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Green plants are Earth’s primary solar energy collectors. They harvest the energy of
the sun by converting light energy into chemical energy stored in the bonds of sugar
molecules. A multitude of carefully orchestrated transport processes are needed to move
water and minerals from the soil to sites of photosynthesis, and to distribute energy-rich
sugars throughout the plant body to support metabolism and growth. The long-distance
transport happens in the plants’ vascular system, where water and solutes are moved
along the entire length of the plant. In this review, we discuss the current understanding
of the mechanism and the quantitative description of these flows, connecting theory and
experiments as far as possible.
We begin begin with an overview of low-Reynolds-number transport processes, followed
by an introduction to the anatomy and physiology of vascular transport in the phloem
and xylem. Next, sugar transport in the phloem is explored with attention given to
experimental results as well as the fluid mechanics of osmotically driven flows. Then
water transport in the xylem is discussed with focus on embolism dynamics, conduit
optimization, and couplings between water and sugar transport. Finally, remarks are
given on some of the open questions of this research field.
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I. INTRODUCTION

From the point of view of a physicist, plants are full
of mysteries. They are among the most successful or-
ganisms on earth both in terms of total biomass and
individual size range, and yet they lack the central or-
gans which we associate with life, such as heart or brain,
and on which animals rely for control and function. In-
deed, plants are masters of decentralized management,
since they thrive and maintain coherence even in very
large organisms without these central units. This re-
quires an efficient and robust vascular system, which sus-
tains growth and communication throughout the entire
organism, from root to leaf of even the tallest tree, with-
out, that is, a central heart to drive the sap. The basic
mechanisms, or driving forces, for the flows in these vas-
cular systems have proven difficult to elucidate because
the conduits are sensitive to manipulation, ceasing trans-
port when exposed to only slight disturbances. Consid-
ering the importance of plants, as crops in the fields or
trees in the forests, to the existence of other life forms on
this planet, this is amazing. These basic mechanisms are
the focus of the present review, and we shall in particular
discuss the fluid dynamics emerging from the basic hy-
potheses and the ensuing consequences for structure and
function, testable by field measurements. By thus inves-
tigating the mechanisms for the functioning of the entire
organisms, we hope to expose the reader to interesting
and challenging physics deserving to be better known to
active researchers in many fields of physics.

The two main parts of the vascular system, the xylem
and the phloem play a very different role in the life of
plants (Fig. 1). Their remarkable names were coined
by German botanists from the Greek words xylon: wood
and phloos: tree bark. The xylem is the “water highway”
which brings large amounts of water from the roots to the
leaves. Xylem tubes come in two varieties: tracheids and
vessels. The latter are the largest and they can reach
hundreds of µm in diameter and meters in length. They
are made up of cellular segments, vessel elements of up
to around 1 mm, separated by porous perforation plates.

In a large tree, the xylem is well-protected inside the
trunk and can daily carry several hundred liters of wa-
ter to the leaves, most of which is evaporated into the
surrounding air. The reason for this wasteful handling of
the – often scarce – water resources, lies in the plants’
approach to the acquisition of carbon dioxide. Plants ac-
quire CO2 simply by opening their “mouths”, i. e., the
stomata (pores) on the surface of their leaves. Opening
the stomata does let CO2 diffuse in, but much more water
is lost: since living plant cells need to be soaked in water,
the humidity inside a leaf is near 100%, typically much
higher than outside, and thus several hundreds of wa-
ter molecules will be lost for every CO2 molecule gained.
Together with sunlight, and a bit of the water, CO2 is
the basic ingredient for photosynthesis, primarily taking
place in the leaves, leading to the creation of sugars; sug-
ars which, through the phloem, provide the building ma-
terial for practically all growth in the plant – from root to
leaf, including, in a tree, the annual radial growth of the
trunk. We find the concentration of CO2 of 0.04 % vol in
the atmosphere threateningly high due to global warm-
ing, but, presumably, trees find it threateningly low.

The theoretical understanding of the upward flows of
water came around 1900 in the form of the Cohesion-
Tension theory (Dixon and Joly, 1895): that the driving
force for the flow in the xylem comes from suction gener-
ated in the leaves by evaporation of water vapor into the
atmosphere (Fig. 1(a,c)). The surprise was that the pres-
sures in the xylem is even lower than vacuum: they are
negative. Negative pressures are somewhat counterintu-
itive, in particular if our intuition comes from equilibrium
thermodynamics and gases. Negative pressures only oc-
cur in non-equilibrium or metastable states and only in
substances with strong cohesion, e.g., liquids. The mag-
nitude of these negative pressures (typically −2 MPa)
does remain surprising, as does the fact that water in-
side living trees is transported in a metastable state.
Thus a lot of recent effort went into understanding how
trees avoid or cope with the local return to equilibrium
in the form of cavitation, or embolisms in biological ter-
minology, which would seem to be fatal for efficient water
transport.

Compared to the water highway of the xylem, the
phloem is more like the small country roads passing
through the villages. Everything is an order of magni-
tude smaller – the size of the tubing and the maximum
flow velocities. The pressure differs not only in strength,
but also in sign: the phloem runs under positive pressure
of the order of 1 MPa. The phloem is no less important,
however, since it carries the valuable sugars from the ma-
ture leaves where they are produced to e.g., new leaves,
roots, shoots or fruits where they are needed. In contrast
to the xylem, the phloem tubes (sieve elements) are liv-
ing cells, but still the main transport mechanism, the so-
called Münch mechanism (Münch, 1930), is believed to
be the purely passive osmotic pressure differences caused
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Figure 1 Schematic representation of vascular transport processes in plants. (a) Xylem water transport from soil to shoot is
driven by evaporation from leaves via the cohesion-tension mechanism. (b) Phloem sugar transport from leaves to regions of
growth is driven by differences in osmotic pressure according to the Münch mechanism. Details of transport processes in (c)
leaves, (d) phloem tubes, and (e) xylem conduits are also shown. For clarity xylem and phloem tubes are drawn as same size.
See further details in text. (d) As originally published in Jensen et al., Front. Plant Sci. 3, 151 (2012) (Jensen et al., 2012c). (e)
Adapted from (Bauch et al., 1972). The background drawing of a tree courtesy of Camille Lucas and Alexandre Ponomarenko.

by the gradients in sugar concentration between sources
and sinks of sugar (Fig. 1(b)). A large part of this re-
view will be devoted to the consequences of this hypothe-
sis, applied to the long distance sugar translocation from
one end of the organism to the other. The basis is formed
by the equations for the dynamics of osmotically driven
flows, which seem quite unique to plants and fungi. Of
course, osmosis plays a large role in animals, e.g., for the
filtration in the kidneys, but the flow past the kidney is
generated by the heart, not by osmosis.

In a tree, the phloem resides on the inside of the bark
and is therefore easily destroyed if the bark is removed.
On the other hand, the phloem is well-protected by the

construction and constituents of the tubes. Phloem tubes
consist of cylindrical sieve elements (perhaps around
10 µm in radius and 1 mm in length) separated by perfo-
rated sieve plates. Disturbance of the sieve element (e.g.
mechanically or by cooling) can cause local stopping of
the flow, for instance by occlusion of the sieve tube by
forisomes (a class of contractile proteins) or by clogging
of the sieve plates (Fig. 1(d)) (Knoblauch et al., 2014;
Lang and Minchin, 1986). Suspension of translocation
is widespread throughout the plant kingdom and may
be an important control mechanism. The hydrodynamic
mechanisms involved in these processes, however, remain
poorly understood. The sensitivity of the phloem makes
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its contents inaccessible to most. The remarkable excep-
tions from this rule are a group of small insects, aphids,
who are actually able to penetrate into the sieve elements
and tap the valuable sweet sap, without stopping the
phloem. Aphids remain important for investigations of
the phloem, but despite of their life-sacrificing effort (let-
ting biologists sever their body from the stylet inserted
into the plant) our knowledge about local pressures and
concentrations in the phloem are limited. Again, this
makes it paramount to extract measurable consequences
from this special type of fluid dynamics.

The phloem and the xylem interact and exchange wa-
ter along the entire length of the plant. This interac-
tion is particularly strong in the leaves, where the outlet
from the xylem (the tracheary elements) and the inlet to
the phloem (the sieve elements) are only separated by a
few microns, with a pressure in the former, say, around
−2 MPa and +1 MPa in the latter. Part of the water
coming out from the tracheary element should end up in
the nearby sieve element, pushing the sugar solution back
into the tree. But only a small part of it. Most of the
water leaving the xylem moves into the leaf mesophyll
and evaporates through the stomata. On the way out,
a small part, perhaps a percent, of the water enters into
the mesophyll cells where the photosynthesis takes place
– partly to contribute to the photosynthesis and partly
to assist the sugars on their way back to the phloem.
This coupled water-sugar transport – sugar loading – is
currently an active field of research, and we shall discuss
some recent developments.

One point of view to which we shall return frequently,
is that of optimality. We know that plants – as other liv-
ing organisms – have been carefully selected by evolution,
and thus function rather efficiently. This paper primarily
deals with the physical factors that characterize vascu-
lar transport processes. However, numerous other effects
play equally important roles. For instance, mechanical
effects impose important constraints on leaf morphology
and venation patterns. Moreover, environmental factors
and ecological interactions between plants and animals
influence the distribution of species. In general, how-
ever, one can ask whether the choice of a particular strat-
egy can be motivated by some criterion of optimality by
which one can gauge the performance of plants in us-
ing a particular strategy. Scientists have pondered this
question for centuries. In particular, the energy bud-
get of living organisms have been the focus of much at-
tention, where energy broadly defined denotes resources
necessary for metabolism, growth, and reproduction (e.g.
nutrients, light, water, CO2 etc.). One perspective due
to Lotka (1922) (p. 150) that links fitness and energy
consumption strategies is: Where the supply of available
energy is limited, the advantage will go to that organ-
ism which is most efficient, most economical, in applying
to preservative uses such energy as it captures. Where
the energy supply is capable of expansion, efficiency or

economy, though still an advantage, is only one way of
meeting the situation, and, so long as there remains an
unutilized margin of available energy, sooner or later the
battle, presumably, will be between two groups or species
equally efficient, equally economical, but the one more apt
than the other in tapping previously unutilized sources of
available energy.

To test optimality hypotheses against biological data,
two different approaches are feasible (Brenner, 2014): Ei-
ther one must sample the characteristics of many species
in the phylogeny, and compare results over a wide class
of organisms or one can use engineering principles to hy-
pothesize adaptations by the organisms to achieve opti-
mality. The advantage of the first approach is that it al-
lows us to broadly determine if the systems are optimized
for a certain function and evaluate potential performance
metrics to elucidate sources of variability. As an example,
we show in Section IV.C that the Münch mechanism im-
plies an optimal choice of the diameter of the sieve tubes
connecting the leaves of a plant to its root. Specifically,
we find that the competition between efficient osmotic
pumping (in the leaves) and efficient long-distance trans-
fer (through the stem) leads to the simple result that the
optimal diameter of the sieve tubes (leading to the largest
flow velocity) should scale as the cubic root of the prod-
uct of the length of the leaves and that of the stem. We
find broad agreement between this prediction and data,
but outliers also help identify drivers of variability. The
second approach can be used if the number of species
is limited or not enough is known about the physiology
to make concrete statements about optimality. If the
engineering challenge, however, is clear we can make hy-
potheses about what the individual organism can do to
enhance transport. From this, one can propose concrete
experiments to test specific cases that may reveal new
aspects of physiology. In Sec. VI.B, we give examples of
how this strategy has been applied to understand vascu-
lar structure of leaves. As we focus on the basic physics of
fluid transport, the principles discussed are relevant for
all vascular plants. Aspects of conduit structure, how-
ever, vary among different groups of plants. Here we
emphasize transport in two groups: gymnosperms, which
are cone-forming plants that include conifers and thus
common trees such as pines, spruce and yew, and an-
giosperms, which include all of the plants that produce
flowers (e.g., oak trees, grasses, and grape vines).

Another recurring topic will be that of biomimetics.
With the dual purpose of understanding plants and learn-
ing from plants, many researchers (including ourselves)
have designed fluidic devices based on certain features of
the fluid dynamics of plants. They have shown to be very
helpful in highlighting basic features, mostly of the vas-
cular system. We shall review the current state of the art
and problems in this field, which we find very promising.

The layout of the review is as follows. We shall start
with a short review of transport in low-Reynolds-number
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Table I Comparison of parameters for flow in a phloem tube,
xylem vessel, and the human aorta. The diffusivity for sucrose
in water D = 5× 10−10 m2/s is used in the calculation of the
Péclet number Pe. Adapted from Rand (1983)

Phloem Xylem Human aorta

Velocity u [m/s] 10−4 10−3 4× 10−1

Radius a [m] 10−5 10−4 1.5× 10−2

Viscosity η [Pa s] 2× 10−3 10−3 3× 10−3

Density ρ [kg/m3] ∼ 103 ∼ 103 ∼ 103

Reynolds number 5× 10−4 10−1 2× 103

(Re = ρua/η)

Péclet number 2 2× 102 1.2× 107

(Pe = ua/D)

Schmidt number 4× 103 2× 103 6× 103

(Sc = η/(ρD))

flows of relevance for plants’ vascular systems and simi-
lar micro-fluidic systems. This section should provide the
physicist reader, inexperienced in fluid dynamics, with a
useful introduction necessary for several later sections, as
well as provide some terminology to be used in the rest
of the review. Similarly, we do not assume the reader to
have prior knowledge on plant physiology, and Sec. III
gives a review of the relevant aspects of plant anatomy
and physiology, in particular the vascular system. Thus,
the phloem, the xylem and the leaves are described with-
out going into too much detail, but providing the reader
with the necessary terminology as well as theoretical and
experimental background for the rest of the review.

In Section IV on sugar transport in plants, we shall
first discuss the available data on phloem flow transloca-
tion. After that we discuss various biomimetic models for
osmotically driven sugar transport akin to the phloem.
We then give a simplistic “hydraulic resistor” theory for
the phloem flow, leading to the optimality criterion for
the diameter of the sieve tubes, limits to leaf sizes and
optimal sugar concentrations.

Then, in Section V, we shall embark on the more de-
tailed hydrodynamical theory of the flow in the phloem,
the so-called Münch-Horwitz equations, including some
analytical solutions for both transient and stationary
flow, allowing us to return to the optimality question in
a more consistent way. After this we shall briefly discuss
the so-called unstirred layers, beyond the Münch-Horwitz
equations, occurring due to inhomogeneities in osmotic
flows and reducing the osmotic efficiency.

In Section VI, we take up the water transport in the
xylem. After an experimental subsection, we shall dis-
cuss the details of the Cohesion-Tension theory and the
role of the bordered pits controlling the water -and air
flow between neighbouring xylem tubes. We shall con-
clude the section by reviewing recent results on conduit
optimization and on the combined water/sugar translo-
cation in the leaves, specifically in connection with the
“polymer-trap” loading mechanism.

A large body of literature has been devoted to plant
vascular biology, and for each topic discussed we have at-
tempted to give references to the relevant literature. For
textbook introductions to plant biology, the reader may
wish to consult Evert (2006); Morris et al. (2013); No-
bel (2009); Raven et al. (2005); Taiz and Zeiger (2010)
and Canny (1973); Crafts and Crisp (1971); Holbrook
and Zwieniecki (2005); Kramer and Boyer (1995); Niklas
(1994); Tyree and Zimmermann (2002); Vogel (2013) for
more comprehensive discussions of vascular physiology
and plant biomechanics. There are also several review
type papers related to the topics we cover which the
reader may wish do consult. The following is a partial
list: Boyer (1985); De Schepper et al. (2013); Dumais
and Forterre (2012); Gibson (2012); MacRobbie (1971);
Pickard (1981); Rand (1983); Stroock et al. (2014). In
some ways one can think of the present review as a
follow-up of the impressive earlier reviews by Pickard
(1981), Rand (1983), and Stroock et al. (2014) which also
stressed the physical mechanisms involved in sap translo-
cation, but with the emphasis primarily on the xylem. In
the present paper, the physical modeling has more focus
on the phloem (Secs. IV–V) since the fascinating fluid
mechanics of osmotically driven flows has, in our opinion,
not quite received the attention it deserves.

II. TRANSPORT AT LOW REYNOLDS NUMBERS

A. Microscale Hydrodynamics

We begin with a short review of transport in low-
Reynolds-number flows of relevance to plants. This sec-
tion should provide the reader with a useful introduction
necessary for several later sections, as well as provide
some terminology to be used in the rest of the review.

The flow of sap (aqueous solutions of nutrients) in the
sub-millimeter-diameter conduits inside plants, Fig. 1(d)
and (e), is described using classical continuum the-
ory in the microfluidic regime as treated in textbooks
by Berthier and Silberzan (2010); Bruus (2008); Kirby
(2010); Tabeling (2005). Theoretically, the basic entity
in microfluidics, and hydrodynamics in general, is the so-
called liquid particle. In the Eulerian picture, this parti-
cle is a small region Ω(r) of volume ∆V centered around
the fixed position r. The detailed molecular properties of
the liquid are replaced by averages over molecules i with
mass mi and momentum mivi present in this volume
at time t, and thus the classical continuum description
is used involving the density field ρ(r, t) (mass per vol-
ume), the velocity field v(r, t) (momentum per mass in
the volume), and the pressure field p(r, t) (normal force
per area). This averaging typically requires ∆V to be
(10 nm)3 or larger.

For brevity we often suppress the arguments r and t
in the following.
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The sap in plants is well described as incompressible,
Newtonian liquids with viscosity η. The viscosity com-
bined with the narrow conduits in plants results in such
low flow speeds v that non-linear velocity terms can be
neglected. This approximation is valid when the dimen-
sionless Reynolds number Re is small,

Re =
UL

ν
� 1, with ν =

η

ρ
. (1)

Here L is the characteristic width of the conduit, U is a
characteristic flow speed, and ν is the kinematic viscosity.
For sap in the phloem ν ≈ 2 × 10−6 m2/s, and with
a maximum flow speed of U ≈ 0.1 mm/s in a 10-µm-
radius plant cell we obtain Re ≈ 5× 10−4. This number
and other characteristic numbers for microfluidic flows in
plants is given in table I.

Further simplifications can be obtained by noting that
the body force density g = −gez due to gravity is bal-
anced by the hydrostatic pressure phs,

phs = −ρgz, (2)

so henceforth gravity is left out of the flow equations for
the sap and p is without phs. With these simplifications,
we arrive at the governing equations for plant microflu-
idics, the Stokes and continuity equations expressing the
conservation of momentum and mass in the sap,

ρ
∂v

∂t
= −∇p+ η∇2v, with ∇ ·v = 0. (3a)

The most common boundary condition on the side-
walls of a liquid-carrying channel is the no-slip condition,

v(at wall) = vwall, (= 0 for stationary walls). (3b)

By taking the divergence of Eq. (3a) and then using the
incompressibility condition ∇ ·v = 0, it is seen that the
pressure must be a solution to the Laplace equation,

∇2p = 0. (3c)

As a first example, we study the classical steady
(∂v/∂t = 0) Poiseuille flow in an infinitely long cylin-
drical pipe of radius a centered on the x-axis driven by
a pressure difference which drops from p = ∆p to p = 0
over the finite section of the pipe between x = 0 and
x = L, Fig. 1(d). The symmetry of the problem fa-
vors the use of cylindrical coordinates (r, x) for which

∇2 = ∂2

∂r2 + 1
r

∂
∂r + ∂2

∂x2 , and it leads to an axisymmet-
ric solution, where the pressure only depends on z as
p = p(x), while the velocity field is parallel to the z-axis,

but depends only on the radial coordinate r =
√
y2 + z2,

v(r, x) = vx(r) ex. Since ∇2p(x) = 0 leads to a linear
pressure drop, we obtain

p =
(

1− x

L

)
∆p, (4a)

∂2vx(r)

∂r2
+

1

r

∂2vx(r)

∂r2
=

1

η

∂p

∂x
= −∆p

ηL
, (4b)

yielding the well-known paraboloid velocity profile vx(r),

vx(r, x) =
∆p

4ηL

(
a2 − r2

)
, fulfilling vx(a, x) = 0. (4c)

By integration of the velocity profile across a circular
cross section, we obtain the volumetric flow rate Q and
the hydraulic resistance Rpoi

hyd defined by the Hagen–

Poiseuille relation ∆p = Rpoi
hydQ,

Q =

∫ a

0

2πrvx(r) dr =
πa4

8ηL
∆p, (4d)

Rpoi
hyd =

8ηL

πa4
. (4e)

Using that ∆p/L = −∂p/∂x, we get the Darcy equation

∂p

∂x
= − 8η

πa4
Q = −η

k
v̄, with v̄ =

Q

πa2
, (5)

where v̄ is the flow speed averaged over the cross sec-
tion, and k is a coefficient of dimension length squared.
Allowing k to be weakly dependent on the axial posi-
tion (∂k/∂x� k/a), Eq. (5) describes what is known as
Darcy flow. The same equation can also describe the sit-
uation, where v̄ changes weakly with axial position, e.g.
due to influx of liquid through weakly permeable side
walls, see Sec. II.D.

The Poiseuille flow is a first illustration of the fact that
for steady low-Reynolds-number flow, the length scale
over which the velocity field is changing is entirely set by
the geometry of the confining channel, here the radius a
of the cylindrical pipe. A second, and less trivial exam-
ple of this, is the entrance length, the distance ` into the
pipe over which a non-paraboloid velocity profile vz(0, r)
at the inlet z = 0 relaxes to the paraboloid Poiseuille pro-
file Eq. (4c) with its linear pressure drop Eq. (4a), in the
following denoted vpoi

x (r) and ppoi(x), respectively. Split-
ting off the Poiseuille solution in a sum of two solutions,
we write the fields as

vx(r, x) = v̂x(r, x) + vpoi
x (r), (6a)

p(r, x) = p̂(r, x) + ppoi(r), (6b)

and seek to determine v̂x and p̂. The starting point is
∇2p̂ = ∇2p−∇2ppoi = 0, and the fact that far from the
entrance p̂(r,∞) = 0 since p(r,∞) = ppoi(r). The pres-
sure p̂(r, x) can therefore be written as a Fourier-Bessel
series decaying in the axial direction x → ∞, known to
solve the Laplace equation,

p̂(r, x) = p0

∞∑
n=0

cn J0(knr) e
−knx, n = 1, 2, 3, . . . (6c)

where J0 is the Bessel function of the first kind of order
zero with roots kna, J0(kna) = 0, and with expansion
coefficients cn to be determined below. It is verified by
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Figure 2 Color plots of the axial velocity from zero (dark
blue) to vmax

x (dark red) in a cylindrical channel (side view)
of length L and radius a. The velocity field on the inlet to
the left is set to be a constant. (a) In the low Reynolds
number limit (Re = 0.1) the entrance length over which a
full Poiseuille flow profile is established is given by ` ≈ a.
(b) In the medium Reynolds number limit (Re = 100) the
entrance length is given by Re ≈ Re

24
a. From Bruus (2011).

direct substitution that the solution to the Stokes and
continuity equations is

v̂r(r, x) =

∞∑
n=0

p0

2η

cn
kn

(−knx) J ′0(knr) e
−knx, (6d)

v̂x(r, x) =

∞∑
n=0

p0

2η

cn
kn

(knx+ 1) J0(knr) e
−knx. (6e)

The expansion coefficients are determined from the ve-
locity profile vx(r, 0) at the entrance, which in terms of
v̂x becomes v̂x(r, 0) = vx(r, 0)− vpoi

x (r)

cn =

∫ a

0

ηknr
[
vx(r, 0)− vpoi

x (r)
]

p0

[
aJ ′0(kna)

]2 J0(knr) dr (6f)

The important implication of this analysis is as follows:
the distance ` along the axial direction over which the ve-
locity profile relaxes to the Poiseuille paraboloid is given
by using the smallest Bessel-function root in the argu-
ment of the exponential decaying term, k1` = 1 or ` =
1/k1 ≈ a/2.4048. This result is illustrated in Fig. 2(a),
which is a numerical simulation of the velocity field, given
a constant inlet velocity profile vx(r, 0) = v0 at x = 0 for
the low Reynolds number Re = 0.1. In Fig. 2(b) is shown
how this result is modified for the larger Reynolds num-
ber Re = 100, for which the advective term ρ(v ·∇)v
present in the full Navier–Stokes equation, but not in the
approximate Stokes equation (3a), leads to an enhanced
entrance length ` ≈ 1

12Re a ≈ 8.4a. A similar effect
is shown in Fig. 3. Here, modeling a sieve plate with
multiple pores in a plant cell, Fig. 1(d), a low-Reynolds-
number pressure-driven flow is moving towards a sieve
plate in a cylindrical tube (mathematically equivalent to
the flow away from a sieve plate). The flow profile at
the sieve plate adopts to the individual pores with local
maxima at the centers of the pores, while the Poiseuille
paraboloid is established in the main tube a few times
the tube radius a away from the sieve plate.

 

   

 

r/a

z/az/az/a

Figure 3 Numerical simulation of the flow moving from left
to right close to a Curcubita maxima sieve plate with mul-
tiple irregularly shaped pores in a cylindrical pipe. Pore
structures were extracted from scanning electron microscopy
images (Mullendore et al., 2010). Three color plots of the
normalized magnitude v(r, x)/vmax of the flow velocity (from
blue zero to red unity) at distances z = 2.5a, 0.25a, and 0.05a
from the sieve plate. The flow profile is seen to adapt from
the Poiseuille paraboloid to each of the many pores within a
distance of a few times a from the sieve plate. As originally
published in Jensen et al., Front. Plant Sci. 3, 151 (2012)
(Jensen et al., 2012c).

Next, we consider the flow rate q through a single
pore in a sieve plate based on Eq. (3a) in steady-state,
∂v/∂t = 0. For a circular pore of radius a in an infinitely
thin plate with a pressure drop ∆psmp applied across the
pore as shown in Fig. 4(a), the hydraulic resistance Rsmp

hyd

and circular flow profile vx(r) inside the pore was ob-
tained by Sampson (1891) and later improved by Roscoe
(1949),

Rsmp
hyd =

∆psmp

q
=

3η

a3
, (7a)

vx(r) =
∆psmp

2πη

√
a2 − r2, (7b)

where r is the distance in the pore to the center of the
pore. A simple scaling argument explains the form of
Eq. (7a): Hydraulic resistance has the unit Pa s/m3, vis-
cosity has the unit Pa s, while the infinite plane with a
circular hole has the radius a as the only length scale,
consequently Rsmp

hyd ∝ η/a3, only missing the factor 3. A
real pore plate has a finite thickness d, so inside the pore
a Poiseuille flow develops, Fig. 4(b), adding to the total
hydraulic resistance Rpore

hyd of a single pore. Thus, for a

pore flow with Re � 1, Rpore
hyd is well approximated by

the sum of the Sampson and Poiseuille flow resistances
(Dagan et al., 1982; Weissberg, 1962),

Rpore
hyd ≈ R

smp
hyd +Rpoi

hyd =
3η

a3
+

8ηd

πa4
=

3η

a3

[
1 +

8d

3πa

]
. (8)

The error turns out to be greatest when d = 2a, but it
is less than 1% for all values of d/a. Recently, Jensen
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II. THE WEISSBERG-SAMPSON-POISEUILLE APPROXIMATION

We begin our analysis by neglecting all inertial effects and approximating the flow as an
incompressible Stokes flow. Sampson13 solved the problem of Stokes flow through a circular pore
in an infinitely thin plate due to a pressure drop applied across the pore. This configuration is
shown in Figure 2(a). Above and below the plate, the steady flow satisfies the continuity and Stokes
equations,

∇ · v = 0 and μ∇2v − ∇ p = 0, (1)

where v(x) and p(x) represent, respectively, the steady velocity and pressure fields. The boundary
conditions are that (i) the velocity decays uniformly at infinity, (ii) the no-slip condition holds
everywhere at the filter (x − y) plane except at the pore, and (iii) the pressure approaches two distinct
constants at +∞ and at −∞, hence inducing a flow through the pore. Sampson found the pressure
drop �p = p−∞ − p∞ versus flow rate q relationship for a single pore to be13, 20

�p

q
= 3μ

a3
. (2)

The streamlines are hyperbolae, and at large distances from the aperture the solution becomes
identical to that for flow from a point source in a wall.20 In spherical coordinates (see Fig. 2) the
flow is thus purely radial when ρ � a

vρ = a3�p

2πμρ2
cos2 θ, (3a)

vθ = 0. (3b)

The flow profile at the aperture (z = 0) can be computed directly from Sampson’s stream function
solution in cylindrical coordinates

vr = 0, (4a)

vz = a�p

2πμ

√
1 −

( r

a

)2
. (4b)

The relationship between pressure drop and flow rate in Eq. (2) is valid for an infinitely thin
plate. In several applications, however, the plate thickness t is comparable to the pore radius a.
This is the case, for example, in phloem sieve plates where t/a � 0.5. For low-Reynolds-number
flow through a pore of finite thickness t we can add the pressure drop 8qμt/(πa4) associated with
the Poiseuille flow along the pore (Fig. 2(b)) to the basic Sampson result to obtain the isolated

FIG. 2. (a) Sampson flow through a circular pore in an infinitely thin plate. The pore radius is denoted by a and the flow rate
by q. The pressure drop �p = p−∞ − p∞ is the difference between the pressures at plus and minus infinity. (b) Poiseuille
flow along the thickness of a pore. The microfilter thickness is denoted by t. At low Reynolds numbers, the simplest result
for the ratio of pressure drop to volumetric flow rate per pore is obtained by linearly adding the pressure drops associated
with the Sampson and Poiseuille flows.15, 16

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.180.245.0 On: Tue, 27 May 2014 12:43:37

Figure 4 (a) Sampson flow defined as a pressure-driven flow
through a circular pore of radius a in an infinitely thin plate.
The pressure drop is ∆psmp = p−∞−p∞, and the flow rate is
q. (b) Poiseuille flow along a pore of length t equal to the the
thickness d of the plate. At low Reynolds numbers, the flow
resistance is well approximated by adding the flow resistance
from the Sampson and Poiseuille flow, see Eq. (8). Adapted
from Jensen et al. (2014).

et al. (2014) analyzed various corrections to the expres-
sion for the single-pore hydraulic resistance Rpore

hyd . For
liquids flowing through a plate of thickness d with a reg-
ular array of identical circular pores of radius a with a
characteristic distance `p between neighboring pores, the
flow pattern from one pore is influenced by that of the
neighboring pores (hydrodynamic interaction), and iner-
tial effects enter through the Reynolds number Re, re-
sulting in corrections characterized by a term G(a/`p)3

and f(Re), respectively,

Rarray
hyd =

3η

a3

[
1 +

8d

3πa
−Ga

3

`3p
+ f(Re)

]
. (9a)

where G is a factor which depends on the geometry of
the array, but is typically around 2 (Jensen et al., 2014).
Similarly, for an ensemble of pores with a statistical dis-
tribution P (a) of pore radii a with mean value ā and
dimensionless statistical moments Mn =

∫
ξnāP (āξ) dξ

with ξ = a/ā, they found the average hydraulic resistance
per pore

〈
Rpore

hyd

〉
to be given by

〈
Rpore

hyd

〉
=

3η

ā3

[
1

M3
+

1

M4

8d

3πā

]
, (9b)

where hydrodynamic interactions and inertial effects
have been neglected. The relative magnitude of the for-

mer is estimated asGa3

`3p
≈ 2×

(
1
3

)2 ≈ 0.1 and of the latter

by Re ≈ 5 × 10−4 (see Table I). It is interesting in this
context to mention that recent theoretical estimates show
relative changes of 20 % in the sap flow through bordered
pit membranes when electroviscous effects are included
from ions in and just outside the membrane (Santiago
et al., 2013).

