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Conventional nonlinear spectroscopy uses classical light to detect matter properties through the vari-
ation of its response with frequencies or time delays. Quantum light opens up new avenues for spec-
troscopy by utilizing parameters of the quantum state of light as novel control knobs and through the
variation of photon statistics by coupling to matter. We present an intuitive diagrammatic approach
for calculating ultrafast spectroscopy signals induced by quantum light, focusing on applications in-
volving entangled photons with nonclassical bandwidth properties - known as “time-energy entangle-
ment”. Nonlinear optical signals induced by quantized light fields are expressed using time ordered
multipoint correlation functions of superoperators in the joint field plus matter phase space. These are
distinct from Glauber’s photon counting formalism which use normally ordered products of ordinary
operators in the field space. One notable advantage for spectroscopy applications is that entangled
photon pairs are not subjected to the classical Fourier limitations on the joint temporal and spectral
resolution. After a brief survey of properties of entangled photon pairs relevant to their spectroscopic
applications, different optical signals, and photon counting setups are discussed and illustrated for
simple multi-level model systems.
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I. INTRODUCTION

Nonlinear optics is most commonly and successfully for-
mulated using a semiclassical approach whereby the matter
degrees of freedom are treated quantum mechanically, but the
radiation field is classical (Boyd, 2003; Scully and Zubairy,
1997). Spectroscopic signals are then obtained by comput-
ing the polarization induced in the medium and expanding
it perturbatively in the impinging field(s) (Hamm and Zanni,
2011; Mukamel, 1995). This level of theory is well justi-
fied in many applications, owing to the typically large intensi-
ties required to generate a nonlinear response from the optical
medium, which can only be reached with lasers. Incidentally,
it was shortly after Maiman’s development of the ruby laser
that the first nonlinear optical effect was observed (Franken
et al., 1961).

Recent advances in quantum optics extend nonlinear sig-
nals down to the few-photon level where the quantum nature
of the field is manifested, and must be taken into account: The
enhanced light-matter coupling in cavities (Raimond et al.,
2001; Schwartz et al., 2011; Walther et al., 2006), the en-
hancement of the medium’s nonlinearity by additional driving

fields (Chen et al., 2013; Peyronel et al., 2012), large dipoles
in highly excited Rdberg states (Gorniaczyk et al., 2014; He
et al., 2014), molecular design (Castet et al., 2013; Loo et al.,
2012), or strong focussing (Faez et al., 2014; Pototschnig
et al., 2011; Rezus et al., 2012) all provide possible means
to observe and control nonlinear optical processes on a funda-
mental quantum level. Besides possible technological appli-
cations such as all-optical transistors (Shomroni et al., 2014)
or photonic quantum information processing (Braunstein and
Kimble, 2000; Franson, 1989; Jennewein et al., 2000; Knill
et al., 2001; Kok et al., 2007; O’Brien et al., 2003; U’Ren
et al., 2003), these also show great promise as novel spec-
troscopic tools. Parameters of the photon field wavefunction
can serve as control knobs that supplement classical parame-
ters such as frequencies and time delays. This review surveys
these emerging applications, and introduces a systematic dia-
grammatic perturbative approach to their theoretical descrip-
tion.

One of the striking features of quantum light is photon en-
tanglement. This occurs between two beams of light (field
amplitudes (Van Enk, 2005)) when the quantum state of each
field cannot be described in the individual parameter space
of that field. Different degrees of freedom of light can be-
come entangled. Most common types of entanglement are:
their spin (Dolde et al., 2013), polarization (Shih and Alley,
1988), position and momentum (Howell et al., 2004), time
and energy (Tittel et al., 1999), etc. Entangled photon pairs
constitute an invaluable tool in fundamental tests of quantum
mechanics - most famously in the violation of Bell’s inequal-
ities (Aspect et al., 1982a, 1981, 1982b) or in Hong, Ou and
Mandel’s photon correlation experiments (Hong et al., 1987;
Ou and Mandel, 1988; Shih and Alley, 1988). Besides, their
nonclassical bandwidth properties have long been recognized
as a potential resource in various “quantum-enhanced” appli-
cations, where the quantum correlations shared between the
photon pairs may offer an advantage. For example when
one photon from an entangled pair is sent through a disper-
sive medium, the leading-order dispersion is compensated in
photon coincidence measurements - an effect called disper-
sion cancellation (Abouraddy et al., 2002; Franson, 1992;
Larchuk et al., 1995; Minaeva et al., 2009; Steinberg et al.,
1992a,b). In the field of quantum-enhanced measurements,
entanglement may be employed to enhance the precision of
the measurement beyond the Heisenberg limit (Giovannetti
et al., 2004, 2006; Mitchell et al., 2004). Similarly, the spatial
resolution may be enhanced in quantum imaging applications
(Bennink et al., 2004; Pittman et al., 1995), quantum-optical
coherence tomography (Abouraddy et al., 2002; Esposito,
2016; Nasr et al., 2003), as well as in quantum lithographic
applications (Boto et al., 2000; D’Angelo et al., 2001).

However, it is now recognized that many of these applica-
tions may also be created in purely classical settings: Some
two-photon interference effects originally believed to be a
hallmark of quantum entanglement can be simulated by post-
selecting the signal (Kaltenbaek et al., 2008, 2009). This
had enabled quantum-optical coherence tomography studies
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with classical light (Lavoie et al., 2009). Similarly, quan-
tum imaging can be carried out with thermal light (Valencia
et al., 2005), albeit with reduced signal-to-noise ratio. When
proposing applications of quantum light, it is thus imperative
to carefully distinguish genuine entanglement from classical
correlation effects. The approach developed here offers a uni-
fied treatment of both types of correlations.

A clear signature of the quantumness of light is the scaling
of optical signals with light intensities: Classical heterodyne
χ(3) signals such as two photon absorption scale quadrati-
cally with the intensity, and therefore require a high inten-
sity to be visible against lower-order linear-scaling processes.
With entangled photons, such signals scale linearly (Dayan
et al., 2004, 2005; Friberg et al., 1985; Georgiades et al.,
1995; Javanainen and Gould, 1990). This allows to carry out
microscopy (Teich and Saleh, 1998) and lithography (Boto
et al., 2000) applications at much lower photon fluxes. The
different intensity scaling with entangled photons has been
first demonstrated in atomic systems by (Georgiades et al.,
1995) and later by (Dayan et al., 2004, 2005), as well as in
organic molecules (Lee and Goodson, 2006). An entangled
two-photon absorption (TPA) experiment performed in a por-
phyrin dendrimer is shown in Fig. 1a). The linear scaling can
be rationalized as follows: entangled photons come in pairs, as
they are generated simultaneously. At low light intensity, the
different photon pairs are temporally well separated, and the
two photon absorption process involves two entangled pho-
tons of the same pair. The process thus behaves as a linear
spectroscopy with respect to the pair. At higher intensities,
it becomes statistically more plausible for the two photons to
come from different pairs, which are not entangled, and the
classical quadratic scaling is recovered [Fig. 1a)] stemming
from the Poisson distribution of photon pairs.

The presence of strong time and frequency correlations of
entangled photons is a second important feature, which we
shall discuss extensively in the course of this review. Fig. 1b)
shows the two-photon absorption signal of entangled photons
in Rubidium vapor (Dayan et al., 2004). In the left panel, a
delay stage is placed into one of the two photon beams, cre-
ating a narrow resonance as if the TPA resonance was cre-
ated by a 23 fs pulse. However, as the frequency of the pump
pulse which creates the photons is varied in the right panel,
the resonance is also narrow in the frequency domain, as if it
was created by a ns pulse. This simultaneous time and fre-
quency resolution along non Fourier conjugate axes is a hall-
mark of the time-energy entanglement, and its exploitation as
a spectroscopic tool offers novel control knobs to manipulate
the excited state distribution, and thereby enhance or suppress
selected features in nonlinear spectroscopic signals.

In a different line of research, the seminal photon coinci-
dence counting experiments were turned into a spectroscopic
tool by placing a sample into the beam line of one of the two
entangled photons, and recording the change of the coinci-
dence count rate (Kalachev et al., 2007, 2008; Kalashnikov
et al., 2014; Li et al., 2015; Yabushita and Kobayashi, 2004).
We will examine related schemes for utilizing entanglement

(a) 

(b) a)

b)

FIG. 1 a) Linear entangled TPA rate and quadratic nonlinear ran-
dom TPA rate in a porphyrin dendrimer at different entanglement
times. The inset shows the dominant effect of the entangled TPA
at low input flux of correlated photons. b) Two-photon absorption
5S1/2 → 4D5/2,3/2 in atomic Rubidium (Dayan et al., 2004) vs. the
time delay between the two photons (left panel), and vs. the pump
frequency (right panel).

in nonlinear spectroscopy.
This review is structured as follows: In section I.A, we

briefly give a the background and introduce the superoperator
formalism used in the following. In section I.B we describe
the diagram construction. In section II, we discuss proper-
ties of entangled photons, and present their impact on excited
state distributions upon their absorption in a complex quan-
tum system. In section III we provide general superoperator
expressions for nonlinear optical signals, and review available
setups. Finally, section IV presents a general classification of
nonlinear optical processes induced by quantum light, clari-
fying under which conditions its quantum nature may play a
role.

A. Liouville space superoperator notation

The calculation of nonlinear optical signals becomes
most transparent and simple by working in Liouville space
(Mukamel, 1995; Mukamel and Nagata, 2011), i.e. the space
of bounded operators on the combined matter-field Hilbert
space. It offers a convenient compact bookkeeping device for
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matter-light interactions where signals are described as time-
ordered products of superoperators.

Here, we introduce the basic superoperator notation. With
each operator A acting on the Hilbert space, we associate two
superoperators (Chernyak et al., 1995; Harbola and Mukamel,
2008; Roslyak and Mukamel, 2009b, 2010)

ALX ≡ AX, (1)

which represents the action from the left, and

ARX ≡ XA, (2)

representing the action from the right. We further introduce
their linear combinations, the commutator superoperator

A− ≡ AL −AR, (3)

and the anti-commutator

A+ ≡
1

2
(AL +AR) . (4)

This notation allows to derive compact expressions for spec-
troscopic signals. At the end of the calculation, after the
time-ordering is taken care of, we can switch back to ordinary
Hilbert space operators.

The total Hamiltonian of the field-matter system is given by

Htot = H0 +Hfield +Hint. (5)

H0 describes the matter. The radiation field Hamiltonian is
given by

Hfield = ~
∑

s

ωs a
†
s(ωs)as(ωs). (6)

Here we introduced the creation (annihilation) operators
for mode s which satisfy bosonic commutation relations
[as, a

†
s′ ] = δs,s′ , [as, as′ ] = [a†s, a

†
s′ ] = 0. In many ap-

plications, we will replace the discrete sum over modes by
a continuous integral

∑
s → V

(2π)3

∫
dωsD̃(ωs) with D̃(ωs)

being the density of states that we assume to be flat within the
relevant bandwidths D̃(ωs) ' D̃.

We assume a dipole light-matter interaction Hamiltonian,

Hint = ε
∑

ν

Vν , (7)

where Vν = Vν + V †ν the dipole operator of molecule ν with
the summation running over all the molecules contained in the
sample. V (V †) is the excitation lowering (raising) part of the
dipole. ε = E + E† denotes the electric field operator and E
(E†) are its positive (negative) frequency components which
can be written in the interaction picture with respect to the
field Hamiltonian (Loudon, 2000) as

E =

∫
dω

2π
e−iωta(ω) (8)

which is written in the slowly-varying envelope approxima-
tion. Unless specified otherwise, E will denote the sum of all
relevant field modes.

In the following applications, we will neglect rapidly os-
cillating terms, by employing the dipole Hamiltonian in the
rotating wave approximation,

Hint, RWA = EV † + E†V. (9)

B. Diagram construction

We adopt the diagram representation of nonlinear spectro-
scopic signals as summarized, for instance, in (Mukamel and
Rahav, 2010). It bears close similarity to analogous methods
in quantum electrodynamics (Cohen-Tannoudji et al., 1992).
We will employ two types of diagrams for calculating the ex-
pectation value of an operator A(t) which are either based on
the density matrix or the wavefunction. For details see ap-
pendix A. First, we evaluate it by propagating the density
matrix ρ(t),

〈
A(t)

〉
DM ≡ tr {A(t)%(t)} (10)

Eq. (10) can be best analyzed in Liouville space (3): We
write the time evolution of the joint matter plus field den-
sity matrix using a time-ordered exponential which can be ex-
panded as a Dyson series,

%(t) = T exp

[
− i
~

∫ t

t0

dτHint,−(τ)

]
%(t0), (11)

where Hint− is a superoperator (3) that corresponds to the
interaction Hamiltonian (7) written in the interaction picture
with respect to H0 and Hfield. The time-ordering operator T
which orders the following products of superoperators so that
their time arguments increase from right to left. For example
when acting on two arbitrary superoperators A(t) and B(t),

T A(t1)B(t2) ≡ θ(t1 − t2)A(t1)B(t2)

+ θ(t2 − t1)B(t2)A(t1). (12)

The perturbative expansion of Eq. (11) to n-th order in Hint
generates a number of pathways - successions of excitations
and deexcitations on both the bra or the ket part of the density
matrix. These pathways are depicted by double-sided ladder
diagrams, which represent convolutions of fully time-ordered
superoperator nonequilibrium Green’s functions (SNGF) of
the form (Roslyak and Mukamel, 2010)
∫ ∞

0

dt1 · · ·
∫ ∞

0

dtnV(n)
νn...ν1

(t− tn . . . , t− tn · · · − t1)

× E(n)
νn...ν1

(t− tn . . . , t− tn · · · − t1) . (13)

The field SNGF in Eq. (13)

E(n)
νn...ν1

(t− tn . . . , t− tn · · · − t1)

=
〈
T Eνn(t− tn) · · ·Eν1(t− tn · · · − t1)

〉
(14)
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is evaluated with respect to the initial quantum state of the
light. The indices are νj = L,R or νj = +,−. When
replacing the field operators by classical amplitudes, we re-
cover the standard semiclassical formalism (Mukamel, 1995).
Similarly, we may also convert the field operators into classi-
cal random variables to describe spectroscopic signals with
stochastic light (Asaka et al., 1984; Beach and Hartmann,
1984; Morita and Yajima, 1984; Turner et al., 2013).

The material SNGF’s in Eq. (13) are similarly defined:

V(n)
νn...ν1

(t− tn . . . , t− tn · · · − t1)

=
〈
V (†)
νn G(tn) · · · G(t1)V (†)

ν1

〉
(15)

where

G(t) = − i
~
θ(t) exp

[
− i
~
H0t

]
(16)

denotes the propagator of the free evolution of the matter sys-
tem, νj = L,R. Similarly SNGF may be obtained by replac-
ing some V † by V and E by E†. This representation further
allows for reduced descriptions of open systems where bath
degrees of freedom are eliminated.

As an example, the set of fourth-order pathways for the
population of state f in a three-level scheme shown in Fig. 8
are given in Fig. 2b. We will repeatedly refer to these path-
ways in the course of this review. This ladder diagram repre-
sentation is most suitable for impulsive experiments involving
sequences of short, temporally well-separated pulses ranging
from NMR to the X-ray regimes (Hamm and Zanni, 2011;
Mukamel, 1995). In such multidimensional experiments, the
time variables used to represent the delays between succes-
sive pulses (Abramavicius et al., 2009) t1, t2, t3, ... serve as
the primary control parameters. Spectra are displayed vs. the
Fourier conjugates Ω̃1, Ω̃2, Ω̃3, ... of these time variables.

As indicated in Fig. 2b), each interaction with a field also
imprints its phase φ onto the signal. Filtering the possi-
ble phase combinations ±φ1 ± φ2 ± φ3 ± φ4 of the sig-
nal, known as phase cycling, allows for the selective inves-
tigation of specific material properties (Abramavicius et al.,
2009; Keusters et al., 1999; Krčmář et al., 2013; Scheurer and
Mukamel, 2001; Tan, 2008; Tian et al., 2003; Zhang et al.,
2012a,b). Acousto-optical modulation discussed in Fig. 15
offers the possibility to achieve this selectivity even at the
single-photon level. Phase cycling techniques have been suc-
cessfully demonstrated as control tools for the selection of
fixed-phase components of optical signals generated by mul-
tiwave mixing (Keusters et al., 1999; Tan, 2008; Tian et al.,
2003; Zhang et al., 2012a,b). Phase cycling can be easily im-
plemented by varying the relative inter-pulse phases using a
pulse shaper, which is cycled over 2π radians in a number of
equally spaced steps (Keusters et al., 1999; Tian et al., 2003).

Alternatively, rather than propagating the density matrix
Eq. (10), we can follow the evolution of the wave function
by expanding

〈
A(t)

〉
WF ≡ 〈ψ(t)|A(t)|ψ(t)〉, (17)

with

|ψ(t)〉 = T exp

(
− i
~

∫ t

t0

dτH ′int(τ)

)
|ψ(t0)〉. (18)

Keeping track of the wave function results in different path-
ways which can be represented by loop diagrams. Rather than
propagating of both the bra and the ket, we can then place the
entire burden of the time evolution on the ket, and write

〈A(t)〉 = 〈ψ(t0)|ψ̃(t)〉, (19)

where

|ψ̃(t)〉 = T −1 exp

(
i

~

∫ t

t0

dτH ′int(τ)

)
A(t)

× T exp

(
− i
~

∫ t

t0

dτH ′int(τ)

)
|ψ(t0)〉, (20)

and T −1 denotes the ati-time-ordering operator (time in-
creases from left to right). Here the ket first evolves forward
and then backward in time, eventually returning to the initial
time (Keldysh, 1965; Schwinger, 1961). Back propagation of
the ket is equivalent to forward propagation of the bra. The
resulting terms are represented by loop diagrams, as is com-
monly done in many-body theory (Hansen and Pullerits, 2012;
Mukamel, 2008; Rahav and Mukamel, 2010; Rammer, 2007).

As can be seen from Fig. 2, this representation yields a more
compact description (fewer pathways) of the signals than the
density matrix, since the relative time ordering of ket and bra
interactions is not maintained. In this example, the f-state pop-
ulation is given by a single loop diagram, which can be sepa-
rated into the sum of the six ladder diagrams (the three shown
plus their complex conjugates obtained by interchanging all
left and right interactions). It is harder to visualize short pulse
experiments in this representation, and due to the backward
time propagation the elimination of bath degrees of freedom
in an open system is not possible. Nevertheless, this repre-
sentation proves most useful and compact for frequency do-
main techniques involving long pulses where time ordering is
not maintained anyhow (Rahav and Mukamel, 2010) and for
many-body simulations that are usually carried out in Hilbert
space (Dalibard et al., 1992).

The double sided (ladder) and the loop diagrams consti-
tute two book keeping devices for field-matter interactions.
The loop diagrams suggest various wavefunction-based simu-
lation strategies for signals (Dorfman et al., 2013a). The first
is based on the numerical propagation of the wavefunction,
which includes all relevant electronic and nuclear (including
bath) degrees of freedom explicitly. A second protocol uses a
Sum Over States (SOS) expansion of the signals. In the third,
semiclassical approach a small subsystem is treated quantum
mechanically and is coupled to a classical bath, which causes
a time dependent modulation of the system Hamiltonian. The
third approach for a wave function is equivalent to the stochas-
tic Liouville equation for the density matrix (Tanimura, 2006),
which is based on the ladder diagram book keeping.
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FIG. 2 Diagrammatic construction of the double excitation probability %ff in a three level model a). b) The single loop diagram representing
the evolution of the wavefunction. On the left hand side, the vertical line represents ket and the right hand it corresponds to the bra. The wave
function in this closed time path loop diagram propagates forward in a loop from the bottom branch of the diagram along the ket branch to
the top of the diagram. It then evolves backward in time from the top to the bottom of the right branch (bra). This forward and backward
propagation is similar to the Keldysh contour diagram rules (Keldysh, 1965). Horizontal arrows represent field-matter interactions. c) The
corresponding three ladder diagrams for the evolution of the density matrix. Here the density matrix evolves forward in time upward from
the bottom to the top of the diagram. In order to achieve doubly excited state population starting from the ground state the density matrix has
to undergo four interactions represented by the absorption of two photons represented by four inwardly directed arrows. The three diagrams
represent different time orderings of ket vs bra interactions. These are lumped together in the single loop diagram b)

II. STATES OF QUANTUM LIGHT

In this section, we first discuss classical light which is the
basis for the semiclassical approximation of nonlinear spec-
troscopy. We then briefly survey the main concepts from
Glauber’s photon counting theory for a single mode of the
electromagnetic field. Finally, we discuss in detail the multi-
mode entangled states of light, which will be repeatedly used
in this review.

A. Classical vs. Quantum Light

Clearly, our world is governed by quantum mechanics, so
on a fundamental level light is always quantum. Yet, in many
situations a classical description of the light field may be suf-
ficient (Boyd, 2003; Scully and Zubairy, 1997). For pedagog-
ical reasons, before we describe properties of quantum light,
we first discuss in some detail how the classical description of
the field emerges from quantum mechanics, and - more impor-
tantly - under which circumstances this approximation may
break down.

The coherent state of the field, i.e. the eigenstate of the pho-
ton annihilation operator at frequency ω, is generally consid-
ered as “classical”. In this state the annihilation operator, and
hence the electric field operator - has a non-vanishing expecta-
tion value, 〈a(ω)〉 6= 0. In general, we can write a multimode
coherent state as

|φcoh(t)〉 =

∫
dω eαω(t)a†(ω)−α∗ω(t)a(ω)|0〉, (21)

where the mode amplitudes α are given by

αω(t) = αωe
−iωt. (22)

In a normally ordered correlation function (all a† are to the
right of all a), we may then simply replace the field operators

in the correlation functions by by classical amplitudes (Man-
del and Wolf, 1995),

Eν(t)→
∫
dω ανωe

±iωt. (23)

However a coherent state is not yet sufficient for the field to
be classical: As we have seen in Eq. (13), the light field enters
into our formalism through its multipoint correlation function
E(n)
νn...ν1 (t− tn . . . , t− tn · · · − t1). These correlation func-

tions can always be rewritten as the sum of a normally ordered
term and lower order normal correlation functions multiplied
with commutator terms

E(n)
νn...ν1

(t− tn . . . , t− tn · · · − t1)

=
〈

: Eνn(t− tn) · · ·Eν1
(t− tn · · · − t1) :

〉

+ [Eνn(t− tn), Eνn−1
(t− tn − tn−1)]

× E(n)
νn−2...ν1

(t− tn − tn−1 − tn−2 . . . , t− tn · · · − t1) + · · ·
(24)

For the semiclassical limit to hold, we must be able to neglect
all the terms containing field commutators. This is typically
the case when the intensity of the coherent state, i.e. its mean
photon number is very large.

More generally, probability distributions of coherent states
are classical (Mandel and Wolf, 1995): States, whose density
matrix has a diagonal Glauber-Sudarshan P-representation,
are considered classical. This includes classical stochas-
tic fields, which show non-factorizing field correlation func-
tions (for instance, for Gaussian statistics with 〈E〉 = 0 and
〈E†E〉 6= 0). Such classical correlations can also be em-
ployed in spectroscopy (Turner et al., 2013), but are not the
focus of the present review.

According to this strict criterion, any other quantum state
must therefore be considered nonclassical. However, that does
not mean that such state will also show nonclassical features,
and the elucidation of genuine quantum effects in a given
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experiment is often very involved; see e.g. the discussion
around dispersion cancellation with entangled photons (Fran-
son, 1992; Steinberg et al., 1992b), or quantum imaging (Ben-
nink et al., 2004; Valencia et al., 2005).

The interest in quantum light for spectroscopy is twofold:
As stated in (Walmsley, 2015), “the critical features of quan-
tum light [. . .] are exceptionally low noise and strong corre-
lations”. In the following section, we first discuss the noise
properties of quantum light, i.e. quantum correlations within
an electromagnetic mode. The rest of the chapter is devoted to
the strong time-frequency correlations, i.e. quantum correla-
tions between different modes, which is the main focus of this
review.

B. Single mode quantum states

In confined geometries, the density of states of the elec-
tromagnetic field can be altered dramatically. In a cavity, it
is often sufficient to describe the field by a single field mode
with a sharp frequency ω0, which may be strongly coupled
to dipoles inside the cavity. In this section, we shall be con-
cerned with this situation, where we can write the cavity field
Hamiltonian simply as

Hcav = ~ω0a
†a, (25)

where a (a†) describes the photon annihilation (creation) op-
erator of the cavity mode. We introduce the dimensionless
cavity field quadratures

x =
1√
2

(
a+ a†

)
, (26)

p =
1√
2i

(
a− a†

)
, (27)

which represent the real and imaginary part of the electric
field, respectively. A whole family of quadratures x(θ) and
p(θ) may be obtained by rotating the field operators as a →
a e−iθ.

Quantum mechanics dictates the Heisenberg uncertainty

〈
∆x2

〉 〈
∆p2

〉
≥ 1

4
(28)

for any quantum state.
Coherent states form minimal uncertainty states, in which

the lower bound in Eq. (28) applies

〈
∆x2

〉
=
〈
∆p2

〉
=

1

2
. (29)

This coincides with the quantum fluctuations of the vacuum
state. Any quantum state that features fluctuations in one of
its quadratures below this fundamental limit 1/2 is therefore
said to be squeezed. Note that due to the Heisenberg uncer-
tainty (28) the conjugate quadrature must show larger fluctua-
tions.

The simplest example thereof is the squeezed vacuum state

|ξ〉 = e
1
2 ξa

2− 1
2 ξ
∗a†2 |0〉, (30)

where we have

〈
∆x2

〉
=

1

2
e−2|ξ|, (31)

〈
∆p2

〉
=

1

2
e2|ξ|. (32)

Thus, a squeezed vacuum state is also a minimum uncertainty
state.

These fluctuations also show up in nonlinear signals, as we
will discuss in section III.A. In the remainder of this section,
we focus on multimode analogues of such squeezed states,
and show how new correlations arise due to the multimode
structure of the field. This is known as time-energy entangle-
ment.

C. Photon Entanglement in multimode states

Before presenting some specific models for quantum light,
we first discuss time-energy entanglement in a more general
setting. An exhaustive review of continuous variable entan-
glement theory can be found in a number of specialized re-
views (Kok et al., 2007; Lvovsky and Raymer, 2009). Here,
we briefly introduce some important quantities of entangled
photon pairs, in order to later distinguish genuine entangle-
ment from other bandwidth properties, which could also be
encountered with classical light sources.

We shall be concerned with pairs of distinguishable pho-
tons that live in separate Hilbert spaces H(1)

field and H(2)
field, re-

spectively. They may be distinguished, e.g., by their polariza-
tion, their frequencies, or their wavevectors and propagation
direction. A two-photon state may be generally expanded as

|ψ〉 =

∫
dωa

∫
dωb Φ̃(ωa, ωb)a

†
1(ωa)a†2(ωb)|0〉1|0〉2, (33)

where Φ̃(ωa, ωb) is the two-photon amplitude.
To analyze the properties of this state, it is convenient to

map it into onto a discrete basis. This can be achieved by
the singular value decomposition of the two-photon ampli-
tude (Law and Eberly, 2004; Law et al., 2000; McKinstrie
and Karlsson, 2013; McKinstrie et al., 2013)

Φ̃(ωa, ωb) =

∞∑

k=1

r̃kψ
∗
k(ωa)φ∗k(ωb), (34)

where {ψk} and {φk} form orthonormal bases, known as the
Schmidt modes, and r̃k are the mode weights. These are ob-
tained by solving the eigenvalue equations

∫
dω′κ1(ω, ω′)ψk(ω′) ≡ r̃2

kψk(ω), (35)
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with

κ1(ω, ω′) =

∫
dω′′Φ̃∗(ω, ω′′)Φ̃(ω′, ω′′), (36)

and
∫
dω′κ2(ω, ω′)φk(ω′) ≡ r̃2

kφk(ω), (37)

with

κ2(ω, ω′) =

∫
dω′′Φ̃∗(ω′′, ω)Φ̃(ω′′, ω′). (38)

We then recast Eq. (33 using Eq. (34)

|ψ〉 =

∞∑

k=1

r̃k

∫
dωa

∫
dωb ψ

∗
k(ωa)φ∗k(ωb)a

†
2(ωb)|0〉1|0〉2.

(39)

The Schmidt decomposition (34) may be used to quantify
the degree of entanglement between photon pairs. Rewriting
the singular values as r̃k =

√
Bλk, where B denotes the

amplification factor of the signal and λk the normalized set
of singular values of the normalized two-photon state, with∑
k λ

2
k = 1. A useful measure of entanglement is provided

by the entanglement entropy (Law et al., 2000)

E(ψ) = −
∑

k

λ2
k ln(λ2

k). (40)

In quantum information applications, E(ψ) represents the ef-
fective dimensionality available to store information in the
state.

We call the state (33) separable, if the two-photon ampli-
tude factorizes into the product of single-photon amplitudes
Φ̃(ωa, ωb) = Φ̃(1)(ωa)Φ̃(2)(ωb). This implies that λ1 = 1,
so that the entanglement entropy is E = 0. In this situation,
no correlations exist between the two photons: Measuring the
frequency of photon 1 will not alter the wavefunction of the
other photon. Otherwise, the state is entangled. We then have
λi < 1, and correspondingly E > 0; measuring the frequency
of photon 1 now reduces photon 2 to a mixed state described
by the density matrix,

%2 ∼
∑

k

|ψk(ω(0)
a )|2

×
∫
dωb

∫
dω′b φ

∗
k(ωb)φk(ω′b)a

†
2(ωb)|0〉〈0|a2(ω′b), (41)

the measurement outcome ω(0)
a thus influences the quantum

state of photon 2.

D. Entangled photons generation by parametric down
conversion

Entangled photon pairs are routinely created, manipulated,
and detected in a variety of experimental scenarios. These in-
clude decay of the doubly excited states in semiconductors

(Edamatsu et al., 2004; Stevenson et al., 2007), four-wave
mixing in optical fibers (Garay-Palmett et al., 2007, 2008)
or cold atomic gases (Balić et al., 2005; Cho et al., 2014).
Here, we focus on the oldest and most established method for
their production - parametric downconversion (PDC) in bire-
fringent crystals (Kwiat et al., 1995; Wu et al., 1986).

We will introduce the basic Hamiltonian which governs the
PDC generation process, and discuss the output fields it cre-
ates. These will then be applied to calculate spectroscopic
signals. We restrict our attention to squeezed vacua, where
the field modes are initially in the vacuum state, and only be-
come populated through the PDC process (see also Eqs. (251)
- (255)).

In the PDC setup, a photon from a strong pump pulse is
converted into an entangled photon pair by the interaction with
the optical nonlinearity in the crystal (as will be discussed in
detail in section IV). A birefringent crystal features two ordi-
nary optical axes (o), and an extraordinary optical axis (e) in
which the group velocity of optical light is different. The PDC
process can be triggered in different geometries: One distin-
guishes type-I (e→ oo) and type-II (o→ eo) downconversion
(Shih, 2003), and more recently type-0 (Abolghasem et al.,
2010; Lerch et al., 2013). The two photons show strong time
and frequency correlations stemming from the conservation
of energy and momentum: Since they are created simultane-
ously, the two photons are strongly correlated in their arrival
time at the sample or detector, such that each individual pho-
ton wavepacket has a very broad bandwidth. At the same time,
the sum of the two photon frequencies has to match the energy
of the annihilated pump photon, which may be more sharply
defined than the individual photons (pump photon bandwidth
is typically below 100 MHz in visible range).

The created photon pairs are entangled in their frequency,
position and momentum degree of freedom (Walborn et al.,
2010). The setup may be exploited to control the central fre-
quencies of the involved fields (Grice and Walmsley, 1997).
For simplicity, we consider a collinear geometry of all fields.
This greatly simplifies the notation, while retaining the time-
frequency correlations, which are most relevant in spectro-
scopic applications. After passing through the nonlinear crys-
tal, the state of the light field is given by (Christ et al., 2013,
2011)

|ψout〉 = exp

[
− i
~
HPDC

]
|0〉1|0〉2 ≡ UPDC|0〉1|0〉2. (42)

Eq. (42) neglects four-, six- etc. photon processes in which
only the total energy is conserved. In PDC, this approxima-
tion is shown to work well beyond the single-photon regime
(See Fig. 4 in the (Christ et al., 2013), where only minor de-
viations occur at a mean photon number larger than one). The
propagator UPDC depends on the effective Hamiltonian

HPDC =

∫
dωa

∫
dωb Φ(ωa, ωb)a

†
1(ωa)a†2(ωb) + h.c. (43)

which creates or annihilates pairs of photons, whose joint
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bandwidth properties are determined by the two-photon am-
plitude

Φ(ωa, ωb) = αAp(ωa + ωb) sinc
(

∆k(ωa, ωb)L

2

)
ei∆kL/2.

(44)

Here, Ap is the normalized pump pulse envelope,
sinc(∆kL/2) denotes the phase-matching function, which
originates from wavevector mismatch inside the nonlinear
crystal, ∆k(ωa, ωb) = kp(ωa+ωb)−k1(ωa)−k2(ωb). ki(ω)
denotes the wavevector of either the pump or beams 1 or 2
at frequency ω. The prefactor α which is proportional to the
pump amplitude determines the strength of the PDC process
(and hence the mean photon number). Hence, in contrast to Φ̃
in the enangled state (33), the two-photon amplitude Φ is not
normalized, but increases with the pump intensity.

Typically, the wavevector mismatch ∆k(ωa, ωb) depends
very weakly on the frequencies ωa and ωb. It is therefore pos-
sible to expand it around the central frequencies ω1 and ω2 of
the two downconverted beams. For type-I downconversion,
the group velocities dk1/dω1 and dk2/dω2 are identical [un-
less the PDC process is triggered in a strongly non-degenerate
regime (Kalachev et al., 2008)], and the expansion around the
central frequencies yields (Joobeur et al., 1994; Wasilewski
et al., 2006)

∆k(ωa, ωb)L/2 =

(
dkp
dωp
− dk

dω

)
L/2 (ωa + ωb − ωp)

+
1

2

d2kp
dω2

p

L/2 (ωa + ωb − ωp)2

− 1

2

d2k

dω2
L/2

[
(ωa − ω1)

2
+ (ωb − ω2)

2
]

(45)

The first two terms of Eq. (45) create correlations between the
two photon frequencies, while the third determines the band-
width of the individual photons.

In type-II downconversion, the group velocities of the two
beams differ, and the wavevector mismatch may be approxi-
mated to linear order (Keller and Rubin, 1997; Rubin et al.,
1994)

∆k(ωa, ωb)L/2 = (ωa − ω1)T1/2 + (ωb − ω2)T2/2, (46)

where the two time scales T1 = L(dkp/dωp − dk1/dω1) and
T2 = L(dkp/dωp − dk2/dω2) denote the maximal time de-
lays the two photon wavepackets can acquire with respect to
the pump pulse during their propagation through the crystal.
Without loss of generality, we assume T2 > T1. In the follow-
ing applications we adopt type-II phase matching (46). The
corresponding wavefunctions may be controlled to maintain
frequency correlations, as we will elaborate in section II.G.

The following applications will focus on the weak down-
conversion regime, in which the output light fields are given
by entangled photon pairs,

|ψtwin〉 ≈ −
i

~
HPDC|0〉1|0〉2. (47)

Eq. (47) now takes on the form of the entangled two-photon
state, Eq. (33), discussed above, where Φ̃ denotes the nor-
malized two-photon amplitude. We will review the quan-
tum correlations of the created fields upon excitation by a
cw pump, which simplifies the discussion, or finite-bandwith
pump pulses. The two cases require different theoretical tools.

