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Heisenberg’s uncertainty principle forms a fundamental element of quantum mechan-
ics. Uncertainty relations in terms of entropies were initially proposed to deal with
conceptual shortcomings in the original formulation of the uncertainty principle and,
hence, play an important role in quantum foundations. More recently, entropic uncer-
tainty relations have emerged as the central ingredient in the security analysis of almost
all quantum cryptographic protocols, such as quantum key distribution and two-party
quantum cryptography. This review surveys entropic uncertainty relations that cap-
ture Heisenberg’s idea that the results of incompatible measurements are impossible to
predict, covering both finite- and infinite-dimensional measurements. These ideas are
then extended to incorporate quantum correlations between the observed object and its
environment, allowing for a variety of recent, more general formulations of the uncer-
tainty principle. Finally, various applications are discussed, ranging from entanglement
witnessing to wave-particle duality to quantum cryptography.
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I. INTRODUCTION

Quantum mechanics has revolutionized our under-
standing of the world. Relative to classical mechanics,
the most dramatic change in our understanding is that
the quantum world—our world— is inherently unpre-
dictable.

By far the most famous statement of unpredictability
is Heisenberg’s uncertainty principle (Heisenberg, 1927),
which we treat here as a statement about preparation
uncertainty. Roughly speaking, it states that it is impos-
sible to prepare a quantum particle for which both posi-
tion and momentum are sharply defined. Operationally,
consider a source that consistently prepares copies of a
quantum particle in the same way, as shown in Fig. 1. For
each copy, suppose we randomly measure either its posi-
tion or its momentum (but we never attempt to measure
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both quantities for the same particle1). We record the
outcomes and sort them into two sequences associated
with the two different measurements. The uncertainty
principle states that it is impossible to predict both the
outcome of the position and the momentum measure-
ments: at least one of the two sequences of outcomes
will be unpredictable. More precisely, the better such a
preparation procedure allows one to predict the outcome
of the position measurement, the more uncertain the out-
come of the momentum measurement will be, and vice
versa.

An elegant aspect of quantum mechanics is that it al-
lows for simple quantitative statements of this idea, i.e.,
constraints on the predictability of observable pairs like
position and momentum. These quantitative statements
are known as uncertainty relations. It is worth noting
that Heisenberg’s original argument, while conceptually
enlightening, was heuristic. The first, rigorously-proven
uncertainty relation for position Q and momentum P is
due to Kennard (1927). It establishes that (see also the
work of Weyl (1928))

σ(Q)σ(P ) ≥ ~
2
, (1)

where σ(Q) and σ(P ) denote the standard deviation of
the position and momentum, respectively, and ~ is the
reduced Planck constant.

We now know that Heisenberg’s principle applies much
more generally, not only to position and momentum.
Other examples of pairs of observables obeying an un-
certainty relation include the phase and excitation num-
ber of a harmonic oscillator, the angle and the orbital
angular momentum of a particle, and orthogonal compo-
nents of spin angular momentum. In fact, for arbitrary
observables2, X and Z, Robertson (1929) showed that

σ(X)σ(Z) ≥ 1

2
|〈ψ|[X,Z]|ψ〉| , (2)

where [·, ·] denotes the commutator. Note a distinct dif-
ference between (1) and (2): the right-hand side of the
former is a constant whereas that of the latter can be
state-dependent, an issue that we will discuss more in
Sec. II.

These relations have a beauty to them and also give
conceptual insight. Equation (1) identifies ~ as a fun-
damental limit to our knowledge. More generally (2)
identifies the commutator as the relevant quantity for
determining how large the knowledge trade-off is for two
observables. One could argue that a reasonable goal in

1 Section I.A briefly notes other uncertainty principles that involve
consecutive or joint measurements.

2 More precisely, Robertson’s relation refers to observables with
bounded spectrum.

source
measure
Q

measure
P

FIG. 1 Physical scenario relevant to preparation uncertainty
relations. Each incoming particle is measured using either
measurement P or measurement Q, where the choice of the
measurement is random. An uncertainty relation says we can-
not predict the outcomes of both P and Q. If we can predict
the outcome of P well, then we are necessarily uncertain about
the about the outcome of measurement Q, and vice versa.

our studies of uncertainty in quantum mechanics should
be to find simple, conceptually insightful statements like
these.

If this problem was only of fundamental importance,
it would be a well-motivated one. Yet in recent years
there is new motivation to study the uncertainty princi-
ple. The rise of quantum information theory has led to
new applications of quantum uncertainty, for example in
quantum cryptography. In particular quantum key dis-
tribution is already commercially marketed and its secu-
rity crucially relies on Heisenberg’s uncertainty principle.
(We will discuss various applications in Sec. VI.) There
is a clear need for uncertainty relations that are directly
applicable to these technologies.

In the above uncertainty relations, (1) and (2), uncer-
tainty has been quantified using the standard deviation
of the measurement results. This is, however, not the
only way to express the uncertainty principle. It is in-
structive to consider what preparation uncertainty means
in the most general setting. Suppose we have prepared a
state ρ on which we can perform two (or more) possible
measurements labeled by θ. Let us use x to label the
outcomes of such measurement. We can then identify a
list of (conditional) probabilities

Sρ =
{
p(x|θ)ρ

}
x,θ

, (3)

where p(x|θ)ρ denotes the probability of obtaining mea-
surement outcome x when performing the measurement θ
on the state ρ. Quantum mechanics predicts restrictions
on the set Sρ of allowed conditional probability distribu-
tions that are valid for all or a large class of states ρ.
Needless to say, there are many ways to formulate such
restrictions on the set of allowed distributions.

In particular, information theory offers a very versatile,
abstract framework that allows us to formalize notions
like uncertainty and unpredictability. This theory is the
basis of modern communication technologies and cryp-
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tography and has been successfully generalized to include
quantum effects. The preferred mathematical quantity to
express uncertainty in information theory is entropy. En-
tropies are functionals on random variables and quantum
states that aim to quantify their inherent uncertainty.
Amongst a myriad of such measures, we mainly restrict
our attention to the Boltzmann–Gibbs–Shannon entropy
(Boltzmann, 1872; Gibbs, 1876; Shannon, 1948) and its
quantum generalization, the von Neumann entropy (von
Neumann, 1932). Due to their importance in quantum
cryptography, we will also consider Rényi entropic mea-
sures (Rényi, 1961) such as the min-entropy. Entropy is
a natural measure of uncertainty, perhaps even more nat-
ural than the standard deviation, as we argue in Sec. II.

Can the uncertainty principle be formulated in terms
of entropy? This question was first brought up by Everett
(1957) and answered in the affirmative by Hirschman
(1957) who considered the position and momentum ob-
servables, formulating the first entropic uncertainty re-
lation. This was later improved by Beckner (1975) and
Białynicki-Birula and Mycielski (1975), who obtained the
relation3

h(Q) + h(P ) ≥ log(eπ~) , (4)

where h is the differential entropy (defined in (7) below).
Białynicki-Birula and Mycielski (1975) also showed that
(4) is stronger than, and hence implies, Kennard’s rela-
tion (1).

The extension of the entropic uncertainty relation to
observables with finite spectrum4 was given by Deutsch
(1983), and later improved by Maassen and Uffink (1988)
following a conjecture by Kraus (1987). The result of
Maassen and Uffink (1988) is arguably the most well-
known entropic uncertainty relation. It states that

H(X) +H(Z) ≥ log
1

c
, (5)

where H is Shannon’s entropy (see Sec. III.A for defini-
tion), and c denotes the maximum overlap between any
two eigenvectors of the X and Z observables. Just as (2)
established the commutator as an important parameter
in determining the uncertainty tradeoff for standard devi-
ation, (5) established the maximum overlap c as a central
parameter in entropic uncertainty.

While these articles represent the early history of en-
tropic uncertainty relations, there has recently been an

3 More precisely, the right-hand side of (4) should be
log(eπ~/(lQlP )), where lQ and lP are length and momentum
scales, respectively, chosen to make the argument of the loga-
rithm dimensionless. Throughout this review, all logarithms are
base 2.

4 More precisely, the relation applies to non-degenerate observables
on a finite-dimensional Hilbert space (see Sec. III.B).

Θ = Z

Θ
=

X

Bob
Alice

K

A

Θ

ρA

K?

FIG. 2 Diagram showing a guessing game with players Al-
ice and Bob. First, Bob prepares A in state ρA and sends
it to Alice. Second, Alice measures either X or Z with equal
probability and stores the measurement choice in the bit Θ.
Third, Alice stores the measurement outcome in bit K and
reveals the measurement choice Θ to Bob. Bob’s task is to
guess K (given Θ). Entropic uncertainty relations like the
Maassen-Uffink relation (5) can be understood as fundamen-
tal constraints on the optimal guessing probability.

explosion of work on this topic. One of the most im-
portant recent advances concerns a generalization of the
uncertainty paradigm that allows the measured system to
be correlated to its environment in a non-classical way.
Entanglement between the measured system and the en-
vironment can be exploited to reduce the uncertainty of
an observer (with access to the environment) below the
usual bounds.

To explain this extension, let us introduce a modern
formulation of the uncertainty principle as a so-called
guessing game, which makes such extensions of the un-
certainty principle natural and highlights their relevance
for quantum cryptography. As outlined in Fig. 2, we
imagine that an observer, Bob, can prepare an arbitrary
state ρA which he will send to a referee, Alice. Alice
then randomly chooses to perform one of two (or more)
possible measurements, where we will use Θ to denote
her choice of measurement. She records the outcome, K.
Finally, she tells Bob the choice of her measurement, i.e.,
she sends him Θ. Bob’s task is to guess Alice’s measure-
ment outcome K (given Θ).

The uncertainty principle tells us that if Alice makes
two incompatible measurements, then Bob cannot guess
Alice’s outcome with certainty for both measurements.
This corresponds precisely to the notion of preparation
uncertainty. It is indeed intuitive why such uncertainty
relations form an important ingredient in proving the se-
curity of quantum cryptographic protocols, as we will ex-
plore in detail in Sec. VI. In the cryptographic setting ρA
will be sent by an adversary trying to break a quantum
cryptographic protocol. If Alice’s measurements are in-
compatible, there is no way for the adversary to know the
outcomes of both possible measurements with certainty
- no matter what state he prepares.

The formulation of uncertainty relations as guessing
games also makes it clear that there is an important twist
to such games: What if Bob prepares a bipartite state
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ρAB and sends only the A part to Alice? That is, what
if Bob’s system is correlated with Alice’s? Or, adopting
the modern perspective of information, what if Bob has
a non-trivial amount of side information about Alice’s
system? Traditional uncertainty relations implicitly as-
sume that Bob has only classical side information. For
example, he may possess a classical description of the
state ρA or other details about the preparation. However,
modern uncertainty relations—for example those derived
by Berta et al. (2010) improving on work by Christandl
and Winter (2005) and Renes and Boileau (2009)—allow
Bob to have quantum rather than classical information
about the state. As was already observed by Einstein
et al. (1935), Bob’s uncertainty can vanish in this case
(in the sense that he can correctly guess Alice’s measure-
ment outcome K in the game described above).

We will devote Sec. IV to such modern uncertainty
relations. It is these relations that will be of central im-
portance in quantum cryptography, where the adversary
may have gathered quantum and not just classical infor-
mation during the course of the protocol that may reduce
his uncertainty.

A. Scope of this review

Two survey articles partially discuss the topic of en-
tropic uncertainty relations. Białynicki-Birula and Rud-
nicki (2011) take a physics perspective and cover con-
tinuous variable entropic uncertainty relations and some
discretized measurements. In contrast, Wehner and Win-
ter (2010) take an information-theoretic perspective and
discuss entropic uncertainty relations for discrete (finite)
variables with an emphasis on relations that involve more
than two measurements.

These reviews predate many recent advances in the
field. For example, both reviews do not cover entropic
uncertainty relations that take into account quantum cor-
relations with the environment of the measured system.
Moreover, applications of entropic uncertainty relations
are only marginally discussed in both of these reviews.
Here, we discuss both physical and information-based
applications. We therefore aim to give a comprehensive
treatment of all of these topics in one reference, with the
hope of benefiting some of the quickly emerging technolo-
gies that exploit quantum information.

There is an additional aspect of the uncertainty prin-
ciple known as measurement uncertainty, see, e.g., Busch
et al. (2007, 2014a); Hall (2004); and Ozawa (2003). This
includes (1) joint measurability, the concept that there
exists pairs of observables that cannot be measured si-
multaneously, and (2) measurement disturbance, the con-
cept that there exist pairs of observables for which mea-
suring one causes a disturbance of the other. Measure-
ment uncertainty is a debated topic of current research.
We focus our review article on the concept of prepara-

tion uncertainty, although we briefly mention entropic
approaches to measurement uncertainty in Sec. VII.C.

II. RELATION TO STANDARD DEVIATION APPROACH

Traditional formulations of the uncertainty principle,
for example the ones due to Kennard and Robertson,
measure uncertainty in terms of the standard deviation.
In this section we argue why we think entropic formu-
lations are preferable. For further discussion we refer
to Uffink (1990).

A. Position and momentum uncertainty relations

For the case of position and momentum observables,
the strength of the entropic formulation can be seen from
the fact that the entropic uncertainty relation in (4)
is stronger, and in fact implies, the standard deviation
relation (1). Following Białynicki-Birula and Mycielski
(1975), we formally show that

h(Q) + h(P ) ≥ log(eπ) =⇒ σ(Q)σ(P ) ≥ 1

2
(6)

for all states, where here and henceforth in this article we
work in units such that ~ = 1. Let us consider a random
variable Q governed by a probability density Γ(q), and
the differential entropy

h(Q) = −
∫ ∞
−∞

Γ(q) log Γ(q)dq . (7)

In the following we assume that this quantity is finite.
Gaussian probability distributions,

Γ(q) =
1√

2πσ(Q)2
exp

(−(q − q)2

2σ(Q)2

)
, (8)

where q denotes the mean, are special in the following
sense: for a fixed standard deviation σ(Q), distributions
of the form of (8) maximize the entropy in (7). It is a
simple exercise to show this, e.g., using variational cal-
culus with Lagrange multipliers.

It is furthermore straightforward to insert (8) into (7)
to calculate the entropy of a Gaussian distribution

h(Q) = log
√

2πeσ(Q)2 (Gaussian) . (9)

Since Gaussians maximize the entropy, the following in-
equality holds in general

h(Q) ≤ log
√

2πeσ(Q)2 (in general) . (10)

Now consider an arbitrary quantum state for a parti-
cle’s translational degree of freedom, which gives rise to
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random variables P and Q for the position and momen-
tum, respectively. Let us insert the resulting relations
into (4) to find

log(2πeσ(Q)σ(P )) = log
√

2πeσ(Q)2 + log
√

2πeσ(P )2

(11)

≥ h(Q) + h(P ) (12)
≥ log(eπ) . (13)

By comparing the left- and right-hand sides of (11) and
noting that the logarithm is a monotonic function, we see
that (11) implies (1), and hence so does (4).

It is worth noting that (10) is a strict inequality if the
distribution is non-Gaussian, and hence (4) is strictly
stronger than (1) if the quantum state is non-Gaussian.
While quantum mechanics textbooks often present (1)
as the fundamental statement of the uncertainty princi-
ple, it is clear that (4) is stronger and yet not much more
complicated. Furthermore, as discussed in Sec. IV the en-
tropic formulation is more robust, allowing the relation to
be easily generalized to situations involving correlations
with the environment.

B. Finite spectrum uncertainty relations

As noted above, both the standard deviation and the
entropy have been applied to formulate uncertainty re-
lations for observables with a finite spectrum. However,
it is largely unclear how the most popular formulations,
Robertson’s (2) and Maassen-Uffink’s (5), are related. It
remains an interesting open question whether there exists
a formulation that unifies these two formulations. How-
ever, there is an important difference between (2) and (5)
in that the former has a bound that depends on the state,
while the latter only depends on the two observables.

Example 1. Consider (2) for the case of a spin-1/2
particle, where X = |0〉〈1|+ |1〉〈0| and Z = |0〉〈0| − |1〉〈1|,
corresponding to the x- and z-axes of the Bloch sphere.
Then the commutator is proportional to the Y Pauli op-
erator and the right-hand side of (2) reduces to (1/2)〈Y 〉.
Hence, (2) gives a trivial bound for all states that lie in
the xz plane of the Bloch sphere. For the eigenstates of
X and Z, this bound is tight since one of the two un-
certainty terms is zero, and hence the trivial bound is
a (perhaps undesirable) consequence of the fact that the
left-hand side involves a product (rather than a sum) of
uncertainties. However, for any other states in the xz
plane, neither uncertainty is zero. This implies that (2)
is not tight for these states.

This example illustrates a weakness of Robertson’s
relation for finite-dimensional systems— it gives triv-
ial bounds for certain states, even when the left-hand
side is non-zero. Schrödinger (1930) slightly strength-
ened Robertson’s bound by adding an additional state-

dependent term that helps to get rid of the artificial triv-
ial bound discussed in Ex. 1. Likewise, Maccone and
Pati (2014) recently proved a state-dependent bound on
the sum (not the product) of the two variances, and this
bound also removes the trivial behavior of Robertson’s
bound. Furthermore, one still may be able to obtain a
non-vanishing state-independent bound using standard
deviation uncertainty measures in the finite-dimensional
case. For example, Busch et al. (2014b) considered the
qubit case and obtained a state-independent bound on
the sum of the variances.

The state-dependent nature of Robertson’s bound was
noted, e.g., by Deutsch (1983) and used as motivation for
entropic uncertainty relations, which do not suffer from
this weakness. However, the above discussion suggests
that this issue might be avoided while still using standard
deviation as the uncertainty measure. On the other hand,
there are more important issues that we now discuss.

C. Advantages of entropic formulation

From a practical perspective, a crucial advantage
of entropic uncertainty relations are their applications
throughout quantum cryptography. However, let us now
mention several other reasons why we think that the en-
tropic formulation of the uncertainty principle is advan-
tageous over the standard deviation formulation.

1. Counterintuitive behavior of standard deviation

While the standard deviation is, of course, a good
measure of deviation from the mean, its interpretation
as a measure of uncertainty has been questioned. It
has been pointed out by several authors, for example
by Białynicki-Birula and Rudnicki (2011), that the stan-
dard deviation behaves somewhat strangely for some sim-
ple examples.

Example 2. Consider a spin-1 particle with equal prob-
ability Pr(sz) = 1/3 to have each of the three possi-
ble values of Z-angular momentum, sz ∈ {−1, 0, 1}.
The standard deviation of the Z-angular momentum is
σ(Z) =

√
2/3. Now suppose we gain information about

the spin such that we now know that it definitely does not
have the value sz = 0. The new probability distribution
is Pr(1) = Pr(−1) = 1/2, Pr(0) = 0. We might expect
the uncertainty to decrease, since we have gained infor-
mation about the spin, but in fact the standard deviation
increases, the new value being σ(Z) = 1.

We remark that the different behavior of standard de-
viation and entropy for spin angular momentum was re-
cently highlighted by Dammeier et al. (2015), in the con-
text of states that saturate the relevant uncertainty rela-
tion.
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Q = 0	


L	
a	
 a	


FIG. 3 Illustration for Ex. 3, where a particle is initially con-
fined to the two small boxes at the end and excluded from the
long middle box. Then the particle is allowed to go free into
the middle box.

Białynicki-Birula and Rudnicki (2011) noted an exam-
ple for a particle’s spatial position that is analogous to
the above example.

Example 3. Consider a long box of length L, centered
at Q = 0, with two small boxes of length a attached to the
two ends of the long box, as depicted in Fig. 3. Suppose
we know that a classical particle is confined to the two
small end boxes, i.e., with equal probability it is one of
the two small boxes. The standard deviation of the posi-
tion is σ(Q) ≈ L/2, assuming that L� a. Now suppose
the barriers that separate the end boxes from the mid-
dle box are removed, and the particle is allowed to move
freely between all three boxes. Intuitively one might ex-
pect that the uncertainty of the particle’s position is now
larger, since we now know nothing about where the parti-
cle is inside the three boxes. However, the new standard
deviation is actually smaller: σ(Q) ≈ L/

√
12.

Entropies on the other hand do not have this coun-
terintuitive behavior, due to properties discussed below.
Finally, let us note a somewhat obvious issue that, in
some cases, a quantitative label (and hence the standard
deviation) does not make sense, as illustrated in the fol-
lowing example.

Example 4. Consider a neutrino’s flavor, which is of-
ten modeled as a three-outcome observable with outcomes
“electron”, “muon”, or “tau”. As this is a non-quantitative
observable, the standard deviation does not make sense in
this context. Nevertheless, it is of interest to quantify the
uncertainty about the neutrino flavor, i.e., how difficult
it is to guess the flavor, which is naturally captured by
the notion of entropy.

2. Intuitive entropic properties

Deutsch (1983) emphasized that the standard devia-
tion can change under a simple relabeling of the out-
comes. For example, if one were to assign quantitative
labels to the outcomes in Ex. 4 and then relabel them,
the standard deviation would change. In contrast, the en-
tropy is invariant under relabeling of outcomes, because
it naturally captures the amount of information about a
measurement outcome.

Furthermore, there is a nice monotonic property of
entropy in the following sense. Suppose one does a
random relabeling of the outcomes. One can think of
this as a relabeling plus added noise, which naturally
tends to spread the probability distribution out over the
outcomes. Intuitively, a relabeling with the injection
of randomness should never decrease the uncertainty.
This property—non-decreasing under random relabel-
ing—was highlighted by Friedland et al. (2013) as a
desirable property of an uncertainty measure. Indeed,
entropy satisfies this property. On the other hand, the
physical process in Ex. 3 can be modeled mathematically
as a random relabeling. Hence, we see the contrast in be-
havior between entropy and standard deviation.

Monotonicity under random relabeling is actually a
special case of an even more powerful property. Think
of the random relabeling as due to the fact that the ob-
server is denied access to an auxiliary register that stores
the information about which relabeling occurred. If the
observer had access to the register, then their uncertainty
would remain the same, but without access their un-
certainty could potentially increase, but never decrease!
More generally, this idea (that losing access to an aux-
iliary system cannot reduce one’s uncertainty) is a de-
sirable and powerful property of uncertainty measures
known as the data-processing inequality. It is arguably a
defining property of entropy measures, or more precisely,
conditional entropy measures as discussed in Sec. IV.B.
Furthermore this property is central in proving entropic
uncertainty relations (Coles et al., 2012).

3. Framework for correlated quantum systems

Entropy provides a robust mathematical framework
that can be generalized to deal with correlated quan-
tum systems. For example, the entropy framework al-
lows us to discuss the uncertainty of an observable from
the perspective of an observer who has access to part of
the environment of the system, or to quantify quantum
correlations like entanglement between two quantum sys-
tems. This requires measures of conditional uncertainty,
namely conditional entropies. We highlight the utility
of this framework in Sec. IV. A similar framework for
standard deviation has not been developed.

4. Operational meaning and information applications

Perhaps the most compelling reason to consider en-
tropy as the uncertainty measure of choice is that
it has operational significance for various information-
processing tasks. The standard deviation, in contrast,
does not play a significant role in information theory.
This is because entropy abstracts from the physical rep-
resentation of information, as one can see from the fol-
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(a) low entropy distribution (b) high entropy distribution

FIG. 4 Two probability distributions with the same standard
deviation but different entropy, as explained in Ex. 5.

lowing example.

Example 5. Consider the two probability distributions
in Fig. 4. They have the same standard deviation but
different entropy. The distribution in Fig. 4(a) has one
bit of entropy since only two events are possible and occur
with equal probability. If we want to record data from
this random experiment this will require exactly one bit
of storage per run. On the other hand, the distribution
in Fig. 4(b) has approximately 3 bits of entropy and the
recorded data cannot be compressed to less than 3 bits
per run. Clearly, entropy has operational meaning in this
context while standard deviation fails to distinguish these
random experiments.

Entropies have operational meaning for tasks such as
randomness extraction (extracting perfect randomness
from a partially random source) and data compression
(sending minimal information to someone to help them
guess the output of a partially random source). It is
precisely these operational meanings that make entropic
uncertainty relations useful for proving the security of
quantum key distribution and other cryptographic tasks.
We discuss such applications in Sec. VI.

The operational significance of entropy allows one to
frame entropic uncertainty relations in terms of guessing
games (see Sec. III.F and IV.D.1). These are simple yet
insightful tasks where, e.g., one party is trying to guess
the outcome of another party’s measurements (see the
description in Fig. 2). Such games make it clear that
the uncertainty principle is not just abstract mathemat-
ics; rather it is relevant to physical tasks that can be
performed in a laboratory.

III. UNCERTAINTY WITHOUT A MEMORY SYSTEM

Historically, entropic uncertainty relations were first
studied for position and momentum observables. How-
ever, to keep the discussion mathematically simple we
begin here by introducing entropic uncertainty relations
for finite-dimensional quantum systems, and we defer the
discussion of infinite dimensions to Sec. V. It is worth
noting that many physical systems of interest are finite-

dimensional, such as photon polarization, neutrino flavor,
and spin angular momentum.

In this section, we consider uncertainty relations for a
single system A. That is, there is no memory system. We
emphasize that all uncertainty relations with a memory
system can also be applied to the situation without.

A. Entropy measures

Let us consider a discrete random variable X dis-
tributed according to the probability distribution PX .
We assume that X takes values in a finite set X . For
example, this set could be binary values {0, 1} or spin
states {↑, ↓}. In general, we will associate the random
variable X with the outcome of a particular measure-
ment. This random variable can take values X = x,
where x is a specific instance of a measurement outcome
that can be obtained with probability PX(X = x). How-
ever, entropies only depend on the probability law PX
and not on the specific labels of the elements in the set
X . Thus, we will in the following just assume this set
to be of the form [d] := {1, 2, 3, . . . , d}, where d = |X|
stands for the cardinality of the set X .

1. Surprisal and Shannon entropy

Following Shannon (1948), we first define the surprisal
of the event X = x distributed according to PX as
− logPX(x), often also referred to as information con-
tent. As its name suggests, the information content of
X = x gets larger when the event X = x is less likely,
i.e., when PX(x) is smaller. In particular, determinis-
tic events have no information content at all, which is
indeed intuitive since we learn nothing by observing an
event that we are assured will happen with certainty. In
contrast, the information content of very unlikely events
can get arbitrarily large. Based on this intuition, the
Shannon entropy is defined as

H(X) :=
∑
x

PX(x) log
1

PX(x)
, (14)

and quantifies the average information content of X. It
is therefore a measure of the uncertainty of the outcome
of the random experiment described by X. The Shannon
entropy is by far the best-known measure of uncertainty,
and it is the one most commonly used to express uncer-
tainty relations.

2. Rényi entropies

However, for some applications it is important to con-
sider other measures of uncertainty that give more weight
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FIG. 5 Rényi entropies of X with probability distribution
as in Ex. 6 with |X| = 65 compared to a uniform random
variable U on 4 bits.

to events with high or low information content, respec-
tively. For this purpose we employ a generalization of
the Shannon entropy to a family of entropies introduced
by Rényi (1961). The family includes several important
special cases which we will discuss individually. These
entropies have found many applications in cryptography
and information theory (see Sec. VI) and have convenient
mathematical properties.5

The Rényi entropy of order α is defined as

Hα(X) :=
1

1− α log
∑
x

PX(x)α

for α ∈ (0, 1) ∪ (1,∞) , (15)

and as the corresponding limit for α ∈ {0, 1,∞}. For
α = 1 the limit yields the Shannon entropy6, and the
Rényi entropies are thus a proper generalization of the
Shannon entropy.

The Rényi entropies are monotonically decreasing as a
function of α. Entropies with α > 1 give more weight to
events with high surprisal. The collision entropy,Hcoll :=
H2, is given by

Hcoll(X) =− log pcoll(X) , where

pcoll(X) :=
∑
x

PX(x)2 (16)

is the collision probability, i.e., the probability that two
independent instances of X are equal. The min-entropy
Hmin := H∞, is of special significance in many applica-
tions. It characterizes the optimal probability of correctly
guessing the value of X in the following sense

Hmin(X) =− log pguess(X) , where
pguess(X) := max

x
PX(x) . (17)

5 Another family of entropies that are often encountered are the
Tsallis entropies (Tsallis, 1988). They have not found an op-
erational interpretation in cryptography or information theory.
Thus, we defer the discussion of Tsallis entropies until Sec. VII.A.

6 It is a simple exercise to apply L’Hôpital’s rule to (15) in the
limit α→ 1.

Clearly, the optimal guessing strategy is to bet on the
most likely value of X, and the winning probability is
then given by the maximum in (17). The min-entropy
can also be seen as the minimum surprisal of X.

The Rényi entropies with α < 1 give more weight to
events with small surprisal. Noteworthy examples are
the max-entropy, Hmax := H1/2, and

H0(X) = log
∣∣{x : PX(x) > 0}

∣∣ , (18)

where the latter is simply the logarithm of the support
of PX .

3. Examples and properties

For all the Rényi entropies, Hα(X) = 0 if and only if
the distribution is perfectly peaked, i.e., PX(x) = 1 for
some particular value x. On the other hand, the distribu-
tion PX(x) = |X|−1 is uniform if and only if the entropy
takes its maximal value Hα(X) = log |X|.

The Rényi entropies can take on very different values
depending on the parameter α as the following example,
visualized in Fig. 5, shows.

Example 6. Consider a distribution of the form

PX(x) =

{
1
2 for x = 1

1
2(|X|−1) else

(19)

so that we have

Hmin(X) = log 2 , whereas

H(X) = log 2 +
1

2
log(|X| − 1) (20)

is arbitrarily large as |X| ≥ 2 increases. This is of
particular relevance in cryptographic applications where
Hmin(X)—and not H(X)—characterizes how difficult
it is to guess a secret X. As we will see later, Hmin(X)
determines precisely the number of random bits that can
be obtained from X.

Consider two probability distributions, PX and QY ,
and define d = max{|X|, |Y |}. Now let us reorder the
probabilities in PX into a vector P ↓X such that P ↓X(1) ≥
P ↓X(2) ≥ . . . ≥ P ↓X(d), padding with zeros if necessary.
Analogously arrange the probabilities in QY into a vector
Q↓Y . We say PX majorizes QY and write PX � QY if

y∑
x=1

P ↓X(x) ≥
y∑
x=1

Q↓Y (x), for all y ∈ [d] . (21)

Intuitively, the fact that PX majorizesQY means that PX
is less spread out than QY . For example, the distribution
{1, 0, . . . , 0} majorizes every other distribution, while the
uniform distribution {|X|−1, . . . , |X|−1} is majorized by
every other distribution.
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One of the most fundamental properties of the Rényi
entropies is that they are Schur-concave (Marshall et al.,
2011), meaning that they satisfy

Hα(X) ≤ Hα(Y ) if PX � QY . (22)

This has an important consequence. Let Y = f(X) for
some (deterministic) function f . In other words, Y is
obtained by processing X using the function f . The ran-
dom variable Y is then governed by the push forward QY
of PX , that is

QY (y) =
∑

x:f(x)=y

PX(x) . (23)

Clearly PX ≺ QY and thus we have Hα(X) ≥ Hα(Y ).
This corroborates our intuition that the input of a func-
tion is at least as uncertain as its output. If Z is just a
reordering of X, or more generally if f is injective, then
the two entropies are equal.

