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This article is an introductory review of the physics of quantum spin liquid (QSL) states.
Quantum magnetism is a rapidly evolving field, and recent developments reveal that the
ground states and low-energy physics of frustrated spin systems may develop many ex-
otic behaviors once we leave the regime of semi-classical approaches. The purpose of
this article is to introduce these developments. The article begins by explaining how
semi-classical approaches fail once quantum mechanics become important and then de-
scribes the alternative approaches for addressing the problem. We discuss mainly spin
1/2 systems, and we spend most of our time in this article on one particular set of
plausible spin liquid states in which spins are represented by fermions. These states are
spin-singlet states and may be viewed as an extension of Fermi liquid states to Mott
insulators, and they are usually classified in the category of so-called SU(2), U(1) or
Z2 spin liquid states. We review the basic theory regarding these states and the ex-
tensions of these states to include the effect of spin-orbit coupling and to higher spin
(S > 1/2) systems. Two other important approaches with strong influences on the
understanding of spin liquid states are also introduced: (i) matrix product states and
projected entangled pair states and (ii) the Kitaev honeycomb model. Experimental
progress concerning spin liquid states in realistic materials, including anisotropic trian-
gular lattice systems (κ-(ET)2Cu2(CN)3 and EtMe3Sb[(Pd(dmit)2]2), kagome lattice
systems (ZnCu3(OH)6Cl2) and hyperkagome lattice systems (Na4Ir3O8), is reviewed
and compared against the corresponding theories.

PACS numbers: 75.10.Kt, 71.10.-w, 71.10.Ay, 71.30.+h
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I. INTRODUCTION

Quantum spin liquid (QSL) states in dimensions of
d > 1 have been a long-sought dream in condensed mat-
ter physics. The general idea is that when acting on spin
systems, quantum mechanics may lead to exotic ground
states and low-energy behaviors that cannot be captured
by traditional semi-classical approaches. The difficulty in
implementing this idea is that we have no natural place to
start once we have left the comfort zone of semi-classical
approaches, at least in dimensions larger than one. Ex-
cept for a few exactly solvable models, we must rely heav-
ily on numerical or variational approaches to “guess” the
correct ground state wavefunctions and on a combina-
tion of sophisticated numerical and analytical techniques
to understand the corresponding low-energy excitations.
Several excellent reviews are available on QSLs (Ba-

lents, 2010; Lee, 2008a) and frustrated magnetism (Diep,
2004; Lacroix et al., 2011). This article complements
those mentioned above by providing a pedagogical intro-
duction to this subject and reviews the current status of
the field. We explain, at an introductory level, why so-
phisticated approaches are needed to study QSL states,
how these approaches are implemented in practice, and
what new physics may be expected to appear. The ex-
perimental side of the story and the drawbacks or pitfalls
of the theoretical approaches are also discussed. We con-
centrate mainly on spin 1/2 systems and study in detail
one particular set of plausible spin liquid states that are
usually termed resonating valence bond (RVB) states.
The spins are treated as fermions in these states, which
may be viewed as an extension of Fermi liquid states to
Mott insulators. They are usually classified in the cate-
gory of SU(2), U(1) or Z2 spin liquid states. Because of
the intrinsic limitations of the fermionic RVB approach,
many other approaches to spin liquid states have been
developed by different authors. These approaches often
lead to other exotic possibilities not covered by the simple
fermionic approach. Two of these approaches are intro-
duced in this article for completeness: (i) matrix product

states and projected entangled pair states and (ii) the Ki-
taev honeycomb model.
The article is organized as follows. In section II, we

introduce the semi-classical approach to simple quantum
antiferromagnets, and we explain the importance of the
spin Berry phase and how one can include it in a semi-
classical description to obtain the correct theory. In par-
ticular, we show how it leads to the celebrated Haldane
conjecture. The existence of end excitations as a natu-
ral consequence of the low-energy effective theory of these
systems is discussed. One-dimensional quantum spin sys-
tems are of great interest at present because they provide
some of the simplest realizations of symmetry-protected
topological (SPT) phases in strongly correlated systems.

The limitations of the semi-classical approach when
applied to systems with frustrated interactions are dis-
cussed in section III, where we introduce the alternative
idea of constructing variational wavefunctions directly.
We introduce Anderson’s famous idea of the RVB wave-
function for spin 1/2 systems and discuss how this idea
can be implemented in practice. The difficulty of in-
corporating the SU(2) spin algebra in the usual many-
body perturbation theory is noted, and the trick of rep-
resenting spins by particles (fermions or bosons) with
constraints to avoid this difficulty is introduced. The
non-trivial SU(2) gauge structure in the fermion repre-
sentation of RVB states and the resulting rich structure
of the low-energy effective field theories for these spin
states (SU(2), U(1) and Z2 spin liquids) are discussed.
An interesting linkage of the U(1) spin liquid state to
the (metallic) Fermi liquid state through a Mott metal-
insulator transition is introduced.
The difficulty of finding controllable approaches for

studying spin liquid states has led to an extension of the
RVB approach and a search for alternative approaches.
Some of these approaches are reviewed briefly in section
IV, including (i) the extension of the RVB approach to
include the effect of spin-orbit coupling and to higher
spin (S > 1/2) systems, (ii) the concepts of matrix prod-
uct states and projected entangled pair states, and (iii)
the Kitaev honeycomb model. The main message of this
section is that a larger variety of exotic spin states be-
come possible when we leave the paradigm of spin 1/2
systems with rotational symmetry. The U(1) and Z2

spin liquid states belong to merely a very small subset of
the plausible exotic states once we leave the paradigm of
semi-classical approaches.

Section V is devoted to a survey of experimental re-
search on spin liquid states. Special attention is paid
to the U(1) spin liquid state, on which most exper-
imental efforts have been focused. The best studied
examples are a family of organic compounds denoted
by κ-(ET)2Cu2(CN)3 (ET) (Shimizu et al., 2003) and
Pd(dmit)2(EtMe3Sb) (dmit salts) (Itou et al., 2008).
Both materials are Mott insulators near the metal-
insulator transition and become superconducting (ET)
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or metallic (dmit) under modest pressure. Despite the
large magnetic exchange J ≈ 250 K observed in these
systems, there is no experimental indication of long-
range magnetic ordering down to a temperature of ∼ 30
mK. A linear temperature dependence of the specific
heat and a Pauli-like spin susceptibility have been found
in both materials at low temperature, suggesting that
the low-energy excitations are spin-1/2 fermions with a
Fermi surface (Watanabe et al., 2012; Yamashita et al.,
2008b). This Fermi-liquid-like behavior is further sup-
ported by their Wilson ratios, which are close to one. In
addition to ET and dmit salts, the kagome compound
ZnCu3(OH)6Cl2 (Helton et al., 2007) and the three-
dimensional hyperkagome material Na4Ir3O8 (Okamoto
et al., 2007) are also considered to be candidates for QSLs
with gapless excitations. Experimental surveys on these
QSL candidate materials are presented in this article,
including their thermodynamics, thermal transport and
various spin spectra. We also briefly introduce the dis-
coveries of a few new materials and discuss the existing
discrepancies between experiments and theories. The pa-
per is summarized in section VI.

II. FROM SEMI-CLASSICAL TO NON-LINEAR-σ MODEL
APPROACHES FOR QUANTUM ANTIFERROMAGNETS

Here, we consider simple Heisenberg antiferromagnets
on bipartite lattices (with sublattices A and B) with the
Hamiltonian

H = J
∑

〈i,j〉
Si · Sj , (1)

where J > 0 and 〈i, j〉 describes a pair of nearest neighbor
sites in the bipartite lattice. In a bipartite lattice, any
two nearest neighbor sites always belong to different sub-
lattices. S is a quantum spin with magnitude S = n/2,
where n = positive integer. Examples of bipartite lattices
include 1D spin chains, 2D square or honeycomb lattices,
and 3D cubic lattices.

II.1. Two-spin problem

The semi-classical approach begins with the assump-
tion that the quantum spins are “close” to classical spins,
and it is helpful to start by first analyzing the corre-
sponding classical spin problem. For simplicity, we start
by considering only two classical spins coupled by the
Heisenberg interaction

H = JSA · SB. (J > 0).

The classical spins obey Euler’s equation of motion:

∂SA(B)

∂t
= JSB(A) × SA(B). (2)

This equation can be solved most easily by introduc-
ing the magnetization and staggered magnetism vectors
M(N) = SA + (−)SB, where it is easy to show from
Eq. (2) that

∂M

∂t
= 0, (3)

∂N

∂t
= JM×N,

indicating that classically, the staggered magnetization
vector N rotates around the (constant) total magnetiza-
tion vector M. Let SA(B) = SA(B)r̂A(B), where SA(B)

are the magnitudes of the spins SA(B) and r̂A(B) are
unit vectors indicating the directions of SA(B); then, the
classical ground state has r̂A = −r̂B with M = 0, i.e.,
the two spins are antiferromagnetically aligned. Note
that the equation of motion given in Eq. (3) implies that
∂(N2)
∂t = 0, i.e., the magnitude of N remains unchanged

during its motion. Therefore, if we write N = Nn̂, where
N is the magnitude of N and n̂ is the unit vector denot-
ing its direction, we find that only n̂ changes under the
equation of motion given in Eq. (3).
The effects of quantum mechanics can be seen most

easily by observing that the equation of motion given
in Eq. (3) describes the dynamics of a free rotor (a rigid
rod with one end fixed such that the rod can rotate freely
around the fixed end). A free rotor can be represented
by a vector r = r0r̂, where r0 = constant is the length of
the rod and r̂ is the unit radial vector describing the ori-
entation of the rod. The rod has an angular momentum
of

L = r× p = r0r̂ × p, (4)

where p = mr0 ˙̂r is the momentum and m is the mass.
Using Eq. (4), we obtain

r̂ × L = −r0p = −mr20 ˙̂r. (5a)

We also have

L̇ = 0 (5b)

(conservation of angular momentum). Comparing
Eqs.(3) and (5), we find that the equation of motion for
two spins is equivalent to the equation of motion for a
free rotor if we identify L → M, r̂ → n̂ and J = I−1,
where I = mr20 is the moment of inertia of the rotor.
The quantum Hamiltonian of the free rotor is

Hrotor =
1

2I
L2,

and its solution is well known. The eigenstates are the
spherical harmonics Ylm(θ, φ) (where θ and φ specify the
direction of the unit vector r̂) with eigenvalues

L2 = l(l + 1)~2, Lz = m~,
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and corresponding energies El = l(l + 1)~2/2I, where l
and m are integers such that l ≥ 0 and l ≥ |m|. In par-
ticular, L(M) = 0 for the ground state of the quantum
rotor, but the direction of the vector r(N) is completely
uncertain (Y00(θ, φ) =

1√
4π

) as a result of quantum fluc-

tuations, indicating a breakdown of the classical solution,
in which n is fixed in the ground state. (Alternatively,
one can gain this understanding from the Heisenberg un-
certainty principle, 〈δr̂〉〈δL〉 > ~. With L = 0 in the
ground state, δL ≡ 0 and δr̂ → ∞, the direction of the
vector r̂ becomes completely uncertain.)

A moment of thought indicates that our mapping of
the spin problem to the rotor problem cannot be totally
correct. What happens if SA is an integer spin and SB is
a half-odd-integer spin? Elementary quantum mechan-
ics tells us that the ground state should carry half-odd-
integer angular momentum. The possibility of such a
scenario is missing in our rotor mapping, in which the
spin magnitudes SA(B) do not appear.

II.2. Berry’s phase

The missing piece in our mapping of the two-spin prob-
lem to the rotor model is the Berry’s phase (Berry, 1984),
which is carried by spins but is absent in rotors. The
correct spin-quantization rule is recovered only after this
piece of physics is properly added into the rotor problem.
First, let us review the Berry’s phase carried by a single
spin.

We recall that for a spin tracing out a closed path C

on the surface of the unit sphere, the spin wavefunction
acquires a Berry’s phase γ(C) = SΩ(C), where S is the
spin magnitude and Ω(C) is the surface area under the
closed path C on the unit sphere (see Fig. 1). SΩ(C) can
be represented more conveniently by imagining the spin
trajectory as the trajectory of a particle carrying a unit
charge moving on the surface of the unit sphere. In this
case, the Berry’s phase is simply the phase acquired by
the charged particle if a magnetic monopole of strength
S (i.e., B(r) = (S/r2)r̂) is placed at the center of the
sphere. The Berry’s phase acquired is the magnetic flux
enclosed by the closed path C.

C

)(ˆtr

FIG. 1 Berry’s phase with a magnetic monopole.

Let SAM (r) be the vector potential associated with
the monopole, i.e., ∇×AM = r̂/r2; then, in the “charge
+ gauge field” representation, the effect of the Berry’s
phase can be described by a vector-potential term in the
action:

SB = ~SΩ(C) = ~S

∫

dtAM (r̂) · ˙̂r. (6)

This is an example of a Wess-Zumino term for quantum
particles. A more rigorous derivation of the Wess-Zumino
action is given in Appendix A, where the action for a sin-
gle spin in a magnetic field is derived via a path integral
approach.
We now revisit the two-spin problem. With the Berry’s

phases included, the Lagrangian of the corresponding ro-
tor problem becomes

L =
1

2J
(n̂× ˙̂n)2+~SAAM (r̂A)· ˙̂rA+~SBAM (r̂B)· ˙̂rB , (7)

where N = Nn̂ = SA −SB. To simplify the problem, we
adopt the semi-classical approximation r̂A = −r̂B in the
Berry’s phase terms, which is a reasonable approximation
for states close to the classical ground state. With this
approximation, we obtain

L→ 1

2J
(n̂× ˙̂n)2 + ~∆SAM (n̂) · ˙̂n, (8)

where n̂ = r̂A and ∆S = SA − SB. The Hamiltonian of
the system is

HM =
J

2
(Π− ~∆SAM (n̂))

2
, (9)

where Π = ˙̂n/J is the canonical momentum of the rotor.
HM is the Hamiltonian of a charged particle moving

on the surface of a unit sphere with a magnetic monopole
of strength |∆S| located at the center of the sphere. The
eigenstates of the Hamiltonian are well known and are
called the monopole spherical harmonics (Wu and Yang,
1976). The most interesting feature of the monopole
spherical harmonics is that they allow half-odd-integer
angular momentum states (which occur when |∆S| is a
half-odd-integer). The ground state carries an angular
momentum of L = |∆S| and is (2|∆S|+1)-fold degener-
ate, corresponding to the degeneracy of a quantum spin
of magnitude |∆S|, in agreement with the exact result
for the two-spin problem.

II.3. Non-linear-σ-model

The two-spin problem tells us that there are two impor-
tant elements that we must keep track of when a classical
spin problem is replaced with the corresponding quan-
tum spin problem: a) quantum fluctuations, originating
from the (non)-commutation relation between the canon-
ical coordinates (N) and momenta (M), and b) Berry’s
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phase, which dictates the quantization of the spins. In
the following, we generalize the rotor approach to the
many-spin systems described by the antiferromagnetic
(AFM) Heisenberg model, keeping in mind the above two
elements.
Following Haldane (Haldane, 1983a,b), we here con-

sider Heisenberg antiferromagnets on a bipartite lattice
described by the Hamiltonian given in Eq. (1). As in
the two-spin problem, we introduce the magnetization
vectors M(xi) and the staggered magnetization vectors
N(xi) such that

SA
i = M(xi) +N(xi), (10)

SB
i = M(xi)−N(xi),

where SA(B) denote spins on the A(B) sublattices of the
bipartite lattice. We assume that the ground state of
the quantum system is “classical-like” with nearly anti-
parallel spins on two nearest neighboring sites such that
M(xi) ≪ N(xi), where both M(x) and N(x) are very
slowly varying functions in space. (We show that this
assumption can be justified in the following section.) The
classical equation of motion for the spin at lattice site i
is

∂S
A(B)
i

∂t
= J





∑

j=NN(i)

S
B(A)
j



× S
A(B)
i , (11)

where j = NN(i) means that j represents the nearest
neighbor sites of i.
Using Eq. (10), after some straightforward algebra and

taking the continuum limit, we obtain

∂N(x)

∂t
∼ JzM(x)×N(x), (12)

∂M(x)

∂t
∼ −Ja

2

2
(∇2N(x))×N(x),

where a is the lattice spacing and z = 2d is the coordi-
nation number. We have assumed a square (cubic)-type
lattice and have adopted the slowly varying approxima-
tion

M(xi+1) +M(xi−1) ∼ 2M(xi),

N(xi+1)) +N(xi−1) ∼ 2N(xi) + a2∂2xN(xi),

etc. in deriving the above result. We have also assumed
M(x) to be small and have neglected all non-linear terms
in M(x) in deriving Eq. (12).
To proceed further, we consider the situation in which

all spins have the same magnitude S. Then, it is easy
to see from Eq. (10) that N(x)2 + M(x)2 = S2 and
N(x) · M(x) = 0. Assuming that M = |M(x)| ≪ N =
|N(x)| ∼ S, we find from Eq. (12) that M ∼ ω/(zJ)
and ω ∼ √

zJaS|k|, where ω and k are the frequency
and wavevector, respectively, of the fluctuations in N.

In particular, M ≪ N when ak ≪ √
z, i.e., when N(x)

is slowly varying in space.
In the following, we adopt the approximation N ∼ S

and write N(x) = Sn̂(x), where n̂2 = 1. Eliminating
M(x) from Eq. (12), we obtain

∂2n̂(x, t)

∂t2
=
z(SJa)2

2
∇2n̂(x, t), (13a)

corresponding to the following classical action for the vec-
tor field n̂:

Sσ =
1

2

∫

dt

∫

ddx

(

1

J

(

∂n̂

∂t

)2

− zJ(Sa)2

2
(∇n̂)2

)

,

(13b)
with the constraint n̂2 = 1. Sσ is the non-linear-σ model
(NLσM) for the unit vector field n̂(x).
Comparing Eqs.(13b) and (8), we see that the NLσM

can be viewed as a continuum model describing coupled
rotors n̂(x). The first term in the action gives the kinetic
energy for the rotors, which we have discussed in detail
for the two-spin model. The second term represents the
coupling between nearest neighboring rotors in the lat-
tice spin model. We note that the term for the coupling
between rotors has a magnitude of ∼ S2 and dominates
over the kinetic energy in the limit of large S.
A more systematic derivation of the NLσM starting

from Eq. (10) can be achieved by writing

Si = ηiSn̂(xi)

√

1−
∣

∣

∣

∣

M(xi)

S

∣

∣

∣

∣

2

+M(xi),

where ηi = eiπx and we still have N(x) ·M(x) = 0. As-
suming that M(x) is small, we can integrate out M(x)
in a power series expansion of M(x) in the path inte-
gral. The NLσM for n̂(x) is thus obtained to the leading
(Gaussian) order (Auerbach, 1994).

II.3.1. Topological term

We next consider the Berry’s phase contribution to the
action. Following Appendix A, the total Berry’s phase
contribution is

ST =
∑

i

SB(r̂i) ∼ ~S
∑

i

(−1)iΩ(n̂i), (14)

where SΩ(r̂i) = S
∫

dtAM (r̂i) · ˙̂ri is the Berry’s phase for
a single spin and (−1)i = 1(−1) for sites on even (odd)
sublattices. In the last step, we have assumed that the
spins are almost anti-parallel. In the continuum limit, we
obtain

ST ∼ ~S

2d

∫

ddx

(

∂

∂1x
· · · ∂

∂dx

)

Ω(n̂(x)). (15)

ST is sensitive to the boundary conditions (see the discus-
sion below), and we assume closed (periodic) boundary
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conditions in the following. The case of open boundary
conditions is discussed afterward. For periodic boundary
conditions, it is easy to see that ST is zero unless the
integrand has a non-trivial topological structure.
To evaluate ∂xΩ, we recall that Ω(n̂) measures the area

on the surface of the sphere bounded by the trajectory
n̂(t). Thus, the variation δΩ(n̂) due to a small variation
in the trajectory δn̂ is simply

δΩ(n̂) =

∫

dtδn̂ · (n̂× ∂tn̂),

and

ST =
~S

2d

∫

ddx

∫

dt

[(

∂

∂1x
· · · ∂

∂dx

)

n̂

]

· (n̂× ∂tn̂). (16)

The total effective action describing the quantum anti-
ferromagnet is S = Sσ + ST .
The topological term is nonzero in one dimension and

is usually written in the form

ST

~
=

θ

8π

∑

µ,ν=0,1

∫

d2xεµν n̂ · (∂µn̂× ∂ν n̂), (17a)

where x0 = t, x1 = x, θ = 2πS and εµν is the rank-
2 Levi-Civita antisymmetric tensor (Affleck, 1986; Hal-
dane, 1985). The Pontryagin index

Q =
1

8π

∑

µ,ν=0,1

∫

d2xεµν n̂·(∂µn̂×∂ν n̂) = integer (17b)

measures how many times the 2[=1(space)+1(time)]-
dimensional spin configuration n̂ has wrapped around the
unit sphere. In two dimensions,

ST → ~θ

2

∫

dy
∂Q(y)

∂y
= 0,

where Q(y) is the Pontryagin index that arises from sum-
ming over all spin configurations in the yth column of the
two-dimensional lattice. The sum is zero for smooth spin
configurations because Q is an integer and thus cannot
“change smoothly” (Dombre and Read, 1988; Fradkin
and Stone, 1988; Haldane, 1988b; Wen and Zee, 1988).
For the same reason, ST vanishes for any number of
dimensions greater than one. However, one should be
cautioned that this conclusion is valid only when we
restrict ourselves to smooth spin configurations n̂(x, t)
when computing ST . The Berry’s phase may have a
nonzero contribution if we also allow singular spin config-
urations in the theory. This is the case in 2 + 1D, where
monopole-like spin configurations are allowed in 3D space
(Haldane, 1988b; Read and Sachdev, 1990).

II.4. Quantum spin chains and the Haldane conjecture

We now study the predictions of the effective action
for quantum spin chains. In one dimension, the quantum

spin chains are described by the path integral

∫

D[n̂(x, t)]e
i
~
(Sσ(n̂)+ST (n̂)).

We first consider the topological term. We note that
ST = 2~πSQ and e

i
~
ST = (−1)2SQ (Q = integer). In

particular, e
i
~
ST ≡ 1 for integer spin chains, and the

Berry’s phase has no effect on the effective action. How-
ever, e

i
~
ST = ±1 for half-odd-integer spin chains, de-

pending on whether Q is even or odd. There is no fur-
ther distinction between spin chains with different spin
values S in ST . This result leads to the first part of
the Haldane conjecture, namely, that fundamental dif-
ferences exist between integer and half-odd-integer spin
chains (Haldane, 1988b). To proceed further, we first

consider integer spin chains, where e
i
~
ST ≡ 1 and the

system is described by the “pure” NLσM Sσ.

II.4.1. Integer spin chains

We start by asking the following question: what are
the plausible ground states described by Sσ? For this
purpose, it is more convenient to consider a lattice version
of Sσ:

Sσ → 1

2

∫

dt
∑

i

(

1

J

(

∂n̂i

∂t

)2

+ JS2n̂i · n̂i+1

)

, (18)

with the corresponding Hamiltonian

Hσ =
J

2

∑

i

(

(Li)
2 − S2n̂i · n̂i+1

)

, (19)

where Li is the angular momentum operator for the ith

rotor. The Hamiltonian contains two competing terms,
and we expect that it may describe two plausible phases,
a strong coupling phase, in which the kinetic energy
(first) term dominates, and a weak coupling phase, in
which the potential energy (second) term dominates. A
natural control parameter for this analysis is the spin
magnitude S, which dictates the magnitude of the po-
tential energy. In the first case (small S), in which the
potential energy term is small, we expect that the ground
state can be viewed, to a first approximation, as a prod-
uct of local spin singlets, i.e., L = 0 states,

|G〉 = |0〉1|0〉2 · · · |0〉N ,

where |0〉i represents the L = 0 state for the rotor on
site i. The lowest-energy excitations are L = 1 states
separated from the ground state by an excitation gap
∼ ~

2J . This picture is believed to be correct as long
as the magnitude of the potential energy term is much
smaller than the excitation energy for the L = 1 state.
In the second case, in which the potential energy term
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dominates (large S), we expect that the ground state is
a magnetically ordered (Néel state) with n̂i = n̂0 at all
sites i, where the excitations are Goldstone modes of the
ordered state (spin waves).

It turns out that this naive expectation is valid only
in dimensions of d > 1. In one dimension, the magneti-
cally ordered state is not stable because of quantum fluc-
tuations associated with the Goldstone mode (Mermin-
Wigner-Hohenberg Theorem), and the ground state is
always quantum disordered (Hohenberg, 1967; Mermin
and Wagner, 1966), i.e., a spin liquid state. This result
can be shown more rigorously through a renormaliza-
tion group (RG) analysis of the NLσM. We do not go
through this analysis in detail in this article; instead,
we simply assume that this is the case and examine its
consequences. Readers interested in the RG analysis can
consult, for example, references (Brézin and Zinn-Justin,
1976; Polyakov, 1987, 1975).

Physically, this result means that after some renormal-
ization, the ground state of integer spin chains can always
be viewed as a product state of local spin singlets, ir-
respective of the spin magnitude S. The lowest-energy
excitations are gapped spin triplet (L = 1) excitations.
This is the Haldane conjecture for integer spin chains.

II.4.2. Half-odd-integer spin chains

The RG analysis cannot be straightforwardly applied
to half-odd-integer spin chains because of the appearance
of the topological term ST . To understand why, let us
again take the RG to the strong coupling limit and ex-
amine what happens in this case.

To zeroth order, the Hamiltonian of the system con-
sists only of the kinetic energy term. However, the ro-
tors are moving under the influence of effective monopole
potentials originating from ST . In particular, all half-
odd-integer spin chains have the same ST with an effec-
tive magnetic monopole strength of 1/2, corresponding to
that of a spin-1/2 chain. In this case, the ground state of
a single rotor has an angular momentum of L = 1/2 and
is two-fold degenerate (see the discussion after Eq. (9)).
The total degeneracy of the ground state is 2N , where
N=number of lattice sites. This enormous degeneracy
implies that the coupling between rotors cannot be ne-
glected when we consider the rotor Hamiltonian given in
Eq. (19), and the strong coupling expansion simply tells
us that the system behaves like a coupled-spin-1/2 chain
(Shankar and Read, 1990).

Fortunately, the antiferromagnetic spin-1/2 chain can
be solved using the exact Bethe ansatz technique (Gia-
marchi, 2003). The exact Bethe ansatz solution tells us
that the antiferromagnetic spin-1/2 Heisenberg chain is
critical, namely, the ground state has no long-range mag-
netic order but has a gapless excitation spectrum. Unlike
integer spin chains, where the lowest-energy excitations

carry spin S = 1, the elementary excitation of this system
has spin S = 1/2. Combining this with the continuum
theory leads to the Haldane conjecture for half-odd in-
teger spin chains, namely, that they are all critical with
elementary S = 1/2 excitations.

II.4.3. Open spin chains and end states

The Haldane conjecture has been checked numerically
for quantum spin chains with different spin magnitudes
and has been found to be correct in all cases that have
been studied thus far. One may wonder whether the dif-
ference in spin magnitudes may manifest at all in some
low-energy properties of quantum spin chains. The an-
swer is yes, when we consider open spin chains.

Recall that we have always assumed periodic boundary
conditions in deriving ST . In fact, a periodic boundary
condition is needed to define the Pontryagin index for the
topological term ST . For an open chain of length L, ST

is replaced by (Affleck, 1990; Haldane, 1983a; Ng, 1994)

S
(o)
T =

~

2

∫ L

0

ddx
∂SB(n̂(x))

∂x
(20)

= 2π~SQ+
~S

2
(Ω(n̂(L))− Ω(n̂(0))) ,

where 2πSQ = θQ is the usual topological θ term that we
obtain when Ω(n̂(0)) = Ω(n̂(L)), i.e., when we consider
periodic boundary conditions. An open chain differs from
a closed chain in the existence of an additional boundary
Berry’s phase term with an effective spin magnitude of
S/2.