E. Narrowband pump

One important class of time-frequency entangled photon
pairs is created by pumping the nonlinear crystal with a nar-
row bandwidth laser, where the pump spectral envelope in
Eq. (44) may be approximated as

Ap(ωa + ωb) ' δ(ωa + ωb − ωp). (48)

Using Eqs. (46) and (48), the phase mismatch in Eq. (44) can
be expressed as (Peřina et al., 1998)

sinc
(

∆k(ωa, ωb)L

2

)
ei∆kL/2

=sinc ((ω1 − ωa)T/2) ei(ω1−ωa)T/2, (49)

where T ≡ T2−T1 is the entanglement time, which represents
the maximal time delay between the arrival of the two entan-
gled photons. For a cw pump laser, the first photon arrives at
a completely random time, but the second photon necessarily
arrives within the entanglement time. This property has been
exploited in several proposals to probe ultrafast material pro-
cesses using a cw photon pair source (Raymer et al., 2013;
Roslyak and Mukamel, 2009a).

As mentioned before, entangled photons affect optical sig-
nals via their multi-point correlation functions (Mukamel and
Nagata, 2011; Roslyak et al., 2009b). The relevant field quan-
tity in most applications discussed below - describing the in-
teraction of pairs of photons with a sample - is the four-point
correlation function. Using Eqs. (48) and (49), for the entan-
gled state (47) this correlation function can be factorized as

〈
E†(ω′a)E†(ω′b)E(ωb)E(ωa)

〉

=〈ψtwin|E†(ω′a)E†(ω′b)|0〉〈0|E(ωb)E(ωa)|ψtwin〉, (50)

Here,

〈0|E(ωb)E(ωa)|ψtwin〉 = N δ(ωa + ωb − ωp)
×
[
sinc ((ω1 − ωa)T/2) ei(ω1−ωa)T/2

+sinc ((ω1 − ωb)T/2) ei(ω1−ωb)T/2]. (51)

is known as the two-photon wavefunction (Rubin et al., 1994).
Upon switching to the time domain, we obtain
∫
dωa

∫
dωb e

−i(ωat1+ωbt2)〈0|E(ωb)E(ωa)|ψtwin〉

=N ′e−i(ω1t1+ω2t2)rect
(
t2 − t1
T

)

+N ′e−i(ω2t1+ω1t2)rect
(
t1 − t2
T

)
, (52)
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where rect(x)= 1 for 0 ≤ x ≤ 1 and zero otherwise, and
N ,N ′ denote the normalization of the two-photon wavefunc-
tion. The physical significance of the entanglement time is
now clear: it sets an upper bound for the arrival of the second
photon, given the arrival of the first one. Note that Eq. (52)
is symmetric with respect to t1 and t2 because each interac-
tion occurs with the entire field E = E1 + E2. In a situa-
tion where, e.g., 〈0|E2(t2)E1(t1)|ψtwin〉 is measured the two-
photon wavefunction is not symmetric.

F. Broadband pump

We next consider entangled light created by a pump pulse
with a normalized Gaussian envelope,

Ap(ωa + ωb) =
1√

2πσ2
p

exp

(
−−(ωa + ωb − ωp)2

2σ2
p

)
.

(53)

This is a realistic model in many experimental scenarios.
The analysis of Eq. (42) becomes most transparent by

switching to a basis obtained by the Schmidt decomposi-
tion (34) of the two-photon wavefunction. The mode weights
rk are positive and form a monotonically decreasing series,
such that in practical applications the sum in Eq. (34) may be
terminated after a finite number of modes (For a cw pump
defined above, an infinite number of Schmidt modes is re-
quired to represent the delta-function). In appendix B, we
present approximate analytic expressions for the eigenfunc-
tions {ψk} and {φk}. The following analysis is restricted to
a PDC regime in which six- (and higher) photon processes
may be neglected. Such corrections can affect the bandwidth
properties at very high photon numbers (Christ et al., 2013).
The linear to quadratic intensity crossover of signals will be
further discussed in section II.J.3.

We next introduce the Schmidt mode operators

Ak =

∫
dωa ψk(ωa)a1(ωa), (54)

and

Bk =

∫
dωb φk(ωb)a2(ωb), (55)

which inherit the bosonic commutation relations from the or-
thonormality of the eigenfunctions {ψk} and {φk}. The trans-
formation operator UPDC now reads (Christ et al., 2013, 2011)

UPDC = exp

(∑

k

rkA
†B†k − h.c.

)
. (56)

The output state |ψout〉 is thus a multimode squeezed state with
squeezing parameters rk,

|ψout〉 =

∞∏

k=1

1√
cosh(rk)

∞∑

nk=0

(tanh(rk))
nk |nk〉1|nk〉2,

(57)

in which fluctuations of the collective quadrature of the two
states Yk = (A†k + B†k − Ak − Bk)/(2i) may be squeezed
below the coherent state value (〈Y 2

k 〉 = 1/2),

〈
Y 2
k

〉
=

1

2
e−2rk . (58)

The mean photon number in each of the two fields is given by

n =
〈∑

k

A†kAk
〉

=
〈∑

k

B†kBk
〉

=
∑

k

sinh2(rk). (59)

We will be mostly concerned with the time-frequency corre-
lations in the weak downconversion regime, i.e. n ≤ 1, when
the output state is dominated by temporally well separated
pairs of time-frequency entangled photons.

The multi-point correlation functions of state (57), which
are the relevant quantities in nonlinear spectroscopy, may be
most conveniently evaluated by switching to the Heisenberg
picture, in which the Schmidt mode operators become (Christ
et al., 2013, 2011)

Aout
k = cosh(rk)Ain

k + sinh(rk)B†ink , (60)

Bout
k = cosh(rk)Bin

k + sinh(rk)A†ink . (61)

The four-point correlation function then reads (Schlawin and
Mukamel, 2013)
〈
E†(ω′a)E†(ω′b)E(ωb)E(ωa)

〉

= (h∗12(ω′a, ω
′
b) + h∗21(ω′a, ω

′
b)) (h12(ωa, ωb) + h21(ωa, ωb))

+ (g1(ωa, ω
′
a) + g2(ωa, ω

′
a)) (g1(ωb, ω

′
b) + g2(ωb, ω

′
b))

+ (g1(ωa, ω
′
b) + g2(ωa, ω

′
b)) (g1(ωb, ω

′
a) + g2(ωb, ω

′
a)) ,

(62)

with

h12(ωa, ωb) =
∑

k

cosh(rk) sinh(rk)ψk(ωa)φk(ωb), (63)

g1(ω, ω′) =
∑

k

sinh2(rk)ψk(ω)ψ∗k′(ω
′), (64)

and

g2 =
∑

k

sinh2(rk)φk(ω)φ∗k′(ω
′). (65)

The first line in Eq. (62) shows the same structure as Eq. (50),
in that the two absorption events at frequencies ωa and ωb
(and at ω′a and ω′b) are correlated. Indeed, in the weak
pump regime, when rk � 1, Eq. (63) reduces to the
two-photon wavefunction of the pulsed entangled pairs, and
sinh(rk) cosh(rk) ' rk (Schlawin and Mukamel, 2013),

h12(ωa, ωb)⇒rk�1

∑

k

rkψk(ωa)φk(ωb)

= Φ∗(ωa, ωb) = 〈0|E2(ωb)E1(ωa)|ψtwin〉.
(66)
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FIG. 3 Absolute value of the two-photon correlation function (63) of entangled photon pairs with a) strong frequency anti-correlations,
σp = 0.6 / T2 [entanglement entropy (40) E = 1.9], b) very weak correlations (E = 0.018), σp = 3.5 / T2, and c) strong positive frequency
correlations, σp = 50 / T2 (E = 1.7).

h12 denotes the two-photon contribution to the correlation
function , which should be distinguished from the autocor-
relation contributions g1 and g2.

The ratio of the inverse entanglement time T−1 defined
above and the pump bandwidth σp determines the frequency
correlations in Eq. (63): As shown in Fig. 3a), for σp �
T−1

2 we recover the cw regime with strong frequency anti-
correlations. In the opposite regime, when σp � T−1

2 [panel
c)], the two photons show positive frequency correlations, and
in between, there is a regime shown in panel b), in which the
photonic wavefunction factorizes, and no frequency correla-
tions exist. The field correlation function as depicted in Fig. 3
can be measured experimentally (Kim and Grice, 2005).

In spectroscopic applications, two-photon events involving
uncorrelated photons from different pairs become more likely
at higher pump intensities. These events are described by the
functions g1 and g2, which at low intensities scale as ∼ r2

k,
so that Eq. (63) with h12 ∼ rk dominates the signal. As the
pump intensity is increased, events involving photons from
different pairs must be taken into account as well.

The various contributions to the correlation function behave
differently with increasing photon number: They depend non-
linearly on the mode weights rk which in turn depend lin-
early on the pump amplitude. Thus, with increasing pump
amplitude (and photon number) the few largest eigenvalues
get enhanced nonlinearly compared to the smaller values, and
fewer Schmidt modes contribute to Eqs. (63) and (64). This is
shown in Fig. 4 where the two correlation functions are plot-
ted for different mean photon numbers, n̄ = 0.1, · · · 100. As
the number of participating Schmidt modes is decreased, the
frequency correlations encoded in h12 are weakened, and h12

broadens. Conversely, the bandwidth of the beams g1 is re-
duced with increasing n̄.
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FIG. 4 a) The two-photon correlation function h12(ω, ω), Eq. (63),
plotted vs the frequency ω in units of T2, and for mean photon num-
bers (with increasing dashing) n̄ ∼ 0.1, 1, 10, and 100. b) the same
for the autocorrelation function g1(ω, ω), Eq. (64).

G. Shaping of entangled photons

The ability to manipulate the amplitude and phase of ultra-
short pulses allows to coherently control matter information
in chemical reactions and other dynamical processes (Wol-
lenhaupt et al., 2007). Pulse shaping can drive a quantum
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system from an initial state to a desired final state by ex-
ploiting constructive quantum-mechanical interferences that
build up the state amplitude, while avoiding undesirable fi-
nal states through destructive interferences (Silberberg, 2009).
The most common experimental pulse shaping technique is
based on spatial dispersion and often involves a back-to-back
optical grating spectrometer which contains two gratings (see
the top part of Fig. 5a). The first grating disperses the spec-
tral components of the pulse in space, and the second grat-
ing packs them back together, following a pixelated spatial
light modulator (SLM) which applies a specific transfer func-
tion (amplitude, phase, or polarization mask), thereby modi-
fying the amplitudes, phases, or polarization states of the var-
ious spectral components. Originally developed for strong
laser beams, these pulse shaping techniques have been now
extended all the way to the to single photon regime (Bellini
et al., 2003; Carrasco et al., 2006; Defienne et al., 2015; Pe’er
et al., 2005; Zäh et al., 2008) allowing to control the ampli-
tude and phase modulation of entangled photon pairs, thereby
providing additional spectroscopic knobs.

An example of a pulse shaping setup is shown in Fig. 5a).
A symmetric phase profile in SLM yields a single unshaped
Gaussian pulse [Fig. 5b) and c)]. The phase step results in
a shaped pulse that mimics two pulses with ∼ 400 fs delay
(Fig. 5d,e). By employing more complex functions in the
SLM, one may produce a replica of multiple well separated
pulses or more complex shapes. This may be also achieved
using e.g. the Franson interferometer with variable phases and
delays in both arms as proposed in (Raymer et al., 2013) (see
section III.B.4). Beam splitters in the two arms can create four
pulses, out of a single entangled photon pair.

H. Polarization entanglement

So far we have ignored the photon polarization degrees of
freedom. In type-II PDC the two photons are created with
orthogonal polarizations. Using a suitable setup, this allows
for the preparation of Bell states of the form (Pan et al., 2012)

|Bell〉 =
1√
2

(|H〉1|V 〉2 ± |V 〉1|H〉2) , (67)

where (|H〉, |V 〉) denote the horizontal (vertical) polarization,
respectively. The fidelity for this state preparation is maximal,
when the two photon wavepackets factorize. Similarly, type-I
PDC allows for the creation of states of the form (|HH〉 ±
|V V 〉)/

√
2 (Pan et al., 2012).

The polarization degrees of freedom offer additional con-
trol knobs which may be used to suppress or enhance the sig-
nal from (anti-)parallel or orthogonal dipoles in a sample sys-
tem - in a quantum mechanical extension of polarized photon
echo techniques (Voronine et al., 2006, 2007).

a)

b) c)

FIG. 5 (Color online) a) Experimental layout of the entangled pho-
ton shaper: A computer-controlled spatial light modulator (SLM)
is used to manipulate the spectral phase of the entangled photons.
The photon pairs are detected in the inverse process of PDC - sum
frequency generation (SFG). The SFG photons are subsequently
counted in a single-photon counting module. In order to demonstrate
two-photon interference oscillations, a Mach-Zehnder interferome-
ter is placed between the last prism and the SFG crystal. b) The SFG
counts (circles) and the calculated second-order correlation function
(line) of the unperturbed wavefunction as a function of the signal-
idler delay. c) the same for the shaped wavefunction. Figure is taken
from (Pe’er et al., 2005).

I. Matter correlations in noninteracting two-level atoms
induced by quantum light

The entangled photon correlation functions, may be used
to prepare desired distributions of excited states in matter. In
an insightful article (Muthukrishnan et al., 2004), which trig-
gered other work (Akiba et al., 2006; Das and Agarwal, 2008),
it was argued that using time-ordered entangled photon pairs,
two-body two-photon resonances, where two noninteracting
particles are excited simultaneously, can be observed in two-
photon absorption. The surprising consequence is that the
nonlinear response is non additive and does not scale as num-
ber of atoms N . It was argued that such cooperative (non-
additive) response is not possible with classical or coherent
light fields. Arguments were made that the cooperatively is
induced in two-photon absorption by the manipulation of the
interference among pathways. One possible consequence of
the interference in nonlinear response is that the fluorescence
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FIG. 6 (Color online) a) Scheme of two noninteracting two-level
atoms A and B and corresponding many-body state diagram where
ground state g corresponds to both atom in the ground state, a - atom
A is excited and B is in the ground state, b - atom B is in the excited
state and atom A is in the ground state, and ab - both atoms are
in the excited state. Arrow directed upward represent two-photon
excitation. b) Relevant set of diagrams corresponding to atom A
being in excited state to ∼ |µA|2|µB |2 in field-matter interactions.
α, β run over a and b to account for all possible permutations in the
excitation pathways.

from one atom can be enhanced by the presence of a second
atom, even if they do not interact. If true this effect could be
an interesting demonstration of this prediction and has some
subtle implications on quantum nonlocality and the Einstein-
Podolsky-Rosen (EPR) paradox. In this section, we shall cal-
culate this two photon process with quantum light and show
that quantum locality is never violated.

1. Collective resonances induced by entangled light

We use the superoperator formalism to investigate how the
two-atom excitation cross section depends on the properties
of the photon wave function.

Consider two noninteracting two-level atoms A and B cou-
pled to the radiation field (see Fig. 6)a. We assume that the
entire field-matter density matrix is initially in a factorizable
form:

ρ(t0) = ρA,0 ⊗ ρB,0 ⊗ ρph,0, (68)

where the ρA,0 (ρB,0) corresponds to the density matrix of the
atom A (B) and ρph,0 is the density matrix of the field. The

time-dependent density matrix is given by Eq. (11), which in
the present case reads (Richter and Mukamel, 2011)

ρ(t) =

T exp

(
− i
~

∫ t

t0

HA
int−(τ)dτ − i

~

∫ t

t0

HB
int−(τ)dτ

)
ρ(t0).

(69)

If the radiation fields were classical then the matter density
matrix would factorize so that atoms A and B remain uncor-
related at all times:

ρ(t) = ρA(t)⊗ ρB(t), (70)

with

ρA(t) = T exp

(
− i
~

∫ t

t0

HA
int−(τ)dτ

)
ρA,0, (71)

ρB(t) = T exp

(
− i
~

∫ t

t0

HA
int−(τ)dτ

)
ρB,0. (72)

This result remains valid for quantum fields as long as all rele-
vant normally ordered field modes are in a coherent state, and
cooperative spontaneous emission is neglected so that all field
modes behave classically (Glauber, 1963; Marx et al., 2008).
However Eq. (70) does not hold for a general quantum state.
We define the reduced matter density matrix in the joint space
w = trph(ρ). Upon expanding Eq. (69) order by order in the
field operators and tracing over the field modes, we obtain for
the reduced matter density matrix

w(t) =
∑

ν

∫ t

t0

dτ1...

∫ t

t0

dτnν

∫ t

t0

dτ ′1...
∫ t

t0

dτ ′mν

× ρνA(τ1, ...τnν )ρνB(τ ′1, ...τ
′
mν )Fν(τ1, ...τnν , τ

′
1, ..., τ

′
mν ),
(73)

where ν is summed over all possible pathways. Pathway ν
has nν Ṽ A interactions and mν Ṽ

B interactions. ρνA (ρνB)
are time-ordered products of system A (system B) operators
and Fν(τ1, ...τnν , τ

′
1, ..., τ

′
mν ) are time-ordered field correc-

tion functions. In each order of this perturbative calculation,
all the correlation functions are factorized between the three
spaces. The factorization Eq. (70) no longer holds, and atoms
A and B may become correlated or even entangled. Eq. (73)
will be used in the following. Note that pathways with nν = 0
or mν = 0 are single-body pathways, where all interactions
occur solely with system A or with B. Our interest is in the
two-body pathways, where both nν and mν contribute to col-
lective response.

2. Excited state populations generated by nonclassical light

So far, we have not discussed the overall excitation prob-
ability by entangled light sources compared to classical light
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with similar photon flux. This is relevant to recent demonstra-
tion of molecular internal conversion (Oka, 2012) and two-
photon absorption with the assistance of plasmonics (Oka,
2015). This is an important practical point, if quantum spec-
troscopy is to be carried out at very low photon fluxes, in the
presence of additional noise sources. We now discuss the cor-
relations on the excitation probability induced by the interac-
tion with nonclassical light for the present of two noninteract-
ing two-level systems.

The doubly excited state population is given - to leading-
order perturbation theory in the interaction Hamiltonian (9) -
by the loop diagram in Fig. 2a) which for the present model
may be written as a modulus square of the corresponding tran-
sition amplitude

pab(t) =
∑

ψ′

|Tab;ψ′(t)|2, (74)

with the transition amplitude between initial state |ψ〉 and final
state |ψ′〉,

Tab(t) =

∫ t

t0

dt1

∫ t

t0

dt2µAµBe
−iεat1−iεbt2〈ψ|E(t2)E(t1)|ψ′〉.

(75)

In the following, we only consider a specific final state and
will drop the subscript ψ′.

3. Classical vs entangled light

We first evaluate Eq. (74) for a classical field composed of
two modes α and β , which is switched on at t = t0:

Ẽ(t) = θ(t− t0)
(
Eαe

iωαt + Eβe
iωβt

)
+ c.c. (76)

T
(c)
ab (t) is then given by (Muthukrishnan et al., 2004)

T
(c)
ab (t) = T (c)

a (t)T
(c)
b (t), (77)

where

T (c)
m (t) =

∑

µ=α,β

iAµm(t)

εm − ωµ − iγ
, m = a, b (78)

Aνm = µmEν
(
ei(ων−εm)t0−γt0 − ei(ων−εm)t−γt) and γ →

0. A straightforward calculation of Eq. (75) shows several
terms, each containing single-particle resonances εa,b − ωα,β
as well as a collective resonance εa+εb−(ωα+ωβ). The col-
lective resonance disappear when these terms are combined
due to destructive interference and the final result factorizes as
a product of two amplitudes that contain only single-particle
resonances εj = ωµ, j = a, b and µ = α, β and no two-
photon resonances εa + εb = ωα + ωβ (see (Richter and
Mukamel, 2011)).

We first describe the properties of the entangled source.
Consider a field made of entangled photon pairs of a cascade

Time t|↵,�i

|�i

!�

!↵

FIG. 7 (Color online) The temporal profiles of two photons emitted
by a cascade source illustrate time-frequency entanglement: the red
curve represents the marginal probability P (τα) Eq. (85), and the
blue curve corresponds to the conditional probability P (τβ |τα) Eq.
(84). The intrinsic time ordering of the photons, α first, followed
by β, suppress the excitation pathway where β is absorbed first, fol-
lowed by α, inducing joint two-atom excitation.

state |ψent〉 depicted in Fig. 7 (Muthukrishnan et al., 2004).
This state can be prepared when an atom is promoted to the
doubly excited state which then decays spontaneously back
to the ground state by emitting a cascade of two photons and
described by the wave function:

|ψent〉 =
∑

p,q

φp,q|1p, 1q〉

φp,q =
gpαgqβe

i(p+q)·rR

(ωp + ωq − ωα − ωβ + iγα)(ωq − ωβ + iγβ)
.

(79)

Here γα is the lifetime of the upper level of the three-level
cascade and γβ is the lifetime of the intermediate state. p and
q are the wave vectors of different modes in the vacuum state
and gpα and gqβ are coupling constants. ωα is the transition
frequency from the highest to the intermediate state and ωβ
is the transition frequency from the intermediate state to the
ground state. Note that the photon with momentum p comes
first and interacts with upper transition whereas photon with q
photon comes later and interacts with the lower β - transition.
The two-photon frequency ωp + ωq is narrowly distributed
around ωα + ωβ with a width γα, the lifetime of the upper
level, whereas the single-photon frequencies ωp, ωq are dis-
tributed around ωβ(ωα) with a width of γβ(γα), the lifetime
of the intermediate (highest) level. Maximum entanglement
occurs for γβ � γα.

Using Eq. (79), and assuming that atoms A and B have the
same distance from the cascade source, so that tR is the time
retardation (with tR = |rR|/c) we obtain (Zheng et al., 2013)

T entab (t) =
∑

m6=n=a,b

Amα,nβ(t)

(εm − ωα − iγα)(εn − ωβ − iγβ)

+
∑

m=a,b

ATPA(t)

(εa + εb − ωα − ωβ − iγα − iγβ)(εm − ωβ − iγβ)
,

(80)
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where

Anν,mµ(t) = µAµBA(eiωnν(t−tR)−γν(t−tR) − e−iεmtR−iεntR),
(81)

ATPA(t) = µAµBA
(
e−iεatR−iεbtR

−e−i(εa+εb)t+i(ωα−ωβ−γα−γβ)(t−tR)
)
. (82)

The first term in Eq. (80) contains single-particle reso-
nances, where the two systems are separately excited. The
second term represents collective two-photon resonances εa+
εb − ωα − ωβ . The two can only be distinguished for non
identical atoms εa 6= εb.

Under two photon - two atom resonance condition ωa +
ωb = ωα + ωβ for γαt� 1, γβt� 1 the probability P entab (t)
reads

pentab = p0
γβ

γα∆2
, (83)

where ∆ = εb − ωβ is a single atom detuning and p0 =
|µA|2|µB |2εaεb/~2ε20c

2S2.
Note that the classical amplitude (77) scales quadratically

with the field amplitude Aνm, whereas the entangled ampli-
tude (80) scales linearly (Fig. 1). This reflects the fact that at
low intensity entangled two photon absorption is effectively
a linear absorption of the entangled pair as discussed earlier.
More detailed analysis of the scaling is presented in Section
II.J.3.

Comparing Eqs. (77) and (80), we see that two-photon res-
onances require the lack of time ordering between the two
photons. To explain this, we calculate the marginal proba-
bility

P (τα) = 2γαθ(τα)e−2γατα , (84)

and the conditional probability

P (τβ |τα) = 2γβθ(τβ − τα)e−2γβ(τβ−τα) (85)

for the two photon absorption process displayed in Fig. 7
(Muthukrishnan et al., 2004). These probabilities have the
following meaning: the absorption of α is turned on at τα = 0
and decays slowly at the rate γα, while the absorption of β
turns on at τβ = τα and decays rapidly at the rate γβ . Thus,
the two photons arrive in strict time ordering, α followed by β,
with the time interval between the absorption events vanishes
when γβ � γα, i.e. in the limit of large frequency entan-
glement. Another related effect, which is discussed later in
this section and which eliminates one-particle observables, is
based on the lack of time ordering of the absorption of the two
systems, while this interference effect originally described in
(Muthukrishnan et al., 2004) is based on a lack of time order-
ing of the two photons. Only the single-body single-photon
resonances remain.

We now turn to the spectroscopy carried out using the
model of entangled light given by Eq. (79). To that end we

first focus on the excited state population of atom A, which is
given by

pa(t) ≡ tr[|a〉〈a|ρ(t)] = pa0(t) + pab(t), (86)

where the two terms differ by the final state of atom B: pa0

and pab represent B events where B ends up in the ground
and excited state, respectively. We shall only calculate the
∼ µ2

Aµ
2
B contributions to pa, which are relevant to collec-

tive effects and are represented by the diagrams depicted in
Fig. 6b. Diagram i contains three interactions with ket- and
one with bra- and represents pa0 whereas diagram ii corre-
sponds to pab. The exact formulas read off these diagrams
are presented in (Richter and Mukamel, 2011). Unlike the
pab(t) which contains only normally ordered field operators
[see Eq. (74)], pa0(t) contains also non normally ordered con-
tributions. These can be recast as a normally ordered correla-
tion plus a term that includes a field commutator:

〈E†(t2)E(t3)E†(t4)E(t1)〉 = 〈E†(t2)E†(t4)E(t3)E(t1)〉
+ 〈E†(t2)[E(t3), E†(t4)]E(t1)〉. (87)

The second term includes a commutator of the field which
is a c-number. For certain types of states of the field, the
commutator remains dependent upon the state of the field
and this term has to be evaluated exactly (for instance, in the
case of coherent state this effect is responsible for the revival
of damped Rabi oscillations discussed below (Rempe et al.,
1987). For other types of states of the field (e.g. Fock state),
the commutator becomes independent of the external field and
therefore represents spontaneous emission. The spontaneous
emission pathways introduce a coupling between the two sys-
tems, since a photon emitted by system B can be absorbed
by system A. This coupling has both real (dipole-dipole) and
imaginary (superradiance) parts. These couplings will obvi-
ously result in collective signals which involve several atoms.

In the case of a classical field, one can neglect the spon-
taneous contributions and only include the stimulated ones
which results in pa0(t) = −pab(t). The overall excited state
population of state a pa(t) is unaffected by the collective res-
onances. We thus do not expect to observe any enhanced fluo-
rescence from A; the two-photon absorption signal factorized
into a product of individual excitation probabilities for atoms
A and B, and shows no collective resonances.

4. Collective two-body resonances generated by illumination
with entangled light

The change of the photon number caused by the two-body
part ∆nph will depend on the following probabilities: the
excitation probability of pab,which means that two photons
are absorbed (counts twice), and the excitation probabilities
of only system A pa and of only system B pb (we assume
that both photons have equal frequency and are resonant to
the two-photon absorption):

∆nph = −2pab(t)− pa0(t)− pb0(t). (88)
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In the stimulated emission and TPA pathway absorption,
pab(t) and pa0(t) cancel, and pab(t) and pb0(t) cancel so that
Eq. (88) vanishes. Since the field-matter interaction Hamil-
tonian connects the photon number with the excitation prob-
ability, the photon number itself is a single-particle observ-
able like the population of state |a〉 or state |b〉, and there-
fore vanishes. However, collective resonances in pab(t) can
be revealed in two-photon counting (Hanbury-Brown-Twiss
measurements) (Brown, 1956; Richter and Mukamel, 2011).
For our entangled photon state, Eq. (79), the change in the
photon-photon correlation ∆′nph is attributed to any buildup
of probability, that the either atom A, or atom B is excited or
both atoms are excited, which will cause a reduction of the
photon-photon correlation:

∆′nph = −pab(t)− pa0(t)− pb0(t). (89)

Since pab(t) enters twice [unlike Eq. (88)] the stimulated con-
tributions can only cancel with one of the two other contribu-
tions pa0(t) or pb0(t), and we finally have

∆′nph = pab(t). (90)

The interference mechanism, which caused the cancellation
for the stimulated signal and the photon number, does not
lead to a full cancellation, and two-photon absorption involv-
ing both systems may be observed.

a. Two-photon two-atom problem with non entangled quantum
states We now discuss whether entangled light is essential
for the creation of collective resonances. This is the subject
of current debate. In (Zheng et al., 2013), the authors pre-
sented a detailed analysis of the cross section created by en-
tangled pulses, and compared this with “correlated-separable”
states in which the entanglement is replaced by classical fre-
quency correlations. They concluded that it is the frequency
anti-correlations [see Fig. 4a)], and not the entanglement per
se, which is responsible for the enhancement of the cross sec-
tion. The effect of enhanced two-photon absorption proba-
bility has been later shown to come from the entangled mat-
ter/field evolution that occurs with any quantum light (which
is not necessarily entangled) (Zheng et al., 2013) which is
consistent with earlier demonstrations of (Georgiades et al.,
1997). Starting from entangled pure quantum state hav-
ing a density matrix ρ0 = |ψent〉〈ψent| of matrix elements
ρkk′qq′ = 〈1k, 1q|ρ0|1k′1q′〉 one can construct other states
that have the same mean energy and the same single-photon
spectrum, and hence that would give the same transition prob-
abilities for a single-photon resonance. We now examine a
special case of the states that originates from entangled state
(79) that will allow a quantitative evaluation of the role of cor-
relations It is the diagonal part of ρ0 defined as

ρ1 =
∑

k,q

ρkkqq|1k, 1q〉〈1k, 1q|. (91)

This has lost any temporal field coherence and is time-
independent. It is in fact a correlated separable state (Duan
et al., 2000), in which the quantum correlations are replaced
by a purely classical frequency distribution. It gives rise, how-
ever, to correlations between its two parties. Using the entan-
gled state (79), Eq. (91) reads

ρ1 =

(
2c

L

)2∑

k,q

γβ
(ω2
qβ + γ2

β)

γα
[(ωqβ + ωkα)2 + γ2

α]

× |1k, 1q〉〈1k, 1q|. (92)

The state (92) corresponds to an atomic cascade for which the
starting time is random, thereby averaging to zero all the off-
diagonal time-dependent terms in the density matrix. It results
in the following transition probability:

p1(t) ' p0
γαγβ
δ2 + γ2

α

(
1

(ω1 − ωβ)2
+

1

(ω2 − ωβ)2

)
t2

(L/c)2
.

(93)

At exact two-photon two-atom resonance, we have p1 '
p0γβγ

−1
α c2t2/(∆L)2. Note that p1 depends on time, as can

be expected in a situation where the detecting atoms, which
have an infinite lifetime, are submitted to a stationary quan-
tum state, and therefore to cw light. In order to compare p1 to
the corresponding probability (83) for pulsed entangled light,
we need to set the interaction time at t = L/c and at exact
resonance

p1 ' p0
γβ

γα∆2
' pentab . (94)

We thus find that a correlated-separable state like ρ1 can in-
duce the two-photon two-atom transition similar to the entan-
gled cascade state. Note that even though ρ1 is not entangled,
it has quantum properties, being a mixture of single-photon
states which are highly nonclassical.

In summary, the two-photon absorption probability of non-
interacting atoms can be enhanced compared to classical light
by using some types of quantum light. These do not require
entanglement, rather it is necessary to have spectral anticor-
relations which can be achieved in e.g. correlated separable
states. This is a consequence of the stationary system of two
noninteracting atoms.

In the following section we consider a more complex mate-
rial system that is subject to various relaxation channels, e.g.
transport between excited states. We show that in this case,
entanglement may be used to achieve both high spectral and
high temporal correlations which is not possible by classical
correlated light.

J. Quantum light induced correlations between two-level
particles with dipole-dipole coupling

1. Model system

The standard calculation of the nonlinear response to classi-
cal light assumes that the matter is made up of N noninteract-
ing active particles (atoms or molecules), such that the matter



17

|gi

|e1i
|e2i

|f2i
|f1i

FIG. 8 Level scheme of the multilevel model employed in
this review: Two singly excited states e1 and e2 with energies
11, 000 cm−1 and 11, 500 cm−1 are coupled to doubly excited
states f1 and f2, as indicated. Furthermore, e2 decays to e1 within
1/k ' 30 fs.

Hamiltonian may be written as the sum over the individual
particles [see Eq. (7)]

H0 =
∑

ν

Hν . (95)

The individual nonlinear susceptibilities or response functions
of these atoms then add up to give the total response. The
nonlinear response becomes a single-body problem and no
cooperative resonances are expected. It is not obvious how
to rationalize the ∼ N scaling for noninteracting atoms had
we chosen to perform the calculation in the many-body space.
Massive cancellations of most ∼ N(N − 1) scaling light-
matter pathways recover in the end the final ∼ N signal scal-
ing (Spano and Mukamel, 1989).

When the atoms are coupled, the calculation must be car-
ried out in their direct-product many-body space whose size
grows exponentially with N (∼ nN dimensions for n-level
atoms). The interatomic coupling can be induced by the ex-
change of virtual photons leading to dipole-dipole and coop-
erative spontaneous emission, or superradiance (Das et al.,
2008; Salam, 2010). In molecular aggregates, the dipole inter-
action between its constituents creates inherent entanglement
on the level of the quasiparticles (Mukamel, 2010), which
shifts the doubly excited state energies, and redistributes the
dipole moments, in which the individual HamiltoniansHν are
(Abramavicius et al., 2009)

Hν = ~
∑

i

εmB
†
mνBmν + ~

∑

m 6=n
JmnB

†
mνBnν

+ ~
∑

m

∆m

2
B†mνB

†
mνBmνBmν , (96)

where Bm (B†m) describes an excitation annihilation (cre-
ation) operators for chromophore m. These excitations are
hard-core bosons with Pauli commutation rules (Lee et al.,
1957):

[Bm, B
†
n] = δmn(1− 2B†nBn). (97)

To describe two level sites, which cannot be doubly excited
according to the Pauli exclusion we set ∆m → ∞. In con-
densed matter physics and molecular aggregates the many par-
ticle delocalized states are called excitons. The model Hamil-
tonian (96) can represent e.g. Rydberg atoms in optical lattice
or Frenkel excitons in molecular aggregates. For considering
four-wave mixing processes, we have truncated the Hamilto-
nian Hν in Eq. (96) at the doubly excited level, such that it
diagonalization reads

Hν = ~ωgν |gν〉〈gν |+ ~
∑

e

ωeν |eν〉〈eν |+ ~
∑

f

ωfν |fν〉〈fν |,

(98)

where g indexes the ground state, e the singly, and f the dou-
bly excited states, which will be the central concern. We will
consider processes in which the signals factorize into ones
stemming from individual constituents, as well as collective
signals from two or more constituents. We illustrate basic
properties of the interaction of entangled photons with com-
plex quantum systems using the simple multilevel model de-
picted in Fig. 8. It consists of two excited states e1 and e2, a
two doubly excited states f1 and f2. The higher-energy ex-
cited state e2 decays to e1 within few tens of femtoseconds.
We shall focus on doubly-excited states created by the absorp-
tion of pairs of photons.