Finally we note that if two random variables X and Y
are independent, we have

Hα(XY ) = Hα(X) +Hα(Y ) . (24)

This property is called additivity.

B. Preliminaries

1. Physical setup

The physical setup used throughout the remainder of
this section is as follows. We consider a quantum system,
A, that is measured in either one of two (or more) bases.
The initial state of the system A is represented by a den-
sity operator, ρA, or more formally a positive semidefinite
operator with unit trace acting on a finite-dimensional
Hilbert space A. The measurements, for now, are given
by two orthonormal bases of A. An orthonormal basis is
a set of unit vectors in A that are mutually orthogonal
and span the space A. The two bases are denoted by sets
of rank-1 projectors,

X =
{
|Xx〉〈Xx|

}
x

and Z =
{
|Zz〉〈Zz|

}
z
. (25)

We use projectors to keep the notation consistent as we
will later consider more general measurements. This in-
duces two random variables, X and Z, corresponding to
the measurement outcomes that result from measuring
in the bases X and Z, respectively. These are governed
by the following probability laws, given by the Born rule.
We have

PX(x) = 〈Xx|ρA|Xx〉 and PZ(z) = 〈Zz|ρA|Zz〉 , (26)

respectively. We also note that |X| = |Z| = d, which is
the dimension of the Hilbert space A.

2. Mutually unbiased bases (MUBs)

Before delving into uncertainty relations, let us con-
sider pairs of observables such that perfect knowledge
about observable X implies complete ignorance about ob-
servable Z. We say that such observables are unbiased,
or mutually unbiased. For any finite-dimensional space
there exist pairs of orthonormal bases that satisfy this
property. More precisely, two orthonormal bases X and
Z are mutually unbiased bases (MUBs) if

|〈Xx|Zz〉|2 =
1

d
, ∀x, z . (27)

In addition, a set of n orthonormal bases {Xj} is said to
be a set of n MUBs if each basis Xj is mutually unbiased
to every other basis Xk, with k 6= j, in the set.

Example 7. For a qubit the eigenvectors of the Pauli
operators,

σX := |0〉〈1|+ |1〉〈0| (28)
σY := −i|0〉〈1|+ i|1〉〈0| (29)
σZ := |0〉〈0| − |1〉〈1| (30)

form a set of 3 MUBs.

In App. A we discuss constructions for sets of MUBs in
higher dimensional spaces. We also point to (Durt et al.,
2010) for a review on this topic.

C. Measuring in two orthonormal bases

1. Shannon entropy

Based on the pioneering work by Deutsch (1983) and
following a conjecture of Kraus (1987), Maassen and
Uffink (1988) formulated entropic uncertainty relations
for measurements of two complementary observables.
Their best known relation uses the Shannon entropy to
quantify uncertainty. It states that, for any state ρA,

H(X) +H(Z) ≥ log
1

c
=: qMU , (31)

where the measure of incompatibility is a function of the
maximum overlap of the two measurements, namely

c = max
x,z

cxz, where cxz = |〈Xx|Zz〉|2 . (32)

Note that qMU is state-independent, i.e., independent of
the initial state ρA. This is in contrast to Robertson’s
bound in (2).

The bound qMU is non-trivial as long as X and Z do not
have any vectors in common. In this case, (31) shows that
for any input density matrix there is some uncertainty
in at least one of the two random variables X and Z,
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quantified by the Shannon entropies H(X) and H(Z),
respectively. In general we have

1

d
≤ c ≤ 1 and hence 0 ≤ qMU ≤ log d . (33)

For the extreme case that X and Z are MUBs, as defined
in (27), the overlap matrix [cxz] is flat: cxz = 1/d for all
x and z, and the lower bound on the uncertainty then
becomes maximal

H(X) +H(Z) ≥ log d . (34)

Note that this is a necessary and sufficient condition: c =
1/d if and only if the two bases are MUBs. Hence, MUBs
uniquely give the strongest uncertainty bound here.

For general observables X and Z the overlap matrix
is not necessarily flat and the asymmetry of the matrix
elements cxz is quantified in (32) by taking the maximum
over all x, z. In order to see why the maximum entry
provides some (fairly coarse) measure of the flatness of
the whole matrix, note that if the maximum entry of the
overlap matrix is 1/d, then all entries in the matrix must
be 1/d. Alternative measures of incompatibility will be
discussed in Secs. III.C.5 and III.C.6.

2. Rényi entropies

Maassen and Uffink (1988) also showed that the above
relation (31) holds more generally in terms of Rényi en-
tropies. For any α, β ≥ 1

2 with 1/α+ 1/β = 2, we have

Hα(X) +Hβ(Z) ≥ qMU . (35)

It is easily checked that the relation (31) in terms of the
Shannon entropy is recovered for α = β = 1. For α→∞
with β → 1/2 we get another interesting special case
of (35) in terms of the min- and max-entropy

Hmin(X) +Hmax(Z) ≥ qMU . (36)

Since the min-entropy characterizes the probability of
correctly guessing the outcome X, it is this type of rela-
tion that becomes most useful for applications in quan-
tum cryptography and quantum information theory (see
Sec. VI).

3. Proof of Maassen-Uffink

The original proof of (35) by Maassen and Uffink
makes use of the Riesz-Thorin interpolation theorem (see,
e.g., (Bergh and Löfström, 1976)). Recently an alterna-
tive proof was formulated by Coles et al. (2012, 2011)
using the monotonicity of the relative entropy under
quantum channels. The latter approach is illustrated in
App. B, where we prove the special case of the Shannon

entropy relation (31). The proof is simple and straight-
forward. Hence, we highly recommend the interested
reader to study App. B. The Rényi entropy relation (35)
follows from a more general line of argument given in
App. C.3.

4. Tightness and extensions

Given the simple and appealing form of the Maassen-
Uffink relations (35) a natural question to ask is how
tight these relations are. It is easily seen that if X and
Z are MUBs, then they are tight for any of the states
ρA = |Xx〉〈Xx| or ρA = |Zz〉〈Zz|. Thus, there cannot
exist a better state-independent bound if X and Z are
MUBs. However, for general orthonormal bases X and
Z the relations (35) are not necessarily tight. This issue
is addressed in the following subsections, where we also
note that (31) can be tightened for mixed states ρA with
a state-dependent bound.

Going beyond orthonormal bases, the above relations
can be extended to more general measurements, as dis-
cussed in Sec. III.D. Finally, another interesting exten-
sion considers more than two observables (which in some
cases leads to tighter bounds for two observables), as dis-
cussed in Sec. III.G.

5. Tighter bounds for qubits

Various attempts have been made to strengthen the
Maassen–Uffink bound, particularly in the Shannon-
entropy form (31). Let us begin by first discussing im-
provements upon (31) in the qubit case and then move
on to arbitrary dimensions.

For qubits the situation is fairly simple since the
overlap matrix [cxz] only depends on a single param-
eter, which we can take as the maximum overlap c =
maxx,z cxz. Hence, the goal is to find the largest func-
tion of c that still lower-bounds the entropic sum. Signifi-
cant progress along these lines was made by Sánchez-Ruiz
(1998), who noted that the Maassen-Uffink bound, qMU,
could be replaced by the stronger bound

qSR := hbin

(
1 +
√

2c− 1

2

)
. (37)

Here, hbin(p) := −p log p− (1− p) log(1− p) denotes the
binary entropy.

Later work by Ghirardi et al. (2003) attempted to find
the optimal bound. They simplified the problem to a
single-parameter optimization as

qopt := min
θ

(
hbin

(
1 + cos θ

2

)
+ hbin

(
1 + cos(α− θ)

2

))
(38)
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FIG. 6 Plot of various literature bounds on entropic uncer-
tainty for qubit orthonormal bases, as a function of the max-
imum overlap c. The region above qopt contains pairs (c, q)
that can be achieved by quantum mechanics.

where α := 2 arccos
√
c. While it is straightforward to

perform this optimization, Ghirardi et al. (2003) noted
that an analytical solution could only be found for c &
0.7. They showed that this analytical bound is given by

qG := 2hbin(b), c & 0.7 , (39)

where b :=

(
1 +
√
c

2

)
. (40)

Fig. 6 shows a plot of qopt, qSR, and qMU. In addition,
this plot also shows the bound qmaj obtained from a ma-
jorization technique discussed in Sec. III.I.

For pairs of Rényi entropies Hα and Hβ in (35), Zozor
et al. (2013) and Abdelkhalek et al. (2015) completely
characterized the amount of uncertainty in the qubit case.

6. Tighter bounds in arbitrary dimension

Extending the qubit result from (38), de Vicente and
Sánchez-Ruiz (2008) found an analytical bound in the
large overlap (i.e., large c) regime

qdVSR := 2hbin(b) for c & 0.7 , (41)

which is stronger than the MU bound over this range,
and they also obtained a numerical improvement over
MU for the range 1/2 ≤ c . 0.7.

However, the situation for d > 2 is more complicated
than the qubit case. For d > 2 the overlap matrix [cxz]
depends on more parameters than simply the maximum
overlap c. Recent work has focused on exploiting these
other overlaps to improve upon the MU bound. For ex-
ample, Coles and Piani (2014b) derived a simple improve-
ment on qMU that captures the role of the second-largest
entry of [cxz], denoted c2, with the bound

qCP := log
1

c
+

1

2
(1−√c) log

c

c2
. (42)

Consider the following qutrit example where qCP > qMU.

Example 8. Let d = 3 and consider the two orthonormal
bases X and Z related by the unitary transformation,

U =

1/
√

3 1/
√

3 1/
√

3

1/
√

2 0 −1/
√

2

1/
√

6 −
√

2/3 1/
√

6

 . (43)

We have qMU = log(3/2) ≈ 0.58 while qCP ≈ 0.64.

More recently, a bound similar in spirit to qCP was
obtained by Rudnicki et al. (2014), of the form

qRPZ := log
1

c
− log

(
b2 +

c2
c

(1− b2)
)
. (44)

Note that qRPZ ≥ qMU. However, there is no clear rela-
tion between qCP and qRPZ.

For arbitrary pairs of entropies Hα and Hβ , Ab-
delkhalek et al. (2015) give conditions on the minimizing
state of (35). In particular, the minimizing state is pure
and real. For measurements in the standard and Fourier
basis, further conditions are obtained.

7. Tighter bounds for mixed states

Notice that (31) can be quite loose for mixed states.
For example, if ρA = 1/d, then the left-hand side of (31)
is 2 log d, whereas the right-hand side is at most log d.
This looseness can be addressed by introducing a state-
dependent bound that gets larger as ρA becomes more
mixed. The mixedness of ρA can be quantified by the
von Neumann entropy H(ρA), which we also denote by
H(A)ρ, defined by

H(ρA) := − tr
[
ρA log ρA

]
=
∑
j

λj log
1

λj
, (45)

where an eigenvalue decomposition of the state is given
by ρA =

∑
j λj |φj〉〈φj |A. Note that 0 ≤ H(ρA) ≤ log d,

where H(ρA) = 0 for pure states and H(ρA) = log d for
maximally mixed states. In the literature, the von Neu-
mann entropy is sometimes also denoted using S(A) =
H(A). However, here we will follow the more common
convention in quantum information theory. We note that
the entropy never decreases when applying a projective
measurement X = {|Xx〉〈Xx|}x to ρA, that is,

H(ρA) ≤ H(X)P with PX(x) = 〈Xx|ρA|Xx〉 . (46)

Equation (31) was strengthened for mixed states by Berta
et al. (2010), with the bound

H(X) +H(Z) ≥ qMU +H(ρA) . (47)

A proof of (47) is given in App. B; see also Frank and
Lieb (2012) for a direct matrix analysis proof. When X
and Z are MUBs, this bound is tight for any state ρA
that is diagonal in either the X or Z basis.



13

D. Arbitrary measurements

Many interesting measurements are not of the or-
thonormal basis form. For example, coarse-grained (de-
generate) projective measurements are relevant to prob-
ing macroscopic systems. Also, there are other measure-
ments that are informationally complete in the sense that
their statistics allow one to reconstruct the density oper-
ator.

The most general description of measurements in quan-
tum mechanics is that of positive operator-valued mea-
sures (POVMs). A POVM on a system A is a set of posi-
tive semidefinite operators {Xx} that sum to the identity,∑
xXx = 1A. The number of POVM elements in the set

can be much larger or much smaller than the Hilbert
space dimension of the system. Physically, a POVM can
be implemented as a projective measurement on an en-
larged Hilbert space, e.g., as a joint measurement on the
system of interest with an ancilla system.

For two POVMs X = {Xx}x and Z = {Zz}z, the gen-
eral Born rule now induces the distributions

PX(x) = tr
[
ρAXx

]
and PZ(z) = tr

[
ρAZz

]
. (48)

Krishna and Parthasarathy (2002) proposed an incom-
patibility measure for POVMs using the operator norm.
Namely, they considered

c = max
x,z

cxz with cxz =
∥∥∥√Xx√Zz∥∥∥2

, (49)

where ‖ · ‖ denotes the operator norm (i.e., the maximal
singular value). Using this measure they generalized (31)
to the case of POVMs. That is, we still have

H(X) +H(Z) ≥ log
1

c
, (50)

but now using the generalized version of c in (49). More
recently, Tomamichel (2012) noted that an alternative
generalization to POVMs is obtained by replacing c with

c′ := min

{
max
x

∥∥∥∥∑
z

ZzXxZz
∥∥∥∥, max

z

∥∥∥∥∑
x

XxZzXx
∥∥∥∥
}
,

(51)

and the author conjectured that c′ always provides a
stronger bound than c.

Indeed this conjecture was proved by Coles and Piani
(2014b): ∥∥∥∥∑

z

ZzXxZz
∥∥∥∥ ≤ max

z
cxz . (52)

Hence, c′ ≤ c, implying that log(1/c′) provides a stronger
bound on entropic uncertainty than log(1/c).

Example 9. Consider two POVMs given by

X = Z =
1

2

{
|0〉〈0|, |1〉〈1|, |+〉〈+|, |−〉〈−|

}
. (53)

For these POVMs we find c = 1/4, but c′ = 3/16 is
strictly smaller.

Interestingly, a general POVM can have a non-trivial
uncertainty relation on its own. That is, for some POVM
X, there may not exist any state ρA that has H(X) = 0.
Krishna and Parthasarathy (2002) noted this and derived
the single POVM uncertainty relation

H(X) ≥ − log max
x

∥∥∥Xx∥∥∥ . (54)

In fact the proof is straightforward: simply apply (50)
to the case where Z = {1} is the trivial POVM. The
relation (54) can be further strengthened by applying this
approach to c′ in (51), instead of c.

E. State-dependent measures of incompatibility

In most uncertainty relations we have encountered so
far, the measure of incompatibility, for example the over-
lap c, is a function of the measurements employed but is
independent of the quantum state prior to measurement.
The sole exception is the strengthened Maassen-Uffink
relation in (47) where the lower bound is the sum of an
ordinary, state-independent measure of incompatibility
and the entropy of ρA. In the following, we review some
uncertainty relations that use measures of incompatibil-
ity that are state dependent.

It was shown by Tomamichel and Hänggi (2013) that
the Maassen-Uffink relation (31) also holds when the
overlap c is replaced by an effective overlap, denoted c∗.
Informally, c∗ is given by the average overlap of the two
measurements on different subspaces of the Hilbert space,
averaged over the probability of finding the state in the
subspace. We refer the reader to the paper mentioned
above for a formal definition of c∗. Here, we discuss
a simple example showing that state-dependent uncer-
tainty relations can be significantly tighter.

Example 10. Let us apply one out of two projective mea-
surements, either in the orthonormal basis7{

|0〉, |1〉, |⊥〉
}

or
{
|+〉, |−〉, |⊥〉

}
, (55)

on a state ρ which has the property that ‘⊥’ is mea-
sured with probability at most ε. The Maassen-Uffink
relation (31) gives a trivial bound as the overlap of the
two bases is c = 1 due to the vector | ⊥〉 that appears

7 The diagonal states are |±〉 = (|0〉 ± |1〉)/
√

2.
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in both bases. Still, our intuitive understanding is that
the uncertainty about the measurement outcome is high
as long as ε is small. The effective overlap (Tomamichel
and Hänggi, 2013) captures this intuition:

c∗ = (1− ε)1

2
+ ε . (56)

This formula can be interpreted as follows: with proba-
bility 1 − ε we are in the subspace spanned by |0〉 and
|1〉, where the overlap is 1/2, and with probability ε we
measure ⊥ and have full overlap.

An alternative approach to state-dependent uncer-
tainty relations was introduced by Coles and Piani
(2014b). They showed that the factor qMU = log(1/c)
in the Maassen-Uffink relation (31) can be replaced by
the state-dependent factor

q(ρA) := max{qX(ρA), qZ(ρA)} , where (57)

qX(ρA) :=
∑
x

PX(x) log
1

maxz cxz
, (58)

and qZ(ρA) is defined analogously to qX(ρA), but with x
and z interchanged. Here, PX(x) and cxz are given by
(26) and (32), respectively. Note that this strengthens
the Maassen-Uffink bound, q(ρA) ≥ qMU, since averaging
log(1/maxz cxz) over all x is larger than minimizing it
over all x. In many cases q(ρA) is significantly stronger
than qMU.

Recently, Kaniewski et al. (2014) derived entropic
uncertainty relations in terms of the effective anti-
commutator of arbitrary binary POVMs X = {X0,X1}
and Z = {Z0,Z1}. Namely, the quantity

ε∗ =
1

2
tr
[
ρ[OX, OZ]+

]
=

1

2
tr
[
ρ(OXOZ +OZOX)

]
,

with OX = X0 − X1 and OZ = Z0 − Z1 (59)

binary observables corresponding to the POVMs X and
Z, respectively. In (59), we use the notation [·, ·]+ to
denote the anti-commutator. We note that ε∗ ∈ [−1, 1].
This results, for example, in the following uncertainty
relation for the Shannon entropy:

H(X) +H(Z) ≥ hbin

(
1 +

√
|ε∗|

2

)
. (60)

We refer the reader to Kaniewski et al. (2014) for sim-
ilar uncertainty relations in terms of Rényi entropies as
well as extensions to more than two measurements. Fi-
nally, for measurements acting on qubits, we find that
|ε∗| = 2c − 1, and (60) hence reduces to the Sanchez-
Ruiz bound (37).

F. Relation to guessing games

Let us now explain in detail how some of the relations
above can be interpreted in terms of a guessing game.

We elaborate on the brief discussion of guessing games
in Sec. I, and we refer the reader back to Fig. 2 for an
illustration of the game.

The game is as follows. Suppose that Bob prepares
system A in state ρA. He then sends A to Alice, who
randomly performs either the X or Z measurement. The
measurement outcome is a bit denoted as K, and Bob’s
task is to guess K, given that he received the basis choice
denoted by Θ ∈ {θX, θZ} from Alice.

We can rewrite the Maassen-Uffink relation (31) in
the following way such that the connection to the above
guessing game becomes transparent. Denote the stan-
dard basis on A as {|k〉}dk=1, and let UX and UZ respec-
tively be unitaries that map this basis to the X and Z
bases, i.e.,

|Xk〉 = UX|k〉 and |Zk〉 = UZ|k〉 . (61)

Then, we have

1

2

(
H(K|Θ = θX) +H(K|Θ = θZ)

)
≥ 1

2
qMU , (62)

with the conditional probability distribution

PK|Θ=θX(k) := 〈k|U†XρUX|k〉 for k ∈ {1, . . . , d} (63)

and similarly for θZ. Alternatively we can also write this
as

H(K|Θ) ≥ 1

2
qMU with Θ ∈ {θX, θZ} , (64)

in terms of the conditional Shannon entropy

H(K|Θ) := H(KΘ)−H(Θ) (65)

=
1

2

(
H(K|Θ = θX) +H(K|Θ = θX)

)
(66)

of the bipartite distribution

PKΘ(k, θj) :=
1

2
〈k|U†j ρUj |k〉 with k ∈ {1, . . . , d}

j ∈ {X,Z} . (67)

That is, each measurement labeled θj is chosen with equal
probability 1/2 and we condition on this choice. Notice
that the form in (64) is connected to the guessing game
in Fig. 2. Regardless of the state ρA that Bob prepares,
the uncertainty relation (64) implies that he will not be
able to perfectly guess K if qMU > 0. In this sense, the
Maassen-Uffink relation is a fundamental constraint on
one’s ability to win a guessing game.

Actually, in the context of guessing games, the min-
entropy is more operationally relevant than the Shan-
non entropy. For example, a diligent reading of Deutsch
(1983) reveals the relation

pguess(X) · pguess(Z) ≤ b2 , (68)
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for orthonormal bases X and Z, where b is defined in (40).
This relation gives an upper bound on the product of
the guessing probabilities (or equivalently, a lower bound
on the sum of the min-entropies) associated with X and
Z. However, to make a more explicit connection to the
guessing game described above, one would like to upper
bound the sum (or average) of the guessing probabilities,
namely the quantity

pguess(K|Θ) =
1

2

(
pguess(K|Θ = θX) + pguess(K|Θ = θZ)

)
.

(69)

Indeed, the quantity (69) can easily be upper-bounded
as (Schaffner, 2007)

pguess(K|Θ) ≤ b or equivalently (70)

Hmin(K|Θ) ≥ log
1

b
. (71)

Example 11. For the Pauli qubit measurements
{σX, σZ} the min-entropy uncertainty relation (71) be-
comes

Hmin(K|Θ) ≥ log
2
√

2

1 +
√

2
. (72)

We emphasize that pguess(K|Θ) is precisely the prob-
ability for winning the game described in Fig. 2. Hence,
the entropic uncertainty relation (71) gives the funda-
mental limit on winning the game. Finally, we remark
that (71) is stronger than Deutsch’s relation (68), due to
the following argument. For the min-entropy, condition-
ing on the measurement choice is defined as

Hmin(K|Θ) := − log

1

2

∑
j=1,2

2−Hmin(K|Θ=θj)

 (73)

6= Hmin(KΘ)−Hmin(Θ) (in general) ,

in contrast to the Shannon entropy in (65). However, in
analogy to (66), we have

Hmin(K|Θ) ≤ 1

2

∑
j=1,2

Hmin(K|Θ = θj) . (74)

due to the concavity of the logarithm. For a general
discussion of conditional entropies we point to Sec. IV.B.

G. Multiple measurements

So far we have only considered entropic uncertainty
relations quantifying the complementarity of two mea-
surements. However, there is no fundamental reason
for restricting to this setup, and in the following we
discuss the more general case of L measurements. We
mostly focus on special sets of measurements that gen-
erate strong uncertainty relations. This is of particular

interest for various applications in quantum cryptogra-
phy (see Sec. VI.C).

The notation introduced for guessing games in
Sec. III.F is particularly useful in the multiple measure-
ments setting. In this notation, for larger sets of mea-
surements we are interested in finding lower bounds of
the form

H(K|Θ) ≥ f(Θ, ρA) > 0 with Θ ∈ {θ1, . . . , θL} , (75)

where, similarly to (67),

PKΘ(k, θj) :=
1

L
〈k|U†j ρUj |k〉 with k ∈ {1, . . . , d}

j ∈ {1, . . . , L} .
(76)

Again the left-hand side of (75) might alternatively be
written as

H(K|Θ) =
1

L

L∑
j=1

H(K|Θ = θj) , (77)

where the conditional probability distribution PK|Θ=θj is
defined analogously to (63).

1. Bounds implied by two measurements

It is important to realize that, e.g., the Maassen-Uffink
relation (31) already implies bounds for larger sets of
measurements. This is easily seen by just applying (31)
to all possible pairs of measurements and adding the cor-
responding lower bounds.

Example 12. For the qubit Pauli measurements we find
by an iterative application of the tightened Maassen-
Uffink bound (47) for the measurement pairs {σX, σY},
{σX, σZ}, and {σY, σZ} that

H(K|Θ) ≥ 1

2
+

1

2
H(ρA) with Θ ∈ {σX, σY, σZ} . (78)

The goal of this section is to find uncertainty relations
that are stronger than any bounds that can be derived
directly from relations for two measurements.

2. Complete sets of MUBs

A promising candidate for deriving strong uncertainty
relations are complete sets of MUBs, i.e., sets of d + 1
MUBs (which we only know to exist in certain dimen-
sions, see Appendix A for elaboration). Consider the
qubit case in the following example.

Example 13. For the qubit Pauli measurements, we
have from Sánchez-Ruiz (1995, 1998) that

H(K|Θ) ≥ 2

3
with Θ ∈ {σX, σY, σZ} . (79)
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Moreover, from Coles et al. (2011) we can add an entropy
dependent term on the right-hand side,

H(K|Θ) ≥ 2

3
+

1

3
H(ρA) with Θ ∈ {σX, σY, σZ} . (80)

Note that (80) is never a worse bound than (78) which
just followed from the tightened Maassen-Uffink relation
for two measurements (47). Moreover, the relation (79)
becomes an equality for any eigenstate of the Pauli mea-
surements, while (80) becomes an equality for any state
ρA that is diagonal in the eigenbasis of one of the Pauli
measurements.

More generally, for a full set of d+ 1 MUBs in dimen-
sion d, Ivanovic (1992); Larsen (1990); and Sánchez-Ruiz
(1993) showed that,

H(K|Θ) ≥ log(d+ 1)− 1 with Θ ∈ {θ1, . . . , θd+1} .
(81)

This is a strong bound since the entropic term on the
left-hand side can become at most log d for any num-
ber and choice of measurements. The relation (81) can
be derived from an uncertainty equality for the collision
entropy Hcoll. Namely, for any quantum state ρA on a
d-dimensional system and a full set of d + 1 MUBs, we
have (Ballester and Wehner, 2007; Brukner and Zeilinger,
1999; Ivanovic, 1992)

Hcoll(K|Θ) = log(d+ 1)− log
(

2−Hcoll(ρA) + 1
)

with Θ ∈ {θ1, . . . , θd+1} , (82)

where for the collision entropy the conditioning on the
measurement choice is defined as

Hcoll(K|Θ) := − log

 1

L

L∑
j=1

2−Hcoll(K|Θ=θj)

 (83)

6= Hcoll(KΘ)−Hcoll(Θ) (in general) .

We refer to Sec. IV.B for a general discussion about con-
ditional entropies. Moreover, the quantum collision en-
tropy is a measure for how mixed the state ρA is and
defined as

Hcoll(ρA) := − log tr
[
ρ2
A

]
. (84)

We emphasize that since (82) is an equality it is tight for
every state. By the concavity of the logarithm we also
have in analogy to the Shannon entropy (77),

Hcoll(K|Θ) ≤ 1

d+ 1

d+1∑
j=1

Hcoll(K|Θ = θj) . (85)

Example 14. For the qubit Pauli measurements, (82)
yields Hcoll(K|Θ) = log 3− log

(
2−Hcoll(ρA) + 1

)
with Θ ∈

{σX, σY, σZ}.

The uncertainty relation (81) for the Shannon entropy
follows from (82) by at first only considering pure states,
i.e., states with Hcoll(ρA) = 0, and using that the Rényi
entropies are monotonically decreasing as a function of
the parameter α (note that the collision entropy corre-
sponds to α = 2 and the Shannon entropy to α = 1).
For mixed states ρA we can extend this in a second step
by taking the eigendecomposition and making use of the
concavity of the Shannon entropy. For later purposes we
note that it is technically often accessible to work with
the collision entropy Hcoll (even when ultimately inter-
ested in uncertainty relations in terms of other entropies).

The uncertainty relation (81) was improved for d even
to (Sánchez-Ruiz, 1995),

H(K|Θ) ≥ 1

d+ 1

(
d

2
log

(
d

2

)
+

(
d

2
+ 1

)
log

(
d

2
+ 1

))
with Θ ∈ {θ1, . . . , θd+1} ,

(86)

Note that this relation generalizes the qubit result in (79)
to arbitrary dimensions.

Furthermore, uncertainty relations for a full set of L =
d+1 MUBs can also be expressed in terms of the extrema
of Wigner functions (Mandayam et al., 2010; Wootters
and Sussman, 2007).

3. General sets of MUBs

At first glance, one might think that measuring in mu-
tually unbiased bases always results in a large amount
of uncertainty. Somewhat surprisingly, this is not the
case. In fact, Ballester and Wehner (2007) show that
for d = p2l with p prime and l ∈ N, there exist up to
L = pl + 1 many MUBs together with a state ρA for
which

H(K|Θ) =
log d

2
with Θ ∈ {θ1, . . . , θL} . (87)

That is, we observe no more uncertainty than if we had
just considered two incompatible measurements. While
a certain amount of mutual unbiasedness is therefore a
necessary condition for strong uncertainty relations, it is
in general not sufficient.

For smaller sets of L < d + 1 MUBs we immediately
get a weak bound from an iterative application of the
Maassen-Uffink relation (31) for MUBs,

H(K|Θ) ≥ log d

2
with Θ ∈ {θ1, . . . , θL} . (88)

It turns out that the bound (88) cannot be improved
much in general, as the following example shows.

Example 15. In d = 3, Wehner and Winter (2010)
showed that there exists a set of L = 3 MUBs to-
gether with a state ρA such that H(K|Θ) = 1 for Θ ∈
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{θ1, θ2, θ3}. This only allows a relatively weak uncer-
tainty relation. Wu et al. (2009) showed that

H(K|Θ) ≥ 8

9
≈ 0.89 with Θ ∈ {θ1, θ2, θ3} . (89)

This is slightly stronger than the lower bound from (88):

H(K|Θ) ≥ log 3

2
≈ 0.79 with Θ ∈ {θ1, θ2, θ3} . (90)

Generally this only allows relatively weak uncertainty
relations if L < d+ 1. Wu et al. (2009) showed that

Hcoll(K|Θ) ≥ − log
d · 2−Hcoll(ρA) + L− 1

L · d
with Θ ∈ {θ1, . . . , θL} . (91)

This implies in particular the Shannon entropy rela-
tion (Azarchs, 2004),

H(K|Θ) ≥ − log
d+ L− 1

L · d with Θ ∈ {θ1, . . . , θL} ,
(92)

see also Wehner and Winter (2010) for an elementary
proof. For comparison, with L = d = 3, (92) yields

H(K|Θ) ≥ log
9

5
≈ 0.85 with Θ ∈ {θ1, θ2, θ3} , (93)

which is between (88) and (89). Additional evidence
that general sets of less than d + 1 MUBs in dimension
d only generate weak uncertainty relations is presented
by Ambainis (2010); Ballester and Wehner (2007); and
DiVincenzo et al. (2004). Many of the findings also ex-
tend to the setting of approximate mutually unbiased
bases (Hayden et al., 2004).