We now examine the effect of this additional Berry’s
phase term. First, we consider integer spin chains. Fol-
lowing the previous discussion, we expect the spin chain
to be described by the strong coupling limit of the ef-
fective Hamiltonian given in Eq. (19), except that the
rotors at the two ends of the spin chain are subjected
to monopole potentials of strength S/2, resulting in ef-
fective free spins of magnitude S/2 located at the ends
of the spin chain. The two spins are coupled by a term
Jeff ∼ JS2e−L/ξ when the coupling between rotors is
considered, where ξ ∼ E−1

g is the correlation length and
Eg is the spin gap. These end states can also be un-
derstood based on a wavefunction proposed by Affleck,
Lieb, Kennedy and Tasaki (the AKLT state) for S = 1
spin chains (Affleck et al., 1987) (see section IV) and
have been observed experimentally in S = 1 spin chain
materials (Glarum et al., 1991). In modern terminol-
ogy, the end states of integer spin chains are a mani-
festation of symmetry-protected topological (SPT) order
(Chen et al., 2012; Gu and Wen, 2009; Pollmann et al.,
2012), which manifests itself as a boundary action that
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is protected by rotational (SO(3)) symmetry.1

For half-odd-integer spin chains, the analysis is a bit
more complicated. We start by rewriting Eq. (20) for

S
(o)
T as follows (Ng, 1994):

S
(o)
T =

~

2

(

4π
1

2
Q+ S (Ω(n̂(L))− Ω(n̂(0)))

)

(21)

=
~

2

(

4π
1

2
Q+

1

2
(Ω(n̂(L))− Ω(n̂(0)))

+ (S − 1

2
) (Ω(n̂(L))− Ω(n̂(0)))

)

where we have replaced S with 1/2 in the usual topo-
logical (Pontryagin index) term and have divided the
boundary Berry’s phase term into two parts; the first
part, when combined with the Pontryagin index term, is
the total Berry’s phase contribution for an open S = 1/2
spin chain, and the second part is the additional contri-
bution when S > 1/2. Performing the strong coupling
expansion as before, we find that the system behaves as
an open spin-1/2 chain coupled to two end spins with a
magnitude of 1

2 +
1
2 (S− 1

2 ). The problem of impurity end
spins coupled to a spin-1/2 chain has been analyzed using
the bosonization technique, through which it was found
that after the screening induced by the spin-1/2 chain (es-
sentially a Kondo effect), a free spin with a magnitude of
1
2 (S− 1

2 ) is left at each end of the spin chain (Eggert and
Affleck, 1992). Note that the existence of end states in
half-odd-integer spin chains is rather non-trivial because
the bulk spin excitations are gapless. As a result, the end
spins at the two ends of a half-odd-integer spin chain are
coupled by a term Jeff ∼ JS2/(L lnL), where L is the
length of the spin chain. The excitation energy of the
end state is logarithmically lower than the energy of the
bulk spin excitations, which have an energy of ∼ J/L
(Ng, 1994). These predictions for open chains and end
states based on the NLσM plus topological θ term anal-
ysis have been verified numerically by means of density
matrix renormalization group (DMRG) calculations (Qin
et al., 1995).

II.5. Higher dimensions and frustrated quantum
antiferromagnets

The NLσM approach to quantum antiferromagnets has
been extended to higher dimensions and to frustrated
quantum antiferromagnets. For simple antiferromagnets,
ST vanishes in dimensions of d > 1, and we need only
consider the NLσM, i.e., Sσ. As discussed before, Sσ de-
scribes two plausible phases, the weak coupling phase, in
which the ground state is antiferromagnetically ordered,

1 For S = 1 chains, the S = 1/2 end states are protected by a
weaker Z2 × Z2 symmetry (Chen et al., 2011a,b).

and the strong coupling phase, in which the ground state
is gapped. The weak coupling phase is favored for large
spin magnitudes S. Various numerical and analytical
studies have consistently demonstrated that the ground
state is always Néel ordered for simple quantum anti-
ferromagnets on a 2d square lattice, even for the small-
est possible spin value of S = 1/2 (Manousakis, 1991).
For this reason, physicists have turned to frustrated spin
models to look for exotic spin liquid states.

The NLσM approach has generated interesting results
when applied to weakly frustrated spin models, where the
main effect of frustration is to reduce the effective cou-
pling strength between rotors (for example, J1−J2 mod-
els, in which a next-nearest neighbor antiferromagnetic
coupling is added to the Heisenberg model on a square
lattice). In this case, it has been shown that spin-Peierls
order can be obtained when discontinuous monopole-like
spin configurations are included in the calculation of ST

(Read and Sachdev, 1990). However, the method be-
comes questionable when applied to strongly frustrated
spin systems, in which effective rotors become difficult to
define locally, for example, the antiferromagnetic Heisen-
berg model on a kagome lattice.

Generally speaking, a continuum theory is reliable only
if the short-distance physics is captured correctly by the
underlying classical or mean-field theory. A continuum
theory becomes unreliable if the short-distance physics it
assumes is not correct. This seems to be the case for the
NLσM approach when applied to strongly frustrated spin
systems. In the following sections, we consider alterna-
tive methods of treating quantum spin systems, keeping
in mind the physics that we have previously discussed.

III. RESONANT VALENCE BOND (RVB) STATES

The semi-classical approach, which is based on fluctu-
ations around a presumed classical (Néel) order, is diffi-
cult to apply in frustrated lattice models. The difficulties
arise from two main sources. First, different degenerate
or quasi-degenerate classical ground states may exist in
a frustrated spin system. It is difficult to include these
quasi-degenerate classical ground states in the NLσM de-
scription. Second, the effect of Berrys phases becomes in-
tractable because of the complicated (classical) spin tra-
jectory.

The term geometric frustration (or frustration for
short) was introduced by Gerard Toulouse in the context
of frustrated magnetic systems (Toulouse, 1977; Vanni-
menus and Toulouse, 1977). Indeed, frustrated mag-
netic systems had long been studied prior to that time.
Early work included a study conducted by G. H. Wannier
(Wannier, 1950) on the classical Ising model on a trian-
gular lattice with antiferromagnetically coupled nearest
neighbor spins, which serves as the simplest example of
geometric frustration (Diep, 2004). Because of the AFM
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coupling, two nearest neighboring spins A and B tend to
be anti-parallel. Then, a third spin C that is a neighbor
of both A and B is frustrated because its two possible
orientations, up and down, both have the same energy.
The classical ground state has a high level of degener-
acy. As a result, we cannot choose a classical spin order
as the starting point for constructing the NLσM for the
quantum S = 1/2 XXZ model

H = Jz
∑

〈i,j〉
S
(z)
i S

(z)
j + J⊥

∑

〈i,j〉

(

S
(x)
i S

(x)
j + S

(y)
i S

(y)
j

)

with Jz >> J⊥ because there exist infinite spin configu-
rations with the same classical energy. We note that the
spin-spin correlation has been found to decay following a
power law at zero temperature in the exact solution for
the classical Ising model (Stephenson, 1970).

?

A B

C

FIG. 2 Geometric frustration. The spin C is frustrated be-
cause either the up or down orientation will give rise to the
same energy in the AFM Ising limit.

In this case, an alternative approach is a variational
wavefunction, in which we essentially must guess the
ground state wavefunction based on experience or phys-
ical intuition. A very important idea related to this ap-
proach is the resonating valence bond (RVB) concept for
spin-1/2 systems suggested by Anderson. The term RVB
was first coined by Pauling (Pauling, 1949) in the context
of metallic materials. Anderson revived interest in this
concept in 1973 when he constructed a non-degenerate
quantum ground state for an S = 1/2 AFM system on a
triangular lattice (Anderson, 1973). A valence bond is a
spin singlet state constructed from two S = 1/2 spins at
sites i and j, given by

(i, j) =
1√
2
(|↑i↓j〉 − |↓i↑j〉), (22)

and an RVB state is a tensor product of valence bond
states, whose wavefunction is given by

|ΨRV B〉 =
∑

i1j1···injn
a(i1j1···injn) |(i1, j1) · · · (in, jn)〉 ,

(23)
where (i1, j1) · · · (in, jn) are dimer configurations cover-
ing the entire lattice. The wavefunction is summed over
all possible ways in which the lattice can be divided

into pairs of lattice sites (i.e., dimers). The quanti-
ties a(i1j1···injn) are variational parameters determined by
minimizing the ground-state energy of a given Hamilto-
nian. For a quantum disordered antiferromagnet, it has
been proposed that the valence bond pairs in the RVB
construction are dominated by short-range pairs, result-
ing in liquid-like states with no long-range spin order.
The corresponding spin correlation function 〈Si.Sj〉 in
the RVB state may be short in range, with a finite corre-
lation length (usually called short-range RVB (sRVB)),
or may decay with distance following a power law (alge-
braic spin liquid states). The state is called a valence-
bond solid (VBS) state if a single dimer configuration
dominates in the ground state. An algebraic spin liq-
uid state is usually invariant under all symmetry opera-
tions allowed by the lattice, whereas a VBS state usually
breaks the translational or rotational lattice symmetry.

FIG. 3 A spin-singlet dimer configuration covering a lattice.
An RVB state is a superposition of such configurations.

The wavefunction given in Eq. (23), which is param-
eterized by a(i1j1···injn), has too many variational de-
grees of freedom even after the translational and ro-
tational symmetries of the wavefunction are considered
and must be simplified for practical purposes. A solu-
tion has been proposed by Baskaran, Zou and Anderson
(Baskaran et al., 1987), who noted that the Bardeen-
Cooper-Schrieffer (BCS) states for superconductors are
direct product states of spin-singlet Cooper pairs and
suggested that good RVB wavefunctions can be con-
structed from BCS wavefunctions via Gutzwiller projec-
tion, denoted by PG:

|ΨRVB〉 = PG |ΨBCS〉 , (24)

|ΨBCS〉 =
∏

k

(uk + vkc
†
k↑c

†
−k↓) |0〉 ,

where c†k↑ and c†−k↑ are electron creation operators and
the numerical coefficients uk and vk are determined from
a trial BCS mean-field Hamiltonian HBCS through the
Bogoliubov-de Gennes equations, i.e., the RVB wavefunc-
tion is fixed by the parameters determining HBCS . The
number of electrons at each lattice site may take a value
of 0, 1 or 2 in the original BCS wavefunctions. The
Gutzwiller projection PG removes all wavefunction com-
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ponents with doubly occupied sites from the BCS state
and freezes the charge degrees of freedom. A half-filled
Mott insulator state is obtained if the total number of
electrons is equal to the number of lattice sites. We note
that the technique of Gutzwiller projection is currently
being widely applied to other mean-field wavefunctions
|ΨMF 〉 to study Mott insulating states in diverse physi-
cal systems. Interesting and energetically favorable wave-
functions are often obtained when |ΨMF 〉 is chosen prop-
erly.
In addition to representing spins by electrons or

fermions, one may also use Schwinger bosons to repre-
sent spins to construct RVB wavefunctions (see also the
discussion after Eq. (27)). It is easy to recognize that in
general, almost any mean-field wavefunction |ΨMF 〉 can
be employed to construct a corresponding spin state as
follows:

|ΨSpin〉 = PG |ΨMF 〉 , (25)

where |ΨMF 〉 is the ground state of a trial mean-field

Hamiltonian Htrial(c, c
†; a1, ..., aN ), where c†iσ(ciσ) can

represent either fermions or bosons and a1, ..., aN are
variational parameters determined by minimizing the en-
ergy of the parent spin Hamiltonian.2 The invention of
Gutzwiller projection techniques enables us to construct
a large variety of variational spin wavefunctions, of which
the best is the one with the lowest energy.
The most important difference between the fermion

and boson constructions is that they lead to very differ-
ent sign structures in the spin wavefunction |ΨRVB〉. In
a bosonic wavefunction, when two spins (note that only
spin degrees of freedom remain after Gutzwiller projec-
tion) at different sites are interchanged, the wavefunction
does not change, whereas the wavefunction does change
sign when two spins are interchanged in a fermionic wave-
function. These different sign structures represent very
different quantum entanglement structures in the corre-
sponding RVB wavefunctions. A famous example is Mar-
shall’s sign rule (Marshall, 1955) for the AFM Heisen-
berg model on a bipartite lattice, where the Heisenberg
exchange exists only between bonds linking sites in dif-
ferent sublattices. Marshall’s theorem tells us that the
ground state for such an AFM system is a spin-singlet
state with positive-definite coefficients in the Ising ba-
sis
{

(−1)NA↓ |σ1 · · ·σN 〉
}

, where NA↓ is the number of

2 For historical reasons, the fermion representation is also called
the slave-boson representation, and the Schwinger boson repre-
sentation is also called the slave-fermion representation. In the
context of doped Mott insulators, one can decompose the elec-

tron annihilation operator as ciσ = h†
i fiσ , where fiσ carries a

charge-neutral spin and h†
i is the (spinless) hole creation oper-

ator. If the spinon operator fiσ is fermionic, then the charge

carrier (h†
i ) is a “slave boson”, whereas if the spinon operator is

bosonic, then the charge carrier is a “slave fermion”.

down spins in sublattice A and N is the number of lat-
tice sites. Using this result, Liang, Doucot and Anderson
(Liang et al., 1988) proposed the use of the following trial
ground-state RVB wavefunction for spin-1/2 Heisenberg
antiferromagnets on a square lattice:

|ΨLDA〉 =
∑

iα∈A,jβ∈B

h(i1 − j1) · · ·h(in − jn)

×(−1)NA↓ |(i1, j1) · · · (in, jn)〉 , (26)

where h(r) represents a positive-definite function of
the bond length r. This particular wavefunction can
be conveniently represented as a Gutzwiller-projected
wavefunction in the Schwinger boson representation,
whereas the representation of the same wavefunction in
terms of fermions is far from straightforward (Read and
Chakraborty, 1989). However, it has been shown that the
projected BCS wavefunction given in Eq. (24) will sat-
isfy Marshall’s sign rule provided that the spatial Fourier
transformation of uk and vk (= uij and vij) connects only
sites in different sublattices in a bipartite lattice (Li and
Yang, 2007; Yunoki and Sorella, 2006)
It has been noted by Ma (Ma, 1988) that the sum

of states |(i1, j1) · · · (in, jn)〉, with iα ∈ A and jβ ∈ B,
forms an overcomplete set for spin-singlet states in a bi-
partite lattice. Because h is a positive function, it can be
interpreted as a weight factor in a Monte Carlo simula-
tion based on loop gas statistics. Such a calculation has
been performed for large lattices by Liang et al. (Liang
et al., 1988), and a very accurate ground-state wavefunc-
tion for the AFM Heisenberg model on a square lattice
was obtained. The wavefunction can give rise to either
long-range or short-range spin correlations depending on
the choice of h(r).

FIG. 4 A spinon excitation on top of an RVB ground state.

Once a proper RVB ground-state wavefunction has
been constructed, the next natural question is what are
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the low-energy dynamics, or the elementary excitations
on top of the ground states? A natural candidate for exci-
tation is to break a spin-singlet pair in the ground state
to form a spin-triplet excited state with two unpaired
spins. For a long-range magnetically ordered state, it
has been found that the two unpaired spins will bind
together closely in space and that the resulting elemen-
tary excitations will be localized spin-triplet excitations
with well-defined energy and momentum. This is noth-
ing but a spin wave or magnon excitation, as guaranteed
by the Goldstone theorem. By contrast, for a QSL state
with short-range spin correlation, it has been proposed
that the two unpaired spins may interact only weakly
with each other and can be regarded as independent
spin-1/2 elementary excitations called spinons. The ex-
istence of S = 1/2 spinon excitations is one of the most
important predictions in QSLs and is crucial to the ex-
perimental verification of QSLs. The process through
which a spin-1 magnon turns into two independent spin-
1/2 spinons is an example of fractionalization. Whether
fractionalization of spin excitations actually occurs in a
particular spin system is a highly non-trivial question.
A systematic way to examine whether fractionalization
may occur in a spin model was first proposed by X.G.
Wen (Wen, 1989, 1991) based on the concept of con-
finement/deconfinement in lattice gauge theory.3 This
approach is explained in the following subsection, where
the gauge theory for QSLs is introduced.

III.1. RVB theory and gauge Theory

This subsection presents a brief survey of how RVB
theory is implemented in practice, especially how low-
energy effective field theories for QSL states are con-
structed, which is crucial for characterizing QSLs. We
discuss a few common examples of QSLs and define the
SU(2), U(1) and Z2 spin liquid states. The nature of the
U(1) QSL state is then further illuminated by relating it
to a Fermi liquid state through a Mott metal-insulator
transition. We shall see that analytical approaches have
strong limitations and should be complemented by nu-
merical approaches in practice.
One complication associated with the RVB construc-

tion is that there exist, in general, different mean-field
states |ΨMF 〉 that correspond to the same RVB spin
wavefunction after Gutzwiller projection. This redun-
dancy originates from the enlarged Hilbert space in
the boson/fermion representation for spins and is called

3 This criterion for fractionalization works only in dimensions
d > 1. In one dimension, gauge fields are always confining, while
spinons appear in energy spectrum as the gapless spin-1/2 excita-
tions of the quantum antiferromagnet Heisenberg model (Mudry
and Fradkin, 1994a,b).

gauge redundancy or gauge symmetry. Gutzwiller pro-
jection removes this redundancy, resulting in a unique
state in spin Hilbert space. To see how this occurs, we
consider the fermion representation of S = 1/2 spin op-
erators (Abrikosov, 1965; Baskaran and Anderson, 1988;
Baskaran et al., 1987):

~Si =
1

2

∑

αβ

f †
iα~σαβfiβ, (27a)

where α, β =↑, ↓ are spin indices, f †
iα(fiα) is the fermion

creation (annihilation) operator, and ~σ = (σ1, σ2, σ3)
represents the Pauli matrices. It is easy to confirm that
the three components of ~Si satisfy the SU(2) Lie alge-
bra relation, [Sλ

i , S
µ
j ] = iǫλµνS

ν
i δij , where λ, µ, ν = 1, 2, 3

and ǫλµν is the antisymmetric tensor. Hence, Eq. (27a)
is a representation of SU(2) spins. However, the local
Hilbert space for two fermions contains four Fock states,
{

|0〉 , f †
↑ |0〉 = |↑〉 , f †

↓ |0〉 = |↓〉 , f †
↑f

†
↓ |0〉 = |↑↓〉

}

; this is

larger than the physical spin Hilbert space for spin-
1/2 = {|↑〉 , |↓〉}, and we need to impose the single-
occupancy constraint

∑

α

f †
iαfiα = 1 (27b)

to remove the unphysical states to obtain a proper spin
representation. This is what the Gutzwiller projection
does. The construction presented in Eq. (27) is equally
applicable for bosons (the Schwinger boson representa-
tion) because the SU(2) Lie algebra is independent of
the statistics of the represented particles. In the follow-
ing, we focus on the fermion representation approach be-
cause it has been found to be a more fruitful approach
for constructing QSLs. Readers who are interested in the
Schwinger boson approach may refer to reference (Arovas
and Auerbach, 1988) for details.
There are multiple choices of {fiα} available to repre-

sent spin operators even once the single-occupancy con-
straint is satisfied and the statistics of the particles have
been chosen. For example, a new set of {fiα} can be
obtained through an U(1) gauge transformation:

fiα → f ′
iα = eiθ(i)fiα.

It is easy to verify that {f ′
iα} forms another represen-

tation of spin operators by replacing fiα with f ′
iα in

Eq. (27), independent of whether the fs are fermions or
bosons. This multiplicity is called gauge redundancy or
gauge symmetry in the literature. We call it gauge redun-
dancy here because symmetry usually refers to situations
in which there are multiple physically distinct states with
the same properties, e.g., there is a degeneracy in energy.
However, the gauge degree of freedom we discuss here is
not a “real” symmetry among different physical states.
Here, two gauge-equivalent states are the same state in
the spin Hilbert space. They just “look” different when
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they are represented by particles that live in an enlarged
Hilbert space. There is no way to distinguish them phys-
ically (Wen, 2002).
The gauge redundancy in the fermion representation

of S = 1/2 spins extends beyond U(1). There exists an
additional SU(2) gauge structure because of the particle-
hole symmetry in the fermion representation, which is
absent in the Schwinger boson representation. An elegant
way of showing this SU(2) gauge structure was suggested
by Affleck, Zou, Tsu and Anderson (Affleck et al., 1988b),
who introduced the following 2× 2 matrix operator:

Ψ =

(

f↑ f †
↓

f↓ −f †
↑

)

. (28)

It is straightforward to show that the spin operator can
be re-expressed in terms of Ψ as

~Si = tr
(

Ψ†
i~σΨi

)

. (29)

The single-occupancy condition given in Eq. (27b) also
leads to the identities

fi↑fi↓ = f †
i↑f

†
i↓ = 0. (30a)

Together with Eq. (30a), Eq. (27b) can be rewritten in
the following compact vector form:

tr
(

Ψi~σΨ
†
i

)

= 0. (30b)

We now consider the following SU(2) gauge transfor-
mation of Ψ:

Ψi → Ψ
′

i = ΨiWi,Wi ∈ SU(2). (31)

The spin operator ~Si in Eq. (29) remains invariant un-

der this transformation because WiW
†
i = 1. The single-

occupancy constraint given in Eq. (30b) is also invariant

because Wi~σW
†
i represents a rotation of vector ~σ but

all components of tr
(

Ψi~σΨ
†
i

)

are zero, i.e., Ψi → Ψ
′

i =

ΨiWi is also a valid representation for S = 1/2 spins.
We show now how RVB theory is implemented in an

analytical fermionic approach. For concreteness, we con-
sider an AFM Heisenberg model on a lattice:

H = J
∑

〈ij〉

~Si · ~Sj , (32)

where 〈ij〉 denotes a nearest neighbor bond and J > 0.

The spin exchange ~Si · ~Sj can be written in terms of
fermionic (spinon) operators:

~Si · ~Sj =
1

4

∑

αβ

(

2f †
iαfiβf

†
jβfjα − f †

iαfiαf
†
jβfjβ

)

, (33)

where we have used the relation ~σαβ ·~σα′β′ = 2δαβ′δα′β−
δαβδα′β′ . The constraint given in Eq. (27b) or (30b)

can be imposed by inserting delta functions into the
imaginary-time path integral. The corresponding par-
tition function is

Z =

∫

D[f, f̄ ] exp[−S(f, f̄)]
∏

i

δ
(

∑

α
f̄iαfiα − 1

)

×δ
(

∑

αβ
ǫαβfiαfiβ

)

δ
(

∑

αβ
ǫαβ f̄iαf̄iβ

)

, (34)

where the action S(f, f̄) is given by

S(f, f̄) =

∫ β

0

dτ

(

∑

iα

f̄iα∂τfiα −H

)

. (35)

The delta functions can be represented by the integration
over real auxiliary fields al0(i) on all sites i, l = 1, 2, 3.
Using the relation δ (x) =

∫

dk
2π e

ikx, we obtain

Z =

∫

D[f, f̄ ; a] exp[−S(f, f̄ ; a)], (36)

with

S(f, f̄ ; a) = S(f, f̄)− i

{

∑

i

a30

(

∑

α
f̄iαfiα − 1

)

+
[

(a10 + ia20)
∑

αβ
ǫαβfiαfiβ + h.c.

]}

.(37)

It is generally believed (but has not been proven) that the
partition function Z will remain invariant under a Wick
rotation of the fields al0 in the path integral, namely, we
can replace ial0 with al0. Then, the action becomes

S(f, f̄ ; a) = S(f, f̄)−
{

∑

i

a30

(

∑

α
f̄iαfiα − 1

)

+
[

(a10 + ia20)
∑

αβ
ǫαβfiαfiβ + h.c.

]}

.(38)

The action given in Eq. (38) serves as the starting
point for theoretical analysis. The path integral is dif-
ficult to solve, and approximate methods are generally
needed. We start with a mean-field theory in which we
assume that the path integral is dominated by saddle
points characterized by equal-time expectation values of
the operators

∑

α f
†
iαfiα,

∑

αβ ǫαβfiαfiβ and al0(i):

χij =
∑

α

〈

f †
iαfjα

〉

,

∆ij =
∑

αβ
ǫαβ 〈fiαfjβ〉 ,

al0 = 〈al0(i)〉, (39)

where ǫαβ is the totally antisymmetric tensor (ǫ↑↓=1),
l = 1, 2, 3. It is easy to verify that χij and ∆ij satisfy
the relations χij = χ∗

ji and ∆ij = ∆ji. Note that any

time-dependent fluctuations in ∆ij , χij and al0(i) are ig-
nored in mean-field theory. With these approximations,
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we arrive at the following mean-field Hamiltonian:

HMF =
∑

〈ij〉
−3

8
J
[

(χji

∑

α
f †
iαfjα

+ ∆ij

∑

αβ
ǫαβf

†
iαf

†
jβ + h.c)− |χij |2 − |∆ij |2

]

+
∑

i

{

a30

(

∑

α
f †
iαfiα − 1

)

+
[

(a10 + ia20)
∑

αβ
ǫαβfiαfiβ + h.c.

]}

, (40)

where χij , ∆ij and al0 are determined by minimizing the
ground-state energy with the exact constraint condition
(27b) replaced with the average constraint

∑

α

〈f †
iαfiα〉 = 1. (41)

The spin exchange term ~Si · ~Sj in Eq. (33) can be eval-
uated within the mean-field assumption using the Wick
theorem. Maintaining spin rotation invariance in the cal-
culation, we obtain

〈

~Si · ~Sj

〉

= −3

8

(

χ∗
ijχij +∆∗

ij∆ij

)

. (42)

in mean-field theory.
Physically, the mean-field theory outlined above is

equivalent to assuming that the ground state of the spin
system is given by a mean-field wavefunction |ΨMF 〉
without Gutzwiller projection. The spin exchange energy
(42) evaluated in this way is usually not a good estimate
of the energy of the “real” spin wavefunction. In practice,
this mean-field theory provides an effective way to obtain
a BCS Hamiltonian to construct a Gutzwiller-projected
wavefunction. Whether the spin wavefunction obtained
through Gutzwiller projection is a good wavefunction for
the spin Hamiltonian can only be tested by evaluating
the energy of the wavefunction numerically (see section
III.4).
In the following section, we assume that the

Gutzwiller-projected wavefunction PG |ΨMF 〉 is a suffi-
ciently good starting point to locate the true ground state
of the spin Hamiltonian. In this case, we expect that the
ground and low-energy states constructed from HMF are
adiabatically connected to the corresponding Gutzwiller-
projected wavefunctions and that we may construct an
effective low-energy Hamiltonian/Lagrangian of the spin
system from fluctuations around HMF through the usual
path integral technique. The fluctuations in ∆ij , χij and
al0(i) describe spin-singlet excitations and are usually
called gauge fluctuations. Before discussing gauge fluc-
tuations, we first discuss the effect of gauge redundancy
on the mean-field states.
To illustrate, we consider two mean-field QSL states

with different structures of the mean-field parameters
{

χij ,∆ij , a
l
0(i)
}

. We place the states on a simple square

lattice. The first state is the uniform RVB state with

χij = 0, (43a)

∆ij =

{

∆, NN bonds,
0, others,

al0 = 0 (l = 1, 2, 3).

The second example considered is the zero-flux state
given by

χij =

{

χ, NN bonds,
0, others,

∆ij = 0, (43b)

al0 = 0 (l = 1, 2, 3).

∆ and χ are real numbers. We show that irrespective
of their very different appearances, these two mean-field
ansatze actually give rise to the same spin state after
Gutzwiller projection. The two states are gauge equiv-
alent because they can be transformed into each other
through a proper gauge transformation.
The Hamiltonian given in Eq. (40) retains a local

SU(2) structure, which originates from the gauge redun-
dancy in the fermion representation of spin. This local
SU(2) symmetry becomes explicit if we introduce a dou-

blet field ψ =
(

f↑, f
†
↓

)T

and a 2× 2 matrix

uij =

(

χij ∆∗
ji

∆ij −χji

)

.

The mean-field Hamiltonian (40) can be written in a com-
pact manner as

HMF =
∑

〈ij〉

3

8
J

[

1

2
Tr(u†ijuij)− (ψ†

i uijψj + h.c.)

]

+
∑

i,l

al0ψ
†
i τ

lψi, (44)

where the τ l, l = 1, 2, 3, are the Pauli matrices. From
Eq. (44) we can clearly see that the Hamiltonian HMF is
invariant under a local SU(2) transformation Wi:

ψi →Wiψi,

uij →WiuijW
†
j . (45)

This SU(2) gauge transformation is the same as that in

(31), where Ψ =
(

ψ, iσ2ψ
†)T .