Similarly to the noninteracting case (75), the population in
the final state f at time t is given by the loop diagram in Fig. 2,
which can be written as the modulus square of a transition
amplitude. Tracing out the matter degrees of freedom, the
amplitude can be written as a nonlinear field operator,

Tfg(t; Γ) = − 1

~2

∫ t

t0

dτ2

∫ τ2

t0

dτ1E(τ2)E(τ1)

× 〈f(t)|V †(τ2)V †(τ1)〉|g(t0)〉, (99)

which may be evaluated for arbitrary field input states. Specif-
ically, using Eq. (52), we obtain

T
(ent)
fg (t; Γ) =

1

~2T

µgeµefN ′′Ap
ω1 + ω2 − ωf + iγf

e−i(ω1+ω2)t

×
[ei(ω1−ωe+iγe)T − 1

ω1 − ωe + iγe
+
ei(ω2−ωe+iγe)T − 1

ω2 − ωe + iγe

]
,

(100)

where we used N = N ′′Ap which is linear in the classical
pump amplitude. For comparison, the classical probability
governed by excitation by two classical fields with amplitudes
A1 and A2 is given by

T
(c)
fg (t; Γ) =

1

~2

µgeµefA1A2e
−i(ω1+ω2)t

[ω1 − ωeg + iγeg][ω2 − ωfe + iγfe]

+
(
ω1 ↔ ω2

)
, (101)

which is quadratic in the field amplitudes, unlike Eq. (100).
The second line denotes the same quantity, but with the beam
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FIG. 9 a) The density matrix for doubly excited states %ff ′(t) =
T ∗f ′g(t)Tfg(t), Eq. (100), prepared by the absorption of entangled
photons with pump frequency ωp = 22, 160 cm−1. b) the same,
with ωp = 24, 200 cm−1. [from (Schlawin et al., 2012)]

frequencies ω1 and ω2 interchanged. We will further discuss
more on the intensity scaling.

Eq. (100) reflects the entangled photon structure described
earlier: The pump frequency ωp = ω1 +ω2 is sharply defined
such that the ωf -resonance is broadened only by the state’s
lifetime broadening and pure dephasing rate γf . The strong
time correlations in the arrival time creates a resonance of the
form (exp(iωT ) − 1)/ω, which, for very short entanglement
times is independent of the frequency: (exp(iωT ) − 1)/ω '
T + O(T 2). This implies that the intermediate e-states ef-
fectively interact with broadband light, whereas the f -states
interact with cw light. Put differently, thanks to their large
bandwidth, the entangled photons can induce all possible ex-
citation pathways through the e-manifold leading to a specific
selected f -state (Schlawin et al., 2012). Tuning the pump
frequency ωp allows to select the excitation of specific wave
packets: Fig. 9 depicts the density matrices for doubly ex-
cited states induced by the absorption of entangled photon
pairs with different pump frequencies. This behavior remains
the same for pulsed excitation in the strong frequency anti-
correlations regime (Schlawin, 2015).
2. Control of energy transfer

When the material system is coupled to an environment
which causes relaxation among levels, the distributions of ex-
cited states populations may no longer be described by the
wavefunction and transition amplitudes, and the density ma-
trix must be used instead. As shown in Fig. 2, the loop di-
agram, which represent the transition amplitudes needs to be
broken up into three fully time-ordered ladder diagrams (and
their complex conjugates). These are given in the time domain
(Schlawin et al., 2013),

pf,(I)(t; Γ) =

(
− i
~

)4 ∫ t

−∞
dτ4

∫ τ4

−∞
dτ3

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

×
〈
VR(τ4)VR(τ3)V †L(τ2)V †L(τ1)

〉〈
E†(τ3)E†(τ4)E(τ2)E(τ1)

〉
, (102)

pf,(II)(t; Γ) =

(
− i
~

)4 ∫ t

−∞
dτ4

∫ τ4

−∞
dτ3

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

×
〈
VR(τ4)V †L(τ3)VR(τ2)V †L(τ1)

〉〈
E†(τ2)E†(τ4)E(τ2)E(τ1)

〉
, (103)

pf,(III)(t; Γ) =

(
− i
~

)4 ∫ t

−∞
dτ4

∫ τ4

−∞
dτ3

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

×
〈
V †L(τ4)VR(τ3)VR(τ2)V †L(τ1)

〉〈
E†(τ2)E†(τ3)E(τ4)E(τ1)

〉
, (104)

Here, Γ collectively denotes the set of control parameters of
the light field. The matter correlation functions in Eqs. (102)
- (104) are given by Liouville space superoperator correla-
tion functions, which translate for the integration variables in
Eqs. (102)-(104) in Hilbert space into

〈
VR(τ4)VR(τ3)V †L(τ2)V †L(τ1)

〉

=
〈
V (τ3)V (τ4)V †(τ2)V †(τ1)

〉
, (105)

〈
VR(τ4)V †L(τ3)VR(τ2)V †L(τ1)

〉

=
〈
V (τ2)V (τ4)V †(τ3)V †(τ1)

〉
, (106)

〈
V †L(τ4)VR(τ3)VR(τ2)V †L(τ1)

〉

=
〈
V (τ2)V (τ3)V †(τ4)V †(τ1)

〉
. (107)
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FIG. 10 Variation of the double-excited state populations pf (t),
Eqs. (102)-(104) with the pump frequency ωp after excitation by en-
tangled photons with strong frequency anti-correlations (solid, red),
by laser pulses matching the pump bandwidth σp (blue, dashed), and
laser pulses matching the photon bandwidths ∼ 1/T (green, dot-
dashed). The total f -population is normalized to unity at each fre-
quency, i.e.

∑
f pf (t) = 1.

The entangled photon field correlation functions are given by
the Fourier transform of Eq. (62). We first restrict our atten-
tion to the weak downconversion regime, n̄ � 1, in which
the autocorrelation functions g1,2, Eqs. (64) and (65), may be
neglected.

The essential properties of entangled photon absorption
may be illusttrated by using the simple model system intro-
duced in section II.J.1 where the correlation functions (102) -
(104) can be written as the sum-over-states expressions given
in appendix C. To excite state f2 faithfully, one needs to se-
lect it spectrally, and, the intermediate decay process e2 → e1

needs to be blocked (see Fig. 8. This can be achieved with
entangled photons. Fig. 10, shows how the relative popu-
lation in each final state vs. the pump frequency ωp. At
each frequency the total population is normalized to unity, i.e.
pf1

+ pf2
= 1. By choosing a spectrally narrow pump band-

width σp = 100 cm−1 in combination with a short entangle-
ment time T = 10 fs, almost 90 % of the total f -population
can be deposited in the state f2 at ωp = 22500 cm−1 (and
∼ 95 % in f1 at ωp = 21800 cm−1).

Such degree of state selectivity may not be achieved with
classical laser pulses: For comparison, the f -manifold pop-
ulations created by classical laser pulses with bandwidths
σ = 100 cm−1 (same spectral selectivity) and with σ =
1000 cm−1 (same time resolution in the manifold of singly
excited states) are shown as well in Fig. 10. In the former
case, the intermediate relaxation process limits the maximal
yield in f2 to ∼ 35 % (with ca. 65 % population in f1 at
ωp = 22500 cm−1), in the latter case, the lower spectral
resolution limits the achievable degree of control over the f -
populations.

For very short entanglement times, transport between var-
ious excited states in e-manifold may be neglected, and the
f -populations may as well be calculated using transition
amplitudes - thus greatly reducing the computational cost

(Schlawin, 2015). By varying the entanglement time it be-
comes possible to probe subsets of transport pathways via the
selection of specific f -states in the detected optical signal.

The properties described above may also be observed
in more complex systems such as molecular aggregates
(Schlawin et al., 2013), where the number of excited states is
much higher, but the described physics is essentially the same:
Ultrafast relaxation processes limit the classically achievable
degree of selectivity due to the trade-off between spectral and
time resolution for each absorption process. With entangled
photons, this trade-off only limits the overall two-photon pro-
cess, but not each individual transition. This may be under-
stood in the following way: In the absorption of entangled
photons, the light-matter system becomes entangled in the in-
terval between the two absorption events, but it remains sep-
arable at all times for classical pulses so that the energy-time
uncertainty only applies to the entire system.

Finally it is worth noting an additional advantage of us-
ing entangled photons for two-photon excitation in molecules
pointed out by (Raymer et al., 2013). In many aggregates, as
the doubly-excited state undergoes rapid nonradiative decay
to the singly excited states. This may occur on the same time
scale of the excited-state transport (Van Amerongen et al.,
2000). For weakly anharmonic aggregates where the transi-
tion frequencies f → e and e → g are close, it is hard to
discriminate between the two-photon-excited and single pho-
ton excited fluorescence. Entangled light can help isolate the
doubly-excited state population by monitoring the transmitted
single-photon pathways with a high-quantum-efficiency de-
tector, that can partially rule out one-photon absorption.

3. Scaling of two photon absorption with pump intensity

Eq. (101) shows that the TPA probability |Tfg|2 scales
quadratically with pump intensity A2

1A
2
2 for classical light

but Eq. (100) shows linear scaling A2
p with weak entangled

light. As the pump pulse intensity is increased, the two-photon
state (33) does not represent the output state (57), and the
autocorrelation contributions g1,2 to Eq. (62) must be taken
into account. To understand how this affects the excited state
distributions, we first simulate in Fig. 11 the relative contri-
bution of the two-photon term h12 in Eq. (62) to the popu-
lation in f2, when the pump frequency is set at resonance,
ωp = 22500 cm−1, and its variation with the mean photon
number (59). Clearly, in the weakly entangled case this con-
tribution drops rapidly, and already at n̄ = 0.5 the autocor-
relation contribution (i.e. excitations by uncorrelated photons
from different downconversion events) dominates the signal.
In contrast, in the strongly entangled case the contribution
drops much more slowly, and - as can be seen in the inset -
still accounts for roughly a third of the total absorption events
even at very high photon number n̄ ' 100. As described in
(Dayan et al., 2005), this may be attributed to the strong time
correlations in the former case: For T = 10 fs, one can fit ten
times as many photon pairs into a time period compared to
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FIG. 11 a) Relative contribution of the coherent two-photon con-
tribution h12, Eq. (63), to the full time-integrated population of f2
plotted vs. the mean photon number n̄, Eq. (59). The dashed line
shows strong entanglement with entanglement time T = 10 fs, and
the solid line weaker entanglement with T = 100 fs. b) same for an
intermediate state moved to ωe2 = 18, 500 cm−1.

T = 100 fs, before different pairs start to overlap temporally.
In addition, the strong frequency correlations discussed in the
previous section imply that, on resonance with the final state
f2, the coherent contribution is enhanced even further.

The situation becomes more striking in panel b when the
intermediate state e is shifted away from the entangled photon
frequencies), where we set it to ωe2 = 18, 500 cm−1, and only
the two-photon transition g → f2 is resonant. In the weakly
entangled case (solid line), little has changed, and parity be-
tween the two-photon and the autocorrelation contribution is
reached again for n ∼ 2. In the strongly entangled regime,
however, the coherent contribution remains close to unity, and
dominates the signal even at n̄ ' 500, as can be seen in the
inset.

The strong frequency correlations of entangled photon pairs
lead to the enhancement of the two-photon contribution h12

compared to the autocorrelation contributions g1,2 - even for
very high photon fluxes. Consequently, the nonclassical ex-
cited states distributions created by entangled photons can still
dominate the optical signal even when the mean photon num-
ber in each beam greatly exceeds unity (Schlawin, 2015). The
linear to a quadratic crossover of the two-photon absorption
rate with the pump intensity (Fig. 1a) which is traditionally
regarded as a crossover from a quantum to a classical regime

(Lee and Goodson, 2006), is not necessarily a good indica-
tor for this transition after all, as pointed out by (Georgiades
et al., 1997). The time-frequency correlations of entangled
pairs may be harnessed at much higher photon fluxes - as
long as the coherent contribution h12 dominates the incoher-
ent contributions g1,2.

III. NONLINEAR OPTICAL SIGNALS OBTAINED WITH
ENTANGLED LIGHT

We now revisit the excited state populations created in mat-
ter following the absorption of entangled photon pairs in sec-
tion II, and present optical signals associated with these dis-
tributions. We first derive compact superoperator expressions
for arbitrary field observables, which naturally encompass
standard expressions based on a semiclassical treatment of the
field (Mukamel, 1995).

Using Eq. (11), the expectation value of an arbitrary field
operator A(t) is given by

S(t; Γ) =
〈
A+(t)

〉
final (108)

=
〈
T A+(t) exp

[
− i
~

∫ t

t0

dτHint,−(τ)

] 〉
(109)

= S0 −
i

~

∫ t

t0

dτ
〈
T A+(t)Hint,−(τ)

× exp

[
− i
~

∫ τ

t0

dτ ′Hint,−(τ ′)

] 〉
. (110)

Here, the first term describes the expectation value in the ab-
sence of any interaction with the sample, which we set to zero.
The second term describes the influence of the sample on the
expectation value. It may be represented more compactly,
when the interaction Hamiltonian is not written in the RWA
approximation (Schlawin, 2015),

S(t; Γ) = − i
~

∫ t

t0

dτ
〈

[A(t), ε(τ)]+ V+(τ)
〉

final, (111)

where we recall ε(t) = E(t) + E†(t) and V(t) = V (t) +
V †(t).

Eq. (111) may be used to calculate arbitrary optical signals
induced by entangled photons, as will be demonstrated in the
following.

A. Stationary Nonlinear signals

Here, we consider the situation described in section II.B,
where only a single quantum mode of the light is relevant.
This is most prominently the case in the strong coupling
regime of cavity quantum electrodynamics (Walther et al.,
2006), or when one is interested in steady state solutions,
where only a single (or few) frequency(ies) of the field is(are)
relevant.

The intricate connection between nonlinear optical signals
and photon counting was first made explicit by (Mollow,
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1968), who connected the two-photon absorption rate of sta-
tionary fields with their G(2)-function2

w2 = 2|g(ω0)|2
∫ ∞

−∞
dt e2iωf t−γf |t|G(2)(−t,−t; t, t), (112)

where G(2)(t′1, t
′
2; t1, t2) = 〈E†(t′1)E†(t′2)E(t2)E(t1)〉,

g(ω0) ∼ µegµeg/(ω0 − ωe + iγe) is the coupling element
evaluated at the central frequency ω0 of the stationary light
field. The transition rate loosely corresponds to the time-
integrated, squared two-photon transition amplitude (99) we
derived earlier. If the lifetime broadening of the final state
γf is much smaller than the bandwidth of the field ∆ω,
γf � ∆ω, one may even neglect the time integration, and
replace G(2)(−t,−t; t, t) ∼ G(2)(0, 0, 0, 0).

This implies, as pointed out in (Gea-Banacloche, 1989),
that strongly bunched light can excite two-photon transitions
more efficiently than classical light with identical mean pho-
ton number. It further implies that the two-photon absorption
rate scales linearly in the low gain regime, even though the
single mode squeezed state does not show time-energy entan-
glement in the sense of section II.C. An experimental verifi-
cation thereof is reported in (Georgiades et al., 1995, 1997).

A more recent proposal (López Carreño et al., 2015) aims
to employ nonclassical fluctuations contained in the fluores-
cence of a strongly driven two-level atom: As is well known,
the driven two-level atom’s fluorescence develops side peaks
- known as the Mollow triplet (Scully and Zubairy, 1997).
By driving polaritons - strongly coupled light-matter states
in a cavity - with this light, it should allow for precise mea-
surements of weak interactions between polaritons “even in
strongly dissipative environments”.

B. Fluorescence detection of nonlinear signals

The fluorescence signal is given by the (possibly time-
integrated) intensity A(t) = E†(t)E(t), when the detected
field mode is initially in the vacuum. It is obtained by expand-
ing Eq. (111) to second order in the interaction Hamiltonian
with the vacuum field (Mukamel, 1995),

SFLUOR =
1

~2

〈
VL(t)V †R(t)

〉
final. (113)

We first investigate the time-integrated f → e fluorescence
signal (113), following excitation by either entangled photons
or classical pulses. Using Eqs. (113), and (102)-(104), we
may readily evaluate the signal as

STPIF(Γ) =

∫
dt
∑

e,f

|µef |2pf (t; Γ). (114)

2 We change the notation to match the rest of this review.
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FIG. 12 Entangled virtual-state spectroscopy: TPIF signal vs. the
Fourier transform of an additional time delay between the two pho-
tons (see text) in hydrogen [taken from (Saleh et al., 1998)].

In a different scenario, the two-excitation state may rapidly
decay nonradiatively - e.g. via internal conversion - and the
e− g fluorescence is detected,

S̃TPIF(Γ) ∝
∫
dt pf (t; Γ). (115)

Fluorescence signals are proportional to excited state popula-
tions. Therefore, they are closely related to the excited state
distributions discussed in sections II.I to II.J.3. This is not
necessarily the case for absorption measurements, as will be
shown in section III.D.

1. Two-photon absorption vs. two-photon-induced
fluorescence

Before reviewing fluorescence signals induced by entan-
gled photons, we comment on some ambiguity in the nomen-
clature of nonlinear signals such as fluorescence that depend
on the doubly excited state population pf . Since this popu-
lation is created by the absorption of two photons, the signal
is often termed two-photon absorption. However, it does not
pertain to a χ(3)-absorption measurement, which will be dis-
cussed in section III.D. We will refer to signals measuring pf
as two-photon-induced fluorescence and to two-photon reso-
nances in χ(3) as two-photon absorption.

In section III.C.1, we will further show that for off-resonant
intermediate state(s) e - as is the case in most experimental
studies to date (Dayan et al., 2004, 2005; Guzman et al., 2010;
Harpham et al., 2009; Lee and Goodson, 2006; Upton et al.,
2013) - the two signals carry the same information.

2. Two-photon induced transparency and entangled-photon
virtual-state spectroscopy

Entangled virtual-state spectroscopy, proposed in (Saleh
et al., 1998), suggests a means to detect far off-resonant in-
termediate states in the excitation of f -states by employing
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entanglement-induced two-photon transparency (Fei et al.,
1997): The transition amplitude (100) of entangled photons
created by a cw-source oscillates as a function of the entan-
glement time T . For infinite excited-state lifetimes (γe = 0),
the excitation of f is even completely suppressed whenever
(ω1 − ωe)T = n × 2π ∀n ∈ N - the medium becomes trans-
parent.

Saleh et al. had proposed to turn this counterintuitive ef-
fect into a spectroscopic tool by sending one of the two pho-
tons through a variable delay stage τ , which simply amounts
to evaluating the two-photon wavefunction (52) 〈0|E(τ2 +
τ)E(τ1)|ψtwin〉. For degenerate downconversion the transition
amplitude (100) then reads

Tfg(τ, t; Γ) =
N ′Ap
~2T

∑

e

µgeµef
ωp − ωf + iγf

e−iωpte−iωpτ/2

∆e + iγe

×
[
ei(∆e+iγe)(T−τ) + ei(∆e+iγe)(T+τ) − 2

]
, (116)

where we introduced the detuning ∆e = ωp/2 − ωe. Fourier
transform of the TPIF signal ∝ |Tfg(τ)|2 with respect to τ
reveals different groups of resonances shown in Fig. 12 for
the TPIF signal in hydrogen: Group A denotes resonances
of differences between intermediate states, ∆e − ∆e′ , group
B of detunings ∆e, and group C of the sum of detunings
∆e + ∆e′ . Such signals were simulated in molecular sys-
tem (Kojima and Nguyen, 2004), and similar resonances can
be identified in absorption TPA measurements, as we will dis-
cuss in section III.C.1.

However, it turns out that the effect depends crucially on
the tails of the spectral distribution in Eq. (49) (de J Leon-
Montiel et al., 2013). The sinc-function in the two-photon
wavefunction (51) has a long Lorentzian tail ∼ 1/ω, which
covers extremely far off-resonant intermediate states. When
the sinc is replaced by Gaussian tails, the resonances vanish.
The effect is thus caused by the long spectral tails, and is not
intrinsically connected to entanglement.

3. Fluorescence from multi-level systems

The TPIF signal, Eq. (114), directly reflects the doubly ex-
cited state population distributions created by the absorption
of entangled photon pairs. This may be seen in simulations
of the TPIF signal from Frenkel excitons in a molecular ag-
gregates (Schlawin et al., 2012). In Fig. 13a), we present
the TPIF signal resulting from the decay of the f -state dis-
tributions in Fig. 10. Clearly, the signal peaks whenever a
two-excitation state is on resonance with the pump frequency
ωp. The signal from the two f -states has approximately the
same strength. In contrast, the TPIF signal created by classi-
cal pulses shown in panel b) has a strong resonance only when
the light is on resonance with the state f1, whereas f2 can only
be observed as a weak shoulder of the main resonance. As dis-
cussed in chapter II.I, the fast decay of the intermediate state
e2 limits the excitation of f2 with classical light, and therefore
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FIG. 13 a) TPIF action spectrum STPIF(Γ), Eq. (114), induced by
entangled photon pairs with the same parameters as in Fig. 10. The
fluorescence created by the state f1 is shown separately as a dashed
plot, and the signal from f2 as a dot-dashed line. b) TPIF action
spectrum induced by laser pulses with bandwidth σ0 = 100 cm−1.

the state can hardly be observed, even though it has the same
dipole strength as f1.

These nonclassical bandwidth features of entangled photon
pairs may be further exploited to control vibronic states, as re-
ported in (Oka, 2011a,b). They were also investigated in semi-
conductor quantum wells. There, the absorption of excited
state states competes with the absorption into a continuum of
excited electronic states of free electrons and holes. By in-
terpolating between negative and positive frequency correla-
tions (see Fig. 3), it was shown in (Salazar et al., 2012) how
the absorption of the excited states may be either enhanced or
suppressed, as shown in Fig. 14.

4. Multidimensional signals

In Fig. 2, we had explained how each light-matter inter-
action event also imprints the light phase φ onto the matter
response. We now exploit this fact to create multidimensional
spectroscopic signals. Phase cycling provides a means to post-
select signals with a certain phase signature, as will be shown
in the next section. Using additional delay stages - like in the
entangled-photon virtual state spectroscopy discussed above
- these signals can be spread to create multidimensional fre-
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FIG. 14 Two-photon absorption (TPIF in our notation, see sec-
tion. III.B.1) in a semiconductor quantum well [taken from (Salazar
et al., 2012)]: excited state resonances within a continuum of de-
localized states may be enhanced with frequency anti-correlations
(black) or suppressed with positive frequency correlations (red).

quency correlation maps, which carry information about cou-
plings between different resonances or relaxation mechanisms
(Ginsberg et al., 2009). Phase-cycling is essential for partially
non-collinear or collinear geometry 2D spectroscopic experi-
ments (Keusters et al., 1999; Krčmář et al., 2013; Scheurer
and Mukamel, 2001; Tan, 2008; Tian et al., 2003; Yan and
Tan, 2009; Zhang et al., 2012a). In phase-cycling protocol,
the desired 2D signals are retrieved by the weighted summa-
tion of data collected using different interpulse phases, φ21,
which are cycled over 2π radians in a number of equally
spaced steps. In the pump-probe configuration, Myers et al.
(Myers et al., 2008) have shown that other than the pure ab-
sorptive signal, the rephasing and nonrephasing contributions
may also be retrieved. This phase difference detection can be
defined as a two-step phase-cycling scheme. For the phase
difference detection, the Ogilvie group needs to collect sig-
nals with interpulse phases of φ21 = 0, π, π/2 and 3π/2. The
same signal can be obtained with chopping, but this is only
half as intense compared to the phase difference method. In
the context of this article, what they have performed is similar
to a four-step phase-cycling scheme, where four sets of data
need to be collected and linearly combined.

(Raymer et al., 2013) had exploited the formal similarity
between the TPIF and a photon coincidence signal to propose
the setup shown in Fig. 15a). Here, the successive absorption
events promoting the molecule into the f -state are modulated
by phase cycling and delay stages in both photon beams, cre-
ating interference effects between absorption events in which
the photon takes the short path through the interferometer, and
those in which it takes the long path. The Fourier transform
creates two-dimensional signals which are shown in panel b).
In contrast to the classical signal shown in the upper panel,
the proposed scheme only shows resonances at the cross-peak
between the two electronic states. This could provide a useful
tool to study conformations of aggregates. We next discuss
this strategy in more detail.

5. Loop (LOP) vs ladder (LAP) delay scanning protocols for
multidimensional fluorescence detected signals

Since the loop and the ladder diagrams involve different
time variables they suggest different multidimensional signals
obtained by scanning the corresponding time delays. We con-
sider the TPIF signal created by a train of four pulses centered
at times T1, T2, T3, and T4 with phases φ1, φ2, φ3, and φ4

(Pestov et al., 2009; Tekavec et al., 2007). We first analyze
signals obtained by the LOP/LAP delay scanning protocols
with classical light. The two protocols highlight different res-
onances and processes. First we demonstrate what type of
information can be extracted from each protocol for excited
electronic states in a model molecular aggregate. We then
show some benefits of LOP protocols when applied to entan-
gled light.

For the model system shown in Fig. 2a) the signal (114)
is given by the single loop diagram in Fig. 2b). a, b, c, d de-
note the pulse sequence ordered along the loop (but not in real
time); a represents “first”. on the loop etc. Chronologically-
ordered pulses in real time will be denoted 1, 2, 3, 4 which are
permutations of a, b, c, d, as will be shown below. One can
scan various delays Tα − Tβ , α, β = 1, · · · 4 and control the
phases ±φ1 ± φ2 ± φ3 ± φ4. In standard multidimensional
techniques the time variables represent the pulses as they in-
teract with sample in chronological order (Mukamel, 1995).
These are conveniently given by the ladder delays ti shown in
Fig. 16c). The LAP maintains complete time-ordering of all
four pulses. The arrival time of the various pulses in chrono-
logical order is T1 < T2 < T3 < T4. The ladder delays are
defined as t1 = T2−T1, t2 = T3−T2, t3 = T4−T3. One can
then use phase cycling to select the rephasing and nonrephas-
ing diagrams shown in Fig. 16c, and read off the signal in a
sum-over-states expansion

S
(LAP )
kII

(t1, t2, t3) = IE∗1E∗2E3E4
∑

e,e′,f

µge′µe′fµ
∗
feµ
∗
eg

× Gef (t3)Gee′(t2)Geg(t1), (117)

S
(LAP )
kIII

(t1, t2, t3) = IE∗1E∗2E3E4
∑

e,e′,f

µge′µe′fµ
∗
feµ
∗
eg

× Gef (t3)Gee′(t2)Gge′(t1). (118)

The LAP signals (117) - (118) factorize into a product of
several Green’s functions with uncoupled time arguments.
This implies that the corresponding frequency domain sig-
nal will also factorize into a product of individual Green’s
functions, each depending on a single frequency argument Ω̃j ,
j = 1, 2, 3 which yields

S
(LAP )
kII

(Ω̃1, t2 = 0, Ω̃3)

=R
∑

e,e′,f

µge′µe′fµ
∗
feµ
∗
egE∗1E∗2E3E4

[Ω3 − ωef + iγef ][Ω1 − ωeg + iγeg]
, (119)
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FIG. 15 a) Experimental setup for the LOP protocol: By sending each beam through a Franson interferometer, the photon excitation may
occur either via a delayed or an “early” photon. b) Top panel: two-dimensional fluorescence spectrum induced by classical light. Bottom
panel: the same spectrum induced by entangled photons. [taken from (Raymer et al., 2013)]

S
(LAP )
kIII

(Ω̃1, t2 = 0, Ω̃3)

=R
∑

e,e′,f

µge′µe′fµ
∗
feµ
∗
egE∗1E∗2E3E4

[Ω3 − ωfe + iγfe][Ω1 − ωe′g + iγe′g]
. (120)

This factorization holds only in the absence of additional cor-
relating mechanisms the frequency variables caused by e.g.
dephasing (bath) or the state of light.

In the LOP the time ordering of pulses is maintained only
on each branch of the loop but not between branches. To real-
ize the LOP experimentally the indices 1 to 4 are assigned as
follows: first by phase cycling we select a signal with phase
φ1 + φ2 − φ3 − φ4. The two pulses with positive phase de-
tection are thus denoted 1, 2 and with negative phase - 3, 4.
In the 1, 2 pair pulse 1 comes first. In the 3, 4 pair pulse 4
comes first. The time variables in Fig. 16b) are s1 = T2− T1,
s2 = T3 − T2, s3 = T3 − T4. With this choice s1 and s3 are
positive whereas s2 can be either positive or negative. This
completely defines the LOP experimentally.

When the electronic system is coupled to a bath, it cannot
be described by a wave function in the reduced space where
the bath is eliminated. As described in section II.J.2, the loop
diagram must then be broken into several ladder diagrams
shown in Fig. 2b) which represent the density matrix. The
full set of diagrams and corresponding signal expressions are
given in (Dorfman and Mukamel, 2014b). In Fig. 16c) we
present simplified expressions for the rephasing kII and non-
rephasing kIII signals in the limit of well separated pulses:

S
(LOP )
kII

(s1, s2, s3) = IE∗1E∗2E3E4
∑

e,e′,f

µge′µe′fµ
∗
feµ
∗
eg

× Gef (s2)Gee′(s3)Geg(s1 − s2 − s3) (121)

S
(LOP )
kIII

(s1, s2, s3) = IE∗1E∗2E3E4
∑

e,e′,f

µge′µe′fµ
∗
feµ
∗
eg

× Gef (s2)Gee′(s1 − s2)Gge′(s2 + s3 − s1), (122)

where I denotes the imaginary part and Gαβ(t) =
(−i/~)θ(t)e−[iωαβ+γαβ ]t is the Liouville space Green’s func-
tion [see Eq. (16)]. Note that the loop delays sj , j = 1, 2, 3
are coupled and enter e.g. in the Green’s function Geg in Eq.
(121). Due to the Heaviside-θ function in this Green’s func-
tion, the delays sj are not independent but rather couple the
dynamics of the system during these delay times, which even-
tually result in cross-resonances in multidimensional spectra.
To see the effect on the mixing of the frequency variables that
yield these cross-peaks we take a Fourier transform of Eqs.
(121) - (122) with respect to loop delay variable s1 and s3

keeping s2 = 0 and obtain the resonant component of the sig-
nal analogous to the frequency-domain LAP signals (119) -
(120)

S
(LOP )
kII

(Ω1, s2 = 0,Ω3) =

R
∑

e,e′,f

µge′µe′fµ
∗
feµ
∗
egE∗1E∗2E3E4

[Ω1 + Ω3 − ωee′ + iγee′ ][Ω1 − ωeg + iγeg]
, (123)

S
(LOP )
kIII

(Ω1, s2 = 0,Ω3) =

R
∑

e,e′,f

µge′µe′fµ
∗
feµ
∗
egE∗1E∗2E3E4

[Ω1 + Ω3 + ωee′ + iγee′ ][Ω3 − ωe′g + iγe′g]
,

(124)

where R denotes real part. Eqs. (123) - (124) yield cross-
peaks Ω1 + Ω3 = ωee′ . The time correlations therefore result



25

(a) 

(b) (c) 

g 

e1 

e2 

e3 

f1 

f2 

f3 

(d) 

|gi hg|

|ei

|fi

hf |

he0|⌧1

⌧2

⌧3

�a + �b � �c � �d

Ea

Eb

E†
d

E†
c

s2 

s3 
s1 

Ta,�a Tb,�b Tc,�c Td,�d

⌧1 ⌧2 ⌧3

Loop time 

T1,�1 T2,�2 T3,�3 T4,�4

t1 t2 t3

Ladder time 

|gihg|

|ei

|fi

hf |

he0|

⌧1

⌧2

⌧3t2

t3

|gihg|

|ei

|fi

hf |

he0| ⌧1

⌧2

⌧3

t2

t3

|gihg|

|ei

|fi

hf |

he0|
⌧1

⌧2

⌧3t2

t3

E†
a

E†
b

Ec

Ed

E†
a

E†
b

Ec

Ed

E†
a

E†
b

Ec

Ed

t1

t1
t1

kII kIII kI 

(e) (f) (g) 

s1 s2 s3a) b)

c)

s1

s2

s3

E1,�1

E2,�2

E3,�3

E4,�4

s1

s2

s3

E1,�1

E2,�2

E3,�3

E4,�4

t1

t3

t2
s1

s2

s3

E1,�1

E2,�2

E3,�3

E4,�4

s1

s2

s3

E1,�1

E2,�2

E3,�3

E4,�4k1 k2
k3

T1,�1 T2,�2 T3,�3 T4,�4

T1,�1 T2,�2 T3,�3 T4,�4

|ei

|fi hf |

he0|

|fi hf | |fi hf |

|ei
|ei

|ei

he0|
he0|

he0|

|fi hf |

FIG. 16 (Color online) a) Pulse sequence for LOP (top panel) and LAP (bottom panel) scanning protocols. b) Loop diagram for the TPA
process with indicated loop delays for the non specified phase cycling that depends on chronological time ordering between pulses 1 to
4 c). Ladder diagrams for the TPA signal with selected phase cycling component corresponding to double quantum coherence term kI :
−φd − φc + φb + φa, rephasing kII : −φ4 + φ2 + φ1 − φ3, and nonrephasing kIII : −φ4 + φ2 − φ3 + φ1. Both loop sj and ladder
tj delays, j = 1, 2, 3 are indicated. The transformation between two is different for each diagram. Time translation invariance implies
ω1 + ω2 − ω3 − ω4 = 0.

in the frequency mixing of arguments.