B. Advection-diffusion Phenomena

To study the transport of suspended particles or
molecules in microfluidics, we introduce for the solute
species α in a given solvent, the concentration field
cα(r, t) defined as the number of molecules per volume
of species α in a small neighborhood of the point r and
thus having the SI unit m−3. The governing equation of
the field cα is the so-called advection-diffusion equation,

∂cα
∂t

+ ∇ · (vcα) = Dα∇2cα + Υ, (10)

where Υ is a bulk source term (SI unit m−3s−1) and Dα

is the diffusivity (SI unit m2/s) of solute α in the given
solvent. Using the incompressibility condition ∇ ·v = 0
we can rewrite it as

∂cα
∂t

+ (v ·∇)cα = Dα∇2cα + Υ, (11)

Typical values of the diffusivity in water at room temper-
ature are Dion ≈ 2×10−9 m2/s (elementary ions), Dsug ≈
5 × 10−10 m2/s (sucrose), and DGFP ≈ 9 × 10−11 m2/s
(green fluorescent protein).

Without advection, v = 0, we retrieve the usual dif-
fusion equation for cα(r, t). A standard example is to
place N0 molecules of species α in a point-like volume at
the center of the coordinate system in an infinite volume.
This results in the well-known Gaussian solution,

∂cα
∂t

= Dα∇2cα, cα(r, t) =
N0

(4πDαt)
3
2

e−
r2

4Dαt . (12)

From this and the variance
〈
r2(t)

〉
=
∫
r2c(r, t)dV =

6Dαt, we are lead to introduce the diffusion length `diff

for a given diffusion time tdiff through the root-mean-
square value of the variance of distance r,

`diff(tdiff) =
√〈

r2(tdiff)
〉

=
√

2dDαtdiff , (13)

for diffusion in d spatial dimensions.

Characteristic times tdiff = `2diff/(2Dα) for diffusion along
a tube of length `diff = 1 mm are tion

diff = 250 s, tsug
diff =

1000 s, and tGFP
diff = 5556 s.

With advection, v 6= 0, based on Eq. (11) and in anal-
ogy with the Reynolds number Eq. (1), we introduce
for the typical concentration cα = c0, velocity |v| = U ,
and length scale L of concentration variations, the Péclet
number Pe, the ratio between transport by advection and
by diffusion,

∣∣(v ·∇)cα
∣∣∣∣Dα∇2cα
∣∣ ≈ U

1

L
c0

Dα
1

L2
U

=
UL

Dα
, so Pe =

UL

Dα
. (14)

Advection is dominating for Pe � 1 (say large U , large
L and/or small Dα), while diffusion is dominating for
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Pe � 1 (say small U , small L and/or large Dα). The
Péclet number can also be introduced by considering the
time scale for diffusion, tdiff = L2/Dα, which follows from
∂cα/∂t = Dα∇2cα, and for advection, tadv = L/U , which
follows from ∂cα/∂t = −(v ·∇)cα, as Pe = tdiff/tadv =
UL/Dα.

Another aspect of advection-diffusion phenomena is
the different time scales associated with the relaxation
of velocity gradients and of concentration gradients. The
former is given by the diffusivity ν of momentum, Eq. (1),
derived from the Stokes equation (3a) setting ∇p to zero,
∂v/∂t = ν∇2v and the latter by the mass diffusivity Dα

of the solute. The ratio of these time scales is the Schmidt
number Sc,

Sc =
tmass
diff

tmom
diff

=
ν

Dα
. (15)

A typical value for aqueous solutions is Sc = 103, which
implies that the velocity field in a given advection-
diffusion problem adjusts to changes much faster than
the solute concentration profile. Consequently, it is often
a good approximation to treat the velocity field as being
in a steady state, while the solute concentration is time
dependent.

As an example of this faster relaxation of the flow than
of the solute concentration profile, we can use Fig. 2(a).
Here Re = 0.1, and now consider a solute entering at the
inlet with a concentration c0 in the lower half and zero
in the upper half having Sc = 4 × 103, see Table I. The
ratio tdiff/tadv of the times it takes the solute to diffuse
the same distance across as it advects along is given by
tdiff/tadv ≈ 1

8 Sc Re ≈ 50. In the given situation, it thus
requires a length L being 50 times the half-height 1

2h for
the solute to have relaxed completely by diffusion, while
the flow is already relaxed on the length h.

C. Osmosis and the Water Potential

In plants, due to the presence of ion-selective mem-
branes at the cell walls (see Sec. III), liquid can be moved
by a difference in the osmotic pressure Π caused by a
difference in concentration c of some solute (nutrient) on
either side of the membrane, Fig. 1(a) and (b). For dilute
concentrations, Π is given in terms of the gas constant
R, the absolute temperature T and the concentration c
by the classical van ’t Hoff relation (Nobel, 2009),

Π = RT c. (16)

With this given, we can introduce the potential Ψ (SI-
value J/m3 = Pa) referred to as the ”water potential”
by plant biologists (Nobel, 2009). The water potential is
responsible for moving water through a plant, and when
osmosis across an ideal membrane is involved, it is given
as

Ψ = (p−Π− phs)− p0 ≈ p− p0 −RTc+ ρgz, (17)

where p is the pressure of water at height z with solute
concentration c, and p0 is the reference atmospheric pres-
sure at reference height zero (typically ground level). The
osmotic pressure Π of Eq. (16) and the hydrostatic phs of
Eq. (2) represent the effects of changes in solute concen-
tration and gravitational energy, respectively, going from
the reference point to the probing point. For this case
of an ideal membrane completely impermeable to the so-
lute, the osmotic velocity v0 of water at the membrane
is given in terms of the difference ∆Ψ in the water po-
tential Ψ, and the membrane conductance Lp or water
permeability [SI-unit m/(Pa s)] as,

v0(z) = −Lp∆Ψ = Lp(RT∆c−∆p). (18)

Plant cells are elastic, and will swell and shrink in re-
sponse to changes in the osmotic pressure. If, following
Dumais and Forterre (2012), we consider a cell with ini-
tial volume V0, bulk modulus ε = V (∂P/∂V ) and area
A, suddenly exposed to a change π in osmotic pressure,
we get from Eq. (18)

dV

dt
≈ ALp

(
π − ε

V0
(V − V0)

)
(19)

which shows that V will approach its new value Vf =
V0(1 + π/ε) exponentially on the time scale

tε =
V0

ALpε
≈ R

Lpε
(20)

where R is a characteristic length scale of the cell. With
typical values for sieve tubes: ε ≈ 30 MPa, Lp ≈ 5×10−14

m s−1 Pa−1 and R ≈ 10 µm, we get tε ≈ 7 s. Only
well above this time scale will our “rigid” approach to
the water flow be valid. However, since it is relatively
short compared to diurnal variations in plant vascular
transport patterns, we shall neglect it in the following.

For non-ideal membranes, partly permeable to the so-
lute, the flux density Jw of water (flow rate per area
having the SI unit m/s) and that of the solute Js (num-
ber flow rate per area having the SI unit m−4s−1) are
coupled since the solvent is partially dragged by the wa-
ter and the osmosis is weakened by solute leaking. The
appropriate equations were given by Kedem and Katchal-
sky (1958). They are derived on the basis of linearized
non-equilibrium thermodynamics, assuming the system
to be nearly in equilibrium. Expressing the “fluxes” Jw
and Js in terms of the two “driving forces”, ∆p and ∆c
across the membrane, one can utilize the symmetry of
the kinetic coefficients to reduce the number of coeffi-
cients from four to three and write

Jw = Lp
[
∆p−(1−W )∆Π

]
= Lp

[
∆Ψ+W∆Π

]
, (21a)

Js = W Jw c̄+
1

d
D∆c, (21b)

here expressed in terms of the advective hindrance factor
W of Dechadilok and Deen (2006) instead of the reflec-
tion coefficient σ = 1−W used by Kedem and Katchalsky
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(1958). An ideal membrane has W = 0. D is the diffusiv-
ity of the solute, d is the thickness of the membrane, and
c̄ entering the advective term is the average concentration
across the membrane. This framework is appropriate for
small Péclet numbers, where the concentration will vary
approximately linearly across the membrane. For more
details, see the textbooks by Schultz (1980) and Nobel
(2009). Recent reviews include Kargol and Kargol (2003)
and Wang et al. (2014). Note that, for flow through such
a leaky membrane, the water potential does not neces-
sarily have to decrease. As can be seen from Eq. (21a)
the water flow can be positive, i.e., go from 1 to 2, even
for negative ∆Ψ, as long as ∆Ψ > −W∆Π since the dif-
fusing sugar will drag along water. We shall have the
opportunity to use this formalism in Sec. VI.C.

D. Flow in Tubes with Membrane Walls

An example of relevance for plant microfluidics in-
cluding osmosis, Fig. 1(b), is the Aldis flow (Aldis,
1988b). This flow is defined as a pressure-driven flow
through a cylindrical tube radius a and having a sec-
tion of the wall of length L consisting of a permeable
membrane through which a radial osmotically-driven flow
v0 enters, see Fig. 5. This model forms the basis for
the analysis of osmotically-driven flow in the phloem
of plants. In the following we consider an axisymmet-
ric system and use cylindrical coordinates (r, x). We
employ the notation that the solvent velocity field is
v = vr(r, x)er + vx(r, x)ex, the azimuthal velocity com-
ponent is vφ = 0, the in-tube pressure is p(r, x), the ra-
dial component of the osmotically-driven flow through
the membrane is v0(x), while the difference in solute con-
centration across the membrane is c(x). In steady state,
Eq. (3a) for this problem becomes,

1

r

∂

∂r

(
r
∂vr
∂r

)
− 1

r2
vr +

∂2vr
∂x2

=
1

η

∂p

∂r
, (22a)

1

r

∂

∂r

(
r
∂vx
∂r

)
+
∂2vx
∂x2

=
1

η

∂p

∂x
, (22b)

1

r

∂(rvr)

∂r
+
∂vx
∂x

= 0. (22c)

The boundary conditions along the center axis r = 0 is
the usual vr = 0, whereas at the wall r = a, the tangen-
tial velocity vanishes while the inward radial velocity is
−v0,

vr(0, x) = 0, vr(a, x) = −v0(x), (23a)

∂

∂r
vx(0, x) = 0, vx(a, x) = 0. (23b)

In the limit of a long narrow tube, a � L, the so-called
lubrication limit, we expect ∂

∂r ' 1/a and ∂
∂x ' 1/L.

This together with the continuity equation (22c) implies
that vr ' (a/L)vx � vx, and thus from Eqs. (22a)

r

a

0 Lc(0)

c = 0

c = c(x)

vx(0, 0) vx = vx(0, x) vx(0, L) x

Solid wall Membrane Solid wall

Figure 5 Aldis flow through a cylinder of radius a, of which a
section of length L of the wall (dashed) consists of a semiper-
meable membrane through which a radial flow (small ver-
tical arrows) enters, driven by an osmotic difference in so-
lute concentration c between the internal and external liq-
uids. The axial Poiseuille flow increases (horizontal arrows)
for 0 < x < L due to the radial inflow.

and (22b) that ∂p/∂r ' (a/L)∂p/∂x � ∂p/∂x. To
leading order in (a/L) we can therefore disregard the
r-component of the Stokes equation (22a). Turning to
the x-component Eq. (22b), we need to find an expres-
sion for the x-dependent pressure gradient ∂p/∂x. This
is provided by the Darcy law Eq. (5) using the form in-
volving Q. At the position x, the flow rate is the surface
integral of all fluid influx through the side wall between
0 and x, and consequently

1

η

∂p

∂x
= − 8

πa4
Q = −16

a3

∫ x

0

v0(x′) dx′. (24a)

Inserting this result into Eq. (23b) together with the
ansatz vx(r, x) = R(r)

∫ x
0
v0(x′) dx′, and neglecting

the term ∂2vx/∂x
2 ' vx/L

2 relative to ∂2vx/∂r
2 '

vx/a
2 leads to an ordinary differential equation for R(r),

1
r
∂
∂r (r ∂∂rR) = −16/a3. The solution fulfilling the bound-

ary conditions Eq. (23b) is R(r) = (4/a)(1 − r2/a2),
which determines vx, which upon insertion into Eq. (22c)
leads to an equation for vr. The resulting Aldis velocity
field is

vr(r, x) =

[
r3

a3
− 2

r

a

]
v0(x), (24b)

vx(r, x) =

[
1− r2

a2

]
4

a

∫ x

0

v0(x′) dx′. (24c)

To relate pressure and velocity, we use Eq. (18) for the
osmotic velocity together with the cross-sectional average〈
vx
〉

= Q/(πa2) and Eq. (24a) to obtain

〈∂vx
∂x

〉
=

1

πa2

∂Q

∂x
=

2

a
v0(x) =

2Lp
a

(RTc− p). (25)

This expression is the starting point for analysis of the
Münch model for sugar transport in the phloem, see
Sec. V.
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E. Free Surfaces

A free interface between a liquid and a gas contains a
certain free energy per area, denoted the surface ten-
sion γ (SI-unit J/m2). This energy arises because a
molecule of the liquid at the surface has fewer neighbor-
ing liquid molecules than one in the bulk of the liquid.
The surface molecules have a higher free energy, since
each neighboring liquid molecule contributes with a cer-
tain (negative) temperature-dependent cohesion energy,
which ultimately is responsible for the existence of the
liquid phase. For a given volume, the liquid tends to
minimize its surface to lower the costly surface free en-
ergy. A curved surface therefore represents a higher free
energy than a straight surface. In equilibrium, thermo-
dynamic arguments (Bruus, 2008) leads to the so-called
Young–Laplace law, which states that a non-zero mean
radius of curvature R can only be maintained by a pres-
sure difference ∆psurf across the interface,

∆psurf =
1

R
γ. (26)

For the surface between water and water-saturated air,
the surface tension is γ = 0.072 J/m2.

A liquid-gas interface touching the wall of a confining
tube is furthermore characterized by the contact angle,
defined as the angle between the tangents of the wall.
For angles less than 90◦ (hydrophilic), the liquid is at-
tracted by the wall surface stronger than the gas, while
for angles larger than 90◦ (hydrophobic) the reverse is
the case. If a liquid with a free surface is inside a hy-
drophilic capillary tube, a capillary rise results, where
the liquid is sucked into the tube. The most hydrophilic
case corresponds to θ = 0◦. For plant tissue, a range of
contact angles have been measured, such as values from
42◦ to 55◦ for bordered pit chambers in various species
(Zwieniecki and Holbrook, 2000), and in some cases this
distributions has been accompanied by a second distri-
bution of values clustering near 0◦ (Kohonen, 2006). For
a tube with circular cross-section of radius a, the mean
curvature of the liquid-gas surface is determined by a and
the contact angle θ, and ∆Psurf becomes

∆psurf =
2 cos θ

a
γ. (27)

For such a tube placed vertically, the liquid rises to height
h, where the Young–Laplace pressure balances the hydro-
static pressure phs, Eq. (2), of the liquid column,

ρgh =
2 cos θ

a
γ. (28)

For a tube of radius a = 1 µm containing a water column
interfacing with air, the resulting capillary rise height be-
comes h = 14 m for θ = 0◦ and h = 9.6 m for θ = 49◦.
Capillary rise thus has the potential to play an important
role in the transport of water in plants, and the details

of geometry and contact angles are crucial e.g., in the
dynamics of the bordered pits connecting vessels in the
xylem (Section VI) and protecting the plant against cav-
itation (Zwieniecki and Holbrook, 2000). Whether they
are the primary source of the negative pressures in xylem
is at present not fully understood, since gels in the cell
walls of the mesophyll cells also have a strong potential
for water absorption (Stroock et al., 2014).

F. Final remarks

In this section we have presented some basic and im-
portant concepts from continuum microscale hydrody-
namics governing the flow of plant sap. In these flows
viscosity dominates over inertia, and they are thus char-
acterized by low Reynolds numbers, Re � 1. In the
framework of continuum fields, we briefly described the
transport of solutes (nutrients) in various microchannels
(phloem cells) adding to the complexity by including
advection-diffusion processes, cellular sieve plates, os-
mosis and water potentials, semi-permeable membrane
walls, and free surfaces. In the later sections of the pa-
per we discuss the possible extension of these basic flow
models to take into account the water transport across
plasma membranes mediated by aquaporins, and water
movement between cells mediated by the plasmodesmata.

In the theoretical description of microscale hydrody-
namics in plants, a number of unresolved questions re-
main. One of these relates to a more complete under-
standing of the actual geometrical shape of the channels
through which the biofluids are flowing. While the shape
of the phloem cells themselves may be relatively well
modeled, it is far more complex to describe and model
the channel shapes in the inter-cellular space, as will be
evident in the following section on the anatomy of the
vascular tissues. Also, the extension of continuum hydro-
dynamics down to the nanometer scale of these structures
must be done with care (Hansen et al., 2015).

Another unresolved question relates to the rheology of
the biofluids. The high and variable content of sugars
and other nutrients and of biomolecules in the sap, im-
plies that the viscosity is not a constant and perhaps to
other important non-Newtonian effects. Some of these
can be handled within the framework of “generalized
Newtonian” fluid dynamics (Bird et al., 1987), where the
starting point is the stress tensor σ with components σjk,
where j, k = x, y, z. It involves a shear viscosity η(∂v)
and a dilatational viscosity ζ(∂v), none of which are con-
stant but depend on model-specific functions of the scalar
invariants of the spatial derivatives of the velocity field
v, symbolically written as ∂v,

σjk = −pδjk + η

[
∂vj
∂xk

+
∂vk
∂xj

]
+

[
2

3
η − ζ

]
∂vk
∂xk

δjk.

Here δjk is the Kronecker delta, and we use the Einstein
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summation convention of summing over repeated indices.
With this general tensor formulation, the governing equa-
tion for the mass and momentum densities, ρ and ρv, for
time-dependent, compressible flows become

∂ρ

∂t
= −∂ρvk

∂xk
,

∂(ρvj)

∂t
=
∂σjk
∂xk

− ∂(ρvjvk)

∂xk
, with j, k = x, y, z.

where, ass one can see, the Newtonian governing equa-
tion (3a) is recovered for an incompressible flow with con-
stant viscosity in the Low Reynolds number limit. A
better description of the sap flow and sugar transport in
plants can thus be obtained by employing an improved
rheological model η(∂v) of the sap going beyond the sim-
ple Newtonian description presented in Sec. II.A. Such
an improved rheological description must also contain
the electroviscous effects briefly mentioned at the end of
Sec. II.A. Indeed the role of this and other electrokinetic
effects due to the ions in the sap needs to be clarified to
understand the sap flow in plants better.

III. ANATOMY AND PHYSIOLOGY OF THE VASCULAR
TISSUES

This section provides a broad overview of plant
anatomy and physiology related to vascular transport.
We focus on flow physics in subsequent sections, but note
that it is necessary to know the basics of phloem anatomy
(Sec. III.A) and xylem anatomy (Sec. III.C) to follow
the later discussions.

The pathway of vascular transport in plants is funda-
mentally different from that of cardiovascular transport
in animals. In plants, nutrients and assimilates move
through the lumen of the conducting cells, and the cell
wall of these cells forms the border of the transport path-
way. In contrast, nutrients, electrolytes, oxygen and car-
bon dioxide as well as blood cells move through the lumen
of blood vessels, the borders of which are formed by ep-
ithelial cells. Accordingly, long-distance vascular trans-
port in plants takes intracellular pathways, while that in
animals occurs extracellularly.

The vascular tissues in plants consist of assimilate-
conducting phloem elements and xylem elements con-
ducting water and mineral nutrients (Fig. 1). Vascular
tissues link the organs specialized for water and nutrient
uptake (roots) with the organs specialized for photosyn-
thesis (mature leaves) where the assimilates (sugars and
amino acids) are formed. The architecture of the vascular
tissue in the different organs is quite diverse in different
vascular plant taxa. However, a unifying feature of vas-
cular tissues across nearly all taxa is that phloem and
xylem run parallel to each other and that the conduct-
ing elements in each of the two tissues form an unbroken
continuum between the uptake or loading sites and the
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Figure 6 Sketch of plant tissue composed of the living supra-
cellular symplasm and the external apoplast. (a) Plant cells
(beige) bordered by the plasma membrane (black lines) and
connected by narrow plasmodesmata channels (red lines) form
the internal living symplasm. They are surrounded by the
apoplast (blue) which is the water-filled cell wall matrix. (b)
Eight plasmodesmata in the cell wall between two root cells
(electron micrograph). (c) Schematic drawing of a plasmod-
esma pore connecting two cells by forming a channel through
the cell wall lined by the plasma membrane (PM). The desmo-
tubule (DT) - enclosed by the endoplasmic reticulum (ER)
- fills the center of the pore. The annular space between
the plasma membrane and the desmotubule (the cytoplasmic
sleeve (CS) marked by arrowheads) allows passage of solutes
(∆) and viral nucleic acids (dark blue ellipsoids). Solutes in-
side the endoplasmic reticulum might be able to travel from
cell to cell through the desmotubule. (d) electron micrographs
showing longitudinal views of plasmodesmata. Scale bar = 50
nm. Adapted from (Schulz, 1995):(b,d) and (Schulz, 1999):
(c).

delivery or unloading sites. For an in depth overview
of the anatomy of vascular tissues in plants, see Evert
(2006).

The parallel course of xylem and phloem and the con-
tinuity between uptake and delivery are determined quite
early in development of a plant seedling, where three ba-
sic tissues are founded: the future epidermis, covering
and protecting the plant body, the future cortex and pith,
involved in photosynthesis, energy storage and internal
air distribution, and the procambium, delineating the
future vascular bundles in shoot and root. Even earlier
in plant development, already with the first divisions of
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the embryo, two complementary entities can be discrim-
inated in the young plant body: the porous, water-filled
external apoplast (i.e., the space outside of the cell mem-
brane comprised of the cell walls) and the living internal
symplasm (Fig. 6). The apoplast and symplasm are sep-
arated from each other by a thin, but physiologically sig-
nificant bilayer of phospholipids, the plasma membrane,
which has a thickness of about 10 nm. The symplasm of
neighboring cells are connected by plasmodesmata (Fig. 6
(a)), narrow cylindrical conduits that traverse the cell
wall. Most are formed during division between daughter
cells, but can also develop later (Fig. 6 (b) and (d)); for a
review see Roberts (2005). Each plasmodesma contains
a tubule related to the endoplasmic reticulum, i.e., the
network of membranous tubules within the cytoplasm of
a cell, connected to the nuclear membrane) thereby of-
fering a cytosolic and an endoplasmic reticulum pathway
from cell to cell (Fig 6 (c)). Apoplast and symplasm
are continuously extended during plant growth, by cell
division, cell expansion and cell wall deposition.

In cross sections of stems, vascular bundles form dis-
crete structures and are often arranged on a circle inside
the cortex (Fig. 7). Phloem elements differentiate in the
outer part of the bundles and xylem elements in the inner
parts (Fig. 7). Leaves, developing as lateral protrusions
from the shoot, consistently contain the phloem in the
lower (abaxial) part of the bundles and the xylem in the
upper (adaxial) part, respectively (Fig. 8(d)).

Even though stem and leaves appear as separate units
of the shoot, the development of their vascular system
shows a tight relationship between them. Vascular bun-
dles are not independent from each other, but are con-
nected in a complex manner in the stem nodes, i.e. the
positions where leaves are attached to the stem. Actu-
ally, each stem bundle is the continuation of leaf traces,
i.e. vascular bundles connecting leaf and stem through
the petiole. If one follows the median and lateral bundle
traces of a given leaf down the shoot by carefully ana-
lyzing serial cross and longitudinal sections, bundle fis-
sion and fusion events become evident at different nodes
below the leaf insertion, leading to the eventually con-
stant number of vascular bundles per stem segment be-
tween the nodes (Evert, 2006). In palms and several
other monocots the vascular bundles are spread across
the stem diameter leading to an even more complex in-
terconnected bundle system, which was for the first time
convincingly demonstrated by a cinematographic presen-
tation of serial cross sections by Tyree and Zimmermann
(2002); Zimmermann and Tomlinson (1965)

Fission and fusion of vascular bundles happen in the
nodes, but there are also connections between the vascu-
lar bundles between nodes, which are called anastomoses.
These can be individual strands, but also an extensive
network of connections. Such anastomoses consist typi-
cally of phloem elements only and can serve as a bypass
for assimilate transport when vascular bundles are inter-

rupted and/or as part of the defence system, when the
phloem contains protective proteins (Aloni and Jacobs,
1977; la Cour Petersen et al., 2005; Gaupels and Ghi-
rardo, 2013).

In woody plants, the vascular bundles in the stem in-
crease in thickness by secondary growth where the resid-
ual cell layer between phloem and xylem (i.e. the vascular
cambium) is activated and produces additional phloem
elements to the outside and xylem elements to the inside.
Secondary growth results in an annual increase in thick-
ness of root and shoot. Leaves and reproductive as well
as storage organs rarely experience secondary growth.

Adjustment to light conditions and accessibility to wa-
ter import and sugar export pathways are the primary
determinants of the specific leaf anatomy. Light is cap-
tured by the mesophyll cells, which are typically only a
few cells away from a vascular bundle, releasing xylem
sap and absorbing phloem sap. Each vascular bundle is
encircled by the bundle sheath (Fig. 8(d-e)), which con-
trols the transport processes between bundle and meso-
phyll. The vascular bundles form parallel avenues only
in leaves of e.g. grains, grasses, and palms. They are, at
regular intervals, cross-linked by thin anastomoses (Fig. 8
(c)). In most angiosperm leaves, the vascular system
does not form parallel veins but a complex reticulate net-
work. Here the vascular bundles constitute a hierarchical
vein system with several branching orders, the midrib be-
ing “class 1” veins and the veins branching off from the
midrib “class 2” and so on (Fig. 8 (a) and (b)). The finest
branches, typically class 5, 6 or even 7, called the minor
veins, are pivots where water is leaving the xylem and
assimilates are loaded into the phloem, (Fig. 8 (d) and
(e)). Only the largest classes (1 to 3) enter the petiole,
eventually forming the main and lateral leaf traces in the
stem.

The beautiful bifurcation patterns formed by leaf veins
have been widely studied (Prado and Maurel, 2013; Price
and Weitz, 2014; Roth-Nebelsick et al., 2001; Sack and
Scoffoni, 2013), but due to their diverse functionality,
there is currently no agreement on precisely how these
patterns should be understood, in the sense of being op-
timal. One remarkable observation (Bohn et al., 2002;
Couder et al., 2002) is that the bifurcations seem to sat-
isfy a simple vectorial rule, in the form of a “force bal-
ance” akin to the patterns formed by drying gels. Thus a
vein can bifurcate into two new veins of different radii in
many different ways, but the angles that the new veins
form with the old one depends on their relative radii.
Bohn et al. (2002) write the relation between the three
veins as

F (R1)e1 + F (R2)e2 + F (R3)e3 = 0 (30)

where ei is the unit vector pointing in the direction of
vein i and F is a function only of the radius of the vein.
As seen in Fig. 9, this function is amazingly close to lin-
ear, at least in the 7 species studied.
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Figure 7 Vascular bundles in the plant stem. (a) Fluorescence micrograph cross section through the stem of Arabidopsis with
dull green xylem (X), and bright green phloem (P), translocating water with inorganic ions and sugars, respectively. (b) Bright-
field micrograph showing vascular bundles in cauliflower with xylem (X) and phloem (P) overlayed with green fluorescence of
sieve elements. (c) Fluorescence micrograph of a young apricot tree stem cross section stained with Coriphosphine O (before
the onset of secondary growth). The vascular bundles with phloem (P, white dashed line) and xylem (X, blue dashed line)
are embedded in the cortex and pith. Arrows point to the small sieve-element companion cell complexes, responsible for
sugar transport. Tracheary xylem elements show strong yellow fluorescence in their lignified cell walls. (a) and (b) adapted
from (Khan et al., 2007). ( c) courtesy of Helle J. Martens, Department of Plant and Environmental Sciences, University of
Copenhagen

Although such networks under quite general conditions
can be shown to have minimal resistance or maximal
efficiency when they form a “tree”, i.e., have no loops
(Durand, 2006), it has recently been pointed out that
the loops, which are abundant in leaf venation networks,
will be advantageous by inducing multiple connections, if
damage occurs to the leaf (Katifori and Magnasco, 2012;
Katifori et al., 2010; Sack et al., 2008). An entirely dif-
ferent understanding of the venation pattern comes from
the analysis of how the leaf is folded in the bud, which
to a certain extent can explain shapes and symmetries of
leaves, and also how adaxial/abaxial asymmetry built up
during growth induces curvature and folding (Couturier
et al., 2012, 2009). Recently, detailed 3D images of intact
tomato leaves have been obtained by synchrotron X-ray
radiation with a resolution of 750 nm (Verboven et al.,
2015) and this seems a promising technique, in particular
if one can reduce the necessary scanning time (currently
10 min) (see also the review by Brodersen and McElrone
(2013) and Fig. 35 in Section VI.A.3).

A. Phloem Anatomy

Phloem is a complex tissue containing different cell
types: sieve elements, companion or Strasburger cells,
parenchyma cells and sometimes also sclerenchyma cells.
In this section, we will discuss the overall organization of
the phloem and the size, structure and diversity of the
conducting cells. Our emphasis is on the phloem of trees,
which belong to two botanical taxa: angiosperms (flow-
ering seed plants like most hardwood) and gymnosperms
(non-flowering seed plants such as the conifers).

The function of the phloem varies between source
(leaves) and sink (e.g. roots and fruits) tissues which is
partially reflected in its anatomy. According to their
function, the different phloem sections have been de-
fined as collection phloem, transport phloem and release
phloem (van Bel, 1996; Lucas et al., 2013), found in
leaves, stem and sink organs, respectively. The differ-
ent functions are overlapping, and it is sensible to use
the term collection phloem for the minor veins of the leaf
only (class 4 − 7). Major veins have dual functions: in
the developing leaf they release sugars and amino acids
towards the immature leaf regions, and in the mature leaf
they contain the transport phloem and are thus respon-
sible for the export from the minor veins to the petiole
(Wright et al., 2003). Transport phloem seems also to
have a retrieval function allowing it to pump leaked as-
similates back into the transport pathway. Release of as-
similates from the phloem to sinks such as young leaves,
roots, and seeds is generally a passive process which is
facilitated by wide plasmodesmata as seen in the spread-
ing behaviour of radioactive sugars, tracers and fluores-
cent macromolecules (Lalonde et al., 2003; Schulz, 1995;
Stadler et al., 2005; Wright et al., 2003).

