cillis, 2009).

Other strategies include the creation of states that
are more robust to the particular noise the system is
subjected to (Cappellaro et al., 2012; Goldstein et al.,
2011) or the use of entangled ancillary qubits that are
not quantum sensors themselves (Demkowicz-Dobrzanski
and Maccone, 2014; Dür et al., 2014; Huang et al., 2016;
Kessler et al., 2014). These are considered in the next
section (Section X).

X. SENSING ASSISTED BY AUXILIARY QUBITS

In the previous section we considered potential im-
provements in sensitivity derived from the availability of
multiple quantum systems operated in parallel. A dif-
ferent scenario arises when only a small number of addi-
tional quantum systems is available, or when the addi-
tional quantum systems do not directly interact with the
signal to be measured. Even in this situation, however,
“auxiliary qubits” can aid in the sensing task. Although
auxiliary qubits – or more generally, additional quan-
tum degrees of freedom – cannot improve the sensitivity
beyond the quantum metrology limits, they can aid in
reaching these limits, for example when it is experimen-
tally difficult to optimally initalize or readout the quan-
tum state. Auxiliary qubits may be used to increase the
effective coherence or memory time of a quantum sensor,
either by operation as a quantum memory or by enabling
quantum error correction.

In the following we discuss some of the schemes
that have been proposed or implemented with auxiliary
qubits.

A. Quantum logic clock

Clocks based on optical transitions of an ion kept in a
high-frequency trap exhibit significantly improved accu-
racy over more common atomic clocks. Single-ion atomic
clocks currently detain the record for the most accurate
optical clocks, with uncertainties of 2.1× 1018 for a 87Sr
ensemble clock (Nicholson et al., 2015) and 3.2×1018 for
a single a single trapped 171Yb (Huntemann et al., 2016).

The remaining limitations on optical clocks are re-
lated to their long-term stability and isolation from ex-
ternal perturbations such as electromagnetic interference.
These limitations are even more critical when such clocks
are based on a string of ions in a trap, because of the as-
sociated unavoidable electric field gradients. Only some
ion species, with no quadrupolar moment, can then be
used, but not all of them present a suitable transition for
laser cooling and state detection beside the desired, sta-

ble clock transition. To overcome this dilemma, quantum
logic spectroscopy has been introduced (Schmidt et al.,
2005). The key idea is to employ two ion species: a clock
ion that presents a stable clock transition (and represents
the quantum sensor), and a logic ion (acting as auxil-
iary qubit) that is used to prepare, via a cooling tran-
sition, and readout the clock ion. The resulting “quan-
tum logic” ion clock can thus take advantage of the most
stable ion clock transitions, even when the ion cannot
be efficiently read out, thus achieving impressive clock
performance (Hume et al., 2007; Rosenband et al., 2008,
2007). Advanced quantum logic clocks may incorporate
multi-ion logic (Tan et al., 2015) and use quantum algo-
rithms for more efficient readout (Schulte et al., 2016).

B. Storage and retrieval

The quantum state |ψ〉 can be stored and retrieved in
the auxiliary qubit. Storage can be achieved by a SWAP
gate (or more simply two consecutive c-NOT gates) on
the sensing and auxiliary qubits, respectively (Rosskopf
et al., 2016). Retrieval uses the same two c-NOT gates
in reverse order. For the example of an electron-nuclear
qubit pair, c-NOT gates have been implemented both
by selective pulses (Pfender et al., 2016; Rosskopf et al.,
2016) and using coherent rotations (Zaiser et al., 2016).

Several useful applications of storage and retrieval have
been demonstrated. A first example includes correlation
spectroscopy, where two sensing periods are interrupted
by a waiting time t1 (Laraoui and Meriles, 2013; Rosskopf
et al., 2016; Zaiser et al., 2016). A second example in-
cludes a repetitive (quantum non-demolition) readout of
the final qubit state, which can be used to reduce the
classical readout noise (Jiang et al., 2009).