Fig. 17 compares the LOP and LAP signals for the model
dimer parameters of (Raymer et al., 2013) under two photon
excitation by classical light. The LOP spectra for rephasing
kII = −‖1+‖2+‖3, nonrephasing kIII = +‖1+‖2−‖3 and
their sum are shown in Fig. 17a)-c), respectively. The corre-
sponding LAP spectra are shown in Fig. 17d-f. We see that the
scanning protocol makes a significant difference as seen by
the two columns. The LOP resonances are narrow and clearly
resolve the e1 and e2 states whereas the corresponding LAP
signals are broad and featureless. This is a consequence of
the display variables chosen in each protocols. LOP variables
are coupled in a very specific fashion that allows to extract
the intraband dephasing rate γee′ in (Ω1,Ω3) plot with higher
precision compared to LAP case. Of course, one can extract
similar information using LAP if displayed using (Ω̃1, Ω̃2) or
(Ω̃2, Ω̃3) which we will discuss below in the context of entan-
gled light. This difference in two protocols has been originally
attributed to entanglement by (Raymer et al., 2013). However,
it was demonstrated in (Dorfman and Mukamel, 2014b) sup-
ported by Fig. 17 that the difference was unrelated to entan-

glement. It was caused since they calculated entangled signals
using LOP but used LAP for classical signals.

a. Entangled vs classical light So far, we presented the LOP
and the LAP delay scanning protocols for classical light. We
now turn to the LOP protocol with entangled light. Similarly
to Eqs. (121) - (122) we calculate the signals for the CW-
pump model (51) discussed earlier, and obtain

S
(j)
LOP (s1, s2, s3) = I

∫ ∞

−∞

dωa
2π

dωb
2π

dωd
2π

×Rj(ωa, ωb, ωd)D(j)
LOP (s1, s2, s3;ωa, ωb, ωd)

× 〈E†(ωd)E†(ωa + ωb − ωd)E(ωb)E(ωa)〉, (125)

where j = kII ,kIII and the display function for both rephas-
ing and nonrephasing contributions reads

D
(j)
LOP (s1, s2, s3;ωa, ωb, ωd) = θ(s1)θj(±s2)θ(s3)

× e−iωas1+iωds3−i(ωa+ωb)s2 ,
(126)
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FIG. 17 (Color online) Left column: SLOP (Ω1, τ2 = 0,Ω3) for
the molecular dimer model of Ref. (Raymer et al., 2013) calculated
using classical light for rephasing kII Eq. (123) - (a), nonrephasing
kIII Eq. (124) - (b) and the sum of two kII + kIII - (c). Right
column: same for SLAP (Ω̃1, t2 = 0, Ω̃3) Eq. (119) - (120). Note
that the the sum of rephasing and nonrephasing components for LAP
signal we flipped the rephasing component to obtain absorptive peaks
as is typically done in standard treatment of photon echo signals. The
difference between the two columns stems from the display protocol
and is unrelated to entanglement.

and matter responses are

RkII (ωa, ωb, ωd) =
∑

e,e′,f

µage′µ
b
e′fµ

c∗
feµ

d∗
eg

× Gef (−ωb)Gee′(ωa − ωd)Geg(ωa),

RkIII (ωa, ωb, ωd) =
∑

e,e′,f

µage′µ
b
e′fµ

c∗
feµ

d∗
eg

× Gef (−ωb)Gee′(ωa − ωd)Gge′(−ωd).
(127)

Similarly we obtain for LAP signals Eqs. (117) - (118)

S
(j)
LAP (t1, t2, t3) = I

∫ ∞

−∞

dωa
2π

dωb
2π

dωd
2π

×Rj(ωa, ωb, ωd)D(j)
LAP (t1, t2, t3;ωa, ωb, ωd)

× 〈E†(ωd)E†(ωa + ωb − ωd)E(ωb)E(ωa)〉, (128)

where the display function for the rephasing signal is

D
(kII)
LAP (t1, t2, t3;ωa, ωb, ωd) = θ(t1)θ(t2)θ(t3)

× eiωbt3−iωat1+i(ωd−ωa)t2 ,
(129)
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FIG. 18 (Color online) Left column: LOP signal
SkII+kIII (Ω1, τ2 = 0,Ω3) for a molecular trimer with clas-
sical light Eq. (123) - (124) -(a), entangled light (125) with
Te = 100 fs -(b). Right: column: LAP signal SkII (Ω̃1, t2 = 0, Ω̃3)
using classical light Eq. (119) -(c), entangled light with Te = 100
fs, Eq. (128) -(d). Intraband dephasing γee′ = 1 meV. All other
parameters are given in Section 5 of (Dorfman and Mukamel,
2014b).

and for nonrephasing signal

D
(kIII)
LAP (t1, t2, t3;ωa, ωb, ωd) = θ(t1)θ(t2)θ(t3)

× eiωbt3+iωdt1+i(ωd−ωa)t2 .
(130)

The complete set of signals along with frequency domain sig-
nals for entangled light can be found in Section 2 of (Dorfman
and Mukamel, 2014b).

The Fourier transform of the signal (125) was simulated
using the LOP protocol and compared it with the standard
fully time ordered LAP protocol given by Eq. (128) for a
model trimer with parameters discussed in Section 5 of (Dorf-
man and Mukamel, 2014b). Fig. 18 shows the simulated
SLOP (Ω1, τ2 = 0,Ω3) for a trimer using classical light (top
row) and entangled light (bottom row). Fig. 18a shows clas-
sical light which gives a diagonal cross peak e = e′ and
one pair of weak side peaks parallel to the main diagonal at
(e, e′) = (e2, e3). The remaining two pairs of side peaks at
(e, e′) = (e1, e2) and (e, e′) = (e1, e3) are too weak to be
seen. Fig. 18d) depicts the signal obtained using entangled
photons where we observe two additional strong side cross
peak pairs with (e, e′) = (e1, e3) and (e, e′) = (e1, e2). The
weak peak at (e, e′) = (e2, e3) is significantly enhanced as
well.

As has been shown in Fig. 17 the LAP signal displayed
vs (Ω̃1, Ω̃3) does not effectively reveal intraband dephasing.
This can, however, be done by the LAP signal displayed vs
(Ω̃2, Ω̃3). Fig. 18c) reveals several Ω̃3 = ωfe peaks that
overlap in Ω̃3 axes due to large dephasing γfe. With entan-
gled light, the LAP protocol yields some enhancement in sev-
eral peaks around ±0.01 eV but overall the LOP yields much
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cleaner result. The pathways for the density matrix (LAP) and
the wavefunction (LOP) are different and may result in differ-
ent types of resonances.

C. Heterodyne detected nonlinear signals

So far we have considered fluorescence (homodyne) de-
tection. Homodyne and heterodyne are two complementary
detection schemes for nonlinear optical signals. In terms of
classical fields, if the sample radiation is detected for differ-
ent modes than the incident radiation, the signal is propor-
tional to |E|2. This is known as homodyne detection whereby
the intensity is the square modulus of the emitted field itself.
If the emitted field coincides with a frequency of the inci-
dent radiation Ein, then the signal intensity is proportional
to |E+Ein|2. Consequently, the detected intensity contains a
mixed interference term, i.e., E∗Ein + c.c.. This is defined as
the heterodyne signal, since the emitted field is mixed with an-
other field. In terms of quantized fields, the signal denoted ho-
modyne if detected at a field mode that is initially vacant and
heterodyne when detected at a field mode that is already occu-
pied. Note that the above nomenclature, which is commonly
used in nonlinear multidimensional spectroscopy, is different
from the definition used in quantum optics and optical engi-
neering where homodyne and heterodyne refer to mixing with
a field with the same or different frequency of the signal. In
this review, we will use the spectroscopy terminology (Potma
and Mukamel, 2013). Fluorescence detection is often more
sensitive than heterodyne detection as the latter is limited by
the pulse duration so there are fewer constraints on the laser
system. In addition the low intensity requirements for biolog-
ical samples limit the range of heterodyne detection setups.
This have been demonstrated by (Fu et al., 2007; Tekavec
et al., 2007; Ye et al., 2009) even in single molecule spec-
troscopy (Brinks et al., 2010). Historically, Ramsey fringes
constitute the first example of incoherent detection (Cohen-
Tannoudji and Guéry-Odelin, 2011; Ramsey, 1950; Schlawin
et al., 2013). Information similar to coherent spectroscopy can
be extracted from the parametric dependence on various pulse
sequences applied prior to the incoherent detection (Mukamel
and Richter, 2011a; Rahav and Mukamel, 2010). Possible in-
coherent detection modes include fluorescence (Barkai, 2008;
Elf et al., 2007), photoaccoustic (Patel and Tam, 1981), AFM
(Mamin et al., 2005; Poggio et al., 2009; Rajapaksa and
Kumar Wickramasinghe, 2011; Rajapaksa et al., 2010) or
photocurrent detection (Cheng and Xie, 2012; Nardin et al.,
2013).
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FIG. 19 Diagrams representing the third-order contributions to
Eq. (131).

1. Heterodyne Intensity measurements - Raman vs. TPA
pathways

WithA(t) = E†(t)E(t), Eq. (111) yields the rate of change
of the transmitted photon number,

S1(t; Γ) =
2

~
=
〈
E†+(t)V+(t)

〉
final. (131)

The semiclassical signal may be obtained from Eq. (131) by
simply replacing the field operator E†(t) by a classical field
amplitude A∗(t). Similarly, by spectrally dispersing the time-
integrated intensity, which amounts to measuring A(ω) =
E†(ω)E(ω), we obtain

S(ω; Γ) =
2

~
=
〈
E†(ω)V (ω)

〉
final. (132)

The third-order contribution of the time-integrated absorp-
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tion signal (131) is given by the four loop diagrams in Fig. 19,

S1,(I)(Γ) = −1

~
=
[(
− i
~

)3 ∫ ∞

−∞
dt

∫ t

−∞
dτ2

∫ τ2

−∞
dτ1

∫ t

−∞
dτ ′1

×
〈
V (τ ′1)V (t)V †(τ2)V †(τ1)

〉

×
〈
E†(τ ′1)E†(t)E(τ2)E(τ1)

〉]
, (133)

S1,(II)(Γ) =
1

~
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− i
~

)3 ∫ ∞

−∞
dt

∫ t

−∞
dτ3

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

×
〈
V (t)V (τ3)V †(τ2)V †(τ1)

〉

×
〈
E†(t)E†(τ3)E(τ2)E(τ1)

〉]
, (134)

S1,(III)(Γ) =
1

~
=
[(
− i
~

)3 ∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dτ ′2

∫ τ ′2

−∞
dτ ′1

×
〈
V (τ ′1)V †(τ ′2)V (t)V †(τ1)

〉

×
〈
E†(τ ′1)E(τ ′2)E†(t)E(τ1)

〉]
, (135)

S1,(IV)(Γ) =
1

~
=
[(
− i
~

)3 ∫ ∞

−∞
dt

∫ t

−∞
dτ3

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

×
〈
V (t)V †(τ3)V (τ2)V †(τ1)

〉

×
〈
E†(t)E(τ3)E†(τ2)E(τ1)

〉]
. (136)

An identical expansion of Eq. (132) yields the frequency-
resolved third-order signal (its sum-over-state expansion is
shown in Appendix D)

S1,(I)(ω; Γ) = −1

~
=
[(
− i
~

)3 ∫ ∞

−∞
dt

∫ t

−∞
dτ2

∫ τ2

−∞
dτ1

∫ t

−∞
dτ ′1

× eiωt
〈
V (τ ′1)V (t)V †(τ2)V †(τ1)

〉

×
〈
E†(τ ′1)E†(ω)E(τ2)E(τ1)

〉]
, (137)

S1,(II)(ω; Γ) =
1

~
=
[(
− i
~

)3 ∫ ∞

−∞
dt

∫ t

−∞
dτ3

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

× eiωt
〈
V (t)V (τ3)V †(τ2)V †(τ1)

〉

×
〈
E†(ω)E†(τ3)E(τ2)E(τ1)

〉]
, (138)

S1,(III)(ω; Γ) =
1

~
=
[(
− i
~

)3 ∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dτ ′2

∫ τ ′2

−∞
dτ ′1

× eiωt
〈
V (τ ′1)V †(τ ′2)V (t)V †(τ1)

〉

×
〈
E†(τ ′1)E(τ ′2)E†(ω)E(τ1)

〉]
, (139)

S1,(IV)(ω; Γ) =
1

~
=
[(
− i
~

)3 ∫ ∞

−∞
dt

∫ t

−∞
dτ3

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

× eiωt
〈
V (t)V †(τ3)V (τ2)V †(τ1)

〉

×
〈
E†(ω)E(τ3)E†(τ2)E(τ1)

〉]
. (140)

It is instructive to relate the four diagrams corresponding to
Eqs. (D1)-(D4) to the transition amplitudes between the ini-
tial and final matter states to gain some intuition for this sig-
nal. This is only possible for the total photon counting sig-
nal,

∫
dω S(ω; Γ)/(2π), which represents the full energy ex-

changed between the light field and the matter system. We
now define the transition amplitude operators

T
(1)
e′g (ω) =

µe′g
~
E(ω), (141)

T
(2)
fg (ωsum) =

1

~2

∑

e

∫
dωa
2π

µgeµefE(ωsum − ωa)E(ωa)

ωa − ωe + iγe
,

(142)

T
(2)
g′g (ω) =

1

~2

∑

e

∫
dωa
2π

µgeµeg′E
†(ωa − ω)E(ωa)

ωa − ωe + iγe
,

(143)

T
(3)
e′g (ω) =

1

~3

∑

e,f

∫
dωa
2π

∫
dωx
2π

µge
ωa − ωe + iγe

µefµfe′

ωx − ωf + iγf

× E†(ωx − ω)E(ωx − ωa)E(ωa), (144)

T
′(3)
e′g (ω) =

1

~3

∑

e,g′

∫
dωa
2π

∫
dω−
2π

µge
ωa − ωe + iγe

µeg′µg′e′

ω− − ωg′ + iγg

× E(ω − ω−)E†(ωa − ω−)E(ωa), (145)

Assuming a unitary time evolution, we can replace the de-
phasing rates in Eqs. (D1)-(D4) by infinitesimal imaginary
factors γ → ε. This allows us to use the identity 1/(ω+ iε) =
PP1/ω+ iπδ(ω), and carry out the remaining frequency inte-
grals. We arrive at

∫
dω

2π
S1, (I)(ω; Γ) =

∑

f

〈
T

(2)†
fg (ωf )T

(2)
fg (ωf )

〉
, (146)

∫
dω

2π
S1, (II)(ω; Γ) =

∑

e

〈
T (1)†
eg (ωe)T

(3)
eg (ωe)

〉
, (147)

∫
dω

2π
S1, (III)(ω; Γ) =

∑

g′

〈
T

(2)†
g′g (ωg′)T

(2)
g′g (ωg′)

〉
, (148)

∫
dω

2π
S1, (IV)(ω; Γ) =

∑

e

〈
T (1)†
eg (ωe)T

′(3)
eg (ωe)

〉
. (149)
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The details of sum-over-state expansion are presented in Ap-
pendix D. These results clarify the statement we made at the
end of section III.B.1: The χ(3)-absorption signal comprises
matter transitions from the ground to the f -state - just like the
TPIF signal -, but it also contains transitions to e- and g-states.
The absorption measurement and the TPIF signal contain the
same information, only when transitions to the e- and g-states
can be neglected, as is the case when e is off-resonant.

2. Heterodyne detected four-wave mixing; the
double-quantum-coherence technique

Time domain two dimensional (2D) spectroscopic tech-
niques (Mukamel, 2000), provide a versatile tool for exploring
the properties of molecular systems, such as photosynthetic
aggregates (Abramavicius et al., 2008; Engel et al., 2007) or
coupled (Hybrid-)nanostructures to semiconductor quantum
wells (Pasenow et al., 2008; Vogel et al., 2009; Yang et al.,
2008; Zhang et al., 2007). These techniques use sequences of
coherent pulses that are shorter than the dephasing times of
the system.

Earlier we had presented different delay scanning protocols
(LOP and LAP) for multidimensional spectroscopy with en-
tangled photons. These protocols can be experimentally real-
ized using entangled photon pulse shaping, using collinear ge-
ometry and precise control of the phase, phase cycling. These
protocols allow to extract inter- and intraband dephasing with
high resolution by exciting doubly excited state distributions.
We now present a different multidimensional time-domain
signal that involves higher electronic states manifold, but does
not require excited populations. This is known as double-
quantum-coherence (DQC) (Kim et al., 2009; Mukamel et al.,
2007; Palmieri et al., 2009; Yang and Mukamel, 2008) where
the system evolves in the coherence between ground and dou-
bly excited state |f〉〈g| rather than in a population |f〉〈f |.
This technique reveals the energies of single and doubly ex-
cited state energies as well as the correlations between single
and doubly excited states . We show how pulsed entangled
photons affect the two photon resonances. Some bandwidth
limitations of classical beams are removed and selectivity of
quantum pathways is possible.

a. The DQC signal In the following we use the LAP delay
scanning protocol which monitors the density matrix. A pulse
shaper creates a sequence of four well separated chronolog-
ically ordered pulses described by field operator Ej(t) =∫
dω
2πEj(ω)e−iω(t−Tj), j = 1, 2, 3, 4. The control parameters

are their central times T1 < T2 < T3 < T4 and phases φ1,
φ2, φ3, and φ4 (see Fig. 20a). The DQC signal selects those
contributions with the phase signature φ1 +φ2−φ3−φ4. The
signal is defined as the change in the time-integrated transmit-
ted intensity in component φ4, which is given by

S =
2

~

∫
dt 〈E†4(t)V (t)〉 (150)

We thus have a configuration similar to an impulsive exper-
iment with four short well separated classical fields. Intro-
ducing the LAP delays t3 = T4 − T3, t2 = T3 − T2 and
t1 = T2 − T1 we can calculate Eq. (150) by expanding
perturbatively in the dipole field-matter interaction Hamilto-
nian (7). The two contributions to the signal are represented
by the ladder diagrams shown in Fig. 20b. The corresponding
signal (150) can be read off these diagrams and is given by
S

(LAP )
DQC (Γ) = S

(LAP )
DQCi (Γ) + S

(LAP )
DQCii(Γ) where

S
(LAP )
DQCi (Γ) =

1

~3
Re

∫ ∞

−∞
dt

∫ ∞

0

ds1

∫ ∞

0

ds2

∫ ∞

0

ds3×

〈Ψ|E†3(t− s3)E†4(t)E2(t− s3 − s2)E1(t− s3 − s2 − s1)|Ψ〉
×
∑

ee′f

Ve′fVge′V
∗
efV

∗
gee
−iξfe′s3−iξfgs2−iξegs1 (151)

S
(LAP )
DQCii(Γ) = − 1

~3
Re

∫ ∞

−∞
dt

∫ ∞

0

ds1

∫ ∞

0

ds2

∫ ∞

0

ds3×

〈Ψ|E†4(t)E†3(t− s3)E2(t− s3 − s2)E1(t− s3 − s2 − s1)|Ψ〉
×
∑

ee′f

Ve′fVge′V
∗
efV

∗
gee
−iξegs3−iξfgs2−iξe′gs1 (152)

We have introduced the complex frequency variables ξij =
ωij + iγij , where ωij = εi − εj are the transition frequencies
and γij are the dephasing rates. The signal may be depicted by
its variation with various parameters of the field wavefunction.
These are denoted collectively as Γ. Various choices of Γ lead
to different types of 2D signals. These will be specifiedbelow
(see Eqs. (162) and (163)).

b. The field correlation function for entangled photon pairs We
consider the pulsed entangled photon pairs described in sec-
tion II.F. We use the wavefunction introduced in (Keller and
Rubin, 1997), where the two-photon wavefunction Φ(i, kj)
takes the form

Φ(ki, kj) = g û((ω(kj)− ω(ki))/2)e−i(ω(ki)+ω(kj))τ̂ij

·e−i(ω(kj))τijAP (ω(ki) + ω(kj)− ΩP )(153)

û(ω) = eiTij/2·ωsinc(Tij/2 · ω) (154)

where AP (· · · ) is the pulse envelope and Ωp the central fre-
quency of the pump pulse used to generate the pairs.

The correlation function of the entangled fields reads
(Keller and Rubin, 1997)

〈0|E1(s1 − T1)E2(s2 − T2)|Ψ〉 = V0e
−Ωp

2 (s1+s2−t1)

rect(s2 − s1 − t1)Ap(
s1 + s2 − t1

2
) (155)

rect(t) =

{
1
T 0 < t < T

0 otherwise

Ap(t) = exp(−t2/(2σ2)), (156)
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FIG. 20 a) 2D signal S(LAP )
DQC (Ω̃1, Ω̃3) Eq. (162) (absolute value),

showing correlation plots with different pump bandwidths σ as indi-
cated. The bottom panel is multiplied by x6. b) Same as a) but for
2D signal S(LAP )

DQC (Ω̃1, Ω̃2) Eq. (163). Parameters for simulations
are given in Ref. (Richter and Mukamel, 2010).

where V0 is given by ... It describes the pulsed counterpart
of the cw-correlation function (52) we had described earlier,
where the step-function rect (t) is amended by the finite pulse
amplitude Ap.

c. Simulated 2D Signals Below we present simulated DQC
signal for a model trimer system with parameters given in Ref.

(Richter and Mukamel, 2010). By inserting Eq. (155) in Eq.
(151) - (152) and carrying out all integrations, assuming that
γ � σ, we arrive at the final expression for the two contribu-
tions to the signal:

S
(LAPe)
DQCi (Γ) =

1

~3
Re
∑

ee′f

Ve′fVge′V
∗
efV

∗
ge|V0|2|Ap(ωfg − Ωp)|2

e−iξegt1e−iξfe′ t3e−iξfgt2

(ei(ωfg/2−ξeg)T − 1)e−iξfgT/2

i(ωfg/2− ξeg)T
(ei(ωfg/2−ξfe′ )T − 1)e−iξfgT/2

i(ωfg/2− ξfe′)T
(157)

S
(LAPe)
DQCii (Γ) =

1

~3
Re
∑

ee′f

Vge′Ve′fV
∗
efV

∗
ge|V0|2|Ap(ωfg − Ωp)|2

e−iξegt1e−iξe′gt3e−iξfgt2

(ei(ωfg/2−ξeg)T − 1)e−iξfgT/2

i(ωfg/2− ξeg)T
(ei(ωfg/2−ξe′g)T − 1)e−iξfgT/2

i(ωfg/2− ξe′g)T
(158)

|Ap(ω)|2 = exp(−σ2ω2) (159)

The control parameters Γ now include the delay times
(t1, t2, t3) and the entanglement time T .

For comparison, we present the same signal obtained with
four impulsive classical pulses with envelopes Ej(·) j =
1, . . . , 4 E2(·), E3(·) and E4(·) and carrier frequency Ω0

p

(Abramavicius et al., 2009):

S
(LAPc)
DQCi =

1

~3
Re
∑

ee′f

Ve′fVge′V
∗
efV

∗
ge

E∗4 (ωfe′ − Ω0
p)E

∗
3 (ωe′g − Ω0

p)

E2(ωfe − Ω0
p)E1(ωeg − Ω0

p)

e−iξegτ12e−iξfe′τ34e−iξfgτd (160)

S
(LAPc)
DQCii =

1

~3
Re
∑

ee′f

Vge′Ve′fV
∗
efV

∗
ge

E∗4 (ωe′g − Ω0
p)E

∗
3 (ωfe′ − Ω0

p)

E2(ωfe − Ω0
p)E1(ωeg − Ω0

p)

e−iξegτ12e−iξe′gτ34e−iξfgτd (161)

With Eqs. (157) and (158), we can compare the entangled pho-
ton and classical DQC signals. We first note that Eq. (157)
scales with the intensity of the generating pump pulse, in con-
trast with the intensity square of the classical case Eq. (160).
In the classical case the signal is limited by the bandwidths of
the four pulses (cf. Eqs. (160-161)), which control the four
transitions (ωeg , ωfe, ωe′g , ωfe′ ) in the two photon transitions
inside the pulse bandwidth (Abramavicius et al., 2009). In
Eq.(157) bandwidth limitations of the envelopes are only im-
posed through the bandwidth of entangled photon pair Ap(·)
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and the limitation is only imposed on the two photon transi-
tion ωfg , leading to a much broader bandwidth for the ωeg and
ωfe transitions, if the ωfg transition is within the generating
pump pulse bandwidth.

This effect is illustrated in Fig. 20a for the following 2D
signal:

S
(LAP )
DQC (Ω̃1, Ω̃3) =

∫ ∞

0

dt1

∫ ∞

0

dt3S(t1, t3)eit1Ω̃1+it3Ω̃3 ,(162)

ωeg resonances are seen along Ω̃1 and ωeg and ωfe on axis
Ω̃3. As the bandwidth is reduced, we only get contributions
from the doubly excited state resonant to the generating pump
pulse. This results in four identical patterns along the Ω1 axis.
All peaks are connected to the same doubly excited states.
More precisely we get four contributions along the Ω̃1 axis
connected to the transitions ωf3e1 , ωf3e2 overlapping with
ωe3g , ωe2g overlapping with ωf3e3 and ωe1g . The remaining
transitions are not affected by the reduced pump bandwidth.
Here the narrow bandwidth of the pump can be used to select
contributions in the spectra connected to a specific doubly ex-
cited state. In Fig. 20b we display a different signal:

S
(LAP )
DQC (Ω̃1, Ω̃2) =

∫ ∞

0

dt1

∫ ∞

0

dt2S(t1, t2)eit1Ω̃1+it2Ω̃2 ,(163)

ωeg resonances are now seen along Ω̃1 and ωfg in Ω̃2. This is
similar to Fig. 20f except that here we see the singly excited
state contributions ωe1g ,ωe2g , ωe3g to the selected doubly ex-
cited state f3 along a single row.

Bandwidth limitations on the of the singly excited state
transitions ωeg and ωfe are only imposed indirectly by the
factors in Eqs. (157-158) which depend on the entanglement
time T . These become largest for ωfg = 2ωfe.

The factors in Eq.(157-158) which depend on the entan-
glement time T contain an interference term of the form
(ei(ω−γ)T − 1), where ω is a material frequency (see sec-
tions II.J and III.B.2). If we now vary the entanglement time,
some resonances will interfere destructively for values of the
entanglement time which match the period of ω. One can
therefore use the entanglement times to control selected res-
onances. This holds only as long the entanglement times are
not much bigger than the dephasing time, since in this case the
signal will be weak. The frequencies ω can be in the contribut-
ing diagrams ωfg/2 − ωeg or ωfg/2 − ωfe (which is differs
from the first frequency only by a sign) for different combi-
nation of the states e, e′ and f . By varying T , we expect an
oscillation of the magnitudes of resonances with different fre-
quencies.The details of manipulation of entanglement time as
a control parameters have been studied in Refs. (Richter and
Mukamel, 2010; Schlawin et al., 2013)

In an earlier study we used two pulsed entangled photon
pairs (Richter and Mukamel, 2010) (k1, k2) and (k3, k4). With
the pulse shaping described in section II.G, a single shaped
entangled photon pair is sufficient to realize any time-domain
four-wave mixing signals.

D. Multiple photon counting detection

A different class of multidimensional signals is possible by
detecting sequences of individual photons emitted by an opti-
cally driven system. With proper gating, each photon j can be
characterized by a frequency ωj and a time tj . By detectingN
photons we thus obtain a 2N dimensional signal parametrized
by ω1, t1, ..., ωN , tN . Unlike coherent multidimensional het-
erodyne signals which are parametrized by delays of the in-
coming fields, these incoherent signals are parametrized by
the emitted photons. The photon time tj and frequency ωj are
not independent and can only be detected to within a Fourier
uncertainty ∆ωj∆tj > 1. This poses a fundamental limita-
tion on the joint temporal and spectral resolution. We derive
these signals and connect them to multipoint 2N dipole corre-
lation functions of matter. The Fourier uncertainty is naturally
built in by a proper description of photon gating and need not
be imposed in an ad hoc matter as is commonly done.

A semiclassical formalism for photon counting was first de-
rived by (Mandel, 1958, 1959). The full quantum mechani-
cal description of the field and photon detection was devel-
oped by Glauber (Glauber, 2007b). The theory of the electro-
magnetic field measurement through photoionization and the
resulting photoelectron counting has been developed by Kel-
ley and Kleiner (Kelley and Kleiner, 1964). The experimen-
tal application to normal and time ordered intensity correla-
tion measurements was given in the seminal work of Kimble
et al. (Kimble et al., 1977). According to these treatments
free-field operators, in general, do not commute with source-
quantity operators. This is the origin of the fact that the normal
and time ordering of the measured field correlations, accord-
ing to the Kelley-Kleiner theory (Kelley and Kleiner, 1964),
are transformed into normal and time ordered source quanti-
ties occurring inside the integral representations of the filtered
source-field operators. This constitutes the back reaction of
the detector on the field state (Cohen-Tannoudji et al., 1992).
An ideal photon detector is a device that measures the radia-
tion field intensity at a single point in space. The detector size
should be much smaller than spatial variations of the field.
The response of an ideal time-domain photon detector is inde-
pendent of the frequency of the radiation.

The resolution of simultaneous frequency and time domain
measurements is limited by the Fourier uncertainty ∆ω∆t >
1. A naive calculation of signals without proper time and fre-
quency gating can work for slowly varying spectrally broad
optical fields but otherwise it may yield unphysical and even
negative signals (Eberly and Wodkiewicz, 1977). In Ref.
(Mukamel et al., 1996), the mixed time-frequency represen-
tation for the coherent optical measurements with interfero-
metric or autocorrelation detection were calculated in terms
of a mixed material response functions and a Wigner dis-
tribution for the incoming pulses, the detected field and the
gating device. Multidimensional gated fluorescence signals
for single-molecule spectroscopy have been calculated in Ref.
(Mukamel and Richter, 2011b).

The standard Glauber’s theory of photon counting and
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correlation measurements (Glauber, 2007a; Mollow, 1972;
Scully and Zubairy, 1997) is formulated solely in the radi-
ation field space (matter is not considered explicitly). Sig-
nals are related to the multi-point normally-ordered field cor-
relation function, convoluted with time and frequency gating
spectrograms of the corresponding detectors. This approach
assumes that the detected field is given. Thus, it does not ad-
dress the matter information and the way this field has been
generated. Temporally and spectrally resolved measurements
can reveal important matter information. Recent single pho-
ton spectroscopy of single molecules (Fleury et al., 2000; Let-
tow et al., 2010; Rezus et al., 2012) call for an adequate mi-
croscopic foundation where joint matter and field information
could be retrieved by a proper description of the detection pro-
cess.

A microscopic diagrammatic approach may be used for cal-
culating time-and-frequency gated photon counting measure-
ments (Dorfman and Mukamel, 2012a). The observed signal
can be represented by a convolution of the bare signal and
a detector spectrogram that contains the time and frequency
gate functions. The bare signal is given by the product of
two transition amplitude superoperators (Mukamel and Ra-
hav, 2010) (one for bra and one for ket of the matter plus field
joint density matrix), each creating a coherence in the field
between states with zero and one photon. By combining the
transition amplitude superoperators from both branches of the
loop diagram we obtain the photon occupation number that
can be detected. The detection process is described in the
joint field and matter space by a sum over pathways each in-
volving a pair of quantum modes with different time order-
ings. The signal is recast using time ordered superoperator
products of matter and field. In contrast to the Glauber theory
that uses normally ordered ordinary field operators, the micro-
scopic approach of (Dorfman and Mukamel, 2012a) is based
on time-ordered superoperators. Ideal frequency domain de-
tection only requires a single mode (Mukamel and Richter,
2011b). However, maintaining any time resolution requires a
superposition of several field modes that contain the pathway
information. This information is not directly accessible in the
standard detection theory that operates in the field space alone
(Glauber, 2007b).

1. Photon correlation measurements using gated photon
number operators

Time-and-frequency gated N - th order photon correlation
measurement performed at N detectors characterized by cen-
tral time tj and central frequency ωj , j = 1, ..., N is defined
as

g(N)(t1, ω1,Γ1; ..., tN ;ωN ,ΓN )

=
〈T n̂t1,ω1

...n̂tN ,ωN 〉T
〈T n̂t1,ω1

〉T ...〈T n̂tN ,ωN 〉T
, (164)

where 〈...〉T = Tr[...ρT (t)] and ρT (t) represents the total
density matrix of the entire system in joint field plus matter

space and contains information about system evolution prior
to the detection (e.g. photon generation process, etc.). Γj ,
j = 1, ...N represents other parameters of the detectors such
as e.g. bandwidth (σjT and σjω are the time gate, and frequency
gate bandwidths, respectively). The time-and-frequency gated
photon number superoperator is given by

n̂t,ω =

∫
dt′
∫
dτD(t, ω; t′, τ)n̂(t′, τ). (165)

HereD(t, ω, t′, τ) is a detector time-domain spectrogram (the
ordinary function, not an operator) which takes into account
the detector’s parameters, and is given by

D(t, ω, t′, τ) =
∫
dω′′

2π
e−iω

′′τ |Ff (ω′′, ω)|2F ∗t (t′ + τ, t)Ft(t
′, t), (166)

where Ft and Ff are time and frequency gating functions that
are characterized by central time t and frequency ω and de-
tection bandwidths σT and σω , respectively. Note that in
Eq. (166) the time gate is applied first, followed by the fre-
quency gate. Similar expression can be written if the order in
gating is reversed. n̂(t, t′) is a bare photon number superop-
erator defined in terms of the bare field operators as

n̂(t′, τ) =
∑

s,s′

Ê†sR(t′ + τ)Ês′L(t′)ρ(t′). (167)

Details may be found in Appendix E.

2. Photon counting and matter dipole correlation functions

To connect the photon coincidence counting (PCC) signals
to matter properties one needs to expand the density opera-
tor in Eq. (167) in perturbative series over field-matter inter-
actions. We first calculate the time-and-frequency resolved
emission spectra

nt,ω =

∫
dt′
∫
dτD(t, ω; t′, τ)n(t′, τ), (168)

where the bare photon number n(t′, τ) ≡ 〈T n̂(t′, τ)〉T is an
expectation value of the bare photon number operator with
respect to the total density matrix. The leading contribution
is coming from the second-order in field matter interactions
with vacuum modes [see diagram in Fig. 21b]

n(t′, τ) =
1

~2

∫ t′

−∞
dt1

∫ t′+τ

−∞
dt2〈V †(t2)〈V (t1)〉

×
∑

s,s′

〈Ês′(t2)Ê†s′(t
′ + τ)Ês(t

′)Ê†s(t1)〉v, (169)

where we had utilized superoperator time ordering and 〈...〉 =
Tr[...ρ(t)] where ρ(t) is the density operator that excludes vac-
uum modes and 〈...〉v = Tr[...ρv(t)] with ρv(t) = |0〉〈0| is the
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FIG. 21 (Color online) (a) Schematic of time-and-frequency resolved photon coincidence measurement. (b) Loop diagram for the bare
signal (E15) in a gated measurement. (c) - Loop diagram for correlated two photons measurement (E26). Dashed lines represent the the
dynamics of the system driven by the field modes. τi and τs can be either positive or negative.

density matrix of the vacuum modes. Using the bosonic com-
mutation relations introduced in section I.A [see Eq. (6)], and
moving to the continuous density of states, one can obtain

n(t′, τ) = D2(ω)〈V †(t′ + τ)V (t′)〉, (170)

where D(ω) = 1
2π D̃(ω) is a combined density of states eval-

uated at the central frequency of the detector ω for smooth
enough distribution of modes. The corresponding detected
signal (165) is given by

S(1)(t, ω) ≡ nt,ω =∫
dt′
∫
dτD(t, ω; t′, τ)D2(ω)〈V †(t′ + τ)V (t′)〉.

(171)

One can similarly calculate the second-order bare correla-
tion function

〈T n̂t1,ω1 n̂t2,ω2〉T =

∫
dt′1

∫
dτ1D

(1)(t1ω1; t′1, τ1)

×
∫
dt′2

∫
dτ2D

(2)(t2, ω2; t′2, τ2)

× 〈T n̂(t′1, τ1)n̂(t′2, τ
′
2)〉T . (172)

The bare PCC rate 〈T n̂(t′1, τ1)n̂(t′2, τ
′
2)〉T can be read off the

diagram shown in Fig. 21c. The leading contribution requires
a fourth-order expansion in field-matter interactions

〈T n̂(t′1, τ1)n̂(t′2, τ
′
2)〉T =

1

~4

∫ t′1

−∞
dt1

∫ t′1+τ1

−∞
dt3

×
∫ t′2

−∞
dt2

∫ t′2+τ2

−∞
dt4〈V †(t4)V †(t3)V (t1)V (t2)〉

×
∑

s,s′

∑

r,r′

〈Er′(t4)Es′(t3)E†r′(t
′
2 + τ2)E†s′(t

′
1 + τ1)

× Es(t′1)Er(t
′
2)E†s(t1)E†r(t2)〉v. (173)

After tracing over the vacuum modes we obtain

〈T n̂(t′1, τ1)n̂(t′2, τ
′
2)〉T = D2(ω1)D2(ω2)

× 〈V †(t′2 + τ2)V †(t′1 + τ1)V (t′1)V (t′2)〉. (174)

The gated coincidence signal (172) is finally given by

S(2)(t1, ω1; t2, ω2) ≡ 〈T n̂t1,ω1
n̂t2,ω2

〉T

= D2(ω1)D2(ω2)

∫
dt′1

∫
dτ1D

(1)(t1ω1; t′1, τ1)

×
∫
dt′2

∫
dτ2D

(2)(t2, ω2; t′2, τ2)

× 〈V †(t′2 + τ2)V †(t′1 + τ1)V (t′1)V (t′2)〉. (175)

Therefore, the fundamental material quantity that yields the
emission spectra (171) is a two-point dipole correlation func-
tion given in Eq. (170), and for the coincidence g(2)-
measurement (175) it is the four-point dipole correlation func-
tion in Eq. (174). Sum-over-state expansion of these expres-
sions is given in appendix E.