The conducting cells of the phloem are the sieve ele-
ments as evidenced already more than 60 years ago by
experiments with radioactive transport sugars and fluo-
rescent markers (Christy and Fisher, 1978; Fritz and Es-
chrich, 1970; Knoblauch and van Bel, 1998; Schumacher,
1950). As all living cells, sieve elements are separated
from the cell wall space by an intact plasma membrane
that controls water and nutrient exchange. In con-
trast to other cell types, however, sieve elements change
their structure dramatically when becoming functional
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Figure 8 Structure of leaf veins. Venation patterns of (a-b) reticulate and (c) parallel veined leaves. Numbers indicate the
vein class. Adapted from (Sack and Scoffoni, 2013). (d) Cross section through a potato leaf at a minor vein. The tissue types
are photosynthetically active mesophyll (green) and the bundle sheath (yellow) encircling the vein. The vein has one xylem
treachery element (T, blue), two phloem sieve elements (beige), and three phloem companion cells (beige). (e) Cross section
through the smallest vein class (6) of a potato leaf consisting of one tracheary xylem element (T), two phloem sieve elements
(SE), three phloem companion cells (CC), and two phloem parenchyma cells (PP). The bundle sheath (BS) surrounds the vein.
Adapted from (Schulz et al., 1998).
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Figure 9 The function F computed from (30) for the seven
leaves. As one can see, F (R) is close to linear. Adapted from
(Bohn et al., 2002).

and adapted for long-distance transport. The structure
of active sieve elements has been a matter of dispute
over decades, since the preparation necessary to visual-
ize them with light or electron microscopy easily causes
artefacts in the phloem system, which is pressurized when
functional. Careful preparation methods and visualisa-
tion of functional sieve elements by using tracers and
confocal laser scanning microscopy (Knoblauch and van
Bel, 1998; Schulz, 1992) have led to the now generally ac-
cepted view of their structure, which is remarkably uni-
form in different plant taxa.

The end walls connecting one sieve element with the
next are penetrated by many direct connections, the sieve
pores, which are derived from plasmodesmata. The chain
of sieve elements thus intimately connected is called a
sieve tube (Fig. 10 (b)). The diameters of sieve pores
found in different angiosperms span 0.1− 7 µm (Fig. 11
(a) and (c)). In gymnosperms, sieve elements have long-
tapering end walls with numerous sieve areas connecting
to the adjacent sieve element (Fig. 10 (d)). Their sieve
pores are rarely wider than 0.3 µm (Fig. 11 (d)), sugges-
tive of a higher flow resistance than in angiosperms. We
return to this point in Section IV. The diversity of sieve
element lengths, sieve plate areas and inclination of the
end walls in higher plants is documented in Esau’s clas-
sical handbook on the phloem (Esau, 1969). The cross
section of sieve elements in angiosperms is generally more
or less circular, while those in gymnosperm are rectan-
gular (Fig. 10), which makes the “diameter” somewhat
ambiguous (Jensen et al., 2012a). Sieve plates can be
oriented perpendicular to the sieve tube, but are often
more or less inclined (Fig. 10).

The organelles and other cellular constituents which
could offer resistance to intracellular transport, like the
nucleus, vacuole(s) and ribosomes, either disappear dur-
ing cell maturation, or move to the cell periphery as can
be seen in Fig. 10b. The mitochondria and a modi-
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Figure 10 Electron microscopic comparison of the phloem of the flowering plant (angiosperm) beech (a-b) and the non-flowering
seed plant (gymnosperm) spruce (c-e). Beige shaded areas are the conducting sieve elements. (a) Transverse cross sections
of beech phloem with sieve elements (SE) that are neighbored by companion cells (arrow, CC). The immature sieve element
(iSE) still contains a dense cytoplasm. (b) Longitudinal cross section of beech phloem sieve elements (SE) that are neighbored
by companion cells (CC) with a dense cytoplasmic content. A sieve plate (SP) separates two adjacent sieve elements. (c)
Transverse cross section of spruce phloem (P). Sieve elements appear empty, while parenchyma cells are filled with black tannic
acid vacuoles. (d) and (e) Confocal micrographs of live phloem in tangential cross section view, stained with a endoplasmic
reticulum specific dye (dark grey). (d) Arrow, end wall of two overlapping sieve elements marked by the many sieve areas,
each of them covered on either side by endoplasmic reticulum. (e) Arrows pointing on the sieve areas between two parallel
sieve elements. Arrowheads show plasmodesmal connections from a sieve element to a Strasburger cell, which is covered with
endoplasmic reticulum on one side only. Adapted from: (a) - (c) (Schulz and Behnke, 1987), (d) (Schulz, 1990), (e) (Schulz,
1992).

fied endoplasmic reticulum system seem to be fixed at
the plasma membrane via protein linkers (Ehlers et al.,
2000). Specific structural phloem proteins (P-proteins)
occurring as filaments or persistent crystalline struc-
tures in the majority of sieve elements of angiosperms

(Fig. 11) do not seem to have large influence on assimi-
late transport in intact sieve tubes (Froelich et al., 2011;
Knoblauch et al., 2014). Wounding of the phloem by
mechanical impacts and pathogen attacks is, however,
thought to lead to the accumulation of such proteins on
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Figure 11 Comparison between phloem sieve plate pores in beech and sieve area pores in spruce, typical for angiosperms and
gymnosperms, respectively. (a) Cross section of two sieve pores in a beech sieve plate (see face view of a sieve plate without
cellular contents in Fig 1d). Arrows indicate flow paths which are only loosely occupied by hair-like protein filaments (grey).
(b) Oblique view of beech sieve pores densely filled with protein filaments. (c) Cross section of sieve pores loosely filled with
protein filaments. (d) Cross section of spruce sieve area pores. Arrows mark the orifices of the pores covered on either side
with endoplasmic reticulum (ER). The pores form an extended cavity within the cell wall (CW). Scale bar for all panels 1 µm.
Adapted from (Schulz and Behnke, 1987).

and in sieve pores. Together with the deposition of a spe-
cific wall polysaccharide found around sieve pores and
plasmodesmata (callose), this leads to constriction and
clogging of sieve tubes (Furch et al., 2007; Knoblauch
and Peters, 2004; Knoblauch et al., 2012; Schulz, 1986).
Gymnosperms do not have P-proteins (Schulz, 1990).
However, their sieve areas are covered by extended com-
plexes of tubular endoplasmic reticulum on either side of
a sieve area (Fig. 11). Changes of these complexes after
wounding were observed with electron and live confocal
microscopy and indicate a similar clogging mechanism
(Schulz, 1992).

Taken together, the sieve tubes in angiosperms are
symplasmic low-resistance pathways that combine the
low-resistant intercellular transport through wide sieve
pores with the low-resistant intracellular transport
through the reduced cytoplasm of sieve elements. The
same is valid for gymnosperm phloem, although the
smaller width and increased complexity of sieve pores
seem to offer more resistance to the intercellular section
of the pathway. This is indeed reflected in smaller trans-
port speeds measured and theoretically calculated for
gymnosperm trees (Jensen et al., 2012a; Liesche et al.,
2015).

Reduction in cytoplasmic contents is a unifying fea-
ture in sieve elements across the higher plant taxa

(Behnke and Sjolund, 1990). However, the cytoplas-
mic structures persisting in sieve elements, in particu-
lar the plasma membrane, are dependent upon protein
and lipid turnover as well as on molecular energy car-
riers which the mature sieve element cannot provide on
its own. Therefore, sieve elements are strongly dependent
on a fully equipped neighbour cell, the companion cells of
angiosperms, and the Strasburger cells of gymnosperms
(Fig. 10). The delivery of energy carriers and exchange of
worn-out proteins and lipids most probably takes place
through the particular contacts consisting of sieve pores
on the sieve element side and branched plasmodesmata
on the neighbour cell side.

B. Phloem Physiology

We have discussed above that the phloem forms a low-
resistance pathway for assimilate transport from source
to sink. The question to be treated in this section is
the mechanism and the driving force of this transport.
Phloem transport is mechanistically seen as an osmot-
ically generated pressure flow driven by accumulation
of sugars in mature leaves and consumption in sinks
(Münch, 1930), see Fig. 1. The accumulation of sug-
ars is the direct consequence of the photosynthetic ac-
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Figure 12 Models of phloem sugar loading strategies according to Turgeon (2010). Represented cell types are sieve element (SE),
companion cell (CC), and mesophyll (M). (a) Active apoplasmic loading: sugar transporters (yellow circle) in the companion
cell plasma membrane transfers sucrose (red dot) from the apoplast into the sieve element-companion cell complex, energized by
a proton pump (not shown). (b) Active symplasmic loading (polymer trapping): Sucrose is transferred from the mesophyll to
the companion cell via plasmodesmata gaps in the wall (4 arrows). Here, it is converted under investment of metabolic energy
into larger raffinose oligosaccharide family sugar polymers (green dots) that are trapped in the sieve element-companion cell
complex. They cannot move back, since the plasmodesmata are too narrow, but can move on into the sieve element through
the wide plasmodesma-sieve pore contact. (c) Passive symplasmic loading: sugar diffuses from the mesophyll to the sieve
element via plasmodesmata in the companion cell wall. (d), (e) and (f) visualizes the distribution of regions of high sucrose
concentration under the the three loading strategies. Accumulation occurs in veins of active apoplasmic loaders and polymer
trappers, but not in passive symplasmic loaders. Adapted from (Turgeon, 2010).

tivity of the leaf mesophyll. For the export of sugars
from the mature leaf into other plant organs, it is de-
cisive that the plasma membrane of the sieve elements
remains intact. The sharp difference in solute potential
across the plasma membrane leads to the osmotic uptake
of water from the apoplast into the phloem, and thus to
the development of pressure in the phloem system. The
pressure in the leaf phloem drives a bulk flow of liquid
through files of sieve elements towards regions of low hy-
drostatic pressure. Since the majority of sink sites allows
for a passive release of nutrients, the decrease of the sugar
concentration towards sink tissues establishes a pressure
differential in the phloem system, driving the observed
transport of sugars and other organic compounds from
source to sink.

Münch’s original hypothesis was that the sugars in the
phloem accumulate due to photosynthesis in the meso-
phyll and subsequent loading into the sieve elements by
diffusion. However, this hypothesis was established with-
out the knowledge of active membrane transport systems.
Currently we know that at least three principally differ-
ent strategies of phloem loading have developed in evolu-
tion. The active ones show an accumulation of sugars in
the leaf veins – and not the mesophyll – when leaf disks
are incubated in radioactive sugar solutions (Turgeon and
Wimmers, 1988). In contrast, leaf disks of passive sym-

plasmic loading plants do not accumulate sugars in the
veins. This passive loading mode is typical for woody an-
giosperms and gymnosperms. The question why particu-
larly the rapidly growing herbaceous plants have adopted
active loading strategies seems to be related to their eco-
nomic life strategy, which is focused on an efficient use
of photosynthates (Turgeon, 2010).

1. Active apoplasmic loading

One of the driving forces for the sugar accumulation
in the collection phloem emerged in the 1970ies to be
an active sucrose-proton cotransport from the apoplast
into the symplasm (see Giaquinta (1980); Komor (1977)).
Uptake of sugars is fuelled by the activity of the plant
proton pump which hydrolyses the energy carrier ATP.
An important breakthrough for the understanding of this
so called apoplasmic loading mode was the purification,
characterization and localization of the sucrose trans-
porter to the plasma membrane of the sieve element-
companion cell (Kühn et al., 1997, 1996; Stadler et al.,
1995). Since then several sucrose transporters were char-
acterized in different plant taxa (for their evolution see
(Peng et al., 2014)) and, aside from sucrose, they trans-
port sugar alcohols like mannitol and sorbitol (Rennie
and Turgeon, 2009). Experimental removal of the sucrose
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transporter protein led to reduction or loss of phloem
transport (Gottwald et al., 2000; Kühn et al., 1996;
Schulz et al., 1998).

The localization of the sugar transporters and the mea-
surements of osmotic pressures in different tissues of ma-
ture leaves confirmed that sugars do accumulate in the
minor veins (Geiger, 1975; Geiger et al., 1973), in agree-
ment with the leaf disk experiments. Sugars and amino
acids to be translocated long-distance in the phloem must
first to be transported from mesophyll cell to mesophyll
cell into the bundle sheath. This pre-phloem transport
of assimilates, with sucrose as the most important rep-
resentative of sugars, follows the distribution of plas-
modesmata in the cell wall interfaces (Schulz, 2014). A
simplified cartoon on active apoplasmic loading is shown
in Fig. 12. Plant species exploiting apoplasmic phloem
loading are characterised by an isolated phloem, i.e. only
few plasmodesmata link the bundle sheath with the sieve
element-companion cell complex (Fig. 8).

2. Active symplasmic loading by polymer trapping

In contrast to the closed minor vein configuration dis-
cussed above, a number of plant families however have
numerous plasmodesmata in the interface between bun-
dle sheath and sieve element-companion cell complex.
This so-called open configuration (Batashev et al., 2013;
Gamalei, 1989) was a challenge for the understanding
of active phloem loading through sugar transporters up
to 1990, since the plasmodesmata would allow sucrose
to flow back into the mesophyll, instead of accumulat-
ing in the phloem. At that time Robert Turgeon pre-
sented his polymer trap hypothesis for herbaceous flow-
ering plants with an open minor vein configuration (Tur-
geon and Gowan, 1990), called active symplasmic load-
ing. It combined different ultrastructural and physiolog-
ical observations of a subgroup of plants with an open
minor vein configuration, most importantly: (i) the plas-
modesmata between bundle sheath and companion cells
are branched and very narrow on the companion cell-
side, (ii) chemical inhibitors of sugar transporters have
no effect on phloem loading and, (iii) the main transport
sugar found in the phloem of this subgroup are larger raf-
finose family oligosaccharides such as raffinose, stachyose
and verbascose, in contrast to the disaccharide sucrose
as used by the majority of plant families (Schmitz et al.,
1987; Turgeon and Hepler, 1989; Turgeon et al., 1975;
Turgeon and Wimmers, 1988; Zimmermann and Ziegler,
1975).

The polymer trap hypothesis assigns the branched
plasmodesmata a filtering function: large enough to let
sucrose pass from the bundle sheath into the companion
cell, but too small for the larger sugars, synthesized in
the companion cell (see Fig. 12). Synthesis of the larger
sugars in companion cells leads to an accumulation of

sugars which again attracts water osmotically. Since the
metabolic conversions from sucrose to raffinose and/or
stachyose demand energy, this loading mode is denoted
active symplasmic loading. Subsequent studies confirmed
the feasibility of the hypothesis and annotated the rele-
vant plant families within the flowering plants (van Bel
et al., 1993; Haritatos et al., 2000; Holthaus and Schmitz,
1991; Kempers et al., 1998; Turgeon et al., 2001). The
polymer trap mechanism is not associated with a spe-
cific growth form as it is found in herbaceous plants like
pumpkin, but also in, for example, olive trees (Davidson
et al., 2011). Direct evidence for the capability of plas-
modesmata to filter sugars with a very small difference
in hydrodynamic radius from each other is still lacking.
Modeling the plasmodesmal substructure and calculation
of the plasmodesmal conductance at the crucial interface
showed, however, that plasmodesmata might indeed be
able to discriminate sucrose from the larger sugars if their
cut-off is close to the hydrodynamic radius of stachyose
(Dölger et al., 2014; Liesche and Schulz, 2013). For more
details of this mechanism, see Section VI.C.

3. Passive symplasmic loading

Over the last 15 years, Münch’s original hypothesis ex-
perienced a renaissance for sucrose translocating trees. It
was shown, first in willow, and then in other tree species,
that leaf disks exposed to labelled sucrose did not ac-
cumulate radioactivity in the minor veins and inhibitors
of sucrose uptake did not have any effect. At the same
time, the global sugar concentration in the leaves was
higher than in herbaceous plants (Davidson et al., 2011;
Fu et al., 2011; Rennie and Turgeon, 2009). They had
an open vein configuration and were accordingly called
passive symplasmic loaders (Turgeon and Medville, 1998)
and they appear to be in good agreement with Münch’s
original idea (Münch, 1930): that sucrose synthesized in
the mesophyll moves down its concentration gradient to
the minor veins, where it easily can enter the companion
cells through the abundant plasmodesmata at the bun-
dle sheath-companion cell interface (Zhang et al., 2014)
(see Fig. 12). Passive symplasmic loading seems in a
way quite energy-efficient, since no additional energy is
needed in the phloem itself, and the highest sugar con-
centration is where it is produced. For the overall trans-
port process from mesophyll via the phloem to the sink
organs, it is an interesting question where the purely dif-
fusive sucrose transport starts to be converted into a bulk
flow: already on the pre-phloem pathway, or only in the
phloem (Schulz, 2014). Indications for passive symplas-
mic loading are given for many woody angiosperms and
for all gymnosperms. The pre-phloem pathway of the lat-
ter is however much more complex (Canny, 1993; Liesche
et al., 2011; Schulz, 2014).
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C. Xylem Anatomy

The principal role of the xylem is to replace water lost
from leaves during transpiration with water from the soil
(Tyree and Zimmermann, 2002). Up to 98% of the wa-
ter moving through the xylem exits the leaves through
the stomata pores as water vapor (Fig. 1(a)), with the
remaining 2% being used in photosynthesis and volume
growth (Kramer and Boyer, 1995). It is not uncommon
for a large tree to lift as much as 100 liters every day
(Vogel, 2012). For comparison, the fastest growing trees
add around 100 kg dry mass per year (Stephenson et al.,
2014). To justify the plant’s insatiable desire for water,
consider the photosynthesis reaction:

light + 6H2O + 6CO2 → C6H12O6 + 6O2. (31)

Six CO2 molecules are needed to produce one glucose
sugar molecule. This corresponds to approximately
1.4 kg CO2 per 1 kg glucose. Plants obtain CO2 from
the atmosphere by diffusion through stomata pores. The
pores expose the interior of the leaf to the atmosphere,
and thus invariably also allow water vapor to escape. A
conservative estimate of the relative water flux JH2O and
carbon dioxide flux JCO2

is

JH2O

JCO2

=
DH2O

DCO2

∆cH2O

∆cCO2

(32)

' 2.4× 10−5 m2/s

1.4× 10−5 m2/s

1 mol/m3

10−2 mol/m3
(33)

' 1.7× 102 (34)

where D is the diffusion coefficient in air and ∆c are typ-
ical concentration gradients (Nobel, 2009; Thoning et al.,
1989). The plant thus loses around 200 water molecules
for every CO2 captured, or at least 100 kg water per 1 kg
glucose synthesized. Apart from water, the xylem also
transports dissolved nutrients, amino acids, hormones
and other signaling molecules (Fisher and Cash-Clark,
2000); but – in contrast to the phloem – the solution is di-
lute (typically less than 10 mmol (Schurr, 1998; Siebrecht
et al., 2003)).

The large amount of energy needed to vaporize wa-
ter means that transpiration also serves to cool leaves
(Lambers et al., 2008). Yet in considering the role of
transpiration in leaf energy balance it is worth noting
that transpiration cools leaves even when leaf tempera-
tures are lower than optimum levels for photosynthesis.
Furthermore, when soils are dry and stomata close, tran-
spirational cooling will be lost. For this reason, other
features, such as leaf angle, leaf reflectance and leaf size,
play an important role in preventing sunlit leaves from
reaching lethal temperatures.

The conduits through which water flows are formed
from cells that (1) have thick cellulosic walls impregnated
with a class of complex organic polymers (C9H10O2,
C10H12O3, C11H14O4) called lignin and (2) lack a

(a) (b)

200 nm

Figure 13 Structure of plant cell walls. (a) Plant cell walls
comprise a network of cellulose microfibrils (green rods) linked
by hemicellulose (red strands) and pectin (blue strands)
to form a network. Lignin confers additional mechanical
strength. (b) Electron micrograph of cell wall structure shows
mainly cellulose microfibrils after extraction of pectin and
hemicellulose. Adapted from (Alberts et al., 2014)

membrane-bound protoplasm at maturity (Fig. 13).
Both features contribute significantly to the ability of
plants to pull water from the soil. Xylem conduits are
of two basic types (Fig. 14): single-celled tracheids and
multicellular vessels (Evert, 2006). The latter are formed
from linear files of cells called vessel elements. As vessel
elements mature, the cell wall between them is chemi-
cally broken down. This creates a continuous lumen that
spans multiple cells. The degraded walls between vessel
elements are referred to as perforation plates; these can
be essentially open holes or retain parallel bars of cell wall
material across the opening between vessel elements. The
perforation plates approximately doubles the total hy-
draulic resistance of the conduit lumen (Christman and
Sperry, 2010). Their functional role, either in terms of
reinforcing conduits against implosion (Carlquist, 2001)
or preventing gas from aggregating into larger bubbles
following a freeze-thaw event (Tyree and Zimmermann,
2002), remains unresolved.

The major significance of vessels is that they can be
of larger diameter and of longer length than tracheids
(Sperry et al., 2006). Tracheids are typically 10− 20 µm
in diameter (40 − 60 µm maximum), and less than 10
mm in length (2 cm maximum). Vessel dimension vary
substantially, but in some cases they can be up to 500 µm
in diameter and multiple meters in length (Tyree and
Zimmermann, 2002). As a result, plants with vessels can
support higher rates of water flow and greater rates of
CO2 capture than a plant with only tracheids. Tracheids
are found in all types of vascular plants, whereas xylem
vessels occur in only some groups, most notably in the
flowering plants (angiosperms).

Due to the hydrophobic nature of lignin, the secondary
walls of xylem conduits are relatively impermeable to wa-
ter. Thus, all exchange of materials with both adjacent
living cells and other xylem conduits occurs through pits,
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Figure 14 Principles of wood structure in gymnosperms (a) and angiosperms (b). (a1) and (b1) depict typical features of
conductive wood (xylem). In gymnosperms, the longitudinal conducting elements (tracheids; (a1), cross section view (a2)) are
connected via linearly aligned bordered pits (a3). In angiosperm wood vessels are composed from large cells that are vertically
aligned and joined via per foration plates (b1), vessels are also seen as large ovals in cross section (b2). Vessels are connected
via fields composed from tens to hundreds of bordered pits (b3). The structure and function of xylem bordered pit pores vary
between species (c-e). (c) Bordered pits of gymnosperm with torus and margo, (d) typical angiosperm pit, and (e) angiosperm
with vestured pits. Drawings below (c-e) represent cross-sections of bordered pits under normal non embolized conditions, and
their potential function as protection from gas spread. (c) From (Core et al., 1979), (e) courtesy of Steven Jansen, from (Jansen
et al., 2004).

circular to oval regions that lack a secondary wall (Ev-
ert, 2006), (see Fig. 14). The primary cell wall which
is formed while the cell is actively increasing in size, re-
mains intact and thus forms a porous barrier, referred to
as the pit membrane. Unlike cellular (lipid) membranes,
pit membranes are not selectively permeable, but their
presence at the interface between adjacent vessels signif-
icantly impedes flow (Choat et al., 2006). Overall, end-
walls are thought to contribute 56− 64% of total xylem
hydraulic resistance (Sperry et al., 2006).

Pits are sentinel features of xylem that help maintain
liquid continuity (Choat et al., 2008). In the so-called
bordered pits that form between xylem conduits, the sec-
ondary walls arch over the circular pit membrane, form-
ing a chamber that is connected to the conduit lumen
by a circular-to-elliptical hole (Fig. 14). When adjacent
conduits are water-filled, the pressure difference across
the pit membrane is small relative to its strength, such
that there is little deflection of the pit membrane in the
direction of water flow. However, when a gas-filled con-
duit (at atmospheric pressure) adjoins a water-filled con-

duit that remains under significant tension, the pressure
difference across the pit membrane can be large. When
this happens, the pit membrane deforms elastically and
eventually comes to rest against the physical barrier cre-
ated by the over-arching secondary cell wall. Capron
et al. (2014) documented this process in Populus xylem
by creating silicone moldings of the pit membrane at dif-
ferent pressure gradients (Fig. 15). In some species, out-
growths of the overarching secondary wall extend into
the pit chamber, forming structures referred to as ves-
tures (see Fig. 14(e)). Vestures restrict the deformation
of pit membranes when exposed to large pressure gradi-
ents (Choat et al., 2004). For reasons that are currently
unclear, such vestured pits are most commonly found
in species from warm, tropical climates (Jansen et al.,
2004).

Pit membrane structure is central to how pits prevent
air from spreading between conduits (Jansen et al., 2009).
Pit membranes begin as primary cell walls, although they
may be substantially modified during conduit matura-
tion. Primary cell walls consist of dense layers of cellu-
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Figure 15 (Color online) Elastic deformation of a pit mem-
brane. (a) Silicone molding of Populus pits at pressure gradi-
ent ∆p = 2.2 MPa. (b) Data points show deflection of the pit
membrane as a function of the normalized radial position r/R,
measured from molding experiments at pressure gradients in-
dicated in the plot. Solid lines are fits to the linear elastic
deflection of a circular plate with clamped edges. Adapted
from (Capron et al., 2014).

lose microfibrils, which are crosslinked with other carbo-
hydrate polymers, with the entire network embedded in
a pectin hydrogel as shown in Fig 13. The characteristic
distance between cellulose fibers have been reported in
the range 10−100 nm (Capron et al., 2014; Choat et al.,
2004). In some species, the pit membranes are thick (up
to 1 µm), while in others the thickness is similar to that
of typical primary walls (≈ 200 nm). In most plants, the
pit membrane appears relatively featureless, with atomic
force microscopy indicating the presence of a soft surface
layer that covers the cellulose network (Lee et al., 2012).
The presence of hydrogels in pit membranes is indicated
by the effect of cations on hydraulic resistance (Santiago
et al., 2013; Zwieniecki et al., 2001).

The pit membranes of many gymnosperms are highly
modified into a thick central region (the torus) that is
suspended in the middle of the pit chamber by cellu-
lose microfibrils (the margo) (Fig. 14(c)). This differ-
entiation creates a region of lower hydraulic resistance
than in a homogeneous pit membrane, while at the same
time retaining a thickened torus that can form a seal
to prevent gas from spreading between conduits (Delzon
et al., 2010). The higher permeability to water of these
pits helps explain how gymnosperms grow to form tall
trees despite producing only tracheids (Pittermann et al.,
2005). Indeed, some of the tallest trees in the world (no-
tably coastal redwood, giant sequoia, and douglas firs),
reaching heights of 100 m, are also gymnosperms.

As illustrated in Fig. 13, wood cell walls comprise cel-
lulose, hemicellulose, lignin, and pectin - in addition,
a structural analysis indicates that particular geomet-

rical constructs are dominant. These include honey-
comb, foam-like, and helical structures (Ali and Gib-
son, 2013; Carlquist, 2012; Gibson, 2012; Karam, 2005;
Niklas, 1994; Tekoglu et al., 2011; Wegst, 2011). The
arrangement of the four basic building blocks in plant
cell walls and the variations in cellular structure give
rise to a remarkably wide range of mechanical proper-
ties: Young’s modulus E varies from E ∼ 0.03 GPa to
E ∼ 30 GPa, while the compressive strength σ varies
from σ ∼ 0.3 MPa to σ ∼ 300 MPa (Gibson, 2012) (Fig.
16). Models based on the assumption that the mechan-
ical strength of the wood depends on the geometrical
structure and the density of the underlying polymer ma-
terial – composing the cell wall – only, are quite successful
in predicting the mechanical properties of the particular
type of wood (Gibson, 2012). As an example, one may
consider wood organized primarily in honeycomb struc-
tures with prismatic cells, i.e., the honeycomb structure
of the shortest dimensions appears in the plane perpen-
dicular to the xylem vessels and thereby also perpendic-
ular to the direction of flow. With a density of the wood
of value ρ, the model predicts that when loaded along
the vessels, Young’s modulus E|| and the compressive
strength σ|| are related to the similar material properties
of the cell wall, Ecw and σcw through the ratio of the
densities, ρ/ρcw,

E|| ∼ Ecw

(
ρ

ρcw

)
, (35)

σ|| ∼ σcw

(
ρ

ρcw

)
. (36)

When one accounts for the spacing between the walls in
the symmetric structure, the density of the wall mate-
rial, ρcw should be larger than the density of the wood ρ,
as also apparent from Fig. 16, implying that the elastic
moduli E|| and σ|| are smaller than the values for the
cell wall itself, Ecw and σcw. The same is true for load-
ing perpendicular to the xylem vessels, also referred to
as perpendicular to the grain. In this situation, at suf-
ficient loading, plastic hinges form between the wooden
cell walls, and the relevant moduli are

E⊥ ∼ Ecw

(
ρ

ρcw

)3

, (37)

σ⊥ ∼ σcw

(
ρ

ρcw

)2

. (38)

The scalings in Eqns. (36)-(38) are in rough accord with
observations from woody plants, cf. Fig. 16 (Gibson,
2012). The data for the perpendicular Young’s modu-
lus E⊥ as a function of density ρ lie on a line closer to a
slope of 2 than 3, with the data for loading in the tan-
gential direction of the tree trunk closer to a slope of 3
and those for loading in the radial direction of the tree
trunk closer to a slope of 2. It appears that in the radial
direction, rays are formed in the tree trunk and act as
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Figure 16 (Color online) Young’s modulus E increases with
wood density ρ, in rough accord with model Eqns. (38) and
(36). Parameters for the pure materials are displayed in the
right upper part of the figure, whereas parameters for the
composite wood corresponds to the lower density in the yellow
(loading parallel to the xylem vessels) and in the blue areas
(loading perpendicular to the xylem vessels) of the figure.
Adapted from (Gibson, 2012).

reinforcement (Easterling et al., 1982). With radial load-
ing, these rays are loaded along their axis and the loading
therefore not only results in bending of the elements of
the honeycomb, a fact that would explain a slope of a
value less than 3.

D. Xylem Physiology

Having briefly outlined the basic structure of xylem
conduits, we are now ready to consider what drives the
flow of water through the xylem. Water transport in
plants is often described as passive; meaning that no di-
rect expenditure of metabolic energy is required. Instead,
plants make use of an existing external gradient in chem-
ical potential between wet soil and dry air (Stroock et al.,
2014). Yet to do this, they have to build structures that
maintain liquid continuity such that the pathway of low-
est resistance is through the plant, rather than through
the much shorter distance to the soil surface. Thus, al-
though water transport is passive in the strict sense, en-
ergy is required to build and maintain the xylem.

1. Cohesion-tension theory

The Cohesion-Tension theory, first articulated by
Dixon and Joly (1895), unites two important ideas
(Pickard, 1981; Stroock et al., 2014). The first is that the
driving force that pulls water through plants and, ulti-
mately, from the soil, results from transpiration – specif-
ically, a drop in chemical potential at the sites where wa-
ter evaporates. The second is that intermolecular forces
allow water to be pulled through the lumen of xylem
conduits. The cohesion-tension theory differs from pop-
ular conceptions of water transport in plants in which
the driving force is analogized to a mechanical (vacuum)
pump. Plants lack the moving parts needed to decrease
air pressure within the leaf and, even if they could, such
a mechanism would limit plant height to less than 10 me-
ters. By recognizing that the driving force is generated
at the sites of evaporation, the cohesion-tension theory
overcomes concerns that capillary forces within xylem
conduit lumen are far too small to account for the move-
ment of water through plants (Holbrook and Zwieniecki,
2008).

In developing a quantitative description of the forces
involved in moving water through a transpiring plant, we
express the chemical potential of water on a volumetric,
rather than molar, basis (Nobel, 2009). This is the water
potential Ψ, see Eq. (17), and it describes well regions
within the plant where water exists as a bulk liquid phase,
e.g., within xylem conduits or within the protoplasts of
cells (i.e., the region inside the cell wall). However, in
regions where surface interactions dominate and where
hydrogels may be involved (e.g., soils and cell walls), the
situation is more complicated and a simple separation
into pressure and concentration terms is not possible. For
simplicity (and without loss of utility), we rewrite Eq.
(17) as

Ψ = Ψmatrix + ρgz, (39)

where Ψmatrix represents the sum of capillary, gel-related
and adsorptive forces that may occur in microporous ma-
terials (Stroock et al., 2014).