Because of this SU(2) gauge structure, if we re-
gard the ansatz

(

uij , a
l
0τ

l
)

as labeling a physical spin

wavefunction |Ψ(uij ,a
l
0τ

l)
spin 〉 = PG|Ψ(uij ,a

l
0τ

l)
MF 〉, then such

a label is not a one-to-one label. Two ansatze re-
lated by an SU(2) gauge transformation,

(

uij , a
l
0τ

l
)

and
(

u′ij , a
′l
0 τ

l
)

=
(

W (uij),W (al0τ
l)
)

, label the same physi-

cal spin wavefunction:

|Ψspin({αi})〉 = PG|Ψ(W (uij),W (al
0τ

l))
MF 〉

= PG|Ψ(uij ,a
l
0τ

l)
MF 〉 (46)
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where W (uij) = WiuijW
†
j and W (al0(i)τ

l) =

Wia
l
0(i)τ

lW †
i , Wi ∈ SU(2). The uniform RVB state

and the zero-flux state discussed above denote the same
physical spin state because they are related by a gauge
transformation,

Wi = exp
(

i
π

4
τ2
)

.

More generally, the existence of gauge redundancy im-
plies that the low-energy fluctuations in spin systems
have a similar redundancy. To measure gauge fluctua-
tions, we introduce the loop variables

P (Ci) = uijujk · · ·uli,

where i, j, k, · · · , l denote a loop of lattice sites that
passes through site i. P (Ci) measures gauge fluxes and
has the general form

P (Ci) = A(Ci)τ
0 +B(Ci) · ~τ ,

where τ0 is the identity matrix and ~τ = {τ1, τ2, τ3} rep-
resents the Pauli matrices, A(Ci) and B(Ci) measure the
U(1) and SU(2) components, respectively, of the gauge
flux. For a translationally invariant mean-field state, we
can find a gauge with B(Ci) = n̂B(Ci), where A(Ci) and
B(Ci) are proportional to the area of the loop. Under a
gauge transformation,

P (Ci) →WiP (Ci)W
†
i ,

and the “direction” of n̂ changes. The presence of gauge
redundancy means that we may perform gauge transfor-
mations to change the “local” directions of n̂, but the
physical spin state remains unchanged.
For a given mean-field state, it is useful to distinguish

between two kinds of gauge transformations: those that
change the mean-field ansatz

{

uij , a
l
0(i)
}

and those that
do not. The latter constitute a subgroup of the original
SU(2) symmetry called an invariant gauge group (IGG)
(Wen, 2002):

IGG ≡
{

Wi|WiuijW
†
j = uij ,Wi ∈ SU(2)

}

. (47)

It can be shown rather generally that for a stable QSL
state, physical gapless gauge excitations exist only for
those fluctuations belonging to the IGG of the corre-
sponding mean-field ansatz. Therefore, it is important
to understand the structure of the IGGs in spin liquid
states. Within the fermionic SU(2) formalism, there are
only three plausible kinds of IGG: SU(2), U(1) and Z2.
We call the corresponding spin liquids SU(2), U(1) and
Z2 spin liquids. SU(2) spin liquids have B(Ci) = 0 with
IGG = SU(2). They are rather unstable because of the
existence of a large amount of gapless SU(2) gauge field
fluctuations. U(1) spin liquids have B(Ci) pointing in
only one direction for all loops Ci. The condensation

of fluxes in one “direction” provides an Anderson-Higgs
mechanism for SU(2) fluxes in “directions” perpendicu-
lar toB(C) and turns the IGG into U(1). The low-energy
fluctuations are U(1) gauge field fluctuations. Z2 spin liq-
uids have B(Ci) pointing in different directions for differ-
ent loops that pass through the same site i. The gauge
fluctuations are all gapped because the Anderson-Higgs
mechanism now applies to fluxes in all directions. A few
examples of mean-field ansatze for these three types of
spin liquid states are presented in the following subsec-
tions.

III.2. U(1) gauge fluctuations

We briefly discuss the U(1) gauge theory in regard to
two examples of spin liquids that are believed to exist in
nature (see section V). The first example is the zero-flux
state given in Eq. (43b), for which ∆ij = al0 = 0 and
χij = χ in the mean-field ansatz.

It is easy to see that B(Ci) ≡ 0 and that the IGG
of such a QSL is SU(2), i.e., the zero-flux state de-
scribes a SU(2) spin liquid. The low-energy fluctuations
are SU(2) gauge fluctuations. Here, we do not consider
the full SU(2) gauge fluctuations; we consider only the
phase fluctuations of χij , i.e., U(1) gauge fluctuations.
The consideration of only U(1) gauge fluctuations for
the zero-flux state can be justified in a slave-rotor the-
ory for the Hubbard model (Lee and Lee, 2005) or in
a phenomenological Landau Fermi-liquid-type approach
for spin liquid states near the metal-insulator transition

(see the next subsection).

Upon writing χij = χeiaij , where aij denotes phase
fluctuations, it is straightforward to see that

P (Ci) ∝ exp
(

iΦ(Ci)τ
3
)

,

where Φ(Ci) = (aij + ajk + · · ·+ ali) is the total U(1)
gauge flux enclosed by the loop, i.e., the phase fluctua-
tions of χij represent one component of the SU(2) gauge
fluctuations.

The effective Lagrangian describing these low-energy
phase fluctuations is

L(0) =
∑

iα

f̄iα(∂τ − a0)fiα

+
3

8

∑

〈ij〉

(

Jχeiaji

∑

α
f̄iαfjα + h.c.

)

, (48)

and the corresponding Lagrangian in the continuum limit
is

L(0) =

∫

d~r
∑

α

f̄α(~r)(∂τ − a0)fα(~r)

+
1

2m∗ f̄α(~r)(−i▽+ ~a)2fα(~r), (49)
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where m∗ is the effective mass for the spinon energy dis-
persion determined by Jχ and the vector field ~a(~r) is
given by the lattice gauge field aij through

aij = (~ri − ~rj) · ~a
(

~ri + ~rj
2

)

. (50)

Thus, the low-energy effective field theory describes non-
relativistic spin-1/2 fermions (spinons) coupled to the
U(1) gauge field (a0(~r),~a(~r)) in the continuum limit.

The other spin liquid state we introduce here is the
π-flux state (Affleck and Marston, 1988; Kotliar, 1988)
on a square lattice given by ∆ij = al0 = 0 and

χi,i+µ̂ =

{

χ, µ = x,
iχ(−1)ix , µ = y.

(51)

It is easy to see that P (Ci) ∝ exp
(

iπτ3
)

per square pla-
quette in the mean-field ansatz, i.e., the π-flux state has
IGG = U(1) and is a U(1) spin liquid.

The zero-flux and π-flux states are physically dis-
tinct states because of their different IGGs. Their
mean-field spinon dispersions are also qualitatively dif-
ferent. The zero-flux state has a mean-field dispersion
of E0(~k) = −Jχ(cos kx + cos ky), whereas the π-flux

state has Eπ(~k) = ±Jχ
√

cos2 kx + cos2 ky with a re-
duced Brillouin zone. The continuum theory describes
non-relativistic fermions with a large Fermi surface in
the zero-flux state and describes Dirac fermions with four
Fermi points (k = (±π/2,±π/2)) in the π-flux state (Af-
fleck and Marston, 1988). The effective continuum theory
for the π-flux state has the form

L(π) =
∑

µσ

(

ψ̄+σ(∂µ − iaµ)τµψ+σ + ψ̄−σ(∂µ − iaµ)τµψ−σ

)

,

(52)
where µ = 0, 1, 2. The two-component Dirac spinor fields
ψ±σ describe two inequivalent Dirac nodes in the spinon
spectrum (Affleck and Marston, 1988). The two effective
low-energy Lagrangians L(0) and L(π) describe two dif-
ferent types of spin liquid states that are believed to exist
in nature. We discuss these states again in section V.

The continuum action L serves as the starting point for
studying the stability and low-energy properties of spin
liquid states. Integrating out the fermion fields (at each
momentum shell) gives rise to a Maxwellian potential
energy term in the gauge field:

1

2g2(Λ)
(▽× ~a)2,

where g(Λ) is a running gauge coupling constant in the
sense of renormalization group theory, which depends on
the energy or momentum scale Λ. If g(Λ) → 0 in the
low-energy and long-wavelength limit of Λ → 0, then the
gauge fluctuations become increasingly weak. The corre-
sponding interaction between two fermions becomes too

weak to bind them together, and the elementary exci-
tations in the spin system are spin-1/2 fermionic exci-
tations called spinons. This phenomenon is called de-
confinement, and the ground state is a filled Fermi sea
of spinons. By contrast, if g(Λ) → ∞ as Λ → 0, then
two spinons will always be confined together to form a
magnon. This phenomenon is called confinement. In this
case, the mean-field QSL ground state breaks down into
a spin-ordered state because of the strong gauge fluc-
tuations, and magnon excitations are recovered in this
ordered state.

It is not exactly clear which kinds of mean-field QSL
states are stable against gauge fluctuation. It is generally
believed that Z2 QSL states are stable because Z2 (Ising)
gauge theories are deconfining (Fradkin and Shenker,
1979), whereas SU(2) QSL states are unstable because
of the presence of large gauge fluctuations. The case of
U(1) QSL states is more nontrivial. The SU(2) gauge
group and the corresponding gauge fields are compact in
spin liquid states. To reflect the compactness of the U(1)
gauge group, one must replace the electromagnetic field
tensor F 2

µν with 2(1− cosFµν). This periodic version of
U(1) gauge theory is called compact U(1) gauge theory.
A pure compact U(1) gauge theory always gives rise to
confinement in two dimensions (Polyakov, 1977, 1975),
but whether deconfinement is possible in the presence of
a matter field is an open question. Herbut et al. have ar-
gued that the theory is always confining in the presence
of a Fermi surface (Herbut et al., 2003) or nodal fermions
(Herbut and Seradjeh, 2003). Their conclusion depends
on an approximate effective action for the gauge field ob-
tained by integrating out the fermions to the lowest order.
However, this approximation is questionable for gapless
fermions. Indeed, Hermele et al. (Hermele et al., 2004)
proved that when the spin index is generalized to N fla-
vors, deconfinement arises in the case of 2N 2-component
Dirac fermions coupled to complex U(1) gauge fields for
sufficiently large N , thus providing a counter example to
confinement. Further renormalization group analysis for
compact quantum electrodynamics in 2+ 1D shows that
deconfinement occurs when N > Nc = 36/π3 ≃ 1.161,
where N is the number of fermion replicas. This implies
that a U(1) spin liquid is stable at the physical value
of N = 2 (Nogueira and Kleinert, 2005). Moreover, by
mapping the spinon Fermi surface in 2 + 1D to an infi-
nite set of (1+1)-dimensional chiral fermions, Lee (Lee,
2008b) argued that an instanton has an infinite scaling
dimension for any N > 0. Therefore, the QSL phase
is stable against instantons, and the noncompact U(1)
gauge theory is a good low-energy description.

We note that mechanisms other than confinement aris-
ing from gauge fluctuations may also lead to the instabil-
ity of U(1) QSLs, such as Amperean pairing (Lee et al.,
2007b) and spin-triplet pairing (Galitski and Kim, 2007)
between spinons.

A non-trivial prediction of the U(1) gauge theory for
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spin liquids is that it leads to charge excitations with
a soft gap (Ng and Lee, 2007), which can be detected
by means of their AC conductivities σ(ω). It has been
predicted that σ(ω) ∼ ωα in these spin liquid states,
with α ∼ 3.33 in a non-relativistic spin liquid and α =
2 in a Dirac fermion spin liquid (Potter et al., 2013).
It is expected that this soft gap and the related charge
fluctuations will manifest themselves most clearly when
the system is near the metal-insulator transition (see the
next subsection).

Because charge fluctuations will manifest themselves
near the metal-insulator transition, spin liquids in
“weak” Mott insulators become an interesting topic
(Grover et al., 2010; Podolsky et al., 2009; Senthil, 2008)
for investigation. To study the effect of charge fluctua-
tions near the metal-insulator transition, Lee and Lee
(Lee and Lee, 2005) began with the Hubbard model
and developed a U(1) gauge theory with the help of
the slave-rotor representation (Florens and Georges,
2004). A number of physical phenomena, including trans-
port properties (Nave and Lee, 2007) and Kondo effect
(Ribeiro and Lee, 2011), have been studied using this
framework. Charge fluctuations correspond to higher-
order spin ring-exchange terms in terms of the spin
Hamiltonian (Misguich et al., 1998; Yang et al., 2010).

III.2.1. Mott transition: relation between Fermi and spin liquids

Zhou and Ng (Zhou and Ng, 2013) proposed a different
way to understand U(1) spin liquids near the Mott tran-
sition. They proposed that spin liquids near the Mott
transition can be regarded as “Fermi liquids” with a con-
straint imposed on the current operator. For isotropic
systems, they observed that the charge current carried
by quasi-particles,

J =
m

m∗ (1 +
F s
1

d
)J(0), (53a)

is renormalized by the Landau parameter F s
1 in Fermi

liquid theory, but the thermal current,

JQ =
m

m∗JQ
(0), (53b)

is not, where J(0) and Jq
(0) are the charge and ther-

mal currents, respectively, carried by the corresponding
non-interacting fermions and d is the number of dimen-
sions of the system. For systems with Galilean invari-
ance, the charge current carried by quasi-particles is not

renormalized, and m∗

m = 1 +
F s

1

d (Baym and Pethick,
2004). However, this is not valid in general for electrons
in crystals, where Galilean invariance is lost. In this case,
m∗

m 6= 1 +
F s

1

d , and the charge current carried by quasi-
particles is renormalized through quasi-particle interac-
tion. In the special case in which 1+F s

1 /d→ 0 while m∗

m

remains finite, J → 0, suggesting that the fermionic sys-
tem is in a special state wherein spin-1/2 quasi-particles
do not carry charge due to interaction but still carry en-
tropy. This is exactly what one expects for spinons in
QSL states.
These authors noted that the limit of 1 + F s

1 /d→ 0 is
a singular point in Fermi liquid theory and that higher-
order q- and ω-dependent terms should be included in
the Landau interaction to ensure that finite results are
obtained when calculating physical response functions.
Expanding at small q and ω, they obtained

1 + F s
1 (q, ω)/d

N(0)
∼ α− βω2 + γtq

2
t + γlq

2
l , (54)

where qt ∼ ∇× and ql ∼ ∇ are associated with the
transverse (curl) and longitudinal (gradient) parts, re-
spectively, of the small-~q expansion. In a QSL state,
α = 0. They found that to ensure that the system is
in an incompressible (insulator) state, it is necessary to
have γl = 0.
To show that this phenomenology actually describes

fermionic spin liquids with U(1) gauge fluctuations, Zhou
and Ng (Zhou and Ng, 2013) considered a Landau Fermi
liquid with interaction parameters of F s

0 (q) and F s
1 (q)

only. The long-wavelength and low-energy dynamics of
the Fermi liquid are described by the following effective
Lagrangian:

Leff =
∑

k,σ

[

c†kσ(i
∂

∂t
− ξk)ckσ −H ′(c†, c)

]

, (55)

where c†kσ(ckσ) is the spin-σ fermion creation (annihila-
tion) operator with momentum k and

H ′(c†, c) =
1

2N(0)

∑

q

[

F s
1 (q)

v2F
j(q) · j(−q) + F s

0 (q)n(q)n(−q)
]

(56)
describes the current-current and density-density inter-
actions between quasi-particles (Larkin, 1964; Leggett,
1965), where q = (q, ω) and vF = ~kF /m

∗ is the Fermi
velocity.
The current and density interactions can be decou-

pled by introducing fictitious gauge potentials a and ϕ
(Hubbard-Stratonovich transformation) as follows:

H ′(c†, c) →
∑

q

[

j · a+ nϕ− 1

2

(

n

m∗
d

F s
1 (q)

a2 +
N(0)

F s
0 (q)

ϕ2

)]

,

(57)
where n is the fermion density. The equality d(n/m∗) =
N(0)v2F was used in formulating Eq. (57).
The Lagrangian presented in Eq. (55) and (57) can be

rewritten in the standard form of U(1) gauge theory by
noting that in this representation, the fermion current is
given by

j =
−i
2m∗

∑

σ

[

ψ†
σ∇ψσ − (∇ψ†

σ)ψσ

]

− n

m∗ a,
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where ψσ(r) =
∫

e−ik·rckσ is the Fourier transform of ckσ.
The Lagrangian can be written as

L =
∑

σ

∫

ddr

[

ψ†
σ(i

∂

∂t
− ϕ)ψσ −H(ψ†

σ, ψσ)

]

+ L(ϕ, a),

(58a)
where

H(ψ†
σ, ψσ) =

1

2m∗ |(∇− ia)ψσ|2 (58b)

and

L(ϕ, a) =
1

2

∫

ddr

[

n

m∗ (1 +
d

F s
1

)a2 +
N(0)

F s
0

ϕ2

]

. (58c)

Using Eq. (54), they find that in the small-q limit, the
transverse part of L(ϕ, a) in the spin liquid state is given
by

Lt(ϕ, a) = − n

2m∗

∫

ddr

[

β(
∂a

∂t
)2 − γt(∇× a)2

]

. (59)

The Lagrangian as expressed in Eq. (58) together with
Eq. (59) is the standard Lagrangian used to describe
QSLs with U(1) gauge fluctuations. The analysis can
be rather straightforwardly generalized to a U(1) spin
liquid with Dirac fermion dispersion. The appearance of
a soft charge gap in U(1) spin liquids can be understood
from the phenomenological form of F s

1 (q, ω) as expressed
in Eq. (54), which suggests that the quasi-particles carry
vanishing charges only in the limit of q, ω → 0. The
appearance of a non-vanishing β in (54) leads to an AC
conductivity σ(ω) with a power-law form. This picture is
very different from theories of spin liquid states that start
from simple spin models in which charge fluctuations are
absent at all energy scales and suggests that charge fluc-
tuations are important in regions near the Mott transi-
tion. We note that charge fluctuations can be (partially)
incorporated into the spin models through ring-exchange
terms.
The close relationship between Fermi liquids and spin

liquid states suggests an alternative picture of the Mott
metal-insulator transition with respect to that put for-
ward by Brinkman and Rice (Brinkman and Rice, 1970),
who proposed that a metal-insulator (Mott) transition is
characterized by a diverging effective mass m∗

m → ∞ and
an inverse compressibility κ → 0 at the Mott transition
point, with a correspondingly vanishing quasi-particle
renormalization weight Z ∼ m

m∗ → 0. The diverging
effective mass and vanishing quasi-particle weight imply
that the Fermi liquid state is destroyed at the Mott tran-
sition and that the Mott insulator state is distinct from
the Fermi liquid state on the metal side.
The phenomenology described here suggests an alter-

native picture in which the Fermi surface is not destroyed,
but the Landau quasi-particles are converted into spinons

(1 +
F s

1

d ) → 0) at the Mott transition. In particular,

the effective mass m∗/m may not diverge at the metal-
insulator transition, although Z → 0. A schematic phase
diagram for the Mott (metal-QSL) transition is presented
in Fig. 5 for a generic Hubbard-type Hamiltonian with a
hopping integral t and an on-site Coulomb repulsion U .
The system is driven into a Mott insulator state at zero
temperature at U = Uc, where 1 + F s

1 (U > Uc)/d = 0.
This picture suggests that a U(1) spin liquid state is likely
to exist in an insulator close to the Mott transition.

tU /
0

1

Z

*
m

m

0/1 1 dF
s

metal

QSLQSL

insulator

(a)

tU /
0

0/)(1 1 dUF
s

gapped phase

)(UT
c

QSL with a spinon FS

T

critical region

Femi liquid

(b)

0T

FIG. 5 (Zhou and Ng, 2013) (a) Schematic zero-temperature
phase diagram for the Mott transition. U is the strength of
the Hubbard interaction, and t is the hopping integral. The
electron quasi-particle weight and the quasi-particle charge
current ∼ 1 + F s

1 /d vanish at the critical point, whereas the
effective mass remains finite. (b) Schematic phase diagram
showing finite-temperature crossovers and possible instability
toward gapped phases at lower temperatures. There exists a
(finite-temperature) critical region around Uc where the phe-
nomenology is not applicable.

The point 1+F s
1 /d = 0 is a critical point in Fermi liq-

uid theory called the Pomeranchuk point. The Fermi
surface is unstable with respect to deformation when
1+F s

1 /d < 0. The criticality of this point implies that the
QSLs obtained in this way are marginally stable because
of large critical fluctuations. A similar conclusion can
be drawn from U(1) gauge theory by analyzing the U(1)
gauge fluctuations. As a result, QSLs with large Fermi
surfaces are, in general, susceptible to the formation of
other, more stable QSLs at lower temperatures, such as
Z2 QSLs or valence-bond solid (VBS) states that gap
out part of or the entire Fermi surface. This is indicated
schematically in the phase diagram shown in Fig. 5(b),
where the system is driven into a gapped QSL at low
temperatures of T < Tc(U) on the insulating side. The
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nature of the low-temperature QSLs depends on the mi-
croscopic details of the system and cannot be determined
based on the above phenomenological considerations.

III.3. Z2 spin liquid states

An example of a Z2 spin liquid state was first con-
structed by Wen (Wen, 1991) for a J1 − J2 Heisenberg
model on a square lattice, where J1 and J2 are the nearest
neighbor and next nearest neighbor Heisenberg interac-
tions, respectively. Wen considered the mean-field ansatz

ui,i+µ̂ =

(

χ 0
0 −χ

)

(60a)

where µ̂ = x̂, ŷ, and

ui,i±x̂+ŷ = ui,i∓x̂−ŷ =

(

0 ∆0 ± i∆1

∆0 ∓ i∆1 0

)

, (60b)

where χ, ∆0 and ∆1 are nonzero real numbers; a2,30 = 0;
and a10 6= 0. It is easy to check P (C) for two loops:
C1 = i → i + x̂ → i + x̂ + ŷ → i and C2 = i → i + ŷ →
i+ ŷ − x̂→ i. We obtain

P (C1) = χ2
(

∆0τ
1 +∆1τ

2
)

(61a)

and

P (C2) = −χ2
(

∆0τ
1 −∆1τ

2
)

, (61b)

which clearly demonstrates that B(C1) 6= B(C2) and
that the spin liquid state described above is a Z2 spin
liquid state. The mean-field ground state describes a
half-filled spinon band with a band dispersion given by

E±(k) = ±
√

ε1(~k)2 + ε2(~k)2 + ε3(~k)2, where

ε1(~k) = 2J1χ(cos(kx) + cos(ky)),

ε2(~k) = 2J2∆0(cos(kx + ky) + cos(kx − ky)) + a10,

ε3(~k) = 2J2∆1(cos(kx + ky)− cos(kx − ky)).

Note that the spinon spectrum is fully gapped.
Many other examples of Z2 spin liquid states have

been constructed in the literature. For instance, a nodal
gapped Z2 spin liquid state was proposed by Balents,
Fisher and Nayak (Balents et al., 1998) and by Senthil
and Fisher (Senthil and Fisher, 2000). The correspond-
ing mean-field ansatz includes nearest neighbor and next
nearest neighbor hopping as well as d-wave pairing on
nearest neighbor bonds on the square lattice:

ui,i+x̂ =

(

χ1 ∆
∆ −χ1

)

, (62a)

ui,i+ŷ =

(

χ1 −∆
−∆ −χ1

)

, (62b)

and

ui,i±x̂±ŷ =

(

χ2 0
0 −χ2

)

, (62c)

where χ1, χ2, and ∆ are nonzero real numbers; a1,20 = 0;
and a30 6= 0. The spinon dispersion is given by E±(k) =

±
√

ε(~k)2 +∆(~k)2, where

ε(~k) = 2J1χ1(cos(kx) + cos(ky))

+2J2χ2(cos(kx + ky) + cos(kx − ky)) + a30,

∆(~k) = 2J1∆(cos(kx)− cos(ky)) + a30,

and is found to be gapless at four ~k points with a lin-
ear dispersion. Thus, this spin liquid is a Z2 nodal spin
liquid. We reiterate that Z2 spin liquid states are ex-
pected to be the most stable because the SU(2) gauge
fields are gapped and the fermionic spins are interacting
only through short-range interactions.
It has been observed by Wen (Wen, 1991) that in ad-

dition to spinons, a soliton-type excitation exists in a Z2

spin liquid. This excitation is nothing but a π flux in the
Z2 gauge field, called a “Z2 vortex”. This Z2 vortex can
be described by a new mean-field ansatz,

ũij = uijΘij ,

where Θij = ±1 generates a π flux on a lattice. One
possible choice of Θij is illustrated in Fig. 6, where Θij =
−1 on the bonds cut by the dashed line and Θij = 1 on
the other bonds. An interesting consequence of such a Z2

vortex is that the statistics of a spinon can be changed
from bosonic to fermionic and vice versa if it is bound to
a vortex. Therefore, Z2 spin liquids may contain charge-
neutral spin-1/2 spinons with both bosonic and fermionic
statistics (Ng, 1999). The dynamics of Z2 vortices can
give rise to interesting physical consequences (Ng, 1999;
Qi et al., 2009).

FIG. 6 A Z2 vortex created by flipping the signs of the uij on
the bonds cut by the dashed line (indicated by thick lines).

It is worth noting that the J1 − J2 model on a square
lattice has been well studied. The lowest-energy Z2



19

spin liquid state is a nodal spin liquid with four Dirac
points (Capriotti et al., 2001; Hu et al., 2013), labeled
as Z2Azz13 in the projected group symmetry classifica-
tion scheme (Wen, 2002), which we discuss in section
III.5. This nodal Z2 spin liquid is energetically competi-
tive with calculations performed using the DMRG (Gong
et al., 2014b; Jiang et al., 2012b) and PEPS (Wang et al.,
2013) approaches.

Relation to superconductivity: RVB theory were de-
veloped not only for QSLs but also for high-Tc super-
conductivity (Anderson, 1987). It is generally believed
that Z2 spin liquid states may become superconductors
upon doping (Lee et al., 2006). The superconducting
state inherits novel properties from its QSL parent, and
new phenomena may also emerge. For instance, it has
been proposed that doping a kagome system can give rise
to an exotic superconductor with an hc/4e-quantized flux
(as opposed to the usual hc/2e quantization) (Ko et al.,
2009).

III.4. Numerical realization of Gutzwiller projection:
variational Monte Carlo method and some results

The theories of QSL states rely heavily on the reliabil-
ity of Gutzwiller-projected wavefunctions. In this subsec-
tion, we discuss how Gutzwiller projection is performed
numerically in practice and how the physical observables
can be evaluated using a Monte Carlo method for a given
projected wavefunction |ΨRV B〉 = PG |ΨMF 〉.
Two types of mean-field ansatz are frequently used in

constructing QSL states. The first one contains only
(fermionic) spinon hopping terms χ, and the mean-field
ground state is a half-filled Fermi sea. The second one
includes both hopping terms and pairing terms ∆, and
the mean-field ground state is a BCS-type state with a
fermion energy gap. These two types of wavefunctions
describe U(1) and Z2 spin liquid states, respectively, with
the proper choice of hopping and pairing parameters. For
a given spin Hamiltonian, we can determine these hop-
ping and pairing parameters by optimizing the ground-
state energy. Therefore, this approach is called the vari-
ational Monte Carlo (VMC) method.

For a projected Fermi sea state, the mean-field ground-
state wavefunction on a lattice with N sites can be con-
structed by filling the N lowest states in the mean-field
band:

|ΨFS〉 =
∏

σ

N/2
∏

k=1

ψ†
kσ |0〉 ,

where σ =↑, ↓ is the spin index and the states are sorted
in order of ascending energy, E1 ≤ · · · ≤ EN/2 < EF .