3. Connection to the physical spectrum

An early work (Eberly and Wodkiewicz, 1977), had argued
that detector gating with finite bandwidth must be added to
describe the real detector. In recent work (González-Tudela
et al., 2015; del Valle et al., 2012) used a two-level model de-
tector with a single parameter Γ that characterize both time-
and-frequency detection is comsidered. This was denoted the
physical spectrum (178) which we shall derive in the follow-
ing. It can be recovered from our model by removing the time
gate Ft = 1 and using a Lorentzian frequency gate

Ff (ω, ω′) =
i

ω′ + ω + iΓ/2
. (176)
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Using the physical spectrum, the time-and-frequency resolved
photon coincidence signal is given by

g
(2)
Γ1Γ2

(ω1, ω2; τ) =

limt→∞
〈Â†ω1,Γ1

(t)Â†ω2,Γ2
(t+ τ)Aω2,Γ2

(t+ τ)Âω1,Γ1
(t)〉

〈Â†ω1,Γ1
(t)Âω1,Γ1

(t)〉〈Â†ω2,Γ2
(t+ τ)Âω2,Γ2

(t+ τ)〉
,

(177)

where

Âω,Γ(t) =

∫ t

−∞
dt1e

(iω−Γ/2)(t−t1)Ê(t1), (178)

is the gated field. This model provides a simple benchmark for
finite-band detection, which has several limitations. First, the
time and frequency gating parameters are not independent, un-
like the actual experimental setup, where frequency filters and
avalanche photodiodes are two independent devices. Second,
this method does not address the generation and photon band-
width coming from the emitter, as the analysis is performed
solely in the field space. Finally, the multi-photon correlation
function presented in (González-Tudela et al., 2015) is sta-
tionary. For instance, the four-point bare correlation function

AB(ω1, ω2, t1, t2) = 〈E†ω1
(t1)E†ω2

(t2)Eω2(t2)Eω1(t1)〉
(179)

depends on four times and four frequencies. After gating sug-
gested in (González-Tudela et al., 2015; del Valle et al., 2012)
the correlation function (179) is recast using CB(ω1, ω2, t2 −
t1), which only depends on the time difference t2 − t1, which
is an approximation for stationary fields. This model also
works if t � Γ−1, which means that Γ cannot approach zero
(perfect reflection in Fabri Perot cavity). It also works when
Γτ0 � 1 where τ0 is the scale of change in the field enve-
lope. For comparison, the photon coincidence counting (PCC)
(164) for N = 2 reads

g(2)(t1, ω1,Γ1; t2;ω2,Γ2)
〈T n̂t1,ω1

n̂t2,ω2
〉

〈T n̂t1,ω1
〉〈T n̂t2,ω2

〉 , (180)

which depends on two time t1, t2 and two frequency ω1, ω2

arguments. The theory summarized above which gives rise
to Eq. (180) has several advantages compared to the physi-
cal spectrum used by (González-Tudela et al., 2015; del Valle
et al., 2012). First, independent control of time and frequency
gates (with guaranteed Fourier uncertainty for the time and
frequency resolution) along with the fact that the bare pho-
ton number operator depends on two time variables n̂(t, τ) al-
lows to capture any dynamical process down to the very short
scale dynamics in ultrafast spectroscopy applications. Sec-
ond, the gating (165) provides a unique tool that can capture
nonequlibrium and non-stationary states of matter which can
be controlled by gating bandwidths. In this case a series of
frequency ω1, ω2 correlation plots (keeping the central fre-
quencies of the spectral gates as variables) for different time

delays t1 − t2 yields a 2D spectroscopy tool capable of mea-
suring ultrafast dynamics. Third, the superoperator algebra
allows to connect the gated field correlation function

AG(ω̄1, ω̄2, t̄1, t̄2) = 〈E(tf)†
ω̄1

(t̄1)E
(tf)†
ω̄2

(t̄2)E
(tf)
ω̄2

(t̄2)E
(tf)
ω̄1

(t̄1)〉
(181)

with the bare correlation function (179), with time-and-
frequency gates (arbitrary, not necessarily Lorentzian) as well
as material response that precedes the emission and detec-
tion of photons. The superoperator expressions require time-
ordering, and can be generalized to correlation functions of
field operators that are not normally ordered. Superoperators
provide an effective bookkeeping tool for field-matter interac-
tions prior to the spontaneous emission of photons. We next
apply it to the detection of photon correlations. Finally, as we
show in the next section, PCC can be recast in terms of matter
correlation functions by expanding the total density matrix op-
erator in a perturbation series, and tracing the vacuum modes.
This way, photon counting measurements can be related to the
matter response which is the standard building block of non-
linear spectroscopy.

E. Interferometric detection of photon coincidence
signals

Photon coincidence signals also known as biphoton signals
(Kalachev et al., 2007; Scarcelli et al., 2003; Slattery et al.,
2013; Yabushita and Kobayashi, 2004) became recently avail-
able as a tool for nonlinear spectroscopy. In a typical setup,
a pair of entangled photons denoted as Es, and Er generated
by PDC are separated on a beam splitter [see Fig. 22a)]. One
photon Es is transmitted through the molecular sample and
then detected in coincidence with Er. In order to use it as a
spectroscopic tool, a frequency filter can be placed in front of
one of the detectors which measures the spectrum. This type
of signal shows a number of interesting features: First, coin-
cidence detection improves the signal-to-noise ratio (Kalash-
nikov et al., 2014). Second, the two detectors may operate in
very different spectral regions and at different spatial locations
(Kalachev et al., 2007). For example, to measure the spectro-
scopic properties of a sample in vacuum ultraviolet (VUV)
range, it is not necessary to set a spectrometer in a vacuum
chamber and control it under the vacuum condition. Instead,
using a VUV and a visible entangled photon pair only the
latter should be resolved by a spectrometer. Another advan-
tage is when spectroscopic measurements are to be performed
in infrared range. The power of the light source must often
be very low to prevent possible damage of a sample, but an
infrared photodetector is usually noisy. Photon coincidence
measurements involve the lowest intensities of light - single
photons, and can overcome the noise.

In the following, we present photon coincidence version of
three signals: linear absorption, pump-probe, and Femtosec-
ond Stimulated Raman Signals (FSRS).
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FIG. 22 (Color online) Linear absorption experiment of (Kalachev
et al., 2007) with coincidence detection. The entangled photon pair
in beams Es and Er are split on a beam splitter. Es is employed as
a probe transmitted through the sample, while Er is detected in co-
incidence - (a).The absorption spectrum of Er3+ ion in YAG crys-
tal around 650 nm obtained by single photon counting (blue filled
squares, left Y-axis) and coincidence counting (red open squares,
right Y-axis) at various values of signal-to-noise ratio in the chan-
nel with the sample: 1/2 (b), and 1/30 (c)

1. Coincidence detection of linear absorption

Linear absorption is the most elementary spectroscopic
measurement. Combined with photon coincidence detection
[see Fig. 22a)], it yields interesting results: Below we present
the simplest intuitive phenomenological approach. In the fol-
lowing sections we present more rigorous microscopic deriva-

tion for pump-probe and Raman signals.
In the case of the linear signal, the joint detection of two

entangled photons provides linear absorption information pro-
vided one of the photons is transmitted through a molecular
sample. If the coincidence gate window accepts counts for a
time T , then the joint detection counting rate, Rc, between
detectors r and s is proportional to

Rc ∝
∫ T

0

dt1

∫ T

0

dt2|〈0|a†s(t1)a†r(t2)|ψ〉|2, (182)

where ψ is a two-photon entangled state (33). The gating win-
dow T is typically much larger than the reciprocal bandwidth
of the light or the expected dispersive broadening

Rc ∝
∫
dω1

∫
dω2|〈0|as(ω1)ar(ω2)|ψ〉|2. (183)

Denoting the spectral transfer functions of the sample and
monochromator HS(ω) and HM (ω), respectively. In this
case,

as(ω1) =
1√
2
ãs(ω1)HS(ω1) (184)

and

ar(ω2) =
i√
2
ãr(ω2)HM (ω2) (185)

provided that the signal and idler photons are separated by
a 50/50 beam splitter. For narrowband down conversion
Φ(ω1, ω2) = F

(
ω1−ω2

2

)
δ(ω1 + ω2 − 2ω0). The coincidence

counting rate is then given by

Rc ∝
∫
dΩ|HS(ω0 + Ω)HM (ω0 − Ω)F (Ω)|2. (186)

Now, assume that HM (ω) is much narrower than HS(ω) and
Φ̃(ω1, ω2), we can set HM (ω) = δ(ω − ωM ), and the fre-
quency ωM does not exceed the frequency range in which
function F (ω) is essentially nonzero. Dividing the coinci-
dence counting rate with a sample, Rc,sample, by one without
the sample, Rc, we obtain the absorption spectrum

SILA(ωM ) =
Rc,sample

Rc
∝ |HS(2ω0 − ωM )|2, (187)

where subscript ILA marks the interferometric nature of the
photon coincidence detection combined with linear absorption
measurement. Thus, the joint detection counting rate repro-
duces the spectral function of the sample, which is reversed in
frequency with respect of the pump frequency, provided that
the line-width of the pumping field as well as bandwidth of
the monochromator are narrow enough for resolving the ab-
sorption spectrum features.

In (Kalachev et al., 2007) the coincidence signals were used
to measure the spectroscopic properties of YAG:Er3+ crystal.
In order to demonstrate the advantage of coincidence detec-
tion in the presence of an enhanced background noise. Figs.
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22b)-d) show the central part of the absorption spectrum mea-
sured in two ways: using the coincidence counting as de-
scribed above, and using the single-photon counting, when
the sample was placed above the monochromator in the idler
channel. The signal-to-noise ratio in the channel was changed
from 1/2 to 1/30. It is evident from these experimental data
that the standard classical method which suffers from a high
noise level does not allow one to obtain any spectroscopic in-
formation, but the coincidence counting measurement in con-
trast does not undergo the reduction in resolution and is robust
to noise. This example has been later extended to plasmonic
nanostructures (Kalashnikov et al., 2014).

2. Coincidence detection of pump-probe signals

Consider the setup depicted in Fig. 23a). Unlike the linear
absorption case here the probe photon is sent through the sam-
ple, which has previously been excited by a classical ultrafast
laser pulse, and then detected (Schlawin et al., 2015).

The interferometric pump probe (IPP) signal with photon
coincidence detection is dispersed spectrally by placing spec-
tral filters in front of both detectors, and our signal is given by
the change to this two-photon counting rate that is governed
by a four-point correlation function of the field (Cho et al.,
2014; Mosley et al., 2008)

〈
E†r(ωr)E

†
s(ω)Es(ω)Er(ωr)

〉
. (188)

Here, ω/ωr denotes the detected frequency of the respective
spectral filter, and the brackets 〈· · · 〉 represent the expecta-
tion value with respect to the transmitted fields. To obtain the
desired pump-probe signal in a three-level system, we used a
third order perturbation theory (Schlawin et al., 2015). The
first two interactions are with the classical pump pulse, which
is taken to be impulsive, Ea(t) = Eaδ(t), and the third is with
the probe centered at t = t0. Assuming Es to be far off-
resonant from the e − g transition, we obtain only the single
diagram shown in Fig. 23c), which reads

SIPP (ω, ωr; t0) = −2

~
=
(
− i
~

)3

|Ea|2
∫ ∞

0

dt eiω(t−t0)

×
∫ t

0

dτF (t− τ, τ)
〈
E†r(ωr)E

†
s(ω)Es(τ)Er(ωr)

〉
. (189)

We have defined the matter correlation function,

F (t− τ, τ) =
〈
|µge|2|µef |2Gfe(t− τ)Gee(τ)

〉
env, (190)

where µge and µef denote the dipole moments connecting
ground state with the singly excited states manifold, as well
as single with doubly excited state manifold, respectively.
〈· · · 〉env denotes the average with respect to environmental de-
grees of freedom, obtained from tracing out the bath. Here,
we employ a stochastic Liouville equation (Tanimura, 2006)
which represents the two-state jump (TSJ) model: A ground
state g is dipole-coupled to an electronic excited state e, which

is connected to two spin states ↑ and ↓ undergoing relaxation
(Šanda and Mukamel, 2006). We additionally consider a dou-
bly excited state f , which is dipole-coupled to both |e, ↑〉 and
|e, ↓〉 [see Fig. 23b)]. The electronic states are damped by
a dephasing rate γ. We assume the low-temperature limit,
where only the decay from ↑ to ↓ is allowed (Dorfman et al.,
2013b). The decay is entirely incoherent, such that the de-
scription may be restricted to the two spin populations | ↑〉〈↑
|=̂(1, 0)T and | ↓〉〈↓ |=̂(0, 1)T . The field correlation function
(190) is then given by

F (t2, t1) = |µge|2|µef |2e−γ(t1+2t2)

×
(
e−iω+t2 +

2iδ

k + 2iδ
e−kt1

[
e−(k+iω−)t2 − e−iω+t2

])
,

(191)

where δ the energy difference between the two spin states, and
ω± = ωfe±δ. Note that, since we monitor the f−e transition,
the detected frequency will increase in time, from ω− to ω+.

In the following, we use these results to first simulate the
classical pump-probe signal, and then the two-photon count-
ing signal with entangled photons. For the pump probe tech-
nique we use a classical Gaussian probe pulse

Epr(ω) =
1√

2πσ2
exp

[
−(ω − ω0)2/2σ2

]
. (192)

We chose the following system parameters: ωfe = 11, 000
cm−1, δ = 200 cm−1, k = 120 cm−1, and γ = 100 cm−1.

The peak frequency ω0 is fixed at the transition frequency
ωfe, and we vary the probe bandwidth. Panel a) shows the
signal for σ = 1, 000 cm−1. The two peaks at ωfe ± δ corre-
spond to the detected frequency, when the system is either in
the upper state (at ωfe − δ), or in the lower state (ωfe + δ).
Due to the spectrally dispersed detection of the signal, the res-
onance widths are given by the linewidth γ, and not the much
broader probe pulse bandwidth σ. For very short time delays
t0, both resonances increase, until the probe pulse has fully
passed through the sample. Then the resonance at 10, 800
cm−1, i.e. the state |e, ↑〉, starts to decay rapidly, while the
11, 200 cm−1 resonance peaks at longer delay times due to its
initial population by the upper state. For longer delays, both
resonance decay due to the additional dephasing.

The two-photon counting signal with entangled photons of-
fers novel control parameters: The dispersed frequency ω of
beam 1, the pump frequency ωp and its bandwidth σp loosely
correspond to the classical control parameters, i.e. the central
frequency ω0 and bandwidth σ. In addition, we may vary the
entanglement time T and the detected frequency of the refer-
ence beam ωr.

Fig. 24 depicts the signal (189) obtained with entangled
photons with T = 90 fs for different time delays t0. For com-
parison, we show the classical pump-probe with bandwidth
σ = 1, 000 cm−1 in the left column, and with 100 cm−1 in
the right column. The TPC signals are normalized with re-
spect to the maximum value of the signal at t0 = 3 fs and
ωr = 11, 400 cm−1. The classical signal is normalized to
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FIG. 23 (Color online) a) The IPP setup: the entangled photon pair in beams Es and Er are split on a beam splitter. A classical, actinic,
ultrafast pulse Ea excites the sample, and Es is employed as a probe in a pump-probe measurement, while Er is detected in coincidence. b)
The level scheme for the two-state jump (TSJ) model considered in this work. The g − e transition is far off-resonant from the spectral range
of the entangled photon wavepacket, which only couples to the e−f transition. c) Diagram representing the pump-probe measurement. [taken
from (Schlawin et al., 2015)]

its peak value at zero time delay, and the TPC signals to the
signal with ωr = 11, 400 cm−1 at zero delay. As becomes
apparent from the figure, a broadband classical probe pulse
(left column) cannot excite specific states, such that the two
resonances merge into one band. A narrowband probe (right
column), on the other hand, cannot resolve the fast relaxation
at all, and only shows the unperturbed resonance at ωfe. Inter-
ferometric signals, however, can target the relaxation dynam-
ics of individual states.

3. Coincidence detection of Femtosecond Stimulated Raman
Signals

So far, we have demonstrated how coincidence detection
can enhance linear absorption and pump-probe signals. We
now demonstrate the power of this interferometric detection
for stimulated Raman signals commonly used to probe molec-
ular vibrations. Applications include probing time-resolved
photophysical and photochemical processes (Adamczyk et al.,
2009; Kukura et al., 2007; Kuramochi et al., 2012; Schreier
et al., 2007), chemically specific biomedical imaging (Cheng
et al., 2002), remote sensing (Arora et al., 2012; Pestov et al.,
2008). Considerable effort has been devoted to increasing the
sensitivity and eliminating off-resonant background, thus im-
proving the signal-to-noise ratio and enabling the detection
of small samples and even single molecules. Pulse shaping
(Oron et al., 2002; Pestov et al., 2007) and the combina-
tion of broad and narrow band pulses (technique known as
Femtosecond Stimulated Raman Spectroscopy (FSRS) (Di-
etze and Mathies, 2016)) have been employed. Here, we
present an Interferometric FSRS (IFSRS) technique that com-
bines quantum entangled light with interferometric detection
(Kalachev et al., 2007; Scarcelli et al., 2003; Slattery et al.,
2013; Yabushita and Kobayashi, 2004) in order to enhance the
resolution and selectivity of Raman signals (Dorfman et al.,
2014). The measurement uses a pair of entangled photons,
one (signal) photon interacts with the molecule, and acts as

the broadband probe, while the other (idler) provides a refer-
ence for the coincidence measurement. By counting photons,
IFSRS can measure separately the gain and loss contributions
to the Raman signal (Harbola et al., 2013) which is not possi-
ble with classical FSRS signals that only report their sum (i.e.
the net gain or loss). We had previously shown how the entan-
gled twin photon state may be used to manipulate two-photon
absorption ω1 + ω2 type resonances in aggregates (Dorfman
and Mukamel, 2014b; Lee and Goodson, 2006; Saleh et al.,
1998; Schlawin et al., 2013) but these ideas do not apply to
Raman ω1 − ω2 resonances.

In FSRS, an actinic resonant pulse Ea first creates a vibra-
tional superposition state in an electronically excited state (see
Fig. 25a,b). After a variable delay τ , the frequency resolved
transmission of a broadband (femtosecond) probe Es in the
presence of a narrowband (picosecond) pump Ep shows ex-
cited state vibrational resonances generated by an off-resonant
stimulated Raman process. The FSRS signal is given by
(Dorfman et al., 2013a)

SFSRS(ω, τ)

=
2

~
I
∫ ∞

−∞
dteiω(t−τ)〈T E∗s (ω)Ep(t)α(t)e−

i
~
∫
H′−(τ)dτ 〉,

(193)

where α is the electronic polarizability, I denotes the imag-
inary part, and Es = 〈Es〉 is expectation value of the probe
field operator with respect to classical state of light (hereafter
E denotes classical fields and E stands for quantum fields).
H ′− is the Hamiltonian superoperator in the interaction picture
which, for off resonance Raman processes, can be written as

H ′(t) = αE†s(t)Ep(t) + E∗a(t)V +H.c., (194)

where V is the dipole moment, α is the off resonant polariz-
ability. Formally, this is a six-wave mixing process. Expand-
ing the signal (193) to sixth order in the fields ∼ E2

s E2
pE2

a . we
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FIG. 24 (Color online) a) TPC signals with σp = 2, 000 cm−1 and T = 90 fs, ωr = 10, 400 cm−1 (blue, dashed) and 11, 400 cm−1 (red,
dot-dashed) as well as the classical pump-probe signal (black, solid) with σ = 1, 000 cm−1 are plotted vs. the dispersed frequency ω with
a time delay set to t0 = 3 fs. b) Same for t0 = 30 fs, c) 60 fs, d) 90 fs. e)-h) Same as a)-d), but with classical bandwidth σ = 100 cm−1.
The classical signal is normalized, such that its maximum value at t0 = 0 is equal to one. Similarly, the TPC signal are normalized to the
maximum value of the signal with ωr = 11, 400 cm−1 at t0 = 0.[taken from (Schlawin et al., 2015)]

obtain the classical FSRS signal

S
(i)
FSRS(ω, τ) =

2

~
I
∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dt′
∫ t′

−∞
dτ2

× eiω(t−τ)Ep(t)E∗p (t′)E∗a(τ2)Ea(τ1)E∗s (ω)Es(t′)
× Fi(t′ − τ2, t− t′, t− τ1), (195)

S
(ii)
FSRS(ω, τ) =

2

~
I
∫ ∞

−∞
dt

∫ t

−∞
dτ2

∫ t

−∞
dt′
∫ t′

−∞
dτ1

× eiω(t−τ)Ep(t)E∗p (t′)Ea(τ1)E∗a(τ2)E∗s (ω)Es(t′)
× Fii(t− τ2, t− t′, t′ − τ1). (196)

The two terms correspond to the two diagrams in Fig. 25c).
All relevant information is contained in the two four point cor-
relation functions

Fi(t1, t2, t3) = 〈V G†(t1)αG†(t2)αG(t3)V †〉, (197)
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Fii(t1, t2, t3) = 〈V G†(t1)αG(t2)αG(t3)V †〉, (198)

where the retarded Green’s function G(t) =
(−i/~)θ(t)e−iHt represents forward time evolution with the
free-molecule Hamiltonian H (diagrams (1, 1)a, (1, 1)b) and
G† represents backward evolution. Fi involves one forward
and two backward evolution periods and Fii contains two
forward followed by one backward propagation. Fi and Fii
differ by the final state of matter (at the top of each diagram).
In Fi (Fii) it is different (the same) as the state immediately
after the actinic pulse.

a. Photon correlation measurements. In IFSRS, the probe pulse
Es belongs to a pair of entangled beams generated in degen-
erate type-II PDC. The polarizing beam splitter (BS) in Fig.
25d) then separates the orthogonally polarized photons. The
horizontally polarized beam Es is propagating in the s arm of
the interferometer, and interacts with the molecule. The ver-
tically polarized beam Er propagates freely in the r arm, and
serves as a reference. IFSRS has the following control knobs:
the time and frequency parameters of the single photon de-
tectors, the frequency of the narrowband classical pump pulse

ωp, and the time delay T between the actinic pulse Ea and the
probe Es.

As discussed in section III.D.1, the joint time-and-
frequency gated detection rate ofNs photons (Ns = 0, 1, 2) in
detector s and a single photon in r when both detectors have
narrow spectral gating is given by

S
(Ns,1)
IFSRS(ω̄s1 , ..., ω̄sNs , ω̄r,Γi)

= 〈T E†r(ω̄r)Er(ω̄r)
Ns∏

j=1

E†s(ω̄sj )Es(ω̄sj )e
− i

~
∫∞
−∞H′−(τ)dτ 〉.

(199)

where Γi stands for the incoming light beam parameters. In
the standard Glauber’s approach (Glauber, 2007a), the corre-
lation function is calculated in the field space using normally-
ordered field operators. The present expressions in contrast
are given in the joint field and matter degrees of freedom,
and the bookkeeping of the fields is instead solely based on
the time ordering of superoperators. Normal ordering is never
used.

Expansion of Eq. (199) in the number of the field matter
interactions depicted by loop diagrams in Fig. 25e) yields for
Ns = 0 - Raman loss (no photon in the molecular arm)

S
(0,1)
IFSRS(ω̄r; τ) = I 1

~

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
∫ t

−∞
dτ1

∫ t′

−∞
dτ2Ep(t′)E∗p (t)Ea(τ1)E∗a(τ2)

× 〈T E†s(t′)Ẽ†r(ω̄r)Ẽr(ω̄r)Es(t)〉Fi(t′ − τ2, t− t′, t− τ1). (200)

To make sure that there is no photon at detector s we had integrated over its entire bandwidth, thus eliminating the dependence
on detector parameters.

For the Raman gain Ns = 2 signal (i.e. two photons in the s-arm, one photon in the r-arm), when both s and r detectors have
narrow frequency gates, we get

S
(2,1)
IFSRS(ω̄s1 , ω̄s2 , ω̄r; τ) = I 1

~

∫ ∞

−∞
dt̄s1e

iω̄s1 (t̄s1−τ)

∫ t̄s1

−∞
dt

∫ t

−∞
dt′
∫ t

−∞
dτ1

∫ t′

−∞
dτ2Ep(t)E∗p (t′)Ea(τ1)E∗a(τ2)

× 〈T Es(t′)Ẽ†s(ω̄s1)Ẽ†s(ω̄s2)Ẽ†r(ω̄r)Ẽr(ω̄r)Ẽs(ω̄s2)Ẽs(t̄s1)E†s(t)〉Fi(t′ − τ2, t− t′, t− τ1). (201)

Finally, the Ns = 1 signal (single photon in each arm) is given by

S
(1,1)a
IFSRS(ω̄s, ω̄r; τ) = −I 1

~

∫ ∞

−∞
dt′se

iω̄s(t
′
s−τ)

∫ t′s

−∞
dt

∫ t

−∞
dt′
∫ t′

−∞
dτ1

∫ t′s

−∞
dτ2Ep(t)E∗p (t′)Ea(τ1)E∗a(τ2)

× 〈T Ẽ†s(ω̄s)Ẽ†r(ω̄r)Ẽr(ω̄r)Ẽs(t′s)E†s(t)Es(t′)〉Fii(t− τ2, t− t′, t′ − τ1), (202)

S
(1,1)b
IFSRS(ω̄s, ω̄r; τ) = −I 1

~

∫ ∞

−∞
dt′se

iω̄s(t
′
s−τ)

∫ t′s

−∞
dt

∫ t

−∞
dt′
∫ t′

−∞
dτ1

∫ t′s

−∞
dτ2Ep(t′)E∗p (t)Ea(τ1)E∗a(τ2)

× 〈T Ẽ†s(ω̄s)Ẽ†r(ω̄r)Ẽr(ω̄r)Ẽs(t′s)Es(t)E†s(t′)〉Fii(t− τ2, t− t′, t′ − τ1). (203)

b. Photon counting detection window for the molecular response
The input two-photon state has a single photon in each the

s- mode and single photon in the r - mode. and is described
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FIG. 25 (Color online) Top row: FSRS level scheme for the tunneling model - (a), pulse configuration - (b), loop diagrams (for diagram rules
see Appendix A) - (c). (d) and e - the same as (b), and (c) but for IFSRS. The pairs of indices (0, 1) etc. indicate number of photons registered
by detectors s and r in each photon counting signal: (Ns, Nr)

by [compare to Eq. (33)]

|ψ〉 = |0〉+

∫ ∞

−∞
dωs

∫ ∞

−∞
dωrΦ(ωs, ωr)a

†
ωsa
†
ωr |0〉, (204)

where a†ωs (a†ωr ) is the creation operator of a horizontally (ver-
tically) polarized photon and the two-photon amplitude is
given by

Φ(ωs, ωr) =

2∑

i 6=j=1

sinc (ωs0Ti/2 + ωr0Tj/2)

×Ap(ωs + ωr)e
iωs0Ti/2+iωr0Tj/2, (205)

where ωk0 = ωk−ω0, k = s, r, Ap(ω) = A0/[ω−ω0 + iσ0]
is the classical pump Tj = (1/vp − 1/vj)L, j = 1, 2 is
the time delay between the j − th entangled and the clas-
sical pump beam after propagation through the PDC crystal.
T = T2 − T1 is the entanglement time. In Ap(ω), the sum-
frequency ωs + ωr is centered around 2ω0 with bandwidth
σ0. For a broadband classical pump, the frequency difference
ωs − ω0 becomes narrow with bandwidth T−1

j , j = 1, 2. The
output state of light in mode s may contain a varying number
of photons, depending on the order of the field-matter interac-
tion.

As discussed in section II.C, the twin photon state Eq. (204)
is not necessarily entangled. Using the Schmidt decomposi-
tion (34), we obtain the two-photon amplitude Eq. (205). The
rich spectrum of eigenvalues shown in Fig. 26d shows that the

state is highly entangled with up to 20 modes making signif-
icant contributions. As will be shown later [Eq. (208)], this
entanglement is reflected in the violation of the Fourier uncer-
tainty ∆ω∆t ≥ 1 in two-photon transitions.

We next address how entanglement affects the Raman reso-
nances. Both FSRS and IFSRS signals are governed by a four-
point matter correlation function (two polarizabilities αac and
two dipole moments Vag as depicted by the loop diagrams
shown in Fig. 25c) and e), respectively. Depending on the
number of photons detected, this four-point matter correlation
function is convoluted with different field correlation func-
tions. For Ns = 0, and Nr = 1 Eq. (200) is given by the
four-point correlation function for a quantum field [red arrows
in Fig. 25e)]. For a twin photon state, we recall from Eq. (50)
that the field correlation function can be factorized as

〈ψ|E†s(ωa)E†r(ωb)Er(ωc)Es(ωd)|ψ〉 = Φ∗(ωa, ωb)Φ(ωc, ωd).
(206)

The Ns = 2 signal is given by an eight-point [see Eq. (201)],
and for Ns = 1 it is governed by a six-point field correla-
tion function as shown in Eqs. (202) - (203). The detailed
derivation and explicit closed form expressions for multipoint
correlation functions of the field are presented in Ref. (Dorf-
man et al., 2014). All three IFSRS signals with Ns = 0, 1, 2
eventually scale linearly with the classical pump intensity
SIFSRS ∝ |A0|2, similar to classical FSRS even though a
different number of fields contribute to the detection.

We next compare the different field spectrograms which
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FIG. 26 (Color online)Left column: (a) - time-frequency Wigner spectrogram for classical light, (b) - same as (a) but for entangled twin state
given by Eq. (205). Inserts depict a 2D prejection. Right column: (c) - window function for FSRS E∗s (ω)Es(ω + iγa) -black, and IFSRS
Φ∗(ω, ω̄r)Φ(ω + iγa, ω̄r) different values of T1. (l) - spectrum of the eigenvalues λn in the Schmidt decomposition (34) for entangled state
with amplitude (205). Parameters for the simulations are listed in (Dorfman et al., 2014).

represent the temporal and spectral windows created by the
fields. Fig. 26a depicts the Wigner time-frequency spectro-
gram for the classical probe field Es:

Ws(ω, t) =

∫ ∞

−∞

d∆

2π
E∗s (ω)Es(ω + ∆)e−i∆t. (207)

The Fourier uncertainty ∆ω∆t ≥ 1 limits the frequency reso-
lution for a given time resolution. The corresponding Wigner

two-photon spectrogram for the entangled twin photon state

Wq(ω, t; ω̄r) =

∫ ∞

−∞

d∆

2π
Φ∗(ω, ω̄r)Φ(ω + ∆, ω̄r)e

−i∆t,

(208)

is depicted in Fig. 26b. For the same temporal resolution
of the FSRS, the spectral resolution of IFSRS can be signif-
icantly improved since the time and frequency variables for
entangled light are not Fourier conjugate variables (Schlawin
et al., 2013). The high spectral resolution in the entangled
case is governed by T−1

j , j = 1, 2 which is narrower than
the broadband probe pulse such that ∆ω∆t ' 0.3. Fig. 26c
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FIG. 27 (Color online) First column: (a) - Absorption for a time evolving vibrational mode i vs ω− ωp for slow tunneling rate k = 18 cm−1

and narrow dephasing γa = 9 cm−1, (b) - same as (a) but for fast tunneling rate k = 53 cm−1 and broad dephasing γa = 43 cm−1. Second
column: (c), (d) - same as (a), (b) but for classical FSRS signal. Third column: e and f - same as (a), (b) but for S(1,1)

IFSRS , Fourth column: g,
h - same as (a), (b) but for S(2,1)

IFSRS vs ω̄s − ωp. Parameters for the simulations are listed in (Dorfman et al., 2014).

demonstrates that entangled window function R
(Ns,1)
q for

Ns = 1, 2 (see Eqs. (212), (213)) that enters the IFSRS signal
(210) yields a much higher spectral resolution than the classi-
cal Rc shown in Eq. (215).

The molecular information required for all three possible
measurement outcomes (Ns = 0, 1, 2) is given by two corre-
lation functions Fi and Fii (see Fig. 25c,e and Eqs. (197) -
(198)), which are then convoluted with a different detection
window for FSRS and IFSRS. The correlation functions Fi
and Fii may not be separately detected by FSRS. However, in
IFSRS the loss S(0,1)

IFSRS and the gain S(2,1)
IFSRS Raman signals

probe Fi (the final state c may be different from initial state
a) whereas the coincidence counting signal S(1,1)

IFSRS depends
on Fii (initial and final states are identical). Interferometric
signals can thus separately measure the two matter correlation
functions.

c. IFSRS for a vibrational mode in a tunneling system. To
demonstrate the effect of entanglement in interferometric
measurements, we show the calculated signals for the three-
level model system depicted in Fig. 25a. Once excited by
the actinic pulse, the initial state with vibrational frequency
ω+ = ωac + δ can tunnel through a barrier at a rate k and as-
sume a different vibrational frequency ω− = ωac−δ (see Ref.

(Dorfman et al., 2013b)). The probability to remain in the
initial state with ω+ decreases exponentially P+(t) = e−kt,
whereas for ω− it grows as P−(t) = 1 − e−kt. This model
corresponds to Kubo’s two-state jump model in the low tem-
perature limit (Dorfman et al., 2013b; Kubo, 1963) which we
had also discussed before in section III.E.2. The absorption
lineshape is given by

Sl(ω) = −I 4

~2
|E(ω)|2 |µac|

2

k + 2iδ

×
(

k + iδ

ω − ω− + iγa
+

iδ

ω − ω+ + i(γa + k)

)
. (209)

This shows two peaks with combined width governed by de-
phasing γa and tunneling rates k. The corresponding IFSRS
signal S(Ns,1)

IFSRS with Ns = 0, 1, 2 is given by

S
(Ns,1)
IFSRS(ω̄s, ω̄r;ωp, τ) = I µ

~4
|Ep|2|Ea|2

∑

a,c

α2
ac|µag|2

× e−2γaτ

(
R(Ns,1)
q (ω̄s, ω̄r, 2γa, ν̄ων − iγa)− 2iδe−kτ

k + 2iδ

× [R(Ns,1)
q (ω̄s, ω̄r, 2γa + k, ν̄ων − iγa)

−R(Ns,1)
q (ω̄s, ω̄r, 2γa + k, ν̄ων̄ − i(γa + k)]

)
, (210)

where ν = − for Ns = 0, 2 and ν = + for Ns = 1, µ = −
for Ns = 1, 2 and µ = + for Ns = 0. The Raman response
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FIG. 28 (Color online) Left column: S(1,1)
IFSRS signal vs ω̄s − ωp

for entangled state (205) - a, correlated - b and uncorrelated - c

separable states. d, e, and f - same as a, b, and c but for S(2,1)
IFSRS

signal. Parameters for the simulations are listed in (Dorfman et al.,
2014).