Soils are the reservoir of water that plants draw on for
growth, metabolism and transpiration. Soil water poten-
tials are typically negative, corresponding with our com-
mon experience that water flows into (and not out of)
soils. Soils are made up of irregularly shaped particles
of a variety of sizes and, unless completely water-logged,
have a substantial volume fraction of air (Kramer and
Boyer, 1995). The major force that draws water into
soils is thought to be capillarity, resulting from the cur-
vature of air-water interfaces in the soil, as described by
the Young-Laplace law (Eq. (26)). As soils dry out, these
interfaces recede deeper into the spaces between soil par-
ticles, resulting in greater capillary forces and lower soil
water potentials. This means that plants have to pull
harder to obtain water from a drier soil (Kramer and
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Boyer, 1995). In addition, as soils dry, the ease with
which water flows through the soil falls precipitously as
a result of both the smaller cross-section of the liquid-
filled spaces and the increasingly tortuous pathway for
water movement (Hillel, 1998). Thus, in dry soils, plants
must contend not only with less water that is more tightly
bound, but also with the fact that it can only be with-
drawn at an ever-diminishing rate. The agriculturally
relevant range of soil water potentials is generally consid-
ered to be greater than −1.5 MPa. Some plants can make
use of water from even drier soils, but produce many more
roots and have lower transpiration rates than a typical
crop plant.

The air, at least during the day, is typically much drier
than the soil. The water potential of liquid water in equi-
librium with air is Ψ = (RT/Vw) ln(e/e0), where e is the
partial pressure of water vapor in the air and e0 is the sat-
urated vapor pressure. If the relative humidity (100e/e0)
at midday is 50%, the equilibrium water potential is on
the order of −100 MPa (Nobel, 2009). Living cells cannot
remain metabolically active at such negative potentials.
Thus even as leaves have to acquire CO2 from the atmo-
sphere, they also have to protect themselves from desic-
cation. Typical midday leaf water potentials are on the
order of −1 to −2 MPa, indicating that the water status
of leaves is more closely coupled to that of the soil than
it is to the air (Kramer and Boyer, 1995). To maintain
the hydration of leaves requires both an inflow of water
into leaves via the xylem and the means to restrict water
loss to the atmosphere via a waxy cuticle and stomata
that can open and close. Stomata are the gatekeepers be-
tween the humid air spaces within the leaf and the much
drier surrounding air. As a result, stomata control rates
of transpiration and thus the movement of water from
the soil.

Air spaces play a critical role in leaf function by pro-
viding a pathway for the inward diffusion of CO2 (By-
ott, 1976; Pickard, 1982). The veins within leaves are
surrounded by a ring of bundle sheath cells as shown
in Fig. 8, which are impermeable to gasses, and thus
xylem conduits do not directly come into contact with
the air (Evert, 2006). Instead, the surfaces of leaf mes-
ophyll cells, which obtain CO2 from these air spaces,
form the downstream end of the (liquid) transpiration
stream. The interfacial forces that develop in these cell
walls maintain their hydration and thus they serve as a
seal that prevents air from entering into the xylem.

Traditionally the matrix potential of cell walls has
been attributed to capillary forces arising within the net-
work of cellulose microfibrils (Pickard, 1981; Rand, 1983;
Tyree and Zimmermann, 2002). In this view, curved air-
water menisci within cell walls work in opposition to their
curved counterparts in the soil. This might be a simpli-
fied view. The cellular wall matrix is not a simple porous
rigid structure but an elastic composite made of cellulose
fibers, pectins and hemicelluloses, plus a small amount of
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Figure 17 (Color online) Reduction of xylem sap surface ten-
sion in oak leaves influences distribution of water in the veins
of trees experiencing significant water shortage. Transpira-
tion stream of intact branches on a tree were supplied with
either (a) water (surface tension = 72 mN/m) or (b) water
mixed with surfactant (0.01% Tween 20, surface tension 37
mN/m). Branches were then cut and allowed to dehydrate to
a water potential of −2.5 MPa. At the desired stress level, leaf
petioles were cut from the branches while submerged in a flu-
orescent dye solution (Sulforhodamine G). Leaves infiltrated
with water mixed with surfactant experienced significant re-
duction of dye infiltration to minor veins. Experiments by M.
Zwieniecki (unpublished).

structural proteins. In short, the cell wall is a porous ma-
terial infiltrated by a gel-like substance. Such structure
may dry out but will not necessarily allow for retraction
of the air-water meniscus into the wall space. Instead,
the water holding capacity of gels originate from inter-
actions between solvent and polymer as e.g., described
by the Flory-Rehner equation (Hong et al., 2010, 2008;
Wheeler and Stroock, 2008). However, a recent experi-
ment (Fig. 17) aimed at studying the influence of surface
tension on a leaf’s ability to sustain water distribution
to sites of evaporation under increasing water stress re-
vealed that the presence of a surfactant (reducing the
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surface tension from 0.072 N/m to 0.037 N/m) limited
water access to minor leaf veins. This might suggest the
retraction of water from minor veins, in support of the
menisci hypothesis. However, alternative explanations
might be possible, depending on what other effects the
surfactant (Tween) could have on the leaf, e.g., closure
of the stomata or inhibition of the cell aquaporins of the
cell membrane.

At night, when stomata are closed, the plant will come
into equilibrium with the soil. The water potentials in
the plant, however, will not equal that of the soil; due to
gravity the water potential decreases below that of the
soil by ρgh = 0.1 MPa for every 10 m increase in eleva-
tion. For plants that are on the scale of one to several
meters in height, the impact of gravity relative to soil wa-
ter potentials is small. The water potentials at the top of
a 100 m tall tree, however, must be 1 MPa lower (more
negative) than the water potential of the soil in order to
support the water column. Thus even when a plant is not
transpiring, capillary and osmotic forces develop within
leaves to counterbalance the weight of the water column
and to overcome the forces exerted by the soil. During
transpiration even larger forces are needed to overcome
the viscous losses associated with the movement of water
through the plant (Tyree and Zimmermann, 2002).

2. Transpiration

Transpiration results from the gradient in water vapor
concentration between a leaf’s air spaces and the outside
air. Due to the substantial contact with living cells, the
vapor pressure of air spaces remains saturated with re-
spect to the temperature and water potential of the cells
(Nobel, 2009; Rockwell et al., 2014b). Thus, as water
molecules diffuse out of the leaf through stomata, other
water molecules evaporate from the surfaces of interior
leaf cells. In principle, water could evaporate from the
surface of any cell in contact with an air space, how-
ever, the actual sites where water changes phase will be
determined by both the flow of energy (heat) and liquid
water needed to sustain evaporation. Solving the coupled
heat and mass transport indicates that most evaporation
occurs near the stomata, with a second region of evapo-
ration occurring in the center of a leaf, in the same plane
as where the venation is located (Rockwell et al., 2014b).

Evaporation rates from leaves are highly variable and
depend on leaf morphology (stomatal size, stomatal den-
sity, vein density, leaf size, leaf shape), physiological sta-
tus of the leaf (stomatal aperture, internal CO2 con-
centration, leaf hydration), and on environmental con-
ditions (vapor pressure deficit, wind speed, temperature,
light level) (Schuepp, 1993). The maximum transpiration
rates reported per leaf surface area of angiosperm plants
are in the range of 2× 10−4 kg/m2/s (Reported for Acer
macrophyllum by Simonin et al. (2014)). It is interesting

to contrast this value with the evaporation rate Jfs from
a free body of water into a dry atmosphere

Jfs ∼ D
∆cmax

`
, (40)

where D = 2.4 × 10−5 m2/s is the diffusion coefficient
of water vapor in air at 20◦C (Nobel, 2009), ∆cmax '
1 mol/m3 (or 18 g/m3) is the concentration gradient
(Taiz and Zeiger, 2010), and ` is the boundary layer thick-
ness. Assuming a wind speed of u = 10 m/s, we can es-
timate the boundary layer thickness as ` ' 4.9

√
νl/u '

1.9 mm, where ν = 1.5 × 10−5 m2/s is the kinematic
viscosity of air, and l = 0.1 m is the leaf size. With
these values we find Jfs = 2.3×10−4 kg/m2/s. The most
efficient plant leaves thus allow water to escape almost
as quickly as from a free surface. This is remarkable
given that stomata pores frequently cover only 1−10 per
cent of the leaf surface (Franks and Beerling, 2009). For
an in-depth discussion of evaporation and gas diffusion
problems related to water transport in plants, see Pickard
(1981) and Rand (1983).

The loss of water molecules from the surfaces of cell
walls decreases the cell’s water potential. Initially, water
is drawn towards the sites of evaporation from adjacent
and nearby cell protoplasts. As water exits from meso-
phyll cells, their water potential also falls. Much of this
is due to decreases in turgor pressure as the cell walls
relax, with the remainder from increasing solute concen-
tration and thus osmotic pressure (Nobel, 2009). There-
fore, an important role of turgor pressure in leaf cells is
to mitigate against changes in cell volume despite large
variations in water potential. As transpiration continues,
water will be drawn from cells increasingly further away
from the sites of evaporation. Based on the hydration
times of individual versus aggregates of cells, the move-
ment of water through plant tissues is thought to occur
predominately through the living interiors of cells, with
a smaller contribution due to apoplasmic flow through
the cell walls (Boyer, 1985). The major pathway for wa-
ter movement from one cell interior to another involves
traversing the membranes and walls separating adjacent
cells. Plasmodesmata may also contribute to the move-
ment of water between cells, although their hydraulic
contribution is poorly quantified (Fisher and Cash-Clark,
2000). The movement of water across cell membranes is
mediated by aquaporins, protein channels with a high
selectivity for water (Maurel et al., 2008).

Mesophyll cells can lose only a small amount of wa-
ter before their cellular and metabolic functions become
jeopardized. Without an inflow of water from the xylem,
leaves would have to close their stomata within minutes
of opening (Kramer and Boyer, 1995; Schymanski et al.,
2013). The xylem provides that inflow, replacing water
lost via transpiration with water pulled from the soil.
As water flows from xylem conduits towards the sites of
evaporation, the water potentials in the xylem will de-
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crease. How much depends on both the transpiration
rate and the hydraulic conductance of the xylem, as the
drop in xylem water potential is the result of viscous
losses associated with water transport through the plant
(Pickard, 1981; Tyree and Zimmermann, 2002). In the
xylem close to the sites of evaporation (i.e., within a leaf),
the water potential during transpiration can be on the or-
der of 1 MPa more negative than when the water column
is stationary (Rockwell et al., 2014b).

3. Stability of water under tension in the xylem

Decreases in xylem water potential (Eq. (17)) can be
entirely attributed to decreases in pressure. Because
xylem conduits lack semipermeable membranes, there is
no osmotic contribution to their potential, and, in any
event, the concentration of solutes in the xylem is low.
Thus, the pressure of the water within xylem conduits
is negative and the liquid is under tension (Tyree and
Zimmermann, 2002). This means that water is liter-
ally pulled through the xylem. However, it also means
that water in the xylem is thermodynamically unstable
with respect to its vapor phase (superheated) and thus
prone to cavitation (boiling) (Debenedetti, 1996; Stroock
et al., 2014). Although cavitation renders xylem conduits
useless for transporting water under tension, the activa-
tion energy needed to nucleate a phase change is large
(Pickard, 1981). Stability limits for homogeneous nucle-
ation, based on theoretical and experimental data, are
on the order of -100 MPa (Azouzi et al., 2013; Herbert
and Caupin, 2005; Zheng et al., 1991). Thus, water in
the xylem is kinetically stable provided it does not come
into contact with the vapor phase (Wheeler and Stroock,
2008).

In this review we use the term cavitation to refer to
any process in which the local equilibrium of water un-
der tension is replaced by the thermodynamically more
stable state of water vapor. In this usage, cavitation can
result from homogeneous nucleation as well as from the
expansion of bubbles drawn in from a neighboring gas-
filled conduit or produced during freezing. Embolism, as
used here, refers to the gas-phase that replaces conduits
formerly filled with metastable water.

Xylem conduits remain water-filled throughout their
development and all of the water that enters the xylem
in the roots has previously been forced to flow across
endodermal plasma membranes. For these reasons, gas
bubbles should be absent from the xylem (Pickard, 1981).
Other mechanisms, however, can bring xylem into con-
tact with air. Physical damage that breaches conduit
walls, provides one such entry point for air. Freezing rep-
resents another mechanism as dissolved gases are segre-
gated from the ice lattice, coalescing to form gas bubbles
that can expand once the conduit thaws. The stabil-
ity limit for bubbles depends both upon their dimension,

which dictate the forces due to surface tension that serve
to push the gas back into solution, and any tensions in
the xylem, which act in an outward direction on the bub-
ble (Tyree and Sperry, 1989). Larger diameter conduits
are more susceptible to freeze-thaw embolization due to
the formation of larger air bubbles during freezing as dis-
solved gases and other impurities are excluded from the
crystal lattice (Sevanto et al., 2012).

Embolization is not solely an issue of losing the trans-
port capacity of individual conduits. Once a conduit be-
comes air-filled, cavitation can spread like a disease to
neighboring conduits as air is pulled through pit mem-
branes, something that plant biologists refer to as “air-
seeding” (Tyree and Zimmermann, 2002). The tiny bub-
bles pulled through pit membranes will be unstable in
the water-filled conduit and thus will expand, such that
the entire conduit becomes filled with water vapor, and
eventually, as gases comes out of solution, with air. Thus,
a plant’s resistance to embolization lies both in the prop-
erties of its pit membranes (Choat et al., 2008) and the
architecture of its vascular network (Loepfe et al., 2007).
At both levels, the system is constrained in terms of its
dual function of allowing water to flow easily through the
xylem and preventing gases from spreading. We shall re-
turn to these issues in Section VI on water transport.

IV. SUGAR TRANSPORT IN PLANTS

A. Experimental Results

To obtain a mechanistic understanding of the physi-
ological processes that drive and regulate sugar trans-
port in plants, detailed measurements of transport speed,
sugar concentration, and pressure are needed. Experi-
mental investigations of the phloem, however, have to
cope with several factors that limit the number of ap-
plicable tools and techniques. The cells in question are
buried below several tissue layers, making them difficult
to access, for example for live-cell microscopy (Fig. 7). In
addition, it is difficult to extract phloem cells for molec-
ular analysis, especially from the leaf, because it is com-
posed of distinct cell types that are present only in low
number. Furthermore, the pressurized phloem is very
sensitive to manipulation. Any preparatory step that
causes the loss of pressure, like incision with a blade,
potentially changes the state of cells even though they
might be several centimeters away from the site. In spite
of these difficulties, methods and approaches have been
developed to produce experimental data on the function
of the phloem, which will be presented below.

1. Phloem sap sugar concentration

Knowledge of phloem sap composition is important
for any quantitative understanding of resource alloca-
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Figure 18 Histograms showing phloem sap concentration
measured in plants that utilize passive and active phloem
loading strategies (Sec. III.B). See also Fig. 26. Data from
Jensen et al. (2013b).

tion within plants. The sugar concentration c is typi-
cally around c ' 20 % weight (Fig. 18), but the sap also
contains a variety of other organic molecules and ions
(Table II). Assuming that sap viscosity has a simple de-
pendence on sugar concentration thus suggests that the
liquid is approximately twice as viscous as pure water
(Fig. 26(a)). One of the first investigations carried out
by Hartig (1860) after discovering and naming phloem
sieve elements, was aimed at identifying the sap composi-
tion. He found that the phloem sap of various angiosperm
trees, sampled by the stem incision method, contained
25 % to 33 % sugar, most of it in the form of sucrose.
The question is still timely, as it remains difficult to ob-
tain a complete and artifact-free sample of phloem sap
(Jensen et al., 2013b; Turgeon and Wolf, 2009). Phloem
sap composition has been obtained from many trees, sev-
eral of which bleed sap for several minutes after stem in-
cision (Hartig, 1860; Münch, 1930). Only few herbaceous
plants, however, bleed as readily. Castor bean (Ricinus
communis) is one exception and is often used for phloem
sap sampling (Hall and Baker, 1972) (Table II). In other
herbaceous plants, the incision causes a wound reaction
that stops phloem sap bleeding, usually within seconds.
The wound reaction can be prevented by making the cut
in solution containing Ethylenediaminetetraacetic acid
(EDTA), which binds Ca2+, effectively suppressing the
signal for clogging(King and Zeevaart, 1974). While suf-
ficient quantities of phloem sap can be collected from
any plant with this method, it is prone to artifacts (van
Helden et al., 1994; Liu et al., 2012). EDTA is known to
soften tissue and can induce leakage of ions and metabo-
lites, including carbohydrates (Hepler, 2005). A less in-
vasive alternative is the sampling of phloem sap with the
help of stylectomy. For many plants species, phloem-
feeding insects, mostly aphids, can be found (Fisher and
Frame, 1984). These insects penetrate the plant tissue
with their stylets without severing cells until they reach
a sieve element to feed on. To obtain phloem sap, the
insect body can be removed and a drop of sap collected
from the end of the stylet (Kennedy and Mittler, 1953).
Most of the data on phloem sap composition in herba-

Table II The composition of phloem sap from castor bean
(Ricinus communis). Data from Hall and Baker (1972).

Component Concentration (kg/m3)

Sugars 80-106

Amino acids 5.2

Organic acids 2-3.2

Protein 1.45-2.2

Potassium 2.3-4.4

Chloride 0.355-0.675

Phosphate 0.35-0.55

Magnesium 0.109-0.122

ceous plants is based on this technique. Nevertheless,
also in this case there is a potential for artifacts, be-
cause aphids were shown to alter phloem sap compo-
sition by secreting saliva into the phloem to prevent a
wound reaction (Furch et al., 2015; Will et al., 2007).
Independent of the sampling techniques, the collected
phloem sap is generally analyzed with chromatographic
and spectrometric techniques in order to identify its com-
ponents and quantify their abundance. The parallel use
of different methods and control experiments to verify
the phloem origin of the collected sap has resulted in the
identification of its major components. These are sugars,
amides and amino acids, secondary compounds, auxin,
proteins, RNAs, potassium and other ions. The relative
amounts of these components show only limited species-
dependence and are shown in Table II for castor bean
phloem sap. The sap sugar composition depends on the
phloem loading type (see Sec. III.B). Castor bean, as an
active apoplasmic loader, transports almost exclusively
sucrose. In contrast, more than half of the sugars in
the phloem sap of active symplasmic loaders are raffinose
and stachyose (Ziegler, 1975; Zimmermann and Ziegler,
1975). Other species were shown to transport mainly
sugar alcohols (Reidel et al., 2009).

2. Phloem cell pressure

To this date, one of the most elusive parameters related
to phloem function has been the pressure inside sieve el-
ements. The formulation of the pressure-flow hypothesis
by Ernst Münch was based on cryoscopic analysis of ex-
pressed tissue sap and plasmolysis experiments, which
showed a gradient of osmotic pressure from leaves to the
stem and roots in forest trees (Münch, 1930). A conclu-
sive validation of Münch’s hypothesis requires determin-
ing the viscous pressure gradient dp/dx associated with
the flow. For a flow speed u = 10−4 m/s in a cylindrical
tube of radius a = 10−5 m, the expected magnitude of
the pressure gradient is |dp/dx| ' 8ηu/a2 ' 104 Pa/m,
while for a = 10−6 m, it is |dp/dx| ' 106 Pa/m.

One method for measuring phloem cell pressure has
taken advantage of the aphid stylectomy approach de-
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scribed above (Sec. IV.A.1). After removal of the in-
sect body, pressure can be measured directly by sealing
a micropipette over the stylet (Fisher and Cash-Clark,
2000; Wright and Fisher, 1980) or attaching a pressure
sensor (Gould et al., 2004, 2005). In trees, where the
high number of sieve elements in the bark makes them
more accessible, a needle with a narrow tip produced by
pulling a glass capillary tube has been used (Hammel,
1968; Lee, 1981; Sovonick-Dunford et al., 1981). This
technique was also recently used to measure pressure in-
side translocating sieve elements in the herbaceous bean
plant Vicia faba (Knoblauch et al., 2014). The mea-
sured pressures lie in the range of p = 0.6 − 1.4 MPa
for trees, while it can reach up to p = 2.4 MPa in herba-
ceous plants (Fisher and Cash-Clark, 2000; Lee, 1981;
Sovonick-Dunford et al., 1981; Wright and Fisher, 1980).
This difference in absolute pressure could be related to
the difference in phloem loading type (see Section III.B),
which is active in herbs and passive in most trees. Fur-
thermore, the high pressure in the phloem of herbaceous
plants might have other functions than driving transport,
for example in plant defense (Turgeon, 2010). The main
quantitative question with respect to the pressure-flow
mechanism of Münch – the size the pressure difference
between source and sink - has not been answered con-
clusively, because of the technical difficulty of measuring
pressure at different positions on the same plant, ideally
on the same phloem strand (Fisher and Gifford, 1986;
Pritchard, 1996). The limited available data shows pres-
sure gradients of ∼ 105 Pa/m in tobacco and sugar beet
(Fellows and Geiger, 1974; Hocking, 1980), not inconsis-
tent with the Münch hypothesis. Calculations based on
pressure measurements in trees suggest that the pressure
gradient is smaller in these organisms (Turgeon, 2010).

3. Phloem flow speed

Following the transport of photoassimilates from the
leaf to the sink organs has always been of major interest
to plant biologists trying to understand the dynamics and
regulation of growth. Typical translocation speeds range
in magnitude from 10−5 m/s to 10−4 m/s (Fig. 19). In
some cases, like for maize or sugar cane, speeds of up
to ∼ 5 × 10−4 m/s have been measured (Hartt et al.,
1963; Wardlaw et al., 1965). Much higher values that
have been occasionally reported for stem phloem trans-
port are most likely the result of experimental insuffi-
ciencies (Crafts and Crisp, 1971). Transport speed does
not scale with plant height (Dannoura et al., 2011; Li-
esche et al., 2015; Windt et al., 2006), instead depending
primarily on sieve element geometry (Jensen et al., 2011;
Mullendore et al., 2010). This can be clearly seen in trees,
where a meta-analysis of all available experimental data
showed a significant difference in phloem transport speed
between gymnosperm and angiosperm species, which is
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Figure 19 Phloem transport speeds u vary in the range
10−5 m/s to 10−4 m/s between (a) gymnosperm trees, (b)
angiosperm trees, and (c) angiosperm herbs. Panel (d) il-
lustrates the limited diurnal variation in phloem transport
rates in four herbaceous angiosperms observed by Windt et al.
(2006). Note the difference in abscissa scale between (a,b)
and (c). Data from (Liesche et al., 2015): (a,b) and (Hartt
et al., 1963; Hendrix, 1968; Jensen et al., 2011; Kursanov,
1956; Moorby et al., 1963; Mortimer, 1965; Mullendore et al.,
2010; Thompson et al., 1979; Wardlaw et al., 1965; Windt
et al., 2006; Ziegler and Vieweg, 1961): (c). Panel (d) adapted
from (Windt et al., 2006).

caused by the difference in sieve element and end-wall
anatomy (Liesche et al., 2015) as shown in Fig. 19.

The most straight-forward way to identify allocation
patterns and measure the amount of carbon transported
to different organs is to monitor the organ’s increase in
dry weight over time (Canny, 1973). More detailed quan-
tifications can be achieved by using dyes or radioisotopes
as tracers, or with magnetic resonance imaging.

The movement of substances in the phloem can be
traced directly with the help of dyes. After cutting the
tip of a leaf of a potato plant, Dixon and Ball (1922) ap-
plied a drop of the dye eosin and followed its spread to
the shoot tip, the roots and the tuber (potato). Several
authors have investigated phloem translocation speeds
by further developing this dye tracing approach (see e.g.
(Froelich et al., 2011; Jensen et al., 2011; Savage et al.,
2013; Schumacher, 1948)). Dyes have also been used
to quantify the capacity of loading and unloading path-
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ways (Liesche and Schulz, 2012; Oparka et al., 1994), as
well as the impact of wounding on sieve element function
(Knoblauch et al., 2001; Schulz, 1992).

Radioisotope tracers are considered less invasive than
dye techniques, since little or no removal of tissue to ac-
cess the phloem is necessary. The technique was instru-
mental in establishing the general principles of source
to sink transport (reviewed by Crafts and Crisp (1971);
Ho et al. (1989); Minchin and Troughton (1980)) and
the measurement of key parameters of phloem transport,
such as speed and volume. Typically, isotopic carbon, in
the form of 11CO2, 13CO2 or 14CO2 is applied to leaves,
where it is fixed and built into sugars. The translocation
of isotope-labeled sugars is subsequently tracked by de-
tectors positioned outside the plant (Epron et al., 2012;
Liesche et al., 2015).

In the last decade, magnetic resonance imaging ve-
locimetry was adapted for measuring phloem transport
speed and volume (Peuke et al., 2001; Windt et al., 2006)
(Fig. 19(d)). Magnetic resonance imaging has the advan-
tage of providing visual information of flow, i.e. the cross-
sectional area of actively translocating sieve elements at
the time of analysis (Windt et al., 2006).

4. Molecular biology of phloem transport

Sucrose transporters transport sucrose either intercel-
lularly across plasma membranes or intracellularly across
the vacuole membrane (Ayre, 2011; Kühn and Grof,
2010). Sucrose transporters are essential to phloem func-
tion in active apoplasmic phloem loaders as they pump
sucrose into the companion cell-sieve element complex in
source leaves (Gahrtz et al., 1994; Riesmeier et al., 1994),
thereby determining the phloem loading rate (Dasgupta
et al., 2014) (for loading modes, see Section III.B). They
are also responsible for retrieval of leaked sucrose along
the transport phloem (Gould et al., 2012). In pas-
sive symplasmic phloem loaders, vacuolar sucrose trans-
porters were shown to similarly influence phloem loading
(Payyavula et al., 2011). In active symplasmic loaders,
described more quantitatively in Section VI.C, synthe-
sis of the higher molecular weight sugars raffinose and
stachyose, catalyzed by galactinol synthase in the com-
panion cells, determines the phloem loading rate (Har-
itatos et al., 1996; McCaskill and Turgeon, 2007). In
symplasmic sinks, like growing roots, the unloading rate
depends on sucrose utilization, either by starch synthesis
or vacuole import for carbon storage or energy conver-
sion for growth. Influence on the unloading rate might
be exerted by proteins that control the effective diame-
ter of plasmodesmata (Baluška et al., 2001; Schulz, 1995,
1999). In apoplasmic sinks, like fruits or seeds, unload-
ing is controlled in two steps: by cell wall invertases that
break down sucrose and by monosaccharide transporters
that import the resulting glucose and fructose molecules

into the storage cells (Patrick, 1997).

During phloem development, sieve pore formation is
preceded by deposition of callose between the plasma
membrane and the cell wall around each plasmodesma.
The pore is formed by widening of the plasmodesma
channel, a process that involves removal of some of the
callose. A specific enzyme was found to be responsible
for this process (Barratt et al., 2011; Xie et al., 2011).
Furthermore, mutants lacking this protein were not able
to perform a wound reaction, demonstrating that cal-
lose synthesis is needed in this process. Inside the sieve
element lumen, a variety of proteins, referred to as P-
proteins (Section III.A) are present that have been cat-
egorized as amorphous, crystalline, filamentous, tubular,
or fibrillar. The main role of P-proteins is assumed to
be clogging of the sieve tubes in response to wounding
(Eschrich, 1975; Knoblauch and van Bel, 1998).

From a wealth of physiological experiments it is clear
that phloem transport is finely regulated and adjusted
to the environmental conditions. So far only few pieces
of the molecular machinery regulating phloem transport
have been identified, such as sensors for the sugar con-
centration in source and sink, or membrane transporters
facilitating sugar release from the phloem. However, the
emerging improvements of phloem sampling in connec-
tion with molecular biological approaches should soon
lead to a better understanding of the subtleties of phloem
transport (see e.g. Anstead et al. (2013); Doering-Saad
et al. (2006)).

B. Biomimetic Models of Sugar Transport in Plants

Experimental systems designed to mimic transport
processes in plants and animals alike have been used by
several authors to test mechanistic hypotheses of vascu-
lar physiology (Wong et al., 2012). Biomimetic models
of xylem transport played an important role in validat-
ing the cohesion-tension theory, starting with the work of
Dixon and Joly (1895). For an excellent overview of his-
torical and technical aspects of this discussion, we refer
the reader to Brown (2013) and Stroock et al. (2014).
Here, we focus on phloem transport models and be-
gin at the origin of this field; Münch’s 1927 experiment
(Münch, 1927, 1930). Münch’s device to mimic phloem
transport consisted of two flasks connected by a glass
tube (Fig. 20(a)). Parts of the flasks were covered by
a semipermeable membrane that allowed water, but not
small molecules, to pass. He introduced a concentrated
sugar solution into one of the flasks and submerged both
in a water bath. From this experiment, he reported a
mass flow through the glass tube connecting the flasks
of high and low concentration. By equating the flasks
to source and sink organs, Münch argued that similar
flows occur in plants, since “same causes have same ef-
fects” ((Münch, 1930) p. 37, translation by Knoblauch
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Figure 20 Biomimetic models of phloem transport. (a) Device used by Münch (1927) to demonstrate osmotically drive flows
between flasks A (high sugar concentration) and B (negligible sugar concentration) submerged in a water bath W. (b) Osmotic
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and Peters (2010)).

Following Münch’s example, a number of workers have
improved upon his basic setup to elucidate various fac-
tors that may influence plant transport characteristics.
Eschrich et al. (1972) was the first to use a semiper-
meable cylindrical pipe to capture the effects of osmotic
flow along the transport pathway (Fig. 20(b)). Eschrich’s
setup comprised a cylindrical membrane tube (7 mm di-
ameter, ∼ 20 cm length) fitted inside a larger water-filled
glass tube. At the beginning of the experiment, a small
amount of sugar was introduced into the near end of the
membrane tube. The group conducted experiments with
the far end being either open or closed. They observed
that the front velocity v increased in linear proportion to
the initial concentration c0, and that the speed was ei-
ther constant in time or decayed exponentially, if the far
end of the tube was either open or closed (Fig. 20(b)). To
rationalize these observations, Eschrich et al. (1972) used
the following conservation argument: for incompressible
flow in a closed semipermeable tube of length L and ra-
dius a embedded in water, we imagine the part of the
tube between the base and x(0) initially filled with sugar
solution and the rest with pure water. For a wide tube
with slow flow, viscous effects and thus the pressure gra-
dient along the tube is negligible and the pressure is sim-

ply equal to the osmotic pressure averaged over the tube,
i.e., p = RT c̄, where c̄ = c0x(0)/L is the constant aver-
age sugar concentration. The water volume flow through
the tube wall ahead of the sugar front x (where there is
no osmosis) is −2πa(L− x)LpRT c̄, where Lp is the per-
meability of the tube and the flow is negative since water
flows out. This will be equal to the rate of change of
volume ahead of x and thus, due to incompressibility, to
−πr2dx/dt. Putting these two expressions together we
get

dx

dt
= 2

LpRT c̄

a
(L− x) (41)

Thus, the instantaneous front position is x(t) = L −
(L − x(0)) exp (−t/τ) where the characteristic time τ =
2LpRT c̄/a. If by contrast the tube is open, the pressure
is atmospheric everywhere in the liquid and the only driv-
ing force is the osmotic suction. This leads to an inflow
behind the front of 2πax(0)LpRTc0 so in this case the
velocity is constant

vopen = 2
LpRTx(0)c0

a
. (42)

The initial velocity for the closed tube is vclosed =
2LpRTc0x(0)(L − x(0))/(aL) and the ratio of the two



31

velocities is

vclosed

vopen
=
L− x0

L
. (43)

The ratio approaches unity when x0 � L, so the char-
acteristic velocity scale for long tubes is in both cases
2LpRTc0x(0)/a.