ψ†
kσ creates an eigenstate in the mean-field band and can

be expressed as

ψ†
kσ =

∑

i

ak (i) c
†
iσ,

where each value of i denotes a site and c†iσ is a local
fermion creation operator. The eigenstate wavefunction
ak (i) does not depend on the spin index σ for spin-singlet
states because of the spin rotational symmetry. More
explicitly,

|ΨFS〉 =
∏

σ

N/2
∏

i=1





N
∑

j=1

ai (j) c
†
jσ



 |0〉 , (63)

and the Gutzwiller-projected wavefunction can be writ-
ten in terms of the product of three factors:

PG |ΨFS〉 =
∑

{σi}
sgn

{

i1, · · · , iN/2, j1, · · · , jN/2

}

× det
[

A
(

i1, · · · , iN/2

)]

× det
[

A
(

j1, · · · , jN/2

)]

|σ1, · · · , σN 〉 ,(64)

where |σ1, · · · , σN 〉 is a state in the Ising ba-
sis with N/2 up spins located at sites i1, · · · , iN/2

and N/2 down spins located at sites j1, · · · , jN/2;

sgn
{

i1, · · · , iN/2, j1, · · · , jN/2

}

is the sign of the per-

mutation P =
{

i1, · · · , iN/2, j1, · · · , jN/2

}

; and

A
(

i1, · · · , iN/2

)

is an N/2×N/2 matrix given by

A
(

i1, · · · , iN/2

)

=







a1 (i1) · · · a1
(

iN/2

)

· · · . . . · · ·
aN/2 (i1) · · · aN/2

(

iN/2

)






.

(65)
A BCS-type mean-field ground state with spin-singlet

pairing can be written as

|ΨBCS〉 = e
1
2

∑
i,j Wij(c

†

i↑c
†

j↓−c†i↓c
†

j↑) |0〉 , (66)

where i and j are site indices andWij =Wji for fermionic
spin-singlet pairing. For a system with lattice transla-
tional symmetry, Wij can be written explicitly as

Wij = −
∑

k

vk
uk
e−ik·(Ri−Rj),

where uk and vk are given in the BCS form. In the more
general situation in which lattice translational symmetry
is lost, the Wijs are determined from the Bogoliubov-
de Gennes equations. Gutzwiller projection retains only
states with a number of electrons equal to the number of
lattice sites and removes all terms with more than one
electron per site, i.e.,

|ΨRV B〉 = PG

(

∑

i<j
Wijc

†
i↑c

†
j↓

)N/2

|0〉 . (67)
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In the spin representation, the projected BCS state can
be written as

PG |ΨBCS〉 =
∑

{σi}
sgn

(

i1, · · · , iN/2, j1, · · · , jN/2

)

× det
[

w
(

i1, · · · , iN/2, j1, · · · , jN/2

)]

× |σ1, · · · , σN 〉 , (68)

where |σ1, · · · , σN 〉 is a state in the Ising basis
with N/2 up spins located at sites i1, · · · , iN/2 and
N/2 down spins located at sites j1, · · · , jN/2 and

w
(

i1, · · · , iN/2, j1, · · · , jN/2

)

is an N/2 × N/2 matrix
given by

w
(

i1, · · · , iN/2, j1, · · · , jN/2

)

=







Wi1j1 · · · Wi1jN/2

· · · . . . · · ·
WiN/2j1 · · · WiN/2jN/2






.

(69)

A key observation regarding these two projected wave-
functions, Eqs.(64) and (68), is that both of them can
be written as a determinant or as a product of two de-
terminants. This allows us to evaluate a projected wave-
function numerically. For a large system, the number
of degrees of freedom increases exponentially with the
system size. In this case, the Monte Carlo method is ap-
plied to evaluate the energy, magnetization and spin cor-
relation for these projected wavefunctions (Gros, 1989;
Horsch and Kaplan, 1983). Below, we briefly describe
how the MC method works. Those who are interested in
the details may refer to Gros(Gros, 1989).

The expectation value of an operator Θ in a system
with the spin wavefunction |Ψ〉 can be written as

〈Θ〉 = 〈Ψ|Θ|Ψ〉
〈Ψ|Ψ〉 =

∑

α,β

〈α|Θ|β〉 〈Ψ|α〉〈β|Ψ〉
〈Ψ|Ψ〉 , (70)

where the spin configurations |α〉 and |β〉 are states in the
Ising basis with N/2 up spins and N/2 down spins. This
sort of expectation value is recognized to be amenable
to a Monte Carlo (MC) evaluation (Horsch and Kaplan,
1983). The expectation value expression given in Eq.
(70) can be rewritten as

〈Θ〉 =
∑

α





∑

β

〈α|Θ|β〉〈β|Ψ〉
〈α|Ψ〉





|〈α|Ψ〉|2
〈Ψ|Ψ〉

=
∑

α

f(α)ρ(α), (71)

with

f(α) =
∑

β

〈α|Θ|β〉〈β|Ψ〉
〈α|Ψ〉 ,

ρ(α) =
|〈α|Ψ〉|2
〈Ψ|Ψ〉 .

It follows that

ρ(α) > 0,
∑

α

ρ(α) = 1.

Note that for a “local operator” Θ (e.g., Θ = ~Si · ~Sj) and
a given spin configuration |α〉, only a limited number of
“neighbor” configurations |β〉 give rise to a nonvanishing
〈α|Θ|β〉. As noted by Horsch and Kaplan (Horsch and

Kaplan, 1983), the computation time for the ratio 〈β|Ψ〉
〈α|Ψ〉

is of O(N2). Therefore, 〈Θ〉 can be evaluated by means
of a random walk through spin configuration space with
weight ρ(α). As in the standard MC method, the proba-
bility T (α → α′) of transitioning from one configuration
α to another configuration α′ can be chosen as follows:

T (α→ α′) =

{

1, ρ(α′) ≥ ρ(α),
ρ(α′)
ρ(α) , ρ(α

′) < ρ(α).

The new configuration α′ is accepted with probability
T (α→ α′).
Because 〈α|Ψ〉 is either a determinant or a product

of two determinants, the computation time for 〈α|Ψ〉 is
of O(N3). The computational resource consumption for
the MC weight factor T (α → α′) is not too high, and
consequently, this MC method is feasible for Gutzwiller
projection. Moreover, the computation time of the ratio
T (α → α′) can be reduced to O(N2) if the correspond-
ing matrix A(α′) or w(α′) in Eq. (65) or (69) differs
from A(α) or w(α) by only one row or column. This can
be achieved by properly choosing the spin update pro-
cedure, e.g., the interchange of two opposite spins. This
algorithm was first introduced by Ceperley et al. for the
MC evaluation of a fermionic trial wavefunction (Ceper-
ley et al., 1977).
As a variational method, the VMC method not only

yields an upper bound on the ground-state energy for a
spin Hamiltonian but also provides detailed information
on the trial ground state. This information is useful for
understanding the nature of the ground-state wavefunc-
tion. In the remainder of this subsection, we discuss some
numerical results regarding Gutzwiller-projected wave-
functions on one- and two-dimensional frustrated lattices.

III.4.1. One-dimensional lattice

One-dimensional systems usually serve as benchmarks
for comparison because exact solutions are often avail-
able. It turns out that PG |ΨFS〉, which is gauge equiva-
lent to PG |ΨBCS〉 in one dimension, is an excellent trial
wavefunction for the ground state of the one-dimensional
Heisenberg model. The energy for PG |ΨFS〉 is higher
than that of the exact ground state by only 0.2% (Geb-
hard and Vollhardt, 1987; Gros et al., 1987; Yokoyama
and Shiba, 1987). The spin-spin correlation decays fol-

lowing a power law at large distances, 〈~Si · ~Si+r〉 ∼ (−1)r

|r| ,
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consistent with the results obtained through bosoniza-
tion (Luther and Peschel, 1975). Indeed, it has been
shown that this Gutzwiller-projected wavefunction is the
exact ground state of the Haldane-Shastry model (Hal-
dane, 1988a; Shastry, 1988),

HH−S =
J

2

N
∑

i=1

N−1
∑

r=1

1

sin2(πr/N)
~Si · ~Si+r,

which describes an AFM Heisenberg chain with long-
range coupling (a periodic version of 1/r2 exchange).
Excited states with Sz = m = (N↑ − N↓)/2 can also

be constructed, where N↑ and N↓ are the numbers of up

and down spins, respectively, in the wavefunction. The
lowest-energy state in the subspace with Sz = m is given
by

PG |Ψm〉 = PG

∏

|k|≤kF↑

ψ†
k↑

∏

|k|≤kF↓

ψ†
k↑ |0〉 , (72)

where kFσ = π(Nσ−1)/N = π(Nσ−1)/(N↑+N↓). With
the help of this trial wavefunction, the spin susceptibility
χ can be calculated (Gros et al., 1987). It is found that
χ is close to the value obtained from the exact solution
(Griffiths, 1964). The numerical results are summarized
in Table I.

TABLE I (Gros, 1989) Comparison of ground-state energy and spin susceptibility in one dimension. The first row shows the
results for the projected Fermi sea. The second row shows the results for the exact ground state of the Heisenberg model.

〈~Si · ~Si+1〉 χ

Gutzwiller −0.442118 (Gebhard and Vollhardt, 1987) 0.058 ± 0.008 (Gros et al., 1987)

Exact −0.443147 (Lieb and Wu, 1968) 0.0506 (Griffiths, 1964)

III.4.2. Triangular lattice

Historically, the AFM spin-1/2 Heisenberg Hamilto-
nian on a triangular lattice was the first model to be
proposed for the microscopic realization of a spin liq-
uid ground state (Fazekas and Anderson, 1974). How-
ever, the minimum-energy configuration for the classical
Heisenberg model on a triangular lattice is well known to
be the 120◦ Néel state. There has been a long-standing
debate regarding whether the frustration together with
quantum fluctuations could destroy the long-range 120◦

Néel order, leading to a spin liquid state. Many trial
wavefunctions have been proposed as the ground state of
the nearest neighbor Heisenberg model on a triangular
lattice, including a chiral spin liquid state (Kalmeyer and
Laughlin, 1987) and 120◦-Néel-order states with quan-
tum mechanical corrections (Huse and Elser, 1988; Sindz-
ingre et al., 1994). In 1999, Capriotti et al. (Capri-
otti et al., 1999) utilized the Green’s function Monte
Carlo (GFMC) method with the stochastic reconfigura-
tion technique to obtain the state of the model with the
lowest energy (to our knowledge; the ground state energy
per site is 0.5458 ± 0.0001), which exhibits 120◦ long-
range Néel order. More recently, the three-sublattice
120◦-Néel-order has been further confirmed by DMRG
(White and Chernyshev, 2007).

It thus seemed that for a triangular lattice, the possi-
bility of a spin liquid state had been ruled out. However,
the story continues. It was found that a four-spin ring ex-
change stabilizes the projected Fermi sea state against a

long-range AFM state (Motrunich, 2005). Because multi-
spin ring exchange reflects the charge fluctuations in the
vicinity of the Mott transition, this result provides the-
oretical support for the search for spin liquid states in a
Mott insulating state close to the metal-insulator transi-
tion.
The model Hamiltonian that contains both nearest

neighbor Heisenberg exchange and four-spin ring ex-
change is

Hring = J
∑

t t

P12 + Jring
∑

✔ ✔
t t

t t

(

P1234 + P †
1234

)

, (73)

where P12 = 2~S1 ·~S2+
1
2 interchanges the two spins at site

1 and site 2 and the four-spin exchange operators satisfy
the following relations: P †

1234 = P4321 and P1234+P4321 =
P12P34 + P14P23 − P13P24 + P13 + P24 − 1.

AF

14.0~ JJring /

Quantum spin liquid

Projected Fermi sea???

FIG. 7 (Motrunich, 2005) Variational phase diagram for the
Hamiltonian presented in (73).

By comparing the trial energies of the AF-ordered
states proposed by Huse and Elser (Huse and Elser,
1988) with those of various fermionic spin liquid states,
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Motrunich found that the ring-exchange term favors a
spin liquid ground state over the AFM-ordered state
(Motrunich, 2005). The results are summarized in Fig. 7.
For small ring exchange, i.e., Jring/J . 0.14, the ordered
states are of lower energy. However, for Jring/J & 0.14,
spin liquid states are energetically favored. For larger
values of Jring/J & 0.3 − 0.35, the optimal spin liq-
uid state is the projected Fermi sea state. In the inter-
mediate regime, optimized wavefunctions with extended
anisotropic s-wave, dx2−y2 , and dx2−y2+idxy spinon pair-
ings have similar energies.
Recently, a novel Z2 spin liquid state on a triangular

lattice was proposed, where the paired fermionic spinons
preserve all symmetries of the system and the system has
a gapless excitation spectrum with quadratic bands that
touch at q = 0. It was shown through the VMC method
that this Z2 spin liquid state has a highly competitive en-
ergy when Jring/J is realistically large (Mishmash et al.,
2013).

III.4.3. Kagome lattice

Unlike the case of a triangular lattice, the classical
Heisenberg model on a kagome lattice has an infinite
number of degenerate ground states that are connected
to one another by continuous “local” distortions of the
spin configuration (Villain, J. et al., 1980). This prop-
erty holds on any lattice with corner-sharing units, such
as checkerboard, kagome, and pyrochlore lattices (Moess-
ner and Chalker, 1998). For instance, on a kagome lattice
formed by corner-sharing triangles, the nearest neighbor
Heisenberg Hamiltonian can be written as the sum of the
squares of the total spins ~S△ = ~S1+ ~S2+ ~S3 of individual
triangles that share only one vertex:

H = J
∑

△
(~S△)2.

Classical ground states are obtained whenever ~S△ = 0.
This triangle rule fixes the relative orientations of the
three classical spins of a triangle at 120◦ from each other
in a plane, but it does not fix the relative orientation of
the plane of one triad with respect to the planes of the
triads on neighboring triangles. These degrees of free-
dom lead to a continuous local degeneracy of the ground
states. Note that this degeneracy exists even if we restrict
ourselves to coplanar spin states. Two of the simplest ex-
amples (Sachidev, 1992) are the three sublattice planar
states shown in Fig. 8 for the q = 0 and

√
3×

√
3 ordered

states.
The large classical ground-state degeneracy must be

lifted by quantum fluctuations. The nature of the ground
state for the quantum model is highly speculative because
of the enormous degeneracy in the classical model. Many
arguments have been presented in the literature regard-
ing what kind of ground state is favored, and this issue
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FIG. 8 Two classical planar Néel states (q = 0 and
√
3×

√
3)

on a kagome lattice. A, B and C specify three coplanar spin
orientations with intersection angles of 120◦.

is still under debate (Diep, 2004). In the following, we
discuss the U(1) QSL state, which is one of the promising
candidates for the ground state of a spin-1/2 Heisenberg
antiferromagnet on a kagome lattice.
Inspired by neutron scattering experiments on herbert-

smithite, ZnCu3(OH)6Cl2, Ran et al. constructed a se-
ries of variational wavefunctions of U(1) spin liquids on
a kagome lattice (Ran et al., 2007). The corresponding
mean-field ansatz involves only fermionic spinon hopping
on nearest neighbor bonds:

HMF = J
∑

〈ij〉σ
(χijf

†
jσfiσ + h.c.),

where the complex field χij lives on the links between
two neighboring sites. For a kagome lattice, the mean-
field states are characterized by the U(1) gauge fluxes
through the triangles and hexagons. Large-N expansion
suggests several candidate mean-field states (Hastings,
2000; Marston and Zeng, 1991): (i) VBS states, which
break translation symmetry; (ii) a spin liquid state (SL-
[π2 , 0]) with a flux of +π/2 through each triangle on the
kagome lattice and zero flux through the hexagons, which
is a chiral spin liquid state that breaks time-reversal sym-
metry; (iii) a spin liquid state (SL-[±π

2 , 0]) with staggered
π/2 fluxes through the triangles (+π/2 through up tri-
angles and −π/2 through down triangles) and zero flux
through the hexagons; (iv) a spin liquid state (SL-[π2 , π])
with a flux of +π/2 flux through each triangle and a flux
of π through each hexagon; (v) a uniform RVB spin liq-
uid state (SL-[0, 0]) with zero flux through both triangles
and hexagons, which has a spinon Fermi surface; and
(vi) a U(1)-Dirac spin liquid state (SL-[0, π]) with zero



23

flux through the triangles and a flux of π through each
hexagon, which has four flavors of two-component Dirac
fermions.

By performing VMC calculations on 8 × 8 × 3 and
12 × 12 × 3 lattices, Ran et al. (Ran et al., 2007)
found that the U(1)-Dirac spin liquid state (SL-[0, π])
has the lowest energy among states (i)-(vi) listed above
after Gutzwiller projection, with a ground-state energy
of −0.429J per site. Note that there is no tunable pa-
rameter in this U(1)-Dirac spin liquid state. This energy
is remarkably favorable because the value is very close to
the exact diagonalization result when extrapolated to the
thermodynamic limit. A comparison among the ground-
state energies determined using this VMC method and
other numerical methods is presented in Table II. The
authors also found that the U(1)-Dirac spin liquid state is
stable against VBS ordering and chiral spin liquid states
with fluxes of θ through the triangles and (π−2θ) through
the hexagons. The spin correlation functions exhibit al-
gebraic decay with distance because of the Dirac nodes
in the spinon spectrum.

TABLE II Comparison of the ground-state energies (in units
of J) determined using different methods for the nearest
neighbor Heisenberg model on a kagome lattice. In the VMC
method, the U(1)-Dirac spin liquid state (SL-[0, π]) is used.

Method Energy per site

Exact diagonalization −0.43 (Waldtmann et al., 1998)

Coupled cluster method −0.4252 (Farnell et al., 2001)

Spin-wave variational method −0.419 (Arrachea et al., 2004)

VMC method −0.429 (Ran et al., 2007)

We note that exact diagonalization (Lecheminant
et al., 1997; Leung and Elser, 1993; Mila, 1998; Waldt-
mann et al., 1998) and DMRG calculations (Depenbrock
et al., 2012; Jiang et al., 2012a, 2008; Yan et al., 2011)
strongly indicate the existence of a spin gap and seem to
rule out the U(1)-Dirac spin liquid scenario. However,
this disagreement may be a finite-size effect. The appli-
cability of exact diagonalization is limited to very small
lattices of up to 36 sites, and the maximum cylinder cir-
cumference used in the DMRG approach is only 17 lattice
spacings. Very recently, through the combination of the
Lanczos algorithm for projected fermionic wavefunctions
with the Green’s function Monte Carlo technique, Iqbal,
Becca, Sorella, and Poilblanc (Iqbal et al., 2013, 2014)
found that the gapless U(1)-Dirac spin liquid is competi-
tive with gapped Z2 spin liquids. By performing a finite-
size extrapolation of the ground-state energy, these au-
thors obtained an energy per site of E/J = −0.4365(2),
which is within three error bars of the estimates obtained
using the DMRG method. In summary, the U(1)-Dirac
spin liquid state has proven to be a good candidate for
describing a critical phase on a kagome lattice.

III.5. Classification of spin liquid states: quantum orders
and projective symmetry groups

The use of Gutzwiller-projected wavefunctions can be
made more systematic by using a powerful approach
based on classifying spin liquid states according to their
symmetry properties. For classical systems, it was ob-
served by Landau that symmetry is a universal prop-
erty shared by all macroscopic states within the same
phase, irrespective of microscopic details. Consequently,
the symmetry (or broken symmetry) associated with clas-
sical order parameters serves as a powerful tool for char-
acterizing different classical phases. This approach can
be generalized to quantum spin systems described by
Gutzwiller-projected wavefunctions, with additional con-
straints.
For spin liquid states described by Gutzwiller-

projected wavefunctions, one might expect that the quan-
tum phases could be classified according to the symmetry
properties of the mean-field ansatz

(

uij , a
l
0τ

l
)

. However,
the usual classical symmetry group (SG) is insufficient
for classifying these states for two reasons: (i) Because of
the gauge redundancy, different mean-field descriptions
exist for the same QSL state. For instance, the uniform
RVB state and the zero-flux state correspond to the same
spin state, and the d-wave RVB state on a square lattice
is also the π-flux state. (ii) QSL states may have inher-
ent (phase) structures contained in the mean-field ansatz
(

uij , a
l
0τ

l
)

that cannot be fully distinguished based on
the SG constructed for classical systems. To address this
issue, X.G. Wen proposed a new mathematical object
called a projective symmetry group (PSG) (Wen, 2002),
which generalizes Landau’s approach and has now be-
come an important tool in studying QSLs and the quan-
tum phase transitions between different QSL states.
Wen proposed that the symmetry of the mean-field

ansatz
(

uij , a
l
0τ

l
)

is a universal property and serves as a
kind of “quantum number” that can be used to charac-
terize quantum orders in QSLs. The macroscopic prop-
erties of the ansatz are characterized by its projective
symmetry group (PSG). An element of a PSG is a com-
bined operation consisting of a symmetry transformation
U followed by a local gauge transformation GU (i). The
PSG of a given mean-field ansatz consists of all combined
operations that leave the ansatz unchanged, i.e.,

PSG ≡ {GU |GUU(uij) = uij , GU (i) ∈ SU(2)}, (74)

where U(uij) = ũij ≡ uU(i),U(j), GUU(uij) ≡
GU (i)ũijG

†
U (j), U generates the symmetry transforma-

tion (SG), and GU is the associated gauge transforma-
tion. From this definition, it is easy to see that

SG ≡ PSG

IGG
.

The PSGs of two mean-field ansatze related by a
gauge transformationW are obviously also related. From
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WGUU(uij) = W (uij), where W (uij) ≡ WiuijW
†
j , we

obtain WGUUW
−1W (uij) = W (uij). Therefore, if

GUU belongs to the PSG of the mean-field ansatz uij ,
then WGUUW

−1 belongs to the PSG of the gauge-
transformed ansatz W (uij). We see that the gauge
transformation GU associated with the transformation
U changes in the following way under an SU(2) gauge
transformation W :

GU (i) →W (i)GU (i)W (U(i))†. (75)

Wen proposed that mean-field ansatze with different
PSGs belong to different classes of QSL states, just as
classical states with different SGs belong to different clas-
sical phases.

As examples, we consider the PSGs of the zero-flux
state given in Eq. (43b) and the π-flux state given in
Eq. (51) on a square lattice. For illustration, let us con-
sider the PSG associated with translational symmetry.
First, we consider the zero-flux state. The mean-field
ansatz given in Eq. (43b) is invariant under the transla-
tion transformations Tx(i → i + x̂) and Ty(i → i + ŷ)

and the gauge transformation G(θ) = eiθτ
3

. The ele-
ments of the PSG have the form GUU ; GU = ±G(θ), and
U = (Tx)

n(Ty)
m, where n and m are arbitrary integers.

The π-flux state is different. The mean-field ansatz given
in Eq. (51) breaks translational symmetry in the x direc-
tion because of the odd number of lattice sites. Thus, we
naively expect that the PSG should consist of elements
GUU with GU = ±G(θ) and U = (Tx)

2n(Ty)
m. However,

this is incorrect because the two mean-field ansatze

χi,i+µ̂ =

{

χ, µ = x

iχ(−1)ix , µ = y

and

χi,i+µ̂ =

{

χ, µ = x

iχ(−1)ix+1, µ = y

are actually related by a gauge transformation Wi =
(−1)iyτ0 and correspond to the same physical spin state.
As a result, the transformations GU ′U ′ with GU ′ =
±G(θ)(−1)iyτ0 and U ′ = (Tx)

2n+1(Ty)
m are also ele-

ments of the PSG for the π-flux state. The zero-flux
state and the π-flux state have different PSGs and there-
fore belong to different classes of U(1) QSL states.

More generally, other lattice symmetry opera-
tions (reflections and rotations), such as the par-
ity transformations Pxy ((ix, iy) → (iy, ix)) and
Pxȳ ((ix, iy) → (−iy,−ix)) on a square lattice, the
spin rotation transformation and the time-reversal
transformation, are also considered when constructing
PSGs, in addition to translations. The spin rotational
symmetry of spin liquid states requires the mean-field

ansatz to take the form:

uij = iρijWij ,

ρij = real number,

Wij ∈ SU(2). (76)

We end with a brief discussion of an issue related
to techniques for the classification of PSGs. For any
two given symmetry transformations, their correspond-
ing PSG elements must satisfy certain algebraic relations
determined by the symmetry transformations. Solving
these equations allows us to construct a PSG of a type
called an algebraic PSG. The name algebraic PSG is in-
troduced to distinguish such PSGs from the invariant
PSGs defined above. Any invariant PSG is an algebraic
PSG; however, an algebraic PSG is not necessarily an
invariant PSG unless there exists an ansatz such that
the algebraic PSG is the total symmetry group of that
ansatz.

To provide an example, we again consider translations.
The two translation elements Tx and Ty satisfy the fol-
lowing relation:

TxTyT
−1
x T−1

y = 1. (77)

From the definition of a PSG, we find that the two PSG
elements GxTx and GyTy must satisfy the algebraic rela-
tion

GxTxGyTy(GxTx)
−1(GyTy)

−1

= GxTxGyTyT
−1
x G−1

x T−1
y G−1

y

= Gx (i)Gy (i− x̂)G−1
x (i− ŷ)G−1

y (i) ∈ G, (78)

where we denote the IGG by G. Each solution
(GxTx, GyTy) of equation (78) is an algebraic PSG for Tx
and Ty. By adding other symmetry transformations, we
can find and classify all algebraic PSGs associated with
a given symmetry group. Because an invariant PSG is
always an algebraic PSG, we can check whether an alge-
braic PSG is an invariant PSG by constructing an explicit
ansatz uij . If an algebraic PSG supports an ansatz uij
with no additional symmetries, then it is an invariant
PSG. Through this method, we can classify symmetric
spin liquids in terms of PSGs.

In reference (Wen, 2002), Wen utilized PSGs to classify
QSL states with spin rotational symmetry, time-reversal
symmetry and all lattice symmetries on a square lat-
tice. Later, the PSG classification approach for symmet-
ric QSLs was applied to triangular (Zhou andWen, 2002),
star (Choy and Kim, 2009), and kagome (Lu et al., 2011)
lattices. The PSG classification scheme can also be gen-
eralized to bosonic QSL states (Wang, 2010b; Wang and
Vishwanath, 2006) and to QSL states that break spin ro-
tational symmetry and/or time-reversal symmetry (Bieri
et al., 2016; Kou and Wen, 2009).
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IV. BEYOND RVB APPROACHES

There are many reasons to go beyond the simple RVB
approach for S = 1/2 spin systems, for example, the dis-
covery of a plausible spin liquid state in a spin S = 1 sys-
tem (Zhou et al., 2011) and the rise in interest in Mott in-
sulators in systems with strong spin-orbit coupling where
rotational symmetry is broken and the ground state can-
not be a pure spin singlet(Jackeli and Khaliullin, 2009).
What is the nature of the spin liquid states in these sys-
tems? More importantly, we are interested in the pos-
sibility of exotic spin liquid states beyond the RVB de-
scription, where the elementary excitations may possess
exotic properties beyond the simple spinon picture.

We introduce some of these developments in this sec-
tion. We start by introducing the generalization of the
RVB approach to spin systems with strong spin-orbit
coupling and to S > 1/2 spin systems in sections IV.1
and IV.2, followed by the introduction of matrix prod-
uct states and projected entangled pair states in section
IV.3, which are completely different ways of constructing
spin wavefunctions compared with the RVB approach.
We end this section with an introduction to the Kitaev
honeycomb model, which represents yet another different
approach to constructing spin wavefunctions in a system
with strong spin-orbit coupling with exotic properties be-
yond the simple spinon picture.

IV.1. RVB and its generalization to spin systems with
strong spin-orbit coupling

Strong spin-orbit coupling may cause interesting ex-
perimental consequences that are absent in systems with
spin rotational symmetry. An example suggested by
Zhou et al. (Zhou et al., 2008) is presented here, in which
strong spin-orbit coupling in Ir atoms is used to explain
the anomalous behavior of the Wilson ratio observed in
Na4Ir3O8, which was experimentally proposed (Okamoto
et al., 2007) as the first candidate for a 3D QSL on a hy-
perkagome lattice with fermionic spinons.