In terms of the min-entropy, Mandayam et al. (2010)
show that for measurements in L possible MUBs the fol-
lowing two bounds hold

1

L

L∑
θ=1

Hmin(K|Θ = θ) ≥ − log

[
1

d

(
1 +

d− 1√
L

)]
,

(94)

1

L

L∑
θ=1

Hmin(K|Θ = θ) ≥ − log

[
1

L

(
1 +

L− 1√
d

)]
.

(95)

Each of these is better in certain regimes, and the lat-
ter can indeed be tight. They also study uncertainty
relations for certain classes of MUBs that exhibit special
symmetry properties. It remains an interesting topic to
study uncertainty relations for MUBs and in Sec. III.G.8
we present some related results of Kalev and Gour (2014).

4. Measurements in random bases

Another candidate for strong uncertainty relations are
sets of measurements that are chosen at random.8 Ex-
tending on the previous results of Hayden et al. (2004),
Fawzi et al. (2011) show that in dimension d there ex-
ist any number of L > 2 measurements and a universal
constant C (independent of d and L) such that,

H(K|Θ) ≥ log d ·
(

1−
√

1

L
· C log(L)

)
− g(L)

with Θ ∈ {θ1, . . . , θL} , (96)

with the fudge term g(L) = O (log (L/ log(L))). Note
that for any set of L measurements there exists a state
such that

H(K|Θ) ≤ log d ·
(

1− 1

L

)
with Θ ∈ {θ1, . . . , θL} .

(97)

Hence, the relation (96) is already reasonably strong.
However, very recently (96) was improved by proving a
conjecture stated by Wehner andWinter (2010). Namely,
Adamczak et al. (2016) showed that in dimension d there
exist any number of L > 2 measurements and a universal
constant D (independent of d and L) such that,

H(K|Θ) ≥ log d ·
(

1− 1

L

)
−D

with Θ ∈ {θ1, . . . , θL} . (98)

We emphasize that this matches the upper bound (97)
up to the constant D.

The downside with the relations (96) and (98), how-
ever, is that the measurements are not explicit. This is
an issue for applications. In particular, it is computation-
ally inefficient to sample from the Haar measure. Fawzi
et al. (2011) showed that the measurements in their rela-
tion (96) can be made explicit and efficient if the number
L of measurements is small enough. More precisely, for n
qubits (with n sufficiently large) and ε > 0, there exists
a constant C and a set of

L ≤ (n/ε)
C log(1/ε) (99)

measurements generated by unitaries computable by
quantum circuits of size O(polylogn) such that

H(K|Θ) ≥ n · (1− 2ε)− hbin(ε) with Θ ∈ {θ1, . . . , θL} ,
(100)

where hbin denotes the binary entropy. The relation (100)
will be the basis for the information locking schemes pre-
sented in Sec. VI.H.3.

8 By “at random” we mean according to the Haar measure on the
unitary group, see, e.g., (Hayden et al., 2004) for more details.
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5. Product measurements on multiple qubits

For applications in cryptography we usually need un-
certainty relations for measurements that can be imple-
mented locally, so-called product measurements. For ex-
ample, for an n-qubit state we are interested in uncer-
tainty relations for the set of 2n different measurements
given by measuring each qubit independently in one of
the two Pauli bases σX or σZ. These are often called BB84
measurements due to the work of Bennett and Brassard
(1984). Using the Maassen-Uffink bound (31) for two
measurements iteratively we immediately find

H(Kn|Θn) ≥ n · 1

2
with Θn ∈ {θ1, . . . , θ2n} . (101)

This relation is already tight since there exist states that
achieve equality.

For cryptographic applications, the relevant measure is
often not the Shannon entropy but the min-entropy. The
one qubit relation (72) is easily extended to n qubits as

Hmin(Kn|Θn) ≥ −n · log

(
1

2
+

1

2
√

2

)
≈ n · 0.22

with Θn ∈ {θ1, . . . , θ2n} .
(102)

Again there exist states that achieve equality. More gen-
erally Ng et al. (2012) find for n qubit BB84 measure-
ments and the Rényi entropy of order α ∈ (1, 2],

Hα(Kn|Θn) ≥ n · α− log
(
1 + 2α−1

)
α− 1

with Θn ∈ {θ1, . . . , θ2n} , (103)

where the conditioning is given as (see App. C),9

Hα(K|Θ) =
α

1− α log

 1

L

L∑
j=1

2
1−α
α Hα(K|Θ=θj)

 .

(104)

Similarly, we find for the set of 3n different measure-
ments given by measuring each qubit independently in
one of the three Pauli bases σX, σY, or σZ that

H(Kn|Θn) ≥ n · 2

3
with Θn ∈ {θ1, . . . , θ3n} , (105)

Following Bruß (1998) these measurements are often
called six-state measurements. The uncertainty rela-
tion (105) is the extension of (79) from one to n qubits.
More general relations in terms of Rényi entropies were
again derived by Ng et al. (2012).

9 We emphasize that unlike in the unconditional case H2(K|Θ) 6=
Hcoll(K|Θ) and hence (83) is different from (104) for α = 2.

Approximate extensions of all these relations when the
measurements are not exactly given by the Pauli mea-
surements {σX, σY, σZ} are discussed by Kaniewski et al.
(2014). We note that some extensions of the n qubit re-
lations discussed above will be crucial for applications in
two-party cryptography (Sec. VI.C).

6. General sets of measurements

Liu et al. (2015) give entropic uncertainty relations for
general sets of measurements. Their bounds are qualita-
tively different than just combining (31) iteratively and
sometimes become strictly stronger in dimension d > 2.
For simplicity we only state the case of L = 3 measure-
ments (in any dimension d ≥ 2),

H(K|Θ) ≥ 1

3
log

1

m
+

2

3
H(ρA)

with Θ ∈ {V (1), V (2), V (3)} , (106)

and the multiple overlap constant

m := max
k

∑
j

max
i

(
c
(
v1
i , v

2
j

))
· c
(
v2
j , v

3
k

) , (107)

and {|v1
i 〉}, {|v2

j 〉}, {|v3
k〉} are the eigenvectors of V (1),

V (2), V (3), respectively.

Example 16. For a qubit and the full set of 3 MUBs
given by the Pauli measurements this gives

H(K|Θ) ≥ 1

3
+

2

3
H(ρA) with Θ ∈ {σX, σY, σZ} . (108)

This bound is, however, weaker than (78) and (80).
On the other hand, of course the whole point of the
bound (106) is that in contrast to (78) and (80) it can be
applied to any set of L = 3 measurements (in arbitrary
dimension).

We refer to (Liu et al., 2015) for a fully worked out
example where their bound can become stronger than
any bounds implied by two measurement relations.

7. Anti-commuting measurements

As already noted in Sec. III.D, many interesting mea-
surements are not of the orthonormal basis form, but
are more generally described by POVMs. One class of
such measurements that generate maximally strong un-
certainty relations are sets of anti-commuting POVMs
with only two possible measurement outcomes. In more
detail, we consider a set {X1, . . . ,XL} of binary POVMs
Xj = {X0

j ,X1
j} that generate binary observables

Oj := X0
j − X1

j with [Oj , Ok]+ = 2δjk , (109)
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where, as in (59), [·, ·]+ denotes the anti-commutator.10
The goal is then to find lower bounds on entropies of the
form H(K|Θ) with

PKΘ(k,Xj) :=
1

L
tr
[
Xkj ρA

]
with k ∈ {0, 1}

j ∈ {1, . . . , L} .
(110)

For simplicity we only discuss the case of n qubit states
for which we have sets of up to 2n+ 1 many binary anti-
commuting POVMs.11 Wehner and Winter (2008) then
show that

H(K|Θ) ≥ 1− 1

L
with k ∈ {0, 1}

for any subset Θ ⊆ {X1, . . . ,X2n+1} of size L . (111)

These relations are tight and reduce for the L = 3 qubit
Pauli measurements {σX, σY, σZ} to the bound (79). Sim-
ilarly Wehner and Winter (2008) also find for the collision
entropy,

1

L

∑
Xj∈Θ

Hcoll(K|Θ = Xj) ≥ 1− log

(
1 +

1

L

)
, (112)

and the min-entropy,

1

L

∑
Xj∈Θ

Hmin(K|Θ = Xj) ≥ 1− log

(
1 +

1√
L

)
. (113)

These relations are again tight. Note, however, that the
average over the basis choice is outside of the logarithm,
whereas for the collision and the min-entropy the average
is more naturally inside of the logarithm as, e.g., in (82)
and in (102).

Example 17. For the L = 3 qubit case (112) reduces to

1

3

∑
j=X,Y,Z

Hcoll(K|Θ = σj) ≥ log 3− 1 , (114)

which, as seen by (85), is generally weaker than the cor-
responding bound implied by (82),

Hcoll(K|Θ) ≥ log 3− 1 with Θ ∈ {σX, σY, σZ} . (115)

Finally, we point to Ver Steeg and Wehner (2009) for
the connection of the uncertainty relations described in
this section to Bell inequalities.

10 An example of such anti-commuting sets in the case of L = 3 is
provided by the qubit Pauli operators {σX, σY, σZ}.

11 This is obtained by the unique Hermitian representation of the
Clifford algebra via the Jordan-Wigner transformation (Dietz,
2006).

8. Mutually unbiased measurements

In Sec. III.G.2 we discussed how full sets of d+1 MUBs
give rise to strong uncertainty relations, see, e.g., (81).
However, for general dimension d we do not know if a
full set of d + 1 MUBs always exists (see App. A for a
discussion). Kalev and Gour (2014) offer the following
generalization of MUBs to measurements that are not
necessarily given by a basis. Two POVMs X = {Xx}dx=1

and Z = {Zz}dz=1 on a d-dimensional quantum system
are mutually unbiased measurements (MUMs) if for some
κ ∈ (1/d, 1],

tr [Xx] = 1, tr [Zz] = 1, tr [XxZz] =
1

d
∀x, z (116)

tr
[
XxXx

′
]

= δxx′ · κ+ (1− δxx′)
1− κ
d− 1

∀x, x′

and similarly for z, z′ . (117)

In addition, a set of POVMs {X1, . . . ,Xn} of said form
is called a set of MUMs if each POVM Xj is mutually
unbiased to each other POVM Xk, with k 6= j, in the set.

A straightforward example are again MUBs for which
κ = 1.12 The crucial observation of Kalev and Gour
(2014) is that in any dimension d a full set of d + 1
MUMs exists (see their paper for the explicit construc-
tion). Moreover, every full set of d+ 1 MUMs gives rise
to a strong uncertainty relation,

H(K|Θ) ≥ log(d+ 1)− log (1 + κ)

with Θ ∈ {X1, . . . ,Xd+1} , (118)

where the notation is as introduced in (110). This is
in full analogy with (81) for a full set of d + 1 MUBs.
Tighter and state dependent versions of (118) as well as
extensions to Rényi entropies can be found in (Chen and
Fei, 2015; Rastegin, 2015b)

H. Fine-grained uncertainty relations

So far we have expressed uncertainty in terms of the
von Neumann entropy and the Rényi entropies of the
probability distribution induced by the measurement.
Recall, however, that any restriction on the set of allowed
probability distributions over measurement outcomes can
be understood as an uncertainty relation, and hence there
are many ways of formulating such restrictions. Thus,
while generally the Rényi entropies determine the under-
lying probability distribution of the measurement out-

12 The trivial example for which each POVM element is the maxi-
mally mixed state 1/d is excluded because this would correspond
to κ = 1/d.
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comes uniquely,13 it is interesting to ask whether we can
formulate more refined versions of uncertainty relations.

Suppose we perform L measurements labeled Θ on a
preparation ρA, where each measurement has N out-
comes. Fine-grained uncertainty relations (Oppenheim
and Wehner, 2010) consist of a set of NL equations which
state that for all states we have

L∑
θ=1

PΘ(Θ = θ)PX(X = xθ|Θ = θ) ≤ ζx1,...,xL , (119)

for all combinations of measurement outcomes x1, . . . , xL
that are possible for the L different measurements. Here,
PΘ(Θ = θ) is the probability of choosing measurement
labeled Θ = θ, and 0 ≤ ζx1,...,xL ≤ 1.

Note that whenever ζx1,...,xL < 1, then we observe
some amount of uncertainty, since it implies that we can-
not simultaneously have PX(X = xθ|Θ = θ) = 1 for all θ.
We remark that fine-grained uncertainty relations natu-
rally give a lower bound on the min-entropy since

2−Hmin(X|Θ) =

L∑
θ=1

PΘ(Θ = θ) max
xθ

PX(X = xθ|Θ = θ)

(120)

≤ − log max
x1,...,xL

ζx1,...,xL . (121)

However, fine-grained uncertainty relations are strictly
more informative and are also closely connected to Bell
non-locality (Oppenheim and Wehner, 2010). While not
the topic of this survey, a number of extensions of these
fine-grained uncertainty relations are known (Dey et al.,
2013; Rastegin, 2015a; Ren and Fan, 2014).

I. Majorization approach to entropic uncertainty

Another way to capture uncertainty relations that re-
lates directly to entropic ones is given by the majoriza-
tion approach. Instead of sums of probabilities, we here
look at products. The idea to derive entropic uncer-
tainty relations via a majorization relation was pioneered
by Partovi (2011) and later extended and clarified inde-
pendently by Puchała et al. (2013) and Friedland et al.
(2013). Let us recall the distributions PX and PZ result-
ing from the measurements X and Z, respectively, of the
state ρA as in (48). We denote by P ↓X and P ↓Z the cor-
responding reordered vectors such that the probabilities
are ordered form largest to smallest.

13 To see this, note that the cumulant generating function of the
random variable Z = − logPX(X) can be expressed in terms
of the Rényi entropy of X, namely gZ(s) = H1+s(X). The
cumulants of Z and hence the distributions of Z and X are thus
fully determined by the Rényi entropy in a neighborhood around
α = 1.

1. Majorization approach

The main objective of this section is to find a vector
that majorizes the tensor product of the two probability
vectors P ↓X and P ↓Z . Namely, we are looking for a prob-
ability distribution ν = {ν(1), ν(2), . . . , ν(|X||Z|)} such
that14

P ↓X × P ↓Z ≺ ν holds for all ρ ∈ S(H) . (122)

Such a relation gives a bound on how spread out the
product distribution P ↓X × P ↓Z must be. A simple and
instructive example of a probability distribution ν sat-
isfying the above relation can be constructed as follows.
Consider the largest probability in the product distribu-
tion in (122), given by

p1 := P ↓X(1) · P ↓Z(1) = pguess(X) · pguess(Z) . (123)

We know that p1 is always bounded away from 1 if the
two measurements are incompatible, since it cannot be
that both measurements have a deterministic outcome.
For example, recall that we have (68) from Deutsch
(1983), which gives

p1 = pguess(X) · pguess(Z) ≤ b2 =: ν1 , (124)

where b was defined in (40). As such, it is immediately
clear that the vector ν1 = {ν1, 1 − ν1, 0, . . . , 0} satis-
fies (122) and in fact constitutes a simple but non-trivial
uncertainty relation.

Going beyond this observation, the works of Fried-
land et al. (2013) and Puchała et al. (2013) both present
an explicit method to construct a sequence of vectors
{νk}|X|−1

k=1 of the form

νk = {ν1, ν2 − ν1, . . . , 1− νk−1, 0, . . . , 0} , (125)

with νk ≺ νk−1, that satisfy (122) and lead to tighter
and tighter uncertainty relations. The expressions for
νk are given in terms of an optimization problem and
become gradually more difficult as k increases. We refer
the reader to these papers for details on the construction.

2. From majorization to entropy

Entropic uncertainty relations for Rényi entropy follow
directly from the majorization relation above due to the
fact that the Rényi entropy is Schur concave and additive.
This implies that

P ↓X × P ↓Z ≺ ν =⇒ Hα(X) +Hα(Z) ≥ Hα(V ) , (126)

14 Recall the definition of majorization in Sec. III.A.3.
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where V is a random variable distributed according to the
law ν. These uncertainty relations have a different flavor
than the Maassen-Uffink relations in (35) since they pro-
vide a bound on the sum of the Rényi entropy of the same
parameter. As a particular special case for α = ∞, we
get back Deutsch’s uncertainty relation (Deutsch, 1983),

H(X) +H(Z) ≥ Hmin(X) +Hmin(Z) (127)
≥ −2 log b =: qD , (128)

where the first inequality follows by the monotonicity of
the Rényi entropy in the parameter α. However, an im-
mediate improvement on this relation can be obtained by
applying (126) directly for α = 1, which yields

H(X) +H(Z) ≥ hbin(b2) =: qmaj . (129)

See Fig. 6 for a comparison of this to other bounds.

3. Measurements in random bases

An interesting special case for which a majorization
based approach gives tighter bounds is for measurements
in two bases X and Z related by a random unitary. Intu-
itively, we would expect such bases to be complementary.
More precisely, for any measurement in a fixed basis X
and Z related by a unitary drawn from the Haar measure
on the unitary group, Adamczak et al. (2016) showed that
for the Masseen-Uffink bound (31) we have with proba-
bility going to one for d→∞,

H(X) +H(Z) ≥ log d− log log d . (130)

However, they also show that a majorization based ap-
proach yields the tighter estimate

H(X) +H(Z) ≥ log d− C1 , (131)

where C1 > 0 is some constant. This is close to optimal
since we have that with probability going to one for d→
∞ (Adamczak et al., 2016),

log d− C0 ≥ H(X) +H(Z) , (132)

for some constant C0 > 0. It is an open question to de-
termine the exact asymptotic behavior, i.e., the constant
C ∈ (C0, C1) that gives a lower and an upper bound.

4. Extensions

The majorization approach has also been extended
to cover general POVMs and more than two measure-
ments (Friedland et al., 2013; Rastegin and Życzkowski,
2016). Moreover, a recent paper (Rudnicki et al., 2014)
discusses a related method, based on finding a vec-
tor that majorizes the ordered distribution (PX ∪ PZ)↓,

where PX ∪ PZ is simply the concatenation of the two
probability vectors. This yields a further improvement
on (129). Finally, an extension to uncertainty measures
that are not necessarily Schur concave but only mono-
tonic under doubly stochastic matrices was presented
in (Narasimhachar et al., 2016).

IV. UNCERTAINTY GIVEN A MEMORY SYSTEM

The uncertainty relations presented thus far are lim-
ited in the following sense: they do not allow the observer
to have access to side information. Side information, also
known as memory, might help the observer to better pre-
dict the outcomes of the X and Z measurements. It is
therefore a fundamental question to ask: does the uncer-
tainty principle still hold when the observer has access to
a memory system? If so, what form does it take?

The uncertainty principle in the presence of memory is
important for cryptographic applications and witnessing
entanglement (Sec. VI). For example, in quantum key dis-
tribution, an eavesdropper may gather some information,
store it in her memory, and then later use that memory
to try to guess the secret key. It is crucial to understand
whether the eavesdropper’s memory allows her to break
a protocol’s security, or whether security is maintained.
This is where general uncertainty relations that allow for
memory are needed.

Furthermore, such uncertainty relations are also im-
portant for basic physics. For example, the quantum-
to-classical transition is an area of physics where one
tries to understand why and how quantum interference
effects disappear on the macroscopic scale. This is of-
ten attributed to decoherence, where information about
the system of interest S flows out to an environment E
(Zurek, 2003). In decoherence, it is important to quan-
tify the tradeoff between the flow of one kind of infor-
mation, say Z, to the environment versus the preserva-
tion of another kind of information, say X, within the
system S. Here, one associates X with the “phase” in-
formation that is responsible for quantum interference.
Hence, one can see how this ties back into the quantum-
to-classical transition, since loss of X information would
destroy the quantum interference pattern. In this discus-
sion, system E plays the role of the memory, and hence
uncertainty relations that allow for memory are essen-
tially uncertainty relations that allow the system to in-
teract with an environment. We will discuss this more in
Sec. VI.F, in the context of interferometry experiments.

A. Classical versus quantum memory

With this motivation in mind, we now consider two
different types of memories. First, we discuss the notion
of a classical memory, i.e., a system B that has no more
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than classical correlations with the system A that is to
be measured.

Example 18. Consider a spin-1/2 particle A and a
(macroscopic) coin B as depicted in Fig. 7(a). Suppose
that we flip the coin to determine whether or not we pre-
pare A in the spin-up state |0〉 or the spin-down state |1〉.
Denoting the basis Z = {|0〉, |1〉} we see that B is perfectly
correlated to this basis. That is, before the measurement
of A the joint state is

ρAB =
1

2

(
|0〉〈0|A ⊗ ρ0

B + |1〉〈1|A ⊗ ρ1
B

)
,

where tr
[
ρ0
Bρ

1
B

]
= 0 . (133)

Hence, if the observer has access to B then he can per-
fectly predict the outcome of the Z measurement on A.
On the other hand, if we keep B hidden from the observer,
then he can only guess the outcome of the Z measurement
on A with probability 1/2.

We conclude from Ex. 18 that indeed, having access to
B reduces the uncertainty about Z. However, notice that
a classical memory B provides no help to the observer if
he tries to guess the outcome of a measurement on A that
is complementary to Z. Consider now a more general
memory, one that can have any kind of correlations with
system A allowed by quantum mechanics. This is called
a quantum memory or quantum side information (and
includes classical memory as a special case). We remark
that quantum memories are becoming an experimental
reality (see, e.g., Julsgaard et al. (2004)).

Example 19. Consider two spin-1/2 particles A and B
that are maximally entangled, say in the state

|ψ〉AB =
1√
2

(
|00〉AB + |11〉AB

)
. (134)

This is depicted in Fig. 7(b). Like for the classical mem-
ory in Ex. 18, giving the observer access to B allows him
to perfectly predict the outcome of a Z measurement on A
(by just measuring the Z observable on B). But in con-
trast to the case with classical memory, B can also be used
to predict the outcome of a complementary measurement
X = {|+〉, |−〉}, with |±〉 = (|0〉 ± |1〉)/

√
2, on A. This

follows by rewriting the maximally entangled state (134)
as

|ψ〉AB =
1√
2

(
|++〉AB + |−−〉AB

)
, (135)

which implies that the observer can simply measure the
X basis on B to guess X on A.

The idea described in Ex. 19 dates back to the famous
EPR paper (Einstein et al., 1935) and raises the ques-
tion of whether we can still find nontrivial bounds on the
uncertainty of complementary measurements when con-
ditioning on quantum memory. In the rest of Sec. IV we

Z

(a) Illustration showing an electron spin whose Z
component is correlated to a classical coin.

X

Z

X

Z

(b) Illustration showing an electron spin whose Z and X
components are respectively correlated to the Z and X

components of another electron spin, i.e., a quantum memory.

FIG. 7 Comparison of classical and quantum memory.

analyze this interplay between uncertainty and quantum
correlations quantitatively and present entropic uncer-
tainty relations that allow the observer to have access to
(quantum) memory. For that we first introduce measures
of conditional entropy.

B. Background: Conditional entropies

1. Classical-quantum states

Our main goal here is to describe the entropy of a mea-
sured (and thus classical) random variable from the per-
spective of an observer who possesses a quantum memory.
For this purpose, consider a classical register correlated
with a quantum memory, modeled by a joint classical
quantum (cq) state

ρXB =
∑
x

PX(x) |x〉〈x|X ⊗ ρxB . (136)

Here, ρxB is the quantum state of the memory system
B conditioned on the event X = x. Formally, quantum
states or density operators are positive semidefinite op-
erators with unit trace acting on the Hilbert space B. In
order to represent the joint system XB in the density op-
erator formalism we also introduced an auxiliary Hilbert
space X with fixed orthonormal basis {|x〉X}x.

2. Classical quantum entropies

The interpretation of the min-entropy from (17) in
terms of the optimal guessing probability gives a natural
means to generalize the min-entropy to the setting with
quantum memory. Clearly, an observer with access to
the quantum memory B can measure out B to improve
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his guess. The optimal guessing probability for such an
observer is then given by the optimization problem

pguess(X|B) := max
XB

∑
x

PX(x) tr
[
XxBρxB

]
,

where XB is a POVM on B. (137)

Consequently, the conditional min-entropy is defined
as (König et al., 2009; Renner, 2005),

Hmin(X|B) := − log pguess(X|B) . (138)

This is our first measure of conditional entropy. It quan-
tifies the uncertainty of the classical register X from the
perspective of an observer with access to the quantum
memory (or side information) B. The more difficult it is
to guess the value of X, the smaller is the guessing prob-
ability and the higher is the conditional min-entropy.

The collision entropy from (16) can likewise be in-
terpreted in terms of a guessing probability. Consider
the following generalization of the collision entropy to
the case where the observer has a quantum memory
B (Buhrman et al., 2008),

Hcoll(X|B) := − log ppg
guess(X|B) . (139)

Here, the pretty good guessing probability is given by

ppg
guess(X|B) :=

∑
x

PX(x) tr
[
Πx
Bρ

x
B

]
,

where Πx
B = PX(x)ρ

−1/2
B ρxBρ

−1/2
B .

(140)

The Πx
B are POVM elements corresponding to the so-

called pretty good measurement. The name is due to
the fact that this measurement is close to optimal, in the
sense that (Hausladen and Wootters, 1994),

p2
guess(X|B) ≤ ppg

guess(X|B) ≤ pguess(X|B) . (141)

That is, if the optimal guessing probability is close to one,
then so is the pretty good guessing probability. Hence,
Hcoll(X|B) quantifies how well Bob can guess X given
that he performs the pretty good measurement on B. In
particular this also implies that

Hmin(X|B) ≤ Hcoll(X|B) ≤ 2Hmin(X|B) . (142)

Finally, consider the Shannon entropy H(X), whose
quantum counterpart H(ρ) is the von Neumann entropy
as defined in (45). The von Neumann entropy of X con-
ditioned on a quantum memory B is defined as

H(X|B) := H(ρXB)−H(ρB) . (143)

where ρXB is given by (136), and

ρB = trX
[
ρXB

]
=
∑
x

PX(x)ρxB . (144)

Although H(X|B) does not have a direct interpretation
as a guessing probability, it does have an operational
meaning in information theory. For example, if Alice
samples from the distribution PX and Bob possesses sys-
tem B, then H(X|B) is the minimal information that
Alice must send to Bob in order for Bob to determine
the value of X. (More precisely, H(X|B) is the minimal
rate in bits per copy that Alice must send to Bob, in the
asymptotic limit of many copies of the state ρXB (Deve-
tak and Winter, 2003).)

3. Quantum entropies

The classical-quantum conditional entropy is merely a
special case of the quantum conditional entropy. It is
useful to introduce the latter here, since the quantum
conditional entropy will play an important role in the
following.

In the simplest case, the von Neumann conditional
entropy of an arbitrary bipartite state ρAB with ρB =
trA(ρAB), takes the form

H(A|B) := H(ρAB)−H(ρB) . (145)

We remark that, in general, fully quantum conditional
entropy can be negative.15 This is a signature of en-
tanglement. In fact, the quantity −H(A|B), com-
monly known as coherent information, provides a lower
bound on the distillable entanglement (Devetak and
Winter, 2005). We will discuss this connection further
around (330) below.

The fully quantum min-entropy also has a connection
to entanglement. Namely, it can be written as,

Hmin(A|B) := − log
(
dA · F (A|B)

)
, (146)

where

F (A|B) := max
E:B→A′

F
(

(I ⊗ E)(ρAB), |φAA′〉〈φAA′ |
)

with the fidelity F (ρ, σ) :=

(
tr

[√√
ρσ
√
ρ

])2

(147)

from (Uhlmann, 1985), |φAA′〉 a maximally entangled
state of dimension |A|, and the maximization over all
quantum channels E that map B to A′. One can think of
F (A|B) as the recoverable entanglement fidelity. In that
sense, −Hmin(A|B) quantifies how close the state is to a
maximally entangled state.

15 This should not concern us further here; a consistent interpreta-
tion of negative entropies is possible in the context of quantum
information processing (Horodecki et al., 2006) and also in ther-
modynamics (del Rio et al., 2011).
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The fully quantum collision entropy can also be related
to a recoverable entanglement fidelity, in close analogy
to the discussion above for the classical-quantum case.
Namely, we have (Berta et al., 2014a),

Hcoll(A|B) := − log
(
dA · F pg(A|B)

)
, (148)

where

F pg(A|B) := F
(
(I ⊗ Epg)(ρAB), |φAA′〉〈φAA′ |

)
. (149)

Here, Epg is the pretty good recovery map, whose action
on an operator O is given by

Epg(O) =
(

trB

[
(1⊗ ρ−1/2

B Oρ
−1/2
B )ρA′B

])T
, (150)

where (·)T denotes the transpose map, and ρA′B = ρAB ,
with system A′ being isomorphic to system A.16 In anal-
ogy to (141), the pretty good recovery map is close to
optimal (Barnum and Knill, 2002),

F 2(A|B) ≤ F pg(A|B) ≤ F (A|B) . (151)

As in the classical case, the above conditional entropies
emerge as special cases of Rényi entropies (Müller-
Lennert et al., 2013). We discuss this connection in Ap-
pendix C.

4. Properties of conditional entropy

Section III.A.3 discussed properties of entropies, which
are special cases of conditional entropies with trivial con-
ditioning system. Here, we mostly discuss properties of
the conditional von Neumann entropy H(A|B), and only
note that similar properties also hold for other condi-
tional entropies such as Hmin(A|B) and Hcoll(A|B) (or
more generally Rényi entropies).

Firstly, the conditional entropy reduces to the uncon-
ditional entropy for product states. That is, for bi-
partite states of the form ρAB = ρA ⊗ ρB , we have
H(A|B) = H(A). Secondly, note that the entropy of
a classical-quantum state is non-negative,

H(X|B) ≥ 0 for X a classical register. (152)

In contrast, as noted above, the fully quantum entropy
H(A|B) can be negative.

A fundamental property is the so-called data-
processing inequality. It says that the uncertainty of A
conditioned on some system B never goes down if one

16 One can verify that Epg is a valid quantum operation because it
is completely positive and trace preserving map (assuming ρB is
full rank).

processes system B, i.e., acts on B with a quantum chan-
nel E : B → B′. That is (Lieb and Ruskai, 1973),

H(A|B) ≤ H(A|B′) . (153)

This includes the case where system B = B1B2 is bi-
partite and the processing corresponds to discarding a
subsystem, say B2. In this case the data-processing in-
equality takes the form H(A|B) ≤ H(A|B1). This in-
equality is intuitive in the sense that having access to
more information can never increase the uncertainty.

Another useful property of conditional entropies is re-
lated to the monogamy of entanglement. This corre-
sponds to the idea that the more A is entangled with
B the less A is entangled with a purifying system C.
Suppose that C is a system that purifies ρAB , i.e.,
ρABC = |ψ〉〈ψ|. Then, we have

H(A|B) = −H(A|C) . (154)

Typically one associates entanglement with a negative
conditional entropy, and indeed as discussed above, the
coherent information (the negative of the conditional en-
tropy) lower bounds the distillable entanglement. In
this sense, the relation in (154) captures the intuition of
monogamy of entanglement. It implies that if ρAB has a
negative conditional entropy, then ρAC must have a pos-
itive conditional entropy. So there is a trade-off between
the entanglement present in ρAB and in ρAC .