The experiments by Münch (1927) and Eschrich et al.
(1972) were conducted in macroscopic setups with chan-
nel radii of around 5 mm. This is approximately 500
times greater than the typical phloem sieve element size
(radius a = 10 µm). Aided by developments in mi-
crofabrication techniques (Stone et al., 2004; Xia and
Whitesides, 1998), Jensen and co-coworkers refined the
Eschrich and Lang experiments in micro-channels of di-
ameters 50− 200 µm (Jensen et al., 2009a, 2011, 2009b)
which are comparable in size to sieve elements of e.g.
Curcubita Maxima (Jensen et al., 2011). Their base de-
vice (Fig. 20(e)) comprised a semi-permeable membrane
squeezed between shallow channels cut in two PMMA-
plates. The upper channel of height h = 50−200 µm and
width w = 200 µm carried the sugar solution, while the
lower channel provided contact to a water bath held at at-
mospheric pressure. By varying the channel height and
sugar concentration, Jensen et al. (2009a) found good
agreement between Eq. (42) and experiments.

The experiments described thus far have dealt with
transient flows where the system relaxes towards equi-
librium from an initial state of osmotic imbalance
(Fig. 20(c)). The prevailing situation in plant phloem,
however, is likely closer to a steady-state where a conti-
nous influx of sugars at the leaf is consumed by metabolic
and growth processes in distal parts of the plant. Lang
(1973) modified Eschrich’s experiment and used a long
semipermeable tube (L = 7.2 m, d = 6.35 mm) to study
steady-state osmotic flows by slowly injecting a 0.2 M
sucrose solution at one end of the pipe. He carefully doc-
umented the approach to steady state and found that
the flow speed increased from the inlet to the outlet by
a factor γ = vout/vin− 1 = 3 due to osmotic inflow along
the tube (from vin = 0.16 cm/min to vout = 0.66 cm).
The time to reach steady state observed was set by
L/vin ∼ 75 h. When performing a similar experiment
in the aforementioned microfluidic device (Fig. 20(e))
Jensen et al. (2011) found similar values of the veloc-
ity increase γ in a 200 µm × 200 µm rectangular chan-
nel. Haaning et al. (2013) conducted the first system-
atic experimental study of the factors that influence the
flow amplification factor γ. Their setup used a hollow-
fiber-membrane (Fig. 20(d)), a cylindrical tube of length
L = 14 cm, radius a = 500 µm with semi-permeable
walls. Haaning et al. (2013) varied the inlet velocity, inlet
concentration, and channel length, and observed values
of γ in the range 0.1− 10. Reasonable accord with theo-
retical estimates due to Aldis (1988b) and Thompson and
Holbrook (2003b) were found: Taking the flow speed v

and concentration c to be averaged over the cross-section
of the pipe, one arrives at the conservation equations for
water volume and solute mass

∂xv = 2
LpRTc(x)

a
(44)

∂x(cv) = 0 (45)

With boundary conditions v(0) = vin and c(0) = c0 these
can be solved to yield the speed profile

v(x) = vin (1 + 4LpRTc0x/(vina))
1/2

. (46)

In terms of the flow amplification factor γ = vout/vin− 1
is

γ + 1 =
vout

vin
=

√
1 + 4

LpRTc0L

vina
(47)

In some cases, however, Haaning et al. (2013) found that
this prediction overestimates the outlet velocity. To ac-
count for this discrepancy, they relaxed the assumption
that the solute concentration c(x) is uniform across the
tube in Eq. (44) and derived an expression for γ which
reduces to Eq. (47) when radial Péclet number is quite
small, i.e. when the concentration is uniform across the
tube. For further details see Sec. V.D).

C. Hydraulic Resistor Theory

To understand the basic rules for the long-distance
translocation in the phloem, it is advantageous to start
with a simple “resistor” model of a “one-dimension
plant” as shown in Fig. 21. The plant’s vascular system is
viewed as a collection of parallel tubes of constant diam-
eter that span the full length of the plant. In each tube,
both ends are closed, but near each end, the walls are
semipermeable (penetrable to water but not to sugar),
representing the leaf and the root respectively. Such ap-
proaches have been used successfully in this field, e.g.,
by Daudet et al. (2002); Lacointe and Minchin (2008);
Minchin et al. (1993), where more complex network con-
figurations have been modeled. Here we follow Jensen
et al. (2012b) in the treatment of a single tube, but with
different resistivities coming from axial pressure driven
flow along the tube and lateral osmotic flows. In reality,
the tubes do not necessarily have the same diameter all
the way, and the tubes do not just connect sugar produc-
ing leaves (sources) to the roots, but also to other sugar
consuming sinks such as young leaves as in Lacointe and
Minchin (2008). Thus, the ideal, globally optimal struc-
ture likely resembles the observed hierarchical network
architecture of the plant body. However, as a simple
representation for the longest pathway this analysis still
turns out to be useful. The differences in concentration
between source and sink tissues provides the driving force
for the transport via the osmosis generated in the leaf
section.
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1. Optimization of phloem transport speed

Our aim is to determine how this tree translocates
sugar most efficiently. Following Jensen et al. (2011), we
shall argue that “most efficient” in this context should
simply mean that the rate of sugar transport is maximal
for a given investment in vascular tissue. If we assume
that the total cross-sectional area for the phloem tubes
is constant at a given position, this will be equivalent to
maximizing the flow velocity (i.e. flux) in each tube. In
addition a large flow velocity will allow the plant to re-
spond rapidly to external perturbations. Finally, we note
that phloem transport speed has been shown to influ-
ence photosynthesis, belowground respiration, and whole
plant transfer and integration of information (Mencuccini
and Hölttä, 2010). Of course, this simple system does
not consider the possibility of branching architectures,
as seen in real plants. It does, however, capture an im-
portant trade-off: a wide tube will allow rapid flow of sap
since the resistance is low, but the water has to come in
by osmotic pumping through the surface of the leaf part,
and for a wide tube this will be inefficient, since the sur-
face to volume ratio is small. For a narrow tube, the
situation is reversed: now the osmotic pumping through
the surface is efficient, but the flow will be blocked by the
large resistance through the stem. Thus, there should be
an optimal tube radius giving maximal flow velocity.

To determine this optimal radius, a∗, we consider each
of the tubes separately. It has a radius a, a “leaf” segment
of length l1, a “stem” segment of length l2 and a “root”
segment of length l3 through which fluid of flow rate Q is
running, and, instead of directly solving the fluid dynam-
ical equation, which will be done later in Section V, we
shall only consider the basic driving forces in each section
and assign a corresponding “resistance”. The stem seg-
ment is simply treated as a solid tube with impenetrable
walls through which the fluid is driven by the pressure
difference ∆p between the leaf and the root. We further
assume that this pressure difference is primarily created
by the difference in osmotic pressure ∆Π due to sugar
loading in the leaf and unloading in the root. Due to the
low Reynolds numbers, it is thus simply a Poiseuille flow
with flux

Q =
∆p

R2
(48)

where ∆p is the pressure drop along the stem and the
resistance for a cylindrical tube and fluid viscosity η is
given by (Eq. 4e)

R2 =
8ηl2
πa4

(49)

All the osmotic water intake is assumed to take place
in the semipermeable (leaf) part of length l1 which we
assume to be loaded with a sugar solution, such that
there is a concentration difference ∆c1 between inside
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Figure 21 Resistor model of phloem sugar transport. (a)
circuit diagram of with resistors representing hydraulic re-
sistance in the source, stem, and sink regions of panel (b).
Adapted from (Jensen et al., 2011).

and outside, creating an osmotic pressure difference of
∆Π1 = RT∆c1. The concentration difference ∆c1 is gen-
erated by phloem loading processes in which sugars pro-
duced in mesophyll cells are transferred into the phloem
sieve elements (Sec. III.B, Fig. 12). Plants that use ac-
tive loading generally appear capable of generating larger
∆c’s than species which use passive loading (Fig. 18).
The difference in water potential, Ψ = p− Π = p−RTc
drives a trans-membrane water flux with the flow rate

Q =
RT∆c−∆p

R1
(50)

with the leaf-resistance

R1 =
1

2πaLpl1
(51)

which differs from Eq. (18) by the surface area 2πaL of
the tube, and where we have assumed that the Poiseuille
resistance in the leaf part is negligible since l1 � l2.

In the root, the situation is the reverse: here water is
expelled so we obtain similarly the root-resistance

R3 =
1

2πaLpl3
(52)

and if we now assume that the pressure drops inside the
leaf and root are small compared to the osmotic pres-
sures (which corresponds to small Münch number for the
leaf/root segments in the terminology of Sec. V) we can
write the pressure in the entire leaf segment as p1 and
that of the root as p3, and ”Ohms’s law” for the whole
tube is

RTc1 − p1 = QR1, (53a)

p1 − p3 = QR2, (53b)

p3 −RTc3 = QR3, (53c)
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Adding them, we get

RTc1 −RTc3 = RT∆c = QRtot (54)

where ∆c is the difference in concentration between leaf
and root and the total resistance is

Rtot = R1 +R2 +R3 (55)

as expected for resistance in series. The flow velocity will
be

u =
∆p

πa2Rtot
= 2Lp∆p

a2l1l3
V l1l2l3 + a3(l1 + l3)

(56)

where we have used the notation ∆p as a generic symbol
(in the present case it should actually by a difference in
osmotic pressure, ∆Π) and

V = 16ηLp (57)

is a characteristic length scale - the “permeability length”
to which we shall return below. The velocity (56) has,
when varying only a, its maximum at

a∗ =

(
2V

l2

l−1
1 + l−1

3

)1/3

=

(
2V

l1l2l3
l1 + l3

)1/3

(58)

If the roots and the leaves are similar in size, we find

a∗ = (V l1l2)
1/3

= (16ηLpl1l2)
1/3

(59)

It is perhaps more typical that the roots are considerably
larger than the leaves – at least for trees. With l1 � l3
we get the result

a∗ = (2V l1l2)
1/3

(60)

which differs from (Eq. 59) only by a factor 21/3 ≈ 1.26.
The corresponding value of the flow velocity is

u∗ = 2Lp∆p
22/3

3

l
2/3
1 l

2/3
3

V 1/3l
1/3
2 (l1 + l3)

2/3
(61)

One can think about the condition (Eq. 58) as
“impedance matching”: inserting the expression for a∗

into (Eqs. 49), (51) and (52) leads to

R2 =
1

2
(R1 +R3) (62)

and thus the resistance of the stem has to be matched to
the average of the resistance in the ends.

The flow velocity from (56) or (61) can be used to give
an estimate of the transit time τ for sugar from the leaves
to the root as τ ≈ l2/u which for optimised phloem tubes
gives

τ ≈ l2
u∗

=
3

25/3Lp∆p

V 1/3 (l1 + l3)
2/3

l
2/3
1 l

2/3
3

l
4/3
2 (63)
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Figure 22 Evidence from field measurements that the radius
of phloem sieve elements is optimized for rapid sugar translo-
cation. Comparison between the predicted optimal radius
(a∗)3 ∼ l1l2 (Eq. (64)) and the measured radius a. Symbols
indicate angiosperm herbs (dots), angiosperm trees (open cir-
cles), angiosperm shrubs (grey dots), gymnosperm trees (open
square), and gymnosperm trees with scales (open triangle).
All plants were mature. G is a geometrical factor depending
on the cross-sectional shape of the tubes and similarly a is an
effective radius. Data from (Jensen et al., 2011, 2012a)

The scaling relation (Eq. 59) was first obtained by
Jensen et al. (2011) and tested, as shown in Fig. 22a,
against measured sieve tube radii a and the product of
the lengths of stems and leaves for 20 plants ranging from
10 cm up to 40 m. In Jensen et al. (2012b) this study
was extended by a large number of trees, 32 angiosperms
and 38 gymnosperms (mostly conifers), up to 50 m in
height. In gymnosperms, the cross-section of the sieve
tubes are typically not circular, but closer to rectangular
(see Fig. 10c), and the scaling relations have to be mod-
ified by a geometrical factor and a corresponding defi-
nition of the effective radius. As discussed in detail in
(Jensen et al., 2012b) (Appendix A), the scaling relation
can in general be written (taking for concreteness the
case of l1 ∼ l3)

a∗ = (GηLpl1l2)
1/3

(64)

where a∗ now is an effective radius depending on the
shape of the tubes and G is a geometrical factor.

It is surprising that angiosperms and gymnosperms
pretty much fall on the same scaling curve. Angiosperms
are much younger, around 130 million years is the cur-
rent estimate of their age, compared to the gymnosperms
which are probably closer to 300 million years old, and
they differ in many fundamental ways. In Section IV.A.3,
in particular in Fig 19, it was shown that the typical flow



34

speeds in the phloem of gymnosperms are considerably
smaller than that of angiosperms - but still they seem to
be optimized in the same way.

As noted above, the optimality condition, e.g., Eq. (59)
expresses the optimal radius as the cubic root of three
lengths: the length of the stem, the length of the leaves
and the quantity V ∼ ηLp with the dimensions of a
length. Inserting typical numbers for sieve tubes, i.e.,
Lp ≈ 5 × 10−14 m s−1 Pa−1 and η ≈ 2 × 10−3 Pa
s = 2ηw (twice the viscosity of pure water) we find
ηLp ≈ 10−16 m, which seems to be a length scale more
relevant to particle physics than to biophysics. In fact,
one should not think of it as a single length, but as in-
volving several lengths having to do with the structure
of the semipermeable plasma membranes producing the
osmotic effects. Let us assume that the membrane has
n pores pr unit area, for simplicity cylindrical, each with
radius ap and length d, the thickness of the membrane.
The pore density n can be written in terms of the cover-
ing fraction φ of the pores as

n =
φ

πa2
p

(65)

and the flux pr. surface area passing the membrane is (if
ap � d) for a given pressure difference ∆p

q = n
πa4

p

8ηwd
∆p =

φa2
p

8ηwd
∆p ≡ Lp∆p (66)

where we use ηw, since the sugar cannot penetrate the
pores. Thus

ηLp ≈
φa2

p

4d
(67)

If we take typical values for the membrane thickness
d ≈ 5 nm, we see that the values ap ≈ 2 Å and
φ ≈ 0.5 × 10−4 will lead to the above value ηLp ≈
10−16 m. The same value of ap corresponds to the wa-
ter being transported through aquaporins, but it implies
also that our use of classical Poiseuille flow is at best
suggestive. On the other hand, a typical value from the
literature for the permeability of a single aquaporin is
lp = 10−20 m3 s−1 (Nielsen (2010) Table I) where

lp = πa2
p

RTLp
φVw

(68)

where Vw is the molar volume of water. Inserting values
above for Lp and ap gives lp ≈ 10−24φ−1 m3 s−1. A com-
parison of this number with the value of lp from Eq. (68)
gives φ ≈ 10−4, in reasonable agreement with our earlier
estimate.

In Fig. 23, a complementary scaling plot showing how
the cross-sectional area of the sieve elements vary with
the length of the stem. The cross-sectional area was used
rather than the radius since the sieve elements of gym-
nosperms are typically not cylindrical (Fig 10). The plot
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Figure 23 Sieve element cross-sectional area A = πa2 is ap-
proximately proportional to stem length l2 for stems shorter
than ∼ 10 m, and saturates above that height. Symbols in-
dicate angiosperm herbs (dots), angiosperm trees (open cir-
cles), angiosperm shrubs (grey dots), gymnosperm trees (open
square), and gymnosperm trees with scales (open triangle).
Data from (Jensen et al., 2012b).

shows that the width of the sieve tubes grow for small
plants (up to around 10m in size), but for larger plants
(trees) this growth basically stops. The sieve element
radius (∼ square root of the cross-sectional area) never
exceeds a value of approximately 20µm. The reason for
this is not known, but one has to keep in mind that the
sieve elements are single living cells, and there might be
good structural reasons for restricting its size.

We end this section by discussing the dependence of the
velocity u, Eq. (56), on the geometric parameters of the
problem. Since the sink length is difficult to ascertain, we
proceed in the simplified case where the sink resistance is
negligible: R3 � R1, R2 (i.e., l3 � l1, l2). In that limit,
using the terminology l1 = l and l2 = h, the velocity
(Eq. (56)) is

u =
2a2Lpl

a3 + 16ηLplh
∆p (69)

and the optimal radius is now (a∗)3 = 2V lh as in Eq. (60)
with V given by Eq. (57). The general scaling with
the geometric parameters is illustrated in Fig. 24. At
constant h and l, the speed as function of conduit radius
a can be expressed in terms of the relative conduit size
α = a/a∗

u(a)

u(a∗)
=

3α2

1 + 2α3
u(a∗) =

21/3

3

(lLp)
2/3

(hη)1/3
∆p, (70)

where u(a∗) is the speed at the optimal radius. As a
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function of leaf length l, the speed is

u(l)

u(l→∞)
=

λ

Mü−1 + λ
u(l→∞) =

a2

8hη
∆p (71)

where λ = l/h and Mü = 16ηLph
2/a3 is the Münch num-

ber, which characterizes the ratio of viscous to membrane
flow resistance (discussed in Sec. V), based on the leaf ge-
ometry. Considering only variations in the stem length
h we finally have

u(h)

u(h→ 0)
=

1

1 + Mü′λ−1
u(h→ 0) = 2

lLp
a

∆p (72)

where the parameter Mü′ = l2/h2Mü = 16ηLpl
2/a3, is

the (much smaller) Münch number, based on the leaf
geometry.

The dependence of the speed u on the length-scales a, l,
and h, Eqns. (70)-(72), are plotted in Fig. 24. Panel (a)
illustrates the optimality criterium, Eq. (60), and that
the speed is reduced by up to 35 % for radii in the in-
terval a∗/2 < a < 2a∗. Panel (b) shows an initial linear
growth with leaf size followed by an asymptotic approach
to a constant level. A larger leaf leads to a greater flow
speed because the flow rate increases along the vascula-
ture in the leaf due to osmotic exchange of water, acting
as tributaries to a river. As the leaf grows very large,
however, the leaf resistance becomes small compared to
the stem resistance R1 � R2, and ultimately the flow
speed can never exceed the value a2∆p/(8ηh). Finally,
panel (c) demonstrates a monotonic decrease in speed as
function of plant height h due to viscous friction in the
stem.

It is amazing that a model as simple as the one pro-
posed here can say anything useful. We all know the com-
plicated network structure of leaves, and we would thus
assume that a model treating each phloem path as a sim-
ple tube of constant radius is nonsensical. One should,
however, keep in mind that many of the vein bifurcations
seen in a leaf are actually points where the vascular bun-
dle is split, whereas the number and size of the individual
sieve tubes is constant. In pine needles it has thus been
seen that the area of each individual sieve element is ap-
proximately constant along the length of a pine needle
(Ronellenfitsch et al., 2015). Whether the same is true
for the truly two-dimensional leaves of angiosperms with
their characteristic reticulate networks is not known at
present. Variations in the diameter of the sieve tubes
with height along the stem of trees (pines, ashes and wil-
lows) were recently investigated in (Petit and Crivellaro,
2014). The results were fitted to power laws a ∼ hb,
where h is the height along the stem, with very low pow-
ers b ≈ 0.1−0.2 and correspondingly very slow variation.
This corresponds well with the lack of variations of the
radius of sieve tubes (or their cross-sectional area) with
the height of the tree shown in Fig. 23.
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Figure 24 Scaling of the osmotic pumping velocity u (Eq.
(69)) with geometric parameters according to Eqns. (70),
(71), and (72).
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Figure 25 The variability of leaf sizes decreases with plant
height, forming upper and lower boundaries (solid lines).
Gray triangles show the reported range of leaf sizes for par-
ticular species as the longest and shortest leaf lamina length
l plotted as a function of tree height h. Solid lines show fits
to theory (Eqns. (73) and (74)). Adapted from (Jensen and
Zwieniecki, 2013).

2. Limits to leaf size

Leaf sizes in angiosperm trees vary by more than 3 or-
ders of magnitude, from a few mm to over 1 m (Fig. 25).
Leaf morphology is influenced by a number of factors,
including photosynthesis, gravity, wind, herbivores, and
vascular transport efficiency (Onoda et al., 2011). For
instance, the leaf must be kept more of less in the hori-
zontal plane to maximize photosynthesis. This imposes
mechanical constraints on the length of the petiole and
size and mass of the leaf (for a detailed discussion, see
Niklas (1994)).

Remarkably, the large diversity in leaf size is only ex-
pressed in small trees, and the observed leaf size range
declines with tree height, forming well-defined upper and
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lower boundaries (solid lines in Fig. 25). Jensen and
Zwieniecki (2013) hypothesized that this could be ratio-
nalized based on considerations related to sugar export
from the leaf. The fact that large trees should have small
leaves can be understood on the basis of the scaling rela-
tion Eq. (59) or Eq. (64) combined with the experimental
finding (Fig. 23) that the sieve tube radius in large trees
apparently approaches a constant value (amax ≈ 20µm)
leading to the scaling l ∼ 1/h. To obtain the maxi-
mal leaf length Jensen and Zwieniecki (2013) used an
expression for the energy flux E = kcu, where k is a
metabolic constant and u is given in terms of leaf size
l and tree height h by Eq. (69). Since the plant in-
vests considerable amounts of energy in constructing and
maintaining photosynthetic tissue, they argued that it
will curtail the construction of still larger leaves once the
energy flux E approaches the maximum energy output
Emax = kca2∆p/(8ηh). At this point, the gain in en-
ergy output from increasing the leaf size is too small to
offset the cost of building and maintaining the leaf, in
accord with Charnov (1976)’s marginal value theorem.
Further, leaf growth will cease once the energy output E
has reached a fraction E ∼ (1− τ)Emax of the maximum
obtainable, where the constant number τ � 1. It follows
that the maximum allowed leaf length lmax at a given
height h is

lmax =
1

16

a3
max

τLpη

1

h
. (73)

While the leaf size derived in Eq. (73) provides a link
between energetic constraints and the maximum leaf size,
it does not account for the apparent lower limit to leaf
size (Fig. 25). Based on the rationale that vascular sys-
tems are formed because cell-to-cell diffusion is insuf-
ficient as a transport mechanism over long distances,
Jensen and Zwieniecki (2013) argued that the lower limit
to leaf size represents a minimum flow phloem speed
(LaBarbera, 1990; Vogel, 2004). With typical plant cell
sizes in the range of d = 10µm – 100µm, diffusion and
advection of sugars are equally effective over these length
scales when the Péclet number Pe = vd/D = 1, where
v is the flow speed and D is the diffusion coefficient
(D = 0.5 × 10−9 m2/s for sucrose (Haynes, 2012)). It
follows that v ' D/d = 5µm/s – 50µm/s provides a
lower estimate of the minimum flow speed umin. Assum-
ing a velocity equal to this and solving Eq. (69) for leaf
length l leads to the leaf size lmin at which this speed is
first obtained:

lmin =
1

16

r3

Lpη

1

(hmax − h)
. (74)

In Eq. (74), we have expressed the minimum leaf size
in terms of hmax = r2∆p/(8ηumin), the tree height at
which it is no longer possible to obtain the flow speed
umin due to resistance to flow in the stem. Jensen
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Figure 26 (a) Viscosity increases with concentration by al-
most two orders of magnitude between c = 0 %wt and
c = 60 %wt. Viscosity η/η0 plotted as a function of solute
concentration c for the substances indicated in the legend.
η0 = 1 mPas is the viscosity of water and the solid line is a
fit to the sucrose data. (b) The mass flux for sucrose (Eq.
(75)) is optimal around c = 23 %wt (dashed line). Mass
flux m normalized by the maximum value mmax plotted as
a function of solute concentration c. (c-d) Histograms show-
ing phloem sap concentration measured in plants that utilize
passive and active phloem loading. Solid line is a gaussian fit
to the frequency distribution. Dashed line shows the optimal
concentration, cf. panel (b). Data from Haynes (2012): (a)
and Jensen et al. (2013b): (c-d).

and Zwieniecki (2013) fitted Eqns. (73)-(74) to outliers
of the data in Fig. 25, and found that the data sug-
gests an efficiency 1 − τ ' 0.9 and a minimum speed
umin ' 100 µm/s for parameter values ∆p = 1 MPa,
Lp = 5× 10−14 m/s/Pa, and η = 5 mPas. The minimum
flow speed 100 µm/s is in rough accord with experimen-
tal data from angiosperm trees (Fig. 19(b)) which has a
strong peak around ∼ 50 µm/s.

In summary, this suggests that in addition to effects
related to e.g. photosynthesis, gravity, wind, and herbi-
vores, efficiency of phloem transport may influence the
size of plant leaves.

3. Optimal sugar concentration

In the preceding sections we have seen examples of
how purely geometric factors influence the speed of sugar
transport in plants. Further, we have found evidence that
plants, on average, are inclined to favor geometric config-
urations that maximizes this speed (Fig. 22). The under-
lying assumption is of course that the speed u is a proxy
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for the sugar mass flux u c, where c is the phloem sap
sugar concentration, which implies that m is optimized
if u c is. The proportionality factor c, however, gives rise
to additional dynamics in the flow problem which is in-
dependent of geometry. To see this, consider the case
where the flow resistance is dominated by viscous resis-
tance along the stem

u c =
r2

8

∆p

L

c

η(c)
. (75)

The geometric factor r2 and pressure gradient ∆p/L are
unchanged, but the ratio of concentration to viscosity
c/η(c) reveals that the mass flux u c is directly influ-
enced by properties of the sap. It is apparent (Fig. 26(a))
that viscosity increases rapidly with sugar concentration
and that the function c/η(c) has a maximum around
c ' 23 %wt (Fig. 26(b)). The existence of an optimum
sugar concentration derived from Eq. (75) and Fig. 26(a-
b) was first proposed by Passioura (1976). Similar models
have been used to rationalize observed concentrations in,
for instance, blood flow (Birchard, 1997; Murray et al.,
1963; Stark and Schuster, 2012), nectar drinking animals
(Kim and Bush, 2012; Kim et al., 2011) and traffic-flows
(Jensen et al., 2013a). Passioura (1976) argued that ef-
ficient transport of sugar requires concentrations in the
range 14−35% based on increased viscous friction at high
concentrations. Later, Lang (1978) conducted a theoret-
ical comparison of different sugars and sugar alcohols,
and concluded that the disaccharide sucrose at c = 25%
is the most advantageous substance to transport, since
it is chemically stable, highly soluble and only generates
a modest osmotic pressure compared with other sugars,
like its component parts, the monosaccharides glucose
and fructose. An experimental test of the hypothesis that
plants favor the optimum sugar concentration was per-
formed by Jensen et al. (2013b), who collected data from
41 plant species (Fig. 26(c-d)). The optimal concentra-
tions discussed above provide a rationale for the observa-
tion that the mean sugar concentration in the phloem sap
of the plants found by Jensen et al. (2013b) was 18.2 %.
At this concentration the flux u c is less than 5 % from
the maximum value. When considering active sugar load-
ers separately, the trend is even more clear: the average
concentration is 21.1 % (Fig. 26(d)). By contrast, passive
loaders (Fig. 26(c)) average at 15.4 %, which corresponds
to 10 % less than the optimum mass flux.

Loading type appears to impact the sugar concentra-
tion and transport efficiency of the phloem: data sug-
gest that active loaders achieve more optimal concentra-
tions for transport than passive loading species. Several
caveats are in order, however, as summarized by Jensen
et al. (2013b): The concentration observed in nature may
deviate from the theoretical optimum due to the limited
availability of light, water and nutrients. Although some
plant species maintain fairly constant sugar concentra-
tions in their phloem, other species appear to exhibit

diurnal and seasonal changes in sap chemistry. Higher
sugar concentrations may also prevent desiccation dur-
ing extracellular freezing and facilitate supercooling dur-
ing the winter. Therefore, some of the variation observed
in phloem sugar concentration could be the result of dif-
ferences in growth and sampling conditions.

D. Final remarks

In this section we have presented experimental data on
sugar transport in plants. We have discussed attempts to
use biomimetic models and scaling theory to rationalize
some observations. Several of these have provided in-
sights into the physical mechanisms that limit the range
of observed anatomical and physiological features. How-
ever, a multitude of questions concerning long distance
flow patterns of sugars, hormones, and other substances
remain. Some of these arise from the difficulty in ob-
taining experimental data. Cell turgor pressure, for in-
stance, is notoriously difficult to quantify, and no sys-
tematic study of pressure gradients in a plant has been
made. This data is critical to an evaluation of the Münch
osmotic pressure flow hypothesis. Remarkably little data
exist on the global translocation patterns, i.e. on the
flow speed and concentration of phloem sap at various
positions in the plant body. Again, this is because the
measurements are demanding, but it should be noted
that the gain from better data on sugar transport would
be considerable, especially if we are to take full advan-
tage of emerging breeding and gene technology platforms
to increase plant yield by reallocating resources via the
phloem.

Our understanding is even further confounded by the
lack of data on the phloem cell network architecture. We
introduced a class of models inspired by electric circuits,
and used a simple 1-dimension model of a tree to ob-
tain information about the conduit sizes in the phloem,
the leaf sizes for different tree heights and the sugar con-
centration in the phloem - based on optimising the flow
speed. Here the entire leaf was replaced by a segment of
a tube, characterised only by its radius and length. In
reality we know that the phloem network in the leaf is
a complicated, hierarchical structure, and it is a major
question for future research to determine how the effec-
tive parameters (like resistance) are determined for these
networks.

V. FLUID DYNAMICS OF SUGAR TRANSPORT IN
PLANTS

To obtain a more reliable description of the osmotically
driven flows, even in a single tube, like those making up
the “one-dimensional tree” of last section, we now em-
ploy hydrodynamic equations taking explicitly into ac-
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Figure 27 A “1-dimensional tree” according to Horwitz: a
tube (S) with semipermeable walls, in contact with another
tube (Z) containing pure water, connected to a water reser-
voir. From Horwitz (1958), reprinted with permission of the
American Society of Plant Biologists

count the variations of flow velocities and concentrations
along the tube. We make a number of simplifying as-
sumptions, which, however, will allow us to expose the
important features without too many confusing details.
Still, the material presented in this section is intended for
the mathematically inclined reader who wants to know
the state of the art of the mathematical modeling of long
distance flow in the phloem. Other readers can safely
proceed to Sec. VI.

The starting point is the Aldis-flow of Sec. II.C: a
cylindrical tube along the x axis of length L (0 < x < L)
and radius a, with a side-wall consisting of a semiperme-
able membrane with permeability Lp. The tube contains
an aqueous sugar solution with pressure p(r, x, t), con-
centration c(r, x, t), and velocity field v(r, x, t). A water
reservoir at constant pressure p = 0 surrounds the tube.
We neglect variations in density ρ and viscosity η induced
by the presence of sugar, and assume rotational sym-
metry of velocity, concentration, and pressure. If low-
Reynolds-number conditions prevail, the governing equa-
tions are the Stokes equation Eq. (3a) and the advection-
diffusion equation Eq. (11). The boundary conditions at
the membrane interface (r = a) are (see Sec. II.D) tan-
gential no-slip of the water, radial inflow of water, and

zero flux of the solute,

vx(a, x) = 0, no slip, (76a)

vr(a, x) = Lp
[
RTc(a, x)− p(a, x)

]
, osmosis, (76b)

D
∂c

∂r

∣∣∣∣
a,x

= c(a, x) vr(a, x), no solute flux. (76c)

To our knowledge, no general solution to these cou-
pled velocity-concentration equations has been found.
Aldis (1988b) provided numerical solutions for the limit
p � RTc, while Haaning et al. (2013) found analyti-
cal solutions for small deviations between the membrane
concentration c(a, x) and mean concentration.