R
(Ns,1)
q which depends on the window created by the quantum

field for different photon numbers Ns is given by

R(0,1)
q (ω̄s, ω̄r, γ,Ω) =

∫ ∞

−∞

dω

2π

Φ∗(ω, ω̄r)Φ(ω + iγ, ω̄r)

ω − ωp − Ω
,

(211)

R(1,1)
q (ω̄s, ω̄r, γ,Ω) =

Φ∗(ω̄s, ω̄r)Φ(ωp + Ω− iγ, ω̄r)
ω̄s − ωp − Ω

,

(212)

R(2,1)
q (ω̄s, ω̄r, γ,Ω) =

Φ∗(ω̄s, ω̄r)Φ(ω̄s + iγ, ω̄r)

ω̄s − ωp − Ω
. (213)

For comparison, we give the classical FSRS signal (193)

S
(c)
FSRS(ω, τ) = −I 2

~4
|Ep|2|Ea|2

∑

a,c

α2
ac|µag|2e−2γaτ×

[
Rc(ω, 2γa, ω− − iγa)− 2iδe−kτ

k + 2iδ
[Rc(ω, 2γa + k, ω− − iγa)

−Rc(ω, 2γa + k, ω+ − i(γa + k)]− (ω± ↔ −ω∓)] ,
(214)

where

Rc(ω, γ,Ω) =
E∗s (ω)Es(ω + iγ)

ω − ωp − Ω
(215)

is the Raman response gated by the classical field.
Figs. 27a)-h) compare the classical FSRS signal [Eq.

(214)] with the IFSRS signals S(1,1)
IFSRS and S

(2,1)
IFSRS [Eq.

(210)]. For slow modulation and long dephasing time k, γa �
δ the absorption spectrum [Fig. 27a)] has two well-resolved
peaks at ω±. The classical FSRS shown in Fig. 27b) has one
dominant resonance at ω+ which decays with increase of de-
lay T , whereas the ω− peak slowly builds up and dominates at
longer T . This signal contains both blue- and red-shifted Ra-
man resonances relative to the narrowband pump frequency:
ω − ωp = ±ω±. If the modulation and dephasing rates are
comparable to the level splitting k, γa ∼ δ, then the ω± res-
onances in the absorption [Fig. 27e)] and the classical FSRS
[Fig. 27f)] broaden, and become less resolved.

We next compare this with the IFSRS signal. For small
modulation and long dephasing, S(1,1)

IFSRS is similar to the clas-
sical FSRS [see Fig. 27c)]. However, both temporal and spec-
tral resolution remains high, even when the modulation is fast
and the dephasing width is large, as seen in Fig. 27g). The
same applies to the S(2,1)

IFSRS signal depicted for slow - Fig.
27d) and fast - Fig. 27h) tunneling.

Apart from the different detection windows, there is another
important distinction between IFSRS (Eq. (210)) and the clas-
sical FSRS (214) signals. In the latter, both the gain and loss
contributions contain red- and blue- shifted features relative to
the narrow pump. The FSRS signal can contain both Stokes
and anti Stokes components. FSRS can only distinguish be-
tween red and blue contributions. In contrast, the interfer-
ometric signal can measure separately the gain S(2,1)

IFSRS and
the loss contributions S(0,1)

IFSRS .

d. The role of entanglement. We now show that the achieved
enhanced resolution of Raman resonances may not be
achieved by classically shaped light and that entanglement is
essential. To this end, we calculate the IFSRS signals (210)
for the correlated-separable state of the field (Zheng et al.,
2013) described by the density matrix

ρcor =

∫ ∞

−∞
dωsdωr|Φ(ωs, ωr)|2|1ωs , 1ωr 〉〈1ωs , 1ωr |.

(216)

This is a diagonal part of the density matrix corresponding to
state Eq. (204) with amplitude Eq. (205), which can be gener-
ated by the disentanglement of the twin state. This state yields
the same single-photon spectrum and shows strong frequency
correlations similar to entangled case, and is typically used as
a benchmark to quantify entanglement in quantum informa-
tion processing (Law et al., 2000). We further compare this
with signals from the fully separable uncorrelated Fock state
given by Eq. (204) with

Φuncor(ωs, ωr) = Φs(ωs)Φr(ωr) (217)

with Φk(ωk) = Φ0/[ωk−ω0 + iσ0], k = s, r with parameters
matching the classical probe pulse used in FSRS.
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Fig. 28a-d illustrates S(1,1)
IFSRS for these two states of light.

The separable correlated state shown in Fig. 26a has high
spectral and no temporal resolution, as expected from a cw
time-averaged state in which the photons arrive at any time
(Zheng et al., 2013). The separable uncorrelated state (see
Fig. 26c) yields slightly better resolution than in the classical
FSRS signal in Fig. 27f. Similar results can be obtained for
the S(2,1)

IFSRS (see Fig. 28b and d respectively).

IV. ENTANGLED LIGHT GENERATION VIA NONLINEAR
LIGHT-MATTER INTERACTIONS; NONCLASSICAL
RESPONSE FUNCTIONS

The generation process of quantum light is usually de-
scribed by an effective Hamiltonian in the field space. The
material quantities that assist the light conversion are typically
set to be constant parameters governed by nonlinear semiclas-
sical susceptibilities.

Superoperator non-equilibrium Green’s functions are use-
ful for calculating nonlinear optical processes involving any
combination of classical and quantum optical modes. Closed
correlation-function expressions based on superoperator time-
ordering may be derived for the combined effects of causal
(response) and non-causal (spontaneous fluctuations) correla-
tion functions (Roslyak and Mukamel, 2009b).

Below we survey several wave-mixing schemes for gener-
ating quantum light by using a combination of classical and
quantum modes of the radiation field. Homodyne-detected
sum frequency generation (SFG)(Shen, 1989) and difference
frequency generation (DFG)(Dick and Hochstrasser, 1983;
Mukamel, 1995) involve two classical and one quantum mode.
Parametric down conversion (PDC)(Hong and Mandel, 1985;
Klyshko, 1988; Louisell et al., 1961; Mandel and Wolf, 1995)
involves one classical and two quantum modes and is one
of the primary sources of entangled photon pairs (Edamatsu,
2007; Gerry and Knight, 2005; U’Ren et al., 2006). All of
these are coherent measurements, and scale as N(N − 1) for
N active molecules the signals (Marx et al., 2008).

We further consider incoherent∼ N -scaling signals. These
include heterodyne detected SFG and DFG, which involve
three classical modes, and two types of two photon fluores-
cence (Denk et al., 1990): two photon induced fluorescence
with one classical and two quantum modes (TPIF)(Callis,
1993; Rehms and Callis, 1993; Xu and Webb, 1996) and two
photon emitted fluorescence with two classical and one quan-
tum make (TPEF). The list of the different measurement is
summarized in the Table I.

Finally we present a more detailed microscopic theory of
entangled light generation in two schemes, which describe
light-matter interactions that involve quantum field. The first
is based on type-I PDC in a cascade three-level scheme, and
in the second scheme an entangled photon pair is generated by
two remote molecules assisted by an ideal 50:50 beam splitter.

k1 

k2 
-k3 k1 

-k2 

-k3 k1 

k2 
-k3 k1 

-k2 

-k3 

SFG DFG TPIF TPEF, PDC 

FIG. 29 Three wave process involuting classical (solid line) and
quantum (dashed line) modes. Black lines represent incoming fields,
red lines correspond to generated light.

A. Superoperator description of n-wave mixing

So far we mostly used L and R representation for de-
scribing signals. Here, we consider various nonlinear signals
which involve two photon resonances (Roslyak and Mukamel,
2009b) (see sketch in Fig. 29) and describe them using ±
representation. For coherent optical states, all field superop-
erator nonequilibrium Green’s functions (SNGF) in the L,R
representation are identical E′L = E′R(the superoperator in-
dex makes no difference since all operations commute). In
the +,− representation ”minus” field indices are not allowed,
since E′− = 0. The general m wave mixing signals are given
by 2m products of material and corresponding optical field
SNGF’s of mth order:

S(m)
α = = i

mδm+1,α

πm!~m+1

∑

νm

. . .
∑

ν1

∞∫

−∞

dtm+1dtm . . . dt1

(218)

Θ(tm+1)V(m)
νm+1νm...ν1

(tm+1, tm, . . . , t1)×
E(m)
νm+1ν̄m...ν̄1

(tm+1, tm, . . . , t1)

where tm+1, tm, . . . , t1 are the light/matter interaction times.

The factor Θ(tm+1) =
m∏
i=1

θ(tm+1− ti) insures that the tm+1

is the last light-matter interaction. The indexes ν̄j are the con-
jugates to νj and defined as follows: the conjugate of + is
− and vice versa. Equation (218) implies that is the excita-
tion in the material are caused by fluctuations in the optical
field and vice versa. Equation (218) also holds in the L,R
representation. Here we have νm+1 = L and νj ∈ {L,R},
j = m, . . . , 1. ν̄j . In the L,R representation the conju-
gate of ”left” is ”left” and the conjugate of ”right” is ”right”:
L̄ = L, R̄ = R. The material SNGF V(m)

LL . . . L︸ ︷︷ ︸
n

R . . . R︸ ︷︷ ︸
m−n

rep-

resent a Liouville space pathway with n+ 1 interactions from
the left (i.e. with the ket) andm−n interactions from the right
(i.e. with the bra).

Field SNGF in Eq. (218) is defined in Eq. (14). Mate-
rial SNGF is defined by Eq. (15). The latter in the form of
V(m)

+− . . .−︸ ︷︷ ︸
m

give causal ordinary response function of mth or-
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Three wave processes
Heterodyne Homodyne

Incoherent Coherent
Technique SFG DFG TPIF TPEF SFG PDC

Modes c/c/c c/c/c c/c/q c/q/q c/c/q c/q/q
ω3 ω1 + ω2 ω1 − ω2 - - ≈ ω1 + ω2 ≈ ω1 − ω2

SNGF’s χ
(2)
+−− χ

(2)
+−− (χ

(5)
++−−−− (χ

(5)
++−−−− + 2χ

(5)
+++−−−

∣∣∣χ(2)
+−−

∣∣∣2 ∣∣∣χ(2)
+−− + χ

(2)
++−

∣∣∣2
χ
(5)
++−−−−)/2 +χ

(5)
++++−−)/4

Expression eq.(235) eq.(233) eq.(240) eq.(250) eq.(235) Type I eq.(253), Type II eq.(256),(258)

TABLE I SNGF’s of three wave mixing techniques: heterodyne-detected SFG and DFG with all classical modes (c); incoherent TPIF with
two classical and one quantum (q) mode and corresponding coherent homodyne-detected SFG; incoherent TPEF with one classical and two
quantum modes and Type I PDC; Type II PDC SNGF with one classical and four quantum modes.

der. The material SNGF of the form V(m)

+ + . . .+︸ ︷︷ ︸
m

represent

mth moment of molecular fluctuations. The material SNGF
of the form V(m)

+ + . . .+︸ ︷︷ ︸
n

− . . .−︸ ︷︷ ︸
m−n

indicates changes in nth mo-

ment of molecular fluctuations up bym−n perturbations. We
next recast the material SNGF (15) in the frequency domain
by performing a multiple Fourier transform:

χ(m)
νm+1νm...ν1

(−ωm+1;ωm, . . . , ω1) = (219)
∫ ∞

−∞
dtm+1 . . . dt1Θ(tm+1)ei(ωmtm+...+ω1t1)

δ(−ωm+1 + ωm + . . .+ ω1)V(m)
νm+1νm...ν1

(tm+1, tm, . . . , t1)

The SNGF χ(m)

+− . . .−︸ ︷︷ ︸
m

(−ωm+1;ωm, . . . , ω1) (with one + and

the rest − indices) are the mth order nonlinear susceptibili-
ties or causal response functions. The rest of SNGF’s in the
frequency domain can be interpreted similarly to their time
domain counterparts (15).

B. Connection to nonlinear fluctuation-dissipation
relations

Spontaneous fluctuations and response functions are
uniquely related in the linear regime (Hashitsume et al., 1991)
by the fluctuation-dissipation theorem, but not when they are
nonlinear. Some nonlinear fluctuation-dissipation relations
have been proposed for specific models under limited con-
ditions (Bertini et al., 2001; Bochkov and Kuzovlev, 1981;
Lippiello et al., 2008) but there is no universal relation of this
type (Kryvohuz and Mukamel, 2012).

Quantum spectroscopy signals may be described by
Glauber Sudarshan P -representation which expresses the field
density matrix as an integral over coherent state density matri-
ces |β〉〈β| weighted by a quasi-probability distribution P (β)

ρ̂ =

∫
d2βP (β)|β〉〈β|. (220)

It has been suggested (Almand-Hunter et al., 2014; Kira et al.,
2011; Mootz et al., 2014) that, since the response of a material
system to a field initially prepared in a coherent state |β〉 is
given by the classical response function CRF, the quantum
response RQM may be recast as an average of the classical
response R|β〉 with respect to this quasi-probability

RQM =

∫
d2βP (β)R|β〉. (221)

By transforming to the response of a nonclassical state given
by P (β), in which the fluctuations along one quadrature are
squeezed below the classical limit, this form of data process-
ing can uncover otherwise hidden features in the signal. For
instance, it was put to use in (Almand-Hunter et al., 2014) to
reveal the “dropleton”, as new kind of quasiparticle excitation
in semiconductors.

While this analysis has proven successful, it misses the
multimode nature of the entangled states, which lies at the
heart of time-energy entanglement presented here. Based on
our analysis of the entangled light state (33), it can be shown
that optical signals induced by such entangled states cannot
be reduced to a simple sum over the signal of each quantum
mode: The quantum correlations depicted in Fig. 3 require a
multi mode model. For instance, the transition amplitude (99)
may be written as a sum over the Schmidt modes,

Tfg(t) ∼
∑

k

∫
dωa

∫
dωb Rt(ωa, ωb)ψk(ωa)φk(ωb),

(222)

where Rt shall denote the material response. Hence, the TPIF
signal ∼ |Tfg|2 cannot be reduced to the signal of the indiv-
dual Schmidt modes, |Tfg|2 ∼

∑
k,k′ · · · 6=

∑
k · · · , and the

above transformation fails to capture such a signal.
The Glauber-Sudarshan quasi-probability (Almand-Hunter

et al., 2014; Kira et al., 2011; Mootz et al., 2014) suggests
that classical light can be identified with coherent states. This
is not necessarily the case. For instance, the effect of revival
of Rabi oscillations demonstrated by Rempe (Rempe et al.,
1987) which is observed when a coherent state is treated quan-
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tum mechanically shows clearly that a coherent state is gen-
erally a quantum state of light. Therefore, Eq. (220) merely
represents a transformation between two different basis sets
for the quantum state. Of course, in the nonlinear response
case, if the operators are normally ordered as in Eq. (74) the
signal generated by a coherent state is equivalent to the classi-
cal case. In Rempe’s example, the nonclassical contributions
arise due to commutator terms in Eq. (87) and the higher the
order in perturbative expansion - the larger the contribution of
the commutator terms. Therefore, in the strong field limit one
can observe the revival of Rabi oscillations.

We now use the superoperator formalism to show more
broadly why the quantum response is different from the clas-
sical one so that Eq. (221) is violated. In Liouville space, the
time-dependent density matrix is given by Eq. (69). We now
make use of the superoperator algebraic relation (Marx et al.,
2008):

Hint− = E+V− + E−V+. (223)

Let us first assume that the electric field operators commute
and set E− = 0. We then calculate the expectation value of a
system A operator OA:

tr[OAρ(t)]

= tr[OAT exp

(
− i
~

∫ t

t0

E+(t′)V A− (t′)dt′
)

× exp

(
− i
~

∫ t

t0

E+(t′)V B− (t′)dt′
)
ρA,0ρB,0ρph,0]. (224)

Since the trace of a commutator vanishes, and since there are
only V B− operators for system B, all correlation functions
of the form 〈V B− V B− ...V B− 〉 = 0. The nonlinear response
function is thus additive. The time evolution of two coupled
quantum systems and the field is generally given by a sum
over Feynman paths in their joint phase space. Order by or-
der in the coupling, dynamical observables can be factorized
into products of correlation functions defined in the individual
spaces of the subsystems. These correlation functions repre-
sent both causal response and non-causal spontaneous fluc-
tuations (Cohen and Mukamel, 2003; Roslyak and Mukamel,
2010).

The linear response contains several possible combinations
of field superoperators 〈V±V±〉. 〈V−V−〉 represents a com-
mutator, and thus vanishes since its trace is zero. There-
fore 〈V+V+〉 (two anticommutators) and 〈V+V−〉 (commu-
tator followed by anticommutator) are the only two quanti-
ties that contribute to the linear response. These two quanti-
ties are related by the universal fluctuation-dissipation relation
(Hashitsume et al., 1991),

C++ =
1

2
coth(β~ω/2)C+−(ω). (225)

Here

C+−(ω) =

∫
dτ〈V+(τ)V−(0)〉eiωτ (226)

is the response function, whereas

C++(ω) =

∫
dτ〈V+(τ)V+(0)〉eiωτ (227)

denotes spontaneous fluctuations.
The classical response function C+−(ω) thus carries

all relevant information about linear radiation matter cou-
pling, including the quantum response. In the nonlinear
regime the CRF is a specific causal combination of mat-
ter correlation functions given by one “+” and several “-
” operators. e.g 〈V+V−V−V−〉 for the third order re-
sponse. However, the quantum response may also de-
pend on the other combinations. To nth order in the ex-
ternal field the CRF 〈V+(ωn+1)V−(ωn)...V−(ω2)V−(ω1)〉
is one member of a larger family of 2n quantities
〈V+(ωn+1)V±(ωn)...V±(ω2)V±(ω1)〉 representing various
combinations of spontaneous fluctuations (represented by V+

) and impulsive excitations (represented by V−). For example,
an ”all +” quantity such as 〈V+V+V+V+〉 represents purely
spontaneous fluctuations. The CRF does not carry enough in-
formation to reproduce all 2n possible quantities which are ac-
cessible by quantum spectroscopy. The reason why the CRF
and QRF are not simply related in is the lack of a fluctuation-
dissipation relation in the nonlinear regime (Bertini et al.,
2001; Bochkov and Kuzovlev, 1981; Kryvohuz and Mukamel,
2012; Lippiello et al., 2008).

The field commutator E− is intrinsically related to vacuum
modes of the field which may induce coupling between non-
interacting parts of the system. One example where such an
effect arising from E− is combined with the appearance of
collective resonances, which occur for E+, has been recently
investigated in the context of harmonic systems (Glenn et al.,
2015). The response of classical or quantum harmonic oscil-
lators coupled linearly to a classical field is strictly linear; all
nonlinear response functions vanish identically. We have re-
cently shown that quantum modes of the radiation field that
mediate interactions between harmonic oscillator resulted in
nonlinear susceptibilities. A third-order nonlinear transmis-
sion of the optical field yields collective resonances that in-
volve pairs of oscillators, and are missed by the conventional
quantum master equation treatment (Dorfman and Mukamel,
2013).

C. Heterodyne-detected sum and difference frequency
generation with classical light

We first compare two experiments which involve three clas-
sical modes. The third mode is singled out by the hetero-
dyne detection which measures its time-averaged photon flux
(photons per unit time). Both techniques represent second
order nonlinear signals S(2)

3 . The initial state of the field is
given by a direct product of coherent states: |t = −∞〉 =
|β〉1|β〉2|β〉3, where |β〉α are eigenfunctions of the mode α
annihilation operator: aα|β〉α = βα|β〉α. Coherent states are
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FIG. 30 Heterodyne detected DFG: a) phase matching condition
k3 = k1 − k2; b) molecular level scheme; c) loop diagrams.

the most classical states of quantum light, hence we shall refer
to them as classical optical fields (Glauber, 2007a).

Only one type of optical SNGF contribute to the classical
third order signalsignal:

E(2)
+++ (t3, t2, t1) = E ′(t3)E ′(t2)E ′(t1)

where E ′(t) = 〈E′L(t)〉 = 〈E′R(t)〉 = βα
√

2π~ωα/Ω is the
classical field amplitude.

The conjugate material SNGF’s become:

V(2)
+−− (t3, t2, t1) = V(2)

LLL (t3, t2, t1) + V(2)
LRL (t3, t2, t1)

(228)
where we have assumed that initially the material system is in
the ground state, which implies that V(2)

LRR (t3, t2, t1) ≡ 0.
We assume the same three-level system used earlier.

The L,R representation plus RWA allows the material
SNGFs (228) to be represented by the loop diagrams shown
in Fig.30(C), Fig.31(C). The rules for constructing these
partially-time-ordered diagrams are summarized in Appendix
A (Roslyak et al., 2009a). The signal is given by the causal
χ

(2)
+−−(−ω3,±ω2,±ω1) response function. This result is not

new and can be obtained by using various combinations of a
classical field from the outset. To calculate equation (228) we
have to specify the phase matching conditions (frequencies
and wave vectors of the optical modes). This will be done
below.

D. Difference frequency generation (DFG)

In DFG the first mode k1 promotes the system from its
ground state |g〉 into state |f〉. The second mode k2 induces
stimulated emission from |f〉 to an intermediate |e〉; and the
third mode k3 stimulates the emission from |e〉 to |g〉, as
sketched in Fig.31 (B). The signal is measured in the phase
matching direction: k3 = k1 − k2 (See Fig.30 (A)).

The corresponding loop diagrams corresponding are shown
in Fig.30(C). The optical field SNGF yields:

E(2)
+++ (t3, t2, t1) = E∗3 (t)E∗2 (t2)E1(t1) (229)

The material SNGF’s are:

V(2)
+−− (t3, t2, t1) = (230)

〈T V 3
L (t)V 2,†

L (t2)V 1,†
L (t1) + 〈T V 3

L (t)V 2,†
R (t2)V 1,†

L (t1)〉
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FIG. 31 Heterodyne detected SFG: a) phase matching condition
k3 = k1 + k2; b) level scheme; b) loop diagrams.

The DFG signal in the frequency domain can be written as:

SDFG(−ω3, ω2, ω1) = (231)
1

π~
=δ(ω1 − ω2 − ω3)χ

(2)
+−− (−ω3;−ω2, ω1) E∗3E∗2E1

Utilizing the rules given in Appendix A and the diagrams
shown in Fig.30(C) we obtain:

χ
(2)
+−− (−(ω1 − ω2);−ω2, ω1) = (232)
1

2!~2
(〈g|V3G(ωg + ω1 − ω2)V2G(ωg + ω1)V †1 |g〉−

〈g|V2G
†(ωg + ω1 − ω2)V3G(ωg + ω1)V †1 |g〉).

A sum-over-states (SOS) expansion then yields

χ
(2)
+−− (−(ω1 − ω2);−ω2, ω1) = (233)

1

2!~2

µxgfµ
x
feµ

x
eg

(ω1 − ωgf + i~γgf )(ω1 − ω2 − ωeg + i~γeg)
−

1

2!~2

µxgfµ
x
feµ

x
eg

(ω1 − ωgf + i~γgf )(ω2 − ωeg − i~γeg)
Equation (233) indicates that the signal induced by classical

optical fields is given by the second order classical response
function (CRF).

E. Sum Frequency Generation (SFG)

In SFG the first two modes promote the molecule from its
ground state |g〉 through intermediate state |e〉 into the state
|f〉. The third mode induces stimulated emission from |f〉 to
the ground state |g〉 as sketched in Fig.31 (B). The signal is
generated in the direction: k3 = k1 + k2 (See Fig.31 (A)).

The heterodyne-detected SFG signal can be obtained in an
analogous manner to the DFG by utilizing the diagrams shown
in Fig.31(C):

SSFG(ω1, ω2) = (234)
1

π~
=δ(ω1 + ω2 − ω3)χ

(2)
+−− (−ω3;ω2, ω1) E∗3E2E1

where the CRF is given by

χ
(2)
+−− (−(ω1 + ω2);ω2, ω1) = (235)
1

2!~2
〈g|V3G(ωg + ω1 + ω2)V †2 G(ωg + ω1)V †1 |g〉 =

1

2!~2

µxgeµ
x
feµ

x
eg

(ω1 − ωeg + i~γeg)(ω1 + ω2 − ωgf + i~γgf )



48

|ei

|fi

c)

k1

�k3

k1

k2

�k3

|ei

|fi

|gi

b)a)

k1

k2

�k3

k2 he|
k1

k2

�k3

C1 C2

hf |

|ei

|fi

k1

�k3

k2

hf |

he|
k1

k2

�k3hf |

|g0i

�k3

�k3

�k3

�k3

FIG. 32 Three wave process with two classical and one quantum
mode: a) phase-matching condition; b) molecular level scheme; c)
loop for the incoherent TPIF (C1) and coherent homodyne SFG (C2)

In the coming sections equations (235) and (233) will
be compared with other techniques involving various com-
binations of quantum and classical optical fields. These
include-homodyne detected SFG, DFG and PDC where one
or more optical modes are spontaneously generated and must
be treated quantum mechanically.

F. Two-photon-induced fluorescence (TPIF) vs.
homodyne-detected SFG

We now turn to techniques involving two classical and one
quantum mode where the initial state of the optical field is:
|t = −∞〉 = |β1〉1 |β2〉2 |0〉3. The modes interact with the
three level material system (Fig.32(B)). We assume that ωeg 6=
ωef . This allows to focus on the resonant SNGF’s and reduces
the number of diagrams.

The two classical modes k1 and k2 promote the molecule
from its ground state |g〉 into the intermediate state |e〉 and to
the final state |f〉. The system then spontaneously decays back
into one of the ground state manifold |g′〉 emitting a photon
into the third mode k3 which is initially in the vacuum state
(See Fig.32 (B)). The phase-matching condition k1 − k1 +
k2 − k2 + k3 − k3 = 0 is automatically satisfied for any
k3. Therefore the spontaneous photons are emitted into a cone
(See Fig.32 (A)).

We shall calculate the photon flux in the k3 mode. Since the
process involves three different modes and six light/matter in-
teractions. The signal (218) must by expanded to fifth order in
Hint. The fifth order signal S(5)

CCQ (CCQ implies two classi-
cal and one quantum mode) may be written as sum of 25 terms
each given by a product of molecule/field six point SNGF’s.
Only the corresponding diagrams shown in Fig.32(C). These
satisfy the following conditions:

1. The creation operator of the quantum mode a†3 must be
accompanied by the corresponding annihilation opera-
tor a3.

2. The quantum modes de-excite the molecule, which im-
plies that the annihilation operators must act on the bra
and the creation operators act on the ket.

3. The coherent optical fields are tuned off resonance with
respect to the ωfg′ transition. Hence, the signal is not
masked by stimulated emission.

To address the collective properties of three wave mixing.
We consider a collection of N noninteracting molecules posi-
tioned at ri so that V =

∑
i Viδ(r− ri). The optical field can

interact with different systems at different times. Fig.32(C)
shows processes involving three different molecules and six
light/matter interactions. These modes can either interact with
the same system (incoherent process, Fig.32(C1)) or two dif-
ferent systems (coherent process, Fig.32(C2))(Marx et al.,
2008).

1. Two-photon-induced fluorescence (TPIF).

This is an incoherent three wave process. Using the identity
N∑
i=1

exp i (k1 − k1 + k2 − k2 + k3 − k3) (r− ri) = N the

optical field SNGF yields:

E(5)
LR++++ (t6, t5, . . . , t1) = (236)

NE1(t1)E∗1 (t2)E2(t3)E∗2 (t4)
2π~ω3

Ω
exp (iω3(t6 − t5))

The relevant material SNGF is:

V(5)
LR++++ (t6, t5, . . . , t1) = (237)

〈T V 3
L (t6)V 3,†

R (t5)V 2
−(t4)V 2,†

− (t3)V 1
−(t2)V 1,†

− (t1)〉
Utilizing equations (236,237) the frequency domain signal
can be written as:

STPIF (ω1, ω2) =
N

π~
∑

k3

|E1|2 |E2|2
2π~ω3

Ω
× (238)

=χ(5)
LR−−−− (−ω3;ω3,−ω2, ω2,−ω1, ω1)

Note that the above expression is given in the mixed
(L/R,+/−) representation. It can be recast into the +,− rep-
resentation using χ(5)

LR−−−− = (χ
(5)
+−−−−−+χ

(5)
++−−−−)/2.

The second term (two ”plus” four ”minus” indices) arises
since one of the modes is nonclassical. The frequency do-
main material SNGF can be calculated from the diagram of
Fig.32(D1):

χ
(5)
LR−−−− (−ω3;ω3,−ω2, ω2,−ω1, ω1) =

1

5!~5
(239)

〈g|V1G
†(ωg + ω1)V2G

†(ωg + ω1 + ω2)

×V †3 G†(ωg + ω1 + ω2 − ω3)V3 ×
G(ωg + ω1 + ω2)V †2 G(ωg + ω1)V †1 |g〉
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Expanding equation (239) in molecular states gives:

χ
(5)
LR−−−−(−(ω1 + ω2);ω2, ω1) =

∑

gg′

|µxg′fµxfeµxeg|2

(240)

× 1

5!~5

1

[(ω1 − ωeg)2 + γ2
eg][ω1 + ω2 − ωfg + iγfg]

× 1

[ω1 + ω2 − ωfg′ − iγfg′ ][ω1 + ω2 − ω3 − ωgg′ − iγgg′ ]

Provided the energy splitting within the ground state manifold
is small comparing to the optical transitions the signal can be
recast in the form:

STPIF (ω1, ω2) =
2Nω3

5!~5Ω
|E1|2 |E2|2 (241)

|Tg′g(ω1, ω2)|2 δ(ω1 + ω2 − ω3 − ωgg′)

where

Tg′g(ω1, ω2) =
µgfµfeµeg

(ω1 − ωeg + iγeg)(ω1 + ω2 − ωfg + iγfg)

is the transition amplitude. This is similar to the Kramers-
Heisenberg form of ordinary (single-photon) fluorescence
(Marx et al., 2008). As in single photon fluorescence, for a
correct description of the TPIF the ground state must not be
degenerate. Otherwise γgg = 0 (the degenerate ground state
the system has infinite life time) and the signal vanishes.

The SNGF in equation (239) is commonly called as the flu-
orescence quantum efficiency (Webb (Xu and Webb, 1996))
and two-photon tensor (Callis (Callis, 1993)). Our result is
identical to that of Callis, apart from the δ(ω1+ω2−ω3−ωgg′)
factor.

When the two classical coherent modes are degenerate
(ω1 = ω2) the signal given by equation (241) describes non-
resonant Hyper-Raman scattering (ωgg′ 6= 0) also known as
incoherent second harmonic inelastic scattering (Andrews and
Allcock, 2002; Callis, 1993). When ω1 = ω2 and ωgg′ →
0 (but not equal to) equation (241) describes non-resonant
Hyper-Rayleigh scattering also known as incoherent second
harmonic elastic scattering. Off-resonant hyper-scattering is
a major complicating factor for TPIF microscopy (Xu et al.,
1997).

2. Homodyne-detected SFG

Here the optical field SNGF is given by equation (236), but
instead of factor N it contains the factor: factor:

N∑

i=1

N−1∑

j 6=i
ei∆k(r−ri)e−i∆k(r−rj) ≈ N(N − 1) (242)

where ∆k ≈ k1 +k2−k3. ≈ reflects phase uncertainty given
by the reciprocal of the molecular collection length which ef-
fectively narrows the optical cone. For large N the coherent

part ∝ N(N − 1) dominates over the incoherent ∝ N re-
sponse. For a small sample size, exact calculation of the op-
tical field part of the SNGF is rather lengthy , but it can be
performed in the same fashion as done by Hong and Man-
del(Hong and Mandel, 1985) for the probability of photon de-
tection.

To calculate the matter SNGF, we must work in the joint
space of two molecules |〉1,2 = |〉1|〉2 interacting with the
same field mode. The matter SNGF of the joint system can
be factorized into product of each molecule SNGF’s:

V(5)
LR++++ (t6, t5, . . . , t1) = (243)

〈T V 3
+(t)V 3,†

+ (t5)V 2
−(t4)V 2,†

− (t3)V 1
−(t2)V 1,†

− (t1)〉1,2 =

〈T V 3
+(t)V 2,†

− (t3)V 1,†
− (t1)〉1〈T V 3,†

+ (t5)V 2
−(t4)V 1

−(t2)〉2

where we have used the fact that the last interaction must be a
”plus”.

Since the two molecules are identical the following identity
holds:

〈T V 3,†
+ (t5)V 2

−(t4)V 1
−(t2)〉 = (244)

(
〈T V 3

+(t+ ∆t)V 2,†
− (t3 + ∆t)V 1,†

− (t1 + ∆t)〉
)∗

where vg∆t is the optical path length connecting molecules
situated at ri and rj . Using this identity and equation (243)
The matter SNGF in the frequency domain can be factorized
into the square of an ordinary (causal) response function (one
“+” and several “-”):

=χ(5)
++−−−− (−ω3;ω3,−ω2, ω2,−ω1, ω1) =

∣∣∣χ(2)
+−− (−(ω1 + ω2);ω2, ω1)

∣∣∣
2

The unique factorization of the coherent matter SNGF’s can
be also obtained in the L,R representation using the dia-
grammatic technique as shown in Fig.32(C2). The classical
modes have to excite the molecules and the quantum mode
has to de-excite them. Hence, the interaction with the first
molecule ket (L) are accompanied by the conjugate interac-
tions with the second molecule bra (R). We obtain that the
ordinary, causal response function is give by equation (235) as
χ

(2)
+−− (−(ω1 + ω2);ω2, ω1) = χ

(2)
LLL (−(ω1 + ω2);ω2, ω1).

The homodyne-detected SFG signal is finally given by:

SSFG = N(N − 1) |E1|2 |E2|2
2(ω1 + ω2)

Ω
×

∣∣∣χ(2)
+−− (−(ω1 + ω2);ω2, ω1)

∣∣∣
2

(245)

Both homodyne and heterodyne SFG are given by the same
causal response function χ(2)

+−−. The main difference is that
the latter satisfies perfect phase matching, while for the for-
mer this condition is only approximate. For sufficiently large
samples the two techniques are identical.

To conclude, we present the total signal for the three
wave process involving two classical and one quantum field
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(CCQ)) which includes both an incoherent and a coherent
components:

S
(5)
CCQ(ω2, ω1) = |E1|2 |E2|2

2ω3

Ω
(246)

[N=χ(5)
++−−−− (−ω3;ω3,−ω2, ω2,−ω1, ω1) +

N(N − 1)
∣∣∣χ(2)

+−− (−(ω1 + ω2);ω2, ω1)
∣∣∣
2

]

G. Two-photon-emitted fluorescence (TPEF) vs. type-I
parametric down conversion (PDC).

1. TPEF

We now turn to three wave processes involving one clas-
sical and two quantum modes. We start with the incoherent
response of N identical molecules initially in their ground
state. The initial state of the optical field is |t = −∞〉 =
|β1〉1 |0〉2 |0〉3. The classical field k1 pumps the molecule
from its ground state |g〉 into the excited state |f〉. The sys-
tem then spontaneously emits two photons into modes k2, k3

(See Fig.33 (B)) which are initially in the vacuum state. Such
incoherent process which involves one classical and two quan-
tum modes will be denoted two-photon-emitted fluorescence
(TPEF). To our knowledge there is neither theoretical nor ex-
perimental work concerning this process.

This process is not phase sensitive since the phase matching
condition k1−k1+k2−k2+k3−k3 = 0 is automatically sat-
isfied for any k3. Therefore spontaneously generated modes
are emitted into two spatial cones (See Fig.33 (A)). For a sin-
gle molecule the cones are collinear, as in Type I paramet-
ric down conversion (PDC). Due to this similarity we chose
beams polarizations as is usually done for PDC of this type:
the spontaneously generated photons have the same polariza-
tion along the x axis, and orthogonal to that of the classical
mode polarized along the y axis.