C. Quantum error correction

Quantum error correction (Nielsen and Chuang, 2000;
Shor, 1995) aims at counteracting errors during quantum
computation by encoding the qubit information into re-
dundant degrees of freedom. The logical qubit is thus en-
coded in a subspace of the total Hilbert space (the code)
such that each error considered maps the code to an or-
thogonal subspace, allowing detection and correction of
the error. Compared to dynamical decoupling schemes,
qubit protection covers the entire noise spectrum and is
not limited to low-frequency noise. On the other hand,
qubit protection can typically only be applied against er-
rors that are orthogonal to the signal, because otherwise
the signal itself would be “corrected”. In particular, for
vector fields, quantum error correction can be used to
protect against noise in one spatial direction while leav-
ing the sensor responsive to signals in the orthogonal spa-
tial direction. Thus, quantum error correction suppresses



36

noise according to spatial symmetry, and not according
to frequency.

The simplest code is the 3-qubit repetition code, which
corrects against one-axis noise with depth one (that is, it
can correct up to one error acting on one qubit). For ex-
ample, the code |0〉L = |000〉 and |1〉L = |111〉 can correct
against a single qubit flip error. Note that (Dür et al.,
2014; Ozeri, 2013) equal superpositions of these two log-
ical basis states are also optimal to achieve Heisenberg-
limited sensitivity in estimating a global phase (Bollinger
et al., 1996; Leibfried et al., 2004). While this seems
to indicate that QEC codes could be extremely useful
for metrology, the method is hampered by the fact that
QEC often cannot discriminate between signal and noise.
In particular, if the signal to be detected couples to the
sensor in a similar way as the noise, the QEC code also
eliminates the effect of the signal. This compromise be-
tween error suppression and preservation of signal sensi-
tivity is common to other error correction methods. For
example, in dynamical decoupling schemes, a separation
in the frequency of noise and signal is required. Since
QEC works independently of noise frequency, distinct op-
erators for the signal and noise interactions are required.
This imposes an additional condition on a QEC code: the
quantum Fisher information (Giovannetti et al., 2011; Lu
et al., 2015) in the code subspace must be non-zero.

Several situations for QEC-enhanced sensing have been
considered. One possible scenario is to protect the quan-
tum sensor against a certain type of noise (e.g., single
qubit, bit-flip or transverse noise), while measuring the
interaction between qubits (Dür et al., 2014; Herrera-
Mart́ı et al., 2015). More generally, one can measure
a many-body Hamiltonian term with a strength propor-
tional to the signal to be estimated (Herrera-Mart́ı et al.,
2015). Since this can typically only be achieved in a per-
turbative way, this scheme still leads to a compromise
between noise suppression and effective signal strength.

The simplest scheme for QEC is to use a single
good qubit (unaffected by noise) to protect the sensor
qubit (Arrad et al., 2014; Hirose and Cappellaro, 2016;
Kessler et al., 2014; Ticozzi and Viola, 2006). In this
scheme, which has recently been implemented with NV
centers (Unden et al., 2016), the qubit sensor detects
a signal along one axis (e.g., a phase) while being pro-
tected against noise along a different axis (e.g., against
bit flip). Because the “good” ancillary qubit can only
protect against one error event (or, equivalently, suppress
the error probability for continuous error), the signal ac-
quisition must be periodically interrupted to perform a
corrective step. Since the noise strength is typically much
weaker than the noise fluctuation rate, the correction
steps can be performed at a much slower rate compared
to dynamical decoupling. Beyond single qubits, QEC has
also been applied to N00N states (Bergmann and van
Loock, 2016). These recent results hint at the potential
of QEC for sensing which has just about begun to being

explored.

XI. OUTLOOK

Despite its rich history in atomic spectroscopy and
classical interferometry, quantum sensing is an excit-
ingly new and refreshing development advancing rapidly
along the sidelines of mainstream quantum engineer-
ing research. Like no other field, quantum sensing has
been uniting diverse efforts in science and technology
to create fundamental new opportunities and applica-
tions in metrology. Inputs have been coming from tra-
ditional high-resolution optical and magnetic resonance
spectroscopy, to the mathematical concepts of parameter
estimation, to quantum manipulation and entanglement
techniques borrowed from quantum information science.
Over the last decade, and especially in the last few years,
a comprehensive toolset has been established that can
be applied to any type of quantum sensor. In particu-
lar, these allow operation of the sensor over a wide signal
frequency range, can be adjusted to maximize sensitivity
and dynamic range, and allow discrimination of differ-
ent types of signals by symmetry or vector orientation.
While many experiments so far made use of single qubit
sensors, strategies to implement entangled multi-qubit
sensors with enhanced capabilities and higher sensitivity
are just beginning to be explored.