The system complexity, however, can be reduced con-
siderably by seeking equations for the radially aver-
aged concentration c =

〈
c
〉
r

and axial flow speed u =〈
vx
〉
r

in the lubrication approximation (introduced af-
ter Eq. (23b)) valid when a � L. The governing equa-
tions for u and c are obtained from the radial average
of the Aldis-equations Eqs. (24a) and (25) and of the
advection-diffusion equation (10). Note that the latter
can not be replaced (11) since the velocity field cannot
be divergence free in this one-dimensional setting, which
would imply a constant velocity u. Assuming that the so-
lution is well-stirred, we have c(x, t) =

〈
c(r, x, t)

〉
r

such

that
〈
vxc
〉
r

= uc and (76b) leads to

a

2Lp

∂u

∂x
= RTc− p (77)

which together with Darcy’s law (5)

∂p

∂x
= −8η

a2
u (78)

give the final radial-averaged equations

a

2Lp

∂2u

∂x2
= RT

∂c

∂x
+

8η

a2
u, (79a)

∂c

∂t
+
∂uc

∂x
= D

∂2c

∂x2
+ Υ, (79b)

These equations, known as the Münch-Horwitz equa-
tions for osmotically driven pipe flows, first appeared in
Horwitz (1958). An overview of the associated litera-
ture can be found in Thompson and Holbrook (2003b),
and we give a brief summary here. Horwitz (1958) used
a control-volume approach to derive equations for the
steady flow problem in the form

A
du

dx
= αc− βp, (80a)

d

dx
(Auc) = Υ, (80b)

dp

dx
= −εu, (80c)
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where A = πa2 is the cross sectional area of the tube and
α and β are physical parameters which in our terminol-
ogy are α = LpRT , β = Lp, and ε = 8η/a2. His model
divided the plant into three zones, a photosynthetic re-
gion, a stem region, and a consuming region, see Fig. 27.
He discussed three different forms of the loading term Υ

Υ = 0, Υ = −kc, and Υ = −const, (81)

which correspond to either no loading in the stem region
or concentration dependent or constant unloading in the
consuming region. Horwitz (1958) did not provide solu-
tions to Eqns. (80a)-(80c), but noted that (p. 87): In
general one would expect from the simple pressure flow
theory that the rate of flow varies with distance along
the tube, according to equation (80a). The size of this
effect, however, depends on the difference between terms
involving concentration in the phloem and pressure. If the
pressure dissipation down the tube is paralleled by a corre-
sponding decline in concentration (as by loss to adjacent
tissue), there may be only a small variation in flow rate
over long distances. Subsequent analyses (Fig. 28 and
e.g. (Christy and Ferrier, 1973; Thompson and Holbrook,
2003b)) have shown that most of the flow acceleration in
Horwitz’s model occurs in the photosynthetic (leaf) re-
gion. Work by Eschrich et al. (1972) and Young et al.
(1973) continued the mathematical analysis of Münch
flow by including an arbitrary position-dependent load-
ing function Υ(x), noting that a physiologically rele-
vant loading function must (in a steady state) ensure
that the net transport of solutes into the tube is zero,

i.e.
∫ L

0
Υ(x) dx = 0. They also performed an analy-

sis of transient flow based on an integral form of Hor-
witz’s equations (Sec. IV.B). Phloem flow models were
further refined by Christy and Ferrier (1973) and Tyree
et al. (1974) who found the first numerical solutions to
the equations of motion using a discretised version of
Horwitz’s equations using constant loading rates in the
source and sink regions constrained by the Young et al.
(1973) criteria (Fig. 28(a)). They also took into account
the molar volume of sugar solutions and xylem pressure
gradients. To our knowledge, Ferrier et al. (1975) were
the first to transient effects, though equations are not
given explicitly and only numerical solutions were under-
taken. Frisch (1976) found an analytical solution of time
dependent system (including explicitly the term ∂c/∂t in
Eq. (79b)) in the limit where viscous contributions to the
pressure gradient is small. by relating it to the Burgers
equation as described below. Phillips and Dungan (1993)
presented an analytical approach based on the Stokes and
advection-diffusion equations similar to that leading to
Eqns. (79a) and (79b), finding two coupled equations for
concentration c and pressure p by eliminating the veloc-
ity u. Thompson and Holbrook (2003b) criticized Phillips
and Dungan (1993) for claiming that correct predictions
can be achieved in no other way than through direct solu-
tion of the Stokes equation, pointing out that Horwitz’s

control volume approach assumes local Poiseuille flow,
thus giving the same predictions. More recently, Thomp-
son and Holbrook (2003b) studied the approach to steady
flow by numerical solutions to the Münch-Horwitz equa-
tions, Fig. 28(b).

The derivation of the Münch-Horwitz equations as-
sumed that the water reservoir was all at the same pres-
sure. In fact the phloem moves basically in parallel with
the xylem and the osmotic flow thus depends on the local
external pressure, i.e., the pressure in the xylem, miti-
gated through the intervening cambium. Denoting this
pressure by pext(x, t), it would enter into the radial inflow
(76b) changing it into

vr(a, x) = Lp
[
RTc(a, x)− (p(a, x)− pext(x, t))

]
, (82)

where we have assumed that the solute concentration in
the xylem is negligible. Such coupling terms have been
included in some studies (Daudet et al., 2002; Holtta
et al., 2006; Lacointe and Minchin, 2008) showing that
e.g., the daily variation in the xylem can indeed influ-
ence the phloem translocation. Here one needs to model
the cambium separating the xylem and the phloem, the
elastic properties of the tissue as well as loading func-
tions for the sugars. In the model of Holtta et al. (2006)
a sufficiently strong transpiration (gradient in pext) can
actually stop the phloem, but for a large range of tran-
spiration below this value, the sugar flux is practically
unaffected (Holtta et al. (2006) Fig. 4). We shall not
discuss these models further here, but it is clearly an
important area for future research. For more definite
modelling of the xylem-phloem interactions one needs a
better understanding of the complex coupling processes
in the leaf, the mathematical modelling of which we shall
return to briefly in section VI.C.

The Münch-Horwitz equations are difficult to solve nu-
merically due to imminent shocks (as described below),
and various ways of handling them with different loading
mechanisms have been proposed in the literature (Christy
and Ferrier, 1973; Goeschl et al., 1976; Henton et al.,
2002; Jensen et al., 2009b, 2012a; Thompson and Hol-
brook, 2003b). In (Thompson and Holbrook, 2003b), a
non-symmetrical slope-limiting total variation diminish-
ing (TVD) method is used to obtain results like Fig 28b.
In their Appendix D, the method is described in detail
as well as the differences with earlier studies. A sim-
pler form of non-symmetric differentiation was used in
(Jensen et al., 2012a), the standard “upwind” technique,
where only the point in question and its upwind neigh-
bors are used. In our case the “wind” always comes from
the loading zone (leaf), and therefore the upwind neigh-
bors are those with smaller x. As well known in gas the-
ory, this gives a simple approximative way of handling
shocks (LeVeque, 1992) and it works well for the Münch-
Horwitz equations as documented in Fig. 30, where the
method is used.
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Figure 28 Numerical solutions of the Münch-Horwitz equa-
tions by Tyree et al. (1974) and Thompson and Holbrook
(2003b) illustrates how the flow velocity increases in the
source region, remains approximately constant in the stem,
and approaches zero in the sink. The concentration decreases
along the plant axis. (a) Shows steady solution by Tyree
et al. (1974), while (b) illustrates the flow transient found by
Thompson and Holbrook (2003b). Adapted from Thompson
and Holbrook (2003b); Tyree et al. (1974). (a) is reprinted
with permission of the American Society of Plant Biologists.

Several studies have reported analytical solutions to
Eqns. (79a)-(79b), see e.g. Frisch (1976); Jensen et al.
(2011, 2009b, 2012a); Phillips and Dungan (1993);
Pickard and Abraham-Shrauner (2009); Thompson and
Holbrook (2003a), and Hall and Minchin (2013). We
proceed to discuss general approaches and some details
of these solutions in the following sections.

To simplify the notation in the following mathematical
treatment, we non-dimensionalize Eqs. (79a) and (79b)
by using the system length L and inlet concentration c0 as
characteristic scales together with the osmotic pressure,
velocity, and time scale p0, u0 and t0, respectively,

p0 = RTc0, u0 =
2L

a
Lp p0 t0 =

L

u0
, (83)

to get non-dimensional variables C, U , P , X, and τ as

c = c0C, u = u0U, p = p0P, x = LX, t = t0τ, (84)

Table III Values of the parameters M and D̄ in various
positions in a plant, based on the typical parameters a =
10 µm, η = 2 mPa s, Lp = 5 × 10−14 m/(Pa s), D = 5 ×
10−10 m2/s and c = 0.5 M, which yields RTc = 1.22 MPa.

Position in plant Mü D̄

Single Sieve element (L = 1 mm) 1.6× 10−6 4× 10−2

Leaf (L = 1 cm) 1.6× 10−4 4× 10−4

Branch (L = 1 m) 1.6 4× 10−8

Small tree (L = 10 m) 160 4× 10−10

where L has been chosen such that 0 < X < 1. Fur-
thermore, we introduce the dimensionless parameters Mü
(Münch number, hydraulic resistance divided by trans-
membrane resistance), D̄ (inverse Péclet number), and Ῡ
(loading rate divided by radial diffusion rate),

Mü =
16ηL2Lp

a3
, D̄ =

D

u0L
, Ῡ =

2t0Υ

c0a
. (85)

Using this, the non-dimensional radially-averaged form
of the Horwitz equations (79a)–(79b) become

∂2U

∂X2
=
∂C

∂X
+ MüU, (86a)

∂C

∂τ
+
∂(UC)

∂X
= D̄

∂2C

∂X2
+ Ῡ, (86b)

with the relations

∂U

∂X
= C − P, (87a)

∂P

∂X
= −MüU. (87b)

for the pressure.

Typical values of Mü and D̄ in different situations are
listed in Table III. The scaling introduced in this way
is most appropriate for small Münch numbers, and in-
termediary length scales, as it is based on the velocity
scale u0, Eq. (83), set by the osmotic pressure, the mem-
brane permeability and the full length L of the system
(e.g, the tree). Typical observed flow rates are of the or-
der of 1 m/h = 2.7 × 10−4 m/s, but our u0 varies from
0.044 m/h for the single sieve element to 440 m/h for a
10 m tree, whereas a “leaf” of length 2 cm would give
u0 ≈ 1 m/h. This reflects the fact that the real velocity
is set by the length scale where important water inflow
takes place, and the appropriate pressure drop for the
system. For large Mü, the dominant resistance comes
from the stem, and using Eq. (79a), without the second
derivative and setting ∂c/∂x ≈ c0/L and r2 ≈ a2, the
characteristic velocity u1 in this case would be

u1 =
a2

8η

RTc

L
= Mü−1 u0. (88)
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A. Solutions of the Time Dependent Equations with No
Sugar Loading

We move on to analyze the Münch-Horwitz Equations
(86a)–(87b). The first question to answer is whether they
are well-posed. As discussed in Sec. II.B, the very dif-
ferent time scales for molecular and momentum diffu-
sion has allowed us to discard the time dependence in
the Navier-Stokes equation, i.e., in Eq. (86a). Thus, like
the incompressibility condition in an incompressible fluid,
the dynamics comes from Eq. (86b), whereas Eq. (86a)
is in the nature of a constraint. One possible set of initi-
tial conditions for Eqs. (86a)–(87b) is to specify the en-
tire concentration field c0(x) = c(x, t = 0). Then, since
Eq. (86a) is linear in u, one can write

u(x, t) =

∫ 1

0

G(x, ξ)
∂c(ξ, t)

∂ξ
dξ, (89a)

where the Green’s function satisfies

∂2G

∂x2
−MüG = δ(x− ξ). (89b)

and where G(x, ξ) = G(ξ, x). Further, G(x, ξ) is continu-
ous at x = ξ, whereas its derivatives are not. Integrating
(89a) over x from ξ− ε to ξ+ ε and letting ε tend to 0 we
find G′x(ξ+, ξ)−G′x(ξ−, ξ) = G′ξ(x, x

+)−G′ξ(x, x−) = 1.
To determine this Green’s function, one has to spec-

ify the boundary conditions on u, i.e., whether the ends
are open or closed. Often we are particularly interested
in the case of close ends u(0) = u(1) = 0 since this is
close to the situation in leaves or roots. Then the pres-
sure (or more correctly: the pressure difference across the
membrane) is determined by Eq. (87a), and cannot be
specified independently. Inserting the expression (89a)
for u(x, t) into (86b) yields and integro-differential equa-
tion for c(x, t), which can be solved by straight forward
numerical techniques. The details of this method can be
found in Appendix B of (Jensen et al., 2009b) (note that
the function K(x, ξ) used there is K(x, ξ) = −G′ξ(x, ξ)).

We begin by looking at the transient behaviour of an
initially localized sugar distribution appropriate to many
biomimetic applications, but perhaps less so for real
plants. In particular, we shall show that the equations,
in the limit Mü = 0 become equivalent to variants of
the Burger’s equation (Frisch, 1976; Jensen et al., 2009b;
Weir, 1981). Such equations can develop shocks (discon-
tinuous gradients, but only true shocks for D = 0), as
seen in the velocity field in Fig. 28(b) but as far as we
know, the equations never actually do develop shock un-
der biologically relevant conditions.

In the following, we take the loading function to be
zero, Υ = 0, since we assume, as typical in the biomimetic
applications, that the sugar is present from the outset,
and no sugar is added or taken out subsequently. In
the limit of vanishing Münch number, the equations be-
come particularly simple, and when also the molecular

diffusion is neglected (D = 0), they can be solved by
the method of characteristics. For an arbitrary initial
condition, this method will generally yield an implicit
solution. For arbitrary values of Mü and D̄, we cannot
solve the equations analytically and thus have to incor-
porate numerical methods. Due to the large derivatives
which can develop, as shown in Fig. 28(b)), great care
has to be taken in the numerical analysis, as discussed
by Thompson and Holbrook (2003b) and Jensen et al.
(2009b, 2012a). In the analysis in the remainder of this
subsection, we employ the dimensionless equations, but
drop the capital letters, and use t for τ , hoping thereby to
make the reader more at ease without adding too much
confusion.

Let us consider a tube closed at one end (x = 0) and
open at the other (x = 1) with an initial sugar distribu-
tion, given as c0(t) = c(x = 0, t) concentrated near the
closed end—a case discussed in Section IV.B and shown
in Fig. 20(d). When Mü = 0, there is no variation in the
pressure along the tube, and we can take p = 0 every-
where. Thus Eq. (87a) becomes

c =
∂u

∂x
. (90)

Inserting this into the advection-diffusion equation (86b)
with Ῡ = 0, interchanging the derivatives with respect
to t and x in the first term and integrating over x gives

∂u

∂t
+ u

∂u

∂x
− D̄ ∂

2u

∂x2
= A(t), (91a)

where A is independent of x. The two first terms on
the left-hand side will vanish at x = 0 at all times due
to the boundary condition u(x = 0, t) = 0. In addi-
tion, if we prescribe an inititial c0(x) with c′0(0) = 0,
the last term will remain zero at x = 0 as long as
∂2u
∂x2 |x=0 = ∂c

∂x |x=0 = 0. We thus obtain the Burgers’
equation (Whitham, 1974)

∂u

∂t
+ u

∂u

∂x
= D̄

∂2u

∂x2
(91b)

for the velocity. In the limit D̄ = 0 this is particularly
simple and instructive. The solution is easily obtained by
the method of characteristics, where the characteristics
satisfy

du

dt
= 0,

dx

dt
= u. (92)

i.e., that u is constant along the trajectory
(
x(t), t

)
, if

x(t) moves with the local speed u. Thus the solution can
be parametrized as

u(ξ, t) = u0(ξ), x(ξ, t) = ξ + u0(ξ)t, (93)

where u0(ξ) = u(ξ, 0) =
∫ ξ

0
c0(x) dx. If we assume that

the sugar initially has the uniform concentration c0 = cI
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in the interval 0 ≤ x ≤ λ of the tube, the initial velocity
must increase linearly as u0(ξ) = cIξ for x ≤ λ and
become constant u0(ξ) = cIλ for x ≥ λ. Solving the
characteristic equations then gives

u(x, t) =

{
(cIx)(1 + cIt)

−1, for 0 ≤ x ≤ λ(1 + cIt),

const. = cIλ, for λ(1 + cIt) ≤ x ≤ 1,

(94)
and the front xf (t) = λ(1 + cIt) moves with the constant
speed uf = x′f (t) = cIλ set by the total amount of sugar
present in the tube, in agreement with Eq. (42). The
solution only works as long as this amount is fixed, i.e., up
to the time t = (1−λ)/(cIλ) where the front reaches the
open boundary. It is seen that the flow velocity increases
up to the front position, which is typical of osmotically
driven flows through a region of constant concentration
difference as e.g., through a leaf.

In the other case treated in Section IV.B and shown
in Fig. 20(c), the tube is closed in both ends, and the
Münch-Horwitz equations (86a)–(87a) with Mü = 0 leads
to a slight generalization of Eq. (90), as the pressure now
increases in the tube,

∂u

∂x
= c− p(t). (95)

Using the boundary conditions u(0, t) = u(1, t) = 0, the
(dimensionless) pressure becomes

p(t) =

∫ 1

0

c dx ≡ c̄(t), (96)

i.e., the mean concentration in the tube. Inserting
Eq. (95) into Eq. (86b) (with D̄ = Ῡ = 0) gives

∂

∂x

[
∂u

∂t
+ u

(
∂u

∂x
+ c̄

)]
= −dc̄

dt
= 0, (97)

where the last equality expresses that c̄ is constant in
time since the tube is closed. Integrating with respect to
x and using the boundary conditions on u to obtain

∂u

∂t
+ u

∂u

∂x
= −c̄u. (98a)

again a Burgers’ equation, but this time a damped one
(Gurbatov et al., 1991). The characteristic equations are
now

du

dt
= −c̄u, dx

dt
= u. (98b)

with solutions

u = u0(ξ) e−c̄t, (98c)

x = ξ +
1

c̄
u0(ξ)

(
1− e−c̄t

)
, (98d)

where ξ = x at t = 0.
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Figure 29 Plot of the analytical solutions (102) for the con-
centration (a) and for the velocity (b) in a closed, semi-
permeable tube with initial sugar concentration given as
c0(x) = cI = 1 for 0 < x < λ = 0.1 and zero elsewhere. The
average concentration is c̄ = 0.1. Adapted from Jensen et al.
(2009b). Copyright Cambridge University Press. Reprinted
with permission.

Assuming as above, and corresponding e.g. to the
experiments quoted in Section IV.B by Eschrich et al.
(1972) and by Jensen et al. (2009b), that the sugar
has the uniform concentration c0 = cI in the interval
0 ≤ x ≤ λ of the tube, we can use Eqs. (95)-(96) to-
gether with c̄ = cIλ to find the initial condition for u
as

u0(ξ) = u(ξ, 0) =

∫ ξ

0

(c(x, 0)− c̄) dx (99)

Then, solving Eq. (98d) for ξ(x, t), we can insert this in
Eq. (98c) and compute u(x, t). The solution, derived in
detail in Jensen et al. (2009b) and equivalent to the result
obtained by Weir (1981), is displayed in Fig. 29. The
instantaneous sugar front position xf and front velocity
uf is

xf (t) = 1− (1− λ) e−c̄t, (100)

uf (t) =
dxf
dt

= c̄ (1− λ) e−c̄t. (101)

Similarly, c(x, t) is given by

c(x, t) =
c̄

1− (1− λ) exp(−c̄t) H(xf − x). (102)

Going back to dimensional variables, equations (100) and
(101) become

xf (t) = L− (L− l) e−t/t0 , (103a)

uf (t) =
L

t0
e−t/t0 , (103b)

where L is the length of the membrane tube, l is the
initial front position and the decay-time t0 is in accor-
dance with the simple argument given in the Sec. IV.B
and Eq. (41) for the front.

To some extent, one can include diffusion in this anal-
ysis, as recognised by Frisch (1976). Indeed, the diffusive
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Burgers equation (91b) can be transformed to the linear
diffusion equation by first noting that the substitution

u =
∂ψ

∂x
, (104a)

yields the nonlinear phase equation

∂ψ

∂t
+

1

2

(
∂ψ

∂x

)2

= D̄
∂2ψ

∂x2
, (104b)

where we, in analogy with Eq. (91a), have discarded an
integration constant A(t). Then the Hopf-Cole transfor-
mation (Whitham, 1974)

ψ = −2D̄
∂

∂x
log φ, (104c)

leads to the diffusion equation

∂φ

∂t
= D̄

∂2φ

∂x2
. (104d)

However, this transformation does not work for the more
general cases like the damped Burgers equation (98a).

It is also hard to generalize these results to nonzero
Münch numbers. For Mü � 1, one can show (Jensen
et al., 2009b) that there is an asymptotic solution valid
for intermediate times, where the sugar concentration is
nonzero only in a finite interval [0, xf (t)] and the sugar
front propagates like xf (t) ∼ (t/Mü)1/3. The central
concentration decays like c∗ ∼ t−1/3 and the solution re-
mains valid only as long as c∗(t)� MüD̄, which becomes
invalid at very large Mü and very large times, where we
return to normal diffusive behavior.

B. Solutions for the Stationary Equations

Returning to our one-dimensional plant shown in
Fig. 21 or Fig. 27, the time-dependent equations, start-
ing e.g., with a localized sugar distribution, evolve into a
steady state as shown in Fig. 28. The equations for the
stationary flow are found from Eqs. (86a) and (86b) by
omitting the time dependence. In the two next subsec-
tions, we shall also neglect molecular diffusion. The sta-
tionary equations have been investigated e.g., by Christy
and Ferrier (1973); Goeschl et al. (1976); Henton et al.
(2002); Thompson and Holbrook (2003a). Here, we fol-
low Jensen et al. (2011, 2012a), where attempts were
made to simplify the models and the boundary condi-
tions as far as possible.

For large tube lengths, the non-dimensional diffusion
constant D̄ becomes very small as discussed above. Thus
we have to solve the two equations (writing prime for
d/dx),

u′′ −Müu = c′, (uc)′ = Ῡ(x). (105)

The precise form of this stationary state depends on
how the boundary conditions are chosen and how the
sugar is assumed to be loaded and unloaded, i.e., the
choice of the function Ῡ. There have also been solu-
tions where the loading and unloading zones were not
taken explicitly into account, but replaced by boundary
conditions at the ends, see e.g., Pickard and Abraham-
Shrauner (2009). However, we stick to models with ex-
plicit loading and unloading, since, as we shall see, poten-
tial singularities are lurking at the entrance and exit of
the central translocation zone, which make this replace-
ment difficult. We shall use the dimensionless variables
defined above, but in this case take L = l2, which (in
particular for trees) is the dominant length scale. Thus
the borders of the different zones are at x = x1 = l1/L
and x = x2 = (l1 + l2)/L = 1 + l1 and the end of the
roots are at x3 = (l1 + l2 + l3)/L = x1 + 1 + l3/L.

We always assume no outflow in the ends of the phloem
tube, i.e., take u(0) = u(x3) = 0 (for the dimensionless
variables): Since we are considering the entire length of
the tree/plant, water should flow in and out only through
the semipermeable membranes and sugar should be ex-
plicitly loaded or unloaded, and not flow through the
ends. This description is accurate in the case of plants
that use apoplasmic (active) loading. In symplastic load-
ers, however, the phloem is radially connected to the
mesophyll by plasmodesmata channels. Sugar loading
is believed to occur by molecular diffusion through these
narrow conduits. It is worth noting, however, that an
osmotic flow of water from the xylem to the mesophyll
may induce a bulk flow of water (and sugars) through
the plasmodesmata. In passive loaders, sugar loading
may thus be accompanied by a bulk flow of liquid (see
further Sec. VI.B).These effects will not be considered
here, where the long-distance translocation is in focus.

The simplest way of treating the leaves is to assume
(Jensen et al., 2011) that the loading function Ῡ is ad-
justed so that the concentration in the leaf remains con-
stant (i.e., c = 1). This is probably not true in detail,
but might be a good first approximation. In the roots, a
simple possibility (Jensen et al., 2011) is to assume that
whatever sugar is present at the inlet is decaying linearly
to zero through the root. With these assumptions the
equations for the leaf, translocation part and root reduce
to

u′′= Mü u, Ῡ = u′, 0 < x < x1, (106a)

u′′= Mü u− u(x1)

u2
u′, (cu)′ = 0, x1 < x < x2, (106b)

u′′= Mü u−β, c′ = β, x2 < x < 1. (106c)

where we have used c = 1 in the leaf segment (0 <
x < x1). In the translocation part (x1 < x < x2),
we see that u(x)c(x) = const = u(x1)c(x1) = u(x1),
and thus c(x2) = u(x1)/u(x2). In the root part (x2 <
x < x3), where by assumption c′ is a constant, we find
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Figure 30 Solutions of the stationary Münch -Horowitz equa-
tions for a single tube with “leaf”, “stem” and “root”.
Adapted from (Jensen et al., 2011)

c′ = −c(x2)/(1− x2) and thus

c′ = β =
u(x1)

u(x2)(1− x2)
. (107)

In this approach, the second derivative of u changes dis-
continuously at the borders x1 and x2 between the differ-
ent zones, but we should be able to construct solutions
which are continuous in u and it first derivative u′.

The nature of the solutions to the stationary flow equa-
tions depends strongly on the value of the Münch num-
ber. Below, we shall briefly look at the form in two lim-
iting cases Mü� 1 and Mü� 1 following (Jensen et al.,
2011).

Case 1: Mü� 1. Here, the equations take the form

u′′ = 0 for 0 < x < x1 (108a)

u′′ = −u(x1)

u2
u′ for x1 < x < x2 (108b)

u′′ = −β for x2 < x < x3 (108c)

with β given in Eq. (107). The solutions are linear in
the leaf section 0 < x < x1 and quadratic in the root
section x2 < x < 1. In the stem section x1 < x <2, (for
Mü = Ῡ = 0) Eq. (105) (or (108b)) can be integrated
once. to the form u′ = u1/u + A. The solution can be
expressed implicitly as

x(u) =
u1

A

[
u

u1
− 1

A
log (1 +Au/u1)

]
+B (109)

for u1 < u < u2, where u1 = u(x1) and u2 = u(x2).
This means that it becomes almost constant near the
end of a long stem, where u would approach the value
u∗ = −u1/A (possible for negative A). By matching u
and u′ at x1 and x2 one obtains the solution shown in
Fig. (30b) top (Mü = 0). Note that the square root
solution in Eq. (46) (i.e., (u2)′′ = 0) can be obtained
from Eq. (109) in the limit A→ 0.

Case 2: Mü � 1. Again the solutions are simple
in the leaf and root sections. For 0 < x < x1, using
Eq. (106b) with u(0) = 0, we find u = A1 sinh(x

√
Mü)

and for x2 < x < 1 we get u = A2 sinh((x− x2)
√

Mü) +
A3 cosh((x−x2)

√
Mü)+β/Mü. To match these solutions

correctly in the stem zone (x1 < x < x2), we have to re-
member, as discussed above, that the scaling chosen for
u is not appropriate for large Mü. Indeed, from Eq. (88),
we should expect u = v(Mü)−1, where v is of the order
of unity. Inserting this into Eq. (106b) gives

v′ =
v3

v1
− 1

Mü

v2

v1
v′′ ≈ v3

v1
(110)

where v1 = v(x1). For large Mü and small v′′ we neglect
the O(Mü−1)-term, and obtain (v−2)′ = −2/v1, so that

v(x) =
v1√

1− 2v1(x− x1)
(111a)

or, returning to the usual scaling,

u(x) =
u1√

1− 2 Müu1(x− x1)
(111b)

which would diverge, when x→ x∗ where

x∗ − x1 =
1

2 Müu1
=

1

2 v1
(112)

As long as v1 < 1/2, x∗ − x1 > 1 and the divergence
will not occur in the physical interval 0 < x < 1. The
coefficients A2 and A3 can be found by matching u and
u′ at x2, but since we have neglected the highest order
term, u′′ in Eq. (105), we cannot ensure continuity of
both the u and u′ at x1 without introducing additional
boundary layers. Comparing with numerics shows that
simply matching u while allowing a small discontinuity
of u gives excellent results, as can be seen by the fits in
Fig. (30).
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Using these solutions and boundary conditions, we
can now compute the average flow velocity, the quan-
tity which we optimized in the resistor model of Sec-
tion IV.C.1. As shown in detail in Jensen et al. (2011),
the results are, for small Mü,

ū =

√
3− 1

2
x1 −

9− 5
√

3

8
x2

1, for Mü� 1, (113a)

or ū ≈ 0.366x1 − 0.042x2
1, while for large Mü,

ū ≈ 1

Mü
, for Mü� 1, (113b)

where we, for simplicity have used the simplifying as-
sumption l1 = l3. In the limit l1 � l2 = L, appropriate
for a tree, the low Mü result simplifies to

ū =

√
3− 1

2
x1, (114)

with the corresponding dimensional value

ū =

(√
3− 1

2

)
RTc0Lp

a
l1 =

(√
3− 1

4

)
x1u0 (115)

where u0 is given by Eq. (83). Aside from the pre-factor
(
√

3− 1)/2, this result corresponds to the flow predicted
by the simple resistor theory of Section IV.C.1. in the
case where the surface resistance R1 in Eq. (51) domi-
nates. The dimensional result for large Mü is

ū ≈ RTc0a
2

8ηl2
(116)

again in accordance with the results of Section IV.C.1,
when the bulk resistance R2 in equation (49) dominates.
With this model, we can now verify the predictions made
there, based on the coupled resistor model, i.e., the result
Eq. (56) for the flow velocity and Eq. (59) for the optimal
tube radius. We have already seen that the asymptotic
behaviour agrees (within a factor (

√
3− 1)/2 for the low

Mü case). This behaviour, is shown in Fig. 31 together
with direct numerical solutions in the whole interval for
varying Münch number. As can be seen there, the opti-
mal value of a agrees quite well with the simple estimate
obtained by equating the asymptotic curves and, in fact
the entire shape of ū agrees well with a slightly modified
version of Eq. (56) using l3 = l1, i.e.,

u = 2Lp∆p
a2l1

V l1l2 + 2ma3
=

u0

2ml2/l1 + Mü
(117)

where V = 16ηLp (from (57), u0 = 2Lp∆p l2/a as in (83)
and m = 2/(

√
3 − 1) =

√
3 + 1 ≈ 2.73 instead of unity.

The optimal radius is then,

a∗ =
(
m−1V l1l2

)1/3
=
(

8
(√

3− 1
)
ηLpl1l2

)1/3

, (118)

Figure 31 Numerically computed mean velocity ū as a func-
tion of radius a (dots connected by lines) compared to the
analytical results for Mü � 1 (Eq. (115), solid lines) and
Mü� 1 (Eq. (116), dashed lines). These curves clearly show
that ū grows as a2 for small a while it decays as 1/a for large
a. At the intersection between the two lines given by equation
the transition between the two types of flow occurs and the
velocity is at a maximum. This is shown also by the dotted
curve showing the slightly modified coupled resistor result,
Eq. (117). The plots are made with Lp = 5 × 10−14 m(Pa
s)−11, l1 = (0.1, 0.25, 0.50) m, l2 = 1 m, RTc0 = 0.54 MPa,
and η = 5× 10−3 Pa s. Adapted from Jensen et al. (2011)

in close agreement with the earlier result, Eq. (59).
The factor m which appears in Eq. (117) can be at

least roughly understood within the framework of the
resistor models of Sec. IV.C. It corresponds to replacing
the resistance, Eq. (51), by

R1 =
m

2πaLpl1
(119)

i.e., increasing it by a factor of m. But one has to keep
in mind that the velocity u, treated as constant in the
resistor model is not really the average velocity through
the loading zone (leaf). The flux Q that enters Eq. (50)
should really be the water coming in through the outer
surface of the tube due to osmosis and thereby accelerat-
ing the flow as Eq. (87a). If the inflow is roughly constant
this means that the flow velocity increases linearly and
thus that the mean value in the loading zone is roughly
half of the total inflow, giving a factor m = 2.