Although the Curie-Weiss constant is estimated to be
as large as θW ∼ 650 K in Na4Ir3O8, indicating strong
AFM coupling, there is no observed thermodynamic and
magnetic anomaly indicative of long-range spin ordering
down to 2 K. The specific heat ratio γ = CV /T shows a
rather sharp peak at a temperature of Tc ∼ 20 K, indi-
cating the existence of a phase transition or crossover at
Tc. By contrast, the spin susceptibility χ (T ) is nearly in-
dependent of temperature for all temperatures T ≪ θW .
Using the experimental values of the spin susceptibility χ
and the specific heat ratio γ at the specific heat peak at
∼ 20 K, for T > Tc, the Wilson ratio RW = π2k2Bχ/3µ

2
Bγ

of the material is 0.88, which is very close to that of
a Fermi gas where RW is unity. Therefore, for a wide
range of temperatures Tc < T < θW , the system seems

to behave as a Fermi liquid of spinons. Below Tc, the
specific heat decreases to zero as CV ∼ T 2, suggesting a
line nodal gap in the low-lying quasi-particle spectrum.
However, this picture needs to be reconciled with the ob-
servation that the spin susceptibility χ remains almost
constant, resulting in an anomalously large Wilson ratio
of RW ≫ 1 at temperatures of T < Tc.
The spins in Na4Ir3O8 originate from the low-spin 5d5

Ir4+ ions, which form a 3D network in the form of a
corner-sharing hyperkagome lattice. Chen and Balents
(Chen and Balents, 2008) suggested that because of the
large atomic number, the spin-orbit coupling in Ir atoms
is expected to be strong. In the following section, we
explain the anomalous Wilson ratio based on a modified
RVB spin liquid picture in which both spin-singlet and
spin-triplet pairings exist in the spin-pairing wavefunc-
tion.
Based on the experimental observations discussed

above, Zhou et al. (Zhou et al., 2008) proposed that
a simple spinon hopping Hamiltonian H0 determines the
physics of the spin liquid state at T > Tc, where there
exists a finite spinon Fermi surface, and that a spinon
pairing gap characterized by Hpair opens up at T < Tc.
The power-law behavior CV ∝ T 2 that is observed at
low temperatures of T < Tc indicates that the gap has
line nodes on the Fermi surfaces. To determine the pair-
ing symmetry, Zhou et al. noted that a group theoretical
analysis indicates that a spin-triplet pairing state on a cu-
bic lattice can create only full or point nodal gaps (Sigrist
and Ueda, 1991), which seems to imply singlet pairing.
However, because of the broken inversion symmetry on
a hyperkagome lattice (Hahn, 1996), the spin-singlet and
spin-triplet pairing states are, in general, mixed together
in the presence of spin-orbit coupling (Frigeri et al., 2004;
Gor’kov and Rashba, 2001). 4

In terms of the d-vector, the gap function ∆αβ(k)
(α, β =↑, ↓) has the general matrix form (Leggett, 1975),

∆(k) = i (d0 (k) σ0 + d (k) · σ)σy , (79)

and the spinon pairing must be singlet or a singlet-with-
triplet admixture because of spin-orbit coupling in order
to have line nodes (Zhou et al., 2008).
We now consider the spin susceptibility of such mixed

states. Zhou et al. showed that if both singlet and triplet

4 In general, for a many-spin system in which spin rotational sym-
metry is broken, the spin S = 0 state(s) will mix with spin
S ≥ 1 states even in the presence of spatial inversion symme-
try. The only exception is the two-spin system, in which inver-
sion symmetry provides a good quantum number that separates
the spin-singlet state from the spin-triplet states. Because the
RVB approach begins from mean-field spin wavefunctions that
are superpositions of two-spin pairing states, broken inversion
symmetry is needed for the construction of mixed spin-singlet
and spin-triplet states.
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pairings are present and the spin-orbit scattering is much
weaker than the pairing gap ∆, then the k-dependent
electronic contribution to the spin susceptibility is given
by

χii(k)

χN (k)
= 1− d0d

∗
0 + d∗i di

d0d∗0 + d · d∗ +
d0d

∗
0 + d∗i di

d0d∗0 + d · d∗Y (k;T ),

where i = x, y, z; χN is the normal state contribution at
∆ = 0; and Y (k;T ) is the k-dependent Yosida function
(Leggett, 1975). Under the assumption that the d-vector
is pinned by the lattice, for a polycrystalline sample, one
must average over all spatial directions, resulting in

χs

χN
=

2

3
−2

3

|d0|2

|d0|2 + |d|2
+(

1

3
+
2

3

|d0|2

|d0|2 + |d|2
)Y (T ), (80)

where Y (T ) is the (spatially averaged) Yosida function,
which vanishes at zero temperature; χs is the spin sus-
ceptibility below Tc; and χN is the Pauli spin suscepti-
bility in the normal state. Therefore, χs/χN reduces to
2
3 − 2

3
|d0|2

|d0|2+|d|2 at zero temperature. If the spin-triplet

pairing dominates, then χs/χN → 2
3 , whereas if the

spin-singlet pairing dominates, then χs/χN → 0. How-
ever, neither of these cases is observed in experiments;
instead, χ changes only negligibly below Tc (Okamoto
et al., 2007). This suggests that strong spin-orbit cou-
pling is needed to explain the absence of a marked change
in χ below Tc ∼ 20 K.
It is well known that in conventional BCS singlet su-

perconductors, the Knight shift, which is proportional to
the Pauli paramagnetic susceptibility, changes very little
below Tc for heavy elements such as Sn and Hg (An-
droes and Knight, 1959). It is understood that this is
caused by the destruction of spin conservation due to the
spin-orbit coupling. A clear explanation was presented
by Anderson (Anderson, 1959) using the notion of time-
reversed pairing states. We first consider the imaginary
part of the spin response function χ′′(q, ω). If the total
spin is conserved, then the dynamics are diffusive and
χ′′(q, ω) will have a central peak in ω space with a width
of Dq2, which goes to zero as q → 0. Superconductiv-
ity gaps out all low-frequency excitations, thus removing
this central peak. By the Kramers-Kronig relation, the
real part χ′(q = 0, ω = 0) vanishes in the superconduct-
ing ground state. In the presence of spin-orbit coupling,
the total spin is not conserved but rather decays with a
lifetime τs. In this case, χ′′(q = 0, ω) has a central peak
with a width of 1

τs
. The superconducting gap (formed

by a pair of time-reversal states) ∆ cuts a hole in χ′′(ω)
for ω < ∆ but leaves the ω ≫ ∆ region intact, consistent
with the physical expectation that the high-frequency re-
gion should be unaffected by pairing. By the Kramers-
Kronig relation, χ′ will be reduced, but if the spin-orbit
coupling is sufficiently strong that

1

τs
≫ ∆, (81)

then the reduction will be small, i.e.,

χs

χN
= 1−O(∆τs).

Eq. (81) is the strong spin-orbit coupling condition that
is required to have very little change in the spin suscep-
tibility below Tc. We emphasize that the criterion for
discriminating strong from weak spin-orbit coupling that
is given by Eq. (81) is completely different from the
usual criterion, which compares the spin-orbit energy, λ,
with the splitting of the t2g levels, E3 (Chen and Ba-
lents, 2008). Another way to explain the large Wilson
ratio observed in Na4Ir3O8 was provided by Chen and
Kim (Chen and Kim, 2013), in which strong spin-orbit
coupling is still essential.
From a theoretical perspective, the PSG classifica-

tion scheme has been applied to classify the spin liquid
states on a kagome lattice with the Dzyaloshinskii-Moriya
(DM) interaction (Dodds et al., 2013). More recently,
to test the validity of the RVB approach in construct-
ing wavefunctions for spin systems with strong spin-orbit
coupling, Sze, Zhou and Ng (Sze et al., 2016) applied
the Gutzwiller-projected wavefunction of fermion pair-
ing states to study the S = 1/2 anisotropic Heisenberg
(XXZ) chain

H = Jz
∑

i

Sz
i S

z
i+1 + J⊥

∑

i

(

Sx
i S

x
i+1 + Sy

i S
y
i+1

)

, (82)

where J⊥, Jz > 0. This model can be mapped
to the isotropic (XXX) Heisenberg model with the
Dzyaloshinskii-Moriya (DM) interaction,

∑

i

D · (Si × Si+1),

in one dimension with open boundary conditions through
the transformation U = exp(−i∑n

nθ
2 S

z
n) with cos θ =

Jz/J⊥ and D = J⊥ sin θ, where U †HXXZU = HJ+DM ,
with HJ denoting the isotropic Heisenberg model with
interaction J .
Trial mean-field wavefunctions with the general pairing

∆(k) = i (d0 (k)σ0 + d (k) · σ) σy

are being considered for the construction of the corre-
sponding Gutzwiller-projected wavefunctions. The trial
ground-state wavefunctions have the best energy when
the d-vector has the form d0 = 0 and d(k) = dz ẑ =
i∆sink for Jz > J⊥ (Ising regime), whereas the pre-
ferred form is d0 = 0 and d(k) = dy ŷ = ∆sink for
Jz < J⊥ (planar regime). The overlap between the trial
ground-state wavefunction and the exact ground-state
wavefunction obtained through exact diagonalization is
better than 95% in all cases that have been considered.
Notably, the pairing state with d(k) = dy ŷ = ∆sin k
does not conserve Stot

z and is not considered in the clas-
sification scheme used in reference (Dodds et al., 2013).
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IV.2. RVB approach to S > 1/2 systems

Historically, the search for spin liquid states has been
focused on spin 1/2 systems because such systems have
the strongest quantum mechanical fluctuation effects (see
section II) when the unfrustrated Heisenberg model is
considered. The situation is different when we consider
spin systems with frustrated interactions (Chandra and
Doucot, 1988). In this case, it is not obvious whether a
spin liquid state is more likely to exist in systems of lower
spin. In fact, it has recently been found that gapless spin
liquid states may exist in a two-dimensional spin-1 com-
pound Ba3NiSb2O9 under high pressure (Cheng et al.,
2011). In this subsection, we examine how we can con-
struct spin liquid states for S > 1/2 systems by general-
izing the RVB approach developed for S = 1/2 systems.
It should be noted that there are multiple possible meth-
ods of generalization. For example, Greiter and Thomale
(Greiter and Thomale, 2009) constructed a chiral spin liq-
uid state using a fractional quantum Hall wavefunction,
whereas Xu et al. (Xu et al., 2012) constructed a spin liq-
uid state for an S = 1 system by representing a spin of 1
as the sum of two S = 1/2 spins. Liu, Zhou, and Ng (Liu
et al., 2010a,b) have developed an alternative approach
in which a spin S is represented by 2S + 1 fermions. In
the following section, we consider this last approach, and
we demonstrate the existence of fundamental differences
between half-odd-integer spin and integer spin systems
in this approach.
We begin with the fermion representation of general

spins. To generalize the fermion representation of S =
1/2 spins to an arbitrary spin S, Liu, Zhou and Ng (Liu
et al., 2010a,b) introduce 2S +1 species of fermionic op-
erators cm that satisfy anti-commutation relations,

{cm, c†n} = δmn, (83)

where m,n = S, S − 1, · · · ,−S. The spin operator can
be expressed in terms of these operators as follows:

Ŝ = C†IC,

where C = (cS , cS−1, · · · , c−S)
T and Ia (a = x, y, z) is

a (2S + 1)× (2S + 1) matrix whose matrix elements are
given by

Iamn = 〈S,m|Sa|S, n〉.

It is straightforward to show that the resulting spin
operator Ŝ satisfies the SU(2) angular momentum al-
gebra. Under a rotational operation, C is a spin-
S “spinor” transforming as Cm → DS

mnCn and Ŝ is
a vector transforming as Sa → RabS

b; here, DS is
the 2S + 1-dimensional irreducible representation of the
SU(2) group generated by I, and R is the adjoint repre-
sentation.
As in the S = 1/2 case, a constraint that there must

be only one fermion per site is needed to project the

fermionic system into the proper Hilbert space represent-
ing spins, i.e.,

(N̂i −Nf )|phy〉 = 0, (84)

where i is the site index and Nf = 1 (the particle picture,
one fermion per site). Alternatively, it is straightforward
to show that the constraint Nf = 2S (the hole picture,
one hole per site) equivalently represents a spin. The
Nf = 1 representation can be mapped to the Nf = 2S
representation via a particle-hole transformation. For
S = 1/2, the particle picture and the hole picture are
identical, reflecting an intrinsic particle-hole symmetry of
the underlying Hilbert space, which is absent for S ≥ 1.
Following Affleck, Zou, Hsu and Anderson (Af-

fleck et al., 1988b), Liu, Zhou and Ng (Liu
et al., 2010a) introduce another “spinor” C̄ =

(c†−S ,−c
†
−S+1, c

†
−S+2, · · · , (−1)2Sc†S)

T , whose compo-

nents can be written as C̄m = (−1)S−mc†−m, where the
index m runs from S to −S as for C. Upon combin-
ing C and C̄ into a (2S + 1) × 2 matrix ψ = (C, C̄), it
is straightforward to see that the spin operators can be
re-expressed as

Ŝ =
1

2
Tr(ψ†Iψ) (85)

and that the constraint can be expressed as

Tr(ψσzψ
†) = 2S + 1− 2Nf = ±(2S − 1), (86)

where the + sign implies Nf = 1 and the − sign implies
Nf = 2S.
We now examine the internal symmetry group associ-

ated with the redundancy in the fermion representation.
The internal symmetry group is different for integer and
half-odd-integer spins; it is U(1)⊗̄Z2 = {eiσzθ, σxe

iσzθ =
e−iσzθσx; θ ∈ R} for the former and SU(2) for the latter.
The reason for this difference can be qualitatively under-
stood as follows: Note that C and C̄ are not independent.
The operators in the internal symmetry group “mix” the
two fermion operators in the same row of C and C̄, i.e.,
cS and c†−S . For integer spins, c0 and (−1)Sc†0 will be

“mixed”. For the relation {c0, c†0} = 1 to remain invari-
ant, there are only two possible methods of “mixing”: one
is a U(1) transformation, and the other is interchanging
the two operators. These operations form the U(1)⊗̄Z2

group. For half-odd-integer spins, the pair (c0, (−1)Sc†0)
does not exist, and the symmetry group is the maximum
SU(2) group. Thus, the difference between integer and
half-odd-integer spins is a fundamental property of the
fermion representation.
Now let us see how the constraint expressed in Eq. (86)

transforms under the symmetry groups. For S = 1/2,
constraint given in Eq. (86) is invariant under the trans-
formation ψ → ψW because the right-hand side van-
ishes (as a result of the particle-hole symmetry of the
Hilbert space). For integer spins, if W = eiσzθ, then
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WσzW
† = σz , and Eq. (86) is invariant. If W = σxe

iσzθ,
then WσzW

† = −σz , meaning that the “particle” pic-
ture (+ sign in Eq. (86)) and the “hole” picture (− sign
in Eq. (86)) are transformed into each other.
For a half-odd-integer spin with S ≥ 3/2, W ∈ SU(2)

is a rotation, and we may extend the constraint into a
vector form in a manner similar to the S = 1/2 case,
such that Eq. (86) becomes

Tr(ψ~σψ†) = (0, 0,±(2S − 1))T . (87)

Under the group transformation ψ → ψW ,

Tr(ψ~σψ†) → (R−1)(0, 0,±(2S − 1))T , (88)

where WσaW † = Rabσ
b, a, b = x, y, z, i.e., R is a 3 by 3

matrix representing a 3D rotation. The transformed con-
straint represents a new Hilbert subspace, which is still
a (2N + 1)-dimensional irreducible representation of the
spin SU(2) algebra. Any measurable physical quantity,
such as the spin S, remains unchanged in this new Hilbert
space. Therefore, for half-odd-integer spins (S ≥ 3/2),
there exist infinitely many ways of imposing the con-
straint that gives rise to a Hilbert subspace representing
a spin. However, for integer spins, there exist only two
possible constraint representations.
The fermion representation can be used to construct

mean-field Hamiltonians for spin models with arbitrary
spins after the spin-spin interaction is written down in
terms of fermion operators. For the spin-1/2 case, the
Heisenberg interaction can be written as (see section III)

Ŝi · Ŝj = −1

8
Tr : (ψ†

iψjψ
†
jψi) :

= −1

4
: (χ†

ijχij +∆†
ij∆ij) :, (89)

where

χij = C†
iCj , ∆ij = C̄†

iCj . (90)

The definitions of χij and ∆ij in the above form can be
extended to arbitrary spins. The only difference is that
for an integer spin, χji = χ†

ij and ∆ji = −∆ij , whereas

for a half-odd-integer spin, χji = χ†
ij and ∆ji = ∆ij .

The parity of the pairing term ∆ij differs for integer and
half-odd-integer spins (Liu et al., 2010a). For S = 1, it
can be shown, after some straightforward algebra, that
the Hamiltonian can be written as (Liu et al., 2010a)

Ŝi · Ŝj = −1

2
Tr : (ψ†

iψjψ
†
jψi) :

= − : (χ†
ijχij +∆†

ij∆ij) : . (91)

However, for S > 1, we cannot write the spin-spin in-
teraction Ŝi ·Ŝj in terms of χij and ∆ij alone. In the case
of S = 3/2, triplet hopping and pairing terms must be in-
troduced to represent the Heisenberg interaction. Gener-
ally speaking, quintet and higher multipolar hopping and

pairing operators are needed to represent the Heisenberg
Hamiltonian when S becomes larger (Liu et al., 2010a).
In the following, we restrict ourselves to S = 1 systems.

In this case, the mean-field Hamiltonians are BCS-
type Hamiltonians, as in the case of S = 1/2 spins.
The physical spin wavefunction can be obtained by ap-
plying Gutzwiller projection to the mean-field ground
state. There are two major differences between S = 1
and S = 1/2 spin systems: (1) Because of the different
internal symmetry group (U(1)⊗̄Z2), S = 1 spin liquid
states are of either the U(1) or Z2 type. There are no
SU(2) spin liquid states for integer spin systems in the
fermionic construction. Therefore, we expect that in gen-
eral, spin liquid states for integer spin systems, if they ex-
ist, are more stable against gauge fluctuations. (2) The
difference in parity of the pairing terms leads to inter-
esting possibilities for obtaining topological spin liquid
states in S = 1 systems that are not easy to realize in
S = 1/2 systems (Bieri et al., 2012; Liu et al., 2010b).
This difference leads to the existence of a Haldane phase
in the bilinear-biquadratic Heisenberg spin chain in the
fermionic description (Liu et al., 2012).

Finally, we note the existence of a fundamental differ-
ence in the excitation spectrum of an S = 1 spin system
compared with that of an S = 1/2 system, under the
assumption that the ground states are spin singlets. For
an integer spin system, we can form spin-singlet states
in a lattice with either an even or an odd number of
lattice sites N , as long as N > 1, whereas for a half-odd-
integer spin system, spin-singlet states can be formed
only in a lattice with an even number of sites. In the
RVB approach, angular momentum L = 1 excitations of
the system are formed by Gutzwiller projecting the ex-
cited states in BCS theory, i.e., by breaking a pair of spin
singlets in the BCS ground state. The resulting excited
state consists of two excited spinons, which are S = 1/2
objects for spin 1/2 systems but are S = 1 objects for
spin 1 systems. In an S = 1 spin liquid, these two S = 1
spinons together form an L = 1 excitation.

There is, however another method of forming an L = 1
excitation in a spin-1 spin liquid. Beginning from a lat-
tice system with N sites, we may form an L = 1 ex-
citation by rearranging the spins such that the system
is a product of spin-singlet ground states for N − 1 of
the sites plus a single spin-1 spinon. This excitation is a
non-perturbative, topological excitation that cannot be
achieved by simply Gutzwiller projecting a BCS excited
state in the RVB construction. It has been demonstrated
in reference (Liu et al., 2014) that the construction of
these two kinds of excitations gives rise to the so-called
one-magnon and two-magnon excitation spectra in the
Haldane phase of the S = 1 bilinear-biquadratic Heisen-
berg model. Similar construction approaches are not pos-
sible for S = 1/2 systems.
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IV.3. Matrix product state (MPS) and projected entangled
pair state (PEPS)

In this subsection, we discuss two approaches to
spin liquid states that have completely different starting
points from those of the RVB, or Gutzwiller-projected
mean-field theory, approach we discussed in section III.
We begin with matrix product states (MPSs) and pro-
jected entangled pair states (PEPSs), which represent
another popular class of variational wavefunctions that
are currently being applied to spin systems. Translation-
ally invariant MPSs in spin chains were first constructed
and studied by Fannes, Nachtergaele andWerner (Fannes
et al., 1992) as an extension of the AKLT state (Affleck
et al., 1987); in this context, the authors called them
finitely correlated states. The term MPS was coined by
Klümper, Schadschneider and Zittartz (Klümper et al.,
1993), who extended the AKLT state in a different
way. Later, Östlund and Rommer (Östlund and Rom-
mer, 1995) realized that the state resulting from DMRG
(White, 1992) can be written as an MPS. This approach
is very successful for one-dimensional systems and can be
generalized to systems of two (or more) dimensions.
First, let us consider the quantum wavefunction of a

one-dimensional spin system that is translationally in-
variant with a local Hamiltonian H . The wavefunction
can be generally expressed as

|Ψ〉 =
∑

s1,s2,··· ,SN

φ(s1, s2, · · · , sN )|s1, s2, · · · , sN 〉, (92)

where |s1, s2, · · · , sN〉 represents a spin configura-
tion with spins si on sites i = 1, 2, · · · , N and
φ(s1, s2, · · · , sN ) is the amplitude of the spin config-
uration in the quantum state |Ψ〉. Because of the
spin-spin interaction, spin configurations at far away
sites are generally correlated, and we cannot write
φ(s1, s2, · · · , sN ) = φ0(s1)φ0(s2) · · ·φ0(sN ) in general.
The MPS approach is a powerful method of construct-
ing wavefunctions with non-local quantum correlations.
The trick is to extend the direct-product wavefunction
φ(s1, s2, · · · , sN ) = φ0(s1)φ0(s2) · · ·φ0(sN ) to matrix
products.
More explicitly, we associate a matrix As with

each spin state s; then, the wavefunction amplitude
φ(s1, s2, · · · , sN ) can be written as

φ(s1, s2, · · · , sN ) = Tr{As1 [1]As2 [2] · · ·AsN [N ]}, (93)

where the trace is used to impose the periodic boundary
condition. As an example, we consider an S = 1/2 two-
spin system and choose A↑ = σz and A↓ = σx, where
the σs are Pauli matrices. It is easy to see that in this
case, φ(↑, ↑) = φ(↓, ↓) 6= 0 and φ(↑, ↓) = φ(↓, ↑) = 0.
A different choice of A↑ = σ+ and A↓ = σ− yields
φ(↑, ↓) = φ(↓, ↑) 6= 0 and φ(↑, ↑) = φ(↓, ↓) = 0. The
correlation between the different spin states on the two

sites is determined by the matrix As that is chosen to
link the sites. Extending the construction to more than
two sites, one sees that the choice of the matrices Aσ

determines the quantum entanglement structure of the
wavefunction.

When the MPSs are treated as variational wavefunc-
tions, one may determine the number of variational pa-
rameters in the wavefunctions by means of a simple
counting argument. The number of parameters P ap-
pearing in an MPS wavefunction in the form of Eq. (93)
depends on the size of the matrix A and the number of
available states S per site. In general, P ∼ S ×M2 for
an M ×M matrix as long as P < SN , where N is the
number of sites in the system. Thus, MPS wavefunctions
are generally variational wavefunctions with a large num-
ber of built-in variational parameters. As the dimension
M → ∞, MPSs can represent any quantum state of the
many-body Hilbert space with arbitrary accuracy. In
practice, the low-energy states of gapped local Hamil-
tonians in one dimension can be efficiently represented
by MPSs with a finite value of M (Hastings, 2007; Ver-
straete and Cirac, 2006). The DMRG method (White,
1992) and its generalizations (Schollwöck, 2005) can be
viewed as systematic approaches for constructing MPS
variational wavefunctions as the size of the system grad-
ually increases.

The MPS construction can be extended in several
ways. First, it can be extended to higher dimensions by
replacing the matrices A (= rank 2 tensors) with higher-
rank tensors T . These wavefunctions are presently known
as projected entangled pair states (PEPSs) (Verstraete
and Cirac, 2004a,b). Second, the local correlation or en-
tanglement between a pair of sites in a PEPS can be
generalized to a cluster (or simplex), resulting in states
called projected entangled simplex states (PESSs) (Xie
et al., 2014). A representative example of a PESS is the
simplex solid state proposed by Arovas (Arovas, 2008).

IV.3.1. Valence-bond solids and MPSs in one dimension

The physics of an MPS or PEPS wavefunction is en-
coded in the tensors linking neighboring spin states. In
general, these link tensors can be optimally constructed
using the DMRG approach or tensor-based renormal-
ization methods (Cirac and Verstraete, 2009). In this
subsection, we discuss a simple example of tensors that
represent a particular class of spin states called valence-
bond solid (VBS) states. To begin, we introduce a well-
known example of a valence-bond solid state - the Affleck-
Kennedy-Lieb-Tasaki (AKLT) state (Affleck et al., 1987).

The AKLT state is an example of a VBS state in which
only one spin-singlet configuration is allowed in the wave-
function given in Eq. (23). It is a one-dimensional VBS
state constructed for a S = 1 spin chain, represented
pictorially in Fig. 9, where each gray bond represents a
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spin singlet formed by two S = 1/2 spins, i.e., Eq. (22).
Each lattice site is connected to two other sites by two va-
lence bonds and is occupied by two S = 1/2 spins. The
AKLT wavefunction is formed by projecting the spin-
1/2

⊗

1/2 = 1
⊕

0 quartet states into the spin S = 1
triplet states. This is represented graphically in Fig. 9
by the circles, which represent projection operators ty-
ing together two S = 1/2 spins, projecting out the spin
S = 0 or singlet state and preserving only the spin S = 1
or triplet states.

singlet spin S=1 projector

Li Ri Li 1+ Ri 1+

FIG. 9 A valence-bond solid construction of the AKLT state.

For every adjacent pair of S = 1 spins, two of the
four constituent S = 1/2 spins are projected into a state
with a total spin of zero by the valence bond. Therefore,
the pair of S = 1 spins is forbidden from existing in
a combined spin S = 2 state. This condition can be
realized by considering a Hamiltonian that is a sum of
projectors Pi,i+1 that project the pairs of S = 1 spins
from the 1

⊗

1 = 2
⊕

1
⊕

0 space into the spin S = 2
subspace,

HAKLT =
∑

i

Pi,i+1. (94a)

Because the projection operators Pi,i+1 are positive semi-
definite, the ground state satisfiesHAKLT |ΨG〉 = 0 and is
simply the AKLT state. The projection operator Pi,i+1

can be written in terms of spin-1 operators as follows
(Affleck et al., 1987):

Pi,i+1 =
1

3
+

1

2
(Si · Si+1) +

1

6
(Si · Si+1)

2. (94b)

The AKLT state is important because it is an explicit
spin wavefunction that realizes the Haldane phase for
integer spins (see section II). In particular, it is easy to
see from Fig. 9 that an unpaired S = 1/2 spin will be left
at each end of the spin chain, which is a realization of the
end state discussed in section II for S = 1 Heisenberg spin
chains. In the following, we show how the AKLT state
can be written as an MPS state.
The AKLT state can be constructed in two steps.

First, we split each site i in the spin-1 chain into two
sites iL and iR, thereby forming a spin-1/2 chain with
2N sites, as in Fig. 9 (where N is the number of sites in
the parent spin-1 chain) and construct a dimerized chain
in which the spins at sites iR and i+ 1L (i = 1, 2, · · · , N)
are joined by a valence bond (see Eq. (22)). The singlet

bond between sites iR and i+ 1L can be written as

(i, i+ 1) =
∑

σiR
,σi+1L

RσiR
,σi+1L

|σiR 〉|σi+1L
〉, (95)

where σ =↑, ↓ and the Rσσ′ are the components of a 2×2
matrix:

R =

(

0 1√
2

− 1√
2

0

)

. (96)

In this representation, the wavefunction of the dimerized
spin-1/2 chain can be written as

|Ψ〉 =
∑

σ1R
,··· ,σNL

Rσ1R
σ2L

· · ·RσN−1R
σNL

|σ1R , · · · , σNL〉.

(97)
Note that this state is a direct product state of S = 1/2
RVB singlet pairs with the two end spins (σ1L and σNR)
unspecified.
Next, we project the two S = 1/2 spins at sites iL and

iR to the spin-1 states |1,m〉 (m = 0,±1) with

|1, 1〉 = | ↑↑〉, (98)

|1, 0〉 = 1√
2
(| ↑↓〉+ | ↓↑〉) ,

|1,−1〉 = | ↓↓〉.