One of the biggest attractions of quantum sensors is
their immediate potential for practical applications. This
potential is partially due to the immense range of con-
ceived sensor implementations, starting with atomic and
solid-state spin systems and continuing to electronic and
vibrational degrees of freedom from the atomic to the
macroscale. In fact, quantum sensors based on SQUID
magnetometers and atomic vapors are already in every-
day use, and have installed themselves as the most sen-
sitive magnetic field detectors currently available. Like-
wise, atomic clocks have become the ultimate standard
in time keeping and frequency generation. Many other
and more recent implementations of quantum sensors are
just starting to make their appearance in many different
niches. Notably, NV centers in diamond have started
conquering many applications in nanoscale imaging due
to their small size.

What lies ahead in quantum sensing? On the one hand,
the range of applications will continue to expand as new
types and more mature sensor implementations become
available. Taking the impact quantum magnetometers
and atomic clocks had in their particular discipline, it can
be expected that quantum sensors will penetrate much of
the 21st century technology and find their way into both
high-end and consumer devices. Advances with quan-
tum sensors will be strongly driven by the availability
of “better” materials and more precise control, allowing
their operation with longer coherence times, more effi-
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cient readout, and thus higher sensitivity.
In parallel, quantum sensing will profit from efforts

in quantum technology, especially quantum computing,
where many of the fundamental concepts have been de-
veloped, such as dynamical decoupling protocols, quan-
tum storage and quantum error correction, as well as
quantum phase estimation. Vice versa, quantum sensing
has become an important resource for quantum technolo-
gies as it provides much insight into the “environment”
of qubits, especially through decoherence spectroscopy.
A better understanding of decoherence in a particular
implementation of a quantum system can help the adop-
tion of strategies to protect the qubit, and guide the en-
gineering and materials development. The border region
between quantum sensing and quantum simulation, in
addition, is becoming a fertile playground for emulat-
ing and detecting many-body physics phenomena. Over-
all, quantum sensing has the potential to fundamentally
transform our measurement capabilities, enabling higher
sensitivity and precision, new measurement types, and
covering atomic up to macroscopic length scales.
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Quantity Symbol Unit
Readout efficiency C 0 ≤ C ≤ 1
Dynamic range DR —
AC signal: Frequency fac Hz
Multipulse sensing: Bandwidth ∆f Hz

Hamiltonian Ĥ(t) Hz

- internal Hamiltonian Ĥ0

- signal Hamiltonian ĤV (t)

... commuting part ĤV||(t)

... non-commuting part ĤV⊥(t)

- control Hamiltonian Ĥcontrol(t)
Number of qubits in ensemble; other uses M —
Multipulse sensing: Filter order k —
Multipulse sensing: No. of pulses n —
Number of measurements N —
Transition probability p p ∈ [0...1]
- Bias point p0

- Change in transition probability δp = p− p0

Signal spectral density SV (ω) Signal squared per Hz
Sensing time t s
Signal autocorrelation time tc s
Total measurement time T s
Relaxation or decoherence time Tχ s
- T1 relaxation time T1

- Dephasing time T ∗2
- Decoherence time T2

- Rotating frame relaxation time T1ρ

Signal V (t) varies
- parallel signal V||(t) = Vz(t)

- transverse signal V⊥(t) = [V 2
x (t) + V 2

y (t)]1/2

- vector signal ~V (t) = {Vx, Vy, Vz}(t)
- rms signal amplitude Vrms

- AC signal amplitude Vpk

- minimum detectable signal amplitude Vmin

... per unit time vmin Unit signal per second
Multipulse sensing: Weighting function W (fac, α),W̄ (fac), etc. —
Physical output of quantum sensor x, xj varies
Multipulse sensing: Modulation function y(t) —
Multipulse sensing: Filter function Y (ω) Hz−1

AC signal: Phase α —
Coupling parameter γ Hz per unit signal
Decoherence or transition rate Γ s−1