C. Target Concentration Models

The details of the solutions presented above depend on
the particular assumptions about the nature of the load-
ing and unloading zones. The assumption of constant
concentration in the leaf and linearly decreasing concen-
tration in the root. To make more specific assumptions
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would require a more detailed knowledge of loading and
unloading, which, as discussed in the Sec. III.B depends
strongly on the particular plant in question and is actu-
ally not known in detail, in particular because the sugar
transport into the phloem cells carries with it a significant
water flow, as we shall briefly discuss later (Sec. VI.C).
From a more formal point of view, the asymmetry intro-
duced between the treatment of the source and the sink
also has drawbacks. In our formulation above, we have so
far concentrated on the sugar transport from leaf to root,
since it is the longest stretch for the plant to overcome.
However, a large part of the sugar transport targets new
shoots, fruits or immature leaves. The young leaves are
particularly interesting, because they will, at some point,
switch from sugar sinks to sugar sources. It would thus
be nice to have a model which treated the sources and
the sinks in the same way.

One possibility might be to use a constant concentra-
tion in both ends, and then simply let the direction of the
sugar flow be governed by the relative strengths of the
concentrations in the two ends. However, as was shown
in (Jensen et al., 2012a), this is not possible, since this
kind of model will not allow a local maximum for u, which
is necessary since u = 0 in both ends. In this case, the
equations would take for form

u′′(x) = Müu, for 0 < x < x1, (120a)

u′′(x) = c′(x) + Müu, for x1 < x < x2, (120b)

u′′(x) = Müu, for x2 < x < x3 (120c)

where in the stem (x1 < x < x2), there is conservation of
sugar u(x)c(x) = const. It is easy to see that the velocity
u must be monotonic in both the leaf and the root sec-
tions, since u = 0 in the two ends. Thus the maximum
must occur in the stem. Integrating this equation from
xa to xb both in the stem gives (using sugar conservation)

u′(xa)− u′(xb) = c(xa)− c(xb) + Mü

∫ xb

xa

u(x) dx

= c(xa)

(
u(xa)

u(xb)
− 1

)
+ Mü

∫ xb

xa

u(x) dx. (121)

If there is a maximum point at xm we can choose xa and
xb such that xa < xm < xb and u(xa) = u(xb), which,
inserted into (121), gives

u′(xa)− u′(xb) = Mü

∫ xb

xa

u(x) dx. (122)

For a positive flow, the right-hand side is positive, but
around the maximum, the left-hand side is negative.
Thus there can be no maximum.

Another possibility that retains the symmetry is to use
a target concentration model, as done e.g., by (Lacointe
and Minchin, 2008), where the local loading strength de-
pends linearly on the difference between the local concen-
tration and its target value. We thus choose to write the

loading function appearing in (105) as Υi = αi(σ1 − ci),
whereby these equations in the loading and unloading
zones become

d2u

dx2
−Müu =

dc

dx
, (123a)

d(uc)

dx
= αi(σi − c), (123b)

where σ1 is the target value of the concentration in the
leaf and σ3 is the value for the root. No σ2 is defined since
the stem does not load or unload sugar in this model.
Similarly, α1 is the rate constant for the sugar loading
and α3 the one for the unloading. In the loading zone, we
have u(0) = 0 and in the unloading zone we have u(x3) =
0, and to make close symmetry between those two zones,
we can change the variables in the unloading zone as
u → −u and x → x3 − x which leaves the equations
unchanged, but gives the boundary condition the form
u(0) = 0 also in the unloading zone.

In (Jensen et al., 2012a) these equations are solved in
the limits of Mü very small and very large. For Mü� 1
the solution is implicit, of the form

x

∣∣∣∣u(x)

x
− v+

∣∣∣∣ν ∣∣∣∣u(x)

x
− v−

∣∣∣∣1−ν = K (124a)

where

ν =
ν+

ν+ − ν−
(124b)

ν± = −1

2
(K1 + α±

√
(α−K1)2 + 4ασ) (124c)

where the constant K1 = p/(RTc0) is the pressure in the
tube, which is constant for Mü → 0. This can also be
expressed as

ν+ = −(c(0) + α) (125a)

ν− = u′(0) (125b)

From the signs of u′ (positive in the loading zone and neg-
ative in the unloading zone) one can infer that Eq. (124a)
degenerates to a linear solution u = A1x in the loading
zone (since both ν+ and ν− are negative) whereas it can-
not in the unloading zone. Correspondingly, the concen-
tration c = u′(x) + K1 becomes constant in the loading
zone, but not in the unloading zone in agreement with
the above discussion.

For Mü� 1 one finds, again in the loading and unload-
ing zones, that the concentrations become almost con-
stant, equal to their target values. We know from the ar-
guments above that they cannot be absolutely constant,
but the variation is concentrated in narrow boundary lay-
ers, in particular at the entrance of the unloading zone
x & x2. Thus Eq. (123a) becomes

α(σ − c) =
d(cu)

dx
≈ cdu

dx
, (126)
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Figure 32 Solutions of the stationary Münch -Horowitz equations for a single 1-dimensional tree with target concentrations.
Numerical solutions (thick grey lines) and analytical solutions for Mü = 0 (thin dashed lines) and Mü� 1 (thin solid lines) are
shown for target concentrations σ1 = 1 and σ3 = 0.1. In (a,c) α1 = α3 = 0.1 and in (b,d) α1 = α3 = 10. From (Jensen et al.,
2012a)

whereby

dc

dx
≈ −σ

α

d2u

dx2
, (127)

and Eq. (123a) becomes(
1 +

σi
αi

)
d2u

dx2
= Müu, (128)

with the solution (given u(0) = 0)

u(x) = B sinhx
√

Mü (1 + σ/α)−1. (129)

This is actually only appropriate in the loading zone.
In the unloading zone, a boundary layer forms near the
entrance, since the velocity has its maximum there, as
seen in Fig. 32(c). The large Mü solutions all have order

1/Mü as expected and combining the results for large
and small Mü one finds an interpolation formula for the
average flow velocity of the form Eq. (117), in this case
with m = 2/(

√
5− 1) ≈ 1.62, confirming the basic ideas

of the resistor model of Section IV.C.

D. Concentration Boundary Layers

The analysis of osmotic flows presented in Sec. V as-
sumed perfect radial mixing of the solutes, thus presum-
ing that the sugar concentration c does not vary over
the cross-section of the channel. From the no-solute-
flux boundary condition at the membrane interface (Eq.
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(76c))

D
∂c

∂r

∣∣∣∣
a,x

= c(a, x)vr(a, x), (130)

however, it is apparent that such an assumption leads to
an inconsistent relationship between concentration and
velocity at the membrane interface: c(a, x)vr(a, x) = 0.
A finite, though possibly small, concentration gradient
near the membrane interface must therefore be accounted
for to make accurate predictions.

A substantial literature exists on membrane concen-
tration boundary layer problems, which are of impor-
tance in several other biological and technical fields
(Aldis, 1988a,b; Dainty, 1963; Jensen et al., 2010; Ped-
ley, 1980a,b, 1983; Pedley and Fischbarg, 1978). In the
vicinity of an arbitrary perfect osmotic membrane, the
concentration ca is lowered compared to the bulk value,
c0, because sugar is advected away from the membrane
by the influx of water. This, in turn, results in a lower in-
flux of water than anticipated under conditions of perfect
mixing. In order to explain water permeabilities in exper-
iments exploring water transport through the cell walls of
algae (Nitella flexilis and Chara australis), Dainty (1963)
suggested that the formation of boundary layers was re-
sponsible for the differences observed between osmoti-
cally driven transport from the extracellular to the in-
tracellular side versus an assay exploring the opposite
direction of water transport. To determine how the con-
centration c changes with distance r from the membrane,
Dainty (1963) considered the flux equation (Eq. (130))
in the bulk liquid and found c(r) = c0 exp (vr(r − δ)/D)
where δ is the distance at which the bulk concentration
is reached c(δ) = c0. Note that the boundary layer thick-
ness δ will generally depend on both geometry and the
flow itself. In Dainty (1963)’s model, the concentration
ca at the membrane interface is

ca = c0 exp

(
−vrδ
D

)
. (131)

Equation (131) suggests that ca ' c0 when the radial
Péclet number Per = vrδ/D � 1. While correct, the sit-
uation at hand is further complicated by the interdepen-
dence between concentration and velocity. The normal
velocity is approximately proportional to the membrane
concentration vr ' LpRTca, which is exact in the limit
when the pressure p is significantly smaller than the os-
motic pressure RTca (Pedley and Fischbarg, 1978). This
implies a transcendental equation for ca

ca = c0 exp

(
−LpRTδ

D
ca

)
. (132)

As discussed by e.g. Pedley (1983), Dainty’s simple
model of a boundary layer neither allows for the varia-
tion of the normal flow component vr with the distance

from the membrane, nor does it account for any type
of stirring in the osmolyte solution. In a series of pa-
pers, several possible modes of stirring were investigated
to determine the parameter range for which the unstirred
boundary layer description would still be useful, but with
an effective value of the boundary layer thickness (Ped-
ley, 1980a,b; Pedley and Fischbarg, 1978). If a stagnation
point stirring is included, for a large permeability and/or
a small diffusion constant, the time dependent solution of
the boundary layer problem indicates the appearance of
damped oscillations in the osmolyte concentration. The
oscillatory solution, however, corresponds to parameter
values quite far from the diffusion coefficient of the os-
molytes of interest in phloem (simple sugars), for typical
permeabilities and typical concentrations in phloem cells.
An important outcome of the detailed modelling of the
stirring motion is the identification of the relevant ef-
fective boundary layer thicknesses δ (Table I in (Pedley,
1983)).

In plants, however, there is no reason to consider an
external stirring mechanism - the stirring (i.e. advection)
is caused by the bulk flow, which is also driven by the
osmosis. In this self-consistent problem, entire flow can
be treated in the Stokes approximation (i.e. as a lubrica-
tion flow) and there are no well-defined boundary layers,
but one can find an expression for the lowered membrane
concentrations (i.e., the lowered osmotic pumping) in the
form

ca = c0

√
1 + 4 Pe− 1

2 Pe
(133)

valid quite generally when the Péclet number is rescaled
in a geometry dependent way (Jensen et al., 2010).

We now return to the discussion of how concentra-
tion boundary layers affect the predictions made by the
Münch-Horwitz theory. The basic situation in a cylindri-
cal pipe is sketched in Fig. 33. Close to the membrane,
the concentration c0 is lowered compared to the value at
the channel center, c0, because sugar is advected away
from the membrane by the influx of water. This, in turn,
results in a lower influx of water since the radial velocity
depends on the local concentration vr(a) = Lp(RTca−p),
see Eq. (76b). Adapted from (Haaning et al., 2013).

In the following, we restrict ourselves to conditions rel-
evant to the experiments by Haaning et al. (2013), i.e.
steady state flow in a cylindrical tube initiated by a sy-
ringe pump which delivers a solution of velocity u∗ and
concentration c∗ at x = 0 (see Fig. 20(e)). The governing
equations are the Münch-Horwitz equations (79a)-(77)
with Mü = 0 and since the tube is open, the pressure
can be neglected as in Eqs. (44)-(45) and (90) giving

∂u

∂x
= 2

LpRT

a
c(a, x), (134a)

∂〈cu〉
∂x

= 0. (134b)
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Figure 33 (Color online) Sketch of the solute concentration
c(r) [solid red curve and density of dots] in a cylindrical tube
of radius a in contact with a reservoir containing pure solvent
(c = 0). The semipermeable membrane separating the two
solutions is indicated by the thick dashed line. The concen-
tration difference between the reservoir and channel drives an
osmotic flow of solvent J ∝ ca across the membrane. This
dilutes the solution next to the membrane, and the concen-
tration of solute in contact with the membrane cais therefore
lower than the value c0 at the center of the tube. The concen-
tration profile c(r) is set by the relative magnitude of diffusive
and advective fluxes (thick arrows). At the membrane inter-
face (r = a), there can be no net flux of solute molecules
Js = −D∂rc + Jca = 0, which determines the relative mag-
nitude of c0 and ca; see Eq. (136). Adapted from (Haaning
et al., 2013).

In the absence of boundary layers, these can
be solved to yield the speed profile u(x) =

u∗ (1 + 4LpRTc0x/(u
∗a))

1/2
with boundary conditions

u(0) = u∗ and c(0) = c∗. In terms of the flow ampli-
fication factor γ = u(L)/u∗ − 1 (i.e. the ratio between
inlet and outlet flow speeds), this is

γ + 1 =
vout

vin
=

√
1 + 4

LpRTc0L

vina
. (135)

When the local radial Péclet number Per =
vr(a, x)a/D = LpRTca(x)a/D is small, the difference
in concentration across the tube will be small. In this
limit, it reasonable to assume that the concentration gra-
dient at the membrane is of the order (ca − c0)/a. To
solve the averaged advection-diffusion equation, we ap-
proximate the concentration profile by a parabolic func-

tion, c(r) = c0 + (ca − c0) r
2

a2 . The boundary condi-
tions Eq. (130) and no-flux across the channel centerline
(∂c/∂r = 0 at r = 0) sets a relation (similar to Eq. (133))
between the concentration at the channel center c0 and

wall ca

c0 = ca +
LpRTa

2D
c2a = ca +

Per
2

c2a
c∗
, (136)

where Per = LpRTc
∗a/D is the radial Péclet number.

With this parabolic concentration profile, and using the
velocity profile vr = r(r2 − 2a2)LpRTca/a

3 (Eq. (24b))
for the radial averaging, 〈cu〉, Eqns. (134a)-(134b) can be
written in non-dimensional form(

∂U

∂X
+ β

(
∂U

∂X

)2
)
U = Γ, (137a)

where X = x/L and U = u/u∗ and where

Γ = 2
L

a

LpRTc
∗

v∗
, (137b)

is the ratio of the largest obtainable purely osmotic flow
velocity 2πaLLpRTc

∗/(πa2) and the inlet velocity u∗.
The parameter

β =
1

6

a

L

v∗a

D
=

1

3

Per
Γ
, (137c)

is proportional to the ratio of the radial Péclet number
Per and the maximum flow gain Γ. Equation (137a)
can be solved analytically (Haaning et al., 2013), and
experiments show close agreement with theory (Fig. 34).

In the limit of strong concentration boundary layers,
the concentration profile in the tube is no longer uniform
and the magnitude of the parameter β can exceed unity.
In the limit of β � 1, the solution of Eq. (137a) for the
flow rate gain γ is

γ + 1 =

[
3

2

(
Γ

β

)1/2

+ 1

]2/3

(138)

=

[
3

2

(
12LpRTc

∗L2D

a3(v∗)2

)1/2

+ 1

]2/3

. (139)

which should be compared with Eq. (135), valid when
β � 1. Eq. (138) provides a simple approximation to
the solution to Eq. (137a) for large values of β/Γ, where
the flow rate gain scales as γ ∝ (Γ/β)1/2. For β ≥ 1
and Γ ≥ 1 Haaning et al. (2013) found that the error in
Eq. (138) is typically less than 10% when compared to
Eq. (137a).

In the experiments by Haaning et al. (2013), both β
and Γ were of moderate magnitude and the boundary
layer contributes significantly to the flow (Fig. 34). In
plants, however, we can estimate the parameter β =
a2u/(6LD) ' 3 × 10−6 for a = 10−5 m, u = 10−4 m/s,
L = 1 m, and D = 5 × 10−10 m2/s. This analysis thus
confirms the validity of the Münch-Horwitz equations un-
der conditions relevant to flow in the phloem since the
non-linear term β(du/dx)2 in Eq. (137a) can be safely
neglected in this limit.
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Figure 34 (Color online) Comparison between experimental
and theoretical values of the flow rate gain γ = uout/uin−1 ob-
tained using Haaning et al. (2013)’s setup (Fig. 20(e)). Mea-
sured values of γ plotted as a function of the predicted values
using Eq. (137a). Dark blue squares and circles are measure-
ments with NaCl as the solute, for two different lengths of the
semi-permeable membrane in the setup, whereas red triangles
indicate measurements with sucrose as the solute. Adapted
from (Haaning et al., 2013).

.

E. Final remarks

In this section we have derived the basic equations
for osmotically driven flows in a one dimensional sys-
tem resembling a plant with leaf, stem and root. These
Münch-Horwitz equations were obtained via the Aldis-
flow: a simple pipe flow perturbed (and driven) by os-
motic inflow. Compared to the full hydrodynamic equa-
tions, they present an enormous simplification, but, due
to their strong nonlinearity (from the coupling between
velocity and concentration), the subtle matching at the
border between the different segments, and the treatment
of the loading function, they still remain challenging.

Osmotically driven flow is not a subject covered in
present day textbooks on hydrodynamics, so we have
presented simple and conceptually important solutions of
both transient and stationary states, the latter including
different types of loading. The use of constant concen-
tration in the leaf (Sec. V.B) is very simple, but leads to
an asymmetry between source and sink. The target con-
centration models (Sec. V.C) are more complicated, but
probably also more physical and allow symmetry between
source and sink. They seem to be good candidates for
further work, e.g., including more complicated architec-
tures and flow reversals, as when a young leaf is coming
of age and turns from a sink to a source. Finally, we
have described some of the effects that have been left

out in the simple one-dimensional description, i.e., the
boundary layers that form near the tube walls and lead
to a reduction of the osmotic strength (Sec. V.D). These
effects are more important in the current biomimetic de-
vices than in the real phloem due to the small sizes and
low velocities in the sieve tubes.

The detailed prediction of velocity and concentration
profiles through a “tree” as presented in e.g., Fig. 30
cannot at present be sensibly compared to any available
data. Hopefully, this will change over the coming years,
when we will be able to expand the theory to more realis-
tic architectures than the single tube and when measure-
ments of pressures, flow velocities and concentrations will
be possible with high resolution in an active phloem. Un-
til then the models should serve as inspiration and back-
ing for simpler modelling, e.g., in the style of Sec. IV.C.

VI. WATER TRANSPORT IN PLANTS

A. Experimental Results

The experimental study of water transport in plants
involves the measurement of only a few physical proper-
ties, of which the flow rates, and the gradients of pres-
sure and solute concentrations that are responsible for
generating the flows, are the most important. While the
determination of such properties is trivial for man-made
hydraulic systems, the mere fact that the water in the
xylem is under tension, and, furthermore, that the sys-
tem of transport is enclosed in both ends and along its
path by living cells, and that the conduits have thick and
optically opaque cell walls, make their direct determina-
tion difficult if not impossible. In general, any direct
pressure measurement in a functional xylem system re-
sults in the formation of embolism and thereby changes
both the pressure gradient and the flow. Thus plant biol-
ogists are left with indirect methods for estimating flow
parameters. An important difference between xylem and
phloem transport is that water movement through the
xylem is coupled to an external driving gradient (evap-
oration), which means that flow rates and pressure gra-
dients are not stationary. Flows approach zero at night
and are typically maximal at midday, and pressure gra-
dients follow the same pattern although they are also
affected by soil conditions. For the characterization of
xylem transport, we focus on maximal flow rates and
minimal xylem pressures as these determine the nature
of the flow regime and the potential for conductivity loss
due to embolization.

1. Xylem flow rates

Historically, flow (volume flux) was determined from
rates of transpiration, rather than actual measurements
of flow in the xylem. Methods range from analysis of
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gas exchange between leaves and ambient air conducted
at the level of single leaves using hand-held devices (Mc-
Dermitt, 1990) up to the scale of entire tree canopy using
eddy correlation or heat balance methods (Hogg et al.,
1997; Jarvis and McNaughton, 1986). These methods
only provide approximations of real fluxes as they either
disturb the transpiration environment by enclosing leaves
in gas chambers (thus perturbing the energy balance and
boundary layers) or - in the case of fluxes observed on
the canopy level - not of sufficient resolution to deter-
mine the contribution from single plants. Thermal sen-
sors inserted into stems overcome, to certain degree, these
limitations (Granier, 1987; Granier et al., 1996; Swanson,
1994). This approach uses a heat pulse as a tracer to de-
termine the speed of water passing by the sensor (Čermák
et al., 2004). Limitations relate to problems with calibra-
tion, as each plant has different heat transfer properties
(Lundblad et al., 2001). The most direct method for
measuring flow rates relies on changes in weight to de-
termine water loss from the plant/soil system. However,
this is possible only for small plants growing in contain-
ers or in the field where lysimeters (devices that measure
transpiration in the field) can be used(Liu et al., 2002).

Estimates of volume flow rates through plants or stems
cannot be directly translated to flow velocities. The rea-
son for this is that xylem conduits make up only a frac-
tion of the cells within the xylem tissue. In addition,
the diameter of xylem conduits varies, often markedly.
Larger diameter conduits will have the highest flow rates
and carry most of the flow, with smaller diameter con-
duits hypothesized to play a role in permitting water to
flow around gas-filled conduits (Ford et al., 2004). The
speed at which water moves through xylem conduits is es-
timated to fall within the range of 1−10 m/h, indicative
of low-Reynolds-number-flow (Table I, (Maier and Clin-
ton, 2006)). Novel methods for flow estimation include
the use of MRI with field gradients, allowing for obser-
vation of not only the spatial concentration of water but
also the spatial distribution of velocity fields (Köcken-
berger et al., 1997; Windt et al., 2006). This promising
method, however, requires special equipment and exper-
tise and has so far only had limited application.

2. Xylem Pressure

Measuring the pressures in functional xylem is perhaps
the holy grail of plant hydraulics, connected to the long-
standing questions about the reality of negative pressures
in plants and the stability of water under such condi-
tions. This skepticism has been fueled by the fact that,
until recently, the ability to transport water under large
negative pressures has not been reproduced in the lab
(Wheeler and Stroock, 2008). The challenge, of course,
is that anything that breaks the integrity of xylem walls
has the potential to form embolism or changes in pressure

distribution (Jansen et al., 2015; Rockwell et al., 2014a).
Only a few direct measurements of xylem pressure have
been made successfully, all carried out using a cell pres-
sure probe with capillary tip manipulated into the xylem
conduit. All of these were made in plants in which the
tensions were low, since the liquid in the capillary tends
to form an embolus around −0.7 MPa, and only in rela-
tively translucent tissue (excluding woody stems) (Pock-
man et al., 1995; Tomos and Leigh, 1999; Wegner and
Zimmermann, 2002; Wei et al., 2001). Thus, most es-
timates of xylem pressure are based on determining the
water potential of tissues assumed to be in equilibration
with the xylem. Three major techniques are used (Boyer,
1995): (1) pressure chamber (Scholander et al., 1965);
(2) psychrometers (Boyer and Knipling, 1965); and (3)
tensiometers. These methods give accurate estimates of
xylem tensions as shown in their ability to capture the
gradient in gravitational potential in tall trees (Scholan-
der et al., 1965), when measured at night (no transpira-
tion), or on material in which xylem tensions have been
experimentally generated using a centrifuge (Holbrook
et al., 1995). Under non-drought conditions, midday (i.e,
minimum) xylem pressures fall in the range of −0.5 to −2
MPa. However, during periods of low soil water avail-
ability or in arid regions, xylem pressures can be much
lower (Scholander et al., 1965; Stroock et al., 2014). For
example, there are reports of gymnosperms in Western
Australia having xylem pressures as low as −10 MPa.
Equally impressive are mangroves, which grow in seawa-
ter and have xylem pressures in the range of -2 to -5
MPa. Mangroves exclude most of the salt at their roots
and thus must develop substantial xylem tensions in or-
der to carry out this form of reverse osmosis (Ball, 1988;
Scholander, 1968; Tomlinson, 1994).

3. Cavitation

Xylem sap often experiences pressures well below at-
mospheric, and the liquid column is prone to fracture by
the formation of bubbles. Critical to our understand-
ing of xylem transport in plants are the stability limits
for xylem – at what pressures does cavitation occur and
spread between conduits? This problem was discussed re-
cently in some detail by Stroock et al. (2014): for mildly
reduced pressures, the liquid, which has been in contact
with air at 0.1 MPa, becomes supersaturated with dis-
solved gases and thermodynamically unstable with re-
spect to the formation of air bubbles. For larger reduc-
tions of pressure, the liquid also becomes thermodynam-
ically unstable with respect to the formation of vapor
bubbles or boiling. This doubly unstable situation need
not be malignant because both these thermodynamically
unstable states (supersaturation and superheat) can be
kinetically stable (metastable) down to pressures below -
100 MPa owing to the activation energy required to form
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a gas nucleus in the liquid.

The basic experimental approach has been to deter-
mine the extent to which the xylem becomes gas-filled
as xylem pressures are decreased. Xylem pressures can
be manipulated by withholding water from plants or im-
posed using centrifugation, while the presence of gas-
filled or embolized conduits can be measured hydrauli-
cally (i.e, as a reduction in xylem conductivity) or using
imaging such as magnetic resonance imaging, cryo scan-
ning electron microscopy or X-ray tomography (Broder-
sen et al., 2013; Cochard et al., 2013). Acoustic detec-
tors have also been used to listen for ultrasound pro-
duced by cavitation events, and have the advantage that
they can be attached to plants of any size (Kikuta and
Richter, 2003). Some experiments suggest a correla-
tion between ultrasound emission frequency and frac-
tion of gas-filled conduits (Jackson and Grace, 1996), al-
though many emission appear to occur from other types
of events (Tyree and Dixon, 1983). Ponomarenko et al.
(2014) observed cavitation events in a thin slice of gym-
nosperm wood embedded in a hydrogel and matched
acoustic emissions to visual observation of emboli for-
mation in tracheids, providing experimental support for
using acoustic emission as a non-destructive way of mon-
itoring embolism formation within trees.

Another approach is to determine the pressure needed
to push air between conduits using a glass capillary glued
to an embolized vessel blocked at the other end (Choat
et al., 2004; Zwieniecki et al., 2001). This is a direct
measurement of the propagation threshold between two
conduits; the challenge is scaling these measurements so
that they are relevant at the level of the xylem network.
Despite the technical limitations of each method (MRI,
X-ray, hydraulic resistance measurement, acoustic or sin-
gle vessel), the general picture is that plants can tolerate
xylem tensions that they normally experience in their
natural environment, whether a wet tropical forest or
a dry desert. Only extreme events such as prolonged
droughts, changes in transpiration rates, or mechanical
damage to stems result in plants being pushed to beyond
their hydraulic limits, resulting in cavitation and the for-
mation of air-filled or embolized xylem conduits.

The reversibility of embolism (Fig. 35), leading to the
restoration of transport function in xylem conduits of
trees is hotly debated (Brodersen and McElrone, 2013;
Zwieniecki and Holbrook, 2009). While there is no doubt
that the production of new xylem conduits can substi-
tute for the ones lost to embolism, such growth is gen-
erally limited to specific periods of the year in temper-
ate or semi dry climates. In some plants, restoration of
xylem conductivity can be accomplished by root pres-
sure in which, under conditions of limited transpiration
(night), roots can accumulate solutes in xylem in con-
centrations exceeding those of the soil (Cochard et al.,
1994; Yang et al., 2012). This results in the develop-
ment of positive pressures within the xylem as water is
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Figure 35 Evidence for restoration of transport function in
xylem conduits by removal of gas bubbles. (a) Refilling of
embolized conduits in a grape vine stem visualized by a time-
series of x-ray tomography images. Dark areas are gas-filled,
and droplets of water are visible on the walls of the embolized
conduits. Over time, gas bubbles disappear and conductivity
is restored. Flow is from bottom to top. (b) 3D reconstruc-
tion of the droplets in the vessels seen in (a) (for details see
(Brodersen et al., 2010)). (c) Changes in water content in a
maple tree stem visualized by a time series of magnetic reso-
nance images. Flow is in the normal direction. (d) 3D recon-
struction of gas pocket formation and subsequent removal as
seen on (c) (for details see (Zwieniecki et al., 2013)). Adapted
from (Brodersen et al., 2010; Zwieniecki et al., 2013)

drawn into conduits via osmosis. Positive pressures result
in gases being pushed into solution and thus the refill-
ing of embolized xylem conduits. Root pressure occurs
most commonly in herbaceous species, or in deciduous
trees prior to spring leaf production (Ewers et al., 1997).
Long-lived woody plants often show no evidence of root
pressure, yet their xylem conductivity is robust against
variation in xylem potentials (Sperry et al., 1994). This
may mean that they have the ability to restore conduit
transport function even while retaining actively transpir-
ing leaves. Such a restoration process would require the
generation of local potential gradients to drive water from
surrounding living cells into empty conduits (Zwieniecki
and Holbrook, 2009), perhaps in a manner similar to the
generation of root pressure. Evidence of gradient for-
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Figure 36 Pine needles are optimized for efficient water trans-
port. Measured axial distribution of number of xylem con-
duits N(x) plotted as a function of position x along the nee-
dle. The base of the needle is located at x = 0, while x = L
corresponds to the tip. Optimum theoretical distribution that
minimizes the pressure drop across the needle is plotted as a
reference line (Eq. (143)). Adapted from (Zwieniecki et al.,
2006).

mation activity, however, shows that adequate gradients
may only exist in plants in which xylem tensions have
been significantly relaxed by rain or fog events, as the
highest recorded osmotic potential in non-functional con-
duits is in the range of 0.2 MPa (Secchi and Zwieniecki,
2012). Some evidence for embolism removal activity in
non-transpiring woody plants that remain under low ten-
sion (less than 0.4 MPa) comes from recent observations
in both x-ray tomography and MRI (Fig. 35); (Brodersen
et al., 2010; Zwieniecki et al., 2013)).