The relation in (154) is called the duality relation, as
it relates an entropy to its dual entropy. As we have seen
the von Neumann entropy is dual to itself but in general
the duality relation involves two different entropies. For
example, the min-entropy is dual to the max-entropy,

Hmax(A|B) := −Hmin(A|C) . (155)

We take (155) as the definition of the max-entropy, al-
though an explicit expression in terms of the marginal
ρAB can be derived (König et al., 2009). More generally,
the duality relation for the Rényi entropy family is given
in App. C.2.

C. Classical memory uncertainty relations

We now have all the measures at hand to discuss un-
certainty relations that allow for a memory system. Nat-
urally, we begin with the simplest case of a classical mem-
ory. It turns out that uncertainty relations that allow for
classical memory are often easy to derive from the un-
certainty relations without memory, particularly for the
Shannon entropy (Hall, 1995). Consider the conditional
Shannon entropy, which can be written as

H(X|Y ) = H(XY )−H(Y ) =
∑
y

PY (y)H(X|Y = y) .

(156)
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Now consider some generic Shannon entropy uncertainty
relation for measurements Xn and quantum states ρA:∑

n

H(Xn) ≥ q where PXn(x) = 〈Xxn|ρA|Xxn〉

and q > 0 state-independent . (157)

The goal is to extend this to quantum-classical states ρAY
where the classical memory Y holds some information
about the preparation of the quantum marginal

ρAY =
∑
y

PY (y) ρyA ⊗ |y〉〈y|Y with distributions

PXnY (x, y) = PY (y)〈Xxn|ρyA|Xxn〉 .
(158)

However, assuming that the uncertainty relation (157)
holds for all quantum states, it holds in particular for
each conditional state ρyA associated with Y = y in the
classical memory Y . Averaging over y gives∑

y

PY (y)
∑
n

H(Xn|Y = y) ≥
∑
y

PY (y)q = q . (159)

Hence, we find by (156) that∑
n

H(Xn) ≥ q =⇒
∑
n

H(Xn|Y ) ≥ q . (160)

That is, any Shannon entropy uncertainty relation of
the form (157) implies a corresponding uncertainty re-
lation in terms of the conditional Shannon entropy of the
form (160). Note that the conditional version (160) even
provides a stronger bound, since by the data-processing
inequality (153) conditioning on side information can
only reduce uncertainty.

Example 20. Consider a bipartite state ρAB, where Al-
ice will measure system A in one of two bases X or Z
and Bob will measure system B in the basis Y. Then,
the Maassen-Uffink relation (31) implies

H(X|Y ) +H(Z|Y ) ≥ qMU , (161)

for the distribution

PXY (x, y) = 〈Xx ⊗ Yy|ρAB |Xx ⊗ Yy〉 , (162)

and analogously PZY (z, y).

It is worth noting that the classical memory Y can
be considered multipartite, say, of the form Y =
Y1Y2...Yn (Cerf et al., 2002; Renes and Boileau, 2009).
Since by the data-processing inequality (153) discarding
subsystems of Y can never reduce the uncertainty, (160)
implies that∑

n

H(Xn) ≥ q =⇒
∑
n

H(Xn|Yn) ≥ q . (163)

Example 21. Consider a tripartite state ρABC , where
Alice will measure system A in one of two bases X or
Z, Bob will measure system B in the basis YB, and the
third party Charlie will measure system C in the basis
YC . Then, the Maassen-Uffink relation (31) implies

H(X|YB) +H(Z|YC) ≥ qMU . (164)

This relation is reminiscent of the scenario in quantum
key distribution. Namely, if Alice and Bob verify that
H(X|YB) is close to zero, then (164) implies that Charlie
is fairly ignorant about Z. That is, H(Z|YC) is roughly
qMU or larger. We emphasize, however, that (164) can-
not be used to prove security against general quantum
memory eavesdropping attacks (see Sec. VI.B).

D. Bipartite quantum memory uncertainty relations

1. Guessing game with quantum memory

Let us now make explicit what the guessing game (see
Section III.F) looks like when we allow quantum mem-
ory. Specifically, the rules of the game now allow Bob
to keep a quantum memory system in order to help him
guess Alice’s measurement outcome. This is illustrated
in Fig. 8:

1. Bob prepares a bipartite quantum system AB in a
state ρAB . He sends system A to Alice while he
keeps system B.

2. Alice performs one of two possible measurements,
X or Z, on A and stores the outcome in the classical
register K. She communicates her choice to Bob.

3. Bob’s task is to guess K.

Note that in this game, Bob can make an educated guess
based on his quantum memory B.

Example 22. Let the A system be one qubit and Alice’s
two measurements given by σX and σZ. Then, Bob can
win the game with probability one by preparing the maxi-
mally entangled state and using the strategy from Ex. 19.

This example illustrates the power of a quantum mem-
ory, and in particular of one that is entangled with the
system being measured. At first sight, this might seem
to violate the usual notion of the uncertainty principle.
However, it does not. What it illustrates is that the
usual formulations of the uncertainty principle, such as
the Robertson relation (2) or the Maassen-Uffink rela-
tion (31), are not about conditional uncertainty. The
relations (2) and (31) are perfectly valid but limited in
this sense.
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Θ = Z
Θ
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Alice
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Θ
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FIG. 8 Diagram showing the guessing game in the presence
of a quantum memory system. First, Bob prepares AB in
state ρAB , and then sends system A to Alice. Second, Al-
ice performs either the X or Z measurement on A, and then
announces the measurement choice Θ to Bob. Bob’s task is
to correctly guess K. The question is thus: how uncertain
is Bob about Alice’s measurement outcome K, given that he
has access to B and Θ?

2. Measuring in two orthonormal bases

Let us first discuss how the Maassen-Uffink rela-
tion (31) can be extended to the setup when the observer
has a quantum memory. Note that Ex. 19 and 22 illus-
trate that the bound in the uncertainty relation must
become trivial in the case where Bob’s memory is max-
imally entangled to Alice’s system. On the other hand,
we know that the bound must be non-trivial when Bob
has no memory, since this corresponds to the situation
covered by (31). Likewise if Bob has a memory that is
only classically correlated to Alice’s system, then we al-
ready saw in (161) that the Maassen-Uffink relation can
be extended. Therefore, it becomes clear that we need a
state-dependent extension: a bound that becomes weaker
as Bob’s memory is more entangled with Alice’s system.
Indeed, Berta et al. (2010) proved the following uncer-
tainty relation. For any bipartite state ρAB and any or-
thonormal bases X and Z,

H(X|B) +H(Z|B) ≥ qMU +H(A|B) , (165)

with qMU as in (31). Here, the conditional entropy
H(X|B) is evaluated on the classical quantum state

ρXB =
∑
x

|x〉〈x|X ⊗
(
〈Xx| ⊗ 1B

)
ρAB

(
|Xx〉 ⊗ 1B

)
,

(166)

and similarly for H(Z|B). The classical quantum con-
ditional entropies H(X|B) and H(Z|B) quantify Bob’s
uncertainty about X and Z respectively, given that Bob
has access to the quantum memory B.

The quantity H(A|B) on the right-hand side of (165)
makes the bound state-dependent. We already men-
tioned around (145) that −H(A|B) is a quantifier of the
entanglement present in ρAB . For maximally entangled
states we have −H(A|B) = log dA, whereas for all sepa-
rable (i.e., non-entangled) states we have H(A|B) ≥ 0.

Example 23. Let us explore in more detail how the
bound (165) behaves for some illustrative cases:

1. For maximally entangled states we get

qMU +H(A|B) = qMU − log dA ≤ 0 , (167)

and hence the bound becomes trivial. This is as
expected from the guessing game example discussed
in Section IV.D.1.

2. For the case when Bob has no memory (i.e., B is
trivial), (165) reduces to (47),

H(X) +H(Z) ≥ qMU +H(ρA) . (168)

This is the strengthened Maassen-Uffink relation
for mixed states,

3. If B is not entangled with A (i.e., the state is sep-
arable), then H(A|B) ≥ 0. Hence, we obtain

H(X|B) +H(Z|B) ≥ qMU . (169)

This last example illustrates that (165) has applica-
tions for entanglement witnessing. More precisely, note
that by the data-processing inequality (153), (165) also
implies

H(X|YB) +H(Z|WB) ≥ qMU +H(A|B)

with YB and WB measurements on B. (170)

Now violating the qMU lower bound in (169) implies that
the state ρAB must have been entangled. We discuss this
in detail in Sec. VI.D.

Using the following extension of the notation from
Sec. III.F to quantum memory,

ρKΘB :=
1

2

∑
k

∑
j=X,Z

|k〉〈k|K ⊗ |j〉〈j|Θ

⊗
(
〈k|U†j ⊗ 1B

)
ρAB

(
Uj |k〉 ⊗ 1B

)
, (171)

we can rewrite (165) as

H(K|BΘ) ≥ 1

2
(qMU +H(A|B)) . (172)

This is the extension of (64) to quantum memory. Writ-
ing the relation in this way also makes a connection to
the guessing game discussed in Sec. IV.D.1, see Fig. 8.
We point to Sec. IV.D.7 for a partial extension of (172)
in terms of the more operational min-entropy.

Let us take a step back and look at the history that led
up to the uncertainty relation (165). Arguably the first
work on uncertainty relations with quantum memory was
by Christandl and Winter (2005). Their formulation was
restricted to bases that are related by the Fourier matrix
but their work captures similar intuition as (165). The



27

main difference, however, is that their relations are for-
mulated for quantum channels rather than for quantum
states. We discuss quantum channel uncertainty rela-
tions in Sec. IV.G.

Renes and Boileau (2009) gave the first quantum mem-
ory uncertainty relation in terms of the quantum state
perspective. However, instead of bipartite states ρAB ,
they considered tripartite states ρABC .17 We discuss en-
tropic uncertainty relations for tripartite states in the
next subsection (Sec. IV.E). Moreover, there is a close
connection between tripartite and bipartite uncertainty
relations. In fact, as we will discuss in Sec. IV.E, Renes
and Boileau (2009) conjectured a tripartite uncertainty
relation that is equivalent to (165). Sec. IV.E also dis-
cusses the proof of quantum memory uncertainty rela-
tions such as (165), and notes that the tripartite formu-
lation of (165) naturally generalizes to the Rényi entropy
family.

3. Arbitrary measurements

Here, we discuss some generalizations of (165) for ar-
bitrary measurements. Recall from Sec. III.D that the
Maassen-Uffink relation generalizes to POVMs with the
overlap c given by (49). In contrast, (165) holds with c
as in (49) if one of the POVMs has rank-one elements
(Coles et al., 2011), but it does not hold for general
POVMs. This can be remedied in two ways. The ap-
proach by Frank and Lieb (2013a) leads to a relation of
the form (165) using a weaker complementarity factor.
We have

H(X|B) +H(Z|B) ≥ log
1

c′′
+H(A|B) (173)

where c′′ = max
x,z

tr
[
XxZz

]
. (174)

Note that c′′ ≥ c in general and that c′′ reduces to c for
measurements in bases. However, one may argue that the
form (173)–(174) is not the most natural one if we con-
sider general projective measurements or POVMs. This
is best explained by means of an example (Furrer et al.,
2014).

Example 24. Consider a quantum system A comprised
of two qubits, A1 and A2, where A1 is maximally entan-
gled with a second qubit, B, and A2 is in a fully mixed
state, in product with A1 and B. We employ rank-two
projective measurements XA1

and ZA1
which measure A1

in two MUBs and leave A2 intact. Analogously, we em-
ploy XA2 and ZA2 which measure A2 in two MUBs and

17 More precisely, Renes and Boileau (2009) did establish a bipartite
uncertainty relation—a special case of (165) where the X and Z
bases are related by the Fourier matrix. But they focused their
discussion primarily on the tripartite formulation.

leave A1 intact. Evaluating the terms of interest for
the measurement pairs {XA1 ,ZA1} and {XA2 ,ZA2} yields
c = 1

2 and c′′ = 1 in both cases. Moreover, we find that

H(A|B) = H(A1|B) +H(A2) = −1 + 1 = 0 . (175)

Hence, the right hand side of the Frank and Lieb rela-
tion (173) vanishes for both measurement pairs. Indeed,
if the maximally entangled system A1 is measured, we
find that

H(X|B) +H(Y |B) = 0 , (176)

and the bound in (173) becomes an equality for the mea-
surement pair {XA1 ,ZA1}. On the other hand, if A2 is
measured instead, we find that

H(X|B) +H(Y |B) = 2 , (177)

and the bound is far from tight for the measurement pair
{XA2

,ZA2
}.

Examining this example, it is clear that the expected
uncertainty depends strongly on which of the two sys-
tems is measured. More generally, it depends on how
much entanglement is consumed in the measurement pro-
cess. However, this information is not taken into account
by the overlaps c or c′′, nor by the entanglement of the
initial state as measured by H(A|B). Example 24 sug-
gests that (165) can be generalized by considering the
difference in entanglement of the state before and after
measurement. In fact, Tomamichel (2012) shows the bi-
partite uncertainty relation

H(X|B) +H(Z|B) ≥ log
1

c′
+H(A|B)

−min
{
H(A′|XB), H(A′|ZB)

}
, (178)

with c′ given by (51). The entropy H(A′|XB) is evalu-
ated for the post-measurement state

ρXA′B =
∑
x

|x〉〈x|X ⊗ (XxA ⊗ 1B)ρAB(XxA ⊗ 1B) ,

(179)

and similarly for H(A′|ZB). (We use A′ = A to denote
the system A after measurement to avoid confusion.) No-
tably, the term H(A′|XB) vanishes for a measurement
given by a basis since in this case the state of A′ is pure
conditioned on X.

Example 24 (continued). It is straightforward to
see that if A1 (A2) is measured, the average entangle-
ment left in the post-measurement state measured by the
von Neumann entropy is given by H(A2|B) (H(A1|B)).
Hence, (178) turns into

H(X|B) +H(Y |B) ≥ log
1

c
+
(
H(A|B)−H(A′|B)

)
,

(180)

where A′ corresponds to A2 (A1). This inequality is tight
for both measurements.
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4. Multiple measurements

The basic goal here is to lift some of the relations
in Sec. III.G to quantum memory. A general approach
for deriving such relations is provided in (Dupuis et al.,
2015). As in the unconditional case (cf. Sec. III.G.1),
relations for two measurements already imply bounds
for larger sets of measurements. For example, suppos-
ing A is a qubit and considering the Pauli measure-
ments on A, we find by the simple iterative application
of the bound (165) for the measurement pairs {σX, σY},
{σX, σZ}, and {σY, σZ} that

H(K|BΘ) ≥ 1

2
+

1

2
H(A|B) with Θ ∈ {σX, σY, σZ} .

(181)

Here, we use the following extension of the notation from
Sec. III.G to quantum memory,

ρKΘB :=
1

3

∑
k=1,2

∑
j=X,Y,Z

|k〉〈k|K ⊗ |j〉〈j|Θ

⊗
(
〈k|U†j ⊗ 1B

)
ρAB

(
Uj |k〉 ⊗ 1B

)
. (182)

Note that alternatively the left-hand side of (181) might
also be written as

H(K|BΘ) =
1

3

(
H(K|BΘ = σX) +H(K|BΘ = σY)

+H(K|BΘ = σZ)
)
. (183)

where

ρKB|Θ=σX

:=
∑
k=1,2

|k〉〈k|K ⊗
(
〈k|U†X ⊗ 1B

)
ρAB

(
UX |k〉 ⊗ 1B

)
,

(184)

and similarly for σY, σZ. The goal in this subsection will
be to find uncertainty relations that are stronger than
any bounds that can be derived directly from relations
for two measurements.

5. Complex projective two-designs

Berta et al. (2014a) showed that the uncertainty equal-
ity (82) in terms of the collision entropy for a full set of
MUBs also holds with quantum memory. That is, for
any bipartite state ρAB with a full set of d+ 1 MUBs on
the d-dimensional A-system,

Hcoll(K|BΘ) = log(d+ 1)− log
(

2−Hcoll(A|B) + 1
)

with Θ ∈ {θ1, . . . , θd+1} .
(185)

Here, as in (171), we use the notation,

ρKΘB :=
1

d+ 1

d∑
k=1

d+1∑
j=1

|k〉〈k|K ⊗ |j〉〈j|Θ

⊗
(
〈k|U†j ⊗ 1B

)
ρAB (Uj |k〉 ⊗ 1B) .

(186)

Example 25. For the qubit Pauli measurements (185)
yields:

Hcoll(K|BΘ) = log 3− log
(

2−Hcoll(A|B) + 1
)

with Θ ∈ {σX, σY, σZ} . (187)

Since the collision entropy has an interpretation in
terms of the pretty good guessing probability (139),

Hcoll(X|B) = − log ppg
guess(X|B) , (188)

and the pretty good recovery map (148),

Hcoll(A|B) = − log
(
dA · F pg(A|B)

)
, (189)

the uncertainty equality (185) can be understood as an
entanglement-assisted game of guessing complementary
measurement outcomes (as described in Sec. IV.D.1).
Namely, we can rewrite (185) as,

ppg
guess(K|BΘ) =

d · F pg(A|B) + 1

d+ 1
. (190)

This gives a one-to-one relation between uncertainty (cer-
tainty) as measured by ppg

guess(K|BΘ) and the absence
(presence) of entanglement as measured by F pg(A|B). In
contrast, quantum memory assisted uncertainty relations
for two measurements, e.g., as in (172), only provide us
with a connection between uncertainty and entanglement
in one direction. Namely, they state that low uncertainty
implies the presence of entanglement (cf. Sec. VI.D).

The uncertainty equality (185) is derived by extend-
ing the proof from (Ballester and Wehner, 2007) that
made use of the fact that a full set of mutually unbiased
bases generates a complex projective two-design (Klap-
penecker and Rotteler, 2005). From this, it is also imme-
diate that an equality as (185) holds for other complex
projective two-designs as well. This includes in partic-
ular so-called symmetric informationally complete pos-
itive operator valued measures: SIC-POVMs.18 More
precisely, any SIC-POVM{

1

d
|ψk〉〈ψk|

}d2
k=1

(191)

18 We refer to (Renes et al., 2004) for a detailed discussion of SIC-
POVMs.
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gives rise to the uncertainty equality

Hcoll(K|BΘ) = log
(
d(d+ 1)

)
− log

(
2−Hcoll(A|B) + 1

)
with Θ ∈ {θ1, . . . , θd+1} .

(192)

Other examples that generate complex projective two-
designs are unitary two-designs.19 This includes in par-
ticular the Clifford group for n qubit systems.

Berta et al. (2014b) also showed that the relation (185)
for a full set of d+ 1 MUBs generates the following rela-
tion in terms of the von Neumann entropy,

H(K|BΘ) ≥ log(d+ 1)− 1 + min
{

0, H(A|B)
}

with Θ ∈ {θ1, . . . , θd+1} . (193)

This corresponds to the generalization of (81) to quan-
tum memory. Note that the entropy dependent term on
the right-hand side only makes a contribution if the con-
ditional entropy H(A|B) is negative. This is consistent
with (81).

For smaller sets of L < d+1 MUBs, Berta et al. (2014a)
extended (91) to quantum memory,

Hcoll(K|BΘ)

≥
{
− log d·2−Hcoll(A|B)+L−1

L·d for Hcoll(A|B) ≥ 0

− log d+(L−1)2−Hcoll(A|B)

L·d for Hcoll(A|B) < 0

with Θ ∈ {θ1, . . . , θL} .
(194)

Moreover, for all d and L there exist states that achieve
equality. Note that for L = d + 1 the distinction of
cases in (194) collapses and furthermore become an up-
per bound as shown in (185). In Fig. 9 we illustrate this
by means of an example for d = 5 (with L ≤ 6).

6. Measurements in random bases

In the unconditional case we found that measurements
in random bases lead to strong uncertainty relations as,
e.g., in (98). Hence, we might expect that we can gener-
alize this to quantum memory,

H(K|BΘ)
?
≥ O

(
log d ·

(
1− 1

L

))
+ min

{
0, H(A|B)

}
with Θ ∈ {θ1, . . . , θL} chosen at random .

(195)

Unfortunately, the previous works (Fawzi et al., 2011)
and (Adamczak et al., 2016) make use of measure concen-
tration and ε-nets arguments that seem to fail for quan-
tum memory. It is, however, possible to use some of the

19 We refer to (Dankert et al., 2009) for a detailed discussion of
unitary two-designs.
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FIG. 9 For d = 5 and a various number of MUBs n ≤ d+1 = 6
we plot the lower bounds (lb) on the entropic uncertainty
Hcoll(K|Θ) from (194) as a function of Hcoll(A|B). More-
over, for n < 6 we only have the trivial upper bound (ub) on
Hcoll(K|BΘ), whereas for n = 6 the lower and upper coincide
as in (185).

techniques from (Berta et al., 2014a) based on operator
Chernoff bounds to derive relations of the form (195).
The downside is that we only get strong uncertainty re-
lations for a large number L of measurements,

L ≥ O
(
d log(d)

)
. (196)

We conclude that it is an open problem to show the exis-
tence of small(er) sets of L > 2 measurements that gener-
ate strong uncertainty relations that hold with quantum
memory.

7. Product measurements on multiple qubits

Let us now consider uncertainty relations for multiple-
qubit systems, which have application in quantum cryp-
tography. For historical reasons we start with the n qubit
six-state measurements and only discuss the BB84 mea-
surements afterwards (see Sec. III.G.5 for definitions of
these measurements). For the six-state measurements,
Berta (2013) showed that for any bipartite state ρAnB
with the An-system given by n qubits,

Hcoll(K
n|BΘn) ≥ n · log

3

2
+ 1− log

(
2−Hcoll(A

n|B) + 1
)

with Θn ∈ {θ1, . . . , θ3n} .
(197)

This extends (187) from one to n qubits. The
bound (197) also implies a similar relation in terms of
the von Neumann entropy (Berta et al., 2014b), extend-
ing (105) to

H(Kn|BΘn) ≥ n · log
3

2
+ min

{
0, H(An|B)ρ

}
with Θn ∈ {θ1, . . . , θ3n} . (198)
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Moreover, Dupuis et al. (2015) improved (197) to the
conceptually different bound

Hcoll(K
n|BΘn) ≥ n · γ6s

(
Hcoll(A

n|B)

n

)
− 1 , (199)

where

γ6s(x) :=

{
x if x ≥ log 3

2

f−1(x) log 3 if 0 < x < log 3
2

with f(x) = hbin(x) + x log 3− 1 , (200)

and hbin denotes the binary entropy. Using the equiva-
lence between the collision entropy and the min-entropy
from (142) this readily implies a relation as (199), but
with both the collision entropy terms Hcoll replaced with
min-entropy terms Hmin. Importantly, this variant re-
mains non-trivial for all values of Hmin(An|B). What’s
more, Dupuis et al. (2015) establish a meta theorem that
can be used to derive uncertainty relations also for other
kinds of measurements.

For the n qubit BB84 measurements Dupuis et al.
(2015) found

Hcoll(K
n|BΘn) ≥ n · γBB84

(
Hcoll(A

n|B)

n

)
− 1

with Θn ∈ {θ1, . . . , θ2n} .
(201)

where

γBB84(x) :=

{
x if x ≥ 1

2
g−1(x) if 0 < x < 1

2

with g(x) = hbin(x) + x− 1 . (202)

Again using the equivalence between the collision en-
tropy and the min-entropy from (142), we get a relation
as (201) but with both the collision entropy terms Hcoll

replaced with min-entropy terms Hmin. We note that
this is also non-trivial for one qubit (n = 1) and only
the two measurements Θ ∈ {σX, σZ}. The relation (201)
and its min-entropy analogue can be understood in terms
of the bipartite guessing game with quantum memory as
mentioned in Sec. IV.D.1.

8. General sets of measurements

Section III.G.6 discussed the work of Liu et al. (2015)
for unipartite systems without memory. Here, we note
that they also gave bipartite uncertainty relations with
quantum memory. Again for simplicity we only state the
case of L = 3 observables (in any dimension d ≥ 2). We
find as the direct extension of (106),

H(K|BΘ) ≥ 1

3
log

1

m
+

2

3
H(A|B)

with Θ ∈ {V (1), V (2), V (3)} , (203)

where the multiple overlap constant m is defined as
in (107). As in the unconditional case, this has to be com-
pared with the bounds implied by two measurement rela-
tions as in (181). We refer to Liu et al. (2015) for a fully
worked out example where (203) can become stronger
than any bounds implied by two measurement relations.

E. Tripartite quantum memory uncertainty relations

1. Tripartite uncertainty relation

The physical scenario corresponding to tripartite un-
certainty relations is shown in Fig. 10. Suppose there is
a source that outputs the systems ABC in state ρABC .
Systems A, B, and C are respectively sent to Alice, Bob,
and Charlie. Then Alice performs either the X or Z mea-
surement. If she measures X, then Bob’s goal is to min-
imize his uncertainty about X. If she measure Z, then
Charlie’s goal is to minimize his uncertainty about Z.
Renes and Boileau (2009) considered exactly this sce-
nario but restricted to the case where the X and Z bases
are related by the Fourier matrix F ,

|Xx〉 = F |Zx〉 with F =
∑
z,z′

ω−zz
′

√
d
|Zz〉〈Zz′ |

where ω = e2πi/d . (204)

Notice that this makes X and Z mutually unbiased, al-
though in general not all pairs of MUBs are related by
the Fourier matrix. They quantified Bob’s and Charlie’s
uncertainty in terms of the conditional entropiesH(X|B)
and H(Z|C) respectively, and proved that any tripartite
state ρABC satisfies the relation

H(X|B) +H(Z|C) ≥ log d . (205)

Here, d is the dimension of the A system and the classical-
quantum states ρXB and ρZC are defined similarly as
in (166). Renes and Boileau (2009) also conjectured that
this relation generalizes to arbitrary measurements given
by bases,

H(X|B) +H(Z|C) ≥ qMU , (206)

with qMU as in (31). Intuitively, what (205) says is that
the more Bob knows about Z, the less Charlie knows
about X, and vice-versa. This is a signature of the
well-known trade-off monogamy of entanglement, which
roughly says that the more Bob is entangled with Al-
ice, the less he is with Charlie.20 The trade-off described

20 We refer to (Horodecki et al., 2009) for an in-depth review about
entanglement.
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FIG. 10 Diagram showing the tripartite quantum memory
setup. First, a source prepares ABC in state ρABC , and
sends A to Alice, B to Bob, and C to Charlie. Second, Al-
ice measures either X or Z on A and asks: how uncertain is
Bob about her X outcome, given B, and how uncertain is
Charlie about her Z outcome, given C? As shown in (206)
there is a trade-off that is quantified by the complementarity
of the measurements X and Z. We can interpret this sce-
nario as a guessing game, also called a monogamy game. In
this game, Bob and Charlie play against Alice. They prepare
ρABC where they send A to Alice, Bob keeps B and Charlie
keeps C. Alice then randomly chooses a measurement ob-
taining the measurement outcome K. Afterwards, she sends
her choice of basis to Bob and Charlie. They win the game
if and only if both output K. This game measures the same
kind of uncertainty as the relation (206), explicitly exploiting
the monogamy of entanglement: if Bob produces K = X cor-
rectly in case Alice measured X, then this is a certificate that
Charlie cannot produce a good guess of K = Z in case Alice
measured Z.

by (205) and (206) can be viewed as a fine-grained no-
tion of this monogamy. Namely, the monogamy appears
at the level of measurement pairs (X,Z).

Also note that (206) implies both the Maassen-Uffink
relation (31) and its classical memory extension (164),
due to the data-processing inequality (153). That is,

H(X|B) ≤ H(X|Y ) ≤ H(X) , (207)

for any measurement Y on B. As we will see
in Sec. IV.E.3 the quantum memory extension (206)
is strictly stronger than the classical memory exten-
sion (164).

2. Proof of quantum memory uncertainty relations

The quantum memory uncertainty relation (206) was
first proved by Berta et al. (2010). Although these
authors explicitly stated their relation in the bipartite
form (165), they noted that two relations are equivalent.

The equivalence between the bipartite and tripartite
relations can be seen as follows. To obtain the bipartite
relation (165) from the tripartite relation (206), apply the
latter to a purification |ψ〉ABC of ρAB . Now for tripartite
pure states we have,

H(Z|C) = H(Z|B)−H(A|B) , (208)

and inserting this into (206) gives (165). Conversely we
first prove (206) for tripartite pure states |ψ〉ABC by in-
serting (208) into (165). Then, note that the proof for
mixed states ρABC follows by applying (206) to a purifi-
cation |ψ〉ABCD of ρABC , and making use of the data-
processing inequality (153),

H(Z|CD) ≤ H(Z|C) . (209)

The original proof of (206) was based on so-called
smooth entropies.21 The proof was subsequently sim-
plified by Tomamichel and Renner (2011) and Coles
et al. (2011), which culminated in the concise proof given
by Coles et al. (2012). The latter proof distills the main
ideas of the previous proofs: the use of duality relations
for entropies as in (154) and the data-processing inequal-
ity as in (153). More generally, the proof technique ap-
plies to a whole family of entropies satisfying a few ax-
ioms (including the Rényi entropies). We will present the
proof in App. C.3. Finally, we note that a direct matrix
analysis proof was given by Frank and Lieb (2013a).

3. Quantum memory tightens the bound

Here, we argue that the tripartite uncertainty rela-
tion in terms of quantum memory (206) is tighter than
the corresponding relation in terms of classical mem-
ory (164). We will show that there exist states ρABC
for which (206) is an equality but (164) is loose, even if
one optimizes over all choices of measurements on B and
C.

Let us introduce some notation. Consider a bipartite
state ρAB and let XA and YB be measurements on sys-
tems A and B, respectively. Now, how small can we make
the uncertainty XA given that we can optimize over all
choices of YB? That is, consider the quantity

α(XA, ρAB) := min
YB

H(XA|YB) . (210)

This is to be compared to the classical-quantum condi-
tional entropy

β(XA, ρAB) := H(XA|B) . (211)

Due to the data-processing inequality (153), we have that

α(XA, ρAB) ≥ β(XA, ρAB) , (212)

and naively one might guess that (212) is satisfied with
equality in general. However, this is false (DiVincenzo
et al., 2004; Hiai and Petz, 1991). In general there is
a non-zero gap: α − β > 0. There are many examples

21 We refer to Tomamichel (2016) for an introduction to smooth
entropies.
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to illustrate this, in fact one can argue that most states
ρAB exhibit a gap between α and β (Dupuis et al., 2013).
This phenomenon is called locking and we discuss it more
in Sec. VI.H.3. It is closely related to a measure of quan-
tum correlations known as quantum discord (Modi et al.,
2012; Ollivier and Zurek, 2001). Non-zero discord is as-
sociated with the potential to have a gap between α and
β. We discuss discord in more detail in Sec. VI.H.2. For
now we note that discord is defined as,

D(A|B) := min
YB

H(A|YB)−H(A|B) (213)

where the optimization is over all POVMs YB on B.