Quantum phase accumulated by sensor φ —
- rms phase φrms —

Pauli matrices ~̂σ = {σ̂x, σ̂y, σ̂z}
Uncertainty of transition probability σp —
- due to quantum projection noise σp,quantum

- due to readout noise σp,readout

Multipulse sequence pulse delay τ s
Transition frequency ω0 Hz
Rabi frequency ω1 Hz
- effective Rabi frequency ωeff Hz
Decoherence function χ(t) —
Basis states (energy eigenstates) {|0〉, |1〉} —
Superposition states {|+〉, |−〉} —
Sensing states {|ψ0〉, |ψ1〉} —

TABLE III Frequently used symbols.
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Phys. Rev. Lett. 112, 080801.
Dussaux, A., P. Schoenherr, K. Koumpouras, J. Chico,

K. Chang, L. Lorenzelli, N. Kanazawa, Y. Tokura,
M. Garst, A. Bergman, C. L. Degen, and D. Meier (2016),
Nature Communications 7, 12430.

Edamatsu, K., R. Shimizu, and T. Itoh (2002), Phys. Rev.
Lett. 89 (21), 213601.

Elzerman, J. M., R. Hanson, L. H. Willems van Beveren,
B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwen-
hoven (2004), Nature 430 (6998), 431.

Esteve, J., C. Gross, A. Weller, S. Giovanazzi, and M. K.
Oberthaler (2008), Nature 455 (7217), 1216.

Facon, A., E.-K. Dietsche, D. Grosso, S. Haroche, J.-M.
Raimond, M. Brune, and S. Gleyzes (2016), Nature
535 (7611), 262.

Fagaly, R. L. (2006), Review of Scientific Instruments 77 (10),
101101.

Fan, H., S. Kumar, J. Sedlacek, H. Kbler, S. Karimkashi,
and J. P. Shaffer (2015), Journal of Physics B: Atomic,
Molecular and Optical Physics 48 (20), 202001.

Fang, J., and J. Qin (2012), Sensors 12 (5), 6331.
Faoro, L., and L. Viola (2004), Phys. Rev. Lett. 922, 117905.
Faust, T., J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M.

Weig (2013), Nature Physics 9, 485.
Fedder, H., F. Dolde, F. Rempp, T. Wolf, P. Hemmer,

F. Jelezko, and J. Wrachtrup (2011), Applied Physics B:
Lasers and Optics 102 (3), 497.

Fernholz, T., H. Krauter, K. Jensen, J. F. Sherson, A. S.
Sørensen, and E. S. Polzik (2008), Phys. Rev. Lett. 101,
073601.

Fonseca, E. J. S., C. H. Monken, and S. Pdua (1999), Phys.
Rev. Lett. 82 (14), 2868.

Forstner, S., E. Sheridan, J. Knittel, C. L. Humphreys, G. A.
Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen (2014),
Advanced Materials 26 (36), 6348.

Fortagh, J., H. Ott, S. Kraft, A. Gunther, and C. Zimmer-
mann (2002), Phys. Rev. A 66, 041604.

Fu, C.-C., H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K.
Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann
(2007), Proc. Nat Acad. Sc. 104 (3), 727.

Fu, R. R., B. P. Weiss, E. A. Lima, R. J. Harrison, X.-N. Bai,
S. J. Desch, D. S. Ebel, C. Suavet, H. Wang, D. Glenn,
D. L. Sage, T. Kasama, R. L. Walsworth, and A. T. Kuan
(2014), Science 346 (6213), 1089.

Genoni, M. G., S. Olivares, and M. G. A. Paris (2011), Phys.
Rev. Lett. 106, 153603.

Gerry, C. C., and J. Mimih (2010), Contemporary Physics
51 (6), 497.

Giovannetti, V., S. Lloyd, and L. Maccone (2004), Science
306 (5700), 1330.

Giovannetti, V., S. Lloyd, and L. Maccone (2006), Phys. Rev.
Lett. 96 (1), 010401.

Giovannetti, V., S. Lloyd, and L. Maccone (2011), Nat. Pho-
ton. 5 (4), 222.

Gisin, N., G. Ribordy, W. Tittel, and H. Zbinden (2002),
Rev. Mod. Phys. 74 (1), 145.

Gleyzes, S., S. Kuhr, C. Guerlin, J. Bernu, S. DelÈglise,
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