B. Conduit Optimization

The potential for embolism formation and restoration
of embolized conduits reflect a plant’s biophysical poten-
tial for dealing with environmental extremes. However,
xylem conduits are usually formed under conditions when
any scarcity of water is within the range tolerated by par-
ticular species. In such situations, plants tend to build
transport systems optimized for their environment (Mc-
Culloh et al., 2003; Savage et al., 2010; West et al., 1999).
Evidence is observed in the xylem of leaves, where ten-
sions are expected to be the highest and water delivery
to leaves is of crucial importance to allow for stomatal
opening. Analysis of xylem structure in pine needles,
characterized by a single vein composed of parallel con-
duits (tracheids), exhibit a high level of control over the
construction of conduits. Zwieniecki et al. (2006) ob-
served a characteristic conduit-tapering-trend in several
different pine species (Fig. 36), and rationalized this by

considering the pressure drop required to drive a given
rate of transpiration from the leaf surface. Assuming
that the evaporation rate q from the needle is constant,
we can calculate the pressure drop ∆p for a given needle
length l by integrating the pressure gradient

∂p

∂x
= −ηu(x)

k(x)
, (140)

along the needle, cf. Eq. (5). Here, u is the flow speed,
k = a2/8 is the conductivity, a is the conduit radius, and
η is the viscosity of the xylem sap. Volume conservation
dictates that q, the rate of evaporation per unit length
along the needle, is related to the flow speed u and con-
ductive area A by

∂

∂x

[
A(x)u(x)

]
= −q. (141)

giving a linear variation of A(x)u(x). Since the flow speed
vanishes at the needle tip (u(l) = 0) we find for the pres-
sure drop ∆p

∆p = ηq

∫ l

0

l − x
k(x)A(x)

dx. (142)

Experiments reveal that the conduit radius a is inde-
pendent of the position x along the needle. This has
two important consequences. First, the conductivity
k(x) = a2/8 = const is independent of position. Like-
wise, the conductive area A(x) = πa2N(x) is propor-
tional to the number of channelsN(x) at position x. Min-
imizing the pressure differential (Eq. (140)) while keeping

the total conduit volume V = πa2
∫ l

0
N(x) dx constant,

leads to the optimum conduit distribution

N∗(x) = N(0)
(

1− x

l

)1/2

, (143)

where N(0) is the number of conduits at the needle base
x = 0. The predicted conduit distribution (Eq. (143))
is in good agreement with experimental data (Fig. 36).
The quantitative advantage of arranging tracheas accord-
ing to Eq. (143) can be gauged by computing the pres-
sure drop ∆punif assuming a uniform distribution of tubes
with both conduit volume V and number N(x) = const.
This yields ∆p∗/∆punif = 8/9, suggesting that optimally
redistributing tracheas along the length of the needle
might lead to a reduction in pressure drop by about
10% Zwieniecki et al. (2006). Similar conduit arrange-
ments have been observed in needle phloem (Ronellen-
fitsch et al., 2015).

A similarly high level of precision exists in the distri-
bution network of leaves that are characterized by retic-
ulate, interconnected network of veins delivering water
across flat surfaces. These reticulate vein networks have
been considered from the perspective of the redundancy
needed to tolerate a significant level of damage and still



54

vein

Figure 37 Measured distance between veins d versus distance
to evaporative surface δ for different plant species. The solid
line corresponds to the optimal case d = δ. Adapted from
(Noblin et al., 2008).

allow for water distribution across the leaf blade (Kati-
fori et al., 2010). However, a recent study demonstrates
that the density and placement of veins within leaves per-
mits the hydration of the leaf surface such that even the
most distal locations of the leaf blade are adequately and
uniformly supplied with water, while no unnecessary (re-
dundant) veins are built that would otherwise consume
space that could be used for the chlorophyll bearing cells
(Noblin et al., 2008).

In the case of sparse vein packing, i.e. when the spacing
between veins d is much greater than the leaf thickness δ,
we assume that the total evaporation rate from the leaf
Q is the sum of the contribution from each vein of radius
a and length L (Fig. 37). This contribution can be found
by solving the steady-state diffusion equation inside the
leaf (Eq. (11)) with ∂tc = v = Υ = 0). We approximate
each vein as an isolated line source in an infinite half-
plane. The solution to the Laplace equation in cylindrical
coordinates with boundary conditions c = c0 at the vein
surface (r = a), and c = c1 at the leaf surface (r = δ) is

c(r) = c0 +
c1 − c0

log(δ/a)
log(r/a). (144)

The evaporation rate for a single vein is
−πaLD∂rc|r=a = LπD(c0 − c1)/ log(δ/a). The
number of veins N in a section of width W is N = W/d.
The total evaporation rate from N veins is therefore

Q =
π

log(δ/a)

D(c0 − c1)

d
LW ∼ D(c0 − c1)

d
LW. (145)

Conversely, for high channel density (d � δ) the iso-

Figure 38 Schematic representation of a cross-section of a
leaf. The bundle sheath (dark green) forms a protective layer
around the vasculature: xylem treachery elements (blue) and
phloem sieve elements (small circles) with their neighbouring
companion cells (orange cells). The water from the xylem
passes out through the bundle sheath and presumably along
the cell walls of the mesophyll (light green) and most of it
evaporates through the stomata (the “holes” in the lower leaf
surface). A small part enters the mesophyll where it takes
part in the photosynthesis and the subsequent transport of
sugars from the mesophyll back in through the bundle sheath,
through the companion cells into the sieve elements. Courtesy
of Hanna Rademaker.

concentration lines run mainly parallel to the leaf surface
and the solution can be approximated by a linear profile:
c(z) = c0 + (c1 − c0)z/δ. This gives for the evaporation
rate

Q =
D(c0 − c1)

δ
LW. (146)

differing from Eq. (145) only by the replacement of d with
δ. Equation (146) represents the largest possible evap-
oration rate for the system. We therefore observe that
when the channel spacing approaches the leaf thickness
(d ' δ) the evaporation from N channels (Eq. (145)) ap-
proaches the saturation value (Eq. (146)) and no gain in
evaporation rate can be achieved by adding more veins.
This seemingly simple scaling law is observed in many
plants (Fig. 37) which suggests that design features ori-
ented toward optimal utilization of veins in providing wa-
ter for evaporation are common among leaves (Noblin
et al., 2008). Recent work has demonstrated that only
angiosperms maintain the anatomical optimum across all
leaf thicknesses, while gymnosperms and ferns are limited
by their inability to produce high vein densities (Zwie-
niecki and Boyce, 2014).

C. Water flow for the Polymer Trap Phloem Loading
Mechanism

As we have seen, leaves maintain an extremely deli-
cate balance between water and sugar translocation to
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ensure the outflow and eventual evaporation of water
from the xylem cells simultaneously with the inflow of wa-
ter and sugar to the phloem cells (sieve cell-companion
cell complex) nearby. As discussed in Section III and
shown schematically in Fig. 38, the sugar which is gen-
erated in the chloroplasts of the mesophyll cells has to
pass through the bundle sheath, a layer of tightly ar-
ranged cells around the vascular bundle, which protects
the veins of both xylem and phloem from the air present
in the space between the mesophyll cells and the stom-
ata, before it is loaded into the sieve elements. Simulta-
neously, the water which leaves the xylem under tension,
is, for the most part, evaporated from the walls of the
mesophyll cells, but a small part goes into these cells
and takes part in the photosynthesis. Another part goes
(perhaps) directly into the nearby phloem, a few microns
away, which is under positive pressure, through the aqua-
porins of the plasma membranes. The route taken by the
water and the relation to the sugar transport is still not
well-understood - even though it has been discussed since
the time of Münch. Thus Fig 39 shows how Münch envis-
aged the coupled water/sugar transport in what is now
called a passive loader (see Sec. III.B). As one can see,
the single headed arrows (water) and the double headed
ones (sugars) essentially have to move in opposite direc-
tions. Although the flow of water from xylem to palisade
is small relative to transpiration, this seems rather coun-
terproductive!

Recently, a study of active apoplasmic loading was car-
ried out (Sze et al., 2013, 2014), including six states for
which one can relate the chemical reaction rates to the
sugar and water transport through the phloem. In the
case of passive loading and of active symplasmic loading
– the so-called polymer trap described in Sec. III.B.2
– the sugar passes through plasmodesmata apparently
without help of transport proteins, which should make
the problem more straightforward to analyse. The poly-
mer trap case is particularly interesting, since it relies
on plasmodesmata that are extremely fine-tuned to al-
low the passage of the small sugars produced in the mes-
ophyll (primarily the disaccharide sucrose), but not the
heavier ones (the trisaccharide raffinose and the tetrasac-
charide stachyose). As in active apoplasmic loading, it
facilitates a build-up of a large sugar concentration in
the sieve element-companion cell complex which is much
larger than that in the mesophyll, allowing the plant to
have a highly concentrated phloem without an equally
high concentration in the leaves, which would make the
latter very attractive for unwanted foragers. The feasibil-
ity of this loading strategy has recently been analysed by
(Dölger et al., 2014) based on the best available data from
the melon Cucumis melo (Haritatos et al., 1996; Schmitz
et al., 1987; Volk et al., 1996). See also the recent re-
view by (Schulz, 2014). The geometry of the problem is
sketched in Fig. 40, where we show the bundle sheath cell
to the left, a companion cell in the middle, and a sieve

Figure 39 Reproduction of Münch’s Figure 22, which cor-
responds to the passive loading mode in woody angiosperms
(Fig. 12c). Assimilates (sugars) in a photosynthetically active
leaf (double-feathered arrows) flow from palisade parenchyma
(Pal) through plasmodesmata via spongy parenchyma (Schw),
bundle sheath (Gsch), companion cell (Gel) finally into to a
sieve tube (S). Water (simple arrows) moves the opposite way
from the xylem (H) across cell walls into the bundle sheath
and continues up to the palisade parenchyma where it evap-
orates. A smaller part (shown by thin arrows) enters the
phloem directly. From (Münch 1930) p. 153.

element to the right. The sugar comes into the bundle
sheath in the form of sucrose from the mesophyll (not
shown) and after passage to the companion cell through
the plamodesmata marked “in”, part of the sucrose is
transformed to heavier sugars, raffinose and stachyose,
and the mixture passes on through the larger “out” plas-
modesmata into the sieve element. The hydrodynamic
radius of raffinose is only around 25% larger than that of
sucrose (Liesche and Schulz, 2013), so either the filtering
properties of the “in” plamodesmata are extremely well
tuned or the water is creating such large bulk flow that
the sugars cannot move back through them. The latter
does not seem possible, at least with the data available
for Cucumis melo: The total sugar concentration in the
companion cell c2 is much larger (more than a factor of
two) than that of the bundle sheath c1, mostly due to
the heavy sugars, and this strongly limits the water in-
take. If no additional water passes directly through the
membrane of the companion cell, water conservation dic-
tates that the same water flux must pass the “in” and
the “out” plasmodesmata. Sugar must be conserved as
well, and since no sugar passes the membrane the sugar
that passes the “in” and the “out” plasmodesmata must
be identical. The sugar concentrations (c2 and c3) in
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Figure 40 The polymer trap model with diffusion and bulk
flow. The bundle sheath cell (BSC) is connected to the com-
panion cell (CC) by narrow plasmodesmata, which prevent
the oligomers from diffusing back into the bundle sheath,
through the cell interface called “in”. Similarly, the com-
panion cell is connected to the sieve element (SE) through
wider plasmodesmata through the “out” interface. The water
flow rates Jw through the cell interfaces are marked with blue
(full) arrows, the sugar flow rates Js as red (dashed) arrows.
These flows depend on the pressures p as well as on sucrose
and oligomer concentrations ci inside and outside the cells on
the loading pathway. The semipermeable cell interfaces are
characterized by a permeability Lp, a bulk hindrance factor
W , and an effective diffusion coefficient D depending on the
structure, density and size of the plamsmodesmata connecting
them. Adapted from Dölger et al. (2014).

the companion cell are, however, much larger than the
one (c1) in the bundle sheath (roughly double), and the
pores are larger in the “out” plasmodesmata, so obvi-
ously advective sugar transport cannot account for the
sugar transport alone, and diffusion has to play a large
role, at least through the “in” interface.

To understand the filtering properties of the “in” mem-
brane, one has to estimate the transport of water and
of sugar through its narrow plasmodesmata. Despite
detailed electron microscopy (Fisher and Gifford, 1986;
Volk et al., 1996) the unblocked space available for flow
in these “channels” is not known with certainty, but it
has been suggested by Waigmann et al. (1997) to model
them as circular slits (i.e., annular regions) with half-
width of around 1 nm, radius rPD ≈ 25 nm and length
d ≈ 0.1µm. In the limit of low Péclet number Pe = uL/D
for a channel of length L, flow velocity u and diffu-
sion coefficient D, see Section II.B, the flow is diffusion-
dominated and the variation of the solute concentration
through the plasmodesmata is approximately linear. In
this case the appropriate framework for describing the
coupled sugar-water transport is the Kedem-Katchalsky
equations given in Eqs. (21a) and (21b). Expressing flux
densities of water Jw and sugar Js in terms of the two
driving forces, pressure difference (∆p) and concentration

difference (∆c) across the membrane one finds

Jw = Lp
[
∆Ψ +W∆Π

]
, (147a)

Js = W Jwci +
1

d
D∆c. (147b)

where Lp is the permeability, D is the diffusion coeffi-
cient, and W is the advective hindrance factor. W ex-
presses how leaky the membrane is, i.e., how easily the
solute can pass it. W = 0 (or σ = 1) allows no so-
lute and the osmotic strength is the full osmotic pressure
Π = RT c. In the opposite limit W = 1 the sugar travels
freely through the membrane and is advected with the
speed of the water flow.

In Dölger et al. (2014), these equations were writ-
ten down for for the coupled fluxes of water and sugar
through each of the interfaces shown in Fig. 40: bun-
dle sheath/companion cell (marked “in”) and companion
cell/sieve element (marked “out”). They took the con-
centration ci as the one on the “upwind” side, which is
being advected through the membrane of width d. Across
the “in”-membrane, these are the sucrose molecules, and
in addition there will be an osmotic term RTco = Πo

with W = 0 on the RHS of Eq. (147a), from the
oligosacchrides (raffinose and stachyose) that cannot get
back through the narrow plasmodesmata. Note that the
boundary conditions and thus the flows are different from
the classic osmotic flows in a closed system. Here one
assumes a steady state with the flow of both water and
sugar going to the right. This implies, of course that both
water and sugar is provided to the bundle sheath from
the mesophyll outside (to the left in Fig. 40), although
the mesophyll/ bundle sheath interface is not explicitly
taken into account.

I addition to these transport equations, sugar and wa-
ter must be conserved, and, as mentioned above, if no
additional water is taken up, the fluxes Jw through each
of the interfaces must be inverse proportional to their ar-
eas. For the sugar, one has to be a bit more careful, since
sugar transport measured in molar concentration × volu-
metric flow rate is not conserved, since molecular weights
of the oligosacchrides are larger than that of sucrose.

In Dölger et al. (2014), the parameters for the Kedem-
Katchalsky equations are computed for both of the mem-
branes, “in” and “out”. The transport coefficients for
a membrane with narrow pores of density nPD, where
d � h, can be found in analogy with those estimated
earlier in e.g. Section IV.C.1. Thus the membrane per-
meability is

Lp ≈ nPD
4πrPDh

3

3ηcytd
(148)

where ηcyt is the viscosity of the cytosol. Similarly, the
diffusion coefficient can be found from

D ≈ 4π rPD hnPDHDcyt (149)
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Figure 41 (Color online) Diffusive and convective hindrance
factors H (red, dashed) and W (blue, solid) in circular slit
pores as function of the relative solute size λ. Both ap-
proximations given by Dechadilok and Deen (2006) decrease
smoothly from 1 to 0 for an increasing solute size, where a
hindrance factor of zero corresponds to total blockage of the
respective molecule. Above λ = 0.8 the curves should be re-
garded as extrapolations. Adapted from Dölger et al. (2014).

where Dcyt is the diffusion coefficient of the molecule in
question in the cytosol and H = H(λ) is a hindrance fac-
tor for diffusion of a spherical particle in a narrow channel
as function of the “aspect ratio” λ = rsolute/h, the ratio
between the molecular radius and the channel half-width.
The advective and diffusive hindrance factors W (λ) and
H(λ) are given as series expansions in Dechadilok and
Deen (2006) and shown in Fig. 41. To be able to block
out raffinose, the channel half-width must be very close
to the radius of the raffinose molecule, i.e., h ≤ 5.2 Å
and to estimate the passage of sucrose molecules of radius
around 4.2 Å we have to use these functions for λ as large
as 0.8 which is at the limit of their validity (Dechadilok
and Deen, 2006), even more so since these molecules are
not spherical, and since, for such small particles – only
about three times larger than the water molecules them-
selves – hydrodynamics is questionable. If, despite all
these caveats, we do use these values, we find that even
with such small pores, one can, just by pure diffusion,
get enough sucrose through the membrane to account
for the observed transport rates. But, most likely, a sub-
stantial amount of water will follow with the sugar into
the companion cell and on to the sieve element. If not,
the companion cell would have to build up a counter-
pressure, which will then also make it difficult to take
up water into the sieve element-companion cell complex
directly from the xylem through the plasma membrane.
Lowering the pressure in the companion cell and the sieve
cell will thus have two advantages: it will allow an en-
hanced sugar transport, aided by the “bulk” water flow,
and it will transmit water directly into the phloem with
the sugar with no need for additional water uptake across
the higher-resistance membranes. In this way, the sim-
plistic view of the Münch mechanism, where water is os-

motically transported into the phloem from the nearby
xylem – as expressed by the bent arrows in Fig. 39 from
(H) to (Gel) and (S) – is modified, at least for this kind
of loading.

In the concrete example of Cucumis melo, we find that
the water and sugar (sucrose) flows through the plasmod-
esmata in the “in” interface (i.e., from the bundle sheath
to the companion cells, are related as J inw ≈ 0.3c1J

in
s – as

compared to J inw ≈ c1J ins for purely advective transport.
So there the sugar transport is dominated by diffusions,
but with a non-negligible water flow. For the “out” inter-
face, this would very likely be the other way around, such
that sugar translocation into the sieve elements would
be carried predominantly by bulk water flow through the
plasmodesmata. In fact it is conjectured in Dölger et al.
(2014) that the sugar and water fluxes across this inter-
face is matched to the sugar concentration in the phloem
(i.e., the sieve element) such that Joutw = c3J

out
s , which

would imply that many elements like the one shown in
Fig. 40, could emerge into the same phloem tube without
diluting or up-concentrating the sap. Due to the (small)
difference between the concentrations c2 and c3, there
would still be some diffusive contribution to Joutw , but, as
mentioned above, there would be no need for direct water
transport between the xylem and the phloem.

As noted above, our calculations were based on low
Péclet numbers for the flows through the membranes. A
characteristic value of water flux is Jw = 2×10−16m3 s−1

through the BSC-IC interface area A ≈ 10−9m2, i.e., a
velocity u ≈ 2×10−5 m/s, which should be modified with
the hindrance factor Win ≈ 0.33. With the length d ≈
10−7m of the channel and an effective diffusion coefficient
for sucrose D ≈ 4.7×10−14m2 s−1 from (149), the Péclet
number for the sucrose flow through the bundle sheath
cell-companion cell interface (the “in” interface) is

Pe =
dWu

D
≈ 0.14. (150)

which validates the approach taken.
It remains to be seen, whether the lack of direct water

transport from xylem to phloem is a more general phe-
nomenon, valid also for other types of loading. In passive
loaders, which include most trees, this might very likely
be so, since the water motion might aid the sugar translo-
cation and e.g., reduce the necessary concentration gradi-
ents. For active apoplasmic loaders, the situation is less
clear since the transport does not take place throughout
plasmodesmata, but directly through the membrane via
aquaporins and sugar transporting proteins as described
in Sec. III.B.1.

D. Final Remarks

In this section we have described the water trans-
port in plants, primarily the one taking place in the
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xylem, closely linked the the xylem physiology described
in Sec. III.C. The description has been somewhat less
detailed and mathematical than that of the sugar trans-
port covered in the two prior sections. This is a deliberate
choice since, as mentioned in the introduction, most re-
cent reviews have concentrated on precisely the xylem,
where the production of negative pressures and the flow
in metastable states has created a lot of attention.

In the first part of the section, we assessed the ex-
perimental situation for the water transport through the
xylem. We discuss the experimental methodology and
the available data for flow rates, pressures and the oc-
currences of cavitation, which is the main problem for
systems running at negative pressures. We then turn to
the leaves and describe how important geometrical as-
pects of the venation structure can be understood by
optimisation - either minimising pressure drops or max-
imising evaporation. The methods used there are close to
the ones used in Sec. IV.C. Remaining within the leaves,
we end by giving an introduction to recent progress in
the understanding of the coupled water and sugar trans-
port in the pre-phloem, responsible for loading sugars
into the phloem. All of the areas covered here are ac-
tively pursued in current research and we shall describe
some important open questions in the next section.

VII. CONCLUSIONS AND OPEN QUESTIONS

In this paper we have reviewed the state of our physical
understanding of the basic processes that govern translo-
cation of sap in plants. In the first part of the review,
we introduced the basic tools and background needed for
the second part: the physics of fluid translocation at low
Reynolds numbers and the biology of the vascular sys-
tem of plants. In the description of the vascular system,
we have stressed the structural properties of the vascu-
lature (sieve elements, vessels and tracheids) as well as
their connections (plasma membranes, plasmodesmata,
anastomoses and pit pores), and the special role played
by the leaves in allowing transpiration as well as sugar
loading and accommodating huge pressure gradients. We
also point out that important details are missing in our
understanding of the vascular system as a network.

In the second part, we have reviewed the current quan-
titative understanding of the processes that take place
in the vascular conduits – Section IV–V on the flows in
the phloem and Section VI on those in the xylem. We
started in Section IV by reviewing the current experi-
mental knowledge about phloem flow: velocities, pres-
sures and sugar concentrations. We showed that they
are at least in rough accordance with the Münch mecha-
nism, and we presented evidence that gymnosperms and
angiosperms, even though they seem to utilize the same
basic principles, have significantly different sap velocities.
We gave examples of biomimetic devices that run by os-

motic pumping and elucidate basic features of the Münch
mechanism. So far these devices are very simple, but we
believe that a development of devices with more complex
architecture and couplings is a very fruitful challenge. We
concluded Section IV by a simple hydraulic description
of sugar flows in terms of lumped resistors. In this way
were are able to predict phloem speeds, sizes of the sieve
tubes, leaf sizes and sugar concentrations in reasonable
accordance with the available field data.

In Section V we then presented the more detailed hy-
drodynamical description of phloem translocation a la
Münch, i.e., osmotically driven flows in long tubes, from
which precise velocity and concentration profiles can be
computed throughout even a large tree. These models
confirmed the simple predictions made by the resistor
theory, but also predicted strong velocity gradients as
can be understood from their proximity to variants of
the Burger’s equation. Of course, these more detailed
models also require more detailed assumptions e.g., in
terms of loading mechanisms, but they do give a general
framework which should be useful as better and more de-
tailed measurements of the flows become available. Here
important challenges are e.g., to include the interaction
with the xylem in a way simple enough to make clear pre-
dictions. This will require a better understanding of the
processes taking place in the leaves, where the xylem and
phloem conduits are separated only by a few microns.

Finally, Section VI reviewed our understanding of the
water transport though the xylem. The main challenge
for the cohesion-tension theory is to explain how plants,
in particular trees, transporting water at negative pres-
sures, can avoid cavitation or embolisms that stop the
flow and dry out the plants. Here we stressed the progress
in the understanding of e.g., pit pores and the refilling
of embolized vessels which have added substantial credi-
bility to this theory. Of similarly importance is the vein
architecture, and we gave examples of how important as-
pects of this architecture can be understood on the basis
of optimisation. Finally, we combined water and sugar
flow and gave a quantitative description of the water flow
in the pre-phloem of active symplasmic loaders.

Our understanding of sap flow in plants has progressed
immensely over the last century, as have many other
branches of biology. As we have emphasized, many pre-
dictions made from theories describing the two processes
responsible for water and sugar flow in plants have been
confirmed. The field has developed in large part due to
advances in experimental techniques. We have seen re-
cent adaptions of x-ray computed tomography (Broder-
sen et al., 2010), nuclear magnetic resonance velocime-
try (Windt et al., 2006), and confocal laser microscopy
(Froelich et al., 2011; Knoblauch and van Bel, 1998; Li-
esche and Schulz, 2012; Schulz, 1992) to biophysical plant
research that hold the promise for further progress. Si-
multaneously, the development and application of bio-
physical models and of synthetic, biomimetic systems,
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which have elucidated many of the mechanism that drive
and regulate sugar and water transport in plants, have
originated through collaborations between researchers in
biology, physics, chemistry, engineering, informatics, and
many other fields. We believe that such interdisciplinary
alliances hold the key to further progress in this field.
We hope soon to see biomimetic plants models that can
simulate coupled flows in the soil-plant-atmosphere con-
tinuum, transport between cells in the pre-vascular path-
way, and mixing within individual cells as well as im-
provements of techniques to visualize and quantify vas-
cular flows.

Many questions remain to be answered. The unify-
ing mechanism of phloem transport is the Münch mecha-
nism, an osmotically generated pressure flow originating
in the leaves and established by sugar accumulation in
the phloem vein ends. This is undoubtedly an impor-
tant driving force for phloem sap, but a conclusive test
of the Münch-pressure-flow hypothesis for long distance
translocation requires measurement of differences in pres-
sure and concentration between sink and source tissues
in the parallel phloem and xylem conduits throughout a
tree. Also, basic aspects of the transport network archi-
tecture, which forms the basis for modelling approaches,
remain unexplored. For example, it is not clear whether
the sieve tubes that start in the leaf minor veins continue
as separate pathways up to the petiole, or whether the
transport architecture is reorganized at specific junctions.
In needles, almost one-dimensional leaves, the situation
is somewhat simpler, and here one might be able to arrive
at more complete picture (Ronellenfitsch et al., 2015).

Another open question concerns the influence of sieve
element content on flow. The membrane material abun-
dant in the sieve elements of gymnosperms (i.e., the en-
doplasmic reticulum covering the sieve areas and passing
the sieve pores (Schulz, 1992) shown in Fig. 11d) should
lead to increased resistance, but their effect cannot be
seen in transport speed measurements. They have also
been discussed in relation wound response and of pres-
sure regulation and their content of aquaporins and sugar
transporters should be investigated. Similarly, it remains
uncertain how the highly abundant protein complexes in
angiosperm sieve elements influence flow.

A full description of the Münch mechanism requires a
more complete understanding of water flow in the leaves.
Understanding the sugar transport involved in phloem
loading which powers the Münch-pump requires a de-
tailed quantification of inter-cellular transport of sugar
and water all the way from the mesophyll to the phloem
sieve elements. After leaving the xylem, water molecules
can move apoplasmically or symplastically towards the
stomata and the mesophyll. Which path it takes is im-
portant for the sugar concentration and pressure driving
the phloem, and will be different for the different loading
types described in Sec. III.B. At present it seems par-
ticularly challenging to understand the passive phloem

loading, since intra-cellular water movement from vein
to mesophyll would tend to cancel the shallow concen-
tration gradient that is supposed to drive diffusion of
sugars from mesophyll to the phloem.

For the xylem, the cohesion-tension theory seems to
be solid, in the sense that the leaves do provide the ten-
sion needed for the flow, but the detailed understanding
of the origins of this tension and water transport in a
metastable state remains an important challenge. For
the water transport, the mechanism of cavitation due to
xylem tension is of major importance. Currently this is
thought to result primarily from meniscal failure at pit
membranes (“air-seeding”), but perhaps heterogeneous
nucleation might play an important role (Lintunen et al.,
2013)? Further, there might be structural and chemical
properties of pit membranes preventing gas penetration
(Herbette and Cochard, 2010; Jansen et al., 2009) and
it is important to elucidate and quantify the basic un-
derlying tradeoffs between safety (from cavitation) and
efficiency (for water transport). Such tradeoffs could ex-
ist at the level of individual pits, whole conduits and
entire networks and are thought to underlie the diversity
in xylem structure and function across plant species and
lineages (Lens et al., 2011, 2013; Tyree and Zimmermann,
2002).

It is still unknown whether cavitation/embolization is
a reversible phenomenon. Can embolized conduits be re-
turned to a functional state or must they be replaced
(Zwieniecki and Holbrook, 2009)? If they can be “re-
paired,” what is the mechanism, how rapidly can this oc-
cur (time-scale), and with what physiological constraints
(e.g., xylem tensions)? Further, we may ask how plants
control the development of xylem tensions so as to avoid
cavitation. Here stomata are clearly the key players, al-
though buffering of xylem tensions by water drawn from
nearby tissues may also play an important role (Holbrook
et al., 1995; Meinzer et al., 2009). The central question is
what information, both physical and biochemical, allows
stomata to respond to current supply and demand so as
to prevent xylem tensions from reaching dangerous levels
(Tyree and Sperry, 1989)?

In our view it remains an open question whether the
tensions in the leaves are actually, as written in the text-
books, capillary in origin. We did, however, provide some
new evidence (shown in Fig. 17) that changes in capillar-
ity can strongly influence the ability of the minor veins in
a leaf to transport water. In any case, it is believed that
the cell walls of the mesophyll play a major role in these
processes and thus that the key to the resolution of these
questions lies in the detailed understanding of the struc-
ture of plant cell walls. The swelling of cell walls is also
the basis for plant growth, and in this context the specific
roles and detailed dynamics of two of the most important
polysaccharides, pectin and hemicellulose, have been un-
der intense scrutiny (see e.g., (Cosgrove, 2014; Peaucelle
et al., 2011)). The implications for water transport are
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not clear at present, but the interplay between growth
and water flow seems an important issue for future stud-
ies.

So, from the point of view of a physicist, plants remain
full of mysteries.

ACKNOWLEDGMENTS

We are grateful to J. Dölger, M. Knoblauch, H. Rade-
maker, F. Rockwell, J. A. Savage for useful discussions.

K.H.J. acknowledges support from the Danish Council
for Independent Research — Natural Sciences, the Carls-
berg Foundation, and a research grant (13166) from VIL-
LUM FONDEN.

N.M.H. acknowledges support from Harvard MRSEC
DMR-1420570, AFOSR FA9550-09-1-0188 and NSF IOS-
1456845.

T.B. and A.S. acknowledge support from the Danish
Council for Independent Research — Natural Science
Grant number 12-126055

LIST OF SYMBOLS

Symbol SI unit Description
a m conduit radius, pore radius
a∗ m optimal conduit radius
A m2 area
c M concentration
d m vein spacing; pore length

D m2 s−1 diffusion coefficient
D̄ 1 dimensionless diffusivity
e Pa partial pressure of water vapor in air
e0 Pa saturated vapor pressure in air

E J m−2s−1 Energy flux
E Pa Youngs modulus

g m s−2 acceleration of gravity

J M m s−1 current density/flux
k m2 Darcy constant
l m length
l2, h m stem length
`p m distance between pores (in a sieve plate)
L m characteristic width of the conduit, vein length

Lp mPa−1s−1 membrane permeability

lp m3s−1 permeability for single aquaporin
mi kg mass of liquid molecule i
Mü 1 Münch number
N 1 number of conduits
p Pa pressure
Pé 1 Péclet number

Q m3s−1 volumetric flow rate

q m2s−1 volumetric flow rate per unit length

q m s−1 volumetric flux per surface area
r m radial coordinate

R Pa s m−3 hydraulic resistance, gas constant
Re 1 Reynolds number
Sc 1 Schmidt number
tdiff s diffusion time
tadv s advection time
T K temperature

u m s−1 axial flow speed

u∗ m s−1 axial flow speed at optimal conditions accord-
ing to hydraulic resistor theory

U m s−1 characteristic flow speed

vi m s−1 velocity of a liquid molecule i

v(r, t) m s−1 velocity field in liquid, at position r at time t,
i.e., momentum per mass in the volume

v̄ m s−1 flow speed averaged over the cross section

vx, vy, vz m s−1 velocity along the cartesian coordinates
V m characteristic length scale
∆V m3 Volume of liquid particle region
Vw m3 molar volume of water
W m leaf section width
W 1 advective hindrance factor
x, y, z m cartesian coordinates
γ 1 flow amplification factor

γ J m−2 surface tension
δ 1 leaf thickness
η Pa s viscosity

ν m2 s−1 kinematic viscosity

ρ kg m−3 density

ρcw kg m−3 density of the cell wall material
τ 1 non-dimensional time
µ J chemical potential
µ0 J reference chemical potential of water
σ 1 reflection coefficient
σ Pa compressive strength
Ω(r) – Liquid particle region at r
φ 1 covering fraction of pores
Π Pa osmotic pressure
Ψ Pa water potential
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