Example 26. Let XA = {|0〉〈0|, |1〉〈1|} and consider the
bipartite quantum state:

ρAB =
1

2

(
|0〉〈0| ⊗ |0〉〈0|+ |1〉〈1| ⊗ |+〉〈+|

)
. (214)

For this state, the gap between α and β is precisely given
by the discord,

D(A|B) = α(XA, ρAB)− β(XA, ρAB) . (215)

It is known that D(A|B) = 0 if and only if system B is
classical, i.e., if ρAB is a quantum-classical state. But
the state ρAB in (214) is not quantum-classical. Hence,
D(A|B) > 0 and we have α > β.

Now we give an example state for which the quantum
memory relation (206) is an equality but the measured
relation (164) is loose.

Example 27. Consider the tripartite pure state
|ψ〉ABC = (|000〉+ |11+〉)/

√
2, with Z being the standard

basis and X being the {|+〉, |−〉} basis. We have

H(Z|C) = 1−H(ρC) ≈ 0.4 (216)
H(X|B) = H(ρC) ≈ 0.6 . (217)

Hence, this state satisfies the quantum memory rela-
tion (205) with equality,

H(X|B) +H(Z|C) = 1 . (218)

However, the classical memory relation (164) is not sat-
isfied with equality. This follows from Ex. 26, noting that
ρAC is the same state as in (214).

4. Tripartite guessing game

Tripartite uncertainty relations can be understood in
the language of guessing games as outlined in Fig. 10.
Tomamichel et al. (2013) show that there is a fun-
damental trade-off between Bob’s guessing probabil-
ity pguess(K|BΘ) and Charlie’s guessing probability
pguess(K|CΘ),

pguess(K|BΘ) + pguess(K|CΘ) ≤ 2b , (219)

with the overlap b as in (40). Alternatively, one can
rewrite this in terms of the min-entropy using the con-
cavity of the logarithm,

Hmin(K|BΘ) +Hmin(K|CΘ) ≥ 2 log
1

b
. (220)

Note that this relation (220) is an extension of (71) to the
tripartite scenario. This relation again shows a trade-off
between Bob’s and Charlie’s winning probability, which
is closely connected to the idea of monogamy of entan-
glement (cf. Sec. IV.E.1).

5. Extension to Rényi entropies

The Maassen-Uffink relation for Rényi entropies (35)
naturally generalizes to a tripartite uncertainty relation
with quantum memory. It is expressed in terms of the
conditional Rényi entropies, whose definition and prop-
erties are discussed in App. C. For these entropies, the
following relation holds (Coles et al., 2012)22

Hα(X|B) +Hβ(Z|C) ≥ qMU for
1

α
+

1

β
= 2 . (221)

Notably, the tripartite uncertainty relation (206) is the
special case where α = β = 1. Another interesting spe-
cial case is α =∞ and β = 1/2, which respectively corre-
spond to the min- and max-entropies that we introduced
in (138) and (155). The resulting relation,

Hmin(X|B) +Hmax(Z|C) ≥ qMU , (222)

was first proved by Tomamichel and Renner (2011),
and is fundamental to quantum key distribution (see
Sec. VI.B).

6. Arbitrary measurements

All of the tripartite uncertainty relations stated above
can be generalized to arbitrary POVMs X and Z. Coles
et al. (2011) and Tomamichel and Renner (2011) in-
dependently noted that (206) holds for POVMs with
the overlap c given by (49). This was strengthened
by Tomamichel (2012) to the overlap c′ given by (51).
Further strengthening was given by Coles and Piani
(2014b). However, their bound is implicit, involving

22 More precisely, the relation follows from the work (Coles et al.,
2012) in conjunction with properties of the conditional Rényi
entropy presented in (Müller-Lennert et al., 2013). It is thus
first mentioned in the later work (Müller-Lennert et al., 2013).
Notably, Coles et al. (2012) proves a tripartite uncertainty re-
lation for a different definition of the conditional Rényi en-
tropy (Tomamichel et al., 2009).
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an optimization of a single real-valued parameter over
a bounded interval. Namely, they showed a lower bound

qCP2 := max
0≤p≤1

λmin(∆(p)) , (223)

where λmin[·] denotes the minimum eigenvalue and

∆(p) := p δ(X,Z) + (1− p)δ(Z,X) (224)

δ(X,Z) :=
∑
x

ax(X,Z) · Xx (225)

ax(X,Z) := − log
∥∥∥∑

z

ZzXxZz
∥∥∥ . (226)

Using the fact that δ(X,Z) ≥ minx ax(X,Z) · 1, it is
straightforward to show that qCP2 ≥ log(1/c′).

F. Mutual information approach

While entropy quantifies the lack of information, it is
both intuitive and useful to also consider measures that
quantify the presence of information or correlation. Con-
sider the mutual information I(X : Y ), which quantifies
the correlation between random variables X and Y , and
is given by

I(X :Y ) := H(X) +H(Y )−H(XY ) (227)
= H(X)−H(X|Y ) . (228)

It quantifies the information gained—or equivalently,
the reduction of ignorance—about X when given access
to Y . It is worth noting that the mutual information
is particularly well-suited for applications in information
theory. For example, the capacity of a channel can be
expressed in terms of its mutual information (Shannon,
1948), that is, in terms of the correlations between a
receiver and a sender. Hence, we will also discuss the
application of “information exclusion relations” (uncer-
tainty relations expressed via the mutual information) to
information transmission over channels.

1. Information exclusion principle

Hall (1995, 1997) pioneered an alternative formulation
of the uncertainty principle based on the mutual informa-
tion, which he called the information exclusion principle.
Information exclusion relations are closely related to en-
tropic uncertainty relations that allow for memory. The
idea is that one is interested in the trade-off between a
memory system Y being correlated to X versus being cor-
related to Z (with X and Z being two measurements on
some quantum system A).

2. Classical memory

We show now how information exclusion relations fol-
low directly from entropic uncertainty relations (Hall,

1995). Consider a generic uncertainty relation involving
Shannon entropy terms, of the form

∑N
n=1H(Xn)ρ ≥ q

as in (157). Recall the discussion in Sec. IV.C which
showed that the uncertainty relation

∑N
n=1H(Xn|Y ) ≥ q

as in (160) immediately follows, where Y is some classical
memory. Now with the definition of the mutual informa-
tion (227) we can rewrite this as

N∑
n=1

H(Xn)− I(Xn : Y ) ≥ q . (229)

We have H(Xn) ≤ log d for each n with d the dimension
of the quantum system A that is measured. Combining
this with (229) gives

N∑
n=1

I(Xn : Y ) ≤ N log d− q . (230)

For example, if we take the Maassen-Uffink relation (31)
as the starting point, we end up with

I(X : Y ) + I(Z : Y ) ≤ log(d2c) =: rH (231)

The information exclusion relation in (231) was presented
by Hall (1995). Note that we have log d ≤ rH ≤ 2 log d,
with rH reaching the extreme points respectively for c =
1/d and c = 1. Equation (231) has an intuitive interpre-
tation: any classical memory cannot be highly correlated
to two complementary measurement outcomes of a quan-
tum system. In the fully complementary case, the bound
becomes rH = log d, implying that if the classical mem-
ory is perfectly correlated to X, I(X : Y ) = log d, then
it must be completely uncorrelated to Z, I(Z : Y ) = 0.

3. Stronger bounds

Notice that (231) uses the same overlap c as appearing
in the Maassen-Uffink uncertainty relation (31). How-
ever, Grudka et al. (2013) realized that this often leads
to a fairly weak bound. They noted that the comple-
mentarity of the mutual information should depend not
only on the maximum element c of overlap matrix [cxz]
(see (32) for its definition), but also on other elements
of this matrix. They conjectured a stronger information
exclusion relation, of the form I(X : Y ) + I(Z : Y ) ≤ rG

with

rG = log2

d · ∑
d largest

cxz

 , (232)

with the sum over the largest d terms of the matrix [cxz].
This conjecture was proved by Coles and Piani (2014b),
where the bound was further strengthened to

I(X :Y ) + I(Z :Y ) ≤ rCP, (233)
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with

rCP := min
{
r(X,Z), r(Z,X)

}
(234a)

r(X,Z) := log

(
d
∑
x

max
z
cxz

)
(234b)

r(Z,X) := log

(
d
∑
z

max
x

cxz

)
. (234c)

One can easily verify that rCP ≤ rG ≤ rH.

Example 28. The unitary in (43) from Ex. 8 provides
a simple example where all three bounds are different,
namely rH = log 6, rG = log 5, and rCP = log(9/2).

Notice that the behavior of the bounds rH and rCP are
qualitatively different in that they become trivial under
different conditions. The former is trivial if at least one
row or column of [cxz] is trivial (i.e., composed of all zeros
except for one element being one), whereas the latter
is trivial only if all rows and columns [cxz] are trivial.
Hence, the latter gives a non-trivial bound for a much
larger range of scenarios.

4. Quantum memory

It is natural to ask whether system Y can be general-
ized to a quantum memory B. Coles and Piani (2014b)
showed that (233) indeed extends to

I(X :B) + I(Z :B) ≤ rCP −H(A|B) . (235)

Here, the quantum mutual information of a bipartite
quantum state ρAB is defined as

I(A :B) := H(ρA) +H(ρB)−H(ρAB) (236)
= H(ρA)−H(A|B) , (237)

and evaluated on the classical-quantum state ρXB as
in (166). Notice that if we specialize to the case where
B = Y is classical, then H(A|Y ) ≥ 0 and hence (235)
also implies (233).

Example 29. Consider a maximally entangled state
ρAB for which both I(X :B) and I(Z :B) become equal
to log d. Hence, the upper bound rCP must be weak-
ened in such a way that it becomes trivial, and indeed
the term −H(A|B) accomplishes this. Namely, we have
−H(A|B) = log d for the maximally entangled state.

In general, a negative value of H(A|B) implies that
ρAB has distillable entanglement (Devetak and Winter,
2005), and this results in a bound in (235) that is larger
than rCP. In the other extreme, when H(A|B) is pos-
itive, which intuitively means that the correlations be-
tween Alice and Bob are weak, (235) strengthens the
bound in (233).

5. A conjecture

Following the resolved conjectures by Grudka et al.
(2013); Kraus (1987); and Renes and Boileau (2009), we
point to a recent open conjecture by Schneeloch et al.
(2014). They ask if for any bipartite quantum state ρAB ,

I(XA :XB) + I(ZA :ZB)
?
≤ I(A :B) , (238)

where XA and ZA are the registers associated with mea-
suring two MUBs XA and ZA on system A, and like-
wise for XB and ZB on system B. The relation (238)
would say that the quantum mutual information is lower
bounded by the sum of the classical mutual informations
in two mutually unbiased bases. We note that a stronger
conjecture, in which XB and ZB are replaced by the
quantum memory B, is violated in general.

G. Quantum channel formulation

1. Bipartite formulation

Christandl and Winter (2005) considered the question
of how well information can be transmitted over a quan-
tum channel. A quantum channel is the general form
for quantum dynamics (Davies, 1976) (more general than
unitary evolution). Mathematically a quantum channel
E is a completely positive trace preserving map, and can
be represented in its Kraus form,

E(·) =
∑
j

Kj(·)K†j , where
∑
j

K†jKj = 1 . (239)

Christandl and Winter (2005) addressed the topic of
sending classical information over a quantum channel,
or more specifically, sending two complementary types of
classical information over a quantum channel. They con-
sider a scenario where Alice chooses a state, with proba-
bility 1/d, from a set of d orthonormal states, which we
label as Z = {|Zz〉〈Zz|}. She then sends the state over
the channel E to Bob, and Bob tries to distinguish which
state she sent. Likewise Alice and Bob may play the
same game but with the X = {|Xx〉〈Xx|} states instead,
where the X and Z states are related by the Fourier ma-
trix F , given by (204). Bob’s distinguishability for the
Z states can be quantified by the so-called Holevo quan-
tity (Holevo, 1973),

χ(E ,Z) =H

(∑
z

1

d
E
(
|Zz〉〈Zz|

))

−
∑
z

1

d
H
(
E
(
|Zz〉〈Zz|

))
. (240)

Likewise, χ(E ,X) is a measure of Bob’s distinguishability
for the X states. Christandl and Winter (2005) proved
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that

χ(E ,X) + χ(E ,Z) ≤ log d+ Icoh

(
1

d
, E
)
, (241)

where the coherent information Icoh(ρ, E) is a measure of
the quality of a quantum channel E introduced by Schu-
macher and Nielsen (1996). For the maximally-mixed
input state 1/d it is given by

Icoh

(
1

d
, E
)

= H
(
E(1/d)

)
−H

((
I ⊗ E

)(
|Φ〉〈Φ|

))
,

(242)

where |Φ〉 =
∑
j(1/
√
d)|j〉|j〉 is a maximally entangled

state. Coles et al. (2011) noted that (241) holds for ar-
bitrary MUBs, and that it naturally generalizes to ar-
bitrary orthonormal bases X and Z with the right-hand
side of (241) replaced by

log
(
d2c
)

+ Icoh

(
1

d
, E
)
. (243)

Later this bound was improved by Coles and Piani
(2014b) to

rCP + Icoh

(
1

d
, E
)
. (244)

While (241) may look similar to some uncertainty re-
lations discussed in this section, especially (235), it is
important to note the conceptual difference. The rela-
tions discussed previously were from a static perspective,
whereas (240) refers to a dynamic perspective involving
a sender and a receiver. Intuitively, what (241) says is
that if Alice can transmit both the Z states and the X
states well to Bob, then E is a noiseless quantum channel,
i.e., it is close to a perfect channel (as quantified by the
coherent information).

2. Static-dynamic isomorphism

With that said, there is a close, mathematical rela-
tionship between the static and dynamic perspectives.
In fact, there is an isomorphism, known as the Choi-
Jamiołkowski isomorphism (Choi, 1975; Jamiołkowski,
1972), that relates the two perspectives (e.g., see Ży-
czkowski and Bengtsson (2004)). Every quantum channel
E corresponds to a bipartite mixed state defined by

ρAB = (I ⊗ E)(|Φ〉〈Φ|) , (245)

where |Φ〉 =
∑
j(1/
√
d)|j〉|j〉 is maximally entangled

(see Fig. 11(a)). Note that ρAB here has the prop-
erty that ρA = trB(ρAB) = 1/dA is maximally mixed.
Likewise, every bipartite mixed state ρAB with marginal

(a) A

A′
|Φ〉AA′

E

A

B
ρAB

(b)

|Φ〉AA′

A

A′

A

B

C
V

|ψ〉ABC

FIG. 11 How to convert the dynamical evolution of a system
into (a) a bipartite mixed state or (b) a tripartite pure state.

ρA = 1/dA corresponds to a quantum channel whose ac-
tion on some operator O is defined as,

E(O) = dA trA

[ (
OT ⊗ 1

)
ρAB

]
, (246)

where the transpose denoted by (·)T is taken in the stan-
dard basis. One can easily verify that the condition that
ρA = 1/dA is connected to the fact that E is trace-
preserving.

This isomorphism can be exploited to derive uncer-
tainty relations for quantum channels as corollaries from
uncertainty relations for states, and vice versa. This
point was emphasized, e.g., by Coles et al. (2011). For
example, if one has an uncertainty relation for bipartite
states ρAB , such as (165), then one can apply this rela-
tion to the state in (245) in order to obtain an uncertainty
relation for channels.

Specifically, notice that if Alice measures observable Z
on system A in Fig. 11(a) and obtains outcome |Zz〉〈Zz|,
then the state corresponding to the transpose, |Zz〉〈Zz|T ,
will be sent through the channel E . In other words,

1

d
|Zz〉〈Zz|T = trA

[
(|Zz〉〈Zz| ⊗ 1)|Φ〉〈Φ|

]
. (247)

This implies that the Holevo quantity χ(E ,ZT ) can be
thought of as a classical-quantum mutual information as,

χ(E ,ZT ) = I(Z : B) = log d−H(Z|B)

where ZT =
{
|Zz〉〈Zz|T

}
, (248)

and the right-hand side is evaluated for the state

ρZB =
∑
z

|z〉〈z| ⊗ trA

[
(|Zz〉〈Zz| ⊗ 1B)ρAB

]
(249)

=
∑
z

1

d
|z〉〈z| ⊗ E

(
|Zz〉〈Zz|T

)
. (250)

Using (248), one can verify that the channel uncertainty
relation (241) is a corollary of the bipartite state uncer-
tainty relation, either (165) or (235).
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3. Tripartite formulation

One can formulate uncertainty relations for a dynamic
tripartite scenario where Alice sends the Z states over
quantum channel E to Bob or the X states over the com-
plementary quantum channel F to Charlie. The rela-
tionship between a channel and its complementary chan-
nel can be seen via the Stinespring dilation (Stinespring,
1955), in which one writes the channel in terms of an
isometry V that maps A→ BC, namely

E(O) = trC [V OV †], (251)

F(O) = trB [V OV †] . (252)

Analogous to (245), we consider the tripartite pure state
defined by

|ψ〉ABC = (1⊗ V )|Φ〉 . (253)

This mapping is depicted in Fig. 11(b). The tripartite
uncertainty relations presented in Section IV.E can then
be applied to the state |ψ〉ABC in (253) in order to derive
uncertainty relations for complementary quantum chan-
nels. For example, Coles et al. (2011) read (206) in this
way to obtain

χ(E ,X) + χ(F ,Z) ≤ log
(
d2c
)
, (254)

for two orthonormal bases X and Z. This relation implies
that if Alice can send the Z states well to Charlie over
the channel F , then Bob cannot distinguish very well the
outputs of the channel E associated with Alice sending a
complementary set of states X.

V. POSITION-MOMENTUM UNCERTAINTY RELATIONS

As discussed in Sec. I, the first precise statement of the
uncertainty principle was formulated for position and mo-
mentum measurements. Namely, Kennard (1927) showed
that for all states (with ~ = 1),

σ(Q) · σ(P ) ≥ 1

2
, (255)

where σ(Q) denotes the standard deviation of the proba-
bility density ΓQ(q) when measuring the position Q, and
similarly for σ(P ) when measuring the momentum P .

Example 30. Consider Gaussian wave packets (see
Fig. 12) with position probability density23

ΓQ(q) =
1√

2πσ2
· exp

(
−q2 · 1

2σ2

)
, (256)

23 In all of Sec. V, we use the letter Γ instead of P for probability
distributions since the momentum operator is already denoted
by the letter P .

and corresponding momentum probability density

ΓP (p) =

√
2σ2

π
· exp

(
−p2 · 2σ2

)
. (257)

It is then straightforward to check that these achieve
equality in (255) and hence minimize the uncertainty in
terms of the product of the two standard deviations.

In contrast to Kennard’s formulation (255), the rela-
tions developed in Sec. III–IV are phrased in terms of
entropy measures and apply to finite-dimensional sys-
tems (whereas position and momentum measurements
can only be modeled on infinite-dimensional spaces). In
this section we review entropic uncertainty relations with
and without a memory system for position and momen-
tum measurements.24 We discuss applications to contin-
uous variable quantum cryptography later in Sec. VI.B.5.

A. Entropy for infinite-dimensional systems

On a technical level, the position operator Q and the
momentum operator P with the canonical commutation
relation

[P,Q] = i1 (258)

can only be represented as unbounded operators on
infinite-dimensional spaces. Hence, we need to extend
our setup from finite-dimensional Hilbert spaces to sep-
arable Hilbert spaces A with dim(A) = ∞. However,
quantum states can still be represented as linear, positive
semi-definite operators. Hence, we just keep the notation
the same as for finite-dimensional spaces without going
into any mathematical details. We start with describing
how to define entropy for infinite-dimensional systems.

1. Shannon entropy for discrete distributions

Imagine a finite resolution detector that measures the
position Q by indicating in which interval

Ik;δ :=
(
kδ, (k + 1)δ

]
(k ∈ Z) , (259)

of size δ > 0 the value q falls. This defines a discrete prob-
ability distribution ΓQδ with infinitely many elements. If
the initial state is described by a pure state wave function
|ψ(q)〉Q we get {ΓQδ(k)}k∈Z with

ΓQδ(k) =

∫ (k+1)δ

kδ

∣∣ψ(q)
∣∣2 dq . (260)

24 Entropic uncertainty relations for completely general quantum
systems described by von Neumann algebras and measurements
described by measure spaces are also studied in the litera-
ture (Frank and Lieb, 2013a; Furrer et al., 2014).
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FIG. 12 Gaussian wave packet in position space with ΓQ(q)
as in (256), as well as the finite resolution discretization
from (260) in intervals of size δ.

We then define the Shannon entropy of ΓQδ in the usual
way as

H(Qδ) := −
∞∑

k=−∞

ΓQδ(k) log ΓQδ(k) . (261)

Despite the fact that there are now infinitely many terms
in the sum, H(Qδ) keeps many of the properties of its
finite-dimensional analogue. In particular, H(Qδ) ≥ 0
and the Shannon entropy can still be thought of as an
information measure.

2. Shannon entropy for continuous distributions

The differential Shannon entropy is defined in the limit
of infinitely small interval size δ → 0,

h(Q) : = lim
δ→0

(
H(Qδ) + log δ

)
(262)

= lim
δ→0

(
−

∞∑
k=−∞

ΓQδ(k) log
ΓQδ(k)

δ

)
. (263)

The termH(Qδ) scales with the interval δ → 0 and hence
the normalization in (262). This makes the differential
Shannon entropy an entropy density. There is also a
closed formula for the differential Shannon entropy (at
least when ΓQ(q) is continuous),

h(Q) = −
∫

dq ΓQ(q) log ΓQ(q) , (264)

where ΓQ(q) denotes the probability density when mea-
suring the position Q. For the momentum probabil-
ity density ΓP (p) we define the discrete and differential
Shannon entropy in the same way. Since probability den-
sities can be larger than one, not all of the properties of
discrete Shannon entropy carry over. For example the
differential Shannon entropy can be negative.

Example 31. For Gaussian wave packets as in (256)
and (257) we have,

h(Q) =
1

2
log
(
2πeσ2

)
and h(P ) =

1

2
log

πe

2σ2
. (265)

By inspection we find that h(Q) < 0 for σ sufficiently
small and h(P ) < 0 for σ sufficiently large.

Nevertheless the uncertainty principle can still be ex-
pressed in term of differential Shannon entropies.

B. Differential relations

Extending the work of Everett (1957) and Hirschman
(1957), Białynicki-Birula and Mycielski (1975) and inde-
pendently Beckner (1975) showed for position and mo-
mentum measurements Q and P , respectively, that

h(P ) + h(Q) ≥ log(eπ) . (266)

We emphasize that (266) holds even though either one of
the two differential Shannon entropies on the left-hand
side can become negative. As in Kennard’s relation (255)
Gaussian wave packets again minimize the uncertainty
and lead to equality in (266). This shows that the re-
lation is tight. It is shown in Sec. II the entropic rela-
tion (266) also implies Kennard’s relation (255) and is
therefore stronger.

Recently alternative bounds were shown by Frank
and Lieb (2012); Hall and Wiseman (2012); and Rumin
(2012). In particular, extending the work of Beckner
(1975); Hall (1999); and Rumin (2011), Frank and Lieb
(2012) showed that

h(Q) + h(P ) ≥ log(2π) +H(ρA) , (267)

where

H(ρA) := − tr
[
ρA log ρA

]
(268)

denotes the von Neumann entropy of the infinite-
dimensional input state before any measurement was per-
formed. We note that in contrast to the differential
Shannon entropy, the von Neumann entropy is always
non-negative since there is no regularization in its defini-
tion (even for infinite-dimensional systems). In (267) the
state independent bound log(2π) ≤ log(eπ) is worse than
in (266), but interestingly (267) becomes an equality for
a thermal state in the infinite temperature limit (Frank
and Lieb, 2012; Hall, 1999). Hence, the relation (267) is
also tight if we insist on having the von Neumann entropy
H(ρA) on the right-hand side.

C. Finite-spacing relations

It has been argued in the literature that ideal position
and momentum measurements can effectively never be
performed because every detector has a finite accuracy.
We can then ask: in what other than a purely mathemat-
ical sense does (266) and (267) express the uncertainty
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FIG. 13 Comparison of the lower bounds in (269) and (270)
on the uncertainty generated by the finite-spacing position
and momentum measurements Qδ, Pδ as in (260). Note that
the latter bound becomes negative and hence trivial for larger
spacings δqδp & 8.5.

principle?25 Certainly a more operational way to express
uncertainty is in terms of the discrete Shannon entropy
as defined in (261). A series of works (Białynicki-Birula,
1984; Partovi, 1983; Rojas González et al., 1995; Rud-
nicki, 2011; Rudnicki et al., 2012) established that for
measurements with finite spacing δq for the position and
finite spacing δp for the momentum we have that

H(Qδ) +H(Pδ)

≥ log(2π)− log

(
δqδp · S(1)

0

(
1,
δqδp

4

)2
)
, (269)

where S(1)
0 (·, ·) denotes the 0th radial prolate spheroidal

wave function of the first kind (Slepian and Pollak, 1961).
This way of expressing the uncertainty principle has the
advantage that the discrete Shannon entropy is always
non-negative and has a clear information theoretic inter-
pretation. As we will see later, it is the discrete formu-
lation of the uncertainty principle that becomes relevant
for applications in continuous variable quantum cryptog-
raphy (see Sec. V.E and VI.B.5).

Interestingly (269) is not tight for general δ > 0 since
we also know that (Białynicki-Birula, 1984)

H(Qδq) +H(Pδp) ≥ log(eπ)− log (δqδp) , (270)

which becomes tighter for δ → 0 (see Fig. 13). Rudnicki
(2015) employs a majorization-based approach along the
lines of Sec. III.I to improve on (269) and (270) for large
spacing. However, this does not yield a closed formula
and we refer to Rudnicki (2011, 2015) for a discussion of
tightness and a more detailed comparison. We will fur-
ther comment on this issue in the next section (Sec. V.D)

25 This criticism also applies to Kennard’s relation (255) and a fi-
nite spacing version thereof has been derived by Rudnicki et al.
(2012).

after extending (266) and (269) to a quantum memory
system.

D. Uncertainty given a memory system

For finite-dimensional systems we can write the condi-
tional von Neumann entropy of bipartite quantum states
ρAB as H(A|B) = H(AB)−H(B). However, for infinite-
dimensional systems this is in general not a sensible no-
tion of conditional entropy. This is because for some
states both terms H(AB) and H(B) can become infi-
nite even though the entropy of A is finite and hence the
conditional entropy should also remain finite.

Example 32. Consider a bipartite system with A one
qubit and B composed of infinitely many qubits indexed by
k ∈ N. Let |ψ〉ABk be maximally entangled between A and
the kth qubit on B, and let |φk〉B/Bk be some pure states
on B (except Bk) such that 〈φk|φk′〉 = δkk′ . Now, for a
probability distribution pk ∝ 1

k(log k)2 for k > 2 (Wehrl,
1978), the bipartite quantum state

ρAB =
∑
k

pk|ψ〉〈ψ|ABk ⊗ |φk〉〈φk|B/Bk has (271)

H(AB) =∞ and H(B) =∞. (272)

However, any sensible definition of conditional entropy
for this state ρAB should give H(A|B) = −1.26

Observe that the conditional entropy of finite-
dimensional classical-quantum states ρXB as in (136) can
be rewritten in terms of the relative entropy (Umegaki,
1962),

D(ρ‖σ) := tr[ρ(log ρ− log σ)], (273)

as H(X|B) = −
∑
x

D(PX(x)ρxB‖ρB) . (274)

Furrer et al. (2014) pointed out that (274) can be lifted to

H(Qδ|B) := −
∞∑

k=−∞

D
(
ρk;δ
B

∥∥ρB) , (275)

where ρk;δ
B denotes the (sub-normalized) marginal state

on B when the position Q is measured in Ik;δ, i.e.,
PQδ(k) := tr

[
ρk;δ
B

]
is the probability to measure in Ik;δ.

26 We refer to Kuznetsova (2011) for an extended discussion.



39

1. Tripartite quantum memory uncertainty relations

With (275) as the definition for classical-quantum en-
tropy Furrer et al. (2014) find,

H(Qδq|B) +H(Pδp|C)

≥ log(2π)− log

(
δqδp · S(1)

0

(
1,
δqδp

4

)2
)
. (276)

This is the extension of (269) to quantum memories and
likewise not tight. By taking the limit δ → 0 we find the
differential quantum conditional entropy

h(Q|B) : = lim
δ→0

(
H(Qδ|B) + log δ

)
(277)

=

∫
dq D(ρqB‖ρB) , (278)

where the second equality holds under a particular finite-
ness assumption (Furrer et al., 2014). With (276) we
then immediately find the extension of (266) to quan-
tum memories,

h(Q|B) + h(P |C) ≥ log(2π) . (279)

Example 33. For the EPR state on AB (or likewise
AC) in the limit of perfect correlations (279) becomes an
equality. For finite squeezing strength r = arccosh(ν)/2
the EPR state is a Gaussian state with covariance matrix

ΓAB(ν) =
1

2

(
ν12

√
ν2 − 1Z2√

ν2 − 1Z2 ν12

)
(280)

with 12 =

(
1 0
0 1

)
and Z2 =

(
1 0
0 −1

)
. (281)

We refer to the review article (Weedbrook et al., 2012) for
more details about Gaussian quantum information the-
ory. The left-hand side of (279) for this state generated
by ΓAB(ν) is then calculated to be (Furrer et al., 2014)

h(Q|B) + h(P )

= log(eπν)− ν + 1

2
log

(
ν + 1

2

)
+
ν − 1

2
log

(
ν − 1

2

)
,

(282)

which converges to log(2π) for ν → ∞. In Fig. 14 we
plot (282) as a function of the squeezing strength r =
1
2 arccosh(ν):

1. For r = 0 the system B is uncorrelated and we have
the lower bound h(Q)+h(P ) ≥ log(eπ) as in (266).

2. For r > 0 we have to take the quantum memory
B into account and only the lower bound h(Q|B) +
h(P ) ≥ log(2π) from (279) holds.

3. For r → ∞ we get maximal correlations and the
bound (279) becomes an equality.

0.5 1.0 1.5

2.7

2.8

2.9

3.0

3.1

h
(Q
|B

)
+
h

(P
)

squeezing strength, r

r = 1
2

arccosh(ν)

FIG. 14 The uncertainty h(Q|B) + h(P ) of the EPR state
from Ex. 33 in terms of the squeezing strength r.