This projection can be expressed in terms of three ma-
trices, M0,±1, where

|1,m〉 =
∑

σ,σ′

Mm
σσ′ |σ〉|σ′〉 (99)

with

M1 =

(

1 0

0 0

)

, (100a)

M−1 =

(

0 0

0 1

)

, (100b)

and

M0 =

(

0 1√
2

1√
2

0

)

. (100c)

Thus, the AKLT state can be written as

|ΨAKLT〉 =
∑

s1,s2,··· ,sN
φAKLT(s1, · · · , sN )|s1, s2, · · · , sN 〉,

(101)
where si = 0,±1 and

φAKLT(s1, · · · , sN ) =
∑

σ1R
,··· ,σNL

[M s1
σ1L

σ1R
Rσ1R

σ2L

×M s2
σ2L

σ2R
· · ·RσN−1R

σNL
]

= [As1As2 · · ·AsN ]σ1L
σNR

.(102a)
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Here, As = MsR, and σ1L , σNR =↑, ↓ correspond to
four degenerate ground states on an open chain. Im-
posing the periodic boundary condition gives rise to a
non-degenerate ground state with

φAKLT(s1, · · · , sN) = Tr[As1As2 · · ·AsN ]. (102b)

IV.3.2. PEPSs in higher dimensions and beyond

The AKLT construction can be extended to construct
other types of VBS states and states in higher dimen-
sions. Straightforward examples include S = 2 VBS
states on a square lattice and S = 3/2 VBS states on
a honeycomb lattice (Affleck et al., 1988a). These states
can be written as PEPSs in their respective lattices.

ijs

l TT r

u

d

FIG. 10 Graphical representation of a PEPS in terms of con-
tracted tensors (tensor network). Each box denotes a tensor
T with components T

sij
lrud at site ij, where l, u, r, and d are

tensor indices related to left, right, up and down bonds, re-
spectively, linking to their neighbors; the open lines represent
the physical spin states sij ; and the connected lines represent
the contraction of the tensors.

For instance, on a square lattice with a coordination
number of 4, a generic PEPS wavefunction can be written
in terms of rank 4 tensors as follows:

|Ψ〉 =
∑

[sij ]

φ([sij ])|[sij ]〉, (103a)

where i, j = 1, · · · , N for an N × N system, [sij ] =
(s11, · · · , s1N , s21, · · · , s2N , · · · , sN1, · · · , sNN ) denotes a
spin configuration, and

φ([sij ]) = Tr[T s11 · · ·T s1NT s21 · · ·T sNN ]. (103b)

where, the T ss are rank 4 tensors with components

T
sij
lrud,

where sij is the physical spin index; l, r, u, and d repre-
sent links connected to the tensors at the left, right, up
and down neighboring sites (i− 1, j), (i+1, j), (i, j− 1),
and (i, j + 1), respectively; and “Tr” means tensor con-
traction. The above mathematical expression of tensor
contraction is usually represented by diagrams such as
that shown in Fig. 10 for a square lattice, where con-
nected lines represent the contraction of tensors with the
same index and open lines represent the physical spin
states sij = −S, · · · , S.

=T
l

r

u

d

=R =M

FIG. 11 The VBS construction of an S = 2 AKLT state on a
square lattice and the corresponding tensors.

As an example, a spin S = 2 AKLT state on a square
lattice can be written in PEPS form as shown in Fig.
11. The tensors T s can be obtained using the VBS con-
struction with the tensors R and Ms, as in one dimen-
sion. The tensor R is still defined by Eq. (96). The
tensors Ms, s = 0,±1,±2, project a state consisting
of four S = 1/2 spins in the auxiliary Hilbert space
1
2

⊗ 1
2

⊗ 1
2

⊗ 1
2 = 2

⊕

1
⊕

0 into the physical S = 2
spin space, whose components are given by

M s
σlσrσuσd

= 〈s|σlσrσuσd〉, (104)

where σl, σr, σu, σd =↑, ↓. The tensor T is given by

T s
σlσrσuσd

=
∑

σl′ ,σu′

M s
σl′σrσu′σd

Rσlσl′
Rσuσu′ . (105)

The tensor product state constructed from the above T ss
give rise to the S = 2 AKLT state on a square lattice.
The VBS construction can be further extended by

“fractionalizing” the spins in more exotic ways (for exam-
ple, using the Majorana fermion representation of spins).
In this way, we can write the toric code model (Kitaev,
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2003) in the PEPS form as well as the Kitaev honeycomb
model (Kitaev, 2006) (with a residual fermionic degree of
freedom at each site; see section IV.4). The relation be-
tween RVB states and PEPSs has also been exploited
to show that some RVB states can be written as PEPSs
(Poilblanc and Schuch, 2013; Schuch et al., 2012; Ver-
straete et al., 2006; Wang et al., 2013). However, the
general relation between RVB states and PEPSs remains
unclear.

The PEPS construction provides a way to describe en-
tanglement among local spins based on the construction
of local pairs, and its application to geometrically frus-
trated lattices is limited. To overcome this limitation, re-
searchers have extended the pair construction procedure
to consider entanglement between more than two sites,
say, a cluster or a simplex, to construct projected states.
These projected entangled simplex states form the ba-
sis for more elaborate numerical approaches (Xie et al.,
2014). Combined with numerical techniques (tensor-
based renormalization), these tensor-network methods
now provide an alternative means of constructing vari-
ational wavefunctions. Readers can refer to references
(Cirac and Verstraete, 2009; Orus, 2014; Verstraete et al.,
2008) for details.

IV.4. Kitaev honeycomb model and related issues

It was previously believed that spin rotational sym-
metry is essential for a QSL state that supports frac-
tional spinon excitations. If the spin rotational symme-
try is broken, the system tends to approach an ordered
state. Kitaev (Kitaev, 2006) provided a counterexample
to this belief through an unusual, exactly solvable model
in two dimensions with strong spin-orbit coupling, which
destroys the spin rotational symmetry, but in which de-
confined spinons nevertheless exist on top of the QSL
ground states. This famous model is now called the Ki-
taev honeycomb model. In this section, we briefly review
the Kitaev honeycomb model to see how exotic ground
states and low-energy excitations emerge from this model
with broken rotational symmetry. The possibility of the
realization of Kitaev-like models in realistic materials is
also discussed.

Kitaev considered a spin-1/2 model on a honeycomb
lattice with spin-orbit coupling (Kitaev, 2006). He di-
vided all nearest neighbor bonds in the honeycomb lattice
into three types, called “x-links”, “y-links” and “z-links”
as shown in Fig. 12. The Hamiltonian is given as follows:

H = −Jx
∑

x-link

Kij − Jy
∑

y-link

Kij − Jz
∑

z-link

Kij , (106)

where Kij is defined as

Kij =











σx
i σ

x
j , if (i, j) is a x-link,

σy
i σ

y
j , if (i, j) is a y-link,

σz
i σ

z
j , if (i, j) is a z-link.

(107)

Note the strong anisotropy in the spin-spin couplingsKij .
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FIG. 12 Kitaev honeycomb model. x, y and z denote three
types of links in the honeycomb lattice.

We first consider the following loop operators Wp de-
fined for a hexagonal loop:

Wp ≡ σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 = K12K23K34K45K56K61, (108)

where p is used to label the lattice plaquettes (hexagons),
as shown in Fig. 13. It is easy to verify that [Wp,Kij] =
0; therefore, [H,Wp] = 0. Hence, the Wps serve as good
quantum numbers for the Hamiltonian given in Eq. (106),
and the total Hilbert space for spins can be divided into
a direct product of sectors that are eigenspaces of {Wp}.
However, the eigenvalue problem cannot be completely
solved by determining the eigenspaces of {Wp}. EachWp

has only two eigenvalues, wp = ±1. Each plaquette con-
tains six sites, and each site is shared by three plaquettes.
Therefore, the number of plaquettes is given bym = N/2,
where N is the number of sites. It follows that the di-
mension of each eigenspace of {Wp} is 2N/2m = 2N/2,
i.e., splitting the Hilbert space into eigenspaces of {Wp}
cannot solve the eigenvalue problem completely.

Kitaev realized that to solve the model Hamiltonian
given in Eq. (106), spins can be written in terms of
four Majorana fermions, because a Majorana fermion can
be viewed as the real or imaginary part of a complex
fermion. To illustrate this approach, we rewrite the com-
plex fermions f↑ and f↓ in Eq. (27) in terms of four
Majorana fermions c1, c2, c3 and c4:

f↑ = 1
2 (c1 + ic2), f

†
↑ = 1

2 (c1 − ic2),

f↓ = 1
2 (c3 + ic4), f

†
↓ = 1

2 (c3 − ic4),
(109a)
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FIG. 13 Loop operator Wp = σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 on a lattice

plaquette (hexagon).

where the operators cα (α = 1, 2, 3, 4) are Hermitian and
satisfy

cαcβ + cβcα = 2δαβ . (109b)

Thus, the three spin components read σx = i
2 (c1c4 −

c2c3), σ
y = i

2 (c3c1 − c2c4), and σz = i
2 (c1c2 − c3c4).

The single-occupancy condition f †
↑f↑ + f †

↓f↓ = 1 (and

f †
↑f

†
↓ = f↑f↓ = 0) becomes

c1c2 + c3c4 = c1c3 + c2c4 = c1c4 + c3c2 = 0, (110)

which can be simplified to the single equation c1c2c3c4 =
1. Using these constraints, the spin operators can be
written as σx = ic1c4, σ

y = −ic2c4, and σz = −ic3c4.
Rewriting bx = c1, by = −c2, bz = −c3 and c = c4, we
arrive at the Kitaev representation

σx = ibxc,

σy = ibyc, (111)

σz = ibzc,

with the constraint

D ≡ bxbybzc = 1. (112)

The Majorana representation without constraints is re-
dundant and enlarges the physical spin Hilbert space.
Note that D2 = 1 and that D has two eigenvalues,
D = ±1, thereby splitting the local Hilbert space into
two sectors. The physical spin Hilbert space corresponds
to the sector with all Dj = 1. Therefore, the physi-
cal spin wavefunction |Ψspin〉 can be obtained from the
Majorana fermion wavefunction |ΨMajorana〉 through the
projection

|Ψspin〉 =
∏

j

1 +Dj

2
|ΨMajorana〉 , (113)

which retains the Dj ≡ 1 sector and removes all other

sectors in the enlarged Hilbert space. Note that
1+Dj

2 =
nj↑+nj↓−2nj↑nj↓ and that Eq. (113) is nothing but the
Gutzwiller projection. In addition, note thatDj serves as
a Z2 gauge transformation in the enlarged Hilbert space

(Djb
α
jDj = −bαj , DjcjDj = −cj) and commutes with the

spin operators ([Dj , σ
α
j ] = 0, α = x, y, z) and thus with

the Hamiltonian. As a result, the Gutzwiller projection
is “trivial” in the sense that

∏

j
1+Dj

2 |ΨMajorana〉 is an
eigenstate of H in the projected Hilbert space as long as
|ΨMajorana〉 is an eigenstate of H in the “unprojected”

Hilbert space and
∏

j
1+Dj

2 |ΨMajorana〉 6= 0.

spins

Majorana  fermions

jc

z
jb

kc

z
kb

jku

FIG. 14 Graphic representation of the four-Majorana-fermion
decomposition of the Hamiltonian expressed in Eq. (106).

In the Majorana fermion representation, Kij in
Eq. (107) becomes

Kij = −i(ibαi bαj )cicj , (114)

where α = x, y, z depends on the type of link (ij). The
operator ibαi b

α
j is Hermitian, and we denote it by ûij =

ibαi b
α
j . Thus, we may write

H =
i

4

∑

〈j,k〉
Âjkcjck, (115a)

with

Âjk = 2Jα(jk)ûjk, ûjk = ibαj b
α
k , (115b)

where 〈j, k〉 denotes nearest neighbor links on the hon-
eycomb lattice and, by definition, ûjk = −ûkj and

Âjk = −Âkj . The Hamiltonian structure in this Ma-
jorana fermion representation is shown schematically in
Fig. 14. Note that [H, ûjk] = 0 and [ûjk, ûj′k′ ] = 0.
The enlarged Hilbert space of Majorana fermions can
be decomposed into common eigenspaces of {ûjk} in-
dexed by the corresponding eigenvalues ujk = ±1. Thus,
the Hamiltonian in the invariant subspace indexed by
u = {ujk} becomes

Hu =
i

4

∑

〈j,k〉
Ajkcjck, Ajk = 2Jα(jk)ujk, (116)

where we have replaced Âjk and ûjk with their eigen-
values. Note that ujk → −ujk upon the Z2 gauge
transformation ujk → DjujkDj, and it is more con-
venient to classify the eigenstates of H in terms of
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the gauge-invariant loop operator W (j0, · · · , jn) =
Kjnjn−1

· · ·Kj1j0 , which can be written as

W (j0, · · · , jn) =
(

n
∏

s=1

−iûjsjs−1

)

cnc0. (117)

The closed-loop operator Wp (see Eq. (108)) is gauge
invariant under the Z2 transformation because cn = c0,
and the gauge-invariant quantities w = {wp} can be used
instead of u = {ujk} to parameterize the eigenstates, i.e.,

Hw =
i

4

∑

〈j,k〉
Ajkcjck. (118)

For a given set of Aij fixed by {wp}, the quadratic Hamil-
tonian as expressed in Eq. (116) and Eq. (118) can be
diagonalized into the following canonical form:

Hcanonical =
i

2

∑

m

ǫmc
′
mc

′′
m =

∑

m

ǫm

(

f †
mfm − 1

2

)

,

(119)
where ǫm ≥ 0, c′m and c′′m are normal Majorana modes,
and f †

m = 1
2 (c

′
m − ic′′m) and fm = 1

2 (c
′
m + ic′′m) are the

corresponding complex fermion operators. The ground
state of the Majorana system has an energy of

E = −1

2

∑

m

ǫm. (120)

We now discuss the system of Majorana fermions on
the honeycomb lattice. First, we note that the global
ground-state energy does not depend on the signs of the
exchange constants Jx, Jy, and Jz . For instance, if Jz
is replaced with −Jz, we can compensate for this sign
change by changing the signs of the variables ujk for all
z-links using the gauge operator Dj , leaving the values of
Ajk and wp unchanged. Therefore, as far as solving for
the ground-state energy and the excitation spectrum is
concerned, the signs of the exchange constants J do not
matter. However, such a sign change does affect other
measurable physical quantities.
Second, it was proven by Lieb (Lieb, 1994) and numeri-

cally investigated by Kitaev himself that the ground state
of the Majorana system is achieved when the system is in
the vortex-free configuration, namely, wp = 1 for all pla-
quettes p. In this vortex-free configuration, one can solve
for the (fermionic) energy spectrum of the Hamiltonian
by directly Fourier transforming Eq. (118) to obtain

ǫq = ±|Jxeiq·a + Jye
iq·b + Jz|, (121)

where a = (12 ,
√
3
2 ) and b = (−1

2 ,
√
3
2 ) are two basis vec-

tors in the xy coordinates. The fermionic spectrum may
or may not be gapped, depending on whether a solution
to the equation ǫq = 0 exists. ǫq = 0 has a solution if and
only if |Jx|, |Jy|, and |Jz| satisfy the triangle inequalities:

|Jx| ≤ |Jy|+ |Jz|, |Jy| ≤ |Jz|+ |Jx|, |Jz| ≤ |Jx|+ |Jy|.
(122)
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FIG. 15 Phase diagram of the Kitaev honeycomb model. The
triangle is the section of the positive octant (Jx, Jy, Jz ≥ 0)
that lies in the plane Jx +Jy +Jz = 1. The A phase contains
three gapped subphases. The B phase is gapless.

As a result, two phases exist in the system of Majo-
rana fermions on the honeycomb lattice, with the phase
diagram shown in Fig. 15. The first phase, called the A
phase, is gapped and contains three subphases (Ax, Ay,
and Az) in the phase diagram. The second, called the
B phase, is gapless. In the A phase, for example, in the
Az subphase, the Hamiltonian expressed in Eq. (106))
can be mapped to the Kitaev toric code model in the
limit |Jx|, |Jy| ≪ |Jz|, and the phase hosts Abelian any-
onic excitations. The B phase acquires an energy gap
in the presence of a magnetic field. Very interestingly, it
hosts stable non-Abelian anyons when the energy gap is
opened up by a magnetic field. The B phase is a very
attractive state in the context of topological quantum
computation. Readers can refer to the recent review ar-
ticle (Nayak et al., 2008) for details.

In addition to the elegant Majorana decomposition
method pioneered by Kitaev, other insightful approaches
to the Kitaev honeycomb model also exist. For instance,
Feng, Zhang and Xiang (Feng et al., 2007) and Chen
and Nussinov (Chen and Nussinov, 2008) found that the
original Kitaev honeycomb model can be exactly solved
with the help of the Jordan-Wigner transformation. This
approach provides a topological characterization of the
quantum phase transition from the A phase to the B
phase. A nonlocal string order parameter can be defined
in one of these two phases (Chen and Nussinov, 2008;
Feng et al., 2007). In the appropriate dual representa-
tions, these string order parameters become local order
parameters after some singular transformation, and a de-
scription of the phase transition in terms of Landau’s the-
ory of continuous phase transitions becomes applicable
(Feng et al., 2007). The Jordan-Wigner transformation
also enables a fermionization of the Kitaev honeycomb
model, allowing it to be mapped to a p-wave-type BCS
pairing problem. The spin wavefunction can be obtained
from the fermion model, and the anyonic character of the
vortex excitations in the gapped phase also has an ex-
plicit fermionic construction (Chen and Nussinov, 2008).
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The Kitaev honeycomb model can also be understood
within the framework of fermionic RVB theory. Both
confinement-deconfinement transitions from spin liquids
to AFM or stripy AF/FM phases and topological quan-
tum phase transitions between gapped and gapless spin
liquid phases can be described within the framework of
Z2 gauge theory (Baskaran et al., 2007; Mandal et al.,
2011, 2012).
Exact diagonalization has been applied to study the

Kitaev honeycomb model on small lattices (Chen et al.,
2010). Perturbative expansion methods have been devel-
oped to study the gapped phases of the Kitaev honey-
comb model and its generalization (Dusuel et al., 2008;
Schmidt et al., 2008; Vidal et al., 2008). Several papers
(Kells et al., 2009; Lee et al., 2007a; Yu, 2008; Yu and
Wang, 2008) have noted the existence of an analogy be-
tween the Z2 vortices in the Kitaev honeycomb model
and the vortices in p+ ip superconductors.
Enormous efforts have been devoted to searching for

exactly solvable generalizations of the Kitaev honeycomb
model. It has been proposed that the exact solvability
will not be spoiled when the fermion gap is opened for
the non-Abelian phase (Lee et al., 2007a; Yu and Wang,
2008). Generalizations to other lattice models and even
to three dimensions have also been developed (Baskaran
et al., 2009; Lai and Motrunich, 2011; Nussinov and Or-
tiz, 2009; Ryu, 2009; Tikhonov and Feigel’man, 2010; Wu
et al., 2009; Yang et al., 2007; Yao and Kivelson, 2007;
Yao and Lee, 2011; Yao et al., 2009). Non-trivial emer-
gent particles, such as chiral fermions (Yao and Kivelson,
2007), have been constructed in these exactly solvable
lattice models. These developments have significantly ad-
vanced our understanding of emergent phenomena based
on solvable models in dimensions greater than one.
The exotic properties of the Kitaev honeycomb model

have motivated researchers to search for realizations of
this model in realistic materials. It has been demon-
strated by Jackeli and Khaliullin (Jackeli and Khali-
ullin, 2009) and by Chaloupka, Jackeli and Khaliullin
(Chaloupka et al., 2010) that a generalization of the Ki-
taev honeycomb model may indeed arise in layered hon-
eycomb lattice materials in the presence of strong spin-
orbit coupling. These authors showed that in certain iri-
date magnetic insulators (A2IrO3, A=Li, Na), the effec-
tive low-energy Hamiltonian for the effective Jeff = 1/2
iridium moments is given by a linear combination of the
AFM Heisenberg model (HH) and the Kitaev honeycomb
model (HK),

H = (1− α)HH + 2αHK , (123)

where α, expressed in terms of the microscopic parame-
ters, determines the relative strength of the Heisenberg
and Kitaev interactions. Interestingly, the Kitaev honey-
comb model can also be realized as the exact low-energy
effective Hamiltonian of a spin-1/2 model with spin rota-
tional and time-reversal symmetries (Wang, 2010a). The

Heisenberg-Kitaev model (123) exhibits a rich phase dia-
gram. Readers who are interested in these developments
may refer to, for example, references (Chaloupka et al.,
2010; Jiang et al., 2011; Kimchi and Vishwanath, 2014;
Kimchi and You, 2011; Lee et al., 2014; Price and Perkins,
2012; Reuther et al., 2011; Schaffer et al., 2012; Singh
et al., 2012; Yu et al., 2013) for details. A comprehensive
review on this topic has also been published by Nussinov
and van den Brink (Nussinov and van den Brink, 2013).

V. QSL STATES IN REAL MATERIALS

Experimental studies of interacting spins in geomet-
rically frustrated lattices aim at identifying non-trivial
and exotic ground states. Among these ground states,
spin liquid states have been sought ever since the pro-
posal of the RVB state (Anderson, 1973). This issue has
been intensively debated in the context of the spin states
behind the high-Tc superconductivity of cuprates. How-
ever, before this century, there was no direct observa-
tion of spin liquid states. The situation changed in 2003,
when an organic Mott insulator with a quasi-triangular
lattice was found to exhibit no magnetic ordering even
at tens of mK, four orders of magnitude lower than the
energy scale of the exchange interactions (Shimizu et al.,
2003). The low-temperature state is most likely a form
of the sought-after spin liquids. Since then, what can
be called spin liquids have been successively reported for
quasi-triangular, kagome and hyperkagome lattices. In
this section, we review the experimental studies mainly
with respect to the magnetic and thermodynamic prop-
erties of the materials for which sound experimental data
have been accumulated in discussing the presence of spin
liquids.

V.1. Anisotropic triangular lattice systems:
κ-(ET)2Cu2(CN)3 and EtMe3Sb[(Pd(dmit)2]2

Both are half-filled band systems with anisotropic
triangular lattices, which are isosceles for κ-
(ET)2Cu2(CN)3 and three different laterals for
EtMe3Sb[(Pd(dmit)2]2 (Kanoda, 2006; Kanoda and
Kato, 2011; Kato, 2014). At ambient pressure, they
are Mott insulators; however, the spins are not ordered
at low temperatures on the order of tens of mK. A
noticeable feature of both systems is that they undergo
Mott transitions at moderate pressures 0.4 GPa for
κ-(ET)2Cu2(CN)3 (Furukawa et al., 2015a; Komatsu
et al., 1996; Kurosaki et al., 2005) and 0.5 GPa for
EtMe3Sb[(Pd(dmit)2]2 (Kato et al., 2007). (Note that
these pressure values indicate pressures applied at room
temperature and are reduced by approximately 0.2
GPa at low temperatures.) The temperature-pressure
phase diagram of κ-(ET)2Cu2(CN)3 is depicted in Fig.
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16. A spin liquid phase resides in proximity to the
Mott transition; this feature appears to be a key to
the stability of spin liquids and can be closely linked
to the metal-insulator transition (Senthil, 2008; Zhou
and Ng, 2013). According to the numerical studies of
the anisotropic triangular-lattice Hubbard model, the
ground states near to the Mott transition are controver-
sial (Kyung and Tremblay, 2006; Laubach et al., 2015;
Morita et al., 2002; Tocchio et al., 2013; Watanabe et al.,
2008), implying that spin-liquid and magnetic phases
are competing very closely and can be easily imbalanced
by a tiny perturbation.

FIG. 16 (Kurosaki et al., 2005) Temperature-pressure phase
diagram of the spin-liquid compound with a quasi-triangular
lattice, κ-(ET)2Cu2(CN)3, which undergoes a Mott transition
at moderate pressure.

i) κ-(ET)2Cu2(CN)3
κ-(ET)2Cu2(CN)3 is a layered compound, where

κ-(ET)2X has a variety of anions X and ET is
bis(ethylenedithio)tetrathiafulvalene (Komatsu et al.,
1996). κ-(ET)2X is composed of the ET layers with 1/2
hole per ET and the layers of monovalent anions X−,
which have no contribution to the electronic conduction
or magnetism. In the ET layer, strong ET dimers are
formed (ET)2, each of which accommodates a hole in an
anti-bonding orbital of the highest occupied molecular
orbital (HOMO) of the ET. As the anti-bonding band is
half-filled and the Coulomb repulsive energy is compara-
ble to the band width, the family of κ-(ET)2X is good
model system to study Mott physics (Kanoda, 1997a,b;
Kino and Fukuyama, 1995; Powell and McKenzie, 2011;
Shimizu et al., 2006). The estimates of the transfer inte-
grals between the adjacent anti-bonding orbitals on the
isosceles triangular lattices, t and t′, are in a range of 50
meV, depending on the method of calculation, e.g., either
the molecular orbital (MO)-based tight-binding calcula-
tion (Komatsu et al., 1996; Mori et al., 1984, 1999) or

the first principles calculation (Kandpal et al., 2009; Ko-
retsune and Hotta, 2014; Nakamura et al., 2009). Nev-
ertheless, one can see that the values have clear system-
atic variation in terms of anion X, as shown in Fig. 17,
where the values of t and t′ are calculated via the latter
method: the t′/t value of κ-(ET)2Cu[N(CN)2]Cl is 0.75
(the MO-based calculations) and 0.44-0.52 (first princi-
ples calculations), while that of κ-(ET)2Cu2(CN)3 is 1.06
and 0.80-0.99, respectively, suggestive of high geometri-
cal frustration.
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FIG. 17 (a) In-plane structure of the ET layer in κ-(ET)2X. It
is modelled to (b) an anisotropic triangular lattice. (c) First
principles calculations of transfer integrals in κ-(ET)2X for
X=Cu[N(CN)2]Cl, Cu(NCS)2 and Cu2(CN)3 ; squares (Naka-
mura et al., 2009), circles (Kandpal et al., 2009), and triangles
(Koretsune and Hotta, 2014).

The temperature dependence of the spin susceptibil-
ity, χ, of κ-(ET)2Cu2(CN)3 differs from that of the less
frustrated compound κ-(ET)2Cu[N(CN)2]Cl, as seen in
Fig. 18 (Shimizu et al., 2003). An abrupt upturn at
27 K in the latter is a manifestation of the antiferro-
magnetic transition, with a slight spin canting of ap-
proximately 0.3 degree (Miyagawa et al., 1995). How-
ever, κ-(ET)2Cu2(CN)3 has no anomaly in χ(T ). Its
overall behavior features a broad peak, which is recon-
ciled by the triangular-lattice Heisenberg model with an
exchange interaction of J ∼ 250 K. In contrast to κ-
(ET)2Cu[N(CN)2]Cl, the magnetic susceptibility of κ-
(ET)2Cu2(CN)3 may be described by the Heisenberg
model because it is situated further from the Mott bound-
ary, while κ-(ET)2Cu[N(CN)2]Cl undergoes a Mott tran-
sition at a low pressure (25 MPa) as it is about to enter
a metallic state (Kagawa et al., 2005; Lefebvre et al.,
2000). There is no indication of magnetic ordering in the
susceptibility of κ-(ET)2Cu2(CN)3, at least down to 2
K, the lowest temperature measured. Furthermore, no
Curie-like upturn can be identified; the concentration of
Cu2+ impurity spins detected by ESR is estimated to be
less than 0.01 % for κ-(ET)2Cu2(CN)3 (Shimizu et al.,
2006).
The detailed spin states can be examined by perform-
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FIG. 18 (Shimizu et al., 2003) Magnetic susceptibility of poly
crystalline κ-(ET)2Cu2(CN)3 and κ-(ET)2Cu[N(CN)2]Cl.
The core diamagnetic susceptibility has already been sub-
tracted. The solid and dotted lines represent the result of the
series expansion of the triangular-lattice Heisenberg model us-
ing [6/6] and [7/7] Padé approximations with J = 250 K. The
susceptibility of κ-(ET)2Cu2(CN)3 below 30 K is expanded in
the inset.