The time-averaged photon flux in the k3 mode is our TPEF
signal. We again make use of the loop diagrams to identify
the relevant SNGF contributing to the signal. Using the ini-
tial state of the field the diagrams must satisfy the following
conditions:

1. The creation operators of a spontaneously generated
modes a†3, a

†
2 acting on the ”ket” must be accompanied

by the corresponding annihilation operators a3, a2 act-
ing on the ”bra”.

2. The first mode ω1(k1) is off-resonance with both ωeg
and ωfe transitions to avoid stimulated emission contri-
butions.

Diagram (C1) in Fig.33 satisfies the above conditions. The
non-resonant diagrams have been omitted. Using this diagram
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FIG. 33 Three wave process involuting two quantum and one classi-
cal mode: a) phase-matching condition; b) molecular level scheme;
c) loop diagrams for the incoherent TPEF (C1) and coherent Type I
PDC (C2)

the optical field SNGF yields:

E(5)
LLRR++ (t6, t5, . . . , t1) = (247)

NE1(t1)E∗1 (t2)
2π~ω3

Ω

2π~ω2

Ω
×

exp (iω3(t6 − t5)) exp (iω3(t4 − t3))

The matter SNGF assumes the form:

V(5)
LLRR−− (t6, t5, . . . , t1) = (248)

〈T V 3
L (t)V 3,†

R (t5)V 2,†
R (t4)V 2

L (t3)V 1
−(t2)V 1,†

− (t1)〉 (249)

Using equations (247), (248) the incoherent part of the fre-
quency domain signal is given by:

STPEF (ω1) =
N

π~
|E1|2

2π~(ω2)

Ω

2π~ω3

Ω
×

=χ(5)
LLRR−− (−ω3;ω3, ω2,−ω2,−ω1, ω1)

The corresponding SNGF can be calculated from the diagram
in Fig.33(C1):

χ
(5)
LLRR−− (−ω3;ω3, ω2,−ω2,−ω1, ω1) =

1

5!~5
〈g|V †1 G†(ωg + ω1)V †2 G

†(ωg + ω1 − ω2)×

V3G
†(ωg + ω1 − ω2 − ω3)V3×

G(ωg + ω1 − ω2)V2G(ωg + ω1)V †1 |g〉
Expansion in the molecular eigenstates brings the response
function into the Kramers-Heisenberg form:

χ
(5)
LLRR−− (−ω3;ω3, ω2,−ω2,−ω1, ω1) = (250)

1

5!~5

∑

gg′

|µxg′eµxefµyfg|2δ(ω1 − ω2 − ω3)

1

(ω1 − ωfg)2 + γ2
fg

| 1

ω1 − ω2 − ωeg + iγeg
|2
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Note that unlike TPIF, the TPEF signal depends on the
SNGF other than causal response function χ(5)

+−−−−−.

2. Type-I PDC.

We now turn to the coherent response from a collection of
identical molecules which interact with one classical pumping
mode and two spontaneously generated quantum modes (See
Fig.33 (A,B)). This is known as Type I parametric down con-
version (PDC), which is widely used for producing entangled
photon pairs. Hereafter we assume perfect phase matching
∆k = k1 − k2 − k3 which is the case for a sufficiently large
sample (Gerry and Knight, 2005).

The initial condition for PDC are the same as for TPEF
and most PDC experiments are well described by the causal
response function χ(2)

+−−. Therefore one would expect a con-
nection between TPEF and PDC, similar to that of TPIF and
homodyne-detected SFG. However, as we are about to demon-
strate, for a complete description of the PDC process the
causal second order response function is not enough.

We shall establish the corrections to the second order CRF
caused by the quantum origin of the spontaneous modes. To
do so we again resort to the CTPL diagrams (See Fig.33 (C2)).
For the coherent response the optical field SNGF is given by
equation (247) with the factor N replaced by N(N − 1). The
material SNGF (248) can be factorized as:

V(5)
LLRR−− (t6, t5, . . . , t1) = (251)

〈T V 3
L (t6)V 2

L (t3)V 1,†
L (t1)〉〈T V 3,†

R (t5)V 2,†
R (t4)V 1

R(t2)〉
(252)

Note that this factorization is unique as
〈T V 3

L (t)V 2,†
R (t4)V 1,†

L (t1)〉 = 0 due to the material ini-
tially being in its ground state. The coherent PDC signal in
the frequency domain can then be written as:

SPDC(ω1) = (253)

N(N − 1)

4π~
|E1|2

2π~ω2

Ω

2π~(ω1 − ω2)

Ω
×

|χ(2)
LL− (−(ω1 − ω2);ω2, ω1) |2

Here the generalized response function expanded in the eigen-
states has form:

χ
(2)
LL− (−(ω1 − ω2);ω2, ω1) =

1

2!~2

µygfµ
x
feµ

x
eg

(ω1 − ωgf + i~γgf )(ω1 − ω2 − ωeg + i~γeg)

This mixed representation can be recast in +,− and L,R rep-
resentations:

χ
(2)
LL− = χ

(2)
LLL =

1

2
(χ

(2)
+−− + χ

(2)
++−) (254)

Comparing the CRF for heterodyne detected DFG (233)
and the SNGF’s for Type I PDC (254) we see that the latter

is described not only by causal response function χ(2)
+−− but

also by the second moment of material fluctuations χ(2)
++−. On

the other hand, in the L,R representation it singles out one Li-
ouville pathway χ(2)

LLL, while the classical optical fields drive
the material system along all possible pathways.

An interesting effects arise in type-I PDC if the detection
process is included explicitly. The details of these effects are
discussed in Section IV.I.

In summary of this section we give the signal for the three
wave process involving one classical and two quantum fields
(CQQ). This contains both an incoherent and a coherent com-
ponent:

S
(5)
CQQ(ω2, ω1) =

1

π~
|E1|2

2π~ω2

Ω

2π~ω3

Ω
× (255)

N=(χ
(5)
++−−−−(−ω3;ω3,−ω2, ω2,−ω1, ω1)+

χ
(5)
+++−−−(−ω3;ω3,−ω2, ω2,−ω1, ω1)+

χ
(5)
++++−−(−ω3;ω3,−ω2, ω2,−ω1, ω1))+

N(N − 1)|χ(2)
+−−(−(ω1 − ω2);ω2, ω1)+

χ
(2)
++−(−(ω1 − ω2);ω2, ω1)|2

H. Type II PDC; polarization entanglement.

In Type II parametric down-conversion, the two
spontaneously-generated signals have orthogonal polar-
izations. Because of birefringence, the generated photons
are emitted along two non-collinear spatial cones known
as ordinary and extraordinary beams (See Fig.34 (A)).
Polarization-entangled light (Gerry and Knight, 2005) is
generated at the intersections of the cones. An x polar-
ization filter and a detector are placed at one of the cones
intersections. The detector cannot tell from which beam a
photon is obtained. To describe the process we need five
optical modes: one classical |1〉|y〉 and four quantum modes
{|2〉|x〉, |2〉|y〉, |3〉|x〉, |3〉|y〉}.

Polarization-entangled signal is described by CTPL dia-
grams shown in Fig.34 (C). The Type II PDC signal consist
of two parts S(5)

PDCII = S
(5)
3x + S

(5)
2x . The signal S(5)

3x as-
sumes the form of equation (253), with the material pathway
depicted in Fig.34(C1):

χ
(2)
LL− (−(ω1 − ω2);−ω2, ω1) = (256)

1

2
(χ

(2)
+−− (−(ω1 − ω2);−ω2, ω1) +

+χ
(2)
++− (−(ω1 − ω2);ω2,−ω1)) =

1

2!~2

C

(ω1 − ωgf + i~γgf )(ω1 − ω2 − ωeg + i~γeg)

where the coefficient C is given by the following equation:

C2 = |µygf |2(|µxfe|2|µxeg|2 + 2µxfeµ
x
egµ

y
feµ

y
eg+ (257)

µxfeµ
x
egµ

x
feµ

y
eg + µyfeµ

y
egµ

y
feµ

x
eg
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FIG. 34 Type II PDC: a) phase matching, b) molecular level scheme;
c) CTPL diagrams for the signal from k3 (C1) and k2 (C2) modes
polarized along x direction.

The signal S(5)
3x is described by the diagram in Fig. 34 (C2):

χ
(2)
LL− (−ω2;−(ω1 − ω2), ω1) = (258)

1

2
(χ

(2)
+−− (−ω2;−(ω1 − ω2), ω1) +

+χ
(2)
++− (−ω2;−(ω1 − ω2), ω1)) =

1

2!~2

C

(ω1 − ωgf + i~γgf )(ω2 − ωeg + i~γeg)

The net Type II PDC signal is:

SPDCII(ω1) = (259)

N(N − 1)

4π~
|E1|2

2π~ω2

Ω

2π~(ω1 − ω2)

Ω
×

|χ(2)
LL− (−(ω1 − ω2);−ω2, ω1) |2+

|χ(2)
LL− (−ω2;−(ω1 − ω2), ω1) |2.

I. Time-and-frequency resolved type-I PDC

Previously we had summarized various wave-mixing sig-
nals using a simple model without addressing the detection
process in detail. In the following we include the photon
counting detection described in Section III.D and demonstrate
how does the actual generation process in type-I PDC relate to
nonlinear response and how different it is compared to semi-
classical theory.

The standard calculation of nonlinear wave mixing assumes
that all relevant field frequencies are off resonant with matter.
It is then possible to adiabatically eliminate all matter degrees
of freedom and describe the process by an effective Hamilto-
nian for the field that contains a nonlinear cubic coupling of
three radiation modes (Mandel and Wolf, 1995). For SFG this

reads:

Heff = −
∫
drχ(2)E†3 (ω1 − ω2)E†2 (ω2)E1 (ω1) (260)

and for DFG and PDC:

Heff = −
∫
drχ(2)E†3 (ω1 + ω2)E2 (ω2)E1 (ω1) (261)

All matter information is embedded into a coefficient that
is proportional to χ(2) (Gerry and Knight, 2005) that is de-
fined by the semiclassical theory of radiation-matter coupling.
Langevin quantum noise is added to represent vacuum fluctu-
ations caused by other field modes (Avenhaus et al., 2008;
Glauber, 2007b; Scully and Zubairy, 1997) and account for
photon statistics.

The microscopic theory of type I PDC presented below
holds if cascade of two photons in a three level system is
generated in both on and off resonance. The resonant case is
especially important for potential spectroscopic applications
(Mukamel, 1995), where unique information about entangled
matter (Lettow et al., 2010) can be revealed. Other exam-
ples are molecular aggregates and photosynthetic complexes
or biological imaging (Saleh et al., 1998). Second, it properly
takes into account the quantum nature of the generated modes
through a generalized susceptibility that has a very different
behavior near resonance than the semiclassical χ(2). χ(2) is
derived for two classical fields and a single quantum field.
While this is true for the reverse process (sum frequency gen-
eration) it does not apply for PDC, which couples a single
classical and two quantum modes. Third, macroscopic prop-
agation effects are not required for the basic generation of
the signal. Fourth, gated detection (Dorfman and Mukamel,
2012a) yields the finite temporal and spectral resolution of the
coincident photons limited by a Wigner spectrogram. For ei-
ther time or frequency resolved measurement of the generated
field, the signal can be expressed as a modulus square of the
transition amplitude that depends on three field modes. This
is not the case for photon counting. Shwartz et al. recently
reported PDC in diamond, where 18keV pump field gener-
ates two X-ray photons (Shwartz et al., 2012). Calculation
in (Dorfman and Mukamel, 2012b) reproduces experimental
data in the entire frequency range without adding Langevin
noise.

The nature of entangled light can be revealed by photon
correlation measurements that are governed by energy, mo-
mentum and/or angular momentum conservation. In PDC, a
nonlinear medium is pumped by electromagnetic field of fre-
quency ωp and some of the pump photons are converted into
pairs of (signal and idler) photons with frequencies ωs and ωi,
respectively (see Fig. 35a) satisfying ωp = ωs + ωi.

To get more detailed description of wave-mixing process in
PDC we recast an effective semiclassical Hamiltonian in Eq.
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FIG. 35 (Color online) Left: Schematic of the PDC experiment - (a), the three level model system used in our simulations - (b). One out
of four loop diagram (remaining three diagrams are presented in Ref.(Dorfman and Mukamel, 2012b)) for the PCC rate of signal and idler
photons generated in type I PDC (Eq. (265)) - (c). The left and right diagrams represent a pair of molecules. Blue (red) arrows represent
field-matter interaction with the sample (detectors). There are four possible permutations (s/i and s′/i′) which leads to four terms when Eq.
(267) is substituted into Eq. (266). Right: Absolute value of semiclassical susceptibility |χ(2)

+−−(−(ωp − ωi),−ωi, ωp)| (arb. units) (268) -
(d), and quantum the susceptibility |χ(2)

LL−(−(ωp − ωi),−ωi, ωp)| (267) - (e) vs pump ωp and idler frequency ωi. We used the standard KTP
parameters outlined in the text. Left column: real - (f), imaginary part - (h) and absolute value - (j) of χ(2)

+−− - red line and χ(2)
LL− - blue line

for off resonant pump ωp − ωgf = 10γgf . Right column: (g,i,k) - same as (f,h,j) but for resonant pump ωp ' ωgf .

(261) as follows

Hint(t) = i~
∑

j

∫
dωs
2π

dωi
2π

dωp
2π

χ
(2)
+−−(ωs, ωi, ωp)

× â(s)†â(i)†β(p)ei∆k(r−rj)e−i(ωp−ωs−ωi)t] +H.c., (262)

where â†(s) and â(i)† are creation operators for signal and idler
modes, β(p) is the expectation value of the classical pump
field, ∆k = kp − ks − ki, j runs over molecules, χ(2)

+−−,
(normally denoted χ(2)(−ωs;−ωi, ωp)) is the second-order
nonlinear susceptibility

χ
(2)
+−−(ωs = ωp − ωi, ωi, ωp) =

(
i

~

)2 ∫ ∞

0

∫ ∞

0

dt2dt1×

eiωi(t2+t1)+iωpt1〈[[V (t2 + t1), V (t1)], V (0)]〉+ (i↔ p).
(263)

The “ + −−′′ indices in Eq. (263) signify two commu-
tators followed by an anti commutator. The bottom line of
the semiclassical approach is that PDC is represented by 3-
point matter-field interaction via the second order suscepti-
bility χ(2)

+−− that couples the signal, idler and pump modes.
However, it has been realized, that other field modes are
needed to yield the correct photon statistics. Electromagnetic
field fluctuations are then added as quantum noise (Langevin
forces) (Scully and Zubairy, 1997).

Below we summarize a microscopic calculation of the pho-
ton coincidence counting (PCC) rate in type I PDC (Roslyak
et al., 2009a). We show that PDC is governed by a quantity
that resembles but is different from (263). In contrast with
the semiclassical approach, PDC emerges as a 6-mode two-
molecule rather than 3-mode matter-field interaction process
and is represented by convolution of two quantum susceptibil-
ities χ(2)

LL−(ωs, ωi, ωp) and χ(2)∗
LL−(ω′s, ω

′
i, ω
′
p) that represent a
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pair of molecules in the sample interacting with many vacuum
modes of the signal (s, s′) and the idler (i, i′). Field fluctua-
tions are included self consistently at the microscopic level.
Furthermore the relevant nonlinear susceptibility is different
from the semiclassical one χ(2)

+−− and is given by

χ
(2)
LL−(ωs = ωp − ωi, ωi, ωp) =

(
i

~

)∫ ∞

0

∫ ∞

0

dt2dt1×

eiωi(t2+t1)+iωpt1〈[V (t2 + t1)V (t1), V (0)]〉+ (i↔ s).
(264)

Eq. (264) has a single commutator and is symmetric to a per-
mutation of ωi and ωs = ωp − ωi, as it should. Eq. (263) has
two commutators and lacks this symmetry.

1. The bare PCC rate

The measured PCC rate of signal and idler photons starts
with the definition (175). The basis for the bare signal in Eq.
(174) is given by the time-ordered product of Green’s func-
tions of superoperators in the interaction picture (see (Dorf-
man and Mukamel, 2012b)).

〈T E†(i)R (t′i)E
†(s)
R (t′s + τs)E

(s′)
L (t′s)E

(i′)
L (t′i − τi)

× e− i
~
∫∞
−∞
√

2H′−(τ)dτρ(−∞)〉. (265)

which represents four spectral modes arriving at the detectors,
where modes s, s′, i, i′ are defined by their frequencies ωs, ω′i,
ωi = ωp − ωs, ω′s = ω′p − ω′i.

In type I PDC the sample is composed of N identical
molecules initially in their ground state. They interact with
one classical pump mode and emit two spontaneously gen-
erated quantum modes with the same polarization into two
collinear cones. The initial state of the optical field is given
by |0〉s|0〉i|β〉p. A classical pump field promotes the molecule
from its ground state |g〉 to the doubly excited state |f〉 (see
Fig 35b).

Due to the quantum nature of the signal and the idler fields,
the interaction of each of these fields with matter must be
at least second order to yield a non vanishing signal. The
leading contribution to Eq. (265) comes from the four dia-
grams shown in Fig. 35c (for rules see Appendix A (Roslyak
et al., 2009a)). The coherent part of the signal represented
by interaction of two spontaneously generated quantum and
one classical modes is proportional to the number of pairs
of sites in the sample ∼ N(N − 1), which dominates the
other, incoherent, ∼ N response for large N . Details of the
calculation of the correlation function (265) are presented
in Ref. (Dorfman and Mukamel, 2012b). We obtain for the
“bare” frequency domain PCC rate R(B)

c (ωs, ω
′
i, ωp, ω

′
p) ≡∫

dt′sdt
′
i〈T n̂s(t′s, ω′s)n̂i(t′i, ω′i)〉T e−i(ωs+ω

′
i−ω′p)t′s+(ωs+ω

′
i−ωp)t′i

R(B)
c (ωs, ω

′
i, ωp, ω

′
p) = N(N − 1)

(
2π~
V

)4

×

E∗(p)(ωp)E(p)(ω′p)D(ωs)D(ωp − ωs)D(ω′i)D(ω′p − ω′i)×
χ

(2)
LL−[−(ω′p − ω′i),−ω′i, ω′p]χ(2)∗

LL−[−ωs,−(ωp − ωs), ωp],
(266)

where E(p)(ω) ≡ E(p)(ω)β(p) is a classical field amplitude,
E(p)(ω) is the pump pulse envelope and D(ω) = ωD̃(ω)
where D̃(ω) = V ω2/π2c3 is the density of radiation modes.
For our level scheme (Fig. 35b) the nonlinear susceptibility
χ

(2)
LL− (see Eq. (264)) is given by

χ
(2)
LL−[−(ω′p − ω′i),−ω′i, ω′p] =

1

2~
µ∗gfµfeµeg

ω′p − ωgf + iγgf
×

1

ω′p − ω′i − ωeg + iγeg)
+ (ω′i ↔ ω′p − ω′i). (267)

Eq. (266) represents a 6-mode (ωp, ωi, ωs, ω
′
p, ω
′
i, ω
′
s)

field-matter correlation function factorized into two general-
ized susceptibilities each representing the interaction of two
quantum and one classical mode with a different molecule.
Because of two constraints ωp = ωs + ωi, ω′p = ω′s + ω′i
that originate from time translation invariance on each of the
two molecules that generate the nonlinear response, Eq. (266)
only depends on four field modes. Each molecule creates a co-
herence in the field between states with zero and one photon.
By combining the susceptibilities from a pair of molecules
we obtain a photon occupation number that can be detected.
Thus, the detection process must be described in the joint
space of the two molecules and involves the interference of
four quantum pathways (two with bra and two with ket) with
different time orderings. Note that this pathway information
is not explicit in the Langevin approach.

For comparison, if all three fields (signal, idler and pump)
are classical, the number of material-field interactions is re-
duced to three - one for each field. Then the leading contribu-
tion to the field correlation function yields the semiclassical
nonlinear susceptibility χ(2)

+−−

χ
(2)
+−−[−(ω′p − ω′i),−ω′i, ω′p] =

1

2~2
〈g|T VLG(ω′p − ω′i)VLG(ω′p)V

†
L |g〉+

1

~2
〈g|T VLG†(ω′i)VLG(ω′p)V

†
L |g〉 =

1

~2

µ∗gfµfeµeg
ωp − ωgf + iγgf

×
[

1

ωp − ω′i − ωeg + iγeg
+

1

ω′i − ωeg − iγeg

]
+ (ω′i ↔ ωp − ω′i),

(268)

where G(ω) = 1/(ω −H0−/~ + iγ) is the retarded Liouville
Green’s function, and γ is lifetime broadening. χ

(2)
LL− pos-

sesses a permutation symmetry with respect to s ↔ i (both
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FIG. 36 (Color online) Left column: two dimensional PCC rate (log
scale in arb. units) calculated using quantum theory Eq. (175) as-
suming a single monochromatic pump with frequency ωp. Idler de-
tector resonant with intermediate level ω̄i = ωeg = 282THz - (a),
while ωeg − ω̄i = 2GHz for (b). Right column: same as left but
for a pump made out of two monochromatic beams with frequencies
ωp − ω′p = 2 · 10−6ωp.

have L index). In contrast the semiclassical calculation via
χ

(2)
++− is non symmetric with respect to s ↔ i ( one + and

one − indexes), which results in PCC rate that depends upon
whether the signal or idler detector clicks first (Shwartz et al.,
2012).

2. Simulations of typical PDC signals

Fig. 35d-k compares both susceptibilities calculated for
a typical KTP crystal (PPKTP) represented by a degenerate
three-level system with parameters taken from Ref. (D’auria
et al., 2008; Wu et al., 1986). Fig. 35f,h,j show that far from
resonances (ωi 6= ωeg , ωp 6= ωgf ) the semiclassical and quan-
tum susceptibilities coincide and depend weakly on the fre-
quencies ωp and ωi. This is the regime covered by the semi-
classical theory, where the susceptibility is assumed to be a
constant. Similar agreement between classical and quantum
susceptibilities can be observed if the pump is resonant with
two-photon transition ωp ' ωgf but the idler is off resonance
ωi 6= ωeg - Fig. 35g,h,k. However, close to resonance - Fig.
35d,e the two susceptibilities are very different. The semi-
classical susceptibility χ

(2)
+−− vanishes at resonance, where

the quantum susceptibility χ(2)
LL− reaches its maximum.

To put the present ideas into more practical perspective we
show in Fig. 36 the PCC rate for a monochromatic pump ωp
and mean signal detector frequency ω̄s. The quantum theory
yields one strong resonant peak at ω̄s = ωp − ωeg and two
weak peaks at ωp = ωgf and ω̄s = ωeg if the idler detector is
resonant with the intermediate state |e〉: ω̄i = ωeg - Fig. 36a.
However, if we tune the idler detector to a different frequency,
for instance ωeg − ω̄i = 2GHz there is an additional peak at
ω̄s = ωp−ω̄i - Fig. 36b. Similarly, when the pump consists of
two monochromatic beams ωp 6= ω′p (panels c,d) the number

of peaks are doubled compare to single monochromatic pump.
Clearly, one can reproduce the exact same peaks for ω′p as for
ωp.

3. Spectral diffusion

Spectral diffusion (SD) which results from the stochastic
modulation of frequencies can manifest itself either as dis-
crete random jumps of the emission frequency (Santori et al.,
2010; Siyushev et al., 2009; Walden-Newman et al., 2012) or
as a broadening of a hole burnt in the spectrum by a narrow-
band pulse (Wagie and Geissinger, 2012; Xie and Trautman,
1998). We focus on the latter case assuming that the electronic
states of molecule α = a, b are coupled to a harmonic bath
described by the Hamiltonian Ĥα

B =
∑
k ~ωk(â†αk â

α
k + 1/2)

(see Fig. 38b). The bath perturbs the energy of state ν. This
is represented by the Hamiltonian

Ĥα
ν = ~−1〈να|Ĥ|να〉 = ενα + q̂να + Ĥα

B , (269)

where q̂ν is a collective bath coordinate

q̂να = ~−1〈να|ĤSB |να〉 =
∑

k

dνανα,k(â†k + âk), (270)

dmn,k represents bath-induced fluctuations of the transition
energies (m = n) and the intermolecular coupling (m 6= n).
We define the line-shape function

gα(t) ≡ gναν′α(t) =

∫
dω

2π

C ′′ναν′α(ω)

ω2

×
[
coth

(
β~ω

2

)
(1− cosωt) + i sinωt− iωt

]
, (271)

where the bath spectral density is given by

C ′′ναν′α(ω) =
1

2

∫ ∞

0

dteiωt〈[q̂να(t), q̂ν′α(0)]〉, (272)

β = kBT with kB being the Boltzmann constant and T is the
ambient temperature. We shall use the overdamped Brownian
oscillator model for the spectral density, assuming a single
nuclear coordinate (να = ν′α)

C ′′νανα(ω) = 2λα
ωΛα

ω2 + Λ2
α

, (273)

where Λα is the fluctuation relaxation rate and λα is the
system-bath coupling strength. The corresponding lineshape
function then depends on two parameters: the reorganization
energy λα denoting the strength of the coupling to the bath
and the fluctuation relaxation rate Λα =

√
2λαkBT/~. In the

high-temperature limit kBT � ~Λα we have

gα(t) =

(
∆2
α

Λ2
α

− i λα
Λα

)(
e−Λαt + Λαt− 1

)
. (274)
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For a given magnitude of fluctuations ∆α, α = a, b the
FWHM of the absorption linewidth (Mukamel, 1995)

Γα =
2.355 + 1.76(Λα/∆α)

1 + 0.85(Λα/∆α) + 0.88(Λα/∆α)2
∆α. (275)

The absorption and emission lineshape functions for a pair of
molecules obtained in the slow nuclear dynamics limit: Λα �
∆α are given by (Mukamel, 1995)

σA(ω) =
∑

α=a,b

(2π∆α)−1/2e
− (ω−ω0

α−λα)2

2∆2
α , (276)

σF (ω) =
∑

α=a,b

(2π∆α)−1/2e
− (ω−ω0

α+λα)2

2∆2
α , (277)

where 2λα is the Stokes shift and ∆α =
√

2λαkBT/~ is
a linewidth parameter. Together with the relaxation rate Λα
(see Eq. (274)) these parameters completely describe the SD
model and govern the evolution of the emission linewidth be-
tween the initial time given by Eq. (276) (see Fig. 37a) and
long time given by Eq. (277) (see Fig. 37b).

The corresponding four-point matter correlation function
may be obtained by the second order cumulant expansion
(Mukamel, 1995)

Fα(t1, t2, t3, t4) = |µα|4e−iωα(t1−t2+t3−t4)eΦα(t1,t2,t3,t4),
(278)

where ωα ≡ ωeα − ωgα is the absorption fre-
quency, Φα(t1, t2, t3, t4) is the four-point lineshape function
Φα(t1, t2, t3, t4) = −gα(t1 − t2) − gα(t3 − t4) + gα(t1 −
t3)− gα(t2 − t3) + gα(t2 − t4)− gα(t1 − t4).

We focus on the SD in the “hole burning” limit (HBL)
which holds under two conditions: First, the dephasing is
much faster than the fluctuation timescale, i.e. t′k � Λ−1

α ,
k = 1, 2, 3, 4. Second, if excitation pulse duration σ−1

p and
the inverse spectral (σjω)−1, and temporal (σjT )−1, j = r, s
gate bandwidths are much shorter than the fluctuation time
scales, one may neglect the dynamics during the delay be-
tween population evolution and its detection. This parameter
regime is relevant to crystals which store information in the
form of reversible notches that are created in their optical ab-
sorption spectra at specific frequencies. Long storage times
(Longdell et al., 2005), high efficiencies (Hedges et al., 2010),
and many photon qubits in each crystal (Shahriar et al., 2002)
can be achieved in this limit. The HBL limit is natural for
long-term quantum memories where entanglement is achieved
with telecom photons, proved the possibility of quantum inter-
net (Clausen et al., 2011; Saglamyurek et al., 2011).

Time-and-frequency resolved fluorescence is the simplest
way to observe SD. The molecular transition frequency is cou-
pled linearly to an overdamped Brownian oscillator that rep-
resents the bath (see Fig. 38b). This fluorescence signal given
by Eq. (284) is depicted as a series of the snapshot spectra at

different times for molecule a in Fig. 37c. It shows a time
dependent frequency redshift ω̃a(t) and time dependent spec-
tral broadening given by σ̃a0(t). Initially ω̃a(0) = ω0

a + λa
whereas at long times ω̃a(∞) = ω0

a − λa, where 2λα is the
Stokes shift. Same for molecule b is shown in Fig. 37d. Be-
cause of the different reorganization energies λa, λb and relax-
ation rates Λa, Λb the Stokes shift dynamics and dispersion are
different. Even when the absorption frequencies are the same
ωa = ωb, the fluorescence can show a different the profile
due to SD. This affects the distinguishability of the emitted
photons as will be demonstrated below.

J. Generation and entanglement control of photons
produced by two independent molecules by
time-and-frequency gated photon coincidence counting
(PCC).

As discussed in section II, entangled photons can be pro-
duced by a large variety of χ(2)-processes. Alternatively, pho-
tons can be entangled by simultaneous excitation of two re-
mote molecules and mixing the spontaneously emitted pho-
tons on the beam splitter. This entangled photon generation
scheme is suitable e.g. for spectroscopic studies of single
molecules by single photons discussed below. The manipu-
lation of single photon interference by appropriate time-and-
frequency gating discussed below is presented in details in
Ref. (Dorfman and Mukamel, 2014a). The generated entan-
gled photon pair can be used in logical operations based on
optical measurements that utilize interference between indis-
tinguishable photons.

We examine photon interference in the setup shown in Fig.
38a. A pair of photons is generated by two remote two-
level molecules a and b with ground gα and excited state eα,
α = a, b. These photons then enter a beam splitter and are
subsequently registered by time-and-frequency gated detec-
tors s and r. There are three possible outcomes: two photons
registered in detector s, two photons registered in r or coin-
cidence where one photon is detected in each. The ratios of
these outcomes reflects the photon Bose statistics and depends
on their degree of indistinguishability. If the two photons in-
cident on the beam splitter are indistinguishable the photon
coincidence counting signal (PCC) vanishes. This causes the
Hong-Ou-Mandel (HOM) dip when varying the position of
the beam splitter which causes delay T between the two pho-
tons. The normalized PCC rate varies between 1 for com-
pletely distinguishable photons (large T ) and 0 when they are
totally indistinguishable (T = 0). For classical fields and
50:50 beam splitter the PCC rate may not be lower than 1/2.
We denote the photons as indistinguishable (distinguishable)
if the PCC rate is smaller (larger) than 1/2.

PCC is typically measured by time-resolved detection
(Gerry and Knight, 2005; Glauber, 2007b). Originally per-
formed with entangled photons generated by parametric down
conversion (PDC) (Hong et al., 1987) the shape of the dip vs
delay is usually related to the two-photon state envelope which
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FIG. 37 (Color online) Top row: Absorption (276) - (a) and fluorescence (277) - (b) line shapes vs displaced frequency ∆ω̄ = ω− 1
2
(ωa+ωb).

Frequency dispersed time-resolved fluorescence (284) displayed as a snapshot spectra for molecule a - (c) and b - (d). Bottom row: PCC for
different transition energies of molecules excited at ωp = ω0

b + λb - (e); PCC for different values of the SD time scale Λa and Λb and fixed
linewidth Γa, Γb according to Eq. (275) - (f); PCC for different frequency gate bandwidths - (g) at fixed time gate bandwidth σT = 100
MHz and for different time gate bandwidths - (h) at fixed frequency gate bandwidth σω = 100 MHz. Molecules have distinct SD timescales
Λa = 15 MHz, Λb = 1 MHz and ω0

b − ω0
a = 1 MHz.

is governed by an effective PDC Hamiltonian (Dorfman and
Mukamel, 2012b). Bath effects can become important for re-
mote emitters and have been introduced phenomenologically
(Lettow et al., 2010) below. We present a microscopic de-
scription of PCC with bath fluctuations by formulating the sig-
nal in the joint field-matter space measured by simultaneous
time-and-frequency resolved detection. This complex mea-
surement can be achieved using high-speed photodiode which
converts a fast optical signal into a fast electric current, fast
oscilloscopes to observe the waveform, wide bandwidth spec-
trum analyzers and other elements. Short pulse characteri-
zation using time-frequency map such as frequency-resolved
optical gating (FROG) (Trebino, 2000), spectral phase inter-
ferometry for direct-field reconstruction (SPIDER) (Dorrer
et al., 1999) are well established tools for ultrafast metrol-
ogy (Walmsley and Dorrer, 2009; Wollenhaupt et al., 2007).
Extending these techniques to a single photon time and fre-
quency resolved detection is challenging and may be achieved
if combined with on-chip tunable detectors (Gustavsson et al.,
2007) or upconversion processes (Gu et al., 2010; Ma et al.,
2011).

1. PCC of single photons generated by two remote emitters.

The time-and-frequency gated PCC signal is described by
the two pairs of loop diagrams shown in Fig. 38c. Each loop
represents one molecule (a or b) which undergoes four field-

matter interactions and each detector interacts twice with the
field. Fig. 38c shows that after interacting with the pump
(with its ket) at time t2 molecule a evolves in the coherence
ρeaga during time interval t′2. The second interaction of the
pump with the bra then brings the molecule into a popula-
tion state ρeaea which evolves during interval t1 until the first
interaction with spontaneous emission mode occurs with ket.
The molecule then evolves into the coherence ρgaea during t′1
until the second bra- interaction of spontaneous mode. During
population and coherence periods, the characteristic timescale
of the dynamics is governed by population relaxation and de-
phasing, respectively.

The relevant single particle information for molecule
α is given by the four point dipole correlation function
Fα(t1, t2, t3, t4) = 〈Vge(t1)V †eg(t2)Vge(t3)V †eg(t4)〉α, where
V and V † are the lowering and raising dipole transition op-
erators, respectively. Diagrams i in Fig. 38c represent non-
interfering terms given by a product of two independent flu-
orescence contributions of the individual molecules. Dia-
grams ii represent an interference in the joint space of the
two molecules and involves the interference of eight quan-
tum pathways (four with the bra and four with the ket) with
different time orderings. Each molecule creates a coherence
in the field between states with zero and one photon |0〉〈1|
and |1〉〈0|. By combining the contributions from a pair of
molecules we obtain a photon population |1〉〈1| that can be
detected (Dorfman and Mukamel, 2012a,b). For a pair of
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FIG. 38 (Color online) Time-and-frequency resolved measurement of PCC with spectral diffusion. Schematic of the PCC experiment with
two indistinguishable source molecules - (a), the two-level model of the molecule with SD used in our simulations - (b). (c) - Loop diagrams
for the PCC rate of emitted photons from two molecules (for diagram rules see Appendix A). The left and right branches of each diagram
represent interactions with ket- and bra- of the density matrix, respectively. Field-matter interactions with the pump pulses p1 and p2 (blue),
spontaneously emitted s, s′, r, r′ photons (red) and detectors (brown).

identical molecules, the beam splitter destroys the pathway in-
formation making the molecules indistinguishable and giving
rise to quantum interference.