We note that in typical experiments for applications (see
Sec. VI.B.5) a squeezing strength of r ≈ 1.5 is achiev-
able (Eberle et al., 2013). For this the lower bound (279)
is already very tight.

The state independent bound in (279) is log(2π)
whereas it is log(eπ) for the case without quantum mem-
ory in (266). Hence, in contrast to the finite-dimensional
case, a quantum memory reduces the state independent
uncertainty limit. This is because for the approximate
EPR state there exists a gap between the accessible clas-
sical correlation and the classical-quantum correlation.
That is, even when minimized over all measurements QB
on B, we have h(Q|QB)− h(Q|B) ≈ log

(
e
2

)
.

2. Bipartite quantum memory uncertainty relations

Similarly as for finite-dimensional systems it is possible
to formulate uncertainty relations with quantum memory
in a bipartite form. For continuous position and momen-
tum measurements Frank and Lieb (2013a) showed that,

h(Q|B) + h(P |B) ≥ log(2π) +H(A|B)ρ . (283)

This is the extension of (267) to a quantum memory sys-
tem. However, we note that (283) only holds if all the
terms appearing in H(A|B) = H(AB)−H(B) are finite
(which is in general too restrictive).27

3. Mutual information approach

A conceptually different approach was taken by Hall
(1995) where the uncertainty relative to a memory sys-
tem is quantified in terms mutual information instead of
conditional entropy (see Sec. IV.F for a general discus-
sion). Similarly as for the conditional entropy in (275),

27 This restriction is connected with the question about a
sensible notion of conditional entropy for fully quantum
states (Kuznetsova, 2011).
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mutual information for classical-quantum states is most
generally defined in terms of the relative entropy in (273),

I(Qδ : B) :=

∞∑
k=−∞

(
D
(
ρk;δ
B

∥∥ρB)+H(B)ρk;δ
)
. (284)

In contrast to entropy, however, the mutual information
stays finite when taking the limit δ → 0,

I(Q : B) := lim
δ→0

I(Qδ : B) . (285)

Hence, no regularization in terms of the interval size δ is
taken. For classical memoriesM it was shown that (Hall,
1995),

I(Q : M) + I(P : M) ≤ 1 + log σ(Q) + log σ(P ) . (286)

It is an open question to find a generalization that also
holds for quantum memories. This would be in anal-
ogy to what is known for finite-dimensional systems (see
Sec. IV.F.4).

E. Extension to min- and max-entropy

As for finite-dimensional systems, entropic uncertainty
relations like (266) and (269) cannot only be shown for
the Shannon entropy, but also more generally for pairs
of Rényi entropies (Bialynicki-Birula, 2006; Białynicki-
Birula, 2007; Rastegin, 2015c; Rudnicki et al., 2012).
Here, we focus on a special case that is important for
applications in continuous variable quantum cryptogra-
phy (see Sec. VI.B.5). We study relations in terms of
the Rényi entropy of order ∞ and its dual quantity the
Rényi entropy of order 1/2. These are exactly the min-
and max-entropy, respectively.

1. Finite-spacing relations

Following the finite resolution detector picture as
in (259) and (260), the conditional min-entropy is de-
fined as

Hmin(Qδ|B) := − log pguess(Qδ|B) . (287)

Here, we have the optimal guessing probability as
in (137),

pguess(X|B)

:= sup
XB

{ ∞∑
k=−∞

ΓQδ(k) tr
[
XkBρ

k;δ
B

]
: XB POVM on B

}
.

(288)

In analogy to the finite-dimensional case, the min-
entropy quantifies the uncertainty of the classical regis-
ter Qδ from the perspective of an observer with access to

the quantum memory B. The conditional max-entropy
is given by

Hmax(Qδ|B) := logFdec(Qδ|B) , (289)

where we have the optimal decoupling fidelity

Fdec(Qδ|B)

:= sup

{( ∞∑
k=−∞

√
F
(
ρk;δ
B , σB

))2

: σB state on B

}
.

(290)

The decoupling fidelity is a measure of how much in-
formation the quantum memory B contains about the
classical register Qδ.28 For these definitions Furrer et al.
(2014) show

Hmin(Qδ|B) +Hmax(Pδ|C)

≥ log(2π)− log

(
δqδp · S(1)

0

(
1,
δqδp

4

)2
)
, (291)

as well as the same relation with Qδ and Pδ interchanged.
We note that the special case with trivial quantum mem-
ories B,C was already shown by Rudnicki et al. (2012).
Furrer et al. (2014) show that the relation (291) is tight
for any spacing δ > 0 even in the absence of any corre-
lations (i.e., there exist states for which the relation be-
comes an equality). Note that this is in contrast to the
situation for the Shannon entropy, where neither (269)
and (270), nor (276) are tight.

2. Differential relations

For the differential version we take the limit δ → 0,

hmin(Q|B) := lim
δ→0

(
Hmin(Qδ|B) + log δ

)
, (292)

and similarly for hmax(Q|B).29 We then find the uncer-
tainty relation (Furrer et al., 2014),

hmin(Q|B) + hmax(P |C) ≥ log(2π) (293)

as well as the same relation with Q and P interchanged.
Bialynicki-Birula (2006) shows that (293) becomes an
equality for pure Gaussian states as in (256) and (257).

28 For finite-dimensional systems the expression (289) is equivalent
to the max-entropy as defined in (155), see (Furrer et al., 2014;
König et al., 2009).

29 Under some finiteness assumptions we have hmax(Q|B) =

2 log sup
{∫

dq
√
F (ρqB , σB) : σB state on B

}
as well as

hmin(Q|B) = − log sup
{∫

dq ρqB(XqB) : q 7→ XqB POVM on B
}
.
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Note that this implies in particular that the uncondi-
tional special case

hmin(Q) + hmax(P ) ≥ log(2π) (294)

is tight. Hence, the optimal state-independent constant is
log(2π) for the min- and max-entropy, whereas the opti-
mal constant for the Shannon entropy in (266) is log(eπ).

F. Other infinite-dimensional measurements

As a multidimensional extension of (266), Huang
(2011) shows that for any measurements of the form

A =

n∑
i=1

aiQi + a′iPi, B =

n∑
i=1

biQi + b′iPi

with ai, a
′
i, bi, b

′
i ∈ R , (295)

we have that

h(A) + h(B) ≥ log(eπ) + log |[A,B]| . (296)

Huang (2011) also shows that for any measurement pair
A,B as in (295) there exist states for which (296) be-
comes an equality.

Moreover, the techniques for deriving position-
momentum uncertainty relations can also be applied to
other complementary observable pairs that are modeled
on infinite-dimensional Hilbert spaces. For example, for
a particle on a circle we have the position angle ϕ and the
conjugate angular momentum observable Lz. Consider a
measurement device that either tells in which of

M := 2π/δϕ bins of size δϕ (297)

the particle is in or the exact value of the angular mo-
mentum Lz. We get a discrete probability distribution
Pϕδ for the angle defined similarly as in (260), as well as
a discrete probability distribution PLz over the Lz eigen-
states. Improving on the earlier work of Partovi (1983),
Białynicki-Birula (1984) showed that

H(ϕδ) +H(Lz) ≥ logM . (298)

By inspection (298) becomes an equality for any eigen-
state of the Lz observable. The relation was also ex-
tended to two angles ϕ and θ and the corresponding pair
of observables Lz and L2 (Białynicki-Birula and Mada-
jczyk, 1985).

Another example are the number N and the phase Φ
for the harmonic oscillator. Hall (1993) showed that

H(N) + h(Φ) ≥ log 2π , (299)

where PN (n) represents the probability distribution in
the number basis {|n〉}, and the probability density in
the phase basis is

PΦ(φ) :=
|〈eiφ|ψ〉|2

2π
with |eiφ〉 :=

∑
n

einφ|n〉 (300)

the Susskind-Glogower phase kets (which are not nor-
malized).30 This can also be seen as a special case of the
results in (Białynicki-Birula and Mycielski, 1975). Equa-
tion (299) becomes an equality for number states. Fur-
thermore, Hall (1994) also extends (299) to noisy har-
monic oscillators degraded by Gaussian noise.

Finally, time-energy entropic uncertainty relations for
systems with discrete energy spectra were discussed
by Hall (2008).

VI. APPLICATIONS

A. Quantum randomness

Randomness is a crucial resource for many everyday in-
formation processing tasks, ranging from online gambling
to scientific simulations and cryptography. Randomness
is a scarce resource since computers are designed to per-
form deterministic operations. Even more importantly
classical physics is deterministic, meaning that every out-
come of an experiment can in principle be predicted by
an observer who has full knowledge of the initial state
of the physical system and the operations that are per-
formed on it. The study of pseudorandomness tries to
circumvent this problem (Vadhan, 2012).

Quantum mechanics with its inherent nondeterminism
allows us to consider a stronger notion of randomness,
namely randomness that is information-theoretically se-
cure. Formally, we want to generate a random variable
L that is uniformly distributed over all bit strings {0, 1}`
of a given length `. Moreover, we want that this random
variable is independent of any side information an ob-
server might have, including information about the pro-
cess that is used to calculate L and any random seeds
that are used to prepare L. A classical-quantum product
state

πLE =
1

2`

2`∑
i=1

|i〉〈i|L ⊗ πE (301)

describes ` bits of uniform randomness that is indepen-
dent of its environment, or side information, E. Often,
the best we can hope for is to approximate such a state.
Namely, we say that ρZE describes a state where L is
δ-close to uniform on ` bits and independent of E if

∥∥∥∥ρLE − 1

2`

2`∑
i=1

|i〉〈i|L ⊗ ρE
∥∥∥∥

tr

≤ δ , (302)

30 Due to the non-orthogonality of the phase kets |eiφ〉 there is no
observable corresponding to the phase distribution PΦ(φ). This,
however, will not concern us further since PΦ(φ) is well-defined.
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where ‖ · ‖tr denotes the trace norm. This bound implies
that L cannot be distinguished from a uniform and in-
dependent random variable with probability more than
1
2 (1 + δ). This viewpoint is at the core of universally
composable security frameworks (Canetti, 2001; Unruh,
2010), which ensure that a secret key satisfying the above
property can safely be employed in any cryptographic
protocol requiring a secret key.

Entropic uncertainty relations can help us since they
certify that the random variables resulting from a quan-
tum measurement are uncertain and thus contain ran-
domness. However, in order to extract approximately
uniform and independent randomness we will need an
additional step, which we describe next.

1. The operational significance of conditional min-entropy

The importance of the min-entropy in cryptography
is partly due to the following lemma, called the Left-
over Hashing Lemma (Impagliazzo et al., 1989; Impagli-
azzo and Zuckerman, 1989; Mclnnes, 1987). Informally,
it states that there exists a family of functions {fs}s,
where fs : X → [2`], called hash functions, such that
the random variable L = fS(X), which results by apply-
ing the function fS with S a seed chosen uniformly at
random, is close to uniform and independent of S if the
initial min-entropy is sufficiently large.

More formally, Renner (2005) and Renner and König
(2005) show the following result for the quantum case.
There exists a family {fs}s as described above such that
for any classical-quantum state

ρXE =
∑
x

PX(x)|x〉〈x|X ⊗ ρxE (303)

with Hmin(X|E) ≥ k, the classical-quantum-classical
state ρLES after applying fS , namely

ρLES =
∑
s,x

PX(x)

|S| |fs(x)〉〈fs(x)|L ⊗ ρxE ⊗ |s〉〈s|S , (304)

describes a state where L is δ-close to uniform on ` bits
and independent of E and S with δ = 2

1
2 (`−k).

The special case where the environment E is trivial has
been discussed extensively in the computer science litera-
ture (Vadhan, 2012). Since hashing is a classical process,
one might expect that the physical nature of the side in-
formation is irrelevant and that a classical treatment is
sufficient. However, this is not true in general. For ex-
ample, the output of certain extractors may be partially
known if side information about their input is stored in a
quantum memory, while the same output is almost uni-
form conditioned on any classical side information.31

31 See Gavinsky et al. (2009) for a concrete example and König and
Renner (2011) for a more general discussion of this topic.

A generalization of this result is possible by considering
a variation of the min-entropy, which is called ε-smooth
min-entropy, and denoted Hε

min(X|E), for a small ε >
0. This is defined by maximizing the min-entropy over
states that are in a ball of radius ε around the state ρ.32

The generalized Leftover Hashing Lemma (Renner,
2005; Tomamichel et al., 2011) asserts that there ex-
ists a family {fs}s such that for any state ρXE with
Hε

min(X|E) ≥ k, we find that L = fS(X) is (ε + δ)-
close to uniform and independent of E and S, with δ as
defined above.

The latter result is tight in the following sense. If L =
fS(X) is ε-close to uniform and independent from E and
S for any family of functions {fs}s, then we must have
Hε′

min(X|E) ≥ ` with ε′ =
√

2ε.
Due to this tightness result we are justified to say that

the smooth min-entropy characterizes (at least approxi-
mately) how much uniform randomness can be extracted
from a random source X that is correlated with its envi-
ronment E.

2. Certifying quantum randomness

Note that we can certify randomness, if we can some-
how conclude that Hmin(X|E) is large. In principle, all
entropic uncertainty relations that involve a quantum
memory are suitable for this task, whenever we can verify
the terms lower bounding the entropy. Tripartite uncer-
tainty relations are especially suitable to this task, and
the security of quantum key distribution below rests on
our ability to make such estimates. For example, Vallone
et al. (2014) specialize the uncertainty relation for min-
and max-entropy in (222) to assert that

Hmin(X|E)ρ ≥ log d−Hmax(Z) , (305)

where X and Z are mutually unbiased measurements on a
d-dimensional Hilbert space. Here, E is the environment
of the measured system and the max-entropy Hmax(Z) =
H1/2(Z) can be estimated using statistical tests, resulting
in confidence about Hmin(X|E). As discussed above, the
Leftover Hashing Lemma now allows to extract uniform
randomness from X.

Miller and Shi (2014) derive a lower bound on an en-
tropy difference instead of a conditional entropy. Assume
that X and Z are complementary binary measurements
on a qubit. Then, the following relation holds,

Hα(XB)−Hα(B) ≥ q(α, δ) for α ∈ (1, 2] , (306)

where δ is determined by the equality

tr
[
〈Z0|ρAB |Z0〉α

]
= δ tr

[
ραB
]
, (307)

32 See Tomamichel et al. (2010) for a precise definition of smooth
min-entropy.
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and q is a function satisfying limα→1 q(α, δ) = 1− 2h(δ).
The authors then proceed to use this result to bound the
smooth min-entropy and apply the generalized Leftover
Hashing Lemma.

B. Quantum key distribution (QKD)

The goal of a key distribution scheme is for two honest
parties to agree on a shared key by communicating over a
public channel in such a way that the key is secret from
any potential adversary eavesdropping on the channel.
Traditionally the two honest parties trying to share a key
are called Alice and Bob and the eavesdropper is called
Eve. By a simple symmetry argument it is evident that
key distribution is impossible if only classical information
is considered: Since Eve will hear all communication from
Alice to Bob, at any point in the protocol she will have at
least as much information about Alice’s key as Bob— in
particular, if Bob knows Alice’s key then so does Eve.

Quantum key distribution (QKD) was first proposed
by Bennett and Brassard (1984) and Ekert (1991) to get
out of this impasse.33 Since quantum information can-
not be copied or cloned (Wootters and Zurek, 1982), the
above impossibility argument no longer applies when Al-
ice and Bob are allowed to communicate over a quantum
channel. Roughly speaking, the main idea is that when-
ever the eavesdropper interacts with the channel (for ex-
ample by performing a measurement on a particle) she
will necessarily introduce noise in the quantum commu-
nication between Alice and Bob, which they can then
detect and subsequently abort the protocol.

1. A simple protocol

We will focus on a truncated version of Ekert’s proto-
col (Ekert, 1991), which proceeds as follows:

Preparation: Alice and Bob share a maximally entan-
gled two-qubit state using the public channel. Eve
can coherently interact with the channel.

Measurement: They randomly agree (using the public
channel) on either the basis Z = {|0〉〈0|, |1〉〈1|} or
X = {|+〉〈+|, |−〉〈−|}, and measure their respective
qubits in this basis. (These two steps are repeated
many times.)

Parameter estimation: Alice announces her measure-
ment results on a random subset of these rounds.
If their measurement results agree on most rounds,
they conclude that their correlations contain some

33 We refer to (Scarani et al., 2009) for a recent review.

ρABE

Alice Bob

Eve

(a)Preparation phase

Alice Eve Bob

Θ

Y Ŷ

Θ

(b)Measurement phase: Alice and Bob measure their
quantum system in the basis indicated by Θ to recover Y
and Ŷ , respectively. Eve stores Θ and keeps her quantum
memory intact. The uncertainty relation is applied to the

resulting state ρY Ŷ EΘ.

FIG. 15 Preparation and measurement phase of the QKD
protocol described in Sec. VI.B.1.

secrecy and proceed to correct their errors and ex-
tract a secret key (we will not discuss this further
here). If not, they abort the protocol.

2. Security criterion for QKD

To show security of QKD we thus need to show that
the following two statements are mutually exclusive: a)
Alice’s and Bob’s measurement results agree in most
rounds, and b) Eve has a lot of information about Al-
ice’s or Bob’s measurement outcomes.

Security of quantum key distribution against general
attacks was first formally established by Mayers (1996,
2001) as well as Biham et al. (2000, 2006) and Shor and
Preskill (2000). In all these security arguments, the com-
plementarity or uncertainty principle is invoked in some
form to argue that if Alice and Bob have large agree-
ment on the qubits measured in one basis, then neces-
sarily Eve’s information about the bits measured in the
complementary basis must be low.

In Sec. VI.B.3 we attempt to present the security argu-
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ment in a concise and intuitive way, and for this purpose
we adopt a notion of security—certifying that the raw
key has high Shannon entropy—that has proven to be
insufficient in practice. However, our ultimate goal is to
extract a secret key, and not to have a bit string with
high Shannon entropy. This ultimately requires the use
of different entropies and a post-processing step in the
protocol to distill a secret key. A discussion of these is-
sues follows in Sec. VI.B.4.

Entropic uncertainty relations were first used in this
context by Cerf et al. (2002) and Grosshans and Cerf
(2004). In particular, Koashi (2006) established security
by leveraging the Maassen-Uffink relation (31). How-
ever, entropic uncertainty relations with quantum mem-
ory provide a more direct avenue to formalize security
arguments for QKD, as we will see in the following.

3. Proof of security via an entropic uncertainty relation

a. Single round. We will here broadly follow an argument
outlined by Berta et al. (2010). First, note that during
the preparation step (as described above) the eavesdrop-
per might interfere and we can thus not know if Alice
and Bob will indeed share a maximally entangled state
after the preparation step is complete. However, with-
out loss of generality we may assume that Alice (A), Bob
(B), and Eve (E) share an arbitrary state ρABE after the
preparation step, where A and B are qubits and E is any
quantum system held by Eve (see Fig. 15(a)).

Let Θ be a binary register in a fully mixed state that
determines if the qubits are to be measured in the basis X
or Z and let Y denote the output of Alice’s measurement.
Then we can write H(Y |BΘ) = 1

2H(X|B) + 1
2H(Z|B)

and similarly H(Y |EΘ) = 1
2H(X|E) + 1

2H(Z|E). Thus,
the tripartite entropic uncertainty principle with quan-
tum memory (206) can be cast into the form

H(Y |EΘ) +H(Y |BΘ) ≥ qMU = 1, (308)

where we used that qMU = 1 for the measurements X and
Z. The entropies are evaluated for the state ρYΘBE after
the measurement on Alice’s qubit is performed.

Next we perform Bob’s measurement, which yields an
estimate Ŷ of Y . The data-processing inequality (C6)
implies that H(Y |BΘ) ≤ H(Y |Ŷ ), and thus we conclude
that H(Y |EΘ) ≥ 1 − H(Y |Ŷ ). This ensures that Eve’s
uncertainty—in terms of von Neumann entropy—of Al-
ice’s measurement outcome is large as long as the condi-
tional entropy H(Y |Ŷ ) is small (see Fig. 15(b)). This is a
quantitative expression of the above-mentioned security
criterion.34

34 Note that in practice we need a stronger statement, namely a
bound on the min-entropy. This is discussed in Sec. VI.B.4.

Example 34. If Alice and Bob’s measurement outcomes
agree with high probability, let us say with probability 1−
δ, then H(Y |Ŷ ) evaluates to hbin(δ) = δ log 1

δ + (1 −
δ) log 1

1−δ . Hence, we find that

H(Y |EΘ) ≥ 1− hbin(δ) , (309)

which is positive as long as δ is strictly less than 50%.

b. Multiple rounds. The protocol extends over multiple
rounds and we can repeat the above argument for each
round individually and then attempt to add up the re-
sulting entropies—but it is much more convenient to use
a stronger uncertainty relation that describes the situa-
tion for multiple rounds directly.

For this purpose, let us model the situation after Alice
and Bob have exchanged n qubits but before they mea-
sure them. This is a hypothetical situation since in the
actual protocol Alice and Bob measure their qubits after
every round. However, we can always imagine that Al-
ice and Bob delay their measurement since Eve’s strategy
cannot depend on the timing of their measurement. After
the exchange Alice and Bob each hold n qubits in systems
An = A1A2 . . . An and Bn = B1B2 . . . Bn, respectively.
This is described by an arbitrary state ρAnBnE where E
is any quantum system held by the eavesdropper. Again,
we model the random measurement choice using a reg-
ister, a bit string Θn = (Θ1,Θ2, . . . ,Θn) of length n in
a fully mixed state, where Θi determines the choice of
measurement on the systems indexed by i. Analogously,
we store the measurement outcomes on Alice’s system in
a bit string Y n = (Y1, Y2, . . . , Yn) and on Bob’s system
in a bit string Ŷ n = (Ŷ1, Ŷ2, . . . , Ŷn).

The crucial observation is that the tripartite uncer-
tainty principle in (206) implies that

H(X1X2Z3X4 . . . Xn−1Zn|E)

+H(Z1Z2X3Z4 . . . Zn−1Xn|B) ≥ n , (310)

where we made sure that all n systems are measured
in the opposite basis in the two terms, and used that
log 1

cn = n. A similar averaging argument as for the one
round case and the data-processing inequality (C6) then
reveal the bounds

H(Y n|EΘn) +H(Y n|Ŷ n)

≥ H(Y n|EΘn) +H(Y n|BnΘn) ≥ n . (311)

Hence, Eve’s uncertainty (in terms of von Neumann en-
tropy) of the measurement outcome Y n increases linearly
in the number of rounds. Notably, this is true with-
out assuming anything about the attack. In particular,
the state ρAnBnE after preparation but before the un-
certainty principle is applied does not need to have any
particular structure and is assumed to be arbitrary.
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4. Finite size effects and min-entropy

So far we have argued that security of QKD is ensured
if Eve’s uncertainty of the key expressed in terms of the
von Neumann entropy is large. This might be a reason-
able ad-hoc criterion—but more operationally what we
want to say is that a key is secure if it can be safely used
in any other protocol, for example one-time pad encryp-
tion, that requires a secret key. This leads to the notion
of composable security, first studied by Renner (2005) in
the context of QKD. It turns out that in order to achieve
composable security for a key of finite length, it is not
sufficient to consider Eve’s uncertainty in terms of the
von Neumann entropy. Instead, it is necessary to ensure
that the smooth min-entropy of the measurement results
is large (Renner and König, 2005), so that we can extract
a secret key, i.e., uniform randomness that is independent
of the eavesdropper’s memory. (Recall the discussion of
randomness in Sec. VI.A.) Thus, instead of the inequal-
ity (310) involving von Neumann entropies, we want to
apply a generalization of the Maassen-Uffink uncertainty
relation with quantum memory (221). This leads to the
following relation (Tomamichel and Renner, 2011),

Hε
min(Y n|EΘn) +Hε

max(Y n|Ŷ n) ≥ n , (312)

where Hε
min and Hε

max denote the smooth min- and max-
entropies, variations of the min- and max-entropy (that
we will not discuss further here). Hence, in order to
ensure security it is sufficient to estimate the smooth
max-entropy Hε

max(Y n|Ŷ n). This can be done by a
suitable parameter estimation procedure, as is shown
by Tomamichel et al. (2012).

5. Continuous variable QKD

Quantum information processing with continuous vari-
ables (Weedbrook et al., 2012) offers an interesting and
practical alternative to finite-dimensional systems. Here,
we discuss a particular variation of the above QKD pro-
tocol where Alice and Bob measure the quadrature com-
ponents of an electromagnetic field, and then extract a
secret key from the correlations contained in the resulting
continuous variables.

If Alice and Bob share a squeezed Gaussian state, Fur-
rer et al. (2012) show that the security of such protocols
can be shown rigorously using entropic uncertainty rela-
tions, including finite size effects. For this purpose, it is
convenient to employ a smoothed extension of (291) as
first shown by Furrer et al. (2011). This yields

Hε
min(Y n|EΘn) +Hε

max(Y n|Ŷ n)

≥ n log

(
2π

δ2
· S(1)

0

(
1,
δ2

4

)−2
)
, (313)

where Yi is the outcome of the quadrature measurement
in the basis (position or momentum) specified by Θi dis-
cretized with bin size δ. We point to Gehring et al. (2015)
for an implementation.

C. Two-party cryptography

In this section we discuss applications of entropic un-
certainty relations to cryptographic tasks between two
mutually distrustful parties (traditionally called Alice
and Bob). This setup is in contrast to quantum key dis-
tribution where Alice and Bob do trust each other and
only a third party is eavesdropping. Typical tasks for
two-party cryptography are bit commitment, oblivious
transfer or secure identification.

It turns out, however, that even using quantum com-
munication it is only possible to obtain security if we
make some assumptions about the adversary (Lo, 1997;
Lo and Chau, 1997; Mayers, 1997). What makes this
problem harder is that unlike in QKD where Alice and
Bob trust each other to check on any eavesdropping activ-
ity, here every party has to fend for himself. Nevertheless,
since tasks like secure identification are of great practical
importance, one is willing to make such assumptions in
practice.

Classically, such assumptions are typically computa-
tional assumptions. We assume a particular problem
such as factoring is difficult to solve, and in addition that
the adversary has limited computational resources, in
particular not enough to solve the difficult problem. On
the other hand, it is also possible to obtain security based
on physical assumptions, where we will first consider as-
suming that the adversary’s memory resources are lim-
ited. Even a limit on classical memory can lead to secu-
rity (Cachin and Maurer, 1997; Maurer, 1992). However,
classical memory is typically cheap and plentiful. More
significantly, however, Dziembowski and Maurer (2004)
have shown that any classical protocol in which the hon-
est players need to store n bits to execute the protocol
can be broken by an adversary who is able to store more
than O(n2) bits. Motivated by this unsatisfactory gap it
is an evident question to ask if quantum communication
can be of any help. The situation is rather different if we
allow quantum communication. We can have quantum
protocols (see below) that require no quantum memory
to be executed, but that are secure as long as the adver-
sary’s quantum memory is not larger than n−O(log2 n)
qubits (Dupuis et al., 2015), where n is the number of
qubits sent during the protocol. This is essentially opti-
mal, since any protocol that allows the adversary to store
n qubits is known to be insecure (Lo, 1997; Lo and Chau,
1997; Mayers, 1997). The assumption of a memory limi-
tation is known as the bounded (Damgaard et al., 2008),
or more generally, noisy-storage model (Wehner et al.,
2008), as illustrated in Fig. 16.
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FIG. 16 The noisy-storage model: König et al. (2012) and
Wehner et al. (2008) assume that during waiting times ∆t in
the protocol, the adversary can only keep quantum informa-
tion in an imperfect and limited storage device described by a
quantum channel F . This is the only restriction and the ad-
versary is otherwise arbitrarily powerful. In particular, he can
first store all incoming qubits, and has a quantum computer
to encode them into an arbitrary quantum error-correcting
code to protect them against the noise of the channel F . He
can also keep an unlimited amount of classical memory, and
perform any operation instantaneously.

Security proofs in this model are intimately connected
to entropic uncertainty relations. What’s more, the un-
certainty relations of Dupuis et al. (2015) together with
the work of König et al. (2012) demonstrate that any
physical assumption that limits the adversary’s entan-
glement leads to security.

1. Weak string erasure

The relation between cryptographic security and en-
tropic uncertainty relations can easily be understood by
looking at a simple cryptographic building block known
as weak string erasure (WSE) (König et al., 2012). Weak
string erasure is universal for two-party secure computa-
tion, in the sense that any other protocol can be obtained
by repeated executions of weak string erasure, following
by additional quantum or classical communication (Kil-
ian, 1988). Importantly, the storage assumption only
needs to hold during some time ∆t during the execution
of weak string erasure.

Weak string erasure generates the following outputs if
both Alice and Bob are honest: Alice obtains an n-bit
string Kn, and Bob obtains a random subset I ⊆ [n],
and the bits KI ⊆ Kn as indexed by the subset I. In
addition, the following demands are made for security. If
Bob is honest, then Alice does not know anything about
I. In turn, if Alice is honest, then Bob should not know
too much about Kn (except for KI). More precisely,
Bob should not be able to guess Kn too well, that is

with (138),

Hmin(Kn|B) ≥ λ · n for some λ ∈ [0, 1] , (314)

where B denotes all of Bob’s knowledge. We refer
to König et al. (2012) for a more detailed definition. A
simple protocol for implementing weak string erasure is
as follows:

1. Alice prepares a random n bit string Kn, encodes
each bit Ki in one of the BB84 bases Θ ∈ {σX, σZ}
at random, and sends these n qubits to Bob.

2. Bob measures the n qubits in randomly chosen
bases Θ′ ∈ {σX, σZ}.

3. After the waiting time ∆t, Alice sends the classical
n bit string Θn to Bob and outputs Kn.

4. Bob computes I = {i : θi = θ′i} and outputs I
and KI .

Note that if both parties are honest, then the protocol
is correct in the sense that Alice outputs Kn and Bob
I with KI ⊆ Kn. Moreover, when Alice is dishonest, it
is intuitively obvious that she is unable to gain any in-
formation about the index set I (even with an arbitrary
quantum memory), since she never receives any informa-
tion from Bob during the protocol. A precise argument
for this can be found in, e.g., König et al. (2012). On the
other hand, note that a dishonest Bob with a quantum
memory can easily cheat by just keeping the n qubits he
gets from Alice and wait until he receives the n bit string
Θn from Alice as well. Namely, he can then measure the
n qubits in the same basis Θn as Alice and get the full n
bit string Kn (that is, Hmin(Kn|BΘn) = 0). However, if
Bob only has a limited quantum memory, then he could
not keep a perfect copy of the n qubits he gets from Alice.