FIG. 19 (Shimizu et al., 2003) 1H NMR spectra for single
crystals of κ-(ET)2Cu2(CN)3 and κ-(ET)2Cu[N(CN)2]Cl.

ing NMR measurements, which probe the static and dy-
namical hyperfine fields at the nuclear sites. Fig. 19
shows the single-crystal 1H NMR spectra for the two
compounds (Shimizu et al., 2003). A clear line split-
ting in κ-(ET)2Cu[N(CN)2]Cl at 27 K is evidence for
commensurate antiferromagnetic ordering, with the mo-
ment estimated to be 0.45 µB per ET dimer in separate
13C NMR studies (Miyagawa et al., 2004). However, the
spectra for κ-(ET)2Cu2(CN)3 shows neither a distinct
broadening nor splitting down to 32 mK, which is four
orders of magnitude lower than the J value of 250 K.
This indicates the absence of long-range magnetic order-
ing. The absence of ordering is also corroborated by zero
field µSR experiments (Pratt et al., 2011). The nuclear
spin lattice relaxation rate, 1/T1, which probes the spin
dynamics, behaves similarly at the 1H and 13C sites. Fig.
20 shows 1/T1 at the

13C sites, which decreases monoton-
ically with a square-root temperature dependence down
to 10 K and exhibits a dip-like anomaly at approximately
6 K (Shimizu et al., 2006). Below 6 K, 1/T1 levels off
down to 1 K or lower, followed by a steep decrease ap-
proximated by T 3/2 at even lower temperatures. The
two anomalies at 6 K and 1.0 K are obvious. However,
they are not so sharp as to be considered as phase tran-
sitions. Due to the large hyperfine coupling of the 13C
sites located in the central part of ET, an electronic in-
homogeneity gradually developing on cooling is captured
by spectral broadening, which is enhanced at approxi-
mately 6 K and saturates below 1 K (Kawamoto et al.,
2006; Shimizu et al., 2006). The detailed NMR (Shimizu
et al., 2006) and µSR (Pratt et al., 2011) measurements
point to the field-induced emergence of staggered-like mo-
ments, which is distinct from the conventional magnetic
order. A separate µSR study (Nakajima et al., 2012)
suggests a phase separation. The degree of inhomogene-
ity in the 13C relaxation curve, which is characterized by
the deviation of the exponent in the stretched exponen-
tial fitting of the relaxation curve (see Inset of Fig. 20),
increases below 5-6 K (Shimizu et al., 2006). The 1H
relaxation curve also starts to bend at the much lower
temperatures, e.g., below 0.4 K, and fits to a roughly
equally weighed sum of two exponential functions, the
1/T1’s of which are proportional to T and T 2. No ap-
preciable field dependence of the 13C relaxation rate is
observed between 2 T and 8 T. There is no experimental
indication of a finite excitation gap in any of the magnetic
measurements.

Thermodynamic investigations were conducted by
means of the specific heat and thermal conductivity
measurements. Fig. 21 shows the specific heat for κ-
(ET)2Cu2(CN)3 and several Mott insulators with anti-
ferromagnetic spin ordering (Yamashita et al., 2008b).
For all of the antiferromagnetic materials, the electronic
specific heat coefficient, γ, is vanishing, as expected for
insulators. For the κ-(ET)2Cu2(CN)3 spin liquid sys-
tem, however, the extrapolation of the C/T vs. T 2 line
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FIG. 20 (Shimizu et al., 2006) 13C nuclear spin-lattice relax-
ation rate for a single crystal of κ-(ET)2Cu2(CN)3. The open
triangles and circles represent the relaxation rates of two sep-
arated lines coming from two non-equivalent carbon sites in
an ET. At low temperatures below 5 K, the two lines merge
and are not distinguished. The inset shows the exponent in
the stretched exponential fitting to the relaxation curves of
the whole spectra, whose relaxation rates are plotted using
closed diamonds.

to absolute zero yields γ=12∼15 mJ/K2mol. The linear-
ity holds down to 0.3 K, below which a nuclear Schottky
contribution overwhelms the electronic contribution to
C. The finite value despite the Mott insulating state is a
marked feature of spin liquids and suggests fermionic ex-
citations in the spin degrees of freedom. Interestingly, the
low-temperature susceptibility and the γ value give the
Wilson ratio on the order of unity. A spinon Fermi sea
is an intriguing model for this phenomenon (Motrunich,
2005). However, neither the U(1) spin liquid, where C
follows T 2/3 scaling, nor the Z2 spin liquid, where C is
gapped, reconciles the observed features in their origi-
nal forms. Randomness may be an optional parameter
to modify the temperature dependence. Another inter-
esting feature is the field-insensitivity up to 8 T, which
appears incompatible with the U(1) spin liquid states
with Dirac cones.

Thermal transport measurements result in somewhat
controversial consequences (Yamashita et al., 2008a).
The thermal conductivity divided by the temperature
tends to vanish with decreasing temperature, as shown
in Fig. 22. The gap, if one is present, is estimated to be
0.43 K, which is quite small compared with the exchange
energy of 250 K. The extremely small gap may indicate
a gapped Z2 spin liquid located near a quantum critical
point. The discrepancy between the thermal transport
and NMR and specific heat data remains an open is-
sue. It may be attributed to the Anderson localization
of spinons.
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The 6-K anomaly in the NMR spectrum and relaxation
rate also manifests itself in the specific heat (Yamashita
et al., 2008b) and thermal conductivity (Yamashita et al.,
2008a) as a hump and a shoulder, respectively, indicating
that the anomaly is thermodynamic, as well as magnetic.
However, the thermal expansion coefficient shows a cusp
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(Manna et al., 2010) and the ultrasonic velocity shows
a dip-like minimum, signifying lattice softening at ap-
proximately 6 K (Poirier et al., 2014). In view of these
results, this anomaly is likely associated with spin-lattice
coupling. Instabilities of the spinon Fermi surfaces (e.g.,
(Galitski and Kim, 2007; Grover et al., 2010; Lee and
Lee, 2005; Zhou and Lee, 2011)) are among the possible
origins of the anomaly.
Although the spin liquid is insulating, anomalous

charge dynamics are suggested for the low-energy op-
tical and dielectric responses. The optical gap for
κ-(ET)2Cu2(CN)3 is much smaller than that for κ-
(ET)2Cu[N(CN)2]Cl, although the former system is sit-
uated further from the Mott transition than the latter
(Kézsmárki et al., 2006). It is proposed that gapless
spinons are responsible for low-energy optical absorp-
tion inside the Mott gap (Ng and Lee, 2007). The di-
electric (Abdel-Jawad et al., 2010), microwave (Poirier
et al., 2012) and terahertz (Itoh et al., 2013) responses
are enhanced at low temperatures. The possible charge-
imbalance excitations within the dimer are theoretically
proposed (Dayal et al., 2011; Hotta, 2010; Naka and Ishi-
hara, 2010). Relaxor-like dielectric, transport and optical
properties are discussed in terms of coupling with disor-
dered anion layers (Dressel et al., 2016; Pinterić et al.,
2014).
ii) EtMe3Sb[(Pd(dmit)2]2
This compound is a member of the A[(Pd(dmit)2]2

family of materials, which contain a variety of mono-
valent cations such as A+=EtxMe4−xZ

+ (Et = C2H5,
Me= CH3, Z =N, P, As, Sb, and x = 0, 1, 2), where
dmit is 1,3-dithiole-2-thione-4,5-dithiolate (Kato, 2014)
A[(Pd(dmit)2]2 is a layered system composed of conduct-
ing Pd(dmit)2 layers and insulating A layers. In the
conducting layers, Pd(dmit)2 is strongly dimerized as in
κ-(ET)2X, whereas the [Pd(dmit)2]2 dimer accepts an
electron from cation A+ instead of the hole in ET+

2 . A
prominent feature of the A[(Pd(dmit)2]2 family is that
the transfer integrals of the three laterals in the triangu-
lar lattice can be finely tuned via chemical substitution
of A+=EtxMe4−xZ

+ (Kato, 2014). Their first princi-
ples calculations are shown in Fig. 23 (Tsumuraya et al.,
2013) The spin liquid material EtMe3Sb[(Pd(dmit)2]2 is
in a region where the three transfer integrals are equal-
ized. As expected, the materials situated outside of this
region have antiferromagnetic ground states. The alloy-
ing of the boundary materials offers the chance to study
possible critical regions between spin liquids and ordered
states (Kato, 2014). There is a charge-ordered material
near the spin liquid, suggesting that the charge cannot al-
ways be assumed to be separate degrees of freedom from
the spin physics.
Below, we review the properties of

EtMe3Sb[(Pd(dmit)2]2 and other related materials.
The magnetic susceptibility of EtMe3Sb[(Pd(dmit)2]2

shows a broad peak at approximately 50 K and points
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FIG. 23 (Tsumuraya et al., 2013) First principles calcula-
tions of band width W (a) and transfer integrals (b) in
A[(Pd(dmit)2]2 for various cations, A. The Pd(dmit)2 layers
are modeled to triangular lattices characterized by transfer
integrals, tB, tS and tr. t3 is the interlayer transfer integral.
AF, QSL and CO stand for antiferromagnet, quantum spin
liquid and charge-ordered insulator.

to a finite value in the low-temperature limit without
any anomaly down to 2K, as shown in Fig. 24 (Kan-
oda and Kato, 2011; Kato, 2014), which is reminiscent of
κ-(ET)2Cu2(CN)3. The fitting of the triangular lattice
Heisenberg model to the data yields an exchange inter-
action of 220 K to 280 K, which is nearly the same as for
κ-(ET)2Cu2(CN)3. Also shown are the susceptibilities of
antiferromagnetic and charge-ordered insulators, which
exhibit small kink signaling of magnetic ordering and a
sudden decrease indicative of a spin gapful state, respec-
tively, despite their similar behaviors at high tempera-
tures (Tamura and Kato, 2002). This indicates that the
diversity in the ground states is an outcome of low-energy
physics, while the same diversity is not distinguished at
high energy scales.

The 13CNMR captures no signature of magnetic order-
ing down to 20 mK, although a slight broadening equiva-
lent to the broadening for κ-(ET)2Cu2(CN)3 is observed
at low temperatures (Itou et al., 2010). The temper-
ature dependence of the 13C nuclear spin-lattice relax-
ation rate is shown in Fig. 25 (Itou et al., 2010). It
exhibits a non-monotonic temperature dependence. At
low temperatures below 1 K, it follows a T 2 dependence,
suggesting no finite gap. However, the power of 2 im-
plies a complicated nodal gap, which is not obviously
consistent with the finite susceptibility value and the
thermodynamic measurements described below. Further-
more, 1/T1 forms a shoulder or a kink at approximately
1 K and becomes moderate in temperature dependence
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FIG. 24 (Kato, 2014) Magnetic susceptibility of an
antiferromagnet Me4Sb[(Pd(dmit)2]2, a spin liquid
EtMe3Sb[(Pd(dmit)2]2 and a charge-ordered insulator
Et2Me2Sb[(Pd(dmit)2]2. The core diamagnetic susceptibility
has already been subtracted.
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FIG. 25 (Itou et al., 2010) 13C nuclear spin-lattice relaxation
rate 1/T1 of EtMe3Sb[Pd(dmit)2]2. Inset shows the 1/T1T
versus T plots. The circles indicate the values determined
from the stretched-exponential fitting to the relaxation curves
and the squares denote the values determined from the initial
decay slopes of the relaxation curves.

above 1 K. The kink temperature increases for higher
magnetic fields or frequencies. The relaxation curve be-
comes a non-single exponential curve below 10 K but
reverses below 1 K, indicating that the inhomogeneity
increases below 10 K (Itou et al., 2010, 2011). The re-
versal at 1 K can be an indication of either a recovery
in the homogeneity below 1 K or the microscopic nature
of the inhomogeneity, which is subject to spin-diffusion
averaging of the heterogeneous relaxation time that is
longer at lower temperatures. The 1-K relaxation-rate
anomaly in Et2Me2Sb[(Pd(dmit)2]2 may be compared to
the broad anomaly around nearly the same temperature
for κ-(ET)2Cu2(CN)3. However, they appear different
with respect to field (or frequency) dependence and spa-
tial scale of inhomogeneity.

The thermodynamic measurements are indicative of
fermionic low-energy excitations. Fig. 26 shows the
temperature dependence of the specific heat (Yamashita
et al., 2011). The linearity of C/T versus T 2 in
EtMe3Sb[(Pd(dmit)2]2 is extrapolated to a zero Kelvin
to give a finite value of γ, whereas other Mott in-
sulators appear to have vanishing γ, as expected for
conventional insulators. There is no field dependence
in C/T in EtMe3Sb[(Pd(dmit)2]2 up to 8 T, as in
κ-(ET)2Cu2(CN)3. The thermal conductivity results
are consistent with the specific heat results, as seen
in Fig. 27, where the low-temperature κ/T value for
EtMe3Sb[(Pd(dmit)2]2 is as high as 0.2 WK−2m in the
zero-Kelvin limit, implying the presence of gapless ther-
mal transporters with fermionic statistics (Yamashita
et al., 2010). The mean free path for thermal transport
is estimated to be of the order of 1 µm. κ is enhanced
by the application of a magnetic field above a thresh-
old value, suggesting that the gapped excitations coexist
with the gapless excitations (Yamashita et al., 2010).

V.2. Kagome-lattice system: ZnCu3(OH)6Cl2

The kagome lattice is constructed by using corner-
sharing triangles in contrast to the edge-sharing in the
triangular lattices, as shown in Fig. 8. Thus, the spin
states in the kagome lattice have larger degeneracy than
those in the triangular lattices, leading to high potential
for hosting a spin liquid. Actually, the theoretical per-
spective of seeking a spin liquid is more promising for
the kagome-lattice Heisenberg model than for the trian-
gular lattice (Lecheminant et al., 1997; Mila, 1998; Mis-
guich and Lhuillier, 2004; Sachidev, 1992). Among sev-
eral candidates for the kagome spin systems, we select
a spin-1/2 system, ZnCu3(OH)6Cl2, which is known as
herbertsmithite, whose magnetism has been extensively
investigated. This is a member of a family of materi-
als with variable compositions, i.e., ZnxCu4−x(OH)6Cl2
(0 < x < 1 ). As an end material, Cu4(OH)6Cl2 has
a distorted pyrochlore lattice of S = 1/2 Cu2+ spins,
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FIG. 26 (Yamashita et al., 2011) Low-temperature spe-
cific heat Cp of EtMe3Sb[Pd(dmit)2]2 for several magnetic
fields up to 10 T in Cp/T versus T 2 plots. The data
of other insulating systems, i.e., Et2Me2As[(Pd(dmit)2]2,
EtMe3As[(Pd(dmit)2]2 and EtMe3P[(Pd(dmit)2]2, are also
plotted for comparison. A large upturn below 1 K is prob-
ably attributable to the rotational tunneling of Me groups.
The low-temperature data are expanded in the inset.

FIG. 27 (Yamashita et al., 2010) Low-temperature thermal
conductivity κ of EtMe3Sb[Pd(dmit)2]2 (dmit-131) in κ/T
versus T 2 and κ/T versus T (inset) plots. The data of
other insulators, i.e., Et2Me2Sb[Pd(dmit)2]2 (dmit-221, non-
magnetic) and κ-(ET)2Cu2(CN)3, are also plotted for com-
parison.

whereas the other end material, ZnCu3(OH)6Cl2, has a
two-dimensional (a − b plane) perfect kagome-lattice of
Cu2+ spins separated by different crystallographic sites
occupied by Zn2+ (Shores et al., 2005). The structural
symmetry changes across x = 0.33, above which Cu2+

partially occupies the Zn sites in addition to the kagome
lattice. There is an argument for the mixture of Zn in
the kagome sites in ZnCu3(OH)6Cl2. Magnetic suscepti-

bility (Bert et al., 2007) and specific heat (de Vries et al.,
2008) suggest that approximately 6% of the kagome sites
are replaced by non-magnetic Zn. The same amount of
Cu is assumed to invade the nominal Zn sites. Thus, sig-
nificant efforts have been made to extract the intrinsic
properties of the kagome lattice from the experimental
data.

FIG. 28 (Mendels et al., 2007) Temperature variation of the
spin-frozen fraction determined by muon spin rotation experi-
ments for ZnxCu4−x(OH)6Cl2. Inset shows the x- dependence
of the spin-frozen fraction at a low temperature.

Experimental evidence for the absence of magnetic or-
dering in ZnCu3(OH)6Cl2 can be obtained from µSR ex-
periments (Mendels et al., 2007). The relaxation pro-
file shows no internal field down to 50 mK. The exper-
iments for a wide range of x found that the absence of
an internal field was persistent in a certain range be-
low x = 1 (see Fig. 28) (Mendels et al., 2007). The
magnetic susceptibility exhibits a Curie-Weiss behavior
at high temperatures above 100 K, as shown in Fig. 29
(Helton et al., 2007). The Weiss temperature is ∼300 K,
which implies an antiferromagnetic exchange interaction
of J = 17 meV. The dc and ac magnetic susceptibility
indicates no magnetic ordering down to 0.1 K and 0.05
K, respectively, which is four orders of magnitude lower
than J (Helton et al., 2007). The susceptibility increases
progressively at lower temperatures. Two mechanisms
are possible. First, impurities from Cu/Zn inter-site mix-
ing can give a Curie-like upturn. Second, Dzyaloshinsky-
Moriya interactions may be present between the adjacent
sites with broken inversion symmetry, as in the kagome
lattice (Rigol and Singh, 2007). The high-field magneti-
zation measurements suggest that the former is mainly
responsible for the increasing susceptibility (Bert et al.,
2007).
NMR, which probes magnetism in a site-selective man-

ner, was informative particularly for this material be-
cause the analysis of spectra allows one to distinguish the
intrinsic magnetism from the extrinsic one. The NMR
spectra at 35Cl and 17O sites are broad (Imai et al., 2008;
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FIG. 29 (Helton et al., 2007) Temperature dependence of the
inverse magnetic susceptibility χ−1 of ZnCu3(OH)6Cl2. The
line denotes a Curie-Weiss fit. Inset: ac susceptibility (at 654
Hz) at low temperatures.
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FIG. 30 (Olariu et al., 2008) 17O NMR shift of two lines (M
and D) decomposed from the observed spectra for a powder of
ZnCu3(OH)6Cl2. The M and D lines are considered to come
from the oxygen sites depicted in the inset. The red curve
represents the trace of a half of the value of the M line. The
sketch in the lower left corner illustrates the environment of
a Zn substituted on the Cu kagome plane, and thick lines
represent Cu-Cu dimers.

Olariu et al., 2008), reflecting the inhomogeneous local
fields, supposedly due to the Zu/Cu mixture. However,
the smallest shift value in the broad 35Cl spectrum fol-
lows a Curie-Weiss law down to 25 K, followed by a de-
crease at lower temperatures (Imai et al., 2008). This is
considered to indicate intrinsic magnetism for the kagome
lattice (Imai et al., 2008). The 17O probes the kagome
sites more preferentially than the nominal Zn sites due to
larger hyperfine coupling with the kagome sites (Olariu
et al., 2008). The 17O NMR spectra were decomposed
into two components. One is from the 17O sites coordi-
nated by two Cu2+ ions, while the other is from the 17O
sites coordinated by a Cu2+ and a Zu2+ in the kagome
plane. The relative fraction of the two components was

consistent with a 6 % Zn admixture. The NMR shifts
of the respective components, as shown in Fig. 30, are
considered to be local susceptibilities at Cu sites with
and without Zn2+ at the neighboring sites (Olariu et al.,
2008). Both decrease below 50 K and saturate to finites
values, indicating the gapless nature of the spin excita-
tions. The low-temperature decrease in the shift at the
Cu site with a Zn neighbor is in contrast to the enhance-
ment commonly observed in the neighborhood of non-
magnetic impurities (Olariu et al., 2008). This behavior
also suggests that the Curie-like upturn in the bulk sus-
ceptibility at low temperatures is not from the kagome
plane. For the NMR relaxation rate, all of the O, Cl and
Cu nuclear spins exhibit power-laws against temperature
down to 0.47 K for O and 2 K or lower for Cl and Cu,
indicating a gapless spin liquid (see Fig. 31) (Imai et al.,
2008; Olariu et al., 2008). Although the power somewhat
depends on the nuclear site, the relaxation profile is over-
all nuclear site-insensitive, which is filtered by the nu-
clear site-specific form-factor determined by its location
relative to the kagome lattice, suggesting non-dispersive
spin dynamics. Otherwise, the temperature profile of the
relaxation rate would be site-dependent (Olariu et al.,
2008). This feature is potentially relevant to the spinon
excitation with the continuum. More recently, NMR ex-
periments performed at low temperatures have revealed
an anomaly in the relaxation rate at a temperature de-
pending on the applied field, which may signify field-
induced spin freezing (Jeong et al., 2011). Very recently,
a 17O NMR experiment performed with a single crystal
has found different features from those observed so far in
the powder samples (Fu et al., 2015). According to the
analysis of NMR spectra, there is no significant contam-
ination of Zn in the Cu sites within the kagome plane,
and the Knight shift shows appreciable temperature- and
field-dependences, suggesting a spin gap of the order of
10 K, as shown in FIG 32, in contradiction with the con-
sequences of the earlier NMR and neutron (see below)
experiments.

The low-temperature specific heat was investigated un-
der external magnetic fields (Helton et al., 2007; de Vries
et al., 2008). As shown in Fig. 33(a) (Helton et al.,
2007), there is an enormous field dependence. The tem-
perature dependence at a zero field is approximated by
a power law Tα with α unity or smaller (see Fig. 33(b)).
The broad peak present even at a zero field is shifted
to higher temperatures under higher fields. Assuming
that the field-dependent peak is a Schottky contribution
associated with a field-induced gap, the data for differ-
ent fields were analyzed in detail to reveal the intrinsic
specific heat of the kagome lattice (de Vries et al., 2008).
The deduced Schottky component is consistent with Zee-
man splitting of the 6% Cu impurities in the Zn sites at
higher fields, and the intrinsic C/T follows a power law
Tα with α = 1.3 as the best estimate, suggesting gapless
excitations (Helton et al., 2007; Shaginyan et al., 2011;
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FIG. 31 (Olariu et al., 2008) 17O, 63Cu and 35Cl nuclear spin-
lattice relaxation rates 1/T1 for a powder of ZnCu3(OH)6Cl2.
Inset shows 17O 1/T1 versus 1/T plots.

FIG. 32 (Fu et al., 2015) Temperature dependence of
17O Knight shift (a) and the field dependence of the spin
gap deduced from the Knight shift for a single-crystal
ZnCu3(OH)6Cl2.

FIG. 33 (Helton et al., 2007) (a) Specific heat C of
ZnCu3(OH)6Cl2 in various applied fields. Inset shows C over
a wider temperature range in applied fields of 0 T (square)
and 14 T (star). (b) C in a zero field at low temperatures.
The lines represent power law fits.

de Vries et al., 2008).

Neutron-scattering experiments, which are capable of
profiling spin excitations with respect to momentum and
energy transfers, are available for herbertsmithite. One
of the key issues of elementary excitations in spin liq-
uids is the possible fractionalization of S = 1 spin ex-
citations into S = 1/2 spinons, which could manifest
themselves as a continuum in the spin excitation spec-
trum, i.e., dynamic structure factor S(Q, ω), where Q

and ω are momentum transfer and energy transfer di-
vided by ~, respectively. Such a continuum is observed in
a highly anisotropic triangular-lattice system, Cs2CuCl4,
(J ′/J ∼ 3 and J ′ 0.34 meV in Fig. 17), although it un-
dergoes a magnetic transition into a spin-spiral order at
0.62 K (Coldea et al., 2001, 2003). Several features signi-
fying the continuum are found via neutron experiments
of herbertsmithite, which were first performed for poly-
crystalline or powder samples. The inelastic scattering
experiments exhibit no excitation gap at least down to
0.1 meV, which corresponds to ∼ J/170, and insensitiv-
ity of the scattering strength to Q, indicating gapless and
local natures of spin fluctuations (Helton et al., 2007).
Furthermore, the scattering intensity is only weakly de-
pendent on ω up to 25 meV and temperature up to 120
K and shifts toward lower Q as temperature is increased
(de Vries et al., 2009). Some of the results are displayed
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in Fig. 34. All these features are suggestive of a contin-
uum in spin excitations and the persistence of the short-
range nature of spin correlations even at low tempera-
tures. Recent experiments on a large single crystal have
succeeded in capturing the continuum nature, as seen in
the green area in Fig. 35. The momentum profile of the
excitation intensity (dynamic structure factor), S(Q, ω),
is approximately reproduced by the simulated structure
factor of uncorrelated dimer-singlets, which indicates to
the short-ranged spin correlations at least down to 1.6
K (Han et al., 2012). The short-range nature that per-
sists even at low temperatures, as suggested by the pow-
der experiments as well, is generally in favor of a gapped
state, whereas there is no indication of a spin gap down to
0.25 meV at any Q values in the excitation spectra (Han
et al., 2012). It is puzzling that spin dynamic correlation
exhibits short-range RVB nature while the spectrum is
gapless. One possibility is that the Herbertsmithite is in
a Z2 spin liquid in close proximity to a critical point to
the U(1) Dirac liquid, as indicated by some recent nu-
merical works (Li, 2016), although the true ground state
of the isotropic Heisenberg model on a kagome lattice is
still under debate (Iqbal et al., 2016).
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FIG. 34 (de Vries et al., 2009) (a) Instantaneous magnetic
correlations at 4 K and 10 K for a time scale corresponding
to approximately 6.5 meV. The solid lines are a guide to the
eye. (b) The Q dependence in the dynamic correlations with
the energy integration interval indicated in the legend. The
dotted line in panel (a) and (b) is the structure factor for
dimer-like AF correlations. The dashed line, a single-ion con-
tribution corresponding to the 6% antisite spins in this sys-
tem, is added. (c) The energy and temperature dependence
at Q=1.3 Å−1. D7, IN4 and MARI in the legends stand for
the types of spectrometers used.

V.3. Hyperkagome-lattice system: Na4Ir3O8

The hyperkagome lattice is a three-dimensional net-
work of corner-sharing triangular lattices. In Na4Ir3O8,
the Ir4+ ion with 5d5 electrons likely takes on a low-

FIG. 35 (Han et al., 2012) Contour plot of dynamical struc-
ture factor, Smag (Q, ω ), integrated over 1≤ ~ω ≤ 9 meV for
a single-crystal ZnCu3(OH)6Cl2 at 1.6 K. The intense scat-
tering is extended in a green-colored region, without peaking
at any specific points.

spin state. These ions locate on the corners, forming a
S=1/2 hyperkagome lattice (Okamoto et al., 2007). The
resistivity of the ceramic sample is 10 Ohmcm at room
temperature. The samples are semiconducting, with a
charge transport gap of 500 K, implying the proximity
of this system to the Mott transition, which is differ-
ent from the kagome materials reviewed above (Okamoto
et al., 2007). A connection between the spin liquid and
the metal-insulator transition, similar to the case of κ-
(ET)2Cu2(CN)3, is shown (Podolsky et al., 2009). A dis-
tinct feature of Na4Ir3O8 among spin liquid candidates is
its large spin-orbit coupling, which introduces additional
interest to the physics of spin liquids (Chen and Balents,
2008; Zhou et al., 2008). Several theoretical studies pro-
pose that Na4Ir3O8 is a 3D QSL with fermionic spinons
(Lawler et al., 2008; Zhou et al., 2008).
Fig. 36(a) shows the magnetic susceptibility of

Na4Ir3O8, which weakly increases with decreasing tem-
perature, as characterized by the Curie-Weiss temper-
ature of -650 K (Okamoto et al., 2007). This implies
an antiferromagnetic interaction of hundreds of Kelvin.
There is no clear indication of magnetic ordering at least
down to 2 K, whereas a small anomaly reminiscent of
spin glass observed in the magnetization history against
the field/temperature variation is attributed to a tiny
fraction of the total spins (Okamoto et al., 2007).
The electronic (magnetic) contribution to the specific

heat of Na4Ir3O8, as shown in Fig. 36(b), has a broad
peak at 20 K. However, no anomaly signifying magnetic
ordering is apparent (Okamoto et al., 2007). The mag-
netic entropy estimated by integrating the C/T in Fig.
36(b) reaches 70−80% of R ln 2 (= 5.7 J/molK) at 100 K,
a much lower temperature than the Weiss temperature of
∼600 K, which features frustrated magnetism. The C/T
is characterized by a curious T 2 dependence at the lowest
temperatures. The γ term, when present, appears on the
order of 1 mJ/K2mol Ir. Recent experiments extended
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FIG. 36 (Okamoto et al., 2007) (a) Temperature dependence
of the inverse magnetic susceptibility χ−1 of polycrystalline
Na4Ir3O8 under 1 T. Inset shows magnetic susceptibility χ
in various fields up to 5 T; for clarity, the curves are shifted
by 3, 2, and 1 × 10−4 emu/mol Ir for 0.01, 0.1, and 1 T
data, respectively. (b) Magnetic specific heat Cm divided
by temperature T of polycrystalline Na4Ir3O8. To estimate
Cm, data for Na4Sn3O8 is used as a reference of the lattice
contribution. Inset shows Cm/T versus T in various fields up
to 12 T. (c) Magnetic entropy.