The PCC signal (175) (see Ref. (Dorfman and Mukamel,
2014a)) has been calculated for the output fields E3 and E4

(i = 3, s = 4) of the beam splitter (see Fig. 38a). The fields
in the output 3, 4 and input 1, 2 ports of the 50:50 beamsplitter
are related by

E3(t) =
E1(t)− iE2(t+ T )√

2
, E4(t) =

E2(t)− iE1(t− T )√
2

,

(279)

where ±cT is small difference of path length in the two arms.
Taking into account that Eq. (175) should be modified to in-
clude the beam splitter position and absorb it into the gating
spectrograms, the time-and-frequency resolved PCC in this
case is given by

R34
c (Γr,Γs;T ) =

1

(2π)2

∫ ∞

−∞
d2Γ′rd

2Γ′s

[W
(r)
D (Γr,Γ

′
r; 0)W

(s)
D (Γs,Γ

′
s, 0)R

(i)
B (Γ′r,Γ

′
s)+

W
(r)
D (Γr,Γ

′
r;−T )W

(s)
D (Γs,Γ

′
s, T )R

(ii)
B (Γ′r,Γ

′
s)]

+ (s↔ r, T ↔ −T ). (280)

Here Γ′j = {t′j , ω′j} represents the set of parameters of the
matter plus field incident on the detector j = r, s. Eq. (280)
is given by the spectral and temporal overlap of the Wigner
spectrograms of detectors W (s)

D , W (r)
D and bare signal path-

ways R(i)
B and R(ii)

B given by

R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r) =

∑

u,u′

∑

v,v′

∫ ∞

−∞
dτsdτre

−iω′sτs−iω′rτr

× 〈T Ê†u′R(t′s + τs, rb)Ê
†
v′R(t′r + τr, ra)ÊvL(t′r, ra)

× ÊuL(t′s, rb)e
− i

~
∫∞
−∞ Ĥ′−(T )dT 〉, (281)

R
(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r) = −

∑

u,u′

∑

v,v′

∫ ∞

−∞
dτsdτre

−iω′sτs−iω′rτr

× 〈T Ê†u′R(t′s + τs, rb)Ê
†
v′R(t′r + τr, ra)ÊuL(t′s, ra)

× ÊvL(t′r, rb)e
− i

~
∫∞
−∞ Ĥ′−(T )dT 〉. (282)

Eqs. (281) -(282) contain all relevant field matter interactions.
The modified expressions for the gating spectrograms that in-
clude delay T are given in (Dorfman and Mukamel, 2014a).
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2. Time-and-frequency gated PCC

Under SD and HBL conditions the PCC signal (175) is
given by

R34
c (Γr,Γs;T ) = R0C

r
a(Γr)C

s
b (Γs)×[

1− Ira(Γr, t̄s,−T )Isb (t̄r,Γs, T )

Cra(Γr)Csb (Γs)
cosU(Γr,Γs;T )e−Γ̃(t̄s−t̄r)

]

+ (a↔ b, T ↔ −T ), (283)

where expressions in the last line represent permutation of the
molecules a and b, Γj = {t̄j , ω̄j} represents a set of gating
parameters for the detector j = r, s. Cα(Γ = {t, ω}) is the
time-and-frequency resolved fluorescence of molecule α =
a, b corresponding to diagram i in Fig. 38c:

Cjα(t, ω) = Cjα0(t)e
− (ωp−ω0

α−λa)2

2σ̃2
pα

− (ω−ω̃α(t))2

2σ̃
j2
α (t) , (284)

ω0
α = ωα − λα is the mean absorption and fluorescence fre-

quency. Ijα(Γ1, t2, τ) and Ijα(t1,Γ2, τ) with t1 < t2 is the
interference contribution α = a, b, j = r, s corresponding to
diagram ii in Fig. 38c

Ijα(Γ1, t2, τ) = Ijα0(t1, t2)e
− ω2

ab

4σ
j2
T

− 1
4σ

j
τα(t1,t2)2τ2

×e
− (ωp−ωjpα(t1,t2))2

2σ
j2
pα(t1,t2) e

− (ω1−ω
j
α(t1,t2))2

2σ
j2
α (t1,t2) , (285)

U(Γr,Γs; τ) = ωa(t̄s − t̄r) + ωrτa(t̄r, t̄s, ω̄r)τ +
(λa/Λa)(2[Fa(t̄r)−Fa(t̄s)]+Fa(t̄s− t̄r))−(a↔ b, r ↔ s),
Γ̃(t) =

∑
α=a,b

∆2
α

Λ2
α
Fα(t) with Fα(t) = e−Λαt + Λαt − 1,

α = a, b and all the remaining parameters are listed in Ref.
(Dorfman and Mukamel, 2014a). The contribution of Eq.
(284) is represented by an amplitude square coming from each
molecule in the presence of fluctuations. The interference
term (285) generally cannot be recast as a product of two am-
plitudes (Mukamel and Rahav, 2010). Eqs. (283) - (285) are
simulated below using the typical parameters of the two pho-
ton interference experiments (Ates et al., 2012; Bernien et al.,
2012; Coolen et al., 2008; Lettow et al., 2010; Patel et al.,
2010; Sanaka et al., 2012; Santori et al., 2002; Sipahigil et al.,
2012; Trebbia et al., 2010; Wolters et al., 2013).

3. Signatures of gating and spectral diffusion in the HOM dip.

Photon indistinguishability depends on the molecular tran-
sition frequencies. Fig. 37e shows that for fixed time and fre-
quency gate bandwidths σjω and σjT , j = r, s the photons are
distinguishabe as long as the transition energy offset ω0

b−ω0
a is

larger than the gate bandwidth and are indistinguishable oth-
erwise. The SD timescale is a key parameter affecting the
degree of indistinguishability. Using Eq. (275) we fixed the
absorption linewidth Γα and varied Λα and ∆α. The PCC sig-
nal (283) depicted in Fig. 37f shows that if the molecules have

nearly degenerate transition energy offset for slower fluctua-
tions the photons are indistinguishable. Increasing the SD rate
of one of the molecules increases the photon distinguishabil-
ity when both time and frequency gates are broader than the
difference in transition frequencies.

We further illustrate the effect of frequency and time gating
on spectral diffusion. Fig. 37g shows that if two molecules
have different SD timescales and the frequency gate band-
width is narrow the photons are rendered distinguishable and
HOM dip is 0.6. By increasing the σω the photons become
indistinguishable and HOM dip is 0.48 for σω = 120 MHz
and 0.35 for σω = 200 MHz. In all three cases we kept the
time gate fixed. Alternatively we change the time gate band-
width while keeping the frequency gate fixed. Fig. 37h shows
that initially indistinguishable photons at σT = 80 MHz with
HOM dip 0.675 become indistinguishable at σT = 110 MHz
with HOM dip 0.45 and at σT = 150 MHz with HOM dip
0.275. Thus, if the presence of the bath erodes the HOM dip
the manipulation of the detection gating allows to preserve the
quantum interference

V. SUMMARY AND OUTLOOK

The term quantum spectroscopy broadly refers to spec-
troscopy techniques that make use of the quantum nature of
light. Photon counting studies obviously belong to this cate-
gory. Studies that detect the signal field such as heterodyne
detection or fluorescence are obtained by expanding the sig-
nals in powers of the field operators. These depend on mul-
tipoint correlation functions of the incoming fields. Spec-
troscopy is classical if all fields are in a coherent state and the
observable is given by normally ordered products. of field am-
plitudes. The appearance of field correlation functions rather
than products of amplitudes may arise from stochastic clas-
sical fields (Asaka et al., 1984; Beach and Hartmann, 1984;
Morita and Yajima, 1984; Turner et al., 2013) or may reflect
genuine quantum field effects. These should be sorted out

Another important aspect of quantum spectroscopy, which
we had only touched briefly in section IV.B, concerns the non-
classical fluctuations of quantum light and their exploitation
as spectroscopic tools (Benatti et al., 2010; Giovannetto et al.,
2011). These may also lead to novel features in nonlinear op-
tical signals (López Carreño et al., 2015).

We now briefly survey the main features of quantum spec-
troscopy. First, the unusual time/frequency windows for ho-
modyne, heterodyne and fluorescence detection arising due
to the quantum nature of the light generation resulting in the
enhanced resolution of the signals not accessible by classi-
cal light. Second, photon counting and interferometric detec-
tion schemes constitute a class of multidimensional signals
that are based on detection and manipulation of a single pho-
tons and are parametrized by the emitted photons rather by
the incoming fields. Third, the quantum nature of light man-
ifest in collective effects in many-body systems by project-
ing entanglement of the field to matter. This allows to e.g.
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prepare and control of higher excited states in molecular ag-
gregates, access dark multi particle states, etc. Fourth, due
to the lack of fluctuation dissipation relations, quantum light
can manifest new combinations of field and corresponding
matter correlation functions not governed by semiclassical re-
sponse functions such as in parametric down conversion, sum-
or difference-frequency generation, two-photon-induced fluo-
rescence, etc. Finally, elaborate pulse shaping techniques that
have been recently scaled down to single photon level provide
an additional tool for multidimensional measurements using
delay scanning protocols not available for classical laser ex-
periments.

The potential advantage of quantum spectroscopy may be
traced back to the strong time-frequency correlations inherent
to quantum light, and the back-action of the interaction events
onto the quantum field’s state. The combination of the two
effects leads to the excitation of distinct wavepackets, which
can be designed to enhance or suppress selected features of
the resulting optical signals.

We have described nonlinear optical signals in terms of con-
volutions of multi-time correlation functions of the field and
the matter. This approach naturally connects to the estab-
lished framework of quantum optics, where field correlation
functions are analyzed (Glauber, 1963), with nonlinear laser
spectroscopy, which investigates the information content of
matter correlation functions. As such, it provides a flexible
platform to explore quantum light interaction with complex
systems well beyond spectroscopic applications. This could
include coherent control with quantum light (Schlawin and
Buchleitner, 2015; Wu et al., 2015), or the manipulation of
ultracold atoms with light (Mekhov and Ritsch, 2012). En-
tangled quantum states with higher photon numbers (Shalm
et al., 2013) promise access to the χ(5)-susceptibility and its
additional information content. Combination of quantum light
with strong coupling to intense fields in optical cavities (Her-
rera et al., 2014; Hutchison et al., 2012; Schwartz et al., 2013)
may result in a new coherent control techniques of chemical
reactions.
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L(⌧)

FIG. 39 Diagram construction in a QED formulation: The vertical
blue lines indicate the evolution of the matter density matrix. An ar-
row pointing towards (away from) it corresponds to a matter excita-
tion V †(τ) (de-excitation V (τ)), which is accompanied by a photon
annihilation E(τ) [creation E†(τ)]. In the Liouville space formu-
lation, interactions on the left side represent left-superoperators (1),
and interaction on the right right-superoperators (2).

Appendix A: Diagram construction

In leading (fourth-) order perturbation theory, the popula-
tion of a two-excitation state f is given by

pf(t; Γ) =

(
− i
~

)4 ∫ t

t0

dτ4

∫ τ4

t0

dτ3

∫ τ3

t0

dτ2

∫ τ2

t0

dτ1

×
〈
Pf (t)Hint,−(τ4)Hint,−(τ3)Hint,−(τ2)Hint,−(τ1)%(t0)

〉
,

(A1)

where Pf (t) = |f(t)〉〈f(t)| is the projector onto the final
state, the interaction Hamiltonian Hint as given in Eq. (7), and
Γ denotes the set of control parameters in the light field.

Eq. (A1) contains 44 = 256 terms, of which only very few
contribute to the signal. These contributions can be conve-
niently found using a diagrammatic representation. Its basic
building blocks are shown in Fig. 39: The evolution of both
the bra and the ket side of the density matrix in Eq. (10) [〈ψ|
and |ψ〉 in Eq. (17)] are represented by vertical blue lines, and
sample excitations (de-excitations) are represented by arrows
pointing towards (away from) the density matrix.

1. Loop diagrams

The following rules are used to construct the field and mat-
ter correlation function from the diagrams (Marx et al., 2008):

1. Time runs along the loop clockwise from bottom left to
bottom right.

2. The left branch of the loop represents the ”ket”, the right
represents the ”bra”.

3. Each interaction with a field mode is represented by an
arrow line on either the right (R-operators) or the left
(L-operators).

4. The field is marked by dressing the lines with arrows,
where an arrow pointing to the right (left) represents the
field annihilation (creation) operator Eα(t) (E†α(t)).
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= tr
n

VR(⌧ 01)VR(⌧ 02)Pf (t)V †
L(⌧2)V

†
L(⌧1)%(t0)

o

= tr
n

VRG†(s4)VRG†(s3)PfG(s2)V
†
LG(s1)V

†
L%
o

⇥tr
n

E†
3(t � s4)E

†
4(t � s4 � s3)E2(t � s2)E1(t � s2 � s1)%field

o

⇥tr
n

E†
3(⌧

0
2)E

†
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0
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o
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FIG. 40 Loop diagram construction in a QED formulation: Using the diagram rules given in the text, the diagram translates into the Heisenberg
picture expression (top) or the Schrödinger picture expression (bottom). The corresponding field correlation functions are reordered as in the
loop diagram.

5. Within the RWA, each interaction with the field anni-
hilates the photon Eα(t) and is accompanied by apply-
ing the operator V †α (t), which leads to excitation of the
state represented by ket and deexcitating of the state
represented by the bra, respectively. Arrows pointing
”inwards” (i.e. pointing to the right on the ket and to
the left on the bra) consequently cause absorption of a
photon by exciting the system, whereas arrows pointing
”outwards” (i.e. pointing to the left on the bra and to
the right on the ket) represent deexcitating the system
by photon emission.

6. The observation time t, is fixed and is always the last.
As a convention, it is chosen to occur from the left. This
can always be achieved by a reflection of all interac-
tions through the center line between the ket and the
bra, which corresponds to taking the complex conjugate
of the original correlation function.

7. The loop translates into an alternating product of inter-
actions (arrows) and periods of free evolutions (vertical
solid lines) along the loop.

8. Since the loop time goes clockwise along the loop, peri-
ods of free evolution on the left branch amount to prop-
agating forward in real time with the propagator give by
the retarded Green’s function G. Whereas evolution on
the right branch corresponds to backward propagation
(advanced Green’s function G†).

9. The frequency arguments of the various propagators
are cumulative, i.e. they are given by the sum of all
”earlier” interactions along the loop. Additionally, the
ground state frequency is added to all arguments of the
propagators.

10. The Fourier transform of the time-domain propagators
adds an additional factor of i(−i) for each retarded (ad-
vanced) propagator.

11. The overall sign of the SNGF is given by (−1)NR ,
where NR stands for the number of R superoperators.

2. Ladder diagrams

The same rules may be applied to evaluate ladder diagrams,
with the exception of rule 1, which reads

1. Time runs from bottom to top.

Appendix B: Analytical expressions for the Schmidt
decomposition

Here, we point out how the Schmidt decomposition (34)
may be carried out analytically. To this end, we approximate
the phase-matching function by a Gaussian,

sinc
(

∆k(ωa, ωb)L

2

)
≈ exp

[
−γ (∆k(ωa, ωb)L)

2
]
, (B1)

where the factor γ = 0.04822 is chosen, such that the Gaus-
sian reproduces the central peak of the sinc-function. In com-
bination with the Gaussian pump envelope (53), this enables
us to use the relation for the decomposition of a bipartite
Gaussian (Grice et al., 2001; U’Ren et al., 2003)

− iα

~
√

2πσ2
p

exp
[
−ax2 − 2bxy − cy2

]

=

∞∑

n=0

rnHn(k1x)H∗n(k2y), (B2)

where we defined the Hermite functions Hn. Here, we have
a = 1/(2σ2

p) + γT 2
1 , b = 1/(2σ2

p) + γT1T2, and c =
1/(2σ2

p) + γT 2
2 . The Hermite functions are then given by

Hn(kix) =

√
k√
π2nn!

ei
3π
8 −(kix)2

hn(kix), (B3)

with the Hermite polynomials hn, and we further defined the
parameters

µ =
−√ac+

√
ac− b2

b
, (B4)
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FIG. 41 Ladder diagram construction in a QED formulation: Using the diagram rules given in the text, the diagram translates into the
Heisenberg picture expression (top) or the Schrödinger picture expression (bottom). The corresponding field correlation functions are reordered
as in the loop diagram.

and

rn =
α

~

√
1 + µ2

4acσ2
p

µn, (B5)

k1 =

√
2a(1− µ2)

1 + µ2
, (B6)

k2 =

√
2c(1− µ2)

1 + µ2
. (B7)

Appendix C: Green’s functions of matter

In the case of the model system described in section II.J.1,
the superoperator correlation functions in Eqs. (102)-(104)
may be rewritten as sum-over-state expressions,

pf,(I)(t; Γ) =

(
− i
~

)4 ∫ ∞

0

dt4

∫ ∞

0

dt3

∫ ∞

0

dt2

∫ ∞

0

dt1

×
∑

e,e′

Gff (t4)µe′fGfe′(t3)µge′Gfg(t2)µefGeg(t1)µge

×
〈
E†(t− t4 − t3)E†(t− t4)E(t− t4 − t3 − t2)E(t− t4 − t3 − t2 − t1)

〉
, (C1)

pf,(II)(t; Γ) =

(
− i
~

)4 ∫ ∞

0

dt4

∫ ∞

0

dt3

∫ ∞

0

dt2

∫ ∞

0

dt1

×
∑

e,e′,e′′

Gff (t4)µe′′fGfe′′(t3)µe′′fGee′;e′′e′′(t2)µge′Geg(t1)µge

×
〈
E†(t− t4 − t3)E†(t− t4)E(t− t4 − t3 − t2)E(t− t4 − t3 − t2 − t1)

〉
, (C2)

pf,(III)(t; Γ) =

(
− i
~

)4 ∫ ∞

0

dt4

∫ ∞

0

dt3

∫ ∞

0

dt2
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0

dt1

×
∑

e,e′,e′′

Gff (t4)µe′′fGe′′f (t3)µe′′fGee′;e′′e′′′(t2)µge′Geg(t1)µge

×
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E†(t− t4 − t3)E†(t− t4)E(t− t4 − t3 − t2)E(t− t4 − t3 − t2 − t1)

〉
. (C3)

Here, we have changed to the time delay variables t1, · · · t4.
The various propagators are given by

Geg(t) = Θ(t) e−i(ωeg−iγeg)t, (C4)

Gfe(t) = Θ(t) e−i(ωfe−iγfe)t, (C5)

Gfg(t) = Θ(t) e−i(ωfg−iγfg)t, (C6)

and the single-excitation propagator

Gee′;e′′e′′′(t) = Θ(t)

(
(1− δee′)δee′′δe′e′′′e−i(ωee′−iγee′ )t

+ δee′δe′′e′′′ exp [Kt]ee′′

)
, (C7)
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with the transport matrix

K =
2π

T0

(
−1/20 1

1/20 −1

)
, (C8)

which transfers transfers the single excited state populations
to the equilibrium state (with pe1 = 5% and pe2 = 95%) with

the rate 2π/T0.

In the frequency domain, the sum-over-state expressions
read
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(
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~
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Appendix D: Intensity measurements: TPA vs Raman

Expanding the frequency domain signal (137) - (140)
(Roslyak and Mukamel, 2009a) in eigenstates we obtain
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∫
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µge
ωa − ωe + iγe

µeg′

ωa − ω − ωg′ − iγg
µg′e′

ωa + ωb − ω − ωe′ − iγe
µe′g, (D3)

S1, (IV)(ω; Γ) =
2

~4
=
∫
dωa
2π

∫
dωb
2π

〈
E†(ω)E(ωb)E

†(ωa + ωb − ω)E(ωa)
〉

×
∑

e,e′,g′

µge
ωa − ωe + iγe

µeg′

ω − ωb − ωg′ + iγg

µg′e′

ω − ωe′ + iγe
µe′g. (D4)

Using the definitions of transition operators (141) - (145) we
recast the signal as
∫
dω

2π
S1, (I)(ω; Γ) = =

∫
dωsum

π

∑

f

〈
T

(2)†
fg (ωsum)T

(2)
fg (ωsum)

〉

ωsum − ωf + iγf
,

(D5)
∫
dω

2π
S1, (II)(ω; Γ) = =

∫
dω

π

∑

e

〈
T

(1)†
eg (ω)T

(3)
eg (ω)

〉

ω − ωe + iγe
,

(D6)
∫
dω

2π
S1, (III)(ω; Γ) = =

∫
dω−
π

∑

g′

〈
T

(2)†
g′g (ω−)T

(2)
g′g (ω−)

〉

ω− − ωg′ − iγg
,

(D7)
∫
dω

2π
S1, (IV)(ω; Γ) = =

∫
dω

π

∑

e

〈
T

(1)†
eg (ω)T

′(3)
eg (ω)

〉

ω − ωe + iγe
.

(D8)

Appendix E: Time-and-frequency gating

1. Simultaneous time-and-frequency gating

To a good approximation we can represent an ideal detector
by two-level atom that is initially in the ground state b and is
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promoted to the excited state a by the absorption of a photon
(see Fig. 21a). The detection of a photon brings the field from
its initial state ψi to a final state ψf . The probability amplitude
for photon absorption at time t can be calculated in first-order
perturbation theory, which yields (Glauber, 2007b)

〈ψf |E(t)|ψi〉 · 〈a|d|b〉, (E1)

where d is the dipole moment of the atom and E(t) =
E†(t) +E(t) is the electric field operator (we omit the spatial
dependence). Clearly, only the annihilation part of the electric
field contributes to the photon absorption process. The transi-
tion probability to find the field in state ψf at time t is given
by the modulus square of the transition amplitude
∑

ψf

|〈ψf |E(t)|ψi〉|2 = 〈ψi|E†(t)
∑

ψf

|ψf 〉〈ψf |E(t)|ψi〉

= 〈ψi|E†(t)E(t)|ψi〉. (E2)

Since the initial state of the field ψi is rarely known with cer-
tainty, we must trace over all possible initial states as deter-
mined by a density operator ρ. Thus, the output of the ideal-
ized detector is more generally given by tr

[
ρE†(t)E(t)

]
.

Simultaneous time-and-frequency resolved measurement
must involve a frequency (spectral) gate combined with time
gate - a shutter that opens up for very short interval of time.
The combined detector with input located at rG is repre-
sented by a time gate Ft centered at t̄ followed by a fre-
quency gate Ff centered at ω̄ (Stolz, 1994). First, the time
gate transforms the electric field E(rG, t) =

∑
s Ês(rG, t)

with Ês(rG, t) = E(rG, ωs)e
−iωst as follows:

E(t)(t̄; rG, t) = Ft(t, t̄)E(rG, t). (E3)

Then, the frequency gate is applied E(tf)(t̄, ω̄; rG, ω) =
Ff (ω, ω̄)E(t)(t̄; rG, ω) to obtain the time-and-frequency-
gated field. We assume that the time gate is applied first.
Therefore, the combined detected field at the position rD can
be written as

E(tf)(t̄, ω̄; rD, t) =

∫ ∞

−∞
dt′Ff (t− t′, ω̄)Ft(t

′, t̄)E(rG, t
′),

(E4)

where E(t) is the electric field operator (8) in the Heisenberg
picture. Similarly, one can apply the frequency gate first and
obtain frequency-and-time-gated field E(ft).

E(ft)(t̄, ω̄; rD, t) =

∫ ∞

−∞
dt′Ft(t, t̄)Ff (t− t′, ω̄)E(rG, t

′).

(E5)

The following discussion will be based on Eq. (E4). Eq. (E5)
can be handled similarly.

For gaussian gates

Ft(t
′, t) = e−

1
2σ

2
T (t′−t)2

, Ff (ω′, ω) = e
− (ω′−ω)2

4σ2
ω , (E6)

the detector time-domain and Wigner spectrograms are given
by

D(t, ω, t′, τ) =
σω√
2π
e−

1
2σ

2
T (t′−t)2− 1

2 σ̃
2
ωτ

2−[σ2
T (t′−t)+iω]τ

(E7)

WD(t, ω; t′, ω′) = NDe
− 1

2 σ̃
2
T (t′−t)2− (ω′−ω)2

2σ̃2
ω
−iA(ω′−ω)(t′−t)

,
(E8)

where

σ̃2
ω = σ2

T + σ2
ω, σ̃2

T = σ2
T +

1

σ−2
ω + σ−2

T

,

ND =
1

σT [σ2
ω + σ2

T ]1/2
, A =

σ2
T

σ2
T + σ2

ω

. (E9)

Note that σT and σω can be controlled independently, but
the actual time and frequency resolution is controlled by σ̃T
and σ̃ω , respectively, which always satisfy Fourier uncertainty
σ̃ω/σ̃T > 1. For lorentzian gates

Ft(t
′, t) = θ(t− t′)e−σT (t−t′), Ff (ω′, ω) =

i

ω′ − ω + iσω
,

(E10)

the detector time-domain and Wigner spectrograms are given
by

D(t, ω, t′, τ) =
i

2σω
θ(τ)θ(t′ − t)e−(iω+σω+σT )τ−2σT (t′−t)

(E11)

WD(t, ω; t′, ω′) = − 1

2σω
θ(t− t′) e−2σT (t′−t)

ω′ − ω + i(σT + σω)
.

(E12)

The gated signal is given by

nt̄,ω̄ =

∫ ∞

−∞
dt
∑

s,s′

〈Ê(tf)†
sR (t̄, ω̄; rD, t)Ê

(tf)
s′L (t̄, ω̄; rD, t)〉,

(E13)
where the angular brackets denote 〈...〉 ≡ Tr[ρ(t)...]. The
density operator ρ(t) is defined in the joint field-matter space
of the entire system. Note, that Eq. (E13) represents the ob-
servable signal, which is always positive since it can be recast
as a modulus square of an amplitude (Eq. (E2)).For clarity we
hereafter omit the position dependence in the fields assuming
that propagation between rG and rD is included in the spectral
gate function.

2. The bare signal

The bare signal assumes infinite spectral and temporal res-
olution. It is unphysical but carries all necessary information
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for calculating photon counting measurement. It is given by
the closed path time-loop diagram shown in Fig. 21(Harbola
and Mukamel, 2008). We assume an arbitrary field-matter
evolution starting from the matter ground state g that promotes
the system up to some excited state. The system then emits a
photon with frequency ωs that leaves the matter in the state e.
This photon is later absorbed by the detector.

In the absence of dissipation (unitary evolution) the matter
correlation function can be further factorized into a product
of two amplitudes that correspond to unitary evolution of bra-
and ket-. This transition amplitude can be recast in Hilbert
space without using superoperators and is given by

Teg(t) = − i
~
∑

s

2π~ωs
Ω

∫ t

−∞
dt′1e

−iωs(t−t′1)−iωegt

×〈e(t)|V (t′1)T exp

(
− i
~

∫ t′1

−∞
H ′(T )dT

)
|g〉 (E14)

This gives for the bare Wigner spectrogram

n(t′, ω′) =
∑

e

∫ ∞

0

dτe−iω
′τ

×Teg(t′ − τ/2)T ∗eg(t
′ + τ/2). (E15)

3. Spectrogram-overlap representation for detected
signal

In the standard theory (Stolz, 1994), the detected signal is
given by a convolution of the spectrograms of the detector and
bare signal. The detector spectrogram is an ordinary function
of the gating parameters whereas the bare signal is related
to the field prior to detection. We now show that when the
process is described in the joint matter plus field space the
signal can be brought to the same form, except that now the
bare signal is given by a correlation function of matter that
further includes a sum over the detected modes. We denote
this the spectrogram-overlap (SO) representation of the signal.
Alternatively one can introduce a spectrogram-superoperator-
overlap (SSO) representation where field modes that interact
with detector are included in the detector spectrogram, which
becomes a superoperator in the field space. Details of this
representation are presented in Ref. (Dorfman and Mukamel,
2012a). Below we present the signals in the time domain,
which can be directly read of the diagram (Fig. 21b). We then
recast them using Wigner spectrograms, which depict simul-
taneously temporal and spectral profiles of the signal. We now
define the detector Wigner spectrogram

WD(t̄, ω̄; t′, ω′) =

∫ ∞

−∞
dτ

∫ ∞

−∞

dω

2π
ei(ω

′−ω)τ

× |Ff (ω, ω̄)|2F ∗t (t′ + τ/2, t̄)Ft(t
′ − τ/2, t̄), (E16)

if the spectral gate applied first, using Eq. (E5). The detector
spectrogram is alternatively given by

WD(t̄, ω̄; t′, ω) =

∫ ∞

−∞
dτeiω

′τ
∫ ∞

−∞
dt

× |Ft(t, t̄)|2F ∗f (t− t′ − τ/2, ω̄)Ff (t− t′ + τ/2, ω̄).

(E17)

Combining Eqs. (E4) - (E16) we obtain that the gated signal is
given by the temporal overlap of the bare signal and detector
Wigner spectrogram

nt̄,ω̄ =

∫ ∞

−∞
dt′
dω′

2π
WD(t̄, ω̄; t′, ω′)n(t′, ω′). (E18)

Eq. (165) can be alternatively recast in terms of Wigner
spectrograms

n̂t,ω =

∫
dt′
∫
dω′

2π
WD(t, ω; t′, ω′)n̂(t′, ω′), (E19)

whereWD(t, ω, t′, ω′) is a detector Wigner spectrogram given
by

WD(t, ω, t′, ω′) =

∫
dτD(t, ω, t′, τ)eiω

′τ (E20)

and Wigner spectrogram for the bare photon number operator
is given by

n̂(t′, ω′) =

∫
dτe−iω

′τ n̂(t′, τ). (E21)

This is the conventional form (Stolz, 1994) introduced orig-
inally for the field space alone. Eq. (E15) contains explicitly
the multiple pairs of radiation modes s and s′ that can be re-
vealed only in the joint field plus matter space. Eventually this
takes into account all the field matter interactions that lead to
the emission of the detected field modes. All parameters of
Ff and Ft can be freely varied. The spectrogram will always
satisfy the Fourier uncertainty ∆t∆ω > 1.

Together with the gated spectrogram (E16) the bare signal
(E15) represents the time and frequency resolved gated sig-
nal. Note, that in the presence of a bath, the signal (E15) is no
longer given by a product of two amplitudes. T̂eg(t) is then an
operator in the space of the bath degrees of freedom. There-
fore, one has to replace product of amplitudes in Eq. (E15)
by 〈T̂eg(t′ − τ/2)T̂ ∗eg(t

′ + τ/2)〉, where 〈...〉 corresponds to
averaging over the bath degrees of freedom. The convolution
of two operators T̂eg reveals the multiple pathways between
these initial and final states of matter that allows to observe
them through the simultaneous time and frequency resolution.

We now consider two limiting cases. In the absence of a
frequency gate, then Ff (ω, ω̄) = 1 we get WD(ω̄, t̄; t, τ) =
δ(τ)F ∗t (t + τ/2, t̄)Ft(t − τ/2, t̄). For the narrow time gate
|Ft(t, t̄)|2 = δ(t − t̄) we then obtain the time resolved mea-
surement

nt̄ =
∑

e

|Teg(t̄)|2. (E22)
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In the opposite limit, where there is no time gate, i.e.
Ft(t, t̄) = 1, and the frequency gate is very narrow, such that
Ff (t, ω̄) =

√
γ

π e
−iω̄t−γtθ(t) at γ → 0, then WD(ω̄, t̄; t, τ) =

e−iω̄τ . In this case we obtain the frequency resolved measure-
ment

nω̄ =
∑

e

|Teg(ω̄)|2, (E23)

where Teg(ω) =
∫∞
−∞ dteiωtTeg(t). Eqs. (E22) and (E23) in-

dicate that if the measurement is either purely time or purely
frequency resolved, the signal can be expressed in terms of
the modulus square of a transition amplitude. Interference
can then occur only within Teg in Hilbert space but not be-
tween the two amplitudes. Simultaneous time and frequency
gating also involves interference between the two amplitudes;
the pathway is in the joint ket plus bra density matrix space.
In the presence of a bath, the signal can be written as a corre-
lation function in the space of bath coordinates 〈T̂ ∗eg(t̄)T̂eg(t̄)〉
for Eq. (E22) and 〈T̂ ∗eg(ω̄)T̂eg(ω̄)〉 for Eq. (E23).

4. Multiple detections

The present formalism is modular and may be easily ex-
tended to any number of detection events. To that end it is
more convenient to use the time domain, rather than Wigner
representation. For coincidence counting of two photons mea-
sured by first detector with parameters ω̄i, t̄i followed by sec-
ond detector characterized by ω̄s, t̄s the time-and-frequency
resolved measurement in SO representation is given by

S(t̄s, ω̄s; t̄i, ω̄i) =

∫ ∞

−∞
dt′sdτs

∫ ∞

−∞
dt′idτi

×D(s)(t̄s, ω̄s; t
′
s, τs)D

(i)(t̄i, ω̄i; t
′
i, τ
′
i)B(t′s, τs; t

′
i, τ
′
i)
(E24)

where the detector spectrogram for mode ν = i, s reads

D(t̄ν , ω̄ν ; t′ν , τν) =

∫ ∞

−∞

dων
2π

e−iωντν

× |Ff (ων , ω̄ν)|2F ∗t (t′ν + τν/2, t̄ν)Ft(t
′
ν − τν/2, t̄ν).

(E25)

The bare signal is given by the loop diagram in Fig. 21c which
reads

B(t′s, τs; t
′
i, τi) =

−
∑

e

Teg(t
′
s − τs/2, t′i − τi/2)T ∗eg(t

′
s + τs/2, t

′
i + τi/2).

(E26)

The transition amplitude for the ket reads

Teg(ts, ti) =

(
− i
~

)2 ∫ ts

−∞
dt′1

∫ ti

−∞
dt′2e

−iωegts

×〈〈e(ts)g|V̂L(t′1)V̂L(t′2)

×T exp

(
− i
~

∫ max[t′1,t
′
2]

−∞
Ĥ ′L(T )dT

)
|gg〉〉, (E27)

and for the bra

T ∗eg(ts, ti) =

(
i

~

)2 ∫ ts

−∞
dt1

∫ ti

−∞
dt2e

iωegts

×〈〈gg|V̂ †R(t1)V̂ †R(t2)

×T exp

(
i

~

∫ max[t1,t2]

−∞
Ĥ ′R(T )dT

)
|e(ts)g〉〉. (E28)
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Balić, V., D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris (2005),

Phys. Rev. Lett. 94, 183601.
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T. W. Ebbesen (2013), ChemPhysChem 14 (1), 125.

Schwinger, J. (1961), J. Math. Phys. 2 (3), 407.
Scully, M. O., and M. S. Zubairy (1997), Quantum Optics (Cam-

bridge University Press, Cambridge, UK).
Shahriar, M. S., P. R. Hemmer, S. Lloyd, P. S. Bhatia, and A. E.

Craig (2002), Phys. Rev. A 66, 032301.
Shalm, L. K., D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and

T. Jennewein (2013), Nature Phys. 9 (1), 19.
Shen, Y. (1989), Nature 337 (6207), 519.
Shih, Y. (2003), Rep. Prog. Phys. 66 (6), 1009.
Shih, Y. H., and C. O. Alley (1988), Phys. Rev. Lett. 61, 2921.
Shomroni, I., S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman,

and B. Dayan (2014), Science 345 (6199), 903.
Shwartz, S., R. Coffee, J. Feldkamp, Y. Feng, J. Hastings, G. Yin,

and S. Harris (2012), Phys. Rev. Lett. 109 (1), 013602.
Silberberg, Y. (2009), Ann. Rev. Phys. Chem. 60, 277.
Sipahigil, A., M. L. Goldman, E. Togan, Y. Chu, M. Markham, D. J.

Twitchen, A. S. Zibrov, A. Kubanek, and M. D. Lukin (2012),
Phys. Rev. Lett. 108, 143601.

Siyushev, P., V. Jacques, I. Aharonovich, F. Kaiser, T. Müller,
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