The security analysis is linked immediately to a guess-
ing game, whenever we consider a purified version of
the protocol in which Alice does not prepare BB84
states herself, but instead makes EPR pairs |ψ〉AB =
(|00〉AB + |11〉AB) /

√
2 and sends B to Bob, while mea-

suring A in a randomly chosen BB84 basis. In the analy-
sis, one can indeed give even more power to Bob, in which
we imagine that he prepares a state ρAB in each round
of the protocol and Alice measures A in randomly chosen
BB84 basis. Alice then sends him the basis choice. Recall
that Hmin(Kn|BΘn) = − log pguess(K

n|BΘn), that is,
the min-entropy security guarantee that WSE demands
is precisely related to Bob’s ability to win the guessing
game (Ballester et al., 2008). The storage assumption
translates into one particular example of how the entan-
glement in ρAB is limited, putting a limit on Hmin(A|B)
of the states that Bob can prepare.
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2. Bounded-storage model

To illustrate further how a bound on entropic uncer-
tainty leads to security, let us first consider a special case
of the noisy-storage model, also known as the bounded-
storage model. Here, the channel F = I⊗q2 in Fig. 16
is just the identity on q qubits. This bounded-storage
model was introduced and first studied by Damgaard
et al. (2007, 2008); and Schaffner (2007).

While more refined bounds are known (Dupuis et al.,
2015), let us first explain how entropic uncertainty rela-
tions for a classical memory system can be used to obtain
weak security statements in this setting. To this end, we
differentiate Bob’s knowledge into B = QMΘn, where
Q denotes the q qubits of quantum memory, M denotes
(unbounded) classical information, and Θn is the n bit
basis information string Alice sent to Bob. Since the con-
ditional min-entropy obeys a chain rule (Renner, 2005),
we can separate the quantum memory as

Hmin(Kn|B) = Hmin(Kn|QMΘn) (315)
≥ Hmin(Kn|MΘn)− q . (316)

Analyzing Hmin(Kn|MΘn) is then directly determined
by Bob’s ability to win the guessing game, in which he
only has classical information M . Using the min-entropy
uncertainty relation (102) for the n qubit BB84 measure-
ments (with an extension to classical side information M
as sketched in Sec. IV.C), we get

Hmin(Kn|MΘn) ≥ −n · log

(
1

2
+

1

2
√

2

)
. (317)

Hence, we find a non-trivial lower bound

Hmin(Kn|B) > 0 as long as q . n · 0.22 . (318)

This security analysis can be refined and improving on
the work of Damgaard et al. (2007), Ng et al. (2012)
make use of the following stronger smooth min-entropy
uncertainty relation which is based on (103),

Hε
min(Kn|MΘn)

≥ n · sup
s∈(0,1]

(
1

s

(
1 + s− log (1 + 2s)

)
− 1

sn
log

2

ε2

)
.

(319)

One can use this uncertainty relation together with the
more refined analysis of König et al. (2012) instead
of (316), to obtain perfect security (λ→ 1) against quan-
tum memory of size

q ≤ n

2
. (320)

for n→∞. Ultimately, Dupuis et al. (2015) show by de-
riving strong entropic uncertainty relations that the pro-
tocol from Sec. VI.C.1 implements a WSE scheme against

q qubits of quantum memory for

λ =
1

2

(
γBB84

(
− q
n

)
− 1

n

)
, (321)

where the function γBB84(·) is as in (202). Asymptot-
ically (n → ∞), this provides perfect security (λ → 1)
against quantum memories of size

q ≤ n−O
(
log2 n

)
. (322)

This is basically optimal, since no protocol can be secure
if q = n. Finally, we mention that alternatively we could
also use a six-state encoding {σX, σY, σZ} for the weak
string erasure protocol described in Sec. VI.C.1. We refer
to Dupuis et al. (2015); Mandayam and Wehner (2011);
and Ng et al. (2012) for a security analysis.

3. Noisy-storage model

Let us now consider the general case of arbitrary stor-
age devices F in Fig. 16 (Wehner et al., 2008). This
model is motivated by the fact that counting qubits is
generally a significant overestimate of the storage capa-
bilities of a quantum memory, and indeed for example for
continous variable systems there is no dimension bound
to which to apply the bounded-storage analysis. The first
general security analysis was given by König et al. (2012),
which was then refined significantly by Berta et al. (2013,
2014b), leading to the asymptotically tight security anal-
ysis by Dupuis et al. (2015). Here, one cannot just use the
chain rule to separate the quantum memory as in (315)
– (316). Such a separation is only possible when relating
the security to the classical capacity of the storage chan-
nel F (König et al., 2012). Instead, we have to apply a
min-entropy uncertainty relation with quantum memory
to directly lower bound

Hmin(Kn|B) = Hmin(Kn|QMΘn) . (323)

We use a variant of the relation (201) for the n qubit
BB84 measurements to bound (Dupuis et al., 2015),

Hε
min(Kn|QMΘn) ≥ n · γBB84

(
Hmin(An|QM)

n

)
− 1− log

(
2

ε2

)
, (324)

where the function γBB84(·) is as in (202). In order
to get an idea how to lower bound the right-hand side
of (324) under a noisy quantum memory Q assumption,
recall that Hmin(An|QM) is a measure of entanglement
between An and B = QM . In particular, one can relate
this amount of entanglement to Bob’s ability to store the
n EPR pairs that Alice sends in the purified version of
the protocol, that is, the quantum capacity of the stor-
age channel F . If F cannot preserve said entanglement,
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then Hmin(Kn|QMΘn) in (324) will be lower bounded
non-trivially leading to a secure WSE scheme for some
trade-off between the security parameter λ from (314),
the number n of qubits sent, and the noisiness of the
quantum memory Q. We refer to Dupuis et al. (2015)
for any details.

Again we could also use a six-state encoding
{σX, σY, σZ} for the weak string erasure protocol de-
scribed in Sec. VI.C.1. We refer to Berta et al. (2014b)
and Dupuis et al. (2015) for a security analysis.

4. Uncertainty in other protocols

Entropic uncertainty relations feature in many
other quantum cryptographic protocols (Broadbent and
Schaffner, 2016). The entropic relation for channels (241)
was used in Buhrman et al. (2008) to obtain cheat-
sensitivity for a quantum string commitment protocol.
The same relations as relevant for the noisy-storage
model, have also been used to prove security in the iso-
lated qubit model Liu (2014, 2015). In this model, the
adversary is given a quantum memory of potentially long-
lived qubits, but they are isolated in the sense that he is
unable to perform coherent operations on many qubits
simultaneously. In particular, the uncertainty relation
of Damgaard et al. (2007) was used in Liu (2014) to ob-
tain security. It would possible to use the relation (103)
from Ng et al. (2012) to obtain improved security pa-
rameters. Furthermore, tripartite (Tomamichel et al.,
2013) uncertainty relations have been used to ensure the
security of position-based cryptography. Finally, in rel-
ativistic cryptography, security of two-party protocols is
possible under the assumptions that each player is split
into several non-communicating agents. Tripartite un-
certainty relations have been used to establish security
in this setting (Kaniewski et al., 2013).

D. Entanglement witnessing

Entanglement is a central resource in quantum infor-
mation processing. Hence, methods for detecting entan-
glement are crucial for quantum information technolo-
gies. Entanglement witnessing refers to the process of
verifying that a source is producing entangled particles.
Entangled states are defined as those states that are non-
separable, i.e., they cannot be written as a convex com-
bination of product states. A common theme in entan-
glement witnessing is to prove a mathematical identity
that all separable states must satisfy; let us refer to such
an identity as an entanglement witness. Experimentally
demonstrating that one’s source violates this identity will
then guarantee that the source produces entangled par-
ticles.

Entanglement witnessing is a well-developed field (e.g.,

see the review articles by Gühne and Tóth (2009) and
Horodecki et al. (2009)), and there are many types of en-
tanglement witnesses. Here, we focus mostly on entan-
glement witnesses that follow from entropic uncertainty
relations.

In what follows, we restrict the discussion to bipar-
tite entanglement. We note that entanglement witness-
ing typically occurs in the distant-laboratories paradigm,
where two parties - Alice and Bob - can each perform lo-
cal measurements on their respective systems, but neither
party can perform a global measurement on the bipartite
system.

For introductory purposes, let us mention a sim-
ple, well-known bipartite entanglement witness for two
qubits. Although it is non-entropic, it is based on com-
plementary observables, and so it can be directly com-
pared to the entropic witnesses discussed below. Namely,
consider the operator

EXZ := EX + EZ , where (325)
EX := |+〉〈+| ⊗ |−〉〈−| + |−〉〈−| ⊗ |+〉〈+|, (326)
EZ := |0〉〈0| ⊗ |1〉〈1|+ |1〉〈1| ⊗ |0〉〈0| . (327)

Note that EX and EZ are “error operators” in that they
project onto the subspaces where Alice’s and Bob’s mea-
surement outcomes are different. For a maximally en-
tangled state of the form |ψ〉 = (|00〉 + |11〉)/

√
2, there

is no probability for error in either basis, so we have
〈ψ|EXZ |ψ〉 = 0. On the other hand, for any separable
state ρAB , we have that (e.g., see Namiki and Tokunaga
(2012))

tr[ρABEXZ ] ≥ 1

2
. (328)

Hence, if 〈EX〉 + 〈EZ〉 < 1/2, where 〈O〉 := tr[OρAB ],
then ρAB is entangled. This witness is depicted as the
solid line in Fig. 17.

1. Shannon entropic witness

Some early work on entanglement witnessing using
entropic uncertainty relations was done by Giovannetti
(2004) and Gühne and Lewenstein (2004), and further
improvements were later made by Huang (2010). The
following discussion focuses primarily on more recent de-
velopments, e.g., where entanglement witnessing is based
on the bipartite uncertainty relation with quantum mem-
ory in (165). Berta et al. (2010) discussed how this can
be used for entanglement witnessing, and the approach
was implemented by Li et al. (2011) and Prevedel et al.
(2011). Specifically, from (165), one finds that all sepa-
rable states satisfy

H(XA|XB) +H(ZA|ZB) ≥ qMU , (329)
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where the qMU parameter refers to Alice’s observables,
and Bob’s observables XB and ZB are arbitrary. One
can see this by noting that H(A|B) ≥ 0 for any separa-
ble state, and furthermore that measuring Bob’s system
in some basis XB cannot reduce his uncertainty about
Alice’s measurement, i.e., H(XA|XB) ≥ H(XA|B).

One can use (329) for entanglement witnessing, using
a protocol where Alice and Bob have many copies of ρAB
and they both measure on each copy either their X or
Z observable. The quantities H(XA|XB) and H(ZA|ZB)
can then be calculated from their joint probability distri-
butions Pr(XA = xA, XB = xB) and Pr(ZA = zA, ZB =
zB), and if (329) is violated, then ρAB must be entangled.

Fig. 17 depicts this entanglement witness (long-dashed
curve) for the case of qubits and mutually unbiased bases.
A comparison of this curve to the black line shows that
(328) detects more entangled states than (329). However,
the “quality” of entanglement that (329) detects is higher.
This is because (329) holds for all non-distillable states,
i.e., states from which Alice and Bob cannot distill any
EPR (maximally-entangled) states using local operations
and classical communication (see, e.g., (Horodecki et al.,
2009) for a discussion of local operations and classical
communication). In this sense, (329) detects distillable
entanglement whereas (328) detects all forms of entan-
glement.

One can make this quantitative using a result by De-
vetak and Winter (2005) that the coherent information
(i.e., minus the conditional entropy) lower bounds the
distillable entanglement ED, i.e., the optimal asymptotic
rate for distilling EPR states using LOCC:

ED ≥ −H(A|B) . (330)

Combining this with (165) gives

ED ≥ qMU −H(XA|XB)−H(ZA|ZB) . (331)

This reveals an advantage of the entropic uncertainty ap-
proach to entanglement witnessing. Namely, that it can
give quantitative lower bounds, in contrast to witnesses
like that in (328) that only answer a “yes or no” question.

Another advantage of the entropic uncertainty ap-
proach is that it requires no structure on Bob’s side.
While (328) requires both Alice’s and Bob’s measure-
ments to be mutually unbiased, the entropic uncertainty
approach allows for arbitrary measurements on Bob’s sys-
tem.

2. Other entropic witnesses

Bipartite quantum memory uncertainty relations gen-
erally lead to entanglement witnesses. For example,
Berta et al. (2014a) discuss how the uncertainty relation
in (185) allows for entanglement witnessing using a set
of n MUBs on Alice’s system (more precisely, a subset of
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FIG. 17 Entanglement witnessing for a bipartite two-qubit
state using mutually unbiased observables. Suppose Alice and
Bob observe Pr[XA = XB = 0] = Pr[XA = XB = 1] = 1−eX

2
and Pr[XA = 0, XB = 1] = Pr[XA = 1, XB = 0] = eX

2
, and

analogously for Z and eZ . The region below the curve in the
plot indicates the region for which one can guarantee entan-
glement for the respective witnesses.

size n of MUBs chosen from a set of dA+1 MUBs, where
dA is a prime power and 2 ≤ n ≤ dA + 1). Consider such
a set {Xj} of n MUBs on Alice’s system, and consider a
set of n arbitrary POVMs {Yj} on Bob’s system. Berta
et al. (2014a) show that all separable states must satisfy

n∑
j=1

2−H2(Xj |Yj) ≤ 1 +
n− 1

dA
. (332)

Fig. 17 compares this entanglement witness (short-
dashed curve) to the previously discussed ones, in the
qubit case with n = 2. Notice that (332) detects more
entangled states than (329), but not as much as (328).

Similar to the Shannon entropy case in (331), the
uncertainty relation (185) actually allows one to give
a quantitative lower bound on an entanglement-like
measure. Namely, (185) allows one to lower bound
−Hcoll(A|B).

3. Continuous variable witnesses

The method of witnessing entanglement through en-
tropic uncertainty relations was also extended to con-
tinuous variable systems by Walborn et al. (2009), and
further studied by Huang (2013) and Saboia et al. (2011).

E. Steering inequalities

First highlighted by Schrödinger (1935), steering is a
phenomenon for bipartite quantum systems that is re-
lated to entanglement (although not precisely the same).
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Like the previous subsection, we consider the distant-
laboratories paradigm involving two parties, Alice and
Bob, where Alice (Bob) has access to system A (B).
Steering corresponds to one party’s (say Alice’s) measure-
ment choice giving rise to different ensembles of states on
the other party’s (Bob’s) system. Not all quantum states
exhibit steering, e.g., separable states are non-steerable.
At the other extreme, all states that violate a Bell in-
equality are steerable. While Bell inequalities are de-
rived for states that admit a local hidden variable (LHV)
model, Wiseman et al. (2007) formalized the notion of
steerability as those states ρAB that do not admit a local
hidden state (LHS) model. An LHS model is a model
where, say, system B has a local quantum state that is
classically correlated to arbitrary observables on system
A. This formalization has led researchers to derive steer-
ing inequalities (Cavalcanti et al., 2009), in analogy to
Bell inequalities.

Schneeloch et al. (2013) and Walborn et al. (2011)
show how entropic uncertainty relations can be used to
derive steering inequalities. The idea is that if B has
a local hidden state, then its measurement probabilities
must obey a single system uncertainty relation, even if
they are conditioned on the measurement outcomes on
A. More precisely, an LHS model implies that the joint
probability distribution for discrete observables XA on A
and XB on B has the form

P (XA,XB) =
∑
λ

P (Λ = λ)P (XA|Λ = λ)PQ(XB |Λ = λ) .

(333)

Here, Λ is the hidden variable that determines Bob’s local
state, λ is a particular value that this variable may take,
and the subscript Q on PQ(XB |Λ = λ) emphasizes that
the probability distribution arises from a single quantum
state. Next, we have that

H(XB |XA) ≥ H(XB |XAΛ) (334)

=
∑
λ

P (Λ = λ)H(XB |XAΛ = λ) (335)

=
∑
λ

P (Λ = λ)H(XB |Λ = λ) , (336)

where the notation H(XB |XAΛ = λ) should be read as
the entropy of XB conditioned on XA and conditioned
on the event that Λ = λ. Hence, for two observables XB
and ZB on B, and some other observables XA and ZA on
A, we have

H(XB |XA) +H(ZB |ZA)

≥
∑
λ

P (Λ = λ)[H(XB |Λ = λ) +H(ZB |Λ = λ)] (337)

Combining this with, say, Maassen-Uffink’s uncertainty
relation (31) gives the following steering inequality

(Schneeloch et al., 2013),

H(XB |XA) +H(ZB |ZA) ≥ qMU , (338)

where qMU refers to Bob’s observables. Any state ρAB
that admits an LHS model must satisfy (338). Hence,
an experimental violation of (338) would constitute a
demonstration of steering. Similar steering inequalities
can be derived for continuous variables (Walborn et al.,
2011).

F. Wave-particle duality

Wave-particle duality is the fundamental concept that
a single quantum system can exhibit either wave behavior
or particle behavior: one cannot design an interferometer
that can simultaneously show both behaviors. This idea
was qualitatively discussed, e.g., by Feynman, and was
subsequently put on quantitative grounds by Wootters
and Zurek (1979), Jaeger et al. (1995), Englert (1996),
Englert and Bergou (2000), and others, who proved in-
equalities known as wave-particle duality relations (WP-
DRs). Many such relations consider the Mach-Zehnder
interferometer for single photons, shown in Fig. 18. In
this case, particle behavior is associated with knowing
the path that the photon travels through the interfer-
ometer. Wave behavior on the other hand is associated
with seeing oscillations in the probability to detect the
photon in a given output mode as one varies the relative
phase φ between the two interferometer arms. Denoting
the which-path observable as Z = {|0〉〈0|, |1〉〈1|}, parti-
cle behavior can be quantified by the path predictability
P = 2pguess(Z) − 1 (which is related to the probability
pguess(Z) of guessing the path correctly). The wave be-
havior is quantified by the fringe visibility

V =
pmax

0 − pmin
0

pmax
0 + pmin

0

with pmax
0 := max

φ
p0

pmin
0 := min

φ
p0 , (339)

where p0 is the probability for the photon to be detected
by D0 (see Fig. 18). Wootters and Zurek (1979) prove
that

P2 + V2 ≤ 1 , (340)

which implies V = 0 when P = 1 (full particle behavior
means no wave behavior) and vice-versa.

More generally, suppose the photon may interact with
some environment system E inside the interferometer.
Measuring E might reveal, e.g., some information about
which path the photon took, so it is natural to consider
the path distinguishability

D = 2pguess(Z|E)− 1 . (341)
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BS1

BS2

|0〉

|1〉

D0

D1

E

φ

FIG. 18 Mach-Zehnder interferometer for single photons. A
photon impinges on a beam splitter, after which we label the
two possible paths by the Z basis states |0〉, |1〉. The photon
may interact with some environment E inside the interferom-
eter. Then a phase φ is applied to the lower path, and the
two paths are recombined on a second beam splitter. Finally
the photon is detected at either D0 or D1.

Englert (1996) and Jaeger et al. (1995) prove a stronger
version of (340), namely

D2 + V2 ≤ 1 . (342)

WPDRs such as (340) and (342) have often been
thought to be conceptually different from uncertainty
relations, although this has been debated. For exam-
ple, Dürr and Rempe (2000) and Busch and Shilladay
(2006) found connections between certain WPDRs and
Robertson’s uncertainty relation involving the standard
deviation. More recently, Coles et al. (2014) showed
that (340), (342), and some other WPDRs are actually
entropic uncertainty relations in disguise. In particu-
lar, they correspond to the uncertainty relation for the
min- and max-entropy in (222), applied to complemen-
tary qubit observables. Namely, (340) is equivalent to
the uncertainty relation,

Hmin(Z) + min
W∈XY

Hmax(W ) ≥ 1 , (343)

where the minW∈XY corresponds to minimizing over all
observables in the xy plane of the Bloch sphere. Likewise
(342) is equivalent to the uncertainty relation

Hmin(Z|E) + min
W∈XY

Hmax(W ) ≥ 1 . (344)

This unifies the wave-particle duality principle with the
entropic uncertainty principle, showing that the former
is a special case of the latter.

Naturally, other entropies could be used in place of
the min- and max-entropy, and although one might not
obtain a precise equivalence to the WPDRs above, the
conceptual meaning may be similar. Bosyk et al. (2013)
took this approach using uncertainty relations involving
Rényi entropies. Vaccaro (2012) employed the Shannon
entropy to formulate a WPDR in terms of the mutual in-
formation. Moreover, they added the conceptual insight

that wave and particle behavior are related to symme-
try and asymmetry, respectively. Finally, Englert et al.
(2008) considered entropic measures of wave and particle
behavior for interferometers with more than two paths.

G. Quantum metrology

Quantum metrology deals with the physical limits on
the accuracy of measurements (Giovannetti et al., 2011).
The uncertainty principle plays an important role in
establishing such physical limits. Typically in quan-
tum metrology one is interested in estimating an opti-
cal phase, e.g., the phase shift in an interferometer (as
in Fig. 18). Hence, uncertainty relations involving the
phase have applications here. Recall that we briefly dis-
cussed an entropic uncertainty relation for the number
and phase in Sec. V.F, specifically in (299). While quan-
tum metrology is a broad field (see, e.g., Giovannetti
et al. (2011) for a review), we mention here a few works
that exploit entropic uncertainty relations.

The Heisenberg limit is a well-known limit in quantum
metrology stating that the uncertainty in the phase esti-
mation scales as 1/〈N〉. Here, 〈N〉 is the mean photon
number of the light that is used to probe the phase. Hall
et al. (2012) note that the Heisenberg limit is heuristic,
and put it on rigorous footing by proving the following
bound,

δΦ̂ ≥ k/〈N + 1〉 , (345)

where δΦ̂ is the root-mean-square deviation of the phase
estimate Φ̂ from the actual phase Φ, and k :=

√
2π/e2.

To prove (345), Hall et al. (2012) define the random vari-
able Θ := Φ̂ − Φ and apply the entropic uncertainty re-
lation in (299), giving

H(N) + h(Θ) ≥ log 2π . (346)

Then they combine (346) with some identities that relate
h(Θ) to δΦ̂ and H(N) to 〈N + 1〉.

Hall and Wiseman (2012) consider a more general sce-
nario where one may have some prior information about
the phase, and they likewise use the entropic uncertainty
relation in (299) to obtain a rigorous statement of the
Heisenberg limit.

H. Other applications in quantum information theory

Recent efforts to understand the classical-quantum
boundary, in the context of both physics and information-
processing, have led to quantitative measures of “quan-
tumness” like coherence and discord, which are discussed
in Sec. VI.H.1 and VI.H.2, respectively. We further dis-
cuss information locking in Sec. VI.H.3 and touch on
quantum coding in Sec. VI.H.4.
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1. Coherence

Baumgratz et al. (2014) introduced a framework for
quantifying coherence, which is a measure that does not
increase under incoherent operations. There are a vari-
ety of coherence measures, but one in particular has an
operational meaning in terms of the number of distillable
maximally coherent states (Winter and Yang, 2016),

Φ(Z, ρ) := D

(
ρ

∥∥∥∥∥∑
z

|Zz〉〈Zz|ρ|Zz〉〈Zz|
)
, (347)

the relative entropy of coherence. Note that the coher-
ence is a function of the state ρ as well as an orthonormal
basis Z = {|Zz〉〈Zz|}.

The following connection between coherence and en-
tropic uncertainty was established in (Coles, 2012b; Coles
et al., 2011). Let ρS be any state for system S and let Z
be a projective measurement on S. Then, we have

Φ(Z, ρS) = H(Z|E) , (348)

where E is a purifying system for ρS . This states that
the relative entropy of coherence for a projective mea-
surement is equivalent to the uncertainty of that mea-
surement given the purifying system, or in other words,
given access to the environment E. The right-hand-side
of (348) quantifies uncertainty in the presence of quan-
tum memory, and uncertainty relations for such measures
have been discussed in Sec. IV. Hence, one can rein-
terpret such uncertainty relations as, e.g., in (165), as
lower bounds on the coherence of ρS for different mea-
surements. This idea was discussed by Korzekwa et al.
(2014b), although they focused more on the perspective
of Luo (2005) of separating total uncertainty into a “clas-
sical” and “quantum” part. In particular, for a rank-one
projective measurement Z = {|Zz〉〈Zz|} and a quantum
state ρ, they defined the classical uncertainty as the en-
tropy of the state, C(Z, ρ) := H(ρ), and the quantum
uncertainty as the relative entropy of coherence,

Q(Z, ρ) := D

(
ρ

∥∥∥∥∥∑
z

|Zz〉〈Zz|ρ|Zz〉〈Zz|
)
. (349)

It is straightforward to show that overall uncertainty is
the sum of the classical and quantum parts

H(Z) = Q(Z, ρ) + C(Z, ρ) . (350)

Korzekwa et al. (2014b) derive several uncertainty rela-
tions for the quantum uncertainty Q(Z, ρ). However, us-
ing (348), one can reinterpret their relations as entropic
uncertainty relations in the presence of quantum memory.
In particular, their uncertainty relations follow directly
from combining (165) with (348).

2. Discord

Ollivier and Zurek (2001) quantified quantum correla-
tions by discord,

D(B|A) := I(A : B)− J(B|A) , (351)

which is the difference between the quantum mutual in-
formation I(A : B) and the classical correlations,

J(B|A) := max
X

I(X : B) , (352)

where the optimization is over all POVMs X acting on
system A. In Sec. IV.E, Ex. 26, we discussed how dis-
cord quantifies the gap between conditioning on classical
versus quantum memory. Another connection to discord
is the following. In an effort to strengthen the uncer-
tainty relation with quantum memory in (165), Pati et al.
(2012) introduced an additional term that depends on
the discord of the state ρAB . Namely, they proved the
inequality

H(X|B) +H(Z|B) ≥ qMU +H(A|B)

+ max
{

0, D(B|A)− J(B|A)
}
.

(353)

Clearly this strengthens the bound in (165) for states
ρAB whose discord exceeds their classical correlations:
D(B|A) > J(B|A). Indeed, Pati et al. (2012) showed
that this is true for Werner states, for which (353) be-
comes an equality.

In turn, this result was used by Hu and Fan (2013b)
to obtain a strong upper bound on discord. That is,
the uncertainty relation (353) allows one to bound the
discord by

D(B|A) ≤ 1

2

(
I(A : B) + δT

)
, (354)

where

δT := H(X|B) +H(Z|B)− qMU −H(A|B) . (355)

Here, δT is the gap between the left and right hand sides
in the uncertainty relation (165).

Further connections between quantum correlations and
entropic uncertainty relations have been elucidated in the
context of non-Markovian dynamics (Karpat et al., 2015),
entanglement creation (Coles, 2012a), teleportation (Hu
and Fan, 2012), and monogamy (Hu and Fan, 2013a).

3. Locking of classical correlations

One operational way of understanding entropic uncer-
tainty relations is in terms of information locking (Di-
Vincenzo et al., 2004). In the following we present a
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cryptographic view on information locking as discussed
by Fawzi et al. (2011).

A locking scheme is a protocol that encodes a classi-
cal message into a quantum state using a classical key of
size smaller than the message. The goal is that without
knowing the key the message is locked in the quantum
state such that any possible measurement only reveals
a negligible amount of information about the message.
Furthermore, knowing the key it is possible to unlock and
completely recover the message. The connection of infor-
mation locking to entropic uncertainty is best presented
by means of a simple example based on the Maassen-
Uffink bound for the n qubit BB84 measurements (101),

H(Kn|Θn) ≥ n · 1

2
with Θn ∈ {θ1, . . . , θ2n} . (356)

In order to encode a uniformly random n bit string X
we choose at random an n qubit BB84 basis θi (the key)
and encode the message in this basis. Based on (356),
DiVincenzo et al. (2004) show that for any measurement
on this quantum state the mutual information (accessible
information) between the outcome of that measurement
and the original classical message X is at most n/2. That
is, n/2 bits are locked in the quantum state and are not
accessible without knowing the basis choice (the key).
This is remarkable because any non-trivial purely classi-
cal encryption of an n bit string message requires a key
of size at least n. Of course, this then raises the question
about the optimal trade-off between the number of lock-
able bits and the key size. For that purpose Fawzi et al.
(2011) make use of the uncertainty relation (100),

H(K|Θ) ≥ n · (1− 2ε)− hbin(ε) with Θ = {θ1, . . . , θL} .
(357)

Based on this they show that a key size of L =
O(log(n/ε)) allows for locking an n bit string up to a
mutual information smaller than ε > 0. State-of-the-art
results use stronger definitions for information locking in
terms of the trace norm instead of the mutual informa-
tion and are based on so-called metric uncertainty rela-
tions (Dupuis et al., 2013; Fawzi et al., 2011).35 Finally,
we mention that Guha et al. (2014) initiated the study
of the information locking capacity of quantum channels,
which is also intimately related to uncertainty.

4. Quantum Shannon theory

The original partial results and conjectures for entropic
uncertainty relations with quantum memory by Chris-
tandl and Winter (2005); Renes and Boileau (2009, 2008)

35 We emphasize that the security definitions for information lock-
ing are not composable (see, e.g., Renner (2005) for a discussion).

were inspired by applications in quantum Shannon the-
ory. More recently, entropic uncertainty relations and
in particular their equality conditions have been used to
analyze the performance of quantum Polar codes (Renes
et al., 2015; Renes and Wilde, 2014).

VII. MISCELLANEOUS TOPICS

A. Tsallis and other entropy functions

From a mathematical perspective it is insightful to con-
sider uncertainty relations for various generalizations of
the Shannon entropy. While the Rényi entropies were
discussed above, the Tsallis entropies are another family
of interest. The Tsallis entropy of order α is defined as

HT
α (X) :=

(
log e

1− α

)(∑
x

PX(x)α − 1

)
for α ∈ (0, 1) ∪ (1,∞) , (358)

and as the corresponding limit for α ∈ {0, 1,∞}. Similar
to the Rényi entropies, the α = 1 Tsallis entropy corre-
sponds to the Shannon entropy. Note that for x ≈ 1 we
have log x ≈ log e · (x− 1), so when

∑
x PX(x)α ≈ 1 the

Tsallis entropy approximates the Rényi entropy.
Rastegin has studied uncertainty relations in terms

of the Tsallis entropy. For example, Rastegin (2013a)
proved the following uncertainty relation for Tsallis en-
tropies, for a set of three MUBs {X,Y,Z} on a qubit. For
α ∈ (0, 1] and for integers α ≥ 2, we have

HT
α (X) +HT

α (Y ) +HT
α (Z) ≥ 2 log e · fα(2) , (359)

where fα(x) :=

(
1− x1−α

α− 1

)
. (360)

This generalizes the result in (79), which is recovered
by taking the limit α → 1, noting that limα→1 fα(x) =
log x/ log e.