FIG. 37 (Singh et al., 2013) Thermal conductivity κ of
Na4Ir3O8 in κ/T versus T 2 plots for magnetic fields of 0 T
and 5 T. Inset shows the low-temperature part of the data.

down to 500 m K have found that Cm/T is well approx-
imated by a form of γ + βT 2.4 with γ =2.5 mJ/K2molIr
(Singh et al., 2013). As seen in the inset of Fig. 36(b),
the applied field has no influence on the specific heat, at
least up to 12 T.

The temperature dependence of thermal conductivity
is shown in Fig. 37 (Singh et al., 2013). At low temper-
atures down to 75 mK, κ/T is linear in T 2. The κ/T
value extrapolated to T = 0 is 6.3 × 10−2 mW/K2m,
which is a vanishingly small value, compared with the
value of EtMe3Sb[(Pd(dmit)2]2, 0.2 W/K2m in Fig. 27.
The suppression of the κ/T value by the extrinsic grain-
boundary effect is not ruled out (Singh et al., 2013). The
feature that γ is diminished and κ/T is vanishing at low
temperatures, while both are sizable at high tempera-
tures of the order of Kelvin, appears to be in accordance
with a theoretical picture of spinon Fermi surfaces that
undergo a pairing instability at low temperatures (Zhou
et al., 2008). In this context, the magnetic susceptibility,
remaining large even at low temperatures, can be due to
the large spin-orbit interactions of Ir (Zhou et al., 2008).

The substitution of non-magnetic Ti4+ ions at Ir sites
will give rise to a Curie-like tail in the spin susceptibil-
ity curve (Okamoto et al., 2007), similar to Zn substitu-
tion for Cu in high-Tc cuprates, indicating an RVB spin
background. The scaling analysis of magnetic Gruneisen
parameters is suggestive of the proximity of Na4Ir3O8 to
a zero-field quantum critical point (Singh et al., 2013).

Very recent µSR (Dally et al., 2014) and NMR experi-
ments (Shockley et al., 2015) have found some indications
that are not in accordance with the above claims. Both
probes detected the emergence of local fields signifying
the freezing of moments at low temperatures, as shown
in Fig. 38. The muons are revealed to sense an inho-
mogeneous local field of electronic origin that appears at
6 K, where the irreversibility in magnetization occurs,
and levels off to 70 G on average, which may correspond
to 0.5 µB on Ir. It is suggested, however, that the spin
correlation is short-ranged (of the order of one unit-cell)
and quasi-static in that the slow dynamics captured by
the relaxation rate persist down to 20 mK. The quasi-
static nature is also seen in the S=1 triangular-lattice
system, NiGa2S4 (MacLaughlin et al., 2008; Nakatsuji
et al., 2005). 17O and 23Na NMR lines show broadening,
which is roughly scaled to the µSR results at low tem-
peratures, as seen in Fig. 38; the moment is estimated
at 0.27 µB on Ir. The NMR line profile also suggests in-
homogeneous spin freezing and slow dynamics persisting
down to low temperatures although the temperature de-
pendencies of the relaxation rates on the muon and 23Na
differ. Noticeably, the 23Na relaxation rate exhibits a
peak indicative of the critical slowing down at approxi-
mately 7.5 K despite no anomaly in specific heat. The
nature and origin of these anomalous properties are not
clear at present; however, it is likely that disorder plays a
vital role in this system, which can host configurationally
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degenerate phases with fluctuating order (Dally et al.,
2014). Considering that muon, 17O and 23Na captured
the behavior of the majority of spins in the sample, the
disorder effect, if any, is such that it is not restricted to
finite areas but extended over the system, being reminis-
cent of the quantum Griffiths effect given the inhomo-
geneity and slow dynamics. M
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FIG. 38 (Shockley et al., 2015)The line width (FWHM) of
Gaussian-broadened 17O and 23Na NMR spectra and the
mean value of the distributed local fields detected based on
µSR (Dally et al., 2014). For the NMR line width, its devia-
tion from the value at 15 K is plotted. Inset: 23Na spectra at
78.937 MHz for 7 T (empty circles) and 45.046 MHz for 4 T
(solid line) with the horizontal axis shifted by 3.005 T at 1.3
K. The blue line shows the expected powder pattern of the
spectrum, with every Ir-site carrying the same moment.

V.4. Experimental summary

Due to intensive experimental studies, unconventional
thermodynamic and magnetic properties that evoke
spin liquids have been found in several materials with
anisotropic triangular lattices, kagome lattices and hy-
perkagome lattices as seen above. These materials ex-
hibit no indications of conventional magnetic ordering.
Their magnetic and thermodynamic properties are sum-
marized in Table III. It appears that the gapless nature is
a property that a class of frustrated lattices constructed
with triangles possesses, although the thermal conduc-
tivity of κ-(ET)2Cu2(CN)3 suggested a tiny excitation
gap three orders of magnitude smaller than J . A recent
NMR work on herbertsmithite insists on gapped spin ex-
citations, and anomalous quasi-static spin freezing has
recently been revealed by µSR and NMR studies of the
hyperkagome system. This feature and the successful ob-
servation of fractionalized excitations in a kagome lattice
(Han et al., 2012) tempt ones to think about spinons as
promising elementary excitations in spin liquids. How
to detect the spinon Fermi surfaces, if they exist, is a
focus—- smoking-gun experiments are awaited.

As seen in Table III, several experimental character-
istics are seemingly inconsistent within given materials;
understanding the apparently contradicting data in a
consistent way requires clarification of the nature of the
spin states. One of the key issues may be the random-

ness present in real materials. In particular, it has long
been recognized that the effect of inevitable Zn/Cu ad-
mixtures in herbertsmithite has to be separated from the
intrinsic magnetism. More recently, the issue of inhomo-
geneous quasi-static spin correlation with slow dynam-
ics in the hyperkagome-lattice system has emerged as a
consequence of disorder. Theoretically, it was proposed
that as randomness is intensified, the 120-degree Neel or-
der in the triangular-lattice Heisenberg model is changed
to a sort of random singlets but not spin glass state.
It is intriguing that randomness appears to enhance the
quantum nature because the singlet is a purely quantum
state (Shimokawa et al., 2015; Watanabe et al., 2014).
In the case of kagome lattices, it was theoretically sug-
gested that disorder could lead to a valence-bond glass
state(Singh, 2010) or a gapless spin liquid state (Kawa-
mura et al., 2014; Shimokawa et al., 2015). Furthermore,
a recent NMR experiment on an organic Mott insulator,
i.e., κ-(ET)2Cu[N(CN)2]Cl, found that the antiferromag-
netic ordering in the pristine crystal, when irradiated by
X-rays, disappears. Spin freezing, spin gap and critical
slowing down are not observed, but gapless spin exci-
tations emerge, suggesting a novel role of disorder that
brings forth a QSL from a classical ordered state (Fu-
rukawa et al., 2015b). Whether the randomness is fatal
or vital to the physics of a QSL is a non-trivial issue to
be resolved.

The development of new materials, although not ad-
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TABLE III Spin liquid materials summary

Material Triangular,
κ-(ET)2Cu2(CN)3

Triangular
M[Pd(dmit)2]2

Kagome
ZnCu3(OH)6Cl2

Hyper-Kagome,
Na4Ir3O8

Susceptibility A broad peak at 60 K, A broad peak at 50 K, Curie-Weiss at high-T Curie-Weiss

Finite at 2 K, J =250 K Finite at 2 K, J = 220 ∼ ΘW = -300 K, J =230 K, ΘW = -650 K

(*1) 280 K (*7) Upturn at low-T due to
impurity sites

(*19, *20)

(*11, *12)

Specific heat Gapless, Gapless, Gapless, Gapless,

γ =15 mJ/K2 mol, γ=20 mJ/K2mol, C ∼ Tα C ∼ T 2 (*19),

Field-independent Field-independent α = 1.3 at high fields C ∼ γT + βT 2.4,

(*2) (*8) (*13) γ = 2 mJ/K2mol (*20),

Field-independent

(*21, *22)

Thermal con-
ductivity

Gapped; ∆ = 0.46 K (*3) Gapless; finite κ/T (*9) Vanishingly small κ/T
(*22)

NMR shift Not precisely resolved Not precisely resolved High-T 17O shift — scales to

(*4) (*10) Broad peak at at 50-60 K χbulk in 100 K - 300 K

for 17O (*14,*15), but levels off below

at 25-50 K for 35Cl (*16) 80 K (*23)

Low-T 17O,23Na-

gapless :finite value inhomogeneous line

(*14) broadening at low-T

gapped : ∆ ∼ 10 K (*15) (*23)

NMR 1/T1 Inhomogeneous 1/T1, Inhomogeneous 1/T1, 1/T1 ∼ Tα 23Na 1/T1– a peak

Power law, Power law, α ∼ 0.73 for 17O (*14) formation typical of
1H 1/T1;∼ T / ∼ T 2 at 13C 1/T 2 at < 0.5 K α ∼ 0.5 for 63O (*16) critical slowing down at

T < 0.3K (stretched exponential) 7.5 K

(two components) (*1), (*10) Field-induced spin (*23)
13C 1/T1;∼ 1/T 1.5 at
T < 0.2 K

freezing (*17)

(stretched exponential)

(*4)

µSR No internal field at 0 T No internal field at 0 T Emergence of distributed

(*5,*6) (*18) local fields below 6 K

Quasi-static short-ranged

spin freezing with slow
dynamics

(*24)

Neutron Powders

∼ gapless (<0.1 meV)
(*11,*19)

Single crystal

∼ gapless (<0.25 meV)
(*20)

Continuum in dy-
namic structure factor
(*11,*19,*20)

References *1 Shimizu et al., 2003, *7 Kato, 2014, *11 Helton et al., 2007, *21 Okamoto et al., 2007

*2 Yamashita et al., 2008 *8 Yamashita et al., 2011, *12 Bert et al., 2007, *22 Singh et al., 2013

*3 Yamashita et al., 2009, *9 Yamashita et al., 2010, *13 de Vries et al., 2008, *23 Shockley et al., 2015

*4 Shimizu et al., 2006, *10 Itou et al., 2010 *14 Olariu et al., 2008, *24 Dally et al., 2014

*5 Pratt et al., 2011, *15 Imai et al., 2015

*6 Goto et al., 2012 *16 Imai et al., 2008

*6 Goto et al., 2012 *17 Jeong et al., 2011,

*18 Mendels et al., 2007

*19 de Vries et al., 2009

*20 Han et al., 2012
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dressed in this article, is under way. Among them is
a new type of hydrogen-bonded κ-H3(Cat-EDT-TTF)2
with a triangular lattice of one-dimensional anisotropy
(Isono et al., 2013) and κ-(ET)2Ag2(CN)3, an analogue
of κ-(ET)2Cu2(CN)3 (Saito, 2014). Another compound
with hyperkagome lattice structure, i.e., PbCuTe2O6,
with Curie-Weiss temperature θ = −22K is also pro-
posed to be a spin liquid candidate (Khuntia et al., 2016;
Koteswararao et al., 2014). The entanglement of addi-
tional degrees of freedom with quantum spins may be
another direction for future studies; e.g., Ba3CuSb2O9

is proposed to host a spin-orbital coupled liquid state
(Nakatsuji et al., 2012; Zhou et al., 2011).

It should be emphasized that the identification of QSL
experimentally is a very important and challenging task.
As a “featureless” Mott insulator, there exists no sim-
ple magnetic order for identifying QSL states, and so far,
there exists only indirect experimental evidence for mo-
bile fermionic spinons in some candidate compounds as
discussed above.

To remedy this situation, theorists have proposed
new experiments to identify QSLs through identifying
nontrivial properties of spinons and gauge fields. For
example, power law AC conductivity inside the Mott
gap has been noted (Ng and Lee, 2007). A giant-
magnetoresistance-like experiment was proposed to mea-
sure mobile spinons through oscillatory coupling between
two ferromagnets via a QSL spacer (Norman and Mick-
litz, 2009). The thermal Hall effect in insulating quan-
tum magnets was proposed as a probe for the thermal
transport of spinons, where different responses were used
to distinguish between magnon- and spinon- transports
(Katsura et al., 2010). Raman scattering was proposed as
a signature to probe the U(1) QSL state (Ko et al., 2010).
It was also proposed that the spinon life time and mass
as well as gauge fluctuations can be measured through
a sound attenuation experiment (Zhou and Lee, 2011),
and neutron scattering can be used to detect scalar spin
chirality fluctuations in the kagome system (Lee and Na-
gaosa, 2013). Low energy electron spectral functions were
evaluated for future ARPES experiments (Tang et al.,
2013) and it was proposed that spin current flow through
a metal-QSL-metal junction can be used to distinguish
different QSLs (Chen et al., 2013). More recently, it was
suggested that there exists a long-life surface plasmon
mode propagating along the interface between a linear
medium and a QSL with spinon Fermi surface at fre-
quencies above the charge gap, which can be detected by
the widely used Kretschmann-Raether three-layer config-
uration (Ma and Ng, 2015).

However, there exists an important discrepancy be-
tween existing experiments and theories in some of the
above experiments.

1) Specific heat: Using the one-loop calculation sup-
plemented by scaling analysis (Lee and Nagaosa, 1992;
Polchinski, 1994), it is found that the strong coupling

between the U(1) gauge field and spinon Fermi surface
leads to T 2/3 correction to the temperature dependence
of specific heat in U(1) gauge theory. This predicted
T 2/3 behavior has never been observed in experiments.
Instead, linear, Fermi-liquid-like specific heat is found to
exists in a wide range of temperatures in both organic
materials (κ-ET and dmit).

Some theories exsit that try to explain this missing
singular T 2/3 specific heat. For instance, Z4 and Z2 spin
liquid states with a spinon Fermi surface have been pro-
posed (Barkeshli et al., 2013) as well as Z2 spin liquid
states with quadratic touched spinon bands (Mishmash
et al., 2013). However, all these proposals require fine-
tuned parameters. A more natural way of explaining
existing experiments is still missing.

2) Thermal Hall effect: Katsura, Nagaosa and Lee
(Katsura et al., 2010) have theoretically investigated the
thermal Hall effect induced by the external magnetic
field in a U(1) spin liquid with a spinon Fermi surface
and have predicted measurable electronic contributions.
Their predicted sizable thermal Hall effect have never
been observed in an experiment on dmit compounds (Ya-
mashita et al., 2010). This contradiction between exper-
iment and theory remains unsolved, although an expla-
nation that depends on fine-tuned parameters has been
proposed (Mishmash et al., 2013).

3) Power law AC conductivity: A power law AC con-
ductivity inside the Mott gap was proposed by Ng and
Lee (Ng and Lee, 2007). Indeed, power law behavior
σ(ω) ∼ ωα has been observed in both κ-ET (Elsässer
et al., 2012) and Herbertsmithite (Pilon et al., 2013).
However, the power α observed in both compounds is
smaller than predicted value, indicating that there exist
more in-gap electronic excitations than those predicted
in the U(1) gauge theory.

Thus, despite all the theoretical efforts, the under-
standing and finding of realistic “smoking gun” evidence
for QSLs remains the greatest challenge in the study of
QSLs.

VI. SUMMARY

In this article, we provide a pedagogical introduction to
the subject of QSLs and review the current status of the
field. We first discuss the semi-classical approach to sim-
ple quantum antiferromagnets. We explain how it leads
to the Haldane conjecture in one dimension and why it
fails for frustrated spin models. We then focus on spin-
1/2 systems with spin rotational symmetry and introduce
the RVB concept and the slave-particle plus Gutzwiller-
projected wavefunction approaches. We explain the tech-
nical difficulties associated with these approaches and
why slave-particle approaches naturally lead to gauge
theories for spin liquid states. The natures of SU(2),
U(1) and Z2 spin liquid states are explained, and the ex-
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tensions of the approach to systems with spin-orbit cou-
pling and S > 1/2 systems are introduced. We explain
that because of the intrinsic limitations of the analyti-
cal slave-particle approach, many alternative approaches
to spin liquid states have been developed, both numer-
ically and analytically. These approaches complement
each other and often lead to exotic possibilities not cov-
ered by the simple fermionic slave-particle approach. The
experimental side of the story is also introduced with a re-
view of the properties of several candidate spin liquid ma-
terials, including anisotropic triangular lattice systems
(κ-(ET)2Cu2(CN)3 and EtMe3Sb[(Pd(dmit)2]2), kagome
lattice systems (ZnCu3(OH)6Cl2) and hyperkagome lat-
tice systems (Na4Ir3O8). We note several outstanding
difficulties with attempts to explain experimental results
using existing theories. These difficulties indicate that

the field of QSLs is still wide open and immature and

that important physics may still be missing in our present

understanding of QSLs.

While keeping the article at an introductory level, we
are not able to cover many important developments in
the study of spin liquid states, and many technical details
have been neglected, both theoretically and experimen-
tally. For example, the important techniques of renor-
malization groups and conformal field theory are not ad-
dressed in this article. We also do not discuss in detail the
many developments related to MPSs and/or PEPSs and
the corresponding numerical DMRG technique, the un-
derstanding of spin systems with broken rotational sym-
metry following the discovery of the Kitaev state, and
the spin liquid physics of S > 1/2 systems. The role of
topology in spin liquid states is not touched upon except
as it is relevant to examples of spin liquid states. These
are rapidly evolving areas in which new discoveries are
expected.

In the following section, we outline a few other topics
that are neglected in this article but either have played
important historical roles in the development of the field
of QSLs or shed light on future research:

Quantum dimer models: Quantum dimer models
(QDMs) are a class of models defined in the Hilbert
space of nearest neighbor valence bond (or dimer) cov-
erings over a lattice instead of the spin Hilbert space
(Rokhsar and Kivelson, 1988). QDMs can be obtained
in certain large-N limits of SU(N) or Sp(N) antiferro-
magnets (Read and Sachdev, 1989) and provide a sim-
plified description of RVB states. This simplification
allows researcher to proceed further in analytical treat-
ments because of the close relations that arise to clas-
sical dimer problems, Ising models and Z2 gauge the-
ory (Fisher, 1961; Kasteleyn, 1961, 1963; Misguich et al.,
2002; Moessner and Sondhi, 2003; Moessner et al., 2001).
However, by construction, QMDs focus on the dynamics
in the spin-singlet subspace and ignore spin-triplet exci-
tations. Therefore, they are not directly relevant to spin
systems in which the magnetic excitations are gapless.

An advantage of QDMs is that some QDMs are exactly
solvable (Misguich et al., 2002; Yao and Kivelson, 2012).
Thus, many issues related to QSLs that are difficult to
address, such as spinon deconfinement, Z2 vortices and
topological order, can be addressed explicitly in QDMs.
Interestingly, some spin-1/2 Hamiltonians give rise to
sRVB ground states defined in the dimer Hilbert space
when the relationship between the spin and dimer con-
figurations is properly chosen (Cano and Fendley, 2010;
Fujimoto, 2005; Seidel, 2009). Readers who are inter-
ested in further details on QDMs can refer to Chapter
5.5 in reference (Diep, 2004) and Chapter 17 in reference
(Lacroix et al., 2011).
Chiral spin liquids: QSL states that break the par-

ity (P) and time-reversal (T) symmetries while conserv-
ing the spin rotational symmetry have been proposed by
Kalmeyer and Laughlin (Kalmeyer and Laughlin, 1987,
1989). These states are called chiral spin liquids.
Kalmeyer and Laughlin proposed that some frustrated

Heisenberg antiferromagnets in 2D can be described by
bosonic fractional quantum Hall wavefunctions. Soon af-
terward, Wen, Wilczek and Zee (Wen et al., 1989) intro-
duced a generic method of describing chiral spin liquids.
They suggested that chiral spin states can be character-
ized in terms of the spin chirality E123 = ~S1 · (~S2 × ~S3),

defined for three different spins, ~S1, ~S2 and ~S3. The ex-
pectation value of the spin chirality in fermionic RVB the-
ory is given by 〈E123〉 = 1

2 Im〈χ12χ23χ31〉, where the χij

are the short-range order parameters defined in Eq. (39).
Exactly solvable Hamiltonians hosting both gapful chi-

ral spin liquid states (Laughlin, 1989; Schroeter et al.,
2007; Thomale et al., 2009; Yao and Kivelson, 2007) and
gapless chiral spin liquids (Chua et al., 2011) have been
found. There is also numerical evidence for chiral spin
liquids on some 2D frustrated lattices (Bauer et al., 2013;
Gong et al., 2015, 2014a; He and Chen, 2014; He et al.,
2014; Nielsen et al., 2013; Sorella et al., 2003; Zhu et al.,
2015). It has been suggested that the statistics of spinons
in these chiral spin liquid states can be non-Abelian;
see, e.g., (Greiter and Thomale, 2009; Yao and Kivelson,
2007).
Characterizing spin liquid states numerically: Because

of rapid advancements in the power of numerical ap-
proaches to spin models, the characterization of spin liq-
uid states for specific spin models from numerical data
has become a rapidly evolving field. In addition to the
MPS and/or PEPS approach and the corresponding nu-
merical DMRG technique, Tang and Sandvik developed
a quantum Monte Carlo method of characterizing spinon
size and confinement length in quantum spin systems,
which allows the spinon confinement-deconfinement is-
sue to be studied numerically (Tang and Sandvik, 2013).
Another important achievement is the use of entangle-
ment entropy to characterize QSL states. Readers may
consult reference (Grover et al., 2013) for a brief review.
To conclude, the field of QSLs is still wide open, both
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theoretically and experimentally. The major difficulty in
understanding QSLs is that they are intrinsically strongly
correlated systems, for which no perturbative approach
is available. Theorists have been using all of the avail-
able tools as well as inventing new theoretical tools to
understand QSLs with the hope that novel emerging phe-
nomena not covered by perturbative approaches can be
uncovered. Thus far, there have been a few successes,
and new experimental discoveries and theoretical ideas
are rapidly emerging. However, a basic mathematical
framework that can be used to understand QSLs sys-
tematically is still lacking. We expect that more new
physics will be discovered in QSLs, posing a challenge to
both theorists and experimentalists to construct a basic
framework for the understanding of QSLs.
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Appendix A: Path integral for a single spin

We consider the path integral for a single spin S in
a magnetic field B (H = S · B) in the coherent state
representation. Spin coherent states are defined as

Ŝ|n〉 = Sn|n〉,

where Ŝ is the spin operator. The path integral can be
derived by using the identity operator

I =

(

2S + 1

4π

)∫

d3nδ(n2 − 1)|n〉〈n| =
∫

Dn|n〉〈n|
(A1a)

and the corresponding inner product

〈n1|n2〉 = eiSΦ(n1,n2,n0)

(

1 + n1 · n2

2

)S

, (A1b)

where n0 is a fixed unit vector and is usually chosen to be
n0 = ẑ, Φ(n1,n2,n0) is the area of the spherical triangle
with vertices n1, n2, and n0, and SΦ is the Berry’s phase
acquired by a particle traveling through a loop formed by
the edges of the spherical triangle.
The partition function Z = e−βH can be written as a

path integral using the standard procedure:

Z = lim
Nt→∞,δt→0

(

e−δtH
)Nt

(A2)

= lim
Nt→∞,δt→0

(

ΠNt

j=1

∫

Dnj

)

(

ΠNt

j=1〈nj |e−iδtH |nj+1〉
)

,

with the periodic boundary condition |n(0)〉 = |n(β)〉.
In the limit δt→ 0, we may approximate

〈nj |e−iδtH |nj+1〉 ∼ 〈nj |nj+1〉 − δt〈nj |H |nj+1〉 (A3)

∼ 〈nj |nj+1〉(1− δt
〈nj |H |nj+1〉
〈nj |nj+1〉

)

∼ eiSΦ(nj ,nj+1,n0)(
1 + nj · nj+1

2
)S

×(1− δtSB · nt),

which is valid to the first order in δt. In deriving the
last equality in Eq. (A3), we have made use of the result

〈n|Ŝ = 〈n|n. Furthermore, we note that

(
1 + nj · nj+1

2
)S ∼ eS ln(1+ δt

2
n(t)·∂tn(t))t=tj (A4)

∼ eSδt∂t[n(t)]
2

= e(0)

to leading order in δt. Therefore,

〈nj |e−iδtH |nj+1〉 ∼ eiSΦ(nj ,nj+1,n0)−δtSB·nt (A5)

and

Z ∼
∫

Dn(t)eiSΩ(n(t))−S
∫

β
0

dtB·n(t), (A6)

where
∫

Dn(t) = limNt→∞,δt→0

(

ΠNt

j=1

∫

Dnj

)

and

Ω(n(t)) =
∑

j

Φ(nj ,nj+1,n0)

is the total area on the surface of the unit sphere covered
by the (closed) path swept out by the spin n(t) from t = 0
to t = β.
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The classical action of the system in real time is given
by

Scl = SΩ(n(t))− S

∫ T

0

dtB · n(t), (A7a)

and the classical equation of motion δScl

δ′n(t) = 0 leads to

the Euler equation of motion

n× ((n× ∂tn)−B) = 0, (A7b)

where we have used the result that a small variation δn
leads to a change in Ω(C[n]) that is given by

δΩ[n(t)) =

∫ β

0

dtδn(t) · (n(t)× ∂tn(t)).
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Yang, H. Y., A. M. Läuchli, F. Mila, and K. P. Schmidt
(2010), Phys. Rev. Lett. 105, 267204.

Yang, S., D. L. Zhou, and C. P. Sun (2007), Phys. Rev. B
76, 180404.

Yao, H., and S. A. Kivelson (2007), Phys. Rev. Lett. 99,
247203.

Yao, H., and S. A. Kivelson (2012), Phys. Rev. Lett. 108,
247206.

Yao, H., and D. H. Lee (2011), Phys. Rev. Lett. 107, 087205.
Yao, H., S.-C. Zhang, and S. A. Kivelson (2009), Phys. Rev.

Lett. 102, 217202.
Yokoyama, H., and H. Shiba (1987), J. Phys. Soc. Jpn. 56,

3570.
Yu, Y. (2008), Nucl. Phys. B 799 (3), 345.



56

Yu, Y., L. Liang, Q. Niu, and S. Qin (2013), Phys. Rev. B
87, 041107.

Yu, Y., and Z. Wang (2008), EPL 84, 57002.
Yunoki, S., and S. Sorella (2006), Phys. Rev. B 74, 014408.
Zhou, H. D., E. S. Choi, G. Li, L. Balicas, C. R. Wiebe,

Y. Qiu, J. R. D. Copley, and J. S. Gardner (2011), Phys.
Rev. Lett. 106, 147204.

Zhou, Y., and P. A. Lee (2011), Phys. Rev. Lett. 106, 056402.

Zhou, Y., P. A. Lee, T. K. Ng, and F. C. Zhang (2008), Phys.
Rev. Lett. 101, 197201.

Zhou, Y., and T. K. Ng (2013), Phys. Rev. B 88, 165130.
Zhou, Y., and X.-G. Wen (2002), arXiv:cond-mat/0210662.
Zhu, W., S. S. Gong, and D. N. Sheng (2015), Phys. Rev. B

92, 014424.