A more general scenario was considered in (Rastegin,
2013b), where system A has dimension d, and the mea-
surements under consideration form a set of n MUBs,
{Xj}. For α ∈ (0, 2], Rastegin (2013b) shows that

1

n

n∑
j=1

HT
α (Xj) ≥ 2 log e · fα

(
nd

n+ d− 1

)
. (361)

This result is quite general in that it holds for any n and
d. Furthermore, in the case of n = d+ 1 and α→ 1, one
recovers the result presented in (81). Rastegin (2013b)
also tightened (361) for mixed states:

1

n

n∑
j=1

HT
α (Xj) ≥ 2 log e · fα

(
nd

n+ d tr(ρ2)− 1

)
. (362)
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Other entropy families are also discussed in the literature.
For example, Zozor et al. (2014) consider a broad class
of entropies defined as

H(η,φ)(X) := η

(∑
x

φ(PX(x))

)
. (363)

Here, η : R→ R and φ : [0; 1]→ R are generic continuous
functions such that either φ is strictly concave and η is
strictly increasing, or φ is strictly convex and η is strictly
decreasing. Additionally, they imposed φ(0) = 0 and
η(φ(1)) = 0. This family includes as special cases both
the Rényi and Tsallis families and hence also the Shan-
non entropy. In addition to giving an overview of the
literature on entropic uncertainty relations, Zozor et al.
(2014) derived a new uncertainty relation for the H(η,φ)

entropies. For any two POVMs X and Z, and for any
two pairs of functionals (η1, φ1) and (η2, φ2), their rela-
tion takes the form,

H(η1,φ1)(X) +H(η2,φ2)(Z) ≥ B(η1,φ1),(η2,φ2)(t) , (364)

where the right-hand side is a function of the triplet

t := {cX, cZ, c}, cX := max
x
‖Xx‖, cZ := max

z
‖Zz‖ ,

(365)

and c is defined in (49). The reader is referred to Zozor
et al. (2014) for the explicit form of B(η1,φ1),(η2,φ2)(t). In
general, this bound can be computed, since it only in-
volves a one-parameter optimization over a bounded in-
terval. Note that the functionals associated with the two
terms in (364) may be different. This gives a very gen-
eral result allowing the authors to consider, e.g., Rényi
entropy uncertainty relations that go beyond the usual
conjugacy curve, defined by (1/α) + (1/β) = 2.

B. Certainty relations

Instead of lower bounding sums of entropies for dif-
ferent observables, one can also ask whether there exist
non-trivial upper bounds on such sums. These bounds
are called certainty relations. Of course, one would not
expect to find non-trivial upper bounds for, say, the max-
imally mixed state ρA = 1/d. However, one might, e.g.,
restrict to pure states |ψ〉A.

For some sets of observables, even restricting to pure
states is not enough to get a certainty relation. For ex-
ample, consider the Pauli σX and σZ observables for one
qubit. One cannot find a certainty relation for these
two observables because there exist states, namely the
eigenstates of σY , that are unbiased with respect to the
eigenbases of σX and σZ , and hence lead to maximum
uncertainty in these two bases: H(X) +H(Z) = 2.

Recently Korzekwa et al. (2014a) proved a general re-
sult that non-trivial certainty relations are not possible

for two arbitrary orthonormal bases X and Z, in any fi-
nite dimension d. This follows from the fact that one
can always find a pure state |ψ〉A that is unbiased with
respect to both X and Z.

However, there do exist non-trivial certainty relation,
e.g., for a d+1 set of MUBs. This is connected to the fact
that there are no states that are unbiased to all bases in
a d + 1 set of MUBs. Consider a result of Sánchez-Ruiz
(1993), which deals with three MUBs (X,Y,Z) on a qubit
system in a pure state:

H(X) +H(Y ) +H(Z) ≤ 3

2
log 6−

√
3

2
log(2 +

√
3) .

(366)

The right-hand side of (366) is ≈ 2.23. Comparing this
to the lower bound of 2, from (79), one sees that the al-
lowable range for H(X) + H(Y ) + H(Z) is quite small.
Sánchez-Ruiz (1993) noted that (366) is in fact the opti-
mal certainty relation for these observables. More gener-
ally, considering a d+1 set of MUBs {Xj}, Sánchez-Ruiz
(1993) showed that

n∑
j=1

H(Xj) ≤ n log(n+
√
n)

− 1

d
(n+ (n− 2)

√
n) log(2 +

√
n) . (367)

where n = d + 1. Note that (366) is a special case of
(367) corresponding to d = 2.

Rastegin obtained some generalizations of (366) to
the Rényi and Tsallis entropy families. In the Rényi
case Rastegin (2014) found, for all α ∈ (0, 1],

Hα(X) +Hα(Y ) +Hα(Z) ≤ 3Rα , (368)

where

Rα :=
1

1− α log

((
1 + 1/

√
3

2

)α
+

(
1− 1/

√
3

2

)α)
.

(369)

Likewise Rastegin (2013a) found a similar sort of bound
for the Tsallis entropies, but with log(x) in (369) replaced
by x− 1.

While the above certainty relations are for MUBs, very
recently Puchała et al. (2015) studied a more general sit-
uation with sets of n > 2 orthonormal bases in dimen-
sion d. Their certainty relations are upper bounds on the
sum of Shannon entropies, similar to (367), but are not
restricted to MUBs. Certainty relations for unitary k-
designs with k = 2, 4 in terms of the mutual information
were also covered by Matthews et al. (2009).

Finally, it is worth reminding the reader that for the
collision entropy one can obtain an equality, as in (82).
An equation of this sort is both an uncertainty and a cer-
tainty relation. Stated another way, an equation implies



55

that the strongest uncertainty relation coincides with the
strongest certainty relation, leaving no gap between the
two bounds. Equations such as (82) can, in turn, be used
to derive certainty relations for other entropies, such as
the min-entropy, due to the fact that Hmin ≤ H2.

The generalization of (82) to bipartite states ρAB was
given in (185). Equation (185) is a certainty relation in
the presence of quantum memory. It relates the amount
of uncertainty to the amount of entanglement, as quanti-
fied by the conditional entropy H2(A|B). Similar to the
unipartite case, (185) can be used to derive certainty re-
lations (in the presence of quantum memory) for other
entropies, such as the min-entropy, as discussed by Berta
et al. (2014a).

Studying bipartite certainty relations in the presence
of quantum memory is largely an open problem. For
example, one could ask whether (366) or (367) can be
appropriately generalized to the quantum memory case.

C. Measurement uncertainty

This review has focused on preparation uncertainty
relations. Two other aspects of the uncertainty princi-
ple are (1) the joint measurability of observable pairs
and (2) the disturbance of one observable caused by the
measurement of another observable. Joint measurability
and measurement-disturbance are two aspects of mea-
surement uncertainty, which deals with fundamental re-
strictions on one’s ability to measure things. For a de-
tailed discussion of measurement uncertainty, we refer
the reader to Busch et al. (2007, 2014a); Hall (2004); and
Ozawa (2003). It is important, though, that we briefly
mention measurement uncertainty here because the topic
has seen significant debate recently (see, e.g., Busch et al.
(2013, 2014a,b)). Rather than delve into the concep-
tual issues of measurement uncertainty, we will simply
give a taste here of a few recent works that have taken
an entropic approach, in particular, to measurement-
disturbance.

1. State-independent measurement-disturbance relations

One approach to measurement uncertainty is to ask:
how well can a measurement device perform on partic-
ular idealized sets of input states, e.g., the basis states
associated with two complementary observables X and
Z? This is often called a state-independent approach,
although it could also be called a calibration approach,
since one is calibrating a device’s performance based on
idealized input states. For example, this approach was
discussed by Busch et al. (2013) for the position and mo-
mentum observables. However, the quantities in their
relation were not entropic so we will not discuss it fur-
ther.

(a)

X = x MA

|Xx〉

A′

M Guess
for x

(b)

Z = z
|Zz〉
A

A′

M
M R Guess

for z
Ẑ

FIG. 19 Two scenarios considered by Buscemi et al. (2014),
which capture (a) the noise of an attempted X measurement,
and (b) the disturbance of the Z observable.

More recently the calibration approach was taken
by Buscemi et al. (2014) using entropic quantities. Con-
sider a measurement apparatus represented by a quan-
tum channel M acting on system A, and two counter-
factual preparation schemes which will be fed into this
apparatus, as shown in Fig. 19. In one scheme, A is pre-
pared in a basis state of X, say |Xx〉, where the index x
is chosen with uniformly random probability. The out-
put of M consists of a classical system M as well as a
“disturbed” version of the original quantum system A′.
The classical output M represents an attempted mea-
surement of the X observable, and it provides a guess for
the index x. The measurement noise is then quantified by
N(M,X) := H(X|M), where X is the random variable
associated with the X observable on the input system,
i.e., associated with the index x. In the other scheme,
Fig. 19(b), A is prepared in a basis state of Z, say |Zz〉,
again with uniform probability. Now the question is: can
one recover a good guess of z from the outputs ofM? If
not, then the interpretation is that the attempted mea-
surement of X “disturbs” the Z observable. To quantify
this, Buscemi et al. (2014) defined the disturbance of Z
by D(M,Z) := minRH(Z|Ẑ). Here, Z is the random
variable associated with the observable Z on the input
system, and R is a recovery map, i.e., a quantum chan-
nel that maps A′M to a classical system Ẑ that provides
a guess for z. Their measurement-disturbance relation
states that

N(M,X) + D(M,Z) ≥ qMU , (370)

with qMU as in (31). This shows a trade-off between the
ability to measure the X states versus the ability to leave
the Z states undisturbed.

Fig. 19 is a dynamic scenario, similar to the scenario in
Sec. IV.G. Hence, to derive (370), Buscemi et al. (2014)
started with a “static” uncertainty relation (namely the
Maassen-Uffink relation) and then applied the static-
dynamic isomorphism from Sec. IV.G.2. In particular
they employed the property in (247).
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2. State-dependent measurement-disturbance relations

Now let us consider a sequential measurement scenario
where system A is prepared in an arbitrary state ρA and
fed into the measurement apparatus.

For simplicity, consider the sequential measurement
of orthonormal bases, X followed by Z, where the first
measurement is a von Neumann measurement, i.e., it
projects the system onto an X-basis state. One can apply
Maassen-Uffink’s uncertainty relation to each outcome of
the X measurement, i.e., to each state |Xx〉, giving

H(Z)|Xx〉 = H(X)|Xx〉 +H(Z)|Xx〉 ≥ qMU . (371)

Multiplying this by the probability px = 〈Xx|ρA|Xx〉 for
outcome x, and summing over x gives

H(Z|X) ≥ qMU , (372)

where H(Z|X) denotes the uncertainty for a future Z
measurement given the outcome of the previous X mea-
surement. Equation (372) was discussed in detail by Baek
et al. (2014), and was also briefly mentioned by Coles and
Piani (2014a). Note that (372) holds for any fixed input
state ρA, it is a state-dependent relation.

While (372) assumes the X measurement is an ideal
von Neumann measurement, it is interesting to ask what
happens if the first measurement is non-ideal, i.e., a noisy
measurement. There are various ways to address this.
One approach, given by Coles and Furrer (2015), quan-
tified the imperfection of the X measurement by the pre-
dictive error,

E(ρA,X, E) := Hmax(X|MX) . (373)

That is, the max-entropy of a future (perfect) X mea-
surement given the register MX that stores the outcome
of the previous (imperfect) measurement of X. Here, E ,
which maps A → AMX , is the channel that performs
this imperfect X measurement. One is interested in the
disturbance of the Z observables caused by the imperfect
X measurement. Coles and Furrer (2015) quantified the
disturbance of Z using the Rényi relative entropies for
α ∈ [1/2,∞],

Dα(ρA,Z, E) := Dα(PZ ||P EZ ) . (374)

Here, PZ is the initial probability distribution for the
Z measurement and P EZ is the final probability distri-
bution for Z, i.e., after the imperfect X measurement.
With these definitions, they found the measurement-
disturbance relation

Dα(ρA,Z, E) + E(ρA,X, E) +Hα(Z)P ≥ qMU . (375)

On the one hand this gives a trade-off between mea-
suring X well and causing large Z disturbance. On the
other hand, the trade-off gets weaker as more initial un-
certainty is contained in PZ , as quantified by the term
Hα(Z)P . So there is an interplay between initial uncer-
tainty, measurement error, and disturbance.

VIII. PERSPECTIVES

We have discussed modern formulations of Heisen-
berg’s uncertainty principle where uncertainty is quan-
tified by entropy. Such formulations are directly relevant
to quantum information processing tasks as discussed in
Sec. VI.

Technological applications such as QKD (Sec. VI.B)
provide the driving force for obtaining more refined en-
tropic uncertainty relations. For example, to prove secu-
rity of QKD protocols involving more than two measure-
ments, new entropic uncertainty relations are needed—
namely ones that allow for quantum memory and for mul-
tiple measurements. This is an important frontier that
requires more research. Device-independent randomness,
i.e., certifying randomness obtained from untrusted de-
vices (Sec. VI.A.2), is another emerging application for
which entropic uncertainty relations appear to be useful
but more research is needed to find uncertainty relations
that are specifically tailored to this application.

Aside from their technological applications, we be-
lieve that entropic uncertainty relations have a beauty
to them. They give insight into the structure of quan-
tum theory, and for that reason alone they are worth
pursuing. For example, Sec. IV.F.5 noted a simple con-
jecture—that the sum of the mutual informations for two
MUBs lower bounds the quantum mutual information.

New tools are being developed to prove entropic uncer-
tainty relations. For example, the majorization approach
(Sec. III.I) is promising. The relation between the ma-
jorization approach and the relative entropy approach
(see App. B) remains to be clarified, and a unified frame-
work would be insightful. For uncertainty relations with
memory, Dupuis et al. (2015) established a meta theorem
to derive uncertainty relations. Yet, it is known that the
resulting relations are not tight in all regimes, calling for
further improvements.

One of the most exciting things about entropic un-
certainty relations is that they give insight into basic
physics. For example Sec VI.F discussed how entropic
uncertainty relations allow one to unify the uncertainty
principle with the wave-particle duality principle. A
natural framework for quantifying wave-particle duality
will likely come from applying entropic uncertainty rela-
tions to interferometers. Likewise, a hot topic in quan-
tum foundations is measurement uncertainty. Sec. VII.C
noted that entropic uncertainty relations may play an
important role in obtaining conceptually clear formu-
lations of measurement uncertainty. In that respect,
very recently the notion of preparation uncertainty was
combined with measurement reversibility (Berta et al.,
2016) and the corresponding entropic uncertainty rela-
tions were successfully tested on the IBM Quantum Ex-
perience (IBM, 2016).

Furthermore, entropic uncertainty relations will con-
tinue to help researchers characterize the boundary be-



57

tween separable vs. entangled states (Sec. VI.D), as well
as steerable vs. non-steerable states (Sec. VI.E).

Entropic uncertainty relations may play a role in
the study of phase transitions in condensed matter
physics (Romera and Calixto, 2015). Entropic uncer-
tainty relations are also studied in the context of special
and general relativity (Feng et al., 2013; Jia et al., 2015).
Given that quantum information is playing an increasing
role in cosmology (Hayden and Preskill, 2007), it would
not be surprising to see future work on entropic uncer-
tainty relations in the context of black hole physics.
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Appendix A: Mutually unbiased bases

Sec. III.B.2 defined MUBs, and sets of n MUBs. The
study of MUBs is closely related to the study of entropic
uncertainty. Strong entropic uncertainty relations have
been derived generically for sets of MUBs (particularly
for d + 1 sets of MUBs). Hence, constructing a new
set of MUBs immediately yields a new entropic uncer-
tainty relation. On the other hand, there is the interest-
ing open question whether a set of n MUBs {Xj} yields
the strongest bound b in a generic uncertainty relation of
the form

n∑
j=1

H(Xj) ≥ b . (A1)

A review of MUBs can be found in (Durt et al., 2010).
Here, we discuss the connection of MUBs to Hadamard
matrices, as well as the existence and construction of
MUBs.

1. Connection to Hadamard matrices

Any two orthonormal bases are related by a uni-
tary, and in the case of MUBs, that unitary is called a
Hadamard matrix H. The general form of such matrices
is

H =
∑
j,k

eiφjk√
d
|j〉〈k| , (A2)

where the phase factors φjk must be appropriately chosen
so thatH is unitary. Notice that each matrix element has
a magnitude of 1/

√
d, which is the defining property of

Hadamard unitaries. The best known Hadamard is the
Fourier matrix, defined in (204),

F =
∑
j,k

ω−jk√
d
|j〉〈k| with ω = e2πi/d , (A3)

which relates the generalized Pauli operators

σZ =
∑
j

ωj |j〉〈j|, σX = FσZF
† =

∑
j

|j + 1〉〈j| . (A4)

For d = 2 these are just the usual Pauli matrices from
Ex. 7.

It should be clear that the problem of finding MUBs
is equivalent to the problem of finding Hadamard matri-
ces. We note that Hadamard matrices can be categorized
into equivalence classes, based on whether there exists
a diagonal unitary or permutation that that maps one
Hadamard to another. A detailed catalog of Hadamard
matrices can be found online (Bruzda et al., 2015).

2. Existence

That there exist MUB pairs in any finite dimension
follows, e.g., from the fact that we can write down the
Fourier matrix in (A3) for any d. In fact, for any d there
exists a set of 3 MUBs, e.g., formed from the eigenvec-
tors of σX, σZ, and σXσZ. It is also known that a set of
MUBs can at most be of size d+1 (Bandyopadhyay et al.,
2002). Such d+ 1 sets are called complete sets of MUBs.
Complete sets play a role in tomography since they are
informationally complete, and they have the useful prop-
erty of forming a complex projective two-design (Klappe-
necker and Rotteler, 2005). Complete sets of MUBs are
known to exist in prime power dimensions, i.e., d = pm

where p is a prime and m is a positive integer (Bandy-
opadhyay et al., 2002). However, even for the smallest
number that is not a prime power, namely 6, the exis-
tence problem remains unsolved.

3. Simple constructions

When d is a prime, a simple construction (Bandyopad-
hyay et al., 2002; Wootters and Fields, 1989) of a com-
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plete set of MUBs is to consider the eigenvectors of the
d+ 1 products of the form

{σZ, σX, σXσZ, σXσ2
Z, ..., σXσ

d−1
Z }. (A5)

More generally for d = pm, a construction is known where
each basis Bi comes from the common eigenvectors of
a corresponding set Ci of commuting matrices (Bandy-
opadhyay et al., 2002). The elements of Ci are a subset
of size |Ci| = d − 1 of the d2 − 1 Pauli products σjXσ

k
Z

(excluding the identity). The subset is chosen such that
all the elements of Ci commute and Ci

⋂
Cj = {1} for

i 6= j.

Appendix B: Proof of Maassen-Uffink’s relation

Here, we give a proof of Maassen-Uffink’s uncertainty
relation for the Shannon entropy (31). Our proof closely
follows the ideas in (Coles et al., 2012) and makes use
of the data-processing inequality for the relative en-
tropy (Lieb and Ruskai, 1973; Lindblad, 1975; Uhlmann,
1977). In fact, we will prove the slightly stronger relation
stated in (47):

H(X) +H(Z) ≥ log
1

c
+H(ρA) . (B1)

Proof. For the proof of (B1) we consider the classical
state ρX = XA→X(ρA) generated by applying the mea-
surement map

XA→X(·) =
∑
x

|Xx〉〈Xx| · |Xx〉〈Xx| , (B2)

where the auxiliary Hilbert space X allows us to rep-
resent the classical random variable X in the quantum
formalism.

It is easy to verify that the Shannon entropy of the
distribution PX is equal to the von Neumann entropy of
the state ρX . From this we get

H(X) = − tr [ρX log ρX ] = − tr [X (ρA) logX (ρA)] (B3)
= − tr [ρA logX (ρA)] , (B4)

where the last equality is straightforward to check by
writing out the trace and the measurement map XA→X .
By phrasing the right-hand side of (B3) in terms relative
entropy, D(ρ‖σ) = tr[ρ(log ρ− log σ)], we arrive at

H(X) = D(ρA‖X (ρA)) +H(ρA) . (B5)

We then apply the measurement map

ZA→Z(·) =
∑
z

|Zz〉〈Zz| · |Zz〉〈Zz| (B6)

to both arguments of the relative entropy, and find by the
data-processing inequality for the relative entropy that

D(ρA‖X (ρA)) ≥ D(Z(ρA)‖Z ◦ X (ρA)) (B7)
= D(ρZ‖Z ◦ X (ρA)) , (B8)

where ρZ = ZA→Z(ρA). By writing out both measure-
ment maps we find the classical state

Z ◦ X (ρA) =
∑
z

|Zz〉〈Zz| ·
∑
x

|〈Xx|Zz〉|2〈Xx|ρA|Xx〉 ,

(B9)

and the right-hand side of (B7) becomes

D(ρZ‖Z ◦ X (ρA)) = −H(ρZ)

−
∑
z

〈Zz|ρA|Zz〉 log

(∑
x

|〈Xx|Zz〉|2〈Xx|ρA|Xx〉
)
.

(B10)

Now, the logarithm is a monotonic function and hence
we find

−
∑
z

〈Zz|ρA|Zz〉 log

(∑
x

|〈Xx|Zz〉|2〈Xx|ρA|Xx〉
)

≥−
∑
z

〈Zz|ρA|Zz〉 log

(
max
x′,z′

∣∣〈Xx′ |Zz′〉∣∣2∑
x

〈Xx|ρA|Xx〉
)

(B11)

=− log max
x′,z′

∣∣〈Xx′ |Zz′〉∣∣2 . (B12)

By combining (B3)–(B12) and noting that H(Z) equals
the von Neumann entropy of ρZ , we arrive at the
claim (B1).

Appendix C: Rényi entropies for joint quantum systems

Here, we define general conditional Rényi entropies.
This allows us to exhibit their intuitive properties in a
general setting without having to discuss various special
cases individually. We will exhibit these properties to
show a generalization of the Maassen-Uffink relation to
the tripartite quantum memory setting.

1. Definitions

For any bipartite quantum state ρAB and α ∈ [ 1
2 ,∞],

we define the quantum conditional Rényi entropy as

Hα(A|B) :=−min
σB

Dα(ρAB‖1A ⊗ σB) ,

where σB is a quantum state on B . (C1)
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Here, Dα is the Rényi divergence of order α (Müller-
Lennert et al., 2013; Wilde et al., 2014), namely36

Dα(ρ‖σ) :=
1

α− 1
log tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
for α ∈

[
1

2
, 1

)
∪ (1,∞) (C2)

and as the corresponding limit for α ∈ {1,∞}. These
divergences are measures of distinguishability between
quantum states and some of their properties will be dis-
cussed in App. C.2. Note the following special cases
that we have encountered previously. First, the con-
ditional min- and max-entropy are simply recovered as
Hmin ≡ H∞ and Hmax ≡ H1/2. The conditional von
Neumann entropy is recovered as H ≡ H1. Finally, the
conditional collision entropy can be expressed as

Hcoll(A|B) = −D2(ρAB‖1A ⊗ ρB) . (C3)

Note that H2(A|B) ≤ Hcoll(A|B) since the former in-
volves a minimization over marginal states σB . The
two expressions are not equal in general and we want
to mostly work with Hcoll(A|B) because it has the oper-
ational interpretation as in (139) and (148).

2. Entropic properties

We present the properties for the whole family of Rényi
divergences and entropies, but recall that the properties
also apply to the relative entropy and the von Neumann
entropy as special cases. Most properties of the condi-
tional Rényi entropy can be derived from properties of
the underlying Rényi divergence.37

a. Positivity and monotonicity

First, we remark that Dα(ρ‖σ) is guaranteed to be
non-negative when the arguments ρ and σ are normal-
ized, and Dα(ρ‖σ) = 0 when ρ = σ. Also, α 7→ Dα(ρ‖σ)
is monotonically increasing in α. Thus, for any β ≥ α,

36 This quantum generalization is not unique— in fact other gener-
alizations based on Petz’s notion of Rényi divergence (Ohya and
Petz, 1993) have also been explored, for example by Tomamichel
et al. (2014). However, for the purpose of the present review it is
convenient to stick with the proposed definition in (C1) and (C2)
as it entails the most important special cases encountered here
and in the literature.

37 These divergences have been investigated in a series of recent
works (Beigi, 2013; Frank and Lieb, 2013b; Mosonyi and Ogawa,
2015; Müller-Lennert et al., 2013; Wilde et al., 2014) and proofs
of the properties discussed here can be found in these references.

we have

0 ≤ Dα(ρ‖σ) ≤ Dβ(ρ‖σ) , and (C4)
log dA ≥ Hα(A|B) ≥ Hβ(A|B) ≥ − log min{dA, dB} .

(C5)

This means that the conditional Rényi entropies, in par-
ticular also the conditional von Neumann entropy, can be
negative. However, this can only happen in the presence
of quantum entanglement and the conditional entropies
are thus always positive when one of the two systems is
classical. The maximum log dA is achieved for a state of
the form ρAB = 1A

dA
⊗ ρB . On the other hand, the min-

imum − log dA is achieved for the maximally entangled
pure state |ψ〉AB = 1√

dA

∑
x |x〉A ⊗ |x〉B .

b. Data-processing inequalities

Any quantum channel is described by a completely-
positive and trace-preserving (CPTP) map. The Rényi
divergences satisfy a data-processing inequality. Namely,
for all α ≥ 1

2 and any CPTP map E , we find the following
relation (Frank and Lieb, 2013b):

Dα

(
E(ρ)

∥∥E(σ)
)
≤ Dα(ρ‖σ) . (C6)

This is an expression of the intuitive property that it
is easier to distinguish between the inputs rather than
the outputs of any quantum channel. In fact, this prop-
erty holds more generally for any completely positive
trace non-increasing map E which satisfies tr[E(ρ)] = 1.
This has two important implications for conditional en-
tropies. First, consider an arbitrary CPTP map EB→B′
acting on the side information that takes ρAB to τAB′ =
IA⊗EB→B′(ρAB). Then we have Hα(A|B) ≤ Hα(A|B′).
This tells us that any physically allowed information pro-
cessing of the side information B may only increase the
uncertainty we have about A.

Example 35. An often encountered special case of the
data-processing inequality is that Hα(A|BC) ≤ Hα(A|B)
for any tripartite state ρABC . This expresses the fact
that throwing away part of the side information can only
increase the uncertainty about A.

The second application concerns rank-1 projective
measurements on the A system. More precisely, we
consider any rank-1 projective measurement XA→X that
takes ρAB to

ρXB = XA→X ⊗ IB(ρAB) (C7)

=
∑
x

(
|Xx〉〈Xx|A ⊗ 1B

)
ρAB

(
|Xx〉〈Xx|A ⊗ 1B

)
.

(C8)



60

Then, we find that Hα(A|B) ≤ Hα(X|B), which reveals
that measuring out system A completely can only in-
crease the uncertainty we have about it.38

c. Duality and additivity

We will see that the following property is essential for
deriving uncertainty relations with quantum side infor-
mation. For any tripartite state ρABC , the conditional
Rényi entropies satisfy the following duality relation. For
α, β ∈ [ 1

2 ,∞] such that 1
α + 1

β = 2, we have (Beigi, 2013;
Müller-Lennert et al., 2013)

Hα(A|B) +Hβ(A|C) ≥ 0 , (C9)

with equality if ρABC is pure.
This is a quantitative manifestation of the monogamy

of quantum correlations. For example, if system A is
highly entangled with system B we find that the condi-
tional von Neumann entropy H(A|B) is negative. How-
ever, the duality relation (C9) now shows that for any
third system C correlated with A and B, it holds that
H(A|C) ≥ −H(A|B), that is, the uncertainty of A from
an observer with access to C is necessarily large in this
case.

The Rényi entropies are additive. Namely, given a
product state of the form ρABCD = ρAC ⊗ ρBD, they
satisfy Hα(AB|CD) = Hα(A|C) + Hα(B|D). This is in
fact a consequence of the above duality relation.39

3. Axiomatic proof of uncertainty relation with quantum
memory

Here, we give a concise proof of the generalized
Maassen-Uffink relation (221),

Hα(X|B)ρ +Hβ(Z|C) ≥ qMU , (C10)

where 1
α + 1

β = 2. Let us note that the proof applies to
a general class of entropic quantities that satisfy certain
properties, but we will specialize it here to conditional
Rényi entropies.

Let us consider measurements X = {XxA} and Z =
{ZzA} in two orthonormal bases such that XxA and ZzA are

38 The above inequality holds more generally for all CPTP maps
on EA→A′ that satisfy EA→A′ (1A) = 1A′ (unital maps).

39 Recall that by definition (C1), we have

Hα(AB|CD) = − min
σCD

Dα(ρABCD‖1AB ⊗ σCD)

≥ − min
σC ,σD

Dα(ρABCD‖1AB ⊗ σC ⊗ σD)

= Hα(A|C) +Hα(B|D) .

The reverse inequality then follows due to the duality relation.

rank-one projectors. The proof for POVMs follows es-
sentially the same steps, as detailed in Coles et al. (2012)
(based on ideas of Coles et al. (2011) and Tomamichel
and Renner (2011)).

Proof of (C10). First, let us define the isometry V :=∑
z |z〉Z ⊗ ZzA associated with the Z measurement on

system A, and the state ρ̃ZABC := V ρABCV
†. We find

the following sequence of inequalities (which will be ex-
plained in detail below),

Hβ(Z|C)

≥ −Hα(Z|AB) (C11)

= min
σAB

Dα

(
ρ̃ZAB

∥∥1Z ⊗ σAB) (C12)

≥ min
σAB

Dα

(
ρAB

∥∥∥∥∑
z

ZzAσABZzA
)

(C13)

≥ min
σAB

Dα

(
ρXB

∥∥∥∥∑
x,z

∣∣〈XxA|ZzA〉∣∣2XxA ⊗ trA
[
ZzAσAB

])
.

(C14)

where we have used ρXB :=
∑
k XxAρABXxA. To estab-

lish (C11), we apply the duality relation (C9) to the state
ρ̃ZABC . Equation (C12) is simply the definition of the
conditional entropy as in (C1). To find (C13), we ap-
ply the data-processing inequality for the partial isom-
etry V † as a trace non-increasing map, and note that
V †(1Z ⊗ σAB)V =

∑
z ZzAσABZzA. Next, (C14) follows

by applying the data-processing inequality for the mea-
surement cptp map X (·) =

∑
xXx · Xx.

Next we observe that∑
x,z

∣∣〈XxA|ZzA〉∣∣2XxA ⊗ trA
[
ZzAσAB

]
≤ c

∑
x,z

XxA ⊗ trA
[
ZzAσAB

]
= c1A ⊗ σB , (C15)

where we recall that c = maxx,z
∣∣〈XxA|ZzA〉∣∣2 as defined

in (32). Moreover, we need that for any σ′ and positive
λ such that σ ≤ λσ′, we have Dα(ρ‖σ) ≥ Dα(ρ‖σ′) +
log 1

λ .
40 Continuing from (C14), we thus find that

Hβ(Z|C) ≥ min
σB

Dα

(
ρXB

∥∥1X ⊗ σB)+ qMU (C16)

= −Hα(X|B) + qMU , (C17)

where (C17) again follows by the definition of the condi-
tional entropy.

40 For a proof of this property, see (Müller-Lennert et al., 2013,
Prop. 4).
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